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Abstract 

Water holding capacity and drip loss are important commercially interesting meat quality 

parameters with low heritabilities and complex genetic and metabolic background. The aim 

of this thesis was the application of different statistical approaches to integrate the omics 

levels genome, transcriptome, proteome, metabolome and phenotype in 100 Duroc × 

Pietrain pigs to elucidate the genetic and metabolic background of meat quality, paying 

special attention to drip loss. The pigs were genotyped and performance tested. The 

metabolome, proteome and transcriptome were profiled in muscle samples of the animals. 

In the first study, metabolite profiles were analysed based on different statistical procedures 

to elucidate the underlying biochemical processes and to identify potential metabolite 

indicators for drip loss, pH1, pH24 and meat color. In case of drip loss, the procedure 

‘Random forest regression’ was the most suitable method to identify reliable biomarkers. 

Based on a systems biological approach, in a second step different omics levels were 

integrated to increase the information density for the analysis of meat quality and carcass 

composition traits. The omics analyses were applied as promising alternatives to standard 

genetic association studies and the metabolic phenotypes were used as more accurate traits 

to characterise underlying functional pathways and candidate genes. Therefore, metabolite 

and protein profiles were used to perform an enrichment analysis that revealed the 

sphingolipid metabolism with significant influences on drip loss. Based on the identified 

pathways, metabolites and proteins were selected as ‘intermediate phenotypes’ for drip loss.  

In the third study, the most promising metabolic traits for drip loss and other meat quality 

and carcass composition traits were picked using a network analysis that integrated all 

quantified transcripts, metabolites and proteins. In the following, besides the conventional 

production traits, the selected ‘intermediate phenotypes’ (single metabolites/proteins or 

combined metabolic traits) were analysed in genome-wide association studies (GWAS). As 

a result, several highly interesting candidate genes for drip loss and carcass composition on 

Sus scrofa chromosomes 5 and 18 were identified.  

Due to the higher information density between genotype and phenotype, we hypothesize 

that GWAS based on intermediate phenotypes are able to improve the statistical power in 

the identification of reliable candidate genes and to avoid false positive, redundant results. 

In conclusion, our omics approaches provide comprehensive insights in the genetic 

variation of genes directly involved in the metabolism of production traits. 





 

 

Zusammenfassung 

Das Wasserbindungsvermögen und der Tropfsaftverlust (TSV) sind ökonomisch relevante 

Fleischqualitätsparameter mit geringer Heritabilität und komplexer genetischer Fundierung. 

Es wird angenommen, dass die Analyse verschiedener Omics Ebenen bei der Untersuchung 

komplexer Merkmale sehr zielführend sein kann. Das Ziel dieser Arbeit war die 

Anwendung unterschiedlicher statistischer Verfahren, um die Omics Ebenen Genom, 

Transkriptom, Proteom, Metabolom und Phänotyp zu integrieren und in 100 Duroc × 

Pietrain Schweinen die genetische und metabolische Grundlage vom Merkmal TSV und 

anderen Fleischqualitätsparametern zu untersuchen.  

In der ersten Studie wurden Metabolit-Profile genutzt, um auf Basis verschiedener 

statistischer Prozeduren die zugrundeliegenden Stoffwechselprozesse und potentielle 

Biomarker für die Merkmale TSV, pH-Wert und Fleischfarbe aufzudecken. Für TSV war 

‚Random Forrest Regression‘ die geeignetste Methode um zuverlässige Biomarker zu 

identifizieren. Mittels eines systembiologischen Ansatzes wurden im nächsten Schritt 

mehrere Omics Ebenen verknüpft, um die Informationsdichte bei der Analyse 

verschiedener Merkmale der Fleischqualität und Schlachtköperzusammensetzung zu 

erhöhen. Somit wurden in der zweiten Studie Metabolit- und Protein-Profile genutzt, um 

eine Pathway-Analyse durchzuführen. Diese ergab u.a., dass der Sphingolipid-

Metabolismus einen signifikanten Einfluss auf den TSV hat. Basierend auf den 

identifizierten Pathways wurden einzelne Stoffwechselkomponenten als ‚intermediäre 

Phänotypen‘ für den TSV ausgewählt. In der dritten Studie wurden die 

vielversprechendsten intermediären Phänotypen für TSV und andere Merkmale mit Hilfe 

einer Netzwerkanalyse ausgewählt. Dazu wurden Transkripte, Proteine und Metabolite zu 

Modulen kombiniert. Neben den konventionellen Leistungsmerkmalen wurden ausgewählte 

‚intermediäre Phänotypen‘ (einzelne Metabolite/Proteine bzw. Module der 

Netzwerkanalyse) in genomweiten Assoziationsanalysen (GWAS) untersucht. Im Rahmen 

dieser Arbeit wurden einige interessante Kandidatengene für TSV auf Sus scrofa 

Chromosom (SSC) 18 und die Schlachtköperzusammensetzung auf  SSC5 detektiert.  

Durch die erhöhte Informationsdichte zwischen Geno- und Phänotyp ist anzunehmen, dass 

GWAS von intermediären Phänotypen zu einer verbesserten statistischen Aussagekraft bei 

der Detektion von Kandidatengenen führen und falsch-positive Assoziationen vermieden 

werden können. Dies erlaubt, die genetische Fundierung komplexer Stoffwechselvorgänge 

aufzuklären. 
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In livestock breeding, most quantitative production traits with high heritability are 

comprehensively investigated. Many major genes are detected and already established in 

genomic selection and the underlying formulas for calculation of genomic breeding values 

are validated in large reference populations. 

Consequently, livestock populations are on a remarkable high genetic level in many 

economically important production traits like milk yield in cattle or carcass lean content in 

pigs. On the other hand, there are many low heritable traits, which gain an increasing 

interest in livestock breeding not only because of economic, but also of sustainability 

aspects like animal health and welfare or resource efficiency. These traits usually have a 

complex genetic foundation and are strongly influenced by a variety of environmental 

factors. Thus, the elucidation of the genetic background is associated with many challenges. 

To obtain significant associations between genetic markers and phenotypes, a large number 

of individuals is required and the phenotypes have to be quantified in a very precise way 

and under defined standardized conditions. In recent years, substantial progress in genomic 

data recording and statistical methodologies could be observed. Usually, the association 

between single nucleotide polymorphisms (SNPs) and phenotype is analysed by genome-

wide association studies (GWAS). However, these analyses include DNA information but 

frequently ignore other omics levels like metabolome or proteome layer. Hence, the one 

omics layer GWAS approach may not be sufficient to decode the complex biological 

mechanisms and genomic architecture of low heritable traits [1]. As a consequence, it can 

be expected that many detected quantitative trait loci (QTL), particularly found in the 

analysis of low heritable traits, are presumably false positive results [2].  

The novel scientific field of omics analyses provide promising approaches to uncover the 

genetic background of complex traits with higher accuracy. These analyses can be seen as a 

part of inter-disciplinary systems biology science that focus on complex interactions of all 

cellular and biochemical components within a cell or organism, to get a holistic 

understanding of biological processes. The major reason for the increasing use of omics 

approaches may be attributed to progress in molecular biology, particularly in genome 

sequencing and other high-throughput measurements. These technologies enable us to 

collect comprehensive data sets on systems performance and gain information on the 

underlying molecular biology [3]. The omics levels comprise all stages of genetic and 

metabolic regulation in organisms including the genome, transcriptome, proteome, 
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metabolome and phenotype. Based on the different quantified omics levels, the selection of 

metabolic phenotypes that can be used as more accurate indicators for classical 

performance traits is a promising concept and could be the next landmark in advancement 

of genetic analyses.  

Within this thesis, we applied different statistical approaches to investigate the genetic and 

metabolic foundation and regulation of the low heritable meat quality parameter water 

holding capacity (WHC) or drip loss in Duroc × Pietrain (Du × Pi) pigs. For this purpose, 

based on different concepts to handle big data sets, we selected the most promising 

metabolites, proteins and transcripts and used them as bio indicators or metabolic 

phenotypes to increase the information density between candidate genes and traits of 

interest in genome-wide association analyses.  

 

1.1 Meat quality traits in pigs 

With above 110 millions of tons of worldwide pork consumption, in 2015 pigs (Sus scrofa 

domesticus) were among the most important animals for meat production 

(www.statistika.com). To meet the expectations of consumers, in the last decade, the meat 

production industry was increasingly focused on high quality pork products [4]. In general, 

quality includes intrinsic and extrinsic attributes [5]. Kauffman et al. [6] described the 

intrinsic meat quality as the ‘sum of all quality factors in terms of sensory, nutritive, 

hygienic and toxicological and technological properties’. Sensory meat parameters include 

tenderness, flavour/smell and color while nutritive factors include fat, proteins and 

connective tissue content. The technological meat quality refers to several parameters like 

WHC, pH-value, intensity and homogeneity of color and firmness that affect the suitability 

for storage and processing in the respective production processes [7]. Deficiencies in pork 

quality lead to economic losses in meat production and reduced consumer acceptance. The 

attractiveness of pork to consumers particularly depends on its intrinsic, sensory 

characteristics, such as leanness, taste, odour, color, tenderness and juiciness [8]. 

1.1.1 Muscle composition and post mortem conversation into meat 

Muscle composition and metabolic processes that occur within the muscle tissue before, 

during and after slaughter lead to the development of specific meat quality attributes [9]. 

With regard to a better understanding of the differences in pork quality a clear 
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comprehension of the tissue formation and the proceeding metabolic processes is necessary. 

Muscle tissue is mainly composed of the principle components water (~75%), proteins 

(~19%) and lipids (~4%), and the minor components (~1%) like carbohydrates, vitamins 

and minerals. Most of the water is bonded within the myofibrils and the cell membrane 

(sarcolemma) and between the muscle cells and muscle bundles [10,11].  

Scheffler and Gerrard [9] described that “muscle tissue is able to keep homeostatic 

conditions by adapting its metabolic activity appropriate to changes in energy need and 

content of stored energy”. In muscle cells, energy is generated in form of adenosine 

triphosphate (ATP) that is provided by fatty acids (FAs) “from adipose tissue, ketone 

bodies from the liver, glucose from the blood or stored glycogen and phosphocreatine in the 

muscle”, (Nelson et al. [12]). Under the conditions of regular energy intake and rest, blood 

glucose levels are high and sufficient ATP is generated in the muscle cells to maintain the 

cell metabolism; glycogen is synthesized by glycogenesis and accumulated in the cells until 

energy is needed [13]. If required, muscle glycogen becomes available for metabolic 

processes like glycogenolysis and glycolysis [12]. In anaerobic conditions, the processes 

lead to the formation of lactate that reduces the pH value of the muscle. In normal 

physiological conditions, the original state is rebuilt while lactate is degraded in the liver. 

Within this process, lactate is transformed to pyruvate and in the next step, glucose is build 

up by gluconeogenesis [14].  

After slaughter, metabolism in muscle tissue changes and leads to the conversion of muscle 

to meat. In the early post mortem (p.m.), with the absence of respiration and blood flow, the 

homeostatic conditions in the muscle cells break down. According to this, there is a shift 

from aerobic to anaerobic metabolism and within the muscle cells the availability of energy 

may become the limited factor with respect to muscle metabolism. Consequently, the 

muscle cells lack oxygen and the anaerobic glycolysis results in decreased glycogen and 

ATP levels in muscle. Correspondingly, lactic acid is accumulated and accelerates the rate 

of pH decline of the tissue from near neutrality to 5.4-5.8 (Fig. 1, A). Once the pH-value 

has reached the isoelectric point, positive and negative electrical charge of the proteins are 

equal. These positive and negative elements within the protein attract each other and cause 

a space reduction within the myofibrils [11]. Additionally, muscle pH declines until either 

muscle glycogen content is depleted or the function of glycogenolytic, glycolytic or 

fermentative enzymes is stopped while muscle is still warm [13,15]. This process results in 
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the denaturation of many proteins that are essential for many cellular functions and proteins 

involved in binding of cellular water [9,11]. This is accompanied by leakage of muscle cells 

and loss of water, ions and proteins [10]. It is the combined effect of protein denaturation 

and pH decrease due to the metabolism of muscle glycogen p.m. that results in the 

conversion of muscle tissue to the pork end product, determining the quality of the pork 

product [15].  

 

 

 

 

1.1.2 The role of water holding capacity in meat quality 

One important meat quality parameter is water holding capacity (WHC) that is defined as 

the ability of meat to hold all or part of its intrinsic water [16]. WHC is the result of 

biochemical and biophysical processes, occurring in the early p.m. muscle to meat 

conversion [11]. Based on weight losses and restricted processing suitability, WHC is both 

an economic relevant meat characteristic as well as crucial for the consumer acceptance. 

Pork with a low WHC is unappealing to consumers because of the negative visual 

impression caused by liquid exudate [9]. On the other hand, meat with very high WHC is 

Figure 1: (left) Determination of post mortem (p.m.) pH-value in Musculus longissimus 

dorsi. DFD = dark, firm, dry; PSE = pale, soft, exudative (http://qpc.adm.slu.se); (right) 

Variation in color, pH-value 24 hours p.m. and drip loss of PSE, normal and DFD 

meat, measured in ham (http://qpc.adm.slu.se). 
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also disadvantageous due to its dry and sticky nature [9]. Accordingly, WHC is strongly 

associated with meat quality parameters juiciness and tenderness. Thus, WHC affects the 

financial output, nutritional value and sensorial and technological properties of meat. The 

loss of inherent water retained in muscle cells that occurs due to the effects of pre-slaughter 

and p.m. processes, the drip loss phenomena is the main parameter of WHC and causes the 

incidence of unacceptable tenderness of pork.  

The highest drip loss is often found in ‘Pale, soft and exudative’ (PSE) meat. PSE meat has 

a lightness score of L*>50, a drip loss value of >6%, a pH-value two hours p.m. (pH2) of 

<5.8 and a pH24-value of between 5.3 and 5.7 (cf. Fig. 1) [17]. Besides possible genetic 

predisposition of PSE meat, there are also other factors causing exudative meat. Major 

factors affecting the variation of WHC in pork include temperature and pH p.m., which 

define the dimension of myofibrillar protein denaturation and the net charge of the 

myofibrils [18]. High temperatures and low pH values in meat are associated with high 

levels of proteolysis, whilst expended pH decrease is related with lower net burden of 

myofibrils [9,18]. When the cytoskeletal (myofibrillar) proteins denature, a reduction in 

myosin head length within the muscle fibres leads to closer contact between thick and thin 

filaments [18]. This leads to expulsion of water [18]. Alternatively, Scheffler et al. [9] 

describe that with reduced net charge of myofibrils, myofilaments are attracted towards 

each other forcing water out of the muscle fibre lattice. Ultimately, both leads to an increase 

in drip loss and tenderness and reduces the WHC of pork. Rapid pH decline, protein 

denaturation and high drip loss can be caused by short term stress before slaughter [19].  

In contrast to PSE meat, ‘Dark, firm and dry’ (DFD) pork is characterised by an increased 

WHC. DFD meat that has a pH24-value of >6, a drip loss value of <2% and an L* value of 

<43, shows a raised tendency to for microbial deterioration and bad dry curing qualities (cf. 

Fig 1). 

A wide variety of methods are used for indirect measurement of WHC in meat. These 

methods can be differentiated based on the definition of what kind of fluid extracting out of 

the muscle tissue is measured. Depending on the force that is applied to the meat sample 

more or less fluid is expelled from the muscle cells. For the estimation of WHC, forces 

such as pressure (filter paper press method) or suction (filter paper method) has to be 

applied to the meat sample and the amount of released water is determined. The most 
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common method in WHC recording is the filter paper press method due to Grau and Hamm 

[20]. This method is applied in meat inspection, although it is labour-intensive because of 

cutting, homogenising and weighing procedures [21]. The filter paper method is cheap, 

easy, very fast and no special facilities are needed for the visual scoring [22]. The third 

described method for the indirect measurement of WHC is the drip loss method. In the drip 

loss method, pressure is exerted by gravity and shrinking during storage [21]. Offer and 

Knight [23] defined drip loss as a fluid consisting of water and proteins, expelled from the 

meat surface without any mechanical force other than gravity that is quantified as 

proportion of weight loss due to fluid exudation using gravitational techniques (Fig. 1, B). 

Diverse techniques were developed for the direct measurement of drip loss: the loose bound 

water method, the capillary volumeter method, the tray method, the bag method of Honikel 

[16], the EZ-DripLoss method [24] and the centrifugation method [25][25]. Particularly, the 

bag method is simply to implement and needs no special equipment, but takes at least 48h 

to obtain results.  

Tab. 1 indicates that the quantification of WHC or drip loss strongly depends on the 

performed method. The correlation between filter paper press, filter paper and drip loss 

(bag) methods are rather low, whereas a high correlation can be observed comparing the 

bag and EZ-DripLoss method. These results were to be expected because different (drip 

loss,  filter paper, filter paper press) or equal (bag, EZ-Driploss) forces were applied to 

remove intrinsic water of meat. In following, unless otherwise stated, we set the 

measurement of drip loss based on the bag method as the method of choice (golden 

standard) to quantify WHC. This is also stated by Honikel [16] and Otto et al. [24]. 

Besides the described methods for the indirect quantification of WHC, using filter paper 

press, filter paper or drip loss method, there are several other parameters, which can be used 

as indicators for WHC: pH-value in meat 1h p.m. and light scattering and reflectance of 

meat (meat color) are classical on-line techniques predicting WHC. In contrast to most 

WHC traits, these indirect parameters can be measured on-line on intact carcasses in the 

slaughterhouse in a cost effective manner. As can be seen in Tab. 1, drip loss is strongly 

correlated with pH1 (rp=-0.67) and pH24 (rp=-0.51) and to a minor degree to meat color 

(rp=-0.30). The magnitude of these correlations can be explained by the physiological 

connection to WHC given in section 1.1.1 (p. 3). 
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Table 1: Phenotypic correlation coefficients (rp) between different techniques to 

estimate water-holding capacity and drip loss. Modified by van Oeckel et al. [21], Otto 

et al. [24], Sellier [26] and  Borchers et al. [25]. 

Method Filter paper Drip loss pH1 pH24 

Filter paper press 0.10 0.35   

Filter paper  0.20   

EZ-DripLoss  0.86   

pH1  -0.67   

pH24  -0.51 0.33  

Color  0.41 -0.50 -0.13 

- The filter paper press method based on a modification of the method of Grau and 

Hamm [20]: samples of 300mg homogenised meat were placed on a filter paper 

between two cover glasses under a pressure of 1kg for 5min. The difference 

between the areas of the pressed meat and the wet area on the filter paper was 

determined by planimeter. 

- The filter paper method was carried out as described by Kauffman et al. [22]: A 

filter paper of known weight was applied to the meat sample with a 90g rubber plug, 

the sample was first exposed to the air for 15min. After 2s the filter paper was 

removed and reweighed to give weight of absorbed water. 

- Drip loss method based on the bag method of Honikel [16]: 150g meat samples 

(free of external fat and connective tissue) were hung by a nylon cord in a plastic 

bag at 4°C for 48h, ensuring the meat had no contact with the juice in the bag. The 

difference in weight of meat sample (after superficially wiping dry), before and after 

the hanging, divided by sample weight ×100 yields the % drip loss. 

- EZ-DripLoss method: 10g meat samples were placed in pre-weighed drip loss 

containers. After 48h, each container was weighed including meat and drip loss and 

once again for only drip loss.  

- All traits measured in Musculus longissimus dorsi; pH was measured 1h (pH1) and 

24h (pH24) post-mortem (p.m.); Meat color quantifies the light reflectance (CIE L* 

value) measured 24h p.m. 
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1.1.3 Genetic foundation of water holding capacity 

Drip loss, as an indicator for WHC, has a low to medium heritability (0.01 to 0.31) and is 

genetically and phenotypically correlated with meat quality traits pH1, pH24 and color 

[26]. The heritabilities of these traits are very heterogeneous (cf. Tab. 2). While pH24 has a 

maximal heritability of 0.39, the heritability of meat color reaches a maximum of 0.56. It 

might be reasonably assumed that the wide range of heritability estimators is the result of 

the different recording systems. Different techniques for quantification are more or less 

prone for measurement errors due to random environmental factors like imprecise sample 

collection or preparation or not standardized testing environment. In all these cases, the 

measurement errors lead to a higher phenotypic trait variation and complicate the 

clarification of the associated genetic background of the traits. 

 

 

Table 2: Heritabilities and mean genetic correlation coefficients between meat quality 

parameters drip loss, pH1, pH24 and meat color. 

Trait Drip loss pH1 pH24 Color 

drip loss 0.01 to 0.31 -0.55 to 0.01 -0.99 to -0.50 0.49 

pH1  0.04 to 0.41 0.49 -0.38 

pH24   0.07 to 0.39 -0.65 to -0.38 

color    0.15 to 0.57 

Drip loss (based on bag method), pH1, pH24 and color (light reflectance, CIE L* value) 

measured in Musculus longissimus dorsi; diagonal (bold) = heritability (h²); upper triangle 

= mean genetic correlation (rg); extracted from Sellier [26] and Borchers et al. [25].  

 

 

Drip loss has medium to high negative genetic correlations to pH1 and pH24. High drip 

loss is correlated with strong pH decline in muscle 1h and 24h p.m. The genetic correlation 

between drip loss and meat color has a medium level. Consequently, high drip loss is 

correlated with high light reflectance (pale color) in muscle 24h p.m.   
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The presented heritabilities and correlation coefficients are reliable estimators of the genetic 

foundation of drip loss and other WHC related meat quality traits, under the assumption of 

a polygenic determination. Due to the continuous normal distribution of the trait 

expression, it can be expected that many genes are involved in the genetic determination, so 

that the polygenic assumption can be justified. The low heritability of traits related to WHC 

implicates that many environmental factors are involved in the phenotypic expression of 

meat quality. The contribution of many genes and environmental conditions complicate the 

identification of single genes with significant effect on meat quality [27]. Nevertheless, 

several major genes are widely investigated and discussed:  

(1) PSE meat is genetically caused by a mutation on the ryanodine receptor / calcium 

release channel (RYR1) or halothane gene on Sus scrofa chromosome (SSC) 6, that 

regulates Ca
++

transport across muscle cell membranes [28]. The recessive mutation 

(R614C missense mutation) at the RYR1 locus causes susceptibility to stress (porcine 

stress syndrome), malignant hyperthermia syndrome (MHS) and a 90 to 95% incidence 

of PSE. However, with the help of a commercial available test for the RYR1 mutation, 

today, the German pig production has mostly eliminated this mutation in pig 

populations used for fattening [ZDS 29,30]; 

(2) The rendement napole (RN) gene, identified in the Hampshire breed, is responsible for 

increased glycogen content of the ‘white’ (fast-glycolytic) muscle types. A dominant 

mutation in the adenosine monophosphate (AMP)-activated protein kinase, y-3 subunit 

(PRKAG3), also known as RN gene, is associated with lower Napole yield and leaner 

carcasses. As a result, the meat quality is reduced caused by a lower pH based on p.m. 

degradation of glycogen. The meat is also called ‘acid meat’ [31]. Other SNP variants 

in PRKAG3 have positive effects on pork quality traits including ultimate pH, meat 

color, WHC, drip loss, tenderness, and cooking loss [32]; 

(3) The CAST gene, coding for the calpastin pathway, is correlated with several WHC 

traits [33], juiciness [34], pH24 and color [35]; 

(4) Insulin-like growth factors IGF-1 and 2 and leptin and leptin receptor LEPTIN and 

LEPR [30,36,37]; 

(5) Other genes, for which associations with drip loss and pH have been reported, include 

myogenin [38], pyruvate kinase muscle isozyme 2 (PKM2) [39], and troponin I [40]. 
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Regarding economically important traits including meat quality, the dominant aim of pig 

breeding programs is selection towards reduced frequency of specific mutations with 

negative effect and enrichment of positive allele variants in commercial pig populations. 

However, it must be taken into consideration that there are some genetically antagonistic 

relations between carcass composition and meat quality traits resulting from antagonistic 

pleiotropic or linked gene effects (see Tab. 3). Carcasses with low lean meat contents 

(LMC) are associated with high pH24-values that induce DFD meat. On the other hand, 

carcasses with low meat fat ratio (MFR) (fatty meat) are associated with low pH1 in meat 

that increases the risk of PSE meat. Moreover, low MFR leads to tender and juicy meat. 

These relations should be considered in formation of a balanced breeding goal that mostly 

comprises high slaughter yields of high quality meat with favourable meat to fat 

composition.  

 

 

Table 3: Genetic correlation coefficients of meat quality parameters water holding 

capacity, drip loss, pH1, pH24, meat color and tenderness with carcass composition 

traits leanness and fatness. 

Trait Carcass leanness Carcass fatness 

WHC 0.10 0.26 

drip loss -0.13 0.15 

pH1 0.16 -0.21 

pH24 -0.19 0.02 

color 0.05 -0.10 

tenderness -0.20 0.24 

WHC – water holding capacity; Ciobanu et al. [32]. 

 

 

In recent years most important genes affecting WHC were detected via less effective 

marker technologies like microsatellite genotyping. Due to progress in automated recording 

of meat quality and development of high throughput genotyping, nowadays it is possible to 

identify QTL or genes for meat quality even with smaller effects. Up to now, the Pig 

QTLdb has collected 13,030 QTL for 663 traits from 477 publications (update: October 
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2016; http://www.genome.iastate.edu/cgi-bin/QTLdb/index). Fig. 2 shows the detected 

QTL for drip loss across all porcine autosomes so far. These QTL were mainly identified 

via genome scanning based on linkage analysis and microsatellite genotyping. QTL studies 

have been greatly enhanced by development of GWAS, which use porcine SNP chips to 

genotype above 60,000 SNPs distributed across the whole pig genome.  

 

 

 

 

Besides obvious progress in genotyping technologies, nowadays more advanced and 

accurate methods in recording meat quality and its underlying physiological parameters are 

available. These novel phenotypes are derived within all intermediate levels of the genome 

to phenotype axis (transcripts, proteins and metabolites). They can be used as biomarkers in 

selection or as so-called metabotypes in genetic analysis to increase the accuracy and 

reliability of GWAS. 

Figure 2: Quantitative trait loci (QTL) for drip loss in the pig genome. Red QTL lines 

represent for significant and light blue lines for suggestive statistical evidence. 

(http://www.animalgenome.org; 5 December, 2016). 
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1.2 The different omics levels 

In the last two decades, many biology related scientific fields have transformed from 

primarily empirical and observational fields towards systems-level understanding. In order 

to summarise the role of different omics levels, the definition of Liu [41] and Schadt et al. 

[42] are given. Liu [41] pointed out that in different omics approaches the biology of living 

organisms is explained by structure and dynamics of cellular and organismal functions 

rather than by characteristics and effects of isolated parts of a cell or organism. 

Accordingly, Liu [41] stated that “systems biology requires the ability to digitalise 

biological output, the computational power to analyse comprehensive and massive data 

sets, and the capacity to integrate heterogeneous data from multiple experimental sources 

using interdisciplinary tools, the so-called ‘omics’ technologies into a usable knowledge 

format. Thus, systems biology can be described as ‘integrative biology’ with the ultimate 

goal of being able to predict de novo biological outcomes”. As a consequence, Liu [41] and 

Hood et al. [43] believe that integrative, systems approaches provide unbiased and 

complete data sets about a biological system and interconnections of metabolic 

components. Moreover, according to Liu [41], systems biology allows the ranking of the 

often large number of involved molecules and pathways with respect to their importance for 

specific trait related processes. In a similar way, Schadt et al. [42] defined that omics 

technologies refer to a group of high-throughput research tools, including genomics, 

transcriptomics, proteomics, and metabolomics (Fig. 3). These tools are based on 

comprehensive analyses of all levels of genetic and metabolic expression. Schadt et al. [42] 

posit that by integration of a diversity of data like DNA variation (SNPs), gene expression 

(transcripts), protein-protein interaction, metabolite expression, and other types of 

molecular phenotype data, like epigenetic markers, more comprehensive networks of genes 

and metabolic components, so-called metabotypes, both within and between tissues and 

cells can be constructed to present a more detailed picture of the molecular processes 

underlying physiological states associated with a given phenotypic expression.  

Until a few years ago, a general paradigm in molecular biology was the unidirectional 

information flow from genes to transcripts, which are translated into proteins. In the next 

step, enzymes regulate metabolic pathways and thereby affect the final phenotype of an 

individual (see Fig. 4, A) [44,45]. Based on new findings in the field of systems biology, 

Hollywood et al. [46] postulate that today it is known that the traditional ‘linear’ thinking is 
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often misleading. Actually, biochemical processes at the level of a cell or organism are 

intimately networked with many feedback-loops (see Fig. 4, B) [46]. The levels of genes, 

transcripts, proteins and metabolites are mutually dependent and the mechanisms 

controlling the interactions are very dynamic and complex. Moreover, in particular at the 

levels of transcripts and proteins, many internal processes like alternative splicing of 

messenger ribonucleotide acid (mRNA) lead to an increasing variation of metabolic 

intermediates (see Fig. 4, B and C) [46]. The reconstruction, visualisation and interpretation 

of such relations are big challenges for the understanding of metabolic processes effecting 

complex traits like meat quality in livestock [44,46]. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schema of omics technologies, their corresponding analysis targets, and 

assessment methods. DNA is first transcribed to mRNA and translated into protein 

which can catalyse reactions and give rise to metabolites, which include glycoproteins, 

carbohydrate and lipids (Fig. from Wu et al. [47] based on Sawyers [48]). 
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1.2.1 Genomics 

As mentioned in section 1.1.3 (p. 9), livestock breeding is focused on modifying the genetic 

constitution of important livestock species to make them better matching consumers claims 

[49]. Kadarmideen et al. [49] described that “the approach of selecting parents of a next 

generation is based on their (or relatives) phenotypes in economically important traits”. 

Best linear unbiased prediction (BLUP) combines the recording of individual performance 

traits and the phenotypes of relatives into estimates of breeding values (EBV) [50]. From 

1980 onward, progress in molecular genetics led to more genetic improvement compared to 

selection based on phenotypic records [49]. In the 1980s, marker-assisted selection detected 

Figure 4: (A) Traditional paradigm of molecular biology. (B) The omics organization 

in systems biology. (C) Traditional linear view of a metabolic pathway and the now 

accepted view of scale-free connections in a metabolite neighbourhood; nodes = 

metabolites, connections = enzymatic action; Hollywood et al. [46]. 
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and (fine) mapped genes (QTL) influencing traits of interest and included the QTL 

information into the BLUP-EBV [51]. In the early 1990s, QTL mapping projects spurred a 

lot of enthusiasm [49]. According to Meuwissen et al. [51], QTL mapping studies resulted 

in huge QTL databases. Consequently, the Animal QTL database 

(http://www.animalgenome.org/QTLdb/) today reports several thousands of QTL for major 

livestock species, with increasing tendency. However, the reproducibility of the QTL maps 

is low, i.e. QTL positions move/(dis)appear from one to the other investigation [51]. As 

possible explanation for this phenomenon, Xu [52] presented that the bulk of QTL have 

minor effects. Combined with the situation that a huge number of genetic markers is tested, 

due to Xu [52] there is a marked ‘Beavis effect’ in QTL mapping studies. This phenomenon 

leads to overestimation of significant markers and is still challenging in genetic analyses.  

Moreover, most of the QTL were detected using microsatellite markers covering large 

regions of the genome that contain a variety of genes [53]. Therefore, it was difficult to 

detect the causative genes of QTL variation and the fine mapping of the initially mapped 

QTL was a persisting challenge [54]. Subsequently, the release of whole genome sequences 

of major livestock species has led to a paradigm shift in availability of thousand up to one 

million genetic markers today. These markers are genotyped using high-throughput 

Affymetrix or Illumina genotyping platforms (DNA arrays or SNP chips) [53]. Such high-

density SNP information was the basis for the introduction of advanced statistical and 

computational genetic procedures in terms of GWAS [49]. 

1.2.1.1 Genome-wide association studies 

In the first phase, high-throughput genotyping data was predominantly used in GWAS, 

which test the association of SNPs and observed phenotypes and provide estimates for 

hundreds of thousands of genetic markers on each phenotype considered [53]. The aim is to 

detect statistical significant associations between phenotype and specific genetic markers 

[55]. Most commonly, the data set is analysed by the investigation of one SNP at a time 

using simple linear models. It is defined to a fundamental principle that with increasing 

number of individuals applied for GWAS, the statistical power to detect potential 

associations rises [56]. Based on the low population-wide LD between SNPs and causal 

variants in livestock and the very high level of significance (e.g. p<1×10
−7

) that is needed 

to overcome the multiple testing corrections, GWAS require a larger number of tested 

individuals in contrast to linkage-QTL studies [53]. Besides the number of individuals, also 
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the population structure, as possible source of bias in livestock studies, has to be 

considered. Relationships among animals cause LD between loci even if the loci are 

functionally unlinked [56]. For this reason, population stratification, which means that the 

individuals derive from mixture of breeds or families, is an important source of false 

positive associations. As second key principle can be invoked that, with increasing SNP 

density, the power to detect significant associations between SNPs and trait expression will 

increase [56]. Goddard and Hayes [56] concluded that most SNPs have small effects which 

might lead to a random noise, whereas markers in regions in which the causative mutations 

are located have much larger effects and are potentially useful tools to localise the 

chromosomal region of the causative mutation.  

To avoid incorrect associations, based on minor allele frequency (MAF) and Hardy-

Weinberg disequilibrium, a quality control of the genotyping data has to be performed. 

Only effects and samples, which passed the quality thresholds, are considered in GWAS. 

Finally, a repeated analysis of identified associations in an independent population or the 

examination of the functional background should be performed [57]. While the standard 

GWA procedure typically examines one SNP at a time, it is also promising to perform 

GWAS based on haplotypes. Due to high LD or physical proximity, SNPs often do not 

segregate independently and are transmitted in haplotype blocks that comprise clusters of 

three to five tightly linked genetic markers [53]. Once a chromosomal region with 

significant SNPs is identified by GWAS, local haplotypes can be defined and their effects 

can be estimated and used in predictions for complex phenotypes [53].  

Regardless of what type of GWAS is performed (either single SNP- or haplotype-based) 

there are still major technical and analytical challenges in GWAS (e.g. the ‘Large p, small 

n’–problem) [53]: 

 Multiple testing (e.g. Bonferroni correction) leads to very conservative thresholds 

and may result in missing biologically relevant loci; 

 An insufficient/small number of analysed animals reduces the power to detect loci 

of small effects and, on the other hand, there is an increased risk for overestimation 

of specific SNP (haplotype) effects; 

 Population stratification may lead to spurious associations; 
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 For some species the SNP coverage (density) of the chips is still low increasing the 

likelihood that the causative mutation will not be identified; 

 Poor model fitting (e.g. unaccounted epistatic and genotype-environmental 

interaction effects, inappropriate fixed and random effects) will lead to incorrect 

associations; 

 Due to bad quality control concepts or other filtering mechanisms, rare variants and 

undetected copy number variation effects are excluded. 

Regarding the last aspects, Kadarmideen [53] pointed out that bad quality control or 

filtering mechanisms describes the likely, most significant limitations of GWAS. Due to 

statistical problems, a fraction of the genetic information (for example rare variants) is 

rejected and thereby the GWAS are not able to explain the full genetic variation in complex 

traits. This situation was first described as ‘missing genetic variation or heritability’, after 

GWAS on complex traits, by Manolio et al. [58], Clarke and Cooper [59] and Gibson [60]. 

Several studies have demonstrated that a mixed or random model GWAS can picture a 

much larger proportion of the actually present genetic variation (e.g. for human height [61–

63]). It can be assumed that SNP chips that only comprise common variants, but no rare 

variants, might be the cause of hidden heritability [64]. For this reason, when defining the 

thresholds in quality control, it should be taken into account that not too much of the 

genetic information is rejected.  

1.2.1.2 Genome-wide association studies in pork quality 

As a precondition of GWAS application, a SNP chip for the respective species has to be 

available. In pigs, the ‘PorcineSNP60 v1 Genotyping BeadChip’ © from Illumina offers 

64,232 SNP markers. Hence, SNP chips for pigs contain less SNPs than human SNP chips, 

containing more than one million SNPs (www.illumina.com, Illumina, Inc., San Diego, 

USA, www.affymetrix.com, Affymetrix, Santa Clara, USA). Nevertheless, the porcine SNP 

chips are effectively applied in livestock breeding to improve performance traits and other 

trait complexes like disease resistance and behaviour traits [53]. In pigs, several GWAS 

were successfully performed for meat quality and revealed promising candidate genes for 

different complex traits. Based on a GWA study of 987 commercial end product Du pigs, 

Duijvesteijn et al. [65] identified clusters of candidate genes on SSC1 and 6 for the pork 

quality characteristic androstenone. In a GWA study performed by Luo et al. [66] in 455 

pigs of a Large White (LW) x Minzhu intercross population, 45 SNPs showed significant 

http://www.affymetrix.com/
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associations with one or various of the meat quality traits intramuscular fat content (IMF), 

marbling, moisture, and color. Out of the 45 SNPs, 36 SNPs are located on SSC12. These 

significantly associated SNPs were related with, or were located with minimal gap to, 

previously reported QTL and some were located within introns of already detected 

candidate genes [67]. Ma et al. [68] applied a GWA analysis in two different pig 

populations, 434 Sutai pigs and 933 F2 White Du × Erhualian pigs, for the meat quality 

traits pH, color, drip loss, moisture content, protein content and IMF, marbling and 

firmness scores in Musculus longissimus dorsi (MLD) and Musculus semimembranosus 

(MSM). The authors detected in total 127 chromosome-wide significant SNPs for pH (on 

SSC3), drip loss (on SSC3 and 15), and IMF (on SCC 9 and X).  

