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Abstract
Atmospheric processes are governed by strongly nonlinear dynamics, and predicting con-

vective events is a challenging task. In numerical weather prediction (NWP), an accurate

description of the current state of the atmosphere is needed to initialize NWP forecasts.

In order to derive these initial conditions, data assimilation plays an essential role.

For convective-scale data assimilation, radar observations of precipitation represent an

ideal database because of their unique ability to capture the spatial and temporal evolution

of precipitation systems. A radar forward operator that simulates synthetic radar measure-

ments based on the NWP model fields enables the comparison of observations and model

states. Such a forward operator is integrated into a local ensemble transform Kalman

filter (LETKF) for the assimilation of radar reflectivity data in areas with and without

precipitation. Two experiments are examined.

In the first experiment, the data assimilation update interval is varied (ranging from

5 to 60 minutes) and its influence on the quality of analysis and precipitation forecast

is studied. While the analysis quality benefits from frequent updates, forecast quality is

degraded. Additional information gained from updating frequently dissipates quickly, and

the best forecast quality for lead times beyond one hour can be obtained with hourly

updates.

In the second experiment, radar reflectivities are assimilated for a period of seven con-

secutive days with significant precipitation over Germany. Precipitation forecasts initialized

throughout this week are compared to those based on the current operational precipitation

data assimilation scheme of Deutscher Wetterdienst (DWD), called latent heat nudging

(LHN). The results show that the LETKF based assimilation of radar observations com-

petes successfully with LHN, though LHN has been tested and tuned over several years,

whereas the LETKF based system is still in an early development phase.

Furthermore, the impact of the temporal and vertical resolution of the volume radar

data is examined. The results suggest that reducing the vertical or temporal resolution of

radar observations does not degrade forecast quality but leads to significant speed up of

runtime.

The results of this study are strongly encouraging and provide a promising step towards

the operational use of radar reflectivities in an LETKF system in order to improve short-

term forecasts of precipitation.
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1. Introduction

Weather forecasts of precipitation play a major role in today’s society and are involved in

many decision-making processes of individuals and commercial organizations (Zhu et al.,

2002). Furthermore, there is a great demand for accurate forecasts of severe convective

weather events because large hail, lightning and strong winds pose a threat to human safety

and can cause severe damages.

In numerical weather prediction (NWP), the atmospheric flow is described by physical

laws governed by strongly nonlinear dynamics, and solving these flow equations is strongly

related to an initial value problem. Thus, in order to initialize numerical weather forecasts,

an essential ingredient is the specification of an initial model state that most accurately

describes the current state of the atmosphere.

Lorenz (1963) found that in models described by nonlinear equations, only slightly dif-

ferent initial states may evolve into substantially different solutions. The time by which

this initially small uncertainty increases is one of the central questions in NWP because it

determines the predictability of a model (Lorenz, 1996). Error doubling times have been

found shorter the smaller the spatial scale (Ehrendorfer et al., 1996). Consequently, cor-

rectly forecasting time and location of convective events is a challenging task due to the

limited predictability caused by the atmosphere’s chaotic and strongly nonlinear behavior.

Thus, much effort is put into the derivation of accurate initial conditions for the predic-

tion of severe weather events. This process usually involves observational information as

well as the model equations describing the atmospheric flow, known as data assimilation

(Talagrand, 1997).

Radar instruments are able to collect spatially dense information about precipitation by

transmitting electromagnetic radiation that is backscattered by hydrometeors such as rain,

graupel or snow, called radar reflectivity. By scanning on several elevations, radar measure-

ments offer a unique description of the spatial structure of convective systems. Further-

more, radar observations are available at a high temporal resolution. Consequently, radars

provide valuable information for convective-scale data assimilation. Variational methods

(3D-Var, 4D-Var) have been proven successful for the assimilation of radar data at convec-

tive scales in idealized and real data frameworks (Sun and Crook, 1997, 1998; Caya et al.,

2005; Schwitalla and Wulfmeyer, 2014) and have been established at many operational
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weather centers (Sun et al., 2014).

Due to the developments in high performance computing and the increase in avail-

able computing resources, ensemble-based data assimilation methods became feasible for

NWP and therefore gained popularity in recent years. The ensemble allows to estimate

flow-dependent covariances that provide information about the uncertainty of the weather

forecast. These estimated uncertainties are a key advantage compared to variational meth-

ods, where static covariances based on climatology have to be specified (Nichols, 2010;

Freitag and Potthast, 2013). Furthermore, ensemble-based data assimilation methods are,

by comparison to variational methods, easy to implement and maintain, because they nei-

ther require the formulation of the adjoint of the NWP model nor the tangent linear of the

adjoint.

The ensemble Kalman filter (EnKF) as first published by Evensen (1994) extends the

idea of the Kalman filter (Kalman, 1960) to an ensemble data assimilation framework. The

Kalman filter calculates the model state, usually called analysis, that optimally fits observa-

tions and prior information based on least squares theory along with the associated analysis

uncertainty. The EnKF of Evensen (1994) applies the Kalman filter to each member of an

ensemble of model states individually, where the ensemble can be regarded as the probabil-

ity distribution of the model state. Burgers et al. (1998) revealed an underestimation of the

associated analysis error in the scheme of Evensen (1994), since the observations are not

treated as the realization of a random variable. Burgers et al. (1998) suggest a method that

generates an ensemble of observations, known as the perturbed observation method. A

deterministic alternative is given by the ensemble transform Kalman filter (ETKF) (Bishop

et al., 2001). In the ETKF, the Kalman filter equations are commonly rearranged and the

analysis of each ensemble member is expressed as a linear combination of the deviations

of the prior ensemble members from the ensemble mean.

All EnKF-algorithms assume that the errors in the observations and the prior information

are normally distributed. This Gaussian assumption is a major drawback, since atmospheric

dynamics are strongly nonlinear. However, as the only two parameters needed to describe

a Gaussian distribution are the mean and the covariance, this assumption makes ensemble

filters feasible for NWP. Due to limited computing resources (memory, runtime and data

storage), it is usually only feasible to run an ensemble of 20 - 100 members in NWP

applications. The rank of the covariance matrices estimated by the ensemble is limited by

the ensemble size, but the prognostic model state has a much higher dimension (in the

order of approximately 107). Nonparametric estimation of probability distributions would

require much larger ensembles.

The EnKF has first been applied to global NWP by Houtekamer and Mitchell (1998),

and has proven successful for operational applications (Houtekamer and Mitchell, 2005).
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The limited ensemble size however also poses problems for the EnKF: as the sample covari-

ance provides only a low rank approximation of the true covariance, spurious correlations

arise that hamper the benefit of the flow-dependent estimation. To alleviate this prob-

lem, localization has been introduced (Houtekamer and Mitchell, 2001; Ott et al., 2004).

Localization is either applied to the background covariance matrix by tapering spurious

correlations (covariance localization), or applied to the observation error covariance (ob-

servation localization) by increasing the errors at larger ranges and thus restricting the

influence of distant observations.

Hunt et al. (2007) combine the ideas of the ETKF and observation localization and

propose an efficient implementation for NWP applications, called local ensemble transform

Kalman filter (LETKF). Analyses are calculated independently at each model grid point

which allows different linear combinations of the ensemble members in different spatial

regions. Thus, the global analysis is not restricted to the low-dimensional ensemble space

but can in fact originate from a higher dimensional space (Hunt et al., 2007).

Assimilating radar observations with an ensemble Kalman filter approach has first been

investigated by Snyder and Zhang (2003). The authors assimilated radial velocities into a

cloud-scale model in an observing system simulation experiment (OSSE). In OSSE studies

(Daley, 1991), synthetic observations are generated from a so-called nature run from the

model and then assimilated. This approach allows easy verification of the performance of

the data assimilation system because the true state, given by the nature run, is known.

Snyder and Zhang (2003) revealed the potential of the EnKF to transfer information from

the radar observables onto the unobserved model variables. In the OSSE studies of Caya

et al. (2005) and Tong and Xue (2005), radial velocity and precipitation observations were

assimilated. Caya et al. (2005) assimilated synthetic observations of the rainwater mixing

ratio as a proxy for radar reflectivity. Tong and Xue (2005) assimilated synthetic reflectivity

observations and found it beneficial to assimilate reflectivity also in non-precipitating areas

to suppress spurious precipitation. Further OSSE studies by e.g. Xue et al. (2006), Gao

and Xue (2008), Sobash and Stensrud (2013), and Lange and Craig (2014) corroborated

the ability of the EnKF to assimilate radar data at convective scales. In most of these

studies, synthetic radial velocity and/or reflectivity observations were simulated directly at

the model grid points, which however differs from the true radar geometry given in polar

coordinates.

In real-data studies by e.g. Dowell et al. (2004), Dowell et al. (2011), Snook et al.

(2011), and Jung et al. (2012), the focus was set on the influence of radar data on the

analysis quality. The studies of Zhang et al. (2009), Dowell and Wicker (2009), and Chang

et al. (2014) assimilated only radial velocities and excluded radar reflectivities from the

assimilation. Thus, research on the impact of the assimilation of radar reflectivity on
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precipitation forecasts in an imperfect model framework is limited, and so far mostly very

short-range forecasts in the nowcasting range (up to three hours lead time) have been

investigated in case studies (Aksoy et al., 2010; Dong and Xue, 2013; Snook et al., 2015).

In this study, the km-scale ensemble data assimilation (KENDA) system (Schraff et al.,

2016) that provides a convective-scale LETKF framework (following Hunt et al., 2007)

for the NWP model COSMO-DE (Doms and Schättler, 2002; Baldauf et al., 2011), is

applied for radar reflectivity observations. The radar forward operator EMVORADO (ef-

ficient modular volume radar operator, Blahak, 2008a; Blahak et al., 2011; Zeng, 2013;

Jerger, 2014; Zeng et al., 2014) is directly coupled to COSMO-DE and simulates synthetic

observations based on the COSMO-DE model fields during runtime. Its integration into

KENDA enables the direct assimilation of radar reflectivity observation. In two experi-

ments, radar reflectivities are assimilated in addition to conventional observations (as done

by Dong et al., 2011; Snook et al., 2015). The first experiment addresses the influence

of the data assimilation update frequency on the quality of analysis and ensemble forecast

within a mostly rainy case study. The second experiment evaluates a period of seven con-

secutive days with significant precipitation, where deterministic forecasts initialized from

the LETKF-based radar data assimilation are compared with latent heat nudging (LHN),

the radar data assimilation scheme operationally used at Deutscher Wetterdienst (DWD).

Furthermore, the impact of the vertical and temporal resolution of radar observations on

precipitation forecasts is studied. The results provide novel insights in convective-scale data

assimilation and forecasting by assimilating radar reflectivities with an ensemble Kalman

filter approach over a central European domain in a non-idealized setting, and by comparing

the results to LHN.

Chapter 2 describes the NWP model COSMO and its configuration for Germany,

COSMO-DE. Chapter 3 introduces the theory of the Kalman filter and the ensemble

Kalman filter, gives an overview of the data assimilation systems that are currently used

operationally for COSMO-DE, and describes the implementation of the ensemble Kalman

filter for COSMO-DE. In chapter 4, the basic terms of radar meteorology are reviewed and

the radar forward operator used in this study is presented. Chapter 5 describes the exper-

imental design, the observation data sets and verification scores, and chapter 6 presents

the results. Chapter 7 concludes with a summary.

This work is based on and extends the study of Bick et al. (2016). Section 3.3 (de-

scription of the implementation of the ensemble Kalman filter), Section 4.3 (description of

the radar forward operator), and Chapter 5 (experimental setup, verification scores) follow

closely the contents presented in Bick et al. (2016) but elaborated in more detail here.

Experiment 1 discussed in section 6.1 is the same as in Bick et al. (2016), whereas exper-

iment 2 (section 6.2) provides further results on the influence of the vertical and temporal
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resolution of radar observations. The description of the NWP model COSMO (Chapter

2) and the derivation of the data assimilation theory (Section 3.1) are presented in much

more detail than in Bick et al. (2016). Figures and tables that have been taken from Bick

et al. (2016) are identified in the list of figures and tables, respectively.
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2. Description of the numerical

weather prediction model

The non-hydrostatic limited-area NWP model COSMO is used operationally at DWD

since 1999 (Doms and Baldauf, 2015). Based on DWD’s former NWP model Lokal-

Modell, the COSMO-Model is maintained and further developed within the multi-national

consortium for small scale modeling (COSMO) since 2007.

Figure 2.1.: The model domain of COSMO-DE with orography. COSMO fields shown in Chapter
6 are restricted to the subdomain identified by the inner box.
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Applicable on the meso-β scale and meso-γ scale, the COSMO modeling system is

based on the thermo-hydrodynamic equations characterizing compressible flow in a moist

atmosphere. Various physical processes are included by parameterization schemes. At

DWD, the COSMO-Model operationally uses a horizontal grid spacing of 7 km on the

meso-β scale over a European domain (COSMO-EU), but is to be replaced by the European

nest of the global icosahedral non-hydrostatic modeling framework (ICON) (Zängl et al.,

2015) soon. On the meso-γ scale, the model configuration COSMO-DE (Baldauf et al.,

2011) uses a horizontal grid spacing of 2.8 km. For grid spacings of the order of 1-3 km, the

numerical models are able to resolve deep convection explicitly and thus to simulate severe

convective events, such as supercell thunderstorms or squall-line storms, more realistically

than coarse-grid models with parameterized convection.

The COSMO-DE model domain consists of 421 × 461 horizontal grid points on 50

vertical layers, thus approximately 9.7 ·106 grid points in total. The domain, approximately

1200 × 1300 km2 large, covers Germany and parts of the neighboring countries, as shown

in Figure 2.1.

2.1. Dynamical properties

The virtual temperature Tv
1, pressure p and density ρ form the thermodynamic state of

the atmosphere at any point. Their relationship is described by

p = ρRdTv , (2.1)

where Rd = 287 J kg−1 K−1 is the gas constant for dry air. In a static atmospheric column,

pressure always decreases with height as described in the hydrostatic balance equation (e.g.

Holton, 1979), that is an approximation to the Navier Stokes equation:

dp

dz
= −ρg, (2.2)

where g is the gravitational acceleration. However, this approximation only holds in the

absence of atmospheric motion and is not justified for models at a high spatial resolution

where convection plays an essential role. Pressure needs to be calculated from a three

dimensional prognostic equation instead of the simple equilibrium approximation.

In general, the atmosphere is composed of dry air, water vapor, liquid water and solid

water. The latter two may be further divided into subcategories such as cloud droplets,

raindrops, ice crystals, graupel or hail. Being subject to several external and internal

1The virtual temperature Tv of a (potentially moist) air parcel is defined as the temperature of a dry air
parcel with equal specific humidity and pressure (e.g. Bott, 2012).
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Table 2.1.: Symbols used in Equations (2.1) to (2.7)

α = (Rv/Rd − 1)qv − ql − qf Moisture correction term for gas constant
cp Specific heat at constant pressure
cv Specific heat of moist air at constant volume
g Magnitude of gravity
g Apparent acceleration of gravity
I x Sources or sinks of constituent x
Jx Diffusion flux of constituent x
Ω Constant angular velocity of Earth rotation
p Pressure
qx = ρx/ρ mass fraction of constituent x
Qh Diabatic heating/cooling rate
Qm Impact of changes in humidity on pressure tendency
Rd , Rv Gas constant for dry air and water vapor
ρ Density
ρx Partial density of mixture constituent x
t Time
T Temperature
Tv = (1 + α)T Virtual temperature
t Stress tensor due to viscosity
v Barycentric velocity (3D wind vector)

processes, such as gravity, Coriolis forces, heat, mass and momentum transfers, the system

is described by the following equations (following Doms and Baldauf, 2015):

ρ
dv

dt
= −∇p + ρg − 2Ω × (ρv)−∇ · t (2.3)

dp

dt
= −(cp/cv )p∇ · v + (cp/cv − 1)Qh + (cp/cv )Qm (2.4)

ρcp
dT

dt
=

dp

dt
+ Qh (2.5)

ρ
dqx

dt
= −∇ · Jx + I x (2.6)

ρ = p (RdTv )−1 (2.7)

An overview of the symbols used in Equations (2.1) to (2.7) is provided in Table 2.1.

The index x refers to the specific constituents of the atmosphere, described in Table 2.2.

Equations (2.3) to (2.7) form the prognostic equations of the atmospheric model state

variables v, T , p, ρ, qv , ql and qf . These differential equations are however mathemat-

ically only valid if time and space increments approach zero. According to Doms and

Baldauf (2015), for a physically meaningful interpretation in the atmospheric context, the

application of equations (2.3) to (2.7) is limited to spatial scales of O(1 cm) and temporal
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Table 2.2.: Specific constituents of the atmosphere.

x = d dry air
x = v water vapour
x = l liquid water
x = f water in solid state

Table 2.3.: Subgrid-scale variables within simplified COSMO-Model equation set.

