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Abstract 

Skeletal muscle is a highly metabolically active tissue and has market value in meat-

producing farm animals. The overall aim of this thesis is to deeply investigate the 

biological functions and pathways associated with muscle fiber types, mitochondrial 

respiration, glycolytic and oxidative enzyme activities in porcine muscle. Firstly, the 

transcriptional profile of longissimus biopsies 24h ante mortem was investigated in 

malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrain (PiNN) pigs 

significantly distinct in muscle fiber types and mitochondrial respiration. Differential gene 

expression analysis and weighted gene co-expression network analysis (WGCNA) 

revealed clear differences in muscle metabolic properties between two breeds and 

identified many biological pathways associated with fiber types and metabolic enzyme 

activities. To explore the regulatory role of microRNAs (miRNAs) in energy metabolism, 

the miRNA expression profiles were investigated in the same muscle samples. The 

miRNA-mRNA regulatory networks related to muscle fiber type, metabolic enzyme 

activity and ATP production were modelled based on in silico prediction of target mRNAs 

and correlation of expression and phenotypic measurements of muscles in Duroc and PiNN 

pigs. These complex networks may contribute to the muscle phenotypic variations by fine-

tuning gene expressions. Next, the expression profiles of pathway-focused genes related to 

oxidative and glycolytic pathways were analyzed in conjunction with phenotypic 

measurements in four pig breeds with distinct metabolic types including Duroc, PiNN, 

Pietrain homozygous-positive for MHS (PiPP) and an F2 Duroc-Pietrain crossbred 

homozygous-negative for MHS (DuPi) using longissimus biopsies. At transcript level, 

lactate dehydrogenase B showed breed specificity, with significantly lower expression in 

PiPP pigs. A similar mRNA expression pattern was observed for several subunits of 

oxidative phosphorylation (OXPHOS) complexes, including complex I, complex II, 

complex IV and ATP synthase. The expressions of these pathway-focused genes were well 

correlated to their enzyme activities and muscle fiber composition in a breed-dependent 

manner. These results stressed the importance of transcriptional regulation of genes 

involved in metabolic pathways especially OXPHOS system in muscle fibers. Finally, in 

order to address the role of mitochondria, early post mortem longissimus samples taken 

from the same four breeds were used to investigate mitochondrial DNA content, 

haplotypes and gene expressions of OXPHOS subunits. PiPP pigs carried only one 

haplotype (Haplotype 8) and showed the lowest absolute mtDNA copy number, the lowest 
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abundance of transcripts of many mitochondrial and nuclear encoded OXPHOS subunits 

among all four breeds. The results were informative for the understanding of haplotype and 

breed-specific mitochondrial content variation and molecular basis of OXPHOS pathway. 

The co-expression pattern of OXPHOS genes supported the mitochondrial-nuclear 

crosstalk and their complexity contributed to muscular metabolism. This part of the study 

highlighted the importance of mitochondrial-nuclear crosstalk, haplotype and copy number 

variation underlying muscle phenotype differences. In summary, muscle energy 

metabolism was investigated in this thesis by the whole genome transcriptional profiling of 

mRNAs and miRNAs followed by a focus on OXPHOS system at the level of both nuclear 

and mitochondrial DNA contributing to phenotypic variations in different pig breeds. 

These findings provided insights into the molecular regulatory patterns involved muscular 

energy metabolism which may be used as biomarkers to predict meat quality and/or 

diagnose muscular diseases.  
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Kurzfassung 

Skelettmuskel ist ein metabolisch hochgradig aktives Gewebe und ist von Marktwert bei 

Fleisch produzierenden Nutzieren. Die allgemeine Zielsetzung dieser Arbeit ist die 

eingehende Untersuchung der biologischen Funktionen und Stoffwechselwege, welche mit 

Muskelfasertypen, mitochondrieller Atmung, sowie glykolytischen und oxidativen 

Enzymaktivitäten im Schweinemuskel assoziiert sind. Zunächst wurde das 

Transkriptionsprofil von Longissimus-Biopsien 24 h ante mortem in malignen 

Hyperthermie-Syndrom (MHS) –negativen Duroc und Pietrain (PiNN) –Schweinen 

untersucht, welche sich signifikant hinsichtlich Muskelfasertypen und mitochondrieller 

Atmung unterscheiden. Differentielle Genexpressionsanalyse und weighted gene co-

expression network analysis (WGCNA) offenbarten deutliche Unterschiede hinsichtlich 

der muskulären Stoffwechseleigenschaften zwischen den beiden Rassen und identifizierten 

zahlreiche biologische Stoffwechselwege, die mit den Fasertypen und metabolischen 

Enzymaktivitäten assoziiert waren. Zur Untersuchung der regulatorischen Rolle von 

MicroRNAs (miRNAs) im Energiestoffwechsel wurden die miRNA-Expressionsprofile in 

den gleichen Proben untersucht. Die mit Muskelfasertyp, metabolischer Enzymaktivität 

und ATP-Produktion in Zusammenhang stehenden miRNA-mRNA-regulatorischen 

Netzwerke wurden durch Korrelation von exprimierten miRNAs und in silico 

identifikation Ziel-mRNAs sowie phänotypischen Messungen von Muskeln bei Duroc- und 

PiNN-Schweinen modelliert. Diese komplexen Netzwerke könnten durch Feinabstimmung 

der Genexpression zu den phänotypischen Variationen des Muskels beitragen. Als nächstes 

wurden die Expressionsprofile von Stoffwechselweg-bezogenen Genen analysiert, welche 

mit oxidativen und glykolytischen Stoffwechselwegen in Verbindung stehen, zusammen 

mit phänotypischen Messungen an Longissimus-Biopsien von vier Schweinerassen mit 

distinkten Stoffwechseltypen, darunter Duroc, PiNN, Pietrain homozygot-positiv für MHS 

(PiPP) und eine F2-Kreuzung Duroc-Pietrain homozygot-negativ für MHS (DuPi) 

untersucht. Auf Transkript-Ebene zeigte die Laktat-Dehydrogenase B eine rassespezifische 

Expression, mit signifikant niedrigeren Werten bei PiPP-Schweinen. Ein ähnliches mRNA-

Expressionsmuster konnte für verschiedene Untereinheiten des oxidativen 

Phosphorylierungskomplexes (OXPHOS-Komplex), einschließlich Komplex I, Komplex II, 

Komplex IV und ATP-Synthase beobachtet werden. Die Expression dieser 

Stoffwechselweg-bezogenen Gene korrelierte gut mit ihren enzymatischen Aktivitäten und 

ihrer Muskelfaser-Zusammensetzung in einer rasseabhängigen Weise. Diese Ergebnisse 
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betonen die Bedeutung der Transkriptionsregulation von Genen, die an metabolischen 

Stoffwechselwegen beteiligt sind, insbesondere am OXPHOS-System in Muskelfasern. 

Schlussendlich wurden frühe post mortem Longissimus-Proben aus den gleichen vier 

Rassen verwendet, um den mitochondriellen DNA-Gehalt, die Haplotypen sowie die 

Genexpression von OXPHOS-Untereinheiten zu untersuchen. PiPP-Schweine, die nur 

einen Haplotyp (Haplotyp 8) trugen, wiesen unter allen vier Rassen die niedrigste absolute 

mtDNA-Kopienzahl und die am geringste Abundanz von Transkripten von vielen 

mitochondriell und nuklear kodierter OXPHOS-Untereinheiten auf. Die Ergebnisse helfen 

beim Verständnis der haplotyp- und rassespezifischen Variation des mitochondriellen 

DNA-Gehalts sowie der molekularen Basis des OXPHOS-Weges. Das Ko-

Expressionsmuster von OXPHOS-Genen unterstützte die mitochondriell-nukleäre 

Interaktion und ihre Komplexität trug zum muskulären Stoffwechsel bei. Dieser Teil der 

Studie hebt die grundlegende Bedeutung der Interaktion zwischen Mitochondrien und 

Zellkern, des Haplotyps sowie der Variation der Kopienzahl für muskuläre  Phänotyp-

Unterschiede hervor. Zusammenfassend wurde in dieser Arbeit der muskuläre 

Energiestoffwechsel mittels whole genome transcriptional profiling von mRNAs und 

miRNAs untersucht, gefolgt von einer Fokussierung auf das OXPHOS-System sowohl auf 

Ebene der mitochondriellen als auch auf jener der nukleären DNA, welche zur 

phänotypischen Variation in verschiedenen Schweinerassen beitragen. Diese Erkenntnisse 

liefern Einblicke in die molekularen Regulationsmuster, die in den muskulären 

Energiestoffwechsel involviert sind und als Biomarker für die Vorhersage von 

Fleischqualität und/oder zur Diagnose muskulärer Erkrankungen herangezogen werden 

können. 
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1.1  Structure and muscle fiber types of skeletal muscle 

Skeletal muscle is a highly metabolically active tissue that both stores and consumes 

energy. It stores amino acids, carbohydrates and other substances, produces heat for the 

maintenance of body temperature and consumes the majority of energy during physical 

activity (Frontera and Ochala 2015). The structure of skeletal muscle is characterized by 

well-organized muscle fibers and connective tissue. The structure of a single muscle fiber 

is shown in Figure 1.1. Each muscle fiber is made of thousands of highly organized 

cylindrical myofibrils. Sarcomere is the basic contractile unit of skeletal muscle. In 

myofibrils, there are dense protein bands called A-band and less dense bands called I-band. 

I-bands are bisected by Z-discs in order to form sarcomeres. A-band is made up of thick 

filaments containing mainly myosin, whereas I-band is made up of thin filaments 

containing mainly actin, tropomyosin and troponin (Frontera and Ochala 2015). The 

globular heads of myosin in thick filaments make contact with actin in thin filaments and 

catalyze the hydrolysis of ATP to release energy during muscle contraction (Huff 

Lonergan et al. 2010). Other elements in the sarcoplasm of muscle fiber such as 

mitochondria and sarcoplasmic reticulum (SR) are crucial. For example, mitochondria 

produce the majority of ATP through oxidative phosphorylation in muscle cells, whereas 

SR is responsible for the maintaining of calcium homeostasis through the sarcoplasmic 

reticulum Ca2+-ATPase (SERCA) and calsequestrin. Both ATP production and Ca2+ 

homeostasis are important for muscle contraction, energy metabolism and meat quality 

(Huff-Lonergan and Lonergan 2005; Shen et al. 2007; Yue et al. 2003).  

Muscle fibers are commonly classified into three types including type I slow-twitch 

oxidative (STO) fibers, type IIA fast-twitch oxidative (FTO) fibers and type IIB fast-twitch 

glycolytic (FTG) fibers based on their contractile properties and metabolic characteristics 

(Hocquette et al. 1998). Different criteria could apply to muscle fiber classification such as 

1) color of muscle fibers correlates with myoglobin content (red vs white) 2) speed of 

shortening during a single twitch (slow vs fast) 3) predominance of metabolic pathways 

(oxidative vs glycolytic) 4) enzyme histochemical stain reactions based on myofibrillar 

ATPase and Succinate dehydrogenase staining techniques and 5) myosin heavy chain 

(MHC) isoform expression, etc (Frontera and Ochala 2015). In general, muscle containing 

high proportion of STO fibers is often associated with high oxidative enzyme activities 

(Gueguen et al. 2005), large amount of mitochondria, myoglobin and fat, whereas a high 

ratio of FTG fibers is associated with high glycolytic enzyme activities (Huber et al. 2007; 
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Ma et al. 2015; Werner et al. 2010b). The FTO fibers have intermediate characteristics 

between STO and FTG fibers and display both oxidative and glycolytic capacities. The 

diversity of muscle fibers plays important roles in metabolic properties and muscle 

development of farm animals. Different pig breeds display distinct muscle fiber 

compositions. For example, the Berkshire pigs contain a significantly higher percentage of 

type I fibers than Landrace, Yorkshire and crossbred pigs (Ryu et al. 2008). The mRNA 

levels of oxidative and intermediate fibers are elevated in Korean native pigs, whereas the 

glycolytic fibers are highly expressed in Landrace and Yorkshire pigs (Kim et al. 2008).  

 

Figure 1.1 The structure of a skeletal muscle fiber (adapted from 
http://ag.arizona.edu/classes/ans215/lectures/MuscularSystemVI.ppt ) 

1.2  Overview of energy metabolism in skeletal muscle  

The muscle activity requires energy through anabolism and catabolism of glycogen, 

carbohydrates, and fat, all of which are important resources for energy storage and supply. 

Adenosine triphosphate (ATP) is the major molecule in energy metabolism. It is produced 

mainly in mitochondria and used for various energy expenditure processes including 

muscle contraction, cell maintenance, protein deposition and thermogenesis (Hocquette et 

http://ag.arizona.edu/classes/ans215/lectures/MuscularSystemVI.ppt
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al. 1998). Meat quality parameters such as pH, tenderness, juiciness and water-holding 

capacity are determined by muscle energy metabolism.    

1.2.1 ATP production 

Most of ATP is generated through cellular respiration which consists of glycolysis, 

pyruvate processing, tricarboxylic acid (TCA) cycle (also known as citric acid cycle) and 

oxidative phosphorylation (OXPHOS) in mitochondria (Figure 1.2). When oxygen is 

deficient or depleted, such as exhaustive exercise or even death after slaughter in meat-

producing animals, anaerobic glycolysis can break down pyruvate into lactate. This 

process takes place in the cytoplasm with a high cost since the ATP synthesis is less 

efficient than aerobic metabolism. After slaughter, the oxygen supply of muscle tissues 

stops. ATP production is shifted from an aerobic environment to an anaerobic environment. 

The accumulation of end-product lactic acid decreases intracellular pH and hampers the 

muscle fibers and cells.     

1.2.2 Mitochondria and oxidative phosphorylation   

Mitochondria are sub-cellular double membrane bound organelles which are involved in 

many metabolic tasks such as ATP synthesis, calcium signaling, apoptosis, beta-oxidation 

of fatty acids and the generation of reactive oxygen species. Mitochondria carry their own 

genetic material. Mitochondrial DNA (mtDNA) is double-stranded and circular. For pigs, 

the mtDNA is 16,613 base pairs in length and encodes for 37 genes including 12S and 16S 

rRNAs, 22 tRNAs and 13 subunits of OXPHOS system (Lin et al. 1999). A mitochondrion 

contains outer membranes (OM) and inner membranes (IM) composed of phospholipid 

bilayers and proteins. The intermembrane space (IMS) is the space between OM and IM 

which makes up the electrochemical gradient in mitochondria. Glycolysis splits the glucose 

into pyruvate in the cytosol. Then TCA cycle is carried out by 8 enzymes that completely 

oxidize acetyl-coA into two molecules of carbon dioxide together with nicotinamide 

adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) in the matrix of 

the mitochondrion. Most of the ATP is produced through oxidative phosphorylation. There 

are five enzymes complexes locating at the IM in OXPHOS system (Figure 1.3). They are 

complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), complex III 

(cytochrome c reductase /cytochrome bc1), complex IV (cytochrome c oxidase) and 

complex V (ATP synthase). Subunits of complex I, III, IV and ATP synthase are encoded 

by both nuclear and mitochondrial DNA. The nuclear encoded OXPHOS complex subunits 
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need to be processed, imported into mitochondria and assembled with mitochondrial 

encoded subunits to form a functional OXPHOS system via chaperones, translocases and 

mitochondrial inner membrane proteins (Bonnefoy et al. 2009; Neupert and Herrmann 

2007; Smits et al. 2010; Voos and Rottgers 2002). The electrons are passed from an 

electron donor such as NADH to an electron acceptor such as oxygen through the electron 

transport chain (complex I to IV). It is coupled to ATP production by protons pumping into 

the intermembrane space and moving back to the matrix through ATP synthase complex. 

ATP synthase is comprised of two subunits, which are membrane extrinsic F1 catalytic 

part and membrane-embedded F0 part.  The two subunits are worked in cooperation to 

generate ATP through mechanical rotation (Noji and Yoshida 2001). Mitochondrial 

electron transport chain is an important source of reactive oxygen species (ROS) within 

most mammalian cells (Grivennikova and Vinogradov 2006; Murphy 2009). Excess 

amount of ROS could result in oxidative stress, aging, muscle fatigue and dysfunction 

(Zuo and Pannell 2015). However, the optimal level of ROS is critical for biological 

function by facilitating glucose uptake or inducing mitochondrial biogenesis (Merry et al. 

2010; Powers et al. 2011). 

Mitochondrial genetic variation can affect fertility, longevity and metabolic performances 

in many species such as raccoon dogs, cows and pigs (Camus et al. 2015; Shi et al. 2010).  

Mitochondrial DNA haplotypes are potential genetic sources for manipulating phenotypes 

including tolerance to heat, growth and milk quality in farm animals (Tsai and St John 

2016). In Drosophila, mtDNA genome variation is proposed to modulate mtDNA copy 

number (Salminen et al. 2017). Mitochondrial DNA (mtDNA) copy number has been 

demonstrated to be associated with extensive exercise, age-related hearing impairment, 

disordered antioxidant capacity and heart failure (Baykara et al. 2016; Falah et al. 2016; 

Gao et al. 2016; Huang et al. 2016). Therefore, it would be interesting to investigate the 

influence of mitochondrial haplotypes on mtDNA copy number variation and porcine 

energy metabolism. Further, the mitochondrial function can be influenced by the 

transcriptional regulation of OXPHOS subunits and the mitochondrial-nuclear interaction 

in order to assemble a fully functional OXPHOS system. Unlike nucleus, mitochondrial 

transcription occurs bidirectionally to produce polycistronic transcript precursors which are 

cleaved and processed into individual mRNAs, tRNAs and rRNAs (Rebelo et al. 2011). 

The variations between mRNA levels of mitochondrial encoded genes were caused by 

post-transcriptional regulation such as miRNAs.            
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Figure 1.2 Overview of ATP production (adapted from 

http://www.uic.edu/classes/bios/bios100/lectures/respiration.htm)  

 

 

Figure 1.3 The oxidative phosphorylation system in mitochondria (adapted from 

https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png)  

http://www.uic.edu/classes/bios/bios100/lectures/respiration.htm
https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png
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1.3 Relationship between energy metabolism and meat quality  

Consumers purchase meat based on meat quality parameters such as the color, flavor, 

tenderness and juiciness. Muscle fiber composition, metabolic capacities, and fat content 

are factors that have been found to influence meat quality (Hocquette et al. 1998). In 2004, 

muscle fiber traits were proposed as additional selection criteria for muscle growth and 

meat quality in pigs (Fiedler et al. 2004). In general, muscles comprised of more STO 

fibers are associated with higher oxidative enzyme activities and mitochondrial respiration 

activity (Gueguen et al. 2005), whereas muscles containing more FTG fibers are associated 

with higher glycolytic enzyme activities (Huber et al. 2007; Werner et al. 2010b). The 

oxidative pathways are involved in the determination of meat color. For example, fresh 

meat color intensity primarily depends on the pigment contents such as hemoglobin and 

myoglobin which are higher in red muscles than these in white muscles and the oxidation 

state of the pigments (Pearson and Dutson 1994). Further, lipids are mainly stored in STO 

fibers (Essen-Gustavsson et al. 1994) which can improve the tenderness and juiciness of 

the meat. Besides the oxidative metabolism, the glycolytic pathways, such as the 

conversion from muscle glycogen to lactic acid, could determine the meat ultimate pH and 

lead to muscle ache, cell damage or impaired tenderness and flavor (Hocquette et al. 1998; 

Hocquette et al. 2001). Hence the quantities of glycogen content and fat deposition 

associated with different muscle fiber types are critical for meat quality. Pig breeds such as 

Pietrain pigs, which contain more FTG fibers, are usually more muscular. Thereby Pietrain 

pigs are more favorable for meat producer. The selection towards a high percentage of 

FTG fibers may result in altered meat quality possibly due to lower capillarization, 

insufficient delivery of oxygen (Karlsson et al. 1999) and glycogen depletion which 

ultimately cause dry, firm and dark meat (Karlsson et al. 1994). Mitochondria isolated 

from muscle immediately after slaughter are similar to those found in intact muscle, 

whereas some mitochondria from pale, soft, exudative (PSE) muscle are already swollen 

and show a decreased matrix density (Greaser et al. 1969). With an emphasis placed on 

glycolysis, mitochondrial content and function may be important factors contributing to 

post mortem muscle metabolism (Scheffler et al. 2015). Therefore, energy metabolism has 

to be properly regulated for optimal metabolic functions related to meat quality. The 

understanding of the molecular basis of metabolic capacity before and after slaughter is 

important for the manipulation of muscle metabolism to improve meat quality.             

1.4 Roles of microRNAs in skeletal muscle 
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MicroRNAs (miRNAs) are endogenous small non-coding RNAs ~22 nt in length that post-

transcriptionally regulate gene expression (Figure 1.4). In animals, miRNAs are initially 

generated in nucleus and processed into an approximately 70 nt long stem-loop structure 

(Pasquinelli 2012). Then it is exported to cytoplasm and further processed by Dicer to 

generate miRNA/miRNA duplexes. One strand of the duplex is incorporated with 

Argonaute to form RNA-Induced Silencing Complex (RISC) in order to target mRNAs, 

whereas the other strand is usually discarded (Shukla et al. 2011). MiRNAs bind mRNAs 

via complementary base pairing, typically to their 3’UTR with many cases to coding 

sequences and 5’ UTR, and regulate gene expression by either degradation of mRNA or 

repression of translation (Shukla et al. 2011). Unlike plant miRNAs (Chen 2009), the 

imperfectly base pairing between miRNA and its target gene is very common in animals. 

‘Seed sequence’ locates at positions 2-8 from the 5’-end of miRNA and it is commonly 

perfect pairing with target site (Pasquinelli 2012). Several computational prediction tools 

are available to identify any potential target genes for miRNAs such as TargetScan 

(http://www.targetscan.org/) (Lewis et al. 2005) and RNAhybrid 

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/) (Rehmsmeier et al. 2004). TargetScan 

detects targets by searching for the region of transcripts that match the seed sequence of 

miRNAs whereas RNAhybrid finds the minimum free energy hybridization of a long and a 

short RNA.  

MiRNAs have been shown to play critical roles in various biological processes of skeletal 

muscle such as myogenesis, adipogenesis and muscle development, etc (Hou et al. 2012; 

Huang et al. 2008; Li et al. 2012; McDaneld et al. 2009). Further, miRNAs such as miR-

133, miR-221 and miR-103 are associated with porcine meat quality (Ponsuksili et al. 

2013). The polymorphisms in the porcine miR-133 and miR-208 are proposed as a genetic 

factor affecting muscle fibers and meat quality traits (Kim et al. 2015; Lee et al. 2013). 

Since energy metabolism is linked to meat quality, it is helpful to understand the regulatory 

role of miRNAs in muscle energy metabolism. MiR-499 and miR-130b play a dominant 

role in the specification of muscle fiber type by promoting the oxidative slow-twitch fiber 

formation (Chen et al. 2015; Lin et al. 2002; Liu et al. 2015; von Hofsten et al. 2008). 

MiR-130b, miR-15a and miR-15b could modulate the ATP levels in muscle cells (Nishi et 

al. 2010; Siengdee et al. 2015). Researchers have shown that miR-210 and miR-338 

directly regulate the gene expression level of OXPHOS subunits including complex IV 

subunits COX10, COXIV and ATP synthase subunits ATP5G1 (Aschrafi et al. 2012; Chen 

http://www.targetscan.org/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
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et al. 2010) to alter mitochondrial function and ATP production. In addition, miRNAs such 

as miR-15a and miR-16 are involved in the regulation of mitochondrial-mediated apoptosis 

(Gao et al. 2010; Liu et al. 2014; Tang et al. 2015). Moreover, miR-696 is associated with 

fatty acid oxidation and mitochondrial biogenesis by regulating the expression of the 

master regulator peroxisome proliferator-activated receptor-gamma coactivator-1alpha 

(PGC-1α) (Aoi et al. 2010). With those miRNAs identified, the lack of a comprehensive 

and systematic miRNA profiling associated with energy metabolism of porcine skeletal 

muscle remains unraveled. 

  

Figure 1.4 The biogenesis of miRNAs (Pasquinelli 2012)   

1.5 Research aims  

Evidences demonstrate that muscle energy metabolism could influence meat quality 

parameters such as meat color, flavor and tenderness. The overall objective of this study is 

to reveal and integrate the mRNA and miRNA expression profiles of porcine skeletal 

muscle, followed by metabolic pathway focused analysis as well as mitochondrial-nuclear 

crosstalk in order to identify candidate miRNAs and their target genes which influence 

muscle fiber type, mitochondrial respiration, metabolic enzyme activity and ATP 

production. It will provide a better understanding for the molecular mechanism of muscle 

energy metabolism.  

The objectives of the study can further be detailed as following: 

Aim 1: to investigate gene expression profile and identify biological functions and 

pathways associated with muscle fiber, mitochondrial respiratory activity and metabolic 

enzyme activity in pig skeletal muscle   

Aim 2: to investigate microRNA expression profile and construct regulatory miRNA-

mRNA network associated with mitochondrial respiratory and metabolic enzyme activity 

in muscle 
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Aim 3: to identify molecular changes in mitochondrial respiratory activity and metabolic 

enzyme activity via a pathway-focused gene expression profiling in muscle of four pig 

breeds with distinct metabolic types   

Aim 4: to investigate mitochondrial-nuclear crosstalk, haplotype and copy number 

variation in porcine muscle fiber type, mitochondrial respiratory and metabolic enzyme 

activities      
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2.1 Experimental design  

This study used longissimus muscle samples taken from four pig breeds including Duroc, 

Pietrain homozygous-negative for malignant hyperthermia susceptibility (MHS) (PiNN), 

Pietrain homozygous-positive for MHS (PiPP) and an F2 Duroc-Pietrain crossbred 

homozygous-negative for MHS (DuPi) at 24h ante mortem, 0min and 30min post mortem. 

The measurements of phenotypes were performed previously (Krischek et al. 2011; 

Werner et al. 2010a; Werner et al. 2010b). The phenotypic traits included porcine muscle 

fiber composition (STO, FTO and FTG), mitochondrial respiratory activity, metabolic 

enzyme activities and adenine nucleotide concentration (IMP, AMP, ADP and ATP). 

Metabolic enzymes contained glycogen phosphorylase (GP), phosphofructokinase (PFK), 

lactate dehydrogenase (LDH), citrate synthase (CS), complex I, complex II, complex IV 

and ATP synthase.  

The experimental design in this thesis is shown in Figure 2.1. It consists of four parts 

including 1) dissection of mRNA profile of biopsies in Duroc and PiNN pigs, 2) 

construction of energy metabolism associated miRNA-mRNA network using biopsies of 

Duroc and PiNN pigs, 3) pathway-focused gene expression profiling using biopsies of four 

pig breeds Duroc, DuPi, PiNN and PiPP, and 4) quantification of mtDNA copy number, 

mitochondrial and nuclear encoded OXPHOS gene expression using muscle samples 

collected from two post mortem time points in all four pig breeds harboring different 

mitochondrial haplotypes. The absolute mtDNA copy number was quantified by the 

standard curve method without co-amplification of nuclear mitochondrial DNA sequences. 

The first two parts were achieved using whole genome approaches Affymetrix porcine 

snowball array and Affymetrix genechip miRNA 3.0 array by weighted gene co-expression 

network analysis, ANOVA and pairwise correlation to analyze the global mRNA and 

miRNA expressions. In the last two parts, porcine OXPHOS system were deeply 

investigated via haplotypes, mitochondrial DNA content, OXPHOS gene expression and 

their association with phenotypes of interest at both nuclear and mitochondrial genome 

levels before and after slaughter. Hence in this thesis, the molecular basis of muscle energy 

metabolism was investigated from whole genome to pathway specific, from nuclear 

genome to mitochondrial genome, from ante mortem to post mortem. The detailed 

methodological information can be found in the published scientific paper (see Annex A.1, 

A.2, A.3, A.4). The main methods with descriptions are briefly summarized in this chapter.           
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Figure 2.1 An overview of experimental design 
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2.2 Sample collection and phenotypic measurement   

The experiment and muscle collection were approved and authorized under the German 

and European animal welfare regulations for animal husbandry, transport, and slaughter 

(Krischek et al. 2011; Werner et al. 2010a; Werner et al. 2010b). All experimental 

procedures, including animal care and tissue sample collection, followed guidelines for 

safeguarding and good scientific practice in accordance with the German Law of Animal 

Protection, officially authorized by the Animal Care Committee and authorities  

[Niedersächsischen Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES) 

33.42502/01-47.05]. Duroc, PiNN, PiPP, and DuPi pigs were raised to the age of 180 days 

at the University of Bonn. Muscle samples from each breed were collected one day before 

slaughter (24h ante mortem), immediately (0min post mortem) and 30min after stunning 

(30min post mortem) from longissimus muscle (LM) between the 13th and 14th thoracic 

vertebrae. Samples were frozen in liquid nitrogen and stored at –80 °C until analysis. The 

applied methods for all phenotypical traits were measured as described previously 

(Krischek et al. 2011; Werner et al. 2010a; Werner et al. 2010b) and described in 

publications (see Annex A.1, A.2, A.3, A.4).  

2.3 Approaches for Aim 1  

2.3.1 DNA microarray analysis  

The microarray-based transcription profiling was performed in longissimus muscle 

samples obtained 24h before slaughter from Duroc and Pietrain pigs using Porcine 

Snowball Array (Affymetrix) containing 47,880 probe-sets.  Expression Console software 

was used for robust multichip average (RMA) normalization and the detection of present 

genes by applying the DABG (detection above background) algorithm. Further filtering 

was done by excluding transcripts with low signals and probes that were present in less 

than 80% of the samples within each breed. 17,820 probes passed the quality filtering and 

were used for further analysis.  Differential expression analysis was performed using the 

ANOVA procedure in JMP genomics 7 (SAS Institute). The breed was treated as a fixed 

effect. False discovery rate (FDR) was used to control an error rate of a multiple-

hypothesis testing according to Benjamini and Hochberg (Benjamini and Hochberg 1995).   

2.3.2 Weighted gene co-expression network analysis (WGCNA) 
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WGCNA is a powerful approach to identify genes sharing similar functions and/or 

involved in related molecular events. It was used to identify pathways associated with 

muscle fiber types and activities of glycolytic and oxidative enzymes. Post-filter, 17,820 

probes were utilized in the construction of weighted gene co-expression networks using the 

blockwise modules function in the WGCNA R package as described previously 

(Langfelder and Horvath 2008; Ponsuksili et al. 2013; Zhang and Horvath 2005). The 

analysis was applied separately for each breed. It firstly grouped genes into a module based 

on their co-expression pattern. To achieve this, the WGCNA procedure calculated a 

Pearson correlation matrix for all genes and then an adjacency matrix was calculated by 

raising all values to power β from the correlation matrix. By inspecting the scale-free 

topology model fit, the minimal β value giving a coefficient of determination R2 higher 

than 90% was selected as the power β. The adjacency matrix was converted to a 

topological overlap matrix (TOM) and the TOM-based dissimilarity matrix for hierarchical 

clustering. The gene co-expression modules were identified from the hierarchical cluster 

tree using a dynamic tree cut procedure. The formula of topological overlap matrix (TOM) 

Ω = [𝜔𝑖j] was as follows, 

𝜔𝑖𝑖 = 𝑎𝑖𝑖+∑ 𝑎𝑖𝑖𝑎𝑢𝑢𝑢

𝑚𝑚𝑚�∑ 𝑎𝑖𝑖,∑ 𝑎𝑗𝑗𝑢𝑢 �+1−𝑎𝑖𝑖
, 𝑎𝑖𝑖 = �𝑐𝑐𝑐�𝑥𝑖 , 𝑥𝑗��

𝛽
                                                    (1) 

where xi and xj were the gene expression profile of the xi-th and xj-th gene and aij was the 

adjacency. Modules were further merged based on the dissimilarity between their 

eigengenes, which were defined as the first principle component of each module. 

Eigengene acts as the representative for each module. Module-trait relationships were 

estimated using the correlation between module eigengene and phenotype to identify any 

gene co-expression module which was highly correlated to the phenotype.   

2.3.3 Gene functional annotation and pathway analysis 

The differentially expressed genes (DEGs) between Duroc and PiNN pigs were analyzed 

using the IPA software (Ingenuity Systems, http://www.ingenuity.com) to identify 

pathways related to phenotypic differences of the muscle between these two breeds. IPA 

categorizes genes based on annotated gene functions and statistical tests for over-

representation of functional terms within the gene list using Fisher’s Exact Test. Further, a 

gene list of each significant module-trait correlation was analyzed to obtain biologically 

meaningful represented pathways based on an enrichment score and p-value threshold 

http://www.ingenuity.com/
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using IPA and the DAVID online-tool (Database for Annotation, Visualization and 

Integrated Discovery; https://david.ncifcrf.gov/ ).        

2.4 Approaches for Aim 2  

2.4.1 MicroRNA microarray analysis  

The miRNA expression profile of the longissimus muscle samples 24h ante mortem from 

Duroc and PiNN pigs was determined by the Affymetrix GeneChip miRNA 3.0 Array 

(Affymetrix). It is comprised of 16,772 entries representing hairpin precursor, total 19,724 

probe sets for detection of most miRNA from 153 species (miRBase V.17). Expression 

Console software was used for robust multichip average (RMA) normalization and the 

detection of present miRNAs by applying the DABG (detection above background) 

algorithm. Further filtering was done by excluding probes that were present in less than 70 % 

of the samples within each breed and annotated miRNAs that had sequence greater than or 

equal to 30nt in length. 3,587 probes passed the quality filtering and were used for further 

analysis.  

2.4.2 Statistical and bioinformatics analysis  

Differential expression analysis for miRNA was performed using the ANOVA procedure 

in JMP genomics 7 (SAS Institute). Breed was treated as a fixed effect. False discovery 

rate (FDR) was used to control an error rate of a multiple-hypothesis testing according to 

Benjamin & Hochberg (Benjamini and Hochberg 1995). The previous microarray-based 

mRNA expression data was used to integrate with the differentially expressed miRNAs 

and scan for potential target genes. Pearson correlation between miRNA and mRNA 

expression levels was calculated. RNAhybrid 2.1.2 and TargetScan 7.0 were used to 

predict targets of miRNAs. RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid ) 

is computational software that detects the most energetically favorable hybridization sites 

of a small RNA within a large RNA (Kruger and Rehmsmeier 2006; Rehmsmeier et al. 

2004). The miRNA probe sets were tested with the following parameters: number of hits 

per target = 1 and energy cutoff = −25 kcal/mol and maximal bulge loop size per side = 4. 

TargetScan (http://targetscan.org/ ) was used to predict the target genes based on 

complementarity of the miRNA seed sequence (position 2-8 of the miRNA 5´end) and 

target binding site on the 5´UTR, 3´UTR and protein coding region of the porcine mRNA 

sequences (Sus scrofa 10.2 download from NCBI: http://www.ncbi.nlm.nih.gov on 

1.9.2015) (Lewis et al. 2005). Transcripts negatively correlated with miRNA and predicted 

https://david.ncifcrf.gov/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid
http://targetscan.org/
http://www.ncbi.nlm.nih.gov/
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as potential targets were passed to functional analysis using IPA software as described 

previously.  

In addition to the identification of differentially expressed miRNA-mRNA regulatory 

network, the correlation between individual miRNAs and phenotypical traits including 

muscle fiber type, mitochondrial respiratory activity, metabolic enzymes activity and 

adenosine phosphate concentrations were analyzed. Then the miRNA and mRNA profile 

were integrated based on their pairwise correlations and computational target prediction to 

construct the miRNA-mRNA networks associated with energy metabolism. The miRNA-

mRNA network were constructed using the following criteria: 1) the expressions of both 

miRNAs and target mRNAs were significantly correlated to the phenotypical traits; 2) the 

gene expression level was negatively correlated with the expression of its miRNA 

regulator; 3) the gene was computationally predicted as a target gene of the corresponding 

miRNA.          

2.5 Approaches for Aim 3 

2.5.1 Quantitative real-time PCR (qPCR) 

qPCR of all RNA samples (n = 46) was performed using fastgene expression analysis with 

EvaGreen dye on a BioMark HD real-time PCR system according to manufacturer’s 

recommendations (Fluidigm). Briefly, cDNAwas synthesized from 2 μg of total RNA 

using Superscript II reverse transcriptase and oligo-dT (Invitrogen) with specific target 

amplification and exonuclease I (New England Biolabs) treatment. qPCR reactions were 

performed using a 48 × 48 dynamic array and integrated fluidic circuit. For each sample 

inlet, 2.5 μL of 2 × SsoFast EvaGreen supermix with low ROX (Biorad), 0.25 μL of 20 × 

DNA-binding dye sample loading reagent, and 2.25 μL of specific target amplification and 

exonuclease-I-treated sample were loaded. For each assay inlet, 2.5 μL of 2 × assay 

loading reagent, 2.25 μL of 1×DNA suspension buffer, and 0.25 μL of 100 μM mixed 

(forward and reverse) primers were loaded. All measurements were performed in duplicate. 