GWAS in pork quality traits were also successfully performed to confirm already known 

associations. In 2015, Zhang et al. [69] identified a QTL close to the PRKAG3 gene, 

affecting meat pH and colour, based on GWAS in 1943 crossbred commercial pigs. As 

already described in 1.1.3 (p. 9), the AMP-activated protein kinase, y-3 subunit, coded by 

the PRKAG3, has achieved attention as RN gene affecting the Hampshire effect that is 

associated with reduced Napole yield and leaner carcasses [31].  

Comprehensive QTL analyses and GWAS were also performed in the Bonner Du × Pi 

population with the scope to investigate quantitative performance traits such as meat or 

carcass quality parameters. In the investigations of Liu et al. [27], QTL analyses in 585 F2 

Du × Pi animals were performed revealing 137 QTL for 35 traits of growth, meat quality 

and carcass composition. Especially for WHC, drip loss, pH1, pH24 and meat color in 

MLD 11 QTL were found on SSC1, 2, 3, 4, 5, 6, 7, 15 and 18 [27,70]. For these QTL 

analyses, 106 microsatellites across the 18 porcine autosomes were used. Other scientific 

groups applied QTL approaches in Berkshire × Yorkshire pig and identified several QTL 

for drip loss on SSC2, 3, 5, 9 and 18 [71,72]. These studies give evidence that due to the 

low density of microsatellite markers, QTL are often mapped to a large interval of two Mb 

or more. Consequently, it is a big challenge to identify the causative mutations or so-called 

quantitative trait nucleotides that are directly associated with complex traits [73,74]. Today, 

GWAS based on the current 60K porcine SNP panel of Illumina® provide a promising 

opportunity to receive more dense genetic markers than microsatellite markers, which helps 

to improve accuracy in finding candidate genes for complex traits and the underlying 

causative mutations [66].  
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However, the distribution of marker effects showed that most SNPs affecting meat quality 

traits had small effects, which could be described as random noise, whereas markers in 

regions harbouring genes with causative mutations had much larger effects. Although the 

SNPs with the largest associated effects from genomic analysis might not track perfectly 

the causative mutations, these are potentially useful tools for identifying promising 

chromosomal regions [75]. Therefore, fine mapping techniques such as RNA sequencing 

(transcriptomics) or ‘genetical genomics’ approaches are needed for further investigation of 

possible candidate genes.  

 

1.2.2 Transcriptomics  

In contrast to genomic approaches that focus the static aspects of genomic information 

(SNP state), transcriptomic approaches investigate the gene expression profiles to identify 

genes that differ in expression between experimental samples [76]. Due to Cassar-Malek et 

al. [77], “the sequencing of the genome and the transcriptome as well as the increasing 

availability of different types of microarray analysing platforms in the last decade provided 

new possibilities to clarify the molecular background of physiological and productive 

functions in livestock species and their regulation”. By technical progress, commercial 

oligonucleotide chips (www.affymetrix.com; www.agilent.com) or oligonucleotide sets 

(www.operon.com) became available for many livestock species [77]. Based on this 

development, many gene expression studies in several fields relevant for livestock like 

nutrigenomics and characterisation of production systems or meat quality were performed 

[77]. Today, high-throughput microarray technologies enable the simultaneous 

measurement of up to tens of thousands transcripts at the same time. Most transcriptomics 

experiments are focused on detection and annotation of differentially expressed genes 

(DEG) and co-expressed genes as well as construction of gene networks and to elucidate 

the relevant genetic regulation and interactions under the given environmental conditions 

[76].  

1.2.2.1 Transcriptomic approaches in pork quality 

Transcriptomic analyses are based on the ability to simultaneously analyse hundreds or 

thousands of transcripts (mRNA) on specific arrays. In transcriptomics of meat science, it is 
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the final objective to identify meat quality transcript biomarkers that are quantifiable on 

living animals or early p.m. on the carcass, in order to orientate meat production towards 

the most adapted processes in meat processing [78,79]. The quantification of these 

expression biomarkers will allow predicting the final quality level of meat from growth to 

slaughter period. With the application of biomarkers such evaluation can be performed 

within hours compared to classical methods that are performed days after slaughter or even 

after meat aging and are often expensive and/or invasive. Furthermore, the use of transcript 

biomarkers allows to understand the interactions between genetic and environmental factors 

that affect the manifestation of complex phenotypes like meat quality [1]. This knowledge 

will help to adapt production systems and breeding efforts of animals to their individual 

meat potential and to better assignment of meat to a suitable branch of production due to its 

characteristics.  

As in other livestock animals, pork quality results from complex interactions between 

animal genetic background, rearing and slaughter conditions, and carcass and meat 

processing. According to Picard et al. [1], “even though many factors influencing pork 

quality have been highlighted, its variability remains high”. The identification of meat 

quality biomarkers has been conducted by comparing contrasted groups for a given trait and 

today great efforts are undertaken to reveal promising transcript predictors for one or 

several meat quality traits, simultaneously.  

As an example, one of the very early transcriptomic analyses was performed by Damon et 

al. [80], who tends to highlight transcript biomarkers for the meat quality defect PSE. For a 

better understanding of the PSE phenomenon, they took MSM samples 20 minutes p.m. and 

identified different up-regulated transcript profiles encoding myofibrillar proteins involved 

in actin-myosin interaction and sarcomere integrity and enzymes of glycolytic pathway in 

PSE muscles [80]. Transcriptomic approaches have also been performed to expose the 

underlying molecular mechanisms and to highlight transcript biomarkers of IMF that is 

crucial for eating quality and acceptability of pork. By comparing two groups of related 

pigs, but with contrasted IMF levels in Musculus longissimus lomborum (MLL) at 110 kg 

slaughter weight (SW) (1.36% vs 4.58%), Liu et al. [81] highlighted differential transcript 

expression levels of genes associated with glucose, lipid and protein metabolic processes.  
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Regarding meat quality traits, the microarray transcriptomic analysis in MLL of two pig 

breeds (French local Basque, LW, respectively n=50) showed that breed differences in 

muscle physiology and meat quality were associated to differences in metabolic processes, 

skeletal muscle structure, extracellular matrix, and proteolysis [82]. The results allowed the 

identification of transcript biomarkers of ultimate pH (pHu), drip loss, meat color, IMF 

content, Warner-Bratzler shear force (WBSF) and tenderness [83]. An external validation 

of the selected biomarkers was performed in 100 commercial Du × Landrace (LR) × 

Yorkshire pigs [84]. Among the potential expression biomarkers is FOS (FBJ murine 

osteosarcoma viral oncogene homolog) that is involved in response to calcium transport 

and that is positively associated to pHu and negatively associated to drip loss and meat 

color [83].  

Altogether, this short overview showed that transcript biomarkers of pork quality have been 

successfully identified and validated. However, due to Alessandro and Zolla [2], further 

work is needed to improve the predictive capacity of transcript biomarkers in order to 

foresee the development of control tools for pork industry. 

 

1.2.3 Proteomics 

Proteomics analyses measure the entire complement of proteins, also called proteome, in 

terms of its presence and relative abundance. The definition of the proteome was 

characterised by Wilkins et al. [85] and comprises the total amount of proteins expressed at 

a certain time point. The term proteomics was established as an analogy with genomics or 

transcriptomics. According to remarkable enhancements in the accuracy, sensitivity, speed 

and throughput of mass spectrometry and development of powerful analytical software, 

scopes and efficiency of quantitative proteomics has grown enormously [86]. Following 

genomics and transcriptomics, proteomics is one of next levels of a systems biological 

understanding. Due to Mullen et al. [87], besides the systematic determination of protein 

sequences, proteomics also considers quantity, modification status, interaction partners, 

activity, subcellular localisation, and structure of proteins in a given cell type. While the 

genome contains the information about which genes are available, the proteome contains 

the information about which genes are actually being expressed [88]. Because genes might 

be present, but not transcribed and because the number of mRNA copies does not always 
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reflect the number of functional proteins that are present [89], neither the genomic DNA 

code nor the amount of mRNA that is expressed for each protein, yields an accurate picture 

of the current metabolic state of the individual or cell. For this reason, the analysis of the 

proteome is useful to complete the picture of the underlying metabolic processes and it can 

be seen as molecular link between the genome and the phenotype [88]. Moreover, Bendixen 

[90] defined that the aim of proteomics is to receive insight into cellular protein expression, 

post-transcriptional modification, subcellular localisation, turnover and interaction with 

other proteins and hence to reveal the function of genes. Finally, it is the purpose of 

proteomics to explain how genetic and environment interact to control cellular functions 

and metabolic processes [90]. 

Bendixen [90] predicted that, in contrast to prokaryotes, in higher organisms the number of 

proteins significantly exceeds the number of genes according “to alternative splicing and 

post-translational modifications like glycosylation or phosphorylation”. From this, 

Bendixen [90] concluded that in contrast to the static structure of the genome, the proteome 

is continuously changing due to factors influencing on either protein synthesis or 

degradation. Thus, proteomics approaches can be viewed as taking a snapshot of the 

proteomic background of a biological system at a defined time point and under given 

environmental conditions. However, as described by Ghaemmaghami et al. [91], who 

successfully determined the whole proteome of yeast, a global proteomics approach is a 

challenging task. Due to the multitude and diversity of proteins in higher organisms, a wide 

range of technologies must be used to prepare, separate and quantify the relative expression 

levels of thousands of proteins in parallel [90]. Typically, mammalian tissue samples 

contain between 10,000 and 30,000 different protein species [90]. In one experimental 

setup, in practice only a few hundred to several thousand proteins, presenting just a part of 

the entire proteome, can be analysed. Mullen et al. [87] pointed out that a proteomics 

profiling approach generates a huge amount of data and that processing and interpretation 

of the proteomic data is challenging. In contrary, profiling of a selected set of proteins is far 

easier and depending on the regarding scientific issue, targeted protein profiling is as 

beneficial as profiling the whole proteome, but less elaborate and expensive [87]. For 

example, with regard to proteins influencing meat quality, working with myofibrillar, 

exudate or sarcoplasmatic extracts may be more manageable than targeting to profile the 

whole proteome [92].  
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In general, Jayarsi et al. [93] differentiate between two approaches for the “proteome 

characterisation, namely comparative proteomics and mapping proteomics”. Similar to 

genome databases resulting from genome sequencing projects, mapping proteomics has the 

objective to characterise ‘cellular proteomes’ and to collect them in comprehensive 

databases [90]. Due to the complex variety of modifications and constantly changes over 

time and in physiological state, such approaches are a huge task [94]. Based on the fact that 

genetic variations may cause phenotypic differences that can be studied using proteomics, 

comparative proteomic studies investigate the biochemical processes that constitute the link 

between phenotype of interest and underlying genotypes [95]. From this, Hunter et al. [95] 

concluded that moment-by-moment snapshots of cellular responses at the protein level are 

the consequence of transcriptional and translational events. 

1.2.3.1 Application of proteomics in pork quality improvement 

Over the last decades proteomic studies in livestock animals have developed quickly. In 

pigs, the investigations mainly focused muscle growth, breed differences and meat quality 

traits, such as tenderness, juiciness, flavour, color and WHC [90]. Moreover, Mullen et al. 

[87] summarised that knowledge gained from proteomic approaches might be advantageous 

in recording of environmental factors and optimising of management and husbandry 

systems for reliable, high quality standards and in adapting quality to consumer and market 

needs.  

In the field of meat quality traits, proteomic studies investigate the p.m. biochemistry of 

skeletal muscle, often in a breed-specific way. Due to Paredi et al. [96], the major goals are 

“to deepen the understanding of physiological changes, taking place at the protein level,” to 

light the black box of the ‘muscle to meat conversion’ and to identify reliable protein 

biomarkers [90,96]. Proteins tend to be promising biomarkers for meat quality because 

most parameters, like WHC, pH drop and Minolta values – lightness, redness and 

yellowness – that are related to meat color are intrinsically affected by muscle protein 

composition. As an example from Paredi et al. [97], red muscle relies on oxygen for their 

metabolic functions and displays higher concentrations of the heme group-carrying protein 

myoglobin. PSE meat that is characterised by deficiencies in exudation, color and texture is 

induced by a reduced proteolytic rate of proteins troponin T, myosin light chain and α-

crystallin, and the lack of heat shock protein 27 [96]. These proteins might be potential 

biomarkers for PSE meat [97]. Furthermore, in pigs with a mutation in the HAL gene there 
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is a higher risk for the generation of PSE zones [98]. In homozygous pigs, it was found a 

lower quantity of i) proteins involved in the ATP synthesis, ii) antioxidant proteins, 

including glutathione peroxidase, glutathione transferase and five proteins related to the 

aldehyde dehydrogenase family, and iii) chaperone related proteins, such as HSP27, alpha 

crystalline B chain, Hsc71 and Hsc70/Hsp90 [96]. The absence of these proteins was linked 

to low pH and high temperature in muscle, causing an increased proteolytic rate of the 

glycolytic enzymes [10].  

In a comparative investigation in breeds of Casertana (low lean meat content) and LW 

(high lean meat content) pigs, D´Alessandro et al. [99] investigated breed-specific 

differences in the protein expression. These authors identified breed-specific protein 

profiles related to growth performance, fat accumulation and p.m. performance through a 

direct influence on the forcedly anaerobic behaviour of pig muscles after slaughter. In 

Casertana, but not in LW, higher levels of glycolytic enzymes (e.g. glycerol-3-phosphate 

dehydrogenase) and lactate accumulation were associated with slow pH drop, although it 

did not produce lower ultimate pH in LW. On the other hand, pyruvate kinase M1 and 

tropomyosin levels were related to WHC and meat color after slaughter in LW [99]. In 

Casertana pigs, different levels of glycolytic enzymes, heat shock proteins (HSPB6) and 

anti-oxidant enzymes (SOD1, glutaredoxin and lipoxygenase) were correlated to higher 

proteolysis and modestly lower WHC [99]. An overview of the most important protein 

biomarkers related to meat quality traits in pigs is presented in Tab. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction 

26 

 

Table 4: Proteins involved in the variability of pork quality traits. 

Trait Muscle Protein biomarker Ref. 

tenderness MLD actin, MHCK, MLCK II, TPI1 [100] 

tenderness MLD desmin, actin, MHCK, MLCK, troponin T, 

tropomyosin α1 and α4, thioredoxin, capZ  

[101] 

PSE (WHC, color) MSM troponin T, MLCK 1, α-ß-crystalline [102] 

PSE (pH decline rate) MLD pyrute kinase, TPI1 [103] 

color, WHC MLD cofilin 2, troponin T, α-ß-crystalline, HSP27, 

group chain A-ALDH, G3P-DH, hemoglobin 

α-chain, DJ-1 protein 

[104] 

WHC MLT, 

MLL 

HSP70 [105] 

drip loss  MLD creatine phosphokinase M-type, desmin [106], 

[107] 

color MSM ATPase beta subunit, NADH-DH, succinate-

DH, hemoglobin, HSP27, α-crystalline, enolase 

1 and 3, G3P-DH, transferrin 

[108] 

drip loss MLD lactate-DH, antichymotrypsin, myosin, 

isocitrate-DH  

[109] 

ultimate pH  14-3-3 protein, MLCK  

WHC – water holding capacity; PSE – pale, soft, exudative meat; MLD – Musculus 

longissimus dorsi; MSM - Musculus semimembranosus; MLT - Musculus longissimus 

thoracis; MLL - Musculus longissimus lumborum; MHC - myosin heavy chain kinase; 

MLC - myosin light chain kinase; TPI1 - triose phosphate isomerase 1; HSP - heat shock 

protein, G3P-DH - glycerol 3 phosphate dehydrogenase, ALDH - aldehyde dehydrogenase, 

DH – dehydrogenase; ref – reference. 
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1.2.4 Metabolomics 

Similar to transcriptomics and proteomics, Fontanesi [110] defined the role of 

metabolomics as follows: “Metabolomics reveals the molecular readout of the biochemical 

state of a biological system that can be depicted by the metabolic species and their level 

that is derived by a specific combination of gene expression activity and environmental 

factors”. Whilst metabolomics is applied as complementary tool to transcriptomics and 

proteomics, it may be seen to have special advantages, which were described by Hollywood 

et al. [46]: “Since the traditional ‘linear’ information flow from one gene to one transcript 

to one protein is no longer true, it seems obvious that cellular processes are in reality 

intimately networked with many feedback-loops” (see Fig. 4B, p. 15). As a consequence of 

this paradigm shift, it can be assumed that although changes in the levels of individual 

enzymes may be expected to have only a small impact on metabolic fluxes, they still can 

have substantial effects on the concentrations of a multitude of metabolic components [46]. 

In addition, ter Kuile and Westerhoff [111] pointed out that as the ‘downstream’ result of 

gene expression changes in the metabolome are amplified relatively to variation in the 

transcriptome and proteome expression, which is likely to lead to increased sensitivity. 

Finally, it is known that metabolic fluxes are not regulated only by gene expression but by 

post-transcriptional and posttranslational events and as such, the metabolome can be 

considered closer to the phenotype compared to the transcriptome and proteome [111]. 

The entirety of all existing metabolic species constitutes the metabolome [110]. The 

metabolome comprises the quantitative complement of all low-molecular weight molecules 

(typically 3000 m/z) present in cells which are in a particular physiological or 

developmental status [46,112,113]. Compared to the proteome, the analysis of the 

metabolome is a more challenging task since it considers all the metabolites, regardless of 

their chemical nature, i.e. amino acids, antibodies, aptamers, small biomolecules, etc. [114]. 

In general, metabolites can be distinguished into endogenous metabolites and xenobiotics. 

While endogenous metabolites are directly produced by the organism, xenobiotics are 

chemical compounds that are present in an organism, but not generated by the metabolism 

of the individual itself or derived by external metabolic components that could be 

metabolised partly in the organism, like pharmaceutical products and their metabolites, 

environmental substances such as pollutants, etc. [115]. Fontanesi [110] divides 

endogenous metabolites into primary metabolites like sugar phosphates, amino acids, 
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nucleotides, and organic acids, and secondary metabolites (derived by primary metabolites, 

like small hormones, lipids, phytochemicals, etc.). Based on these classifications, it is 

possible to determine if a metabolite is a metabolism-originated organic compound and 

thereby does directly result from gene expression [115].  

Metabolite profiling approaches are commonly practiced in two fundamental ways. 

Targeted metabolite profiling with the help of internal standards and mass spectrometry 

aims at quantifying previously selected metabolites. In contrast, untargeted metabolite 

profiling largely focuses on discovery to detect and quantify any small molecule (< 1500 

Da) or the whole metabolome to understand their biochemical functions, changes and 

interactions within a biological system [116]. Untargeted profiling approaches, or so-called 

metabolomics, have the aim to identify, quantify and characterise the whole metabolome in 

a biological sample, preferably by one single experimental process [110]. Against this 

background, Fontanesi [110] summarised that metabolomics is a multidisciplinary approach 

that combines analytical and technological tools, data mining procedures and biostatistics, 

biochemistry, and bioinformatics for the interpretation of the omics data.  

1.2.4.1 Metabolite bio indicators in meat quality 

A very active research area in metabolomics is the discovery of metabolites that are 

indicative of disease or special phenotypes. In such approaches, metabolite profiling is used 

to generate quantitative lists of metabolites from control populations and to test subjects 

that show a desired or unwanted phenotype. Data analysis is then used to annotate the 

metabolites and to determine which metabolites are discriminatory for the phenotype [46]. 

With the exception of extreme examples in all higher organisms, Fontanesi [110] postulated 

that most metabolites have high variation among individuals that is affected by their genetic 

background and the given and environmental conditions. This variation constitutes a big 

challenge in metabolite biomarker discovery. Patti et al. [117] statet, that “even if many 

developments occurred in defining metabolic differences and identifying key biochemical 

mechanisms affecting important phenotypes, a complete characterisation of all metabolites 

produced in complex biological systems, i.e. in a complex organism like an animal or a 

plant, in many different conditions, is not yet possible”. Nevertheless, costs of metabolite 

profiling are declining while the precision of the analytical tools is constantly increasing. 

Metabolite profiles may be used in practice to obtain targeted metabolic information for 

identified biomarkers or to predict phenotypes of economic interest [110].  
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Generally, metabolomic-based animal selection or phenotype prediction is of practical 

interest in livestock production and breeding, especially when the traits cannot be recorded 

directly on selection candidates because the measurement requires the slaughtering of the 

individuals (e.g. meat quality) or if phenotyping is expensive (e.g. feed efficiency) [118]. 

One advantage of metabolomic-based selection it that samples (e.g. blood or urine) for 

metabolite profiling can be collected during an animal´s life, depending on the target 

phenotype (e.g., linked to growth during breeding period or meat quality near slaughter 

time). Moreover, Rohart et al. [118] stated that phenotypic measurement performed on the 

animals itself rather than on its relatives, like it is the current process, would provide more 

accurate predictions of the genetic constitution. Furthermore, sample collection for 

metabolomic profiling is usually non-invasive and metabolite profiling is cheaper than the 

maintenance of a conventional breeding program with performance testing of a huge 

number of animals [118].  

As pioneers in metabolomics in meat science, Bertram et al. [119] used nuclear magnetic 

resonance (NMR)-based metabolomics to investigate the effects of pre-slaughter exercise 

stress on the plasma metabolite profile, at time of slaughter, with effect on WHC. Based on 

40 pigs and three pre-slaughter stress levels, the study revealed a clear increase in plasma 

lactate due to exercise. Lactate was found to be the metabolite of importance for the 

association between metabolome and pH, temperature and WHC in muscle p.m. [119]. The 

aim of Muroya et al. [120] was to determine key metabolites and pathways associated with 

pork quality in fast- and slow-type muscles at different aging times. They assumed that the 

decrease of p.m. muscle glycolysis and pH value is accompanied by several changes in 

metabolite expression and protein degradation and denaturation [120]. These changes affect 

meat quality traits color and WHC. As a consequence, Muroya et al. [120] postulated that 

global understanding of variation in p.m. muscle metabolites provides a lot of information 

regarding how to monitor and control key players for the development of meat quality.  

Metabolomics profiling was performed with capillary electrophoresis-time of flight mass 

spectrometry and revealed that hydrophilic amino acids and β-alanine-related compounds 

are associated with the muscle type while glycolytic and ATP degradation products 

contributed to aging time. Beneath others, crucial factors for meat quality development in 

the two porcine muscle types were the rate of inosine-5’-monophosphate accumulation by 

adenylate kinase 7 and 5’-nucleotidase and the rate of hypoxanthine accumulation [120]. 
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Besides Muroya et al. [120], also Choe and Kim [121] investigated potential associations 

between muscle fibre types and meat quality traits. To this end, they profiled the 

metabolites glucose, lactate, cortisol and their transformation products in 111 Yorkshire 

pigs. Their results implied that the glucose level, recorded at the time point of 

exsanguination, might be an indicator for the early p.m. glycolytic rate and might be useful 

to identify pork with undesirable quality traits [121]. In a further analysis, Choe et al. [122] 

compared the glucose, glycogen and lactate profiles, recorded after exsanguination, with 

metabolite profiles recorded 45min and 24h p.m. in the same animals. This study confirmed 

that the ultimate lactate content in muscle via p.m. glycolysis is the main factor influencing 

pork quality (color, WHC) under standard slaughter conditions [122].  

Rohart et al. [118] went one step further and investigated the suitability of metabolite 

profiles, recorded with NMR, in prediction of commonly used production phenotypes in 

growing pigs. To test the prediction power, different statistical approaches were applied. 

Based on the fact that the blood samples for metabolite profiling were taken some time 

before slaughter, it was not possible to predict meat quality traits very well. By contrast, 

carcass composition traits like LMC and growth traits like ‘average daily feed intake’ were 

well predicted using metabolomic data.  

Beneath the usage of metabolite biomarkers in prediction or as indicators for specific 

performance traits, metabolomic studies are also performed to figure breed-specific 

differences in the metabolite profiles to elucidate the metabolic background of performance 

traits depending on different breeds. Straadt et al. [123] performed a NMR-based 

metabolomics approach, to investigate (I) breed-specific differences in metabolite profiles 

and (II) to investigate associations of specific metabolites to technological and sensory 

properties of the meat. Amongst others, Straadt et al. [123] concluded that high carnosine 

contents in meat are associated with many unfavourable sensory capacities like meat 

flavour and taste.  

Although, until today, significant efforts have been directed toward the investigation of 

metabolites as reliable biomarkers in the field of pork quality, currently metabolites are not 

yet used in selection of livestock products of animal selection. The costs for metabolome 

profiling are still too high for the standardized application of metabolite profiles in animal 

production. 
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1.3 Integrated omics approaches 

The primary aim of all various aspects of livestock genomics is the identification of causal 

and regulatory gene variants and the application of predictive genetic markers or 

biomarkers for complex traits and diseases. GWAS provided useful insights into the genetic 

architecture of complex traits and elucidated a lot of promising SNPs and candidate genes. 

However, the result of these GWAS does not enhance the comprehension of molecular 

pathways that are involved in diseases and complex traits. Therefore, it is the task and 

challenge of post-GWAS to consider multi-omics data [124]. Such association analyses 

focus on a holistic investigation of all omics levels instead of only one omics layer. Two or 

more high-throughput omics technologies can potentially be applied to the same sample. 

Therefore, it is important to assess how the information content of these diverse data sets at 

different biological levels can be combined to exhaust the full potential for a holistic 

understanding of the biological pathways of a specific trait [114]. 

The higher information content of multi-omics approaches can be used to confirm or verify 

the importance of detected genomic regions and candidate genes, revealed by genetic 

analyses of conventional livestock production traits. In this context, the meaning of specific 

candidate genes can be substantiated by positional or functional overlap of SNPs, detected 

for conventional phenotypes and related metabolic traits like transcripts, proteins, 

metabolites or combined omics traits. In case of positional overlap, in a certain 

chromosomal region, identical significant SNPs are detected both for the target trait as well 

as for associated metabolic phenotypes [125]. The higher information density in this 

approach gives evidence that the causative mutation affecting the phenotype, in fact, is 

located in the regarding genomic region. Functional overlap describes the accordance of 

SNPs detected for target traits and metabolic phenotypes caused by similar functional 

effects and metabolic pathways [125]. The consistent or similar functional annotation of 

different genetic markers detected for target and metabolic phenotypes confirmed the 

importance of the corresponding metabolic background affecting the target phenotype. In 

consequence, it can be assumed that the detected candidate genes play an important role in 

regulation of metabolic processes influencing phenotypes of interest.  

1.3.1 Genetical genomics – the combination of genomics and transcriptomics  

The core hypothesis behind gene expression or ‘expression quantitative trait loci’ (eQTL) 

analysis is that polymorphic sites in the genome, such as SNPs, could have concrete effects 
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on gene regulation by altering the coding or promoter sequences of genes, their splicing 

junctions, or other regulatory elements [126]. All of these regions affect the rate at which 

genes are transcribed, which isoforms are preferentially expressed and how stable the final 

mRNA product is. Thus, SNPs, which were suspected to affect gene expression (eSNPs), 

can be tested with associative statistics (Fig. 5) [126]. Based on this functional relationship, 

‘genetical genomics’ (GG) approaches were developed.  

 

 

Figure 5: The genetical genomics concept brings together the traditional genetic 

analysis and the gene expression studies by directly characterising the genetic 

influence of gene expression. Modified from Li and Burmeister [127]. 

 

The concept of GG, or GWAS of expression data, constitutes a combined approach of QTL 

mapping and microarray expression (transcriptomics) analysis and allows the identification 

of regulatory networks, underlying the quantitative trait of interest and localisation of 

genomic variation [128]. In the underlying statistical model of genetic association analyses, 

expression levels of each gene are related as quantitative dependent variables to genetic 

marker information as explanatory variables. Individual differences in gene expression 

patterns reflect related genomic sequence differences (e.g. SNPs) between individuals. The 

resulting eQTL are mapped either within (cis-eQTL) or beyond (trans-eQTL) the 

corresponding gene. Expression QTL analyses have proven to be a promising tool for 

filling the gap of knowledge between phenotypic traits and their associated QTL and 
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confirmed causative mutations in pigs [129,130]. A GG approach combined with SNP 

mapping in the same population exposes not only cis- or trans-eQTL but also identifies 

SNPs for expression differences, causing changes in expression phenotype (called cis-SNPs 

or trans-SNPs) [49]. 

Trans-regulated DEG are representatives of pathways that are affected by causal variation. 

In contrast, genes indicated by cis-eQTL are more likely to represent the causative allele 

variant of the trait of interest [131]. Whereas most significant reported eQTL are usually 

cis-regulated, some trans-eQTL seem to control the expression in several genes spread 

across the porcine genome. In conclusion, the integration of QTL and eQTL information 

facilitates the identification of candidate genes and associated metabolic pathways with 

high evidence of their involvement in the biology of traits of interest [49,131,132]. 

However, the benefit of GG approaches is limited by the resolution of genetic maps that 

depends on the number of available markers as well as available animals, the structure of 

the population and the sensitivity and specificity of microarray experiments [132].  

1.3.1.1 Genetical genomic approaches in pork quality traits 

Until now, different responsible chromosomal regions have been identified for different 

performance traits in pigs. Moreover, in some cases the underlying causative molecular 

polymorphism has been identified. However, QTL regions prevalently are large and contain 

several putative causal genes. As stated above, the combination of approved QTL linkage 

and microarray expression analyses offers new options for the understanding of the 

biology, including the underlying genetic factors, affecting a complex trait. This has been 

proven by many experimental eQTL studies that have successfully applied GG approaches 

in meat quality and carcass composition traits of pigs.  

In order to clarify the underlying biological processes of drip loss and to identify candidate 

genes for drip loss, Ponsuksili et al. [133] applied a GG approach based on transcriptome 

profiles recorded by the Affymetrix Porcine Genome Array in MLL samples of six 

divergent Du × Pi sib pairs. They identified 789 DEG between high and low drip loss 

animals. While up-regulated genes were associated with membrane proteins, signal 

transduction, cell communication, response to stimulus, and cytoskeleton, down-regulated 

genes regulated oxidoreductase activity, lipid metabolism and electron transport. The 

meaning of the ten selected genes: vitronectin (VTN), alpha-1-microglobulin/bikunin 

http://dict.leo.org/german-english/prevalently
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precursor (AMBP), serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), 

member 1 (SERPINA1), cytochrome P450, family 2, subfamily C (CYP2C), cytochrome 

P450, family 3, subfamily A (CYP3A), TYRO protein tyrosine kinase binding protein 

(TYROBP), AHNAK nucleoprotein (AHNAK), insulin-like growth factor 2 (IGF2) and 

zyxin (ZYX) was validated in a separate F2 Du × Pi resource population [133]. In the same 

population (n=74; F2 Du × Pi), based on a linkage analysis, Ponsuksili et al. [134] revealed 

1,279 transcripts with trait correlated expression to WHC and 104 eQTL coinciding with 

QTL regions for WHC, with 96 trans-eQTL and eight cis-eQTL. The eight cis-eQTL 

regulating candidate genes were located on SSC2, 3, 4 and 6 [134].  

In later approaches of Ponsuksili et al. [135], 150 crossbred pigs (Pi × (German LW × 

German LR)) were used to identify 448 cis-eQTL corresponding to 71 genes and 3,297 

trans-eQTL that were related to 408 genes associated with fatness traits. In another GG 

study of Ponsuksili et al. [136], 207 muscle- and 150 liver samples of pigs from a 

commercial crossbred Pi × (German LW × German LR) pigs were analysed. In muscle, 

2,001 cis- and 1,663 trans-eQTL corresponding to 593 genes were correlated with plasma 

cortisol level. In liver, 1,019 cis-eQTL and 4,873 trans-eQTL were found, corresponding to 

116 and 927 genes, respectively. However, in muscle a higher proportion of cis-eQTL was 

observed. 

Lobjois et al. [137] and Hamill et al. [138] investigated the parameter WBSF and IMF 

content as measurable indicators of palatability and mouthfeel such as tenderness, flavour 

and juiciness, respectively. Through their transcriptome analysis of MLL samples of 30 

commercial F2 pigs, Lobjois et al. [137] found a relationship between gene expression 

variability and tenderness of the cooked meat samples. The gene expression variability was 

caused by 63 DEG on almost all porcine autosomes. The identified genes were involved in 

the functional processes cell cycle, energy metabolism and muscle development. Some of 

the detected genes, located on SSC2, 6 and 13, confirmed the findings of previous studies 

investigating meat tenderness so that these genes seemed to be potential positional genes. 

Hamill et al. [138] performed transcriptomic profiling in MLL samples with lower or 

higher IMF (n=8) and WBSF values on day 1 p.m. (n=8). They identified 101 DEG in 

relation to WBSF, whereas 160 genes were associated with differences in IMF.  
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For the comprehensive analysis of different meat quality (pH1, meat color, curing yield and 

drip loss) and meat composition traits (IMF, content of several FAs (C16:0, C18:0, C18:1, 

and C18:2), ratio of saturated/ mono unsaturated/poly unsaturated FAs, and protein and 

humidity contents) and to target genes for selection, Cánovas et al. [139] performed a GG 

approach in MLL samples from 59 Du × LR/LW pigs. Their findings indicate that the 

number of DEG related to meat quality (n=506) exceeds the number of DEG for meat 

composition traits (n=279). The candidate genes among the up-regulated were associated 

with muscle development and functionality and repair mechanisms [139]. A similar 

complex investigation was performed by Yu et al. [140] in two different breeds, Lantang, a 

Chinese indigenous breed, and LR, bred for a high LMC. The meat of Lantang pigs is 

characterised by higher meat lightness values and IMF content and lower pH45min, pH24h 

and shear force in MLD in contrast to meat of LR pigs. Moreover, a FA analysis 

demonstrated a lower mono unsaturated FAs and higher poly unsaturated FAs percentage in 

MLD of Lantang compared to MLD of LR (p<0.05). Using a transcriptome profiling 

technology, Yu et al. [140] observed 586 transcripts as differentially expressed, of which 

267 transcripts were highly expressed in Lantang pigs. Validation by polymerase chain 

reaction, revealed 13 candidate genes for muscle FA composition.  

 

1.3.2 Proteomics and genomics 

As proteins or enzymes represent the main actors in biological systems, any in-depth 

genotype–phenotype map requires detailed analyses of protein expression and their 

modifications. To fill the gap of knowledge between phenotype and corresponding genes, 

the objective is to consider selected proteins as intermediate phenotypes in genetic 

association studies [141]. Although it is possible to map QTL associated with the amount of 

a specific protein, so-called ‘proteinQTL’ or ‘pQTL’, currently, only a small proportion of 

all proteins can be detected and quantified using high-throughput proteomic approaches, 

like mass spectrometry and immunoassays [141,142]. With state-of-the-art technology, the 

most commonly used analytical tools are incapable of quantifying very small molecules.  

In cattle, studies have been already performed replacing eQTL approaches by ‘pQTL’ 

approaches that aim at locating QTL involved in the control of the abundance of proteins. 

This strategy e.g. was applied to a set of proteins that have been identified as relevant 
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biomarkers for meat quality and, in particular, for tenderness in beef [1]. Indeed, a 

multitude of proteins was detected and quantified simultaneously in the experimental 

populations of the so-called Qualvigene project. In this project, over one thousand animals 

of three cattle meat breeds were performance tested in meat tenderness and genotyped with 

the bovine 50 K SNP chip [1]. But until now, unlike in the field of GG in pork quality, 

there were no pQTL approaches or protein-based GWAS in pork quality.  

1.3.3 Metabolomics and genomics 

Based on the fact that the metabolome is positioned between the genome and the final 

phenotypes (see Fig. 3, p. 14), metabolites might be used as so-called intermediate 

phenotypes [143]. According to Fontanesi [110], intermediate phenotypes or metabotypes 

are investigated to get insights in the metabolic processes leading, to economically relevant 

traits in animal production. Furthermore, metabotypes can also be combined with other 

omics expression data (e.g., transcriptomics and proteomics), to complete the 

characterisation and the elucidation of complex phenotypes [110]. To clarify the genetic 

background of the biological processes influencing livestock performance traits, 

metabotypes are used as novel phenotypes in GWAS. In accordance with the hypothesis 

that single or combined metabolite profiles are very precise indicators for relevant 

metabolic processes and related economically important traits (see section 1.2.4.1., p. 28), 

the GWAS for metabotypes should result in true associations between genetic marker and 

phenotype. Kühn et al. [113] stated that metabolite phenotypes provide a very detailed 

picture of diverse genetically modulated metabolic processes compared to the 

conventionally measured phenotypes that are the result of a many metabolic processes 

[113]. Several genetic studies have demonstrated that the result of any single omics 

analysis, e.g. a standard GWA procedure, might not be sufficient to decode extremely 

complex biological mechanisms [116]. Therefore, the combination of the omics layers 

genome, metabolome and final phenotype may be promising to clear up the complex 

regulation mechanisms and genetic background of the traits of interest. In particular in 

complex traits with cost-intensive phenotyping and high error rate, genetic analyses of 

metabotypes have a good potential for the successful identification of reliable genetic 

markers and candidate genes [144]. Metabolic processes respond very quick and dynamic 

to environmental changes and strongly depend on constitution and performance condition 

of the individuals. Therefore, any analysis of the metabolome has to be performed carefully 
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to exclude non-genetic factors that might dilute the signal coming from genetic variation 

[113]. Despite of these challenges, until today, several studies in the field of animal 

breeding postulated that metabolite phenotypes can increase the statistical power of GWAS 

for end-point phenotypes [145].  

