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Summary 
The accurate identification and delimitation of species constitute the basis for assessing 

the biodiversity and phylogenetic relationships within the taxon Nemertea. However, 

working on nemertean taxonomy is challenging for many reasons. The external and 

internal morphology are relatively simple with only a few diagnostic characters. This 

makes it very difficult to identify species based solely on visual inspection. 

Additionally, the muddled taxonomic history of many genera and species hampers 

assigning identified species to the current systematic background. 

As observed in many other taxa, the identification and delimitation of nemertean 

species has shifted from traditional morphological-based to molecular-based taxonomy. 

The usage of either methodology bears its own pitfalls. Most of our taxonomic 

knowledge is based on morphological data and relies on histological sections, which are 

difficult to compile and analyze. Additionally, the overall interpretation of 

morphological characters lacks a widely applied standard and is therefore subjective. 

DNA taxonomy holds great promise for faster species identification. This methodology 

is based on the comparison of sequence data, relying on the presence of a barcoding gap 

and high coverage of the target taxa within sequence databases. The latter is, however, 

not given in a majority of nemertean species, rendering a DNA-based approach for 

species identification problematic. 

Within this thesis, I present three representative examples encountered in 

nemertean taxonomy. Chapters 2 and 3 concern the description of previously unknown 

species, one of which represents a cryptic species. Chapter 4 deals with the re-

description of a nemertean species with a confusing nomenclatural history. With this 

thesis I give suggestions as to how species can be delimited, identified, and described in 

the future. I conclude that in most cases, an integrative taxonomic approach combining 

molecular data, external characters, and histological-based morphology constitute a 

stable background to safely delimit and identify nemertean species. The species 

descriptions presented herein show that if one method fails or is of limited 

conclusiveness, the application of the other approaches can assist to succeed in 

delimiting species boundaries. Molecular sequence data are of major importance 



 

 

especially in terms of identifying and delimiting cryptic nemertean species. In these 

cases, molecular sequence data combined with external characters present a solid basis 

for species descriptions. Furthermore, molecular sequence data should always be 

included in species descriptions even if its relevance is not immediately apparent. As 

more data is assembled, it should and will provide a solid backbone for future barcoding 

identification and phylogenetic reconstructions. I suggest basing species re-descriptions 

on more than just one methodology in an integrative taxonomic approach. Including 

data from different methodological or biological backgrounds allows assessing species 

boundaries from multiple perspectives and additionally provides a link to the traditional 

knowledge of nemertean taxonomy. 
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Chapter 1 
General Introduction 

1 Chapter 1 General Introduction 

1.1 Introduction 
Species represent the most fundamental unit in all subfields of biology, including 

physiology, behavioral biology, phylogeography, ecology, evolution, and genetics 

(Agapow et al. 2004; De Queiroz 2005, 2007). From the traditional point of view, 

species represent the basic group within the hierarchy of taxonomic categories i.e. 

genera, families, orders, and classes (Linnaeus 1753, 1758; Darwin 1859; De Queiroz 

2005, 2007). Currently, species are considered the only unit within the hierarchy that 

represents both, a taxonomic category and a “naturally occurring particular” (Mayden 

1977: 387). Species therefore signify the only taxonomic category which can be 

observed in nature and for which objective criteria can be defined (Mayr 1943, 1969; 

De Queiroz 2005).  

The importance of the term “species” is contrasted by the absence of a general 

consensus of what a species truly represents (Agapow et al. 2004; De Queiroz 2007). 

Since speciation is an ongoing process, when attempting to delineate and identify a 

species, one must be aware that this unit is constantly evolving and therefore changing 

(De Queiroz 2007). In other words, it is “more or less impossible for humans to 

perceive entire species simply by looking at them” (De Queiroz 2007: 879). This is 

reflected by more than 20 different species concepts which emphasize different criteria 

as important prerequisites for identifying and delineating an organism or a group of 

organisms into a species (Mayden 1997; De Queiroz 2005). 

The Ecological Species concept (EcSC) for example, regards species as similar 

individuals occupying the same ecological niche or adaptive zone (van Valen 1976). In 

addition to being a separately evolving metapopulation lineage, it also has to occupy a 

different niche in order to be considered species (De Queiroz 2007: 882). The 

phylogenetic species concept (PSC) defines species as the smallest group of self 

perpetuating organisms and specifies these according to four further properties: (1) 

Smallest group of self perpetuating organisms with a unique composition of characters, 
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termed Diagnosable Version of the PSC (Nelson & Platnick 1981; Cracraft 1983; Nixon 

& Wheeler 1990); (2) smallest group of self perpetuating organisms that form the least 

inclusive monophyletic group of individuals sharing derived character states, termed 

Monophyletic Version of the PSC (Rosen 1979; Donoghue 1985; Mishler 1985); (3) 

smallest group of self perpetuating organisms with a temporal series of populations in 

between two speciation events, termed Hennigian Version of the PSC (Meier & 

Willmann 2000; Balakrishnan 2005); (4) smallest group of self perpetuating organisms 

sharing genes which are derived from a common ancestral allele, termed Genealogical 

Version of the PSC (Baum & Shaw 1995). The most widely adopted concept is the 

Biological Species Concept (BSC) which defines a species as a group of successfully 

interbreeding individuals which are reproductively isolated from other such groups 

(Mayr 1942). 

As different species concepts rely on different criteria, De Queiroz (2007) 

proposes a unified species concept. He emphasizes that all concepts share a common 

element, namely that species are “separately evolving (meta) population lineages”, 

which is the only necessary prerequisite to defining a species. All criteria advocated by 

the different species concepts, such as differences displayed by genetic and ecological 

data or reproductive isolation constitute evidence in assessing species boundaries (De 

Queiroz 2007). Definitions, however, only make sense, if they provide criteria to 

recognize or identify the defined. Since separately evolving metapopulation lineages 

refer to a historical process, this definition, although unifying species concepts, does not 

provide sufficient criteria to indicate species-specific isolation and thus the existence of 

a species. All other species criteria of the different species concepts can thus be 

regarded as important operational criteria (De Queiroz 2007: 882). If fulfilled, they are 

lines of evidence or indicators for species. The choice of a specific species concept will 

therefore depend on the criteria needed to identify a species and thus follows a strictly 

pragmatic approach. It nevertheless holds true that the more secondary criteria are 

observable, the stronger the evidence for a species. 

In the course of discovering biodiversity, assigning a scientific name to a species 

provides an important reference system to communicate our knowledge between the 

different disciplines of biology (Wheeler 2004; Dayrat 2005). In addition to naming a 

species, recognizing, identifying, classifying, and describing them represents the 
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framework for systematists and taxonomists (Simpson 1961; Mayr 1969; Wilson 1985; 

Padial et al. 2010). In this context, many of the criteria suggested by the different 

species concepts might not be observable or, in the case of the BSC, require long-term 

studies. Taxonomists therefore primarily rely on morphological data to be able to assign 

individuals to a species by visual inspection (Padial et al. 2010). Observable variation in 

morphology also provides circumstantial evidence for reproductive isolation 

(Martinsson 2016). In many cases, species are identified based on an integrative 

taxonomic approach, which can include all types of data from life-history data to 

characters that are of ecological, chemical, or ultrastructural nature (Will et al. 2005). 

However, recognizing species, identifying which criteria are considered important in 

their delimitation and describing them still relies on the taxa investigated and the 

taxonomists working on them (Sundberg et al. 2016).  

In this thesis, I present three examples of how to recognize, delimitate, and 

describe species within the taxon Nemertea. The chapters included herein represent 

typical scenarios encountered in nemertean taxonomy: Chapter 2 deals with the 

description of a previously unknown species, Chapter 3 concerns the description of 

cryptic species and Chapter 4 deals with the redescription of species. With this thesis I 

discuss how species can successfully be delimited, identified, and described in the 

future. I further suggest which data have to be included for each of these situations.  

 

1.2 Introduction Nemertea 
The spiralian taxon Nemertea is a comparably small group of soft-bodied, vermiform 

animals with approximately 1,300 species currently accepted (Gibson 1995; Kajihara et 

al. 2008). Nemerteans possess an eversible proboscis situated in a fluid-filled cavity, 

which can be rapidly employed to catch annelids or small crustaceans (Gibson 1972, 

1982; McDermott & Roe 1985; Thiel & Reise 1993; Thiel 1998). Most nemerteans are 

free- living, nocturnal predators that can be found in a broad spectrum of marine 

habitats. A few species are also known to occur in freshwater and terrestrial 

environments (Gibson 1972, 1982). Some species have been described as 

entocommensal (Malacobdella Blainville, 1827 living within bivalves) or epibiotic 

predators (Carcinonemertes Coe, 1902 living on brachyuran crabs and feeding on its 
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host’s eggs) (Gibson 1967, 1972, 1982; Gibson & Jennings 1969; Wickham 1979, 

1980). 

As in many other taxa, studying nemerteans primarily involves the exploration 

of species diversity and the phylogenetic relationships among species (for nemertean 

phylogenies see: Thollesson & Norenburg 2003; Andrade et al. 2012, 2014; Kvist et al. 

2014; for other taxa see: Weigert et al. 2014; González & Giribet 2015; Hallas & 

Gosliner 2015). Both approaches depend on an accurate taxonomic work which 

includes the identification and description of species. Despite this, working on 

nemertean taxonomy is challenging for many reasons. First, nemertean morphology is 

relatively simple, with very few accessible diagnostic characters (Strand & Sundberg 

2005a; b; Chen et al. 2010; Sundberg et al. 2010; Fernández-Álvarez & Machordom 

2013 Knowlton 2000; Strand & Sundberg 2005; Chen et al. 2010; Sundberg et al. 2010; 

Fernández-Álvarez & Machordom 2013). A considerable number of unrecognized 

cryptic species, which are morphologically indistinguishable, is thereby suspected to be 

present in this group (Appeltans et al. 2012). Second, a vast majority of nemertean 

species were described during the 18th and 19th centuries. During that time, especially 

during the early 18th century, species descriptions mainly consisted of a few notes on the 

external morphology and lack a clear diagnosis (Gibson 1985, 1995). Third, in most 

cases neither type localities were mentioned nor type material has been deposited. Most 

species descriptions are therefore linked to numerous problems complicating their 

identification and classification. Many identities of nemertean species and more 

inclusive taxa are muddled due to a series of synonymizations and reinstatements of 

taxonomic names conducted in the past. A majority of those decisions lack profound 

documentation, leaving present day researchers with numerous names and no reference 

to type material, type localities, or molecular data. 

 

1.3 Nemertean morphology 
Nemerteans exhibit a huge variety of coloration and coloration patterns and display a 

diversity of body sizes (Figure 1.1). They can vary from a few millimeters in interstitial 

forms such as Ototyphlonemertes species Diesing, 1863 up to 30m in length as observed 

in Lineus longissimus (Gunnerus, 1770), the longest invertebrate ever recorded. In 
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general, most species vary from a few cm up to 30cm in length (Gibson 1972, 1982). 

The anterior region (head region, cephalic lobe) can either be clearly demarcated and is 

much wider than the rest of the body (Figure 1.1 C) or (bluntly) pointed and of the same 

width as the rest of the body (Figure 1.1 A, C) (Gibson 1972, 1982, Sundberg et al.  

2009a, 2016). The head region can further be discriminated from the rest of the body by 

the mouth opening and/or the proboscis pore which are visible as slits ventrally or at the 

anterior-most tip of the head (Figure 1.1 A: Arenogigas armoricus Krämer & von 

Döhren, 2015). The cephalic lobe is further distinguishable by the presence of lateral 

horizontal cephalic slits (Cerebratulus Renier, 1804, Micrura Ehrenberg, 1828, Figure 

1.1 B: Notospermus geniculatus (Delle Chiaje, 1828) and Lineus spp. Sowerby, 1806) 

or transversal furrows (Figure1.1 B: A. armoricus, Figure 1.1. C: Carinina ochracea 

Sundberg et al., 2009 and Tubulanus sp. Renier, 1804) (Figure 1.1). Many species also 

possess eyes, which are variable in number and arranged in different patterns near the 

margin of the cephalic lobe. The posterior end is pointed (Figures 1.1, 1.2), bears a 

caudal cirrus (in Cerebratulus and Micrura) or a caudal sucker (Figure 1.1. A: 

Malacobdella grossa (Müller, 1776)) (Gibson 1972, 1982, Sundberg et al. 2009a, 

2016). Depending on the age and the intensity of the coloration of a specimen, some 

internal structures such as the brain, alimentary canal, larger blood vessels, reproductive 

system, or the proboscis apparatus are visible through the body wall (Figures 1.1, 1.2). 

The body wall generally constitutes the epidermis, followed by the dermis and the 

body wall musculature. The epidermis consists of multiciliated columnar cells, a variety 

of glandular and sensory cells, and a basiepithelial nerve plexus (Norenburg 1985 and 

references therein; Beckers 2011; Beckers et al. 2013). The dermis consists of a layer of 

extracellular matrix (ecm) which can be arranged as a simple basal lamina or as a 

prominent layer interspersed by glandular cells (Bürger 1895; Pedersen 1968; Gibson 

1982; Norenburg 1985). Interiorly, the dermis borders the body wall musculature, 

which consists of genus-specific arrays of circular, longitudinal, diagonal and 

dorsoventral musculature. The stratification of the body wall musculature constitutes an 

important diagnostic trait for the classification of nemerteans (Gibson 1972, 1982).  

The proboscis apparatus is situated dorsal to the alimentary canal and consists of 

three major components: the proboscis, which is surrounded by the rhynchocoel and 

opens anteriorly to the exterior via the third component, the rhynchodaeum (Figure 1.2). 
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The proboscis apparatus and the alimentary canal are either anteriorly fused or are 

completely separated from one another. The latter condition is present in palaeo- and 

heteronemerteans and some polystiliferous hoplonemerteans. The proboscis apparatus 

opens at the proboscis pore, which is situated at anterior most part of the head. The 

mouth opening is situated posteriorly to the proboscis pore and opens at the ventral side 

of the head. The former condition is present in monostiliferous and most polystiliferous 

hoplonemerteans. The rhynchodaeum and the alimentary canal lead into a short 

chamber, the atrium, which opens as a single pore to the exterior at the tip of the head 

(Gibson 1972, 1982). The rhynchodaeum, however, constitutes a simple, ciliated tube 

that opens at the proboscis pore. The rhynchodaeum is absent in Malacobdella in which 

the proboscis opens into the dorsal wall of the foregut. The rhynchocoel begin with the 

proboscis insertion and ends blindly. The proboscis itself constitutes a long muscular 

organ formed by the invagination of the anterior body wall. It is therefore similarly 

layered as the body wall. The unarmed proboscis of palaeo- and heteronemerteans 

appears uniform throughout its length whereas the armed hoplonemertean proboscis is 

morphologically divisible into three regions. The anterior region constitutes a thick-

walled tube, followed by the stylet bulb region, and a posterior blind-ending tube. The 

stylet bulb region consists of a muscular diaphragm that is adorned with the proboscis 

armature. The latter can comprise a single stylet on a cylindrical base (in Monostilifera) 

or several small stylets embedded on a stylet cushion (in Polystilifera). In the inverted 

state, the bulb region is anteriorly surrounded by accessory pouches containing reserve 

stylets. The armature is absent in Malacobdella (Figure 1.2) (Gibson 1972, 1982).  

The alimentary canal constitutes a ciliated tube situated ventrally to the 

proboscis apparatus extending the full length of the body. The alimentary canal is 

functionally and morphologically divisible into different regions. In hetero- and 

palaeonemerteans the mouth opens into a stomach that leads into the intestine. In 

hoplonemerteans, the alimentary canal consists of an esophagus (a short tube 

connecting the atrium with the stomach), a stomach, and a pyloric tube which opens 

into the dorsal wall of the intestine. The intestine may constitute a simple tube as in 

some palaeonemerteans or bear multiple, laterally extending diverticula as in many 

hoplo-, heteronemertean and the remaining palaeonemertean species. In most 
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hoplonemerteans the intestine additionally possess a blind-ending, anteriorly extending 

intestinal pouch (intestinal cecum) (Gibson 1972, 1982). 

The reproductive system is constituted by serially arranged, spherical gonads 

which are restricted to the intestinal region (Figure 1.2). In sexually mature specimens, 

the gonads open via short ducts to the exterior. The distal parts of the gonoducts are 

exteriorly visible as serially arranged pores (gonopores). With the exception of a few 

ovoviviparous and hermaphroditic species, most nemerteans are oviparous and are of 

separate sexes (Gibson 1972, 1982; Friedrich 1979; von Döhren et al. 2010; von Döhren 

2015). 

In its basic structure, the blood vascular system consists of a pair of lateral 

longitudinal blood vessels, transversally interconnected by an anterior cephalic and a 

posterior anal lacuna (Figure 1.2). This basic pattern can be found in many 

cephalothricid nemerteans (Palaeonemertea) but differs in other taxa and therefore 

constitutes another diagnostic trait. In many hoplo- and heteronemerteans a third 

longitudinal vessel is present, which penetrates the ventral rhynchocoel wall. The three 

main longitudinal vessels can be regularly linked by transverse connectives that 

alternate with the lateral gut diverticula in some Hoplonemertea and Heteronemertea 

(Bürger 1895; Gibson 1972, 1982). 

The excretory system constitutes protonephridia, which are located within the 

foregut region. In its basic structure, the excretory system consists of a pair of branched 

tubes, in close relation to the blood vascular system. The excretory duct opens via a 

single or several nephridiopores to the exterior (Figure 1.2) (Gibson 1972, 1982; 

Bartolomaeus & von Döhren 2010) 

The nervous system can be divided into a central nervous system and a peripheral 

nervous system (sensu Beckers et al. 2013). The central nervous system constitutes a 

brain, consisting of paired, bi- lobed cerebral ganglia and a pair of lateral nerve cords 

(Figure 1.2). The brain lobes are transversally interconnected by a dorsal and a ventral 

commissural tract. The ventral lobes are confluent with the lateral nerve cords. Brain 

lobes and nerve cords are of medullary organization consisting of a central fibrous 

region (neuropil) surrounded by a layer of neuronal cell somata. The central nervous 

system is always enclosed by a layer of ecm (outer neurilemma) and in some genera by 

another, more proximal ecm layer (inner neurilemma) separating neuronal cell somata 
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from the neuropil. The peripheral nervous system is represented by several minor nerves 

and nerve plexus. These constitute cephalic, proboscidial, and gastric nerve complexes 

which originate from brain margins and commissural tracts. Nerves are characterized by 

neurite bundles surrounded by ecm whereas a plexus is characterized by a meshwork of 

neurites. The position of the nervous system in relation to the body wall layers 

represents an important diagnostic trait for nemertean classification (Bürger 1888, 1895, 

Gibson 1972, 1982; Beckers 2011; Beckers et al. 2013; Beckers & von Döhren 2016). 

Sensory organs comprise eyes, cerebral, frontal, lateral, and epidermal sensory 

organs (Figure 1.2). Eyes are of the pigment-cup type and restricted to the cephalic lobe, 

but are absent in most paleo- and several heteronemerteans. Cerebral organs are paired 

neuroglandular structures that are found in close relation to the nervous and vascular 

systems. They open to the exterior via a ciliated canal. Cerebral organs are absent in 

some palaeo- and hoplonemertean species. The frontal organ is comprised of one 

(Hoplonemertea) or three (Heteronemertea) epidermal, ciliated pits that lead into the 

mucous secreting cephalic glands. The composition and position of sensory organs is 

taxon specific and constitutes an important diagnostic trait (Gibson 1972, 1982). 
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Figure 1.1. Nemertean diversity. (A) Malacobdella grossa, Tetrastemma melanocephalum 
(Johnston, 1837), Arenogigas armoricus, and Drepanophorus spectabilis as examples for 
monostiliferous and polystiliferous hoplonemerteans. (B) Notospermus geniculatus, Lineus 
viridis (Müller, 1774), Lineus ruber (Müller, 1774), and Lineus clandestinus Krämer et al., 2016 
as examples for heteronemerteans. (C) Carinina ochracea, Tubulanus superbus (Kölliker, 
1845), Tubulanus polymorphus Renier, 1804, and Cephalothrix linearis (Rathke, 1799) as 
examples for palaeonemerteans. Color scheme corresponds to Figure 1.3 (Photo credit for 
Tubulanus superbus and Carinina ochracea: AG Bartolomaeus). 
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Figure 1.2 Schematic drawing of a hoplonemertean to show the arrangement of different organ 
systems (modified after Westheide & Rieger 2007) in comparison to a habitus image of 
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Tetrastemma melanocephalum. Abbreviations: acp, accessory stylet pouch; ap, anal pore; apr, 
anterior proboscis; avl, anal vascular loop; co, cerebral organ; coc, canal of cerebral organ; cvl, 
cephalic vascular loop; dct, dorsal commissural tract of brain; div, gastric diverticula; dl, dorsal 
brain lobe; dv, dorsal vessel; ey, eye; go, gonad; lv, lateral vessel; mc, medullary cord; n, 
nephridium; np, nephridal porus; pp, proboscis pore; ppr, posterior part of proboscis; pri, 
proboscis insertion; prr, proboscis retractor muscles; rc, rhynchocoel; rd, rhynchodaeum; sty, 
stylet; styb, stylet bulb; vl, ventral brain lobe. 

 

1.4 Nemertean systematics 
The internal morphology constitutes the basis for the traditional classification of 

nemerteans. The position and composition of several internal characters is therefore 

assessed through histological sectioning. 

The structure of the proboscis apparatus, its connection to the digestive system, 

and the position of the nervous system, represent the basis for the traditional 

classification of nemerteans into the more inclusive groups of Anopla and Enopla 

(Stiasny-Wijnhoff 1923; Wijnhoff 1936; Coe 1943; Gibson 1972, 1982). The former 

includes Heteronemertea and Palaeonemertea whereas the latter contains 

Hoplonemertea and Bdellonemertea (i. e. Malacobdella which is based on its 

morphology considered as derived monostiliferous hoplonemertea (Thollesson & 

Norenburg 2003 and references therein)). In all enoplan representatives, the mouth 

opens anterior to the brain lobes. Within most hoplonemerteans the proboscis and 

digestive system open via an atrium as a single pore to the exterior. The proboscis itself 

is armed with a single stylet in monostiliferous hoplonemerteans (Monostilifera) or with 

a cushion equipped with several stylets in polystiliferous hoplonemerteans 

(Polystilifera). In anoplan nemerteans the mouth is situated below or posterior to the 

cerebral ganglia. The alimentary canal and the proboscis apparatus open separately, and 

the proboscis lacks armament (Stiasny-Wijnhoff 1923; Wijnhoff 1936; Coe 1943; 

Gibson 1972, 1982). Apart from this, information on the structure of the body wall, 

digestive tract, blood-vascular, excretory system, as well as, the composition of sensory 

organs serve as the traditional basis for classifying nemerteans at the family-, genus- or 

species level (Bürger, 1895, Coe 1904, 1905, Gibson 1972, 1982). 

As in many other taxa, the advent of molecular methods has shifted the 

discussion on nemertean systematics. Most recent phylogenetic reconstructions 
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primarily rely on molecular approaches rather than on morphological data (Giribet 

2015; Sundberg 2015). While many current phylogenetic reconstructions focus on 

assessing the positions of nemerteans within Spiralia (Turbeville et al. 1992; Turbeville 

2002; Struck & Fisse 2008; Bleidorn et al. 2009; Hejnol et al. 2009; Podsiadlowski et 

al. 2009; Nesnidal et al. 2013; Dunn et al. 2014; Laumer et al. 2015), an increasing 

number of phylogenetic estimations target internal relationships among nemerteans. 

During the last 20 years, phylogenetic reconstructions developed from single-gene-

based estimations using 16S or 18S sequences (Sundberg & Saur 1998; Sundberg et al. 

2001) to multi-gene-based estimations including an increasing number of genes 

(Thollesson & Norenburg 2003; Andrade et al. 2012, 2014, Kvist et al. 2014, 2015). 

These studies aim at assessing a stable phylogeny of nemerteans, which could 

potentially provide a secure backbone for nemertean classification (Sundberg 2015). 

Therefore, phylogenetic analyses are increasingly included in current descriptions. 

Phylogenetic reconstructions are partly congruent with the traditional 

classification of nemerteans mentioned above. Heteronemerteans and hoplonemerteans 

(including polystiliferous and monostiliferous nemerteans) are always recovered as 

monophyletic (Andrade et al. 2012, 2014, Kvist et al. 2014, 2015). Bdellonemertea (i. e. 

Malacobdella) nests within Monostilifera making Enopla synonymous with 

Hoplonemertea (Thollesson & Norenburg 2003). Hubrechtella species Bergendahl, 

1902, which were traditionally considered as representatives of the putative 

palaeonemertean family Hubrechtiidae, are either recovered as sister to 

hoplonemerteans (Kvist et al. 2014, 2015) or sister to heteronemerteans (Thollesson & 

Norenburg 2003; Andrade et al. 2012, 2014). The latter grouping is further supported 

by the type of larvae, the planktonic pilidiophora, which is exclusive for most 

heteronemerteans and Hubrechtella (and Hubrechtia Bürger, 1892) (Thollesson & 

Norenburg 2003; Schwartz 2009). This is why several authors refer to this cluster as 

Pilidiophora (Thollesson & Norenburg 2003; Andrade et al. 2012, 2014; von Döhren 

2015; Beckers & von Döhren 2016). The group containing Hoplonemertea and 

Pilidiophora is additionally referred to as Neonemertea by the same authors (Figure 

1.3). Depending on the data set and analytical method used (Bayesian inference, 

parsimony, or Maximum Likelihood), palaeonemerteans (excluding Hubrechtella) are 

either monophyletic (Andrade et al. 2012, 2014) or paraphyletic (Thollesson & 
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Norenburg 2003; Kvist et al. 2014, 2015). Tubulanus (including Callinera grandis 

Bergendahl, 1903) is recovered as sister to Cephalothricidae (Thollesson & Norenburg 

2003; Andrade et al. 2012; Kvist et al. 2014, 2015). Carinina ocrachea and Carinoma 

sp. Oudemans, 1885 either appear as basally branching palaeonemerteans (Andrade et 

al. 2012; Kvist et al. 2014, 2015) or as sister to Neonemertea (Thollesson & Norenburg 

2003). 