Fv ,l ,f Turbulent fluxes of water vapor, liquid water and ice
H Turbulent flux of sensible heat (needed in order to calculate Qh)
I l ,f Rates of phase changes of liquid water and ice
T Reynolds stress tensor
Pl ,f Precipitation fluxes of liquid water and ice
R Flux of solar and thermal electromagnetic radiation

scales of O(1 s). Certainly, grid spacings of the order of 1 cm and integration time steps

of the order of 1 s are computationally not feasible. Therefore it is necessary to average

the basic equations over certain spatial and temporal scales.

Averaging is applied to the budget equations for momentum, total mass, mass of the

water constituents and enthalpy, whereas for the thermodynamic equations of state it is

assumed that thermodynamic relations between the variables are the same for their mean

as on the molecular scale. Several further simplifications then yield the following final set

of equations the COSMO-Model is based on:

ρ
dv

dt
= −∇p + ρg − 2Ω × (ρv)−∇ · T (2.8)

dp

dt
= −(cpd/cvd)p∇ · v + (cpd/cvd − 1)Qh (2.9)

ρcpd
dT

dt
=

dp

dt
+ Qh (2.10)

ρ
dqv

dt
= −∇ · Fv − (I l + I f ) (2.11)

ρ
dql ,f

dt
= −∇ · (Pl ,f + Fl ,f ) + I l ,f (2.12)

ρ = p (RdTv )−1 (2.13)

Within Equations (2.8) to (2.13), it is assumed that the variables summarized in Table

2.3 can be estimated from the grid scale variables via parameterization schemes. Again, the

equations for the liquid and solid forms of water ql ,f can be divided into further precipitating

categories, such as rain, snow or graupel with large sedimentation fluxes and negligible

turbulent fluxes, and non-precipitating categories, such as cloud water and cloud ice, with
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negligible sedimentation fluxes and larger turbulent fluxes. These particular equations can

however become very complex. In the current version of COSMO-DE, the prognostic

hydrometeor constituents are water vapor, cloud ice, rain drops, snow and graupel.

2.2. Numerical properties

The thermo-hydrodynamic equations derived in the previous section are valid for any coor-

dinate system rotating with the Earth. Therefore, a spherical coordinate system is the most

convenient way to represent the spherical shape of the Earth. However, due to the conver-

gence of the meridians, numerical problems can occur. Thus, Doms and Baldauf (2015)

introduce a rotated spherical coordinate system with a repositioned pole to minimize the

aforementioned numerical difficulties. In the COSMO-Model equations, the appropriate

equations of motion are derived from two coordinate transformations. The first transfor-

mations tilts the Z -axis, pointing through the geographical pole of the Cartesian system

with the center located in the Earth’s center, i.e. the transformation shifts the pole of the

coordinate system. The second step transforms the Cartesian coordinates into spherical

coordinates depending on longitude λ, latitude ϕ and the distance from the Earth’s center

r . The rotated meridian that crosses both the geographical and the rotated North pole

is defined as the 0◦ meridian. Further, orography is included in the model equations by

transforming the coordinate system to a surface terrain following coordinate system.

For solving the differential model equations numerically, the equations are discretized

in space and in time. For this purpose, a discrete model grid is defined. In physical

space, the grid is irregular but is transformed into a regular computational grid with a

horizontal resolution of 2.8 km. Every point of the grid is the center point of a rectangular

grid box volume. The grid point faces located between two vertical layers are usually

referred to as half levels. The model state is not entirely defined at the center points but

a part of the model variables is displaced onto the grid box faces halfway between two grid

points (Arakawa-C/Lorenz staggering): scalars, such as temperature or hydrometeors, are

defined and the grid box centers, and velocity components are defined of the box faces. For

discretizing the equations in time, the time-splitting2 third-order Runge-Kutta approach of

Wicker and Skamarock (2002) is used. In the default setup, an integration time step of 25

seconds is used within COSMO-DE.

Another important component of solving differential equations numerically in a limited-

area model consists of the initial and boundary conditions. Typically in NWP, initial and

2The prognostic equations are split into a slow part, consisting of processes such as advection and
Coriolis terms, and a fast part consisting of processes such as pressure gradient terms (leading to
sound expansion and buoyancy, further leading to the expansion of gravity waves), a more detailed
description is given in Doms and Baldauf (2015).
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boundary conditions are given by interpolating a coarser model analysis or forecast to

the desired resolution. For this purpose, at DWD a nesting is set up, where the global

model ICON provides initial condition and boundaries for COSMO-EU (and soon ICON-

EU), which then in turn provides initial and boundary conditions for COSMO-DE. For the

application in this study however, COSMO-DE is directly nested into the global model

ICON, which is explained in more detail in Section 3.3.3. Interpolation is performed via

the downscaling tool int2lm (Schättler and Blahak, 2015). The lower boundary condition

is provided by the soil model TERRA (e.g. Grasselt et al. 2008; a more detailed description

is given in Doms et al. 2011).

2.3. Parameterization

The model equations (2.3) - (2.7) in principle do not contain any parameters. However,

as described previously, solving the equations is only feasible if several simplifications are

made, such as the averaging over particular scales. By doing so, new terms arise in the

equations (compare Table 2.3) that require parameterization.

Turbulence parameterization is calculated based on the prognostic TKE-equation

(Raschendorfer, 2001), radiative transfer is modeled according to Ritter and Geleyn (1992).

Due to the high horizontal resolution in the COSMO-DE model setup, it is assumed that

deep convection is explicitly resolved. Shallow convection is parameterized following the

non-precipitating part of the scheme by Tiedtke (1989). Since deep convection is calcu-

lated explicitly, complicated microphysical processes are involved. In order to meet these

requirements, the microphysics parameterization scheme is a Lin-type one moment bulk

scheme including the hydrometeor types cloud droplets, cloud ice, rain, snow and graupel

(Lin et al., 1983; Reinhardt and Seifert, 2006). The term “one moment” means that only

the mass densities of the hydrometeors are predicted and a constant number concentra-

tion is assumed. A two moment scheme also predicting number concentrations has been

introduced by Seifert and Beheng (2001), which is however not used in this study. For

the drop size distributions of snow and graupel, an exponential distribution is assumed

(Baldauf et al., 2011)

N(g ,s)(D(g ,s)) = N0,(g ,s) exp(λ(g ,s)D(g ,s)), (2.14)

with the intercept parameter for graupel N0,g = 4 · 106 m−4, and a mass-size relation

for graupel particles is set to mg = 169.6D3.1
g . For snow, the intercept parameter is

parameterized according to a function depending on temperature T and the snow mixing
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ratio qs via

N0,s =
27

2
as(T )

(
qs

αs

)4−3bs(T )

, (2.15)

where αs = 0.038, and as(T ) and bs(T ) are defined in Field et al. (2005). It has been

found useful to represent the intercept parameter by this function instead of a constant

value used in former versions. The new formulation allows for higher intercept parameters

at cold temperatures leading to smaller snowflakes at high levels. The mass-size relation

for snow particles is set to ms = αsD
2. For the drop size distribution of rain drops, a

Gamma distribution is assumed:

Nr (Dr ) = N0,rD
µ
r exp(−λrDr ). (2.16)

Since deep convection is resolved explicitly, the intercept parameter N0,r and the shape

parameter µ have to be suited for stratiform and convective rain, which involves a com-

promise in the choice of both parameters. Based on sensitivity studies, the parameters are

set to N0,r = 3.96 · 107 m−7/2 and µ = 0.5 (Baldauf et al., 2011).
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3. Data assimilation

Since numerical weather prediction comes along with an initial value problem, a major

challenge is the specification of the atmosphere’s true state x ∈ Rn. This state x consists

of all prognostic model variables on each model grid point. In meteorological applications,

n is approximately of the order of O(107). The main goal of data assimilation is to infer an

estimate of the true atmospheric state from all available observations y ∈ Rm as accurately

as possible (Talagrand, 1997). The observations are related to the atmospheric state by

y = H(x) + η, (3.1)

where H is the observation operator and η ∈ Rm the observation error. H : Rn → Rm maps

the atmospheric model state into observation space. In case of variables that are directly

observable, such as temperature or pressure measurements from radiosondes or surface

stations, H spatially interpolates the model values to the observation coordinates. In case of

variables that are not directly observable, such as remote sensing observations from radar or

satellites, more sophisticated observation operators are necessary. These operators usually

rely on complicated relationships between the model states and the observed variables.

The observation is subject to an error η = (y − yt) with yt the true value. Commonly, it

is assumed that the observation error is unbiased, i.e. E(η) = 0, and that its covariance

R ∈ Rm×m, where R = E
[
(y − yt)(y − yt)T

]
= E(ηηT ) is known. η is commonly

interpreted as the sum of three error sources: instrument error, representativeness error1

and model error of the observation operator (e.g. Janjić and Cohn, 2006).

In addition to the observations, background information obtained from a numerical model

is available, denoted

xb = xt + ε. (3.2)

Deviations of the background state from the true state xt are denoted by ε. Commonly, this

background error is as well assumed to be unbiased, i.e. E(ε) = 0, and that its covariance

Pb ∈ Rn×n, with Pb = E
[
(xb − xt)(xb − xt)T

]
= E(εεT ) is known. Usually in NWP, the

1In data assimilation, the error that arises if the observation resolves scales finer than the resolution of
the numerical model is called representativeness error (e.g. Janjić and Cohn, 2006).
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background is provided by a short range forecast initialized from a model state valid at a

previous time step t

xb
t+1 = M(xt), (3.3)

where M is given by the numerical model equations. An overview of the symbols used in

this section is given in Table 3.1.

Table 3.1.: Symbols used in the data assimilation framework.

a (superscript) Analysis
b (superscript) Background
E Expectation
ε Background error
H Observation operator (potentially nonlinear)
H Linear observation operator
η Observation error
I Identity matrix
J Cost function
K Kalman gain matrix
m Dimension of the observation space
M Numerical model (potentially nonlinear)
M Linear numerical model
n Dimension of the model space
N Number of ensemble members
P Error covariance matrix of the model state
R Observation error covariance matrix
t Time index
t (superscript) True state
T (superscript) Transpose of a vector/matrix
x Model state vector
x Ensemble mean in physical space
w Weighting coefficients
X Matrix of ensemble perturbations
y Observation vector
y Ensemble mean in observation space
Y Matrix of ensemble perturbations in observation space

˜ Variable in ensemble space (J̃ , P̃)

3.1. Algorithms based on the Kalman filter

Data assimilation is in widespread use in science and engineering and not restricted to

meteorology. However, the application in meteorology (and oceanography) is unique in
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regard of the high dimensionality of the numerical systems. A popular data assimilation

algorithm, the Kalman filter (Kalman, 1960), was developed in electrical engineering in

order to filter signals from noisy measurements. Furthermore, data assimilation is applied

in the navigation of aircrafts and spaceships. Data assimilation also shows similarities to

inverse problems, such as posed by plasma physics or geophysics, where information about

the internal structure of a physical system or the Earth is inferred from measurements that

can only be taken at the surface (Talagrand, 1997). In recent years, intense research has

also been conducted in neurosciences, where data assimilation is used to estimate cortical

neuronal activity (Schiff and Sauer, 2008).

In this study, the local ensemble transform Kalman filter (LETKF), a square-root filter

method based on the ensemble Kalman filter (EnKF) with localization, is used. The

numerical model M and the forward operator H are nonlinear in this study. In the following

subsections, the algorithm applicable for this setup is derived.

3.1.1. The Kalman filter in a least-squares framework

According to Tarantola (1987) or Nichols (2010), the optimal solution, also called anal-

ysis xa, of the data assimilation problem stated in Equation 3.1, is given by a weighted

nonlinear least-squares problem. The minimization of the cost function

J(x) =
1

2
(x− xb)T (Pb)−1(x− xb) +

1

2
(H(x)− y)TR−1(H(x)− y) (3.4)

yields the best estimate xa given the observations y and the background (or prior) xb and

their associated uncertainties R and Pb.

In general, the gradient equation

∇J(x)
!

= 0 (3.5)

is not explicitly solvable. If it is assumed that H = H and M = M are linear (Equations 3.1

and 3.3) and that η and ε follow a Gaussian distribution, an explicit solution of Equation

(3.4) exists. In this case, the gradient equation becomes

∇J(x) = (Pb)−1(x− xb) + HTR−1(Hx− y)
!

= 0, (3.6)

where xb = Mxa. The solution of Equation (3.6) for x explicitly yields the analysis xa:

xa = xb +
(
(Pb)−1 + HTR−1H

)−1
HTR−1(y −Hxb) (3.7)

= xb + PbHT
(
HPbHT + R

)−1
(y −Hxb) (3.8)

17



= xb + K(y −Hxb), (3.9)

where

K = PbHT
(
HPbHT + R

)−1
(3.10)

is called the Kalman gain matrix, and K(y − Hxb) is called analysis increment. If the

observation errors R are large, the filter trusts the background xb and the analysis incre-

ment is small. If the background errors Pb are large, the analysis is shifted closer to the

observation y. Equations (3.6) to (3.8) are derived more elaborately in Appendix A.

Analysis error

If M = M and H = H, Equation (3.8) provides an exact and unique solution to the data

assimilation problem. According to the Gauss Markov theorem, the solution to the linear

least squares problem is the best linear unbiased estimate (BLUE) for the analysis xa. The

BLUE is optimal in the sense that it minimizes the analysis error covariance. Under the

assumption that η and ε are uncorrelated, the theoretical error in the analysis is given by

(Evensen, 1994):

Pa = E
[
(xa − xt)(xa − xt)T

]

= E
[[

xb + K(y −Hxb)− xt
] [

xb + K(y −Hxb)− xt
]T]

= E
[[

xt + ε + K(yt + η −H(xt + ε))− xt
] [

xt + ε + K(yt + η −H(xt + ε))− xt
]T]

= E
[[
ε + K(yt + η −Hxt −Hε)

] [
ε + K(yt + η −Hxt −Hε)

]T]

= E
[

(ε + Kη −KHε) (ε + Kη −KHε)T
]

= E
[
(ε + Kη −KHε)

(
εT + ηTKT − εTHTKT

)]

= E
(
εεT + KηεT −KHεεT + εηTKT + KηηTKT −KHεηTKT − εεTHTKT

−KηεTHTKT + KHεεTHTKT
)

= E
(
εεT −KHεεT + KηηTKT − εεTHTKT + KHεεTHTKT

)

= Pb −KHPb + KRKT − PbHTKT + KHPbHTKT

= Pb −KHPb − PbHTKT + K(HPbHT + R)KT

= Pb −KHPb − PbHTKT + PbHT
(
HPbHT + R

)−1
(HPbHT + R)KT

= (I−KH) Pb, (3.11)
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where I is the identity. According to the Sherman-Morrison-Woodbury identity2 Pa can

equivalently be expressed as

Pa = (I−KH) Pb =
(

I− PbHT
(
HPbHT + R

)−1
H
)

Pb (3.12)

=
(
I + PbHTR−1H

)−1
Pb. (3.13)

Sequential data assimilation

Figure 3.1.: Illustration of the data assimilation cycle. When observations y (with an error
quantified by R) are available, they can be compared to the background information from the
model xb via y−Hxb, where Hxb is the projection of the model state into the observation space.
The analysis xa is determined via the Kalman filter equation xa = xb + K(y − Hxb), and the
analysis error via Pa = (I−KH)Pb. The analysis xa then initializes a new model forecast (M).
At a next observation time step, the model state can again be updated to obtain a new analysis.
At particular time steps (e.g. every three hours), free forecasts xf can be initialized based on the
analysis.

In so-called sequential data assimilation approaches, a model forward integration (for a

predefined time interval) and a data assimilation update are iteratively repeated via

xa
t = xb

t + K(yt −Hxb
t ) (3.14)

xb
t+1 = Mxa

t (3.15)

2Applying the Sherman-Morrison-Woodbury identity (Hager, 1989) (A + UBV)−1 = A−1 −A−1U(B +
VA−1U)−1VA−1 with A = I, U = PTH, B = R−1 and V = H
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for every time step t. In Equation (3.14), observations available at time step t are assim-

ilated. The resulting analysis xa
t then initializes a model forward step (Eq. 3.15), which

is then again the background for a next data assimilation update. This sequential data

assimilation cycle is illustrated in Figure 3.1. In the following, time indices are neglected.

Related estimation approaches

If M = M and H = H, the Kalman filter is equivalent to several well-known estimation

approaches highlighted in the following.

• The cost function (Eq. 3.4) coincides with the three-dimensional variational (3D-Var)

data assimilation scheme (Nichols, 2010; Freitag and Potthast, 2013).

• The Kalman filter as introduced above is a minimum variance estimator. Using

Bayes’ rule, it can easily be shown that the minimum variance estimator coincides

with the maximum likelihood estimator (Lorenc, 1986). In Bayes’ theorem, the

so-called posterior probability distribution p(x | y) of the model state x given the

observation y can be obtained by multiplying the prior information p(x) with an

observation likelihood p(y | x), divided by a normalization term:

p(x | y) =
p(x)p(y | x)

p(y)
. (3.16)

Assuming Gaussian distributions of both prior and observation likelihood, the dis-

tributions can be specified by incorporating the forecast error covariance Pb and

observation error covariance R:

p(x) ∝ exp

{
−1

2
(x− xb)T (Pb)−1(x− xb)

}
(3.17)

p(y | x) ∝ exp

{
−1

2
(y − Hx)TR−1(y − Hx)

}
. (3.18)

The product of the prior and observation likelihood then is again a Gaussian distri-

bution:

p(x | y) ∝ exp

{
−1

2

(
(x− xb)T (Pb)−1(x− xb) + (y − Hx)TR−1(y − Hx)

)}
.

