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Helminth antigen-induced innate immune response in porcine peripheral 

blood mononuclear cells 

 
Helminths are among the gastrointestinal parasites that are responsible for substantial loss of 

productivity in swine and other livestock industry. Despite indoor intensive rearing with routine 

anthelmintics, helminth infections in pigs are still not well managed. Elucidating mechanisms of 

host innate responses to helminth infection and their genetic correlation is important to improve 

the pig breeding strategies through selecting animals with better immunocompetence. This 

dissertation aims to investigate the innate immune responses to two helminth antigens from each 

of Trichinella spiralis derived tyvelose (TY) and Ascaris suum derived haemoglobin (AsHb) 

using the in vitro peripheral blood mononuclear cells (PBMCs) model. To achieve the objectives, 

PBMCs from German Landrace (LR) and Pietrain (Pi) pigs were in vitro stimulated with tyvelose 

and AsHb with or without mitogenic co-stimulation, and cells were harvested 24, 48 and 72 h 

post stimulation. The cell viability and proliferation and phagocytosis were evaluated followed by 

relative expression analysis of cytokines mRNA (IFN-γ, IL-2, IL-6, IL-10 and TGF-β1) using 

qRT-PCR. Results showed that TY-specific proliferation of PBMCs was transient and temporally 

associated with the duration and concentration of treatments. The highest viability of TY treated 

PBMCs were found at 24 h time point compared to the 48 h and 72 h. The cytokine responses 

were dominated by up regulation of IL-10 and IL-6, but also IL-2 with rapid resolution or 

appearance from time to time. The resulting host immunity revealed the dominance of Th1/Th2 

as evident from the elevated level of IL-10 and IL-6. The variation in the expression levels of IL-

10, IL-2, TGF-β1, IL-6 and IFN-γ in PBMCs obtained from LR and Pi pigs was significant, but 

not consistent across the course of the experiment and the state of mitogen-activation. TY 

induced cytokine expression dynamics and kinetics were different in PBMCs of LR and of Pi 

pigs. AsHb induced phenotypic variation in cell viability between breeds was observed after 72 h 

of cultivation only in the co-stimulated group. Significantly higher phagocytosis was observed in 

phagocytes of LR origin compared to that of Pi. In naïve PBMCs treated with AsHb, a significant 

breed effect was noticeable in case of IL-10, IL-6 and TGF-β1 expression, although the 

interrelationship between these regulatory cytokines was not always synchronous. In AsHb 

sensitized and costimulated PBMCs, the cytokine expression was rather skewed and only at 24 h 

of culture, a significant effect of both, breed and AsHb, was noted. In conclusion, the systemic 

immune response to TY and AsHb was characterized by a dominance of mixed 

Th1/Th2/regulatory immune response; LR pigs showed relatively early and stronger response 

compared to the PBMCs of Pi pigs. This indicated a breed variation in the innate immune-

responsiveness to T. spiralis and A. suum between LR and Pi pigs. 

 



 
 

 

Unspezifische Immunantwort nach Stimulation von mononuklearen Zellen aus 

peripherem Blut mit Endoparasitenantigenen des Schweines 

 

Helminthen gehören zu den gastrointestinalen Parasiten, die für einen erheblichen 

Produktivitätsverlust in der Schweineproduktion und bei anderen Nutztieren verantwortlich sind. 

Trotz intensiver Aufzucht mit routinemäßigen Untersuchungen und Behandlungen sind 

Helminthen-Infektionen bei Schweinen nicht gänzlich unter Kontrolle. Die Untersuchungen der 

angeborenen Reaktionen zwischen Wirt und Helminthen sowie ihre genetische Beziehungen sind 

wichtig, um Zuchtstrategien für bessere Immunkompetenz zu befördern. Diese Dissertation hat 

zum Ziel, die angeborenen Immunantworten auf zwei Helminthen-Antigene, von Trichinella 

spiralis stammende Tyvelose (TY) und von Ascaris suum produziertes Hämoglobin (AsHb) unter 

Verwendung eines in vitro Modells aus mononuklearen Zellen des peripheren Bluts (PBMCs), zu 

untersuchen. Zur Erreichung der Ziele wurden PBMCs von Schweinen der Deutschen Landrasse 

(LR) und Pietrain (Pi) in vitro mit Tyvelose und AsHb mit oder ohne mitogener Kostimulation 

stimuliert. Nach 24, 48 und 72 h Stimulation wurden die Zellen geerntet. Es wurden die 

Zellvitalität, die Proliferation und die Phagozytoseaktivität bestimmt, gefolgt von einer 

Expressionsanalyse von Zytokin mRNAs (IFN-γ, IL-2, IL-6, IL-10 und TGF-β1) durch qRT-

PCR. Die Ergebnisse zeigten, dass die tyvelosespezifische Proliferation von PBMCs transient 

war und zeitlich mit der Dauer und Konzentration der Behandlung variiert. Die höchste Vitalität 

von mit Tyvelose behandelten PBMCs konnte 24 Stunden nach der Behandlung im Vergleich zu 

48 h und 72 h beobachtet werden. Die Zytokinreaktionen wurden durch eine Hochregulation von 

IL-10 und IL-6 dominiert, aber auch IL-2 zeigte eine Regulationstendenz in der Expression von 

Zeitpunkt zu Zeitpunkt. Die resultierende Wirtsimmunität ergab daher eine Dominanz von 

Th1/Th2, wie aus dem erhöhten Niveau von IL-10 und IL-6 hervorgeht. Die Variation des 

Expressionsniveaus von IL-10, IL-2, TGF-β1, IL-6 und IFN-γ in PBMCs aus LR und Pi 

Schweinen war signifikant, aber nicht konsistent im Verlauf des Experiments und der 

Mitogenaktivierung. Die Tyvelose induzierte Zytokinexpressionsdynamik und Kinetik war in 

PBMCs von LR zu Pi Schweinen unterschiedlich. Die induzierte phänotypische Variation der 

Zellvitalität durch AsHb zwischen den Rassen wurde nach 72 h Kultivierung und nur mit dem 

Einsatz einer Kostimulation beobachtet. Eine signifikant höhere Phagozytoseaktivität wurde in 

Phagozyten der LR Schweine im Vergleich zu den Pi beobachtet. In naiven PBMCs, die mit 

AsHb behandelt wurden, konnte ein signifikanter Rasseeffekt in der Expression von IL-10, Il-6 

und TGF-β1 beobachtet werden, obwohl die Wechselbeziehung zwischen diesen regulatorischen 

Zytokinen nicht immer synchron war. Bei AsHb-sensibilisierten und kostimulierten PBMCs war 

die Zytokinexpression verzerrt und nur nach 24 h Kultur konnte ein signifikanter Effekt in beiden 

Rassen festgestellt werden. Zusammenfassend war die Immunreaktion auf Tyvelose und AsHb 

dominiert durch eine gemischte Th1/Th2 regulatorische Immunantwort und LR Schweine zeigten 

eine relativ schnellere und stärkere Immunreaktion im Vergleich zu Pi Schweinen. Dies zeigte 

eine Rassevariation in der Immunantwort auf T. spiralis und A. suum zwischen LR ind Pi 

Schweinen. 
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1.1 Introduction    

Costly medication and immunization, drug resistance, recurrent infection, and animal welfare 

concern have brought the swine industry under huge pressure to emphasize on sustainable disease 

control approaches. This will require for sure a much deeper understanding of the networks of 

immunoregulatory components that control porcine immune responses and how genetic and 

epigenetic factors influence the disease resistance phenotypes (Wilkinson et al. 2012). Helminth 

parasites, especially gastrointestinal nematodes (GINs) occur frequently in domestic pigs in all 

kinds of production systems and all around the world (Carstensen et al. 2002, Roepstorff et al. 

2011). These GIN infections impose a significant health and welfare challenge for livestock 

producers. Despite the common subclinical course of such infection, pigs infected with one or more 

of the parasites have reduced growth, productivity and changed body composition. So for the 

financial perspective alone, helminthes should be controlled, best in a sustainable way. Another 

good reason to study these helminthes is their zoonotic implication. Some basic research findings 

have offered new possibilities for future sustainable control measures through exploiting the host 

genetics that shapes the innate immunity to minimize the severity of infection. Besides, the heredity 

of host resistance to several helminth infections in livestock including pig is already reported 

(Nejsum et al. 2009, Bishop 2012). Under these perspectives, studies designed to understand the 

genetic variation among breeds will facilitate sustainable management of farm level infection.  

 

According to the technical report of FAO, a major portion of worldwide consumable meat, 

approximately 37% (110 million metric tons, mmt) is supplied by pigs, much higher than beef (67 

mmt) and chicken (104 mmt) (McGlone 2013). Intensively reared and commercially produced pigs 

contributed a lot to this amount. The impact of backyard, free-range or green pig farms are also 

must to acknowledge as these are the only option for a range of consumers depending on their 

culture and geographical location. A gross portion of pork production in many areas, especially 

Asian countries, is still maintained as a small scale farm. For many ethnic groups of people, pigs are 

not only the chief source of meat, but also considered as part of their belief and culture, monetary 

asset and dirt cleaner. This kind of farming in tropical and subtropical countries is frequently 

challenged with high intensity of parasitic infections as one of the major constraints for healthy 

pork production. This situation is now significantly altered globally by the shift of rural farming to 

more industrialized, high intensity, indoor farming and with the advancement and chemo-

prophylactic use of broad spectrum anthelmintics (Roepstorff and Nansen 1994). Still, several 

GINs, including A. suum have successfully survived the changeover to conventional indoor 

conditions and are currently thriving in some farms, even in developed countries. Another helminth, 
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T. spiralis in domestic pigs is still receiving special focus for their high zoonotic potential 

(Roepstorff and Nansen 1994, Joachim et al. 2001, Roepstorff et al. 2011).  

 

In endemic areas, wide ranges of GINs are usually harbored in pigs, commonly in the form of 

polyparasitism involving two or more of the parasites. Infections with A. suum show the highest 

prevalence in all kind of production systems. T. spiralis is considered as another economically 

significant nematode of pig production system with special concern to the rural, backyard 

management. Despite of their significant prevalence worldwide and serious economic impacts in 

the swine industry, the parasitological infection is mostly overlooked by the farmers and the 

veterinarians because of the subclinical nature of the infection. Moreover, it is very likely that the 

situation will remain the same for the foreseeable future. One vital cause is the rising demand of 

green pork production especially in European Union countries where the animals receive the 

benefits provided with adequate housing, outdoor and social comfort in farm condition. The mixing 

and shared housing, bedding and pasture environment although enhancing animal welfare, but also 

concomitantly welcomes favourable environment for infective parasitic stages to infect, persist and 

transmit (Roepstorff et al. 2011, Katakam et al. 2016).  

 

Transmission and dispersion of trichinellosis is mainly because of its broad host range and global 

migration of infected individual or animal. Despite of the fact that highly effective drugs for the 

treatment of ascariasis have been around for over 40 years now, this problem is still not getting 

solved. Moreover, the development of allergy, malignancy, autoimmunity in developed countries 

with very low or no prevalence of helminthes in human population, also give rise to another thought 

about the effect of total elimination of helminthes. It appears that something more fundamental 

needs to be changed in the way this parasite is controlled in animal production nowadays. Immunity 

develops in pigs after exposure to A. suum or to T. spiralis. A proper vaccination strategy could, in 

theory, be able to induce protection against infection. But still now, no effective vaccine is in use 

against these parasites in pigs. As a sustainable production strategy, distinguishing animals based on 

their genetic immune strength to minimize helminth infections might be a feasible option. To this 

end, the current dissertation project focused on innate immune transcripts alteration in PBMCs 

following in vitro exposure of antigenic part of A. suum and T. spiralis. 

 

1.2 Literature review  

Helminth parasites are multicellular eukaryotic invertebrate organism. They are physiologically 

dependent on another larger species of host for their food and shelter and in return they induce some 
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sort of harm to the host (Solusby 1982). There are three taxonomic groups of helminth parasites – 

cestode flat worms, nematode roundworms and trematode flukes. They represent a gross variation 

in their life histories, from direct faecal-oral transmission (e.g. Ascaris worm) to development 

through free living stages (e.g. Hookworm larvae) or dependence on invertebrate vector (such as 

blood fluke schistosome) (reviewed by McSorley and Maizel 2012). More precisely, their most 

common habitat within the host is the gastrointestinal tract for the availability of readily absorbable 

nutrient molecules, especially for the adult life stages. The GIN is of very special significance for 

their debilitating effect on nutrition uptake by farm animals including pigs. Adults from both A. 

suum and T. spiralis reside in the small intestine, although their larval stages can migrate through 

different visceral and skeletal tissues and elicit pathologic lesion (Soulsby 1982). To have a better 

knowledge on A. suum and T. spiralis, this chapter presents a brief literature review on their 

biology, immunology, epidemiology, economic importance, control and prevention. In addition, we 

will focus on host genetic influence on infection, innate immunity and in vitro peripheral blood 

mononuclear cell model followed by the aim and objectives of this dissertation. 

 

1.2.1 Taxonomy and life cycle of T. spiralis 

Taxonomically, the genus Trichinella belongs to the phylum Nematoda, class Adenophorea, order 

Trichinellida and superfamily Trichinelloidea (Noble et al. 1989). The life cycle of the genus 

Trichinella mainly involves two generations in the same host and may include a broad range of host 

species (mammals, birds, and reptiles) (Gottstein et al. 2009). Only humans are clinically affected. 

Infection in pig is usually asymptomatic and subclinical in nature.  Access to infection generally 

occurs by oral intake of infective larvae encysted muscles as depicted in fig. 1.1. The cyst wall is 

digested in the stomach, and the liberated larvae penetrate into the duodenal and jejunal mucosa. 

There they go through 4 stages of moulting and form a sexually mature adult within even 2 days. 

After mating and usually within 5-7 days, the females penetrate deeper into the mucosa and 

discharge living small new-borne larvae (NBL) as seen in fig. 1.2A, up to 1,500 in number, 

throughout 4–16 weeks (wk). Within next few wk , intestinal immune-mediated host responses get 

established and immune effector mechanisms affect the viability of the female. This ultimately 

results in a continuous expulsion of adult worms (Pozio 2007). Sometimes, the adult worms die and 

simply are digested.  

 

The immature larvae (0.1 mm) reach the peripheral circulation after migration through the 

lymphatics. From the circulation, they invade highly oxygenated striated muscles; where they 

further penetrate individual muscle cells, change them to nurse cell. Then they grow fast (to 1 mm) 

and start coil formation within the cell (Soulsby 1982) which is illustrated in fig. 1.2B and C. 
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Capsule formation begins at 2 wk after infection and it takes 4–8 wk to complete and the larvae 

become infective (Despommier et al 1991).  

 

 

Fig. 1.1 Basic life cycle of T. spiralis in pigs. Orally ingested infective muscle larvae are released in the stomach, 

reaches the intestine where they mature and mate. After mating, females invade the mucosal layers where they release 

newborne  larvae. These larvae migrate to through the peripheralcirculation to different oxygen-avid skeletal muscles 

and gradually develops to infective larvae and encapsulates the muscle cells (Adapted and modified from Guerrant et al. 

2005) 

 

 

Fig. 1.2 Developmental stages of T. spiralis. A. Adult worms that developed in the small intestine following oral 

infection with muscle larvae; the small worms are newborn larvae (immature L1), which are infective to muscle. B. 

Infective muscle larva in altered muscle cell surrounded by a collagen capsule (blue). C. Infective muscle larva, Azan 

staining of longitudinal section of excysted larvae. M: midgut, G: genital primordium, S: stichocyte (photo courtesy 

Mitreva and Jasmer 2006).  

 

Depending on the host species, host immune response, calcification of the collagen capsule firstly 

followed by the nurse cell and larva can occur after a period of time (Gottstein et al. 2009). Along 



 6                                                                                                                                              Chapter 1                                                                                                                                                             

 

 

with the growth of internal larva, the cell degenerates and calcification begins (at different rates in 

various hosts). These encysted larvae may remain infective even for years, and their further 

development continues only if ingested by next suitable host. The major predilection sites for these 

larvae are the diaphragm, tongue, masseter, and intercostal muscles in heavily infected pigs 

(Ribicich et al. 2001, Pozio 2005, Gottstein et al. 2009). If larvae are not encysted and pass through 

the intestine, then they are eliminated in the feces before maturation and may remain infective for 

subsequent consumer of faeces or larvae.  

 

1.2.2 Clinical and economic importance of T. spiralis  

T. spiralis has been recorded as a List B disease by the OIE (World Organization for Animal 

Health). List B includes transmissible diseases of socio-economic and/or public health importance 

within countries and that carry significant importance in the international trade of animals and 

animal products. So, trichinellosis turned to an important issue for the establishment of an export 

market for pork and pork products. Although trichinellosis is asymptomatic in pigs, most of the 

trichinella cases in humans arose from consumption of pork from domestically raised pigs. High 

zoonotic potential because of a broad host range has made tirchinellosis to be considered as an 

important public health hazard and safety threat to pig production. In spite of a bunch of 

development in the research and chemoprophylaxis, still trichinellosis is prevailing worldwide 

(Gajadhar and Gamble 2000, Gottstein et al. 2009). Mandatory veterinary inspection over the 

slaughter house to secure food safety was instituted in Germany in 1866, especially to prevent 

trichinellosis in consumable pork (Campbell et al. 2013). In many countries worldwide, individual 

control of pig carcasses at meat inspection is mandatory but incurs high costs in relation to absence 

of positive carcasses from pigs reared under controlled housing. EU regulation 2015/1375 

implements an alternative risk-based approach, in view of absence of positive findings in pigs under 

controlled housing conditions (European Commission 2015). Moreover, Codex Alimentarious 

guidelines for the control of Trichinella spp. in meat of suidae have been published (CAC 2015). At 

present, the expense elicited from meat examination for trichinellosis is accounted 25 million Euro 

to 400 million (Kapel 2005) for around 167 million pigs tested annually (Alban et al. 2011). Now it 

is regulated in many other countries including the EU. Another important and indirect loss from 

trichinellosis is the examination time consumed, before which the whole carcass cannot be 

processed, especially when the diagnosis is made on peptic digestion method. ELISA based 

methods are a bit quick but might also interfere with false positive or negative results. Recent 

testaments from Franssen et al. (2017) concluded that trichinella testing for indoor pigs is not 

adding any value to protect human health and suggested farm-to-fork quanitative microbial risk 
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assessment (QMRA). This QMRA model prescribed quantification of Trichinella muscle larvae 

distribution in edible muscle types, heat inactivation by cooking, partitioning of edible pork parts. 

 

1.2.3 Antigenic molecules of T. spiralis  

Three major kinds of trichinella antigens can be obtained on the basis of antigen location – surface 

antigens, excretory-secretory antigens (ES) and residual somatic antigens (Dea-Ayuela and Bolas-

Fernandez 1999). Stichosome, body cuticle, hindgut cuticle, hypodermis, haemolymph, glycogen 

aggregates, oesophagus occupying substance, midgut occupying substance, brush-border, 

cytoplasmic granules in the cord, intestinal gland and some areas in genital primordial cells 

appeared as the major source for muscle larvae antigens (Takahashi et al. 1990). Cuticular antigens 

are found as relatively non-immunogenic (Maizels et al. 1982). Different larval stages produce 

different antigens (Table 1.1). It is suggested that the parasites prevent the host defense mediated 

killing by altering their antigens at different life stages (Arriaga et al. 1989).  

 

Table 1.1 Immunomodulatory molecules from Trichinella spiralis 

Antigenic products Molecular weight, source/location, bioactivity References 

Macrophage migration 

inhibitory factor 
(MIF)-like molecule 

12 kDa, produced by encysted larva, potent to regulate host 

macrophage response 

Wu et al. 2003 

Muscle larvae 

excretory secretory 

products 

Suppress LPS activated dendritic cells (DCs) maturation in vitro, 

enhance induction of Treg cell expansion in mice.  

Aranzamendi et al. 

2012 

TsAP 54.7 kDa, aminopeptidase, produced by larvae, protective efficacy 

against adult worm  8.1% and against muscle larvae 59% 

Zhan et al. 2010 

TspSP-1.2 35.5 kDa, serine protease, involved in larval invasion, found in adult 

ES, protection efficacy against adults 34.92% and against muscle 

larvae 52.24% 

Wang et al. 2013 

Ts-Adsp 47 kDa, serine protease, produced by adult worm, protection 
efficiency 46.5% against muscle larvae, able to induce antigen 

specific IgG, IgE antibodies and a mixed Th1 and Th2 with elevated 

level of IFN-γ , IL-2, IL-4, IL-10 and IL-13 

Feng et al. 2013 

pVAX1-Tsmif 59 kDa, macrophage inhibitory factor, found in all stages, protection 

efficiency 23.17% 

Tang et al. 2013 

Tsmcd-1 68 kDa, cysteine protease inhibitor, found in all stages, protection 

efficiency 37.95% 

Tang et al. 2013 

Ts-Pmy 102 kDa, binds to C8, C9 (complement), produced by adults and 

larvae, protection efficieny 21.8% against muscle larva 

Wei et al. 2011 

Ts87 87 kDa, surface antigen, found in adult, protection efficiency 29.8% 

against adult worm and 34.2% against muscle larvae 

Nagano et al. 2008 

Ts53 53 kDa, secreted glycoprotein, produced by adults and larvae Yang et al. 2010 

Ts-gp43, peptide 40-

80 

43 kDa, immunodominantglycoprotein, found in larvae as ES, 

protection efficiency 64.3% against adult worms 

Ravasi et al. 2012 

Ts-Hsp70 70 kDa, heat-shock protein, found in adults, protection efficiency 

38.4% against muscle larvae, induce Th1/Th2 mixed cytokine profile 

Fang et al. 2014 

Ts adult ES Various, ES products, produced by adults Nagano et al. 2009 
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Tyvelose 

Helminths can produce complex carbohydrates (glycans) that may have key functions in 

interactions with the host immune system. T. spiralis can produce an unusual glycan in conjunction 

with its multiple excretory-secretory (ES) proteins of muscle larvae. The glycan has a tri- and tetra-

antenary structures with a terminal beta tyvelose (TY), which is a dideoxy arabinohexose and this is 

considered as very specific for T. spiralis N-glycans still now (Wisnewski et al. 1993, Reason et al. 

1994). A symbolic tyvelose bearing glycan is depicted in fig. 1.3. 

 

 

                        Fig. 1.3 Tyvelose bearing glycans from T. spiralis (Maizels et al. 2004)  

 

The structure conferred by the tyvelose moiety creates an antibody epitope, which occurs on 

multiple ES proteins of T. spiralis muscle larvae. Two larval development stages – new borne larvae 

(NBL) and muscle larvae (ML) of T. spiralis induce the host immune response in two phases: the 

initial 1-2 wk infection, i.e. at the end of the intestinal phase by NBL and the next at 4-5 wk after 

infection by ML antigens. Most of the antigens of NBLs are of 20, 30, 58 and 64 kDa molecular 

weight (MW). On the other hand, main antigens of ML are of 47, 55, 90 and 105 kDa (Appleton et 

al. 2012). The ML group of antigens is termed as group II or TSL-1 antigens (Appleton and 

Romaris 2001). TSL-1 antigens usually possess a MW of 40-50 kDa in sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) (Appleton et al. 1991). TSL-1 antigens share this 

carbohydrate epitope, dideoxysugar known as tyvelose (Appleton and Romaris 2001). TY has been 

used in a commercial Trichinella Western blot kit as a diagnostic antigen (Yera et al. 2003).  Passive 

immunization with anti-tyvelose mAbs in neonatal rats generated very fast response and expulsion 

of Trichinella larvae in a challenge infection (Appleton et al. 1988). Inspite of the strong antibody 

response against TY, it had neither host nor parasite protective function in mice at the level of the 

intestinal infection (Goyal et al. 2002). Herein this thesis used the TY as representative antigen to 

evaluate host innate immune responses elicited by cytokine expression.  
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1.2.4 Host immune response to T. spiralis  

Antigens of T. spiralis can sensitize many different kinds of hosts which indicated that this genus is 

either less immunogenic or is less influenced by the host’s immunity (Wakelin 1996). Bell (1998) 

has reviewed trichinella’s immunity to three basic host responses whose consequences are rejection 

of infectious larvae, rejection of adult worms, and immunity against NBL. Moreover, killing of 

encapsulated muscle larvae in suidae is possible (Bell 1998). On the other hand, immunity in mice 

is mainly targeted at the expulsion of the intestinal stages (Goyal et al. 2002) and is   basically T 

cell mediated (Wakelin and Goyal 1996) and with dominant Th2 type (Khan and Collins 2004). 

