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I 

 

Abstract 

This study investigates the influences of household biomass energy use on rural 

livelihoods in Sichuan Province of China. Of the 556 surveyed households, 432 

(77.7%) households still use traditional solid biomass energy (crops straw and 

firewood) for cooking, while 243 (43.7%) households produce biogas. An 

alternative-specific conditional logit model was adopted to test the determinants of 

household biomass energy choice behaviors from the perspectives of households’ 

revealed preferences and stated preferences (RP and SP) based on the random utility 

theory. The results of this study indicated that households prefer to use energy 

sources with lower prices (costs), higher safety, and lower indoor pollution. Moreover, 

this study showed that the decision maker characteristics, the demographic structure 

of rural families, income level, arable land owned and household location are all 

crucial factors affecting the process of household energy transition. 

On the production side, in order to investigate the influence of traditional biomass 

energy use on agricultural production, a multioutput profit function was adopted to 

further analyze the relationship between agricultural production and biomass 

collection. The estimation results showed that the supply cross-price elasticities of 

agricultural products and biomass are -0.02 and -0.52, respectively, indicating that 

biomass collection could bring a negative effect to agricultural production due to the 

competition between these two activities for limited labor resources.  

Finally, this research provided a holistic and comprehensive analysis of household 

biomass energy using behaviors based on an agricultural household model. The 

estimation results revealed that household biomass energy consumption responds 

positively to the changes in exogenous prices of self-consumed agricultural products 

and labor, while the market failures reduce the flexibility of household biomass 

energy using behaviors in the cases of changes in the price of commercial energy or 

other marketed goods. 
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Zusamenfassung 

Diese Studie untersucht die Auswirkungen der Nutzung von Biomasse 

Energieverbrauch auf ländliche Lebensgrundlagen in der Provinz Sichuan in China. 

Von den 556 befragten Haushalte, 432 (77,7%) Haushalte verwenden noch 

traditionelle feste Biomasse (Stroh und Holz) zum Kochen, 243 (43,7%) Haushalte 

wählen Biogas zu erzeugen. Ein alternativ-spezifisches bedingtes Logit Modell wird 

angewendet auf der Grundlage der Zufallsnutzentheorie, um die Determinanten des 

Wahlverhaltens der Biomasse aus den Perspektiven der offenbarten Präferenzen und 

der geäußerter Präferenzen zu testen. Die Ergebnisse dieser Studie zeigen, dass die 

Haushalte gern die Energie mit niedrigeren Preisen (kosten), höhere Sicherheit und 

geringere Innenraumverschmutzung verwenden. Darüber hinaus zeigt diese Studie, 

dass die Eigenschaften der Entscheidungsträger; die demografische Struktur; 

Einkommensniveau; der Besitz der Ackerland und der Haushaltsstandort sind alle 

entscheidenden Faktoren, die den Prozess der Transformation der Hausenergie 

beeinflussen. 

Um die Auswirkungen der traditionellen Nutzung von Biomasse auf die 

landwirtschaftliche Produktion zu untersuchen wurde mit Multi-Output Gewinn 

Funktion die Beziehung zwischen der landwirtschaftlichen Produktion und Biomasse 

weiter analysieren. Die Ergebnisse zeigen, dass die Kreuzpreiselastizitäten des 

Angebots zwischen Agrarerzeugnisse und Biomasse wurden -0,02 und  -0,52. Es 

zeigte sich, dass die Biomasse Sammlung einen negativen Einfluss auf die 

landwirtschaftliche Produktion haben können. Das führt einen Wettbewerb zwischen 

diesen beiden Tätigkeiten für begrenzte Arbeitsressourcen. 

Schließlich stellt diese Studie eine ganzheitliche und umfassende Analyse der 

Nutzung von Biomasse zur Energieerzeugung mit einem landwirtschaftlichen 

Haushaltsmodell. Die Ergebnisse zeigen, dass der Energieverbrauch der Haushalte 
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aus Biomasse eine positive Reaktion auf die Veränderungen der exogenen Preise von 

selbstverbrauchenden Agrarprodukten und Arbeitskräften hat. Und in den Fällen von 

Änderungen des Preises der kommerziellen Energie oder anderer vermarkteter Güter 

Marktversagen reduziert die Flexibilität der Haushalts Biomasse-Energie. 
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Chapter 1 Introduction 

1.1 Research Background  

To date, biomass energy is still one of the most important energy sources used in 

developing countries, constituting 35% of their energy supply (Demirbas and 

Demirbas, 2007). It appears to be an attractive type of energy for its renewable, 

positive environmental properties and its significant economic potential compared to 

the fossil fuels, which face increasing prices in the future (Cadenas and Cabezudo, 

1998). As a kind of renewable resource derived from biological materials, biomass 

energy links the natural environment and humans’ activities. Hence, it is one of the 

essential elements of the rural livelihood framework. In the case of China, biomass 

energy is the principal type of energy utilized for livelihood purposes such as cooking, 

space heating (cooling), and lighting (Wang and Qiu, 2009), occupying approximately 

41.8% in the total rural residential energy consumption (CRES, 2011). As a large 

agricultural country of the world, China has abundant biomass resources, including 

agricultural residues, woody biomass, animal dung, and urban living waste from 

which to produce multiple forms of energy in substantial quantities across a wide 

distribution area (Zhang et al., 2010). Nearly 89.4% of these resources are consumed 

as fuel for residential purposes (CRES, 2011). Despite the important role that biomass 

energy plays in the agriculture-based rural livelihood system, due to the limited 

access to advanced energy technologies and modern energy services, a considerable 

share of the rural population still depends heavily on direct combustion of biomass 

for domestic utilization. Moreover, in resent years, although the program of rural 

electricification has obtained great progress, many rural households, especially those 

living in remote areas, still cannot afford the high prices of electricity attributed to 

the backward economic development. Traditional biomass energy such as crops, 

straw, and firewood occupies the dominant place in rural energy consumption. The 

traditional use of biomass energy has brought many serious consequences to rural 

lives; for instance, resource waste, indoor air pollution, rural environmental 



 

2 

 

deterioration, and social inequality (Zhang et al., 2010). With the fast rural economic 

growth, these problems are getting worse. In stark contrast, the widespread use of 

clean, low-cost, and high-efficiency biomass energy based on modern technologies 

could significantly improve living standards by providing environmental benefits and 

generating employment in rural areas (Zhang et al., 2009). Therefore, it is vitally 

necessary for China to optimize the contributions of biomass energy to rural 

sustainable development.  

With the rise in awareness of the importance of biomass energy to the general rural 

livelihood, the Chinese central government has emphasized biomass energy 

construction as an essential component of its long-term rural development strategy. 

The National Energy Administration (NEA) has also set the promotion of modern 

biofuels as a core task of the twelfth Five-Year Plan (2011-2015) for Chinese national 

energy development, with a target of utilizing more than 50 million tsce1 biomass 

energy annually by 2015. Nevertheless, coal and some other types of fossil energy 

such as LPG and natural gas still take up a large proportion in current energy 

consumption structure resulting in serious threats on Chinese sustainable 

development. It is rather urgent for China to face the ‘energy crisis’ with the 

increasing demand for energy and the national situation of energy supply shortage 

caused by the depletion of fossil resources. During the United Nations Climate 

Conference (UNCC) held n December 2009, the Chinese government announced that 

it will reduce the carbon dioxide emitted per unit of economic output by 40%–45% 

by 2020 compared to its 2005 levels (Zhang et al., 2009). Biomass energy is 

considered to be the best substitute for fossil energy and thus is a good measure to 

quell the sharp conflict between economic growth and environmental protection by 

the Chinese government. It is also an inevitable strategic option for promoting 

sustainable rural development. Under this circumstance, study of the impacts of 

                                                             

1
 tsce is the abbreviation of the standard energy unit: ton of coal equivalent. Kgsce is kilogram coal equivalent. 



 

3 

 

biomass energy utilization on rural livelihood in China has great significance.  

1.2 Problem Statement 

In recent years, a large number of studies have tried to clarify the impacts of 

household energy use patterns on rural livelihoods (Gupta, 2003; Cherni et al., 2007; 

Byrne et al., 2007; Cherni and Hill, 2009; Fan et al., 2011; Lee et al., 2015; Biggs et al., 

2015). These studies have shown that energy transition can change rural livelihoods 

in various ways. Livelihoods comprise the assets, capabilities, and activities required 

for a means of living (Chambers and Conway, 1992; Bebbington, 1999; DFID, 2000; 

Scoones, 2009). Not only are economic factors for survival such as income critical for 

livelihoods, but also non-economic ones that mediate access to different assets such 

as health status and environmental impacts (Ellis, 2000; Hunsberger et al., 2014). 

Particularly as a bridge between nature and human-being activities, biomass energy 

plays a vital role in rural livelihoods. In accordance with the viewpoints of 

Chamdimba (2009), biomass energy use is identified as two competing paradigms in 

rural areas of developing countries. Poor households living in geographically remote 

areas depend heavily on traditional biomass for most of their basic livelihood 

activities such as cooking and heating. Conventional burning of biomass with low 

thermal efficiency usually causes waste of resources (Chen et al., 2006). Additionally, 

it could also negatively impact human health through indoor air pollution (Fan et al., 

2011). Moreover, households who have to spend more time on biomass collection 

and energy preparation are usually constrained from engaging in income-generating 

activities (van der Kroon et al., 2013). On the other hand, with fast development of 

rural economy, household demands for new efficient and environment-friendly 

biomass energy are gradually increasing (Chamdimba, 2010). Adopting modern 

biomass energy could bring positive effects on rural livelihoods by improving quality 

of life and enhancing environmental protection (Gosen et al., 2013). It is thus pivotal 

to promote the biomass energy transition. Research on household fuel switching has 
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also indicated that shifts from inferior traditional biomass towards more efficient 

commercial energy such as electricity could also help increase livelihood outcomes 

(Hunsberger et al., 2014; Lee et al., 2015). Although the use of modern energy 

sources at the household level is expected to ensure livelihood sustainability, the 

understanding of biomass energy use in energy transition and its policy implications 

for livelihoods are still limited. Furthermore, little attention has been paid to this 

issue in rural China. Therefore, this paper uses a Chinese case study to investigate 

household biomass energy utilization and its impact on rural livelihoods in rural 

areas. 

Currently in rural China, traditional use of biomass energy still takes an important 

position in rural residential energy consumption structure, especially in western 

areas (Gan and Yu, 2008). As it could bring negative impacts on rural livelihoods, 

there is no doubt that, along with the increase in the demand of rural households for 

cleaner energy, the transition shift towards the use of modern biofuels becomes 

necessary. For this reason, it is essential to inspect the energy choice behaviors of 

rural households in the process of the transition. However, despite the many 

empirical studies testing the determinants of household biomass energy choice 

behaviors in China (Démurger and Fournier, 2011, Fan et al., 2011; Wang et al., 2012; 

Ping et al., 2012), very few of them scrutinize how these influencing factors affect 

households’ potential preferences for biomass energy, especially for some 

government-led projects such as biogas. Combining the revealed and stated 

preferences of households, it is important to examine the determinants of household 

choice on both actual and hypothetical energy alternatives.  

Moreover, it is well known that the biomass collected for household energy use is 

mainly from agricultural waste. Nevertheless, little concern has been given to the 

impacts of biomass collection on agricultural production. Actually, due to the fact 

that biomass collection has a direct and close relationship with household livelihoods 

within the competition between it and agricultural production for labor resources, 
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the changes in the production system could make this competition become fiercer. 

Thus, it is worth studying the impacts of biomass collection on agricultural 

production focusing on labor allocation.  

Finally, as the market of biomass energy is nearly absent in rural China, households 

usually use the biomass collected by themselves. Under this situation, in order to 

better understand household biomass energy using behaviors, the linkages between 

biomass collection, agricultural production, biomass consumption, and other 

markets must be investigated. This also requires a systematic analysis jointly 

considering both consumption and production decisions on biomass energy 

utilization. Hence, this research will take advantage of an agricultural household 

model to analyze the household biomass energy utilization behaviors with concern 

for livelihood enhancement.    

1.3 Context of the Study Region  

1.3.1 Socioeconomic Status of Rural Sichuan  

Sichuan Province is located in Southwestern China; it borders Tibet Autonomous 

Region to the west, Qinghai to the northwest, Gansu to the north, Shaanxi to the 

northeast, Chongqing to the east, Yunnan to the south, and Guizhou to the 

southeast (See Figure 1.1). It covers an area of approximately 0.485 million km2 (62.7% 

of which is ethnic autonomous regions) and consists of two geographically distinct 

parts within its borders. The eastern part is mostly within the fertile Sichuan basin 

surrounded by hilly areas, while the western part has numerous mountains that 

form the easternmost part of the Qinghai-Tibet Plateau. The complicated geographic 

conditions of Sichuan Province constrain its economic development and make 

Sichuan one of the key target provinces of the anti-poverty projects of the China 

Western Development Strategy. 36 of its 183 counties have been officially defined as 

national poverty counties who qualify for financial support offered by the Chinese 

central government.  
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Figure 1.1 Location of Sichuan Province 

Agriculture is one of the most important sectors in Sichuan Province. According to 

the historical data from 2007 to 2013 (See Table 1.1), though the share of agriculture 

(including forestry, animal husbandry and fishery)2 value added in GDP was never 

more than 20%, at least 40% of the employed labor forces were engaged in 

agriculture. The annual agriculture value added increased from 203.2 billion CNY3 to 

342.6 billion CNY with an average growth rate of 3.97%. However, the rural areas, 

                                                             

2
 Defined by China National Bureau of Statistics (2003): Regulation on Classification of Three Sectors 

3
 The abbreviation of Chinese currency: Chinese Yuan 
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especially those in remote mountainous areas, of Sichuan Province are the poorest 

areas in China. By the end of 2013, the rural permanent resident population was 

44.67 million, occupying 55.1% of the total population.4 Over the past several years, 

about 60% of rural labor forces were invested in agriculture. The annual net income 

per capita of farmers increased from 3002.4 CNY to 7895.3 CNY. Despite this, it was 

below the national average level from 3587.0 CNY to 7916.6 CNY. Moreover, with 

the growth in prices of commodities in rural areas, the annual consumption 

expenditures per capita of farmers also went up from 2395 CNY to 5366.7 CNY. In 

addition, the number of rural permanent residents and its proportion in total 

population declined simultaneously as a result of the fast urbanization and 

increasing scale of rural labor migration.  

                                                             

4
 Statistical Bulletin of National economy and society development in Sichuan (2013) 
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Table 1.1 Selected socioeconomic indicators for Sichuan Province 

Data sources:  a. Sichuan Statistical Yearbook (2007-2013) [in Chinese]; b. Statistical Bulletin of National Economic and Social Development in Sichuan Province (2006-2013)[in Chinese]; c. 
China Statistical Database, http://data.stats.gov.cn/ [in Chinese]; d. UNDP, China Human Development Report [in Chinese] (2009/10, 2013)

Indicators 2007 2008 2009 2010 2011 2012 2013 

Rural population (million)a 66.75 67.04 66.98 66.46 65.95 65.85 65.00 

Rural permanent residents (million)b 52.34 50.94  50.17 48.12 46.83 45.61   44.67 

The proportion of rural permanent residents (% of total population)a 64.4 62.6 61.3 59.8 58.2 56.5 55.1 

GDP per capita (calculated at current prices in CNY)a 12963 15495 17339 21182 26133 29608  32454 

Agriculture, Forestry, Animal Husbandry and Fishery, value added (calculated 

at current prices in billion CNY)a 
203.2 221.6 224.1 248.3 298.4 329.7 342.6 

Agriculture, Forestry, Animal Husbandry and Fishery, value added growth (%)b 4.4 3  4 4.4 4.5 4.5  3.6 

Agriculture, Forestry, Animal Husbandry and Fishery, value added (% of GDP)a 19.2 17.6 15.8 14.5 14.1 13.8 13.0 

Agriculture, Forestry, Animal Husbandry and Fishery, value added per 

agricultural worker (calculated at current prices in CNY)a 
8967.3  10138.2  10450.6  11919.8  14603.5  16560.5   17515.2 

Employment in primary industry (% of total employed labor forces)a 47.9  46.1  45.1  43.7  42.7  41.5  40.6  

Rural employment in primary industry (% of total rural labor forces)a 65.6 63.4 62.5 61.0 60.3 59.1 58.3 

Annual per capita net income of rural households (CNY)c 3546.7 4121.2 4462.1 5086.9 6128.6 7001.4 7895.3 

Annual per capita expenditure for consumption of rural households (CNY)c 2747.3 3127.9 4141.4 3897.5   4675.5 5366.7 6126.8 

Arable land (Mu per person)c 1.03 1.03 1.02 1.08 1.15 1.14 0.97 

Human Development Index valued - 0.763 -  0.662 - - - 

Human Development Rank in 31 provinces of Chinad - 27 - 23 - - - 

http://data.stats.gov.cn/
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1.3.2 Status of energy consumption in rural Sichuan Province  

Figure 1.2 demonstrates the changes in the energy consumption structure of the 

rural Sichuan Province during the period from 2006 to 2013. It can be seen that the 

total amount of energy consumption in rural areas remains relatively stable, at about 

60 million tsce with an annual mean of 59.2 million tsce. Due to a decrease in the 

number of rural permanent residents, the energy consumption per capita5 gradually 

increased from 1137.4 Kgsce in 2006 to 1349.2 Kgsce in 2013 with an average growth 

rate of 18.6%.  

 

Figure 1.2 Rural energy consumption in Sichuan Province (2006-2013) 
Data sources: Compilation of Sichuan Rural Renewable Energy Statistics (2006-2013) 

According to the statistics, coal, crop straw, and firewood are the three main types of 

energy consumed in rural Sichuan (See Fig. 1.2), accounting for more than 80% of the 

total. Concretely, coal represents the largest share (approximately 40%) in rural 

energy consumption. The average consumption amount of coal is about 24.99 million 

tsce per year. Nevertheless, there is a decline in coal consumption from 25.97 million 

tsce to 24.29 million tsce during the period between 2006 and 2013. The use of crop 

straw experienced a decrease during the same period. The yearly mean of crop straw 

                                                             

5
 Calculated by dividing total energy consumption amount in Kgce by rural permanent population 
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consumption is 18.75 million tsce, occupying around 30% of the total energy 

consumption in rural areas. However, it does not appear to have obviously affected 

firewood consumption. The annual average firewood consumption is about 8.03 

million tsce, accounting for about 14% of the total energy consumption.  

In particular, biogas holds a rather small share of rural energy consumption, though 

the central and local governments have implemented many policies and measures to 

develop household-based biogas digesters and centralized large-scale biogas system 

in rural Sichuan. In addition, the consumption of electricity increased from 1.17 

million tsce in 2006 to 3.81 million tsce in 2013. Accordingly, its proportion of total 

energy consumption also grew from 1.9% in 2006 to 6.3% in 2013.  

More specifically, energy consumption can be divided into two parts based on use 

purposes. One is for residence (See Figure 1.3), and the other is for production (See 

Figure 1.4). Residential energy consumption takes a predominant place, accounting 

for more than 60% of total rural energy consumption. It can be seen from Figure 1.3 

that biomass energy takes the largest share in rural residential energy consumption. 

Of the total residential energy consumption, 73.2% was biomass energy in 2006. By 

the end of 2013, it fell to 68.9%. The three main types of biomass energy used by 

rural households for living purposes are crop straw, firewood, and biogas, among 

which, crop straw is the most commonly consumed energy source for basic living 

activities, especially for cooking. Next is firewood, followed by biogas. According to 

the statistics, the residential consumption of crop straw goes down from 21.23 

million tsce in 2006 to 17.07 million tsce in 2013. Nevertheless, it still takes the 

largest share in the total. The amount of firewood consumed remained relatively 

steady during the same period, accounting for about 18%-20% of the total residential 

energy consumption. The biogas consumption, which has been vigorously promoted 

by both central and local governments, fluctuated during these 8 years and reached 

its peak in 2011.  
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On the other side, the production in rural Sichuan still depends heavily on coal. In the 

production sector, the proportion of biomass energy is quite small, accounting for no 

more than 5% of the total consumption amount before 2010. In 2010, crop straw 

began to be used for productive activities with the development of gasification and 

briquetting technologies in pilot. At that point, the proportion of biomass energy 

consumption doubled but was still insignificant. 

 

Figure 1.3 Rural residential energy consumption in Sichuan Province 
Sources: Compilation of Sichuan Rural Renewable Energy Statistics (2006-2013) 

 

Figure 1.4 Rural energy consumption for productive activities in Sichuan Province 
Sources: Compilation of Sichuan Rural Renewable Energy Statistics (2006-2013) 

1.3.3 Policy Background for Rural Biomass Energy Construction in 
Sichuan  

As an important agricultural province in China, Sichuan Province has abundant 
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biomass resources derived from agricultural production. Over the past several years, 

many policies, strategies, and planning documents have been released by central and 

local governments for the development of biomass energy in Sichuan.  

 In 2000, the Ministry of Agriculture (MOA) designed the Prosperous 

Eco-farmyards plan, which aims to simultaneously improve rural living conditions 

and reduce the environmental pollution caused by traditional energy use (Chen 

et al., 2010; Gosens et al., 2013). A nationwide construction boom of 

household-based biogas digester started with this plan.  

 In 2004, the China National Energy Strategy and Policy 2020 (NESP) was 

published by National Development and Reform Commission (NDRC, 2004). It 

provided Chinese strategies, objectives, and measures for renewable energy 

development. For the particular target for decreasing traditional using of 

biomass, it proposed that, with an annual decrease rate of 2 percent, the 

traditional use of biomass in rural areas will decrease to 140 million tsce in 2020.   

 With regard to energy development, China’s Agenda 21 (1997; 2002) emphasized 

the importance of ensuring national energy supply in ways that safeguard public 

health and environment in order to achieve an equitable distribution of modern 

energy services throughout the nation.  

 In 2007, the National Rural Biogas Construction Plan (2006-2010), the 

Development Plan for the Agricultural Bioenergy Industry (2007-2015) (MOA, 

2007a; 2007b), and the Medium- and Long-term Development Plan for 

Renewable Energy in China (NDRC, 2007) were released to promote biomass 

energy construction in rural areas, especially for biogas construction with the 

2010 target of 40 million household-based digesters and 4700 medium- and 

large-scale biogas plants annually producing 4 billion m3 biogas as well as the 

2020 target of 80 million household biogas digesters and 10000 plants 



 

13 

 

generating 14 billion m3 biogas per year. Additionally, the capacity for biomass 

power generation is targeted to reach 30 GW by 2020 (MOA, 2007b). 

 The Renewable Energy Law (REL) (Issued in 2005 and Amended in 2009) is the 

cornerstone of renewable energy development in China aiming at the promotion 

of the use of renewable energy, the adjustment of energy consumption structure, 

the protection of environment, and the enhancement of energy security. The 

newly approved REL also stipulates the establishment of a special fund for 

developing renewable energy.   

 The 12th (2011-2015) Five-Year Plans for National Economic and Social 

Development established the following initiatives as central to the energy policy 

in China: Developing clean and safe energy; Renewable energy technologies 

should be promoted by providing financial support, including taxation, 

subsidization, and investment policies. 

In Sichuan Province, many additional national and local energy policies are listed as 

follows:  

 Since 2011, the standard of subsidy for household biogas digester construction 

leveled up to 2000 CNY per digester, with the support of the contributions from 

the national bonds, while the subsidy from the local government should not be 

less than 500 CNY per digester (NRDC/MOA, 2011). 

 Since 2011, the standard of subsidy for building large-scale biogas plants in 

Sichuan Province is 1500 CNY per m3 biogas production capacity, whereas the 

subsidy standard for the small biogas projects is 0.06 million CNY per project 

from the central government, with more than 0.036 million CNY per project from 

the local government.    

 In 2015, Sichuan has been approved to construct 29 large-scale biogas plants 

(Yong, 2015) with 123.92 million in CNY subsidies from the central government. 



 

14 

 

1.4 Research Objectives and Questions 

For the purpose of investigating the impacts of biomass energy utilization on rural 

livelihood, this thesis poses the following main research question: 

Does biomass energy utilization influence rural livelihoods in China? 

Taking Sichuan Province as an example, this thesis aims to gain better understanding 

of the linkages between biomass energy utilization and rural livelihoods through 

answering the following subquestions: 

1.1 What core factors impact household cooking fuel choice behaviors? 

This study examines the biomass energy choice behaviors of rural households in the 

process of energy transition and tries to test the determinants of these behaviors 

and thus determine the way to encourage households to switch from the use of 

traditional solid biomass energy to clean and effective energy alternatives. 

1.2 Does biomass collection influence agricultural production? 

This study seeks to identify the impacts of biomass collection on agricultural 

production. 

1.3 Do the changes in exogenous markets (including energy market, labor market, 

and agricultural products market) affect household biomass energy use? 

This study seeks to clarify the household decision-making behaviors of biomass 

energy utilization and to evaluate the effects of the price changes in exogenous 

markets such as energy market, labor market, and agricultural products market on 

household biomass energy consumption. 

1.5 Conceptual Framework 

The conceptual framework of this research is presented in Figure 1.5. According to 

our research question in Section 1.4, the arrows represent direct relations between 
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components. The Q1, Q2, Q3, and Q4 denote the three sub-questions (1.1-1.4) of our 

research. In our research, households make choices on different energy sources 

based on some important drivers (determinants). If they decide to use biomass 

energy, they must decide how much biomass energy they consume to meet their 

energy demand and how to allocate their limited labor resources to biomass 

collection and agricultural production. All of these behaviors will impact rural 

livelihoods. The drivers are selected on the basis of literature review. They mainly 

consist of household characteristics (household demographic structure, decision 

maker characteristics, household location, and income level), prices of agricultural 

products, commercial energy and other marketed goods, and other exogenous 

variables.  

 

Biomass energy 
use

Rural 
livelihoods

Biomass 
collection

Drivers

Agricultural 
production

Q2

Q2

Q4

Q4

Biomass energy 
choice

Q1
Q2

Q3

 

         Figure 1.5 Conceptual framework 
          Source: Author’s own depiction  

1.6 Data 

The data used in this research were obtained from a household survey conducted 

from August 2013 to February 2014 in Sichuan Province. Our sampling methods are 

described as follows:  

1.6.1 Sampling procedures 
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The sample selection was done in a way that guarantees the representativeness of 

the overall population. This follows a 95% confidence interval and a margin of error 

of 5%. To determine our sample size, we applied the following formula to make the 

calculation: 

21 NE

N
n


  

Where N denotes the total number of the rural population of Sichuan Province; n is 

the sample size, and E is the sampling error.  

The sample size should be 384 for Sichuan Province, which can be determined using 

the calculator given in the website http://www.surveysystem.com/sscale.htm, with 

the formula listed above. To compensate for any missing or failed cases, the sample 

size is determined to be at least 400 respondents. More specifically, 176 counties of 

Sichuan Province are sorted by the rural per capita net income level. Then the 

province is divided into three zones – high, middle, and low – in light of the income 

levels of rural areas. In each zone, two counties are randomly selected. Furthermore, 

three towns, each with two villages, are randomly selected in each county. In every 

village, 15-16 respondents are randomly surveyed. In total, the number of 

respondents should be 540-576.  

Actually, in practice, once the number of households to be surveyed from each 

village is determined, a plan for selecting households then has to be designed (CDC, 

2008). To get the sampling interval, i.e. the space between every two selected 

households, we divide the total number of households in a village by our subsample 

size.6 Thus, for a village of 150 households and a subsample size of 15, every 10th 

house would be interviewed. In mountainous areas, the sampling interval is too large 

to create long distances for surveyors to travel between houses. To deal with this 

                                                             

6
 In our study region, the average population of one village is about 150. Here, in order to simplify calculation, we 

assume the subsample size is 15. 

http://www.surveysystem.com/sscale.htm
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problem, we divide our survey areas into 2 sub-areas, and we visit every 5th house to 

cover half of the sub-areas to reduce the sampling interval. In order to reduce the 

bias of household selection, we randomly select our first visited household. The 

sampling interval is then adopted to select subsequent households. 

1.6.2 Sample description  

After eliminating invalid questionnaires and outliers, the total sample size of our 

study is 556 households. For the low-income zone, two counties, Jiuzhaigou and Mao 

Counties, are selected from the Aba Prefecture. Counties selected for the 

middle-income zone are Jiang’an and Changning, located in Yibin City. Finally, 

Mianzhu and Shifang from Deyang City are selected as representatives for the 

high-income zone (See Fig. 1.6).  
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Figure 1.6 Geographical distribution of study region 

Table 1.2 General characteristics of sampled households 

  Aba Yibin Deyang 
Total 

sample 

Landscape Mountainous Hilly Plain - 

Sample size 185 186 185 556 

Average family Size 4.4  4.3 3.6 4.1 

Arable land ownership (Mu) 4.51 4.57 2.95 4.01 

Age of household head (Years) 48 53 54 52 

Proportion of female household head 0.11 0.03 0.08 0.07 

Educational years of household head (Years) 5.92 6.33 7.02 6.42 

Net income per capita (CNY per year) 19964 22208 30793 24318 

Source: Author’s own field survey 

The main characteristics of our sampled households are summarized in Table 1.2. In 
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general, households from our sample have an average family size of 4.1. Only 7% of 

them have female heads of household. The average age of household heads is 52, 

while the mean value of household head educational level is about 6.42 years. The 

average arable land ownership is approximately 4.01 Mu7. The average annual per 

capita net income is 24318 CNY. With respect to the three income-level zones, 

households from Aba are living in mountainous areas with the lowest per capita net 

income of 19,964 CNY per year, whereas households located in Deyang within the 

plain areas have the highest annual average per capital net income level of 30,793 

CNY. Furthermore, for the households from Yibin in hilly areas, the average per 

capita net income level is 22208.2 CNY per year. Moreover, households in 

high-income zones have the smallest family size of 3.6 and the least arable land 

areas of 2.95 Mu. Their household heads have the highest average age and 

educational level. On the contrary, households from low-income zones have the 

largest family size of 4.4. They also have the youngest heads with the lowest 

educational level. The fraction of female in household heads of these households is 

higher than that of those households from other two zones.      

In addition, nearly 99.3% of our surveyed households employ more than one type of 

energy for residential purposes. Their energy use status is listed in Figure 1.7. 

                                                             

7
 1 Ha= 15 Chinese Mu 
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Figure 1.7 Surveyed households’ energy use for residence in study regions 

Source: Author’s own field survey 

Figure 1.7 shows that all the surveyed households use electricity. Households from 

plain and hilly areas have access to the Chinese national grid, whereas those from 

mountainous areas have been connected to nearby small hydropower generation 

stations. The most commonly used biomass energy for the sampled households is 

firewood, accounting for approximately 64.6% (359) of the total population. About 

44.2% of the surveyed households (246) use biogas, while crop straw takes the share 

of 34.4% (191). This means that the biomass energy still occupies a relatively large 

proportion in current household energy consumption structure.  

With respect to regional differences, households from different areas have different 

energy choices. The low-income households from the mountainous areas depend 

heavily on firewood (92.4%) for cooking and space heating. Solar (77%) is the major 

type of non-biomass energy used to heat water for showers, as the high-altitude 

zones usually have adequate sunshine. In addition, coal (40.5%) is an important type 

of commercial energy for these households to heat their houses in the cold winter. 

Among the medium-income households, the biomass energy takes a dominant 

position in their residential energy consumption. The percentage of households using 

crop straw, firewood, and biogas are 67.2%, 60.2%, and 59.1%, respectively. In 
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addition to electricity, natural gas is another commonly used commercial energy 

source in hilly areas, having been adopted by 23.1% of the households there. With 

regard to the high-income households who are living in plain areas, biogas (43.8%) is 

the most popular type of biomass energy used for cooking. Among all the other 

energy alternatives, LPG has the largest user share of about 52.4% in this subsample. 

Compared to the other two household groups, the proportion of biomass energy 

consumers is smaller, while the proportions of LPG and natural gas users are larger in 

this richer group. As presented in Table 1.1 and Figure 1.6, households from 

high-income zones (plain areas) are more likely to use cleaner commercial energy 

with higher efficiency and quality such as biogas, natural gas, and LPG, but without 

abandoning the traditional solid biomass energy.  

1.7 Main Contributions of the Thesis 

The main contributions of this thesis are as follows: 

Firstly, the issue of the impacts of biomass energy use on rural livelihoods has been 

given insufficient attention in the foregoing literature in China. This research will 

conduct a quantitative analysis using Chinese data. 

Secondly, it fills the gaps from past literature and provides holistic, comprehensive, 

and in-depth research on the impacts of household use of biomass energy on rural 

livelihoods. 

Thirdly, from a methodological point of view, this research advances the literature by 

triangulating the existing approaches to robustly analyze household energy use 

behaviors at the micro level.  

1.8 Organization of the Thesis 

This thesis aims to address the research questions proposed in Section 1.4. We adopt 

data collected from our household survey in Sichuan Province of China and attempt 

to make some contributions to the heated debates over the impacts of household 
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biomass energy use on rural livelihoods. The structure of this research is organized as 

follows: 

Chapter 2 develops a theoretical analysis of how household biomass energy use 

affects rural livelihoods based on the classical agricultural household model provided 

by Benjamin (1992). We also lay out the theoretical scenarios for subsequent 

empirical chapters in this thesis concerning the relationship between biomass energy 

use and livelihoods. 