Thermal parameters were: 95 °C for 60 s, followed by 30 cycles of 95 °C for 5 s and 60 °C 

for 20 s.  

2.5.2 Statistical analysis 

Data were analyzed using SAS 9.3 statistical software (SAS Institute) and the GLM 

procedure. The statistical model included effects of breed, gender, and breed–gender 
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interaction. Post hoc Tukey–Kramer method was used for multiple comparison 

adjustments. Results were reported as least-squares means (Lsmeans) with standard error 

(SE) and considered to be statistically significant if p < 0.05. Correlation coefficient (r) 

between gene expression and phenotypic measurement was calculated separately for each 

breed and in combination of all breeds together. 

2.6 Approaches for Aim 4  

2.6.1 Mitochondrial-specific primer design 

Primers for detecting mitochondrial DNA (mtDNA) copy number were carefully designed 

to avoid the co-amplification of the mitochondrial duplicated regions in nuclear genome. 

The duplication of the mitochondrial genome in the nuclear genome was detected using 

BLASTN (http://www.ncbi.nlm.nih.gov) (Altschul et al. 1990). The mitochondrial 

sequence (Sus scrofa 10.2 download from NCBI: http://www.ncbi.nlm.nih.gov/ on 

1.9.2015) was split into fragments of 150 bps in length with a 50 bps overlap. Each 

fragment was blasted against both strands of chromosomes across the entire porcine 

genome to identify the ‘unique’ mitochondrial fragments which were not mapped to any 

chromosomes. Mapping results were considered to be significant if E-value < 0.1 and 

length >100 bps. Figure of duplicated regions in nuclear genomes was generated using R 

package IdeoViz (Pai and Ren 2014) and cytogenetic map of pig chromosomes was 

extracted from ArkDB (http://www.thearkdb.org/arkdb) (Hu et al. 2001).  

2.6.2 Absolute quantification of mtDNA copy number 

The amount of mtDNA and nuclear DNA were determined by quantitative real-time PCR 

(qPCR). The mitochondrial genes ND1, ND2 and COX1 were used to quantify mtDNA 

copy number, whereas the nuclear gene glucagon gene (GCG), which is highly conserved 

among species and presents as a single copy in animals, was used as the single-copy 

reference gene (Wang et al. 2012; Xie et al. 2015). MtDNA standards and nuclear DNA 

standards were prepared separately using PCR products in seven serial dilutions with a 

dilution factor of 10. The copy number was calculated according to the following equations 

(Chan et al. 2013): 

                                                    𝑐𝑐𝑐𝑐𝑐𝑐/µ𝑙 = ng/µl
m

                                                       (2)                     

                                                  𝑚 = 𝑛 × [1.096 × 10−12]                                            (3)                 

http://www.ncbi.nlm.nih.gov/
http://www.thearkdb.org/arkdb
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Where m is the mass of a single copy and n is the target size in base pairs.  

The absolute copy numbers of ND1, ND2, COX1 and GCG were calculated based on their 

standard curves, the equation was as following:  

                                                     𝑐𝑐𝑐𝑐𝑐𝑐 = 10(𝐶𝐶−𝑏)/𝑎                                                    (4) 

Where a is the slope and b is the intercept of the regression line.     

Since GCG is a single copy nuclear gene, the mtDNA copies per nuclear genome was 

calculated as following: 

                             𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐/ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐  

                  (5) 

The mtDNA copy number per nuclear genome was calculated separately using ND1, ND2 

and COX1. The data was recorded as their mean.                  

2.6.3 Measurement of gene expression  

Fast gene expression analysis with EvaGreen dye on a BioMark HD real-time PCR system 

was used to measure gene expressions of all RNA samples as previously described in 2.5.1 

with modifications. The qPCR reaction was performed using a 96 × 96 dynamic array 

instead of a 48 × 48 dynamic array.  

2.6.4 Sequencing and Haplotype analysis  

DNA from muscle samples of 53 animals (Duroc: N=15, DuPi: N=15, PiNN: N=9, PiPP: 

N=14) were sequenced using an ABI 3500 sequencer (Applied Biosystems Inc, Foster City, 

CA, USA). The D-loop region was amplified using forward primer 5’-

CTCCGCCATCAGCACCCAAAG-3’ and reverse primer 5’-

GCACCTTGTTTGGATTRTCG-3’ (Jin et al. 2012). All sequences were aligned using 

Clustal X2.1 (Thompson et al. 1997). DNASP 5.1 software was used to analyze the 

haplotypes of all sequences (Librado and Rozas 2009). The detailed information of 

haplotypes was shown in Annex A.4. Only the haplotypes which contained at least three 

animals were included in the subsequent statistical analysis.              

2.6.5 Statistical analysis  
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Data were analyzed using SAS 9.4 statistical software (SAS Institute) and the MIXED 

procedure. The statistical model included effects of breed (Duroc, PiNN, PiPP and DuPi), 

gender (male and female), time (0 and 30min post mortem) and haplotype (Haplotype1, 4, 

6, 7, 8). The model was combined with a repeated statement for the time component to 

take into account correlations among measurements made on the same animal at time 0 and 

30min post mortem. Post hoc Tukey–Kramer method was used for multiple comparison 

adjustments. By applying the Lsmean with SE, results were considered to be statistically 

significant if p-value < 0.05. Correlation coefficient between gene expression and 

phenotypic measurement (r) was calculated for all individuals. 
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The metabolic characteristics of skeletal muscle have influences on meat production in 

farm animals. For example, a higher fat content and more STO fibers can improve the 

tenderness and juiciness of meat (Essen-Gustavsson et al. 1994). Further, the proportion of 

glycolytic and oxidative fibers are associated with meat color intensity (Pearson and 

Dutson 1994). Therefore, muscular energy metabolism needs to be properly regulated and 

optimized to improve meat quality.  

Two common commercial pig breeds Duroc and Pietrain are divergent for different muscle 

characteristics and meat quality.  Duroc pigs are fattier and their skeletal muscle contains 

more STO fibers which are generally associated with higher oxidative enzyme activities, 

whereas Pietrain pigs are more muscular and their muscles are more lean and contain 

higher percentage of FTG fibers which are associated with higher glycolytic enzyme 

activities (Gueguen et al. 2005; Huber et al. 2007; Werner et al. 2010a; Werner et al. 

2010b). Although Pietrain pigs may be more favorable for meat industry due to their 

higher carcass yield, more FTG fibers may result in lower capillarization, insufficient 

delivery of oxygen and glycogen depletion, which lead to dry, firm and dark meat 

(Karlsson et al. 1994; Karlsson et al. 1999). Hence they are great models to investigate the 

regulation of energy metabolism in order to improve meat quality.  

Muscle transcriptional profile based on muscle fiber, mitochondrial respiratory 

activity and metabolic enzymes   

In this part, porcine snowball microarrays were performed to investigate the mRNA 

expression profiles of longissimus muscle samples obtained 24h before slaughter of Duroc 

and PiNN pigs, using differential gene expression and weighted gene co-expression 

network analysis (WGCNA) to dissect pathways associated with different muscle fiber 

types and activities of glycolytic and oxidative enzymes. Duroc and PiNN pigs were 

significantly differed for the muscle fiber types (STO and FTO) and mitochondrial 

respiration activity (succinate-dependent state 3 respiration rate). Duroc pigs had a higher 

percentage of STO (16.08 vs 9.99 %) and a lower percentage of FTO (8.62 vs 15.13 %) 

compared to PiNN pigs with p-value <0.05. The succinate-dependent state 3 respiration 

rate was significantly higher in Duroc than PiNN pigs with p<0.05.   

Firstly, ANOVA analysis identified 2,345 differentially expressed probes between two 

breeds. Differentially expressed genes (DEGs) were analyzed using ingenuity IPA to 

identify any potential pathways and biological functions. The identified DEGs between the 



Results and discussion 
 

23 
 

muscles of breed Duroc and PiNN were highly associated with protein ubiquitination, stem 

cell pluripotency, amyloid processing, 3-phosphoinositide biosynthesis and degradation 

pathways. Ubiquitin protein system (UPS) has been known to regulate muscle atrophy and 

implicate on meat quality such as water holding capacity (Huynh et al. 2013; Lecker et al. 

1999; Loan et al. 2014; Murton et al. 2008). In the results, the protein ubiquitination 

pathway was the top canonical pathway up-regulated in Duroc whereas amyloid processing 

was listed as the top canonical pathway in up-regulated DEGs of PiNN. In myotubes, 

amyloid processing is associated with glucose uptake and oxidation in energy metabolism 

(Hamilton et al. 2014). Amyloid beta (Abeta) could inhibit the 26S proteasome activity.  

The interplay between UPS and Abeta has been shown to be associated with Alzheimer’s 

disease (Hong et al. 2014). Differentially expressed genes in amyloid processing such as 

PSENEN, AKT1 and CAPN3 have implications in muscle biology of pigs involved in 

calcium homeostasis, muscular leanness and muscle mass (Chan et al. 2000; Cheng et al. 

2015; Izumiya et al. 2008; Richard et al. 1995). Further, DEGs also revealed differences in 

functions of muscle development and carbohydrate metabolism. The proposed candidate 

genes include both Duroc up-regulated (PPARGC1A, PPP3CA and CD36) and PiNN up-

regulated (SRL, ATP2A1, PEKFB2, GSK3A and GYS1). Peroxisome proliferator-activated 

receptor gamma coactivator 1 alpha (PPARGC1A) acts as a master regulator to control 

mitochondrial biogenesis and oxidative phosphorylation. Further, its activation can 

promote the formation of slow-twitch oxidative fibers (LeBleu et al. 2014; Lin et al. 2002).  

PPP3CA is differentially expressed in muscles comprised of different proportions of fast 

and slow muscle fibers (Wan et al. 2014). CD36 plays a significant role in lipid 

accumulation and fatty acid homeostasis (Angin et al. 2012; Samovski et al. 2015). On the 

other hand, PiNN up-regulated genes were well agreed with the higher percentage of fast-

twitch glycolytic muscle fibers. For example, sarcalumenin (SRL) and fast twitch Ca2+ 

ATPase (ATP2A1) have been reported as fast-type muscle genes (Wu et al. 2013). Fructose 

2, 6-bisphosphatase 2 (PEKFB2) can promote glycolysis (Ros and Schulze 2013). 

Glycogen synthase kinase 3 alpha (GSK3A) and glycogen synthase 1 (GYS1) are essential 

for glycogen storage and they can influence muscle-to-meat transition via glycolysis and 

reduced pH (Monin and Sellier 1985). Therefore, the comparison of transcriptome 

profiling for longissimus biopsies between Duroc and PiNN pigs revealed differences in 

their muscular metabolic characteristics.  
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Next, WGCNA analysis was performed to dissect gene expression profiles for these two 

breeds. It is a powerful tool to group genes into a co-expression network/module based on 

their expression pattern. For breed Duroc, a total of 21 modules were examined for their 

relationships with all measurements of phenotypical traits which included muscle fiber 

composition, mitochondrial respiratory activity, metabolic enzyme activities and adenine 

nucleotide concentration. Results revealed strong correlations between mitochondrion-

associated co-expression modules and phenotypes of STO, FTG and cytochrome c oxidase 

(COX) activity. For example, module blue and green yellow were positively correlated 

with STO and negatively correlated with FTG. These two modules were enriched for 

‘mitochondrion’ and mitochondrial part’ GO terms respectively. The containing genes are 

involved in functions of adenine nucleotide transport (SLC25A4 or ANT1) (Kawamata et al. 

2011), mitochondrial (mt) translation (GFM1) (Coenen et al. 2004), OXPHOS subunits 

formation [NDUFV2, NDUFV3, NDUFS1, NDUFS4, NDUFS6, NDUFS7, NDUFB2, 

NDUFB3, NDUFB4, NDUFB8, NDUFB11, NDUFA5, NDUFA10, and NDUFA11 (encode 

for Complex I); SDHA and SDHB (encode for Complex II); COX7A1 and COX4l1 (encode 

for COX); ATP5L, ATP5J, ATP5G2, ATP5G3, ATP5A1, and ATP5C1 (encode for ATP 

synthase)] and mt oxidation of fatty acids (ACSL1, ACSL3, ACSL4, ACSL5, HADH and 

HADHB) (Ellis et al. 2010; Zhou et al. 2012). These co-expression modules linked 

mitochondrial functions to the oxidative capacity of skeletal muscle. It would be 

interesting to see whether those genes in Duroc pigs imply a predominant role of oxidative 

capacity and respiration over PiNN. A total of 20 co-expression modules were identified 

for a trait correlation in PiNN pigs. Overall, fewer significant module-trait relationships 

were observed for PiNN. The identified modules were enriched in macromolecule 

catabolic process, actin cytoskeleton and transcription activator activity. These results 

highlighted the importance of mitochondria for the oxidative capacity in porcine muscle.  

Further, the identified co-expression modules in WGCNA could link to mitochondrial 

respiratory activity and ATP synthesis. In Duroc pigs, 4 modules which included dark red, 

green yellow, dark orange and purple were enriched for energy production. Their 

containing genes are potential factors to regulate ATP production. They encoded the 

components of respiration chain (NDUFS1 and ATP5A1) (Hejzlarova et al. 2014; Martin et 

al. 2005; Rybalka et al. 2014) and the receptor of hormones such as insulin and thyroid  

hormone (INSR, IRS2 and THRB) (Short et al. 2001; Stump et al. 2003). In PiNN pigs, 5 

modules (module dark green, green yellow, grey 60, light steel blue and medium orchid) 
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were enriched for energy production. Some genes in these modules are proposed as 

potential factors regulating respiratory chain (ATP5B and ATP5C1), hormones (THRB) and 

transcription factors (PPARGC1A and NRFs) (Kang and Li Ji 2012; Lehman et al. 2000; 

Wu et al. 1999). Molecule LRPPRC influences the stability of most mitochondrial mRNAs 

and its deficiency leads to COX deficiency and ATP synthase deficiency associated with 

reduced ATP production (Mourier et al. 2014).  

Collectively, in this part, a comparative transcriptome profiling of 24h ante mortem 

longissimus muscle for Duroc and PiNN pigs revealed clear differences in their muscle 

metabolic properties. Gene co-expression network analysis stressed the importance of 

mitochondria in the oxidative capacity of skeletal muscle. In particular, the Duroc breed 

showed more clearly molecular function involved in oxidative capacity and respiratory 

activity than PiNN. In PiNN pigs, co-expression modules enriched in macromolecule 

catabolic process, actin cytoskeleton, and transcription activator activity were associated 

with muscle fiber composition, mitochondrial respiration, and metabolic enzyme activities. 

Therefore these results highlighted the importance of mitochondria for the oxidative 

capacity of the porcine skeletal muscle and provided breed-specific pathways in muscle 

fibers.                                   

MicroRNA-mRNA regulatory networking fine-tunes the porcine muscular 

mitochondrial respiratory and metabolic enzyme activities    

This part of the project focused on the microRNA profiling of the same porcine muscle 

samples. The construction of miRNA-mRNA network allows investigating how miRNAs 

are involved in energy metabolism by fine-tuning gene expression.  

Firstly, the differentially expressed miRNAs between breed Duroc and PiNN pigs were 

identified using ANOVA, followed by integration with differentially expressed mRNAs 

based on the miRNA-mRNA pairwise correlation and computational target prediction. The 

identified target genes were enriched for protein ubiquitination pathway, stem cell 

pluripotency, geranylgeranyl diphosphate biosynthesis, skeletal and muscular system 

development. Many identified miRNAs and their target genes have been shown to play a 

role in diverging muscle characteristics. For example, ubiquitination pathway including 

Duroc up-regulated genes USP45 and USP28 were predicted as a direct target of miR-133 

and miR-310 respectively. MiR-133 are proposed as a genetic factor affecting muscle 

fibers and meat quality traits (Lee et al. 2013), whereas a loss function of miR-310 can 
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cause defects in energy metabolism and deregulation of nutritional homeostasis-associated 

genes (Cicek et al. 2016). Other Duroc up-regulated genes such as CMYA5, AR, RB1 and 

BMPR2 in functional category of skeletal and muscular development were predicted to be 

regulated by miR-4787, miR-877 and miR-4687 etc. These genes, not only are associated 

to water loss, intramuscular fat and marbling traits, but also are involved in promoting 

slow-twitch muscle fiber formation and adipogenesis (Altuwaijri et al. 2004; Lim et al. 

2013; Schleinitz et al. 2011; Xu et al. 2011). Hence the identified Duroc up-regulated 

genes and their corresponding miRNAs could contribute to the higher percentage of 

oxidative muscle fibers and fat content in Duroc pigs. On the other hand, PiNN up-

regulated genes such as SMAD3 and PFKEB2 were predicted as a target of miR-423. 

These two genes have been shown to play a role in both muscle fiber specificity and 

glycolysis in skeletal muscle (LeBleu et al. 2014; Lin et al. 2002; Ros and Schulze 2013; 

Tiano et al. 2015). Therefore, our assembled miRNA-mRNA regulatory network may fine-

tune the expression of genes within the pathways and shape the related phenotypes among 

pig breeds.  

Next, the association between miRNA profiles and the phenotypes from the same animal 

set was assessed. Based on the identified miRNAs that highly correlated with the 

phenotypes, we integrated the miRNA and mRNA expression profiles to identify miRNA 

regulated genes that influence energy metabolism. In the network, MiR-25, its targets 

BMPR2 and IRS1 were significantly correlated to STO and FTO muscle fibers. MiR-25 is 

abundant in cardiomyocytes and it can target both the mitochondrial calcium uniporter 

(MCU) and Ca2+ transporting ATPase (ATP2A2) (Pan et al. 2015; Wahlquist et al. 2014). 

In the present study, miR-25 was proposed to target genes of BMPR2 and IRS1. BMPR2 is 

essential for BMP signaling and may be involved in the regulation of adipogenesis and 

obesity (Schleinitz et al. 2011). Whereas IRS1 is a major molecule mediating insulin-

signaling pathway, which affects the mitochondrial function, ATP production and muscle 

oxidative capacity by increasing the mRNA level of complex I and complex IV (Cheng et 

al. 2010; Stump et al. 2003). MiR-210 and its predicted targets ATP5I, ME3, MTCH1 and 

CPT2 were highly correlated to ADP and ATP concentration. MiR-210 modulates 

mitochondrial function, decreases COX10 expression and activates the generation of 

reactive oxygen species (ROS) (Chen et al. 2010). Its proposed target genes ATP5I, ME3, 

MTCH1 and CPT2 in the current study are involved in ATP production, apoptosis and 

beta-oxidation of long fatty acids in mitochondria (Kerner and Hoppel 2000; Pickova et al. 
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2005; Xu et al. 2002; Yang et al. 2002). There were more identified miRNA-mRNA pairs 

in the present study such as miR-27 targeting CYP24A1 in the vitamin D metabolism 

highly correlated to phenotype of PFK activity and miR-363 targeting USP24 in ubiquitin 

pathway highly correlated to phenotypes of STO fibers, mitochondrial respiration and 

AMP concentration.  

Up to now we have shown that the identified miRNA-mRNA network could be linked to 

muscle fiber types, oxidative enzyme activities and ATP production. Interestingly, a tight 

relationship between mitochondria and ubiquitin proteasome system (UPS) at the level of 

gene expression was observed. It revealed a link between these two systems contributing to 

energy metabolism of skeletal muscle via fine-tuning the gene expression by miRNAs 

under physiological conditions. However, further detailed information of the interaction 

between mitochondria and UPS still remains elusive. 

In this study, we assembled the miRNA-mRNA regulatory networks related to muscle 

fiber type, mitochondrial respiration, metabolic enzyme activities and ATP production 

based on the correlation information between expression of miRNAs and target genes 

following computational target prediction, and as well as phenotypical measurements of 

Duroc and PiNN pigs. These complex networks could make contributions to the muscle 

phenotypic variations by fine-tuning gene expression. These results provided an insight 

into the regulatory role of miRNAs in energy metabolism in porcine muscle.                           

Molecular changes in mitochondrial respiratory activity and metabolic enzyme 

activity in muscle of four pig breeds with distinct metabolic types 

In part one and part two of this study, the investigation of both transcriptional mRNA and 

miRNA profiling of skeletal muscle identified various biological pathways associated with 

energy metabolism and highlighted the importance of mitochondria for the oxidative 

capacity of porcine muscle fibers. Mitochondria play an important role in cellular ATP 

production through oxidative phosphorylation. Oxidative pathway components include 

complex I, complex II, complex IV and ATP synthase etc. Further, glycolytic pathway 

components such as muscle-specific glycogen phosphorylase, phosphofructokinase and 

lactate dehydrogenase also contribute to ATP generation. Understanding the genotype-

phenotype correlation within these pathways can offer valuable insight for muscle 

metabolism and meat quality. 
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In the current part of this project, we analyzed expression profiles of pathway-focused 

genes related to both oxidative and glycolytic pathways, in conjunction with muscle fiber 

typing and metabolic enzyme activities to further understand the molecular basis of muscle 

properties and functions that affect meat quality, using four distinct metabolic types of pig 

breeds including Duroc, PiNN, PiPP and DuPi. We included both PiPP and PiNN pigs to 

better distinguish possible associated effects of a single nucleotide mutation in ryanodine 

receptor 1(RYR1). Although this genetic defect leads to the abnormality of cellular calcium 

homeostasis and results in pale, soft, and exudative meat (Fujii et al. 1991; Shen et al. 

2007), the MHS homozygous genotype is still retained in pork production because of its 

advantageous carcass yield and lean percentage, which is associated with higher FTG fiber 

ratio (Werner et al. 2010a; Werner et al. 2010b).  

For the metabolic phenotypes of the four breeds, each breed displayed a distinct muscle 

fiber composition. Duroc pigs had the highest percentage of STO fibers, with the most 

contrast between Duroc (13.91%) and PiPP (6.48%) breeds. PiPP pigs had a significant 

higher percentage of FTG fibers (81.57%) compared to PiNN pigs (74.95%), while that of 

Duroc and DuPi were in between these two Pietrain genotypes. Mitochondrial respiration 

and the activities of the most investigated metabolic enzymes were comparable among 

genotypes, except for significant lower complex I activity in PiPP pigs.  

At the transcriptional level, lactate dehydrogenase B showed breed specificity, with 

significantly lower expression in PiPP pigs. The results showed no breed specific 

differences for LDHA at transcript level. Lactate has been identified as an intermediate 

substance in metabolic processes to provide fuel for aerobic metabolism rather than a dead-

end waste product of glycolysis due to hypoxia (Gladden 2004). LDH catalyzes 

interconversion of pyruvate to lactate and NADH to NAD+. Its two common subunits, M 

and H, are encoded by LDHA and LDHB, respectively. LDHA encoded subunit M 

catalyzes the conversion of pyruvate to lactate, whereas LDHB encoded LDH subunit H 

oxidizes lactate back to pyruvate and thus can generate mitochondrial energy via aerobic 

metabolism in the TCA cycle (Gabriel-Costa et al. 2015). The results demonstrated the 

lowest gene expression of LDHB in PiPP pigs, which also had the lowest percentage of 

STO muscle fibers. Different LDH isoforms have been shown to be associated with 

different muscle fiber-types such as the predominant distribution of H-subunit in type I 

fibers and M-subunit in type IIA and IIB fibers (Leberer and Pette 1984; Peter et al. 1971). 
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Therefore, LDH may function as a key mediator of lactate oxidation via its H subunit and 

this process seems to be reduced in pigs with low STO fiber percentage like the PiPP pigs. 

A similar expression pattern was shown for many subunits of oxidative phosphorylation 

complexes including complex I, complex II, complex IV and ATP synthase, with lower 

expression in PiPP pigs. There are several possible explanations. PiPP pigs are positive for 

the RYR1 point mutation (Fujii et al. 1991). Defective RYR1 leads to abnormally elevated 

Ca2+ levels in cytoplasm and causes excess muscle contraction and high energy 

consumption, followed by a faster shift of energy generation from aerobic to anaerobic 

glycolysis accompanied by acidosis (Werner et al. 2005). The Ca2+ homeostasis 

abnormality can influence mitochondrial Ca2+ concentrations and affect mitochondrial 

function. MHS knock-in mice showed a clear overload in the mitochondrial matrix and a 

switch to a compromised bioenergetics state characterized by low OXPHOS under a non-

triggered state (Giulivi et al. 2011). Next, the larger amount of FTG fibers in PiPP pigs 

which have the characteristics of low capillarization and inefficient oxygen delivery could 

possibly lead to the lower OXPHOS gene expression. Another possible causation could be 

the significantly lower AMP: ATP ratio in PiPP pigs. AMP activates AMP-activated 

protein kinase (AMPK) which further activates PGC-1α by phosphorylation to control 

OXPHOS (Jager et al. 2007; O'Neill et al. 2013). Further, the higher glycogen levels in 

FTG fibers (Fernandez et al. 1995) could also repress the activation of AMPK signaling 

pathway and result in the lower expression of OXPHOS in PiPP pigs (Wojtaszewski et al. 

2002; Wojtaszewski et al. 2003).                       

Next part of the results showed the most significant correlations between mRNA level and 

enzyme activity were breed-dependent, such as complex IV in Duroc, complex II and IV in 

DuPi, complex I in PiNN and complex I and IV in PiPP. Complex gene regulations at post-

transcriptional and post-translational levels in association with different genetic 

backgrounds may roughly explain the results. Molecules such as LRPPRC affect RNA 

stability and thus influence complex IV and ATP synthase as well as ATP production (Mili 

and Pinol-Roma 2003; Mourier et al. 2014). Moreover, events such as the import of 

nuclear-encoded OXPHOS subunits into mitochondria and OXPHOS complex assembly 

could also contribute to the disparity between mRNA levels and enzyme activity for 

OXPHOS complex. Last but not least, a strong association between STO fibers and gene 

expression of OXPHOS complex subunits was observed especially in Duroc pigs. It may 

be explained by the high percentage of STO fibers in Duroc compared to other breeds. The 
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Duroc-Pietrain crossbred DuPi showed significant correlation between OXPHOS 

expression and FTO fibers, which belong to intermediate muscle fiber type.  

Therefore, this part revealed differential gene expression of glycolytic and oxidative 

enzymes in skeletal muscle of Duroc, DuPi, PiNN and PiPP pigs. PiPP pigs exhibited the 

lowest LDHB expression supporting a role of LDH in aerobic respiration via its H subunit. 

PiPP pigs also showed the lower gene expression for many subunits of OXPHOS 

complexes including complex I, II, IV and ATP synthase. Within different pig breeds, 

OXPHOS was highly regulated and optimized to meet different energy requirement via 

fine-tuning breed-specific genetic differences. Finally, this study also linked the OXPHOS 

system to different muscle fiber types. All these results highlighted the importance of 

OXPHOS system in oxidative capacity of muscle fibers and provided valuable breed-

specific information for the molecular basis of metabolic enzyme activities, which directly 

impact meat quality.                 

Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in 

muscle fiber type, mitochondrial respiratory and metabolic enzyme activities 

Mitochondria, as double membrane-bound organelles with their own DNA, are involved in 

many key cellular processes such as calcium homeostasis, reactive oxygen species 

production and ATP generation by oxidative phosphorylation (OXPHOS). With most 

emphasis placed on glycolysis, mitochondrial content and function may be important 

factors that contribute to post mortem muscular metabolism and may improve our ability to 

predict pH decline and meat quality. In this part, we investigated the mitochondrial content, 

followed by the expressions of both mitochondrial and nuclear encoded genes involved in 

energy metabolism together with muscle fiber typing and metabolic enzyme activities at 

time 0 and 30min post mortem in longissimus muscles (LM) of pig breeds Duroc, PiNN, 

PiPP and DuPi. Since mitochondrial DNA haplotypes are potential genetic sources for 

manipulating phenotypes including tolerance to heat, growth and milk quality in farm 

animals (Tsai and St John 2016), it is of interest to investigate haplotypes within these 

animals and their effect on energy metabolism. 

Among all pig breeds, Duroc pigs had the highest percentage of STO fibers whereas PiPP 

pigs had the largest amount of FTG fibers. Duroc pigs had the highest complex I activity 

compared to other breeds, especially to DuPi and PiPP. PiPP pigs had the lowest pH than 

all other three breeds. The enzyme activities of PFK and LDH were increased, whereas 
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oxidative enzyme activities of CS, complex I and complex II were decreased at 30min post 

mortem compared to immediately slaughter. 

At molecular level, PiPP pigs showed the least absolute mitochondrial DNA (mtDNA) 

copy number and the lowest transcript abundance of mitochondrial-encoded subunits ND1, 

ND6, ATP6 and nuclear-encoded subunits NDUFA11, NDUFB8, NDUFS8, NDUFV1, 

ATP5G1 and ATP5L. The muscle of PiPP pigs contained the largest amount of FTG fibers 

which in general possess a fewer number of mitochondria compared to oxidative fibers, 

whereas there were the most STO fibers in the muscle of Duroc pigs. The results showed a 

strong association between mitochondrial content and muscle fiber composition.  MtDNA 

copy number variation is dependent on a balance between mtDNA synthesis and 

degradation, the elevated removal of mitochondria and the alteration of mtDNA replication 

via factors such as mitochondrial transcription factor A (TFAM) could contribute to this 

variation (Pohjoismaki et al. 2006). The abnormal Ca2+ homeostasis in PiPP pigs may 

result in oxidative stress associated with elevated ROS production, which induces 

mitophagy to remove damaged mitochondria. The excess ROS to a sufficient degree could 

result in damaged organelle and trigger non-selective autophagy (Deffieu et al. 2013). 

Unlike replication and transcription of nuclear DNA are two distinct processes, the 

mtDNA replication and mitochondrial transcription have been proposed to be associated 

(Kasiviswanathan et al. 2012). The transcription machinery generates nascent RNA which 

is processed to serve as primer for mtDNA replication (Fuste et al. 2010; Xu and Clayton 

1996). Hence the observed variation of mitochondrial gene expression between different 

pig breeds was very likely to be associated with the fluctuated mtDNA copy number 

between breeds. Indeed, our results showed significant correlations between mtDNA copy 

number and expressions of several mitochondrial encoded OXPHOS genes. In some cancer 

types, mtDNA content is correlated with the expression of respiratory electron transport 

genes (Reznik et al. 2016). The down regulation of nuclear encoded OXPHOS subunits in 

PiPP pigs is very likely caused by the abnormal Ca2+ homeostasis of PiPP pigs as described 

in previous part. Glucocorticoid receptor (GR) binds to the D-loop control region and so 

that stress and corticosteroids have a direct influence on rat hippocampal mtDNA gene 

expression (Hunter et al. 2016). Since RYR1 mutated PiPP pigs are stress susceptible, it is 

likely that mtDNA transcription would be influenced in those pigs. The methylation of 

mtDNA may be another mechanism altering mitochondrial transcription in PiPP pigs. 

Under conditions of oxidative stress, upregulated DNMT1 suppresses the expression of 
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ND6 through methylation (Shock et al. 2011). It is consistent with our result of the lower 

expressed ND6 expression in PiPP pigs likely with mutant RYR1 induced mitochondrial 

injury and oxidative stress (Jin et al. 2014).    

With the identification of mitochondrial haplotypes in these animals, all PiPP pigs 

belonged to haplotype 8 and this haplotype showed the lowest mtDNA copy number and 

the lowest gene expression of mitochondrial-encoded subunits ND1, ND6, CYB, COX1, 

ATP6 and nuclear-encoded subunits NDUFA11, NDUFA13 and NDUFB8. Mitochondrial 

haplotype is proposed to modulate global DNA methylation and methylation status of 

various signaling pathways (Atilano et al. 2015; Bellizzi et al. 2012). The DNA 

methylation of nuclear encoded DNA polymerase gamma A regulates mtDNA copy 

number (Kelly et al. 2012). Since haplotype was identified based on the sequence of D-

loop, which belonged to mtDNA control region, different haplotype might result in 

different methylation pattern of D-loop and leads to altered mitochondrial gene expression 

profile. The de-methylation of D-loop is likely to be involved in regulation of mtDNA 

copy number and ND2 expression (Gao et al. 2015). All these supported the possibility that 

the effect of mitochondrial haplotype on mitochondrial content and OXPHOS system 

might be exerted via DNA methylation at both mitochondrial and nuclear genome. In this 

part, we showed pig breeds and mtDNA haplotype, in other words, mitochondrial and 

nuclear genetic background could influence mitochondrial content and OXPHOS system. 

This effect might be exerted via D-loop by glucocorticoid stress hormone and DNA 

methylation. However, this assumption needs further investigation.  

The mtDNA copy number in longissimus muscle was decreased from 420 copies per 

nuclear genome at 0min post mortem to 389 copies at 30min post mortem with p-value of 

0.02. No mitochondrial-encoded genes were differently expressed between 0 and 30min 

post mortem. Only three nuclear-encoded genes NDUFB8, COX7A2 and ATP5L showed 

significantly lower mRNA levels at 30min post mortem than 0min. Hence we concluded 

early post mortem time influenced mitochondrial content but had only minor effect on 

OXPHOS gene expression.  

The observation of significant correlations between mitochondrial and nuclear encoded 

OXPHOS gene expressions in our results strongly supported the theory of mitochondrial-

nuclear crosstalk which may involve transcription factors such as TFAM which are 

encoded by nuclear genome for mitochondrial gene expression. The nuclear-encoded 
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subunits need to be imported into mitochondria together with mitochondrial-encoded 

subunits to form a fully assembled functional OXPHOS system in the mitochondrial inner 

membrane. On the other hand, mitochondria are communicating to nucleus via retrograde 

communication such as signaling molecule Ca2+. The mitochondria-to-nucleus stress 

signaling occurs through the disrupted Ca2+ homeostasis (Biswas et al. 1999). The absence 

of mtDNA-encoded subunits COX1 and COX2 affect the stability of some subunits of 

nuclear encoded respiratory chain proteins (Marusich et al. 1997). The mRNA level of 

master regulator mediating mitochondrial biogenesis and oxidative phosphorylation 

(LeBleu et al. 2014) PPARG coactivator 1 alpha (PGC-1α) showed significant correlations 

to all investigated mitochondrial encoded OXPHOS subunits and six nuclear encoded 

subunits in our results. Hence PGC-1α may be one of the factors contributing to the 

coordination of mitochondrial-nuclear genome in porcine OXPHOS system. The 

expression of PGC-1α was also highly correlated to enzyme activities of complex I, II and 

IV in traits. It reinforces the functional role of PGC-1α in mitochondrial energy 

metabolism. The high association between nuclear encoded OXPHOS gene expression and 

oxidative enzyme activities suggested these genes have dominant contributions to the 

complex activities over the mitochondrial encoded subunits. Whereas the mitochondrial 

encoded OXPHOS genes were more associated with muscle fiber types which were 

consistent with STO muscle fibers in general contain more mitochondria (Gueguen et al. 

2005). Our measured mtDNA copy number was correlated positively to STO fibers and 

oxidative enzyme activities but negatively to FTG fibers. It has been demonstrated that the 

mtDNA copy number is related to oxidative capacity and adipocyte lipogenesis (Kaaman 

et al. 2007). Since lipids are stored mainly in STO fibers to improve the tenderness and 

juiciness of meat (Essen-Gustavsson et al. 1994), mtDNA copy number is possible linked 

to meat quality.                  

In brief, PiPP pigs (haplotype 8) showed the lowest mtDNA copy number, the most 

reduced gene expressions of many mitochondrial and nuclear encoded OXPHOS subunits 

among all four breeds. It provided valuable information of haplotype and breed-specific 

mitochondrial content variation and molecular basis of mitochondrial respiration, which 

improve our ability to predict pH decline and meat quality. Finally, the expression pattern 

of these OXPHOS genes supported the mitochondrial-nuclear crosstalk and their 

complexity contributed to muscular phenotypes. 
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Conclusions 

In this thesis, the mRNA and miRNA transcriptome profiling of ante mortem skeletal 

muscle for Duroc and PiNN pigs were comprehensively investigated. The comparative 

transcriptome profiling between these two breeds revealed clear differences in their muscle 

metabolic properties. Gene co-expression network analysis grouped genes into different 

co-expression modules and identified various biological pathways associated with fiber 

types, mitochondrial respiratory activity and metabolic enzyme activities. It highlighted the 

importance of mitochondria in the oxidative capacity of muscle particularly in breed Duroc. 