In livestock production, metabolomics in is well-established for many scopes of application 

that are not related to genetics, e.g. for the detection of drug abuse and product origin of 

food and to control the embryo and oocyte quality in productive processes [146]. Kühn et 

al. [113] described that in the last few years, there is an increasing interest in integrating 

metabolomics with genomics/genetics due to its capability to provide metabolic phenotypes 

for a detailed characterisation of the physiological state of individuals. As pioneers in 

integrating genomics and metabolomics analyses in livestock production, Widmann et al. 

[147] combined two concepts, systems biology and metabolic analyses, to detect candidate 

genes and functional pathways that control the complex trait ‘growth at the beginning of 

puberty’ in male cattle. Their study showed, for the first time in cattle, that the combination 

of genetic, metabolic and phenotypic data in a systems biological approach, using networks 

concepts, contributed to an advanced understanding of metabolic and gene interactions and 

gene-trait relationships [113,147]. Fontanesi et al. [148] presented the first genomics-

metabolomics approach in pigs. Based on 900 Italian LW pigs, the authors performed 

GWAS for performance and carcass traits and 186 plasma metabolites (metabotypes). For 

most metabotypes, significant SNPs were located close to or within genes directly involved 

in the regarding metabolic pathways of the related metabolites. A few of these markers 

were also associated with some production and carcass traits [110]. These markers have 

good prospects to indicate promising candidate genes for economically relevant traits. With 

a similar study design, Zhang et al. [145] selected 33 FAs as metabotypes and used them as 

biomarkers of meat quality and tasting flavour in five divergent pig lines. The GWAS of 

the FAs did not only confirm seven already reported QTL for sensory meat characteristics, 

but also revealed some novel population-specific loci. Due to Zhang et al. [145], the results 

“can be immediately transited into breeding practice for beneficial FA composition”.  

1.3.4 Whole-omics data: Integration in systems genomics 

As a subfield of systems biology, the ‘systems genetics’ or ‘systems genomics’ concept in 

an animal genetics context was established by Kadarmideen et al. [49] and aims at the 

integrated analysis of all different omics levels. A typical omics integration procedure goes 
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from genome to transcriptome, to proteome, to metabolome, to phenotype [114] (cf. Fig 6). 

Due to Suravajhala et al. [114], “systems genetics approaches are used to identify causal 

and regulatory gene networks and predictive markers for complex traits”. Furthermore, it is 

the aim to close the gap of knowledge and to light up the complex regulatory relationships 

that exist between genotypes and phenotypes [149]. The benefit of systems genetics 

approaches is that they allow the investigation of molecular interactions in a context that 

considers the dynamic in a biological system in the best way [141]. In contrast to a single-

omics analysis, a holistic omics approach takes natural perturbation on all omics levels into 

account. Moreover, it should also be stated that such systems genetic approaches require 

much smaller sample size (around 40) to achieve a statistical power of 80% in detecting key 

genes and biomarkers [141].  

QTL mapping studies of intermediate phenotypes, e.g. based on combined QTL, eQTL, 

mQTL and pQTL profiles, generate high dimensional data that need to be classified, 

annotated, stored and analysed to comprehend their function in the variation of the 

intermediate phenotypes and the correlated traits of interest [49,53]. To eliminate sources of 

errors, due to Morrison et al. [150], comprehensive quality control of the omics data based 

high-throughput technologies is mandatory to avoid redundant and false-positive data.  
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Figure 6: Illustration of integrative systems genetics approaches that integrate 

genomic data and other omics data types with diseases and phenotypic traits. 

Modified from MacLellan et al. [151].  

 

According to Suravajhala et al. [114], typical results from multi-omics analyses include 

eQTL maps, eSNPs, mQTL or mSNPs, directed gene regulatory networks (using SNP 

data), protein-protein-interaction networks build by using multi-omics data as evidence, co-

expression networks of genes that are mapped as cis- and trans-acting eQTL or of those 

that are differentially expressed. The most intuitive way to integrate and analyse multi-

omics data are network studies and pathway-based enrichment analyses. Until today, many 

software solutions and web-based applications, like the InCroMap software of Eichner et al. 

[152] and the 3Omics program of Kuo et al. [153], were developed for the integration, 

analysis and visualization of systems genetics data. The analysis of relationships or 

networks provides deeper insights into interactions within and across cells and tissues as 

well as information on ‘hub’ regulatory genes/transcripts/proteins/metabolites that can be 

used as bio indicators [114]. As it is discussed in this thesis, many scientific groups take the 

view that multi-omics approaches have the potential to revolutionise livestock breeding 

practice, by divert away from a basically ‘black box’ approach toward an approach that 

considers holistic regulatory networks and pathways underlying phenotypes of interest 

[53,114]. However, it can be assumed that omics technologies will not replace the other 

approaches of quantitative genetics in livestock breeding [49,53]. Instead, omics 

approaches will expand and complete the range of already existing genetic analyses [53]. 

Figure 6: Illustration of 

integrative systems genetics 

approaches that integrate 

genomic data and other 

omics data types with 

diseases and phenotypic 

traits. Modified from 

MacLellan et al. [220].  
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Applications of multi-omics studies involve genomic prediction and selection, using 

functional, regulatory and causal variants and the development of very accurate assays for 

performance trait improvement or disease prevention/diagnosis [114].  

In the field of human genetics, due to Civelek and Lusis [141], systems genetic studies that 

addressed classic questions about the underlying molecular genetic architecture of complex 

traits, like ‘How does information flow from DNA to phenotype?’ and ‘What is the nature 

of gene-by-environment (G × E) interactions?’, received much attention during the last 

decade. Moreover, multi-omics approaches are used in prediction of disease risk and 

progression. As an example, Vazquez et al. [154] successfully used whole-genome multi-

omics profiles to increase the proportion of explained variance and the prediction accuracy 

of breast cancer patients. In contrast, systems biology and systems genetics in livestock are 

still evolving fields and, to my knowledge, there are no true systems genetics approaches, 

combining all omics levels, applied in livestock, until now. However, in the field of meat 

science there are various efforts to combine different omics levels with the aim to gain 

deeper insights into the complex interplay of genetic constitution, gene expression, 

metabolic processes and regulation and environmental stimuli involved in the development 

of meat quality [87]. For example, D'Alessandro et al. [99] combined the omics levels 

proteomics and metabolomics in MLL, to analyse growth performance, fat accumulation 

and meat quality in Casertana and LW pigs. A similar approach was performed in Chianina 

beef cattle, to investigate the metabolic background of beef tenderness, based on an 

integrated proteomics, interactomics (investigates the molecular interactions within cells) 

and metabolomics analysis in MLD [155]. By the integrative transcriptomics and 

proteomics analysis in MLD of Canadian double-muscled LW pigs, Liu et al. [156] 

provided new insight into genetic mechanisms of pig double muscle traits and identified 

major genes and proteins involved in muscle hyperplasia and hypertrophy. Despite of the 

efforts in integrating various omics levels (e.g. proteomics+metabolomics, 

transcriptomics+proteomics), until now, there is a lack of real systems biology or systems 

genetics studies in meat quality in pigs.  
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1.4 Scope of the study 

Omics analyses are part of an emerging scientific field in livestock production and 

quantitative genetics. Since the most genes causing hereditary defects (e.g. RYR1 gene 

affecting PSE meat in pigs) and the most genes with large effects causative for performance 

traits (e.g. DGAT1 gene for milk fat content in cattle) were detected and are successfully 

established in breeding programs, the focus in animal breeding increasingly is on getting a 

deeper understanding of the metabolic processes underlying the performance traits, 

investigating genetic × environment interactions, identifying genetic markers for low 

heritable traits also with small effects. For all of these objectives, omics analyses constitute 

a promising alternative to standard genetic association studies. 

The basis for this analysis was the Bonner Du × Pi population, which is well established for 

investigating quantitative traits such as carcass or meat quality. After the QTL analyses of 

Liu et al. [27] in 585 F2 Du × Pi animals that revealed QTL for growth and meat quality 

traits and carcass composition, gene-, protein- and metabolite expression profiles were 

recorded. Based on a GG approach, Ponsuksili et al. [134] and Heidt et al. [157] identified 

eight cis-regulated candidate genes significantly associated with WHC, respectively. By 

analysing meat quality parameter WHC also from the viewpoint of proteomics, previous 

examinations revealed nine proteins up-regulated and 14 proteins down-regulated in low 

drip animals compared to pigs with high drip loss. 

The purpose of this thesis was an omics analysis, investigating and integrating the levels of 

the genome, transcriptome, proteome, metabolome and phenotype to elucidate the genetic 

and metabolic background of meat quality and carcass composition traits, paying special 

attention to the low heritable, complex meat quality trait drip loss. Fig. 7 gives an overview 

of all performed analysis steps. In the first part (Chapter 2), based on different statistical 

procedures, the metabolite profiles were analysed to elucidate the underlying biochemical 

processes and to identify potential metabolite bio indicators for drip loss, pH1, pH24 and 

meat color. To reveal promising candidate genes for WHC, we selected several metabolites 

and proteins as more accurate phenotypes and analysed them as intermediate phenotypes in 

GWAS (Chapter 3). In the final step, we integrated transcripts, proteins and metabolites in 

a network analysis to get comprehensive insights in the metabolic processes related to meat 

quality and carcass composition and used single networks as phenotypes in GWAS 

(Chapter 4).  
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Figure 7: Work flow of the thesis. PCA – Principal component analysis; WNA – 

Weighted network analysis; RFR – Random forest regression, GWAS – Genome-wide 

association analysis; eQTL – expression quantitative trait loci; CC – carcass 

composition. 
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Abstract 

The aim of this study was to elucidate the underlying biochemical processes to identify 

potential key molecules of meat quality traits drip loss, pH1, pH24 and meat color. An 

untargeted metabolomics approach detected the profiles of 393 annotated and 1,600 

unknown metabolites in 97 Duroc × Pietrain pigs. Despite obvious differences regarding 

the statistical approaches, the four applied methods namely correlation analysis, principal 

component analysis, weighted network analysis (WNA) and random forest regression 

(RFR), revealed mainly concordant results. Our findings lead to the conclusion that meat 

quality traits pH1, pH24 and color are strongly influenced by processes of post-mortem 

energy metabolism like glycolysis and pentose phosphate pathway, whereas drip loss is 

significant associated with metabolites of lipid metabolism. In case of drip loss, RFR was 

the most suitable method to identify reliable biomarkers and to predict the phenotype based 

on metabolites. On the other hand, WNA provides the best parameters to investigate the 

metabolite interactions and to clarify the complex molecular background of meat quality 

traits. In summary, it was possible to attain findings on the interaction of meat quality traits 

and their underlying biochemical processes. The detected key metabolites might be better 

indicators of meat quality especially of drip loss than the measured phenotype itself and 

potentially might be used as bio indicators. 

 

Keywords: meat quality, water holding capacity, pork, metabolite profiling, random forest, 

weighted network analysis 
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2.1 Introduction 

Sensory and technological quality characteristics of meat products are essential for 

acceptance of consumers and manufacturing industries. The variability of meat quality is 

high and the regulation of muscle properties influencing meat quality traits is still unclear 

[8]. One important commercially interesting meat quality parameter is the ability of meat to 

retain water also known as WHC. In order to characterise WHC in pork, drip loss is 

measured. High drip loss leads to significant reduction of meat quality resulting in 

monetary losses and reduced acceptance of consumers and meat-processing companies. 

Regularly drip loss in MLD is around 1 to 5% [18]. Drip loss is affected significantly by the 

structure of the muscle and the muscle cell itself and by unfavorable slaughtering 

conditions. Drip loss in particular is influenced negatively by too short rest periods and 

stress before slaughter that is associated with the rate and extent of muscular pH decline 

[11]. Furthermore, meat quality attributes are controlled by genetic effects as well, although 

the heritability for some traits is low. Genetic studies revealed several quantitative trait loci 

and candidate genes. However, the underlying mechanisms leading to the variation in all 

meat quality traits need to be better understood [27,134,158]. 

Some studies suggest that the levels of metabolites are helpful in order to understand the 

complex biological mechanisms of the underlying meat quality traits [159]. In this regard, 

metabolomics is a useful technique to identify candidate biomarkers that influence and 

indicate complex traits [81], improve preventive health care and enable early recognition of 

diseases [160]. In animal breeding biomarkers might be used for prediction of economical 

attractive phenotypes. For example Te Pas et al. [161] and Rohart et al. [118] investigated 

the suitability of metabolite profiles in prediction of meat quality traits in pigs. 

Furthermore, investigating metabolites as new phenotypes might allow uncovering the 

biochemical processes leading to aberrant meat quality. In general, metabolites are closer to 

the target phenotype compared to the level of the transcriptome or genome. In a current 

study, Muroya et al. [120] used this characteristic of metabolites to reveal metabolic 

pathways in different porcine muscle types. 

In order to identify reliable metabolite biomarkers and metabolic pathways, eligible 

approaches of metabolite quantification and annotation are needed. A promising procedure 

is the untargeted metabolite profiling using mass spectrometry and subsequent data base 

query. In this situation, caused by the possibility of quantitative high‐throughput analysis of 
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biological samples, the number of measured metabolites is usually much larger than the 

number of available biological samples. This case is also known as the ‘large p, small n’ 

problem or rather overfitting [162]. Several methods have been described that are able to 

handle data sets with a large number of variables [163, 164]. 

Therefore, the main objective of this study was to analyse the relationships between muscle 

metabolite profiles and meat quality traits through an untargeted metabolomic approach in 

order to predict their potential as biomarker and to investigate the underlying molecular 

structures and processes of meat quality. In regard to the ‘large p, small n’ problem, four 

different statistical methods, namely correlation analysis, PCA, RFR and WNA, were 

applied. Whereas correlation analysis and PCA are appropriate and commonly used 

methods to investigate the relationship between different variables, RFR and WNA hold 

several advantages in the analysis of highly multivariate, complex data. The construction of 

biological networks based on metabolites allows the identification of molecular interactions 

because they do not only quantify the correlations between pairs of metabolites, but also the 

extent to which these molecules are connected with other expressed metabolites. 

2.2 Material and methods 

Animals, tissue collection, phenotyping  

This study is based on 97 performance-tested F2 animals of a reciprocal crossbreed Du × Pi. 

The animals were selected within F2 family and based on their extreme high or low values 

of drip loss. The animals were kept and performance tested under standardized conditions 

at the Frankenforst experimental farm of the University of Bonn from 2002 until 2007. 

Data recording and sample collection were conducted strictly in line with the German law 

on animal welfare. The entire experiment, including applied standard operating procedures, 

was approved by the veterinary and food inspection, Siegburg, Germany (No. 39600305-

547/15). All animals were slaughtered at an average of 180.5 days and average carcass 

weight of 86.5kg. The phenotypes were recorded in a commercial slaughterhouse according 

to the rules of German performance stations [ZDS, 29]. Further information can be found in 

Liu et al. [27].  

In brief, sample collection was performed thoroughly after exsanguination. About 10 min 

p.m. tissue samples were rapidly dissected, snap-frozen in liquid nitrogen and stored at –

80°C. For further examination we choose the meat quality traits drip loss, meat color, pH1 
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and pH24 in MLD. Drip loss was measured using the bag method of Honikel and Kim 

[165]. The samples from MLD between 13th/14th rib were collected 24h p.m., weighed, 

and wrapped in a plastic bag. After storage for 48h at 4°C, the samples were reweighed and 

drip loss were calculated as a percentage of weight loss based on the initial weight of a 

sample. Muscle color was measured at 24h p.m. by Opto-Star (Matthaeus, Klausa, 

Germany). Opto-Star measures the light reflection of the meat and gives it as meat color 

value. High light reflectance factor stands for pale meat; low reflectance describes dark red 

meat color. The traits pH1 and pH24 were measured 1 and 24h p.m. in MLD. To describe 

the relationship between meat quality traits we performed a phenotypic correlation analysis.  

Metabolite profiling 

The samples metabolite spectra in MLD were measured by Metabolomic Discoveries 

GmbH (Potsdam, Germany; www.metabolomicdiscoveries.com) via gas chromatography - 

mass spectrometry (GC-MS) and liquid chromatography - quadrupole time of flight - mass 

spectrometry (LC-QTOF/MS).  

For metabolite extraction frozen muscle tissue was mechanically disrupted in a ball mill in 

liquid nitrogen. 40mg of homogenate was mixed with 500µl 80% (v/v) methanol and 

incubated for 15 min in a thermo shaker (1000 rpm) at 70°C. Cellular debris was removed 

by centrifugation. 10µl of the extract were dried and subsequently used for the analysis on 

GC-MS. For LC-MS 1µl was injected. Derivatisation and analyses of metabolites by a GC-

MS 7890. A mass spectrometer (Agilent, Santa Clara, USA) were carried out as described 

[166]. The LC separation was performed using hydrophilic interaction chromatography 

with a ZIC-HILIC 3.5µm, 200 A column (Merck Sequant, Umeå Sweden), operated by an 

Agilent 1290 UPLC system (Agilent, Santa Clara, USA). The LC mobile phase was a linear 

gradient from 90% to 70% acetonitrile over 15 min, followed by linear gradient from 70% 

to 10% acetonitrile over 1 min, 3 min washed with 10% acetonitrile and 3 min 

reequilibration with 90% acetonitrile. The flow rate was 400 µl/min. Hyphenated mass 

spectrometry was performed using a 6540 QTOF/MS Detector (Agilent, Santa Clara, 

USA). The measured metabolite concentration was normalized to the internal standard.  

GC-MS and LC-QTOF/MS are used for untargeted metabolite profiling and facilitate the 

identification and robust quantification (accurate molar mass) of a few hundred metabolites 

in a single tissue sample. Chromatography followed by mass spectrometry has a relatively 
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broad coverage of compound classes, including organic and amino acids, sugars, sugar 

alcohols, phosphorylated intermediates and lipophilic compounds. With the combination of 

both methods it is possible to detect metabolites in a range of 50-1700 Dalton, with a 

precision of 1-2ppm and a solution of mass/Δmass=40.000 (Report METABOLOMIC 

DISCOVERIES GmbH). For details on the methods see Lisec et al. [166]. Metabolites 

were identified and annotated in comparison to Metabolomic Discoveries' databases, which 

resort to Human Metabolome Database (HMDB, www.hmdb.ca), METLIN 

(www.metlin.scripps.edu/) Lipid Maps (www.lipidmaps.org/). Annotation of metabolites 

was based on mass assignment, retention behavior and structure information. Non-

annotated metabolites are characterised by their accurate mass and retention time. 

2.3 Statistical analysis 

Processing/correction of phenotype and metabolite data  

Individual phenotypes of meat quality traits and metabolite expression levels were 

corrected for systematic effects using a fixed, generalized linear model of R software 

(www.r-project.org). The linear model contained besides population average 𝜇 and random 

residuum 𝑒, the effect ‘season’ (𝑆, 3-month classes) and 𝑆𝑊 as a linear covariable.  

𝑌𝑖𝑗 =  𝜇 + 𝑏(𝑆𝑊𝑖𝑗) + 𝑆𝑖 + 𝑒𝑖𝑗                                                   (1) 

All further statistical analysis methods were carried out using the calculated residuals of 

metabolite expression intensities and meat quality characteristics.  

Association between metabolite profiles and meat quality traits 

To investigate associations between metabolite profiles and meat quality traits we applied 

four different statistical approaches: 1) Correlation analysis, 2) PCA, 3) WNA and 4) RFR. 

These methods have different properties in order to handle the specific statistical problems 

(‘large p, small n’, high dimensionality and distinct correlation between variables) of the 

metabolomics data set. All statistical methods of analysis were performed with R 

(http://www.r-project.org). 
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2.3.1 Correlation analysis 

In a first step simple Pearson correlation coefficients were estimated to investigate the 

relationship between paired samples of metabolites and meat quality traits. Significant 

correlations (p ≤ 0.05) were considered for further biological interpretations. 

2.3.2 Principal component analysis  

The PCA is an unsupervised method which condenses the large number of metabolites into 

a set of representative, uncorrelated principle components (PCs) by means of their variance 

covariance structure [167]. Only PCs which explain more than 1.5% of the entire 

metabolite expression variance were considered for further analysis. The relevance of each 

metabolite within each PC was quantified by their corresponding loadings. 

2.3.3 Weighted network analysis 

Similar to the PCA, the WNA procedure [164] tries to reduce the dimensionality of the 

metabolic information. Simple network statistics were used to generate a limited number of 

biological interpretable modules. Pearson correlation matrix (adjacency matrix) of all 

bivariate metabolite comparisons is used to calculate the distances between the metabolites, 

corresponding to the differential metabolite expression. By raising the absolute value of the 

Pearson correlation to a power β ≥ 1 (soft thresholding), the weighted network construction 

emphasizes large correlations at the expense of low correlations [168]. The distances 

between metabolites are integrated into a topological overlap matrix (TOM) which is used 

to cluster the variable expression profiles hierarchically. The results are visualized by a 

dendrogram with hierarchically arranged branches and connected nodes. The branch 

position of each metabolite indicates the actual connectivity (topology) in the network. The 

metabolite located at the end of the branch is the most connected nodes (‘hubs’), which 

play an important role in influencing the co-regulation patterns of other nodes in the 

network. Moreover these hubs may act as linking nodes for communication and interaction 

between different networks [169].  

For further evaluation the branches were clustered into separate co-regulated modules, 

which are visualized by different colors in the corresponding dendrogram. The 

mathematical delimitation of each module was obtained through semi-automated, adaptive 

pruning of the hierarchical clustering dendrogram. Based on the distance matrix of all 
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metabolites (dissimilarity of TOM) and the hierarchical clustering dendrogram the function 

produces a vector of numerical labels giving assignment of objects to modules [164].  

In a next step the metabolite expression profiles for each module are decomposed via a 

singular value decomposition to form module eigenvalues (MEs). This procedure is closely 

linked to a PCA within a module, where the MEs resemble the first PC. The importance of 

each metabolite for its module (Module membership, MM) is quantified by the correlation 

between MEs and metabolite expression profiles. Moreover the significance of each 

module specific metabolite (Metabolite significance, MS) for the response traits is 

expressed by the Pearson correlation coefficient. The MS values correspond to the Pearson 

correlation coefficients between metabolites and meat quality traits. 

Another method to classify metabolites as key indicators of a metabolic network is the 

concept of maximum adjacency ratio (MAR). MAR is a function of connectivity that is 

calculated across all metabolites. Thereby, MAR describes the relativeness of the entire 

metabolite network. In coexpression networks, MAR is a useful parameter since it allows to 

determine whether a node forms moderate relationships with a lot of features (MARi<0.5) 

or very strong relationships with relative few features (MARi>0.5) [170]. From the 

viewpoint of network analysis MAR differs from MM because is not a module based 

parameter, but is able to indicate strong linked-up metabolites, that are involved in many 

metabolic pathways [171, 172].  

The WNA procedure used in our study is implemented in the package ‘Weighted Gene Co-

expression Network Analysis’ (WGCNA) in R [164]. As an optional feature of WGCNA, the 

user is allowed to assess the minimum number of metabolites contained in each module. To 

construct an interpretable number of modules, we used the standard thresholding parameter 

(β) and a minimum of 30 metabolites per module in our analysis [172]. The mathematical 

delimitation of each module was obtained through pruning of the hierarchical clustering 

dendrogram implemented in the function ‘cutreedynamic’ of WGCNA. 

2.3.4 Random forest regression 

RFR is a supervised learning tool that estimates the associations between metabolites and 

response variables (meat quality traits) using tree-based methods with integrated 

permutation tests [173]. As it has been shown by Strobl et al. [174] and Nicodemus et al. 

[175],  the random forest algorithm is believed to successfully identify relevant predictor 
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metabolites even in high dimensional settings involving complex interaction structures and 

highly correlated variables. The bootstrapping algorithm implemented in RFR involves two 

layers of random sampling: response values and metabolite profiles. The RFR procedure is 

described in detail in Breiman [163] (cf. S1, p. 193).   

Because of important pitfalls of the traditional RFR algorithm by Breiman [163], 

implemented in R package randomForest [171], in this study the RFR routine was 

calculated based on an alternative class of decision trees developed by Hothorn et al. [176] 

and Strobl et al. [173]. In this enhanced RFR procedure, tree construction and variable 

importance (VI) estimation is addressed through the principle of non-parametric conditional 

hypothesis testing (cf. S2, p. 194).  

Essentially, the conditional RFR has the following advantages: the procedure uses the 

‘conditional inference forest’ (CIF) methodology as splitting criterion. At each splitting 

node, each predictor is globally tested for its association with the trait of interest and a p-

value is computed. Hence, CIF splitting is based on an essentially unbiased splitting 

criterion that automatically adjusts for different marginal distributions of the predictors and 

thus does not share the pitfall of Breiman´s RFR. Moreover the resampling scheme in 

conditional RFR based on subsampling instead of bootstrap sampling and Strobl et al. [173] 

recommend to systematically using sampling without replacement to prevent biases in VI 

measurement. Finally the aggregation procedure in CIFs works by averaging the 

observation weights extracted from each of the trees and not by averaging predictions 

directly (majority voting). As a result, even in case of high correlated predictors or 

variables with wide scale of measurement, modifications of the standard RFR procedure 

lead to less biased forest construction and VI calculation.  

VI calculation based on the permutation principle of ‘mean decrease in accuracy’ (MDA). 

The so-called ‘MDA importance’ or ‘permutation importance’ is directly based on the 

prediction accuracy rather than on the splitting criterion (see Gini importance in Breiman 

[163]). The MDA importance describes the difference between out-of-bag (OOB) errors 

after random permutation of the relevant predictor where the OOB error results from 

validation of the original tree. Substitution of a considerable predictor is expected to 

decrease the OOB error. Therewith high MDA values indicate metabolites with distinct 

effect on the observed trait. The MDA, that is given by a particular predictor is determined 
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during the OOB error calculation phase whereas the resulting VI value is conditional in the 

sense of beta coefficients in regression models, but represents the effect of a predictor in 

both main effects (metabolite-trait-association) and interactions (metabolite-metabolite-

interaction) [174].  

The mean MDA of each predictor based on the aggregated forest can be used to rank the 

predictors. In order to reduce the number of metabolites to a manageable size, a 

permutation test of Hothorn et al. [176] was performed. We set the threshold of the 

permutation test to p≤0.1 which rejects uninformative predictors and enables the selection 

of predictor variables with significant importance. Hereby the risk of too many wrongly 

believed predictive predictors is reduced [175]. 

The root mean square error (RMSE) of RFR is calculated as the square root of the 

difference between the realized (𝑦𝑖) and the predicted observation (𝑦̂𝑖
OOB) within the OOB 

data after permuting each predictor variable in the training data set divided by the number 

of trees (𝑛).  

𝑅𝑀𝑆𝐸𝑂𝑂𝐵 = √ 𝑛−1 + ∑ {𝑦𝑖 − 𝑦̂𝑖
𝑂𝑂𝐵}

𝑛

𝑛=1
²      (2) 

RMSE is calculated at each splitting step in the trees just as averaged over the whole forest. 

The coefficient of determination (R²) of RFR is computed as 

𝑅²𝑂𝑂𝐵 =  1 −  
∑ (𝑦𝑖− 𝑦̂𝑖

𝑂𝑂𝐵)2𝑛
𝑖=1

∑ (𝑦𝑖− 𝑦𝑖̅)2𝑛
𝑖=1

         (3) 

The enhanced RFR approach of Hothorn et al. [176] is implemented in the R package party 

and its subroutines ‘cforest’ and ‘varimp’ by Strobl et al. [173] were used in this study. All 

needed settings are realized by the activation of the specifications ‘controls = 

cforest_unbiased’ in the tree building function ‘cforest’ and ‘conditional = TRUE’ in the VI 

calculating function ‘varimp’. Because party does not provide the OOB error estimation by 

default, the function ‘postResample’ within R package caret was used to calculate RMSE 

and R² based on the conditional forest learned by ‘cforest’.  

RFR calculation, in particular using function ‘varimp’ of party, is regarding central 

processing unit (CPU) time and random-access memory (RAM) capacity particular in the 

situation of our large (1993) amount of independent variables very time demanding. To 
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reduce the CPU time of RFR, through a previous selection step, we removed a portion of 

the apparently uninformative predictors.  

Finally, RFR was applied on a preselected set of 3×400 metabolites, which were most 

important in the first three PCs according to their absolute loadings. After removing 

duplicates, 1,084 metabolites remained in the final data set. According to Strobl et al. [177] 

the number of decision trees (‘ntree’ parameter’) was set to 1,084 and the number of 

candidate predictors at each split (‘mtry’ parameter) was set to 361 (‘ntree’/3). The 

remaining parameters were set to default. 

2.3.5 Prediction of response variables using aggregated metabolite profiles 

Accuracies in prediction of the meat quality response variables using metabolites profiles 

were calculated for each applied method via multiple regression analysis. The statistical 

regression models comprised as independent variables either the first ten PCs of PCA, ten 

modules of WNA or ten metabolites with highest VI values identified by RFR. 

In addition, the results of all analysis were used in a joint analysis in order to identify 

important biological interpretable networks of metabolites or interactions between 

promising metabolites and meat quality traits. In this context, the subjective selection of 

metabolites for the joint analysis based on following conditions: a) metabolite is ranked 

within the top 30 variables according to their importance indicators (absolute correlation 

coefficient, absolute loading of PCA, MS of WNA and VI of RFR) in at least one of the 

applied statistical methods, b) metabolite is annotated. These importance parameters were 

used to identify metabolites with high meaning for the observed traits. Based on the 

selected metabolites (six metabolites for each trait) correlation coefficients between 

metabolites and between metabolites and traits were calculated to construct a network. The 

software package pajek [178] was used to visualize the complex network of all pre-selected 

metabolites and meat quality traits via arrows and connection lines. 
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2.4 Results 

2.4.1 Meat quality traits and metabolic profiling 

The raw values of the performance data, given in Tab. 5, reflect the normal range of meat 

quality in commercial crossbred pig population. With the exception of the correlation 

between pH1 and pH24 measured in MLD, all correlation coefficients between meat quality 

parameters were significant different from zero and had the expected sign (Tab. 5).  

 

 

Table 5: Descriptive statistics and phenotypic correlations between meat quality 

traits. 

Trait Mean S Min Max pH1 pH24 Color 

drip loss, % 1.90 1.39 0.40 5.30 -0.314** -0.350*** - 0.371*** 

pH1 6.53 0.22 5.89 6.94  -0.024 +0.272** 

pH24 5.52 1.12 5.32 6.06   +0.638*** 

color 72.5 7.25 56.00 92.00    

S = standard deviation; Min = minimum; Max = maximum; *** (p ≤ 0.001), ** (p ≤ 0.01).  

 

 

Untargeted metabolite profiling detected 1,993 different metabolites in 97 meat samples. 

Using Metabolomic Discoveries' databases, 393 metabolites were successfully assigned to a 

biological function along with a tagged name and description (first choice). In case of 128 

annotated metabolites, the Kyoto Encyclopedia of Genes and Genomes (KEGG)-IDs were 

also available. Non-annotated metabolites were characterised by their available exact mass 

information. In a further step, we tried to annotate the most important metabolites manually 

by using the METLIN database (second choice). Based on the known accurate mass, 

neutral charge and a maximal tolerance of +/-10ppm a potential functional annotation was 

assumed for the unknown metabolites.  

2.4.2 Correlation analysis 

The correlation analysis revealed 77, 436, 155 and 235 metabolites significantly correlated 

with drip loss, pH1, pH24 and color respectively (Tab. 6). The correlation coefficients 

ranged from -0.46 to 0.44. As can be seen from the Venn-diagram in Fig. 8 most of the 

relationships were trait specific, whereas only 152 of the 903 significant correlated 
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metabolites showed a significant correlation with more than one meat quality trait. In case 

of trait meat color more than half of the significant metabolites are also significant 

correlated with other meat quality trait.  

  

 

Table 6: Results of the correlation analysis for traits and metabolites. 

Trait 
No. of positive 

correlated 
Range 

No. negative 

correlated 
Range 

drip loss 72 0.20 to 0.25 5 -0.21 to -0.24 

pH1 212 0.20 to 0.44 224 -0.20 to -0.46 

pH24 99 0.20 to 0.41 56 -0.20 to -0.32 

color 162 0.20 to 0.35 73 -0.20 to -0.37 

significance threshold p ≤ 0.05. 

 

 

2.4.3 Principal component analysis 

PCA was used to condense expression profiles of all metabolites in a reasonable number of 

PCs. As shown in Fig. 9, the first three PCs already specified 46.9% of the observed 

variance. These proportion increases with diminishing response of additional PCs from 

60% using six PCs up to 70% using more than ten PCs. 

In order to identify significant metabolites, we focused on the first three PCs as it has been 

proposed by DiLeo et al. [172]. In these PCs the loadings of all metabolites were in a range 

of -0.1 to +0.1. According to the criteria to rank loadings in PCs [172], in our study the 

Figure 8: Venn-diagram of significant correlated metabolites. 
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metabolites do not reach significant eigenvalues of >0.2 or <-0.1. Furthermore beneath the 

possibility to rank the variables, a general biological characterisation of the first PCs is 

hardly possible. 

  

2.4.4 Weighted network analysis 

WNA allowed the entire data set of 1993 probe sets of metabolites to be utilized in the 

construction of the weighted co-expression network. The hierarchical clustering algorithm 

and the following pruning process resulted in ten modules (see S3). The number of 

metabolites per module ranged between 776 (module ‘blue’) and 31 (module ‘salmon’). 

Four metabolites were not assigned to any module, and were labeled with color ‘gray’. 

The relationships between meat quality traits and modules are given as correlation 

coefficients between traits and MEs (Fig. 10). Drip loss was significant positively 

correlated with modules ‘purple’ and ‘greenyellow’. Meat color and pH1 showed a 

significant negative correlation with the module ‘magenta’. MEs of module ‘black’ were 

significantly correlated to pH24 and pH1, but these coefficients were controversial in sign 

(Tab. 7, Fig. 10).  

MAR values were calculated using metabolites of the entire data set. However, regarding 

the MAR calculation of a specific metabolite, it can be expected that the metabolites which 

Figure 9: Cumulative proportion of explained variance by principal component one to 

ten. PC = principal component. 
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belong to the same module provide the most valuable information due to their high 

intramodular connectivity. The majority of the metabolites had MAR values below 0.2 and 

only 88 metabolites had MAR values above 0.3.  

 

 

Table 7: Selection of significant modules for meat quality traits in weighted network 

analysis. 

Trait Module Cor. p-value Number metabolites 

drip loss ‚purple‘ +0.21 p ≤ 0.04 52 

drip loss ‚green-yellow‘ +0.21 p ≤ 0.04 49 

pH1 ‚magenta‘ - 0.27 p ≤ 0.008 53 

pH1 ‚black‘ - 0.32 p ≤ 0.001 73 

ph24 ‚black‘ +0.28 p ≤ 0.008 73 

color ‚magenta‘ - 0.25 p ≤ 0.01 53 

Cor. = Correlation. 

Figure 10: Correlation coefficients and corresponding p-values of module-trait 

relationship. Correlations of traits drip loss, pH1, pH24 and meat color to modules 

are characterised by color range from red (‘1’ - positive correlation) to green (‘-1’ - 

negative correlation); in parenthesis below correlation coefficients the p-value is 

given; ME = module eigenvalue. 
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Of particular interest were metabolites with high MM, MAR and MS. We used both the 

‘not module based’ parameter MAR as well as the ‘module based’ parameters MS and MM 

to select metabolites that are important from different perspectives. Within the significant 

modules the metabolite qualifiers MM showed in many cases positive correlation 

coefficients to MS and MAR estimators (Tab. 8). For example, in the significant module 

‘magenta’ (for trait color) the correlation coefficients MM:MS=0.39 and MM:MAR=0.60 

indicated the high information content of the MM qualifier not only for the module specific 

connectivity but also for the response variable and the relativeness of the entire network 

(Fig. 11). Likewise in module ‘black’ (for trait pH1) there were significant positive 

correlations between MM:MS and MM:MAR. Particular in these modules it can be 

expected to find a reasonable number of potential key metabolites for meat quality 

influencing pathways [179].  

 

 

 

Table 8:  Correlation between metabolite significance, module membership and 

maximum adjacency ratio for modules of weighted network analysis. 

 ‘purple’ 

drip loss 

‘greenyellow’ 

drip loss 

‘black’ 

pH1 

‘black’ 

pH24 

‘magenta’ 

pH1 

‘magenta’ 

color 

MM : MS 0.00 0.36** 0.55** -0.13 0.29* 0.39** 

MM : MAR -0.18 0.81** 0.29** 0.29** 0.60** 0.60** 

MAR : MS 0.18 0.25 -0.22* 0.50** -0.14 0.40 

MS = metabolite significance; MM = module membership; MAR = maximum adjacency 

ratio; ** (p ≤ 0.01), * (p ≤ 0.05).  
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Regarding the relationship MS:MAR a clear tendency were observed only in the modules 

‘black’ for trait pH24 and ‘magenta’ for color where the correlation coefficient exceeded a 

value 0.4. In all other modules this relationships were negative or close to zero. To 

demonstrate the relationship of MM, MS and MAR, the scatterplots in Fig. 11 visualize the 

relations exemplarily for modules ‘purple’ and ‘magenta’, that were significantly associated 

with drip loss and meat color. The plots for the remaining module-trait associations can be 

found in S4.  