(3.19)

The maximum likelihood estimate of the expectation of p(x | y) is the value of x that

maximizes p(x | y). Maximizing p(x | y) is equivalent to maximizing ln {p(x | y)},
since the natural logarithm is a stricly monotonic increasing function. Furthermore,
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maximizing ln {p(x | y)} is equivalent to minimizing (−1) · ln {p(x | y)}. It is

(−1) · ln {p(x | y)} =
1

2
(x− xb)T (Pb)−1(x− xb) +

1

2
(y − Hx)TR−1(y − Hx),

(3.20)

thus, (−1) · ln {p(x | y)} equals the cost the function in Equation (3.4) and the

minimum of (−1) · ln {p(x | y)} the minimum of Equation (3.4).

• In NWP, the data assimilation problem in Equation (3.1) is an ill-posed3 problem.

Since the number of available observations is usually smaller than the dimension of

the model state, the data assimilation problem is underdetermined and the solution

might not be unique. The background term x − xb serves as a regularization term

and solving Equation (3.4) is equivalent to the generalized Tikhonov regularization

with weighted L2 norms (Freitag and Potthast, 2013):

xa = min
{
‖y − Hxb‖Rm + α‖x− xb‖Rn

}
(3.21)

= min
{

(y − Hxb)TR−1(y − Hxb) + α(x− xb)T (Pb)−1(x− xb)
}

. (3.22)

3.1.2. Ensemble Kalman filters

The crucial part of the previously described derivation of the Kalman filter is to specify the

background error covariance matrix Pb and to propagate Pa to the next time step. In order

to arrive at a practical implementation of the Kalman filter, Pb needs to be approximated in

a feasible manner. For this purpose, Evensen (1994) suggested the ensemble Kalman filter

(EnKF), where an ensemble of model state vectors approximate the covariance matrices Pb

and Pa. Kalnay (2010) summarizes two different approaches in ensemble Kalman filtering:

perturbed observation filters and square root filters.

Perturbed observation filters

Perturbed observation filters (Burgers et al., 1998; Houtekamer and Mitchell, 1998) update

each background ensemble member xb
i , i = 1, . . . , N according to Equation (3.9) with a

randomly perturbed observation yi for each ensemble member i via

xa
i = xb

i + K(yi −Hxb
i ), i = 1, . . . , N

K = PbHT (HPbHT + R)−1,

3An inverse problem Ax = b is called well-posed if the solution x exists, if the solution is unique and if
the solution continuously depends on the initial conditions, meaning small perturbations in b lead to
small deviations in x .
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Pb =
1

N − 1

N∑

i=1

(xb
i − xb)(xb

i − xb)T .

The background error covariance matrix Pb is estimated by the ensemble covariance, the

background ensemble mean is denoted xb. No linear approximation of the model is neces-

sary.

Burgers et al. (1998) show that the use of the same observation y for each ensemble

member xb
i (instead of perturbing the observation) leads to an underestimation of the real

analysis error covariance Pa. As shown in the derivation of the (theoretical) analysis error

covariance matrix Pa in Equation (3.11), it is

Pa = Pb −KHPb + KRKT − PbHTKT + KHPbHTKT

= (I−KH)Pb(I−KH)T + KRKT .

If the same observation y is used to update each ensemble member, the term KRKT =

K(y − yt)(y − yt)TKT vanishes and the analysis ensemble covariance matrix becomes

Pa = (I−KH)Pb(I−KH)T . (3.23)

With a simple scalar example, Burgers et al. (1998) illustrate the underestimation of the

true analysis error: For Pb = 1 and R = 1, it is K = 0.5, and the theoretical analysis error

is Pa = 0.5, whereas Equation (3.23) yields Pa = 0.25.

Square root filters

Square root filters avoid the calculation of an ensemble of perturbed observations and

perform a deterministic update of the ensemble members that, in the linear scenario,

coincides with the Kalman filter equations. Various approaches have been published such

as the ensemble transform Kalman filter (ETKF) by Bishop et al. (2001), the ensemble

square root filter (EnSRF) by Whitaker and Hamill (2002), or the ensemble adjustment

Kalman filter (EAKF) by Anderson (2001). A summary is provided in Tippett et al. (2003).

The square root filter method explained here follows Hunt et al. (2007) which is in turn

mostly based on Bishop et al. (2001). The ensemble background covariance matrix Pb can

be written as

Pb =
1

N − 1
Xb(Xb)T , (3.24)
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where Xb ∈ Rn×N is the matrix of the background ensemble perturbations. The columns

of Xb consist of the deviations from the background ensemble mean for each ensemble

member:

Xb =
[
xb

1 − xb . . . xb
N − xb

]
. (3.25)

Since the columns of Xb sum up to zero, the maximum rank of Xb and Pb is N − 1.

Therefore, Pb is not invertible. However, in the (N − 1) dimensional space S spanned by

the columns of Pb, Pb has full rank and is invertible. This space S is equivalent to the

space spanned by the columns of Xb, i.e. the space spanned by the ensemble perturbations.

The cost function (Eq. 3.4) for the ensemble case is defined as

J(x) =
1

2
(x− xb)T (Pb)−1(x− xb) +

1

2
(H(x)− y)TR−1(H(x)− y) (3.26)

and can be minimized in S . In this definition of the cost function, the observation operator

H is no longer assumed to be linear, which will be explained in more detail during the

course of this section. In order to minimize the cost function J in S , an appropriate

coordinate system has to be chosen. An intuitive choice for a basis of S is given by the

columns of Xb. However, these columns are linearly dependent. Therefore, Xb is seen as

a transformation from an N-dimensional space S̃ into the N − 1-dimensional space S , i.e.

for a vector w ∈ S̃ , it is Xbw ∈ S , and the corresponding model state x ∈ Rn is given by

x = xb + Xbw. Thus, w can be seen as a vector of weighting coefficients for Xb. If w ∈ S̃

is Gaussian distributed with mean 0 and covariance P̃b = (N − 1)−1I, then x = xb + Xbw

is Gaussian distributed with mean xb and covariance Pb. With the relation x = xb + Xbw,

Equation (3.26) becomes an analog of the cost function J in S :

J̃(w) =
1

2
(Xbw)T (Pb)−1(Xbw) +

1

2
(H(xb + Xbw)− y)TR−1(H(xb + Xbw)− y)

=
N − 1

2
wTw +

1

2
(H(xb + Xbw)− y)TR−1(H(xb + Xbw)− y). (3.27)

Let Yb, similar to Xb, be the matrix of ensemble perturbations in observation space, i.e.

Yb =
[
yb

1 − yb . . . yb
N − yb

]
, (3.28)

where yb is the mean of yb
i = H(xb

i ). For the observation operator H , the following linear

approximation can be made:

H(xb + Xbw) ≈ yb + Ybw. (3.29)
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Thus, equation (3.27) can be approximated by

J̃(w) ≈ N − 1

2
wTw +

1

2
(yb + Ybw − y)TR−1(yb + Ybw − y). (3.30)

Similar to Section 3.1.1, calculating the minimum of the cost function yields an estimate

for the analysis weighting coefficients wa:

wa = wb + ((N − 1)I + (Yb)TR−1Yb)−1(Yb)TR−1(y − yb), (3.31)

and, since wb = 0,

wa = ((N − 1)I + (Yb)TR−1Yb)−1(Yb)TR−1(y − yb). (3.32)

According to Equation (3.13), the analysis error covariance is given by

P̃a =
1

N − 1

(
I +

1

N − 1
YbR−1Yb

)−1

(3.33)

=
(
(N − 1)I + (Yb)TR−1Yb

)−1
, (3.34)

i.e. Equation (3.32) can be rewritten as

wa =P̃a(Yb)TR−1(y − yb), (3.35)

and an equivalent to the Kalman gain in ensemble space is thus given by

K̃ = ((N − 1)I + (Yb)TR−1Yb)−1(Yb)TR−1 (3.36)

= P̃a(Yb)TR−1. (3.37)

The minimum of the cost function corresponds to the mean of the analysis weights wa,

and the analysis mean xa and covariance Pa in physical space are obtained via

xa = xb + Xbwa, (3.38)

Pa = XbP̃a(Xb)T . (3.39)

The analysis ensemble is sampled around xa and has to fulfill the following properties:

Pa =
1

N − 1
Xa(Xa)T , where (3.40)

Xa = [xa
1 − xa . . . xa

N − xa] , (3.41)
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N∑

i=1

(xa
i − xa) = 0, (3.42)

i.e. the ensemble mean is equal to that specified by Equation (3.38), and the ensemble

covariance is equal to that specified by Equation (3.39). Hunt et al. (2007) determine the

analysis ensemble by

Xa = XbWa, (3.43)

where the matrix Wa is chosen to be

Wa =
[

(N − 1)P̃a
]1/2

. (3.44)

This decomposition of P̃a uniquely exists since P̃a is symmetric and positive definite. The

ensemble of weighting coefficients wa
1, . . . , wa

N is calculated in S̃ by adding wa to the

columns of Wa. The resulting weighting vectors wa
i then choose the linear combinations

of the background ensemble perturbations Xb. Then, the background mean xb is added

to transform the vector back into model space:

xa
i = xb + Xbwa

i . (3.45)

This choice of the analysis ensemble fulfills Equations (3.40) to (3.42) as shown in detail

in Hunt et al. (2007).

Transfer of information between variables

As mentioned earlier, the particular advantage of the ensemble Kalman filter is the online

estimation of the covariances, which then pass the information from the observed variables

to the unobserved variables. The analysis process is illustrated with a two dimensional

example4 with one variable observed, the other variable unobserved (Fig. 3.2). In case

both variables are (positively) correlated (Fig. 3.2 a), the mean of the observed component

is shifted towards the observation and the variance (i.e. the spread of the dots) is decreased.

The information is transferred to the unobserved variable, which is corrected accordingly,

i.e. the mean is shifted as well. In case both variables are uncorrelated (Fig. 3.2 b),

the observed component is corrected as in Figure 3.2 a, but the mean of the unobserved

component remains unchanged. Consequently, information is passed between observed and

unobserved variables if and only if these variables are correlated. This reminds of linear

4The example is based on an ensemble square root filter and implemented following Nakamura and
Potthast (2015).
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Figure 3.2.: Schematic of the ensemble Kalman filter applied to a two-dimensional example
with the variable on the abscissa observed, and the variable on the ordinate not observed. The
observation (circle) and its associated error are shown on the abscissa. The dots represent the
ensemble members, dark gray corresponds to the first guess, blue to the analysis. Thin lines
indicate how each member is shifted by the analysis. The first guess and analysis means for each
variable are shown by the cross on each axis in gray and blue, respectively. In (a) the variables
are correlated, in (b) the variables are uncorrelated.

regression, and in fact, it can be shown that the Kalman filter can be derived based on

extended regression theory (Duncan and Horn, 1972).

3.1.3. Localization

In operational NWP applications, ensemble sizes in the order of the dimension of the

model state space are not feasible. Thus, the ensemble covariance provides only a low

rank approximation of the true covariance structure. This low-rank approximation can

cause artificial long-distance correlations although the true covariance might be small.

Localization diminishes the effect of spurious correlations and implicitly chooses analysis

increments from a higher dimensional space.

There are two basic localization approaches: Firstly, in localization of Pb, long-distance

correlations are damped by multiplying Pb with a localization function (Houtekamer and

Mitchell, 2001). Secondly, in localization of R, the inverse of the observation error covari-

ance R−1 is multiplied by a distance depending localization function in order to assign long

distance observations a larger error (Ott et al. 2004; used in Hunt et al. 2007). For both

localization approaches, a common choice for the localization function is the correlation
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function introduced by Gaspari and Cohn (1999). Let G0 be a Gaussian function

G0(p1, p2, ls) = exp

(
−d(p1, p2)2

2l2
s

)
, (3.46)

where ls is called length scale or Gaussian half-width, and d(p1, p2) is the distance between

two points p1 = (x1, y1, z1) and p2 = (x2, y2, z2) in spherical coordinates on a unit sphere.

For the earth, the distance d(p1, p2) can be approximated by

d(p1, p2) = Re ·
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (3.47)

with the radius of the earth Re ≈ 6371.229 km. The Gaspari Cohn correlation function

approximates the Gaussian function G0 by a piecewise polynomial function defined as

C0(p1, p2, c) =
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·
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·
(
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·
(
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)2

−5 ·
(

d(p1,p2)
c

)
+ 4− 2

3
·
(

c
d(p1,p2)

)
if d(p1, p2) ≤ 2c

0 else,

(3.48)

where the parameter c is related to the Gaussian half-width ls via

c =

√
10

3
ls . (3.49)

A comparison of the Gaussian function G0 and the Gaspari Cohn correlation function C0

is shown in Figure 3.3 for a length scale ls = 16 km. Here, observations within a radius of

c ≈ 29.2 km mainly influence the analysis. The total cutoff is at approximately 58.4 km.

For observation localization, the optimal localization radius depends on the observation

density and quality (Perianez et al., 2014). Radar observations are dense, but prone to

errors, whereas conventional observations are much sparser and of higher accuracy. There-

fore, in this study, different localization radii are chosen for the different observation types.

The Gaspari Cohn localization length scale ls is set to 80 km for conventional observations,

and to 16 km for radar observations.
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Figure 3.3.: Gaussian function G0 (red, dashed) and the approximation given by the 5th order
Gaspari Cohn correlation function C0 (blue, solid) for ls = 16 km, i.e. c ≈ 29.2 km, and a total
cutoff at ≈ 58.4 km.

3.1.4. 4D-Formulation of the ensemble Kalman filter

Theoretically, observations can be assimilated whenever they are available. This approach

is reasonable if observations are available at regular time intervals but not too frequently.

In practice, observation can be too frequent or asynchronous in time (e.g. aircraft mea-

surements). In the analysis step of the EnKF, the ensemble members at the analysis time

are linearly combined to match the current observation. However, observations taken be-

tween two analysis time steps might contain important information about the state of the

atmosphere, and these observations should neither be neglected nor should be assumed

that they are valid at the analysis time.

The advantage of the 4D-Var scheme compared to the EnKF is that it finds the model

trajectory that best matches all observations collected during a particular time interval.

It is, however, possible to include this idea in the framework of the LETKF (Hunt et al.,

2007), as described in the following.

Let Rτj be the observation error covariance matrix for observations yτj measured at var-

ious time steps τj since the last analysis. At each observation time τj , the observations

operator is applied to the background ensemble to obtain the corresponding model equiv-

alent and to calculate the mean Hxb
τj

= yb
τj

. The matrix of the ensemble perturbations in

observation space for each time step τj is given by

Yb
τj

=
[
yb

1,τj
− yb

τj
. . . yb

N,τj
− yb

τj

]
. (3.50)

Then, the components for each time step τj are simply concatenated vertically to obtain
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the observation y, the background mean yb and Yb. The corresponding observation error

covariance matrix R is formed as a block diagonal matrix with blocks Rτj . With these

notations, the minimization of the cost function can be done as described in Equations

(3.27) - (3.45).

3.2. Operational data assimilation in COSMO-DE

Currently, the operational data assimilation in COSMO-DE used for conventional obser-

vations is based on nudging, also known as Newtonian relaxation (Schraff, 1997; Schraff

and Hess, 2012). Nudging relaxes the model state towards given values and has a long

history (Anthes, 1974; Davies and Turner, 1977; Stauffer and Seaman, 1990). In 1997,

nudging replaced optimal interpolation as operational data assimilation scheme at DWD.

In COSMO, the model state x is relaxed towards the observations and the tendency of the

model state for the variable ψ at grid point k is given by

∂

∂t
xt
ψ,k = M(x)tψ,k + Gψ ·

∑

ko∈K
Wko ·

[
yt
ko − xt

ψ,ko

]
, (3.51)

with the model forward integration M , the so-called nudging coefficient Gψ, K the set

of observation locations ko that influence the model grid point location k , and Wko is

an observation weight. The nudging coefficient Gψ depends on the variable ψ5. The

observation weight Wko varies between 0 and 1, see Schraff and Hess (2012) for details

to determine Wko . Since nudging is applied during the model forward integration, it

continuously relaxes the model towards the observation. The dynamics of the model

should however dominate over the nudging term in order to maintain the balance of the

model. The strength by which the model is corrected per time step is determined by the

nudging coefficient. Nudging is used to assimilate the following observations:

• Radiosonde observations: horizontal wind, temperature, and humidity

• Aircraft observations: horizontal wind and temperature

• Wind profiler observations: horizontal wind

• Surface station observations: surface pressure, 10-meter horizontal wind and 2-meter

humidity

• Drifting buoys

5Gψ is set to 12 · 10−4s−1 for surface pressure, and 6 · 10−4s−1 for all other variables.
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DWD intends to replace the nudging scheme with the KENDA based assimilation of con-

ventional observations in due course.