Chapter 3 estimates how households make decisions on cooking energy choice. This 

chapter also tests the main determinants of household fuel choice behaviors. 

Households’ revealed and stated preferences for energy use are discussed based on 

random utility theorem and the empirical technique of choice modeling. 

Chapter 4 examines the impacts of biomass collection on agricultural production 

from a perspective of profit maximization in order to provide insights regarding the 

relationship between these two activities.  

Chapter 5 studies the effects of the changes in exogenous markets on household 

biomass energy use. Focusing on household labor allocation, we not only jointly 

analyze both production and consumption sides of the household decision making 

on the use of biomass energy, but also study how the exogenous prices affect 

household biomass energy use.  

In Chapter 6, we draw some conclusions and try to provide some useful and feasible 

suggestions and policy implications based on the theoretical and empirical analysis 

conducted in previous chapters. 
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Chapter 2 Analytical Framework 

2.1 An Agricultural Household Model 

As rural households play the double role of supplier-consumer in domestic biomass 

energy utilization, the interactions between their decisions on what types of energy 

to use, how to allocate their time endowments into agricultural production, biomass 

collection and off-farm employment, and how to adjust their energy consumption 

decisions in response to the changes in food prices, commercial energy, and other 

marketing goods identifies their basic livelihood strategies. This also provides 

motivation for this research to examine the influence of domestic biomass energy 

utilization on rural livelihood, jointly taking into account biomass collection and 

biomass energy consumption. Thus, the agricultural household model could be an 

appropriate tool applied for analysis in this context (Heltberg et al., 2000; Carter and 

Yao, 2002; Fisher et al., Chen et al., 2006). 

In previous works on microeconomics, household decision-making behaviors were 

usually analyzed at two levels. At the intrahousehold level, the individual-based 

decision-making process emphasizes the impacts of the potential interactions among 

household members and their preference heterogeneity (Kusago and Barham, 2001), 

while at the household level, the preferences of household members are assumed to 

be unified (Nepal et al., 2005). In our study, within a household, male and female 

members or members of different generations indeed have different preferences on 

energy utilization (e.g. Women are mainly responsible for cooking, while men play 

the dominant role in production activities). Although different approaches such as 

cooperative bargaining models (Manser and Brown, 1980) and collective models 

(Chiappori, 1988; Browning and Chiappori, 1998) have been developed to 

incorporate distinctive individual preferences into the household model, the 

individual-based methods still lack several aspects of behavioral realism, as the 

extent of preference heterogeneity cannot be clearly identified and directlfy 
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measured (Kusago and Barham, 2001). In addition, some behavioral characteristics 

and attributes, such as household actural performance, are only observable at the 

household level (Nepal et al., 2005). Meanwhile, individual decisions among 

household members are still affected by the characteristics of the households they 

belong to, especially the demographic structure and income level. Thus, due to data 

availability, in order to simplify our analysis, this study will focus on decision-making 

behaviors at the household level, basically assuming that all household members 

have common preferences regarding consumption and resource allocation. 

Now, we start from an agricultural household model with biomass energy use. The 

model is adapted on the basis of the classical model provided by Benjamin (1992). It 

integrates biomass collection and biomass energy consumption into the 

intrahousehold economic activities for investigating how a household makes 

decisions on biomass energy utilization and how it would, in turn, influence 

household livelihoods. 

A twice-differentiable quasi-concave household utility function can be defined as 

follows: 

);,( iiii alCU                                                      (2.1) 

Where subscript i indexes the individual households to which the household belongs; 

vector a is a set of household characteristics which can influence preferences; l is 

the denotation of leisure; and C is the total household consumption, the sum of the 

market purchased and home produced commodities. Herein, we divide C  into two 

categories following Amacher et al. (1996), Heltberg et al. (2000), and Charles and 

James (2008): consumption of goods and services that requires energy inputs hC and 

other marketed goods and services mC . This can be expressed in the following 

equation: 

mihii CCC                                                       (2.2) 
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In the context of Sichuan Province, the household goods and services, including 

cooking, heating, and lighting, are mainly produced with commercial energy and 

biomass energy: 

);,( ibieihi SCCC                                                  (2.3) 

Where eC denotes household consumption of commercial energy (i.e. coal, 

electricity, LPG, etc) and bC denotes biomass energy (crop straw and firewood, 

which we defined before) consumption. S is a set of factors that influence energy 

using efficiency (i.e. possess of improved stove, and cooking or heating habits, etc).  

The agricultural production of the household is assumed to be continuous and 

monotonic in aiL , twice differentiable, and strongly concave. It is represented by the 

function: 

0,0);(  aiaiiaiaiai FFwithBLFq                                   (2.4) 

Where B is a set of all inputs except labor (i.e. land, water, and all the other inputs) 

which is assumed to be exogenous. 

Similarly, we assume that the labor supplied to biomass collection is )0(biL  and 

define the biomass collection function as:  

0,0);(  bibiibibibi FFwithZLFq                                    (2.5) 

Where Z is an exogenous vector of characteristics pertaining to the accessibility and 

availability of biomass resources such as the distance from the forest or the field to 

the house, the transportation cost, and the stock of biomass resources. 

We also assume that a household has fixed time endowment iaT )( , which can be 

divided into four non-overlapping livelihood activities: working on farm for 

production profits ( aiL ), working for biomass collection ( biL ), working off-farm for 

wage ( oiL ), and leisure for welfare maximization ( il ). Hence, we have: 
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ioibiaii lLLLaT )(                                              (2.6) 

Then, after normalizing prices for all goods by agricultural output price to simplify 

our analysis, we can get to know the optimization problem for the household is: 

ioibiaiiioibiaiiibieimii lLLLCtrwaLLLaTSCCCMaxU ,,,,...];---)(),;,([   

ioiiii ELwπCts ++=..                                          (2.7) 

Where the prices of all goods are normalized by the price of agricultural products;π

is the profits from production activities; E is the exogenous income of the household 

which includes remittances, transfers, and all the other real non-labor income; and w

is the wage rate for labor.  

Problem (2.7) is the starting point model. Before going into the deeper analysis of 

household biomass energy utilization behaviors, we firstly concentrate on household 

preferences for different types of energy (i.e. a in the agricultural household model), 

especially the biomass energy, and try to find out the determinants. 

2.2 Household Energy Choice and Its Determinants 

In the first step, we want to investigate the household choice behaviors on biomass 

energy from the perspective of household preferences for different types of energy 

and to find the factors that can affect these behaviors. Energy Economics proposes 

two main theoretical frameworks developed to analyze the factors influencing the 

choices and behaviors of the energy utilization by rural households. 

The first one is the energy ladder model, which was previously the dominant model 

applied to study the energy choice behaviors of the households in developing 

countries (Leach, 1987; 1992). It arranges an array of fuels from the worst to the best 

in terms of cost, cleanliness, convenience, technological sophistication, and so on 

(Hosier and Dowd, 1987; Smith et al., 1994; Sudhakara and Reddy, 1995; Arnold et al., 

2006; Van der Kroon et al., 2013; Gosens et al., 2013). As a type of modern energy 
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with high efficiency and little pollution, electricity is supposed to be at the top of the 

“ladder,” whereas the traditional solid biomass energy (such as crops straw, firewood, 

and animal dung) is placed at the bottom due to its low-efficient utilization and 

negative impacts on livelihoods (Smith et al., 1994; Bruce et al., 2002). The basic 

assumption for this model is that, with the improvement of the economic status, the 

rural households can move up along the ladder to the ‘better’ energy carriers 

(Sudhakara and Reddy, 1995; Masera et al., 2000; Bruce et al., 2002). Thus, income is 

the most important determinant of household energy choice (Leach, 1987). This 

indicates that a crucial reason for the slow energy transition process in some 

backward rural areas is that the poor are highly likely to be trapped by the high prices 

of the modern high-quality fuels and then must depend on low-quality energy for 

living (Gosens et al., 2013). Specifically, the main contributions and limits of this 

theoretical model are as follows: 

Contributions: 

 The energy ladder model is derived and established on the basis of the 

microeconomic theory of rational choice (Masera et al., 2000). That is to say, the 

household could be assumed to behave as a neoclassical consumer who will 

pursue maximum utility in this model (Leach, 1987; 1992). Therefore, it can be 

helpful to test the effect of income level on energy choice. 

 The main advantage of the energy ladder model is that it is able to capture the 

strong dependency of household energy choice on income (Van der Horst and 

Hovorka, 2008; Sovacool, 2011). 

Limits: 

 The fuel adoption is assumed to be a linear progress in the energy ladder model, 

implying that climbing up the ladder will be accompanied with the 

corresponding abandonment of fuel at the lower level (Kowsari and Zerriffi, 

2011). However, this assumption is usually inconsistent with reality (Masera et 
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al., 2000).  

 This approach, to some extent, overemphasizes the income effect, as it neglects 

the impacts of other factors, which can also significantly affect the household 

energy choice at the same time (Leach 1988; Karekezi and Majoro, 2002; 

Heltberg et al., 2004, 2005; Ouedraogo, 2006). 

The second theoretical model that has been widely used in the analysis of household 

energy choice behaviors is the energy stacking model. It thinks that households may 

consume a combination of several types of fuels, which simultaneously contains 

traditional and modern ones at different levels along the energy ladder (Van der 

Kroon et al., 2013). That is to say, the energy stacking model also relies heavily on the 

universal hierarchical order of different fuel choices and services that has been 

assumed in the energy ladder model (Takama et al., 2012), and the household energy 

choice may also tend towards the high quality energy with the growth in their 

socio-economic values. Nonetheless, the multiple fuel use patterns of household are 

determined by the complex interactions among various factors such as income (or 

wealth), local food and cooking habits, local tradition and institution, ethnicity, and 

food taste preferences (Masera et al., 2000; Karekezi and Majoro, 2002; Heltberg et 

al., 2005; Ouedraogo, 2006; Takama et al., 2012). 

Contributions: 

 This theory has shown that fuel switching occurs partially among the majority of 

the households, based on a growing number of empirical evidence (Israel 2002; 

Heltberg et al., 2004, 2005; Gupta and Köhlin, 2006; Ouedraogo, 2006; Farsi et 

al., 2007; Takama et al., 2012). As household economic status increases, changes 

in energy choice can be regarded as a process of “accumulation of energy 

options” rather than a linear progress (Masera et al., 2000).   

 Unlike the energy ladder model, the energy stacking framework considers a 

wider range of factors affecting household energy choice, although income is still 
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one of the most important determinants of fuel choice (Israel 2002; Karekezi and 

Majoro, 2002; Heltberg et al., 2004, 2005; Ouedraogo, 2006; Gupta and Köhlin, 

2006; Farsi et al., 2007; Takama et al., 2012). 

 Energy stacking is a ladder of energy demand rather than fuel preferences, which 

means that the energy choice of the household is driven by the energy demand 

of the household, which in turn is elicited by the services that energy provides 

(Foley, 1995; Masera et al., 2000). 

Limitations of the model: 

 This model relies heavily on a universal hierarchy of different types of energy and 

still places too much emphasis on the role of incomes in energy choice (Kowsari 

and Zerriffi, 2011). 

 It lacks consideration for sustainability because of the dimension systems which 

can be used to specify the contributions of the different types of energy to 

sustainability has not been set up yet (Gosen et al., 2013). 

Furthermore, recent years have brought the development of another important 

concept of energy leapfrogging to explain household energy choice behaviors. This 

term refers to the household energy transition pathways which bypass the 

conventional energy and directly skip to the modern and clean energy technologies 

(Murphy 2001). Nevertheless, in practice, energy leapfrogging is often deemed to be 

misleading (Murphy, 2001; Wolfram, 2014; Guta et al., 2015), as it cannot be 

achieved without simultaneous leapfrogging in local economies and institutions (Han 

et al., 2008).  

Though the above approaches have tried to explain the nature of the energy 

transition from the traditional biomass energy to the modern and clean energy 

carriers with the increasing wealth, and provided analytical tools to study the 

biomass energy adoption of rural households, they are mainly tested using the data 

on the observed choice or consumption behaviors in the existing literatures (Hosier 
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and Dowd, 1987; Sudhakara and Reddy, 1995; Heltberg et al., 2004, 2005; Ouedraogo, 

2006; Gupta and Köhlin, 2006; Farsi et al., 2007). In many cases, the data of some 

important potential influencing factors cannot be directly observed and effectively 

collected. Hence, this research will try to fill the gaps and provide a holistic, 

systematic, and in-depth analysis on the household choice behaviors, jointly 

considering the revealed and stated preferences of the household. According to the 

real situation of Sichuan Province and our research objectives, we assume that a 

group of fuel alternatives faced by rural households can be ranked in order in terms 

of cost, cleanliness, efficiency, and technological flexibility. Electricity is at the top, 

whilst the traditional biomass energy (crops straw and firewood) is at the low end of 

the range. The process of cooking fuel switching can be characterized by household 

switching from solid biomass through conventional solid energy (coal) and gaseous 

fuels (biogas, LPG and natural gas) to advanced energy (electricity). 

In particular, biomass energy, which includes traditional biomass energy and biogas, 

is produced by households based on biomass collection and energy preparation, 

whereas coal, natural gas, LPG, and electricity can only be purchased from the 

market. Energy-specific attributes such as energy prices (market prices of coal and 

electricity and the shadow prices of traditional biomass energy and biogas), smoke 

level, and safety should be the influencing factors responsible for household energy 

use choice behaviors. Additionally, the energy use choice should be household 

specific. It is therefore also influenced by household characteristics. Household 

income level is still regarded as an important factor that can affect energy use choice 

decision. Poorer households are expected to rely more on traditional biomass energy 

(Gupta and Kölin, 2006). With the increase in income level, households are more 

likely to choose higher quality energy. In our research, we will focus on household 

characteristics such as the characteristics of the decision maker, the demographic 

characteristics of the family, the cooking habits, and household location. The specific 

variables used for empirical analysis will be selected based on a review of previous 
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works of literature.  

2.3 The Impacts of Biomass Collection on Agricultural Production 

In the second step, we want to shed some light on the household decision-making 

behaviors on the production side. Three basic assumptions were set in this part. The 

first is that household consumption and production decisions are non-separable. The 

second is that the intrahousehold economic activities on the production side are only 

composed of biomass collection and agricultural production. We also assume that 

farm households allocate their limited labor endowment to agricultural production, 

biomass collection, and off-farm work to generate income to support their 

consumption. In this context, this research will focus on how households allocate 

labor to biomass collection and agricultural production and try to model the 

relationship between these two activities.  

Based on what we have defined for the basic model in Section 2.1, we now introduce 

the household biomass collection into our household model. In rural Sichuan, the 

most important types of biomass energy are crop straws collected from the farm and 

firewood collected from forest. Then, we define biomass resources here as crop 

residues and firewood. 

In the previous literature using the household models, the biomass collection 

activities were treated in two ways. Some researchers used the non-separable 

household model with a focus on fuel production and consumption (Amacher et al. 

1996; Mekonnen, 1997; Nyang, 1999; Joshee et al., 2000; Mishra, 2008). This model 

lacks information on the linkages between fuel market and other markets and 

ignores the impacts of other markets on household decisions. Sometimes the 

biomass collection was integrated into the agricultural household model by adding a 

separate production function (Wiedenmann, 1991; Heltberg et al., 2000; Köhlin and 

Parks, 2001; Fisher et al., 2005; Chen et al., 2006; Charles and James, 2008). In this 
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approach, there is an implicit assumption that labor allocation decisions are 

separable and can be made independent of allocation decisions on agricultural 

production and biomass collection (Weaver, 1983). However, in Sichuan Province, the 

labor allocated between agricultural production and biomass collection cannot be 

distinguished by any physical indicator such as gender and age. The members of the 

household engaged in farm work, in most cases, are also responsible for biomass 

collection. They often collect firewood on their way to and from the fields or collect 

crop straw after harvesting and take it home. The simple aggregation of the 

production functions in past studies lacks the information on the internal 

relationship between agricultural production and biomass collection. Rural 

households usually rely on the market to provide signals through the price system to 

choose the proportions of available labor inputs that should be allocated to each 

activity (Debertin, 2012). In other words, the labor allocation should on the basis of 

the decisions regarding these two activities. Therefore, the above assumption will 

not be held in this study. Under this circumstance, a multiple output production 

function will be considered (Weaver, 1983).  

The multiple output production function that embodies the behavioral relationship 

as well as technical relationship based on the single-input production functions (2.4) 

and (2.5) is defined as: 

biaiiiiiibiaii LLLZBLgqqf  );,;(),(                                (2.8) 

Where the function )(f is concave in aiq and biq . This shows the behavioral 

relationship that defines the transformation curve for the agricultural products and 

collected biomass (Debertin, 2012). The function )(g reflects the technical 

relationship that specifies the possible combinations of the output aiq and biq  

produced from the mix of labor inputs aiL and biL (Debertin, 2012), and it may be 

concave in iL (the total labor input for intrahousehold production activities). Using 
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the implicit function theorem, we can write: 

),;,()](-[ 1

iiibiibibiiaiai ZBLqhqFLFq                                  (2.9) 

And we can also obtain: 

)()( 11

bibiaiaii qFqFL                                               (2.10) 

The total differentiation of (2.10) with respect to aiq and biq yields: 
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Assuming that iL is invariable, therefore we have: 
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The equation (2.12) gives the behavioral relationship between agricultural 

production and biomass collection. The expression biai dqdq represents the slope of 

the product transformation curve at a particular point. It is the rate of product 

transformation of biomass collection for agricultural production (
biaiqqRPT ) and 

indicates the rate at which agricultural products can be substituted for the biomass 

outputs as the labor input bundle is reallocated (Debertin, 2012). Along the 

production transformation curve, 
biaiqqRPT is equal to the negative ratio of individual 

marginal products. According to our assumptions that 0aF and 0bF , this rate is 

unambiguously negative. This implies that, for agricultural production and biomass 

collection, one must be reduced in order to obtain more of the other, given a fixed 

available amount of labor inputs iL .  

The above description gives a theoretical explanation for adopting the multioutput 

production function to investigate the relationship between the two activities. As we 

are not quite interested in the household biomass energy consumption behaviors in 

this section, we then can ignore the utility function and concentrate on the 

household’s objective to maximize its real income from agricultural production, 
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biomass collection, and off-farm work. Then the basic problem in expression (2.7) 

collapses to a profit maximization problem: 
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With slight modification, the first-order conditions for the household labor allocation 

are obtained as: 
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The conditions from (2.14) to (2.16) imply that the optimum of labor allocation 

between agricultural production and biomass collection will occur at the points at 

which the marginal output equals the shadow wage of household labor. Then we can 

solve the household profit maximization problem and obtain the reduced form of 

household optimal labor allocation functions as follows: 

),,(),,,)(,,( *** obanZBEaTwwLL iiiiiiini                               (2.17) 

The labor allocated to off-farm work (o), agricultural production (a), and biomass 

collection (b) can be expressed as a function of market wage rate, shadow wage rate, 

household time endowment, non-labor income, inputs and services for agricultural 

production, and the factors affecting biomass collection. However, the shadow wage 

rate of household labor is endogenous and mainly determined within the household. 

As it is a function of household characteristics affecting household preferences and 

choices (Strauss, 1986), we can transform equation (2.17) to: 

),,(),,,,)(,(** obanaZBEaTwLL iiiiiiini                                (2.18) 



 

35 

 

Now, following (2.8) to (2.18), we have already known the relationship between 

agricultural production and biomass collection from theoretical perspectives. In the 

empirical part, we will estimate a multi-output profit function to examine household 

production decisions towards these two activities and clarify the relationship 

between them based on what we have discussed above.  

2.4 The Impacts of Household Biomass Energy Utilization Behaviors on 

Rural Livelihood  

In the case of Sichuan Province, to meet its energy demand, each household has to 

decide whether to use biomass energy and which types of energy it will use. Some 

rural households only use cleaner commercial energy such as electricity, LPG, and 

natural gas, while the others use a combination of commercial energy and biomass 

energy. Compared with the households who merely use commercial energy, the 

members of the households using biomass energy have to spend more time on 

biomass collection and could be constrained from participating in other 

income-generating activities such as agricultural production and off-farm work. In 

other words, if a household decides to use biomass energy, its members have to 

allocate their limited time endowment onto biomass collection, leisure, and other 

activities. 

Under this circumstance, we assume that a typical agricultural household plays the 

double role of consumer-supplier in the markets of agricultural products and 

biomass energy. It jointly makes its decision on the production and consumption of 

agricultural products and biomass energy. On one hand, it has to allocate its limited 

labor resources onto three different activities, namely agricultural production, 

biomass collection, and off-farm employment. On the other hand, it maximizes its 

utility from consumption of commercial energy, biomass energy, other purchased 

goods and services, and leisure time subject to a number of constraints. Particularly, 

the household budget limitation is depicted by the full income constraint for all 
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purchased goods and services, which consists of the labor returns from these three 

activities and the exogenous income. In this section, we will further develop the 

agricultural household model. 

2.4.1 Impacts of Biomass Energy Utilization on Rural Livelihood in a 

Separable Agricultural Household Model 

A separable agricultural household model with biomass energy is considered. 

According to the separation property given by Benjamin (1992), household behaves 

in a recursive process. It firstly maximizes its profits from the multi-output 

production function without any consideration of its consumption or leisure 

preferences (Benjamin, 1992; Skoufias, 1994): 

biaiibiaiibiaiiiiiiiii LLLtrwLLwqqfLwZBLgMax ,,...)(),(),;(    (2.19) 

Where *

iw denotes the shadow wage of household labor.  

The first-order conditions are as follows: 
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Based on the conditions from (2.20) to (2.22), the new equilibrium of household 

labor allocation is determined by: 

ibiaii wMPLMPLMPL                                          (2.23) 

The equation (2.23) indicates that the optimum of household labor allocation will 

occur at the point at which the marginal productivity of the labor allocated to 

intrahousehold production activities is equalized to the marginal productivity of the 
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farm labor and labor in biomass collection. It also demonstrates that household labor 

allocation on agricultural production and biomass collection is determined by 

shadow wage. 

Thus, the solution to the maximization problem yields the household labor allocation 

functions for these two activities: 
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                                  (2.24) 

Figure 2.1 gives a visual demonstration for the equilibrium conditions of household 

labor allocation between agricultural production and biomass collection. In the plane

biaiqq , each production-possibility curve represents production tradeoffs of the 

household given the fixed level of labor inputs *

iL . It shows the various combinations 

of amounts of two products that the household can produce. In accordance with the 

relationship in (2.12), the shape of the production-possibility curve should be 

concave to origin, and with an increase in *

iL , the curve will move outward driven by 

the corresponding increase in outputs. Condition (2.23) also reveals that, at 

equilibrium, the household will choose to produce the combination at the point at 

which the slope of the production-possibility curve is equal to negative one. If the 

wage rate increases, the household will accordingly increase the labor inputs for both 

of agricultural production and biomass collection, and then, the equilibrium point 

will move along the straight line from 1D to 2D . Conversely, if there is a decrease in 

wage rate, the production tradeoff of the household will shift from 3D to 4D .  
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Figure 2.1 Pathway of the equilibrium on the production-possibility curve of the household 
with decrease (Left) and increase (Right) in wage rate 
Source: Author’s depiction 

Furthermore, based on the maximum profits, the household then decides how much 

leisure to consume and how much labor to supply off-farm as the solution to the 

basic model in (2.7): 

),,,;,( **

iiiiiiii SZBaMwll                                           (2.25) 

*** )( iiioi lLaTL                                                 (2.26) 

Where iiiii EaTwM  )(**  is the optimal budget of the household. Therefore, 

the household consumption decision will be made as: 
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Further illustration of the equilibrium is provided in Figures A.1 to A.3. Figure A.1 

gives the household optimal labor allocation (V ) for intrahousehold economic 

activities, which consist of agricultural production and biomass collection under the 

separation assumption according to condition (2.24) in a three-dimensional space. 

With the changes in the market wage rate, the corresponding changes in equilibrium 

fromV  to V are shown in Figures A.2 and A.4. There is a negative relationship 
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between labor allocated to intrahousehold economic activities and the market wage 

rate. When the market rate increases (or decreases), the amount of labor engaging in 

intrahousehold economic activities will reduce (or increase) accordingly.  

2.4.2 Impacts of Biomass Energy Utilization on Rural Livelihood in a 

Non-separable Agricultural Household Model 

It is well recognized that, in developing countries, market imperfections are pervasive 

in rural areas. As in the case of Sichuan, there may be an exogenously imposed 

binding constraint on the labor market in rural areas. There are several plausible 

reasons for this in the Chinese context: the relatively low educational level of rural 

households for getting a job off-farm, the high transaction cost of the inconvenient 

transportation system in some remote areas, the fear of losing the land use rights of 

the household members working off-farm (Wang et al., 2011; Jia, 2014), etc.. With 

regard to the energy market in rural area, the domestically produced biomass energy 

is almost not traded. Rural households face two choices, and they choose either to 

purchase different kinds of commercial energy from the market or to collect biomass 

by themselves based on their valuations of their own labors (Amacher et al., 1996). 

Under these circumstances, the separation property breaks down, and we should 

consider a non-separable household model. 

Now, we assume that the market for commercial energy is perfect. Meanwhile, the 

biomass collected by households is assumed to be non-tradable; that is, the 

consumption is lower than supply8. Then, we have the constraint for household 

biomass energy consumption: 

bibi qC                                                           (2.28) 

                                                             

8
 A part of the agricultural residues is used as fertilizer in most of the cases in our study region. 



 

40 

 

In particular, the labor market imperfections are introduced in the agricultural 

household model as a binding constraint on off-farm labor: 

ioi HL                                                        (2.29) 

In order to simplify our analysis, we also assume that the markets for all the other 

goods and services are perfect and normalize prices of all other goods by exogenous 

market price ( ip ) to get a new full-income constraint for the household: 

ioiiiiibiiioiiaieimi ELwZBLqhELwqCC  ),;,(               (2.30) 

Then we solve the optimization problem of the household in (2.7) by establishing the 

Lagrangian function subject to the constraints (2.28), (2.29), and (2.30): 
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The Kuhn-Tucker conditions can be obtained through the following: 
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Using equation (2.12) and replacing it in (2.30), thus: 
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And we have: 
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As depicted in Figure 2-d, condition (2.40) reveals that the household collects 

biomass until the point at which the marginal utility of leisure equals the marginal 

utility of biomass energy in household consumption times the marginal product of 

biomass collection labor which, in turn, is equalized to the marginal value product of 

labor in agricultural production. In other words, the marginal value product of labor 

in biomass collection and labor working on-farm is equal to the opportunity cost of 

the household labor (the utility of leisure). This result is in line with the findings of 

Heltberg (2000) that biomass collection is determined by the opportunity cost of the 

time (shadow wage) of the household labor. It also states that the time is allocated 

among biomass collection, farm work, off-farm employment, and leisure relying on 

wage rate.  

Under the conditions of non-separation, the shadow wage ( *

iw ) determines the 

labor allocation of the household. However, it is determined within the household 

(Singh et al., 1986). The reduced form of household labor allocation functions can be 

derived considering the exogenous prices on consumer market ( ip ): 
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And then yields the shadow full income of the household: 

iiiiiibibiiaiaiiiiiiiii ElwHwZLFBLFEHwHaTwY  ****** );();(])([  

Where, ******* );();( biiaiiibibiiaiaii LwLwZLFBLF                      (2.42) 

As a consumer, the household decides the level of consumption to maximize its 

utility under the shadow full income constraint (de Janvry et al., 1991). This leads to 
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a consumption system for the household as follows:  
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As it is shown in the expressions for optimal labor allocation and leisure consumption 

of the household, (2.41) and (2.43), in the non-separable model, a change in any of 

the exogenous variables affecting the production choices of the household will 

influence the labor allocation and consumption decisions of the household, both 

directly and indirectly. The direct effects come from the changes in households’ 

shadow profits, as in the separable model we discussed before, whereas the indirect 

effects occur through the changes in the shadow wage. We will analyze both of 

effects in the following subsections (Skoufias, 1994). 

2.4.2.1 Response of Shadow Wage to the Changes in Exogenous Market 

Prices 

We have already determined that households allocate labor to agricultural 

production and biomass collection to the point at which the marginal value product 

of these activities equals the opportunity cost of the time, that is, the shadow wage 

of the household labor. Therefore, how shadow wage changes in response to a 

change of prices in the exogenous market presents a way to analyze the indirect 

effects of shadow wage on household labor allocation and consumption decisions. 

Suppose now that there is only one constrained market for labor, and the exogenous 

market price ip changes. Let 
*

iL denote the optimal labor allocated on intrahousehold 

activities. Following the method provided by de Janvry et al. (1991), total 

differentiation of the household time endowment ** ))(( iiii lHaTL  , which 
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determines the endogenous shadow wage *

iw , and substitution of the quantity of 

labor allocated to intrahousehold activities and leisure consumption derived from 

the equations (2.41) to (2.43) gives: 
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After rearranging the equation, we can get the following new equation: 
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Where 

*
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The elasticity in (2.45) reflects the response of the shadow wage to the changes in 

exogenous market price. The numerator demonstrates the disequilibrium created by 
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a change in the exogenous price ip on the imperfect labor market. The first term *

xiE

is the labor allocation change, while the second term shows the change in leisure 

consumption coming from the cross-price effect *

xi . We can expect that labor supply 

to intrahousehold production activities responds negatively to an increase in 

exogenous price and that leisure consumption has a positive cross-price elasticity 

with respect to other marketed goods. Therefore, the sign of the numerator is 

ambiguous, because the magnitudes of these two terms are unknown. Analogously, 

the expression in the denominator reflects the disequilibrium caused by the changes 

in endogenous shadow wage. The direct price elasticity of labor supply is expected to 

be positive. The term in parentheses demonstrates the elasticity of leisure 

consumption, which will be positive if the direct price effect || *

i is less than the full 

income effect times the share parameter lii S* due to the shadow wage increases. 

Hence, the sign of the elasticity (2.45) cannot be derived unambiguously. 

2.4.2.2 The Effects of Exogenous Market Prices on Household Biomass 

Energy Use 

The household decisions on biomass energy consumption can also be viewed as the 

response of its demand for biomass energy on the markets that exit. The global 

biomass energy consumption elasticity with constrained labor market can be directly 

obtained by differentiation of (2.43):  

])()[()()( **

libi

H

ibixii

H

xibi

G

xibi SwCEpwEpCEpCE              (2.46) 

Where bibibxi

H

xibi spCE *** )(    is the elasticity of biomass energy consumption 

in a separable household model with all markets, which includes the cross-price 

elasticity of biomass energy consumption *

bxi and the income effect on biomass 
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energy consumption bibis
* specific to the household model. H

xibi pCE )( * can be 

viewed as the direct effect of the exogenous price on biomass energy consumption, 

while the indirect effect through the changes in internal price (shadow wage) is 

expressed as the second term on the right of (2.46). Since the sign of (2.45) is 

unknown, the sign of the global elasticity thus cannot be unambiguously determined. 

In accordance with the theoretical framework, which has been stated above, this 

study will firstly test for separability using the data collected from Sichuan Province. 

After dividing the sampled households into two groups (i.e. separable and 

non-separable groups), we will analyze their behaviors respectively corresponding to 

the separable and non-separable household models. For the non-separable 

households, we will firstly calculate their shadow wage rates and then include them 

in the household demand system and labor supply system to jointly estimate 

household biomass energy use behaviors. For the separable households, we will 

directly estimate the demand system to capture the household biomass energy use. 

2.5 Conclusion 

To sum up, the agricultural household model developed in our research indicates 

that household biomass energy-use behaviors are influenced by various factors. As 

consumers, households make decisions on which type of energy to be used for 

cooking based on energy-specific and household-specific variables. Among them, 

energy-specific variables include the economic attributes (such as energy prices, 

device use costs, and device maintenance costs) as well as the physical attributes 

(such as smokiness level and safety) of the energy alternatives, while 

household-specific variables refer to the household socio-economic characteristics 

affecting household energy choice behaviors (including income level, demographic 

structure, household location, and other characteristics). As producers, households 

have to decide how to allocate their limited labor force to biomass collection and 

agricultural production based on some influencing factors such as market wage rates 
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of household members, time endowment, and non-labor income. As biomass 

collection competes with agricultural production for labor resources, the shadow 

wage rate of on-farm labor and its determinants are also important affecting factors 

for the relationship between these two activities. Simultaneously considering both 

the consumption and production sides in the non-seperable model, the effects of 

household biomass energy use on livelihoods are from the changes in households’ 

shadow profits, as in the separable model, whereas the indirect effects are derived 

from the changes in the shadow wage. Therefore, the variables affecting biomass 

energy consumption such as shadow prices of biomass energy and prices of 

commercial energy and household income level should also be examined in this 

research. 
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Chapter 3 Household Biomass Energy Choice for 
Cooking in Energy Transition and Its Impacts on Rural 
Livelihoods  

3.1 Introduction 

In Sichuan Province, although the central and local governments have considered the 

rural energy construction as an important strategy to enhance the rural livelihoods 

and made great efforts to adjust the rural energy using patterns, the current energy 

consumption at the household level still depends heavily on traditional biomass 

energy such as crop straw and firewood. The long-term reliance on solid traditional 

biomass energy can be attributed to a rather slow energy transition process 

switching toward modern fuels (Gan and Yu, 2008; Démurger and Fournier, 2011). 