Next, the miRNA-mRNA regulatory networks associated to the phenotypes of interest 

were constructed using the correlation information between expressed miRNAs and target 

mRNAs with computational target prediction and phenotypical measurements of Duroc 

and PiNN pigs. These complex networks may make contributions to the muscle energy 

metabolism in porcine by fine-tuning gene expressions. In the end, the comparative 

pathway-focused gene expression profiling was performed in muscles of four pig breeds 

(Duroc, DuPi, PiNN and PiPP) with distinct metabolic types. These results stressed the 

importance of gene expression related to oxidative and glycolytic pathways in the 

metabolic capacity of muscle fibers. It furthered the breed-specific understanding of the 

molecular basis of metabolic enzyme activities, which directly impact meat quality. The 

last part of the thesis focused on the mitochondrial genome and its interaction with nuclear 

genome. The results provided valuable information of haplotype and breed-specific 

mitochondrial content variation and molecular basis of mitochondrial respiration, which 

improve the prediction of many muscle pathologic processes. The study highlighted the 

importance of mitochondrial-nuclear crosstalk, haplotype and copy number variation 

underlying muscle phenotype differences.  
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Future perspectives   

Holistic approaches of transcriptomics, proteomics and metabolomics have the potential to 

reveal pathways and functional networks related to important traits. Integrative approaches 

facilitate the identification of hub or key genes. However functional validation is required. 

To validate any candidate gene playing a functional role in energy metabolism, an in vitro 

model system can be set up to perform enzymatic functional assay by mutation or silencing 

certain genes. Tools such as clustered regularly interspaced short palindromic repeat 

(CRISPR) could be used for gene editing. CRISPR associated protein 9 nuclease 

(CRISPR/Cas9) system consists of two key molecules that result in insertions or deletions 

into the DNA. The guided RNA (gRNA) is designed to find and bind to a specific 

sequence in the DNA and Cas9 cuts the two strands of DNA at a specific location so that 

nucleotides can be added or removed (Sander and Joung 2014). Recently, CRISPR/Cas9 

has been used to edit mitochondrial genome in addition to nuclear genome (Jo et al. 2015). 

Most recently, CRISPR/Cas9 has been shown to robustly and specifically reduce the 

expressions of miRNAs up to 96% (Chang et al. 2016). The application of CRISPR/Cas9 

in miRNA editing will strengthen the ability to study miRNAs underlying functions in 

energy metabolism. The validation of candidate miRNAs and their target genes could be 

performed in vitro model system, firstly to confirm whether it is a direct target using 

luciferase assay by constructing miRNA and gene expressing plasmids, then to investigate 

the role of miRNA-mRNA pairs in energy metabolism using functional assay such as the 

measurement of ATP production and oxygen consumption via knock in and knock down 

gene expression by miRNA. The confirmation of miRNAs and target genes as potential 

biomarkers for energy metabolism may improve the meat production and quality. The 

identification and confirmation of miRNAs and their target genes could be extended to 

mitochondrial genome rather than being limited to nuclear level. It has been proposed that 

miR-133a targets mitochondrial-encoded complex I subunit ND1, miR-130a targets 

complex IV COX3, miR-181c translocates into mitochondria and regulates complex IV 

COX1 and miR-151a-5p reduces cellular ATP production by targeting CYB in various 

tissues or cells (Barrey et al. 2011; Das et al. 2012; Kren et al. 2009; Zhou et al. 2015). 

Furthermore, a few miRNAs are predicted to originate from the mitochondrial genome 

(Barrey et al. 2011; Shinde and Bhadra 2015), suggesting the existence of mitochondrial-

encoded miRNAs and their possible functions.         
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This thesis has shown the effect of mitochondrial haplotype and breed on mitochondrial 

content and OXPHOS system, speculatively via DNA methylation at both mitochondrial 

and nuclear genome. To test this hypothesis, DNA methylation pattern of mitochondrial 

and nuclear genome could be investigated by whole genome bisulfite sequencing (WGBS). 

Next generation sequencing based WGBS can provide a comprehensive view of 

methylation patterns across the whole genome at single nucleotide resolution. In library 

preparation, bisulfite conversion changes unmethylated cytosine to uracil and the 

converted based are then identified as thymine in the sequencing data and read counts are 

used to determine the percentage of methylated cytosines. It can detect the methylation 

patterns of cytosine-guanine dinucleotides (CpG), CHH (where H correspond to A, T or C) 

and CHG regions across the entire genome. A better understanding of epigenetic variations 

and mitochondrial-nuclear crosstalk could provide valuable information for detection and 

diagnosis of diseases. Mitochondrial replacement therapy (MRT) has been merged as a 

promising tool that has the potential to treat mitochondrial diseases with the concern of 

whether mitochondrial-nuclear interactions are likely to pose a problem for MRT (Eyre-

Walker 2017).  

Mitochondrial stress induced mitochondrial-to-nucleus retrograde signaling (MtRS) 

regulates histone acetylation and alters nuclear gene expression (Guha et al. 2016). Hence 

it would be of interest to investigate the transcription and epigenetic reprogramming at 

both mitochondrial and nuclear genome where mitochondrial stress is induced by the 

depletion of mtDNA copy number via ethidium bromide treatment, mtDNA mutation and 

/or the disruption of OXPHOS complex via knockout certain subunits in a porcine cell 

model. There are mouse models of complex I, II and IV deficiency by knockout and or 

knock down nuclear-encoded OXPHOS subunits (Torraco et al. 2015).  And mouse models 

carrying mutations in the mtDNA such as genes of Cox1, Nd6 and Cox1/Nd6 are 

associated with phenotypes of complex IV deficiency, age associated disorders and 

cardiomyopathy (Torraco et al. 2015). Knock down of these candidate genes are expected 

to induce mitochondrial stress in in vitro cell model. The severity of mitochondrial stress 

could be measured by ROS production, ATP generation, oxygen consumption and cell 

viability etc. Further, glucocorticoids have been shown to influence mitochondrial 

transcription in HepG2 cells and rat brain via mitochondrial localized glucocorticoid 

receptor (GR) (Hunter et al. 2016; Psarra and Sekeris 2011). The dose-response effects of 

glucocorticoid and thyroid hormones on mitochondria of porcine cells could also be 
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investigated since mitochondrion acts as a primary site of the action of steroid and thyroid 

hormone (Psarra et al. 2006).                      

Moreover, the establishment of transmitochondrial cytoplasmic hybrid (cybrids) cells from 

porcine could allow the analysis of cells containing different haplotype with identical 

nuclear background and evaluate the specific effect of haplotype on energy metabolism. 

This setup will provide a precise insight for unravel the contributions of mitochondrial and 

nuclear genes as well as the interplay of two genomes.   
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Summary  

Skeletal muscle activity requires ATP as the major currency molecule of energy that is 

produced mainly through oxidative phosphorylation in mitochondria. Important factors of 

meat quality such as tenderness and juiciness are associated with muscle fiber proportion 

and energy metabolism in meat-producing animals. In this thesis, pig breed Duroc and 

Pietrain differing for the slow-twitch-oxidative (STO) fibers and fast-twitch-oxidative 

(FTO) fibers as well as mitochondrial activity have been used to identify potential 

biological pathways related to energy metabolism. Based on the transcriptomic profiling of 

the ante mortem longissimus muscle, differential gene expression between Duroc and 

PiNN samples were associated with protein ubiquitination, stem cell pluripotency, amyloid 

processing, 3-phosphoinositide biosynthesis and degradation pathways. In weighted gene 

co-expression network analysis, Duroc revealed strong correlations between 

mitochondrion-enriched co-expression modules and STO (r = 0.78), FTO (r = -0.98), 

complex I (r = 0.72) and complex IV activity (r = 0.86). In contrast, co-expression modules 

enriched in macromolecule catabolic process, actin cytoskeleton and transcription activator 

activity were associated to fiber types, mitochondrial respiration and metabolic enzymes in 

PiNN. The results revealed the importance of mitochondria and raised our interests to 

deeply investigate mitochondria and oxidative phosphorylation (OXPHOS) system. A 

comparative analysis of the miRNA expression profile between Duroc and PiNN was 

performed to construct the miRNA-mRNA regulatory networks based on their pairwise 

correlation and computational target prediction. The identified target genes were enriched 

in protein ubiquitination pathway, stem cell pluripotency, skeletal and muscular system 

development. By integrating the correlation with phenotypical traits, the constructed 

miRNA-mRNA networks associated with energy metabolism suggest their essential roles 

in modulating the mitochondrial energy expenditure in porcine muscle. For example, miR-

25 targeting BMPR2 and IRS1, miR-363 targeting USP24, miR-28 targeting HECW2 and 

miR-210 targeting ATP5I, ME3, MTCH1 and CPT2 were highly associated with STO 

fibers, FTO fibers, ADP and ATP concentration. These complex networks may contribute 

to the divergent muscle phenotypes by fine-tuning gene expressions. The confirmation of 

miRNAs and their target genes and their functions in muscle energy metabolism become 

very important in the further. The expression profiles of pathway-focused genes related to 

oxidative ad glycolytic pathways were analyzed to further understand the molecular basis 

of muscle properties. This part also included a F2 Duroc-Pietrain crossbred DuPi and MHS 
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homozygous-positive breed PiPP carrying RYR1 mutation in addition to Duroc and PiNN. 

Each breed type displayed a distinct muscle fiber composition. PiPP pigs showed a 

significant lower complex I activity than three other breeds. At transcript level, lactate 

dehydrogenase B showed breed specificity, with significantly lower expression in PiPP 

pigs. PiPP pigs showed the lowest gene expression for several subunits of oxidative 

phosphorylation (OXPHOS) complexes, including complex I, complex II, complex IV and 

ATP synthase. This study also linked the OXPHOS system to different muscle fiber types. 

Duroc pigs had the strongest association between OXPHOS expression and STO fibers, 

whereas DuPi pigs had significant correlation between OPXHOS expression and FTO 

fibers. Therefore, the transcriptional regulation of OXPHOS subunits is essential for the 

oxidative capacity of muscle fibers. Since OXPHOS subunits are encoded by both the 

nuclear and mitochondrial genome, the two genome systems interact intricately to form the 

fully assembled functional OXPHOS complexes. The last part of the thesis is focused on 

mitochondrial genome activity of early post mortem longissimus muscle of the same four 

pig breeds harboring different mitochondrial haplotypes and muscle fiber types, 

mitochondrial respiratory activities, and fat content. PiPP carried only haplotype 8 and 

showed the lowest absolute mtDNA copy number accompanied by the lowest transcript 

abundance of mitochondrial encoded subunits ND1, ND6, ATP6, nuclear encoded subunits 

NDUFA11 and NDUFB8.  Haplotype 4 of Duroc pigs had significantly higher mtDNA 

copy number and higher mRNA levels of mitochondrial encoded subunits ND1, ND6, and 

ATP6. These results revealed that the mitochondrial and nuclear genetic backgrounds have 

an effect on mitochondrial content and the expressions of OXPHOS subunits in porcine. 

The co-expression pattern of OXPHOS genes supported the mitochondrial-nuclear 

crosstalk and their complexity contributed to muscle metabolism. An important 

transcription factor PGC-1α may contribute to the coordination of the mitochondrial-

nuclear genome in building the OXPHOS system. Hence mitochondrial-nuclear crosstalk, 

haplotype, and copy number variation may play important roles in muscle phenotypic 

variations in farm animals. In summary, this thesis carried out transcriptional profiling of 

mRNAs and miRNAs across the whole genome in porcine muscles. Many biological 

pathways were identified to be associated with muscle fibers, mitochondrial respiration and 

metabolic enzyme activities, especially the results highlighted the significance of 

OXPHOS system in energy metabolism. OXPHOS system was then intensively 

investigated at the level of both nuclear and mitochondrial DNA in early post mortem and 

ante mortem (nucleus only) muscles of four pig breeds harboring different mitochondrial 
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haplotypes and divergent phenotypes. Different pig breeds and haplotypes showed 

different mitochondrial content and OXPHOS gene expression pattern, which were linked 

to phenotypical variations. All these findings provided insights into the molecular 

regulatory patterns involved in muscle fibers and energy metabolism which may be used as 

biomarkers to predict meat quality and/or diagnose muscular diseases. 
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Zusammenfassung  

Skelettmuskelaktivität ist auf ATP als hauptsächliche Energiewährung, welche vorwiegend 

durch oxidative Phosphorylierung in den Mitochondrien produziert wird, angewiesen. 

Wichtige Faktoren bei der Fleischqualität wie Zartheit und Saftigkeit sind mit dem 

Muskelfaserverhältnis und Energiestoffwechsel der Fleisch produzierenden Tiere assoziiert. 

In der vorliegenden Arbeit wurden die Schweinerassen Duroc und Pietrain, welche sich 

hinsichtlich ihrer slow-twitch-oxidative (STO) und fast-twitch-oxidative (FTO) –Fasern, 

wie auch ihrer mitochondriellen Aktivität unterscheiden, genutzt, um potenzielle 

biologische Stoffwechselwege im Zusammenhang mit dem Energiestoffwechsel zu 

identifizieren. Basierend auf holistischen Transkriptionsprofilen des ante mortem 

Longissimus-Muskels war die differentielle Genexpression zwischen Duroc und PiNN-

Proben mit Protein-Ubiquitinierungs-, Stammzell-Pluripotenz-, Amyloid-Prozessierungs- 

und 3-Phosphoinositid-Biosynthese und –degradations-Stoffwechselwegen assoziiert. In 

der weighted gene co-expression network analysis zeigte Duroc starke Korrelationen 

zwischen Mitochondrien-annotierten Ko-Expressionsmodulen und STO (r = 0.78), FTO (r 

= -0.98), Komplex I (r = 0.72) und Komplex IV Aktivität (r = 0.86). Im Gegensatz dazu 

waren Ko-Expressionsmodule, die im Makromolekül-Katabolismus, im Aktin-Zytoskelett 

und in der Transkriptions-Aktivator-Aktivität annotiert waren, mit den Faserarten, der 

mitochondriellen Atmung und metabolischen Enzymen in PiNN assoziiert. Diese 

Ergebnisse deckten die wichtige Rolle der Mitochondrien auf und lenkten unser Interesse 

auf eine tiefgehende Untersuchung dieser Organellen und des Systems der oxidativen 

Phosphorylierung (OXPHOS). Eine vergleichende Analyse des miRNA-Expressionsprofils 

zwischen Duroc und PiNN wurde durchgeführt, um die miRNA-mRNA regulatorischen 

Netzwerke basierend auf ihrer paarweisen Korrelation sowie rechnergestützter Target-

Vorhersage konstruieren zu können. Die identifizierten Zielgene wurden in den 

Stoffwechselwegen Protein-Ubiquitinierung, Stammzell-Pluripotenz, Skelett- und 

Muskelsystem-Entwicklung annotiert. Durch Integration der Korrelation mit 

phänotypischen Merkmalen legen die mit dem Energiestoffwechsel assoziierten miRNA-

mRNA-Netzwerk-Konstrukte ihre unentbehrliche Rolle bei der Modulation des 

mitochondriellen Energieverbauchs im Schweinemuskel nahe. Zum Beispiel sind miR-25 

mit den Zielgenen BMPR2 und IRS1, miR-363 mit dem Zielgen USP24, miR-28 mit dem 

Zielgen HECW2 sowie miR-210 mit den Zielgenen ATP51, ME3, MTCH1 und CPT2 

hochgradig assoziiert mit STO-Fasern, FTO-Fasern sowie der ADP- und ATP-
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Konzentration. Diese komplexen Netzwerke könnten durch Feinabstimmung der 

Genexpression zu den unterschiedlichen Muskel-Phänotypen beitragen. Die Bestätigung 

von miRNAs, ihrer Zielgene und ihrer Funktionen im Muskelenergiestoffwechsel werden 

im Weiteren sehr wichtig werden. Die Expressionsprofile von Stoffwechselweg-bezogenen 

Genen, welche im Zusammenhang mit oxidativen und glykolytischen Stoffwechselwegen 

stehen, wurden für ein weitergehendes Verständnis der molekularen Basis von 

Muskeleigenschaften analysiert. Dieser Teil umfasste des Weiteren eine F2-Kreuzung 

Duroc-Pietrain (DuPi) sowie eine MHS-homozygot-positive Rasse PiPP, welche in 

Ergänzung zu Duroc und PiNN Trägerin einer RYR1-Mutation ist. Jeder Zuchttyp wies 

eine individuelle Muskelfaserzusammensetzung auf. PiPP-Schweine zeigten eine 

signifikant niedrige Komplex-I-Aktivität als die drei anderen Schweinerassen. Auf 

Transkript-Ebene wies die Laktat-Dehydrogenase B eine Rassespezifität mit signifikant 

niedrigerer Expression in PiPP-Schweinen auf. PiPP-Schweine zeigten die niedrigste 

Genexpression für verschiedene Untereinheiten des oxidativen Phosphorylierungs-

Komplexes (OXPHOS-Komplex), darunter Komplex I, Komplex II, Komplex IV und für 

die ATP-Synthase. Diese Studie verknüpfte zudem das OXPHOS-System mit 

verschiedenen Muskelfasertypen. Duroc-Schweine wiesen die stärkste Assoziation 

zwischen der OXPHOS-Expression und STO-Fasern auf, wohingegen DuPi-Schweine eine 

signifikante Korrelation zwischen der OXPHOS-Expression und FTO-Fasern zeigten. Aus 

diesem Grund ist die Transkriptions-Regulation der OXPHOS-Untereinheiten für die 

oxidative Kapazität der Muskelfasern essentiell. Da OXPHOS-Untereinheiten sowohl vom 

nukleären als auch vom mitochondriellen Genom kodiert werden, kommt es zu einer 

komplizierten Interaktion der beiden Genomsysteme beim Aufbau des vollständig 

funktionalen OXPHOS-Komplexes. Der letzte Teil der Arbeit legte den Fokus auf die 

mitochondrielle Genom-Aktivität des frühen post mortem Longissimus-Muskels der 

gleichen vier Schweinerassen, mit jeweils individuellen mitochondriellen Haplotypen, 

Muskelfasertypen, mitochondriellen Atmungsketten-Aktivitäten und Fettgehalten. PiPP 

trug ausschließlich Haplotyp 8 und wies die niedrigste absolute mtDNA-Kopienzahl in 

Begleitung der geringsten Abundanz von Transkripten der mitochondriell kodierten 

Untereinheiten ND1, ND6, ATP6 sowie der nukleär kodierten Untereinheiten NDUFA11 

und NDUFB8 auf. Haplotyp 4 der Duroc-Schweine hatte eine signifikant höhere mtDNA-

Kopienzahl und eine höhere Genexpression für die mitochondriell kodierten 

Untereinheiten ND1, ND6 und ATP6. Diese Ergebnisse zeigten, dass die mitochondriellen 

und nukleären genetischen Hintergründe eine Auswirkung auf den mitochondriellen Gehalt 



Summary 
 

45 
 

und die Expression von OXPHOS-Untereinheiten bei Schweinen haben. Das Ko-

Expressionsmuster von OXPHOS-Genen unterstützte die mitochondriell-nukleäre 

Interaktion und ihre Komplexität trug zum muskulären Stoffwechsel bei. Ein wichtiger 

Transkriptionsfaktor, PGC-1α, könnte zur Koordination des mitochondriell-nukleären 

Genoms beim Aufbau des OXPHOS-Systems beitragen. Infolgedessen könnten die 

mitochondriell-nukleäre Interaktion, der Haplotyp und die Variation der Kopienzahl 

wichtige Rollen bei der phänotypischen Variation des Muskels bei Nutztieren spielen. 

Zusammengefasst wurde in dieser Arbeit ein Transkriptionsprofil der mRNAs und 

miRNAs über das gesamte Genom des Schweinemuskels hinweg erstellt. Es konnten viele 

biologische Stoffwechselwege, die im Zusammenhang mit Muskelfasern, der 

mitochondriellen Atmung und metabolischen Enzymaktivitäten stehen, identifiziert werden, 

insbesondere hoben die Ergebnisse die Bedeutung des OXPHOS-Systems für den 

Energiestoffwechsel hervor. Anschließend wurde das OXPHOS-System intensiv auf 

sowohl nukleärer als auch mitochondrieller DNA-Ebene für den frühen post mortem-

Muskel bzw. ausschließlich nukleär für den ante mortem-Muskel bei vier Schweinerassen 

mit verschiedenen mitochondriellen Haplotypen und unterschiedlichen Phänotypen 

untersucht. Verschiedene Schweinerassen und Haplotypen wiesen einen unterschiedlichen 

mitochondriellen Gehalt und ein unterschiedliches OXPHOS-Gen-Expressionsmuster auf, 

beides war ebenfalls mit phänotypischen Variationen  verknüpft. All diese Ergebnisse 

liefern Einblicke in die molekularen regulatorischen Muster, die in 

Muskelfasereigenschaften und Energiestoffwechsel involviert sind und welche als 

Biomarker zur Vorhersage der Fleischqualität und/oder zur Diagnose muskulärer 

Erkrankungen genutzt werden könnten. 

 

 

 

 

 

 

  



References 
 

46 
 

 

 

 

 

 

CHAPTER 6 
References 

 

 

 

 

 

 

 

 

 

 

 

 



References 
 

47 
 

References 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment 
search tool. Journal of Molecular Biology 215:403-410 

Altuwaijri S et al. (2004) Androgen receptor regulates expression of skeletal muscle-
specific proteins and muscle cell types. Endocrine 25:27-32 

Angin Y et al. (2012) CD36 inhibition prevents lipid accumulation and contractile 
dysfunction in rat cardiomyocytes. The Biochemical journal 448:43-53 

Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T (2010) 
The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal muscle in 
response to physical activity. American journal of physiology Endocrinology and 
metabolism 298:E799-806 

Aschrafi A, Kar AN, Natera-Naranjo O, MacGibeny MA, Gioio AE, Kaplan BB (2012) 
MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded 
mitochondrial mRNAs encoding subunits of the oxidative phosphorylation 
machinery. Cellular and molecular life sciences : CMLS 69:4017-4027 

Atilano SR et al. (2015) Mitochondrial DNA variants can mediate methylation status of 
inflammation, angiogenesis and signaling genes. Human molecular genetics 
24:4491-4503 

Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011) Pre-microRNA 
and mature microRNA in human mitochondria. PloS one 6:e20220 

Baykara O, Sahin SK, Akbas F, Guven M, Onaran I (2016) The effects of mitochondrial 
DNA deletion and copy number variations on different exercise intensities in 
highly trained swimmers. Cellular and molecular biology (Noisy-le-Grand, France) 
62:109-115 

Bellizzi D, D'Aquila P, Giordano M, Montesanto A, Passarino G (2012) Global DNA 
methylation levels are modulated by mitochondrial DNA variants. Epigenomics 
4:17-27 

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society 
Series B (Methodological) 57:289-300 

Biswas G et al. (1999) Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response 
to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle 
crosstalk. The EMBO journal 18:522-533 

Bonnefoy N, Fiumera HL, Dujardin G, Fox TD (2009) Roles of Oxa1-related inner-
membrane translocases in assembly of respiratory chain complexes. Biochimica et 
biophysica acta 1793:60-70 

Camus MF, Wolf JB, Morrow EH, Dowling DK (2015) Single Nucleotides in the mtDNA 
Sequence Modify Mitochondrial Molecular Function and Are Associated with Sex-
Specific Effects on Fertility and Aging. Current biology : CB 25:2717-2722 

Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations 
increase levels of ryanodine receptors and calcium release in PC12 cells and 
cortical neurons. The Journal of biological chemistry 275:18195-18200 

Chan SW, Chevalier S, Aprikian A, Chen JZ (2013) Simultaneous quantification of 
mitochondrial DNA damage and copy number in circulating blood: a sensitive 
approach to systemic oxidative stress. BioMed research international 2013:157547 

Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool 
to knock down microRNA in vitro and in vivo. Scientific reports 6:22312 

Chen X (2009) Small RNAs and their roles in plant development. Annual review of cell 
and developmental biology 25:21-44 



References 
 

48 
 

Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 
modulates mitochondrial function and decreases ISCU and COX10 expression. 
Oncogene 29:4362-4368 

Chen Z et al. (2015) MiR130b-Regulation of PPARgamma Coactivator-1alpha Suppresses 
Fat Metabolism in Goat Mammary Epithelial Cells. PloS one 10:e0142809 

Cheng KK, Akasaki Y, Lecommandeur E, Lindsay RT, Murfitt S, Walsh K, Griffin JL 
(2015) Metabolomic analysis of akt1-mediated muscle hypertrophy in models of 
diet-induced obesity and age-related fat accumulation. Journal of proteome research 
14:342-352 

Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. 
Trends in endocrinology and metabolism: TEM 21:589-598 

Cicek IO, Karaca S, Brankatschk M, Eaton S, Urlaub H, Shcherbata HR (2016) Hedgehog 
Signaling Strength Is Orchestrated by the mir-310 Cluster of MicroRNAs in 
Response to Diet. Genetics 202:1167-1183 

Coenen MJ et al. (2004) Mutant mitochondrial elongation factor G1 and combined 
oxidative phosphorylation deficiency. The New England journal of medicine 
351:2080-2086 

Das S et al. (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. 
Circulation research 110:1596-1603 

Deffieu M, Bhatia-Kissova I, Salin B, Klionsky DJ, Pinson B, Manon S, Camougrand N 
(2013) Increased levels of reduced cytochrome b and mitophagy components are 
required to trigger nonspecific autophagy following induced mitochondrial 
dysfunction. Journal of cell science 126:415-426 

Ellis JM et al. (2010) Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-
oxidation and is required for cold thermogenesis. Cell metabolism 12:53-64 

Essen-Gustavsson B, Karlsson A, Lundstrom K, Enfalt AC (1994) Intramuscular fat and 
muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets 
and its relation to meat quality. Meat science 38:269-277 

Eyre-Walker A (2017) Mitochondrial Replacement Therapy: Are Mito-nuclear Interactions 
Likely To Be a Problem? Genetics 205:1365-1372 

Falah M et al. (2016) The potential role for use of mitochondrial DNA copy number as 
predictive biomarker in presbycusis. Therapeutics and clinical risk management 
12:1573-1578 

Fernandez X, Lefaucheur L, Candek M (1995) Comparative study of two classifications of 
muscle fibres: Consequences for the photometric determination of glycogen 
according to fibre type in red and white muscle of the pig. Meat science 41:225-235 

Fiedler I, Dietl G, Rehfeldt C, Wegner J, Ender K (2004) Muscle fibre traits as additional 
selection criteria for muscle growth and meat quality in pigs – results of a simulated 
selection. Journal of Animal Breeding and Genetics 121:331-344 

Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. 
Calcified tissue international 96:183-195 

Fujii J et al. (1991) Identification of a mutation in porcine ryanodine receptor associated 
with malignant hyperthermia. Science (New York, NY) 253:448-451 

Fuste JM et al. (2010) Mitochondrial RNA polymerase is needed for activation of the 
origin of light-strand DNA replication. Molecular cell 37:67-78 

Gabriel-Costa D et al. (2015) Lactate up-regulates the expression of lactate oxidation 
complex-related genes in left ventricular cardiac tissue of rats. PloS one 
10:e0127843 

Gao J, Wen S, Zhou H, Feng S (2015) De-methylation of displacement loop of 
mitochondrial DNA is associated with increased mitochondrial copy number and 



References 
 

49 
 

nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. 
Molecular medicine reports 12:7033-7038 

Gao SM et al. (2010) Synergistic apoptosis induction in leukemic cells by miR-15a/16-1 
and arsenic trioxide. Biochemical and biophysical research communications 
403:203-208 

Gao Y et al. (2016) Changes of the mitochondrial DNA copy number and the antioxidant 
system in the PBMC of hepatocellular carcinoma. Chinese journal of applied 
physiology 32:1-5 

Giulivi C et al. (2011) Basal bioenergetic abnormalities in skeletal muscle from ryanodine 
receptor malignant hyperthermia-susceptible R163C knock-in mice. The Journal of 
biological chemistry 286:99-113 

Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. The 
Journal of physiology 558:5-30 

Greaser ML, Cassens RG, Briskey EJ, Hoekstra WG (1969) Post-Mortem Changes in 
Subcellular Fractions from Normal and Pale, Soft, Exudative Porcine Muscle. 1. 
Calcium Accumulation and Adenosine Triphosphatase Activities. Journal of Food 
Science 34:120-124 

Grivennikova VG, Vinogradov AD (2006) Generation of superoxide by the mitochondrial 
Complex I. Biochimica et biophysica acta 1757:553-561 

Gueguen N, Lefaucheur L, Fillaut M, Vincent A, Herpin P (2005) Control of skeletal 
muscle mitochondria respiration by adenine nucleotides: differential effect of ADP 
and ATP according to muscle contractile type in pigs. Comparative biochemistry 
and physiology Part B, Biochemistry & molecular biology 140:287-297 

Guha M et al. (2016) HnRNPA2 is a novel histone acetyltransferase that mediates 
mitochondrial stress-induced nuclear gene expression. Cell discovery 2:16045 

Hamilton DL, Findlay JA, Montagut G, Meakin PJ, Bestow D, Jalicy SM, Ashford ML 
(2014) Altered amyloid precursor protein processing regulates glucose uptake and 
oxidation in cultured rodent myotubes. Diabetologia 57:1684-1692 

Hejzlarova K et al. (2014) Nuclear genetic defects of mitochondrial ATP synthase. 
Physiological research / Academia Scientiarum Bohemoslovaca 63 Suppl 1:S57-71 

Hocquette JF, Ortigues-Marty I, Pethick D, Herpin P, Fernandez X (1998) Nutritional and 
hormonal regulation of energy metabolism in skeletal muscles of meat-producing 
animals. Livestock Production Science 56:115-143 

Hocquette JF, Ortigues-Marty I, Vermorel M (2001) Manipulation of Tissue Energy 
Metabolism in Meat-Producing Ruminants - Review. Asian-Australasian journal of 
animal sciences 14:720-732 

Hong L, Huang HC, Jiang ZF (2014) Relationship between amyloid-beta and the ubiquitin-
proteasome system in Alzheimer's disease. Neurological research 36:276-282 

Hou X, Tang Z, Liu H, Wang N, Ju H, Li K (2012) Discovery of MicroRNAs associated 
with myogenesis by deep sequencing of serial developmental skeletal muscles in 
pigs. PloS one 7:e52123 

Hu J et al. (2001) The ARKdb: genome databases for farmed and other animals. Nucleic 
acids research 29:106-110 

Huang J, Tan L, Shen R, Zhang L, Zuo H, Wang DW (2016) Decreased Peripheral 
Mitochondrial DNA Copy Number is Associated with the Risk of Heart Failure and 
Long-term Outcomes. Medicine 95:e3323 

Huang TH, Zhu MJ, Li XY, Zhao SH (2008) Discovery of porcine microRNAs and 
profiling from skeletal muscle tissues during development. PloS one 3:e3225 

Huber K, Petzold J, Rehfeldt C, Ender K, Fiedler I (2007) Muscle energy metabolism: 
structural and functional features in different types of porcine striated muscles. 
Journal of muscle research and cell motility 28:249-258 



References 
 

50 
 

Huff-Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: 
The role of postmortem biochemical and structural changes. Meat science 71:194-
204 

Huff Lonergan E, Zhang W, Lonergan SM (2010) Biochemistry of postmortem muscle - 
lessons on mechanisms of meat tenderization. Meat science 86:184-195 

Hunter RG et al. (2016) Stress and corticosteroids regulate rat hippocampal mitochondrial 
DNA gene expression via the glucocorticoid receptor. Proceedings of the National 
Academy of Sciences of the United States of America 113:9099-9104 

Huynh TP, Murani E, Maak S, Ponsuksili S, Wimmers K (2013) UBE3B and ZRANB1 
polymorphisms and transcript abundance are associated with water holding 
capacity of porcine M. longissimus dorsi. Meat science 95:166-172 

Izumiya Y et al. (2008) Fast/Glycolytic muscle fiber growth reduces fat mass and improves 
metabolic parameters in obese mice. Cell metabolism 7:159-172 

Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase 
(AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. 
Proceedings of the National Academy of Sciences of the United States of America 
104:12017-12022 

Jin L et al. (2012) Mitochondrial DNA evidence indicates the local origin of domestic pigs 
in the upstream region of the Yangtze River. PloS one 7:e51649 

Jin O et al. (2014) RyR1 mutation associated with malignant hyperthermia facilitates 
catecholaminergic stress-included arrhythmia via mitochondrial injury and 
oxidative stress (893.8). The FASEB Journal 28:893.898 

Jo A et al. (2015) Efficient Mitochondrial Genome Editing by CRISPR/Cas9. BioMed 
research international 2015:305716 

Kaaman M, Sparks LM, van Harmelen V, Smith SR, Sjolin E, Dahlman I, Arner P (2007) 
Strong association between mitochondrial DNA copy number and lipogenesis in 
human white adipose tissue. Diabetologia 50:2526-2533 

Kang C, Li Ji L (2012) Role of PGC-1alpha signaling in skeletal muscle health and disease. 
Annals of the New York Academy of Sciences 1271:110-117 

Karlsson A, Essen-Gustavsson B, Lundstrom K (1994) Muscle glycogen depletion pattern 
in halothane-gene-free pigs at slaughter and its relation to meat quality. Meat 
science 38:91-101 

Karlsson AH, Klont RE, Fernandez X (1999) Skeletal muscle fibres as factors for pork 
quality. Livestock Production Science 60:255-269 

Kasiviswanathan R, Collins TR, Copeland WC (2012) The interface of transcription and 
DNA replication in the mitochondria. Biochimica et biophysica acta 1819:970-978 

Kawamata H, Tiranti V, Magrane J, Chinopoulos C, Manfredi G (2011) adPEO mutations 
in ANT1 impair ADP-ATP translocation in muscle mitochondria. Human 
molecular genetics 20:2964-2974 

Kelly RD, Mahmud A, McKenzie M, Trounce IA, St John JC (2012) Mitochondrial DNA 
copy number is regulated in a tissue specific manner by DNA methylation of the 
nuclear-encoded DNA polymerase gamma A. Nucleic acids research 40:10124-
10138 

Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochimica et biophysica 
acta 1486:1-17 

Kim JM, Lim KS, Hong JS, Kang JH, Lee YS, Hong KC (2015) A polymorphism in the 
porcine miR-208b is associated with microRNA biogenesis and expressions of 
SOX-6 and MYH7 with effects on muscle fibre characteristics and meat quality. 
Animal genetics 46:73-77 

Kim NK et al. (2008) Comparisons of longissimus muscle metabolic enzymes and muscle 
fiber types in Korean and western pig breeds. Meat science 78:455-460 



References 
 

51 
 

Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ (2009) MicroRNAs identified 
in highly purified liver-derived mitochondria may play a role in apoptosis. RNA 
biology 6:65-72 

Krischek C, Natter R, Wigger R, Wicke M (2011) Adenine nucleotide concentrations and 
glycolytic enzyme activities in longissimus muscle samples of different pig 
genotypes collected before and after slaughter. Meat science 89:217-220 

Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and 
flexible. Nucleic acids research 34:W451-454 

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network 
analysis. BMC bioinformatics 9:559 

Leberer E, Pette D (1984) Lactate dehydrogenase isozymes in type I, IIA and IIB fibres of 
rabbit skeletal muscles. Histochemistry 80:295-298 

LeBleu VS et al. (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative 
phosphorylation in cancer cells to promote metastasis. Nature cell biology 16:992-
1003, 1001-1015 

Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and 
the critical role of the ubiquitin-proteasome pathway in normal and disease states. 
The Journal of nutrition 129:227S-237S 

Lee JS, Kim JM, Lim KS, Hong JS, Hong KC, Lee YS (2013) Effects of polymorphisms in 
the porcine microRNA MIR206 / MIR133B cluster on muscle fiber and meat 
quality traits. Animal genetics 44:101-106 

Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome 
proliferator-activated receptor gamma coactivator-1 promotes cardiac 
mitochondrial biogenesis. The Journal of clinical investigation 106:847-856 

Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by 
adenosines, indicates that thousands of human genes are microRNA targets. Cell 
120:15-20 

Li HY et al. (2012) Identification and comparison of microRNAs from skeletal muscle and 
adipose tissues from two porcine breeds. Animal genetics 43:704-713 