Radar based precipitation observations are integrated into COSMO via latent heat

nudging (LHN) (Stephan et al., 2008; Milan et al., 2008; Schraff et al., 2016). Latent

heat nudging does not use the full radar volume but only measurements from a so-called

precipitation scan, a terrain-following plan position indicator (PPI) scan available every 5

minutes. In order to provide data for every time step, the observations are linearly in-

terpolated in time between two scans. For LHN, radar reflectivity is transferred into a

precipitation rate based on an empirical weather-dependent Z − R relation that distin-

guishes between stratiform and convective cases as well as hail events. Furthermore, data

from the 17 radar sites are combined in a national composite by taking the maximum of

the derived precipitation rates in overlapping areas.

LHN follows the basic assumption that the latent heat release is proportional to the

precipitation rate: precipitation production is linked to hydrometeor phase changes and

thus also related to the release of latent heat and a change in temperature. The latent

heat profile in the model is adjusted by the ratio of observed and modeled precipitation

rates, RO and RM (Stephan et al., 2008). This adjustment is accomplished by changing

the temperature accordingly to enforce vertical motion, e.g. upward motion in areas where

precipitation is underestimated. This vertical motion causes the air to rise, condensate

and to form precipitation. The temperature increment over a path l that a hydrometeor

particle follows is determined via

∆TLHN(l) = (α− 1) ·∆ {LH(l)} , α =
RO

Rref
, (3.52)

where ∆ {LH(l)} is the amount of modeled latent heat release. For the scaling factor α,

a reference precipitation rate Rref is used instead of the modeled precipitation rate RM in

order to account for the delay of the initiation of precipitation. The reference precipitation

rate is obtained by vertically integrating the hydrometeor fluxes of rain, snow, and graupel.

Upper and lower bounds are applied to α (2 and 0.5) in order to keep the temperature

increments in reasonable limits. Relative humidity is preserved by adding increments to

specific humidity.

3.3. The KENDA system

The km-scale ensemble data assimilation (KENDA) system (Schraff et al., 2016) imple-

ments the LETKF described above in COSMO-DE as a 4 dimensional LETKF (see Section

3.1.4). During the COSMO forward integration, observation operators are applied when-
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Figure 3.4.: Schematic comparing the full-resolution model grid (squares and crosses) with
the sparse analysis grid (crosses). In this case, the sparse analysis grid consists of every third
grid point in zonal and meridional direction of the full-resolution grid. The analysis grid uses
approximately 11% as many grid points as the full-resolution grid. This figure is adapted from
Yang et al. (2009).

ever observations are available, i.e. a model equivalent is generated for each observation

within the forward integration between two analysis time steps. Thus, KENDA weights

the ensemble members according to their trajectory over the first guess window. In the

standard mode, KENDA uses 40 ensemble members contributing to the calculation of the

weights in Equation (3.35). An additional deterministic run is updated via

wb
det = P̃a(Yb)TR−1(y − yb

det), (3.53)

where yb
det = H(xb

det). KENDA implements various features relevant for convective scale

data assimilation summarized in the following.

3.3.1. Sparse grid analysis

The KENDA suite allows to compute the analysis weights on a coarsened grid (Yang et al.,

2009). In ensemble space, the weighting coefficients are calculated from similar data sets

when localization regions overlap sufficiently. In this case, the spatial variability of the

weights is small and Yang et al. (2009) suggest to choose a limited number of grid points

for the analysis, i.e. to perform the analysis on a sparse grid (Figure 3.4). After the analysis

step, the information from the coarse analysis grid is transferred back to the high resolution

grid by interpolation. The interpolation of the weights is performed in ensemble space

before calculating the analysis ensemble in model space, i.e the background maintains the

full high resolution information and the analysis increments thus may still capture small-

scale features. Yang et al. (2009) demonstrate a significant decrease of computational
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costs while accuracy is hardly affected. Furthermore, the coarse grid analysis might even

be more robust against unwanted imbalances, e.g. leading to gravity waves. In this study,

every third grid point in zonal and meridional direction of the full-resolution model grid is

used in the analysis. Therefore, the analysis grid uses approximately 11% as many grid

points as the full-resolution grid.

3.3.2. Inflation and relaxation

In practice, it is commonly found that the ensemble Kalman filter as described previously

may diverge from the observations, i.e. the observations are not within the range of the

ensemble. One possible reason is that the LETKF formulas do not account for model

error. Even in perfect model environments, the background error tends to become too

small making the filter too confident about the background (Hunt et al., 2007). In case

the ensemble does not provide sufficient spread, the filter fails to gain information from

the observation. One possible solution is to increase the ensemble spread artificially. The

most common method is multiplicative inflation (Anderson and Anderson, 1999). In the

framework described above, multiplicative inflation can be included easily by replacing

Equation (3.34) with

P̃a =
(
(N − 1)I/ρ + (Yb)TR−1Yb

)−1
, (3.54)

for an inflation factor ρ. Common choices are ρ ∈ [1.03, 1.1].

Relaxation approaches represent an alternative to increase ensemble spread. The meth-

ods of Zhang et al. (2004) - relaxation to prior perturbations (RTPP), and Whitaker

and Hamill (2012) - relaxation to prior spread (RTPS), are implemented in KENDA and

discussed in Harnisch and Keil (2015). In RTPP, the analysis ensemble perturbations

x′ai = xa
i −xa for i = 1, . . . , N are relaxed towards the first guess perturbations x′bi = xb

i −xb

at each analysis point:

x′ai ← (1− α)x′ai + αx′bi . (3.55)

The parameter α controls the influence of the background spread. Zhang et al. (2004)

recommend the heuristic value α = 0.75. The second method, RTPS, relaxes the analysis

ensemble spread σa towards the prior ensemble spread σb:

σa ← (1− α)σa + ασb, where (3.56)

σ(a,b) =

√
(n − 1)−1

∑(
x′(a,b)
i

)2

. (3.57)
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Whitaker and Hamill (2012) recommend α = 0.95 in order to give a high weight to the

prior spread. Equation (3.56) can be rewritten as

σa ← (1− α)σa + ασb
∣∣ · x′ai (3.58)

⇔ x′ai σ
a ← x′ai (σa − ασa + ασb) (3.59)

⇔ x′ai ← x′ai

(
α
σb − σa

σa
+ 1

)
(3.60)

Thus, RTPS is a purely multiplicative inflation, whereas RTPP is partly multiplicative and

partly additive.

3.3.3. Cycling

In the Kalman filter framework, a cycling between model runs and assimilation steps is

needed as shown in Equation (3.15) and illustrated in Figure 3.1. At DWD, the NWP

model COSMO-DE and the LETKF implemented by KENDA are coupled via shell scripts,

called basic cycling (BACY) environment. COSMO and KENDA communicate via their

output files within BACY. COSMO is reinitialized after each assimilation step. To avoid

a dry start of COSMO, i.e. a start where all hydrometeor contents are set to zero, the

hydrometeor contents qc , qi , qr , qs, qg (cloud drops, cloud ice, rain, snow and graupel)

are passed between both modules.

Initial conditions and boundary data are produced within BACY via the downscaling

module int2lm (Schättler and Blahak, 2015) applied to model fields of the global model

ICON (Zängl et al., 2015), which as well runs an LETKF. This means that each ensemble

member of KENDA is provided with initial and boundary conditions from a different ICON

ensemble member.
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4. Radar measurement process and

simulation

Weather radars (the name originates from Radio Detection and Ranging, an elaborate

overview is given in Rinehart, 2010, which this section is based upon) became one of

the most important meteorological observation instruments in recent decades. Radars

probe the atmosphere by transmitting electromagnetic waves, and receiving the signal

backscattered by objects such as rain drops, hail, birds, insects or trees and buildings. The

transmitter generates the electromagnetic radiation traveling approximately at the speed

of light. The electromagnetic radiation is transmitted and received by the antenna. Radars

are able to measure the intensity of the backscattered signal, but are also able to locate

the signal along the beam path (the “ranging” component) via the time delay between

transmitted and received signals.

Nowadays most operational weather radars operate in a so-called volume scanning mode:

Radars scan the atmosphere with a horizontal sweep at a fixed elevation angle (the so called

PPI scan), then tilt the antenna to a higher elevation, and repeat the scanning procedure.

So the radar is able to detect signals above the surface and determine the vertical structure

of precipitation systems. This three dimensional data set is usually collected during a time

frame of approximately five minutes. In the following, the main functionality of a radar is

described.

Two important parameters are the frequency and wavelength a radar operates. Wave-

length and frequency are related via f = c/λ, where f is frequency in Hertz, c is the speed

Table 4.1.: Typical radar band designations depending on frequency and wavelength.

Band designation Frequency Wavelength

L 1-2 GHz 30-15 cm
S 2-4 GHz 15-8 cm
C 4-8 GHz 8-4 cm
X 8-12 GHz 4-2.5 cm
Ku 12-18 GHz 2.5-1.7 cm
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of light1, and λ is wavelength in m. The frequencies used in radar meteorology depend on

the particular application; an overview over common frequencies and their corresponding

band designation is shown in Table 4.1. The antenna is able to direct the signal into a

specific direction by sending the signal towards a circular parabolic reflector, which reflects

the signal out into the atmosphere. For weather radars, the diameter of the reflector can

vary between 0.3 m and 9 m, depending on the transmitted frequency.

In the following, the radar measurement process is described in Sections 4.1 and 4.2,

and the radar forward operator EMVORADO is presented in Section 4.3).

4.1. Beam propagation

If the propagation of a radar beam was perfectly straight, the radar beam’s height above the

Earth’s surface would increase with increasing distance from the radar due to the curvature2

of the Earth. The propagation of the radar beam is, however, usually not perfectly straight

but is influenced by the composition of the atmosphere. The atmosphere’s refractivity

determines the speed of the electromagnetic radiation, which would be the speed of light

in a vacuum, but is slightly slowed down in air or other materials. For the atmosphere,

refractivity depends mainly on pressure, temperature and vapor pressure, which under

normal atmospheric conditions differ stronger among vertical layers than in horizontal

directions. Consequently, electromagnetic waves in different layers are traveling at different

speeds. Since refractivity is larger close to the Earth’s surface and decreases with height,

the radar beam bends towards the surface. Thus, it is rather the gradient of refractivity

than the absolute value of refractivity that influences beam propagation. According to

Battan (1973), the curvature of the radar beam relative to the Earth’s curved surface is

given by

C =
1

R ′
=

1

R
+
δN · 10−6

δH
, (4.1)

where R = 6374 km is the Earth’s radius, R ′ the radius of a circle corresponding to the

curvature C , and (δN ·10−6)/δH is the gradient of refractivity with height. The assumption

of a standard refraction allows to calculate the actual path a radar beam follows under the

corresponding atmospheric conditions. A common choice is δN/δH = −39 km−1, yielding

C =
1

R ′
=

1

6374 km
− 39 · 10−6

km
=

1.179 · 104

km
, i.e. (4.2)

1c = 299 792 458 m/s
2Curvature can be interpreted as the angular rate of change necessary to follow a curved path. The

curvature C of a circle with radius R is thus the inverse of the radius 1/R.
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R ′ =
1 km

1.179 · 104
≈ 8483 km ≈ 4

3
R . (4.3)

This means, that under normal atmospheric conditions, the radar beam propagates ap-

proximately along a circle with diameter of 4/3 times the Earth’s radius, as illustrated in

Figure 4.1. Under these conditions, the height of the radar beam at elevation ε and range

r0 above the Earth’s surface is given by (Blahak, 2004)

h(r0, ε) =
√

(R ′)2 + r 2
0 + 2 · R ′r0 sin(ε)− R ′. (4.4)

Figure 4.1.: Illustration of the 4/3 Earth radius approximation showing the Earth (gray circle), its
radius R, the straight-line propagation of the radar beam (under uniform atmospheric conditions),
the propagation assuming standard refraction, and the corresponding effective radius R ′ = 4/3·R.
The figure is adapted from Rinehart (2010).

4.2. Radar reflectivity

4.2.1. Backscattering cross section

Radars are not only able to detect and range precipitation, but are also capable of measuring

the intensity of precipitation. For this purpose, the backscattering cross-sectional area σ
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of a target is of interest. Geometrically, for a spherical point target, the cross-sectional

area is given by

σ(D) = π(D/2)2, (4.5)

where D is the diameter of the drop. This equality, however, only holds in situations where

the diameter of the drop is large compared to the wavelength of the radar, commonly in

the order of D/λ > 10. If the diameter of the drop is small compared to the wavelength

(approx. D/λ < 0.1), the so-called Rayleigh scattering theory applies:

σ(D) =
π5|K |2D6

λ4
, (4.6)

i.e. in the Rayleigh region, the backscattering cross-sectional area is proportional to the

sixth power of the drop diameter. |K |2 is a parameter related to the complex refractive

index of the hydrometeor. The Rayleigh scattering theory holds for many meteorological

targets. Raindrops usually do not become larger than 6 mm without breaking up into

smaller droplets, so for e.g. C-Band raindrops are within within the Rayleigh region (D <

0.8 cm). However, hailstones can easily become larger than 8 mm, so there is still an

important intermediate region where 0.1 ≤ D/λ ≤ 10. This region is the so-called Mie-

region, which has been named after Gustav Mie, who derived an analytical solution to

calculate σ for spheres of all diameters (Mie, 1908).

When a radar sends its electromagnetic signal out into a precipitation system, there is

usually not only a single point target but a large number of particles within the sample

volume. The total backscattering cross-sectional area accumulates from the individual

backscattering cross-sectional areas within a unit volume and is referred to as reflectivity

η (Blahak, 2004; Zeng, 2013):

η =
∑

i∈S

∑

j∈Ni

σi ,j(D), (4.7)

where S is the set of all hydrometeor types (rain drops, graupel and snow), and Ni the

number of hydrometeors of type i within the volume. Equation (4.7) can also be expressed

in continuous form via

η =
∑

i∈S

∞∫

0

σi(D)Ni(D)dD, (4.8)

where Ni(D) is the particle size distribution of hydrometeor type i . Under Rayleigh condi-
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tions, Equation (4.8) becomes

η =
∑

i∈S

π5|Ki |2
λ4

∞∫

0

Ni(D)D6dD. (4.9)

Usually it is assumed that the scanned volume consists only of water, then the param-

eter related to the complex refractive index |K |2 is replaced by that referring to water,

|Kw |2 = 0.93, yielding the so-called equivalent reflectivity

ηe =
π5|Kw |2
λ4

∞∫

0

Ni(D)D6dD. (4.10)

Commonly, a different variable that does not depend on the wavelength is defined, called

reflectivity factor

z =

∞∫

0

Ni(D)D6dD. (4.11)

In most applications, z is used since it has the advantage of being independent of the

wavelength, and η and z are related through

z =
λ4

π5|K |2η, (4.12)

and inserting the equivalent reflectivity ηe defines the equivalent reflectivity factor ze

ze =
λ4

π5|Kw |2
ηe . (4.13)

ze has a large range of possible values, from 0 for no precipitation, 10 for light rain, 1000

to 10000 for moderate to strong rain, and 1000000 for severe rain and hail. Thus, the

range of values covers several orders of magnitude. Therefore it has been found useful to

compress ze into logarithmic units via

Ze = 10 · log10

(
ze

mm6/m3

)
(4.14)

Ze is the variable that is commonly used in meteorological applications, and it is often

referred to as only “reflectivity”.
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4.2.2. Extinction

The power of electromagnetic radiation is reduced when traveling through any medium

such as clouds or precipitation due to absorption and scattering of the signal in directions

away from the radar. The amount of reduction depends on the density of the material

and on the wavelength of the electromagnetic signal. Extinction is larger the smaller the

wavelength: weather radars at S-Band (c.f. Table 4.1) suffer only little from extinction by

precipitation, whereas extinction plays a significant role at X-Band. The extinction cross

section σext for a spherical target under Rayleigh conditions is given by (for a detailed

derivation, see Blahak, 2004)

σext(D) =
π2

λ
I(−K )D3

︸ ︷︷ ︸
absorption

+
2

3

π5

λ4
|K |2D6

︸ ︷︷ ︸
scattering

. (4.15)

Generally, the extinction integrated along a path of the radar beam at range r is given by

`(r) = exp

r∫

0

Λ(r ′)dr ′, (4.16)

where Λ(r ′) is called extinction coefficient and defined as

Λ(r ′) =
∑

i∈S

∞∫

0

σext,i(D)Ni(D, r ′)dD, (4.17)

so the final form of the equivalent reflectivity factor ze including extinction is given by

ze =
λ4

π5|Kw |2
ηe
`(r)2

, (4.18)

where squaring `(r) accounts for two-way extinction.