 

 
Figure 1.3 Current nemertean phylogeny summarized and redrawn after Andrade et al. (2012, 
2014) and Kvist et al. (2014, 2015). 
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1.5 Species descriptions in nemerteans 
Today, there are basically three different approaches that attempt to account for accurate 

species identification, classification, and descriptions of nemerteans. The first approach 

came into practice in the 19th century (see: Bürger, 1888, 1890, 1895; Coe 1904, 1905) 

and aims at detailed descriptions of the external and internal morphology primarily 

assessed through histological sectioning (Chapters 2-4).  

The second approach relies on the more recent methodologies that utilize 

molecular sequence data for DNA taxonomy, DNA barcoding, and phylogenetic 

analyses. This involves the detection of species boundaries based on computer assisted 

algorithms, assigning species to a potential taxonomic unit, and then sorting them into 

the current phylogenetic and systematic background (Sundberg et al. 2009b, 2010; Chen 

et al. 2010; Leasi & Norenburg 2014; Chapters 2-4). 

The third kind of descriptions constitutes an integrative taxonomic approach. 

Specimens are identified using molecular approaches and then compared to the identity 

revealed by traditional morphology or vice versa (Maslakova & Norenburg 2008; 

Sundberg et al. 2009a; Kajihara et al. 2011, 2015; Strand et al. 2014; Chernyshev et al. 

2015; Hiebert & Maslakova 2015; Chapter 2 & 4). Some species boundaries are 

additionally assessed through additional data, such as life-history or larval development 

(Hiebert & Maslakova 2015). 

However, most species descriptions are solely based on morphological data 

(Norenburg 1993; Frutos et al. 1998; Chernyshev 2003a; b, 2013; Kajihara et al. 2003; 

Ritger & Norenburg 2006) or, as recently suggested, on molecular data combined with 

notes on external characters (Strand & Sundberg 2011; Sundberg et al. 2016; Chapter 

3). 

In the following series of chapters, species boundaries and identities are assessed 

through the combination of different data sets in an overall integrative taxonomic 

approach. Different sets of molecular markers as well as data on internal and external 

morphology are therefore combined to assess species boundaries from different 

perspectives. The usability of each data set will be critically evaluated in the subsequent 

General Discussion. 
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Chapter 2 
2 Arenogigas armoricus, a New Genus and Species of a Monostiliferous Hoplonemertean (Nemertea) from the North-West Coast of France 
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Abstract 

A new genus and species of an endobenthic, unusually large eumonostiliferous 
hoplonemertean, Arenogigas armoricus gen. et sp. nov., is described from an intertidal 
sand flat in Pouldohan Bay near Concarneau, France. Morphological characters of the 
species and genus include a prominent connective tissue that divides the anterior 
longitudinal musculature, an extremely branched vascular system, the absence of a pre-
cerebral septum, a pair of eyes situated at the anterior tip of the head, small cerebral 
organs positioned far anterior to the brain, 10 proboscidial nerves, and nine accessory 
stylet pouches. 
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2.1 Introduction 
Nemertea is a spiralian taxon of unsegmented, soft bodied, vermiform animals, 

predominantly inhabiting marine environments. It comprises about 1280 described 

species of mainly epibenthic predators (Kajihara et al. 2008). Monostilifera, the largest 

taxon within Nemertea comprises approximately 45% of all described nemertean 

species (Gibson 1995; Kajihara et al. 2008). This taxon is characterized by a single 

stylet-bearing proboscis apparatus, which is used to pierce the cuticle of prey organisms 

such as small crustaceans and annelids (McDermott & Roe 1985). While most 

nemertean species measure less than 20 cm, most monostiliferous hoplonemerteans are 

comparably small, ranging in body length from millimeters up to approximately 12 cm 

(Gibson 1972, 1982; Turbeville 2007). Few exceptions in Monostilifera are among 

others Tetranemertes antonina (Quatrefages, 1846) or Empectonema gracile (Johnston, 

1837), which can attain from 0.5 m up to 1 m in length, while remaining comparably 

slender with only a few in millimeters in width (Bürger, 1897-1907). 

An unusually large monostiliferous hoplonemertean (approx. 40 cm in length, 3–9 

mm in width) was found buried in 0.5 m depth in an intertidal sand flat near 

Concarneau, France. The uncommon endobenthic lifestyle as compared to other 

hoplonemertean species (Norenburg 1985) and the large body size lead to the 

assumption that the specimen represents a species new to science. 

The result of a phylogenetic analysis based on partial sequences of the cytochrome c  

oxidase subunit I (COI), 16S rRNA, and 28S rRNA genes conducted herein is only of 

limited conclusiveness due to the sparsely available sequence data for this group. 

Therefore, making statements on the systematic status of the newly described species 

based on molecular markers is at best preliminary. The result obtained from the analysis 

of the molecular markers hints at an affinity of the newly described species to other 

members of the genus Poseidonemertes Kirsteuer, 1967. Observations on the internal 

morphology revealed prominent connective tissue (sensu Turbeville & Ruppert 1985; 

Turbeville 1991) splitting the anterior longitudinal muscle layer into two layers. This 

character is shared by only a small group of nemerteans within Monostilifera that have 

been classified as Poseidonemertidae Chernyshev, 2002 (Kajihara et al. 2001; 

Chernyshev 2002a). However, examination of the morphological characteristics found 
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in the new species show a combination of characters that is not exactly represented by 

any described poseidonemertid species. The composition of internal and external 

characteristics found in the specimen from France show closest similarities to 

‘Paranemertes’ californica Coe, 1904 which also has been suspected to be a member of 

the family Poseidonemertidae Chernyshev, 2002 instead of being a member of the 

genus Paranemertes Coe, 1901 (Kirsteuer 1974; Chernyshev 2002a). The anatomy of 

the newly described species from the coast of France is clearly in accordance with the 

emended diagnosis given for Poseidonemertidae (Chernyshev, 2002). However, since 

characters of the specimen from France decidedly differ from any of the diagnoses of 

the poseidonemertid genera we have decided to assign the animal to the new genus and 

species Arenogigas armoricus gen. et sp. nov. 

 

2.2  Material and Methods 

2.2.1 Specimens 
Arenogigas armoricus was found buried in 0.5 m depth in an intertidal sand flat in 

Pouldohan Bay near Concarneau, Brittany France during low tide (Fig. 1). While trying 

to extract the animal from the sediment, it everted its proboscis, of which the anterior 

part was severed. Additionally, the specimen was torn into two pieces. The posterior 

end was measured but not photographically documented or fixed for further processing. 

The proboscis was examined under the compound microscope. Unfortunately, since 

there was no camera mounted on the microscope no images for documentation could be 

taken. Therefore, measurements of the central stylet and its basis could not be obtained. 

Subsequently, the proboscis was macerated in 1% KOH for several months to make the 

stylets accessible. The anterior region was anaesthetized in 7% MgCl2 mixed with sea 

water at equal volumes, fixed in Bouin’s solution after Dubosq-Brasil and 

photographically documented. The specimen was embedded in paraplast. Sections of 5-

µm thickness were made that were stained with the Azan-method. Sections were 

analyzed with an Olympus BX-51 microscope equipped with an Olympus slide ver. 2.2 

and photographed with an Olympus cc12 camera mounted on the microscope. 

Afterwards, images were aligned with IMOD (Kremer et al. 1996) and IMOD align 
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(http://www.q-terra.de/biowelt/3drekon/guides/imod_first_aid.pdf). The image series is 

deposited at Morph D Base. Figure 2.4: 3D-reconstruction of the circulatory system was 

performed with Fiji ver. 1.48r/Trakem and Amira ver. 5.3.1 based on the aligned image 

series. 

 

2.2.2 DNA extraction and PCR amplification 
A small piece of the specimen was preserved in absolute ethanol for DNA extraction 

with DNeasy Blood and Tissue kit (Qiagen®) following the manufacturer’s instructions. 

Three loci were amplified: the partial mitochondrial genes coding for the cytochrome c 

oxidase subunit I (COI) and 16S rRNA, as well as the partial nuclear 28S rRNA gene. 

All primers used for the amplification and sequencing reactions are listed in Appendix I: 

Supplementary Table 1. PCR reactions were conducted with the Ex Hot Start 

Polymerase TaKaRaTM or HotMaster Taq polymerase (InvitrogenTM) kits. Thermal 

cycling was initiated with 2 min at 94°C, followed by 40 cycles (30 sec at 94°C, 60 sec 

at 53/45°C (COI/16S), 60 sec at 72°C), and ending with a 2 min final elongation at 

72°C. For 28S, thermal cycling was initiated with 2 min at 94°C, followed by 35 cycles 

(60 sec at 94°C, 45 sec at 64°C, 90 sec at 72°C) ending with 7 min final elongation at 

72°C. PCR products were purified with NucleoSpin® Extract II-Kit (MACHEREY-

NAGEL GmbH & Co. KG) following the instructions of the manufacturer. Purified 

PCR products were sent to LGC Genomics© for Sanger sequencing (Sanger et al. 1977), 

using PCR primers as well for sequencing. All new sequences are deposited in 

GenBank. Accession numbers for COI, 16S, and 28S are listed in Appendix I: 

Supplementary Table 2. 

 

2.2.3 Sequence analysis and phylogenetic analysis 
To enable a molecular characterization of Arenogigas armoricus a phylogenetic analysis 

based on the three amplified markers was conducted including sequence data of several 

hoplonemertean species including mono- and polystiliferan species. The 

palaeonemertean Cephalothrix rufifrons (Johnston, 1837) was used as outgroup. Species 
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included in the analysis are listed in Appendix I: Supplementary Table 2 with their 

GenBank accession numbers and references. Sequences were edited and concatenated 

using Bioedit ver. 7.1.3.0 (Hall 1999). A multiple sequence alignment of COI, 16S and 

28S was performed with MAFFT v. 7 (Katoh & Standley 2013) with G-INS-I strategy 

using the following parameters: gap penalty of 1.53/3 (COI, 16S/ 28S); scoring matrix 

for nucleotide sequences of 200PAM/K = 2; offset value = 0.0. A maximum-likelihood 

analysis was performed with RAxML v. 8 (Stamatakis 2014) using the GTR model of 

sequence evolution and the CAT model of rate heterogeneity (Stamatakis 2006). One 

hundred bootstrap replicates were conducted to evaluate nodal support. 

 

2.3  Results 
 

2.3.1 Taxonomy 

Arenogigas gen. nov 

Type species. Arenogigas armoricus sp. nov., fixed by the original designation.  

Etymology. The generic name is masculine in gender, a composite of the Latin arena 

(“sand”) and gigas (“giant”), referring to the unusual large size for a hoplonemertean. 

The specific name of the new species, armoricus, an adjective, refers to Armorica, the 

Latin name of the region between the Seine and Loire rivers in France where the species 

was found.  

Diagnosis. Endobenthic, monostiliferous hoplonemerteans of large size: 30–40 cm in 

length, 3 mm (cephalic lobe) to 9 mm (caudal region) in width; dark red, fluid- filled 

rhynchocoel, presumably reaching to posterior end of body; proboscis well developed, 

anterior chamber with three muscle layers (outer circular, middle longitudinal, inner 

circular), proboscidial nerve plexus comprising 10 nerves, armature comprising a single 

central stylet and nine accessory stylet pouches; longitudinal body wall musculature 

anteriorly divided by thick layer of connective tissue; pre-cerebral septum absent; head 
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retractor muscles derived from inner portion of the longitudinal musculature; foregut 

divisible into esophagus, stomach, and long pylorus; short intestinal cecum lacking 

intestinal pouches but with short lateral diverticula; circulatory system consisting of 

cephalic loop and extensively branching blood vascular system throughout whole body, 

mid-dorsal vessel with single vascular plug; cerebral ganglia small, dorsal ganglion 

shifted ventrolaterally close to ventral ganglia, paired ganglia positioned ventrolaterally 

to each side of rhynchocoel, with neither neurochord cells nor accessory nerves; frontal 

organ absent; voluminous, diffuse cephalic glands present, extending in front of brain; 

eyes two, situated ventrally, deeply embedded within musculature at anterior tip of 

head, not visible from exterior; small, saclike cerebral sensory organs, situated far 

anterior to brain, opening laterally into cephalic furrow; excretory system present within 

foregut region and intestinal region; sexes presumably separate. 

 

Arenogigas armoricus sp. nov. 

Type specimen. Holotype anterior part of a sexually mature female, series of transverse 

sections, 69 slides (cephalic region: MNHN-AO-1181-1 to AO-1181-69; 

https://www.morphdbase.de/?D_Kraemer_20150722-M-6.1, intestinal region: 

www.morphdbase.de/?D_Kraemer_20150730M-8.1), tissue in absolute ethanol of 

holotype (MNHN-AO1181-71) and paratype (MNHN-AO-1181-70) deposited at the 

Muséum national d’Histoire naturelle, Paris.  

Type locality. Intertidal sand flat (Figure 2.1), Pouldohan Bay, France. The bay is 

characterized by poorly sorted sandy sediment with a high organic fraction showing 

anaerobic conditions within a few centimeters depth. 
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Figure 2.1 The type locality of Arenogigas armoricus gen. et sp. nov., the intertidal sand flat of 
Pouldohan Bay near Concarneau, France, during low tide 

 

Description 

External features. Addition of lengths of the two parts of described specimen resulted 

in minimum body length of approximately 40 cm. Body width varying in different body 

regions. Cephalic lobe measuring 3 mm in width and 2.5 mm in length (from cephalic 

furrows to tip of head). Body broadening to 4 mm in postcephalic region. Posterior end 

measuring 14 cm in length, broadened in paddle- like manner, measuring 9 mm at its 

widest point and tapering down to 3 mm to form blunt tip. Head bluntly pointed and 

demarcated from trunk by a single cephalic furrow encircling head on dorsal and ventral 

sides like curly brackets (Figure 2.2 A, C, D). Cephalic furrow situated in front of brain 

lobes. Rhynchopore situated subterminally and opening at level of cephalic furrow. 

Anteriorly, groove extending from rhynchopore for 2.5 mm in relaxed specimen (Figure 

2.2 C). Color of living animal uniformly brick red. Dark red rhynchocoelic fluid leaking 
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out after rupture, leading to fading of red coloration into pale pink. In fixed specimen, 

pale pink coloration retained (Figure 2.2 A, C, D). Except for digestive tract, no eyes or 

internal organs visible through body wall (Figure 2.2 A). 

 

 

Figure 2.2 Arenogigas armoricus gen. et sp. nov., holotype (MNHN-AO-1181-71). Habitus 
images of fixed specimen and one macerated accessory stylet. (A) Ventral view of anterior body 
showing the intestine shining through the body wall. (B) Accessory stylet. (C) Ventral view of 
the head showing the proboscis pore and the cephalic furrow. (D) Dorsal view of the head 
showing the cephalic furrow. Abbreviations: cf, cephalic furrows; in, intestine; pp, proboscis 
pore. 

 

Body wall. Epidermis containing very few glandular cells of which dominant type being 

flask-shaped mucous glands (Figure 2.3 C, D). Dermis sensu Norenburg (1985) 

appearing as prominent layer, measuring half of height of circular muscle layer (Figure 

2.3 A, D). Body wall musculature consisting of outer circular and inner longitudinal 
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muscle layers. Longitudinal muscle layer anteriorly divided by thick layer of connective 

tissue (Figure 2.3 A, D). Outer longitudinal muscle layer appearing thin, whereas inner 

layer being more pronounced, with musculature appearing densely packed (Figure 2.3 

A, D, E). Within inner longitudinal muscle layer, another subdivision visible; Outer 

portion of musculature densely packed with submuscular glands (Figure 2.3Figure 2.3 

A). Layer of separating extracellular matrix becoming more prominent between cerebral 

organs and rear of brain; measuring same height as combined outer circular and outer 

longitudinal muscle layers (Figure 2.3 A, D). Connective tissue traversed by multiple 

blood vessels, diffuse submuscular glands and muscle fibers. Precerebral septum absent. 

Outer longitudinal musculature reaching to head tip but not contributing to head 

retractors. Proboscis insertion and head retractor muscles originating from inner layer of 

longitudinal muscles (Figure 2.3 A, F). Head retractors discernible as small bundles 

surrounding rhynchodaeum, being more densely packed above rhynchodaeum (Figure 

2.3 F). At level of anterior intestinal diverticula, extracellular matrix layer disappearing; 

inner and outer longitudinal muscle layers located in juxtaposition (Figure 2.3 H). 

Dorsoventral muscles present, clearly discernible in intestinal region (Figure 2.3 E). 

Proboscis apparatus. Proboscis pore situated subterminally in front of cephalic furrow 

(Figure 2.2 A, C, Figure 2.3 B), leading into thin walled, ciliated rhynchodaeum that 

lacks glandular cells (Figure 2.3 F). Prominent rhynchodaeal sphincter formed by thick 

layer of circular muscles. Proboscis insertion positioned anterior to brain, consisting of 

longitudinal muscles that branch off from inner longitudinal body wall musculature 

(Figure 2.3 A). Holotype injured and partly everted its proboscis while collecting. 

Lengths of proboscis and rhynchocoel thus unobtainable. Rhynchocoel lined with thin, 

barely visible, proximal longitudinal, and distal, more pronounced outer circular muscle 

layers. Rhynchocoelic musculature more pronounced in its posterior course (Figure 2.3 

E, H). In everted state, proboscis layered as follows: anterior proboscis epithelium 

arranged into papillae followed by thick layer of extracellular matrix with embedded 

layer of circular muscles. Pronounced longitudinal muscle layer bearing 10 proboscis 

nerves. Circular neural sheath connecting proboscidial nerves, dividing longitudinal 

musculature in pronounced outer and thin inner layers. Additionally, barely visible inner 

circular muscle layer present (Figure 2.3 D). Proboscis armature consisting of single 
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central stylet and nine accessory stylet pouches each containing 2–3 reserve stylets. 

Central and accessory stylets (Figure 2.2 B) were straight with smooth surface. Stylet 

armature only observed in vivo, not photographically documented. Stylet bulbous 

macerated; therefore no data available for basis of central stylet. 

Alimentary canal. Esophagus opening from ventral rhynchodaeal wall in front of 

rhynchodaeal sphincter. Esophagus lined by unciliated, thin epithelium lacking gland 

cells, extending to ventral commissural tract of brain (Figure 2.3 A). Anterior esophagus 

appears flattened, but widening in diameter in its posterior course. In front of stomach it 

is of same height as inner longitudinal musculature. Shape of esophagus resembling 

round tube with weakly folded epithelium. At height of brain ventral commissural tract, 

transition to stomach marked by epithelium being thrown into several deep folds and 

high abundance of gland cells (Figure 2.3D). Stomach widening increasingly, assuming 

almost same width as proboscis. In its posterior course, stomach leading to pyloric 

canal. Pyloric canal about 3.5 times longer than stomach. Pyloric epithelium sparsely 

ciliated, with well developed wall containing glandular cells. Pylorus, opening into 

dorsal wall of intestine. Short intestinal cecum present with pair of short lateral 

diverticula originating from pylorus–intestine junction (Figure 2.3 H). Lateral, 

anteriorly protruding intestinal pouches absent. Epithelium of intestine and cecum 

characterized by higher abundance of gland cells and yellowish inclusions. At junction 

between pylorus and intestine, gut epithelium becoming thicker and thrown into shallow 

folds. Intestinal canal widening increasingly in its posterior course, forming unbranched 

lateral diverticula extending distally to lateral medullary nerve cords.  

Circulatory system. Cephalic loop positioned posterior to eyes and dorsal to proboscis 

pore (Figure 2.3 B) giving rise to two lateral, longitudinal vessels, positioned lateral to 

rhynchodaeum. At level of esophagus; numerous smaller blood vessels originating from 

two longitudinal and cephalic vessels by multiple branching, interconnected in an 

irregular manner resulting in extensive capillary network within body wall (Figure 2.3 

A, D, Figure 2.4). Thus, main lateral longitudinal blood vessels not discernible. Strong 

capillarization within layer of connective tissue, separating longitudinal musculature 

and inner portion of the inner longitudinal muscles. Posterior to brain, extracellular 

matrix surrounding medullary nerve cords also penetrated by several capillaries (Figure 
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2.3 E). Single mid-dorsal vessel present dorsal to intestine, extending all length of 

section series, entering the rhynchocoel wall, forming single vascular plug at level of 

brain commissural tracts (Figure 2.3 D, H). Mid-dorsal vessel presumably originating 

from left side of vascular system. Connection to one of right lateral vessels not observed 

(Figure 2.4). Full extension of blood vascular system not accessible in holotype due to 

lack of more caudal region. 

Nervous system. Brain situated far posterior to rhynchopore at level of anterior stomach 

(Figure 2.3 D), comparably small, not exceeding thickness of inner longitudinal muscle 

layer in diameter. Posterior part of brain divided into dorsal and ventral pair of lobes of 

similar size. Dorsal lobes shifted close to ventral lobes; both lobes situated 

ventrolaterally to rhynchocoel, interconnected by thin, dorsal commissural tract 

followed by thicker ventral commissural tract (Figure 2.3 D). Dorsal lobes ending 

blindly, ventral lobes confluent with lateral medullary nerve cords and situated in layer 

of loose extracellular matrix, proximal to longitudinal muscle layer (Figure 2.3 E). 

Medullary cords traversed by myofibrils and interconnected by several commissural 

plexus dorsal and ventral to rhynchocoel (Figure 2.3 E). Additionally, several nerves 

emanating regularly from cords, extending laterally into longitudinal musculature. 

Neuronal cell somata of medullary cord and neuropil not separated by inner 

neurilemma. Neuronal cell somata encircling neuropil in U-shaped manner (Figure 2.3 

E). Three different types of cell somata distinguishable. First type (s1) characterized by 

small cell body containing small, red-stained nucleus. Majority of cell somata 

comprised of second type (s2), showing enlarged cell body and large nucleus stained in 

purple. Third type (s3) measures twice the size of s2, located in periphery of medullary 

cords. Neither accessory lateral nerve nor neurochord cells or neurochords observed. 

Inner neurilemma missing (Figure 2.3 D, G). Same three types of neuronal cell somata, 

as already described for the medullary cords, present in brain. S1 showing high 

abundance around dorsal brain lobe. S2 encircling dorsal and ventral lobe, whereas 

enlarged s3 cells situated in brain periphery (Figure 2.3 G). Brain neurochord cells 

absent. Several cephalic nerves originating from dorsal and ventral brain lobes 

protruding anteriorly towards head tip (Figure 2.3 A). Small indistinct nerve leading 

from cerebral organs to brain. Origin of cerebral organ nerves from brain not detected. 
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Proboscis innervated by pair of nerves, originating from ventral cephalic lobes; two 

nerves extending anteriorly towards proboscis insertion; splitting into ten nerves 

innervating proboscis. Proboscidial nerves interconnected by circular neural sheath. 

Additionally, each proboscidial nerve giving rise to nerve fibers radiating to outer part 

of proboscidial longitudinal muscles (Figure 2.3 D). Two gastric nerves running parallel 

to digestive tract, closely connected with pyloric epithelium and interconnected by 

transverse commissures. Origin of gastric nerves from brain not determined.  

Frontal organ and cephalic glands. Frontal organ not discernible. Voluminous, diffuse 

cephalic glands posteriorly extending in front of brain opening via barely visible 

epidermal pits (Figure 2.3 A). Cephalic glands barely distinguishable from longitudinal 

musculature within tip of head (Figure 2.3 C). Submuscular glands discernible at level 

of esophagus, occupying outer portion of inner longitudinal musculature and being 

scattered within layer of connective tissue (Figure 2.3 A).  

Sensory organs. Pair of pigment-cup ocelli present but not externally visible (Figure 

2.2, Figure 2.3 B), situated ventrally at anterior tip of head in front of cephalic vascular 

loop, and deeply embedded within longitudinal musculature. Pigmented cup oriented 

towards the ventrolateral side of animal. Sack- like, small cerebral sensory organs 

positioned far anterior to brain, measuring less than half of brain lobes in diameter 

(Figure 2.3 C). Each cerebral sensory organ connected to exterior by unbranched, 

ciliated canal, opening laterally into cephalic furrow. Within cerebral organs, canal 

ending blindly in glandular tissue. 

Excretory system. Nephridial system present in foregut region. Nephroducts closely 

apposed dorsally to medullary lateral nerve cords and blood vessels embedded in 

parenchymatous tissue (Figure 2.3 E). Neither extension of excretory system nor 

number of nephridial units detectable in the holotype. Efferent ducts and nephridiopores 

also not found.  

