
L E A R N I N G O B J E C T R E C O G N I T I O N A N D

O B J E C T C L A S S S E G M E N TAT I O N W I T H

D E E P N E U R A L N E T W O R K S O N G P U

dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

schulz , hannes
aus Leipzig

Bonn, 2015

Angefertigt mit Genehmigung der Mathematisch-
Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-
Wilhelms-Universität Bonn

Erster Gutachter Prof. Dr. Sven Behnke

Zweiter Gutachter Prof. Dr.-Ing. Christian Bauckhage

Tag der Promotion 9. September 2016

Erscheinungsjahr 2017

Z U S A M M E N FA S S U N G

Allgegenwärtige Kameras und preiswerter Internetspeicher er-
zeugen einen großen Bedarf an Algorithmen für maschinelles Se-
hen. Die vorliegende Dissertation adressiert zwei Teilbereiche die-
ses Forschungsfeldes: Erkennung von Objekten und Objektklas-
sensegmentierung. Der methodische Schwerpunkt liegt auf dem
Lernen von tiefen Modellen (”Deep Learning“). Diese haben in
den vergangenen Jahren einen enormen Einfluss auf maschinel-
les Lernen allgemein und speziell maschinelles Sehen gewonnen.
Dabei behandeln wir behandeln wir drei Themenfelder.

Der erste Teil der Arbeit beschreibt ein GPU-basiertes Softwa-
resystem für Deep Learning. Dessen hierarchische Struktur er-
laubt schnelle GPU-Berechnungen, einfache Spezifikation kom-
plexer Modelle und interaktive Modellanalyse. Damit liefert es
das Fundament für die folgenden Kapitel. Teile des Systems fin-
den Verwendung in einer Echtzeit-GPU-Bibliothek für Random
Forests, die wir ebenfalls vorstellen und evaluieren.

Der zweite Teil der Arbeit beleuchtet Greedy-Lernalgorithmen
für halbüberwachtes Lernen. Hier werden hierarchische Model-
le schrittweise aus Modulen wie Autokodierern oder restricted
Boltzmann Machines (RBMs) aufgebaut. Wir verbessern die Re-
präsentationsfähigkeiten von RBMs auf Bildern durch Einführung
lokaler und lateraler Verknüpfungen und liefern empirische Er-
kenntnisse zur Bewertung von RBM-Lernalgorithmen. Wir zeigen
zudem, dass die in Autokodierern verwendeten einschichtigen
Kodierer komplexe Zusammenhänge ihrer Eingaben nicht erken-
nen können und schlagen stattdessen einen hybriden Kodierer
vor, der sowohl komplexe Zusammenhänge erkennen, als auch
weiterhin einfache Zusammenhänge einfach repräsentieren kann.

Im dritten Teil der Arbeit stellen wir neue neuronale Netzarchi-
tekturen und Trainingsmethoden für die Objektklassensegmen-
tierung vor. Wir zeigen, dass neuronale Netze mit überwachtem
Vortrainieren, wiederverwendeten Ausgaben und Histogrammen
Orientierter Gradienten (HOG) als Eingabe den aktuellen Stand

iii

der Technik auf mehreren RGB-Datenmengen erreichen können.
Anschließend erweitern wir unsere Methoden in zwei Dimensio-
nen, sodass sie mit Tiefendaten (RGB-D) und Videos verarbeiten
können. Dazu führen wir zunächst Tiefennormalisierung für Ob-
jektklassensegmentierung ein um die Skala zu fixieren, und er-
lauben expliziten Zugriff auf die Höhe in einem Bildausschnitt.
Schließlich stellen wir ein rekurrentes konvolutionales neurona-
les Netz vor, das einen großen räumlichen Kontext einbezieht,
hochaufgelöste Ausgaben produziert und Videosequenzen verar-
beiten kann. Dadurch verbessert sich die Bildsegmentierung rela-
tiv zu vergleichbaren Methoden, etwa auf der Basis von Random
Forests oder CRFs. Wir zeigen dann, dass pixelbasierte Ausgaben
in neuronalen Netzen auch benutzt werden können um die Posi-
tion von Objekten zu detektieren. Dazu kombinieren wir Techni-
ken des strukturierten Lernens mit Konvolutionsnetzen. Schließ-
lich schlagen wir eine objektzentrierte Einfärbungsmethode vor,
die es ermöglicht auf RGB-Bildern trainierte neuronale Netze auf
RGB-D-Bildern einzusetzen. Dieser Transferlernansatz erlaubt es
uns auch mit stark reduzierten Trainingsmengen noch bessere Er-
gebnisse beim Schätzen von Objektklassen, -instanzen und -orien-
tierungen zu erzielen.

Wir werten die von uns vorgeschlagenen Methoden auf den
öffentlich zugänglichen MNIST, MSRC, INRIA Graz-02, NYU-Depth,
Pascal VOC, und Washington RGB-D Objects Datenmengen aus.

iv

A B S T R A C T

As cameras are becoming ubiquitous and internet storage abun-
dant, the need for computers to understand images is growing
rapidly. This thesis is concerned with two computer vision tasks,
recognizing objects and their location, and segmenting images ac-
cording to object classes. We focus on deep learning approaches,
which in recent years had a tremendous influence on machine
learning in general and computer vision in particular. The thesis
presents our research into deep learning models and algorithms.
It is divided into three parts.

The first part describes our GPU deep learning framework. Its
hierarchical structure allows transparent use of GPU, facilitates
specification of complex models, model inspection, and consti-
tutes the implementation basis of the later chapters. Components
of this framework were used in a real-time GPU library for ran-
dom forests, which we present and evaluate.

In the second part, we investigate greedy learning techniques
for semi-supervised object recognition. We improve the feature
learning capabilities of restricted Boltzmann machines (RBM) with
lateral interactions and auto-encoders with additional hidden lay-
ers, and offer empirical insight into the evaluation of RBM learn-
ing algorithms.

The third part of this thesis focuses on object class segmen-
tation. Here, we incrementally introduce novel neural network
models and training algorithms, successively improving the state
of the art on multiple datasets. Our novel methods include super-
vised pre-training, histogram of oriented gradient DNN inputs,
depth normalization and recurrence. All contribute towards im-
proving segmentation performance beyond what is possible with
competitive baseline methods. We further demonstrate that pixel-
wise labeling combined with a structured loss function can be uti-
lized to localize objects. Finally, we show how transfer learning in
combination with object-centered depth colorization can be used
to identify objects.

v

We evaluate our proposed methods on the publicly available
MNIST, MSRC, INRIA Graz-02, NYU-Depth, Pascal VOC, and Wash-
ington RGB-D Objects datasets.

vi

A C K N O W L E D G M E N T S

I would like to thank my advisor Sven Behnke for the opportu-
nity to pursue my studies in his department, his support, encour-
agement, and fertile discussions. I would also like to thank my
second advisor, Christian Bauckhage, for agreeing to review my
thesis.

During my time at the University Bonn, I was fortunate to work
on a large range of topics, from Boltzmann machines to object
detections, but also from soccer field localization to plant root
segmentation. Whatever it was, it was a pleasure to discuss and
develop with my co-workers in the autonomous systems group.
I am particularly grateful to Dr. Andreas Müller (NY University)
for his constructive advice.

This thesis would not have been possible without the hard
work of the University Bonn students, especially Benedikt Wald-
vogel, Max Schwarz, Niko Höft, and Mircea Pavel.

I would also like to say thanks to Tapani Raiko (Aalto Uni-
versity) and Kyunghyun Cho (NY University) for hosting me in
Helsinki during my all too brief stay.

Last but not least, I would like to thank Sarah for her unrelent-
ing support and patience during this strenuous time.

vii

Contents

1 introduction 1
1.1 Key Contributions . 4
1.2 Publications . 5

2 background on deep learning 7
2.1 The Argument for Many-Layered Neural Networks 7
2.2 Notation . 9
2.3 Difficulties in Learning Deep Architectures 11
2.4 Greedy Layer-wise Training with RBMs 12
2.4.1 Greedy Training with Auto-Encoders 14
2.5 Regularization in Unsupervised Learning 15
2.5.1 Limiting Representation Size 15
2.5.2 Enforcing Representation Sparsity 15
2.5.3 Infinite Training Data 16
2.6 Convolutional Neural Networks 16
2.6.1 Sparse Parameters . 17
2.6.2 Weight Sharing . 18
2.6.3 Pooling . 19
2.6.4 Margin Handling . 19
2.7 Cross-Dataset Transfer Learning 19
2.8 Conclusion . 21

3 gpu-based machine learning 23
3.1 Background on the Backpropagation Algorithm 23
3.1.1 Forward Pass . 24
3.1.2 Backward Pass . 24
3.1.3 Weight Update . 25
3.2 GPU Considerations . 26
3.3 CUV: N-Dimensional Arrays in CUDA 27

ix

x contents

3.4 Generic Model Optimization with CUVNET 31
3.4.1 Requirements of Deep Learning Algorithms 31
3.4.2 Fast GPU Implementation 31
3.4.3 User Interface . 32
3.4.4 Complex Models . 33
3.4.5 Differentiation Graph 35
3.4.6 Special Copy-on-write Semantics 35
3.4.7 Monitoring and Visualization 37
3.4.8 Testing . 38
3.4.9 Other Major Features 39
3.5 Comparison with other Neural Network Software . 39
3.6 Acknowledgments . 40
3.7 Applications . 41

4 curfil : fast random forests in cuda 43
4.1 Related Work . 45
4.2 Random Forests . 46
4.3 Visual Features for Node Tests 47
4.4 CURFIL Software Package 49
4.4.1 GPU Kernels . 53
4.4.2 Global Memory Limitations 56
4.4.3 Extensions . 57
4.5 Experimental Results . 58
4.5.1 Datasets . 58
4.5.2 Training and Prediction Time 59
4.5.3 Classification Accuracy 60
4.5.4 Incorporating Novel Features 62
4.5.5 Random Forest Parameters 63
4.6 Conclusion . 63

5 unsupervised methods for image categorization 65
5.1 Exploiting Local Structure in Boltzmann Machines . . 65
5.1.1 Background on Boltzmann Machines 66
5.1.2 Local Impact Semi-Restricted Boltzmann Machines+ 67
5.1.3 Related Work . 69
5.1.4 Experimental Results 70
5.1.5 Conclusions . 73

contents xi

5.2 Investigating Convergence of RBM Learning 73
5.2.1 Background on Restricted Boltzmann Machines . . . 76
5.2.2 Experimental Setup 79
5.2.3 Results . 83
5.2.4 Conclusions . 85
5.3 Two-Layer Encodings for Semi-supervised Learning . . 86
5.3.1 Related Work . 88
5.3.2 Background . 89
5.3.3 Where Pre-Training of One-Layer Encoders Fails . . 93
5.3.4 Two-Layer Encoders and Contractive Regularization 95
5.3.5 Two-Layer Encoders and Shortcut Connections . . . 96
5.3.6 Experiments . 96
5.3.7 Discussion . 105
5.3.8 Conclusions . 106

6 learning object-class segmentation 109
6.1 Learning Object Class Segmentation with CNN 110
6.1.1 Methods . 110
6.1.2 Results . 114
6.1.3 Related Work . 117
6.1.4 Conclusion . 119
6.2 Encoding Depth Information for CNN 119
6.2.1 Methods . 120
6.2.2 Experiments . 121
6.2.3 Related Work . 122
6.2.4 Conclusion . 124
6.3 Depth and Height Aware Semantic Perception 125
6.3.1 Related Work . 127
6.3.2 Methods . 128
6.3.3 Experiments . 130
6.3.4 Conclusion . 133
6.4 Recurrent Networks for Depth Perception 133
6.4.1 Model Description . 135
6.4.2 Related Work . 139
6.4.3 Experiments . 141
6.4.4 Conclusion . 151
6.5 Chapter Summary . 152

xii contents

7 structured prediction for object detection 153
7.1 Structured Prediction for Object Detection 154
7.2 Experiments . 158
7.3 Related Work . 160
7.4 Conclusion . 162

8 transfer learning for rgb-d object recognition 165
8.1 Related Work . 167
8.2 CNN Feature Extraction Pipeline 169
8.2.1 RGB Image Preprocessing 169
8.2.2 Depth Image Preprocessing 170
8.2.3 Image Feature Extraction 174
8.3 Learning Method . 175
8.3.1 Object Classification 175
8.3.2 Object Pose Estimation 175
8.4 Evaluation . 176
8.4.1 Evaluation Protocol . 176
8.4.2 Results . 177
8.5 Conclusion . 183

9 conclusion 185
9.1 Future Directions . 187

a acronyms and symbols 189

bibliography 195

1I N T R O D U C T I O N

How can a machine see? This question becomes increasingly im-
portant as ubiquitous smartphones, wearables, self-driving cars
and other autonomous robots are equipped with cameras. While
interpreting images and videos is an easy feat for humans, mod-
ern computer systems still struggle with this task. One reason for
this struggle may the output specification — what does it mean
to “interpret” an image?— , but even for clearly defined subtasks
such as object recognition, many questions are unsolved.

An image taken by a consumer camera is a two-dimensional
array of pixels between 0 and 255. These values can change dra-
matically depending on, e.g., environmental conditions, depicted
objects and instances, and their pose. Due to this complexity, in-
terpretation of images usually relies heavily on models about sta-
tistical properties of images in general and the specific entities
required for a task.

Specifying models manually is tedious and difficult. Instead,
we can learn models from datasets which contain labeled infor-
mation. The research field of DNNs has gained much attention
in the past years. Recently, its initial success on toy problems
carried over to challenges of the computer vision community. To-
day, major parts of this community focus on DNN-based models.
This achievement is largely attributed to the availability of large
amounts of training data, high-throughput GPU processing power,
and a large, accumulated body of insights into how to build, ini-
tialize, and train DNN models.

DNN models are functions on images, which transform the im-
age in multiple steps, using a limited set of operations. This struc-
ture is inspired by the processing of visual inputs in the visual
cortex of primates. Every operation in the chain has parameters,
which must be either set by the model designer (hyper-parame-
ters), or learned from data.

1

2 introduction

Specifying a deep model’s structure, providing adequate pre-
processing and output encoding, and learning its millions of pa-
rameters using various gradient methods, learning stages, and
transfer learning is a still largely unexplored playground. This
thesis examines a few of its corners.

In this thesis, we cover three main topics. After an introduction
to deep learning in general (Chapter 2), we are first concerned
with the technical challenges of model learning. It requires time-
consuming experiments on large datasets, which we (and most
other researchers) delegate to a graphics processing unit (GPU).
We start by explicating technical requirements in Sections 3.1
and 3.2 and proceed to describe three libraries which we created
for this thesis. CUV (Section 3.3) provides a high-level interface to
multi-dimensional arrays on GPU. This library is the workhorse
of CUVNET (Section 3.4), which in turn offers automatic differenti-
ation, multiple abstractions over operations to simplify specifica-
tion of complex models, and a machine learning eco-system that
allows to determine hyper-parameters and perform experiments
on a variety of tasks. CUV is also used in another library, CUDA

random forests for image labeling (CURFIL, Chapter 4). Random
forests are another computer vision technique, which is excep-
tionally fast and yields good results. Our implementation is real-
time capable even on mobile GPUs. We return to the image label-
ing task in Chapter 6 using DNNs.

The second main topic of this thesis is semi-supervised learn-
ing for image categorization. It comprises a number of techniques
where the model is initialized with task-unspecific properties
from a dataset, and afterwards fine-tuned using labeled data.
To this end, features are learned sequentially in a hierarchy of
learning blocks, restricted Boltzmann machines (RBMs) or auto-
encoders. We explore extensions of RBMs, generative models with
hidden variables, for modeling images in Section 5.1. While our
extensions produce good results, we show in Section 5.2 that em-
pirically, learning an RBM is a matter of luck, since the exact gra-
dient is too expensive to compute, and known partition function
approximations do not perform well even on small problems.
In Section 5.3, we turn to auto-encoders, which can be learned
directly with gradient descent on the objective function. Here,

introduction 3

we show that the commonly used shallow auto-encoders can-
not learn certain classes of functions, construct a dataset where
common auto-encoders fail, and provide an improved approach
using two-layer contractive encoders with shortcut connections.
The two-layer structure allows for detection of complex features,
while shortcuts allow simple features to be represented as in sin-
gle-layer encoders.

The third main topic of the thesis is the development of mod-
els for object class segmentation. In Section 6.1, we introduce
a model and a training procedure for object class segmenta-
tion with DNNs. HOG descriptors are an established tool in com-
puter vision, which we adapt for DNNs. To improve accuracy,
we also propose to diverge from the linear structure of com-
mon feed-forward neural networks, by introducing multi-scale
inputs and reusing of pre-trained outputs. We then supplement
our approach to work with three-dimensional data provided by
an RGB-D sensor in Section 6.2. We show that with histogram of
oriented depth (HOD) descriptors and depth normalization, our
CNN outperforms the state-of-the-art convolutional network as
well as random forest and CRF-based approaches. Last but not
least in Section 6.4, we extend our network in the time domain
using a recurrent convolutional neural network (RNN) for video
processing. This network is able to retain a state over time, track
and measure movement, retain uncertainty, and produces better
segmentations than all previous methods.

Another class of problems that can be cast into pixel-wise pre-
dictions is object localization. In Chapter 7, we suggest to com-
bine deep learning techniques with structured learning. Struc-
tured learning allows to produce outputs in a space which is
not enumerable, but structured. Here, a point in this space is an
arbitrary number of object bounding boxes in an image. We pro-
pose a neural network which produces output maps, from which
bounding boxes of objects in the image can be inferred efficiently.
This inference procedure is used as part of the neural network
loss.

In Chapter 8, we return to the object classification task and
combine it with depth perception. We show that object-centered
colorization schemes of depth allow transfer learning from net-

4 introduction

works pre-trained on RGB image classification tasks. Transfer-
learning allows us to produce superior results even with small
datasets, which is essential for robotics applications. We apply
this technique to RGB-D object classification and pose-estimation.
Chapter 9 concludes the thesis.

1.1 key contributions

This thesis contains the following contributions:

• Providing open-source GPU-based software frameworks for
deep learning and random forests.

• Introducing methods for learning laterally and locally con-
nected RBMs, which are better suited for images exhibiting
weak long-range dependencies between pixels.

• Demonstrating empirically that RBM training success is not
predictable. We use annealed importance sampling (AIS), the
standard method for model selection on unnormalized multi-
modal probability distributions, and find that it is not reliable
even for very simple tasks.

• Showing that non-linear relations of variables can be a problem
in semi-supervised deep learning due to the fact that some
stable features cannot be detected. To recover, we propose a
two-layer auto-encoder with shortcuts, which combines sim-
plicity of single-layer encoders with the representational power
of two-layer encoders.

• Introducing a DNN model for object class segmentation. Our ap-
proach is fast and achieves very good performance on a num-
ber of benchmark datasets.

• Extending the object class segmentation model to the depth
modality, using histograms of oriented depth, depth normal-
ization and height-awareness.

• Extending object class segmentation models for images to
video processing, using recurrent convolutional neural net-

1.2 publications 5

works. While slower and more difficult to train, prediction ac-
curacy of these models increases strongly over non-recurrent
models.

• Combining structured prediction with deep learning for ob-
ject detection. This approach allows optimization of the Pascal
VOC measure of detection quality directly during learning.

• Demonstrating that transfer learning can be a powerful tool
for robotics, where datasets are typically small. We use depth-
coloring and pre-trained CNN to recognize objects and their
pose in RGB-D images in small datasets.

1.2 publications

Some ideas and figures have appeared previously in the follow-
ing publications:

Schulz, H., A. Müller, and S. Behnke (2010b). “Investigating
Convergence of Restricted Boltzmann Machine Learning.”
In: NIPS Workshop on Deep Learning and Unsupervised Feature
Learning.

Schulz, H., A. Müller, and S. Behnke (2011). “Exploiting Local
Structure in Boltzmann Machines.” In: Neurocomputing 74.9.
Supersedes Schulz et al. (2010a).

Schulz, H. and S. Behnke (2012a). “Deep Learning: Layer-wise
Learning of Feature Hierarchies.” In: Künstliche Intelligenz
26.4: Neural Learning Paradigms.

Schulz, H. and S. Behnke (2012b). “Learning Object-Class Seg-
mentation with Convolutional Neural Networks.” In: Euro-
pean Conference on Neural Networks (ESANN).

Höft, N., H. Schulz, and S. Behnke (2014). “Fast Semantic Seg-
mentation of RGB-D Scenes with GPU-Accelerated Deep
Neural Networks.” In: German Conference on Artificial Intel-
ligence (KI). Lecture Notes in Computer Science (LNCS) 8736.
Springer.

6 introduction

Schulz, H. and S. Behnke (2014). “Structured Prediction for Ob-
ject Detection in Deep Neural Networks.” In: International
Conference on Artificial Neural Networks (ICANN).

Schulz, H., K. Cho, T. Raiko, and S. Behnke (2014). “Two-Layer
Contractive Encodings for Learning Stable Nonlinear Fea-
tures.” In: Neural Networks: Deep Learning of Representations.
Ed. by Y. Bengio and H. Lee. Supersedes Schulz and Behnke
(2012c) and Schulz et al. (2013).

Schwarz, M., H. Schulz, and S. Behnke (2014). “RGB-D Object
Recognition and Pose Estimation based on Pre-trained Con-
volutional Neural Network Features.” In: International Con-
ference on Robotics and Automation (ICRA).

Pavel, M. S., H. Schulz, and S. Behnke (2015). “Recurrent Con-
volutional Neural Networks for Object-Class Segmentation
of RGB-D Video.” In: International Joint Conference on Neural
Networks (IJCNN).

Schulz, H., N. Höft, and S. Behnke (2015a). “Depth and Height
Aware Semantic RGB-D Perception with Convolutional Neu-
ral Networks.” In: European Conference on Neural Networks
(ESANN).

Schulz, H., B. Waldvogel, R. Sheikh, and S. Behnke (2016).
“CURFIL: A GPU library for Image Labeling with Random
Forests.” In: Computer Vision, Imaging and Computer Graph-
ics. Theory and Application. Communications in Computer
and Information Science. Springer. Supersedes Schulz et al.
(2015b).

2B A C K G R O U N D O N D E E P L E A R N I N G

2.1 the argument for many-layered neural networks

Supervised learning tasks, such as assigning a class label to im-
ages, are given as a set of example input-output pairs where the
output must be predicted. Different learning architectures, such
as support vector machines, neural networks, decision trees, and
memory-based methods (e. g. k nearest neighbors) can be used to
approximate the desired classification function not only for the
given examples, but also for unseen test images.

Frequently, classification is not done directly on the raw pixel
input, but an intermediate representation— a vector of features—
is extracted first, which is then classified, resulting in a two-stage
computation. This approach performs very well if the features
represent the essential information needed for classification. Ob-
viously, feature extraction is not free of parameters and depends
on the type of data and the task. For example, we might expect
a different set of features is useful for detecting cars in images
than for detecting people. Perhaps surprisingly, however, some
types of features, like localized edges for natural images, can be
adopted to a range of tasks (Bottou, 2014). These features seem
to be generic representations of the input signal. Finding these
generic features is difficult though — often feature extractors are
hand-crafted and selected by testing them on many similar learn-
ing problems.

Other methods, such as feed-forward neural networks with a
single hidden layer, learn features from the training set by op-
timizing the parameters of feature extraction and the classifier
simultaneously. While such networks can in principle represent
almost any function (Cybenko, 1989), the number of required
feature detectors in the hidden layer can be exponential in the
number of inputs. This property is a generalization of the circuit
complexity result that any Boolean function can be represented

7

8 background on deep learning

E lephantPengu in Kangaroo

in
c

re
a

s
in

g
ly

c
o

m
p

le
x

 f
e

a
tu

re
s

inputs

labels

u
n

s
u

p
e

rv
is

e
d

 l
e

a
rn

in
g

s
u

p
e

rv
is

e
d

 l
e

a
rn

in
g

Figure 2.1: Schematic overview of layer-wise learning of feature hierar-
chies. Increasingly complex features are determined from input using
unsupervised learning. The features can be used for supervised task
learning.

by two layers of conjunction and disjunction of inputs (Shannon,
1949). Often however, Boolean functions can be represented more
space-efficiently by multi-stage binary decision diagrams that are
less wide and hence need less logic units. The gain in efficiency
is made possible by reusing the results of lower-level circuits at
higher levels. Applying this finding to the feed-forward neural
network context, we can save space— and time in sequential pro-
cessing— by combining lower-level features to more abstract fea-
tures when we allow multiple hidden layers and create a feature
hierarchy.

Hierarchical neural networks for object categorization in im-
ages have a long history. They are motivated by the hierarchical
structure of the ventral stream of the visual cortex, where a se-
quence of retinotopic representations is computed that represents
the field-of-view with decreasing spatial resolution, but increas-
ing feature complexity. This network structure reflects the typical
hierarchical structure of images, where edges can be grouped to
parts, which form objects (Fig. 2.1).

2.2 notation 9

One of the earliest hierarchical neural networks for object
recognition was the Neocognitron proposed by Fukushima
(1980). In a sequence of feature extracting and pooling layers —
which create invariance to local shifts— the network was able to
recognize handwritten digits and letters, even if they had been
deformed. Other prominent hierarchical neural networks for ob-
ject recognition include LeNet by LeCun et al. (1989), the HMAX

network by Riesenhuber and Poggio (1999), and the Neural Ab-
straction Pyramid by Behnke (2003b). Hierarchical features are
also learned in the hierarchy of parts proposed by Fidler and
Leonardis (2007). Finally, hierarchy is a key feature in state-of-
the-art architectures for object recognition. While shallow, ex-
tremely wide architectures perform very well (Coates et al., 2010),
the best-performing classifiers for standard datasets are currently
very deep with ten (Cireşan et al., 2012b) or even twenty (Szegedy
et al., 2015) levels of features.

Despite the above examples, difficulties in learning the feature
hierarchies often prevented better performance of deep architec-
tures, as compared to the convex optimization of shallow mod-
els like the Support Vector Machine. To overcome these difficul-
ties, Hinton et al. — who coined the term deep learning — pro-
posed to initialize supervised training of deep networks with a
feature hierarchy that was learned in an unsupervised way, layer
by layer from the data (Hinton and Salakhutdinov, 2006; Hinton
et al., 2006). The impressive performance of this method — to-
gether with massively parallel computation by GPUs — triggered
a revival of neural networks research.

2.2 notation

To ease the following discussion, let us first define the terms. A
deep architecture (as shown in Fig. 2.2) with depth L is a function
h(L) with

h(l)(x) = σ
(

W(l)h(l−1)(x) + b(l)
)

, h(0)(x) = x. (2.1)

Here, x ∈ RN is the input vector, σ(·) is an elementwise sigmoid
function such as σi(z) = (1 + exp(−zi))

−1. The weight matrices

10 background on deep learning

x h(1) h(L)

W (1) W (2) W (L)

b(1) b(2) b(L)

∑
σ

∑
σ

∑
σ

∑
σ

∑
σ

∑
σ

Figure 2.2: Visualization of a deep architecture

W(l) ∈ RNl×Nl−1 and the biases b(l) ∈ RNl constitute the layer
parameters θ(l). Intermediate h(l)(x) ∈ RNl are referred to as
hidden layers. When unambiguous, we omit the dependency on
x and write h(l). When discussing properties of a specific layer,
we will also skip the layer index (l) for simplicity. While Eq. (2.1)
is based on dot products of input and weight vectors, it is also
possible to rely on differences between the two vectors instead
and set σ(·) to a radial basis function.

Our features correspond to the rows of W(l) and can be de-
termined by learning. We first formalize the task using a loss
function which is minimal when the task is solved. Learning is
then to find parameters such that the loss function is minimal on
some training data D. For example, we might choose the mean
square loss

`MSE

(
θ(1), θ(2), . . . , θ(L),D

)
=

D

∑
d=1

N

∑
n=1

(
h(L)

n (xd)− xd
n

)2
(2.2)

for an i.i.d. dataset D =
{

x1, x2, . . . , xD} with Gaussian noise
model. This is an unsupervised task where the input is recon-
structed from the features. If for some l < L we have Nl < N0,
this requires learning to compress and decompress the input1. Su-
pervised tasks provide some desired output or label in addition
to the input data. If we assume binary labels y ∈ {0, 1}M with
∑M

m=1 ym = 1, our dataset is D =
{
(x1, y1), (x2, y2), . . . , (xD, yD)

}
,

1 In fact, an auto-encoder without non-linearity is learning a projection to the sub-
space spanned by the first Nl principal components of the data (Bourlard and
Kamp, 1988), which is optimal w.r.t. the squared reconstruction loss.

2.3 difficulties in learning deep architectures 11

and we learn a classification task by minimizing the cross-entropy
loss

`CE

(
θ(1), θ(2), . . . , θ(L),D

)
=

−
D

∑
d=1

M

∑
m=1

yd

m · log
exp

(
h(L)

m (xd)
)

∑M
m′=1 exp

(
h(L)

m′ (x
d)
)

 . (2.3)

In networks with at least one non-linear hidden layer, both losses
are non-convex in the parameters. They are typically minimized
by gradient descent, where the gradients are efficiently (linearly
in the number of parameters) computed with the backpropaga-
tion algorithm (Section 3.1).

2.3 difficulties in learning deep architectures

The principles of learning architectures with many levels have
been widely known since the popularization of the backpropa-
gation algorithm for multi-layer perceptron (MLP) by Rumelhart
et al. (1986). In practice, however, using more than one hidden
layer was neither common nor successful. The challenges of DNN

learning include

1. increasing depth increases the probability of training stop-
ping in a poor local minimum of the non-convex loss (Erhan
et al., 2009),

2. training the lower layers (close to the input) is more difficult
than training the higher layers (ibid.). A reason might be
vanishing gradients, comparable to gradient propagation
problems in recurrent neural networks (Hochreiter et al.,
2001). Finally,

3. learning DNNs requires more training data than other meth-
ods, since many parameters have to be estimated.

Approaches to deal with these problems have been changing a
lot in recent years, which is also reflected by the later chapters
of this thesis. The main focus has been on finding good priors —

12 background on deep learning

h(l−1)

W (l)

h(l) h(l−1)

W (l)

b(l)

h(l)

W (l)T

b′(l)

̂
h(l−1)

∑
σ

∑
σ

∑
σ

∑
σ

∑
σ

∑
σ

Figure 2.3: Building blocks for greedy pre-training. (a) A restricted Boltz-
mann machine (RBM) is an undirected graphical model where vari-
ables are depicted as circles. Gray circles signify observed variables. (b)
Auto-encoder network, reconstructing h(l−1) with ĥ(l−1).

especially for the parameters in the lower layers of the network—
and using more training data. More precisely,

1. greedy layer-wise training uses multiple unsupervised learn-
ing problems starting at the input, to find a good initializa-
tion for the supervised problem,

2. regularization attempts to prevent overfitting on small
datasets,

3. the network structure can be adjusted reduce the number of
parameters and comply with dataset properties, e.g. invari-
ance to location in images with the help of convolutional
neural network (CNN),

4. features learned from other (e.g. larger) datasets can be
transferred to novel datasets, and

Since these strategies will play a central role in later chapters, we
discuss them in more detail in the following sections.

2.4 greedy layer-wise training with rbms

In their influential work on data reduction with neural networks,
Hinton and Salakhutdinov (2006) introduced a first solution to

2.4 greedy layer-wise training with rbms 13

the problems stated in Section 2.3. Before minimizing the loss of
the deep network with L levels, they optimized a sequence of
L− 1 singe-layer problems using restricted Boltzmann machines
(RBM). An RBM is a graphical model displayed in Fig. 2.3 (a) that
represents the log-linear probability distribution

p(h(l−1), h(l))

=
1
Z
· exp

(
b(l−1)T

h(l−1) + b(l)T
h(l) + h(l)T

W(l)h(l−1)
)

, (2.4)

where Z is the partition function which ensures that
∫ ∫

p(·, ·) dh(l−1) dh(l) = 1.

Here, h(l) and h(l−1) denote vectors of binary random variables.
The parameters are chosen such that, when we marginalize out
h(l), they minimize the negative log-likelihood of the data distri-
bution

`DD(θ
(l),D) = −

D

∑
d=1

log ∑
h(l)

p
(

h(l−1)(xd), h(l)
)

. (2.5)

At first glance, we note that this loss is very different from
Eqs. (2.2) and (2.3). Determining the gradient of Eq. (2.5) ana-
lytically is usually unfeasible since calculating the partition func-
tion Z in p(·, ·) scales exponentially with min(Nl , Nl−1). Instead,
approximations such as contrastive divergence (Hinton, 2002;
Tieleman, 2008) are used. Due to the factorization of the graphi-
cal model, however, the expected conditional probability of h(l)

given h(l−1) can be calculated analytically as

p
(

h(l)
∣∣∣h(l−1)

)
= σ

(
W(l)h(l−1) + b(l)

)
(2.6)

— which closely resembles Eq. (2.1)! After minimizing
`DD(θ

(l),D), Hinton and Salakhutdinov transform D using
Eq. (2.6) and iterate the process for θ(l+1). Once all parameters of
a feature hierarchy have been pre-trained in this way, they are fine-
tuned with the original objective (e. g. Eq. (2.3)). While the precise
definitions of pre-training and fine-tuning loss vary, this general
approach is prevalent in the deep learning literature.

14 background on deep learning

2.4.1 Greedy Training with Auto-Encoders

Arguably, auto-encoders (Bengio et al., 2006) are more prevalent
for pre-training than RBM , since their gradient can be calculated
exactly2. An auto-encoder (Fig. 2.3 b) is a function

ĥ(l−1) = W(l)T
h(l)(x) + b′(l−1). (2.7)

In its hidden layer h(l), it creates a feature representation (encod-
ing) of its input h(l−1). The encoding is used for two purposes.
Firstly, we optimize `MSE to reconstruct h(l−1) from the features.
Secondly, similar to RBMs, the features are used as input for h(l+1),
where the next-level auto-encoder is trained in the same fashion.
The close connection between RBMs and auto-encoders has been
investigated by Vincent (2011).

Why can we get away with changing the loss function between
pre-training and fine-tuning seemingly at will? There are at least
two reasons which have been identified:

1. The discussed pre-training methods identify generic fea-
tures of the input, which resemble largely independent
constituents. Higher-level features detect common co-
occurrence patterns of lower level features. Intuitively,
such features are likely to play a role in many objectives,
termed the structure assumption in Weston et al. (2008).

2. Pre-training can be seen as a regularization of fine-tuning. It
moves the weights to a region in parameter space that has
better generalization properties, and can therefore be seen
as a form of semi-supervised learning (Erhan et al., 2010a).

Additionally, by training only one layer at a time, we solve sim-
pler problems with fewer local minima and cleaner gradients (as
discussed in Section 2.3) — and postpone dealing with the com-
plete, hard problem to the fine-tuning phase.

Other local learning methods that have been applied to learn
feature hierarchies include competitive learning (Fukushima

2 without non-linearity, their object is even convex (Baldi and Hornik, 1989)

2.5 regularization in unsupervised learning 15

1980 and Behnke 1999), slow feature analysis (Wiskott and Se-
jnowski, 2002), non-negative matrix factorization (Behnke, 2003a),
and deconvolutions (Zeiler et al., 2011).

2.5 regularization in unsupervised learning

For a successful application of deep learning, additional pre-
cautions have to be taken. An important requirement is that
we should not learn trivial features of the input. Commonly,
data is normalized by centering and sometimes (ZCA) whiten-
ing (Hyvärinen and Oja, 2000; Welling and Hinton, 2002). Still,
if the number of features is large enough, the identity function
can be learned, which does not yield new insights to be used in
higher layers.

2.5.1 Limiting Representation Size

One way to enforce learning of novel features in auto-encoders is
to keep the number of features small with respect to the number
of inputs, such that for all l < L : Nl+1 < Nl . Intuitively, we
learn to represent the input using fewer bits and minimize the
information loss.

2.5.2 Enforcing Representation Sparsity

Sometimes it is useful to learn highly overcomplete (Nl � Nl−1)
feature hierarchies, e. g. for decomposing the signal for use in lin-
ear classifiers (Boureau et al., 2010). In this case, we can amend
the auto-encoder loss function by approximately minimizing the
number of non-zero entries of the hidden representation, result-
ing in

`MSE+S(θ
(l),D) = `MSE(θ

(l),D) + λ
D

∑
d=1

∥∥∥h(l)(xd)
∥∥∥

1
.

Optimizing this objective is related to sparse coding
(Kavukcuoglu et al., 2010).

16 background on deep learning

2.5.3 Infinite Training Data

Large datasets allow better generalization to unseen test data
from the same distribution. We can artificially introduce new data
to profit from this effect, even if the generated data is not strictly
i.i.d. In auto-encoders, this is achieved by adding noise to the
input, and reconstructing the original, noise-free data (Vincent
et al., 2010). This also requires to learn non-trivial features, since
any single input is likely to be corrupted by noise. The learning
algorithms for RBMs have built-in random sampling, which has a
similar effect (Vincent, 2011).

We can also inject noise by setting random units in the hidden
layers of a DNN to zero. This technique, especially when com-
bined with the rectifing linear unit (ReLU) nonlinearity, is known
as dropout (Srivastava et al., 2014). Since dropout randomly dis-
ables units in a DNN, it effectively samples one of exponentially
many network structures every time an example is presented.
During prediction, no noise is applied and the network implic-
itly “averages” over the possible network structures, which can
been interpreted as a form of bagging.

Another approach to increase training data size is to use so-
called adversarial examples (Szegedy et al., 2014; Goodfellow et
al., 2014). These examples are created by determining the mini-
mal change necessary to misclassify an example from the train-
ing data. Even examples without relation to the training data, but
are classified with high confidence might be useful (Nguyen A,
2015).

2.6 convolutional neural networks

If inputs are natural images, we can further exploit their two-
dimensional structure to regularize learning. Pixels have much
stronger correlation with their immediate neighbors than with
far-away ones (Huang and Mumford, 1999). In natural images,
we can assume that these correlations are roughly similar for all
image locations. Convolutional neural network (CNN) have been
developed to exploit these statistics by efficiently leveraging spar-

2.6 convolutional neural networks 17

x 1
x 2
x 3

h 1
h 2
h 3

x 1

h 1

Figure 2.4: Left: Convolution layer of a convolutional neural network. A
hidden unit hm in an output map m has access to a rectangular re-
gion (receptive field) in a number of input maps xs. The location of
the receptive field corresponds to the location of the hidden unit in
the output map. Size of the receptive field and number of input maps
determine the number of weights. Right: Pooling layer of a convolu-
tional neural network. A hidden unit has access to a receptive field
in a single input map, and computes The number of output maps is
the same as the number of input maps. Typically, only averages or
maxima are computed and no parameters need to be learned.

sity in the weight matrices and enforced weight sharing, as well
as local invariance to deformations.

2.6.1 Sparse Parameters

To reflect the strong local correlations, image features learned e.g.
by auto-encoders are localized, i. e. mostly zero. These zeros need
not be learned, instead, we can use local weight matrices which—
for each feature— allow a set of non-zero weights only in a small
image region. The responses of localized feature detectors can
be arranged in the same coordinates as the original image. Thus,
every layer of the CNN contains a set of maps, one for each learned
feature. Formally, instead of full connectivity between layers

hi = σ

(
∑

j
wijxj

)
, (2.8)

18 background on deep learning

we transform input maps s ∈ {1, . . . , S} into output maps
m ∈ {1, . . . , M}, such that

hijm = σ

∑

s
∑

(k,l)∈R
wmsijkl xs,i+k,j+l

 . (2.9)

Here, location indices i and j describe the location in an image.
The non-zero region of the feature, a square (ϕ×ϕ) receptive field
(R) is enumerated with indices k and l. In Section 5.1, we will
show that not only CNN, but also semi-restricted Boltzmann ma-
chines can profit from this receptive field concept.

2.6.2 Weight Sharing

Even with local weight matrices, we can anticipate that the filters
will be very redundant. Edge features, to choose a simple exam-
ple, are found when applying sparse coding to image patches.
They are fundamental property of natural images (Olshausen et
al., 1996) and therefore biological vision (Olshausen and Field,
1997), and would need to be learned for all image locations. Le-
Cun et al. (1998a) introduced weight sharing between locations to
eliminate this redundancy. To realize weight sharing, we drop the
image location indices on the weights, such that

hijm = σ

∑

s
∑

(k,l)∈R
wmskl xs,i+k,j+l

 . (2.10)

If every feature detector is applied at all image locations, this
operation is equivalent to the sum of multiple convolution oper-
ations instead of the matrix multiplication in Eq. (2.8), which we
can also write as

hm = σ

(
∑

s
Wms ∗ xs

)
. (2.11)

A convolutional layer applies the same M feature detectors at
all image locations. If location-dependent filters are required for
a task, they can be incorporated by adding non-convolutional
layers at later stages in the hierarchy.

2.7 cross-dataset transfer learning 19

2.6.3 Pooling

The second essential component of CNN is the pooling layer. Simi-
lar to a convolutional layer, a pooling layer operates on receptive
fields and conserves image topology. In contrast to convolutional
layers, pooling is typically applied with a stride ς of more than
one pixel, does have learnable parameters, and pools over the
contents of a single map only. Thus, pooling layers serve two pur-
poses: Reducing spatial resolution and increasing invariance to
local deformations. Scherer et al. (2010) compared various pool-
ing schemes and found that the local maximum gives the best
results. For pooling with stride ς, we have

hm,i/ς,j/ς = max
(l,k)∈R

xm,i+l,j+k , (2.12)

with, following Scherer et al. (ibid.),

∂hm,i/ς,j/ς

∂xm,i+l,j+k
=

1 if xm,i+l,j+k = hm,i/ς,j/ς

0 else.
(2.13)

The maximum operation discards location information within
the receptive field. It can be regarded as a disjunction over the
applications of the feature detector m at the locations in R.

2.6.4 Margin Handling

Valid convolutions decrease the image size by a margin of bϕ/2c
on all sides, where ϕ is the filter size. To retain correspondence
between input and output map coordinates, the input maps are
often padded (explicitly or implicitly) with zeros. To retain the
same correspondence for pooling operations, it is common to ei-
ther choose the size of the input maps such that it is divisible by
ϕ or reduce the pool sizes at the border.

2.7 cross-dataset transfer learning

Another reason why learning gets stuck in local optima is that
the datasets are often small in comparison to the number of pa-

20 background on deep learning

rameters of deep neural networks. This property gives neural net-
works the ability to overfit, i.e. to learn the data distribution by
heart at the expense of its generalization abilities3. This problem
can be overcome if enough unlabeled data is available, with semi-
supervised learning using RBMs or auto-encoders as discussed in
Section 2.4.