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA 
polymorphism data. Bioinformatics (Oxford, England) 25:1451-1452 

Lim D, Lee SH, Kim NK, Cho YM, Chai HH, Seong HH, Kim H (2013) Gene Co-
expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo 
(Korean) Cattle. Asian-Australasian journal of animal sciences 26:19-29 

Lin CS et al. (1999) Complete nucleotide sequence of pig (Sus scrofa) mitochondrial 
genome and dating evolutionary divergence within Artiodactyla. Gene 236:107-114 

Lin J et al. (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-
twitch muscle fibres. Nature 418:797-801 

Liu J, Liang X, Gan Z (2015) Transcriptional regulatory circuits controlling muscle fiber 
type switching. Science China Life sciences 58:321-327 

Liu L et al. (2014) MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of 
cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis : an international 
journal on programmed cell death 19:19-29 

Loan HT, Murani E, Maak S, Ponsuksili S, Wimmers K (2014) UBXN1 polymorphism 
and its expression in porcine M. longissimus dorsi are associated with water 
holding capacity. Molecular biology reports 41:1411-1418 

Ma J et al. (2015) The miRNA Transcriptome Directly Reflects the Physiological and 
Biochemical Differences between Red, White, and Intermediate Muscle Fiber 
Types. International journal of molecular sciences 16:9635-9653 



References 
 

52 
 

Martin MA et al. (2005) Leigh syndrome associated with mitochondrial complex I 
deficiency due to a novel mutation in the NDUFS1 gene. Archives of neurology 
62:659-661 

Marusich MF, Robinson BH, Taanman JW, Kim SJ, Schillace R, Smith JL, Capaldi RA 
(1997) Expression of mtDNA and nDNA encoded respiratory chain proteins in 
chemically and genetically-derived Rho0 human fibroblasts: a comparison of 
subunit proteins in normal fibroblasts treated with ethidium bromide and fibroblasts 
from a patient with mtDNA depletion syndrome. Biochimica et biophysica acta 
1362:145-159 

McDaneld TG et al. (2009) MicroRNA transcriptome profiles during swine skeletal muscle 
development. BMC genomics 10:77 

Merry TL, Steinberg GR, Lynch GS, McConell GK (2010) Skeletal muscle glucose uptake 
during contraction is regulated by nitric oxide and ROS independently of AMPK. 
American journal of physiology Endocrinology and metabolism 298:E577-585 

Mili S, Pinol-Roma S (2003) LRP130, a pentatricopeptide motif protein with a 
noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear 
RNAs. Molecular and cellular biology 23:4972-4982 

Monin G, Sellier P (1985) Pork of low technological quality with a normal rate of muscle 
pH fall in the immediate post-mortem period: The case of the Hampshire breed. 
Meat science 13:49-63 

Mourier A, Ruzzenente B, Brandt T, Kuhlbrandt W, Larsson NG (2014) Loss of LRPPRC 
causes ATP synthase deficiency. Human molecular genetics 23:2580-2592 

Murphy MP (2009) How mitochondria produce reactive oxygen species. The Biochemical 
journal 417:1-13 

Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin 
proteasome system in human skeletal muscle remodelling and atrophy. Biochimica 
et biophysica acta 1782:730-743 

Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annual 
review of biochemistry 76:723-749 

Nishi H et al. (2010) MicroRNA-15b modulates cellular ATP levels and degenerates 
mitochondria via Arl2 in neonatal rat cardiac myocytes. The Journal of biological 
chemistry 285:4920-4930 

Noji H, Yoshida M (2001) The rotary machine in the cell, ATP synthase. The Journal of 
biological chemistry 276:1665-1668 

O'Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid 
metabolism and mitochondrial biogenesis: implications for obesity. Molecular and 
cellular endocrinology 366:135-151 

Pai S, Ren J (2014) IdeoViz: Plots data (continuous/discrete) along chromosomal ideogram, 
R package version 1.6.0 edn.,  

Pan L et al. (2015) MiR-25 protects cardiomyocytes against oxidative damage by targeting 
the mitochondrial calcium uniporter. International journal of molecular sciences 
16:5420-5433 

Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an 
emerging reciprocal relationship. Nature reviews Genetics 13:271-282 

Pearson AM, Dutson TR (1994) Quality Attributes and Their Measurement in Meat, 
Poultry and Fish Products. Blackie Academic,  

Peter JB, Sawaki S, Barnard RJ, Edgerton VR, Gillespie CA (1971) Lactate dehydrogenase 
isoenzymes: distribution in fast-twitch red, fast-twitch white, and slow-twitch 
intermediate fibers of guinea pig skeletal muscle. Archives of biochemistry and 
biophysics 144:304-307 



References 
 

53 
 

Pickova A, Potocky M, Houstek J (2005) Assembly factors of F1FO-ATP synthase across 
genomes. Proteins 59:393-402 

Pohjoismaki JL, Wanrooij S, Hyvarinen AK, Goffart S, Holt IJ, Spelbrink JN, Jacobs HT 
(2006) Alterations to the expression level of mitochondrial transcription factor A, 
TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. 
Nucleic acids research 34:5815-5828 

Ponsuksili S, Du Y, Hadlich F, Siengdee P, Murani E, Schwerin M, Wimmers K (2013) 
Correlated mRNAs and miRNAs from co-expression and regulatory networks 
affect porcine muscle and finally meat properties. BMC genomics 14:533 

Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as 
intracellular signals in skeletal muscle. The Journal of physiology 589:2129-2138 

Psarra AM, Sekeris CE (2011) Glucocorticoids induce mitochondrial gene transcription in 
HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochimica et 
biophysica acta 1813:1814-1821 

Psarra AM, Solakidi S, Sekeris CE (2006) The mitochondrion as a primary site of action of 
steroid and thyroid hormones: presence and action of steroid and thyroid hormone 
receptors in mitochondria of animal cells. Molecular and cellular endocrinology 
246:21-33 

Rebelo AP, Dillon LM, Moraes CT (2011) Mitochondrial DNA transcription regulation 
and nucleoid organization. Journal of inherited metabolic disease 34:941-951 

Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective 
prediction of microRNA/target duplexes. RNA (New York, NY) 10:1507-1517 

Reznik E et al. (2016) Mitochondrial DNA copy number variation across human cancers. 
eLife 5 

Richard I et al. (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle 
muscular dystrophy type 2A. Cell 81:27-40 

Ros S, Schulze A (2013) Balancing glycolytic flux: the role of 6-phosphofructo-2-
kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer & metabolism 
1:8 

Rybalka E, Timpani CA, Cooke MB, Williams AD, Hayes A (2014) Defects in 
mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be 
caused by complex I insufficiency. PloS one 9:e115763 

Ryu YC et al. (2008) Comparing the histochemical characteristics and meat quality traits 
of different pig breeds. Meat science 80:363-369 

Salminen TS, Oliveira MT, Cannino G, Lillsunde P, Jacobs HT, Kaguni LS (2017) 
Mitochondrial genotype modulates mtDNA copy number and organismal 
phenotype in Drosophila. Mitochondrion 

Samovski D et al. (2015) Regulation of AMPK activation by CD36 links fatty acid uptake 
to beta-oxidation. Diabetes 64:353-359 

Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting 
genomes. Nature biotechnology 32:347-355 

Scheffler TL, Matarneh SK, England EM, Gerrard DE (2015) Mitochondria influence 
postmortem metabolism and pH in an in vitro model. Meat science 110:118-125 

Schleinitz D et al. (2011) Genetic and evolutionary analyses of the human bone 
morphogenetic protein receptor 2 (BMPR2) in the pathophysiology of obesity. PloS 
one 6:e16155 

Shen QW, Underwood KR, Means WJ, McCormick RJ, Du M (2007) The halothane gene, 
energy metabolism, adenosine monophosphate-activated protein kinase, and 
glycolysis in postmortem pig longissimus dorsi muscle. Journal of animal science 
85:1054-1061 



References 
 

54 
 

Shi Y, Buffenstein R, Pulliam DA, Van Remmen H (2010) Comparative studies of 
oxidative stress and mitochondrial function in aging. Integrative and comparative 
biology 50:869-879 

Shinde S, Bhadra U (2015) A complex genome-microRNA interplay in human 
mitochondria. BioMed research international 2015:206382 

Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA 
methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in 
mammalian mitochondria. Proceedings of the National Academy of Sciences of the 
United States of America 108:3630-3635 

Short KR, Nygren J, Barazzoni R, Levine J, Nair KS (2001) T(3) increases mitochondrial 
ATP production in oxidative muscle despite increased expression of UCP2 and -3. 
American journal of physiology Endocrinology and metabolism 280:E761-769 

Shukla GC, Singh J, Barik S (2011) MicroRNAs: Processing, Maturation, Target 
Recognition and Regulatory Functions. Molecular and cellular pharmacology 3:83-
92 

Siengdee P, Trakooljul N, Murani E, Schwerin M, Wimmers K, Ponsuksili S (2015) 
MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy 
Metabolism Genes during C2C12 Myoblast Differentiation. PloS one 10:e0127850 

Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: 
processes implicated in combined oxidative phosphorylation deficiencies. Journal 
of biomedicine & biotechnology 2010:737385 

Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on 
human skeletal muscle mitochondrial ATP production, protein synthesis, and 
mRNA transcripts. Proceedings of the National Academy of Sciences of the United 
States of America 100:7996-8001 

Tang J, Wang Z, Chen L, Huang G, Hu X (2015) Gossypol acetate induced apoptosis of 
pituitary tumor cells by targeting the BCL-2 via the upregulated microRNA miR-
15a. International journal of clinical and experimental medicine 8:9079-9085 

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The 
CLUSTAL_X windows interface: flexible strategies for multiple sequence 
alignment aided by quality analysis tools. Nucleic acids research 25:4876-4882 

Tiano JP, Springer DA, Rane SG (2015) SMAD3 negatively regulates serum irisin and 
skeletal muscle FNDC5 and peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1alpha) during exercise. The Journal of biological 
chemistry 290:7671-7684 

Torraco A, Peralta S, Iommarini L, Diaz F (2015) Mitochondrial Diseases Part I: mouse 
models of OXPHOS deficiencies caused by defects in respiratory complex subunits 
or assembly factors. Mitochondrion 21:76-91 

Tsai T, St John JC (2016) The role of mitochondrial DNA copy number, variants, and 
haplotypes in farm animal developmental outcome. Domestic animal 
endocrinology 56 Suppl:S133-146 

von Hofsten J, Elworthy S, Gilchrist MJ, Smith JC, Wardle FC, Ingham PW (2008) 
Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in 
the zebrafish embryo. EMBO reports 9:683-689 

Voos W, Rottgers K (2002) Molecular chaperones as essential mediators of mitochondrial 
biogenesis. Biochimica et biophysica acta 1592:51-62 

Wahlquist C et al. (2014) Inhibition of miR-25 improves cardiac contractility in the failing 
heart. Nature 508:531-535 

Wan L, Ma J, Xu G, Wang D, Wang N (2014) Molecular cloning, structural analysis and 
tissue expression of protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) 



References 
 

55 
 

gene in Tianfu goat muscle. International journal of molecular sciences 15:2346-
2358 

Wang J, Jiang J, Fu W, Jiang L, Ding X, Liu JF, Zhang Q (2012) A genome-wide detection 
of copy number variations using SNP genotyping arrays in swine. BMC genomics 
13:273 

Werner C, Natter R, Schellander K, Wicke M (2010a) Mitochondrial respiratory activity in 
porcine longissimus muscle fibers of different pig genetics in relation to their meat 
quality. Meat science 85:127-133 

Werner C, Natter R, Wicke M (2010b) Changes of the activities of glycolytic and oxidative 
enzymes before and after slaughter in the longissimus muscle of Pietrain and Duroc 
pigs and a Duroc-Pietrain crossbreed. Journal of animal science 88:4016-4025 

Werner C, Opalka JR, Gellerich FN, Wicke M (2005) The influence of mitochondrial 
function on meat quality in turkey and swine. Arch Anim Breed 48:106-114 

Wojtaszewski JF, Jorgensen SB, Hellsten Y, Hardie DG, Richter EA (2002) Glycogen-
dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-
activated protein kinase and glycogen synthase activities in rat skeletal muscle. 
Diabetes 51:284-292 

Wojtaszewski JF et al. (2003) Regulation of 5'AMP-activated protein kinase activity and 
substrate utilization in exercising human skeletal muscle. American journal of 
physiology Endocrinology and metabolism 284:E813-822 

Wu W, Ren Z, Zhang L, Liu Y, Li H, Xiong Y (2013) Overexpression of Six1 gene 
suppresses proliferation and enhances expression of fast-type muscle genes in 
C2C12 myoblasts. Molecular and cellular biochemistry 380:23-32 

Wu Z et al. (1999) Mechanisms controlling mitochondrial biogenesis and respiration 
through the thermogenic coactivator PGC-1. Cell 98:115-124 

Xie YM et al. (2015) Quantitative changes in mitochondrial DNA copy number in various 
tissues of pigs during growth. Genetics and molecular research : GMR 14:1662-
1670 

Xu B, Clayton DA (1996) RNA-DNA hybrid formation at the human mitochondrial heavy-
strand origin ceases at replication start sites: an implication for RNA-DNA hybrids 
serving as primers. The EMBO journal 15:3135-3143 

Xu X et al. (2002) The novel presenilin-1-associated protein is a proapoptotic 
mitochondrial protein. The Journal of biological chemistry 277:48913-48922 

Xu X, Xu X, Yin Q, Sun L, Liu B, Wang Y (2011) The molecular characterization and 
associations of porcine cardiomyopathy asssociated 5 (CMYA5) gene with carcass 
trait and meat quality. Molecular biology reports 38:2085-2090 

Yang Z, Lanks CW, Tong L (2002) Molecular mechanism for the regulation of human 
mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate. Structure 
(London, England : 1993) 10:951-960 

Yue G et al. (2003) Linkage and QTL mapping for Sus scrofa chromosome 6. Journal of 
Animal Breeding and Genetics 120:45-55 

Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network 
analysis. Statistical applications in genetics and molecular biology 4:Article17 

Zhou R et al. (2015) Mitochondria-related miR-151a-5p reduces cellular ATP production 
by targeting CYTB in asthenozoospermia. Scientific reports 5:17743 

Zhou Z, Zhou J, Du Y (2012) Estrogen receptor alpha interacts with mitochondrial protein 
HADHB and affects beta-oxidation activity. Molecular & cellular proteomics : 
MCP 11:M111 011056 

Zuo L, Pannell BK (2015) Redox Characterization of Functioning Skeletal Muscle. 
Frontiers in physiology 6:338 



Annex 
 

56 
 

 

 

 

 

 

ANNEX A 
 Publications 

 

 

 

 

 

 

 

 

 

 

 



Annex 
 

57 
 

List of publications  

A.1 Muscle transcriptional profile based on muscle fiber, mitochondrial respiratory 

activity and metabolic enzymes 

Xuan Liu, Yang Du, Nares Trakooljul, Bodo Brand, Eduard Muráni, Carsten Krischek, 

Michael Wicke, Manfred Schwerin, Klaus Wimmers, Siriluck Ponsuksili 

Published in: International Journal of Biological Sciences (2015) 11(12):1348-1362  

DOI: 10.7150/ijbs.13132   

A.2 MicroRNA-mRNA regulatory networking fine-tunes the porcine muscular 

mitochondrial respiratory and metabolic enzyme activities    

Xuan Liu, Nares Trakooljul, Frieder Hadlich, Eduard Muráni, Klaus Wimmers, Siriluck 

Ponsuksili 

Published in: BMC Genomics (2016) 17:531 

DOI: 10.1186/s12864-016-2850-8  

A.3 Molecular changes in mitochondrial respiratory activity and metabolic enzyme 

activity in muscle of four pig breeds with distinct metabolic types 

Xuan Liu, Nares Trakooljul, Eduard Muráni, Carsten Krischek, Karl Schellander,  Michael 

Wicke, Klaus Wimmers, Siriluck Ponsuksili 

Published in: Journal of Bioenergetics and Biomembranes (2016) 48(1):55-65  

DOI: 10.1007/s10863-015-9639-3  

A.4 Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct 

in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities 

Xuan Liu, Nares Trakooljul, Frieder Hadlich, Eduard Muráni, Klaus Wimmers, Siriluck 

Ponsuksili 

Published in: Scientific Reports (2017) 7: 14024 

DOI: 10.1038/s41598-017-14491-w  



Int. J. Biol. Sci. 2015, Vol. 11 
 

 
http://www.ijbs.com 

1348 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  BBiioollooggiiccaall  SScciieenncceess  
2015; 11(12): 1348-1362. doi: 10.7150/ijbs.13132 

Research Paper 

Muscle Transcriptional Profile Based on Muscle Fiber, 
Mitochondrial Respiratory Activity, and Metabolic En-
zymes  
Xuan Liu1, Yang Du1, Nares Trakooljul1, Bodo Brand1, Eduard Muráni1, Carsten Krischek2, Michael Wicke3, 
Manfred Schwerin1, Klaus Wimmers1, Siriluck Ponsuksili1  

1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany 
2. 2 Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany. 
3. 3 Department of Animal Science, Quality of Food of Animal Origin, Georg-August-University Goettingen, D-37075 Goettingen, Germany.  

 Corresponding author: Siriluck Ponsuksili, Leibniz Institute for Farm Animal Biology Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany. 
Phone: +49 38208 68700; Fax: +49 38208 68702; Email: s.wimmers@fbn-dummertorf.de 

© 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.  
See http://ivyspring.com/terms for terms and conditions. 

Received: 2015.07.03; Accepted: 2015.09.07; Published: 2015.11.01 

Abstract 

Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Im-
portant biological pathways that affect energy metabolism and metabolic fiber type in muscle cells 
may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, 
gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and 
Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber 
(STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent 
state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and 
profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle 
samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, 
and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene 
co-expression network analysis within both breeds identified several co-expression modules that 
were associated with the proportion of different fiber types, mitochondrial respiratory activity, 
and ATP metabolism. In particular, Duroc results revealed strong correlations between mito-
chondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = 
-0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the pro-
tein-kinase-activity enriched module were positively correlated with STO (r=0.93), while nega-
tively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in 
macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were 
associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. 
Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle 
and for breed-dependent molecular pathways in muscle cell fibers. 

Key words: microarray; muscle; muscle fiber; mitochondrial Respiratory Activity 

Introduction 
Skeletal muscle activity requires energy through 

anabolism and catabolism of glycogen, carbohydrates, 
and fat, all of which are important for energy storage 
and supply [1]. The major currency molecule of en-
ergy, adenosine triphosphate (ATP), is produced 
mainly through oxidative phosphorylation in mito-

chondria. In oxygen-deficient or oxygen-depleted 
conditions, like exhaustive exercise or even death af-
ter slaughter in meat-producing animals, anaerobic 
glycolysis produces an accumulation of lactic acid and 
lowers the muscle pH, both of which ultimately lead 
to muscle ache and cell damage or to impaired meat 
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tenderness and flavor [1, 2]. Further, factors like the 
proportion of glycolytic and oxidative fibers are asso-
ciated with meat characteristics such as color [3]. 
Generally, a higher fat content and more oxidative 
fibers than glycolytic fibers can improve the juiciness 
and tenderness of meat. Therefore, energy metabo-
lism in the muscle cells needs to be properly regulated 
for optimal metabolic functions for different muscle 
fibers and can ultimately influence meat quality [2].  

Two well-studied commercial pig breeds, Duroc 
and Pietrain, exhibit distinct muscle phenotypes and 
meat quality. For example, Duroc pigs are fattier and 
have lower muscle mass but a higher percentage of 
slow-twitch oxidative muscle fibers compared to Pie-
train pigs, which are more muscular and have a 
higher lean meat percentage and more fast-twitch 
glycolytic fibers. These differences may be attributed 
to differences in gene expression profiles of the mus-
cle in these two breeds, which arise as early as the 
prenatal stages [4, 5]. Although mitochondrial respir-
atory and metabolic enzyme activities have been well 
studied in the different muscle fiber types of these two 
breeds [6-8], the underlying molecular basis of their 
differences remains to be unraveled. 

In the present study, microarray-based tran-
scription profiling, differential gene expression and 
weighted gene co-expression network analysis 
(WGCNA) were used to dissect pathways associated 
with muscle fiber types and activities of glycolytic and 
oxidative enzymes in longissimus muscle samples 
obtained 24 h before slaughter of Duroc and Pietrain. 
WGCNA groups genes into a co-expression net-
work/module based on their similarity of expression 
patterns. This approach has been demonstrated to 
identify genes sharing similar functions and/or in-
volved in related molecular events [9]. Results from 
the present study shed light on biological pathways 
related to energy metabolism and mitochondrial res-
piratory activity in muscle cell, and this may have 
implications for pork quality. 

Materials and Methods  
Sample collection and phenotypic measure-
ment 

This experiment and muscle biopsy collection 
have been approved and authorized by the German 
and European animal welfare regulations for animal 
husbandry, transport, and slaughter [6-8]. Animal 
care and tissue collection procedures followed the 
guidelines of the German Law of Animal Protection, 
and the experimental protocol was approved by the 
Animal Care Committee of the research institutions 
and with an official permission from the responsible 
authorities (Niedersächsischen Landesamt für Ver-

braucherschutz und Lebensmittelsicherheit (LAVES) 
33.42502/01-47.05). The experimental protocol was 
carried out in accordance with the approved guide-
lines for safeguarding good scientific practice 

As previously described [6-8], Duroc and Pie-
train (PiNN) pigs, which are a subset of animals from 
our previous study, were raised until 180 days of age. 
To avoid the effects of the malignant hyperthermia 
syndrome (MHS) locus, only muscle samples from 
MHS-negative genotype pigs were investigated. 
Muscle biopsies were collected from five female and 
male pigs of each breed (n=20) for DNA microarray 
analysis and phenotypic measurements. Biopsies 
were collected from the longissimus muscle (LM) 
between the 13/14th thoracic vertebrae (Th) 24 h be-
fore slaughter. Phenotypic measurements of muscle 
fiber types, mitochondrial respiratory activity, and 
activities of glycolytic and oxidative enzymes were 
performed as described previously [6-8]. A short def-
inition and a brief description of the applied methods 
for all phenotypic traits are provided in Supplemental 
Table S1.  

Total RNA isolation 
Total RNA was isolated from the LM biopsies 

kept at -80 °C (Duroc n=10, PiNN n=10) using 
Tri-Reagent and RNeasy Mini kit (Qiagen) with an 
on-column DNase treatment according to the manu-
facturer’s protocol. The RNA integrity was assessed 
on a 1% agarose gel by electrophoresis. The RNA 
concentration was measured by a Nano Drop 
ND-1000 Spectrophotometer (PEQLAB).  

DNA microarray analysis  
Porcine Snowball Microarray (Affymetrix) con-

taining 47,880 probe-sets was used to determine the 
expression profile of the LM 24 h ante mortem of 
Duroc and PiNN pigs. 500 ng total RNA isolated from 
each biopsy were used for cDNA synthesis and sub-
sequent biotin labeling using the Affymetrix WT plus 
Expression kit and Genechip WT terminal labeling 
and hybridization kit according to the manufacturer’s 
instructions. Each of the labeled cRNA samples was 
hybridized on the array (n=20). The hybridization, 
washing, and scanning of the arrays was performed in 
accordance with the manufacturer’s recommenda-
tions. Affymetrix GCOC1.1.1 software was used for 
quality control. Expression Console software was 
used for robust multichip average (RMA) normaliza-
tion and the detection of present genes by applying 
the DABG (detection above background) algorithm. 
Further filtering was done by excluding transcripts 
with low signals and probes that were present in less 
than 80% of the samples within each breed. 17,820 
probes passed the quality filtering and were used for 
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further analyses. Differential expression analysis was 
performed using the ANOVA procedure in JMP ge-
nomics 7 (SAS Institute). The breed was treated as a 
fixed effect. False discovery rate (FDR) was used to 
control an error rate of a multiple-hypothesis testing 
according to Benjamini & Hochberg [10]. The expres-
sion data are available in the Gene Expression Om-
nibus public repository with the GEO accession 
number GSE69840: GSM1709900 – GSM1709919.  

Weighted gene co-expression network analysis 
(WGCNA)  

Post-filter, 17,820 probes were utilized in the 
construction of weighted gene co-expression net-
works using the blockwise modules function in the 
WGCNA R package as described previously [9, 11, 
12]. The analysis was applied separately for each 
breed. The WGCNA procedure calculated a Pearson 
correlation matrix for all genes then an adjacency 
matrix was calculated by raising all values to a power 
ß from the correlation matrix. The adjacency matrix 
was converted to a topological overlap matrix (TOM) 
and the TOM-based dissimilarity matrix for hierar-
chical clustering. The gene co-expression modules 
were identified from the hierarchical cluster tree using 
a dynamic tree cut procedure. The formula of topo-
logical overlap matrix (TOM) Ω = [𝜔𝜔𝑖𝑖𝑖𝑖] was as follows, 

𝜔𝜔𝑖𝑖𝑖𝑖 =
𝑎𝑎𝑖𝑖𝑖𝑖+∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑢𝑢𝑢𝑢𝑢𝑢

𝑚𝑚𝑚𝑚𝑚𝑚�∑ 𝑎𝑎𝑖𝑖𝑖𝑖,∑ 𝑎𝑎𝑗𝑗𝑗𝑗𝑢𝑢𝑢𝑢 �+1−𝑎𝑎𝑖𝑖𝑖𝑖
, 𝑎𝑎𝑖𝑖𝑖𝑖 = �𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��

ß 

where xi and xj  were the gene expression profile of the 
xi-th and xj-th gene and aij was the adjacency. By in-
specting the scale-free topology model fit, the power ß 
was selected as the minimal ß value giving a coeffi-
cient of determination R2 higher than 90%. Modules 
were further merged based on the dissimilarity be-
tween their eigengenes, which were defined as the 
first principle component of each module. Genes that 
were not assigned to another module were assigned 
to module grey. Eigengenes act as the representative 
for each module. To identify gene co-expression 
modules highly correlated to the phenotype, mod-
ule-trait relationships were estimated using the cor-
relation between the module eigengene and the phe-
notype.    

Gene functional annotation and pathway 
analysis  

To identify pathways related to phenotypic dif-
ferences of the muscle between Duroc and PiNN pigs, 
differentially expressed genes (DEGs) between these 
two breeds were analyzed using the IPA software 
(Ingenuity Systems, http://www.ingenuity.com). 
IPA categorizes genes based on annotated gene func-
tions and statistically tests for over-representation of 
functional terms within the gene list using Fisher’s 

Exact Test. Moreover, we used WGCNA to identify 
gene network modules based on their co-expression 
patterns and correlated them with phenotypic meas-
urements or traits for both pig breeds separately. A 
gene list of each significant module-trait correlation 
was analyzed to obtain biologically meaningful rep-
resented pathways based on an enrichment score and 
p-value threshold using IPA and the DAVID 
online-tool (Database for Annotation, Visualization 
and Integrated Discovery; http://david.abcc.ncifcrf. 
gov/home.jsp).  

Quantitative real time PCR (qPCR) for mi-
croarray validation  

qPCR of each individual RNA sample (n=20) 
was performed using a fast gene expression analysis, 
EvaGreen, and the BioMark HD Real-time PCR Sys-
tem according to manufacturer’s recommendation 
(Fluidigm). Briefly, cDNA was synthesized from 2 µg 
of total RNA using Superscript II reverse transcriptase 
and Oligo dT with a specific target amplification 
(STA) and Exonuclease I treatment. The qPCR reac-
tion was performed using a 48X48 Dynamic Array 
and integrated fluidic circuit (IFC). For each sample 
inlet, 2.5 uL SsoFast EvaGreen supermix with low 
ROX (Biorad), 0.25 uL DNA binding dye sample 
loading reagent, and 2.25 uL STA and Exo-I treated 
sample were loaded. For each assay inlet, 2.5 uL assay 
loading reagent, 2.25 uL DNA suspension buffer, and 
0.25 uL 100 uM mixed (forward and reverse) primers 
were loaded. All measurements were performed in 
duplicate. The thermal parameters were 95 oC for 60 s, 
followed by 30 cycles of 95 oC for 5 s and 60 oC for 20s. 
The primer sequence information is accessible in 
Supplemental Table S2. ATP6V1C1, ATP6V1E1, 
COX10, COX7A2, CYB5A, NDUFS1, NDUFS6 and 
PPA1 were selected for a qPCR validation based on 
their functions related to energy metabolism. Three 
reference genes, ACTB, RPL32, and RPS11 were used 
to normalize the expression value. Correlation coeffi-
cient analysis between the microarray and qPCR was 
calculated using SAS 9.3 (SAS Institute).   

Results 
Phenotypic traits   

Definitions for all phenotype traits are listed in 
Supplemental Table S1 and the results are depicted in 
Figure 1. Muscle fiber composition analysis indicated 
that Duroc pigs had a higher percentage of 
slow-twitch-oxidative fiber (STO) (16.08 vs 9.99 %; 
p-value=0.032) and a smaller percentage of 
fast-twitch-oxidative fiber (FTO) (8.62 vs 15.13 %, 
p=0.019) compared to PiNN pigs. No difference be-
tween breeds was observed for the 
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fast-twitch-glycolytic fiber (FTG). The succin-
ate-dependent state 3 respiration rate, a measure of 
mitochondrial activity, was significantly higher in 
Duroc than PiNN pigs (p<0.05). Other mitochondrial 
respiratory activity (MRA) and respiratory control 
index (RCI) parameters such as pyruvate-dependent 
state 3 respiration and state 4 respiration tended to be 
higher in Duroc than PiNN but did not reach the sig-
nificance threshold. Metabolic enzymes such as gly-
cogen phosphorylase (GP), phosphofructokinase 

(PFK), and lactate dehydrogenase (LDH) had com-
parable enzyme activities between breeds, while Du-
roc pigs had slightly higher activities of citrate syn-
thase (CS), complex I, and complex II. There were no 
differences for adenine nucleotide concentrations of 
inosine 5’-monophosphate (IMP), adenosine 
5’-monophosphate (AMP), adenosine diphosphate 
(ADP), and adenosine triphosphate (ATP) between 
these two breeds.  

 
Figure 1. Least squares means and SD of a) muscle fiber percentage b) mitochondrial respiration activities c) metabolic enzyme activities d) oxidative 
enzyme activities and e) adenine nucleotide concentrations depending on pig breeds Duroc and PiNN 24h antemortem. 
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Table 1. Differentially expressed genes (DEGs) in the top three canonical pathways derived from Ingenuity Pathway Analysis (IPA) for 
Duroc and Pietrain (PiNN) pigs 

DEGs Ingenuity Canonical 
Pathways 

p-value No. 
of 
genes 

Genes 

Duroc- 
up 

Protein Ubiquitination 
Pathway 

3.15E-08 33 USP45, UBE2D2, FBXW7, DNAJC3, DNAJC13, DNAJC10, SKP1, USO1, USP8, USP7, DNAJC28, 
HSP90B1, USP13, BIRC3, USP28, USP15, USP38, BIRC6, DNAJC1, MDM2, USP1, UBE2D1, 
DNAJB14, UBE3A, XIAP, SKP2, UCHL3, DNAJC21, CUL2, UBR1, USP34, USP25, BIRC2 

Mouse Embryonic Stem 
Cell Pluripotency 

3.08E-06 16 IL6ST, PIK3CA, TCF4, JAK1, PIK3C2A, PIK3R1, SOS2, BMPR2, XIAP, NANOG, PTPN11, 
BMPR1A, SOS1, MAP3K7, SMAD4, GSK3B 

HIPPO signaling 4.62E-06 15 DLG1, TJP2, PPP2R2A, PPP1R11, STK3, SKP1, PPP2R5A, SKP2, ITCH, PPP1CC, PPP1R12A, 
PPP2R3A, SMAD4, PPP2R5E, INADL 

PiNN-up Amyloid Processing 2.07E-04 8 CSNK1E, CAPN6, AKT1, CDK5, APH1A, MAPT, PSENEN, CAPN3 
3-phosphoinositide Bio-
synthesis 

2.91E-04 15 PPFIA1, PPAPDC3, EPHX2, MDP1, PIP4K2B, PPP4C, MTMR6, CDC25B, PPP1R16B, DUSP1, 
CDIP, PPM1H, CILP, THTPA, PI4KB 

3-phosphoinositide Deg-
radation 

3.12E-04 14 CDC25B, MTMR6, PPFIA1, INPP4A, PPAPDC3, DUSP1, PPP1R16B, EPHX2, PPM1H, MDP1, 
CILP, PPP4C, THTPA, MTMR3 

 

Table 2. Differentially expressed genes (DEGs) in interesting functional categories derived from Ingenuity Pathway Analysis (IPA) for 
Duroc and Pietrain (PiNN) pigs 

DEGs Functions p-value No. of 
genes 

Genes 

Du-
roc-up 

Skeletal and muscular sys-
tem development and func-
tion 

1.48E-03 - 
5.48E-03 

26 AR, NEB, PPARGC1A, CHSY1, CHUK, PBX1, PDS5B, RBL1, RBL2, BNIP2, HSP90B1, 
MSTN, RB1, SSPN, DMD, GABPA, UTRN, CMYA5, PPP3CA, FMN1, HIF1A, KIAA1715, 
LRP6, MECOM, NIPBL, RPGRIP1L 

Carbohydrate metabolism 5.48E-03 - 
5.48E-03 

23 ABCC9, APPL1, CD36, DPP4, HIF1A, LNPEP, PIK3C2A, PIK3CA, PIK3R1, PPM1A, PREX2, 
PRKAA1, PRKAA2, PRKD3, PTEN, PTPN11, RHOQ, SEPT7, SKP2, SLC1A3, SSFA2, 
STEAP4, WWP1 

PiNN-up Skeletal and muscular sys-
tem development and func-
tion 

1.77E-06 - 
1.24E-02 

80 ACVR2B, AKT1, ANXA6, ASB2, ATP2A1, ATP6V0C, BECN1, CAND2, CAPN3, CAPN6, 
CAV3, CDK5, CDK9, CEBPB, CLCN1, COL6A1, COL6A3, CRYAB, CSF1, CXCL12, DDR1, 
DISP1, DNAJC5, DUSP1, ENG, ENO1, ERBB2, ERRFI1, ESR1, FADD, FLII, FZD4, GAA, 
GAB2, GSK3A, HEXIM1, HSPB2, HSPG2, ICMT, ILK, JMJD6, JSRP1, KCNJ11, KCNJ12, 
KREMEN1, LMNA, LTBP1, MEF2D, MMP2, MPRIP, MTOR, MYH14, NOL3, NPNT, 
NPRL3, P2RX6, PLOD1, PRKCA, RAB35, RRAGA, RXRA, SCARB2, SCN1B, SCN4B, SF3B4, 
SLC6A8, SMAD3, SPEG, SPRY2, SRF, SRL, SRPK3, STIM1, SUFU, SYPL2, THRA, TLR5,  
TNFRSF11B, USP19, VCAM1 

Carbohydrate metabolism 4.66E-05 - 
1.23E-02 

50 AKT1, ALG2, AP2M1, APOD, CDIPT, CEBPB, CLN6, CSF1, DPM3, ERBB2, FITM2, GAA, 
GAPDH, GSK3A, GYS1, HLAA, INPP4A, KCNJ11, LPIN1, MAN2B2, MDP1, MECP2, 
MMP2, MTMR3, MTOR, NF2, NISCH, NR1D1, PCYT2, PFKFB2, PI4KB, PIGB, PIGC, PIGL, 
PIGO, PIGQ, PIP4K2B, PLA2G15, PLCD1, RAB35, SCAP, SERINC2, SMAD3, SMARCB1, 
SPI1, TFEB, USP2, WDTC1, XYLT1, ZFYVE1 

 
 

Differentially expressed genes and pathway 
analysis  

Out of 47,880 probe-sets on the snowball micro-
array, 17,820 quality-filtered probes were further an-
alyzed for differential expression between Duroc and 
PiNN muscle samples using ANOVA on JMP Ge-
nomics 7. In total, 2,345 probes were differentially 
expressed (FDR<0.05) between Duroc and PiNN pigs. 
Among these, 1,402 probes were up-regulated in Du-
roc pigs, while 943 probes were up-regulated in PiNN 
pigs (Table S3). Differentially expressed genes were 
analyzed with IPA to identify prominent pathways 
and biological functions. The top three canonical 
pathways and related genes are shown in Table 1. 
Protein ubiquitination, embryonic stem cell pluripo-
tency, and HIPPO signaling pathways were 
over-represented in Duroc, while amyloid processing, 
and 3-phosphoinositide biosynthesis and degradation 
were enriched in PiNN. Since our phenotypic data 
showed tendencies of differential muscle trait meas-
urements in these pigs (Table S1 and Figure 1), we 

also looked into differentially expressed genes be-
tween Duroc and PiNN that are assigned to the func-
tional categories related to skeletal and muscular 
system development and function as well as carbo-
hydrate metabolism to obtain insight into candidate 
genes for meat quality, as shown in Table 2.   