Reproductive system. Sexes presumably separate (only a female was found). In vivo, 

serially arranged gonads filled with yellowish eggs. In holotype, further details 

regarding arrangement of gonads not gained. 
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Figure 2.3 Arenogigas armoricus gen. et sp. nov., holotype, cross sections, Azan. (A) MNHN-
AO-1181-38 Transverse section through the proboscis insertion derived from the inner 
longitudinal musculature and the strong vascularization of the body wall. (B) MNHN-AO-1181-
4 Transverse section through the head tip showing the position and orientation of the eyes. (C) 
MNHN-AO-1181-16 Transverse section through cerebral organ. (D) MNHN-AO-1181-43 
Transverse section through the cerebral region to show the position of the dorsal and ventral 
brain lobes, as well as the division of the longitudinal musculature into inner and outer layers. 
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(E) www.morphdbase.de/?D_Kraemer_20150730-M-8.1 Transverse section through the 
medullary cord within the intestinal region to show the location of the nephridium. (F) MNHN-
AO-1181-16 Transverse section through the precerebral region to show the head retractors. (G) 
MNHN-AO-1181-43 Transverse section through the brain lobes to show the composition of 
neuronal cell somata. (H) www.morphdbase.de/?D_Kraemer_20150730-M-8.1 Transverse 
section through pylorus-intestine junction. Abbreviations: cgl, cephalic gland; cm, circular 
musculature; cn, cephalic nerves; cns, circular neural sheath; co, cerebral organ; ct, connective 
tissue; d, dermis; dct, dorsal commissural tract; div, paired lateral, cecal diverticula; dl, dorsal 
lobe; dvm, dorsoventral musculature; e , epidermis; ecm, extracellular matrix layer (within 
proboscis); es , esophagus; ey, eyes; hr, head retractors; ic, intestinal cecum; ilm, inner 
longitudinal musculature; mc, medullary cord; mdv, mid-dorsal blood vessel; mf, myofibril; n, 
nephridium; olm, outer longitudinal musculature; p, papillae; pcm, proboscis circular 
musculature; plm, proboscis longitudinal musculature; pr, proboscis; pri, proboscis insertion; 
py, pylorus; rc, rhynchocoel; rd, rhynchodaeum; st, stomach; s1–s3, neuronal cell somata, type 
1–3; vct, ventral commissural tract; vl, ventral lobe; vp, vascular plug; arrows , proboscidial 
nerves; arrowheads , circulatory system. 
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2.3.2 Molecular phylogeny 
The data set used for the ML analysis consisted of three aligned subsets: COI (580 

nucleotides (nt)), 16S (371nt) and 28S (936nt). The concatenated alignment of all 

markers contained 1886nt. The resulting tree shows the monophyly of all included 

monostiliferous (72%) and polystiliferous hoplonemerteans (99%). The clade which has 

been termed Eumonostilifera based on the bilayered rhynchocoel (Chernyshev 2003c) is 

supported by a bootstrap value of 74%. Within eumonostiliferans, the tree does not give 

a clear resolution concerning Ototyphlonemertidae, Emplectonematidae, and 

Poseidonemertidae. The results show a clear affiliation of Arenogigas armoricus to 

three Poseidonemertes species supported by a bootstrap value of 100% (Figure 2.5). 

Figure 2.4 Arenogigas armoricus gen. et sp. nov., holotype (MNHN-AO-1181-1 to AO-
1181-69, https://www.morphdbase.de/?D_Kraemer_20150722-M-6.1), right half of 
circulatory system, ventral view, snapshot 3d-reconstruction (213 slides). Abbreviations: cl, 
cephalic loop; ecv, extra-cerebral vessel; llv, left lateral vessel; mdv, mid-dorsal blood 
vessel; rc, rhynchocoel; rd, rhynchodaeum; rlv: right lateral vessel. 
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Figure 2.5 Best tree from maximum likelihood analysis (RAxML, GTR + CAT (Stamatakis, 
2014)) of combined 16S rRNA, 28S rRNA, and COI mtDNA. Numbers above branches indicate 
bootstrap percentages (> 70%) from 100 replicates. 
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2.4 Discussion 
The new species Arenogigas armoricus possesses an anteriorly bilayered 

longitudinal muscle layer separated by connective tissue that is interspersed with a 

profusely branched blood vascular system. Although the extension of the rhynchocoel 

along the body length could not be determined in the specimen described it is obvious 

that the insertion of the proboscis is formed by longitudinal fibers that are exclusively 

derived from the inner layer of the split longitudinal musculature (i.e. a precerebral 

septum is absent sensu Kirsteuer, 1974). The species possesses a short intestinal cecum 

with one pair of comparably short lateral diverticula at the level of the insertion of the 

pylorus into the intestine. The number of proboscis nerves in the anterior chamber of the 

proboscis amounts to 10 and there are nine accessory stylet pouches in the analyzed 

specimen. Among monostiliferous hoplonemerteans an anteriorly divided longitudinal 

muscle layer is present in only a small number of species (Kajihara et al. 2001) most of 

which have been classified as Poseidonemertidae (Chernyshev 2002a, 2005). Although 

there is some reservation concerning the monophyly of Poseidonemertidae 

(Chernyshev, pers. comm.) the division of the longitudinal musculature by a layer of 

connective tissue has been regarded as an apomorphic character of this family 

containing the mostly monotypic genera Alaxinus, Aenigmanemertes, Correanemertes, 

Diopsonemertes, Fasciculonemertes, Diplomma, Poseidonemertes, Tetranemertes, 

Kirsteueriella, and the species ‘Paranemertes’ californica (Chernyshev 2002a; Kajihara 

et al. 2011). In the members of the ‘Amphiporus hastatus group’, which have 

provisionally been assigned to Poseidonemertidae the type of tissue separating the 

longitudinal muscle layers is unknown (Kajihara et al. 2001; Chernyshev 2005). 

The result of our molecular analysis clearly shows a robustly supported (bootstrap 

value = 100), close affinity of A. armoricus to the majority of the poseidonemertid 

representatives included in the analysis (Poseidonemertes collaris, Poseidonemertes sp. 

349, and Poseidonemertes sp. 508). The only other poseidonemertid representative 

(Poseidonemertidae 2011, provided by A. V. Chernyshev) does not unambiguously 

form a monophyletic assemblage with the Poseidonemertes clade. For the following 

reasons, however, the result of the molecular analysis has to be taken with considerable 

reservation: (1) The species included in the analysis are restricted to three members of 
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the type genus (Poseidonemertes) and an allegedly non-congeneric poseidonemertid 

species (Poseidonemertidae 2011). The taxon sampling thus only represents a small 

fraction of the putative poseidonemertid radiation. On the other hand, this result 

underpins the notion of Chernyshev (pers. comm.) that Poseidonemertidae are 

potentially non-monophyletic. (2) No representative species of the remaining genera 

included in Poseidonemertidae (sensu Chernyshev, 2002) were included in the analysis. 

This makes statements about potential closer affiliations to any of the remaining 

poseidonemertid genera impossible. (3) The high number of poorly supported nodes and 

the incongruence of the tree topology with published results re- illustrates the recently 

identified limits of the molecular markers used (Andrade et al. 2012). Thus, drawing 

conclusions merely based on molecular data has to be regarded as premature. Instead, 

the limited taxon sampling regarding poseidonemertid species only allows for stating an 

affiliation of A. armoricus with Poseidonemertidae, thus providing additional support 

from molecular data to the conclusions drawn from the presence of a split longitudinal 

muscle layer that is separated by connective tissue (Kajihara et al. 2001; Chernyshev 

2005). From a taxonomic point of view, an affiliation of A. amoricus to 

Poseidonemertes seems unwarranted, due to several morphological differences between 

this genus and A. armoricus, which include the absence of a precerebral septum and a 

profusely branched blood vascular system that are not present in the genus 

Poseidonemertes. In poseidonemertid genera, a strongly branched vascular system as 

seen in A. armoricus has only been reported in Kirsteueriella biocellata (Coe, 1944), 

‘Paranemertes’ californica Coe, 1904, and two members of the ‘Amphiporus hastatus 

group’: Amphiporus hastatus McIntosh, 1874 and Amphiporus korschelti Friedrich, 

1940 (Kirsteuer 1974; Kajihara et al. 2001; Chernyshev 2002a). Of these, only A. 

korschelti, K. biocellata, and P. californica correspond to A. armoricus in possessing a 

proboscis insertion exclusively formed by fibers of the inner layer of the longitudinal 

muscle layer (precerebral septum is absent sensu Kirsteuer, 1974). In addition to the 

endobenthic life-style within sandy substrates, A. armoricus shows morphologically 

more similarities to K. biocellata and P. californica. The eyes are located at the extreme 

tip of the head, deeply embedded in the head musculature and the small, sack- like 

cerebral organs are positioned far anterior to the brain. A short intestinal cecum with a 

single pair of diverticula which arise from the junction of the pylorus and intestine and 
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the lack of cecal pouches, as observed in A. armoricus has also been reported for K. 

biocellata (Coe 1944). For P. californica, the cecum is reported to exhibit few pairs of 

cecal pouches although it does not become entirely clear how many pairs are located 

anterior of the junction of pylorus and midgut (Coe, 1904, 1905). The presence of 10 

proboscis nerves, a much thicker connective tissue layer separating the longitudinal 

muscle layers, a more profusely branched blood vascular system in which main vessels 

are indiscernible, and the comparably large size of A. armoricus; however, represent 

distinct differences from the respective characters reported in K. biocellata (Coe, 1944). 

The number of proboscis nerves, the thickness of the connective tissue layer, the degree 

of branching of the blood vessels, and the large body size are rather in accordance to 

what has been described and illustrated in P. californica (Coe, 1904). P. californica and 

A. armoricus on the other hand, differ regarding the amount of accessory stylet pouches. 

Whereas a maximum number of six has been described in P. californica, nine can be 

found in the new species (Coe 1904, 1905). Based on our observations we conclude that 

A. armoricus anatomically corresponds most closely to P. californica. Contrastingly, 

the phylogenetic analysis conducted in this study shows no close relation of the new 

species to Paranemertes peregrina Coe, 1901, the type species of the genus 

Paranemertes. An assignment to this genus has therefore to be regarded as problematic. 

As already concluded by Kirsteuer (1974), some Paranemertes species differ from the 

type species of this genus, Paranemertes peregrina, by having an anteriorly divided 

longitudinal musculature and should therefore be excluded from the genus 

Paranemertes. Chernyshev (2002) transferred ‘Paranemertes’ biocellatus Coe, 1944 to 

a newly established genus, Kisteueriella, but did not include P. californica in it. 

Although arguments for this decision are not explicitly stated in the text the differences 

between K. biocellata and P. californica regarding the extend of connective tissue 

separating the longitudinal muscle layers in the anterior region and the degree of 

branching of the blood vessels in the same region are considered valid to support this 

decision. Since for neither Kirsteueriella nor Paranemertes species with a divided 

longitudinal musculature, molecular data are available an assignment of A. armoricus to 

either of these genera based on molecular evidence is impossible. Furthermore, the 

poorly resolved status of Poseidonemertidae including several species inquirendae and 

the lack of broad coverage in molecular data do not permit for any well founded 
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hypotheses on the evolution and hence the systematics of this taxon to be stated. In the 

past this lack of information has led to generic and familial assignments that have 

turned out to be incorrect from a phylogenetic point of view (Maslakova et al. 2005; 

Andrade et al. 2012; Kvist et al. 2014). It is likely that this also holds true for P. 

californica, the species A. armoricus corresponds to most closely. As pointed out by 

Chernyshev (2002) the former species should not be assigned to the genus 

Paranemertes but is rather a member of Poseidonemertidae. Nevertheless, we refrain 

from revising the status of P. californica until more data, particularly molecular 

markers, are available.  

Due to the unique composition of characters found in A. armoricus and the lack of 

molecular data from the majority of poseidonemertid genera we consider the erection of 

a new species and genus (viz. Arenogigas armoricus gen. et sp. nov.) as inevitable. 

Although the decision of erecting a new genus contributes to the inflation of the number 

of monotypic genera within Nemertea, we consider this necessary for the reasons stated 

above and are confident that some poseidonemertid species, presently considered as 

species inquirendae, will be assigned as members of the genus Arenogigas in the future. 
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Abstract 

Lineus ruber (Müller, 1774) and Lineus viridis (Müller, 1774) are among the longest 
known and most abundant intertidal nemertean species found on both sides of the North 
Atlantic. Due to easy maintenance in captivity, both species have been well studied 
concerning morphology, reproduction, development and ecology. Originally described 
as two separate species in the 18th century, they were subsequently synonymised and 
considered colour varieties of a single species. It was not until the mid-20th century that 
complementary redescriptions, including information on reproduction and development, 
re-established the specific identities of L. ruber and L. viridis. With the advent of 
molecular markers in nemertean systematics, however, doubt was again cast on their 
specific identities. To solve one of the longest standing problems in nemertean 
systematics, we assembled a comprehensive data set combining external morphology 
and three genetic markers (mitochondrial cytochrome c oxidase subunit I, 16S rRNA 
and nuclear internal transcribed spacer region) from 160 specimens of L. ruber and L. 
viridis collected at six sampling sites along the continental coast of 
Western Europe. The data set was analysed with tree-based and non-tree-based species 
delimitation methods. The results from all methods used confidently delimit three 
separate clades. A distinct barcoding gap was detected in our data set which thus 
provides a framework to unequivocally identify specimens as members of any of the 
three species. Comparison of our findings with published data enables us to assign one 
lineage to L. ruber and one to L. viridis. We designated neotypes for both species. The 
third clade is very similar to L. viridis, only distinguishable by a conspicuous, iridescent 
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ventral fold in some male specimens This lineage shows a syntopic distribution along 
western European coasts and represents a species new to science and is described as 
Lineus clandestinus sp. n. based on its external characters and the analyses of the 
molecular data provided in this study.  
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3.1 Introduction 
Nemertea (Rhynchocoela) is a clade of unsegmented, mostly marine spiralian worms 

that comprises approximately 1300 described species (Gibson 1995; Kajihara et al. 

2008). As vagile nocturnal predators equipped with a venomous, eversible proboscis, 

they are suspected to elicit a major predatory influence on respective local prey 

communities (McDermott & Roe 1985; Thiel & Reise 1993; Thiel 1998; Thiel & Kruse 

2001; Caplins et al. 2011; Whelan et al. 2014; and references therein). Its putative basal 

position within Trochozoa gives Nemertea a key role for the understanding of the 

evolution of Spiralia (Haszprunar 1996; Turbeville 2002; Edgecombe et al. 2011). 

Thus, nemertean species represent interesting, though until today largely neglected, 

objects of study in several disciplines of biology including morphology, ecology, 

physiology, genetics, evolutionary development and phylogenetics. 

The heteronemertean species Lineus ruber (Müller, 1774) and Lineus viridis 

(Müller, 1774) are among the most abundant and most widespread nemertean species 

with a circumpolar distribution in the Northern Hemisphere (Gibson 1982, 1995). They 

have been well investigated regarding many aspects of nemertean biology (Rogers et al. 

1995a and references therein; McDermott 2001; von Döhren & Bartolomaeus 2006, 

2007; Beckers et al. 2011; von Döhren 2011; von Döhren et al. 2012; Martín-Durán et 

al. 2015). However, historically there has been much uncertainty about the identity of 

these species. Although each having been originally described as distinct species they 

have long been considered colour varieties, synonymised as either L. ruber or L. 

gesserensis (Gibson 1995). This has to be accredited to the original description by 

Müller which does not contain sufficient information about diagnostic characters or type 

localities for either species (Müller 1774; Gibson 1982, 1995). It was not until the 20th 

century when the two species were separated independently by Schmidt (Schmidt 1964, 

for an English list and summary of the preceding publications) and Gontcharoff ( 1951, 

1959, 1960) based not only on colouration but also on distinct differences in 

reproduction biology and life-history strategies. With her comprehensive studies in 

Roscoff, France, Gontcharoff (1951, 1959, 1960) provided complementary descriptions 

of L. ruber and L. viridis making delimitation and identification of the two species 

possible. Although no official neotype material was deposited, reference to these two 
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Lineus species was subsequently made based on the findings of Gontcharoff (1951) 

(Gibson 1995). 

Even though having been successfully employed to detect and delimit new, 

cryptic species in various nemertean taxa (Strand & Sundberg 2005a; Sundberg et al. 

2009b, 2010; Chen et al. 2010; Fernández-Álvarez & Machordom 2013; Leasi & 

Norenburg 2014; Alfaya et al. 2015; Hao et al. 2015; Kang et al. 2015), more recently 

employed methods of molecular systematics have remained inconclusive regarding the 

specific identities of L. ruber and L. viridis. While data on several isoenzyme loci in 

animals from France, Great Britain and the United States detected a third species among 

European L. ruber and L. viridis specimens (Rogers et al. 1995), comparative data on 

the 16S rRNA gene from Scandinavian and British specimens again advocated 

synonymy of L. viridis with L. ruber (Sundberg & Saur 1998). 

The present study aimed to resolve this long-standing problem with a combined, 

multiple method approach and a dense, comprehensive specimen sampling. To gain 

information on distribution and genetic population structure in Europe, collecting was 

conducted at the north and northwest coasts of France and the German North Sea coast. 

We performed phylogenetic analyses based on gene fragments of the cytochrome c 

oxidase subunit I (COI), 16S rRNA (16S) and the nuclear internal transcribed spacer 

region (ITS). The COI data set was further subjected to several tree-based and non-tree-

based species delimitation methods to identify the number of species among the 

sampled specimens (for other nemertean species, compare: Sundberg et al. 2009b; Chen 

et al. 2010; Kvist et al. 2014; Leasi & Norenburg 2014; Alfaya et al. 2015; Faasse & 

Turbeville 2015; Hao et al. 2015; Kang et al. 2015). Our results show a separation of 

the sampled specimens into three distinct clades of which two can be assigned with high 

confidence to either L. ruber or L. viridis sensu Gontcharoff (1951). The third clade 

represents a species new to science and is herein described as Lineus clandestinus sp. n. 
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3.2 Material and Methods 

3.2.1 Specimens and sampling sites 
One hundred and sixty specimens were collected during 2010 and 2013 from six 

localities from the north and northwest coasts of France (Concarneau, Île de Groix, 

Roscoff, Wimereux), and the German North Sea coast (Helgoland, Sylt) (Figure 3.1, 

Appendix II: Supplementary Table 3). All nemerteans were collected during low tide 

beneath rocks and stones lying on sand or shell gravel. For identification, individuals 

were anaesthetised in 7% MgCl2 mixed with sea water at equal volumes and 

photographed with a digital camera (Canon EOS 600D) mounted on a dissection 

microscope (Zeiss Stemi 2000). A tissue sample of each individual was preserved in 

absolute EtOH (99.9%) for DNA extraction, whereas the anterior ends of some 

individuals were fixed in Bouin’s solution for histological cross-sectioning (azan 

staining). Specimens were classified into L. ruber and L. viridis based on their 

colouration according to the description given by Gontcharoff (1951). Specimens of 

Ramphogordius sanguineus (Rathke, 1799) and Riseriellus occultus, Rogers et al. 1993 

that were used as out-group species in the phylogenetic analyses were collected at 

Concarneau in 2012 and 2011, respectively. All specimens were identified based on 

differences in their behaviour when disturbed as described by Gontcharoff (1951) and 

Rogers et al. (1993). Specimen IDs used herein were created as follows: pre-

identification of species (Lv, L. viridis; Lr, L. ruber; Ro, R. occultus; Rs, R. 

sanguineus), a sequential number, abbreviation of the sample site (Con, Concarneau; 

Hl, Helgoland; Idg, Île de Groix; Rsc, Roscoff; Sy, Sylt; Wi, Wimereux) and the last 

two digits of the year of sampling (Appendix II: Supplementary Table 3). 

 

3.2.2 Nucleic acid purification and PCR amplification 
DNA was extracted with DNeasy Blood and Tissue kit (Qiagen®) following the 

manufacturer’s instructions. Three loci were amplified: the partial COI and 16S rRNA 

and ITS (ITS1, 5.8S rDNA and ITS2). All primers used for the amplification and 

sequencing reactions are listed in Appendix II: Supplementary Table 4 (Folmer et al. 

1994; Palumbi 1996). For COI and 16S, either TaKaRaTM Ex Hot Start polymerase or 
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Hot-Master Taq polymerase (InvitrogenTM) was used. Polymerase chain reactions 

(PCRs) for ITS were performed with TaKaRaTM LA Hot Start polymerase. Thermal 

cycling was initiated with 2 min at 94 °C, followed by 40 cycles (30 s at 94°C, 60 s at 

53 °C (COI/ITS)/51°C (16S) and 60 s at 72°C), and terminated with a 2-min final 

elongation at 72°C. PCR products were purified with NucleoSpin® Extract II-Kit 

(MACHEREY-NAGEL GmbH & Co. KG) following the instructions of the 

manufacturer. Purified PCR products were sent to LGC Genomics© for Sanger 

sequencing, using forward and reverse primers for sequencing (Sanger et al.  1977). The 

entire data set is deposited in GenBank with specimen IDs and accession numbers for 

COI, KM878335–KM878496; 16S, KM878497– KM878518; and ITS, KM878519–

KM878539 (Appendix II: Supplementary Table 3).  

 

3.2.3 Sequence analysis 
Sequences were edited with BioEdit version 7.0.9. and aligned using MAFFT version 7 

with G-INS-I strategy using default parameters: scoring matrix for nucleotide sequences 

of 200PAM/K = 2; gap opening penalty of 1.53; and offset value of 0.0 (Hall 1999; 

Andrade et al. 2012; Katoh & Standley 2013). The amount of heterozygotes within the 

ITS region was below 1%. Sites containing ambiguous information were excluded. 

 

3.2.4 Non-tree-based species delimitation 
To assess the composition and number of species, pairwise distances were calculated 

using uncorrected p-distances implemented in MEGA version 5.2.1 based on the COI 

gene of all collected L. ruber and L. viridis specimens (Tamura et al. 2011). 

A haplotype network was estimated using statistical parsimony implemented in 

TCS version 1.21 with the connection limit set to 95% (Templeton et al. 1992; Clement 

et al. 2000; Hart & Sunday 2007) which is the most commonly threshold used for COI 

sequences of nemerteans (see Sundberg et al. 2009b; Chen et al. 2010; Kang et al. 

2015). 
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A barcoding gap was identified using the Automatic Barcode Gap Discovery 

(ABGD) (Puillandre et al. 2012). The nucleotide divergence threshold (NDT) was set to 

95% and applied to the COI alignment using the R-script written by Tang et al. (2012). 

 

3.2.5 Phylogenetic analyses and tree-based species delimitation 
For phylogenetic analyses based on the combined COI (523nt), 16S (431nt) and ITS 

(1006nt) data, five Lineus ruber and 15 Lineus viridis were selected to represent all 

sample sites and the most frequent haplotypes of each group/network detected by non-

tree-based species delimitation methods. Additionally, COI and 16S data were 

combined with sequence data taken from GenBank (Appendix II: Supplementary Table 

5), whereas ITS was analysed separately. Phylogenetic trees were reconstructed using 

maximum likelihood (ML) based on the general time-reversible model and a gamma 

distribution with a proportion of invariant sites (GTR+G+I) implemented in MEGA 

version 5.2.1 (Nei & Kumar 2000; Tamura et al. 2011). The model for phylogenetic 

reconstruction was selected by MrModeltest version 2.3 based on the Akaike 

information criterion (Nylander 2004). Branch support was estimated using 500 

bootstrap replicates. Bootstrap values ≥ 80% were considered robust support. Riseriellus 

occultus was used for out-group rooting. 

To test for the number of species obtained by non-treebased methods, the 

Bayesian implementation of the Poisson tree process model (bPTP) for species 

delimitation (Zhang et al. 2013) was applied to the COI data set. Therefore, a 

phylogenetic input tree was reconstructed based on the complete COI data set (161 

sequences, 523nt) with the settings outlined above. 

 

3.3 Results 

3.3.1 Specimen numbers per sampling site 
A total of 160 Lineus ruber and Lineus viridis specimens were collected at six sampling 

sites. Larger numbers of specimens were collected from Sylt, Germany (n = 72), 

Roscoff, France (n = 44), and Wimereux, France (n = 21), while the remaining sample 

sites together contribute only approximately 17% of the analysed specimens to the 
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analyses: Helgoland, Germany (n = 9); Île de Groix, France (n = 8); and Concarneau, 

France (n = 6) (Figure 3.1, Appendix II: Supplementary Table 3). 

 

 
Figure 3.1 Map showing sampling sites in Europe and total number of collected specimens for 
each species 

 

3.3.2 Distribution and non-tree-based species delimitation 
We obtained COI sequences for each collected specimen (160 sequences) which 

resulted in an alignment of 523nt in length. The statistical parsimony analysis of the 

COI data set under the 95% connection limit yields three unconnected haplotype 

networks (Figure 3.2, Appendix II: Supplementary Table 3). While in two networks 

body colouration of the specimens varies over a considerably wide range of green to red 
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shades, the remaining network contains only specimens with red to reddish-brown 

pigmentation (Figure 3.8, Figure 3.9). The latter network is therefore assigned to L. 

ruber, according to the description given by Gontcharoff (1951) (Figure 3.2 C, Figure 

3.8 B). Specimens exhibiting the dark green colour that has been described for L. viridis 

by Gontcharoff (1951) were only found in one of the remaining networks. As a 

consequence, this network is termed L. viridis (Figure 3.2 A, Figure 3.8 A). The third 

network contains specimens with highly variable body colouration but also individuals 

with a conspicuous ventral fold. The latter are exclusively found in this network which 

is termed Lineus clandestinus sp. n. (for description see below) (Figure 3.2 B, Figure 

3.9 A, B). 

The L. ruber network includes 37 specimens (approx. 23% of all collected 

specimens) representing nine different haplotypes (Figure 3.2 C). All specimens of this 

network were collected at French sampling sites, with 70% of the specimens grouped in 

this network originating from Roscoff. There is a single, highly frequent haplotype 

found in 19 of 37 specimens, two medium-frequency haplotypes found in four and six 

specimens, respectively, and six low-frequency haplotypes, two of which represented by 

two specimens and four represented by one specimen. Most of the haplotypes are 

interconnected by a single mutational step. Only one haplotype found in a single 

specimen from Roscoff is separated by three substitutions from its nearest neighbouring 

haplotype (Figure 3.2 C). 