A second approach to the small dataset problem, is to profit
from other datasets entirely, if they share important character-
istics with the target dataset. The most notable and recent ex-
ample of this idea are image datasets. The hierarchical features
learned by the CNN of Krizhevsky et al. (2012) and subsequent
works on the ImageNet large scale visual recognition challenge
(ILSVRC) dataset exhibit remarkable generalization abilities for a
large number of vision tasks, as shown by Girshick et al. (2014),
Razavian et al. (2014), and Donahue et al. (2014) and our own
work detailed in Chapter 8. These CNN were trained for a super-
vised image classification task on a very large dataset (1.2 million
images) and outperformed other approaches by a large margin.
More importantly, the CNN have learned features which reflect
generic properties of natural images. While their precise nature is
still being investigated (Zeiler and Fergus, 2014; Springenberg et
al., 2014; Szegedy et al., 2014), they were proven to provide state-
of-the-art results even on non-image-classification tasks e.g. ac-
tion recognition (Simonyan and Zisserman, 2014; Gkioxari et al.,
2014), object-class segmentation (Girshick et al., 2014; Eigen and
Fergus, 2015) and pose estimation (Schwarz, 2014; Gkioxari et
al., 2014). ILSVRC-trained CNN can even be used to process depth
data (Schwarz, 2014). The ability to process and learn from vast
amounts of data, discovering generic features that yield superior
performance on many tasks, has become a central argument for
deep learning.

With similar impact, Mikolov et al. (2013) use neural networks
trained to predict whether a word-context pair can appear to-
gether in a written text. The hidden encoding for the words have
surprising and useful properties. For example, similar words
have similar encodings and allow simple semantic vector arith-

3 also named “large p, small n problem” in the statistics literature

2.8 conclusion 21

metic. The embedding, called “word2vec”, simplifies many tasks
in the language domain similar to the visual CNN-based encod-
ings discussed above.

2.8 conclusion

We gave a brief overview of the ideas behind deep learning, a
field of machine learning creating and analyzing the building
blocks of feature hierarchies.

Feature hierarchies provide a space and time-efficient decom-
position of inputs, which can be useful in various tasks such as
classification, denoising, and compression. For a long time it was
not clear how feature hierarchies can be learned. We discussed
the problems encountered during learning — the large number
of effective local minima and gradient dilution.

One deep learning solution to learning feature hierarchies is to
solve a sequence of simple shallow problems first. In each step,
deep methods learn a new level of features — gaining new in-
sights into the input data distribution on the way. The resulting
feature hierarchy can finally be adopted to an arbitrary (usually
supervised) task. Another solution is to train a comparably sim-
ple task such as whole-image classification on a large dataset and
then use the weights of the trained network in unrelated tasks
such as segmentation or pose estimation.

While deep learning has progressed tremendously over the last
years, many challenges remain. The described building blocks of
deep learning are often difficult to optimize (Section 5.2). They
are also restricted and cannot represent arbitrary features, since
encoders are too simplistic. We believe that unsupervised pre-
training of two-layer encoders (Section 5.3) may provide a rem-
edy here. Currently, research focuses on supervised and transfer
learning techniques, however. The set of learned invariances en-
forced through convolutions is limited, allowing only for trans-
lations and local deformations. To understand image sequences,
it might be required to explicitly include transformations (Taylor
et al., 2010; Memisevic, 2011) and hierarchies of transformations,
so that image sequences can be modeled beyond captioning of
videos (Donahue et al., 2015). Behnke (2003b) provides a possible

22 background on deep learning

base architecture which we investigate in Section 6.4. Another
open problem is to model the 3D structure of scenes to deal with
occlusions and deal efficiently with multi-modal input (in this
thesis, we incorporate depth information in Section 6.2 and Chap-
ter 8). More context must be incorporated and world knowledge
must be learned so that long texts, videos and camera streams
can be interpreted.

Deep learning has become an ever-growing number of con-
cepts and techniques. However, it is much less theoretically un-
derstood than e.g. convex optimization techniques. Training pro-
cedures and model architectures are changing quickly depending
on the task and as new “tricks” are discovered. Deep learning
frameworks provide tools to research, distribute and verify novel
techniques. Since they have become the essential instrument for
us, the following chapter gives an overview of what they must
offer and how these features might be implemented, using our
own CUVNET as an example.

3G P U - B A S E D M A C H I N E L E A R N I N G

In the last chapter, we introduced a large number of deep learn-
ing concepts and methods. While only touching on most of them,
the list was by no means exhaustive. Nevertheless, deep learn-
ing research and applications depend on most of them, and new
ideas are proposed every day. Deep learning software frame-
works relieve the user from tedious re-implementation. For this
thesis, we developed a deep learning framework which was used
for the experiments in most of the chapters, as well as numerous
student theses and as a teaching device.

This chapter describes how we structured the framework. We
start by recapitulating the backpropagation algorithm in Sec-
tion 3.1 and derive GPU-specific requirements in Section 3.2. We
then describe design choices, which allow our framework to
be both fast using GPU operations (Section 3.3) and flexible, us-
ing high-level model specification, learning algorithm description
and debugging facilities (Section 3.4).

3.1 background on the backpropagation algorithm

The backpropagation algorithm for MLP was popularized by
Rumelhart et al. (1986), with previous work by Werbos (1974)
and Parker (1985). Before, only algorithms for one-layered neu-
ral networks were known, which suffered from the problem of
not being able to solve the exclusive OR (XOR) problem (see also
Section 5.3). The backpropagation algorithm has three stages, the
forward pass, the backward pass, and the weight update, which
we briefly discuss in the following, with a focus on the require-
ments and properties relevant to a GPU implementation.

23

24 gpu-based machine learning

3.1.1 Forward Pass

For all (x, y) in D, compute the loss `. We can subdivide the for-
ward pass in two steps, where the first step computes the model
prediction ŷ, which the second step then evaluates in the loss
function `.

3.1.2 Backward Pass

For all weights wij and biases bj, compute ∂`/∂wij and ∂`/∂bj. The
backpropagation algorithm mainly provides an computationally
efficient method to evaluate these gradients, with two important
principles which will play a major role for the software design
choices later in this chapter: Sharing computations and saving
intermediate results.

shared computations When using the chain rule, the
chain from ` to the weights of some layer l,

∂`

∂w(l)
ij

=
∂`

∂h(L)
· · · ∂h(l+1)

∂h(l)
∂h(l)

∂w(l)
ij

(3.1)

shares most of the chain links with the partial derivative compu-
tation for W(l−1)

∂`

∂w(l−1)
ij

=
∂`

∂h(L)
· · · ∂h(l+1)

∂h(l)
∂h(l)

∂h(l−1)
∂h(l−1)

∂w(l−1)
ij

(3.2)

Due to the simple nature of the chain rule, shared chain links can
be identified automatically as long as ` is given as a traversable
data structure.

Shared links also trivially exist within a single layer: in Eq. (3.1),
bold (vector) symbols can be substituted with any of their scalar
vector components. This has two consequences: (a) all partial
derivative computations in a single chain link share the same
path, which only needs to be computed once, and (b) for suffi-
ciently large vectors, this means that derivatives of a single layer
can be computed in parallel using the single instruction, multiple

3.1 background on the backpropagation algorithm 25

data (SIMD) mechanism. The CUDA architecture heavily depends
on SIMD for speed.

saving intermediate results The derivative of matrix
multiplications, common sigmoidal non-linearities, and many
other operations, has the important property that intermediate
results or arguments of the forward pass also appear in the
partial derivative. Thus, software implementations of DNN can
save time by remembering these intermediate values. For ex-
ample, the multiplication operator z = Wx needs to have ac-
cess to its inputs W and x to compute its partial derivatives,
whereas the tanh(·) operator needs to “remember” its result to
compute ∂ tanh(x)/∂x = 1− tanh2(x). Similarly, the mean squared
loss `(y, h(L)) = ∑i(yi − h(L)

i)2 can remember the result of the

difference operation to compute ∂`/∂h(L)
i = 2(yi − h(L)

i), and the
pooling operator of Eq. (2.12) can remember the indices required
to compute Eq. (2.13).

3.1.3 Weight Update

After computing derivatives for all parameters, we use them
to update weights and biases. The simplest method here, sug-
gested by Rumelhart et al. (1986), is gradient descent. Higher
order methods (e.g. Schaul et al., 2013) have been shown to re-
quire fewer updates but require more computational effort and
make possibly unwarranted assumptions about the nature of the
loss function. Updating the weights typically requires at least
a learnrate hyper-parameter, which needs to be grid-searched
with cross-validation (see Bergstra et al., 2011, for a discussion of
the efficiency of grid-search and its alternatives in this context).
Sometimes, different layers of the network can require higher or
lower learnrates. Adaptive learning rate schemes such as RPROP

(Riedmiller and Braun, 1993), RMSProp (Dauphin et al., 2015) or
AdaGrad (Duchi et al., 2011) can be used to reduce the time-
consuming tuning and cross-validation steps, or enable learn-
ing in case of recurrent neural networks (Pavel et al., 2015). Per-
layer learning rates can also be obsoleted by clever initialization

26 gpu-based machine learning

schemes (e.g. Glorot and Bengio, 2010; He et al., 2015), which at-
tempt to equalize the initial magnitude of neuron activations and
gradients throughout the DNN.

3.2 gpu considerations

When implementing DNN backpropagation for the GPU, we have
to take the peculiarities of the parallel GPU hardware and CUDA

programming model into account. In the following, we discuss a
non-exhaustive list of such considerations.

minibatch learning All three steps of the backpropaga-
tion algorithm can be computed for the whole dataset (called
batch learning), a small subset of the dataset (minibatch learn-
ing), or single elements in the dataset (online learning). Batch
learning computes the exact empirical gradient on the training
set. For larger datasets, this requires a lot of computation time for
a single weight update. The gradients for subsets of the dataset
are typically good approximations to the dataset gradient, and it
is not necessary to spend much time to compute it exactly, result-
ing in a tradeoff between number of weight updates per second
and gradient precision. While e.g. LeCun et al. (1998b) recom-
mend the relatively noisy online-learning, the advancement of
GPUs with the possibility to compute gradients for many exam-
ples in parallel resulted in minibatch learning as a quasi-standard,
with mini-batch sizes chosen to maximize GPU throughput and
memory use (e.g. Krizhevsky et al., 2012).

limited memory The GPU has its own, usually superior but
small, on-board memory, which — in current CUDA versions —
has to be managed explicitly by the programmer. For the GPUs
used in this thesis, the on-board memory is comparatively small.
Transfers to and from the GPU memory are slow and must be
kept to a minimum. A typical approach is to copy the data from
the dataset to the GPU memory, then compute forward and back-
ward pass, and update the weights— all on the GPU. Finally, statis-
tics for monitoring learning progress, such as the loss value, are
copied to the main memory. During the forward pass, intermedi-

3.3 cuv : n-dimensional arrays in cuda 27

ate values must be remembered for the backward pass. Especially
when working with high resolution or multi-resolution images
(e.g. with CNN, Section 2.6), these intermediate values can be very
large. In our implementation we need to make sure that:

1. Results of a single operation can be read by multiple con-
secutive operations without being copied. For example, the
DNN prediction is required to compute (a) the logistic loss
and (b) compute the zero-one loss (i.e. the number of mis-
classifications).

2. If possible, we want to be able to reuse memory of interme-
diate results that are not required anymore. For example,
the tanh(·) operator only needs to remember h(1) = tanh(x)
for the backward pass, since ∂h(1)/∂x = (1− tanh2(x)). Thus,
it can directly overwrite x. This should not be possible, how-
ever, if (a) x appears somewhere else in the loss in an opera-
tor which has not yet been evaluated, or (b) x is needed for
another partial derivative in the backward pass.

Note that the two goals — avoiding copying and allowing mem-
ory reuse — can be in conflict, as the memory reuse example
shows. This problem is related to register reuse and is typically
addressed by compiler optimization. While this kind of optimiza-
tion is outside the scope of this thesis, we will show in the follow-
ing that for DNNs, simple heuristics can produce the same effect.

3.3 cuv : n-dimensional arrays in cuda

To realize the GPU requirements of the previous section, we im-
plemented two dependent libraries, CUV and CUVNET. The CUV

library does all the heavy lifting on GPU, whereas CUVNET pro-
vides a high-level DNN machine learning API.

Current GPU hardware and programming models such as CUDA

and OpenCL rely on the SIMD principle (Flynn, 1972) for speed.
Similarly to interpreted languages like MATLAB and Python,
the CUV API focuses on providing data structures for bundling
data and vectorized functions to operate on them. Vectorization
groups element-wise operations together (van der Walt et al.,

28 gpu-based machine learning

Algorithm 1 demonstration of CUV features

1typedef ndarry<float, dev memory space> dev ndarray;
2typedef ndarry<float, host memory space> host ndarray;
3dev ndarray v(extents[5]), m(extents[5][7]); // Declaration
4host ndarray hm;
5

6m = 2.f; // m[:] = 2.0
7m += m;
8reduce to col(v, m); // vi := ∑j mij, dispatched to GPU
9hm = m; // copy to RAM
10hm = hm[indices[range(0,3)]]; // keep first 3 rows, no copy
11ofstream os(”m.ser”);
12binary oarchive oa(os);
13oa << hm << m; // serialization

2011), and in our case, hides the GPU implementation details from
the programmer. Algorithm 1 shows CUV usage, demonstrating
the most relevant features.

datastructures The main CUV datastructure is a multi-di-
mensional array. Similar datastructures form the basis of e.g.
MATLAB1 and NumPy (van der Walt et al., 2011). The CUV li-
brary borrows its concepts mostly from NumPy and Ron Gar-
cia’s Boost.MultiArray2. Multi-dimensional arrays allow for intu-
itive specification and passing of tabular data (Lines 3 and 8, re-
spectively). A common example is a number of B images of size
H×W with M channels each. In CUV, this can be declared as

ndarray<float, host memory space> data(extents[B][M][H][W
↪→]);

, where the dimensions — the shape — are stored in data. The di-
mensions do not carry inherent meaning, such that e.g. weight
matrices from M input maps to S output maps with filter dimen-
sion ς×ς can be declared with exactly the same syntax:

1 http://www.mathworks.com
2 http://www.boost.org/doc/libs/release/libs/multi array

http://www.mathworks.com
http://www.boost.org/doc/libs/release/libs/multi_array

3.3 cuv : n-dimensional arrays in cuda 29

ndarray<float, host memory space> weights(extents[M][S][ς][
↪→ς]);

The shape can be changed independent of the underlying mem-
ory and the dimensions can be referenced by their index in the
shape array, e.g. to determine the sum of all maps in all images:

data.reshape(extents[I][B][H∗W]); // collapse last two dimensions
data.sum(2); // sum over pixels

Another essential property of multi-dimensional arrays is slicing.
Slicing allows to select a part of the data structure — without
touching the underlying memory — and continue processing it.
Line 10 shows an example where a subset of the rows of a ma-
trix is sliced. Finally, the ndarray supports serialization using the
Boost.Serialization3 interface. This format allows ndarrays to be
transparently saved as part of more complex DNN data structures
(Section 3.4).

tag-dispatched function calls The implementa-
tion of the multi-dimensional array type ndarray is generic
with respect to its value type and the memory where it
resides, i.e. GPU or central processing unit (CPU) mem-
ory — associated with the tags dev memory space and
host memory space, respectively. All operations where
memory is modified (e.g., Line 8) are then selected using the
tag given when declaring an ndarray variable. Dispatching on
tags is necessary since in the compiler cannot distinguish GPU

and CPU pointer types under the CUDA programming model.
Additionally, the tags allow the user to write template functions
which e.g. perform operations and create temporaries in the
same memory space as their parameters.

efficient, instantiated kernels All operations on ndar-

rays are implemented for GPU and CPU. Tests ensure that the out-
come is the same up to machine precision. Depending on value
type, memory layout and data size of the input, one of multiple
kernels may be chosen to run, which is transparent to the user.

3 http://www.boost.org/doc/libs/release/libs/serialization

http://www.boost.org/doc/libs/release/libs/serialization

30 gpu-based machine learning

n-dimensional
arrays kernels

python
bindings

CUV (on GPU)

base models operators symbolic
differentiation

gradient
descent

learner
cross

validation

hyperparameter
optimization

preprocessing
async image

queue
CUVNET

dataset model

user

log analyzer model viewer

is used by

Figure 3.1: CUVNET design. Arrows represent a “used by” relation.

Due to explicit template instantiations, the C++ header files of
CUV are kept free of CUDA includes. This allows the use of arbi-
trary IDEs without CUDA support and faster compilation of pro-
grams using CUV.

memory pooling In the CUDA programming model, kernel
calls are asynchronous. This enables interleaved CPU and GPU

computations. Apart from explicit synchronization calls, the GPU

is synchronized with the main thread only for memory copies,
allocation, and deallocation. We use the CPU mainly to determine
the next kernel call. This small application overhead can be com-
pletely hidden by the kernel running time, but it often involves
allocation of temporaries and deallocation of variables going out
of scope, both of which would force synchronization. The CUV

library implements its own memory pooling to work around this
CUDA limitation. Allocation and deallocation are handled by the
memory pool, which only involves the CUDA API if it is unable
to handle the request itself, effectively removing allocation and
deallocation-triggered synchronization of the GPU thread.

3.4 generic model optimization with cuvnet 31

3.4 generic model optimization with cuvnet

In this section, we describe how the CUVNET library built on top
of CUV facilitates model optimization and deep learning research.
An overview over the library is given in Fig. 3.1

3.4.1 Requirements of Deep Learning Algorithms

Before considering the design choices in CUVNET, we list essential
requirements for deep learning libraries.

A fast GPU implementation is a necessity, since we need to be
able to (a) train large models fast, and (b) try many (smaller)
models simultaneously.

The user must be able to build models from reliable, tested
building blocks. Models can be quickly combined to build larger
models, creating abstraction layers. This enables the user to (a)
write down loss functions easily; (b) store and load models at

high level, and (c) build repetitive models by chaining abstract
base models.

Standard machine learning tools must be readily available to al-
low exploring the huge space of hyper-parameters in deep learn-
ing. To test hypotheses quickly, we should provide at least (a) ac-
cess to multiple datasets; (b) multiple gradient methods; (c) stan-
dardized training protocols, and (d) extensive debugging and log-
ging tools

3.4.2 Fast GPU Implementation

CUVNET realizes this requirement by relying on the optimized
CUV for non-trivial computations. The generic nature of the ndar-

ray class also allowed us to wrap and switch between third-party
functions, e.g. convolutions from Alex Krizhevsky’s cuda-convnet
library (Krizhevsky, 2015) or the CUDNN library4 developed by
NVidia.

4 https://developer.nvidia.com/cuDNN

https://developer.nvidia.com/cuDNN

32 gpu-based machine learning

3.4.3 User Interface

Many deep learning frameworks, such as pylearn2 (Goodfellow
et al., 2013a), cuda-convnet (Krizhevsky, 2015), or caffe (Jia et al.,
2014), rely mainly on declarative languages (i.e. configuration
files) to specify network architecture and training parameters.
Declarative languages can be very concise, but do not scale well:

1. Defaults and documentation are not available via IDE when
writing custom language specifications.

2. High-level abstractions are key when specifying complex
models. Examples are code reuse, e.g. for combinations
of convolution, pooling, non-linearity operations, or loop-
ing, e.g. for networks repeated over time steps in a recur-
rent neural network. Specifying these require either com-
plex declarative language — which the mentioned libraries
avoid — or configuration files generated in another pro-
gramming language.

3. Training of DNN can be complicated. For example, unsuper-
vised learning may be done on a different dataset than su-
pervised learning, with different learning algorithms (RBM

vs. gradient descent), different loss functions. Advanced
fine-tuning methods add the validation dataset to the train-
ing set after early-stopping and continue training until a
specified loss is reached. These complex algorithms are
much easier expressed in a programming language.

4. Hyper-parameters of architecture (e.g. number of neurons
in a layer) and training (e.g. learnrates) can be tuned au-
tomatically using cross-validation and grid search. Again,
configuration files complicate this process avoidably.

CUVNET takes the approach of a library, i.e. all functionality is
written in C++, and it is available in C++. CUVNET also provide
a python interface with the same functionality. Specifications of
network architecture is as concise as possible.

The basic user interface of CUVNET is shown in Algorithm 2.
Line 4 constructs a linear transformation of a 1000 sample data-
set with 20 variables x ∈ R1000,20. This estimator is used in Line 5

3.4 generic model optimization with cuvnet 33

Algorithm 2 Demonstration of basic CUVNET interface.

1x = input(extents[1000][20]);
2y = input(extents[1000][10]);
3W = input(extents[20][10]);
4est = prod(x, W);
5loss = mean(logistic loss(est, y));
6gradient descent gd(loss, {W}, learnrate);
7// [...] put data in x, y, randomize W
8gd.batch learning(n epochs);
9ofstream os(”model.ser”);
10binary oarchive oa(os);
11oa << est << m; // Model serialization

to build a multinomial logistic loss function, interpreting the out-
put of est as log-likelihoods for one of 10 classes for each sample,
and takes the mean over the dataset. Line 6 builds a gradient de-
scent object which minimizes loss with respect to W using plain
gradient descent with the given learnrate. The final lines show
how learning is executed, and the model is saved to a file with
the same mechanism used for CUV in Algorithm 1.

The gradient descent object can be modified using a signal-
slot mechanism. E.g., in every iteration, new input can be loaded
into the network and saved after processing. Every K epochs, the
model itself can be saved to a file, or it can be evaluated on a val-
idation set for early stopping. A monitor can calculate summary
statistics on activations. A large number of such signals and slots
is provided with CUVNET.

3.4.4 Complex Models

The model class is an abstraction around loss functions, which
provides convenient loss function constructors, access to input
ops, learnable parameter operators, loss function and prediction
function, but most importantly, hierarchical structure.

34 gpu-based machine learning

Input

Encoder Decoder

Loss 1

EncoderDecoder

Loss 2

Encoder Decoder

Loss 3

OutputLoss 4

Teacher

Figure 3.2: Multistage model training in a simplified pre-training/fine-
tuning model. The complete model graph is constructed first, then the
four loss functions are minimized consecutively.

metamodels The need for hierarchical structure becomes ev-
ident when we analyze typical DNN models. While the learned
features become more and more abstract, the functions computed
in the layers of the models are usually the same. All layers of the
classical MLP, for example, have the same internal structure. To re-
flect this observation, CUVNET adopts the notion of metamodels.
Metamodels are models which— by default— inherit the param-
eters, inputs, and monitoring variables of the models they sub-
sume. A common use-case is to build an MLP given a set of pre-
trained chainable encoders as described in Section 2.4.

multistage models The greedy layerwise training intro-
duced in Section 2.4 can be re realized in CUVNET as shown
in Fig. 3.2. First, a model graph is constructed which contains
multiple loss functions. The loss functions are then optimized in
succession. During pre-training, the models being optimized are
the auto-encoders closest to the respective loss function, while
all previous (lower) encoder weights are fixed. These lower en-
coders can be automatically substituted by CUVNET with input
nodes which supply a transformed version of the original data-
set, avoiding costly reevaluation.

3.4 generic model optimization with cuvnet 35

3.4.5 Differentiation Graph

We saw in Section 3.1 if the loss is given as a traversable graph
data structure, the gradient of the loss function with respect
to the weights can be computed automatically and efficiently.
Fig. 3.3 shows how the loss graph is constructed in CUVNET. The
loss is a directed acyclic tripartite graph, with node types oper-
ator, parameter, and result. Each operator may have zero, one,
or more parameters. Operators without parameters are called in-
puts. Inputs can be dataset mini-batches, but also weight matrices
or bias vectors. Similarly, operators can have zero, one, or more
results. Operators without results are called sinks. Sinks store val-
ues that can be retrieved after evaluating the graph. The result of
an operator can be used as the parameter of another operator.
For symmetry reasons, we also allow that multiple results can
project to a single parameter, interpreted as an implicit addition.
The symmetry lies in the fact that the derivative of multiple use
of the same result also produces an addition in the derivative.

A topological sorting (Kahn, 1962) of the graph yields the eval-
uation order. The execution order differs between forward and
backward pass, since during the backward pass, we only need to
follow paths which lead to learnable parameters.

Complex pointer-based data structures need special care to
avoid memory leaks. In CUVNET, references to operator nodes
are stored in reference-counting pointers. These references are
kept internally (by neighboring graph nodes) and by the user.
Internally, reference-counting pointers are only used in the direc-
tion opposite to the graph edge direction. Thus, every operator
node that is not stored explicitly by the user will automatically be
destroyed, which will recursively trigger the destruction of non-
referenced child nodes. References in graph edge direction are
kept as “weak” pointers, which are not reference-counted (Karls-
son, 2002).

3.4.6 Copy-on-write with Single Reference Handling

Every node has functions to compute the forward pass and the
backward pass. The the computed values are passed through the

36 gpu-based machine learning

op
er

at
or

p1

p2

r1

r2

p1

p2

r1

r2

value

Figure 3.3: Detail of a CUVNET graph structure. Arrows depict informa-
tion flow. Operators have an arbitrary number of parameters (pi) and
results (ri). Results can be used as parameters of other operators. Data
are passed as CUV ndarrays from results to parameters via copy-on-
write pointers. Overwriting of data is allowed if only one reference to
them exists.

graph wrapped by a copy-on-write pointer with special seman-
tics. The concept is illustrated in Fig. 3.3 for the forward pass.
After result r1 is computed, it is stored in value and references to
it (dotted lines) are pushed to all parameters pi of the operators
that need it. If multiple operators need the result, the first oper-
ator cannot overwrite it. If it tries to overwrite value nonetheless,
it needs to be copied. Only the last operator keeping a reference
to value is allowed to overwrite it. These constraints are transpar-
ently handled by the cow ptr class of CUVNET. With their help,
many computations can be performed without new allocations,
as shown in Fig. 3.4, at the cost of implementing three versions
of the operator,

1. a version that overwrites an already allocated target
2. a version that adds to a target set by another operator, and
3. a version that pushes a newly allocated result to multiple

targets.

The first two versions are optional, since they can be emulated by
the third. After the forward-pass, operators can decide whether
to surrender their right to read a variable, or retain it for the

3.4 generic model optimization with cuvnet 37

op
1

op
2

p|r r |p

r |p

p|r

value

(a) before op1 execution

op
1

op
2

p|r r |p

r |p

p|r

value

overwrite

(b) during op1 execution

op
1

op
2

p|r r |p

r |p

p|r

value

(c) after op1 execution

op
1

op
2

p|r r |p

r |p

p|r

value

add

(d) during op2 execution

Figure 3.4: Memory-efficient computation: a value stored in our own
copy-on-write pointer is changed and passed through without alloca-
tions. If at an point two pointers to value had existed, a copy would
have been created in the memory pool before writing. Due to symme-
try of forward/backward pass, result (r) and parameter (p) nodes are
interchangeable.

backward pass. These semantics prevent undesired interaction
between operator calls and unnecessary copies at the same time,
as desired in Section 3.2.

By rearranging the evaluation order of the operators, mem-
ory efficiency could be further improved. Theano (Bergstra et al.,
2010) and frameworks based on it take this approach, by opti-
mizing the python-specified execution graph and generating C++
and CUDA code. This type of optimization is outside the scope of
this thesis.

3.4.7 Monitoring and Visualization

Due to the lengthy training process of neural networks, it is cru-
cial to monitor key indicators of training progress. Examples, be-
sides loss on and training set to measure generalization, are vari-

38 gpu-based machine learning

ance of weights and activations (Glorot and Bengio, 2010), and
the average relative weight change,

η

〈wi〉i

〈∣∣∣∣
∂`

∂wi

∣∣∣∣
〉

i
. (3.3)

CUVNET realizes monitoring either with nodes inside the loss
graph (intrusive) or by adding sink nodes to an existing graph.
Models register sinks with a monitor instance, which computes
summary statistics and logs the information to an XML file. The
CUVNET logviewer script can interpret these files and plot them. It
is an essential tool when comparing different training runs.

After training and at critical stages (e.g. when switching from
pre-training to fine-tuning), the model is serialized. Serialized
models can be loaded to continue the training process with dif-
ferent parameters.

The serialized model can also be loaded using an interactive
GraphViz display, which allows to localize errors in the network
graph construction. Most importantly, it can be used to inspect
the processing at every node using histograms, weight visualiza-
tions, or feature map visualizations. For this purpose, the user
loads new inputs from a dataset into the model and clicks on the
node to see activations. Modifiers allow inspection of gradients
at the node.

3.4.8 Testing

A strong motivation for developing libraries for deep learning is
testing all components in isolation before building more complex
models. CUV and CUVNET test the correctness and speed:

• CUV’s CPU functions should produce correct results for
small examples,

• CUV’s GPU functions should return the same as correspond-
ing CPU functions on larger examples,

• A CUVNET-computed operator Jacobian should be the same
as the Jacobian computed via finite differences.

The last item can be non-trivial if, for example,

3.5 comparison with other neural network software 39

• the computation involves random numbers,
• the computation is numerically unstable (e.g. involving the

exp function for unbounded inputs)
• the operator is not differentiable, e.g. the popular max(·)

non-linearity,
• the Jacobian matrix does not fit into the memory or takes a

long time to compute.

The CUVNET test suite provides support for some of these cases,
and attempts work around the others to produce a large code
coverage for a variety of inputs.

3.4.9 Other Major Features

CUVNET implements multiple gradient methods (e.g. momentum,
Nesterov accelerated (Sutskever, 2013), RPROP (Riedmiller and
Braun, 1993), RMSProp (Dauphin et al., 2015), AdaGrad (Duchi
et al., 2011)). It also provides multiple regularization methods
(e.g. L1 and L2 weight decay, early stopping, dropout, learnrate
scheduling based on fixed or adaptive schedules).

In CUVNET, all concepts and learning algorithms are strictly
written in C++. The user, too, specifies the model in this lan-
guage. This facilitates debugging and lowers complexity. How-
ever, analysis of the resulting models is written in Python, since
much better tools for visualization and plotting are available. For
this purpose, CUV and CUVNET both provide a Python interface, to
cooperate e.g. with NumPy and make the model graph structure
traversable.

3.5 comparison with other neural network software

While in 2014, a new deep learning framework was released
every 47 days on average, that number dropped to 22 days in
20155. Some of these frameworks are backed by large compa-
nies, such as TensorFlow (Google) or torch (facebook). They range
from fairly low-level (theano, Bergstra et al. 2010) to high-level
(Pylearn2, Goodfellow et al. 2013a, built on top of theano). They

5 https://goo.gl/BnS4J5

40 gpu-based machine learning

may be largely single-language (Caffe, Jia et al. 2014, or mixed
(theano, TensorFlow). Some even forego the use of GPU (convnetjs,
or DistBelief, Dean et al. 2012). These frameworks are open source,
while e.g. the price-winning framework of Cireşan et al. (2013)
and Cireşan et al. (2012a) is not, and OverFeat (Sermanet et al.,
2013) is only partially. Most software frameworks rely on a small
number of implementations for operations which dominate run-
ning time, such as matrix multiplications (e.g. NVidia’s cuBLAS)
and convolutions (e.g. NVidia’s cuDNN).

Any comparison with these other software will quickly become
obsolete. CUVNET is by no means perfect, but adheres to some
principles which — at least in this combination — we think are
distinguishing:

• single-language implementation with identical GPU and
CPU operations, which facilitates debugging,

• model specification in the same language, with high-level
declarative syntax, and without requiring knowledge about
GPU programming.

• allowing procedural building of models and metamodels.
Custom languages such as configuration files often do not
provide this flexibility.
• a formal way of keeping statistics during training
• interactive model introspection GUI and visualization capa-

bilities through Python-bindings
• focus on parallel online pre-processing to create infinite

datasets

However, CUV/CUVNET also lacks important features provided by
other frameworks, such as a speed-optimized CPU runtime for
camera streams, symbolic function optimization, arbitrary length
sequence inputs for RNN, and more.

3.6 acknowledgments

Apart from the author of this thesis, CUV and CUVNET also owe
much to Andreas Müller and University Bonn students Benedikt
Waldvogel, Mircea Pavel, Nico Höft, Lukas Koliogiannis, Tobias

3.7 applications 41

Hartmann, and Yi Huang. Their contributions and comments
helped to shape the current general-purpose system.

3.7 applications

Apart from the publications listed in Section 1.26, elements of
CUVNET and CUV were used as a teaching device in University
Bonn courses, in the theses of Tobias Hartmann, Lukas Kolio-
giannis, Yi Huang, Nico Höft, and Mircea Pavel, as well as in
publications by Kyunghyun Cho, Müller et al. (2010), Höft et al.
(2014), Müller and Behnke (2014), and Stückler et al. (2014).

An important use of CUV is the CURFIL software package, which
is built around the CUV data structures. CURFIL was built with one
application in mind: image labeling, or classifying pixels accord-
ing to object classes. The next chapter describes CURFIL with a
focus on the GPU challenges.

6 with the exception of Chapter 8

4C U R F I L : FA S T R A N D O M F O R E S T S I N C U D A

Random forests are ensemble classifiers that are popular in the
computer vision community. Random decision trees are used
when the hypothesis space at every node is huge, so that only
a random subset can be explored during learning. This restric-
tion is countered by constructing an ensemble of independently
learned trees— the random forest.

Variants of random forests were used in computer vision to
improve e. g. object detection or image segmentation. One of the
most prominent examples is the work of Shotton et al. (2011),
who use random forests in Microsoft’s Kinect system for the es-
timation of human pose from single depth images. Here, we are
interested in the more general task of object class segmentation
(sometimes called image labeling), i. e. determining a label for
every pixel in an RGB or RGB-D image.

The real-time applications such as the ones presented by Lep-
etit et al. (2005) and Shotton et al. (2011) require fast prediction
in few milliseconds per image. This is possible with parallel ar-
chitectures such as GPUs, since every pixel can be processed in-
dependently. Random forest training for object class segmenta-
tion, however, is not as regular — it is a time consuming process.
To evaluate a randomly generated feature candidate in a single
node of a single tree, a potentially large number of images must
be accessed. With increasing depth, the number of pixels in an
image arriving in the current node can be very small. It is there-
fore essential for the practitioner to optimize memory efficiency
in various regimes, or to resort to large clusters for the computa-
tion. Furthermore, changing the visual features and other hyper-
parameters requires a re-training of the random forest, which is
costly and impedes efficient scientific research.

This work describes the architecture of our open-source GPU

implementation of random forests for image labeling (CURFIL).
CURFIL provides optimized CPU and GPU implementations for the

43

44 curfil : fast random forests in cuda

Figure 4.1: Overview of object class segmentation with random forests:
Every pixel (RGB and depth) is classified independently based on its
context by the trees of a random forest. The leaf distributions of the
trees determine the predicted label.

training and prediction of random forests. Our library trains ran-
dom forests up to 26 times faster on GPU than our optimized
multi-core CPU implementation. Prediction is possible in real-
time speed on a single mobile GPU.

In short, our contributions are as follows:

1. We describe how to efficiently implement random forests
for object class segmentation on GPU,

2. We describe a method which allows to train on horizontally
flipped images at significantly reduced cost,

3. we show that our GPU implementation is up to 26 times
faster for training (up to 48 times for prediction) than an
optimized multi-core CPU implementation,

4. We show that simply by the now feasible optimization of
hyper-parameters, we can improve performance in two ob-
ject class segmentation tasks, and

5. we make our documented, unit-tested, and MIT-licensed
source code publicly available1.

1 https://github.com/deeplearningais/curfil/

https://github.com/deeplearningais/curfil/

4.1 related work 45

The remainder of this chapter is organized as follows. After dis-
cussing related work, we introduce random forests and our node
tests in Sections 4.2 and 4.3, respectively. We describe our opti-
mizations in Section 4.4. Section 4.5 analyzes speed and accuracy
attained with our implementation.

4.1 related work

Random forests were popularized in computer vision by Lepetit
et al. (2005). Their task was to classify patches at pre-selected
keypoint locations, not — as in this work — all pixels in an im-
age. Random forests proved to be very efficient predictors, while
training efficiency was not discussed. Later work focused on im-
proving the technique and applying it to novel tasks.

Lepetit and Fua (2006) use random forests to classify keypoints
for object detection and pose estimation. They evaluate various
node tests and show that while training is increasingly costly,
prediction can be very fast.

The first GPU implementation for our task was presented by
Sharp (2008), who implements random forest training and pre-
diction for Microsoft’s Kinect system that achieves a prediction
speed-up of 100 and training speed-up factor of eight on a GPU,
compared to a CPU. This implementation is not publicly available
and uses Direct3D which is only supported on the Microsoft Win-
dows platform.

An important real-world application of object class segmenta-
tion with random forests is presented by Shotton et al. (2011). Hu-
man pose estimation is formulated as a problem of determining
pixel labels corresponding to body parts. The authors use a dis-
tributed CPU implementation to reduce the training time, which
is nevertheless one day for training three trees from one million
synthetic images on a 1,000 CPU core cluster. Their implementa-
tion is also not publicly available.

Several fast implementations for general-purpose random
forests are available, notably in the scikit-learn machine learn-
ing library (Pedregosa et al., 2011) for CPU and CudaTree (Liao
et al., 2013) for GPU. General random forests cannot make use
of texture caches optimized for images though, i. e., they treat

46 curfil : fast random forests in cuda

all samples separately. GPU implementations of general-purpose
random forests also exist, but due to the irregular access patterns
when compared to object class segmentation problems, their so-
lutions were found to be inferior to CPU (Slat and Lapajne, 2010)
or focused on prediction (Van Essen et al., 2012). For some use
cases, the general-purpose implementation of Jansson et al. (2014)
seems promising.

The prediction speed and accuracy of random forests facilitates
applications interfacing computer vision with robotics, such as se-
mantic prediction in combination with self localization and map-
ping (Stückler et al., 2012) or 6D pose estimation (Rodrigues et al.,
2012) for bin picking.

CURFIL was successfully used by Stückler et al. (2014) to pre-
dict and accumulate semantic classes of indoor sequences in real-
time, and by Müller and Behnke (2014) to significantly improve
segmentation accuracy on a benchmark dataset.

4.2 random forests

Random forests — also known as random decision trees or ran-
dom decision forests — were independently introduced by Ho
(1995) and Amit and Geman (1997). Breiman (2001) coined the
term “random forest”. Random decision forests are ensemble
classifiers that consist of multiple decision trees — simple, com-
monly used models in data mining and machine learning. A de-
cision tree consists of a hierarchy of questions that are used to
map a multi-dimensional input value to an output which can be
either a real value (regression) or a class label (classification). Our
implementation focuses on classification but can be extended to
support regression.

To classify input x, we traverse each of the K decision trees Tk
of the random forest F , starting at the root node. Each inner node
defines a test with a binary outcome (i. e. true or false). We tra-
verse to the left child if the test is positive and continue with the
right child otherwise. Classification is finished when a leaf node
lk(x) is reached, where either a single class label or a distribution
p (c | lk(x)) over class labels c ∈ C is stored.

4.3 visual features for node tests 47

The K decision trees in a random forest are trained indepen-
dently. The class distributions for the input x are collected from
all leaves reached in the decision trees and combined to generate
a single classification. Various combination functions are possible.
We implement majority voting and the average of all probability
distributions as defined by

p(c | F , x) =
1
K

K

∑
k=1

p (c | lk (x)).

A key difference between a decision tree and a random deci-
sion tree is the training phase. The idea of random forests is to
train multiple trees on different random subsets of the dataset
and random subsets of features. In contrast to normal decision
trees, random decision trees are not pruned after training, as
they are less likely to overfit (ibid.). Breiman’s random forests
use CART as tree growing algorithm and are restricted to binary
trees for simplicity. The best split criterion in a decision node is
selected according to a score function measuring the separation
of training examples. CURFIL supports information gain and nor-
malized information gain (Wehenkel and Pavella, 1991) as score
functions.

A special case of random forests are random ferns, which use
the same feature in all nodes of a hierarchy level. While our li-
brary also supports ferns, we do not discuss them further in this
chapter, as they are neither faster to train nor did they produce
superior results.

4.3 visual features for node tests

Our selection of features was inspired by Lepetit et al. (2005) —
the method for visual object detection proposed by Viola and
Jones (2001). We implement two types of RGB-D image features as
introduced by Stückler et al. (2012). They resemble the features of
Sharp (2008) and Shotton et al. (2011)— but use depth-normaliza-
tion and region averages instead of single pixel values. Shotton et
al. (2011) avoid the use of region averages to keep computational
complexity low. For RGB-only datasets, we employ the same fea-

48 curfil : fast random forests in cuda

q

w1

w2

h1

h2

o1

o2

Figure 4.2: Sample visual feature at three different query pixels. Feature
response is calculated from difference of average values in two off-
set regions. Relative offset locations oi and region extents wi, hi are
normalized with the depth d(q) at the query pixel q.

tures but assume constant depth. The features are visualized in
Fig. 4.2.

For a given query pixel q, the image feature ϕθ is calculated
as the difference of the average value of the image channel χi
in two rectangular regions R1, R2 in the neighborhood of q. Size
wi, hi and 2D offset oi of the regions are normalized by the depth
d(q):

ϕθ(q) :=
1

|R1(q)| ∑
p∈R1

χ1(p)−
1

|R2(q)| ∑
p∈R2

χ2(p)

Ri(q) :=
(

q +
oi

d(q)
,

wi
d(q)

,
hi

d(q)

)
. (4.1)

CURFIL optionally fills in missing depth measurements using the
colorization method of Levin et al. (2004). We use integral im-
ages to efficiently compute region sums. The large space of eleven
feature parameters — region sizes, offsets, channels, and thresh-
olds— requires to calculate feature responses on-the-fly since pre-
computing all possible values in advance is not feasible.

4.4 curfil software package 49

Algorithm 3 Training of random decision tree

Require: D training instances
Require: F number of feature candidates to generate
Require: P number of feature parameters
Require: T number of thresholds to generate
Require: stopping criterion (e. g. maximal depth)

1: D ← randomly sampled subset of D (D ⊂ D)
2: Nroot ← create root node
3: C ← {(Nroot, D)} . initialize candidate nodes
4: while C 6= ∅ do
5: C′ ← ∅ . initialize new set of candidate nodes
6: for all (N, D) ∈ C do
7:

(
Dleft, Dright

)
← EvalBestSplit(D; F, P, T)

8: if ¬STOP(N, Dleft) then
9: Nleft ← create left child for node N

10: C′ ← C′ ∪ {(Nleft, Dleft)}
11: if ¬STOP(N, Dright) then
12: Nright ← create right child for node N

13: C′ ← C′ ∪
{(

Nright, Dright

)}

14: C ← C′ . continue with new set of nodes

4.4 curfil software package

CURFIL’s speed is the result of careful optimization of GPU mem-
ory throughput. This is a non-linear process to find fast combi-
nations of memory layouts, algorithms and exploitable hardware
capabilities. In the following, we describe the most relevant as-
pects of our implementation.

user api The CURFIL software package includes command line
tools as well as a library for random forest training and predic-
tion. Inputs consist of images for RGB, depth, and label informa-
tion. Outputs are forests in JSON format for training and label-
images for prediction. Datasets with varying aspect ratios are
supported.