Weighted gene co-expression network analysis   
Due to considerable differences in genetics and 

phenotypes between Duroc and PiNN, the weighted 
gene co-expression network analysis (WGCNA) was 
performed using post quality-filtered data of 17,820 
probes separately for each breed. WGCNA grouped 
genes into 21 modules for Duroc and 20 modules for 
PiNN based on their co-expression patterns. The 
number of genes in each module is listed in Supple-
mental Tables S4 and S5 for Duroc and PiNN, respec-
tively. Further, the representative of each module, an 
eigengene that is the 1st principle component, was 
tested for a significant correlation between each 
module with all 19 traits related to muscle fiber 
composition, mitochondrial respiration activity, en-
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zyme activities, and adenine nucleotide concentration. 
The co-expression transcripts in each module and 
associated gene ontology (GO) terms were identified 
using DAVID functional annotation for Duroc (Table 
S4) and PiNN (Table S5) separately. In addition, 
modules that were associated with the function ‘en-
ergy production’ were also identified using IPA.  

Muscle fiber composition-related gene 
co-expression modules  

For Duroc pigs, a total of 21 modules were ex-
amined for their relationship with all measured traits. 
Of them, 13, 10, and 9 modules were correlated with 
the percentage of STO, FTO, and FTG muscle fibers, 
respectively (p<0.05). Among these, modules blue and 
green-yellow (each co-expression module was arbi-
trarily color-coded) were positively correlated with 
STO fibers (blue/STO, r=0.87, p=0.001; 
green-yellow/STO, r=0.78, p=0.008), while negatively 
correlated with FTG fibers (blue/FTG, r= -0.94, 
p=5E-05; green-yellow/FTG, r= -0.98 p=7E-07) as 
shown in Figure 2. Functional analysis showed that 
the blue and green-yellow modules were associated 
with GO terms ‘mitochondrion’ and ‘mitochondrial 
part’ (Table 3). Interestingly, modules dark-orange 
and cyan showed the inverse relationship to STO and 
FTG; they were negatively correlated with STO while 
positively correlated with FTG (dark-orange/STO, r= 
-0.72, p=0.02; cyan/STO, r= -0.82, p=0.004; 
dark-orange/FTG r=0.89 p=6E-04; cyan/FTG, r=0.73, 
p=0.02). Modules dark-orange and cyan were associ-
ated with ‘intracellular organelle lumen’ and ‘regula-
tion of phosphorylation’, respectively. Furthermore, 
modules saddle-brown, black, and white were posi-
tively correlated with STO with correlation coeffi-
cients (r) ranging from 0.76 to 0.93 (p<0.01), while 
negatively correlated with FTO (r= -0.72 to -0.83, 
p<0.02). The related genes within the modules were 
associated with GO-terms ‘protein kinase activity’, 
‘phosphorus metabolic process’, and ‘cytoskeleton’, 
respectively. In addition, module cyan was also 
highly correlated with MRA measurements including 
state 3 pyruvate (r= -0.92, p=2E-04), state 3 succinate 
(r= -0.8, p=0.005), and state 4 CAT (r= -0.65, p=0.04). 
Module green-yellow, dark-grey, and white were all 
positively correlated with oxidative enzyme Complex 
I and COX with the correlation coefficients ranging 
between 0.66 to 0.86 (p<0.04), also shown in Figure 2, 
and their gene members were enriched for GO terms 
‘mitochondrial part’, ‘cytoplasmic vesicle’, and ‘cyto-
skeleton’, respectively. 

A total of 20 gene co-expression modules were 
tested for a trait correlation in PiNN pigs. Overall, 
fewer significant module-trait relationships were ob-
served in PiNN (Figure 3) compared to Duroc pigs 

(Figure 2). Modules pale-violet-red 1 and 
green-yellow were positively correlated with STO 
(r=0.66 to 0.82, p<0.04). Module black was negatively 
correlated with FTG (r= -0.75, p=0.01). Modules 
green-yellow and black were enriched for ‘actin cy-
toskeleton’ and ‘cellular macromolecule catabolic 
process’, respectively, while no significant enrichment 
term for module pale violet-red was identified. For 
glycolytic enzyme measurements, module green, en-
riched for ‘transcription activator activity’, was posi-
tively correlated with GP and LDH with (r ranged 
from 0.67 to 0.8 with p<0.03) as shown in Figure 3. 
Modules significantly correlated with mitochondrial 
activities included module white, which showed a 
negative correlation with state-3-pyruvate (r= -0.81, 
p=0.004), state-3-succinate (r= -0.71, p=0.02), and 
AMP (r= -0.85, p=0.002), but a positive correlation 
with ADP (r=0.71, p=0.02). Gene members of this 
module were over-represented in ‘enzyme binding’. 
Module blue 2, associated with ‘macromolecule cata-
bolic process’, was negatively correlated with ADP 
(r= -0.72, p=0.02) and ATP (r= -0.65, p=0.04).  

Several gene members of these significant 
trait-correlated modules were also differentially ex-
pressed between Duroc and PiNN as shown in Sub-
plemental Table S4 and S5. 

Energy production-related gene co-expression 
modules 

To identify potential candidate genes that may 
play important roles in energy metabolism in the 
muscle, the co-expression modules that were signifi-
cantly correlated with the trait measurements of mi-
tochondrial respiration activity, enzyme activities, 
and adenine nucleotide concentration (p<0.05) were 
associated to the functional category ‘energy produc-
tion’ using the IPA enrichment. In Duroc pigs, 4 out of 
11 modules were linked to ‘energy production’ to-
gether with its functions annotation network, as 
shown in Table 5. Of these, module dark-red was 
correlated with RCI pyruvate (r= -0.68, p=0.03); 
green-yellow with Complex I (r=0.72, p=0.02) and 
COX (r=0.86 p=0.002); dark-orange with GP (r= -0.68, 
p=0.03) and AMP (r= -0.66, p=0.04); and purple with 
LDH (r= -0.75, p=0.01). In PiNN pigs, 5 out of 11 
modules were associated with ‘energy production’ 
together with its functions annotation network (Table 
6). These were (module/trait) dark-green/CS (r=0.66, 
p=0.04), green-yellow/State 3 Succinate (r=0.7, 
p=0.03), grey 60/CS (r=0.71, p= 0.02), 
light-steel-blue/RCI pyruvate (r= 0.67, p=0.03), 
light-steel-blue/CS (r=0.72, p=0.02), and medi-
um-orchid/GP (r=0.67, p=0.03). Several gene mem-
bers of these significant trait-correlated modules were 
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also differentially expressed between Duroc and 
PiNN: LRPPRC, PPARGC, (see also Tables 5 and 6). 

qRT-PCR validation 
The expression of ATP6V1C1, ATP6V1E1, 

COX10, COX7A2, CYB5A, NDUFS1, NDUFS6, and 

PPA1 were validated by qPCR. The correlation coeffi-
cient between qPCR and microarray data ranged from 
0.59 (p<0.006) to 0.81 (p<0.0001), suggesting a good 
concordance between microarray and qPCR results, 
as shown in Figure 4.  

Table 3. Gene ontology (GO) terms for significant trait-correlated modules in Duroc 

Module Top Term Count1 Percent2 P-value of 
Top Term 

saddlebrown GO:0004672~protein kinase activity 18 7.76 4.78E-03 
black GO:0006793~phosphorus metabolic process 44 9.40 3.61E-04 
blue GO:0005739~mitochondrion 182 9.20 5.98E-10 
green-yellow GO:0044429~mitochondrial part 45 6.86 5.81E-06 
light cyan GO:0044420~extracellular matrix part 9 2.72 1.57E-03 
dark grey GO:0031410~cytoplasmic vesicle 17 6.77 2.10E-02 
white GO:0005856~cytoskeleton 31 11.92 6.49E-03 
dark orange GO:0070013~intracellular organelle lumen 33 13.41 7.40E-03 
cyan GO:0042325~regulation of phosphorylation 23 6.74 9.28E-05 
1 No. of genes in term 
2 (No. of genes in term/No. of genes in module)×100 

 
 

 
Figure 2. Correlation matrix between each module and trait for Duroc pigs. Weighted gene co-expression network analysis (WGCNA) was used to 
group genes into 21 different modules based on their co-expression pattern. Each module is assigned arbitrarily to a color. The respective colors are shown 
on the left. The eigengene of each module, as a representative of the corresponding module, was tested for correlation with each trait. Shown are the 
correlation coefficients and the corresponding p-values in brackets. Cell color encodes correlation (red, positive correlation; green, negative correlation). 
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Table 4. Gene ontology (GO) terms for significant trait-correlated modules in Pietrain (PiNN) 

Module Top Term Count1 Percent2 P-value of Top 
Term 

white GO:0019899~enzyme binding 8 7.14 3.96E-02 
blue 2 GO:0009057~macromolecule catabolic process 159 7.93 2.75E-15 
green-yellow GO:0015629~actin cytoskeleton 16 12.50 1.93E-10 
green GO:0016563~transcription activator activity 35 5.47 2.61E-06 
1 No. of genes in term 
2 (No. of genes in term/No. of genes in module)×100 

 
 

Table 5. Gene co-expression modules associated with energy production in Ingenuity Pathway Analysis (IPA) for Duroc 
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Table 6. Gene co-expression modules associated with energy production in Ingenuity Pathway Analysis (IPA) for Pietrain (PiNN) 
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Figure 3. Correlation matrix between each module and trait for PiNN pigs. Weighted gene co-expression network analysis (WGCNA) is used to group 
genes into 20 different modules based on their co-expression pattern. Each module is assigned arbitrarily to a color. The respective colors are shown on 
the left. The eigengene of each module, as a representative of the corresponding module, was tested for correlation with each trait. Shown are correlation 
coefficients (upper value) and the corresponding p-values (lower value). Cell color encodes correlation (red, positive correlation; green, negative corre-
lation). 

 
Discussion  

Duroc and Pietrain breeds are divergent for 
muscle characteristics and meat quality. Pietrain pigs 
are more muscular and lean, whereas Duroc pigs are 
fattier and preferable for marbling. Mutations in the 
ryanodine receptor (RYR1), frequently carried in Pie-
train pigs, have impacts on meat quality, stress re-
sistance, and carcass composition. RYR1 is a calcium 
channel expressed primarily in skeletal muscle. The 
RYR1 mutation c.1840C>T (p.Arg614Cys) in pigs 
causes a dysregulation of the calcium-flux leading to 
early energy depletion, AMPK activation, accelerated 
glycolysis and an increased incidence of pale, soft, 
exudative (PSE) meat [13, 14]. In this study, MHS 
homozygous-negative pigs were used avoid an effect 
from the RYR1 locus. The muscle samples from Duroc 
pigs showed a higher percentage of STO and lower 
percentage of FTO fibers, with no difference for FTG 
fibers compared to PiNN pigs. This observation 

agrees well with previous reports with a bigger sam-
ple size, except for the percentage of FTG fibers, 
which was higher in PiNN pigs [6, 8, 15, 16]. Muscles 
containing more STO fibers are associated with higher 
oxidative enzyme activities and mitochondrial respi-
ration activity [17]; muscles comprised of more FTG 
fibers are associated with higher glycolytic enzyme 
activities [6, 18]. Lipids are stored mainly in STO fi-
bers [19], which can improve the tenderness and 
juiciness of the meat. Selection towards a high per-
centage of FTG fibers for meat production may 
therefore result in altered meat quality possibly due to 
lower capillarization and insufficient delivery of ox-
ygen [20] or glycogen depletion, which ultimately 
influence meat toward dry, firm, and dark [21]. The 
understanding of the molecular basis of muscle fiber 
type and metabolic capacity is important and may 
have implications on meat production and meat 
quality.       
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Figure 4. qPCR validation of microarray results for eight genes: ATP6V1C1, ATP6V1E1, COX10, COX7A2, CYB5A, NDUFS1, NDUFS6, and PPA1. Plot between 
qPCR (2^-∆Ct on the x-axis) and microarray (log2 signals on the y-axis) for each gene. The corresponding correlation coefficient (r) and p values are shown.  

 

DEGs revealed differences in the canonical 
pathways between Duroc and PiNN 

Protein turnover is essential to gaining muscle 
mass. Three major proteolytic mechanisms in muscle 
are the ATP-dependent ubiquitin proteasome system 
(UPS), Ca2+-dependent-calpain system, and lysosomal 
proteasomes. In our present results, the protein ubiq-
uitination pathway was among the top canonical 
pathways up-regulated in Duroc. The UPS is known 

as a principle regulator of muscle atrophy [22]. Pro-
tein ubiquitination is an ATP-dependent process me-
diated by ubiquitin-activating enzyme E1, specific 
ubiquitin-conjugating-enzyme E2, and ubiquitin pro-
tein ligase E3, which promote protein degradation via 
the 26s proteasome and has implications on meat 
quality [23-26]. Interestingly, amyloid processing was 
listed as a top canonical pathway in up-regulated 
DEGs of PiNN. Amyloid processing has been associ-
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ated with glucose uptake, and oxidation in myotubes 
[27, 28]. DEGs in amyloid processing, like CSNK1E, 
CAPN6, AKT1, CDK5, APH1A, MAPT, PSENEN, and 
CAPN3 have implications in muscle biology of the 
pig. PSENEN encodes Presenilin, a component of the 
gamma-secretase protein complex that is required for 
the processing of the beta-amyloid precursor protein 
to generate amyloid beta (Abeta). Abeta inhibits the 
proteolytic activities of the 26S proteasome and the 
interplay of Abeta and UPS is associated with Alz-
heimer’s disease [27]. Mutations in PSENEN disrupt 
cellular Ca2+ homeostasis via the regulation of 
ryanodine receptors (RYR), sarcoendoplasmic reticu-
lum Ca2+ transport ATPase (SERCA), and/or inositol 
1,4,5-trisphosphate channels, all of which are crucial 
regulators of Ca2+ release [29-32]. PSENEN has been 
identified as a potential candidate gene for meat 
quality [33, 34].  

AKT1, a serine threonine protein kinase, is a 
critical mediator of cell growth and survival. AKT1 
transgene activation promotes type IIb fiber hyper-
trophy and increases glycolysis while reducing fat 
accumulation [35, 36]. The up-regulation of AKT1 in 
PiNN may have a functional link to its leanness. The 
calpain system target proteins are involved in assem-
bly and scaffolding of myofibrillar proteins such as 
titin [37]. Its activation promotes disassembly of my-
ofilaments from intact myofibrillar proteins and per-
mits the degradation of these sarcomeric proteins by 
UPS [38]; it is also involved in the regulation of mus-
cle mass [39]. Calpain-3 (CAPN3) is a calci-
um-dependent cysteine protease expressed in muscle. 
Mutations in calpain-3 cause Limb-Girdle Muscular 
Dystrophy Type 2A (LGMD2A) [40]. Immature mus-
cle observed in calpain-3 overexpressing transgenic 
mice suggests a role for this protein in muscle matu-
ration [41]. Calpain-3 may play a role in sarcomere 
maintenance and organization by acting upstream of 
the UPS; its absence results in death of muscle fibers 
[42, 43]. Calpain-6 (CAPN6) is a suppressor of muscle 
cell differentiation, and its deficiency promotes skel-
etal muscle development and regeneration [44].            

DEGs revealed differences in the functional 
categories of muscle metabolism between 
Duroc and PiNN 

Peroxisome proliferator-activated receptor 
gamma coactivator 1 alpha (PPARGC1A) and protein 
phosphatase 3 catalytic subunit alpha isoform 
(PPP3CA) were up-regulated in Duroc compared to 
PiNN. PPARGC1A activation promotes the slow, ox-
idative myogenic program in mice [45] and drives the 
formation of slow-twitch muscle fibers in cultured 
muscle cells [46]. It also acts as a master coordinator to 
control mitochondrial biogenesis and oxidative 

phosphorylation [47]. Hence, PPARGC1A may pro-
vide a link between muscle fiber type and energy 
metabolism. PPP3CA is differentially expressed in 
muscles comprised of different proportions of fast 
and slow muscle fibers [48]. CD36 mediates uptake of 
long-chain fatty acid and thus plays a role in lipid 
accumulation and fatty acid homeostasis [49, 50]. 
Sarcalumenin (SRL) and fast twitch Ca2+ ATPase 
(ATP2A1) have been reported as fast-type muscle 
genes [51]. The up-regulation of these two genes 
support the high percentage of fast-twitch glycolytic 
muscle fibers in PiNN. Fructose 2, 6–bisphosphatase 2 
(PEKFB2), up-regulated in PiNN, can promote gly-
colysis by controlling the level of Fructose 2, 6 – 
bisphosphate, which is an allosteric activator of 
phosphofructokinase (PFK-1) [52]. Glycogen synthase 
kinase 3 alpha (GSK3A) and glycogen synthase 1 
(GYS1) are crucial for glycogen storage and can in-
fluence the muscle-to-meat process via glycolysis, 
reduced pH, and pale color [53, 54]. Moreover, a high 
level of glycogen has been associated with a higher 
percentage of fast-twitch glycolytic fibers [55].  

Gene co-expression networks link to oxidative 
capacity of skeletal muscle 

Transcriptional network analysis identified 13 
co-expression modules correlated with STO muscle 
fibers in Duroc pigs (p<0.05). Among these, module 
light-cyan showed a strong correlation with STO 
(Figure 2) and its members (9 genes) were enriched 
for ‘extracellular matrix part’ (Table 3). Of these 
COL3A1, COL5A2, COL6A1, and COL12A1 encode for 
type III, V, VI, and XII collagen, respectively. Colla-
gens are major components of the extracellular matrix 
(ECM). Collagen-VI deficient Col6a1-/- mice show 
myopathic disorder and, most important, mitochon-
drial dysfunction [56]. Modules blue and 
green-yellow were positively correlated with STO, 
while negatively with correlated with FTG. These 
modules were enriched for ‘mitochondrion’ and ‘mi-
tochondrial part’ GO terms. Mitochondria play a 
prominent role in ATP production and oxidative 
phosphorylation. Oxidative capacity of the muscle 
cells has been associated with muscle fiber types via 
mitochondrial volume and density [57], which is typ-
ically higher in slow-twitch type I fibers than 
fast-twitch type II fibers [58]. 182 genes of module 
blue and 45 genes of module green-yellow were en-
riched for ‘mitochondrion’ and ‘mitochondrial part’, 
respectively (Table 3). These genes are not only in-
volved in mitochondrial biogenesis and functional 
maintenance, but also in the mitochondrial oxidation 
of fatty acids. SLC25A4 or ANT1 is a muscle-specific 
isoform. Adenine nucleotide translocators (ANT) reg-
ulates the adenine nucleotide concentration by trans-
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locating ADP and ATP between mitochondrial matrix 
and cytoplasm. It provides ADP for oxidative phos-
phorylation and is essential for mitochondrial func-
tion [59]. GFM1 (mitochondrial translation elongation 
factor G1) is involved in oxidative phosphorylation 
disorder [60]. Many genes in modules blue and 
green-yellow are major components of the electron 
transport chain and important for oxidative phos-
phorylation to produce ATP [NDUFV2, NDUFV3, 
NDUFS1, NDUFS4, NDUFS6, NDUFS7, NDUFB2, 
NDUFB3, NDUFB4, NDUFB8, NDUFB11, NDUFA5, 
NDUFA10, and NDUFA11 (encode for Complex I); 
SDHA and SDHB (encode for Complex II); COX7A1 
and COX4l1 (encode for COX); ATP5L, ATP5J, 
ATP5G2, ATP5G3, ATP5A1, and ATP5C1 (encode for 
ATP synthase)]. Moreover, many genes were associ-
ated with lipid metabolism and mitochondrial oxida-
tion of fatty acids like acyl-CoA synthetase long-chain 
family member ACSL1, ACSL3, ACSL4, and ACSL5, 
which encode the long-chain fatty-acid-coenzyme A 
ligase family members. Particularly, ACSL1 interacts 
with carnitine palmitoyltransferase 1a (CPT1a) and 
voltage-dependent anion channel (VDAC) to transfer 
the activated fatty acids through the mitochondrial 
outer membrane and to catalyze fatty acid oxidation 
[61]. It contributes 80% of total ACSL activity and is 
important for mitochondrial beta-oxidation of 
long-chain fatty acids in adipose tissue, liver, and 
skeletal muscle [62-64]. HADH and HADHB are 
members of the 3-hydroxyacyl-CoA dehydrogenase 
gene family. The encoded proteins catalyze the oxi-
dation of straight-chain 3-CoAs as part of the be-
ta-oxidation pathway in the mitochondrial matrix. 
Beta-oxidation of FAs could be influenced by the in-
teraction between estrogen receptor alpha and 
HADHB [65]. Altogether, genes in these modules are 
involved in various functions including nucleotide 
transport, mitochondrial (mt) translation, OXPHOS 
subunits formation, mt membrane biogenesis, and mt 
oxidation of fatty acids. Overall, these gene modules 
link mitochondrial functions to oxidative capacity of 
the skeletal muscle. It is of interest whether the 
up-regulation of these genes in Duroc pigs also im-
plies a predominant role of oxidative capacity and 
respiration activity in Duroc over PiNN.           

Gene co-expression networks link to mito-
chondrial respiration activity and ATP synthe-
sis 

In Duroc pigs, 4 modules were enriched for en-
ergy production. Genes belonging to these modules 
are potential factors that control mitochondrial respi-
ration and ATP synthesis, components of the respir-
atory chain, hormones and transcription factors. 
NDUFS1 encodes NADH dehydrogenase involved in 

the mitochondrial respiration chain. ATP5A1 encodes 
alpha unit of ATP synthase F1 unit. Deficiency of 
these genes affects functional complex I and/or ATP 
synthase and results in decreased ATP production 
[66-68]. Insulin regulates stimulation of protein syn-
thesis and lipid and glucose storage [69]. Insulin re-
ceptor (INSR) and insulin receptor substrate 2 (IRS2) 
are major molecules mediating insulin-signaling 
pathways. The effect of insulin on skeletal muscle 
mitochondrial function and oxidative capacity has 
been shown. Insulin increases ATP production as well 
as the mRNA level and enzyme activities of complex I 
and COX [70]. Thyroid hormone receptor beta (THRB) 
encodes one of the nuclear hormone receptors for 
thyroid hormone. The overexpression of thyroid 
hormone receptor in myoblast stimulates both cyto-
chrome oxidase and citrate synthase activities [71]. 
Thyroid hormone has been shown to increase ATP 
production as well as citrate synthase and cytochrome 
c oxidase activities in muscle tissue [72] and influ-
ences both nuclear and mitochondrial genes in res-
piratory functions [73, 74]. 

In PiNN pigs, 5 modules were enriched for en-
ergy production. Some genes belonging to these 
modules are regarded as potentially regulating the 
respiratory chain, hormones, and transcription fac-
tors. ATP5B and ATP5C1 encode the beta and gamma 
units of ATP synthase F1. They are essential for the 
fully assembled and functional ATP synthase and, 
therefore, ATP production. PPARGC1A, as a tran-
scriptional co-activator regulating genes in energy 
metabolism, activates the expression of nuclear res-
piratory factors (NRFs), promotes mitochondrial bio-
genesis, and stimulates coupled respiration [75]. In 
cultured myotubes, PGC-1 activates the expression of 
mitochondrial respiratory chain COXIV and ATP 
synthase as well as mtTFA through the induction of 
NRF-1 and NRF-2 expression [76, 77]. The activated 
mtTFA translocates into mitochondria and directly 
activates the transcription and replication of mtDNA 
[76, 77]. Leucine-rich pentatricopeptide repeat con-
taining (LRPPRC) deficiency affects the stability of 
most mitochondrial mRNAs and leads to COX defi-
ciency and ATP synthase deficiency associated with 
reduced ATP production in conditional knockout 
mouse heart [78].  

Gene expression profiling by microarray is re-
stricted on transcript level. Events such as 
post-transcriptional regulation and protein modifica-
tion could contribute to molecular mechanisms.  Pro-
teome and metabolome analysis could provide insight 
on the molecular basis related to energy metabolism 
in muscle.  To further validate whether any candidate 
gene plays a role in energy metabolism, an in vitro 
model system can be set up to perform enzymatic 
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functional assay by mutation or silencing certain 
genes. 

Conclusions 
In the present study, a comparative transcrip-

tome profiling of ante mortem skeletal muscle be-
tween Duroc and PiNN revealed clear differences in 
their muscle metabolic properties. Gene co-expression 
network analysis highlights the importance of mito-
chondria in the oxidative capacity of muscle. In par-
ticular, the Duroc breed showed more clear molecular 
function involved in oxidative capacity and respira-
tion activity than PiNN. In contrast to PiNN, 
co-expression modules enriched in macromolecule 
catabolic process, actin cytoskeleton, and transcrip-
tion activator activity were associated with fiber 
types, mitochondrial respiratory activity, and meta-
bolic enzyme activities. Our results highlight the im-
portance of mitochondria for the oxidative capacity of 
the porcine muscle, particularly in providing 
breed-specific processes for the molecular pathways 
in muscle cell fibers, and muscle biology. 
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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in diverse biological processes
via regulation of gene expression including in skeletal muscles. In the current study, miRNA expression profile was
investigated in longissimus muscle biopsies of malignant hyperthermia syndrome-negative Duroc and Pietrain pigs
with distinct muscle metabolic properties in order to explore the regulatory role of miRNAs related to
mitochondrial respiratory activity and metabolic enzyme activity in skeletal muscle.

Results: A comparative analysis of the miRNA expression profile between Duroc and Pietrain pigs was performed,
followed by integration with mRNA profiles based on their pairwise correlation and computational target prediction. The
identified target genes were enriched in protein ubiquitination pathway, stem cell pluripotency and geranylgeranyl
diphosphate biosynthesis, as well as skeletal and muscular system development. Next, we analyzed the correlation
between individual miRNAs and phenotypical traits including muscle fiber type, mitochondrial respiratory activity,
metabolic enzyme activity and adenosine phosphate concentrations, and constructed the regulatory miRNA-mRNA
networks associated with energy metabolism. It is noteworthy that miR-25 targeting BMPR2 and IRS1, miR-363 targeting
USP24, miR-28 targeting HECW2 and miR-210 targeting ATP5I, ME3, MTCH1 and CPT2 were highly associated with
slow-twitch oxidative fibers, fast-twitch oxidative fibers, ADP and ATP concentration suggesting an essential role of the
miRNA-mRNA regulatory networking in modulating the mitochondrial energy expenditure in the porcine muscle. In the
identified miRNA-mRNA network, a tight relationship between mitochondrial and ubiquitin proteasome system at the
level of gene expression was observed. It revealed a link between these two systems contributing to energy metabolism
of skeletal muscle under physiological conditions.

Conclusions: We assembled miRNA-mRNA regulatory networks based on divergent muscle properties between different
pig breeds and further with the correlation analysis of expressed genes and phenotypic measurements. These complex
networks relate to muscle fiber type, metabolic enzyme activity and ATP production and may contribute to divergent
muscle phenotypes by fine-tuning the expression of genes. Altogether, the results provide an insight into a regulatory
role of miRNAs in muscular energy metabolisms and may have an implication on meat quality and production.
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Background
MicroRNAs (miRNAs) are endogenous small non-coding
RNAs ~22 nt in length that play critical roles in diverse
biological processes via epigenetic regulation of gene ex-
pression. Precursor miRNAs (pre-miRNA) are initially
generated in nucleus and processed into an approximately
70 nt long stem-loop structure. It is then exported to cyto-
plasm and processed by Dicer to generate miRNA/miRNA
duplexes. One strand of which is incorporated with Ago-
naute to form RNA-Induced Silencing Complex (RISC)
that targets mRNAs via base-pair complementary, typic-
ally to their 3′ untranslated regions (3′UTR) or CDs and
downregulates gene expression by either degradation of
mRNA or repression of translation, while the other strand
is usually discarded [1].
Skeletal muscle is highly metabolically active and valu-

able for meat-producing animals. Slow-twitch-oxidative
(STO), fast-twitch-oxidative (FTO), and fast-twitch-
glycolytic (FTG) fiber were the three major muscle fiber
types in pigs. Muscle fibers have strong association with
muscle metabolic activities and meat quality such as ten-
derness, juiciness and color. Muscle containing a high
proportion of oxidative fibers is often associated with
higher fat content, oxidative enzyme activities and mito-
chondrial density [2–4]; a high ratio of FTG fibers is as-
sociated with high glycolytic enzyme activities. Previous
research has identified several miRNAs are associated
with meat quality such as miR-133, miR-221 and miR-
103 etc. in porcine skeletal muscle [5]. The polymor-
phisms in the porcine miR-133 and miR-208 are pro-
posed as a genetic factor affecting muscle fibers and
meat quality traits [6, 7]. Since the critical roles of miR-
NAs such as myogenesis, adipogenesis and muscle de-
velopment have been discovered in pig skeletal muscle
[8–11], the understanding of the miRNA regulation in
metabolic properties of skeletal muscle fibers could be
key to improvement of meat quality [12]. MiR-210 and
miR-338 could regulate the gene expression of oxidative
phosphorylation (OXPHOS) machinery including com-
plex IV subunits COX10, COXIV and ATP synthase sub-
units ATP5G1 [13, 14]. MiR-15a and miR-15b modulate
the cellular ATP levels [15, 16]. MiR-696 regulates the
fatty acid oxidation and mitochondrial biogenesis
through targeting peroxisome proliferator-activated
receptor-gamma coactivator-1alpha (PGC-1α) [17]. With
those miRNAs identified, the lack of a comprehensive
and systematic miRNA profiling associated with energy
metabolism of skeletal muscle remains unraveled.
Our previous research on muscle transcriptional pro-

file has revealed numerous biological pathways signifi-
cantly associated with muscle fiber type, mitochondrial
respiratory activity and metabolic enzymes [18]. It is of
interesting to further investigate how miRNAs are in-
volved in energy metabolism by fine-turning gene

expression. In the present study, the miRNA transcrip-
tome profiling of longissimus muscle (LM) samples ob-
tained 24 h before slaughter of two pig breeds Duroc
and Pietrain exhibiting divergent meat quality and
muscle phenotypes provided a comprehensive insight
into the discovery of miRNAs associated with muscle
fiber, mitochondrial respiratory activity and metabolic
enzyme activity. Muscle of Duroc pigs contains higher
percentage of STO fibers, mitochondrial respiratory ac-
tivity and higher fat content to improve the tenderness
and juiciness of the meat. In comparison, PiNN pigs are
more muscular and favorable for meat industry. Their
skeletal muscles are leaner and contain more FTG fibers
[18–20]. Hence Duroc and Pietrain pigs are great models
to study energy metabolism of skeletal muscle. The
miRNA and mRNA expression profile was then inte-
grated based on their pairwise correlations and compu-
tational target prediction to construct the regulatory
miRNA-mRNA networks which could potentially affect
metabolic properties of skeletal muscle and hence meat
quality. The illumination of miRNA-based regulatory
metabolism could enrich our knowledge of the roles of
miRNAs in achieving phenotypic diversity of skeletal
muscle in different breeds.

Methods
Animals and sample collection
The experiment and muscle biopsy collection were ap-
proved and authorized by the German and European
animal welfare regulations for animal husbandry, trans-
port, and slaughter [19–21]. All experimental proce-
dures, including animal care and tissue sample
collection, followed guidelines for safeguarding and good
scientific practice in accordance with the German Law
of Animal Protection, officially authorized by the Animal
Care Committee and authorities [Niedersächsischen
Landesamt für Verbraucherschutz und Lebensmittelsi-
cherheit (LAVES) 33.42502/01-47.05].
As previously described [19–21], Duroc and Pietrain

(PiNN) pigs were raised until 180 days of age. To rule
out the effects of the maglinant hyperthermia syndrome
(MHS) locus, only muscle samples from MHS-negative
genotype pigs were investigated. Muscle biopsies were
collected from five female and male pigs of each breed
(n = 20) for phenotypic measurements (see Additional
file 1 for detailed phenotype definition and measure-
ment) [18–21]. Biopsies were collected 24 h before
slaughter from the longissimus muscle between 13th
and 14th thoracic vertebrae. Muscle samples were frozen
in liquid nitrogen and stored at −80 °C until analysis.

RNA isolation
Small RNAs were isolated and enriched from longissi-
mus muscle biopsies using a miReasy Mini kit and an
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RNeasy MinElute Cleanup kit (Qiagen) according to
manufacturer’s protocols. The quality and quantity of
small RNA were assessed with an Agilent 2100 Bioanaly-
zer (Agilent) using an Agilent small RNA kit.

MicroRNA microarray analysis
The Affymetrix GeneChip miRNA 3.0 Array (Affyme-
trix) was used to determine the miRNA expression pro-
file of the LM 24 h ante mortem of Duroc and PiNN
pigs. It is comprised of 16,772 entries representing hair-
pin precursor, total probe set 19,724 for detection of
most miRNA from 153 species (miRBase V.17). 200 ng
of small RNA were used in sample preparation using a
FlashTag Biotin HSR RNA Labeling kit (Genisphere) for
Affymetrix GeneChip miRNA Arrays. Each of the la-
beled RNA (n = 20) was then hybridized for 16 h to an
Affymetrix GeneChip miRNA array according to manu-
facturer’s recommendation (Affymetrix), washed and
stained in the Affymetrix Fluidics Station 450, and
scanned on the Affymetrix G3000 Gene Array Scanner.
Expression Console software was used for robust multi-
chip average (RMA) normalization and the detection of
present miRNAs by applying the DABG (detection above
background) algorithm. Further filtering was done by ex-
cluding probes that were present in less than 70 % of the
samples within each breed and annotated miRNAs that
had sequence greater than or equal to 30 nt in length.
Three thousand five hundred eighty seven probes passed
the quality filtering and were used for further analysis.
The availability of expression data are in the Gene Ex-
pression Omnibus public repository with the GEO ac-
cession number GSE80198: GSM2120718-GSM2120737.

Statistics and bioinformatics analyses
Differential expression analysis for miRNA was per-
formed using the ANOVA procedure in JMP genomics
7(SAS Institute). Breed was treated as a fixed effect.
False discovery rate (FDR) was used to control an error
rate of a multiple-hypothesis testing according to Benja-
min & Hochberg [22]. We used our previous
microarray-based mRNA expression data to integrate
with the differentially expressed miRNAs and scan for
potential target genes. Pearson correlation of miRNA
and mRNA expression levels was calculated.
Both RNAhybrid 2.1.2 and TargetScan 7.0 were used

to predict targets of miRNAs. RNAhybrid (http://
bibiserv.techfak.uni-bielefeld.de/rnahybrid) is computa-
tional software that detects the most energetically favor-
able hybridization sites of a small RNA within a large
RNA [23, 24]. The miRNA probe sets were tested with
the following parameters: number of hits per target = 1
and energy cutoff = −25 kcal/mol and maximal internal
or bulge loop size per side = 4. TargetScan (http://
targetscan.org/) was used to predict the target gene

candidates based on complementarity of the miRNA
seed sequence (position 2-8 of the miRNA 5′-end) and
target binding site on the 5′ UTR, 3′ UTR and protein
coding region of the porcine mRNA sequences (Sus
scrofa 10.2 download from NCBI: http://www.ncbi.nlm.-
nih.gov/ on 1.9.2015) [25]. Hafner et al. and Chi et al.
have found that Argonaute-bound target sites in coding
sequences (CDs) are as numerous as those located in 3′
UTR in both HEK293 cells (50 % CDs vs 46 % 3′UTR)
[26] and mouse brain (25 % CDs vs 32 % 3′UTR) [27].
Other research suggests that miRNA target sites in 3′
UTR are more efficient at triggering mRNAs degrad-
ation while CDs and 5′UTR located sites can effectively
repress translation [28, 29]. Xu et al. develop novel com-
putational approach for target prediction with sites lo-
cated along the entire gene sequences to increase the
percentage of true positive targets [30]. Hence 5′ UTR,
CDs and 3′UTR were included in this study to improve
the sensitivity of miRNA target identification and avoid
a substantial number of missing targets. Transcripts that
negatively correlated with miRNA and predicted as po-
tential targets were further passed to functional analysis.
IPA software (Ingenuity System, https://www.ingenui-

ty.com) was used for functional analysis of potential
miRNA target genes. It categorizes genes based on anno-
tated gene functions and statistically tests for over-
representation of functional terms within the gene list
using Fisher’s Exact Test. The miRNA-mRNA regulatory
networks were visualized using Cytoscape V3.2.1 (http://
cytoscape.org) [31].