4.3. Radar forward operator

As the philosophy of ensemble based Kalman filter methods is to compare model and

observations in observation space, the observation forward operator H is a key feature

in the assimilation process. In this study, the efficient modular volume radar operator

(EMVORADO) (Blahak, 2008a; Blahak et al., 2011; Zeng, 2013; Jerger, 2014; Zeng et al.,

2014), that is directly coupled to the COSMO-Model, is used. In the following, a brief

overview is given.
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4.3.1. Operator characteristics

EMVORADO works in two steps: first, radar reflectivity ze and extinction coefficient Λ

are computed for all hydrometeor types on the native model grid. Then, the grid point

values are interpolated onto the radar coordinates depending on range r0, azimuth α0 and

elevation angle ε0. In the previous section, the relationship between backscattering objects

and the measured reflectivity was explained. In order to simulate corresponding values

based on numerical model fields, a formulation in radar coordinates depending on r0, α0

and ε0 is needed. According to Blahak (2004); Zeng (2013), the pulse volume averaged

radar reflectivity value at range r0, azimuth α0 and elevation angle ε0 is given by

〈z (R)
e 〉(r0,α0, ε0) =

r0+cτ/4∫

r0−cτ/4

α0+π∫

α0−π

ε0+π/2∫

ε0−π/2

ze(r ,α, ε)

`2
n(r ,α, ε)

f 4
e (α, ε)

r 2
cos ε dε dα dr

r0+cτ/4∫

r0−cτ/4

α0+π∫

α0−π

ε0+π/2∫

ε0−π/2

f 4
e (α, ε)

r 2
cos ε dε dα dr

, (4.19)

where ze(r ,α, ε)/`2
n(r ,α, ε) is the radar reflectivity accounting for two-way path integrated

attenuation from the radar to location (r ,α, ε). τ is the pulse duration, and f 4
e is the ap-

proximate two-way effective beam weighting function of a scanning radar (Blahak, 2008b).

Range weighting is approximated by a simple box-function. For the sake of efficiency, pulse

volume averaging can be switched off, so the beam collapses to its central ray and the

integrals in Equation (4.19) vanish:

〈z (R)
e 〉(r0,α0, ε0) =

ze(r ,α, ε)

`2
n(r ,α, ε)

. (4.20)

The calculation of ze is based on all hydrometeor types. For the one-moment bulk three-

category ice scheme (Reinhardt and Seifert, 2006) used within COSMO, the modeled

hydrometeor types are cloud drops qc , rain drops qr , cloud ice qc , snow qs and graupel qg .

Within the two-moment scheme (Seifert and Beheng, 2006), also hail is a prognostic model

variable, which is however not used in this study. Radar reflectivity is simulated at the model

grid points according to Blahak (2008b), where both Rayleigh and Mie scattering theory

have been implemented. For Mie scattering, temperature-dependent refractive indices of

the particles can be computed. Usually, Mie scattering would be computationally much

more expensive than Rayleigh, but EMVORADO uses lookup-tables (Jerger, 2014) to make

Mie scattering as efficient as Rayleigh. Rain drops are modeled as water spheres. Cloud

ice and graupel are assumed to be one-layered spheres composed of a mixture of ice/air or

ice/water/air in the case of partially melted particles. Snowflakes are modeled as two-layer
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spheres with a denser core and a less denser shell. Melting of all ice categories is taken into

account by a parameterized function depending on temperature and particle size. The drop

size distributions needed for the calculation of ze and Λ are chosen in a model-consistent

way, i.e. for snow and graupel, an exponential drop size distribution is assumed, and for

rain drops, a Gamma distribution is assumed (c.f. Section 2.3).

EMVORADO runs efficiently on parallel- and vector computers and its modular design

allows to choose among different options useful for the particular application. In this

study, Mie scattering theory has been used. Beam bending is approximated by the 4/3

Earth radius approximation (c.f. Sec. 4.1), but more sophisticated options are possible,

where beam bending is calculated according to the actual refractive index of the atmosphere

determined during runtime (Zeng et al., 2014).

4.3.2. Observation resolution

Due to the radar measurement strategy, data is irregularly distributed in space. For an

azimuthal resolution of 1◦, measurements from adjacent beams are approximately 0.17 km

apart at a 10 km range, but diverge and at 180 km range, adjacent measurements are more

than 3 km apart. So, the data density varies significantly with range and especially close

to the radar site, the resolution is much finer than the model resolution. According to

Liu and Rabier (2002), assimilating observations that are denser than the analysis grid is

not necessarily advantageous and might even harm the analysis. The observations reso-

lution can be reduced by different techniques, such as thinning or so-called superobbing.

Thinning usually refers to the strategy to simply discard parts of the data, whereas super-

obbing combines information of several radar bins to obtain a so-called superobservation.

EMVORADO implements both thinning and superobbing.

In the thinning strategy, only every ith radar bin in range from every jth azimuthal ray

are kept, where the thinning parameters i and j can be set independently.

For superobbing, averaging is not based on areas defined by a fixed number of ranges

and azimuths but is implemented in a quasi-cartesian way: A two-dimensional horizontal

cartesian grid with a desired resolution Lx is defined. For each elevation separately, the

radar bin centers are projected onto the cartesian plane. Then, for each cartesian point,

the closest radar point is chosen. This point is the center of the superobservation, and

it remains in the radar coordinate system and is not interpolated onto the cartesian grid.

The cartesian grid only serves as auxiliary grid. Once the center point is chosen, radar bins

surrounding the center bin are averaged, where the averaging area is a pie-wedge shaped

area and its size is defined by a range and azimuth interval depending on the cartesian grid

resolution. The number of radar bins averaged into one superobservation decreases with

range. The width of the range interval is given by Lx

√
2, and the number of azimuths to
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Figure 4.2.: Illustration of the thinning and superobbing procedure: a part of the COSMO-
DE domain (approximately 220 km by 260 km) surrounding the radar site in Essen, Germany
(black cross) is shown. A contour plot of the 0.5◦ PPI scan in its original resolution is shown in
(a), the thinned observation (factor 10 in azimuthal and range direction) is shown in (b), and
the superobbed observation with a resolution of 10 km is shown in (c). For superobbing, each
averaging area (given in polar coordinates) approximates a quadratic area. This area is only well
defined if it does not contain the radar site. This leads to small data gaps around the station.

be averaged at range r0 is given by 2 · arctan
(
Lx

√
2/2 · r−1

0

)
. Thus, for a cartesian grid

with Lx = 10 km, close to the radar station, approximately 950 radar bins are averaged,

whereas beyond a range of 100 km, less than 120 bins are averaged. In overlapping regions,

observations from each radar site are so far treated as independent data.

In Figure 4.2, a measurement in its original resolution (Fig. 4.2 a) is compared with the

thinned measurement (Fig. 4.2 b) with thinning factors 10 in both azimuth and range, and

with the superobbed measurement (Fig. 4.2 c) with a cartesian grid resolution of 10 km.

Thinning significantly reduces the amount of data. The observations are dense close to

the radar site, but further away the thinned rays diverge and small cells are missed. By

comparison, superobbing provides a homogeneous data distribution throughout the domain.

Therefore, superobbing is used in this study. Since the analysis grid is coarsened by a factor

of 3 (cf. Section 3.3), a superobbing resolution of 10 km is chosen for all experiments in

order to ensure similar resolutions of model and observations.

4.3.3. Clear air information

The goal of radar data assimilation is not only to shift precipitation into the right location

but it has been also found useful to suppress spurious precipitation by assimilating also

signals in non-precipitating regions (Tong and Xue, 2005). This explicit treatment of no-
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precipitation information is crucial: if only pairs where both the model and the observation

show a valid value are handed to the LETKF, bins with clear air observed but precipitation

forecasted are neglected and thus cannot be corrected in the assimilation step. Therefore,

the value of these clear air bins is set to a value corresponding to no-precipitation.

Radar reflectivity values in logarithmic units usually range from -30 dBZ up to 60 dBZ.

Since it is usually assumed that precipitation starts at values around 5-10 dBZ3, a large

range of values may originate from non-precipitating echoes. Therefore, deviations between

no-precipitation observations and simulations might become very large without being linked

to precipitation differences. In the assimilation step, these differences are translated into

large, unphysical analysis increments. A common way to circumvent this issue is to thresh-

old all Ze values below a certain value. The absolute value chosen for this reference value

is certainly a tunable parameter. Based upon preliminary experiments, a threshold of 5

dBZ has been chosen in this study; this threshold has previously been used in other studies,

e.g. Aksoy et al. (2009). The threshold is applied before superobbing.

4.3.4. Observation errors

In this study, the observation error covariance matrix R (cf. Eqs. 3.4, or 3.10) is assumed

to be diagonal, i.e. the observation errors of individual radar bins are assumed to be

spatially uncorrelated. This assumption is a strong simplification, since individual radar

bins are usually correlated, but due to the lack of appropriate knowledge, this assumption

serves as a first approximation. The standard deviation of each observation bin is set to

10 dBZ. Although this value appears to be larger than what has been used in previous

studies (e.g. 5 dBZ in Tong and Xue, 2005), this value has been found suited based on

experimentation.

3A precipitation rate of 0.1 mm/h corresponds to approximately 10 dBZ according to the Z −R relation
by Marshall and Palmer (1948).
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5. Experimental design and

verification methods

In this section, the observation data sets and the study period are introduced (Sec. 5.1),

the experimental design is defined (Sec. 5.2), and the verification scores are presented

(Sec. 5.3).

5.1. Observation data sets and study period

Figure 5.1.: Diurnal cycle of the number of observations of hourly radar derived precipitation
rates exceeding different thresholds (0.1 mm/h, 0.5 mm/h, 1. mm/h, 2 mm/h, 5.0 mm/h, and
10.0 mm/h) observed during 22 May 2014 00 UTC and 29 May 2014 00 UTC.

The choice of the period is strongly limited by the availability of ICON ensemble boundary

data. From the period with available boundary data (mid of May 2014 to mid of June

2014), the week 22 - 29 May 2014 covered the main precipitation events, and precipitation

during this week had a clear diurnal cycle (Fig. 5.1 and 5.2). Further, the European
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Figure 5.2.: Diurnal cycle of average radar derived precipitation intensity observed during 22
May 2014 00 UTC and 29 May 2014 00 UTC. The average is based on grid points exceeding
0.1 mm/h only.

Severe Weather Database (Dotzek et al., 2009), a European database that collects severe

thunderstorm reports, shows a large number of extreme hail and heavy rain reports during

this week. Also severe lightnings caused damage and even tornados and funnel clouds were

observed.

Conventional observations

Table 5.1.: Numbers of conventional observations (AMDAR, SYNOP, TEMP and wind profiler)
assimilated in KENDA and number of radar bins after horizontal superobbing (c.f. Sec. 4.3.2).
The numbers are average values based on the week 22-29 May 2014 and refer to the number
of available observations within one hour. All numbers are approximate values. The number of
available AMDAR and TEMP data varies throughout the day: due to night flying restrictions,
there are less AMDAR measurements at night, and radiosondes are only launched 4 times a day.
For each observation type, also the temporal resolution is given in column 3.

Observation type Assimilated variables Temporal res-
olution

Number of observations
per hour

AMDAR
temperature

1 min
0-520

horizontal wind 0-550

SYNOP
10 m horizontal wind

1 h
240

surface pressure 600

TEMP
temperature

6 h
0-270

horizontal wind 0-300
rel. humidity 0-170

Wind profiler horizontal wind 30 min 500

Radar reflectivity 5 min 1.300.000

The set of conventional observations that is the basis for all data assimilation experiments

in KENDA includes aircraft measurements (AMDAR) of temperature and horizontal wind,

surface station measurements (SYNOP) of 10-meter horizontal wind and surface pressure,
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radiosonde data (TEMP) of temperature, horizontal wind and humidity, and wind profiler

measurements of horizontal wind. Table 5.1 summarizes the number of observations of

each data type and variable.

DWD radar network

The radar network operated by DWD consists of 17 C-Band radar stations entirely covering

Germany (see Fig. 5.3). The stations are operated in a volume mode with PPI scans at

10 elevation angles ranging from 0.5◦ to 25◦. An entire volume scan is collected during

a 5 minute time window. These exact measurement times are, however, not available,

thus it is assumed that all observations are valid at discrete 5 minute intervals. In range,

the measurements have a resolution of 1 km and in azimuthal direction, a resolution of

1◦. Each station covers a radius of 180 km. In Table 5.1, the number of radar bins after

horizontal superobbing (c.f. Sec. 4.3.2) is shown.

Figure 5.3.: The DWD radar network. For each of the 17 stations (shown by the red triangles),
its range is shown by a circle with a radius of 180 km.

For data assimilation, quality control is an important aspect in order to avoid the assimila-

tion of erroneous data. For radar data, this is particularly difficult, since there are numerous

error sources in radar measurements, such as beam blockage, attenuation, ground clutter,

anomalous propagation, and radar miscalibration (Villarini and Krajewski, 2010). For the
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DWD radar network, a clutter filter is applied to the measurements at the radar site to

remove ground clutter from the observations. This filter however only works successfully

for static clutter and moving features such as wind turbines or insects and birds are not

removed. The latter are of small intensity and are potentially removed by thresholding the

data at 5 dBZ (c.f. Sec. 4.3.3). However, so far it cannot be assumed that all signals in

the assimilated data are correct, which offers possibilities for further improvement.

5.2. Description of the experiments

Based on the data assimilation algorithms described in the preceding sections, different

combinations of algorithms for assimilating conventional and precipitation observations are

possible. The LETKF and LHN can be combined by assimilating conventional observations

via KENDA and by using LHN to assimilate radar derived surface precipitation rates. LHN

is applied to each ensemble member and the deterministic run individually. This setup

is the current reference system at DWD and is scheduled for pre-operational testing. In

a full LETKF system, all available observations are assimilated via KENDA, i.e. radar

reflectivities are included via EMVORADO.

The combination of nudging and LHN is the current operational deterministic data as-

similation system at DWD. The system assimilates conventional observations via nudging

and radar derived surface precipitation rates via LHN. This setup is however not investi-

gated in this study.

Experiment 1: Dependency of the update frequency

Radar data is available at a high temporal resolution. Thus, an obvious assumption is

that frequent assimilation updates improve the analysis and subsequent forecasts. This

hypothesis is examined in this first set of experiments. A one-day case study within the

experimental period, 26 May 2014, with varying update frequency is performed and the

quality of the analysis and forecast is studied. The experimental setup is as follows: The

ensemble with 40 members is initialized at 00 UTC based on downscaled fields from the

global model ICON. Prior to data assimilation, the ensemble is propagated for 12 hours to

ensure that the ensemble develops a realistic approximation of the convective scale forecast

error structures (following Zhang et al. 2009). In the assimilation cycle from 12 to 15 UTC,

conventional and radar reflectivity observations are assimilated every 5, 15, 30 or 60 minutes

with the full LETKF system. The setups are called CONV+RAD 5, CONV+RAD 15,

CONV+RAD 30, and CONV+RAD 60. In each analysis step, all observations collected

during the previous first guess window are assimilated by the 4D-LETKF. This means, for

example, CONV+RAD 15 assimilates observations from three time steps: observations
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Table 5.2.: Summary of the experimental setups used in experiments 1 and 2.

Conventional (AMDAR,

SYNOP, TEMP, Wind profiler)

Reflectivity Rain rate

(2D)

Update fre-

quency

4D-weighting

CONV X 60 not applicable

CONV+RAD
X Entire volume 60 X

( =̂ CONV+RAD 60)

CONV+RAD 30 X Entire volume 30 X
CONV+RAD 15 X Entire volume 15 X
CONV+RAD 5 X Entire volume 5 not applicable

CONV+RAD 1ELE X Lowest elevation 60 X
CONV+RAD 4ELE X Every third elevation 60 X
CONV+RAD 3DLETKF X Entire volume 60

CONV+LHN X X 60 not applicable
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from the analysis time, and 5 and 10 minutes prior to the analysis. For verification, a

reference simulation named CONV assimilates only conventional observations with hourly

updates. The last analysis at 15 UTC provides the initial conditions for a 6 hour ensemble

forecast and an additional deterministic forecast for the period 15 to 21 UTC.

Experiment 2: Evaluation over one week

This experiment is not restricted to a few test cases but assesses the impact of radar

reflectivity assimilation on deterministic forecasts based on a simulation of seven days.

The basic cycle of the experiments is as follows: The assimilation cycle is initialized on

21 May 2014 at 12 UTC by interpolating the global model fields provided by ICON to the

COSMO-DE grid. With hourly update intervals, the model is continuously cycled until 29

May 2014, 00 UTC. Throughout this period, 29 deterministic forecasts with a lead time

of 24 hours are initialized in 6 hourly intervals. The first forecast is initialized after a 12

hour spinup on 22 May, 00 UTC, the last forecast is initialized on 29 May, 00 UTC.

Firstly, the full LETKF system is compared with DWD’s current reference system that

uses the LETKF for conventional observations and LHN for radar derived precipitation

rates, called CONV+LHN. As in experiment 1, a system CONV is set up that assimilates

only conventional observations.