50 curfil : fast random forests in cuda

Block (0, D) Block (1, D) Block (2, D)

Block (0, 1) Block (1, 1) Block (2, 1)

Block (X, D)

Block (X, 1)

Block (0, 0) Block (1, 0) Block (2, 0) Block (X, 0)

…scheduling order

Feature

S
a
m

p
le

Figure 4.3: Feature Response Kernel. Two-dimensional grid layout of
the feature response kernel for D samples and F features. Each block
contains n threads. The number of blocks in a row, X, depends on the
number of features. X = dF/ne. Feature responses for a given sample
are calculated by the threads in one block row. The arrow (red dashes)
indicates the scheduling order of blocks.

Our source code is organized such that it is easy to improve
and change the existing visual feature implementation. It is de-
veloped in a test-driven process. Unit tests cover major parts of
our implementation.

cpu implementation Our CPU implementation is based on
a refactored, parallelized and heavily optimized version of the
Tuwo Computer Vision Library2 by Nowozin. Our optimizations
make better use of CPU cache by looping over feature candidates
and thresholds in the innermost loop, and by sorting the dataset
according to image ID before learning. Since feature candidate
evaluations do not depend on each other, we can parallelize over
the training set and make use of all CPU cores even when training
only a single tree.

gpu implementation Evaluation of the optimized random
forest training on CPU (Algorithm 3) shows that the vast majority
of time is spent in the evaluation of the best split feature. This is

2 http://www.nowozin.net/sebastian/tuwo/

http://www.nowozin.net/sebastian/tuwo/

4.4 curfil software package 51

Block (0, F) Block (1, F) Block (2, F)

Block (0, 1) Block (1, 1) Block (2, 1)

Block (T, F)

Block (T, 1)

Block (0, 0) Block (1, 0) Block (2, 0) Block (T, 0)

…scheduling order

Threshold

F
ea

tu
re

Thread Block (2,0)

Thread 0 Thread 1 Thread 2 Thread 3 Thread X

…

Figure 4.4: Histogram Aggegation Kernel. Thread block layout of the
histogram aggregation kernel for F features and T thresholds. One
thread block per feature and per threshold. X threads in block ag-
gregate histogram counters for D samples in parallel. Every thread
iterates over at most dD/Xe samples.

52 curfil : fast random forests in cuda

Algorithm 4 CPU-optimized feature evaluation

Require: D samples
Require: F ∈ RF×P random feature candidates
Require: T ∈ RF×T random threshold candidates

1: H ∈ RF×T ← zeros
2: initialize histograms for every feature/threshold
3: for all d ∈ D do
4: for all f ∈ 1 . . . F do
5: ϕ f d ← CalcResponse(f f ·, d)
6: for all t ∈ 1 . . . T do
7: if ϕ f d < t f t then
8: h f t ← h f t + 1

9: calculate impurity scores for all histograms
10: return histogram with best score

to our benefit when accelerating random forest training on GPU.
We restrict the GPU implementation efforts to the relatively short
feature evaluation algorithm (Algorithm 4) as a drop-in replace-
ment and leave the rest of the CPU computation unchanged. We
use the CPU implementation as a reference for the GPU and ensure
that results are the same in both implementations.

Split evaluation can be divided into the following four phases
that are executed in sequential order:

1. Random feature and threshold candidate generation,
2. Feature response calculation,
3. Histogram aggregation for all features and threshold candi-

dates, and
4. impurity score (information gain) calculation.

Each phase depends on results of the previous phase. As a con-
sequence, we cannot execute two or more phases in parallel. The
CPU can prepare data for the launch of the next phase, though,
while the GPU is busy executing the current phase.

4.4 curfil software package 53

4.4.1 GPU Kernels

random feature and threshold candidate genera-
tion A significant amount of training time is used for generat-
ing random feature candidates. The total time for feature genera-
tion increases per tree level since the number of nodes increases
as trees are grown.

The first step in the feature candidate generation is to ran-
domly select feature parameter values. These are stored in a F×11
matrix for F feature candidates and eleven feature parameters of
Eq. (4.1). The second step is the selection of one or more thresh-
olds for every feature candidate. Random threshold candidates
can either be obtained by randomly sampling from a distribu-
tion or by sampling feature responses of training instances. We
implement the latter approach, which allows for greater flexibil-
ity if features or image channels are changed. For every feature
candidate generation, one thread on the GPU is used and all T
thresholds for a given feature are sampled by the same thread.

In addition to sorting samples according to the image they be-
long to, feature candidates are sorted by the feature type, chan-
nels used, and region offsets. Sorting reduces branch divergence
and improves spatial locality, thereby increasing the cache hit
rate.

feature response calculation On GPU, we implement
a similar optimization technique as the one used on CPU, where
loops in the feature generation step are rearranged in order to
improve caching.

We used one thread to calculate the feature response for a
given feature and a given training sample. Section 4.4 shows the
thread block layout for the feature response calculation. A row
of blocks calculates all feature responses for a given sample. A
column of blocks calculates the feature responses for a given fea-
ture over all samples. The dotted red arrow indicates the order
of thread block scheduling. The execution order of thread blocks

54 curfil : fast random forests in cuda

is determined by calculating the Block ID bid. In the two-dimen-
sional case, it is defined as

bid = blockIdx.x + gridDim.x︸ ︷︷ ︸
blocks in row

· blockIdx.y︸ ︷︷ ︸
sample ID

.

The number of features can exceed the maximum number of
threads in a block, hence, the feature response calculation is split
into several thread blocks. We use the x coordinate in the grid
for the feature block to ensure that all features are evaluated be-
fore the GPU continues with the next sample. The y coordinate
in the grid assigns training samples to thread blocks. Threads re-
construct their feature ID f using block size, thread and block ID
by calculating

f = threadIdx.x + blockDim.x︸ ︷︷ ︸
threads in block row

· blockIdx.x︸ ︷︷ ︸
block index in grid row

.

After sample data and feature parameters are loaded, the ker-
nel calculates a single feature response for a depth or color fea-
ture by querying four pixels in an integral image and carrying
out simple arithmetic operations to calculate the two regions
sums and their difference.

histogram aggregation Feature responses are aggre-
gated into class histograms. Counters for histograms are main-
tained in a four-dimensional matrix of size F×T×C×2 for F
features, T thresholds, C classes, and the two left and right
children of a split.

To compute histograms, the iteration over features and thresh-
olds is implemented as thread blocks in a two-dimensional grid
on GPU; one thread block per feature and threshold. This is de-
picted in Section 4.4. Each thread block slices samples into parti-
tions such that all threads in the block can aggregate histogram
counters in parallel.

Histogram counters for one feature and threshold are kept in
the shared memory, and every thread gets a distinct region in
the memory. For X threads and C classes, 2XC counters are allo-
cated. An additional reduction phase is then required to reduce

4.4 curfil software package 55

class 0

…0 1 2 3 C

shared
memory

…

global
memory

left counter

right counter

class

thread 0 1 2 3 4 5 6 7 2C

…

…

class 1 class C

…

Figure 4.5: Reduction of histogram counters. Every thread sums to a
dedicated left and right counter (indicated by different colors) for each
class (first row). Counters are reduced in a subsequent phase. The last
reduction step stores counters in shared memory, such that no bank
conflicts occur when copying to global memory.

the counters to a final sum matrix of size C×2 for every feature
and threshold.

Figure 4.5 shows histogram aggregation and sum reduction.
Every thread increments a dedicated counter for each class in the
first phase. In the next phase, we iterate over all C classes and
reduce the counters of every thread in O(log X) steps, where X
is the number of threads in a block. In a single step, every thread
calculates the sum of two counters. The loop over all classes can
be executed in parallel by 2C threads that copy the left and right
counters of C classes.

The binary reduction of counters (Fig. 4.5) has a constant run-
time overhead per class. The reduction of counters for classes
without samples can be skipped, as all counters are zero in this
case.

impurity score calculation Computing impurity scores
from the four-dimensional counter matrix is the last of the four
training phases that are executed on GPU.

In the score kernel computation, 128 threads per block are used.
A single thread computes the score for a different pair of features
and thresholds. It loads 2C counters from the four-dimensional

56 curfil : fast random forests in cuda

counter matrix in global memory, calculates the impurity score
and writes back the resulting score to global memory.

The calculated scores are stored in a T×F matrix for T thresh-
olds and F features. The matrix is then finally transferred from
device to host memory space.

undefined values Image borders and missing depth values
(e. g. due to material properties or camera disparity) are repre-
sented as not a number (NaN), which automatically propagates
and causes comparisons to produce false. This is advantageous,
since no further checks are required and the random forest auto-
matically learns to deal with missing values.

4.4.2 Global Memory Limitations

slicing of samples Training arbitrarily large datasets with
many samples can exceed the storage capacity of global memory.
The feature response matrix of size D×F scales linearly in the
number of samples D and the number of feature candidates F.
We cannot keep the entire matrix in global memory if D or F is
too large. For example, training a dataset with 500 images, 2000
samples per image, 2000 feature candidates and double precision
feature responses (64 bit) would require 500 · 2000 · 2000 · 64 bit ≈
15 GB of global memory for the feature response matrix in the
root node split evaluation.

To overcome this limitation, we split samples into partitions, se-
quentially compute feature responses, and aggregate histograms
for every partition. The maximum possible partition size depends
on the available global memory of the GPU.

image cache Given a large dataset, we might not be able
to keep all images in the GPU global memory. We implement an
image cache with a last recently used (LRU) strategy that keeps a
fixed number of images in memory. Slicing samples ensures that
a partition does not require more images than can be fit into the
cache.

4.4 curfil software package 57

memory pooling To avoid frequent memory allocations, we
reuse memory that is already allocated but no longer in use. Due
to the structure of random decision trees, evaluation of the root
node split criterion is guaranteed to require the largest amount of
memory, since child nodes always contain less or equal samples
than the root node. Therefore, all data structures have at most
the size of the structures used for calculating the root node split.
With this knowledge, we are able to train a tree with no memory
reallocation.

4.4.3 Extensions

hyper-parameter optimization Cross-validating all the
hyper-parameters is a requirement for model comparison, and
random forests have quite a few hyper-parameters, such as stop-
ping criteria for splitting, number of features and thresholds gen-
erated, and the feature distribution parameters.

To facilitate model comparison, CURFIL includes support for
cross-validation and a client for an informed search of the best
parameter setting using Hyperopt (Bergstra et al., 2011). This al-
lows to leverage the improved training speed to run many exper-
iments serially and in parallel.

image flipping To avoid overfitting, the dataset can be aug-
mented using transformations of the training dataset. One possi-
bility is to add horizontally flipped images, since most tasks are
invariant to this transformation. CURFIL supports training hori-
zontally flipped images with reduced overhead.

Instead of augmenting the dataset with flipped images and
doubling the number of pixels used for training, we horizontally
flip each of the two rectangular regions used as features for a sam-
pled pixel. This is equivalent to computing the feature response
of the same feature for the same pixel on an actual flipped image.
Histogram counters are then incremented following the binary
test of both feature responses. The implicit assumption here is
that the samples generated through flipping are independent.

The paired sample is propagated down a tree until the outcome
of a node binary test is different for the two feature responses,

58 curfil : fast random forests in cuda

Table 4.1: Comparison of random forest training time (in minutes) on a
quadcore CPU and two non-mobile GPUs. Random forest parameters
were chosen for best accuracy.

NYUD MSRC-21

Device time factor time factor

i7–4770K 369 1.0 93.2 1.0

Tesla K20c 55 6.7 5.1 18.4

GTX Titan 24 15.4 3.4 25.9

indicating that a sample and its flipped counterpart should split
into different directions. A copy of the sample is then created and
added to the samples list of the other node child.

This technique reduces training time since choosing indepen-
dent samples from actually flipped images requires loading more
images in memory during the best split evaluation step. Since our
performance is largely bounded by memory throughput, depen-
dent sampling allows for higher throughput at no cost in accu-
racy.

4.5 experimental results

We evaluate our library on two common object class segmenta-
tion tasks, the NYUD and the MSRC-21 dataset. We focus on the
processing speed, but also discuss the prediction accuracies at-
tained. Note that the speed between datasets is not comparable,
since dataset sizes differ and the forest parameters were chosen
separately for best accuracy.

4.5.1 Datasets

The NYUD by Silberman et al. (2012) contains 1449 densely labeled
pairs of aligned RGB-D images from 464 indoor scenes. We focus
on the semantic classes ground, furniture, structure, and props de-
fined by Silberman et al.

4.5 experimental results 59

Table 4.2: Random forest prediction time on RGB-D images at original
resolution, comparing speed on a recent quadcore CPU and various
GPUs. Random forest parameters are are chosen for best accuracy.

NYUD MSRC-21

Device time (ms) factor time (ms) factor

i7-440K 477 1 409 1

GTX 675M 28 17 37 11

Tesla K20c 14 34 10 41

GTX Titan 12 39 9 48

To evaluate our performance without depth, we use the MSRC-21

dataset3. Here, we follow the literature in treating rarely occuring
classes horse and mountain as void and train/predict the remain-
ing 21 classes on the standard split of 335 training and 256 test
images.

4.5.2 Training and Prediction Time

Tables 4.1 and 4.2 show random forest training and prediction
times, respectively, on an Intel Core i7-4770K (3.9 GHz) quadcore
CPU and various NVidia GPUs. Note that the CPU version is using
all cores.

For the RGB-D dataset, training speed is improved from 369 min
to 24 min, which amounts to a speed-up factor of 15. Dense pre-
diction improves by factor of 39 from 477 ms to 12 ms.

Training on the RGB dataset is finished after 3.4 min on a GTX

Titan, which is 26 times faster than CPU (93 min). For prediction,
we achieve a speed-up of 48 on the same device (9 ms vs. 409 ms).

Prediction is fast enough to run in real time even on a mobile
GPU (GTX 675M, on a laptop computer fitted with a quadcore i7-
3610QM CPU), with 28 ms (RGB-D) and 37 ms (RGB).

3 http://jamie.shotton.org/work/data.html

http://jamie.shotton.org/work/data.html

60 curfil : fast random forests in cuda

Table 4.3: Segmentation accuracies on NYUD of our random forest com-
pared to state-of-the-art methods. We used the same forest as in the
training/prediction time comparisons of Tables 4.1 and 4.2.

Accuracy (%)

Method Pixel Class

Silberman et al. (2012) 59.6 58.6

Couprie et al. (2013) 63.5 64.5

Our random forest∗ 68.1 65.1

Our random forest∗ (with height,
cf. Section 4.5.4)

69.6 66.5

Stückler et al. (2014)∗∗ 70.6 66.8

Hermans et al. (2014) 68.1 69.0

Müller and Behnke (2014)∗∗ 72.3 71.9
∗ see main text for hyper-parameters used
∗∗ based on our random forest prediction

4.5.3 Classification Accuracy

Our implementation is fast enough to train hundreds of random
decision trees per day on a single GPU. This fast training enabled
us to conduct an extensive parameter search with five-fold cross-
validation to optimize segmentation accuracy of a random for-
est trained on the NYUD (Silberman et al., 2012). Table 4.3 shows
that we outperform other state-of-the art methods simply by us-
ing a random forest with optimized parameters. The resulting
model and the fast CURFIL prediction were used in two publi-
cations which improved the results further by 3D accumulation
of predictions in real time (Stückler et al., 2014) and superpixel
CRFs (Müller and Behnke, 2014). This shows that efficient hyper-
parameter search is crucial for model selection. Example segmen-
tations are displayed in Figs. 4.6 and 4.7.

Methods on the established RGB-only MSRC-21 benchmark are
so advanced that their accuracy cannot simply be improved by a
random forest with better hyper-parameters. Our pixel and class

4.5 experimental results 61

Figure 4.6: Segmentation examples on NYUD. Left to right: RGB image,
depth visualization, ground truth, random forest segmentation.

accuracies for MSRC-21 are 59.2 % and 47.0 %, respectively. This is
still higher than other published work using random forests as
the baseline method, such as 49.7 % and 34.5 % by Shotton et al.
(2008). However, as Shotton et al. and the above works show, ran-
dom forest predictions are fast and constitute a good initializa-
tion for other methods such as conditional random fields.

Finally, we trained the MSRC-21 dataset by augmenting the data-
set with horizontally flipped images using the naı̈ve approch and
our proposed method. The naı̈ve approach doubles both the to-
tal number of samples and the number of images, which quadru-
ples the training time to 14.4 min. Accuracy increases to 60.6 %

and 48.6 % for pixel and class accuracy, respectively. With paired
samples (introduced in Section 4.4.3), we reduce the runtime by a
factor of two (to now 7.48 min) at no cost in accuracy (60.9 % and
49.0 %). The remaining difference in speed is mainly explained
by the increased number of samples, thus the training on flipped
images has very little overhead.

62 curfil : fast random forests in cuda

Figure 4.7: Segmentation examples on the MSRC-21 dataset. In groups of
three: input image, ground truth, random forest segmentation. Last
row shows typical failure cases

4.5.4 Incorporating Novel Features

With few changes in code, CURFIL allows to incorporate novel fea-
tures. To demonstrate this, we chose height above ground, which
is an important cue for indoor scene classification, and has been
used in multiple other studies (Gupta et al., 2014; Müller and
Behnke, 2014; Schulz et al., 2015a). On a robot with known cam-
era pose, height above ground can be inferred directly. To gen-
erate this information for the NYUD — where camera poses are
not available — we proceed as suggested by Müller and Behnke
(2014). We extract normals in the depth images, find ten clusters
in normal space with k-means and determine the cluster that is
most vertical. We then project all points to this normal and sub-
tract the height of the lowest point.

We add the height image as an additional depth channel. In-
stead of computing region differences as in Eq. (4.1), we deter-
mine the average height above ground in R1, such that

fheight,θ(q) :=
1

|R1(q)| ∑
p∈R1

χheight(p). (4.2)

4.6 conclusion 63

Using the same hyperparameters as without height, the classifi-
cation accuracy improves significantly by 1.5 and 1.3 percentage
points for class and pixel accuracy, respectively (Table 4.3). Anal-
ysis of the learned forest shows that overall, height above ground
is used in roughly 12 %, depth differences in 38 %, and color in
50 % of the split nodes. These numbers reflect the statistics of the
feature proposal distribution.

4.5.5 Random Forest Parameters

The hyper-parameter configurations for which we report our
timing and accuracy results were found with global parameter
search and cross-validation on the training set. The cross-valida-
tion outcome varies between datasets.

For the NYUD, we used three trees with 4537 samples / image,
5729 feature candidates / node, 20 threshold candidates, a box
radius of 111 px, a region size of 3, tree depth 18 levels, and min-
imum samples in leaf nodes 204.

For MSRC-21 we found 10 trees, 4527 samples / image, 500 fea-
ture candidates / node, 20 threshold candidates, a box radius of
95 px, a region size of 12, tree depth 25 levels, and minimum
samples in leaf nodes 38 to yield best results.

4.6 conclusion

We provide an accelerated random forest implementation for
image labeling research and applications. Our implementation
achieves real-time dense pixel-wise classification of VGA images
on a GPU. Training is accelerated on GPU by a factor of up to
26 compared to an optimized CPU version. The experimental re-
sults show that our fast implementation enables effective param-
eter searches that find solutions which outperform state-of-the-
art methods. CURFIL prepares the ground for scientific progress
with random forests, e. g. through research on improved visual
features.

5U N S U P E RV I S E D M E T H O D S F O R I M A G E
C AT E G O R I Z AT I O N

In this chapter, we turn to one of the main deep learning meth-
ods introduced in Chapter 2, the combination of unsupervised
pre-training and supervised fine-tuning, specifically the “simple”
building blocks used in the unsupervised pre-training: RBMs and
auto-encoders. Section 5.1 discusses how we can endow RBMs
with local receptive fields. In Section 5.2, we empirically investi-
gate the limits of RBM learning. Finally, in Section 5.3 we show
that auto-encoders are limited in the type of features they can
encode and propose a solution using two-layer encoders with
shortcut connections.

5.1 exploiting local structure in boltzmann machines

One of the main aims of unsupervised learning is modeling
the data distribution. Generative graphical models, such as Re-
stricted Boltzmann Machines (RBM, Hinton et al. 2006) are a pop-
ular choice for this purpose. RBMs model correlations of observed
variables by introducing binary latent variables (features) which
are assumed to be conditionally independent given the observed
variables (Eq. (2.6)). This restriction is useful because, in contrast
to general Boltzmann Machines, a fast learning algorithm exists
(Contrastive Divergence, ibid.). RBMs are generic learning ma-
chines and have been applied to many domains, including text,
speech, motion data, and images. In the most commonly used
form, however, they do not take advantage of the topology of the
input space. Especially when applied to image data, fully con-
nected RBMs model long-range dependencies which are known
to be weak in natural images (Huang and Mumford, 1999).

One way to deal with this problem is to completely remove
long-range parameters from the model. The advantage of this ap-
proach is two-fold: first, local connectivity serves as a prior that

65

66 unsupervised methods for image categorization

matches well to the properties of natural images and, second,
the drastically reduced number of parameters makes learning in
larger models feasible. The downside of local connectivity is that
weaker long-distance interactions cannot be modeled at all. In
this chapter, we propose to compensate for this disadvantage by
introducing direct or indirect lateral interactions between the lo-
cal features.

While local receptive fields are well-established in discrimina-
tive learning, their counterpart in the generative case, which we
call “impact area”, is not well understood. In this chapter, we in-
vestigate the capabilities of stacked RBMs and RBM-like graphical
models with local impact area and lateral connections. We train
our architecture on the well-known MNIST database of handwrit-
ten digits (LeCun et al., 1998a) and demonstrate the efficiency of
learning. The hidden representations can then be used for classifi-
cation. With a similar number of model parameters, we find that
models which exploit image structure perform better for classi-
fication. We also show that models with local impact area can
generate globally consistent images. Finally, the data probability
under our model compares favorably with the data probability
of a fully connected RBM.

5.1.1 Background on Boltzmann Machines

A Boltzmann Machine (BM) is an undirected graphical model with
binary observed variables v ∈ {0, 1}n (visible nodes) and latent
variables h ∈ {0, 1}m (hidden nodes). The energy function of a
BM is given by

E(v, h, θ) = −vTWh− vT Iv− hT Lh− bTv− aTh,

where θ = (W, I, L, b, a) are the model parameters, namely pair-
wise visible-hidden, visible-visible and hidden-hidden interac-
tion weights, respectively, and b, a are the biases of visible and
hidden activation potentials. The diagonal elements of I and L
are always zero. This yields a probability distribution p(v)

p(v; θ) =
1

Z(θ)
p∗(v; θ) =

1
Z(θ) ∑

h
e−E(v,h,θ),

5.1 exploiting local structure in boltzmann machines 67

where Z(θ) is the normalizing constant (partition function) and
p∗(·) denotes unnormalized probability.

In restricted BMs (RBMs), I and L are set to zero. Consequently,
the conditional distributions p(v|h) and p(h|v) factorize com-
pletely. This makes exact inference of the respective posteriors
possible. Their expected values are given by

〈v〉p = σ(Wh + b) and 〈h〉p = σ(Wv + b), (5.1)

where σ denotes element-wise application of the sigmoid func-
tion. In practice, Contrastive Divergence (CD, Hinton et al. 2006)
is used to approximate the true parameter gradient

∂ ln p(v)
∂wi,j

= 〈vTh〉+ − 〈vTh〉− (5.2)

by a Markov chain Monte Carlo (MCMC) algorithm. Here, 〈·〉+
and 〈·〉− refer to the expected values with respect to the data
distribution and model distribution, respectively. Approximating
these quantities is called the positive and negative phase. Tiele-
man (2008) proposed a faster alternative, called Persistent Con-
trastive Divergence (PCD), which employs a persistent Markov
chain to approximate 〈·〉−. We use PCD throughout this chapter.

When I is not zero, the model is called a semi-restricted Boltz-
mann machine (SRBM) (Osindero and Hinton 2008). This model
can be trained with a variant of CD by approximating p(v|h) us-
ing a few damped mean-field updates instead of many sequential
rounds of Gibbs sampling. We will refer to this model as SRBM−,
as the lateral connections only play a role in the negative phase.
We will later introduce our model, the SRBM+, where lateral con-
nections influence both the positive and the negative phase.

As described in Section 2.4, RBMs can be stacked to build hier-
archical models. The training of stacked models proceeds layer-
wise by training the high-level models using the activations of
the hidden nodes of the layer below as input.

5.1.2 Local Impact Semi-Restricted Boltzmann Machines+

We now introduce two modifications to the architectures intro-
duced in Section 5.1.1. Firstly, we restrict the impact area of each

68 unsupervised methods for image categorization

hidden node. To this end, we arrange the hidden nodes in mul-
tiple grids, each of which resembles the visible layer in its topol-
ogy. As a result, each hidden node hj can be assigned a position
x(hj) ∈N2 in the input (pixel) coordinate system. This approach
is similar to the common approach in convolutional neural net-
works (LeCun et al., 1998a). We then allow wij to be non-zero only
if |pos(vi)− pos(hj)| < r for a small constant r, where pos(vi) is
the pixel coordinate of vi. In contrast to the convolutional proce-
dure, we do not require the weights to be equal for all hidden
units within one grid. We call this modification of the RBM the
Local Impact RBM or, shorter, LIRBM.

Secondly, we allow lij to be non-zero if i 6= j. Learning in this
model proceeds as follows. In the positive phase the visible ac-
tivations are given by the input and the hidden activations are
calculated using damped mean-field updates. The mean-field up-
dates are determined by

h(0) = σ(WTv + b), h(k+1) = σ(WTv + b + LTh(k)). (5.3)

In the negative phase, we continue our persistent Markov chain
from the current state (v0

p, h0
p) by sampling v1

p from

p(v0
p|h0

p) = σ(Wh0
p + a). (5.4)

We then generate a new hidden state by sampling from

p(hk+1|v1
p) = σ(WTv1

p + b + LThk
p). (5.5)

We call this model SRBM+ since, in contrast to SRBM−, the lateral
connections play a crucial role in the positive phase.

A common problem in training convolutional RBMs is that the
overcomplete representation of the visible nodes by the hidden
nodes enables the filters to learn a trivial identity (Lee et al., 2009;
Norouzi et al., 2009). The proposed SRBM+ does not suffer from
this problem for two reasons: First, we use PCD for training. This
means even if a training example can be perfectly reconstructed,
there is still a non-zero learning signal. This signal stems from
the dependency of the approximated gradient on the state of the
persistent Markov chain. Second, due to not sharing weights, for
a trivial solution to occur, all filters have to learn the identity
separately.

5.1 exploiting local structure in boltzmann machines 69

Figure 5.1: Visualization of direct and indirect lateral interaction. Acti-
vations of randomly selected hidden nodes in LIRBM, projected down
from the first, second and third layer, respectively. Bottom right: Visu-
alizations of lateral interactions in LIRBM+, see text in Section 5.1.4 for
details.

5.1.3 Related Work

In the context of generative models of images, little work has
been done to exploit local structure. A well known supervised
learning approach that makes use of the local structure of im-
ages is the convolutional neural network by LeCun et al. (1998a).
Another approach to exploit local structure has been suggested
by Behnke (2003b). LeCun’s ideas where transfered to the field of
generative graphical models by Lee et al. (2009) and Norouzi et
al. (2009). Their models, which employ weight sharing and max-
pooling, discard global image statistics. Our model does not suf-
fer from this restriction. For example, when training landscapes,
our model would be able to learn, even on the lowest layer, that
there is always sky depicted in the upper half of the image.

To achieve globally consistent representations in spite of the
local impact area, we make use of lateral connections between
the latent variables. Such connections can be modelled indirectly
using stacked RBMs as in Deep Belief Networks (DBN) (Hinton et
al., 2006) or Deep Boltzmann Machines (DBM, Salakhutdinov and
Hinton 2009). Stacks of more than two RBMs, however, are not
guaranteed to improve the data likelihood. In fact, even stacks of
two RBMs do not improve a lower likelihood bound empirically

70 unsupervised methods for image categorization

Table 5.1: Test log-likelihood on MNIST for plain RBMs (RBM-51, RBM-392)
and Local Impact RBMs with different impact area sizes, measured in
nats. Local impact RBMs perform better than standard RBM with the
same number of parameters.

Global connectivity Local connectivity

RBM-51 RBM-392 LIRBM LIRBM

Impact area n/a n/a (11×11) (7×7)

Log-probability −125.58 −101.69 −108.65 −109.95

Parameters 40 819 308 504 39 818 27 058

(Salakhutdinov, 2009a). On the other hand, stacking locally con-
nected RBMs yields larger effective impact area for higher layers
and thus can enforce more global constraints.

A more direct way to model lateral interaction is to introduce
pairwise potentials between observed or between latent variables.
The former case, without restrictions to local impact areas, was
studied by (Osindero and Hinton, 2008). Furthermore, (Salakhut-
dinov, 2008) trained general BMs with lateral interactions between
both observed and latent variables on small problems. Due to
long training times, this general approach seems to be infeasible
for larger problem sizes. Furthermore, stacking of BMs would
yield two kinds of lateral interactions in each layer.

In this work, we employ lateral interactions to implicitly extend
the impact area of latent variables.

5.1.4 Experimental Results

In our experiments we analyze the effects of local impact areas
and lateral interaction terms on RBMs. As a first step, we trained
models with and without local impact areas on the MNIST data-
base of handwritten digits (LeCun et al., 1998a).

The standard RBM model had 51 hidden units, so that it had
slightly higher number of parameters than the locally connected
model with a hidden layer consisting of two grids of size 14× 14,

5.1 exploiting local structure in boltzmann machines 71

and an impact area of size 12× 12. Throughout the chapter, we
use 500 epochs for fully connected models and 80 epochs for
locally connected models. Please note that the reduced number
of epochs is not due to longer training times of locally connected
models. On the contrary, fewer parameters have to be updated
and the smaller parameter space results in faster convergence.

We then approximated the likelihood assigned to the test data
under these models using annealed importance sampling (AIS).
The likelihood is measured in “nats”, meaning the natural loga-
rithm of the unit-less probabilities. The results are summarized in
Table 5.1. The locally connected model had a test log-likelihood of
−108.65 nats whereas the standard RBM had a test log-likelihood
of −125.58 nats, showing a clear advantage of our model. For com-
parison, a fully connected RBM with as many hidden units as the
local model achieves a test log-likelihood of −101.69 nats. How-
ever, this model has eight times more parameters. Further de-
creasing the number of parameters by reducing the size of the
impact area by factor of 0.65 does not significantly reduce the
test log-likelihood.

In a second experiment, we examine the suitability of the hid-
den representations, which were learned without supervision, for
classification. For fair comparison, we employ a k-nearest neigh-
bor classificator with k = 3. We find that features learned with
LIRBM are more useful (3.12%) for classification than features
learned by a plain RBM (5.24%) with a similar number of param-
eters. As above, we also trained an RBM with 392 hidden units
(2.65%) for comparison. Furthermore, we observe that our LIRBM+

model yields slightly better (although insignificantly so) results
(3.07 %) when compared to LIRBM. Surprisingly, our LIRBM− per-
forms much worse than all other models. It could be that the
whitening operation implicitly performed by the SRBM− (Osin-
dero and Hinton, 2008) hurts classification performance while it
is helpful for generative purposes.

Next, we evaluated the influence of direct and indirect lateral
interactions in the generative context. To this end, we visualized
filters and fantasies generated by LIRBM and LIRBM+. The left
three images in Fig. 5.1 show weights in a LIRBM with three layers.
In the first image, filters of the lowest hidden layer are projected

72 unsupervised methods for image categorization

Figure 5.2: Fantasies generated by our models from random noise. Left:
LIRBM+, one layer, 1000 steps in Markov chain. Center left: LIRBM,
one layer, 1000 steps. Center right: LIRBM, two layers, 500 steps. Right:
LIRBM, three layers, 250 steps. Lateral connections as well as stacking
enforce global consistency.

down to the visible layer. We observe that small parts of lines and
line-endings are learned. The second and third figure display fil-
ters from the second and third hidden layer, projected down to
the visible layer. These filters are clearly more global. With their
size, the size of the recognized structure increases as well. The
fourth image visualizes lateral interactions in an LIRBM+. Even
columns show randomly selected filters hj of the first hidden
layer, while the patch to the left of a filter depicts a linear combi-
nation of all other filters hi, weighted by their pairwise potential
lij. Note that hj does not contribute to this sum, since ljj = 0. We
observe that through lateral interaction the filter is not only repli-
cated, it is even extended beyond its impact area to a more global
feature.

Figure 5.2 shows fantasies generated by LIRBM+ and a stack
of LIRBM. Markov chains for fantasies were started using binary
noise in the visible layer. To show quick convergence to model
distribution, less iterations were used on the deeper models. It
is clear that fantasies produced by a single-layer LIRBM are only
locally consistent and one can observe that stacking gradually
improves global consistency. Lateral connections in the hidden
layer significantly improve consistency even for a flat model.

These finds strongly support our initial claim that lateral in-
teraction compensates for the negative effects of the local impact
areas.

5.2 investigating convergence of rbm learning 73

5.1.5 Conclusions

In this chapter, we present a novel variation of the Restricted
Boltzmann Machine for image data, featuring only local interac-
tions between visible and hidden nodes. While learning in this
model is fast and few parameters yield comparably good data
probabilities and classification performance, the model does not
enforce global consistency constraints. We showed that this effect
can be compensated for by adding lateral interactions between
the latent variables, which we model directly by pairwise poten-
tials or indirectly through stacking.

Due to the small number of parameters and its computational
efficiency our architecture has the potential to model images of a
much larger size than commonly used forms of RBMs.

5.2 investigating convergence of rbm learning

Restricted Boltzmann Machines (RBMs, Smolensky, 1986) have
been widely used as generative models, for unsupervised feature
extraction and as building blocks of deep belief networks (Ben-
gio, 2009; Salakhutdinov and Hinton, 2009). Applications range
from image processing (Ranzato and Hinton, 2010) and classifica-
tion (Hinton et al., 2006) to collaborative filtering (Salakhutdinov
et al., 2007). Despite this success RBM training remains a problem-
atic task. For even medium-sized RBMs likelihood maximization
is not possible because the true gradient of the likelihood is not
tractable.

Most applications instead rely on a fast MCMC approximation
to the gradient, called contrastive divergence (CD). CD was shown
to work well in practice in a number of tasks, even though it is not
a good approximation to the likelihood gradient (Salakhutdinov
and Murray, 2008).

There are a number of variants of CD, notably persistent con-
trastive divergence (PCD), fast persistent contrastive divergence
(FPCD), Tempered Transitions (Salakhutdinov, 2009b), and Parallel
Tempering
(Desjardins et al., 2010; Cho et al., 2010). Most of these come
with a variety of hyperparameters in addition to the established

74 unsupervised methods for image categorization

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

13

12

11

10

9

8

7

6

P
(v

)
(n

a
ts

)

AIS detects PCD divergence

AIS

Ground truth

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

200

190

180

170

160

150

140

130

P
(v

)
(n

a
ts

)

AIS fails to detect PCD divergence

AIS

Ground truth

Figure 5.3: AIS (solid green with average uncertainty) vs. ground truth
(black, dashed). Left. AIS follows true likelihood even during unstable
learning. Right. AIS fails to detect PCD learning divergence.

heuristics of weight-decay, momentum, and learnrate schedules.
Since exact evaluation of the objective function is infeasible for
interesting datasets, it is not clear which heuristic to choose and
how to set the hyperparameters. Empirical evaluations exist (Des-
jardins et al., 2010; Tieleman and Hinton, 2009) but are scarce on
realistic datasets.

Fischer and Igel (2010), Desjardins et al. (2010) and others even
observed that CD (and PCD) training diverges on the training set
after an initial increase in likelihood. Fischer and Igel (2010) con-
clude that the right choice of hyperparameters can solve this
problem. Due to the problem of calculating the partition func-
tion, however, it is not clear how the best training method and
hyperparameters could be chosen.

Please also note that the effects discussed in this section are not
related to the common “overfitting” phenomenon. This can be
dealt with by choosing a validation set and monitoring the ratio
of the unnormalized probabilities, causing the partition functions
to cancel. What we are looking at in this section is whether the
training method actually follows the gradient on the training set,
as opposed to generalization on a validation set.

To our knowledge, there are two main methods in use today to
evaluate the learning progress of RBMs. One is the so-called “re-
construction error”, the other is annealed importance sampling

5.2 investigating convergence of rbm learning 75

(AIS). In the practical guide to training RBMs, Hinton (2012) both
refers researchers to the reconstruction error but also warns them
to rely on it. The “reconstruction error” is the difference between
a data point and the “reconstruction”,

`recons(D, θ) = ∑
x∈D

∥∥∥∥x− E
[
v
∣∣ E [h|v; θ] ; θ

]∥∥∥∥
2

2
. (5.6)

Fischer and Igel (2010) found that this measure is truly danger-
ous on some toy problems, since it does not correlate with the
objective function of RBM training and in particular does not de-
tect the divergence of likelihood. In this section, we can confirm
this observation for more realistically sized RBMs.

The second commonly used method to evaluate RBMs is An-
nealed Importance Sampling (AIS, Neal, 2001; Salakhutdinov and
Murray, 2008). AIS is an MCMC method that can be used to approx-
imate the partition function of an RBM with the help of a baseline
model. We investigate the use of AIS, not only to judge the final
result of learning but also to find good hyperparameters and as
an indicator when to stop learning to prevent divergence.

The main observations in this section can be summarized as
follows: By analyzing detailed learning curves on medium-sized
RBMs, we find that using PCD and a simple update rule suffices to
produce high likelihood values. In particular, it is not necessary
to tune many hyperparameters or to find the right learning sched-
ule. Prevention of divergence remains difficult, however, since re-
sults on AIS approximations are rather mixed. In most cases, the
behaviour of the true likelihood was reproduced accurately but in
other cases serious divergence was not detected at all. Theoretical
work by Yuille (2005) shows that CD is guaranteed to converge to
a local maximum when an appropriate learnrate schedule is used.
Whether this can be used in practice is not clear, as too conserva-
tive learnrate schedules result in convergence to low likelihood
values ((Fischer and Igel, 2010) and our results in Section 5.2.3).
Long and Servedio (2010) showed that it is NP-hard to approxi-
mate the likelihood of a given RBM to a certain precision (ibid.).
We therefore suggest more research in the direction of early stop-
ping and detection of divergence.

76 unsupervised methods for image categorization

5.2.1 Background on Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is an undirected graph-
ical model with binary observed variables v ∈ {0, 1}n (visible
nodes) and binary latent variables h ∈ {0, 1}m (hidden nodes).
The energy function of an RBM is given by

E(v, h, θ) = −vTWh− bTv− aTh, (5.7)

where θ = (W, b, a) are the model parameters, namely pairwise
visible-hidden interaction weights and biases of visible and hid-
den activation potentials, respectively. This yields a probability
distribution

p(v; θ) =
1

Z(θ)
p∗(v; θ) =

1
Z(θ) ∑

h
e−E(v,h,θ), (5.8)

where Z(θ) is the normalizing constant (partition function) and
p∗(·) denotes unnormalized probability. The conditional distribu-
tions
p(v|h) and p(h|v) factorize completely, making exact infer-
ence of the respective posteriors possible. Their expected values
are given by

〈v〉p = σ(Wh + b) and 〈h〉p = σ(Wv + b). (5.9)

Here, σ denotes element-wise application of the logistic sigmoid:

σ(x) = (1 + exp(−x))−1 . (5.10)

In practice, contrastive divergence (CD) or one of its variants is
used to approximate the true parameter gradient

∂ ln p(v)
∂W

= 〈vhT〉+ − 〈vhT〉− (5.11)

by an MCMC algorithm. Here, 〈·〉+ and 〈·〉− refer to the expected
values with respect to the data distribution and model distribu-
tion, respectively. The expected value of the data distribution is
approximated in the “positive phase”, while the expected val-
ues of the model distribution are approximated in the “negative

5.2 investigating convergence of rbm learning 77

phase”. For CD in RBMs, 〈·〉+ can be calculated in closed form,
while 〈·〉− is estimated using k steps of a Markov chain started
at the training data.

Recently, Tieleman (2008) proposed a faster alternative to CD,
called Persistent Contrastive Divergence (PCD), which employs
a persistent Markov chain to approximate 〈·〉−. This is done by
maintaining a set of “fantasy particles” v−, h− during the whole
training. The chains are also governed by the transition operator
in Eq. (5.9) and are used to calculate 〈vhT〉− as the expected value
with respect to the Markov chains 〈v−hT

−〉.
If the learnrate is small enough, the chains v− and h− should

mix faster than the model changes. Therefore they form a better
estimate of the model distribution than a k-step Gibbs sampling
as performed by CD. As a side effect, PCD removes k from the
set of hyperparameters to be adjusted and again emphasizes the
importance of the learnrate.

RBMs can be stacked to build hierarchical models. The training
of stacked models proceeds greedily layer-wise. After training an
RBM, one calculates the expected values 〈h〉p(h|v) of its hidden
variables given the training data. Keeping the parameters of the
first RBM fixed, we can then train another RBM using 〈h〉p(h|v) as
its input. We do not directly investigate stacking but concentrate
on the learning of a single layer, as the results can be directly
applied to the stacked setting.

Annealed importance sampling (AIS) can be used to obtain
an approximation of the partition function of an RBM. It is an
algorithm to estimate the ratio of two normalization constants,
and builds upon the following fact. Let pA(v) = p∗A(v)/ZA and
pB(v) = p∗B(v)/ZB be two distributions such that pA(v) 6= 0 if
pB(v) 6= 0. Then:

ZB
ZA

=

∫
p∗B(v)dv

ZA
=
∫ p∗B(v)

p∗A(v)
pa(v)dv =

〈
p∗B(v)
p∗A(v)

〉

pA

(5.12)

If it is possible to draw independent samples from pA, then this
expected value can be approximated using a Monte Carlo ap-
proach. This only gives good approximations if pA is very close
to pB.