Quantitative real time PCR (qPCR) for microRNA
microarray (miChip) validation
Four miRNAs (ssc-miR-24-3p, ssc-miR-30a-5p, ssc-miR-
126 and ssc-miR-145) related to energy metabolism were
validated by qPCR of each individual sample (n = 20).
The same samples were used for both qPCR validation
and miRNA-chips. The cDNA was synthesized from
250 ng isolated miRNAs using an NCodeTM VILOTM

miRNA cDNA Synthesis Kit (Invitrogen) according to
manufacturer’s protocols. Real-time PCR was performed
using the EXPRESS SYBR GreenERTM miRNA qRT-PCR
Kit with premixed ROX (Invitrogen) according to manu-
facturer’s protocols. All measurements were performed
in duplicates. The thermal parameters were 50 °C for
2 min, 95 °C for 2 min, followed by 45 cycles of 95 °C
for 15 s and 60 °C for 1 min. The universal qPCR primer
was provided in the kit and the miRNA-specific forward
primers were designed for the miRNAs of interest. The
designed primer sequence information is accessible in
Additional file 2. Geometric mean of the 5S and U6
transcription levels was used as an internal standard to
normalize the miRNA expression value. Correlation
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coefficient analysis between the miChip and qPCR data
was calculated using SAS 9.3 (SAS Institute).

Results
Differentially expressed miRNAs between Duroc and
Pietrain
Out of 3587 probes quality-filtered probes, 58 probes
belonged to 27 unique mature miRNA sequences
were differentially expressed (p < 0.05, FDR < 0.2) be-
tween Duroc and PiNN using ANOVA on JMP Gen-
omics 7. Among these, 33 probes belonged to 8
mature miRNA sequences were up-regulated in Duroc
pigs, while 25 probes belonged to 19 different mature
miRNA sequences were up-regulated in PiNN pigs
(Additional file 3). Among these, miR-363, miR-423
and miR-34 were the top three upregulated miRNAs
in Duroc pigs with fold change ranging from 3.29 to
1.68. Whereas the top three upregulated miRNAs in
PiNN were miR-4687, miR-3619 and miR-22 with fold
change ranging from 3.45 to 2.71.

Correlation between differentially expressed miRNAs and
target mRNAs
The mRNA expression data of matched samples from
our previous study (GEO accession number GSE69840:
GSM1709900 - GSM1709919) were used for a pairwise
correlation analysis [18]. In total, 2345 mRNA probes
were differentially expressed (p < 0.05, FDR < 0.05) be-
tween two breeds. A pairwise correlation coefficient
analysis was computed between 58 miRNA probes
and 2345 mRNA probes. Among the 136,010 Pearson
correlation coefficients, 12,408 negative correlated
miRNA-mRNA pairs were detected at p < 0.05 and
FDR < 0.05 for correlation between miRNA and
mRNA. Computational target prediction was per-
formed using Targetscan and RNA hybrid. After
combining the correlation analysis and target predic-
tion results, 598 miRNA-mRNA pairs containing 340
genes and 11 mature miRNA sequences were retained
(Additional file 4). The heat map and hierarchical
clustering of miRNA-mRNA pairs based on their ex-
pression levels (lsmeans) shown in Fig. 1 demon-
strates an inverse relationship between mRNAs and
mRNA target candidates. All the target genes were
further analyzed with IPA to identify prominent func-
tions and pathways that may contribute to divergent
muscle metabolic properties between the two breed
types. Target genes assigned to the functional categor-
ies related to skeletal and muscular system develop-
ment and function as well as carbohydrate
metabolism were focused on. The top three canonical
pathways for Duroc up-regulated target genes were
protein ubiquitination pathway, p70S6K signaling and
mouse embryonic stem cell pluripotency, while

geranylgeranyl diphosphate biosynthesis, phagosome
maturation and urate biosynthesis/Inosine 5′-phos-
phate degradation for PiNN up-regulated target genes.
A representative miRNA-mRNA regulatory network
of focused biological pathways depicted in Fig. 2 illus-
trates a complex relationship and networking of the
two biomolecule types.

Correlation between miRNA expression and phenotypic
traits
The expression of 3587 miRNA probes was calculated
for the correlation with traits of muscle fiber compos-
ition, mitochondrial respiratory activity and metabolic
enzyme activity in both Duroc and PiNN pigs. In total,
3263 miRNA-phenotype pairs containing 1864 miRNA
probes belonged to 757 mature miRNA sequences were
identified at p < 0.05 shown correlation between miRNA
and at least one of the 19 phenotypes. The top 100 sig-
nificant miRNAs correlated to phenotypes were shown
in Additional file 5 (p < ~0.001). Table 1 showed the top
five miRNAs significantly correlated to each phenotype.

Integration of correlated miRNAs, mRNAs and phenotypic
traits
Correlations between gene expression derived from
post quality-filtered 17,820 mRNA probes and each
phenotypic- trait were calculated for both Duroc and
PiNN pigs. In total, 24,374 mRNA-phenotype pairs
containing 11,091 mRNA probes belonging to 7489
genes were identified at p < 0.05. The top 100 signifi-
cant mRNAs correlated with phenotypes are access-
ible in Additional file 6 (p < 0.0002). Pairwise
correlation coefficient analysis was then performed
between the identified 1864 miRNA probes and
11,091 mRNA probes which correlated with at least
one of the 19 phenotypes. After combining with the
target prediction results, 26,861 miRNA-mRNA pairs
containing 3182 genes and 387 miRNAs (p < 0.05)
were identified to correlate with at least one pheno-
type. The top ten miRNA-mRNA pairs for each
phenotype were shown in Fig. 3 and Additional file 7
(p < 0.05, FDR < 0.24).

Correlation relationship between mitochondrial and UPS
related genes
From all identified top 10 miRNA-mRNA pairs associ-
ated with each phenotypic trait (Fig. 3), the expression
correlation between 9 selected nuclear-encoded
mitochondrial-related genes and 7 selected UPS-related
genes were calculated. In Table 2, mitochondria related
genes: ATP synthase, mitochondrial F0 complex, subunit
E (ATP5I), Malic enzymes 3 (ME3), mitochondrial
carrier 1 (MTCH1), cytochrome P450, family 24, sub-
family A, peptide 1 (CYP24A1), kinesin family member 1
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binding protein (KIAA1279), prohibitin 2 (PHB2), pyru-
vate dehydrogenase alpha 1 (PDHA1) and ubiquinol-
cytochrome c reductase complex chaperone (UQCC) were
significantly correlated with at least one of the six UPS-
related genes: Sus scrofa similar to E3 ubiquitin-protein
ligase HECW2 (HECW2), ubiquitin specific peptidase 24
(USP24), ubiquitin family domain containing 1 (UBFD1),
mitochondrial ubiquitin ligase activator of NFKB 1-like
(MUL1), amyloid beta (A4) precursor protein (APP) and
heat shock 70 kDa protein 2 (HSPA2) at p < 0.05.

qRT-PCR validation
The expression of ssc-miR-24-3p, ssc-miR-30a-5p, ssc-
miR-126 and ssc-miR-145 were random selected for

validation by qRT-PCR. The correlation coefficient
between qPCR and miChip data ranged from 0.543
(p = 0.0134) to 0.6833 (p = 0.0009), suggesting a good
concordance between miChip and qPCR results, as
shown in Fig. 4.

Discussion
Duroc and Pietrain are divergent for different muscle
characteristics and meat quality. Duroc pigs are fattier
and their skeletal muscle contains larger amount STO
fibers which are generally associated with higher oxida-
tive enzyme activities, mitochondrial respiratory activity
and the storage of lipid to improve the tenderness and
juiciness of the meat, whereas Pietrain pigs are more

Fig. 1 Heatmaps and hierarchical cluster of mRNA and miRNA pairs based on Least squares (Ls) means of differentially expressed mRNA and
miRNA (FDR < 0.05) between breed Duroc and PiNN
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muscular and their muscles are more lean and contain
higher percentage of FTG fibers which are associated
with higher glycolytic enzyme activities [2, 18–20, 32,
33]. The higher percentage of FTG fibers may result in
lower capillarization, insufficient delivery of oxygen and
glycogen depletion, which ultimately lead to dry, firm,
and dark meat [34, 35]. Since microRNAs have been
known as critical regulators in energy metabolism of
skeletal muscle, in the present study, miRNA
expression profiling and functional analysis may shed
light on miRNA-based epigenetic regulatory mechan-
ism of muscle fiber type and metabolic enzyme ac-
tivity and hence may be translated to improvement
of meat quality.
The miRNA profile of porcine skeletal muscle has

been investigated in several studies and the miRNA-
mRNA networks are constructed [36–38]. Hou et al.
analyzes the miRNA and mRNA profile for Landrace
(lean-type) and Tongcheng (obese-type) pigs [36]. In
both the study of Hou et al. and our present study,
biological process of muscle development was shown in

the identified differentially expressed miRNA-mRNA
network and it highlights the importance of the regula-
tory role of miRNAs in diverging porcine muscle devel-
opment between obese-type and lean-type pigs. Further,
some miRNAs such as miR-363, miR-133 and miR-423
were identified in the network of both studies. Tang et
al. investigated the miRNA and mRNA expressions of
skeletal muscle for Landrace and Tongcheng pigs at 33,
65 and 90 days to explore prenatal muscle development
while Jing et al. construct differentially expressed
miRNA-mRNA network between different residual feed
intake in pigs [37, 38].

Roles of the differentially expressed miRNAs and their
target genes in divergent muscle characteristics
To understand the regulatory role of miRNAs that may
contribute to phenotypic variation of the skeletal muscle
in different pig breeds, differentially expressed miRNAs
and mRNAs between the two breeds were integrated, so
that the key target genes regulated by key miRNAs were
identified. Functional analysis results showed that the

Fig. 2 Differentially expressed miRNA-mRNA pairs and regulatory network between breed Duroc and PiNN. Blue indicates miRNAs with higher expression
in PiNN, purple indicates miRNAs with higher expression in Duroc, red indicates genes with higher expression in Duroc and green indicates genes with
higher expression in PiNN
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target genes were significantly enriched for various
muscle related bio-functions suggesting biological re-
lated results rather than random noise. The top canon-
ical pathway for Duroc-up regulated genes was protein
ubiquitination pathway containing genes of USP28,
USP8, USP45, USP15, USP13, UBR1, DNAJC13, FBXW7,
BIRC3, USP34, UBE3A, BIRC2. The ATP-dependent ubi-
quitin is mediated by ubiquitin-activating enzyme E1,
specific ubiquitin-conjugating-enzyme E2 and ubiquitin
protein E3 to promote protein degradation via the 26 s
proteasome and has implications on meat quality and
muscle atrophy [39–42]. In our study, USP45 and
USP28 were predicted as a direct target of miR-133 and
miR-310 respectively. MiR-133b could influence both
major apoptosis pathways and wound healing [43, 44],
and most importantly, the polymorphisms in the porcine
MiR206/MiR133b cluster are proposed as a genetic fac-
tor affecting muscle fibers and meat quality traits [6].
MiR-311-3p belongs to miR-310 miRNA family and its
loss of function can cause defects in energy metabolism
and deregulation of nutritional homeostasis-associated
genes [45]. MiR-363 has been discovered as a negative
regulator of adipogenesis in adipose tissue-derived stro-
mal cells by directly targeting the 3′UTR of E2F3 [46].
This is in line with our study that the expression level of
miR-363 is higher in Duroc than PiNN with average fold
change more than 3. Other Duroc up-regulated genes
such as CMYA5, AR, RB1 and BMPR2 in functional

category of skeletal and muscular system development
and function were regulated by miR-4787, miR-877 and
miR-4687 etc. Cardiomyopathy associated 5 (CMYA5)
also called TRIM76 belongs to the tripartite motif super
family of proteins (TRIM). Its interaction with both M-
band Titin and Calpain 3 suggests its relevance to Limb-
girdle Muscular Dystrophies [47]. One SNP (A7189C) of
CMYA5 is significantly associated with water loss and
intramuscular fat, which proposes the porcine CMYA5
as a potential candidate gene for meat quality [48]. An-
drogen Receptor (AR) is a steroid-hormone activated
transcriptional factor. The androgen-AR signaling path-
way promotes the slow-twitch muscle fiber formation in
skeletal muscle by increasing the expression of slow-
twitch-specific genes and suppressing the fast-twitch-
specific genes [49].. Moreover, retinoblastoma 1 (RB1)
has been identified to be related to Marbling trait in cat-
tle via gene co-expression analysis [50]. Bone Morpho-
genetic Protein Receptor type II (BMPR2) encodes a
member of the bone morphogenetic protein receptor
family of transmembrane serine/threonine kinases. It is
essential for BMP signaling and may be involved in the
regulation of adipogenesis and hence in Obesity [51]. All
the above Duroc-up regulated genes with their corre-
sponding down regulated miRNAs could contribute to
the higher amount of oxidative muscle fibers and fat
content. On the other hand, PiNN-up regulated genes
SMAD3 and PFKFB2 were regulated by miR-423. These

Table 1 The top five significant miRNAs correlated to phenotypes in both Duroc and PiNN pigs

Phenotype Top five significant miRNAs P-value |Correlation|

STO miR-130, miR-208, miR-363, miR-24, miR-126 3.123E-04–1.195E-03 0.803–0.753

FTO miR-22, miR-166, miR-1892, miR-1343, miR-143 1.222E-03–4.514E-03 0.752–0.689

FTG miR-99, miR-499, let-7, miR-181, miR-154 1.577E-04–3.337E-04 0.824–0.801

State3_pyruvate miR-30, miR-196, miR-190, miR-363, miR-95 1.508E-03–7.169E-03 0.661–0.581

State3_succinate miR-126, miR-196, miR-363, miR-1892, miR-30 7.329E-04–4.205E-03 0.691–0.611

State4_CAT miR-196, miR-2012, miR-192, miR-202, miR-17 2.484E-04–1.360E-02 0.731–0.542

RCI_pyruvate miR-17, miR-182, miR-203, miR-27, miR-378 6.558E-03–1.258E-02 0.587–0.547

RCI_succinate miR-182, miR-203, miR-17, miR-27, miR-542 3.630E-04–4.034E-03 0.718–0.613

GP miR-148, let-7, miR-194, miR-7, miR-25 3.063E-03–1.477E-02 0.627–0.536

PFK miR-130, miR-208, miR-193, miR-32, miR-24 5.944E-04–1.455E-03 0.700–0.663

LDH miR-17, miR-58, miR-15, miR-769, miR-345 1.090E-04–4.384E-03 0.758–0.609

CS miR-338, miR-30, miR-17, miR-182, miR-455 3.970E-05–1.959E-03 0.786–0.649

ComplexI miR-182, miR-181, miR-143, miR-28, miR-765 2.691E-04–1.620E-03 0.743–0.672

ComplexII miR-182, miR-1, miR-1307, miR-203, miR-499 2.557E-03–2.458E-02 0.666–0.527

ComplexIV miR-196, let-7, miR-451, miR-128, miR-99 3.668E-03–7.785E-03 0.618–0.577

IMP miR-168, miR-166, miR-58, miR-223, let-7 3.908E-04–1.382E-02 0.745–0.569

AMP miR-10, miR-126, let-7, miR-27, miR-450 9.860E-05–5.804E-04 0.789–0.730

ADP miR-15, miR-885, miR-322, miR-450, miR-338 1.316E-04–4.540E-03 0.781–0.636

ATP miR-15, miR-450, miR-210, miR-885, miR-451 4.811E-04–9.562E-03 0.737–0.593
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Table 2 Correlation between mitochondrial and UPS related gene expressions

Genes Mitochondria related genes

ATP5I ME3 MTCH1 CYP24A1 KIAA1279 PHB2 PDHA1 UQCC

UPS related genes HECW2 r 0.386 0.623 0.494 −0.318 −0.392 −0.306 0.586 0.509

p 0.093 0.003 0.027 0.171 0.087 0.189 0.007 0.022

USP24 r −0.285 −0.284 −0.376 0.160 0.542 0.478 −0.422 −0.281

p 0.224 0.226 0.102 0.501 0.014 0.033 0.064 0.231

UBFD1 r 0.512 0.501 0.746 0.069 −0.512 −0.669 0.477 0.515

p 0.021 0.024 0.0002 0.772 0.021 0.001 0.034 0.020

MUL1 r 0.336 0.083 0.131 0.657 0.460 0.224 −0.375 0.051

p 0.147 0.726 0.583 0.002 0.041 0.341 0.103 0.832

APP r 0.214 0.486 0.463 −0.368 −0.300 −0.292 0.214 0.327

p 0.365 0.030 0.040 0.110 0.199 0.211 0.364 0.159

HSPA2 r 0.414 0.484 0.566 −0.212 −0.502 −0.474 0.537 0.274

p 0.070 0.031 0.009 0.369 0.024 0.035 0.015 0.242

numbers in bold are p-values < significance threshold of 0.05

Fig. 3 Regulatory network of miRNA-mRNA associated with muscle fiber composition, mitochondrial respiratory activity, metabolic enzyme activity
and adenine nucleotide concentration for breed Duroc and PiNN. Genes were colored with orange while miRNAs with grey
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two genes are involved in not only muscle fiber specifi-
city but also the promotion of glycolysis in skeletal
muscle. SMAD family member 3 (SMAD3) promotes
muscle atrophy in vivo by regulating atrogin-1, mTOR
and protein synthesis [52]. It suppresses the expression
of peroxisome proliferator-activated receptor γ coactiva-
tor 1-α (PGC-1α) [53], which is a master coordinator to
control mitochondrial biogenesis and drives the forma-
tion of slow-twitch muscle fibers [54, 55]. Fructose -2, 6-
biphosphatase 2 (PFKFB2) can promote glycolysis by
controlling the level of Fructose 2, 6- bisphosphate,
which is an allosteric activator of phosphofructokinase
(PFK-1) [56]. Collectively, we demonstrate that differen-
tial miRNAs and target gene candidates assemble regula-
tory networks that may fine-tune the expression of
genes within the pathways and shape the related pheno-
types among pig breeds.

Phenotype-correlated microRNAs link to various
processes in energy metabolism
Numerous studies have revealed the critical roles of
miRNAs in skeletal muscle development and the irregu-
lar miRNA expression contributes to various muscular
disorders [57]. Table 1 shows the top five miRNAs sig-
nificantly correlated to each phenotypic trait including
muscle fiber type, mitochondrial respiratory activity
(MRA) and metabolic enzyme activities for Duroc and

PiNN pigs. Both positive and negative correlations were
included to discover any potential links between miR-
NAs and phenotypes. STO, FTO, and FTG fibers were
three major muscle fiber types in pigs which are strong
associated with muscle metabolic activities and meat
quality. MiRNAs such as miR-208, miR-499, miR-130
and miR-363 showed highly significant correlation with
muscle fiber types. MiR-208 and miR-499 play a domin-
ant role in the specification of muscle fiber identity by
inducing the type I fiber program via targeting Sox6
which acts as a repressor of slow-twitch genes [58–60].
MiR-130b belongs to miR-130 family directly targets
gene PGC-1α, which is a master regulator for mitochon-
drial biogenesis and its activation promotes the slow,
oxidative myogenic program in mice and drives the for-
mation of slow-twitch muscle fibers in cultured muscle
cells [54, 61]. In C2C12 cells, miR-130b could modulate
cellular ATP levels by targeting electron transport chain
subunits Ndufb7 and Cox6a2 [16]. As previously men-
tioned, miR-363 has been discovered as a negative regu-
lator of adipogenesis in adipose tissue-derived stromal
cells by directly targeting the 3′UTR of E2F3 [46]. Since
lipids are stored mainly in STO muscle fibers to improve
tenderness and juiciness of the meat [33], and muscles
containing more STO fibers are associated with higher
oxidative enzyme activities and mitochondrial respira-
tory activity [2], it is expected that miR-363 shows high

Fig. 4 qPCR validation of miChip results for four microRNAs: ssc-miR-24-3p, ssc-miR-30a-5p, ssc-miR-126 and ssc-miR-145. Plot between qPCR
(2^-ΔCt on the x-axis) and miChip (log2 signals on the y-axis) for each miRNA. The corresponding correlation coefficient (r) and p values
are shown

Liu et al. BMC Genomics  (2016) 17:531 Page 9 of 14

Annex

81



correlation with STO muscle fiber type and mitochon-
drial respiratory activity including state 3 pyruvate and
state 3 succinate. MiR-30 family members haven been
demonstrated to control calcium signaling by directly
inhibiting a Ca2+ transporter TRPC6 etc. [62]. Consider-
ing the crucial regulatory role of calcium signaling in
mitochondrial ATP production, it was not unexpected
that miR-30 was associated with mitochondrial respira-
tory activity including state3 pyruvate and state3 succin-
ate and TCA involved CS enzyme activity. Furthermore,
miR-30 directly targets Prdm1 to promote fast muscle
formation since Prdm1 regulates muscle fiber differenti-
ation by repressing the transcription factor Sox6 which
acts as a repressor of slow-twitch-specific gene expres-
sion [60, 63]. All these reinforced the association be-
tween STO fiber, mitochondrial respiratory activity and
fat content. MiR-196 was highly correlated to mitochon-
drial state 3 and state 4 respiration rate and Complex IV
activity. MiR-196a displays a tissue-specific expression
pattern in porcine and plays a role in porcine adipose
development via inducing the expression of adipocyte
specific markers, lipid accumulation and triglyceride
content [64]. MiR-542 was significantly correlated to
RCI succinate. MiR-542-3p directly targets bone mor-
phogenetic protein 7 (BMP7), which induces differenti-
ation of adipose derived mesenchymal stem cells into
brown adipocytes and increases mitochondrial activity in
mature brown adipocytes [65–67]. MiR-1 was correlated
to Complex II activity in the present study. MiR-1 family
is abundantly expressed in cardiac and skeletal muscle.
It post-transcriptionally represses the expression of
genes in antioxidant network and thus influences sus-
ceptibility to cardiac oxidative stress of miR-1 transgenic
mice [68]. Moreover, it was proposed as a candidate
gene associated with muscle fiber type composition [69].
MiR-7, miR-194 and miR-25 were identified to correlate
with GP activity. Both miR-7 and miR-194 could directly
target and suppress the expression of insulin-like growth
factor 1 receptor (IGF-1R) whereas miR-25 regulates in-
sulin synthesis at its mRNA level [70–72]. Since insulin
and insulin-like growth factor system are crucial for nor-
mal glucose homeostasis [73, 74], it is likely that miR-7
and miR-194 could play a role in glucose metabolism via
IGF-1R and insulin. MiR-210, miR-15 and miR-338 were
highly correlated to the concentration of ADP and ATP
in muscle cells. MiR-210 and miR-338 regulate the ex-
pression of oxidative phosphorylation (OXPHOS) ma-
chinery including complex IV subunits COX10, COXIV
and ATP synthase subunits ATP5G1 correspondingly
[13, 14]. The fully assemble of OXPHOS system could
directly contribute to the ATP production. Furthermore,
the modulation of cellular ATP levels by miR-15b was
supported by other work as well [15]. Overall, our re-
sults and previous reports functionally link miRNAs to

muscle fiber specificity, mitochondrial respiration, adi-
pogenesis, glucose metabolism and ATP production and
further suggest an essential role of miRNAs in energy
metabolism.

Phenotype-correlated miRNA-mRNA regulatory network
link to energy metabolism
Based on the identified miRNAs that highly correlated
with the phenotypes, we further integrated the miRNA
and mRNA expression profiles to identify miRNAs regu-
lated genes that influence energy metabolism. The
microRNA-mRNA regulatory network was constructed
using the following criteria: 1) The expressions of both
miRNAs and target mRNAs were correlated to the
phenotypical traits 2) The gene expression level was
negatively correlated with the expression of its miRNA
regulator 3) The gene was computationally predicted as
a target gene of the corresponding miRNA. It is note-
worthy that miR-25 together with its target genes Bone
Morphogenetic Protein Receptor type II (BMPR2) and
insulin receptor substrate 1 (IRS1) were correlated to
STO and FTO muscle fibers. MiR-25 has been docu-
mented to be abundant in cardiomyocytes. It targets the
mitochondrial calcium uniporter (MCU) and Ca2+ trans-
porting ATPase (ATP2A2) and plays a role in cardiac
contractility [75, 76]. In the present study, miR-25 was
proposed to target both genes BMPR2 and IRS1. BMPR2
encodes a member of the bone morphogenetic protein
receptor family of transmembrane serine/threonine ki-
nases. It is essential for BMP signaling and may be in-
volved in the regulation of adipogenesis and hence in
obesity [51]. IRS1 is a major molecule mediating insulin-
signaling pathways. Insulin not only regulates stimula-
tion of protein synthesis and glucose storage [77], but
also has effect on mitochondrial function and oxidative
capacity of skeletal muscle via increasing the expression
level of complex I and complex IV and hence ATP pro-
duction [78]. MiR-363 and its target gene ubiquitin spe-
cific peptidase 24 (USP24) were correlated to STO
fibers, mitochondrial respiratory activity including state
3 pyruvate and state 3 succinate, and AMP concentra-
tion in muscle cells, while miR-28 and its target gene
HECW2 were correlated to STO muscle fibers. USP24
belongs to a large family of cysteine proteases that func-
tion as deubiquitinating enzymes. HECW2 encodes
HECT, C2 and WW domain containing E3 ubiquitin
protein ligase 2 which is a major component of ubiquitin
proteasome system (UPS). UPS utilizes ATP to promote
protein degradation and regulate muscle mass. Accumu-
lated ubiquitin proteins in fast- to slow- transforming
rabbit muscle revealed a possible role of UPS in muscle
fiber specificity [79]. Interestingly, miR-363 has been
discovered as a negative regulator of adipogenesis as
described previously [46]. Misregulation of miRNAs
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belonging to miR-23a/27a/24-2 cluster has been recently
associated to hypertrophic cardiomyopathy and skeletal
muscle atrophy [80]. MiR-27 was almost sixfold greater in
slow-twitch than in fast-twitch muscle in vivo. It posttran-
scriptionally regulates fast-specific myostatin (MSTN) ex-
pression, which mature mRNA level is sixfold greater in
fast vs slow muscle [81]. In this study, miR-27 was identi-
fied to be associated with PFK activity – a rate-limiting
enzyme in glycolysis and potentially target cytochrome
P450, family 24, subfamily A, polypeptide 1 (CYP24A1),
which catalyzes the side-chain oxidation of vitamin D
[82]. The vitamin D pathway has the suppressive effect on
brown adipocyte differentiation and mitochondrial res-
piration [83]. MiR-210 and its predicted targets
ATP5I, ME3, MTCH1 and CPT2 were highly corre-
lated to ADP and ATP concentration in present
study. MiR-210 modulates mitochondrial function,
decreases COX10 expression and activates the gener-
ation of reactive oxygen species (ROS) [14]. ATP5I
encodes ATP synthase mitochondrial F0 complex
subunit E and it is required for the full assembly of
the ATP synthase and ATP production [84]. ME3
encodes mitochondrial NADP (+)-dependent malic
enzyme 3. The regulation of human mitochondrial
NADP (+)-dependent malic enzyme by ATP and fu-
marate may be crucial for the metabolism of glutam-
ine for energy production [85]. MTCH1 and CPT2
encode for mitochondrial carrier 1 and carnitine pal-
mitoyltransferase 2 respectively. MTCH1 also known
as Presenilin 1-associated protein (PSAP) which acts
as a proapoptotic mitochondrial protein induce
apoptosis independent of the proapoptotic proteins
Bax and Bak [86]. The two isoforms of MTCH1
share two proapoptotic domains and multiple in-
ternal signals for import into the mitochondrial
outer membrane [87]. Fatty acid is a major energy
source for the heat and skeletal muscle. CPT2 to-
gether with CPT1 are involved in beta-oxidation of
long chain fatty acids in the mitochondria [88].
Altogether suggests that miR-210 and its target
genes ATP5I, ME3, MTCH1 and CPT2 are likely to
be involved in ATP production, apoptosis and beta-
oxidation of long fatty acids in mitochondria. We
have demonstrated that correlation relationship be-
tween miRNA and target mRNA can be used to
functionally link to phenotypes of interest such as
muscle fiber type specification, mitochondrial
respiration activity and metabolic enzymes related to
ATP production.

Crosstalk between mitochondria and UPS in skeletal
muscle
Up to now we have shown that the identified miRNA-
mRNA networks are linked to muscle fiber types,

oxidative enzyme activities and ATP generation. Some of
these target genes are involved in mitochondrial function
and UPS. An interesting finding was the significant correl-
ation between mitochondrial and UPS related gene ex-
pressions. More specifically, mitochondrial related genes
including ATP5I, ME3, MTCH1, CYP24A KIAA1279,
PHB2, PDHA1 and UQCC were highly correlated to at
least one of the UPS-related genes including HECW2,
USP24, UBFD1, MUL1, APP and HSPA2.
The tightly interdependent relationship between mito-

chondria and UPS system has been described in many
age-related diseases such as Alzheimer’s and Parkinson’s
disease [89–91]. Our present study revealed a link be-
tween these two systems at the level of gene expression
under normal state, since all the investigated animals
were healthy. In other words, both mitochondria and
UPS might contribute to energy metabolism of skeletal
muscle via fine-turning the gene expression by miRNAs
under physiological conditions.
The HECT, C2 and WW domain containing E3 ubiqui-

tin protein ligase 2 (HECW2), ubiquitin specific peptidase
24 (USP24), ubiquitin family domain containing 1
(UBFD1) and mitochondrial ubiquitin ligase activator of
NFKB 1-like (MUL1), Amyloid beta precursor protein
(APP) and Heat shock 70 kDa protein 2 (HSPA2) are ei-
ther the major components or associated with the UPS
system [92, 93]. Those genes targeted by several miRNAs
including miR-28, miR-363, miR-2020, miR-24, miR-1207,
miR-345 and miR-58 may be the cause of fluctuation of
the UPS degradation for ubiquitin proteasome-dependent
molecules [94] such as transcriptional coactivator PGC-1α
which acts as a master regulator for mitochondrial biogen-
esis, to control mitochondrial gene expression indirectly.
On the other side, miR-210 and miR-885 targeted genes
of ATP synthase mitochondrial F0 complex subunit E
(ATP5I), Pyruvate dehydrogenase alpha 1 (PDHA1) and
Ubiquinol-cytochrome c reductase complex chaperone
(UQCC) [95] could affect cellular ATP generation,
followed by influencing the ATP-dependent UPS system
[96]. However, further detail information of the interaction
between mitochondria and UPS still remains elusive.

Conclusion
In this study, we modelled the miRNA-mRNA regula-
tory networks related to muscle fiber type, metabolic en-
zyme activity and ATP production using the correlation
information between expressed miRNAs and target
mRNAs as well as muscular phenotypic measurements
of Duroc and PiNN pigs. These complex networks may
contribute to the muscle phenotypic variations by fine-
tuning the expression of genes. Altogether, the results
provide an insight into a regulatory role of miRNAs in
muscular energy metabolisms.
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Abstract 
Skeletal muscles are metabolically active and have market value in meat-producing farm 

animals. A better understanding of biological pathways affecting energy metabolism in 

skeletal muscle could advance the science of skeletal muscle. In this study, comparative 

pathway-focused gene expression profiling in conjunction with muscle fiber typing were 

analyzed in skeletal muscles from Duroc, Pietrain, and Duroc–Pietrain crossbred pigs. 

Each breed type displayed a distinct muscle fiber-type composition. Mitochondrial 

respiratory activity and glycolytic and oxidative enzyme activities were comparable among 

genotypes, except for significantly lower complex I activity in Pietrain pigs homozygous-

positive for malignant hyperthermia syndrome. At the transcriptional level, lactate 

dehydrogenase B showed breed specificity, with significantly lower expression in Pietrain 

pigs homozygous-positive for malignant hyperthermia syndrome. A similar mRNA 

expression pattern was shown for several subunits of oxidative phosphorylation 

complexes, including complex I, complex II, complex IV, and ATP synthase. Significant 

correlations were observed between mRNA expression of genes in focused pathways and 

enzyme activities in a breed-dependent manner. Moreover, expression patterns of pathway-

focused genes were well correlated with muscle fiber-type composition. These results 

stress the importance of regulation of transcriptional rate of genes related to oxidative and 

glycolytic pathways in the metabolic capacity of muscle fibers. Overall, the results further 

the breed-specific understanding of the molecular basis of metabolic enzyme activities, 

which directly impact meat quality. 

Keywords: muscle fiber;metabolic enzymes;expression pattern; pig  

Introduction 

Tenderness and juiciness are important factors of meat quality and are associated with 

percentage of oxidative and glycolytic muscle fibers in meat-producing animals. Selection 

for fast-growing breeds not only affects meat quality, but also composition of muscle fiber-

type (Karlsson et al. 1994). Duroc and Pietrain are two common commercial pig breeds 

known for divergent meat quality and muscular energy metabolism. Duroc pigs contain a 

higher proportion of slow-twitch oxidative (STO) fibers. In comparison, Pietrain pigs are 

muscular and lean, and their muscles contain more fast-twitch glycolytic (FTG) fibers. 

Muscle containing a high proportion of STO fibers is often associated with high oxidative 
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enzyme activities (Gueguen et al. 2005); a high ratio of FTG fibers is associated with high 

glycolytic enzyme activities (Huber et al. 2007; Werner et al. 2010b). Because these 

factors affect properties of meat, understanding the metabolic properties of skeletal muscle 

fibers could be key to improvement of meat quality (Hocquette et al. 2001). 

Mitochondria play an important role in cellular ATP generation through oxidative 

phosphorylation. Oxidative capacity of muscle is proportional to mitochondrial volume 

and density, with higher capacity in slow-twitch fibers and lower in fast-twitch fibers 

(Picard et al. 2012; Schwerzmann et al. 1989). Beside ATP production mitochondria also 

influence Ca2+ homeostasis by uptake and efflux of Ca2+ across the mitochondrial 

membrane. The latter is important, as the Ca2+ in turn has an impact on the mitochondrial 

ATP production (Griffiths and Rutter 2009). Mutations within ryanodine receptor 1 

(RYR1), a calcium release channel in the sarcoplasmic reticulum (SR), are frequently 

detected in Pietrain pigs and result in membrane leakage and increased Ca2+ outflow from 

the SR to the cytoplasm. This leads to increased excitability of the muscle associated with  

malignant hyperthermia susceptibility (MHS) (Fujii et al. 1991), a calcium regulation 

disorder characterized by skeletal muscle hypermetabolism. This genetic defect 

consequently leads to reduced water holding capacity; loss of stress resistance; and pale, 

soft, and exudative meat (Fujii et al. 1991; Huff-Lonergan and Lonergan 2005; Shen et al. 

2007; Yue et al. 2003). Thus, oxidative pathways are influenced as heritable traits, and 

understanding the genotype-phenotype correlation within these pathways can offer 

valuable insight for metabolism as well as meat production.       

In this study, we analyzed expression profiles of pathway-focused genes related to 

oxidative and glycolytic pathways in conjunction with muscle fiber typing and metabolic 

enzyme activities to further understand the molecular basis of muscle properties and 

functions that affect meat quality. We analyzed and compared four distinct metabolic types 

of pig breeds: Duroc, Pietrain homozygous-negative for MHS (PiNN), Pietrain 

homozygous-positive for MHS (PiPP), and an F2 crossbred Duroc–Pietrain homozygous-

negative for MHS (DuPi).  

Materials and methods  

Sample collection and phenotypic measurement 
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The experiment and muscle biopsy collection were approved and authorized by the 

German and European animal welfare regulations for animal husbandry, transport, and 

slaughter (Krischek et al. 2011; Werner et al. 2010a; Werner et al. 2010b). All 

experimental procedures, including animal care and tissue sample collection, followed 

guidelines for safeguarding and good scientific practice in accordance with the German 

Law of Animal Protection, officially authorized by the Animal Care Committee and 

authorities [Niedersächsischen Landesamt für Verbraucherschutz und 

Lebensmittelsicherheit (LAVES) 33.42502/01-47.05]. 