Moreover, the host immune response to Trichinella sp. involves numerous parameters linked both 

to the host species and to genetic background within the species (MHC and non- MHC genes) 

(reviewed in Bell 1998). These complex response mechanisms make it difficult to extrapolate the 

results obtained in one animal species to another. From these perspectives, it was suggested that the 

evaluation of host-trichinella relationship focusing on one host species and one trichinella species at 

a time since the genetically different hosts cannot be appropriately comparable (Wakelin and Goyal 

1996). But the inadequacy of pig trichinellosis research in the context of immune interaction 

compelled to draw relevant conclusion from other models like mice, rat, raccoon etc. Most of the 

immunological studies and host-parasite interactions between Trichinella sp. and its host have been 

obtained from laboratory animal models, especially rodents (rats and mice), but reports in pigs are 

very limited so far.  

 

Until now, most of the studies on the swine immune response to Trichinella sp. has only been 

analyzed at the systemic level as response of specific antibodies production (Marti and Murrell 

1986, Lunney and Murrell 1988, Kapel 2005). Although the severity of infection and degree of of 

adaptive response relied on the quality and quantity of infective muscle larvae (ML), near the 

complete resistance to secondary trichinellosis was noticed even with inoculation of a hundred MLs 

(Marti and Murrell 1986). Most of the cases, anti-T. spiralis response in vaccinated pigs was 

generated  from the anti-fecundity response which affected the NBLs number even at day 7 post-

infection (dpi). This response was delayed around 3 wk in naive pigs (Marti and Murrell 1986). 

This anti-fecundity response was found to be associated with intestinal inflammation in rodents 

(Despommier 1998). Furthermore, antibody dependent cell cytotoxicity targeted towards NBLs was 

also observed with the passive transfer of immunized pig serum, which yielded reduced the parasite 

burden without impairing worm fecundity (Marti and Murrell 1986). Overall, these studies 

indicated that swine are slow in expulsion of Trichinella burden, they can induce strong adaptive or 

protective immunity and this would be beneficial from the immunization perspective.  
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1.2.5 Epidemiology and control of T. spiralis infection 

Trichinella as in the form of infection in domestic and wild animals has been reported in 66 

countries and human trichinosis has been recorded for 55 countries (Pozio et al. 2009). These 

emphasize that the top source of human trichinosis is the domestic pigs and wild boars. Therefore, 

Trichinella infection represents a serious problem for the international trade of pigs and pork 

products as well. Distibution of Trichinella spp. can be cosmopolitan except Antarctica (Pozio 

2007). Murrell and Pozio (2011) reviewed the spatio-temporal distribution studies and have listed 

out some latest information on the relative contribution of domestic pigs in trichinellosis as shown 

in table 1.2. 

 

Table 1.2 Trichinellosis outbreaks in human in the world during 1986-2009 based on WHO report (Murrell and Pozio 

2011) 

Region/country Meat source, % of cases or outbreaks 

Domestic pig Wild game Other 

European Region 

Belarus, Croatia, Georgia, Macedonia, Serbia, United 

Kingdom 

 

 

100 

0 0 

Estonia, Turkey, Ukraine 50 50 0 

France 0 65 35 (horse) 

Germany 83 17 0 

Greece, Israel 0 100 0 

Hungary 52 48 0 

Italy 38 38 24(horse) 

Lithuania 48 52 0 

Poland 41 59 0 

Romania 95 5 0 

Slovakia 50 25 25 (Dog) 

Spain 60 40 0 

African Region: Ethiopia 0 100 0 

Region of the Americas 

Argentina, Chile 

Canada 

United States 

Mexico 

 

100 

0 

57 

86 

 

0 

100 

43 

0 

 

0 

0 

0 

14 (horses) 

Eastern Mediterranean Region: Iran and Lebanon 0 100 0 

South-East Asian Region: Thailand 50 50 0 

Western Pacific Region    

People’s Republic of China 86 13 1(dog) 

Japan 25 75 0 

South Korea 0 100 0 

India, Laos, Papua New Guinea 50 50 0 

Singapore, Vietnam 100 0 0 

(Source:wwwnc.cdc.gov/EID/pdf<<711-0896-Techapp.pdf) 

 

The outdoor rearing of pigs is a major risk because of increased exposure to sylvatic and 

synanthropic hosts. Synanthropic hosts like rats, cats, raccoons and wild animals may achieve the 

infection from domestic farm pigs (Burke et al. 2008). Inadequate measures to prevent contact of 
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domestic animals with wild life allows the transmission from wild animals to domestic animals. 

Mother to offspring transmission may also occur (Webster and Kapel 2005). More than 150 species 

including mammals, birds and  reptiles was reported to serve as potential host for trichinella 

infection (Bolas-Fernandez and Wakelin 1989, Pozio and Zarlenga 2005). Prevalence of 

trichinellosis is more noticeable, especially, in countries with traditional consumption behavior 

which incorporates meals with raw, smoked or undercooked pork (Gottstein et al. 2009). Data on 

the incidence of human trichinellosis and its health effect are relatively less reported and also does 

not include appropriated validation. Appropriate information availability could facilitate the 

necessary priority set up for control. On estimated report from Pozio (2007) mentioned that in the 

1990s, the global prevalence of trichinellosis was  near about 10 million, and an incidence estimate 

was suggested as approximately 10,000 infections per year. This indicates the world wide 

dissemination of trichinellosis in animal and human health. 

 

Usually, pigs get infected with trichinella by eating infected meat of wild or domestic animals. 

Practicing good management, combined with documentation of these practices and routine official 

veterinary control to verify the efficacy of these practice might facilate the provision to escape 

slaughter inspection or further processing which is much costly. The key practices can be creating 

architectural and environmental barriers between domestic and wild life, proper management of 

feed and food storage, rodent control and farm hygiene including safe disposal of dead carcass and 

piglets from farms with controlled housing conditons (Gottstein et al. 2009) Therefore, prevention 

of infection will depend on the prevention of cannibalism, by avoiding any animal tissues being fed 

to pigs or human without adequate boiling (71°C for at least 1 minute) (Gottstein et al. 2009). 

Determining the genetic predisposition for trichinellosis will also facilitate the strategy for 

sustainable control measures. 

 

1.2.6 Taxonomy and life cycle of Ascaris suum 

Ascaris suum is a nematode parasite of the Ascarididae family (Dold and Holland 2011). The adult 

Ascaris suum males are as long as 25 cm and females up to 40 cm with whitish coloration and thick 

cuticle (Soulsby 1982). Gravid females can produce around 200,000 to 1 million eggs/day and 

usually shed intermittently (Sinniah 1982). Under favourable condition, these eggs develop to the 

infective stage (eggs containing L3 larva) in 3–4 wk as illustrated in fig. 1.4. Infective eggs, after 

being ingested, hatch in the small intestine and the larva is released. These larvae invade the 

intestinal wall and enter into the portal circulation. After capillary migration through the liver 

capsule, they are transported by the circulation to the lungs, where they lodge into the 
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bronchoalveolar spaces (Dold and Holland 2011). During this migration through liver, they cause 

haemorrhage, fibrosis and accumulation of lymphocytes seen as ‘white spots’ and termed as ‘milk 

spots’ under the capsule (Fig. 1.4). These lesions can be visible even within 4 days (Roepstorff et al. 

2011) after infection and then gradually regress within 3 to 6 wk (Eriksen et al. 1992). Therefore, 

their presence indicates ascaris infection or reinfection. Approximately 6-8 days after ingestion, the 

larvae pass up the bronchial tree. If the pulmonary infection level with Ascaris larvae is very high, it 

may cause pulmonary edema and consolidation. In the lungs, the larvae are swallowed, and return 

to the small intestine by 8-10 days after infection, where they mature into adult worms and later 

they are expelled out (Roepstorff et al. 1997). The first eggs are passed ~6–7 wk after infection. 

Intestinal niche for adult parasites usually last for one year, but in most cases, due to the intestinal 

effector immunity drive out the worm load at around 23 wk of infection (reviewed by Dold and 

Holland 2011).  

 

Fig. 1.4 The stages of life cycle of A. suum in pigs. Infective L3 containing eggs are ingested by the host and will 

release the L3 in the small intestine. These larvae further invade the caecum or colon and reach the liver via the hepato-

portal circulation, usually within 1 to 4 days. They further migrate to the lungs with 7 days post infection and enter the 

alveoli where they are coughed up and swallowed back into the small intestine. There the molting of L3 to L4, takes 

place and eventually become adult. After sexual reproduction, the females will release eggs in the environment with the 

faeces. In the environment, the eggs will embryonate over the course of a few weeks and become infective.  Photo 

adapted from Roepstorff and Nansen (1998). 

 

Earthworms and dung beetles can serve as paratenic hosts (Soulsby et al. 1982). In temperate 

countries, the eggs remain dormant in winter (<15°C) and restart the growth when temperature rises 
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in the spring. The eggs are highly resistant to chemical dessicants, but conditions with low 

humidity, heat, or direct sunlight reduce the resistance. Under natural conditions, they can remain 

infective for 15 years in the environment (Kransnonos 1978). 

 

1.2.7 Clinical and economic importance of A. suum infection 

A. suum infection by adult worm at intestinal level as well as their larval migratory stages traveling 

to the visceral organs like liver, lungs is found to elicit potentialy unfavorable impact on the 

financial benefit scale of pig farms (Kipper et al. 2011). Infection in the farm in a greater scale may 

directly affect growth, immunity, libido or indirectly may cause significant loss from carcass 

condemnation, secondary infection and so on. The most common and evident effect from ascariasis 

is rejection of affected parts of liver identified with lesion of whitish spots, the indication of larval 

migration. In fig. 1.5 Ascaris suum infected livers from two pigs are shown. 

 

 

Fig. 1.5 Milk spot liver of A. suum infected pigs. White spots on livers from two helminth naïve sentinel pigs following 

4 days exposure to a paddock, which was contaminated with Ascaris suum eggs 4 years earlier (photo by H. Mejer) 

(Roepstorff et al. 2011) 

 

Furthermore, the larval passage through the lungs may yield in pneumonia and interrupt the 

physiological clearance of bacteria from lungs (Curtis et al. 1987) which further promotes 

secondary infection by other microbial pathogens. Ascariasis is also reported to be linked with the 

higher prevalence of Pasteurella multocida, Escherichia coli and Salmonella spp. (Adedeji et al. 

1989, Tjørnehøj et al. 1992, Smith et al. 2011). Costs concerned with the anthelmintic treatment as 

well as the perspective of drug residual effect and drug resistance are also significant threat for 

helminth control in swine industry. Farms with low level of infection intensity might not reflect the 

same scenario and the cost of active ascaris control might not be profitable. Moreover, it is quite 

hard to estimate the economic costs from parasites which are not fatal. Current assessment on the 

ascaris prevailing pig farms reelected that better feed conversion rate, elevated daily weight gain, 

declined fatality and improved carcass quality coact together (Vlaminck et al. 2011, Vlaminck et al. 
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2012, Vlaminck et al. 2015, Vlaminck et al. 2016). Therefore, routine deworming plans may result 

a win-win effect on economic and environmental performance with gross profit margin increase of 

3 to12 Euro per average finisher annually (Kanora 2009, Jourquin 2007, Meensel et al. 2010).  

 

1.2.8 Antigenic molecules of A. suum  

Most of the immunological studies on ascaris immunity used whole worms, eggs or crude somatic 

antigen preparations or excretion/secretion (E/S) products derived from larvae or adult parasites 

cultivated in vitro (table 1.3). These antigens generally lack specificity (Lynch et al. 1993, 

Chatterjee et al. 1996, Bhattacharyya et al. 2001, Araujo et al. 2015). The AsHb antigen is produced 

by both the adult and larvae (Vlaminck et al. 2011, Chehayeb et al. 2014). A subsequent study 

showed that antibody reactivity to AsHb correlated with liver pathology caused by migrating A. 

suum larvae, and high antibody rates in pig herds were associated with low growth rates (reduced 

farm productivity) (Vlaminck et al. 2015). AsHb has high immunogenicity and is used for 

serodiagnostic detection of ascariasis in swine herd. This is commercially available in Europe as 

SERASCA® (Vlaminck et al. 2012). It is found as an about 42 KDa glycoprotein comprising two 

globin like domains, highly immunogenic vaccine candidate and is the most abundant proteins in 

the pseudocoelomic fluid of adult A. suum worms, a major excretory ⁄ secretory (ES) protein of L3, 

L4 and adult worms (Keane-Myers et al. 2008). Haemoglobin sequestering of oxygen has been 

suggested to aid the parasite in maintaining a locally anaerobic environment while their ability to 

break down nitric oxide (NO) and hydrogen peroxide produced by innate immune cells would also 

aid parasite survival (Goldberg 1995, Minning et al. 1999). Ascaris haemoglobin (AsHb) has been 

best explored, and is an octameric molecule that binds oxygen nearly 25,000 times more tightly 

than human haemoglobin (Minning et al. 1999).    

 

According to the hypothesis of Keane-Myers et al (2008), AsHb can activate bone marrow derived 

dendritic cells and alter cytokine production (e.g., increase the production of IL-10, decrease the 

production of IL-12, etc.) in a pattern in accordance with the restricting Th1- and Th-2-mediated 

conditions characterized by upregulation of IL-2, IL-12, IFN-γ and TNF-β1. IL-10 can also be 

upregulated in Th-1 responses as a negative feedback mechanism to prevent further damage from a 

Th1-associated cytokine storm. A Th-2-condition is characterized by an upregulation of IL-10, IL-

4, IL-5 and IL-13 and IgE component. By upregulating IL-10, AsHb suppresses Th-1- or Th-2- 

associated conditions by reducing cellular upregulation of IL-10 by a feedback mechanism. By 

contrast, it is suggested that by reducing the level of IL-2, AsHb inhibits-associated conditions in 

which IL-12 is upregulated. It can be used to treat allergic ashma, food allergy, an eosinophil-
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associated gastrointestinal disorder, eczema, chronic urticarial, inflammatory bowel disease, 

multiple sclerosis, Crohn’s disease, ulcerative colitis.  

 

AsHb is the most abundant and highly produced antigen of all three vital life stages of A. suum (L3, 

L4 and adults) (Keane-Myers et al. 2008). Moreover, anti-AsHb antibody was found to be highly 

reactive to the parasites hepatic migratory stages (Vlaminck et al. 2011), which is the most crucial 

and economically important part in hog ascariasis. Moreover, significant positive correlations 

between serum antibody level of anti-AsHb-IgG and quantity of intestinal worm and egg per gram 

of faeces (EPG) (Vlaminck et al. 2012). Hence further investigating the role of AsHb and 

elucidating the breed variation based on anti-AsHb response might be worthwhile.  

 

Table 1.3 Immunomodulatory molecules from Ascaris suum  

Worm product Bioactivity Reference 

Ascaris Haemoglobin 

(AsHb) 

Heamoglobin suppresses allergic inflammation in mice LPS activated 

DCs by inducing IL-10 

Keane-Myers et al. 

2008 

Pseudocoelomic fluid 

protein (s)  

Induces eosinopjiil and nerutrophil chemotaxis, reduces 

bronchoalveolar lavage fluid cell infiltration, IL-5 and IL-13 as well 

as expression of CD40 and CD86 and is therapeutic in mice 

McConchie et al. 

2006 

Somatic extract from 

homogenized adults 

200 kDa PAS-1 from 

adult somatic extract 

Inhibits zymogen induced murine arthritis; reduces hypersensitivity 

to ovalbumin independently of IL-10, and reduces cell proliferation, 

IL-2, IFN-γ, eosinophil peroxidase, IL-4, IL-5 and eotaxin levels; 

Rocha et al. 2008, 

Souza et al. 2002, 

Itami et al. 2005 

Phosphorylcholine-
conjugated 

glycosphingolipids 

from adults 

Inhibits airway allergy induced by the worm allergen via inhibition of 
macrophage cytokine release; increases TNF-α, IL-1beta and IL-6 

from human PBMCs; decreases B cell proliferation; is pro-apoptotic: 

decreases Th1 cytokine production from LPS+IFN-γ treated 

macrophages 

Deehan et al. 1997, 
Kean et al. 2006, 

Araujo et al. 2008 

As14 14kDa, with unknown function, found in larva, adult and ES, confers 

64% of protective immunity, homolog to human ascaris 

Tsuji et al. 2001 

As16 24 kDa, helps larval molting, found in larva, adult, ES, intestine and 

hypodermis, r-protein and confers 58% host protection, homolog of 

human ascaris 

Tsuji et al. 2003 

As24 24 kDa, helps larval molting, found in larvae and adults as ES in 

intestine and hypodermis, r-protein and confers 58% host protection, 

homolog of human ascaris 

Islam et al. 2005a, 

Islam et al. 2005b 

As37 37 kDa, function in Ig family, location in larva, adult, surface, 

muscle, r-protein and confers 69% protection, homolog to human 

ascaris  

Kasuga-Aoki et al. 

2000 

As-Enol-1 46 kDa, Enolase, larval development, located in larvae, adults and 
ES, confers 61% protection 

Chen et al. 2011 

As-GST-1 26 kDa, Glutathione S-transferase, found in adult and intestine, 

implicated in the development of drug and toxin resistance  

Liebau et al. 1997 

 

1.2.9 Host immune response to A. suum 

From an immunological point of view, it has been reported that A. suum induces a strong Th2 

response, typical of gastrointestinal parasites in pig, which can be measured both systematically 
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(e.g. blood eosinophilia, IL-4) and locally in intestine (increase in IL-4, IL-6, IL-10 and IL-13) 

(Jungersen 2002, Roepstorff et al. 2011). Human ascariasis is characterized by a Th2 and regulatory 

immune response (Cooper et al. 2000), although innate production of IL-5, IL-6 and TNF-α  was 

suggested to have potential role in the pathogenesis of experimental larval ascariasis in mice 

(Gazzinelli-Guimaraes et al. 2013). 

 

Immunity in the normal physiological system is often accompanied by the combined efforts of cell 

to cell interaction in order to maintain immune equilibrium. Several studies on ascaris immunity 

revealed that A. suum have affinity for lymphocytes as evident from the suppressive activity of its 

antigenic components (Faquim-Mauro and Macedo 1998, Souza et al. 2002, McConchie et al. 

2006). Inspite of the direct evaluation on Ascaris infection, recent studies have  suggested that an 

IL-6 dependent, Th17 response might play an important role into the pathogenesis of helminth 

infections (Smith and Maizels 2014) and allergic response (Roesner et al. 2015), resulting in 

manipulation of the Th2 profile and possible vulnerability of the host to the parasitic infection. Role 

of IL-17 in another helminth, Schistosoma mansoni mediated granuloma formation was also 

referred (Bouchery et al. 2014).  

 

Larval ascariasis (established by larval migration through the host’s organs) was characterized by 

intense pulmonary injury and inflammatory infiltration, which is initially comprised of neutrophils 

during the peak of larval migration and followed by later infiltration of eosinophils and 

mononuclear cells (Gazzinelli-Guimaraes et al. 2013). The robust inflammatory response elicited by 

parasitic migration was suggestive to be protective to the host (Gazzinelli-Guimaraes et al. 2013) 

and might represent the establishment of concomitant immunity to new helminthic infections.  

 

1.2.10 Epidemiology and control of A. suum infection 

A. suum is known to be distributed worldwide in all kinds of production system, but the intensity 

may vary with the production system. Reliable and up-to date information on the prevalence is 

scarce and presently available studies are also based on different diagnostic methods. An overview 

of prevalence of A. suum infection in pigs across the globe is presented in table 1.4. Studies from 

China and Denmark reported higher prevalence in breeding sows and fattening pigs (Roepstorff and 

Murrell 1997, Lai et al. 2011) and relatively lower in breeding boars (Roepstorff et al. 1998, Lai et 

al. 2011). There is a general trend that the younger animals, especially starter and finisher have 

comparatively higher susceptibility because of their inadequate level of pre-exposure to infection. 

This situation is more common in traditional and green pig production farms (Roepstorff et al. 

1998). On the contrary, in intensive production facilities, frequency of positive cases is lower in 
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younger pigs resulting from restricted chance of getting infection while  the prevalence percentage 

are relatively higher in adults or older pigs, especially sows, as these animals receive the first 

exposure to ascaris infection in later parts of their life (Roepstorff et al. 1994, Roepstorff et al. 

1997). Egg excretion level was found comparatively lower in sows than weaners or fatteners 

(Roepstorff and Nansen 1994, Eriksen et al. 1992).  

 

Table 1.4 Statistical data from prevalence studies on Ascaris suum throughout the world from online available sources 

Year Country 
Sample size and 

type 

% of 

infect-

ed 
farms 

% of infected pigs 

Reference 
Egg 

and 

Worm 

Liver 

lesion 

ELI-

SA 

2000 China 
100 outdoor 
farms 

 37%   Boes et al. 2000 

2001 Germany 13 farms  33%   Joachim et al. 2001 

2005 
The Nether-

lands 

9 conventional 

farms 
11%    

Eijck and Borgsteede 

2005 
2005 

The 

Netherlands 

16 free range 

farms 
50%    

2005 
The 

Netherlands 
11 organic farms 73%    

2010 USA 
 91 farms (finish-

ing pigs) 
39%    Pittman et al. 2010a 

2010 USA 40 farms (Sows) 25%    Pittman et al. 2010b 

2010 Switzerland 
90 conventional 

farms 
13%    

Eichhorn et al. 2010 

 2010 Switzerland 
20 free range 

farms 
35%    

2010 Sweden  2.4 million pigs   5%  

2010 Denmark 
79 farms, 1790 

sows 
76% 30%   Haugegaard 2010 

2011 China 916 pigs  15%   Lai et al. 2011 

2011 Tanzania 13,310 pigs   4%  Mellau et al. 2011 

2012 England 34,168 pigs   4%  
Sanchez-Vazquez et 

al. 2012 

2012 Slovakia 19017 pigs   
6.89-

39.5% 
 

Ondrejková et al. 

2012 

2015 Germany 
20 pig fattening 
farm 

79%  10.78% 79% Vlaminck et al. 2015 

2015 Belgium 
20 pig fattening 

farm 
61%  13.2% 61% Vlaminck et al. 2015 

2016 Denmark 

5 organic farms  

(starter, finisher, 

dry sows, lactat-
ing sows) 

  

48%, 

63%, 

28%, 
15%  

 Katakam et al. 2016 

2017 Uganda 932 pigs  5.9%   Roesel et al. 2017 

 

Routine deworming, chemical disinfection, all-in all-out production, proper stocking density, 

adequate nutrition are some feasible and traditional measures for ascariasis control (Roepstorff and 

Nansen 1994) to reduce the transmission. But these are unlikely to completely eliminate the 

infection because of high reproductive potential of ascaris worms, their long viable infective stage, 

drug resistance, lack of vaccine, recurrence of infection and also because the immunity developed 
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from the primary infection does not offer life-long protection. Genetic predisposition is reported for 

some animals being more susceptible. Therefore, selection of relatively less susceptible populations 

will offer a sustainable option for the farmers. 

 

1.2.11 Immunomodulation by helminth infection  

Helminth parasites usually have a strong immunomodulatory and immunosuppressive effect on 

their host. In most parasitic diseases, a predominantly cellular (Th1) or humoral (Th2) immune re-

sponse offers the best control over pathogens, the induction of an appropriate T-helper cell response 

is essential in determining a successful immune reaction (Riganò et al. 1999).  Immunosuppression, 

alteration and diversion are some common features of helminths regulated host immunity. This re-

sults in an anti-inflammatory environment, which is usually suitable for parasite survival and persis-

tence. Anti-helminth immunity is basically portrayed by Th2/Treg cells. The dominance of Th2 po-

larization and simulataneously the activation of immunoregulatory cell populations, such as regula-

tory T cells and alternatively activated macrophages, are also possible aspects of helminth immuni-

ty as depicted in fig 1.6.  