The L. viridis network contains 82 specimens (approx. 51% of all collected 

specimens) in 16 distinct haplotypes from all locations except the southernmost 

sampling site, Île de Groix (Figure 3.2 A). There are three highly frequent haplotypes 

detected in 10, 20 and 21 specimens, respectively. Three haplotypes with medium 

frequency are present in four, six and eight specimens. Ten haplotypes show a low 

frequency with two haplotypes occurring in two specimens each while the remaining 

eight have been found in only a single specimen. Most haplotypes are separated from 

the closest neighbouring haplotype by a single nucleotide substitution. One haplotype 

found in a specimen from Wimereux is separated from the next by two mutational steps, 

while another haplotype found in one specimen from Roscoff is separated from the 

nearest haplotype by three substitutions (Figure 3.2 A). 
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The L. clandestinus network contains 41 specimens (approx. 32% of all 

collected specimens) from all of the six sampling sites (Figure 3.2 B). This network 

comprises five haplotypes. The vast majority of 32 specimens (78%) originate from 

Sylt. In this haplotype network, there is a single dominant highly frequent haplotype 

present in 36 specimens (90%). One haplotype was found in two specimens while the 

remaining three haplotypes are represented by one specimen each. The lowest frequency 

haplotypes are separated from the dominant haplotype by one mutational step (Figure 

3.2 B). 

When comparing the three networks, the least population structure is seen in the 

L. clandestinus with five haplotypes and 88% of the specimens showing the same 

haplotype. In L. viridis, there are 16 haplotypes of which the three most frequent 

haplotypes have been found in 25%, 24% and 13% of the specimens comprising the 

network. Regarding genetic population structure, the L. ruber network is slightly less 

structured than the network of L. viridis with nine haplotypes and 51% of the specimens 

exhibiting the most frequent haplotype; 53 mutational steps are needed to connect L. 

viridis and L. clandestinus. The resulting haplotype network is connected to the L. ruber 

network via 62 mutational steps (data not shown). 

The ABGD and NDT also identified three groups within the COI data set (Table 

3.2). Pairwise distances reveal low intraspecific divergences varying from 0% to 1.53% 

in L. virdis, 0% to 0.96% in L. ruber and 0% to 0.38% in L. clandestinus. Thus, 

differences in genetic population structure of the haplotype networks are also reflected 

in the intraspecific variation in the uncorrected p-distance values. Interspecific 

uncorrected p-distances are highest between L. viridis and L. ruber with 12.95% to 

14.15%, and lowest between L. viridis and L. clandestinus with 10.71% to 11.47% 

sequence divergence. Pairwise distances between L. clandestinus and L. ruber show 

divergences varying from 11.85% to 12.62% (Table 3.1). 
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Table 3.1 Summary of uncorrected p-distances (%) for all COI sequences. 

 L. viridis L. ruber L. clandestinus R. sanguineus 
L. viridis 0-1.53    
L. ruber 12.95-14.15- 0.-0.96   
L. 
clandestinus 

10.71-11.47 11.85-12.62 0-0.38  

R. sanguineus 15.11-15.87 14.34-14.91 15.11-15.30 - 
R. occultus 17.02-17.59 15.87-16.44 15.30-15.49 16.25 
 

Table 3.2. Number of entities (#E)/haplotypes (#H) obtained by tree-based, non-tree-based 
species delimitation, and phylogenetic analyses. 

TCS 
ABGD NDT ML bPTP 

#E:3 
#H:  
L. clandestinus: 5 
L. ruber: 9 
L. virdis: 16 #E: 3 #E 3 #E: 3 

Estimated #E: 3-20 (Ø: 4.79) 
Accptance rate: 0.41588 
Merge: 50096  
Split: 49904  
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Figure 3.2 The statistical parsimony haplotype network based on the mitochondrial DNA 
cytochrome c oxidase subunit I gene for (A) 82 Lineus viridis, (B) 41 Lineus clandestinus and 
(C) 37 Lineus ruber specimens, coloured by geographic distribution. The connecting limit is set 
to 95%. Minimal distance between L. viridis and L. clandestinus: 53 steps, L. clandestinus and 
L. ruber: 62 steps. An empty line connecting haplotype pie charts represents a single mutational 
change; each black dot on a line represents one additional mutational change. Numbers within 
pie charts represent the number of specimens within each haplotype. Specimen IDs indicate 
museum material and specimens used for the phylogenetic analyses. 
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3.3.3 Phylogenetic analyses and tree-based species delimitation 
The maximum-likelihood analysis of the complete COI data set shows the analysed 

specimens contained in three separate lineages that all have highly robust nodal support 

(bootstrap value: 99%). The out-group species, Ramphogordius sanguineus (Rs1Con12) 

and Riseriellus occultus (Ro1Con11), group outside of the Lineus lineage. Two of the 

lineages, L. viridis and L. clandestinus, are more closely related to moderately robust 

nodal support (bootstrap value: 89%). The third lineage, L. ruber, is sister to the other 

two clades with slightly less robust nodal support (bootstrap value: 73%) (Figure 3.3). 

Included published sequence data assigned to L. viridis or L. ruber (HQ858579, 

FJ839919, EF124970, EF124974, AJ436936, KC812596, KC812597 and GU392024) 

show affiliation to L. viridis, whereas L. ruber specimens (DQ911370, KC812595) from 

the UK and Chile group with R. sanguineus (Rs1Con12) (Sundberg & Saur 1998; 

Thollesson & Norenburg 2003; Sundberg & Strand 2007; Schwartz 2009; 

Podsiadlowski et al. 2009; Strand & Sundberg 2011; Andrade et al. 2012; Strand et al. 

2014). Only one specimen from the UK which was identified as L. ruber (KC812602) 

groups within the clade labelled as L. ruber (Figure 3.4, Appendix II:Supplementary 

Table 5) (Strand et al. 2014). 

The phylogenetic analysis based on 431-nt- long alignment of 16S resulted in 

robust nodal support values for L. viridis (100%), L. clandestinus (94%) and L. ruber 

(99%) (Figure 3.5). The sister group relationship of L. viridis and the new species is 

robustly supported with a bootstrap value of 99%. Specimens assigned to L. viridis from 

the USA (EF124886) group with individuals from L. viridis, as already shown by our 

COI analysis (EF124974, Figure 3.5). Specimens from Sweden which had been 

identified as L. ruber based on the reddish colouration group with either L. viridis 

(AF103759) or L. clandestinus (AF103758). L. ruber from Wales (DQ911371), which 

is identical to L. ruber DQ911370 used for the COI analysis, groups with R. sanguineus 

(Rs1Con12), that is congruent with our phylogenetic analysis based on COI. The only 

GenBank sequence from L. ruber grouping with L. ruber individuals of the present 

study originates from a specimen collected in Wales (AF103757) (Figure 3.4, Figure 

3.5, Appendix II:Supplementary Table 5). 

The ITS alignment has a length of 1006 nucleotides and shows an identical 

topology with an identical composition of specimens as the COI- and 16S-based trees: 
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the analysed specimens cluster in the same three major clades (Figure 3.6). Nodal 

support for each clade is highly robust (each bootstrap value: 100%). The sister group 

relationship of L. viridis and L. clandestinus shows lower nodal support than in the 

phylogenetic analysis of the COI alignment (bootstrap value: 66%) (Figure 3.6). 

The phylogenetic analysis of the combined data set including COI, ITS and 16S 

of the sampled specimens iterates the results from the analyses of the isolated markers 

both in topology and in specimen composition, albeit with generally higher nodal 

support values. The bootstrap support is 100% each for lineages of L. viridis, L. 

clandestinus and L. ruber. The sister group relationship of L. viridis and L. clandestinus 

is supported with a bootstrap value of 95% (Figure 3.7). 

Results from the bPTP approach slightly differ from all other results and 

suggested 3–20 (mean 4.79) independent entities (Table 3.2). 

Results from all methods applied analyses clearly support the existence of L. 

clandestinus as the third species within the L. ruber/viridis species complex. We 

describe L. clandestinus sp. n. and designate neotypes for L. ruber and L. viridis as there 

is no type material available for both species. We base the descriptions on external 

characters and DNA sequences of the type material (deposited at the Göteborgs 

Naturhistoriska Museum (GNM), MorphDBase and GenBank) and additional examined 

specimens (deposited at GenBank). 
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Figure 3.3 Maximum likelihood tree of all Lineus ruber, Lineus viridis, Lineus clandestinus, 
and Ramphogordius sanguineus specimens specimens based on COI mtDNA (162 sequences). 
Numbers above nodes indicate bootstrap support from 500 replicates for each clade. Inner 
resolutions are not shown due to low bootstrap support. Riseriellus occultus (Ro1Con11) was 
used for outgroup rooting. 
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Figure 3.4 Maximum likelihood tree of selected Lineus ruber, Lineus viridis, Lineus 
clandestinus, and Ramphogordius sanguineus specimens based on COI mtDNA. Numbers 
above nodes indicate bootstrap support from 500 replicates for each clade. Inner resolutions are 
not shown due to low bootstrap support. Riseriellus occultus (Ro1Con11) was used for outgroup 
rooting. Bold type indicates material deposited at GNM. 
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Figure 3.5 Maximum likelihood tree of selected Lineus ruber, Lineus viridis, Lineus 
clandestinus, and Ramphogordius sanguineus (Rs1Con12) specimens based on 16S rRNA. 
Numbers above nodes indicate bootstrap support from 500 replicates for each clade. Inner 
resolutions are not shown due to low bootstrap support. Riseriellus occultus (Ro1Con11) was 
used for outgroup rooting. Bold type indicates material deposited at GNM.  
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Figure 3.6 Maximum likelihood tree of selected Lineus ruber, Lineus viridis, and Lineus 
clandestinus specimens based on ITS rRNA. Numbers above nodes indicate bootstrap support 
from 500 replicates for each clade. Inner resolutions are not shown due to low bootstrap 
support. Riseriellus occultus (Ro1Con11) was used for outgroup rooting. Bold type indicates 
material deposited at GNM.  
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Figure 3.7 Maximum likelihood tree of selected Lineus viridis, Lineus clandestinus and Lineus 
ruber specimens based on combined COI mtDNA, 16S rRNA, and ITS rRNA. Riseriellus 
occultus (Ro1Con11) was used for outgroup rooting. Numbers above nodes indicate bootstrap 
support from 500 replicates for each clade. Inner resolutions are not shown due to low bootstrap 
support. Bold type indicates material deposited at GNM.  
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3.3.4 Taxonomy 
Family LINEIDAE McINtosh, 1873-1874 

Genus Lineus Sowerby, 1804 

 

Lineus ruber 

For list of synonyms see Bürger 1904 (p. 101) and Gibson 1995 (pp. 373–374) 

Neotype designated here. FRANCE Roscoff intertidal zone in front of marine 

biological station (48°43041.59″N 3°59020.73″W), lower intertidal during diurnal low 

tide, coarse sediment underneath stones, tissue in ethanol (GNM Nemertinea 

147/Lr7Rsc12 (Figure 3.8 B), GenBank accession number: KM878482 (COI)). 

Voucher material. FRANCE Roscoff intertidal zone in front of marine biological 

station (48°43041.59″N 3°59020.73″W), lower intertidal during diurnal low tide, coarse 

sediment underneath stones, tissue in ethanol (GNM Nemertinea 148/Lr4Rsc12 (Figure 

3.8 B), GenBank accession number: KM878464 (COI); 

Sixty-one slides of histological transverse sections, anterior part of specimen sliced until 

nephridial, system, 5 µm, azan staining (GNM Nemertinea 149/Lr6Rsc10, first 52 

slides: www.morphdbase.de/?D_Kraemer_20160122-S-3.1). 

Other material. Roscoff intertidal zone in front of marine biological station 

(48°43041.59″N 3°59020.73″W), lower intertidal during diurnal low tide, coarse 

sediment underneath stones, histological transverse sections, anterior part of specimen 

sliced until nephridial system, 5 lm, azan staining 

(www.morphdbase.de/?D_Kraemer_20160125-S-7.1); 

FRANCE Roscoff intertidal zone in front of marine biological station (48°43041.59″N 

3°59020.73″W), lower intertidal during diurnal low tide, coarse sediment underneath 

stones, 23 specimens with sequence data deposited at GenBank (Appendix II: 

Supplementary Table 3); 

FRANCE Wimereux, Pointe aux Oies (50°45046.47″N 1°3601.52″E), intertidal zone 

during diurnal low tide in front of marine biological station, three specimens with 

sequence data deposited at GenBank (Appendix II: Supplementary Table 3); 
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FRANCE Concarneau, Cabellou Plage (47°51019.08″N 3°54058.55″W), intertidal 

zone, coarse sediment underneath stones during diurnal low tide, one specimen from 

Concarneau with sequence data deposited at GenBank (Appendix II: Supplementary 

Table 3); 

FRANCE Île de Groix, Pointe Saint-Nicolas (47°37043.85″N 3°29011.15″W), upper 

littoral during diurnal low tide, four specimens with sequence data deposited at 

GenBank (Appendix II: Supplementary Table 3). 

 

Description. Length 14 mm to 43 mm (mean 23 mm), width 1 mm. Body characterised 

by brown to red shades. Ventral side always lighter in colouration, slightly translucent: 

gastric pouches visible through body wall. Head bluntly pointed with triangular-shaped 

pigmentation (Figure 3.8 B, Lr8Rsc10). Brain distinguishable as reddish bilobed 

structure through dorsal and ventral body wall (Figure 3.8 B, GNM Nem. 147/ 148). 

Mouth appearing as whitish slit, positioned behind cephalic lobe and brain (Figure 3.8 

B, GNM Nem. 147). Eyes situated at lateral margins of pigmented part of cephalic lobe 

(Figure 3.8 B, GNM Nem. 148, Lr8Rsc10, Lr4Wi12, Lr12Rsc11). Variable number of 

ocelli (four to 13) unequally distributed on each side (Figure 3.8 B). Visibility of eyes 

and brain depending on pigmentation; in darkly pigmented individuals, eyes and brain 

not distinguishable (Lr1Con13). Sexually mature specimens with dorsally flattened 

body, without modified ventral side (Figure 3.8 B, GNM Nem. 147). 

 

Lineus viridis 

For list of synonyms see Bürger 1904 (p. 104) and Gibson 1995 (p. 374) 

 

Neotype designated here. FRANCE Roscoff intertidal zone in front of marine 

biological station, lower intertidal during diurnal low tide (48°43041.59″N 

3°59020.73″W), coarse sediment underneath stones, tissue in ethanol (GNM 

Nemertinea 142/Lv2Rsc12 (Figure 3.8 A), GenBank accession number: KM878416 

(COI)). 
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Voucher material. FRANCE Wimereux, Pointe aux Oies (50°45046.47″N 

1°3601.52″E), intertidal zone during diurnal low tide in front of marine biological 

station, cephalic region of juvenile in ethanol (GNM Nemertinea 143/ Lv1Wi12 (Figure 

3.8 A), GenBank accession numbers: KM878399 (COI), KM878513 (16S), KM878522 

(ITS)); 

Whole female except for small part from posterior end used for DNA extraction (GNM 

Nemertinea 144/ Lv6Wi12 (Figure 3.8 A), GenBank accession number: KM878396 

(COI)); 

Whole female except for small part from posterior end used for DNA extraction (GNM 

Nemertinea 145/ Lv7Wi12, GenBank accession number: KM878396 (COI)); 

FRANCE Roscoff intertidal zone in front of marine biological station (48°43041.59″N 

3°59020.73″W), lower intertidal during diurnal low tide, coarse sediment underneath 

stones, 79 slides of histological transverse sections, anterior region sliced until 

nephridial system, 5 µm, azan staining (GNM Nemertinea 146/Lv1Rsc10, GenBank 

accession number: KM878392 (COI), first 30 slides: www.morphdbase. 

de/?D_Kraemer_20160124-S-6.1). 

Other material. FRANCE Roscoff intertidal zone in front of marine biological station 

(48°43041.59″N 3°59020.73″W), lower intertidal during diurnal low tide, coarse 

sediment underneath stones, 34 slides of histological transverse sections, anterior part of 

female sliced until nephridial system, 5 lm, azan staining (Lv2Rsc10, GenBank 

accession number: KM878387 (COI), www.morphdbase.de/?D_Kraemer_20160120-M-

9.1). 

GERMANY Sylt, ‘Odde Watt’ List (55° 1048.62″N 8°25045.53″E), intertidal zone 

during nocturnal low tide, 40 specimens with sequence data deposited at GenBank 

(Appendix II: Supplementary Table 3); 

GERMANY Helgoland, Helgoländer Sockel (54°110 18.18″N 7°52016.42″E), upper 

littoral during diurnal low tide, eight specimens with sequence data deposited at 

GenBank (Appendix II: Supplementary Table 3); 

FRANCE Wimereux, Pointe aux Oies (50°45046.47″N 1°3601.52″E), intertidal zone 

during diurnal low tide in front of marine biological station, 11 specimens with 

sequence data deposited at GenBank (Appendix II: Supplementary Table 3); 
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FRANCE Roscoff intertidal zone in front of marine biological station (48°43041.59″N 

3°59020.73″W), lower intertidal during diurnal low tide, coarse sediment underneath 

stones, 13 specimens with sequence data deposited at GenBank (Appendix II: 

Supplementary Table 3); 

FRANCE Concarneau, Cabellou Plage (47°51019.08″N 3°54058.55″W), intertidal 

zone, coarse sediment underneath stones during diurnal low tide, four specimens with 

sequence data deposited at GenBank (Appendix II: Supplementary Table 3). 

 

Description. Length from 13 mm up to 71 mm (mean 37 mm), width 1–2 mm. Body 

colouration variable: red, yellow or brownish yellow. Most specimens with dark-green 

colouration and violet hue anteriorly passing off to bright green towards posterior end 

(Figure 3.8 A, GNM Nem. 144/142). Ventral side always lighter in colouration. Brain 

distinguishable as reddish bilobed structure through dorsal and ventral body wall 

(Figure 3.8 A, GNM Nem. 143, Lv37Sy11). Mouth appearing as whitish slit, positioned 

behind cephalic lobe and brain. Number of eyes varying from two to eight, unequally 

distributed at lateral margins of pigmented part of cephalic lobe (Figure 3.8 A, GNM 

Nem. 143). Visibility of eyes and brain depending on pigmentation; in darkly 

pigmented individuals, eyes and brain not distinguishable (Figure 3.8 A, GNM Nem. 

144/142, Lv13Sy11, Lv8Hl10). Sexually mature specimens with dorsally flattened 

body, without modified ventral side (Figure 3.8 A, GNM Nem. 144). 
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Figure 3.8 Life habitus images of selected Lineus viridis and Lineus ruber specimens showing 
color diversity within each cluster. (A) Uppermost specimen showing exclusive dark green 
morphotype of L. viridis followed by specimens and their specimen IDs used in the 
phylogenetic analyses, scales: 1mm. (B) Uppermost specimen showing the red non-exclusive 
morphotype for L. ruber followed by specimens and their specimen IDs used in the 
phylogenetic analyses. Note that some specimens exhibit triangular shaped pigmented head 
(Lr8Rsc10, Lr7Rsc11). Scales: 1mm. 
 

 

Lineus clandestinus sp. n. 

Holotype. FRANCE Wimereux, Pointe aux Oies (50°45046.47″N 1°3601.52″E), 

intertidal zone during diurnal low tide in front of marine biological station, cephalic 

region of female specimen in ethanol (GNM Nemertinea 150/Lv5Wi12 (Figure 3.9 A), 

GenBank accession numbers: KM878454 (COI), KM878533 (ITS), KM878501 (16S)). 

Paratypes. FRANCE Île de Groix, Port Saint-Nicolas (47°37043.85″N 3°29011.15″W), 

upper littoral during diurnal low tide, tissue of female specimen in ethanol (GNM 

Nemertinea 151/Lv7Idg12 (Figure 3.9 D), GenBank accession numbers: KM878438 

(COI), KM878499 (16S), KM878528 (ITS)); 

FRANCE Roscoff, intertidal zone in front of marine biological station (48°43041.59″N 

3°59020.73″W), lower intertidal during diurnal low tide, coarse sediment underneath 

stones, cephalic region of juvenile in ethanol (GNM Nemertinea 152/Lv28Rsc10 

(Figure 3.9 E), GenBank accession numbers: KM878455 (COI), KM878504 (16S), 

KM878529 (ITS)); 

Tissue of female specimen in ethanol (GNM Nemertinea 153/Lv3Rsc12, GenBank 

accession number: KM878457 (COI)); 

GERMANY Sylt, ‘Odde Watt’ List (55° 1048.62″N 8°25045.53″E), intertidal zone 

during nocturnal low tide, 85 slides of histological transverse section, anterior part of 

specimen sliced until nephridial system, 5 lm, azan staining (GNM Nemertinea 

154/Lv56Sy11, GenBank accession numbers: KM878424 (COI), 

www.morphdbase.de/? D_Kraemer_20160123-S-4.1); 

Ventral-fold morphotype: Series of histological transverse sections of mature male. 

Anterior part sliced till gonad region (66 slides) (GNM Nemertinea 155, 

www.morphdbase.de/?D_Kraemer_20160123-S-5.1). 
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Other Material. GERMANY Sylt, ‘Odde Watt’ List (55° 1048.62″N 8°25045.53″E), 

intertidal zone during nocturnal low tide, 32 specimens with sequence data deposited at 

GenBank (Appendix II: Supplementary Table 3); 

GERMANY Helgoland, Helgoländer Sockel (54°11018.18″N 7°52016.42″E), upper 

littoral during diurnal low tide, one specimen with sequence data deposited at GenBank 

(Appendix II: Supplementary Table 3); 

FRANCE Concarneau, Cabellou Plage (47°51019.08″N 3°54058.55″W), intertidal 

zone, coarse sediment underneath stones during diurnal low tide, one specimen with 

sequence data deposited at GenBank (Table S1); 

FRANCE Île de Groix, Pointe Saint-Nicolas (47°37043.85″N 3°29011.15″W), upper 

littoral during diurnal low tide, three specimens with sequence data deposited at 

GenBank (Appendix II: Supplementary Table 3).  

Etymology. The specific name clandestinus is a Latin adjective (concealed, secret) 

referring to the fact that the new species has been concealed among Lineus ruber and 

Lineus viridis for centuries. 

 

Differential diagnosis 

Description. Length from 11 mm to 48 mm (mean 26 mm), width 1 mm. Head bluntly 

pointed with cephalic slits reaching rear of brain. Brain distinguishable as reddish 

bilobed structure through dorsal and ventral body wall (Figure 3.9 A, C–G). Mouth 

appearing as whitish slit, positioned behind cephalic lobe and brain (Fig. 3A). Eyes 

situated at lateral margins of pigmented part of cephalic lobe (Figure 3.9 C, E–G). 

Number of eyes varying from three to seven ocelli, unequally distributed on each side. 

Visibility of eyes depending on pigmentation; in darkly pigmented individuals, eyes not 

distinguishable (Figure 3.9 D). Body colouration variable: red, brown, greenish or 

brownish yellow, therefore barely distinguishable from Lineus ruber or Lineus viridis. 

Some specimens with red head while rest of body greenish or brownish (Figure 3.9 A, 

E). Ventral side always lighter in colouration. Some sexually mature males with ventral 

fold: iridescent, long cilia bearing, concavely shaped-ventral side, gonads visible 

through ventral and dorsal body wall (Figure 3.9 A, B). Ventral fold extending from far 

behind cephalic lobe to caudal end, extending two-thirds of body length (Figure 3.9 A). 
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Figure 3.9 A-G Lineus clandestinus sp. n. Habitus images of holotype, paratypes, and 
specimens used for phylogenetic analyses. (A) L. clandestinus ventral fold morphotype 
(Lv28Sy11) showing extension of ventral fold and holotype (GNM Nemertinea 150/Lv5Wi12). 
(B) detailed view of ventral fold. (C) Anterior end of holotype from Wimereux (GNM 
Nemertinea 150/Lv5Wi12). (D) Anterior end of paratype from Île de Groix (GNM Nemertinea 
151/Lv7Idg12). (E) anterior end of paratype from Roscoff (GNM Nemertinea 152/Lv28Rsc10). 
(F) Anterior end of specimen from Helgoland used for phylogenetic analyses. (G) Anterior end 
of specimen from Concarneau Lv4Con13 used for phylogenetic analyses. Scales: 1mm. 
Abbreviations: br, brain; go, gonads; m, mouth; vf, ventral-fold. 
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3.4 Discussion 

3.4.1  Unravelling the Lineus ruber/viridis species complex: systematic 

implications 
Nemertean species are generally considered to exhibit few specific morphological 

characters, the majority of which have been postulated to be prone to considerable 

homoplasy or intraspecific variation (Sundberg & Svensson 1994; Schwartz & 

Norenburg 2001; Sundberg & Strand 2010; Kvist et al. 2014). Therefore, some 

taxonomic confusion and a considerable number of unrecognised, that is cryptic, species 

have been suspected to be present in this group (Appeltans et al. 2012). To clarify these 

taxonomic issues, methods of molecular systematics including tree-based, non-tree-

based species delimitation as well as phylogenetic analyses have been widely and 

successfully used (Strand & Sundberg 2005a; Sundberg et al. 2009b, 2010; Chen et al. 

2010; Leasi & Norenburg 2014; Strand et al. 2014). The most commonly employed 

molecular markers to resolve nemertean systematics are fragments of the mitochondrial 

16S rRNA and the COI gene (Sundberg & Saur 1998; Sundberg et al. 2009a; b, 2010; 

Chen et al. 2010; Leasi & Norenburg 2014; Strand et al. 2014). More recently, 

however, there has been some reservation to the exclusive use of mitochondrial markers 

to delimit species due to phenomena related to the mode of inheritance of the 

mitochondrial genome (Melo-Ferreira et al. 2005; Strand & Sundberg 2005a; Rubinoff 

et al. 2006; Vogler & Monaghan 2006; Ross et al. 2008; Sundberg et al. 2009b; Yao et 

al. 2010; Funk & Omland 2011; Hailer et al. 2012). To overcome this problem, the 

analysis of a second, independently recombining nuclear marker, the internal 

transcribed spacer region (ITS) has been suggested and recently applied to nemerteans 

(Sundberg et al. 2009a; Bucklin et al. 2011). Resolving the so-called Lineus 

ruber/viridis species complex, one of the longest lasting problems in nemertean 

taxonomy, with molecular data, has so far led to inconclusive results. While three clades 

were identified with isoenzyme data by Rogers et al. (1995), the analysis on the 16S 

rRNA of only a few L. ruber and L. viridis samples lumped the specimens analysed into 

a single lineage (Sundberg & Saur 1998). In addition to a broad methodological 

spectrum, our data set accounts for all the problems outlined above in that we performed 

dense sampling from different localities, used ITS as an additional, independently 
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recombining marker and included 16S, to relate our results to existing data of Sundberg 

& Saur (1998). 