Today, with the increasing pressure imposed by the stark conflict between rural 

economic growth and environmental protection, the energy transition is becoming 

more and more urgent. Notwithstanding the fact that the Chinese government has 

been explicit about its objective to elicit household motivation of using high-quality 

energy by vigorously promoting the construction of biogas system and the 

electrification in rural Sichuan, the progress of energy transition is still slow there and 

needs to be sped up (Peng et al., 2010). More importantly, policy-making efforts in 

recent years have focused on encouraging households to make fuel substitutions.  

Many previous studies (Reddy, 1995; An et al., 2002; IIED and ESPA, 2010; Ahmad 

and Puppim de Oliveira, 2015) demonstrated that the way energy transition takes 

place will determine its impacts on rural household livelihoods. Hence, the main 

purpose of this study is to investigate the transition pathways of household energy 

choices, with particular concern for cooking to determine ways to propel the fuel 

switching from traditional biomass energy to modern cleaner energy at the 

household level. The focus of this study is on the biomass energy, because it is the 

main type of energy used for cooking in rural Sichuan, and the existing evidence 
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regarding household preferences for it are usually insufficient to give a clear picture 

of the current situation due to the lack of the market.   

Based on what has been discussed in Section 2.2, we assume that an array of energy 

choices faced by the household can be ranked from the worst to the best in terms of 

cleanliness, use efficiency and technological sophistication. Electricity is at the top of 

the list, while the traditional solid biomass energy such as crops straw and firewood 

is at the low end of the range. In order to better understand the energy choice 

behaviors of the households in energy transition, we want to clarify how households 

make their decision regarding modern cleaner fuels and examine the determinants of 

these choice behaviors. The basic hypothesis of this study is that, with the increase in 

socioeconomic standing of the households, their energy use choices will move up 

from traditional biomass energy to the energy carriers at higher levels. 

The structure of this chapter is as follows: In Section 3.2, related literatures are 

reviewed. Section 3.3 describes the general information about cooking energy 

consumption status in our study region. The research methodology, which is used to 

address our research questions and the model specification for econometric analysis, 

will be given in Section 3.4. Section 3.5 presents the empirical analysis using our 

models, and Section 3.6 will conclude the main findings of our research.  

3.2 Literature Review on Economics of Energy Choices 

In recent years, a large number of studies have tried to clarify the impacts of 

household energy use patterns on rural livelihoods (Gupta, 2003; Cherni et al., 2007; 

Byrne et al., 2007; Cherni and Hill, 2009; Lee et al., 2015; Biggs et al., 2015). These 

studies have shown that energy transition can change rural livelihoods in various 

ways. In accordance with the viewpoints of Chamdimba (2009), energy use is 

identified as two competing paradigms in rural areas of developing countries. Poor 

households living in geographically remote areas depend heavily on traditional 

biomass for most of their basic livelihood activities such as cooking and heating. 
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Conventional burning of biomass with low thermal efficiency usually causes waste of 

resource (Chen et al., 2006). Additionally, it negatively impacts human health 

through indoor air pollution, and causes great damage to the environment and 

ecological system such as through deforestation, land degradation, biodiversity 

decrease, and soil erosion accompanying the increase in GHG emissions (Fan et al., 

2011). On the other hand, in some well-developed rural areas, household demands 

for new efficient and environmentally friendly biofuels are gradually increasing 

(Chamdimba, 2009). Adopting modern fuels could bring positive effects on rural 

livelihoods by improving quality of life and enhancing environmental protection 

(Gosen et al., 2013). Although the use of modern energy sources at the household 

level is expected to ensure livelihood sustainability, the understanding of household 

energy use in energy transition and its policy implications for livelihoods are still 

limited. Furthermore, little attention has been paid to this issue in rural China. 

Therefore, this chapter uses Chinese data to investigate household choice on 

different fuels, especially on biomass energy. It aims at proposing some meaningful 

suggestions for future energy policy design to improve rural livelihoods. 

Previous studies related to household choice behaviors have mainly focused on fuel 

use patterns and determinants of fuel shifts in different developing economies 

(Ahmad and Puppim de Oliveira, 2015; Lee et al., 2015). Most of them are based on 

empirical analysis using econometric methods (Hosier and Dowd, 1987; Reddy, 1995; 

Farsi et al., 2007; Wambua, 2011; Mensah and Adu, 2013; Suliman, 2013; Ahmad and 

Puppim de Oliveira, 2015). Their results confirm the hypothesis that, the step on the 

energy ladder to which a household climbs, depends mainly on its income level. In 

other words, income is important in determining household fuel choice behaviors. 

Households with higher income normally decide to choose better-quality energy 

sources. Meanwhile, some recent studies have pointed out that many other factors, 

such as fuel characteristics, social and demographic factors, and cooking habits also 

affect household fuel choices (Ouedraogo, 2006; Farsi, et al., 2007; Mekonnen and 
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Köhlin, 2008; Akpalu et al., 2011; Kwakwa et al., 2013; Mwaura et al., 2014; Ahmad 

and Puppim de Oliveira, 2015). Particularly, fuel price or cost, educational level of 

household head, family size, access to energy supplies, and regional location have 

attracted considerable attention in these studies. Research in China has also 

suggested such a range of determinants and illustrated the impacts of household 

energy choice on the ecological system, environment, and human health (An et al., 

2002; Peng et al., 2010; Yu et al., 2012; Qu et al., 2013). The multiple fuel use 

patterns of households support the assumption of the energy stacking model in 

which households move up the energy ladder without corresponding abandonment 

of the energy sources at lower levels (Kowsari and Zerriffi, 2011). Among other points 

that cannot be ignored, the attributes of stoves associated with particular fuels 

including stove price, usage cost, indoor smoke emission level, and safety have been 

verified to have significant impacts on household cooking fuel choice (Takama et al., 

2011; 2012). Nevertheless, only a few studies jointly consider the household-specific 

and energy-specific attributes. In most cases, household-specific factors are fixed in 

the short term, whereas energy-specific factors vary according to the changes in the 

availability of new energy products and in households’ understanding of available 

alternatives (Takama et al., 2012). Energy-specific factors should be involved in the 

analysis to complement household-specific factors and to help find out market 

barriers for household energy transition and desirable fuel product characteristics. In 

addition, revealed preference data are widely applied to estimate household energy 

choice models in the foregoing literatures. However, the dynamic energy switching 

behaviors in conjunction with changes in exogenous markets cannot be predicted by 

stationary choice probabilities (Ben-Akiva and Morikawa, 1990). Consequently, 

studies using data of actual choice alone may not provide valuable knowledge for the 

practical design of policies targeting the promotion of the use of non-marketed 

energy sources or those could create public benefits (e.g. biogas). It should make 

clear how households intend to switch their current fuel choices in response to a 
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planned or potential change in the rural energy system. Thus, this chapter aims to 

examine both household-specific and energy-specific determinants of household 

energy choice and provide empirical evidence on energy transition in rural China 

from the perspective of household revealed and stated preferences. 

3.3 Household Cooking Energy Use in Study Region 

According to the statistics of Sichuan Province and the data collected in our field 

survey, a total of 7 kinds of cooking energy sources, namely crop straw, firewood, 

biogas, electricity, coal, LPG, and natural gas, are currently used by the sampled 

households. In terms of cost, cleanliness, efficiency, and technological flexibility, the 

7 cooking fuels are ranked from the worst to the best. As shown in Figure 3.1, 

electricity is at the top of the ladder, whilst the traditional solid biomass energy 

sources, such as crop straw and firewood, are at the low end of the range. In other 

words, electricity could be regarded as the cleanest and the most efficient cooking 

energy source, whereas traditional biomass energy is the most inferior.  

Traditional solid 
biomass energy: 
crops straw and 

firewood 

Conventional solid 
energy: Coal

Transitional 
gaseous energy: 
Biogas, LPG and 

Natural gas

Advanced energy:
Electricity
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Figure 3.1 Cooking fuel ladder in Sichuan Province 
Source: adapted from WHO (2006) and Wambua (2011) 

Figures 3.2 and 3.3 provide general information about household energy use for 
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cooking (including cooking pig fodder and heating water for drinking) in our study 

sample. According to Figure 3.2, 528 (95%) households employ more than one type 

of cooking fuel at the same time. 213 households use two types of cooking fuels, 

accounting for about 384% of the total, whereas 34% (188) of all the households use 

three types of fuels simultaneously. Furthermore, a total of 127 (23%) households 

apply more than three types of fuel for cooking. 

 

Figure 3.2 Cooking energy use pattern of surveyed households 
       Source: Author’s own field survey 

Figure 3.3 further demonstrates the household cooking fuel use in three different 

areas. To be more specific, electricity is the most widely used energy source. In total, 

510 households choose to use electricity, accounting for 91.7% of the whole sample. 

There are some households that still cook without electricity because of the existing 

technological, organizational, and environmental problems, including grid connection 

difficulties, efficiency of electricity access, electrical waste, and a lack of improved 

discipline and coordination (Meisen and Cavino, 2007). On the contrary, coal is used 

by only 50 households, occupying a mere 9% of the total, due to the impacts of the 

local policy which has formulated that households are forbidden to use coal in some 

designated areas to reduce the environmental pollution caused by CO2 emission. 
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Biomass energy, including crop straw, firewood, and biogas, plays a vital role in 

cooking energy consumption structure. Of the 556 surveyed households, 468 (84.2%) 

households use biomass energy. In particular, 432 (77.7%) households still adopt 

traditional solid biomass energy (crops straw and firewood) for cooking, while 243 

(43.7%) households produce biogas. Furthermore, LPG and natural gas are employed 

by 120 (21.6%) and 105 (18.9%) households in our sample, respectively.  

 

       Figure 3.3 Energy use for cooking of surveyed households 
         Source: Author’s own field survey 

In addition, households from different regions have different energy consumption 

patterns for cooking corresponding to different local conditions. The main types of 

fuels used by households from the mountainous areas (Aba) are firewood and 

electricity, as they have access to nearby forest and hydropower resources. Biomass 

energy (consist of crops straw, firewood and biogas) is commonly used by the 

households located in hilly areas (Yibin). The possible reason for this could be that 

the weather and geographic conditions in that area are quite suitable for planting, 

forestry, and animal breeding. Thus, households have abundant biomass resources 

collected from residues of these productive activities. Finally in plain areas (Deyang), 

the use of commercial energy such as electricity, LPG, and natural gas is quite 

popular because of the relatively high development level of the regional economy.  

In Figure 3.4, we divided our sampled households into two groups. One includes the 
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traditional biomass energy users (who are using crops and firewood), and the other 

only consists of non-traditional biomass energy users (users of other energy). Figure 

3.4 illustrates the comparison of the income levels between these two groups. It can 

be seen that the average income level of the non-traditional biomass energy users is 

higher than that of the traditional biomass energy users. This proves that income 

level is a rather important determinant for household cooking fuel choice. Higher 

income levels will reduce the household use of traditional biomass energy. 

 

Figure 3.4 Income levels of two household groups 
Source: Author’s own field survey 

In practice, traditonal biomass energy (consisting of crop straw and firewood), biogas, 

coal, and electricity are the main types of energy adopted by the surveyed 

households for cooking. Figure 3.5 shows the cooking stoves of the four main types 

of energy sources employed by the households in the study region. The cost of coal 

stove is the lowest, whereas the price of electric cookers is the highest. Cooking with 

electricity is the most efficient, while the time of cooking is the longest for traditional 

biomass energy. Among gaseous fuels, biogas has the lowest use cost.   
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Figure 3.5 Cooking stoves four main types of energy sources in study region  

Note: From top left to bottom right: improved stove for traditional biomass energy (crop straw 

and firewood), biogas stove and cooker, coal stove and electric cooker.  

Moreover, considering the household choices among the four different energy 

alternatives (namely traditional biomass energy, biogas, coal and electricity), the 

decision-making behaviors are household specific. Household characteristics, 

therefore, could impact the household fuel choices on cooking fuel use. Table 3.1 

gives the characteristics of households selecting four different energy alternatives. 

The households who choose traditional biomass energy have the lowest fraction of 

adult female members (0.394), while having the highest fractions of children and 

elderly people (0.122 and 0.146). They also have the smallest mean value of per 

capita income (12355 CNY per year) and the largest area of arable land (4.672 Mu). 

On the contrary, households choosing electricity have the smallest size (3.91) and the 

highest average per capita income level (17289CNY per year). They also have the 

highest fraction of female adult members (0.439) and the lowest fraction of children 

(0.094). Additionally, households picking biogas have the largest size (4.29) and the 
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highest fraction of female adult members (0.443), whereas the households who 

select coal have the smallest size (3.960) and the lowest fraction of elderly people 

(0.089). Particularly, they own the smallest area of arable land (2.996 Mu). With 

respect to the accessibility of biomass resource, households selecting traditional 

biomass energy live the farthest from the nearest biomass collection spots (3.9 Km), 

while those choosing biogas are the nearest (0.5 Km). 

Table 3.1 Comparison of characteristics of households choosing four different 

energy alternatives 

  
Traditional 

biomass energy  
Biogas Coal  Electricity 

Family Size (Number) 4.22 4.29  3.96 3.91 

Fraction of adult male members 0.439  0.443  0.407  0.437 

Fraction of adult female members 0.394  0.416  0.415  0.439  

Fraction of children (<=14) 0.122  0.115  0.120  0.094  

Fraction of elderly (>=65) 0.146  0.095  0.089  0.114  

Income per capita (CNY/Year) 12355  13512 14373  17389  

Distance to the nearest biomass 

collecting spot (Km) 
3.9  0.5 1.2 1.9 

Arable land owned (Mu) 4.672  4.468  2.996  3.142  
Source: Author’s own field survey 

Furthermore, energy choices could also be affected by the characteristics of decision 

makers (as it is assumed before, household heads usually make decisions on 

household cooking fuel choices). As is shown in Figure 3.6, traditional biomass 

energy and coal represent the larger share among female household heads than of 

male household heads; while a smaller share of female household heads prefer 

electricity and biogas.  
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Figure 3.6 Energy choices made by household heads with different gender 
Source: Author’s own field survey 

The energy choices made by household heads from different age groups are 

illustrated in Figure 3.7. It can be seen that the older household heads are more likely 

to choose biomass energy (biogas and traditional biomass energy), whereas they 

have less likelihood to select coal and electricity for cooking. The proportion of 

household heads choosing traditional biomass energy is the largest in the oldest age 

group of 65+, while it is the smallest in the youngest age group of 15-34. The share of 

the household heads selecting electricity is the smallest in the age group of 65+, 

while it is the largest in the age group of 35-44. In addition, the proportion of the 

household heads picking coal is the largest in the age group of 15-34, whereas that of 

household heads choosing biogas is the largest in the age group of 55-64. 
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Figure 3.7 Energy choices made by household heads of different age groups 
Source: Author’s own field survey 

Finally, in order to check the effects of the educational level of household heads on 

household energy choice behaviors, all sampled households were divided into three 

groups in terms of the educational years of household heads (See Figure 3.8). 

Obviously, well-educated household heads prefer to use clean and effective energy 

alternatives, such as electricity and biogas, over traditional biomass energy. The 

majority of the households who are illiterate or literate below primary school 

(educational level of 0-5 years) select traditional biomass energy, whereas most of 

the households with an educational level of high school and above (9 years+) select 

electricity as cooking fuel. According to that described above, household head 

characteristics such as gender, age, and educational level are also important 

determinants of household cooking energy choices. 
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Figure 3.8 Energy choices made by household heads with different educational 
levels 
Source: Author’s own field survey 

3.4 Empirical Strategy 

3.4.1 Revealed and Stated Preferences 

Methodologies for examining the choice behaviors of consumers for certain products 

or services are numerous. However, in the existing literatures, these methodologies 

can be divided into two parts; i.e. revealed preference (RP) and stated preference (SP) 

approaches (Whitehead et al., 2007). They are often used to evaluate consumers’ 

preferences, analyze their demands, and forecast their behaviors. The revealed 

preference approaches use observed actual choice data to estimate the ex-post 

willingness to pay (WTP) for different commodities, while the stated preference 

approaches examine consumers’ preferences over a range of hypothetical 

alternatives based on SP choice experimental design to estimate the ex-ante 

willingness to pay for various commodities (Brownstone et al., 2000; Whitehead et 

al., 2007).  

The RP methods are the most appropriate and effective tools for analyzing 

preferences, inferring utility functions, and estimating consumers’ demands for the 
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products or services based on a comparison of the chosen alternatives and the 

rejected alternatives (Kroes and Sheldon, 1988). The data used in RP analysis are 

usually obtain by direct observation of the consumption behaviors or collected in 

some surveys asking the respondents about their actual choices. However, the RP 

approaches have many weaknesses that restrict their general applications. Firstly, 

they rely heavily on historical data. Researchers are not allowed to model the 

preference or demand for new products or new government policies which lie 

beyond the range of the historical experience of RP data (Whitehead et al., 2007). 

Sometimes the RP data are also limited to analyze the real preferences of the 

individuals for some government-oriented projects. For instance, the RP data of 

biogas used in our research cannot reflect households’ real preferences for biogas, 

because the construction of household-based biogas digesters in Sichuan Province is 

government driven. Secondly, there are often strong correlations between 

explanatory variables of interest and other variables which may lead to statistically 

insignificant coefficient estimates and imprecise estimates of attribute contributions 

to the utility functions (Kroes and Sheldon, 1988; Cameron et al., 1996; Brownstone 

et al., 2000; Mark and Swait 2004; Whitehead et al., 2007). In this situation, the 

multicollinearity and endogeneity problems usually occur in the econometric analysis. 

Thirdly, RP data are always obtained without sufficient variation among attributes in 

the real market. Therefore, it is difficult to use these data to examine all variables of 

interest (Kroes and Sheldon, 1988; Brownstone et al., 2000 Mark and Swait 2004). 

Fourthly, the RP data collection is sometimes inefficient, because the data can only 

be collected in the field survey at one time point, resulting in a relatively small 

sample size (Whitehead et al., 2007). In addition, the explanatory variables are also 

required to be expressed in objective units in RP methods. That is to say, RP data are 

normally restricted to some primary variables such as price, cost, and time (Kores 

and Scheldon, 1988). It is difficult to test some secondary variables (such as the 

impacts on environment and health) using only RP data. 
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Due to the limitations of RP data, SP methods have become an attractive option in 

preference research. They were originally developed in marketing research and have 

been widely used in the research field of transportation, marketing, environmental 

economics, and health economics. Researchers can analyze consumers’ preferences 

for products or services that do not exist in the real market by using SP experiments 

to elicit their preferences over hypothetical alternatives (Louviere et al., 1983; 2000). 

The main advantages of SP methods are flexibility and the ability to measure non-use 

value (Whitehead et al., 2007). In SP experiments, the choice sets can be designed 

before implementing the experiments. The range of the attributes can be extended 

by setting hypotheses. Some qualitative attributes such as safety and smokiness level 

in energy studies can be included in the experimental design, and the 

multicollinearity among attributes could be avoided (Morikawa, 1989). Nevertheless, 

they still have some disadvantages, among which, one major problem is the 

hypothetical nature of SP data. The consumers behave differently in response to 

hypothetical attributes and their levels than they would when they face the same 

situation in the real market. In some cases, if the respondents are not well educated, 

they may not be able to completely understand the SP experiments (Brownstone el 

al., 2000). Another sever problem could arise when the new products have politically 

correct public good attributes such as zero-pollution energies. The respondents are 

highly likely to misunderstand these options in SP experiments and then to 

misrepresent their preferences for them, although in reality, they are unwilling to pay 

more for these types of energy (probably due to the free-rider problem) (Brownstone 

et al., 2000).  

In order to simultaneously exploit the advantages of the data of each approach and 

mitigate the shortages, the RP methods and SP methods are usually combined to 

jointly estimate the consumers’ preferences by many researchers, considering the 

complementary relationship between RP data and SP data. This new potential 

method was firstly adopted in the field of transportation and marketing (Morikawa 
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1989; Ben-Akiva and Morikawa, 1990; Morikawa et al., 1991; Hensher and Bradley, 

1993; Swait et al., 1994; Hensher et al., 1999). And then it was applied in the 

research on environmental economics and health economics (Adamowicz et al., 1994; 

1997; Huang et al., 1997; Mark and Swait 2004). The literatures relating to 

developing the joint estimation models for RP and SP data seek to enhance the 

contrasting strengths of both of these approaches while reducing their weaknesses. 

As mentioned in the work of Hensher et al. (1999) and Louviere et al. (2000), the RP 

and SP data combination can be regarded as a way of data enrichment. The RP data 

can be enriched by SP data. Combining RP data with SP data allows the models to 

extend beyond the limited range of historical experience and can be used to collect 

information from the current non-users of some products or services. When RP and 

SP data are collected based on the appropriate experimental design, the 

multicollinearity and endogeneity problems could be avoided by using these data 

(von Haefen and Phaneuf, 2007). Furthermore, the combination of RP data and SP 

data can obtain more information from each respondent to improve the data 

collection efficiency as well as econometric efficiency (Whitehead et al., 2007). The 

joint estimation of choice models can simultaneously take the hypothetical choices 

and the actual choices into consideration to mitigate the hypothetical bias caused by 

SP data. It can be also used to validate both types of the data (Whitehead et al., 

2007). Thus, based on what has been stated in this section, this research will 

estimate the households’ choice behaviors by using RP, SP, and joint RP-SP data, 

respectively, based on the random utility theory, which will be discussed in Section 

3.4.3.  

3.4.2 Model Specification  

Following McFadden (1973; 1974), the basic utility theory in economics is employed 

to address the choice problem in this paper. Suppose that each household from the 

same population of interest faces a finite choice set and selects an alternative to 
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maximize its utility.  

We denote
iC as the choice set with J alternatives faced by household i  and )(iu  

as its random utility function, assigning a value to each potentially available 

alternative. The household chooses some alternative
iCj  having a vector of 

measured attributes jx . Therefore, the reveal preference of the household for a 

particular type of energy can be expressed as )()( kiji xuxu  (all
iCk  ). Thus, the 

choice probability that j will be chosen can be derived as:  

]),()(:[)|( ikijij CjkallforxuxuiPxjP                           (3.1) 

Where the distribution of the utility function ui x( ) is assumed to satisfy that the 

probability of ties is zero, and ),( 1 Jxxx  . Equation (3.1) is also referred to as the 

explanation of observed choice in a random utility model (RUM). Its right-hand side 

represents the probability that a household chosen randomly from the population of 

interest selects an alternative j that maximizes its utility (Manski, 2001).  

The random utility function )( ji xu
 

can also be interpreted as attainable maximum 

utility for the selected household, given its budget constraint and fixed alternative k , 

as outlined in McFadden (1980). Then )( ji xu is a function of all alternatives in the 

choice set iC . The randomness in the utility function mainly comes from the 

unobserved variations in tastes and attributes of different alternatives, and the errors 

of perception of households (McFadden, 1973; 1980). 

Based on RUM, Equation (3.2) defines the random utility function of choice j , for 

household i , who are facing J unordered alternatives: 

ijijijij zXU   )(                                              (3.2) 
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Where ijX is a matrix of alternative-specific variables, ijz is a matrix of case-specific 

variables, ij is the disturbance term, and  and γ are the matrices of regression 

coefficients.  

If the household makes a particular choice j, then we assume that ijU is the 

maximum utility among all the existing J choices. Hence, the probability that choice

j is made can be expressed as: 

jkUUob ikij  ),(Pr                                              (3.3) 

Let Yij  
be a random variable that indicates the choice made. That is, 1ijY if the 

household i chooses the alternative j and 0ijY otherwise. According to McFadden 

(1973), if (and only if) the J disturbances are independent and identically distributed 

with Gumbel (type 1 extreme value) distribution, namely: 

))exp(exp()( ijijF                                               (3.4) 

Then 
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                           (3.5) 

This leads to what is called the Alternative-specific Conditional Logit model (asclogit) 

or McFadden’s choice model (McFadden, 1973; Greene, 2012). This paper uses this 

model to test the household energy choice behaviors in rural Sichuan. 

3.5 Empirical Analysis 

3.5.1 Revealed Preference (RP) Analysis 

In this research, the households’ revealed preferences for energy choices are 

discussed firstly. The concept of revealed preference (RP) was introduced by 

Samuelson (1938). It asserts that the best way to measure consumers’ preferences is 
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to observe their purchasing behavior on the basis of the assumption, given that a 

consumer chooses one option out of a set of different alternatives, this option must 

be the preferred option (Samuelson, 1938). Then, in an attempt to model the 

decision process of the household, the choice modeling methods are applied to 

analyze the RP data (McFadden, 1973). 

3.5.1.1 Household Energy Choice and Its Determinants 

We have collected the data on 556 households and their choices among 4 different 

types of energy for cooking by asking respondents questions like “Currently, which 

type of energy do you prefer the most for cooking?” The energy types are traditional 

solid biomass energy consisting of crop straw and firewood, biogas, coal, and 

electricity.  

The actual choices made by the surveyed households are presented in Figure 3.9. 

Considering lower-income households, an obvious preference for traditional solid 

biomass energy over all the remaining three types of energy is shown, as 129 (69.7%) 

of these households choose firewood for cooking. 13.51% uses coal and 14.05% uses 

electricity. Only 5 households use biogas as their main cooking energy, accounting for 

a rather small share (2.7%). The main reason for this situation could be that these 

households are located in the mountainous areas. The local weather and 

geographical conditions of mountainous areas are not suitable for the construction 

and operation of biogas digesters. Concerning middle-income rural households, 

biomass energy plays a vital role in their cooking energy utilization. The majority of 

the households (70.4%) decide to choose biomass energy as their cooking fuels. 

Among which, 35.5% (66) households are still willing to use traditional solid biomass 

energy, whilst 32.8% (61) households select biogas. This is probably because these 

households live in hilly areas and depend on traditional agricultural production, 

bamboo planting, and the pig breeding industry for a living. Thus, they have 

abundant biomass resources such as crop straw, firewood, and animal dung for 
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energy use. There are merely 18 (9.68%) households who choose coal to cook their 

food and boil water, whereas 41 (22.04%) households made their choice to consume 

electricity. This could be attributed to the relatively high level of electricity and coal 

prices faced by the households. For the high-income zone, electricity is preferred for 

cooking by a total of 103 (55.68%) households. On the contrary, 27 (14.59%) 

households chose traditional solid biomass energy and 48 (25.95%) chose biogas. 

The potentially crucial factor that is responsible for this phenomenon could be 

household location. Living in plain areas increases opportunities to get jobs with 

higher income in nearby towns or surrounding cities to afford commercial energy. In 

turn, households are unwilling to spend extensive time on biomass collection, which 

constrains them from participating in alternative income-generating activities. 

Compared to the households from low- and middle-income zones, the upper-income 

households are more likely to choose the type of energy on the higher level of the 

energy ladder. Therefore, in Sichuan Province, household location and regional 

economic development level could be the important determinants of household 

energy choice behaviors. 

                                                                       

Figure 3.9 Household energy choices (Unit: households) 
Source: Author’s own field survey 
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3.5.1.2 Descriptive Analysis of Variables Used in RP data Analysis 

The explanatory variables used in analyzing the revealed preferences of the 

households are listed in Table 3.1. Energy price (EP) is selected as the 

alternative-specific (energy-specific) variable of the choice model.9 Theoretically, the 

demand of one type of energy decreases as its price increases. As the biomass (such 

as crop straw, firewood, and animal dung) is non-tradable in Sichuan Province, the 

opportunity costs or shadow prices determined by the time spent on biomass 

collection and pigsty cleaning are taken as proxies for the prices of traditional 

biomass energy and biogas. Assuming that the rural labor market is perfect, we 

follow Kanagawa and Nakata (2007) to calculate the shadow prices of the biomass 

energy using the formula in Equation (6): 

BAjT
C

w
P ij

ij

i
ij ,=×=                                                (3.6) 

Where Pij (CNY/kgsce10) is the shadow price of biomass energy j for household i; wi 

(CNY per hour) is the market wage rate of household labor; Cij (kgsce per year) is the 

household consumption of energy; and Tij (Hours) is the time spent on biomass 

collection or pigsty cleaning. Particularly, the missing values for energy prices in the 

sample are replaced with the regional mean energy price values.  

With respect to the case-specific (household-specific) variables, we assume that the 

household head is the decision-maker of actual cooking fuel choices. Therefore, 

characteristics such as the age, gender, and educational level of the household head 

(AHH, GHH, and EHH) will be regarded as important factors affecting household 

                                                             

9
 We also selected the smokiness level and safety risk as alternative-specific variables and treated them as 

pseudo-categorical variables (similar to process discussed in Section 3.3.2.1 of SP experimental design). However, 
due to the problem of multicollinearity, they were eliminated by Stata.   

10
In order to simplify our analysis, we unify different energy units to standard coal equivalent unit (kgsce) through 

dividing the energy consumption amount by the conversion coefficients. 
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energy choice behaviors in RP analysis. Particularly, it is conjectured that the higher 

the decision-maker’s education level is, the lower the probability of using traditional 

biomass energy will be (Ouedraogo, 2006; Farsi, et al., 2007; Mekonnen and Köhlin, 

2008; Vijay and Aditi, 2011).  

Among other house-specific variables, household family size (FS) is directly related to 

household energy choice behaviors through actual demand and available labor for 

biomass collection (Wambua, 2011). Households of larger size could have more labor 

resources. This also indicates that they need to make decisions on energy use to cook 

more food. Considering the demographic characteristics (such as the fractions of 

adult male (FAM), adult female (FAF), children (FC), and elderly people (FE)) are used 

to measure the amount of available labor resources that can be provided by a 

household. They also reflect the effects of the gender and age structure on 

household fuel choices to some extent. For a household, the higher the fractions of 

adult males and females are, the more likely that household is to use commercial 

energy (such as coal and electricity), whereas the higher the fractions of children and 

elderly people are, the greater the likelihood the household will use traditional 

biomass energy for cooking.  

In order to capture the effects of income level on household cooking fuel switching 

decisions, the log-transformed value of income per capita (IPC) is used as a regressor 

in our models. As the income from off-farm work takes the largest share in total 

household income, the average income level could be regarded as the exogenous 

variable in our model. It is expected to have a positive impact on choosing 

high-quality energy. The areas of arable land owned by a household (AL) could 

matter in deciding the type of energy to be adopted for cooking, as the crop residues 

from the cultivated land would be the major biomass resources for energy use. It is 

hypothesized that as the areas of arable land owned increases, the probability of 

usage of traditional biomass energy increases accordingly.   
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The variable used to reflect the impact of cooking habits on household energy choice 

behaviors is the “number of people frequently eating at home” (NPEH). In this study, 

we define the people frequently eating at home as household members who eat at 

home more than 5 days a week. This variable is expected to have a positive impact 

on the choice of clean fuels (coal and electricity). 

Meanwhile, the distance from the house to the nearest biomass collecting spot (DB) 

is selected to represent the accessibility and availability of biomass resources. It is 

supposed to negatively influence household labor allocation to biomass collection, 

and thus, in turn, negatively impact the choice of traditional biomass energy. For the 

missing of this variable caused by non-participation in biomass collection, we assume 

that these households face the average distance and substitute the regional sample 

mean for the missing data. 

In addition, household location could play an important role in household 

decision-making towards cooking fuel choices. The local dummy variables (r1 and r2) 

are constructed to test the effects of regions. They take a value of 1 if the surveyed 

households are from mountainous areas or plain areas, and 0 otherwise. It is 

conjectured that households located in mountainous areas are more likely to choose 

traditional biomass energy, whereas those from plain areas are more likely to use the 

fuels on higher levels of the energy ladder. 
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Table 3.2 Description of explanatory variables used in asclogit model for RP data 

Variables Mean Std. Dev. 

Alternative-specific variables 
  

Price of traditional biomass energy (CNY/kgsce) 1.2689 1.9259 

Price of biogas (CNY/kgsce) 0.5631 0.4246 

Price of coal (CNY/kgsce) 0.7758 0.0046 

Price of electricity (CNY/kgsce) 4.0587 0.6656 

Case-specific variables 
  

Gender of household head (Male=1, Female=0) 0.9281  0.2586 

Age of household head (Years) 51.6727  11.6792 

Educational years of household head (Years) 6.4245  3.4781 

Income per capita (CNY/year) 14312.58 13754.38 

Family size (Number) 4.1151 1.3667 

Fraction of adult female 0.4146 0.1490  

Fraction of adult male 0.4385 0.1645 

Fraction of children (≤14) 0.1119 0.1560  

Fraction of elderly member (≥65) 0.1207 0.2336 

Land areas owned (Mu) 4.0117 3.7063 

Distance to the nearest biomass collecting spot (Kg) 2.3349 4.3866 

Number of people frequently eating at home 

(Number) 
3.0935 1.3792 

=1, if the household is from mountainous areas 0.3327 0.4713 

=1, if the household is from plain areas 0.3327 0.4713 

  
 

556 

Note: CNY is abbreviation of Chinese Yuan. The missing dummy for region is “hilly area.” 

Table 3.2 reveals that electricity has the highest average price level at 4.06 CNY/kgsce, 

whereas biogas has the lowest average price level at 0.56 CNY/kgsce. The calculated 

average shadow price of traditional biomass energy for the household is 1.27 

CNY/kgsce, which is approximately twice as much as the price of coal at 0.78 

CNY/kgsce.  