 

 

Fig. 1.6 Innate recognition of helminth antigens. The figure illustrated the orchestration of CD4+ Th2 cell differentia-

tion following innate immune cell recognition and response to helminth derived products. Recognition of helminth an-

tigens by innate immune cells can be mediated by germline encoded pattern recognition receptors such as TLRs and 

Lectins. However, with many cell types, including IECs, the exact nature of the host-parasite interaction remains un-

known. Following innate lymphoid cell recognition, responses can include secretion of effector molecules, such as cy-

tokines, TSLP and alarmins that are thought to contribute to CD4
+
 Th2 differentiation through influencing APCs func-

tion and/or directly acting on CD4+ T cells. Additionally, DCs conditioned with some helminth products can promote 

CD4+ Th2 differentiation. However, whether this activity is determined by changes in expression of co-stimulatory 

molecules including OX40L and CD40, differential expression of Notch ligands or an as yet unidentified factor are are-

as of ongoing research (Perrigoue et al. 2008). 
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The innate wing of the immune system functions as the physical barrier (Moore et al. 2001) as well 

it plays crucial role in pathogen detection (Kawai and Akira 2009) being the frontline host defense 

(Medzhitov and Janeway 2000). Pathogen-associated molecular patterns (PAMPs) are produced by 

pathogen and are not naturally found on host cells. Their recognition is achieved through a limited 

number of germ-line encoded receptors; the pattern recognition receptors (PRRs) (Mogensen 2009). 

PRRs mainly recognize PAMPs produced by pathogens that are not naturally found on host cells or 

tissues (Medzhitov and Janeway 2000). Among the PRRs, Toll-like Receptors (TLRs) along with C-

type lectin receptors (CLRs) play important roles in innate PAMPs recognition. CLRs are trans-

membrane lectins (sugar-binding proteins) that in contrast to TLRs, recognize carbohydrate glycan 

structures present on the pathogens (Geijtenbeek et al. 2004). The recognition is performed in order 

to generate suitable immune response to eliminate the parasite and at the same time to reduce host 

pathology. Current knowledge on this helminth PAMPs recognition process is limited to identifica-

tion of the few PRR ligands of helminth origin. There is also a wide range of helminth-derived 

products with immunological properties to which no recognition mechanism has yet been attributed 

(Johnston et al. 2009). At the signalling level, many of the helminth-derived molecules have been 

associated with the activation of a number of pathways. Ligand binding of PRRs such as TLRs acti-

vates signal transduction pathways that initiated suitable gene expression (Mogensen 2009). The 

underlying tricks that trigger and helps tomaintain this immune regulation remain inadequately un-

derstood, but are clearly important to under host-pathogen interaction. 

 

Immune sensitization by helminthes or helminth antigens induce the naïve CD4+ T cells to differen-

tiate into different types of effector and regulatory cells. Specific cytokines and transcription fac-

tors, produced immediately or existing in the microenvironment, also contribute to differentiation 

and expansion of these cell populations. These differential activation usually determines whether an 

immune response will contribute to host protection or pathological inflammation as illustrated in 

fig. 1.7. Exposure to IL-12 produced by antigen presenting cells (APCs) induces T-box transcription 

factor (T-bet) expression, driving Th1 cell differentiation. These cells produce IFN-γ and usually 

IFN-γ dominated Th1 immunity is unable to expel helminth parasites. The circumstances that trig-

ger Th2 cell differentiation and Th2 cytokine polarization are not clearly understood. But recent 

studies have revealed the implication of IL-2, IL-25, thymic stromal lymphoprotein, and associated 

transcription factors in Th2 dominance.Th2 cells produce a series of cytokines, IL-4, IL-5, IL-10, 

IL-13  that contribute to anti-helminth immunity by guiding innate bone-marrow and non-bone 

marrow derived cells, which in turn can instruct and amplify Th2 cells. 
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Relatively strong Th2-type immunity can give rise to better resistance or less susceptibility to para-

sites as seen in intestinal helminth, Heligmosomoides polygyrus infection in mice, or control of 

harmful inflammation mediated by Th1 cells and Th17 cells, as in schistosomiasis in human. How-

ever, chronic potent Th2 cell responses can also lead to harmful Th2 inflammatory response includ-

ing fibrosis, granulomatous lesion etc. Expression of the transcription factor fork head box P3 

(FOXP3) accompanied by TGF-β and IL-2, can promote differentiation of regulatory T cells (Treg 

cells), which can inhibit both Th1 and Th2 immune response. Several factors, including retinoic ac-

id receptor related orphan receptor-γ (RORγ), TGF-β, IL-21 and IL-23, have been shown to pro-

mote Th17 cell differentiation, and these effector cells can mediate harmful inflammation. IL-10, 

the master of immune regulation, is no longer considered as exclusively Th2 type cytokine and can 

be produced by Th1, Th2, and Tregs (T regulatory cells) and downregulated both Th1- and Th2- 

type response (Anthony et al. 2007). 

 

 

Fig. 1.7 Helminth antigen mediated modulation of host immune response. Helminth antigens modify cells of the innate 

immune system (DCs, Mϕ, NKT and B1 B cells), arresting the production of inflammatory mediators and instead elicit-

ing the release of immunoregulatory cytokines, such as TGF-β and IL-10. This results in the generation of suppressive 

Treg cells, expansion of Th2 cells and downmodulation of proinflammatory T-cell lineages. The ensuing T-helper and 

cytokine biases ameliorate autoimmune conditions and, at the same time, prevent the development of allergies. Abbre-

viations: aaMϕ, alternatively activated macrophages; DC, dendritic cells; Mϕ, macrophages; NKT, natural killer T; Th, 

T helper; TNF, tumor necrosis factor; Treg, regulatory T cells. Image adapted from Zaccone et al. (2008). 
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1.2.12 Molecular phenotypes of anti-helminth innate immunity  

The mammalian immune system is complex and involves mainly innate and adaptive arms (table 

1.5). The innate immune system acts non-specifically and immediately in response to infectious 

insults with dependency on cytokines and immune cells. Hence, the innate immunity might not be 

potential enough to control most of the infectious organisms, but it dictates subsequent development 

of adaptive immunity which ultimately fights to control the infection. 

 

Table 1.5 Cells and soluble molecules involved in the immune function (Cruvinel et al. 2010) 

Component Innate immunity Acquired immunity 

Cells Phagocytes (DCs, macrophages, and 

neutrophils), natural killer (NK), mast cells, 

eosinophils and basophils 

NK/T, B, and T lymphocytes, DCs or antigen-

presenting cells (APCs) 

Soluble 

molecules 

Complement, acute phase proteins, 

cytokines and chemokines 

Antibodies, cytokines and chemokines 

 

Cell viability and proliferation 

A key feature of adaptive immune response is the ability of cloning the antigen specific 

lymphocytes for rapid proliferation and differentiates into effector cells. Thus, to monitor an 

immune response, it is important to have procedures that can follow lymphocyte proliferation, with 

minimal disruption to cell viability and function (Quah et al. 2007). Evaluation of T cell response 

following primary antigenic challenge with an antigen is a critical aspect of assessment of the 

cellular immune response. Primary sensitization can be measured by using soluble antigen in vitro. 

The maturity of macrophages and cytokines, delivered by monocyte-macrophage lineage or 

lymphocytes was considered as mediator, which might influence the lymphocyte blastogenic 

response. The lymphoproliferative response can depend on the maturity of APCs and interaction 

with antigen presenting cells, which are present in cell cultures. Moreover, the balance between 

cytokines derived from adherent leukocytes including IL-8 as well as IFN-γ and TGF-β delivered 

by lymphocytes was probably important for the successful proliferation of lymphocytes (Miszczyk 

et al. 2014). The T cell proliferation and cytokine production by peripheral blood lymphocytes were 

revealed as indicator of the inflammatory responses to H. pylori infection in the gastric mucosa 

(Fan et al. 1998, Miszczyk et al. 2014). Favoretto et al (2017) reported that the high molecular 

weight protein of A. suum undermined the LPS stimulated DCs and reduced T cell proliferation. 
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Phagocytosis 

Phagocytosis represents an early and crucial event in triggering host defenses against invading 

pathogens (Gu et al. 2014). This early event mediated by innate immune system is crucial for host 

survival. As a result of this process, PAMPs can be presented at the cell surface (Ag presentation), 

allowing the induction of acquired immunity. Traditionally, phagocytosis is assayed by measuring 

the engulfment of a substrate. The average number of substrate engulfed by each phagocyte is 

quantified using a standard fluorescent microplate reader. Phagocytosis is indispensible part of 

several physiological processes, including tissue remodeling and the continuous clearance of dying 

cells. The measurement of phagocytosis activity of immune cells indicates the strength of the innate 

immune system in the host. A reduced phagocytosis translates into reduced T cell proliferation 

(Syme et al. 2000) and antigen processing and presentation by macrophages, all resulting in an 

interference with the T cell response.  

 

Cytokine signaling    

Cytokines represent one of the most important elements in the communication among different cell 

types (O’Shea and Murray 2008). Their  role in the communication among hematopoietic cells and 

in particular in the reciprocal regulation of effector cell types of innate or natural resistance (phago-

cytic cells and Natural Killer (NK) cells) and those of adaptive immunity (T and B lymphocytes) 

are increasingly better understood. Still the multifunctionality of several cytokines makes it difficult 

to clearly define the role in so many instances. Lymphocytes produce several cytokines with either 

stimulatory (e.g., colony stimulatory factor) or suppressive (e.g., tumor necrosis factors and inter-

feron) effects on proliferation of early hematopoietic cells. Many of these cytokines, alone or acting 

in synergistic combinations, also have a differentiation-inducing ability on immature myeloid cells 

and act as powerful effectors of the cellular functions of terminally differentiated phagocytic cells. 

Cytokines can generate immune and inflammatory responses and are normally present in the cell at 

a very low concentration. After appropriate stimulation of cells, they can be expressed or produced 

in higher quanity. Two types of T helper cells, Th1 and Th2, had originally been defined in murine 

CD4
+
 T lymphocyte clones based on their cytokine production profiles (Romagnani 1991). T helper 

1 type cells can produce IL-2, IFN-γ, lymphotoxin (LT), TNF-α and IL-12. T helper 2 type cells are 

source of IL-4, IL-5, IL-6, IL-10, and IL-13. Th1 cytokines are involved in the cell-mediated im-

mune and inflammatory responses, while Th2 cytokines mediate the humoral immune responses, 

such as antibody production and allergic response. Description of the role of IL-10, IL-6, IL-2, IFN-

γ and TGF-β in helminth immunity is highlighted in table 1.6. 
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Table 1.6 Role of innate immune cytokines in the biological system (Turner et al. 2003, Abbas et al. 2012) 

Soluble immune 

mediators 

Origin Immunoregulatory activities 

IL-10 Monocytes, Th2 

cells, B cells 

Inhibits activated macrophages; displays potent abilities to suppress 

antigen presenting capacity of APCs; Released by cytotoxic T (Tc) 

IL-6 Macrophages, T 

cells 

Functions in innate and adaptive immunity; in the latter, stimulates 

growth of B cells that have differentiated into antibody producers; IL-

1, TNF, and IL-6 appear to be major factors that induce the acute phase 

response. 

IL-2 Helper T cells Has high capacity to induce activation of almost all clones of cytotoxic 

cells; Increased cytotoxic functions of T killer and NK cells; promotes 

production of perforins and IFN-γ by these cells; Activates monocytes-

macrophages to synthesize and secrete TNF-α, IL-1β, IL-6, IL-8, G-

CSF, and GM-CSF. 

IFN-γ T cells and NK 

cells 

Major macrophage activator; induces MHC class II molecules on many 

cells and can synergize with TNF; augments NK cell activity; antago-

nist to IL-4. 

TGF-β T cells and many 

other cells 

Primarily an inhibitory cytokine; inhibits the proliferation and activa-

tion of T cells and macrophages; it works on peripheral mononuclear 

cells and epithelial cells to block the effects of proinflammatory cyto-

kines. 

 

1.2.13 Genetic variation of anti-helminth innate immunity 

Breed is counted as one of the most influential host factors triggering susceptibility or resistance to 

many pathogens. The outcome of most infections is regulated by the host-pathogen genotype, 

phenotype and the environmental interaction. The genetic configuration of animals is reported to 

determine greatly their susceptibility or tolerance to helminth infections as well as the nature of 

their immune response (Williams-Blangero et al. 2002, Vincent et al. 2006). Numerous studies have 

indicated interbreed and intra-breed variation in the immune responsiveness in terms of a range of 

parameters (Clapperton et al. 2005, Cuenco et al. 2009). Significant difference in cytokine 

production, e.g. IL-10, IL-12 and IFN-γ has been reported among Yorkshire pigs (Crawley et al. 

2003). Several other studies also supported the phenotypic and genetic variation in cytokine 

production of pigs; including mitogen induced production of IL-2, IL-4, IL-10 and IFN-γ (Edfors-

Lilja et al. 1991). The response to different pathogens varied significantly between pigs and across 

breeds (Nguyen et al. 1998, Oswald et al. 2001, Lowenstein et al. 2004). Studies on helminth 

infections have repeatedly shown the involvement of common loci in regulating susceptibility to 

distinct parasitic diseases such as schistosomiasis, ascariasis, trichuriasis, and onchocerciasis 

(Mangano and Modiano 2014). Therefore, understanding the genetic background of different pig 

breeds is essential for a robust selection process aiming to improve herd health and production.  
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Variations in host immune response against helminth infection between genetically diverse pigs 

have been reported in several studies. The NIH miniature pigs with the cc homozygous swine 

leukocyte antigens (SLA) haplotype exhibited a lower burden of encysted muscle larvae than other 

haplotypes upon initial inoculation with T. spiralis (Lunney and Murrell 1988). This rapid clearance 

of parasites was believed to correlate with the early development of humoral antibody response. 

Pigs bearing the homozygous haplotype also exhibited a highly significant reduction in the encysted 

muscle larvae burden upon a second challenge. This suggested that the expression of the allelles on 

a haplotype influenced the cellular immune defense against T. spiralis (Madden et al. 1990). In 

addition, SLA haplotypes have also been shown to affect the uptake and killing abilities of cultured 

peripheral blood monocyte (Lacey et al. 1989).  

 

Since the last few years, genome wide and/or multicentric studies have been conducted on T. 

spiralis (Mitreva et al. 2011) and on A. suum (Jex et al. 2011) which will facilitate the science of 

their relationship with the host. Preliminary findings based on hematology, liver-related serum 

enzymes, blood urea, liver weight and number of migratory larvae in the liver in experimental 

ascarisis in Mukota and Large White pigs suggested that Mukota pigs were relatively more resistant 

(Zanga et al. 2003). Findings from Vlaminck et al. (2012) supported and Nejsum et al. (2009) and  

Skallerup et al. (2012, 2017) endorsed that some pigs are more prone to intestinal infection while 

some pigs are inherently protected. Strain variation in the susceptibility level of A. suum was also 

revealed in the mice model by Lewis et al. (2006). Several studies demonstrated that resistance to 

helminth infection is heritable. For A. suum, heritabilities of 0.29-0.31 were estimated for log 

(faecal egg count+1) at weeks 7-14 post infection, whereas the heritability of log worm counts was 

0.45 (Nejsum et al. 2009). Distinct inter-strain and intrastrain differences in the eosinophilia at 

mouse peripheral blood, bone marrow and spleen in experimental trichinellosis have been reported 

(Wakelin et al. 1985, Lammas et al. 1992).  

 

German Landrace (LR) and Pietrain (Pi) are two leading breeds for commercial pig production 

worldwide. From physiological perspectives, there are differences between LR and Pi pigs in terms 

of growth potential, body composition, feed utililization and conversion (Ponsuksili et al. 2007). 

Evidence also exists for the immune response differences for Porcine Circo Virus Type-2 

(Opriessnig et al. 2006), PRRSV infection and immunization (Ait-Ali et al. 2011, Islam et al. 2017) 

and LPS response (Kapetanovic et al. 2013) between LR and Pi pigs. The variation is apparent also 

in the level of quantitative expression of the performance potential, as well as in the efficiency of 

the necessary metabolic pathways. Insulin Growth Factor-1 (IGF-1) is reported to be associated 

with T regulatory cell stimulation and monocyte suppression (Bilbao et al. 2014, Ge et al. 2015). 
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Blood plasma contents of IGF-1 in relation to protein turnover efficiency were found lower in Pi 

compared to LR pigs (Windisch et al. 2000) which might be further extrapolated as having 

relatively less strong immunity of Pi pigs.  

 

1.2.14 In vitro PBMCs model for evaluating the anti-helminth innate immunity 

The current study employed in vitro peripheral blood mononuclear cells (PBMCs) model to 

elucidate the innate immune responsiveness to primary infection with helminth antigens and reveal 

the variation in responsiveness between pig breeds. PBMCs are a heterogenous mixture of immune 

cells with a major group with lymphocytes (70-90%) including T- and B-lymphocytes, NK cells, a 

small fraction of monocytes (10-30%) and dendritic cells (1-2%). PBMCs can be cultured in vitro 

and have become an essential component towards understanding in vitro immunological responses 

like cytokine production following stimulation with specific antigens (Bhattacharyya et al. 2001). 

Transcriptome profiling of PBMCs is widely used to dissect pathogenesis and genetics behind 

infection or stimulation (Fairbairn et al. 2011, Flori et al. 2011, Uddin et al. 2012). Cytokine 

production is often measured in affected tissues or PBMCs. One advantage of in vitro PBMCs in 

immunogenetic studies is that PBMCs is a primary cell culture; therefore, it has relatively close 

resemblance to in vivo system. Removal of serum and plasma from PBMCs facilitates the 

assessment of the specific immunodynamics of individual treatment or condition of interest. 

PBMCs take part in systemic defense immune reactions and changes in the other organ or tissues 

are also reflected in the PBMCs cellular and subcellular configuration and genotypic and 

phenotypic expression (Kohane and Valtchinov 2012). Several studies have used in vitro PBMCs to 

investigate the immunomodulatory role of helminth antigens in host parasite interaction (Pit et al. 

2000, Morales et al. 2002, MacDonald et al. 2008, Bahia-Oliveira et al. 2009, McNeilly et al. 2013, 

Hegewald et al. 2015). Therefore, we used primary PBMCs isolated from whole blood used for in 

vitro stimulation with selected helminth antigens.   

 

1.2.15 Mitogenic co-stimulation of PBMC cultures 

Stimulating primary proliferative response using in vitro PBMC culture model is usually difficult 

(Kennell et al. 2014). Mitogens are polyclonal lymphocyte activators which are able to stimulate 

quiescent cells, trigger a complex series of cellular responses culminating in DNA synthesis and 

cellular proliferation. In vitro PBMCs proliferation likely initiates in response of a variety of 

stimuli; e.g. lectins such as concanavalin A, Phytohaemaglutinin (PHA) or Lipopolysaccharide 

(LPS). In appropriate conditions, interactions between lymphocyte surface receptors and various 

ligands initiate a signal which travels from the plasma membrane to the cell nucleus and 



 26                                                                                                                                              Chapter 1                                                                                                                                                             

 

 

subsequently induces proliferation and differentiation of cells (Lijnen et al. 1997). The PHA is a T 

lymphocyte-specific mitogen and LPS is a macrophage- and B lymphocyte-specific mitogen 

(Schwager and Schulze 1997). It has been reported that LPS induced a synergistic increase in 

deoxyribonucleic acid (DNA) synthesis when human peripheral blood mononuclear lymphocytes 

were incubated with other mitogens like PHA, ConA and PWM (Schmidtke and Najarian 1975). In 

vitro co-stimulation of lymphocytes by respective mitogens makes the cells to produce appropriate 

cytokines to mount immune response. Combined use of LPS plus PHA will provide broader 

activation of PBMC populations and extensive cytokine signaling (Viallard et al. 1999).  
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1.3 Rationale and objectives of the dissertation 

Helminth molecules are capable of regulating and manipulating the host response to facilitate their 

survival and persistence. As discussed before, several studies indicated that the host genetic config-

uration is a potential factor in immunoregulation, but host innate immunity in case helminth infec-

tions is less investigated. Therefore, the comprehensive purpose of this dissertation was to unravel 

the immunogenetic perception of host-parasite interaction for facilitation of sustainable control of 

important helminthes, especially T. spiralis and A. suum in pigs.  

 

Hypothesis 

We hypothesize that there may be variation in the innate immune responses during A. suum and T. 

spiralis infection between German landrace and Pietrain breeds. 

 

Objectives 

The aim of the current thesis is to explore the breed variation in terms of innate immune response in 

PBMCs during helminth infection. The specific objectives of each chapters of this thesis are enlist-

ed as follows:  

 

Chapter 2: To elucidate the genetic variation and kinetics in innate immune responsiveness in naïve 

and costimulated PBMCs to tyvelose from Trichinella spiralis between German Landrace and Pie-

train pigs  

 

Chapter 3: To investigate the genetic variation and kinetics of innate cytokine mRNA expression in 

naïve and costimulated PBMCs stimulated with Ascaris suum haemoglobin (AsHb) between Ger-

man Landrace and Pietrain pigs  
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1.4 Materials and methods 

In order to achieve the objectives of this research, several materials and methods were used. The 

particular materials and methods are described in details in the different chapters in this thesis. In 

fig. 1.8, a brief summary of the workflow is shown. The principle of the main methods and their 

applications will be briefly described in this section. 

  

 

 

Fig. 1.8 Schematic diagram of the experimental design: PBMCs from four female weaned 5-6 weeks old piglets of each 

LR and Pi breeds were isolated from anticoagulated whole blood, viable cells were suspended in RPMI-1640 medium. 

Separate treatments were made to PBMCs using no treatment as naïve control, cells with AsHb, cells with 

AsHb+LPS+PHA, cells with LPS+PHA and cells with TY+LPS+PHA and cells with TY only. Dose dependent cell 

viability and phagocytosis was done only with PBMCs of LR pigs for convenience of the study. Time-course based cell 

viability was also done. mRNA samples were generated after appropriate treatment. RT-PCR was performed for select-

ed genes, IL-10, IL-6, IL-2, IFN-γ and TGF-β1. 
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1.4.1 Ethical considerations 

The experiment was conducted according to the institutional guidelines and animal husbandry 

regulations of Germany (ZDS 2006). The animal husbandry was approved by the Veterinary and 

Food Inspection Office, Siegburg, Germany (ref. 39600305-547/15) and permission for blood 

collection from North Rhein-Westphalian State Agency for Nature, Environment and Consumer 

Protection (ref. 84-02, 05.40.14.027).  

 

1.4.2 Animal selection 

 In order to estimate the optimum number of study animals (4 animals per breed), the resource 

equation method (Festing and Altman, 2002, Festing 2006) was considered. According to this 

method, a value “E” is measured, which indicates the degree of freedom of analysis of variance 

(ANOVA). Any sample size, which keeps E between 10 and 20 should be considered as an adequate 

(Charan and Kantharia 2013). Purebred piglets from LR and Pi at the age of 5-6 wk old were 

chosen for whole blood collection. Study piglets were littermates for every case. They were 

immunized with mycoplasma vaccination at day 7 of age and weaned at 28 days of age and 

maintained with standard feeding regime.  

 

1.4.3 PBMC isolation using density gradient centrifugation 

Peripheral blood is the primary source of lymphoid cells for investigatng the mammalian immune 

system. Its use is facilitated by Ficoll-Hypaque density gradient centrifugation which is a simple, 

cheap and rapid method of purifying peripheral blood mononuclear cells (PBMCs) that exploits the 

density differences between mononuclear cells and other elements found in the blood sample (Fuss 

et al. 2009, Jaatinen and Laine et al. 2007). Ficoll is a high molecular weight sucrose polymer (spe-

cific gravity, 1.076 to 1.078), whereas Hypaque is a dense iodinated organic compound. Ficoll plays 

role in both viscosity to the solution and in rouleaux formation of the RBCs (Fuss et al. 2009). 

Hypaque enhances only the viscosity of the solution. Additional purification methods can be em-

ployed to eliminate major contaminants like immature RBCs by using RBC lysis buffer (Fuss et al. 

2009).  

 

In our experiment, anticoagulated whole blood was at first diluted with equal amount of 1xPBS and 

carefully layered over 10 ml of Ficoll in a 50 ml tube and centrifuged at slow speed at 1250 g for 30 

min. After centrifugation, buffy coat layer was carefully aspirated and treated with 2-3 ml of 1x 

RBC lysis buffer for removal of RBCs. After 3-5 min, 1x PBS was added to stop the action of lysis 

buffer, centrifuged at 1000 g for 8 min. The supernatant was discarded and the cell pellet went 
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through the process of qualitative and quantitative examinations using 0.4% trypan blue staining 

and haemocytometer. Cells having viability more than 95% were used in the experiment.   