Except for the bPTP approach, results from all methods clearly state the 

existence of three clades, distinctly separated by the criteria of the respective method. 

Our results correspond with Rogers et al. (1995), who suggested a third cryptic species 

among L. viridis and L. ruber on British and northern French coasts. The inclusion of 

published 16S and COI data further supports Rogers et al.’s (1995) but also suggests the 

absence of L. ruber at the US North American Atlantic and Swedish North Sea coasts 

(Sundberg & Saur 1998; Thollesson & Norenburg 2003; Schwartz 2009). The notion of 

L. ruber and L. viridis (and L. clandestinus) comprising a single species can be rejected. 

Examining the external morphology shows that the more distantly related clade 

(L. ruber) is largely invariant possessing a red to reddish-brown colouration and, in 

some specimens, a triangular-pigmented head. Furthermore, investigated egg clutches of 

females that group within this clade show a morphology that corresponds to 

Gontcharoff’s (1951, 1960) descriptions for L. ruber (Krämer and von Döhren 

unpublished). The clade we named L. ruber herein is attributed to L. ruber sensu 

Gontcharoff (1951) mainly based on the narrow colour range of specimens but also on 

the morphology of the egg string produced by specimens of this clade. Specimens of L. 

viridis range in colouration from red to green, while egg clutches, and the development 

of the offspring inside corresponds to the description for L. viridis by Gontcharoff 

(1951) (Krämer & von Döhren unpublished). We conclude that the clade we named L. 

viridis herein is L. viridis sensu Gontcharoff (1951) as her redescription includes green 

colouration as diagnostic character. This is in line with findings of Rogers et al. (1995) 

who had also defined L. viridis based on Gontcharoff’s (1951) description. In L. 

clandestinus, no purely green specimens were found. In this clade, however, specimens 

with a lighter-coloured, iridescent, ventral fold, which has not been described by 

Gontcharoff (1951), were observed occasionally. We suppose the function of the ventral 

fold to be a transitory structure related to reproduction as it is restricted to specimens 

with developing gonads (Schmidt, Krämer, Beckers & von Döhren, unpublished). The 

ventral fold was absent from all L. viridis and L. ruber specimens even when they were 

in a reproductively mature state. This was also not observed by Gontcharoff (1951, 

1960), and the clutch of L. clandestinus has never been knowingly described, although 
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there is the possibility that information on it has unknowingly been included in previous 

studies on reproduction and development (Schultze 1853; Barrois 1877; Hubrecht 1886; 

Arnold 1898; Nusbaum & Oxner 1913; Gontcharoff 1951, 1960; Schmidt 1964 and 

references therein; Bartolomaeus 1984). We conclude that L. clandestinus is likely 

corresponding to the aberrant type sensu Rogers et al. (1995) and regard it as species 

new to science. Even though we cannot exclude the probability that L. clandestinus has 

been described in previous studies (Friedrich 1935; Cantell 1975; Chernyshev 2004), 

we decided against the re-establishment of any of the junior synonyms, as they have 

been used for L. ruber and L. viridis almost interchangeably. It would be impossible to 

assign any of the synonyms without doubt to any of the species. Additionally, more 

commonly used species names like Lineus gesserensis are either still valid (Gibson 

2005) or lack molecular data preventing a direct comparison and assignment to any of 

the synonyms. 

We decided to assign neotypes from Roscoff for L. ruber and L. viridis for three 

reasons: (1) there is no type material available from the original description by Müller 

in 1774 (Kristensen, R. M., pers. communication). (2) Insufficient information about the 

type locality in Greenland (Müller 1774) does not allow for the recollection of material 

from the Locus typicus. For these reasons, it is impossible to check whether the 

originally described L. ruber and L. viridis are truly separated species, if one species is a 

colour variant of the other, or even the cryptic species L. clandestinus. (3) Schmidt 

(Schmidt 1946, summarised in English in 1964) and Gontcharoff (1951, 1960) were the 

first to clearly state the separation of L. ruber and L. viridis into distinct species based 

on specimens collected from the Barents Sea, as well as from Roscoff. We therefore 

consider it as appropriate to assign neotypes for both species collected from Roscoff. 

We follow the precedent of Micrura alaskensis (Coe, 1901) which was originally 

described from Alaska. Data on morphology, COI and 16S sequences revealed five 

cryptic species of which one was redescribed as Maculaura alaskensis based on neotype 

material sampled from Oregon, USA (Hiebert & Maslakova 2015). Analogously to L. 

ruber/viridis, M. alaskensis was therewith neotypified from a non-type locality which is 

within the historically documented distribution range of the species. 

By sight, individuals can only be unequivocally assigned to either L. ruber, L. 

viridis or L. clandestinus if specimens with triangular-pigmented head (L. ruber), the 
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dark-green (L. viridis) or the ventral- fold (L. clandestinus) morphotypes are 

encountered. Otherwise, identification can only be confirmed by comparing the 

sequence data provided in this study. L. ruber, L. viridis and the newly discovered 

species, L. clandestinus, are described based on external appearance and genetic 

markers (COI, 16S and ITS) from a comparably high number of specimens but not 

based on internal characters. Histology-based species descriptions might give a detailed 

overview of the internal characters employed to differentially diagnose the described 

species. Although these descriptions are still common practice within nemertean 

taxonomy (Chernyshev 2013; Chernyshev et al. 2015; Krämer & von Döhren 2015), 

they are of very limited use when describing and delimiting cryptic species, that is 

species that are morphologically indistinguishable (Strand & Sundberg 2011; Jörger & 

Schrödl 2013). In the Lineus ruber/viridis species complex, apart from the 

abovementioned differences in external appearance, there are no species-specific 

internal differences observed between L. ruber, L. viridis and L. clandestinus (Krämer, 

pers. observation). A histology-based description of internal characters in L. 

clandestinus will not fulfil the demand for its specific differentiation against L. viridis 

(or L. ruber). Therefore, the identity of L. clandestinus as an individual species 

separated from L. ruber and L. viridis is based on the evidence of it representing a 

reproductively isolated lineage from the analysis of the genetic markers employed 

herein. This is particularly evident for the samples from Roscoff where, based on our 

results, all three species occur syntopically with no molecular evidence for 

interbreeding. 

We consider our decision to base the descriptions on external characters linked 

with DNA sequences as sufficient and in line with the opinion of most nemertean 

taxonomists and current approaches of describing and delineating (cryptic) species 

(Strand & Sundberg 2011; Jörger & Schrödl 2013; Hao et al. 2015; Kang et al. 2015; 

Sun et al. 2015; Sundberg 2015; Sundberg et al. 2016). Nevertheless, we decided to 

deposit histological section series at Göteborgs Naturhistoriska Museum (GNM) and 

MorphDBase to facilitate investigation of the internal morphology in the future. But we 

consider it as sufficient to base identification of L. ruber, L. viridis and L. clandestinus 

on the sequence data provided in this study and the voucher specimens deposited at 
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GNM which will serve as a backbone for fast and reliable species identification (Strand 

& Sundberg 2011). 

 

3.4.2 Outlook 
The network analysis based on COI shows that the newly described species, L. 

clandestinus, is present in all sampling sites, while L. ruber is restricted to the French 

sampling sites. Lineus viridis has not been found at Île de Groix, the southernmost 

sampling site, which may be due to the low number of samples collected there. The 

sample size from Helgoland and Sylt confidently shows the absence of L. ruber from 

the German North Sea coast. Conceivable reasons for the absence of L. ruber from this 

area are related to the differences between habitats present in the intertidal zone along 

western European coasts. Atlantic and Channel coast habitats (Île de Groix, 

Concarneau, Roscoff and Wimereux) are characterised by the presence of rocks, 

boulders, coarse sediment and a steep coastal slope with tidal ranges of up to 8 m 

(Menéndez & Woodworth 2010). North Sea shores on the other hand are characterised 

by a shallow coastal slope and predominantly sandy sediments. These differences result 

in different upper intertidal habitats with different abiotic regimes and biotic 

communities on the Atlantic and Channel coast shores as opposed to the German North 

Sea coast. Distribution data from the Atlantic coast indicate that L. ruber is found in the 

upper intertidal zone, while presumably both L. viridis and L. clandestinus are regularly 

found in the mid- intertidal zone. The distribution patterns hint at different habitat 

preferences of the three species (Gibson 1995; von Döhren & Krämer, unpublished). 

Arguably, in L. ruber, either prey preferences or oxygen demands of the developing 

offspring are not met in the more humid sandy habitats of the German North Sea coasts. 

Alternatively, displacement of L. ruber from the habitat caused by competition of L. 

viridis and L. clandestinus being better adapted to humid beaches could be a reason for 

the absence of L. ruber. 

The circumstantial evidence for reproductive isolation of L. viridis and L. 

clandestinus by the molecular markers employed in this study poses another interesting 

question. So far, there are no known biological differences in the two species which 

share a syntopic distribution in nearly all sampled habitats. As the reproductive isolation 
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was not directly tested (i.e. mating of L. viridis and L. clandestinus in captivity) in this 

study, future research is warranted that focuses on the biological differences in the two 

species to find out what maintains the reproductive barrier between these species. There 

is first evidence that L. viridis and L. clandestinus on the coast of Sylt island (North 

Sea) might be isolated by their differing reproductive periods (Bartolomaeus, pers. 

observation). The low genetic structure observed in L. clandestinus which is arguably as 

widely distributed as the sibling L. viridis also needs an explanation. There might be a 

considerably lower mutation rate of COI in L. clandestinus or a more recent 

introduction of a few founder individuals of this species to the sampled locations. 

Although the latter phenomenon has been shown in nemerteans before (Fernández-

Álvarez & Machordom 2013), more comprehensive sampling spanning a broader 

geographic range is needed to evaluate the alternative hypotheses. 
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Abstract 
In the taxon Nemertea, the past decades have shown that the specific identity of some of 
the longest-known species is doubtful. As an example, Tubulanus polymorphus Renier, 
1804 (Palaeonemertea) is reported to be widely distributed in the northern hemisphere 
including the west coasts of both Europe (Atlantic Ocean) and North America (Pacific 
Ocean). Tubulanus polymorphus is the type species of Tubulanus, and had originally 
been described from the Mediterranean Sea. Specimens from the Pacific coast of the 
USA and Canada had originally been described as a different species, Carinella rubra 
Griffin, 1898 mainly based on different colors and remote geographic ranges. C. rubra 
was later synonymized with T. polymorphus, apparently attributing the differences 
between Atlantic and Pacific specimens to intra-specific variation. 
This study aims to clarify the identities of these species in an integrative taxonomic 
framework: Comparison of molecular (COI, 16S), morphological, and life-history data 
(habitat occupancy and reproductive biology) of specimens collected from San Juan 
Island, Washington state (USA, Pacific coast) and Roscoff, (France, Atlantic coast) 
reveals striking differences between the Atlantic and Pacific specimens. 
Morphologically, the specimens differ with respect to the body coloration, the structure 
of the nervous system, cerebral sensory organs, musculature, blood-vascular system, 
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and cephalic mucus glands. Phylogenetic analyses of the respective molecular markers 
together with other congeneric sequences indicate that the specimens from the North 
American Pacific and the European Atlantic coasts are not even close relatives. Instead, 
they are separately grouped into two clusters of species separated by a basal split within 
the genus Tubulanus. 
Based on the differences detected in each data set we decided to re-describe the Atlantic 
specimens as Tubulanus polymorphus and reinstate the species Tubulanus ruber 
(Griffin, 1898) for individuals from the Pacific coast. Morphological as well as 
molecular data are publicly available and enable the reassignment of information 
published under the name T. polymorphus to one or the other species. The redescription 
of T. polymorphus or, more specifically, the redefinition of the type species, represents 
the prerequisite for an overdue revision of the genus Tubulanus. 
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4.1 Introduction 
Ribbon worms (phylum Nemertea) comprise a group of mostly marine, epibenthic 

predators (Gibson 1972, 1982). A vast majority of the approximately 1300 known 

species was described during the 19th century based on a few notes on the external 

appearance (Strand & Sundberg 2005b; Kajihara et al. 2008; Sundberg et al. 2009b, 

2016; Sundberg 2015). This practice renders accurate delimitation and assignments of 

(new) species on different taxonomic levels (from species to family level) problematic. 

Additionally, it has led to erroneous synonymization of some species in the past 

(Gibson 1995). With advanced methodology at hand, species descriptions became more 

precise with detailed information on internal and external morphology. Also, and more 

importantly, references to DNA sequences are now commonly included, which allow 

for faster and more precise species assignments and identification (Strand & Sundberg 

2005b; Sundberg et al. 2009b, 2010, 2016; Sundberg 2015). In the past decade, these 

data have helped to resolve taxonomic confusion: In more than 100 species changes in 

validity, names and/or generic affiliations, and introduction of new genera were 

executed (Kajihara et al. 2008, 2011; Strand & Sundberg 2011; Hiebert & Maslakova 

2015; Krämer & von Döhren 2015). 

The palaeonemertean genus Tubulanus Renier, 1804, for example, is known for 

its questionable monophyletic status and confusing nomenclatural history (Andrade et 

al. 2012; Kvist et al. 2014, 2015; Kajihara et al. 2015). Thirty-five described species are 

currently included within the genus but several recent phylogenetic analyses have 

shown that Tubulanus is likely paraphyletic (Sundberg & Hylbom 1994; Gibson 1995; 

Ritger & Norenburg 2006; Kvist et al. 2014, 2015; Kajihara et al. 2015). Taxonomic 

confusion is also inherent at a more basic taxonomic level regarding the type species of 

Tubulanus, Tubulanus polymorphus Renier, 1804. Tubulanus polymorphus was 

originally described from the Mediterranean Sea in an unpublished work by Renier in 

1804, followed by more detailed descriptions by Bürger (1892, 1895). A similar looking 

species was simultaneously described as Carinella rubra Griffin, 1898 from the Pacific 

coast of the USA (Griffin 1898). Based on their similar external characters C. rubra was 

synonymized with T. polymorphus by Coe in 1940, even though descriptions on the 

internal morphology indicated striking differences. Until the reinstatement of T. 
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polymorphus and Tubulanidae as valid taxon names by Melville (1986), specimens 

from the Pacific and European coasts were handled as one species and randomly 

referred to as C. rubra, C. polymorpha, or T. polymorphus by different authors (Bürger 

1888, 1890, 1892, 1895, 1904; Joubin 1890; Riches 1893; Griffin 1898; Allen & Todd 

1900; Coe 1940; Sheldon 1901; Coe 1901, 1904, 1905; Bergendal 1903; Punnett 1903; 

Wijnhoff 1912; Southern 1913; Friedrich 1936) (Appendix III: Supplementary Table 6). 

Since 1986 information on morphology, development, and molecular data had been 

published under the name T. polymorphus, irrespective of where specimens had been 

collected (Ricketts & Calvin 1948; Gontcharoff 1955; Hylbom 1957; Friedrich 1958; 

Corrêa 1964; Brusca & Brusca 1978; Melville 1986; Stricker 1987; Blake 1993; 

Stricker & Folsom 1998; Stricker et al. 2001; von Döhren et al. 2010; Andrade et al. 

2012; Beckers et al. 2013; Mulligan et al. 2014; Hiebert 2015) (Appendix III: 

Supplementary Table 6). Thus, T. polymorphus was regarded as a common sublitoral 

species with a wide distribution in the northern hemisphere ranging from European 

(North Atlantic and Mediterranean Sea) to North American (North Pacific) coasts 

(Gibson 1982, 1995). 

With a comprehensive data set, including molecular phylogeny based on COI 

and 16S, external and internal morphology, as well as information on habitat 

preferences and first observations on reproductive biology, we re-describe T. 

polymorphus based on specimens collected from the North American Pacific and 

European Atlantic coasts. With the aid of all data sets we were able to detect distinct 

differences between the Pacific and the Atlantic specimens that support the separate 

identity of the two original species. We decided to re-describe the Atlantic specimens as 

Tubulanus polymorphus and re-establish Tubulanus ruber as the species name for 

individuals collected from the Pacific. 

 

4.2 Material and Methods 

4.2.1 Specimens 
Three specimens of Tubulanus polymorphus were collected in September 2011 and 

2014 during diurnal low tides in the sublitoral zone close to the Marine Biological 
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Station of Roscoff, France. Specimens were found buried in sediment at 0.2-0.5 m depth 

in between the roots of Zostera marina Linnaeus, 1753. It was impossible to extract 

intact specimens from the sediment, therefore only anterior ends were collected. 

Specimens were anaestized in 7% MgCl2 mixed with sea water at equal volumes and 

subsequently photographed with a digital camera (Canon EOS 600D) mounted on a 

dissection microscope (Zeiss Stemi 2000) and fixed in absolute ethanol for DNA 

extractions. One additional specimen was fixed for histological investigation and one 

for DNA extractions 

Two specimens of Tubulanus ruber were collected during diurnal low tide 

within the mid intertidal zone of the rocky shore close to Cattle Point on San Juan 

Island, Washington, USA in 2007. Individuals were found underneath stones. Since no 

camera was available during the collection trip, no pictures were taken from the neotype 

material. Both individuals were used for histological (anterior end) as well as molecular 

investigations (posterior end). 

 

4.2.2 Histology 
The anterior ends of anaesthetized specimens were fixed overnight in Bouin’s fluid 

(modified after Dubosq-Brasil). The tissue was dehydrated in an ascending ethanol 

series followed by methyl benzoate and butanol. Afterwards, the samples were pre-

incubated with Histoplast (Thermo Scientific) and embedded in Paraplast (McCormick 

Scientific). Sections of 5 µm were made with a Leica RM2165 microtome and stained 

with the Azan-method. Sections were photographed with an Olympus BX-51 

microscope equipped with an Olympus cc12 camera mounted on a dotSlide 2.2 system 

(Olympus). Images were aligned with Imod (Kremer et al. 1996) and imod align 

(http://www.q-terra.de/biowelt/3drekon/guides/imod_first_aid.pdf) and uploaded to 

MorphDBase (http://www.morphdbase.de). 
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4.2.3 Nucleic acid purification, PCR amplification, Sequence analysis, 

and Phylogeny 
DNA was extracted with the Dneasy Blood and Tissue Kit (Qiagen) following the 

manufacturer’s instructions. For phylogenetic analyses, cytochrome c oxidase subunit I 

(COI) and 16S rRNA (16S) were amplified using LCO1490/HCO1298 and ar-L/br-H 

primer pairs (Folmer et al. 1994; Palumbi 1996). Thermal cycling was initiated with 2 

min at 94 °C, followed by 40 cycles (30 s at 94°C, 60 s at 51/53 °C (16S/COI) and 60 s 

at 72°C), and terminated with a 2-min final elongation at 72°C. PCR products were 

purified with NucleoSpin® Extract II-Kit (MACHEREY-NAGEL GmbH & Co. KG) 

following the instructions of the manufacturer. Purified PCR products were sent to LGC 

Genomics© for Sanger sequencing, using forward and reverse primers for sequencing 

(Sanger et al. 1977). 

Sequences were edited with Bioedit Version 7.0.9. and aligned using MAFFT 

Version 7 with G-INS-I strategy using default parameters: scoring matrix for nucleotide 

sequences of 200PAM/K=2; gap opening penalty of 1.53; offset value of 0.0 (Hall 

1999; Andrade et al. 2012; Katoh & Standley 2013). 

To assess inter- and intraspecific variation of the two species in question 

uncorrected p-distances were calculated with MEGA version 5.2.1 based on the COI 

alignment (579nt) of all collected specimens and sequence data taken from (Thollesson 

& Norenburg 2003; Andrade et al. 2012; Kvist et al. 2014) (Table 1). 

Phylogenetic trees were reconstructed based on the COI alignment and 16S data gained 

from the collected specimens as well as sequence data taken from GenBank (Appendix 

III: Supplementary Table 7). The brachiopod species Terebratalia transversa (Sowerby, 

1846) was used as outgroup. Uncertain positions within the 16S alignment were 

removed with Gblocks version 0.91b (Castresana 2000) using default parameters for 

maximum number of contiguous non-conserved positions, minimum block length (10), 

allowed gap positions (none) and the usage of similarity matrices. Other parameters 

were changed to 13 for minimum number of sequences for conserved position and 21 

for minimum number of sequences for a flanking position. The resulting alignment 

(261nt, 65% of the original 400 positions) was concatenated with COI and analyzed 

using maximum likelihood (ML) based on the General Time Reversible model and a 
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Gamma distribution with a proportion of invariant sites (GTR+G+I) implemented in 

MEGA Version 5.2.1 (Nei & Kumar 2000; Tamura et al. 2011). The model for 

phylogenetic analyses was selected by MrModeltest version. 2.3 based on the Akaike 

information criterion (Nylander 2004). Branch support was estimated using 500 

bootstrap replicates. The same analysis was conducted with the original 16S alignment 

concatenated with COI. 

 

4.3 Results 

4.3.1 Taxonomy 

Tubulanidae Bürger, 1904 (1874) 

Tubulanus Renier, 1804 

Tubulanus polymorphus Renier, 1804 

(Bürger 1904; Wijnhoff 1912; Southern 1913; Friedrich 1936, 1958; Coe 1940; 

Gontcharoff 1955; Hylbom 1957; Melville 1986; Beckers et al. 2013) 

Carinella polymorpha (Bürger, 1888, 1890, 1892, 1895; Joubin 1890; Riches 1893; 

Allen & Todd 1900; Sheldon 1901; Bergendal 1903; Punnett 1903)  

Nemertes polymorpha (Örsted 1844) 

Ophyocephalus polymorphus (Delle Chiaje 1829)  

Tubulanus elegans (Blainville 1828) 

Valencinia splendida (Quatrefages 1846; Diesing 1862)  

For list of synonyms (Table S1) 

 

Material examined: 

Neotype designated here. FRANCE, Roscoff, sea grass beds of Zostera marina lower 

intertidal to shallow sub- intertidal zone in front of marine biological station 

(48°43'39.3"N 3°59'16.8"W), male specimen, tissue (posterior end) in ethanol 

(TP12/GNM Nemertinea 157, Genbank accession Number KX853120 (COI)) 
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Voucher specimen. FRANCE, Roscoff, seagrass beds of Zostera marina, lower to 

shallow sub-intertidal zone in front of marine biological station (48°43'39.3"N 

3°59'16.8"W), series of histological transverse sections, 98 slides (GNM Nemertinea 

159, www.morphdbase.de/?D_Kraemer_20160921-S-8.) 

Tissue in Ethanol (TP11/GNM Nemertinea 158, Genbank accession Number 

KX853119 (COI), KX853116 (16S) 

Diagnosis. Endobenthic Tubulanus species, living in self-secreted parchment- like tubes 

among roots of Zostera marina in lower intertidal to shallow sublitoral; body coloration 

uniformly brick red, end of rhynchocoel/beginning of midgut region marked by abrupt 

change into darker red (fixation band); side organs laterally located within first 3rd of 

body; Body wall musculature thick, with thin layer of diagonal musculature connecting 

outer circular and longitudinal musculature; brain small in relation to body wall 

musculature; dorsal nerve present; medullary cords with inner neurilemma; lateral 

vessels small in relation to body wall musculature; cerebral organs: small epidermal 

pits; cephalic glands absent. 

Habitat. Sublitoral zone close to Marine Biological Station of Roscoff, France. During 

low-tide, specimens situated in parchment- like tubes in sediment at 0.2-0.5 m depth 

between roots of sea grass (Zostera marina Linnaeus, 1753).  

External characters. (For character checklist after Sundberg et al. 2016: Table S2) 

Neotype measured 65 mm from anterior end to side organs (Figure 4.1 a). Body width 

varying from 4 mm anteriorly to 6 mm in midgut region (Figure 4.1 a-c). Body 

coloration uniformly brick red (Figure 4.1). Cephalic lobe clearly demarcated from 

trunk, spatulate-shaped, measuring 4 mm at broadest point, wider than rest of body (Fig. 

1a-c). Proboscis pore situated subterminally, ventrally (Figure 4.1 a). Mouth opening 

ventral, visible as long slit posterior to cephalic lobe (Figure 4.1 c). One pair of inverse-

v-shaped cephalic furrows discernible dorsally, but not as clearly on ventral side at level 

of mouth opening (Figure 4.1 a, b, Appendix III: Supplementary Table 8). Extension of 

rhynchocoel (37 mm) discernible by light middorsal stripe and lighter body coloration. 

Beginning of intestinal region marked by abrupt change to darker red, corresponding to 

fixation band in formalin preserved specimens (Figure 4.1 a). Paired side organs visible 
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as small notches laterally located within in first 3rd of body (Figure 4.1 a, d, Appendix 

III: Supplementary Table 8). 

 
Figure 4.1. Tubulanus polymorphus neotype (TP12/GNM Nemertinea 157). Habitus images of 
living specimen. (a) Dorsal view of neotype showing, position of side organs and differentiated 
coloration in rhynchocoeal and midgut region. (b) Dorsal view of cephalic lobe showing one 
pair of cephalic furrows. (c) Ventral view of cephalic lobe showing position of proboscis pore 
and mouth opening. (d) Lateral view of side organs. Abbreviations: cf, cephalic furrows; ir, 
intestinal region; m, mouth; pp, proboscis pore; rc, rhynchocoel; so, side organ. 

 

Body wall. Thick epidermis, almost as thick as body wall musculature, densely packed 

with gland cells, appearing pseudo-stratified. Basal lamina thick, with processes 
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extending dorso-ventrally into body wall musculature and into epidermis. Basal lamina 

followed by thin layer of outer circular musculature. Main part of body wall 

musculature constituted by prominent longitudinal musculature (Figure 4.2 a, d, f, g). 

Thin diagonal muscle layer present below outer circular musculature, connecting outer 

circular and longitudinal muscles (Figure 4.2 g). Layer of inner circular musculature 

surrounds alimentary canal and rhynchocoel. Inner and outer circular musculature 

interconnected by multiple muscle fibers (radial musculature) on each body side (Figure 

4.2 f). Prominent layer of extracellular matrix surrounding alimentary canal and 

rhynchocoel from ventro- lateral. Longitudinal muscle plate present between alimentary 

canal and rhynchocoel, measuring same height as outer circular musculature of body 

wall (Figure 4.2 f).  

