Investigations on the synthesis and reactivity of $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes with fluorinated

C-substituents

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Cristina Murcia García

aus
Murcia, Spanien

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

1. Gutachter Prof. Dr. R. Streubel
2. Gutachter Prof. Dr. R. Glaum
3. Gutachter Prof. Dr. B. Kirchner
4. Gutachter Prof. Dr. C. Müller

Eingereicht am: 31.10.2016
Tag der Promotion: 20.12.2016

Erscheinungsjahr: 2017

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn https://hss.ulb.uni-bonn.de/diss_online/elektronisch publiziert

TO MY PARENTS
AND TO MY HUSBAND
"One should not be afraid to say 'I don't know' or 'I don't understand'. To continue even when things appear to be impossible; to stand alone or to be different; and not to be afraid to make and admit mistakes, for only those who dare to fail greatly can ever achieve greatly."

Margaret Hamilton

Software developer of the Apollo Space Program (or the woman who put the men on the Moon)

Hiermit versichere ich, dass ich diese Arbeit selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Bonn, den 29.10.2016

Some of the results of this PhD Thesis have been previously published:

1. "Study on the acid-Induced ring-expansion of an oxaphosphirane complex with an electron-withdrawing C-substituent", C. Murcia García, G. Schnakenburg, R. Streubel, Aust. J. Chem. 2017, DOI: 10.1071/CH16609
2. "Ambiguous reactivity of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes under redox conditions - a novel dichotomy in phosphorus chemistry", C. Murcia García, A. Bauzá, G. Schnakenburg, A. Frontera, R. Streubel, Chem. Comm. 2017, 53, 933-936.
3. " CPh_{3} as a functional group in P -heterocyclic chemistry: elimination of HCPh_{3} in the reaction of $\mathrm{P}^{-\mathrm{CPh}_{3} \text { substituted } \mathrm{Li} / \mathrm{Cl} \text { phosphinidenoid complexes with }}$ $\mathrm{Ph}_{2} \mathrm{CO} ", \mathrm{C}$. Murcia García, A. E. Ferao, G. Schnakenburg, R. Streubel, Dalton Trans. 2016, 45, 2378-2385.
4. "Surprising behaviour of $\mathrm{M}-\mathrm{CO}$ (lone pair) $\cdots \pi$ (arene) interactions in the solid state of fluorinated oxaphosphirane complexes", C. Murcia García, A. Bauzá, G. Schnakenburg, A. Frontera, R. Streubel, CrystEngComm 2015, 17, 17691772.
5. "On the nature of $\varepsilon-\mathrm{CO}$ (lone pair) $\cdots \pi$ (arene) interactions in the solid state of fluorinated oxaphosphirane complexes", C. Murcia García, A. Bauzá, A. Frontera, R. Streubel, CrystEngComm 2015,17, 6736-6743.
6. "Evidence for Terminal Phosphinidene Oxide Complexes in O,P,C-Cage Complex Formation: Rearrangement of Oxaphosphirane Complexes", R. Streubel, C. Murcia García, G. Schnakenburg, A. Espinosa Ferao, Organometallics 2015, 34, 2676-2682.

Conferences and workshops

1. C. Murcia García, A. Espinosa, A. Frontera, R. Streubel, 14th International Symposium on Inorganic Ring Systems, Regensburg, Germany, July 26th -31th 2015 "Fluorinated oxaphosphirane complexes: synthesis, redox potentials and novel reactions" (poster contribution).
2. C. Murcia García, R. Streubel, SFB 813 Women in Science@Spin Centers, Eisenach/Germany, May 18-20, 2015: "Synthesis, redox potentials and novel reactions of fluorinated oxaphosphirane complexes" (oral contribution).
3. C. Murcia García, A. Espinosa, R. Streubel, SFB 813 International Symposium - Chemistry at Spin Centers II, Bad Honnef/Germany, September 24-26, 2014: "Fluorinated oxaphosphirane ligands: synthesis, redox potentials and reactions" (poster contribution).
4. C. Murcia García, Rainer Streubel. ICPC (International Confere on Phosphorus Chemistry). Dublin/Ireland. June 28th -July 2nd 2014 "Synthesis and acidinduced ring expansion of fluorinated oxaphosphirane complexes" (poster contribution).
5. C. Murcia García, R. Streubel, Colloquia of the Institute for Inorganic Chemistry, Bonn/Germany, May 22nd, 2014 "Fluorinated oxaphosphirane ligands -What to expect?" (oral contribution).
6. C. Murcia, R. Streubel, MHC-6 PhD Workshop, Bonn/Germany, April 5-7, 2013: "Synthesis and ring expansion reactions of new oxaphosphirane complexes" (oral contribution).
7. C. Murcia, M. Klein, R. Streubel, 10th European Workshop on Phosphorus Chemistry, Regensburg/Germany, March 18.-20., 2013 "Synthesis, deoxygenation and ring-opening reactions of oxaphosphirane complexes" (poster contribution).
8. C. Murcia, R. Streubel, The 14th International Seminar of PhD Students on Organometallic and Coordination Chemistry, Admont/Austria, September 9-13. 2012: "Synthesis and reactions of P-triphenylmethyl substituted oxaphosphirane complexes" (oral contribution).
9. C. Murcia, J. M. Villalba Franco, V. Nesterov, R. Streubel, 9th European Workshop on Phosphorus Chemistry, Rennes/France, March 22.-24. 2012: "P-Functional azaphosphiridine and oxaphosphirane complexes" (poster contribution).
10.C. Murcia García, R. Streubel, 5. Deutsch-Österreichischer MitarbeiterWorkshop, Graz/Österreich, September 23.-25. 2011 "Synthesis and reactions of oxaphosphirane complexes containing new ligands at phosphorus" (oral contribution).
11.C. Murcia, M. Bode, R. Streubel, 8th European Workshop on Phosphorus Chemistry, Münster/Germany, March 28.-29. 2011: "New O,P,C-cage complexes: synthesis and reactions" (poster contribution).

Acknowledgements

I would like to thank my supervisor Prof. Dr. Rainer Streubel and to express my special appreciation to him for being a tremendous mentor for me. I would like to thank him for encouraging my research and for allowing me to grow as a scientist. His advice on both research as well as on my career have been priceless.

I would also like to thank Prof. Dr. Robert Glaum for the nice work atmosphere on the first floor of the Inorganic Chemistry building and for taking the role as second referee of my thesis, as well as Prof. Dr. Barbara Kirchner and Prof. Dr. Christa Müller for their willingness to become members of this committee.

I want to express my acknowledgement to Prof. Arturo Espinosa Ferao, Prof. Antonio Frontera Beccaria and Prof. Takahiro Sasamori for the big support with theoretical calculations to my experimental work and for their brilliant comments and suggestions. Many thanks as well to Prof. Dr. Olav Schiemann and to Dr. Hideto Matsuoka for the number of EPR measurements performed and the help with the interpretation.

The analytics and technics teams of our institute deserve my big appreciation for their high quality service and their willing to help. I will never forget the cooperativeness of Mrs. Prochnicki, Dr. Schnakenburg and Mrs. Rödde.

Thanks to former and present members of the Streubel research group, mainly to Dr. Vitaly Nesterov, Dr. José Manuel Villalba Franco, Tobias Heurich and Andreas Kyri, for the great atmosphere and the nice "barbecues" as well as for the helpful scientific discussions.

I acknowledge my friends for incentiving me to strive towards my goal.
Finally I thank my family in Spain and Germany and my husband Florian. Words cannot express how grateful I am to them for all their support during my writing.

Table of Contents

1. Introduction 1 -
1.1 P-Heterocycles 2-
1.2 Six-membered heterocycles with one phosphorus and two oxygen atoms 3-
1.3 Five-membered heterocycles with one phosphorus and two oxygen atoms 5-
1.4 Four-membered heterocycles with one phosphorus and one oxygen atom - 6 -
1.5 Three-membered heterocycles with one phosphorus and one oxygen atom - 8 -
1.6 The triphenylmethyl group in organophosphorus chemistry 13 -
2. Aim of the thesis 16 -
3. Synthesis of $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes via $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 17 -
3.1 Synthesis of dichloro(triphenylmethyl)phosphane complexes 17-
3.2 Synthesis of C-aryl, P-triphenylmethyl substituted oxaphosphirane complexes 19-
3.3 Synthesis of C-alkyl, P-triphenylmethyl substituted oxaphosphirane complexes 23-
3.4 Study on the synthesis of C-disubstituted P-triphenylmethyl substituted oxaphosphirane complexes 25 -
3.4.1 Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3a-c with benzophenone 25-
3.4.2 Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex $\mathbf{3 c}$ with alkyl ketones 31-
4. Synthesis of the first fluorinated oxaphosphirane complexes 32-
4.1 Synthesis of C-ary $\left.\right|^{F}$ substituted oxaphosphirane complexes 32-
4.1.1 Theoretical analysis 37-
4.1.1.1 Theoretical methods -37-
4.1.1.2 Discussion of results -37-
4.1.2 Influence of additional interactions 40-
4.1.2.1 Crystal packing and strong intermolecular interactions 41 -
4.1.3 $\quad{ }^{31} \mathrm{P}$ NMR chemical shifts 44-
4.2 Synthesis of C-ary $\left.\right|^{F} P$-Triphenylmethyl substituted fluorinated oxaphos-phirane chromium and molybdenum complexes 45-
4.3 Synthesis of C-ary $\left.\right|^{F}$ oxaphosphirane complexes with other substituents at phosphorus 48-
4.3.1 Synthesis of a C-ary $\left.\right|^{F} P$-pentamethylcyclopentadienyl oxaphosphirane complex 48-
4.3.2 Synthesis of a C-ary $\left.\right|^{F} P$-bis(trimethylsilyl)methyl oxaphosphirane complex 50-
4.4 Attempts to synthesize C-disubstituted, fluorinated oxaphosphirane complexes 52-
4.4.1 Reaction of phosphinidenoid complexes $\mathbf{3 c}$, 26 and $\mathbf{3 0}$ with hexafluoro-acetone 52-
4.4.1.1 Theoretical methods $55-$
4.4.2 Reaction of phosphinidenoid complexes $\mathbf{3 c}$, $\mathbf{2 6}$ and $\mathbf{3 0}$ with perfluorobenzophenone. 60 -
4.4.3 Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes $\mathbf{3 c}$, 26 and 30 with 2,2,2- trifluoromethylbenzophenone $65-$
5. Investigations on the reactivity of $P-\mathrm{CPh}_{3}$ substituted $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes 68 -
5.1 Thermal reactions of $P-\mathrm{CPh}_{3}$ substituted $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes 68 -
5.1.1 Thermal reactions of $C-C_{6} \mathrm{~F}_{5} P-C p^{*}$ substituted $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes 72 -
5.1.1.1 Theoretical studies on the O, P,C-cage ligand formation 74 -
5.2 Acid-induced ring expansion reactions of C-pentafluorophenyl-P-triphenylmethyl oxaphosphirane complexes $80-$
5.3 Reactitivity of oxaphosphirane complexes towards N -heterocyclic carbenes 85 -
5.3.1 N-heterocyclic carbenes $85-$
5.3.2 Experimental results 88 -
5.3.2.1 Reactions of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complex $\mathbf{4 c}$ towards NHCs 88 -
5.3.2.2 Reactions of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complex $\mathbf{2 2}$ towards NHCs. 91 -
5.4 Reduction reactions of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes 99-
5.4.1 Reactivity towards KC_{8} 102 -
5.4.2 Deoxygenation reactions of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes 111 -
5.4.2.1 Reactivity of CPh3-P substituted oxaphosphirane complexes towards deoxygenation with Tilll reagents 114 -
6. Summary. 117 -
7. Experimental Part 122-
7.1 Preparative methods 122-
7.2 Measuring methods and instruments 122-
7.2.1 Melting point determination: 122-
7.2.2 Elementary analysis: 122 -
7.2.3 Mass spectrometry: 122-
7.2.4 NMR spectroscopy: 123 -
7.2.5 IR-Spectroscopy: 123 -
7.2.6 Single-crystal structure analysis: 123 -
7.3 Chemicals 123 -
7.4 Description of experiments and analytic data 126 -
7.4.1 General procedure for the synthesis of phosphinidenoid complexes $\mathbf{3 a , b}$ 126 -
7.4.1.1 Synthesis of [Lithium(12-crown-4)][Pentacarbonyl(triphenyl-methyl- chlorophosphanido-кP)chromium(0)] (3a) 126 -
7.4.1.2 Synthesis of [Lithium(12-crown-4)][Pentacarbonyl(triphenyl-methyl- chlorophosphanido-кP)molybdenum(0)] (3b) 127 -
7.4.2 General procedure for the synthesis of oxaphosphirane complexes $\mathbf{4 a} \mathbf{a} \mathbf{b}$ 127 -
7.4.2.1 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-phenyl)-1,2-oxa-phosphiran- κ к]chromium(0)\} (4a) 128 -
7.4.2.2 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-phenyl)-1,2-oxa-phosphiran- κP]molybdenum(0)\} (4b) - 128 -
7.4.2.3 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-propyl)-1,2-oxaphos-phiran- κP]tungsten(0)\} (6) 129
7.4.3 General procedure for the synthesis of complexes 9 a-c, accompanied by the corresponding compounds 10a-c 130-
7.4.3.1 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-5-phenyl-benz[c])-1,2-oxa- phospholane-кP]chromium(0)\} (9a) 131 -
7.4.3.2 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-5-phenyl-benz[c])-1,2-oxa- phospholane-кP]molybdenum(0)\} (9b) $132-$
7.4.3.3 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-5-phenyl-benz[c])-1,2-oxa- phospholane-кP]tungsten(0)\} (9c). $133-$
7.4.3.4 Structure data of complexes \{7,12-Bispentacarbonyl[2,12-epoxy-7-triphenyl methyl-2,5-diphenyl-tetracyclo[4.3.0 $\left.0^{1,13} \cdot 0^{3,11} \cdot 0^{4,8}\right]-6,7,12$-oxadiphospha hexadec-4,9,13,15,17-pentaen-кP]metal(0)\} (10a-c) 134 -
7.4.4 General procedure for the synthesis of complexes 20-22 135-
7.4.4.1 Synthesis of \{Pentacarbonyl[2-triphenylmethyl-3-(2,6-difluorophenyl) -1,2-oxaphosphiran-кP]tungsten (0) \} (20) 135 -
7.4.4.2 Synthesis of \{Pentacarbonyl[2-triphenylmethyl-3-(2,4,6-trifluoro- phenyl)-1,2-oxaphosphiran-кP]tungsten(0)\} (21) 136 -
7.4.4.3 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-pentafluoro- phenyl)-1,2-oxaphosphiran-кP]tungsten(0)\} (22) 137 -
7.4.5 General procedure for the synthesis of complexes 23, 24, 27 138-
7.4.5.1 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-pentafluoro- phenyl)-1,2-oxaphosphiran-кP]chromium(0)\} (23) 138-
7.4.5.2 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-pentafluorophenyl)-1,2-oxa- phosphiran-кP]-molybdenum(0)\} (24) 139
7.4.5.3 Synthesis of \{Pentacarbonyl [(2-pentamethylcyclopentadienyl-3 -pentafluorophenyl)-1,2-oxaphos- phiran-кP]-tungsten(0)\} (27) 140-
7.4.6 Synthesis of \{Pentacarbonyl-[triphenylmethyl-(1,1,3,3,3-pentafluoro prop-1-en-2-oxyl)chlorophosphane-кP]-tungsten(0)\} (33) 141 -
7.4.7 Synthesis of
\{Pentacarbonyl[Pentamethylcyclopentadienyl-(1,1,3,3,3 -pentafluoroprop-1-en-2-oxyl)-chl orophosphane-кP]-tungsten(0)\} (34) 142 -
7.4.8 Synthesis of \{Pentacarbonyl[trimethylsilylmethyl-(1,1,1,3,3,3-hexafluoro-2-ol- propan-2-yl)-phosphanol-кP]-tungsten(0)\} (35) 143 -
7.4.9 Synthesis of \{Pentacarbonyl [(2-pentamethylcyclopentadienyl-3-phenyl-3- trifluoromethyl)-1,2-oxaphosphiran-кP]-pentacarbonyl tungsten(0)\} (41). 144 -
7.4.10 Synthesis of 1,2-(bistriphenylmethyl-bispentafluorobenzyl)-diphosphan- P, P'-dioxid) (45) 145
7.4.11 General procedure for the synthesis of complexes 53-55 145 -
7.4.11.1 Synthesis of \{Pentacarbonyl[(4-triphenylmethyl-2-phenyl-5-pentafluoro phenyl)-1,3,4-dioxaphospholane-кP]-tungsten(0)\} (53) 146 -
7.4.11.2 Synthesis of \{Pentacarbonyl[4-triphenylmethyl-2-(2,6-difluoro phenyl)-5-pentafluorophenyl]-1,3,4dioxaphospholane-кP\}-tungsten(0)\} (54) 147 -
7.4.11.3 Synthesis of \{Pentacarbonyl[(4-triphenylmethyl-2,5-bispentafluoro phenyl)-1,3,4- dioxaphospholane-кP]-tungsten(0)\} (55) 148 -
7.4.12 Synthesis of
\{Pentacarbonyl[2-ethoxy-3-pentafluorophenyl-1,5,6,7,8 -pentamethyl-bicyclo[3.3.0]4,2-ox aphosphaoct-6-en-кP]-tungsten(0)\} (56) 149 -
7.4.13 General procedure for the synthesis of 1,3,4,5-tetramethylimidazolium \{Pentacarbonyl- [triphenylmethyl(fluoro) phosphanoxido-кP]tungsten(0)\} (66) and 1,3-diisopropyl-4,5- dimethylimidazolium\{pentacarbony-[triphenylmethyl(fluoro) phosphanoxido- KP]tungsten(0)\} (67) 150 -
7.4.14 General procedure for the synthesis of Tetrabutylamonium \{Pentacarbonyl- [triphenylmethyl(fluoro)phosphanoxido-кP] tungsten(0)\} (74) and Tetrabutyl amonium\{pentacarbonyl[triphenylmethyl(fluoro)phosphanoxido-кP] chromium(0)\} (75) 151-
7.4.15 Synthesis of \{Pentacarbony-(1-Phenyl-1-hydroxy-2-phosphaalkene-кP) tungsten(0)\} (76) 153 -
7.4.16 Synthesis of Potassium\{pentacarbonyl[triphenylmethyl(fluoro) phosphanoxido- κ K]tungsten(0)\} (77) 153 -
7.4.17 Synthesis of \{Pentacarbonyl[1-phenyl-2-triphenylmethyl)- 2-phosphaalkene-кP]- tungsten(0)\} (92) - 154 -
8. References and notes 155-
9. Appendix 160 -

1. Introduction

Phosphorus, named after the Greek word " $\varphi \omega \sigma \varphi$ ó $\rho \varsigma^{\prime}$ " (light bearer) is one of the most important p-block elements of the periodic table and plays an outstanding role in biochemistry, organic synthesis, coordination chemistry, material science, etc. This non-metal element was first discovered in 1669 by the German chemist Hennig Brand, considered the last of the alchemists. Brand obtained phosphorus from human urine as an impure mixture of $\mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4}$ and carbon-based compounds, which after distillation yielded elemental white phosphorus (P_{4}). ${ }^{[1]}$

Nearly 95 percent of the modern chemical literature is devoted to carbon compounds. As a result, heteroatom chemistry simulating the chemistry of carbon has attracted very much attention since the second part of the $20^{\text {th }}$ century. Phosphorus, as summarized in the book by Mathey, Nixon and Dillon: Phosphorus: The Carbon Copy, ${ }^{[2]}$ presents noteworthy similarities to carbon although one might argue that the structures, bonding and reactivity of their respective compounds would be quite different. ${ }^{[3]}$ However, an exceptional parallel chemistry has developed around the fact that, in low coordination numbers, phosphorus strongly resembles carbon. Electronegativity is a very useful concept in chemistry and has numerous applications, which include rationalization of bond energies and the types of reactions that substances undergo. Indeed, carbon and phosphorus show a diagonal relation by virtue of their similar electronegativity value (2.5 and 2.2 for C and P, respectively) which governs their ability to attract electrons to themselves in a molecule. ${ }^{[4]}$

A high reactivity means electrons in high-lying orbitals and/or accessible, low-lying, empty orbitals. In organic chemistry, such electronic distributions are normally associated with π-bonds, aromatic systems and strained rings. Thus being the diagonal carbon-phosphorus analogy well expressed in these areas. ${ }^{[5]}$

A theoretical study of isolated π-bonds was performed for ethylene, imine $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{NH}\right)$ and phosphaethylene, the later only known in the gas phase. $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{PH}\right.$; Figure 1). The results of calculations ${ }^{[6]}$ have revealed that, in imine the $\operatorname{HOMO}(-10.62 \mathrm{eV})$ corresponds to the lone pair and the π-bond lies much lower in energy (-12.49 eV), while in phosphaethylene the π-bond is the $\operatorname{HOMO}(-10.30 \mathrm{eV})$ being the phosphorus Ione pair slightly lower in energy (-10.70 eV). This suggests that, like in ethylene, most
reactions of phosphaethylene will occur at the π-bond, although the small energy difference of the orbitals, also makes reactions at phosphorus lone pair possible.

Figure 1. Highest occupied molecular orbitals of imine and phosphaethylene. ${ }^{[6]}$
Important reactions of olefins such as the 1,2-additions of polar molecules (i.e. HX) across the $\mathrm{C}=\mathrm{C}$ bond are also observed with phosphaalkenes. ${ }^{[7]}$ Even catalytic hydrogenations using rhodium phosphine catalyst are known for $\mathrm{P}=\mathrm{C}$ bonds in phosphaalkenes I, however, the lone pair must be first protected through coordination to transition-metal complexing groups such as $\left[\mathrm{W}(\mathrm{CO})_{5}\right]$ (Scheme 1). ${ }^{[8]}$

I

II

$$
\mathrm{R}=\mathrm{i}^{\mathrm{i}} \mathrm{Pr},{ }^{\mathrm{t}} \mathrm{Bu}
$$

Scheme 1. Hydrogenation of phosphaethylene complexes using rhodium phosphine. ${ }^{[8]}$ As a result, phosphorus is considered "the carbon copy" and thus establishing an emergent field between organic and inorganic chemistry. ${ }^{[2]}$

1.1 P-Heterocycles

Ring systems, especially the ones substituted with heteroatoms, play a crucial role in organic chemistry. In fact, two thirds of organic compounds are heterocyclic compounds. ${ }^{[9]}$

Although the first known phosphorus heterocycle, the $\sigma^{3} \lambda^{3}-1$-phenylphosphinane IV (where σ is the coordination number and stands for the number of atoms directly attached to phosphorus or the number of σ bonds and λ represents the total number of bonds, including π bonds, which stands for the valence of phosphorus) was discovered in 1915 by Grüttner and Wiernik, ${ }^{[10]}$ the domain really began to develop in

1953 with the discovery of the McCormack reaction between halophosphanes V and conjugated dienes like butadiene (Scheme 2). ${ }^{[11]}$ Recently phosphorus heterocycles have received considerable interest because of their unique biological activities, their wide-ranging applications in organic synthesis as precursors for inorganic polymers and their use as sources of functional inorganic materials such as semiconductors and ceramics. ${ }^{[12]}$

b)

$$
\begin{aligned}
& \mathrm{X}=\mathrm{Cl}, \mathrm{Br} \\
& \mathrm{R}=\text { organic substituent }
\end{aligned}
$$

Scheme 2. (a) Synthesis of 1-phenylphosphinane;[10] (b) McCormack reaction. ${ }^{[11]}$
There are a number of other phosphorus-containing heterocycles. However, in this introductory part, an overview of selected P-heterocycles containing one phosphorus atom and two oxygen atoms (dioxaphosphinanes and dioxaphospholanes) or one phosphorus and one oxygen atom (oxaphosphetanes and oxaphosphiranes) will be presented.

1.2 Six-membered heterocycles with one phosphorus and two oxygen atoms

Dioxaphosphinanes, also named dioxaphosphorinanes, are six-membered phosphorus heterocycles containing two oxygen atoms (VI-XI; Scheme 3). They are of great importance as they have demonstrated biological activity as antibacterial and antiviral substances, ${ }^{[13]}$ as well as, insecticidal properties, ${ }^{[14]}$ being thus often used in agriculture.

Scheme 3. Dioxaphosphorinanes VII - XII (R: organic substituent, halogen, hydrogen or hydroxy; E: free electron pair or double bond to oxygen).

The synthesis of 1,3,2-dioxaphosphinanes VII ($\mathrm{R}=\mathrm{Cl}$) involves essentially reactions of a 1,3-propanediol and an electrophilic $\sigma^{3} \lambda^{3}$-phosphorus reagent like PCl_{3} (Scheme 4a). ${ }^{[15]}$ One of the most versatile methodologies for the formation of $1,3,5-$ dioxaphosphinanes VIII was first described by Epstein and Buckler via acid-catalyzed reaction of phenyl phosphine with benzaldehyde. ${ }^{[16]}$ The derivatives of IX have been mainly produced by transesterification using a variety of bases as well as intramolecular nucleophilic displacement, ${ }^{[17]}$ although there is also a report of this ring system being formed through a formal cycloaddition. ${ }^{[18]}$ In 1994 Müller et al. succeeded in the synthesis of 1,5,2-dioxaphosphinanes $\mathbf{X}\left(R={ }^{\dagger} B u\right)$ through the reaction of the C amino substituted phosphaalkene XIII with hexafluoroacetone (Scheme 4b). ${ }^{[19]}$ In contrast, derivatives of type XI and XII are still unknown.
a)

VII

Scheme 4. Selected examples for the synthesis of dioxaphosphinanes of type VII (a) with a $\sigma^{3} \lambda^{3}$-phosphorus reagent ${ }^{[15]}$ and of type \mathbf{X} (b) through reaction of phosphaalkenes with hexafluoroacetone. ${ }^{[19]}$

1.3 Five-membered heterocycles with one phosphorus and two oxygen atoms

Dioxaphospholanes are five-membered heterocycles bearing one phosphorus and two oxygen atoms (Scheme 5). These, and specially 1,3,2-dioxaphospholanes XIV, are key compounds in the synthesis of phosphorus containing polymers and agrochemicals and have been exploited as indispensable tools in biochemistry and molecular biology of nucleic acids. ${ }^{[20]}$

XIV

XV

XVI

XVII

Scheme 5. Dioxaphospholanes XIV - XVII (R: organic substituent, halogen, hydrogen or -OH; E: free electron pair, double bond to oxygen or metal complex).

As the criticism to the use of organohalogens became lately more prominent around the world because of their environment damaging effects, ${ }^{[2]]}$ dioxaphospholanes of the type XIV have attracted much more attention because of their ability to substitute organohalogens, act as initiators for polymerizations and also are being used as environment-friendly flame retardants. ${ }^{[22]}$ By now only a few methods have been developed for $\mathrm{PlII}^{\text {II }}$ and PV^{V} derivatives thus, of the type XIV by reaction of diols with dichlorophosphane III (Scheme 6a) ${ }^{[23]}$ and of the type XV through cyclization of organophosphanes XVIII with aldehydes ${ }^{[24]}$ or via thermolysis P - Cp *-substituted 2 H azaphosphirene complexes XIX in the presence of aldehydes (Scheme $\mathbf{6 b , c})^{[25]}$ In contrast, derivatives of 1,2,3-dioxaphospholanes XVI and 1,2,4-dioxaphospholanes XVII are still unknown.

III
XIV

c)

Scheme 6. Selected examples for the synthesis of dioxaphospholanes of type XIV (a) and of type XV (b, c).

1.4 Four-membered heterocycles with one phosphorus and one oxygen atom

Oxaphosphetanes, four-membered heterocycles containing one phosphorus and one oxygen atom (XX, XXI; Scheme 7) and, particularly 1,2-oxaphosphetanes XX, came to the fore as (potential) intermediates of the Wittig reaction. The latter allows the preparation of an alkene by the reaction of an aldehyde (or ketone) with the ylide generated from a phosphonium salt (Scheme 8a). ${ }^{[26]}$

XX

XXI

Scheme 7. Oxaphosphetanes XX and XXI (R: organic substituent, halogen, hydrogen or -OH; E: free electron pair, double bond to oxygen or metal complex or two substituents).

The discovery of the Wittig reaction was a milestone in organophosphorus chemistry as well as a revolution for the chemical industry because of its application in the synthesis of vitamin A and β-carotenes. ${ }^{[27]}$ Different P^{\vee} derivatives of $\mathbf{X X}$ have been described and structurally characterized along the years. ${ }^{[28]}$ However, the generation of $\mathrm{P}^{\text {III }}$ analogues remained unexplored. Recently, Kyri et al. succeeded in the synthesis
of the first derivatives of $\sigma^{3} \lambda^{3}-1,2$-oxaphosphetane complexes by reaction of phosphinidenoid complexes XXII with different epoxides (Scheme 8b). ${ }^{[29]}$ To date only a few derivatives of 1,3-oxaphosphetanes XXI have been selectively obtained, i.e. either through an intramolecular Mitsunobu reaction of bis(hydroxyalkyl)phosphinic acids with a mixture of triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ and diisopropylazodicarboxylate (DIAD, Scheme 8c). ${ }^{[30]}$
a)

XX
b)

c)

Scheme 8. Selected examples for the synthesis of oxaphosphetanes of the type XX ($\mathrm{a}^{[26]} ; \mathrm{b}^{[29]}$) and of the type XXI (c). ${ }^{[30]}$

Up to here of the introduction it has been shown that phosphorus heterocycles containing oxygen are compounds of high importance and have many applications in industry as well as in medical sciences. Numerous derivatives of six, five and fourmembered rings could be synthesized thus leading to a rapid increase and spread of knowledge. Furthermore, it has inspired continuous search of more use of phosphorus and oxygen containing rings for their successfully incorporation in chemical processes.

1.5 Three-membered heterocycles with one phosphorus and one oxygen atom

Three-membered rings belong to the most reactive classes of compounds in organic chemistry. As such, they are playing a role of ever increasing importance as intermediates in reactions including polymerizations. ${ }^{[31]}$ One of the most important three-membered rings in chemistry is ethylene oxide, XXIII, also called oxirane (one oxygen and two carbon atoms). It is a vital raw material with a huge number of applications including the manufacture of products like polysorbate 20 and polyethyleneglycol (PEG). Ethylene oxide is a major industrial chemical and is consistently ranked among the top 25 highest production volume chemicals produced in the world. ${ }^{[32]}$ The chemical behavior of oxiranes is governed by two factors: ring strain ${ }^{[33]}$ and the basicity of the oxygen ring atom. ${ }^{[31]}$

Scheme 9. Ring-opening of oxiranes XXIII induced by electrophilic or nucleophilic attack. ${ }^{[34]}$

At this point, one may think that a three-membered heterocycle containing phosphorus, oxygen and carbon would present similar reactivity as ethylene oxide and possibly lead to new and useful properties. But the phosphorus analogues of oxiranes, the so-called $\sigma^{3} \lambda^{3}$-oxaphosphiranes, are experimentally still unknown to date, but they have been claimed as reactive intermediates. ${ }^{[35]}$

To have more information on this issue, Schöller performed ab-initio calculations and predicted the existence of free oxaphosphiranes in equilibrium with their open form. ${ }^{[36]}$ He calculated heats of reactions of symmetric systems and determined that, in case of $X=X$ ' and carbon or silicon, the closed form XXV will be favored. But in presence of a free electron pair at X and X^{\prime} atoms like oxygen, nitrogen or sulfur, this equilibrium will be displaced to the open form XXIV (Scheme 10).

Scheme 10. Valence isomerization of symmetrically substituted phosphorus heterocycles. ${ }^{36]}$

Table 1. Calculated heats of reaction for ring closure of bis(ylene)phosphoranes. (SCF/CEPA-1-Level). ${ }^{[36]}$

$\mathbf{X} / \mathbf{X}^{\prime}$	$\mathbf{C H}_{2}$	$\mathbf{S i H}_{2}$	$\mathbf{N H}$	\mathbf{S}	\mathbf{O}
$\Delta \mathrm{E}[\mathrm{kcal} / \mathrm{mol}]$	-46.8	-42.2	19.7	9.0	79.6

Although these systems are symmetrical, it is reasonable that the free oxaphosphirane would also follow this tendency and presents a similar equilibrium. It is possible to estimate the heat of reaction of a mixed system by calculating the average value of the energy data for $X=$ carbon $(-46.8 \mathrm{kcal} / \mathrm{mol})$ and $X^{\prime}=$ oxygen $(79.6 \mathrm{kcal} / \mathrm{mol})$, resulting that this equilibrium, in the case of oxaphosphiranes, displaced to the open form XXIV
(Scheme 11)

Scheme 11. Predicted heat of reaction between the closed (XXIV) and the open form (XXV) of a $\sigma^{3} \lambda^{3}$ - oxaphosphirane using the data of Schöller.

A preliminary study of Espinosa ${ }^{[37]}$ especially designed for oxaphosphirane systems bring more information on this equilibrium by calculating heats of reaction of unsymmetrical systems (Table 2).

Table 2. Calculated heats of reaction for ring closure of bis(ylene)phosphoranes. (SCF/CEPA-1-Level).[${ }^{[37]}$

$\mathrm{X}^{\prime}(\mathrm{X}=\mathbf{0})$	$\mathbf{C H}_{2}$	$\mathbf{C}\left(\mathrm{NMe}_{2}\right)_{2}$	$\mathbf{C}\left(\mathrm{CF}_{3}\right)_{2}$	$\mathbf{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$
$\Delta \mathrm{E}[\mathrm{kcal} / \mathrm{mol}]$	-10.1	-7.1	-4	-8.7

This table shows that the presence of electron-withdrawing atoms/groups would favor the closed form, i.e. the oxaphosphirane ring.

Nevertheless, the effects of substituents at the phosphorus atom may also have a significant influence on this equilibrium, and even promote the closed form XXV. However, such theoretical predictions are still not available.

Nevertheless, the first oxaphosphirane with phosphorus in high oxidation state, the $\sigma^{4} \lambda^{5}$-oxaphosphirane XXVIII, was achieved in 1978 by Röschenthaler et al. by reaction of Niecke's iminophosphane XXVII with hexafluoroacetone (Scheme 12). ${ }^{[38]}$

Scheme 12. Synthesis of the first oxaphosphirane derivative XXVIII. ${ }^{[38]}$
This type of $[2+1]$ cycloaddition reactions with hexafluoroacetone were previously known with transition metals such as Ni or Rh, but not for main group elements. In 1985 Niecke et al. performed more investigations on this reaction and discovered that substituents at the nitrogen atom have a considerable effect in the reaction course, thus leading either to a [2+1] cycloaddition to give oxaphosphiranes or to a [2+2] reaction thus yielding oxazaphosphetidines. ${ }^{[39]}$

The pathway towards $P^{\text {III }}$ derivatives was opened by Mathey who, in 1990, developed the synthesis of the first $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes (XXX) via epoxidation of phosphaakene complexes (XXIX) with meta-chloroperbenzoic acid (m-CPBA) (Scheme 13a). ${ }^{[40,41]}$ As oxidation of unligated phosphaalkenes occurs preferentially at the phosphorus atom, it was necessary to block the lone pair at phosphorus via ligation to a metal complex and, therefore, promote the formation of the ring ligand.
a)

$$
\mathrm{R}=\mathrm{Me},{ }^{\mathrm{i}} \mathrm{Pr}
$$

b)

Scheme 13 a) Synthesis of oxaphosphirane complexes via epoxidation of phosphaalkene complexes; b) new derivatives synthetized by Schröder et al.[41,42]

This method permitted the formation and characterization of new oxaphosphirane complexes, not only having tungsten as transition metal attached to the phosphorus atom, but also having chromium and manganese (Scheme 13b) as Schröder demonstrated in his PhD thesis. They also pointed out the necessity of having a sterically demanding substituent at phosphorus to stabilize the oxaphosphirane ring. ${ }^{[42]}$

The work under such harsh conditions, i.e. with m-CPBA and the difficulties to obtain the corresponding phosphaalkene complexes, hindered the number of oxaphosphirane complexes to be achieved with this method. Most of the targeted oxaphosphirane complexes decomposed in an acid medium and/or were only stable at low temperature.

A new synthetic route came to the fore in 1994 when Streubel and co-workers reported on a thermally induced ring-cleavage of the 2 H -azaphosphirene complex XXXI (Scheme 14) in presence of benzaldehyde ${ }^{[43]}$ or benzophenone. ${ }^{[44]}$ The selective formation of the desired oxaphosphirane complex XXXIII, was selectively achieved in the case of benzaldehyde by reaction with the transiently generated phosphinidene complex XXXII. By using benzophenone, a side-reaction to a benzo[c]-1,2oxaphospholane complex occurred leading to a mixture of the corresponding oxaphosphirane complex XXXIII and the oxaphospholane complex XXXIV.

Scheme 14. Synthesis of $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes by thermolysis of 2 H azaphosphirene complexes: a) with benzaldehyde; b) with benzophenone. ${ }^{[43,44]}$

Due to the multistep synthetic process to obtain 2 H -azaphosphirene complexes, and the difficulties to apply this method to the synthesis of oxaphosphirane complexes
using other aldehydes or ketones than benzaldehyde and benzophenone, this route as well as the other - is unsuitable as standard pathway.

In 2007 an important breakthrough in the chemistry of oxaphosphirane complex chemistry arose thanks to the work of Özbolat-Schön, a co-worker of Streubel. She developed a facile procedure based on the generation of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes (XXXVII) by treatment of chloro- or dichloro(organo)phosphanes XXXV, XXXVI with lithium bases in presence of 12-crown-4 at low temperature and subsequent treatment with aldehydes or ketones (Scheme 15).[45,46]

Scheme 15 Systhesis of $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes via formation of a phosphinidenoid complex. ${ }^{[45,46]}$

Herewith, $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes XXXIII were obtained in excellent yields with different substituents at the phosphorus atom such as the bis(trimethylsilyl)-methyl group $\left(\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, the pentamethylcyclopentadienyl-group $\left(\mathrm{Cp}^{*}=\mathrm{C}_{5} \mathrm{Me}\right)_{5}$ and. More recently, with the tert butyl group (${ }^{(} \mathrm{Bu}=\mathrm{C}_{4} \mathrm{H}_{9}$), as well as with different alkyl or aryl substituents at the carbon atom of the ring. Moreover, different transition metals were able to be incorporated at phosphorus. It is noteworthy, that the easy accessibility to the starting materials combined with the mild conditions of the reaction course even allowed the introduction of functional groups such as alkenyl substituents, ${ }^{[47]}$ donorgroups (pyridyl-groups), ${ }^{[48]}$ and the spiro function into the carbon atom of the heterocycle. ${ }^{[49]}$ In summary, the "phosphinidenoid route" is a method that permits, for the first time, the systematic synthesis of a wide variety of $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes.

1.6 The triphenylmethyl group in organophosphorus chemistry

Triphenylmethane is an aromatic hydrocarbon in which phenyl groups replace three hydrogen atoms of methane. It is known for its steric and electronic abilities to form anions, radicals, and cations of considerable stability, because it allows an effective delocalization of charge/electrons over its three phenyl rings. The triphenylmethyl radical, also called "trityl", was discovered in 1900 by Gomberg as the first trivalent carbon compound. ${ }^{[50]}$ The radical $\mathbf{X X X V I I I}$ is stable for weeks under inert atmosphere at room temperature and forms a chemical equilibrium with the quinoid type dimer XXXIX (Scheme 16).

Scheme 16. Equilibrium between triphenylmethyl radical and its dimer.
Triphenylmethyl substituent was introduced in organophosphorus chemistry thanks to the work of Schmutzler and co-workers, which permitted the access to a wide variety of very reactive and/or unstable compounds, such as acyclic diphospha-urea derivatives, 1,3-diphosphetane-2,4-dione ${ }^{[51]}$ and acyl(chloro)organophosphanes. ${ }^{[52]}$ Recently, Streubel and co-workers characterized the first room temperature stable phosphinidenoid complex (Scheme 15, compound XXXVII) by incorporating the triphenylmethyl moiety into the phosphorus atom. ${ }^{[53]}$ There are only two more examples of phosphinidenoid complexes reported so far ($\mathrm{R}=\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ and $\mathrm{C}_{5} \mathrm{Me}_{5}$), but they decompose around $-45^{\circ} \mathrm{C}$.

The stability of the triphenylmethyl radical is not based only in electronic nature but also due to steric demand as the central carbon-carbon bond of the dimer possesses a strength of only $46 \mathrm{~kJ} / \mathrm{mol}$ (Scheme 16). ${ }^{[54]}$

Under normal circumstances, phosphorus-carbon σ-bonds are of low reactivity, ${ }^{[55,56]}$ and only a few examples are known in which, under forcing conditions, P-C bond cleavage is observed. ${ }^{[57]}$ The reason for this is the strength of the σ-bond between
phosphorus and carbon, but also the inability of nearly all simple hydrocarbon substituents to work as leaving groups, and a good leaving group has to be stable under the reaction conditions. This may be achieved by steric and/or electronic (mesomeric, inductive) effects. As aforementioned, Schmutzler used such effects to selectively cleave P-C bonds in Plll triphenylmethyldichlorophosphine to benefit from triphenylmethyl as leaving group. ${ }^{[58]}$

Lately, an innovative computational study by Espinosa and Streubel ${ }^{[59]}$ has provided first insights into the intrinsic strength of the exocyclic bonds to phosphorus in oxaphosphirane kP-pentacarbonylmetal(0) complexes, using a set of differently substituted derivatives ($a=\mathrm{Me}, \mathrm{b}={ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{c}=\mathrm{CPh}_{3}$; Scheme 17). This theoretical investigation analyzed the reactivity of oxaphosphirane complexes towards oxidative and reductive single electron transfer reactions (SET), and hence, offers valuable explanations to the problem of P-functionalization of oxaphosphiranes. In case of chromium (0) complexes homolytic bond cleavage of the exocyclic P-R bond was found to be always unfavorable (Scheme 17 orange), the heterolytic cleavage leading to a carbocation and the oxaphosphiranide complex XL- was found to be the lowest energy process (Scheme 17 black), especially if the R group is bulky and able to stabilize the positive charge efficiently, as is the case for the trityl substituent (XLc). ${ }^{[59]}$

Scheme 17. Fundamental bond-cleavage processes ($A-C$) of the $P-R$ bond and computed energetics ($\mathrm{kcal} / \mathrm{mol}$) for the dissociation and redox processes of compounds 1a-c. (COSMOtнғ/B3LYP-D/def2-TZVP).

The results of the study by Espinosa and Streubel for oxaphosphirane complexes are in agreement with the experimental results that Schmutzler and Plack obtained for phosphines ${ }^{[58]}$, phosphonium salts ${ }^{[60]}$ and phosphoranes, ${ }^{[61]}$ in which the formation of
$\mathrm{Ph}_{3} \mathrm{C}^{+}$becomes favorable when the phosphorus atom is substituted by groups that are strongly electron-withdrawing, and able to form stable anions (e.g. F, Cl, Br). To summarize here: the trityl group may play a major role in determining the reactivity of three-membered phosphorus heterocycles.
To date, only preliminary reports on the synthesis of a P-trityl substituted oxaphosphirane complex are available, and reactivity studies haven't been performed, yet. ${ }^{[60,62]}$

2. Aim of the thesis

The objective of this PhD work was to synthesize new oxaphosphirane complexes having the triphenylmethyl group bound to phosphorus. These derivatives may possess a higher lability of the P-C exocyclic bond than other derivatives, thus acting as a functional group, which should be studied in detail.

A further major objective was a comparative study of the effects of electronwithdrawing groups at the ring carbon atom on the reactivity using derivatives bearing three different bulky substitutents at phosphorus: triphenylmethyl, pentamethylcyclopentadienyl ($\mathrm{C}_{5} \mathrm{Me}_{5}$) and bis(trimethylsilyl)methyl ($\left.\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$.

In particular, the reactivity of these novel oxaphosphirane complexes was to be investigated towards strong σ-donors i.e. N-heterocyclic carbenes, ring-opening reactions with Brønsted acids as well as SET (single electron transfer) and multiple electron reductions.

3. Synthesis of $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes via $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes

3.1 Synthesis of dichloro(triphenylmethyl)phosphane complexes

To achieve the synthesis of P-triphenylmethyl substituted oxaphosphirane complexes, the critical step is the formation of the corresponding dichlorophosphane complexes. As the tungsten derivative 2c was recently obtained in the group of Streubel, using selective reaction of dichlorophosphane 1 with acetonitrile(pentacarbonyl)tungsten(0).[53] This procedure provided a conversion of approximately 75% of the starting phosphane. Attempts to improve this failed as this could not be increased neither by changing the reaction conditions, nor by variation of the stoichiometry. Complex 2c was obtained in 65% yield after column chromatography at low temperature.
Therefore, another method was applied for the synthesis of dichloro(triphenylmethyl)phosphane complexes 2a-c. First, the metal hexacarbonyles $\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ were converted into the corresponding $\left[\mathrm{M}(\mathrm{CO})_{5}(\mathrm{thf})\right.$] complexes by photolysis in THF and lately reacted with triphenylmethyldichlorophosphane (Scheme 18). This allowed, in the cases of tungsten and chromium, complete conversion of $\mathbf{1}$ into phosphane complexes 2a,c. In case of molybdenum, only 30% of the phosphane 1 was converted into the corresponding phosphane complex 2b. This result could not be improved neither by changing the method, nor by modification of the reaction conditions.

Scheme 18. Synthesis of dichloro(triphenylmethyl)phosphane complexes 2a-c.
The isolation of the phosphane complexes 2a-c was performed by low temperature column chromatography using neutral aluminum oxide as solid phase. Complexes 2a,c were obtained in excellent yields (92% and 86%, respectively), while only 25% of complex 2b was obtained after eluation. Selected NMR data of the complexes are given in Table 3.

Table 3 Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances [ppm], ${ }^{1} \mathrm{Jp}, \mathrm{w}$ and ${ }^{2} \mathrm{JP}, \mathrm{C}[\mathrm{Hz}]$ of complexes 2a-c in THF-d8 $(\mathbf{a}=\mathrm{Cr}, \mathbf{b}=\mathrm{Mo}, \mathbf{c}=\mathrm{W})$.

Compound	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left({ }^{1} \mathrm{JP}, \mathrm{w}\right)$		$\mathbf{\delta}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left({ }^{2} \mathrm{JP}, \mathrm{c}\right)$		
		$\underline{\mathbf{C P}}{ }_{3}$	cis-CO	trans-CO	
2a	234.2	$77.7(16.2)$	$213.7(12.2)$	$220.1(1.9)$	
2b	201.0	$74.1(17.6)$	$202.4(9.0)$	$208.8(48.9)$	
2c	$166.2(319.7)$	$75.5(10.7)$	$195.9(7.1)$	$198.9(48.0)$	

The phosphorus chemical shift is extremely sensitive to the electronic, steric and geometric environment of the ${ }^{31} \mathrm{P}$ nucleus, thus the nature of the transition metal has an influence on the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts of complexes $\mathbf{2 a} \mathbf{a} \mathbf{c}$. The resonances were observed between 235 ppm and 166 ppm and decrease in the order $\mathrm{Cr}>\mathrm{Mo}>\mathrm{W}$. The so-called $\Delta \delta$ values, i.e., the differences between the phosphorus resonances of transition metal complexes bearing the same ligand, are a common feature of metalcoordinated trivalent phosphorus compounds. ${ }^{[63-65]}$

The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts of the carbonyl carbon atoms follow also the same tendency. The spectrum exhibits two carbonyl doublets due to the carbonyl groups, cis and trans oriented to phosphorus. For molybdenum $\mathbf{2 b}$ and tungsten 2c complexes, the phosphorus-carbon coupling constants show $\left.\right|^{2} \mathrm{Jp}, \mathrm{c}$ (cis) $|<|^{2} \mathrm{Jp}, \mathrm{c}$ (trans)|, while in the case of the chromium complex $\mathbf{2 a}$, the trans-CO carbon atom has a smaller $\mathrm{P}-\mathrm{C}$ coupling constant magnitude compared to the carbon nuclei in the cis-CO groups. This observation is also a common feature of pentacarbonyl phosphane chromium complexes. ${ }^{\text {[63] }}$

From concentrated solutions of $\mathbf{2 a , b}$ in n-pentane, crystals were obtained and their molecular structures are represented in Figure 2. Both derivatives crystallize in the monoclinic system and space group $\mathrm{P} 2_{1} / \mathrm{n}$ for chromium and $\mathrm{P} 2_{1} / \mathrm{c}$ for molybdenum.

The triphenylmethyl moiety in dichlorophosphane complexes 2a-c caused an enlargement of the $\mathrm{P}-\mathrm{C}(1)$ bond having a value for 2 c of $1.955(2) \AA$ (the sum of covalent radii of P and C atoms is $1.87 \AA$ A), ${ }^{[66]}$ as observed by Streubel et. al, ${ }^{[53]}$ which is significantly longer compared with that of the unligated phosphane $\mathbf{1}$
(1.9333(14) \AA)..$^{[67]}$ The chromium analogue $\mathbf{2 a}$ also follows this tendency presenting a value of its P-C bond length of 1.956 (5) Å, while the molybdenum derivative $\mathbf{2 b}$ shows a value of $1.938(16) \AA$ (very similar to 1). By comparison to the tungsten ${ }^{[53]}$ and chromium analogues, the molybdenum derivative presents also the shortest distances for the $\mathrm{P}-\mathrm{Cl}$ bonds. However, $\mathbf{2 b}$ displays the largest $\mathrm{P}-\mathrm{M}$ bond length, thus having a value of 2.489 Å.

Figure 2. Molecular structures of oxaphosphirane complexes 2a and 2b (thermal ellipsoids are shown with 50% probability level); all hydrogen atoms are omitted for clarity; selected bond lengths (\AA) and angles (${ }^{\circ}$): 2a: P-Cr 2.3327(5), P-C(1) 1.9557(15), $\mathrm{P}-\mathrm{Cl}(1) 2.0534(5), \mathrm{P}-\mathrm{Cl}(2)$ 2.0592(5), $\mathrm{Cr}-\mathrm{P}-\mathrm{C}(1) 127.91(5), \mathrm{C}(1)-\mathrm{P}-\mathrm{Cl}(1)$ 102.52(5), $\mathrm{Cl}(1)-\mathrm{P}-\mathrm{Cl}(2)$ 98.54(2). 2b: P-Mo 2.489(5), P-C(1) 1.938(16), P-Cl(1) 2.049(6), $\mathrm{P}-\mathrm{Cl}(2) 2.023(8), \mathrm{Mo}-\mathrm{P}-\mathrm{C}(1) 130.5(7), \mathrm{C}(1)-\mathrm{P}-\mathrm{Cl}(1) 101.6(5), \mathrm{Cl}(1)-\mathrm{P}-\mathrm{Cl}(2)$ 100.8(3).

3.2 Synthesis of C-aryl, P-triphenylmethyl substituted oxaphosphirane complexes

As described in the introduction, the synthesis of C-phenyl, P-triphenylmethyl oxaphosphirane complex $\mathbf{4 c}$ was recently published, ${ }^{[53]}$ but its chromium (4a) and molybdenum (4b) analogues were still unknown as well as the respective $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes needed as starting material. In this chapter, the synthesis and characterization of the above mentioned compounds are described.
$\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid chromium and molybdenum complexes $\mathbf{3 a}, \mathbf{b}$ were quantitatively formed by a one-pot reaction of the corresponding dichlorophosphane complexes $\mathbf{2 a}, \mathbf{b}$ with tert-butyl lithium in the presence of 12 -crown-4 in THF at $-78^{\circ} \mathrm{C}$ (Scheme 19). ${ }^{[55]}$

Scheme 19. Synthesis of oxaphosphirane complexes 4a-c via Li/Cl phosphinidenoid complexes 3a-c.

In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, complexes $\mathbf{3 a , b}$ display signals at 310.4 and 280.4 ppm respectively. Both display a shoulder on the high-field side (ratio of ca. 3:1) that corresponds to the ${ }^{37} \mathrm{Cl}$ isotopomer of $\mathbf{3 a}, \mathbf{b}$, a phenomenon which was first observed by Özbolat and which is one of the characteristic NMR features for the class of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes. ${ }^{[45,68]}$ Complexes $\mathbf{3 a , b}$ were NMR spectroscopically characterized at $-60^{\circ} \mathrm{C}$ in THF-d8. A NMR-monitoring from $-60^{\circ} \mathrm{C}$ to room temperature, to determine their thermal stability, was carried out for both derivatives. While the molybdenum derivative starts to unselectively decompose at $-20^{\circ} \mathrm{C}$, the chromium analogue was stable over several days at room temperature under argon atmosphere. After six days, complex 2a started to decompose slowly.
Having access to complexes $\mathbf{2 a , b}$, oxaphosphirane complexes $\mathbf{4 a , b}$ were then synthesized through the reaction of in situ generated Li/Cl phosphinidenoid complexes $3 \mathbf{a}, \mathbf{b}$ with benzaldehyde at $-78^{\circ} \mathrm{C}$ and warming up to room temperature (Scheme 19). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a}, \mathbf{b}$ showed phosphorus resonances significantly high-field shifted compared to those of analogous P-bis(trimethylsilyl)methyl (91.0 and 65.4 ppm for Cr and Mo, respectively) and $P-\mathrm{Cp}^{*}$ (75.7 and 52.7 ppm for Cr and Mo, respectively) oxaphosphirane complexes (Table 4). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR shifts, corresponding to the quaternary carbon atom of the $\underline{\mathrm{CPh}}_{3}$ group, appear in oxaphosphiranes and phosphinidenoid complexes high field-shifted in comparison to the dichlorophosphane complexes 2a-c.

Table 4. Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances [ppm], ${ }^{1} \mathrm{Jp}, \mathrm{w}$ and ${ }^{2} \mathrm{Jp}, \mathrm{c}[\mathrm{Hz}]$ of complexes $\mathbf{3 a}, \mathbf{b}$ and $\mathbf{4 a , b}$ in THF-d8.

Compound	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	$\delta^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left({ }^{2} \mathrm{JP}, \mathrm{C}\right)$			
		$\underline{\mathrm{CP}}{ }_{3}$	PCO	cis-CO	trans-CO
3a	310.4	66.9 (22.8)	-	220.6 (6.9)	221.6 (20.1)
3b	280.4	67.1 (22.1)	-	208.8 (8.0)	216.2 (24.5)
4a	58.6	67.5 (14.1)	59.1 (20.6)	211.6 (14.5)	214.3 (37.6)
4b	33.4	66.2 (13.7)	51.2 (20.2)	202.3 (9.5)	208.5 (46.1)

Figure 3. Mass spectrum (EI, 70 eV) of oxaphosphirane complex $\mathbf{4 a}$.
Mass spectrometric investigations (EI, 70 eV) for complexes $\mathbf{4 a , b}$ were performed and showed similar results and, exemplarily, the mass spectrum of complex $\mathbf{4 a}$ will be discussed (Figure 3). It shows the preference of the molecule radical cation $\mathrm{m} / \mathrm{z} 572.0$ $\left([\mathrm{M}]^{++}\right)$to extrude five unities of $\mathrm{CO} \mathrm{m} / \mathrm{z} 432.1\left([\mathrm{M}-5 \mathrm{CO}]^{+}\right)$followed by the loss of the triphenylmethyl moiety $\mathrm{m} / \mathrm{z} 189.0$ [M-5CO-CPh $\left.{ }_{3}\right]^{+}$as the corresponding base peak indicates ([$\left.\mathrm{CPh}_{3}\right]^{+} \mathrm{m} / \mathrm{z} 243.1$). However, another fragmentation pathway was observed, combining the extrusion of five CO units and the loss of the aldehyde moiety $\mathrm{m} / \mathrm{z} 326.0$ ([M-5CO-C7 $\left.\mathrm{H}_{6} \mathrm{O}\right]^{+}$).

Light green and light yellow crystals of complexes $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively, were obtained from concentrated n-pentane solutions (Figure 4). X-ray diffraction analysis unveiled that $\mathbf{4 b}$ crystallized in the triclinic crystal system, space group P-1, while complex 4a showed an orthorhombic system and a P21 space group. Both phosphorus stereogenic centers present different configurations, thus possessing the phosphorus atom of the molybdenum derivative $\mathbf{4 b}$ in an S configuration, while the chromium analogue 4a shows an R configuration for its phosphorus atom. The phenyl substituent at the carbon atom of the ring is placed in a cis position to the pentacarbonylmetal(0) moiety.

Figure 4. Molecular structures of oxaphosphirane complexes 4a and 4b (thermal ellipsoids are shown with 50% probability level); all hydrogen atoms (except H 1), are omitted for clarity; selected bond lengths (A) and angles $\left(^{\circ}\right): 4 \mathrm{a}: \mathrm{P}-\mathrm{Cr} 2.3328(9), \mathrm{P}-\mathrm{C}(1)$ 1.785(3), $\mathrm{P}-\mathrm{C}(8) 1.895(3), \mathrm{P}-\mathrm{O}(1)$ 1.663(2), $\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(1)$ 50.88(11), C(1)-O(1)-P 68.83(14), O(1)-C(1)-P 60.30(13); 4b: P-Mo 2.4864(10), P-C(1) 1.781(3), P-C(8) 1.892(4), P-O(1) 1.668(2), O(1)-P-C(1) 50.16(14), C(1)-O(1)-P 68.93(16), O(1)-C(1)-P 60.92(17).

Analysis of the single-crystal structures revealed that the $\mathrm{P}-\mathrm{C}(8)$ bond in P-trityl oxaphosphirane complexes $\mathbf{4 a , b}$ (1.895(3) \AA and $1.892(4) \AA$) keeps some elongation but is significantly shorter than in the P-trityl dichlorophosphane complexes $\mathbf{2 a , b}$, although still longer than $\mathrm{P}-\mathrm{C}$ bonds in related P -bis(trimethylsilyl)methyl and $\mathrm{P}-\mathrm{Cp}^{*}$ oxaphosphirane derivatives (1.794(6) \AA and 1.855(3) \AA). The largest $P-M$ bond distance is observed in the molybdenum derivative, while the largest $\mathrm{P}-\mathrm{C}$ exocyclic bond length was observed in tungsten derivative 4c. ${ }^{[53]}$ All other bond lengths and bond angles present similar values for the three metal complexes.

3.3 Synthesis of C-alkyl, P-triphenylmethyl substituted oxaphosphirane complexes

The syntheses of C-alkyl substituted oxaphosphirane complexes have been investigated for derivatives bearing pentamethylcyclopentadienyl (C5Mes) or bis(trimethylsilyl)methyl $\left(\left(\mathrm{CHSiMe}_{3}\right)_{2}\right)$ at the phosphorus atom. In most cases, they could not be isolated in good yields, partly due to rapid decomposition, and only a few derivatives could be confirmed by means of single-crystal X-ray analysis. ${ }^{[69,70]}$

In the following, attempts to synthesize new C-alkyl P-triphenylmethyl substituted oxaphosphirane derivatives are described using dichlorophosphane complex 2c, thus taking advantage of the additional information obtained from the tungsten-phosphorus coupling constant.

Scheme 20. Synthesis of oxaphosphirane complexes 5 and 6 through reaction of transiently formed $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 3c and alkyl aldehydes.

The formation of oxaphosphirane complexes was selectively achieved for derivatives $5(\mathrm{R}=\mathrm{Me})$ and $6\left(\mathrm{R}={ }^{\mathrm{n} P r}\right)$, following the established reaction protocol (Scheme 20). In the reaction of $\mathbf{2 c}$ with pivalylaldehyde ($\left.{ }^{\text {B BuC }}(\mathrm{H}) \mathrm{O}\right)$, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the reaction solution revealed a mixture of two compounds. The resonance of the minor product (30%) at 0.6 ppm could be assigned to the expected oxaphosphirane derivative 7 due to the observed coupling constant magnitude of ${ }^{1} \mathrm{Jp}, \mathrm{w}=303.5 \mathrm{~Hz}$. The major resonance at $12.3 \mathrm{ppm}(70 \%)$ shows a ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{W}}$ value of 231.7 Hz and a ${ }^{1} \mathrm{JP}_{\mathrm{P}, \mathrm{H}}$ value of 342.5 Hz and could be assigned to the compound 8 which was already characterized in the group of Streubel (Scheme 21, Table 5). ${ }^{[71]}$

Scheme 21. Reaction of Li/Cl phosphinidenoid complex 2c with pivalyl aldehyde.
Table 5. Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances [ppm] and ${ }^{1} \mathrm{JP}_{\mathrm{P}, \mathrm{w}}$ and ${ }^{1} \mathrm{JP}_{\mathrm{P}, \mathrm{H}}[\mathrm{Hz}]$ of complexes 5-8 in THF-d8.

Compound	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{JP}, \mathrm{w}$	${ }^{1} \mathrm{JP}, \mathrm{H}$
$\mathbf{5}$	8.3	301.7	-
$\mathbf{6}$	8.7	303.3	-
$\mathbf{7}$	9.2	303.9	-
$\mathbf{8}$	12.3	231.7	342.5

Compounds 5 and 7 were found to decompose rapidly in solution, whereas compounds 6 and 8 are stable at room temperature. Oxaphosphirane complex 6 ($\mathrm{R}={ }^{\mathrm{n}} \mathrm{Pr}$) was successfully isolated by means of low temperature column chromatography and fully characterized.

Figure 5. Molecular structure of oxaphosphirane complex 6 (thermal ellipsoids are shown with 50% probability level); all hydrogen atoms (except H1), are omitted for clarity; selected bond lengths (\AA) and angles (${ }^{\circ}$): P-Cr 2.3328(9), P-C(1) 1.785(3), $\mathrm{P}-\mathrm{C}(8) 1.895(3), \mathrm{P}-\mathrm{O}(1) 1.663(2), \mathrm{O}(1)-\mathrm{P}-\mathrm{C}(1) 50.88(11), \mathrm{C}(1)-\mathrm{O}(1)-\mathrm{P} 68.83(14), \mathrm{O}(1)-$ C(1)-P 60.30(13).

3.4 Study on the synthesis of C-disubstituted P-triphenylmethyl substituted oxaphosphirane complexes

3.4.1 Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3a-c with benzophenone

As described in chapter 3.2, reaction of Li/Cl phosphinidenoid complexes 3a-c with benzaldehyde led to the straightforward formation of oxaphosphirane derivatives 4a-c (Scheme 22).

In order to investigate the effect of the expected increase of the ring strain energy of the oxaphosphirane ring imposed by two phenyl substituents on the heterocycle and the P-CPh ${ }_{3}$ group, compounds 3a-c were reacted with benzophenone.

Scheme 22. Synthesis of oxaphosphirane complexes 4a-c and complexes 9a-c and 10a-c.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction solution showed no oxaphosphirane complexes even at low temperature, but two unexpected resonances: singlets for complexes 9a-c, whereas AB-type spin systems appeared for the distinctly different phosphorus nuclei of 10a-c, all signals appeared as doublets with a ${ }^{5} \mathrm{~J}, \mathrm{P}$ coupling of 3.8 Hz (Table 6).

Table 6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances [ppm] and ${ }^{5} \mathrm{~J}_{\mathrm{P}, \mathrm{P}}[\mathrm{Hz}]$ of 4a-c, 9a-c, 10a-c and 9:10 ratios in THF solution.

Metal	4a-c	9a-c	10a-c $\left(\mathbf{P}^{1} / \mathbf{P}^{\mathbf{2}}\right)$	$\mathbf{5}^{\mathbf{5}} \mathbf{J P 1 , P 2}$	Ratio 9:10
Cr	58.7	190.3	$210.5 / 165.6$	3.8	$5: 1$
Mo	33.4	167.4	$186.3 / 138.2$	3.8	$5: 3$
W	$16.0^{8 d}$	145.1	$164.4 / 112.3$	3.8	$5: 1$

The tungsten derivative 9c was chosen to attempt separation from the mixture with 10c by low temperature column chromatography, which was successful (68% yield). The constitution of 9c was finally confirmed by X-ray crystallography (Figure 6), revealing the presence of a bicyclic 1,2-oxaphospholane ligand.[55]

Figure 6. Reduced molecular structure of complex 9c (thermal ellipsoids are shown with 50% probability level); all hydrogen atoms (except H 3), as well as carbonyl groups at the metal are omitted for clarity; selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ P-W$ 2.5101(3), $\mathrm{P}-\mathrm{C}(14)$ 2.9161(2), $\mathrm{P}-\mathrm{O}(7)$ 1.6423(2), $\mathrm{C}(1)-\mathrm{C}(2) 1.4083(2), \mathrm{P}-\mathrm{O}(1)-\mathrm{C}(3)$ 112.748(8), $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2) 107.616(9), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 113.966(8), \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$ 104.406(8).

Although several attempts to separate 10b from $9 b$ via column chromatography were unsuccessful, a better ratio of 10b:9b (cf. Table 6) enabled to get single crystals of the latter from diethylether at $-30^{\circ} \mathrm{C}$. The X-ray structure of the pentacyclic complex $\mathbf{1 0 b}$ (Figure 7) surprisingly showed (formally) two units of $\mathrm{Ph}_{2} \mathrm{CO}$, but only one belonging to a complete (opened) oxaphosphirane unit. ${ }^{[55]}$ In the other P-containing part, only a partial oxaphosphirane complex can be (formally) identified, but without a HCPh_{3} moiety. All bond lengths and angles in 10b are in the expected range except, e.g. $\mathrm{P}(1)-\mathrm{Mo}(1)(2.4258 \AA$), which is significantly shorter than $\mathrm{P}(2)-\mathrm{Mo}(2)(2.5259 \AA)$. The five-membered ring containing $\mathrm{P}(2)$ is roughly planar (distance of $\mathrm{O}(7)$ to the $P(2)-C(14)-C(15)-C(25)$ mean plane, $0.108 \AA$) due to the double bond between $C(15)$ and $C(25)$ (Figure 7).

Figure 7. Reduced molecular structure of complex 10b (thermal ellipsoids are shown with 50% probability level); all hydrogen atoms (except H10A, H11A and H14A), and carbonyl groups at the metals are omitted for clarity; selected bond lengths (\AA) and angles (${ }^{\circ}$: $\mathrm{P}(1)-\mathrm{Mo}(1) 2.4258(1), \mathrm{P}(1)-\mathrm{O}(1) 1.6456, \mathrm{P}(2)-\mathrm{Mo}(2) 2.5259(2), \mathrm{P}(2)-\mathrm{C}(32)$ 1.9597(7), C(15)-C(25) 1.3667(5), C(14)-C(15) 1.5256(6), C(10)-C(11) 1.5457(6), $\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{C}(1) 102.597(3), \mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10) 100.224(4), \mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11) 105.523(3)$, $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{P}(1) \quad 102.424(3), \quad \mathrm{P}(2)-\mathrm{O}(7)-\mathrm{C}(25) \quad 113.674(5), \quad \mathrm{O}(7)-\mathrm{C}(25)-\mathrm{C}(15)$ 116.226(4), C(25)-C(15)-C(14) 113.486(3), C(15)-C(14)-P(2) 102.959(1).