Four biological replicates were used for all cases. Blood samples collected from four individual 

pigs were processed separately for in vitro studies. For cell viability and phagocytosis, two tech-

nical replicates were used for each treatment; for mRNA samples, no technical replicate was used. 

About 10-20 ml whole blood was subjected for PBMCs isolation for each of three assays like cell 

viability, phagocytosis and mRNA expression study. The freshly isolated primary cells of PBMCs 

were used for each assays. To minimize individual variation, age, sex and breed matched condition 

were considered and under in vitro condition, same concentration of cells was challenged with same 

treatment. 

 

1.4.4 Cell viability assay using CCK-8 kit 

Cell Counting Kit-8 (CCK-8) offers sensitive colorimetric determination of viable cells. It 

incorporates highly water soluble tetrazolium (WST) salt, WST-8 which is reduced by 

dehydrogenase activities in cells to give a yellow-color formazan dye. This colourful dye is soluble 

in the tissue culture media. The amount of the formazan dye generated by the activities of 

dehydrogenase in cells is directly proportional to the number of living cells. The handling time of 

CCK-8 is short as no pre-mixing is required. To investigate possible influence of the helminth 

antigenic priming on cell viability, CCK-8 assays (cat# CK04-10 Dojindo Molecular Technologies 

Inc., München, Germany) were performed according to manufacturer’s instructions. Viability 

assessment implied cell culture in 96 well plates (at a density of 10
4
 cells per 100 μl in each well) 

and the viability was tested for three different dose of AsHb (2.5, 5 and 10 µg/ml) and four different 

concentrations of TY (10, 20, 30 and 40 µg/ml) with and without costimulation. After 24, 48 and 72 

h of incubation, 10 µl reconstituted CCK-8 mixture were added to each well and incubated for 

further 4 h. Then the optical density of samples was measured using a microplate reader (Synergy
TM

 

H1 Multi-mode Reader, BioTek Germany, Bad Friedrichshall, Germany) at a wavelength of 450 

nm. Thus the cell viability was also measured in a dose dependent and time dependent manner. The 

cell viability was calculated as percentage according to the manufacturer’s formula. 

 

1.4.5 Phagocytosis assay 

Monocytes were isolated from PBMCs by adherence using the modified protocol described byWahl 

et al. (2001). Adhered monocyte layer from PBMC suspension were isolated after 3-4 h incubation, 

counted, resuspended in Roswell Park Memorial Institute medium (RPMI-1640) and seeded in a 

96-well fluorescent plate. Experimental wells were treated with AsHb or Tyvelose or 1x PBS and 

incubated for 24 h. The antigen pulsed monocytes were then tested for their ability to ingest fluo-
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rescein isothiocyanate labeled E.coli using Vybrant phagocytosis assay kit (Molecular Probes, Ore-

gon, USA) according to the manufacturer’s instruction. The fluorescence was determined using a 

microplate fluorescence reader (Centro LB 960 Microplate Luminometer, Berthold Technologies 

GmbH) using 480 nm for excitation and 520 nm for emission. The effect of phagocytosis was cal-

culated according to the manufacturer’s formula. We optimized the measurement resulting exclu-

sively from internalized particle by quenching out of trypan blue from the well. To minimize the 

variation from the differences in sample viability, concentrations were expressed with respect to the 

number of untreated cells of corresponding group. The phagocytic capacity is represented as per-

centage, which is indicative of the total number of bacteria each cell had engulfed. 

 

1.4.6 qRT-PCR 

The qRT-PCR has widest dynamic range, the lowest quantification limits and the least biased results 

and the cheapest in comparison to high throughput technique like microarray and RNA-seq. qRT-

PCR is highly sensitive and the gold standard for expression analysis (Costa et al. 2013). It is con-

sidered as the most sensitive technique for the detection and quantification of steady state mRNA 

levels. This technique is used to amplify and simultaneously quantify a specific region of the DNA 

molecule. It has additional special feature of detection of the amplified template during the reaction 

process in real time, whereas conventional PCR detects the product of reaction at its end. The quan-

tity of interested molecules can be either an absolute copy number or a relative amount when nor-

malized to reference genes and fluorescent molecules are used for the chemical reaction which al-

lows for quantification of amplicon.  

 

The SyBR Green provides the simplest method for the detection and quantification of the PCR 

products in real time reactions with high sensitivity (Acevedo et al. 2013). The SYBR Green binds 

to the double stranded DNA and emits light upon excitation. As the reaction proceeds and the PCR 

products accumulate, the fluorescence amplification starts.  

For in vitro studies of this thesis, mRNA samples were isolated using miRNeasy mini kit (Qiagen, 

CA., cat# 2170040). On-column DNase treatment was done with RNase free DNase set (Qiagen, 

CA. cat# 79254). Quantity and quality was checked by nanodrop and gel visualization, respectively. 

First strand cDNA Synthesis Kit (cat#1612, Thermo Fisher Scientific, Germany) was used for 

cDNA sample preparation. Primers were designed using Primer3, an open source software. 10-fold 

serial dilution of cDNA were prepared and used as template for the generation of the standard 

curve. The qRT-PCR reaction was set up using 2.0 μl of cDNA template, 7.0 μl of deionized RNase 

free water, 0.5 µM of upstream and downstream primers, and 10 μl iTaq™ Universal SYBR® 
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Green Supermix (Bio-Rad Laboratories GmbH, Germany) in a total reaction volume of 20 μl and 

were amplified by the StepOnePlus™ Real-Time PCR System (Applied Biosystems®, Darmstadt, 

Germany). The thermal cycling conditions were 95 °C for 3 min, 95 °C for 15 sec, 6 °C for 45 sec 

(40 cycles); 95 °C for 15 sec, 62 °C for 1 min, 95 °C for 15 sec. All reactions were run in single to 

get the expression value. Gene-specific expression was measured as relative to the geometric mean 

of the expression of two reference genes, beta-actin (ACTB) and peptidylpropyl isomerase A 

(PPIA). The delta Ct (∆Ct) [∆Ct = Cttarget – Ctreference genes] values were calculated as the difference 

between target gene and reference genes and expression was calculated as 2
(-∆∆Ct)

 (Schmittgen and 

Livak 2008).  

.  

Peptidylpropyl isomerase A (PPIA) and beta-actin (ACTB) genes were used as reference genes for 

calculating relative expression of the genes of interest. Melting curve showing single peak in the 

samples as well as absence amplification in NTC indicated the quality of qPCR expression. The 

mean CT values of the both reference genes were in a small range in samples of different treatment 

and time points tested indicating their stable expression irrespective of treatments. Moreover, PPIA 

has been previously reported a stably expressed reference gene in the porcine PBMCs (Cinar et al. 

2013) and ACTB has also been found to be stably expressed in porcine tissue (Nygard et al. 2007).  

 

1.4.7 Statistical analysis 

Cell viability and phagocytosis assay related data were analyzed with GraphPad Prism (Version 5.3, 

La Jolla, California, USA) using One-way ANOVA followed by Tukey test and values were 

presented as means ± SEM. qRT-PCR data was analyzed using the Proc GLM procedures of SAS 

software (Version 9.4, SAS Institute Inc., Cary, NC, USA).  Data is expressed as least square means 

± standard error of mean. A significance level of p < 0.05 was used. 

 

1.5 Results 

Detailed results are presented in chapter 2 and 3 of this dissertation. Only the major findings are 

highlighted here. 

 

1.5.1 Helminth antigen induced viability and proliferation of PBMCs   

The influence of two helminth antigens, synthetic tyvelose and Ascaris suum haemoglobin as 

representative immunomodulatory antigen of Trichinella spiralis and Ascaris suum, respectively 

were assessed on PBMCs of LR and Pi piglets. For both, time-course and dose-dependent assay 

was conducted only in PBMCs from LR origin. TY at four different doses (10, 20, 30, 40 µg/ml) 
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were added for 24, 48 and 72 h of PBMCs culture of LR origin. There was a trend of 

lymphoproliferation, but statistically no significant variation was noticed from the different doses in 

both naïve and costimulated PBMCs. TY treated PBMCs at 24 h had a relatively higher viability 

percentage compared to 48 and 72 h in both with or without mitogen activated PBMCs.  TY at a 

concentration of 10 +µg/ml had relatively least alteration in the viability or apoptosis compared to 

control. Therefore, TY at this dose was further applied for breed comparison with cell viability, 

phagocytosis, mRNA and protein expression studies. Breed factors were evaluated in the relative 

cell viability percentage resulting from the same dose mentioned before. Significant variation 

(p<0.05) was evident only at 48 h post exposure to TY plus costimulation and the viability was 

higher in TY treated and costimulated PBMCs of Pi pigs. 

 

In case of AsHb, three different concentrations of AsHb (2.5, 5 and 10 µg/ml) were used and three 

time points, 24, 48 and 72 h were considered for this PBMCs obtained from LR piglets. AsHb had 

shown significant level of lympho-depletion in a dose and time dependent manner in naïve PBMCs 

culture compared to untreated control for each respective time point. The higher the concentration, 

the lower cell viability was observed. The relative viability percentage did not vary significantly 

among the different duration of exposure. In contrary to this, the lymphosuppressive or apoptotic 

effect was found not significant in costimulated PBMCs when comparison was made with PBMCs 

receiving only LPS (100 ng/ml) plus PHA (10 µl/ml). AsHb, at a dose of 2.5 µg/ml, resulted in the 

least changes on the cell death or viability of PBMCs. Therefore, we used this dose for subsequent 

experimental studies with AsHb. Breed comparison was made between the relative viability 

percentage of PBMCs of LR and Pi piglets receiving AsHb at this dose. Although the relative 

viability was higher in PBMCs from Pi, but the variation was not statistically significant. Rather, in 

the co-stimulated group, significant (p<0.05) variation was achieved only at 72 h post exposure 

where the viability was higher in LR compared to the PBMCs viability of Pi origin. 

 

1.5.2 Helminth antigen induced phagocytosis of porcine PBMCs   

As genetic effects are more evident in phagocytosis (Soudi et al. 2013) and as phagocytosis is a 

vital indicator of innate immune response, we evaluated dose-dependent (in monocytes from 

PBMCs of LR pigs) as well as the breed dependent (LR vs Pi) phagocytosis. Effect of four different 

concentration of TY was checked on the peripheral blood derived monocytes of LR pigs in terms of 

phagocytosis. Although there was overall high increase in phagocytic rate, there was high variation 

among the replicates. Therefore, the effect of treatment was not statistically significant at none of 
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those doses used. When the comparison of relative phagocytic rate between blood monocytes of LR 

and Pi was performed, significantly higher (0.0001) phagocytic rate was found in favor of LR.    

 

In a similar fashion, among the three concentrations of AsHb, 2.5, 5 and 10 µg/ml used in this assay 

using blood monocytes of LR piglets, only AsHb (5 µg/ml) was found to induce significant up rise 

in phagocytosis compared to the untreated control group. When the effect of breed was considered 

at a treatment dose of AsHb (2.5 µg/ml), significantly higher phagocytic potential was noticed in 

LR PBMC derived monocytes compared to that of Pi. It should be kept in mind that the phagocytic 

effect was not significant at this dose in LR between treated and control group as indicated before.  

   

1.5.3 Helminth antigen induced cytokine expression dynamics in porcine PBMCs 

Cytokine measurement is one of the most vital indicators of cellular immune responsiveness in in-

vitro models. In order to determine the trend and kinetics of immunoregulatory cytokines in the 

helminth antigen exposed PBMCs culture, we analyzed the mRNA expression of five selected 

innate immune genes, IL-10, TGF-β1, IL-6, IL-2 and IFN-γ for both AsHb and TY treated PBMCs. 

 

Treatment with TY in naïve PBMCs resulted in significantly elevated level of IL-10 and later 

declined in LR, whereas in Pi, the onset of IL-10 upregulation was evident after 24h post exposure. 

IL-6 mRNA expression also followed the pattern similar to IL-10. Significant effect of breed and 

treatment was found at 48 h time point for IL-10 and IL-6. The expression level of IL-2 mRNA was 

significantly elevated only in PBMCs of LR after 24 h post-exposure to treatment. On the contrary, 

TY treatment had no significant effect on PBMCs of Pi piglets in this experimental set up. The Th1 

cytokine, IFN-γ was only elevated at significant level, only at 72 h time point. At this stage, the 

effect of treatment was clearly evident while comparing treated vs naïve PBMCs. The expression 

level of TGF-β1 was inconsistent across treatment, time point and breed; this might be because of 

the contribution of other non-immune cells in the PBMCs culture, i.e., platelets. 

Similar to the kinetics induced by TY, AsHb treatment enhanced the expression level of IL-10 and 

IL-6 in both LR and Pi; but the onset of upregulation was delayed in Pi until 48 h of exposure. IL-

10 expression was progressively and significantly upregulated across the experimental duration and 

significant effect of breed and treatment was noticed at 72 h post exposure. The expression kinetics 

were quite similar for IL-2 and IFN-γ in both LR and Pi pigs. The effect of treatment was 

significantly evident for IL-2 at 48 h of post-cultivation. In case of TGF-β1, there was an apparent 

downregulation until 48 h in both breeds followed by a trend towards upregulation later. This 

pattern of TGF-β1 is in consistency with the IL-2 which had upregulation at 24 and 48 h followed 

by downregulation at 72 h post treatment.   
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1.5.4 Influence of mitogenic co-stimulation on helminth antigens induced cytokine expression 

Mitogenic stimulation of in vitro immune cell cultures is often needed to ensure the highest 

possibility of cellular activation and to induce almost physiological conditions. We also investigated 

the effect of helminth antigens on PBMCs post-stimulated with combined mitogenic stimulus, LPS 

plus PHA and analyzed the expression of those immune cytokines mentioned before for naïve 

PBMCs.  

 

In our study, treatment with TY at 10 µg/ml did not make any significant change for IL-10 

expression in co-stimulated PBMCs. But the effect of breed was evident in a time-course manner. 

The mRNA level of IL-6 was elevated after 24 h of culture in PBMCs of LR pigs and the breed 

effect was evident at 48 h post cultivation. TY mediated suppression of IL-2 was significantly 

(p<0.05) expressed at 24 h time point only. The pattern of IFN-γ mRNA expression appeared 

similar in both breeds and the effect of treatment was significant (p<0.01) in LR at 48 h of post 

culture. The influence of TY on TGF-β1 mRNA level in the co-stimulated PBMCs irrespective of 

breed and duration of exposure was rather complex and inconclusive to some extent.   

 

In our findings, the effect of AsHb on mitogen co-stimulated PBMCs had resulted in progressive 

elevation of IL-10 and IL-6 in cells of LR origin. The effect of treatment was statistically significant 

only at 72 h post-treatment for both of these cytokines. The response in the Pi group was a dramatic 

rise in IL-6 at 48 h post treatment. The kinetics of IL-2 expression was similar in both breeds 

exclusively with the potential role of breed and treatment at 24 h time points. Another Th1 cytokine, 

IFN-γ did not show any specific trend between breeds. Similar to the effect of TY, TGF-β1 

expression did not follow any specific pattern with respect to treatment, duration of exposure or 

breed. 
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2.1 Abstract 

Porcine breed predisposition for Trichinella spiralis infection is not known yet. The current study 

aims to investigate the breed difference in the innate immune response to tyvelose (TY), the 

antigenic part of Trichinella spiralis muscle larvae, in in vitro peripheral blood mononuclear cells 

(PBMCs) between German Landrace (LR) and Pietrain (Pi). PBMCs treated with synthetic TY with 

and without lipopolysaccharide plus phytohaemagglutinin costimulation for 24, 48 and 72 h were 

assessed for cell viability and mRNA level for IL-10, IL-6, IL-2, IFN-γ and TGF-β1 by qRT-PCR. 

PBMCs derived monocytes were tested for TY induced phagocytosis effect. LR appeared to 

respond earlier than Pi as evident from relatively higher viability, phagocytosis effect and early 

upregulation of IL-10, IL-6, IL-2 in the antigen treated PBMCs culture. This indicates the relatively 

better innate immunocompetance of LR compared to Pi pigs when challenged with TY. 

Key words: Trichinella spiralis, tyvelose, innate immunity, cytokine, PBMCs, pig, breed. 

 

 

Highlights: 

 Tyvelose induced innate response in peripheral blood mononuclear cells varied between 

German Landrace and Pietrain. 

 Phagocytic efficiency is significantly higher in tyvelose treated blood monocytes of German 

Landrace compared to Pietrain. 

 Immune response in German Landrace pigs is relatively fast with elevation of both pro-

inflammatory IL-6, IL-2 and anti-inflammatory IL-10 cytokines in relation to Pietrain.  

 German Landrace was more immunocompetant than Pi pigs in terms of innate immunity. 
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2.2 Introduction 

Trichinellosis, the infection caused by Trichinella spiralis, is a food-borne zoonotic disease 

involving a broad host range (Torgerson 2013), but pigs are affected as the major domestic source. 

Parasites of the genus Trichinella are unique intracellular helminth pathogens. The Trichinella spp. 

completed their life cycle in two niches, the multicellular habitat in intestinal epithelium and the 

intracellular location in the skeletal muscle fibers (Mitreva et al. 2011). The life cycle of T. spiralis 

is direct and can be completed within a single host. It comprises of three developmental stages- 

adult worm, new borne larva (NBL) and muscle larva (ML) (Gottstein et al. 2009). Trichinellosis of 

pig and other mammals eventuate from the consumption of the infective ML in contaminated food. 

After ingestion, the ML is released in the stomach and revived in the small intestine. These small 

larvae invade the epithelial layer where they mature, copulate and deliver the NBLs. The NBLs 

migrate through the lymphatic and blood vessels, invade highly oxygenated striated muscle cells 

and develop into the ML (Wakelin and Goyal 1996). The excretory-secretory (ES) products of ML 

are responsible for immunomodulation through targeting the host macrophages and thereby nurse 

cell formation in the skeletal muscle (Ashour 2013, Bai et al. 2016). The in vitro findings offer 

strong evidence that ML-ES products have the ability to affect macrophage function (Bai et al. 

2012). Among the ES antigens of ML, tyvelose (TY) is one of most immunodominant glycoproteins 

that has been found to induce distinct immune responses in vitro (Wisnewski et al. 1993). Since ES-

molecules of helminth have been shown to mimic the immune response as induced by helminth 

infection, the focus has turned to elucidate the mechanisms of innate immunity to T.  spiralis 

derived TY using in vitro porcine PBMCs model.  

 

The PBMCs are a subset of white blood cells, dominated with T lymphocytes followed by B 

lymphocytes, and a small fraction of monocytes and dendritic cells. The lymphoproliferative 

response following antigenic challenge is known to be correlated with the progression of cell-

mediated immunity (Descotes 2006). The porcine PBMCs-transcriptome is informative to monitor 

disease susceptibility, to characterize response to immune stimulation or to refine the 

characterization of certain immune traits (Flori et al. 2011, Uddin et al. 2012). Research showed 

that the immune responses to a certain pathogen occurring in the PBMCs reflect those inflammatory 

changes at the site of disease (Meade et al. 2008). The mitogenic co-stimulation of PBMCs culture 

along with target antigenic challenge are likely beneficial for evaluating the cellular immunity 

(Norian et al. 2015).   
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Cellular immunity constitutes the most effective means to restrict parasite persistence and 

proliferation (Eger et al. 2003). The cell proliferation, phagocytosis and cytokine production by 

immune cells are the key effectors of innate immunity that provide primary step of defense against 

invading pathogens (Djaldetti and Bessler 2014). The level of regulatory cytokines and Th2 

cytokine mRNA expression is crucial for the establishment and outcome of T. spiralis infection 

(Vasilev et al. 2009). The expression of interleukin-10 (IL-10) and transforming growth factor beta 

(TGF-β) are mentioned to be significantly linked with hyporesponsiveness and susceptibility to 

parasitic diseases (McSorley and Maizels 2012). It has been reported that IL-10 is the key regulator 

of protective immune response against trichinellosis in mice (Helmby and Grencis 2003). The TGF-

β performs a vital role in regulating local inflammation as well as balancing the T cell response in T. 

spiralis infection (Lei Fang et al. 2014). The expression of Th-17 related genes like IL-6 is also 

accompanied with both susceptibility and resistance to gastrointestinal nematodes in sheep (McRae 

et al. 2015). A previous work showed that ML derived protein, rTs-Hsp70 (recombinant T. spiralis 

heat shock protein 70) activated dendritic cells with elevated level mRNA of IL-6, IFN-γ, IL-2 and 

IL-4 in CD4
+
 T cells of mice (Fang et al. 2014). Dampening of Th1 cytokines (IFN-γ, TNF-α, IL-

12) usually leads to the development of Treg and Th2 dominance and survival as well as persistence 

of parasitic infection. 

 

It has been reported that immune response traits are differentially affected by host genetics and en-

vironmental factors (Mangino et al. 2017). The status of innate immunity is likely indicative of the 

host susceptibility/resistance to pathogens (Carvalho et al. 2010, Jiang et al. 2010). Genetic compo-

nents associated with host susceptibility to trichinellosis infections have been reported in pigs 

(Lunney and Murrell 1988). Breed specific variation offers opportunities for selective animal breed-

ing for disease resistance or tolerance (Kapetanovic et al. 2013). Host genotype-associated variation 

in the susceptibility to T. spiralis has been observed in a rat model (Vasilev et al. 2009). A signifi-

cant host genotype-dose interaction has been found during a primary infection with T. spiralis in 

five genetically diverse mouse lines (Vasconi et al. 2015). Although domestic pigs are a major res-

ervoir of this parasite, information on the host genetic effect, especially porcine breed predisposi-

tion on the innate responsiveness is yet to be elucidated. German Landrace (LR) and Pietrain (Pi) 

are two important swine breeds for commercial pork production. Healthy LR and Pi pigs differ con-

siderably in terms of growth rate, nutrient utilization and metabolic trait (Ponsuksili et al. 2007). 

Substantial genetic variations in innate immune traits have been reported among healthy pigs (Flori 

et al. 2011). The aim of the recent work was to investigate the mRNA expression of selected innate 

immune cytokines in response to in vitro TY stimulation to the PBMCs obtained from healthy 

purebred LR and Pi pigs.  
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2.3 Materials and Methods 

Ethics statement 

The experiment was performed according to the institutional guidelines and animal husbandry regu-

lations of Germany (ZDS 2006). The animal husbandry was approved by the Veterinary and Food 

Inspection Office, Siegburg, Germany (ref. 39600305-547/15) and permission for blood collection 

from North Rhein-Westphalian State Agency for Nature, Environment and Consumer Protection 

(ref. 84-02, 05.40.14.027). 

 

Study animals and blood sampling 

The experiment comprised four clinically healthy weaned female piglets of 5-6 weeks old from 

each LR and Pi purebred. Animal numbers were estimated considering the resource equation 

method described by Festing and Altman (2002) and Festing (2006). All animals were obtained 

from the Teaching and Research Station of Frankenforst, University of Bonn, Germany. Upon birth, 

piglets were selected and ear tagged and housed with standard feeding and housing condition; 

animals with any clinical illness at sampling time were excluded. The piglets were vaccinated for 

mycoplasmosis at day 7 according to the routine farm vaccination program and weaned at day 28 of 

age.  

 

Antigen and mitogen preparation 

Commercially available synthetic antigen, Tyvelose (CAS 5658-12-8, Santa Cruz Biotechnology) 

was used as a representative antigen of T. spiralis. As mitogen, lipopolysaccharide (LPS, L2880, 

Sigma Aldrich) and phytohaemagglutinin (PHA-M, 10576015, ThermoFisher Scientific, Germany) 

were used for co-stimulation of PBMCs culture. 

 

Isolation of peripheral blood mononuclear cells  

PBMCs from whole blood were isolated by using Ficoll-Paque (Histopaque-1077; Sigma-Aldrich, 

Munich, Germany) density gradient centrifugation as describe earlier (Islam et al. 2016). In short, 

anticoagulated whole blood were diluted at the ratio of 1:1 with 1x phosphate buffered saline (PBS) 

and carefully layered over half volume of Histopaque solution previously kept in a 50 ml conical 

tube. Then the tubes were centrifuged at 1250 g for 30 minutes (min) slowly at room temperature. 