78 unsupervised methods for image categorization

14

13

12

11

10

9

8

7

P
(v

)
(n

a
ts

)

CD1

re
co

n
st

ru
ct

io
n
 e

rr
o
r

PCD

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

14

13

12

11

10

9

8

7

P
(v

)
(n

a
ts

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

Figure 5.4: Learning curves for Shifter dataset: Top row. Exact likelihood
during training, with standard deviation for different random initial-
izations. Dashed lines show “reconstruction error”. Bottom row. AIS ap-
proximations to likelihood with error bars showing mean uncertainty.
Colors indicate different learnrates η: black η = 0.1, red η = 0.01,
green η = 0.001, blue η = 0.0001. See main text for a detailed discus-
sion.

AIS overcomes this weakness by introducing an annealing chain
of distributions pn such that p0 = pA, pN = pB and pk is very
close to pk+1. Calculating the ratios of all intermediate normal-
ization functions— which can be done efficiently using an MCMC

algorithm— then yields the desired ratio ZB/ZA.
As detailed by Salakhutdinov and Murray (2008), AIS can be

applied to calculating the partition function of an RBM by setting
pB to a distribution for which the normalization constant can be
computed efficiently and setting pA to the distribution modeled
by the RBM.

5.2 investigating convergence of rbm learning 79

5.2.2 Experimental Setup

We use three datasets in this section, which we chose for compa-
rability with the literature.

shifter . Labeled Shifter Ensemble (Fischer and Igel, 2010) is
a 19-dimensional data set containing 768 samples. The samples
are generated in the following way: The states of the first eight
visible units are set uniformly at random. The states of the fol-
lowing eight units are cyclically shifted copies of the first eight.
The shift can be zero, one unit to the left, or one to the right
and is indicated by the last three units. Average log-likelihood
is log 1

768 ≈ −6.64 if the distribution of the data set is modeled
perfectly.

bars and stripes . This dataset also stems from Fischer and
Igel (ibid.) and has 16 visible units. Each pattern corresponds to
a square of 4× 4 units and is generated by first randomly choos-
ing an orientation, vertical or horizontal with equal probability,
and then picking the state for all units of every row or column
uniformly at random. Since each of the two completely uniform
patterns can be generated in two ways, the upper bound of the
average log-likelihood is −3.21.

mnist. Finally, we use the MNIST database of handwritten dig-
its (MNIST)1, which is more realistic dataset than the first two. If
not by itself, it certainly has gained relevance through heavy use
for evaluation of new learning algorithms.

1 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

80 unsupervised methods for image categorization

determining the log-likelihood. Due to the symmetric
structure of the RBM energy function with respect to v and h, the
likelihood can be factored in two different ways:

log p(v; θ) = −Z(θ) + log ∑
h

exp (−E(v, h; θ))

= −Z(θ) +
(

bTv
)
+

n

∑
j=1

log

(
1 + exp

(
aj +

m

∑
i=1

wijvj

))

(5.13)

= −Z(θ) +
(

aTh
)
+

m

∑
j=1

log

(
1 + exp

(
bj +

n

∑
i=1

wjihj

))

(5.14)

Depending on the dimensions of W, the larger of h and v is
summed out (Eq. (5.13) or (5.14), respectively). For

Z(θ) = ∑
v

∑
h

exp (−E(v, h; θ)) , (5.15)

all possible values of v ∈ {0, 1}n or h ∈ {0, 1}m must be consid-
ered.

details on learning procedure . Since the Shifter and
Bars and Stripes datasets are quite small, we use true batch learn-
ing. Minibatch learning gave similar results which are not shown
here. For the MNIST dataset we use minibatches of size 400. Other
batch sizes gave similar results, small batch sizes just result in
less stable learning curves. No weight-decay, learnrate schedule,
momentum or sparsity bias was used in either case.

For PCD, we used as many chains as there were samples in
a batch. This was mainly done for convenient implementation.
Since varying the batch size did not have significantly influence
on our main observations, PCD does not seem to be very sensitive
to the particular number of persistent chains used.

Details on Annealed Importance Sampling.

As a base model for AIS, we used the standard procedure of mod-
eling each visible unit as independent. This corresponds to a en-
ergy model consisting only of the bias term E(v, θ) = −bTv.

5.2 investigating convergence of rbm learning 81

14

12

10

8

6

4

P
(v

)
(n

a
ts

)

CD1

re
co

n
st

ru
ct

io
n
 e

rr
o
r

PCD

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

14

12

10

8

6

4

P
(v

)
(n

a
ts

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

Figure 5.5: Learning curves for Bars and Stripes. Color coding as in
Fig. 5.4.

82 unsupervised methods for image categorization

220

200

180

160

140

120

P
(v

)
(n

a
ts

)

CD1

re
co

n
st

ru
ct

io
n
 e

rr
o
r

PCD

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

220

200

180

160

140

120

P
(v

)
(n

a
ts

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

Figure 5.6: Learning curves for MNIST for varying learnrates. Color cod-
ing as in Fig. 5.4. Note especially the divergence of AIS and the ground
truth likelihood in the plot on the lower right.

5.2 investigating convergence of rbm learning 83

The maximum likelihood solution for b is then given by: b =
log(v̄)− log(1− v̄), where v̄ is the mean of v over the dataset.

We initialized b to a smoothed version of the maximum likeli-
hood solution, by using v̄′ = v̄ + 0.1. This heuristic was chosen
on MNIST and kept unchanged for the other datasets. The sched-
ule employed for the parameter β was proposed by Salakhutdi-
nov and Murray (2008), where β was taken uniformly spaced in
three intervals. Specifically, we use 500 β ∈ [0, 0.5[, then 4000
β ∈ [0.5, 0.9[and 10 000 β ∈ [0.9, 1.0] for a total of 14 500 interme-
diate distributions. Using β that were uniformly distributed in
[0, 1] did not produce significantly different results. We used 512
parallel Markov chains for a stable approximation.

Empirical Verification of Implementation.

Since the calculations for training and evaluation of the true
and approximate (AIS) log-likelihood are quite demanding, we
parallelize them using the NVIDIA CUDA framework and the
CUV python library. Training and evaluation jobs are further dis-
tributed over a cluster of 25 GPUs on eight computers. A complete
run for MNIST with 25 hidden units can be computed in about ten
minutes. Two adjustments were made to ensure numerical stabil-
ity. Firstly, the large sums in Eqs. (5.13) and (5.14) are calculated
using the Kahan algorithm on CPU and logarithmic summing on
GPU. Secondly, we set log(1+ exp(x)) := x if x > − log(ε), where
ε is machine precision for double (CPU) or float (GPU). We calcu-
lated the true average log-likelihood of MNIST for a trained RBM

both on GPU and on CPU and consistently find that the results
differ only after the fifth decimal place.

5.2.3 Results

During training, we save the weights every 4000 weight updates
and determine the ground truth log-likelihood, the estimated log-
likelihood using AIS, norm of weight matrix and the reconstruc-
tion error. All data shown is for RBMs with 25 (24) hidden units
for MNIST (Bars and Stripes and Shifter). We repeated each experi-
ment with five different random initializations except the special

84 unsupervised methods for image categorization

case for MNIST where AIS does not follow the ground truth, which
was repeated 10 times to ensure that this is a repeatable observa-
tion.

likelihood development over training . In both, PCD

and contrastive divergence a single Markov chain step (CD1),
learning curves were strongly dependent on the learnrate. Fur-
ther parameters (learnrate schedules, weight decay) are hard to
set and may lead to convergence to suboptimal results (Fischer
and Igel, 2010). We find that we can obtain results which compare
favorably with the literature without the use of these methods.

With regards to learnrates, we observe that for all datasets (top
rows of Figs. 5.4 to 5.6) learning speed correlates with learnrate.
In contrast to, for example, neural networks, large learnrates in
RBM training do not result in unstable learning and bad optima
but in divergence of the log-likelihood function after achieving
good likelihood values. This divergence of RBM training has been
observed before (e. g. Fischer and Igel, 2010; Desjardins et al.,
2010) and we could reproduce this effect in larger RBMs on MNIST

(Fig. 5.6, top row). The divergence effect is more pronounced
for high learnrates. This is expected for PCD, since PCD requires
“small” learnrates, so that the persistent chains stay close to the
current model distribution. Still, large learnrates reached good
solutions quickly before training diverged. We also observed di-
vergence for smaller learnrates when training was carried on long
enough (data not shown).

In general, learning with higher learnrates is more dependent
on the seed (see e. g. the upper left plot of Fig. 5.4).

The optimum in PCD learning is consistently larger than the
optimum in CD1 learning, which is conforming to the literature
(e. g. Tieleman, 2008).

ais approximation of log-likelihood.
Generalizing the above observations and accepting the diver-
gence of RBM training algorithms, we would like to choose a
learnrate which is large and stop before the likelihood starts to
diverge. As can be observed in all plots, the “reconstruction er-
ror” (dashed lines in top row) mentioned before is of no help at

5.2 investigating convergence of rbm learning 85

all. The value always decreases. We therefore consider AIS as an
evaluation method of the learning process.

For the toy datasets (Bars and Stripes, Shifter) and also for
most cases in the MNIST dataset, AIS approximates the ground
truth likelihood accurately. This is even the case when learning
is very unstable (e. g. left plot in Fig. 5.3). We also measured the
uncertainty of AIS. The error bars in the bottom rows of Figs. 5.4
to 5.6 show the uncertainty of AIS averaged over learning trials
with varying random seeds. As long as learning is stable, the
uncertainty is very small. Surprisingly, however, for various tri-
als ground truth likelihood dropped dramatically, while AIS com-
pletely failed to either capture the change in likelihood or to in-
crease uncertainty (see right of Fig. 5.3 for single run and bottom
right of Fig. 5.6 for the average over trials). We also observed this
behavior for smaller learnrates (which diverge later) on MNIST,
but not at all on the toy datasets. Therefore generalizations from
small models to larger ones should be taken with a grain of salt.
To investigate the reason for the drop in likelihood, we examined
the persistent chains at the problematic update steps, but found
no obvious deficiency in the mixing. Therefore, AIS, while it mod-
els easy cases perfectly and some hard cases very well should be
used cautiously for such purposes as stopping learning, finding
hyper-parameters and evaluating new learning algorithms.

5.2.4 Conclusions

While RBMs are successful learning machines, their training re-
mains a tricky task. We evaluated training methods with minimal
parameter sets on small to medium-sized problems to analyze
the behavior of CD1 and PCD training with respect to parameter
selection and divergence. Our findings suggest that often a sim-
ple setup provides good results, provided one finds a suitable
learnrate. We can confirm divergence of CD1 and PCD learning
algorithms and therefore investigated AIS as a stopping and eval-
uation method. The presented results suggest that AIS is often,
but not always, a good measure of the training progress and we
suggest further investigation into alternative criteria.

86 unsupervised methods for image categorization

Following the publication of the contents in this section, alter-
native learning schemes, stopping criteria and evaluation met-
rics were proposed. Cho et al. (2011b) and Cho et al. (2013), e.g.,
worked on Gaussian-Bernoulli RBM (GRBM), which are even more
sensitive to the chosen learnrate and its schedule. The authors
propose adaptive step sizes, which are automatically tuned ac-
cording to likelihood approximations. An upper bound on the
step size ensures that the likelihood approximation is stable.
Buchaca et al. (2013) set out from our — rather negative — result
to search for stopping criteria for RBM training other than the re-
construction error. They proposed an estimator which relates the
probability of the training set to the probability of an artificially
created dataset. At least for the small Shifter and Bars and Stripes
datasets, this seems promising, but our results show that gener-
alization to larger models is not straightforward. Finally, Grosse
et al. (2013) propose an alternative to AIS, where the annealing
chain is improved using moment averaging. Their experiments
on slightly smaller models than ours suggest that their method
has significantly fewer problems than AIS.

5.3 two-layer contractive encodings for
semi-supervised learning

In Chapter 2, we have seen how deep neural networks can be ini-
tialized using unsupervised learning — pre-training — of feature
hierarchies. This initialization was found to improve results for
many-layered — so-called deep — neural networks (Hinton et al.,
2006; Ranzato et al., 2007; Bengio et al., 2006) and has spurred
research on understanding and improving feature learning meth-
ods (e.g. Erhan et al., 2009; Cho et al., 2011a; Glorot and Bengio,
2010; Rifai et al., 2011c). Classical pre-training for a multi-layer
perceptron is performed layer-wise greedily, that is, after training
the parameters of one layer, they are fixed for the training of the
next higher layer parameters. After pre-training, all parameters
are fine-tuned jointly in a supervised manner on the task.

The greedy initialization steps successively build more com-
plex features and at the same time avoid problems occurring
when training deep architectures directly. Erhan et al. (2009)

5.3 two-layer encodings for semi-supervised learning 87

argue that many-layered architectures have more local minima
and that gradients are becoming less informative when passing
through many layers. In contrast, commonly employed auto-en-
coders (AE) and restricted Boltzmann machines (RBM) are shallow.
They have fewer local minima and gradients are not diluted.

In some cases, layer-wise pre-training might not help fine-tun-
ing, e.g. when extracted features bear no relation with the de-
sired output. Recently, Rifai et al. (2011c) showed that stable fea-
tures of the training data are useful for supervised training on
wide range of datasets. These features do not change when the
input varies slightly. The failure mode we address in this sec-
tion is when these stable features cannot be recognized by the
pre-training method. Both, AEs and RBMs yield encoders which
consist of a linear projection followed by a smooth thresholding
function. This is a highly restricted function class. In fact, while
the deep MLP can learn almost arbitrary functions (Hornik et al.,
1989), Minsky and Papert (1969) showed that a one-layer neural
network as is used for AE and RBM is not able to learn the class
of not linearly separable functions, of which the well-known XOR

problem is the simplest example.
We argue here that deep architectures pre-trained with the

common one-layer encoders often fail to discover features which
are of the XOR class (which we shall refer to as non-linear fea-
tures), and that fine-tuning may not repair this defect. We con-
struct problems that cannot profit from pre-training and show
that pre-training may even be counter-productive in these cases.

These problem cases can be solved for auto-encoders by in-
troducing a hidden layer in the encoder, yielding a compromise
between the advantages of increased expressiveness and disad-
vantages of increased depth.

To remedy the problem of increased depth, we propose to ex-
tend contractive regularization (Rifai et al., 2011c) to two-layer
auto-encoder pre-training. We further propose to add shortcuts
to the auto-encoder, which helps learning a combination of sim-
ple and complex features. Our training procedure employs the
method of linearly transforming perceptrons, recently proposed
by Raiko et al. (2012).

88 unsupervised methods for image categorization

We show that contractive regularization can resolve the con-
structed cases and performs better than greedy pre-training on
benchmark datasets. Finally, we evaluate the proposed two-layer
encoding with shortcuts method on the task of semi-supervised
classification of handwritten digits and show that it achieves bet-
ter generalization than greedy pre-training methods when only a
few labeled examples are available.

5.3.1 Related Work

The representational power of deep architectures has been thor-
oughly analyzed (Le Roux and Bengio, 2008; Bengio and Delal-
leau, 2011). Le Roux and Bengio (2008) showed that, in principle,
any distribution can be represented by an RBM with M + 1 hid-
den units, where M is the number of input states with non-zero
probability. The question of which features can be represented,
is not addressed, however. Bengio and Delalleau (2011) analyzed
the representational power of deep architectures and showed that
they can represent some functions with exponentially fewer units
than shallow architectures. It is not clear, however, whether these
representations can be learned greedily.

There is considerable evidence that the performance of deep
architectures can be improved when the greedy initialization pro-
cedure is relaxed. Salakhutdinov and Hinton (2009) report advan-
tages when performing simultaneous unsupervised optimization
of all layer parameters of a stack of RBMs as a deep Boltzmann
machine. The authors rely on a greedy initialization, however,
which we demonstrate here might establish a bad starting point.
Deep Boltzmann machines could also be initialized using two-
layer encoders, using the two-stage pretraining method of Cho
et al. (2012). Ngiam et al. (2011) train a deep belief network with-
out greedy initialization and also report good results. Their ap-
proach might not scale to many-leveled hierarchies though, and
relies on a variant of contrastive divergence (cf. Section 5.2) to
approximate the gradient. More recently, Cireşan et al. (2012b),
Krizhevsky et al. (2012), and Hinton et al. (2012) obtained top re-
sults on a number of image classification data sets with deep neu-
ral networks. They did not rely on pre-training, but used other

5.3 two-layer encodings for semi-supervised learning 89

regularization methods, such as convolutional network structure
with max-pooling, generation of additional training examples
trough transformations, bagging, and dropout.

5.3.2 Background

In this section, we discuss each of the three methods combined on
our approach — auto-encoders, contractive encodings and linear
transformations— in more detail.

Auto-Encoders

An auto-encoder consists of an encoder and a decoder. The en-
coder typically has the form

h = fenc(x) = σ(o) = σ(Wx), (5.16)

where σ is a component-wise sigmoid non-linearity, e.g. σi(o) =
tanh(oi). The encoder transforms the input x ∈ RN to a hidden
representation h ∈ RM via the (learned) matrix W ∈ RM×N . The
decoder is then given by

x̂ = fdec(h) = W ′h ∈ RN , (5.17)

where we restrict ourselves to the symmetric case W ′ = W>.
Even though biases are commonly used, we omit them here for
clarity. The main objective for auto-encoders is to determine W
such that x̂ is similar to x. For binary x, this amounts to minimiz-
ing the cross-entropy loss

`bin(x, W) = −
N

∑
i
(xi log(x̂i) + (1− xi) log(1− x̂i)) . (5.18)

Auto-encoders have gained popularity as a method for pre-
training of deep neural networks (e.g. Bengio et al., 2006). In
deep neural networks, gradient information close to the input
layer is “diluted” since it passed through a series of randomly
initialized nonlinear layers. This effect makes it difficult to learn
good high-level representations (Erhan et al., 2010a). pre-training

90 unsupervised methods for image categorization

moves weights to an area where they relate to the input and there-
fore allow for cleaner gradient propagation. Bengio (2009) and
Bengio et al. (2013) further hypothesize that stacking of unsuper-
vised neural networks disentangles factors of variations and that
the untangled representations make supervised learning easier.

Pre-training typically proceeds greedily. Consider a deep net-
work for a classification task, y = W(L)h(L), with h(l+1) =
σ(W(l)h(l)), where y is the output layer, h(l), l ∈ 1, . . . , L are
hidden layers, and h(0) = x is the input layer. Then, L− 1 auto-
encoders are learned in succession, minimizing `·(h(l), W(l)) and
keeping W(l′<l) fixed. It is frequently observed that following this
protocol, successively higher-level representations of the inputs
are attained (Bengio et al., 2006). This pre-training is, however,
greedy, and a joint optimization of all layers might yield superior
results in principle. In practice, however, joint optimization with-
out pre-training suffers from the same gradient dilution problem
as originally addressed by the deep-learning methodology and
often yields bad performance. After pre-training, the supervised
classification objective is optimized jointly with respect to all pa-
rameters (W(1), . . . , W(L)). This final step is called fine-tuning.

Contractive Encodings

To avoid overfitting the training data, or in order to obtain the
overcomplete representations, it is common to regularize the
auto-encoder learning. A common regularizer for MLPs is the L2
penalty on the weight matrices. This regularizer is well-motivated
for linear methods (e.g. ridge regression or logistic regression),
where it penalizes strong dependence of y on few variables in x,
and thus ensures invariance of y to small changes in x.

For MLPs, which contain saturating non-linearities, this desir-
able property can be achieved with both strongly positive and
negative weights. Rifai et al. (2011b) and Rifai et al., 2011a show
that the generalization of the L2 penalty in the presence of satu-
rating non-linearities is the contractive penalty.

5.3 two-layer encodings for semi-supervised learning 91

The contractive penalty penalizes the squared Frobenius norm
of the Jacobian Jfenc of fenc with respect to the input x, where the
Jacobian is defined by

Jfenc =

∂ f 1
enc

∂x1
· · · ∂ f 1

enc
∂xN

...
. . .

...
∂ f M

enc
∂x1

· · · ∂ f M
enc

∂xN

 .

By minimizing the Jacobin Jfenc , the hidden representation com-
puted by the encoder becomes more invariant to small changes
in the input x, resulting in robust representations.

The combined objective is given as

`CAE(h(l), W(l)) = `·(h(l), W(l)) + λ‖Jfenc‖2, (5.19)

where λ is the regularization strength. Rifai et al. (2011b) and Ri-
fai et al. (2011a) demonstrate that training a stack of simple auto-
encoders with the contractive penalty produces features which
identify the data manifold, which later on helps fine-tuning.

Linear Transformations in Perceptrons

Raiko et al. (2012) proposed a method of linearly transforming
perceptrons in a deep MLP network to avoid difficulties in training
a deep neural network without pre-training.

Let us focus on a single hidden layer within a possibly deep
MLP network. The inputs to this layer are denoted xk and its out-
puts are yk, where k is the sample index. We allow short-cut con-
nections that by-pass one or more hidden layers such that the
inputs to each hidden layer may be distributed over several previ-
ous layers of the network. The mapping from xk to yk is modeled
as

yk = Wσ
(

Vxk
)
+ Cxk, (5.20)

where W, V, and C are weight matrices. In order to avoid sep-
arate bias vectors that complicate formulas, the input vectors xk

are assumed to have been supplemented with an additional com-
ponent that is always one.

92 unsupervised methods for image categorization

Let us assume that σ is a tanh nonlinearity and supplement it
with auxiliary scalar variables αi and βi for each component σi.
We define

σi(bixk) = tanh(bixk) + αibixk + βi, (5.21)

where bi is the ith row vector of matrix V.
αi’s and βi’s are updated during training in order to help learn-

ing the other parameters W, V, and C. By updating αi’s and βi’s
we will ensure that

0 =
K

∑
k=1

σi(bixk), and 0 =
K

∑
k=1

σ′i (bixk). (5.22)

These are satisfied by setting αi and βi to

αi = −
1
K

K

∑
k=1

tanh′(bixk), βi = −
1
K

K

∑
k=1

[
tanh(bixk) + αibixk

]
.

We motivate these seemingly arbitrary update rules below.
The effect of changing the transformation parameters αi and βi

are compensated exactly by updating the shortcut mapping C by

Cnew = Cold −W(αnew − αold)V −W(βnew − βold) [0 0 . . . 1] ,
(5.23)

where α is a matrix with elements αi on the diagonal and one
empty row below for the bias term, and β is a column vector
with components βi and one zero below for the bias term. Thus,
any change in αi and βi does not change the overall mapping
from xk to yk at all, but they do change the optimization problem
instead.

One way to motivate the transformations in Eq. (5.22), is to
study the expected output yt and its dependency on the input xt:

1
K ∑

k
yk = W

[
1
T ∑

k
σ(Vxk)

]
+ C

[
1
K ∑

k
xk

]
, (5.24)

1
K ∑

k

∂yk

∂xk = W

[
1
K ∑

k
σ′(Vxk)

]
V> + C . (5.25)

5.3 two-layer encodings for semi-supervised learning 93

We note that by making nonlinear activations σ(·) zero mean in
Eq. (5.22) (left), we disallow the nonlinear mapping Wσ (V·) to af-
fect the expected output yk, that is, to compete with the bias term.
Similarly, by making the nonlinear activations σ(·) zero slope in
Eq. (5.22) (right), we disallow the nonlinear mapping Wf (V·)
from affecting the expected dependency on the input, that is,
to compete with the linear short-cut mapping C. In traditional
neural networks, the linear dependencies (expected ∂yk/∂xk) are
modeled by many competing paths from an input to an output
(via each hidden unit), whereas this architecture gathers the lin-
ear dependencies to be modeled only by C.

Raiko et al. (2012) showed experimentally that less competi-
tion between parts of the model speeds up learning significantly.
It also helped to attain state-of-the-art learning results for MLP

networks on three tasks (MNIST classification, CIFAR-10 classifica-
tion, and MNIST deep auto-encoders). Vatanen et al. (2013) drew
more careful connections to second-order optimization meth-
ods, showing that the reparameterization done using transforma-
tions make first-order optimization methods behave more like a
second-order method.

Recently, Dauphin et al. (2014) argued that plateaus around
saddle points in the parameter space dramatically slow down
learning and giving an illusory impression of local minima. They
proposed a second-order optimization method that is able to es-
cape saddle points and showed that one can continue optimiza-
tion from a seemingly converged optimization by a first-order
method. They also discussed whether actual local minima are as
big an issue as has long been thought. It remains an interesting
open issue whether the good empirical performance of the trans-
formations is related to this phenomenon.

5.3.3 Where Pre-Training of One-Layer Encoders Fails

Let us assume that we want to approximate the Boolean function
f (x1, x2) := x1 Y x2, where · Y · denotes the exclusive-or relation
(XOR). For this purpose, we consider the neural network with a
two-unit hidden layer shown in Fig. 5.7 (left) and perform auto-
encoder pre-training for the first-layer matrix B. During the pre-

94 unsupervised methods for image categorization

1

10

h2

h1

1

10

h2

h1

x1

x2

y
h1

h2

B A

x h xh h

A A
1

10

x2

x1

V1 V2

Figure 5.7: Auto-encoder pre-training can be counter-productive. The
simple network on the left should learn y = x1 Y x2. pre-training of
A makes an uninformed choice between representations V1 and V2
without loss of generality, but only V2 is linearly separable and helps
fine-tuning.

training phase, two filters have to be learned, mapping the input
vector again to a two-dimensional space h = (h1, h2). Without
further information, this mapping might choose a representation
which is not linearly separable (denoted “V1” in Fig. 5.7). In this
case, pre-training does not aid fine-tuning, it chooses a feature
representation that is not helpful for the classification task. Of
course, this argument merely stresses the distinction between su-
pervised and unsupervised learning. It does not follow that pre-
training is not helpful per se. Our observation has, however, im-
portant consequences for greedy pre-training.

We can easily extend the argument of the previous paragraph
to a case where greedy pre-training does not find stable non-
linear features that are obvious from the data. Let us assume
we have a dataset of three variables, where xk = (xk

1, xk
2, xk

1 Y xk
2).

The only stable feature of this dataset is x1 Y x2, i.e. a two-layered
denoising auto-encoder should be able to recover xk

3 from the first
two components and any of the xk

1, xk
2 from the other variable and

xk
1 Y xk

2. If unfortunate greedy training of the first layer prevents
the second layer from learning that x1 and x2 are XOR-related —
as demonstrated above — the second layer will fail to discover
this relation. Even worse, pre-training might leave the weights in
a state where recovery using fine-tuning is not possible. We will
empirically verify these claims in the experiments section.

5.3 two-layer encodings for semi-supervised learning 95

CW

x

h

h′

V

Figure 5.8: Schematic visualization of our encoder. Features h of input
x are determined both by a one-layer encoder via C, and by a two-
layer encoder via V and W. Contractive regularization (Rifai et al.,
2011b) and two-layer contractive regularization (Schulz and Behnke,
2012c) are used to learn stable linear/non-linear representations in h,
respectively. Linear transformations in the two-layer part are moved
to C using compensations (Raiko et al., 2012) (not shown).

5.3.4 Two-Layer Encoders and Contractive Regularization

Considering the failure mode of one-layer encoders discussed
above, an intuitive extension is to make the encoder more pow-
erful by adding a hidden layer h′ ∈ RP to the encoder, such that
fenc(x) = h = σ(Wh′) = σ(Wσ(Vx)),with x ∈ RM, W ∈ RN×P,
V ∈ RP×M. Extending contractive regularization (Rifai et al.,
2011c) to two-layer encoders yields

‖Jfenc(x)‖2
F =

N

∑
n

M

∑
m

(
1− fenc(x)

2
n
)2
(

P

∑
p

wnpvpm(1− h′(x)2
p)

)2

,

(5.26)

where h(x) is the hidden layer activation. In contrast to one-
layer contractive regularization, which has the complexity of a
forward pass, this regularizer is O(MPN). To reduce the time re-
quired to do experiments, we only compute the regularizer for
few randomly chosen instances in the mini-batch. The precise
number is a tradeoff between acceptable training time and accu-
racy, which needs to be cross-validated. The simultaneous pertur-
bation method (SPSA, Spall, 1998), which has not received much
attention recently, could potentially be employed to reduce the
regularization cost to a second forward-pass.

96 unsupervised methods for image categorization

5.3.5 Two-Layer Encoders and Shortcut Connections

In this section, we argue that while two-layer encodings are
harder to learn, we can combine their ability to detect highly
non-linear features with the easy-to-learn one-layer encodings by
introducing shortcuts. Shortcut weights C (see, e.g., Eq. (5.20))
from the input to the second hidden layer can be regularized as
in (Rifai et al., 2011b), while the two-layer encoder is regularized
as introduced above. We employ linear transformations and com-
pensations (Section 5.3.2) to ensure that simple features continue
to be learned by the shortcut weights, while the two-layer part of
the encoder can focus on the difficult features. For this purpose,
we extend the two-layer contractive regularizer to account for the
linear transformations in Eqs. (5.20) and (5.21),

‖Jfenc(x)‖2
F = ∑ (1− fenc(x)2)2> (C + W(Vα + V′)

)2 , (5.27)

where vα
pm = αpvpm, v′pm = vpm(1− tanh2(vp·x)). Fig. 5.8 illus-

trates the proposed encoder structure.

5.3.6 Experiments

In our experiments, we aim to establish the following claims:

1. One-layer encoders are severely restricted.
2. Two-layer encoders can be better learned with the proposed

contractive regularizer.
3. Two-layer encoders can further profit from shortcut connec-

tions in the case of semi-supervised learning.

Our experiments follow a common protocol. For a fixed ar-
chitecture, we repeatedly sample all free hyper-parameters from
the distributions detailed in Table 5.2. For a weight matrix
W ∈ RN×M, weights are initialized uniformly with wij ∼
U
(
−
√

6/N+M,
√

6/N+M
)

as proposed by Glorot and Bengio
(2010). The dataset is split in training, validation and testing sets.
We stop each training stage before the loss on the validation set
increases. The model with the best final validation error is trained
again using training and validation set, for the same number of

5.3 two-layer encodings for semi-supervised learning 97

Table 5.2: Hyper-parameter distribution used in our experiments.

Hyper-parameter Distribution

Auto-encoder learnrate logU (0.01, 0.2)

MLP learnrate logU (0.01, 0.2)

Regularization strength (λ) U (0.001, 2)

Figure 5.9: Left: The matrices Wand and W>or used in the LDPC experi-
ments. Weights depicted in black, gray, and white denote −1, 0, and
1, respectively. Right: Weights of the best-performing auto-encoder af-
ter greedy pre-training on LDPC. Sections of first-layer weight matrix
roughly corresponding to Wand and W>or on the left. Left and right ma-
trices should be equal up to permutation, but the greedy pre-training
is unable to detect the non-linear features of the LDPC dataset.

epochs as determined in the validation phase, and is finally eval-
uated on the test set.

Detecting Constraint Violations in LDPC Codes

We now extend the toy example of Section 5.3.3 to a more realistic,
albeit still constructed, task. A low density parity check (LDPC)
code, also known as Gallager code (Gallager, 1962), is a code
that allows error correction after transmission through a noisy
channel. This is achieved by relating the bits in the message with
a set of random constraints known to both sender and receiver. A
constraint c over a set of variables C is met iff 0 ≡ (∑x∈C x) mod
2. Note, that the modulo operation generalizes the XOR operation
to multiple binary variables.

98 unsupervised methods for image categorization

We consider a subproblem of decoding an LDPC code, namely
detecting constraint violations in the code. To this end, we con-
struct a dataset where a code word r ∈ {0, 1}N is constrained
by N constraints Cn with three participating variables, each. Each
variable participates in three random constraints. Whether a con-
straint is violated in r can be determined by a two-layer neural
network with r as its input. The hidden layer has four neurons
for every constraint. Each of these four neurons detects a differ-
ent case where the corresponding three neurons in the input sum
to an even number (i.e., for configurations 000, 011, 110, and 101).
We denote the weight matrix realizing this Wand, as detects con-
junctions in the input data. A second weight matrix, Wor, then
detects whether any of the four neurons in the hidden layer was
active and turns on the corresponding neuron in the output layer
q. Thus, the values in q indicate which constraints in C are vio-
lated in r.

For our small problem size, the matrix C can be generated by
creating binary matrices with the correct number of ones and
verifying the number of ones per row and column. The matrices
Wand and Wor can then be derived directly from the constraint
matrix. The matrices used in our experiments are shown on the
left side of Fig. 5.9.

We now frame learning Wand and Wor as a task for the auto-
encoder shown in Fig. 5.10. The auto-encoder reconstructs the
code word r and the constraint violation vector q together:

(r1, r2, . . . , rn, q1, q2, . . . , qn) = x !
= fdec(fenc(x)), (5.28)

where fenc(x) = σ(Wor σ(Wand x)) (5.29)

and fdec(h) = σ(W>and σ(W>or(h))). (5.30)

Since ri ∼ Binomial(1, 0.5), r cannot be compressed to less than
N bits. Hence, a hidden layer size N creates a bottleneck where
no more than the complete codeword can be represented.

The dataset is constructed from all N = 15 bit strings and
randomly split into training (60 %), validation (20 %), and test
set (20 %). After pre-training, we fine-tune all weight matrices
of the network by reconstructing (r, q) using the logistic recon-
struction loss — again with early stopping on the validation set.

5.3 two-layer encodings for semi-supervised learning 99

r

r

q

(r)

q

r

(r) (r)

hand-crafted encoder
learned auto-encoder

Wand Wor

(Wor)

(I)

(Wand)

Figure 5.10: Constructed example where greedy auto-encoders fail. The
matrices Wand and Wor are hand-crafted to calculate ∑i ri mod 2. Ma-
trices and resulting representations in parenthesis have to be recov-
ered, i. e. learned, by the auto-encoder to solve the reconstruction task.

An instance is reconstructed correctly if the sign of the outputs
corresponds to the input. This task is clearly related to the pre-
training objective, as during pre-training the hidden layer should
fully represent the code.

The results are visualized in Fig. 5.11 (a). We show the frac-
tion of draws from the hyper-parameters which performs better
than a given validation error. For greedy pre-training, the chances
of finding a model which performs well on the validation set
are very small. This is reflected in the test errors displayed in
Table 5.3 (LDPC). Only conditions where both layers are trained
simultaneously are able to solve the task. The problem is also ap-
parent in the learned weights after pre-training, shown on the
right side of Fig. 5.9. Since the relations in the dataset can only
be detected in the second hidden layer, greedy pre-training can-
not learn anything useful. Finally, we compared the models to
a model where we removed the first hidden layer. As expected
from the construction of the dataset, this network architecture is
insufficient to solve the task and yields the highest error.

The model with first and second layer size of 75 and 15, respec-
tively, is the smallest possible model to solve the task. Since pre-

100 unsupervised methods for image categorization

0.2 0.4 0.6 0.8
validation error

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

be
lo

w

LDPC Dataset

0.14 0.16 0.18 0.20 0.22 0.24 0.26
validation error

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

be
lo

w

MNIST-rot Dataset

1 L, contractive
2 L, greedy unregularized
2 L, greedy contractive
2 L, non-greedy contractive

(a) (b)

Figure 5.11: Comparison of pre-training effects for fixed architecture
(30×75×15 for LDPC, 784×1000×500 for MNIST-rot). Graphs show frac-
tion of draws from hyper-parameter distribution which performs bet-
ter than given validation error.

training relies on chance, its performance should improve with
the layer size. To analyze the difficulty of the task, we increased
the number of neurons in the first hidden layer by 400 % and
found only marginal improvements in the error after pre-train-
ing, as shown in Fig. 5.12. Thus, relying on chance to find good
non-linear features does not work well for the LDPC dataset. In-
creasing the size of the second layer, on the other hand, almost
solves the dataset at 160 % of the minimal size. This is also ex-
pected, since the second layer size mainly influences the total
compression ratio of the auto-encoder. In the case of M = 25, the
ratio is reduced from a factor of 30/15 = 2 to 30/25 = 1.2.

Our experiments demonstrate that greedy layer-wise pre-train-
ing drives an auto-encoder to learn mainly “linear” features.
Non-linear relations contained in the data cannot always be re-
covered by higher layers, confirming our first claim.

Benchmark Datasets

We also compare our approach on two benchmark datasets,
MNIST (LeCun et al., 1998a) and the rotated MNIST dataset MNIST-

rot (Larochelle et al., 2007). Here, we fix the architecture of the
network to input size N = 784, first hidden layer size P = 1000,
second hidden layer size M = 500, and choose a batch size of

5.3 two-layer encodings for semi-supervised learning 101

15 20 25
M

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rr

or

100 150 200 250 300
P

P=75

M=15

Figure 5.12: Performance of models on LDPC dataset after greedy pre-
training as a function of layer size. While increasing the second layer
size M with fixed P = 75 quickly solves the task, increasing the first
layer size P while fixing M = 15 only helps marginally. Error-bars
show standard deviations over five cross-validation runs of the best
selected hyper-parameter configuration.

16. Qualitatively, we get the same results as in the constructed
LDPC example for both datasets. The two-layer regularized en-
coder is more robust with respect to choice of hyper-parameters
(Fig. 5.11 (b)) and finds better minima (Table 5.3, MNIST-rot and
MNIST). Additionally, we analyzed the reconstruction error after
pre-training models with best classification performance. On the
MNIST-rot validation set, the one-layer case achieves an error of
126.3, greedy contractive pre-training yields 98.3, and the regu-
larized two-layer encoder reaches 88.9. The reconstruction results
for MNIST have the same ranking. This demonstrates that the fea-
tures learned in the two-layer encoder are not only better for clas-
sification, they are also better representations of the input, which
strongly supports our second claim.

Two-layer Encoders and Shortcut Connections

We evaluate the shortcut connections in a semi-supervised set-
ting on MNIST. We assume that only 1200 training samples have
their labels available, while all the other training samples are un-

102 unsupervised methods for image categorization

Table 5.3: Comparison of pre-training methods for fixed architecture.

Condition Test Error (%)

Layers Pre-Training Regularizer LDPC MNIST-rot MNIST

1 no none 88.6 13.8 1.8

1 yes none 81.8 15.7 1.6

1 yes contractive 71.1 14.1 1.6

2 greedy contractive 6.8 13.2 1.6

2 greedy none 5.3 14.6 1.7

2 no none 0.0 12.5 1.7

2 non-greedy none 0.0 12.5 1.7

2 non-greedy contractive 0.0 11.4 1.4

labeled. The task is to use an MLP trained on the training samples
to classify 10 000 test samples.

Our base model is a multi-layer perceptron (MLP) with two hid-
den layers having tanh hidden neurons. The output of the MLP

is

y = F (σ (Wσ (Vx))) , (5.31)

where F, W and V are weight matrices. We have omitted biases
for simplicity of notation. As baseline, we trained this MLP both
with and without pre-training. For the pre-trained MLP, we con-
sider the bottom two layers as an auto-encoder with two hidden
layers and trained them using both labeled and unlabeled sam-
ples.

When the hidden neurons, or perceptrons, in the MLP were
linearly transformed, we added shortcut connections from the
input to the second hidden layer to maintain the equivalence after
the transformation. In that case, the output of the MLP is

y = Fh = Fσ(Wh′ + Cx), (5.32)

5.3 two-layer encodings for semi-supervised learning 103

Table 5.4: Classification accuracies depending on training strategy on
MNIST using 1200 labeled examples. Standard deviations are over five
trials with different draws of the training set.

Condition Test Error

S 10.0± 1.4

U+S 7.4± 2.2

C+U+S 7.8± 1.3

T+U+S 8.0± 1.7

2C+U+S 7.2± 2.6

C+T+U+S 6.2± 1.2

where h′ = σ(Vx) + Vαx + β, and C is the weight matrix of the
shortcuts.2

As a comparison, we tried both using either one of the two-
layer contractive encoding and the linear transformation and us-
ing both of them together. In this way, we can easily see the effec-
tiveness of the proposed way of using both approaches together.
Specifically, we used six different training strategies:

1. S: MLP trained with labeled samples (S) only,
2. U+S: MLP pre-trained with unlabeled samples (U) and fine-

tuned (S),
3. C+U+S: MLP pre-trained (U) and fine-tuned (S) with two-

layer contractive encoding (C),
4. T+U+S: MLP with shortcuts pre-trained (U) and fine-tuned

(S) with linear transformation (T),
5. 2C+U+S: MLP pre-trained (U) with stacked contractive auto-

encoders (2C) and fine-tuned (S), and
6. C+T+U+S: MLP with shortcuts pre-trained (U) and fine-

tuned (S) using both the two-layer contractive encoding (C)

and linear transformation (T)

2 When we pre-trained the MLP as a two-layer contractive encoding, we tied the
weights W and V between the encoder and decoder. However, we did not share
C, αl ’s and βl ’s.

104 unsupervised methods for image categorization

500 1000 1500 2000 2500
Number of Training Instances

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Cl
as

si
fic

at
io

n
Er

ro
r

U+S
C+U+S
T+U+S
2C+S
C+T+U+S

Figure 5.13: Test error for varying fine-tuning dataset size (600, 1200,
2400). Standard deviations are over five trials with different draws of
the dataset. All fine-tuning hyperparameters were cross-validated for
every point.

We estimated hyper-parameters such as learnrates, weight de-
cay constant, contractive regularization strength and the sizes of
the hidden layers using hyperopt (Bergstra et al., 2011). For any
unregularized models, we used cross-validated L2 weight decay.

We used five-fold cross-validation, with 48 000 and 12 000 ex-
amples for training and validation, respectively, in pre-training.
pre-training was stopped when the loss on the validation set
failed to improve. For fine-tuning we used 1000 examples for
training and 200 for validation. Due to the small validation set
size, we took great care in selecting the best model. We first deter-
mine the expected number of training epochs until the optimum
is reached by averaging the early-stopping epoch over all folds.
The model performance is then given by the average validation
set classification error over folds at this epoch during training.

The weight matrices W and V were initialized randomly ac-
cording to the normalized scale (Glorot and Bengio, 2010), while
C was initialized with zeroes.

In Table 5.4, the resulting classification accuracies for all six
strategies are presented. As expected, any approach with pre-

5.3 two-layer encodings for semi-supervised learning 105

training significantly outperforms the case where only labeled
samples were used for supervised training (S). The best per-
forming strategy was the one which pre-trained the MLP as the
two-layer contractive encoding using the linear transformation
(C+T+U+S). This strategy was able to outperform the strategies
U+S, C+U+S as well as T+U+S. Our proposed method also has an
advantage over the stacked contractive auto-encoder (2C+U+S).
This trend also holds when the fine-tuning dataset size is de-
creased, with the ratio between test and validation set size held
constant, as shown in Fig. 5.13. At larger fine-tuning dataset sizes,
the difference between the regularized methods vanishes.