Quantum chemical calculations, performed by Espinosa Ferao, ${ }^{[56]}$ were used to study the formation of products of type $\mathbf{9}$ and 10 in the reaction of P-trityl substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3a-c with benzophenone.

Scheme 23. Mechanistic proposal for the formation of 9 h indicating ring opening pathways from a primary formed oxaphosphirane complex.

For the sake of computational efficiency the first part of the mechanistic search was performed starting from P-Me model complexes $\mathbf{4 g}$,h (Scheme 23) at the highest
computational level (level A: B3LYP functional ${ }^{[72]}$ together with the def2-TZVP basis set ${ }^{[73]}$ in case of model complexes (P-methyl substituted)).

Tungsten complexes were used as models to enable comparison with previous reports ${ }^{[74,75]}$ and in agreement with them, formation of the corresponding oxaphosphirane complex was assumed as first product in the reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes with carbonyl compounds, although simple substitution of Cl by O at P could also be envisaged (vide infra). According to the above mentioned report, mono-aryl substituted oxaphosphirane complex $\mathbf{4 g}$ preferentially undergoes exergonic ($-6.57 \mathrm{kcal} / \mathrm{mol}$) C-O bond cleavage with a moderate energy barrier $28.91 \mathrm{kcal} / \mathrm{mol}$), leading to the side-on phosphaalkene P-oxide complex 11g. In contrast, a higher barrier for the P-C bond cleavage path ($37.72 \mathrm{kcal} / \mathrm{mol}$), being rather endergonic (+28.90 kcal/mol), affords $\mathbf{1 2 g}$. In case of the diphenyl model system $\mathbf{4 h}$, both processes have a lower barrier (Figure 8), the P-C bond cleavage product 12h being comparatively stabilized with respect to $\mathbf{1 2 g}$ due to extensive delocalization of the positive charge. In stark contrast, the C-O cleavage product $\mathbf{1 1 h}$ is destabilized presumably due to steric reasons.

Figure 8. Computed ZPE-corrected energy profile for the conversion of complexes 4 into 9 and 16. In grey the relative energies for full P-trityl substituted complexes (relative energy of 13e' is set to the same value than 13h').

Therefore, the C-O bond cleavage equilibrium for $\mathbf{4 h}$ is expected to be shifted to the rather reactive (more slowly formed) P-C bond cleavage product 12h which readily undergoes cyclization by attack of the nucleophilic P atom at the closest phenyl ortho position, thus giving rise to bicyclic derivative 13h. Complex 12h exists as two conformers, differing in the helical orientation of the $\mathrm{Ph}_{2} \mathrm{C}^{+}$moiety, the most unstable of which (12h') cyclizes to the most stable diastereomer of the bicyclic complex 13h',
whereas the other helical isomer $\mathbf{1 2 h}$ gives rise to less stable diastereomer 13h. Worth mentioning is that oxaphosphirane complex 4 might not be formed in real systems due to steric congestion and, alternatively, ylide complex 12 could directly result upon reaction of phosphinidenoid complex 3 with benzophenone and evolve towards the five-membered derivative 13.

Formation of the final (model) complex 9h, whose comparative stability arises from the gain of aromatic character in the benzo-fused ring, could be explained through supra [1,3]H shift to the benzylic position in diastereomer 13h'. According to WoodwardHoffmann orbital symmetry rules ${ }^{[76]}$ this process is thermally forbidden and displays a high energy barrier. In order to explain the formation of 9 through a lower energy process, the assistance of a molecule having hydrogen bond (HB) donor and acceptor sites might be assumed, therefore acting as a catalyst for the H -shift 13h' $\boldsymbol{\rightarrow} \mathbf{9 h}$ rearrangement. A water molecule has been used as model for such a catalytic species (vide infra), ${ }^{[77]}$ although any other proton carrier species present in the reaction medium could similarly account for the catalyzed proton transfer. Thus $13 h^{\prime} \cdot \mathrm{H}_{2} \mathrm{O}$ was found to isomerize to $\mathbf{1 4 h} \cdot \mathrm{H}_{2} \mathrm{O}$ (Scheme 24) through a much lower yet significantly high pericyclic transition state ($\Delta \Delta$ EzPE $=42.30 \mathrm{kcal} / \mathrm{mol}$; Figure 8) with thermal symmetryallowed nature. The occurrence of two water molecules involved in the H transfer process further decreases the energy barrier of the rate-limiting first step $(\Delta \Delta$ EZPE $=28.79 \mathrm{kcal} / \mathrm{mol})$ which leads to a dihydrated zwitterion $\mathbf{1 4 h} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Scheme 24), whose almost barrierless (water-mediated) O-to-C [1,2]H shift affords the final model product $9 \mathbf{h} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Scheme 24. Mechanistic proposals for the water-catalyzed isomerization of 13h' into 9h.

Elimination of the P-trityl substituent in complex 13 (studied at a somewhat lower computational level B (def2-SVP basis set ${ }^{[78]}$ for full P-trityl substituted complexes) for the molybdenum complex requires relative cis orientation of the H atom and the trityl group in 13e This in turn enables a pericyclic phospha-ene reaction affording diphenylmethylidenecyclohexadiene 17 as by-product (Scheme 25). The latter can then isomerize to the more stable triphenylmethane 18 (Δ EzPE $=-26.58$ or $-27.20 \mathrm{kcal} / \mathrm{mol}$ at A or B levels, respectively). The below $\mathbf{1 7} \boldsymbol{\rightarrow} \mathbf{1 8}$ transformation is again thermally forbidden as a concerted (pericyclic) process, but could alternatively take place in a water-catalyzed manner (not studied), as the previously described $\mathbf{1 3} \mathbf{h}^{\prime} \cdot \mathbf{n H}_{2} \mathrm{O} \boldsymbol{\rightarrow} \mathbf{9} \mathbf{h} \cdot \mathbf{n H}_{2} \mathrm{O}$ transformation, or when coupled to the $\mathbf{1 3} \mathbf{h}^{\mathbf{\prime}} \boldsymbol{\rightarrow} \mathbf{9} \mathbf{h}$ rearrangement, therefore 17 acting as the required simultaneous HB donor and acceptor species (vide supra), although in a non-catalytic fashion.

Scheme 25. Proposal for the formation of 10 according to Espinosa Ferao.
The alternative two-step proton transfer through zwitterionic complex 15e followed by P-group detachment constitutes a lower energy sequence to $\mathbf{1 6 e}$. The resulting nonaromatic (i.e. reactive) bicyclic 2 -phosphafurane complex intermediate ${ }^{[79]} \mathbf{1 6 e}$ features a cyclic, conformationally s-cis locked phosphadiene character and, therefore, can be expected to behave as 4π-component and undergo a phospha-Diels-Alder ${ }^{[80]}$ reaction. The 2π component is the central double bond of the triene moiety in 13e', the diastereomer which cannot undergo trityl group elimination due to its relative trans orientation of the H atom at the ring junction. The regioselectivity of the [4+2]
cycloaddition reaction might tentatively arise from i) π-stacking between the two phenyl rings that not only guides the approach of the two components but also stabilizes the final adduct and ii) the steric demand of the metal fragment in 16e hampering the approach to the phenyl substituent side in 13e'.

These reactions demonstrated that reactions of P-trityl substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes with carbonyl derivatives are very sensitive towards steric overcrowded substrates.

3.4.2 Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 3 c with alkyl ketones

The chemistry of oxaphosphirane complexes was mostly developed for derivatives bearing bis(trimethylsilyl)methyl $\left(\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right)^{[69]}$ or pentamethylcyclopentadienyl ($\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)^{[65]}$ as organic substituents at phosphorus. A large number of oxaphosphirane complexes could be synthesized thanks to this methodology, however, the synthesis of C-disubstituted oxaphosphirane complexes is still nowadays a challenge. This may be due to an increase of the ring strain, thus promoting unexpected rearrangements such as ring opening reactions. ${ }^{[81,82]}$ To date, only three derivatives could be confirmed by X-ray crystallography. ${ }^{[69,75]}$

Hereafter, reactions of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 3c with different alkyl ketones aiming the synthesis of C-disubstituted oxaphosphirane complexes will be discussed (Scheme 26).

Scheme 26. Attempts to the synthesis of C-disubstituted oxaphosphirane complexes.
Despite several attempts, the reaction of 3c with different alkyl ketones (acetone, dipropyl ketone and di-tert-butyl ketone) was unsuccesful. Even by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR low temperature monitoring, it was not possible to detect intermediately formed oxaphosphirane complexes. While reactions of 3c with sterically low demanding ketones $\left(R=R^{\prime}=M e,{ }^{n P r}\right)$ led always to unidentified mixtures of products, the reaction
of 3c with di-tert-butyl ketone, led to a main product showing a phosphorus resonance, not in the expected range for oxaphosphirane complexes, with two different tungsten satellites. Unfortunately, all attempts to isolate the compounds were not successful due to their poor stability in solution.

4. Synthesis of the first fluorinated oxaphosphirane complexes

4.1 Synthesis of C-ary $\left.\right|^{\mathcal{F}}$ substituted oxaphosphirane complexes

In order to study the effects of strong electron withdrawing groups at the carbon atom of the ring in P-triphenylmethyl substituted oxaphosphirane complexes, aldehydes with different degree of fluorination were reacted with $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 3c; various C-pyridyl substituted oxaphosphirane complexes have been reported. ${ }^{[81,83]}$

Oxaphosphirane complexes 20-22 were readily synthesized reacting complex 2c with tert-butyl lithium in presence of 12-crown-4, yielding the respective $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 3c. ${ }^{[53]}$ Subsequently, 3c was treated with aldehydes having a different degree of fluorination of the phenyl group to give the novel oxaphosphirane complexes 20-22 in good to very good isolated yields (20: 74\%; 21: 81\%; 22: 87\%). ${ }^{[84]}$

20: $\mathrm{Ar}^{\mathrm{F}}=2,6$-difluorophenyl
21: $\mathrm{Ar}^{\mathrm{F}}=2,4,6$-trifluorophenyl
22: $\mathrm{Ar}^{\mathrm{F}}=$ perfluorophenyl
Scheme 27. Synthesis of fluorinated oxaphosphirane complexes 20-22.
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of complexes $\mathbf{2 0 - 2 2}$ are $\sim 8 \mathrm{ppm}$ shifted to higher field in comparison to the resonance of the phenyl derivative $4{ }^{[53]}(\delta=16$; Table 7), which is a counterintuitive effect. It was expected that the electron-withdrawing character of the fluoro-substituted phenyl rings should lead to a deshielding of the phosphorus nucleus, thus resulting in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances of the oxaphosphirane complexes appearing downfield to $\mathbf{4 c}$. The degree of fluorination is nicely reflected in the ${ }^{1}{ }^{1} P, W$ coupling constants, i.e., as the number of fluorine atoms at the aromatic ring increases,
the coupling constant increases in going from the phenyl derivative $4 \mathbf{c}^{[53]}$ $\left({ }^{1}{ }^{\mathrm{J}}, \mathrm{w}=311 \mathrm{~Hz}\right)$ to the pentafluorophenyl derivative $22\left({ }^{1}{ }^{\mathrm{J}, \mathrm{w}}=320 \mathrm{~Hz}\right)$.

Table 7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts [ppm] and ${ }^{1} \mathrm{~J} p, \mathrm{w}$ coupling constants $[\mathrm{Hz}]$ of complexes 4c ${ }^{[53]}$ and 20-22.

Compound	\#F atoms	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}$	${ }^{1}{ }^{\mathbf{J P}, \mathrm{w}}$
$\mathbf{4 c}{ }^{[53]}$	0	16.0	311
$\mathbf{2 0}$	2	8.9	314
$\mathbf{2 1}$	3	8.5	316
$\mathbf{2 2}$	5	7.5	320

The ${ }^{1} \mathrm{H}$ NMR chemical shift of the hydrogen atom at the three-membered ring-carbon atom (H^{a} in Scheme 27), is especially influenced by the degree of fluorination and shows a clear trend (Table 8) In case of $\mathbf{2 5}$, the effect onto the proton H^{a} is very strong and it may appear in the aromatic area, so its signal is overlapped by the signals of the trityl substituent, i.e., its resonance should be between $\delta=6-7$.

Table 8. Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts [ppm] and ${ }^{2} \mathrm{JP}, \mathrm{c}$ coupling constants $[\mathrm{Hz}]$ of compounds $\mathbf{4 c}{ }^{[53]}$ and 20-22.

Compound	${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.{ }^{2} \mathrm{JP}, \mathrm{C}\right)$		
		CWP	CPh_{3}	cis-CO	trans-CO
$4 c^{[53]}$	4.14	60.4 (23.6)	67.7 (8.1)	194.6 (8.2)	196.3 (40.9)
20	4.95	54.0 (25.6)	67.3 (6.7)	193.8 (8.1)	195.8 (41.6)
21	5.75	53.4 (25.7)	67.4 (6.3)	193.9 (7.9)	195.6 (41.6)
22	(*)	53.3 (24.7)	67.6 (6.6)	193.7 (8.1)	195.1 (41.8)

(*): signal overlapped by trityl resonances
The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR shifts of compounds 20-22 differ only slightly from each other as well as from the non-fluorinated derivative $4 \mathbf{c}^{[53]}$ and lie in the expected range, as Table 8 reveals. Only the resonance of the carbon atom of the oxaphosphirane heterocycle (́ㅡH) in 20-22, which is directly bonded to the fluorinated aromatic ring, shows a resonance shifted by $\sim 7 \mathrm{ppm}$ to higher field compared to the non-fluorinated compound $4 \mathbf{c}^{[53]}$.

IR measurements were performed for $\mathbf{2 0 - 2 2}$ to give evidence of the electronic situation of the oxaphosphirane ring, in particular to get insight into the π-acidity/basicity of the oxaphosphirane ligand. In general, hexacoordinated complexes with pentacarbonylmetal fragments can serve as good systems to study the ligand bonding properties of the sixth ligand. ${ }^{[85]}$ As it was shown before, the oxaphosphirane ligand is known, ${ }^{[43,75,86]}$ but the effect of electron-withdrawing groups at the ring carbon center was not investigated. It is a widely accepted model that the IR absorption due to the A_{1} mode of the trans-CO depends on the electron density on the metal delivered to the CO ligand via π-backbonding. ${ }^{[87]}$ If the electron density on the metal centre increases, an enhanced π-backbonding to the CO ligand results in a shift of the IR absorption frequency to smaller wavenumbers (blueshift).

Figure 9. IR spectrum of complex 22.
In case of complexes of the type $M(C O)_{5} L$ (local $C_{4 v}$ symmetry) three IR bands were expected for complexes $\mathbf{2 0 - 2 2}$. The corresponding $A_{1}{ }^{(1)}, A_{1}{ }^{(2)}$ and E bands were observed at $v=2077,1994$ and $1936 \mathrm{~cm}^{-1}$ respectively. Additionally, two extra IR bands were observed at $v=1967,1956 \mathrm{~cm}^{-1}$ (Figure 9). This can be interpreted as the degenerated $A_{1 g}$ and $B_{1 g}$ modes, which may be caused by a reduction of the $C_{4 v}$ symmetry to only $\mathrm{C}_{1} .{ }^{[87]}$

The molecular structure of complexes 20-22 could be confirmed by X-ray diffraction studies as Figure 10 shows; selected bond lengths and angles are shown in Table 9. Complexes 20 and 21 crystallize in the triclinic space group P-1, while complex 22, having the highest degree of fluorination, crystallizes in monoclinic space group $\mathrm{C} 2 / \mathrm{c}$.

Figure 10. Molecular structures of complexes 20-22 (Diamond 3.0, ellipsoids represent 50% probability level). Except H1a, all hydrogen atoms are omitted for clarity.

In all cases the metal complex fragment is cis-orientated to the fluorinated aromatic ring as in other P-triphenylmethyl substituted oxaphosphosphirane complexes. In the particular case of complexes 20-22, bearing electron-withdrawing substituents, this orientation will enable and/or promote intramolecular interactions never observed before in oxaphosphirane complex chemistry and, will be discussed later on. The influence of the electronegative atoms in the bond lengths of oxaphosphirane complexes is shown in Table 9. The $\mathrm{P}-\mathrm{C}(8)$ distance becomes shorter as the degree of fluorination increases, and the same trend is seen for the $\mathrm{P}-\mathrm{W}$ bond length. In contrast, the bond distance between the phosphorus atom and $C(1)$ increases with the number of fluorine atoms. The $\mathrm{P}-\mathrm{O}(1)$ distance does not present remarkable differences and remains almost constant for the four compounds.

Table 9. Selected bond lengths of oxaphosphirane complexes 4c ${ }^{[53]}$ and 20-22.

Selected Bonds	Selected bond lengths (\AA) of			
	$4 c^{[53]}$	20	21	22
P-C(1)	1.788(2)	1.783(3)	1.786(5)	1.793(4)
P-O(1)	1.6692(16)	1.663(2)	1.663(3)	1.669(3)
P-C(8)	1.896(2)	1.902(3)	1.892(4)	1.881(4)
P - W	$2.4820(6)$	2.4783(8)	2.4656(13)	2.4630 (11)

Inspection of the molecular structures of complexes $4 c^{[53]}$ and $\mathbf{2 0 - 2 2}$ revealed that the
rigid oxaphosphirane ring with the arene ring attached to the carbon atom is an ideal system to analyse the $\mathrm{M}-\mathrm{CO} \cdots \pi$ interaction due to the spatial arrangement of the arene and the interacting CO ligand. In fact, the X-ray structures of $4 \mathbf{c}^{[53]}$ and 20-22 clearly show the close $\mathrm{M}-\mathrm{CO} \cdots \pi$ contacts from 3.001 to $3.243 \AA$.

4c

22

Figure 11. X-ray structures of $\mathbf{4 c}{ }^{[53]}$ and $\mathbf{2 0 - 2 2}$ showing the intramolecular interaction (distances in \AA). $O \cdots \pi$ distance stands for the oxygen atom to the ring mean plane distance.

This surprising feature of the X-ray structures prompted us to further inspect this situation. Apart from this, interactions involving aromatic rings are enormously significant in supramolecular chemistry. They play a crucial role in chemistry and biology, in particular drug-receptor interactions, crystal engineering, enzyme inhibition and protein folding. ${ }^{[88]}$ In particular, lone pair- π interaction, which takes place between Ione-pair bearing electronegative atoms of the neutral molecules and π-acidic aromatic systems, is a counterintuitive intermolecular force in supramolecular chemistry. ${ }^{[89]}$ Recently, it has been demonstrated that $\mathrm{M}-\mathrm{CO}$ (lone pair) $\cdots \pi$ (arene) interactions are relevant in the structures of a number of transition organometallic carbonyl derivatives. ${ }^{[90]}$ In spite of their inherent weak nature, M-CO(lone pair) $\cdots \pi$ (arene) interactions do provide a measure of stability to their crystal structures and lead to welldefined supramolecular architectures. As a matter of fact, such interactions are needed in order to have a complete understanding of the way this type of organometallic molecules associate in the solid state.

As expected, the (lone pair) $\cdots \pi$ plane distance progressively increases as the number of fluorine substituents decreases from $4 \mathbf{c}^{[53]}$ to 22 . In this series the electronic nature of the ring progressively changes from π-acidic to π-basic. However, the close (lone pair) $\cdots \pi$ contact in complex $4 c^{[53]}$ is totally unexpected. It exhibits the shortest distance of the series and this experimental result is in striking contrast to the expectation taking into consideration the π-electron rich nature of the phenyl ring.

4.1.1 Theoretical analysis

In order to provide an explanation to these counterintuitive results, observed in the NMR and IR spectroscopic data as well as in the molecular structures, intensive theoretical calculations were carried out by Frontera, ${ }^{[84]}$ which will be reported hereafter.

4.1.1.1 Theoretical methods

The geometries of the complexes included in this study were computed the BP86-D3/def2-TZVP level of theory using the crystallographic coordinates within the TURBOMOLE program. ${ }^{[91]}$ This level of theory that includes the latest available dispersion correction (D3) is adequate for studying non-covalent interactions dominated by dispersion effects like π-stacking. ${ }^{[92]}$ The basis set superposition error for the calculation of interaction energies has been corrected using the counterpoise method. ${ }^{[93]}$ The "atoms-in-molecules" (AIM) analysis of the electron density has been performed at the same level of theory using the AIMAll program. ${ }^{[94]}$

4.1.1.2 Discussion of results

The optimized complexes exhibit similar $\mathrm{M}-\mathrm{CO} \cdots \pi$ distances and the expected behaviour, which is a progressive decrease in the distance as the fluorine substitution increases. In spite of this disagreement between theory and experiment, the optimized distance in complex $\mathbf{4 c}{ }^{[53]}$ is quite short ($3.116 \AA$) which is an indication of favourable $\mathrm{M}-\mathrm{CO} \cdots \pi$ interaction. Obviously, small experimental differences in the $\mathrm{M}-\mathrm{CO} \cdots \pi$ distances observed in the complexes can be also due to packing effects that are not considered in the calculations. The energy necessary for the dissociation of the interacting CO ligand for each complex was computed at the BP86-D3/def2-TZVPD level of theory (Scheme 10). The dissociation energy $(\Delta \mathrm{E})$ is similar in all complexes and the small differences of $2 \mathrm{kcal} / \mathrm{mol}$ from $\mathbf{4 c ^ { [5 3] }}$ to 22 may be attributed to a stronger contribution of the $\mathrm{M}-\mathrm{CO} \cdots \pi$ interaction in 22.

Table 10. Ligand dissociation energy ($\Delta \mathrm{E}, \mathrm{kcal} / \mathrm{mol}$) and experimental and theoretical distances $\mathrm{M}-\mathrm{CO} \cdots \pi$ distances (Re, \AA) for $4 \mathrm{c}^{[53]}$ and 20-22.

Complex	$\boldsymbol{\Delta E}$	$\boldsymbol{R e}$ (Theor.)	$\boldsymbol{R e}$ (Exp.)
$\mathbf{4 c}^{[53]}$	52	3.116	2.981
$\mathbf{2 0}$	53	3.095	3.202
$\mathbf{2 1}$	53	3.063	3.149
$\mathbf{2 2}$	54	3.027	2.983

In order to further analyse the (lone pair) $\cdots \pi$ interaction in these complexes, a molecular orbital study and the Bader's "atom-in-molecules" characterization of the complexes were carried out. ${ }^{[94]}$ In particular, all molecular orbitals of complexes 4c ${ }^{[53]}$ and $\mathbf{2 2}$ were obtained to find some differences that could explain the strange behavior of $\mathbf{4} \mathbf{c}^{[53]}$. Interestingly, in some of the typical aromatic molecular orbitals of the arene, a small contribution of the atomic orbitals of the interacting CO was found. Surprisingly, this small but noteworthy contribution is different in both complexes (Figure 12).

Figure 12. Representation of some molecular orbitals (MO) in complexes $4 c^{[53]}(A, B)$ and 22 (C, D).

The π-bonding orbital MO 138 in $4 c^{[53]}$ does not have any atomic contribution of the CO ligand Figure 12A) and, conversely, the equivalent orbital in complex 22 shows a small contribution of the p atomic orbital of the oxygen atom Figure 12C). Moreover, the π-bonding orbital MO 136 in $4 \mathbf{c}^{[53]}$ Figure 12B) exhibits an atomic contribution of the p atomic orbital of the close carbon atom of the CO and no contribution is found in the equivalent orbital (MO 147, Figure 12D). Therefore, the interaction can be roughly described as an (lone pair) $\cdots \pi$ interaction in complex 22 and as a $\pi-\pi$ stacking interaction in $4 \mathbf{c}^{[53]}$. The "atoms-in-molecules" distribution of bond critical points in complexes $\mathbf{4 c}{ }^{[53]}$ and $\mathbf{2 0 - 2 2}$ were also calculated. The representations are shown in Figure 13 for complexes $4{ }^{[53]}$ and 22. ${ }^{[95]}$

Figure 13. Distribution of bond critical points (CP, small red spheres) in complexes $4 c^{[53]}$ and 22.

Remarkably, the CO $\cdots \pi$ interaction in all complexes is characterized by at least two bond critical points that connect both atoms of the CO ligand to two (or three in 21) carbon atoms of the ring. This distribution of critical points indicates that the $\mathrm{M}-\mathrm{CO} \cdots \pi$ interaction can be also understood as a $\pi-\pi$ stacking interaction with the participation of the π-system of the CO ligand. It is interesting to discuss the different values of the charge density computed at the bond critical points that characterize the $\mathrm{CO} \cdots \pi$ interaction, which are summarized in Table 11. The value of $\rho(r)$ at the bond critical point can be used as a measure of bond order in non-covalent interactions. ${ }^{[94]}$ In complex $4 \mathbf{c}^{[53]}$ (electron rich arene) the value of $\rho(r)$ at CP1 is higher than in CP2 and is the highest of the series. Therefore, the C end of the CO is interacting more strongly than the O end (positive part of the CO dipole). This behavior is also observed for complexes 20 and 21. However they exhibit smaller $\rho(r)$ values in both CP1 and CP2, indicating a weaker interaction compared to $4 \mathbf{c}^{[53]}$ which is in agreement with the experimental distance. Remarkably, in complex 22 (electron poor arene), the charge density is higher in CP2 than in CP1 and it is the highest of the series, thus the oxygen atom of the CO is interacting more strongly than the carbon atom (negative part of the CO dipole). Consequently, the nature of the interaction changes depending on the electronic nature of the arene. This dual behavior of the CO ligand is in sharp agreement with the orbital analysis represented in Figure 12, where a small atomic contribution of the C atom was observed in $4 \mathbf{c}^{[53]}$ (MO 138) and, conversely, a small atomic contribution of the O atom was observed in 22 (MO 142).

Table 11. Electron charge density (102 $\times \rho(r)$, a.u.) computed at the CP1 and CP2 bond critical points.

Complex	$\mathbf{4 c}^{[53]}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$
$\mathbf{C P 1}$	0.69	0.66	0.68	0.64
$\mathbf{C P 2}$	0.57	0.48	0.52	0.66

4.1.2 Influence of additional interactions

The experimental $\mathrm{W}-\mathrm{CO} \cdots \pi$ distances observed in the solid state structures of compounds $\mathbf{4 c}{ }^{[53]}$ and 20-22 (Figure 11) can be influenced by other interactions. Therefore, the crystal packing of complexes $4 c^{[53]}$ and 22 was analyzed in order to investigate if the CO and aryl groups participate in other non-covalent interactions, which could shorten the $\mathrm{W}-\mathrm{CO} \cdots \pi$ distance. A partial view of their crystal packing was represented, paying attention to the short contacts involving the CO and arene groups (Figure 14). In this exploration, the default criterion, i.e., a short contact between two atoms exists if they are separated by a distance that is less or equal to the sum of the van der Walls radii, was used. In compound $\mathbf{4 c}{ }^{[53]}$ the CO does not participate in any contact apart from the already described $\mathrm{W}-\mathrm{CO} \cdots \pi$ interaction, therefore the W CO $\cdots \pi$ distance is not influenced by other effects. Only the $\mathrm{C}_{6} \mathrm{~F}_{5}$ ring establishes an antiparallel CF \cdots CF interaction that does not affect the $\mathrm{W}-\mathrm{CO} \cdots \pi$ interaction. In complex 22 the CO group is close to one carbon atom of the phenyl ring of the neighbour molecule (black dashed line in Figure 14) that participates in the $\mathrm{W}-\mathrm{CO} \cdots \pi$ interaction. However, the directionality of this interaction clearly indicates that it does not contribute to shorten the W-CO $\cdots \pi$ distance observed in complex 22. These results evidence that the short $\mathrm{W}-\mathrm{CO} \cdots \pi$ contacts observed in $\mathbf{4 c}{ }^{[53]}$ and 22 are not due to crystal packing effects.

4c

Figure 14. Partial view of the crystal packing of $4 \mathbf{c}^{[53]}$ and 22, distances in \AA (black dashed lines: W-CO $\cdots \pi$ contacts; red dashed lines: CO/arene interactions).

4.1.2.1 Crystal packing and strong intermolecular interactions

The intermolecular interactions that govern the crystal packing in compounds $4{ }^{[53]}$ and 20-22 were also evaluated. In the case of compound 22 the packing is basically governed by intermolecular $\mathrm{W}-\mathrm{CO} \cdots \pi$ and $\mathrm{W}-\mathrm{CO} \cdots \mathrm{H}-\mathrm{C}$ interactions. Infinite zig-zag 1D columns (Figure 16A) are formed in the solid state stabilized by two different WCO $\cdots \pi$ interactions, one involving the trityl group and the other one the phenyl substituent of the oxaphosphirane ring. The 1D column is further stabilized by W$\mathrm{CO} \cdots \mathrm{H}-\mathrm{C}$ hydrogen bonds that involve the H atom of the oxaphosphirane and the coordinated CO (Figure 16A) These 1D columns interact to each other by means of additional $\mathrm{W}-\mathrm{CO} \cdots \pi$ and $\mathrm{W}-\mathrm{CO} \cdots \mathrm{H}-\mathrm{C}$ hydrogen bonds generating 2D layers. The interaction energy of a dimer as a representative model was evaluated, as well. The interaction energy is large and negative due to the contribution of the three interactions. Interestingly the distance of $\mathrm{W}-\mathrm{CO} \cdots \pi$ interaction that implies the phenyl substituent ($3.21 \AA$, Figure 15A is very similar to the theoretical one (Figure 15B). The binding energy of the self-assembled dimer, which is dominated by non-covalent interactions, was calculated to be $\Delta \mathrm{E}=-13.7 \mathrm{kcal} / \mathrm{mol}$ (Figure 15B).

Figure 15. (A) Partial view of the crystal packing in $\mathbf{4 c}{ }^{[53]} ; \mathrm{H}$ atoms are omitted for clarity. (B) Theoretical model based on the X-ray geometry used to evaluate the noncovalent interactions (distances in \AA).

A representative fragment of the crystal packing of compound $\mathbf{2 0}$ is shown in Figure 16 where the disordered solvent molecule has been omitted. Two important selfassembled dimers are observed in the solid state. One of both is dominated by two
equivalent $\mathrm{W}-\mathrm{CO} \cdots \mathrm{H}-\mathrm{C}$ hydrogen bonds (Figure 16B) and the other is characterized by the presence of two symmetrically equivalent T-shaped stacking interactions (or C H / π interactions, Figure 16C). The binding energies of both self-assembled dimers, which are $\Delta E=-5.2 \mathrm{kcal} / \mathrm{mol}$ and $\Delta E=-8.6 \mathrm{kcal} / \mathrm{mol}$ for the H -bonded and T-shape stacked dimers, respectively were evaluated. Unexpectedly, the H-bond interaction is less favourable than the T-shape stacking likely due to the low basicity of the oxygen atom of the coordinated CO.

Figure 16. (A) Partial view of the crystal packing in 20. (B and C) Theoretical models of the self-assembled dimers based on the X-ray geometry used to evaluate the noncovalent interactions (distances in Å).

For compound 21, the exploration of the crystal packing reveals the existence of two important dimers. One dimer is formed by means of two by two equivalent $\mathrm{W}-\mathrm{CO} \cdots \mathrm{H}-$ C hydrogen bonds (Figure 17A). This self-assembled dimer interacts with another one by means of an antiparallel stacking interaction involving the trifluorophenyl rings. Both interactions (Figure 17B and C) were evaluated energetically. The binding energy of the stacking interaction is $\Delta \mathrm{E}=-8.1 \mathrm{kcal} / \mathrm{mol}$, which is stronger than expected due to the contribution of an ancillary $\mathrm{C}-\mathrm{F} \cdots \mathrm{H}-\mathrm{C}$ hydrogen bond ($2.77 \AA$, Figure 17B). The interaction energy of the self-assembled dimer that is dominated by the H -bonds was calculated to be $\Delta \mathrm{E}=-6.4 \mathrm{kcal} / \mathrm{mol}$. This interaction energy is larger in absolute value than the one computed for the same interaction ($\mathrm{W}-\mathrm{CO} \cdots \mathrm{H}-\mathrm{C}$ hydrogen bond) in compound $20(\Delta E=-5.9 \mathrm{kcal} / \mathrm{mol}$ see Figure 14 B), likely due to the different directionality. In compound $\mathbf{2 1}$ the $\mathrm{C} \equiv \mathrm{O} \cdots \mathrm{H}$ angle that characterizes the H -bond is 85°.

Therefore, the positive H atom is interacting with the negative belt of the oxygen atom, giving rise to a stronger interaction compared to compound $\mathbf{2 0}$ showing an angle of 178°.

Figure 17. (A) Partial view of the crystal packing in 21. (B and C) Theoretical models of the self-assembled dimers based on the X-ray geometrie used to evaluate the noncovalent interaction (distances in \AA).

Finally, a representative fragment of the crystal packing of compound $\mathbf{2 2}$ is shown in
Figure 18. The solid state structure is basically dominated by two interactions: (i) an antiparallel C-F‥C-F described above (Figure 18A and intermolecular W-CO $\cdots \pi$ interactions (Figure 15A) involving the pentafluorophenyl ring. Therefore the electron deficient pentrafluorophenyl moiety establishes an intramolecular (lone pair) $\cdots \pi$ interaction by one side of the ring and an intermolecular (lone pair) $\cdots \pi$ interaction by the opposite side of the ring. Both interactions were evaluated theoretically and the energetic results are also included in Figure 18. It can be observed that the antiparallel C-F $\cdots \mathrm{C}-\mathrm{F}$ interaction is $\Delta \mathrm{E}=-3.0 \mathrm{kcal} / \mathrm{mol}$, confirming the importance of this interaction in the solid state. Moreover, the other intermolecular complex under consideration that combines $\mathrm{W}-\mathrm{CO} \cdots \pi$ and H -bond interactions (Figure 18C) exhibits a large and negative interaction energy ($\Delta \mathrm{E}=-15.5 \mathrm{kcal} / \mathrm{mol}$). Interestingly, all compounds $4 c^{[53]}$ and 20-22 exhibit $\mathrm{W}-\mathrm{CO} \cdots \mathrm{H}-\mathrm{C}$ hydrogen bonds in the solid state that influence the crystal packing. Moreover, compounds $\mathbf{4 c}{ }^{[53]}$ and 22 also present intermolecular $\mathrm{W}-\mathrm{CO} \cdots \pi$ interactions which are in good agreement with the interaction energies summarized in Figure 18 and the short intramolecular distances observed for both the π-acidic and π-basic rings. In compound 20 and 21, W-CO $\cdots \pi$ interactions are not observed. Instead $\pi-\pi$ and T-shape stacking interactions are present influencing the final architecture of both compounds in the solid state.

B)

C)

Figure 18. (A) Partial view of the crystal packing in 22. (B and C) Theoretical models of the self-assembled dimers based on the X-ray geometrie used to evaluate the noncovalent interaction (distances in \AA).

4.1.3 ${ }^{31} \mathrm{P}$ NMR chemical shifts

In this work, it is proposed that $\mathrm{W}-\mathrm{CO} \cdots \pi$ contact in complexes $4 \mathrm{c}^{[53]}$ and 20-22 can be defined as $\pi-\pi$ stacking interaction to rationalize the fact that both the π-electron poor pentafluorophenyl and π-electron rich phenyl substituted oxaphosphirane complexes ($\mathbf{4 c}{ }^{[53]}$ and 22) present the shortest $\mathrm{W}-\mathrm{CO} \cdots \pi$ distances. It is also suggested that the negative end of the metal-coordinated CO is dominant in the π acidic arene (4c) ${ }^{[53]}$ and the positive part is dominant in the π-basic arene (22). This explanation was supported by DFT calculations, including "atoms-in-molecules" and NBO analyses.

The degree of fluorination of the arene has also an influence onto the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ chemical shifts observed in compounds $\mathbf{4 c}{ }^{[53]}$ and $\mathbf{2 0 - 2 2}$, which are summarized in Table 12. The experimental ${ }^{31} \mathrm{P}-\mathrm{NMR}$ chemical shift of a model oxaphosphirane compound has also been included in Table 12 for comparison. In this model, the arene has been replaced by an alkyl chain (propyl) and, consequently, the W-CO $\cdots \pi$ contact is not present. Interestingly, it can be observed that compound 22 presents a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance shifted to higher field than those of the model compound, which is a counterintuitive result taking into account the electron withdrawing character of the pentafluorophenyl ring. Strikingly, the contrary is found in compound $\mathbf{4 c}{ }^{[53]}$ that exhibits ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shift displaced to lower field, compared to the model complex. In complex 22, the charge transfer from the CO group to the π-acidic $\mathrm{C}_{6} \mathrm{~F}_{5}$ ring causes a concomitant induction effect through the σ-bonds that decreases the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
chemical shift. Since in compound $\mathbf{4 c}{ }^{[53]}$ the charge transfer is from the π-basic ring to the CO group, the contrary induction effect increases the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shift. In the other rings (compounds 21 and 22) the differences in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts with respect to the model compounds are smaller, being (formally) correlated with the weaker $\mathrm{W}-\mathrm{CO} \cdots \pi$ interaction.

Table 12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts [ppm] and ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{w}}$ coupling constants [Hz] of compounds $4 c^{[53]}$ and $\mathbf{2 0 - 2 2}$ and a model oxaphosphirane having a propyl chain instead of an arene ring (without W-CO $\cdots \pi$ contacts).

Compound	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{~J}, \mathrm{~W}$
$\mathbf{4 c}^{[53]}$	16.0	311
$\mathbf{2 0}$	8.9	314
$\mathbf{2 1}$	8.5	316
$\mathbf{2 2}$	7.5	320
Model	10.1	303

4.2 Synthesis of C-aryl ${ }^{\mathrm{F}}$ P-Triphenylmethyl substituted fluorinated oxaphosphirane chromium and molybdenum complexes

As in the case of C-aryl substituted oxaphosphirane complexes, chapter 3.2, the influence of the transition metal is also analysed for the perfluoro derivatives and the corresponding analogues of chromium 23 and molybdenum 24 were synthesized (Scheme 28).

Scheme 28. Synthesis of fluorinated oxaphosphirane complexes 23 and 24.
Dichlorophosphane complexes $\mathbf{2 a} \mathbf{a} \mathbf{b}$ were treated with tert-butyl lithium in presence of 12-crown-4 at low temperature to yield the corresponding $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3a,b. Subsequently, pentafluorobenzaldehyde was added to selectively
give oxaphosphirane complexes 23 and 24 in very good isolated yields (96% for 23 and 88% for 24).

Table 13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts [ppm] as well as ${ }^{1} \mathrm{Jp}, \mathrm{W}$ coupling constants [Hz] of complexes 22-24.

Compound	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	$\delta^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left({ }^{2} \mathrm{JP}, \mathrm{C}\right)$			
		PCO	$\underline{\mathrm{C}} \mathrm{Ph}_{3}$	cis-CO	trans-CO
22^{W}	7.5	53.3 (24.7)	67.6 (6.6)	193.7 (8.1)	$\begin{aligned} & 195.1 \\ & (41.8) \end{aligned}$
23 ${ }^{\text {Mo }}$	27.4	51.2 (19.5)	66.2 (13.4)	$\begin{aligned} & 201.6 \\ & (10.2) \end{aligned}$	$\begin{aligned} & 205.6 \\ & (42.5) \end{aligned}$
24 Cr	53.6	51.1 (21.8)	67.8 (13.1)	$\begin{aligned} & 212.3 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 214.2 \\ & (23.6) \end{aligned}$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances of complexes 22-24 present, again, a significant dependence from the metal ($\Delta \delta=16-20$ between homologues) ${ }^{[96]}$, while the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts of complexes 23 and 24 are much less affected by the substitution pattern and presents similar values for the three derivatives. It should be pointed out that the resonance of the trans-CO carbon atom of the chromium metal complex 23 has a smaller phosphorus-carbon coupling constant magnitude than the cis-CO groups, which is also a common feature of pentacarbonyl phosphane chromium complexes. ${ }^{[63,96]}$ The effect of the electron-withdrawing substituent is very remarkable for the carbon atom of the heterocycle (PCO in Table 11) leading to higher $\mathrm{P}-\mathrm{C}$ coupling constants in comparison to the ones of the carbon atom of the trityl substituent.

The molecular structures of 23 and 24 were confirmed for the solid state by X-ray crystallography and are depicted in Figure 19.

Figure 19. Molecular structures of oxaphosphirane complexes 23 (left) and 24 (right; thermal ellipsoids are shown with 50% probability level); all hydrogen atoms (except H1), are omitted for clarity; selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 23: $\mathrm{P}-\mathrm{Cr}$ 2.3328(9), P-C(1) 1.785(3), P-C(8) 1.895(3), P-O(1) 1.663(2), O(1)-P-C(1) 50.88(11), $C(1)-O(1)-P 68.83(14), O(1)-C(1)-P 60.30(13)$. Selected bond lengths (A) and angles $\left(^{\circ}\right)$ of complex 24: P-Mo 2.4864(10), P-C(1) 1.781(3), P-C(8) 1.892(4), P-O(1) $1.668(2)$, $\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(1) 50.16(14), \mathrm{C}(1)-\mathrm{O}(1)-\mathrm{P}$ 68.93(16), O(1)-C(1)-P 60.92(17).

Here, as in the case for the chromium and molybdenum phenyl derivatives, the two phosphorus stereogenic centers present a different configuration for each metal, thus possessing the phosphorus atom of the chromium derivative 23 a S configuration, while the molybdenum derivative $\mathbf{2 4}$ has a phosphorus with R configuration. In chapter 3.2 it was shown, that the chromium analogue $\mathbf{4 a}$ has an R configuration and the molybdenum 4b a S configuration.

The $P-C$ bond in both derivatives is maintaining the enlargement due to the triphenylmethyl substituent and has values of $1.889(10)$ and $1.912(8) \AA$ for 24 and 23, respectively. In both cases, as well as in all oxaphosphirane complexes described so far, the metal center is cis-oriented to the aromatic substituent at the heterocycle. Intramolecular interactions of the type $\mathrm{W}-\mathrm{CO} \cdots \pi$ were also observed for 23 and 24 and were determined by calculating the centroid of the fluorinated ring and measuring the distance from this centroid to the nearest oxygen atom of the metal complex using Mercury 3.8.

The close M-CO $\cdots \pi$ contacts have a magnitude of $3.025 \AA$ for molybdenum 24 and $3.081 \AA$ for the chromium derivative 23 . These values are slightly higher than the values found for 22 bearing tungsten as transition metal. This shows, that the $0 \cdots \pi$ interactions in fluorinated oxaphosphirane complexes are independent from the transition metal used, but highly influenced by the fluorinated C -substituent.

4.3 Synthesis of C-ary ${ }^{F}$ oxaphosphirane complexes with other substituents at phosphorus

This work has started studying the properties of different P-triphenylmethyl oxaphosphirane complexes in which the carbon atom of the heterocycle was bonded to a phenyl ring. After that, the effects of electron-withdrawing groups at the same atom were analysed and showed intramolecular interactions in the solid state. This section focuses on the synthesis and analysis of C-ary $\left.\right|^{F}$ substituted oxaphosphirane complexes with different organic substituents at the phosphorus atom thus, bis(trimethylsilyl)methyl $\left(\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$ and pentamethylcyclopentadienyl ($\mathrm{C}_{5} \mathrm{Me}_{5}$), commonly represented as Cp *.

4.3.1 Synthesis of a C-aryl ${ }^{F}$ P-pentamethylcyclopentadienyl oxaphosphirane complex

Dichloro(pentamethylcyclopentadienyl)phosphane complex $\mathbf{2 5}{ }^{[86,97]}$ was reacted with tert-butyl lithium at low temperature in presence of 12-crown-4 and yielded $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex $\mathbf{2 6}{ }^{[86]}$, which by subsequently addition of pentafluorobenzaldehyde generated selectively (isolated yield $=90 \%$) the fluorinated P pentamethylcyclopendienyl oxaphosphirane complex 27 (Scheme 29).

Scheme 29. Synthesis of fluorinated P-pentamethylcyclopentadienyl oxaphosphirane complex 27.

Complex 27 was isolated by extraction and washing the residue with n-pentane at low temperature. It was fully characterised by NMR spectroscopy, mass spectrometry and X-ray crystallography.

Table 14. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts [ppm] as well as ${ }^{1} \mathrm{Jp}, \mathrm{w}$ coupling constants [Hz] of complexes 22, 27 and the C-phenyl derivative 28. ${ }^{[86]}$

Compound	$\begin{gathered} \delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \\ \left({ }^{1} \mathrm{JP}, \mathrm{w}\right) \end{gathered}$	$\delta^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left({ }^{2}{ }^{\text {JP, }}\right.$)			
		PCO		cis-CO	Trans-CO
22	7.5 (320.1)	53.3 (24.7)	67.6 (6.6)	193.7 (8.1)	$\begin{aligned} & 195.1 \\ & (41.8) \end{aligned}$
27	24.6 (314.5)	49.1 (17.2)	62.9 (9.6)	192.4 (8.2)	$\begin{aligned} & 193.4 \\ & (38.1) \end{aligned}$
$28^{[86]}$	31.6 (309.0)	55.5 (17.5)	63.0 (10.0)	194.8 (8.4)	$\begin{aligned} & 197.3 \\ & (37.5) \end{aligned}$

Table 14 compares NMR data of the fluorinated P-pentamethylcyclopentadienyl substituted complex 27 with its P-triphenylmethyl substituted analogue 22 and its C phenyl substituted derivative $28 .{ }^{[86]}$ As mentioned beforehand, the perfluorophenyl substituent has a remarkable influence on the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shift of 28 being displaced to higher field, which is a counterintuitive result taking into account the electron withdrawing character of the pentafluorophenyl ring, and follow the same tendency as the P-triphenylmethyl derivative 22. The rest of the NMR resonances do not present any significant changes and are in the expected range.

Figure 20. Molecular structure of oxaphosphirane comeplex 27 (thermal ellipsoids are shown with 50% probability level); all hydrogen atoms (except H1), are omitted for clarity; selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 27: P-W 2.467(2), P-C(1) 1.815(8), P-C(8) 1.852(9), P-O(1) 1.668(6), O(1)-P-C(1) 49.1(3), C(1)-O(1)-P 70.7(4), $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{P} 60.1(4)$.

The molecular structure of $\mathbf{2 7}$ was confirmed for the solid state by X-ray crystallography and is depicted in Figure 20. Complex 27 crystallises in a monoclinic system and a space group Pn. Bond lengths and bond angles are very similar to the ones observed
for its P-triphenylmethyl analog 22 except for the $\mathrm{P}-\mathrm{C}(1)$ bond, which is in 27 enlarged by 2.5 pm and for the $\mathrm{P}-\mathrm{C}(8)$, which is in 27 shortened by 3 pm .

Also for 27, intramolecular interactions of the type $\mathrm{W}-\mathrm{CO} \cdots \pi$ were observed and determined by calculating the centroid of the fluorinated ring and measuring the distance from this centroid to the nearest oxygen atom of the metal complex; this measurement was performed using Mercury 3.8. The fluorinated complex 27 shows considerable close $\mathrm{M}-\mathrm{CO} \cdots \pi$ contacts of a magnitude of $3.054 \AA$. The C-phenyl- P pentamethylcyclopentadienyl derivative $\mathbf{2 8}^{[86]}$ was also analysed using the above mentioned methodology but in contrast to the results observed for C-phenyl- P triphenylmethyl $\mathbf{4 c}, \mathbf{2 8}{ }^{[86]}$ shows the largest $\mathrm{W}-\mathrm{CO} \cdots \pi$ distance 3.450 A , much larger than in the case of $\mathbf{4 c}$ (Figure 21).

27

28

Figure 21. Mercury representations of 27 and $28^{[86]}$ showing the centroid of the fluorinated or phenyl ring and its distance to the nearest oxygen atom of the metal complex.

4.3.2 Synthesis of a C-aryl ${ }^{\mathbf{F}}$ P-bis(trimethylsilyl)methyl oxaphosphirane complex

The same $\mathrm{Li} / \mathrm{Cl}$ exchange methodology ${ }^{[45]}$ was followed for the synthesis of a C-aryl ${ }^{\mathrm{F}}$ P-bis(trimethylsilyl)methyl oxaphosphirane complex.

Scheme 30. Synthesis of fluorinated P - bis(trimethylsilyl)methyl oxaphosphirane complex 31 .

Attempts to isolate the complex 31 at low temperature or/and by changing the solvent or the method were unsuccessful due to the rapid decomposition of 31 in solution. Nevertheless, the formation of complex 31 was observed and its characterisation was carried out, instantly, after addition of the highly reactive aldehyde to the reaction solution by means of multinuclear NMR analysis.

Table 15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ and selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts [ppm] as well as ${ }^{1} \mathrm{~J} P, \mathrm{w}$ coupling constants [Hz] of complexes 31 and the C-phenyl derivative 32. ${ }^{[70]}$

Compound	$\begin{gathered} \delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \\ \left({ }^{1} \mathrm{JP}, \mathrm{w}\right) \end{gathered}$	$\delta^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left({ }^{2} \mathrm{JP}, \mathrm{C}\right)$		$\begin{gathered} \delta^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \\ \left({ }^{2} \mathrm{JP}, \mathrm{Si}\right) \end{gathered}$
		PCO	$\underline{\mathrm{CH}}\left(\mathrm{SiMe}_{3}\right)_{2}$	
31	32.9 (311.8)	51.4 (21.2)	30.9 (18.9)	$\begin{gathered} -0.05(5.1) \\ 1.4(8.2) \end{gathered}$
$32^{[70]}$	40.4 (308.2)	59.7 (27.3)	32.5 (18.9)	$\begin{aligned} & 0.2(5.6) \\ & 1.5(8.0) \end{aligned}$

The counterintuitive effect of the fluorinated substituent is displayed in Table 15, causing this shift of the resonances of the different nuclei to higher field.

It was not possible to obtain a crystal structure of the fluorinated oxaphosphirane complex 31 and therefore the intramolecular interactions of the type $\mathrm{W}-\mathrm{CO} \cdots \pi$ could not be analysed for this system. Nevertheless, the phenyl derivative was examined using Mercury 3.8 and the result was the absence of any considerable WCO $\cdots \pi$ interaction. Figure 22 shows the distances to the calculated centroid of the two nearest CO groups which have values of 4.294 and $3.907 \AA$, thus revealing that such $\pi \cdots \pi$ intramolecular interactions are not a phenomenon present in every solid state structure of oxaphosphirane complexes, but a special electronic situation that fluorinated derivatives can induce.

$$
\begin{aligned}
& d_{1}=4.294 \AA \\
& d_{2}=3.907 \AA
\end{aligned}
$$

Figure 22. Mercury representations of 32 the centroid of the phenyl ring and its distance to the two nearest oxygen atoms of the metal complex.

4.4 Attempts to synthesize C-disubstituted, fluorinated oxaphosphirane complexes

As shown in chapter 4.1, first derivatives of C-ary $\left.\right|^{F}$ substituted oxaphosphirane tungsten(0) complexes were successfully prepared, isolated and characterized. Moreover, the influence of the fluorinated aromatic ring was studied, thus revealing intramolecular $\mathrm{W}-\mathrm{CO}$ (lone pair) $\cdots \pi$ (arene) interactions. In this new chapter, the reactivity of the Li/Cl phosphinidenoid complexes 3c, 26 and 30 towards different fluorinated ketones will be described.

4.4.1 Reaction of phosphinidenoid complexes $3 \mathrm{c}, 26$ and 30 with hexafluoroacetone

The synthesis of the first oxaphosphirane, a $\sigma^{4} \lambda^{5}$-derivative was performed by Röschenthaler using Niecke's iminophosphane and hexafluoroacetone (see introduction). ${ }^{[38]}$ Therefore, it deemed interesting to prove if the reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes with hexafluoroacetone leads as well to the expected oxaphosphirane complexes.

In the next sections the reactivity of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes towards hexafluoroacetone is described focusing on the effects of different substituents at phosphorus.

The reaction of in situ generated $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3c, ${ }^{[53]} \mathbf{2 6 ,}{ }^{[86]}$ and 30, ${ }^{[45]}$ via chlorine/lithium exchange in the corresponding dichlorophosphane complex (see Scheme 31), with hexafluoroacetone proceeded readily at low temperature, but with a different outcome. In case of $\mathbf{3 c}$ and $\mathbf{2 6}\left(\mathrm{R}=\mathrm{CPh}_{3}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$ a fluoride substitution occurred quantitatively leading to complexes 33,34 , which were isolated via column chromatography and single crystals obtained for both (Figure 23). In case of 30 the result was very different: complex 35 was obtained as major product ($\sim 70 \%$) along with two other minor products ($\sim 30 \%$ by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy) which could not be separated, but a few single-crystals of 35 were obtained and, hence, the proposed structure of $\mathbf{3 5}$ could be confirmed.

Scheme 31. Reaction of phosphinidenoid complexes 3c, 26 and 30 with hexafluoroacetone.

Complexes 33-35 display characteristic multinuclear NMR data (Table 16) which reveal the strong electron-withdrawing effect of the unusual O-bound and C-bound perfluorinated substituents derived from hexafluoroacetone.

Table 16. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts [ppm] as well as ${ }^{1}{ }^{1} \mathrm{P}, \mathrm{w}$ and ${ }^{\mathrm{n}} \mathrm{J}_{\mathrm{P}, \mathrm{F}}$ coupling constants [Hz] of complexes 33-35.

Compound	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{JP}, \mathrm{W}$	${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$		${ }^{\mathrm{n}} \mathrm{JP}, \mathrm{F}$
			CF_{3}	CF2	
33	200.6	336.5	-63.2	-77.2/-92.5	$6.0{ }^{\text {[a] }}$
34	193.2	344.4	-65.3	-76.6/-88.9	$7.2^{\text {[a] }}$
35	247.6	277.8	-67.1/-67.5	-	[a]

[a] The coupling from phosphorus the CF_{3} unit could not be resolved.

33

Figure 23. Molecular structure of chlorophosphane complex 33-35 (thermal ellipsoids are shown with 50% probability level); all hydrogen atoms (except H1), are omitted for clarity; selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 33: P-W 2.4696(12), P-C(4) 1.925(5), P-O(1) 1.645(3), P-Cl 2.0596(16), C(1)-O(1) 1.392(5), C(1)-C(3) 1.304(7), $\mathrm{C}(1)-\mathrm{C}(2)$ 1.501(7), O(1)-P-Cl 99.74(13), C(4)-P-Cl 102.22(15), W-P-C(4) 126.08(15); 34: P-W 2.4795(6), P-C(4) 1.832(2), P-O(1) 1.6568(17), P-Cl 2.0749(8), C(1)-O(1) $1.377(3), \mathrm{C}(1)-\mathrm{C}(3) 1.310(4), \mathrm{C}(1)-\mathrm{C}(2)$ 1.502(3), $\mathrm{O}(1)-\mathrm{P}-\mathrm{Cl} 98.90(7), \mathrm{C}(4)-\mathrm{P}-\mathrm{Cl}$ 100.94(8), W-P-C(4) 125.25(7); 35: P-W 2.4761(4), P-C(4) 1.7944(6), P-O(2) 1.6249(11), P-C(1) 1.9442(8), C(1)-O(1) 1.4155(3), C(4)-Si 1.9070(2).

As the oxidation of Li/Cl phosphinidenoid complexes using hexafluoroacetone yields different products depending on the organic substituent at phosphorous, this interesting behavior was rationalized using DFT calculations at the BP86-D3/def2TZVP level of theory, done by Frontera, ${ }^{[98]}$ and taking into consideration solvent effects (THF).

4.4.1.1 Theoretical methods

The mechanism proposed for the P-trityl and P-Cp* derivatives is shown in Scheme 32; the calculations have been performed for CPh_{3} as the exemplifying case. It involves an initial noncovalent complex 36 ($\mathrm{P} \cdots \mathrm{C}$ electrostatic interaction, ${ }^{[99]}$ see Figure 24a) followed by a single electron transfer (SET) that generates a solvent-caged radical pair 37. The radical coupling yields the intermediate 38. The final product is easily generated by an $\mathrm{E}_{1} \mathrm{cB}$, elimination mechanism ${ }^{[100]}$ mediated by the lithium cation which facilitates the elimination of fluorine with the concomitant formation of the double bond.
(a)

$\mathrm{P} \cdots \mathrm{C}$ noncovalent complex
(b)

Figure 24. (a) Noncovalent π-hole complex between the phosphinidenoid anion and perfluoroacetone. (b) Resulting product of the $\mathrm{E}_{1} \mathrm{CB}$ elimination promoted by Li^{+}@12-c-4.

Scheme 32. Proposed SET mechanism for phosphinidenoid complexes 3c and 26.

The SET oxidation mechanism is feasible taking the frontier orbital energies of the fluorinated ketone and the anion into consideration (Figure 25a). Here, the HOMO of the phosphinidenoid complex corresponds to a lone pair atomic orbital of the P atom and it is 1.5 eV higher in energy than the LUMO of the perfluoroacetone, i.e., antibonding $\pi^{*} \mathrm{C}=\mathrm{O}$ orbital. Interestingly, the spin density plot of perfluoroacetone radical anion clearly reflects that the unpaired electron is equally distributed between both C and O atoms (Figure 25b). The $\mathrm{O} \cdots \mathrm{P}$ (instead of $\mathrm{C} \cdots \mathrm{P}$) radical coupling within the solvent caged radical pair is thermodynamically favored.

The closed-shell mechanism where a nucleophilic attack of the phosphinidenoid complex anion to the C atom of the ketone takes place as first mechanistic step was also explored. Unexpectedly, the stationary point that corresponds to the product where the new $\mathrm{P}-\mathrm{C}$ bond is formed (addition to the $\mathrm{C}=\mathrm{O}$ bond) was not found. Instead the stationary point corresponds to a noncovalent complex where simply a $\mathrm{P} \cdots \mathrm{C}$ interaction is established (Figure 24) where the SET likely occurs.

Figure 25. (a) Plots of the HOMO (anion) and LUMO (hexafluoroacetone). (b) The spin density plot of the radical anion $\left[\mathrm{CF}_{3} \mathrm{COCF}_{3}\right]^{-}$is represented. The values of spin density at selected atoms are also given.

The different stationary points and energetic profile (Figure 26) of the suggested mechanism (Scheme 32) have been computed. The solvent cage radical pair (37) lies $8.4 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the starting products and the recombination of radicals yields to the intermediate (38) that is $16.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the starting products. Approach of the complex Li+@12-c-4 to the F atom provokes the
elimination of the fluoride without any energy cost. The final products are $43.6 \mathrm{kcal} / \mathrm{mol}$ more stable than the starting material.

Figure 26. Reaction profile for the reaction of the P-trityl phosphinidenoid complex with hexafluoroacetone. The hydrogen atoms have been omitted in the representation of the optimized compounds.

Experimentally, a totally different product was obtained in case of the $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ derivative 30. Here, a different mechanism (closed-shell instead of radical) is proposed, because computationally it is shown that the nucleophilic attack of the ketone is favored energetically (vide infra). The mechanism is shown in Scheme 33 and starts with the nucleophilic attack of the P center to the $\mathrm{C}=\mathrm{O}$ carbon and, consequently, the formation of the inter-mediate 39 that is stabilized by a strong tetrel bonding inter-action. ${ }^{[101]}$ This first intermediate is transformed into a second intermediate 40 where a $\mathrm{Si}-\mathrm{O}$ bond and a carbanion (in alpha with respect to the SiMe_{3} group) are formed. The elimination of the chloride is promoted by the complex Li+@12-$\mathrm{c}-4$ yielding the final product (trimethylsilylmethylene)phosphane complex. Obviously, this product can easily be transformed via hydrolysis into the experimentally observed final product.

Scheme 33. Proposed mechanism for the $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ substituted phosphini denoid complex 30.

The energetic profile of the mechanism is shown in Figure 27. The first step is barrierless and yields the intermediate 39 that is $22.8 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the starting products. This intermediate is stabilized by a strong Si \cdots O interaction (2.87 Å) that likely explains the totally different mechanism found for this compound compared to the P-trityl or P-Cp* substituted phosphinidenoid complexes that do not have the possibility to form this strong interaction. This first intermediate is easily transformed into the second intermediate 40 (barrier $3.8 \mathrm{kcal} / \mathrm{mol}$) that is $6.2 \mathrm{kcal} / \mathrm{mol}$ more stable than the former. This carbanionic intermediate is also stabilized by a tetrel bonding interaction ($\mathrm{C} \cdots \mathrm{Si}, 3.62 \AA$). Moreover, in this intermediate the $\mathrm{P}-\mathrm{Cl}$ bond is elongated (2.26 \AA) and approach of the complex $\mathrm{Li}^{+} @ 12-\mathrm{c}-4$ to this Cl atom causes chloride elimination without energy cost, yielding the product shown in Figure 28 where the $\mathrm{P}=\mathrm{C}$ double bond is formed and the Cl atom is bound to Li . The final products are $39.8 \mathrm{kcal} / \mathrm{mol}$ more stable than the starting ma-terial. This product should be easily hydrolysable in contact with water, yielding the X-ray characterized product.

Figure 27. Reaction profile for the reaction of $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{Li} / \mathrm{Cl}$ phosphi-nidenoid complex with hexafluoroacetone. The hydrogen atoms have been omitted in the representation of the optimized compounds (distances in Å).

Figure 28. Resulting product of the Cl elimination promoted by Li+@12-c-4. Distance in A. H-atoms omitted for clarity.

4.4.2 Reaction of phosphinidenoid complexes 3c, 26 and 30 with perfluorobenzophenone

As discussed beforehand, the reaction of phosphinidenoid complexes with hexafluoroacetone leads to an unprecedented ambiguous reactivity that for the P-trityl and P-Cp* derivatives disclose a SET pathway involving a transient phosphanyl complex hexafluoroacetonyl radical (See part 4.4.1)

In situ generated $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes $3 \mathrm{c},{ }^{[53]} 26,{ }^{[86]}$ and $30,{ }^{[45]}$ via chlorine/lithium exchange in the corresponding dichlorophosphane complex (see Scheme 34), were treated with perfluorobenzophenone at low temperature.

2c,25,29
3c, 26, 30

$$
\begin{aligned}
& \text { 2c,3c: } \mathrm{R}=\mathrm{CPh}_{3} \\
& \text { 25,26: } \mathrm{R}=\mathrm{Cp}^{*} \\
& \text { 29,30: } \mathrm{R}=\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}
\end{aligned}
$$

Scheme 34. Reaction of phosphinidenoid complexes 3c, 26 and 30 with perfluorobenzophenone.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurement of the reaction of the trityl derivative $\mathbf{3 c}$ resulted in an "empty" spectrum, i.e., no signals were obtained. This could be, presumably, due to the presence of radicals located on or near the phosphorus atom. To have more information about this reaction, EPR measurements were performed by the group of Schiemann (Bonn). If perfluorobenzophenone induces the formation of ketyl radicals as in the reaction of phosphinidenoid complexes $\mathbf{3 c}, \mathbf{2 6}$ and $\mathbf{3 0}$ with hexafluoroacetone, it would be easy to detect them by EPR measurements, since this reactions are slower than the previous. However, the literature ${ }^{[102]}$ says that it is difficult to detect the perfluorobenzophenone anion radical by EPR spectroscopy, due to nucleophillic degradation. Instead of the anion radical, only partially fluorinated species were observed in most publications in which the para fluorine atom had been replaced and, in addition, solvents seem to react with the anion radical in many cases.

First measurements revealed a spectrum that was reasonably interpreted by the EPR parameters reported for the triphenylmethyl radical as depicted in Figure 29.

Figure 29. EPR measurement of the reaction solution of 3c with perfluorobenzophenone (red) and simulated spectrum of the triphenylmethyl radical (black).

But other radicals were also found. If a higher modulation amplitude and higher microwave power are used (represented as hard conditions and with blue lines in Figure $\mathbf{3 0}$ top), it is possible to detect some additional signals in the lower and higher field regions, as shown in Figure $\mathbf{3 0}$ top on an expanded scale. The additional peaks cannot be interpreted as the ones of the triphenylmethyl radical as shown in Figure 30 bottom (simulations of perfluorobenzophenone anion radical and triphenylmethylradical). Perfluorobenzophenone anion radicals may also exist in the solution, but it cannot be analyzed because the signals of the triphenylmethyl radical mask them. Since the unwanted radical (triphenylmethyl radical) is produced in the solution, the additional peaks may also be due to another unwanted radical.

The high-resolution EPR spectrum (red lines in the figures of this chapter) could be observed under a smaller modulation amplitude and lower microwave power (soft experimental conditions). If hard conditions are used in the measurement, the signal-to-noise ratio can be increased (weaker signals can be seen), but also results in a broadening, as shown by blue lines Figure 30. It should be noted again that both red and blue lines Figure 30 are the EPR spectra from the same sample, in which only the measurement conditions are different.

Figure 30. Results of the EPR measurement under soft conditions (red) and hard conditions (blue) and comparison with simulated spectra for perfluorophenone radical and triphenylmethyl radical.

Another broad peak was also observed, as shown in Figure 31. Since the signal intensity was very weak, the assignment (analysis) was impossible. But from the peak position, it is expected to be a metal complex.

Figure 31. EPR spectroscopic measurement (under hard conditions) of the reaction solution of 3c with perfluorobenzophenone.

The reaction the Cp* derivative 26 with perfluorobenzophenone generated radicals as well but could not be completely identified. Figure 32 shows the experimental result (black line) and a simulation (red line). The simulation was done by assuming a radical containing 10 inequivalent nuclei with $I=1 / 2$ that could be proton or fluorine.

There is a possibility that the radical is located at the fluorinated benzophenone, but the splitting is smaller than expected.

Figure 32. EPR spectrum of the reaction solution of $\mathbf{2 6}$ with perfluorobenzophenoe (black) and simulation of the perfluorobenzophenone radical cation (red).

Although the signal to noise ratio of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of 26 with perfluorobenzophenone is very bad, a resonance at 183.7 ppm could be detected, showing a direct coupling to one fluorine atom with a magnitude of 866 Hz .