With respect to the case-specific variables, in our sample, the average family size of 

households is about 4.12. The average fraction of male and female adults is around 

41.46% and 43.85%, while the average fractions of children and elderly people are 

11.19% and 12.07%, respectively. The surveyed households are randomly selected 

from three different regions. The number of households from the mountainous and 

plain areas both amount to 33.27%, and 33.46% of the households are from hilly 
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areas. The average income per capita of our sampled households is 14312.58 CNY 

per year. Moreover, according to the information listed in Table 3.2, 92.8% of the 

sampled households have male heads. The average age of the household heads is 

51.67 years, and the average educational level is approximately 6.42 years. 

Furthermore, on average, the areas of arable land possessed by the households in 

our sample are 4.01 Mu. Specifically, within the 556 households, about 3.09 people 

frequently eat at home.  

3.5.1.3 Results of Econometric Analysis 

The estimation results of the asclogit analysis of the revealed preference data are 

presented in Table 3.3. Traditional biomass energy is the omitted category (the basic 

alternative), with which the estimated coefficients are to be compared (Mekonnen 

and Köhlin, 2008). The odds ratios are also included in the model to make 

interpretations easier. In order to better understand the substitution patterns 

between the four types of cooking fuels amongst the different households, the 

marginal effects of the statistically significant variables at sample means are 

calculated and presented in Table 3.4. The numbers in this table illustrate the effect 

of a one-unit change in a given independent variable (or a switch in the case of a 

dummy variable) on the probability of choosing a particular cooking energy source. 

In particular, the values of the predicted probability (See Table 3.4) confirm that most 

households have a high probability (43.7%) of choosing traditional biomass as 

cooking fuel. Households with a probability of adopting electricity account for 34.7% 

of the total sample, while those that could have a probability of selecting biogas and 

coal take up a small share (14.5% and 7.1%) of the population. This means that the 

sampled households still have a high propensity to choose traditional solid biomass 

energy for cooking. Meanwhile, electricity is preferred over biogas and coal. 
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Table 3.3 Estimation results of asclogit model for RP data 

Alternative-specific variables Coef. Odds ratios        

Energy Prices (log)   -0.5147(0.08)***   0.5977     

Choice Biogas Coal    Electricity 

Case-specific variables Coef. Odds ratio Coef. Odds ratio Coef. Odds ratio 

Gender of household head  0.6231(0.67) 1.8614 -0.3583(0.59)  0.6988  0.5420(0.57) 1.7195  

Age of household head -0.0076(0.01) 0.9924 0.0091(0.18)  1.0091  -0.0244(0.01)*  0.9759 

Educational level of household head 0.0993(0.05)** 1.1044  0.0999(0.06)* 1.1051   0.1148(0.41)***  1.1216  

Family size 0.1681(0.13) 1.1830 -0.0892(0.16)  0.9146    0.0059(0.12)  1.0060  

Fraction of adult male 2.5277(1.70) 12.5245 0.1029(1.60)  1.7770  2.0997(1.43)  8.1637  

Fraction of adult female 1.7536(1.72) 5.7754 1.0290(1.65)  4.6285  2.4091(1.45)*  11.1239  

Fraction of children 1.2709(1.73) 3.5640 0.4863(1.65)  1.6262  1.6017(1.46)  4.9613  

Fraction of elderly people -2.9051(0.72)*** 0.0547  -1.8713(0.91)** 0.1539  -1.8450(0.60)*** 0.1580  

Income per capita (log) -0.0173(0.23) 0.9829 0.2259(0.28) 1.2534  0.4659(0.22)**  1.5934  

Number of people eating at home 0.0206(0.13) 1.0208 0.0959(0.16) 1.1007 0.1061(0.12) 1.1119 

Land areas owned 0.0268(0.04) 1.0271  -0.1987(0.76)*** 0.8198  -0.1176(0.05)**  0.8891  

Distance to the nearest biomass collecting spot  -0.3404(0.12)*** 0.7115  -0.3837(0.13)*** 0.6814  -0.0073(0.04)  0.9927  

Located in mountainous areas -2.6663(0.53)*** 0.0370 -0.1708(0.43) 0.8430  -1.7982(0.37)***  0.1656  

Located in plain areas 1.3961(0.38)*** 1.5344 -0.1936(0.56)  0.8240  1.8737(0.36)***  6.5122  

_cons -3.1287(2.80) 0.1227 -3.0714(3.17) 0.0464  -5.3967(2.58)**  0.0045 

Observations 556 556 556 

Wald Chi2(43)  221.98***     

Log likelihood -527.38944     

Note: The missing dummy for region is “hilly area.” The basic alternative in this asclogit model is “traditional biomass energy.” Significant level: *10%, **5%, ***1%. The ‘(log)’ means that 

variables are in logarithms.  



 

73 

 

Table 3.4 Marginal effects of key influencing factors in RP asclogit model 

Alternative-specific variables 

Traditional 

biomass 
 Biogas Coal Electricity 

Pr=0.437 Pr=0.145 Pr=0.071 Pr=0.347 

Price (log)     

Traditional biomass -0.1267***    

Biogas 0.0327*** -0.0639***   

Coal 0.0160*** 0.0053*** -0.0340***  

Electricity 0.0780*** 0.0259*** 0.0127*** -0.1166***  

Case-specific variables         

Age of household head 0.0039 0.0002 0.0013 -0.0054* 

Educational level of household 

head 
-0.0268*** 0.0056 0.0027 0.0185** 

Land areas owned 0.0223** 0.0113** -0.0105** -0.0231** 

Distance to the nearest biomass 

collecting spot 
0.0346*** -0.0379*** -0.0216*** 0.0249** 

Mountainous areasa 0.4021*** -0.1968*** 0.0504* -0.2558*** 

Plain areasa -0.3430*** 0.0619* -0.0659** 0.3471*** 

Income per capita (log) -0.8765* -0.0279 0.0036 0.1008** 

Fraction of elderly people 0.5221*** -0.2483*** -0.0482 -0.2256* 

Notes: The significant level: *10%, **5%, ***1%. For dummy variables (a), the effects are obtained from 
probability differences. Pr is the predicted probability that each type of cooking fuel is chosen by a household.  

The regression results reveal that energy price has a significant impact on household 

energy choice. The negative sign of its coefficient indicates that households prefer 

fuels with lower prices. In other words, raising the price of a type of energy 

decreases the likelihood that a household will use this type of energy. The marginal 

effects for energy prices provide more information about their effects. These results 

demonstrate that higher own prices of fuels are associated with significant negative 

shifts away from these fuels. In addition, the significant cross-price effects also reveal 

the substitutability between the different energy sources. According to the calculated 

marginal effects, a 10% increase in electricity price will decrease the average share of 

electricity users by about 1.17%, while increasing the average shares of traditional 

biomass energy, biogas, and coal users by about 0.78%, 0.26%, and 0.12%, 

respectively. A 10% decrease in coal price will increase the average share of coal 
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users by about 0.34%, while decreasing the average share of traditional biomass 

energy and biogas users by around 0.16% and 0.05%, respectively. A 10% increase in 

the shadow price of biogas will decrease the average share of biogas users by about 

0.64%, while increasing the traditional biomass energy share by approximately 

0.33%. Finally, a 10% increase in the shadow price of traditional biomass energy will 

decrease the average share of its users by about 1.27%. The above results are 

consistent with our expectation. 

Turning to the case-specific variables, income level, age and education level of 

household head, areas of owned arable land, household location, distance to the 

nearest biomass collecting spot, and fraction of elderly people in household 

members are found to significantly influence household choices on some, but not all, 

energy categories. Concretely, raising the household income level increases the 

probability of choosing commercial energy (coal and electricity) and simultaneously 

decreases the probability of adopting biomass energy (traditional biomass energy 

and biogas). For instance, a 10% increase in income per capita will reduce the shares 

of traditional biomass energy and biogas users by about 8.77% and 0.28%, 

respectively, while increasing the shares of coal and electricity users by about 0.04% 

and 1.01%, respectively. Regarding household head characteristics, the educational 

level has significant effects on household energy choices. The well-educated 

household head increases the probability of using fuels such as coal, biogas, and 

electricity, whereas those households in which the head has a lower educational 

level are more likely to choose traditional biomass energy. It suggests that increasing 

the educational level of the household head increases a household’s likelihood to 

consume the types of energy of higher quality. Moreover, an increase in the age of 

the household head will decrease the probability of applying modern fuel (electricity) 

and increase the probability of choosing other energy sources. Among other 

household characteristics, the fraction of elderly people in household members plays 

an important role in determining energy choice behaviors. The signs of the marginal 



 

75 

 

effects for it indicate that households with a larger fraction of elderly people prefer 

to use traditional biomass energy. This is because elderly people usually have more 

spare time to collect biomass and therefore face a lower opportunity cost for time. 

Households living farther from the place where they collect biomass are more likely 

to select traditional biomass energy and electricity as cooking fuels, whilst they are 

less likely to employ biogas and coal. Moreover, households who own more arable 

land are more likely to participate in agricultural production, thus they have more 

biomass resources collected from the agricultural residues. As a result, their 

probabilities of using biomass energy will increase, meanwhile that of purchasing 

commercial energy will decrease. Additionally, the geographical location is another 

important factor that affects household energy choice behaviors. This also suggests 

that there are differences in the energy choice behaviors of households in different 

areas. Compared to those from hilly areas, the households who live in mountainous 

areas are about 40.2% more likely to use traditional biomass energy and about 19.7% 

less likely to use biogas. There are several plausible reasons for this in the context of 

Sichuan Province: the relatively high price level of commercial energy in remote 

areas, the relatively education level of rural households for getting a good-salary job 

outside the village, the local weather conditions that are unsuitable for biogas 

production, and so on. On the contrary, the households located in plain areas are on 

average about 34.7% more likely than those located in hilly areas to use electricity 

and about 34.3% less likely to use traditional biomass energy, probably because of 

the higher awareness of environmental protection among local households and the 

higher development level of the local economy. 

3.5.2 Stated Preference (SP) Analysis 

In order to further investigate the influencing factors responsible for the biomass 

energy choice behaviors of rural households using the SP data, a labeled discrete 

choice experiment was designed. A discrete choice experiment is an increasingly 
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popular methodology for the stated preference (SP) study. It helps to identify how 

individuals value particular attributes of a commodity, product, program, job, or 

policy by asking them to state their preference over hypothetical alternatives (Rao et 

al., 2012). The DCE method has some advantages over traditional study methods, 

which focus on the revealed preference (RP) data. It firstly provides a quantitative 

estimate of how a household values different attributes. Secondly, it allows 

comparison of several attributes with each other simultaneously, and it is fairly 

straightforward for households, as the choices closely resemble real-world decisions. 

In doing a DCE, a respondent is asked to choose an option from a set of alternatives 

under a specific situation. Recently, this method has been applied to study the 

energy choice behaviors in many different countries (Vaage, 2000; Braun, 2010; Shen 

and Saijo, 2009; Willis et al., 2011; Takama et al., 2012).  

3.5.2.1 Experimental Design 

 Generation and refinement of choice options 

The first step in choice experiment design is to select and set up the choice options. 

The universal choice set was generated from China New Energy and Renewable 

Energy Statistic Yearbook (CRES, 2009) and China Energy Statistical Yearbook (CNBS, 

2012), which show that 8 different types of energy (crop straw, firewood, biogas, coal, 

LPG, natural gas, solar, and electricity) are mainly used by rural households for 

cooking. However, this choice set with 8 energy choices is still too large to design a 

choice experiment. Therefore, it should be refined by removing the atypical and 

irrelevant options. In this study, there are three criteria for evaluating the relevance 

of the choice options: (1) the current rural energy consumption structure in Sichuan 

Province, i.e. the amount of each type of energy consumed by rural households; (2) 

the information collected from pilot survey and informal interview with the local 

energy experts from BIOMA (Biomass Institute of Ministry of Agriculture); and (3) the 

relevance to our research objectives. According to the statistics (CRES, 2009 and 
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CNBS, 2012), the most commonly used types of biomass energy for cooking in rural 

Sichuan Province are crop straw, firewood, and biogas, while the major commercial 

energy sources used in villages are coal and electricity. Then, a total of 5 types of 

energy were selected as the significant existing options. From a pilot survey 

conducted in October 2013 and an informal interview with the energy experts, it is 

suggested that households always burn traditional biomass energy, such as firewood 

and crop straw, using the same improved brick stove. Thus, the number of choice 

options can be reduced by combining firewood and crop straw into one choice 

option of traditional biomass energy. Therefore, the four selected energy options for 

this cooking energy choice experiment are traditional biomass, biogas, coal, and 

electricity.  

 Identification of attributes  

Normally, the most important step for conducting a DCE is to identify the attributes 

and their levels. Hensher et al. (2005) provided three criteria for choosing the 

attributes; the attributes should (1) have significant impacts on the choice behaviors, 

(2) be invariant across all options, and (3) be related to the research objectives. In 

past works of research, a large number of attributes were reported to influence the 

household decision making on energy choice (Takama et al., 2012; Spautz et al., 

2006). However, in order to make the experiment feasible and to reduce the 

complexity of the experiment, the number of the attributes has to be restricted 

(Lagarde and Blaauw, 2009). Thus, in line with the above three criteria and on the 

basis of a literature review, energy usage costs, device usage costs, degree of 

environmental pollution, smokiness level, and safety risk were initially chosen for the 

experiment. Based on the results of the household pilot survey, the attribute of 

degree of environmental pollution was excluded from the group of attributes, as it is 

not the main factor affecting the households’ choices. Finally, four attributes were 

selected for the choice experiment. The pilot survey also revealed that each type of 

energy option in this experiment can just correspond to one type of stove in the real 
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situation. And hence, the energy types were assigned as the labels of the choice 

options.   

 Assignment of attribute levels and labels 

Levels can be defined as the scale of measurement of a given attribute. The general 

information about the allocated levels and labels for the attributes of selected energy 

options is listed in Table 3.5. Two levels were assigned to one attribute in each 

energy option. Regarding to the two attributes of device and energy usage cost, the 

two levels correspond to the minimum and maximum cost for each energy option. To 

be more specific, the device usage cost (CNY/year) is calculated by allocating the cost 

of the stove over its life span. The stove cost was represented by its price, which was 

collected in the pilot survey. Herein, due to the data availability, the maintenance 

cost is not included in this indicator. For the commercial energy (coal and electricity), 

the energy usage cost refers to the product of energy consumption amount and 

energy price. In Sichuan Province, honeycomb coal briquette is the most common 

type of coal in rural areas. Therefore, the price of honeycomb coal briquette was 

used to represent the price of coal in this experiment, whilst the standard sales price 

of Sichuan Power Grid was considered to be the price of the electricity in this 

experiment. On the other hand, to measure the usage cost of biomass energy 

(traditional biomass energy and biogas), the shadow prices can be substituted for 

their opportunity costs (Mekonnen, 1999; Baland et al., 2010; Démurger and 

Fournier, 2011). Thus, the usage cost of biomass energy was expressed as the 

product of biomass collection time (hours per kg) and the net income of the rural 

household (CNY per hour). In addition, the energy usage cost also encompasses the 

level of stove/energy efficiency. It was comprehensively counted based on the data 

analysis of the pilot survey and the official statistics. 

The level and label allocation processes for smokiness level and safety risk were more 

complicated due to the definition and measurement problems. Herein, the term 

“smoke” refers to the indoor smoke emitted by the stove. It includes not only the 
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small particles in the smoke fog, but also the hazardous substances such as carbon 

oxides, sulfur oxides, and nitrogen oxides. The attribute of smokiness level can be 

treated as a pseudo-categorical variable (Takama et al., 2012). This is to say, almost 

no smoke=0, very little smoke=1, little smoke=2, relatively heavy smoke=3, heavy 

smoke=4. Analogously, for the safety risk attribute, the definitions of the levels are: 

(1) safe: almost no risk of burn, explosion, and poisoning; (2) little unsafe: almost no 

risk of explosion and poisoning but risk of burn; (3) moderately unsafe: risk of serious 

safety accidents; (4) unsafe: high risk of explosion, burn, and poisoning or frequent 

serious safety accidents. Thus, it can also be treated as several pseudo-categorical 

variables, i.e. safe=0, little unsafe=1, moderately unsafe=2, unsafe=3.  

Table 3.5 Assignment of levels and labels for attributes in cooking energy choice 

experiments 

  
Traditional 

biomass(A) 
Biogas(B) Coal(C) Electricity(D) 

Device usage 

cost 

(CNY/year) 

{30, 50} {150, 220} {6, 16} {60, 80} 

Energy usage 

cost 

(CNY/year) 

{233, 389} {73, 146} {756,1080} {372, 564} 

smokiness 

level 

{relatively 

heavy smoke, 

heavy smoke} 

{very little 

smoke, little 

smoke} 

{little smoke, 

relatively 

heavy smoke} 

{almost no 

smoke, very 

little smoke} 

Safety risk 

{moderately 

unsafe, little 

unsafe} 

{unsafe, 

moderately 

unsafe} 

{little unsafe, 

safe} 

{moderately 

unsafe, 

unsafe} 
Note: CNY is abbreviation of Chinese Yuan; the average exchange rate in November 2013 was 6.09 CNY/USD 

 Construction of choice sets  

Having determined the relevant attributes and their levels, hypothetical energy 

alternatives with different combinations of attributes and levels could be constructed 

and presented to the individual respondents. In this research, a labeled design 

approach was used, though such designs are popular in the transport field (Hensher 

et al., 2005; Hensher, 2008). The names of the energy alternatives play the role of 
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‘labels’. For this labeled design, the combination of attributes and levels resulted in 

an experimental design with 216 different types of energy choice profiles. To simplify 

the sets shown to the respondents in the questionnaire, a common practice of using 

fractional factor design was taken to reduce the number of choice sets to a 

manageable size by ignoring the interaction effect (Hensher et al., 2005). Then, an 

orthogonal main effect design was applied with the help of software SPSS19.0. This 

procedure reduced the number of profiles to a level of 20 alternatives. However, this 

number was still considered too large for a respondent to handle (Louviere et al., 

2000). To further reduce the cognitive burden of the respondent, all alternatives 

would be randomly divided into 5 groups with 4 alternatives in each group. Hence, 

the ‘random number table’ method was adopted. This method is much more 

effective than manually selecting the random samples. Firstly, the 20 alternatives 

were numbered consecutively from 1 to 20. Meanwhile, a random number table was 

generated by Excel using the command ‘=INT (20*RAND () +1)’. In this table, the 

numbers were randomly selected from within the range of 1 to 20. Starting with an 

arbitrary number as appeared in a certain row as the first number, the second 

number can be selected by proceeding across the row to the very next different 

number. Continuing along the row, additional numbers were selected. Particularly, 

duplicated numbers were not allowed. Finally, 4 numbers were allocated in one 

group. Thus, 20 random numbers were split into 5 groups. By matching the number 

of each alternative to each random number, all of the 20 alternatives, therefore, 

were distributed into 5 groups. At this time, the number of choice sets was reduced 

to 4. That means each respondent must face 4 choice sets and in each set he or she 

has to make choice among 4 energy alternatives. An illustration of a choice set is 

presented in Table 3.6 below: 
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Table 3.6 A sample of a choice set in the choice experiment 

  A B C D  

Device usage cost per 

year (CNY) 
50 150 6 80 

Energy usage cost per 

year (CNY) 
389 73 756 564 

smokiness level 
relatively heavy 

smoke 

little 

smoke 

little 

smoke 

almost no 

smoke 

safety risk little unsafe 
moderately 

unsafe 

little 

unsafe 
unsafe 

Your choice □ □ □ □ 

If you don't want choose any one from above set, please tick here. □ 

Source: Author’s own field survey.  

3.5.2.2 Descriptive analysis of the variables used in SP data analysis 

The explanatory variables that will be used in our econometric analysis are listed in 

Table 3.7. In the choice experiment, the decision-maker should be the respondents11 

to whom the choice sets were shown. Of all the respondents, 66.37% of them are 

male, and 92.81% of them are married. The respondents have an average age of 

51.55 years old, with the average educational level of 6.07 years. As each respondent 

has to face four choice sets, we have 2224 observations in total. The other 

case-specific variables used in SP data analysis are the same as those adopted in the 

RP data analysis (See Table 3.2).  

 

 

 

 

 

 

 

                                                             

11
 66.7% of the respondents are household head.  
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Table 3.7 Description of explanatory variables used in asclogit model for SP data 

Variables Mean Std. Dev. 

Energy usage cost (CNY/Year) - - 

Device usage cost (CNY/Year) - - 

Smokiness level (almost no smoke=0, very little 

smoke=1, little smoke=2, relatively heavy 

smoke=3, heavy smoke=4) 

- - 

Safety risk (safe=0, little unsafe=1, moderately 

unsafe=2, unsafe=3) 
- - 

Gender of the respondent (Male=1, Female=0) 0.6637 0.4725 

Age of the respondent (Years) 51.5522 12.4701 

Educational years of the respondent (Years) 6.0719 3.6050  

Marital status of the respondent (Married=1, 

Others=0) 
0.9281 0.2584 

 No. of Obs   2224 
Notes: The levels of the alternative-specific attributes are listed in Table 4, and the same case-specific variables 

that have been used in RP data analysis are listed in Table 2. 

3.5.2.3 Results of econometric analysis 

The alternative-specific conditional logit model was estimated using the SP data 

(presented in Table 3.8). Similarly, the marginal effects of statistically significant 

influencing factors at sample means are calculated and listed in Table 3.9. The 

predicted probability values (See Table 3.9) demonstrate that households having a 

probability of choosing coal account for the largest share (39.8%) of the population, 

suggesting that households have the highest potential preferences for coal over 

other types of energy sources. Households with a probability of adopting traditional 

biomass energy and biogas respectively make up 21.6% and 28% of total sample, 

while those that could have a probability of selecting electricity occupy the smallest 

share (10.6%) of the population.  

According to the estimation results of the asclogit model, all the signs of the 

alternative-specific variables are consistent with our theoretical expectation. The 

statistically significant coefficients clearly show that device usage cost, smokiness 

level, and safety risk are the important determinants of household cooking fuel 
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choices. The usage costs of the energy and the corresponding stove have negative 

impacts on household energy choice behavior, indicating that households prefer to 

use energy with lower usage costs. The negative coefficient of smokiness level 

reflects that households incline to choose the energy that could generate less smoke 

in the kitchen, whilst the positive coefficient of safety risk indicates that households 

have high preferences for safe energy carriers. More specifically, the marginal effects 

of the key influencing factors demonstrate that a 10% increase in the usage cost of 

electric cookers will decrease the average share of electricity users by about 0.16%, 

while increasing the average shares of traditional biomass energy, biogas, and coal 

users by about 0.04%, 0.05%, and 0.07%, respectively. A 10% decrease in the stove 

usage cost of coal will increase the average share of coal users by about 0.4%, while 

decreasing the average share of traditional biomass energy and biogas users by 

around 0.14% and 0.19% respectively. A 10% increase in the usage cost of biogas 

stove will decrease the average share of biogas users by about 0.34%, while 

increasing the traditional biomass energy share by approximately 0.1%. In addition, a 

10% increase in the usage cost of the improved stove for traditional biomass energy 

will decrease the average share of its users by about 0.28%. Taking measures to 

reduce the smokiness level of a type of fuel increases the probability of choosing this 

type of fuel, while decreasing the probability of using other types of energy sources. 

On the contrary, improving the safety of a type of energy increases the chance for a 

household to use this type of energy, while lowering the chance to use other types of 

energy sources.  

Considering the case-specific variables, income level is an important determinant. 

The marginal effect of income indicates that there is a lower chance for a household 

to use inferior types of energy sources (traditional biomass energy, biogas, and coal) 

whilst demonstrating a higher chance to choose electricity with an increase in 

income level. It also reveals that a 10% increase in income per capita will increase the 

average share of electricity users by about 0.48%, while reducing the average shares 
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of traditional biomass energy, biogas, and coal users by about 0.06%, 0.18%, and 

0.23%, respectively. The characteristics of the respondents, except gender, are 

factors affecting household energy choice behaviors. The educational level of the 

respondents significantly impacts household choices in all energy categories. The 

respondents with higher educational level are more likely to choose higher-quality 

energy, especially coal and electricity over the traditional biomass energy. Increasing 

the educational level of the respondent will increase the probability of choosing 

commercial energy (coal and electricity), while decreasing the probability of using 

biomass energy (traditional biomass energy and biogas). For older respondents, the 

other types of energy could provide higher utility to them than the traditional solid 

biomass. Particularly, with an increase in the age of the respondent, the probability 

of using biogas significantly increases. 

In terms of the household characteristics, the significant coefficients of the asclogit 

model listed in Table 3.8 also indicate that demographic structure variables (fractions 

of children, male adults, and female adults) are main factors influencing household 

energy choice behaviors. Among which, the fraction of children can significantly 

affect the probability of choosing all types of energy sources. Higher fractions of 

children or adults imply that more labor would be available for biomass collection 

and energy preparation, thus simultaneously increasing the probability of using 

biomass energy and decreasing the probability of choosing commercial energy. 

Furthermore, the larger the number of people frequently eating at home, the lower 

the probability is that the household uses biogas. This is probably because 

households are unwilling to bear the higher costs of feeding more pigs for biogas 

production. On the other hand, due to the considerable transportation costs, the 

longer the distance to the nearest biomass collecting spot, the lower the probability 

that biomass energy is being used for cooking.    

With respect to household location, the model regression results illustrate that 
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households that live in mountainous areas are less likely to select biogas and 

electricity over traditional biomass energy than those living in hilly areas, but they 

are more likely to choose coal over traditional biomass energy than those from hilly 

areas. Households from plain areas are more likely to choose higher quality energy 

over traditional biomass energy than those from hilly areas. The marginal effects of 

location dummies also indicate that households that live in mountainous areas are 

respectively 12.2% and 6.1% less likely to select biogas and electricity than those 

living in hilly areas and about 0.5% and 17.8% more likely to choose traditional 

biomass energy and coal, respectively. Households from plain areas are 

approximately 29% more likely to choose coal than those from hilly areas and around 

15.5%, 14.7%, and 1.2% less likely to use traditional biomass energy, biogas, and 

electricity, respectively. 
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Table 3.8 Estimation results of asclogit model for SP data 

Alternative-specific variables (Energy)   Coef. Odds ratios  Coef. Odds ratios  

Energy usage cost (log) -0.1242(0.10) 0.8832 Smokiness level  -0.1683(0.05)*** 0.8451  

Device usage cost (log) -0.1679(0.07)** 0.8454 Safty risk  0.4269(0.05)*** 1.5325  

 Biogas Coal Electricity 

Case-specific variables (Choice) Coef. Odds ratio Coef. Odds ratio Coef. Odds ratio 

Gender of respondent -0.0982(0.14) 0.9065 0.1131(0.13) 1.1197 0.2344(0.19) 1.2642 

Age of respondent 0.0130(0.01)* 1.0131 0.0072(0.01)  1.0072 0.0111(0.01) 1.0111 

Educational level of respondent 0.0431(0.02)** 1.0441  0.1550(0.02)***  1.1677 0.1281(0.03)*** 1.1367 

Income per capita (log) -0.0366(0.10) 0.9640 -0.0291(0.10)  0.9713 0.4793(0.13)*** 1.6149 

Land areas owned 0.0048(0.02) 1.0048 -0.0053(0.02)  0.9948 0.0121(0.02) 1.0122 

Family size -0.0867(0.06) 0.9169 -0.0317(0.06)  0.9688  0.0063(0.08) 1.0063 

Fraction of elderly people -0.0658(0.35) 0.9363 0.5530(0.34) 1.7384 0.2422(0.45) 1.2741  

Fraction of children -0.3733(0.76) 0.6884 -3.0380(0.70)*** 0.0479 -3.7091(0.90)***  0.0245 

Fraction of adult males -1.1302(0.75) 0.3230 -2.0800(0.68)*** 0.1249 -3.9407(0.87)*** 0.0194 

Fration of adult females -0.4015(0.77) 0.6693 -2.0700(0.70)*** 0.1262 -3.9005(0.89)*** 0.0202 

Number of people eating at home -0.1222(0.05)** 0.8850 -0.0245(0.05) 0.9757 -0.0384(0.07) 0.9623 

Distance to the nearest biomass collecting spot 0.0127(0.02)** 1.0127 0.0628(0.01)*** 1.0648 0.0158(0.03) 1.0159 

Mountainous areas -0.4995(0.16)*** 0.6069 0.3986(0.16)** 1.4897 -0.6585(0.23)*** 0.5176 

Plain areas 0.2452(0.18) 1.2779 1.5146(0.17)*** 4.5478  0.9587(0.21)*** 2.6082 

_cons 1.4467(1.23) 4.2489 0.2646(1.17) 1.3030 -3.0245(1.56)* 0.0486 

No. of Obs. 2221 2221 2221 

Wald Chi2(46) 410.53***      

Log likelihood -2648.6128      
Note: The missing dummy for region is hilly area. The basic alternative for this asclogit model is traditional biomass energy. The significant level: *10%, **5%, ***1%. The ‘(log)’ means that the 
variables are in logarithms. 3 cases (12 observations) were dropped by Stata due to no positive outcome per case. 
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Table 3.9 Marginal effects of key influencing factors in SP asclogit model 

Alternative-specific variables 

Traditional 

biomass 
Biogas Coal Electricity 

Pr=0.2156 Pr=0.2797 Pr=0.3984 Pr=0.1063 

Device usage cost (log)     

Traditional biomass -0.0284**     

Biogas 0.0101** -0.0338**   

Coal 0.0144** 0.0187** -0.0403**   

Electricity 0.0038** 0.0050**  0.0071** -0.0160**  

Smokiness level     

Traditional biomass -0.0285***    

Biogas 0.0101*** -0.0339**   

Coal 0.0145*** 0.0188*** -0.0403***   

Electricity 0.0039*** 0.0050*** 0.0071*** -0.0160*** 

Safty risk     

Traditional biomass 0.0722***    

Biogas -0.0257*** 0.0860***   

Coal -0.0367*** -0.0476*** 0.1023***  

Electricity -0.0098*** -0.0127*** -0.0181*** 0.0406*** 

Case-specific variables         

Educational level of respondent -0.0189*** -0.0124*** 0.0269*** 0.0043* 

Income per capita (log) -0.0627 -0.0184 -0.0232 0.0478*** 

Fraction of children 0.3685*** 0.3736*** -0.5295*** -0.2126*** 

Fraction of adult males 0.3371*** 0.1212 -0.2057*** -0.2526*** 

Fraction of adult females 0.2914*** 0.2657**  -0.2862  -0.2709*** 

Number of people eating at home  0.0104 -0.0207** 0.0093  0.0010 

Distance to the nearest biomass 

collecting spot 
-0.0065*** -0.0049* 0.0130*** -0.0015 

Mountainous areas 0.0047 -0.1220*** 0.1778*** -0.0606*** 

Plain areas -0.1554*** -0.1468*** 0.2904*** -0.0118 

Notes: The significant level: *10%, **5%, ***1%. For dummy variables (a), the effects are obtained from 
probability differences. Pr is the predicted probability that each type of cooking fuel is chosen by a household.  

3.5.3 Joint estimation of RP-SP data 

In this section, two joint asclogit models were estimated using the pooled RP and SP 

data. The only difference between these two models is that we included the 

household characteristics in the second model. The results are listed in Table 3.10 

(The second model is on the right side and the basic alternative for both of these 
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models is traditional biomass energy). For energy-specific variables, we eliminated 

the device usage cost due to the unavailability of the data in RP analysis. However, 

the signs of the rest three variables are not only the same to those in SP model, but 

also in accordance with our expectations. The smokiness level and safety risk are still 

significant in the joint models. This is probably because the collinearity in the RP 

model has been reduced to some extent. 

On the other hand, in terms of household-specific factors, it can be seen that the 

majority of the parameters have the same sign as the parameters in the SP model. 

Nevertheless, the fraction of children and the fraction of elderly people in the 

household have different signs from those in the RP and SP models. This may be 

caused by the differences between the structures of RP and SP data (Swait and 

Louviere, 1993; Louviere et al., 2000). According to previous studies (Adamowicz et 

al., 1994; Earnhart, 2001; Mark and Swait, 2004), a test procedure should be involved 

to check the structural changes. Firstly, the asclogit models are separately estimated 

using RP and SP data to get the likelihood ratios for (Lr and Ls) of these models (See 

Tables 3.4 and 3.8). Second, the two data sets are combined together to estimate a 

joint asclogit model to get the pooled likelihood ratio, which is denoted by Lp (See 

Table 3.10). Then, the null hypothesis of equal parameters was tested using the 

likelihood ratio test statistic: )]([2 srp LLLλ += - . Failure to reject this chi-square 

test means that the stated and revealed data have similar preference structures 

(Earnhart, 2001; Mark and Swait, 2004). In this study, the chi-square statistic for the 

test of equal parameters is about 362.580 (317.410 for the second model), which is 

much higher than the critical chi-square value, given 14 (or 16) degrees of freedom 

and the significant level of 1%, thus implying that the parameter equality hypothesis 

has to be rejected. In other words, the SP data and RP data contain different 

preference structures. The plausible reason for this is that the impact of the 

socio-demographic variables (e.g. the characteristics of the decision makers) is 

significantly different in the two data sources (Swait and Louviere, 1993; Louviere et 
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al., 2000; Mark and Swait, 2004). Actually, in our research, the household head was 

assumed to be the decision maker in the RP model, whereas the respondent in the 

discrete choice experiment was treated as the decision maker in the SP model. 