Figure 11: Scatterplot of parameters metabolite significance, module membership 

and maximum adjacency ratio of the modules ‘purple’ (a) and ‘magenta’ (b) that are 

significantly correlated with meat quality traits drip loss (a) and meat color (b). MS = 

metabolite significance; MM = module membershio; MAR = maximum adjacency 

ratio.  
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2.4.5 Random forest regression 

In contrast to the previous approaches, RFR is a supervised learning method characterising 

the relationship between trait and metabolites using decision trees. Due to computational 

problems of 1993 available metabolites only the probably most important 1084 metabolites 

were used in RFR. These metabolites were selected based on their absolute loading values 

in PC1 to PC3 in PCA as described above. By this procedure the data set was reduced from 

1993 to 1084 metabolites. Regarding the different meat quality traits, diverse conditional 

RFR accuracy parameters (RMSE, R² and coefficient of variation (CV)) of the prediction 

based on metabolite profiles were estimated. R
2
 values ranged between 0.4 (pH24) and 0.55 

(pH1). CV values for pH1 (2.21%) and color (6.95%) were below 10%, whereas CV values 

for pH24 (17.57%) and particular drip loss (51.15%) indicated a weak accuracy of RFR for 

these traits (Tab. 9).  

  

 

Table 9: Accuracy parameters and number of metabolites with significant variable 

importance (VI) and maximal VI per trait according to random forest regression. 

trait RMSE R² CV [%] Max. VI significant metabolites 

drip loss 0.97 0.41 51.15 0.012 293 

pH1 0.14 0.55 2.21 0.002 401 

pH24 0.97 0.40 17.57 0.013 317 

color 5.04 0.47 6.95 1.658 332 

RMSE - root mean square error; R² - coefficient of determination; CV - coefficient of 

variation. 

 

 

Despite these partly unsatisfying accuracies, a considerable number (293 to 401) of 

metabolites with significant impact on various meat quality traits (Tab. 9, Fig. 12) were 

detected. Significance of VI values was tested via a permutation test with a threshold of 

p≤0.1. As shown in Fig. 13, there is a large number of metabolites identified for more than 

one trait. For example, 14 and 110 (34+29+26+21) metabolites had a significant impact on 

all or at least on three meat quality traits.  
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Figure 13: Variable importance boxplot of important metabolites by random forest 

regression of Strobl et al. (2009). 

Figure 12: Venn-diagram of significant metabolites by random forest regression of 

Strobl et al. (2009). 
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2.4.6 Evaluation of applied statistical methods in prediction of meat quality traits 

In a final step, the potential of all applied statistical models to predict meat quality was 

quantified via a trait specific multiple regression analysis. Regarding the statistical 

procedures PCA, WNA and RFR the first ten PCs, all WNA modules or ten highest RFR 

VI values were used as independent variables. Tab. 10 shows the corresponding accuracy 

parameters of these analyses. In general, prediction based on metabolite profiles was very 

challenging in case of drip loss and worked best for pH1. Regarding the statistical methods 

in most analyses RFR showed the highest accuracy. Only for pH24, the first ten PCs and 

the modules of WNA resulted in higher R² compared to RFR (Tab. 10).  

 

 

 

Table 10: Predictive power of principal component analysis, weighted network 

analysis and random forest regression in drip loss, pH1, pH24 and meat color based 

on a multiple regression model. 

Trait 

Multiple correlation coefficients 

Ten principal 

components of PCA 
Ten modules of WNA 

Ten metabolites with 

highest variable 

importance of RFR 

RMSE R² CV RMSE R² CV RMSE R² CV 

drip loss 1.13 0.07  59.75 1.10 0.18  57.94 1.10 0.32  58.13 

pH1 0.43 0.35 6.53 0.44 0.30 6.69 0.43 0.37 6.64 

pH24 0.32 0.27 5.73 0.32 0.27 5.78 0.34 0.12 6.13 

color 2.54 0.23 3.50 2.56 0.21 3.53 2.51 0.37 3.46 

PCA = principal component analysis; WNA = weighted network analysis; RFR = random 

forest regression; RMSE - root mean square error; R² - coefficient of determination; CV - 

coefficient of variation [%]. 
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2.4.7 Joint analysis of significant associated metabolites 

With the exception of PCA, the applied methods revealed significant metabolites for the 

observed meat quality traits. PCA resulted in weak loading values that prohibited the 

identification of important metabolites. In contrast, using the results of the correlation 

analysis and the methods WNA and RFR, it was possible to detect significant associated 

metabolites for meat quality traits. Comparing these methods by summarising the results 

presented in the Tab. 6, 7 and 8, the number of detected significant trait specific metabolites 

varied to a large extent. For example the number of significant metabolites for drip loss 

ranged from 76 (correlation analysis) to 293 (RFR). On the other hand, a considerable 

overlapping of significant metabolites identified by different statistical methods was 

detected and is presented in Fig. 14. In general, it can be assumed that metabolites, whose 

importance is confirmed by different methods, can be used as reliable predictors for meat 

quality traits.  

Figure 14: Venn-diagram of the entire significant metabolites for drip loss, pH1, pH24 

and color identified by correlation analysis, weighted network analysis and random 

forest regression and of the selection of 30 metabolites with highest absolute 

correlation coefficients, metabolite significance and variable importance values in 

brackets. Corr. = correlation analysis; WNA = weighted network analysis; RFR = 

random forest regression. 
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In order to get a more comprehensive overview about the complex biological architecture 

of meat quality traits, the most important metabolites that were identified by the three 

methods were used to set up a network via virtualization tool pajek. Importance of 

metabolites was characterised by the parameters a) correlation to meat quality, b) MS in 

significant modules of WNA and c) VI in RFR. According to these parameters the most 

important 30 metabolites per method were preselected. The final joint network analysis 

comprised only metabolites which were annotated and identified by at least two methods. 

Following this rule, six metabolites were identified for pH1, drip loss and color, whereas 

three metabolites had an impact on pH24. For pH24, this initial subset did not contain 

results from the RFR analysis, so that the list was extended by three annotated metabolites 

which had the highest VI value (Tab. 11).  

Based on the 24 selected metabolites in Tab. 11, a metabolomic network was created which 

comprise the meat quality traits drip loss, pH1, pH24 and color (Fig. 15). In the network the 

dotted lines represent connections between traits and between metabolites whereas the 

arrows stand for directed effects of metabolites on the observed traits. Directed and 

undirected connections are displayed in case of significance (p≤0.05) and absolute 

correlation ≥0.5. Fig. 15 indicates that the metabolites found by different statistical methods 

were highly interconnected. As a general tendency, different procedures identified similar 

or related chemical substances for a specific trait. 
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Table 11: Selection of metabolites for joint analysis based on their ranking in top 30 

metabolites in correlation analysis, metabolite significance of weighted network 

analysis and variable importance of random forest regression.  

Drip loss Cor MS VI pH1 Cor MS VI 

2.3-Naphthalic acid 23. × 10. 
Histidine-alanine-

tryptophan-tryptophan 
5. 4. 2. 

Glycero-3-

phosphocholine 
8. × 7. Cytidine 25. 8. 

12

. 

Glycero-3-phosphoserine × 28. 23. 
Allopurinol-1 

ribonucleoside 
× 9. 

25

. 

Glycerophosholipid 22. 14. × Lactic acid 24. × 
10

. 

Triacylglycerol 19. 12. × Lysine-serine-isoleucine 19. × 6. 

3-Methyl-2-oxovaleric 

acid 
21. 13. × Phosphocreatine 26. × 

21

. 

pH24 Cor MS VI color Cor MS VI 

α-Hydroxybutyrate 1. 1. × 
Octulose-1.8-

bisphosphate 
7. 1. × 

Heptadecanoyl carnitine 2. 2. × Fructose-6-phosphate 27. 9. × 

Stearoylcarnitine 3. 4. × Glucose-6-phosphate 23. 7. × 

Gle-cholesterol × × 2. 
Inosine-5-

monophosphate 
28. 10. × 

Methylglyoxal × × 9. Phosphoglycolic acid 11. 12. × 

Glucose × × 11. 
Nicotinamide adenine 

dinucleotide 
4. × 2. 

Cor = correlation analysis; MS = metabolite significance; VI = variable importance; × - 

Metabolite was not ranked in top 30 of the respective importance values; Gle = gallic acid-

linoleic acid ester. 
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Figure 15: Metabolomic network of traits drip loss, pH1, pH24 and color and 24 

strongly associated metabolites. dotted lines: undirected connections between 

metabolites and between traits; arrows: directed relations between metabolites and 

traits; triangles - traits; ellipses – metabolites; light blue – drip loss; blue – pH1; 

magenta – pH24; green – meat color. 
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2.5 Discussion 

Challenges in metabolomics and functional analysis 

Based on an untargeted metabolomic approach the main objective of our study was to 

identify key metabolites which play an important role in the complex biological 

architecture of meat quality traits. Moreover, these metabolites can be used as informative 

predictive biomarkers of meat quality of pigs. Similar objectives are pursued in a few 

studies reported in literature [160, 99]. Recently D'Alessandro et al. [99] successfully used 

metabolomics to compare highly phenotypically differentiated pig breeds. Rohart et al. 

[118] investigated the prediction power of metabolomic profiles for commonly used 

production phenotypes in pig breeds and in a current study Muroya et al. [120] tried to 

reveal characteristic metabolic pathways in different porcine muscle types. These studies 

used up to 188 well known metabolites to characterise different targets traits. In contrast to 

these studies, our approach tried to cover the entire metabolome of pigs expressed in meat 

samples.  

Using a GC-MS technology, in our study 1,993 different metabolites were identified. 

Wishart et al. [180] showed that this method is the most efficient way for metabolite 

detection. However, as it has been reported by Hollywood et al. [46] metabolomics 

approaches by GC-MS only disclosure about 10% of the metabolome. From this follows, 

that the set of metabolites found in our study reflects only a small percentage of anticipated 

count of metabolites.  

Besides this limitation, the corresponding annotation step provides only a fragmented 

picture because only a small amount of physiological or biochemical functions of 

metabolites are stored in available public data bases. In our study only 393 out of 1,993 

metabolites were annotated. According to Chagoyen and Pazos [181], reasons for these 

fragmentary information might be the of lack of scientific fundamentals and principles of 

physiological and biochemical processes of higher life forms. In addition, functional 

analysis of high dimensional omics data is a big challenge in systems biology studies as it 

can be seen by the different, non-standardized statistical methods which were used here and 

elsewhere to analyse metabolomics data [172].  
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Potential and abilities of statistical methods 

In order to quantify the consequences of missing statistical standards in a first step of our 

analysis we evaluated different statistical methods with respect to their relevant theoretical 

statistical properties and their consequences regarding the final results. All applied methods 

tried to solve the problem of the ‘large p, small n’ situation of the metabolomics data set 

used in our study.  

The correlation analysis is a useful method to get a first overview. In the last decade, in 

many scientific fields we registered an increasing number of available variables. New 

techniques were proposed to address these challenging tasks involving many irrelevant and 

redundant variables and often comparably few training examples. Selecting the most 

relevant variables is a challenge for building a reliable predictor, particularly if the 

variables are redundant. Conversely, a subset of useful variables may exclude many 

redundant, but relevant, variables. Correlation methods belong to the category of ranking 

criteria defined for individual variables, independently of the context of others. This leads 

to the consequence  that some variables may have a low rank because they are redundant 

and yet be highly relevant [182]. In our study correlation analysis nevertheless induced 

concordant results with RFR and WNA. The latter finding was not surprising because the 

module generating process in WNA, MS is calculated based on Pearson correlation 

coefficients as well as the simple correlation analysis. In conclusion, correlation analysis is 

a comprehensible procedure to get a first idea of what variables might be potential bio 

indicators. However, because of the described weaknesses, beneath correlation analysis, 

other methods based bootstrap or Bayesian procedures should be applied to validate or 

disprove the first results. 

The PCA approach tries to condense the information content of the independent variables 

into a set of PC. This method is promising, in particular because bivariate correlation 

analysis revealed significant relationships between metabolites and meat quality traits in a 

range of maximal -0.20 to -0.46 and +0.20 to +0.44. However, using PCA only weak 

loading values were estimated within the first PC and no significant metabolites were 

identified based on the thresholds described by DiLeo et al. [172]. Consequently the 

analytic tool did not give comprehensive insight in interactions between metabolome and 

phenotypic traits.  
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WNA addresses the challenge of the ‘large p, small n’ situation by summarising a network 

of modules to reduce the complexity of a data set, which is thereby analysed with greater 

statistical power [164]. The investigation and interpretation of the ‘trait to metabolite’ 

associations in WNA is focused on the most highly-connected ‘hub’ metabolites with high 

MM, MS and MAR within the significant modules.  

As described above, the parameter MS quantifies the importance of a metabolite for meat 

quality traits. Therefore, MS is the most eligible parameter to select promising metabolite 

biomarkers for a particular trait. In contrast, the parameters MM or MAR are indicators for 

the connectivity of metabolites and are able to indicate potential key players in the 

regulatory network regulating the trait of interest and between the metabolic pathways. MM 

quantifies the importance of a metabolite for the specific module, whereas the parameter 

MAR provides information about the relatedness of each metabolite within the whole 

network. According to Langfelder and Horvath [164] MAR values below 0.5 indicate 

components with many, weak connections to the network neighbors instead of few strong 

associations. In our study only four metabolites in the modules ‘black’ and ‘magenta’ 

showed MAR values above 0.4, which indicated a more important role of these metabolites 

regarding the network connectivity. In these modules the correlation MS:MAR also 

revealed a clear tendency of 0.5 (module ‘black’, pH24) and 0.4 (module ‘magenta’, color), 

respectively (Tab 7). In other significant modules the MS:MAR correlations were 

negligible weak. This finding indicates that an intensively connected metabolite does not 

necessarily provide important information for the expression of the response variable.  

Within significant modules, MM values of almost all metabolites were highly expressed in 

a range between 0.5 to one (Fig. 11, S4). This result can be expected because of the 

underlying cluster algorithm. In contrast, the MS values within all significant modules were 

much lower and were almost equally distributed between zero and 0.3 for drip loss, color 

and pH1 (in ‘magenta’) and zero to 0.45 for pH1 (in ‘black’) and pH24 (Tab. 7). As 

visualized in Fig. 13, in module ‘purple’, glucosylceramide (d18:1/24:1(15Z)) and another 

unannotated metabolite with low MM but high MAR values do not fit in our expectations 

derived from a positive correlation between MM and MAR qualifiers. Theoretically, 

components with low MM but high MAR probably have a high connectivity across the 

whole network. In this context, glucosylceramide (d18:1/24:1(15Z)) is involved in many 

pathways for example in sphingolipid-, ceramide glucosyl- and lipopolysaccharide 
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metabolism so that this metabolite can be considered as a nodal point between different 

modules or metabolic pathways. On the other hand, in module ‘magenta’ there are some 

metabolites with both high MM and MAR qualifiers, but MS values close to zero (Fig. 11). 

These metabolites might be key players in the underlying biological pathways of module 

‘magenta’, but on the other side they do not play an important role for the expression of the 

response variable color by its own. 

According to Muroya et al. [120] module construction and MM/MS/MAR calculation is 

reasonable, because it can be expected that the biology of meat ageing process is regulated 

by a number of key factors in several key metabolic pathways. Module construction has the 

advantage that the function of a large amount of non-annotated metabolites can be inferred 

from their better-annotated neighbors within the modules. This advantage is particular 

important in the analysis of our data set, because only 20% of the metabolites were 

annotated.  

In a PCA the meaning of metabolites is calculated purely by their statistical correlation 

(covariance) to all other metabolites. This means, that the significance of metabolites with 

high regulatory importance, but no directly connected to the trait of interest (weak 

loadings), is not detected by a PCA. In contrast, in the framework of the WNA analysis 

metabolites which have a central position within a regulatory network have a higher 

probability to be identified [172]. Varying the minimum number of metabolites within a 

module has an impact on the module sizes and the total number of modules identified. This 

option allows the user to consider biological background knowledge. Choosing a lower 

number of variables per module allows the user to investigate the underlying biological 

pathways more in detail. In conclusion, these attributes of WNA provided evidence that the 

procedure was an appropriate method for analyzing metabolomics data in a system biology 

approach.  

As a final result, the WNA procedure leads to differentiable modules with similar 

expression profiles within the modules. From a biological point of view the intra module 

similarity can be interpreted as a distinct co-regulation of the module metabolites. 

Moreover, the indicators MM and MAR enables to identify key players in regulatory 

network which is possibly linked to the specific module, whereas metabolites strongly 

influencing specific traits are characterised by high MS [164]. Nowadays weighted co-
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expression network analyses are applied in a wide scientific field in order to estimate the 

relationships, connectivity and dependency of different variables in biological systems. In 

metabolomics approaches the combined abilities of WNA to cluster and select variables are 

also very useful. For example, DiLeo et al. [172] and MacLennan el al. [183] successfully 

used WNA to select metabolite biomarkers in tomatoes and transcripts as biomarkers in 

mice.  

In RFR, VI is usually used for selection of (a) causal variables highly related to the 

response variable for explanatory and interpretation purposes and (b) of a small number of 

relevant predictor variables. It was shown in test runs using all independent variables 

(results not shown), many of the metabolites had very little importance in the trees and 

therefore in prediction of the trait of interest. Despite the expectation that the RFR 

procedure is able to handle high dimensional data with redundant and unimportant 

variables, the analysis ran more robust and in acceptable running time based on the reduced 

data set with 1,084 instead of 1,993 metabolites.  

To deal with the impurity’s bias for selecting split variables towards uncorrelated predictor 

variables, VI values were calculated with an enhanced RFR procedure that guarantees 

unbiased tree algorithms for reliable prediction and interpretability in both individual trees 

and forests. In standard RFR, by Breiman [163], the VI based ranking of the predictors says 

nothing about the significance of the top-ranked predictors and the procedure always 

outputs a ranking – even if all predictors are uninformative in the prediction. In contrast, in 

Hothorn´s conditional RFR [176], VI computation is based on an implemented permutation 

test which analysed the significance of the respective metabolite. This selection step leads 

to a reduced number of explanatory variables in the model that avoids overfitting and 

ensures a smaller prediction error [118]. Generally, the VI parameter in RFR can be 

interpreted similar to MS values in WNA. In contrast to WNA, which determines MM of 

each metabolite within a module, RFR does not estimate the relative similarity among 

metabolites. This limitation of the RFR procedure makes it difficult to assign metabolites to 

different functional pathways. Moreover, RFR approaches partially produce ‘odd 

unexpected results’ in some specific cases [184]. Even in the enhanced conditional RFR 

procedure, the risk of biased VI values in case of specific data structure or predictor type 

cannot be overlooked completely. As well as the pretended advantage of RFR, the absence 

of a specific underlying stochastic model, is also a challenge in the sense that it is difficult 
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to understand how the prediction within the variety of decision trees works exactly [184]. 

Nevertheless, RFR has become a major analysis tool in many fields of bioinformatics due 

to its high flexibility and in-build VI calculation. Also in prediction of various 

characteristics based on metabolomics data, RFR has been used successfully [185]. 

Accuracy of prediction of meat quality traits by applied methods 

To evaluate the prediction ability of meat quality traits by PCA, WNA and RFR a linear 

(multiple) regression model was used. Suitability of the methods in prediction on basis of 

metabolite profiles was different regarding the different traits (Tab. 10). Compared to drip 

loss, pH1 and color prediction performed better using the ten selected metabolites by RFR, 

whereas pH24 prediction based on PCs or WNA modules resulted in higher R². According 

to the studies of Rohart et al. [118], who also used RFR for phenotypic prediction based on 

metabolomic data, prediction accuracy depends strongly on the observed trait. In our study, 

prediction worked best for the trait pH1 and worst for drip loss, considering R². This result 

might correspond to the genetic foundation of these traits. It has been summarised by 

Ciobanu et al. [32] that the lowest heritability estimates were found for drip loss whereas  

pH1, pH24 and color showed higher values (h² drip loss = 0.31, h² pH1 = 0.41, h² pH24 = 

0.39, h² color = 0.57). That means, drip loss is stronger influenced by environmental effects 

which might complicate the prediction accuracy by metabolite information.   

Joint analysis 

A network of metabolites and meat quality traits is represented in Fig. 14. Trait pH1 was 

the most cross-linked trait in our study and several metabolites like 2,3-naphthalic acid and 

glucose were significantly associated with all respected traits. Moreover glucose, selected 

due to high importance for trait meat color, was connected to eight other metabolites, 

amongst others to IMP, lactic acid and 2,3-naphtalic acid. Besides its influence on meat 

color, the metabolite IMP that is involved in purine metabolism and biosynthesis of 

alkaloids derived from histidine and purine, also showed significant associations to drip 

loss, pH1 and pH24. Taking into account the significant phenotypic correlation among the 

four traits as well (Tab. 8), all observations indicated that meat quality traits were highly 

interconnected and influenced by similar biochemical processes.  
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Regarding the different statistical approaches it can be summarised that the applied 

procedures all in all identified similar or related chemical substances as important for a 

specific meat quality trait. For example in regard to of drip loss, correlation analysis, WNA 

and RFR revealed several glycerophospholipids (GPL) and glycerolipids that are involved 

in lipid metabolism and arise from degradation of membrane structures. Moreover, similar 

to the findings of Hidalgo et al. [186], different acids, like 2,3-naphthalic acid and the α-

keto acid 3-methyl-2-oxovaleric acid, that are associated with lipid oxidation were 

identified by different methods as important for drip loss. For example 2,3-naphthalic acid 

is part of the pathway ‘degradation of aromatic compounds’ that directly leads to generation 

of pyruvic acid and other compounds that are involved in energy metabolism like acetic 

acids. Most important metabolic processes in muscle and meat are energetic processes like 

glycolysis/gluconeogenesis, citrate cycle and pentose phosphate pathway (PPP), which 

verifiable are responsible for muscle physiology and meat quality [14, 9]. 

In hypoxic tissues after slaughtering anaerobe metabolic processes predominate and in 

glycolysis glycogen is released via glucose to pyruvic acid. Under aerobic conditions 

pyruvic acid is metabolized in citrate cycle and oxidative phosphorylation [9]. In case of 

stress before slaughtering or a too short resting period before stupefaction in hypoxic 

tissues, the rate of oxidative processes like glycolysis is increased and pyruvic acid do not 

flow into glycolysis but is transferred to lactic acid [165]. Accumulation of lactic acid goes 

along with pH decrease to 5.6 [165]. The coincidence of low pH1 and high temperature in 

muscle lead to partial denaturation of proteins and reduction of intercellular space. Thereby, 

lipids are dissolved from membranes, permeability of membranes is increased and drip loss 

is the result [11]. Based on this background, the meaning of e.g. 2,3-naphthalic acid, 

glucose and several GPLs, sterol lipids and FAs for meat quality characteristics drip loss, 

pH1, pH24 and color is traceable. These metabolites are indicators for complex metabolic 

processes and are characteristic of the specific occurrence of meat quality traits. Selected 

metabolites potentially may be used as universal bio indicators for prediction of special 

traits. Availability of such ‘multiple applicable’ biomarkers would reduce effort and cost of 

phenotyping in breeding programs and commercial meat processing. Regarding the 

associations between the metabolites, it was observed that some metabolites were 

significantly correlated with many other components. This finding suggested that some 

strongly networked metabolites are the key players of metabolic processes responsible for 

the large complex of meat quality traits in pigs. Intense investigation of these important 
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metabolites might lead to a deeper understanding of the underlying biological pathways and 

the causal reasons of development of quality traits.  

Key metabolites and apparently significant associated pathways related to meat quality 

traits  

The different applied methods resulted in several key metabolites mainly belonging to the 

family of lipids (GPLs, sterol lipids, prenol lipids). In addition to lipids, the statistical 

analysis also detected other compounds like the naphthalene 2,3-Naphthalic acid and the α-

keto acid 3-methyl-2-oxovaleric acid with strong association to drip loss. GPLs are the 

major lipids in mammalian cell membranes [187]. Preslaughter stress results in increased 

rate and extent of pH decline, decomposition of membrane structures and cell swelling and 

shrinkage. In this way dissolved lipids and lipid compounds run off the cells into the 

extramyofibrillar compartment. This process of lipid decomposition also is accompanied by 

lipid oxidation that results in increasing concentration α-keto acids. Therefore the relation 

between drip loss and associated lipids and acids can be explained and have been already 

described by Lambert et al. [187] and Poulsen et al. [188]. 

Examination of compounds with significant association to pH1 resulted in metabolites of 

purine and pyrimidine metabolism (nucleotide metabolism), glycolysis and PPP. PH1 is a 

major indicator for PSE meat, which is characterised by low pH1. The higher the rate of 

glycolysis, PPP and related metabolic processes like lactic acid - and nucleotide 

metabolism, the lower is pH1 in meat. The onset of rigor mortis at low pH1 and high 

temperature causes the denaturation of around 20% of the sarcoplasmic and myofibrillar 

proteins [165]. This explains the significant meaning of polypeptides like histidine-alanine-

tryptophan-tryptophan and lysine-serine-isoleucine. 

Trait pH24 was significant associated with metabolites of pyruvate metabolism, glycolysis, 

PPP and purine metabolism. Moreover, pH24 was significant associated to metabolites 

resulting in the course of protein degradation (e.g. polypeptide glutamine-histidine-alanine) 

and metabolites of lipid metabolism, like GPs, sterol lipids and FA esters (e.g. 

stearoylcarnitine), and hydroxy acids like α-hydroxybutyrate (ketone body). The meat 

quality parameter pH24 is an indicator for DFD meat, which characteristically leads to a pH 

ultimate value >6. High ultimate pH results in relative little protein degradation, high 

WHC, dark meat and early spoilage of the meat. Meat spoilage follows from microbial 
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reduction, natural autoxidation of lipids and autolytic enzymatic processes [165]. Toldra 

and Flores [17] reported the significance of FAs and ketones and polypeptides (products of 

autolytic enzymatic spoilage) for pH24 in meat. The degradation of free FAs to ketone 

bodies in liver is one option to generate energy for muscle cells. With empty glycogen 

stores p.m. energy is mainly supplied by mobilization of lipid stores and transformation of 

released FAs into ketone bodies [165]. Because these anaerobic processes lead to reduced 

pH decline p.m. several FAs and ketone bodies (e.g. α-hydroxybutyrate) might be good 

indicators for pH24. Relevance of p.m. energy metabolisms like glycolysis, PPP and 

pyruvic acid metabolism, indicated by metabolites like glucose and phosphoenolpyruvate, 

for meat quality traits in pigs also has been described by Scheffler et al. [9]. 

Analysis of pork color resulted in different significant associated metabolites (phosphates, 

pyruvic acid) of glycolysis, PPP and pyruvic acid metabolism. This means high rate of 

glycolysis and activated PPP and pyruvate metabolism results in high meat color value 

(Opto value, scattering effect), because glucose is metabolized to glycogen and finally to 

lactic acid. This goes along with acidification and pale meat color and explains the 

determined significant meaning of phosphates and downstream products of glycolysis like 

octulose-1,8-bisphosphate and phosphoglycerate in our study. Muroya et al. [120] and 

D'Alessandro et al. [99] who investigated characteristic metabolic pathways of meat quality 

in pigs could confirm these results. They also indicated significant correlation coefficients 

between meat color indicators (L*, a*, b*) and higher rate of glycolysis. 

2.6 Conclusion 

In this study untargeted metabolite profiling of muscle samples of 97 Du × Pi pigs was used 

to identify underlying biochemical processes and potential key molecules affecting meat 

quality traits. Because of limited technical capabilities of GC-MS and a lack of basic 

knowledge about biochemical processes of higher life forms only detection and annotation 

of a small percentage of metabolites influencing meat quality was possible. To get deeper 

insights in the involved biological pathways we applied and evaluated different statistical 

methods, namely correlation analysis, PCA, WNA and RFR. Although the methods based 

on different statistical approaches and in spite of differences between the parameters and 

requirements of the particular methods to achieve statistical significance, they revealed 

similar results. Using the described methods for analysis of the holistic metabolite profiling 

we were able to detect both metabolites with already known meaning for meat quality as 
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well as metabolites whose influence on meat quality traits not yet has been described. As 

expected, the applied methods revealed metabolites as important, that are involved in p.m. 

glycogen degradation and energy consumption under the exclusion of oxygen like glucose, 

GPLs and different phosphates. On the other hand the meaning of several metabolites like 

e.g. the polypeptides histidine-alanine-tryptophan-tryptophan and lysine-serine-isoleucine 

for trait pH1 has not yet been described in literature.  

The consistent results lead to the conclusion that meat quality traits pH1, pH24 and color 

are strongly influenced by processes of p.m. energy metabolism like glycolysis, PPP, 

pyruvic acid metabolism and associated processes. Drip loss in particular is significant 

associated with different glycerophospho-, sterol- and prenol lipids and compounds 

involved in lipid metabolism which are products of membrane degradation. In summary, it 

was possible to attain findings on the interaction of meat quality traits and their underlying 

biochemical processes. The detected key molecules will be used in further investigations in 

order to clarify the complex molecular structures underlying drip loss. Furthermore, these 

selected metabolites might be better indicators of meat quality especially of drip loss than 

the measured phenotype itself and potentially might be used as bio indicators. For this 

purpose the validation of the candidate bio indicators in another set of pigs is desirable. 
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Abstract 

The aim of this study was to integrate multi omics data to characterise underlying 

functional pathways and candidate genes for drip loss in pigs. The consideration of 

different omics levels allows elucidating the black box of phenotype expression. Metabolite 

and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc × 

Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, 

respectively. In addition, all animals were genotyped with the porcine 60 k Illumina 

beadchip. An enrichment analysis resulted in ten pathways, amongst others, sphingolipid 

metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip 

loss and 22 metabolic components were analysed as intermediate phenotypes within a 

genome-wide association study. We detected significantly associated genetic markers and 

candidate genes for drip loss and for most of the metabolic components. On chromosome 

18, a region with promising candidate genes was identified based on single nucleotide 

polymorphisms associated with drip loss, the protein ‘phosphoglycerate mutase 2‘ and the 

metabolite glycine. We hypothesize that association studies based on intermediate 

phenotypes are able to provide comprehensive insights in the genetic variation of genes 

directly involved in the metabolism of performance traits. In this way, the analyses 

contribute to identify reliable candidate genes. 

Keywords: drip loss; pork quality; metabolomics; proteomics; enrichment analysis; 

genome-wide association study (GWAS); candidate genes 
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3.1 Introduction 

Pork quality is the result of complex interactions between genetic and environmental effects 

like rearing and slaughtering conditions, and carcass and meat processing. One important 

commercially interesting pork quality parameter is the ability of meat to retain water, also 

known as WHC. In order to characterise WHC in pork, drip loss is measured. This fluid, 

mainly from muscle cells, resigns from the meat surface without any mechanical force 

other than gravity and is influenced by shrinkage of the myofibrils, pH-value, and 

temperature p.m. [10,119]. Average drip loss in MLD is around 1% to 5% [18]. Heritability 

estimates of WHC vary to a large extent between 0.01 and 0.31 [25]. This wide range could 

be explained by breed effects and large measurement errors of drip loss due to the 

multifactorial environmental effects [32]. Structural causes of drip loss concerning the 

muscle fibres and the biological processes associated with pork quality have been largely 

investigated and comprehended [11,19,189]. However, genetic mechanisms and 

interactions between different levels of metabolic regulation underlying drip loss are not 

fully understood [27,133,158]. 

Genetic studies, using standard approaches to identify candidate genes, already revealed 

several QTL and candidate genes for drip loss in pigs [27,70,190]. However, it can be 

expected that GWAS based on functional, metabolic phenotypes or metabotypes reduce the 

risk to detect false-positive associations [191]. Several studies have demonstrated that the 

results of any single omics analysis, like an association analysis of SNPs and phenotypic 

expression as implemented by GWAS, may not be sufficient to decode extremely complex 

biological mechanisms [1]. In the case of multifactorial traits, metabotypes can be used in 

order to improve the accuracy of the phenotypic measurement. The combined analysis of 

different omics levels provides a promising tool to increase the information density 

between genome and phenotype. Thereby, integrative approaches for overall analysis of the 

entire cascade of genome and metabolic levels (transcriptome, metabolome and proteome) 

provide a potential prospective to identify reliable biomarkers (transcripts, proteins, 

metabolites) and genetic markers (SNP, QTL, candidate genes) [116]. The knowledge of 

functional associated omics variables/markers including interactions between genetic and 

environmental factors may provide a comprehensive new insight into underlying biological 

processes in muscle growth and meat quality [1]. 
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In recent years, the innovative technologies to record hundreds or thousands of omics 

profiles simultaneously and to analyse their relation to different traits were extensively 

developed further and established in many meat production sectors [2,88]. 

For meat scientists, the final objective is to identify meat quality genetic markers (like 

SNPs) or biomarkers which are quantifiable on live animals or early p.m. on the carcass in 

order to orientate meat production towards the most adapted processes in meat processing 

or distribution circuits [1]. For this purpose, until now, a variety of genetic approaches was 

applied (see [27,70,190]). In the last decade, several scientific groups investigated different 

omics levels or integrated two or more omics levels to identify candidate transcripts or 

genes. For example, Te Pas et al. [161], Rohart et al. [118], Muroya et al. [120] and 

Welzenbach et al. [192] investigated the suitability of metabolite profiles and metabolic 

pathways in prediction of pork quality traits. Heidt et al. [157] applied a combined 

genomics and transcriptomics approach to reveal candidate genes for drip loss. The 

investigation of metabolic components, like metabolites and proteins, as new, more reliable 

phenotypes is a research focus in enhancement of meat quality traits [87]. D´Alessandro et 

al. [99] used a combined metabolomic and proteomic analysis to investigate the 

biochemical background of breed-specific meat quality differences. Apart from a few 

exceptions (see [81]), there have been very few studies combining more than two omics 

levels to identify candidate genes and QTL for pork quality, until now. 

The aim of this study is the integration of omics levels genome, proteome and metabolome 

to elucidate underlying functional pathways and corresponding candidate genes for drip 

loss. Based on the increased information density due to the consideration of proteome and 

metabolome, we expect that our GWAS approaches based on metabolic traits contribute to 

identify true candidate genes with higher accuracy. 

3.2 Results 

In this study, metabolite and protein profiling, Enrichment analysis and GWAS were 

performed on 97 F2 Du × Pi pigs. The mean drip loss was 1.97%, with a minimum of 0.4% 

and a maximum of 5.3% (Tab. 12). In total, 1993 metabolites in each MLD sample were 

quantified, using GC-MS and LC-QTOF/MS. However, out of these, only 128 metabolites 

were matched to their related KEGG IDs. According to the results of previous 

examinations, 40 proteins with expected significance for drip loss were quantified in the 
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tissue samples. In the case of 35 proteins, we were able to annotate those with entrez gene 

identifiers.  

 

Table 12: Descriptive statistics and phenotypic correlations between drip loss and 

metabotypes. 

Traits Mean ± SD
1
 Min

2
 Max

3
 

Correlation 

to drip loss
4
 

drip loss, % 1.97 ± 1.40 0.40 5.30 1 

pH1 6.53 ± 0.22 5.89 6.94 −0.31 ** 

pH24 5.52 ± 1.12 5.32 6.06 −0.35 *** 

PKM 26,454.10 ± 17,829.55 13.47 88,251.64 −0.20 * 

PGAM2 5600.37 ± 4985.98 −10.77 32,935.16 −0.19 

FBPase 27,407.08 ± 20,231.70 809.35 114,192.30 −0.11 

TPI1 1754.68 ± 1526.65 32.13 7802.84 −0.21 * 

pyruvic acid 4.32 × 10
−2

 ± 3.62 × 10
−2

 6.16 × 10
−3

 2.11 × 10
−1

 0.22 * 

lactic acid 6.49 × 10
−1

 ± 3.28 × 10
−1

 1.88 × 10
−1

 1.64 0.08 

glucose 9.02 × 10
−3

 ± 1.32 × 10
−2

 1.21 × 10
−4

 8.41 × 10
−2

 0.19 

phosphoenol 

pyruvate 
5.59 × 10

−2
 ± 8.95 × 10

−2
 1.80 × 10

−3
 0.53 0.13 

glycerone-p 1.86 ± 1.10 2.48 × 10
−1

 5.85 0.07 

DG3P 2.56 × 10
−1

 ± 4.09 × 10
−1

 2.61 × 10
−3

 2.61 0.14 

fumaric acid 2.67 × 10
−3

 ± 1.25 × 10
−3

 5.50 × 10
−4

 7.23 × 10
−3

 0.12 

succinic acid 1.38 × 10
−2

 ± 5.02 × 10
−3

 3.23 × 10
−3

 3.23 × 10
−2

 −0.02 

malic acid 6.03 × 10
−3

 ± 2.92 × 10
−3

 8.85 × 10
−4

 1.64 × 10
−2

 0.11 

methylglyoxal 9.62 × 10
−3

 ± 5.44 × 10
−3

 2.61 × 10
−4

 2.89 × 10
−2

 0.22 * 

glycine 8.59 × 10
−2

 ± 2.39 × 10
−2

 4.84 × 10
−2

 1.62 × 10
−1

 0.11 

hydroxypyruvic 

acid 
1.06 × 10

−2
 ± 6.81 × 10

−3
 1.76 × 10

−3
 4.98 × 10

−2
 0.02 

F6P 2.17 × 10
−2

 ± 3.43 × 10
−2

 2.91 × 10
−4

 2.25 × 10
−1

 0.12 

serine 6.04 × 10
−3

 ± 2.99 × 10
−3

 1.76 × 10
−3

 2.15 × 10
−2

 −0.01 

glycerone 1.41 × 10
−1

 ± 8.36 × 10
−2

 2.17 × 10
−2

 4.37 × 10
−1

 0.20 

ceramide 1.68 × 10
−4

 ± 1.24 × 10
−3

 2.33 × 10
−6

 6.59 × 10
−4

 0.05 

glucosylceramide 2.46 × 10
−3

 ± 4.72 × 10
−3

 1.69 × 10
−4

 2.72 × 10
−2

 0.21 * 

phosphoethanol-

amine 
8.57 × 10

−4
 ± 5.01 × 10

−4
 2.28 × 10

−4
 3.52 × 10

−3
 0.12 

1
Mean and standard deviation (SD); 

2
minimum (Min); 

3
maximum (Max); 

4
calculation of 

correlation coefficients based on residuals; Mean, SD, Min and Max of proteins are based  
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Continued explanations of Tab. 12: 

on signal dependent intensities of ion fragments (in mass) relative to time, so-called 

selection reaction monitoring (SRM) intensities; The units of the metabolite profiles are 

based on mass intensities, recorded by GC-MS and LC-QTOF/MS, normalized to an 

internal standard; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001; glycerone-p = dihydroxyacetone 

phosphate; PGAM2 = phosphoglycerate mutase 2 (muscle); PKM = pyruvate kinase 

(muscle); FBPase = fructose-1,6-bisphosphatase 2; TPI1 = triose phosphate isomerase 1; 

DG3P = D-glycerate-3-phosphate; F6P = fructose-6-phosphate; bold: proteins. 