The reaction of the $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) 2$ substituted derivative 30, displayed a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ sprectrum with a much better signal to noise ratio. The main resonance (60\%) at 172.2 ppm (${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{w}}=309 \mathrm{~Hz},{ }^{1} \mathrm{Jp}, \mathrm{F}=864 \mathrm{~Hz}$) showed a direct coupling to one fluorine atom. In addition to this resonance, several signals were also observed between -10 and -115 $\mathrm{ppm}(40 \%)$, all of them showing a direct coupling to a hydrogen atom of a magnitude $>300 \mathrm{~Hz}$.

The EPR spectral analysis of this reaction was also performed and a radical was detected. This radical may correspond to a different, partially fluorinated benzophenone radical (Figure 33) because the spectral width was wider in this case than that of the anion radical of fully protonated benzophenone and narrower than that of the anion radical of fully fluorinated benzophenone.

Figure 33. EPR spectrum of the reaction solution of $\mathbf{3 0}$ with perfluorobenzophenone. Nevertheless, preliminary computational investigations by Frontera for this reaction revealed that, in case of using perfluorobenzophenone, a stable radical anion is formed easily as the LUMO energy picture (Figure 34a) shows. The spin density plot shown in Figure 34b indicates that the spin density is highly delocalized on the aromatic ring carbons. Moreover, the spin density value at the O atom is only 0.27 e and, consequently, the radical coupling to form the $\mathrm{P}-\mathrm{O}$ bond is not favored. Therefore, the unstable phosphinidenoid radical likely reacts with any source of $\mathrm{H}^{\cdot}(\mathrm{X}=$ solvent or other species from the reaction mixture, see Scheme 35) as reavealed by the NMR analysis, generating a complicated mixture of radicals, confirmed by the different EPR spectra.
a)

Figure 34. a) Plots of the HOMO (anion) and LUMO (perfluorobenzophenone) and b) the spin density distribution in the perfluorobenzophenone radical anion.

Scheme 35. Proposed mechanism for the reaction of X with perfluorobenzophenone.

4.4.3 Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes $3 \mathrm{c}, 26$ and 30 with 2,2,2trifluoromethylbenzophenone

The reaction of in situ generated $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3c, ${ }^{[53]} \mathbf{2 6 , { } ^ { [8 6] } \text { and }}$ 30, ${ }^{[45]}$ via chlorine/lithium exchange in the corresponding dichlorophosphane complex (Scheme 36), with 2,2,2-trifluoromethylbenzophenone at low temperature was analysed. While several attempts for the P - CPh_{3} and $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes led always to very unselected reaction mixtures, the P $C p^{*}$ substituted derivative led selectively to the expected oxaphosphirane complex 41 (Scheme 36).

Scheme 36. Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3c, 26 and 30 with 2,2,2trifluoromethylbenzophenone.

Complex 41 presents a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance at 42 ppm with a phosphorus-tungsten coupling constant magnitude of 309 Hz which are in the typical range of oxaphosphirane complexes.

That the reaction was not succesful for the cases of the trityl and bis(trimethylsilyl)methyl substituted derivatives 3c and 26 maybe due to the high steric hinderance of these P-substituents combined with the sterically demanding ketone, which hampers the ring closure and leads to the formation of primary and secondary phosphane-tungsten complexes among others as observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra.

Suitable crystals for X-ray diffractomeric studies of complex 41 were obtained from concentrated n-pentane solutions (Figure 35). All bond lengths and angles are in the normal range for oxaphosphirane but for the P-C(9) which is very enlongated and displays a value of $1.9102 \AA$, similar to the $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes.

Table 17. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $[\mathrm{ppm}],{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{W}}[\mathrm{Hz}]$ and selected bond lengths [A$]$ of oxaphosphirane complexes 27, 28 and 41.

Compound	R/R'-Cring	${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{W}}$	P-W	P-C $_{\text {exo }}$
$\mathbf{2 7}$	$\mathrm{H} / \mathrm{C}_{6} \mathrm{~F}_{5}$	24.6	314.2	$2.467(2)$	$1.852(9)$
$\mathbf{2 8}$	H / Ph	31.3	307.3	$2.469(7)$	$1.821(3)$
$\mathbf{4 1}$	$\mathrm{CF} 3 / \mathrm{Ph}$	42.2	309.6	$2.517(7)$	$1.911(4)$

Figure 35. Molecular structure of oxaphosphirane complex 41 (thermal ellipsoids are shown with 50% probability level); all methyl hydrogen atoms are omitted for clarity; selected bond lengths (Å) for 41: P-W 2.517(7), P-C(9) 1.9102(3), P-O(1) 1.6712(3), P-C(1) 1.7964(8), C(1)-O(1) 1.4550(3).

5. Investigations on the reactivity of $P-\mathrm{CPh}_{3}$ substituted $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes

5.1 Thermal reactions of $P-\mathrm{CPh}_{3}$ substituted $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes

Previous investigations of thermal reactions for non-fluorinated $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes of the type XLI (Scheme 37) were performed for derivatives having different substituents at phosphorus such as bis(trimethylsilyl)methyl and pentamethylcyclopentadienyl (Cp*).
For the first case, Marinas Pérez had observed that the C-phenyl- P bis(trimethylsilyl)methyl substituted derivative showed no reaction upon heating (gently) in toluene, and even upon addition of different (trapping) reagents such as DPPE no reaction was observed, even at temperatures at about $100^{\circ} \mathrm{C} .{ }^{[103]}$ Recently, donor and (weak) acceptor groups were incorporated as substituents at the ring carbon atom (R^{\prime} in Scheme 37). The C-pyridyl-P-bis(trimethyl-silyl)methyl derivatives by Klein revealed that thermal reactions in ortho-dichlorobenzene led to the loss of one CO group of the pentacarbonyl tungsten moiety followed by the coordination of the nitrogen atom at the pyridyl group to tungsten to give complex XLII (Scheme 37a). ${ }^{[104]}$
The P - Cp^{*} derivative ($\mathrm{R}^{\prime}=\mathrm{Ph}$ in Scheme 37) presents noteworthy differences due to the versatility of the pentamethylcyclopentadienyl moiety to perform rearrangements. ${ }^{[65,105]}$ While thermal reactions in toluene resulted in complicated mixtures of products, Bode showed that the introduction of a trapping agent, i.e. an aldehyde led to the formation of O,P,C-cage complexes (Scheme 37b). ${ }^{[106]}$

Scheme 37. Thermal reactions of: a) $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ and b) P - Cp^{*} substituted oxaphosphirane complexes of the type XLI. ${ }^{[106]}$

In this section, thermal reactions of P - CPh_{3} substituted oxaphosphirane complexes will be discussed. Furthermore, a comparative study on the use of fluorinated P - Cp^{*} derivatives in thermal reactions in the presence of aldehydes will be described; a theoretical study explaining the mechanism of this latter reaction will be presented, too. Oxaphosphirane complexes 4c and 22 were dissolved in toluene and a NMR monitoring was performed while gently warming from room temperature to $100^{\circ} \mathrm{C}$ (Scheme 38). While 4c unselectively decomposed at about $70^{\circ} \mathrm{C}$, leading to a complicated mixture of phosphorus-containing products, complex 22 showed a higher stability in solution and at $100^{\circ} \mathrm{C}$ experienced a selective conversion.

4c: $\mathrm{R}=\mathrm{Ph} ; \mathrm{M}=\mathrm{W}$
22: $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5} ; \mathrm{M}=\mathrm{W}$
23: $R=C_{6} \mathrm{~F}_{5} ; \mathrm{M}=\mathrm{Cr}$
24: $R=C_{6} F_{5} ; M=M o$
Scheme 38. Thermal reaction of oxaphosphirane complexes $\mathbf{4 c}$ and 22-24 in toluene. At $100^{\circ} \mathrm{C}$, complex 22 was selectively transformed to give two phosphorus-containing compounds in a $3: 1$ ratio as Figure 36 displays in which a tungsten-phosphorus coupling was absent; the reaction needed four hours to reach completion.

Figure 36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the thermal reaction of 22 in toluene $\left(100^{\circ} \mathrm{C}\right)$.
The same thermal protocol was followed using derivatives bearing other transition metals, i.e., chromium (23) and molybdenum (24). Under the same conditions both derivatives present a comparable NMR pattern (Figure 37) and display a 2:1 ratio.

Figure 37. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ data of the reaction solutions in toluene at $100^{\circ} \mathrm{C}$ of complexes 22-24.

With the information obtained from multinuclear NMR spectral analysis, the deduced constitution of the new products will be discussed. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data clearly revealed the absence of resonances corresponding to the carbonyls of the metal complex fragment. According to the information of two-dimensional NMR data, the triphenylmethyl group is still attached to phosphorus. The pentafluorophenyl moiety is also intact, and by analysis of the dept135 NMR, an unexpected resonance corresponding to a CH_{2} group appears. This resonance emerges at 26.5 ppm as a broad doublet, presenting a ${ }^{1} \mathrm{JP}, \mathrm{C}$ of 82.3 Hz , from which it can be assumed that this carbon atom is directly attached to the phosphorus atom, the latter, most probably, being in a higher oxidation state. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral analysis confirms the resonances for the ortho, metha and para fluorine atoms, thus corresponding to the intact $\mathrm{C}_{6} \mathrm{~F}_{5}$ moiety.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data show the aromatic protons of the triphenylmethyl group within the expected area between 6.5 and 7.9 ppm and two additional resonances at 2.6 and 3.2 ppm (integration corresponds to one proton each), both displaying a doublet of doublets (dd). These two (new) proton resonances show a doublet in the ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR, meaning these represent two diastereotopic protons in a geminal position, near to the
phosphorus atom. These observations are in agreement with the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR-based conclusions described before. Using this information, it can be suggested that, after loss of the pentacarbonyltungsten moiety, the oxaphosphirane 42 (Scheme 39) opens to form 43 and accepts a hydrogen atom, presumably from the solvent, thus leading to the formation of compound 44 that dimerizes to form the final product 45.

Scheme 39. Proposed mechanism for the thermal reaction of $\mathbf{2 2}$ in toluene.
Due to the symmetry of compound 45 only one phosphorus resonance can be expected, but there is the possibility of the formation of the meso and rac diastereomers that could explain the two phosphorus resonances observed in the NMR spectrum as displayed in Figure 36 and Figure 37.

5.1.1 Thermal reactions of $C-C_{6} \mathrm{~F}_{5} P-\mathrm{Cp}^{*}$ substituted $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes

Although the history of cage complexes containing phosphorus and oxygen is quite short, it is assumed that due to their properties they are promising compounds representing a very interesting area in the chemistry of polymers. ${ }^{[107]}$ For example, polycyclic phosphites are well known class of O,P,C-cage compounds, which have the ability to act as good copolymerization reagents, and thus lead to interesting flameretardants such as XLIV and XLV (Scheme 40). ${ }^{[108]}$ Besides, they are used in catalysis and as model compounds in DNA and neurosteroids research. ${ }^{[109]}$

As mentioned at the beginning of this section, Bode showed that oxaphosphirane complexes bearing Cp^{*} at phosphorus, lead easily to the formation of O,P,C-cage complexes through thermal reactions in presence of aldehydes. ${ }^{[106]}$ This was a valuable discovery because the building of asymmetric cage structures represents, still today, a major synthetic challenge.

XLIV

XLV

Scheme 40. Examples of known O,P,C cage compounds. ${ }^{[108]}$
To analyse the behaviour that electron-withdrawing groups i.e. pentafluorophenyl group at the ring carbon atom could induce in thermal reactions of $P-C p^{*}$ substituted oxaphosphirane complexes. Complex 27 was subjected to thermal reactions with benzaldehyde and pentafluorobenzaldehyde in toluene. Surprisingly, no reaction was observed neither by gentle warming at $75^{\circ} \mathrm{C}$ during several hours nor under refluxing conditions. This shows a remarkable increase of the thermal stability of the oxaphosphirane complex due to the fluorinated moiety. Nevertheless, a solvent with a higher boiling point was chosen to perform the reaction, i.e. ortho-dichlorobenzene and by refluxing during 2 hours the reactions led selectively to the expected cage complex 46 if benzaldehyde was used for the cage formation (Scheme 41). If pentafluorobenzaldehyde was used, the reaction led to a complicated mixture of phosphorus-containing products and, finally, to decomposition. But it was possible to detect a phosphorus resonance at 144.0 ppm with a phosphorus-tungsten coupling
constant magnitude of 322.7 Hz , which could correspond to the targeted fluorinated cage complex 46^{F}. In contrast, fluorinated $O, P, C-c a g e ~ c o m p l e x ~ 46$ was isolated and characterised as result of a high diastereoselective reaction, and the connectivity of the ligand framework was confirmed by X-ray crystallography (Figure 38).

27

46: $\mathrm{R}=\mathrm{Ph}$ $46^{\mathrm{F}}: \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$

Scheme 41. Synthesis of fluorinated $\mathrm{O}, \mathrm{P}, \mathrm{C}$-cage complexes 46 and 46 F.
Table 18. Selected ${ }^{31} \mathrm{P}$ NMR resonances [ppm] and ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{w}}$ and ${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}[\mathrm{Hz}]$ of complexes 28, 46-46F in THF-d8.

Complex	\mathbf{R}	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{JP}, \mathrm{W}$	${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}$
$\mathbf{2 8}{ }^{[106]}$	Ph	155.1	334.4	12.7
$\mathbf{4 6}$	Ph	153.1	346.9	24.8
$\mathbf{4 6}{ }^{\mathbf{F}}$	$\mathrm{C}_{6} \mathrm{~F}_{5}$	161.8	348.3	27.3

These NMR data of the complexes $46-46^{F}$ are closely related to those of the known O,P,C-cage tungsten(0) complexes synthesized by Bode, ${ }^{[106]}$ except for the influence of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ second unity which remarkably shifts the phosphorus resonance to lower field. Whereas the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of 28 clearly shows a ${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}$ coupling constant magnitude of about 13 Hz , complexes $46-46^{F}$ possess much larger coupling constants of above 20 Hz .

Complex 46 crystallizes in a monoclinic lattice with space group $\mathrm{P}_{2} 1 / \mathrm{n}$. The selected data of the molecular structures of 46 and $\mathbf{2 8}^{[106]}$ are displayed in Table 19 and unambiguously confirm the ligand cage constitutions. Some structural differences between the cages of $\mathbf{4 6}$ and $\mathbf{2 8}$ are found within the particular cage moieties, but shall not be discussed further. The geometries at phosphorus are quite similar for cages in 46 and 28 and the P-O and P-C bond distances shown in Table 19 are found to be similar to polycyclic phosphites and to previously reported tungsten(0) analogues.

Figure 38. a) Molecular structure of complex 46 (Diamond 3.0, ellipsoids represent 50% probability level). Except $\mathrm{C} 7-\mathrm{H} 7$ and $\mathrm{C} 1-\mathrm{H} 1$, all hydrogen atoms are omitted for clarity. b) Reduced molecular structure of complex 46 (Diamond 3.0, ellipsoids represent 50% probability level). Except $\mathrm{C} 7-\mathrm{H} 7$ and $\mathrm{C} 1-\mathrm{H} 1$, all hydrogen atoms and Cp* methyl groups are omitted for clarity.

Table 19. Bond lengths and bond angles of complexes $31{ }^{[106]}$ and 41.

Bond lengths [A]	$\mathbf{2 8 [1 0 6]}$	$\mathbf{4 6}$	Bond angles [deg]	$\mathbf{2 8}$	$\mathbf{4 6}$
$\mathbf{W - P}$	$2.457(4)$	$2.4345(7)$	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$107.5(4)$	$102.1(11)$
$\mathbf{P - O (1)}$	$1.614(10)$	$1.613(2)$	$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(7)$	$99.6(2)$	$96.7(11)$
$\mathbf{P - O (2)}$	$1.609(11)$	$1.605(2)$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{C}(7)$	$95.1(18)$	$105.1(11)$
$\mathbf{P - C (7)}$	$1.829(14)$	$1.855(3)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{P}$	$125.5(3)$	$117.1(11)$
$\mathbf{O (1) - C (1)}$	$1.451(15)$	$1.459(3)$	$\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{P}$	$112.7(3)$	$117.1(17)$

5.1.1.1 Theoretical studies on the O,P,C-cage ligand formation

To get further insight into mechanistic aspects, Espinosa performed quantum chemical calculations (see next page for the level of theory) on the complicated sequence leading to O,P,C-cage complexes. For the sake of simplicity only the potential energy surface (PES) for the reaction of chromium complex 47 (shown in Scheme 42) with acetaldehyde to lead the O,P,C-cage complex 48 was inspected. ${ }^{[74]}$

Scheme 42. Selective conversion of oxaphosphirane 47 to 48 used for the theoretical calculation of the cage ligand formation.

The first question to be solved was if the initial step is the cleavage of the endocyclic P-C or C-O bond. Noteworthy might be here to mention the recent report that related azaphosphiridine complexes undergo N,P,C-cage formation initiated by endocyclic PC bond cleavage. ${ }^{[110]}$ In a preliminary approach and for the sake of performing highlevel calculations at a reasonable computational cost, uncomplexed model oxaphosphirane species were evaluated with regard to the cleavage of the two weakest endocyclic bonds. At the DLPNO-CCSD(T)/def2-QZVPP level of theory the C-O bond cleavage (i) is rather exergonic for the parent oxaphosphirane ring XLVIa (Scheme 43, Table 20). It also possesses a slightly lower energy barrier than the very endergonic endocyclic P-C bond cleavage (ii). The introduction of particular substituents able to stabilize an adjacent positive charge at the ring carbon atom, i.e. a CH_{3} group in model derivatives XLVIb,d, and others, i.e. a SiH_{3} group in XLVIc,d, able to stabilize a negative charge at phosphorus slightly favour both ring opening processes (Table 20), but keep the C-O bond cleavage as the (almost) preferred pathway.

Scheme 43. Endocyclic bond cleavage processes i) and ii) in model oxaphosphiranes XLVIa-d.

Table 20. Computed (DLNPO-CCSD(T)/def2QZVPP) Relative energies (kcal/mol) for endocyclic bond cleavage processes (i) and (ii in model oxaphosphiranes XLVI). ${ }^{[110]}$

Entry	$\Delta \mathrm{E}^{\mathrm{TS}}$ co	$\Delta \mathrm{E}_{\mathrm{co}}$	$\Delta \mathrm{E}^{\mathrm{TS}} \mathrm{PC}_{\mathrm{PC}}$	$\Delta \mathrm{E}_{\mathrm{PC}}$
XLVIIa	41.57	-11.49	42.31	33.49
XLVIIb	39.71	-6.52	39.57	33.56
XLVIIc	38.78	-14.43	40.53	31.59
XLVIId	36.66	-19.18	37.23	30.14

It can be expected that the real system 47 (Scheme 44) behaves along this line as it bears a C-phenyl substituent which stabilizes the positive charge in both P-C and P-O endocyclic bond cleavage intermediates 49 and 50, respectively Scheme 44. Consequently, it would favour both ring cleavage processes, whereas the presence of the metal fragment can additionally stabilize the negative charge developed at P after $\mathrm{P}-\mathrm{C}$ bond cleavage and, hence, qualitatively favouring this latter pathway. This is further supported by the computed energetics for both processes in 51 (Figure 39). ${ }^{[23]}$ In consequence, this rules out the $\mathrm{P}-\mathrm{C}$ bond cleavage route, and points to a $\mathrm{C}-\mathrm{O}$ cleavage as the rate determining step in the O,P,C-cage complex formation, at least in the formation of 52 .

Scheme 44. Calculated mechanism for the formation of O,P,C-cage complex 48 as well as other minima on the PES starting from 47 and acetaldehyde. ${ }^{[110]}$

Figure 39. Calculated (COSMOtoluene/B3LYP-D3/def2-TZVPP//COSMO toluene/B3LYP-D3/def2-TZVP) minimum energy profile for the conversion of 47 into 48. ${ }^{[110]}$

Moreover, it can be assumed that the following reaction sequence starts with formation of a van der Waals complex between oxaphosphirane complex 47 and the aldehyde $\mathrm{CH}_{3} \mathrm{CHO}$. Generation of this $47 \cdot \mathrm{OHCCH}_{3}$ complex entails a strengthening of the endocyclic C-P and P-O bonds whereas the C-O bond is weakened, as shown by the variation of bond strength descriptors (VBSD) ${ }^{[111,112]}$ using several commonly used parameters such as the Wiberg bond index (WBI), ${ }^{[113]}$ Löwdin bond order (LBO), ${ }^{[114]}$ Mayer bond order (MBO) ${ }^{[115]}$ or the electron density at bond critical points $(\rho(r))$ in the framework of Bader's atoms-in-molecules (AIM) theory ${ }^{[116]}$ (Table 21). Furthermore, the initial van der Waals complex also increases the ring strain as shown by the increase in the Lagrange of the kinetic energy density at ring critical points, $G(r)$, which was recently reported to correlate with ring strain energies within related systems. ${ }^{[117]}$ Worth mentioning is that complex $\mathbf{5 0}$ is the result of not only $\mathrm{C}-\mathrm{O}$ bond cleavage in $\mathbf{4 7}$ but also of an additional migration of the $\operatorname{Cr}(\mathrm{CO})_{5}$ metal fragment from P (end-on complex) to a side-on coordination at the $\mathrm{C}=\mathrm{P}$ bond.

According to the calculations, complex 50 must undergo a $\mathrm{P}-\mathrm{Cp}$ * bond rotation (50') to allow for a $[2,3]$ shift of the $C p^{*}$ group from P to the adjacent C atom. This exergonic, low-barrier rearrangement is accompanied by a back-shift of the pentacarbonylmetal group to phosphorus resulting in an end-on coordination mode and leading to a terminal phosphinidene oxide complex 51 as the key intermediate. The expected
electrophilicity for phosphinidene complexes, in general, is partly reduced in this particular case due to through-space electron density donation from a neighboring $\mathrm{C}=\mathrm{C}$ unit to a formally vacant $3 p$ atomic orbital at $\mathrm{P}\left(\mathrm{dP} \ldots \mathrm{C} 2=2.724 \AA ; \Sigma \mathrm{WBl}_{\mathrm{P}-\mathrm{c} 2 / \mathrm{C} 3}=0.151\right.$; $\mathrm{LBO}=0.187 ; \mathrm{MBO}=0.218$), which results in a relatively stable complex. Furthermore, using the Natural Bond Orbital (NBO) analysis ${ }^{[118]}$ this corresponds to a $\pi(\mathrm{C} 2=\mathrm{C} 3) \rightarrow p \mathrm{P}$ electron transfer with an associated stabilization of $18.82 \mathrm{kcal} / \mathrm{mol}$ in the second order perturbation theory (SOPT) analysis of the Fock matrix in NBO basis. The aldehyde reagent $\mathrm{CH}_{3} \mathrm{CHO}$ interacts via its basic O atom with the electrophilic P atom in 51 affording adduct 52 (Scheme 44) in a slightly exergonic and almost barrierless process (Figure 39).

Table 21. Computed (B3LYP-D3/def2-TZVPP) bond-strength and ring strain related descriptors and their variation in complexes 47 and $47 \cdot \mathrm{OHCCH}_{3}$. ${ }^{[110]}$

Entry		$\mathbf{4 7}$	$\mathbf{4 7} \cdot \mathrm{OHCCH}_{3}$	$\boldsymbol{\Delta}(\%)$
WBI	P-C	0.843	0.849	0.75
	P-O	0.696	0.704	1.09
	C-O	0.947	0.940	-0.64
	P-C	1.047	1.053	0.63
	P-O	1.318	1.331	0.98
	C-O	1.384	1.375	-0.69
MBO	P-C	0.967	0.999	3.31
	C-O	0.924	0.912	0.892
	P-C	0.1567	0.1604	1.85
P(r), e/a ${ }^{3}{ }^{3}$	P-O	0.1572	0.1588	1.01
	C-O	0.2425	0.2406	-0.79
G(r), au		0.1594	0.1653	3.67

Opposite to the case of $47 \cdot \mathrm{OHCCH}_{3}$, the interaction in 52 cannot be considered as a van der Waals complex, as far as a moderately strong but genuinely covalent $\mathrm{P}-\mathrm{O}^{(b)}$ bond is formed (dp-o = 1.952 \AA; $\mathrm{WBI}=0.347 ; \mathrm{LBO}=0.696 ; \mathrm{MBO}=0.521 ; \rho(\mathrm{r})=9.25$ $x 10^{-2} e / a_{0}{ }^{3}$) (compare to the values for 47 in Table 21; dp-o $=1.673 \AA$). The high diastereoselectivity in the formation of the final O,P,C-cage complex 48 arises from the
selective orientation of the aldehyde in 52 by means of a second anchoring point between the H atom and $\mathrm{O}^{(\mathrm{a})}$ atom attached to $\mathrm{P}(\mathrm{do} \cdots \boldsymbol{\mu}=2.299 \AA ; \mathrm{WBI}=0.007 ; \rho(\mathrm{r})=$ $1.66 \times 10^{-2} e / a_{0}{ }^{3}$), in addition to a π-stacking (π-acceptor/donor) interaction between the carbonyl group and the Cp * mean plane (distance from the carbonyl C atom to Cp * mean plane: $2.784 \AA$; $\Sigma \mathrm{WBI}=0.126$; one $\left.\mathrm{BCP} \rho(\mathrm{r})=1.68 \times 10^{-2} e / a_{0}{ }^{3}, \varepsilon=1.130\right)$. The above mentioned interactions are easily visualized by means of reduced electron density (RDG) isosurfaces using the NCIplot technique (Figure 40). ${ }^{[32,33]}$ Such a docking fixes the acetaldehyde unit and enables an intramolecular 1,4-addition of the nucleophilic $\mathrm{O}^{(b)}$ atom and the electrophilic carbonyl C atom across the Cp^{*} diene moiety affording exergonically the stable O,P,C-cage complex 48. ${ }^{[119]}$

Figure 40. Computed (COSMO toluene/B3LYP-D3/def2-TZVPP//COSMO ${ }_{\text {toluene }}$ /B3LYP-D3/def2-TZVP) most stable structure for 52 with NClplot highlighting key stabilizing NCIs. The RDG $s=0.3$ au isosurface is colored over the range $-0.07<\operatorname{sign}\left(\lambda_{2}\right) \cdot \rho<$ 0.07 au: blue denotes strong attraction, green stands for moderate interaction, and red indicates strong repulsion. ${ }^{[110]}$

It is worth mentioning that epimerization at the newly formed chiral center (the position arising from the carbonyl C atom) in 48 is a slightly exergonic process (relative energy Erel $=-46.42 \mathrm{kcal} / \mathrm{mol}$ for 48^{\prime}) because 1,4-diaxial interactions in the boat-shaped sixmembered ring decrease, but requires to pass a very high energy barrier $\left(\Delta E^{\top S}=70.19\right.$ $\mathrm{kcal} / \mathrm{mol}$), which in practice is not affordable.

5.2 Acid-induced ring expansion reactions of C-pentafluorophenyl- P triphenylmethyl oxaphosphirane complexes

Dioxaphospholanes are five-membered heterocycles bearing one phosphorus and two oxygen atoms. They are key compounds in the synthesis of phosphorus containing polymers and agrochemicals and have been exploited as indispensable tools in biochemistry and molecular biology of nucleic acids. ${ }^{[20]}$ As described in the introductory part, until now only a few examples of 1,3,4-dioxaphospholane complexes XV are known ($\mathrm{E}=\mathrm{MLn}$), and there is also not much literature about their P^{\vee} analogues.

XIV

xv

XVI

XVII

Scheme 45. Dioxaphospholanes XIV-XVII (R: organic substituent, halogen, hydrogen or -OH; E: free electron pair, double bond to oxygen or metal complex).

The first $1,3,4 \sigma^{3} \lambda^{3}$-dioxaphospholane complexes were synthesized by Bode ${ }^{[120]}$ through thermolysis of P-Cp* substituted $2 H$-azaphosphirene complex XLVII in the presence of aldehydes (Scheme 46).

Scheme 46. Synthesis of 1,3,4-dioxaphospholane complexes XLVIII. ${ }^{[104]}$
Shortly afterwards, Pérez ${ }^{[121]}$ developed a new methodology for the ring expansion reaction of oxaphosphirane complex XLIX (Scheme 47), being the first example of a Brønsted acid-induced ring expansion of a transition metal coordinated $\sigma^{3} \lambda^{3}$-oxaphosphirane to give 1,3,4-dioxaphospholane complexes \mathbf{L}. This protocol is based on the selective insertion of the π-system of aldehydes into the P,O bond of oxaphosphiranes XLIX yielding diasteromeric mixtures of 1,3,4-dioxaphospholane complexes with $\mathrm{C}^{2}, \mathrm{C}^{5}$ unsymmetrical substituents which are difficult to synthesize under other conditions. This study revealed that the ring expansion of aryl-substituted oxaphosphirane complexes of the type XLIX using trifluoromethyl sulfonic acid (triflic acid) is demanding concerning precise reactions conditions, because protonation and
deprotonation processes needed to be executed within a very narrow temperature regime: below $-30^{\circ} \mathrm{C}$ protonation was not effective as was deprotonation well above $30^{\circ} \mathrm{C}$. The protonated five-membered ring ligand (TfOH-L, two isomers) decomposed to give a mixture of side-on E, Z-methylene phosphonium complexes LI (Scheme 2). ${ }^{[121]}$

Scheme 47. Formation of methylene phosphonium complexes LI: i): $\mathrm{PhC}(\mathrm{H}) \mathrm{O}, \mathrm{TfOH}$, $-30^{\circ} \mathrm{C}$; ii): $-20^{\circ} \mathrm{C},-\mathrm{PhC}(\mathrm{H}) \mathrm{O} .{ }^{[105]}$

During the present work, fluoro-substituted phenyl aldehydes were successfully employed in the synthesis of oxaphosphirane complexes. ${ }^{[84]}$ The electron withdrawing fluorophenyl substituents showed a significant influence on the electronic situation of this heterocycle and revealed interesting noncovalent $\mathrm{M}(\mathrm{CO})$ - π (aryl) interactions. ${ }^{[84]}$

Surprisingly, the C-pentafluorophenyl substituted oxaphosphirane complex 22 neither reacted at -30 C , as reported previously for the C-phenyl derivative XLIX, ${ }^{[121]}$ nor at ambient temperature with aldehydes having different content of fluorine atoms. Therefore, complex 22 was treated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with TfOH in the presence of the aldehydes represented in Scheme 48 under refluxing conditions for 2 h . Upon addition of NEt_{3} and subsequent work-up the 1,3,4-dioxaphospholane complexes 53-55 were obtained in high diastereomeric selectivity in good to excellent yields (53: 70\%; 54: $80 \%, 55: 84 \%$) after column chromatography.

Scheme 48. Ring expansion of 25 to yield 1,3,4-dioxaphospholane complexes 53-55.
Table 22 displays ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts and corresponding ${ }^{1} \mathrm{~J}, \mathrm{~W}$ coupling constants of 53-55 compared with literature known compounds Ld-f. ${ }^{[121]}$ The presence
of fluorinated C-substituents led to downfield-shifted resonances in the ${ }^{31} \mathrm{P}$ NMR spectra by about 30 ppm in the case of 55 compared to Ld-f, bearing alkyl and/or aryl substituents without fluorine atoms. Astonishingly, the chemical shifts of 53 and 55, are comparable to those of Ld-f featuring the $\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ substituent at phosphorus and aryl substituents at the ring carbon atoms. But the increase in the ${ }^{1}{ }^{\mathrm{J} P, w}$ coupling constant of about 10 Hz was observed for all derivatives 53-55.

Table 22. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of complexes 53-55 and Ld-f.

Compound	$\delta^{31} \mathrm{P}$ [ppm]	${ }^{1} \mathrm{Jp}, \mathrm{W}$ [Hz]
53	137.0	295.1
54	137.6	297.2
55	162.9	294.6
Ld ${ }^{\text {a }}$	130.0/132.0 ${ }^{\text {b }}$	279.7/279.7b)
Le ${ }^{\text {a }}$	131.5/129.0 ${ }^{\text {b }}$	281.0/279.7 ${ }^{\text {b }}$
Lf ${ }^{\text {a }}$	130.6/130.8 ${ }^{\text {b }}$	281.0/281.0 ${ }^{\text {b }}$

${ }^{\text {a) }}$ See ref. [17]; ${ }^{\text {b) }}$ data of both isomers; $\mathbf{d}: \mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{R}^{\prime \prime}=\mathrm{Ph} ; \mathbf{e}: \mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{R}^{\prime \prime}=\mathrm{Me} ; \mathbf{f :} \mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{R}^{\prime \prime}={ }^{\mathrm{i}} \mathrm{Pr}$
Suitable crystals for X-ray diffractometry of complexes 53-55 were obtained from n pentane at $-30^{\circ} \mathrm{C}$. The molecular structures are depicted in Figure 41 and selected bond lengths and angles are given in Table 23. All observed bond lengths are in the typical range for the corresponding bonds in 1,3,4-dioxaphospholane ligands.

53

54

55

Figure 41. Diamond 3.0 X-ray structures of 53-55 (thermal ellipsoids are at 50% probability level; carbonyl ligands at the metal atom and phenyls rings at C^{15} are omitted for clarity.

Table 23. Selected bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ of 53-55.

Bond lengths [Å]	53	$\mathbf{5 4}$	$\mathbf{5 5}$
P-W	$2.5230(7)$	$2.5271(14)$	$2.5090(8)$
P-C15	$1.949(3)$	$1.957(5)$	$1.944(3)$
P-O1	$1.632(2)$	$1.639(3)$	$1.639(2)$
O1-C2	$1.474(3)$	$1.454(6)$	$1.425(4)$
C2-O2	$1.404(3)$	$1.406(5)$	$1.421(4)$
O2-C1	$1.426(3)$	$1.437(5)$	$1.29(4)$
C2-P	$1.916(3)$	$1.903(5)$	$1.890(3)$

Angles [${ }^{\circ}$]

C2-P-O1	$90.65(11)$	$90.54(19)$	$91.38(13)$
P-O1-C1	$113.52(16)$	$112.8(3)$	$115.6(2)$
O1-C1-O2	$106.1(2)$	$107.0(4)$	$108.9(2)$
C1-O2-C2	$110.8(2)$	$108.2(3)$	$113.1(2)$
O2-C2-P	$103.19(17)$	$103.2(3)$	$103.8(2)$

Torsion angle [${ }^{\circ}$]

C2-P-O1-C1
-9.99(18)
8.8(3)
0.9(1)

Complexes 53 and 54 crystallized in the monoclinic crystal system, while complex 55 has a triclinic system. The central O,P,C-heterocycles show an envelope conformation, and in all complexes 53-55 the oxygen atom O 2 is in the endo position and stands out of the plane C4-P-O1-C2 plane by $0.357 \AA$. Besides, a slight enlargement of the P-W distance (Table 23) in 53-55 compared to Ld-f (IIId: 2.497(1) Å; Le: 2.502(2) Å; Lf: $2.5107(19) \AA$) can be noted. ${ }^{[121]}$ Interestingly, the protons $\mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}$ show different relative orientations: in $53,54 \mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}$ are cis orientated, while in 55 both hydrogen atoms are in a trans orientation.

Furthermore, the reactivity of the fluorinated $\mathrm{Cp}^{*}-P$ substituted derivative towards triflic acid and aldehydes to give 1,3,4-dioxaphospholane complexes was also studied (Scheme 49).

Scheme 49. Reaction of oxaphosphirane complex 27 towards acid-induced ringexpansion.

Since it is known, that the Cp^{*} substituent is able to participate in ring expansion reactions ${ }^{[122]}$, the reaction of $C p^{*}-P$ substituted derivative 27 with triflic acid was investigated without an aldehyde. Following the procedure, explained above, a mixture of several unidentified compounds was obtained. The addition of the phosphophilic nucleophile EtOH as trapping reagent gave 1,3-oxaphospholane complex 60. Comparable to a known mechanism for a reaction using $\mathrm{HBF}_{4},{ }^{[122]}$ the addition of TfOH to the oxaphosphirane complex 27 can be explained from the mechanistic point of view as depicted in Scheme 50.
First, the protonation of the oxygen ring atom of 27 would give short-lived $\mathbf{5 6}$, followed by the $\mathrm{P}-\mathrm{O}$ bond cleavage which would result in the acyclic form 57 . Addition of the $\mathrm{O}-$ H functionality to the cyclopentadienyl substituent in 57 could furnish selectively the bicyclic 1,3-oxaphospholane complex 58 as proposed in Scheme 50.
Subsequent addition of EtOH to the highly electrophilic phosphenium center of 58 followed byelimination of TfOH could result in a selective formation of complex 60.

Scheme 50. Proposed mechanism for the reaction of 27 with TfOH in the presence of EtOH .

Complex 60 presents a chemical shift of $178.7 \mathrm{ppm}\left({ }^{1} \mathrm{JP}, \mathrm{w}=275.4 \mathrm{~Hz}\right.$), and was completely characterized by NMR spectroscopy; the connectivity of the ring ligand framework was confirmed by X-ray crystallography (Figure 42).

Figure 42. Diamond 3.0 X-ray structures of 60 (thermal ellipsoids are at 50% probability level; carbonyl substituents of the metal atom and hydrogen atoms, except for H5 and H6, are omitted for clarity. Selected bond lengths (\AA) for 60: P-W 2.5150(13), P-C(5) 1.882(5), P-O(1) 1.610(3), P-C(3) 1.885(5), C(5)-O(2) 1.416(5).

All bond lengths are comparable to those reported by Albrecht for a P-F substituted 1,3-oxaphospholane complex ${ }^{[122]}$ and are in the normal range for such bicyclic complexes, e.g. the P-W bond length is in 60 slightly enlongated by $0.07 \AA$ compared to the P-F substituted complex (2.4431(6) \AA). This might originate from the more electronegative fluorine atom than the oxygen atom in $\mathbf{6 0}$, thus leading to a reduced electron density at the corresponding phosphorus atom and an increasing of the back donation from the tungsten atom to the phosphorus, thus resulting in a shorter P-W bond length.

5.3 Reactitivity of oxaphosphirane complexes towards N -heterocyclic carbenes

5.3.1 N -heterocyclic carbenes

Carbenes are defined as neutral compounds bearing a divalent carbon atom and six valence electrons. This carbon atom can exhibit a linear or bent geometry, depending on the hybridization of the carbon atom and they will be therefore classified as singlet or triplet carbenes. Singlet carbenes are spin-paired in their ground state and bear a vacant p_{π}-orbital ($\sigma^{2} p_{\pi}{ }^{0},{ }^{1} \mathbf{A}_{1}$, Figure 43) and hence, due to their sp^{2}-hybridization, contain a bent geometry. In the ground state of a sp ${ }^{2}$-hybridized triplet carbene ($\sigma^{1} \mathrm{p}_{\pi^{1}}$, ${ }^{3} \mathbf{B}_{1}$, Figure 43), ${ }^{[123]}$ both the p_{π} and the σ-orbital of sp^{2}-type are occupied with one
electron of parallel orientation. Another example for carbenes, depicted in Figure 43, shows a linear geometry, which implies a sp-hybridization of the carbene center with two parallel orientated electrons in two non-bonding degenerated orbitals (p_{x}, p_{y}). These compounds are energetically disfavored compared to the bent carbenes and represent rare examples in carbene chemistry. ${ }^{[124]}$

Figure 43. Illustration of the frontier orbitals and electron configuration of carbenes.[124]
The diaminocarbene LIII represented in Scheme 51, represents the first isolated and crystallographically characterized singlet carbene and was published by Arduengo et al. in 1991. ${ }^{[125]}$ This group investigated the reaction of the sterically very demanding 1,3-diadamantylimidazolium chloride $\operatorname{LII}{ }^{(\mathrm{Ad} / \mathrm{H})}[\mathrm{Cl}]$ with sodium hydride and catalytic amounts of dimethyl sulfoxide (DMSO) in THF. Isolation of the N -heterocyclic carbene LIII ${ }^{(A d / H)}$ was a breakthrough in the synthesis of stable and isolable carbenes.

Scheme 51. Synthesis of N-heterocyclic carbene LIII
In the following 20 years a broad variety of stable NHC's and acyclic heteroatom substituted carbenes were synthesized. Due to their relative stability most of them were isolated and their chemistry was intensively investigated. Reasons why the NHC's are
relatively persistent are the combination of resonance stabilization and steric shielding. Scheme 52 illustrates the electron-donating effect of the neighbouring group ($\mathrm{X}=\mathrm{NR}$ in the case of an NHC) into the empty p_{π}-orbital of the carbene carbon atom. Hence the energy level of the p_{π}-orbital is raised and the difference of p_{π}-orbital and σ-orbital increases. Consequently, the singlet ground state is stabilized, rendering this type of carbenes very strong σ-donors.

$\mathrm{X}=\mathrm{CR}_{2}, \mathrm{NR}, \mathrm{PR}, \mathrm{S}, \mathrm{O}$
Scheme 52. Electronic configuration in a five membered heterocycle with electron donating substituents (X, left); selected resonance structures of the heterocycle (right).

In the sixties and seventies, among others, the groups of Lappert and Öfele intensively studied the chemistry of NHC transition metal complexes and investigated their reactivity in organometallic chemistry. ${ }^{[27]}$ Besides their strong σ-donating properties, Herrmann et al. pointed out that NHC's serve as ligands with similar properties in transition metal chemistry as electron rich organophosphanes $\mathrm{PR}_{3} .{ }^{[28]}$

Recently the group of Streubel used nucleophilic singlet N-heterocyclic carbenes as a strong organic base for the deprotonation of $\mathrm{P}-\mathrm{H}$ functional phosphane complexes, thus stabilizing phosphinidenoid complexes through weakly coordinating cations. ${ }^{[126]}$ Moreover, they developed a new route to N -heterocyclic carbene adducts of terminal phosphinidene complexes by transformation of an oxaphosphirane complex into zwitterion LVI, ${ }^{[127]}$ presented in Scheme 53, which is a new example of a substitution of a formally side-on bound unit to phosphorus by an end-on bound unit, i.e., an NHC. In total, this finding resembles transition metal coordination behavior, at least to some extent.

Scheme 53. Reaction of oxaphosphirane complex 35 with an N-heterocyclic carbene.

5.3.2 Experimental results

In the following, the reactivity of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes towards various N -heterocyclic carbenes (NHCs) is discussed. Being strong σ-donors and good bases at the same time, it was of especial interest to examine whether a ring opening or a ligand exchange reaction could take place, either cleaving the P-W bond, thus leading to an unligated oxaphosphirane, or showing a deprotonation at the ring carbon atom. Therefore, N -heterocyclic carbenes with different steric demand ($\mathrm{R}^{\prime}=$ $\mathrm{Me},{ }^{\mathrm{i} P r}$) were synthesized (according to established procedures ${ }^{[128]}$) and reacted with $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes 4 c and 22 (Scheme 54).

Scheme 54. Reaction of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes with $61^{\mathrm{R}^{\prime} / \mathrm{R}^{\prime \prime}}$.

5.3.2.1 Reactions of P - CPh_{3} substituted oxaphosphirane complex 4c towards NHCs

A solution of the $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complex $\mathbf{4 c}$ in THF was reacted with 1.2 equivalents of the corresponding NHC 61 at room temperature (performed inside the glovebox) as it is depicted in Scheme 55.

4c

$61^{\mathrm{Me}, \mathrm{Me}}$

Scheme 55. Reaction of 4 c and $61 \mathrm{Me} / \mathrm{Me}$

The reaction led to a mixture of three main products A, B and C (Figure 44 violet colorcoded spectrum at the top) whose ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are presented in Table 25.

Figure 44. Low temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR monitoring of the reaction of $\mathbf{4 c}$ with $\mathbf{6 1}{ }^{\mathrm{Me} / \mathrm{Me}}$
Table 24. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of reaction of $\mathbf{4 c}$ with $\mathbf{6 1}{ }^{\mathrm{Me} / \mathrm{Me}}$ (shifts in $[\mathrm{ppm}]$ and ${ }^{1} \mathrm{~J} P, \mathrm{w}$ in [Hz]

Compound	${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1} \mathrm{H}\}}\right.$	${ }^{\mathbf{1}} \mathrm{JP}, \mathrm{w}$
\mathbf{A}	108.6	280.3
B	136.3	296.8
C	151.7	302.6
D/D	$299.8 / 301.4$	$99.1 / 100.2$

The reaction mixture was analyzed via multinuclear NMR spectroscopy. From the ${ }^{13} \mathrm{C}$ and $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC spectrum, it was possible to confirm that the trityl moiety is still attached to the phosphorus atom in all products. The ${ }^{1} \mathrm{H}$ NMR spectrum displays the resonances corresponding to the aromatic protons of the triphenylmethyl group as well as for the methyl protons of the N -heterocylic carbene. Besides, a new resonance appearing at 9.8 ppm was also observed, which may correspond to the $\mathrm{C}^{2}-\mathrm{H}$ atom of the protonated NHC. ${ }^{[129]}$ This suggests that the NHC reacts as base deprotonating the ring carbon atom of the oxaphosphirane complex, thus leading to the species 65 as shown in Scheme 56. All attempts to separate the products were unsuccessful because in THF they slowly decomposed at ambient temperatures to give a
complicated mixture of unidentified products, and a separation (at an early stage) via low temperature column chromatography was unsuccessful.

To get further insights, a low temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring from $-80^{\circ} \mathrm{C}$ to room temperature was performed revealing that the reaction already started at very low temperature, and resonances D and D' were observed (Figure 44 blue spectrum at the bottom). These resonances, appearing at low field shift (299.8 ppm for D and 301.4 for D'), together with the small magnitude of their ${ }^{1}$ Jp,w coupling constant (99.1 Hz for D and 100.2 Hz for D^{\prime}) may indicate the formation of zwitterionic phosphinidenoid complex 64. ${ }^{[45,62,86]}$ A possible mechanism for this reaction is shown in Scheme 56 and will be described hereafter. Initially, nucleophilic attack of the oxaphosphirane complex 4c by $61^{\mathrm{Me} / \mathrm{Me}}$ at the ring carbon atom leads to the zwitterionic short-lived phosphinidenoid complex 62 (via P-C bond cleavage) and/or in a competing reaction to the (not observed) oxaphosphiranido complex 63 via deprotonation; 61 may even decompose to yield also 63. The latter could undergo P-O bond cleavage to form the phosphanido complex 64 which is stabilized due to the delocalization, i.e. the phosphaenolate complex 65, the counter cation being the protonated NHC. Further calculations will help to understand the mechanism and bonding of the species involved.

According to the literature, ${ }^{[45,62,86]}$ the formation of 62 is in agreement with the NMR data observed for D and D ' and the complex 65 could be assigned to the resonances represented by A and B, as observed before for similar neutral complexes. ${ }^{[130]}$ The complex C could result from another competing reaction pathway, but its constitution could not be clarified.

Scheme 56. Proposed reaction course orf the reaction of 4 c with $61^{\mathrm{Me} / \mathrm{Me}}$.

5.3.2.2 Reactions of P - CPh_{3} substituted oxaphosphirane complex 22 towards NHCs

To investigate this reaction further, the fluorinated derivative 22 was employed and the same protocol applied (using a glovebox): 22 was reacted with 1.2 equivalents of the corresponding NHC with different steric demand $61 \mathrm{Me} / \mathrm{Me}$ or $611^{\mathrm{iPr} / \mathrm{Me}}$ at room temperature to selectively lead to tetramethylimidazolium fluorophosphinite complexes 66 and 67.

Scheme 57. Reaction of oxaphosphirane complex 22 with NHCs 61 ${ }^{R / R^{c}}$.
A ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic measurement of the reaction mixture was performed 10 minutes right after the addition of the NHC to the solution of $\mathbf{2 2}$ and the result is shown in Figure 45.

Figure 45. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum measured 10 min . of the addition of $61{ }^{\mathrm{Me} / \mathrm{Me}}$ to a solution of 22 .

The NMR spectrum depicted in Figure 45 shows that the main phosphorus resonances display each a doublet with ${ }^{183} \mathrm{~W}$ satellites; the NMR data of these signals are given in Table 25.

Table 25. Selected NMR data (shifts [ppm], ${ }^{n} J[H z]$) of the reaction of $\mathbf{2 2}$ with $\mathbf{6 1}{ }^{\text {Me/Me }}$.

Resonance	${ }^{31} \mathrm{P}-\mathrm{NMR}$	${ }^{19} \mathrm{~F}$-NMR	${ }^{1} \mathrm{JP}, \mathrm{W}$	${ }^{1}$ JP, F	${ }^{2} \boldsymbol{J}$ F, W
A	201.7	-60.4	345.5	1070.7	[a]
B	200.9	-60.6	344.6	1071.4	[a]
C	152.7	-33.0	319.8	1032.7	30.3

[a] Not detected
New NMR measurements after hours and days of stirring revealed that resonances A and B decreased while C increased and remained as the resonance for the final product.

Figure 46. ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction of 22 with $\mathbf{6 1}{ }^{\mathrm{Me} / \mathrm{Me}}$ after one week at ambient temperature.

Further multinuclear NMR measurements unveiled that the trityl moiety is still attached to the phosphorus atom. Apart from the aromatic protons of the triphenylmethyl group, the methyl hydrogen atoms of $61^{\mathrm{Me} / \mathrm{Me}}$ were also observed, as well as a resonance at 10.6 ppm (integration corresponding to one proton) which according to the literature ${ }^{[129]}$ could correspond to the NHC-H imidazolium. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis showing 4 different resonances at $-138.4,-142.2,-143.7$ and -162.3 ppm . In general, pentafluoro substituted aromatic rings show 3 resonances. ${ }^{[131]}$ This may indicate the presence of a non-symmetrically substituted tetrafluorinated ring. The fifth fluorine atom should be the one coordinated to phosphorus, as the NMR analyses indicates (Table 25). After purification, suitable crystals for X-ray analysis were obtained for 66 and 67 as Figure 47 and Figure 48 show.

Figure 47. Diamond 3.0 X-ray molecular structure of 66 (thermal ellipsoids are at 50 \% probability level; carbonyl ligands at the metal atom, hydrogen atoms, except for N H, are omitted for clarity. Selected bond lengths (Å) for 66: P-W 2.544(3), P-C(1) 1.937(9), P-O 1.492(8), P-F 1.633(7), O $\cdots H_{N H C} 2.1768(1)$.

A related lithium fluorophosphinite complex was obtained by Nesterov ${ }^{[132]}$ as decomposition product of a P-nitroxyl phosphane complex from a reaction of an Li/F phosphinidenoid complex with a mixture of triphenylcarbenium tetrafluoroborate and TEMPO. This compound shows comparable NMR data and bond lengths and angles, meaning that the counter cation has a rather small influence on these parameters.

A similar result was obtained by reacting oxaphosphirane complex 22 with the N heterocyclic carbene $61^{\mathrm{iPr}} / \mathrm{Me}$. The X-ray crystallography analysis confirmed the connectivity as displayed in Figure 48. And selected NMR data of 66 and 67 are represented in Table 26

Table 26. Selected NMR data; shifts in [ppm] and ${ }^{1} \mathrm{~J} p, \mathrm{w}$ in $[\mathrm{Hz}]$ of 61 and 62.

Compound	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1}{ }^{\mathrm{JP}, \mathrm{W}}$	${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{H}-\mathrm{N}$
$\mathbf{6 6}$	152.7	319.8	-33.0	10.6
$\mathbf{6 7}$	148.5	319.7	-33.0	10.9

Figure 48. Diamond 3.0 X-ray structures of 67 (thermal ellipsoids are at 50% probability level. All hydrogen atoms, except for $\mathrm{N}-\mathrm{H}$, are omitted for clarity. Selected bond lengths (Å) for 67: P-W 2.5362(17), P-C 1.935(6), P-O 1.505(4), P-F 1.615(4), O $\cdots \mathrm{H}_{\text {nhc }}$ 2.0758(1).

In order to get first insights into the pathway, a preliminary theoretical study was done by Sasamori analyzing the possible pathways at the B3PW91/6-311G level of theory. ${ }^{[133]}$

The first hypothesis to be analyzed was the deprotonation of the $\mathrm{H}-\mathrm{C}$ proton of the oxaphosphirane ring 22 by $61^{\mathrm{Me} / \mathrm{Me}}$, as depicted in Scheme 58, to give the
deprotonated complex, the oxaphosphoranido complex 68. But as this reaction is endergonic by $+78 \mathrm{kcal} / \mathrm{mol}$, it is unfavorable.

Scheme 58. Deprotonation of 22 by $57^{\mathrm{Me} / \mathrm{Me}}$.
According to earlier calculations of Frontera, ${ }^{[84]}$ the LUMO of the oxaphosphirane complex 22 is largely localized at the ortho and para position of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ ring, the nucleophilic attack of the NHC at the para carbon position was the next to be considered. In this case, the migration of a fluoride anion towards a CO ligand of the $\mathrm{W}(\mathrm{CO})_{5}$ group giving the product 69 could occur; 69 is slightly more stable than $22 / 61^{\mathrm{Me} / \mathrm{Me}}$ by $-4.0 \mathrm{kcal} / \mathrm{mol}$ (Scheme 59).

Scheme 59. Nucleophilic attack at the para position of the fluorinated ring in 22.
In case the NHC is attacking the ortho position, a migration of a fluoride to the phosphorus atom to give 70 in an exergonic reaction (-19.3 kcal/mol; Scheme 60) could be favorably envisaged.

Starting materials
$0.0 \mathrm{kcal} / \mathrm{mol}$
$-19.3 \mathrm{kcal} / \mathrm{mol}$
Scheme 60. Nucleophilic attack at the ortho position of the fluorinated ring in 22.
For the subsequent reactions two different pathways were considered (Scheme 61). The first possibility (i) is the dissociation of the aldehyde moiety to give 71 $(-1.8 \mathrm{kcal} / \mathrm{mol})$ as the phosphorus atom in 70 (Scheme 60) is highly coordinated. The second possibility (ii) is the P-C endocyclic bond cleavage of 70 to give $\mathbf{7 2}$, representing an exothermic process of $13.3 \mathrm{kcal} / \mathrm{mol}$ (Scheme 61).

-21.1 kcal/mol
-32.6 kcal/mol
Scheme 61. Dissociation of the aldehyde moiety to 71 and endocyclic P-C bond cleavage to 72.

To obtain the final product, as confirmed by the X-ray analysis, the presence of moisture seems to be necessary. The reaction of 72 with water leads to the elimination of the partially fluorinated aldehyde moiety and formation of the final product, salt 66 (Scheme 62). The partially fluorinated aldehyde was observed in the ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showing 4 different resonances at -138.4, -142.2, -143.7 and -162.3 ppm, whereas, in general, pentafluoro substituted phenyl rings show only 3 resonances. ${ }^{[131]}$ This indicates the presence of a non-symmetrically tetrafluorinated phenyl ring, while the "fifth" fluorine atom should be the one bound to phosphorus of the final product.

-32.6 kcal/mol

X-Ray

suggested by-product
Scheme 62. Reaction of 72 with a water molecule and subsequently formation of 66 . The reaction was also tested by using the fluorinated chromium complex 23 to examine if the nature of the transition metal could have any influence in the reaction process.

Scheme 63. Reaction of oxaphosphirane complex 23 with $61^{\mathrm{Me} / \mathrm{Me}}$.
Although, the molecular structure of 73 could not be confirmed by X-ray analysis, the multinuclear NMR data reveal the formation of the tetramethylimidazolium fluorophosphinite complex 73. A comparison of the data obtained for 66 and 73 is summerized in Table 27.

Table 27. Selected NMR data shifts in [ppm] and ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{x}}$ in [Hz] of 66 and 72.

Compound	\mathbf{M}	${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1}{ }^{\mathbf{J P}, \mathrm{W}}$	${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{JP}, \mathrm{F}$
$\mathbf{6 6}$	W	152.7	319.8	-33.0	1033.2
$\mathbf{7 3}$	Cr	188.6	-	-33.0	1062.6

To examine if an intermolecular fluoride transfer is also feasible, it was then decided to react oxaphosphirane complex $\mathbf{2 2}$ with $\mathbf{6 1}{ }^{\mathrm{Me} / \mathrm{Me}}$ in the presence of a fluoride donor such as TBAF (tetra- n-butylammonium fluoride). But this reaction led only to a complicated mixture of phosphorus compounds, all of them displaying a direct coupling to a fluorine atom.

But if the reaction of oxaphosphirane complexes 22, 23 with TBAF was performed in the absence of $61^{\mathrm{Me} / \mathrm{Me}}$ the tetrabutylammonium fluorophosphinite complexes 74, $\mathbf{7 5}$ were selectively obtained (Scheme 64) which could be isolated and fully characterized.

22: $M=W$
23: $M=C r$
TBAF =
74: $M=W$
tetra-n-butylammonium fluoride
75: $\mathrm{M}=\mathrm{Cr}$
Scheme 64. Reaction of oxaphosphirane complexes 22 and 23 with TBAF.
It was possible to confirm the constitution of 75 by single-crystal X-ray analysis and the molecular structure is shown in Figure 49.

Figure 49. Diamond 3.0 X-ray structures of 75 (thermal ellipsoids are at 50% probability level. All hydrogen atoms and, except for the ipso carbon, the phenyl rings of the trityl moiety are omitted for clarity.

5.4 Reduction reactions of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes

As described in the introductory part of this thesis, a study of Espinosa and Streubel provided first insights into the intrinsic strength of the exocyclic bonds to phosphorus in oxaphosphirane κ^{P}-pentacarbonylmetal(0) complexes towards reductive reaction conditions. ${ }^{[111]}$ They demonstrated that the heterolytic bond cleavage leading to a carbocation and the oxaphosphiranido complex XLI- was found to be lowest in energy, especially if the R group is bulky and able to stabilize the positive charge efficiently as is the case for the trityl substituent (XLIc) in Scheme 65. ${ }^{[59]}$

Scheme 65. Fundamental bond-cleavage processes $A-C$ of the $P-R$ bond and computed energetics ($\mathrm{kcal} / \mathrm{mol}$) for the dissociation and redox processes of compounds XLIa-c (COSMOtнғ/B3LYP-D/def2-TZVP). [111]

Recently, a new theoretical study of redox potentials and on anion/cation radical formation from oxaphosphirane complexes, especially designed for $\mathbf{4 c}$ and the fluorinated derivatives 20-22, was performed by Frontera (Figure 50).

4c

20

21

22

Figure 50 . Oxaphophirane complexes $\mathbf{4 c}, \mathbf{2 0 - 2 2}$ theoretically studied. ${ }^{[84]}$
The HOMO-LUMO energies and the reduction potentials of complexes $\mathbf{4 c}$ and 20-22 are summarized in Table 28 and Table 29 (gas phase and THF respectively). The following, expected trend can be stated: the energy of the HOMO/LUMO decreases as the number of electron withdrawing fluorine substituents increases.

Table 28. HOMO-LUMO energies in eV (gas-phase) and theoretical redox potential in Volts for compounds 4c and 20-22 at the BP86/def2-TZVP//BP86-D3/def2-TZVP level of theory

Complex	HOMO (eV)	LUMO (eV)	Ered (Volts)
$\mathbf{4 c}$	-5.65	-2.54	-1.84
$\mathbf{2 0}$	-5.67	-2.55	-1.85
$\mathbf{2 1}$	-5.73	-2.59	-1.81
$\mathbf{2 2}$	-5.83	-2.80	-1.60

Table 29. HOMO-LUMO energies in eV (solvent: THF) and theoretical redox potential in Volts for compounds 4c and 20-22 at the BP86/def2-TZVP//BP86-D3/def2-TZVP level of theory

Complex	HOMO (eV)	LUMO (eV)	Ered (Volts)
$\mathbf{4 c}$	-5.71	-2.62	-1.78
$\mathbf{2 0}$	-5.77	-2.64	-1.76
$\mathbf{2 1}$	-5.80	-2.66	-1.74
$\mathbf{2 2}$	-5.83	-2.78	-1.62

The one electron reduced species of complexes 4c and 20-22 (= anion radicals) were also computed. The optimized geometries together with the spin density plots are shown in Figure 51. The distances of the three membered rings are given in Table 30 for the oxaphophirane complexes $\mathbf{4 c}, \mathbf{2 0 - 2 2}$ and their corresponding anion radical especies. In the anion radical compounds $\mathbf{4 c}, \mathbf{2 0 - 2 2}$, the $\mathrm{P}-\mathrm{C}$ distance increases considerably and the $\mathrm{P}-\mathrm{O}$ distance increases moderately after one electron reduction and, in contrast, the $\mathrm{C}-\mathrm{O}$ distance shortens. The significant enlargement of the $\mathrm{P}-\mathrm{C}$ distance can be explained by examining the LUMOs that are half-filled upon the one electron reduction (Figure 52 for the plot of the HOMO/LUMO of compounds $\mathbf{4 c}$ and 25) and the antibonding nature in the $\mathrm{P}-\mathrm{C}$ bond is clearly appreciated. In fact, the spin density plots show that, in all complexes, the unpaired electron is basically localized at the $\mathrm{P}-\mathrm{C}$ bond with some delocalization onto the aromatic ring (Figure 51). Another interesting bond that also enlarges is the exocyclic $P-\mathrm{CPh}_{3}$ bond (approximately 0.05 \AA A in all complexes) that also agrees with the antibonding nature of this bond in the LUMO.

Anion radical complexes 4c, 20-22

Spin density plots
Figure 51. Top: Optimized geometries of the anion-radicals of complexes 4 c and $\mathbf{2 0 - 2 2}$. Bottom: Spin density plots of the anion radicals (isovalue $=0.004 \mathrm{e}^{-3}{ }^{-3}$).
Table 30. Three membered ring distances (\AA) computed for neutral compounds 4c, 20-22 and their anion radical species at the BP86-D3/def2-TZVPD level of theory

Bond	4c	[4c-] ${ }^{-}$	20	${ }^{[20}{ }^{-}{ }^{+}$	21	[21-] ${ }^{\text {- }}$	22	[22-] ${ }^{\text {- }}$
P-C	1.809	1.944	1.800	1.970	1.801	1.880	1.811	1.944
P-O	1.686	1.707	1.682	1.706	1.682	1.708	1.687	1.709
C-O	1.465	1.442	1.471	1.435	1.469	1.445	1.455	1.436

Figure 52. Frontier orbital plots of complexes $\mathbf{4 c}$ and 22.
Based on these preliminary theoretical results, reactions of P-CPh 3 substituted oxaphosphirane complexes having fluorinated and non-fluorinated complexes towards SET and multiple reductions using potassium graphite (KC_{8}) were investigated.

5.4.1 Reactivity towards KC_{8}

Firstly, the potential of using KC_{8} as a reducing agent will be shortly described. Potassium graphite (KC_{8}) behaves, in some cases, similar or poorly compared to its homogeneous analogue sodium naphthalenide ${ }^{[134]}$ but it has the advantage that it does not form any soluble by-products. It was realized that this advantage is particularly important in organometallic chemistry. ${ }^{[135,136]}$ In addition KC_{8} was chosen as reductant for the following specific 3 reasons: (1) it is a powerful reductant (the redox potential of $\mathrm{K} / \mathrm{K}^{+}$is -2.92 eV). Thermodynamically, it is considered as the equivalent of potassium;[137] kinetically, it can form suspensions in common organic solvents so it has a greatly increased surface area compared to metallic potassium. ${ }^{[138]}$ (2) The byproducts of KC_{8} reduction are graphite and potassium salts which are not soluble in organic solvents and can be readily removed by filtration. (3) It is possible to prepare high quality KC_{8} by mixing a stoichiometric amount of potassium and graphite and milling the mixture at high temperature under an inert atmosphere. ${ }^{[135]}$

Oxaphosphirane complexes $\mathbf{4 c}$ and $\mathbf{2 2}$ were firstly treated with 1 equivalent of KC_{8} in a THF solution using a glovebox, and these solutions were stirred at room temperature for 14 days. Under these conditions, no reaction was observed in both cases. The amount of potassium graphite was then increased to 2 equivalents and after 8 hours stirring a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurement detected a reaction for both oxaphosphirane complexes 4c and 22 (Scheme 66). Firstly, the reactivity of the non-fluorinated oxaphosphirane complex $\mathbf{4 c}$ will be discussed.

Scheme 66. Reaction of oxaphosphirane complexes $\mathbf{4 c}$ and $\mathbf{2 2}$ with potassium graphite.

A first sample was taken after 2 days of stirring and a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum recorded (Figure 53). Two new phosphorus resonance signals appeared at lower field, both presenting a direct coupling to one hydrogen atom. The complete consumption of the
starting material was reached after about one week, leading to a deep red solution with a black precipitate, presumably corresponding to the graphite, and presenting a main product with a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance at 91.5 ppm .

Figure 53. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring of the reaction of $\mathbf{4 c}$ with potassium graphite.

After the separation of the precipitate (via filtration), a multinuclear NMR analysis was performed (Figure 54). In the ${ }^{1} \mathrm{H}$ NMR spectrum, apart from the aromatic protons (green in Figure 54) corresponding to the trityl moiety and the phenyl group attached to the carbon atom of the oxaphosphirane, three new resonances were detected. As in the phosphorus NMR already observed, the directly bound proton appears at 8.5 ppm (blue in Figure 54) presenting a coupling to the phosphorus nucleus of 292 Hz . Another proton at 2.8 ppm (yellow in Figure 54), which is long-range coupled to the phosphorus nucleus (Table 31) and at 5.5 ppm (black in Figure 54) a new resonance, assigned to $\mathrm{Ph}_{3} \mathrm{CH}$ was found. This indicated that the P-bound triphenylmethyl was cleaved off. As the triphenylmethyl radical is known to be stable insolution under inert atmosphere and at room temperature, ${ }^{[50]}$ the detection of this radical should be possible.

Table 31. Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR resonances [ppm], ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{w}}$ and ${ }^{\mathrm{n}} \mathrm{J}_{P, H}[\mathrm{~Hz}]$ of complex 76 in THF-d8.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	${ }^{1} \mathrm{JP}, \mathrm{W}$	${ }^{1} \mathrm{H}$	${ }^{\mathrm{n}} \mathrm{JP}, \mathrm{H}$
91.5	257.3	$7.6-6.8$	292.1
		5.5	-
		2.8	-

A proposal for the outcome of this reaction in given in Figure 54 together with the proton NMR analysis.

Figure 54. Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum and proposal for the product of the reaction of $\mathbf{4 c}$ with KC_{8}, the phosphaalkene complex 76.

Scheme 67. Reaction of $\mathbf{4 c}$ with 2 eq. of KC_{8} to give 76.
To detect the presence of radical species, EPR measurements were performed in collaboration with the research group of Schiemann, Bonn. First measurements by Matsuoka revealed the presence of an organic radical, but to confirm that this radical corresponded to triphenylmethyl, several experiments were necessary to find the optimal conditions. Finally, the trityl radical was confirmed as the proton splitting is in good agreement with data from the literature (Figure 55).