 

Alimentary canal. Long, slit- like mouth opens posterior to brain lobes. Alimentary 

canal appearing unspecified throughout length of histological cross sections. Anteriorly, 

foregut epithelium enfolded and thick, measuring same height as epidermis. Dorsal part 

of epithelium slightly thinner and less enfolded than ventrally. In posterior course, 

alimentary canal increases in width becoming broader than rhynchocoel, whereas height 

of foregut epithelium decreases (Figure 4.2 f). Intestine (midgut) not in the range of the 

histological section series. 

 

Nervous system. Sub epidermal position of nervous system: central and peripheral 

nervous system embedded in thick layer of extracellular matrix (basal lamina), situated 

between epidermis and outer circular musculature (sub-epidermal position) (Figure 4.2 

a-g). Brain consisting of paired, equal-sized dorsal and ventral brain lobes, situated in 

juxtaposition to one another on dorso- lateral body side. Brain lobes dorso-ventrally 

interconnected by layer of continuous neurite-tracts, making neuropil of lobes barely 

distinguishable from one another (Figure 4.2 d, e). Lateral connection of lobes 

constituted by single prominent ventral and several, small, dorsal commissural tracts ( 

Figure 4.2 e, g). Brain without inner neurilemma. Prominent outer neurilemma present 

giving rise to several bundles of extracellular matrix, traversing neuropil of brain. Small 

nerves protrude from brain lobes ventrally and laterally into epidermis (Figure 4.2 b-d). 
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Intra-epidermal nerve plexus present, visible as thin layer at basal part of epidermis 

(Figure 4.2 g). 

Multiple cephalic nerves protrude to anterior-most part of cephalic lobe. Nerves 

distributed along each body side, appearing in higher number on ventral side (Figure 4.2 

a). Ventral cephalic lobes confluent with lateral medullary (nerve) cords. Inner 

neurilemma present behind brain, separating neuronal cell somata from neuropil in 

lateral nerve cords (Figure 4.2 g). Scattered somata situated in periphery of neuropil, but 

most neuronal cell somata encircle neuropil in c-shaped manner exterior of inner 

neurilemma. Dorsal nerve present (Figure 4.2 f, g). Medullary cords and dorsal nerve 

regularly connected by small commissures on dorsal and ventral side (Figure 4.2 f, g). 

Lower dorsal nerve clearly discernible in foregut region, embedded between inner 

circular body wall and circular rhynchocoel musculature on dorsal side of rhynchocoel 

(Figure 4.2 f). Origin of lower dorsal nerve not detectable. Dorsal and lower dorsal 

nerve interconnected by barely distinguishable nerve fibers (Figure 4.2 f). Two 

esophageal nerves originate from ventral commissural tract, interconnected by thin 

commissural tract in front of mouth opening. Both nerves run ventro- laterally on each 

side of alimentary canal being barely distinguishable in posterior course. Gastrodermal 

nerve plexus present, visible as thin layer at basal part of gut epithelium (Figure 4.2 f). 

Paired proboscidial nerves arise from ventral commissural tract (Figure 4.2 e). Within 

proboscis (subepithelial position), nerves regularly interconnected by nerve plexus. 

 

Vascular system. Cephalic lacuna reaching to anterior-most part of head, broadening 

with increasing width of cephalic lobe, irregularly traversed by dorso-ventrally and 

laterally arranged muscle bundles (Figure 4.2 a). Lateral blood vessels arise from lacuna 

behind proboscis insertion, likewise traversed by muscle bundles, therefore appearing 

subdivided into dorsal and ventral vessels (Figure 4.2 e, f). Lateral blood vessels 

situated below longitudinal musculature and appear overall small in relation to thick 

body wall musculature (Figure 4.2 f, g). 

 

Proboscis apparatus. Prominently ciliated proboscis pore opens sub-terminally on 

ventral side of cephalic lobe (Figure 4.1 c). Rhynchodaeum extends to anterior part of 

brain (ventral commissural tract), anteriorly with small lumen surrounded by thick 
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glandular epithelium of same height as epidermis (Figure 4.2 a, c). In posterior course, 

rhynchodaeal epithelium decreases in height whereas rhynchodaeal lumen increases 

immensely. Rhynchocoel extends throughout first 3rd of the body (Figure 4.1 a). 

Rhynchocoel wall lined by layer of thin longitudinal musculature and outer circular 

musculature. Both layers become thicker posteriorly and appear more prominent on 

ventral side (Figure 4.2 e, f). Further posteriorly, longitudinal musculature decreases in 

thickness, becoming almost indiscernible in foregut region (Figure 4.2 f). Rhynchocoel 

ventrally encapsulated by prominent layer of connective tissue on level of mouth 

opening. Proboscis insertion located at level of ventral commissural tract of brain 

(Figure 4.2 e). In everted state, proboscis (palaeotype proboscis) layered as follows: 

Thick epithelium densely packed with gland cells, followed by barely distinguishable 

circular musculature and thick longitudinal musculature, measuring same height as 

proboscis epithelium (Figure 4.2 e, f). Proboscis nerves arise from ventral commissural 

tract and extend between epithelium and musculature (sub-epithelial position). Within 

proboscis, nerves located laterally, on opposite sides to each other. Posterior to 

proboscis insertion, both nerves subdivided into two nerves, fusing again in posterior 

course (Figure 4.2 e). 

 

Excretory system. Not within range of histological cross section series. 

 

Reproductive system. Sexes separate. Gonad arrangement not within range of 

histological cross section series. 

 

Sense organs & cephalic glands. Eyes absent. Small cerebral organs, measuring half of 

epidermal height. Organs situated in juxtaposition to posterior margin of dorsal brain 

lobes. Canals of cerebral organs visible as epidermal pits, invaginating in posterior 

course. Canal surrounded by comparably thin, but densely packed layer of glandular 

cells. Cerebral organs connected via short nerve with dorsal brain lobes (Figure 4.2 b, 

c). Side organ visible exteriorly but not within range of histological cross sections 

(Figure 4.1 a, d). 
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Figure 4.2 Tubulanus polymorphus voucher specimen (GNM Nemertinea 159, 
www.morphdbase.de/?D_Kraemer_20160921-S-8.1), cross sections, azan-stain. (a) Transverse 
section through cephalic lobe. (b) Transverse section through anterior part of the cerebral organ. 
(c) Transverse section throuch posterior part of the cerebral organ. (d) Magnified detail of brain 
(e) Transverse section at level of brain and proboscis insertion. (f) Transverse section through 
foregut region. (g) Magnified detail of transverse section through the foregut region showing the 
organization of the body wall and medullary cords. Abbreviations: c, connetive; cm, circular 
musculature; cn, cephalic nerve; co, cerebral organ; coc, canal of cerebral organ; dct, dorsal 
commissural tract; dn, dorsal nerve; dm, diagonal musculature; dl, dorsal lobe; e , epidermis; 
ecb, bundles of extracellular matrix traversing brain tissue; ecm, extra cellular matrix; epn, 
epidermal nerve plexus; fg, foregut; gnp, gastrodermal nerve plexus; icm, inner circular 
musculature; in, inner neurilemma; lm, longitundial musculature; lmp, longitudinal muscle 
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plate; lv, lateral vessel; mc, medullary cord; ocm, outer circular musculature; on, outer 
neurilemma; pe , proboscis epithelium; pcm, proboscidial circular musculature; plm, 
proboscidial longitudinal musculature; pn, proboscis nerve; pr; proboscis; pri, proboscis 
insertion; rd, ryhchodaeum; rc, rhynchocoel; rcm, rhynchocoeal circular musculature; rm, 
radial musculature connecting outer and inner circular musculature; rn, rhynchocoelic nerve; 
vct, ventral commissural tract; vl, ventral lobe. 

 

Tubulanus ruber (Griffin, 1898) comb. nov. 

Carinella rubra (Griffin 1898; Coe 1904, 1905; Ricketts & Calvin 1948)  

Carinella speciosa (Coe 1901, 1904)  

Tubulanus polymorphus (Coe 1940; Corrêa 1964; Brusca & Brusca 1978; Melville 

1986; Stricker 1987; Blake 1993; Stricker & Folsom 1998; Hochberg & Lunianski 

1998; Stricker et al. 2001; von Döhren et al. 2010; Andrade et al. 2012; Beckers et al. 

2013; Mulligan et al. 2014; Hiebert 2015)  

For list of synonyms (Appendix III: Supplementary Table 6) 

 

Material examined: 

Neotype designated here. USA, Washington, San Juan Island, Cattle Point 

(48°26'56.2"N 122°57'55.1"W), male specimen: Anterior end: Series of histological 

cross sections, 59 slides (TR1/SBMHN465922, 

www.morphdbase.de/?D_Kraemer_20161104-S-9.1). 

Tissue (posterior end) of same specimen in ethanol (TR1/SBMNH465922, GenBank 

accession number KX853121 (COI), KX853117 (16S); 

Voucher specimen. USA, Washington, San Juan Island, Cattle Point (48°26'56.2"N 

122°57'55.1"W), female specimen: Tissue (posterior end) of female specimen in 

Ethanol (TR4/SBMNH465923, GenBank KX853122 (COI), KX853118 (16S). 

Other material. Same female specimen: anterior end: Series of histological cross 

sections, 65 slides at the Institute of Evolutionary Biology and Animal Ecology, 

University of Bonn (TR4: first 27 slides: www.morphdbase.de/?D_Kraemer_20161104-

S-10.1). 
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Diagnosis. Epibenthic Tubulanus species in mid-intertidal; body coloration bright 

orange; body wall thin, layer of diagonal musculature absent; brain large in relation to 

body wall musculature, dorsal nerve absent; medullary cords without inner neurilemma; 

lateral blood vessels spacious in tip of head and foregut region in relation to body wall 

musculature; epidermal cerebral organs comparably large; extensive cephalic glands. 

Habitat. During low-tide, specimens situated underneath rocks and small boulders in 

rocky mid- intertidal zone of Cattle Point on San Juan Island, Washington State. 

External characters. (see also (Griffin 1898; Coe 1901, 1904, 1905; Corrêa 1964; 

Hiebert 2015) and character checklist after Sundberg et al. 2016: Appendix III: 

Supplementary Table 8). Neotype material not measured. Neotype and paratype 

characterized by bright, uniform orange coloration. Head spatulate-shaped, clearly 

demarcated from trunk, wider than rest of body. Proboscis pore opening subterminally 

at anterior-most tip of head. Mouth positioned ventrally, visible as long slit behind 

paired, lateral, transverse furrows (Coe 1901; Hiebert 2015). Rhynchocoel not visible 

through body wall.  

Body wall. Epidermis thick, measuring same height as body wall musculature, densely 

packed with glandular cells (Figure 4.3 f, g). Thick basal lamina, followed by thin layer 

of outer circular musculature. Basal lamina doubling height of circular musculature 

(Figure 4.3 d, g). Longitudinal musculature prominent, appearing as main component of 

body wall, traversed by thick bundles of extracellular matrix (Figure 4.3 a, d, g). 

Rhynchocoel and alimentary canal surrounded by barely distinguishable inner layer of 

circular musculature (Figure 4.3 f). Radial musculature, connecting inner and outer 

circular musculature, not clearly discernible in section series. Longitudinal muscle plate 

barely discernible between alimentary canal and rhynchocoel (Figure 4.3 f). 

Alimentary canal. No functional division of alimentary tract into esophagus or stomach 

discernible through histological cross section series. Long, slit- like mouth opens 

posterior to brain lobes into foregut. Anteriorly, ventral side of foregut epithelium 

folded and generally much thicker and richer in glands than flat dorsal side of 

alimentary canal (Figure 4.3 f). Folding, density of glands, and thickness of gut 

epithelium decrease in posterior course resulting in more homogenous epithelium. 
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Intestine discernible as simple tube with unfolded, thin epithelium. Epithelial cells bear 

multiple orange staining cell inclusions (www.morphdbase.de/?D_Kraemer_20161104-

M-18.1). 

 

Nervous system. (see also Beckers et al. 2013). Subepidermal position of nervous 

system: brain and medullary nerve cords embedded in layer of extracellular matrix 

(basal lamina) situated between epidermis and outer circular musculature (Figure 4.3 b-

g). Brain consists of paired ventral and dorsal lobes, positioned ventro- laterally in 

juxtaposition to one another, surrounded by thick outer neurilemma (Figure 4.3 e). 

Several processes protrude from outer neurilemma and traverse neuropil of brain 

(Figure 4.3 d). Lobes interconnected by several thin, dorsal commissural tracts and one 

thick ventral commissural tract (Figure 4.3 d, e). Ventral brain lobes confluent with 

medullary cords. Neurites of medullary cords surrounded by somata in c-shaped manner 

(“c“ opening towards lateral blood vessels) (Figure 4.3 f, g). Within posterior course, 

medullary cords interconnected by several commissures on dorsal and ventral body 

sides. Brain lobes and commissural tracts give rise to peripheral nervous system. 

Multiple cephalic nerves, situated below basal lamina, protrude to head tip, equally 

distributed on each body side (Figure 4.3 a). Cephalic nerves arise from anterior parts of 

dorsal and ventral commissural tracts and brain lobes. Two esophageal nerves originate 

from posterior margin of ventral brain lobes, running ventro- laterally along each side of 

alimentary canal. Esophageal nerves interconnected by commissural tract in front of 

mouth opening (Figure 4.3 c). Two proboscidial nerves arise from ventral commissural 

tract and innervate proboscis sub-epithelially in opposite positions. Both nerves 

interconnected by proboscidial nerve plexus. Paired rhynchodaeal nerves originate at 

posterior margin of ventral lobes and ventral commissural tract. Nerves innervate sub-

epithelially in ventro- lateral positions. Nerves not discernible posterior to proboscis 

insertion. Epidermal- and gastrodermal nerve plexus present, visible as thin layer in 

basal part of epidermis and gut epithelium respectively (Figure 4.3 g).  

 

Vascular system. Blood lacuna located in tip of head and extends 1/3 in length of 

rhynchodaeum. Lacuna irregularly traversed by dorso-ventral muscle bundles vessels 
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(Figure 4.3 a). Lateral blood vessels run inside of longitudinal body wall musculature 

(Figure 4.3 f, g). Vessels are voluminous in front of brain, appear thin on level of brain 

lobes and expand towards level of mouth opening, appearing extremely large in 

comparison to thickness of body wall musculature (Figure 4.3 a- f). Lateral blood 

vessels, irregularly traversed by muscle bundles arising from body wall musculature 

(Figure 4.3 a). 

Proboscis apparatus. Due to fixation, proboscis partly everted and situated within 

rhynchodaeum. Thus, visible in everted and inverted state (Figure 4.3 a-e). In everted 

state proboscis (palaeotype proboscis) layered as follows: thick glandular epithelium, 

thin layer of extracellular matrix and circular musculature, followed by thicker 

longitudinal muscle layer (Figure 4.3 a, c- f). Anteriorly, longitudinal musculature 

measures two times the height of the circular layer. Thickness of both layers decreases 

posteriorly. Two proboscidial nerves located in sub-epithelial position on opposite sides 

of proboscis (Figure 4.3 a, e). Rhynchodaeum opens subterminally at tip of head via 

proboscis pore. Rhynchodaeum extends from anterior end to mouth opening. 

Rhynchodaeal lumen lined by epithelium, densely packed with glandular cells. 

Epithelium surrounded by thin layer of circular musculature (Figure 4.3 a). Quantity of 

glandular cells decreases towards proboscis insertion resulting in thinner epithelium, 

measuring same height as circular musculature surrounding rhynchodaeum. Proboscis 

inserts at level of mouth opening. Extension of proboscis and rhynchocoel not 

obtainable from serial sections. Rhynchocoel wall composed of longitudinal 

musculature, surrounded by thin, barely visible circular musculature. Both layers much 

thinner posteriorly. Lumen of rhynchocoel increases posteriorly, occupying ¾ of 

transverse section (Figure 4.3 f).  

Excretory system. Not within range of histological cross section series. 

Reproductive system. Sexes separate. Gonad arrangement not within range of 

histological cross section series. 

Sense organs & cephalic glands. Without eyes. Cerebral organs present, located within 

epidermis, situated in juxtaposition and posterior to brain lobes, occupying 2/3 to full 

height of epidermis. Canal of cerebral organs anteriorly formed as epidermal pits. Pits 
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enclose posteriorly and lead as canal into basal part of epidermis. Canal surrounded by 

comparably thick layer of densely packed glandular cells (Figure 4.3 b, c). Cerebral 

organs innervated by one nerve, arising from dorsal brain lobe. Cephalic glands extend 

from tip of head and end shortly before brain. Glands surround blood lacuna and lateral 

vessels, being more prominent above the latter (Figure 4.3 a). Lateral organs not within 

range of the section series. 
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Figure 4.1 Tubulanus ruber comb. nov. neotype (TR1/SBMNH465922), cross sections, azan-
stain. (a) Transverse section through cephalic lobe. (b) Transverse section through anterior part 
of the cerebral organ. (c) Transverse section throuch posterior part of the cerebral organ. (d) 
Magnified detail of brain. (e) Transverse section through brain region. (f) Transverse section 
through foregut region. (g) Magnified detail of foregut region showing structure of body wall 
and medullary cords. Abbreviations: cgl, cephalic gland; cm, circular musculature; cn, cephalic 
nerve; co, cerebral organ; coc, canal of cerebral organ: dct, dorsal commissural tract; dl, dorsal 



87 

 

lobe; e , epidermis; ecb, bundles of extracellular matrix traversing brain tissue ecm, extracellular 
matrix; epr, everted proboscis; enp, epidermal nerve plexus; fg, foregut; gn, gastric nerve; gnp; 
gastric nerve plexus; gvct, gastric ventral commissural tract; icm, innercircular musculature; 
ipr, inverted proboscis; lm, longitudinal musculature; lmp, longitudinal muscle plate; lv, lateral 
vessel; ocm, outer circular musculature; on, outer neurilemma; pe , proboscidial epithelium; 
pcm, proboscidial circular musculature; plm, proboscidial longitudinal musculature; pn, 
proboscis nerve; rc, rhynchocoel; rd, rhynchodaeum; vct, ventral commissural tract; vl, ventral 
lobe. 

 

4.3.2 Phylogenetic analysis. 
 P-distance calculations based on the COI alignment support the separation of T. 

polymorphus from the European Atlantic Coast and T. ruber from the Pacific Coast of 

the United States into two species. Intraspecific variation is low in T. polymorphus 

(0.5%) and T. ruber (0.2-0.5%). Interspecific variation is comparably high between T. 

polymorphus and T. ruber ranging from 16.2% to 16.6%, and thus in the same 

interspecific distance range as to the remaining Tubulanus species (12.6-17.6%) (Table 

4.1). 

The concatenated data set of aligned COI (579nt) and 16S with removed 

uncertain positions (261nt) and the original 16S alignment used for maximum 

likelihood resulted in a length of 840nt and 979nt respectively. The resulting trees 

slightly differ in their topologies regarding the positions of Tubulanus superbus, 

Tubulanus pellucidus, Callinera grandis, Cephalothrix bipunctata and Cephalothrix 

spiralis. With uncertain positions in 16S removed, T. pellucidus groups with C. grandis 

(Bootstrap support: 60%) within the remaining Tubulanus species (43%), rendering the 

genus paraphyletic (Figure 4.4 a). The reduced set of nucleotides places T. superbus as 

sister to T. polymorphus (59%) (Figure 4.4 a) 

When including uncertain positions within the analysis, Tubulanus appears 

monoyphyletic (90%) with C. grandis as sister taxon (78%). Tubulanus superbus 

appears as sister to T. rhabodotus, T. sexlineatus and T. punctatus and T. pellucidus 

groups with T. ruber and T. annulatus (60%) (Figure 4.4 b).  

Otherwise, both analyses show the same topology with respect to Carinoma 

hamanako and C. tremaphoros as most basally branching palaeonemertean species, the 

monophyly of Cephalothricidae (gblocks: 85%/ original:100%), the position of 

Carinina ochracea (72%/84%) as basally branching species within Tubulanidae, and 
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the definite positions of the two Tubulanus species described above. The analyses 

indicate a subdivision of the genus Tubulanus into two clades, both of which are 

moderately supported (Figure 4.4 a, b). Clade 1 contains T. sexlineatus, T. punctatus, T. 

rhabdotus, T. superbus, and T. polymorphus (71%/98%), while the other (clade 2) 

comprises T. annulatus, T. polymorphus of Andrade et al. 2012 and T. ruber 

(80%/99%). 

 

Table 4.1 Summary of uncorrected p-distances (%) based on COI. 

  
Tubulanus 

polymorphus Tubulanus ruber 

Tubulanus polymorphus 0.5 
 Tubulanus ruber 16.2-16.6 0.2-0.5 

Tubulanus superbus 14.3-14.5 16.1-16.2 
Tubulanus pellucidus 17.1-17.4 16.1-16.2 
Tubulanus annulatus 17.3-17.5 12.6-12-7 
Tubulanus punctatus 15.5-16.1 17.5-17.6 
Tubulanus sexlineatus 15.9-16.2 16.4-16.6 
Tubulanus rhabdotus 15.5-15.7 15.2-15.4 
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Figure 4.2 Phylogeny resulting from maximum likelihood analyses based on concatenated COI 
and 16S sequence data. Terebratalia transversa was used for out-group rooting. Numbers at 
branches indicate bootstrap support from 500 replicates. (a) Shows phylogeny based on the 
alignment excluding uncertain positions. (b) Shows phylogeny including uncertain positions. ** 
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indicates neotype for T. polymorphus and T. ruber, * indicates voucher specimens for T. 
polymorphus and T. ruber. 

 

4.4 Discussion  
In recent decades, the systematics of several high ranking taxa (e.g. Annelida, Mollusca, 

and Nemertea) have experienced considerable revision, including the identification of a 

number of cryptic species. Thus, the long-held view of global distribution of some 

species has been challenged (Strand & Sundberg 2005b; Bleidorn et al. 2006; Barroso 

et al. 2009; Sundberg et al. 2009b, 2010; Jörger et al. 2012; Carmona et al. 2014; Leasi 

& Norenburg 2014; Kienberger et al. 2016). In the case of Tubulanus polymorphus, 

data on morphology provided in this study clearly enable a separation of the European 

specimens from the North American specimens. For the latter, we herein re-establish the 

species Tubulanus ruber (Griffin, 1898). It is characterized by bright orange coloration, 

comparably large epidermal cerebral organs (measuring 2/3 to full height of epidermis) 

and extensive cephalic glands. All characters are matching the descriptions of 

specimens collected from the North Pacific (Griffin 1898; Coe 1905; Corrêa 1964). 

Moreover, we observe a voluminous brain and lateral blood vessels relative to the 

thickness of the body wall musculature. A dorsal nerve, an inner circular musculature, 

and an inner neurilemma separating neuropil and cell somata within the lateral nerve 

cords, are absent. 

Tubulanus polymorphus from the European west coast is characterized by a 

brick-red coloration, which is abruptly becoming darker posteriorly (corresponding to 

fixation band in formalin preserved specimens), small almost rudimentary cerebral 

organs, a layer of diagonal musculature interconnecting circular and longitudinal 

muscles, and the absence of cephalic glands. These are all characters matching the 

descriptions given by Bürger in 1892 and 1895 based on specimens collected from the 

Mediterranean Sea. Furthermore, we observe smaller brain and lateral blood vessels 

relative to the prominent body wall musculature. In contrast to T. ruber, a dorsal nerve 

and an inner neurilemma in the lateral nerve cords are present. 

Both species can be further distinguished by their ecology, namely their different 

habitat preferences. Whereas T. polymorphus is found in parchment- like tubes in 0.2-0.5 
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m depth within sandy substrate between the roots of the sea grass Zostera marina  on the 

Atlantic coast, T. ruber is found underneath stones in the rocky intertidal of the coast of 

the North Pacific. This is congruent with information given in the literature according to 

which T. polymorphus occurs among the rhizomes of Posidonia oceanica Delile, 1813, 

in the Mediterranean Sea (Bürger 1892, 1895), while T. ruber is reported to live in tubes 

attached to the bottom side of rocks (Coe 1943; Stricker 1987; Hiebert 2015).  

We additionally observed differences concerning aspects of the reproductive 

biology i.e. gamete and larval morphology of both species. Whereas unfertilized oocytes 

of T. ruber measure 350 µm in diameter (Stricker 1987), egg size of T. polymorphus 

ranges between 90-100 µm (von Döhren, pers. observation). Newly hatched larvae of T. 

polymorphus measure approximately 110-120 mm in length and transit into a planktonic 

phase for more than nine days (von Döhren, pers. observation), whereas larva of T. 

ruber are not reported to undergo an extended planktonic phase (Stricker 1987). The 

length of the sperm cell soma (i.e. excluding the flagellum) also differs considerably 

between the two species: In T. ruber the sperm cell soma is approximately 1.5 times 

longer, while in T. polymorphus the sperm cell soma is about 1.5 times wider in its 

widest diameter (Stricker & Folsom 1998; von Döhren et al. 2010). Additionally, the 

sperm cells differ considerably in their ultrastructure between the two species. Sperm 

cells of T. polymorphus bear a flat bowl shaped acrosomal vesicle and a ring-shaped 

mitochondrion surrounding the centrioles (von Döhren & Bartolomaeus, in prep.). 

Sperm cells of T. ruber on the other hand, are characterized by a high acrosomal vesicle 

and a laterally situated mitochondrion, only partly encircling the nucleus (Stricker & 

Folsom 1998; von Döhren et al. 2010). 

The molecular analyses further underpin the separation into two species. Even 

though based on only a few specimens, COI p-distance calculations reveal low 

intraspecific varation in both T. polymorphus (0.5%) and T. ruber (0.2-0.5%). Although 

the specimens of T. polymorphus were sampled in the same locality (Roscoff, France), 

the intraspecific variation is within the upper range of that observed in T. ruber species. 