 

3.2.1 Biological pathways involved in the metabolite and protein abundance 

In total, 163 metabolic components (128 metabolites and 35 proteins) were assigned to 219 

KEGG pathways that potentially are involved in muscle to meat conversion and 

manifestation of meat quality characteristics. Based on the Wilcoxon rank sum test in ten 

out of 219 KEGG pathways, the metabolites and proteins were significantly enriched (p 

≤0.05) due to functional connectivity (Tab. 13). These pathways comprised in total 18 

metabolites and four proteins and can be roughly distinguished into energy-relevant 

processes like ‘Glycolysis/gluconeogenesis’ and ‘Pyruvate metabolism’ and into pathways 

associated with different metabolic diseases like ‘Type II diabetes mellitus’ and ‘NAFLD’ 

(Non-alcoholic fatty liver disease). ‘Sphingolipid metabolism’ (p=0.014), that comprised 

four metabolites, was the most significantly enriched composition of metabolic 

components. Most metabolites and proteins were assigned to a single pathway. Of 

particular importance were across pathway components that might be indicators of key 

regulators with a strong impact on drip loss. As an example, the metabolites glucose and 

pyruvic acid are participants in six and five different pathways, respectively. The strongest 

overlapping induced by the metabolites glucose and pyruvic acid can be observed between 

glycolysis, methane and pyruvate metabolism showing that these pathways are closely 

linked. In contrast, the most significant pathway sphingolipid metabolism has only one link 

to the methane metabolism due to overlapping metabolite serine, whereas the remaining 

involved metabolites are exclusively members of sphingolipid metabolism. 
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Table 13: Significant KEGG pathways for drip loss. 

Pathway KEGG p-value* Involved metabolites/proteins 

Sphingolipid 

metabolism 

00600 0.014 ceramide, glucosylceramide, 

phosphoethanolamine, serine 

Type II diabetes 

mellitus 

04930 0.018 pyruvic acid, glucose, PKM 

Methane metabolism 

00680 0.020 glycine, pyruvic acid, hydroxypyruvic acid, 

F6P, malic acid, serine, phosphoenol 

pyruvate, glycerone-p, glycerone, DG3P 

Renal cell carcinoma 05211 0.027 fumaric acid, malic acid 

Insulin secretion 04911 0.043 pyruvic acid, glucose 

Meiosis yeast 04113 0.045 glucose 

NAFLD 04932 0.045 glucose 

Glycolysis/ 

Gluconeogenesis 

00010 0.045 pyruvic acid, lactic acid, glucose,  

phosphoenol pyruvate, glycerone-p, DG3P, 

FBPase, TPI1, PKM, PGAM2 

Pyruvate metabolism 

00620 0.053 fumaric acid, pyruvic acid, succinic acid, 

lactic acid, malic acid, phosphoenol 

pyruvate, methylglyoxal, PKM 

Steptomycin 

biosynthesis 

00521 0.056 glucose, myo-inositol 

The enrichment analysis was performed based on 129 metabolites and 35 proteins. 

Overrepresentation of metabolic pathways defined by the KEGG database regarding to 

drip loss was tested using Wilcoxon’s rank sum test; * The pathway was considered 

significant if p≤0.05; Kyoto Encyclopaedia of Genes and Genomes (KEGG)-ID = 

KEGG pathway ID; NAFLD = Non-alcoholic Fatty liver disease; glycerone-p = 

dihydroxyacetone phosphate; PGAM2 = phosphoglycerate mutase 2 (muscle); PKM = 

pyruvate kinase (muscle); FBPase = fructose-1,6-bisphosphatase 2; TPI1 = 

triosephosphate isomerase 1; DG3P = D-glycerate-3-phosphate; F6P = fructose-6-

phosphate; bold: proteins. 

 

Regarding the target trait drip loss, five metabolic components were significantly (p ≤ 0.05) 

correlated (Tab. 12). Metabolites pyruvic acid, methylglyoxal and glucosylceramide were 

significantly positive correlated while the proteins pyruvate kinase (muscle) (PKM) and 

triose phosphate isomerase 1 (TPI1) were negative correlated with drip loss. However, the 

correlation coefficient was not above a value of 0.22 in any case (Tab. 12). 
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3.2.2 Whole-genome association analysis for drip loss and metabolites and proteins 

of selected biological pathways 

Beneath the meat quality trait drip loss itself, 22 metabotypes (18 metabolites and four 

proteins) were analysed within a GWA study. In total, 44,844 SNPs were tested for 

association with at least one of the 22 metabolic traits or meat quality trait drip loss itself. 

In order to ensure the statistical power and accuracy of GWAS possible population 

stratification was considered [99]. In this context, PCs, which condensed the genetic 

relationship between animals, were considered in the statistical model as covariates. 

Depending on the investigated trait, between two and ten PCs were considered in order to 

avoid negative effects of population stratification on the validity of the GWAS (Tab. 14). In 

most traits, the genomic inflation factor λ was close to one with a range of one to 1.05. 

Accordingly to the λ-thresholds (1.05) suggested by Price et al. [193] our correction was 

sufficient to remove disturbing population stratification. Only in the case of 

phosphoethanolamine the λ value (1.08) was slightly too high (Tab. 14). 

Applying a moderate significance threshold with a false discovery rate (FDR) of q≤0.10, 

the GWAS revealed 871 (without double counting) significant associations for 15 traits, 

including drip loss, three proteins and 11 metabolites. These SNP were distributed over 

almost all porcine chromosomes. Four hundred thirty one SNPs showed a chromosome-

wide significance levels of q≤0.05 but no SNP was detected as genome-wide significant 

(q≤0.01). 

The average number of significant SNPs per trait was 66, with a minimum of two SNPs 

(for glucose) and a maximum of 249 SNPs for fructose-1,6-biphosphatase-2 (FBPase). The 

majority of the SNPs was significant at a moderate chromosome-wide level (q≤0.1). The 

highest proportion of explained variance was observed for SNPs that affected 

glucosylceramide, dihydroxyacetone phosphate (glycerone-p) and D-glycerate-3-phosphate 

(DG3P). The most significant SNPs were detected for metabolite hydroxylpyruvic acid (q≤ 

2.19×10
−2

). 

The average number of detected SNPs per chromosome is 67 and the highest numbers of 

significant SNPs were detected on SSC14, 17 and 18. For drip loss, we detected SNPs on 

SSC16 and 18, which explain a maximum of variance proportion of 8.8%. Based on the 

distance to neighboring significant SNPs on the chromosome (1Mb), we condensed the 



Study 2 – Integrative metabolomic, proteomic and genomic analysis  

85 

 

SNPs into 330 important QTL regions with an average of 29 QTL per chromosome (Tab. 

14). 

On several chromosomes we identified 126 (45) SNPs (QTL) which were significant for 

more than one trait. These SNPs are located on SSC1, 7, 8, 14, 17 and 18. As presented in 

Fig. 16 the most overlapping exists between metabolites hydroxypyruvic acid and succinic 

acid on SSC14. Moreover, the overlapping on SSC18 is of particular interest, because it 

indicates a metabolic process comprising glycine and phosphoglycerate mutase 2 (PGAM2) 

that influences drip loss (Fig. 16). On SSC7, there was only one overlapping SNP of 

glucose and fructose-6-phosphate (F6P). In contrast, on SSC1 and 8, we indeed detected 

significant SNPs for two traits but the QTL are located in distant chromosomal regions. 

 

 

 

 

 

Figure 16: Overlapping SNPs at Sus scrofa chromosomes (SSC) 14, 17 and 18. 

GWAS procedures resulted in varying numbers of significant SNPs (q ≤ 0.1) per 

trait. On some chromosomes there are overlapping SNPs with meaning for two 

traits; Glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate 

mutase 2 (muscle); FBPase = fructose-1,6-bisphosphatase 2; DG3P = D-glycerate-3-

phosphate. 
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.  

1
Number of principal components (PCs) considered in GWAS; 

2
λ = inflation factor; 

3
number of chromosome-wide 

significant associated SNPs and QTL per traits and chromosome (at least q≤0.1); 
4
sum of significant associated SNPs per 

traits (* q≤0.05; 
#
 q≤0.1); 

5
minimal empirical p-value (times 10

−5
); 

6
minimal q-value (times 10

−5
), based in the false 

discovery rate concept; 
7
maximal proportion of explained variance (%); 

8
sum of overlapping SNP/QTL with meaning for 

two traits; glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate mutase 2 (muscle); PKM = pyruvate 

kinase (muscle); FBPase = fructose-1,6-bisphosphatase 2; DG3P = D-glycerate-3-phosphate; F6P = fructose-6-

phosphate; bold: proteins. 
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The functional annotation of the 871 significantly associated SNPs revealed 1,430 genes 

that are located in a distance of ≤1Mb to the SNPs and thereby are in linkage disequilibrium 

to our significant SNPs (Tab. 15). 257 SNPs are localized in an intron region of a specific 

gene. These genes, which are mainly located on SSC14, 17 and 18, might be important 

potential candidate genes for drip loss and associated metabolic traits and processes (Tab. 

15). 

 

 

Table 15: Functional annotation of significant SNPs associated with drip loss and 

metabolic traits. 

SSC
1
 1 2 3 4 6 7 8 10 13 14 16 17 18 ∑ 

Genes
2
 30 148 4 65 31 48 70 15 12 375 13 367 252 1430 

SNP
3
 

2/ 

7 

30/ 

97 

-/ 

1 

15/ 

33 

2/ 

15 

-/ 

13 

2/ 

27 

1/ 

2 

5/ 

5 

83/ 

195 

-/ 

4 

54/ 

275 

63/ 

197 

257/ 

871 

1
Sus scrofa chromosomes; 

2
number of genes that are located in a distance of ≤1Mb to the 

significant SNPs revealed by GWAS; 
3
number of intronic SNPs in relation to the total 

number of significant SNPs per chromosome (without double counting of overlapping 

SNPs). 

 

 

For the identification of potential candidate genes, we concentrated on the most important 

QTL regions with a high density of significant SNPs for different traits. These SNPs were 

selected based on the following three criteria: The SNPs had to be: 

1.  chromosome-wide significant (at least q ≤ 0.1); 

2. within the ‘Top 10’ or ‘Top 25’ of significant SNPs for metabolic traits or drip loss;  

3. exonic or intronic. 

Using these criteria we identified 23 potential candidate genes for drip loss and nine 

associated metabolic components (Tab. 16). SSC18 is of particular interest, because on this 

chromosome we identified candidate genes for drip loss, glycine and PGAM2. The number 

of detected genes for a single trait varied between one and six. On SSC4 six genes in a 

range of 20Mb were detected for protein PKM. The importance of each candidate gene is 
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indicated by one to five significant intronic SNPs. Five genes (ZNHIT6, HLCS, ANK3, 

RASGEF1A and LRGUK) harbor more than one intronic SNPs. Based on the QTL 

comprising five intronic SNPs in a small range of 0.29Mb, it might be reasonably assumed 

that HLCS is a very promising candidate gene for FBPase. Most significant intronic SNPs 

with highest proportion of explained variance in a range of 15.28% to 17.44% were 

detected for glucosyl-ceramide, glycerone-p and glycine (Tab. 16). 

For drip loss, five candidate genes were identified on SSC18 (Tab. 16 and 17). The most 

significant SNPs (Varmax=8.82%; pmin≤6.58×10
−5

) associated with drip loss were detected 

on SSC16, but these SNPs do not fulfill the previously described conditions to detect 

potential candidate genes (Tab. 17). Distributed over four regions, SSC18 harbors two 

genes for PGAM2, four genes for drip loss and one gene (LRGUK) significantly associated 

with drip loss and glycine. Because ‘Leucine-rich repeats and guanylate kinase domain 

containing’ (LRGUK) is in linkage disequilibrium with EXOC4 that was associated with 

drip loss as well, this region ranging from 15.9Mb to 16.1Mb is of particular interest. From 

12.2Mb to 12.9Mb there is a second interesting region with two candidate genes, for 

PGAM2 and drip loss, respectively. The Manhattan plot of SSC18 is presented in Fig. 17. 

Moreover, the Manhattan plots of SSC1, 4, 6, 10, 13, 14 and 17 are shown in S5 (p. 199). 
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Figure 17: Chromosome-wide Manhattan plot of Sus scrofa chromosome (SSC) 18. 

PGAM2 = phosphoglycerate mutase 2; the declaration of gene symbols (in black 

boxes) can be obtained from Ensembl or http://www.ncbi.nlm.nih.gov/genegenes. 
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The SNP order complies with number of chromosomes and position on the chromosome; Selection of promising 

SNPs based on the criteria, that they are (1) chromosome-wide significant (at least p < 0.1); (2) within the ‘Top 10’ 

significant SNPs per metabolic trait or ‘Top 25’ for drip loss and (3) located within an annotated gene; 
1
Sus scrofa 

chromosomes (SSC); 
2
The declaration of gene symbols can be obtained from Ensembl or 

http://www.ncbi.nlm.nih.gov/gene; 
3
None of the SNPs is located in an exon region of the regarding candidate gene; 

4
position in BP (base pairs); 

5
mutation (Mut); 

6
minor allele frequency (MAF); 

7
eEff = substitution effect and se = 

standard error; 
8
empirical p-value, times 10

−4
; 

9
q-value (based on the false discovery rate (FDR) concept), times 10

−2
; 

10
Var = proportion of the explained variation [%]; glycerone-p = dihydroxyacetone phosphate; PGAM2 = 
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The SNP order complies with raising p-value; 
1
Sus scrofa chromosomes (SSC); 

2
position in base pairs (BP); 

3
mutation (Mut); 

4
minor allele frequency (MAF); 

5
substitution effect and standard error (se); 

6
empirical p-

value and significant thresholds, 
7
q-value (based in the false discovery rate (FDR) concept); 

8
Var = proportion 

of the explained variation [%]; 
9
The declaration of gene symbols can be obtained from Ensembl or 

http://www.ncbi.nlm.nih.gov/gene, ‘×’, SNP is not located within a gene, none of the SNPs is located in an 

exon region of the regarding gene. 
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3.3 Discussion 

Systems Biological Approach or Integrated Analysis of Genome, Proteome and 

Metabolome to Elucidate the ‘Muscle to Meat’ Black Box 

Based on the multitude of possible post-transcriptional events, the genetic information flow 

from SNPs to phenotypic variations is not linearly dispersed in living organisms and 

samples collected p.m. [194]. This situation describes the black box between genes and 

phenotypes that needs to be opened to detect genetic variation influencing complex traits. 

Several studies have demonstrated that the results of single omics analysis, like standard 

GWA procedure, may not be sufficient to decode extremely complex biological 

mechanisms [1]. A possible solution is to integrate different omics levels in genetic 

analyses and to analyse the entire cascade of metabolic levels. The omics levels proteome 

and metabolome were chosen for our analysis because we expected that these metabotypes 

are the final products of specific pathways and thereby are closely connected with classical 

target phenotypes routinely measured in animal production [118,161]. While the genome 

(SNP information) contains the information on which allele variants exist, the other omics 

levels indicate which genes are actually being expressed and which pathways are active. 

Therefore, metabolites and proteins constitute essential links between genetic information 

and phenotypical expression of complex traits and might be used in genetic association 

studies to improve the statistical power and to reveal less false positive, redundant results 

[118]. The concentration of metabolites and proteins in muscle and blood compared to drip 

loss is less influenced by environmental effects and thereby can be used as more accurate 

phenotype to identify candidate genes. This means, intermediate phenotypes might be more 

appropriate to estimate the genetic potential of the individuals than the performance trait 

itself. For example, a pig with excellent genetic potential for high meat quality and low drip 

loss might show high drip loss caused by bad environmental factors and management 

effects. In this case, drip loss is a poor indicator for the effective genetic potential of the 

individual. 

To elucidate biological pathways affecting a trait, the consideration of the proteome is 

advantageous compared to the transcriptome. This can be assumed because the amount of 

proteins is not only regulated by a constant level of transcript expression but also by many 

possible genetic interacting mechanisms of protein regulation/modification and connected 

activation of other pathways [147]. In a similar context, Ala-Korpela et al. [195], 
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Kadarmideen [53] and Widmann et al. [147] have stated that systems biological approaches 

are valuable and powerful in identifying key causal and highly predictive genetic variants 

for complex traits as well as in building up complex genetic regulatory networks. 

Impact of metabolic pathways and involved metabolites and proteins for drip loss 

In this study, metabolite profiling was based on an untargeted metabolomics approach to 

uncover the whole metabolome. Compared to that, proteins were profiled more specific by 

means of a targeted proteomics approach using the absolute quantification of 40 proteins 

that have been shown as important indicators for drip loss in previous investigations. For 

the final enrichment analysis 128 annotated metabolites and 35 proteins were used. Five 

proteins were rejected because of missing entrez gene identifier. The drastic reduction of 

the number of metabolites from 1,865 to only 128 is a severe bottleneck, so that it is highly 

probable that even metabolites with strong influence on drip loss were excluded. This 

situation is caused by the fragmentary information of biochemical functions of metabolites 

that is stored in metabolome databases. According to Chagoyen and Pazos [181], this lack 

of scientific fundamentals and principles of physiological and biochemical processes of 

higher life forms is a big challenge in systems biology studies. In a similar way, Chagoyen 

and Pazos [181] argued that there is a need of more accurate profiling tools for omics 

phenotypes in order to get a more comprehensive insight into the metabolic processes. 

Our enrichment analysis considered all available annotated metabolome and proteome 

information and revealed ten functional KEGG pathways with significant (p≤0.05) enriched 

components. The applied test mean-rank gene-set enrichment (MR-GSE) statistic is based 

on Pearson’s correlation coefficients between metabotypes and drip loss and averages the 

ranks of the applied statistics instead of the statistics themselves. This procedure makes the 

results less influenced by individual components in the set of variables [196] and is the 

main difference to other usually applied testing procedures, like the Tktest of Tian et al. 

[197]. Further details are given by Ackermann and Strimmer [198]. 

In summary, it can be expected that the underlying function of our applied enrichment test 

has enough power to detect overrepresented groups of variables (e.g., genes or 

metabotypes), even if the effects are very small or the amount of data is not sufficient to 

detect the important variables individually [196]. This argument can be used to explain, 

why our enrichment analysis has resulted in functional sets of metabotypes although 
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correlation coefficients between individual metabotypes and drip loss do not significantly 

deviate from zero (Tab. 12, p. 81). 

In our study, we observed particularly pathways and corresponding key regulators which 

affect muscle metabolism related to meat quality traits. Glycolysis, pyruvate and methane 

metabolism are strongly connected and belong to the most important energetic processes 

that influence the muscle to meat conversion [9,199]. Because drip loss strongly depends 

on p.m. energetic processes in muscle, the meaning of glycolysis and pyruvate metabolism 

is obvious. After slaughtering, in muscle tissues, anaerobe metabolic processes predominate 

and, in glycolysis, glycogen is released via glucose to pyruvic acid. Under aerobic 

conditions, pyruvic acid is metabolized in citrate cycle and oxidative phosphorylation [9]. 

In the case of stress before slaughtering, in hypoxic tissues the rate of oxidative processes 

like glycolysis is increased and pyruvic acid does not flow into glycolysis but is transferred 

to lactic acid. Accumulation of lactic acid goes along with pH decrease to 5.6 [165]. The 

meaning of metabolic processes associated with energy metabolism for drip loss is 

confirmed by a multitude of studies. Among others, Binke [14], Scheffler and Gerrard [9] 

and D'Alessandro et al. [99] allocated the relevance of glycolysis and pyruvate metabolism 

for meat quality. The coincidence of low early pH values and high temperature in muscle 

lead to partial denaturation of proteins and reduction of intercellular space. Thereby, lipids 

are dissolved from membranes, permeability of membranes is increased and drip loss is the 

result [189]. In cell exudate dissolved lipids clarify the connection between drip loss and 

activity of sphingolipid metabolism that includes the metabolisation of ceramides, 

phosphoethanolamine and serines. The relation between drip loss and associated lipids and 

acids has been already described by Lambert et al. [187] and Poulsen et al. [188]. 

As a result of our enrichment analysis, the metabolite glycine is associated with drip loss. 

In methane metabolism the enzyme glyoxylate transaminase catalyzes the metabolisation of 

metabolite glyoxylate into glycine or hydroxypyruvic acid (www.genome.jp). High glycine 

contents indicate a higher rate of glycolytic processes. A high glycolytic potential is known 

to be related with high drip loss. The link between drip loss and glycine was already 

described by Lim et al. [200], who observed higher drip loss in the case of higher glycine 

level in porcine skeletal muscle cells. 
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The meaning of PKM that is involved in pathways glycolysis/gluconeogenesis, pyruvate 

metabolism and type II diabetes mellitus (Tab. 13) was already clarified by several studies. 

For example, D'Alessandro et al. [99] confirmed that the PKM level appeared to be highly 

related to many meat quality criteria (WHC, meat color). Beneath PKM, PGAM2 and 

DG3P are also involved in glycolysis/gluconeogenesis and pyruvate metabolism. Under 

anaerobic conditions PGAM2 catalyzed the degradation of DG3P to 2-phosphoglycerates 

(see S6). Because high levels of glycolytic enzymes like phosphoglycerates are associated 

with increased drip loss [97], PGAM2 might be considered as an appropriate indicator for 

drip loss [103]. In addition, Davoli et al. [201] appreciated that the corresponding gene 

PGAM2, is a potential candidate gene for drip loss. The non-essential α-amino acid glycine 

is also product of catabolism of DG3P and is thus part of the same metabolic process as 

PGAM2. 

Another section of glycolysis/gluconeogenesis illustrates the interactions of the enzymes 

FBPase and TPI1 and the metabolite dihydroxyacetone phosphate (glycerone-p). In 

gluconeogenesis FBPase converts fructose-1,6-biphosphate to F6P and in glycolysis 

phosphofructokinase catalyzes the metabolisation of F6P to fructose-1,6-bisphophate. In 

the following process of glycolysis, the enzyme fructose-bisphosphate aldolase converts 

fructose-1,6-bisphophate to glycerone-p. In the next step, glycerone-p is metabolized to 

glyceraldehyde-3-phosphate catalyzed by TPI1 (see S6, p. 202). Laville et al. [202] 

revealed a significant correlation between high TPI1 and tender meat with low drip loss. 

The meaning of FBPase for meat quality in pigs was described by Nam et al. [203]. They 

detected a lower FBPase expression in pigs with high drip loss and weak pH decrease p.m. 

[203]. 

Beneath metabolic processes whose activity directly depends on the individual energy 

resources, also sphingolipid metabolism is significantly associated with drip loss. With a p-

value of 0.014, metabolic compounds in sphingolipid metabolism are the most strongly 

enriched metabolites and proteins in our study and thereby have an obvious effect on drip 

loss. According to Heidt et al. [157] there is a negative correlation between drip loss in Du 

× Pi pigs and transcripts associated with sphingolipid metabolism. According to our 

analysis, the metabolites ceramide, glucosylceramide, phosphoethanolamine and serine are 

involved in sphingolipid metabolism. Ceramides are lipid signaling molecules that activate 

proliferative or apoptotic pathways. They are products of the metabolism of free FAs to 
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long-chain fatty acyl-CoAs (LCACoAs). LCACoAs can either be used for energy 

production through β-oxidation or undergo conversion to various signaling molecules, such 

as ceramide and diacylglycerol [204]. In the analysis of differentially expressed transcripts 

in Du × Pi pigs, Ponsuksili et al. [133] concluded that low drip loss is associated with 

ceramide pathways. Especially, drip loss is associated with ceramides as lipid signaling 

molecules that can activate proliferative or apoptotic pathways. The ceramide biosynthesis 

is part of the sphingolipid metabolism and ceramides arise from the conversion of complex 

sphingolipids such as glucosylceramides. According to Dobrowsky and Kolesnick [205], 

the levels of ceramides and glucosylceramides and the enzymes regulating their metabolism 

are associated with the cells response to stress. The degradation of membranes accompanies 

with cell stress and as a consequence drip loss has a relation to metabolites that indicate cell 

stress. This connection explains the relationship between drip loss and transformation 

products of sphingolipid metabolism. 

The metabolic processes and their involved components and overlapping are presented in 

S6–S9. Several metabolic components, such as glucose and pyruvic acid are involved in 

five of ten pathways relevant for drip loss. The connective position of these metabolites 

confirms their specific role as metabolic key players in the regulation of meat quality. The 

meaning of the disease related pathways (e.g., type II diabetes mellitus) and other processes 

(meiosis in yeast) for drip loss (Tab. 13, p. 83) are based on the strong influence of specific 

involved metabolic components like glucose and pyruvic acid. It is not to be expected that 

there is in fact a physiological connection between meiosis in yeast and meat quality in 

pigs. 

Significant markers and candidate genes for drip loss and associated metabolic traits 

Drip loss is a complex trait that is genetically controlled by a variety of different genes 

[133] and is influenced by interaction of metabolic processes and participants like genes, 

transcripts, proteins and metabolites [11]. Against this background, it is problematic to 

identify genes with a strong influence on drip loss using classical GWAS approaches. 

Moreover, statistical problems like stratification within the investigated population increase 

the risk of false positive results. In order to adjust for population stratification we included 

PCs as fixed effects into the model of the GWAS procedures as suggested by Aulchenko et 

al. [206] and applied among others by Becker et al. [207] and Utsunomiya et al. [208]. 
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Depending on the investigated trait (drip loss, protein, metabolite) the models contain two 

to ten PCs, which lead to λ-values close to one. From these results we conclude a sufficient 

elimination of population stratification without unacceptable reduction of the genetic 

variation.  

Instead of a Bonferroni correction, that favors the occurrence of false negative associations 

[209], we used the q-value which based on the FDR to correct for multiple testing. Storey 

and Tibshirani [210] suggested including the FDR in GWAS to provide a better balance 

between statistical significance and power to detect true effects. As it has been 

recommended by Benjamini and Hochberg [211], we set a relaxed significant threshold of 

q≤0.10. 

The performed GWAS procedures resulted in a varying number of significant SNPs for 

drip, 11 metabolites and three proteins. The total of 871 significant SNPs are spread across 

the entire porcine genome, but concentrated on SSC14, 17 and 18. For drip loss itself, 

promising candidate genes are located on SSC18. This region has been earlier described by 

Jennen et al. [212] and Liu et al. [27]. In the region around 12Mb, the meaning of ‘Sus 

scrofa pleiotropic factor beta’ (PTN) (q ≤ 6.26 × 10
−2

) is highlighted by the direct 

neighborhood of gene ‘cAMP responsive element binding protein’ (CREB3L2). CREB3L2 

was identified by the GWAS of the protein PGAM2, which revealed an intronic SNP 

(ALGA0107449) as one of the most significant marker (Tab. 16, p. 91). The family of 

cAMP response element binding proteins is crucial for a variety of cellular processes 

including cell proliferation, differentiation, apoptosis, extra-stimuli and stress response 

[213]. Although the meaning of CREB3L2 so far was not precisely described for meat 

quality, our results suggest that this gene seems to have a relevant influence in energy 

metabolism in skeletal muscle that is indicated by its interacting effect on PGAM2, glycine 

and drip loss (Fig. 18). 
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In the second interesting region on SSC18 from 15.9 to 16.1Mb, two intronic SNPs located 

in the gene LRGUK were found. These SNPs are ranked in the ‘Top 10 list’ for drip loss as 

well as for glycine. The nearby gene ‘Exocyst complex component 4’ (EXOC4) is also 

significantly associated with drip loss. EXOC4 is part of the exocyst complex (Exo70), 

which is involved in insulin-stimulated glucose transport. Due to Laramie et al. [214], in 

humans polymorphisms near EXOC4 and LRGUK on chromosome 7 are associated with 

type 2 diabetes and fasting glucose. The metabolic pathway that is regulated by the 

polymorphisms near EXOC4 and LRGUK potentially is also relevant for drip loss in pork, 

because fasting glucose also effects the pH decrease in muscle p.m. and drip loss. The 

Figure 18: Region on Sus scrofa chromosome SC18 with potential candidate genes for 

drip loss and associated metabolic traits phosphoglycerate mutase 2 and glycine. 

PGAM2 = phosphoglycerate mutase 2; fat solid arrows = direct relation between SNPs 

and drip loss; thin solid arrows = indirect relation between SNPs and drip loss via 

metabolite glycine; dotted arrow = indirect relation between SNPs and drip loss via 

protein PGAM2; genes in boxes: CREB3L2 = cAMP responsive element binding 

protein 3 like 2; PTN = Sus scrofa pleiotropic factor beta; LRGUK = leucine-rich 

repeats and guanylate kinase domain containing; EXOC4 = exocyst complex 

component 4. 
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investigations of Leheska et al. [215] demonstrated that fasting before slaughtering yielded 

in a significant lower glucose level and weaker pH decrease in muscle p.m. and in less drip 

loss. In the third interesting region on SSC18 around 20Mb, directly next to each other 

genes ‘Adenosylhomocysteinase-like 2’ (AHCYL2) and ‘Smoothened, frizzled class 

receptor’ (SMO) are located and significantly associated with drip loss. Just like the 

polymorphism between EXOC4 and LRGUK, AHCYL2 is associated with type 2 diabetes 

[216]. Until now, there is no further evidence that this chromosomal region has an influence 

on meat quality. The effect of gene ‘Nuclear factor, erythroid 2-like 3’ (NFE2L3) at 51Mb, 

associated with protein PGAM2, fits into the same metabolic background like the 

previously described genes [217]. In summary, the multitude of significant SNPs detected 

for drip loss and associated metabotypes gives an ambiguous indication that in the 

described regions on SSC18 promising candidate genes for drip loss can be expected. 

In this study, the most significant SNPs were detected on SSC1. Two SNPs (p≤2.23×10
−5

 

and p≤1.59×10
−5

) associated with glycerone-p and glucosylceramide, are located within the 

genes ‘Ectonucleotidepyrophosphatase/phosphodiesterase 3’ (ENPP3) and ‘Sterile alpha 

motif domain containing 4a’ (SAMD4A). ENPP3 is associated with lipid and FA 

metabolism and it has been reported by to Liu et al. [218] that this gene affects fat 

deposition and skeletal muscle growth in pigs. SAMD4A is also associated with lipid 

metabolism [219] and influences the metabolisation of glucosylceramides that is part of 

sphingolipid metabolism. Combining biological knowledge found in literature and the 

highly significant results of our enrichment analysis leads to the conclusion that the 

sphingolipid metabolism is one of the most important metabolic pathways associated with 

drip loss. 

Beneath glucosylceramides, phosphoethanolamines are also key players in sphingolipid 

metabolism. Two genes significantly associated with this metabolite were detected on 

SSC6 (Tab. 16). ‘Phosphatidylinositol 3-kinase, catalytic subunit type 3’ (PIK3C3) is 

involved in the regulation of hepatic glucose output, glycogen synthase, and antilipolysis in 

typical insulin target cells such as those in the liver, muscle and fat tissue [220]. Among 

others, PIK3C3 influences the cellular response to glucose starvation (GO term: 0042149). 

This biological process describes the change in state or activity of a cell (in terms of 

movement, secretion, enzyme production, gene expression, etc.) as a result of deprivation 



Study 2 – Integrative metabolomic, proteomic and genomic analysis 

103 

 

of glucose. According to Kim and Volsky [220] and Hirose et al. [221] a polymorphism in 

PIK3C3 is associated with body weight and carcass fat in LR and Du pigs. 

Moreover, we identified potential candidate genes for several metabolic components 

involved in glycolysis/gluconeogenesis. The protein PKM is one of the most prominent 

members of these pathways. The activity of PKM is decreased in the case of low glucose 

availability in muscle that is positive correlated with anabolic cellular processes. During the 

conversion of muscle to meat, the metabolic processes change into the catabolic range and 

if glucose is used up very early, the PKM level is significantly associated with the aberrant 

glycolysis leading to PSE development [9]. In our analysis, it was shown that PKM is 

influenced by six candidate genes on SSC4. In the chromosomal region of 139Mb, genes 

‘Guanylate-binding protein 4’ (GBP4) and ‘Protein kinase N2’ (PKN2) are located. Zhao et 

al. [222] have identified GBP4 as a significant QTL for LMC of pigs by comparing two 

divergent pig breeds with respect to carcass composition traits. Fontanesi et al. [223] have 

reported markers close to PKN2 that were associated with back fat thickness. SSC4 harbors 

two genes (ZNHIT6, DDAH1) within a region of 142–143Mb which were significantly 

associated with average daily gain in LW pigs [223]. These polymorphisms seem to have a 

strong impact on the metabolic rate and the deposition of skeletal muscle mass. 

Two SNPs on SSC17 give evidence that ‘Protein tyrosine phosphatase, receptor type’ 

(PTPRT) and ‘VAMP (vesicle-associated membrane protein)—associated protein B and C’ 

(VAPB) are candidate genes that affect the metabolite DG3P. The protein encoded by 

PTPRT is a signaling molecule that regulates a variety of cellular processes including cell 

growth, differentiation, mitotic cycle, and oncogenic transformation. In humans, PTPRT is 

strongly associated with high-fat diet-induced obesity and insulin resistance [224,225]. 

Moreover, in beef cattle, Tizioto et al. [226] identified PTPRT as candidate gene for shear 

force. With respect to the negative correlation between intramuscular fat content and shear 

force both studies came to homogeneous results. The importance of PTPRT is additionally 

indicated by the fact that the most important intronic SNP of PTPRT is an overlapping SNP 

that is also significantly associated with protein FBPase (Fig. 16, p. 91). DG3P and FBPase 

are strongly connected in glycolysis/gluconeogenesis and PTPRT might be a key player in 

regulation of glycolysis and thus a promising candidate gene for several meat quality traits. 
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Challenges and perspectives 

As it has been postulated by Fiehn [143] and Krastanov [227], the development and 

performance of omics approaches have revolutionized the collection of biological data. 

Detection, quantification and annotation of hundreds of thousands of variables in tissue or 

blood samples presupposes enormous progress in chip technology, technical 

profiling/screening method, expansion of biological databases and handling of high 

dimensional data sets. From the statistical point of view, there are some unsolved questions, 

how to weight or to integrate the different omics levels in a statistical model. Genomic 

selection tools provide solution to weight large amount of SNP information in the case of a 

limited number of animals [51]. In a similar way ‘Omics based selection’ (OBS) methods 

try to weight genetic, transcriptional and metabolic information in an optimal manner. 

Under the condition of a successful weighting of metabotypes and the correct consideration 

of exogenous factors and the time point of profiling, OBS has the perspective to be an 

effective strategy in animal breeding, monitoring of state of health and supply status (e.g., 

nutritional metabolomics) and early disease detection (e.g., molecular epidemiology). 

Finally it should be mentioned that the profiling of metabotypes is non-invasive and may be 

performed in living organisms [228]. However, because of the complex interaction of 

genes, transcripts, proteins and metabolites these methods are conceptually very demanding 

and generally accepted methods are still missing. Moreover, beneath not standardized 

statistical methods to integrate omics data, the possibilities of metabolite and protein 

annotation are limited due to the fragmentary information of regarding databases. As a 

solution, network analyses might be valuable for the integration of multi omics data and the 

indirect annotation of unknown omics components based on the functional connectivity 

within a module of the network. A further difficulty is the dynamics of metabotypes in 

dependence of environmental effects and processing conditions. Biochemical processes 

response very quickly and dynamic to changes in exogenous factors. While the genetic 

information remains constant during the lifetime of an individual, the expression of 

transcripts, proteins and metabolites is very dynamic and regulated by a large number of 

factors. Thus, proteomic and metabolomic approaches can be viewed as recording of the 

metabolic status at a specific time point in a system of steady dynamic nature. 