As previously described (Krischek et al. 2011; Werner et al. 2010a; Werner et al. 2010b), 

Duroc, PiNN, PiPP, and DuPi pigs from a resource population of the University of Bonn 

were raised until 180 days of age. Muscle biopsies of each breed (Duroc, n = 12; DuPi, n = 

12; PiNN, n = 10; PiPP, n = 12) were collected 24 h before slaughter from the longissimus 

muscle between 13th and 14th thoracic vertebrae for quantitative real-time PCR (qPCR) and 

muscle-related phenotyping. Muscle samples were frozen in liquid nitrogen and stored at –

80 °C until analysis. Measurements of muscle fiber-type composition, mitochondrial 

respiratory activity, glycolytic and oxidative enzyme activities and concentrations of ATP, 

ADP and and AMP were performed as described previously (Krischek et al. 2011; Werner 

et al. 2010a; Werner et al. 2010b). Definitions and brief descriptions of applied methods 

for all phenotypic traits are provided in Online Resource 1.  

Total RNA isolation 

Total RNA was isolated from longissimus muscle biopsies using Tri-reagent and RNeasy 

Minikit (Qiagen) with an on-column DNase treatment according to the manufacturer’s 

protocol. RNA integrity was assessed by 1% agarose gel electrophoresis. RNA 

concentration was measured on a NanoDrop ND-1000 spectrophotometer (Peqlab).  

Quantitative real-time PCR (qPCR)  

qPCR of all RNA samples (n = 46) was performed using fast gene expression analysis with 

EvaGreen dye on a BioMark HD real-time PCR system according to manufacturer’s 

recommendations (Fluidigm). All reagents were purchased from Fluidigm unless otherwise 

indicated. Briefly, cDNA was synthesized from 2 µg of total RNA using Superscript II 

reverse transcriptase and oligo-dT (Invitrogen) with specific target amplification and 

exonuclease I (New England Biolabs) treatment. qPCR reactions were performed using a 
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48x48 dynamic array and integrated fluidic circuit. For each sample inlet, 2.5 µL of 

2×SsoFast EvaGreen supermix with low ROX (Biorad), 0.25 µL of 20×DNA-binding dye 

sample loading reagent, and 2.25 µL of specific target amplification and exonuclease-I-

treated sample were loaded. For each assay inlet, 2.5 µL of 2×assay loading reagent, 2.25 

µL of 1×DNA suspension buffer, and 0.25 µL of 100 µM mixed (forward and reverse) 

primers were loaded. All measurements were performed in duplicate. Thermal parameters 

were: 95 oC for 60 s, followed by 30 cycles of 95 oC for 5 s and 60 oC for 20 s. Assays 

were performed for genes encoding glycolytic enzymes including muscle-specific 

glycogen phosphorylase (PYGM) and phosphofructokinase (PFKM) and four subunits of 

lactate dehydrogenase (LDH): LDHA, LDHB, LDHC, and LDHD. Oxidative pathway 

components including CS, 35 complex I subunits (Online Resource 2), four subunits of 

complex II (SDHA, SDHB, SDHC, and SDHD), nine subunits of complex IV (COX10, 

COX15, COX17, COX5B, COX6A1, COX6C, COX7A1, COX7A2, and COX7C), and six 

ATP synthase subunits (ATP5B, ATP5G1, ATP5G2, ATP5J2, ATP5L, and ATP7A) were 

also addressed. Primer sequence information is accessible in Online Resource 2. Reference 

genes ACTB, RPL32, and RPS11 were used to normalize expression values.  

Statistical analysis  

Data were analyzed using SAS 9.3 statistical software (SAS Institute) and the GLM 

procedure. The statistical model included effects of breed, gender, and breed–gender 

interaction. Post hoc Tukey–Kramer method was used for multiple comparison 

adjustments. Results were reported as least-squares means (Lsmeans) with standard error 

(SE) and considered to be statistically significant if p < 0.05. Data were plotted using 

GraphPad Prism 5. Correlation coefficient (r) between gene expression and phenotypic 

measurement was calculated separately for each breed and in combination of all breeds 

together.  

Results  

Muscle phenotyping and breed differences 

To illuminate breed differences in muscle metabolic and functional capacities and 

properties, fiber-type compositions were compared among the four breeds. Duroc pigs had 

the highest percentage of STO fibers, with the most contrast between Duroc (13.91%) and 
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PiPP (6.48%) breeds (Online Resource 3). However, the percentage of fast-twitch 

oxidative (FTO) fibers was significantly lower in Duroc (8.81%) than other breeds, 

especially in comparison to PiNN pigs (15.11%; p = 0.011). Interestingly, PiPP pigs had a 

significantly higher percentage of FTG fibers (81.57%) compared with PiNN counterparts 

(74.95%; p = 0.035), while that of Duroc and DuPi were in between these two Pietrain 

genotypes.  

All mitochondrial respiratory activities measured were comparable across all four 

genotypes, with a tendency for lower state 3 and state 4 respiration in PiNN and lower 

respiratory control index in DuPi pigs (Online Resource 3). No significant differences 

among breeds were detected for glycolytic enzyme activity of glycogen phosphorylase 

(GP), phosphofructokinase (PFK), or lactate dehydrogenase (LDH). Complex I activity 

was significantly lower in PiPP (5.07%) compared to Duroc (9.79%; p = 0.009) and PiNN 

(9.26%; p = 0.037) pigs. However, other oxidative enzyme activities, including citrate 

synthase (CS), complex II, and complex IV, were not significantly different among breeds. 

For adenine nucleotide concentration, AMP was significantly lower in PiPP than Duroc (p 

< 0.01) and DuPi (p < 0.05), but not PiNN, pigs. In addition, ADP concentration was 

significantly lower in DuPi compared to Duroc and PiPP pigs (p < 0.01).  

Expression profiling of pathway-focused genes 

To further examine breed differences in muscle at a molecular level, pathway-focused gene 

expression profiling was performed using qPCR. Our pathway-focused panel included 

nuclear-encoded genes involved in both glycolytic and oxidative pathways. In addition, 

expression of genes encoding 10 V-ATPase lysosomal subunits were measured to analyze 

lysosomal-related energy metabolism. Out of 71 genes investigated, 48 genes showed 

significant differences among breeds (p < 0.05). One gene showed a significant effect of 

gender, and seven genes demonstrated a significant interaction effect of breed and gender 

(Online Resource 4). 

Differential genes in the glycolytic pathway  

For the glycolytic pathway, no differential expression was detected among breeds for 

PYGM and PFKM (Fig. 1). Likewise, there was no difference among breeds for mRNA 

levels of LDHA and LDHC. However, transcription of LDHB was significantly lower in 
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PiPP than Duroc (p < 0.05) and DuPi (p < 0.01) pigs. In addition, mRNA level of LDHD 

was lower in PiPP than PiNN pigs (p < 0.05) (Fig. 1).  

Differential genes in the oxidative pathway  

Assessment of 35 nuclear genes encoding for subunits of mitochondrial complex I showed 

that 24 genes were significantly different for at least one pairwise comparison of relative 

mRNA expression for each gene and pig breed (Table 1). Overall, PiPP pigs demonstrated 

the most differentially expressed genes in complex I. PiPP pigs differentially expressed 8, 

10, and 13 genes compared to Duroc, DuPi, and PiNN pigs, respectively. All differentially 

expressed genes except NDUFA12 were down-regulated in PiPP. Similar patterns of 

downregulation were observed in PiPP compared to other genotypes for most subunits of 

complex II (SDHA, SDHC, and SDHD) and complex IV (COX1, COX5B, COX6C, COX 

7A1, and COX7A2) (Fig. 2) and all subunits of ATP synthase (Fig. 3). CS showed no breed 

difference.  

Correlation between gene expression and enzyme activity 

We further performed correlation analyses between gene transcript level and enzyme 

activity to identify genes that may influence the pathways. Correlation analyses were 

calculated for each breed separately as well as for all breeds combined. Overall, most 

significant correlations were breed-dependent. For example, only PiNN exhibited high 

correlation for complex I subunits with NDUFA2, NDURFA11, NDUFA12, NDUFA13, 

and NDUFB8 (Table 2). Alternatively, Duroc pigs had high correlation between complex 

IV mRNA levels and enzyme activity for COX5B (r = 0.66; p = 0.021) and COX7A1 (r = 

0.59; p = 0.041). DuPi pigs had high correlations for complex II subunit with SDHC (r = 

0.65; p = 0.031) and complex IV subunits with COX10 (r = 0.58; p = 0.047), COX6C (r = 

0.65; p = 0.023), and COX7A2 (r = 0.79; p = 0.002). PiPP pigs had significant correlations 

for complex I subunit NDUFS5 (r = –0.69; p = 0.029) and complex IV subunit COX7A1 (r 

= –0.6; p = 0.049). When all breed data were combined, most genes were still significantly 

correlated with enzyme activity. Eleven genes were significantly correlated with complex I 

activity. NDUFA4L2 (r = 0.45; p = 0.003), NDUFA9 (r = 0.45; p = 0.003), and NDUFA13 

(r = 0.45; p = 0.003) encoded for subunit A of complex I were the top three significant 

genes that correlated with complex I activity.  Four genes were significantly correlated 
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with complex IV activity, with COX7A2 (r = 0.63; p < 0.0001) showing the highest 

significance (Table 2). 

 

Correlation between gene expression and fiber-type  

Since each breed showed a distinct fiber-type composition, we performed correlation 

analyses between gene expression and muscle fiber-type for each breed separately (Table 

3). In Duroc pigs, percentage of STO muscle fiber significantly correlated with expression 

of several genes of oxidative phosphorylation complexes, including 10 subunits of 

complex I, two subunits of complex II, one subunit of complex IV, and one subunit of ATP 

synthase. In DuPi pigs, significant correlations were observed between FTO muscle fiber 

and genes coding for four subunits of complex I and one subunit of complex II. For PiNN 

pigs, a negative correlation was detected between FTG fiber composition and ATP 

synthase as well as V-ATPase.   

Discussion  

In this study, we compared mitochondrial respiratory activity, metabolic enzyme activity, 

muscle fiber-type component, and expression of pathway-focused genes of four 

metabolically distinct pig breeds differing in muscularity, and muscle structure. The lean-

type Pietrain breed is known for muscularity, muscle fiber density, and a higher proportion 

of glycolytic muscle fibers, while Duroc pigs are less muscular, and have a higher 

proportion of slow-twitch muscle fibers. This study also included a crossbred F2 Duroc–

Pietrain breed. Although a single nucleotide mutation within RYR1 causes an abnormality 

of cellular calcium homeostasis, resulting in pale, soft, and exudative meat as well as MHS 

(Fujii et al. 1991; Shen et al. 2007), the MHS homozygous genotype is still retained in 

pork production because of its advantageous carcass yield and lean percentage, which is 

associated with higher FTG fiber ratios (Werner et al. 2010a). Therefore, we investigated 

both MHS homozygous-positive (PiPP) and MHS homozygous-negative (PiNN) Pietrain 

pigs to better distinguish possible associated effects of RYR1.    

Downregulation of LDHB in PiPP pigs 

LDH catalyzes interconversion of pyruvate to lactate as well as interconversion of NADH 

to NAD+. LDH is a tetramer of four subunits. The two common subunits, M and H, are 

encoded by LDHA and LDHB, respectively. LDHC is a testis-specific protein, while 
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LDHD can metabolize D-lactate (de Bari et al. 2013). Lactate is an intermediate in 

numerous metabolic processes and provides fuel for aerobic metabolism rather than a 

dead-end waste product of glycolysis due to hypoxia (Gladden 2004). Evidence has shown 

that reduced LDHA activity stimulates mitochondrial respiration, suggesting a link 

between glycolysis and mitochondrial physiology (Fantin et al. 2006). However, our 

results showed no breed-specific differences in LDHA transcript levels, consistent with 

comparable LDH activities measured among the four breeds. Interestingly, our results 

indicated downregulation of LDHB in PiPP pigs, which also had the least percentage of 

STO muscle fibers. LDHB encodes LDH subunit H, which oxidizes lactate back to 

pyruvate and thus can generate mitochondrial energy via aerobic metabolism in the TCA 

cycle (Gabriel-Costa et al. 2015). Different LDH isoforms have been associated with 

different muscle fiber-types. LDH1 isoenzyme, consisting of four H-subunits, is 

predominantly distributed in type I STO fibers; LDH5, containing four M-subunits, is 

distributed mainly in type IIA and IIB fibers in rabbit and guinea pig skeletal muscles 

(Leberer and Pette 1984; Peter et al. 1971). Therefore, LDH may function as a key 

mediator of lactate oxidation via its H subunit and this process seems to be reduced in pigs 

with low STO fiber percentages like the PiPP. 

OXPHOS complexes in PiPP pigs   

Complex I, complex II, complex IV, and ATP synthase are major components of oxidative 

phosphorylation (OXPHOS). They locate in mitochondrial inner membranes and generate 

ATP via OXPHOS. Each complex consists of different subunits that are assembled into a 

functional complex. We examined all nuclear-encoded genes of subunits for the OXPHOS 

pathway by qPCR and found that PiPP pigs transcriptionally downregulated complex I, 

complex II, complex IV, and ATP synthase for most subunits compared to PiNN, Duroc, 

and DuPi pigs.  

PiPP pigs are positive for the RYR1 point mutation (Fujii et al. 1991). Defective RYR1 

leads to increased release of Ca2+ from the SR to the cytoplasm. In normal conditions, 

accumulation of Ca2+ in cytoplasm initiates muscle contraction. Ca2+ then must be pumped 

back to the SR by SR Ca2+ ATPase (SERCA) to initiate muscle relaxation (Fill and 

Copello 2002; Lanner et al. 2010). In PiPP pigs, abnormally elevated Ca2+ levels in 

cytoplasm cause excess muscle contraction and high energy consumption, leading to a 

faster shift of energy generation from aerobic to anaerobic glycolysis and resulting in 
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acidosis (Werner et al. 2005). The Ca2+ homeostasis abnormality can also influence 

mitochondrial Ca2+ concentrations, as the mitochondrial membranes contain different 

calcium in- and efflux systems. Since Ca2+ plays a pivotal role in the mitochondria of 

muscle cells, the elevated Ca2+ concentrations can affect the mitochondrial function and 

probably the meat quality like in the PiPP pigs. This assumption is supported by a study in 

MHS knock-in mice that showed a clear Ca2+ overload in the mitochondrial matrix and a 

switch to a compromised bioenergetic state characterized by low OXPHOS under a non-

triggered state (Giulivi et al. 2011). Extreme conditions, such as Ca2+ concentrations >100 

µM, could dephosphorylate complex IV and decrease affinity for cytochrome C through a 

cAMP-dependent tyrosine phosphorylation site in liver complex IV subunit I (Gellerich et 

al. 2010). Moreover, our results indicate that muscle of PiPP pigs contains a high 

percentage of FTG fibers, which have characteristic low capillarisation and inefficient 

oxygen delivery and yet are accompanied by downregulated OXPHOS. 

Significantly higher AMP concentrations, such as in Duroc pigs, and the AMP:ATP ratio 

activate AMP-activated protein kinase (AMPK) via allosteric AMP binding. AMPK binds 

to and activates PGC-1α by direct phosphorylation to control OXPHOS (Jager et al. 2007; 

O'Neill et al. 2013). Knockout of both β1 and β2 isoforms of AMPK in transgenic mice 

reduces mitochondrial biogenesis, revealing the essential role of AMPK in maintaining 

mitochondrial capacity (O'Neill et al. 2011). This is in line with a reduced AMP:ATP ratio 

and transcriptional downregulation of OXPHOS-related enzymes, including complex I, 

complex II, complex IV, and ATP synthase, in PiPP pigs. Further, it is reinforced by higher 

glycogen levels in FTG fibers (Fernandez et al. 1995) and repressed activation of AMPK 

in the presence of high levels of muscle glycogen (Wojtaszewski et al. 2002; Wojtaszewski 

et al. 2003). Gene expression of v-ATPase subunits was included in this study because the 

v-ATPase-regulator complex acts as a switch between anabolic and catabolic metabolism 

depending on the status of nutrient supply (Zhang et al. 2014). However, no breed 

difference was observed for the v-ATPase complex.   

Breed-specific OXPHOS complexes 

Our results show that most significant correlations between mRNA level and enzyme 

activity was breed-dependent, such as complex IV in Duroc, complex II and IV in DuPi, 

complex I in PiNN, and complex I and IV in PiPP. Complex gene regulations at 

posttranscriptional and posttranslational levels in association with different genetic 
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backgrounds may roughly explain the results. Other evidence has shown that LRPPRC can 

influence complex IV and ATP synthase as well as ATP production by affecting RNA 

stability (Cannino et al. 2007; Mili and Pinol-Roma 2003; Mourier et al. 2014). This 

should be investigated in our further study. 

Since oxidative phosphorylation occurrs in mitochondria, the nuclear-encoded OXPHOS 

complex subunits need to be processed, imported into mitochondria and then together with 

mitochondrial-encoded subunits to form a fully assembled functional OXPHOS system in 

the mitochondrial inner membrane via chaperones, translocases and mitochondrial inner 

membrane proteins (Bonnefoy et al. 2009; Neupert and Herrmann 2007; Smits et al. 2010; 

Voos and Rottgers 2002). The most advanced proposed OXPHOS system organization is 

the ‘plasticity model’, which is the coexisting of single complexes and supercomplexes 

(Acín-Pérez et al. 2008; Schon and Dencher 2009). There are several favorable 

combinations of supercomplexes which are the combination of complex I and III, the 

combination of complex III and IV, the combination of complex I, III and IV and the ATP 

synthase is present as a single complex (Dudkina et al. 2014). Events such as importation 

of molecules into mitochondria and OXPHOS complex assemblization could also 

contribute to the disparity between mRNA levels and enzyme activity for OXPHOS 

complex. Therefore, within the pig breeds, the OXPHOS system is differently regulated 

and optimized to meet appropriate energy requirements via fine-turning various genetic 

controls. Further investigations are under progress to clarify this assumption. 

OXPHOS complexes are linked to oxidative capacity of muscle fibers  

We show a positive correlation between STO fibers and gene expression of OXPHOS 

complex subunits, which play an essential role in mitochondrial respiration, especially in 

Duroc pigs. The strong association between gene expression of OXPHOS complexes and 

STO fibers may be explained by the high percentage of STO fibers in Duroc pigs 

compared to other breeds. Interestingly, DuPi pigs, which are a crossbreed of Duroc and 

Pietrain, also showed significant correlation between OXPHOS expression and FTO fibers, 

which are intermediate between STO and FTG fibers. This suggests that muscle fiber-type 

composition, which is unique for muscle types and breeds, may play a determinant role for 

oxidative capacity of OXPHOS complexes.  
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OXPHOS complexes I-IV are also known as electron transport chains and are embedded 

within inner mitochondrial membranes. The complexes are important to muscle fidelity, 

because mitochondrial electron transport chain disorders can cause muscle abnormalities 

(Enns et al. 2005). It has been reported that type IIB fibers have unique properties 

compared to type I and IIA fibers, which involve complex I and complex II substrates 

(Anderson and Neufer 2006). Moreover, transcription factor PGC-1α may provide a link 

between muscle fiber-type and energy production because it can drive formation of slow-

twitch muscle fibers in cultured muscle cells and also activate expression of nuclear 

respiratory factors, which influence transcription of OXPHOS complexes (Arany et al. 

2007; Kang and Li Ji 2012; Lin et al. 2002; Wu et al. 1999). In addition, expression of 

NADH dehydrogenase subunit 1 and ATPase subunit 6 is associated with oxidative fiber 

and fat content (Kim et al. 2008).  

Conclusion 

Our study revealed differential gene expression of both glycolytic and oxidative enzymes 

in skeletal muscle of Duroc, PiPP, PiNN, and DuPi pigs. LDH subunits showed differential 

expression patterns across pig breeds. Significantly, PiPP pigs exhibited the lowest LDHB 

and LDHD expression, supporting a role for LDH in aerobic respiration rather than as a 

dead-end waste product of glycolysis due to hypoxia. Many subunits of OXPHOS 

complexes displayed significantly different expression between PiPP pigs and the three 

other breeds. Within different pig breeds, OXPHOS was regulated and optimized to meet 

different energy requirements via fine-turning breed-specific genetic differences. This 

study also linked the OXPHOS system to different types of muscle fibers. For example, 

Duroc pigs had the strongest association between OXPHOS complex expression and STO 

muscle fibers, whereas DuPi pigs had significant correlation between OXPHOS complex 

expression and FTO fibers. These results highlight the importance of the OXPHOS system 

in oxidative capacity of muscle fibers. Our results provide valuable breed-specific 

information for the molecular basis of metabolic enzyme activities, which directly impact 

meat quality. 
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Figure legends 

 
Fig. 1 Relative mRNA expression of a) muscle glycogen phosphorylase (PYGM), 
phosphofructokinase (PFKM), and b) lactate dehydrogenase (LDH) isoforms (LDHA, 
LDHB, LDHC, and LDHD) in longissimus muscles of Duroc, DuPi, PiNN, and PiPP pig 
breeds was determined using quantitative real time PCR (qPCR). Relative gene expression 
was normalized to reference genes ACTB, RPL32, and RPS11 using 2^ (-∆Ct). Each 
column represents the least square means with standard error represented by bars. *p < 
0.05; **p < 0.01  
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Fig. 2 Relative mRNA expression of a) citrate synthase (CS), b) complex II (SDH) 
isoforms (SHDA, SDHB, SDHC, and SDHD), and c) complex IV isoforms (COX10, 
COX15, COX17, COX5B, COX6A1, COX6C, COX7A1, COX7A2, and COX7C) in 
longissimus muscles of Duroc, DuPi, PiNN, and PiPP pig breeds was determined using 
quantitative real time PCR (qPCR). Relative gene expression was normalized to reference 
genes ACTB, RPL32, and RPS11 using 2^ (-∆Ct). Each column represents the least square 
means with standard error represented by bars. *p < 0.05; **p < 0.01; ***p < 0.001 
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Fig. 3 Relative mRNA expression of a) ATP synthase isoforms (ATP5B, ATP5G1, 
ATP5G2, ATP5J2, ATP5L, and ATP7A) and b) V-ATPase isoforms (ATP6V0A1, 
ATP6V0A4, ATP6V0D1, ATP6V1B2, ATP6V1C1, ATP6V1C2, ATP6V1D, ATP6V1E1, 
ATP6V1F, and ATP6V1H) in longissimus muscles of Duroc, DuPi, PiNN, and PiPP pig 
breeds was determined using quantitative real time PCR (qPCR). Relative gene expression 
was normalized to reference genes ACTB, RPL32, and RPS11 using 2^ (-∆Ct). Each 
column represents the least square means with standard error represented by bars. *p < 
0.05; **p < 0.01; ***p < 0.001 
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             Table 1 Relative gene expression of complex I in Duroc, DuPi, PiNN, and PiPP pig breeds 

Gene 
Duroc 
(n=12) 

LsmeanSE 
DuPi (n=12) 

LsmeanSE 
PiNN (n=10) 

LsmeanSE 
PiPP (n=12) 
LsmeanSE 

p 
Duroc
–DuPi 

Duroc
–PiNN 

Duroc
–PiPP 

DuPi–
PiNN 

DuPi–
PiPP 

PiNN–
PiPP 

NDUFA1 0.0130.023 0.1070.022 0.0110.025 0.0680.022 0.027 1 0.322 0.032 0.613 0.331 
NDUFA2 1.4010.081 1.4320.08 1.6430.089 1.2580.08 0.993 0.202 0.594 0.307 0.421 0.013 
NDUFA3 0.0320.002 0.0360.002 0.0410.003 0.0260.002 0.532 0.051 0.382 0.503 0.024 0.001 
NDUFA4 2.1740.128 1.970.126 2.2840.141 1.3630.126 0.669 0.939 3E-04 0.359 0.008 1E-04 
NDUFA4L
2 

0.0480.003 0.0440.003 0.0420.003 0.0330.003 0.792 0.55 0.004 0.967 0.045 0.166 

NDUFA5 0.0770.007 0.0450.007 0.0420.008 0.040.007 0.011 0.007 0.003 0.987 0.949 0.998 
NDUFA6 0.0340.004 0.0210.004 0.0420.004 0.0280.004 0.074 0.446 0.661 0.002 0.525 0.06 
NDUFA8 0.0650.008 0.0840.008 0.0660.009 0.050.008 0.318 1 0.568 0.408 0.02 0.557 
NDUFA9 0.4550.033 0.4510.032 0.5140.036 0.3330.032 1 0.628 0.053 0.575 0.061 0.003 
NDUFA10 0.2320.022 0.2720.021 0.3120.024 0.2090.021 0.544 0.076 0.873 0.602 0.167 0.013 
NDUFA11 1.5930.085 1.7290.084 1.9070.094 1.2490.084 0.669 0.079 0.032 0.496 0.001 <.0001 
NDUFA12 0.090.049 0.360.049 0.470.054 0.3480.049 0.002 <.0001 0.003 0.446 0.998 0.355 
NDUFA13 2.9790.175 2.7330.172 3.4620.193 2.2490.172 0.748 0.262 0.025 0.036 0.21 2E-04 
NDUFAB1 0.5860.052 0.6350.052 0.6220.058 0.4350.052 0.91 0.968 0.184 0.998 0.044 0.091 
NDUFB1 0.8080.068 1.0280.067 0.8770.074 0.7240.067 0.11 0.902 0.811 0.438 0.013 0.428 
NDUFB2 0.3430.041 0.4710.041 0.3210.046 0.2890.041 0.142 0.983 0.789 0.083 0.016 0.955 
NDUFB4 1.0020.085 1.1390.084 1.2340.094 0.8360.084 0.669 0.279 0.517 0.875 0.07 0.016 
NDUFB7 0.6110.068 0.7210.067 0.8170.075 0.5330.067 0.66 0.194 0.843 0.776 0.21 0.036 
NDUFB8 1.6260.102 1.8550.101 1.7140.113 1.3270.101 0.394 0.939 0.176 0.787 0.004 0.067 
NDUFS3 0.3720.044 0.3910.043 0.4850.048 0.3080.043 0.99 0.321 0.726 0.478 0.531 0.045 
NDUFS5 2.1290.101 1.8480.1 2.2390.111 1.6990.1 0.215 0.884 0.022 0.059 0.716 0.005 
NDUFS6 0.1960.019 0.2680.019 0.210.021 0.1970.019 0.045 0.959 1 0.174 0.048 0.969 
NDUFS8 0.8730.042 0.7120.042 0.8820.046 0.6540.042 0.046 0.999 0.004 0.045 0.756 0.004 
NDUFV1 0.3850.037 0.3720.036 0.5080.041 0.2940.036 0.994 0.129 0.303 0.075 0.435 0.002 

 Total genes with p < 0.05 5 2 8 4 10 13 
Lsmean = least squares mean; SE = standard error 
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                             Table 2 Correlation between gene expression and enzyme activity 

Enzyme 
activity Gene 

Duroc DuPi PiNN PiPP All breeds 
r p r p r p r p r p 

Complex I NDUFA2 0.37 0.230 -0.17 0.616 0.88 0.002 -0.47 0.170 0.38 0.014 
NDUFA3 0.25 0.439 0.30 0.369 0.27 0.486 -0.30 0.397 0.35 0.023 
NDUFA4 0.13 0.687 0.38 0.256 -0.19 0.629 -0.26 0.468 0.34 0.026 
NDUFA4L
2 

0.33 0.298 -0.08 0.807 0.43 0.246 0.15 0.670 0.45 0.003 

NDUFA9 0.39 0.209 0.11 0.742 0.41 0.277 0.02 0.964 0.45 0.003 
NDUFA11 0.33 0.294 -0.17 0.623 0.74 0.023 -0.34 0.330 0.41 0.007 
NDUFA12 -0.39 0.209 0.31 0.350 -0.73 0.025 0.62 0.056 -0.26 0.099 
NDUFA13 0.47 0.127 -0.22 0.507 0.73 0.024 -0.52 0.126 0.45 0.003 
NDUFB8 0.50 0.101 -0.26 0.443 0.70 0.037 -0.05 0.889 0.38 0.012 
NDUFS1 0.41 0.187 0.05 0.884 0.37 0.328 0.18 0.609 0.36 0.018 
NDUFS5 0.31 0.330 0.17 0.617 0.54 0.132 -0.69 0.029 0.43 0.004 
NDUFS8 0.50 0.101 -0.28 0.409 0.48 0.186 -0.34 0.337 0.41 0.006 

Complex II SDHC 0.22 0.499 0.65 0.031 0.58 0.132 -0.62 0.055 0.28 0.073 
Complex IV COX10 -0.10 0.757 0.58 0.047 -0.07 0.844 0.32 0.342 0.15 0.310 

COX15 0.25 0.437 0.48 0.112 0.27 0.446 -0.35 0.295 0.36 0.015 
COX5B 0.66 0.021 0.18 0.584 0.40 0.248 -0.46 0.150 0.29 0.051 
COX6C 0.37 0.238 0.65 0.023 0.26 0.462 -0.51 0.110 0.54 0.0001 
COX7A1 0.59 0.041 0.39 0.212 0.21 0.556 -0.60 0.049 0.37 0.013 
COX7A2 0.41 0.189 0.79 0.002 0.16 0.661 0.07 0.831 0.63 <.0001 
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    Table 3 Correlation between gene expression and muscle fiber-type by breed 

Breed Gene 
STO FTO FTG 

r p r p r p 
Duroc Phospho-fructokinase PFKM 0.87 0.024 -0.29 0.571 -0.80 0.054 

 
Citrate synthase CS 0.51 0.304 -0.98 0.001 0.10 0.855 

 
Complex I NDUFA2 0.82 0.048 -0.25 0.634 -0.78 0.070 

 NDUFA3 0.86 0.030 -0.82 0.047 -0.42 0.411 

 NDUFA9 0.82 0.045 -0.60 0.205 -0.53 0.282 

 NDUFA10 0.83 0.040 -0.42 0.412 -0.67 0.143 

 NDUFA11 0.83 0.041 -0.53 0.282 -0.60 0.211 

 NDUFA13 0.86 0.028 -0.37 0.473 -0.75 0.088 

 NDUFB7 0.84 0.038 -0.75 0.086 -0.44 0.383 

 NDUFB8 0.68 0.134 0.10 0.855 -0.87 0.026 

 NDUFS1 0.64 0.168 0.13 0.813 -0.84 0.038 

 NDUFS7 0.84 0.035 -0.37 0.471 -0.71 0.111 

 NDUFS8 0.92 0.009 -0.74 0.095 -0.55 0.258 

 NDUFV1 0.93 0.008 -0.62 0.192 -0.64 0.168 

 
Complex II SDHA 0.86 0.029 -0.51 0.307 -0.64 0.170 

 SDHB 0.83 0.039 -0.58 0.223 -0.55 0.253 

 SDHC 0.66 0.153 0.17 0.741 -0.89 0.017 

 
Complex IV COX5B 0.88 0.021 -0.59 0.222 -0.61 0.203 

 
ATP synthase ATP5G1 0.99 <.000

1 -0.52 0.295 -0.79 0.061 

 V-ATPase ATP6V1E1 0.42 0.405 0.50 0.314 -0.84 0.037 
 ATP6V1F 0.82 0.048 -0.23 0.657 -0.78 0.067 

DuPi Phospho-fructokinase PFKM 0.32 0.531 -0.83 0.040 0.11 0.842 
Complex I NDUFA8 0.09 0.870 -0.93 0.008 0.32 0.531 

NDUFA10 0.03 0.954 -0.87 0.023 0.34 0.505 
NDUFS6 -0.30 0.566 -0.89 0.016 0.66 0.155 
NDUFS7 -0.31 0.550 -0.85 0.033 0.62 0.186 

Complex II SDHA -0.17 0.749 -0.90 0.014 0.52 0.290 
Complex IV COX6A1 -0.91 0.012 0.03 0.958 0.73 0.098 

PiNN ATP synthase ATP5L 0.20 0.575 0.47 0.172 -0.68 0.031 
V-ATPase ATP6V1B2 0.16 0.650 0.55 0.099 -0.72 0.018 

PiPP Lactate 
dehydrogenase LDHC -0.91 0.011 -0.55 0.257 0.92 0.010 

Complex I NDUFA3 0.83 0.043 0.29 0.575 -0.69 0.131 
NDUFA11 0.82 0.048 -0.02 0.968 -0.63 0.178 

V-ATPase ATP6V0D1 0.92 0.009 0.48 0.335 -0.85 0.032 
ATP6V1C1 -0.48 0.333 -0.92 0.009 0.76 0.081 

    STO = slow-twitch oxidative; FTO = fast-twitch oxidative; FTG = fast-twitch glycolytic 
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Mitochondrial-nuclear crosstalk, 
haplotype and copy number 
variation distinct in muscle fiber 
type, mitochondrial respiratory and 
metabolic enzyme activities
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Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate 
oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat 
quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain 
pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial 
respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia 
susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number 
accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and 
ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 
of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase 
transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest 
that the variation in mitochondrial and nuclear genetic background among these animals has an effect 
on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression 
pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-
nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information 
for understanding muscle biology processes and energy metabolism, and may direct use for breeding 
strategies to improve meat quality and animal health.

Mitochondria are involved in many key cellular processes such as apoptosis, calcium homeostasis, reactive oxy-
gen species production, and most importantly, adenosine triphosphate (ATP) generation by oxidative phospho-
rylation (OXPHOS). In addition, these organelles contain their own DNA distinct from the nuclear genome. In 
pigs, mitochondrial DNA (mtDNA) is 16,613 base pairs in length and encodes two ribosomal RNA (rRNA), 22 
transfer RNA (tRNA), and 13 protein-coding genes involved in the OXPHOS system. Since OXPHOS subunits 
are encoded by both the nuclear and mitochondrial genome, the two genome systems interact intricately to form 
the fully assembled functional OXPHOS complexes.

Mitochondrial genetic variation can affect fertility, longevity, and evolutionary trajectories and acts as a 
human health indicator1. mtDNA haplotype variation affects metabolic performance in many species, such as 
raccoons, dogs, cows, and pigs2, and mitochondrial DNA (mtDNA) copy number has been associated with exten-
sive exercise, age-related hearing impairment, disordered antioxidant capacity, and heart failure3–6. In Drosophila, 
mtDNA copy number is proposed to be modulated by mtDNA genome variation7. Mitochondrial DNA haplo-
types are potential targets for manipulating phenotypes including tolerance to heat, growth, and milk quality in 
farm animals8. Hence, an understanding of the influence of mitochondrial haplotypes on energy metabolism in 
pigs would provide valuable information on mitochondrial function and inform farming practices to improve 
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meat quality and animal health. Since pigs share many similarities with humans in terms of genetics and physiol-
ogy, this knowledge is also potentially applicable to human diseases.

In addition to variation in mitochondrial density among muscle types, mitochondria are functionally opti-
mized and specialized in glycolytic and oxidative fibers9. Mitochondria isolated from muscle immediately after 
slaughter are similar to those found in intact muscle, whereas some mitochondria from pale, soft, exudative 
(PSE) muscle are already swollen and show a decreased matrix density10. With an emphasis placed on glycolysis, 
mitochondrial content and function may be important factors contributing to postmortem muscle metabolism11. 
Duroc and Pietrain are two commercial pig breeds known for divergent meat quality and muscular energy metab-
olism. Muscle from Duroc pigs typically contains more slow-twitch oxidative (STO) fibers and intramuscular 
fat, whereas Pietrain pigs are leaner and their muscles contain more fast-twitch glycolytic (FTG) fibers12–14. The 
content of different muscle fibers types, their size and structure largely contribute to differences in growth per-
formance and carcass traits as well as postmortem meat quality traits15. Lipids are stored mainly in STO fibers, 
which can improve the tenderness and juiciness of the meat16. The selection of a high percentage of FTG fibers 
may result in altered meat quality possibly due to the lower capillarization, insufficient delivery of oxygen and 
glycogen depletion17,18. Indeed, the meat quality parameters such as color of the meat, drip loss and shear force 
were measured in muscle of the same pigs12,14. PiPP pigs showed increased drip loss and shear force comparing 
to other three pig breeds. These results directly supported the association between muscle fiber type and meat 
quality. In Pietrain pigs, mutations within the ryanodine receptor 1 (RYR1) are associated with malignant hyper-
thermia susceptibility (MHS), reduced water holding capacity, and increased PSE meat19–21. Thus, Duroc and 
Pietrain pigs are unique models in which to study mitochondrial properties and energy metabolism influencing 
muscle metabolism and meat quality.