We therefore consider it a sound estimate, notwithstanding the limited number and 

geographical range of the sample. In contrast to the intraspecific variation, interspecific 

variation between T. polymorphus and T. ruber, as well as other Tubulanus species is 
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high (12.6-17.5%) (Table 4.1). Therefore, we predict a pronounced barcoding gap 

between T. polymorphus and T. ruber.  

The phylogenetic trees show that each species nests within one of two 

Tubulanus subclades, which had already been recovered in a previous analysis (Kajihara 

et al. 2015). Each of the resulting clades is supported by specific morphological 

characters, namely the differently developed cerebral organs and cephalic glands. The 

affiliation of T. pellucidus, which only possesses rudimentary cerebral organs (Coe 

1905), to one or the other clade presently remains unresolved. 

Based on the differences observed in all data sets, we decided to assign 

specimens as neotype material from the North American Pacific and the French Atlantic 

coast for T. ruber and T. polymorphus respectively since no type material is available 

from the original descriptions by Renier (1804) and Griffin (1898). Addtionally, 

formalin preserved voucher material for specimens collected from different localities in 

California, USA is catalogued under the name T. polymorphus by the Santa Barbara 

Natural History Museum (http://www.sbcollections.org/). However, the material does 

not enable successful DNA extractions and an assignment to the species described in 

this study (Norenburg, Geiger & Valentich-Scott, pers. communication). 

We consider assigning T. ruber from Friday Harbor as reasonable since this site 

is located in close vicinity of the original type localities (Sitka in Alaska and Bremerton 

and Kilisut Harbor in the Pudget Sound Area in Washington State) (Griffin, 1898). In 

accordance with Sundberg et al. 2016, we regard assigning specimens from Roscoff as 

neotypes as generally unproblematic following the recently advocated practice of 

nemertean researchers regarding redescriptions (Hiebert & Maslakova 2015; Krämer et 

al. 2016; Sundberg et al. 2016). T. polymorphus was originally described from the 

Mediterranean Sea but the exact type locality was not recorded in the original 

description. Detailed descriptions by Bürger (Bürger 1892, 1895) are based on material 

collected from the Gulf of Naples but this appeared as one of last records of this species 

in this area. Subsequent publications do not report any findings of the species in the 

Mediterranean area but from the European Atlantic to North Sea coasts (Gontcharoff 

1955; Sundberg & Hylbom 1994; Martínez et al. 2007; Herrera-Bachiller 2016). 

Roscoff is within the vicinity of the historically documented distribution range of the 

species (Joubin 1890; Bürger 1892; Wijnhoff 1912; Gontcharoff 1955).  
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4.5 Conclusions 
With an integrative taxonomic approach used in this study we provide a broad set of 

data which enables a clear separation of Tubulanus polymorphus and T. ruber into two 

species. The deposition of material on publicly available databases (MorphDBase, 

GenBank), as well as information on sample sites enable an unambiguous reassignment 

of the broad spectrum of information published under the name T. polymorphus to 

either T. ruber (Stricker 1987; Stricker & Folsom 1998; Stricker et al. 2001; von 

Döhren et al. 2010; Andrade et al. 2012; Mulligan et al. 2014; Hiebert 2015) or T. 

polymorphus (Gontcharoff 1955; Sundberg & Hylbom 1994) (Appendix III: 

Supplementary Table 6). Regarding the data published by one of the co-authors of this 

paper (Beckers 2011; Beckers et al. 2013) the data acquired by classical histological 

methods refers to what we consider T. ruber 

(https://www.morphdbase.de?P_Beckers_20130201-M-11.1) while CLSM data and 

pictures showing external morphology were obtained from T. polymorphus (Appendix 

III: Supplementary Table 6).  

Our phylogenetic analyses recover Tubulanus and Tubulanidae as either 

monophyletic or paraphyletic, depending on data set used. This incongruence might be 

the result of employing only two mitochondrial genes and/or insufficient taxon 

sampling. However, both phylogenic hypotheses reconstructed in this study are 

congruent with respect to the distinct positions of the two species within Tubulanus. 

Furthermore, results show that both species are not even close relatives.  

Based on the assumed paraphyly of Tubulanus (Andrade et al. 2012; Kvist et al. 

2014, 2015; Kajihara et al. 2015) recovered Kajihara et al (2015) suggested to keep the 

name Tubulanus for the group containing the type species (T. polymorphus of Andrade 

et al. 2012 which is, according to our data, T. ruber in the group we herein indicated as 

clade 2) and to rename the other tubulanid subclade (herein indicated as clade 1). In 

contrast, our data show that the specimens from Europe, representing the actual type 

species T. polymorphus, are nested within the clade (clade 1) that, according to Kajihara 

et al (2015), would have to be renamed. Therefore, a revision of the genus Tubulanus as 

intended by Kajihara et al (2015) would have been premature. The reassignment of the 
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type species T. polymorphus is the essential prerequisite for a future revision of the 

genus Tubulanus.  
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Chapter 5 
General Discussion 

5  General Discussion 

5.1 Morphological taxonomy 
As of today, most descriptions include a section about external characters followed by 

detailed information on each organ system gained from histological sections. These 

morphological traits are compared to potential congeneric species in a subsequent 

systematic discussion (differential diagnosis) (Junoy & Gibson 1991; Norenburg 1993; 

Chernyshev 2002a; b, 2003a; Ritger & Norenburg 2006; Chapter 2 & 4). 

However, the interpretation of histological data appears problematic for many 

reasons. First, it is difficult to obtain high-quality sections because preserving soft-

bodied animals bears high risk of contraction and fixation artifacts (Sundberg 2015). 

Second, intraspecific variation might be misinterpreted as species or genus specific 

characters (Sundberg 1979). Third, many characters might share non-homologous 

similarities due to suspected convergent and parallel evolution rendering them less 

informative (Sundberg & Hylbom 1994; Strand et al. 2014; Sundberg 2015; Sundberg 

et al. 2016). Fourth, many characters lack a clear definition. The overall interpretation 

of morphological characters therefore lacks a widely applied standard approach and 

remains subjective (Sundberg 1989a; b, 2015; Vogt et al. 2010; Strand et al. 2014) 

(Sundberg 1989a; b; Strand et al. 2014 in Sundberg 2015). As a consequence, many 

nemertean species, genera, or even families are not sufficiently defined. This led to two 

extremes in nemertean taxonomy: new species are either assigned to “catch-all” groups 

that include vast numbers of likely-unrelated species or they are classified as new 

monotypic genera (Strand et al. 2014; Sundberg 2015). Examples of “catch-all” groups 

are the genera Lineus, Amphiporus, Cerebratulus or Tetrastemma. Many species were 

placed into these genera out of convenience or due to the lack of sufficient data 

suggesting an assignment to another genus (Strand & Sundberg 2005b; Sundberg 2015). 

Representatives of Lineus, for example, therefore appear on multiple unconnected 

branches of phylogenetic trees (Figure 5.1). Examples for monotypic genera are 
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especially found is less intensely studied groups, such as the polystiliferan 

hoplonemertean genera among Pelagica (Maslakova & Norenburg 2001). This results in 

histological-based genus and family diagnoses that do not reflect monophyletic groups. 

This is also shown by phylogenetic analyses in which relationships among species are 

not well resolved and several genera and families are rendered paraphyletic (Figure 5.1) 

(Thollesson & Norenburg 2003; Strand & Sundberg 2005a; Andrade et al. 2012; Kvist 

et al. 2014, 2015). As stated in Andrade et al. (2012) and Kvist et al. (2014) results 

gained from current phylogenies therefore demand the revision of several nemertean 

genera. As a consequence, current phylogenies do not necessarily present the required 

stable backbone, to assign an undescribed species to new or existing genera and 

families. 
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Figure 5.1 Internal relationships among heteronemerteans redrawn after results gained from 
maximum likelihood analysis conducted in Kvist. et al. 2015. 
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5.2 Molecular Taxonomy 
Apart from reconstructing phylogenetic relationships among several animal phyla, 

sequence data are increasingly used to identify and delimitate species (Vogler & 

Monaghan 2006; Kvist 2013). By the employment of DNA barcoding, a short part of 

mitochondrial DNA (usually the cytochrome c oxidase subunit I (COI)) is used to 

identify an unknown specimen against a sequence database consisting of a priori 

identified specimens linked to a species name (Hebert et al. 2003, 2004; Tautz et al. 

2003; Vogler & Monaghan 2006). In contrast to that, the more inclusive term DNA 

taxonomy represents different approaches to detecting species boundaries. Putative new 

species are identified or grouped into taxonomic units (Molecular operational 

taxonomic units (MOTUs) with the aid of so-called tree-based and non-tree-based-

species delimitation methods. These aid to model or set potential species boundaries 

based on sequence alignments (Clement et al. 2000; Pons et al. 2006; Puillandre et al. 

2012; Tang et al. 2012; Fujisawa & Barraclough 2013; Zhang et al. 2013; Chapter 3). 

The successful employment of DNA barcoding and DNA taxonomy relies on two 

important prerequisites: the presence of a high coverage of the target-taxon in barcode 

databases and the presence of a barcoding gap (which is the difference between the 

highest intraspecific variation and the lowest interspecific variation) (Kvist 2013). The 

barcoding gap therefore represents a threshold that allows the separatation of sequence 

data into clusters representing potential species (Vogler & Monaghan 2006; Fontaneto 

et al. 2015). Within the last decade, this served to detect several new but also cryptic 

nemertean species which would have remained hidden using morphology alone 

(Sundberg et al. 2009b, 2010; Chen et al. 2010; Strand & Sundberg 2011; Leasi & 

Norenburg 2014; Chapter 3). 

Sequence data, especially COI data, represent a promising foundation to safely 

and quickly detect nemertean species (see Strand & Sundberg 2005a; Sundberg et al. 

2009b, 2010; Chen et al. 2010; Leasi & Norenburg 2014). In all cases, however, 

identified species were not described, mainly because traditional nemertean taxonomy 

demands detailed histological-based descriptions. For almost a decade Sundberg and co 

authors (Sundberg et al. 2009b, 2010; Strand & Sundberg 2011; Strand et al. 2014; 

Sundberg 2015) have been advocating a DNA-based approach for describing and re-
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describing nemertean species. They state that nemerteans can be identified and 

described based on external appearance, ecology, and molecular sequence data. They 

argue that internal morphology does not provide sufficient diagnostic characters and is 

therefore an unnecessary prerequisite for a species description to be accepted (Strand & 

Sundberg 2011; Strand et al. 2014; Sundberg 2015). Sundberg (2015) goes a step 

further, stating that in the course of assessing biodiversity, histology does not provide a 

time-efficient approach for identification. Apart from the general problem of identifying 

nemerteans, the difficulties related to histological work represent another reason why so 

many species remain unidentified in many marine surveys and are identified as 

“Nemertes sp.” at best (Schander & Willassen 2005 in Sundberg 2015). The DNA-

based approach contradicts the traditional way of describing nemertean species and was 

therefore not initially pursued. Moreover, the DNA-based approach was so largely 

criticized it still remains difficult to publish species descriptions without histological 

data (Sundberg 2015, publication procedure of Chapter 3). 

However, the proposal of a DNA-based approach was accepted among the 

majority of active nemertean researchers at the beginning of 2016 (see list of authors of 

Sundberg et al. 2016). As stated in the proposal, species descriptions and re-descriptions 

are acceptable when information on external characters and ecology, as well as 

references to sequence data is included. Furthermore, a holotype and voucher material 

preserved in ethanol should be deposited in a public institution. Additionally, the 

authors account for another problem: Many old species descriptions do not explicitly 

state information on the locus typicus and for some type localities the access is strictly 

regulated by laws. By recommending the acceptance of re-descriptions based on 

material collected in the vicinity of the type locality, these problems can be 

circumvented. The “vicinity-concept” allows for quicker re-descriptions of problematic 

taxa, of which the identities have been confused for many years (Sundberg et al. 2016; 

Chapter 3 & 4).  

Nevertheless, employing DNA barcodes as a tool for species delimitation and 

identification bears difficulties in nemerteans. As shown by Kvist in 2013 and Kvist et 

al. 2014, less than 20% of all recognized nemertean species are represented in barcode 

databases such as NCBI or BOLD. Many deposited sequences stem from misidentified 

specimens and are tied to an incorrect species name or to no name at all. Therefore, an 
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identification based on sequence data might be inconclusive (Meyer & Paulay 2005; 

Kvist 2013; see Chapter 2). Additionally, incomplete information does not allow for 

identification of a general barcoding gap in nemerteans (Kvist et al. 2014). To define a 

barcoding gap, a broad sample size of the species (or species group) in question is 

required to define the threshold between intraspecific and interspecific variation (Luo et 

al. 2015). While this is not a problem for highly abundant species such as Lineus ruber, 

Lineus viridis, and Lineus clandestinus (see Chapter 3, Appendix II: Supplementary 

Table 3) it can become problematic in cases where only a few individuals are found (see 

Chapter 2 and 4). 

The overall functionality of DNA barcoding depends on a higher representation 

of accurately identified species in DNA databases. A sequence should therefore refer to 

a properly identified specimen which is, in the best case scenario, a type or a voucher 

specimen deposited in a public institution such as a museum collection (Kvist et al. 

2010; Kvist 2013). These sequences would give a starting point for creating a “rigorous 

database of authoritative sequences” (Kvist et al. 2014: 304), which allow for more 

secure identification in the future. 

 

5.3  Integrative taxonomy 
Integrative taxonomy is defined as an multidisciplinary approach which integrates 

complementary sources of data to delimit, discover, and identify species and taxa at all 

levels (Dayrat 2005; Will et al. 2005; Yeates et al. 2011). This is somehow congruent 

with de Queiroz’s (2007) idea of the unified species concept, which integrates criteria 

advocated by the different species concepts as circumstantial evidence for diverged 

species. Including data from multidisciplinary approaches allows the validation of 

species boundaries from multiple perspectives. 

An integrative approach, including more than just one source of data, represents 

a promising methodology to safely identify species within Nemertea (see Maslakova & 

Norenburg 2008; Sundberg et al. 2009a; Kajihara et al. 2011, 2015; Chernyshev et al. 

2015; Hiebert & Maslakova 2015; Chapter 2 & 4). It is obvious that in most cases, 

nemertean species can be safely delimited based on molecular data and external 
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characters and that these data will provide a solid basis for species identification in the 

future.  

At this juncture, however, histological-based morphological data provide an 

informational background that is not yet given by molecular data in public repositories 

rendering a species description sensu Sundberg et al. (2016) problematic. Furthermore, 

within the last centuries, comparative morphology represented the dominating tool in 

species discovery (Padial et al. 2010). The majority of our taxonomic knowledge is 

therefore based on morphology. Combining traditional morphology with new molecular 

based methodologies therefore brings the traditional knowledge into the present day and 

prevents the loss of taxon specific information. This is essential for the re-description of 

species, especially when a species name represents synonymized lineages. Available old 

species names need to be tied to the specific lineages in question, before new species 

can described (Martinsson 2016). This prevents the unintentional description of a 

known species as a new one. In the case of Tubulanus polymorphus and Tubulanus 

ruber (Chapter 4), a separation into two species is possible based on only morphological 

or molecular data. By including internal morphology as a data source, the specimens 

collected from the Pacific and the European Atlantic could be assigned to the species 

descriptions by Griffin (1898), Renier (1804), and Bürger (1892, 1895) respectively. 

Although not included in the descriptive part of Chapter 4, additional information was 

gained by comparing ecology, gamete ultrastructure, and larval development with the 

respective published data (Stricker 1987; Stricker & Folsom 1998; Stricker et al.  2001). 

The integrative approach used in Chapter 4 therefore allowed for a more accurate 

delimitation of both species, and the reassignment of most published data under the 

name T. polymorphus to either T. ruber or T. polymorphus (Supplementary Table 6). 

In the case of Arenogigas armoricus (Chapter 2), molecular data combined with 

external characters and ecological data provide an insufficient basis for the 

classification process itself. By focusing solely on external characters, important 

internal characters needed to classify the specimens would have remained unknown. 

Investigating internal structures reveals characters that are only shared by a small 

fraction of nemerteans assigned to Poseidonemertidae. Moreover, except for a few 

Poseidonemertes species, representatives of Poseidonemertidae are not well represented 

in molecular databases. A sole molecular-based approach would have only allowed an 
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assignment to the genus Poseidonemertes, which contradicts the morphological 

characters encountered through histology. Concerning A. armoricus, both molecular 

sequence data and information on external and internal morphology were necessary to 

provide a conclusive classification. 

Concerning the delimitation of cryptic nemertean species, an integrative 

taxonomic approach might not lead to new insights. As shown in Chapter 3, the 

identification of Lineus clandestinus, Lineus ruber, and Lineus viridis was mainly based 

on molecular sequence data. Results gained from the morphological investigations were 

only of limited conclusiveness concerning the external morphology, or of no 

conclusiveness in case of the internal morphology. 

 

5.4 Conclusions 
I conclude that there is no clear advantage to either using molecular taxonomy or 

morphological taxonomy alone concerning the identification and delimitation of 

nemertean species. The species descriptions presented in this thesis show that, if one of 

the methods fails or is of limited conclusiveness, the application of the other approach 

can assist in succeeding to delimit species boundaries, allowing a good species 

description. In my point of view, molecular sequence data are of major importance and 

should always be included in a species description. In most cases, they provide a solid 

basis for identifying a species as shown in Chapters 3 and 4. Even if their applicability 

might be of limited use as shown in Chapter 2, sequence data will provide the reference 

for future identification by DNA-barcoding as they represent authoritative barcodes 

sensu Kvist et al. (2010). A species description sensu Sundberg et al. (2016) provides a 

pragmatic solution to many problems encountered in nemertean taxonomy. It allows for 

exploring nemertean diversity much quicker as species descriptions do not necessarily 

have to include detailed morphological descriptions. Taxonomic entanglements will be 

easier to solve as species re-descriptions do not have to rely on specimens collected 

from the type locality. Concerning re-descriptions, I suggest including other data 

sources such as histological-based morphology. These data provide a link to the 

traditional knowledge of nemertean taxonomy and prevent describing already known 

lineages as new species. At this point, histological-based data represent a degree of 
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information that is not yet provided by molecular data. Histological data or data gained 

from another methodological or biological background (i. e. ecology or life-history) 

should be included as long as they are informative in assessing species boundaries and 

whenever molecular data appear inconclusive in that regard.  
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Appendix 
I. Supplementary material Chapter 2 

 
Supplementary Table 1 List of primers used in the present study 

Target Primer  Primer sequence Reference 

COI 
mtDNA  

LCO1490 5'-GGTCAACAAATCA  
TAAAGATATTGG-3' 

Folmer et al. 1994 

 HCO1298 5'-TAAACTTCAGGGT 
GACCAAAAAATCA-3' 

Folmer et al. 1994 

16S 
rRNA 

ar-L 5'-CGCCTGTTTATC 
AAAAACAT-3 

Palumbi 1996 

 br-H 5'-CCGGTCTGAACTC 
AGATCACGT-3' 

Palumbi 1996 

28S 
rRNA 

28S (+) 5'-AGTAAGCGGAGGA  
AAAGAAACTAACCAG-3' 

Sadler 2010  
unpublished  

  28S (-) 5'-GAATCGCTACGGA  
CCTCCACCAG-3' 

Sadler 2010  
unpublished  

 

Supplementary Table 2. List of nemertean species included in the phylogenetic analysis, their 
GenBank accession numbers and references. 

Species COI 16S 28S 

Amphiporus 
imparispinosus 
Griffin, 1989 

HQ848612  
(Andrade et al. 2012) 

AJ436788 
(Thollesson & 
Norenburg 2003) 
 

HQ856878  
(Andrade et al. 
2012) 

Amphiporus lactifloreus 
(Johston, 1828) 

HQ848611 
(Andrade et al. 2012) 

JF277617 
(Andrade et al. 2012) 

HQ856876  
(Andrade et al. 
2012) 

Prosorhochmus 
americanus 
Gibson et al. 1986 

HQ848595  
(Andrade et al. 2012) 

EF157576 
(Maslakova & 
Norenburg 2008) 
 

HQ856879  
(Andrade et al. 
2012) 

Prosorhochmus 
claparedii 
Keferstein, 1862 

KP203862 
(present study) 

KP203860  
(present study) 

KP203861  
(present study) 

Prosorhochmus nelsoni 
Sánchez, 1973 

HQ848606  
(Andrade et al. 2012) 

JF277604  
(Andrade et al. 2012) 

HQ856891  
(Andrade et al. 
2012) 
 



II 

 

Species COI 16S 28S 

Geonemertes pelaensis 
Semper, 1863 

HQ848592 
(Andrade et al. 2012) 

JF277610 
(Andrade et al. 2012) 

HQ856888  
(Andrade et al. 
2012) 

Malacobdella grossa 
(Müller, 1776) 

HQ848591 
(Andrade et al. 2012) 

JF277614  
(Andrade et al. 2012) 

HQ856882  
(Andrade et al. 
2012) 

Carcinonemertes  
carcinophila 
(Kölliker, 1845) 

HQ848619  
(Andrade et al. 2012) 

JF277603  
(Andrade et al. 2012) 

HQ856893  
(Andrade et al. 
2012) 

Gononemertes parasita 
Bergendal, 1900 

HQ848607  
(Andrade et al. 2012) 

JF277606  
(Andrade et al. 2012) 

HQ856889  
(Andrade et al. 
2012) 

Emplectonema buergeri 
Coe, 1901 

HQ848600  
(Andrade et al. 2012) 

JF277616  
(Andrade et al. 2012) 

HQ856880  
(Andrade et al. 
2012) 

Emplectonema gracile 
(Johnston, 1837) 

HQ848620  
(Andrade et al. 2012) 

JF277621  
(Andrade et al. 2012) 

HQ856883  
(Andrade et al. 
2012) 

Nipponemertes pulcher 
(Johston, 1837) 

HQ848597  
(Andrade et al. 2012) 

JF277625 
(Andrade et al. 2012) 

HQ856871  
(Andrade et al. 
2012) 

Zygonemertes virescens 
(Verrill, 1879) 

HQ848590  
(Andrade et al. 2012) 

JF277615  
(Andrade et al. 2012) 

HQ856885  
(Andrade et al. 
2012) 

Protopelagonemertes  
beebei 
Coe, 1936 

HQ848602 
(Andrade et al. 2012) 

JF277629 
(Andrade et al. 2012) 

HQ856873  
(Andrade et al. 
2012) 

Argonemertes 
australiensis 
(Dendy, 1892) 

HQ848601 
(Andrade et al. 2012) 

JF277605  
(Andrade et al. 2012) 

HQ856892  
(Andrade et al. 
2012) 

Nemertopsis bivittata 
(Delle Chiaje, 1841) 

HQ848608  
(Andrade et al. 2012) 

JF277609 
(Andrade et al. 2012) 

HQ856877  
(Andrade et al. 
2012) 

Ototyphlonemertes 
correae 
Envall, 1996 

HQ848613  
(Andrade et al. 2012) 

JF277612  
(Andrade et al. 2012) 

HQ856884  
(Andrade et al. 
2012) 

Ototyphlonemertes  
macintoshi 
Bürger, 1895 

HQ848605  
(Andrade et al. 2012) 

JF277613  
(Andrade et al. 2012) 

HQ856886  
(Andrade et al. 
2012) 

Paranemertes sp. 
Coe, 1901 

AJ436916  
(Thollesson & 
Norenburg 2003) 

AJ436806  
(Thollesson & 
Norenburg 2003) 

AJ436861  
(Thollesson & 
Norenburg 2003) 

Paranemertes 
sanjuanensis 
Stricker, 1982 

AJ436917  
(Thollesson & 
Norenburg 2003) 

AJ436807  
(Thollesson & 
Norenburg 2003) 

AJ436862  
(Thollesson & 
Norenburg 2003) 
 

Paranemertes peregrina 
Coe, 1901 

AJ436915  
(Thollesson & 
Norenburg 2003) 

AJ436805  
(Thollesson & 
Norenburg 2003) 

AJ436860  
(Thollesson & 
Norenburg 2003) 
 
 



III 

 

Species COI 16S 28S 

Poseidonemertidae 2011 
Chernyshev, 2002 

KP203859 
(present study) 

KP203857 
(present study) 

KP203858  
(present study) 

Poseidonemertes sp. 508 
Kirsteuer, 1967 

AJ436918  
(Thollesson & 
Norenburg 2003) 

AJ436808  
(Thollesson & 
Norenburg 2003) 

AJ436863  
(Thollesson & 
Norenburg 2003) 

Poseidonemertes sp. 349 AJ436906 
(Thollesson & 
Norenburg 2003) 

AJ436796 
(Thollesson & 
Norenburg 2003) 

AJ436851  
(Thollesson & 
Norenburg 2003) 

Poseidonemertes collaris 
Roe & Wickham, 1984 

AJ436919  
(Thollesson & 
Norenburg 2003) 

AJ436809  
(Thollesson & 
Norenburg 2003) 

AJ436864  
(Thollesson & 
Norenburg 2003) 

Arenogigas armoricus KP119170 
(present study) 

KP119167 
(present study) 

KP119169  
(present study) 

Paradrepanophorus 
crassus 
(Quatrefages, 1846) 

HQ848603 
(Andrade et al. 2012) 

JF277628 
(Andrade et al. 2012) 

HQ856867  
(Andrade et al. 
2012) 

Cephalothrix rufifrons 
(Johnston, 1837) 

HQ848604  
(Andrade et al. 2012) 

JF277529 
(Andrade et al. 2012) 

HQ856841  
(Andrade et al. 
2012) 

Baseodiscus unicolor 
Stiasny-Wijnhoff, 1925 

KF935505  
(Kvist et al. 2014) 

KF935452 
(Kvist et al. 2014) 

KF935341  
(Kvist et al. 2014) 

Lineus longissimus 
(Gunnerus, 1770) 

GU392023  
(Strand & Sundberg 
2011) 

DQ911377 
(Sundberg & Strand 
2007) 

AJ436880  
(Thollesson & 
Norenburg  
2003) 

Hubrechtella dubia 
Bergendahl, 1902 

HQ848631  
(Andrade et al. 2012) 

JF277630 
(Andrade et al. 2012) 

HQ856897  
(Andrade et al. 
2012) 
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II. Supplementary material Chapter 3 

Supplementary Table 3 List of collected specimens with Museum collection number/specimen IDs, 
sampling locality, GenBank accession numbers for COI, 16S, ITS, and collection date. Specimens are 
ordered by morphospecies: Lineus viridis, Lineus clandestinus, Lineus ruber, Ramphogordius 
sanguineus, and Riseriellus occultus. 