After centrifugation, the PBMCs layer was carefully aspirated and treated with red blood cell lysis 

buffer to remove erythrocytes. Finally, PBMCs was washed two times with PBS and one time with 

Roswell Park Memorial Institute 1640 medium (RPMI-1640, Sigma-Aldrich, Munich, Germany) 

and harvested as pellet. The harvested PBMCs were subjected for cell counting using a 
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haemocytometer immediately after isolation using 0.4% trypan blue stain. The percentage of viable 

PBMCs at >95% were used for in vitro stimulation. Cell pellets were suspended with RPMI-1640 

medium supplemented with heat inactivated 10% fetal bovine serum (FBS) (Invitrogen, Germany) 

and 1% antibiotic (Penicillin-streptomycin, cat.15140-122, Life Technologies GmbH, Darmstadt, 

Germany) and 1% antimycotics (Fungizone®, cat. 15290-026, Life Technologies GmbH, 

Darmstadt, Germany). 

 

Cell proliferation and viability test for PBMCs 

After initial screening, the rate of cell proliferation and viability upon antigenic stimulation were 

investigated using CCK-8 cell proliferation kit (cat.CK04-10, Dojindo Molecular Technologies Inc., 

EU GmbH) following the manufacturer’s instruction. This assay is based on the colorometric 

evaluation of the amount of formazan dye produced by the dehydrogenase reaction of viable cells 

by reducing WST-8 salt in the cell culture. The proportion of this yellow colour formazan dye is 

positively correlated to the number of living cells.  In brief, PBMCs were cultured in 96-well plate 

at a density of 1*10
4 

cells/well in 100 µl of RPMI-1640 media with TY treatment with a dose of 10, 

20, 30 and 40 µg/ml and an untreated control with equal volume of PBS for 30 minutes followed by 

addition of LPS (100 ng/ml) and PHA (10 µl/ml) as mitogenic stimulation and incubated at 37 °C 

under 5% CO2 and 98% humidity. Two technical replicates were used for each case. After 24, 48 

and 72 h of incubation, 10 µL reconstituted CCK-8 mixture were added to each well and incubated 

for further 4 h. Then the absorbance of samples was measured using a microplate reader (Thermo 

Max, Germany) at a wavelength of 450 nm. Thus the cell viability was also measured in a dose 

dependent and time dependent manner. The cell viability was calculated as percentage according to 

the manufacturer’s formula. 

 

Culture and stimulation of PBMCs 

The PBMCs were cultured separately for each four animal at a 1*10
6 

cells/well in 6-well tissue 

culture plates in the presence of TY (10 µg/ml). Thirty minutes later, LPS at 100 ng/ml and PHA at 

10 µl/ml dose were added to the assigned culture accordingly, for immune stimulation. The plates 

were maintained for 24, 48 and 72 h at 37 °C under 5% CO2 before collection of cells. Control 

samples were kept untreated and only combined doses of LPS and PHA were used for respective 

costimulated groups. 

 

Phagocytosis assay for PBMC derived monocytes 

In vitro phagocytosis assay was performed with Vybrant Phagocytosis Assay Kit (Cat. V-6694, 

Molecular Probes Inc.) according to manufacturer’s instruction as previously described by (Islam et 



Tyvelose induced innate immunity in PBMCs                                                                                                                   59 

 

 

 

al. 2012). The purpose of this assay is to measure the ability of antigen primed monocytes to ingest 

fluorescein isothiocyante labeled E. coli. Monocytes were isolated from PBMCs by adherence 

method using the modified protocol described by Wahl and his colleague (Wahl and Smith 2001). 

Determinations were performed in all wells comprising the experimental (with TY treatment), 

without any treatment as positive control and only media as negative controls. After 2 h of 

incubation, solutions were removed from all microplate wells by vacuum aspiration. Fluoresce-

labeled bioparticles were added to the wells and phagocytic uptake was allowed to proceed for 2 h 

in at 37 °C humidified incubator with 5% CO2. Subsequently, the BioParticles suspension was 

removed and 100 µl of trypan blue suspension was added for 1 min at room temperature. The 

excess trypan blue was removed and the samples were measured in the fluorescence microplate 

reader (Thermo Electron Co., USA) using 480 nm for excitation and 520 nm for emission. The net 

phagocytosis of the cells was calculated following the manufacturer’s formula. To ensure that the 

fluorescence measured resulted exclusively from ingested particles; any non-internalized 

bioparticles was quenched by the addition of trypan blue, as supplied by the manufacturer. To 

eliminate variations due to differences in viability, concentrations were expressed with respect to 

the number of untreated cells. 

 

Isolation and quality control of total RNA 

mRNA samples from four individual purebred animals and for three time points (24, 48 and 72 h) 

and four treatment groups (naïve control, cells with only TY, cells with TY+LPS+PHA and cells 

with LPS+PHA) were processed for RNA isolation. Total RNA enriched with microRNAs was 

extracted from cultured PBMCs generated by using the miRNeasy mini kit (Qiagen, CA., Cat# 

2170040) according to the manufacturer’s protocol. The total RNA was quantified by 

spectrophotometry (NanoDrop -8000 UV-vis Spectrophotometers (Thermo Scientific, Wilmington, 

USA). To prevent DNA contamination, on-column treatment was done with RNase-Free DNase Set 

(Qiagen, CA., Cat# 79254). The fragments of 18s and 28s ribosomal band of total RNA were 

visualized by agarose gel electrophoresis. Further DNA contamination was checked by using PCR 

amplification of reference genes (ACTB) followed by visualization in 2% agarose gel. 

 

Quantitative Real Time PCR (qRT-PCR) 

The selected genes quantified by qRT-PCR are presented in Table 1. Primers were designed based 

on an open source primer designing software Primer3. First Strand cDNA Synthesis Kit (P/N 

K1612, Thermo Scientific, Schwerte, Germany) was used for reverse transcription with oligo (dT) 

primer. The qRT-PCR reaction was set up using 2 μl of cDNA template, 7 μl of deionized RNase 
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free water, 0.5 μM of upstream and downstream primers, and 10 μl iTaq™ Universal SYBR
®
 Green 

Supermix (Bio-Rad Laboratories GmbH, Germany) in a total reaction volume of 20 μl and 

amplified by the StepOnePlus™ Real-Time PCR System (Applied Biosystems
®
, Darmstadt, 

Germany). The thermal cycling conditions were 95 °C for 3 min, 95 °C for 15 sec, 6 °C for 45 sec 

(40 cycles); 95 °C for 15 sec, 62 °C for 1 min, 95 °C for 15 sec. 

 

Table 2.1 The sets of primers and PCR conditions used for evaluation of cytokine mRNA levels, including product 

length 

Gene symbol Accession no. Primer sequences (5` -3`) Amplicon 

size (bp) 

T ann   (
°
C) 

ACTB XM-003124280.4 F:AAGGACCTCTACGCCAACAC 

R:CTTGCTGATCCACATCTGCT 

207 60 

PPIA NM_214353.1 F:CACAAACGGTTCCCAGTTTT 

R:TGTCCACAGTCAGCAATGGT 

171 58 

IL-10 NM-214041.1 F:TCCGACTCAACGAAGAAGGC 

R:AACTCTTCACTGGGCCGAAG 

179 59 

IL-6 NM_214399.1 F:GGCAGAAAACAACCTGAACC 

R:GTGGTGGCTTTGTCTGGATT 

243 58 

IL-2 NM_213861.1 F:CTAACCCTTGCACTCATGGCA 

R:AATTCTGTAGCCTGCTTGGGC 

185 81 

TGF-β1 NM_214015.2 F:CGGAGTGGCTGTCCTTTGAT 

R:GGTTCATGCCGTGAATGGTG 

186 60 

IFN-γ NM_213948 F:AGCTCCCAGAAACTGAACGA 
R:AGGGTTCAAAGCATGAATGG 

225 60 

Tann: Annealing temperature, F: Forward, R: Reverse, bp: Base pair 

 

Statistical analyses 

Data obtained from cell viability, phagocytosis and qRT-PCR expression were undertaken for 

analysis. For each cases applicable (e.g. cell viability and mRNA expression), the main effects in 

näive PBMCs and in mitogen activated PBMCs were considered and analysed separately.  

Data of the optical density value (OD value) obtained from cell viability assay was first converted 

to get relative percentage of cell viability according to manufacturers’ instruction in excel as per the 

formula below:  

Cell viability (%) = {(Absorbance of experimental well - Absorbance of negative control well) / 

(Absorbance of positive control well - Absorbance of negative control well)} 

The relative viability data were analysed were shifted to Graphpad Prism v.5.3 (La Jolla, California, 

USA) and analysed. Dose-dependent effects were analysed using One-way Anova to compare 

between control vs treated groups. Pairwise comparison was made to see the breed effect at the 

same time point using One-way Anova followed by Tukey’s multiple comparison test. 
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The OD values obtained from the phagocytosis assay was first converted to get relative percentage 

of phagocytosis effect according to manufacturers’ instruction in excel according to the formula 

below:  

% Phagocytosis effect = (Net Experimental reading/Net positive reading) x 100% 

where 

Net Positive Reading = Average fluorescent intensity of positive control - Average fluorescent 

intensity of negative control 

Net Experimental Reading = Average fluorescent intensity of experimental well - Average 

fluorescent intensity of negative control 

The relative percentage data were imported to GraphPad Prism and dose-dependent effect was 

analysed using One-way Anova and breed comparison for single dose and at single time point was 

made using t-test. The values were expressed as mean ± standard error for both cell viability and 

phagocytosis assay. 

RT-PCR data from PBMC samples were analyzed using the general linear models (GLM) procedure 

of SAS software (Version 9.4, SAS Institute Inc., Cary, NC, USA). In one set, comparison was 

made between untreated control vs. TY treated PBMCs. In another set of data, comparison was 

made between LPS+PHA treated one vs. TY+LPS+PHA treated cells. Gene-specific expression was 

measured as relation to the geometric mean of the expression of two reference genes (PPIA and 

ACTB). The delta Ct (∆Ct) [∆Ct = Cttarget – Ctreference genes] values were calculated as the difference 

between target gene and reference genes and expression was calculated as 2
(-∆∆Ct) 

(Schmittgen and 

Livak 2008). Further, the expression value was examined for normal distribution using Proc 

Univariate, considering the Shapiro-Wilks test for normality and a normal probability plot followed 

by elimination of extreme values as outliers. Outliers were identified when these values deviating 

more than three standard deviations from the raw mean. Data from four biological replicates for 

three timepoints were analyzed to test for main effects of breed (LR and Pi), treatment (TY), 

duration of treatment (24, 48 and 72 h), and for interactions among these factors. All data were 

subjected to analysis to see the effect of TY treatment, breed (LR and Pi), time (24, 48 and 72 h) 

and interaction among these factors. For significance test, Anova type III and pairwise comparison 

was made using linear contrast. Group means were presented as least square mean (LSM) ± 

Standard error of mean (SEM). The values were tested by Dunett and Tukey-Kramer test. A 

significance level of p<0.05 was used.  
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2.4 Results 

Cell viability of PBMCs following dose dependent stimulation of TY 

We determined the influence of antigenic dose on cell viability using four individual animals from 

LR breed. For the relatively infrequent availability of Pi pigs, dose dependent effects were not 

tested in Pi pigs. Cell viability was higher at 24 h post exposure compared to 48 and 72 h of culture 

(Fig. 2.1A and B). Dose dependent increase and time dependent decrease in viability in näive 

PBMCs was observed, but this trend appeared statistically not significant. No significant variation 

was observed among the four different doses of TY used neither in cell death nor in cell viability in 

culture with (Fig. 2.1A) and without co-stimulation (Fig. 2.1B). So it can be assumed that TY at a 

dose 10 to 40 µg/ml was stable, not stressful and non toxic for the PBMCs. It also indicated that 

antigenic treatment enabled näive PBMCs prone to differentiation and a slight proliferation with a 

higher number of cells at 24 h. After 24 h, there was a decline in cell viability. There were no 

statistically significant changes in viability at 24, 48 or 72 h of incubation among the treatment 

groups compared to the respective control at each time point.  

 

 

Fig. 2.1 (A-B) Effect of TY on the proliferation and viability of PBMCs of LR. Four different concentrations of TY 

were added in naïve PBMCs (A) and in PBMCs which were followed by addition of costimulation (B). PBMCs were 

left without any treatment only with media as naïve control (A) and LPS plus PHA (B) as control for respective 

TY+LPS+PHA treated group. The culture was kept at 37°C with 5% CO2 for 24, 48 and 72 h. Values are mean ± SEM 

of independent experiments at three timepoints performed in duplicate. 

 

Influences of pig breed on TY treated PBMCs viability 

Evaluation of the breed effect on cell viability was done using the non stressful dose of TY (10 

µg/ml) for three different time points, 24, 48 and 72 h (Fig. 2.2A and B). In näive PBMCs, no 

significant difference was noted, although the overall trend shows relatively higher viability of 

PBMCs in TY treated PBMCs of LR origin compared to Pi counterparts (Fig. 2.2A). In co-
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stimulated culture, significant variation (p<0.01) was observed only at 48 h of post-incubated 

PBMCs and after 24 h of incubation, relatively higher viability was observed in TY treated PBMCs 

from Pi pigs compared to that of LR (Fig. 2.2B). 

 

Fig. 2.2 Breed comparison of relative cell viability in a time dependent manner in (A) only TY (10 µg/ml) treated and 

(B) TY (10 µg/ml) +LPS+PHA treated group. The results were combined from independent experiments at three differ-

ent time points and each experiment was performed in duplicate. The data are represented as the mean ± SEM. ** indi-

cates p <0.01. Pi: Pietrain, LR: German Landrace. 

 

Phagocytic activity of PBMCs following dose dependent stimulation of TY 

To investigate the effect of TY treatment on monocytes isolated from of PBMCs of LR pigs, we 

implied Vybrant phagocytosis assay. It appeared that exposure to TY with all four doses, enhanced 

the average phagocytosis rate (Fig. 2.3). But this effect was not statistically significant as there was 

a high variation within the biological replicates in treated groups. From this graph, no potential 

difference was found among TY at 10 to 40 µg/ml dose. 

 

 

Fig. 2.3 Tyvelose induced phagocytosis by peripheral blood monocyte culture of LR. Monocytes re-suspended in a 96-

well fluorescent plate were treated with TY (10, 20, 30 and 40 µg/ml). Cells treated with media only were kept as 

control. The phagocytic capacity of this population is represented as percentage. The result is a combination of four 

replicates in each treatment group. Value presented as mean ± SEM.  
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To examine the effects of breed on the phagocytic capacity of PBMCs originated monocytes, we 

applied the same concentration of TY (10 µg/ml) in the monocyte culture from LR and Pi and tested 

their relative phagocytosis effect (Fig. 2.4). The effect was higher (p>0.01) in PBMCs of LR pigs 

compared to Pi. 

 

Fig. 2.4 Variation in phagocytosis effect resulting from breed difference in tyvelose treated monocyte culture. Mono-

cytes isolated from PBMCs of LR and Pi pigs were treated with tyvelose and incubated for 24 h and then evaluated for 

phagocytosis effect. Relative phagocytosis effect was determined for each breed with regards to respective control and 

then comparison between breed was made statistical analysis using t-test. Value presented as mean ± SEM. *** indi-

cates p <0.0001. Pi: Pietrain, LR: German Landrace. 

 

Expression dynamics of regulatory cytokines in TY treated näive PBMCs  

The relative expression of IL-10, IL-6, IL-2, IFN-γ and TGF-β1 mRNA were examined in the TY 

treated and untreated control PBMCs using qRT-PCR (Fig. 2.5A-E)). Consistent levels of IL-10 was 

noticed in unstimulated PBMCs from both LR and Pi pigs. An increase in IL-10 mRNA expression 

was detected in the presence of TY compared to control PBMCs for Pi at 48 and 72 h and for LR at 

all three time points (Fig. 2.5A). The PBMCs of LR pigs were found to respond as early as 24 h in 

presence of TY and induced significantly high levels of IL-10 expression compared to untreated 

control PBMCs from LR. The peak of IL-10 expression level was at 48 h in PBMCs from Pi, 

whereas in LR, a significantly elevated level of IL-10 was maintained through 24 and 48 h of 

incubation. In both breeds, a gradual decline in IL-10 amount was noted after 48 h in PBMCs 

treated with TY. 

 

Expression of IL-6 (Fig. 2.5B) also followed the trend of IL-10 in LR pigs. In the PBMCs of LR 

pigs, the IL-6 expression was significantly higher at 48 h compared to the control of respective 

time, whereas in Pi pigs, the IL-6 begun to rise after 24 h and was progressively elevated until 72 h 

of  exposure to TY. This upregulation differed significantly (p<0.05) from the control group of 

respective time and Pi breed. The IL-6 expression was substantially altered by the treatment and the 
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effect of breed and duration of exposure. The effect of interaction of breed, treatment and duration 

was negligible. 

 

 

 

Fig. 2.5 (A-E). Expression dynamics of innate immune cytokines: A. IL-10, B. IL-6, C. IL-2, D. IFN-γ and E. TGF-β1 

in TY treated PBMCs. The results were combined from four independent animals of LR and Pi origin. The data are 

represented as the least square mean ± SEM. *p <0.05; **p <0.01; ***p <0.0001 when compared to control vs treat-

ment for same breed at same timepoint and #p <0.05; ##p <0.01; ###p <0.0001 when compared between breed with the 

same treatment and at same timepoint. Pi: Pietrain, LR: German Landrace. 
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The mRNA expression of IL-2 in LR pigs was elevated significantly at 48 and 72 h (p<0.0001) 

compared to the untreated control from the same group (Fig. 2.5C). Significant (p<0.0001) breed 

variation was evident at 48 and 72 h between TY exposed cells of LR and Pi pigs. On the other 

hand, TY exposure could not bring any potential changes in IL-2 level in PBMCs of Pi throughout 

the duration of experiment. There was no significant difference in IFN-γ expression noticed in 

PBMCs of Pi pigs between the TY treated and untreated group throughout the experimental 

duration (Fig. 2.5D). Conversely, 72 h post stimulated PBMCs of Pi pigs exhibited a sharp rise in 

IFN-γ expression which significantly differed from the respective control (p<0.0001) in Pi PBMCs, 

as well as from treated PBMCs of LR (p<0.01). It appeared that the effect of breed and treatment 

was not potential mediator for variation in IFN-γ expression; rather the duration of cultivation had 

substantial impact.  

 

Under our experimental settings, there was a strong phenomenon of fluctuating expression of TGF-

β1 across all three time points and also in untreated PBMCs (Fig. 2.5E). But in Pi, TGF-β1 

followed the similar trend of IFN-γ throughout the duration of experiment. The dynamics in LR was 

not in accordance with that of TGF-β1 in Pi PBMCs. In LR, only at 24 h, the effect of treatment 

induced significant upregulation followed by a decline in the level of TGF-β1at later timepoints. 

 

Breed differences on cytokine responses of TY treated and costimulated PBMCs  

We examined the effect of TY on PBMCs post-stimulated with a combination of LPS and PHA and 

investigated the mRNA expression of IL-10, IL-6, IL-2, IFN-γ and TGF-β1 (Fig. 2.6A-E). For all 

five genes, the effect of treatment was found negligible, whereas the effect of breed was significant 

for IL-10, IL-6, IL-2, IFN-γ and TGF-β1. In mitogen-primed PBMCs culture of LR origin, TY has 

down regulatory effect on IL-10 expression until 48 h, after that there was a tendency to up rise, 

although this up or down regulation was not significantly different from the PBMCs only co-

stimulated with mitogens (LPS plus PHA) (Fig. 2.6A). But the variation of IL-10 expression level 

was significant between breed at 24 and 72 h post-treatment group. TY treatment significantly up-

regulated the IL-6 expression at 24 h post stimulation in LR, and significant breed differences on 

IL-6 expression was observed at 72 h post stimulation (Fig. 2.6B). In both breeds, TY could sup-

press mRNA expression of IL-2 only at 24 h time point and significant (p<0.05) breed variation was 

noted (Fig. 2.6C). The IFN-γ expression was significantly (p<0.05) altered only in PBMCs of LR 

pigs after TY treatment (Fig. 2.6D). The TGF-β1 expression in TY treated PBMCs showed a ten-

dency of being upregulated at 24 and 72 h with a down regulatory trend at 48 h in the Pi group but 

upregulated at 72 h in the DL group (Fig. 2.6E). 
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Fig. 2.6 (A-E) The mRNA expression of cytokines, A. IL-10, B. IL-6, C. IL-2, D. IFN-γ and E. TGF-β1 in TY treated  

and costimulated PBMCs. The results were combined with four individual animal replicates. The data were represented 

as the least square mean ± SEM. ***p<0.0001, **p<0.01 and *p<0.05 indicate comparison within breed with different 

treatment at the same timepoint and ###p<0.0001, ##p<0.01 and #p<0.05 indicate comparison between breed with the 

same treatment at the same timepoint. Pi: Pietrain, LR: German Landrace. 

 

 

Overall expression of selected cytokines in post TY treated PBMCs from LR and Pi: 

In both breeds, the microenvironment of each time point of TY treated PBMC culture was 

dominated by the relatively higher mRNA expression level of TGF-β1 and IL-10 compared to other 

cytokines (Fig. 2.7A and B). In LR, a relatively elevated level of IL-2 was also noticed while this 

was not so evident in the Pi group. IFN-γ and IL-2 expression in LR was not in accordance to each 
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other. In LR, dominant pattern of IL-10 and TGF-β1 was observed at 24 h post culture and IL-6 and 

IL-2 was reached their peak at 48 h. On the other hand, in Pi, IL-10 mounted the peak response at 

48 h, while IL-6, IFN-γ and TGF-β1 at 72 h post treatment. 

 

 

Fig. 2.7A-B Overall dynamics of TY induced Treg/Th2 cytokine expression (A) and Th1 cytokine expression (B) in TY 

treated naïve PBMC cultures of two pig breeds. Pi: Pietrain, LR: German Landrace. 

 

 

2.5 Discussion 

The ES products of the developmental stages of T. spiralis can regulate host immune response at the 

macrophages level via induction of alternative phenotypes in macrophages, which are likely crucial 

for worm survival and host health (Bai et al. 2012, 2016). We herein employed a suite of procedures 

that measure early activation of host immune response upon ML-ES antigen of T. spiralis, chal-

lenge in PBMCs in terms of cell viability, phagocytosis and proinflammatory cytokine expression. 

We have strategically chosen key sampling time points, such as 24, 48 and 72 h, reflecting the sub-

sequent stages of innate immune activation as well as feasibility for the laboratory work. As well, 

we explored the breed differences in innate immune responses to T. spiralis derived TY. TY has 

been identified as being a major carbohydrate epitope of the T. spiralis muscle larvae (TSL)-1 anti-

gen (Reason et al. 1994). The synthetic variant of TY (3,6-dideoxy-D-arabinohexose) (Williams et 

al. 1971) used in this study, offers advantage of stability and standardization and shows higher test 

specificity in many host species (Dea-Ayuela et al. 2001). Results from Trichinella seroprevalence 

studies in sylvatic and domestic animals demonstrated a very specific antibody response against 

synthetic carbohydrates compared to ES antigen (Moller et al. 2005). Although vaccination in mice 

with simple tyvelose with bovine serum albumin conjugate did not generate protective immunity 
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against intestinal form of T. spiralis inspite of the presence of tyvelose-specific antibodies (Goyal et 

al. 2002). Nonetheless, the role of TY on porcine host has not been well established in the current 

literature.  

 

The phenotypes of lymphocytes as well as quantities are reflective to the impact of infection on the 

host (Mangino et al. 2017). From our study, TY was noted to enhance the viability rate, but the 

effect of different concentration of TY we attempted was not significant (Fig. 2.1A and B). Previous 

studies suggested that antigenic dose should not be too high to affect the cell viability through 

inducing significant cell death in PBMCs culture (Bai et al. 2012, McNeilly et al. 2013). From the 

present study, we observed a minimum fluctuation in the TY induced cell viability or cell death with 

a dose of 10 µg/ml in PBMCs from LR in both näive and costimulated PBMCs. This dose were 

used for subsequent part of this experiment and is comparable to the dose (5 µg/ml) used in the 

murine macrophage cell line with T. spiralis ML excretory secretory antigens (Bai et al. 2012). 