Consequently, in estimation of performance traits the time point of metabolite and protein 

profiling has to take into account precisely. 
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3.4 Materials and methods 

3.4.1 Animals, tissue collection, phenotyping 

This study is based on 97 animals of a reciprocal Du × Pi crossbreed. The animals were 

selected from F2 families and based on their extreme high or low values of drip loss [157]. 

The animals were kept and performance tested under standardized conditions at the 

Frankenforst experimental farm of the University of Bonn from 2002 until 2007. Data 

recording and sample collection were conducted strictly in line with the German law on 

animal welfare. The entire experiment, including applied standard operating procedures, 

was approved by the veterinary and food inspection, Siegburg, Germany (No. 39600305-

547/15). All animals were slaughtered at an average of 180.5 days (range 151–223 days) 

and average carcass weight of 86.5kg (range 73.0–101.8kg). The phenotypes were recorded 

in a commercial slaughterhouse according to the rules of German performance stations 

(ZDS, 29). Further information can be found in Liu et al. [27] and Heidt et al. [157]. 

Sample collection was performed about ten min p.m., immediately after exsanguination. 

Tissue samples were rapidly dissected, snap-frozen in liquid nitrogen and stored at −80°C. 

Drip loss was measured in MLD using the bag method of Honikel and Kim [165]. The 

samples from MLD between 13th/14th rib (one chop per individual) with a thickness of 

2.5–3.0cm were collected 24h p.m., weighed, and suspended in a plastic bag. After storage 

for 48h at 4°C, the samples were reweighed and drip loss were calculated as a percentage of 

weight loss based on the initial weight of a sample. In the tested animals drip loss ranged 

between 0.4% and 5.3%, whereby 49 pigs have drip loss values of lower 1.5% and the 

remaining 48 pigs show drip loss values of ≥1.5 %. 

3.4.2 Untargeted metabolite profiling 

For metabolite profiling we choose an untargeted approach to screen the entire 

metabolome. The metabolite spectra in the MLD samples of 97 Du × Pi pigs were 

measured by Metabolomic Discoveries GmbH (Potsdam, Germany; 

www.metabolomicdiscoveries.com) via gas GC-MS and LC-QTOF/MS. GC-MS and LC-

QTOF/MS facilitate the identification and quantification of a few hundred metabolites in a 

single tissue sample. Chromatography followed by mass spectrometry has a relatively 

broad coverage of compound classes, including organic and amino acids, sugars, sugar 

alcohols, phosphorylated intermediates and lipophilic compounds. With the combination of 
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both methods it is possible to detect metabolites in a range of 50–1,700Dalton, with a 

precision of 1–2 part per min (ppm) and a solution of mass/Δmass=40.000 (Report 

METABOLOMIC DISCOVERIES GmbH). For details on the LC-QTOF/MS method see 

Lisec et al. [166]. Metabolites were identified and annotated in comparison to Metabolomic 

Discoveries’ databases, which resort to Human Metabolome Database (HMDB, 

www.hmdb.ca), METLIN (www.metlin.scripps.edu/) and Lipid Maps 

(www.lipidmaps.org/). Annotation of metabolites was based on mass assignment, retention 

behavior and structure information. Metabolites, which could not be annotated, are 

characterised by their accurate mass and retention time. For details in metabolite 

quantification and annotation see Welzenbach et al. [144]. Only metabolites with known 

KEGG-ID were used for further analysis. KEGG-IDs were obtained using R packages 

KEGGREST, biomaRt and AnnotationDbi of Bioconductor 

(https://www.bioconductor.org) based on HMDB-IDs. 

3.4.3 Targeted protein profiling 

For the protein quantification and annotation we applied a two-step procedure. In the first 

step, an untargeted proteome profiling approach via isotope-coded protein labeling (ICPL) 

was used to determine the whole proteome (holistic approach) in MLD samples of 42 Du × 

Pi pigs selected based on their extreme phenotypes of drip loss. In the second step 

(validation step), a set of 40 selected proteins was quantified in the 97 Du × Pi pigs of this 

study (targeted protein profiling approach). 

The ICPL procedure, which based on stable isotope labeling, combined with mass 

spectrometry has emerged as a powerful tool to identify and relatively quantify thousands 

of proteins within complex protein mixtures [229]. In contrast to traditional proteomics 

approaches e.g., by 2D-gel quantified proteins was based on mass spectra and database 

query amongst others with the ICPL-Quant software. Based on the holistic ICPL approach 

and literature research, 40 proteins with expected meaning for drip loss were selected. 

These proteins were validated via selected reaction monitoring (SRM) in the 97 DuPi pigs 

of this study. Using a triple quadrupole mass spectrometer, targeted SRM offers high 

selectivity, sensitivity and a wide dynamic range in the quantitative analysis of small 

molecules [81]. The ICPL and SRM analyses were performed by TOPLAP GmbH 

(Munich, Germany). For a more detailed description of the ICPL and SRM application in 

our samples, see Kellermann [79] and Gallien et al. [81] 
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Based on the available entrez gene ID or ensemble peptide ID, R packages KEGGREST, 

biomaRt and AnnotationDbi of Bioconductor (https://www.bioconductor.org) were used to 

identify the corresponding KEGG-IDs of the proteins. 

3.4.4 Genome profiling 

DNA was extracted from MLD using a Genomic DNA Purification Kit (Fermentas Life 

Science, Thermo Fisher Scientific, Waltham, MA, USA). DNA concentration was 

measured using a NanoDrop 8000 spectrophotometer (Thermo Scientific, Wilmington, DE, 

USA) and concentration was adjusted to 100ng/µL by using double-distilled RNase and 

DNase free water. Illumina bead array technology (Porcine SNP 60 K Bead Chip) was used 

for genotyping the samples (Illumina, Inc., San Diego, CA, USA) in accordance with the 

protocol for SNP Infinium HD assay (http://Illumina.com). DNA (200 ng) was used for 

genome-wide amplification and fragmentation. A quality score for each genotype was 

generated. Sample preparation and genotyping has been described by Heidt et al. [157]. 

3.4.5 Statistical methods 

Quality Control and Annotation of Genetic Data 

Quality control was performed as implemented in R package GenABEL [206]. SNPs were 

excluded from further analysis under the following conditions: (a) Minor allele frequency 

(MAF) < 1%; (b) Call rate < 95 % and (c) strong deviation from the Hardy-Weinberg-

Equilibrium (p < 10
−3

). After checking the quality of the data, 97 animals and 44,844 SNPs 

remained in the data set.  

Pig Sscrofa 10.2 (International Swine Genome Sequencing Consortium) [230] was used to 

annotate all investigated SNPs. In order to detect biologically relevant genes being in 

linkage disequilibrium with significant associated SNPs, the R package biomaRt [231] was 

used. This procedure of functional annotation filtered genes in a distance of up to 1Mb 

around the significant SNP regions. We chose this window, because in our assumption 

there is an association between SNP and potential candidate gene if the distance is ≤1 Mb. 
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Metabolite and protein enrichment and pathway analysis 

In order to investigate the overrepresentation of specific metabolite and protein sets in 

different KEGG pathways, an enrichment analysis was performed based on corresponding 

annotated metabolites and proteins and the target trait drip loss. For assignment of 

metabolites and proteins to relevant metabolic pathways, R package biomaRt was applied 

[231]. 

The enrichment analysis was performed as implemented in R package limma [228]. The 

underlying test procedure of limma, called MR-GSE, was developed by Michaud et al. 

[196] and refers to a Wilcoxon rank-sum test. The test statistic ranks the sets of metabolic 

components based on Pearson’s correlation coefficients between paired samples of 

metabolites/proteins and drip loss. The result is a list of ranked compositions containing a 

varying number of metabolites and proteins. It was assumed that significantly (p≤0.05) 

enriched sets of metabolic components represent specific functional pathways that might be 

associated with muscle metabolism and meat quality traits. The procedure computes a p-

value to test the hypothesis that a set of variables (metabolites and proteins) tends to be 

more highly ranked in terms of a given test statistic compared to randomly chosen 

variables. The calculated p-value indicates whether a set of variables is statistically 

independent that means that the variables are on average less or equally correlated than 

randomly chosen variables (H0 hypothesis), or whether a set of metabolites and proteins is 

enriched because of functional connectivity (H1 hypothesis). In the following step, 

metabolites and proteins of significant enriched functional pathways were analyed in 

GWAS. 

Genome-wide association analysis 

The GWAS for pork quality parameter drip loss and metabolites/proteins of significant 

pathways was applied using the R package GenABEL [206]. The phenotypic traits (drip 

loss, metabolite/protein expression values) were corrected for SD and SW: 

𝑦𝑖𝑗𝑘  = μ + 𝑆𝐷𝑗  + β𝑠𝑆𝑊𝑖 + β𝑔𝑔𝑖𝑘 + 𝑒𝑖𝑗𝑘 (1) 

where yij is the phenotype of the i-th individual. Fixed effect SD and as covariable SW with 

regression coefficient βs are implemented in the model. Genetic effects were estimated via a 

fixed covariable ‘genotype’ (gik) and corresponding regression coefficient (βg). The 
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significance of each SNP was tested using a fast score test. In order to verify potential 

stratification in our F2 DuPi population, the inflation factor λ, which depends on the 

squared original test statistic of the i-th SNP (𝑇𝑖
2) was calculated as 

λ =
𝑀𝑒𝑑𝑖𝑎𝑛(𝑇𝑖

2)

0.4549
   (2) 

Aulchenko et al. [52] and Price et al. [193] showed that an inflation factor λ in the range of 

1.0 to 1.05 is an indicator of a sufficiently corrected population stratification which can be 

analysed with an acceptable risk of false positive results. Preliminary results of our analysis 

showed that λ deviates slightly from this optimum. This implies that some population 

stratification exist within our F2 DuPi pigs. In order to correct for this problem, within the 

fast score test, PCs estimated from the genomic kinship (EIGENSTRAT)  [193,206], were 

included as fixed covariables. The genomic kinship matrix was used to reveal the PCs 

reflecting the axes of genetic variation and describing the stratification of the populations 

involved in this study. The number of PCs used in this step is variable and depends on the 

ability to correct different levels of population stratifications. The number of PCs was 

increased stepwise from one to ten PCs and the final number of PCs was chosen so that the 

inflation factor λ was nearest to one. 

The correction of phenotypes, the estimation of the PCs and the association analysis was 

performed with the function ‘egscore’ as implemented in the R-package GenABEL. In 

order to reduce the risk of false-positive associations, the SNP significance tests were 

corrected for multiple testing based on the q-value calculation. This approach is a 

significance measurement based on the false discovery rate (FDR) concept [210]. We chose 

a significance threshold of q≤0.1. The variance explained by the respective SNP was 

calculated using following formula: 

𝑉𝑎𝑟 (%) =
𝜒1𝑑𝑓

2

(n − 2 + 𝜒1𝑑𝑓
2 )

 (3) 

where χ
2
 is the result of the score test as implemented in GenABEL and n the number of 

individuals. This formula resulted from the transformation of a Student’s t-distribution into 

a z-distribution [232]. Based on a similar MAF, a similar allele substitution effect and a 

similar proportion of explained variance we assumed that SNPs within a distance of <1Mb 

to each other belong to one QTL. 
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3.5 Conclusion 

Systems biological approaches utilize the information content of all available omics 

variables (SNPs, transcripts, proteins, and metabolites) in order to clarify the physiological, 

biochemical and genetic background of complex traits. Theoretically, across omics 

utilization is advantageous in comparison to classical genetic approaches, which merely 

investigate associations between SNPs and phenotype. 

In this context, Picard et al. [1] and van der  Van der Sijde et al. [124] have stated that 

there is an increasing interest to combine all the omics levels in a holistic omics approach 

to investigate the complexity of the molecular events beyond expected biological functions 

and to identify important genes. It can be expected that meat quality traits are influenced 

by a high number of interacting genes that are unknown or involved in unexpected 

functions, so that the across omics level approach used in our study is particularly useful. 

Based on the described integrated analysis of the omics levels genome, proteome, 

metabolome and phenotype, we increased the information density between genes and trait 

of interest to decode the complex biological mechanisms influencing drip loss and to 

reveal promising candidate genes. At least some of these genes have not been detected 

based on a standard GWAS procedure. The most promising candidate genes were located 

on SSC18 where we detected several, partly overlapping QTL for drip loss itself and the 

intermediate phenotypes PGAM2 and glycine. These candidate genes need further 

investigations to identify underlying functional mutations affecting drip loss and the 

related metabolic processes. 

Based on the results of this study, it was possible to confirm the already known findings 

about the importance of energy related metabolic processes influencing meat quality and 

particularly drip loss. On the other hand, this study also provides novel insights into the 

underlying biochemical pathways of drip loss. According to our findings, the sphingolipid 

metabolism is of particular importance for drip loss manifestation. The involved 

metabolites glucosylceramide and phosphoethanolamine are promising intermediate 

phenotypes for drip loss and revealed promising candidate genes on SSC1. It can be 

expected that such integrated omics approaches might be successfully applied to clarify the 

biochemical and genetic background also in more complex traits than meat quality. 

Against this background, our study may be considered as a model investigation to test one 

possible procedure to combine different omics levels. 
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4.1 Introduction 

Aim of this study was to characterise underlying functional pathways and corresponding 

candidate genes for meat quality and particularly drip loss based on a systems biology 

approach. Pork quality is the result of complex interactions between genetic and 

environmental effects like rearing and slaughtering conditions, and carcass and meat 

processing. One important commercially interesting pork quality parameter is drip loss. 

Based on reduced acceptance of processing industries and consumers, high drip loss leads 

to monetary losses in pork production. Heritability estimates of drip loss vary to a large 

extent between 0.01 and 0.31. This wide range could be explained by breed effects and 

large measurement errors of drip loss due to the multifactorial environmental effects [32]. 

While structural and physiological causes of drip loss concerning the muscle fibres and 

cells have been largely investigated and comprehended, genetic mechanisms and 

interactions between different layers of metabolic regulation underlying drip loss are not 

fully understood [27,133,158].  

Several studies have demonstrated that the results of any single omics analysis, like an 

association analysis of SNPs and phenotypic expression as implemented in GWAS, might 

not be sufficient to decode extremely complex biological mechanisms [1]. Moreover, in 

high dimensional omics data sets the number of measured omics variables is usually much 

larger than the number of available biological samples. This statistical, critical point is also 

known as the ‘large p, small n’ problem or overfitting that might lead to random noise like 

a high percentage of false-positive associations in GWAS [164]. 

In a systems biology approach different omics profiles are used as so-called intermediate 

phenotypes in order to increase the information density between genome and phenotype 

and as more accurate phenotypes compared to the conventional performance traits. 

Thereby, particularly in case of multifactorial traits like drip loss, an integrative analysis of 

the entire cascade of different omics levels provides a promising tool to identify reliable 

biomarkers (transcripts, proteins, metabolites) and genetic markers (SNP, QTL, candidate 

genes) [116]. The knowledge of functional associated omics variables/markers including 

interactions between genetic and environmental factors might provide comprehensive new 

insights into underlying biological processes in muscle growth and the black box of 

‘muscle to meat conversion’ [1]. 
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In the integration of multiple omics data sets, network analyses constitute a promising 

perspective. In these analyses, high dimensional data sets are condensed with the 

consequence that overfitting is reduced. In this study, we performed a WNA that is a 

powerful tool to reduce our omics data to the most important metabolic processes (modules 

of the network) correlated with meat quality. We used selected modules as metabolic 

phenotypes in GWAS to confirm the relationship between phenotype and genetic markers. 

By analysing different meat quality and carcass composition traits and several modules as 

auxiliary characteristic in GWAS, instead of the conventional GWAS approach for drip 

loss directly, our methodical procedure is beneficial in the genetic analysis of complex, 

multifactorial traits. In this context, it can be expected that GWAS for metabolic processes 

related to drip loss yield in reduced risk to detect false-positive associations and in higher 

accuracy in the identification of candidate genes [191,233]. 

The purpose of this study was the characterisation of underlying functional pathways and 

corresponding candidate genes for meat quality and particularly drip loss based on a 

systems biology approach. A WNA was used to integrate transcript, protein and metabolite 

profiles by modulating modules that are associated with metabolic pathways. Moreover, 

this approach was selected to reduce overfitting. The following GWAS based on modules 

were performed to increase the information density between phenotype and genotype and to 

detect reliable genetic markers for drip loss.  

4.2 Material, methods and statistical analysis 

To figure the whole metabolic background of drip loss we investigated the meat quality 

traits pH1, pH24 and color and additionally the related carcass composition traits meat fat 

ratio (MFR), backfat thickness (BFT) and lean meat content in belly (LMCbelly) and carcass 

lean meat content calculated with the Bonner formula (LMCbonn). The whole omics cascade 

was quantified in MLD samples of 90 F2 Du × Pi pigs. For details in the measurement of 

meat quality parameters see Welzenbach et al. [192, pp. 2-3]. BFT [cm] is described as 

average value of measured rind thickness at withers (thickest part), middle of the back 

(thinnest part) and loin. The parameter MFR is the quotient of weight-specific fat area 

[cm²] to weight-specific muscle area [cm²] of the back. The LMC in belly [%] is calculated 

by the formula of Grub and weighted the BFT in loin [cm], the fat thickness alongside 

[cm], the meat area [cm²] and the fat area [cm²]. Another parameter indicating the LMC is 

calculated by the Bonner formula. The regression equation calculating the LMCbonn for 
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crossbreed pigs weights seven parameters related to meat and fat content. See ZDS [29] for 

more details in stationary performance testing. 

Fig. 19 gives an overview of the available data basis and the performed statistical 

procedures. In the first step, a WNA was used to form combined metabolic phenotypes, so-

called modules, consisting of transcripts, metabolites and proteins. These modules were 

annotated (Step 2) and treated as more accurate phenotypes compared to the conventional 

meat quality and carcass composition parameters and were analysed in GWAS (Step 3). 

Finally, as verification of the identified candidate genes, we performed eQTL analyses for 

the hub players of the modules (Step 4).  
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Figure 19: Workflow of the analysis. QC – quality control; ME – module eigenvalues; 

MQ – meat quality, CC – carcass composition; MR-GSE – mean-rank gene set 

enrichment; SD – slaughter date; SW – slaughter weight; PCs – principal 

components. 
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4.2.1 Weighted network analysis 

This methodical approach is beneficial in handling the ‘large p, small n’ problem in various 

ways. First, the WNA is a powerful tool to condense the omics data set to the most 

important modules correlated with meat quality. Thereby, the procedure results in a 

reduction of the number of dependent variables ‘p’. Moreover, the network construction 

based on transcripts, proteins and metabolites allows the identification of molecular 

interactions because they do not only quantify the correlation between traits and omics 

variables, but also the extent to which the omics components are connected among 

themselves. In this context, network analyses allow the indirect annotation of unknown 

metabolic components based on their annotated neighbours within a module of the network.  

In our study, in the first step transcripts (n=12,235), proteins (n=40) and metabolites 

(n=1,993) were condensed into modules based on a WNA. The omics profiling of 

metabolites and proteins has been described by Welzenbach et al. [144, sections 4.2 and 

4.3, p. 17]. Gene expression profiling in MLD samples was performed by Heidt et al. [157] 

according to the Affymetrix protocols (Affymetrix, Santa Clara, CA, USA). Muscle 

expression patterns were assessed using the GeneChip® Porcine Genome Array 

(Affymetrix), which contains 23,937 probe sets that interrogate 23,256 transcripts which 

represent 20,201 genes in pig. Hybridization and scanning using the GeneChip® Scanner 

3000 (Affymetrix) were performed according to the manufacturer’s protocols. Data were 

analysed with Affymetrix’s GCOS 1.1.1 software using global scaling to a target signal of 

500. In order to reject abundant transcripts, we filtered for the transcripts with highest 

expression and variance. Accordingly, only transcripts with variance >0.5 and mean 

expression value of >6.0 were considered in further process. For details in the construction 

of a weighted network using R package WGCNA by Langfelder and Horvath [164].  

The modules were related to the phenotypic traits and functional annotation based on gene 

ontology (GO) enrichment analyses and/or MR-GSE analyses. Based on module specific 

transcripts, hypergeometric gene set enrichment tests (GOstats package ver. 2.24.0) were 

performed to investigate the overrepresentation of transcript sets defined by the groups 

Biological Processes (BP), Cellular Components (CC), and Molecular Functions (MF) in 

the GO database (GO; http://www.geneontology.org/) or by KEGG terms, using Fisher’s 

exact test. A gene set was considered as significant if p≤0.05. In case of KEGG-/entrez 

gene ID annotated metabolites/proteins within a module, the annotation was performed 
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using a MR-GSE procedure, based on a Wilcoxon rank sum test. Further details have been 

described in section 3.2.1 (p. 82). Aim of the WNA and the module annotation was the 

detection of metabolic pathways associated with drip loss and related traits.  

4.2.2 Imputation 

In order to get the greatest possible number of pigs with recorded profiles of all omics 

levels (genome, transcriptome, proteome, metabolome and phenotype), we imputed missing 

genotypes of seven Du × Pi animals, from which transcriptomic, proteomic and 

metabolomic information were available. Imputation was performed by FImpute [234]. 

FImpute uses an overlapping sliding window approach to efficiently exploit relationships 

and haplotype similarities between target and reference individuals. The pedigree of our 

animals with missing or inaccurate genotypes comprises 321 genotyped Du × Pi pigs that 

were used as reference individuals.  After imputation of the genotypes of seven animals, a 

total of 90 Du × Pi pigs with profiling of the whole omics cascade were available. 

4.2.3 GWAS for classical and metabotype indicators for meat quality and carcass 

composition traits  

In order to identify reliable genetic markers and candidate genes for meat quality and 

carcass composition traits several GWAS analysis were performed. These analyses 

comprised genomic SNP data as independent variable and various classical and composite 

indicators of meat quality or carcass composition as dependent variables. Classical 

indicators were BFT, LMCbonn, LMCbelly, MFR, pH1, pH24 and meat color. As composite 

indicators, important WNA based modules were used, where the module eigenvalues 

showed a high correlation to at least one of the target carcass composition or meat quality 

traits. The eigenvalues of selected modules were used as dependent phenotypes. 

Quality control and annotation of the genetic data has been described in detail by 

Welzenbach et al. [144, section 4.5.1., p. 18]. In brief, the SNPs were checked for call rate 

of <0.95, MAF>0.01 and Hardy-Weinberg disequilibrium p<10
-3

. The annotation was 

performed with R package biomaRt [231] based on the Pig Sscrofa 10.2 database.  
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As described in the publication of Welzenbach et al. [144], the GWAS analysis was 

problematic due to genetic stratification in the analysed population. In order to remove the 

negative consequences of population stratification different GWAS approaches 

(EIGENSTRAT, GRAMMAR) implemented in the R package GenABEL [193,206] were 

realized.  

EIGENSTRAT 

For meat quality traits and modules existing population stratification were corrected by 

means of a specific number of PCs (*) estimated from the genomic kinship. This 

proceeding is implemented in the EIGENSTRAT approach in GenABEL [193,206]. In 

general the following underlying statistical GWAS model was used:   

𝑦𝑖𝑗𝑘  = 𝜇 + 𝑆𝐷𝑗  + 𝛽𝑠𝑆𝑊𝑖 + 𝛽𝑔𝑔 ∗𝑖𝑘+ 𝑒𝑖𝑗𝑘 

where yijk is the phenotype of the i-th individual. As relevant environmental fixed effect the 

model contains the ‘slaughter day’ (SD) and as a covariable the ‘slaughter weight’ (SW) 

with regression coefficient βs. Genetic effects were estimated via a fixed covariable 

‘genotype’ (gik) and corresponding regression coefficient (βg). To correct for population 

stratification the covariable ‘genotype’ and the phenotype were linear adjusted for a 

specific number of PCs (*), estimated from the genomic kinship.  

In order to verify the success of the correction, the genomic inflation factor λ was 

calculated. More detailed information of the calculation of λ are given in the publication of 

Welzenbach et al. [144]. Price et al. [193] showed that the correction to remove disturbing 

population was sufficient if the resulting λ was in a range of 1.0 to 1.05. A series of GWAS 

were realized using an increasing number of PCs which were included step by step into the 

statistical model. After each round λ was calculated. This stepwise GWAS approach was 

stopped if the optimum range of λ was reached.  

GRAMMAR 

In the selected Du × Pi animals, the population stratification regarding the carcass 

composition traits was lower than in meat quality traits. For this reason, the correction of 

population stratification using the EIGENSTRAT approach was too stern in carcass 

composition traits. Preliminary tests showed that the GRAMMAR approach of Aulchenko 
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et al. [235] was best suited to analyse carcass composition traits. The GRAMMAR 

approach is a fast approximate association tests between a trait and genetic polymorphisms 

in samples with genetic sub-structure.  In a first step, phenotypes are corrected for relevant 

fixed effects and a random polygenetic animal effect, which reflects the genetic variance 

and genomic relations between animals, is calculated. The genomic relationship is 

estimated by the genomic kinship relationship between all animals. In this step the 

following statistical model was used: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝑆𝑗 + 𝑆𝑒𝑥𝑗 + 𝛽𝑠𝑆𝐷𝑗 + 𝛽𝑠𝑆𝑊𝑖 + 𝑎𝑖 +  𝑒𝑖𝑗𝑘          (1) 

where yijk is the phenotype of the i-th individual. As fixed effects SD, Sex and season (S) 

and as covariable SW with regression coefficient βs are implemented in the model. 

Moreover, the polygenetic component ai maximises the likelihood of the phenotypic data.  

In a second step of the GRAMMAR approach genetic effects were estimated by means of a 

simple model, which comprises the population mean μ and the fixed covariable ‘genotype’ 

(gik) and corresponding regression coefficient (βg). As dependent variables yik the residuals 

eijk of model step 1 are used.  

𝑦𝑖𝑘  = 𝜇 + 𝛽𝑔𝑔𝑖𝑘 + 𝑒𝑖𝑘                (2) 

Finally, we corrected for multiple testing based on the q-value calculation (see Welzenbach 

et al. [144], section 4.5.3., pp. 18-19 for details). 

4.2.4 Verification step: eQTL analysis for hub metabotypes 

In a verification step, GWAS (eQTL analyses) were performed by using the most important 

hub metabotypes (transcripts, metabolites and proteins) of the selected modules. According 

to Heidt et al. [157], “a QTL analysis of expression levels of genes identifies genomic 

regions that are likely to contain at least one causal gene with a regulatory effect on the 

expression level, termed eQTL.” The positions of the resulting significant eQTL were 

compared with the location of candidate genes (or the associated SNPs), which was 

detected in the GWAS for classical phenotypes and composite module traits. This approach 

was motivated by the expectation, that in case of overlapping QTL regions the risk of false 

positive results is reduced and the biological relevance of these regions can be confirmed 

with higher accuracy.  
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For this validation step it was necessary to identify hub metabotypes, which are the most 

important single values within a module. Most important key or hub metabotypes of each 

module were identified by three parameters: MM, MS and connectivity. The importance of 

each metabotype for its module (MM) is quantified by the correlation between MEs and 

omics expression profiles. The MS values correspond to the Pearson correlation 

coefficients between metabotypes and response traits (meat quality and carcass composition 

traits). The intramodular soft connectivity was defined as 

𝐾𝑖 =  ∑ 𝑎𝑖𝑢
𝑢≠𝑖

 

which is the sum of all pairwise adjacencies of a metabotype to all other metabotypes, aiu, 

in the module. Within each module the metabotypes could be ranked using the absolute 

values of both MS, MM and connectivity to identify the key players, or so-called hub 

metabotypes, of a metabolic network. 

According to these indicators, all module members were ranked according to their 

importance and stored into a sorted MM, MS and connectivity list. All metabotypes which 

were listed in the upper quartile of at least one of the ranking lists were used as phenotypes 

in the eQTL analyses described above. These metabotypes are regarded as key members of 

the underlying metabolic process. In the majority of cases, transcripts were the most 

important metabotypes of the modules.  

For each important metabotype an eQTL analysis was performed which was based on the 

EIGENSTRAT approach with ten PCs to remove possible population stratification. Based 

on a genome-wide FDR value of q≤0.05 it was possible to identify significant eQTL. After 

eQTL analysis, corresponding genes could be identified by database query in the Ensembl 

genome browser 84 (www.ensembl.org). 

In the detected eQTL it can be differentiated between regions, which are located close to a 

gene (cis-regulation) or distant (trans-regulation) [128]. Cis-regulated eQTL are more 

likely to represent the causative genomic region, whereas trans-regulated eQTL represent 

the ‘effect’, e.g. pathways that are affected by causal variations [131]. Although the most 

significant reported eQTL are often cis-regulated, there are some evidence that trans-

regulated eQTL also might be decisive in controlling of gene expression [236]. 
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4.3 Results 

4.3.1 Weighted network analysis 

The WNA allows investigating the entire data set using the profiles of metabolites, proteins 

and transcripts for the construction of a weighted co-expression network. The hierarchical 

clustering algorithm and the following pruning process condensed the metabotypes into 30 

modules. Metabotypes that were not assigned to any module (n=112), were labelled with 

color grey. 

The relationship between meat quality, carcass composition traits and modules is given by 

correlation coefficients between traits and MEs (Fig. 20). For the further investigation we 

selected modules that showed significantly (p≤0.05) strong (r≥|0.25|) correlation 

coefficients to one or several meat quality or carcass composition traits (Tab. 18). Drip loss, 

meat color, BFT and LMCbonn were significantly correlated only to one module, whereas 

pH24, pH1, MFR and LMCbelly were associated with three or four different modules. The 

number of metabotypes per module ranged between 1,683 (module purple) and 60 (module 

sienna3). Most of the metabotypes within the modules belong to the class of transcripts. 

However, in modules sienna3 and darkolivegreen the number of metabolites and transcripts 

is almost balanced and module white even comprises mainly metabolites (Tab. 18).  

Module purple that includes the most metabotypes is the only module, which comprises 

proteins (Tab. 18). While module salmon is positively correlated with MFR and negatively 

correlated with LMC, the correlation coefficients have reversed signs in modules 

darkmagenta and purple. In a similar way, adverse results can be observed for the relation 

between the MEs of different modules and the meat quality indicator pH24. Regarding this 

relationship, significant positive correlations were observed in modules purple, sienna3 and 

midnightblue, whereas a significant negative correlation was found in module darkgrey 

(Fig. 20).  
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Figure 20: Correlation coefficients and corresponding p-values of module-trait 

relationship. Correlations of traits drip loss, pH1, pH24 and meat color to modules 

are characterised by color range from red (‘1’ - positive correlation) to green (‘-1’ - 

negative correlation). In parenthesis below correlation coefficients, the p-value is 

given. BFT – backfat thickness, LMC – lean meat content measured by formula of 

Grub in belly (LMC_belly) and by Bonner formula (LMC), MFR – meat fat ratio. 

ME = module eigenvalues. 
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Table 18: Composition of significantly correlated modules of weighted network 

analysis to meat quality and composition traits. 

Module 
No. 

transcripts 

No. metabolites 

(annotated/ 

KEGG 

annotated) 

No. proteins 

(entrez gene 

annotated) 

∑ 
Correlated 

traits 

salmon 385 - - 385 
MFR, LMCbelly, 

LMCbonn 

saddlebrown 112 2 (-) - 114 pH1 

darkmagenta 62 - - 65 
MFR, LMCbelly, 

BFT 

purple 1,675 1 (-) 9 (9) 1,683 
MFR, LMCbelly, 

pH24 

tan 1,442 - - 1,442 pH1 

sienna3 31 29 (6/-) - 60 pH24 

darkolivegreen 39 47 (14/8) - 86 pH1 

midnightblue 317 - - 317 pH24 

darkgrey 158 2 (1/-) - 160 pH24 

white 46 83 (25/11) - 129 drip loss 

lightgreen 247 1 (-) - 248 meat color 

BFT – backfat thickness, LMC – lean meat content measured by formula of Grub in belly 

(LMCbelly) and by Bonner formula (LMCbonn), MFR – meat fat ratio.  

 

 

4.3.2 Module annotation 

For each module three to 22 significant (p≤0.05) KEGG pathways were detected. Tab. 19 

shows a maximum of five most significant KEGG pathways with highest number of 

metabotypes in the module that can be assigning to the KEGG pathway (count). Although 

many of the detected KEGG pathways describe diseases and pathways related to metabolic 

defects (e.g. Pathways in cancer, Type I diabetes mellitus, Parkinson's disease), the 

annotation enabled the allocation of the modules to metabolic pathways and molecular 

functions correlated with muscle growth, muscle to meat conversion and meat ageing and 

quality. For example KEGG pathways ‘Protein processing in endoplasmic reticulum’, 

‘Metabolic pathway’, ‘Oxidative phosphorylation’ and ‘Citrate cycle (TCA cycle)’ are 

strongly associated with energy metabolism and anabolic processes effecting muscle and fat 

tissue growth [131]. Some modules are annotated with the identical KEGG IDs, indicating 

that module connected metabolic processes, like ‘MAPK signalling pathway’, ‘Dilated 
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cardiomyopathy’,’ Antigen processing and presentation’ and ‘Protein processing in 

endoplasmic reticulum’ are likely to play an important role in effecting meat quality and 

carcass composition traits. Beneath the annotation with KEGG terms, we also assigned the 

modules to related Gene Ontologies (GO) terms ‘Biological Process (BP)’, ‘Cellular 

Component (CC)’ and ‘Molecular Function (MF)’ (Results not shown). 

 

 

Table 19: Functional annotation of the 11 significantly correlated modules by selection 

of most important KEGG identifiers with highest count. Continued on next page. 

Module KEGG p-value Count Size KEGG term 

salmon 

5200 2.15E-03 11 162 Pathways in cancer 

4722 1.57E-05 9 61 Neurotrophin signalling pathway 

4010 4.27E-03 8 104 MAPK signalling pathway 

5220 3.41E-05 7 38 Chronic myeloid leukaemia 

4630 5.12E-03 6 64 Jak-STAT signalling pathway 

saddle- 

brown 

5414 4.88E-07 6 47 Dilated cardiomyopathy 

5410 1.47E-05 5 48 Hypertrophic cardiomyopathy (HCM) 

4020 1.20E-03 4 69 Calcium signalling pathway 

4260 3.65E-03 3 45 Cardiac muscle contraction 

4530 5.21E-03 3 51 Tight junction 

dark- 

magenta 

4612 2.69E-12 9 41 Antigen processing and presentation 

5332 9.78E-09 6 24 Graft-versus-host disease 

5330 4.20E-08 6 30 Allograft rejection 

4940 6.35E-08 6 32 Type I diabetes mellitus 

5320 6.35E-08 6 32 Autoimmune thyroid disease 

purple 

4810 3.38E-04 24 96 Regulation of actin cytoskeleton 

4145 3.17E-03 20 87 Phagosome 

4142 4.71E-04 19 70 Lysosome 

5140 5.93E-04 15 50 Leishmaniosis 

5414 3.09E-03 13 47 Dilated cardiomyopathy 

tan 

4510 6.46E-05 21 98 Focal adhesion 

4810 1.22E-03 18 96 Regulation of actin cytoskeleton 

4141 1.53E-03 17 90 Protein processing in endoplasmic 

reticulum 

4512 6.15E-07 16 46 ECM-receptor interaction 

4670 9.97E-03 11 58 Leukocyte transendothelial migration 

sienna3 

4662 1.24E-02 1 31 B cell receptor signalling pathway 

4664 1.28E-02 1 32 Fc epsilon RI signalling pathway 

4666 1.71E-02 1 43 Fc gamma R-mediated phagocytosis 
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Table 19 continued. 

Module KEGG p-value Count Size KEGG term 

sienna3 

4380 2.59E-02 1 65 Osteoclast differentiation 

4650 1.91E-02 1 48 Natural killer cell mediated 

cytotoxicity 

darkolive-

green 

310 3.54E-02 1 18 Lysine degradation 

20 3.73E-02 1 19 Citrate cycle (TCA cycle) 

380 3.93E-02 1 20 Tryptophan metabolism 

midnight-

blue 

4141 2.17E-03 7 90 Protein processing in endoplasmic 

reticulum 

4010 1.90E-02 6 104 MAPK signalling pathway 

4612 1.34E-03 5 41 Antigen processing and presentation 

4920 3.01E-03 5 49 Adipocytokine signalling pathway 

3040 1.22E-02 5 68 Spliceosome 

darkgrey 

4740 4.42E-03 2 10 Olfactory transduction 

4140 1.43E-02 2 18 Regulation of autophagy 

4970 4.23E-02 2 32 Salivary secretion 

460 3.08E-02 1 3 Cyanoamino acid metabolism 

232 4.08E-02 1 4 Caffeine metabolism 

white 

670 1.90E-02 1 8 One carbon pool by folate 

350 3.30E-02 1 14 Tyrosine metabolism 

51 4.00E-02 1 17 Fructose and mannose metabolism 

light-

green 

1100 8.70E-13 43 569 Metabolic pathways 

5012 2.79E-23 27 88 Parkinson's disease 

5016 9.66E-22 27 99 Huntington's disease 

190 4.20E-19 24 89 Oxidative phosphorylation 

5010 2.79E-16 23 103 Alzheimer's disease 

Count - number of metabotypes in the module that can be assigning to the KEGG pathway; 

size - number of all associated metabotypes of the KEGG pathway; KEGG database 

information. 

 

 

The annotation procedure performed in the modules darkolivegreen, white and purple and 

their corresponding KEGG annotated metabolites and entrez gene annotated proteins did 

not reveal any significant (p≤0.05) KEGG pathway annotations. 