Secondly, this experiment assesses the impact of the amount of radar information assim-

ilated. Intuitively, more observational data might improve analysis and forecast, however,

the handling of large amounts of data requires many computational resources. Thus, for

the full LETKF system, the value of the dense vertical information and the 4D-formulation

of the LETKF (c.f. Sec. 3.1.4) is investigated in the following setups:

• CONV+RAD: As in CONV+RAD 60, entire radar reflectivity volumes are assimilated

in addition to conventional observations. The trajectory of the entire first guess

window is included.

• CONV+RAD 1ELE: Only the lowest PPI scan at 0.5◦ elevation angle is assimilated.

Due to the propagation of the radar beam, there is still information on different

vertical levels available in areas of station overlap (c.f. Section 4.1, Eq. 4.4). The

trajectory of the entire first guess window is included.

• CONV+RAD 4ELE: Here, more and higher elevation scans are considered, namely

every third PPI scan (elevations at 0.5◦, 3.5◦, 8.0◦, and 25.0◦). The trajectory of

the entire first guess window is included.

• CONV+RAD 3DLETKF: Full radar reflectivity volumes are assimilated, but only

measurements that are valid at the exact analysis time. Prior measurements during
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the first guess window are not used.

A summary of the setups used in experiments 1 and 2 is given in Table 5.2.

5.3. Verification scores

The major goal of this study is to improve precipitation forecasts. For an objective veri-

fication, appropriate scores are needed. Traditional verification scores suffer, if applied to

precipitation, from the so-called double penalty problem. In point-by-point comparisons,

a small displacement of a precipitation event in the forecast is punished twice: first, for

being in the wrong place, second, for missing the right place. In contrast, a forecast that

does not predict the event at all is only punished once for not forecasting the event. The

development of ensemble verification scores that do not suffer from the double penalty

problem is however still a relatively new research area and thus, a score with this property

is here only considered for deterministic forecasts. In the following, the scores used to

verify the ensembles of experiment 1 and the deterministic forecasts of experiment 2 are

described.

Ensemble based verification

In experiment 1, the ensemble forecast is verified using the Brier score (BS, Wilks, 2006)

and the continuous ranked probability score (CRPS, Matheson and Winkler, 1976). The

observational data used for verification is first the superobbed reflectivity data of the lowest

PPI scan in dBZ and second, radar derived precipitation data in mm/h. For the first, in

regions with station overlap, the data of the closest station are used.

The Brier score measures the accuracy of probabilistic forecasts in terms of the mean

squared error between forecast and observation events. Events are defined by the ex-

ceedance of a threshold. Thus, observations and model output are transferred into binary

fields: The observation event yk at a particular grid point k is 1 if the event occurred or

0 otherwise. The probabilistic forecast of the event occurring is given by the fraction of

the ensemble members exceeding the threshold, denoted p(xk). The Brier score is thus

defined as

BS =
1

n

n∑

k=1

(p(xk)− yk)2, (5.1)

where n is the number of model grid points.

When measuring the accuracy of forecasts, a common goal is to assess the skill of a

forecast relative to a reference. Thus, forecast skill expresses the improvement obtained
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by a particular forecast relative to the reference. Forecast skill in terms of a measure A is

usually obtained via a skill score SS

SS(A) = 1− A

Aref
. (5.2)

The Brier skill score (BSS) is thus defined as

BSS = 1− BSS

BSSref
, (5.3)

and in the context of experiment 1 calculated via

BSS = 1− BS(CONV+RAD 5/15/30/60)

BS(CONV )
(5.4)

with CONV taken as the reference. The BSS ranges from -1 to 1, where positive values

indicate an improvement by the “new” system relative to the reference, and negative values

indicate a degradation compared to the reference, and 0 refers to equal performance.

For continuous variables, the CRPS is used and defined as

C RPS(F , y) =

∞∫

−∞

(F (x)− 1{x ≥ y})2 dx , (5.5)

where F is the cumulative distribution function of the forecast, and the Heaviside function

1{x ≥ y} is defined as

1{x ≥ y} =





1, if x ≥ y

0, otherwise.
(5.6)

The CRPS is commonly interpreted as the integral of the Brier score for all real-valued

thresholds (Hersbach, 2000). According to Gneiting and Raftery (2007), an equivalent

form of the CRPS is given by

C RPS(F , y) = EF |X − y | − 1

2
EF |X − X ′|, (5.7)

where X and X ′ are independent samples of a random variable with distribution F . This

formulation allows the derivation of an explicit calculation of the CRPS in case of a discrete

ensemble of size N representing the forecast distribution via (Grimit et al., 2006)

C RPS =
1

N

N∑

i=1

|xi − y | − 1

2N2

N∑

i=1

N∑

j=1

|xi − xj |. (5.8)
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As for the BSS, the continuous ranked probability skill score (CRPSS) is obtained via

C RPSS = 1− C RPS(CONV+RAD 5/15/30/60)

C RPS(CONV )
. (5.9)

Deterministic verification

The deterministic forecast carried out within experiment 2 are verified with the fraction

skill score (FSS, Roberts and Lean, 2008), the equitable threat score, and the frequency

bias (ETS and FBI, Wilks, 2006).

The FSS is also a skill score of the form

F SS = 1− MSE

MSEref
. (5.10)

where MSE denotes the mean squared error. Similarly to the Brier score (c.f. Eq. 5.1),

the MSE is defined as

MSE =
1

n

n∑

k=1

(ps(xk)− ps(yk))2 , (5.11)

where n is the number of model grid points and the probabilities ps(xk) and ps(yk) describe

the probability of an event occurring based on the exceedance of a threshold for the model

xk and observations yk . In contrast to the Brier score, where the forecast probability ps(xk)

is obtained from the ensemble, here the probability is obtained by averaging over a certain

spatial scale or neighborhood s, which is done for the observation and the model. The

spatial scale is usually defined by an area of adjacent model grid points. By using a scale

s larger than grid point scale, the FSS relaxes the need of a direct match between model

and observations and thus circumvents the double penalty problem. By varying s, the

FSS provides information about how skill varies with spatial scale. The typical reference

in the FSS is the worst possible MSE that can be obtained from the underlying model and

observation fields and is calculated via

MSEref =
1

n

n∑

k=1

ps(xk)2 +
1

n

n∑

k=1

ps(yk)2, (5.12)

which is motivated by neglecting all common non-zero grid points of model and observation

(i.e. neglecting the term 2 · ps(xk)ps(yk) that arises by expanding the right hand side of

Eq. 5.11). The FSS ranges from 0 to 1, where the value 1 is assigned to a perfect forecast.

The ETS and FBI are verification measures for non-probabilistic forecasts and are based
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Table 5.3.: 2 × 2 Contingency Table based on binary outcomes of observation and forecast with
notations for hits (a), false alarms (b), misses (c) and correct negatives (d).

Observation
Yes No

Forecast
Yes a b
No c d

on the contingency table (Table 5.3) that consists of frequencies of binary forecasts and

observations, which is again defined by the exceedance of a threshold. The ETS relates the

forecast yes outcomes (event simulated) to the observed yes outcomes (event observed)

accounting for random hits:

E T S =
a − aref

a − aref + b + c
, (5.13)

where

aref =
(a + b)(a + c)

a + b + c + d
. (5.14)

The ETS ranges from −1/3 to 1 with perfect score equal to 1. The FBI is defined as the

ratio of yes forecasts to yes observations:

F BI =
a + b

a + c
(5.15)

which is 1 for unbiased forecasts. Values below 1 indicate underforecasting, values greater

than 1 indicate overforecasting of precipitation events.

The prognostic model variables not directly linked to precipitation are compared against

observations in order to ensure that the radar data assimilation does not have a negative

impact on variables such as temperature, wind, or humidity. Therefore, the root mean

squared error (RMSE) and bias against SYNOP station data are calculated according to

RMSE =

√√√√ 1

m

m∑

k=1

(xk − yk)2, (5.16)

and

bias =
1

m

m∑

k=1

(xk − yk), (5.17)

where m is the number of observations.
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Bootstrapping

A common method to assess the uncertainty in forecast verification scores is the bootstrap

method (Efron and Tibshirani, 1993). From the original data set, e.g. an ensemble

or multiple deterministic forecasts, m samples are drawn with replacement, the so-called

bootstrap samples. Each bootstrap sample is supposed to be of the same size as the

original sample. The forecast verification score of interest (e.g. the Brier score) is then

calculated for each of the bootstrap samples, which can then again be related to the

bootstrap samples of a reference (for e.g. the BSS). Percentiles of these m realizations

are used to estimate the uncertainty of the respective score. In this study, the bootstrap

samples consist of 1000 realizations. In case of experiment 1, bootstrapping is applied to

the ensemble, and in case of experiment 2, bootstrapping is applied to the set of multiple

deterministic forecasts.
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6. Results

6.1. Experiment 1: Dependency of the update

frequency

The first experiment studies the influence of radar reflectivity data assimilation in addition

to conventional data and assesses the impact of the data assimilation frequency on the

quality of analysis and forecast. Figure 6.1 displays hourly accumulated precipitation from

observations and from the model (deterministic run). The upper row shows CONV, the

reference, and, exemplarily, CONV+RAD 60 at 15 UTC compared to the precipitation rate

product derived from the radar measurement. Precipitation is accumulated between 14

and 15 UTC, i.e. the first row of Figure 6.1 corresponds to the model state immediately

before the last assimilation step. By visual comparison, CONV+RAD 60 is clearly in better

agreement with the observation (especially over the Netherlands or the southern Germany).

The middle row of Figure 6.1 is valid after three hours forecast, i.e. at 18 UTC. Still,

CONV+RAD 60 agrees better with the observation than CONV (e.g. over the western

part of Germany). After six forecast hours (bottom row of Figure 6.1), it is difficult to judge

simply by comparing visually whether one setup is superior. Both forecasts underestimate

the intensity of the event.

Figure 6.2 shows the number of ensemble members exceeding 0.5 mm/h of accumulated

precipitation for CONV+RAD 5/15/30/60 (Fig. 6.2 b, c, e, f) at the end of the assimila-

tion window (15 UTC) and compares the four setups with the actual radar derived precipi-

tation field (Fig. 6.2 d), and the observation transferred into a binary field (Fig. 6.2 a). For

all update frequencies, the observations are very well reproduced. CONV+RAD 5/15/30

lead to very similar high numbers of ensemble members which reproduce precipitation rates

above this particular threshold. Especially for CONV+RAD 5 and CONV+RAD 15, the

red areas (i.e. areas where all 40 ensemble members exceed the threshold of 0.5 mm/h)

coincide with the binary observation. The ensemble members differ only outside the radar

observed area. In CONV+RAD 60, the ensemble exhibits more spread also within the radar

observed area. Since the analysis increments are a linear combination of the ensemble per-

turbations, more spread is not necessarily a disadvantage. Quite the contrary, ensemble

spread is required to successfully assimilate observations. However, the large red areas
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Figure 6.1.: Hourly precipitation accumulation for experiment 1 (26 May 2014). The radar-
derived precipitation is shown in the middle column (b, e, h), the model-generated precipitation
of setup CONV is shown in the left column (a, d, g), and the model-generated precipitation of
setup CONV+RAD 60 is shown in the right column (c, f, i). Figures (a-c) are valid at 15 UTC,
Figures (d-f) at 18 UTC and Figures (g-i) at 21 UTC.
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Figure 6.2.: First guess ensemble and radar derived precipitation rate (experiment 1, 26 May
2014) accumulated between 14 and 15 UTC. In (a), the observation is transformed to a binary
field: grid points exceeding 0.5 mm/h are shown in red. For the ensemble, the number of ensemble
members exceeding 0.5 mm/h is counted for all 4 update frequencies: (b) CONV+RAD 5, (c)
CONV+RAD 15, (e) CONV+RAD 30, and (f) CONV+RAD 60. As a reference, the observed
total precipitation is shown in (d).

indicate that the ensemble members of all four setups have similar precipitation system

structures.

6.1.1. Quantitative verification

For objective comparison, the BSS and CRPSS are computed (c.f. Section 5.3). Due to

technical constraints, precipitation is not contained in the analysis files, thus the model

needs to be run for a short time interval (until the next observation is available; here for five

minutes) to apply the forward operator and calculate the dBZ model equivalent. This 5-

minute forecast is taken as a proxy for the analysis during the assimilation window. The BSS

of CONV+RAD 60 with CONV as reference (solid red line in Fig. 6.3) strongly increases

during the assimilation window showing a very beneficial influence of the radar reflectivity

assimilation. This positive impact is visible when verifying against reflectivities (Fig. 6.3 a)
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Figure 6.3.: The BSS for setups CONV+RAD 5 (light blue), CONV+RAD 15 (dark gray),
CONV+RAD 30 (dark blue), and CONV+RAD 60 (red) with CONV as the reference. The
BSS is plotted against time. The gray shaded area corresponds to the assimilation window.
The error bars are obtained via bootstrapping (2.5% and 97.5% percentiles). In (a), the BSS
is based on instantaneous reflectivity measurements with a threshold of 20 dBZ. During the
assimilation window, the analysis is approximated by a 5 minute forecast. For graphical display,
these approximations are shown at analysis times (i.e. every 5, 15, 30 or 60 minutes). In (b),
the BSS is based on precipitation rates with a threshold of 0.5 mm/h.

and against radar derived precipitation rates (Fig. 6.3 b). For the more frequent updates,

an even stronger increase of skill during the assimilation window is visible. In Figure 6.3 a,

a clear hierarchy among the four setups is visible at the end of the assimilation window: the

most frequently updated setup yields the best analysis, the least frequently updated setup

the worst analysis. All four setups are able to improve the analyses compared to CONV.

After the assimilation window, skill decreases for all four setups. After one forecast hour, the

four systems are indistinguishable. For CONV+RAD 60, skill remains significantly positive

for the first three forecast hours based on reflectivities. For accumulated precipitation,

the results indicate even a positive impact throughout the entire forecast window. For the

more frequently updated setups, a degradation of forecast quality compared to CONV is

visible after 3 hours in Figure 6.3 a and after four forecast hours in Figure 6.3 b as shown
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Figure 6.4.: The same as Figure 6.3, but for the CRPSS.

by the negative values of the BSS.

The CRPSS of the four CONV+RAD setups with CONV as reference (Fig. 6.4) evolves

similarly to the BSS: during the assimilation window, a significant increase of skill is visible

in terms of reflectivities (Fig. 6.4 a) and hourly precipitation rates (Fig. 6.4 b). More

frequent updates lead to better analyses, but also suffer from the drawback of worse

forecast quality. For CONV+RAD 60, a positive impact is visible for up to four hours

(Fig. 6.4 a and b), whereas CONV+RAD 5 performs worse than CONV from forecast

hour three.

6.1.2. Surface pressure tendencies

In data assimilation, analysis increments are added to the model state that may disrupt the

dynamical balance of the model. Thus, numerical noise is introduced if structures in the

analysis increments, especially small-scale structures, are incompatible with the dynamics

of the model and if the model is not able to dissolve mass-momentum imbalances (Stauffer

and Seaman, 1990). In the ensemble Kalman filter framework, gravity waves are a common

problem (Mitchell et al., 2002). A measure to quantify these imbalances is the first time
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Figure 6.5.: Domain averaged surface pressure tendencies for each integration time step (1
time step =̂ 25 s, i.e. 3 h =̂ 432 time steps) during the assimilation window (shaded in gray)
for CONV+RAD 5 (light blue), CONV+RAD 15 (dark grey), CONV+RAD 30 (dark blue), and
CONV+RAD 60 (red).

derivative of surface pressure, averaged over the model domain (Stauffer and Seaman,

1990; Chen and Huang, 2006):

St =
1

n1 · n2

n1∑

i=1

n2∑

j=1

∣∣∣∣
∂ps

∂t

∣∣∣∣
i j

, (6.1)

where ps is the surface pressure and summation is done over the entire model domain.

Figure 6.5 shows how St based on the deterministic runs of CONV+RAD 5/15/30/60

evolves during the assimilation window. When data is assimilated less frequently, the

model is potentially further away from the observation and analysis increments are larger.

Therefore, less frequent updates cause a more intense shock and produce higher noise

than more frequent updates. Although the noise introduced by data assimilation is the

strongest in CONV+RAD 60, only here the surface pressure tendency of the model state

decays almost to zero before the next assimilation step, i.e. only for CONV+RAD 60

the model state is able to adjust to the changes introduced by data assimilation. Espe-

cially for CONV+RAD 5 and CONV+RAD 15, the noise does not peak as high as for

CONV+RAD 60, but the model state is not able to recover completely from the analysis

and remains at a particular noise level throughout the entire assimilation window. This

persistent noise suggests that the analyses of the frequently updated setups are less phys-

ically consistent. Therefore, forecasts initialized from these potentially unbalanced model

states are worse compared to the less frequently updated setups.

The data assimilation cycling framework BACY (cf. Section 3.3.3) runs COSMO-DE

and KENDA via shell scripts, i.e. output files are written by each modules to pass the data.
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Figure 6.6.: As Figure 6.5, but for NODA 5 (light blue), NODA 15 (dark grey), NODA 30
(dark blue), and NODA 60 (red).