Interestingly, using either the two-layer contractive encoding
or the linear transformation only turned out to be only as good
as the naı̈ve pre-training strategy (U+S). This suggests that it is
not easy to train the two-layer contractive encoding well with-
out a good training algorithm. Only when training became eas-
ier by linearly transforming perceptrons to have zero-mean and
zero-slope on average, we were able to see the improvement
(C+T+U+S), which confirms our third claim.

5.3.7 Discussion

Two-layer encoders are a natural extension of greedy pre-training
that enables learning of non-linear features. As stressed in Sec-
tion 5.3.6, an important class of features are disjunctions of con-
junctions. These functions have many intermediate results com-
pared to the number of outputs, which requires many features in
the hidden layers. Another important class of functions are sub-
space projections, for instance in independent subspace analysis
(ISA), where the projection of features in the subspace is stable,
but the computed features are not.

Such overcomplete features, where M > N, are often success-
fully used in deep learning, last but not least by Rifai et al. (2011c)
and Rifai et al. (2011a). Intuitively, the overcomplete representa-
tion in the first hidden layer provides the second hidden layer
more combinations to choose from. A two-layer auto-encoder, on
the other hand, does not need to guess which features might
help in the higher layer, since they are jointly determined. There-

106 unsupervised methods for image categorization

fore, two-layer auto-encoders might be able to achieve higher per-
formance more reliably with the same number of hidden units,
which is supported in our experiments by greater robustness to
the choice of hyper-parameters and lower reconstruction error.

Especially the LDPC example dataset shows that overcomplete
intermediate representations are crucial for some tasks. With one-
layer encoders, strong regularization is required to avoid learning
the identity function. A two-layer encoder, on the other hand, can
have an arbitrarily large hidden layer which only captures the
intermediate results of the feature calculation. Regularization —
here, stability of the features— is only applied to the second hid-
den layer, which does not need to be overcomplete.

Along with its advantage, the two-layer encoder comes with a
difficulty in training. We observed this difficulty in the case of
semi-supervised learning where only a fraction of samples were
allowed to have labels. The method of linearly transforming neu-
rons in a deep neural network was used to overcome this diffi-
culty. Interestingly, the experiments showed that it is important
to use the two-layer contractive encoding as well as the linear
transformation to achieve good performance.

5.3.8 Conclusions

Common pre-training of deep architectures by RBM and AE simpli-
fies one hard deep problem to multiple less difficult single-layer
ones. In this section, we argued that this simplification goes one
step too far, to the extent where the class of features which can
be learned by the pre-training procedure is restricted severely.

Guided by the observation that one-layer neural networks can-
not learn functions in the exclusive-or class, we constructed a
task to detect constraint violations in low density parity check
codes, which relies heavily on modulo computations. For this
dataset, layer-wise pre-training was counterproductive for fine-
tuning and only two-layer methods could solve the task.

To obtain unrestricted representational power, we employed
two-layer encoders, which can be regularized using an adapta-
tion of the contractive regularizer (Rifai et al., 2011c) and com-
bined with one-layer encoders by using linear transformations

5.3 two-layer encodings for semi-supervised learning 107

and the powerful learning algorithm developed by Raiko et al.
(2012) and Vatanen et al. (2013).

We empirically demonstrated the validity of our claim by show-
ing that on a task of classifying handwritten digits, pre-training
with two-layer encoders resulted both in better average perfor-
mance under the same hyper-parameter prior and better abso-
lute performance. For semi-supervised learning, when only few
training samples out of training samples are assumed to have
annotated labels, we showed that pre-training indeed helps sig-
nificantly. Furthermore, we were able to see that generalization
performance could be improved by pre-training an MLP with a
two-layer contractive encoding using the linear transformation,
further confirming the validity of our claim.

6L E A R N I N G O B J E C T- C L A S S S E G M E N TAT I O N

Neural networks have a long history in the task of image clas-
sification, e.g. on the MNIST, NORB, and Caltech 101 datasets. For
these datasets, neural networks rank among the top competitors
(Cireşan et al., 2011). Despite the success, we should note that
these image classification tasks are quite artificial. Typically, it is
assumed that the object of interest is centered and at a fixed scale,
i.e. that the localization problem has been solved. Natural scenes
rarely contain a single object or object class. Besides object detec-
tion (Chapter 7), object class segmentation is thus an important
step towards general image understanding.

The task of object class segmentation is quickly summarized in
Fig. 6.1. Formally, we want to assign a label ŷi = fi(x, θ) to every
pixel xi in the image x using the estimator f, where the label yi
corresponds to the class of the object c(xi) that the pixel xi be-
longs to. This implies that objects are not distinguished if they
are of the same class. In contrast to object detection (Chapter 7),
this task maps well to traditional CNN architecture, since the out-
put of the estimator has a finite, fixed size. Due to the strong
class imbalance produced by classes with many pixels (e.g. wall,
sky, . . .), the performance of object class segmentation methods
is measured in two ways: The average pixel classification error

Epix(D, θ) = 〈〈[yi = fi(x, θ)]〉i〉x∈D (6.1)

and the average class error

Ecls(D, θ) =
〈〈
〈[k = fi(x, θ)]〉i:c(yi)=k

〉
x∈D

〉
k∈C

, (6.2)

which puts more emphasis on less-represented classes.
In this chapter, we propose variations of the convolutional neu-

ral network (CNN) for object class segmentation. Specifically, we
show that CNN trained from scratch can compete with state-of-
the-art object class segmentation methods on multiple RGB and
RGB-D datasets, at competitive speed. To achieve this, we

109

110 learning object-class segmentation

Figure 6.1: Object class segmentation example from the NYUD. Left: in-
put image. Right: input overlayed with ground truth pixel-wise labels
(walls, furniture, objects). Black regions in the ground truth are unla-
beled and do not contribute to the loss.

• propose new models and training methods in Section 6.1

• propose novel pre-processing for the color and depth input
of CNN (Sections 6.1 and 6.2),

• show that depth normalization employed by random forest
(RF) in Chapter 4 can also improve the CNN performance,
outperforming the RF baseline in Section 6.3, and

• recurrent convolutional neural network (RCNN) can further
improve the performance by processing video streams in-
stead of single images (Section 6.4).

6.1 learning object class segmentation with cnn

In this section, we introduce a novel DNN model for object-class
segmentation, as well as multiple training and pre-processing
techniques. Combing these, we demonstrate that DNN can com-
pete with state-of-the-art object class segmentation methods on
three common datasets.

6.1.1 Methods

network architecture Our network architecture (Fig. 6.2)
extends the standard CNN architecture (LeCun et al., 1998a). We

6.1 learning object class segmentation with cnn 111

O2

O1

O0HC0

HC1

HC2

HP0

HP1 HP ′1

HP ′0

I2

I1

I0

I· Input Layer O· Output Layer Convolution Max-Pooling

O′2
MS

RO

RO

CL

Figure 6.2: Network with three convolutional layers. Dashed parts are
optional: MS multiscale inputs, RO reused outputs, CL class location
filter.

use interleaved convolution and pooling layers, with filters of size
7×7 and non-overlapping 2×2 max-pooling throughout. All hid-
den layers have 32 maps. In addition to the standard architecture,
we introduce several notable differences. Firstly, we use multiple
maps for output, since we are dealing with image-like outputs
and a multi-class classification problem. The cost function of the
output map is either the pixel-wise cross entropy loss

`ce(y, ŷ) = −∑
i

yi ln

(
exp (ŷi) / ∑

j
exp

(
ŷj
)
)

(6.3)

(i.e. softmax) or the pixel-wise squared ε-insensitive loss after a
sigmoid non-linearity

`ei(y, ŷ) = max
(

0, |yi − (1 + exp(ŷi))
−1| − ε

)2
. (6.4)

Here, y and ŷ denote teacher and net output, respectively. The
choice of the loss function depends on the task: we choose `ce
when we are interested in the best prediction per pixel and `ei
when classes are evaluated separately. Secondly, we use a pre-
training approach with intermediate output layers. In contrast to
Jain and Seung (2008) and Grangier et al. (2009), however, we do
not discard pretraining results, but reuse them as input to higher
layers (RO in Fig. 6.2). To achieve this, we max-pool output lay-
ers and use an identity-initialized convolution to the next output

112 learning object-class segmentation

layer. With this, the next layer can focus on learning the differ-
ence to the output of the previous layer. Thirdly, we provide in-
puts at multiple, coarser scales to the network (MS in Fig. 6.2). In
contrast to spatial pyramids, this method does not run the same
algorithm on all scales, but allows the network to access low-
resolution inputs directly, e.g, when pre-trained filters of lower
scales (see below) are insufficient for the current scale. Both for
RO and MS, multiple paths coincide at the same layer, their results
are added before applying the non-linearity. Finally, Gould et al.
(2008) showed that in multi-class settings, long-range dependen-
cies between classes can be used to improve the prediction of a
CRF. For example, detecting grass with high certainty in an image
location xp implies that it is unlikely that there is sky below xp.
We extend their idea, adding a class location filter (CL in Fig. 6.2)
to the output, a convolution with a wide (11×11) filter learned on
top of the output layer. In contrast to the Gould et al. (ibid.), we
learn to correct remaining errors using long-range information.

“Valid” convolutions (Section 2.6.4) shrink the the represen-
tation by a margin proportional to filter size. To produce pre-
dictions for the whole image in one step, we need to introduce
padding. Padding also simplifies the correspondence between po-
sitions in teacher and output map. Therefore, before convolution,
we pad each intermediate map with the mean of that map, keep-
ing the map size constant and largely avoiding border effects as
a result. Unless stated otherwise, our input resolution is 176×176
and hidden layers have 32 maps. Filters of convolutions are initial-
ized randomly with the method proposed by Erhan et al. (2009).
Hidden layers HCi apply the point-wise non-linearity tanh(·) fol-
lowed by a 2×2 non-overlapping maximum pooling HPi.

preprocessing To facilitate batch processing of images with
varying aspect ratios on GPU, we first scale the image and place it
in the center of a fixed-size square image. From the squared RGB

images, we extract two kinds of feature, zero phase whitening
(ZCA) and histogram of oriented gradients (HOG). A convolutional
5×5×3 ZCA whitening transform removes first-order correlations
between neighboring pixels and between color channels. A CNN-

6.1 learning object class segmentation with cnn 113

compatible version of HOG (Dalal and Triggs, 2005) is computed
for a single scale with five non-oriented bins as follows.

For every pixel xi, we determine its gradient direction vi and
magnitude |vi|. The direction is then quantized by linear inter-
polation into two of B neighboring bins at every image loca-
tion, and weighted by |vi|, resulting in quantisation bin maps
V ∈ RD×D×B, where D×D is the input dimensionality and B
is the number of bins. To produce histograms of the orientation
strengths present at all locations, we apply a Gaussian blur filter
for each bin separately. Finally, the histograms are normalized
with the L2-hys norm (Lowe, 2004).

The main difference to the standard HOG descriptor is that no
image cells are combined into a single descriptor. This leaves it to
the network to incorporate long-range dependencies and saves
space, since our descriptor contains only B values per image po-
sition.

The resulting eight maps are standardized to zero mean and
unit variance separately. Ground truth, given as a map of class
indices, is transformed into one map per class, which has value
one iff the pixel is associated with the class. In addition, we create
a ignore mask, which is used to eliminate gradients from parts of
the square image which do not belong to the original image or
are not labeled in ground truth. Teacher are then scaled to the
size of the output map.

learning We use batch stochastic gradient descent with a
learnrate of ηT = 10−3 · 0.97T , where T denotes the epoch num-
ber. In pooling layers, the error is propagated only to the location
of the maximum (Scherer et al., 2010).

Similar to previous work (Jain and Seung, 2008; Mnih and Hin-
ton, 2010), we use supervised pre-training. Starting with O0, each
output layer Oi is trained for 50 epochs. Afterwards, Oi becomes
a regular hidden layer, and Oi+1 is trained. Note that the deriva-
tive of output layers with softmax S(x) simplifies considerably
when used in combination with cross-entropy loss. Here, we use

114 learning object-class segmentation

softmax nonlinearities in hidden layers and therefore have to use
the more involved

∂Si(x)
∂xj

= Si(x)([i = j]− Sj(x)). (6.5)

All operations are performed on GPU using the CUV library.

6.1.2 Results

To measure final outcome, we crop the region of the original
image from the (quadratic) output maps and scale up to the
original image size. Finally, we determine the predictions ŷi =
arg maxc∈C oc,i over the output maps o and determine the classi-
fication error (Eq. (6.1)).

We evaluate our architecture on three datasets. MSRC-9 (Shotton
et al., 2006) is a 9 class, 240 images dataset with about 70 % of
the pixels labeled. We split the dataset into a stratified training
and test set containing 50 % of the images each. MSRC-21 is an
extended version of MSRC-9 containing 591 images with 21 labeled
classes. We again use the standard split into training, validation
and test set (ibid.). The common evaluation criterion for both
is pixel-wise accuracy in labeled regions, we consequently use
`ce(·, ·) (Eq. (6.3)). Finally, we evaluate on INRIA Graz-02 object
class segmentation database (IG02) (Marszatek and Schmid, 2007).
The dataset contains three classes in 479 training and 479 test
images. The evaluation criterion here is per-class precision/recall
at equal error rate (PR-EER), therefore we use `ei(·, ·) (Eq. (6.4)).
We augment all training sets with horizontally flipped versions
of the originals.

Table 6.1 summarizes our results for MSRC-9. We find that we
perform best when using RO+MS+CL, with 90.2 % accuracy, im-
proving on the previous result of Grangier et al. (2009) by 1.7 %.
Section 6.1.2 shows the learned class location filter for MSRC-9.
The network learned e.g., that “aeroplanes” are horizontally ex-
tended objects and that to the left and right of cows, the proba-
bility for “building” is low. As demonstrated in Section 6.1.2, this
filter helps to remove spurious detections where the classifier was
unsure. Further example segmentations are displayed in Fig. 6.5.

6.1 learning object class segmentation with cnn 115

Figure 6.3: Class location filters (CL) learned for MSRC-9. Black represents
more positive weights. Each prior is normalized separately (right: all
normalized together).

Figure 6.4: CL repairs spurious observations. Top row: original and
ground truth; bottom row: before and after CL. Filters are normalized
separately for every pair of classes.

116 learning object-class segmentation

Table 6.1: MSRC-9 object class segmentation database results

Condition Accuracy (%)

RO+CL+MS 90.2

RO+CL 89.8

regular 89.1

no pretraining 87.9

Grangier et al. (2009) 88.5

For MSRC-21, we analyze the advantages of the class location fil-
ter as we vary the number of layers (Table 6.2). We find that CL im-
proves the result of the lower layers. The effect diminishes, how-
ever, when resolution becomes too small (22 × 22 for 4 Layers)
relative to the size of the class location filter. While our best result
(80.2 %) does not achieve state of the art, it improves upon Gould
et al. (2008) who proposed the relative location prior which in-
spired the CL extension. Without pretraining, we measure only
73.9 % accuracy, which emphasizes its importance.

On IG02, we find that CL does not help as much (Table 6.3).
We attribute this to the structure of the dataset (only one class
per image, few classes in total). Using RO only, we can already
improve upon the previously best result (Fulkerson et al., 2009)
in two out of three classes.

speed comparison On a NVidia GTX 580, we process 16 im-
ages at once. A batch forward pass through the best-performing
network on IG02 takes 0.23 s, which amounts to approximately
70 images per second. When preprocessing is performed on-
line— e.g. as in Section 6.2.1— it can be executed concurrently to
the forward pass on CPU. Our naı̈ve HOG implementation takes
0.04 s/image at input resolution, while the ZCA whitening trans-
form amounts to a convolution and therefore takes less time than
the forward pass. Consequently, we expect framerates of more
than 10 fps, which is an order of magnitude faster than e.g. speed-

6.1 learning object class segmentation with cnn 117

Table 6.2: MSRC-21 object class segmentation database results

Accuracy (%)

Condition RO RO+CL

1 Layer 45.4 49.4

2 Layer 71.0 76.9

3 Layer 76.0 77.7

3 Layer+MS 77.9 80.2

4 Layer 77.4 77.8

Gould et al. (2008) 70.1 77.8

Ladicky et al. (2009) 86.0

optimized work by Aldavert et al. (2010) (cf. their results in Ta-
ble 6.3).

6.1.3 Related Work

While a large body of research focuses on object class segmen-
tation, most notably associated with the Pascal VOC challenge1,
only few works have attempted to use a neural network architec-
ture before the contents of this section were published.

Jain and Seung (2008) use supervised pre-training for a denois-
ing task and show that their approach has relations to the opti-
mization of a Markov random field. This work differs from ours
in the task (regression vs. classification), and in the model archi-
tecture. The denoising task is learned from small (6×6) patches,
which provide sufficient context. Our convolutional architecture
with pooling creates a much larger receptive field for the output
units. A large context is essential for non-trivial semantic segmen-
tation tasks.

Mnih and Hinton (2010) also argue for larger context. The au-
thors use unsupervised pre-training for a network that classifies

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

118 learning object-class segmentation

Figure 6.5: Example segmentations for MSRC-9 (top row), MSRC-21 (center
row), IG02 (bottom row). Left column shows original image, center
column our output, right column ground truth. MSRC-9 and MSRC-21

have ground truth void mask superimposed.

Table 6.3: INRIA Graz-02 object class segmentation database results

Precision/recall at equal error rate

Condition Car Bike Person

RO 75.6 74.7 61.1

RO+CL 75.6 74.8 61.1

regular 74.4 74.2 61.9

Fulkerson et al. (2009) 72.2 72.2 66.3

Aldavert et al. (2010) 62.9 71.9 58.6

roads in aerial images. They then combine multiple single-pixel
predictions in a post-processing step. A similar two-step proce-
dure was used by Cireşan et al. (2012c) for segmenting cell mem-
branes in medical images. In contrast to Mnih and Hinton (2010),
we use the same supervised pretraining algorithm throughout
our architecture with increasing context sizes, while continueing
to train all pre-trained parameters. The road classification dataset
used by Mnih and Hinton (ibid.) is not publicly available.

Gould et al. (2008) introduced the idea of a relative location
prior in conditional random fields, addressing the problem that
certain classes have different probabilities of co-occurrence de-

6.2 encoding depth information for cnn 119

pending on their relative spatial location. We draw on their idea
by explicitly learning filters that reduce errors of previous class
predictions.

Finally, Grangier et al. (2009) used an architecture similar to
ours. From their brief description, many details of the algorithm
remain unclear. In contrast to their approach, we propose to use
multi-scale inputs, reuse the pretraining predictions. We show
that these extensions consistently improve the results, and di-
rectly compare our method with theirs on the MSRC-9 dataset.

In contrast to most neural networks for image processing, we
use densely extracted image features (HOG) to complement ZCA-
transformed color channels. Recently, HOG was shown to yield su-
perior results over deformable parts models when used as input
to a CNN (Ren et al., 2015).

Recently, Gupta et al. (2014) and Eigen and Fergus (2015) used
transfer learning to address object class segmentation. They ini-
tialized the weights of their network with a network trained on a
supervised large-scale image classification task (ILSVRC) and pro-
ceeded using a similar step-wise pre-training technique as pre-
sented here. In this chapter, we focus on networks learned only
on the dataset that they are evaluated on.

6.1.4 Conclusion

We presented a convolutional neural network architecture for
object class segmentation, which achieves state-of-the-art perfor-
mance on common vision datasets. Crucial factors for good per-
formance are supervised pretraining and class location filters.
The network can be parallelized well on GPU and exhibits very
good recall times.

6.2 encoding depth information for cnn

In the previous chapter, we have seen that CNN achieve good
results on object class segmentation. To further improve on this
task, it is essential to correctly identify object borders. Modern
depth cameras can make the task easier, since changes in depth

120 learning object-class segmentation

are often co-occur with object boundaries. The depth gradient
can provide useful cues to the object type. However, the depth
information needs to be incorporated into existing techniques. In
this section, we demonstrate how depth images can be used in
a convolutional neural network for scene labeling by employing
a simplified version of the HOG descriptor to the depth channel
(HOD). We train and evaluate our model on the challenging NYUD

dataset and compare its classification performance and execution
time to state of the art methods.

6.2.1 Methods

network architecture We train the four-stage convolu-
tional neural network, illustrated in Fig. 6.2 for object class seg-
mentation. In contrast to Section 6.1, we use rectifying non-
linearities σ(x) = max(x, 0) after convolutions. This non-linearity
improves convergence (Krizhevsky et al., 2012) and results in
more defined boundaries in the output maps than sigmoid non-
linearities.

pre-processing The main difference to previous work lies in
the pre-processing. To increase generalization, we generate vari-
ations of the training set. This is performed online on the CPU

while the GPU evaluates the loss and the gradient, at no cost in
speed. We randomly flip the image horizontally, scale it by up to
±10 %, shift it by up to seven pixels in horizontal and vertical di-
rection and rotate by up to ±5◦. The depth channel is processed
in the same way. We then generate three types of input maps.

From random patches in the training set, we determine a
whitening filter that decorrelates RGB channels as well as neigh-
boring pixels. Subtracting the mean and applying the filter to an
image yields three zero phase (ZCA) whitened image channels.

On the RGB-image, we again compute a computationally inex-
pensive version of HOG introduced in Section 6.1.1. Additionally,
we perform the same operation on the depth channel, resulting
in a CNN compatible version of the histogram of oriented depths
(HOD) descriptor. (Spinello and Arras, 2011).

6.2 encoding depth information for cnn 121

All maps are normalized to have zero mean and unit vari-
ance over the training set. The process is repeated for every scale,
where the size is reduced by a factor of two. For the first scale,
we use a size of 196×196. The teacher maps are generated from
ground truth by downsampling, rotating, scaling, and shifting
to match the network output. We use an additional ignore map,
which sets the loss to zero for pixels which were not annotated
or where we added a margin to the image by mirroring. Sample
maps and segmentations are shown in Fig. 6.7.

6.2.2 Experiments

The NYUD dataset (Silberman and Fergus, 2011) is comprised of
video sequences taken from 464 indoor scenes, annotated with
a total of 894 categories. We use the popular relabeling into four
high-level semantic categories: small objects that can be easily car-
ried (prop), large objects that cannot be easily carried (furniture),
non-floor parts of the room: walls, ceiling, columns (structure),
and the floor of the room (floor).

We split the training data set into 796 training and 73 validation
images. In a stage s, we use the RMSProp learning algorithm with
an initial learnrate 10−4, to train the weights of all stages below
or equal to s. The active stage is automatically switched once the
validation error increases or fails to improve. The pixel mean of
the classification error over training is shown in Fig. 6.6. During
the first two stages, training and validation error behave similarly,
while in the final stages the network capacity is large enough to
overfit.

classification performance To evaluate performance
on the 580 image test set, we crop the introduced margins, de-
termine the pixel-wise maximum over output maps and scale the
prediction to match the size of the original image. There are two
common error metrics in the literature, the average pixel accuracy
and the average accuracy over classes, both of which are shown in
Table 6.4. Our network benefits greatly from the introduction of
depth maps, as apparent in the class accuracy increase from 56.1
to 62.0. We compare our results with the architecture of Couprie

122 learning object-class segmentation

et al. (2013), which is similar but computationally more expensive.
While we do not reach their overall accuracy, we outperform their
model in two of the four classes, furniture and, interestingly, the
rather small props— despite our coarser output resolution.

We also compare HOD processing to the simpler depth input
used by Couprie et al. (2013). Couprie et al. use local mean and
contrast normalization, resulting in a single depth map input.
This way of using the depth results in a performance drop of
three percentage points.

Reevaluating our choice of using ZCA instead of RGB inputs, we
find that RGB-only input results in an error of Epix = 54.0 % and
Ecls = 54.8 %, while providing only ZCA inputs result in signifi-
cantly better Epix = 55.7 % and Ecls = 56.1 %.

prediction speed We can also attempt to compare the time
it takes to process an image by the network. Couprie et al. (ibid.)
report 0.7 s per image on a laptop. We process multiple images
in parallel on a GPU. In contrast to Section 6.1, we implement pre-
processing asynchronously in CUVNET. With this asynchronous
pre-processing, our performance saturates at a batch size of 64,
where we are able to process 52 frames per second on a 12 core
Intel Xeon at 2.6 GHz and a NVidia GeForce GTX TITAN GPU. Note
that this faster than the frame rate of the sensor collecting the
dataset (30 Hz). While the implementation of Couprie et al. (ibid.)
could certainly also profit from a GPU implementation, it requires
more convolutions as well as expensive superpixel averaging and
upscaling operations. Our network is also faster than random
forests on the same task (30.3 fps (Müller and Behnke, 2014), hard-
ware similar to ours).

6.2.3 Related Work

Our work builds on the architecture proposed in Schulz and
Behnke (2012c), which (in the same year as Farabet et al. (2012))
introduced neural networks for RGB scene segmentation. We im-
prove on their model by employing rectifying non-linearities,
recent learning algorithms, online pre-processing, and a novel
method to provide depth modality inputs.

6.2 encoding depth information for cnn 123

0 500 1000 1500 2000 2500 3000 3500
epoch

0.1

0.2

0.3

0.4

0.5

0.6
cl

as
si

fi
ca

ti
on

er
ro

r
training set

validation set

Figure 6.6: Classification error on NYUD during training, measured as the
mean over output pixels. The peaks and subsequent drops occur when
one stage is finished and learning proceeds to the next — randomly
initialized— stage.

Scene labeling using RGB-D data was introduced with the NYU
Depth V1 dataset by Silberman and Fergus (2011). They present
a CRF-based approach and provide handcrafted unary and pair-
wise potentials encoding spatial location and relative depth, re-
spectively. These features improve significantly over the depth-
free approach. In contrast to their work, we use learned filters to
combine predictions. Furthermore, our pipeline is less complex
and achieves a high framerate. Later work (Silberman et al., 2012)
extends the dataset to version two, which we use here. Here, the
authors also incorporate additional domain knowledge into their
approach, which further adds to the complexity.

Couprie et al. (2013) present a neural network for scene label-
ing which is very close to ours. Their network processes the input
at three different resolutions using the same network structure
for each scale. The results are then upsampled to the original
size and merged within superpixels. Our model is only applied
once to the whole image, but uses inputs from multiple scales,
which involves less convolutions and is therefore faster. Outputs
are also produced at all scales, but instead of a heuristic combina-
tion method, our network learns how to use them to improve the
final segmentation results. Finally, the authors use raw depth as
input to the network, which cannot be exploited easily by a con-

124 learning object-class segmentation

Table 6.4: Classification Results on the NYUD

Accuracy (%)

Per-class Average

Method floor struct furnit props pixel class

Ours without depth 69.1 57.8 55.7 41.7 56.2 56.1

Ours with depth 77.9 65.4 55.9 49.9 61.1 62.0

Couprie et al. (2013)
without depth

68.1 87.8 51.1 29.9 59.2 63.0

Couprie et al. (2013)
with depth

87.3 86.1 45.3 35.5 63.5 64.5

RGB only 67.0 61.1 49.6 38.4 54.0 54.8

ZCA only 69.2 62.7 50.4 40.7 55.7 56.1

ZCA, HOG, SD 71.6 62.8 52.3 44.6 57.7 57.8
Controls in lower part of table compare RGB-only and ZCA-only condition. Last
line is full model where HOD is subsituted with depth pre-processing of Couprie
et al. (2013).

volutional neural network, e.g., absolute depth is less indicative
of object boundaries than are relative depth changes.

A common method for pixel-wise labeling are random forests
(e.g. Sharp, 2008; Shotton et al., 2013; Schulz et al., 2016), which
currently provide the best results for RGB-D data (Stückler et al.,
2014; Müller and Behnke, 2014). These methods scale feature size
to match the depth for every image position, an idea which we
will explore for CNNs in Section 6.3.

6.2.4 Conclusion

We presented a convolutional neural network architecture for
RGB-D semantic scene segmentation, where the depth channel
is provided as feature maps representing components of a sim-
plified histogram of oriented depths (HOD) operator. We evalu-
ated the network on the challenging NYUD dataset and found
that introducing depth significantly improved the performance

6.3 depth and height aware semantic perception 125

Figure 6.7: Network maps, inputs and outputs. First row, ignore mask
and ZCA-whitened RGB channels. Second and third row, HOG and HOD

maps, respectively. Fourth row, original image, ground truth and net-
work prediction multiplied by ignore mask for reference. Mirrored
margins are removed for presentation to save space. Note that HOG

and HOD encode very different image properties with similar statis-
tics.

of our model, resulting in competitive classification performance.
We also find that HOD performs better than locally contrast-
normalized depth input.

In contrast to other published results of neural network and
random forest-based methods, our GPU implementation is able to
process images at a high framerate of 52 fps.

6.3 depth and height aware semantic perception

An important property of convolutional neural networks (CNN)
is their invariance to translations. This invariance property is cre-
ated by sharing weights between all image locations, and by pool-

126 learning object-class segmentation

ing over nearby locations. For many tasks in computer vision,
translation invariance is desirable, but some object classes (e. g.
sea, sky) are more likely to appear in certain scene regions. Fur-
thermore, depending on the distance to the camera, the same
objects can also appear at different scales, but scale invariance
is missing in the CNN architecture. There are two commonly ap-
plied solutions to the problem.

We might present the input to the network at multiple scales
during training, such that the network can learn the invariance.
This option requires large models and sufficient data, since we
need to learn the same task independently at all scales.

If object annotations are available, we can scale objects to a
uniform size before presenting them to the CNN. To produce a
prediction for a novel image, the network has to be applied to
every image position at multiple scales, and the results must be
combined. This approach is called sliding window.

In this section, we propose a third option which relies on the
availability of depth for the image pixels (RGB-D). The required
dense depth estimates are produced e.g. by affordable consumer
cameras such as the Microsoft Kinect, which has become popu-
lar in computer vision (Shotton et al., 2011; Bo et al., 2013) and
robotics (Newcombe et al., 2011). We propose to use depth infor-
mation in CNNs as follows:

1. We train the network on image patches with a size chosen
proportional to the depth of the patch center. Since training
is scale invariant, we can afford smaller models and make
more efficient use of training data.

2. For novel images, we propose a sampling scheme which
covers the image with overlapping patches of depth-
adjusted size. Thus, closer image regions are processed
at a large scale, while far-away regions are processed at
a small scale. This automatic adjustment is more efficient
than sliding window, because the scale is chosen automati-
cally. In contrast to a multi-scale sliding window, our scale
adjustments are continuous.

3. Finally, we propose to use height above ground as an ad-
ditional input to the CNN. Height is an important clue and

6.3 depth and height aware semantic perception 127

quite distinct from the distance from the camera. E.g., floor
pixels might occur at any distance from the camera, but
they always have zero height.

We evaluate our method on the NYUD, which contains indoor
scenes annotated according to their object class and find that both
height annotation and depth normalization significantly improve
CNN performance.

6.3.1 Related Work

Depth normalization of features has been proposed in the con-
text of random forests (Lepetit et al., 2005; Shotton et al., 2011)
by Stückler et al. (2012). The binary features in their work consist
of region average differences, where both region sizes and dis-
tances to the query pixel are scaled with the depth. In this work,
we scale image patches, not features. While this requires more
computation during preprocessing, it allows for more expressive
features.

Hermans et al. (2014) and Stückler et al. (2014) use random
forests as a baseline and aggregate video information over time
with self localization and mapping (SLAM). Here, we focus on
single image prediction, which is comparable to random forest
learning.

Using height for indoor scene object class segmentation was
introduced by Müller and Behnke (2014) and Gupta et al. (2014).
Müller and Behnke use the output of a random forest, merge the
predictions within superpixels and learn a conditional random
field (CRF) which has access to the average superpixel height. In
contrast to their work, we incorporate height into the base clas-
sifier, which we then use to directly improve the unary term of
their CRF.

Couprie et al. (2013) and Höft et al. (2014) train CNNs for object
class segmentation using depth information, with very different
approaches. Couprie et al. (2013) train three CNNs with shared
weights on three scales. The upsampled results are then com-
bined to yield output maps corresponding to object class labels.
Thus, in contrast to our proposed method, the image is always

128 learning object-class segmentation

Table 6.5: Network architecture used for this section

Layer # Parameter Filter
Size

Stride #Maps Map
Size

Input – – – 8 64×64

Conv1 12 576 7×7 1 32 64×64

Pool1 – 2×2 2 32 32×32

Conv2 50 208 7×7 1 32 32×32

Pool2 – 2×2 2 32 16×16

Conv3 6304 7×7 1 4 16×16

trained and evaluated on all three scales. The label probabilities
are then averaged within superpixels of an oversegmentation. Su-
perpixel averaging is compatible with our approach and further
improves our performance.

Höft et al. (2014) also use a CNN with a multi-scale approach,
but treat scales differently. Larger scales have access to predic-
tions from smaller scales and can modify them. Treating scales
differently can be justified by the fact that in indoor scenes, cer-
tain objects (dressers, beds) are typically much larger than others
(vases, television sets), and need more context to be recognized.
Note that while in this work, we use only one scale for every
patch, it is also possible to use a multi-scale approach, where all
scales are depth-adjusted simultaneously.

6.3.2 Methods

network architecture We use the simple feed forward
convolutional architecture shown in Table 6.5, with interleaved
convolutional max-pooling layers, and rectification (ReLU) non-
linearities. With less than 70 000 parameters in total, it is a very
small network (cf. Couprie et al., 2013; Höft et al., 2014). While
performance might improve with size and better regularization
(i. e. dropout), we would like to emphasize that depth and height

6.3 depth and height aware semantic perception 129

awareness allows to reduce the number of parameters signifi-
cantly.

covering windows We choose patch sizes s in the original
image inversely proportional to the depth d(xc) of a selected
patch center xc, with s = γ/d(xc). The parameter γ is set to
300 px m throughout this paper, such that enough context is pro-
vided to the network, and receptive field sizes are similar to the
scale of the random forest features by Stückler et al. (2014). The
patch is then scaled to the input dimension of the CNN with bi-
linear interpolation. If parts of the patch are outside the original
image, we extend it by reflection on the border. Due to irregular
patch sizes, a sliding window approach with fixed strides would
sample too densely in regions with shallow depth or too coarsely
in far-away regions. Instead, we simply ensure that the patches
cover the image. We sequentially sample patch centers xc from a
multinomial distribution, with probabilities

p(xc) ∝

0 if xc ∈
⋃

w∈W w

d(xc) else,
(6.6)

where W is the set of patches sampled so far. Depth-proportional
probabilities encourage that far regions are covered by their corre-
sponding small patches before near regions are covered by large
patches. The greedy approach — selecting the patch with the
largest distance which is not covered — results in a significantly
larger number of patches due to the increased overlap (115.4 vs.
75.5 patches per image on average), while classification precision
does not change significantly.

When predicting, we use bilinear interpolation to upsample
the network output to the original patch size and accumulate
the predictions for all image patches. We use radially decreasing
weights r(‖x− xc‖) in the accumulation, since the depth normal-
ization is strictly valid only for the patch center.

input features We use eight input maps: The raw RGB
channels, four containing a simplified histogram of oriented
depth (Höft et al., 2014), and one map for the height. The height

130 learning object-class segmentation

map is computed by extracting normals in the depth images, find-
ing ten clusters with k-means and determining the cluster that
is most vertical. All points are projected to this normal and the
height of the lowest point is subtracted. From all input maps,
we subtract the dataset mean and ensure that maps have similar
variances.

training procedure During training, we select patch cen-
ters xc randomly, determine their size, and add small distortions
(rotations of up to 5◦, scalings of up to 5 %, and horizontal flip-
ping). CNN weights are initialized randomly from U (−0.01, 0.01).
We use a batch size of 128 and an initial learnrate of 0.001, with a
momentum of 0.9 and exponentially decreasing learnrate sched-
ule. We optimize pixel-wise weighted multinomial logistic loss
over the output maps, with weights

w(x) =

0 if x is not annotated

0 if x is outside the original image
r(‖x−xc‖)

p(c(x)) else,

(6.7)

where p(c(x)) is the prior probability of the class x is annotated
with.

6.3.3 Experiments

As in the previous section, we use the NYUD (Silberman et al.,
2012) for our evaluation. We train our network for object class
segmentation on the indoor scenes using the default split of 795
training and 654 testing images. We focus on the four semantic
structural classes floor, structure, furniture, and prop. An additional
void class resembles regions not annotated and is excluded from
the evaluation.

Our results are summarized in Table 6.6. We compared our
method with other state-of-the-art neural networks as well as
methods which, for comparability, do not use transfer learning,
extensive post-processing through CRFs or aggregation over time.
We trained four models: a baseline method only using cover-

6.3 depth and height aware semantic perception 131

Figure 6.8: Sample segmentations from test set using the CW+DN+H

model. Left to right: Original image, depth with patches denoted by
circles, height above ground, ground truth and prediction.

132 learning object-class segmentation

Table 6.6: Results on NYUD

Per-class accuracies (%) Average acc. (%)

Method floor struct furnit props Pixel Class

CW 84.6 70.3 58.7 52.9 66.6 65.4

CW+DN 87.7 70.8 57.0 53.6 67.3 65.5

CW+H 78.4 74.5 55.6 62.7 68.1 66.5

CW+DN+H 93.7 72.5 61.7 55.5 70.9 70.5

CW+DN+H+SP 91.8 74.1 59.4 63.4 72.2 71.9

CW+DN+H+CRF 93.5 80.2 66.4 54.9 73.7 73.4

RF+CRF ∗ 94.9 78.9 71.1 42.7 71.9 72.3

RF+H∗ 91.2 81.0 71.6 22.7 69.6 66.5

RF ∗ 90.8 81.6 67.9 19.9 65.0 68.3

Couprie et al. (2013) 87.3 86.1 45.3 35.5 63.5 64.5

Höft et al. (2014) 77.9 65.4 55.9 49.9 61.1 62.0

Silberman et al.
(2012)

68.0 59.0 70.0 42.0 59.6 58.6

CW is covering windows, H is height above ground, DN is depth normal-
ized patch sizes. SP is averaged within superpixels and SVM-reweighted. RF
is random forest, CRF is a conditional random field over superpixels (Müller
and Behnke, 2014). Structure class numbers are optimized for class accuracy.
∗ Müller and Behnke (2014)

ing windows (CW), two with added depth normalization and
height (CW+DN and CW+H, respectively), and a combined model
(CW+DN+H). When training without depth normalization, we use
the average patch size found by the depth normalization (135 px).
We find that our combined model improves significantly over the
other methods in terms of class average and pixel accuracies. The
height feature contributes more to the overall improvement than
depth normalization, but both ideas seem to complement each
other.

Finally, our predictions can be used as input to high-level meth-
ods, such as super-pixel averaging (CW+DN+H+SP) and condi-
tional random fields (CW+DN+H+CRF). We use method and imple-
mentation of Müller and Behnke (2014), and find that class and

6.4 recurrent networks for depth perception 133

pixel average accuracies improve by more than one percentage
point when using our CNN predictions in place of their globally
optimized random-forest predictions.

Sample segmentations, as well as patch size and height visual-
izations, are shown in Fig. 6.8. Note that the network sometimes
overgeneralizes (carpet is labeled as floor, not prop in row 3), but
generally identifies floor/not-floor well even in images where no
or little floor is visible and our simple height extraction algorithm
fails (row 5).

6.3.4 Conclusion

We proposed two extensions for convolutional neural networks
which exploit depth information: (i) covering windows which are
scaled by the depth of their center and (ii) height-above-ground
input maps. Our evaluation on the NYUD shows that the proposed
approach can outperform other neural network and random for-
est methods. In future work, we plan to extend our method with
multi-scale depth-normalized processing.

6.4 recurrent networks for depth perception

Deep neural networks compute increasingly abstract features,
which simultaneously become more and more semantically
meaningful, and incorporate larger contexts. A real-world vision
system will have to deal with the time dimension as well. Con-
tent is increasingly generated in the form of videos by Internet
users, surveillance cameras, cars, or mobile robots. Video infor-
mation can be helpful, as looking at a whole sequence instead of
single frames may enable the interpretation of ambiguous mea-
surements.

Similar to increasingly abstract features on images, we are in-
terested in neural networks which produce high-level features on
sequences. In a recursive computation, these high-level features
should help to interpret the next frame in a sequence. In addition
to a semantically meaningful localized content description, such

134 learning object-class segmentation

Figure 6.9: Architecture of our RNN. The layers are connected to each
other with valid convolutions. Upward (forward) connections addition-
ally include spatial max-pooling operations, while downward (back-
ward) connections include a spatial upsampling. Delay D is number
of time frames between an input and corresponding output frame.

features should form high-level descriptions of motions with in-
creasing temporal context.

Recurrent neural network (RNN) lend themselves naturally
to sequence processing, especially the architecture proposed by
Behnke (2003b), which produces pixel level outputs and can be
used for object class segmentation.

In this section, we introduce a recurrent convolutional neu-
ral network architecture which produces high-level localized se-
quence features for object class segmentation. In contrast to previ-
ous sections— where we used single frames only— we train our
approach on sequences from the NYUD.

In short, our contributions are as follows:

• We introduce a recurrent convolutional neural network
model for processing image sequences.

• On toy datasets, we show that our recurrent models are
able to keep an abstract state over time, track and interpret
motion, and retain uncertainty.

• We show that our model improves RGB-D object class seg-
mentation classification accuracy on the challenging NYUD

dataset when compared to other CNN models. When com-
bined with a CRF, RNN performance is close to carefully

6.4 recurrent networks for depth perception 135

Figure 6.10: Recurrent connections as viewed from a single hidden layer.
Activations of a hidden layer are the result of forward connections
from below, backward connections from above, and lateral connec-
tions from the same layer at previous time steps. Inputs may be pro-
vided at all scales.

tuned transfer-learning approaches initialized on much
larger datasets.

• We analyze the obtained networks and show that the im-
proved performance of our network stems from the recur-
rent processing combined with the exploitation of temporal,
i.e. video, information.

The remainder of this section is organized as follows. Sec-
tion 6.4.1 introduces our architecture and learning methods. In
Section 6.4.2, we discuss related work. We evaluate our model in
Section 6.4.3, and discuss the results in Section 6.4.4.

6.4.1 Model Description

In this section, we present our network architecture. It is inspired
by the Neural Abstraction Pyramid of Behnke (ibid.), a hierarchi-
cal recurrent neural network architecture for image processing. A
schematic overview is shown in Figs. 6.9 and 6.10. We use con-

136 learning object-class segmentation

volutional neural networks (CNN (LeCun et al., 1998a)), which
retain the topological image structure and ensure that features
are localized. Our base configuration (without the ability to pro-
cess sequences) is a fairly standard small CNN with L = 3 convo-
lutional layers, ReLU non-linearities, and interleaved spatial max-
pooling.