Study 3 – Systems biology approach 

126 

 

4.3.3 GWAS of meat quality and carcass composition traits and significantly 

correlated modules 

GWAS were performed for a total of 19 traits (four meat quality traits, four meat 

composition traits and the eigenvalues of 11 modules) as dependent variables and 45,616 

SNPs, which passed the SNP quality control filter, as independent genetic variables. In a 

first step, the data was tested for possible population stratification. Based on the GWAS 

results of model 1 the parameter λ was calculated. In case of meat quality parameters and 

modules, the parameter λ did not fall into the optimal range 1.00 to 1.05 given by Price et 

al. [193]. Consequently, the EIGENSTRAT method was used to correct for population 

stratification. The corresponding statistical GWAS models include a variable number of 

PCs for each trait. As it has been pointed out by Welzenbach et al. [144], the PCs condense 

the genetic relationship between animals and can be used to remove undesirable population 

stratification. Depending on the investigated trait between one to 24 PCs were required in 

order to avoid negative effects of population stratification on the validity of the GWAS 

(Tab. 20). After this correction step, for all investigated traits the genomic inflation factor λ 

was one or close to one. Therewith, due to Price et al. [193], our correction was sufficient to 

remove disturbing population stratification  (Tab. 20). 

Applying a moderate significance threshold with a FDR of q≤0.10, the GWAS revealed 874 

(without double counting) significant associations for 17 traits, including the meat quality 

and carcass composition traits and nine modules (Tab. 20). These SNPs were distributed 

over almost all porcine chromosomes. For modules purple and darkolivegreen it was not 

able to determine significant SNPs under the defined conditions. While 151 SNPs showed a 

chromosome-wide significance levels of q≤0.05, eight SNPs were detected as genome-wide 

significant (at least q≤0.01). The average number of significant SNPs per trait is 41, with a 

minimum of four SNPs (BFT, sienna3) and a maximum of 208 SNPs for lightgreen. The 

majority of the SNPs are significant at a moderate chromosome-wide level (q≤0.1). For 

LMCbelly and LMCbonn, four genome-wide significant SNPs were identified, respectively. 

SNPs for modules lightgreen and darkmagenta showed highest proportions of explained 

variance (var=19.96% and 19.38%). The average number of detected SNPs per 

chromosome is 43 and the highest numbers of significant SNPs were detected on SSC7, 13, 

15 and 18. For drip loss, we detected SNPs on SSC2 and 16, which explain a maximum of 

variance proportion of 8.83%.  
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On several chromosomes we identified SNPs significantly associated with more than one 

trait. In total, 17 overlapping (identical) SNPs for different traits are located on SSC5, 6, 8, 

12, 15 and 18. As presented in Fig. 21, the most overlapping exists between modules 

midnightblue and tan on SSC18. Moreover, the overlapping on SSC5, 6 and 12 is of 

particular interest because one SNP significantly affects both LMCbelly, LMCbonn, BFT and 

MFR. The overlapping SNPs appear to be central genetic markers for carcass composition 

traits and related physiological processes. In contrast, on SSC4, 7 and 17 we indeed 

detected significant SNPs for two or more traits but the markers are located in distant 

chromosomal regions and according to this, there are no overlapping SNPs. 

 

Figure 21: Venn-diagrams of overlapping SNPs on Sus scrofa chromosomes (SSC) 5, 

6, 8, 12, 15 and 16. GWAS resulted in varying number of significant SNP per trait,. 

On the presented chromosomes there are overlapping SNPs with meaning for two or 

more traits. The total number of detected SNPs on the chromosome is given in 

square bracket.  
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1
BFT – backfat thickness, LMC – lean meat content measured by formula of Grub in belly (LMCbelly) and by Bonner 

formula (LMC
bonn

), MFR – meat fat ratio, modules estimated by weighted network analysis are indicated by colors; 
2
number 

of principal components (PCs) considered in genome-wide association studies for meat quality traits and modules 

(EIGENSTRAT approach); 
3
λ = inflation factor; 

4
number of chromosome-wide significant associated SNPs per traits and 

chromosome (at least q ≤ 0.1); 
5
sum of significant associated SNPs per traits (***q≤0.001; **q≤0.01; *q ≤ 0.05; 

#
q ≤ 0.1); 

6
minimal empirical p-value; 

7
minimal q-value, based in the false discovery rate concept; 

8
maximal proportion of explained 

variance [%]; 
9
sum of overlapping SNP with meaning for more than one trait. 
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The functional annotation of the 874 significantly associated SNPs revealed 1,631 genes 

that are located in a distance of ≤1Mb to the SNPs and thereby potentially are in linkage 

disequilibrium to the significant SNPs of the present study. One quarter of the detected 

SNPs (n=145) is localised in an intron region of a specific gene. These genes that are 

mainly located on SSC7, 13 and 18 might be important potential candidate genes for meat 

quality and carcass composition traits and associated metabolic processes. 

For the identification of potential candidate genes, we concentrated on the most important 

QTL regions with a high density of significant SNPs for different traits. These SNPs were 

selected based on the following three criteria: The SNPs had to be (1) chromosome-wide 

significant (at least q≤0.1), (2) within the ‘Top 10’ of significant SNPs for meat 

quality/carcass composition/modules, (3) exonic or intronic. Using these criteria, we 

identified 28 potential candidate genes for all investigated meat quality and carcass 

composition traits and for seven of the nine modules (Tab. 21). The SNPs indicating the 

candidate genes are intronic with exception of three SNPs that are located within the 3’ 

untranslated region (UTR) of a gene. In the 3’ UTRs may be located different regulatory 

sequences. These sequences can be binding sites for miRNAs or proteins that affect the 

stability or transport of mRNA. The number of detected genes for a single trait varied 

between one and three. On SSC1, three genes in a range of 0.5Mb were detected for pH1. 

In the most cases the importance of a candidate gene is indicated by one significant intronic 

SNP. Only candidate gene LGR4 on SSC2 harbours two intronic SNPs, which emphasizes 

the meaning of this candidate gene for drip loss. SSC5 is of particular interest, because on 

this chromosome we identified one candidate gene (BTG1) for BFT, LMCbelly and LMCbonn 

and three candidate genes for module salmon that is strongly correlated with carcass 

composition traits. One candidate gene for module salmon (EEA1) is located in close 

proximity with BTG1. Based on these two candidate genes in a small range of 0.62Mb, it 

might be reasonably assumed that in the region around 94.5Mb to 95.0Mb, a functional 

mutation for carcass compositions traits or related metabolic processes is located. 

Moreover, SNPs ‘DRGA0006183’ (in gene BTG1) and ‘ALGA0031253’ (in gene ESYT1) 

are located within a 3’ UTR that are characterised by their regulatory functions. This is 

further evidence for the meaning of BTG1 and ESYT1 as candidate genes for the regarding 

traits. Most significant intronic SNPs with highest proportion of explained variance 

(17.74% and 17.14%) were detected for modules darkmagenta (SSC17) and midnightblue 

(SSC18) (Tab. 21). 
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For drip loss, two candidate genes were identified on SSC2 (Tab. 21). The most significant 

SNPs (Varmax=8.83 %; pmin≤4.39E-05) associated with drip loss were detected on SSC16, 

but these SNPs do not fulfil the previously described conditions to detect potential 

candidate genes (Tab. 21). On SSC2, the three SNPs associated with drip loss have a 

proportion of explained variation of 7.30% and two SNPs with a distance of 32k base pairs 

are located in gene LGR4. 

4.3.4 Selection of hub metabotypes and eQTL analysis 

For seven of the 11 investigated modules, GWAS revealed significant genetic markers and 

candidate genes (Tab. 21). As a verification of our GWAS results, we analysed the hub 

metabotypes of the corresponding modules by means of an eQTL analysis. Within each 

module, based on the parameters MS, MM and connectivity, between one and 20 

metabotypes, which are obviously key regulators/members of the regarding 

module/metabolic relation, were selected. Altogether, we performed eQTL analyses for 113 

hub metabotypes. In most modules, the selected hub metabotypes were transcripts. Only in 

modules white and sienna3 the most important members of the metabolic process pertain to 

the class of metabolites. In module white the most important hub metabotype is the 

metabolite 1-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine, which is the 

only selected annotated metabolite. This metabolite belongs to the class of 

glycerophospholipids. In case of 71 of the 113 selected hub metabotypes it was possible to 

identify significant eQTL (Tab. 22). For the most transcript hub metabotypes, annotation 

information was available and it was possible to attach the corresponding gene that is 

affected by the transcript. See Tab. 22 for the names of the associated genes and their 

location. For metabolites in modules white and sienna3 and some transcript of the other 

modules, assignment of corresponding genes was not possible. The average number of 

eQTL for each metabotype was seven, with a range of one to 113 eQTL. In case of 14 

metabotypes, the performed eQTL analyses resulted in only one eQTL (Tab. 22). In case of 

seven transcripts, the associated eQTL are located on the same chromosome as the 

corresponding gene associated with the transcript. Although there is no positional 

accordance of eQTL and underlying ‘causative’ transcript of the gene (cis-regulated),  the 

eQTL are trans-regulated and it might be that these eQTL are involved in the control of 

gene expression [236].   
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The SNP order complies with number of chromosomes and position on the chromosome; Selection of promising 

SNPs based on the criteria, that they are (1) chromosome-wide significant (at least q<0.1), (2) within the ‘Top10’ 

significant SNPs per metabolic trait and (3) located within an annotated gene (exonic or intronic); 
1
sus scrofa 

chromosomes (SSC); 
2
The declaration of gene symbols can be obtained from Ensembl or 

http://www.ncbi.nlm.nih.gov/gene; 
3
position in Mb (base pairs), intr – intronic, 3’UTR - 3’ untranslated region; 

4
mutation (Mut); 

5
substitution effect and standard error (se); 

6
empirical p-value; 

7
q-value (based on the false 

discovery rate concept); 
8
proportion of the explained variation (Var, %). 
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Table 22: Results of eQTL-analysis of hub metabotypes of the modules. Continued on 

next page.  

Module Hub metabotype
1
 Gene

2
 (SSC)

3
 No. eQTL

4
 (SSC)

5
 

dark-

magenta  
Ssc.13780.4.S1_x_at - 7 1 

16 

darkgrey 

Ssc.3282.1.S1_at NR2F1 2 2 9 

Ssc.4973.1.S1_at - 15 3 3, 4 

Ssc.8075.2.S1_at TMEM88B 6 3  6, 13 

Ssc.10751.1.A1_at - 2 1 18 

Ssc.12151.1.A1_at - 14 6 2, 6, 18 

Ssc.15905.1.A1_at - 5 2  1 

Ssc.17792.1.S1_at - 7 2 2, 18 

Ssc.17797.1.A1_at - 7 12 2, 6 

Ssc.28050.1.A1_at - 7, 18 1 4 

Ssc.29484.1.A1_at PIAS4-201 2 23 2, 9, 18 

lightgreen 

Ssc.886.1.S1_at - 4 35 7 

Ssc.1092.1.A1_at COX5B 3 3 7 

Ssc.1725.1.S1_at SLC25A12 15 6 5 

Ssc.2294.1.S1_a_at COQ6 7 113 7 

Ssc.5035.1.S1_at - 7, 15 9 3, 7 

Ssc.5334.1.S1_at COQ9 6 1 7 

Ssc.5389.1.S1_at IDH3A 7 17 2 

Ssc.5790.1.S1_at UQCRC1 13 4  7, 9 

Ssc.7201.1.A1_at NDUFS2 4 7  2, 5 

Ssc.9742.1.S1_s_at COX5A 7 8  7 

Ssc.10949.1.S1_at - 3 1 7 

Ssc.10953.1.A1_at NDUFS1 15 1  7 

Ssc.14462.1.S1_a_at CKMT2 2 2 5, 14 

Ssc.15103.1.S1_at NDUFS6 16 7  7 

salmon 

Ssc.1584.1.A1_at MEF2D 4 2 9 

Ssc.4086.1.S1_at YWHAG 3 3 13 

Ssc.5825.1.S1_at RPRD1B 17 1 4 

Ssc.6483.1.S1_at - 14 5 2, 6 

Ssc.11541.1.A1_at - 8 3 1, 9 

Ssc.12247.1.A1_at - 6 2 8 

Ssc.15611.1.S1_at - 5 1 8 

Ssc.16047.2.S1_at STAT5A 12 4 10, 14 

Ssc.18457.1.S1_at DGCR2 14 2 1, 10 

Ssc.23514.1.A1_at - 2 11 3, 4, 10 

Ssc.23986.1.S1_at - 1 1 8 

tan 

Ssc.1228.1.S1_at MARCKS 1 3 5, 16, 17 

Ssc.4141.1.A1_at - 11 3  5, 17 

Ssc.5524.1.S1_at - 9 1  2 

Ssc.7106.1.S1_at CDO1 2 3  18 

Ssc.7117.1.A1_a_at CHODL 13 2  5 
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Table 22 continued.  

Module Hub metabotype
1
 Gene

2
 (SSC)

3
 No. eQTL

4
 (SSC)

5
 

tan 

Ssc.7756.1.A1_at - 4 19 18 

Ssc.8609.1.A1_at PDCD4 14 2 9, 13 

Ssc.22086.1.A1_at MAGED1 X 2 8, 9 

Ssc.28502.1.S1_at - 2 17 8, 9, 12 

white 

1-octadecanoyl-2-(9Z-

octadecenoyl)-sn-

glycero-3-phosphoserine 

- - 23 7 

X314.986.8.33 - - 1 1 

X392.9623.8.33 - - 27 7 

X734.5549.3.21 - - 16 7 

X825.6364.3.05 - - 51 7 

X919.5007.1.99 - - 5 1, 8 

midnight-

blue 

Ssc.4121.1.S1_at - 3 3  18 

Ssc.6354.1.A1_at TGIF1 6 2  18 

Ssc.7957.1.A1_at - 17 1  18 

Ssc.9439.1.A1_a_at FUBP1 6 16 18 

Ssc.13649.1.S1_at BAG3 14 9  2, 18 

Ssc.14224.1.A1_at MAFF 5 2  4 

Ssc.17309.1.S1_at HSPA4 2 1  18 

Ssc.17671.1.S1_at - 17 15 8 

Ssc.25077.1.S1_at - Y,17 1 2 

Ssc.25783.1.S1_at WDR26 10 1 5 

Ssc.26179.1.S1_at MIDN 2 2 2, 11 

saddle-

brown 
Ssc.14406.1.A1_at MRPS6 13 1 18 

sienna3 

X415.3296.3.6 - - 7 2, 6, 17 

X425.3514.3.11 - - 1 13 

X427.366.3.11 - - 1 3 

X439.3289.3.5 - - 6 2 

X449.3499.3.08 - - 8 2 

X451.366.3.08 - - 10 2, 8 

X479.3966.3.03 - - 29 2 
1
Selected hub metabotypes of each module based on the parameters module membership, 

metabotypes significance and connectivity; 
2
corresponding gene of the transcript. In case of 

metabolites as module specific hub metabotypes, it was not possible to assign 

corresponding genes; 
3
Sus scrofa chromosome (SSC) on which the gene is located; 

4
number of expression quantitative trait loci (eQTL) that are associated with the hub 

metabotypes; 
5
location of the eQTL.  
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4.3.5 Verification of candidate genes by eQTL analysis 

For further validation purposes, the positions of significant SNPs, which result from the 

different GWAS were compared with the results of the eQTL analyses. As dependent 

variables, the GWAS comprise various dependent phenotypes (module eigenvalues, meat 

quality or carcass composition traits), whereas the eQTL analyses include expression of 

several module hub metabotypes. The validity is increased if the position of the candidate 

genes found in GWAS and eQTL analyses are identical or at least within the same 

chromosomal location (<1Mb distance).  

As an example, where the results of GWAS and eQTL analysis were not consistent, the 

following section comprises the findings linked to module darkmagenta. Darkmagenta is 

related with MFR and LMCbelly (see Tab. 18) and is significantly influenced by the SNPs 

‘INRA0002232’ (SSC1) and ‘ALGA0110267’ (SSC17). These SNPs are intronic parts of 

the candidate genes LMBRD1 and RAD21L1, respectively. For darkmagenta, the most 

important (one out of 62) transcript ‘Ssc.13780.4.S1_x_at’ (Tab. 22) was selected as a hub 

metabotype and expression phenotype in the eQTL analysis (Tab. 18, 22). The SNP 

‘ASGA0074268’ located on SSC16 was detected as a significant eQTL. But in contrary to 

our expectations, this eQTL or rather neighboured SNPs were not consistent with the 

significant SNPs identified by the GWAS of module darkmagenta.  

Examples, where GWAS and eQTL analyses show consistent results, are listed in Tab. 23. 

In total, eight SNPs have been detected as significant within the GWAS as well as in the 

eQTL analyses. A promising result is the significant SNP ‘DRGA0007481’ located on 

SSC7, which is an intronic part of the candidate gene DST. This marker is significant for 

module white, which is correlated with drip loss. Four (out of six) of the most important 

hub metabotypes for module white (1-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-

phosphoserine, X392.9623.8.33, X734.5549.3.21, X825.6364.3.05) are also significantly 

influenced by SNP ‘DRGA0007481’. This result underlines the importance of this SNP and 

the linked DST gene for drip loss. Other examples of promising candidate genes where 

GWAS findings were confirmed by eQTL results are: a) PTPN21, TTC8 and TRIP which 

are relevant for the phenotype meat color, b) GIMAP2, TMEM213 and GRM8 relevant for 

module midnightblue and c) BMPER relevant for module tan. 
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Table 23: Accordance of SNPs identified for a module correlated with a meat quality 

trait and eQTL identified for different hub metabotypes of the module. Some genetic 

markers are both significant SNP for a module and likewise eQTL for hub metabotypes 

of the regarding module. 
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4.4 Discussion 

Systems biology approach: An integrated analysis of genome, proteome, transcriptome and 

metabolome to elucidate the ‘muscle to meat’ black box 

Meat quality traits are affected by complex interactions of diverse metabolic processes that 

are controlled by several genetic mechanisms. However, there is still a knowledge gap 

regarding the biochemical processes and the interaction of metabolic components, which 

are involved in the muscle to meat conversion. Therefore, the genetic background of meat 

quality is not completely understood. Furthermore, a variety of post-transcriptional events 

and metabolic regulation processes, responding very quickly to environmental changes, 

complicate the elucidation of the relationship between genes and phenotypes. In this study, 

we used a systems genetics approach to describe the general architecture of production 

traits. To uncover genetic variation, we jointly analysed the five underlying omics levels: 

genome based on polymorphism data, transcriptome, proteome, metabolome and phenome 

[49]. While the genome (SNP information) contains the information of existing allele 

variants, the other omics levels indicate, which genes are actually being expressed and 

which pathways are active. Metabolites, proteins and transcripts are essential links between 

genetic information and phenotypic expression. Metabolic traits can be used as more 

accurate phenotypes compared to the conventional performance traits in genetic association 

studies. Thus, the statistical power in the identification of candidate genes is improved and 

less false positive as well as less redundant results are observed [118]. Ala-Korpela et al. 

[195], Kadarmideen [53] and Widmann et al. [147] already stated that systems biology 

approaches are valuable and powerful in identifying key-causal and highly predictive 

genetic variants for complex traits and allow building up complex genetic regulatory 

networks. 

Benefit of network analysis in elucidation of metabolic background of meat quality 

According to Fontanesi [110], network reconstruction methodologies that based on systems 

genetics concepts are useful to clarify the complexity of multi omics information and to 

identify the linking of omics components of different metabolic stages among themselves. 

Following this assessment [110], we applied a network analysis to handle our multi omics 

data set and to address the challenge of the ‘large p, small n’ situation by summarising a 

network of modules to reduce the complexity of a data set, which is thereby analysed with 
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greater statistical power [164]. Appling hierarchical clustering, sets of different 

metabotypes are assigned to modules and a subsequent database query allows the functional 

annotation of the modules to KEGG pathways and GO terms. Based on this, a module can 

be considered as a condensed metabolic phenotype. By choosing several module 

eigenvalues as intermediate independent phenotypes, the multi omics data set was adjusted 

for irrelevant and redundant variables and the procedure weakened the ‘large p, small n’ 

problem by decreasing the number of dependent variables (p). Thereby, focusing the 

network analysis on modules (and their highly connected intramodular hub metabotypes), 

contribute to a biologically meaningful data reduction scheme.  

Based on the identification of modules using a hierarchical clustering process, it can be 

assumed that the metabotypes within a module are co-regulated and might correspond to 

the same biological pathways. This functional connection is useful for the annotation of 

unknown metabotypes based on their annotated neighbours within a network [183,237]. For 

example, the simple metabolite search of database METLIN gives some evidence that 

several non-annotated metabolites of module white also belong to the category of 

‘sphingolipids’ just like the most important hub metabolite of module white (Tab. 22). On 

the other hand, the module annotation is only based on the annotated metabolic 

components. It can be expected that module annotation considering all quantified metabolic 

components would give a more precise view into the relevant metabolic background.  

Another critical point in the functional annotation of the modules, estimated with 

connectivity-based approach WNA, is that the procedure does not allow overlapping 

metabolic components. This fact is contrary to the assumption that metabolic components 

are very likely actors in many different pathways [238]. In contrast to WNA, the 

independent component analysis (ICA) [239], a method of extraction of expression patterns 

in order to identify sets of co-regulated genes, allows overlapping genes between modules. 

For this reason, ICA is likely to better reflect biological reality than methods that partition 

genes into distinct clusters like WNA [238]. Moreover, the WNA calculated with R 

package WGCNA does not allow the illustration of causal connection between the 

metabotypes within a module. Although the parameters MM and connectivity give 

evidence about the importance of the single metabotypes, the procedure does not allow 

predictions whether component A affects component B or if A is the result of the 

metabolisation of B. The knowledge of causal relationships between the metabotypes is 
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essential for the elucidation of metabolic networks [240]. To get a deeper understanding of 

the causal relations and interactions of the metabolic components, further investigations are 

needed. For this purpose, it will probably be necessary to profile the metabolic components 

over a longer time frame in the individuals. 

New insight in metabolic processes influencing drip loss  

As indicated in Fig. 20, modules sienna3, darkolivegreen, midnightblue, darkgrey and 

white are predominantly significant correlated with one or more meat quality traits and 

show no relation to investigated carcass composition traits. Moreover, Tab. 18 

demonstrates that these modules predominantly include metabolites in contrast to the other 

modules, which mainly comprise transcripts. In contrast to transcripts, metabolites 

represent final products of metabolic processes and thereby are more likely related to meat 

quality traits than to carcass composition traits [118,120]. From a physiological perspective, 

it can be speculated that these modules describe biochemical processes during meat aging, 

which are influenced by many environmental effects particular at the time of slaughtering.  

Based on the KEGG and GO databases it was possible to allocate the modules to different 

metabolic pathways and molecular functions. At first glance, several identified pathways 

are associated with diseases and metabolic defects, but are rarely directly related to 

biochemical processes involved in muscle to meat conversion or meat quality. This can be 

expected, because the KEGG and GO databases contain a large number of humane 

diseases, which are linked to energy metabolisms in muscle like ‘Protein processing in 

endoplasmic reticulum’ and ‘Oxidative phosphorylation’. However, it should be mentioned 

that, despite of the existence of such functional links, the transfer of physiological aspects 

of human diseases to meat quality is not always plausible. 

In our analysis, module white, which is correlated with drip loss, is enriched for KEGG 

pathways ‘One carbon pool by folate’, ‘Tyrosine metabolism’ and ‘Fructose and mannose 

metabolism’. The most significant identified GO terms of module white are ‘intrinsic 

apoptotic signalling pathway in response to osmotic stress’ (BP), ‘sarcoplasmic reticulum 

membrane’ (CC) and ‘methylenetetrahydrofolate dehydrogenase (NADP+) activity’ (MF). 

Folate or folic acid, a B vitamin, is an essential component of the one-carbon metabolic 

pathway, which provides carbon groups for nucleic acid synthesis and for numerous 

methylation reactions, like DNA methylation [241]. The KEGG pathway ‘One carbon pool 
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by folate’ describes the metabolism of cofactors and vitamins. Methylenetetrahydrofolate 

dehydrogenase (NADP+) is a central enzyme in this metabolism catalysing the 

metabolisation of different vitamins (http://www.genome.jp/dbget-

bin/www_bget?map00670). Together with selenium, folic acid has an antioxidant effect 

and is used as nutritional supplement for a positive influence on the antioxidative status of 

meat and on meat quality [242]. A number of studies have evaluated effects of folic acid 

and selenium on drip loss and meat color [243,244]. It is speculated that organic selenium 

reduces drip loss by maintaining integrity of the cell membrane and therefore leads to 

increasing water holding capacity of the muscle. According to Traore et al. [245], higher 

drip loss is associated with protein oxidation that can be explained as covalent modification 

of a protein induced either directly by reactive oxygen species or indirectly by reaction with 

secondary products of oxidative stress. However, the not-essential alpha-amino acid 

tyrosine or rather the KEGG pathway ‘Tyrosine metabolism’ is involved in the protein 

oxidation affecting drip loss.  

In case of modules saddlebrown, tan, sienna3, midnightblue and darkgrey, correlated with 

meat quality traits pH1, pH24 and meat color, there is only little overlap in functional 

annotation. Only modules tan and midnightblue are consistently enriched for genes and 

metabotypes of the KEGG pathway ‘Protein processing in endoplasmic reticulum’. Post-

mortem processes in the endoplasmatic reticulum like lipid and protein oxidation are known 

to produce off-odours, discoloration and unacceptable flavors associated with rancidity 

[246]. These deficits in meat quality are indicated by parameters color and pH in meat. 

Moreover, further modules are characterised by the same KEGG pathways. For example, 

two modules are associated with the metabolic processes ‘MAPK signaling pathway’, 

‘Dilated cardiomyopathy’ and ‘Antigen processing and presentation’, respectively. 

Therefore, these pathways are likely to play an important role in effecting meat quality and 

carcass composition traits. 

Genome-wide association analysis of pathway related modules 

There are various reasons for applying the GWAS for modules presenting condensed 

metabolic information instead of single omics variables: (1) the reduced ‘large p, small n’ 

problem by analyzing a smaller number of ‘metabolic traits’ and (2) redundant results are 

avoided and computing capacity can be saved. In humans, several metabolite or protein 
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based GWAS have demonstrated that, in most cases, markers in protein encoding genes are 

associated with many metabolic components (usually belonging to the same family or 

included in the same pathway in targeted bio fluids) [110]. Thereby, it is beneficial to 

summarise metabolic components that belong to the same category or metabolic process 

into modules instead of analyzing hundreds of thousands of ‘traits’ independently and 

producing a plethora of partly redundant associations [49]. GWAS for network based 

modules, so-called metabotypeGWAS (mGWAS), save computing capacity, reduce the 

complexity of the systems biological data set and allow calculating genetic associations for 

metabolic pathways instead of single omics variables. Based on mGWAS it is possible to 

identify direct links between the function of genes and metabolic pathways, even if the 

functional interpretation of the results can be complicated by the ‘level’ in which the 

relevant metabotype information is placed (transcript, protein or metabolite). The involved 

genetic variants usually explain a higher fraction of the observed genetic variance for the 

investigated metabolic process than for low heritable production traits. Nevertheless, the 

variants are also associated with complex traits like drip loss (even if it is not as strongly as 

for the specific metabolic pathway) and provide information to understand the etiology of 

the target trait [247–249]. 

In mGWAS in livestock, significant markers have been reported even if a lower number of 

individuals was analysed compared to common GWAS performed in humans. This might 

be due to the fact, that in animals it is usually easier to control environmental factors and 

population stratification/pedigree as well as to identify potential sources of variability to be 

included in the models. These assumptions confirmed the perspective that it is promising to 

combine multi omics approaches with genomic analyses. In this way, complex omics data 

are useful to dissect traditional production traits and to describe new traits close to the 

metabolism of individuals [110].  

Until now, a lot of research was done in the field of systems genetics in livestock to 

increase the information density between genome and phenotype by consideration of 

additional omics levels. However, most studies analyse only one further omics level (either 

transcripts, proteins or metabolites). For example, population-based metaboliteGWAS have 

been reported so far in performance-tested pigs, using targeted metabolomics on plasma 

[223], and in dairy cattle, using untargeted metabolomics on milk [250]. Related to this, 

Ponsuksili et al. [247] formed modules based on a network analysis of expression data 
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(transcripts) and performed eQTL analyses for the modules to identify common regulators 

of muscle and meat properties in pigs. 

 In our GWAS approach of the meat quality traits and modules, we adjusted for population 

stratification by including PCs as fixed effects into the GWAS model (EIGENSTRAT) as 

suggested by Aulchenko et al. [206] and applied among others by Becker et al. [207], 

Bergfelder-Drüing et al. [251] and Utsunomiya et al. [208].  Depending on the investigated 

phenotype (meat quality traits or modules), the models contain one up to 24 PCs, which 

lead to λ-values close to one. From these results, we conclude a sufficient elimination of 

population stratification. However, it remains questionable if a large number of PCs in the 

statistical model will lead to a substantial reduction of useful genetic variation. The Du × Pi 

population used in this analysis was formed in order to provide a distinct genetic variation 

in drip loss. In consequence, the selected animals showed a large variation in all meat 

quality traits.  

In contrast to meat quality phenotypes and modules, for carcass composition traits the 

disturbing effects of population stratification were less important. Regarding the resulting 

inflation factors λ, the GRAMMAR approach was sufficient.  

In the final step of both GWAS approaches (GRAMMAR, EIGENSTRAT), the q-value 

statistics, which is based on the FDR, was applied in order to correct for multiple testing. 

Storey and Tibshirani [210] have demonstrated that the FDR provides an acceptable 

balance between statistical significance and statistical power to detect true effects. In the 

present study the relaxed significance threshold was set to q≤0.10, as it has been 

recommended by Benjamini und Hochberg [211]. 

New candidate genes for meat quality and carcass composition 

The main objective of this study was to identify candidate genes for meat quality and 

carcass composition traits using both conventional production traits as well as enriched 

metabolic modules as phenotypes in GWAS. In total, 28 intronic SNPs were found (Tab. 

21, p. 132). In order to concentrate this information on the most reliable or promising 

results, the following section is focussed on candidate genes and genomic regions whose 

importance was confirmed by overlapping GWAS results using enriched and conventional 

phenotypes. Moreover, only modules were used, which were significantly correlated with at 
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least one conventional phenotype. Relevant candidate genes can be arised from congruent 

genomic regions (positional overlap) or from connected pathways (functional overlap). As 

an additional verification step, enriched metabolic modules can be characterised by their 

most important hub metabotypes, which were used as phenotypes in eQTL analyses. 

For meat quality traits, genomic overlapping arised exclusively from connected pathways 

of genes detected for conventional or enriched metabolic phenotypes.  

For drip loss and the related metabolic processes presented by module white, three 

candidate genes on SSC2 (LGR4 and CD44, associated with drip loss) and SSC7 (DST, 

associated with module white) were detected (Tab. 21). Despite of the positional 

differences, the overlapping functional annotation of these genes leads to the assumption 

that processes and characteristics responsible for interactions between cells and the 

conformation of membranes and the extracellular matrix play an important role in the 

manifestation of drip loss.  

The meaning of gene ‘Leucine-Rich Repeat Containing G Protein-Coupled Receptor 4’ 

(LGR4) is of particular meaning because two of the most significant SNPs of drip loss are 

located within intronic regions of this gene (Tab 21). LGR4 is expressed in proliferating 

cells of diverse tissues, including adult stem cells and progenitor cells. This gene is coding 

for the transmembrane protein LGR4 that serves as receptor binding the ligand R-spondin 

[252]. Transmembrane signaling as implemented by receptor proteins like LGR4 plays a 

critical role in development of the male reproductive tract, eyelids, hair and bone and in 

different diseases. Furthermore, Glinka et al. [252] provided evidence for an important role 

of LGR4 on endocytosis and membrane permeability. Wimmers et al. [131] stated that 

transcripts being up-regulated at high drip loss in pigs belong to groups of genes 

functionally categorized as genes of membrane proteins, signal transduction, cell 

communication and response to stimulus. This assumption goes along with our observation 

of the promising candidate gene LGR4 affecting drip loss. CD44, the second candidate 

gene for drip loss located on SCC2, also codes a transmembrane glycoprotein acting as cell 

surface adhesion molecule involved in cell-cell and cell-matrix interaction [253]. Until 

now, there are no other studies presenting the meaning of LGR4 and CD44 as candidate 

genes for drip loss or meat quality in general. 
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Module white is significantly (p≤0.02) positive correlated (r=0.25) with drip loss and the 

functional annotation of the detected gene ‘dystonin’ (DST) on SSC7 shows clear 

accordance with genes LGR4 and CD44. DST encodes a member of the plakin protein 

family of adhesion junction plaque proteins and is expressed beneath others in neural and 

muscle tissue (www.genecards.org). According to Damon et al. [254], DST is enriched in 

the cluster ‘extracellular matrix part’ of the CC GO terms characterised in MLL in LW pigs 

compared to Basque pigs. DST is involved in matrix assembly, and its targeted expression 

strongly affects the collagen network [255]. Dalpe et al. [256] showed that DST deficient 

mice exhibited weak skeletal muscle cytoarchitecture. Thus, all these biological processes 

are in accordance with the lean meat properties of the LW compared to the Basque pigs, 

namely their elevated collagen content and shear force value, and lower tenderness score 

[257]. The meaning of DST as potential candidate gene is confirmed by the successful 

verification of DST by eQTL analysis of hub metabotypes of module white (see Tab. 23). 

The significant intronic SNP in DST ‘DRGA0007481’ was also identified as significant 

eQTL for four hub metabolites of module white.  

Meat color is a second meat quality trait, where functional overlapping was observed. For 

this trait and the related module lightgreen, two and three candidate genes on SSC8 and 7 

were detected. The importance of candidate genes ‘Ubiquitin Conjugating Enzyme E2 T’ 

(UBE2T) and ‘protein phosphatase 1 regulatory subunit 12B’ (PPP1R12B) detected for 

meat color, is clarified by the functional overlapping to the genes ‘Protein Tyrosine 

Phosphatase, Non-Receptor Type 21’ (PTPN21) and ‘Tetratricopeptide Repeat Domain 8’ 

(TTC8) associated with module lightgreen. All these genes are involved in signal 

transduction and code for different phosphatase proteins or related components responsible 

for the conformation or stability of these proteins (www.genecards.org). According to 

Herault et al. [258], gene PPP1R12B that is involved in muscle contraction, is 

overexpressed in MSM in pigs and is associated with GO BP terms ‘Regulation of muscle 

contraction’ and ‘Signal transduction’. MSM muscle is characterised by higher proportion 

of type A myofiber and lower proportion of Type IIb myofiber and higher oxidative 

capacity compared to MLD [258]. The myofiber composition and the oxidative potential 

impact the meat color. Based on the small distance of 85,050 base pairs, we assumed that 

genes PPP1R12B and UBE2T are potentially in LD on SSC8 and constitute a promising 

location influencing meat quality and the associated cellular and metabolic processes. 

Genes ‘Protein Tyrosine Phosphatase, Non-Receptor Type 21’ (PTPN21) and 



Study 3 – Systems biology approach 

146 

 

‘Tetratricopeptide Repeat Domain 8’ (TTC8), detected for module lightgreen, are located in 

a distance of 347,981 base pairs on SSC7. The protein encoded by the gene PTPN21 is a 

member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling 

molecules that regulate a variety of cellular processes including cell growth, differentiation, 

mitotic cycle, and oncogenic transformation (www.genecards.org). 

Meat color is significantly correlated with drip loss (r=-0.4) so that connected pathways 

between these two meat quality traits can be expected. As already described, drip loss (via 

module white) is related with KEGG pathway ‘Tyrosine metabolism’ (see Tab. 19). This 

connection is reflected by gene PTPN21 that is involved in tyrosine metabolism and that 

was identified based on the GWAS of module lightgreen. The importance of the candidate 

genes identified for module lightgreen and indirectly for meat quality was verified by the 

eQTL analysis of six hub players of lightgreen. The three SNPs ‘DRGA0008163’, 

‘DRGA0008172’ and ‘ALGA0044982’, intronic located in genes PTPN21, TTC8, TRIP, 

were also revealed as significant eQTL by eQTL analysis of six hub metabotypes of 

module lightgreen (see Tab. 23, p. 137).  

In contrast to meat quality indicators, for carcass composition traits positional as well as 

functional overlap was found.  