After each LETKF-step, COSMO is newly initialized based on a restricted set of model

fields provided by the LETKF1. Therefore, noise arises by newly initializing COSMO. In

order to quantify the noise caused by reinitialization, four runs are carried out without data

assimilated but COSMO interrupted and newly initialized at frequencies corresponding to

the assimilation frequencies (called NODA 5/15/30/60). The influence of reinitialization

on the surface pressure tendency is approximately an order of magnitude smaller than what

can be observed in the CONV+RAD setup (Fig. 6.6), thus the main contribution to the

noise in Figure 6.5 can be attributed to the assimilation of observations.

6.2. Experiment 2: Evaluation over one week

6.2.1. Comparison against latent heat nudging

In experiment 2, 29 deterministic forecasts initialized throughout one week in May 2014

are evaluated. The FSS is calculated for a neighborhood region of 5 grid points in each

direction, i.e. a total width of 11 grid points is used to measure the match between

model and observations. The thresholds used are 0.5 mm/h and 2 mm/h. The higher the

threshold, the rarer are the events, which impedes the verification of high thresholds for

experiment 1. For this purpose, longer evaluation periods are needed to reduce uncertainty

of the comparison metrics. However, even during the entire week in May, there are only

few observations exceeding 5 mm/h or higher (see Fig. 5.1).

For 0.5 mm/h, a significant improvement in forecast skill is achieved by assimilating radar

reflectivites (Fig. 6.7 a). During the first four forecast hours, the FSS of CONV+RAD is

1In contrast, restart setups offer the possibility to save information about the entire model state.
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Figure 6.7.: FSS of 29 deterministic forecasts of CONV+RAD minus CONV against forecast
lead time. The FSS is calculated for a neighborhood of 5 grid points (in each horizontal direction)
and (a) a threshold of 0.5 mm/h, and (b) a threshold of 2 mm/h. The error bars are obtained
via bootstrapping. 2.5% and 97.5% percentiles are the end parts of the bars.

significantly better than for CONV, as indicated by the positive values in Figure 6.7 a. A

slight positive impact can be seen even for forecast hours six to ten but without statistical

significance. For longer lead times, the effect is neutral, since the analysis field is pro-

gressively advected outside the domain and dynamics thus governed by the driving lateral

boundary data. For the 2 mm/h threshold, the positive impact in the first forecast hour

is even stronger compared to 0.5 mm/h. A significant improvement compared to CONV

is achieved for the first three forecast hours. As for 0.5 mm/h, CONV+RAD does not

become worse than CONV for longer forecast lead times.

The difference in FSS between CONV+RAD and CONV+LHN for 0.5 mm/h, (Fig. 6.8 a)

documents a slight but yet significant advantage of CONV+RAD over CONV+LHN in the

first forecast hour. Throughout the entire forecast lead time, CONV+RAD competes with

CONV+LHN. For 2 mm/h, CONV+LHN seems slightly better than CONV+RAD during

the first three hours, but this result is not significant. For forecast hours 4 to 24, both
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Figure 6.8.: As Figure 6.7, but for the difference CONV+RAD minus CONV+LHN.

setups perform mostly equally.

The equitable threat score (ETS, Fig. 6.9) decreases with forecast lead time for all

three setups for 0.5 mm/h (Fig. 6.9 a) and for 2 mm/h (Fig. 6.9 b). Similarly to the FSS,

a significant improvement over CONV is visible both for CONV+RAD and CONV+LHN

during the first forecast hours, while the latter two only slightly deviate. For longer lead

times, the ETS for all setups converges. The frequency bias (FBI, Fig. 6.10) shows a

significant underestimation of events for 0.5 mm/h (Fig. 6.10 a) and for 2 mm/h (Fig.

6.10 b) throughout the entire forecast window, which is most pronounced during the first

10 forecasts hours, similarly for all three setups. For 2 mm/h, CONV+LHN performs

slightly better during the first forecast hours.

In the following, it is examined if the systems are able to reproduce the diurnal cy-

cle of precipitation. In Figure 6.11, the diurnal cycle of precipitation events exceeding

the thresholds 0.5 mm/h (Fig. 6.11 a) and 2 mm/h (Fig. 6.11 b) during the assimilation

cycle are shown. For 0.5 mm/h, all setups similarly overestimate the observed precipi-

tation during night and do not properly capture the afternoon maximum. For 2 mm/h,

CONV strongly underestimates the entire diurnal cycle, especially during afternoon. Dur-

65



Figure 6.9.: ETS of CONV (gray, dashed), CONV+RAD (red, solid) and CONV+LHN (blue,
dotted) for (a) 0.5 mm/h and (b) 2.0 mm/h

Figure 6.10.: FBIof CONV (gray, dashed), CONV+RAD (red, solid) and CONV+LHN (blue,
dotted) for (a) 0.5 mm/h and (b) 2.0 mm/h

ing morning, CONV+RAD slightly underestimates the observation, whereas CONV+LHN

overestimates the observations during night and morning. The afternoon maximum is best
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Figure 6.11.: Diurnal cycle of precipitation exceeding (a) 0.5 mm/h and (b) 2.0 mm/h for
CONV+LHN (blue, stars), CONV+RAD (red, triangles), and CONV (gray, diamonds) during
the assimilation window compared to the observation (black solid line).

Figure 6.12.: Diurnal cycle of average precipitation intensities (only events above 0.1 mm/h)
for CONV+LHN (blue, stars), CONV+RAD (red, triangles), and CONV (gray, diamonds) during
the assimilation window compared to the observation (black solid line).

captured by CONV+LHN. CONV+RAD performs better than CONV, but shows a smaller
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Figure 6.13.: Diurnal cycle of precipitation exceeding (a) 0.5 mm/h and (b) 2.0 mm/h based on
forecasts initialized from CONV+LHN (blue, stars), CONV+RAD (red, triangles), and CONV
(gray, diamonds) compared to the observation (black solid line).

Figure 6.14.: Diurnal cycle of average precipitation intensities (only events above 0.1 mm/h)
based on forecasts initialized from CONV+LHN (blue, stars), CONV+RAD (red, triangles), and
CONV (gray, diamonds) compared to the observation (black solid line).

number of events during afternoon than CONV+LHN. Figure 6.12 shows the diurnal cy-

cle of average precipitation intensities based on events above 0.1 mm/h. During noon,
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Figure 6.15.: RMSE of CONV (gray, dashed), CONV+RAD (red, solid) and CONV+LHN
(blue, dotted) for (a) 2-meter temperature, (b) u-component of 10-meter wind, and (c) 2-meter
specific humidity against approximately 840 SYNOP stations. The error bars are obtained via
bootstrapping. 2.5% and 97.5% percentiles are the end parts of the bars.

CONV and CONV+RAD capture the diurnal cycle quite well, whereas CONV+LHN shows

a slight overestimation. During the rest of the day, all three setups underestimate the

mean observed intensities. This underestimation is most pronounced for CONV, and least

pronounced for CONV+LHN. Results obtained during the assimilation cycle have however

to be interpreted with caution: for CONV+LHN, observations are assimilated continu-

ously during the COSMO forward integration, i.e. observations are assimilated during the

accumulation of precipitation. Thus, the amount of precipitation accumulated is directly

influenced by the observation. For CONV+RAD, observations are assimilated at hourly

intervals, and precipitation is accumulated during a one hour free forecast. It thus can be

expected that CONV+LHN performs better than CONV+RAD during the analysis cycle.

During free forecasts, all three setups show indeed similar numbers of events exceeding

0.5 mm/h and 2 mm/h (Fig. 6.13). For 0.5 mm/h (Fig. 6.13 a), there is only a slight

overestimation of the number of events during night and morning, and the minimum of
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Figure 6.16.: Bias of CONV (gray, dashed), CONV+RAD (red, solid) and CONV+LHN (blue,
dotted) for (a) 2-meter temperature, (b) u-component of 10-meter wind, and (c) 2-meter specific
humidity against approximately 840 SYNOP stations. The error bars are obtained via bootstrap-
ping. 2.5% and 97.5% percentiles are the end parts of the bars.

the diurnal cycle is captured well. The afternoon maximum is however underestimated by

all three setups. Events exceeding 2 mm/h (Fig. 6.13 b) are underestimated throughout

the entire day by all setups, while this underestimation is slight in the morning and more

severe in the afternoon. For average precipitation intensities (Fig. 6.14), all three setups

show a very similar behavior. During night and morning, the average intensity is slightly

underestimated. The magnitude of the maximum of all three setups corresponds quite well

to the observations but appears approximately four hours too early. Therefore, based on

forecasts, CONV+LHN does not perform better than CONV+RAD.

Finally, the model variables not directly linked to precipitation are verified against SYNOP

station measurements of 2-meter temperature T , u-component of 10-meter wind, and

2-meter specific humidity q by RMSE (Fig. 6.15) and bias (Fig. 6.16). The RMSE of

temperature and wind increases with forecast lead time. Slight variations from hour to hour

are visible for all three variables, which can be attributed to the diurnal cycle of precipitation.
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Table 6.1.: Summary of the comparison of CONV+RAD against CONV and CONV+LHN (FSS,
ETS, FBI, RMSE, and bias). The first column compares CONV+RAD with CONV, the second
column compares CONV+RAD with CONV+LHN. Cells are colored dark blue if the performance
of CONV+RAD is significantly better during a part of the forecast lead time and comparable
during the remaining lead time. Similarly, cells are colored light blue if the results indicate an
improvement by CONV+RAD during a part of the forecast time, which is, however, insignificant.
Grey cells refer to comparable performance of both methods. Light red cells refer to a better
performance of CONV or CONV+LHN during a part of the forecast lead time and comparable
otherwise. For a significantly better performance of CONV or CONV+LHN, cells are colored
dark red.

CONV+RAD vs. CONV CONV+RAD vs. CONV+LHN

FSS
0.5 mm/h
2 mm/h

ETS
0.5 mm/h
2 mm/h

FBI
0.5 mm/h
2 mm/h

RMSE
T
u
q

Bias
T
u
q

CONV+RAD CONV(+LHN)
(significance)

CONV+RAD equal CONV(+LHN)
(significance)

Since convective activity is larger during afternoon, errors are larger during noon, and

averaging forecasts with different initialization times during day causes fluctuations in the

overall RMSE. The differences in RMSE of all variables are small compared to the associated

uncertainty and CONV+RAD does not harm forecast quality of 2-meter temperature,

10-meter horizontal wind, and 2-meter specific humidity. There is no bias for 2-meter

temperature (Fig. 6.16 a) in the first forecast hour, but all three setups similarly develop

a negative bias with forecast lead time. CONV and CONV+RAD perform very similar,

whereas CONV+LHN is slightly but not significantly better. For the u-component of 10-

meter wind (Fig. 6.16 b), all setups show a slight negative bias for shorter lead times,

which evolves into a slight positive bias with forecast lead time. The curves for CONV,

CONV+RAD and CONV+LHN are indistinguishable. For 2-meter specific humidity (Fig.

6.16 c), all setups show a positive bias in the beginning of the forecast time, which decreases

with forecast lead time. All setups perform similarly. Especially for 2-meter temperature

and 2-meter specific humidity, the diurnal cycle of the bias is visible as indicated by the 6
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Table 6.2.: As Table 6.1, but for CONV+RAD against CONV+RAD 1ELE (first column),
CONV+RAD 4ELE (second column), and CONV+RAD 3DLETKF (third column).

CONV+RAD vs.
CONV+RAD 1ELE

CONV+RAD vs.
CONV+RAD 4ELE

CONV+RAD vs.
CONV+RAD 3DLETKF

FSS
0.5 mm/h
2 mm/h

ETS
0.5 mm/h
2 mm/h

FBI
0.5 mm/h
2 mm/h

RMSE
T
u
q

Bias
T
u
q

CONV+RAD CONV+RAD 1ELE/ CONV+RAD 1ELE/4ELE/
(significance)

CONV+RAD equal
4ELE/3DLETKF 3DLETKF(significance)

hourly peaks in the curves.

To summarize, for many of the verification functions used, CONV+RAD is able to signif-

icantly improve forecast performance compared to CONV, and even competes successfully

with CONV+LHN. In some instances, the results suggest a slightly better performance of

CONV+LHN, though none of these are significant (see Table 6.1 for an overview).

6.2.2. Influence of the vertical and temporal resolution

In the following, CONV+RAD is compared against its vertical thinned variations

CONV+RAD 1ELE, and CONV+RAD 4ELE, and its variation without 4-dimensional

weighting (c.f. Sec. 3.1.4), CONV+RAD 3DLETKF. The results of this comparison are

summarized in Table 6.2, and details are shown in Appendix B.

Based on FSS, ETS, FBI, RMSE, and bias, it is shown that reducing the vertical

or temporal resolution of the volume radar data has no significant negative impact on

forecast accuracy. The results indicate a slight improvement by CONV+RAD 3DLETKF

in terms of FSS, ETS, and FBI. However, CONV+RAD 1ELE, CONV+RAD 4ELE, and

CONV+RAD 3DLETKF increase the bias of specific humidity compared to CONV+RAD

though further tests are necessary to corroborate statistical significancy.
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6.3. Computational resources

For operational systems, the efficiency of the data assimilation and forecasting system

is crucial. Since the BACY scripts are designed to let COSMO and the LETKF com-

municate via their respective output files (c.f. Section 3.3.3), input/output routines are

necessary for each COSMO and LETKF run. In Table 6.3, the elapsed time2 of each setup

relative to CONV is shown. For the setups with varying update rate (CONV+RAD 5,

CONV+RAD 15, CONV+RAD 30, CONV+RAD 60), runtime differs significantly. Only

for the CONV+RAD experiments, the radar forward operator needs to be activated, which

in CONV+RAD 60 increases the runtime of COSMO compared to CONV by a factor

of 1.33. Although the forward operator was designed to run efficiently on supercom-

puters, it still slows down experiments if the operator needs to be active. The costs

of the COSMO run increase with increasing update rate. For CONV+RAD 5, this in-

crease in computational costs is most severe: CONV+RAD 5 needs six times as long as

CONV to run COSMO for one hour. The costs of the LETKF are strongly increased in

CONV+RAD 5/15/30/60 compared to CONV (ranging from factor 12.67 to 24) due to

2The simulations have been carried out at DWD’s LINUX Cray system. COSMO uses six nodes with 20
cores each, and each core is assigned 1.5 GB memory. The LETKF uses 40 nodes, but only 5 processes
are assigned to each node. This means that only every fourth core is used (160 cores in total) which
increases memory of each core to 6 GB.

Table 6.3.: Elapsed runtime of COSMO-DE and LETKF runs relative to the runtime of CONV
needed for 1 hour of cycled data assimilation. For CONV+RAD 60, this comprises a one hour
COSMO forecast and one LETKF update. For CONV+RAD 30, it is two COSMO-DE integra-
tions, each 30 minutes long, both followed by a LETKF step. Thus, the elapsed time is the sum
over these two cycles. For CONV+RAD 15, the duration of 4 cycles, and for CONV+RAD 5 the
duration of 12 cycles is accumulated. The number of assimilated radar observations within one
hour is shown in column 5. For all CONV+RAD experiments, this number refers to radar reflec-
tivity bins. For CONV+LHN, it refers to the radar derived precipitation rate on the COSMO-DE
model grid (German radar sites).

COSMO
(relative to

CONV)

LETKF
(relative to

CONV)

Total
(relative to

CONV)

Number of
radar obs

CONV+RAD
1.33 12.67 3.22 1.343.148

( =̂ CONV+RAD 60)
CONV+RAD 30 1.87 13.33 3.78 1.343.148
CONV+RAD 15 2.4 14.67 4.44 1.343.148
CONV+RAD 5 6 24 9 1.343.148
CONV+RAD 1ELE 1.33 2.33 1.5 194.856
CONV+RAD 4ELE 1.33 5.33 2 469.512
CONV+RAD 3DLETKF 1 1.66 1.11 111.929
CONV+LHN 1 1 1 73.489
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the large amount of radar observations assimilated. Again, CONV+RAD 5 is most expen-

sive. In total, i.e. the costs of COSMO and LETKF together, CONV+RAD 60 needs 3.22

times as long as CONV, and CONV+RAD 5 even needs 9 times as long as CONV. Here,

I/O consumes many resources and produces a large overhead.