Figure 55. High-resolution EPR of cmg661FEX in deuterated benzene (blue) and benzene (black). Red lines show the spectral simulation.

The magnitude and number of the splitting depend on the spin density at protons and the number of protons. As shown in Figure 56, there exist the six ortho-, six meta-, and three para-protons in the triphenylmethyl radical. In the spectra simulation, three inequivalent protons were considered, each of which is composed of six, six and three equivalent protons, respectively. The number of protons is identical to that in the triphenylmethyl radical. The magnitude of the splitting due to each proton was determined by the spectral simulation, which is given in Table 32. Here, the magnitude is normally called 'hyperfine coupling constant (A).

Figure 56. The number of ortho-, meta-, and para-protons in the triphenylmehyl radical, shown by red, blue, and yellow circles.

Table 32. Experimental and theoretical hyperfine coupling constants of protons in the triphenylmethyl radical.

	Hyperfine coupling constant, A [MHz]		
	Experimental	Theoretical	Literature ${ }^{[139]}$
Ortho	7.27	7.36	7.31
Meta	3.21	3.84	3.20
Para	7.92	8.14	8.01

The hyperfine coupling constants A were also calculated by density functional theory. The calculated constants are also shown in Table 32, which reasonably reproduce the experimental values.

The decay kinetics of EPR was measured twice as shown in Figure 57. The sample was purged with argon in an EPR tube sealed with a cap in Period A, where the EPR signal intensity was constant. The result indicates that the radical is stable under argon atmosphere. Immediately after the sample was exposed to air by opening the sealed tube, the signal intensity decayed with time (period B), meaning that the radical is unstable in air. As shown in literatures, triphenylmethyl radical reacts with oxygen to yield triphenylmethyl peroxide in solution. Combined with the spectral simulations, it can be concluded that the radicals observed here are assigned to the triphenylmethyl radical.

Figure 57. Decay kinetis of EPR signals measured on (a) Dec. 8 and (b) Dec. 14. The sample was purged with argon in an EPR tube sealed with a cap in eriod A, and the sample was exposed to air during the measurement by opening the sealed tube in period B.

Although the exo P-C bond cleavage reaction is relatively selective, the presence of triphenylmethyl and other by-products made isolation and characterization of the main product very complicated. To have more insights into a plausible mechanism that could explain the formation of the main product, theoretical calculations were done by Frontera on the reaction pathway of the SET reduction of the oxaphosphirane 4 c with KC_{8}. Firstly, the LUMO of compound $\mathbf{4 c}$ was examined in order to know the effect of populating this orbital by one electron, and the initially formed anion radical undergoes a $P-\mathrm{CPh}_{3}$ bond breaking, yielding the trityl radical and the intermediate 80 (Scheme 68). The latter can react via proton abstraction (from the solvent) or via proton shift to yield the complexes 81 and 82, respectively. In case of 82, again, proton abstraction (from the solvent) may yield the final product 76; it couldn't be clarified why only one isomer was formed under these conditions.

Scheme 68. Plausible mechanism for the reaction of oxaphosphirane $\mathbf{4 c}$ upon addition of KC_{8}.

The optimized structures of complexes 80 and 82 and their relative energies (in THF) are shown in Figure 58.

80

82
$31.2 \quad$ Erel $(\mathrm{kcal} / \mathrm{mol})$
27.8

Figure 58. Optimized geometries of the anionic compounds that can be derived from the mechanism shown in Scheme 1, the relative energies are given in $\mathrm{kcal} / \mathrm{mol}$.

To compare this outcome, reaction of the fluorinated oxaphosphirane complex 22 with potassium graphite was also investigated. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction solutions showed a resonance at 92.9 ppm which may indicate a related phosphalkene complex, as proposed for the reaction of $4 \mathbf{c}$, but in this case it was not the major product. This signal is accompanied by a resonance at 152.0 ppm which presents a phosphorus nucleus with a direct coupling to a fluorine atom (${ }^{1} J_{P, F}=1041.4 \mathrm{~Hz}$). The NMR features are almost identical to that of 66, thus being (most likely) potassium fluorophosphinite complex 77. In total, it can be concluded that two reaction pathways are competing in the case of the $1: 1$ stoichiometry.

Table 33. Selected ${ }^{31}{ }^{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances [ppm], ${ }^{1} \mathrm{JP}, \mathrm{w},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{F}}$ and ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}$ $[\mathrm{Hz}]$ in THF-d8.

Compound	${ }^{31}$ P-NMR	${ }^{19}$ F-NMR	${ }^{1}$ Jp, W	${ }^{1}$ JP,F	${ }^{1} \mathrm{JP}, \mathrm{H}$
76	91.5	-	257.2	-	292.3
78/77	92.9/152.0	-/-33.0	319.7	1041.4	-
66	152.7	-33.0	319.8	1032.7	30.3

According to the theoretical study of Frontera, the fluorinated derivative $\mathbf{2 2}$ can follow the same mechanism as 4 c and give the corresponding analogue 78 (Table 33). To check if a trityl radical is also present in this case, EPR measurements were performed and the result revealed the presence of small amounts of the trityl radical. As indicated in the literature, the concentration of triphenylmethyl radical in benzene solution is $\sim 2 \%$ at room temperature. Since the radical concentration in benzene was 0.01 mM , the initial concentration of the radical was expected to be 0.5 mM , which is far below the concentration of the given sample. This may be due to the two competing pathways thus not giving stoichiometric amounts of the radical.

Since it is known from the literature that variations in the amounts of KC_{8} can lead to different outcomes, ${ }^{[140]}$ these reactions of complexes $4 \mathbf{c}$ and 22 were repeated using an excess of potassium graphite (2-3 equivalents).
In both cases the starting materials were consumed after 24 hours of stirring at room temperature in THF. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ measurements showed "empty" spectra for both oxaphosphirane complexes, i.e., no signals were obtained. This could be, presumably, due to the presence of radicals located on or near the phosphorus atom. The reaction of $\mathbf{4 c}$ led to a dark red solution with black precipitate which was also abserved for 22, but in this case together with a dark brown solution; the graphite was easily separated from the reaction mixtures via filtration. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopic measurements of both reactions revealed only the resonances corresponding to the triphenylmethane group. Therefore, EPR measurements were performed to detect presence of radicals, which was successful in case of the trityl radical, but also small amounts of another non-carbon centered radical were detected. Brief exposure of both reaction solutions to air led to a rapidly vanishing color, thus turning into light yellow solutions. After this color change had occurred, a new NMR analysis was performed but still no resonances in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum were observed. Further efforts to trap the radicals via reacting the colored solutions with TEMPO, anthracene or tetrachloro-orthobenzoquinone were not successful.

To bring some more light to the reaction outcome, theoretical calculations were performed by Frontera at the BP86-D3/def2-TZVP level of theory, and preliminary results were used to discuss a plausible mechanism for the reduction of oxaphosphirane complexes $\mathbf{4 c}$ and 22 using three equivalents of KC_{8} (Scheme 69). This proposal is based on the assumption that $\mathrm{K}_{2}\left[\mathrm{~W}(\mathrm{CO})_{5}\right]$ and $(\mathrm{Ph})_{3} \mathrm{C}$. species are formed at an early stage of the reaction. Compound 83 and its isomers and protonated derivatives 85-91 were computed in order to know (at least) their relative stabilities.

Scheme 69. Plausible theoretical mechanism for the formation of $85,87,89$ anions for $\mathrm{Ar}=\mathrm{Ph}$ and $\mathrm{C}_{6} \mathrm{~F}_{5}$ and products derived via formal protonation.

The optimized compounds and relative energies (in THF) are shown in Figure 59a for $\mathrm{Ar}=\mathrm{Ph}(83,85,87$ and 89$)$ and in Figure 59b for $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}\left(83^{\mathrm{F}}, 85^{\mathrm{F}}, 87^{\mathrm{F}}\right.$ and $\left.89^{\mathrm{F}}\right)$. The cyclic intermediates (83 and 83^{F}) are highly energetic (due to the ring strain) and upon opening could yield different derivatives (85,87 and 89 , Scheme 69). For both derivativess (phenyl or pentafluorophenyl) the most stable derivative is 89 in which the negative charge is delocalized between the O and C atoms. For $\mathrm{Ar}=\mathrm{Ph}$, the anionic product 85 , having the negative charge also delocalized, is only $4.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than 89. Conversely, for $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}$ product 89^{F} is much higher in energy than 85^{F}, because the electron withdrawing $\mathrm{C}_{6} \mathrm{~F}_{5}$ group is able to stabilize the negative charge in 89^{F} by both inductive and resonance effects. Note that this behavior is not observed when the $\mathrm{W}(\mathrm{CO})_{5}$ moiety is present. We have also evaluated the relative energies of all possible final products (upon protonation of the anions), which are shown in Figure 60. The most stable isomers correspond to the two possible protonated isomers of the anionic species 89 (denoted as 90 and 91) for both series, that are almost isoenergetic. This behaviors is different if the $\mathrm{W}(\mathrm{CO})_{5}$ moiety is present at phosphorus, since the most stable isomer is 90 instead of 91 for $\mathrm{Ar}=\mathrm{Ph}$.

83

83^{F}
47.6

85
4.6

87
$E_{\text {rel }}(\mathrm{kcal} / \mathrm{mol}$
25.0

89
0.0

$87^{\text {F }}$
38.2

89^{F}
0.0

Figure 59. Optimized geometries of anionic compounds that can be derived from the mechanism shown in Scheme 69 (color code: green (F), grey (C), orange (P), red (O) and white (H)); relative energies are given in $\mathrm{kcal} / \mathrm{mol}$.
(a)

84
16.2

84 ${ }^{\text {F }}$
16.4

F

86
16.3
86
16.3

86^{F}
22.7

88
$\mathrm{E}_{\text {rel }}(\mathrm{kcal} / \mathrm{mol}) \quad 1.2$

90
0.0

88^{F}

90^{F}
0.9

Figure 60. Optimized geometries of the protonated compounds that can be derived from the mechanism shown in Scheme 69 (color code: green (F), grey (C), orange (P), red (O) and white (H)); The relative energies are given in $\mathrm{kcal} / \mathrm{mol}$.

5.4.2 Deoxygenation reactions of $P-\mathrm{CPh}_{3}$ substituted oxaphosphirane complexes

The chemistry of free radicals is one of the most useful tools for the formation of C-C bonds in organic synthesis. This is due to the facile generation of radicals under mild conditions, the broad compatibility with several functional groups and solvents and the high selectivity towards different transformations. ${ }^{[141]}$

In this context, metals in a low oxidation state such as Sm^{11} species ${ }^{[142,143]}$ and Till species ${ }^{[142]}$ play a key role. Especially titanium reagents, apart from being excellent reagents for single electron transfer (SET) reactions, present a low toxicity and a facile
and low cost production. As such, titanocene trichloride and $\mathrm{Cp}_{2} \mathrm{TiCl}$, characterized by Green in $1972{ }^{[144]}$ has demonstrated to be a high utility reagent with some interesting features. ${ }^{[144]}$ First, it is easily generated by in situ reaction of Tilv derivatives such as $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ with a reducing metal such as $\mathrm{Mn},{ }^{[145]} \mathrm{Al},{ }^{[146]} \mathrm{Zn}{ }^{[146]}$ or $\mathrm{Mg},{ }^{[147]}$ as Scheme 70 shows. ${ }^{[148]}$

$$
2 \mathrm{Cp}_{2} \mathrm{Ti}^{\mathrm{V}} \mathrm{Cl}_{2} \xrightarrow[\mathrm{THF}]{\mathrm{Zn}^{0}} 2\left[\mathrm{Cp}_{2} \mathrm{Ti}^{\mathrm{III}} \mathrm{Cl}\right]+\mathrm{Zn}^{\mathrm{II}} \mathrm{Cl}_{2}
$$

Scheme 70. In situ synthesis of a reactive Till species using $\mathrm{Zn}\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5}\right) .{ }^{[148]}$

Under specific conditions, this complex crystallizes as a trinuclear species, however experimental results suggest that such structures are only characteristic in the solid state. ${ }^{[145,147]}$ Indeed, it has been demonstrated that in solution the complex presents an equilibrium between the monomer $\mathrm{Cp}_{2} \mathrm{TiCl}$ and the dimer $\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2} .{ }^{[149]}$ Both species have unpaired electrons that confer the one-electron transfer character.

Scheme 71. Reversible equilibrium of $\left[\mathrm{Cp}_{2} \mathrm{Tilll} \mathrm{Cl}\right] \mathrm{XXX}$ in solution. ${ }^{[149]}$
It has been demonstrated that titanocene ${ }^{\text {III }}$ easily and selectively allows the deoxygenation of epoxides. The process consists of two consecutive one electron transfers. After the coordination and inner-sphere one electron transfer, a homolytic CO bond cleavage occurs. If the β-titanoxy radical formed is trapped by a second unit of titanocene ${ }^{\text {III }}$, a deoxygenation process takes place and the corresponding alkene is generated.

Scheme 72. Deoxygenation of epoxides with $\mathrm{Cp}_{2} \mathrm{Tilll}^{[1 /} \mathrm{Cl}^{[150]}$
Another precursor for a Till reagent, suitable for deoxygenation reactions, is cyclopentadienyltitanium(IV)trichloride $\left(\mathrm{CpTi}^{j V} \mathrm{Cl}_{3}\right)$ which can be reduced with Zn and used in situ as mixture of [$\mathrm{CpTill}^{1 / \mathrm{Cl}} \mathrm{l}_{2}$] and zinc dichloride. ${ }^{[151]}$

Scheme 73. In situ preparation of [CpTill' Cl_{2}]. ${ }^{[151]}$
In the introduction of this Thesis it was pointed out that phosphorus strongly resembles carbon and indeed, many phosphorus compounds undergo similar reactions as their carbon analogs. Recently, Albrecht et al. demonstrated for the first time that reactions of oxaphosphirane complexes with titanium(III) reagents successfully led to a diastereomeric mixture of the corresponding E / Z phosphalkene complexes via deoxygenation (Scheme 74); both isomers were formed in a ratio close to 1:1. ${ }^{[152]}$ This has been demonstrated for oxaphosphirane complexes bearing different organic substituents at phosphorus $\left(\mathrm{Cp}^{*}\right.$ and $\left.\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$. It is worthmentioning that these reactions are very sensitive towards sterically demanding C-substituents and/or Till reagents; the system $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$ in THF showed higher selectivities. In case of P CPh_{3} substituted oxaphosphirane complexes introduction of functionalized groups at the ring carbon atom such as donor groups also make a difference and formation of P, N-chelate phosphaalkene complexes were observed by Klein, i.e. in case of 3-mono(2-pyridyl) substituted oxaphosphirane complexes. ${ }^{[153]}$

Scheme 74. SET-induced deoxygenation of $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes. ${ }^{[152]}$

5.4.2.1 Reactivity of CPh3-P substituted oxaphosphirane complexes towards deoxygenation with Tilll reagents

In the following, the influence of electron-withdrawing groups at the carbon atom of the oxaphospirane ring in deoxygenation reactions with Till SET reagents was studied. Firstly, oxaphosphirane complex 4c was reacted with stoichiometric amounts of in situ generated solutions of $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$ in THF as Scheme 75 shows.

Scheme 75. Reaction of oxaphosphirane complex $\mathbf{4 c}$ with the system $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$.
The reaction of $\mathbf{4 c}$ with the system $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$ was performed inside the glovebox, at room temperature, and the mixture was stirred for 24 hours. After this time, a sample was taken and a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was measured, showing only one phosphorus resonance, of the phosphaalkene complex 92. The dark green mixture was filtered and subsequently controlled by new NMR measurements; it was observed that complex 92 slowly decomposed over time as depicted in Figure 61.

Figure 61. ${ }^{31} \mathrm{P}$ NMR monitoring of the reaction of $\mathbf{4 c}$ with $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$ (Blue: measured 10 min . after filtration; red: 1 hour after filtration; green: 2 hours after filtration).

Complex 86 slowly decomposed in solution (r.t.) to give a main product at -85.6 ppm together with a direct coupling to two hydrogen atoms which, therefore, can be assigned to the corresponding $\mathrm{Ph}_{3} \mathrm{CPH}_{2}$ tungsten complex. ${ }^{[154]}$ Complex 92 could be characterized by performing a multinuclear NMR spectral analysis right after consumption of $\mathbf{4 c}$ was completed (20 h); selected NMR data are given in Table 34.

Table 34. Selected NMR data of 92 and its $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{3}$ substituted analogous complex (B); shifts in [ppm] and couplings in [Hz]

Compound	${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (${ }^{\left({ }^{\text {J }} \text {, } \mathrm{C}\right.}$)			
	CHP	${ }^{2} J_{\text {P }, \mathrm{H}}$	CHP	\underline{C}	cis-CO	trans-CO
92	9.1	23.7	170.9 (35.6)	67.3 (br)	194.8 (9.0)	197.7 (33.4)
$\mathrm{B}^{*[152]}$	8.3	17.5	165.1 (39.0)	23.5 (19.6)	195.4 (9.7)	197.5 (29.7)

*Only the data of one isomer is given here.
Besides the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of 92, the data of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum supports the phosphaalkene structure, especially the signal at 170.9 ppm having a ${ }^{1} \mathrm{JP}, \mathrm{C}$ coupling constant of 35.6 Hz . The resonance of the $\mathrm{C} \underline{H}=\mathrm{P}$ proton was found at
9.1 ppm , thus having a very similar shift like in the case of the known $\mathrm{P}-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ substituted complex complex B (Table 34).

Albrecht had obtained some evidence that the deoxygenation might follow an outersphere mechanism, but this hypothesis wasn't fully confirmed. ${ }^{[155]}$ Therefore, the fluorinated oxaphosphirane derivatives 20-22 were also reacted with in situ generated solutions of $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$ in THF under the same conditions.

But for these three derivatives no reaction was observed, neither with $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$ nor with $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / \mathrm{Zn}$. Several attempts to achieve a reaction were carried out by changing the typical reaction parameters such as stoichiometry, concentrations and temperature, but the fluorinated oxaphosphirane complexes always stayed intact. The conclusion is that the electron-withdrawing nature of the fluorinated substituents are leading to a less basic oxygen atom of the oxaphosphirane ring that is required to coordinate to the titanium center as strictly required by an inner-sphere mechanism.

6. Summary

The objective of this thesis was to synthesize different P - CPh_{3} substituted oxaphosphirane complexes with a main focus on derivatives bearing fluorinated substituents at the ring carbon atom, as well as, the study of their reactivity towards strong σ-donors i.e. NHCs, ring-opening reactions with Brønsted acids, SET (single electron transfer) and multiple electron reductions.

Using reactions of $\mathrm{Li} / \mathrm{Cl}$ phosphinindenoid complexes 3a-c and different aldehydes (benzaldehyde, acetaldehyde and butyraldehyde) new oxaphosphirane complexes 4a,b, 5 and 6 were synthesized in very good yields (4a: 88\%; 4b: 78\%;5: 76\%, 6: 81\%) and fully characterized including X-ray structures in most cases.

4a

4b

5

6

Scheme 76. Newly synthesized oxaphosphirane complexes 4a-c, 5 and 6.
Using a sterically more demanding ketoneinstead of an aldehyde, i.e. benzophenone, complexes 9 and 10 were formed, bearing P-ligands with fused ring systems (Scheme 77). The ligand structures of 9a-c and 10a-c were confirmed by NMR spectroscopy and X-ray diffraction studies.

Scheme 77. Reaction of Li/Cl phosphinidenoid complexes 3a-c with benzophenone. DFT studies showed that complexes 9a-c were formed from a short-lived oxaphosphirane complex via P-C ring cleavage, followed by P-C (phenyl) cyclization
and either pericyclic or (most likely) water catalyzed (concerted or stepwise) suprafacial $[1,3] \mathrm{H}$ shift. The novel pentacyclic structure type 10a-c may arise from a phospha-Diels-Alder reaction between two reactive intermediates, one of which being a 2-phosphafurane complex transiently formed via a phospha-ene elimination of HCPh_{3}.

To study in greater depth the electronic situation of the strained heterocyclic P-ligand, several C-fluorinated oxaphosphirane complexes were synthesized and isolated in very good yields (20: 74\%; 21: 81\%; 22: 87\%; 23: 82\%; 24: 88\%; 27: 91\%; 41: 92\%; Scheme 78); only 31 decomposed in solution due to an unknown instability.

20: $\mathrm{Ar}^{\mathrm{F}}=2,6$-difluorophenyl

23: $A r^{F}=$ perfluorophenyl

27: $\mathrm{Ar}^{\mathrm{F}}=$ perfluorophenyl

21: $\mathrm{Ar}^{\mathrm{F}}=2,4,6$-trifluorophenyl

24: $\mathrm{Ar}^{\mathrm{F}}=$ perfluorophenyl

31: $\mathrm{Ar}^{\mathrm{F}}=$ perfluorophenyl

22: $A r^{F}=$ perfluorophenyl

41

Scheme 78. Synthesis of fluorinated oxaphosphirane complexes 20-24, 27, 31 and 41.

In the solid state structures of the new oxaphosphirane tungsten complexes 4c, 20-22 $C O \cdots \pi$ arene contacts between the oxygen atom of one carbonyl ligand to the arene ring plane were identified. Unexpectedly, the C-phenyl substituted oxaphosphirane complex $\mathbf{4} \mathbf{c}$ shows the shortest CO \cdots m distance ($2.981 \AA$), being similar to the one observed for the pentafluorophenyl derivative 22 (2.983 Å; Figure 62). By means of theoretical calculations, the affinity of the M-CO moiety for both "electron rich" and electron deficient rings was rationalized as follows: the interaction can be understood as a $\pi-\pi$ interaction in which the negative part of the CO group interacts dominantly in $\mathbf{2 2}$ with the π-acidic arene, whereas the interactions of the positive part of the CO
group is dominant in $\mathbf{4 c}$ in case of a (more) m-basic arene; additional packing effects were also discussed.

Figure 62. X-ray structures of $\mathbf{4 c}{ }^{[53]}$ and $\mathbf{2 0 - 2 2}$ showing the intramolecular interaction (distances in \AA).

The reactions of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes (3c, 26 and 30) towards fluorinated ketones revealed an unprecedented ambiguous reactivity. For the P-trityl (3c) and P Cp* derivatives (26) a SET pathway involving a transient phosphanyl complex / hexafluoroacetonyl radical pair was disclosed. The reaction pathway starts with a noncovalent π-hole complex between the phosphinidenoid complex anion and hexafluoroacetone which is followed by an E1cBI elimination of fluoride promoted by the $\mathrm{Li}\left(12\right.$-crown-4) cation. In case of the $P-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$ substituted derivative 30 the reaction course is strongly influenced by a noncovalent $\mathrm{O} \cdots$ Si interaction present after the initial P-C bond forming step - not involving a radical pair according to DFT calculations - which is followed by several rearrangements and terminated by hydrolysis of a phosphaalkene complex to give the 1,2-bifunctional diol-type product 35. All compounds were fully characterized and their structure confirmed by X-ray crystallography.

Scheme 79. Reaction of phosphinidenoid complexes 3c, 29 and 30 with hexafluoroacetone.

The reaction of the related $P-C^{*}$-substituted oxaphosphirane complex 27 with aldehydes in ortho-dichlorobenzol under refluxing conditions led stereoselectively to

O,P,C-cage complexes 46 and 47 (Scheme 80). Theoretical calculations enable to propose a reaction pathway for the cage formation with the $\mathrm{C}-\mathrm{O}$ bond cleavage in complex 27 as initial and rate determining step.

Scheme 80. Synthesis of fluorinated O,P,C-cage complexes 46 and 46 F.
Furthermore, the diverse reactivity of fluorinated oxaphosphirane complexes was investigated. In case of the thermal reaction of 22 (toluene, $100^{\circ} \mathrm{C}$), decomplexation, involving loss of the pentacarbonyltungsten moiety and P-P bond formation, yielded the final product 45. The addition of a Brønsted acid to the more electron-deficient derivative $\mathbf{2 2}$ in the presence of aldehydes with different electronic character led to ring expansion reactions but, in contrast to previous results using a C-phenyl substituted oxaphosphirane complex, the reaction of 22 with the system triflic acid/NEt3 required significantly higher temperatures. Nevertheless the targeted 1,3,4-dioxaphospholane complexes 53-55 were isolated in good yields (53: 70\%; 54: 80\%; 55: 84\%); the latter represent first examples of fluorinated 1,3,4-dioxaphospholane complexes (Scheme 81).

Scheme 81. Versatile reactions of 22.

Complex 22 was also used to study its reactivity towards strong and basic nucleophiles. Therefore, two N -heterocyclic carbenes (NHCs; 61 ${ }^{\text {R/R') }}$) of different steric demand at the nitrogen atoms $\left(\mathrm{R}=\mathrm{Me},{ }^{\mathrm{i}} \mathrm{Pr}\right)$ were employed, leading to the formation of imidazolium fluorophosphinite complexes 66, 67 (Scheme 78); preliminary theoretical results were used to discuss a plausible reaction mechanism. Interestingly, reduction of 22 with an excess of KC_{8} (3 eq.) gave the corresponding potassium fluorophosphinite complex 77.

In contrast, the KC_{8} reduction of $\mathbf{4 c}$ using a $2: 1$ stoichiometry led to the exo $\mathrm{P}-\mathrm{Ctrityl}$ bond cleavage. The corresponding triphenylmethyl radical was confirmed by EPR spectroscopy, and the end-on phosphaalkene complex 76 was identified and characterized (Scheme 82).

The reactivity of $\mathbf{4 c}$ in SET reduction reactions using $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$ was also studied. Here, the formation of the end-on phosphaalkene complex 92 was observed (Scheme 82). In contrast, the fluorinated oxaphosphirane derivatives 20-22 did not show any reaction, which strongly points to the effect of the electron-withdrawing nature of the perfluorinated phenyl substituent, thus resulting in a lower nucleophilicity/donicity of the oxygen atom of the oxaphosphirane ring towards the Ti center that was previously proposed as the necessary initial step.

Scheme 82. Reactions of oxaphosphirane complex $4 \mathbf{c}$ with KC_{8} and $\mathrm{CpTiCl}_{3} / \mathrm{Zn}$.

7. Experimental Part

7.1 Preparative methods

All operations were carried out under an atmosphere of deoxygenated and dried Argon employing a BTS catalyst (Merck) heated at $100-110^{\circ} \mathrm{C}$, phosphorus pentoxide and silica gel using either, standard Schlenk techniques and conventional glassware or Glovebox techniques.
The use of Schlenk techniques required flame-dried glassware to remove adsorbed water. Prior to coming into an inert atmosphere, vessels were further dried by purge-and-refill - the vessels were subjected to a high vacuum to remove gases and water, and then refilled with inert gas. This cycle was usually repeated three times. All solvents were dried according to standard procedures using sodium wire/benzophenone or CaH_{2} and stored in brown bottles over sodium wire or molecular sieves under inert gas atmosphere. ${ }^{[156]}$
Most products were purified by low temperature column chromatography using columns equipped with an integrated cooling and vacuum mantel cooled with ethanol via a connected cryostat (information on column dimensions, temperature, solid phase and eluents will be provided for each compound).

7.2 Measuring methods and instruments

7.2.1 Melting point determination:

The melting points were determined with a Büchi (530) capillary apparatus.

7.2.2 Elementary analysis:

Elemental analyses were performed using an elementary vario EL analytical gas chromatograph.

7.2.3 Mass spectrometry:

Electron ionization (EI) mass spectra were recorded on the following spectrometers of the company Thermo Finnigan: Typs MAT 90, MAT 95 XL (70eV). ESI spectra (positive mode) and ESI tandem mass spectra were recorded on a Bruker APEX IV Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an Apollo ESI source (selected data given).

7.2.4 NMR spectroscopy:

NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Bruker Advance DMX 300 spectrometer (${ }^{1} \mathrm{H}$: 300.1 MHz, ${ }^{13} \mathrm{C}: 75.0 \mathrm{MHz},{ }^{19} \mathrm{~F}: 300.1 \mathrm{MHz},{ }^{29} \mathrm{Si}: 59.6 \mathrm{MHz}$ and ${ }^{31} \mathrm{P}: 121.5 \mathrm{MHz}$) or on a Bruker DPX $400\left({ }^{1} \mathrm{H}: 400.1 \mathrm{MHz},{ }^{7} \mathrm{Li}: 155.5 \mathrm{MHz},{ }^{13} \mathrm{C}: 100.6 \mathrm{MHz},{ }^{19} \mathrm{~F}: 300.1 \mathrm{MHz}\right.$, ${ }^{29} \mathrm{Si}: 79.5 \mathrm{MHz},{ }^{31} \mathrm{P}$: 161.9 MHz) using $\mathrm{CDCl}_{3}, \mathrm{THF}-\alpha^{8}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvents; shifts are given relative to external tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{29} \mathrm{Si}\right)$, trichlorofluoromethane (${ }^{19} \mathrm{~F}$) and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$.

7.2.5 IR-Spectroscopy:

The IR-spectra were measured either with a Nicolet 380 spectrometer. Solid as KBr pellets, with Nujol as film between two KBr slides, or with a SMART ITR ATR-Unity (Thermo Scientific) with diamond crystal. A selection of the measured bands and intensities will be given. The intensities will be characterized with the following abreviations: $s=$ strong, $m=$ medium, $w=$ weak, $s h=$ shoulder.

7.2.6 Single-crystal structure analysis:

Crystal structures were recorded at $123(2) \mathrm{K}$ (Mo K α-radiation ($\lambda=0.71073 \AA$) on a Nonius Kappa CCD diffractometer or on a STOE IPDS-2T diffractometer. The structures were resolved by Patterson-methods and refined by full-matrix least squares on F2 (SHELXL-97). ${ }^{[157]}$ All non-hydrogens were refined anisotropically. Hydrogen atoms were included isotropically using the riding model on the bound atoms; in some (denoted) cases hydrogen atoms were located in the Fourier difference electron density. Absorption corrections were carried out analytically or semi-empirically from equivalents. Additionally, the analysis of the X-ray data as well as the graphic representations were done using Diamond 3.0 software.

7.3 Chemicals

The following chemicals were commercially available and in most cases, purified before using:

- Acetaldehyde
Acros
- Aluminiumoxid Merck 90 neutral (70-230 mesh ASTM)
- Benzaldehyde
- Benzophenone
KMF
- Benzophenone
Aldrich
- Butyraldehyde

Aldrich

- Chromium hexacarbonyl
- 12-crown-4
- Diisopropylamine
- 2,6-difluorobenzaldehyde
- Diphenylacetylene
- [Dichlorobis(cyclopentadienyl)titan(IV)]
- Hexafluoroacetone

Aldrich or Merck

Acros
Aldrich
Aldrich
Alfa-Aesar
Acros

- 3-hydroxy-2-butanone
- Hydrochloric acid
- Methyltriflat
- Molybdenum hexacarbonyl
- $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylthiourea
- n-Butyllithium (1.6 M in hexane)
- 2,3,4,5,6-pentafluorobenzaldehyde
- Perfluorobenzophenone
- Silicagel Merck 60 ($0.063-0.2 \mathrm{~mm}, \mathrm{pH}=6.5-7.5$
- Sodiumhydride
- t-Butyllithium (1.6 M in hexane; 1.7 M in n-pentane)
- [Trichlorocyclopentadienyltitan(IV)]
- 2,4,6-trifluorobenzaldehyde
- Triethylamine
- Trifluoromethane sulfonicic acid
- Trimethylamine- N -oxid $\cdot 2 \mathrm{H}_{2} \mathrm{O}$
- Tungsten hexacarbonyl

Aldrich
Aldrich
Merck
Alfa-Aesar
Aldrich or Acros
Acros
Aldrich
Grüssing
Aldrich
Aldrich
ABCR

Aldrich

Acros

Aldrich

ABCR
Acros

Aldrich or Acros

Alfa-Aesar
Aldrich

The compounds listed hereafter were synthesized following the steps detailed in the corresponding literature:

- Acetonitrile(pentacarbonyle)chromium(0) ${ }^{[158]}$
- Acetonitrile(pentacarbonyle)molybdenum(0) ${ }^{[158]}$
- Acetonitrile(pentacarbonyle)tungsten(0) ${ }^{[158]}$
- [Bis(trimethylsilyl)methyl]dichlorophosphane ${ }^{[159]}$
- Dichloro(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)phosphane ${ }^{[97]}$
- Dichloro(triphenylmethyl)phosphane ${ }^{[154]}$
- \{Pentacarbonyl[dichloro(triphenylmethyl)phosphane-кP]tungsten(0)\} ${ }^{[53]}$
- \{Pentacarbonyl[dichloro(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)phos-phane-кP]tungsten(0) $\}^{[160]}$
- \{Pentacarbonyl[dichloro\{bis(trimethylsilyl)methyl\}phosphane-кP]tungsten(0)\} ${ }^{[68,103]}$
- Sodiumnaphthalenide ${ }^{[161]}$
- 1,3,4,5-Tetramethylimidazol-2-ylidene ${ }^{[128]}$
- 1,3-Diisopropyl-4,5-dimethylimidazol-2-ylidene ${ }^{[128]}$

7.4 Description of experiments and analytic data

7.4.1 General procedure for the synthesis of phosphinidenoid complexes $\mathbf{3 a , b}$

The corresponding metal complex $\left[\left(\mathrm{Ph}_{3} \mathrm{CPCl}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right]$ ($\mathbf{a}: \mathrm{M}=\mathrm{Cr}, \mathbf{b}: \mathrm{M}=\mathrm{Mo}$) was dissolved in THF-d8 (5 mL) and 1.0 eq. of 12 -crown-4 was added. The solution was cooled to $-80^{\circ} \mathrm{C}, 1.2 \mathrm{eq}$. of ${ }^{\text {th }} \mathrm{BuLi}[1.7 \mathrm{M}$ in n-pentane] were added dropwise and the solution was stirred for 5 minutes. After that, the solution was transferred into a cooled $\left(-90^{\circ} \mathrm{C}\right)$ NMR tube via a double-ended needle and was measured first at $-80^{\circ} \mathrm{C}$ and the $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex was then characterized by NMR methods at $-60^{\circ} \mathrm{C}$.

7.4.1.1 Synthesis of [Lithium(12-crown-4)][Pentacarbonyl(triphenyl-methyl-chlorophosphanido-кP)chromium(0)] (3a)

3a: $\left[\left(\mathrm{Ph}_{3} \mathrm{CPCl}_{2}\right) \mathrm{Cr}(\mathrm{CO})_{5}\right]: 250 \mathrm{mg}(0.47 \mathrm{mmol}) ; 12$-crown-4: $75 \mu \mathrm{~L}(0,47 \mathrm{mmol})$, ${ }^{\text {tBuLi: }}$ ($0.33 \mathrm{~mL}, 0.56 \mathrm{mmol}$)
${ }^{1} \mathrm{H}$ NMR (THF- $d 8,-60^{\circ} \mathrm{C}$, in ppm): $\delta=3.74$ (s, 16H, 12-c-4), 6.9-7.5 (m, 15H, CPh ${ }_{3}$)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=66.9$ (d, ${ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=22.8 \mathrm{~Hz}, \mathrm{CP}$), 68.3 ($\mathrm{s}, 12-\mathrm{c}-4$), 125.1 (s ,

$\left[\mathrm{Li}(12-\mathrm{c}-4)(\text { solv })_{n}\right]^{+}$ para- Ph), 125.5 ($\mathrm{d},{ }^{5} \mathrm{~J} \mathrm{C}, \mathrm{P}=1.3 \mathrm{~Hz}$, para- Ph), 125.9 (s, para-Ph), 127.1 (s, meta-Ph), 127.5 (s, meta-Ph), 128.0 (s, meta-Ph), 130.2 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=15.7 \mathrm{~Hz}$, ortho-Ph), 131.1 (s, ortho-Ph), 131.7 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=5.7 \mathrm{~Hz}$, ortho-Ph), 144.1 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=16.3 \mathrm{~Hz}$, ipso-Ph), 144.3 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=4.2 \mathrm{~Hz}$, ipso-Ph) 146.1 (s, ipso-Ph), 220.6 ($\mathrm{d},{ }^{2}{ }^{\mathrm{J}}, \mathrm{P}=6.9 \mathrm{~Hz}$, cis-CO), 221.6 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=20.1 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=310.4$. This signal displayed a shoulder on the high-field side (ratio ca. 3:1) that corresponds to the ${ }^{37} \mathrm{Cl}$ isotopomer of $\mathbf{3 a}$.

7.4.1.2 Synthesis of [Lithium(12-crown-4)][Pentacarbonyl(triphenyl-methyl-chlorophosphanido-кP)molybdenum(0)] (3b)

3b: [(Ph $\left.\left.{ }_{3} \mathrm{CPCl}_{2}\right) \mathrm{Mo}(\mathrm{CO})_{5}\right]$: $250 \mathrm{mg}(0.37 \mathrm{mmol}) ; 12$-crown-4: $70 \mu \mathrm{~L}(0,47 \mathrm{mmol})$, ${ }^{\mathrm{t} B u L i: ~}$ ($0.33 \mathrm{~mL}, 0.44 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR (THF-d8, $-60^{\circ} \mathrm{C}$, in ppm): $\delta=3.79$ (s, 16H, 12-c-4), 7.0-7.66 (m, 15H, CPh 3)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, $-60^{\circ} \mathrm{C}$, in ppm): $\delta=66.3$ (s, 12-c-4), 67.1 ($\mathrm{d},{ }^{1} \mathrm{~J}$ c, $=22.1 \mathrm{~Hz}, \mathrm{CP}$), 123.5

$\left[\mathrm{Li}(12-\mathrm{c}-4)(\text { solv })_{\mathrm{n}}\right]^{+}$ (s, para-Ph), 123.7 (s, para-Ph), 124.7 (d, ${ }^{5} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=1.35 \mathrm{~Hz}$, para-Ph), 125.5 (s, meta-Ph), 125.9 (s, meta-Ph), 126.8 (s, meta-Ph), 128.2 (d, ${ }^{3}{ }^{\mathrm{J}}, \mathrm{P}=17.8 \mathrm{~Hz}$, ortho-Ph), 130.4 (s, ortho-Ph), 130.9 (d, ${ }^{3} \mathrm{~J} \mathrm{c}, \mathrm{P}=9.7 \mathrm{~Hz}$, ortho-Ph), 147.2 (d, ${ }^{2} \mathrm{~J} \mathrm{c}, \mathrm{P}=22.6 \mathrm{~Hz}$, ipso-Ph), 148.9 (s, ipso-Ph), 149.2 (d, ${ }^{2}{ }^{\mathrm{J}}, \mathrm{P}=9.0 \mathrm{~Hz}$, ipso-Ph), 208.8 (d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=8.0 \mathrm{~Hz}, ~ c i s-C O\right), 216.2$ (d, ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=24 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, $-60^{\circ} \mathrm{C}$, in ppm): $\delta=280.4$ (major). This signal displayed a shoulder on the high-field side (ratio ca. 3:1) that corresponds to the ${ }^{37} \mathrm{Cl}$ isotopomer of $\mathbf{3 b}$.

7.4.2 General procedure for the synthesis of oxaphosphirane complexes 4a,b

To the freshly synthesized $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes 3a-c, 12-crown-4 (1.0 eq) and ${ }^{\text {t }} \mathrm{BuLi}(1.7 \mathrm{M}$ in n-hexane, 1.2 eq) in THF (7 mL), the corresponding aldehyde (1.2 eq) was added at $-78^{\circ} \mathrm{C}$ leading to the formation of a white precipitate. The reaction mixture was warmed up to $-15^{\circ} \mathrm{C}$ in a cooling bath (ca. 2 h) and volatiles were evaporated in vacuo (ca. 0.01 bar). The product was extracted with n-pentane (40 mL) and filtered. After evaporation of the solvent in vacuo, the residue was washed with n-pentane $(3 \times 1 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$, dried and thus obtained as white solid.

7.4.2.1 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-phenyl)-1,2-oxa-phosphiran-кP]chromium(0)\} (4a)

2a: $300 \mathrm{mg}, 0.48 \mathrm{mmol}$; 12-crown-4: $95 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$; ${ }^{\text {t }} \mathrm{BuLi}$ (1.7 M in n-hexane): $0.34 \mathrm{~mL}, 0.58 \mathrm{mmol}$; benzaldehyde: $70 \mu \mathrm{~L}, 0.58 \mathrm{mmol}$

Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{CrO}_{6} \mathrm{P}$
Molecular weight: $572.05 \mathrm{~g} / \mathrm{mol}$
Melting point: $121^{\circ} \mathrm{C}$
Yield: 264 mg ($0.46 \mathrm{mmol}, 88$ \%)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=3.9\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=2.2 \mathrm{~Hz}, \mathrm{CHP}\right), 7.0-7.2(\mathrm{~m}, 15 \mathrm{H}$, CPh_{3}), $7.4-7.6$ (m, 5H, Ph)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=59.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=20.6 \mathrm{~Hz}, \mathrm{PCO}\right), 67.5(\mathrm{~d}$, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.1 \mathrm{~Hz}, \mathrm{PCPh} 3$), $125.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{Ph}\right), 127.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.6 \mathrm{~Hz}, \mathrm{Ph}\right)$, 129.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=1.7 \mathrm{~Hz}, \mathrm{Ph}$), 129.7 ($\left.\mathrm{s}, \mathrm{Ph}\right), 133.2$ ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=11 \mathrm{~Hz}, \mathrm{Ph}$), 138.5 (d, ${ }^{2} J_{\mathrm{c}, \mathrm{P}}=6.3 \mathrm{~Hz}, \quad$ ipso-Ph), $211.6 \quad\left(\mathrm{~d}, \quad{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=14.5 \mathrm{~Hz}, \quad\right.$ cis-CO), $214.3 \quad(\mathrm{~d}$, ${ }^{2} \mathrm{~J}, \mathrm{P}=3.7 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm) : $\delta=58.7$
MS selected data m / z (\%): $572.0[\mathrm{M}]^{+}, 432.1$ (30) [M-5CO] ${ }^{+}, 326.0$ (15) $\left[\mathrm{M}-5 \mathrm{CO}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}\right]^{+}, 243.1$ (100) $\left[\mathrm{CPh}_{3}\right]^{+}$

IR (neat, $v(\mathrm{CO})$, in cm^{-1}): $v=2069,1996,1959(\mathrm{~s})$;
Elemental analysis: C [\%] H [\%]
Calculated: 65.043 .70
Found: 65.933 .85

7.4.2.2 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-phenyl)-1,2-oxa-phosphiran-кP]molybdenum(0)\} (4b)

2b: $300 \mathrm{mg}, 0.52 \mathrm{mmol}$; 12-crown-4: $84 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$; ${ }^{\text {tBuLi }}$ (1.7 M in n-hexane): $0.39 \mathrm{~mL}, 0.62 \mathrm{mmol})$; benzaldehyde: $64 \mu \mathrm{~L}, 0.62 \mathrm{mmol}$

Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{MoO}_{6} \mathrm{P}$
Molecular weight: $618.01 \mathrm{~g} / \mathrm{mol}$
Melting point: $98^{\circ} \mathrm{C}$
Yield: 234 mg ($0.38 \mathrm{mmol}, 78$ \%)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$) \delta=3.6\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2}{ }^{2} \mathrm{H}, \mathrm{P}=5.6 \mathrm{~Hz}, \mathrm{HP}\right), 7.0-7.2(\mathrm{~m}, 15 \mathrm{H}$, CPh_{3}), 7.4-7.6 (m, 5H, Ph)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=51.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=20.2 \mathrm{~Hz}, \mathrm{PCO}\right), 66.2$ (d, ${ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=13.7 \mathrm{~Hz}, \mathrm{PCPh}_{3}$), $127.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{Ph}\right), 128.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.6 \mathrm{~Hz}, \mathrm{Ph}\right)$, 129.0 (d, Jc,P = $1.7 \mathrm{~Hz}, \mathrm{Ph}$), 129.1 (s, Ph), 139.2 (d, Jc, P = $11 \mathrm{~Hz}, \mathrm{Ph}$), 139.6 (d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{Ph}\right), 202.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=126.3 \mathrm{~Hz}\right.$, cis-CO), $208\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=49 \mathrm{~Hz}\right.$, trans-CO)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}, in ppm): $\delta=33.4$
MS (selected data $m / z(\%)): 618.0[\mathrm{M}]^{+}, 478.0$ (20) $[\mathrm{M}-5 \mathrm{CO}]^{+}, 372$ (5) $\left[\mathrm{M}-5 \mathrm{CO}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}\right]^{+}, 243.1$ (100) $\left[\mathrm{CPh}_{3}\right]^{+}$

IR (neat, $v(\mathrm{CO})$, in cm^{-1}): $v=2077,1996,1968(\mathrm{~s})$
Elemental analysis: C [\%] H [\%]
Calculated: 60.703 .43
Found: 61.113 .65

7.4.2.3 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-propyl)-1,2-oxaphos-phiran-кP]tungsten(0)\} (6)

2c: $200 \mathrm{mg}, 0.30 \mathrm{mmol}$; 12-crown-4: $39 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$, tBuLi (1.7 M in n-hexane): $0.25 \mathrm{~mL}, 0.36 \mathrm{mmol}$; butyraldehyde: $32 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$

The pale white residue was purified by low temperature column chromatography $\mathrm{Al}_{2} \mathrm{O}_{3}, \quad-20^{\circ} \mathrm{C}, \quad \mathrm{h}=2 \mathrm{~cm}, \quad \varnothing=1 \mathrm{~cm}$, petroleum ether (150 mL); petroleum ether/dichloromethane 10:1 (150 mL).

Molecular formula: $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $616.39 \mathrm{~g} / \mathrm{mol}$
Melting point: $110^{\circ} \mathrm{C}$
Yield: 161 mg ($0.24 \mathrm{mmol}, 81 \%$)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=0.84\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.31-1.53(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.62-1.84 (m, 2H, CH2), 2.75 (t, 1H, CH), 7.12-7.45 (m, 15H, CPh ${ }_{3}$)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=12.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 18.6\left(\mathrm{~d},{ }^{3} \mathrm{Jp}, \mathrm{c}=4.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 30.9 (d, $\left.{ }^{2}{ }^{2} \mathrm{P}, \mathrm{C}=2.8 \mathrm{~Hz}, ~ P C O\right), 50.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}, \mathrm{C}=27.5 \mathrm{~Hz}, ~ P C O\right) 65.7(\mathrm{~d}$, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.3 \mathrm{~Hz}, \mathrm{PCPh}_{3}$), $126.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}, m-\mathrm{Ph}\right), 127.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=0.8 \mathrm{~Hz}\right.$,

```
p-Ph), 129.7 (d, Jc,P = 7.2 Hz, o-Ph), 138.9 (d, Jc,P = 2.3 Hz, i-Ph), 193.9 (d,
2}\textrm{J},\textrm{P}=8.1 Hz, cis-CO), 195.3 (d, 2 Jc,P = 39.1 Hz, trans-CO)
```



```
3 JP,H = 9.5 Hz);
MS selected data m/z (%): 670.1 [M]+`, 346.1 (10) [M-5CO]+, 372 (5)
[M-5CO -C44H8O]+`, 243.1 (100) [CP(43]}\mp@subsup{}{}{+
IR (neat, v(CO), in cm
Elemental analysis: C [%] H [%]
    Calculated: 50.17 3.46
    Found: }50.823.7
```


7.4.3 General procedure for the synthesis of complexes $9 \mathrm{a}-\mathrm{c}$, accompanied by the corresponding compounds 10a-c

To the freshly synthesized Li/Cl phosphinidenoid complex 3a-c, 12-crown-4 (1.0 eq) and ${ }^{\prime} B u L i(1.7 \mathrm{M}$ in n-hexane, 1.2 eq) in 7 mL of THF, benzophenone (0.69 M in THF) was added at $-78^{\circ} \mathrm{C}$ leading to the formation of a white precipitate. The reaction mixture was warmed to ambient temperature (4h of stirring) until complete consumption of the corresponding phosphinidenoid complex and volatiles were evaporated in vacuo (ca. 0.01 bar). The product 9 a could not be obtained in pure form due to decomposition during purification but, as well as $\mathbf{9 b}$, could be identified from the reaction mixture via NMR spectroscopy. 9c was extracted with n-pentane (40 mL), and filtered. After evaporation of the solvent in vacuo, washing with n-pentane ($3 \times 1 \mathrm{~mL}$) at $-50^{\circ} \mathrm{C}$, drying, the corresponding metal complex was obtained as a white solid. All attempts to separate 10a,b from 9a,b were unsuccessful. However, the full NMR characterization of $9 \mathrm{a}-\mathrm{c}$ could be achieved as well as the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances of 10a-c by identification and assignment of the corresponding resonances out of the mixture of $9 \mathrm{a}-\mathrm{c}$ and $\mathbf{1 0 a - c}$.

7.4.3.1 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-5-phenyl-benz[c])-

 1,2-oxaphospholane-кP]chromium(0)\} (9a)9a: $300 \mathrm{mg}, 0.48 \mathrm{mmol} ; 12$-crown-4: $95 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$; ${ }^{\text {tBuLi: } 0.34 \mathrm{~mL}, ~} 0.58 \mathrm{mmol}$; benzophenone: $1.4 \mathrm{~mL}, 0.58 \mathrm{mmol}$

Molecular formula: $\mathrm{C}_{37} \mathrm{CrH}_{25} \mathrm{O}_{6} \mathrm{P}$
Molecular weight: $648.08 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=5.64\left(\mathrm{~s}, 1 \mathrm{H}, \underline{\mathrm{HCPh}_{3}}\right)$; 6.27 (br. s, 1H, POC(H)Ph), 6.51 (d, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.11 \mathrm{~Hz}$, 1 H, Ar-H), 7.08 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}}, \mathrm{H}=7.40 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CPh}_{3}-\mathrm{H}$),
 7.15 (d, $\left.{ }^{3}{ }^{\mathrm{J}} \mathrm{H}, \mathrm{H}=6.70 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7,22-7,39$ (m, 3H, Ph-H, СРh $3-\mathrm{H}$), 7,47-7,56 (m, 6H, СРh -H), 7,63-7,73 (m, 3H, СРh -H , Ph-H), 7,81-7,83 (m, 3H, Ph-H, CPh $3-H$), $7.84-7.89$ (m, 2H, Ar-H)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm) : $\delta=69.5\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J} \mathrm{P}, \mathrm{C}=2.5 \mathrm{~Hz}, \mathrm{POC}(\mathrm{H}) \mathrm{Ph}\right), 86.3(\mathrm{~d}$, ${ }^{1} \mathrm{JP}, \mathrm{C}=8.9 \mathrm{~Hz}, \mathrm{Ph}_{3} \mathrm{C}$), 125.5 (s, C-Ph), 125.7 (d, Jp,C = $10.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}$), 126.1 (s, para- Ph), 126.3 (d, JP,C = 10.5 Hz , ortho- Ph), 127.6 (s, meta- Ph), 127.7 (s, para-Ph), 128.0 ($\mathrm{d},{ }^{1} \mathrm{~J} \mathrm{P}, \mathrm{C}=14.2 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}$), 128.8 (s, ortho-Ph), 129.2 (s, meta-Ph), 131.5 (s, ortho-Ph), 137.4 (s, C-Ph), 139.3 (d, Jp, $=22.9 \mathrm{~Hz}$, ipso-Ph), 142.7-143.2 (m, Ph-C), 143.7 (s, ipso-Ph), 143.9 (s, ipso-Ph), 146,9 (s, Ph-C), 199.2 (dsat, ${ }^{2}{ }^{\mathrm{J} P, \mathrm{C}}=9.6 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=132.0 \mathrm{~Hz}$, cis-CO), $204.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=32.9 \mathrm{~Hz}\right.$, trans-CO)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=190.3$

7.4.3.2 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-5-phenyl-benz[c])-1,2-oxaphospholane-кP]molybdenum(0)\} (9b)

9b: $300 \mathrm{mg}, 0.48 \mathrm{mmol} ; 12$-crown-4: $97 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$; ${ }^{\text {huLi: }} 0.36 \mathrm{~mL}, 0.58 \mathrm{mmol}$; benzophenone: $1.4 \mathrm{~mL}, 0.58 \mathrm{mmol}$

Molecular formula: $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{MoO}_{6} \mathrm{P}$
Molecular weight: $694.04 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=5.64$ (s, 1 H , HCPh $_{3}$), 6.35 (br. s, 1H, POC(H)Ph), 6.58 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.80 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CPh}_{3}-\mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.52 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Ar-H),
 7,22-7,45 (m, 3H, Ph-H, СРh3-H), 7,47-7,56 (m, 6H, СРh $3-H), 7,68-7,83(\mathrm{~m}$, 3H, $\mathrm{CPh}_{3}-\mathrm{H}, \mathrm{Ph}-\mathrm{H}$), 7,81-7,83 (m, 3H, Ph-H, CPh ${ }_{3}-\mathrm{H}$), 7.84-7.89 (m, 2H, Ar-H) ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm) : $\delta=70.1$ ($\left.\mathrm{d},{ }^{2 / 3} \mathrm{Jp}, \mathrm{c}=2.1 \mathrm{~Hz}, \mathrm{POC}(\mathrm{H}) \mathrm{Ph}\right), 86.3(\mathrm{~d}$, ${ }^{1} \mathrm{JP}, \mathrm{C}=8.5 \mathrm{~Hz}, \mathrm{Ph}_{3} \mathrm{C}$), 123.1 (s, C-Ph), 123.7 (d, Jp,C = $8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}$), 125.3 (s, para-Ph), 125.8 (d, Jp,c = 10.5 Hz , ortho-Ph), 126.2 (s, meta-Ph), 126.7 (s, para-Ph), 128.2 (d, ${ }^{1}$ JP, C= $\left.12.2 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}\right), 128.8$ (s, ortho-Ph), 129.7 (s, meta-Ph), 131.5 (s, ortho-Ph), 136.0 (s, C-Ph), 138.8 (d, Jp,C = 20.2 Hz , ipso-Ph), 140.1-142.6 (m, Ph-C), 143.2 (s, ipso-Ph), 143.8 (s,ipso-Ph), 145.1 (s, Ph-C), 19.8 (dsat, ${ }^{2} \mathrm{JP}, \mathrm{C}=6.6 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{C}}=132.0 \mathrm{~Hz}$, cis-CO), 202.3 (d, ${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=32.9 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm $): \delta=167.4$

7.4.3.3 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-5-phenyl-benz[c])-1,2-oxaphospholane-кP]tungsten(0)\} (9c).

9c: $300 \mathrm{mg}, 0.43 \mathrm{mmol}$; 12-crown-4: $69 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$; ${ }^{\text {'BuLi: } 0.25 \mathrm{~mL}, ~} 0.50 \mathrm{mmol}$; benzophenone: $1.22 \mathrm{~mL}, 0.50 \mathrm{mmol}$; white solid.

Molecular formula: $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $780.09 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm) : $\delta=5.58(\mathrm{~s}, 1 \mathrm{H}, \underline{\mathrm{HCPh}})^{2}$,
6.50 (br. s, 1H, POC(H)Ph), 7.15 (d, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.70 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.18 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Trt-H), 7.02
 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7,10-7,37(m,6H, Ph-H, Trt-H), 7,43-7,62 (m, 6H, Trt-H), 7,63-7,73 (m, 3H, TrtH, Ph-H), 7,77-7,85 (m, 3H, Ph-H, Trt-H), 7.91 (d, ${ }^{3} J_{H}, \mathrm{H}=6.93 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm) : $\delta=68.6\left(\mathrm{~d},{ }^{2 / 3} \mathrm{Jp}, \mathrm{c}=2.1 \mathrm{~Hz}, \mathrm{POC}(\mathrm{H}) \mathrm{Ph}\right), 86.3(\mathrm{~d}$, ${ }^{1} \mathrm{JP}, \mathrm{C}=8.7 \mathrm{~Hz}, \mathrm{Ph}_{3} \mathrm{C}$), 123.0 (d, JP,C = 7.4 Hz, Ar-C), 126.3 (s, para-Ph), 126.5 (d, $J_{\mathrm{P}, \mathrm{C}}=10.0 \mathrm{~Hz}$, ortho-Ph), 127.3 (s, meta-Ph), 128,2 (s, para-Ph), 129,5 (s, ortho-Ph), 130,0 (s, meta-Ph), 132,4 (s, ortho-Ph), 137,6 (s, C-Ph), 139,2-140.0 (m, Ph-C), 141,1 (d, JP, C = 22.9 Hz , ipso-Ph), 143,2 (d, JP, C = 11.6 Hz , ipso-Ph), 143.9 (s, ipso-Ph), 146,9 (s, Ph-C), 196.5 (dsat, ${ }^{2}{ }^{2} \mathrm{P}, \mathrm{C}=7.1 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=134.0 \mathrm{~Hz}$, cis-CO), 199,5 (d, ${ }^{2}$ Jp, C $=30,9 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm $): \delta=145.1\left({ }^{1} \mathrm{Jp}, \mathrm{w}=277.5 \mathrm{~Hz}\right)$
 $\left[\begin{array}{lllll}{\left[\mathrm{M}-\mathrm{CPh}_{3}\right.} & -\mathrm{CO}]^{+}, & 425.1 & (20) & {\left[\mathrm{M}-\mathrm{CPh}_{3}-\mathrm{CO}-3 \mathrm{CO}\right]^{+},} \\ 397.1 & \text { (40) }\end{array}\right.$ $\left[\mathrm{M}-\mathrm{CPh}_{3}-\mathrm{CO}-3 \mathrm{CO}-\mathrm{CO}^{+}\right.$, 243.2 (100) $\left[\mathrm{CPh}_{3}\right]^{+}$

IR (neat, $v(\mathrm{CO})$, in cm^{-1}): $v=2076,1958,1937(\mathrm{~s}, \mathrm{CO})$
Elemental analysis: C [\%] H [\%]
Calculated: 56.943 .23
Found: $\quad 57.283 .82$

7.4.3.4 Structure data of complexes $\{7,12$-Bispentacarbonyl[2,12-epoxy-7-triphenylmethyl-2,5-diphenyl-tetracyclo[4.3.0 $\left.0^{1,13} .0^{3,11} .0^{4,8}\right]-6,7,12-$ oxadiphosphahexadec-4,9,13,15,17-pentaen-кP]metal(0)\} (10a-c)

10a: metal $=$ chromium; ratio of complex $9 \mathbf{a}$: complex $\mathbf{1 0 a}=5: 1$
Molecular formula: $\mathrm{C}_{55} \mathrm{H}_{34} \mathrm{Cr}_{2} \mathrm{O}_{12} \mathrm{P}_{2}$
Molecular weight: $1052.03 \mathrm{~g} / \mathrm{mol}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=165.6$
$\left({ }^{5} \mathrm{JP7}, \mathrm{P} 12=3.8 \mathrm{~Hz}, \quad \mathrm{P} 12\right), \quad 210.5$
$\left({ }^{5} \mathrm{JP7,P12}=3.8 \mathrm{~Hz}, \mathrm{P} 7\right)$

10b: metal $=$ molybdenum; ratio of complex 9b: complex 10b $=5: 3$

Molecular formula: $\mathrm{C}_{55} \mathrm{H}_{34} \mathrm{Mo}_{2} \mathrm{O}_{12} \mathrm{P}_{2}$

Molecular weight: $1143.96 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=1.81$ (br. s, 1H, CH), 3.62 (br. s, 2H, CH), 5.64 (s, $1 \mathrm{H}, \mathrm{HCPh}_{3}$), 6.64 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{sp}^{2}$), 7.14 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{sp}^{2}$), $7.22-7.24(\mathrm{~m}, 4 \mathrm{H}$, Ph-H), 7.27-7.32 (m, 6H, Ph-H), 7.42-7.47 (m, 4H, Ph-H); 7.53-7.58 (m, 6H, СРһ 3 -H); 7.63-7.68 (m, 3H, СРһ $3-\mathrm{H}) ; 7.84-7.89$ (m, 6H, СРh -H$)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=56.4$ (br. s, C2), 86.7 (d, ${ }^{1} \mathrm{Jp}, \mathrm{c}=9.0 \mathrm{~Hz}, \mathrm{CPh}_{3}$), 125.6 (s, Ar-C), 126.7 (s, para-Ph), 127.6 (br. s, ortho-Ph), 128.9 (s, meta-Ph), 129.2 (s, para-Ph), 131.5 (s, ortho-Ph), 137.4 (s, meta-Ph), 143.7 (s, ipso-Ph), 204.2 (dsat, ${ }^{2}$ Jp, $=8.4 \mathrm{~Hz}$, cis-CO), 221.4 (d, ${ }^{2} \mathrm{Jp}, \mathrm{C}=54,3 \mathrm{~Hz}$, trans-CO) other signals could not be assigned
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): ~ \delta=138.2 \quad\left({ }^{5} \mathrm{JPP}_{\mathrm{P}, \mathrm{P} 12}=3.8 \mathrm{~Hz}, \mathrm{P} 12\right), 186.3$ $\left({ }^{5} \mathrm{JP7,P12}=3.8 \mathrm{~Hz}, \mathrm{P} 7\right)$

10c: metal = tungsten; ratio of complex $9 \mathbf{9 c}$: complex $\mathbf{1 0 c}=5: 1$

Molecular formula: $\mathrm{C}_{55} \mathrm{H}_{34} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~W}_{2}$
Molecular weight: $1316.05 \mathrm{~g} / \mathrm{mol}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=112.3$ (${ }^{5} \mathrm{Jp} 7, \mathrm{P} 12=3.8 \mathrm{~Hz}, \mathrm{P} 12$), 164.4 $\left({ }^{5}{ }^{\mathrm{PP} 7, \mathrm{P} 12}=3.8 \mathrm{~Hz}, \mathrm{P} 7\right)$

7.4.4 General procedure for the synthesis of complexes 20-22.

$500 \mathrm{mg}(0.75 \mathrm{mmol})$ of [(CPh3$\left.\left.{ }_{3} \mathrm{PCl}_{2}\right) \mathrm{W}(\mathrm{CO})_{5}\right]$ were dissolved in THF (10 mL) and $120 \mu \mathrm{~L}$ (1.0 eq.) of 12 -crown- 4 were added. The solution was cooled to $-80^{\circ} \mathrm{C}$ and ${ }^{\mathrm{t}} \mathrm{BuLi}$ (1.2 eq., 1.7 M in n-pentane) was given drop wise. Subsequently, the corresponding fluorinated aldehyde (1.2 eq.) was added. The suspension was stirred for 2 h while gently warming to $-20^{\circ} \mathrm{C}$. All volatiles were removed in vacuo (ca. 0.01 bar) and the residue extracted with $3 \times 15 \mathrm{~mL}$ of n-pentane. After removing of all volatiles in vacuo (ca. 0.01 bar), the obtained light yellow solid was purified by washing with n-pentane at $-30^{\circ} \mathrm{C}$.