Moreover, adding a low-dose LPS and PHA in the one set of culture in our experiment was 

expected to promote the activation of PBMC subpopulations and subsequently trigger a broad range 

of cytokine signaling networks (Swennen et al. 2005, Viallard et al. 1999). Surprisingly, significant 

influence of breed on cell viability was observed between mitogen-primed TY treated groups of LR 

and Pi at 48 h time point where higher viability was observed in PBMCs from Pi compared to LR 

(Fig. 2.2B). Our result implied that TY, the synthetic sugar monomer is a potent antigen and able to 

trigger cell mediated response after primary exposure. The findings of our study also showed that 

TY alone also worked in a similar fashion to ES of Larva 1, perhaps as because of being the most 

dominating antigenic part (Wisnewski et al. 1993, Reason et al. 1994). 

 

The phagocytosis assay involving different doses of TY treatment on naïve PBMCs of DL origin 

suggested that TY has enhanced phagocytic effect of sensitized monocytes, but this effect was not 

statistically significant and no significant variation was noted among different treatment 

concentrations (Fig. 2.3). This finding further supported the findings of dose dependent effect of TY 

on cell viability (Fig. 2.1A and B). As the rate of phagocytosis is also an indication of monocyte 

activation, maturation, antigen presentation and subsequent signaling for cytokine secretion 

(Trinchieri et al. 1993). These activities might trigger the lymphocyte population to generate 

necessary immune response. The most remarkable part of phagocytosis result is observed while 

comparing breed effects on phagocytosis of TY exposed monocytes (Fig. 2.4). Monocytes of DL 

origin had significantly (p<0.001) higher phagocytic potential compared to that of Pi pigs. LPS 

stimulated murine macrophages from different genetic background were found to respond 
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differently in kinetics and in capacities (Soudi et al. 2013). The phagocytic potentiality of alveolar 

macrophages challenged with porcine reproductive and respiratory syndrome virus was observed 

between Duroc and Pietrain pigs (Pröll 2014).  

 

Typical helminth infections induce the Th2 cytokine (e.g. IL-10, IL-4, IL-5, IL-9, IL-13, IL-33 etc.) 

dominance in the host in addition to IgE and infiltration of eosinophils, basophils and mast cells 

where CD4
+
 Th2 population serve as key players (Ilic et al. 2011, 2012). The effector T cells 

induced through in vitro stimulation with ES-L1 antigens produced increased amount of IL-4, IL-

10, and TGF-β, with no capacity to produce IFN-γ (Cvetkovic et al. 2014, Gruden-Movsesijan et al. 

2011). In our study, the IL-10, IL-6 and IL-2 cytokines in post TY treated PBMCs from LR was 

predominant during the 72 h of exposure, whereas IFN-γ had stable expression in both control and 

treated group (Fig 2.5.A-D). These findings confirmed the potential immunomodulatory role of TY 

in porcine PBMCs and are in accordance with the published in vitro and in vivo studies with human 

and mice models (Cvetkovic et al. 2014, Gruden-Movsesijan et al. 2011, Lei Fang et al. 2014, Guo 

et al. 2016, Li and Ko 2001). Local inflammation induced by the muscle stage larvae was found to 

be restricted by IL-10 during infection, but in chronic stage, mature ML1 produce TY bearing 

glycoprotein which promote a strong Th2 response mediated by IgG1 (Beiting et al. 2004). The IL-

10 involved in regulation of innate and adaptive Th1 and Th2 responses by limiting T cell activation 

and differentiation in the lymphnodes as well as through suppressing proinflammatory responses in 

tissues (Couper et al. 2008, Guo et al. 2016).  

 

IL-6 promptly and transiently produced in response to infection and tissue injuries, and contributes 

to both innate and adaptive immunity (Tanaka et al. 2014). The results of our study suggested that 

an elevated level of IL-6 mRNA expression in PBMCs of LR pigs resulted from TY treatment (Fig. 

2.5B) as well as from combined TY priming and mitogen activated PBMCs (Fig. 2.6B). Similar 

finding was also reported by Fang et al. (Fang et al. 2014) who demonstrated that T. spiralis heat 

shock protein 70 (Ts-Hsp70) activated dendritic cells enabling the stimulation, proliferation and 

increased secretion of IL-6 in CD4
+
 T cells from T. spiralis-infected mice. 

 

In LR, the relatively higher level of IL-2 expression at 48 and 72 h of post TY treatment as 

compared to 24 h time point (Fig. 2.5C) is in concordance with the CCK-8 assay results in fig. 

2.1A. A possible explanation could be that IL-2 mediated cytotoxic T cells (CD8
+
) activation which 

may destroy antigen captured immune cells in the culture and facilitates cell death (Summerfield et 

al. 1998). Moreover, PBMCs obtained from trichinella infected human patients (n=10) showed an 

increase in CD8
+
 cells with a decrease in CD4

+
 cell population (Morales et al. 2002).  
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Relatively less alterations of cytokine expression were noticed in TY primed and mitogen activated 

PBMCs (Fig. 2.6A-E), which might be because of influence of dose used and synergistic 

potentiality of LPS and PHA. Results from our data indicated that TY suppressed the IL-2 

expression in co-stimulated cell population at 24 h post culture (Fig. 2.6C) in both breeds. 

Similarly, ES L1 was reported to be able to interrupt the phosphorylation of signaling pathways 

triggered by other stilulants, i.e. LPS (Bai et al. 2012) and thus can alter the direction of cell 

maturation, activation, antigen presentation in the culture. 

 

Overall cytokine expression in TY treated naïve PBMCs of LR and Pi pigs showed that the 

expression kinetics and dynamics was different in both breeds as noticed specifically from 

dominance of IL-10, IL-6 and IL-2 at 48 h in LR and distinctly high levels of TGF-β1 and IFN-γ at 

72 h in Pi. Studies on same breeds showed that irrespective of the time of infection, global 

transcriptome analysis of the innate response in PRRSV infected macrophages cluster at different 

position (Ait-Ali et al. 2011). They did not find any breed dependent dominant pattern of response 

which is also in accordance with our study. The microenvironment of TY treated PBMCs in both 

breeds were dominated by high level of TGF-β1 and IL-10 (Fig. 2.7A and B). In the LR group, the 

highest expression level for IL-10 and TGF-β1 was observed at 24 h and for IL-2 mRNA at 48 h 

post TY treatment; whereas in the Pi group, the cytokines reached their highest expression for IL-10 

at 48 h, for TGF-β1 at 72 h. In both LR and Pi groups, the expression level of IL-6 and IFN-γ 

appeared to be relatively linear at all three time points.  

 

Taken together, IL-10 and Il-6 showed a breed-specific expression trend, and our data represented 

an earlier expression response in TY treated LR PBMCs. Although the mechanism behind this 

relatively early response in LR compared to Pi is less understood, especially for parasitic cases. 

However, a similar trend was reported from Ait-Ali et al. (2011) who found substantially higher 

expression of IL-10 and IL-6 as well as relatively early response from Porcine Reproductive and 

Respiratory Syndrome Virus (PRRSV) infected alveolar macrophages of LR pigs compared to Pi. 

LR and Pi pigs have also differed in susceptibility to porcine circovirus infection (Opriessnig et al. 

2009). Inherent genetic variation has been reported between LR and Pi pigs in terms of nutrient 

utilization and metabolic functions (Ponsuksili et al. 2007). In our recent study, whole transcriptome 

profiles of PBMCs obtained from PRRSV vaccinated LR and Pi pigs revealed a distinct gene 

expression patterns (Islam et al. 2017). These findings would imply that PBMCs from landrace pigs 

are able to fasten the release the pro and anti-inflammatory cytokines, while the PBMCs of Pietrain 

was delayed in response. Therefore, it is reasonable that TY induced innate immunity in PBMCs 
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differs between LR and Pi pigs.  

 

Conclusion 

This study illustrated the acute effects of a single exposure to TY antigen on cytokine mRNA 

expressions of PBMCs in a time dependent induction of Th1/Th2 response in two pure porcine 

breeds. To the best of our knowledge, this is the first report on porcine breed variation in the innate 

immune responsiveness to antigenic part of T. spiralis, especially using synthetic tyvelose. Genetic 

variation in the intrinsic innate immune regulation was found to prevail among German Landrace 

and Pietrain. Further study and cross-examination are warranted to conclude that these variations 

resulted exclusively from host breed upon the exposure to helminth antigens. Our results showed 

that the PBMCs were able to critically mediate cell signaling to direct subsequent development of 

immunity after priming with TY. Thus, PBMCs appeared as a potential model for innate immune 

study of host-parasite interaction revealing relatively similar phenomena of the in vivo model. In 

addition, understanding of the immmunomodulatory properties of TY may also facilitate the current 

status of knowledge regarding its potential as vaccine and or novel therapeutics for immune 

disorders. 
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3.1 Abstract 

Ascaris suum is the largest intestinal nematode of pigs with significantly higher prevalence in free 

range and organic production. Haemoglobin of A. suum origin, AsHb, is the most abundant protein 

in the pseudocoelomic fluid of adult worms, and a major excretory ⁄ secretory protein of larva 3 

(L3), L4 and adult worms. Immunization with AsHb resulted in increased reactivity to migratory 

stages in the liver; however, the porcine systemic response to A. suum is not entirely elucidated. 

Therefore, the current study aimed to investigate the interplay of proinflammatory and regulatory 

cytokines and host genetics to the AsHb stimulation in the peripheral blood. Accordingly, we used 

peripheral blood mononuclear cells (PBMCs) from clinically healthy, female, weaned piglets of five 

weeks old, and investigated the primary systemic response in terms of cell viability, phagocytosis 

and selective cytokine expression in naïve and LPS plus PHA costimulated PBMCs culture. 

Temporal expression patterns of IL-10, IL-6, IL-2, IFN-γ and TGF-β1 mRNA level for three time 

points (24, 48 and 72 h) from two breeds (German Landrace, LR and Pietrain, Pi) were quantified 

using qRT-PCR. Phenotypic variation in cell viability between breeds was observed after 72 h of 

cultivation and only in the costimulated group. Significantly higher phagocytosis was observed in 

phagocytes of LR pigs compared to that of Pi. In naïve PBMCs treated with AsHb, significant breed 

effect was noticeable in case of IL-10, IL-6 and TGF-β1 expression, although the interrelationship 

between these regulatory cytokines was not always synchronous. In AsHb sensitized and co-

stimulated PBMCs, the mRNA level of IL-2 was significantly affected by both breed and treatment 

at 24 h post culture. TGF-β1 was significantly upregulated in the costimulated Pi PBMCs where the 

significant effect of breed and treatment was noted. In conclusion, the systemic immune response to 

AsHb priming was characterized by a mixed Th1/Th2 profile of immune cytokines dominated by 

IL-10, IL-6, IL-2 response. There was also substantial influence of the host breed indicating breed 

variation in the innate immune responsiveness to ascariasis. Additional work is suggested to 

confirm these findings under in vivo situation. 

 

Key words: Ascaris suum, haemoglobin, innate immunity, cytokine, PBMCs, in-vitro, pig, breed  
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3.2 Introduction 

Helminth infection is a global problem for both animal production and public health, particularly 

affecting the warm tropical and developing countries. Among the pig helminths, Ascaris suum is the 

largest and most common intestinal parasite with substantial presence in all kinds of production sys-

tem (Vlaminck and Geldhof 2013). These obligate endoparasites occur frequently in all kind of pig 

production systems, but the intensity is of economic concern especially for free-range, backyard and 

organic farms (Roepstorff et al. 1999, Carstensen et al. 2002, Boes et al. 2010). The A. suum infec-

tion results in pulmonary inflammation, reduced feed conversion and weight gain, milk spot liver in 

chronic cases leading to condemnation, and reduced efficiency of Mycoplasma hypopneumoniae 

vaccine (Thamsborg et al. 2013, Steenhard et al. 2009). These altogether cause considerable eco-

nomic loss as well as animal welfare risk for pig production. 

 

Helminths are reported to interact with host cells through their excretory-secretory products and can 

block both Th1/Th17- mediated inflammation and Th2 mediated pathologies (Else et al. 1994). 

AsHb is highly present in the pseudocoelomic fluid and is also found as excretory secretory (ES) 

product of the parasitic L3, L4 and mature forms (Keane-Myers et al. 2008). It has been reported 

that AsHb was able to scavenge activated porcine alveolar macrophage derived free radicals and 

able to reppress inflammation by enhanced production of IL-10 by activated mouse dendritic cells 

when co-stimulated with lipopolysaccharide (McConchie et al. 2006, Keane-Myers et al. 2008). 

Vaccination with AsHb is known to be involved in the enhanced hepatic white spot lesion 

(Vlaminck et al. 2011). The elevated expression of anti-inflammatory cytokines, e.g. IL-10, IL-4, 

IL-5, IL-9, IL-13 in conjunction with eosoinophilia and mucosal mastocytosis has been reported in 

pig ascariasis (Jungersen 2002). AsHb has been predicted to be able to suppress allergy, 

autoimmunity and malignancy (Keane-Myers et al. 2008). AsHb is a potent vaccine candidate 

which was criticized for increased hepatic lesion (Vlaminck et al. 2011). It is now an established 

serodiagnostic antigen (Vlaminck et al. 2012) and relatively inexpensive to produce. Until now, the 

immunoregulatory potentiality of AsHb directly in pig peripheral blood mononuclear cells 

(PBMCs) is not well elucidated. 

 

Previous studies revealed that the host susceptibility to A. suum infection vary among pig popula-

tion (Vlaminck et al. 2012, Skallerup et al. 2012, Skallerup et al. 2017). Heredity contribution for 

Ascaris worm burden in Danish-Landrace-Yorkshire crossbred pigs has been reported as 0.45 and 

0.29-0.31 for fecal egg output on 7-14 day post-infection (Nejsum et al. 2009). The host response to 

experimental infection with A. suum differed between Large White and Mukota pigs (Zanga et al. 

2003). Intra-strain variation in the susceptibility level of Ascaris in mice was also reported (Lewis 



AsHb induced innate immunity in PBMCs                                                                                                   83 

 

 

et al. 2006). Taken together, it can be assumed that breed might be a potential factor influencing 

host susceptibility to A. suum infection. Therefore, it is worth to look for animal breeds immunoge-

netically less susceptible to this parasite. 

 

Gene expression studies in peripheral blood cells in response to A. suum antigens are rare, and the 

understanding of porcine breed predisposition in helminth induced immunity is limited as well. 

Since helminth antigens have been found to imitate the immune response to actual infection, we 

intend to investigate the pattern of innate response of A. suum antigen, AsHb, in the peripheral 

blood mononuclear cells of German Landrace (LR) and Pietrain (Pi) pigs. 

 

3.3 Materials and Methodologies 

Ethics statement  

This experiment followed the institutional guidelines and animal husbandry regulations of Germany 

(ZDS 2006) in practice. The animal husbandry and hanLRing was approved by the Veterinary and 

Food Inspection Office, Siegburg, Germany (ref. 39600305-547/15) and permission for blood col-

lection was obtained from North-Rhein Westphalian State Agency for Nature, Environment and 

Consumer Protection (ref. 84-02, 05.40.14.027). 

 

Antigen and mitogen preparation 

Purified Ascaris suum haemoglobin antigen (a kind donation from Prof. Dr. Peter Geldhof, 

Laboratory. of Parasitology, Ghent University, Belgium), was used as a representative antigen. 

Antigen purification was performed according to Vlaminck et al. (2011). As mitogen, 

lipopolysaccharide (LPS, L2880, Sigma Aldrich) and phytohaemagglutinin (PHA-M, 10576015, 

ThermoFisher Scientific, Germany) were used for co-stimulation of PBMCs culture. 

 

Study population and blood sampling 

Four clinically healthy female piglets of 5-6 weeks old German Landrace and Pietrain were used for 

this experiment. Animal numbers were estimated as adequate considering the resource equation 

method described by Festing and Altman (2002) and Festing (2006). All animals were weaned at 

the age of day 28 and obtained from the same source, the Teaching and Research Station of Frank-

enforst, University of Bonn, Germany. Upon birth, piglets were selected from a single sow for each 

breed, ear tagged, housed with standard feeding and housing condition and routinely vaccinated for 

mycoplasmosis at the age of day 7 according to the regular farm schedule; animals with any clinical 

illness at sampling time were not included in this study.  
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PBMCs isolation 

The peripheral blood mononuclear cells (PBMCs) from whole blood were isolated by using Ficoll-

Paque (Histopaque-1077, cat.# 10771, Sigma-Aldrich, Munich, Germany) density gradient centrif-

ugation as described earlier by Islam et al. (2016).The cells were then suspended in complete 

RPMI-1640 media supplemented with heat inactivated 10% fetal bovine serum (cat.# F0804, Sigma 

Aldrich, Germany) and 1% antibiotic (Penicillin-streptomycin, cat#15140-122, Life Technologies 

GmbH, Darmstadt, Germany) and 1% antimycotics (Fungizone®, cat# 15290-026, Life Technolo-

gies GmbH, Darmstadt, Germany). Dose dependent effects of treatment were assessed only for LR 

pigs for convenience of the study. 

 

Cell viability and proliferation assay  

Time and dose dependent cell viability was assessed using CCK-8 cell proliferation kit (CK04-10, 

Dojindo Molecular Technologies, München, Germany) following the manufacturer’s instruction. In 

brief, PBMCs at a density of 1×10
4 

cells/well in 100 µl of RPMI-1640 media were cultured in 96-

well plate with a dose (2.5, 5 and 10 µg/ml) of AsHb with and without follow up costimulation with 

LPS (100 ng/ml) plus PHA (10 µl/ml) after 30 minutes. Two technical replicates were made. For a 

period of 24, 48 and 72 h, the plates were incubated at 37 °C with 5% CO2 and 98% air atmosphere. 

Control wells were left untreated or only costimulated with LPS plus PHA. Reconstituted CCK-8 

mixture at 10 µl in each well were added and incubated for further 4 h. Then sample absorbance 

was measured at a wavelength of 450 nm using Synergy
TM

 H1 Multi-Mode Reader (BioTek Ger-

many, Bad Friedrichshall, Germany). The cell viability was calculated as percentage according to 

the manufacturer’s formula. The concentration of AsHb, which induced least alteration in the via-

bility or cell death were used for subsequent studies. 

 

Cell culture and stimulation of PBMCs for mRNA and protein samples 

Similar to cell viability assay, PBMCs were cultured separately for each animal at 1x10
6 

cells/well 

in 2 ml media in a 6-well tissue culture plate for 24, 48 and 72 h.  AsHb (2.5 µg/ml) was added in 

each well followed by with or without adding of LPS plus PHA costimulation. Naive controls were 

kept as untreated control and the control for costimulated group received only LPS plus PHA. The 

plates were maintained at 37 °C with 5% CO2 before collection of cells.   

 

Phagocytosis assay 

In vitro phagocytosis assay was performed with Vybrant Phagocytosis Assay Kit (Cat# V-6694, 

Molecular Probes Inc.) according to manufacturer instructions as previously described (Islam et al. 

2012). Determinations were performed in five wells for experimental, positive and negative samples 
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at 24 h post culture. The net phagocytosis of the cells was calculated following the manufacturer’s 

formula.   

 

RNA isolation and quality control  

Total RNA enriched with microRNAs was extracted from cultured PBMCs by using the miRNeasy 

Mini kit (Qiagen, CA, Cat.# 2170040) according to the manufacturer’s protocol. The total RNA 

was quantified by spectrophotometry (NanoDrop 8000 UV-vis Spectrophotometers (Thermo Scien-

tific, Wilmington, USA). DNA contamination was removed using on-column treatment with 

RNAse-free DNase Set (cat.79254, Qiagen, CA). The fragments of 18s and 28s ribosomal band of 

total RNA were visualized by agarose gel electrophoresis. The absence of DNA contamination was 

checked by PCR amplification of housekeeping gene followed by visualization in 2% agarose gel.  

 

Quantitative Real Time PCR 

The selected genes quantified by qRT-PCR are presented in table 3.1.  

 

Table 3.1 The sequences of primer sets used for relative expression analysis of cytokines by qRT-PCR 

Gene symbol Accession no. Primer sequences (5` -3`) Amplicon size 

(bp) 

ACTB XM-003124280.4 F:AAGGACCTCTACGCCAACAC 

R:CTTGCTGATCCACATCTGCT 

207 

PPIA NM_214353.1 F:CACAAACGGTTCCCAGTTTT 

R:TGTCCACAGTCAGCAATGGT 

171 

IL-10 NM-214041.1 F:TCCGACTCAACGAAGAAGGC 

R:AACTCTTCACTGGGCCGAAG 

179 

IL-6 NM_214399.1 F:GGCAGAAAACAACCTGAACC 

R:GTGGTGGCTTTGTCTGGATT 

243 

IL-2 NM_213861.1 F:CTAACCCTTGCACTCATGGCA 
R:AATTCTGTAGCCTGCTTGGGC 

185 

TGF-β1 NM_214015.2 F:CGGAGTGGCTGTCCTTTGAT 

R:GGTTCATGCCGTGAATGGTG 

186 

IFN-γ NM_213948 F:AGCTCCCAGAAACTGAACGA 

R:AGGGTTCAAAGCATGAATGG 

225 

F: Forward, R: Reverse, bp: Base pair 

Primers were designed using an open source primer designing software Primer3. First Strand cDNA 

Synthesis Kit (P/N K1612, Thermo Scientific, Co.) was used for reverse transcription with oligo 

(dT) primers. The qRT-PCR reaction was set up using 2.0 μl of cDNA template, 7.0 μl of deionized 

RNase free water, 0.5 μM of upstream and downstream primers, and 10 μl iTaq™ Universal 

SYBR
®

 Green Supermix (Bio-Rad laboratories GmbH, Germany) in a total reaction volume of 20 

μl and were amplified by the StepOnePlus™ Real-Time PCR System (Applied Biosystems
®
, Darm-
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stadt, Germany). The thermal cycling conditions were 95 
o
C for 3 min, 95 

o
C for 15 sec, 6 

o
C for 45 

sec (40 cycles); 95 
o
C for 15 sec, 62 

o
C for 1 min, 95 

o
C for 15 sec. All reactions were run in single 

for four biological replicates and the expression value was obtained.  

 

Statistical analysis 

qRT-PCR data were analyzed using the GLM procedures of SAS software (Version 9.1.2, SAS In-

stitute Inc., Cary, NC, USA). Gene-specific expression was measured as relative to the geometric 

mean of the expression of two housekeeping genes (PPIA and ACTB). The delta Ct (∆Ct) [∆Ct = 

Cttarget - Cthousekeeping genes] values were calculated as the difference between target gene and reference 

genes and expression was calculated as 2
(-∆∆Ct)

. The mean differences of relative expression between 

treated and control groups were analyzed by One-way ANOVA and pairwise comparison was made 

using linear contrast. Comparison was always made between untreated control vs. AsHb treated 

cells and LPS+PHA treated cells vs. AsHb+LPS+PHA treated cells for better interpretation of the 

main effects (breeds, AsHb) in PBMCs with and without activation. Data is expressed as means ± 

standard errors of mean (SEM). Cell viability and phagocytosis data were analyzed using GraphPad 

Prism 5. The statistical significance level was set as to p ≤ 0.05. 

 

3.4 Results 

Time and dose dependent effect of AsHb on the viability of PBMCs of LR origin 

To assess whether AsHb suppress or stimulate the cell viability, PBMCs from four LR piglets were 

cultured separately in the presence of three different AsHb antigenic concentrations (2.5, 5 and 10 

µg/ml) with/without co-stimulation with LPS plus PHA for 24, 48 and 72 h. A significant dose 

dependent decrease of viability was observed in naïve PBMCs treated with AsHb (Fig. 3.1A), 

where relative viability of only AsHb treated cells was calculated with regards to their respective 

untreated control. In the costimulated group, the viability percentage of cells with AsHb plus co-

stimulation was calculated with regards to only co-stimulated cells. The decline of viability was 

evident only at 48 and 72 h time point (Fig. 3.1B). In both groups, naïve and co-stimulated, it was 

found that AsHb at a dose of 2.5 µg/ml resulted the least alteration in viability or cell death 

compared to two other concentrations used. Hence we used this relatively non-toxic, non-stressful 

dose for further molecular investigation. 
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Fig. 3.1 Effect of AsHb on the proliferation and viability of PBMCs from LR. AsHb at a concentration of 2.5, 5 and 10 

µg/ml was added to each experimental well (A and B) and for (B) 30 min later 100 ng of LPS and 10 µl of PHA per ml 

were added. PBMCs were left without any treatment only with media (A) and LPS plus PHA (B) as control for 

respective treated group. The culture was kept at 37 °C with 5% CO2 for 24, 48 and 72 h. Cell viability was assessed 

using a CCK-8 assay. Values are mean ± SEM of three independent experiments for three timepoints in duplicate. 