Potential candidate genes for carcass composition traits and the related modules were 

mainly identified on SSC5, 13 and 17. As can be seen in Fig. 22, the chromosomal location 

on SSC5 is the most interesting region because candidate gene ‘B-cell translocation gene’1 

(BTG1) is significantly associated with BFT, LMCbelly and LMCbonn and the corresponding 

intronic SNP ’DRGA0006183‘ is potentially in LD with a second promising SNP. This 

SNP (‘H3GA0017095’) indicates candidate gene ‘Early endosome antigen 1‘ (EEA1) that 

is associated with module salmon, which is strongly correlated with all investigated carcass 

composition traits. In that regard, salmon is a module which condenses all metabolic 

processes, which are related to carcass composition traits and is directly or indirectly 

related to genes BTG1 and neighboured gene EEA1. In contrast to standard GWAS, 

combining all the omics levels given in Fig. 22 increases the information content and 

thereby the statistical power of the analysis. Consequently, it can be concluded that the 

genomic region harbouring the genes EEA1 and BTG1 is a very reliable genomic indicator 

for carcass composition traits within our Du x Pi population. 
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Genes of the BTG family are involved in cell growth, differentiation and survival rate 

[259]. Comparing LW vs. Meishan pigs, Mo et al. [260] identified significant differences in 

expression of BTG2. Moreover, a GWA study in F2 LW × Meishan pigs resulted in 

significant associations between BTG2 and carcass composition traits BFT, LMC and MFR 

[260]. Sun et al. [261] also reported that the BTG2 and BTG3 expression is strongly 

upregulated in subcutaneous fat tissue in Chinese Erhualian pigs. In contrast to this 

observation, in a catabolic state the BTG1 expression in fat tissue is significantly 

upregulated in Yorkshire pigs [262]. Gene EEA1 plays a role in signaling pathways of 

phagosomes and is involved in endocytosis, those activity varies widely in different breeds 

(Du, Pi, LR and LW) [263]. As shown in Tab. 19 (p. 124), module salmon is characterised 

by several signaling pathways, like the ‘Mitogen-activated protein kinase (MAPK) 

signaling pathway’ and 'Neutrophin signaling pathway’ KEGG terms. This pathways 

control cell growth and differentiation and the manifestation of meat to fat ratio in many pig 

breeds [264]. Therewith, the functional annotation of module salmon goes along with the 

physiological context of the identified candidate genes of module salmon. 

 

 

Figure 22: QTL region on Sus scrofa chromosome 5 with promising candidate genes 

for carcass composition traits. MFR - meat fat ratio; BFT - backfat thickness; LMC - 

lean meat content measured by formula of Grub in belly (LMCbelly) and by Bonner 

formula (LMCbonn); BP – base pairs; SSC5 – Sus scrofa chromosome 5; The 

declaration of gene symbols in the light grey boxes can be obtained from Ensembl or 

http://www.ncbi.nlm.nih.gov/gene. 
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4.5 Conclusion 

As has been shown for meat quality or carcass composition traits, the reflection of 

functional and positional overlapping GWAS results of conventional traits and enriched 

metabolic modules as phenotypes is a useful instrument to improve the reliability and the 

physiological plausibility of detected QTL. This approach can be extended by eQTL for 

hub metabotypes, which are the key regulators in the metabolic modules. It has been 

demonstrated for meat quality traits that the importance of candidate genes can be validated 

by positional overlap of QTL (conventional and enriched module phenotypes) and eQTL of 

module hub metabotypes.  

In case of carcass composition traits, functional as well as positional overlap was relevant. 

However, there was no accordance between intronic SNPs indicating candidate genes 

(result of GWAS) and eQTL for hub metabotypes of specific modules (result of eQTL 

analyses). One reason might be that the underlying Du x Pi population was particular 

selected for divergent phenotypes for drip loss. Although there is a moderate correlation to 

meat quality, the variation in carcass composition traits is expressed to a lesser extent. 

This might be one reason why the results of GWAS and eQTL analyses did not overlap. 

Nevertheless, regarding carcass composition traits, the meaningful functional and positional 

overlap of QTL results for conventional and enriched module traits provides reliable 

information for the physiological importance of genes and genomic regions. 
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Introduction in systems genetics and aims of the thesis 

The muscle to meat conversion is a complex physiological process which strongly affects 

meat quality traits in pigs. Although meat quality traits are strongly processed in pigs, today 

there is still a lack of knowledge concerning the biochemical processes particular during 

early meat aging. Besides external environmental factors like slaughter conditions, feeding 

system and other management effects, mainly the individual genetic background is 

responsible for metabolic efficiency of meat conversion under given conditions. In 

addition, the complex underlying biological pathways of these metabolic processes are also 

responsible for the expression of related meat quality and production traits. 

Systems biological approaches have the aim to get holistic insights in complex traits. For 

this purpose, the system is perturbed, the responses are monitored, multi-level data are 

collected and analysed and hypotheses are formulated, which describe the whole metabolic 

process with mathematical models [55]. In general, a systems biology approach provides a 

more comprehensive picture of the processes effecting complex traits [1]. Due to Fontanesi 

[110], “the complexity of biological systems requires unconventional approaches to 

describe the interactions among the different levels of biological information and their 

dynamics”. Against this background, omics analyses have the potential to revolutionize 

quantitative genetics in livestock production by providing a deeper understanding of the 

metabolic processes underlying the performance traits, investigating genetic × environment 

interactions and identifying genetic markers for low heritable performance traits based on 

omics phenotypes [53,114].  

After comprehensive preliminary investigations in the Bonner Du × Pi population, the 

present doctoral thesis has the objective to integrate all omics levels in order to elucidate 

the genetic and metabolic background of meat quality and carcass composition traits, 

paying special attention on drip loss. In the first step, a metabolite study (Chapter 2) with 

the aim to identify potential metabolite bio indicators for drip loss, pH1, pH24 and meat 

color was performed. In the following studies, the number of omics levels was extended 

leading to an increased biological and statistical complexity. In the second study (Chapter 

3), the omics levels genome, proteome and metabolome were combined and analysed as 

intermediate phenotypes in GWAS to reveal promising candidate genes for WHC. In the 

final study (Chapter 4), a holistic omics approach was performed, combining genome, 
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transcriptome, proteome and metabolome, to get comprehensive insights into the metabolic 

processes related to meat quality and carcass composition and to identify genetic markers 

based on GWAS for combined metabolic traits.  

The underlying basis of this thesis was a data set that characterises the whole metabolic 

background of meat quality and carcass composition in F2 Du × Pi pigs. To my knowledge, 

such a comprehensive omics data set is unique in the genomic research area of pork quality. 

This applies especially for the untargeted metabolite profiling data set in study 1, which 

comprises a very large number of quantified metabolites.  

Against this background, it is not surprising that mGWAS lead to the identification of many 

interesting genes and genomic regions, which are important for the target traits. Beyond the 

single GWA approaches described in chapter 1, we focused in the following chapters 3 and 

4 on various aspects how to combine the different omics information in order to find 

reliable QTLs for the target traits. In this regard, statistical tools and informational external 

database were available, which were used be used for data analysis and biological 

interpretation of the results. However, particular in the construction of enriched phenotypes 

that condense the large amount of expression data and the biological interpretation of these 

intermediate traits no generally accepted standards are available. Finally, some details of 

the applied methods can be regarded as heuristic or prototype approaches, which need 

further verification. 

Selection of the best metabolite indicators for drip loss based on different statistical 

approaches 

In the first published study (Chapter 2), different statistical approaches (correlation analysis, 

PCA, WNA and RFR) were applied to handle the ‘large p, small n’ problem and to 

determine the most predictive metabolite biomarkers for different meat quality traits. 

Despite various available statistical tools, it is still a challenge to handle such large data sets 

with 1,993 detected and quantified metabolites but only a limited number of 97 animals 

without the risk of unacceptable overfitting. 

Besides univariate statistical analyses (e.g. ANOVA), there is a wide variety of machine 

learning methods (e.g. ensemble methods, support vector machines, partial least squares-

discriminant analysis, linear discriminant analysis) that are useful in the analysis of omics 
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variables. In our studies, the machine learning and network based methods RFR and WNA 

were used. RFR belongs to the family of ensemble methods (e.g. bagging [163] and 

boosting [265]) and became a very popular approach in classification and discrimination in 

various applications. For example, RFR is widely used in untargeted omics approaches for 

the identification of reliable bio indicators [266,266,267]. Regarding the RFR procedure, in 

study 1, the Hothorn´s conditional RFR [176] was applied that calculates the VI 

significance based on an implemented permutation test according to the principle of MDA 

(see Gini importance in [163]). As already described in Welzenbach et al. [192], leads this 

selection step to a reduced number of explanatory variables in the model that avoids 

overfitting and ensures a smaller prediction error. Important disadvantages of RFR in 

comparison to WNA are the limited possibilities to quantify network parameters that allow 

investigating metabolite-metabolite interactions. RFR provides the parameter VI, which can 

be used as a statistical indicator in order to characterise the prediction accuracy of this 

parameter with respect to the target traits. Although the parameters are based on different 

statistics (sampling vs. Pearson correlations), VI values in RFR have a similar validity and 

meaning than MS values in WNA. However, both parameters do not allow assigning 

metabolites to functional pathways. In order to lower this problem, WNA offers the 

parameter MM, which reflects the importance of a metabolite, taking into account 

metabolite-metabolite interactions and the role and position of specific metabolites within 

the network. 

Tested by trait specific multiple regression analyses, the machine learning method RFR 

selected the most predictive ten metabolite biomarkers. Moreover, the prediction accuracy 

also depends on the investigated trait. In general, prediction based on metabolite profiles is 

very challenging especially in case of drip loss and it worked best for pH1 (Tab. 10, p. 62).   

In addition, RFR procedures partly generate ‘odd unexpected results’ in certain cases. Even 

in the conditional RFR, Boulesteix et al. [184] assess that in case of specific data structure 

or predictor type, there is an increased risk of biased VI values. In conclusion, the usage of 

RFR in biomarker discovery in metabolomics seems to be very promising, but due to the 

complex resampling schemes in construction of the decision trees the physiological 

interpretation of the most predictive variables is critical.   
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Besides the statistical methods, the choice of the appropriate tissue for metabolite profiling 

is crucial for the successful identification of bio indicators. It is important to record 

metabolite profiles in tissues or fluids that are responsible for the manifestation of the target 

trait. In that regard, metabolite profiling in the muscle tissue of important carcass cuts like 

MLD, as we have it done in our studies, is an obvious procedure to characterise meat 

quality. In a similar context, Muroya et al. [120] stated that in fast and slow type muscles in 

pigs, different metabolites are the best indicators for meat quality parameters. In addition to 

the choice of the appropriate tissue, the time point of metabolite profiling is of great 

importance. Because the metabolome will undergo a rapid change, it is essential to assess 

the time point of metabolite profiling as precisely as possible. That means the metabolome 

should be profiled at that time point, in which crucial metabolic processes affecting the trait 

of interest occur. Rohart et al. [118] performed the metabolite profiling a few weeks before 

slaughtering and did not identified predictive metabolite indicators for meat quality in the 

investigated pigs. Later, these authors conceded a mistake and traced their bad results to the 

too early time point of metabolite profiling. In contrast, in the present study, metabolites 

were quantified in MLD samples, which were collected and snap-frozen immediately after 

exsanguination. At that time, the rate of glycolysis and oxidative processes and the quantity 

of related metabolites may be used to derive ultimate meat quality parameters.  

Consequently, in our study metabolite profiling is based on a reasonable experimental 

design regarding the tissue and time point of measurement. However, there are still two 

critical points remaining. First, the metabolite profiling procedure, based on GC-MS and 

LC-QTOF/MS performed by Metabolomic Discoveries GmbH leaves open the question if 

the metabolites are endogenous or xenobiotics (see section 1.2.4, p. 27). Only endogenous 

metabolites that are produced directly by the organism provide insights in the underlying 

metabolic processes of specific traits. Xenobiotics have their origin in the environment of 

the individuals and are absorbed by the organism. Thereby, these metabolites might be 

environmental indicators but distort the view into the metabolic programming independent 

of the environmental conditions. The manual annotation of one non-annotated metabolite 

with the molar mass of 362.0154.4.99 in METLIN showed with a negligible small tolerance 

of two ppm that this metabolite figures the chemical compound Coumaphos. This substance 

has an antiparasitic effect and is applied as insecticide against ectoparasites in swine. The 

metabolite Coumaphos was selected as predictive biomarker for drip loss (identified by 

correlation analysis) and pH1 (identified based on MS in WNA). Because the manual 
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annotation in METLIN is affected by some risk of error, there is a need to check if the 

described metabolite actually is the substance Coumaphos. Xenobiotics provide a huge 

field of new applications in the investigation of individual × environment interaction. But in 

accordance with the objective to analyse the metabolic background of performance traits, a 

distinction should be made between xenobiotics and endogenous metabolites.  

In general, the limitations in metabolite annotation are an important unsolved problem in 

evaluation of metabolomics analyses. In the present study, only 20% of the detected and 

quantified metabolites were annotated. In fact, the biological function of the major part of 

the selected, most predictive metabolites remains unknown. Thereby, it can be expected 

that many metabolic pathways, which are implicated in the manifestation of meat quality 

were not detected. However, it can be speculated that the highly ranked non-annotated 

metabolites are linked to annotated metabolites so that the amount of undetected pathway is 

reduced. Nevertheless, it can be postulated that enhanced technical opportunities for the 

metabolite annotation would lead to substantial improvements in the detection of biological 

pathways. 

Another bottleneck effect in metabolomics is caused by the limited technical capabilities in 

metabolite detection and quantification. Although currently GC-MS and LC-QTOF/MS are 

the most precise applications in metabolite profiling, it can be assumed that only a small 

percentage of the actually present metabolic components can be measured. In particular, 

small molecules might be hidden by bigger components and thereby often stay undetected. 

This is another bottleneck effect in metabolomics, which limits the possibility to uncover 

all relevant or at least the most predictive metabolites. 

GWAS based on metabolic traits 

In the second and third study (Chapter 3 and 4) the focus was on the disclosure of the 

genetic and metabolic background of drip loss and other meat quality parameters as well as 

carcass composition traits. As already mentioned in Welzenbach et al. [144], the 

information flow from genotype to phenotype is not linearly dispersed pursuant to the 

variety of possible post-transcriptional events. Moreover, metabolic regulation processes 

responding very quickly to environmental changes complicate the elucidation of the genetic 

background. Kadarmideen [53] and Widmann et al. [147] clarified that holistic omics 
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approaches are beneficial and powerful in the identification of reliable candidate genes in 

complex traits. Therefore, in line with omics approaches, the GWAS in studies 2 and 3 

were not only applied for standard performance traits like drip loss and LMC but also for 

metabotypes, like proteins, metabolites and transcripts or combined metabolic traits. It can 

be expected that metabotypes are products of certain metabolic processes and hence are 

strongly associated with conventional phenotypes continuously recorded in animal 

production [118,161]. Therefore, metabolic traits constitute essential links between genetic 

information and phenotypical expression of complex performance traits and might be used 

in GWAS to improve the statistical power and to reveal less false positive, redundant 

results [144]. This means, metabotypes potentially are more convenient in the estimation of 

the individual genetic potential than the conventional target phenotypes itself. Moreover, 

the mGWAS resulted in genetic variants that provide information to comprehend the 

etiology of the traits of interest [110]. 

It can be hypothesized that both single metabolites and proteins as well as enriched 

metabolic traits, as they have been analysed in study 2 and 3, are appropriate traits to 

investigate the genetic background and to understand the etiology of complex traits. In 

study 2, metabolites and proteins were selected based on their belonging to specific 

pathways that are related to drip loss. The pathway analysis was performed based on 

KEGG annotated metabolites and entrez gene ID annotated proteins. This step led to a 

drastic reduction of adaptable metabolites and proteins, because their biological functions 

and IDs are still unknown to a large extent. Because of this severe bottleneck, the number 

of utilizable metabolites drops from 1,865 to only 128 and it can be expected that many 

metabolites with strong influence on drip loss were excluded. The protein profiling was 

based on a targeted approach. For this reason the number of quantified proteins was 

relatively small right from the beginning of the analysis. Finally, in the enrichment analysis 

35 entrez gene ID annotated proteins were included. 

One important statistical problem of the enrichment analysis is the detection of 

overrepresented groups of metabotypes with small effects. Based on simulation results, 

Michaud et al. [196] verified that the underlying function of the applied enrichment test in 

study 2 (Function geneSetTest; Package limma version 3.30.8) has presumably enough 
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power to detect overrepresented groups of metabotypes, even if the effects are very small. 

This argument can be used to explain, why the enrichment analysis has resulted in 

functional sets of metabotypes although correlation coefficients between individual 

metabotypes and drip loss did not significantly deviate from zero (Tab. 12, p. 81).  

Based on the significant enriched pathways, we used the related metabolites and proteins as 

metabolic traits in GWAS to elucidate the genetic background of drip loss. As mentioned 

above, the potential of these GWAS in study 2 is constrained because of the reduced 

number of metabolites and proteins, which were annotated. Because of this preselection, the 

GWAS results presumably reflect only a fragmentary picture of the complex metabolic 

processes.  

This constraint was partly removed in study 3, where all detected and quantified 

metabolites, proteins and transcripts, regardless of the annotation, were condensed to 

modules. The modules were annotated and the most important modules were selected as 

metabolic traits for meat quality and carcass composition traits. There are various reasons 

for applying the GWAS for enriched modules reflecting condensed metabolic information 

instead of single omics variables: 

1. The entire metabolic information was used to figure out the metabolic and genetic 

background of meat quality and carcass composition.  

2. By analyzing a smaller number of metabolic traits, the ‘large p, small n’ problem 

was reduced, redundant results were avoided and computing capacity was 

preserved.  

3. The WNA also provided information about the relationships within and between the 

modules. Even if the parameters MM and connectivity did not provide directed 

information about the interactions of the metabolic components, the parameters 

allowed the identification of the most important actors of a pathway.  

Based on the mGWAS approach it was possible to identify direct links between the 

function of genes and metabolic pathways. However, because of the complex interactions 

between metabotypes of the different omics levels, a detailed functional interpretation of 

the results is hardly possible. Nevertheless, the WNA based on different data sets of holistic 
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omics profiling that pictured the underlying metabolism to a large extent. To my 

knowledge, there are no other investigations creating metabolic traits based on 12,235 

transcripts, 1,993 metabolites and 40 proteins with the aim to elucidate the genetic and 

metabolic background of production traits in livestock. In addition, the network approach 

provided a solution to handle the missing annotation problem. That means, based on the 

connectivity within a module, the function of non-annotated metabotypes was partly 

uncovered by clustering these components to metabotypes with known functions. 

Important metabotypes/pathways for drip loss 

Based on all applied omics approaches it was possible to confirm the meaning of energetic 

processes like glycolysis/gluconeogenesis, citrate cycle and PPP, which regulate muscle 

physiology and determine the final meat quality [9,199]. The enrichment analysis (Chapter 

3) revealed that a higher glycine content indicates a higher rate of glycolytic processes. A 

high glycolytic potential is known to be related with high drip loss [144]. The relationship 

between elements of glycolysis/gluconeogenesis like glycine and drip loss in meat was 

already illustrated by Lim et al. [200]. They described the observation of higher drip loss in 

pork in the case of increased glycine level in porcine skeletal muscle cells. Moreover, the 

enzymes FBPase and TPI1 and the metabolite glycerone-p are also agents in 

glycolysis/gluconeogenesis and thereby are linked to drip loss. Beneath glycolysis, the 

enrichment analysis also highlighted the meaning of pyruvate and methane metabolism that 

affect the muscle to meat conversion and directly affect drip loss [9,199]. The proteins 

PKM and PGAM2 and the metabolite DG3P are equally key players of 

glycolysis/gluconeogenesis and pyruvate metabolism and promising indicators for drip loss.  

In contrast to the glycolysis related components that are responsible for the whole complex 

of meat quality traits, several lipids seemed to be much more specific for drip loss. The 

various performed statistical procedures in study 1 (Pearson correlation analysis, PCA, 

RFR and WNA) identified a few key metabolites that mainly pertain to the family of lipids 

(GPLs, sterol lipids, prenol lipids). In mammalian cell membranes, GPLs are the most 

important lipids [187]. The enrichment analysis in study 2 also revealed the sphingolipid 

metabolism that belongs to the GPL metabolism, as most important pathway for drip loss. 

In cell fluid dissolved GPLs and sphingolipids prove the link between drip loss and rate of 
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processes of sphingolipid metabolism [187,188]. Hub actors of this pathway are ceramides, 

phosphoethanolamines and serines.  

The results of study 3 cannot be integrated in the known metabolic background of drip loss 

so easily. According to the module annotation, drip loss was associated with KEGG 

pathways ‘One carbon pool by folate (folic acid)’, ‘Tyrosine metabolism’ and ‘Fructose and 

mannose metabolism’. While the metabolism of fructose and mannose still fitted in the 

physiological background of energetic processes, the tyrosine metabolism proved another 

factor that affects drip loss. The not-essential alpha-amino acid tyrosine is involved in 

protein oxidation. According to Traore et al. [245], higher drip loss is associated with 

protein oxidation that can be explained as covalent modification of a protein induced either 

directly by reactive oxygen species or indirectly by reaction with secondary products of 

oxidative stress. 

Candidate genes for drip loss 

Beneath the elucidation of the metabolic background of drip loss, the second main objective 

of this thesis was the detection of reliable candidate genes and genomic regions based on 

multi omics approaches. The most promising genomic region and candidate genes for drip 

loss based on mGWAS were detected on SSC18. This region also has been earlier 

described by Jennen et al. [212] and Liu et al. [27], performing a QTL study in the Du × Pi 

animals. In the region around 12 Mb, the genes PTN and CREB3L2 are located in close 

proximity. The family of cAMP response element binding proteins (associated with gene 

CREB3L2) is crucial for a variety of cellular processes including cell proliferation, 

differentiation, apoptosis, extra-stimuli and stress response [213]. Although the meaning of 

CREB3L2 has not been described precisely for meat quality so far, the results suggest that 

this gene seems to have a relevant influence in energy metabolism in skeletal muscle that is 

indicated by its interacting effect on PGAM2, glycine and drip loss (Fig. 18, p. 101). 

Further promising genes in this region on SSC18 were LRGUK and EXOC4.  

Unfortunately, the meaning of these candidate genes for drip loss was not confirmed by the 

GWAS in study 3. The GWA study of drip loss directly resulted in two candidate genes, 

LRG4 and CD44, on SSC2. Glinka et al. [252] provided evidence for an important role of 

LGR4 on endocytosis and membrane permeability. CD44 coded for a transmembrane 

glycoprotein acting as cell surface adhesion molecule involved in cell-cell and cell-matrix 
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interaction [253]. Moreover, a third gene potentially effecting drip loss was identified on 

SSC7 based in the GWA study of module white. The gene DST encodes a member of the 

plakin protein family of adhesion junction plaque proteins and is expressed beneath others 

in neural and muscle tissue. DST is involved in matrix assembly, and its targeted 

expression strongly affects the collagen network [255]. There are many studies verifying 

the association of DST to collagen content, shear force and tenderness [83,257]. Moreover, 

the meaning of DST as potential candidate gene was also confirmed by the successful 

verification of DST by eQTL analysis of hub metabotypes of module white (Tab. 23, p. 

137).  

One reason for the missing overlapping in identified candidate genes might be the 

differences in information density and statistical power in study 2 and 3. As described in 

section 4.2.2 (p. 117), missing genotype data was imputed in study 3, so that the number of 

utilizable SNPs and the number of pigs with records available across all omics levels was 

increased. These changes in data structure might be responsible for the result that only three 

SNPs (‘ALGA0089069’, ‘CASI0008411’ and ‘ASGA0072217’) located on SSC16 were 

found in both studies (see Tab. 17, p. 93). However, these SNPs are intronic or not located 

in a 1Mb distance to adjacent functional genes. For this reason, the SNPs are not presented 

in results of study 2. In conclusion, although found in both studies, these SNPs located on 

SCC16 seemed not to be suitable as potential candidate genes for drip loss. 

Challenges and perspectives 

Enormous progress in detection technology has resulted in a continuous expansion of omics 

databases filled with biological data. Along with new approaches in statistical evaluation, 

these informative data have enabled and revolutionized the analysis of high dimensional 

omics data sets [143,227]. Despite the enhancements in omics technologies, the so far 

performed omics analyses are exemplary approaches and still far away from proving a 

holistic view into complex systems. Problems in the holistic profiling of an omics level like 

the metabolome or the proteome mainly result from still fragmentary functional databases 

leading to an incomplete annotation. Also from the statistical perspective, some problems 

remain unresolved. For example, it is a big challenge how to correctly combine and rate 

omics variables of various origins into a statistical model. The integration of omics data is 

associated with many challenges caused by the data heterogeneity, the ‘large p, small n’ 
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situation and multicollinearity. To be able to handle these facts, some new, innovative 

statistical approaches have been developed. For example, penalized regression methods 

based one ‘The Least Absolute Shrinkage and Selection Operator’ (LASSO) proposed by 

Tibshirani [268] or ‘Elastic Net’ (ENET) proposed by Zou and Hastie [269], are able to 

combine various types of omics data and to handle multicollinearity and overfitting. 

Simultaneously, in contrast to similar procedures, LASSO and ENETs are characterised by 

a reduced required computation time [270]. Today, LASSO and ENETs are applied in 

genetics [271,272] and omics analyses [273]. In the so-called IPF-LASSO (Integrative 

LASSO with Penalty Factors), the variables (e.g. transcripts, metabolites) are allocated to 

different penalty factors for feature selection and prediction. The results of Boulesteix et al. 

[274] showed that IPF-LASSO performs better than standard LASSO when the variables 

differ in importance with respect to outcome prediction. Based on penalized regression 

methods, in the future, information from different omics levels could be weighted in an 

ideal way for new genomic selection procedures, like ‘Omics based selection’ (OBS). By 

taking into account environmental aspects and the time point of omics quantification, OBS 

might be beneficial used in animal genetics and monitoring of health, welfare and disease.  

Besides the progress in animal selection procedures, omics profiles also have the potential 

to revolutionize association studies. Present GWAS can associate phenotypes only with 

genetic factors, and not with metabolic factors that reflect environmental stimuli. Therefore, 

only a small proportion of heritability for multifactorial can be explained by conventional 

association studies. GWAS did not indicate direct biochemical interactions between 

genotype and phenotype. In contrast, globally integrated association studies that reflect 

both genomic and metabolic information leading to molecular networks, are promising in 

the analysis of complex traits and the identification of related molecular mechanisms. Yugi 

et al. [275] proposed so-called ‘trans-ome-wide association studies’ (trans-OWAS) 

including all omics levels as the future of association studies in humans. It can be expected 

that this trend will also be transferred to livestock breeding (see Fig. 23, p 137).  

Although my omics approach already based on a comprehensive metabolic data set, for an 

effective holistic view into the metabolism behind meat quality traits, also omics levels like 

the epigenome (complete collection of changes to the DNA and histone proteins), 

metagenome (complete collection of genetic material contained in an environmental 

sample) and the functome (complete collection of functions described by all the 
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complementary members in living organisms) should be considered in subsequent 

investigations [114]. Furthermore, it can be expected that the interest in the omics level 

microbiome, that pictures the relationship between the genetic of the host and the microbes 

e.g. in its gastrointestinal tract, also will strongly increase in the next years. Finally, it can 

be noted that the research in omics is still at the very beginning and, until today, about the 

entire application potential can only be speculated 

 

 

Figure 23: From gnome-wide association study (GWAS) to trans-omics-wide 

association study (Trans-OWAS). Modified from Yugi et al. [222]. 
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WHC and its phenotypic indicator drip loss are important commercially interesting meat 

quality parameters, which are essential for the acceptance of consumers and manufacturing 

industries. Today, many genes causing hereditary defects and genes with large effects 

causative for performance traits are known and successfully established in breeding 

programs. Nevertheless, the variability of drip loss is high and the regulation of muscle 

properties influencing meat quality traits is still unclear. For this reason, animal breeding 

increasingly focusses on a deeper understanding of the underlying metabolic processes of 

performance traits, on investigating genetic × environment interactions, or on identifying 

genetic markers for low heritable traits also with small effects. Several research groups 

stated that systems biological approaches are valuable and powerful in identifying key 

causal and highly predictive genetic variants for complex traits as well as in building up 

complex genetic regulatory networks. 

In the Bonner Du × Pi population, the quantitative traits meat quality and carcass 

composition were comprehensively investigated and based on different omics levels several 

promising QTL, eQTL and proteins for meat quality parameters were identified. To 

continue these investigations, the purpose of this thesis was the application of different 

statistical approaches to analyse and integrate the omics levels genome, transcriptome, 

proteome, metabolome and phenotype. Besides the investigation of the suitability of the 

methods, the aim was to elucidate the genetic and metabolic background of meat quality 

and carcass composition traits with special attention to drip loss. For this purpose, nearly 

100 animals of the Bonner Du × Pi population were genotyped with the porcine 60 k 

Illumina beadchip and the metabolome, proteome and transcriptome was profiled in 

samples of the MLD.  

In the first study (Chapter 2), based on different statistical procedures, namely correlation 

analysis, PCA, WNA and RFR, metabolite profiles were analysed to elucidate the 

underlying biochemical processes and to identify potential metabolite bio indicators for 

drip loss, pH1, pH24 and meat color. By an untargeted metabolomics approach the profiles 

of 393 annotated and 1,600 unknown metabolites were detected in 97 Du × Pi pigs. Despite 

obvious differences in the underlying statistics, the four applied methods revealed mainly 

concordant results regarding the identification of key metabolites for meat quality 
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parameters. The findings led to the conclusion that meat quality traits pH1, pH24 and color 

are strongly influenced by processes of p.m. energy metabolism like glycolysis and PPP, 

whereas drip loss is significant associated with metabolites of lipid metabolism. In case of 

drip loss, RFR was the most suitable method to identify reliable biomarkers and to predict 

the phenotype based on metabolites. On the other hand, WNA provided the best parameters 

to investigate the metabolite interactions and to clarify the complex molecular background 

of meat quality traits. In summary, it was possible to attain findings on the interaction of 

meat quality traits and their underlying biochemical processes. It can be assumed that the 

detected key metabolites are better indicators of meat quality especially for drip loss than 

the measured phenotype itself and potentially might be used as promising bio indicators. 

In the sense of a systems biology approach, the next step, the investigation of the metabolic 

background was used to identify key causal and highly predictive genetic variants for meat 

quality and carcass composition traits based on metabolic and proteomic information 

(Study 2, Chapter 3). In the last step of the analysis, combined networks of metabolites, 

proteins and transcripts were used to elucidate the genetic and metabolic determination of 

production traits (Study 3, Chapter 4). In both studies, the omics analyses were applied as 

promising alternatives to standard genetic association studies. Accordingly, the 

metabotypes were used as more accurate phenotypes to characterise underlying functional 

pathways and candidate genes for drip loss and other meat quality parameters and carcass 

composition traits. 

In study 2, profiles of 126 KEGG annotated metabolites and 35 entrez gene ID annotated 

proteins in 97 Du × Pi pigs were considered. In the first step, an enrichment analysis 

resulted in ten pathways, amongst others, in sphingolipid metabolism and 

glycolysis/gluconeogenesis, with significant influence on drip loss. In the following, drip 

loss and 22 metabolic components were analysed as intermediate phenotypes within a 

GWA study. Based on the GWAS it was possible to identify significantly associated 

genetic markers and candidate genes for drip loss and for most of the metabolic traits. On 

SSC18, a region with promising candidate genes was identified based on SNPs associated 

with drip loss, the protein PGAM2 and the metabolite glycine.  
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In study 3, based on a network analysis that integrated the profiles of 12,235 transcripts, 

1,993 metabolites and 40 proteins in 90 Du × Pi pigs, most promising metabolic traits were 

selected. To figure the whole metabolic background of drip loss, the meat quality traits 

pH1, pH24 and color and additionally the related carcass composition traits MFR, BFT, 

LMCbelly and LMCbonn were investigated. The meat quality, carcass composition and 

metabolic traits were analysed in GWAS to identify reliable candidate genes for drip loss 

and related performance traits. Finally, as verification of the identified candidate genes, 

eQTL analyses for the hub players of the modules were performed. Based on this systems 

biological approach it was possible to confirm already known functional pathways related 

to drip loss like the ‘Tyrosine metabolism’ that is associated with protein oxidation. 

Moreover, the study provided some new insights into the metabolic and genetic background 

of drip loss. For example, the genes LGR2, CD44 and DST seemed to be promising 

candidate genes for drip loss and related metabolic processes. In case of MFR, BFT and 

LMC the holistic omics approach was particularly expedient and the GWAS revealed a 

highly interesting genomic region for this trait complex on SSC5. The importance of these 

regions is based on the high density of significant markers for the carcass composition traits 

and the associated metabolic phenotype ‘module salmon’.  

In general it can be hypothesized that association studies based on intermediate phenotypes 

are able to provide comprehensive insights in the genetic variation of genes directly 

involved in the metabolism of performance traits. Therefore, the statistical power in the 

identification of reliable candidate genes is improved and false positive, redundant results 

are avoided.  
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S1: The random forest regression procedure of Breiman can be subdivided into a 

series of six steps. 

1. Sampling randomly selected subsets of meat quality observations and subsets of 

metabolite profiles via bootstrapping. Two-thirds of the data goes into the train data 

to construct the tree; One-third of the data (‘Out-of-bag’ (OOB) data) is used to 

estimate the OOB error of the grown tree (validation strep) 

2. At each split randomly selecting a subset of predictors (‘mtry’) from the train data.  

3. Growing a single regression trees by recursively splitting the subset of metabolites 

in the subset of predictors. At each node, split the data using the best predictor out 

of the subset of ‘mtry’ predictors. Tree construction is stopped when tree growth 

stopping criteria are fulfilled.  

4. Estimating the OOB error by applying the tree to the OOB data. The resulting 

parameters ‘coefficient of determination’ (R²) and ‘root mean square error’ (RMSE) 

express the suitability of the tree for prediction of meat quality in independent 

samples.  

5. Generating a random forest as collection of trees by repeating the steps 1-4 ‘ntree’ 

times.  

6. Aggregation of the trees and, based on the entire forest, measurement of the final 

variable importance (VI) values of the metabolites. Additionally, R² and RMSE are 

averaged over the forest and represent the final parameters of prediction accuracy. 
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S2: Differences between the traditional random forest regression of Breiman and 

conditional inference forests. 

In essence, random forest regression (RFR) algorithm of  Breiman [163] and Hothorn et al. 

[176] differs with respect to the a) splitting criteria, b) the resampling scheme and c) the 

way the predictions of each tree are aggregated to produce a coincident prediction.  

a) Splitting criteria: In contrast to Breiman´s RFR, the conditional RFR according to 

Hothorn uses the ‘conditional inference forest’ (CIF) methodology as splitting 

criterion. At each splitting node, each predictor is globally tested for its association 

with the trait of interest and a p-value is computed. Hence, CIF splitting is based on 

an essentially unbiased splitting criterion that automatically adjusts for different 

marginal distributions of the predictors and thus does not share the pitfall of 

Breiman´s RFR.  

b) Resampling scheme: The resampling scheme in conditional RFR based on 

subsampling instead of bootstrap sampling and Strobl et al. [173] recommend to 

systematically use sampling without replacement to prevent biases in VI 

measurement.  

c) Aggregation procedure: In the conditional RFR it works by averaging the 

observation weights extracted from each of the trees and not by averaging 

predictions directly (majority voting). 
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S3: Module identification in weighted network analysis based on a cluster 

dendrogram and merging of co-regulated modules. 
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S4: Scatterplot of parameters metabolite significance, module membership and 

maximum adjacency ratio of the modules ‘greenyellow’ (a), ‘black’ (b, d) and 

‘magenta’ (c) that are significantly correlated with meat quality traits drip loss (a), 

pH1 (b, c) and pH24 (d). Metabolite significance = MS; module membership = MM; 

maximum adjacency ratio = MAR; corr = Pearson correlation coefficient; drip loss 

measured in Musculus longissimus dorsi (MLD) 24 h post-mortem (p.m.); pH1 

measured in LD 45 minutes p.m.; pH24 measured in MLD 24 h p.m. 
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S5: Chromosome-wide Manhattan plots of sus scrofa chromosomes (SSC) 1, 4, 6, 10, 

13, 14 and 17. Glycerone-p = dihydroxyacetone phosphate; DG3P = d-glycerate-3-

phosphate; PKM = pyruvate kinase (muscle); FBPase = fructose-1,6-bisphosphatase 

2; the declaration of gene symbols (in black lettering) can be obtained from Ensembl 

or http://www.ncbi.nlm.nih.gov/genegenes; Continued on following pages. 
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S6: KEGG pathway ‘Glycolysis/Glyconeogenesis’ (map00010). Metabolites and 

proteins revealed through the enrichment analysis are illustrated in yellow and red; 

Glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate mutase 2 

(muscle); PKM = pyruvate kinase (muscle); FBPase = fructose-1,6-bisphosphatase 2; 

TPI1 - triosephosphate isomerase 1; DG3P = d-glycerate-3-phosphate; The 

declaration of the other metabolites and proteins codes (in boxes) can be obtained 

from Kyoto Encyclopedia of Genes and Genomes (KEGG)-database 

(http://www.genome.jp/kegg/). 



 Appendix  

203 

 

 

 



 Appendix  

204 

 

 

S7: KEGG pathway ‘Pyruvate metabolism’ (map00620). Metabolites and proteins 

revealed through the enrichment analysis are illustrated in yellow and red; PKM = 

pyruvate kinase (muscle); The declaration of the other metabolites and proteins codes 

(in boxes) can be obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG)-

database (http://www.genome.jp/kegg/). 
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S8: KEGG pathway ‘Methane metabolism’ (map00680). Metabolites and proteins 

revealed through the enrichment analysis are illustrated in yellow and red; 

Glycerone-p = dihydroxyacetone phosphate; DG3P = d-glycerate-3-phosphate. The 

declaration of the other metabolites and proteins codes (in boxes) can be obtained 

from Kyoto Encyclopedia of Genes and Genomes (KEGG)-database 

(http://www.genome.jp/kegg/). 
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S9: KEGG pathway ‘Sphingolipid metabolism’ (map00600). Metabolites and proteins 

revealed through the enrichment analysis are illustrated in yellow and red; The 

declaration of the other metabolites and proteins codes (in boxes) can be obtained 

from Kyoto Encyclopedia of Genes and Genomes (KEGG)-database 

(http://www.genome.jp/kegg/
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