7.4.4.1 Synthesis of \{Pentacarbonyl[2-triphenylmethyl-3-(2,6-difluoro phenyl)-1,2-oxaphosphiran-кP]tungsten(0)\} (20)

2,6-difluorobenzaldehyde: $370 \mathrm{mg}, 0.90 \mathrm{mmol}$
Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $740.29 \mathrm{~g} / \mathrm{mol}$
Melting point: $110^{\circ} \mathrm{C}$
Yield: 370 mg ($0.50 \mathrm{mmol}, 74 \%$)

${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, in ppm) : $\delta=4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CHP}), 6.9\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{JH}_{\mathrm{H}} \mathrm{H}=8.5 \mathrm{~Hz}, p-\mathrm{Ar}^{\mathrm{F}}\right)$, 7.1-7.5 (15H, m, 3Ph), 7.6-7.7 (2H, dt, H-ArF)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=54.0\left(\mathrm{~d},{ }^{1} \mathrm{~J} \mathrm{c}, \mathrm{P}=25.6 \mathrm{~Hz}, \mathrm{PCO}\right), 67.3(\mathrm{~d}$, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.7 \mathrm{~Hz}, \mathrm{P}-\mathrm{CPh} 3$), 126.3 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$), 127.9 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=1.85 \mathrm{~Hz}, p-\mathrm{Ar}{ }^{\mathrm{F}}$), 128.3
 $o-\mathrm{Ph}$), 139.5 ($\mathrm{d}, \mathrm{Jc}, \mathrm{P}=2.4 \mathrm{~Hz}$, ipso-ArF), 143.9 ($\mathrm{s}, i p s o-\mathrm{Ph}$), 193.8 (d, ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.1 \mathrm{~Hz}$, cis-CO), 195.9 ($\mathrm{d},{ }^{2}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=41.7 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm $): \delta=8.9\left({ }^{1} \mathrm{JW}_{\mathrm{w}} \mathrm{P}=314 \mathrm{~Hz}\right)$
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=-120.2$
 [M-C7HF5 $\left.{ }^{2}-\mathrm{CO}\right]^{+} ; 514.0$ (20) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HFF}_{5} \mathrm{O}-2 \mathrm{CO}-\mathrm{CO}^{+}\right.$, (100) $\left[\mathrm{CPh}_{3}\right]^{+}$

IR (ATR, $v(C O)$, in cm^{-1}): $v=1920$ (w), 1984 (m), 2076 (s)
Elemental analysis: C [\%] H [\%]
Calculated: 50.292 .34
Found: $\quad 51.133 .01$

7.4.4.2 Synthesis of \{Pentacarbonyl[2-triphenylmethyl-3-(2,4,6-trifluoro-phenyl)-1,2-oxaphosphiran-кP]tungsten(0)\} (21)

2,4,6-trifluorobenzaldehyde: $405 \mathrm{mg}, 0.90 \mathrm{mmol}$
Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $758.27 \mathrm{~g} / \mathrm{mol}$
Melting point: $110^{\circ} \mathrm{C}$
Yield: 405 mg (0.53 mmol , 81\%)

${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, in ppm): $\delta=5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{CHP}), 7.1$

- 7.5 (15H, m, 3Ph), 7.6 - 7.7 (2H, dt, H-ArF)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}, in ppm): $\delta=53.4$ (d, ${ }^{1} \mathrm{~J}$ c, $\mathrm{P}=25.7 \mathrm{~Hz}, \mathrm{PCO}$), 67.4 (d, ${ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{P}-\mathrm{CPh}_{3}$), 126.3 ($\left.\mathrm{s}, \mathrm{p}-\mathrm{Ph}\right), 127.9$ ($\left.\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{F}}=1.85 \mathrm{~Hz}, p-\mathrm{Ar}^{\mathrm{F}}\right), 128.3$ ($\mathrm{s}, m-\mathrm{Ph}$), 128.8 ($\mathrm{s}, m-\mathrm{Ar}^{\mathrm{F}}$), 129.5 ($\mathrm{s}, o-\mathrm{Ph}$), 130.9 ($\left.\mathrm{d}, \mathrm{Jc}, \mathrm{P}=7.5 \mathrm{~Hz}, o-\mathrm{Ar}^{\mathrm{F}}\right), 139.4$ (d, $\mathrm{J}_{\mathrm{c}, \mathrm{P}}=2.5 \mathrm{~Hz}$, ipso-Ar${ }^{\mathrm{F}}$), 143.9 (s, ipso-Ph), 193.9 ($\mathrm{d},{ }^{2}{ }^{2} \mathrm{C}, \mathrm{P}=7.9 \mathrm{~Hz}$, cis-CO), $195.6\left(\mathrm{~d},{ }^{2}{ }^{2} \mathrm{C}, \mathrm{P}=41.6 \mathrm{~Hz}\right.$, trans-CO)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=8.5\left({ }^{1} \mathrm{Jw}_{\mathrm{w}, \mathrm{P}}=316 \mathrm{~Hz}\right)$
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): ~ \delta=-131.3(o-\mathrm{F}),-146.2(p-\mathrm{F}) ;$
MS (selected data, $m / z(\%)): 758.1[\mathrm{M}]^{+\cdot}$, 598.1 (20) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}\right]^{+}, 570.0$ (20) [M-C7HF5 $\left.{ }^{2}-\mathrm{CO}\right]^{+}, 514.0$ (20) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HFF}_{5} \mathrm{O}-2 \mathrm{CO}-\mathrm{CO}^{+}\right.$, (100) $\left[\mathrm{CPh}_{3}\right]^{+}$

IR (ATR, $v(\mathrm{CO})$, in cm^{-1}): $v=1932$ (s), 1952 (m), 1995 (m), 2077 (s)
Elemental analysis: C [\%] H [\%]
Calculated: 49.102 .39
Found: 50.663 .22

7.4.4.3 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-pentafluoro-phenyl)-1,2-oxaphosphiran-кP]tungsten(0)\} (22)

2,3,4,5,6-pentafluorobenzaldehyde: $112 \mu \mathrm{~L}, 0.90 \mathrm{mmol}$
Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $794.01 \mathrm{~g} / \mathrm{mol}$
Melting point: $98^{\circ} \mathrm{C}$
Yield: 435 mg ($0.55 \mathrm{mmol}, 87 \%$)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=7.06-7.72(15 \mathrm{H}, \mathrm{m}$, 3Ph), CHP (hidden by the trityl signals)
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=53.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}, \mathrm{P}=24.7 \mathrm{~Hz}, \mathrm{PCO}\right), 67.6$ (d, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{P}-\mathrm{CPh} 3$), 128.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=1.8 \mathrm{~Hz}, \mathrm{Ph}$), 128.3 (s, Ph), 128.9 (s, Ph), 129.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=11 \mathrm{~Hz}, \mathrm{Ar}^{\mathrm{F}}$), 130.8 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=7.7 \mathrm{~Hz}, \mathrm{Ar}^{\mathrm{F}}$), $139.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=2.4 \mathrm{~Hz}\right.$, Ar ${ }^{\mathrm{F}}$), 193.7 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=8.1 \mathrm{~Hz}$, cis-CO), 195.1 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=41.8 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm $): \delta=7.5\left({ }^{1} \mathrm{l}_{\mathrm{W}, \mathrm{P}}=320 \mathrm{~Hz}\right)$
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=-139.5(p-\mathrm{F}),-153.2(m-\mathrm{F}),-161.4(o-\mathrm{F}) ;$
MS (selected data, m / z (\%)): $794.1[\mathrm{M}]^{+}, 598.1$ (20) [M-C7HF5O] ${ }^{+}$, 542.0 (2)
[M-C7HF5O-2CO] ${ }^{+}$, 514.0 (3) [$\mathrm{M}-\mathrm{C}_{7} \mathrm{HFF}_{5} \mathrm{O}-2 \mathrm{CO}-\mathrm{CO}^{+}$, (100) $\left[\mathrm{CPh}_{3}\right]^{+}$
IR (ATR, $v(C O)$, in cm${ }^{-1}$): $v=1936$ (s), 1956 (b), 1967 (b), 1994 (s), 2077 (s)
Elemental analysis: C [\%] H [\%]
Calculated: 46.882 .03
Found: $\quad 47.793 .11$

7.4.5 General procedure for the synthesis of complexes $23,24,27$

To the freshly synthesized $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 3a-c, 12-crown-4 (1.0 eq) and ${ }^{\text {t }} \mathrm{BuLi}(1.2 \mathrm{eq})$ in 12 mL of THF, pentafluorobenzaldehyde (1.2 eq) was added at $-78^{\circ} \mathrm{C}$ leading to the formation of a white precipitate. The reaction mixture was warmed up to $-15^{\circ} \mathrm{C}$ in a cooling bath (ca. 2 h), and volatiles were evaporated in vacuo (ca. 0.01 bar). The product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and filtered. The solvents were then removed in vacuo (ca. 0.01 bar) and the pale white residue was purified by low temperature column chromatography.

7.4.5.1 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-pentafluoro-phenyl)-1,2-oxaphosphiran-кP]chromium(0)\} (23)

3a: $1.00 \mathrm{~g}, 1.86 \mathrm{mmol} ; 12$-crown-4: $0.3 \mathrm{~mL}, 1.86 \mathrm{mmol}$; ${ }^{\text {t }} 1 \mathrm{BuLi}$ (1.7 M in n-hexane) $1.32 \mathrm{~mL}, 2.24 \mathrm{mmol}$; pentafluorobenzaldehyde: $0.6 \mathrm{~mL}, 2.24 \mathrm{mmol}$

Column chromatography: $\mathrm{Al}_{2} \mathrm{O}_{3},-20^{\circ} \mathrm{C}, \mathrm{h}=4 \mathrm{~cm}, \varnothing=5 \mathrm{~cm}$, petroleum ether (300 mL); petroleum ether/diethyl ether 1:1 (300 mL)

Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{CrF}_{5} \mathrm{O}_{6} \mathrm{P}$
Molecular weight: $662.00 \mathrm{~g} / \mathrm{mol}$
Melting point: $115^{\circ} \mathrm{C}$
Yield: 820 mg ($1.23 \mathrm{mmol}, 82 \%$)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm) $\delta=3.93$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHP}$), $7.12-7.62$ ($15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}$)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=51.1$ ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=21.8 \mathrm{~Hz}, \mathrm{PCO}$), 68.8 (d, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=13.6 \mathrm{~Hz}, \mathrm{P}-\mathrm{CPh}_{3}$), $125.2\left(\mathrm{~m}, \mathrm{Ar}{ }^{\mathrm{F}}\right), 127.1\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=1.81 \mathrm{~Hz}, p-\mathrm{Ph}\right), 127.3$
 $\mathrm{Jc}, \mathrm{P}=2.72 \mathrm{~Hz}$, ipso-ArF), 212.2 ($\mathrm{d},{ }^{2} \mathrm{~J} \mathrm{c}, \mathrm{P}=14.1 \mathrm{~Hz}$, cis-CO), 216.9 (s, trans-CO)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm $): \delta=54.6$
${ }^{19}{ }^{\mathrm{F}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl 3 , in ppm): $\delta=-138.3(p-\mathrm{F}),-156.1(m-\mathrm{F}),-162.3(o-\mathrm{F})$;
MS (selected data $m / z(\%)): 661.9[\mathrm{M}]^{+}, 597.9[\mathrm{M}-3 \mathrm{CO}]^{+}, 549.9$ [M-3CO-CO] ${ }^{+}$, $521.9 \quad[\mathrm{M}-3 \mathrm{CO}-\mathrm{CO}-\mathrm{CO}]^{+}, \quad 326.0 \quad\left[\mathrm{M}-3 \mathrm{CO}-\mathrm{CO}-\mathrm{CO}_{-} \mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}\right]^{+}, \quad 274.0$ [M-3CO-CO -CO-C7HF5O-Cr] ${ }^{+}$, 243.1 [$\left.\mathrm{M}-3 \mathrm{CO}-\mathrm{CO}-\mathrm{CO}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}-\mathrm{Cr}-\mathrm{P}\right]^{+}$

IR (neat, $v(\mathrm{CO})$, in cm^{-1}): $v=2070,1993$, 1963(s, CO), 1941(sh), 1932(br)

Elemental analysis: C [\%] H [\%]

Calculated: 56.212 .43
Found: 55.943 .06

7.4.5.2 Synthesis of \{Pentacarbonyl[(2-triphenylmethyl-3-pentafluoro phenyl)-1,2-oxa-phosphiran-kP]-molybdenum(0)\} (24)

3b: $300 \mathrm{mg}, 0.52 \mathrm{mmol}$; 12-crown-4: $66 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$; 'BuLi (1.6 M in n-hexane): $0.39 \mathrm{~mL}, 0.58 \mathrm{mmol}$; pentafluorobenzaldehyde: $77 \mu \mathrm{~L}, 0.58 \mathrm{mmol}$

Column chromatography: $\mathrm{Al}_{2} \mathrm{O}_{3},-20^{\circ} \mathrm{C}, \mathrm{h}=2 \mathrm{~cm}, \varnothing=1 \mathrm{~cm}$, petroleum ether (100 mL); petroleum ether/diethyl ether 1:1 (300 mL).

Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{MoO}_{6} \mathrm{P}$
Molecular weight: $706.35 \mathrm{~g} / \mathrm{mol}$
Melting point: $92^{\circ} \mathrm{C}$
Yield: 263 mg ($0.37 \mathrm{mmol}, 88$ \%)

${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, in ppm) $\delta=3.78$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHP}$), $7.03-7.52$ (m, 15H, CPh ${ }_{3}$)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}, in ppm): $\delta=52.3$ (d, ${ }^{1} \mathrm{Jc}, \mathrm{P}=20.2 \mathrm{~Hz}, \mathrm{PCO}$), 66.3 (d , ${ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=13.6 \mathrm{~Hz}, \mathrm{PCPh} 3$), 125.3 ($\mathrm{s}, \mathrm{Ar} \mathrm{F}^{\mathrm{F}}$), 128.1 ($\mathrm{d},{ }^{1}{ }^{1} \mathrm{c}, \mathrm{P}=1.82 \mathrm{~Hz}, m-\mathrm{Ph}$), 127.3 (s , Arf), 127.8 (s, p-Ph), 128.4 ($\mathrm{s}, \mathrm{Ar} \mathrm{r}^{\mathrm{F}}$), 129.7 (d, Jc, $=7.31 \mathrm{~Hz}, o-\mathrm{Ph}$), 139.2 ($\mathrm{d}, \mathrm{Jc}, \mathrm{P}$ $=3.09 \mathrm{~Hz}$, ipso-Ph), 202.7 ($\mathrm{d},{ }^{2} \mathrm{Jc}, \mathrm{P}=9.9 \mathrm{~Hz}$, cis-CO), 205.5 (d, ${ }^{2} \mathrm{Jc}, \mathrm{P}=42.3 \mathrm{~Hz}$, trans-CO)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl3, in ppm): $\delta=27.9$
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl3, in ppm) : $\delta=-136.1(p-\mathrm{F}),-151.4(m-\mathrm{F}),-161.6(o-\mathrm{F})$;
MS (selected data m/z (\%)): 707.9 [M] $]^{+}$, 511.9 [M-C7HF5O] ${ }^{+}, 274.1$ $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}-\mathrm{Mo}(\mathrm{CO})_{5}\right]^{+}, 243.1\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}-\mathrm{Mo}(\mathrm{CO})_{5}-\mathrm{P}\right]^{+}$

IR (neat, $v(C O)$, in cm^{-1}): $v=2078,1996,1968(\mathrm{~s}, \mathrm{CO}), 1959(\mathrm{sh}), 1937(\mathrm{br})$
Elemental analysis: C [\%] H [\%]
Calculated: 52.712 .28
Found: 52.51 2.53.

7.4.5.3 Synthesis of $\{$ Pentacarbonyl

[(2-pentamethylcyclopentadienyl-3 -pentafluorophenyl)-1,2-oxaphos-phiran-kP]-tungsten(0)\} (27)

28: $600 \mathrm{mg}, 1.07 \mathrm{mmol}$; 12-crown-4: $0.15 \mathrm{~mL}, 1.07 \mathrm{mmol}$; ${ }^{\text {tBuLi }}$ (1.6 M in n-hexane): $1.33 \mathrm{~mL}, 2.14 \mathrm{mmol}$; pentafluorobenzaldehyde: $0.25 \mathrm{~mL}, 2.14 \mathrm{mmol}$

Column chromatography: $\mathrm{Al}_{2} \mathrm{O}_{3},-20^{\circ} \mathrm{C}, \mathrm{h}=2 \mathrm{~cm}, \varnothing=1 \mathrm{~cm}$, petroleum ether (100 mL); petroleum ether/diethyl ether $1: 1(300 \mathrm{~mL})$.

Molecular formula: $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $686.17 \mathrm{~g} / \mathrm{mol}$
Melting point: $129^{\circ} \mathrm{C}$
Yield: 547 mg ($0.69 \mathrm{mmol}, 91 \%$)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=1.11\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{Jp}, \mathrm{H}=12.2 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{C}^{1}-\mathrm{CH}_{3}\right), 1.79(6 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 4.4(1 \mathrm{H}, \mathrm{s}, \mathrm{POC}-\mathrm{H})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=9.6\left(\mathrm{t}, \mathrm{Jp}, \mathrm{c}=2.8 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right.$), 10.4 (d, $J_{\mathrm{P}, \mathrm{C}}=2.03 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), 10.6 ($\mathrm{d}, \mathrm{Jp}, \mathrm{C}=1.2 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), 10.99 ($\mathrm{d}, \mathrm{JP}, \mathrm{C}=2.2 \mathrm{~Hz}$, $\left.C p^{*}-\mathrm{CH}_{3}\right), 12.5\left(\mathrm{~d}, \mathrm{Jp}, \mathrm{C}=5.8 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{C}^{1}-\mathrm{CH}_{3}\right), 49.1\left(\mathrm{~d}, \mathrm{Jp}, \mathrm{C}=17.8 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}-\mathrm{Ar}^{\mathrm{F}}\right)$, 62.8 ($\mathrm{d}, \mathrm{Jp}_{\mathrm{P}, \mathrm{C}}=9.6 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{C}^{1}$), 109 (m, ipso-Ar ${ }^{\mathrm{F}}$), 132.5 ($\mathrm{d}, \mathrm{JP}_{\mathrm{P}, \mathrm{C}}=6.9 \mathrm{~Hz}-\mathrm{Cp}^{*}$), 135.2 (m, ArF), 136.1 (d, Jp, C = $2.1 \mathrm{~Hz}-\mathrm{Cp}^{*}$), 138.5 (m, o-ArF), 142.1 ($\mathrm{d}, \mathrm{Jp}, \mathrm{C}=6.3$
 125.7 Hz, cis-CO), 193, (d, ${ }^{2}$ Jp, $=39 \mathrm{~Hz}$, trans-CO)
${ }^{19}{ }^{\mathrm{F}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}, in ppm): $\delta=-139.6(p-\mathrm{F}),-153.1(m-\mathrm{F}),-162.0(o-\mathrm{F}) ;$
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl 3 , in ppm): $\delta=26.4$
MS (selected data $m / z(\%)): 686.9[\mathrm{M}]^{+}, 4490.1 \quad\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}\right]^{+}, 323.9$ $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}-\mathrm{W}(\mathrm{CO})_{5}\right]^{+}$

Elemental analysis: C [\%] H [\%]
Calculated: 38.312 .35
Found: 38.462 .62

7.4.6 Synthesis of \{Pentacarbonyl-[triphenylmethyl-(1,1,3,3,3-pentafluoro prop-1-en-2-oxyl)chlorophosphane-kPJ-tungsten(0)\} (33)

500 mg (0.75 mmol) of $\left[\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{CPh}_{3} \mathrm{PCl}_{2}\right)\right]$ were dissolved in THF (10 mL) and $120 \mu \mathrm{~L}$ (1.0 eq.) of 12 -crown-4 were added. The solution was then cooled to $-100^{\circ} \mathrm{C}$ and 1.2 eq . of tBuLi (1.7 M in n-pentane) were added dropwise. Afterwards hexafluoroacetone was bubbled through the solution for a few seconds until the color changed from orange to green. Subsequently, the solvent was removed in vacuo (ca. 0.01 bar) at low temperature $\left(-20^{\circ} \mathrm{C}\right)$ and the residue extracted with 45 mL of n-pentane. All volatiles were removed in vacuo (ca. 0.01 bar), the residue was purified by washing with n-pentane at $-30^{\circ} \mathrm{C}$ and the resulting product isolated was light yellow solid.

Molecular formula: $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{ClF}_{5} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $780.66 \mathrm{~g} / \mathrm{mol}$
Melting point: $110^{\circ} \mathrm{C}$ (decomp.)
Yield: 460 mg ($0.50 \mathrm{mmol}, 92 \%$)
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, in ppm): $\delta=7.1-7.5(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{Ph})$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=73.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=9.1 \mathrm{~Hz}, \mathrm{P}-\underline{\mathrm{C}} \mathrm{Ph}_{3}\right), 107.5(\mathrm{br} \mathrm{m}$, $\mathrm{CF}_{3} \underline{C C F F}_{2}$), 119.3 ($\mathrm{q} \mathrm{m},{ }^{1} \mathrm{Jc}, \mathrm{F}=274 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.9 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$), 127.3 (d , $\left.{ }^{4} J_{\mathrm{C}, \mathrm{P}}=1.5 \mathrm{~Hz}, m-\mathrm{Ph}\right), 127.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.6 \mathrm{~Hz}, m-\mathrm{Ph}\right), 127.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=3.1 \mathrm{~Hz}\right.$, $o-\mathrm{Ph}), 127.9$ (s, $p-\mathrm{Ph}), 128.1$ (d, $\left.{ }^{4} \mathrm{~J} \mathrm{c}, \mathrm{P}=1.2 \mathrm{~Hz}, m-\mathrm{Ph}\right), 128.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=3.2 \mathrm{~Hz}\right.$, $o-\mathrm{Ph}), 128.5\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=1.8 \mathrm{~Hz}, m-\mathrm{Ph}\right), 129.1(\mathrm{~s}, p-\mathrm{Ph}), 130.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=7.7 \mathrm{~Hz}\right.$, $o-\mathrm{Ph}), 131.1\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=8.3 \mathrm{~Hz}, o-\mathrm{Ph}\right), 138.4$ ($\mathrm{d},{ }^{2} \mathrm{~J} \mathrm{~J}, \mathrm{P}=4.5 \mathrm{~Hz}$, ipso-Ph), 139.9 (d , ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.1 \mathrm{~Hz}$, ipso-Ph), $140.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=13.6 \mathrm{~Hz}\right.$, ipso-Ph), 155.7 (pt m, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=297 \mathrm{~Hz}, \mathrm{CF}_{2}$), 194.0 (ddsat, ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.1 \mathrm{~Hz}, \mathrm{Jc}_{\mathrm{C}, \mathrm{F}}<1 \mathrm{~Hz}, \mathrm{Jc}_{\mathrm{C}, \mathrm{w}}=127.5 \mathrm{~Hz}$, cis-CO), 195.7 (d, ${ }^{2} \mathrm{Jc}, \mathrm{P}=45.4 \mathrm{~Hz}$, trans-CO)
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=-63.2\left(\mathrm{~d} \mathrm{~m}, 3 \mathrm{~F}, \mathrm{JF}, \mathrm{F}=23 \mathrm{~Hz},-\mathrm{CF}_{3}\right),-77.2(\mathrm{dm}, 1 \mathrm{~F}$, $J_{F, F}=23 \mathrm{~Hz}, \mathrm{C}=\mathrm{CF}$), -92.5 (pquint $\mathrm{m}, 1 \mathrm{~F}, \mathrm{JF}_{\mathrm{F}, \mathrm{F}}=23 \mathrm{~Hz}, \mathrm{C}=\mathrm{CF}$)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=200.6\left(\mathrm{t}_{\text {sat }},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=336.5 \mathrm{~Hz} ;{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{F}}=6.0 \mathrm{~Hz}\right)$
MS (selected data $m / z(\%)): 780[\mathrm{M}]^{+}, 640.0$ (30) [M-5CO] ${ }^{+}$, 455.9 (20) [M-5CO -W] ${ }^{+} ; 309.1$ (30) [M-5CO-W-C3 $\left.\mathrm{F}_{5} \mathrm{O}\right]^{+} ; 243.1$ (100) [CPh $]^{+}$

IR (ATR, $v(C O)$, $\left.\mathrm{in} \mathrm{cm}^{-1}\right): v=2084,2017,2003,1958,1941,(\mathrm{~s}, \mathrm{CO})$

Elemental analysis: C [\%] H [\%]
Calculated: 41.541 .94
Found: 41.272 .26

7.4.7 Synthesis of

\{Pentacarbonyl[Pentamethylcyclopentadienyl-(1,1,3,3,3 -pentafluoropro p-1-en-2-oxyl)-chlorophosphane-кP]-tungsten(0)\} (34)
$500 \mathrm{mg}(0.89 \mathrm{mmol})$ of $\left[\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{Cp}^{*} \mathrm{PCl}_{2}\right)\right]$ were dissolved in THF (10 mL) and $176 \mu \mathrm{~L}$ (1.0 eq.) of 12 -crown-4 were added. The solution was then cooled to $-100^{\circ} \mathrm{C}$ and 1.2 eq. of tBuLi (1.7 M in n-pentane) were added dropwise. Afterwards, hexafluoroacetone was bubbled through the solution for a few seconds until the color changed from dark yellow to green. Subsequently, the solvent was removed in vacuo (ca. 0.01 bar) at low temperature $\left(-20^{\circ} \mathrm{C}\right)$ and the residue extracted with 45 mL of n-pentane. All volatiles were removed in vacuo (ca. 0.01 bar), the residue was purified by washing with n-pentane at $-30^{\circ} \mathrm{C}$ and the resulting product isolated was light yellow solid.

Molecular formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClF}_{5} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $672.97 \mathrm{~g} / \mathrm{mol}$
Melting point: $126^{\circ} \mathrm{C}$
Yield: 460 mg ($0.53 \mathrm{mmol}, 91 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): ~ \delta=1.43\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{JP}, \mathrm{H}=14.1 \mathrm{~Hz}\right.$,

$\left.C p^{*}-\mathrm{C}^{1}-\mathrm{CH}_{3}\right), 1.77\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{Jp}_{\mathrm{p}} \mathrm{H}=3.2 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.87\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{p}, \mathrm{H}}=15.4 \mathrm{~Hz}\right.$ Cp*-CH3)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=11.6$ (d, $\left.\mathrm{J}_{\mathrm{c}, \mathrm{p}}=3.7 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 11.9$ (d, $\mathrm{J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), 12.7 (br s, $\mathrm{Cp}^{*}-\mathrm{CH}_{3}$), $13.6\left(\mathrm{~d}, \mathrm{Jc}, \mathrm{P}=7.2 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right.$), $69.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}, \mathrm{P}=6.3 \mathrm{~Hz}, \mathrm{P}-\mathrm{Cp}^{*}\right), 106.9$ ($\mathrm{br} \mathrm{m}, \mathrm{CF}_{3} \underline{C C F}_{2}$), 121.6 (qdd, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=269.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), 135.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{c}, \mathrm{P}}=8.9 \mathrm{~Hz}, \mathrm{Cp}^{*}$-ring-C), 135.6 ($\mathrm{Jc}_{\mathrm{c}, \mathrm{P}}=5.9 \mathrm{~Hz}$, Cp*), 145.3 (d, Jc, $=9.1 \mathrm{~Hz}, \mathrm{Cp}^{*}$-ring-C), 145.5 (d, Jc, P = 9.1 Hz, Cp*-ring-C), 155.9 (ddq, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=298.8 \mathrm{~Hz}, \mathrm{CF}_{2}$), 194.5 (ddsat, ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.6, \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=1.9 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{c}, \mathrm{w}}=128.3 \mathrm{~Hz}$, cis-CO), $195.7\left(\mathrm{~d},{ }^{2}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=42.9 \mathrm{~Hz}\right.$, trans-CO)
${ }^{19}$ F NMR (CDCl_{3}, in ppm) : $\delta=-65.3\left(\mathrm{dd}, 3 \mathrm{~F}, \mathrm{JF}, \mathrm{F}=20.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-76.6(\mathrm{dq}, 1 \mathrm{~F}$, $J_{F, F}=52.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{CF}$), -88.9 (dq, 1F, JF,F=59.2 Hz, C=CF)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=193.2 \mathrm{ppm}\left(\mathrm{t}_{\text {sat, }}{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=344.4 \mathrm{~Hz},{ }^{4} \mathrm{JP}, \mathrm{F}=7.2 \mathrm{~Hz}\right)$ MS (selected data $m / z(\%)): 672$ (100) [M] ${ }^{+}$, 616.0 (30) [M-2CO]+; 588.0 (70) [M-2CO-CO]+; 532.0 (90) [M-2CO-CO-2CO] ${ }^{+}$, 348.1 (10) [M-2CO-CO-2CO-W]+; 201.1 (10) [M-2CO-CO-2CO-W-C3 $\left.\mathrm{F}_{5} \mathrm{O}\right]^{+}$

IR (ATR, $v(C O)$, in cm ${ }^{-1}$): $v=2077$ (s), 1998 (br), 1919 (s);
Elemental analysis: C [\%] H [\%]
Calculated: 32.152 .25
Found: $\quad 32.412 .83$

7.4.8 Synthesis of
 \{Pentacarbonyl[trimethylsilylmethyl-(1,1,1,3,3,3- hexafluoro-2-ol-propan-2-yl)-phosphanol-кP]-tungsten(0)\} (35)

$500 \mathrm{mg}(0.85 \mathrm{mmol})$ of $\left[\mathrm{W}(\mathrm{CO})_{5}\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{HCPCl}_{2}\right\}\right]$ were dissolved in THF (10 mL) and $138 \mu \mathrm{~L}$ (1.0 eq.) of 12 -crown-4 were added. The solution was cooled to $-100^{\circ} \mathrm{C}$ and 1.2 eq. of tBuLi [1.7 M in n-pentane] were given dropwise. Afterwards, hexafluoroacetone was bubbled through the solution for a few seconds until the color changed from dark yellow to green. Subsequently, the solvent was removed in vacuo (ca. 0.01 bar) at low temperature $\left(-20^{\circ} \mathrm{C}\right)$ and the residue extracted with 45 mL of n-pentane. In addition to the main product 35, two phosphorus resonances with lower intensity were observed at $31.0 \mathrm{ppm}\left(\sim 20 \%, \mathrm{~m}_{\mathrm{c}}\right)$ and $176.8 \mathrm{ppm}\left(\sim 10 \%, \mathrm{~m}_{\mathrm{c}}\right)$. A separation of the product mixture was not possible, neither by recrystallisation nor by chromatography. Therefore, complex 35 could only be characterized from this solution by means of multinuclear NMR spectroscopy, but its molecular structure was confirmed by X-ray crystallography.

Molecular formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{O}_{7} \mathrm{PsiW}$
Molecular weight: $626.13 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=0.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.3$
(d, $\left.{ }^{2}{ }^{J} \mathrm{P}, \mathrm{H}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PCH} 2\right), 9.6$ ($\mathrm{d},{ }^{2}{ }^{\mathrm{J}} \mathrm{P}, \mathrm{H}=36.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}-\mathrm{OH}$), PC-OH, n.o.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=1.66\left(\mathrm{~d},{ }^{3} \mathrm{Jc}, \mathrm{P}=6.6 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 49.3(\mathrm{~d}$, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=117.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $122.4\left(\mathrm{q} \mathrm{m},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=287 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 123.7 (q m , $\left.{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=285.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right),\left(\mathrm{F}_{3} \mathrm{CLCF}_{3}\right.$, not found), 194.3 ($\mathrm{d},{ }^{2} \mathrm{Jc}, \mathrm{P}=9.3 \mathrm{~Hz}$, cis-CO), 196.6 (d, ${ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=35.2 \mathrm{~Hz}$, trans-CO)
${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm) : $\delta=-67.1\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-67.5\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=247.6\left(\mathrm{~m}_{\mathrm{sat}},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=277.8 \mathrm{~Hz},{ }^{2}{ }^{2} \mathrm{P}, \mathrm{H}=36.5 \mathrm{~Hz}\right)$

7.4.9 Synthesis of \{Pentacarbonyl

[(2-pentamethylcyclopentadienyl -3-phenyl-3-trifluoromethyl)-
1,2-oxaphosphiran-кP]-pentacarbonyl tungsten(0)\} (41)
To the freshly synthesized Li/Cl phosphinidenoid complex 28 ($500 \mathrm{mg}, 0.89 \mathrm{mmol}$), 12-crown-4 ($115 \mu \mathrm{~L}, 0.71 \mathrm{mmol}$) and ${ }^{\text {tr }} \mathrm{BuLi}$ (1.6 M in n-hexane, 0.67 mL) in 7 mL of THF, 2,2,2-trifluoroacetophenone was added ($160 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ leading to the formation of a white precipitate. The reaction mixture was warmed up to $-15^{\circ} \mathrm{C}$ in the cooling bath (ca. 2 h) and volatiles were evaporated in vacuo (ca. 0.01 bar). The product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and filtered. The solvents were then removed in vacuo (ca. 0.01 bar) and the pale white residue was purified by low temperature column chromatography $\mathrm{Al}_{2} \mathrm{O}_{3},-20^{\circ} \mathrm{C}, \mathrm{h}=2 \mathrm{~cm}, \varnothing=1 \mathrm{~cm}$, petroleum ether (150 mL); petroleum ether/dichloromethane 10:1 (150 mL).

Molecular formula: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $664.22 \mathrm{~g} / \mathrm{mol}$
Melting point: $129^{\circ} \mathrm{C}$
Yield: 547 mg ($0.69 \mathrm{mmol}, 91 \%$)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=0.16\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}, \mathrm{H}=11.3 \mathrm{~Hz}, \mathrm{Cp}^{*}-i-\mathrm{CH}_{3}\right), 1.81(6 \mathrm{H}$, $\mathrm{m}_{\mathrm{c}}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), $1.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 2.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 7.4-7.5(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=10.6\left(2, \mathrm{Jp}, \mathrm{c}=2.4 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 11.0(\mathrm{~d}$, $\left.J_{\mathrm{P}, \mathrm{C}}=1.2 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 11.1\left(\mathrm{~m}_{\mathrm{c}}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 16.8\left(\mathrm{~d}, \mathrm{Jp}_{\mathrm{P}, \mathrm{C}}=6.1 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{C}^{1}-\mathrm{CH}_{3}\right)$, 63.6 (dd, Jp,C = 35.3 Hz, JF,C = $8.9 \mathrm{~Hz}, \mathrm{P}-\underline{\mathrm{C}}-\mathrm{CF}_{3}$), 65.7 (d, JP, C = $13.9 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{C}^{1}$), 122.3 (dd, JP,C = 6.9 Hz, JF,C = $273.6 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}-\underline{C F}_{3}$), 127.1 (s, Ph), 127.7 (s, Ph),
 (d, Jp,C = 4.7 Hz, Cp*), 142.5 (d, Jp,C=7.7 Hz, Cp*), 143.8 (d, Jp,C = 8.6 Hz, Cp*), 193.2 ($\mathrm{m}_{\mathrm{c}}, \mathrm{J}_{\mathrm{c}, \mathrm{w}}=136.9 \mathrm{~Hz}$, cis-CO), 193.9 ($\mathrm{d},{ }^{2}{ }^{\mathrm{JP}, \mathrm{C}=}=40.2 \mathrm{~Hz}$, trans-CO)
${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=-64.8\left(\mathrm{~d}, 3 \mathrm{~F},{ }^{3} \mathrm{Jp}, \mathrm{F}=1.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=41.8\left({ }^{1} \mathrm{l}_{\mathrm{W}, \mathrm{P}}=311.9 \mathrm{~Hz}\right)$

7.4.10 Synthesis of 1,2-(bistriphenylmethyl-bispentafluorobenzyl)-diphosphan-P,P'-dioxid) (45)

A solution of complex 22 ($200 \mathrm{mg}, 0.25 \mathrm{mmol}$) in toluene was stirred at $100^{\circ} \mathrm{C}$ for 4 hours. All volatiles were removed in vacuo (ca. 0.01 bar) and a column chromatography was performed $\left(\mathrm{Al}_{2} \mathrm{O}_{3},-20^{\circ} \mathrm{C}, \mathrm{h}=2 \mathrm{~cm}, \varnothing=1 \mathrm{~cm}\right.$, petroleum ether $(100 \mathrm{~mL})$; petroleum ether/diethyl ether 1:1 (300 mL)).

Molecular formula: $\mathrm{C}_{52} \mathrm{H}_{34} \mathrm{~F}_{10} \mathrm{O}_{2} \mathrm{P}_{2}$ Molecular weight: $942.77 \mathrm{~g} / \mathrm{mol}$

${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=2.6\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=282.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=10.6 \mathrm{~Hz}\right), 3.2$ $\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{JP}_{\mathrm{P}, \mathrm{H}}=282.8 \mathrm{~Hz},{ }^{3}{ }^{\mathrm{J}} \mathrm{H}, \mathrm{H}=10.6 \mathrm{~Hz}\right), .6 .5-7.9(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=26.5$ (d, ${ }^{1} \mathrm{~J} \mathrm{c}, \mathrm{P}=34.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), 66.0 (d, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=26.6 \mathrm{~Hz}, \mathrm{CPh}_{3}$), $127.5(\mathrm{~s}, p-\mathrm{Ph}), 128.2(\mathrm{~s}, m-\mathrm{Ph}), 129.5(\mathrm{~s}, o-\mathrm{Ph}), 134.6$ (m , $\mathrm{C}_{6} \mathrm{~F}_{5}$), 138.0 ($\mathrm{m}, \mathrm{C}_{6} \mathrm{~F}_{5}$), 140.2 ($\mathrm{m}, \mathrm{C}_{6} \mathrm{~F}_{5}$), 142.6 ($\mathrm{m}, \mathrm{C}_{6} \mathrm{~F}_{5}$), 144.0 ($\mathrm{s}, i-\mathrm{Ph}$), 145.9 (m, i - $\mathrm{C}_{6} \mathrm{~F}_{5}$)
${ }^{19}{ }^{\mathrm{F}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=-136.4$ (major, $p-\mathrm{F}$), -137.4 (minor, $p-\mathrm{F}$), -157.1 (minor, $m-\mathrm{F}$), -157.4 (major, $m-\mathrm{F}$), -163.6 (minor, o-F), -164.1 (major, $p-\mathrm{F}$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=48.2$ (minor, s), 50.4 (major, s)

7.4.11 General procedure for the synthesis of complexes 53-55

350 mg (0.45 mmol) of complex 1 were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and $90 \mu \mathrm{~L}$ (2 eq.) of TfOH were added. After that, 2 eq of the corresponding aldehyde were added and the solution was stirred under refluxing conditions for 2 h . The dark brown solution was cooled until room temperature and 2 eq. of $\mathrm{Et}_{3} \mathrm{~N}(140 \mu \mathrm{~L})$ were added dropwise. The color of the solution turned into light yellow and the reaction mixture was stirred for 10 min . The solvents were removed in vacuo (ca. 0.01 bar) and the light yellow oily residue was purified by low temperature column chromatography $\mathrm{Al}_{2} \mathrm{O}_{3},-20^{\circ} \mathrm{C}, \mathrm{h}=2$ $\mathrm{cm}, \varnothing=1 \mathrm{~cm}$, petroleum ether (200 mL); petroleum ether/diethyl ether 4:1 (200 mL), resulting in a light yellow solid.

7.4.11.1 Synthesis of
 \{Pentacarbonyl[(4-triphenylmethyl-2-phenyl -5-pentafluorophenyl)-1,

 3,4-dioxaphospholane-кP]-tungsten(0)\} (53)Benzaldehyde: $91 \mu \mathrm{~L}$ (0.90 mmol)

Molecular formula: $\mathrm{C}_{38} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{O}_{7} \mathrm{PW}$
Molecular weight: $900.05 \mathrm{~g} / \mathrm{mol}$
Yield: 245 mg ($0.28 \mathrm{mmol}, 70$ \%)

${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=5.8\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}, \mathrm{H}=4.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.1(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} J_{P, H}=2.9 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.6-7.3(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}), 7.5(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=68.1$ (d, ${ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=4.1 \mathrm{~Hz} \mathrm{C-Ph} 3$), 72.1 (d, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=3.8 \mathrm{~Hz}, \mathrm{C}^{2 / 5}\right), 99.2\left(\mathrm{br}, \mathrm{C}^{5 / 2}\right), 126.5(\mathrm{~s}, \mathrm{Ph}) 126.9(\mathrm{~s}, \mathrm{Ph}), 127.2(\mathrm{~s}, \mathrm{Ph}), 127.8$ (s, Ph), 128.3 (s, Ph), 128.5 (s, Ph), 130.2 (s, Ph), 131.0 (s, Ph), 132.6 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.2 \mathrm{~Hz}, i-\mathrm{Ph}\right), 133.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.1 \mathrm{~Hz}, i-\mathrm{Ph}\right), 139.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.5 \mathrm{~Hz}, i-\mathrm{Ph}\right)$, 141.4 ($\mathrm{m}, i-\mathrm{C}_{6} \mathrm{~F}_{5}$), 156.2 ($\mathrm{m}, o-\mathrm{C}_{6} \mathrm{~F}_{5}$), 161.1 ($\mathrm{m}, m-\mathrm{C}_{6} \mathrm{~F}_{5}$), 163.8 ($\mathrm{m}, p-\mathrm{C}_{6} \mathrm{~F}_{5}$), 195.1 (dSat, ${ }^{2}{ }^{2} \mathrm{c}, \mathrm{P}=5.9 \mathrm{~Hz},{ }^{1} \mathrm{Jw}, \mathrm{c}=129.2 \mathrm{~Hz}$, cis-CO), $197.1\left(\mathrm{~d},{ }^{2} \mathrm{Jc}, \mathrm{w}=37.2 \mathrm{~Hz}\right.$, trans-CO)
${ }^{19}{ }^{2}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=-137.3\left(\mathrm{~d},{ }^{3} \mathrm{JF}_{\mathrm{F}, \mathrm{F}}=17.0 \mathrm{~Hz}, \quad \mathrm{o}-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-145.8(\mathrm{t}$, $\left.{ }^{3} J_{F, F}=18.8 \mathrm{~Hz}, p-C_{6} F_{5}\right),-156.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=15.6 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=137.0\left({ }^{1} \mathrm{Jw}_{\mathrm{w}, \mathrm{P}}=297.2 \mathrm{~Hz}\right)$
MS (selected data $m / z(\%)): 900.0[\mathrm{M}]^{+}, 816.0[\mathrm{M}-3 \mathrm{CO}]^{+}, 710.0\left[\mathrm{M}-3 \mathrm{CO}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}\right]^{+}$, 466.9 [M-3CO-C7H6O-CPh $]^{+}$

Elemental analysis: C [\%] H [\%]
Calculated: 50.692 .46
Found: $\quad 49.712 .89$
7.4.11.2 Synthesis of \{Pentacarbonyl[4-triphenylmethyl-2-(2,6-difluoro phenyl)-5-pentafluorophenyl]-1,3,4dioxaphospholane-кP\}-tungsten(0) (54)

Difluoro benzaldehyde: $85 \mathrm{~mL}(0.90 \mathrm{mmol})$
Molecular formula: $\mathrm{C}_{38} \mathrm{H}_{20} \mathrm{~F}_{7} \mathrm{O}_{7} \mathrm{PW}$
Molecular weight: $936.36 \mathrm{~g} / \mathrm{mol}$
Yield: 281 mg ($0.30 \mathrm{mmol}, 80 \%$)

${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=6.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}^{2}, \mathrm{C}^{5}\right), 7.1-7.5(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}), 7.6(1 \mathrm{H}$, br, $\mathrm{H}-\mathrm{Ar}{ }^{\mathrm{F}}$), 7.7 ($\left.1 \mathrm{H}, \mathrm{br}, \mathrm{H}-\mathrm{Ar}^{\mathrm{F}}\right)$, $7.8\left(1 \mathrm{H}, \mathrm{br}, \mathrm{H}-\mathrm{Ar} \mathrm{F}^{\mathrm{F}}\right)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm) : $\delta=69.6$ (d, ${ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=3.2 \mathrm{~Hz} \mathrm{C-Ph} 3$), 76.3 (br, C^{2}), 100.9 (br, C ${ }^{5}$), 127.9 (s, Ph), 128.3 (s, Ph), 128.5 (s, Ph), 128.6 (s, Ph), 129.4 (s, Ph), 131.4 (br, ArF-H), 131.7 (br, ArF-H), 132.5 (br, ArF-H), 137.9 ($\mathrm{d},{ }^{3}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=5.7 \mathrm{~Hz}$, $i-\mathrm{Ph}), 139.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}, \mathrm{P}=5.7 \mathrm{~Hz}, i-\mathrm{Ph}\right), 141.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=7.3 \mathrm{~Hz}, i-\mathrm{Ph}\right), 143.9\left(\mathrm{~m}, i-\mathrm{Ar}^{\mathrm{F}}\right)$, 146.2 (m, i-C6655), 160.8 (m, o-C6F5), 163.0 ($\mathrm{m}, \mathrm{m}-\mathrm{C}_{6} \mathrm{~F}_{5}$), 165.0 ($\mathrm{m}, \mathrm{p}-\mathrm{C}_{6} \mathrm{~F}_{5}$), 195.6 (dSat, ${ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=6.8 \mathrm{~Hz},{ }^{1}{ }_{\mathrm{w}} \mathrm{w}, \mathrm{c}=134.3 \mathrm{~Hz}$, cis-CO), $197.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{w}}=36.2 \mathrm{~Hz}\right.$, trans-CO)
${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=-117.3\left(\mathrm{~s}, \mathrm{Ar} \mathrm{F}^{\mathrm{F}}\right),-139.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=15.5 \mathrm{~Hz}\right.$, $O_{0}-\mathrm{C}_{6} \mathrm{~F}_{5}$), -148.8 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=19.3 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{~F}_{5}$), $-158.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=15.8 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=137.6\left({ }^{1}{ }_{\mathrm{W}}^{\mathrm{w}, \mathrm{P}}=297.2 \mathrm{~Hz}\right)$
MS (selected data $m / z \quad(\%))$: $936.0 \quad[\mathrm{M}]^{+}, ~ 880.4 \quad[\mathrm{M}-2 \mathrm{CO}]^{+}, \quad 612.1$ [M-2CO-3CO-W] ${ }^{+}$, 368.9 [M-2CO-3CO-W-CPh $]^{+}$

Elemental analysis: C [\%] H [\%]
Calculated: 48.742 .15
Found: $\quad 49.832 .98$

7.4.11.3 Synthesis of \{Pentacarbonyl[(4-triphenylmethyl-2,5-bispentafluoro phenyl)-1,3,4-dioxaphospholane-кP]-tungsten(0)\} (55)

Pentafluoro benzaldehyde: $110 \mu \mathrm{~L}$ (0.90 mmol)

Molecular formula: $\mathrm{C}_{38} \mathrm{H}_{17} \mathrm{~F}_{10} \mathrm{O}_{7} \mathrm{PW}$
Molecular weight: $990.34 \mathrm{~g} / \mathrm{mol}$
Yield: 293 mg ($0.30 \mathrm{mmol}, 84 \%$)

${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=6.4\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} p, \mathrm{H}=4.9 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.9(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=2.7 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 7.2-7.8(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=69.9$ (br, C-Ph $), 77.6\left(\mathrm{~d},{ }^{1} \mathrm{Jc}, \mathrm{P}=2.6 \mathrm{~Hz}, \mathrm{C}^{2}\right)$, $101.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=8.3 \mathrm{~Hz}, \mathrm{C}^{5}\right.$), 125.6 ($\mathrm{d}, \mathrm{J} \mathrm{C}, \mathrm{P}=3.8 \mathrm{~Hz}, \mathrm{Ph}$), 125.7 (s, Ph), 126.9 (s, Ph), 127.0 (s, Ph), 127.2 (s, Ph), 127.6 (d, Jc, $=5.7 \mathrm{~Hz}, i-\mathrm{Ph}), 127.9$ (s, Ph), 128.8

 ${ }^{2}{ }^{\mathrm{J}, \mathrm{P}}=7.2 \mathrm{~Hz},{ }^{1}{ }_{\mathrm{w}, \mathrm{C}}=132.3 \mathrm{~Hz}$, cis-CO$), 196.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{w}}=34.9 \mathrm{~Hz}\right.$, trans-CO)
${ }^{19}$ F NMR (CDCl_{3}, in ppm): $\delta=-136.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=19.1 \mathrm{~Hz}, \quad \mathrm{o}-\mathrm{Ar}^{\mathrm{F}}\right),-140.7(\mathrm{~d}$, $\left.{ }^{3} J_{F, F}=17.2 \mathrm{~Hz}, o-A r^{F}\right),-153.8\left(\mathrm{t},{ }^{3} J_{F, F}=21.2 \mathrm{~Hz}, p-A r^{F}\right),-154.4\left(\mathrm{~d},{ }^{3}{ }^{3} F, F=20.7 \mathrm{~Hz}\right.$, $\left.p-A r^{F}\right),-162.4\left(\mathrm{t},{ }^{3} \mathrm{~J}, \mathrm{~F}=17.3 \mathrm{~Hz}, m-\mathrm{Ar}^{\mathrm{F}}\right),-163.3\left(\mathrm{t},{ }^{3} \mathrm{~F}, \mathrm{~F}=16.9 \mathrm{~Hz}, m-\mathrm{Ar}^{\mathrm{F}}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=162.9\left({ }^{1}{ }_{\mathrm{W}, \mathrm{P}}=293.1 \mathrm{~Hz}\right)$
MS (selected data $m / z \quad(\%))$: $990.0 \quad[\mathrm{M}]^{+}, ~ 933.9 \quad[\mathrm{M}-2 \mathrm{CO}]^{+}, \quad 666.2$ [M-2CO-3CO-W] ${ }^{+}, 423.21\left[\mathrm{M}-2 \mathrm{CO}-3 \mathrm{CO}-\mathrm{CPh}_{3}\right]^{+}$

Elemental analysis: C [\%] H [\%]
Calculated: 46.091 .73
Found: $\quad 46.572 .01$

7.4.12 Synthesis of

\{Pentacarbonyl[2-ethoxy-3-pentafluorophenyl-1,5,6,7,8-pentamethyl-bicy clo[3.3.0]4,2-oxaphosphaoct-6-en-кP]-tungsten(0)\} (60)

170 mg (0.25 mmol) of complex 27 were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $45 \mu \mathrm{~L}$ (2 eq.) of TfOH were added. After 10 min . of stirring, an excess of ETOH was added and the solution was stirred at $0^{\circ} \mathrm{C}$ for 10 min . Then 2 eq. of $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L})$ were added dropwise to the dark brown solution. The color of the solution turned into light yellow and the reaction mixture was stirred for other extra 10 min . The solvent was removed in vacuo (ca. 0.01 bar) and the light yellow oily residue was purified by low temperature column chromatography $\mathrm{Al}_{2} \mathrm{O}_{3},-20^{\circ} \mathrm{C}, \mathrm{h}=2 \mathrm{~cm}, \varnothing=1 \mathrm{~cm}$, petroleum ether (200 mL); petroleum ether/diethyl ether 4:1 (200 mL), resulting in a white solid.

Molecular formula: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{O}_{7} \mathrm{PW}$

Molecular weight: $732.1 \mathrm{~g} / \mathrm{mol}$
Yield: 145 mg ($0.30 \mathrm{mmol}, 85 \%$)
${ }^{1} \mathrm{H} \quad$ NMR (THF-d8, in ppm): $\delta=1.1 \quad(3 \mathrm{H}$, $\left.\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=7.3 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$, $1.12\left(3 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$, $1.16\left(3 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.45$
 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.6\left(3 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 3.5\left(2 \mathrm{H}, \mathrm{dm}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4,7(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2}{ }_{\mathrm{H}, \mathrm{P}}=22.9 \mathrm{~Hz}, \mathrm{CH}\right)$
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm): $\delta=9.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 12.5\left(\mathrm{~s} . \mathrm{CH}_{3}\right), 12.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 15.2$

 CHP), 98 (d, Jc, $\left.\mathrm{P}^{2}=1.2 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Cp}^{*}\right), 109$ (m, ipso-ArF), 133 (s, Cp*-Cq) 136 (m,
 (m, Cq-ArF), 196.1 ($\mathrm{d},{ }^{2}{ }^{2} \mathrm{c}, \mathrm{P}=7.2 \mathrm{~Hz}$, cis-CO), 196.7 ($\mathrm{d},{ }^{2}{ }^{2} \mathrm{c}, \mathrm{P}=27 \mathrm{~Hz}$, trans-CO)
${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=-154.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20.7 \mathrm{~Hz}, p-\mathrm{Ar}^{\mathrm{F}}\right),-162.4$ (t , $\left.{ }^{3} J_{F, F}=17.3 \mathrm{~Hz}, m-A r^{F}\right),-163.3\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=16.9 \mathrm{~Hz}, m-\mathrm{Ar}^{\mathrm{F}}\right)$;
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm$): \delta=178.7\left({ }^{1} \mathrm{Jw}_{\mathrm{w}, \mathrm{P}}=275.4 \mathrm{~Hz}\right)$

[^0]
7.4.13 General procedure for the synthesis of $1,3,4,5-$ tetramethylimidazolium \{Pentacarbonyl-[triphenylmethyl(fluoro) phosphanoxido-кP]tungsten(0)\} (66) and 1,3-diisopropyl-4,5-dimethylimidazolium\{pentacarbony-[triphenylmethyl(fluoro) phosphanoxido-кP]tungsten(0)\} (67)

$350 \mathrm{mg}(0.45 \mathrm{mmol})$ of complex 22 were dissolved in THF (4 mL) and 1.2 eq . of the corresponding N -heterocyclic carbene ($61^{\mathrm{Me} / \mathrm{Me}}$ and $\left.61^{\mathrm{iPr} / \mathrm{Me}}\right)$ were added. The solution was then stirred under refluxing conditions for about 15 min . The dark brown solution was characterized by multinuclear NMR analysis.

66: $61^{\mathrm{Me} / \mathrm{Me}:} 67 \mathrm{mg}, 0.54 \mathrm{mmol}$
Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $758.37 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=2.3\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.4\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.6-7.3$ (15H, m, 3Ph), 10.6 (1H, br, C-H)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=7.52\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 30.2\left(\mathrm{br}, \mathrm{N}-\mathrm{CH}_{3}\right), 56.7$ (d, ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=28.3 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}_{3}$), 125.4 ($\mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}-\mathrm{Me}$), 126.1 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$) 128.2 (d , $\left.{ }^{4}{ }^{\mathrm{J}} \mathrm{C}, \mathrm{P}=1.32 \mathrm{~Hz} m-\mathrm{Ph}\right), 129.5\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=2.43 \mathrm{~Hz}, o-\mathrm{Ph}, 144.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}, \mathrm{P}=4.20 \mathrm{~Hz}\right.\right.$, $i-\mathrm{Ph}), 147.0(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 199.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=10.8 \mathrm{~Hz}\right.$, cis-CO), trans-CO (not observed)
${ }^{19}$ F NMR (THF-d8, in ppm): $\delta=-33.03\left(\mathrm{~d},{ }^{1} \mathrm{Jp}, \mathrm{F}=1032.8 \mathrm{~Hz},{ }^{2} \mathrm{~J}\right.$ F, w $=30.3 \mathrm{~Hz}$)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=152.7\left({ }^{1} \mathrm{JW}_{\mathrm{W}, \mathrm{P}}=319.8 \mathrm{~Hz},{ }^{1} \mathrm{JP}, \mathrm{F}=1032.8 \mathrm{~Hz}\right)$

67: 61 ${ }^{\text {iPr/Me }}: 97 \mathrm{mg}, 0.54 \mathrm{mmol}$
Molecular formula: $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{FN}_{2} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $814.48 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=1.2(12 \mathrm{H}$,

d, ${ }^{4}{ }_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.3\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}\right)$, $3.6\left(2 \mathrm{H}\right.$, sept, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.3 \mathrm{~Hz}$ $\left.\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.9-7.9(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}), 10.6(1 \mathrm{H}, \mathrm{br}, \mathrm{C}-\mathrm{H})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=7.5\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 21.9\left(\mathrm{~N}-\mathrm{CH}\left(\underline{\mathrm{CH}} \mathrm{H}_{3}\right)_{2}\right), 50.5$ $\left(\mathrm{N}-\underline{\mathrm{C}} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}\right), 56.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=28.3 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}_{3}\right), 125.2$ (s, Me-C=C-Me), 126.1 (s, $p-\mathrm{Ph}), 128.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.32 \mathrm{~Hz} m-\mathrm{Ph}\right), 129.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=2.43 \mathrm{~Hz}, o-\mathrm{Ph}, 144.5(\mathrm{~d}\right.$, $\left.{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.20 \mathrm{~Hz}, i-\mathrm{Ph}\right), 148.3(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 199.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}, \mathrm{P}=10.8 \mathrm{~Hz}\right.$, cis-CO$)$, trans-CO (not observed)
${ }^{19}$ F NMR (THF-d8, in ppm): $\delta=-33.03\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{F}}=1032.8 \mathrm{~Hz},{ }^{2}{ }^{\mathrm{J} F, \mathrm{w}}=30.3 \mathrm{~Hz}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=152.7\left({ }^{1}{ }^{\prime} \mathrm{W}, \mathrm{P}=319.8 \mathrm{~Hz},{ }^{1} \mathrm{JP}, \mathrm{F}=1032.8 \mathrm{~Hz}\right)$

7.4.14 General procedure for the synthesis of Tetrabutylamonium

 \{Pentacarbonyl[triphenylmethyl(fluoro)phosphanoxido-kP] tungsten(0)\} (74) and Tetrabutylamonium\{pentacarbonyl-[triphenylmethyl(fluoro)phosphanoxido-kP]chromium(0)\} (75)The complexes 25 and 26 were dissolved in THF (4 mL) and 1.2 eq. of TBAF (tbutyl ammonium fluoride) were added. The solution was stirred under reflux conditions for about 15 min . The dark brown solution was characterized by multinuclear NMR analysis.

74: 22: $360 \mathrm{mg}, 0.45 \mathrm{mmol}$; TBAF: 0.54 mL , 0.54 mmol

Molecular formula: $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{FNO}{ }_{6} \mathrm{PW}$ Molecular weight: $875.66 \mathrm{~g} / \mathrm{mol}$

${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=1.01\left(12 \mathrm{H}, \mathrm{t},{ }^{2}{ }^{\mathrm{J}} \mathrm{H}, \mathrm{H}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.4(8 \mathrm{H}$, sept, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.8\left(8 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.7\left(8 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{N}-\mathrm{CH}_{2}\right), 7.1-7.3(15 \mathrm{H}, \mathrm{m}$, 3Ph)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=13.1$ (s, C-CH3), 19.6 (s, $\underline{\mathrm{C}}_{2}-\mathrm{CH}_{3}$), 23.7 (s, $\left.\underline{\mathrm{C}_{2}}-\mathrm{CH}_{3}\right), 25.4\left(\mathrm{~s}, \underline{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{3}\right), 28.80\left(\mathrm{~s}, \underline{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 53.8\left(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{2}\right), 58.1(\mathrm{~s}$, $\mathrm{N}-\mathrm{CH}_{2}$), 59.5 ($\mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}$), 67.2 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=8.3 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}_{3}$), 125.9 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$), 127.9 (s , $m-\mathrm{Ph}), 131.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=5.4 \mathrm{~Hz}, o-\mathrm{Ph}, 145.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=3.2 \mathrm{~Hz}, i-\mathrm{Ph}\right), 199.3\right.$ (ddsat, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=10.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=1.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{C}, \mathrm{w}}=123.5 \mathrm{~Hz}$, cis-CO$)$, trans-CO (dd, ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=26.2$ $\mathrm{Hz}, \mathrm{J}, \mathrm{F}=3.9 \mathrm{~Hz}$)
${ }^{19}$ F NMR (THF-d8, in ppm): $\delta=-32.5\left(\mathrm{~d},{ }^{1} \mathrm{JP}, \mathrm{F}=1042.9 \mathrm{~Hz},{ }^{2} \mathrm{~J} F, \mathrm{~W}=31.4 \mathrm{~Hz}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=147.4\left({ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=317.8 \mathrm{~Hz},{ }^{1} \mathrm{JP}, \mathrm{F}=1042.9 \mathrm{~Hz}\right)$

75: 26: $300 \mathrm{mg}, 0.45 \mathrm{mmol}$; TBAF: 0.54 mL , 0.54 mmol

Molecular formula: $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{CrFNO}_{6} \mathrm{P}$

Molecular weight: $743.28 \mathrm{~g} / \mathrm{mol}$

${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=0.8\left(12 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2(8 \mathrm{H}$, sept, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, $2.2\left(8 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.2\left(8 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{N}-\mathrm{CH}_{2}\right), 6.9-7.3(15 \mathrm{H}, \mathrm{m}$, 3Ph)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=12.6$ (s, $\mathrm{C}-\mathrm{CH}_{3}$), 18.9 (s, $\mathrm{C}_{2}-\mathrm{CH}_{3}$), 21.2 (s, $\left.\underline{\mathrm{C}_{2}}-\mathrm{CH}_{3}\right), 25.6\left(\mathrm{~s}, \underline{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{3}\right), 26.5\left(\mathrm{~s}, \underline{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 52.2$ (s, $\left.\mathrm{N}-\mathrm{CH}_{2}\right), 59.6$ (s, $\mathrm{N}-\mathrm{CH}_{2}$), 60.5 ($\mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}$), 67.2 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=8.3 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}_{3}$), 124.2 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$), 126.3 (s , $m-\mathrm{Ph}), 129.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=5.2 \mathrm{~Hz}, o-\mathrm{Ph}, 144.9\left(\mathrm{~d},{ }^{2}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=4.5 \mathrm{~Hz}, i-\mathrm{Ph}\right), 203.8\right.$ (dd, ${ }^{2} \mathrm{~J} \mathrm{C}, \mathrm{P}=13.2 \mathrm{~Hz}, \mathrm{Jc}, \mathrm{F}=1.1 \mathrm{~Hz}$, cis-CO), trans-CO (not observed)
${ }^{19}$ F NMR (THF-d8, in ppm): $\delta=-26.7\left(\mathrm{~d},{ }^{1} \mathrm{JP}, \mathrm{F}=1062.6 \mathrm{~Hz}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=183.1\left({ }^{1} \mathrm{~J}, \mathrm{~F}=1062.6 \mathrm{~Hz}\right)$

7.4.15 Synthesis of \{Pentacarbony-(1-Phenyl-1-hydroxy-2-phosphaalkene- κP)tungsten(0)\} (76)

A solution of the oxaphosphirane complex $\mathbf{4 c}$ in THF-d ${ }^{8}$ was treated with KC_{8} (2.0 eq) After 24h of stirring, a multinuclear NMR analysis was performed.

Molecular formula: $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{PW}$
Molecular weight: $462.00 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=2.8\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{JP}, \mathrm{H}=13.1\right.$
 Hz, OH), 6.8-7.6 (5H, m, Ph), $8.6\left(1 \mathrm{H}, \mathrm{d},{ }^{1} \mathrm{~J} \mathrm{P}, \mathrm{H}=292.1 \mathrm{~Hz}, \mathrm{PH}\right)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=198.1$ ($\mathrm{d},{ }^{2}{ }^{2} \mathrm{~J}, \mathrm{P}=35.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{P}$), $200.1\left(\mathrm{~d},{ }^{2} \mathrm{~J} \mathrm{c}, \mathrm{P}\right.$ $=9.0 \mathrm{~Hz},{ }^{1} \mathrm{Jw}_{\mathrm{w}, \mathrm{c}}=96.7 \mathrm{~Hz}$, cis-CO), 203.1 ($\mathrm{d},{ }^{2}{ }^{\mathrm{J}} \mathrm{c}, \mathrm{P}=18.4 \mathrm{~Hz}$, trans-CO);
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm) $: \delta=91.5\left({ }^{1} \mathrm{JP}, \mathrm{H}=292.1 \mathrm{~Hz}\right)$

7.4.16 Synthesis of Potassium\{pentacarbonyl[triphenylmethyl(fluoro) phosphanoxido-kP]tungsten(0)\} (77)

Complex 22 in THF and 2 eq. of KC_{8} (potassium graphite) were added. The solution was stirred at room temperature for . The dark brown solution was characterized by multinuclear NMR analysis.

22: $200 \mathrm{mg}, 0.25 \mathrm{mmol} ; \mathrm{KC8}: 80 \mathrm{mg}, 0.60 \mathrm{mmol}$
Molecular formula: $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{FKO}_{6} \mathrm{PW}$
Molecular weight: $672.29 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=6.9-7.5(15 \mathrm{H}$, m, 3Ph)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=65.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=8.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}_{3}\right), 125.9(\mathrm{~s}, \mathrm{p}-\mathrm{Ph})$, 127.9 (s, m-Ph), 129.3 (s, o-Ph), 144.1 (s, $i-\mathrm{Ph}$), 202.7 (dsat, ${ }^{2} \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=12.3 \mathrm{~Hz}, \mathrm{Jc}, \mathrm{F}$ and ${ }^{1} J_{c, w}=$ not observed, cis-CO), $205.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=25.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=\right.$ not observed)
${ }^{19}$ F NMR (THF-d8, in ppm): $\delta=-33.0\left(\mathrm{~d},{ }^{1} \mathrm{JP}, \mathrm{F}=1041.7 \mathrm{~Hz}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=150.9\left({ }^{1} \mathrm{Jw}_{\mathrm{w}, \mathrm{P}}=320.6 \mathrm{~Hz},{ }^{1} \mathrm{JP}, \mathrm{F}=1041.7 \mathrm{~Hz}\right)$

7.4.17 Synthesis of \{Pentacarbonyl[1-phenyl-2-triphenylmethyl)-2-phospha-alkene-кP]-tungsten(0)\} (92)

A solution of the oxaphosphirane complex $\mathbf{4 c}$ in $\mathrm{THF}-\mathrm{d}^{8}$ was treated with TiCpCl_{3} (1.0 eq) and Zn powder (1.0 eq). After 24 h of stirring, a multinuclear NMR analysis was performed.

Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PW}$
Molecular weight: $688.32 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (THF-d8, in ppm): $\delta=7.0-7.4(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph})$,

7.6-7.7 (5H, m, Ph), 9.1 ($1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}$ p, $\mathrm{H}=23.7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{P}$)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm): $\delta=67.1$ (br, $\mathrm{P}-\underline{\mathrm{C}} \mathrm{Ph}_{3}$), 125.9 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$), 127.9 ($\mathrm{s}, \mathrm{CPh}_{3}$), 128.3 (s, Ph), 129.2 ($\mathrm{s}, \mathrm{CPh}_{3}$), 131.1 (s, Ph), 131.6 (d, $\mathrm{J}_{\mathrm{c}, \mathrm{P}}=6.6 \mathrm{~Hz}$, $C^{C P h} 3$), 142.2 (s, $\left.i-\mathrm{Ph}\right), 144.1$ ($\mathrm{s}, i-\mathrm{CPh}_{3}$), 170.9 ($\mathrm{d},{ }^{2}{ }^{\mathrm{J}, ~}, \mathrm{P}=35.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{P}$), 194.8 (d, ${ }^{2}{ }^{2} \mathrm{c}, \mathrm{P}=9.1 \mathrm{~Hz}$, cis-CO), 197.7 ($\mathrm{d},{ }^{2}{ }^{2} \mathrm{c}, \mathrm{P}=34.6 \mathrm{~Hz}$, trans-CO);
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d8, in ppm) $: \delta=241.4\left({ }^{2} \mathrm{~J} \mathrm{P}, \mathrm{H}=23.7 \mathrm{~Hz}\right)$

8. References and notes

[1] F. Krafft, Angew. Chem. Int. Ed. 1969, 8, 660-671.
[2] K. B. Dillon, J. F. Nixon, F. Mathey, Phosphorus:. The carbon copy, John Wiley, New York, Chichester, 1998.
[3] J. P. Majoral, New Aspects in Phosphorus Chemistry V, Springer, 2005.
[4] P. W. Atkins, Shriver \& Atkins' inorganic chemistry, Oxford University Press, Oxford, 2010.
[5] "New Aspects in Phosphorus Chemistry V", Springer, 2005.
[6] S. Lacombe, D. Gonbeau, J. L. Cabioch, B. Pellerin, J. M. Denis, G. Pfister-Guillouzo, J. Am. Chem. Soc. 1988, 110, 6964-6967.
[7] A. Meriem, J.-P. Majoral, M. Revel, J. Navech, Tetrahedron Lett. 1983, 24, 1975-1978.
[8] R. de Vaumas, A. Marinetti, F. Mathey, J. Organomet. Chem. 1991, 413, 411-417.
[9] R. Steudel, The chemistry of inorganic ring systems, Elsevier, Amsterdam, 1992.
[10] G. Grüttner, M. Wiernik, Ber. Dtsch. Chem. Ges. 1915, 48, 1759-1764.
[11] W.B. McCormack, Chem. Abstr. 1955, 7602.
[12] R. K. Bansal (Ed.) Topics in Heterocyclic Chemistry, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
[13] S. Duraffour, R. Snoeck, M. Krecmerova, J. van den Oord, R. de Vos, A. Holy, J.-M. Crance, D. Garin, E. de Clercq, G. Andrei, Antimicrob. Agents Chemother. 2007, 51, 4410-4419.
[14] D.-Q. Shi, A. Feras, Y. Liu, Phosphorus, Sulfur, Silicon Relat. Elem. 2006, 181, 2663-2673.
[15] K. Moedritzer, R. E. Miller, J. Org. Chem. 1982, 47, 1530-1534.
[16] M. Epstein, S. A. Buckler, Tetrahedron 1962, 18, 1231-1242.
[17] J. M. L. Hillman, S. M. Roberts, J. Chem. Soc., Perkin Trans. 1 1997, 3601-3608.
[18] S. G. Ruf, J. Dietz, M. Regitz, Tetrahedron 2000, 56, 6259-6267.
[19] C. Müller, R. Bartsch, A. Fischer, P. G. Jones, R. Schmutzler, Chem. Ber. 1995, 128.
[20] D. M. Perreault, E. V. Anslyn, Angew. Chem. Int. Ed. 1997, 36, 432-450.
[21] V. Gray, Energy \& Environment 2007, 18, 433-440.
[22] T. R. Hull, B. K. Kandola, Fire retardancy of polymers. New strategies and mechanisms / edited by T. Richard Hull, Baljinder K. Kandola, Royal Society of Chemistry, Cambridge, 2009.
[23] B. A. Howell, J. Uzibor, J Vinyl Addit Technol 2006, 12, 192-197.
[24] M. T. Boisdon, J. Barrans, J. Chem. Soc., Chem. Commun. 1988, 615-617.
[25] M. Bode, M. Nieger, R. Streubel, Organometallics 2007, 26, 245-246.
[26] G. Wittig, U. Schöllkopf, Chem. Ber. 1954, 87, 1318-1330.
[27] H. Pommer, P. C. Thieme in Topics in Current Chemistry, Vol. 109 (Eds.: F. L. Boschke, M. J. S. Dewar, J. D. Dunitz, K. Hafner, E. Heilbronner, S. Itô, J.-M. Lehn, K. Niedenzu, K. N. Raymond, C. W. Rees et al.), Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.
[28] a) T. Kawashima, K. Kato, R. Okazaki, Angew. Chem. 1993, 105, 941-942; b) Mazhar-ul-Haque, C. N. Caughlan, F. Ramirez, J. F. Pilot, C. P. Smith, J. Am. Chem. Soc. 1971, 93, 5229-5235; c) M. Hamaguchi, Y. Iyama, E. Mochizuki, T. Oshima, Tetrahedron Lett. 2005, 46, 8949-8952.
[29] A. W. Kyri, V. Nesterov, G. Schnakenburg, R. Streubel, Angew. Chem. Int. Ed. 2014, 53.
[30] B. Kaboudin, H. Haghighat, T. Yokomatsu, Synlett 2016, 27, 1537-1540.
[31] A. Weissberger, E. C. Taylor, Chem. Heterocycl. Compd., John Wiley \& Sons, Inc, Hoboken, NJ, USA, 1977.
[32] a) Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2000; b) A. L. Branen, Food additives, M. Dekker, New York, 2002.
[33] a) A. Vila, R. A. Mosquera, Chem. Phys. 2003, 287, 125-135; b) M. S. Gordon, J. Am. Chem. Soc. 1980, 102, 7419-7422.
[34] Hassner, Alfred. Ed, Small ring heterocycles. Pt3, Oxiranes, arene oxides, oxaziridines, dioxetanes, thietanes, thietes, thiazetes, and others, Wiley, New York, 1985.
[35] O. Krahe, F. Neese, R. Streubel, Chemistry 2009, 15, 2594-2601.
[36] M. Regitz, O. J. Scherer, Multiple bonds and low coordination in phosphorus chemistry, Georg Thieme Verlag, Stuttgart, 1990.
[37] A. Espinosa Ferao, R. Streubel, to be publised.
[38] F. U. Seifert, G.-V. Röschenthaler, Z. Naturforsch. B 1993, 48, 1089-1093.
[39] E. Niecke, D. Gudat, W. W. Schoeller, P. Rademacher, J. Chem. Soc., Chem. Commun. 1985, 1050-1051.
[40] S. Bauer, A. Marinetti, L. Ricard, F. Mathey, Angew. Chem. 1990, 102, 1188-1189.
[41] S. Bauer, A. Marinetti, L. Ricard, F. Mathey, Angew. Chem. Int. Ed. 1990, 29, 1166-1167.
[42] Marc Schröder, Dissertation, 1999.
[43] R. Streubel, A. Kusenberg, J. Jeske, P. G. Jones, Angew. Chem. Int. Ed. 1995, 33, 2427-2428.
[44] R. Streubel, H. Wilkens, A. Ostrowski, C. Neumann, F. Ruthe, P. G. Jones, Angew. Chem. Int. Ed. 1997, 36, 1492-1494.
[45] R. Streubel, M. Bode, J. Marinas Pérez, G. Schnakenburg, J. Daniels, M. Nieger, P. G. Jones, Z. Anorg. Allg. Chem. 2009, 635, 1163-1171.
[46] A. Ozbolat, G. von Frantzius, J. M. Perez, M. Nieger, R. Streubel, Angew. Chem. Int. Ed. 2007, 46, 9327-9330.
[47] R. Streubel, M. Klein, G. Schnakenburg, Organometallics 2012, 31, 4711-4715.
[48] M. Klein, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Dalton Trans. 2016, 45, 2085-2094.
[49] J. M. Pérez, M. Klein, A. W. Kyri, G. Schnakenburg, R. Streubel, Organometallics 2011, 30, 5636-5640.
[50] M. Gomberg, J. Am. Chem. Soc. 1900, 22, 757-771.
[51] V. Plack, J. R. Goerlich, A. Fischer, R. Schmutzler, Z. Anorg. Allg. Chem. 1999, 625, 1979-1984.
[52] V. Plack, R. Schmutzler, Phosphorus, Sulfur, Silicon Relat. Elem 1999, 144, 273-276.
[53] V. Nesterov, G. Schnakenburg, A. Espinosa, R. Streubel, Inorg. Chem. 2012, 51, 12343-12349.
[54] S. Grimme, A. Hansen, Angew. Chem. 2015, 127, 12483-12488.
[55] A. Ozbolat, A. A. Khan, G. von Frantzius, M. Nieger, R. Streubel, Angew. Chem. Int. Ed. 2007, 46, 2104-2107.
[56] C. M. García, A. E. Ferao, G. Schnakenburg, R. Streubel, Dalton Trans. 2016, 45, 2378-2385.
[57] V. Plack, J. R. Goerlich, R. Schmutzler, Z. Naturforsch. B 1998, 53, 1265-1266.
[58] V. Plack, J. R. Goerlich, R. Schmutzler, Z. Anorg. Allg. Chem. 1998, 624, 1940-1942.
[59] A. Espinosa, R. Streubel, Chemistry 2012, 18, 13405-13411.
[60] V. Plack, P. Sakhaii, M. Freytag, P. G. Jones, R. Schmutzler, J. Fluorine Chem. 2000, 101, 125130.
[61] V. Plack, R. Schmutzler, Phosphorus, Sulfur, Silicon Relat. Elem. 1999, 144, 273-276.
[62] V. Nesterov, G. Schnakenburg, A. Espinosa, R. Streubel, Inorg. Chem. 2012, 51, 12343-12349.
[63] C. Albrecht, M. Bode, J. M. Pérez, J. Daniels, G. Schnakenburg, R. Streubel, Dalton Trans. 2011, 40, 2654-2665.
[64] L. Hirsivaara 2001, 364.
[65] R. Streubel, H. Wilkens, P. G. Jones, Chem. Eur. J. 2000, 6, 3997-4000.
[66] E. Wiberg, N. Wiberg, Lehrbuch der anorganischen Chemie, Walter de Gruyter, Berlin, 1995.
[67] A. F. Gushwa, Y. Belabassi, J.-L. Montchamp, A. F. Richards, J. Chem. Crystallogr. 2009, 39, 337347.
[68] Aysel Özbolat-Schön. Dissertation, University of Bonn, 2011.
[69] A. Ostrowski, Untersuchungen zur thermischen Zersetzung von Arylsubstituierten 2H-Azaphosphiren-Wolframkomplexen in Lösung, Papierflieger, Clausthal-Zellerfeld, 1997.
[70] J. Marinas Pérez, Dissertation, University of Bonn, 2010.
[71] P. K. Majhi, private communication, 2016.
$[72]$ a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) Lee, Yang, Parr, Physical review. B, Condensed matter 1988, 37, 785-789.
[73] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
[74] M. Klein, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Dalton Trans. 2016, 45, 2085-2094.
[75] R. Streubel, C. Murcia-García, G. Schnakenburg, A. Espinosa Ferao, Organometallics 2015, 34, 2676-2682.
[76] a) R. Hoffmann, R. B. Woodward, Science 1970, 167, 825-831; b) S. Sharma, T. Rajale, D. K. Unruh, D. M. Birney, J. Org. Chem. 2015, 80, 11734-11743.
[77] a) C. J. Wu, L. E. Fried, L. H. Yang, N. Goldman, S. Bastea, Nature Chem. 2009, 1, 57-62; b) Z. Zhang, Y. Du, N. G. Petrik, G. A. Kimmel, I. Lyubinetsky, Z. Dohnálek, J. Phys. Chem. C 2009, 113, 1908-1916.
[78] a) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571; b) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
[79] V. Mouriès, F. Mercier, L. Ricard, F. Mathey, Eur. J. Org. Chem. 1998, 1998, 2683-2687.
$[80]$ a) R. Appel, S. Korte, M. Halstenberg, F. Knoch, Chem. Ber. 1982, 115, 3610-3617; b) T. Möller, P. Wonneberger, M. B. Sárosi, P. Coburger, E. Hey-Hawkins, Dalton Trans. 2016, 45, 19041917.
[81] C. M. Garcia, A. E. Ferao, G. Schnakenburg, R. Streubel, Dalton Trans. 2016, 45, 2378-2385.
[82] M. Klein, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Dalton Trans. 2016, 45, 2085-2094.
[83] C. Murcia-García, A. Bauzá, A. Frontera, R. Streubel, CrystEngComm 2015, 17, 6736-6743.
[84] C. Murcia-García, A. Bauzá, G. Schnakenburg, A. Frontera, R. Streubel, CrystEngComm 2015, 17, 1769-1772.
[85] F. A. Cotton, Advanced inorganic chemistry, Wiley, New York, Chichester, 1999.
[86] M. Bode, G. Schnakenburg, P. G. Jones, R. Streubel, Organometallics 2008, 27, 2664-2667.
[87] F. A. Cotton, C. S. Kraihanzel, J. Am. Chem. Soc. 1962, 84, 4432-4438.
$[88] \quad$ a) L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808-4842; b) K. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143-168.
[89] a) M. Egli, S. Sarkhel, Acc. Chem. Res. 2007, 40, 197-205; b) T. J. Mooibroek, P. Gamez, J. Reedijk, CrystEngComm 2008, 10, 1501-1515.
[90] a) J. Zukerman-Schpector, I. Haiduc, E. R. Tiekink, Chem. Commun. 2011, 47, 12682-12684; b) E. R. T. Tiekink, J. Zukerman-Schpector, The Importance of Pi-Interactions in Crystal Engineering, John Wiley \& Sons, Ltd, Chichester, UK, 2012.
[91] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165-169.
[92] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-154123.
[93] S. F. Boys, F. Bernardi, Mol. Phys. 2006, 19, 553-566.
[94] R. F. W. Bader, Chem. Rev. 1991, 91, 893-928.
[95] For the rest of the complexes see appendix.
[96] H. Wilkens, A. Ostrowski, J. Jeske, F. Ruthe, P. G. Jones, R. Streubel, Organometallics 1999, 18, 5627-5642.
[97] P. Jutzi, H. Saleske, D. Nadler, J. Organomet. Chem. 1976, 118, C8-C10.
[98] C. Murcia García, A. Bauzá, G. Schnakenburg, A. Frontera, R. Streubel, Ang. Chem. Int. Ed. 2016, Submitted.
[99] A. Bauzá, T. J. Mooibroek, A. Frontera, ChemPhysChem 2015, 16, 2496-2517.
[100] M. Lukeman, J. C. Scaiano, J. Am. Chem. Soc. 2005, 127, 7698-7699.
[101] A. Bauzá, T. J. Mooibroek, A. Frontera, Angew. Chem. Int. Ed. 2013, 52, 12317-12321.
[102] F. P. Sargent, M. G. Bailey, Can. J. Chem. 1971, 49, 2350-2352.
[103] J. Marinas Pérez Dissertation, University of Bonn, 2010.
[104] M. Klein, Dissertation, University of Bonn, 2015.
[105] C. Albrecht. Dissertation, University of Bonn, 2013.
[106] M. Bode, J. Daniels, R. Streubel, Organometallics 2009, 28, 4636-4638.
[107] X. Fang, Y. Ou, Jingxi Huagong 2007, 24, 401-403.
[108] Y. Ma, A.-L. Cheng, E.-Q. Gao, Crystal Growth \& Design 2010, 10, 2832-2834.
[109] L. D. Quin, A Guide to Organophosphorus Chemistry, Wiley, 2000.
[110] J. M. Villalba Franco, A. Espinosa Ferao, G. Schnakenburg, R. Streubel, Chem. Commun. 2013, 49, 9648-9650.
[111] A. Espinosa, R. Streubel, Chemistry (Weinheim an der Bergstrasse, Germany) 2012, 18, 1340513411.
[112] a) A. Espinosa, C. Gomez, R. Streubel, Inorg. Chem. 2012, 51, 7250-7256; b) A. Espinosa, R. Streubel, Chemistry 2011, 17, 3166-3178; c) A. Espinosa, E. de las Heras, R. Streubel, Inorg. Chem. 2014, 53, 6132-6140.
[113] K. B. Wiberg, Tetrahedron 1968, 24, 1083-1096.
[114] P.-O. Löwdin, J. Chem. Phys. 1950, 18, 365-375.
[115] a) I. Mayer, Chemical Physics Letters 1983, 97, 270-274; b) I. Mayer, Int. J. Quantum Chem. 1984, 26, 151-154; c) A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, J. Rothery, J. Chem. Soc., Dalton Trans. 2001, 2095-2108.
[116] a) R. F. W. Bader, Chem. Rev. 1991, 91, 893-928; b) R. F. W. Bader, J. Phys. Chem. A 1998, 102, 7314-7323.
[117] a) C. Albrecht, E. Schneider, M. Engeser, G. Schnakenburg, A. Espinosa, R. Streubel, Dalton Trans. 2013, 42, 8897-8906; b) A. Bauzá, R. Streubel, A. Frontera, Chem. Phys. Lett. 2014, 597, 40-44.
[118] a) A. E. Reed, F. Weinhold, J. Chem. Phys. 1983, 78, 4066-4073; b) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
[119] a) J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625-632; b) J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625-632.
[120] M. Bode, M. Nieger, R. Streubel, Organometallics 2007, 26, 245-246.
[121] J. M. Pérez, H. Helten, G. Schnakenburg, R. Streubel, Chem. Asian J. 2011, 6, 1539-1545.
[122] C. Albrecht, M. Bode, J. M. Pérez, J. Daniels, G. Schnakenburg, R. Streubel, Dalton Trans. 2011, 40, 2654-2665.
[123] R. Hoffmann, G. D. Zeiss, G. W. van Dine, J. Am. Chem. Soc. 1968, 90, 1485-1499.
[124] F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122-3172.
[125] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.
[126] L. Duan, V. Nesterov, J. W. Runyon, G. Schnakenburg, A. J. Arduengo III, R. Streubel, Aust. J. Chem. 2011, 64, 1583-1586.
[127] M. Klein, G. Schnakenburg, A. Espinosa Ferao, N. Tokitoh, R. Streubel, Eur. J. Inorg. Chem. 2016, 2016, 685-690.
[128] N. Kuhn, T. Kratz, Synthesis 1993, 1993, 561-562.
[129] A. J. Arduengo, H. V. R. Dias, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1992, 114, 5530-5534.
[130] V. Nesterov, L. Duan, G. Schnakenburg, R. Streubel, Eur. J. Inorg. Chem. 2011, 2011, 567-572.
[131] S. Ando, T. Matsuura, Magn. Reson. Chem. 1995, 33, 639-645.
[132] V. Nesterov, Z.-W. Qu, G. Schnakenburg, S. Grimme, R. Streubel, Chem. Commun. 2014, 50, 12508-12511.
[133] C. Murcia García, T. Sasamori, G. Schnakenburg, R. Streubel, to be published 2016.
[134] S. Jie, P. L. Diaconescu, Organometallics 2010, 29, 1222-1230.
[135] J. A. Plumley, J. D. Evanseck, J. Phys. Chem. A 2009, 113, 5985-5992.
[136] N. Meyer, P. W. Roesky, S. Bambirra, A. Meetsma, B. Hessen, K. Saliu, J. Takats, Organometallics 2013, 32, 3427-3427.
[137] a) N. Meyer, P. W. Roesky, S. Bambirra, A. Meetsma, B. Hessen, K. Saliu, J. Takats, Organometallics 2008, 27, 1501-1505; b) L. N. Bochkarev, T. A. Zheleznova, A. V. Safronova, M.
S. Drozdov, S. F. Zhil'tsov, L. N. Zakharov, G. K. Fukin, S. Y. Khorshev, Russ. Chem. Bull. 1998, 47, 165-168.
[138] J. L. Atwood, W. E. Hunter, R. D. Rogers, J. Holton, J. McMeeking, R. Pearce, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1978, 140-142.
[139] I. C. Lewis, L. S. Singer, Org. Magn. Reson. 1984, 22, 761-763.
[140] a) S.-P. Chia, H.-X. Yeong, C.-W. So, Inorg. Chem. 2012, 51, 1002-1010; b) S.-P. Chia, R. Ganguly, Y. Li, C.-W. So, Organometallics 2012, 31, 6415-6419; c) Y. Li, Y.-C. Chan, Y. Li, I. Purushothaman, S. De, P. Parameswaran, C.-W. So, Inorg. Chem. 2016, 55, 9091-9098.
[141] P. Renaud, M. P. Sibi, Radicals in organic synthesis, Wiley-VCH, Weinheim, Chichester, 2001.
[142] G. A. Molander, C. R. Harris, Chem. Rev. 1996, 96, 307-338.
[143] A. Gansäuer, H. Bluhm, Chem. Rev. 2000, 100, 2771-2788.
[144] M. L. H. Green, C. R. Lucas, J. Chem. Soc., Dalton Trans. 1972, 1000-1003.
[145] D. G. Sekutowski, G. D. Stucky, Inorg. Chem. 1975, 14, 2192-2199.
[146] R. Coutts, P. C. Wailes, R. L. Martin, J. Organomet. Chem. 1973, 47, 375-382.
[147] D. W. Stephan, Organometallics 1992, 11, 996-999.
[148] T. V. RajanBabu, W. A. Nugent, J. Am. Chem. Soc. 1989, 111, 4525-4527.
[149] K. Daasbjerg, H. Svith, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, A. Gansäuer, A. Barchuk, F. Keller, Angew. Chem. Int. Ed. 2006, 45, 2041-2044.
[150] T. V. RajanBabu, W. A. Nugent, M. S. Beattie, J. Am. Chem. Soc. 1990, 112, 6408-6409.
[151] M. Kilner, G. Parkin, J. Organomet. Chem. 1986, 302, 181-191.
[152] C. Albrecht, L. Shi, J. M. Perez, M. van Gastel, S. Schwieger, F. Neese, R. Streubel, Chemistry 2012, 18, 9780-9783.
[153] M. Klein, C. Albrecht, G. Schnakenburg, R. Streubel, Organometallics 2013, 32, 4938-4943.
[154] V. Plack, J. R. Goerlich, A. Fischer, H. Thönnessen, P. G. Jones, R. Schmutzler, Z. Anorg. Allg. Chem. 1995, 621, 1080-1092.
[155] C. Albrecht, K. Cummins, R. Streubel, Unpublished results.
[156] W. L. F. Armarego, D. D. Perrin, (Eds.) PURIFICATION OF LABORATORY CHEMICALS // Purification of laboratory chemicals, Butterworth-Heinemann, Oxford, 1997.
[157] a) G. M. Sheldrick, Acta Crystallogr Sect. A: Found. Crystallogr 1990, 46, 467-473; b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J Appl. Crystallogr. 2009, 42, 339-341.
[158] U. Koelle, J. Organomet. Chem. 1977, 133, 53-58.
[159] M. J. S. Gynane, A. Hudson, M. F. Lappert, P. P. Power, H. Goldwhite, J. Chem. Soc., Dalton Trans. 1980, 2428-2433.
[160] M. Bode, Dissertation, University of Bonn, 2009.
[161] N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877-910.

9. Appendix

Table 1 Crystal data and structure refinement for 2a.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
$b / A ̊$
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{Y}^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$1>=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR496
$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{CrO}_{5} \mathrm{P}$
537.23
150.0
monoclinic
P21/n
9.2598(6)
26.3413(17)
9.5537(6)

90
90.001(2)

90
2330.3(3)

4
1.531
0.823
1088.0
$0.24 \times 0.23 \times 0.18$
$0.6459 ; 0.7459$
MoKa ($\lambda=0.71073$)
4.536 to 55.998°
1.000
$-12 \leq h \leq 12,-34 \leq k \leq 34,-12 \leq \mathrm{l} \leq 12$
83902
5625 [Rint $\left.=0.0485, R_{\text {sigma }}=0.0206\right]$
5625/0/298
1.046
$R_{1}=0.0299, w R_{2}=0.0663$
$R_{1}=0.0369, w R_{2}=0.0688$
0.35/-0.44

Table 2 Bond Lengths for 2a.
Atom Atom Length/Å
Cr P 2.3327(5)
$\mathrm{Cr} \quad \mathrm{C} 20$ 1.8774(18)
Cr C21 1.8965(18)
Cr C 22 1.9107(18)
Cr C 23 1.9258(17)
Cr C 24 1.9048(17)
Cl1 P 2.0534(5)
$\mathrm{Cl} 2 \mathrm{P} \quad$ 2.0592(5)
P C1 1.9557(15)
O1 C20 1.144(2)
O2 C21 1.138(2)
O3 C22 1.137(2)
O4 C23 1.133(2)
O5 C24 1.135(2)
C1 C2 1.536(2)
C1 C8 1.541(2)
C1 C14 1.5386(19)
C2 C3 1.402(2)

Atom	Atom	Length/Å
C2	C7	$1.390(2)$
C3	C4	$1.383(2)$
C4	C5	$1.385(2)$
C5	C6	$1.381(2)$
C6	C7	$1.393(2)$
C8	C9	$1.399(2)$
C8	C13	$1.390(2)$
C9	C10	$1.385(2)$
C10	C11	$1.382(3)$
C11	C12	$1.379(3)$
C12	C13	$1.398(2)$
C14	C15	$1.393(2)$
C14	C19	$1.397(2)$
C15	C16	$1.392(2)$
C16	C17	$1.383(3)$
C17	C18	$1.383(3)$
C18	C19	$1.391(2)$

Table 3 Bond Angles for 2a.

Atom	Ato	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C20	Cr	P	173.44(6)	C7	C2	C1	122.11(14)
C20	Cr	C21	87.33(8)	C7	C2	C3	117.81(14)
C20	Cr	C22	90.03(8)	C4	C3	C2	121.20(15)
C20	Cr	C23	87.72(7)	C3	C4	C5	120.23(16)
C20	Cr	C24	90.17(7)	C6	C5	C4	119.34(15)
C21	Cr	P	86.13(5)	C5	C6	C7	120.53(15)
C21	Cr	C22	90.14(7)	C2	C7	C6	120.78(15)
C21	Cr	C23	174.97(7)	C9	C8	C1	121.01(14)
C21	Cr	C24	89.59(7)	C13	C8	C1	121.26(13)
C22	Cr	P	90.50(5)	C13	C8	C9	117.66(15)
C22	Cr	C23	90.73(7)	C10	C9	C8	121.20(17)
C23	Cr	P	98.81(5)	C11	C10	C9	120.52(17)
C24	Cr	P	89.27(5)	C12	C11	C10	119.19(16)
C24	Cr	C22	179.66(8)	C11	C12	C13	120.51(17)
C24	Cr	C23	89.56(7)	C8	C13	C12	120.91(16)
Cl 1	P	Cr	111.54(2)	C15	C14	C1	121.80(14)
Cl 1	P	Cl 2	98.54(2)	C15	C14	C19	118.09(14)
Cl 2	P	Cr	109.85(2)	C19	C14	C1	120.04(13)
C1	P	Cr	127.91(5)	C16	C15	C14	120.53(16)
C1	P	Cl1	102.52(5)	C17	C16	C15	120.78(16)
C1	P	Cl 2	102.36(5)	C16	C17	C18	119.32(15)
C2	C1	P	105.33(10)	C17	C18	C19	120.16(16)

C2	C1	C8	$111.87(12)$	C18	C19	C14	$121.11(15)$
C2	C1	C14	$112.12(12)$	O1	C20	Cr	$178.35(18)$
C8	C1	P	$112.08(10)$	O2	C21	Cr	$177.63(16)$
C14	C1	P	$104.11(10)$	O3	C22	Cr	$178.80(16)$
C14	C1	C8	$110.96(12)$	O4	C23	Cr	$175.08(14)$
C3	C2	C1	$120.09(13)$	O5	C24	Cr	$179.42(17)$

Table 4 Torsion Angles for 2a.

A B	C D	Angle ${ }^{\circ}$	A B C D	Angle ${ }^{\circ}$
P C1	C2 C3	-50.74(16)	C7 C2 C3 C4	-3.6(2)
P C1	C2 C7	129.22(13)	C8 C1 C2 C3	-172.75(14)
P C1	C8 C9	-56.95(17)	C8 C1 C2 C7	7.21(19)
P C1	C8 C13	126.23(13)	C8 C1 C14C15	-111.62(16)
P C1	C14C15	127.63(13)	C8 C1 C14C19	65.08(18)
P C1	C14C19	-55.67(15)	C8 C9 C10C11	0.8(3)
C1 C2	C3 C4	176.33(15)	C9 C8 C13C12	1.3(2)
C1 C2	C7 C6	-177.81(14)	C9 C10C11-C12	0.4(3)
C1 C8	C9 C10	-178.53(16)	C10C11-C12C13	-0.7(3)
C1 C8	C13C12	178.21(14)	C11C12C13C8	-0.2(3)
C1 C14	C15C16	178.03(15)	C13C8 C9 C10	-1.6(3)
C1 C14	C19C18	-178.17(14)	C14C1 C2 C3	61.86(18)
C2 C1	C8 C9	61.10(19)	C14C1 C2 C7	-118.18(15)
C2 C1	C8 C13	-115.71(15)	C14C1 C8 C9	-172.87(14)
C2 C1	C14C15	14.3(2)	C14C1 C8 C13	10.3(2)
C2 C1	C14C19	-169.03(13)	C14C15C16C17	-0.4(3)
C2 C3	C4 C5	2.1 (3)	C15C14C19C18	-1.3(2)
C3 C2	C7 C6	2.1 (2)	C15C16C17C18	-0.5(3)
C3C4	C5 C6	0.9(3)	C16C17C18C19	0.4(3)
C4C5	C6 C7	-2.4(3)	C17C18C19C14	0.5(3)
C5 C6	C7 C2	0.8(2)	C19C14C15C16	1.3(2)

Table 1 Crystal data and structure refinement for 2b.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR408
$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{PCl}_{2} \mathrm{Mo}$
581.17

100
monoclinic
P21/c
7.663(4)
9.482(3)
32.804(13)

90
94.65(3)

90
2375.6(17)

4
1.625
0.878
1160.0
$0.2 \times 0.08 \times 0.05$
$0.4534 ; 0.7460$
MoKa ($\lambda=0.71073$)
4.472 to 52°
0.814
$-5 \leq h \leq 8,-11 \leq k \leq 11,-40 \leq \mathrm{l} \leq 40$
7789
3805 [Rint $=0.2205$, $R_{\text {sigma }}=0.3536$]
3805/66/298
0.981
$R_{1}=0.1220, w R_{2}=0.2500$
$R_{1}=0.2574, w R_{2}=0.3345$
0.84/-1.66

Table 2 Bond Lengths for 2b.

Atom Atom Length/Å

Mo	P	$2.489(5)$
Mo	C 20	$2.05(2)$
Mo	C 21	$2.09(2)$
Mo	C 22	$2.13(2)$
Mo	C 23	$2.15(2)$
Mo	C 24	$2.11(2)$
C 11	P	$2.049(6)$
Cl 2	P	$2.023(8)$
P	C 1	$1.938(16)$
O 1	C 20	$1.14(2)$
O 2	C 21	$1.13(3)$
O 3	C 22	$1.10(2)$
O 4	C 23	$1.11(2)$
O 5	C 24	$1.12(2)$
C 1	C 2	$1.48(3)$
C 1	C 8	$1.54(3)$
C 1	C 14	$1.55(2)$
C 2	C 3	$1.38(3)$

Table 3 Bond Angles for 2b.
Atom Atom Atom Anglel ${ }^{\circ}$

C20	Mo	P	173.2(6)
C20	Mo	C21	87.7(8)
C20	Mo	C22	89.7(7)
C20	Mo	C23	90.4(8)
C20	Mo	C24	89.9(7)
C21	Mo	P	85.5(6)
C21	Mo	C22	89.9(8)
C21	Mo	C23	177.6(7)
C21	Mo	C24	93.5(8)
C22	Mo	P	89.7(6)
C22	Mo	C23	88.6(8)
C23	Mo	P	96.4(5)
C24	Mo	P	91.1(6)
C24	Mo	C22	176.5(10)
C24	Mo	C23	87.9(8)
Cl1	P	Mo	109.6(2)
Cl2	P	Mo	109.2(2)
Cl2	P	Cl1	100.8(3)
C1	P	Mo	130.5(7)
C1	P	Cl1	101.6(5)
C1	P	Cl 2	101.2(6)
C2	C1	P	112.1(14)

Atom Atom Length/Å

C2	C7	$1.37(2)$
C3	C4	$1.39(3)$
C4	C5	$1.40(2)$
C5	C6	$1.39(3)$
C6	C7	$1.42(3)$
C8	C9	$1.37(2)$
C8	C13	$1.42(3)$
C9	C10	$1.41(3)$
C10	C11	$1.37(3)$
C11	C12	$1.43(2)$
C12	C13	$1.38(3)$
C14	C15	$1.38(2)$
C14	C19	$1.38(2)$
C15	C16	$1.37(2)$
C16	C17	$1.46(3)$
C17	C18	$1.42(2)$
C18	C19	$1.40(2)$

C2	C1	C8	$110.6(15)$	C14	C19	C18	$124.0(16)$
C2	C1	C14	$114.3(13)$	O1	C20	Mo	$175(2)$
C8	C1	P	$104.6(10)$	O2	C21	Mo	$179(2)$
C8	C1	C14	$110.6(17)$	O3	C22	Mo	$175(2)$
C14	C1	P	$104.1(10)$	O4	C23	Mo	$175.7(16)$
C3	C2	C1	$121.1(17)$	O5	C24	Mo	$177(2)$

Table 4 Torsion Angles for 2b.

A B	C D	Angle/ ${ }^{\circ}$
P C1	C2 C3	-62.8(19)
P C1	C2 C7	119.5(17)
P C1	C8 C9	-49(2)
P C1	C8 C13	134.1(17)
P C1	C14C15	128.1(17)
P C1	C14C19	-55(2)
C1 C2	C3 C4	177.5(17)
C1 C2	C7 C6	-178.5(17)
C1 C8	C9 C10	-177.6(18)
C1 C8	C13C12	178.3(18)
C1 C14	C15C16	179.4(18)
C1 C14	C19C18	-179.9(17)
C2C1	C8 C9	72(2)
C2C1	C8 C13	-105(2)
C2C1	C14C15	5(3)
C2C1	C14C19	-177.4(18)
C2 C3	C4 C5	3(3)
C3C2	C7 C6	4(3)
C3C4	C5 C6	0(3)
C4C5	C6 C7	-1(3)
C5C6	C7 C2	-1(3)

Table 1 Crystal data and structure refinement for 4a.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [l>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR243
$\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{CrO}_{6} \mathrm{P}$
572.45

123(2)
orthorhombic
P2, $2{ }_{2}{ }_{2}{ }_{1}$
8.5858(5)
19.6165(9)
15.6007(10)

90
90
90
2627.5(3)

4
1.447
0.541

1176
$0.15 \times 0.12 \times 0.04$
$0.9787 ; 0.9232$
$\operatorname{MoKa}(\lambda=0.71073)$
2.90 to 28°
0.998
$-11 \leq h \leq 11,-22 \leq k \leq 25,-20 \leq \mathrm{l} \leq 20$
14343
6334 [$\mathrm{R}_{\text {int }}=0.0754$]
6334/4/356
0.623
$R_{1}=0.0409, w R_{2}=0.0495$
$R_{1}=0.0816, w R_{2}=0.0567$
0.622/-0.408

Table 2 Bond Lengths for 4a.

Atom	Atom	Length/A	Atom Atom		Length/Å
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.478(4)$	$\mathrm{C}(1)$	$\mathrm{O}(1)$	$1.485(3)$
$\mathrm{C}(1)$	P	$1.785(3)$	$\mathrm{C}(2)$	$\mathrm{C}(7)$	$1.381(4)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.387(4)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.385(4)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.366(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.381(5)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.384(4)$	$\mathrm{C}(8)$	$\mathrm{C}(21)$	$1.538(4)$
$\mathrm{C}(8)$	$\mathrm{C}(15)$	$1.538(4)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.548(4)$
$\mathrm{C}(8)$	P	$1.895(3)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$1.380(4)$
$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.386(4)$	$\mathrm{C}(10) \mathrm{C}(11)$	$1.384(4)$	
$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.390(4)$	$\mathrm{C}(12) \mathrm{C}(13)$	$1.370(4)$	
$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.388(4)$	$\mathrm{C}(15) \mathrm{C}(20)$	$1.398(4)$	
$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.400(4)$	$\mathrm{C}(16) \mathrm{C}(17)$	$1.389(4)$	
$\mathrm{C}(17)$	$\mathrm{C}(18)$	$1.375(4)$	$\mathrm{C}(18) \mathrm{C}(19)$	$1.391(4)$	
$\mathrm{C}(19)$	$\mathrm{C}(20)$	$1.374(4)$	$\mathrm{C}(21) \mathrm{C}(26)$	$1.395(4)$	
$\mathrm{C}(21)$	$\mathrm{C}(22)$	$1.399(4)$	$\mathrm{C}(22) \mathrm{C}(23)$	$1.379(4)$	
$\mathrm{C}(23)$	$\mathrm{C}(24)$	$1.374(4)$	$\mathrm{C}(24) \mathrm{C}(25)$	$1.376(4)$	
$\mathrm{C}(25)$	$\mathrm{C}(26)$	$1.387(4)$	$\mathrm{C}(27) \mathrm{O}(2)$	$1.141(4)$	
$\mathrm{C}(27)$	Cr	$1.895(3)$	$\mathrm{C}(28) \mathrm{O}(3)$	$1.133(3)$	
$\mathrm{C}(28)$	Cr	$1.899(3)$	$\mathrm{C}(29) \mathrm{O}(4)$	$1.152(3)$	
$\mathrm{C}(29)$	Cr	$1.861(3)$	$\mathrm{C}(30) \mathrm{O}(5)$	$1.128(3)$	
$\mathrm{C}(30)$	Cr	$1.915(3)$	$\mathrm{C}(31) \mathrm{O}(6)$	$1.129(4)$	
$\mathrm{C}(31)$	Cr	$1.919(3)$	Cr	P	$2.3328(9)$
$\mathrm{O}(1)$	P	$1.663(2)$			

Table 3 Bond Angles for 4a.

Atom Atom Atom	Angle/ ${ }^{\circ}$
$\mathrm{C}(2) \mathrm{C}(1) \mathrm{O}(1)$	117.6(2)
$\mathrm{O}(1) \mathrm{C}(1) \mathrm{P}$	60.30(13)
$\mathrm{C}(7) \mathrm{C}(2) \mathrm{C}(1)$	120.1(3)
$\mathrm{C}(4) \mathrm{C}(3) \quad \mathrm{C}(2)$	120.1(3)
$\mathrm{C}(4) \mathrm{C}(5) \quad \mathrm{C}(6)$	120.5(3)
$\mathrm{C}(2) \mathrm{C}(7) \quad \mathrm{C}(6)$	120.6(3)
$\mathrm{C}(21) \mathrm{C}(8) \mathrm{C}(9)$	104.5(2)
$\mathrm{C}(21) \mathrm{C}(8) \mathrm{P}$	114.68(19)
$\mathrm{C}(9) \mathrm{C}(8) \mathrm{P}$	111.9(2)
$\mathrm{C}(14) \mathrm{C}(9) \mathrm{C}(8)$	119.3(3)
$\mathrm{C}(11) \mathrm{C}(10) \mathrm{C}(9)$	121.8(3)
$\mathrm{C}(13) \mathrm{C}(12) \mathrm{C}(11)$	119.1(3)
$\mathrm{C}(9) \mathrm{C}(14) \mathrm{C}(13)$	121.0(3)
$\mathrm{C}(20) \mathrm{C}(15) \mathrm{C}(8)$	119.9(2)
$\mathrm{C}(17) \mathrm{C}(16) \mathrm{C}(15)$	120.8(3)
C(17) C(18) C(19)	119.2(3)
$\mathrm{C}(19) \mathrm{C}(20) \mathrm{C}(15)$	121.9(3)
$\mathrm{C}(26) \mathrm{C}(21) \mathrm{C}(8)$	121.6(3)

C(23)	C(22)	C(21)	121.1(3)	C(24)	C(23)	C(22)	120.6(3)
C(23)	C(24)	C(25)	119.4(3)	C(24)	C(25)	C(26)	120.6(3)
C(25)	C(26)	C(21)	120.7(3)	$\mathrm{O}(2)$	C(27)		178.0(3)
O(3)	$\mathrm{C}(28)$		172.6(3)	$\mathrm{O}(4)$	C(29)		177.5(3)
$\mathrm{O}(5)$	C(30)		174.2(3)	O(6)	C(31)	Cr	177.8(3)
C(29)		C(27)	91.34(13)	C(29)		C(28)	85.75(12)
C(27)		C(28)	87.59(14)	C(29)		C(30)	88.35(13)
C(27)		C(30)	88.19(14)	C(28)		C(30)	172.66(14)
C(29)		C(31)	89.09(13)	C(27)		C(31)	179.33(15)
C(28)		C(31)	92.95(14)	C(30)		C(31)	91.31(14)
C(29)	Cr	P	175.21(10)	C(27)	Cr	P	90.46(9)
C(28)	Cr	P	89.89(9)	C(30)	Cr	P	96.14(9)
C(31)	Cr	P	89.15(9)	C(1)	$\mathrm{O}(1)$	P	68.83(14)
O(1)	P	C(1)	50.88(11)	$\mathrm{O}(1)$	P	$\mathrm{C}(8)$	110.31(11)
C (1)	P	C(8)	104.35(14)	$\mathrm{O}(1)$	P	Cr	117.33(8)
$\mathrm{C}(1)$	P	Cr	125.73(11)	C(8)	P	Cr	125.40(9)

Table 4 Torsion Angles for 4a.

A	B	C	Angle/ ${ }^{\circ}$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2) \mathrm{C}(7)$	38.8(4)
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2) \mathrm{C}(3)$	-144.0(3)
C(7)	$\mathrm{C}(2)$	$\mathrm{C}(3) \mathrm{C}(4)$	-0.4(4)
C(2)	$\mathrm{C}(3)$	$\mathrm{C}(4) \mathrm{C}(5)$	0.1 (5)
C(4)	$\mathrm{C}(5)$	$\mathrm{C}(6) \mathrm{C}(7)$	0.0(5)
C(1)	$\mathrm{C}(2)$	$\mathrm{C}(7) \mathrm{C}(6)$	177.8(3)
C(21)	C(8)	$\mathrm{C}(9) \mathrm{C}(14)$	-72.6(3)
P	C(8)	$\mathrm{C}(9) \mathrm{C}(14)$	162.8(2)
C(15)	C(8)	$\mathrm{C}(9) \mathrm{C}(10)$	-133.8(3)
C(14)	C(9)	$\mathrm{C}(10) \mathrm{C}(11)$	-2.3(4)
C(9)	C(10)	$\mathrm{C}(11) \mathrm{C}(12)$	1.3(4)
C(11)	C(12)	$\mathrm{C}(13) \mathrm{C}(14)$	-1.1(4)
C(8)	C(9)	$\mathrm{C}(14) \mathrm{C}(13)$	175.5(3)
C(21)	C(8)	$\mathrm{C}(15) \mathrm{C}(20)$	-51.0(4)
	C(8)	$\mathrm{C}(15) \mathrm{C}(20)$	70.6(3)
C(9)	C(8)	$\mathrm{C}(15) \mathrm{C}(16)$	13.9(4)
C(20)	C(15)	C(16) C(17)	1.9(4)
C(15)	C(16)	C(17) C(18)	-1.5(5)
C(17)	C(18)	C(19) C(20)	-0.2(5)
C(16)	C(15)	C(20) C(19)	-1.4(4)
C(15)	C(8)	C(21) C(26)	-18.0(4)
P	C(8)	$\mathrm{C}(21) \mathrm{C}(26)$	-129.8(3)
C(9)	C(8)	$\mathrm{C}(21) \mathrm{C}(22)$	-67.3(3)
C(26)	C(21)	C(22) $\mathrm{C}(23)$	1.4(5)
C(21)	C(22)	C(23) C(24)	-2.0(5)
C(23)	C(24)	C(25) C(26)	0.9(5)

A	B	C	Angle $/^{\circ}$
P	C (1)	$\mathrm{C}(2) \mathrm{C}(7)$	110.3(3)
	C(1)	$\mathrm{C}(2) \mathrm{C}(3)$	-72.5(4)
(1)	$\mathrm{C}(2)$	$\mathrm{C}(3) \mathrm{C}(4)$	-177.7(3)
C(3)	$\mathrm{C}(4)$	C (5) $\mathrm{C}(6)$	0.2(5)
C(3)	C(2)	$\mathrm{C}(7) \mathrm{C}(6)$	0.6(5)
C(5)	C(6)	$\mathrm{C}(7) \mathrm{C}(2)$	-0.3(5)
C(15	C(8)	$\mathrm{C}(9) \mathrm{C}(14)$	52.6(4)
C(21)	C(8)	$\mathrm{C}(9) \mathrm{C}(10)$	101.0(3)
P	C(8)	$\mathrm{C}(9) \mathrm{C}(10)$	-23.7(3)
C(8)	C(9)	$\mathrm{C}(10) \mathrm{C}(11)$	-176.0(3)
C(10)	C(11	C(12) C(13)	0.4(4)
C(10)	C(9)	$\mathrm{C}(14) \mathrm{C}(13)$	1.6(4)
C(12)	C(13)	C(14) C(9)	0.0(4)
C(9)	C(8)	$\mathrm{C}(15) \mathrm{C}(20)$	-171.0(3)
C(21)	C(8)	$\mathrm{C}(15) \mathrm{C}(16)$	134.0(3)
P	C(8)	$\mathrm{C}(15) \mathrm{C}(16)$	-104.5(3)
C(8)	C(15)	C(16) C(17)	177.1(3)
C(16)	C(17)	C(18) C(19)	0.6(5)
C(18)	C(19	C(20) C(15)	0.6(5)
C(8)	C(15)	C(20) C(19)	-176.8(3)
C(9)	C(8)	C(21) C(26)	107.4(3)
C(15)	C(8)	$\mathrm{C}(21) \mathrm{C}(22)$	167.3(3)
P	C(8)	$\mathrm{C}(21) \mathrm{C}(22)$	55.6(3)
C(8)	C(21)	C(22) $\mathrm{C}(23)$	176.3(3)
C(22)	C(23)	C(24) C(25)	0.8(5)
C(24)	C(25)	C(26) C(21)	-1.4(5)

C(22)	C(21)	C	C(25)	0.3(5)	C(8)	$\mathrm{C}(21)$	C(26)	C(25)	-174.5(3)
$\mathrm{O}(4)$	$\mathrm{C}(29)$		C(27)	116(6)	O(4)	C(29)		C(28)	29(6)
O(4)	$\mathrm{C}(29)$		C(30)	-156(6)	O(4)	C(29)		C(31)	-65(6)
$\mathrm{O}(4)$	$\mathrm{C}(29)$		P	4(7)	$\mathrm{O}(2)$	C(27)		C(29)	9(9)
$\mathrm{O}(2)$	$\mathrm{C}(27)$		C(28)	94(9)	$\mathrm{O}(2)$	$\mathrm{C}(27)$		C(30)	-80(9)
$\mathrm{O}(2)$	$\mathrm{C}(27)$		C(31)	-121(12)	$\mathrm{O}(2)$	$\mathrm{C}(27)$		P	-176(100)
O(3)	$\mathrm{C}(28)$		C(29)	42(2)	O(3)	$\mathrm{C}(28)$		C(27)	-50(2)
O(3)	$\mathrm{C}(28)$		C(30)	5(3)	O(3)	$\mathrm{C}(28)$		C(31)	131(2)
O(3)	$\mathrm{C}(28)$		P	-140(2)	O(5)	C(30)		C(29)	-21(3)
O(5)	$\mathrm{C}(30)$		C(27)	71(3)	O(5)	$\mathrm{C}(30)$		C(28)	16(4)
O(5)	$\mathrm{C}(30)$		C(31)	-110(3)	O(5)	C(30)		P	161(3)
O(6)	$\mathrm{C}(31)$		C(29)	24(7)	O(6)	$\mathrm{C}(31)$		C(27)	153(10)
O(6)	$\mathrm{C}(31)$		C(28)	-62(7)	O(6)	$\mathrm{C}(31)$		C(30)	112(7)
O(6)	$\mathrm{C}(31)$		P	-152(7)	C(2)	$\mathrm{C}(1)$	$\mathrm{O}(1)$	P	116.3(2)
C(1)	$\mathrm{O}(1)$	P	C(8)	92.27(18)	C(1)	$\mathrm{O}(1)$	P	Cr	-115.27(14)
C(2)	$\mathrm{C}(1)$	P	$\mathrm{O}(1)$	-104.7(3)	C(2)	$\mathrm{C}(1)$	P	C(8)	150.6(2)
O(1)	$\mathrm{C}(1)$	P	C(8)	-104.70(15)	C(2)	$\mathrm{C}(1)$	P	Cr	-6.4(3)
$\mathrm{O}(1)$	$\mathrm{C}(1)$	P	Cr	98.28(14)	C(21)	$\mathrm{C}(8)$	P	$\mathrm{O}(1)$	-25.5(2)
C(15)	C(8)	P	$\mathrm{O}(1)$	-146.51(16)	C(9)	$\mathrm{C}(8)$	P	$\mathrm{O}(1)$	93.3(2)
C(21)	$\mathrm{C}(8)$	P	C(1)	27.6(3)	C(15)	C(8)	P	$\mathrm{C}(1)$	-93.36(18)
C(9)	$\mathrm{C}(8)$	P	C(1)	146.43(19)	C(21)	$\mathrm{C}(8)$	P	Cr	-175.24(17)
C(15)	C(8)	P	Cr	63.8(2)	C(9)	$\mathrm{C}(8)$	P	Cr	-56.5(2)
C(29)	Cr	P	$\mathrm{O}(1)$	61.9(12)	C(27)		P	$\mathrm{O}(1)$	-50.25(13)
C(28)	Cr	P	$\mathrm{O}(1)$	37.34(13)	C(30)		P	$\mathrm{O}(1)$	-138.48(13)
C(31)	Cr	P	$\mathrm{O}(1)$	130.30(13)	C(29)	Cr	P	$\mathrm{C}(1)$	2.1(12)
C(27)	Cr	P	C(1)	-110.04(15)	C(28)	Cr	P	C(1)	-22.45(16)
C(30)	Cr	P	C(1)	161.73(16)	C(31)	Cr	P	C(1)	70.51(16)
C(29)	Cr	P	C(8)	-150.3(11)	C(27)	Cr	P	C(8)	97.61(15)
C(28)	Cr	P	C(8)	-174.80(16)	C(30)	Cr	P	C(8)	9.38 (16)

Table 1 Crystal data and structure refinement for 4b.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Á ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR273
$\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{PMo}$
616.39

123(2)
orthorhombic
P2 ${ }_{1 / 2}{ }_{1} /{ }_{1}{ }_{1}$
8.6515(3)
15.6935(4)
19.9770(8)

90
90
90
2712.32(16)

4
1.509
0.586
1248.0
$0.10 \times 0.03 \times 0.02$
$0.9437 ; 0.9884$
MoKa ($\lambda=0.71073$)
2.88 to 28.00°
0.995
$-11 \leq h \leq 11,-20 \leq k \leq 20,-26 \leq \mathrm{l} \leq 21$
19516
6550 [$\mathrm{R}_{\text {int }}=0.0826$]
6550/0/356
0.840
$R_{1}=0.0432, w R_{2}=0.0549$
$R_{1}=0.0646, w R_{2}=0.0585$
0.592/-0.653

Table 2 Bond Lengths for 4b.

Atom Atom Length/Å
C1 C2
1.487(5)

C1 P
1.7813

C 2 C 3
1.385(6)
$\begin{array}{ll}\mathrm{C} 2 & \mathrm{C} 7 \\ \mathrm{C} 3 & \mathrm{C} 4\end{array}$
$\mathrm{C} 4 \quad \mathrm{C} 5 \quad 1.379(6)$
C5 C6 1.388(6)
C6 C7 1.369(6)
$\begin{array}{lll}\mathrm{C} 8 & \mathrm{C} 15 & 1.534(5) \\ \mathrm{C} 8 & \mathrm{C} 21 & 1.553(5)\end{array}$
$\begin{array}{lll}\mathrm{C} 8 & \mathrm{C} 21 & 1.553(5) \\ \mathrm{C} 8 & \mathrm{C} 9 & 1.556(5)\end{array}$
C8 P 1.892(4)
C9 C14 1.372(6)
C9 C10 1.407(5)
C10 C11 1.387(5)
C11 C12 1.357(6)
C12 C13 1.381(5)
C13 C14 1.391(5)
C15 C16 1.384(6)
C15 C20 1.403(5)
C16 C17 1.380(5)

Table 3 Bond Angles for 4b.
Atom Atom Atom Angle ${ }^{\circ}$

O1	C1	C2	$117.6(3)$
O1	C1	P	$60.92(17)$
C2	C1	P	$123.8(3)$
C3	C2	C7	$118.6(4)$
C3	C2	C1	$121.0(3)$
C7	C2	C1	$120.4(4)$
C4	C3	C2	$120.9(4)$
C3	C4	C5	$120.0(4)$
C4	C5	C6	$119.8(4)$
C7	C6	C5	$119.7(5)$
C6	C7	C2	$120.9(4)$
C15	C8	C21	$114.7(3)$
C15	C8	C9	$105.8(3)$
C21	C8	C9	$112.8(3)$
C15	C8	P	$112.4(3)$
C21	C8	P	$97.6(2)$
C9	C8	P	$113.8(2)$
C14	C9	C10	$118.1(3)$
C14	C9	C8	$122.0(3)$

Atom Atom		Length/Å
C17	C18	$1.375(6)$
C18	C19	$1.377(6)$
C19	C20	$1.381(6)$
C21	C22	$1.393(5)$
C21	C26	$1.404(5)$
C22	C23	$1.374(5)$
C23	C24	$1.378(5)$
C24	C25	$1.383(6)$
C25	C26	$1.384(5)$
C27	O2	$1.145(4)$
C27	Mo	$1.996(4)$
C28	O3	$1.136(5)$
C28	Mo	$2.052(4)$
C29	O4	$1.145(4)$
C29	Mo	$2.044(4)$
C30	O5	$1.148(5)$
C30	Mo	$2.024(5)$
C31	O6	$1.141(5)$
C31	Mo	$2.052(4)$
O1	P	$1.668(2)$
P	Mo	$2.4864(10)$

C10	C9	C8	$119.5(3)$	C27	Mo	C30	$90.56(17)$
C11	C10	C9	$120.2(4)$	C27	Mo	C29	$88.67(15)$
C12	C11	C10	$120.7(4)$	C30	Mo	C29	$88.63(17)$
C11	C12	C13	$120.0(4)$	C27	Mo	C31	$85.72(15)$
C12	C13	C14	$119.9(4$	C30	Mo	C31	$87.20(17)$
C9	C14	C13	$121.1(4)$	C29	Mo	C31	$172.97(19)$
C16	C15	C20	$117.7(4)$	C27	Mo	C28	$89.55(15)$
C16	C15	C8	$123.3(4)$	C30	Mo	C28	$179.88(18)$
C20	C15	C8	$118.7(4)$	C29	Mo	C28	$91.42(16)$
C17	C16	C15	$121.2(4)$	C31	Mo	C28	$92.76(17)$
C18	C17	C16	$120.6(4)$	C27	Mo	P	$175.72(12)$
C17	C18	C19	$119.1(4)$	C30	Mo	P	$90.66(11)$
C18	C19	C20	$120.8(4)$	C29	Mo	P	$95.46(11)$
C19	C20	C15	$120.5(4)$	C31	Mo	P	$90.24(12)$
C22	C21	C26	$117.7(3)$	C28	Mo	P	$89.23(11)$

Table 4 Torsion Angles for 4b.

A B C D Angle/ ${ }^{\circ}$

C8 C15C16C17	176.1(3)
C15C16C17C18	1.5(6)
16 C 17 C 18 C 19	0.1 (6)
C17C18C19 C20	0.2(5)
C18C19C20 C15	1.7(5)
C16C15C20 C19	3.0(5)
C8 C15C20 C19	176.5(3)
C15C8 C21 C22	171.6(3)
C9 C8 C21 C22	50.4(5)
P C8 C21 C22	69.5(4)
C15C8 C21 C26	14.4(5)
C9 C8 C21 C26	135.7(4)
P C8 C21 C26	104.5(4)
C26C21-22 C23	2.3(6)
C8 C21-22 C23	176.5(4)
C21-22C23 24	1.5(6)
C22C23C24 C25	1.2(6)
C23C24C25 C26	1.8(7)
C24C25 C26 C21	2.7(6)
C22C21-26 C25	2.9(6)
C8 C21-26 C25	177.0(4)
C2 C1 O1 P	115.3(3
C1 O1 P C8	93.3(2)
C1 O1 P Mo	114.54(19)
C2 C1 P O1	105.4(4)
O1 C1 P C8	104.3(2)
C2 C1 P C8	150.2(3)

C9	C8 C1	C15C16	103.0(4)	O1	C1 P	Mo	98.21(19)
P	C8 C1	5 C 16	21.8(4)	C2	C1 P	Mo	7.2(4)
C21	C8 C1	5 C 20	54.8(4)	C15	C8 P	O1	93.6(2)
C9	C8 C1	5 C 20	70.2(4)	C21	C8 P	O1	145.7(2)
P	C8 C1	5 C 20	165.0(2)	C9	C8 P	O1	26.6(3)
C21	C8 P	C1	93.0(2)	O6	C31 Mo	C29	2(4)
C9	C8 P	C1	26.1 (3)	06	C31 Mo	C28	124(3)
C15	C8 P	Mo	56.0(3)	O6	C31 Mo	P	146(3)
C21	C8 P	Mo	64.6(2)	O3	C28Mo	C27	14(11)
C9	C8 P	Mo	176.3(2)	O3	C28Mo	C30	170(100)
O 2	C27 Mo	C30	109(19)	O3	C28Mo	C29	74(11)
O 2	C27 Mo	C29	162(19)	O3	C28Mo	C31	100(11)
O 2	C27 Mo	C31	22(19)	O3	C28Mo	P	170(11)
O 2	C27 Mo	C28	71(19)	O1	P Mo	C27	56.4(16)
O5	C27 Mo	P	3(20)	C1	P Mo	C27	2.4(17)
O5	C30 Mo	C27	22(23)	C8	P Mo	C27	155.7(16)
O5	C30 Mo	C29	111(23)	O1	P Mo	C30	50.07(17)
O5	C30 Mo	C31	63(23)	C1	P Mo	C30	108.90(19)
O5	C30 Mo	C28	134(100)	C8	P Mo	C30	97.82(19)
O5	C30 Mo	P	154(23)	O1	P Mo	C29	138.75(17)
O4	C29 Mo	C27	16(5)	C1	P Mo	C29	162.4(2)
O4	C29 Mo	C30	75(5)	C8	P Mo	C29	9.1(2)
O4	C29 Mo	C31	21(6)	O1	P Mo	C31	37.13(17)
O4	C29 Mo	C28	106(5)	C1	P Mo	C31	21.7(2)
O4	C29 Mo	P	165(5)	C8	P Mo	C31	174.98(19)
O6	C31 Mo	C27	35(3)	O1	P Mo	C28	129.89(16)
06	C31 Mo	C20	56(3)	C1	P Mo	C28	71.06(19)
C8	P Mo	C28	82.22(19)				

Table 1 Crystal data and structure refinement for 6.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [l>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR271
$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{PW}$
670.28

123(2)
orthorhombic
P2 ${ }_{1}{ }_{1}{ }_{21}$
8.4672(2)
15.6855(4)
19.8873(4)

90
90
90
2641.28(11)

4
1.686
4.474

1312
$0.40 \times 0.12 \times 0.10$
$0.6632 ; 0.2677$
MoKa ($\lambda=0.71073$)
2.60 to 28°
0.992
$-9 \leq h \leq 11,-19 \leq k \leq 20,-26 \leq \mathrm{l} \leq 25$
19378
6229 [Rint $=0.0440$]
6229/74/327
1.009
$R_{1}=0.0264, w R_{2}=0.0493$
$R_{1}=0.0296, w R_{2}=0.0502$
1.496/-1.719

Table 2 Bond Lengths for 6.

Atom Atom Length/Å

$\mathrm{C}(1) \mathrm{O}(1) \quad 1.482(5)$
$\mathrm{C}(1) \mathrm{P} \quad 1.786(4)$
$\mathrm{C}(3) \mathrm{C}(4) \quad 1.522(6)$
C(5) C(18) 1.541(5)
$\mathrm{C}(5) \mathrm{P} \quad 1.902(4)$
C(6) C(7) 1.399(5)
C(8) C(9) 1.384(6)
C(10) C(11) 1.383(5)
C(12) C(17) $1.404(5)$
C(14) C(15) $\quad 1.400$ (5)
C(16) C(17) 1.393(6)
C(18) C(23) 1.394(6)
C(20) C(21) 1.392(7)
C(22) C(23) 1.385(6)
C(24) W 2.002(4)
C(25) W 2.047(4)
C(26) W 2.031(4)
C(27) W 2.024(4
C(28) W 2.042(4)
$\mathrm{O}(1) \mathrm{P} \quad 1.662(3)$

Table 3 Bond Angles for 6.
Atom Atom Atom Angle ${ }^{\circ}$
O(1) C(1) C(2) 115.6(3)
$\mathrm{C}(2) \mathrm{C}(1) \mathrm{P} \quad$ 124.0(3)
C(2) C(3) C(4) 113.5(4)
C(12) C(5) C(6) 105.0(3)
$\mathrm{C}(12) \mathrm{C}(5) \mathrm{P} \quad 110.9(2)$
C(6) C(5) P 115.0(3)
$C(11) \mathrm{C}(6) \quad \mathrm{C}(5) \quad 120.6(3)$
$\mathrm{C}(8) \mathrm{C}(7) \mathrm{C}(6) \quad 120.7(4)$
C(8) C(9) C(10) 119.1(4)
C(10) C(11) C(6) 121.0(3)
$\mathrm{C}(13) \mathrm{C}(12) \mathrm{C}(5) \quad 119.8(3)$
C(14) C(13) C(12) 121.3(4)
C(16) C(15) C(14) 119.1(4)
C(16) C(17) C(12) $\quad 121.4(4)$
C(19) C(18) C(5) 123.0(4)
C(20) C(19) C(18) 121.4(4)
C(22) C(21) C(20) 119.5(4)
$\mathrm{C}(22) \mathrm{C}(23) \mathrm{C}(18) \quad 121.5(4)$
O(3) C(25) W 173.6(3)
O(5) C(27) W 174.8(4)

Atom Atom	Length/Å
C(1) C(2)	1.506(6)
$\mathrm{C}(2) \mathrm{C}(3)$	1.505(6)
$\mathrm{C}(5) \mathrm{C}(12)$	1.533(5)
$\mathrm{C}(5) \mathrm{C}(6)$	1.546(5)
$\mathrm{C}(6) \mathrm{C}(11)$	1.384(5)
$\mathrm{C}(7) \mathrm{C}(8)$	$1.382(5)$
$\mathrm{C}(9) \mathrm{C}(10)$	$1.388(6)$
$\mathrm{C}(12) \mathrm{C}(13)$	1.397(5)
C(13) C(14)	1.370(6)
$\mathrm{C}(15) \mathrm{C}(16)$	$1.372(6)$
$\mathrm{C}(18) \mathrm{C}(19)$	1.391 (5)
$\mathrm{C}(19) \mathrm{C}(20)$	1.387(6)
$\mathrm{C}(21) \mathrm{C}(22)$	1.384(6)
$\mathrm{C}(24) \mathrm{O}(2)$	1.143(5)
$\mathrm{C}(25) \mathrm{O}(3)$	1.141 (5)
$\mathrm{C}(26) \mathrm{O}(4)$	$1.153(5)$
$\mathrm{C}(27) \mathrm{O}(5)$	1.149 (5)
$\mathrm{C}(28) \mathrm{O}(6)$	1.140 (5)
W P	$2.4906(10)$

C(24) W	C(27)	$85.95(17)$
C(27) W	C(26)	$88.31(18)$
C(27) W	C(28)	$91.65(17)$
C(24) W	C(25)	$86.82(17)$
C(26) W	C(25)	$87.55(17)$
C(24) W	P	$178.85(14)$
C(26) W	P	$88.51(12)$
C(25) W	P	$94.26(11)$
O(1) P	C(1)	$50.77(16)$
C(1) P	C(5)	$106.87(18)$
C(1) P	W	$128.11(14)$

Table 4 Torsion Angles for 6.

A	B C	D	Angle
$\mathrm{O}(1)$	C (1) $C(2)$	C(3)	153.8(4)
(1)	$\mathrm{C}(2) \mathrm{C}(3)$	$\mathrm{C}(4)$	179.9(4)
(18)	C(5) C(6)	$\mathrm{C}(11)$	-167.8(4)
C(12)	C(5) C(6)	$\mathrm{C}(7)$	-105.8(4)
P	C(5) C(6)	$\mathrm{C}(7)$	132.1(4)
C(5)	C(6) C(7)	$\mathrm{C}(8)$	172.8(4)
(7)	$C(8) \quad C(9)$	$\mathrm{C}(10)$	-1.2(7)
(9)	$C(10) C(11)$	C(6)	2.3(6)
(5)	$\mathrm{C}(6) \mathrm{C}(11)$	C(10)	-174.6(4)
C(6)	C(5) C(12)	C(13)	70.0(4)
(18)	C(5) C(12)	C(17)	132.6(4)
P	C(5) C(12)	C(17)	22.1 (5)
C(5)	C(12) C(13)	C(14)	-176.6(4)
13	C(14) C(15)	C(16)	-0.7(6)
(15)	C(16) C(17)	C(12)	-2.7(6)
(5)	$\mathrm{C}(12) \mathrm{C}(17)$	C(16)	176.7(4)
C(6)	C (5) C(18)	C(19)	-130.7(4)
(12)	C(5) C(18)	C(23)	171.9(3)
P	C(5) C(18)	C(23)	-70.3(4)
C(5)	C(18) C(19)	C(20)	-179.0(4)
(19)	C(20) C(21)	C(22)	-0.3(7)
(21	C(22) C(23)	C(18)	0.1 (6)
C(5)	C(18) C(23)	C(22)	178.5(4)
O(2)	$\mathrm{C}(24) \mathrm{W}$	C(26)	-177(100)
$\mathrm{O}(2)$	$\mathrm{C}(24) \mathrm{W}$	C(25)	96(14)
O(5)	$\mathrm{C}(27) \mathrm{W}$	C(24)	-20(5)
O(5)	$\mathrm{C}(27) \mathrm{W}$	C(28)	-108(5)
O(5)	$\mathrm{C}(27) \mathrm{W}$	P	161(5)
O(4)	$\mathrm{C}(26) \mathrm{W}$	C(27)	152(24)
O(4)	$\mathrm{C}(26) \mathrm{W}$	C(25)	-35(24)
O(6)	$\mathrm{C}(28) \mathrm{W}$	C(24)	6(7)

C(24) W	C(26)	$91.93(18)$
C(24) W	C(28)	$88.39(17)$
C(26) W	C(28)	$179.67(18)$
C(27) W	C(25)	$171.53(16)$
C(28) W	C(25)	$92.54(17)$
C(27) W	P	$93.01(12)$
C(28) W	P	$91.17(12)$
C(1) O(1) P	$68.94(19)$	
O(1) P	C(5)	$109.53(15)$
O(1) P	W	$118.63(10)$
C(5)	P	W

A	B C	D	Angle $/^{\circ}$
P	C(1) C(2)	C(3)	83.6(5)
C(12)	C(5) C(6)	$\mathrm{C}(11)$	66.2(4)
P	C(5) C(6)	$\mathrm{C}(11)$	-55.9(5)
C(18)	C(5) C(6)	$\mathrm{C}(7)$	20.2(5)
C(11)	C(6) C(7)	$\mathrm{C}(8)$	0.7(6)
C(6)	$\mathrm{C}(7) \mathrm{C}(8)$	C(9)	1.1 (7)
C(8)	$\mathrm{C}(9) \mathrm{C}(10$	C(11)	-0.5(7)
C(7)	$\mathrm{C}(6) \mathrm{C}(11)$	C(10)	-2.4(6)
C(18)	C(5) C(12)	C(13)	-54.6(5)
P	C(5) C(12)	C(13)	-165.2(3)
C(6)	C(5) C(12)	C(17)	-102.7(4)
C(17)	C(12) C(13)	C(14)	-3.5(6)
C(12)	C(13) C(14)	C(15)	2.0(6)
C(14)	C(15) C(16)	C(17)	1.0(6)
C(13)	C(12) C(17)	C(16)	3.9(6)
C(12)	C(5) C(18)	C(19)	-10.3(5)
P	C(5) C(18)	C(19)	107.5(4)
C(6)	C(5) C(18)	C(23)	51.5(5)
C(23	C(18) C(19)	C(20)	-1.1(6)
C(18)	C(19) C(20)	C(21)	1.0(7)
C(20)	C(21) C(22)	C(23)	-0.3(7)
C(19)	C(18) C(23)	C(22)	0.6(6)
$\mathrm{O}(2)$	$\mathrm{C}(24) \mathrm{W}$	C(27)	-89(14)
$\mathrm{O}(2)$	$\mathrm{C}(24) \mathrm{W}$	C(28)	3(14)
$\mathrm{O}(2)$	$\mathrm{C}(24) \mathrm{W}$	P	-64(17)
O(5)	$\mathrm{C}(27) \mathrm{W}$	C(26)	72(5)
O(5)	$\mathrm{C}(27) \mathrm{W}$	C(25)	11(5)
O(4)	$\mathrm{C}(26) \mathrm{W}$	C(24)	-122(24)
$\mathrm{O}(4)$	$\mathrm{C}(26) \mathrm{W}$	C(28)	71(47)
$\mathrm{O}(4)$	$\mathrm{C}(26) \mathrm{W}$	P	59(24)
O(6)	$\mathrm{C}(28) \mathrm{W}$	C(27)	91(7)

Table 1 Crystal data and structure refinement for 9c.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Aㄹ ${ }^{3}$
Z
$\rho_{\text {calcmg }} / \mathrm{mm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR361
$\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{PW}$
780.09
123.15
triclinic
P-1
9.4174(14)
10.7473(14)
17.631(2)
98.301(4)
94.830(4)
112.865(4)
1607.6(4)

2
1.612
3.688
768.0
$0.06 \times 0.04 \times 0.03$
$\operatorname{MoKa}(\lambda=0.71073)$
5.46 to 50.5°
$-11 \leq h \leq 11,-12 \leq k \leq 12,-21 \leq \mathrm{l} \leq 19$
14721
5711 [$\left.\mathrm{R}_{\text {int }}=0.0995, \mathrm{R}_{\text {sigma }}=0.1408\right]$
5711/18/406
0.962
$R_{1}=0.0498, w R_{2}=0.0702$
$R_{1}=0.0893, w R_{2}=0.0809$
1.27/-1.70

Table 2 Bond Lengths for 9c.