The use of LHN does not increase the runtime of COSMO compared to CONV, and

also the costs of the LETKF do not increase since the set of observations assimilated by

the LETKF is the same in CONV and CONV+LHN. Thus, CONV+RAD( 60) runs 3.22

times slower than CONV+LHN. This is not surprising because CONV+RAD processes

a huge number of observations compared to CONV+LHN. Decreasing the number of

observations in CONV+RAD also decreases the elapsed time. Using only every third

elevation (CONV+RAD 4ELE) or only the lowest elevation (CONV+RAD 1ELE), reduces

the costs of LETKF, such that in total, CONV+RAD 4ELE needs only twice as long as

CONV, CONV+RAD 1ELE even only 1.5 times as long as CONV. Based on the scores

evaluated here, forecast quality did not suffer significantly. Excluding the intermediate

observations during the first guess window (CONV+RAD 3DLETKF) decreases the costs

of the COSMO and the LETKF step yielding a comparable runtime to CONV+LHN (1.11

times longer than CONV in total). Also for CONV+RAD 3DLETKF, there is no loss in

forecast quality visible. Thus, vertical thinning or excluding 4D-weighting could be viable

options for speeding up experiments.
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7. Summary and Discussion

This study investigated the potential to improve short-term precipitation forecasts by as-

similating radar reflectivity observations with an ensemble Kalman filter approach. For this

purpose, volume measurements from the German radar network consisting of 17 C-band

radar sites have been assimilated into the convection-permitting NWP model COSMO-DE

with the ensemble Kalman filter framework provided by KENDA and the radar forward

operator EMVORADO. As done by Snook et al. (2015), conventional observations (air-

craft, radiosondes, synoptic stations and wind profiler observations) were assimilated in

addition to radar reflectivities. Furthermore, radar reflectivities were not only assimilated

in regions of precipitation but also in regions without precipitation in order to suppress

spurious convection (Tong and Xue, 2005).

The first of two experiments addressed the impact of the data assimilation update

frequency on the analysis quality and on the quality of a subsequent precipitation forecast.

Generally, the assimilation of radar reflectivities in addition to conventional observations

strongly improved the analysis quality compared to the assimilation of conventional data

only.

Within this experiment, several update frequencies (5, 15, 30, and 60 minutes) have

been applied. The model was dragged closer to the observation and the analysis quality

was better with higher data assimilation update frequencies. However, the forecast quality

for lead times beyond one hour suffered from higher update rates, as quantified by the

Brier skill score and the continuous ranked probability skill score. In the choice the optimal

update interval, two competing goals emerge, namely the balance of the model state and

the closeness to the observation. Less frequently updated model states were physically

more consistent as quantified by domain averaged surface pressure tendencies. The results

of this study suggest that less accurate but more balanced model states eventually lead

to better forecasts for lead times beyond one hour. In contrast, many previous radar data

assimilation studies favored very frequent update rates (e.g. 2 minutes in Aksoy et al.

2009, or 5 minutes in Snook et al. 2015). Dong and Xue (2013) found update intervals of

10 and 30 minutes to yield better forecast quality than an update frequency of 60 minutes.

The results of this study are, however, in line with experiments performed in an idealized

setup of the COSMO-Model described in Lange and Craig (2014), where forecast error
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growth was faster if the model was forced strongly onto the observation.

In the second experiment, observations were continuously assimilated over a period of

seven days. Deterministic forecasts with a lead time of 24 hours were initialized every six

hours during this period. The LETKF based assimilation setup proposed here included

volume radar reflectivities and conventional data, and was compared against (1) the as-

similation of conventional data only, and (2) the current reference system at DWD, which

assimilates conventional observations with the LETKF and radar derived surface precipita-

tion rates with latent heat nudging for each ensemble member.

Compared to the assimilation of conventional data only, the LETKF-based radar reflec-

tivity assimilation significantly improved the quality of precipitation forecasts up to four

hours in terms of the fraction skill score. Forecasts of longer lead times performed equally

in both setups, which suggests that the lateral boundaries dominate, and that there is

no longer term feedback to the synoptic scale from assimilating radar reflectivities. Com-

pared to DWD’s reference setup with latent heat nudging, the experiment showed that the

LETKF-based radar reflectivity assimilation yields comparable results in the fraction skill

score with a significant improvement for the first forecast hour for a 0.5 mm/h threshold,

but a slight disadvantage for a 2 mm/h threshold, though not statistically significant.

The afternoon maximum of the diurnal cycle of precipitation was best reproduced by

the latent heat nudging during the analysis cycle. This was expected because latent heat

heat nudging was applied at every model time step during the model forward integration,

whereas the LETKF was applied at prescribed time intervals larger than the model time

step, in this case hourly. It was shown that the advantage of latent heat nudging during the

analysis cycle did not result in an improved diurnal cycle for the free forecasts compared

to the assimilation of radar reflectivities with the LETKF.

Comparing the three setups against measurements from synoptical stations showed that

all setups perform similarly in terms of root mean squared error. This result suggests

that the LETKF-based assimilation of radar reflectivities had neutral impact on the prog-

nostic model variables such as temperature or wind, which is not clear per se since the

LETKF relies on low-rank covariance approximations between the observed variables and

the prognostic model variables.

When the vertical resolution of the volume radar data is varied, i.e. only PPI scans at

particular elevations are used, no significant degradation in quality of precipitation forecasts

were observed. The fraction skill score was similar for small and more intense precipitation

events. Reducing the amount of data assimilated led to significant speed up of the experi-

ments. Furthermore, the exclusion of the time trajectory information, i.e. the use of radar

observations at the analysis times only instead of the 4D observation set, led as well to

results comparable to those obtained with the full observational data set. Moreover, the
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reproduction of the diurnal cycle was similar for all variations of the observation data set

assimilated. Although intuitively larger amounts of observational information should lead

to better analyses and forecasts, it seems reasonable that this thought cannot be applied

here. The more observations are assimilated, the more difficult it is to match the model

states with a strongly limited number of ensemble members.

The results of this study are extremely encouraging, and it is remarkable that even at

this early development stage, the LETKF-based radar reflectivity data assimilation already

challenges the well-tested and well-tuned latent heat nudging. Although basic Kalman filter

assumptions are violated within the current setup, analyses and forecasts can significantly

be improved by assimilating radar reflectivities with the LETKF. There is, however, room

for improvement since many aspects still remained untouched. Crucial LETKF parameters

such as the localization radius - especially with regard to the assimilation of two observation

types that strongly differ in their spatial density - superobbing resolution, and the magnitude

of the observation error have so far been chosen heuristically without extensive testing.

Although the setup based on LHN was the most efficient, the LETKF setup has the

advantage that radial velocities can easily be included in the assimilation process. Previous

studies suggest that radial velocities provide valuable additional information: for example,

Tong and Xue (2005) achieved best results when radar reflectivities and radial velocities

were assimilated together. In KENDA, the assimilation of radial winds as prepared by Zeng

(2013) still needs to be tested and combined with radar reflectivities. Further improvements

could be achieved by applying a Gaussian transformation to the precipitation data as

suggested by Lien et al. (2013), in order to better meet the requirements of the Kalman

filter assumptions.
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Janjić T, Cohn SE. 2006. Treatment of Observation Error due to Unresolved Scales in

Atmospheric Data Assimilation. Monthly Weather Review 134(10): 2900–2915, doi:

10.1175/MWR3229.1.

Jerger D. 2014. Radar Forward Operator for Verification of Cloud Resolving Simulations

within the COSMO-Model. Dissertation, IMK-TRO, Department of Physics, Karlsruhe

Institute of Technology.

Jung Y, Xue M, Tong M. 2012. Ensemble Kalman Filter Analyses of the 29–30 May 2004

Oklahoma Tornadic Thunderstorm Using One- and Two-Moment Bulk Microphysics

Schemes, with Verification against Polarimetric Radar Data. Monthly Weather Review

140(5): 1457–1475, doi:10.1175/MWR-D-11-00032.1.

Kalman RE. 1960. A New Approach to Linear Filtering and Prediction Problems. Trans-

actions of the ASME-Journal of Basic Engineering 82(Series D): 35–45, doi:10.1115/1.

3662552.

Kalnay E. 2010. Ensemble Kalman Filter: Current Status and Potential. In: Data Assimi-

lation - Making Sense of Observations, Springer, pp. 69–92.

83



Lange H, Craig GC. 2014. The Impact of Data Assimilation Length Scales on Analysis

and Prediction of Convective Storms. Monthly Weather Review 142(10): 3781–3808,

doi:10.1175/MWR-D-13-00304.1.

Lien GY, Kalnay E, Miyoshi T. 2013. Effective assimilation of global precipitation: Sim-

ulation experiments. Tellus, Series A: Dynamic Meteorology and Oceanography 65(1):

1–16, doi:10.3402/tellusa.v65i0.19915.

Lin YL, Farley RD, Orville HD. 1983. Bulk Parameterization of the Snow Field in a Cloud

Model. Journal of Climate and Applied Meteorology 22(6): 1065–1092, doi:10.1175/

1520-0450(1983)022〈1065:BPOTSF〉2.0.CO;2.

Liu ZQ, Rabier F. 2002. The interaction between model resolution, observation reso-

lution and observation density in data assimilation: A one-dimensional study. Quar-

terly Journal of the Royal Meteorological Society 128: 1367–1386, doi:10.1256/

003590002320373337.

Lorenc AC. 1986. Analysis methods for numerical weather prediction. doi:10.1256/smsqj.

47413.

Lorenz EN. 1963. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences

20(2): 130–141, doi:10.1175/1520-0469(1963)020〈0130:DNF〉2.0.CO;2.

Lorenz EN. 1996. Predictability: a problem partly solved. Predictability of Weather and

Climate : 40–58.

Marshall JS, Palmer WMK. 1948. The Distribution of Raindrops with Size. Journal of Mete-

orology 5(4): 165–166, doi:10.1175/1520-0469(1948)005〈0165:TDORWS〉2.0.CO;2.

Matheson JE, Winkler RL. 1976. Scoring Rules for Continuous Probability Distributions.

Management Science 22(1): 1087–1096.
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A. Detailed derivation of the Kalman

filter in the least-squares

framework

In order to minimize the cost function J(x) in Equation (3.4), its gradient is set to zero.

The gradient (Eq. 3.6) can be derived by the following steps:

∇xJ(x) = ∇x

{
1

2
(x− xb)T (Pb)−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y)

}

= ∇x

{
1

2

[
xT (Pb)−1x− xT (Pb)−1xb − (xb)T (Pb)−1x + (xb)T (Pb)−1xb

]

+
1

2

[
xTHTR−1Hx− xTHTR−1y − yTR−1Hx + yTRy

]}

=
1

2

[
∇x(xT (Pb)−1x)−∇x(xT (Pb)−1xb)−∇x((xb)T (Pb)−1x)

+∇x((xb)T (Pb)−1xb)
]

+
1

2

[
∇x(xTHTR−1Hx)−∇x(xTHTR−1y)

−∇x(yTR−1Hx) +∇x(yTRy)
]

=
1

2

[
2(Pb)−1x− 2(Pb)−1xb

]
+

1

2

[
2HTR−1Hx− 2HTR−1y

]

= (Pb)−1(x− xb) + HTR−1(Hx− y).

In order to find an explicit solution of the least-squares problem, (Pb)−1(x − xb) +

HTR−1(Hx− y) = 0 is solved for x (Equation 3.7):

0 = (Pb)−1(x− xb) + HTR−1(Hx− y)

⇔ 0 = (Pb)−1x− (Pb)−1xb + HTR−1Hx−HTR−1y

⇔ (Pb)−1x + HTR−1Hx = (Pb)−1xb + HTR−1y

⇔
(
(Pb)−1 + HTR−1H

)
x = (Pb)−1xb + HTR−1y

⇔ x =
(
(Pb)−1 + HTR−1

)−1 [
(Pb)−1xb + HTR−1y

]

⇔ x =
(
(Pb)−1 + HTR−1H

)−1
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·
[
(Pb)−1xb + HTR−1y + HTR−1Hxb −HTR−1Hxb

]

⇔ x =
(
(Pb)−1 + HTR−1H

)−1

·
[(

(Pb)−1 + HTR−1H
)

xb + HTR−1(y −Hxb)
]

⇔ x =
(
(Pb)−1 + HTR−1H

)−1 (
(Pb)−1 + HTR−1H

)
xb

+
(
(Pb)−1 + HTR−1H

)−1
HTR−1(y −Hxb)

⇔ x = xb +
(
(Pb)−1 + HTR−1H

)−1
HTR−1(y −Hxb).

Furthermore, the following equality holds:

HTR−1
(
R + HPbHT

)
= HTR−1R + HTR−1HPbHT

= HT + HTR−1HPbHT

= (Pb)−1PbHT + HTR−1HPbHT

=
(
(Pb)−1 + HTR−1H

)
PbHT

Therefore it can be concluded that

HTR−1
(
R + HPbHT

)
=
(
(Pb)−1 + HTR−1H

)
PbHT

⇔
(
R + HPbHT

) (
PbHT

)−1
=
(
HTR−1

)−1 (
(Pb)−1 + HTR−1H

)

⇔
[(

R + HPbHT
) (

PbHT
)−1
]−1

=
[(

HTR−1
)−1 (

(Pb)−1 + HTR−1H
)]−1

⇔ PbHT
(
R + HPbHT

)−1
=
(
(Pb)−1 + HTR−1H

)−1
HTR−1,

and the Kalman filter equation is updated as follows (Equation (3.8)):

x = xb +
(
(Pb)−1 + HTR−1H

)−1
HTR−1(y −Hxb)

= xb + PbHT
(
R + HPbHT

)−1
(y −Hxb).
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B. Detailed evaluation of the

influence of the vertical and

temporal resolution

Figure B.1.: As Figure 6.7, but for the difference CONV+RAD minus CONV+RAD 1ELE.

For the summary of the results in Section 6.2.2, a more detailed insight into the results

is given in this section. The performance of CONV+RAD 1ELE, CONV+RAD 4ELE, and

CONV+RAD 3DLETKF is mostly equal to CONV+RAD in terms of FSS for 0.5 mm/h

(Figs. B.1 a, B.2 a, and B.3 a). For the 2 mm/h threshold (Figs. B.1 b, B.2 b, and B.3 b),

slight but insignificant fluctuations occur during the first forecast hours. None of the setups

performs superior or inferior than the others.

The ETS for both thresholds (Fig. B.4) decreases with forecast time equally for all four

setups. Also the FBI (Fig. B.5) behaves very similarly with an underestimation during

the first forecast hours for both thresholds. CONV+RAD 3DLETKF appears slightly but
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Figure B.2.: As Figure 6.7, but for the difference CONV+RAD minus CONV+RAD 4ELE.

Figure B.3.: As Figure 6.7, but for the difference CONV+RAD minus CONV+RAD 3DLETKF.

insignificantly favorable.

The diurnal cycle of the number of precipitation events exceeding 0.5 mm/h and 2 mm/h

(Fig. B.8) is similar for CONV+RAD, CONV+RAD 1ELE, CONV+RAD 4ELE, and

CONV+RAD 3DLETKF. Reducing the vertical or temporal resolution does not significantly
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Figure B.4.: As Figure 6.9, but for CONV+RAD 1ELE (dark purple, dotted),
CONV+RAD 4ELE (light purple, dashed), and CONV+RAD 3DLETKF (dark red, fine dashes).

Figure B.5.: As Figure 6.10, but for CONV+RAD (light red, solid), CONV+RAD 1ELE (dark
purple, dotted), CONV+RAD 4ELE (light purple, dashed), and CONV+RAD 3DLETKF (dark
red, fine dashes).

correct the overestimation of events exceeding 0.5 mm/h (Fig. B.8 a) or underestimation of

events exceeding 2 mm/h (Fig. B.8 b). CONV+RAD 4ELE seems to produce slightly less
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Figure B.6.: As Figure 6.11, but for CONV+RAD (red, upward triangles),
CONV+RAD 3DLETKF (dark red, plus signs), and CONV+RAD 4ELE (purple, downward tri-
angles).

Figure B.7.: As Figure 6.12, but for CONV+RAD (red, upward triangles),
CONV+RAD 3DLETKF (dark red, plus signs), and CONV+RAD 4ELE (purple, downward tri-
angles).

events than CONV+RAD, and CONV+RAD 3DLETKF seems to produce slightly more
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Figure B.8.: As Figure 6.13, but for CONV+RAD (red, upward triangles),
CONV+RAD 3DLETKF (dark red, plus signs), and CONV+RAD 4ELE (purple, downward tri-
angles).

Figure B.9.: As Figure 6.14, but for CONV+RAD (red, upward triangles),
CONV+RAD 3DLETKF (dark red, plus signs), and CONV+RAD 4ELE (purple, downward tri-
angles).

events, although these differences are only very small. For the average precipitation in-

tensities (Fig. B.9) the results are comparable: the differences between the four setups
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Figure B.10.: As Figure 6.15, but for CONV+RAD (light red, solid), CONV+RAD 1ELE (dark
purple, dotted), CONV+RAD 4ELE (light purple, dashed), and CONV+RAD 3DLETKF (dark
red, fine dashes).

are only small, where CONV+RAD 4ELE produces the least intense precipitation. All four

setups strongly underestimate the afternoon maximum.

The RMSE (Fig. B.10) for all variables increases with forecast time and all for setups

perform mostly equally. The differences among the four systems are small compared to

the uncertainty. Also the bias (Fig. B.11) shows only small differences between the four

systems.
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Figure B.11.: As Figure 6.16, but for CONV+RAD (light red, solid), CONV+RAD 1ELE (dark
purple, dotted), CONV+RAD 4ELE (light purple, dashed), and CONV+RAD 3DLETKF (dark
red, fine dashes).
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