In contrast to the Neural Abstraction Pyramid of Behnke
(2003b), which doubles the number of filters as the resolution
of the representation is halved, we keep the number of filters to
a constant 32 on all layer of the network. Initial experiments on
our dataset have shown that doubling the number of filters leads
to a too complex model, which takes longer to learn and overfits
early.

Connection Types

To process sequences, we replicate our model for T time steps
and introduce connections between the temporal copies. Three
types of connections exist: forward, lateral, and backward. Com-
putationally, all connections are valid convolution operations
followed by a half-rectifying point-wise non-linearity f (z) =
max(0, z).

A hidden layer H(t, l), at time step t and abstraction level l,
is connected to layer H(t + 1, l + 1) using a forward connection.
These connections allow the vertical flow of information from
the bottom of the network to the top and thus the construction
of high level features based on the low level features. The non-
linearity of the forward connections are followed by a spatial 2×2
maximum pooling operation with stride 2.

Lateral connections connect layers H(t, l) and H(t+ 1, l). These
horizontal connections can incorporate immediate spatial context
from the same activation level. The intermediate context is lim-
ited by the receptive field size of the convolution filters.

Backward connections connect layer H(t, l) to layer H(t+ 1, l−
1), and can be interpreted as providing a high-level prior for the
lower, more detailed layers. Since higher layers have a coarser spa-
tial resolution, they also provide a convenient shortcut for infor-

6.4 recurrent networks for depth perception 137

mation that needs to travel long distances. Backward connections
are immediately followed by a spatial upsampling operation.

Due to padded convolutions and the opposing pooling and
upsampling operations, all connections coinciding on a given hid-
den layer have the same size, and are simply summed element-
wise.

We use a convolutional feature extraction layer between the in-
puts and the RNN, whose weights are initialized using symmetry
k means (Konda et al., 2013). Since this unsupervised initializa-
tion prevents us from controlling the gain, we ensured that these
weights are not part of a feedback loop. For similar reasons, the
weights of the first forward pass are excluded from weight shar-
ing as well.

All other hidden-to-hidden connections use temporal weight
sharing, i.e. for all t and all k ∈ {−1, 0, 1}, the weights used in
the convolution from H(t, l) to H(t + 1, l + k) are identical across
time steps.

Output in the Bottom Layer

In contrast to common CNN models, the output of our network
is always obtained in the lowest layer of the network. This struc-
tural property allows us to produce detailed outputs at input
resolution. We add a time delay between input and output, en-
suring that the inputs from the last presented frame were able
to reach the topmost layer and return to the bottom layer before
evaluating the loss.

A final convolution without temporal weight sharing is used to
extract one map per target class from the bottom layer. The cross-
entropy loss is computed perpixel over all output maps.

Recurrent Processing

We process the images of videos sequentially, one image per time
step. The state (i.e., the activations) at time t containing informa-
tion about its past is combined with the image at time t, produc-
ing an output and a new state. Since the last output benefits from
learning from the whole sequence, it is natural to place the frame
that we want to evaluate at the end.

138 learning object-class segmentation

The first temporal copy is special, since it contains regular feed
forward connections. This allows us to produce activations in
each layer such that all connection types can be used in the tran-
sition from t to t + 1.

network depth When processing input at time t, we allow
L − 1 time steps for the information to reach the top level of
the network and the same amount for propagating back to the
bottom layer, where the output corresponding to time t is evalu-
ated. Note that the last temporal steps do not need all the hidden
layers, since their activation would no longer propagate to the
output.

Our RNN is trained with backpropagation through time (BPTT),
and can be interpreted as a very deep non-recurrent net after
unfolding. In this non-recurrent network, multiple paths lead to
the output, with the shortest path— from input t = T to the final
output— having only length 2L− 1, and the longest 2L+ t, which
amounts to a depth of 14 layers for our L = 3, T = 8 network.

weight initialization and optimization We initialize
the weights biases from a Gaussian distribution. It is important to
ensure that the activations do not explode or vanish early during
training. Ideally, activations in the first forward pass should have
similar magnitudes. This is difficult to control, however. Instead,
we choose the standard deviation of the weights for each layer l
according to the scheme proposed by He et al. (2015):

σ =

√
2

kl
2 · dl−1

, (6.8)

which takes into account the filter size kl and the number of fil-
ters of the last layer dl−1. We determine the mean of the bias
such that the average of the activations in every point of our net-
work is positive and slightly decreasing over time. Liang and Hu
(2015) use local contrast normalization at all layers to the same
effect, which requires more GPU memory for the hidden layer ac-
tivations. Due to our larger inputs and outputs and the increased
number of time steps, current GPU memory restrictions prevent
us from doing the same.

6.4 recurrent networks for depth perception 139

We learn the parameters of our network with backpropagation
through time (BPTT) using RMSProp, which is a variant of resilient
backpropagation (RPROP, Riedmiller and Braun 1993) suitable for
mini-batch learning (Dauphin et al., 2015). RPROP and RMSProp to
a large degree consider only the sign of the gradient, thus being
robust against vanishing and exploding gradients, both common
phenomena in RNN training.

During learning, we apply dropout (Srivastava et al., 2014).
Combining dropout with RNN is delicate, however. If it affects
recurrent connections, their ability to learn long-range dependen-
cies suffers (Pham et al., 2014). Thus, we add a convolution with
non-shared weights to extract the output from the state and apply
dropout here, and find that it consistently improves our results.

6.4.2 Related Work

Several groups have used DNNs to process image sequences. Most
works use stacks of frames to provide time context to the neu-
ral network. Le et al. (2011) and Taylor et al. (2010) learn hierar-
chical spatio-temporal features on video sequences using Gated
Convolutional Restricted Boltzmann Machines (convGRBM) and
independent subspace analysis (ISA), respectively. Their image
features are not learned discriminatively and the models do not
allow localized predictions.

Simonyan and Zisserman (2014) use a two-stream architecture
for action recognition, which separately creates high-level fea-
tures from single-frame content and motion. Motion is provided
through a stack of optical flow images, so that the modeled com-
plexity is limited by the stack size. In our experiments, we found
that increasing temporal context by providing frames consecu-
tively yields improved performance.

More recently, Michalski et al. (2014) introduced a model de-
signed to explicitly represent and predict the movement of enti-
ties in images. The architecture is chosen in a way that higher
layers represent invariances of derivatives of positions (motions,
accelerations, jerk). Our models do not explicitly model motion.
However, our models can make use of deep layers even in the
case no high-level position invariances exist, since in addition

140 learning object-class segmentation

to motion, they also encode static content. Furthermore, in our
model, deep layers have a lower resolution and facilitate trans-
port of information across longer distances.

Jung et al. (2014) introduce a multiple timescale recurrent neu-
ral network for action recognition, which uses neurons with fixed
time constants. The model uses leaky integrator neurons, which
limits the rate at which higher layer activations can change. It is
trained and evaluated on a simplified version of the Weizmann
Human Action Recognition dataset.

Various architectures for processing video data are explored by
Karpathy et al. (2014). The architecture most similar to our model,
slow fusion, uses weight sharing between time steps and merges
them in higher layers. In their study, slow fusion yields best results.
In contrast to classifying video sequences with a single label, we
produce label output at pixel level.

RNN were successfully used for object class segmentation by
Graves (2012) and Pinheiro and Collobert (2014). Both works use
recurrence only to increase spatial context, whereas we extend
processing to the temporal domain.

Object recognition is another task where RNN achieved state
of the art results. In a recent work by Liang and Hu (2015), use
Convolutional Layer unfolded in time similar to ours. Their ar-
chitecture consists of a stack of five such layers interleaved with
pooling and dropout layers. Similarly to previous works, Liang
and Hu (ibid.) only use static information. Nevertheless, their
model obtained superior results classifying images of multiple
datasets.

long short-term memory (LSTM) units are capable of carry-
ing information, at the original resolution, over long temporal
distances. LSTM is especially is often used in speech recogni-
tion (Graves et al., 2013) or language understanding (Sunder-
meyer et al., 2012), where e.g. a specific property of a distant
word or sound might influence the semantics of the current con-
text. In this paper, we opt for simple neural units instead. While
we are also interested in learning long-range dependencies, we
do not provide spatial or temporal context at the original reso-
lution. Instead, our architecture maintains expressive low resolu-
tion context information in higher layers. This is more realistic for

6.4 recurrent networks for depth perception 141

natural images, where correlations are stronger between nearby
pixels than those between distant ones. It also allows for sparser
connectivity between units, since temporally distant units do not
need to be wired.

Recent work of Bogun et al. (2015) uses LSTM units for object
recognition in video sequences. They obtained state of the art
results on the Washington Dataset (Lai et al., 2011a) by incor-
porating information from several frames. Their most sucessful
strategy was to train the network unidirectionally and to use a
bidirectional model, based on the same set of weights, during
prediction.

Pascanu et al. (2013) suggest that LSTM also addresses the prob-
lem of vanishing gradients. Here, we use RMSProp as gradient
method, which — in addition to preventing vanishing gradients–
also counteracts gradient explosion.

Our architecture choices are motivated by the neural abstrac-
tion pyramid (NAP) of Behnke (2003b), which performs pixel-wise
classification tasks at input resolutions as well. In contrast to our
work, Behnke did not train on video sequences, but only on sta-
tionary patterns, which in some cases were corrupted by tempo-
rally changing noise. We also include modern architectural fea-
tures, such as max-pooling and ReLU non-linearities, dropout,
and use RMSProp to increase learning speed.

6.4.3 Experiments

We first conduct experiments on handcrafted datasets, which al-
low us to demonstrate important characteristics of our model. In
a second step, we use our architecture for object class segmenta-
tion on the already introduced NYUD dataset.

Toy Experiments

We present three toy experiments, showing that our network is
able to learn 1) filtering noisy information over time, 2) tracking
and interpreting motion, and 3) retaining an internal state includ-
ing uncertainty.

142 learning object-class segmentation

Table 6.7: Denoising Results for different models

Method Accuracy

RNN 93.3

CNN 84.7

Thresholded Average 81.6

denoising In this experiment, we feed different degraded
versions of the same binary image to the network. We use salt
and pepper noise, uniformly distributed over the whole image.
We also draw random black or white lines, to make the task more
difficult. The task is to obtain the original image without noise.
One way the network could solve this task would be to learn to
average the image over time (which is our baseline). In addition,
denoising filters learned by the neural network can remove high
frequency noise.

To ensure that the network is able to generalize instead of learn-
ing an input by heart, we use different objects for training, vali-
dation and testing. Every split contains 100 independently gener-
ated sequences.

Since the task has a low complexity, we opt for a simple convo-
lutional model of only one hidden layer with 32 maps. A small
filter size of 5×5 provides sufficient spacial context. There is no
specific order in such a sequence of noised images, thus we only
test the unidirectional architecture on this task.

We use T=6 temporal copies. During training, we optimize a
weighted sum of the losses at all time steps, with a ten times
larger weight placed on the final output. In all toy examples, we
train for 12 000 iterations with minibatches of size 16.

Fig. 6.11 shows an example from the test set. Our model is
able to improve its prediction step by step, accumulating over
time information even from the areas which are more affected by
noise. After only two steps, the network is able to remove most
of the false positives and to assemble together almost all features
of the object. Table 6.7 and Fig. 6.11 (bottom) show that the RNN

6.4 recurrent networks for depth perception 143

Figure 6.11: Toy experiment: Denoising. Top: Rows represent, in order:
the RGB input of the network for each time-step, the output of the soft-
max layer, the final outputs of the network, the evaluation (True
Positives True Negatives False Positives False Negatives). The
last output is used for evaluation of pixelwise classification error. Bot-
tom: Average of the inputs presented to the network.

performance compares favorably to a naı̈ve thresholding of the
average image.

We also train the single-timestep base model on the same data-
set. The images (not shown) produced by this model have less
articulate contours, resulting in a classification accuracy of 84.7 %

network compared to 93.2 % of the recurrent model, outperform-
ing the naı̈ve averaging approach only by a small margin.

detecting movement In this experiment, we test the capa-
bilities of the network to track a foreground object while the ob-
ject is moving with constant speed through a noisy image. To

144 learning object-class segmentation

Figure 6.12: Toy Experiment: Detecting movement. Rows represent, in
order: the RGB input of the network for each time-step, the output
of the softmax layer, the final outputs of the network and the evalu-
ation (True Positives True Negatives False Positives False
Negatives). Rightmost output used to determine classification error.

ensure that motion is the cue for tracking, we add two randomly
placed distractor objects of the same shape and size in a random
position at every time step. These distractors should be classi-
fied as background. To prevent the network from overfitting on
motion direction and speed, we generate several sequences, each
moving the object from a random position to another, with vary-
ing speed.

Fig. 6.12 shows the results obtained on this task using the uni-
directional network. In the first time step, the network cannot
decide which object is moving continuously. Already at t=2, how-
ever, the network detects a slight positional change from one of
the objects, while the others are further away from their initial po-
sition. The softmax layer activations (second row) show that the
certainty of the hypothesis increases step by step. Also, one can
notice that more details are added to the representation. Some

6.4 recurrent networks for depth perception 145

Figure 6.13: Toy experiment: Retaining uncertainty. Rows represent, in
order: the RGB input of the network for each time-step, the output of
the softmax layer, the final outputs of the network and the evaluation
(True Positives True Negatives False Positives False Nega-
tives). Center output of the bidirectional network is used to determine
classification error.

false positives still exist when the new random position of a dis-
tractor object is close to its former position.

retaining uncertainty While in the previous experi-
ments, we showed that the network is able to track a moving
object, we now consider if a regular movement can be inferred
from temporally distant information. We use a bi-directional ver-
sion of our model (with weights shared between the past and fu-
ture network parts) and provide only the first and the last input,
so that the initial positions have to be remembered until informa-
tion from the past and future converges at the center time step.
Since denoising is not an essential component of this task, we do
not add noise.

Fig. 6.13 depicts a sample sequence from the test set. As no
motion information is provided, the best strategy of the network
is to create a circular expanding hypothesis from the seen loca-
tion, which then collapses as both timelines are combined. This

146 learning object-class segmentation

is what we observe in the output maps of Fig. 6.13. While the
position is correctly identified, the shape of the object is largely
lost.

Experiments on NYUD

As in earlier sections, we concentrate here on experiments on
NYUD (Silberman et al., 2012). In contrast to these sections, we
use the full video dataset, not just the few labeled frames. This
change entails extensive preparations, and a closer understand-
ing how the dataset was created.

NYUD is comprised of video sequences taken from 464 indoor
scenes, annotated with a total of 894 categories. We use the pop-
ular relabeling into four high-level semantic categories as before:
small objects that can be easily carried (prop), large objects that
cannot be easily carried (furniture), non-floor parts of the room:
walls, ceiling, columns (structure), and the floor of the room
(floor).

Although NYUD was recorded as a video sequence, a sub-
set of 1449 frames which were preprocessed and manually la-
beled is more prevalent in the literature. The remainder— 407 024
frames— consists of raw RGB-D camera images.

To transform the dataset into an image sequence dataset, but
at the same time use the labeled frames for evaluation, we extract
the past and future context of each labeled frame from the video
stream and preprocess it similar to the labeled frames. For eval-
uation, we compare outputs corresponding to the labeled frame
with the ground truth, retaining the same training/testing split
as in the literature and in the previous sections.

To preprocess the RGB and depth images, we follow standard
procedure, sequentially applying lens correction2, projecting the
depth readings into the RGB sensor frame, and filling-in missing
depth readings (Levin et al., 2004).

To obtain ground truth information for unlabeled frames in
our sequences, we propagate labels along optical flow directions.
Due to manual labeling of the dataset, classes are often separated
by small unlabeled regions especially at edges, which are crucial

2 computed by OpenCV’s “Camera Calibration and 3D Reconstruction” package

6.4 recurrent networks for depth perception 147

to the optical flow estimation. To address this problem, we use a
colorization method (ibid.) to determine missing labels close to
labeled regions. Only the training set is modified, which allows
direct comparison with other methods on the test set. After label
fill-in, we compute optical flow (Farnebäck, 2003) on RGB image
pairs. When label information is unavailable or ambiguous due
to limitations in the optical flow computation, we write ignore
labels, which are excluded from the computation of the loss and
its gradient.

We also use optical flow to select which images are included
in a sequence. Fast displacements are tricky to detect (Brox and
Malik, 2011), while too slow motion results in quasi-static images,
foiling our attempt to exploit the temporal context. Since the data-
set was recorded at 30 Hz, taking every frame would result in no
visible motion at input resolution. We thus decide to add a new
image to the sequence once the optical flow shows, on average, a
motion larger than half of our filter size.

Not all sequences in the dataset contain sufficient temporal con-
text. In such cases, we complete them by replicating the first or
last available frame.

Learning

We train the network with depth L = 3, an input resolution of
160×160 pixels, using minibatches of size 16, and a temporal con-
text of 8 frames. As input, we use histogram of oriented gradients
(HOG) and histogram of oriented depths (HOD) channels, ZCA fil-
tered images, estimated height above ground (c.f. Section 6.3),
and the optical flow. We use randomly chosen 10 % of the train-
ing set for validation (early stopping and model selection). While
images are randomly transformed during training, we use a fixed,
randomly picked set of transformations for validation to ensure
stable estimates. Ground truth is provided at times t=3, 6, and
8 (c.f. Fig. 6.15). Training continues for 12 000 iterations, with an
initial learnrate of 3 · 10−4. The learnrate was automatically de-
creased three times when the validation error failed to improve.
Once learning stopped, we retained the model which obtained
the best performance on the validation set.

148 learning object-class segmentation

(a) RGB frame (b) Depth (c) Prediction (d) Ground truth

Figure 6.14: Prediction for one of the NYUD dataset frames. Images (a)
and (b) show RGB and depth, respectively, after being preprocessed.
(c) and (d) represent the prediction and ground truth, respectively,
where color codes floor (), prop (), furniture (), structure ()
and unknown (). The network detects most of the pixels correctly,
even some wrongly labeled ones (e.g the third object on the table and
the center of the wall-mounted piece).

depth-normalization We integrate depth-normalized
covering windows (Section 6.3) into our learning algorithm. This
approach evaluates the model on image patches at a spatial
resolution which is dependent on the distance of the center
pixel to the observer, effectively building scale invariance and
adaptive output resolution into the model. Similar to Section 6.3,
this patch-based approach allows us to use smaller maps, which
speeds up the training dramatically (days vs. weeks). As input,
we used 80×80 instead of 160×160 pixels, and scaled hidden lay-
ers accordingly. At prediction time, the network has to process
patches that fully cover the original image and combine their
prediction afterwards. Thus speed depends on the number of
patches, which in turn depends on the depth distribution of the
RGB-D image.

Comparison with state of the art

Table 6.8 shows our result with and without depth-normal-
ized covering windows (CW) together with state-of-the-art re-
sults on the same dataset. We compare against other meth-
ods which do not use transfer learning (e.g. by initializing fil-
ters using ImageNet-based transfer learning). Our RNN (WI+CW)
outperforms all other published approaches. Overall, depth-
normalization (CW) turns out to be worse for RNN, maybe indi-

6.4 recurrent networks for depth perception 149

Table 6.8: Comparison of NYUD classification performance with other
state-of-the-art approaches without transfer learning. Our model
with enabled covering windows (CW), unsupervised weight initial-
ization (WI), and conditional random fields (CRF). Input consists of
color/depth information, optionally with height (H). Baselines use
convolutional neural networks (CNN), random forests (RF), and self-
localization and mapping (SLAM).

Class Accuracies (%) Average (%)

Method ground struct furnit prop Class Pixel

ours (CW) 95.8 74.6 54.2 64.0 72.1 68.6

ours (WI+CW) 94.9 76.8 65.5 60.8 74.5 73.1

ours (WI) 94.3 83.7 72.0 54.9 76.2 76.4

ours (WI+CW+CRF) 95.4 78.9 67.3 60.8 75.6 74.6

ours (WI+CRF) 94.2 83.9 72.0 56.3 76.6 77.2

Schulz et al. (2015a)
(CNN+CRF)

93.6 80.2 66.4 54.9 73.7 73.4

Müller et al. (2014)
(RF+CRF)

94.9 78.9 71.1 42.7 71.9 72.3

Stückler et al. (2014)
(RF+SLAM)

90.8 81.6 67.9 19.9 65.0 68.3

Couprie et al. (2013)
(CNN)

87.3 86.1 45.3 35.5 63.5 64.5

Silberman et al. (2012)
(RF)

68.0 59.0 70.0 42.0 59.6 58.6

cating that there is not enough context to be interpreted in the
chosen window sizes. However, CW is much better at identifying
small objects (prop), at up to 64 % vs. 54.9 % for full frames.

The outputs of our RNN can still be improved through other
means. Instead of determining a pixel-wise maximum, we supply
the probabilities as data term to the conditional random field
(CRF) of Müller and Behnke (2014). The result (WI+CW+CRF and
WI+CRF) improves performance even further. This indicates that
our predictions are better suited for CRF postprocessing than CNN

(Couprie et al., 2013; Schulz et al., 2015a) and random forests

150 learning object-class segmentation

Figure 6.15: Prediction for one sample of NYUD test dataset. Rows repre-
sent, from top to bottom: the RGB input, the softmax layer output, the
output of the network; and the evaluation (True Positives True
Negatives False Positives False Negatives) for the class structure.

.

(Silberman et al., 2012; Müller and Behnke, 2014; Schulz et al.,
2016).

comparison to transfer learning Similar to non-recur-
rent neural networks (e.g. Erhan et al., 2010b), our RNN profits
from a weight initalization (CW vs. WI+CW). Supervised weight
initialization using transfer learning on the large ImageNet data-
base led to the (to the best of our knowledge) current top result
on NYUD by Eigen and Fergus (2015), with a class accuracy of
79.1 %. Our RNN only narrows the gap to the transfer learning ap-
proach. Weight initialization for recurrent connections is, there-
fore, an open but promising research direction.

does temporal context help? Except for Stückler et al.
(2014), none of the publications in Table 6.8 made use of temporal
context to determine class labels. We would like to know whether
our improvement is due to the fact that we use additional training
data (albeit without labels), or through recurrent processing.

To check whether our network takes advantage of temporal
context, we perform a static frame experiment. We use the same

6.4 recurrent networks for depth perception 151

frame as input at all time steps during training and prediction.
In this setting, the recurrent architecture is still able to learn long-
range spatial dependencies, but cannot exploit temporal context,
which results in accuracy reduction in both class accuracy and
pixel-wise accuracy (2.7 and 5.5 percentage points, respectively)
relative to the model which has access to temporal context. This
model still outperforms non-recurrent models, showing that spa-
tial recurrent processing is the essential improvement.

When using static frames as above, we remove both, temporal
context and additional ground truth generated through optical
flow. Removing only additional ground truth during training re-
sults in a reduction of the class accuracy by 2 %, while the pixel-
wise accuracy decreases by 3.1 %. These controls suggest that the
superior accuracy of the RNN is mainly due to recurrent spatial
and temporal processing, and intermediate ground truth is im-
portant to help this very deep — and mostly uninitialized — net-
work learn.

6.4.4 Conclusion

In this work, we introduced a recurrent convolutional neural net-
work architecture, which in addition to learning spatial relations
is also able to exploit temporal relations from video. We started
with a series of toy examples that showed that our networks are
able to solve tasks that require denoising, detecting movement,
and retaining uncertainty.

We further carried out experiments on sequences of indoor
RGB-D video sequences from the NYUD dataset. Combined with
dropout, unsupervised weight initialization, covering windows
and conditional random fields, our proposed model improves
performance when compared to other non-recurrent baseline
models and random forests, obtaining close to the state of the
art RGB-D segmentation results.

152 learning object-class segmentation

RGBD
only

DN

DN+H T
CRF

60

65

70

75

80

85

Si
lb

er
m

an
&

al
.(

20
12

)

Sc
hu

lz
&

al
.(

20
16

)

St
üc

kl
er

&
al

.(
20

14
)

M
ül

le
r&

Be
hn

ke
(2

01
4)

H
öf

t
&

al
.(

20
14

)

Sc
hu

lz
&

al
.(

20
15

)

Sc
hu

lz
&

al
.(

20
15

)

C
N

N
n/

a

Sc
hu

lz
&

al
.(

20
15

)

Pa
ve

l&
al

.(
20

15
)

R
N

N

R
N

N
+C

R
F

N
Y

U
D

cl
as

s
ac

cu
ra

cy

RF CNN RNN

Figure 6.16: Summary of object class segmentation results on NYUD. DN

is depth normalization, H is height above ground input, T is time. CRF
is with post-processing using conditional random fields.

6.5 chapter summary

In this chapter, we introduced a number of models, training tech-
niques and pre-processing methods for object class segmentation.
The presented techniques successively improve performance over
competing methods. Figure 6.16 summarizes the overall progress
on the NYUD dataset.

7S T R U C T U R E D P R E D I C T I O N F O R O B J E C T
D E T E C T I O N

After great success in image classification, neural network re-
search has recently turned to detecting instances of object cat-
egories in images. Here, the task is to predict a bounding box
y ∈ R4 for every object of a given class. Object detection differs
from image classification in one main aspect— the solution space
is huge. In fact, it contains any number of bounding boxes with
position, size, and aspect ratio. Correctness is typically defined
by measuring overlap with the ground truth, such that more than
one correct solution exists. Under these conditions, simply scal-
ing the multinomial logistic loss, which worked for classification
of the 1000-class ImageNet dataset, is not an option. Instead, a
number of competing approaches have been proposed.

In this section, we shortly review recently published methods
for object detection with deep neural networks and emphasize
that they, successfully, optimize heuristic surrogate loss functions.
These surrogate loss functions are related to the overlap criterion
via an accompanying post-processing step, which is not part of
the training algorithm.

We then apply an alternative method based on structured pre-
diction (Lampert, 2011; Lampert et al., 2009), which optimizes the
overlap criterion directly. Similar to Chapter 6, we create a model
that predicts values for all image pixels, reflecting whether they
are part of a bounding box or not. In contrast to Chapter 6, the
output is immediately interpreted by an additional operator that
efficiently produces bounding box predictions. These predictions
are then used in a structured loss function to determine gradi-
ents. We evaluate our proposed method on two selected classes
of the VOC 2007 dataset.

153

154 structured prediction for object detection

7.1 structured prediction for object detection

We start with a deep convolutional neural network, without fully-
connected layers. The number of maps in the output layer is equal
to the number of detectable object-classes in the dataset. Our
goal will be to produce values in the output map from which
the bounding boxes in the image can be inferred. For inference,
which is also part of our learning procedure, we make use of
the fact that the space of bounding boxes is structured, i.e. can be
searched efficiently. In the following description, we draw heav-
ily on Lampert (2011) and Lampert et al. (2009), with the main
difference that instead of hand-crafted support vector machine
(SVM) features, our predictions are based on features learned by
the CNN.

We are given a training set of tuples

D = (xi, Yi)i=1,...,n ⊂ X ×P(Y), (7.1)

where x is an image as usual, Y is a set of bounding boxes, Y con-
tains all possible bounding boxes in x, and P(Y) is the powerset
of Y . The prediction function g(x) : X 7→ P(Y) should minimize
the empirical loss over the training set

〈∆(g(x), Y)〉(x,Y) , (7.2)

where g(x) =: Ŷ is the inference function. The evaluation crite-
rion for detection is typically given as a 50 % threshold on the
Jaccard index of the prediction and a ground truth object,

A(ȳ, y) =

0 if area(ȳ∩y)
area(ȳ∪y) >

1
2

1 otherwise.
(7.3)

We also penalize the case where not all objects in an image have
been identified, or more objects were returned than present in
the ground truth Y. This is formalized in the set loss ∆ : P(Y)×
P(Y) 7→ R. Lampert (2011) suggests to use the max loss,

∆(Y, Ŷ) = max
y∈Y�Ŷ

λ(Y, y), (7.4)

7.1 structured prediction for object detection 155

where Y � Ŷ is the symmetric set difference and

λ(Y, y) =

1 if y ∈ Y

minȳ∈Y A(ȳ, y) else.
(7.5)

Expanding the symmetric set difference and simplifying slightly,
we get

∆(Y, Ŷ) = max

(
min

(
1,
∣∣Y \ Ŷ

∣∣) , max
y∈Ŷ\Y

min
ȳ∈Y

A(ȳ, y)

)
. (7.6)

The first term in the outer maximum accounts for objects in the
ground truth for which no corresponding detection ŷ ∈ Ŷ exists.
The second term penalizes predictions which are not correspond-
ing to ground truth objects. One possible problem here is that
we could find one object as many times as there are objects in
the image, using slightly different ŷ that all overlap with one
y. To prevent multiple detection, we require that elements of Ŷ
have a maximum Jaccard index of 0.2, which can be enforced by
greedily rejecting non-matching bounding boxes in the sequen-
tial inference procedure.

Next, we define a compatibility function f between a neural
network output map N(x) and the bounding boxes y ∈ Y over
pixels i, j. A bounding box is a mask y on N(x), where the rect-
angular part corresponding to the bounding box was set to one,
and all other values to zero:

f (x, Y, θ) = ∑
y∈Y

∑
ij

Nij(x, θ) · yij. (7.7)

For learning, we would like to find parameters θ s.t.

g(x) = arg max
Ŷ∈P(Y)

f (x, Ŷ, θ) ≈ y. (7.8)

156 structured prediction for object detection

For a given training tuple (xi, Yi), we can bound the loss using a
hinge loss upper bound, as in Taskar et al. (2005), obtaining

∆(g(xi), Yi) = ∆
(

arg max
Y∈P(Y)

f (xi, Y, θ), Yi
)

(7.9)

≤ max
Ŷ∈P(Y)

(
∆(Ŷ, Yi)− f (x, Yi, θ) + f (x, Ŷ, θ)

)
(7.10)

= max
Ŷ∈P(Y)

(
∆(Ŷ, Yi) + f (x, Ŷ, θ)

)

︸ ︷︷ ︸
H(N(xi),Ŷ,Yi)

− f (x, Yi, θ). (7.11)

The role of the loss term is to ensure that the bounding boxes
selected tend to have a bad detection measure, thereby forcing
the network in f (·, ·, ·) to increase its margin over them.

The maximization in Eq. (7.11) can be performed as described
in Lampert et al. (2009), using branch-and-bound on Y . Branch-
and-bound recursively splits Y into subsets, which are described
by two rectangles; o∪ describes the maximum extents of all
bounding boxes in the set, whereas o∩ describes the minimum
extents. For a given tuple (o∪, o∩), we construct an upper bound
∆H on the change in ∆ caused by adding ŷ ∈ (o∪, o∩) to Ŷ,

max
ŷ∈(o∪ ,o∩)⊂Y

(
H(N(x), Ŷ ∪ {ŷ}, Y)− H(N(x), Ŷ, Y)

)
(7.12)

≤ ∆H(o∪, o∩, N(x), Ŷ, Y) (7.13)

= F+(N(x), o∪)− F−(N(x), o∩) (7.14)

+ max
(

min(1, max
ȳ∈(o∪ ,o∩)

|Y \ (Ŷ ∪ {ȳ})|),

min
ȳ∈Y

Ā(ȳ, o∩, o∪)
)
,

where

Ā(y, o∩, o∪) =

0 if y∩o∪
y∪o∩ > 1

2

1 else,
(7.15)

7.1 structured prediction for object detection 157

F+(N(x), o∪) = ∑
ij

max(0, Nij(x))o∪ij, and (7.16)

F−(N(x), o∩) = ∑
ij

min(0, Nij(x))o∩ij. (7.17)

The rectangle sums F±(·, ·) can be efficiently evaluated by pre-
computing two integral image for each network output map. A
queue datastructure ensures that the search in Y is efficient.

Intuitively, learning proceeds by minimizing sums in the rect-
angles which are found by branch-and-bound on an output map
N(·) and maximizing the sum of ground truth bounding boxes.
Since bounding boxes overlapping with ground truth are given a
disadvantage in the loss-augmented inference of Eq. (7.11), train-
ing focuses on likely false detections — hard negatives — during
optimization. Due to non-convexity of the objective, the CNN can-
not maximize the margin directly. However, we found that the
combination of weight decay and loss-augmented prediction had
a positive effect on training. For non-loss-augmented inference—
e.g., during prediction on the test set— the loss term is dropped
from Eq. (7.11).

Note that in contrast to Szegedy et al. (2013), we do not need
to specify on a per-pixel basis which value the output map
should have, we only require the sums of regions to be higher or
lower. The gradient consists of (differences of) rendered bound-
ing boxes.

multi-class training with weak labelings In princi-
ple, all classes can be handled separately. Labels are typically
weak, however, since not all objects are annotated. As commonly
done, we only treat images I as negative for class c when no ob-
ject of class c is annotated in I. Alternatively, it would be possible
to use modified ground truth bounding boxes adjusted to have
low overlap (Zhang et al., 2015, e.g.). If a ground truth bounding
box y is matched by ŷ with a Jaccard index greater 0.5, we render
the “negative” bounding box for ŷ to refine the position found
and eliminate the gradient in the overlap region. Since we in-
tend to increase the margin of ground truth bounding boxes over

158 structured prediction for object detection

Table 7.1: Network Architecture for learning two classes

Layer Output
Size

Filter
Size

Channels/
Groups

Stride Pad Pool
Size

Pool
Stride

Input 224×224 – 3 / – – – – –

Conv1 108×108 7 96 / 1 2 0 3 2

Conv2 49×49 5 256 / 6 1 0 3 2

Conv3 24×24 3 512 / 8 1 1 – –

Conv4 24×24 3 512 / 16 1 1 – –

Conv5 24×24 3 64 / 16 1 1 – –

Conv6 22×22 3 2 / 1 1 0 – –

Figure 7.1: Sample first-layer features of the classification network
trained to discriminate between cow and horse images.

others in Y , we train only on images or parts of images which
contain at least one annotated object.

7.2 experiments

We present experiments on two difficult and easily confusable ob-
ject classes, cow and horse. Our network architecture is shown in
Table 7.1. It is roughly inspired by Krizhevsky et al. (2012), but op-
timized for larger output maps. It also lacks the fully connected
layers, which significantly reduces its capacity.

We pre-train the model with binary classification between the
two classes we want to detect, using 8193 images from the PASCAL-

10X database (Zhu et al., 2012). For this purpose, we add two fully
connected layers with 1024 hidden neurons and MaxOut non-
linearity (Goodfellow et al., 2013b), each. The network is trained
using AdaGrad (Duchi et al., 2011) to adapt the learnrates. The

7.2 experiments 159

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
is

io
n

horse

0.00 0.05 0.10 0.15 0.20 0.25 0.30
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

cow

Figure 7.2: Precision and recall curves for the two detected object classes
horse and cow on the VOC 2007 test set, with average precision of 0.295
and 0.149, respectively.

input images are scaled such that their shortest dimension is 256,
then we extract a random crop of size 224×224. The images are
flipped horizontally with a probability 0.5. We perform this pre-
processing in parallel on CPU, while the network runs on GPU.
The network does not overfit on a held-out validation set (4466
images), but reduces the classification error on the training set
to zero. ILSVRC pretraining is likely to improve the results even
further. Figure 7.1 shows a subset of our first-layer features after
pre-training.

In a second step, we train the network to detect objects on
the same split of PASCAL-10X, using the methods described in Sec-
tion 7.1. Again, we use AdaGrad for learnrate adaptation, and a
learning rate of 0.01. Bounding boxes in the dataset are scaled
down by a factor of two before supplying them to the network
to aid discrimination between neighboring objects. During loss-
augmented inference, we find up to four bounding boxes with a
Jaccard index of at most 0.2 between any pair. Considering that
only one object is annotated per image in PASCAL-10X, this is suf-
ficient.

The time required for loss-augmented inference amounts to
approximately 1/7 of the network evaluation time (forward and
backward pass) when performed on CPU without any paralleliza-
tion. As input we use (possibly flipped) images from three differ-
ent scales in steps of 1/2 octaves. The largest scale is chosen such
that the original image corners are in the center of the receptive

160 structured prediction for object detection

field of the corner output neurons. For this purpose, we add mar-
gin by mirroring parts of the image. Objects have to be at least
two pixels wide when transformed to the output map, otherwise
we do not use them as training examples on a given scale.

After convergence, we evaluate the network on the test set of
the 2007 version of the Pascal Visual Object Classes Challenge
(Everingham et al., 2010) (402 images containing either horses
or cows). Here, we use a sliding window on all three scales and
combine the outputs within one scale by a max(·, ·) operation. We
scale all maps to the same size. In contrast to training, sliding win-
dow and multiple scales results in many potentially overlapping
bounding box candidates, so that a post-processing step becomes
necessary. Following Szegedy et al. (2013), we use k-means clus-
tering on the bounding boxes in the training set and determine
10 reference bounding boxes, which we then scale by factors of
{0.1, 0.2, . . . , 0.9}. We slide all 90 bounding boxes over every scale
and determine local maxima. Finally, we reduce the predicted set
by removing bounding boxes which overlap with higher scoring
ones by more than 20 %. Figure 7.2 shows precision/recall curves
for the two learned classes, and Figure 7.3 shows sample detec-
tions. The average precision for the horse class is comparable to
Szegedy et al. (ibid.) and Erhan et al. (2014), however, both of
these works trained on a complete VOC 2012 dataset.

7.3 related work

Deep neural networks are increasingly applied to computer vi-
sion tasks such as image classification (Krizhevsky et al., 2012) or
object-class segmentation (Schulz and Behnke, 2012c). Recent ad-
vances leading to success in the ImageNet challenge stem from
dropout to prevent overfitting (Hinton et al., 2012), rectifying lin-
ear units for improved convergence, backpropagation through
max-pooling (Scherer et al., 2010) and GPU implementations for
speed, all of which are also used in this work.

Neural networks trained for an easy task can be adapted to
more complex, but related tasks (Hinton and Salakhutdinov, 2006;
Bengio et al., 2006). Consequently, neural net-based object de-
tection methods start with networks trained for classification

7.3 related work 161

Figure 7.3: Sample object detections. The figure shows the output map
activations for the respective class. There are three scales, the lower
two are processed with sliding window and merged using max(·, ·).
The bottom row shows the input image with detected bounding
boxes.

(Szegedy et al., 2013; Girshick et al., 2014), or learn classification
at the same time as detection (Sermanet et al., 2013). Here, we
also make use of the supervised pre-training technique, using
only few images of the classes which also contain the objects we
want to detect.

To detect Mitosis in medical images, Cireşan et al. (2013)
used convolutional neural networks with per-pixel targets. This
method only produces point locations, not bounding boxes of
arbitrary size and aspect ratio.

Girshick et al. (2014) use a pipeline for detection with selective
search region proposals (Uijlings et al., 2013), which are warped
and classified by a deep neural network. The learned features are
then used as input to a support vector machine and outputs are
ranked. In contrast to our method, this practice relies heavily on
pre-segmentation to find object candidates.

Sermanet et al. (2013) regress on bounding box coordinates and
classification confidence from a low-resolution output map. The
network is run on six scales and produces many bounding box
candidates, which are then merged by a heuristic merging op-
eration for prediction. While we also use a post-processing step,

162 structured prediction for object detection

we directly optimize bounding box overlap and the association
of predicted bounding boxes with ground truth objects during
learning.

Erhan et al. (2014) produce a fixed set of bounding boxes dur-
ing training, which are associated to the ground truth bounding
boxes to determine the gradient. This method is closest to ours.
In contrast to them, we do not explicitly regress on bounding box
coordinates and instead rely on output maps to represent the di-
rect correspondence between image and bounding box (Long et
al., 2014). This enables us to find objects even in positions which
did not occur in the training set (see e.g. Zhang et al., 2015, for
a discussion of this problem). Our method also does not output
a fixed set of bounding box candidates per image, since we infer
their number from the network output.

Finally, Szegedy et al. (2013) construct targets for low-
resolution output-maps, which encode the bounding box and
its object quadrants. A heuristic function combines the outputs
to produce the final bounding boxes. This approach requires
one network per class and five times as many output maps as
classes, which poses a potential scaling problem. Also, it is not
clear whether the network can or should spend effort on refining
a regression, when the desired output is a bounding box with
maximal overlap. Our proposed loss vanishes when the correct
bounding box output is produced.

7.4 conclusion

Following success on ImageNet classification, there is much atten-
tion on adopting deep convolutional neural networks to perform
more complex computer vision tasks, especially object detection.
Multiple formulations have been published in the time the pre-
sented work was submitted and evaluated. In contrast to these
works, we produce output at pixel level, which is interpreted by
a detector that is part of the loss function. We infer bounding
boxes during training and minimize the overlap criterion directly,
drawing heavily on previous work on structured prediction for
support vector machines.

7.4 conclusion 163

We evaluate our model on two difficult classes of the VOC 2007
dataset, cow and horse, pretrained by classification, and show that
with our formulation, a deep neural network can learn to localize
instances of the two classes well. While results on two classes are
not conclusive, this proof-of-concept shows that learning bound-
ing boxes with structured prediction is feasible in deep neural
networks.

After the content in this section were published, Zhang et al.
(2015) used a similar approach in a larger pipeline to fine-tune
localizations by R-CNN networks (Girshick et al., 2014, and deriva-
tives), improving VOC 2012 localization results.

8T R A N S F E R L E A R N I N G F O R R G B - D O B J E C T
R E C O G N I T I O N

The recent success of deep convolutional neural networks (CNN)
in computer vision can largely be attributed to massive amounts
of data and immense processing speed for training these non-
linear models. However, the amount of data available varies con-
siderably depending on the task. Especially robotics applications
typically rely on very little data, since generating and annotating
data is highly specific to the robot and the task (e.g. grasping) and
thus prohibitively expensive. This section addresses the problem
of small datasets in robotic vision by reusing features learned by
a CNN on a large-scale task and applying them to different tasks
on a comparably small household object dataset. Works in other
domains (Girshick et al., 2014; Razavian et al., 2014; Donahue et
al., 2014) demonstrated that this transfer learning is a promising
alternative to feature design.

Figure 8.1 gives an overview of our approach. To employ a CNN,
the image data needs to be carefully prepared. Our algorithm
segments objects, removes confounding background information
and adjusts them to the input distribution of the CNN. Features
computed by the CNN are then fed to a support vector machine
(SVM) to determine object class, instance, and pose. While already
on-par with other state-of-the-art methods, this approach does
not make use of depth information.