We have previously shown the transcriptional signatures in muscle from these pigs to be related to metabolic 
properties and mitochondrial respiration22–24. Furthermore, we wanted to know the mtDNA variation of these 
pigs and investigate whether mtDNA variation preferentially modifies the expression of mitochondria-associated 
OXPHOS gene from both mitochondria and nuclear genomes. Finally, we investigated mtDNA variation genes 
involved in mtDNA copy number in conjunction with muscle fiber types and metabolic enzyme activities in 
postmortem longissimus muscles (LM) from four different pig breeds: Duroc, Pietrain homozygous-negative 
for MHS (PiNN), Pietrain homozygous-positive for MHS (PiPP), and an F2 crossbred Duroc-Pietrain 
homozygous-negative for MHS (DuPi).

Results
Phenotypic differences among breeds.  To illustrate breed differences in muscle metabolism, muscle 
fiber composition, metabolic activities, and pH were compared among the four breeds. Duroc pigs had the high-
est percentage of STO muscle fibers and lower fast-twitch oxidative (FTO) fibers (Supplementary Fig. S1). PiPP 
pigs had a significantly higher percentage of FTG fibers (80.8%) compared to PiNN pigs (74.9%, p = 0.02), while 
Duroc and DuPi were in between the two Pietrain pigs.

The activities of key metabolic enzymes for energy metabolism were measured for all four pig breeds. PiNN 
pigs had the highest activity of phosphofructokinase (PFK), whereas no significant differences in the activities of 
glycogen phosphorylase (GP) and lactate dehydrogenase (LDH) were detected among breeds. Duroc pigs had the 
highest complex I activity (12.5 U/g protein) compared to other breeds. Moreover, PiPP had significantly lower 
pH than the other three breeds.

All measured phenotypic traits were compared at time 0 and 30 min postmortem (Supplementary Fig. S2). 
Most of the phenotypes, except complex IV activity, were significantly different between time points. The enzyme 
activities of PFK and LDH were increased from 475 to 859 U/g protein (p = 0.0002) and from 10.9 to 15 U/g pro-
tein (p < 0.0001), respectively, whereas the oxidative enzyme activities of CS, complex I and complex II, together 
with GP activity and pH, were decreased at 30 min postmortem compared to immediately after slaughter (p values 
ranging from < 0.0001 to 0.02).

Different mitochondrial haplotypes among pig breeds.  The D-loop regions in 53 animals were 
sequenced and eight haplotypes were identified. For statistical reasons, five haplotypes identified in at least three 
animals were included in subsequent data analysis. Detailed haplotype information is shown in Supplementary 
Table 1 and Fig. S3. In brief, haplotypes 4 (Duroc: 10, DuPi: 6) and 6 (Duroc: 5, DuPi: 1) were present in mainly 
Duroc and DuPi pigs whereas haplotype 1 was present in five DuPi pigs only. Haplotype 7 was present in three 
PiNN pigs, while haplotype 8 was found in 14 PiPP and four PiNN pigs. Muscles from pigs with haplotype 7 
contained significantly more FTO muscle fibers than haplotypes 4, 6, and 8 (p < 0.05, Fig. S4). Interestingly, hap-
lotype 8 showed the lowest complex I activity among all the haplotypes and had significantly lower activity than 
haplotypes 4 and 6 (p < 0.05). All other phenotypic traits were comparable between haplotypes.

Duplication of the porcine mitochondrial genome in the nuclear genome.  Using BLASTN, the pig 
mitochondrial genome was compared to the pig nuclear genome. Many regions among 18 somatic chromosomes 
and the X chromosome of the porcine nuclear genome matched to the mitochondrial genome (Fig. 1).

Comparison of mtDNA copy number.  PiPP pigs had the lowest mtDNA copy number (368 copies per 
nuclear genome) among the four breeds, especially compared to Duroc pigs (435 copies per nuclear genome, 
p = 0.02, Fig. 2a). Further, mtDNA copy number in longissimus muscle was decreased from 420 copies per 
nuclear genome at 0 min postmortem to 389 copies at 30 min postmortem (p = 0.01, Fig. 2b). Finally, muscle 
from pigs with haplotype 8 contained the lowest mtDNA copy number. Pigs with haplotype 8 had 375 copies per 
nuclear genome in their muscle tissue, which was significantly less than the 435 copies per nuclear genome seen 
in pigs with haplotype 4 (p = 0.02, Fig. 2c). There were no significant effects of sex on mtDNA copy number.
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Correlation between mtDNA copy number, phenotype, and gene expression.  As shown in 
Fig. 2d, mtDNA copy number was significantly correlated with muscle fiber type (STO: r = 0.263 p = 0.031; FTG: 
r = −0.292 p = 0.017) and enzyme activities (CS: r = 0.249 p = 0.009; complex I: r = 0.43 p = < 0.0001). Moreover, 
the expression of mitochondria-encoded genes (ND1, CYB, COX1, and ATP6) and nuclear-encoded OXPHOS 
genes (NDUFA3, NDUFA11, NDUFA13, NDUFB8, NDUFS8, NDUFV1, ATP5G1, and ATP5L) were significantly 
correlated with mtDNA copy number (p values ranged from 0.006 to 0.031 and < 0.0001 to 0.015, respectively. 
MtDNA copy number was weakly correlated with PPARG coactivator 1 alpha (PGC-1α) mRNA (p = 0.156).

Comparison of mitochondrial and nuclear encoded OXPHOS genes expression.  To further 
examine breed and time differences in postmortem muscular energy metabolism at a molecular level, both mito-
chondrial and nuclear encoded gene expression was profiled at 0 and 30 min postmortem using qPCR in all 
four pig breeds. No mitochondrial-encoded genes were differently expressed between 0 and 30 min postmortem 
(Table 1). The mRNA levels of 4 nuclear-encoded genes, NDUFB8, COX7A2 and ATP5L were significantly lower 
at 30 min postmortem than 0 min (p values < 0.0001 to 0.02).

Out of the sixteen genes investigated, ten genes including mitochondrial-encoded ND1, ND2, ND6, ATP6 
were differently expressed between breeds (Fig. 3a). PiPP pigs had the most differentially expressed genes, espe-
cially compared to the Duroc and DuPi breeds: complex I subunits ND1 and ND6 and the ATP synthase subunit 
ATP6 were all significantly upregulated in Duroc pigs (p values < 0.0001 to 0.003). Nuclear-encoded NDUFA11, 
NDUFB8, NDUFS8, NDUFV1, ATP5G1 and ATP5L showed significant differences among breeds (p < 0.05, 
Supplementary Table 2) (Fig. 3b). All six differentially expressed were down-regulated in PiPP pigs compared to 
the three other breeds.

Eleven genes including ND1, ND2, ND6, CYB, COX1, ATP6 and nuclear-encoded NDUFA11, NDUFA13, 
NDUFB8, ATP5G1 and ATP5L showed significant differences in haplotypes (Supplementary Table 3). Only three 
genes including nuclear-encoded NDUFB8, COX7A2 and ATP5L demonstrated that they were significantly influ-
enced by time. No gene expression was affected by sex.

Figure 1.  Duplication of mitochondrial genome in the nuclear genome. Blue bars represent the locations of 
duplicated mitochondrial genome against the porcine chromosomes.
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All PiPP pigs had haplotype 8, which showed significantly lower gene expression than haplotypes 1, 4, and 6 
for ND1, ND2, ND6, CYB, COX1, and ATP6 (p values from p < 0.0001 to 0.048; Fig. 4a and b). Complex I subunits 
NDUFA11, NDUFA13, and NDUFB8 showed significantly lower gene expression in haplotype 8 than haplotype 1 
pigs (p values < 0.0001 to 0.029, Fig. 4c and d).

Figure 2.  Absolute mitochondrial DNA copy number in porcine longissimus muscles. Least-square means with 
standard error (Lsmeans ± SE) of mtDNA copy number (a) in Duroc, DuPi, PiNN, and PiPP pigs (b) at 0 min 
and 30 min postmortem (c) in different mitochondrial haplotypes (d). The correlation coefficient of mtDNA 
copy number and OPXHOS gene expression with phenotypes of traits. *p < 0.05; **p < 0.01****p < 0.0001. 
See also Table S3 and S4.

Gene 0 min (n = 58) LsmeanSE 30 min (n = 58) LsmeanSE 0 vs 30 min p-value

Mitochondrial-encoded

ND1 9.9780.316 10.1260.401 0.768

ND2 7.5280.416 7.0250.484 0.433

ND4 13.7800.435 13.4490.669 0.680

ND6 6.6410.316 6.2620.443 0.462

CYB 0.0070.0004 0.0080.0005 0.213

COX1 20.6770.580 21.7310.854 0.306

ATP6 17.5390.658 16.8490.770 0.507

Nuclear-encoded

NDUFA3 0.0220.002 0.0240.002 0.367

NDUFA11 0.2570.009 0.2640.008 0.549

NDUFA13 0.3330.012 0.3360.010 0.858

NDUFB8 0.6390.020 0.3480.013 <0.0001

NDUFS8 0.3200.013 0.3040.011 0.326

NDUFV1 0.1750.007 0.1880.006 0.105

COX7A2 0.1320.006 0.0860.004 <0.0001

ATP5G1 0.5210.025 0.5660.022 0.071

ATP5L 0.0360.003 0.0290.002 0.016

Table 1.  OXPHOS gene expression at 0 and 30 min postmortem.
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Correlation between expression levels of mitochondrial, nuclear encoded genes and pheno-
type.  Pairwise correlation was calculated and plotted for each individual OXPHOS gene (Fig. 5a). All included 
genes were significantly correlated with at least one of the other genes. Further, all mitochondrial-encoded 
OXPHOS subunits tended to be more tightly co-expressed while nuclear-encoded OXPHOS subunits were in a 
tight co-expressed relationship. Figure 5b shows the correlation between the expression of OXPHOS genes and 
phenotype. The expression of mitochondrial encoded OXPHOS subunits ND2, ND6, and ATP6 and the nuclear 
encoded subunit NDUFV1 were highly correlated with muscle fiber type (ND2: FTO r = −0.49 p = 0.0002; ND6: 
STO r = 0.286 p = 0.042; ATP6: STO r = 0.342 p = 0.014; NDUFV1: FTG r = −0.346 p = 0.013). The nuclear 
encoded OXPHOS subunits NDUFA3, NDUFA11, NDUFB8, NDUFS8, and COX7A2 were significantly corre-
lated with at least one of the activities of oxidative enzymes CS, complex I, complex II, and complex IV. The 
expression of ND2 (r = −0.239 p = 0.026) and ND6 (r = −0.221 p = 0.04) were negatively correlated with PFK 
activity. The expression of NDUFB8 and COX7A2 were highly correlated with the activities of GP (NDUFB8: 
r = 0.304 p = 0.007; COX7A2: r = 0.236 p = 0.037), PFK (NDUFB8: r = −0.309 p = 0.004; COX7A2: r = −0.305 
p = 0.004), and LDH (NDUFB8: r = −0.354 p = 0.001; COX7A2: r = −0.376 p = 0.0003). The mRNA levels of 
ATP6, NDUFB8, COX7A2, and ATP5L were positively correlated with pH (p values < 0.0001 to 0.028).

The expression of the master regulator of mitochondrial biogenesis and oxidative phosphorylation PGC-1a 
was significantly correlated with the phenotypes of CS, complex I, complex II, complex IV, and pH (Table 2). 
The mRNA levels of PGC-1a were also significantly correlated with the expression of mitochondrial-encoded 
genes ND1, ND2, ND4, ND6, CYB, COX1, and ATP6. Among these genes, ATP6, ND6, and ND2 showed the top 
three most significant correlations with PGC-1a (ATP6: r = 0.415 p < 0.0001; ND6: r = 0.372 p = 0.0003; ND2: 
r = 0.361p = 0.0004). The expression of PGC-1a showed a significant correlation with the nuclear-encoded genes 
NUDFA11, NDUFA13, NDUFB8, COX7A2, ATP5G1, and ATP5L (p values < 0.0001 to 0.036).

Discussion
We compared the mitochondrial DNA content, gene expression pattern of mitochondrial and nuclear encoded 
OXPHOS subunits, metabolic enzyme activities and mitochondrial respiration in four pig breeds distinct in 

Figure 3.  Relative mRNA expression of OXPHOS subunits in longissimus muscles of Duroc, DuPi, PiNN, 
and PiPP pigs. Least-square means with standard error (Lsmeans ± SE) of relative gene expressions for (a) 
mitochondrial-encoded complex I subunits (ND1, ND2, ND4, and ND6), complex III subunit (CYB), complex 
IV subunit (COX1) and ATP synthase subunit (ATP6) (b) nuclear-encoded complex I subunits (NDUFA3, 
NDUFA11, NDUFA13, NDUFB8, NDUFS8, and NDUFV1), complex IV subunit (COX7A2) and ATP synthase 
subunits (ATP5G1 and ATP5L). Relative gene expression was normalized to reference genes ACTB, RPL32 and 
RPS11 using 2(−∆Ct). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Table S3.
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muscle phenotype. The effect of mitochondrial haplotypes on mitochondrial DNA copy number and OXPHOS 
gene expression were also examined since there were different haplotypes among the investigated pig breeds.

Muscle samples were collected from the fat-type Duroc pigs with a higher proportion of STO fibers and 
greater oxidative enzyme activities. Pietrain pigs are muscular and lean, and their muscles contain more FTG 
fibers. DuPi pig is a Duroc-Pietrain F2 crossbred. Mutations within ryanodine receptor 11 (RYR1) are frequently 
detected in Pietrain pigs. This leads to abnormal Ca2+ homeostasis and result in increased excitability of the 
muscle associated with MHS. This genetic defect consequently leads to reduction of water holding capacity, loss 
of stress resistance and PSE meat19–21.

Reduced mtDNA copy number in PiPP pigs.  Previous studies have demonstrated the relative mtDNA 
copy number in porcine muscle25,26. In this study we quantified the absolute mtDNA copy number by qPCR and 
found that PiPP pigs contained the lowest amount of mtDNA copies in muscle cells compared to PiNN, DuPi, and 
particularly Duroc pigs. mtDNA copy number was positively correlated with STO fibers and negatively correlated 
with FTG fibers and indicated a strong association between mtDNA copy number and muscle fiber types.

The underlying cause of the mtDNA copy number variation between pig breeds remains unknown. In other 
case, changes in cytosolic Ca2+ and pH could influence the amount of ROS produced at the mitochondrial res-
piratory complex I and III27. The abnormal Ca2+ homeostasis in PiPP pigs may result in oxidative stress associated 
with elevated ROS production. The elevated ROS could increase mitophagy to remove damaged mitochondria 
and leads to mitochondrial degradation28,29. The copy number depletion associated with increased mitochon-
dria turnover is caused by a burst of ROS production30. Indeed, the burst of ROS and mtDNA depletion have 
been observed in cell-culture experiments. All together, these may partially explain the copy number variation of 
mtDNA in pig breeds. However, supporting evidence under physiological situation is still needed.

Decreased transcript levels of mitochondrial and nuclear encoded OXPHOS genes in PiPP 
pigs.  Decreased abundance of many nuclear-encoded OXPHOS subunits transcripts was found in PiPP pigs 
compared to other breeds. This phenomenon is very likely caused by the abnormal Ca2+ homeostasis in PiPP pigs 
since MHS knock-in mice show a clear Ca2+ overload in the mitochondrial matrix and a switch to a compromised 
bioenergetics state characterized by low OXPHOS31. Similarly, transcript abundance of mitochondrial-encoded 
genes was decreased in PiPP pigs including subunits of complex I and ATP synthase. The previous study reported 
that ATP concentration has been significantly reduced in PiPP pigs compared to other breeds because of their 
accelerated energy consumption14. ATP sensing by transcriptional machinery has been proposed to regulate the 

Figure 4.  Relative mRNA expression of OXPHOS subunits in longissimus muscles of different mitochondrial 
haplotypes. Least-square means with standard error (Lsmeans ± SE) of relative gene expression for (a) 
mitochondrial-encoded complex I subunits (ND1, ND2, ND4, and ND6). (b) complex III subunit (CYB), 
complex IV subunit (COX1) and ATP synthase subunit (ATP6). (c) nuclear-encoded complex I subunits 
(NDUFA3, NDUFA11, NDUFA13, NDUFB8, NDUFS8 and NDUFV1). (d) complex IV subunit (COX7A2) and 
ATP synthase subunits (ATP5G1 and ATP5L). Relative gene expression was normalized to reference genes 
ACTB, RPL32 and RPS11 using 2(−∆Ct). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Table S4.
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initiation of mitochondrial transcription and promotor usage32–34. Therefore, the lower ATP availability in PiPP 
pigs may influence their mitochondrial transcription and function.

Recent work has established that glucocorticoid receptor (GR) is translocated from cytosol to the mitochon-
dria and binds to the D-loop control region while stress and corticosteroids have a direct influence on hippocam-
pal mtDNA gene expression in rats35. Since RYR1 mutated PiPP pigs are stress susceptible, it is speculated that the 
abundance of mtDNA transcripts may be decreased in those pigs.

Figure 5.  Correlation matrix of OXPHOS gene expression and phenotypes. (a) correlation matrix between 
mitochondrial and nuclear encoded OXPHOS gene expressions. (b) correlation matrix between OXPHOS 
gene expression and phenotype. Number in each cell represents the value of correlation coefficients and the 
corresponding p-values. Cell color indicates correlation (red, positive correlation; blue, negative correlation).
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The early postmortem period had no effect on the expression of mitochondrial-encoded OXPHOS genes, 
but the mtDNA copy number was decreased from 0 min to 30 min postmortem. In other words, the early phase 
of hypoxia triggered mitochondrial genome instability while transcript abundance was maintained in porcine 
muscle. This disparity is of interest and might provide valuable information toward the understanding of mito-
chondrial mechanisms in muscle tissue under hypoxia, which has been linked to oxidative stress, ischemia, and 
cancer36. In addition, the identified postmortem mitochondrial properties are relevant to muscle injury, also 
caused by oxygen depletion37.

The effect of haplotype on mtDNA copy number and OXPHOS gene expression.  Our study 
showed for the first time the effect of different mitochondrial haplotypes on muscle fiber types and mito-
chondrial respiration at both the phenotypic and molecular level in pigs. Among different haplotypes, our 
results showed variations in complex I activity and mtDNA copy number. At the molecular level, six of the 
mitochondrial-encoded and three of the nuclear-encoded OXHPOS genes were differentially expressed. These 
findings suggest that mitochondrial haplotypes could contribute to variations in mitochondrial content and 
OXPHOS system function.

The mitochondrial haplotype has been found to affect mtDNA copy number, OXPHOS respiration, and mito-
chondrial molecular function in Drosophila1,7,38. In porcine transmitochondrial cybrids, the mitochondrial haplo-
type is linked to metabolic traits including ROS production, ATP content, and complex II activity39. The assembly 
kinetics of OXPHOS complexes is proposed to be modulated by mitochondrial DNA background40.

Coordination of the nuclear and mitochondrial genomes contribute to phenotype.  Our 
results showed that all mitochondrial-encoded OXPHOS subunits were highly co-expressed; moreover also the 
nuclear-encoded OXPHOS subunits tended to be in a tight co-expressed relationship. This observation reflects 
the fact that the mitochondrial genome has its own transcription machinery distinct from the nuclear genome. 
Although mitochondrial- and nuclear-encoded OXPHOS genes are expressed separately via different transcrip-
tion machineries in different cellular locations, they are not completely independent. The observed association 
between mitochondrial- and nuclear-encoded OXPHOS genes is in line with the theory of mitochondrial-nuclear 
crosstalk. PPARG coactivator 1 alpha (PGC-1α) is a nuclear-encoded transcription factor that acts as a mas-
ter coordinator to mediate mitochondrial biogenesis and oxidative phosphorylation41. In this study, the mRNA 
level of PGC-1α significantly correlated with all investigated mitochondrial-encoded OXPHOS subunits, six 
nuclear-encoded subunits and enzyme activities of complex I, II, and IV. In fact, the nuclear-encoded subu-
nits need to be imported into the mitochondria together with mitochondrial-encoded subunits to form a fully 
assembled functional OXPHOS system in the mitochondrial inner membrane. Accordingly, the absence of the 
mtDNA-encoded subunits COX1 and COX2 has been shown to affect the stability of some subunits of nuclear 
encoded respiratory chain proteins42.

In our results, different mitochondrial haplotypes showed variation of the expression of 
mitochondrial-encoded subunits ND2, ND6 and ATP6 as well as nuclear-encoded subunits NDUFA11 and 
NDUFB8. These genes were co-expressed and not only highly correlated to PGC-1α but also highly associated 
with different muscle fiber types and enzyme activities of complex I and II. Therefore, we propose that mitochon-
drial haplotype contributes to muscle fiber type and energy metabolism in porcine via altering the gene expres-
sion of OXPHOS subunits mediated by the nuclear-mitochondrial crosstalk. In addition, different haplotypes 
showed variation in complex I activity. It directly supported the link between haplotype and energy metabolism.

Phenotype/mRNA

PGC-1a

r p

Phenotype

CS 0.382 0.0003

Complex I 0.405 <0.0001

Complex II 0.234 0.030

Complex IV 0.309 0.004

pH 0.285 0.007

MT gene

ND1 0.346 0.001

ND2 0.361 0.0004

ND4 0.282 0.007

ND6 0.372 0.0003

CYB 0.246 0.019

COX1 0.220 0.036

ATP6 0.415 <0.0001

Nuclear gene

NDUFA11 0.266 0.011

NDUFA13 0.220 0.036

NDUFB8 0.341 0.001

COX7A2 0.397 <0.0001

ATP5G1 0.298 0.004

ATP5L 0.358 0.001

Table 2.  Correlation between PGC-1a, phenotype, and OXPHOS gene expression.
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The disrupted Ca2+ homeostasis affects mitochondrial membrane biogenesis and hence metabolic stress43. 
Under conditions of oxidative stress, the expression of ND6 is suppressed through methylation44. Consistent with 
our results, downregulated ND6 expression in PiPP pigs has been associated with mutant RYR1-induced mito-
chondrial injury and oxidative stress45. These evidences supported the possibility of haplotype 8 could be linked 
to oxidative stress with altered mitochondrial transcription in PiPP pigs.

Our results showed some of the mitochondrial and nuclear-encoded OXPHOS transcripts were significantly 
correlated to at least one of the phenotypes including muscle fiber type, metabolic enzyme activities and pH. The 
mtDNA encoded OXPHOS gene expression was highly associated with muscle fiber types, which is consistent 
with the fact that STO muscle fibers in general contain more mitochondria46. It is worth mentioning that the 
mRNA levels of ATP6, ND6, and ND2, which were the top three genes correlated with PGC-1α, also significantly 
correlated with muscle fiber type. Hence, it raised the possibility that mitochondrial-encoded subunits with high 
correlation with PGC-1a showed effects on muscle fiber types. The muscle oxidative capacity not only relies on 
mitochondrial function but also on mitochondrial density46. Our measured mtDNA copy number was correlated 
positively with STO fibers and oxidative enzyme activity while negatively correlated with FTG fibers. The mtDNA 
copy number is related to mitochondrial oxidative capacity and adipocyte lipogenesis47.

Conclusions
In summary, we investigated the mitochondrial DNA content and the expression of both mitochondrial and 
nuclear encoded OXPHOS genes in conjunction with post-mortem muscle phenotype, and metabolic enzyme 
activities in distinct haplotypes of pig breeds including Duroc, DuPi, PiNN, and PiPP. The most significant link 
between haplotypes or breeds to the muscle phenotype was found between the muscle fibers type and complex 
I. Specific expression pattern of mt transcript including ND1, ND6, and ATP6 and nuclear-encoded subunits 
NDUFA11 and NDUFB8 was identified and in turn play a role in muscle fibers type and enzyme activities of 
complex I. All of these changes in the PiPP haplotype 8 pigs may partially contribute to negative outcomes of meat 
quality such as pale soft exudative pork. PiPP pigs showed the lowest mtDNA copy number and reduced gene 
expression of many mitochondrial and nuclear encoded OXPHOS subunits compared to the other breeds. Our 
results provide valuable information on haplotype and breed-specific mitochondrial content variation as well as 
the molecular basis of mitochondrial respiration. Haplotypes could be linked to porcine energy metabolism at 
a functional level by altering gene expression of mitochondrial and nuclear OXPHOS subunits. Since haplotype 
7 Pietrain pigs demonstrate a high ratio of FTO muscle fibers, while haplotype 8 pigs show the lowest complex I 
activity among all other haplotypes, implementing a selection of the favorable haplotype 7 along with the RYR1 
locus in marker assisted selection program may further improve meat quality. Selection of the favorable haplotype 
can be used in marker assisted selection in pig breeding strategy.

Material and Methods
Sample collection and phenotypic measurement.  The experiment and muscle collection were 
approved and authorized by the German and European animal welfare regulations for animal husbandry, trans-
port, and slaughter12–14. All experimental procedures, including animal care and tissue sample collection, fol-
lowed guidelines for safeguarding and good scientific practice in accordance with the German Law of Animal 
Protection, officially authorized by the Animal Care Committee and authorities [Niedersächsischen Landesamt 
für Verbraucherschutz und Lebensmittelsicherheit (LAVES) 33.42502/01-47.05].

Duroc, PiNN, PiPP, and DuPi pigs were raised to the age of 180 days at the University of Bonn. Muscle samples 
from each breed (Duroc, n = 15; DuPi, n = 16; PiNN, n = 12; PiPP, n = 15) were collected immediately (0 min 
postmortem) and 30 min after stunning (30 min postmortem) from LM between the 13th and 14th thoracic ver-
tebrae. Samples were frozen in liquid nitrogen and stored at −80 °C until analysis.

We used the samples and all phenotypical traits from previously study which were measured as described12–14. 
In brief, the cryopreserved muscle samples were cutting into slices of 12 µm thickness. NADH tetrazolium reduc-
tase and Myofibrillar ATPase were stained to identify the muscle fiber types. 3 sections were used for calculating 
the percentage of the slow-twitch-oxidative (STO), fast-twitch-oxidative (FTO) and fast-twitch glycolytic (FTG) 
fibers by relating the number of counted fibers of each type to the total counted fiber number. For measure-
ment of Metabolic Enzyme Activities, muscle samples were homogenized and all the experiments were finished 
within 2 h in duplicate. GP catalyzed the degradation of glycogen (2 mg/ml) to glucose-1-phosphate followed by 
the isomerization to glucose-6-phosphate (G-6-P) 2. GP activity was determined spectrophotometrically by the 
reduction of NADP+ (1.6 mM) to NADPH at 340 nm and pH 6.8 when G-6-P dehydrogenase (5 U/ml) catalyzed 
G-6-P to gluconate-6-phosphate. PFK catalyzes fructose-6-phosphate (3.0 mM) to fructose 1,6-bis-phosphate, 
which is split to glyceraldehyde-3-phosphate and dihydroxyacetonephosphate (DHAP). PFK activity was deter-
mined by the oxidation of NADH (1.6 mM) to NAD + at 340 nm and pH 8.0 when glycerol-3-phosphate dehy-
drogenase (10 U/ml) /triosephosphate isomerase (100 U/ml) catalyzed DHAP to glycerol-3-phosphate. LDH 
activity was determined by the oxidation of NADH (150 µM) to NAD+ at 340 nm when LDH catalyzed pyruvate 
(1.2 mM) to lactate. CS catalyzes acetyl-CoA (0.1 mM) and oxaloacetate (0.5 mM) to citrate to liberate CoA. CS 
activity was determined by the irreversible reaction of CoA with 5,5′-Dithiobis-(2-nitrobenzoic acid; 0.1 mM) to 
thionitrobenzoic acid at 412 nm 3. Complex I was spectrophotometrically determined by following the oxidation 
of NADH (0.2 mM) to NAD+ at 340 nm. Complex II was determined at 600 nm following the reduction of 2, 
6-dichlorophenolindophenol (DCPIP) by ubiquinol resulting from this reaction. Complex IV was determined by 
following the oxidation of reduced cytochrome c to the oxidized form at 550 nm and pH7.0.

DNA and RNA extraction.  Genomic DNA from LM samples was extracted. Total RNA was isolated from 
muscle samples using Tri-reagent and RNeasy Minikit (Qiagen, Hilden, Germany) with an on-column DNase 
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treatment according to the manufacturer’s protocol. RNA integrity was assessed by 1% agarose gel electrophore-
sis. DNA and RNA concentration was measured on a NanoDrop ND-1000 spectrophotometer.

Mitochondria-specific primer design.  Primers for the detection of mitochondrial DNA (mtDNA) copy 
number were carefully designed avoiding co-amplification of mitochondrial duplicated regions in the nuclear 
genome. Duplication of the mitochondrial genome in the nuclear genome was detected using BLASTN (http://
www.ncbi.nlm.nih.gov)48. The mitochondrial sequence (Sus scrofa 10.2 download from NCBI: http://www.
ncbi.nlm.nih.gov/ on 1.9.2015) was split into fragments of 150 bps in length with a 50 bps overlap and blasted 
against the reference genome to identify a ‘unique’ mitochondrial sequence based on a significant threshold of 
E-value < 0.1 and length >100 bps. The result of duplicated regions was demonstrated using R package IdeoViz49 
and a cytogenetic map of pig chromosomes was extracted from ArkDB (http://www.thearkdb.org/arkdb)50.

Absolute quantification of mtDNA copy number.  The absolute quantification approach was used to 
determine mtDNA copy number. The mitochondrial genes ND1, ND2, and COX1 were used to quantify mtDNA 
copy number, whereas the nuclear gene glucagon gene (GCG), which is highly conserved between species and 
presents as a single copy, was used as the single-copy reference gene25,51. Primer sequences were presented in 
Supplementary Table 4 online. Mitochondrial and nuclear DNA standards were prepared separately using PCR 
products in seven serial dilutions at a dilution factor of 10. The amplified DNA fragments were purified with 
the QIAquick PCR Purification kit (Qiagen, Hilden, Germany). The purified products were quantified using a 
NanoDrop ND-1000 spectrophotometer (Peqlab, Erlangen, Germany). The copy number was calculated accord-
ing to the following equation52:

=µ µcopies l l/ ng/
m (1)

= × . × −m n [1 096 10 ] (2)12

where m is the mass of a single copy and n is the target size in base pairs.
The absolute copy numbers of ND1, ND2, COX1 and GCG were calculated based on their standard curves 

using the following equation:

= −copies 10 (3)Ct b a( )/

where a is the slope and b is the intercept of the regression line.
Since GCG is a single copy nuclear gene, the mtDNA copies per nuclear genome were calculated as follows:

=mtDNA copies nuclear genome mtDNA copies
nuclearDNA copies

/
(4)

The mtDNA copy number per nuclear genome was calculated separately using ND1, ND2, and COX1. The data 
was reported as a mean.

Measurement of gene expression.  High-throughput gene-expression analysis with EvaGreen dye on a 
BioMark HD real-time PCR system was used to measure gene expression according to manufacturer’s recom-
mendations (Fluidigm, San Francisco, CA, USA). All reagents were purchased from Fluidigm unless otherwise 
indicated. Briefly, cDNA was synthesized from 2 µg of total RNA using Superscript II reverse transcriptase and 
oligo-dT (Invitrogen) with specific target amplification and exonuclease I (New England Biolabs) treatment. 
qPCR reactions were performed using a 96 × 96 dynamic array and integrated fluidic circuit. Each sample inlet 
was loaded with 2.5 µL of 2 × SsoFast EvaGreen supermix with low ROX (Biorad), 0.25 µL of 20×DNA-binding 
dye sample loading reagent, and 2.25 µL of specific target amplification and exonuclease-I-treated sample. Assays 
were performed for mitochondrial-coded complex I subunits ND1, ND2, ND3, and ND4, complex III subunit 
CYB, complex IV subunit COX1, ATP synthase subunit ATP6, and nuclear-encoded complex I subunits NDUFA3, 
NDUFA11, NDUFA13, NDUFB8, NDUFS8, and NDUFV1, complex IV subunit COX7A2, ATP synthase subu-
nits ATP5G1 and ATP5L, and master regulator PGC-1α. All measurements were performed in duplicate. Primer 
sequence information is available in Supplementary Table 4. Reference genes ACTB, RPL32, and RPS11 were used 
to normalize expression values.

Sequence analysis.  DNA from muscle samples of 53 animals (Duroc: N = 15, DuPi: N = 15, PiNN: N = 9, 
PiPP: N = 14) were sequenced using an ABI 3500 sequencer (Applied Biosystems Inc, Foster City, CA, USA). 
The D loop region was amplified using forward primer 5′-CTCCGCCATCAGCACCCAAAG-3′ and reverse 
primer 5′-GCACCTTGTTTGGATTRTCG-3′ 53. All sequences were aligned using Clustal × 2.154. DNASP 5.1 
software was used to analyze the haplotypes of all sequences55. The detailed information of haplotypes is shown in 
Supplementary Table 2. Only the haplotypes with at least three animals were included in the subsequent statistical 
analysis.

Statistical analysis.  Data were analyzed using SAS 9.4 statistical software (SAS Institute) and the MIXED 
procedure. The statistical model included the effects of breed (Duroc, PiNN, PiPP, and DuPi), sex (male and 
female), time (0 and 30 min postmortem). With the same model, we also calculated with haplotype (Haplotypes 
1, 4, 6, 7, and 8) instead of breeds. The model was combined with a repeated statement for the time component to 
take into account correlations among measurements made on the same animal at time 0 and 30 min postmortem. 
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Post hoc Tukey–Kramer method was used for multiple comparison adjustments. Results were reported as 
least-squares means (Lsmeans) with standard error (SE) and considered to be statistically significant if p < 0.05. 
Data were plotted using GraphPad Prism 5. The correlation coefficient (r) between gene expression and pheno-
typic measurement was calculated for all individuals. The correlation plots were generated in R.
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ANT adenine nucleotide translocators 
APP amyloid precursor protein  
AR androgen receptor  
ATP adenosine triphosphate 
ATP5I ATP synthase, mitochondrial F0 complex, subunit E 
BMP7 bone morphogenetic protein 7 
BMPR2  bone morphogenetic protein receptor type II  
CAPN3 calpain-3 
CAPN6 calpain-6 
CDs coding sequences 
CMYA5 cardiomyopathy associated 5  
CPT1a carnitine palmitoyltransferase 1a 
CS citrate synthase 
CYP24A1 cytochrome P450, family 24, subfamily A, peptide 1 
DABG detection above background 
DEGs differentially expressed genes 
DuPi F2 crossbred Duroc–Pietrain homozygous-negative for MHS 
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FDR false discovery rate 
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MRA mitochondrial respiratory activity 
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mt mitochondrial 
MTCH1 mitochondrial carrier 1  
mtDNA mitochondrial DNA  
NRFs nuclear respiratory factors 
OXPHOS oxidative phosphorylation 
PDHA1 pyruvate dehydrogenase alpha 1  
PEKFB2 fructose 2, 6–bisphosphatase 2 
PFK phosphofructokinase 
PGC-1α PPARG coactivator 1 alpha  
PHB2 prohibitin 2  
PiNN malignant hyperthermia syndrome (MHS)-negative Pietrain 
PiPP malignant hyperthermia syndrome (MHS)-positive Pietrain 
PPARGC1A peroxisome proliferator-activated receptor gamma coactivator 1 alpha  
PPP3CA protein phosphatase 3 catalytic subunit alpha isoform 
pre-miRNA precursor miRNA 
PSAP presenilin 1-associated protein  
PSE pale soft exudative 
qPCR quantitative polymerase chain reaction 
RB1 retinoblastoma 1  
RCI respiratory control index 
RISC RNA-induced silencing complex  
RMA robust multichip average 
ROS reactive oxygen species  
rRNA ribosomal RNA 
RYR1 ryanodine receptor 1 
SE standard error  
SERCA sarcoplasmic reticulum Ca2+ ATPase  
SR sarcoplasmic reticulum  
SRL sarcalumenin 
STA specific target amplification 
STO slow-twitch oxidative 
TFAM mitochondrial transcription factor A  
Th thoracic vertebrae 
THRB thyroid hormone receptor beta 
TOM topological overlap matrix 
tRNA transfer RNA 
UBFD1 ubiquitin family domain containing 1  
UPS ubiquitin proteasome system 
UQCC ubiquinol-cytochrome c reductase complex chaperone  
USP24 ubiquitin specific peptidase 24 
UTR untranslated region 
VDAC voltage-dependent anion channel 
WGCNA weighted gene co-expression network analysis 
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