Therefore, the RP data and SP data have different structures due to the 

characteristics of different decision makers. In this situation, combining the two data 

sources cannot thoroughly eradicate the underlying differences as described in 

Section 3.2 between them (Earnhart, 2001). That is to say, we cannot get a general 

conclusion on the impact of the factors such as fractions of elderly people and 

children on household energy choice from the joint models. 
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Table 3.10 Joint estimation results of the combination of RP and SP data 

Alternative-specific variables Coefa. Coefb.   

Cost/Price (log) -0.1218***  -0.1311*** 

 
Smokiness level -0.1578*** -0.1534*** 

 
Safty risk 0.1079** 0.1037** 

 
Choice            Biogas                       Coal                    Electricity                                          

Case-specific variables Coefa. Coefb. Coefa. Coefb. Coefa. Coefb. 

Educational level of household head 
 

 0.0439** 
 

 0.1236***  
 

0.0938*** 

Age of household head 
 

0.0079 
 

-0.0001  
 

-0.0040 

Gender of household head 
 

0.1688  
 

-0.1689  
 

0.3072 

Income per capita (log) -0.0071 -0.0413 0.1442* 0.0514    0.5904*** 0.5253*** 

Family size -0.0220 -0.0318  -0.0293 -0.0381  -0.0193 -0.0208 

Fraction of elderly people -0.4367 -0.5396*  -0.0473 0.0598  -0.3510 -0.2271 

Fraction of children 0.2321 0.2356  -2.2156*** -2.3571***    -1.9971*** -2.0994*** 

Fraction of adult males -0.2270 -0.2569  -1.4791*** -1.3652**    -2.2252*** -2.1926*** 

Fraction of adult females  0.1304 0.1125  -1.5261*** -1.5012***    -1.9261*** -1.8474*** 

Land areas owned  0.0083  0.0115  -0.0121 -0.0044  -0.0154 -0.0105 

Number of people eating at home -0.0948**  -0.0950**  0.0121 -0.0004  0.0271 -0.0053 

Distance to the nearest biomass collecting spot -0.0234 -0.0154 0.0248 0.0294** -0.0096 0.0027 

Mountainous areas -0.8361***  -0.7915***  0.1575 0.1475  -0.8807*** -0.8872*** 

Plain areas 0.4399***  0.4327***  1.4616***  1.3992***  1.2169*** 1.1729*** 

_cons 0.4946  0.0149 -0.3081 -0.0586  -4.3450*** -4.3712 

Note: The missing dummy for region is hilly area. Significant level: *10%, **5%, ***1%. Number of cases=2777. Number of observations=11108. Log likelihood=-3538.5821/-3493.4122. 
Subscript (a) denotes model without household head characteristics; (b) denotes model with household head characteristics.
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3.6 Conclusion 

It is known that a switch from traditional biomass energy use to modern clean, safe, 

and efficient energy use could improve the local rural livelihoods by enhancing the 

access to high-quality energy and reducing the negative impacts of the traditional 

biomass energy on health, environment, and living standards. Hence, in this chapter, 

we examine the energy choice behaviors of the rural households in Sichuan Province. 

We found that the fuel switching in our study region occurs in the way that 

households will move up to the advanced energy (electricity) from the biomass 

energy with an improvement in their income levels or a decrease in electricity price. 

The common situation of multiple fuel use and the complicated process of fuel 

substitution indicate that the classic theory of the energy ladder is not appropriate to 

be applied to explain the household energy choice behaviors. Despite the use of 

other types of energy for cooking, merely 22.3% of households abandoned the use of 

traditional solid biomass energy. Meanwhile, the modern and clean fuels such as 

biogas, LPG, and natural gas are more popular in areas with higher income levels. 

This suggests that the decline in traditional biomass energy use is quite slow, and the 

energy transition is principally pulled by raising the household economic level. 

Regarding the determinants of household energy choice behaviors, we categorized 

them into two groups, energy-specific and household-specific factors, and tested 

them respectively using revealed preference data, stated preference data, and joint 

RP-SP data. Our empirical work provides insights into these determinants based on 

observed energy adoption behaviors and hypothetical energy choices. It also has 

helped to explain why a large number of rural households in Sichuan Province are 

still unwilling to abandon the use of traditional solid biomass energy. The results 

indicate that the households prefer to use the types of energy with lower cost, higher 

safety, and lower indoor pollution. More importantly, this study also shows that the 

characteristics of the decision maker such as the age and educational level, the 

demographic structure of rural families such as the fractions of elderly people, 
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children and adults, income level, arable land owned, number of people usually 

eating at home, distance to the nearest biomass collecting spot, and household 

locations are all crucial factors that affect the process of household energy transition. 

Based on these findings, three suggestions are provided regarding the future policy 

design for further development of energy infrastructure construction and 

acceleration of energy transition in rural China. Firstly, the energy policies should 

focus more on the combined effect on both price and quality of modern fuels. 

Precisely, any sustainable energy transition policy should provide incentives that 

reduce energy price (or usage cost) while enhancing energy quality at the same time. 

For example, the most effective way for the promotion of biogas use is to advance 

modern technologies to shorten the time spent on operating and cleaning the 

digester and to improve the safety for the users. Secondly, the regional differences 

should be taken into account. Different regions have different situations. Therefore, 

the proposed energy policies have to be adapted to local conditions. In the 

mountainous areas where the production of biogas remains unsuitable, the policies 

should concentrate on how to provide electricity to the households with lower price 

and outage frequency, whereas in the plain and hilly areas, energy policy should 

provide a simultaneous promotion of biogas and electricity. Thirdly, indirect policy 

that enhances rural income and improves educational level should also be given 

more emphasis in policy design. On one hand, more skill-trainings related to the 

operation and maintenance of the biogas digesters should be provided. On the other 

hand, more opportunities for higher education and job outside the villages should be 

made for rural households. 
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Chapter 4 Evaluating the Impacts of Biomass Collection 
on Agricultural Production 

4.1 Introduction 

As a traditional agricultural country in the world, a large number of rural households 

are still living on agricultural production in China. Crops straw and firewood are the 

principal biomass resources generated in rural areas for energy use, as they are 

closely related to the main economic activity, namely agricultural production, which 

accounts for a significant portion of the productive activities across the whole 

country (Li et al., 2001). According to the statistics (MOA, 2010), the theoretical 

resources amount (TRA) of crop straw with 15% water content is 0.82 billion tons, 

while the available resources amount (ARA) of that is about 687 million tons, 

including 265 million tons of maize straws, 205 million tons of rice straw, and 150 

million tons of wheat straw. Moreover, in total, 0.155 billion tons of woody biomass 

resources was derived from deforestation waste, and wood processing and firewood 

forests were used as feedstock for energy production by the end of 2010 (CRES, 

2011). Despite this, due to lack of the access to modern conversion technologies 

such as biomass gasification, biomass briquetting, and co-combustion of coal and 

biomass, households usually collect crop straw after harvesting and pick up firewood 

on the way to or from the field, then directly burn them for domestic cooking or 

heating. Under this situation, biomass collection creates a burden on households 

that decide to use crops straw and firewood, which reduces the available labor 

inputs for agricultural production (Li et al., 2001; van der Kroon et al., 2013). 

Therefore, the issue of the impacts of biomass collection on agricultural production 

needs to be clarified and understood, including the relationship between these two 

productive activities and the effects of labor allocation. 

Biomass collection, in our study regions, involves operations of gathering, packaging, 

and transporting biomass to a specific site (in most cases, households place the 
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collected biomass near their houses) for temporary storage (Zafar, 2015). The 

amount of biomass resources that can be collected at a given time depends on a 

variety of influencing factors, such as geographical and seasonal variations in 

biomass, household labor allocation, local regulations on storage and transport, and 

so on (Sokhansanj et al., 2003). In the case of agricultural residues, large quantities 

of waste resulting from crops cultivation activities are promising objects for biomass 

collection activities. Furthermore, the access to biomass resources, the sequence of 

collection operations, and the efficiency of collection equipment are also important 

factors affecting biomass collection. Although the relationship between agricultural 

production and biomass collection has been investigated in many past studies (Li et 

al., 2001; Zhang et al., 2010; van der Kroon et al., 2013), the understanding and the 

empirical evidence of the impacts of biomass collection on agricultural production 

are still limited. Hence, the main purpose of this research is to examine how biomass 

collection affects agricultural production by modeling production with a focus on the 

allocation of labor inputs. 

In accordance with the theoretical framework outlined in Section 2.3, the basic 

hypothesis of this research is that agricultural production competes with biomass 

collection for labor resources. Based on the economic theory of duality, we propose 

to test the hypothesis through investigating the product supply and input demand 

relationships. Here, we assume that households in our study region (in Sichuan 

Province) are clearly price taker and profit maximizing and competitive producers.  

The structure of this chapter is organized as follows: previous works of literature are 

reviewed in Section 4.2. Section 4.3 presents a preliminary data analysis on the 

relationship between biomass collection and agricultural production. In Section 4.4, 

we describe the empirical strategies of this research, including model specification 

and estimation methods as well as the solutions to endogenous problems and 

imposition of restrictions. The estimation results of the models are given in Section 

4.5, and our main findings are discussed in Section 4.6. 
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4.2 Literature Review 

In recent years, works of literature directly concerning the impacts of biomass 

collection on agricultural production at household level are rare. Nonetheless, a large 

number of studies have focused on the effects of biofuel utilization on agricultural 

production (von Lampe, 2007; Baier et al., 2009; Kgathi and Mfundisi, 2009; Timilsina 

et al., 2010; Havey and Pilgrim, 2011; Ajanovic, 2011; Babcock, 2011; Zilberman et al., 

2013; Alka et al., 2014). Most of them are works of qualitative analysis. The results of 

those studies demonstrate that the utilization of biofuel impacts agricultural 

production, both directly and indirectly. The direct influences come from the 

competition between energy crop cultivation and agricultural production for 

resources such as land and water (von Lampe, 2007; Baier et al., 2009), whereas the 

indirect effects are related to the mechanism of price transmission between biofuel 

prices and food prices (Havey and Pilgrim, 2011; Ajanovic, 2011; Zilberman et al., 

2013).  

With respect to the impact of biomass collection on agricultural production, many 

studies have empirically investigated the influence of fuelwood collection on 

household agricultural production (Kgathi, 1997; Heltberg et al., 2000; Fisher et al., 

2005; Chen et al., 2006). As suggested by van Horen and Eberhard (1995), an 

increase in labor time spent on firewood collection may adversely influence the labor 

budget and, in turn, negatively affect agricultural production. That is to say, due to 

the limited time endowment, household members, especially women and children, 

who have to spend extensive amounts of time on firewood collection, are usually 

constrained from engaging in other income generating activities such as working 

off-farm and agricultural production (Li et al., 2011; van der Kroon et al., 2013). 

Additionally, from the perspective of environmental impacts, Mathye (2002) has 

pointed out that moderate amount of crop residues left in the field could not only 

prevent soil erosion, but also enrich the soil. Excessive crop straw collection will bring 

negative effects to agricultural production through soil depletion. 
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Despite the various efforts of previous works of research, the relationship between 

agricultural production and biomass collection and how biomass collection affects 

agricutultural production are issues that are still poorly understood. The empirical 

evidence from microeconomic studies is insufficient to clarify this issue. Therefore, 

this research tries to fill the gaps in existing literatures and focuses on household 

labor allocation decisions on different activities from the perspectives of household 

profit maximization problem.   

4.3 Biomass Collection and Its Impacts on Agricultural Production in 

Study Region  

4.3.1 Research Context in Sichuan Province 

As a large traditional agricultural province in China, Sichuan has abundant biomass 

resources generated from agriculture and its related production activities. The main 

types of biomass collected by rural households for energy use are crop straw and 

firewood. Due to the different local geographic and weather conditions, households 

from different regions have different biomass resources and collecting habits. In 

mountainous areas, households often log in nearby forests in winter and transport 

the tree trunks to their home using tractors. After being cut down into small pieces, 

the firewood is piled up alongside the houses and finally used for cooking and 

heating during the subsequent year (See Figure 4.1(a)). As corn is the main kind of 

crop cultivated in mountainous areas, households living there also pick up its straws 

from their fields after harvesting. On the other side, in hilly and plain areas, crop 

straw plays a principal role in household biomass energy use. Particularly, the types 

of straw are determined by the types of crops planted in field. Therefore, both rice 

and wheat straw are adopted by households in plain areas for energy use, whereas 

rice and corn straw are collected in hilly areas. Additionally, for the households from 

hilly areas, bamboo trunks are usually used as firewood, while in plain areas, 

households prefer to collect fruit tree branches for cooking. In most cases, 



 

97 

 

households employ tricycles to transport the collected biomass and let them lean 

against the wall of their houses (See Figure 4.1(b) and (c)). 

 
                 (a)                                   (b) 

                      

                                       (c) 

Figure 4.1 Biomass collected in three different regions  

Note: a. firewood in mountainous areas; b. bamboo trunks and crops straw in hilly areas; c. fruit 

tree branches and crops straw in plain areas) 

4.3.2 Biomass Collection and Agricultural Production: Preliminary Data 

Analysis 

In our study sample, 539 (96.94%) of the surveyed households participate in either 

agricultural production or biomass collection. The general information of household 

working activities is listed in Table 4.1. For the whole sample, with respect to 

household participation in different activities, 524 households engage in agricultural 

production, accounting for 94.24% of the total, while 409 households collect biomass, 

occupying 73.56% of all those surveyed. On average, the value of annual agricultural 
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outputs is 17,208 CNY, whereas the amount of biomass collected by households is 

3635 Kgsce per year. Moreover, the average time allocated to agricultural production 

is 717 hours per year, while the average time spent on collecting biomass is 236 

hours annually. Regarding to agricultural production, households from Yibin (hilly 

areas) have the highest participation rate (96.23%), whereas households located in 

Deyang (plain areas) have the lowest one (91.89%). However, households from Aba 

(mountainous areas) spent the longest time (796 hours per year) on farm work, while 

those from Deyang spent the shortest time (613 hours per year). Accordingly, the 

total value of agricultural outputs in Aba is the largest (21678 CNY per year), whilst 

that in Deyang is the smallest (14329 CNY per year).  

Turning to biomass collection, the participation rate differs among different areas. In 

Aba, the participation rate is the highest (92.42%), and it took the longest time (380 

hours per year) for households to collect the largest amount of biomass (5354 kgsce 

per year). In contrast, Deyang has the lowest participation rate (45.95%), resulting in 

the fact that the time (74 hours per year) allocated to biomass collection is the 

shortest, and the amount of biomass collected by households is the smallest. 
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Table 4.1 General information of household participation in agricultural production 

and biomass collection in study region 

  

Aba  

(Mountainous 

areas) 

Yibin 

 (Hilly areas) 

Deyang  

(Plain areas) 

Total  

sample 

Household participation in 

two activities 
Units Share (%) Units 

Share 

(%) 
Units 

Share 

(%) 
Units 

Share 

(%) 

Households participating in 

agricultural production 
175  94.59  179  96.23  170  91.89  524  94.24  

Households participating in 

biomass collection 
171  92.42  153  82.26  85  45.95  409  73.56  

Households participating in 

neither activities 
3  1.62  2  1.08  12  6.49  17  3.06  

Summary of household 

working activities (per 

household) 

Mean value Mean value Mean value Mean value 

Value of agricultural 

outputs (CNY per year) 
21678  15625  14329  17208  

Amount of collected 

biomass (kgsce per year) 
5354  4515  1031  3635  

Hours worked on 

agricultural production 

(per year) 

796  742  613  717  

Hours worked on biomass 

collection (per year) 
380  255  74  236  

Source: Author’s Own Household Survey (2013) 

To be more specific, as shown in Table 4.2, of the 409 households that engaged in 

biomass collection, 313 households picked up crop straw in their fields after 

harvesting, while 347 households collected firewood. On average in each household, 

1.46 members participated in collecting biomass accounting for about 39% of the 

total household size. Comparison of different regions reveals that the total number 

of households that collected biomass in Aba is the largest (171), whereas it is the 

smallest in Deyang (85). Aba has the largest number of households (165) collecting 

firewood, while Deyang has the smallest (70). Yibin has the largest number of 

households participating in biomass collection (150), while Aba has the smallest (78). 

In addition, households in Aba have the largest mean number of members (1.52) 
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participating in biomass collection, while households from Deyang have the smallest 

(1.36). The proportion of members participating in biomass collection is the highest 

(44%) in households from Deyang, while it is the lowest (36%) among those living in 

Aba. 

Table 4.2 General information of households collecting biomass  

  
Aba                       

(Mountainous areas) 

Deyang                  

(Plain areas) 

Yibin                       

(Hilly areas) 

Total 

Sample 

Total number of households collecting biomass 171 85 153 409 

crops straw 78 85 150 313 

firewood 165 70 112 347 

Average number of members participating in 

biomass collection 
1.52  1.36  1.46  1.46  

Proportion of members participating in biomass 

collection 
0.36 0.44  0.39  0.39  

Source: Author’s Own Household Survey (2013) 

Furthermore, the descriptive information of the 509 household members who are 

mainly responsible for biomass colletion is listed in Table 4.3. It can be seen that 

63.85% of the household members are male and 40.86% of them are graduates of 

primary school. Adult members from the age group 45-54 represent the largest share 

(28.29%) of the total, while children (below 14 years old) occupy the smallest (0.2%). 

Considering the different regions, most of the household members in Aba are from 

age group 35-44, taking up 33.33% of the total. The majority of Deyang household 

members are elderly people (above 65 years old) accounting for 42.31% of the total, 

while the age group 55-64 takes the largest proportion (34.74%) among Yibin 

household members. Moreover, members with educational level of primary school 

occupy the largest share of 35.94%, 40.39%, and 45.54% in Aba, Deyang, and Yibin, 

respectively. And the male members take the dominating position in collecting 

biomass, accounting for 76.56%, 68.27%, and 50.23% of the total from the three 

regions. Finally, according to the statistics in Table 4.3, 89% of these households 

participated in agricultural production at the same time. Based on what has been 

described above, we can get to know that adult male members are the main labor 
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force for biomass collection in our study regions. Importantly, household members 

who work on the farm also have to be responsible for biomass collection. That is to 

say, household labor allocation decision could impact the relationship between 

biomass collection and agricultural production. 

Table 4.3 Descriptive information of household members who are mainly 

responsible for biomass collection 

    

Aba                       

(Mountainous 

areas) 

Deyang                   

(Plain areas) 

Yibin                        

(Hilly areas) 
Total Sample 

  
Number  Share(%) Number  Share(%) Number  Share(%) Number Share(%) 

Age 

0-14 0 0 0 0 1 0.47 1 0.20  

15-24 5 2.60  0 0 0 0 5 0.98  

25-34 18 9.38  4 3.85 5 2.35 27 5.30  

35-44 64 33.33  5 4.81 30 14.08 99 19.45  

45-54 60 31.25  18 17.31 66 30.99 144 28.29  

55-64 32 16.67  33 31.73 74 34.74 139 27.31  

65+ 13 6.77  44 42.31 37 17.37 94 18.47  

Educational 

level 

Illiterate or literate 

without formal 

schooling 

34 17.71  19 18.27 39 18.31 92 18.07  

Literate below 

primary 
29 15.10  5 4.81 26 12.21 60 11.79  

Primary school  69 35.94  42 40.39 97 45.54 208 40.86  

Middle school  49 25.52  33 31.73 39 18.31 121 23.77  

High school  10 5.21  5 4.81 11 5.16 26 5.11  

Diploma/certificate 0 0 0 0 1 0.47 1 0.20  

University/College 

graduate 
1 0.52 0 0 0 0 1 0.20  

Gender 
Male 147 76.56 71 68.27 107 50.23 325 63.85 

Female 45 23.44 33 31.73 106 49.77 184 36.15 

Working 

status 
working on farm 166 86.46 93 89.42 194 91.08 453 89.00  

Total    192   104   213   509   

Source: Author’s Own Household Survey (2013) 

As our interest lies in the relationship between biomass collection and agricultural 

production, we focus on the household labor allocation to these two intrahousehold 

production activities. In accordance with the basic hypothesis, households spent 
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more time on biomass collection, implying that less time can be allocated to 

agricultural production, given a fixed amount of time for these two activities. Thus, 

the agricultural outputs decrease as a result of the decrease in labor inputs. In order 

to test this hypothesis, the relationship between agricultural production and biomass 

collection is illustrated in Figure 4.2 by firstly making a simple regression of the total 

value of agricultural outputs on the share of the time allocated to biomass collection. 

It can be seen from the line of fitted plots that, with an increase in the proportion of 

time spent on biomass collection, the total value of agricultural outputs decrease, 

accordingly. To some extent, this means that biomass collection has a negative effect 

on agricultural production. 

 
Figure 4.2 The relationship between biomass collection and agricultural production 
Source: Author’s own field household survey  

Once we have a preliminarily knowledge of the relationship between biomass 

collection and agricultural production, in the following sections, we propose to 

conduct an empirical analysis to further investigate the interlinkages between these 

two behaviors. 
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4.4 Empirical Analysis 

In order to address our research question, a two-stage estimation strategy developed 

on the basis of previous literature (Henning and Henningsen, 2007a and 2007b; 

Tiberti and Tiberti, 2015) is adopted. We firstly estimate the shadow wage of 

household labor through modeling the production systems and then include the 

estimated shadow wage in a multi-output profit function to investigate the 

relationship between agricultural production and biomass collection.  

4.4.1 Estimating Shadow Wage and Shadow Price 

4.4.1.1 Econometric Specification 

In the first step, the econometric specification of shadow wage estimation consists of 

household labor participation decision equations and a system of production 

functions.  

 Household Participation Decisions on Biomass Collection, 
Agricultural Production and Off-farm Work 

In order to investigate how household i  makes decisions regarding participation in 

biomass collection, agricultural production, and off-farm work, we develop our 

econometric model on the basis of the reduced form of the labor allocation functions 

(2.18) in Section 2.3: 

),,(),)(,,,(** obanEaTZBwLY iiiiiini                                  (4.1) 

Where a denotes agricultural production, b indicates biomass collection, and o

represents off-farm employment.  

Then, we consider the first-order Taylor series expansion for labor allocation 

functions (4.1): 
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Where ni is the error term.  JXXX ,1
 represents explanatory variables 
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other than market wage rate. Let us denote inin wYα ∂∂=1 and ijninj XYα ∂∂= , and 

then we can create three estimable participation equations in the form as: 

),,(10 obanεXαwααY niijnjinnni =+++=                             (4.3)                         

It can be seen from (4.3) that the dependent variables are decisions on participation 

in one of the three activities ( 1=niY  if household participates in one activity, 

otherwise 0=niY ).  

Among independent variables, iw is the market wage rate. Theoretically, the 

functions in (4.1) reveal that market rate is one of the greatest determinants for 

household participation decision on off-farm work. When the market rate increases, 

households are more likely to participate in off-farm work. With respect for other 

explanatory variables in X , the other income iE is measured by non-labor income. In 

our study, it mainly consists of subsidies provided from the government (such as 

subsidies for superior crop varieties, direct subsidies to grain cultivation, and 

subsidies for pig breeding, etc.), reimbursements from various insurances, 

remittances, and other returns from investment in the capital market. The household 

size and demographic characteristics (such as the fractions of children and elderly 

people) are used as a proxy for its time endowment iaT )( . Households of larger size 

could have more labor resources, while the fractions of children and elderly people 

also reflect the amount of available labor resources that can be provided by the 

household. Normally, households with larger fractions of children and elderly people 

are less likely to allocate labor to off-farm work. For the other inputs in agricultural 

production ( iB ), we firstly choose the areas of arable land owned by the household, 

as it can significantly influence the household decision regarding participation in 

agricultural production. We do not use the total value of intermediate inputs as an 

explanatory variable in our econometric model, because household allocation 

decision can affect intermediate inputs using activities, especially the use of 
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fertilizers and pesticides, according to the findings of many previous works of 

research (Lamb, 2001; Mathenge and Tschirley, 2007). Instead, we use the weighted 

price of fertilizers and pesticides (calculated using formula (4.11)) as a proxy for the 

amount of intermediate inputs, since the households are more likely to purchase 

cheaper fertilizers and pesticides. Meanwhile, considering biomass collection, the 

distance from house to the nearest biomass collecting spot is selected to represent 

accessibility and availability. It is also supposed to negatively influence household 

labor allocation to biomass collection. Particularly, for the omission of this variable 

caused by non-participation in biomass collection, we assume that these households 

face the average distance and substitute regional sample mean for the missing data. 

We also include household head characteristics such as age, gender, and educational 

level in our model, because these characteristics affect the quality of household labor, 

and then influence the marginal products of land and other intermediate inputs, 

which in turn brings effects to household participation decisions on different 

activities. Finally, the household location dummies are added into the regression to 

capture the effects of regions on household labor participation decisions. 

In order to estimate the participation equations, we employ a multivariate probit 

model and then use the method of simulated maximum likelihood (SML) to obtain 

the estimate results of the model. 

 Household Production System 

As it has been discussed in the theoretical section, the shadow wage determines the 

household decision on labor allocation, which in turns affects household behaviors of 

agricultural production and biomass collection. Under this circumstance, we firstly 

estimate the shadow wage of the household’s labor using production function. 

According to the multioutput production function obtained using the implicit 

function theorem in (2.9) and considering the easiness of estimation and 

interpretation, the simultaneous agriculture-energy production relationship for 
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household i can be represented by a system of two equations derived from the 

Cobb-Douglas transformation function as follows (Just et al., 1983; Debertin, 2012): 

ikikmimaiii vdBLTOBTOA  ∑∑ lnlnlnln 210              (4.4) 

ijijbiii dLTOATOB   lnlnln 210                         (4.5) 

Where i and iv are the error term. 

In this model, the agricultural output (variable nameTOA , measured by the total 

value of agricultural products, i.e. the quantities of crops produced by household i

multiply the prices of these crops) is modeled as a function of the quantity of 

biomass (denoted asTOB , measured by the total amount of the biomass collected by 

household i , since the biomass or biomass energy is non-tradable. In order to unify 

the units of firewood and crop straw to standard coal equivalent (kgsce), we divide 

the quantities of them by their conversion coefficients12 respectively). The quantity 

of labor input ( aL , the total hours worked on farm), a vector of other inputs ( mB , 

including the areas of arable land AL , and the total value of intermediate inputsTCI . 

Due to the unavailability of the data, we use the total cost of fertilizer, pesticides and 

plastic films instead), and other variables ( kd ), such as household local dummies ( 1r

and 2r ) that can also influence households’ agricultural production. In contrast, the 

amount of collected biomass is hypothesized as a function of the total value of 

agricultural outputs, the labor input ( bL , the time spent on biomass collection), and 

other influencing factors jd (including the distance to biomass collecting spots DB

and household location dummies).  

Once the system of equations (4.4)-(4.5) has been estimated, the shadow wage of 

household labor can be calculated using the following formula: 

                                                             

12
 The data of conversion coefficients for all types of energy are collected from China Energy Statistic Yearbook (2009) 
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Where iAOT
ˆ is the predicted value of agricultural output and 1̂ , 2̂ , and

1̂  are the 

estimated coefficients associated with outputs and labor allocated in agricultural 

production, respectively. 

As the market for biomass energy is almost absent in our study region, the prices of 

biomass energy (crop straw and firewood) cannot be directly observed. Therefore, 

according to the equilibrium condition *

ibiai wMPLMPL  , we use the shadow 

wage derived from (4.3) to calculate the shadow prices of crop straw and firewood 

as: 

)(

)()(*

kgbiomasscollectedofamountTotal

HourstimeCollectinghourperCNYw
priceShadow i 

               (4.7) 

The calculated shadow wage rates and shadow prices will be included in estimating 

the profit function in the next step (See Section 4.4.2 for details). 

The Ordinary Least Squares (OLS) estimates of the production system may be biased 

for three main reasons. Firstly, unobserved information such as the ability and 

management level of the household reflected in the error terms are likely to be 

correlated with the endogenous variables, particularly the variable inputs (labor and 

intermediate inputs) in both of the equations, which may lead to omitted variable 

bias. Secondly, the two output variables are jointly determined. Thus, the 

single-equation estimation may suffer from simultaneity bias, due to the correlation 

between the disturbance of each equation and the output variables. Moreover, since 

the output variables are also the dependent variables of the equations in the system, 

the error terms among the equations are also expected to be correlated (Greene, 

2012), which may cause the problem of inefficient estimation. Thirdly, the observed 

data can only reflect the situation of the households who decide to participate in 

corresponding production activities. Under this circumstance, the conditional means 
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of error terms over the non-zero output population are not equal to zero, implying 

that the potential sample selection bias should be corrected in our model estimation.   

The first problem could be mitigated by including observable household 

characteristics such as age, gender, and educational level as proxies for management 

ability for both of the production activities. Finally, all variables used to estimate the 

simultaneous production system are listed in Table 4.2. 

The second problem is solved by using estimation methods for simultaneous 

equations. In this research, IT3SLS (iterative three-stage least squares) is applied to 

estimate the system of production functions. The IT3SLS method combines the 

procedure of the 2SLS (two-stage least squares) and SURE (Seemingly unrelated 

estimation) and produces the system estimates from a three-stage process (Zellner 

and Theil, 1962). In the first and second stages, an instrumental-variables approach is 

adopted to develop instrumented values for all endogenous variables (the output 

variables in the system) and to obtain a consistent estimate for the covariance matrix 

of the equation disturbances. All other exogenous variables in the system are used as 

instruments. In the third stage, generalized least squares (GLS) estimation is 

performed using the covariance matrix estimated before and with the instrumented 

values in place of the right-hand-side endogenous variables (Greene, 2012). AThen, 

this process iterates over the estimated disturbance covariance matrix and 

parameter estimates until the parameter estimates converge.  

The third problem can be solved by the standard two-stage Heckman (1979) sample 

selection model. As shown in Table 4.1, in our sample, the proportion of non-zero 

observations in biomass collection is only about 73.56%. Therefore, using only the 

data of the households that decide to participate in biomass collection may cause 

sample selection bias. To deal with this problem, in the first stage, the results of the 

multivariate probit regression model, which is estimated to determine the 

probabilities that a given household will participate in agricultural production and 
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biomass collection, are used to calculate the Inverse Mills Ratio (IMR) for each 

household. In the second stage, parameter estimates of the production system are 

obtained by augmenting the regression with the IMR using 3SLS (Heckman, 1979). 

Based on the equations in (4.1) and (4.3) presented in the last step, the IMRs for 

household iwho chooses to participate in either activity can be computed as follows: 

)2,1,,()2,1,,( ,, rrXwrrXwIMR jiijii                              (4.8) 

Additionally, to deal with the zero-value variables that have undefined logarithm, we 

modify them by replacing them with a “sufficiently small” value (MaCurdy and 

Pencavel, 1986; Jacoby, 1992; Soloaga, 1999).  

4.4.1.2 Data Description 

The variables used in estimating the production systems are listed in Table 4.4. These 

variables can be categorized into household head characteristics, household 

demographic characteristics, household productive characteristics, and other 

external factors.  

In terms of household head characteristics, the average age of the heads of the 

surveryed households is 51.74 years, and their average schooling year is 6.42 years. 

The share of the male household heads in the total sample is about 0.93. For 

households from different regions, these characteristics are different. In Aba, 

household heads have the lowest average age (47.91) and the lowest average 

educational level (5.92). The share of the male household heads there is the smallest 

(89%). In contrast, Deyang has the highest mean values of the age (54.03) and the 

educational year (7.02) of the household heads, while Yibin has the largest share of 

male household heads (97%).  

For household demographic characteristics, the average family size of the households 

in our sample is 4.12. The mean values of the fractions of children and elderly people 

in household members are 0.11 and 0.12, respectively. Households from Aba have 
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the largest size (4.39) and the smallest fraction of elderly people (0.06), whereas 

households located in Deyang have the smallest size (3.62), the smallest fraction of 

children (0.06), and the largest fraction of elderly people (0.19). Moreover, the 

fraction of children (0.14) is the largest in Yibin.  

Table 4.4 Description of household characteristics and variables used in model 
estimation13 

Variable name 
Aba Yibin Deyang Total sample 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Age of household head 

(years) 
47.91 10.55 53.27 10.76 54.03 12.31 51.74 11.54 

Age squared of household 

head 
2406.37 1053.17 2953.19 1203.16 3070.34 1365.23 2810.22 1245.77 

Gender of household head 

(share of male) 
0.89 0.32 0.97 0.16 0.92 0.27 0.93 0.26 

Educational level of 

household head (years) 
5.92 3.56 6.33 3.55 7.02 3.25 6.42 3.48 

Family size 4.39 1.29 4.33 1.52 3.62 1.13 4.12 1.37 

Fraction of children (≤14) 0.13 0.18 0.14 0.16 0.06 0.10 0.11 0.16 

Fraction of elderly people 

(≥65) 
0.06 0.13 0.11 0.21 0.19 0.31 0.12 0.23 

Arable land areas (Mu) 4.52 4.21 4.62 4.07 2.99 2.21 4.05 3.69 

Weighted price of fertilizers 

and pesticides (CNY per kg) 
    8.85 9.43 3.75 3.02 6.23 4.18 6.27 6.53 

Market wage rate (CNY per 

hour) 
7.38 4.32 8.08 4.60 9.39 5.96 8.29 5.07 

Non-labor income (CNY per 

year) 
3375.96 4254.01 2275.62 4519.24 2719.23 4626.81 2789.01 4484.31 

Distance to biomass        

collecting spot (km) 
5.16 6.64 0.79 0.68 0.49 0.57 2.14 4.41 

Source: Author’s own household survey 

Considering household productive characteristics, on average, the area of arable land 

possessed by the surveyed households is 4.05 Mu. Households in Aba own the 

largest mean areas of arable land, while households from Deyang have the smallest. 