Morphospecies Specimen ID Localitiy  COI 16S ITS 
Collection 
date 

Lineus viridis  Lv2Hl10 Helgoland  KM878335 - - 
November 
2010 

 
Lv3Hl10 Helgoland  KM878336 - - 

November 
2010 

 
Lv53Sy11 Sylt  KM878337 - - 

February 
2011 

 
Lv38Sy11 Sylt  KM878338 - - 

February 
2011 

 
Lv25Sy11 Sylt  KM878339 - - 

February 
2011 

 
Lv45Sy11 Sylt  KM878340 - - 

February 
2011 

 
Lv10Hl10 Helgoland  KM878341 - - 

November 
2010 

 
Lv34Sy11 Sylt  KM878342 - - 

February 
2011 

 
Lv44Sy11 Sylt  KM878343 - - 

February 
2011 

 
Lv50Sy11 Sylt  KM878344 - - 

February 
2011 

 
Lv8Hl10 Helgoland  KM878345 KM878511 KM878526 

November 
2010 

 
Lv42Sy11 Sylt  KM878346 - - 

February 
2011 

 
Lv31Sy11 Sylt  KM878347 - - 

February 
2011 

 
Lv6Rsc10 

 
Roscoff KM878348 - - 

 
May 2010 

 
Lv47Sy11 Sylt  KM878349 - - 

February 
2011 

 
Lv3Rsc10 

 
Roscoff KM878350 - - 

 
May 2010 

 
Lv23SSy11 Sylt  KM878351 - - 

February 
2011 

 
Lv37Sy11 Sylt  KM878352 - KM878521 

February 
2011 

 
Lv40Sy11 

 
Sylt  KM878353 - - 

February 
2011 

 
Lv8Rsc10 

 
Roscoff KM878354 - - 

 
May 2010 

 
Lv15Sy11 Sylt  KM878355 - - 

February 
2011 

 
Lv4Rsc11 

 
Roscoff KM878356 - - 

April 2011 

 
Lv4Rsc10 

 
 
Roscoff KM878357 - - 

 
 
May 2010 
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Lv5Sy11 Sylt  KM878358 - - 

February 
2011 

 
Lv16Sy11 Sylt  KM878359 - - 

February 
2011 

 

 
Lv6Sy11 

 
Sylt  

 
KM878360 - - 

February 
2011 

 
Lv17Sy11 Sylt  KM878361 - - 

February 
2011 

 
Lv18Sy11 Sylt  KM878362 - - 

February 
2011 

 
Lv22Sy11 Sylt  KM878363 - - 

February 
2011 

 
Lv9Sy11 Sylt  KM878364 - - 

February 
2011 

 
Lv19Sy11 Sylt  KM878365 - - 

February 
2011 

 
Lv10Sy11 Sylt  KM878366 - - 

February 
2011 

 
Lv20Sy11 Sylt  KM878367 - - 

February 
2011 

 
Lv9Hl10 Helgoland  KM878368 - - 

November 
2010 

 
Lv12Sy11 Sylt  KM878369 - - 

February 
2011 

 
Lv1Sy11 Sylt  KM878370 - 

 

February 
2011 

 
Lv13Sy11 Sylt  KM878371 KM878514 KM878520 

February 
2011 

 
Lv3Sy11 Sylt  KM878372 - - 

February 
2011 

 
Lv4Sy11 Sylt  KM878373 - - 

February 
2011 

 
Lv14Sy11 Sylt  KM878374 - - 

February 
2011 

 
Lv8Sy11 Sylt  KM878375 - - 

February 
2011 

 
Lv29Sy11 Sylt  KM878376 - - 

February 
2011 

 
Lv6Hl10 Helgoland  KM878377 - - 

November 
2010 

 
Lv46Sy11 Sylt  KM878378 - - 

February 
2011 

 
Lv48Sy11 Sylt  KM878379 - - 

February 
2011 

 
Lv49Sy11 Sylt  KM878380 - - 

February 
2011 

 
Lv51Sy11 Sylt  KM878381 - - 

February 
2011 

 
Lv52Sy11 Sylt  KM878382 - - 

February 
2011 

 
Lv39Sy11 Sylt  KM878383 - - 

February 
2011 

 
Lv4Hl10 Helgoland  KM878384 KM878512 KM878523 

November 
2010 
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Lv54Sy11 Sylt  KM878385 - - 

February 
2011 
 

    
 

 
 

 
Lv5Hl10 Helgoland  KM878386 - - 

November 
2010 

 
Lv2Rsc10 

 
Roscoff KM878387 - - 

 
May 2010 

 
Lv5Rsc10 

 
Roscoff KM878388 - - 

 
May 2010 

 
Lv3Con11 Concarneau KM878390 - - 

September 
2011 

 
Lv11Sy11 Sylt  KM878391 - - 

February 
2011 

 

GNM 
Nem.146/ 
Lv1Rsc10 Roscoff KM878392 - - 

 
 
May 2010 

 
Lv2Con11 Concarneau KM878393 - - 

September 
2011 

 
Lv2Rsc11 

 
Roscoff KM878394 - - 

 
April 2011 

 
Lv1Rsc11 

 
Roscoff KM878395 - - 

 
April 2011 

 

GNM 
Nem.144/ 
Lv6Wi12 Wimereux KM878396 - - 

 
 
November 
2012 

 

GNM 
Nem.145/ 
Lv7Wi12 Wimereux KM878397 - - 

 
 
November 
2012 

 
Lv2W i12 Wimereux KM878398 - - 

November 
2012 

 

GNM 
Nem.143/ 
Lv1Wi12 Wimereux KM878399 KM878513 KM878522 

 
November 
2012 

 
Lv5W i13 Wimereux KM878400 - - 

 
October 2013 

 
Lv7W i13 Wimereux KM878401 - - 

 
October 2013 

 
Lv2W i13 Wimereux KM878402 - - 

 
October 2013 

 
Lv3W i13 Wimereux KM878403 - - 

 
October 2013 

 
Lv8W i13 Wimereux KM878404 - - 

 
October 2013 

 
Lv6W i13 Wimereux KM878405 - - 

 
October 2013 

 
Lv10Wi13 Wimereux KM878406 - - 

 
October 2013 

 
Lv9W i13 Wimereux KM878407 - - 

 
October 2013 

 
Lv11Wi13 Wimereux KM878408 - - 

 
October 2013 
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Lv27Rsc10 

 
Roscoff KM878409 KM878517 KM878524 

 
May 2010 

 
Lv9Rsc10 

 
Roscoff KM878410 - - 

 
May 2010 

    
 

 
 

 
Lv1Con11 Concarneau KM878411 - - 

September 
2011 

 
Lv5Rsc11 Roscoff KM878412 - - 

 
April 2011 

 
Lv2Con13 Concarneau KM878413 KM878515 KM878519 

 
March 2013 

 
Lv1W i13 Wimereux KM878414 - - 

 
October 2013 

 
Lv7Rsc10 

 
Roscoff KM878415 - - 

 
May 2010 

 

GNM 
Nem.142/ 
Lv2Rsc12 Roscoff KM878416 - - 

September 
2012 

Lineus clandestinus Lv71Sy11 Sylt  KM878417 - - 
February 
2011 

 
Lv1Sy10 

 
Sylt  KM878418 - - 

 
January 2010 

 
Lv28Sy11* Sylt  KM878419 KM878498 KM878530 

February 
2011 

    
 

 
 

 
Lv62Sy11 Sylt  KM878420 - - 

February 
2011 

 
Lv55Sy11 Sylt  KM878421 - - 

February 
2011 

 
Lv2Sy10 Sylt  KM878422 - - January 2010 

 
Lv63Sy11 Sylt  KM878423 - - 

February 
2011 

 

GNM 
Nem.154/ 
Lv56Sy11 Sylt KM878424 - - 

 
February 
2011 

 
Lv30Sy11 Sylt  KM878425 - - 

February 
2011 

 
Lv64Sy11 Sylt  KM878426 - - 

February 
2011 

 
Lv41Sy11 Sylt  KM878427 - - 

February 
2011 

 
Lv21Sy11 Sylt  KM878428 - - 

February 
2011 

 
Lv7Sy11 Sylt  KM878429 - - 

February 
2011 

 
Lv65Sy11 Sylt  KM878430 - - 

February 
2011 

 
Lv32Sy11 Sylt  KM878431 - - 

February 
2011 

 
Lv4Con13*  Concarneau KM878432 KM878503 KM878527 

 
March 2013 

 
Lv57Sy11 Sylt  KM878433 - - 

 
February 
2011 



VIII 

 

Morphospecies Specimen ID Localitiy  COI 16S ITS 
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Lv66Sy11 Sylt  KM878434 - - 

 
February 
2011 

    
 

 
 

 
Lv58Sy11 Sylt  KM878435 KM878500 KM878531 

February 
2011 

 
Lv67Sy11 Sylt  KM878436 - - 

 
February 
2011 

 
Lv24Sy11 Sylt  KM878437 - - 

February 
2011 

 

GNM 
Nem.151/ 
Lv7Idg12 Île de Groix KM878438 KM878499 KM878528 

September 
2012 

 
Lv59Sy11 Sylt  KM878439 - - February 2011 

 
Lv68Sy11 Sylt  KM878440 - - 

 
February 2011 

 
Lv35Sy11 Sylt  KM878441 - - 

 
February 2011 

 
Lv6Idg12 Île de Gro ix KM878442 - - 

September 
2012 

 
Lv69Sy11 Sylt  KM878443 - - 

 
February 2011 

 
Lv26Sy11 Sylt  KM878444 - - 

 
February 2011 
 

 
Lv5Idg12 Île de Gro ix 

 
KM878445 - - 

September 
2012 

 
Lv60Sy11 Sylt  KM878446 - - 

 
February 2011 

 
Lv70Sy11 Sylt  KM878447 - - 

 
February 2011 

 
Lv27Sy11 Sylt  KM878448 - - 

 
February 2011 

 
Lv61Sy11 Sylt  KM878449 - - 

 
February 2011 

 
Lv1Idg12 Île de Gro ix KM878450 - - 

 
September 201 

 
Lv43Sy11 Sylt  KM878451 - - 

 
February 201 

 
Lv7Hl10 Helgoland  KM878452 KM878502 KM878532 

November 
20120 

 
Lv3Sy10 Sylt  KM878453 - - 

 
January 2010 

 

GNM 
Nem.150/ 
Lv5Wi12 Wimereux KM878454 KM878501 KM878533 

 
 
November 
2012 

 

GNM 
Nem.152/ 
Lv28Rsc10 Roscoff KM878455 KM878504 KM878529 

 
 
May 2010 

 
Lv33Sy11 Sylt  KM878456 - - 

 
February 2011 
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GNM 
Nem.153/ 
Lv3Rsc12 Roscoff KM878457 - - 

September 
2012 

Lineus ruber Lr7Idg12 Île de Gro ix KM878458 - - 
September 
2012 

    
 

  

 
Lr8Idg12 Île de Gro ix KM878459 - - 

September 
2012 

 
Lr4Idg12 Île de Gro ix KM878460 - - 

September 
2012 

 
Lr1Idg12 Île de Gro ix KM878461 KM878506 - 

September 
2012 

 
Lr1Rsc10 Roscoff KM878462 - - 

 
May 2010 

 
Lr1Con13 Concarneau KM878463 KM878510 KM878538 

 
March 2013 

 

GNM 
Nem.148/ 
Lr4Rsc12 Roscoff KM878464 - - 

September 
2012 

 
Lr3Rsc12 Roscoff KM878465 - - 

September 
2012 

 
Lr7Rsc11 Roscoff KM878466 KM878505 KM878534 

 
April 2011 

 
Lr8Rsc10 Roscoff KM878467 KM878507 KM878535 

 
May 2010 

 
Lr21Rsc10 Roscoff KM878468 - - 

 
May 2010 

 
Lr9Rsc10 Roscoff KM878469 - - 

 
May 2010 
 

 
Lr23Rsc10 Roscoff KM878470 - - 

 
 
May 2010 

 
Lr1Rsc11 Roscoff KM878471 - - 

 
April 2011 

 
Lr24Rsc10 Roscoff KM878472 - - 

 
May 2010 

 
Lr12Rsc11 Roscoff KM878473 KM878509 KM878537 

 
April 2011 

 
Lr2Rsc11 Roscoff KM878474 - - 

 
April 2011 

 
Lr15Rsc10 Roscoff KM878475 - - 

 
May 2010 

 
Lr5Rsc11 Roscoff KM878476 - - 

 
April 2011 

 
Lr17Rsc10 Roscoff KM878478 - - 

 
May 2010 

 
Lr18Rsc10 Roscoff KM878479 - - 

 
May 2010 

 
Lr3Rsc10 Roscoff KM878480 - - 

 
May 2010 

 
Lr19Rsc10 Roscoff KM878481 - - 

 
May 2010 
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GNM 
Nem.147/ 
Lr7Rsc12 Roscoff KM878482 - - 

September 
2012 

 
Lr2Rsc12 Roscoff KM878483 - - 

September  
 
2012 

    
 

  

 
Lr1Rsc12 Roscoff KM878484 - - 

September 
2012 

 
Lr20Rsc10 Roscoff KM878485 - - 

 
May 2010 

 
Lr25Rsc10 Roscoff KM878486 - - 

 
May 2010 

 
Lr7W i13 Wimereux KM878487 - - 

 
October 2013 

 
Lr1W i13 Wimereux KM878488 - - 

 
October 2013 

 
Lr4W i12 Wimereux KM878489 KM878508 KM878536 

November 
2012 

 
Lr11Wi13 Wimereux KM878490 - - 

 
October 2013 

 
Lr12Wi13 Wimereux KM878491 - - 

 
October 2013 

 
Lr4W i13 Wimereux KM878492 - - October 2013 

 
Lr13Rsc10 Roscoff KM878493 - - 

 
May 2010 

 
Lr11Rsc10 Roscoff KM878494 - - 

 
May 2010 

Ramphogordius 
sanguineus Rs1Con12 Concarneau KM878495 KM878497 - 

September 
2012 

Riseriellus 
occultus Ro1Con11 Concarneau KM878496 KM878518 KM878539 April 2011 
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Supplementary Table 4 List of primer pairs used in this study. 

Target Primer Name Primer sequence Reference 

COI  LCO1490 5'-GGTCAACAAATCATAAAGATATTGG-3' Folmer et al. 1994 

 
HCO1298 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' Folmer et al, 1994 

16S  ar-L 5'-CGCCTGTTTATCAAAAACAT-3 Palumbi et al. 1996 

 
br-H 5'-CCGGTCTGAACTCAGATCACGT-3' Palumbi et al. 1996 

ITS ITS-28S-Lineus 5'-TTTTCAACTTTCCCTCACGG-3' This study 

 
ITS-18S-Lineus 5'-CATTTGAGGAAGTAAAAGTCGTAAC-3' This study 

 

Supplementary Table 5 List of GenBank specimens used for the maximum likelihood analyses 
based on COI mtDNA and 16S rRNA with Genbank accession numbers, sampling locality 
(country) and references. Specimens are ordered by morphospecies: Lineus viridis, Lineus 
clandestinus, Lineus ruber, and Ramphogordius sanguineus. CL, Chile; DE, Germany; SE, 
Sweden; UK, United Kingdom; USA, Maine, United States of America. 

Morphospecies Species Localitiy COI 16S Reference 
Lineus viridis  L. viridis  DE HQ848579 JF277582 Andrade et al. 2012 

 
L. viridis DE FJ839919 - 

Podsiadlowski et al.  
2009 

 
L. viridis USA EF124974 EF124886 

Schwartz & Norenburg  
2006 

 
L. viridis USA AJ436936 AJ436826 

Thollesson & 
Norenburg 
2003 

 
L. viridis UK KC812597 - 

 
Strand et al. 2014 

 
L. viridis UK KC812596 - 

 
Strand et al. 2014 

 
L. ruber/viridis SE GU392024 - 

Strand & Sundberg 
2011 

 
L. ruber USA EF124970 EF124883 

Schwartz & Norenburg  
2006 

 
L. ruber 

 
SE - 

 
AF103759 

 
Sundberg & Saur 1998 

Lineus 
clandestinus L. ruber 

 
SE - AF103758 

 
Sundberg & Saur 1998 

 
L. viridis UK - AF103760 

 
Sundberg & Saur 1998 

Lineus ruber L. ruber UK KC812602 - 
 
Strand et al. 2014 

 
L. ruber UK - AF103757 

 
Sundberg & Saur 1998 

Ramphogordius 
sanguineus 

L. ruber UK DQ911370 DQ911371 

 
Sundberg & Strand 
2007 

 
L. ruber CL KC812595 - 

 
Strand et al. 2014 
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III. Supplementary material Chapter 4 

 

Supplementary Table 6 List of synonyms and references for Tubulanus polymorphus and 
Tubulanus ruber 

  
Tubulanus polymorphus  
described/mentioned as: 

Tubulanus ruber 
described/mentioned as: 

Renier 1804 Tubulanus polymorphus 
 Delle Chiaje 1829  Ophyocephalus polymorphus  

Oersted 1844  Nemertes polymorpha  
 Quatrefages 1846  Valencinia splendida 
 Diesing 1862 Valencinia splendida 
 Bürger 1888  Carinella polymorpha 
 Bürger 1890  Carinella polymorpha 
 Bürger 1892  Carinella polymorpha 
 Bürger 1895  Carinella polymorpha 
 Bürger 1897-1907  Carinella polymorpha 
 Bürger 1904 Tubulanus polymorphus 
 Griffin 1898  

 
Carinella rubra 

Joubin 1890  Carinella polymorpha 
 Riches 1893  Carinella polymorpha 
 Allen & Todd 1900  Carinella polymorpha 
 Sheldon 1901  Carinella polymorpha 
 Coe 1901  

 
Carinella speciosa 

Bergendahl 1903 Carinella polymorpha 
 Punnet 1903  Carinella polymorpha 
 Coe 1904   Carinella speciosa,  
Carinella rubra 

Coe 1905  
 

Carinella rubra 
Wijnhoff 1912  Tubulanus polymorphus 

 Southern 1913  Tubulanus polymorphus 
 Friedrich 1936 Tubulanus polymorphus 
 Coe 1940  Tubulanus polymorphus Tubulanus polymorphus 

Gontcharoff 1955  Tubulanus polymorphus 
 Ricketts & Calv in 1956  

 
Carinella rubra 

Hylbom 1957  Tubulanus polymorphus 
 Friedrich 1958  Tubulanus polymorphus 
 Corrêa 1964  

 
Tubulanus polymorphus 

Brusca & Brusca 1973  
 

Tubulanus polymorphus 
Melville  1986  Tubulanus polymorphus Tubulanus polymorphus 
Stricker 1987  

 
Tubulanus polymorphus 

Blake 1993  
 

Tubulanus polymorphus 
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Tubulanus polymorphus  
described/mentioned as: 

Tubulanus ruber  
described/mentioned as: 

Stricker & Folsom 1998 
 

Tubulanus polymorphus 
Stricker et al. 2001  

 
Tubulanus polymorphus 

von Döhren et al. 2010  
 

Tubulanus polymorphus 
Andrade et al. 2012  

 
Tubulanus polymorphus 

Beckers 2013  Tubulanus polymorphus Tubulanus polymorphus 
Mulligan 2014 

 
Tubulanus polymorphus 

Hiebert 2015    Tubulanus polymorphus 
 

Supplementary Table 7 List of GenBank specimens used for phylogenetic analyses 
based on COI and 16S. ** indicates neotype T. polymorphus and T. ruber, * indicates 
voucher specimens for T. polymorphus and T. ruber. 

Taxa COI 16S Reference 
 
Callinera grandis Bergendahl, 1903 HQ848626 JF277570 Andrade et al. 2012  
 
Carinina ochracea Sundberg et al., 2009 HQ848627 JF277631 Andrade et al. 2012   
 
Carinoma hamanako Kajihara et al., 2011 HQ848628 JF277600 Andrade et al. 2012   
 
Carinoma tremaphoros Thompson, 1900 HQ848630 JF277602 Andrade et al. 2012   
 
Cephalothrix bipunctata Bürger, 1892 KF935591 KF935447 Kvist et al. 2014  
 
Cephalothrix filiformis (Johnston, 1828) HQ848617 JF277593 Andrade et al. 2012   

Cephalothrix honkongiensis  
Sundberg et al., 2003 HQ848615 JF277590 Andrade et al. 2012   
 
Cephalothrix rufifrons (Johnston, 1837) HQ848604 JF277592 Andrade et al. 2012   

Cephalothrix simula (Iwata, 1952) AJ436945 AJ436836 
Thollesson & Norenburg 
2003  

Cephalothrix spiralis Coe, 1930 AJ436946 AJ436837 
Thollesson & Norenburg 
2003  

 
Tubulanus annulatus (Montagu, 1804) HQ848622 JF277599 Andrade et al. 2012   
 
Tubulanus pellicidus (Coe, 1895) HQ848625 JF277595 Andrade et al. 2012  
 
Tubulanus ruber/TR1/SBMNH465922** 
(Griffin, 1828) KX853121 KX853117 This study 
 
Tubulanus ruber/TR4/SBMNH465922* 
(Griffin, 1828) KX853122 KX853118 This study 
 
Tubulanus polymorphus Renier, 1904 HQ848621 JF277598 Andrade et al. 2012   
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Taxa COI 16S Reference 
Tubulanus polymorphus/TP12/GNM 
Nemertinea 157  
Renier, 1904** KX853120 

 

 
 
This study 

Tubulanus polymorphus/TP11/GNM 
Nemertinea 158  
Renier, 1904* KX853119 KX853116 This study 
 
Tubulanus punctatus (Takakura, 1898) HQ848624 JF277597 Andrade et al. 2012   

Tubulanus rhabdotus Corrêa, 1954 AJ436948 AJ436839 
Thollesson & Norenburg 
2003  

Tubulanus superbus/TS8 
(Kölliker, 1845) KX857632 KX857631 This study 
 
Terebratalia transversa JF509715 JF509720 Andrade et al. 2012  
 

Supplementary Table 8 Character checklist after Sundberg et al. 2016 

Character Tubulanus polymorphus Tubulanus ruber 

1.  Bio logy 0 (Free-living) 0 (Free-living) 
2.  Hab itat  0 (Marine) 0 (Marine) 
3.  Benthic divisions 2 (Sublittoral) 1 (Littoral) 
4.  (Pelagic divisions) 0 (Ep ipelag ic) 0 (Ep ipelag ic) 
5.  Hab itat 1 (Infaunal) 2 (Ep ibenthic) 
6.  Substratum 1 (Sand) 2 (Rock/boulders) 

7.  Behavior when mechanically 
     disturbed 

6 (Spontaneous 
 fragmentation) unknown 

8.  Cephalic furrows/slits 1 (one pair) 1 (one pair) 

9.  Distribution of anterior 
     cephalic furrows/slits 1 (Dorsal) 4 (Ventral and dorsal) 

10. Shape of anterior (dorsal) 
      cephalic furrows (viewed  
      with tip o f head direct ing  
      fo rwards) 0 (V-sphape or oblique) 0 (V-sphape or oblique) 

11. Shape of posterior (dorsal) 
      cephalic furrows (viewed  
      with tip o f head direct ing forwards) 
      Constrictions at posterior  
      of cephalic slits N/A N/A 

12. Head clearly demarcated from body  
1 (Head  wider 
than trunk) 

1 (Head  wider 
than trunk) 

13. Position of cephalic furrows 
1 (If single pair  
in front of brain lobes) 

1 (If single pair 
in front of brain lobes) 
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Character Tubulanus polymorphus Tubulanus ruber 

14. Shape of head/cephalic lobe 
5/10 (Spatulate/ 
shield-shaped) 

5/10 (Spatulate/ 
shield-shaped) 

15. Head viewed laterally  0 (without extensions) 0 (without extensions) 

16. Cross section shape of body  
1 (Dorsally-ventrally 
flattened) 0 (Rounded-cylindrical) 

17. Shape of posterior t ip N/A N/A 
18. Eyes 0 (absent) 0 (absent) 
19. Eye distinctiveness N/A N/A 
20. Eye morphology N/A N/A 
21. Relative eye size N/A N/A 
22. Eye position relat ive to brian lobes  N/A N/A 
23. General body color 1 (Dark) 2 (Pale/ light) 
24. Primary dorsal body color 0 (red) 6 (o range) 
25. Color pattern 0 (absent) 0 (absent) 
26. Color of b lood 3 (not applicaple) 3 (not applicable) 
27. Proboscis armature 0 (absent) 0 (absent) 
28. Number of accessory stylet pouches N/A N/A 

29. Number of stylets in each 
      accessory stylet pouch) N/A N/A 
30. Sty let: basis/stylet ratio N/A N/A 
31. Sty let shaft N/A N/A 
32. Shape of stylet basis N/A N/A 
33. Median waist of stylet basis N/A N/A 
34. Proboscis used for locomotion  0 (unknown) 0 (unknown) 
35. Proboscis pore 1 (subterminal, ventral) 1 (subterminal, ventral) 
36. Position of mouth 2 (Just behind brain) 2 (just behind brain) 
37. Shape of mouth 1 (elongate slit) 1 (elongate slit) 

38. Lateral margins 
1 (no distinction 
 in colorat ion) 

1 (no distinction 
 in colorat ion) 

39. Distribution of bristles/cirri 0 (not seen) 0 (not seen) 
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