*p<0.05, #  p<0.05 and ɸ p<0.05 for comparison with respective control  at 24, 48 and 72 h, respectively. 

 
 

Effects of breed on the cell viability of AsHb treated PBMCs 

The relative viability of PBMCs from LR treated with AsHb (2.5 µg/ml) from fig. 1A and 1B (with 

co-stimulation) were compared with the relative viability of PBMCs from Pi in a time-course 

manner and depicted as fig 3.2A and B, respectively. 

 

  

Fig. 3.2 Breed comparison of relative cell viability in a time dependent manner in only AsHb (2.5 µg/ml) treated (A) 

and AsHb (2.5 µg/ml) +LPS+PHA treated group (B). The results were combined from three independent experiments at 

three different time points and each experiment was performed in duplicate. The data are represented as the mean ± 

SEM.. * indicates p<0.05 for comparison between breed with same treatment and at same timepoint. Pi: Pietrain, LR: 

German Landrace. 
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Overall, the viability was higher in Pi PBMCs without any co-stimulation. In the costimulated 

group, PBMCs of LR origin had relatively higher viability compared to their respective counterpart 

of the breed at respective time. A significant (p<0.05) variation was found only at 72 h when AsHb 

treated co-stimulated groups from LR and Pi were compared (Fig. 3.2B). 

 

 

Dose dependent effect of AsHb on phagocytosis 

Phagocytosis is one of the key phenotypic indicators of innate immune response. So, PBMC 

derived monocytes of LR piglets were evaluated for their phagocytic ability with three different 

concentrations of AsHb. This antigen was found to enhance phagocytosis in the culture in a dose-

dependent manner. Monocytes treated with AsHb (5 µg/ml) were found to trigger phagocytosis 

significantly compared to the untreated control (Fig. 3.3). 

 

Fig. 3.3 AsHb induced phagocytosis by peripheral blood monocyte culture of LR pigs. The phagocytic capacity of this 

population is represented as percentage. The result is a combination of 5 replicates in each treatment group. The value is 

expressed as mean ± SEM. * indicates p<0.05 for comparison between control vs treated group. 

 

Influence of breed on AsHb treated phagocytes 

The functionality of monocytes was found to be affected by host genetic factors and hence, 

phagocytic potentiality may vary between hosts with different genetic background. Relative 

phagocytic ability of AsHb (2.5 µg/ml) treated monocytes from PBMCs of LR and Pi origin were 

compared, where the control were their own untreated monocytes. Variation (p<0.05) in the 

phagocytosis rate was observed where monocytes derived from PBMCs of LR pigs showed higher 

ability for phagocytosis compared to that of Pi (fig. 3.4). 
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Fig 3.4 Variation in phagocytosis effect resulting from breed difference in AsHb treated monocyte culture. Monocytes 

isolated from PBMCs of LR and Pi pigs were treated with AsHb and incubated for 24 h and then evaluated for phagocy-

tosis. Comparison between breed was made using GraphPad Prism plotting relative phagocytosis effect against breed. 

The values are expressed as mean ± SEM. * indicates p<0.05. Pi: Pietrain, LR: German Landrace. 

 

 

mRNA expression of cytokines in naïve PBMCs treated with AsHb 

Relative cytokine expression was measured in PBMCs from LR and Pi piglets challenged with 

AsHb (2.5 µg/ml) in relation to untreated control PBMCs. A steady and progressive rise of IL-10 

mRNA was observed in AsHb sensitized PBMCs of LR origin throughout the duration of cultiva-

tion and the upregulation significantly differed between breed at all three time points (Fig. 3.5A). 

For both breeds, the peak of IL-10 surge was observed at 72 h of culture. But in case of Pi, the re-

sponsiveness was not significantly evident until 72 h of incubation. Quantitative and qualitative ki-

netics of IL-2 expression was similar between LR and Pi, where the peak of IL-2 expression was 

noticed at 48 h of culture and the effect of treatment was significant (p<0.05) (Fig. 3.5B) .The rela-

tive expression of IL-6 was upregulated across the experimental period in LR group (Fig. 3.5C). 

But in Pi, the upregulation was more pronounced at 24 and 72 h post treatment. Significant breed 

and AsHb effect was evident only at 48 h of post treatment. The relative IFN-γ expression was 

slightly elevated 48 h after culture, but overall the effect of breed or treatment was not statistically 

significant (Fig. 3.5D). In both LR and Pi group, there was a tendency of downregulation of TGF-

β1 followed by an upregulation at 72 h in the AsHb treated group (Fig. 3.5E). 
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Fig. 3.5 (A-E) Expression dynamics of innate immune cytokines A. IL-10, B. IL-6, C. IL-2, D. IFN-γ and E. TGF-β1 in 

AsHb treated PBMCs. The results were combined from four independent animal experiments. The values show the dif-

ferences between non-treated controls versus AsHb treated PBMCs. The data are presented as the least square mean ± 

SEM. * P < 0.05; ** P < 0.01; *** P < 0.001 when compared within breed between control vs. treated group at same 

point of time and # P < 0.05; ## P < 0.01; ### P < 0.001 when compared between breed with same treatment at same 

point of time. Pi: Pietrain, LR: German Landrace. 

 

 

Effect of AsHb on cytokine mRNA expression in co-stimulated PBMCs 

Cytokine mRNAs level was measured in PBMCs from LR and Pi treated with AsHb followed by 

LPS plus PHA costimulation (Fig. 3.6A-E). Cells treated with only LPS+PHA were considered as 

control for respective timepoints. 
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Fig. 3.6 (A-E). The mRNA expression of pro- and anti-inflammatory and regulatory cytokines, IL-10, IL-6, IL-2, IFN-γ 

and TGF-β1 in AsHb treated PBMCs. The results were combined with four individual animal replicates. The data are 

represented as the least square mean ± SEM. Asterisks (***p<0.0001, **p<0.01 and *p<0.05) indicated comparison 

within breed at different treatment at same timepoint and hashes (###p<0.0001, ##p<0.01 and #p<0.05) indicate com-

parison between breed with the same treatment at same timepoint. Pi: Pietrain, LR: German Landrace. 

  

Addition of AsHb in the culture resulted in similar trend of kinetic change for IL-10 and IL-6 in LR 

PBMCs, where at 24 h AsHb induced mRNAs was suppressed followed by progressive 

upregulation until 72 h of the culture (Fig. 3.6A-B). On the contrary, in Pi, no significant variation 

from AsHb exposure between co-stimulated cultures was noticed except at 48 h, where there was a 

dramatic rise of IL-6 which again dropped back to control level after 24h. The pattern of IL-2 
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production was similar in both breeds and significant level of suppression was noticed at 24 h time 

point resulting from breed and treatment factors (Fig. 3.6C). The influence of breed and treatment 

was found inconsistent and had less specific effect in the expression dynamics of TGF-β1 and IFN-

γ within this 72 h of experimental duration (Fig. 3.6.D-E). TGF-β1 expression in Pi at 48 h had a 

significant (p<0.01) rise compared to its own control as well as LR counterparts. IFN-γ level only 

significantly changed from treatment at 72 h in PBMCs of LR pigs.  

 

AsHb induced overall mRNAs expression in naïve and costimulated PBMCs  

 

Fig. 3.7 Overall dynamics of AsHb induced cytokine expression in LR and Pi in AsHb treated PBMCs cultures. In both 

breeds, the microenvironment of each time point of AsHb treated PBMC culture was dominated by the mRNA expres-

sion level of TGF-β1 and IL-10 compared to other cytokines. In the LR group, a relatively elevated level of IL-10 and 

IL-6 at all three time points was observed. IFN-γ and IL-2 expression in LR and Pi was in accordance to each other. IL-

10 and IL-6 were in a harmony in at all the time points in LR. This result suggested the role of individual microenvi-

ronment also being crucial in determining the ultimate outcome of antigenic challenge. Pi: Pietrain, LR: German Land-

race. 
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Fig. 3.8 Overall dynamics of AsHb induced cytokine expression in costimulated PBMCs from LR and Pi pigs. The local 

microenvironment in LR had a dominance of IL-2 until 48 h, whereas in Pi, there was equilibrium at 24 h between IL-2 

and TGF-β1 followed by dominance of TGF-β1 until 72 h. In LR, TGF-β1 and IL-10 was progressively increasing to-

wards 72 h, but in Pi, the elevation of IL-10 was not distinct from the respective control. This suggested that the indi-

vidual microenvironment is affected by the duration of exposure as well by the host genetics. Pi: Pietrain, LR: German 

Landrace. 

 

Overall expression of tested cytokines in AsHb treated naïve PBMCs (Fig. 3.7) and costimulated 

PBMCs (Fig. 3.8) revealed that there was difference in the cytokine dominance in the 

microenvironment created by AsHb treatment between breeds and between with or without 

costimulated PBMCs. In naïve PBMCs, there was dominance of TGF-β1 in both LR and Pi pigs, 

but in LR, it was accompanied with high level of IL-10. In costimulated groups, the LR groups 

were dominated by IL-2 followed by IL-10 and TGF-β1, while in Pi groups, the predominant 

cytokine was TGF-β1 followed by IL-2 and IL-10. 

 

3.5 Discussion 

Biologically active excretory-secretory proteins from helminthes with zoonotic implication is con-

tinuously receiving great interest not only as a prospective vaccine candidate, but also as therapeutic 

agents for several human immune-related disorders like allergy, asthma, autoimmunity, malignan-

cies. The excretory-secretory products (Andrade et al. 2005) and lipid products (Kean et al. 2006) of 
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A. suum have been shown to trigger in vitro nitric oxide from macrophages. While the pseudo-

coelomic fluid (McConchie et al. 2006) and high molecular weight components (Silva et al. 2006) 

derived from A. suum can suppress dendritic cell response to secondary antigens. The A. suum anti-

gens possess immunomodulatory properties and are able to downregulate the expression level of co-

stimulatory molecules on dendritic cells both in vivo and in vitro studies (Boesen et al. 2006). Also 

various A. suum products can alter expression of allergic diseases (Itami et al. 2005, Araujo et al. 

2008). Suppression of innate immunity is thought to be a mechanism responsible for decreased al-

lergic inflammation in pseudocoelomic fluid treated animals. However, porcine ascariasis is report-

ed to sensitize lymphocytes and suppresses their responsiveness to phytomitogens (Barta et al. 

1986). Hence, characterization of the role of individual molecules of A. suum in the regulation of 

immune cells as well as the identification of mechanisms involved needs to be investigated. The 

understanding of innate immune interaction of A. suum on porcine PBMCs is limited, particularly in 

relation to the haemoglobin antigen and variation in innate immune responses among different 

breeds are not well addressed.  

 

High molecular weight components of A. suum are known to suppress costimulatory molecules re-

sponsible for immune signal transduction (Silva et al. 2006). Findings from our cell viability assay 

suggested that AsHb had suppressive effect on the viability of PBMCs in culture in a dose-

dependent manner (Fig. 3.1A and B). A similar finding was reported by Deehan et al. (2002) who 

demonstrated that LPS or antibody induced proliferation of splenic B cells was significantly re-

duced in presence of A. suum derived phosphocholine containing glycosphingolipids. In addition, 

actively secreted protein of nematodes are known to suppress the proliferation and cytokine produc-

tion of antigen specific T cells by inducing cell death in case of Onchocerca volvulus (Hartmann et 

al. 2013). Further validation of this AsHb mediated lympho-depletion in PBMC culture might be 

useful to exclude any other possible contributing factors.  

 

Breed specific differences in cell viability were assessed in AsHb treated naïve (Fig. 3.2A) and co-

stimulated culture (Fig. 3.2B). Significant variation in breed specific viability was noticed only in 

co-stimulated groups after 72 h of cultivation. The background behind the distinct variation being 

dominant only at 72 h was not clearly understood. One reason might be the general trend of slower 

development of immunity against parasitic infection (Yazdanbakhsh and Sacks 2010). 

 

Phagocytosis is one of the vital events of innate immune function. Ascaris suum infection was re-

ported to reduce phagocytic efficiency of LPS activated alveolar macrophages from experimentally 

infected pigs (Keane-Myers et al. 2008). Repeated infection with A. suum in pig was reported to be 
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associated with increased eosinophilia, reduced phagocytosis and a decrease in intracellular tyrosin 

phosphorylation. Results from our phagocytosis test (Fig. 3.3) showed that AsHb at a dose of 2.5 

was not able to significantly increase or decrease phagocytosis rate and the effect was in a dose-

dependent manner. The reason behind might be the variation in the subsets of monocytes and DCs, 

as the examined duration of antigen pulsed monocyte culture was only 24 h post cultivation. The 

discrepancy between our study and previous reports might have resulted from the use of different 

culture model with different activation state of cells and from difference in the animal age. Keane-

Myers et al. (2008) used LPS treated alveolar macrophages of experimentally infected pigs whereas 

our model was monocytes of PBMC origin from clinically healthy piglets. Findings from our study 

further suggested that there was significantly higher phagocytic efficiency of AsHb treated mono-

cytes of LR pigs compared to Pi (Fig. 3.4). Besides, the observed priming for phagocytosis by 

AsHb may serve to enhance the response to secondary parasite challenge or alternatively support 

scavenger-like functions such as the removal of damaged or dead cells either from host or parasite 

as noticed in A. suum body fluid mediated response in mouse granulocyte model (Falcone et al. 

2001).  

 

The typical feature of anti-helminth immune response is Th2 cell type response accompanied by 

eosinophilia and mucosal mastocytosis (Jungersen 2002). IL-10 has been reported to be responsible 

for immunesuppression by high molecular weight proteins of A. suum in mouse models (Souza et 

al. 2004). In our study, AsHb treatment was found to be associated with elevation of IL-10 expres-

sion at all three time points in PBMCs from LR piglets (Fig. 3.5A). This increased level of IL-10 

during helminth antigen exposure could contribute to the immune homeostasis by raising the 

threshold for the induction of effector inflammatory response to the challenge. On the other hand, 

the response was a bit slower and no distinct response was detected in antigen treated PBMCs of Pi 

origin until 72 h of incubation. The reason for this delayed response is not clearly understood. Ait-

Ali et al. (2011) also noticed this breed dependent variation in the timing of immune activation in 

LR and Pi pigs where in vitro macrophages were challenged with Porcine Reproductive and Respir-

atory Syndrome virus. However, in general, development of helminth immunity in the host is rela-

tively slower compared to other microbial unicellular pathogens. 

 

Although IL-6 is one of the key cytokine in health and disease, the role of IL-6 in case of porcine 

ascariasis is not well-delineated. In the current study, AsHb induced progressive elevation of IL-6 in 

both PBMCs with or without co-stimulation and this was in coordination with IL-10 with an excep-

tion at 72 h in mitogen treated PBMCs (Fig. 3.5B). In naïve T cells, IL-6 trigger Th17 immunity in 
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presence of TGF-β, while in contrast, it also restricts TGF-β-induced Treg differentiation (Kimura 

and Kishimoto 2010, Fernando et al. 2014). 

 

The modified polarization dominated by IL-10, IL-6 might be a tolerant phenotype that is different 

from classical IL-4 induced Th-2 immunity that is considered to drive allergic inflammation. Such 

modified Th2/Treg like response representing a regulated Th2 response may be an important feature 

of balanced parasitism that ensures parasite survival but also protect the host from Th2 induced pa-

thology. In human ascariasis, parasitism is linked with a regulatory set of cytokines, as IL-10 and 

TGF-β are significantly linked with hyporesponsiveness and susceptibility (Reina Ortiz et al. 2011). 

In mice, repeated infection with A. suum was found to induce a higher level of circulating inflam-

matory cells and increased production of systemic cytokines, mainly, IL-6, including the rise of IL-

5, IL-4, IL-10, IL-17A and TNF-α compared to single infected one (Nogueira et al. 2016). From our 

study, IFN-γ was found to show no significant alteration from treatment in both breeds LR and Pi 

which was consistent with the findings of Dawson et al. (2005) who reported no variation between 

experimentally infected and control pigs. 

 

Mitogen induced IL-2 production has been reported as a promising marker for immune responsive-

ness in pig PBMCs and associated with genetic variability (Mach et al. 2013). Activated T cells can 

elicit IL-2 which can serve in manipulating non-specific and specific immunity. Cell mediated im-

mune response evident from antibody production, cytotoxic T cell activity and prolonged prolifera-

tion of activated T-cell clones are all IL-2 dependent. In our study, effect of breed and AsHb mediat-

ed suppression of IL-2 expression was clearly evident at mitogen activated PBMCs at 24 h stimula-

tion (Fig. 3.6C). This difference was no further evident later. It might be because of the concentra-

tion of antigenic dose used along with the possibility that the effect of mitogen has overcome the 

effect of AsHb mediated suppression. This is further supported by the fact that the LPS plus PHA 

mediated cell growth reaches its peak at 72 h of exposure (data not shown). 

 

In our study, we found that in both naïve and costimulated PBMCs from Pi were dominated by 

TGF-β1 (Fig. 3.7 and 3.8). TGF- β is also known as immunosuppressive cytokine. TGF-β has been 

reported to be associated with age-dependent resistance development in pig ascarisis (Helmby 

2015). We can not associate our findings with this statement as we used animals of a specific age 

group. Epidemiological data suggests that the prevalence of infection was higher in young growing 

pigs (i.e. weaners and fatterners) compared to sows or boars (Roepstorff and Nansen 1998). So the 

choice of post-weaned piglets for this study was rational. The in vitro model has some advantages 

over in vivo in case of A. suum because experimental infections are characterized by a high degree 
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of unpredictability with regard to the outcome of a patent infection. Typically the population is over 

dispersed with only a few pigs harboring the majority of worms, some having only light worm loads 

and most pigs have no infection as reviewed by Jungersen (2002). Moreover, in vitro situation pro-

vides a better opportunity for control and excludes the exogenous environmental influence on ani-

mal health and immunity. 

 

Since, AsHb causes very fast activation of DCs to produce IL-10 hours after the activation and then 

act via a negative feedback mechanism to stop an ongoing effector response, so it can be a potent 

adjuvant. In essence, whether AsHb has a stimulating or suppressive effect depends on the micro-

environment of the cells or culture (Keane-Mayers et al. 2008). Since in our study, ficoll-gradient 

centrifugation method was used to isolate the PBMCs, it was not possible to exclude other cell 

types e.g. platelets besides T cells. We also did not rule out the contaminating endotoxin or toxic 

low molecular contaminants as suppressive elements in the complete media prepared. And these 

might also have effect on our experimental results. 

 

3.6 Conclusions 

In conclusion, preliminary evaluation of effect of AsHb revealed that the breed associated variation 

in the innate immune responsiveness in pigs exists between LR and Pi pigs in a time-course de-

pendent manner. Further studies are needed to better understand the immune mechanisms that in-

duced this variation even if there were some similarities in some specific immune cytokine expres-

sion. This study also suggested that AsHb could result Th2/Treg response in PBMCs culture due to 

the evaluation of a limited number of cytokines. In addition, it can be concluded that in-vitro 

PBMCs is a potent model for host immunogenetic study for parasitic cases.  
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4.1 General discussion 

Helminths are master as host immunomodulators through a variety of debilitating mechanisms 

using their antigenic molecules. The possibility of molecular crosstalk between helminth antigen 

and the mammalian immune system, and the progressive understanding that helminths impair the 

host innate ability in generating immune reaction also against other antigens or pathogens make the 

immunology of helminth infection an complex, crucial, fascinating and challenging choice for 

investigation (MacDonald et al. 2002).  

 

Primarily, the access and use of a relatively easily reproducible model system is needed for 

experimentation. In this perspective, porcine PBMCs is already well-established model for studying 

pathogenesis and immunogenetics (Islam et al. 2016, Uddin et al. 2012, Wilkinson et al. 2012, 

Fairbarin et al. 2011, Gao et al. 2010). Moreover, the in vitro PBMCs model is a good choice for 

immunogenetic studies for two reasons. One, being a primary cell culture model, PBMCs might 

have more resemblance to the in vivo situation compared to other secondary cell culture for 

studying disease-specific immunogenetics and excludes the possibilities of external environmental 

or heath condition change related effect on the output (Kapetanovic et al. 2013). Secondly, 

respective control without stimulus for each biological replicate is possible throughout the duration 

of the in vitro experiment (Kapetanovic et al. 2013). Most importantly, in vivo experimental 

infection with porcine ascariasis and trichinellosis results in a high degree of unpredictability in the 

outcome of patent infection (Skallerp et al. 2017, Jongersen et al. 2002, Lunney et al. 1988). It is 

because of the fact that in both cases, pigs, even from the same line, show a varying degree of 

resistance in harboring the infection. Moreover, PBMCs are the easily accessible tissue sample 

without doing significant harm to the donor. In addition, cell to cell interaction can be considered 

with possible exclusion of the presence of RBCs, serum, plasma, platelets. Antigenic response 

specific production of cytokines can be measured easily in supernatant as well as on cell lysate.     

 

Next to this model issue, we should consider that the use of live or whole worms outside of their 

natural host habitat is hard and most of the excretory-secretory (ES) preparations are a heterogenous 

mixture of molecules. Therefore, it is difficult to identify signaling molecules to pathogen 

recognition receptors to ensure subsequent transduction pathways. Purified native antigens from 

helminthes or recombinant antigens provide a promising solution to this problem. Hence, native 

antigens obtained from the parasite or commercially synthesized antigens were used to mimic 

primary infection conditions. In this study, A. suum haemoglobin and synthetic homolog of T. 

spiralis derived tyvelose were used. AsHb is the highly produced, one of the major ES antigen of 

L3, L4 and adult ascaris worm (Keane-Myers et al. 2008) and it is easy to produce, inexpensive, 
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highly reactive against the hepatic migratory phases of parasites, which is the most crucial point of 

economic loss in porcine ascariasis. Besides, tyvelose is highly immunodominant epitope of T. 

spiralis muscle larvae stage which is the infective stage and very efficient host immune modulator 

encouraging cyst survival and persistence (Beiting et al. 2004). It is commercially available stable 

and relatively cheap antigen. Both AsHb and tyvelose are two recognized serodiagnostic antigens 

(Vlaminck et al. 2012, Wisnewsky et al. 1993). Therefore it might be expected that these antigens 

will interact with the host at the level of systemic immunity irrespective of host breed or geographic 

location.  

 

In this study, the immunogenetic variation was studied in the piglets from German Landrace and 

Pietrain pigs, because of the  their better production performance as breeding animal and as meat 

producer respectively compared to indigenous breeds of helminth endemic regions. Many 

developing countries with tropical and subtropical climate and high frequency of helminth infection 

are interested and some are still practicing exotic breeds in breeding as well as to enhance farm 

production. But one major constrain with these exotic breeds appears to be the disease resistance in 

addition to the environment stress. Breeds with high productivity traits as well as relatively high 

resistance to local infections might be a good choice for profitable farming. While investigating 

possible differences among the breeding lines used in this study, various environmental factors with 

a potential influence on susceptibility, such as origin of pigs, age, sex, vaccination and feeding were 

standardized. Post-weaned piglets appear to be relatively more vulnerable for ascariasis according 

to the epidemiological data experienced (Roepstorff and Nansen 1994, Boes et al. 2010). 

 

Generally, upon exposure to pathogen, a couple of days is required to develop antigen-specific Th 

cell responses. Therefore, innate immune responses are very crucial for restricting the early 

establishment and expanding actions of invading pathogens or foreign antigens (Koyasu and Moro 

2013). Moreover, innate immunity in parasitic cases is less investigated so far. Next to this, the 

question of which helminth parasites to study arises. We selected A. suum and T. spiralis because of 

their significant role in farm productivity and profitability and for their role as zoonoses. 

Furthermore they represent intracellular and extracellular gastrointestinal nematode group and 

current knowledge on the effect of selected antigens in pig PBMCs in terms of innate immunity and 

host breed variation have not been previously investigated. 

 

In this dissertation, the immunogenetic variation in susceptibility to A. suum and T. spiralis between 

two established pure breeds, German Landrace and Pietrain pigs was investigated using an in vitro 

PBMC model. Pigs naturally exposed to helminth infection, have been shown to harbor the 
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infection into chronic state and elicit pronounced anti-inflammatory cytokine profiles. 