The weighted price of fertilizers and pesticides is the highest (8.85 CNY per kg) in Aba, 

                                                             

13
 The other four variables (value of agricultural outputs, amount of collected biomass, hours worked on farm, 

and hours worked on biomass collection) are described in Table 4.1.  
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while being the lowest (6.23 CNY per kg) in Yibin. The mean value of this price index 

in our sample is 6.27 CNY per kg. 

Among other external characteristics, the average market wage rate for the sampled 

households is 8.29 CNY per hour, and the average non-labor income level is 2789.01 

CNY per year. More specifically, the average market wage rate is the highest (9.39 

CNY per hour) in Deyang and the lowest (7.38 CNY per hour) in Aba. Households in 

Aba have the highest non-labor income level at 3375.96 CNY per year, whilst 

households in Yibin have the lowest non-labor income level of 2275.62CNY per year. 

Additionally, in our sample, the biomass collecting spot is on average 2.14 km away 

from the house. Due to the local conditions, Aba has the longest distance (5.16 km), 

whereas Deyang has the shortest (0.49 km). 

4.4.1.3 Model Estimation Results 

Table 4.5 lists the estimation results of the multivariate probit model that explains 

how households make decisions regarding participation in different activities. The 

estimates of ρs (Rho, correlation between the errors) that maximizes the multivariate 

probit likelihood function are 0.1095, -0.0114, and 0.0291, respectively. Specifically, 

the correlation coefficient between agricultural production and biomass collection 

(Rho (b, a)) is positive and significantly greater than zero at the level of 5%. This 

indicates that the random disturbances in participation equations of agricultural 

production and biomass collection are affected in the same direction by random 

shocks. In other words, household participation decisions on these two activities are 

not statistically independent. The correlation coefficients between off-farm work and 

the two intrahousehold production activities are insignificant, implying that the 

household participation decision regarding off-farm work does not statistically 

depend on participation decisions about intrahousehold production activities. This 

also means that we can separately analyze the relationship between biomass 

collection and agricultural production without considering off-farm labor allocation 
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(See 4.4.2 for specification of multioutput SNQ profit function). 

The significant log pseudo likelihood statistic suggests that the independent variables 

taken together influence household participation decisions. According to the 

estimated parameters, households that have a higher wage rate are more likely to 

participate in off-farm work and less likely to collect biomass. These results are in line 

with our expectation. 

Table 4.5 Multivariate Probit Estimates of household participation functions of 

agricultural production, biomass collection and off-farm work 

Note: The significance levels are *10%, **5%, and ***1%. The missing location dummy is hilly area 

As expected, non-labor income has a significant impact on household participation 

decision regarding agricultural production and off-farm work. Households with 

Variable 

Agricultural production Biomass collection Off-farm work 

(Dai) (Dbi) (Doi) 

Coefficient Std.Dev. Coefficient Std.Dev. Coefficient Std.Dev. 

Age of household head -0.1453** 0.0723 0.0531 0.0485 -0.0248 0.0441 

Age squared of household head 0.0014** 0.0007 -0.0004 0.0005 0.0002 0.0004 

Gender of household head -0.0938 0.3472 -0.4138 0.2773 0.2412 0.2724 

Educational level of household head -0.0072 0.0303 -0.0458** 0.0219 -0.0041 0.0275 

Family size 0.0799 0.0719 0.0643 0.0598 0.4365*** 0.0747 

Fraction of children (≤14) -0.6252 0.6014 0.3226 0.5366 -1.1832** 0.5279 

Fraction of elderly people (≥65) 0.1732 0.4400 0.6679 0.4086 -1.1086*** 0.3436 

Arable land areas  0.0789 0.0491 0.0067 0.0242 -0.0323* 0.0184 

Market wage rate (log) -0.1129 0.1419 -0.2182** 0.1066 0.1434* 0.0742 

Non-labor income (log) -0.2085** 0.0807 0.0947 0.0581 -0.1292* 0.0665 

Price index of fertilizers and pesticides 

(log) 
-0.1144 0.0920 0.1431 0.1039 -0.2165* 0.1105 

Distance to biomass collecting spot 0.0547 0.0569 0.6374*** 0.1179 0.0298 0.0354 

Mountainous areas -0.0859 0.3128 -0.1299 0.2436 -0.2744 0.2453 

Plain areas -0.1572 0.2438 -1.0145*** 0.1755 -0.0638 0.2047 

_cons 6.8066*** 2.1738 -1.3185 1.4729 1.4401 1.3916 

Log pseudolikelihood  -496.59624 

     Rho (b,a) 0.1905** 0.0885 

    Rho (o,a) -0.0114 0.1225 

    Rho (o,b) 0.0291 0.0951 

    Wald chi2 (42) 228.00*** 

     No. of Obs 556           
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higher no-labor income level are less likely to allocate time to on-farm work and 

off-farm work. The price index of intermediate inputs has a significant negative 

impact on off-farm work. That means raising the intermediate input price reduces 

household likelihood to participate in off-farm employment. The areas of arable land 

owned by households can also significantly influence household participation in 

off-farm work. Houesholds possessing more arable land are less likely to find jobs 

outside their farms. 

In terms of the demographic characteristics, households with larger size and smaller 

fractions of children and elderly people are more likely to work off-farm. With 

respect to the household head characteristics, we find that households with older 

heads are less likely to work on farm, whereas households with higher educational 

level are less likely to collect biomass. In addition, household location plays a vital 

role in determining household participation in biomass collection. Households 

located in plain areas are less likely to participate in biomass collection than those 

located in hilly areas. 

Table 4.6 presents the iterative three-stage least squared (IT3SLS) estimates of the 

production system. The R2 for the two equations are 0.3677 and 0.2835. The inverse 

Mills ratio IMR is insignificant in both equations, indicating that sample selection bias 

would not happen if the system of production functions was estimated without 

taking household participation decisions on biomass collection into consideration. 
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Table 4.6 Estimation results of the system of production functions using IT3SLS 

  Agricultural production  Biomass collection  

Variable Coefficient Std. Dev. Coefficient Std. Dev. 

Total value of agricultural outputs (log) 
  

0.0524  0.0803  

Amount of collected biomass (log) -0.0597  0.1232  
  

Hours worked on farm (log) 0.6241***  0.0935  
  

Hours worked on biomass collection (log) 
  

0.3634***  0.0464  

Total value of intermediate inputs (log) 0.0171  0.0146  
  

Areable land areas (log) 0.2763*** 0.0810  
  

Age of household head 0.0360  0.0288  0.0116  0.0303  

Age squared of household head -0.0004  0.0003  -0.0002  0.0003  

Gender of household head 0.0790  0.1771  0.1280  0.1803  

Educational level of household head 0.0488***  0.0150  0.0182  0.0154  

Distance to biomass collecting spots  
  

0.0083  0.0123  

Mountainous areas 0.3989*** 0.1203  -0.1524  0.1381  

Plain areas 0.2810  0.1791  -0.4265**  0.1806  

IMR  0.3777  0.2778  -0.4154  0.2697  

_cons 3.5683***  1.4237  5.5164***  0.9951  

R
2
 0.3677 0.2835 

No. of Obs. 394 394 

Endogenous variables
a ln_TOA, ln_TOB     

Note: The significance levels are *10%, **5%, and ***1%. The missing dummy for regions is hilly area. a. All other 

variables in this system are treated as exogenous to the system and uncorrelated with the disturbances. The 
exogenous variables are taken as instruments for the endogenous variables. 

With respect to the parameters of the production system, most of them have the 

expected signs. For the agricultural production, the inputs of labor and arable land 

have significantly positive impacts on the outputs. The educational level of the 

household head has a significant effect on farm production, supporting the widely 

accepted role of human capital in improving agricultural production (Henning and 

Henningsen, 2007; Tiberti and Tiberti, 2015). In addition, households located in 

mountainous areas produce more agricultural products than those from hilly areas. 

On the other hand, in biomass collection function, the labor input also has a 

significant and positive influence. The estimated parameters also indicate that 

households who are from plain areas collect less biomass than those from hilly areas. 

In addition, the coefficients of the output variables on the right-hand side (RHS) of 

the two equations to some extent imply the relationship between agricultural 
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production and biomass collection. Given the fixed labor inputs, spending more time 

on biomass collection decreases the outputs of agricultural production. Conversely 

raising the yields of agricultural production could also increase the collection amount 

of biomass. This could be possibly attributed to the fact that biomass collection 

occupies labor resources for agricultural production. Nonetheless, agricultural 

production provides biomass resources. Furthermore, due to the fact described in 

Section 2.3 that in Sichuan Province, household members usually collect biomass on 

the way to and from the fields, participating in agricultural production may increase 

the opportunity to pick up biomass.  

After getting the parameter estimation results of the production system, the shadow 

wage of household labor and the shadow prices of the biomass energy are calculated 

using (4.3) and (4.4) (See Table 4.5 for the results of the calculation).  

4.4.2 Estimating Profit Function 

4.4.2.1 Econometric Specification 

In order to further investigate the impacts of biomass collection on agricultural 

production, we estimate a multi-output profit function to obtain the full coefficients 

of the profit function as well as the price elasticities with respect to all outputs and 

inputs in the second step. Regarding the specification of the profit function, a 

number of plausible functional forms have been discussed in previous works of 

literature. They include the translog (TL), generalized Leontief (GL), normalized 

quadratic (NQ), symmetric normalized quadratic (SNQ), and many other forms 

(Christensen et al., 1973; Lau, 1972; 1978; Diewert and Wales, 1987; 1988; 1992; 

Diewert and Ostensoe, 1988; Kohli, 1993; Villezca-Becerra and Schumway, 1992). As 

described in Kohli (1993), the SNQ profit function treats all outputs and inputs 

symmetrically (NQ profit function can be considered as a special case of SNQ profit 

function). It is necessarily linearly homogeneous in prices and quantities, and as a 

fully flexible functional form, it can easily assume monotonicity and convexity 
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properties (Kohli, 1993). Therefore, we adopt a symmetric normalized quadratic 

(SNQ) profit function defined as follows (Diewert and Wales, 1987, 1992; Henningsen, 

2015): 
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With =profit, ip =netput prices, iz =quantities of non-allocable quasi-fixed inputs,

 


n

i ii pW
1
 =price index for normalization, i =weights of prices for normalization, 

and i , ij , ij and ijk =coefficients to be estimated.  

Given the above specification, the estimation equations (output supply and input 

demand equations) used to analyze household production decisions are obtained by 

the first derivation of the profit function using Hotelling’s Lemma ( ii pq   ): 
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Where ix =netput quantities. 

In this research, we have four groups of netputs )4( n , i.e. agricultural output (a), 

biomass output (b), labor input (l), and intermediate inputs (such as fertilizers and 

pesticides)14 (o). Arable land is specified as the only quasi-fixed input. The price data 

were obtained from our field survey. Due to the fact that each group has many 

different individual output and input categories and the variations in the price of the 

same commodities are quite small, therefore, with the exception of labor input, 

within the other three groups, it is necessary to aggregate the price and quantity 

data of different individual outputs and inputs. In this study, we set up a 

household-specific price index by calculating the sum of weighted prices of each 

                                                             

14
 In total, we set up a system of four equations (two outputs equations and two inputs equations) 
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category using output value structure in each group. The price of each group of 

netput can be defined as follows (Lewbel, 1989): 

)2,1(
1

Nnspp n

n

i
ni ==

=

∑                                          (4.11) 

Where ns is the share of the value of netput n  in netput group i  and np is the 

producer price of netput n  (as we do not have the price data of intermediate inputs 

for each household, we use the sum of weighted prices of fertilizer, pesticide, and 

plastic films which was calculated using the average price and consumption structure 

data of the sampled households instead). For the households that do not participate 

in either of the two productive activities, the corresponding production data are 

missing. We keep their output quantities zero and assume that these households 

face the average prices and replace the missing data with a sample mean. In 

particular, for agricultural output ( aix ) and intermediate inputs ( oix ), the aggregated 

quantities are computed through dividing their total value by their weighted prices.  

Moreover, we employ the following formula outlined by Diewert and Wales (1992) to 

calculate the weights i : 
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Once the SNQ profit function has been estimated, we define the price elasticity as: 
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Then, we will use these price elasticities to further analyze the relationship between 

agriculture production and biomass collection. 
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According to Microeconomic theory, we must consider the conditions imposed on 

our SNQ profit function before estimating it. Homogeneity in netput prices is 

imposed by the functional form, and symmetry requires njijiij ,,1,,    

(Henning and Henningsen, 2007). In addition, in order to be consistent with the 

solutions to the profit maximization problem, the profit function has to be convex in 

netput prices (Varian, 1978). This implies that the Hessian matrix of the profit 

function must be positive semidefinite (Arnade and Kelch, 2007). Therefore, we 

applied the three-stage procedure proposed by Koebel et al. (2000; 2003) to impose 

convexity on the SNQ profit function. Firstly, we calculate the Hessian matrix after 

estimating the unrestricted netput equations in (4.6). Then we minimize the 

weighted difference between the unrestricted Hessian matrix and a Hessian matrix 

that is restricted as a positive semidefinite by the Cholesky factorization. In the last 

stage, we estimated the restricted coefficients by adopting an asymptotic least 

squared (ALS) framework (Gourieroux et al., 1985; Kodde et al., 1990; Henning and 

Henningsen, 2007).  

As the shadow wage of household labor and the shadow price of biomass energy are 

unobservable and endogenously determined in the production system, an estimating 

process of instrumental variable regression should be employed in the estimation of 

the netput equations. Here, we choose the average age and education years of 

household working members as instrumental variables for the shadow wage ( *

lp ) 

and shadow price ( *

bp ). These variables can be assumed to be exogenous in our 

model, and the characteristics of the working members may affect the quality of 

household labor, despite the fact that the instruments are assumed to be less 

correlated with household labor allocation decision, and therefore are appropriate 

instrumental variables. In order to estimate our SNQ profit function, we firstly 

regress the shadow wage ( *

lp ) and shadow price ( *

bp ) on the instrumental variables 

and all the other exogenous variables. Then the predicted value of these two 
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endogenous variables will be used as augmented variables in the constrained IT3SLS 

at the second step. 

Using the iterative three-stage least square (IT3SLS) estimation method, we jointly 

estimate the SNQ profit function and the four netput equations with the data 

collected from Sichuan Province. As described already, restrictions are imposed on 

the system to ensure profit maximization. The estimations and calculations for the 

SNQ profit function are carried out by the statistical software “R” with the add-on 

package “micEconSNQP.”  

4.4.2.2 Data Description 

The data used to estimate the SNQ profit function are presented in Table 4.7. On 

average, the total amount of agricultural outputs is 55562.34 kg per year, while the 

total amout of biomass collected by the sampled households is 3634.933 kgsce per 

year. The total time annually allocated to both agricultural production and biomass 

collection is 953.227 hours, whereas the quantity of intermediate inputs used per 

year is about 850.711 kg. 

Table 4.7 Data and variables used in estimating SNQ profit function 

 
Description Mean Std. Dev. 

xa Quantity index of agricultural outputs (kg) 55562.34 187089.9 

xb Total amounts of collected biomass energy (kgsce) 3634.933 4464.771 

xl Total hours allocated to two activities (Hours) -953.227 655.108 

xo Quantity index of Intermediate inputs (kg) -850.711 886.112 

pa Price index of agricultural products (CNY/kg) 1.269 1.926 

pb
* Shadow price index of biomass (CNY/kgsce) 0.810 1.225 

pl
* Shadow wage rate of household labor (CNY/hour) 10.749 4.933 

po Price index of intermediate inputs (CNY/unit) 7.337 22.786 

zAL Cultivated arable land areas (Mu) 4.045 3.686 

No. of Obs.     556 

Source: Author’s own field survey 

With regard to the price indicies of netputs, the shadow wage rate of household 

labor is on average 10.749 CNY per hour, while the average shadow price index of 
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biomass (crops straw and firewood) is 0.810 CNY per kgsce. The mean value of the 

price index of agricultural products in our sample is approximately 1.269 CNY per kg, 

whereas that of the price index of intermediate inputs is about 7.337 CNY per unit. 

4.4.2.3 Model Estimation Results 

Table A.1 reports the estimates of the SNQ production function with restriction of 

curvature. The hausman test statistic indicates that the endogeneity problem caused 

by including shadow wage in our model and our instrumental variables are not weak. 

Given our estimation results, we calculate the price elasticities of outputs and inputs 

according to (4.13) using sample means (See Table A.1 in the Appendix).  

Table 4.8 Estimated price elasticities of outputs and inputs 

 

pa pb
* pl

* po 

xa 0.0420 -0.0219 -0.0067 -0.0133 

xb -0.5247 0.2798 0.1212 0.1237 

xl 0.0463 -0.0348 -0.0755 0.0640 

xo 0.1504 -0.0584 0.1051 -0.1971 

Note: The elasticities are calculated using R package micEconSNQP. The superscript u refers to the estimated 
coefficients of unrestricted profit function, whereas r is those of restricted estimation. T-Stat refers to the 
estimate parameter to the left. Subscript a represents agricultural outputs, b denotes amount of collected 
biomass, l is labor inputs, and o refers to intermediate inputs. 

It can be seen from Table 4.8 that all outputs and inputs are inelastic. The own-price 

elasticities of outputs indicate that if the weighted average price of agricultural 

products increases 1%, the agricultural outputs will rise by about 0.04%, whereas a 1% 

increase in the shadow price of biomass energy will increase the outputs of biomass 

collection by about 0.28%. Meanwhile, the own-price elasticities of inputs also 

suggest that a 1% increase in the shadow wage of household labor will decrease 

labor input for the productive activities by 0.08%, whereas a 1% increase in the 

weighted average price of intermediate inputs will reduce household demand for 

them by 0.20%. Considering the cross-price elasticities, the supply (agricultural 

products and biomass energy) cross-price elasticities are negative, revealing a 
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competitive relationship between these two activities. In other words, an increase in 

the price of either of the outputs leads more labor inputs to be invested in producing 

it, thus reducing the production of the other. This is also in line with the findings of 

our theoretical analysis in Section 2.3. Additionally, the cross-price elasticities for the 

inputs (labor and intermediate inputs) are positive, reflecting that the intermediate 

inputs such as fertilizers and pesticides are substitutes to labor-capital in our study 

region. This is to say, holding other variables constant, if the price of intermediate 

inputs increases, households will use less of them and simultaneously allocate more 

labor to production activities in order to keep the same quantities of outputs and 

vice versa. Moreover, if we compare the cross-price elasticities of intermediate 

inputs and labor (i.e.
ollo

pxpx
EE * ), the labor-intensive feature of the production 

system in rural Sichuan Province is then confirmed. However, if we compare the 

own-price elasticities of the outputs with their cross-price elasticities, respectively 

(i.e. *
baaa pxpx EE  and *

bbab pxpx EE  ), it demonstrates that both agricultural 

production and biomass collection are more likely to be driven by the market of 

agricultural products than the demand of biomass energy. Particularly, for 

agricultural production, the negative signs of the cross-price elasticities of outputs 

with respect to inputs are consistent with economic theory. In contrast, although 

fertilizers and pesticides are not directly invested in biomass collection, the positive 

signs of the cross-price elasticities to inputs imply that biomass collection is perhaps 

influenced by consumption decisions. When the price of other inputs increases, 

households have to spend more on purchasing them and cut down their 

expenditures on commercial energy under a given budget constraint. As the 

consequence, they collect more biomass for energy use to compensate for the 

consumption of commercial energy. On the other side, if the shadow wage increases, 

households will work on domestic production activities for a longer duration instead 

of working off-farm, resulting in a decrease in their disposable incomes. Therefore, 

they have to use biomass as fuels to reduce the expense on commercial energy.  
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4.5 Conclusion 

In this chapter, we analyze the impacts of biomass collection on agricultural 

production in our study region. This can be relevant in a context such as Sichuan and 

many other provinces in China, where the government has recognized the 

importance of biomass collection to environmental protection by reducing the 

pollution caused by directly burning agricultural wastes and firewood in open air.  

Firstly, in terms of household participation in different working activities, the results 

of our study show that household participation decisions on agricultural production 

and biomass collection are not statistically independent. The educational level of the 

household head, market wage rate, non-labor income level, and household location 

are important factors in determining household participation in these two activities. 

Households that have well-educated heads and higher market wage rate are less 

likely to engage in both of these two productive activities. Households located in 

plain areas are less likely to work on farm as well as to collect biomass. In addition, 

households whose houses are farther from the biomass collecting spots are more 

likely to participate in both of these activities. In particular, non-labor income level is 

a key factor that can significantly influence household participation decisions on 

agricultural production and biomass collection in opposed directions. An increase in 

household non-labor income decreases the likelihood to work on farm, while 

increasing the household participation probability of biomass collection.   

The results of our analysis also show that the supply cross-price elasticities of 

agricultural products and biomass energy are -0.02 and -0.52, respectively, indicating 

that biomass collection could bring negative impact to agricultural production due to 

the competition between these two activities for the limited labor resources. 

Whereas agricultural production provides residues as feedstock for biomass energy 

utilization, thus it could positively affect biomass collection.  

Considering the changes in prices (shadow prices) of the outputs and inputs of both 
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agricultural production and biomass collection, we found that the relationship 

between agricultural production and biomass collection is competitive. Biomass 

collection is likely to be driven by the markets of agricultural products and 

intermediate inputs. Increasing the price of agricultural products leads to more 

agricultural production and less biomass collection at the same time. Moreover, we 

also found that biomass collection is influenced by household consumption decisions.  

If the price of intermediate inputs increases, households will spend more on 

purchasing them and cut down their expenditures on commercial energy under a 

given budget constraint. Therefore, they have to collect more biomass for energy. On 

the other side, if the shadow wage increases, households will work on domestic 

production activities for a longer duration instead of working off-farm, resulting in a 

decrease in their disposable incomes. In this case, they also have to collect more 

biomass as fuels in order to reduce the expense on commercial energy. Based on the 

above research results, we suggest that measures aiming at promoting agricultural 

production, such as increasing the price of agricultural products while decreasing 

price of intermediate inputs, should be taken to reduce biomass collection. In 

addition, education in rural areas should also be developed to increase the 

probability of household members working off-farm.  
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Chapter 5 Impacts of the Changes in Exogenous 
Markets on Household Biomass Energy Use  

5.1 Introduction  

In the real world, an agricultural household usually plays a double role of producer 

and consumer in domestic biomass energy utilization. As a consumer, in order to 

meet its energy demand, the household must not only choose which types of energy 

it will use, but also decide the consumption amount of each type of energy on the 

basis of its socio-economic status. Since the traditional biomass energy such as crop 

straw and firewood is free of charge (Gosens et al., 2013), the poor households that 

cannot afford the high prices and costs of the advanced fuels are highly likely to rely 

on it for living. However, the traditional biomass fuels need to be collected and 

processed by households before use. That means the household, as an energy 

producer, has to allocate labor input to biomass collection and energy preparation. In 

this case, it could be restricted from engaging in other income-generating activities, 

given a fixed labor endowment (Van der Kroon et al., 2013). Thus, it is of great 

importance for a household to optimally allocate its labor on different activities to 

get returns for livelihood enhancement. Considering what has been described, we 

should simultaneously and holistically study the household biomass energy use 

behaviors from both production and consumption sides in this research.  

In a growing body of literature focusing on the household behaviors towards biomass 

energy use, the theory of opportunity cost of labor were commonly used to examine 

the household decision-making behaviors between biomass collection and other 

activities in different developing countries. Amacher et al. (1996) used the micro data 

from Nepal to investigate the different responses of the households who collect 

firewood and participate in the firewood market to the changes in the opportunity 

costs of labor and found that the labor opportunity cost is one of the most important 

factors that determine the household behaviors. Mekonnen (1997, 1999) conducted 
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an empirical study in Ethiopia to inspect the biomass fuel collection and consumption 

behaviors of the households using non-separable agricultural household model and 

emphasized that the labor time variable has significant impacts in all cases. Heltberg 

et al. (2000) and Mishra (2008) analyzed the household behaviors of collecting and 

using biomass energy such as agricultural residues and firewood in India. Their 

findings indicate that household choice of collecting biomass energy is based on 

shadow wage, which is determined by the opportunity cost of biomass collection. 

Fisher et al. (2005) examined the determinants of household activity choice, 

influencing forest use among the poor households in Malawi and revealed that the 

return from different activities can affect household choice behaviors. In the Chinese 

case studies, Chen et al. (2006) and Démurger and Fournier (2011) tested the 

household biomass energy consumption behaviors and also provided evidence to 

support that the shadow wage of household labor and the shadow prices of the fuels 

are the main factors affecting household biomass energy consumption. Although all 

of these studies have pointed out that the opportunity cost of labor (shadow wage of 

the labor) is the dominant influencing factor for household decision-making on 

biomass energy use, they ignored the linkages between biomass energy consumption 

and other exogenous markets such as labor market and commercial energy market. 

Therefore, in this study, we assume that the shocks of exogenous markets mainly 

come from the changes in prices, and we will empirically analyze the adjustment of 

household biomass energy use behaviors according to these price changes based on 

the agricultural household model, which was developed and elaborated in Section 

2.4. 

Another main assumption for this chapter is that the market for biomass energy is 

absent in our study region. Normally, households jointly make their decision on 

biomass energy consumption and biomass collection. In order to use biomass energy 

as a substitute for the more expensive fuels to meet its energy demand, the 

household allocates a certain part of its limited time endowment on collecting the 
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biomass, which comes from the wastes of its own agricultural production. The main 

structure of this chapter is organized as follows: We will briefly introduce the data 

used in our study in Section 5.2 and test the separability for households surveyed in 

our field survey in Section 5.3. The analysis of household biomass energy use 

responses to the changes in the exogenous markets will be conducted in Section 5.4. 

Finally, we will conclude the main findings of this chapter in Section 5.5. 

5.2 Descriptive analysis  

5.2.1 Context of Household Energy Consumption  

The data used in this chapter were also collected from our field survey conducted in 

2013. Of the total 556 households, 524 households are participating in agricultural 

production, i.e. typical agricultural households. Table 5.1 shows the energy 

consumption status of our sampled households. Generally, the energy consumed by 

these households consists of biomass energy and commercial energy. Traditional 

biomass energy (including crops straw and firewood) and biogas are the main types 

of biomass energy used currently. Biomass energy takes the largest share (76.31% 

and 74.61%) of energy consumption of households from mountainous areas (Aba) 

and hilly areas (Yibin), while commercial energy occupies the dominant position 

(62.87%) in the household energy consumption of plain areas (Deyang). In particular, 

for biomass energy, the market is almost absent. In other words, households usually 

collect biomass and then prepare energy for residential use by themselves. 
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Table 5.1 Energy consumption status of sampled households (Kgsce per year per 

household)  

  Aba Yibin Deyang 

 
Amount Share (%) Amount Share (%) Amount Share (%) 

Traditional biomass 

energy 
1775 73.53 1430 65.42 299 27.89 

Biogas 67 2.78 201 9.19 99 9.24 

Commercial energy  572 23.69 555 25.39 674 62.87 

Source: Author’s own field survey 

With respect to household traditional biomass energy consumption, it can be seen 

from Table 5.2 that, on average, the households from mountainous areas consume 

the largest amount of firewood, while the households in plain areas use the least 

amount of firewood (339 kg per year). Due to the geographic and weather conditions, 

crops such as rice and wheat cannot be cultivated in mountainous areas. Thus, there 

are no enough available straws for the households to use as energy. However, the 

households in hilly areas have abundant crop straw resources. Therefore, they 

consume the largest amount of crop straw (442 kg per year).  

Table 5.2 Traditional biomass energy cousumption of sampled households (Kg per 
year per household) 

  Aba Yibin Deyang 

Landscape Mountainous areas Hilly areas Plain areas 

Crops straw 4  442  217  

Firewood 3105 2144  339  
Source: Author’s own field survey 

Particulary considering the household consumption of biogas (see Figure 5.3), 312 of 

the agricultural households built biogas digestors in their houses, accounting for 

about 59.5% of the total, whereas only 239 households used biogas, occupying 

approximately 45.6%. The main feedstock for household biogas production is pig 

dung, and the biogas is mainly used for cooking. Moreover, as the annual average 

temperature of the mountainous areas is relatively low, it is not suitable for 

constructing biogas digestors there. Thus, both the number of household having 

biogas digestors and using biogas in mountainous areas are the smallest (89 and 53). 
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In contrast, hilly areas (Yibin) have the largest number of biogas digestors as well as 

biogas users (131 and 106).  

Table 5.3 Household use of biogas (Total sample size: 524 households) 

  Aba Yibin Deyang 

Number of households possessing 

biogas digestor 
89 131 92 

Number of households using biogas 53 106 80 

Main using purpose Cooking Cooking Cooking 

Main resources for producing biogas Pig dung Pig dung Pig dung 
Source: Author’s own field survey 

Table 5.4 lists the commercial energy consumption status of the 524 sampled 

agricultural households. It can be found that households from Aba (mountainous 

areas) consumed the greatest amount of coal annually (1653 kg), while those living in 

plain areas used the least (9 Kg). However, households from plain areas consumed 

more of other types of commercial energy (LPG, natural gas and electricity) than 

those from the mountainous and hilly areas, because they are relatively wealthier 

and can afford the more expensive energy and costly energy use devices. In terms of 

electricity, Aba has the lowest average price of about 0.39 CNY per kWh, whereas 

Yibin has the highest level of 0.56 CNY per kWh. The main reason for this is that 

electricity in mountainous areas is mainly generated through small hydropower, 

while that in hilly areas depends on thermal power generation. More importantly, 

households from mountainous areas spend the least (943 CNY per year) on 

purchasing commercial energy, whereas those living in plain areas spend the most 

(1717 CNY per year). 
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Table 5.4 Commercial energy consumption of sampled households 

  Aba Yibin Deyang 

Consumption amount of 

commercial energy (per household)       

Coal (Kg per year) 165  29  9  

LPG (Tank per year) 0.18  0.61  4.85  

Natural gas (m3 per year) 0  44  57  

Electricity (kWh per year) 1712 1663 2018 

Expenditure on commercial energy 

(CNY per year per household)       

Coal 284 26 12 

LPG 31 82 582 

Natural gas 0  83 108 

Electricity 658 931 1050 

Total expenditure on commercial 

energy (CNY per year) 
943 1097 1717 

Source: Author’s own field survey 

5.2.2 Varable Description 

The socio-economic characteristics of the 524 households from three different 

regions are presented in Table 5.5. In terms of household head characteristics, 

households from Deyang in plain areas have the highest average age (54 years) and 

the highest educational level (7.01 years), whereas households located in 

mountainous areas (Aba) have the lowest average age (48 years) and the lowest 

educational level (5.89 years). The fraction of female household head in Aba is the 

highest (0.12), while in Yibin of the hilly areas, it is the lowest (0.03). With respect to 

the household demographic structure, households from Deyang have the smallest 

family size (3.7 persons); the largest fractions of male adults (0.45), female adults 

(0.46), and elderly people (0.18); and the smallest fraction of children (0.06). 

Households located in Aba have the largest family size (4.4 persons) and the smallest 

fractions of adult males (0.42) and elderly people (0.07), whereas households who 

are living in Yibin have the highest fraction of children (0.14) in their families.  

Additionally, it can be clearly seen that households from Deyang have the highest 
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income level (15305 CNY per year), the highest market wage rate (8.8 CNY per hour), 

and the lowest expenditure level (5712 CNY per year), whereas they possess the 

least areas of arable land (3.3 Mu). They also have the highest fraction of working 

members (0.87) and female working members (0.50) in their families. The average 

age (48.42 years) and schooling years (7.22 years) of their working members are the 

highest among three regions. Contrarily, households from Aba rely heavily on 

agriculture, as they have the greatest areas of arable land (8.87 Mu) and the highest 

returns from agricultural production (5407 CNY per capita) per year. Furthermore, 

they have the lowest market wage rate and the highest expenditure level (6815 CNY 

per year). The average fraction of working members in their families is the lowest 

(0.76), and they have working family members with the lowest average age (41) and 

the lowest average educational level (6.23). The households from Yibin have the 

smallest fraction of female working members (0.47). Moreover, they have the lowest 

per capita income level (13225 CNY per year) and the lowest income level of 

agricultural production (4216 CNY per year).  
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Table 5.5 Socioeconomic characteristics of households 

 
Aba Yibin Deyang 

Sample size 175 179 170 

HH characteristics 
   

Fraction of females in HH 0.12 0.03 0.07 

Average age 48 53 54 

Average educational years  5.89 6.30 7.01 

Household composition 
   

Household size 4.4 4.3 3.7 

Fraction of adult males 0.42  0.44  0.45 

Fraction of adult females 0.40 0.39  0.46 

Fraction of children (≤14) 0.13 0.14 0.06 

Fraction of elderly (≥65) 0.07 0.11 0.18 

Household working members 
   

Fraction of working members 0.76 0.81 0.87 

Fraction of female working members 0.49 0.47 0.50 

Average educational years of 

working members 
6.23 6.67 7.22 

Average age of working members 41 47 48 
Economic conditions of household (2012-2013) 

  
Total income per capita (CNY) 13400 13225 15305 
Wage rate (CNY per Hour) 7.1 7.8 8.8 
Agricultural income per capita 
(CNY) 

5407 4216 4343 

Total expenditure per capita (CNY) 6815 5967 5712 

Land area (Mu) 8.1 5.9  3.3 

Source: Author’s own field survey 

Finally, Table 5.6 shows the household time allocation for different activities. 