Atom Atom Length/A
W P 2.510(2)
W C33 2.012(9)
$\begin{array}{lll}W & \text { C34 } & 2.021(9) \\ W & \text { C35 } & 2.030(9)\end{array}$
W C36 2.043(9)
W C37 2.027(9)
P O1 1.642(5)

P C1 1.801(7)
P C14 1.916(7)
O1 C3 1.471(7)

O2 C33 1.144(10)
O3 C34 1.155(9)
O4 C35 1.156(9)
O5 C36 1.146(8)
O6 C37 1.154(9)
C1 C2 1.408(9)
C1 C4 1.367(9)
C2 C3 1.523(9)
C2 C7 1.388(10)

C3 C8 1.497(10)
C4 C5 1.387(10)
C5 C6 1.405(10)
C6 C7 1.389(10)
$\begin{array}{llr}\text { C8 } & \text { C9 } & 1.382(10) \\ \text { C8 } & \text { C13 } & 1.388(9)\end{array}$
C8 C13 1.388(9)

Table 3 Bond Angles for 9c.

Atom	A	Atom	Angle $/^{\circ}$
C33	W	P	175.5(3)
C33	W	C34	87.0(3)
C33	W	C35	91.4(3)
C33	W	C36	89.1(3)
C33	W	C37	91.0(3)
C34	W	P	97.1(2)
C34	W	C35	89.9(3)
C34	W	C36	175.0(4)
C34	W	C37	92.1(3)
C35	W	P	90.6(2)
C35	W	C36	87.2(3)
C36	W	P	86.9(2)
C37	W	P	86.9(2)
C37	W	C35	176.9(4)
C37	W	C36	91.0(3)

Atom Atom		Length/A
C9	C10	$1.377(10)$
C10	C11	$1.368(10)$
C11	C12	$1.355(10)$
C12	C13	$1.389(10)$
C14	C15	$1.544(10)$
C14	C21	$1.548(10)$
C14	C27	$1.533(10)$
C15	C16	$1.384(10)$
C15	C20	$1.374(9)$
C16	C17	$1.388(10)$
C17	C18	$1.378(10)$
C18	C19	$1.360(10)$
C19	C20	$1.406(10)$
C21	C22	$1.387(10)$
C21	C26	$1.389(10)$
C22	C23	$1.368(10)$
C23	C24	$1.375(11)$
C24	C25	$1.394(11)$
C25	C26	$1.380(10)$
C27	C28	$1.398(9)$
C27	C32	$1.406(10)$
C28	C29	$1.394(11)$
C29	C30	$1.361(11)$
C30	C31	$1.393(10)$
C31	C32	$1.370(10)$

Atom Atom Atom			Angle ${ }^{\circ}$
C11	C10	C9	122.0(8)
C12	C11	C10	118.9(8)
C11	C12	C13	120.9(7)
C8	C13	C12	120.0(8)
C15	C14	P	106.4(5)
C15	C14	C21	110.4(6)
C21	C14	P	106.3(4)
C27	C14	P	110.1(5)
C27	C14	C15	111.4(6)
C27	C14	C21	111.9(6)
C16	C15	C14	120.2(7)
C20	C15	C14	120.8(7)
C20	C15	C16	118.9(7)
C15	C16	C17	120.7(7)
C18	C17	C16	119.9(8)

O1	P	W	$109.80(19)$	C19	C18	C17	$120.0(8)$
O1	P	C1	$93.4(3)$	C18	C19	C20	$120.2(7)$
O1	P	C14	$102.4(3)$	C15	C20	C19	$120.2(7)$
C1	P	W	$112.9(2)$	C22	C21	C14	$120.9(7)$
C1	P	C14	$107.3(3)$	C22	C21	C26	$116.1(7)$
C14	P	W	$125.8(2)$	C26	C21	C14	$123.0(7)$
C3	O1	P	$112.7(4)$	C23	C22	C21	$123.2(8)$
C2	C1	P	$107.6(5)$	C22	C23	C24	$119.6(8)$
C4	C1	P	$131.8(6)$	C23	C24	C25	$119.4(8)$
C4	C1	C2	$120.6(7)$	C26	C25	C24	$119.5(8)$
C1	C2	C3	$114.0(6)$	C25	C26	C21	$122.2(8)$
C7	C2	C1	$120.0(7)$	C28	C27	C14	$122.1(7)$
C7	C2	C3	$125.8(7)$	C28	C27	C32	$115.9(7)$
O1	C3	C2	$104.4(5)$	C32	C27	C14	$121.9(6)$
O1	C3	C8	$109.5(5)$	C29	C28	C27	$121.6(8)$
C8	C3	C2	$117.7(6)$	C30	C29	C28	$121.1(8)$
C1	C4	C5	$119.9(7)$	C29	C30	C31	$118.6(8)$
C4	C5	C6	$119.9(7)$	C32	C31	C30	$120.6(8)$
C7	C6	C5	$120.3(7)$	C31	C32	C27	$122.2(7)$
C2	C7	C6	$119.2(7)$	O2	C33	W	$179.0(8)$
C9	C8	C3	$122.5(7)$	O3	C34	W	$174.7(8)$
C9	C8	C13	$119.0(7)$	O4	C35	W	$177.4(7)$
C13	C8	C3	$118.4(7)$	O5	C36	W	$177.6(7)$
C10	C9	C8	$119.2(7)$	O6	C37	W	$178.1(8)$

Table 4 Torsion Angles for 9c.

A	B	C D	Angle/ ${ }^{\circ}$
W	P	O1 C3	-90.2(4)
W	P	C1 C2	100.6(5)
W	P	C1 C4	-77.0(7)
W	P	C14C15	-40.4(6)
W	P	C14C21	77.3(5)
W	P	C14C27	-161.3(4)
P	W	C33O2	131(51)
P	W	C34O3	-172(8)
P	W	C3504	-67(15)
P	W	C36O5	131(17)
P	W	C3706	42(20)
P	O1	C3 C2	-29.7(6)
P	O1	C3 C8	-156.6(5)
P	C1	C2 C3	-3.1(7)
P	C1	C2 C7	-177.5(6)
P		C4 C5	179.4(6)
P	C14	C15C16	-43.9(8)
P	C14	C15C20	138.3(6)

C14C21 C22			-56.1(8)	C26C2	C22 C23	-0.4(11)
	P C14C21C26		125.3(6)	C27C1	C15C16	76.1(8)
P C14C27C28			120.1(6)	C27C1	C15 C20	-101.7(8)
P	C14 C27C32		-65.0(8)	C27C1	C21 C22	-176.3(6)
O1	P	C1 C2	-12.6(5)	C27C1	C21 C26	5.0(9)
O1	P	C1 C4	169.9(7)	C27C2	C29 C30	-0.7(13)
01	P	C14C15	85.5(5)	C28C2	C32 C31	0.7(11)
O1	P	C14C21	-156.9(5)	C28C2	C30 C31	0.9(12)
O1	P	C14C27	-35.4(5)	C29C3	C31 C32	-0.3(12)
O1	C3	C8 C9	52.1(9)	C30C3	C32 C27	-0.5(12)
O1	C3	C8 C13	-128.3(7)	C32C2	C28 C29	-0.2(11)
C1	P	O1 C3	25.6(5)	C33W	P O1	34(3)
C1	P	C14C15	-177.0(5)	C33W	P C1	-69(3)
C1	P	C14C21	-59.3(6)	C33W	P C14	157(3)
C1	P	C14C27	62.1(6)	C33W	C34O3	10(8)
C1	C2	C3 O1	19.7(8)	C33W	C3504	109(15)
C1	C2	C3 C8	141.3(6)	C33W	C36 O5	-51(17)
C1	C2	C7 C6	-3.6(11)	C33W	C3706	-134(20)
C1	C4	C5 C6	-1.4(11)	C34W	P O1	-119.9(3)
C2	C1	C4 C5	2.2(11)	C34W	P C1	137.4(3)
C2	C3	C8 C9	-66.9(9)	C34W	P C14	2.8(4)
C2	C3	C8 C13	112.7(8)	C34W	C33-2	-74(52)
C3	C2	C7 C6	-177.3(6)	C34W	C3504	-164(15)
C3	C8	C9 C10	179.7(7)	C34W	C36 O5	-14(20)
C3	C8	C13C12	179.3(7)	C34W	C3706	139(20)
C4	C1	C2 C3	174.8(6)	C35W	P O1	150.2(3)
C4	C1	C2 C7	0.3(11)	C35W	P C1	47.4(3)
C4	C5	C6 C7	-2.0(11)	C35W	P C14	-87.2(3)
C5	C6	C7 C2	4.4(11)	C35W	C33O2	15(52)
C7	C2	C3 O1	-166.2(7)	C35W	C34-3	-82(8)
C7	C2	C3 C8	-44.6(10)	C35W	C36 O5	40(17)
C8	C9	C10C11	0.7(12)	C35W	C3706	8(25)
C9	C8	C13C12	-1.1(12)	C36W	P O1	63.0(3)
C9		C11-12	-0.5(12)	C36W	P C1	-39.7(3)
	0 C 11	1 C 12 C 13	-0.5(13)	C36W	P C14	-174.3(4)
	1 C 12	2 C 13 C 8	1.3(13)	C36W	C33O2	103(52)
	3 C 8	C9 C10	0.1(11)	C36W	C34-3	-28(11)
	C14P	O1 C3	134.1(5)	C36W	C3504	20(15)
C14P		C1 C2	-116.7(5)	C36W	C3706	-45(20)
C14P		C1 C4	65.8(8)	C37W	P O1	-28.1(3)
C14C15		5 C 16 C 17	179.5(7)	C37W	P C1	-130.9(3)
	4 C 15	C20 C19	179.9(7)	C37W	P C14	94.6(3)
	4 C 21	1 C 22 C 23	-179.1(6)	C37W	C33-2	-166(52)
	4 C 21	1 C 26 C 25	179.6(7)	C37W	C34O3	101(8)
	4 C 27	7 C 28 C 29	175.1(7)	C37W	C3504	-34(19)
	4 C 27	7 C 32 C 31	-174.5(7)	C37W	C36 O5	-142(17)

Table 1 Crystal data and structure refinement for 10b*THF.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{Y}^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [l>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR280
$\mathrm{C}_{59} \mathrm{H}_{44} \mathrm{Mo}_{2} \mathrm{O}_{13} \mathrm{P}_{2}$
1214.76

123(2)
monoclinic
P2 $1 / \mathrm{c}$
13.286(8)
18.409(9)
23.093(10)
90.00
103.99(4)
90.00

5481(5)
4
1.472
0.580

2464
$0.36 \times 0.06 \times 0.03$
$0.8183 ; 0.9828$
$\operatorname{MoKa}(\lambda=0.71073)$
2.94 to 28.00
0.999
$-17 \leq h \leq 17,-24 \leq k \leq 23,-30 \leq 1 \leq 30$
51069
13213 [Rint $=0.1524$]
13213/37/687
0.789
$R_{1}=0.0492, w R_{2}=0.0858$
$R_{1}=0.1109, w R_{2}=0.0985$
0.893/-1.233

Table 2 Bond Lengths for 10b*THF.

Atom Atom Length/Å

C1 O1 1.468(4)
C1 C2 1.525(6)
C2 C16 1.379(6)

C3 C19 1.394(6)
C4 C5 1.390(6)
C5 C6 1.395(6)

C7 C8 1.384(7)
C10 C15 1.502(5)
C11 C12 1.494(6)
C12 C13 1.326(6)
C14 C15 1.526(5)
C15 C25 1.347(5)
C17 C18 1.380(6)
C20 O2 1.132(6)
C21 O3 1.143(6)
C22 O4 1.141(5)
C23 O5 1.140(6)
C24 O6 1.142(6)
C25 O7 1.399(5)
C26 C31 1.395(6)
C27 C28 1.378(6)
C29 C30 1.390(6)
C32 C39 1.531(5)
C32 C45 1.543(5)
$\begin{array}{lll}\text { C33 } & \text { C34 } & 1.385(6) \\ \text { C34 } & \text { C35 } & 1.396(6)\end{array}$
C36 C37 1.375(6)
C39 C44 1.389(6)
C40 C41 1.389(6)
C42 C43 1.383(6)
C45 C50 1.397(6)
C46 C47 1.385(6)
$\begin{array}{llr}\text { C48 } & \text { C49 } & 1.370(7) \\ \text { C51 } & \text { O8 } & 1.150(5) \\ \text { C52 } & \text { O9 } & 1.140(5) \\ \text { C53 } & \text { O10 } & 1.140(5) \\ \text { C54 } & \text { O11 } & 1.130(6) \\ \text { C55 } & \text { O12 } & 1.145(5) \\ \text { C56 } & \text { C57 } & 1.484(12) \\ \text { C58 } & \text { O13 } & 1.424(8) \\ \text { Mo1 } & \text { P1 } & 2.4258(15) \\ \text { O1 } & \text { P1 } & 1.646(3)\end{array}$

Atom Atom Length/Å
C1 C4 1.502(6)
C1 C10 1.602(5)
C2 C3 1.392(6)
C3 P1 1.797(4)

C 4	C 9	$1.392(6)$
$\mathrm{C6}$	$\mathrm{C7}$	$1.380(7)$

C 6	C 7	$1.380(7)$
C 8	C 9	$1.377(7)$

C10	C11	$1.545(6)$
C11	P1	$1890(4)$

C 11	P 1	$1.890(4)$
C 13	C 14	$1.502(5)$

C14 P2 1.889(4)

C16	C17	$1.400(6)$
C 18	C 19	$1.380(6)$

C18	C19	$1.380(6)$
C20	Mo1	$2.038(5)$

C21 Mo1 2.049(5)

C22	Mo1	$2.046(5)$
C23	Mo1	$2.045(5)$

C 24	$\mathrm{Mo1}$	$2.064(5)$
C 25	C 26	$1.484(6)$

C 25	C 26	$1.484(6)$
C 26	C27	$1.403(5)$

C 28	C 29	$1.370(7)$
C 30	C 31	$1.385(6)$

C32 C33	$1.539(5)$	
C32	P2	$1.960(4)$

| C33 | C38 | $1.390(6)$ |
| :--- | :--- | :--- | :--- |
| C35 | C36 | $1.387(7)$ |

C37 C38 1.396(6)

C39	C40	$1.407(5)$
C41	C42	$1.382(6)$

C43 C44 1.391(6)
C45 C46 1.400(6)

C47 C48 1.399(6)
C49 C50 1.399(6)
C51 Mo2 1.988(5)

C52 Mo2 2.047(5)
C53 Mo2 2.065(5)
C54 Mo2 2.067(5)
C55 Mo2 2.036(5)
C57 O13 1.400(8)
C58 C59 1.461(10)
Mo2 P2 2.5259(18)
O7 P2 1.654(3)

Table 3 Bond Angles for 10b*THF.

Atom Atom Atom Angle ${ }^{\circ}$
O1 C1 C4 109.0(3)
C4 C1 C2 117.8(3)
C4 C1 C10 114.4(3)
C16 C2 C3 120.0(4)
C3 C2 C1 110.5(3)
C2 \quad C3 \quad P1 105.7 (3)
C5 C4 C9 117.8(4)
C9 C4 C1 121.9(4)
C7 C6 C5 119.3(4)
C9 C8 C7 121.1(4)
C15 C10 C11 112.1(3)
C11 C10 C1 \quad 105.5(3)
C12 C11 P1 108.7(3)
C13 C12 C11 124.3(4)
$\begin{array}{llll}\text { C13 } & \text { C14 } & \text { C15 } & \text { 112.7(3) }\end{array}$
C15 C14 P2 103.0(3)
C25 C15 C14 113.5(3)
$\begin{array}{llll}\mathrm{C} 2 & \mathrm{C} 16 & \mathrm{C} 17 & 118.8(4)\end{array}$
C19 C18 C17 120.7(4)
O2 C20 Mo1 179.5(6)
$\begin{array}{llll}\mathrm{O} 4 & \mathrm{C} 22 & \mathrm{Mo1} & 177.8(4)\end{array}$
$\begin{array}{llll}\mathrm{O} 6 & \mathrm{C} 24 & \mathrm{Mo1} & \text { 176.4(5) }\end{array}$
C15 C25 C26 130.5(4)
C31 C26 C27 119.0(4)
C27 C26 C25 122.8(4)
C29 C28 C27 120.8(4)
C31 C30 C29 119.9(4)
C39 C32 C33 113.2(3)
C33 C32 C45 110.3(3)
C33 C32 P2 106.0(3)
C34 C33 C38 117.9(4)
C38 C33 C32 119.6(4)
C36 C35 C34 119.9(4)
C36 \quad C37 \quad C38 120.2(4)
C44 C39 C40 117.5(4)
C40 C39 C32 120.0(3)
C42 C41 C40 119.4(4)
C42 C43 C44 120.1(4)
C50 C45 C46 118.2(4)
C46 C45 C32 120.3(3)
C46 C47 C48 120.4(4)
C48 C49 C50 120.9(4)
O8 C51 Mo2 176.9(5)
O10 C53 Mo2 176.7(4)

Atom Atom Atom Angle ${ }^{\circ}$

O1	C1	C2	$103.6(3)$
O1	C1	C10	$100.2(3)$
C2	C1	C10	$109.8(3)$
C16	C2	C1	$129.4(4)$
C2	C3	C19	$121.2(4)$
C19	C3	P1	$132.9(3)$
C5	C4	C1	$120.3(4)$
C4	C5	C6	$121.7(4)$
C6	C7	C8	$119.4(4)$
C8	C9	C4	$120.7(4)$
C15	C10	C1	$117.9(3)$
C12	C11	C10	$116.5(3)$
C10	C11	P1	$102.4(2)$
C12	C13	C14	$122.9(4)$

C13 C14 P2 119.9(3)

C25 C15 C10 126.9(4)
C10 C15 C14 118.5(3)
$\begin{array}{llll}\mathrm{C} 18 & \mathrm{C} 17 & \mathrm{C} 16 & 120.9(4)\end{array}$
C18 C19 C3 118.4(4)
O3 C21 Mo1 177.2(4)
O5 C23 Mo1 178.1(4)
$\begin{array}{llll}\mathrm{C} 15 & \mathrm{C} 25 & \text { O7 } & 116.2(4)\end{array}$
O7 C25 C26 112.9(3)
C31 C26 C25 118.1(4)
C28 C27 C26 119.9(4)
C28 C29 C30 120.0(4)
C30 C31 C26 120.2(4)
C39 C32 C45 110.4(3)
C39 C32 P2 110.3(3)
C45 C32 P2 106.4(3)
C34 C33 C32 122.6(4)
C33 C34 C35 121.2(4)
C37 C36 C35 119.5(4)
C33 C38 C37 121.1(4)
C44 C39 C32 122.5(3)
C41 C40 C39 121.6(4)
C41 C42 C43 120.2(4)
C39 C44 C43 121.2(4)
C50 C45 C32 121.4(4)
C47 C46 C45 120.8(4)
C49 C48 C47 119.2(4)
C45 C50 C49 120.5(4)
O9 C52 Mo2 178.5(4)
O11 C54 Mo2 177.7(4)

012	C55	Mo2	175.2(4)	013	C57	C56	110.4(7)
013	C58	C59	110.6(7)	C20	Mo1	C23	90.1(2)
C20	Mo1	C22	91.4(2)	C23	Mo1	C22	89.57(19)
C20	Mo1	C21	90.3(2)	C23	Mo1	C21	179.3(2)
C22	Mo1	C21	91.02(18)	C20	Mo1	C24	92.5(2)
C23	Mo1	C24	92.4(2)	C22	Mo1	C24	175.62(18)
C21	Mo1	C24	87.0(2)	C20	Mo1	P1	177.19(16)
C23	Mo1	P1	87.51(13)	C22	Mo1	P1	87.08(13)
C21	Mo1	P1	92.14(14)	C24	Mo1	P1	89.11(14)
C51	Mo2	C55	86.7(2)	C51	Mo2	C52	89.1(2)
C55	Mo2	C52	90.0(2)	C51	Mo2	C53	88.33(19)
C55	Mo2	C53	174.91(18)	C52	Mo2	C53	90.94(18)
C51	Mo2	C54	89.2(2)	C55	Mo2	C54	88.7(2)
C52	Mo2	C54	177.96(19)	C53	Mo2	C54	90.13(18)
C51	Mo2	P2	173.66(14)	C55	Mo 2	P2	87.61(14)
C52	Mo2	P2	88.17(13)	C53	Mo2	P2	97.42(13)
C54	Mo2	P2	93.42(13)	C1	O1	P1	102.6(2)
C25	O7	P2	113.7(2)	C57	013	C58	115.6(6)
O1	P1	C3	91.49(17)	O1	P1	C11	92.50(16)
C3	P1	C11	95.13(18)	01	P1	Mo1	122.33(10)
C3	P1	Mo1	124.95(14)	C11	P1	Mo1	121.89(13)
07	P2	C14	93.15(16)	07	P2	C32	102.64(16)
C14	P2	C32	111.90(17)	07	P2	Mo2	110.79(11)
C14	P2	Mo2	110.02(13)	C32	P2	Mo2	123.72(12)

Table 4 Torsion Angles for 10b*THF.

A B	C D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
O1 C1	C2 C16	151.5(4)	C4	C1	C2	C16	31.1(5)
C10C1	C2 C16	-102.2(4)	O1	C1	C2	C3	-30.6(4)
C4 C1	C2 C3	-151.0(3)	C10	C1	C2	C3	75.7(4)
C16C2	C3 C19	1.2(6)	C1	C2	C3	C19	-177.0(3)
C16C2	C3 P1	176.8(3)	C1	C2	C3	P1	-1.4(4)
O1 C1	C4 C5	179.1(4)	C2	C1	C4	C5	-63.4(5)
C10C1	C4 C5	67.8(5)	O1	C1	C4	C9	0.2(5)
C2 C1	C4 C9	117.7(4)	C10	C1	C4	C9	-111.0(4)
C9 C4	C5 C6	0.4(7)	C1	C4	C5	C6	-178.6(4)
C4 C5	C6 C7	0.9(7)	C5	C6	C7	C8	-1.1(7)
C6 C7	C8 C9	0.2(8)	C7	C8	C9	C4	1.1(8)
C5 C4	C9 C8	-1.3(7)	C1	C4	C9	C8	177.6(4)
O1 C1	C10 C15	173.1(3)	C4	C1		C15	-70.4(4)
C2 C1	C10 C15	64.6(5)	01	C1		C11	47.0(3)
C4 C1	C10 C11	163.5(3)	C2	C1		C11	-61.5(4)
C15C10	C11 C12	-24.8(5)	C1	C10	C11	C12	104.9(4)
C15C10	C11 P1	-143.3(3)	C1		C11	P1	-13.6(3)
C10C11	C12 C13	1.8(6)	P1	C11	C12	C13	116.8(4)

C11 C12 C13 C14	5.5(7)	C12 C13 C14 C15	11.0(6)
C12C13 C14 P2	132.4(4)	C11 C10 C15 C25	-124.5(4)
C1 C10 C15 C25	112.7(5)	C11 C10 C15 C14	42.6(5)
C1 C10 C15 C14	-80.2(5)	C13 C14 C15 C25	132.7(4)
P2 C14 C15 C25	2.1(4)	C13 C14 C15 C10	-36.1(5)
P2 C14 C15 C10	-166.7(3)	C3 C2 C16 C17	-1.4(6)
C1 C2 C16 C17	176.3(4)	C2 C16 C17 C18	0.6(6)
C16 C17 C18 C19	0.4(6)	C17 C18 C19 C3	-0.7(6)
C2 C3 C19 C18	-0.1(6)	P1 C3 C19 C18	-174.3(3)
C10 C15 C25 O7	170.5(3)	C14 C15 C25 O7	2.8(5)
C10 C15 C25 C26	-2.4(7)	C14 C15 C25 C26	-170.1(4)
C15 C25 C26 C31	140.2(5)	O7 C25 C26 C31	-32.8(5)
C15 C25 C26 C27	-36.1(7)	O7 C25 C26 C27	150.9(4)
C31 C26 C27 C28	-3.3(6)	C25 C26 C27 C28	173.0(4)
C26 C27 C28 C29	2.0(7)	C27 C28 C29 C30	0.4(7)
C28 C29 C30 C31	-1.6(7)	C29 C30 C31 C26	0.3(7)
C27 C26 C31 C30	2.1 (6)	C25 C26 C31 C30	-174.3(4)
C39 C32 C33 C34	-6.7(5)	C45 C32 C33 C34	117.5(4)
P2 C32 C33 C34	-127.7(3)	C39 C32 C33 C38	173.8(3)
C45 C32 C33 C38	-62.0(4)	P2 C32 C33 C38	52.8(4)
C38 C33 C34 C35	-3.6(6)	C32 C33 C34 C35	176.9(4)
C33 C34 C35 C36	0.2(7)	C34 C35 C36 C37	2.1 (6)
C35 C36 C37 C38	-0.9(6)	C34 C33 C38 C37	4.8(6)
C32 C33 C38 C37	-175.7(3)	C36 C37 C38 C33	-2.6(6)
C33 C32 C39 C44	118.2(4)	C45 C32 C39 C44	-6.1(5)
P2 C32 C39 C44	-123.3(4)	C33 C32 C39 C40	-58.4(5)
C45 C32 C39 C40	177.3(4)	P2 C32 C39 C40	60.1(4)
C44 C39 C40 C41	1.8(6)	C32 C39 C40 C41	178.5(4)
C39 C40 C41 C42	-1.0(7)	C40 C41 C42 C43	-0.4(7)
C41 C42 C43 C44	0.9(7)	C40 C39 C44 C43	-1.3(6)
C32 C39 C44 C43	-177.9(4)	C42 C43 C44 C39	-0.1(7)
C39 C32 C45 C50	103.4(4)	C33 C32 C45 C50	-22.5(5)
P2 C32 C45 C50	-136.9(3)	C39 C32 C45 C46	-73.2(4)
C33 C32 C45 C46	160.9(4)	P2 C32 C45 C46	46.5(4)
C50 C45 C46 C47	2.4(6)	C32 C45 C46 C47	179.1(4)
C45 C46 C47 C48	-0.5(6)	C46 C47 C48 C49	-1.9(6)
C47 C48 C49 C50	2.4(7)	C46 C45 C50 C49	-1.9(6)
C32 C45 C50 C49	-178.6(4)	C48 C49 C50 C45	-0.5(6)
O2 C20 Mo1 C23	-176(100)	O2 C20 Mo1 C22	-87(81)
O2 C20 Mo1 C21	4(81)	O2 C20 Mo1 C24	91(81)
O2 C20 Mo1 P1	-144(79)	O5 C23 Mo1 C20	160(14)
O5 C23 Mo1 C22	69(14)	O5 C23 Mo1 C21	-78(22)
O5 C23 Mo1 C24	-107(14)	O5 C23 Mo1P1	-18(14)
O4 C22 Mo1 C20	-160(11)	O4 C22 Mo1 C23	-70(11)
O4 C22 Mo1 C21	110(11)	O4 C22 Mo1P1	18(11)
O4 C22 Mo1 C24	47(12)	O3 C21 Mo1 C23	-91(18)

C53 Mo2P2	O7	$130.92(16)$	C54 Mo2P2	O7	$40.34(17)$
C51 Mo2P2	C14	$27.4(16)$	C55 Mo2P2	C14	$53.3(2)$
C52 Mo2P2	C14	$-36.78(19)$	C53 Mo2P2	C14	$-127.49(19)$
C54 Mo2P2	C14	$141.93(19)$	C51 Mo2P2	C32	$163.5(16)$
C55 Mo2P2	C32	$-170.6(2)$	C52 Mo2P2	C32	$99.3(2)$
C53 Mo2P2	C32	$8.60(19)$	C54 Mo2P2	C32	$-82.0(2)$

Table 1 Crystal data and structure refinement for $20{ }^{*} \mathrm{CHCl}_{3}$.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y^{\prime}
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [l>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR305
$\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{PW}$
859.65

123(2)
triclinic
P-1
9.9709(8)
10.8286(7)
16.0930(15)
99.983(3)
98.899(3)
109.619(2)
1568.9(2)

2
1.820
4.044

836
$0.27 \times 0.25 \times 0.10$
$0.4081 ; 0.6879$
MoKa ($\lambda=0.71073$)
2.64 to 27.00°
0.984
$-12 \leq h \leq 11,-13 \leq k \leq 13,-20 \leq 1 \leq 20$
15563
6741 [Rint $=0.0260$]
6741/0/443
1.058
$R_{1}=0.0260, w R_{2}=0.0524$
$\mathrm{R}_{1}=0.0354, w \mathrm{R}_{2}=0.0563$
1.517/-1.735

Table 2 Bond Lengths for ${ }^{20}{ }^{*} \mathrm{CHCl}_{3}$.

Atom Atom		Length/A	Atom Atom		Length/Å
C1	O1	$1.471(4)$	C1	C2	$1.492(4)$
C1	P	$1.793(3)$	C2	C3	$1.386(5)$
C2	C7	$1.389(5)$	C3	F1	$1.355(4)$
C3	C4	$1.379(5)$	C4	C5	$1.376(6)$
C5	C6	$1.389(5)$	C6	C7	$1.382(4)$
C7	F2	$1.356(4)$	C8	C21	$1.537(4)$
C8	C15	$1.543(4)$	C8	C9	$1.543(4)$
C8	P	$1.902(3)$	C9	C10	$1.392(5)$
C9	C14	$1.395(5)$	C10	C11	$1.402(5)$
C11	C12	$1.372(5)$	C12	C13	$1.394(5)$
C13	C14	$1.385(5)$	C15	C16	$1.379(5)$
C15	C20	$1.396(5)$	C16	C17	$1.399(4)$
C17	C18	$1.376(5)$	C18	C19	$1.390(5)$
C19	C20	$1.390(5)$	C21	C26	$1.394(4)$
C21	C22	$1.407(4)$	C22	C23	$1.389(5)$
C23	C24	$1.386(6)$	C24	C25	$1.377(5)$
C25	C26	$1.389(5)$	C27	O2	$1.125(5)$
C27	W	$2.025(4)$	C28	O3	$1.143(4)$
C28	W	$2.037(4)$	C29	O4	$1.130(4)$
C29	W	$2.059(4)$	C30	O5	$1.140(5)$
C30	W	$2.059(4)$	C31	O6	$1.139(4)$
C31	W	$2.041(4)$	O1	P	$1.663(2)$
P	W	$2.4783(8)$	C32	Cl2	$1.670(14)$
C32	Cl1	$1.749(7)$	C32	Cl3	$1.749(7)$

Table 3 Bond Angles for 20* CHCl_{3}.

Atom	Atom	Atom	Angle $/^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
O1	C1	C2	116.3(3)	O1	C1	P	60.34(13)
C2	C1	P	124.6(2)	C3	C2	C7	115.2(3)
C3	C2	C1	123.8(3)	C7	C2	C1	120.7(3)
F1	C3	C4	118.3(3)	F1	C3	C2	118.5(3)
C4	C3	C2	123.2(3)	C5	C4	C3	119.0(3)
C4	C5	C6	120.9(3)	C7	C6	C5	117.6(3)
F2	C7	C6	118.2(3)	F2	C7	C2	117.6(3)
C6	C7	C2	124.1(3)	C21	C8	C15	113.5(2)
C21	C8	C9	113.4(3)	C15	C8	C9	105.6(2)
C21	C8	P	100.8(2)	C15	C8	P	111.5(2)
C9	C8	P	112.2(2)	C10	C9	C14	118.4(3)
C10	C9	C8	122.2(3)	C14	C9	C8	119.2(3)
C9	C10	C11	120.3(3)	C12	C11	C10	120.9(3)
C11	C12	C13	118.9(3)	C14	C13	C12	120.6(3)
C13	C14	C9	120.8(3)	C16	C15	C20	118.2(3)
C16	C15	C8	124.1 (3)	C20	C15	C8	117.5(3)

$\left.\begin{array}{lllrlllr}\text { C15 } & \text { C16 } & \text { C17 } & 121.3(3) & & \text { C18 } & \text { C17 } & \text { C16 }\end{array}\right) 120.1(3)$

Table 4 Torsion Angles for 20 * CHCl_{3}.

	5 C 16 C 17	C18	-1.1(5)	C16C17C18	C19	1.1(5)
	7C18C19	C20	-0.6(5)	C18C19 C20	C15	0.0(5)
	6 C 15 C 20	C19	-0.1(5)	C8 C15C20	C19	-175.2(3)
	C8 C21	C26	-3.0(4)	C9 C8 C2	C26	-123.5(3)
P	C8 C21	C26	116.3(3)	C15C8 C2	C22	-179.9(3)
	C8 C21	C22	59.6(4)	P C8 C2	C22	-60.6(3)
	6 C 21 C 22	C23	0.9(5)	C8 C21 C2	C23	177.9(3)
C2	1 C 22 C 23	C24	-0.9(5)	C22 C23 C2	C25	0.6(6)
C23	3 C 24 C 25	C26	-0.3(6)	C24C25 C26	C21	0.3(6)
	2 C 21 C 26	C25	-0.6(5)	C8 C21 C2	C25	-177.5(3)
	C1 O1	P	-116.5(3)	C1 O1 P	C8	-96.08(18)
C1	O1 P	W	113.37(15)	C2 C1 P	O1	103.1(3)
O1	C1 P	C8	99.63(17)	C2 C1 P	C8	-157.2(3)
O1	C1 P	W	-101.28(15)	C2 C1 P	W	1.9(3)
C2	1 C 8 P	O1	158.80(17)	C15C8 P	O1	-80.4(2)
C9	C8 P	O1	37.8(2)	C21-8 P	C1	106.4(2)
C15	C8 P	C1	-132.8(2)	C9 C8 P	C1	-14.6(3)
	1 C 8 P	W	-52.8(2)	C15C8 P	W	68.0(2)
C9	C8 P	W	-173.81(16)	O2 C27W	C28	-64(9)
O2	C27W	C31	-153(9)	O2 C27W	C29	28(9)
O2	C27W	C30	118(9)	O2 C27W	P	-45(13)
O3	C28 W	C27	-52(5)	O3 C28W	C31	37(5)
O3	C28W	C 29	-137(5)	O3 C28W	C30	13(7)
O3	C28W	P	129(5)	O6 C31 W	C27	-4(5)
06	C31 W	C28	-94(5)	O6 C31 W	C29	2(6)
O6	C31 W	C30	85(5)	O6 C31 W	P	178(100)
O4	C29 W	C 27	9(3)	O4 C29W	C28	99(3)
O4	C29 W	C31	4(4)	O4 C29W	C30	-80(3)
O4	C29 W	P	-172(3)	O5 C30W	C27	7(11)
O5	C30 W	C28	-57(12)	O5 C30W	C31	-81(11)
O5	C30 W	C29	92(11)	O5 C30W	P	-173(11)
01	P W	C27	-150(5)	C1 P W	C27	-90(5)
C8	P W	C 27	65(5)	O1 P W	C28	-131.16(13)
C1	P W	C28	-71.07(17)	C8 P W	C28	84.00(15)
O1	P W	C31	-42.51(14)	C1 P W	C31	17.57(17)
C8	P W	C31	172.64(16)	O1 P W	C29	136.96(14)
C1	P W	C29	-162.96(18)	C8 P W	C29	-7.88(17)
O1	P W	C30	46.46(14)	C1 P W	C30	106.54(17)
C8	P W	C30	-98.39(16)			

Table 1 Crystal data and structure refinement for 21.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c / A
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
V°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR327
$\mathrm{C}_{31} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PW}$
758.27

123(2)
triclinic
P-1
10.6618(3)
16.0963(4)
16.5683(5)
76.9465(16)
87.9808(16)
86.8159(16)
2764.88(13)

4
1.822
4.301

1472
$0.84 \times 0.36 \times 0.18$
$0.1228 ; 0.5115$
$\operatorname{MoKa}(\lambda=0.71073)$
2.56 to 26.00°
0.994
$-12 \leq h \leq 13,-19 \leq k \leq 19,-18 \leq \mathrm{l} \leq 20$
31025
10799 [Rint $=0.0673$]
10799/7/757
1.005
$R_{1}=0.0362, w R_{2}=0.0852$
$R_{1}=0.0482, w R_{2}=0.0898$
1.991/-2.996

Table 2 Bond Lengths for 21.

Atom Atom Length/Å
$\begin{array}{ll}\text { C1 } & \text { O1 } \\ \text { C1 } & \text { P1 }\end{array}$
C2 C3 1.390(6)
C3 C4 1.381(7)
C5 F2 1.352(5)

C 6	C 7	$1.377(6)$

$\begin{array}{lll}\text { C8 } & \text { C21 } & 1.539(7) \\ \text { C8 } & \text { C15 } & 1.546(6)\end{array}$
C9 C10 1.379(6)

C10	C11	$1.394(6)$
C12	C13	$1.379(7)$

C15 C16 1.395(6)

C16	C17	$1.396(7)$

C18 C19 1.378(7)

C21	C22	$1.399(7)$
C22	C23	$1.381(7)$
C24	C25	$1.389(7)$
C27	O2	$1.158(6)$
C28	O3	$1.138(6)$
C29	O4	$1.137(6)$
C30	O5	$1.132(6)$
C31	O6	$1.143(6)$
O1	P1	$1.663(3)$

Table 3 Bond Angles for 21.
Atom Atom Atom Angle $/^{\circ}$

O1	C1	C2	$116.1(4)$
C2	C1	P1	$122.7(4)$
C7	C2	C1	$122.3(4)$
F1	C3	C4	$117.7(4)$
C4	C3	C2	$124.0(5)$
F2	C5	C4	$117.9(4)$
C4	C5	C6	$123.4(4)$
F3	C7	C6	$118.0(4)$
C6	C7	C2	$125.0(4)$
C21	C8	C15	$114.1(4)$
C21	C8	P1	$113.8(3)$
C15	C8	P1	$98.6(3)$
C10	C9	C8	$122.6(4)$
C9	C10	C11	$121.2(4)$
C13	C12	C11	$119.7(4)$
C13	C14	C9	$120.2(4)$
C16	C15	C8	$123.0(4)$

Atom Atom		Length/Å
C1	C2	$1.486(6)$
C2	C7	$1.384(7)$
C3	F1	$1.356(6)$
C4	C5	$1.370(7)$
C5	C6	$1.373(6)$
C7	F3	$1.360(5)$
C8	C9	$1.539(6)$
C8	P1	$1.892(4)$
C9	C14	$1.407(6)$
C11	C12	$1.385(7)$
C13	C14	$1.393(6)$
C15	C20	$1.399(6)$
C17	C18	$1.391(7)$
C19	C20	$1.376(6)$
C21	C26	$1.405(6)$
C23	C24	$1.381(7)$
C25	C26	$1.374(7)$
C27	W1	$1.992(5)$
C28	W1	$2.056(5)$
C29	W1	$2.050(5)$
C30	W1	$2.061(5)$
C31	W1	$2.044(5)$
P1	W1	$2.4656(13)$

Atom Atom Atom			
O1	C1	P1	${ }^{\circ}{ }^{\circ}$
C7	C2	C3	$114.4(2)$
C3	C2	C1	$123.2(4)$
F1	C3	C2	$118.2(4)$
C5	C4	C3	$116.9(4)$
F2	C5	C6	$118.7(4)$
C5	C6	C7	$116.3(4)$
F3	C7	C2	$117.0(4)$
C21	C8	C9	$105.4(4)$
C9	C8	C15	$115.3(3)$
C9	C8	P1	$109.7(3)$
C10	C9	C14	$118.4(4)$
C14	C9	C8	$118.7(4)$
C12	C11	C10	$120.0(4)$
C12	C13	C14	$120.5(4)$
C16	C15	C20	$117.9(4)$
C20	C15	C8	$118.9(4)$

C15	C16	C17	$120.3(5)$		C18	C17	C16
C19	C18	C17	$118.8(4)$		C20	C19	C18

Table 4 Torsion Angles for 21.

A	B	C	D	
O1	C1	C2	C7	$-142.8(5)$
O1	C1	C2	C3	$40.8(7)$
C7	C2	C3	F1	$-178.2(4)$
C7	C2	C3	C4	$0.2(8)$
F1	C3	C4	C5	$178.4(5)$
C3	C4	C5	F2	$-179.1(5)$
F2	C5	C6	C7	$179.1(4)$
C5	C6	C7	F3	$179.9(4)$
C3	C2	C7	F3	$179.8(4)$
C3	C2	C7	C6	$-0.1(8)$
C21	C8	C9	C10	$97.7(5)$
P1	C8	C9	C10	$-25.2(6)$
C15	C8	C9	C14	$51.5(6)$
C14	C9	C10	C11	$-3.3(7)$
C9	C10	C11	C12	$1.0(8)$
C11	C12	C13	C14	$-0.4(8)$
C10	C9	C14	C13	$3.7(7)$
C21	C8	C15	C16	$133.5(4)$
P1	C8	C15	C16	$-105.5(4)$
C9	C8	C15	C20	$-174.0(4)$
C20	C15	C16	C17	$1.7(7)$
C15	C16	C17	C18	$-0.3(8)$

A	B	C	D	Angle ${ }^{\circ}$
P1	C1	C2	C7	-72.6(6)
P1	C1	C2	C3	110.9(5)
C1	C2	C3	F1	-1.5(7)
C1	C2	C3	C4	176.9(5)
C2	C3	C4	C5	0.0(8)
C3	C4	C5	C6	-0.3(8)
C4	C5	C6	C7	0.4(8)
C5	C6	C7	C2	-0.2(8)
C1	C2	C7	F3	3.1 (7)
C1	C2	C7	C6	-176.8(5)
C15	C8	C9	C10	-135.5(5)
C21	C8	C9	C14	-75.3(5)
P1	C8	C9	C14	161.7(3)
C8	C9	C10	C11	-176.4(5)
C10	C11	C12	C13	0.9(8)
C12	C13	C14	C9	-1.9(8)
C8	C9	C14	C13	177.1(4)
C9	C8	C15	C16	11.2(6)
C21	C8	C15	C20	-51.7(5)
P1	C8	C15	C20	69.3(5)
C8	C15	C16	C17	176.6(4)
C16	C17	C18	C19	-0.5(8)

C17	C18	C19	C20	-0.2(8)	C18	C19	C20	C15	1.8(8)
C16	C15	C20	C19	-2.5(7)	C8	C15	C20	C19	-177.5(4)
C9	C8	C21	C22	117.5(4)	C15	C8	C21	C22	-10.1(6)
P1	C8	C21	C22	-122.3(4)	C9	C8	C21	C26	-56.4(5)
C15	C8	C21	C26	176.0(4)	P1	C8	C21	C26	63.8(5)
C26	C21	C22	C23	-1.5(6)	C8	C21	C22	C23	-175.5(4)
C21	C22	C23	C24	0.1(7)	C22	C23	C24	C25	1.6(7)
C23	C24	C25	C26	-2.0(7)	C24	C25	C26	C21	0.6(6)
C22	C21	C26	C25	1.2(6)	C8	C21	C26	C25	175.5(4)
C2	C1	O1	P1	114.5(4)	C1	O1	P1	W1	-118.0(2)
C1	O1	P1	C8	96.6(3)	O1	C1	P1	C8	-100.7(2)
C2	C1	P1	O1	-103.7(4)	O1	C1	P1	W1	96.6(2)
C2	C1	P1	C8	155.7(4)	C21	C8	P1	O1	-32.4(4)
C2	C1	P1	W1	-7.0(5)	C15	C8	P1	O1	-153.6(3)
C9	C8	P1	O1	85.5(3)	C9	C8	P1	C1	138.7(3)
C21	C8	P1	C1	20.9(4)	C21	C8	P1	W1	-175.4(2)
C15	C8	P1	C1	-100.3(3)	C15	C8	P1	W1	63.4(3)
C9	C8	P1	W1	-57.6(3)	O 2	C27	W1	C29	-145(33)
O2	C27	W1	C31	35(33)	O 2	C27	W1	C30	126(33)
O2	C27	W1	C28	-57(33)	06	C31	W1	C27	-18(7)
O2	C27	W1	P1	-34(34)	O6	C31	W1	C28	72(7)
O6	C31	W1	C29	-16(8)	O6	C31	W1	P1	158(7)
O6	C31	W1	C30	-110(7)	O4	C29	W1	C31	1(7)
O4	C29	W1	C27	3(6)	O4	C29	W1	C30	95(6)
O4	C29	W1	C28	-88(6)	O3	C28	W1	C27	-153(14)
O4	C29	W1	P1	-173(6)	O3	C28	W1	C29	-65(14)
O3	C28	W1	C31	120(14)	O3	C28	W1	P1	29(14)
O3	C28	W1	C30	-21(15)	O5	C30	W1	C31	128(13)
O5	C30	W1	C27	41(13)	O5	C30	W1	C28	-91(13)
O5	C30	W1	C29	-47(13)	01	P1	W1	C27	-54.8(18)
O5	C30	W1	P1	-140(13)	C8	P1	W1	C27	85.3(18)
C1	P1	W1	C27	-114.6(18)	C1	P1	W1	C31	176.3(2)
O1	P1	W1	C31	-123.90(18)	O1	P1	W1	C29	55.47(18)
C8	P1	W1	C31	16.2(2)	C8	P1	W1	C29	-164.4(2)
C1	P1	W1	C29	-4.4(2)	C1	P1	W1	C28	-91.7(2)
O1	P1	W1	C28	-31.92(18)	O1	P1	W1	C30	145.21(18)
C8	P1	W1	C28	108.2(2)	C8	P1	W1	C30	-74.7(2)
C1	1	W1	C30	85.4(2)					

Table 1 Crystal data and structure refinement for 22.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/Á ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR359
$\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{O}_{6} \mathrm{PW}$
794.01
123.15
monoclinic
C2/c
36.0465(10)
9.5603(3)
16.5305(4)
90.00
93.8297(17)
90.00
5683.9(3)

8
1.856
4.198
3072.0
$0.16 \times 0.12 \times 0.04$
$\operatorname{MoKa}(\lambda=0.71073)$
4.94 to 56°
$-47 \leq h \leq 47,-12 \leq k \leq 12,-21 \leq 1 \leq 21$
50383
6848 [$\left.R_{\text {int }}=0.0952, R_{\text {sigma }}=0.0556\right]$
6848/0/397
1.024
$R_{1}=0.0378, w R_{2}=0.0857$
$R_{1}=0.0581, w R_{2}=0.0931$
3.27/-2.47

Table 2 Bond Lengths for 22.

Atom Atom		Length/Å
W	P	$2.4630(11)$
W	C27	$2.012(4)$
W	C28	$2.054(5)$
W	C29	$2.046(5)$
W	C30	$2.034(5)$
W	C31	$2.046(5)$
P	O1	$1.669(3)$
P	C1	$1.793(4)$
P	C8	$1.881(4)$
F1	C3	$1.345(5)$
F2	C4	$1.347(5)$
F3	C5	$1.333(5)$
F4	C6	$1.337(5)$
F5	C7	$1.343(5)$
O1	C1	$1.460(5)$
O2	C27	$1.143(5)$
O3	C28	$1.140(5)$
O4	C29	$1.142(5)$
O5	C30	$1.152(5)$
O6	C31	$1.137(5)$
C1	C2	$1.491(6)$
C2	C3	$1.384(6)$
C2	C7	$1.390(6)$
C3	C4	$1.373(6)$

Atom Atom		Length/Å
C4	C5	$1.375(6)$
C5	C6	$1.380(6)$
C6	C7	$1.376(6)$
C8	C9	$1.553(5)$
C8	C15	$1.541(6)$
C8	C21	$1.551(5)$
C9	C10	$1.389(6)$
C9	C14	$1.393(6)$
C10	C11	$1.398(6)$
C11	C12	$1.370(6)$
C12	C13	$1.381(6)$
C13	C14	$1.388(6)$
C15	C16	$1.393(6)$
C15	C20	$1.399(5)$
C16	C17	$1.386(6)$
C17	C18	$1.386(7)$
C18	C19	$1.382(7)$
C19	C20	$1.393(7)$
C21	C22	$1.389(6)$
C21	C26	$1.394(6)$
C22	C23	$1.395(7)$
C23	C24	$1.377(7)$
C24	C25	$1.385(7)$
C25	C26	$1.384(6)$

Table 3 Bond Angles for 22.

Atom Atom Atom	Angle ${ }^{\circ}$ C27${ }^{\circ}$ W	P	$172.50(13)$
C27	W	C28	$89.46(16)$
C27	W	C29	$92.85(18)$
C27	W	C30	$83.92(16)$
C27	W	C31	$89.07(17)$
C28	W	P	$93.06(12)$
C29	W	P	$94.29(13)$
C29	W	C28	$87.96(18)$
C30	W	P	$94.29(12)$
C30	W	C28	$170.86(17)$
C30	W	C29	$86.08(18)$
C30	W	C31	$91.39(17)$
C31	W	P	$83.69(12)$
C31	W	C28	$94.81(18)$
C31	W	C29	$176.65(17)$
O1	P	W	$115.76(11)$

Atom			Atom Atom
C7	C6	C5	Angle ${ }^{\circ}$
F5	C7	C2	$119.5(4)$
F5	C7	C6	$117.2(4)$
C6	C7	C2	$122.8(4)$
C9	C8	P	$115.2(3)$
C15	C8	P	$99.3(3)$
C15	C8	C9	$113.6(3)$
C15	C8	C21	$114.3(3)$
C21	C8	P	$109.7(3)$
C21	C8	C9	$105.0(3)$
C10	C9	C8	$121.7(4)$
C10	C9	C14	$118.1(4)$
C14	C9	C8	$119.9(4)$
C9	C10	C11	$120.3(4)$
C12	C11	C10	$120.8(4)$
C11	C12	C13	$119.5(4)$

O1	P	C1	49.73(16)	C12	C13	C14	120.1(4)
O1	P	C8	108.25(16)	C13	C14	C9	121.2(4)
C1	P	W	125.42(15)	C16	C15	C8	118.7(3)
C1	P	C8	107.54(18)	C16	C15	C20	119.1(4)
C8	P	W	125.18(12)	C20	C15	C8	122.1(4)
C1	O1	P	69.58(19)	C17	C16	C15	120.8(4)
O1	C1	P	60.68(18)	C16	C17	C18	120.1(5)
O1	C1	C2	115.8(3)	C19	C18	C17	119.4(5)
C2	C1	P	122.5(3)	C18	C19	C20	121.3(4)
C3	C2	C1	120.2(4)	C19	C20	C15	119.3(4)
C3	C2	C7	115.7(4)	C22	C21	C8	122.8(4)
C7	C2	C1	124.1(4)	C22	C21	C26	118.3(4)
F1	C3	C2	118.9(4)	C26	C21	C8	118.7(4)
F1	C3	C4	118.3(4)	C21	C22	C23	121.0(4)
C4	C3	C2	122.8(4)	C24	C23	C22	120.1(4)
F2	C4	C3	120.6(4)	C23	C24	C25	119.3(4)
F2	C4	C5	119.5(4)	C26	C25	C24	120.9(5)
C3	C4	C5	119.9(4)	C25	C26	C21	120.4(4)
F3	C5	C4	120.3(4)	O2	C27	W	177.4(4)
F3	C5	C6	120.4(4)	O3	C28	W	175.9(4)
C4	C5	C6	119.3(4)	O4	C29	W	176.7(4)
F4	C6	C5	119.8(4)	O5	C30	W	172.7(4)
F4	C6	C7	120.7(4)	O6	C31	W	177.8(4)

Table 4 Torsion Angles for 22.

A	B	C	D	Angle $/^{\circ}$
W P	O1	C1	$-115.8(2)$	
W P	C1	O1	$95.5(2)$	
W P	C1	C2	$-8.0(4)$	
W P	C8	C9	$-179.6(2)$	
W P	C8	C15	$58.7(3)$	
W P	C8	C21	$-61.4(3)$	
P	W	C27 O2	$40(10)$	
P	W	C28 O3	$-143(5)$	
P	W	C29 O4	$-135(7)$	
P	W	C30 O5	$160(3)$	
P	W	C31 O6	$17(11)$	
P	O1	C1	C2	$114.4(3)$
P	C1	C2	C3	$-85.6(5)$
P	C1	C2	C7	$93.8(5)$
P	C8	C9	C10	$-130.2(4)$
P	C8	C9	C14	$56.2(5)$
P	C8	C15 C16	$69.8(4)$	
P	C8	C15 C20	$-106.2(4)$	
P	C8	C21	C22	$-21.7(5)$

A B C D	Angle/ ${ }^{\circ}$
C9 C8 C21-22	102.7(4)
C9 C8 C21-26	-71.7(4)
C9 C10C11C12	-0.3(7)
C10C9 C14C13	2.9(6)
C10C11-C12C13	0.5(7)
C11C12C13C14	0.9(7)
C12C13C14C9	-2.7(7)
C14C9 C10C11	-1.4(6)
C15C8 C9 C10	-16.5(5)
C15C8 C9 C14	169.8(4)
C15C8 C21-22	-132.2(4)
C15C8 C21-26	53.4(5)
C15C16C17C18	-0.2(7)
C16C15C20C19	1.9(6)
C16C17C18C19	1.3(7)
C17C18C19C20	-0.9(7)
C18C19 C20 C15	-0.7(7)
C20C15C16C17	-1.4(6)
C21C8 C9 C10	109.0(4)

P C8	C21 C26	164.0(3)	C21-8	C9 C14	-64.6(5)
F1 C3	C4 F2	-0.3(6)	C21 C8	C15C16	-173.5(4)
F1 C3	C4 C5	178.1(4)	C21 C8	C15C20	10.4(6)
F2 C4	C5 F3	-0.4(6)	C21 C22	C23C24	0.7(7)
F2 C4	C5 C6	179.3(4)	C22C21	C26 C25	3.0(6)
F3 C5	C6 F4	-0.8(6)	C22C23	C24C25	0.8(8)
F3 C5	C6 C7	179.5(4)	C23C24	C25C26	-0.3(8)
F4 C6	C7 F5	-1.3(6)	C24C25	C26C21	-1.6(7)
F4 C6	C7 C2	179.6(4)	C26C21	C22C23	-2.5(6)
O1P	C1 C2	-103.5(4)	C27W	P O1	-5.6(10)
O1P	C8 C9	-37.2(3)	C27W	P C1	-63.0(10)
O1P	C8 C15	-158.9(2)	C27W	P C8	134.4(10)
O1P	C8 C21	81.0(3)	C27W	C28O3	44(5)
O1C1	C2 C3	-155.9(4)	C27W	C29O4	42(7)
O1C1	C2 C7	23.5(5)	C27W	C3005	-27(3)
C1P	C8 C9	15.3(3)	C27W	C3106	-161(11)
C1P	C8 C15	-106.5(3)	C28W	P O1	-115.05(18)
C1P	C8 C21	133.4(3)	C28W	P C1	-172.5(2)
C1 C2	C3 F1	0.5(6)	C28W	P C8	24.9(2)
C1 C2	C3 C4	179.3(4)	C28W	C27O2	150(9)
C1 C2	C7 F5	2.4(6)	C28W	C2904	132(7)
C1 C2	C7 C6	-178.6(4)	C28W	C3005	17(4)
C2 C3	C4 F2	-179.1(4)	C28W	C3106	110(11)
C2 C3	C4 C5	-0.8(6)	C29W	P O1	156.76(17)
C3 C2	C7 F5	-178.2(3)	C29 W	P C1	99.3(2)
C3 C2	C7 C6	0.9(6)	C29 W	P C8	-63.3(2)
C3 C4	C5 F3	-178.8(4)	C29 W	C27O2	-122(9)
C3 C4	C5 C6	1.0(6)	C29W	C28O3	-49(5)
C4 C5	C6 F4	179.4(4)	C29 W	C3005	66(3)
C4 C5	C6 C7	-0.3(6)	C29W	C3106	-36(13)
C5 C6	C7 F5	178.4(3)	C30W	P O1	70.39(18)
C5 C6	C7 C2	-0.7(6)	C30W	P C1	12.9(2)
C7 C2	C3 F1	-179.0(3)	C30W	P C8	-149.6(2)
C7 C2	C3 C4	-0.1(6)	C30W	C27O2	-37(9)
C8P	O1 C1	97.8(2)	C30W	C28O3	0(6)
C8P	C1 O1	-99.4(2)	C30W	C2904	-41(7)
C8P	C1 C2	157.1(3)	C30W	C3106	-77(11)
C8 C9	C10C11	-175.2(4)	C31 W	P O1	-20.55(17)
C8 C9	C14C13	176.8(4)	C31 W	P C1	-78.0(2)
C8 C15	C16C17	-177.6(4)	C31 W	P C8	119.4(2)
C8 C15	C20C19	177.9(4)	C31 W	C27O2	55(9)
C8 C21	C22 C23	-176.9(4)	C31 W	C28O3	133(5)
C8 C21	C26 C25	177.6(4)	C31 W	C29O4	-82(8)
C9 C8	C15C16	-53.1(5)	C31 W	C3005	-116(3)
C9 C8	C15C20	130.9(4)			

Table 1 Crystal data and structure refinement for $23 * 3 \mathrm{CHCl}_{3}$.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{Y}^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR495
$\mathrm{C}_{34} \mathrm{H}_{19} \mathrm{Cl}_{9} \mathrm{CrF}_{5} \mathrm{O}_{6} \mathrm{P}$
1020.51
150.0
monoclinic
P2 ${ }_{1} / \mathrm{c}$
16.5199(17)
14.4178(14)
16.9989(17)

90
97.611(3)

90
4013.1(7)

4
1.689
0.991
2032.0
$0.14 \times 0.07 \times 0.06$
$0.5377 ; 0.7459$
MoKa ($\lambda=0.71073$)
4.648 to 56°
0.999
$-21 \leq h \leq 21,-19 \leq k \leq 19,-22 \leq \mathrm{l} \leq 22$
98129
9677 [$\mathrm{R}_{\text {int }}=0.3950, \mathrm{R}_{\text {sigma }}=0.1760$]
9677/48/559
1.019
$R_{1}=0.1211, w R_{2}=0.2922$
$R_{1}=0.2437, w R_{2}=0.3687$
1.43/-1.49

Table 2 Bond Lengths for $23 * 3 \mathrm{CHCl}_{3}$.

Atom Atom Length/Å
$\mathrm{Cr} \quad \mathrm{P} \quad$ 2.336(2)
Cr C 27 1.883(9)
$\mathrm{Cr} \quad \mathrm{C} 28 \quad 1.899(9)$
$\mathrm{Cr} \quad \mathrm{C} 29 \quad 1.905(9)$
$\mathrm{Cr} \quad \mathrm{C} 30$ 1.892(10)
$\mathrm{Cr} \quad \mathrm{C} 31 \quad 1.915(10)$
P O1 1.668(5)
P C1 1.790(8)
P C8 1.912(8)
F1 C3 1.339(9)
F2 C4 1.346(9)
F3 C5 1.331(9)
F4 C6 1.331(10)
F5 C7 1.341(9)
O1 C1 1.468(9)
O2 C27 1.126(10)
O3 C28 1.148(10)
O4 C29 1.149(10)
O5 C30 1.145(11)
O6 C31 1.127(11)
C1 C2 1.504(10)
C2 C3 1.376(11)
C2 C7 1.396(11)
C3 C4 1.399(11)
C4 C5 1.369(12)
C5 C6 1.367(13)
C6 C7 1.393(12)
C8 C9 1.537(10)
C8 C15 1.526(11)
C8 C21 1.539(10)
C9 C10 1.382(11)
C9 C14 1.414(12)

Atom Atom Length/Å
C10 C11 1.368(12)

C11 C12 1.396(15)
C12 C13 1.364(15)
C13 C14 1.417(12)
C15 C16 1.394(11)
C15 C20 1.404(11)
C16 C17 1.391(12)
C17 C18 1.398(13)
C18 C19 1.369(13)
C19 C20 1.378(12)
C21 C22 1.408(13)
C21 C26 1.392(13)
C22 C23 1.392(14)
C23 C24 1.338(16)
C24 C25 1.339(15)
C25 C26 1.416(13)
Cl1 C32 1.72(2)
Cl2 C32 1.807(17)
Cl3 C32 1.70(3)
Cl1S C32 1.84(2)
Cl2S C32 1.660(15)
Cl3S C32 1.77(4)
Cl2T C32 2.07(4)
Cl1T C32 1.57(2)
Cl3T C32 1.727(19)
Cl4 C33 1.77(2)
Cl5 C33 1.75(2)
Cl6 C33 1.60(2)
Cl7 C34 1.71(2)
Cl8 C34 1.74(2)
Cl9 C34 1.75(2)

Table 3 Bond Angles for $23 * 3 \mathrm{CHCl}_{3}$.

Atom	to	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C27	Cr	P	177.9(3)	C15	C8	C21	114.9(6)
C27	Cr	C28	88.5(4)	C21	C8	P	112.6(5)
C27	Cr	C29	86.0(4)	C10	C9	C8	119.0(7)
C27	Cr	C30	89.8(4)	C10	C9	C14	118.3(7)
C27	Cr	C31	87.3(4)	C14	C9	C8	122.2(7)
C28	Cr	P	93.4(2)	C11	C10	C9	121.3(9)
C28	Cr	C29	89.9(4)	C10	C11	C12	120.9(9)

C28	Cr	C31	89.2(4)	C13	C12	C11	119.4(8)
C29	Cr	P	93.3(3)	C12	C13	C14	120.3(10)
C29	Cr	C31	173.2(3)	C9	C14	C13	119.6(9)
C30	Cr	P	88.2(3)	C16	C15	C8	123.6(7)
C30	Cr	C28	177.4(4)	C16	C15	C20	117.5(7)
C30	Cr	C29	92.0(4)	C20	C15	C8	118.8(7)
C30	Cr	C31	88.7(4)	C17	C16	C15	120.6(8)
C31	Cr	P	93.5(3)	C16	C17	C18	120.7(8)
O1	P	Cr	117.7(2)	C19	C18	C17	118.9(8)
01	P	C1	50.1(3)	C18	C19	C20	120.9(8)
O1	P	C8	107.8(3)	C19	C20	C15	121.4(8)
C1	P	Cr	127.1(3)	C22	C21	C8	122.3(8)
C1	P	C8	104.9(3)	C26	C21	C8	119.3(8)
C8	P	Cr	125.2(2)	C26	C21	C22	118.3(8)
C1	O1	P	69.3(4)	C23	C22	C21	118.6(10)
O1	C1	P	60.6(3)	C24	C23	C22	122.2(11)
O1	C1	C2	115.6(6)	C23	C24	C25	120.8(10)
C2	C1	P	123.1(5)	C24	C25	C26	120.1(10)
C3	C2	C1	123.7(7)	C21	C26	C25	119.8(10)
C3	C2	C7	116.7(7)	O 2	C27	Cr	177.5(9)
C7	C2	C1	119.6(7)	O3	C28	Cr	176.6(7)
F1	C3	C2	120.2(7)	O4	C29	Cr	174.3(7)
F1	C3	C4	118.5(7)	O5	C30	Cr	177.1(9)
C2	C3	C4	121.3(8)	O6	C31	Cr	174.5(7)
F2	C4	C3	118.9(8)	Cl 1	C32	Cl 2	107.7(11)
F2	C4	C5	120.7(8)	Cl3	C32	Cl 1	111.1(11)
C5	C4	C3	120.4(7)	Cl3	C32	Cl 2	115.2(10)
F3	C5	C4	119.5(8)	Cl2S	C32	Cl1S	108.3(11)
F3	C5	C6	120.5(8)	Cl 2 S	C32	Cl3S	111.5(14)
C6	C5	C4	120.0(8)	Cl3S	C32	Cl1S	110.6(14)
F4	C6	C5	121.0(8)	Cl1T	C32	Cl2T	100.1(17)
F4	C6	C7	119.9(8)	Cl1T	C32	Cl3T	122.9(11)
C5	C6	C7	119.1(8)	Cl3T	C32	Cl2T	86.6(16)
F5	C7	C2	119.3(7)	Cl 5	C33	Cl 4	109.4(12)
F5	C7	C6	118.2(7)	Cl 6	C33	Cl 4	117.6(13)
C6	C7	C2	122.4(8)	Cl 6	C33	Cl 5	112.5(11)
C9	C8	P	111.0(5)	Cl 7	C34	Cl 8	114.3(12)
C9	C8	C21	105.9(6)	Cl7	C34	Cl9	110.3(14)
C15	C8	P	99.0(5)	Cl8	C34	Cl9	110.6(12)
C15	C8	C9	113.6(6)				

Table 4 Torsion Angles for $23 * 3 \mathrm{CHCl}_{3}$.