Depth sensors are prevalent in todays robotics, but large
datasets for CNN training are not available. Here, we propose to
transform depth data into a representation which is easily inter-
pretable by a CNN trained on color images. After detecting the
ground plane and segmenting the object, we render it from a
canonical pose and color it according to distance from the ob-
ject center. Combined with the image color features, this method
outperforms other recent approaches on the WRGBDO dataset on
a number of subtasks. This dataset requires categorization of

165

166 transfer learning for rgb-d object recognition

Color Masked Color

Depth Colorized Depth CNN

CategoryInstancePose SVMSVMSVR

[Mai 2015 at 19:15 – nocontent-54-g334f182-dirty]

Figure 8.1: Overview of our approach. Images are pre-processed by ex-
tracting foreground, reprojecting to canonical pose, and colorizing
depth. The two images are processed by independently by a convo-
lutional neural network. CNN features are then used to successively
determine category, instance and pose.

household objects, recognizing category instances, and estimat-
ing their pose.

In short, our contributions are as follows:

1. We introduce a novel pre-processing pipeline for RGB-D im-
ages facilitating CNN use for object categorization, instance
recognition, and pose regression.

2. We analyze features produced by our pipeline and a pre-
trained CNN. We show that they naturally separate common
household object categories, as well as their instances, and
produce low-dimensional pose manifolds.

3. We demonstrate that with discriminative training, our fea-
tures improve the state of the art on the WRGBDO classifica-
tion dataset.

4. We show that in contrast to previous work, only few in-
stances are required to attain good results.

8.1 related work 167

5. Finally, we demonstrate that with our method even cate-
gory level pose estimation is possible without sacrificing
accuracy.

After discussing related work, we describe our feature ex-
traction pipeline and supervised learning setup in Sections 8.2
and 8.3, respectively. We analyze the features and their perfor-
mance in Section 8.4.

8.1 related work

Deep convolutional neural networks (CNN, LeCun et al. 1998a;
Riesenhuber and Poggio 1999; Behnke 2003b) became the dom-
inant method in the ImageNet large scale image classification
challenge (Russakovsky et al., 2014) since the seminal work of
Krizhevsky et al. (2012). Their success can largely be attributed to
a large amount of available data and fast GPU implementations,
enabling the use of large non-linear models. To solve the task
of distinguishing 1000, sometimes very similar object categories,
these networks compute new representations of the image with
repeated convolutions, spatial max-pooling (Scherer et al., 2010),
and non-linearities (Krizhevsky et al., 2012). The higher-level rep-
resentations are of special interest, as they provide a generic de-
scription of the image in an increasingly semantic feature space
(Zeiler and Fergus, 2014). This observation is supported by the
impressive performance of CNN features learned purely on clas-
sification tasks applied to novel tasks in computer vision such as
object detection (Girshick et al., 2014; Razavian et al., 2014), sub-
categorization, domain adaptation, scene recognition (Donahue
et al., 2014), attribute detection, and instance retrieval (Razavian
et al., 2014). In many cases, the results are on par with or surpass
the state of the art on the respective datasets.

While Girshick et al. (2014) report improvements when fine-
tuning the CNN features on the new task, this approach is prone
to overfitting in the case of very few training instances. We in-
stead follow Donahue et al. (2014) and only re-interpret features
computed by the CNN. In contrast to the investigations of Don-

168 transfer learning for rgb-d object recognition

ahue et al. (ibid.) and Razavian et al. (2014), we focus on a dataset
in a robotic setting with few labeled instances.

We use pre-trained CNN in conjunction with preprocessed
depth images, which is not addressed by the works discussed
so far. Very recently, Gupta et al. (2014) proposed a similar tech-
nique, where “color” channels are given by horizontal dispar-
ity, height above ground, and angle with vertical. In contrast to
their method, we propose an object-centered colorization scheme,
which is tailored to the classification and pose estimation task.

Previous work on the investigated RGB-D Objects dataset be-
gins with the dataset publication by Lai et al. (2011a), who use a
combination of several hand-crafted features (SIFT, Texton, color
histogram, spin images, 3D bounding boxes) and compares the
performance of several classifiers (linear SVM, Gaussian kernel
SVM, random forests). These baseline results have been improved
significantly in later publications.

Lai et al. (2011b) propose a very efficient hierarchical classifica-
tion method, which minimizes classification and pose estimation
jointly on all hierarchy levels. The method uses stochastic gradi-
ent descent (SGD) for training and is able to warm-start training
when adding new objects to the hierarchy. While the training
method is very interesting and could possibly be applied to this
work, the reported results stay significantly behind the state of
art.

Finally, Bo et al. (2013) show a very significant improvement
in classification accuracy and reduction in pose estimation er-
ror. Their method learns hierarchical feature representations from
RGB-D Objects data without supervision using hierarchical match-
ing pursuit (HMP). This work shows the promise of feature learn-
ing from raw data and is the current state-of-the-art approach on
the RGB-D Objects dataset. However, the number of training exam-
ples must be suitably large to allow for robust feature learning—
in contrast to our work, which uses pre-learned features and is
thus able to learn from few examples. Of course, the feature learn-
ing process is not needed in our case which leads to a significant
runtime advantage for our method. Finally, our method gener-
ates less feature dimensions (10 192 vs. 188 300) and thus is also
faster in the classifier training and recall steps.

8.2 cnn feature extraction pipeline 169

(a) Region of interest (b) Mask distance (c) Faded output

Figure 8.2: Overview of the RGB preprocessing pipeline, with ROI from
object segmentation, distance transform from the object mask and
faded output used for CNN feature extraction.

8.2 cnn feature extraction pipeline

In order to use a pre-trained CNN for feature extraction, it is nec-
essary to preprocess the input data into the format that matches
the training set of the neural network. CaffeNet (Jia et al., 2014),
which we use here, expects square 227×227 RGB images depict-
ing one dominant object as in the ImageNet Large Scale Visual
Recognition Challenge (Russakovsky et al., 2014).

8.2.1 RGB Image Preprocessing

Since the investigated CNN was trained on RGB images, not much
pre-processing is needed to extract robust features from color im-
ages. Example images from the preprocessing pipeline can be
seen in Fig. 8.2.

We first crop the image to a square region of interest (see
Fig. 8.2a). In a live situation, this region of interest is simply the
bounding box of all object points determined by the tabletop seg-
mentation (Section 8.2.2). During evaluation on the WRGBDO data-
set (Section 8.4), we use the provided object segmentation mask
to determine the bounding box.

The extracted image region is then scaled to fit the CNN input
size, in our case 227×227 pixels. To reduce the CNN’s response
to the background, we apply a fading operation to the image

170 transfer learning for rgb-d object recognition

(Fig. 8.2c). Each pixel is interpolated between its RGB color c0 =
(r0, g0, b0) and the corresponding ILSVRC 2011 mean image pixel
cm = (rm, gm, bm) based on its pixel distance r to the nearest
object pixel:

c := α · c0 + (1− α) · cm , (8.1)

where

α :=

1 if r = 0,

0 if r > R,

(R− r)β else.

(8.2)

The fade radius R = 30 was manually tuned to exclude as much
background as possible while keeping objects with non-optimal
segmentation intact. The exponent β = 0.75 was later roughly
tuned for best cross-validation score in the category level classifi-
cation.

8.2.2 Depth Image Preprocessing

Feeding depth images to a CNN poses a harder problem. The
investigated CNN was trained on RGB images and is thus not ex-
pected to perform well on raw depth images. To address this, we
render image-like views of the object from the depth data using
a five-step pipeline, which will be detailed below. Figure 8.3 illus-
trates all steps for an example.

In the first step, we perform a basic segmentation to extract
the horizontal surface the object is resting on. Following Holz
et al. (2012), we estimate surface normals from the depth image,
discard points from non-horizontal surfaces and register a pla-
nar model using Random Sample Consensus (RANSAC). The main
objective here is to gain a local reference frame which is fixed
in all dimensions, except for rotation around the surface normal.
The planar model also allows us to find points on the plane and
extract object clusters with Euclidean Clustering (see Fig. 8.3b).

In a second step, we fill-in holes in the depth map. We employ
a common scheme based on the work of Levin et al. (2004), who

8.2 cnn feature extraction pipeline 171

(a) Depth image (b) Object segmentation

(c) Region of interest (d) Fill-in result

(e) Generated mesh (f) Canonical view (g) Colorized image

Figure 8.3: Overview of the depth preprocessing pipeline. (a) input
depth map, (b) extracted segmentation mask after tabletop segmen-
tation (Holz et al., 2012), (c) region of interest containing only the
object with unavailable depth pixels shown in red, (d) missing depth
values filled in, (e) mesh extracted from point cloud, (f) reprojection of
mesh to a canonical camera pose, (g) final image used for CNN feature
extraction.

172 transfer learning for rgb-d object recognition

investigated the colorization of grayscale images from few given
color pixels. The colorization is guided by the grayscale image
in such a way that regions with similar intensity are colored the
same. We fill-in depth values using the same technique guided by
a grayscale version of the RGB image. This has the advantage of
using the RGB information for disambiguation between different
depth layers, whereas the standard approach of median filtering
the depth image cannot include color information.

In detail, the objective of the fill-in step is to minimize the
squared difference between the depth value dp with p = (u, v)
and the weighted average of the depth at neighboring pixels,

J(d) = ∑
p

dp − ∑

s∈neigh(p)
wpsds

2

, (8.3)

with

wps = exp
[
−(xp − xs)

2/2σ2
p

]
, (8.4)

where xp is the grayscale intensity at position p and σp is the
variance of intensity in a window around p defined by neigh(·).
Minimizing J(d) leads to a sparse linear equation system, which
we solve with the BiCGSTAB solver of the Eigen linear algebra
package. A result of the fill-in operation can be seen in Fig. 8.3d.

After the fill-in operation, we filter the depth map using a
shadow filter, where points whose normals are perpendicular to
the view ray get discarded. This operation is only executed on
the boundaries of the object to keep the object depth map contin-
uous.

To increase invariance of the generated images against camera
pitch angle changes, we normalize the viewing angle by an op-
tional reprojection step. The goal is to create a view of the object
from a canonical camera pitch angle. To enable reprojection, we
first create a mesh using straight-forward triangulation from the
filled depth map (Fig. 8.3e). We then render the mesh from the
canonical perspective to create a new depth image. Our naı̈ve
meshing approach creates a linear interpolation for previously
hidden surfaces of the object (see Fig. 8.3f). We believe this to

8.2 cnn feature extraction pipeline 173

n

[Oktober 2015 at 12:05 – nowarnings-66-g6ca404f]

Figure 8.4: Coordinate system used for colorization. The detected plane
normal n through the object center p is depicted as a green bar, while
an exemplary distance to a colorized point is shown as a red bar.

be a plausible guess of the unknown geometry without making
further assumptions about the object, such as symmetries.

The final preprocessing step is to calculate a color cp for
each depth image pixel p = (u, v) with the 3D reprojection
p3 = (x, y, z). We first estimate a 3D object center q from the
bounding box of the object point cloud. The points are then col-
ored according to their distance r from a line g through q in
the direction of the plane normal n from tabletop segmentation
(Fig. 8.4):

cp = pal(distg(p)). (8.5)

As palette function pal(·), we chose a fixed RGB interpolation
from green over red and blue to yellow. Since the coloring is
not normalized, this allows the network to discriminate between
scaled versions of the same shape. If scale-invariant shape recog-
nition is desired, the coloring can easily be normalized.

Note that depth likely carries less information than color and
could be processed at a coarser resolution. We keep resolution
constant, however, since the input size of the learned CNN cannot
be changed.

174 transfer learning for rgb-d object recognition

Figure 8.5: CNN activations for sample RGB-D frames. The first column
shows the CNN input image (color and depth of a pitcher and a ba-
nana), all other columns show corresponding selected responses from
the first convolutional layer. Note that each column is the result of the
same filter applied to color and pre-processed depth.

8.2.3 Image Feature Extraction

We investigated the winning CNN from ImageNet Large-Scale Vi-
sual Recognition Challenge (ILSVRC) 2011 by Krizhevsky et al.
(2012). The open-source Caffe framework (Jia et al., 2014) provides
a pre-trained version of this network.

We extract features from the previous-to-last and the last fully
connected layer in the network (named fc7 and fc8 in Caffe). This
gives us 4096 + 1000 = 5096 features per RGB and depth image
each, resulting in 10 192 features per RGB-D frame.

Reprojection and coloring are only used for instance-level clas-
sification and pose regression, since object categorization cannot
benefit from a canonical perspective given the evaluation regime
of the WRGBDO dataset.

Figure 8.5 shows responses of the first convolutional layer to
RGB and depth stimuli. The same filters show different behavior
in RGB and depth channels. As intended by our preprocessing, the
activation images exhibit little activity in faded-out background
regions.

8.3 learning method 175

8.3 learning method

8.3.1 Object Classification

For classification, we use linear Support Vector Machines (SVMs).
We follow a hierarchical approach as in Lai et al. (2011b): In a
first level, a linear multiclass SVM predicts the object category. The
next level contains SVMs predicting the instance in each particular
category.

8.3.2 Object Pose Estimation

The RGB-D object dataset makes the assumption that object orien-
tation is defined by a single angle α around the normal vector
of the planar surface. This angle is consistently annotated for
instances of each object category. However, annotations are not
guaranteed to be consistent across categories.

Instead of regressing α directly, we construct a hierarchy for
pose estimation to avoid the discontinuity at α = 0◦ = 360◦,
which is hard for a regressor to match. We first predict a rough
angle interval for α using a linear SVM. In our experiments, four
angle intervals of 90◦ gave best results. For each interval, we then
train one RBF-kernel support vector regressor to predict α. Dur-
ing training, we include samples from the neighboring angle in-
tervals to increase robustness against misclassifications on the
interval level.

This two-step regressor is trained for each instance. We further
train the regressor for each category to provide pose estimation
without instance identification, which is supported by the dataset
but is not reported by other works, albeit being required in any
real-world household robotics application.

176 transfer learning for rgb-d object recognition

8.4 evaluation

8.4.1 Evaluation Protocol

We evaluate our approach on the WRGBDO dataset (Lai et al.,
2011a). It contains 300 objects organized in 51 categories. For each
object, there are three turntable sequences captured from differ-
ent camera elevation angles (30◦, 45◦, and 60◦). The sequences
were captured with an ASUS Xtion Pro Live camera with 640×480
resolution in both RGB and depth channels. The dataset also con-
tains approximate ground truth labels for the turntable rotation
angle.

Furthermore, the dataset provides an object segmentation
based on depth and color. We use this segmentation mask in our
pre-processing pipeline. However, since our RGB pre-processing
needs background pixels for smooth background fading (Sec-
tion 8.2.1), we could not use the provided pre-masked evaluation
dataset but instead had to use the corresponding frames from
the full dataset. Since our method fades out most of the back-
ground, only features close to the object remain. This includes
the turntable surface, which is not interesting for classification or
pose regression and the turntable markers, which do not simplify
the regression problem since the objects are placed randomly on
the turntable in each view pose. Thus, we believe that our results
are still comparable to other results on the same dataset.

For evaluation, we follow the protocol established by Lai et al.
(2011a) and Bo et al. (2013). We use every fifth frame for train-
ing and evaluation. For category recognition, we report the cross-
validation accuracy for ten predefined folds over the objects, i.e.
in each fold the test instances are completely unknown to the
system.

For instance recognition and pose estimation, we employ the
Leave-Sequence-Out scheme of Bo et al. (2013), where the system
is trained on the 30◦ and 60◦ sequences, while evaluation is on
the 45◦ sequence of every instance.

8.4 evaluation 177

classes (CNN) classes (PHOW)

instant noodles (CNN) instant noodles (PHOW)

Figure 8.6: Visualization of our CNN-based features. Top row shows t-SNE

embedding of 1/10 of the WRGBDO dataset using CNN and PHOW fea-
tures, colored by class. CNN separates classes better than PHOW. Bot-
tom row shows a separate t-SNE embedding of the instant noodles class
(45◦ sequence), colored and connected by pose. The CNN separates
instances and creates pose manifolds.

8.4.2 Results

In addition to the work of Bo et al. (ibid.), we compare our pro-
posed method to a baseline of dense SIFT features (PHOW, Bosch
et al. 2007), which are extracted at multiple scales, quantized us-
ing k-means and histogrammed in a 2×2 and a 4×4 grid over

178 transfer learning for rgb-d object recognition

Table 8.1: Comparison of category and instance level classification accu-
racies on the WRGBDO dataset.

Category Acc. (%) Instance Acc. (%)

Method RGB RGB-D RGB RGB-D

Lai et al. (2011a) 74.3± 3.3 81.9± 2.8 59.3 73.9

Bo et al. (2013) 82.4± 3.1 87.5± 2.9 92.1 92.8

PHOW 80.2± 1.8 — 62.8 —

Ours 83.1 ± 2.0 89.4 ± 1.3 92.0 94.1

the image. We used vlfeat1 with standard settings, which are op-
timized for the Caltech 101 dataset. We then apply SVM training for
classification and pose estimation as described in Section 8.3.

Without any supervised learning, we can embed the features
produced by the CNN and PHOW in R2 using a t-SNE embed-
ding (Van der Maaten and Hinton, 2008). The result is shown in
Fig. 8.6. While the upper row shows that CNN object classes are
well-separated in the input space, the lower row demonstrates
that object instances of a single class also become well-separated.
Similar poses of the same object remain close in the feature-space,
expressing a low-dimensional manifold. These are highly desir-
able properties for an unsupervised feature mapping which facil-
itate learning with very few instances. In contrast, PHOW features
only exhibit these properties to a very limited extent: Classes and
instances are less well-separated, although pose similarities are
largely retained.

Table 8.1 summarizes our recognition results and compares
them with other works. We improve on the state of the art in
category and instance recognition accuracy for RGB and RGB-D

data. The exception is RGB-based instance recognition, where the
HMP approach by Bo et al. (2013) wins by 0.1 %.

Analyzing the confusion matrix (Fig. 8.7), the category level
classification exhibits few systematic errors. Some object cate-

1 http://www.vlfeat.org

http://www.vlfeat.org

8.4 evaluation 179

12

0 25 50
0

25

50

Prediction

C
at

eg
or

y

0

0.2

0.4

0.6

0.8

[Oktober 2015 at 19:29 – nowarnings-62-gf91fa6a-dirty]

Figure 8.7: Top: Confusion matrix for category recognition, normalized
by number of samples for each ground truth label. Selected outliers:
1) pitcher recognized as coffee mug, 2) peach as sponge. Bottom: Sample
images for pitcher, coffee mug, peach, and sponge.

gories prove to be very difficult, since they contain instances
with widely varying shape but only few examples (e.g. mush-
room), or instances which are very similar in color and shape
to instances of other classes (e.g. pitcher and coffe mug). Telling
apart the peaches from similarly rounded but brightly colored
sponges would likely profit from more examples and detailed tex-
ture analysis.

Classification performance degrades gracefully when the data-
set size is reduced, which is shown in Fig. 8.8. We reduce the data-
set for category and instance recognition by uniform stratified
sampling on category and instance level, respectively. With only
30 % of the training set available, category classification accuracy
decreases by 0.65 percentage points only (PHOW: 2.2 %), while in-
stance classification decreases by roughly 2 % (PHOW: 25.2 % from
62.6 %, not shown). This supports our observation that the CNN

180 transfer learning for rgb-d object recognition

CNN: RGB-D CNN: RGB

Bo et al. (2013) (RGB-D) PHOW (RGB)

0.7

0.8

0.9

C
at

eg
or

y
ac

c.

0.85

0.9

0.95

In
st

an
ce

ac
c.

0 0.2 0.4 0.6 0.8 1

20

40

60

Relative training set size

Po
se

er
ro

r
(◦

)

CNN: RGB-D (Instance)
CNN: RGB-D (Category)

Figure 8.8: Learning curves for classification accuracy (top and center)
and median pose estimation error (bottom). We report cross validation
accuracy for category recognition and accuracy on the 45◦ sequence
for instance recognition.

8.4 evaluation 181

Table 8.2: Median and average pose estimation error on the WRGBDO

dataset. Wrong classifications are penalized with 180◦ error. Cat and
Inst describe subsets with correct category/instance classification, re-
spectively.

Median Pose Err. (◦) Average Pose Err. (◦)

Method All Cat Inst All Cat Inst

Lai et al. (2011b) 62.6 51.5 30.2 83.7 77.7 57.1

Bo et al. (2013) 20.0 18.7 18.0 53.6 47.5 44.8

Ours—instance level 20.4 20.4 18.7 51.0 50.4 42.8

Ours—category level 19.2 19.1 18.9 45.0 44.5 43.7

feature space already separates the categories of the RGB-D objects
in a semantically meaningful way.

When using the evaluation regime for instance classification
and pose estimation, i.e. when all instances are known, our cate-
gory classification achieves near perfect accuracy (99.6 %).

We also improve the state of the art in pose estimation by a
small margin. Table 8.2) reports the pose estimation error of the
instance-level estimation and the category-level estimation. The
Median Pose Error (All) is computed with a 180◦ penalty if the
class or instance of the object was not recognized. The Median
Pose Error (Cat) is only computed for objects where the correct
category was predicted, with a 180◦ penalty for wrongly pre-
dicted instances. Finally, Median Pose Error (Inst) only counts the
samples where class and instance were identified correctly. Aver-
age Pose (All/Cat/Inst) describe the average pose error in each
case, respectively. Notably, our average pose error is significantly
lower than the pose error of the other methods. We were not able
to produce reasonable accuracies for pose based on the PHOW fea-
tures, since the large instance classification error strongly affects
all pose estimation metrics.

Surprisingly, our category-level pose regression achieves even
lower median pose error, surpassing the state-of-the-art result of
Bo et al. (2013). The category-level estimation is less precise only

182 transfer learning for rgb-d object recognition

0

50

100

150
Category level

Category

Po
se

er
ro

r
(m

ed
ia

n)

lemon
lime

tomato

Instance level

Category

Figure 8.9: Distribution of median pose error over categories. Left plot
shows median pose error over categories, right plot over instances.
Median over all categories is shown in red. Some objects of type lemon,
lime, and tomato exhibit high rotation symmetry and do not support
pose estimation.

Table 8.3: Runtimes of various algorithm steps per input frame in sec-
onds. We measured runtime on an Intel Core i7-4800MQ @ 2.7 GHz
and a standard mobile graphics card (NVidia GeForce GT 730M) for
CUDA computations. Timings include all preprocessing steps.

Step Our work Bo et al. (2013)

Feature extraction (RGB) 0.013 0.294

Feature extraction (depth) 0.173 0.859

Total 0.186 1.153

in the Median Pose Error (Inst) and Average Pose Error (Inst) cat-
egories, where its broader knowledge is not as useful as precise
fitting to the specific instance. Figure 8.9 shows the distribution
of pose errors over categories. We note that the dataset contains
objects in least three categories which exhibit rotation symme-
tries and do not support estimating pose. This effect is mitigated
by category level pose estimation. This shows that pose estima-
tion can greatly benefit from the generalization across instances
provided by category-level training.

The color palette choice for our depth colorization is a crucial
parameter. We compare the four-color palette introduced in Sec-

8.5 conclusion 183

Table 8.4: Color palettes for depth colorization with corresponding in-
stance recognition accuracy.

Accuracy (%)

Palette Depth only RGB-D

Gray 41.8 93.1

Green 38.8 93.3

Green-red-blue-yellow 45.5 94.1

tion 8.2 to two simpler colorization schemes (black and green
with brightness gradients) shown in Table 8.4 and compared
them by instance recognition accuracy. Especially when consid-
ering purely depth-based prediction, the four-color palette wins
by a large margin. We conclude that more colors result in more
discriminative depth features.

Since computing power is usually very constrained in robotic
applications, we benchmarked runtime for feature extraction and
prediction on a lightweight mobile computer with an Intel Core
i7-4800MQ CPU @ 2.7 GHz and a common mobile graphics card
(NVidia GeForce GT 730M) for CUDA computations. As can be
seen in Table 8.3, the runtime of our approach is dominated by
the depth pre-processing pipeline, which is at the time of writing
not yet optimized for speed. Still, our runtimes are low enough to
allow frame rates of up to 5 Hz in a future real-time application.

8.5 conclusion

We presented an approach which allows object categorization, in-
stance recognition and pose estimation of objects on planar sur-
faces. Instead of learning or handcrafting features, we relied on
a convolutional neural network (CNN) which was trained on a
large image categorization dataset. We made use of depth fea-
tures by rendering objects from canonical views and proposed
a CNN-compatible coloring scheme which codes metric distance
from the object center. We evaluated our approach on the chal-

184 transfer learning for rgb-d object recognition

lenging WRGBDO dataset and find that in feature space, categories
and instances are well separated. Supervised learning on the CNN

features improves state of the art in classification as well as aver-
age pose accuracy. Our performance degrades gracefully when
the dataset size is reduced.

After the publication of the contents of this chapter, Eitel et al.
(2015) used a simple depth colorization approach on the same
dataset. The authors fine-tune the features, which improves the
category classification when compared to our results. Bogun et
al. (2015) further increased categorization accuracy by includ-
ing temporal context into the decision using convolutional LSTM

networks. It remains unclear, however, whether our good perfor-
mance on reduced dataset sizes can be met by fine-tuned neural
networks due to the danger of overfitting small training sets. Due
to the labeling work required, we consider robustness to small
datasets essential for any robotics application.

9C O N C L U S I O N

In this thesis, we developed deep neural network methods that
help computers to understand natural images. We focused on
two tasks, object recognition and object class segmentation. For
our studies, we first developed a software framework, which al-
lows fast execution on GPU while allowing high-level model spec-
ification and debugging. This open-source framework has been
used in numerous theses, publications, and as a teaching device.
We also built and evaluated a fast GPU library for random forests,
which greatly reduces training time and allows real-time image
segmentation even on mobile GPUs. Our optimized random forest
segmentations provide the baseline for later object class segmen-
tations using deep neural networks.

We provided an introduction to deep learning, which is a set
of tools to build hierarchical models from a limited set of oper-
ations. One possibility is to learn the hierarchical models step
by step greedily, adding one block of operations at a time, and
only later fine-tune on e.g. object recognition. In multiple studies,
we analyzed two types of blocks, restricted Boltzmann machines
(RBMs) and auto-encoders. Our study has shown that RBMs can
be further restricted to use local connectivity, which reflects sta-
tistical properties of natural images and resulted in better models
of the data distribution compared to fully connected models of
the same size. Lateral connections even allowed the (now semi-re-
stricted) RBMs to model long-range interactions between hidden
variables. In a second study, we empirically analyzed methods
for the evaluation of RBM learning. We ran hundreds of experi-
ments on medium-size RBMs on multiple datasets, and repeatedly
compared two commonly used approximate quality measures —
reconstruction error and AIS — to ground truth. We found that
while the former is not reliable at all, the latter systematically fails
to detect degradation, especially in rather desirable situations of
fast learning progress. These crucial results for RBM model com-

185

186 conclusion

parison were novel, as these effects do not occur in small models.
We then turned to auto-encoders, another building block of deep
learning models. We showed that in common models, encoders
are too simplistic and cannot detect certain connections between
input variables. We demonstrated this problem on a constructed
example and showed that our proposed solution — a contractive
two-layer encoder with shortcuts— improves over the more com-
mon one-layer encoder.

The third main topic of the thesis is object class segmentation
of images. Object class segmentation was not a task typically at-
tempted with DNNs. Our proposed DNN model makes use of HOG

inputs, supervised pre-training, and prediction refinement. Eval-
uating on the IG02 and MSRC-9 datasets, we could demonstrate
that DNN can excel at this task as well. We then add methods to
deal with depth inputs from RGB-D cameras and with the time
domain for indoor object class segmentation on the NYUD dataset.
For depth, we found that using depth-normalization, covering
windows, and height-above ground results in models which out-
perform previously superior random forest-based methods. We
created a recurrent neural network (RNN) for object class segmen-
tation inspired by the neural abstraction pyramid. Compared to
the previously introduced non-recurrent models, larger spatial
contexts can be processed and sequential processing of video
frames becomes possible. Both properties contribute to a perfor-
mance which surpasses all other methods training on NYUD.

Mainly by substituting the loss function, we used pixel-wise
predictions for object detection by combining DNNs with estab-
lished structured learning methods. We demonstrated that it is
feasible to compute DNN gradients through a structured loss func-
tion and evaluated on a subset of the VOC 2007 dataset classes.

In a final study, we proposed to use a transfer learning ap-
proach to deal with small-scale datasets in robotics. We found
that our object-centered depth colorization scheme allows us to
use RGB-D inputs for DNNs that have been trained only on RGB im-
ages. The resulting model outperformed competing approaches
on the Washington RGB-D objects dataset tasks of object recogni-
tion, instance recognition and pose estimation, even when dataset
size was greatly reduced.

9.1 future directions 187

9.1 future directions

Many questions remain open for future research. To extend the
methods presented in this thesis, we think the following direc-
tions would be interesting to follow.

The computer vision community has largely moved away from
unsupervised learning, considering that many supervised learn-
ing datasets are available which produce good features. Never-
theless, even supervised learning methods performing well on
large datasets can assign high probability to low-probability re-
gions (Szegedy et al., 2014; Goodfellow et al., 2014). Developing
methods for detection and tracking of these modes becomes more
important as DNN usage in our devices grows.

We have shown that certain variable relationships are hard
to detect with single-layered auto-encoders. Our experimen-
tal results show that — in contrast to our constructed exam-
ple — images are less prone to be affected. We hypothesize that
datasets with more complicated variable relationships will show
a stronger effect.

Our object class segmentation methods are focused on purely
supervised learning, but transfer learning approaches (e.g. Gupta
et al., 2014; Eigen and Fergus, 2015) currently provide best per-
formance. Combining our proposed HOG/HOD inputs — recently
again shown to be advantageous by Ren et al. (2015) — with su-
pervised learning methods could further increase performance.
Considering that our best model is a recurrent one, moving to
unsupervised pre-training (e.g. via Liang and Hu, 2015) or even
transfer learning of RNNs might also be a productive research di-
rection.

Object detection is making tremendous progress, mostly based
on region proposals using image over-segmentations (e.g. Gir-
shick et al., 2014). Structured methods such as introduced in this
thesis are used for fine-tuning (Gidaris and Komodakis, 2015).
Ideally, we would like to invert the order, and let neural net-
works propose regions. For this, object class segmentation meth-
ods might be a good starting point (German et al., 2016; Gidaris
and Komodakis, 2015), especially if both approaches can be com-
bined into one loss function. This combination would also repre-

188 conclusion

sent a step in the direction of general scene understanding, since
object class segmentation is more helpful for surface categoriza-
tion (e.g. floor, walls), while object detection can identify e.g. ob-
jects which can be manipulated. With similar reasoning, our pro-
posed normalization schemes — for depth, which we applied to
segmentation, and for viewing angle, which we applied to cen-
tered objects — are likely to improve object detection results as
well.

AA C R O N Y M S A N D S Y M B O L S

datasets

Caltech 101 Caltech 101 object recognition dataset, Fei-Fei
et al. (2007), a database containing 101 cate-
gories, with 40 to 800 images per category

CIFAR-10 CIFAR-10 object recognition dataset,
Krizhevsky (2009), a database containing
60 000 color images of size 32×32 with ten
classes

IG02 INRIA Graz-02 object class segmentation data-
base, Marszatek and Schmid (2007), contain-
ing 958 RGB images with pixels annotated by
one of 4 classes

ILSVRC ImageNet large scale visual recognition chal-
lenge, Russakovsky et al. (2014)

MNIST MNIST database of handwritten digits, LeCun
et al. (1998a), containing 70 000 grayscale im-
ages of size 28×28 labeled with ten classes

MNIST-rot database of rotated handwritten digits de-
rived from MNIST, Larochelle et al. (2007),
containing 12 000 training and 50 000 test
grayscale images of size 28×28 labeled with
ten classes

MSRC-21 MSRC-21 object class segmentation database,
Shotton et al. (2006), containing 591 RGB im-
ages with pixels annotated by one of 21
classes

189

190 acronyms and symbols

MSRC-9 MSRC-9 object class segmentation database,
Shotton et al. (2006), containing 240 RGB im-
ages with pixels annotated by one of 9 classes

NORB NORB 3D object recognition database, LeCun
et al. (2004), containing stereo images of 50
toys belonging to 5 categories with 5 in-
stances each

NYUD New York University depth dataset, version 2,
Silberman and Fergus (2011), a database con-
taining 1440 RGB-D VGA images of indoor
scenes

PASCAL-10X a database containing roughly 10 times as
many images as VOC for 10 of its classes, with
bounding box annotations for exactly one ob-
ject per image, Zhu et al. (2012)

VOC PASCAL visual object classes recognition chal-
lenge, Everingham et al. (2010)

WRGBDO Washingont RGB-D objects dataset, Lai et al.
(2011a), a database containing RGB-D images
of 300 household objects from 51 categories,
with category and pose annotations

algorithms

AIS annealed importance sampling, Neal (2001)
and Salakhutdinov (2009a)

AE auto-encoder

BPTT backpropagation through time

CD contrastive divergence, Hinton et al. (2006)

CD1 contrastive divergence a single Markov chain
step

CNN convolutional neural network, LeCun et al.
(1998a)

acronyms and symbols 191

CRF conditional random field

DBM deep Boltzmann machine, Salakhutdinov and
Hinton (2009)

DBN deep belief network, Hinton et al. (2006)

DNN deep neural network

FPCD fast persistent CD, Tieleman and Hinton
(2009)

HMP hierarchical matching pursuit, Bo et al. (2011)

HOD histogram of oriented depths, Spinello and
Arras (2011)

HOG histogram of oriented gradients, Dalal and
Triggs (2005)

ISA independent subspace analysis

LDPC low density parity check, Gallager (1962)

LIRBM local impact RBM, Schulz et al. (2010a)

LSTM long short-term memory, Hochreiter and
Schmidhuber (1997)

MCMC Markov chain Monte Carlo

MLP multi-layer perceptron

NAP neural abstraction pyramid, Behnke (2003b)

PCD persistent CD, Tieleman (2008)

PHOW descriptor generated by computing dense
SIFT at multiple resolutions, Bosch et al.
(2007)

RBM restricted Boltzmann machine, Smolensky
(1986)

RCNN recurrent convolutional neural network

ReLU rectifing linear unit

RF random forest, Breiman (2001)

RMSProp resilient root mean square backpropagation,
analyzed in Dauphin et al. (2015)

RNN recurrent neural network

192 acronyms and symbols

RPROP resiliant backpropagation, Riedmiller and
Braun (1993)

SGD stochastic gradient descent

SIFT scale invariant feature transform, Lowe (2004)

SLAM self-localization and mapping,

SRBM semi-restricted Boltzmann machine, Osin-
dero and Hinton (2008)

SVM support vector machine, Cortes and Vapnik
(1995)

ZCA zero phase whitening, Hyvärinen and Oja
(2000)

other acronyms

API application programming interface

CPU central processing unit

CUDA compute unified device architecture

CURFIL CUDA random forests for image labeling (li-
brary name), Schulz et al. (2016)

CUV GPU library created for thesis

CUVNET gradient descent optimization library created
for this thesis

GPU graphics processing unit

GUI graphical user interface

IDE integrated development environment

NaN not a number

PR-EER precision/recall at equal error rate

RGB red, green, and blue (image)

RGB-D red, green, blue, and depth (image)

SIMD single instruction, multiple data

XML extended markup language

acronyms and symbols 193

XOR exclusive OR

notation

Throughout the thesis, unless noted otherwise, we adhere to the
following conventions:

• Bold lowercase symbols (x, h, etc.) denote vectors.

• V, W, X, etc. denote matrices or multi-dimensional arrays.

• To avoid excessive subscripts, we use capital A, B, C, . . .
for the maximum value in loop counters. For example, in
∑D

d=1 xd, the symbol D denotes the maximum value of d. In
these contexts, we use bold capital letters for matrices.

• Lowercase symbols (x, h, etc.) denote scalars. Thus, the first
value in the vector x ∈ RN is x0, and the top left value in
matrix W ∈ RN×M is w0,0.

• Estimated values carry a caret, e.g. ŷ is an estimator for y

• The notation 〈x〉x∈X refers to the average of all elements in
X.

• We make use of the Iverson bracket notation, i.e.,

[P] =

1 if P is true,

0 else.

• Sans-serif fonts are used for experimental conditions and cat-
egory names.

B I B L I O G R A P H Y

Aldavert, D., R. De Mantaras, A. Ramisa, and R. Toledo (2010). “Fast
and robust object segmentation with the Integral Linear Classifier.”
In: Computer Vision and Pattern Recognition (CVPR), Conference on,
pp. 1046–1053.

Amit, Y. and D. Geman (1997). “Shape quantization and recognition with
randomized trees.” In: Neural computation 9.7, pp. 1545–1588.

Baldi, P. and K. Hornik (1989). “Neural networks and principal compo-
nent analysis: learning from examples without local minima.” In:
Neural Networks 2.1, pp. 53–58.

Behnke, S. (1999). “Hebbian learning and competition in the Neural Ab-
straction Pyramid.” In: International Joint Conference on Neural Net-
works (IJCNN). Vol. 2. Washington, DC, USA, pp. 1356–1361.

Behnke, S. (2003a). “Discovering hierarchical speech features using con-
volutional non-negative matrix factorization.” In: International Joint
Conference on Neural Networks (IJCNN). Vol. 4. Portland, Oregon,
USA, pp. 2758–2763.

Behnke, S. (2003b). Hierarchical neural networks for image interpretation.
Vol. 2766. Lecture Notes in Computer Science (LNCS). Springer.

Bengio, Y. and O. Delalleau (2011). “On the expressive power of deep
architectures.” In: Algorithmic Learning Theory. Springer, pp. 18–36.

Bengio, Y. (2009). “Learning deep architectures for AI.” In: Foundations
and Trends in Machine Learning 2.1, pp. 1–127.

Bengio, Y., A. Courville, and P. Vincent (2013). “Representation Learning:
A Review and New Perspectives.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 8. Special Issue on Learn-
ing Deep Architectures, pp. 1798–1828.

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2006). “Greedy
layer-wise training of deep networks.” In: Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 153–160.

Bergstra, J., B. Frédŕic, J. Turian, R. Pascanu, O. Delalleau, O. Breuleux,
P. Lamblin, G. Desjardins, D. Erhan, and Y. Bengio (2010). “Deep
Learning on GPUs with Theano.” In: The Learning Workshop. Ab-
stract only.

Bergstra, J., R. Bardenet, Y. Bengio, B. Kégl, et al. (2011). “Algorithms for
hyper-parameter optimization.” In: Advances in Neural Information
Processing Systems (NIPS), pp. 2546–2554.

195

196 Bibliography

Bo, L., X. Ren, and D. Fox (2011). “Hierarchical matching pursuit for
image classification: Architecture and fast algorithms.” In: Advances
in neural information processing systems, pp. 2115–2123.

Bo, L., X. Ren, and D. Fox (2013). “Unsupervised feature learning for
RGB-D based object recognition.” In: International Symposium Exper-
imental Robotics (ISER), pp. 387–402.

Bogun, I., A. Angelova, and N. Jaitly (2015). “Object Recognition from
Short Videos for Robotic Perception.” In: arXiv: 1509.01602 [cs.CV].

Bosch, A., A. Zisserman, and X. Munoz (2007). “Image classification us-
ing random forests and ferns.” In: International Conference on Com-
puter Vision (ICCV).

Bottou, L. (2014). “From machine learning to machine reasoning.” In:
Machine Learning 94 (2), pp. 133–149. arXiv: 1102.1808 [cs.AI].

Boureau, Y., F. Bach, Y. LeCun, and J. Ponce (2010). “Learning mid-level
features for recognition.” In: Computer Vision and Pattern Recognition
(CVPR), Conference on. San Francisco, CA, USA, pp. 2559–2566.

Bourlard, H. and Y. Kamp (1988). “Auto-association by multilayer per-
ceptrons and singular value decomposition.” In: Biological Cybernet-
ics 59, pp. 291–294.

Breiman, L. (2001). “Random forests.” In: Machine learning 45.1, pp. 5–32.
Brox, T. and J. Malik (2011). “Large displacement optical flow: descriptor

matching in variational motion estimation.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 33.3, pp. 500–513.

Buchaca, D., E. Romero, F. Mazzanti, and J. Delgado (2013). “Stopping
criteria in contrastive divergence: Alternatives to the reconstruction
error.” In: arXiv: 1312.6062 [cs.NE].

Cho, K., T. Raiko, and A. Ilin (2010). “Parallel Tempering is Efficient
for Learning Restricted Boltzmann Machines.” In: International Joint
Conference on Neural Networks (IJCNN).

Cho, K., T. Raiko, and A. Ilin (2011a). “Enhanced gradient and adap-
tive learning rate for training restricted Boltzmann machines.” In:
International Conference on Machine Learning (ICML), pp. 105–112.

Cho, K., A. Ilin, and T. Raiko (2011b). “Improved learning of Gaussian-
Bernoulli restricted Boltzmann machines.” In: International Confer-
ence on Artificial Neural Networks (ICANN). Springer.

Cho, K., T. Raiko, and A. Ilin (2013). “Enhanced gradient for training re-
stricted Boltzmann machines.” In: Neural Computation 25.3, pp. 805–
831.

Cho, K., T. Raiko, A. Ilin, and J. Karhunen (2012). “A Two-Stage Pretrain-
ing Algorithm for Deep Boltzmann Machines.” In: NIPS Workshop
on Deep Learning and Unsupervised Feature Learning. Lake Tahoe.

http://arxiv.org/abs/1509.01602
http://arxiv.org/abs/1102.1808
http://arxiv.org/abs/1312.6062

Bibliography 197

Cireşan, D., U. Meier, J. Masci, L. Gambardella, and J. Schmidhuber
(2011). “High-Performance Neural Networks for Visual Object Clas-
sification.” In: arXiv: 1102.0183 [cs.AI].

Cireşan, D., U. Meier, and J. Schmidhuber (2012a). “Multi-column deep
neural networks for image classification.” In: Computer Vision and
Pattern Recognition (CVPR), Conference on.

Cireşan, D. C., U. Meier, and J. Schmidhuber (2012b). “Multi-column
Deep Neural Networks for Image Classification.” In: Computer Vi-
sion and Pattern Recognition (CVPR), Conference on, pp. 3642–3649.

Cireşan, D., A. Giusti, L. Gambardella, and J. Schmidhuber (2012c).
“Deep Neural Networks Segment Neuronal Membranes in Electron
Microscopy Images.” In: Advances in Neural Information Processing
Systems (NIPS).

Cireşan, D., A. Giusti, L. Gambardella, and J. Schmidhuber (2013). “Mito-
sis Detection in Breast Cancer Histology Images with Deep Neural
Networks.” In: Medical Image Computing and Computer Assisted Inter-
vention (MICCAI), International Conference on.