Households from the mountainous areas spend the longest time (841 hours) on 

agricultural production, while the households in plain areas spend the shortest time 

(667 hours) on farm work. Correspondingly, households in mountainous areas 

allocated more time (382 hours per year) on biomass collection than those from the 

other two areas, whereas households who are living in the plain spend less time (75 

hours per year) collecting biomass. For off-farm employment, households from Yibin 

allocate the longest time (4551 hours per year) to off-farm work on average, while 

households from Deyang spend the shortest time (3716 hours per year).  
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Table 5.6 Household time allocation to different activities (hours per year) 

    Aba Yibin Deyang 

Time allocation on farm work 841 771 667 

Time allocation on off-farm work 3727 4551 3716  

Time allocation on biomass collection 382 261 75  

Fraction of time allocation on 
biomass collection 

0.10  0.07  0.04  

Note: Commercial energy refers to coal, electricity, natural gas, LPG, and centralized supplying biogas. 
Source: Author’s own field survey 

5.3 Separability 

5.3.1 Model Specification 

According to the theoretical model that has been discussed before, separability of 

production and consumption obviously brings different impacts on the behaviors of 

rural households compared with non-separability. However, the previous empirical 

studies focusing on biomass energy using behaviors usually make the assumptions 

that separable or non-separable properties hold. Due to the complexity of Sichuan’s 

situation, the testing for separability should be done in this research. There have 

been two well-known global test methods. The first one is to estimate the profit or 

labor demand function and to find out whether the independent variables influence 

consumption decisions but not production decisions (Lopez, 1984; Benjamin, 1992; 

Bowlus and Sicular, 2003; Henning and Henningsen, 2007), and the other one is to 

estimate the marginal productivity (shadow wage) by estimating the production or 

cost function and to compare it with the market price (Jacoby, 1993; Skoufias, 1994; 

Le, 2010). Considering the heterogeneity across households and the specific failure 

on one particular market, Carter and Yao (2002) and Dutilly-Diane et al. (2004) tested 

the reduced form of labor demand function with regime-specific participations based 

on the observed market participation behaviors of the households, while 

Bhattacharyya and Kumbhakar (1997) used the structural form of a production 

function to estimate the idiosyncratic shadow price with the unknown sample 

separation and without the specific failure to any market and compared them with 
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observed effective market price for each household. Furthermore, Vakis et al. (2004) 

proposed a mixture model approach-based test at the reduced form level to assign 

the probability of being exposed to market failures (behaving under non-separation 

properties) to each household on the basis of unknown sample separation 

estimation.  

For this research, due to the sampling procedure, the heterogeneous behaviors of 

households should not be ignored, and the global test for separability has limited 

usefulness. Compared with other idiosyncratic testing methods that recognize 

heterogeneity, the mixture model approach detects non-separability on all markets 

at once and avoids reliance on households’ labor market participation to reach the 

conclusion of separability between the production and consumption decisions (Vakis 

et al., 2004). Therefore, a finite mixture model (FMM) is adopted to test the 

separability for the sample households. It provides a natural representation of 

heterogeneity in a finite number of latent classes. Considering the data availability 

and the data variation across the sample, we implement the test for separability 

from the perspective of agricultural production. Firstly, we set the null hypothesis of 

this study that a household will determine the labor allocated on farm work in 

accordance with one of two alternative regimes defined by expressions (2.18) and 

(2.35). Then, following Quandt and Ramsey (1978) and Greene (2012), the sample 

behavior can be characterized as a switching regression system with two component 

latent class models: 
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referring to the amount of hours allocated by households to on-farm work. 1

il , 2

il , 

and *

j are latent unobserved variables. We still normalize all of the prices by 

agricultural output to simplify our analysis. Using the results of theoretical model, we 

have: 
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Where ix is the classification vector of variables set to help explain the class 

probability. Given that we cannot identify a priori the regime that a household 

participated in, a randomly selected observation 
k

il  (household i’s labor allocated 

to agricultural production) will have the probability of )()(Pr 1  iii xxlob 

belonging to the first regime and the probability of

)()(Pr1)(Pr 12  iiiii xxlobxlob  belonging to the second one. 

The mixture of normal distribution problem can be formulated as: 
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Therefore, the log-likelihood for our mixture of normal distributions is as follows: 
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Our problem now is to estimate the parameters  21,,,,   from the sample of 

N observations on  iii

k

i xxxl ,,, 21 , Ni ,,1 . Then, we can predict class 

membership by calculating the posterior probability： 
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For estimating the parameters of the FMM model, we use the ML (maximum 

livelihood) method assuming that the class probability is constant. 

5.3.2 Data and Estimation 

In order to estimate the above model, we firstly specify the two regimes according to 

the theoretical model in Section 2.4. Under the separation assumption, a household’s 

decision on labor allocation depends only on production decision. In other words, 

the household characteristics and the factors that influence consumption should not 

affect it. It also implies that these variables could only impact the non-separable 

(constrained) regime. Then, for the classification vector  iiiii aZBwx ,,, , we 

include the market wage rate of household labor ( iw ), household characteristics 

affecting household consumption and preference ( ia ), and production side 

characteristics ( ii ZB , ). We also include household location dummy variables (
21 , rr ) 

that can reflect the regional differences in our model.  

Based on the FMM model, we apply the maximum likelihood method that has been 

discussed before to divide the whole sample households into two groups15. The 

dependent variable is the amount of hours spent on farm work. The descriptive 

information about the variables used in the test for separability is listed in Table 5.7.  

 

                                                             

15
 We define the non-separable regime as the constrained group whilst defining the separable regime as the 

unconstrained group. 
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Table 5.7 Descriptive information about variables in the FMM model 

Variables Description (Unit)   Mean Std. Dev. 

La Hours spent on-farm (Hours/Year) 
k

il  760.69  489.39  

GHH Household head gender (male=1) 

ia  

0.93 0.26 

AHH Household head age (Years) 51.62 11.76 

ASHH Household head age squared  2806.73 1254.45 

EHH Household head education (Years) 6.39 3.46 

FS Family size (number) 4.13 1.36 

FAM Fraction of adult males  0.44 0.16 

FAF Fraction of adult females 0.41 0.15 

FC Fraction of children (≤14) 0.13 0.16 

FE Fraction of elderly (≥65) 0.12 0.23 

MW Market wage rate (CNY/Hour) iw  7.90  4.58  

AL Cultivated arable land areas (Mu) 

iB  

4.13 3.71  

pci 

Price index of intermediate inputs 

(CNY/Unit) 
7.23 13.81 

OI Non-labor income (CNY/Year) ia  2682.49 4428.59 

DB Distance to biomass collecting spots (Km) iZ  2.22 4.50 

r1 
=1, if the household is from mountainous 

areas  
 

0.32 0.47 

r2 =1, if the household is from plain areas  0.31 0.46 

No. of Obs. 524 

Source: Author’s own field survey  

Table 5.8 presents the results of the parameter estimation for the finite mixture 

model (FMM). The first column shows the results of the OLS estimation of the 

regression model on the whole sample. It can be seen that the agricultural 

production side characteristics such as arable land owned and the price index of 

intermediate inputs significantly influence the on-farm labor allocation. Moreover, 

the pooled OLS estimates also reveal the significant impacts of household 

characteristics (the fractions of elderly people, adult females, and adult males in the 

family) on the household decision of on-farm labor supply. The first column indicates 

that non-separability is an important issue for sample households. The second and 
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third columns list the estimation results of the finite mixture model. According to the 

parameter estimates of FMM, it can be recognized that a household has a probability 

of 0.22 being categorized into the group titled component 1. This also means that 78% 

(409) of the sampling households belong to the other group, component 2. We can 

see that, for all households in both groups, the labor allocation decisions on on-farm 

work are not only affected by production-side characteristics but also by 

consumption-side ones. Then, the null hypothesis of separability on them is rejected. 

In other words, households in our sample behave in a non-separable manner.  

Particularly, the estimates of the FMM model reveal that, for both components, the 

variables pertaining to agricultural production (the ownership of arable land and the 

price index of intermediate inputs) can significantly increase the labor allocated to 

farm work. The gender of the household head is an important influencing factor for 

most households. In terms of household characteristics, the demographic structure 

such as fractions of children and male adults and household location can significantly 

affect labor allocation on farm work for the surveyed households from component 2. 

In addition, for households from component 1, the fraction of adult female members 

significantly influences household time allocation to farm work.  
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Table 5.8 On-farm Labor Allocation: OLS and FMM estimates  

Variable OLS 
FMM 

Component1 Component2 

Family size 7.5933 36.8665 -11.4057 

Household head age -6.4963 4.9613 1.7532 

Household head age squared 0.0241 -0.1403 -0.0245 

Household head gender 60.6066 18.8228     86.6190* 

Household head education -3.3194 -31.6284 4.2814 

Fraction of elderly (≥65) -152.9182* -443.0192 -73.4927 

Fraction of children (≤14) 519.4996 830.9659 333.8743*** 

Fraction of adult females 595.8271*** 1454.129** 185.3537 

Fraction of adult males 571.6494*** 889.9482 290.9799** 

Cultivated arable land areas 32.3617*** 81.4009***  14.0322*** 

Market wage rate (log) -6.4473 -13.34 7.8255 

Distance to biomass colleting 

spots 
-3.8346 -2.4395 -1.7233 

Non-labor income (log) 30.3956** 87.9086 10.2386 

Price index of intermediate inputs 

(log) 
253.1725*** 138.6342* 270.0458*** 

Households from mountainous 

areas (r1=1) 
102.9704** -302.3485 257.3383*** 

Households from plan areas 

(r2=1) 
66.6860 -145.488 149.6454*** 

Constant -329.5545 -951.8361  -278.4495 

No. of Obs.      524 115 409 

Sample proportion 1.0 0.22 0.78 

R2 (pooled OLS) 0.4153 
  

Log likelihood (mixture)   -3721.8204   

Note: The dependent variable of the model is total hours of the household spend on-farm (Unit: 
Hours). The missing dummy for regions is hilly area. The significance levels are defined as *10%, **5%, 
and ***1%. 

5.4 Household Behavior Analysis  

By running the FMM model, we have found that, in our sample household, 

consumption and production decisions are non-separable. In order to address the 

research question of how household biomass energy use reponses to changes in 

exogenous markets and what factors influence theses behavioral responses, we 

specify a household model that can be econometrically estimated. As the shadow 
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wage cannot be directly observed, we have to adopt a two-stage modeling method 

proposed by many researchers (Lopez, 1984; Henning and Henningsen, 2007; Tiberti 

and Tiberti, 2012). Therefore, at the first stage, we estimate the shadow wage of 

household labor using the production function, and in the second stage, we include it 

in the household consumption system and labor share system to jointly analyze the 

households’ behaviors. 

5.4.1 Shadow Wage and Shadow Price Estimation 

As it has been discussed in the theoretical section of this paper, under the conditions 

of non-separation, the shadow wage determines the household’s decision on labor 

allocation. Therefore, we firstly estimate the shadow wage of the household’s labor 

use production function using the same methods that have been adopted in Chapter 

4 (See Section 4.3.1 and Section 4.4.1). The specification of the production system for 

household i is still defined as: 

ikikmimaiii dBLTOBTOA   ∑∑ lnlnlnln 210             (5.4) 

ijijbiii dLTOATOB   lnlnln 210                        (5.5) 

Where i and i are the error term. 

In this model, TOAdenotes the total value of agricultural products.TOB represents 

the total amount of the collected biomass. aL is the total hours worked on farm. bL is 

the time spent on biomass collection. mB is a vector of other inputs for agricultural 

production, including the areas of arable land input ( AL ) and the total value of 

intermediate inputs (TCI ). kd and jd are some other variables affecting agricultural 

production and biomass collection. Here, we include the distance to the nearest 

biomass collecting spots ( DB ) in biomass collection function. In addition, the 

location dummies (i.e. 1r and 2r ) are added into both equations.  

The strategies for estimating the production system including the measures adopted 
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to deal with the endogeneity problem and zero-value variables have been described 

in Chapter 4. We firstly use observable household characteristics such as age, gender, 

and educational level as proxies for management ability for both of the production 

activities. Secondly, we employ a bivariate probit model to estimate the household 

participation equations of biomass collection and off-farm employment. Based on 

the expression (2.37) derived from our theoretical model analysis, we assume that 

the household simultaneously and jointly makes participation decisions for biomass 

collection and off-farm work, and we specify the probit model as 

obnrrEZBawfY iiiiiin ,)2,1,,,,,(                                 (5.6) 

Where b represents biomass collection and o  denotes working off-farm. ibY is 1 if 

the household collects biomass for energy use and 0 if the household does not. ioY  

is 1 if the household engages in off-farm employment and 0 if it does not. The 

variables of the bivariate probit are defined as before in the FMM model. Then the 

results of model estimation are used to compute the Inverse Mills Ratio (IMR) for 

each household i that participates in either of the activities:  

)2,1,,,,()2,1,,,,( rrZBawrrZBawIMR iiiiiiiiin                        (5.7) 

And for household i which does not participate in the activity, the IMRs are: 

))2,1,,,,(1()2,1,,,,(* rrZBawrrZBawIMR iiiiiiiiin                    (5.8) 

Finally, the parameter estimates of the production system are obtained by 

augmenting the regression with the IMR using IT3SLS. The descriptive information of 

the variables and data used in estimating the production system are presented in 

Table 5.9. 
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Table 5.9 Descriptive analysis of data in production system estimation 

  Variables Description Mean  Std. Dev. 

TOA Total value of agricultural outputs (CNY) 18259 47874.38 

TOB Total amount of collected biomass energy (kgsce) 3737 4505.28 

La Total hours worked on farm (hours) 761 489.39 

Lb Total hours worked on biomass collection (hours) 241 314.07 

                                              Units      Share (%) 

Ybi Participation in biomass collection                  394        75 

Yoi Participation in off-farm work                      453        86 

No. of obs.                                            524 

Source: Author’s own field survey. Other explanatory variables are described in Table 5.3. 

In our sample of 524 farm households, 394 (75%) households participate in biomass 

collection, while 453 (86%) households’ members are working off-farm. Furthermore, 

the total value of agricultural outputs produced by per household is on average 

18259 CNY per year, whereas the total amount of biomass energy produced per 

household is 3737 kgsce. Regarding labor allocation decision, the average time spent 

on farm work is 761 hours per year by one household, whilst the average time 

working on biomass collection is 241 hours.         

The estimation results of the bivariate probit regression are reported in Table 5.10. It 

can be seen that, for biomass collection, the household location plays a vital role in 

determing household participation decision. Households located in plain areas are 

less likely to collect biomass than those from hilly areas. The longer the distance 

between a farmer’s house and a biomass collecting spot is, the more likely the 

household will decide to collect biomass. The possible reason for this phenomenon is 

that households located in remote mountainous areas usually collect firewood in the 

forest designated by the local government. In most cases, the forest is far away from 

their houses. In addition, the significant and positive coefficient of non-labor income 

implies that raising household non-labor income level increases the probability of 

participating in biomass collection.  
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Table 5.10 Estimates of Seemingly Unrelated Probit (SUP) model for biomass 

collection and market participation for sampled households 

Variables 

Participate in 
biomass collection 

(Ybi) 

Participate in 
off-farm work  

(Yoi) 

Coef. (Std. Err.) Coef. (Std. Err.) 

Family size 0.0806 (0.0628) 0.5158 (0.829)*** 

Fraction of female adults -0.6795 (0.7584) 1.8610 (0.8304)** 

Fraction of male adults 0.2954 (0.7483) 1.9681 (0.8029)** 

Fraction of children 0.4003 (0.7976) 0.2095 (0.7883) 

Fraction of elderly people 0.5832 (0.4191) -1.0591 (0.3572)*** 

Age of household head 0.0604 (0.0490) -0.0076 (0.0481) 

Age squared of household head -0.0004 (0.0005) 0.0001 (0.0004) 

Gender of household head -0.4642 (0.3028) 0.2840 (0.2942) 

Educational level of household head -0.0311 (0.0231) -0.0096 (0.0280) 

Mountainous areas 0.1006 (0.2382) -0.4088 (0.2360)* 

Plain areas -0.8809 (0.1664)*** -0.2365 (0.2013) 

Areas of arable land owned -0.0170 (0.0255) -0.0065 (0.0240) 

Distance to biomass collecting spot 0.5413 (0.1130)*** 0.0438 (0.0378) 

Market wage rate (log) -0.1502 (0.1155) 0.0651 (0.0792) 

Non-labor income (log) 0.1409 (0.0598)** -0.1437 (0.0719)** 

Price index of intermediate inputs (log) 0.0677 (0.0980) -0.2252 (0.0946)** 

_cons -1.7461 (1.6193) -0.9040 (1.5476) 

No. of Obs.          524 524  

Rho (1,2)  0.0260 (0.1277) 

Log pseudolikelihood  -221.50639 

Wald chi2 (32)               187.50*** 
Note: Values in parentheses are standard errors, and the significance levels are *10%, **5%, and ***1%. 

Regarding the participation decision on off-farm work, family size and the fraction of 

adult members have positive influences. Households with a larger fraction of adult 

members are more likely to find jobs in nearby cities, whereas households with a 

smaller fraction of elderly people are more likely to work off-farm. Moreover, the 

non-labor income level and the price of intermediate inputs are also important 

factors that affect household decisions on working off-farm. The increasing non-labor 

income could impel them to stay in their farms. Thus, the probability of working 

outside will decrease. Finally, if the price of the intermediate inputs increases, 

households will purchase more of them and then are less likely to leave their farms 
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for work.   

Table 5.11 Estimation results of the simultaneous equations using IT3SLS 

Independent variables ln_TOA ln_TOB 

Total value of agricultural outputs (log) 
 

0.0478 (0.0796) 

Total amount of biomass (log) -0.0225 (0.1265) 
 

Hours working on agricultural production (log) 0.6073 (0.0933)*** 
 

Hours working on biomass collection (log) 
 

0.3545 (0.0465)*** 

Areas of arable land owned (log) 0.3046 (0.0813)*** 
 

Total value of intermediate inputs (log) 0.0200 (0.0146) 
 

Age of household head 0.0393 (0.0289) 0.0074 (0.0303) 

Age squared of household head -0.0004 (0.0003) -0.0001 (0.0003) 

Gender of household head 0.0794 (0.1731) 0.1102 (0.1764) 

Educational level of household head 0.0462 (0.0150)*** 0.0197 (0.0153) 

Distance to biomass collecting spot 
 

0.0032 (0.0123) 

Mountainous areas 0.4389 (0.1212)*** -0.1739 (0.1371) 

Plain areas 0.4460 (0.1603)*** -0.5732 (0.1405)*** 

_cons 3.1859 (1.3669)** 
 5.8061 

(0.9992)*** 

Sample selection (IMRb) 0.4586 (0.2178)** -0.5076 (0.2158)** 

Endogenous variablesa ln_TOA, ln_TOB 

R2 0.3698 0.2890 

No. of Obs.               394 

Note: The missing dummy for regions is hilly areas. The significance levels are *10%, **5%, and ***1%. 
Values in parentheses are standard errors of estimated parameters. All other variables in this system 
are treated as exogenous to the system and uncorrelated with the disturbances. The exogenous 
variables are taken as instruments for the endogenous variables.  

The IT3SLS estimates of the agriculture-energy production system are reported in 

Table 5.11. Most of the estimated parameters have the expected signs. With respect 

to agricultural production, the inputs including labor and arable land have 

significantly positive effects on agricultural output. Considering the characteristics of 

household head, the educational level has a significantly positive influence on farm 

production. Raising the educational level of the household head increases the 

agricultural outputs. Furthermore, the location dummy of mountainous areas 

significantly and positively affects agricultural production. Compared to the 

households from hilly areas, those located in mountainous areas have higher yields 
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of agricultural products.  

On the other hand, in biomass collection function, the labor input has a significantly 

positive effect on biomass collection. Also, the household allocation dummy of plain 

areas is significant. It indicates that households from plain areas are less likely to 

engage in biomass collection than those from hilly areas.  

After getting the parameter estimation results of the production system, the shadow 

wage of the household labor and the shadow prices of collected biomass are 

collected using formulas (4.3) and (4.4) and are presented in Table 5.12. 

5.4.2 Household Consumption Decisions 

5.4.2.1 Model Specification 

For the purpose of modeling household consumption decisions, we adopt the 

approach mainly following the framework of Beznoka (2014). The consumption 

decision system of each household can be specified by an almost ideal demand 

system (AIDS, see Deaton and Muellbauer, 1980) model.  

Let iES denote the expenditure share of the i th goods, then the demand for 

consumption goods i  is represented by the following system of equations (Buse, 

1994): 

*
ln)ln(∑

P

Y
pES i

j

jijii                                       (5.9) 

WhereY indicates full income (for the households in constrained group, it refers to 

shadow full income), jp denotes the consumer prices of goods j, and i is the 

good-specific constant. i  is the parameter of the budget effect of demand, and ij  

are the parameters of the effects of relative price changes. Then we assume that the 

translog price index ( *ln P ) can be approximated by a linear price index, i.e. by the 
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Stone’s price index ( ∑
k

kk pESP lnln *
= ) suggested by Deaton and Muellbauer 

(1980), resulting in a linearized AIDS. However, this index could be seen as an 

endogenous variable, because it depends on a household’s expenditure shares. 

Therefore, we replace the individual expenditure shares with the sample mean 

( kES ). We thus can estimate the linear approximation of the AIDS (LA/AIDS) as 

follows: 

∑∑ )ln-(ln)ln(
k

kk

j

ijijii pESYpES                            (5.10) 

The restrictions imposed on the AIDS model are in the following sets: 

Adding-up:  
i

ij

i

i

i

i 001                               (5.11) 

Homogeneity in prices: 
j

ij 0                                    (5.12) 

Symmetry: jiij                                                 (5.13) 

Based on the estimation results of this LA/AIDS model, the compensated and 

uncompensated elasticites can be respectively calculated by using the formulas given 

in the work of Chalfant (1987) and Eales and Unnevehr (1988) as: 

j

i

ij

ij

i

j

ijijij ES
ESES

ES
ES 




ˆ
)(ˆ*                            (5.14) 

i

j

i

i

ij

ijij
ES

ES

ES



 ˆ-

ˆ
                                            (5.15) 

Where if 1,  ijji  , otherwise 0ij . The average expenditure shares of the 

households are denoted by ES . The î and iĵ are the estimated parameters in 

LA/AIDS model. Moreover, the formula used to calculate the full income elasticity for 

i-th good is (See Green and Alston, 1990):  

1
ˆ


i

i

i
ES


                                                      (5.16) 
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According to our theoretical model and the model specification for AL/AIDS 

discussed before, for conciseness and estimation reasons, we grouped household 

expenditure (consumed commodities) into 5 categories: domestically produced 

agricultural commodities (a , including rice, maize, wheat, rapeseed, vegetables, and 

livestock products), biomass energy commodities produced by household ( b , 

composed of firewood and crop straw), commercial energy commodities purchased 

by household (e , consisting of electricity, coal, natural gas, LPG, and centralized 

supplied biogas), leisure time consumed by household ( l ), and other market 

commodities purchased by household (o ). 

5.4.2.2 Empirical Strategy 

The LA/AIDS model is estimated by using the constrained iterative seemingly 

unrelated regression (Constrained ITSUR) method. This method allows the estimation 

of contemporaneous correlation in error terms across system equations, which then 

is used to derive more efficient estimates (Zellner, 1962; Zellner and Huang, 1962; 

1963). In the ITSUR procedure, an equation is excluded from the system of 

simultaneous systems. The parameters of the excluded equation can be identified in 

terms of the parameters of other equations using the add-up restriction, since the 

sum of the shares of expenditure is equal to 1. We drop out the demand equation for 

the group of other market commodities ( oES ). The restrictions of homogeneity in 

prices and symmetry are imposed on the model as constraints. However, some 

important issues concerning the demand system estimation must be considered. 

Firstly, the construction of the prices of the grouped commodities will be presented 

in the following section. Furthermore, the treatments of potential sample selection 

bias and endogeneity problems will be discussed. 

 Price of Grouped Commodity 

We collected the cross-sectional data of the households on the expenditures and 
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prices of different commodity categories in our field survey. For households living in 

the same region, the variations in prices are quite small. Therefore, we have to set up 

household-specific prices by using sub-group consumption structure under the 

assumption that the expenditure shares of the commodities in the same group are 

constant (Castellón et al., 2012; Beznoska, 2014). Then, the prices are calculated by 

the sum of weighted prices of each term in that category (Lewbel, 1989; Suharno, 

2010; Castellón et al., 2012; Beznoska, 2014). It is defined as: 

NnESpp
N

n

njnj ,,2,1∀∑
1




                                      (5.17) 

Where njes is the expenditure share of commodity n  in commodity group j and 

np is the price of commodity n. These prices are calculated for the commodity 

category a (self-consumed agricultural products), b (biomass energy), e  

(commercial energy) and o  (other market goods).  

We firstly unify the price units of self-consumed agricultural products to CNY per kg 

and unify the different energy price units to the standard coal equivalent price unit 

(CNY/kgsce) through dividing the energy prices by the conversion coefficients. Then 

we use the above formula (5.21) to obtain the weighted prices for these three 

commodity groups. Particularly, for other market goods, we adopt the method 

suggested by West and Parry (2009) using the price data collected in the field to 

calculate a price index for the composite market goods.16 In addition, the shadow 

wages of household labor and the shadow prices of collected biomass which have 

been estimated using the production system are included in the model as the 

shadow prices of leisure time and biomass energy,17 respectively. 

                                                             

16
 The data was collected from the official website of Scihuan government: 

http://www.sc.gov.cn/10462/10464/10594/10601/2013/10/8/10279526.shtml and our field survey. 
 
17

 We also use formula (5.17) to calculate the weighted price of biomass energy.  

http://www.sc.gov.cn/10462/10464/10594/10601/2013/10/8/10279526.shtml
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 Potential Sample Selection Bias and Endogeneity Problem 

The zero-expenditure problem occurs when the household does not consume a 

certain group of commodities defined before. In our case, zero expenditure only 

exists in group b (biomass energy) due to the household’s decision of 

nonparticipation in biomass collection. Estimating the LA/AIDS demand system only 

with the households who supply labor to collect biomass would cause sample 

selection bias. In addition, another problem in the demand system estimation arises, 

since a relevant share of households in the samples who work both for agriculture 

and biomass energy production does not engage in off-farm work. As an important 

component of shadow income (Y), the wages of these households cannot be 

observed. Then, estimating the system only with the households who participate in 

all three activities may induce biased results. In order to solve those potential sample 

selection bias problems, we firstly replace the missing data on wages with the 

regional mean and then adopt the method proposed by Heien and Wessells (1990) to 

estimate the model specified as follows: 

ioobb

n

nini

j

jijii IMRIMRa
P

Y
pES    *

*
ln)ln(∑      (5.18) 

Where the terms bIMR and *

oIMR  have been determined in Section 5.4.1 with 

formulas (5.7) and (5.8). 

Another endogeneity problem is caused by the correlation between the budget 

(shadow income) and the allocation of consuming goods and leisure. If the shadow 

wage is included in the model, the allocation of the budget depends on the decision 

of leisure-work, and then the endogeneity problem of the term )ln( *PY  becomes 

serious (Beznoska, 2014). Moreover, the shadow price of biomass energy and the 

shadow wage of household labor are unobservable and calculated on the basis of 

estimating the production system. Therefore, they are both endogenous variables in 

our model. As suggested by Beznoska (2014), we use the non-labor income and 
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household head characteristics (age, gender, and educational level) as instruments 

for all three endogenous variables. The instruments are assumed to be exogenous in 

our model and less correlated with intrahousehold labor allocation. Finally, the 

estimated model is similar to a Three-Stage-Least-Squares (3SLS) model. At the first 

stage, the endogenous variables are respectively regressed on the instruments, all 

the other exogenous variables, and the local dummies. This process can be expressed 

in the following equations: 

m

n

nmn

k

kmkmm XCHHOIX   ln*                           (5.19) 

Where *

mX are the endogenous variables; OIln is the natural logarithm of 

non-labor income and transfers; kCHH  denotes household head characteristics 

including age, gender, and educational level of the household head; m are error 

terms; and nX is the set of all exogenous variables in our model, which contains the 

exogenous market prices, household characteristics such as family size, fraction of 

adult male, fraction of adult female, fraction of children and fraction of elderly, and 

household location dummies. In the second stage, the censored Seemingly Unrelated 

Regression (Censored SURE) method is applied to estimate the LA/AIDS model (Heien 

and Wessells, 1990).  

The variables used in estimating the LA/AIDS are described in Table 5.12. Leisure 

takes the largest share of household annual expenditure (82.5%), whereas 

commercial energy occupies the smallest (0.62%). The weighted prices of 

self-consumed agricultural products, commercial energy, and other marketed goods 

are 4.01 CNY/Kg, 3.32 VNC/Kgsce and 597.15 CNY/Unit, respectively. The average 

shadow income of the sampled households is 247255.7 CNY per year, and then the 

average value of the term )ln( *PY is 9.7. 
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Table 5.12 Description of variables used in estimating AL/AIDS model 

Source: Author’s own household survey 

 Estimation Results 

We now use the Hausman test to check the endogeneity of )ln( *PY , shadow price 

of biomass energy and shadow wage of household labor (Spencer and Berk, 1981). 

The statistic of the Hausman test in Table 5.13 implies that these terms cannot be 

treated as exogenous. Therefore, we use the three-stage estimation method that has 

been stated before. The estimates of the LA/AIDS demand system are also listed in 

Table 5.13. It can be seen from the estimated parameters of the LA/AIDS that, for 

biomass energy consumption, the market price of commercial energy is one of the 

main influencing factors. With an increase in commercial energy price, the share of 

the expenditure on biomass energy will also increase. In terms of household 

characteristics, the fraction of female adults in members and household location are 

found to be important in determining biomass energy consumption decisions. 

Households living in mountainous areas or with a larger fraction of female adults 

consume more biomass energy than others.  

Variables Description Mean Std. Dev. 

ESa The expenditure share of self-consumed agricultural products 0.047 0.053 

ESb The expenditure share of biomass energy 0.012 0.018 

ESe The expenditure share of commercial energy 0.008 0.073 

ESl The expenditure share of leisure 0.769 0.157 

ESo The expenditure share of other marketed goods 0.164 0.134 

Pa The price index of self-consumed agricultural products (CNY/Kg) 4.01 3.27 

Pb The (shadow) price index of biomass energy (CNY/Kgsce) 0.92 1.47 

Pe The price index of commercial energy (CNY/Kgsce) 3.32 1.01 

Pl(w*) The shadow price of leisure (shadow wage rate) (CNY/Hour) 9.47 3.42 

Po The price index of other marketed goods (CNY/Unit) 597.15 279.83 

Y Household shadow income (CNY/Year) 247255.7 120714.3 

No. of Obs.   524 
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Table 5.13 Parameter estimation of LA/AIDS model using censored SURE 

Variables 
Dependent variables   

ESa ESb ESe ESl ESo 

ln_Pa γia 0.0134***       
 

  
 (0.0027) 

    
ln_Pb

* γib 0.0039*** 0.0199***  
   

  
(0.0008) (0.0028) 

   
ln_Pe γie 0.0024*** -0.0002  -0.0028*** 

  

  
(0.0004) (0.0012) (0.0011) 

  
ln_pl

* γil -0.0515*** -0.0322 -0.0037   0.1911** 

 

  
(0.0028) (0.0045) (0.0019) (0.0211) 

 
ln_Po γio 0.0228***  0.0064***  0.0029***  -0.0780***  -0.0942 

  
(0.0032) (0.0025) (0.0011) (0.0170) 

 
[ln_(Y/P*)]* βi 0.0521***  0.0034  0.0048***  -0.2658***  0.2056 

  
(0.0093) (0.0174) (0.0076) (0.1186) 

 
Family size θin -0.0121*** -0.0022  -0.0042**  0.1434*** 

 

  
(0.0029) (0.0047) (0.0021) (0.0321) 

 
Fraction of female adults θin 0.0694***  0.0163* 0.0028  -0.2442***       

  
(0.0195) (0.0084) (0.0033) (0.0596) 

 
Fraction of male adults θin 0.1051*** 0.0084  0.0073**  -0.2011***  

 

  
(0.0197) (0.0088) (0.0033) (0.0614) 

 
Fraction of children θin 0.0376**  0.0103  0.0035  -0.1057**  

 

  
(0.0175) (0.0076) (0.0029) (0.0537) 

 
Fraction of elderly θin -0.0380***  0.0041  -0.0026  0.0706**  

 

  
(0.0093) (0.0045) (0.0020) (0.0279) 

 
Mountain areas θin -0.0219*** 0.0051**  -0.0059***  0.0127  

 

  
(0.0042) (0.0024) (0.0009) (0.0129) 

 
Plain areas θin 0.0070 -0.0031  -0.0008  0.0372**  

 
  

(0.0056) (0.0024) (0.0010) (0.0165) 
 

IMRb λb -0.0202*** -0.0085***  0.0017 0.0649*** 

 

  
(0.0072) (0.0032) (0.0014) (0.0217) 

 
IMR*

o λo -0.0283***  -0.0014 0.0018**  0.0230  
 

  
(0.0054) (0.0023) (0.0009) (0.0159) 

 
_cons αi -0.6118**  0.0041 -0.0850    5.4964 -3.8037 

  
(0.3006) (0.1630) (0.0731) (1.1105) 

 
Hausman test statistic 145.68***    
No. of Obs. 394    

Note: a. Endogenous variable. The missing dummy for regions is hilly area. The values in parentheses are standard errors, and 
the significance levels are *10%, **5%, and ***1%. Subscript a denotes self-consumed agricultural products, b represents 
biomass energy, e refers to commercial energy, l is leisure, and o denotes other marketed goods consumed by households.
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Table 5.14 Price and income elasticity estimated by LA/AIDS model (mean value) 

Direct price elasticity Income elasticity 

 
C UC 

  
σa -0.747 -0.874 θa 1.691 

σb -0.014 -0.038 θb 1.165 

σe -1.194 -1.212 θe 1.362 

σl -0.066 -0.431 θl 0.579 

σo -1.103 -1.568 θo 1.792 

Cross price elasticity  

 
C UC 

 
C UC 

σab 0.073 0.038 σbl -0.934 -1.761 

σae 0.045 0.022 σbo 0.570 0.268 

σal 0.054 -1.121 σel 0.350 -0.509 

σao 0.563 0.124 σeo 0.478 0.125 

σbe 0.001 -0.014 σlo 0.136 -0.014  

Cross price elasticity  

 
C UC 

 
C UC 

σba 0.265 -0.003  σlb -0.031 -0.051 

σea 0.254  -0.116  σob 0.045 0.024 

σla 0.006 -0.088  σle 0.007 -0.006 

σoa 0.163  0.073  σoe 0.024 0.011 

σeb 0.002 -0.024  σol 0.331 0.346 

Note: C is compensated elasticity and UC is uncompensated elasticity. Subscript a denotes 
self-consumed agricultural products, b represents biomass energy, e refers to commercial energy, l is 
leisure, and o denotes other marketed goods consumed by households. 