Unfortunately, as helminthes are known to induce immunity slowly and are masters of host-immune 

regulation, most of the studies previously emphasized the adaptive immune response without 

focusing on innate immunity using whole worm or crude extracts or heterogenous mixture of 

excretory secretory antigens. Moreover, most of these studies used relatively high doses of antigens 

or infective helminths (Eriksen et al. 1980, Roepstorff and Murrell 1997, Miquel et al. 2005), which 

were mostly inconsistent with the exposure of pigs to helminths under natural conditions. In 

addition to this, as most of the gastrointestinal helminthes local niche is the intestine, most of these 

research highlighted intestinal immunity. As intestinal effector immunity is mostly regulated by 

granulocytes, specifically eosinophils, mast cells, basophils are associated with the effector 

mediated expulsion of infection (Allen and Sutherland 2014), little attention was paid to peripheral 

mononuclear cells, more specifically to T cell mediated innate immunity. With the advancement of 

knowledge, the contribution of innate immunity comes forward especially while a broad spectrum 

of disease resistance is considered more important to emphasize. Peripheral T cells are considered 

as crucial for dictating the nature of innate immunity (Luckheeram et al. 2012). This innate 

immunity further determines the development of adaptive immunity in the context of host-parasite 

interaction. Additionally, helminth ES antigens are found therapeutically promising to treat several 

immune mediated disorders (Helmby 2015); hence more interest has grown on the individual role 

of antigenic molecules of helminth origin. In this study, we considered these gaps and exploited the 

role of helminth antigens to elucidate the immune variation resulting from pig breed differences. 

 

Several reports have already reported the huge variability in the relative disease resistance or 

susceptibility of swine populations and breeds against several viruses, bacteria and parasites even at 

similar performance levels (Reiner 2009, Reiner et al. 2010). Hence the influence of host genetics 

on the interaction between host and parasites is now subject of both epidemiological and 

experimental animal studies (as reviewed by Mangano and Modiano 2014). Many of these studies 

have shown how the immune response is influenced substantially by the host genetics during 

helminth infections. One fundamental constraint in the assessment of genetic susceptibility or 

resistance is the complex interaction of several genes and their mask by heterogeneous non-

systematic environmental factors. It is now a question of identifying the genes by reducing 

environmental effects and applying modern approaches of genome analysis. Significant number of 

evidence for host genetic variation in resistance was determined from available published data, 

including breed comparison, heritability studies, quantitative trait loci (QTL) studies, evidence of 

candidate genes with significant effects, data on pathogen sequence and on host gene expression 

analyses (Davies et al. 2009). The efficiency of the innate immunity relies on the host genetic 
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susceptibility level, age and sex as well as the genotype of parasites. These factors mean different 

levels of hormones in the body which are expected to affect the parasite. It is also possible for the 

parasite to synchronize their reproductive cycle with the host to maximize their evasion abilities. 

Innate immunity is of immense importance as an index of host immunocompetence (Flori et al. 

2011). 

 

Systemic parasite specific cytokine profiles become Treg/Th-2 polarized relative to naïve PBMC 

controls; but infection significantly altered immune response to helminth antigens in both breeds. 

Landrace pigs expressed substantially less IL-8R beta (CXCR2) than the other breeds Duroc, 

Hampshire and Pietrain (Kapetanovic et al. 2013). Windisch et al. (2000) reported elevated blood 

plasma level of IGF-1while studying protein metabolism in Pi pigs compared to LR pigs. The IGF-1 

is reported to be associated with Treg stimulation and monocyte suppression, thereby suppression of 

inflammatory response (Bilbao et al. 2014, Ge et al. 2015).  

 

Potential genetic influence on variation of innate and adaptive immune traits in pigs has been 

reported (Flori et al. 2011). For instance, differences in innate immune traits, i.e. NK cells, 

monocytes, IFNα production or phagocytosis are heritable (Edfors-Lilja et al. 1994, Clapperton et 

al. 2008). High heritability is also reported for total WBCs, CD4
+
 T lymphocytes, CD8α

+
 T 

lymphocyte and B lymphocyte subset, delayed type hypersensitivity reaction, lymphoproliferation, 

lymphocyte mediated IL-2 production and level of acute phase protein (Edfors-Lilja et al. 1994, 

Clapperton et al. 2009). Monocytes are crucial player in innate immunity and serve also as antigen 

presenting cells (APCs) essential for developing adaptive immunity. The traditional concept that 

CD4
+
αβ T subsets differentiate into Th1 or Th2 lineages expressing specific cytokines is now 

controverted. Rather, current expansion of knowledge explored that cytokine production by the 

different CD4
+
 T cell subsets (Th1, Th2, Th, Th17 and iTreg) is highly flexible. This gave us new 

insight into the Th cell plasticity  (O'Shea and Murray 2008, O'Shea and Paul 2010). 

 

4.2 Phenotypic response in terms of cell viability and phagocytosis towards AsHb and TY 

Gastrointestinal nematodes coordinate with host immune responses for its own benefit and can 

adopt diversied mechanisms to interfere with antigen processing and presentation, to modulate 

macrophage and antigen-presenting cell function, to interrupt the cytokine signaling besides 

induction of immunoregulatory condition (Maizels and Yazdanbakhsh 2003). In many cases, 

immunosuppressive activity has been attributed to molecules that are excreted or secreted by the 

nematodes (Hewitson et al. 2009, Grainger et al. 2010). Mechanistically, helminth manipulation of 

the host immune system is most likely to be activated via the release of soluble mediators which 



General discussion and conclusions                                                                                                          107 

 

 

ligate, degrade or otherwise interact with host immune cells and molecules. Studies on the bovine 

parasite Ostertagia ostertagi and ovine parasite Teladorsagia circumcincta showed that soluble 

somatic extracts or larval excretory-secretory products were capable of suppressing mitogen 

induced bovine lymphocyte proliferation in vitro (Gomez-Munoz et al. 2004) and suggested that the 

parasite may actively induce regulatory T cell responses during infection (McNeilly et al. 2013). 

There are several studies reporting the down regulation of immune response at murine macrophage 

level (Bai et al. 2012, 2016) and depletion of swine lympho-proliferation by Trichinella ES 

(excretory-secretory antigens) (Gerencer et al. 1992). From our study, the lymphoproliferative role 

of tyvelose of Trichinella sp. and lymphosuppressive role of Ascaris sp., in naïve PBMC culture 

indicates that these two parasites modulate the host immunity in a different manner. This finding is 

also in coordination with the findings from Frontera et al. (2007) who demonstrated that Trichinella 

spiralis has an antagonistic relation with the concurrent infection with Ascaris suum in pigs. There 

was also a varying level of differences in the cell viability between breeds (LR and Pi) in both AsHb 

and Tyvelose treated and mitogen activated PBMCs.  

 

Cell survivability and proliferation, when challenged with antigenic materials, are indicators of 

innate immune response. In many parasitic infections, the initial stages of the disease can be 

characterized by the induction of a non-specific lymphoproliferation, which is believed to disrupt 

antigen recognition and interfere with protective immune responses. On the contrary, in many cases, 

helminth or helminth product mediated immunosuppression also can be seen. The 

hyporesponsiveness to antigen-specific and mitogenic stimuli in chronic helminth infections could 

be associated with immunosuppressive cytokines (i.e., IL-10 and TGF-β) secreted by APCs and 

regulatory T cells (Treg cells). A growing list of parasite derived molecules is leading such a 

polarized cytokine secretion. Both AsHb and TY have shown to be potential immunomodulator in 

our in vitro PBMC model. Although the effect of AsHb was highly influential in lymphocyte 

depletion, but the effect was not the same on co-stimulated PBMCs.  

 

Phagocytic efficiency significantly differed between breeds. Relatively higher phagocytosis ability 

was noticed in monocytes of LR piglets compared to Pi from both AsHb and tyvelose treatment. 

Besides host genetics, the discrepancies may have resulted from mature monocyte composition 

difference or the level of anergic cell population. The SLA complex consists of many important 

immune-related genes and has been repeatedly associated with variations in immunological and 

physiological performances in Yorkshire and Landrace pigs (Gao et al. 2017). Therefore, it is 

essential to define the SLA allelles and haplotypes of these pigs, to clarify the molecular 

mechanisms responsible for host immune responses. 
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Discrimination of helminth pathogens in the expression of innate phenotypes could be based on the 

recognition of parasite glycoconjugates, which contain unusual sugars and that have been 

implicated in Th2 response. Loss of T-lymphocyte proliferation concomitant with the development 

of Th2 response is characteristic for infections with other parasitic nematodes (King et al. 1992, 

Allen and MacDonald 1998).  

 

4.3 Dynamics of cytokine mRNAs in PBMCs resulting from AsHb and TY exposure 

Typically, helminths elicit IL-4, IL -5 and IL-13 dominated modified Th2 immune response. These 

cytokines and other signaling molecules activate a number of other cells, e.g. eosinophils, mast 

cells, basophils, epithelial cells and smooth muscle cells (Anthony et al. 2007). More recent studies 

have shown that the immune response during helminth infection is regulated by a network of 

immunosuppressive regulatory T cells and suppressive cytokines like IL-10 and TGF-β (Taylor et 

al. 2012). Techniques for prolonging helminth survival and persistence might be the rise in 

immunoregulatory cells, arresting of Th1 or Th2 cells, targeting pattern recognition receptors and 

lowering the immune cells quantity via enforcing apoptosis. Helminths and their products have 

demonstrated the potential to trigger apoptosis and anergy of host immune cells especially T 

lymphocytes (Chow et al. 2000, O'Connor et al. 2003, Smith et al. 2004), antigen presenting cells 

like APCs, NKs and eosinophils (Moreau and Chauvin 2010, Babu and Nutman 2012). The 

mechanisms by which they elicit such response are not fully understood. At this stage, while a lot is 

known about how innate immunity works in bacterial or viral infection, relatively little is known 

about helminth immunity that activates, polarizes and makes the immune response functional. One 

possible justification for this fact could be that helminthes are multicellular organisms and they 

have parasitic and non-parasitic stages. Helminths are very diverse in their intra and extracellular 

architecture including several life stages and may have several habitats within the same host at the 

same time by different developmental stages. Multiple approaches should be utilized to handle these 

issues.  

 

The most striking findings from this study indicated that both AsHb and TY can activate naïve 

PBMC culture in a host, time and stimulus dependent-manner. Both AsHb and tyvelose could 

elevate overall IL-10, IL-6 expression in the PBMC culture in German Landrace pigs earlier than 

Pietrain pigs. Similar response was also reported in another study (Ait-Ali et al. 2011) devoted for 

innate immunity in Porcine Reproductive and Respiratory Syndrome Virus challenged macrophages 

of German Landrace and Pietrain pigs. The IL-10 and IL-6 response from their study also varied 

between host breed and in a time course manner. IL-10 is considered as the mastermind of 
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immuneregulation and IL-6 is considered as bridge between innate and adaptive immunity. Low 

parasite specific IL-6 and TGF- β concentrations are associated with development of severe liver 

pathology (Wilson and Maizels 2006). Therefore, IL-6 feedback regulation and synergy with anti-

inflammatory responses may be required to limit immunopathology.  

 

Breed variation between German Landrace and Pietrain was also clearly evident in the level of IL-2 

mRNA expression in mitogen-activated group at the earliest time point we tested, i.e. 24 h post 

exposure. Both tyvelose and AsHb had downregulated the IL-2 level in both breeds. Mitogen 

induced IL-2 production is already proved as a prospective candidate gene for swine PBMC 

mediated immune responsiveness and associated with host genetic factors (Mach et al. 2013). 

Susceptibility level to porcine circovirus infection of German Landrace and Pietrain was also 

different (Opriessnig et al. 2009). Inherent genetic variation has been reported between LR and Pi 

pigs in terms of nutrient utilization and metabolic functions (Ponsuksili et al. 2007), which might 

indicate that immune system of LR and Pi pigs react differently to pathogens. In our recent study, 

whole transcriptome profiles of PBMCs obtained from PRRSV vaccinated LR and Pi pigs revealed 

distinct gene expression pattern (Islam et al. 2017) 

 

Polarization of PBMCs was not clear-cut as three timepoints were considered and there was shift in 

changes in cytokine level from time to time. Moreover, large numbers of cytokines indicative of 

typical Th2 (IL-4, IL-5, IL-13) or Th17 (IL-17) were beyond the scope of our study. Furthermore, 

typical cytokine pairs, IFN-γ and IL-2, and IL-10 and TFG-β which were expected to be correlated 

in expression, did not show any significant similarity trend. In addition to this, the expression 

dynamics was also influenced by the host genetics. Therefore, the tested cytokine level varied 

between LR and Pi piglets.  

 

Picherot et al. (2007) also found that swine intestinal mucosa as well as splenic cells was unable to 

induce distinct Th1 or Th2 response to T. spiralis where dominance of Th1 cytokine, IFN-γ and Th2 

cytokine, IL-10 was found accompanied by predominant IgG1 and IgA (Type 2). Increased 

expression of IL-10 in absence of IL-4 at the mucosal level triggered TGF-β mRNA production 

(Picherot et al. 2007). TGF-β was linked to a tolerogenic profile in the intestine (McGuirk et al. 

2002). The absence of TGF-β mRNA modulation suggests that the anti-T. spiralis mucosal response 

was not directed toward a tolerogenic feature (Picherot et al. 2007). In similar instances, the 

sensitivity profile of the assay in evaluating mRNA modulation could also be a limiting factor in 

analysis, providing an explanation for difficulties in detecting IL-4 and IL-12 in a heterogenous 

model such as PBMCs.  
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The backyard and free-ranged pigs are at highest risk for Trichinella sp. as well as Ascaris sp. 

infection. Although commercial pig farming is based on highly intensive management system in the 

developed countries, the backyard and free-ranged pig farming are still common in developing 

countries (Gottstein et al. 2009). Moreover, consumption of animal foods from green or organic 

farming is becoming popular day by day in concern with animal welfare issues. The routine meat 

inspection is primarily aimed to prevent the human consumption of infected pork and little efforts 

on preventing animals to be infected. The pigs reared in free range system, often fed food scraps or 

other forms of meat-containing waste and have ready access to rodents, which facilitate the 

trichinella infection. Persons working in Ascaris sp. infected farm were also found in risk of 

zoonotic transmission of ascaris worms. Taken together, both of these infection appeared to be a 

serious concern for domestic and international trading of the safe hygienic meat and meat products 

and needs to be prevented feasibly and sustainably through proper selection of animals according to 

the farming style, geographic location and other relevant issues. 

           

4.4 Conclusions 

The results of the current thesis clearly indicate there is substantial variation in the innate immune 

responsiveness to two helminth antigens tested between German Landrace and Pietrain pigs. Our 

study on the swine immune response to tyvelose and AsHb in PBMC cultures showed that both the 

phenotypes and genotypes of tested immune traits were of different patterns in two breeds 

depending on stimulus, host genetics and time-course. It also suggested that in-vitro PBMCs can be 

a useful model for immunogenetic study of other parasitic helminthes or pathogens. These findings 

will contribute on understanding the host immune response to helminthes parasites, both for a 

feasible and sustainable advancement of porcine health and welfare. Information on relatively 

higher resistance or susceptibility in a specified pig breed would facilitate the implementation 

strategy to control infection, enhance performance and quality. These will ultimately reduce the use 

of medicaments, would improve consumer health and animal welfare. This study also highlights the 

importance of considering the potential for the variation in immune responsiveness in terms of pig 

health. In addition to these, because of the physiological resemblance between pigs and human, 

findings from this study may be translated to human studies for host-parasite interaction and allergic 

immunity. 

 

4.5 Future perspectives 

According to the spectrum of this immunogenetic study, of which chapter 2 and chapter 3 discussed 

two individual parasites, there are few issues needed to be properly addressed, considered and 
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validated further.  

 

Firstly, the validation of disease specific marker gene expression would be highly suggested. For 

instances, thioredoxin-interacting protein (TXNIP) single nucleotide polymorphisms was linked 

with resistance in porcine Ascaris suum infection (Skallerp et al. 2012); Matrix metalloproteinase 

(MMP)-2 and MMP-9 have been found to be associated with inflammation level as marker in 

Trichinella spiralis in mice (Bruschi et al. 2014) and associated with immune traits in pig (Huang et 

al. 2009). MMP-9 was revealed as a reliable marker for inflammation in early human trichinellosis 

(Bruschi et al. 2016).  

 

Secondly, evaluation of a larger set of cytokines, related cell surface markers, activation markers, 

co-stimulatory molecules, transcription factors, marker genes for cell proliferation, ROS production 

and apoptosis might be useful to correlate the phenotypic and genotypic expression and to come to 

a more concrete conclusion. Of special interest can be IL-4, IL-5, CD4, CD8, MHCII, FOXP3, T-

bet1, GATA3, ROR-γδ., iNOS etc. 

 

Thirdly, assessment of protein expression in the supernatant and cell lysate will provide more 

details understanding of the pathogenesis in vivo. Age-structured evaluation will also be helpful to 

check if this variation persists over the lifespan of these breeds. Because, innate immunity is 

reported to vary from age, sex dependent manner and our study focused animals only of a special 

age group, 5-6 weeks old. To ensure the breed variation, local tissue based evaluation of the effect 

of these antigens is further suggested as differences in the systemic and local inflammatory response 

were evident from previous study (Picherot et al. 2007). 
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5. Appendices 

 
List of chemicals and reagents used for this experiment 

 
Chemical Cat.no. Manufacturer/Supplier 

Meliseptol® 1110493 Labomedic GmbH, Bonn, Germany 

NaCl P029.2 Carl Roth GmbH+ Co. KG, Karlsruhe, Germany 

Na2HPO4.2H2O T877.1 Carl Roth GmbH+ Co. KG, Karlsruhe, Germany 

KCl 678.1 Carl Roth GmbH+ Co. KG, Karlsruhe, Germany 

KH2PO4 3904.1 Carl Roth GmbH+ Co. KG, Karlsruhe, Germany 

Fungizone® antimycotic 15290-026 Life Technologices GmbH, Darmstadt, Germany 

Penicillin-streptomycin (10,000 u/ml) 15140-122 Life Technologies GmbH, Darmstadt, Germany 

NH4Cl K298.2 Carl Roth GmbH+Co. KG, Karlsruhe, Germany 

KHCO3 P748.2 Carl Roth GmbH+Co. KG, Karlsruhe, Germany 

EDTA 8043.2 Carl Roth GmbH+Co. KG, Karlsruhe, Germany 

Histopaque-1077 10771 Sigma-Aldrich, Munich, Germany 

RPMI 1640 medium 61870-044 Life Technologies GmbH, Darmstadt, Germany 

FBS 10270-106 Life Technologies GmbH, Darmstadt, Germany 

Trypan blue stain (4%) 93595 Sigma-Aldrich (Fluka), St. Louis, USA 

Ascaris suum haemoglobin  A kind gift from Prof. Dr. Peter Geldhof, Gent 

University, Belgium  

Tyvelose (Tyvelose®) CAS-5658-12-8 Santa Cruz Biotechnology, Canada 

Lipopolysaccharide (LPS) L2880 Sigma Aldrich, Germany 

Phytohaemagglutinin-M (PHA-M)  10576015 ThermoFisher Scientific, Germany 

CCK-8 Cell Viability Assay Kit CK04-10 Dojindo Molecular Technologies Inc., EU GmbH, 

Germany 

VybrantTM Phagocytosis Assay Kit V-6694 Molecular Probes, Germany 

miRNeasy mini kit 217004 Qiagen, GmbH, Hilden 

First Strand cDNA Synthesis  K1681 ThermoPhisher, Co., Germany 

iTaqTM Universal SYBR® Green 

Supermix 

172-5120 Bio-Rad Laboratories GmbH, München, Germany 

Ethanol (≥99.8%) 9065.2 Carl Roth GmbH+Co. KG, Germany 

RNase-free DNase set 79254 Qiagen, GmbH, Hilden 

Agarose N3101-0500 STARLAB GmbH, Ahrensbur, Germany 

Ethidium bromide (1%) 2218.1 Carl Roth GmbH+Co. KG,  Germany 

Agar 2266.2 Carl Roth GmbH+Co. KG, Germany 

Taq DNA polymerase 786-447 G-Biosciences, St Louis, USA 
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Buffer, media and gel preparation 

 
PBMC washing media, 1X PBS (without Ca2+ and 

Mg2+, pH 7.4) 

(g/L) 

NaCl 

Na2PO4.2H2O 

KCl 

KH2PO4 

8 

1.44 

0.20 

0.24 

1X RBC Lysis Buffer (g/L) or (ml/L) 

NH4Cl 

KHCO3 

5% EDTA 

ddH2O added to 

8.30 g/L 

1g/L 

1.80 ml/L 

1L 

PBMCs culture medium Percentage, % 

RPMI-1640 medium  

FBS  

Pen-Strep (100Xconcentrate)  
Fungizone® antimycotic 

88 

10 

1 
1 

PBMCs counting  µL 

4% Trypan blue stain medium  

PBMC suspension  

PBMCs culture media 

10 

50 

40 

Tris-acetate-EDTA (TAE) (10X) Ml/L or g/L 

Acetic acid (100%) 

Tris base 

EDTA 

ddH2O added to  

571 ml 

242 g 

100 ml 

1L 

Agarose gel (2%) g or ml or µl 

Agarose 

TAE (1X) 

Ethidium bromide 

4g 

200 ml 

9 µl 

dNTP solution 400 ml 

dATP (100 mM) 

dGTP (100 mM) 

dTTP (100 mM) 

ddH2O added to  

10 µl 

10 µl 

10 µl 

400 ml 

 



120                                                                                                                                           Appendices                                                                                                                                             

 

Equipment and consumbles 

 
Equipment and consumables Manufacturer/Supplier 

Centrifuge tubes (15 ml, 50 ml) 

Centrifuge (5810R, 5424, 5416, 5415R) 

Haemocytometer 

Microscope (ECLIPSE TS100) 

SARSTEDT AG & Co., Nümbrecht 

Eppendorf AG, Hamburg 

Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen 

Nikon GmbH, Düsseldorf 

Digital camera system for microscopy digital sight series 

(DS-Fi1) 

Nikon GmbH, Düsseldorf 

Memmert CO2 incubator Fisher Scientific UK Ltd, Loughborough 

6 – well cell culture plates STARLAB GmbH, Hamburg 

96 – well cell culture plates STARLAB GmbH, Hamburg 

Serological pipettes (1, 2, 5, 10, 25 ml) Greiner Bio-One GmbH, Frickenhausen 

Aspirating pipette Greiner Bio-One GmbH, Frickenhausen 

Cell scrapers Greiner Bio-One GmbH, Frickenhausen 

Plate reader synergyTM 2 Bio Tek Instruments GmbH, Bad Friedrichshall 

StepOnePlusTM real time PCR system  Life Technologices GmbH, Darmstadt (Applied 

Biosystems®) 

MicroAmp® fast optical 96-well reaction plate with 

barcode, 0.1 ml 

Life Technologices GmbH, Darmstadt (Applied 

Biosystems®) 

Water-bath 1083 GFL Gesellschaft für Labortechnik mbH, Burgwedel 

Nanodrop 8000 spectrophotometer Thermo Fisher Scientific Biosciences GmbH, St. Leon-

Roth 

Universal High speed centrifugation (Z300 K, Z300, 

Z200 M/H, Z233 MK, Z323 K) 

HERMLE Labortechnik GmbH, Wehingen 

ELV fully automatic autoclave (3870) Tuttnauer Europe B.V., Netherlands 

Multi®- ultra tubes 0.65 ml Carl Roth GmbH + Co. KG, Karlsruhe 

SafeSeal® tubes 1.5 ml Carl Roth GmbH + Co. KG, Karlsruhe 

SafeSeal® tubes 2.0 ml Carl Roth GmbH + Co. KG, Karlsruhe 

PCR® strip tubes VWR International GmbH, Darmstadt (Axygen®) 

Pipette tips (10 µl, 200 µl, 1000 µl) Labomedic GmbH, Bonn 

Pipettes (0.5-10, 2-20, 20-200, 100-1000 µl) Eppendorf AG, Hamburg 

 
 

 

Software programs and statistical packages 

Software Use Source 

Primer 3 qRT-PCR primer design http://simgene.com/Primer3 

BLAST4 Check alignment 

specificity 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 

GraphPad Prism Analysis of phenotypic 

data and plotting results 

Proprietory, Builtin citreon server  

SAS Analysis of qRT-PCR 

data 

Proprietory, Builtin citreon server 

Citavi Reference management Open sources, Builtin citreon server 

http://simgene.com/Primer3
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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