Coates, A., H. Lee, and A. Y. Ng (2010). “An Analysis of Single-Layer
Networks in Unsupervised Feature Learning.” In: International Con-
ference on Artificial Intelligence and Statistics (AISTATS). Chia Laguna,
Italy.

Cortes, C. and V. Vapnik (1995). “Support-Vector Networks.” In: Machine
Learning 20.3, pp. 273–297.

Couprie, C., C. Farabet, L. Najman, and Y. LeCun (2013). “Indoor Seman-
tic Segmentation using depth information.” In: arXiv: 1301 .3572
[cs.CV].

Cybenko, G. (1989). “Approximation by superpositions of a sigmoidal
function.” In: Mathematics of Control, Signals, and Systems (MCSS)
2.4, pp. 303–314.

Dalal, N. and B. Triggs (2005). “Histograms of oriented gradients for hu-
man detection.” In: Computer Vision and Pattern Recognition (CVPR),
Conference on.

Dauphin, Y. N., H. de Vries, J. Chung, and Y. Bengio (2015). “RMSProp
and equilibrated adaptive learning rates for non-convex optimiza-
tion.” In: arXiv: 1502.04390 [cs.LG].

Dauphin, Y., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio
(2014). “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization.” In: arXiv:1406.2572 [cs.LG].

Dean, J., G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al. (2012). “Large scale distributed

http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1301.3572
http://arxiv.org/abs/1301.3572
http://arxiv.org/abs/1502.04390

198 Bibliography

deep networks.” In: Advances in Neural Information Processing Sys-
tems (NIPS).

Desjardins, G., A. Courville, Y. Bengio, P. Vincent, and O. Dellaleau
(2010). “Parallel tempering for training of restricted Boltzmann ma-
chines.” In: Journal of Machine Learning Research Workshop and Con-
ference Proceedings. Vol. 9, pp. 145–152.

Donahue, J., L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell (2015). “Long-term recurrent
convolutional networks for visual recognition and description.” In:
Computer Vision and Pattern Recognition (CVPR), Conference on.

Donahue, J., Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T.
Darrell (2014). “DeCAF: A Deep Convolutional Activation Feature
for Generic Visual Recognition.” In: International Conference on Ma-
chine Learning (ICML), pp. 647–655.

Duchi, J., E. Hazan, and Y. Singer (2011). “Adaptive subgradient meth-
ods for online learning and stochastic optimization.” In: Journal of
Machine Learning Research (JMLR) 12, pp. 2121–2159.

Eigen, D. and R. Fergus (2015). “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architec-
ture.” In: International Conference on Computer Vision (ICCV).

Eitel, A., J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Bur-
gard (2015). “Multimodal Deep Learning for Robust RGB-D Object
Recognition.” In: Intelligent Robots and Systems (IROS), International
Conference on.

Erhan, D., P. Manzagol, Y. Bengio, S. Bengio, and P. Vincent (2009). “The
difficulty of training deep architectures and the effect of unsupervi-
sed pre-training.” In: International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 153–160.

Erhan, D., Y. Bengio, A. C. Courville, P.-A. Manzagol, P. Vincent,
and S. Bengio (2010a). “Why does unsupervised pre-training help
deep learning?” In: Journal of Machine Learning Research (JMLR) 11,
pp. 625–660.

Erhan, D., Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio (2010b). “Why Does Unsupervised Pre-training Help
Deep Learning?” In: Journal of Machine Learning Research (JMLR) 11,
pp. 625–660.

Erhan, D., C. Szegedy, A. Toshev, and D. Anguelov (2014). “Scalable
Object Detection using Deep Neural Networks.” In: Computer Vision
and Pattern Recognition (CVPR), Conference on.

Bibliography 199

Everingham, M., L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man (2010). “The pascal visual object classes (VOC) challenge.” In:
International Journal of Computer Vision (IJCV) 88.2.

Farabet, C., C. Couprie, L. Najman, and Y. LeCun (2012). “Scene parsing
with multiscale feature learning, purity trees, and optimal covers.”
In: International Conference on Machine Learning (ICML).

Farnebäck, G. (2003). “Two-frame motion estimation based on polyno-
mial expansion.” In: Image Analysis. Springer, pp. 363–370.

Fei-Fei, L., R. Fergus, and P. Perona (2007). “Learning generative visual
models from few training examples: An incremental bayesian ap-
proach tested on 101 object categories.” In: Computer Vision and Im-
age Understanding 106.1, pp. 59–70.

Fidler, S. and A. Leonardis (2007). “Towards scalable representations of
object categories: Learning a hierarchy of parts.” In: Computer Vi-
sion and Pattern Recognition (CVPR), Conference on. Minneapolis, MN,
USA.

Fischer, A. and C. Igel (2010). “Empirical Analysis of the Divergence of
Gibbs Sampling Based Learning Algorithms for Restricted Boltz-
mann Machines.” In: International Conference on Artificial Neural Net-
works (ICANN), pp. 208–217.

Flynn, M. J. (1972). “Some computer organizations and their effective-
ness.” In: Computers, IEEE Transactions on 100.9, pp. 948–960.

Fukushima, K. (1980). “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position.” In: Biological Cybernetics 36.4, pp. 193–202.

Fulkerson, B., A. Vedaldi, and S. Soatto (2009). “Class segmentation and
object localization with superpixel neighborhoods.” In: International
Conference on Computer Vision (ICCV).

Gallager, R. (1962). “Low-density parity-check codes.” In: IRE Transac-
tions on Information Theory 8.1, pp. 21–28.

German, M., F. Husain, H. Schulz, S. Frintrop, and S. Behnke (2016). In:
International Conference on Robotics and Automation (ICRA). Submit-
ted.

Gidaris, S. and N. Komodakis (2015). “Object detection via a multi-
region & semantic segmentation-aware CNN model.” In: arXiv:
1505.01749 [cs.CV].

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2014). “Rich feature hi-
erarchies for accurate object detection and semantic segmentation.”
In: Computer Vision and Pattern Recognition (CVPR), Conference on.

http://arxiv.org/abs/1505.01749

200 Bibliography

Gkioxari, G., B. Hariharan, R. Girshick, and J. Malik (2014). “R-CNNs
for Pose Estimation and Action Detection.” In: arXiv: 1406 . 5212

[cs.CV].
Glorot, X. and Y. Bengio (2010). “Understanding the difficulty of training

deep feedforward neural networks.” In: International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 249–256.

Goodfellow, I. J., J. Shlens, and C. Szegedy (2014). “Explaining and har-
nessing adversarial examples.” In: arXiv: 1412.6572 [cs.LG].

Goodfellow, I. J., D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R.
Pascanu, J. Bergstra, F. Bastien, and Y. Bengio (2013a). “Pylearn2: a
machine learning research library.” In: arXiv: 1308.4214 [stat.ML].

Goodfellow, I. J., D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio
(2013b). “Maxout networks.” In: International Conference on Machine
Learning (ICML).

Gould, S., J. Rodgers, D. Cohen, G. Elidan, and D. Koller (2008). “Multi-
class segmentation with relative location prior.” In: Computer Vision
80.3, pp. 300–316.

Grangier, D., L. Bottou, and R. Collobert (2009). “Deep convolutional
networks for scene parsing.” In: ICML 2009 Deep Learning Workshop.

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Net-
works. Vol. 385. Studies in Computational Intelligence. Springer.

Graves, A., M. Abdelrahman, and G. E. Hinton (2013). “Speech Recogni-
tion with Deep Recurrent Neural Networks.” In: International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).

Grosse, R. B., C. J. Maddison, and R. R. Salakhutdinov (2013). “Anneal-
ing between distributions by averaging moments.” In: Advances in
Neural Information Processing Systems (NIPS), pp. 2769–2777.

Gupta, S., R. Girshick, P. Arbeláez, and J. Malik (2014). “Learning rich
features from RGB-D images for object detection and segmenta-
tion.” In: European Conference on Computer Vision (ECCV), pp. 345–
360.

He, K., X. Zhang, S. Ren, and J. Sun (2015). “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.”
In: arXiv: 1502.01852 [cs.CV].

Hermans, A., G. Floros, and B. Leibe (2014). “Dense 3D Semantic Map-
ping of Indoor Scenes from RGB-D Images.” In: International Confer-
ence on Robotics and Automation (ICRA). Hong Kong.

Hinton, G., S. Osindero, and Y. Teh (2006). “A fast learning algorithm for
deep belief nets.” In: Neural computation 18.7, pp. 1527–1554.

Hinton, G. (2002). “Training products of experts by minimizing con-
trastive divergence.” In: Neural Computation 14 (8), pp. 1771–1800.

http://arxiv.org/abs/1406.5212
http://arxiv.org/abs/1406.5212
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1308.4214
http://arxiv.org/abs/1502.01852

Bibliography 201

Hinton, G. (2012). “A Practical Guide to Training Restricted Boltzmann
Machines.” In: Neural Networks: Tricks of the Trade. Ed. by G. Mon-
tavon, G. B. Orr, and K.-R. Müller. Vol. 7700. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, pp. 599–619.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Sa-
lakhutdinov (2012). “Improving neural networks by preventing co-
adaptation of feature detectors.” In: arXiv: 1207.0580 [cs.NE].

Hinton, G. and R. Salakhutdinov (2006). “Reducing the dimensionality
of data with neural networks.” In: Science 313.5786, pp. 504–507.

Ho, T. (1995). “Random decision forests.” In: International Conference on
Document Analysis and Recognition (ICDAR).

Hochreiter, S., Y. Bengio, P. Frasconi, and J. Schmidhuber (2001). “Gra-
dient flow in recurrent nets: the difficulty of learning long-term
dependencies.” In: A Field Guide to Dynamical Recurrent Neural Net-
works. Ed. by S. C. Kremer and J. F. Kolen. Wiley-IEEE Press.

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory.”
In: Neural computation 9.8, pp. 1735–1780.

Höft, N., H. Schulz, and S. Behnke (2014). “Fast Semantic Segmentation
of RGB-D Scenes with GPU-Accelerated Deep Neural Networks.”
In: German Conference on Artificial Intelligence (KI). Lecture Notes in
Computer Science (LNCS) 8736. Springer.

Holz, D., S. Holzer, R. B. Rusu, and S. Behnke (2012). “Real-time plane
segmentation using RGB-D cameras.” In: RoboCup 2011: Robot Soc-
cer World Cup XV, pp. 306–317.

Hornik, K., M. Stinchcombe, and H. White (1989). “Multilayer feedfor-
ward networks are universal approximators.” In: Neural Networks
2.5, pp. 359–366.

Huang, J. and D. Mumford (1999). “Statistics of natural images and mod-
els.” In: Computer Vision and Pattern Recognition (CVPR), Conference
on. Ft. Collins, CO, USA.

Hyvärinen, A. and E. Oja (2000). “Independent component analysis: al-
gorithms and applications.” In: Neural Networks 13.4, pp. 411–430.

Jain, V. and H. Seung (2008). “Natural image denoising with convolu-
tional networks.” In: Advances in Neural Information Processing Sys-
tems (NIPS).

Jansson, K., H. Sundell, and H. Bostrom (2014). “gpuRF and gpuERT:
Efficient and Scalable GPU Algorithms for Decision Tree Ensem-
bles.” In: International Parallel & Distributed Processing Symposium
Workshops (IPDPSW).

http://arxiv.org/abs/1207.0580

202 Bibliography

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell (2014). “Caffe: Convolutional Architec-
ture for Fast Feature Embedding.” In: arXiv: 1408.5093 [cs.CV].

Jung, M., J. Hwang, and J. Tani (2014). “Multiple Spatio-Temporal Scales
Neural Network for Contextual Visual Recognition of Human Ac-
tions.” In: International Conference on Development and Learning and
on Epigenetic Robotics (ICDL).

Kahn, A. B. (1962). “Topological sorting of large networks.” In: Commu-
nications of the ACM 5.11, pp. 558–562.

Karlsson, B. (2002). “Smart pointers in Boost.” In: C/C++ Users Journal
20.4, pp. 34–40.

Karpathy, A., G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei (2014). “Large-scale video classification with convolutional neu-
ral networks.” In: Computer Vision and Pattern Recognition (CVPR),
Conference on, pp. 1725–1732.

Kavukcuoglu, K., M. Ranzato, and Y. LeCun (2010). “Fast Inference in
Sparse Coding Algorithms with Applications to Object Recogni-
tion.” In: arXiv: 1010.3467 [cs.CV].

Konda, K. R., R. Memisevic, and V. Michalski (2013). “Learning to en-
code motion using spatio-temporal synchrony.” In: arXiv: 1306 .

3162 [cs.CV].
Krizhevsky, A. (2009). “Learning multiple layers of features from tiny

images.” University of Toronto.
Krizhevsky, A. (2015). cuda-convnet – High-performance C++/CUDA imple-

mentation of convolutional neural networks. url: https://code.google.
com/p/cuda-convnet/.

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). “ImageNet Classi-
fication with Deep Convolutional Neural Networks.” In: Advances
in Neural Information Processing Systems (NIPS). Ed. by P. Bartlett, F.
Pereira, C. Burges, L. Bottou, and K. Weinberger, pp. 1106–1114.

Ladicky, L., C. Russell, P. Kohli, and P. Torr (2009). “Associative hier-
archical crfs for object class image segmentation.” In: International
Conference on Computer Vision (ICCV), pp. 739–746.

Lai, K., L. Bo, X. Ren, and D. Fox (2011a). “A large-scale hierarchical
multi-view RGB-D object dataset.” In: International Conference on Ro-
botics and Automation (ICRA), pp. 1817–1824.

Lai, K., L. Bo, X. Ren, and D. Fox (2011b). “A Scalable Tree-Based Ap-
proach for Joint Object and Pose Recognition.” In: Conference on
Artificial Intelligence (AAAI).

http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1010.3467
http://arxiv.org/abs/1306.3162
http://arxiv.org/abs/1306.3162
https://code.google.com/p/cuda-convnet/
https://code.google.com/p/cuda-convnet/

Bibliography 203

Lampert, C. H. (2011). “Maximum Margin Multi-Label Structured
Prediction.” In: Advances in Neural Information Processing Systems
(NIPS). Vol. 11.

Lampert, C. H., M. B. Blaschko, and T. Hofmann (2009). “Efficient sub-
window search: A branch and bound framework for object localiza-
tion.” In: Pattern Analysis and Machine Intelligence, IEEE Transactions
on 31.12.

Larochelle, H., D. Erhan, A. Courville, J. Bergstra, and Y. Bengio (2007).
“An empirical evaluation of deep architectures on problems with
many factors of variation.” In: International Conference on Machine
Learning (ICML). ACM, pp. 473–480.

Le Roux, N. and Y. Bengio (2008). “Representational power of restricted
boltzmann machines and deep belief networks.” In: Neural Compu-
tation 20.6, pp. 1631–1649.

Le, Q. V., W. Y. Zou, S. Y. Yeung, and A. Y. Ng (2011). “Learning hi-
erarchical invariant spatio-temporal features for action recognition
with independent subspace analysis.” In: Computer Vision and Pat-
tern Recognition (CVPR), Conference on, pp. 3361–3368.

LeCun, Y., B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
and L. Jackel (1989). “Backpropagation applied to handwritten zip
code recognition.” In: Neural computation 1.4, pp. 541–551.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998a). “Gradient-based
learning applied to document recognition.” In: vol. 86. 11, pp. 2278–
2324.

LeCun, Y., L. Bottou, G. Orr, and K. R. Müller (1998b). “Efficient Back-
Prop.” In: Neural Networks: Tricks of the Trade. Ed. by G. Orr and
K. Müller. Vol. 1524. Lecture Notes in Computer Science. Springer
Verlag, pp. 5–50.

LeCun, Y., F. J. Huang, and L. Bottou (2004). “Learning methods for
generic object recognition with invariance to pose and lighting.” In:
Computer Vision and Pattern Recognition (CVPR), Conference on. Vol. 2.

Lee, H., R. Grosse, R. Ranganath, and A. Ng (2009). “Convolutional
deep belief networks for scalable unsupervised learning of hierar-
chical representations.” In: International Conference on Machine Learn-
ing (ICML). Montreal, Quebec, Canada: ACM, pp. 609–616.

Lepetit, V. and P. Fua (2006). “Keypoint recognition using randomized
trees.” In: Pattern Analysis and Machine Intelligence, IEEE Transactions
on 28.9, pp. 1465–1479.

Lepetit, V., P. Lagger, and P. Fua (2005). “Randomized trees for real-time
keypoint recognition.” In: Computer Vision and Pattern Recognition
(CVPR), Conference on. Vol. 2.

204 Bibliography

Levin, A., D. Lischinski, and Y. Weiss (2004). “Colorization using opti-
mization.” In: Transactions on Graphics (TOG). Vol. 23. 3, pp. 689–
694.

Liang, M. and X. Hu (2015). “Recurrent Convolutional Neural Network
for Object Recognition.” In: Computer Vision and Pattern Recognition
(CVPR), Conference on, pp. 3367–3375.

Liao, Y., A. Rubinsteyn, R. Power, and J. Li (2013). “Learning Random
Forests on the GPU.” In: NIPS Workshop on Big Learning: Advances
in Algorithms and Data Management.

Long, J. L., N. Zhang, and T. Darrell (2014). “Do Convnets Learn Cor-
respondence?” In: Advances in Neural Information Processing Systems
(NIPS).

Long, P. and R. Servedio (2010). “Restricted Boltzmann Machines are
Hard to Approximately Evaluate or Simulate.” In: Proceedings of the
27th International Conference on Machine Learning, pp. 703–710.

Lowe, D. G. (2004). “Distinctive image features from scale-invariant
keypoints.” In: International Journal of Computer Vision (IJCV) 60.2,
pp. 91–110.

Marszatek, M. and C. Schmid (2007). “Accurate object localization with
shape masks.” In: Computer Vision and Pattern Recognition (CVPR),
Conference on, pp. 1–8.

Memisevic, R. (2011). “Gradient-based learning of higher-order image
features.” In: International Conference on Computer Vision (ICCV).
Barcelona, Spain, pp. 1591–1598.

Michalski, V., R. Memisevic, and K. Konda (2014). “Modeling Deep Tem-
poral Dependencies with Recurrent Grammar Cells.” In: Advances
in Neural Information Processing Systems (NIPS). Ed. by Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
pp. 1925–1933.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). “Efficient estima-
tion of word representations in vector space.” In: arXiv: 1301.3781
[cs.CL].

Minsky, M. and S. Papert (1969). Perceptrons: An Introduction to Computa-
tional Geometry. MIT Press.

Mnih, V. and G. E. Hinton (2010). “Learning to Detect Roads in High-
Resolution Aerial Images.” In: European Conference on Computer Vi-
sion (ECCV), pp. 210–223.

Müller, A. C. and S. Behnke (2014). “Learning Depth-Sensitive Condi-
tional Random Fields for Semantic Segmentation of RGB-D Im-
ages.” In: International Conference on Robotics and Automation (ICRA).
Hong Kong.

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Bibliography 205

Müller, A., H. Schulz, and S. Behnke (2010). “Topological Features in Lo-
cally Connected RBMs.” In: International Joint Conference on Neural
Networks (IJCNN).

Neal, R. (2001). “Annealed importance sampling.” In: Statistics and Com-
puting 11.2, pp. 125–139.

Newcombe, R. A., A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shot-
ton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon (2011).
“KinectFusion: Real-time dense surface mapping and tracking.” In:
International Symposium on Mixed and Augmented Reality (ISMAR),
pp. 127–136.

Ngiam, J., Z. Chen, P. W. Koh, and A. Y. Ng (2011). “Learning deep
energy models.” In: International Conference on Machine Learning
(ICML), pp. 1105–1112.

Nguyen A Yosinski J, C. J. (2015). “Deep Neural Networks are Easily
Fooled: High Confidence Predictions for Unrecognizable Images.”
In: Computer Vision and Pattern Recognition (CVPR), Conference on.

Norouzi, M., M. Ranjbar, and G. Mori (2009). “Stacks of Convolutional
Restricted Boltzmann Machines for Shift-Invariant Feature Learn-
ing.” In: Computer Vision and Pattern Recognition (CVPR), Conference
on.

Olshausen, B. A. and D. J. Field (1997). “Sparse coding with an overcom-
plete basis set: a strategy employed by V1?” In: Vision Res 37.23,
pp. 3311–3325.

Olshausen, B. A. et al. (1996). “Emergence of simple-cell receptive field
properties by learning a sparse code for natural images.” In: Nature
381.6583, pp. 607–609.

Osindero, S. and G. Hinton (2008). “Modeling image patches with a di-
rected hierarchy of Markov random fields.” In: Advances in Neural
Information Processing Systems (NIPS). Ed. by J. Platt, D. Koller, Y.
Singer, and S. Roweis. Cambridge, MA: MIT Press, pp. 1121–1128.

Parker, D. B. (1985). Learning Logic. Tech. rep. TR-47. Cambridge, MA:
MIT Center for Research in Computational Economics and Man-
agement Science.

Pascanu, R., T. Mikolov, and Y. Bengio (2013). “On the difficulty of train-
ing recurrent neural networks.” In: Journal of Machine Learning Re-
search (JMLR) 28, pp. 1310–1318.

Pavel, M. S., H. Schulz, and S. Behnke (2015). “Recurrent Convolutional
Neural Networks for Object-Class Segmentation of RGB-D Video.”
In: International Joint Conference on Neural Networks (IJCNN).

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

206 Bibliography

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay (2011). “Scikit-learn: Machine Learning in Python.” In:
Journal of Machine Learning Research 12, pp. 2825–2830.

Pham, V., T. Bluche, C. Kermorvant, and J. Louradour (2014). “Dropout
improves recurrent neural networks for handwriting recognition.”
In: International Conference on Frontiers in Handwriting Recognition
(ICFHR).

Pinheiro, P. H. and R. Collobert (2014). “Recurrent convolutional neural
networks for scene labeling.” In:

Raiko, T., H. Valpola, and Y. LeCun (2012). “Deep learning made easier
by linear transformations in perceptrons.” In: International Confer-
ence on Artificial Intelligence and Statistics (AISTATS). Vol. 22. JMLR
Workshop and Conference Proceedings. La Palma, Canary Islands,
Spain: JMLR W&CP, pp. 924–932.

Ranzato, M. and G. Hinton (2010). “Modeling pixel means and covari-
ances using factorized third-order Boltzmann machines.” In: Com-
puter Vision and Pattern Recognition (CVPR), Conference on. San Fran-
cisco, CA, USA, pp. 2551–2558.

Ranzato, M., C. Poultney, S. Chopra, and Y. LeCun (2007). “Efficient
Learning of Sparse Representations with an Energy-Based Model.”
In: Advances in Neural Information Processing Systems (NIPS). Ed. by
B. Schölkopf, J. Platt, and T. Hoffman. Cambridge, MA: MIT Press,
pp. 1137–1144.

Razavian, A. S., H. Azizpour, J. Sullivan, and S. Carlsson (2014). “CNN
Features off-the-shelf: an Astounding Baseline for Recognition.” In:
CVPR DeepVision Workshop.

Ren, S., K. He, R. Girshick, X. Zhang, and J. Sun (2015). “Object Detection
Networks on Convolutional Feature Maps.” In: arXiv: 1504.06066
[cs.CV].

Riedmiller, M. and H. Braun (1993). “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm.” In: Neural Net-
works, pp. 586–591.

Riesenhuber, M. and T. Poggio (1999). “Hierarchical models of object
recognition in cortex.” In: Nature neuroscience 2.11, pp. 1019–1025.

Rifai, S., G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and
X. Glorot (2011a). “Higher Order Contractive Auto-Encoder.” In:
European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD), pp. 645–660.

Rifai, S., P. Vincent, X. Muller, X. Glorot, and Y. Bengio (2011b). “Contrac-
tive Auto-Encoders: Explicit Invariance During Feature Extraction.”
In: International Conference on Machine Learning (ICML). Ed. by L.

http://arxiv.org/abs/1504.06066
http://arxiv.org/abs/1504.06066

Bibliography 207

Getoor and T. Scheffer. Bellevue, Washington, USA: ACM, pp. 833–
840.

Rifai, S., P. Vincent, X. Muller, X. Glorot, and Y. Bengio (2011c). “Contrac-
tive auto-encoders: Explicit invariance during feature extraction.”
In: International Conference on Machine Learning (ICML), pp. 833–840.

Rodrigues, J., J. Kim, M. Furukawa, J. Xavier, P. Aguiar, and T. Kanade
(2012). “6D pose estimation of textureless shiny objects using ran-
dom ferns for bin-picking.” In: Intelligent Robots and Systems (IROS),
International Conference on.

Rumelhart, D., G. Hintont, and R. Williams (1986). “Learning represen-
tations by back-propagating errors.” In: Nature 323.6088, pp. 533–
536.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. (2014). “ImageNet Large
Scale Visual Recognition Challenge.” In: arXiv: 1409.0575 [cs.CV].

Salakhutdinov, R. (2009a). “Learning Deep Generative Models.” PhD the-
sis. University of Toronto.

Salakhutdinov, R. (2009b). “Learning in Markov Random Fields using
Tempered Transitions.” In: Advances in Neural Information Processing
Systems (NIPS), pp. 1598–1606.

Salakhutdinov, R. and I. Murray (2008). “On the quantitative analysis of
deep belief networks.” In: International Conference on Machine Learn-
ing (ICML). ACM, pp. 872–879.

Salakhutdinov, R. (2008). Learning and Evaluating Boltzmann Machines.
Tech. rep. UTML TR 2008-002. Department of Computer Science,
University of Toronto.

Salakhutdinov, R. and G. Hinton (2009). “Deep Boltzmann machines.”
In: International Conference on Artificial Intelligence and Statistics (AIS-
TATS). Vol. 5. JMLR Workshop and Conference Proceedings. Clear-
water Beach, FL, USA: JMLR W&CP, pp. 448–455.

Salakhutdinov, R., A. Mnih, and G. Hinton (2007). “Restricted Boltzmann
machines for collaborative filtering.” In: International Conference on
Machine Learning (ICML). Corvalis, Oregon: ACM, pp. 791–798.

Schaul, T., S. Zhang, and Y. Lecun (2013). “No more pesky learn-
ing rates.” In: International Conference on Machine Learning (ICML),
pp. 343–351.

Scherer, D., A. Müller, and S. Behnke (2010). “Evaluation of pooling
operations in convolutional architectures for object recognition.”
In: International Conference on Artificial Neural Networks (ICANN).
Springer, pp. 92–101.

http://arxiv.org/abs/1409.0575

208 Bibliography

Schulz, H. and S. Behnke (2012a). “Deep Learning: Layer-wise Learning
of Feature Hierarchies.” In: Künstliche Intelligenz 26.4: Neural Learn-
ing Paradigms.

Schulz, H. and S. Behnke (2012b). “Learning Object-Class Segmentation
with Convolutional Neural Networks.” In: European Conference on
Neural Networks (ESANN).

Schulz, H. and S. Behnke (2012c). “Learning Two-Layer Contractive En-
codings.” In: International Conference on Artificial Neural Networks
(ICANN). Superseded by Schulz et al. (2014).

Schulz, H. and S. Behnke (2014). “Structured Prediction for Object De-
tection in Deep Neural Networks.” In: International Conference on
Artificial Neural Networks (ICANN).

Schulz, H., K. Cho, T. Raiko, and S. Behnke (2013). “Two-Layer Contrac-
tive Encodings with Shortcuts for Semi-supervised Learning.” In:
International Conference on Neural Information Processings (ICONIP).
Daegu, Korea. Superseded by Schulz et al. (ibid.).

Schulz, H., K. Cho, T. Raiko, and S. Behnke (2014). “Two-Layer Contrac-
tive Encodings for Learning Stable Nonlinear Features.” In: Neural
Networks: Deep Learning of Representations. Ed. by Y. Bengio and H.
Lee. Supersedes Schulz and Behnke (2012c) and Schulz et al. (2013).

Schulz, H., N. Höft, and S. Behnke (2015a). “Depth and Height Aware Se-
mantic RGB-D Perception with Convolutional Neural Networks.”
In: European Conference on Neural Networks (ESANN).

Schulz, H., A. Müller, and S. Behnke (2010a). “Exploiting local structure
in Stacked Boltzmann machines.” In: European Conference on Neural
Networks (ESANN). Superseded by Schulz et al. (2011).

Schulz, H., A. Müller, and S. Behnke (2010b). “Investigating Conver-
gence of Restricted Boltzmann Machine Learning.” In: NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning.

Schulz, H., A. Müller, and S. Behnke (2011). “Exploiting Local Struc-
ture in Boltzmann Machines.” In: Neurocomputing 74.9. Supersedes
Schulz et al. (2010a).

Schulz, H., B. Waldvogel, R. Sheikh, and S. Behnke (2015b). “CURFIL:
Random Forests for Image Labeling on GPU.” In: International Con-
ference on Computer Vision Theory and Applications (VISAPP). Super-
seded by Schulz et al. (2016).

Schulz, H., B. Waldvogel, R. Sheikh, and S. Behnke (2016). “CURFIL: A
GPU library for Image Labeling with Random Forests.” In: Com-
puter Vision, Imaging and Computer Graphics. Theory and Application.
Communications in Computer and Information Science. Springer.
Supersedes Schulz et al. (2015b).

Bibliography 209

Schwarz, M. (2014). “Objektklassifikation, Identifizierung und Posen-
schätzung mit Hilfe von vortrainierten Konvolutionsnetzen. Bach-
elor thesis.” University Bonn.

Schwarz, M., H. Schulz, and S. Behnke (2014). “RGB-D Object Recogni-
tion and Pose Estimation based on Pre-trained Convolutional Neu-
ral Network Features.” In: International Conference on Robotics and
Automation (ICRA).

Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun
(2013). “OverFeat: Integrated Recognition, Localization and Detec-
tion using Convolutional Networks.” In: arXiv: 1312.6229 [cs.CV].

Shannon, C. (1949). “The synthesis of two-terminal switching circuits.”
In: Bell System Technical Journal 28.1, pp. 59–98.

Sharp, T. (2008). “Implementing decision trees and forests on a GPU.”
In: European Conference on Computer Vision (ECCV), pp. 595–608.

Shotton, J., A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A.
Kipman, and A. Blake (2011). “Real-time human pose recognition
in parts from single depth images.” In: Computer Vision and Pattern
Recognition (CVPR), Conference on.

Shotton, J., J. Winn, C. Rother, and A. Criminisi (2006). “Textonboost:
Joint appearance, shape and context modeling for multi-class object
recognition and segmentation.” In: European Conference on Computer
Vision (ECCV).

Shotton, J., M. Johnson, and R. Cipolla (2008). “Semantic texton forests
for image categorization and segmentation.” In: Computer Vision and
Pattern Recognition (CVPR), Conference on.

Shotton, J., T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore (2013). “Real-time human pose recognition
in parts from single depth images.” In: Communications of the ACM.

Silberman, N., D. Hoiem, P. Kohli, and R. Fergus (2012). “Indoor seg-
mentation and support inference from RGBD images.” In: European
Conference on Computer Vision (ECCV).

Silberman, N. and R. Fergus (2011). “Indoor scene segmentation using a
structured light sensor.” In: Computer Vision Workshops (ICCV Work-
shops).

Simonyan, K. and A. Zisserman (2014). “Two-Stream Convolutional Net-
works for Action Recognition in Videos.” In: Advances in Neural In-
formation Processing Systems (NIPS), pp. 568–576.

Slat, D. and M. Lapajne (2010). “Random Forests for CUDA GPUs.” PhD
thesis. Blekinge Institute of Technology.

http://arxiv.org/abs/1312.6229

210 Bibliography

Smolensky, P. (1986). “Information Processing in Dynamical Systems:
Foundations of Harmony Theory.” In: Parallel Distributed Processing.
Vol. 1. Chap. 6, pp. 194–281.

Spall, J. C. (1998). “An overview of the simultaneous perturbation
method for efficient optimization.” In: Johns Hopkins APL Technical
Digest 19.4, pp. 482–492.

Spinello, L. and K. O. Arras (2011). “People detection in RGB-D data.”
In: Intelligent Robots and Systems (IROS), International Conference on.
IEEE.

Springenberg, J. T., A. Dosovitskiy, T. Brox, and M. Riedmiller (2014).
“Striving for Simplicity: The All Convolutional Net.” In: Interna-
tional Conference on Learning Representations (ICLR). arXiv: 1412.6806
[cs.LG].

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov (2014). “Dropout: A simple way to prevent neural networks
from overfitting.” In: Journal of Machine Learning Research (JMLR) 15,
pp. 1929–1958.

Stückler, J., N. Birešev, and S. Behnke (2012). “Semantic Mapping Using
Object-Class Segmentation of RGB-D Images.” In: Intelligent Robots
and Systems (IROS), International Conference on.

Stückler, J., B. Waldvogel, H. Schulz, and S. Behnke (2014). “Dense Real-
Time Mapping of Object-Class Semantics from RGB-D Video.” In:
Journal of Real-Time Image Processing.

Sundermeyer, M., R. Schlüter, and H. Ney (2012). “LSTM Neural Net-
works for Language Modeling.” In: Interspeech, pp. 194–197.

Sutskever, I. (2013). “Training Recurrent Neural Networks.” PhD thesis.
University of Toronto.

Szegedy, C., A. Toshev, and D. Erhan (2013). “Deep Neural Networks
for Object Detection.” In: Advances in Neural Information Processing
Systems (NIPS).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich (2015). “Going Deeper with
Convolutions.” In: Computer Vision and Pattern Recognition (CVPR),
Conference on.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus (2014). “Intriguing properties of neural networks.”
In: International Conference on Learning Representations (ICLR). arXiv:
1312.6199 [cs.CV].

Taskar, B., V. Chatalbashev, D. Koller, and C. Guestrin (2005). “Learning
structured prediction models: A large margin approach.” In: Inter-
national Conference on Machine Learning (ICML).

http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1312.6199

Bibliography 211

Taylor, G., R. Fergus, Y. LeCun, and C. Bregler (2010). “Convolutional
learning of spatio-temporal features.” In: European Conference on
Computer Vision (ECCV), pp. 140–153.

Tieleman, T. (2008). “Training restricted Boltzmann machines using ap-
proximations to the likelihood gradient.” In: International Confer-
ence on Machine Learning (ICML). Helsinki, Finland: ACM, pp. 1064–
1071.

Tieleman, T. and G. Hinton (2009). “Using fast weights to improve persis-
tent contrastive divergence.” In: International Conference on Machine
Learning (ICML). New York, NY, USA: ACM, pp. 1033–1040.

Uijlings, J., K. van de Sande, T. Gevers, and A. Smeulders (2013). “Selec-
tive search for object recognition.” In: International Journal of Com-
puter Vision (IJCV) 104.2.

Van der Maaten, L. and G. Hinton (2008). “Visualizing data using t-
SNE.” In: Journal of Machine Learning Research (JMLR) 9, pp. 2579–
2605.

Van der Walt, S., S. C. Colbert, and G. Varoquaux (2011). “The NumPy ar-
ray: a structure for efficient numerical computation.” In: Computing
in Science & Engineering 13.2, pp. 22–30.

Van Essen, B., C. Macaraeg, M. Gokhale, and R. Prenger (2012). “Ac-
celerating a Random Forest Classifier: Multi-Core, GP-GPU, or
FPGA?” In: Proceedings of the IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM).

Vatanen, T., T. Raiko, H. Valpola, and Y. LeCun (2013). “Pushing
Stochastic Gradient towards Second-Order Methods – Backprop-
agation Learning with Transformations in Nonlinearities.” In:
arXiv:1301.3476 [cs.LG].

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol (2010).
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion.” In: Journal of
Machine Learning Research (JMLR) 11, pp. 3371–3408.

Vincent, P. (2011). “A connection between score matching and denoising
autoencoders.” In: Neural Computation 23.7, pp. 1661–1674.

Viola, P. and M. Jones (2001). “Rapid object detection using a boosted
cascade of simple features.” In: Computer Vision and Pattern Recogni-
tion (CVPR), Conference on.

Wehenkel, L. and M. Pavella (1991). “Decision trees and transient stabil-
ity of electric power systems.” In: Automatica 27.1, pp. 115–134.

Welling, M. and G. E. Hinton (2002). “A new learning algorithm for
mean field Boltzmann machines.” In: Artificial Neural Networks,
pp. 351–357.

212 Bibliography

Werbos, P. J. (1974). “Beyond regression: New tools for prediction and
analysis in the behavioral sciences.” PhD thesis. Boston, MA: Har-
vard University.

Weston, J., F. Ratle, and R. Collobert (2008). “Deep learning via semi-
supervised embedding.” In: International Conference on Machine
Learning (ICML). Helsinki, Finland, pp. 1168–1175.

Wiskott, L. and T. Sejnowski (2002). “Slow feature analysis: Unsupervi-
sed learning of invariances.” In: Neural Computation 14.4, pp. 715–
770.

Yuille, A. (2005). “The Convergence of Contrastive Divergences.” In: Ad-
vances in Neural Information Processing Systems (NIPS). Ed. by L. K.
Saul, Y. Weiss, and L. Bottou, pp. 1593–1600.

Zeiler, M. D. and R. Fergus (2014). “Visualizing and understanding con-
volutional networks.” In: European Conference on Computer Vision
(ECCV), pp. 818–833.

Zeiler, M., G. Taylor, and R. Fergus (2011). “Adaptive deconvolutional
networks for mid and high level feature learning.” In: International
Conference on Computer Vision (ICCV). Barcelona, Spain, pp. 2018–
2025.

Zhang, Y., K. Sohn, R. Villegas, G. Pan, and H. Lee (2015). “Improving ob-
ject detection with deep convolutional networks via bayesian opti-
mization and structured prediction.” In: arXiv: 1504.03293 [cs.CV].

Zhu, X., C. Vondrick, D. Ramanan, and C. Fowlkes (2012). “Do We Need
More Training Data or Better Models for Object Detection?” In:
British Machine Vision Conference.

http://arxiv.org/abs/1504.03293

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Key Contributions
	Publications
	1.2 Publications

	2 Background on Deep Learning
	2.1 The Argument for Many-Layered Neural Networks
	2.2 Notation
	2.3 Difficulties in Learning Deep Architectures
	2.4 Greedy Layer-wise Training with RBMs
	2.4.1 Greedy Training with Auto-Encoders

	2.5 Regularization in Unsupervised Learning
	2.5.1 Limiting Representation Size
	2.5.2 Enforcing Representation Sparsity
	2.5.3 Infinite Training Data

	2.6 Convolutional Neural Networks
	2.6.1 Sparse Parameters
	2.6.2 Weight Sharing
	2.6.3 Pooling
	2.6.4 Margin Handling

	2.7 Cross-Dataset Transfer Learning
	2.8 Conclusion

	3 GPU-based Machine Learning
	3.1 Background on the Backpropagation Algorithm
	3.1.1 Forward Pass
	3.1.2 Backward Pass
	3.1.3 Weight Update

	3.2 GPU Considerations
	3.3 CUV: N-Dimensional Arrays in CUDA
	3.4 Generic Model Optimization with CUVNET
	3.4.1 Requirements of Deep Learning Algorithms
	3.4.2 Fast GPU Implementation
	3.4.3 User Interface
	3.4.4 Complex Models
	3.4.5 Differentiation Graph
	3.4.6 Special Copy-on-write Semantics
	3.4.7 Monitoring and Visualization
	3.4.8 Testing
	3.4.9 Other Major Features

	3.5 Comparison with other Neural Network Software
	3.6 Acknowledgments
	3.7 Applications

	4 CURFIL: Fast Random Forests in CUDA
	4.1 Related Work
	4.2 Random Forests
	4.3 Visual Features for Node Tests
	4.4 CURFIL Software Package
	4.4.1 GPU Kernels
	4.4.2 Global Memory Limitations
	4.4.3 Extensions

	4.5 Experimental Results
	4.5.1 Datasets
	4.5.2 Training and Prediction Time
	4.5.3 Classification Accuracy
	4.5.4 Incorporating Novel Features
	4.5.5 Random Forest Parameters

	4.6 Conclusion

	5 Unsupervised Methods for Image Categorization
	5.1 Exploiting Local Structure in Boltzmann Machines
	5.1.1 Background on Boltzmann Machines
	5.1.2 Local Impact Semi-Restricted Boltzmann Machines+
	5.1.3 Related Work
	5.1.4 Experimental Results
	5.1.5 Conclusions

	5.2 Investigating Convergence of RBM Learning
	5.2.1 Background on Restricted Boltzmann Machines
	5.2.2 Experimental Setup
	5.2.3 Results
	5.2.4 Conclusions

	5.3 Two/Layer Encodings for Semi/supervised Learning
	5.3.1 Related Work
	5.3.2 Background
	5.3.3 Where Pre-Training of One-Layer Encoders Fails
	5.3.4 Two-Layer Encoders and Contractive Regularization
	5.3.5 Two-Layer Encoders and Shortcut Connections
	5.3.6 Experiments
	5.3.7 Discussion
	5.3.8 Conclusions

	6 Learning Object-Class Segmentation
	6.1 Learning Object Class Segmentation with CNN
	6.1.1 Methods
	6.1.2 Results
	6.1.3 Related Work
	6.1.4 Conclusion

	6.2 Encoding Depth Information for CNN
	6.2.1 Methods
	6.2.2 Experiments
	6.2.3 Related Work
	6.2.4 Conclusion

	6.3 Depth and Height Aware Semantic Perception
	6.3.1 Related Work
	6.3.2 Methods
	6.3.3 Experiments
	6.3.4 Conclusion

	6.4 Recurrent Networks for Depth Perception
	6.4.1 Model Description
	6.4.2 Related Work
	6.4.3 Experiments
	6.4.4 Conclusion

	6.5 Chapter Summary

	7 Structured Prediction for Object Detection
	7.1 Structured Prediction for Object Detection
	7.2 Experiments
	7.3 Related Work
	7.4 Conclusion

	8 Transfer Learning for RGB-D Object Recognition
	8.1 Related Work
	8.2 CNN Feature Extraction Pipeline
	8.2.1 RGB Image Preprocessing
	8.2.2 Depth Image Preprocessing
	8.2.3 Image Feature Extraction

	8.3 Learning Method
	8.3.1 Object Classification
	8.3.2 Object Pose Estimation

	8.4 Evaluation
	8.4.1 Evaluation Protocol
	8.4.2 Results

	8.5 Conclusion

	9 Conclusion
	9.1 Future Directions

	Acronyms
	A Acronyms and Symbols
	Bibliography