Equally important are the elasticities calculated on the basis of the estimation results 

of the LA/AIDS model (See Table 5.14). According to the demand theory, the 

compensated elasticity (Hicksian price elasticity) is derived from solving the dual 

problem of expenditure minimization at a certain utility level, assuming constant 

purchasing power, while the uncompensated elasticity (Marshallian price elasticity) is 

obtained from maximizing utility subject to the budget constraint. Both reveal the 

household’s reaction on changes in prices of different commodities. In our case, we 

should pay more attention to the compensated elasticity, because our LA/AIDS model 
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is deduced from the expenditure minimization problem.  

With respect to the direct price elasticities of commodities groups, all the signs are 

negative. These results are consistent with the theoretical postulate. The expenditure 

on commodities will decrease when their prices increase. In terms of magnitude, 

self-consumed agricultural products, biomass energy, and leisure are price inelastic. 

That is to say, their expenditures are less responsive to the changes in their own 

prices. Regarding the compensated cross-price elasticities, the elasticities between 

biomass energy and self-consumed agricultural products (σab) and commercial 

energy (σbe) and other marketed goods (σbo) are positive, showing that the 

relationships between biomass energy and these three types of commodities are 

substitutes. Nonetheless, the cross-price elasticities between biomass energy and 

and leisure time (σbl) is negative, implying that biomass energy and leisure time are 

complements. Additionally, all other compensated cross-price elasticities are positive, 

which indicates that the relationship among the four different commodity groups 

(self-consumed agricultural products, commercial energy, leisure, and other 

marketed goods) should be substituted.  

Furthermore, the positive signs of income elasticities demonstrate that all five types 

of commodities are normal goods. Among which, only the consumption of leisure 

time is less responsive to the changes in household shadow income level, and the 

expenditures on other commodities are relatively sensitive to household shadow 

income level. In particular, when household shadow income level increases, the 

biomass energy consumption level increases.  

5.4.3 Household Labor Supply 

5.4.3.1 Model Specification 

On the other hand, in order to investigate the responses of households’ labor supply 

to the changes in shadow wage rate ( *

lp ) and market wage rate ( MW ), we use 
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factor cost share equations, which are derived from a translog cost function to 

estimate the elasticity (Schneider, 2011). Following Fisher et al. (2005), we assume all 

income generation (including shadow income) activities as a process of production. 

Then, in the production function, we assume that there are three different inputs, 

labor working off-farm, labor allocated to domestic production (agricultural 

production and biomass collection), and the intermediate inputs for agricultural 

production (fertilizer, pesticides, and plastic films). According to Shephard’s lemma, 

the demand for a factor with minimizing cost can be obtained from the 

differentiation of the cost function with respect to its price (Mas-colell et al., 1995). 

Therefore, in our case, the system of a translog cost function with cost share 

equations is established in the following: 

iPyji

i j

ijii YpppTC   lnlnln
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lnln ∑∑0
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jjkjj pLS   ∑ ln                                          (5.20) 

Where jLS is the cost share of factor j and jp is its price. j is the constant term 

and j is the error term. Similar to the AIDS model, some restrictions have to be 

imposed on the system of equations as follows: 

Adding-up restriction:  1j                                      (5.21) 

Homogeneity in prices:  
j

jk 0                                     (5.22) 

Symmetry: kjjk                                                  (5.23) 

Additionally, to solve the problem of singularity, we drop the cost share equation of 

intermediate inputs from the system. Finally, a system of two translog equations will 

be directly estimated: 
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Where 1LS is the cost share of labor allocated to domestic production and 2LS

denotes the cost share of labor engaging in off-farm employment.
ciP is the price of 

intermediate inputs. The subscript n represents the different regions for the local 

dummies (mountainous areas and plain areas). AL denotes arable land ownership. 

RDL is the ratio of the dependence to labors (in our sample, the mean value ofRDL

is 0.3217), and ia denotes household characteristics including the demographic 

structure characteristics such as family size, fractions of male adults, female adults, 

children, and elderly people and household location dummies )2,1( nr n

representing mountainous areas and plain areas. In addition, in order to avoid the 

potential problems caused by sample selection bias, the IMRs calculated using the 

standard Heckman sample selection model (described in Section 4.4.1) are also 

included in both of the equations.  

After obtaining the estimated coefficients of the system of equations (5.28) using the 

constrained iterative seemingly unrelated regression estimation (constrained ITSURE) 

method, we can calculate the own elasticity and substitution elasticity of labor, 

employing the formula given by Binswanger (1974): 

i

i

ii

ii LS
LS

γ
E += 1-                                                 (5.25) 

j

i

ij

ij LS
LS

γ
E +=                                                   (5.26) 

5.4.3.2 Estimation Results 

As the unobservable shadow wage is endogenously determined within household, 

the estimation of the labor cost share equations with shadow wage is similar to the 

estimating process of instrumental variable regression adopted in estimating the 

SNQ profit function and the LA/AIDS model before. At this time, we choose the 

logarithm of non-labor income ( OIln ) and the distance to the nearest biomass 
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collecting spot (DB ) as the instrumental variable. Firstly, we regress the term 

)ln( *

cipw on the instrumental variables and all the other exogenous variables. Then 

the predicted value of this term will be used as the augmented variable in the 

constrained IT3SLS in the second step. Table 5.15 lists the estimation results of the 

labor cost share equation system with the instrumental variables. Most of the 

coefficients are significant at the 1% level. IMRa
* is significant in both labor share 

equations, indicating that the sample selection bias would happen if the system was 

estimated while taking into consideration households that do not participate in 

off-farm work. The positive sign of the market wage rate in the domestic production 

equation demonstrates that the households that can earn more wage income 

allocate less time to domestic production, while the negative sign of the shadow 

wage in the same equation reveals that households will supply more labor to 

domestic production activities if they can obtain higher returns from them. In 

contrast, in the off-farm employment equation, the household time allocation to 

off-farm work is negative to the market wage rate and positive to the shadow wage. 

Furthermore, we could also find that the household characteristics such as family 

size, fractions of adults and elderly people among household members, areas of 

owned areable land, and household location have significant impacts on household 

labor allocation. Households with larger family size and larger fractions of adults tend 

to spend more time on domestic production, while allocating less labor to off-farm 

employment. In contrast, households with larger fractions of elderly people spend 

more time working domestically and less time taking a part in off-farm employment. 

In addition, households possessing more arable land will increase the time allocated 

to domestic production and reduce the time allocated to off-farm work. Households 

located in mountainous areas supply more labor to domestic production and less 

labor to off-farm work than those from hilly areas.     
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Table 5.15 Constrained IT3SLS estimation results of labor share equations 

Variables Total Cost 
Share of domestic 

(LS1) 

Share of off-farm 

(LS2) 

lnpc 0.164 (0.040)***   

lnpf 0.632 (0.048)***   

lnpd
* 0.204 (0.059)***   

(lnpc)
2 0.013 (0.023)   

(lnpf)
2 0.197 (0.031)***   

(lnpd
*)2 0.069 (0.040)*   

lnpc*lnpf -0.070 (0.029)**   

lnpc*lnpd
* 0.057 (0.036)   

lnpf*lnpd
* -0.126 (0.014)***   

lnY* 0.216 (0.131)*   

ln(pf/pc)   -0.126 (0.014)*** 0.192 (0.017)*** 

ln(pd
*/pc)  0.099 (0.019)*** -0.126 (0.014)*** 

Family size 0.263 (0.071)*** -0.087 (0.020)*** 0.052 (0.021)** 

Fraction of adult females 0.679 (0.348)* -0.025 (0.132) 0.138 (0.146) 

Fraction of adult males 0.599 (0.354)* 0.063 (0.134)** 0.079 (0.149) 

Fraction of children (≤14) 0.033 (0.561) -0.039 (0.211) 0.214 (0.231) 

Fraction of elderly (≥65) -0.647 (0.344)* 0.113 (0.126)* -0.023 (0.139)* 

Areas of arable land owned  -0.001 (0.008) 0.008 (0.003)*** -0.004 (0.003) 

Ratio of dependence to labor -0.176 (0.124) 0.183 (0.102)* -0.231 (0.111)** 

Mountainous area (r1=1) 0.087 (0.068) 0.076 (0.025)*** -0.145 (0.027)*** 

Plain area (r2=1) 0.006 (0.078) -0.023 (0.027) -0.048 (0.029)* 

IMR’o -0.150 (0.159) 0.036 (0.044)* 0.083 (0.048)* 

_cons 4.581 (1.483)*** 0.419 (0.118)*** 0.235 (0.130)* 

R2 0.5337  0.3226               0.4053                 

Hausman test statistic 92.96*** 

No. of Obs. 524 

Note: The missing dummy for regions is hilly area. The values in parentheses are standard errors, and the significance levels are 
*10%, **5%, and ***1%. The letter a indicates the endogenous variable. In our sample, the labor cost shares of domestic 
production and off-farm work are 0.284 and 0.561, respectively.   

Based on the above results, we can compute the elasticities of household labor 

supply using the estimated parameters of the labor share equations. The mean value 

of the own price elasticities of labor supply to domestic production and off-farm 

employment are -0.366 ( 11E ) and -0.098 ( 22E ), respectively. As outlined by Dogan 

(2008), the convexity of the translog cost function in factor prices based on the 
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assumption of cost minimization requires the own-price elasticities of inputs to be 

negative. Therefore, the condition is satisfied in our estimation results. The 

cross-price elasticities of these two behaviors are 0.108 ( 12E ) and 0.054 ( 21E ), 

supporting the theoretical expectations on the signs of the production elastiticies. 

These elasiticities also imply that the labor allocated to biomass collection will 

decrease when the shadow wage of the household rises, and if the market wage rate 

goes up, the household will reduce the time spent on biomass collection. 

5.5 Household Biomass Energy Use Responses to the Changes in 

Exogenous Markets 

As the behaviors of the households in our sample satisfy the properties of 

non-separable assumptions, the effects of the changes in exogenous markets on 

household biomass energy use are examined, based on the expressions of elasticities 

derived from the theoretical framework in Chapter 2: 
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The indirect effect occurs through changes of shadow wage in response to the 

changes of prices in the exogenous market (5.27), while the direct effect comes from 

the impacts of exogenous prices on biomass energy consumption (the first term in 

equation (5.28)).  

With respect to the elasticity in (5.27), which reflects the changes of household 

shadow wage in response to the changes in prices of the commodities in exogenous 

markets, we can identify its sign at mean value based on the estimation results of our 
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models. For the term in its denominator ( )( ***

liiiii SE   , the value of the 

compensated own-price elasticity of leisure consumption ( *

i ) is -0.066, and the full 

income elasticity of leisure consumption ( *

i ) is 0.579. The share parameter of leisure 

consumption in the shadow income of our sampled households is on average 0.699, 

while the average value of the ratio ( i ) is about 29.995. According to the estimates 

of the labor cost share equations, the value own-price elasticity of labor supplied to 

domestic production ( *

iE ) is -0.366. Thus, the sign of the denominator of elasticity 

(5.27) is unambiguously positive.  

Turning to the term in its numerator ( )( ***

xiixiixi SE   ), the compensated 

cross-price elasticities of the leisure consumption ( *

xi ) with respect to all exogenous 

market prices are positive according to our LA/AIDS model. Therefore, the second 

term ( )( **

xiixii S  ) is unambiguously positive. For the cross-price elasticities of 

labor allocated to domestic production ( *

piE ), we can deduce their signs from the 

estimated compensated price elasticities of consumption due to the fact that 

production limits consumption due to absent markets. Firstly, the cross-price 

elasticities of biomass energy and self-consumed agricultural products with respect 

to the price of commercial energy and other marketed goods are positive, implying 

that, when the exogenous price of commercial energy ( ep ) or other marketed goods 

( op ) increases, the demand of biomass energy and self-consumed agricultural 

products will increase as well. Thus, households will spend more time on domestic 

production. In these cases, the numerator is positive and the expression of (5.27) 

( )( *

eii pwE and )( *

oii pwE ) is unambiguously negative.  

Additionally, if the exogenous market price refers to the price of self-consumed 
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agricultural products ( ap ), the situation could be more complicated. Despite the fact 

that the signs of the compensated own-price elasticity of self-consumed agricultural 

products and the compensated cross-price elasticity of biomass energy to 

self-consumed agricultural products are opposite, baa    indicates that the 

term in the numerator should be negative. Thus, )( *

aii pwE is unambiguously 

positive. On the other hand, for the changes in exogenous labor market, due to the 

binding constraint imposed on off-farm employment, an increase in market wage 

rate results in an increase in labor allocated to home production (0.108) and a 

decrease in leisure consumption. Therefore, we can say the sign of the numerator in 

(5.27) is unambiguously negative, with the result that )( *

ii wwE is positive. In order 

words, the shadow wage of household labor should respond positively to the 

changes in the exogenous price of self-consumed agricultural products and labor, 

while responding negatively to the changes in other exogenous prices. Increasing the 

price of self-consumed agricultural products and labor increases the shadow wage, 

while increasing the price of commercial energy and other marketed goods can 

decrease the shadow wage rate.  

Considering the elasticity in (5.28), the first term of its right-hand side (RHS) 

represents the direct effects of the changes in exogenous market on biomass energy 

use. Its sign is positive for all categories of goods in accordance with the estimates of 

the LA/AIDS model. The second term of the right-hand side (RHS) of elasticity (5.28) 

reveals the indirect influence of the changes in exogenous market on biomass energy 

use via internal adjustments. Since the term  libi

H

ibi SwCE *** )(  is unambiguously 

positive, the product of it and )( *

xii pwE depends on the sign of )( *

xii pwE .  

For the changes in market prices of self-consumed agricultural products and labor, 

 Gxibi pCE * is positive, as both terms in equation (5.28) are positive. On the contrary, 
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for the household biomass energy use responses to changes in market price of 

commercial energy and other marketed goods, due to the opposed signs of the two 

terms on the RHS of the elasticity (5.28), its sign depends on the magnitudes of 

 Hxibi pCE *  and  libi

H

ibixii SwCEpwE **** )()(  . As the magnitudes of 

)( *

xii pwE  are ambiguous, the signs of  Gxibi pCE * are also ambiguous. 

According to what we have discussed before, we can determine that, with an 

increase in the market prices of labor and self-consumed agricultural products, 

household biomass energy consumption will increase. In addition, in the case of the 

changes in the prices of commercial energy and other marketed goods, the sum of 

both direct and indirect effects  Gxibi pCE * is smaller than the direct effect itself if 

the indirect effect is negative. This indicates that the market failure reduces the 

flexibility of household behaviors. 

5. 6 Conclusions  

In this chapter, we investigated household biomass energy use responses to the 

changes in exogenous markets. We firstly conducted a test for separability on the 

sampled households to examine whether their behaviors satisfy the property of 

separable assumptions. Based on this, we estimated the shadow wage of their labor 

and systematically examined the biomass production and consumption behaviors by 

jointly estimating the system of household labor share equations and the LA/AIDS 

model. The main findings obtained from the estimation results of these models are 

as follows: 

(i) Households make their decisions on on-farm labor allocation according to the 

assumptions of non-separability. Specifically, among different influencing factors, 

areas of owned arable land and average price of intermediate inputs could 

significantly and positively affect the household labor allocation to agricultural 
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production.  

(ii) We have examined the factors influencing the household decisions on 

participation in biomass collection and off-farm work. The household characteristics 

such as family size; fraction of male adults, female adults, and elderly people; and 

household location have a significant influence on household participation in 

off-farm work. Households with older and less educated heads are more likely to use 

traditional biomass energy. Households who are living farther from the biomass 

collecting spots have a higher likelihood of engaging in biomass collection. Obviously, 

households located in mountainous areas are less likely to work off-farm than those 

who are from hilly areas, while households located in plain areas are less likely to 

collect biomass. The main reasons for this situation include the weather and 

geographical conditions, living customs, and the different development levels of the 

regional economies. The non-labor income level was found to have opposite effects 

on biomass collection and off-farm work. It is positive to biomass collection and 

negative to off-farm employment. 

(iii) Our analysis indicates that biomass collection competes with agricultural 

production as it reduces the labor input for agricultural production. In reverse, the 

agricultural production could provide more biomass resources for household energy 

use. In this case, agricultural production could bring a positive effect on biomass 

collection. These findings are also in line with those found in Chapter 4.  

(iv) The relationship between off-farm work and domestic production (including 

biomass collection) is also competitive. We also found that households with larger 

family size, a higher fraction of female adults, and a higher fraction of male adults 

have larger labor share in off-farm working activities and a smaller labor share in 

domestic production labor. Conversely, households possessing a larger fraction of 

elderly people and more arable land have a smaller labor share in off-farm 

employment and a larger labor share in domestic production. Additionally, compared 

to those from hilly areas, households from mountainous areas allocate more labor to 
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off-farm work and less labor to domestic production activities. 

(v) With respect to household biomass energy consumption decision-making 

behaviors, the shadow price of biomass energy and the shadow wage of household 

labors are two significant influencing factors. Concretely, an increase in shadow wage 

will reduce the expenditure on biomass energy, while an increase in the shadow 

price will increase the financial burden of the households to use biomass energy. The 

changes in the price of the commercial energy will bring a positive impact on the 

biomass energy expenditure, and when the income levels of the households increase, 

they will spend more on biomass energy. The household characteristics such as the 

fraction of adults, the fraction of children, and the fraction of elderly positively affect 

the expenditure on biomass energy. The households from mountainous areas spend 

more on traditional biomass energy than those from plain areas.  

(vi) Regarding the elasticities calculated from the results of the AL/AIDS model, we 

find that biomass energy is a kind of normal good with negative own price elasticity 

and positive income elasticity. However, it is price inelastic and is less responsive to 

the changes in its shadow price. The relationship between biomass energy and 

commercial energy is substituted. Additionally, with an increase in market prices of 

labor and self-consumed agricultural products, household biomass energy 

consumption increases, under the imperfect labor market. 
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Chapter 6 Conclusions and Policy Implications 

6.1 Conclusions 

Because biomass energy functions as a link between nature and human activities, it 

is a crucial element in the frame of rural livelihoods. We have determined that the 

energy transition from traditional biomass energy such as crops straw and firewood 

to modern energy sources at household level could improve livelihoods for rural 

households in terms of health, environmental protection, and income generation, etc. 

In other words, the factors and measures that decrease household use of traditional 

biomass energy can also positively affect livelihood. Therefore, with particular 

concern for traditional biomass energy, we evaluated the impacts of household 

biomass energy use on rural livelihoods. 

As presented in Chapter 2, we established a theoretical framework based on an 

agricultural household model. This model provides a basic roadmap for us to analyze 

the decisions pertaining to energy use, agricultural production, biomass collection 

participation, biomass energy consumption, and the factors affecting household 

biomass use. Firstly, to clarify how households make choices regarding energy use for 

cooking, we treated households as consumers in the energy market and set a basic 

hypothesis that, with the improvement in households’ socioeconomic status, their 

energy use choices will shift from solid traditional biomass energy to more advanced 

fuels. Then, examining the influence of biomass collection on agricultural production, 

we have emphasized that households could be considered price takers and profit 

maximize in the domestic production system, and we developed our hypothesis that 

the behavioral relationship between agricultural production and biomass collection is 

competitive. In the analysis of household biomass energy use responses to the 

shocks in the consumer market, we identified that households play a double role as 

supplier and consumer in biomass energy utilization and discussed household 

biomass energy use behaviors through the interlinks between consumption, 
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production, and labor market participation under both separable and non-separable 

assumptions. Under this circumstance, we have proposed two hypotheses: for 

non-separable households, biomass energy use is determined by the shadow wage 

of household labor. As the shadow wage increases, the use of biomass energy 

increases as well. For separable households, biomass energy consumption is 

influenced by household income level and by the shadow price of biomass energy 

according to the consumer theory of microeconomics.   

On the basis of our theoretical framework and basic hypotheses, we empirically 

provided a comprehensive quantitative analysis using data collected from a field 

survey in rural Sichuan. The main findings are discussed from Section 6.1.1 to Section 

6.1.3. 

6.1.1 Biomass Energy Choice in Energy Transition and Its Determinants 

The current energy use pattern for cooking in our study region shows that a majority 

(95%) of the 556 sampled households use more than one type of fuel at the same 

time. Despite the fact that 528 (91.7%) households use electricity for cooking energy, 

biomass is a sort of commonly used energy source. 432 (77.7%) of the households 

still burn traditional solid biomass (crops straw and firewood), whereas 243 (43.7%) 

of them produce biogas using pig dung. This not only suggests that household energy 

transition from traditional biomass energy to advanced energy is still slow, but also 

provides evidence of fuel stacking, as households do not abandon the traditional 

solid biomass energy (crops straw and firewood) when they use other types of more 

advanced fuels.   

In order to further understand how a household makes decisions when choosing a 

specific energy source for cooking, we collected data of households’ actual energy 

choices in our field survey, conducted a discrete choice experiment to observe their 

stated choices, and then examined the determinants of household choice behaviors, 

jointly considering the revealed and stated preferences. The statistic information of 
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the actual fuel choices made by our sampled households in Sichuan Province reveals 

that traditional solid biomass energy (crop straw and firewood) is preferred for 

cooking. The different energy choice behaviors of households from different 

income-level groups confirm that income is still an important determinant of cooking 

fuel choice. In addition, according to our empirical analysis, households prefer to 

adopt the fuels with lower cost, higher safety, and lower indoor air pollution. The 

characteristics of the decision maker such as age, education level, and marital status; 

the household demographic structure including the fractions of adults, children, and 

elderly people; and household location are the main factors affecting household 

energy choice behaviors.  

6.1.2 Impacts of Biomass Collection on Agricultural Production 

According to the real situation in our study region, we modeled household behavioral 

relationship between agricultural production and biomass collection by employing a 

multioutput production system. We found that, for biomass collection participation, 

the education level of the household head, the non-labor income level, and 

household location are the main important influencing factors. Our findings also 

demonstrate that household decisions regarding participating in biomass collection 

and agricultural production are interdependent. The possible reason for this could be 

that household members who work on-farm are also mainly responsible for 

collecting biomass. This could also be an underlying reason behind the relationship 

revealed by the estimation results of the system of production functions. The 

parameters of the production system indicate that biomass collection negatively 

influences agricultural production, whereas agricultural production could have a 

positive impact on biomass collection.  

Furthermore, in the SNQ profit function, the supply (agricultural products and 

biomass energy) cross-price elasticities are negative, indicating a competitive 

relationship between these two activities. Meanwhile, the cross-price elasticities of 
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the two inputs (labor and intermediate inputs) are also negative, representing that 

inputs such as fertilizers and pesticides are substitutes for labor inputs in Sichuan 

Province.  

6.1.3 Biomass Energy Use Responses of Households to the Exogenous 
Market. 

We provided a holistic and comprehensive analysis of household biomass energy use 

behaviors in this research. Based on the theoretical framework of an agricultural 

household model, we tested separability using our sampled households. All of the 

households in our sample were found to behave in a non-separable manner. The 

potential impacts of the changes in exogenous consumer market on household 

biomass energy use are complex because household decisions on biomass 

consumption, biomass collection, and labor market participation are usually 

interlinked and interdependent. The markets for biomass energy and labor are 

missing or imperfect. The effects we investigated include the direct effects of 

exogenous shocks (i.e. changes in prices of commodities such as agricultural products, 

commercial energy, and other marketed goods) on labor supply and biomass energy 

demand reaction and the indirect effects on labor allocation and biomass energy 

consumption adjustment through the changes in the shadow wage of household 

labor. For the direct effects, the positive cross-price elasticities of biomass energy 

consumption with respect to the exogenous prices calculated on the basis of the 

estimates of our LA/AIDS model reflect that increasing the exogenous prices directly 

increases biomass energy use. Particularly in the case of changes in the exogenous 

labor market, the positive labor demand cross-price elasticity obtained from 

estimating the labor share equations reveals that an increase in market wage rate 

will increase household labor allocated to domestic production activities (agricultural 

production and biomass collection). Thus, in turn, such an increase may also increase 

the use of biomass energy. Regarding such indirect effects, the elasticities of the 

shadow wage to the price of commercial energy and other marketed goods 
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( )( *

xii pwE ) are negative. Since the biomass energy consumption elasticity to 

shadow wage (  **

ibi wCE ) is positive, therefore, the indirect effects of exogenous 

shocks from labor market and agricultural product market on biomass energy use are 

positive, while those of shocks from commercial energy market and other exogenous 

markets are negative. Then, as the total effects equal the sum of the direct and 

indirect effects, the response of household biomass energy use to the changes in 

prices of labor and self-consumed agricultural products are unambiguously positive, 

implying that, when these prices increase, household biomass energy use increases. 

Turning to the changes in price of commercial energy and other marketed goods, the 

total effects are smaller than the direct effect, indicating that the imperfect labor 

market reduces the flexibility of household behaviors. 

Additionally, our findings also highlighted the important role of education and the 

dominating place of income level in biomass energy consumption in rural Sichuan 

Province. Moreover, the impacts of household location on production and 

consumption decisions indicate that regional effects should not be neglected.  

6.2 Policy Implications 

As discussed in Section 1.3.3, the existing energy policies for developing biomass 

energy implemented in Sichuan Province are mainly focused on financial support for 

biogas construction in rural areas. For the target of Sichuan local government to 

simultaneously decrease the traditional use of biomass energy and promote modern 

bioenergy technologies (such as biogas production, comprehensive use of crop straw, 

and biomass power generation), the energy polices need to be improved. In order to 

benefit household livelihoods by promoting energy transition while enhancing 

agricultural production, this study proposes the following suggestions for future rural 

energy construction in rural Sichuan. 
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6.2.1 Adjust Energy Price and Improve Energy Quality 

On one hand, the government should not only provide subsidies on constructing a 

household biogas digestor, but should also use some other effective market 

instruments to adjust the prices of specific fuels. Concretely, the government should 

adjust the prices of some modern commercial energy, such as electricity and natural 

gas. Alternatively, the subsidies on the prices of clean and efficient fuels (including 

the relevant technologies) should be provided for promoting their use in rural areas. 

Decreasing the prices of the substituted energy sources would decrease the use of 

traditional biomass energy. Meanwhile, reducing the cost of new biotechnology 

adoption could increase the use of modern biomass energy. 

On the other hand, the future energy policies should attach more importance to the 

combined effect on both price and quality of modern fuels rather than merely paying 

attention to either of them. Precisely, any sustainable energy policy should provide 

more incentives that reduce energy price (or energy usage cost) while improving 

energy quality at the same time. For example, the most effective way to promote 

biogas in Sichuan Province is to upgrade modern biotechnologies to shorten the time 

spent on operating and cleaning the digester and to improve the safety of the users.   

6.2.2 Enhancing Households’ Access to Modern Fuels  

Poverty is a main factor restricting households from obtaining modern fuels. In order 

to help poor households escape poverty and adjust the rural energy consumption 

structure, any strategies that provide alternative livelihood options for them would 

enhance their access to modern fuels. In the long term, the government should 

invest more in rural education. More skill trainings related to the operation and 

maintenance of the biogas digester or other modern energy devices should be 

provided. More information about the upgrading of latest technologies should be 

provided to households. Moreover, the government should formulate policies to 
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create more job opportunities for rural households aiming at increasing their income 

levels. This would lead to more use of modern commercial energy.  

6.2.3 Eliminating the Market Faliures  

Since biomass energy plays an important role in rural livelihoods in China, the 

elasticity of household biomass energy use response to price incentives is crucial for 

food security enhancement and economic development. Thus, the results we have 

obtained indicate several elements of policy interventions that can be used to control 

this elasticity. One is the role of measures directed at reducing the incidence of 

market failures for specific households. This includes interventions that have 

capability to mitigate the binding constraint imposed on off-farm employment such 

as increasing investments in infrastructure construction, promoting education in rural 

areas and smoothing circulation of information on wages and job opportunities. 

Moreover, indirect sources of market failure also need to be eliminated by 

establishing a sound and effective social safety net to provide better access for rural 

households to services such as public transport system, health care, landless 

employment guarantee.  

6.2.4 Increasing Attention to Regional Differences 

As household location is a key factor affecting household use of biomass energy, the 

regional difference should be taken into account when designing new policies. 

Different regions have different situations. Therefore, the proposed energy policies 

must be adjusted to local conditions. In the context of Sichuan Province, in the 

mountainous areas where the production of biogas remains unsuitable, policies 

should concentrate on how to provide electricity to households with lower price and 

outage frequency, whereas in the plain and hilly areas, energy policy should focus on 

providing a simultaneous promotion of biogas and electricity. 
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Figure A.1 Optimal labor allocation in separable AHM 
Source: Author’s depiction 
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Figure A.2 The changes in equilibrium with decrease in wage rate in separable AHM 
Source: Author’s depiction 
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Figure A.3 The changes in equilibrium with increase in wage rate in separable AHM 
Source: Author’s depiction 
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Figure A.4 Optimal labor allocation in non-separable AHM 
Source: Author’s depiction 
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Table A.1 Estimation Results of the normalized quadratic profit function with 

imposition of convexity 

Parameter Coef.u T-Stat Coef.r 

a  37948.0339** 2.2065 50139.6383 

b  -43.4072 (-0.0365) 1421.9070 

l  -2104.5469 (-1.1996) -4206.8905 

o  -5585.7248*** (-4.1370) -7045.2400 

)( aaaa pp  -2202.7377** (-2.3939) 2917.0882 

)( *

baab pp  -1536.2492*** (-2.7964) -1457.4017 

)( *

laal pp  2605.3060*** 5.2161 -203.6292 

)( oaao pp  1133.6809** 2.4797 -1256.0572 

)( **

bbbb pp  -429.1761 (-2.7374) 795.8768 

)( **

lbbl pp  1146.4071*** 6.2630 275.2318 

)( *

obbo pp  819.0182*** 4.0979 386.2931 

)( **

llll pp  -1648.3134*** (-5.0531) 458.5478 

)( *

ollo pp  -2103.3997*** (-7.8839) -530.1505 

)( oooo pp  150.7006 0.5777) 1399.9146 

)( ALaAL z  6679.3614 1.3957 8125.4508 

)( ALbAL z  42.7095 0.1323 182.6015 

)( ALlAL z  -806.2899* -1.6694 -1099.5683 

)( ALoAL z  408.7647 1.1021 183.8917 

)( ALALaaALAL zzp  -402.0526 (-1.0679) -467.6394 

)( *

ALALbbALAL zzp     6.5346 0.2597 0.1591 

)( *

ALALllALAL zzp  41.7793 1.1032 54.2255 

)( ALALooALAL zzp  -14.9734 (-0.5167) -5.4900 

Hausman test statistic                    38.94*** 
No. of Obs.                     556 

Note: The system of SNQ profit function and netput equations are estimated using R package ‘micEconSNQP’. The 
significance levels are: *10%, **5%, ***1%. The missing dummy for regions is Hilly area. The superscript ‘u’ refers 
to the estimated coefficients of unrestricted profit function, whereas ‘r’ is the ones of restricted estimation. 
T-Stat refers to the estimate parameter to the left. Subscript ‘a’ represents agricultural outputs, ‘b’ denotes 
amount of collected biomass, ‘l’ is labor inputs and ‘o’ refers to intermediate inputs. 

 

       

 

 