A B C	D	Angle $/^{\circ}$	A B C D	Angle $/^{\circ}$
Cr P O1	C1	116.6(4)	C8 P O1 C1	-94.8(4)
Cr P C1	O1	-97.4(4)	$\mathrm{C} 8 \mathrm{P} \quad \mathrm{C} 1 \mathrm{O} 1$	101.0(4)
Cr P C1	C2	5.6(8)	C8 P C1 C2	-156.0(6)
P O1C1	C2	-115.2(6)	C8 C9 C10C11	-176.7(7)
P C1 C2	C3	-107.8(8)	C8 C9 C14C13	175.9(7)
P C1 C2	C7	75.4(9)	C8 C15C16C17	-178.3(7)
P C8C9	C10	-169.8(6)	C8 C15C20C19	178.3(7)
P C8 C9	C14	18.6(9)	C8 C21-22C23	179.4(8)
P C8 C15	C16	112.4(7)	C8 C21-26C25	-178.5(7)
P C8 C15	C20	-64.2(7)	C9 C8 C15C16	-5.2(10)
P C8 C21	C22	115.6(7)	C9 C8 C15C20	178.1(7)
P C8 C21	C26	-67.8(8)	C9 C8 C21 C22	-123.0(8)
F1 C3 C4	F2	0.8(11)	C9 C8 C21-26	53.7(9)
F1 C3 C4	C5	-178.7(7)	C9 C10C11-C12	2.2(13)
F2 C4 C5	F3	0.5(11)	C10C9 C14C13	4.3(12)
F2 C4 C5	C6	-179.9(7)	C10C11C12C13	1.2(15)
F3 C5 C6	F4	0.6(12)	C11C12C13C14	-1.6(15)
F3 C5 C6	C7	-179.5(7)	C12C13C14C9	-1.1(14)
F4 C6 C7	F5	1.1(12)	C14C9 C10C11	-4.8(12)
F4 C6 C7	C2	178.5(7)	C15C8 C9 C10	-59.4(9)
O1P C1	C2	103.0(8)	C15C8 C9 C14	129.1(8)
O1C1 C2	C3	-37.4(10)	C15C8 C21 C22	3.2(10)
O1C1 C2	C7	145.7(7)	C15C8 C21 C26	179.9(7)
C1 C2 C3	F1	1.3(12)	C15C16C17C18	0.6(12)
C1 C2 C3	C4	-177.8(7)	C16C15C20C19	1.4(12)
C1 C2 C7	F5	-4.3(11)	C16C17C18C19	0.7(13)
C1 C2 C7	C6	178.4(7)	C17C18C19C20	-0.9(13)
C2 C3 C4	F2	179.9(7)	C18C19C20C15	-0.2(13)
C2 C3 C4	C5	0.4(12)	C20C15C16C17	-1.6(11)
C3 C2 C7	F5	178.6(7)	C21C8 C9 C10	67.6(9)
C3 C2 C7	C6	1.3(11)	C21C8 C9 C14	-103.9(8)
C3 C4 C5	F3	180.0(7)	C21C8 C15C16	-127.4(8)
C3 C4 C5	C6	-0.4(12)	C21C8 C15C20	56.0(9)
C4 C5 C6	F4	-179.0(8)	C21 C22 C23C24	-2.3(14)
C4 C5 C6	C7	0.9(12)	C22C21 C26 C25	-1.7(12)
C5 C6 C7	F5	-178.7(7)	C22C23C24C25	0.6(16)
C5 C6 C7	C2	-1.3(12)	C23C24C25C26	0.5(16)
C7 C2 C3	F1	178.2(7)	C24C25C26 C21	0.1(14)
C7 C2 C3	C4	-0.8(11)	C26C21 C22C23	2.7(12)

Table 1 Crystal data and structure refinement for 24.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{Y}^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [l>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR318
$\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{MoO}_{6} \mathrm{P}$
706.35

123(2)
monoclinic
C2/c
36.147(5)
9.5738(10)
16.5371(15)

90
93.968(9)

90
5709.2(11)

8
1.644
0.593

2816
$0.25 \times 0.20 \times 0.02$
$0.8660 ; 0.9882$
$\operatorname{MoKa}(\lambda=0.71073)$
2.72 to 26.00°
0.998
$-44 \leq h \leq 44,0 \leq k \leq 11,0 \leq 1 \leq 20$
5591
5591 [$\mathrm{R}_{\text {int }}=0.2665$]
5591/0/397
0.921
$R_{1}=0.1005, w R_{2}=0.2358$
$R_{1}=0.1413, w R_{2}=0.2473$
2.342/-3.015

Table 2 Bond Lengths for 24.

Atom Atom Length/Å
C1 O1 1.467(12)
C1 P 1.804(10)
C2 C7 1.410(13)
C3 C4 1.371(15)
$\begin{array}{lll}\mathrm{C} 4 & \mathrm{C} 5 & 1.393(15) \\ \mathrm{C} 5 & \mathrm{C} & 1.360(15)\end{array}$
C5 C6 1.360(15)
C6 C7 1.364(14)
C8 C21 1.529(14)
C8 C15 1.548(11)
C9 C10 1.403(15)
C10 C11 1.385(14)
C12 C13 1.373(16)
C15 C16 1.368(14)
C16 C17 1.426(12)
C18 C19 1.382(14)
C21 C22 1.372(14)
C22 C23 1.394(16)
C24 C25 1.372(16)
C27 O2 1.124(11)
C28 O3 1.148(12)
C29 O4 1.162(12)
C30 O5 1.162(12)
C31 O6 1.158(12)
Mo P 2.467(2)

Table 3 Bond Angles for 24.
Atom Atom Atom Anglel ${ }^{\circ}$

O1	C1	C2	$117.1(8)$
C2	C1	P	$122.1(6)$
C3	C2	C1	$122.4(9)$
F1	C3	C4	$117.4(10)$
C4	C3	C2	$124.5(10)$
F2	C4	C5	$119.7(10)$
F3	C5	C6	$123.1(9)$
C6	C5	C4	$117.6(10)$
F4	C6	C7	$118.6(10)$
F5	C7	C6	$119.4(9)$
C6	C7	C2	$120.4(10)$
C21	C8	C15	$106.0(8)$
C21	C8	P	$111.0(6)$
C15	C8	P	$114.1(6)$
C10	C9	C8	$119.7(8)$

Atom Atom		Length/Å
C1	C2	$1.476(14)$
C2	C3	$1.387(15)$
C3	F1	$1.360(11)$
C4	F2	$1.336(12)$
C5	F3	$1.329(12)$
C6	F4	$1.358(11)$
C7	F5	$1.328(11)$
C8	C9	$1.543(13)$
C8	P	$1.889(10)$
C9	C14	$1.408(12)$
C11	C12	$1.413(15)$
C13	C14	$1.404(15)$
C15	C20	$1.390(13)$
C17	C18	$1.363(14)$
C19	C20	$1.400(12)$
C21	C26	$1.394(14)$
C23	C24	$1.352(16)$
C25	C26	$1.429(15)$
C27	Mo	$2.034(10)$
C28	Mo	$2.031(11)$
C29	Mo	$2.048(12)$
C30	Mo	$2.050(11)$
C31	Mo	$2.045(12)$
O1	P	$1.684(6)$

Atom Atom Atom			
O1	Angle ${ }^{\circ}$		
C1	P	$61.0(5)$	
C3	C2	C7	$114.9(9)$
C7	C2	C1	$122.8(9)$
F1	C3	C2	$118.1(10)$
F2	C4	C3	$121.3(10)$
C3	C4	C5	$119.0(11)$
F3	C5	C4	$119.3(10)$
F4	C6	C5	$117.8(9)$
C5	C6	C7	$123.6(10)$
F5	C7	C2	$120.2(9)$
C21	C8	C9	$114.3(8)$
C9	C8	C15	$113.0(8)$
C9	C8	P	$98.5(6)$
C10	C9	C14	$118.5(9)$
C14	C9	C8	$121.6(9)$

C11	C10	C9	$122.1(9)$		C10	C11
C12						

Table 4 Torsion Angles for 24.

A	B	C	D	
O1	C1	C2	C3	$-155.4(8)$
O1	C1	C2	C7	$25.0(11)$
C7	C2	C3	F1	$-179.4(7)$
C7	C2	C3	C4	$-0.8(13)$
F1	C3	C4	F2	$-0.1(13)$
F1	C3	C4	C5	$178.4(8)$
F2	C4	C5	F3	$0.0(13)$
F2	C4	C5	C6	$178.7(8)$
F3	C5	C6	F4	$-1.5(12)$
F3	C5	C6	C7	$179.7(8)$
F4	C6	C7	F5	$-0.5(12)$
F4	C6	C7	C2	$179.0(7)$
C3	C2	C7	F5	$-178.4(7)$
C3	C2	C7	C6	$2.0(12)$
C21	C8	C9	C10	$-173.9(9)$
P	C8	C9	C10	$68.4(9)$
C15	C8	C9	C14	$133.2(9)$
C14	C9	C10 11	$-2.6(15)$	

| C9 | C10 C11 C12 | $0.6(15)$ | C10C11 C12 C13 | | |
| :--- | ---: | ---: | :--- | ---: | ---: | 1.0(15)

Table 1 Crystal data and structure refinement for 27.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{Y}^{\circ}{ }^{\circ}$
Volume/Å
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [l>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR362
$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{O}_{6} \mathrm{PW}$
686.17

123
monoclinic
Pn
9.2418(4)
9.8041(4)
13.2530(6)
90.00
102.793(2)
90.00
1171.01(9)

2
1.946
5.077
660.0
$0.1 \times 0.08 \times 0.04$
$\operatorname{MoKa}(\lambda=0.71073)$
5.22 to 56
$-12 \leq h \leq 12,-12 \leq k \leq 12,-12 \leq \mathrm{l} \leq 17$
16798
4844 [R int $=0.0690, R_{\text {sigma }}=0.0785$]
4844/2/321
1.020
$R_{1}=0.0404, w R_{2}=0.0842$
$R_{1}=0.0533, w R_{2}=0.0897$
3.26/-1.73

Table 2 Bond Lengths for 27.

Atom Atom Length/Å

W	P	$2.467(2)$
W	C18	$1.995(9)$
W	C19	$2.053(8)$
W	C20	$2.077(9)$
W	C21	$2.032(9)$
W	C22	$2.064(10)$
P	O1	$1.668(6)$
P	C1	$1.815(8)$
P	C8	$1.852(9)$
F1	C3	$1.344(10)$
F2	C4	$1.341(10)$
F3	C5	$1.327(10)$
F4	C6	$1.349(11)$
F5	C7	$1.351(9)$
O1	C1	$1.454(10)$
O2	C18	$1.148(10)$
O3	C19	$1.146(10)$
O4	C20	$1.118(10)$
O5	C21	$1.145(10)$

Table 3 Bond Angles for 27.

Atom Atom Atom		Anglel ${ }^{\circ}$	
C18	W	P	$175.8(2)$
C18	W	C19	$88.3(3)$
C18	W	C20	$91.1(3)$
C18	W	C21	$85.6(3)$
C18	W	C22	$88.8(3)$
C19	W	P	$92.7(2)$
C19	W	C20	$90.2(3)$
C19	W	C22	$89.1(3)$
C20	W	P	$93.0(2)$
C21	W	P	$93.5(2)$
C21	W	C19	$173.7(3)$
C21	W	C20	$88.3(3)$
C21	W	C22	$92.3(3)$
C22	W	P	$87.2(2)$
C22	W	C20	$179.3(3)$
O1	P	W	$119.0(2)$
O1	P	C1	$49.1(3)$
O1	P	C8	$105.6(3)$
C1	P	W	$124.7(3)$
C1	P	C8	$108.5(4)$
C8	P	W	$124.8(3)$

Atom Atom		
O6	Cength/A	
C2	$1.132(10)$	
C1	C2	$1.473(12)$
C2	C3	$1.408(12)$
C2	C7	$1.358(12)$
C3	C4	$1.387(12)$
C4	C5	$1.375(13)$
C5	C6	$1.385(13)$
C6	C7	$1.383(11)$
C8	C9	$1.520(11)$
C8	C12	$1.511(12)$
C8	C13	$1.546(12)$
C9	C10	$1.355(11)$
C9	C14	$1.488(11)$
C10	C11	$1.482(12)$
C10	C15	$1.501(12)$
C11	C12	$1.351(11)$
C11	C16	$1.494(12)$
C12	C17	$1.500(12)$

C1	O1	P	$70.7(4)$	C11	C10	C15	$122.8(8)$
O1	C1	P	$60.1(4)$	C10	C11	C16	$123.6(7)$
O1	C1	C2	$117.5(7)$	C12	C11	C10	$109.3(7)$
C2	C1	P	$121.3(6)$	C12	C11	C16	$127.1(8)$
C3	C2	C1	$117.4(8)$	C11	C12	C8	$108.7(7)$
C7	C2	C1	$126.6(8)$	C11	C12	C17	$128.6(8)$
C7	C2	C3	$116.0(8)$	C17	C12	C8	$122.7(7)$
F1	C3	C2	$118.8(7)$	O2	C18	W	$177.3(7)$
F1	C3	C4	$119.0(7)$	O3	C19	W	$174.6(7)$
C4	C3	C2	$122.3(8)$	O4	C20	W	$176.8(8)$
F2	C4	C3	$119.7(8)$	O5	C21	W	$173.7(7)$
F2	C4	C5	$120.4(8)$	O6	C22	W	$177.2(7)$

Table 4 Torsion Angles for 27.

	B C D	Angle ${ }^{\circ}$
W P	P O1 C1	112.3(4)
W P	P C1 O1	-100.5(4)
W P	$\begin{array}{llll}\text { P } & \mathrm{C} 1 & \mathrm{C} 2\end{array}$	5.4(8)
W P	P C8 C9	51.9(6)
W P	P C8 C12	-58.2(6)
W P	P C8 C13	176.9(5)
P	W C18O2	-41(18)
P	W C19O3	-175(8)
P	W C2004	172(13)
P	W C21O5	-157(7)
P	W C22O6	-178(100)
P	O1C1 C2	-112.1(7)
P	C1 C2 C3	99.7(9)
P	C1 C2 C7	-79.2(10)
P	C8C9 C10	-111.0(7)
P	C8C9 C14	70.2(9)
P	C8C12C11	112.0(7)
P	C8C12C17	-69.1(9)
	C3C4 F2	-1.4(12)
	C3C4 C5	178.7(8)
	C4C5 F3	0.1(13)
	C4C5 C6	-179.1(8)
	C5 C6 F4	1.1(13)
	C5 C6 C7	-179.2(7)
	C6C7 F5	1.4(11)
	C6 C7 C2	179.8(8)
O1P	P C1 C2	105.9(8)
O1P	1 P C8 C9	-92.1(5)
O1P	1 P C8 C12	157.8(5)
O1P	1 P C8 C13	33.0(7)

A B	C D	Angle $/^{\circ}$
C8 C9	C10C15	-176.7(8)
C9 C8	C12C11	0.4(9)
C9 C8	C12C17	179.3(8)
C9 C10	C11-C12	0.0(10)
C9 C10	C11-C16	178.8(8)
C10C11	C12C8	-0.2(10)
C10C11	C12C17	-179.0(9)
C12C8	C9 C10	-0.4(9)
C12C8	C9 C14	-179.2(8)
C13C8	C9 C10	122.3(8)
C13C8	C9 C14	-56.5(11)
C13C8	C12C11	-121.8(8)
C13C8	C12C17	57.0(11)
C14C9	C10C11	179.0(9)
C14C9	C10C15	2.0(15)
C15C10	C11-C12	177.1(8)
C15C10	C11-C16	-4.1(14)
C16C11	C12C8	-179.0(9)
C16C11	C12C17	2.2(16)
C18W	P O1	-4(3)
C18W	P C1	54(3)
C18W	P C8	-144(3)
C18W	C19O3	1(8)
C18W	C2004	-7(13)
C18W	C 2105	27(7)
C18W	C 22 O	1(16)
C19W	P O1	99.8(3)
C19W	P C1	158.1(4)
C19W	P C8	-39.8(4)
C19W	C18O2	-145(15)

O1C1 C2	C3	169.8(7)	C19W	C2004	-96(13)
O1C1 C2	C7	-9.2(12)	C19W	C21 O5	13(9)
C1P C8	C9	-143.5(5)	C19W	C22O6	89(16)
C1P C8	C12	106.4(6)	C20W	P O1	-169.8(3)
C1P C8	C13	-18.5(8)	C20 W	P C1	-111.6(4)
C1 C2 C3	F1	2.2(12)	C20W	P C8	50.5(4)
C1 C2 C3	C4	-177.4(8)	C20W	C1802	124(15)
C1 C2 C7	F5	-3.6(13)	C20W	C1903	92(8)
C1 C2 C7	C6	178.1(8)	C20W	C21 O5	-64(7)
C2 C3 C4	F2	178.1(8)	C20 W	C22O6	77(38)
C2 C3 C4	C5	-1.7(13)	C21 W	P O1	-81.3(3)
C3 C2 C7	F5	177.4(8)	C21 W	P C1	-23.1(4)
C3 C2 C7	C6	-0.9(12)	C21 W	P C8	139.0(4)
C3 C4 C5	F3	-180.0(8)	C21 W	C18O2	36(15)
C3 C4 C5	C6	0.8(13)	C21 W	C19O3	16(10)
C4 C5 C6	F4	-179.7(8)	C21 W	C2004	78(13)
C4 C5 C6	C7	0.0(13)	C21 W	C22O6	-85(16)
C5 C6 C7	F5	-178.3(8)	C22W	P O1	10.8(3)
C5 C6 C7	C2	0.1(13)	C22W	P C1	69.1(4)
C7 C2 C3	F1	-178.8(7)	C22W	P C8	-128.8(4)
C7 C2 C3	C4	1.7(13)	C22W	C18O2	-56(15)
C8P O1	C1	-101.2(5)	C22W	C19O3	-88(8)
C8P C1	O1	94.9(5)	C22W	C2004	-83(36)
C8P C1	C2	-159.2(6)	C22W	C21O5	116(7)
C8 C9 C10	C11	0.3(10)			

Table 1 Crystal data and structure refinement for 33.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR374
$\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{CIF}_{5} \mathrm{O}_{6} \mathrm{PW}$
780.66

100
monoclinic
P21/c
15.3052(7)
9.5908(4)
37.3062(16)

90
101.829(2)

90
5359.9(4)

8
1.935
4.546
3008.0
$0.07 \times 0.05 \times 0.02$
$0.6136 ; 0.8498$
$\operatorname{MoKa}(\lambda=0.71073)$
3.144 to 51.998°
0.998
$-9 \leq h \leq 18,-7 \leq k \leq 11,-46 \leq \mathrm{l} \leq 43$
48898
10691 [$R_{\text {int }}=0.0373, R_{\text {sigma }}=0.0343$]
10691/48/743
1.106
$R_{1}=0.0258, w R_{2}=0.0566$
$R_{1}=0.0272, w R_{2}=0.0572$
1.83/-0.97

Table 2 Bond Lengths for 33.
Atom Atom Length/Å

W	P	$2.4696(12)$
W	C23	$2.014(5)$
W	C24	$2.038(6)$
W	C25	$2.029(6)$
W	C26	$2.049(6)$
W	C27	$2.044(6)$
Cl	P	$2.0596(16)$

P O1
$\begin{array}{ll}\mathrm{P} & \mathrm{C} 4 \\ \mathrm{~F} 1 & \mathrm{C} 2\end{array}$
F2 C2
F3 C2
F4 C3
F5 C3
O1 C1
O2 C23
O3 C24
O4 C25
O5 C26
$\begin{array}{ll}\mathrm{O} 6 & \mathrm{C} 27 \\ \mathrm{C} 1 & \mathrm{C} 2\end{array}$
C1 C3

C4 C5
C4 C11

C4 C17

C5 C6
C5 C10
C6 C7
C7 C8
C8 C9
C9 C10
C11 C12
C11 C16
C12 C13
C13 C14
C14 C15
C15 C16
C17 C18
C17 C22
C18 C19
C19 C20
C20 C21
C21 C22 1.388(7)

Atom	Atom	Length/Å
W'	P^{\prime}	2.4672(12)
W'	C23'	2.023(6)
W'	C24'	2.037(5)
W'	C25'	2.036(5)
W'	C26'	2.055(5)
W'	C27'	2.053(6)
Cl'	P^{\prime}	2.0539(16)
P^{\prime}	O1'	1.653(4)
P^{\prime}	C4'	1.926(5)
F1'	C2'	1.344(7)
F2'	C2'	1.301(6)
F3'	C2'	1.339(7)
F4'	C3'	1.317(6)
F5'	C3'	1.312(6)
O1'	C1'	1.378(6)
O2'	C23'	1.121(7)
O3'	C24'	1.149(6)
O4'	C25'	1.145(6)
O5'	C26'	1.131(7)
O6'	C27'	1.136(6)
C1'	C2'	1.519(8)
C1'	C3'	1.309(7)
C4'	C5'	1.540(6)
C4'	C11'	1.545(6)
C4'	C17'	1.543(6)
C5'	C6'	1.396(7)
C5'	C10'	1.394(7)
C6'	C7'	1.390(7)
C7'	C8'	1.389(8)
C8'	C9'	1.376(8)
C9'	C10'	1.390(7)
C11'	C12'	1.384(7)
C11'	C16'	1.390(7)
C12'	C13'	1.394(7)
C13'	C14'	1.376 (7)
C14'	C15'	1.375(7)
C15'	C16'	1.381(7)
C17'	C18'	1.408(7)
C17'	C22'	1.389(7)
C18'	C19'	1.392(7)
C19'	C20'	1.390(7)
C20'	C21'	1.380(7)
C21'	C22'	1.391 (7)

Table 3 Bond Angles for 33.
Atom Atom Atom Angle/ ${ }^{\circ}$
C23 W P 175.03(16)

C23 W C24 89.8(2)
C23 W C25 85.9(2)
C23 W C26 87.8(2)
C23 W C27 86.9(2)
C24 W P 86.54(15)
$\begin{array}{lllr}\mathrm{C} 24 & \mathrm{~W} & \mathrm{C} 26 & 175.7(2) \\ \mathrm{C} 24 & \mathrm{~W} & \mathrm{C} 27 & 92.1(2)\end{array}$
C25 W P 97.38(14)
C25 W C24 88.8(2)
C25 W C26 87.5(2)
C25 W \quad C27 \quad 172.7(2)
C26 W P 96.10(15)
C27 W P 89.91(15)
$\begin{array}{lllr}\text { C27 } & \text { W } & \text { C26 } & 91.3(2) \\ \text { Cl } & \text { P } & \text { W } & 110.23(6) \\ \text { O1 } & \text { P } & \text { W } & 119.55(13)\end{array}$
$\begin{array}{llll}\text { O1 } & \mathrm{P} & \mathrm{Cl} & 99.74(13) \\ \text { O1 } & \mathrm{P} & \mathrm{C} 4 & 94.83(18)\end{array}$
C4 P W 126.08(15)
$\mathrm{C} 4 \quad \mathrm{P} \quad \mathrm{Cl}$ 102.22(15)
C1 O1 P 127.4(3)
O1 C1 C2 113.9(4)
$\begin{array}{llll}\text { C3 } & \text { C1 } & \text { O1 } & 118.3(5)\end{array}$
C3 $\begin{array}{llll}\mathrm{C} 1 & \mathrm{C} 2 & 125.3(5)\end{array}$
$\begin{array}{llll}\text { F1 } & \text { C2 } & \text { C1 } & 111.3(4) \\ \text { F2 } & \text { C2 } & \text { F1 } & 107.6(4)\end{array}$
F2 C2 F3 107.6(4)
F2 C2 C1 111.9(4)
F3 \quad C2 \quad F1 $\quad 106.1(4)$
F3 \quad C2 \quad C1 $\quad 112.0(4)$
F4 C3 F5 111.2(4)
$\begin{array}{llll}\text { F4 } & \text { C3 } & \text { C1 } & 124.1(5) \\ \text { C1 } & \text { C3 } & \text { F5 } & 124.6(5)\end{array}$
C1 C3 F5 124.6(5)
$\begin{array}{llll}\text { C5 } & \text { C4 } & \text { P } & 107.7(3) \\ \text { C5 } & \text { C4 } & \text { C17 } & 111.5(4)\end{array}$
C11 C4 P 113.4(3)
C11 C4 C5 109.2(4)
C11 C4 C17 112.1(4)
C17 C4 P 102.8(3)
C6 C5 C4 121.1(4)
C6 C5 C10 118.1(4)
C10 C5 C4 120.6(4)
C7 C6 C5 120.8(5)

Atom Atom Atom			Angle ${ }^{\circ}$
C23'	W'	P^{\prime}	177.25(18)
C23'	W'	C24'	87.0(2)
C23'	W'	C25'	83.9(2)
C23'	W'	C26'	90.8(2)
C23'	W'	C27'	85.4(2)
C24'	W'	P^{\prime}	95.34(15)
C24'	W'	C26'	176.9(2)
C24'	W'	C27'	90.6(2)
C25'	W'	P^{\prime}	97.54(14)
C25'	W'	C24'	88.8(2)
C25'	W'	C26'	88.7(2)
C25'	W'	C27'	169.4(2)
C26'	W'	P^{\prime}	86.93(15)
C27'	W'	P^{\prime}	93.10(15)
C27'	W'	C26'	91.4(2)
Cl	P^{\prime}	W'	111.35(6)
O1'	P^{\prime}	W'	119.83(13)
O1'	P^{\prime}	Cl^{\prime}	99.52(14)
O1'	P^{\prime}	C4'	95.22(18)
C4'	P^{\prime}	W'	124.05(14)
C4'	P^{\prime}	Cl^{\prime}	102.94(15)
C1'	O1'	P^{\prime}	123.1(4)
O1'	C1'	C2'	115.5(4)
C3'	C1'	O1'	118.9(5)
C3'	C1'	C2'	122.3(5)
F1'	C2'	C1'	110.8(5)
F2'	C2'	F1'	108.0(5)
F2'	C2'	F3'	108.4(5)
F2'	C2'	C1'	114.0(5)
F3'	C2'	F1'	105.4(5)
F3'	C2'	C1'	109.9(5)
F5'	C3'	F4'	110.3(4)
C1'	C3'	F4'	123.0(5)
C1'	C3'	F5'	126.5(5)
C5'	C4'	P^{\prime}	106.7(3)
C5'	C4'	C11'	112.7(4)
C5'	C4'	C17'	108.5(4)
C11'	C4'	P^{\prime}	103.1(3)
C17'	C4'	P^{\prime}	114.7(3)
C17'	C4'	C11'	111.1(4)
C6'	C5'	C4'	121.2(4)
C10'	C5'	C4'	120.3(4)
C10'	C5'	C6'	118.1(4)
C7'	C6'	C5'	120.8(5)

C8	C7	C6	120.9(5)	C8'	C7'	C6'	120.1(5)
C7	C8	C9	119.1(5)	C9'	C8'	C7'	119.6(5)
C10	C9	C8	120.7(5)	C8'	C9'	C10'	120.4(5)
C9	C10	C5	120.4(5)	C9'	C10'	C5'	120.9(5)
C12	C11	C4	120.5(4)	C12'	C11'	C4'	120.1(4)
C12	C11	C16	116.6(4)	C12'	C11'	C16'	117.9(4)
C16	C11	C4	122.8(4)	C16'	C11'	C4'	122.0(4)
C13	C12	C11	121.7(5)	C11'	C12'	C13'	121.2(5)
C14	C13	C12	120.7(5)	C14'	C13'	C12'	120.1(5)
C15	C14	C13	118.4(5)	C15'	C14'	C13'	118.9(5)
C16	C15	C14	121.3(5)	C14'	C15'	C16'	121.3(5)
C15	C16	C11	121.3(5)	C15'	C16'	C11'	120.5(5)
C18	C17	C4	122.4(4)	C18'	C17'	C4'	122.6(4)
C22	C17	C4	119.6(4)	C22'	C17'	C4'	119.6(4)
C22	C17	C18	117.9(4)	C22'	C17'	C18'	117.5(4)
C19	C18	C17	120.8(5)	C19'	C18'	C17'	121.2(5)
C20	C19	C18	119.7(5)	C20'	C19'	C18'	119.7(5)
C19	C20	C21	120.6(5)	C21'	C20'	C19'	119.9(4)
C20	C21	C22	119.6(5)	C20'	C21'	C22'	120.1(5)
C21	C22	C17	121.4(5)	C17'	C22'	C21'	121.6(5)
O2	C23	W	179.5(5)	O2'	C23'	W'	178.8(5)
O3	C24	W	177.4(5)	O3'	C24'	W'	176.4(5)
O4	C25	W	173.3(4)	O4'	C25'	W'	172.4(4)
O5	C26	W	174.8(5)	O5'	C26'	W'	178.5(5)
O6	C27	W	176.1(5)	O6'	C27'	W'	173.9(5)

Table 4 Torsion Angles for 33.

A		B	C	D
W	P	O1	C1	$-30.5(4)$
Cl	P	O1	C1	$89.5(4)$
P	O1	C1	C2	$-94.8(5)$
P	O1	C1	C3	$102.0(5)$
P	C4	C5	C6	$46.7(5)$
P	C4	C5	C10	$-138.8(4)$
P	C4	C11	C12	$-140.4(4)$
P	C4	C11	C16	$43.5(5)$
P	C4	C17 C18	$-112.7(4)$	
P	C4	C17	C22	$65.0(5)$
O1	C1	C2	F1	$-46.1(6)$
O1	C1	C2	F2	$-166.6(4)$
O1	C1	C2	F3	$72.5(6)$
O1	C1	C3	F4	$-10.6(8)$
O1	C1	C3	F5	$171.9(4)$
C2	C1	C3	F4	$-171.7(5)$
C2	C1	C3	F5	$10.8(9)$

A	B	C D	Angle $/^{\circ}$
W'	P^{\prime}	O1' C1'	31.2(4)
Cl^{\prime}	P^{\prime}	O1' C1'	-90.3(4)
P^{\prime}	O1'	C1' C2'	95.5(5)
P^{\prime}	O1'	C1' C3'	-104.2(6)
P^{\prime}	C4'	C5' C6'	137.2(4)
P^{\prime}	C4'	C5' C10'	-50.2(5)
P^{\prime}	C4'	C11'C12'	-67.2(5)
P^{\prime}	C4'	C11'C16'	110.0(4)
P^{\prime}	C4'	C17'C18'	-40.3(5)
P^{\prime}	C4'	C17'C22'	145.3(4)
O1'	C1'	C2' F1'	37.5(7)
O1'	C1'	C2' F2'	159.5(5)
O1'	C1'	C2' F3'	-78.6(6)
O1'	C1'	C3' F4'	11.4(9)
O1'	C1'	C3' F5'	-174.5(5)
C2'	C1'	C3' F4'	170.3(5)
C2'	C1'	C3' F5'	-15.6(10)

C3 C1 C2 F1	115.7(6)	C3' C1' C2' F1'	-122.1(7)
C3 C1 C2 F2	-4.8(8)	C3' C1' C2' F2'	0.0(9)
C3 C1 C2 F3	-125.7(6)	C3' C1' C2' F3'	121.9(6)
$\mathrm{C} 4 \mathrm{P} \quad \mathrm{O} 1 \mathrm{C} 1$	-167.2(4)	C4' P' O1' C1'	165.6(4)
C 4 C 5 C 6 C 7	175.2(4)	C4' C5' C6' C7'	174.6(4)
C4 C5 C10C9	-175.4(4)	C4' C5' C10'C9'	-175.5(4)
C4 C11-C12C13	-178.0(4)	C4' C11'C12'C13'	176.2(4)
C4 C11-C16C15	178.6(4)	C4' C11'C16'C15'	-175.5(5)
C4 C17C18C19	175.7(4)	C4' C17'C18'C19'	-176.4(4)
C4 C17C22C21	-177.2(4)	C4' C17' $\mathrm{C} 22^{\prime} \mathrm{C} 21^{\prime}$	176.2(4)
C5 C4 C11-12	-20.3(6)	C5' C4' C11'C12'	47.5(6)
C5 C4 C11-16	163.6(4)	C5' C4' C11'C16'	-135.3(5)
C5 C4 C17C18	132.2(4)	C5' C4' C17'C18'	-159.5(4)
C5 C4 C17C22	-50.1(6)	C5' C4' C17'C22'	26.1(6)
C5 C6 C7 C8	0.6(7)	C5' C6' C7' C8'	0.2(7)
C6 C5 C10C9	-0.7(7)	C6' C5' C10'C9'	-2.7(7)
C6 C7 C8 C9	-1.7(8)	C6' C7' C8' C9'	-1.4(7)
C7 C8 C9 C10	1.6(8)	C7' C8' C9' C10'	0.6(8)
C8 C9 C10C5	-0.4(7)	C8' C9' C10'C5'	1.4(7)
C10C5 C6 C7	0.6(7)	C10'C5' C6' C7'	1.9(7)
C11C4 C5 C6	-76.9(5)	C11'C4' C5' C6'	24.8(6)
C11C4 C5 C10	97.6(5)	C11'C4' C5' C10'	-162.6(4)
C11C4 C17C18	9.4(6)	C11'C4' C17'C18'	76.1(5)
C11C4 C17C22	-172.9(4)	C11'C4' C17'C22'	-98.3(5)
C11C12C13C14	0.8(7)	C11'C12'C13' $\mathrm{C} 14{ }^{\prime}$	0.0(7)
C12C11-C16C15	2.3(7)	C12'C11'C16'C15'	1.7(7)
C12C13C14C15	-0.7(7)	C12'C13' $\mathrm{C} 14{ }^{\prime} \mathrm{C} 15{ }^{\prime}$	0.6(7)
C13C14C15C16	1.4(7)	C13'C14'C15' $\mathrm{C} 16{ }^{\prime}$	0.0(8)
C14C15C16C11	-2.3(8)	C14'C15'C16'C11'	-1.2(8)
C16C11-C12C13	-1.6(7)	C16'C11'C12' $\mathrm{C} 13 '$	-1.2(7)
C17C4 C5 C6	158.7(4)	C17'C4' C5' C6'	-98.7(5)
C17C4 C5 C10	-26.8(6)	C17'C4' C5' C10'	73.9(5)
C17C4 C11C12	103.8(5)	C17'C4' C11'C12'	169.5(4)
C17C4 C11C16	-72.4(5)	C17'C4' C11'C16'	-13.3(6)
C17C18C19C20	2.9(8)	C17'C18' C19' ${ }^{\prime} 20 '$	1.3(7)
C18C17 C22 C21	0.6(7)	C18'C17' $\mathrm{C} 22{ }^{\prime} \mathrm{C} 21{ }^{\prime}$	1.6(7)
C18C19 C20 C21	-2.2(8)	C18' C19' $\mathrm{C} 20{ }^{\prime} \mathrm{C} 21{ }^{\prime}$	-0.3(7)
C19 C20 C21 C22	0.8(7)	C19'C20' $\mathrm{C} 21{ }^{\prime} \mathrm{C} 22 '$	-0.1(7)
C20C21 C22C17	0.0(7)	C20' C21'C22' $\mathrm{C} 17{ }^{\prime}$	-0.6(7)
C22C17C18C19	-2.1(7)	C22'C17' $\mathrm{C} 18{ }^{\prime} \mathrm{C} 19 '$	-1.9(7)

Table 1 Crystal data and structure refinement for 34.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{Y}^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR402
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{~F}_{5} \mathrm{PCIW}$
672.97

100
monoclinic
C2/c
18.4900(10)
14.6863(8)
17.1298(10)

90
107.5984(15)

90
4433.9(4)

8
2.015
5.477
2576.0
$0.25 \times 0.24 \times 0.12$
0.3086; 0.7460

MoKa ($\lambda=0.71073$)
6.084 to 55.994°
0.997
$-21 \leq h \leq 24,-18 \leq k \leq 19,-22 \leq \mathrm{l} \leq 22$
17104
5353 [$\left.\mathrm{R}_{\text {int }}=0.0314, \mathrm{R}_{\text {sigma }}=0.0287\right]$
5353/0/294
1.031
$R_{1}=0.0206, w R_{2}=0.0521$
$R_{1}=0.0225, w_{2}=0.0530$
1.93/-1.12

Table 2 Bond Lengths for 34.

Atom Atom		Length/Å
W	P	$2.4795(6)$
W	C14	$2.016(3)$
W	C15	$2.047(3)$
W	C16	$2.056(3)$
W	C17	$2.047(3)$
W	C18	$2.051(3)$
Cl	P	$2.0749(8)$
P	O1	$1.6568(17)$
P	C4	$1.862(2)$
F1	C2	$1.315(3)$
F2	C2	$1.312(3)$
F3	C3	$1.343(3)$
F4	C3	$1.331(3)$
F5	C3	$1.325(3)$
O1	C1	$1.377(3)$
O2	C14	$1.146(3)$

Table 3 Bond Angles for 34.

Atom Atom Atom			Angle ${ }^{\circ}$
C14	W	P	$175.44(8)$
C14	W	C15	$86.65(11)$
C14	W	C16	$89.82(11)$
C14	W	C17	$86.54(11)$
C14	W	C18	$86.85(11)$
C15	W	P	$97.67(7)$
C15	W	C16	$88.66(10)$
C15	W	C18	$88.94(10)$
C16	W	P	$88.81(7)$
C17	W	P	$89.12(7)$
C17	W	C15	$173.15(10)$
C17	W	C16	$90.64(10)$
C17	W	C18	$91.36(10)$
C18	W	P	$94.67(7)$
C18	W	C16	$176.01(10)$
Cl	P	W	$110.41(3)$
O1	P	W	$120.26(7)$
O1	P	Cl	$98.90(7)$
O1	P	C4	$96.64(9)$
C4	P	W	$125.25(7)$
C4	P	Cl	$100.94(8)$
C1	O1	P	$124.91(15)$
O1	C1	C3	$116.6(2)$

Atom Atom		
O3	Cength/Å	
C15	$1.138(3)$	
O4	C16	$1.143(3)$
O5	C17	$1.137(3)$
O6	C18	$1.139(3)$
C1	C2	$1.310(4)$
C1	C3	$1.502(3)$
C4	C5	$1.520(3)$
C4	C8	$1.522(3)$
C4	C9	$1.534(3)$
C5	C6	$1.352(4)$
C5	C10	$1.500(3)$
C6	C7	$1.466(3)$
C6	C11	$1.497(3)$
C7	C8	$1.354(3)$
C7	C12	$1.502(3)$
C8	C13	$1.493(3)$

Atom Atom Atom			
F4	C3	F3 ${ }^{\circ}{ }^{\circ}$	
F4	$106.4(2)$		
F5	C3	C1	$111.7(2)$
F5	C3	F3	$107.1(2)$
F5	C3	F4	$107.9(2)$
F5	C3	C1	$111.6(2)$
C5	C4	P	$105.64(15)$
C5	C4	C8	$103.36(19)$
C5	C4	C9	$114.9(2)$
C8	C4	P	$105.22(15)$
C8	C4	C9	$113.2(2)$
C9	C4	P	$113.50(16)$
C6	C5	C4	$108.5(2)$
C6	C5	C10	$127.4(2)$
C10	C5	C4	$123.9(2)$
C5	C6	C7	$109.7(2)$
C5	C6	C11	$127.6(2)$
C7	C6	C11	$122.7(2)$
C6	C7	C12	$123.6(2)$
C8	C7	C6	$110.1(2)$
C8	C7	C12	$126.1(2)$
C7	C8	C4	$108.1(2)$
C7	C8	C13	$127.0(2)$
C13	C8	C4	$124.1(2)$

C2	C1	O1	$119.3(2)$	O2	C14	W	$179.1(2)$
C2	C1	C3	$123.9(2)$	O3	C15	W	$175.0(2)$
F2	C2	F1	$110.6(2)$	O4	C16	W	$178.1(2)$
C1	C2	F1	$123.8(2)$	O5	C17	W	$175.9(2)$
C1	C2	F2	$125.6(3)$		O6	C18	W
F3	C3	C1	$111.7(2)$				$173.4(2)$

Table 4 Torsion Angles for 34.

A B C D	Angle ${ }^{\circ}$	A B C D	Angle ${ }^{\circ}$
W P O1C1	-29.7(2)	C2 C1C3F5	136.6(3)
W P C4C5	47.84(18)	C3 C1C2F1	179.6(2)
W P C4C8	-61.11(17)	C3 C1C2F2	0.0(4)
W P C4C9	174.56(14)	C4 P O1C1	-167.47(19)
CI P O1C1	90.31(18)	C4 C5C6C7	-3.4(3)
CI P C4C5	-77.01(15)	C4 C5C6C11	177.7(2)
CI P C4C8	174.03(14)	C5 C4C8C7	-2.8(2)
CI P C4C9	49.70(18)	C5 C4C8C13	168.0(2)
P O1C1C2	101.5(3)	C5 C6C7C8	1.6(3)
P O1C1C3	-83.3(2)	C5 C6C7C12	-174.1(2)
P C4C5C6	-106.51(18)	C6 C7C8C4	0.9(3)
P C4C5C10	77.8(2)	C6 C7C8C13	-169.5(2)
P C4C8C7	107.80(18)	C8 C4C5C6	3.8(2)
P C4C8C13	-81.4(2)	C8 C4C5C10	-171.9(2)
O1P C4C5	-177.45(15)	C9 C4C5C6	127.6(2)
O1P C4C8	73.59(16)	C9 C4C5C10	-48.1(3)
O1P C4C9	-50.73(19)	C9 C4C8C7	-127.7(2)
O1C1 C2F1	-5.5(4)	C9 C4C8C13	43.1(3)
O1C1 C2F2	174.9(2)	C10C5C6C7	172.1(2)
O1C1 C3F3	81.5(3)	C10 C5C6C11	-6.8(4)
O1C1C3F4	-159.4(2)	C11-6C7C8	-179.5(2)
O1C1 C3F5	-38.4(3)	C11 C6C7C12	4.9(4)
C2 C1 C3F3	-103.5(3)	C12C7C8C4	176.5(2)
C2 C1 C3F4	15.6(4)	C12C7C8C13	6.0(4)

Table 1 Crystal data and structure refinement for 35.
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges $\quad-24 \leq h \leq 24,-11 \leq k \leq 11,-31 \leq \mathrm{l} \leq 32$
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole /e \AA^{-3} 2.41/-2.07

Table 2 Bond Lengths for 35.

Atom		Atom
W	P	Length/A W
W	C8	$2.4761(12)$
W	C9	$2.015(6)$
W	C10	$2.031(5)$
W	C11	$2.049(5)$
W	C12	$2.051(5)$
P	O2	$1.625(3)$
P	C1	$1.944(5)$
P	C4	$1.794(5)$
Si	C4	$1.907(5)$
Si	C5	$1.849(6)$
Si	C6	$1.848(5)$
Si	C7	$1.862(6)$
F1	C2	$1.346(6)$

Table 3 Bond Angles for 35.
Atom Atom Atom Angle $/^{\circ}$
C8 W P 176.95(15)

C8	W	C9	$90.6(2)$
C8	W	C10	$87.5(2)$
C8	W	C11	$89.0(2)$
C8	W	C12	$85.8(2)$
C9	W	P	$91.80(13)$
C9	W	C10	$89.24(19)$
C9	W	C11	$179.00(19)$
C9	W	C12	$86.92(19)$
C10	W	P	$94.42(14)$
C11	W	P	$88.55(15)$

C11	W	C10	$91.7(2)$
C11	W	C12	$92.1(2)$
C12	W	P	$92.46(15)$
C12	W	C10	$172.2(2)$
O2	P	W	$117.49(13)$
O2	P	C1	$94.29(19)$
O2	P	C4	$99.5(2)$
C1	P	W	$121.71(14)$
C4	P	W	$119.08(17)$
C4	P	C 1	$99.8(2)$
C5	Si	C 4	$114.9(2)$
C5	Si	C 7	$110.2(3)$
C 6	Si	C 4	$107.7(2)$
C 6	Si	C 5	$108.8(3)$
C 6	Si	C 7	$111.7(3)$

Atom Atom Atom			Angle l°
C7	Si	C4	$103.5(3)$
O1	C1	P	$107.9(3)$
O1	C1	C2	$106.3(4)$
O1	C1	C3	$107.2(4)$
C2	C1	P	$112.4(3)$
C2	C1	C3	$110.0(4)$
C3	C1	P	$112.6(3)$
F1	C2	C1	$109.9(4)$
F2	C2	F1	$107.7(4)$
F2	C2	F3	$107.7(4)$
F2	C2	C1	$111.8(4)$
F3	C2	F1	$106.6(4)$
F3	C2	C1	$112.8(4)$
F4	C3	F5	$106.4(4)$
F4	C3	F6	$107.7(4)$
F4	C3	C1	$112.8(4)$
F5	C3	C1	$111.3(4)$
F6	C3	F5	$107.3(5)$
F6	C3	C1	$111.1(4)$
P	C4	Si	$119.6(3)$
O3	C8	W	$179.6(6)$
O4	C9	W	$177.5(4)$
O5	C10	W	$175.8(5)$
O6	C11	W	$179.5(5)$
O7	C12	W	$174.5(5)$

Table 4 Torsion Angles for 35.

A B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle/ ${ }^{\circ}$
W P	C4	Si	-83.3(3)	O1	C1	C3	F5	36.3(6)
P C1	C2	F1	46.9(5)	01	C1	C3	F6	155.8(4)
P C1	C2	F2	-72.7(4)	O2	P	C4	Si	45.7(3)
P C1	C2	F3	165.7(3)	C1	P	C4	Si	141.8(3)
P C1	C3	F4	158.3(4)	C2	C1	C3	F4	32.0(6)
P C1	C3	F5	-82.2(5)	C2	C1	C3	F5	151.5(4)
P C1	C3	F6	37.2(5)	C2	C1	C3	F6	-89.0(5)
O1C1	C2	F1	-71.1(5)	C3	C1	C2	F1	173.2(4)
O1C1	C2	F2	169.4(4)	C3	C1	C2	F2	53.7(5)
O1C1	C2	F3	47.8(5)	C3	C1	C2	F3	-67.9(5)
O1C1	C3	F4	-83.2(5)					

Table 1 Crystal data and structure refinement for 41.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
Y/ ${ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR357
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PW}$
664.22

100(2)
monoclinic
C2
16.8338(11)
13.1233(9)
11.2064(7)

90
104.095(2)

90
2401.1(3)

4
1.837
4.937

1288
$0.24 \times 0.18 \times 0.04$
$0.3837 ; 0.8270$
MoKa ($\lambda=0.71073$)
3.10 to 28.00°
0.997
$-22 \leq h \leq 22,-16 \leq k \leq 17,-13 \leq \mathrm{l} \leq 14$
9480
5635 [$\mathrm{R}_{\text {int }}=0.0362$]
5635/232/472
1.077
$R_{1}=0.0293, w R_{2}=0.0716$
$R_{1}=0.0351, w R_{2}=0.0758$
1.341/-1.361

Table 2 Bond Lengths for 41.

Atom Atom Length/Å
C19 O2 1.125(8)
C20 O3 $\quad 1.146(8)$
C21 O4 1.137(8)
C22 O5 1.118(9)
C23 O6 1.148(9)
O3 F1S 1.756(17)
$\begin{array}{llr}\text { W } & \text { P1 } & 2.517(7) \\ \text { F2 } & \text { C8 } & 1.389(10)\end{array}$
P1 O1 1.671(18)
$\begin{array}{llr}\text { P1 } & \text { C9 } & 1.91(3) \\ \text { C1 } & \text { C8 } & 1.503(10) \\ \text { C2 } & \text { C3 } & 1.3900\end{array}$
C3 C4 1.3900
C5 C6 1.3900
C9 C10 1.47(3)
C9 C13 1.54(4)
C10 C15 1.43(3)
C11 C12 1.49(4)
C12 C17 1.44(3)

Table 3 Bond Angles for 41.

Atom Atom Atom			Anglel $^{\circ}$
O2	C19	W	$176.6(5)$
O4	C21	W	$176.2(6)$
O6	C23	W	$176.3(7)$
C20	W	C22	$163.4(3)$
C22	W	C19	$90.4(3)$
C22	W	C23	$92.2(3)$
C20	W	C21	$95.1(3)$
C19	W	C21	$71.5(2)$
C20	W	P1S	$71.7(3)$
C19	W	P1S	$173.3(2)$
C21	W	P1S	$108.2(3)$
C22	W	P1	$75.2(3)$
C23	W	P1	$109.7(3)$
P1S	W	P1	$27.14(7)$
O1	P1	C9	$105.1(10)$
O1	P1	W	$121.2(7)$
C9	P1	W	$121.6(8)$
O1	C1	C8	$114.4(17)$
C8	C1	C2	$107(2)$
C8	C1	P1	$125.0(17)$

Atom Atom		Length/Å
C19	W	$2.002(6)$
C20	W	$1.995(6)$
C21	W	$2.115(7)$
C22	W	$1.998(8)$
C23	W	$2.086(8)$
W	P1S	$2.475(7)$
F3	C8	$1.31(2)$
F1	C8	$1.24(3)$
P1	C1	$1.80(2)$
O1	C1	$1.46(3)$
C1	C2	$1.54(2)$
C2	C7	1.3900
C4	C5	1.3900
C6	C7	1.3900
C9	C14	$1.50(3)$
C10	C11	$1.42(3)$
C11	C16	$1.47(4)$
C12	C13	$1.39(4)$
C13	C18	$1.57(3)$

Atom Atom Atom			Angle ${ }^{\circ}$
O3	C20	W	$173.7(7)$
O5	C22	W	$172.4(7)$
C20	O3	F1S	$81.5(8)$
C20	W	C19	$101.6(3)$
C20	W	C23	$99.3(3)$
C19	W	C23	$89.3(3)$
C22	W	C21	$77.7(3)$
C23	W	C21	$158.0(3)$
C22	W	P1S	$96.1(3)$
C23	W	P1S	$92.1(3)$
C20	W	P1	$89.6(3)$
C19	W	P1	$156.2(2)$
C21	W	P1	$86.8(2)$
O1	P1	C1	$49.5(10)$
C1	P1	C9	$113.8(10)$
C1	P1	W	$122.8(8)$
C1	O1	P1	$69.8(12)$
O1	C1	C2	$119.3(18)$
O1	C1	P1	$60.8(10)$
C2	C1	P1	$122.7(15)$

C3	C2	C7	120.0	C3	C2	C1	$115.2(14)$
C7	C2	C1	$124.5(14)$	C2	C3	C4	120.0
C5	C4	C3	120.0	C4	C5	C6	120.0
C7	C6	C5	120.0	C6	C7	C2	120.0
F1	C8	F3	$104.5(19)$	F1	C8	F2	$109.7(19)$
F3	C8	F2	$104.4(17)$	F1	C8	C1	$115.4(18)$
F3	C8	C1	$111(2)$	F2	C8	C1	$111(2)$
C10	C9	C14	$114(2)$	C10	C9	C13	$106(2)$
C14	C9	C13	$117(2)$	C10	C9	P1	$100.7(16)$
C14	C9	P1	$117.3(19)$	C13	C9	P1	$100.3(17)$
C11	C10	C15	$129(2)$	C11	C10	C9	$106.4(19)$
C15	C10	C9	$123.2(19)$	C10	C11	C16	$127(2)$
C10	C11	C12	$111(2)$	C16	C11	C12	$122(3)$
C13	C12	C17	$128(3)$	C13	C12	C11	$107(2)$
C17	C12	C11	$124(3)$	C12	C13	C9	$109(2)$
C12	C13	C18	$127(3)$	C9	C13	C18	$123(3)$

Table 4 Torsion Angles for 41.

A	B	D		
W	C20 O3	F1S	${ }^{\circ}$	
O3	C20 W	C19	$-64(5)$	
O3	C20 W	C21	$-136(5)$	
O3	C20 W	P1	$137(5)$	
O5	C22 W	C19	$-29(6)$	
O5	C22 W	C21	$42(6)$	
O5	C22 W	P1	$132(6)$	
O2	C19 W	C22	$68(10)$	
O2	C19 W	C21	$-9(10)$	
O2	C19 W	P1	$16(10)$	
O6	C23 W	C22	$82(10)$	
O6	C23 W	C21	$21(11)$	
O6	C23 W	P1	$157(10)$	
O4	C21 W	C22	$-46(9)$	
O4	C21 W	C23	$18(9)$	
O4	C21 W	P1	$-122(9)$	
C22	W	P1	O1	$-78.7(8)$
C23 W	P1	O1	$-165.7(8)$	
P1S W	P1	O1	$142.0(11)$	
C22	W	P1	C1	$-137.8(10)$
C23	W	P1	C1	$135.2(10)$
P1S	W	P1	C1	$82.9(12)$
C22	W	P1	C9	$58.2(10)$
C23 W	P1	C9	$-28.7(10)$	
P1S W	P1	C9	$-81.1(11)$	
W	P1	O1	C1	$-108.4(11)$

A	B C	D	Angle ${ }^{\circ}$
O3	C20 W	C22	160(5)
O3	C20 W	C23	27(5)
O3	C20 W	P1S	116(5)
O5	C22 W	C20	108(6)
O5	C22 W	C	-118(6)
O5	C22 W	P	149(6)
O2	C19W	C20	-101(10)
O2	C19W	C23	160(10)
O2	C19W	P1	-98(10)
06	C23W	C20	-110(10)
O6	C23 W	C19	-8(10)
06	C23 W	P1S	178(100)
4	C21 W	C 20	149(9)
O4	C21 W	C19	48(9)
O4	C21 W	P1S	-139(9)
C20	W P1	O1	94.6(8)
	W P1	O1	-24.5(10)
C	W P1	O1	-0.6(8)
C	W P1	C1	35.5(10)
C19	W P1	C1	-83.5(11)
C21	W P1	C1	-59.7(10)
C20	W P1	C9	-128.5(10)
C19	W P1	C9	112.5(11)
C21	W P1	C9	136.4(10)
C9	P1 O1	C1	108.6(13)
P1	O1 C1	C8	117.8(19)

| P1 | O1 | C1 | C2 | $-113.3(18)$ | | C9 | P1 | C1 | O1 |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | ---: | -89.9(14)

Table 1 Crystal data and structure refinement for 46.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
Y/ ${ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR430
$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~F}_{5} \mathrm{PW}$
792.28

100
monoclinic
P2 $1 / \mathrm{n}$
10.5837(5)
20.6735(9)
13.4715(6)

90
95.6677(18)

90
2933.2(2)

4
1.794
4.070
1544.0
$0.18 \times 0.16 \times 0.12$
$0.5961 ; 0.7459$
$\operatorname{MoKa}(\lambda=0.71073)$
4.976 to 56°
0.997
$-9 \leq h \leq 13,-27 \leq k \leq 27,-17 \leq 1 \leq 17$
57544
7056 [Rint $=0.0425, R_{\text {sigma }}=0.0262$]
7056/6/393
1.133
$R_{1}=0.0239, w R_{2}=0.0425$
$R_{1}=0.0366, w R_{2}=0.0482$
1.54/-0.72

Table 2 Bond Lengths for 46.
Atom Atom Length/Å
$\begin{array}{ll}W & P \\ W & C 2\end{array}$
W C26 2.052(3)

W C27 2.053(3)
W C28 2.037(3)
W C29 2.047(3)
P O1 1.613(2)
P O2 1.605(2)
P C7 1.855(3)
F1 C20 1.352(3)
F2 C21 1.343(3)
F3 C22 1.344(3)
F4 C23 1.341(3)
F5 C24 1.350(3)
O1 C1 1.459(3)
O2 C3 1.504(3)

O3 C25 1.143(4)
O4 C26 1.144(4)

O5 C27 1.142(4)
O6 C28 1.147(3)
O7 C29 1.143(4)
C1 C2 1.563(4)
C1 C8 1.521(4)
C2 C3 1.568(4)

Table 3 Bond Angles for 46.

Atom Atom Atom Angle ${ }^{\circ}$

C25	W	P	$174.75(9)$
C25	W	C26	$89.95(12)$
C25	W	C27	$90.97(13)$
C25	W	C28	$90.93(12)$
C25	W	C29	$91.68(13)$
C26	W	P	$95.30(8)$
C26	W	C27	$93.17(12)$
C27	W	P	$88.61(8)$
C28	W	P	$83.82(8)$
C28	W	C26	$179.06(12)$
C28	W	C27	$86.50(11)$
C28	W	C29	$91.15(12)$
C29	W	P	$88.54(9)$
C29	W	C26	$89.14(13)$
C29	W	C27	$176.49(12)$
O1	P	W	$110.83(7)$

Atom Atom Length/Å

C 2	C 6	$1.577(4)$
C 2	C 14	$1.538(4)$

C3 C4 1.514(4)
C3 C15 1.511(4)
C4 C5 1.330(4)

C4 C16 1.497(4)
C5 C6 1.531(4)

C5 C17 1.511(4)
C6 C7 1.583(4)
C6 C18 1.535(4)
C7 C19 1.531(4)
C8 C9 1.399(4)
C8 C13 1.392(5)
C9 C10 1.383(5)
C10 C11 1.393(6)
C11 C12 1.397(6)
C12 C13 1.397(5)
C19 C20 1.375(4)
C19 C24 1.394(4)
C20 C21 1.385(4)
C21 C22 1.380(4)
C22 C23 1.376(4)
C23 C24 1.384(4)

Atom Atom Atom			
C4	C5	C17	${ }^{\circ}{ }^{\circ}$
C17	C5	C6	$122.4(3)$
C2	C6	C7	$108.0(2)$
C5	C6	C2	$100.4(2)$
C5	C6	C7	$109.2(2)$
C5	C6	C18	$113.8(2)$
C18	C6	C2	$115.4(2)$
C18	C6	C7	$109.4(2)$
C6	C7	P	$109.99(18)$
C19	C7	P	$116.84(18)$
C19	C7	C6	$115.0(2)$
C9	C8	C1	$119.2(3)$
C13	C8	C1	$122.6(3)$
C13	C8	C9	$118.2(3)$
C10	C9	C8	$121.2(3)$
C9	C10	C11	$119.9(3)$

$\left.\begin{array}{lllrllll}\text { O1 } & \text { P } & \text { C7 } & 96.76(11) & & \text { C10 } & \text { C11 } & \text { C12 }\end{array}\right] 120.1(3)$

Table 4 Torsion Angles for 46.

A	B	C	D	An
W	P	01	C1	-170.29(16)
W	P	O2	C3	177.70(16)
W	P	C7	C6	171.37(14)
W	P	C7	C19	37.8(2)
P	O1	C1	C2	-4.9(3)
P	O1	C1	C8	-133.9(2)
P	O2	C3	C2	-11.5(3)
P	O 2	C3	C4	98.4(2)
P	O 2	C3	C15	-137.7(2)
P	C7		C20	47.1(3)
P	C7		C24	-132.5(2)
	C20	C21	F2	1.2(4)
	C20	C21	C22	-178.4(3)
	C21	C22		-0.2(4)
	C21	C22	C23	-179.8(3)
	C22	C23	F4	-1.0(4)

A	B	C		Angle $/^{\circ}$
C4	C5		C7	88.3(3)
C4	C5	C6	C18	-149.1(3)
C5	C6	C7	P	-88.1(2)
C5	C6	C7	C19	46.3(3)
C6	C2	C3	O 2	76.1(2)
C6	C2	C3	C4	-36.3(3)
C6	C2		C15	-165.1(2)
C6	C7		C20	-84.1(3)
C6	C7	C19	C24	96.2(3)
C7	P		C1	58.5(2)
C7	P		C3	-42.4(2)
C7	C19	C20	F1	-2.1(4)
C7	C19	C20	C21	177.9(3)
C7	C19	C24		1.3(4)
C7	C19	C24	C23	-178.4(3)
C8	C1	C2	C3	-177.6(2)

F3 C22 C23 C24	$-180.0(3)$		C8	C1	C2	C6	$68.3(3)$
F4 C23 C24 F5	$0.7(4)$		C8	C1	C2	C14	$-57.5(3)$
F4 C23	C24 C19	$-179.6(3)$		C8	C9	C10 C11	$-1.7(5)$
O1 P	O2	C3	$58.2(2)$		C9	C8	C13 C12

Table 1 Crystal data and structure refinement for 53.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma^{\prime}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR404
$\mathrm{C}_{38} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{O}_{7} \mathrm{PW}$
900.05

100
monoclinic
P2 $1 / \mathrm{n}$
16.1853(7)
10.7821(5)
20.0125(8)

90
108.6688(12)

90
3308.7(2)

4
1.808
3.620
1760.0
$0.11 \times 0.06 \times 0.05$
$0.5538 ; 0.7460$
$\operatorname{MoKa}(\lambda=0.71073)$
6.81 to 56°
0.995
$-20 \leq h \leq 21,-11 \leq k \leq 14,-26 \leq \mathrm{l} \leq 16$
18749
7951 [Rint $=0.0235$, $\mathrm{R}_{\text {sigma }}=0.0325$]
7951/0/469
1.036
$R_{1}=0.0259, w R_{2}=0.0536$
$R_{1}=0.0333, w R_{2}=0.0558$
1.02/-0.61

Table 2 Bond Lengths for 53.

Atom Atom Length/Å
W P 2.5230(7)
W C34 2.016(3)
W C35 2.043(3)
W C36 2.048(3)
W C37 2.043(3)
W C38 2.052(3)
$\mathrm{P} \quad \mathrm{O} 2 \quad 1.632(2)$
P C1 1.916(3)
P C15 1.949(3)
F1 C4 1.338(3)
$\begin{array}{lll}\text { F2 } & \text { C5 } & 1.340(3) \\ \text { F3 } & \text { C6 } & 1.341(3)\end{array}$
$\begin{array}{lll}\text { F4 } & \text { C7 } & 1.340(3) \\ \text { F5 } & \text { C8 } & 1.338(3)\end{array}$
O1 C1 $\quad 1.426(3)$

O1 C2 1.404(3)
O2 C2 1.474(3)
O3 C34 1.140(4)
O4 C35 1.143(4)
O5 C36 1.140(3)
O6 C37 1.141(4)
O7 C38 1.139(3)
C1 C3 1.510(4)
C2 C9 1.493(4)
C3 C4 1.390(4)
C3 C8 1.384(4)
C4 C5 1.381(4)
C5 C6 1.376(4)
C6 C7 1.372(5)

Atom Atom Length/Å
C7 C8 1.383(4)
C9 C10 1.386(4)
C9 C14 1.396(4)
C10 C11 1.378(4)
C11 C12 1.386(4)
C12 C13 1.383(4)
C13 C14 1.384(4)
C15 C16 1.545(4)
C15 C22 1.548(4)
C15 C28 1.545(4)
C16 C17 1.406(4)
C16 C21 1.392(4)
C17 $\mathrm{C} 18 \quad 1.402(4)$
C18 C19 1.374(5)
C19 C20 1.385(5)
C20 C21 1.394(4)
C22 C23 1.389(4)
C22 C27 1.401(4)
C23 C24 1.393(4)
C24 C25 1.394(5)
C25 C26 1.384(5)
C26 C27 1.388(4)
C28 C29 1.408(4)
C28 C33 1.399(4)
C29 C30 1.384(4)
C30 C31 1.388(5)
C31 C32 1.383(5)
C32 C33 1.381(4)

Table 3 Bond Angles for 53.

Atom Atom Atom		Anglel ${ }^{\circ}$	
C34	W	P	$178.79(8)$
C34	W	C35	$86.50(12)$
C34	W	C36	$89.95(11)$
C34	W	C37	$89.19(12)$
C34	W	C38	$87.72(11)$
C35	W	P	$92.66(8)$
C35	W	C36	$95.88(11)$
C35	W	C38	$89.43(11)$
C36	W	P	$89.28(8)$
C36	W	C38	$174.06(11)$
C37	W	P	$91.63(8)$

Atom Atom Atom			
F5	C8	C7 ${ }^{\circ}{ }^{\circ}$	
C7	C8	C3	$116.7(3)$
C10	C9	C2	$122.6(3)$
C10	C9	C14	$119.5(3)$
C14	C9	C2	$118.9(3)$
C11	C10	C9	$120.3(3)$
C10	C11	C12	$120.0(3)$
C13	C12	C11	$120.3(3)$
C12	C13	C14	$119.7(3)$
C13	C14	C9	$120.2(3)$
C16	C15	P	$108.31(18)$

C37	W	C35	175.25(11)	C16	C15	C22	111.2(2)
C37	W	C36	82.12(11)	C16	C15	C28	111.6(2)
C37	W	C38	92.38(12)	C22	C15	P	107.44(18)
C38	W	P	93.14(7)	C28	C15	P	108.42(17)
O2	P	W	109.80(8)	C28	C15	C22	109.8(2)
O 2	P	C1	90.65(11)	C17	C16	C15	121.5(3)
O2	P	C15	104.82(11)	C21	C16	C15	121.4(3)
C1	P	W	123.45(9)	C21	C16	C17	117.1(3)
C1	P	C15	101.22(12)	C18	C17	C16	121.1(3)
C15	P	W	121.51(8)	C19	C18	C17	120.5(3)
C2	O1	C1	110.8(2)	C18	C19	C20	119.4(3)
C2	O2	P	113.52(16)	C19	C20	C21	120.4(3)
O1	C1	P	103.19(17)	C16	C21	C20	121.6(3)
O1	C1	C3	108.0(2)	C23	C22	C15	121.5(3)
C3	C1	P	120.03(18)	C23	C22	C27	117.4(3)
O1	C2	O 2	106.1(2)	C27	C22	C15	121.2(3)
O1	C2	C9	110.1(2)	C22	C23	C24	122.0(3)
O2	C2	C9	110.0(2)	C23	C24	C25	119.6(3)
C4	C3	C1	119.9(3)	C26	C25	C24	119.2(3)
C8	C3	C1	123.9(3)	C25	C26	C27	120.7(3)
C8	C3	C4	115.9(3)	C26	C27	C22	121.1(3)
F1	C4	C3	119.5(3)	C29	C28	C15	120.1(2)
F1	C4	C5	117.7(3)	C33	C28	C15	122.1(2)
C5	C4	C3	122.8(3)	C33	C28	C29	117.6(3)
F2	C5	C4	120.5(3)	C30	C29	C28	120.7(3)
F2	C5	C6	120.4(3)	C29	C30	C31	120.5(3)
C6	C5	C4	119.1(3)	C32	C31	C30	119.4(3)
F3	C6	C5	119.9(3)	C33	C32	C31	120.4(3)
F3	C6	C7	119.9(3)	C32	C33	C28	121.4(3)
C7	C6	C5	120.2(3)	O3	C34	W	178.1(3)
F4	C7	C6	119.8(3)	O4	C35	W	176.2(2)
F4	C7	C8	120.8(3)	O5	C36	W	173.3(2)
C6	C7	C8	119.4(3)	O6	C37	W	175.2(3)
F5	C8	C3	120.7(2)	O7	C38	W	177.0(2)

Table 4 Torsion Angles for 53.

A	\mathbf{B}	\mathbf{C}	\mathbf{D}	Anglel $^{\circ}$
W	P	O2	C2	$-136.15(15)$
P	O2	C2	O1	$31.8(2)$
P	O2	C2	C9	$150.77(18)$
P	C1	C3	C4	$-114.5(3)$
P	C1	C3	C8	$71.3(3)$
P	C15	C16	C17	$-89.2(3)$
P	C15	C16	C21	$88.8(3)$
P	C15	C22	C23	$-42.7(3)$

A	B	C	D	Angle $^{\circ}$
C8	C3	C4	F1	$175.4(2)$
C8	C3	C4	C5	$-2.3(4)$
C9	C10	C11	C12	$-0.4(4)$
C10	C9	C14	C13	$0.8(4)$
C10	C11	C12C13	$0.3(4)$	
C11	C12	C13	C14	$0.3(5)$
C12	C13	C14C9	$-0.8(4)$	
C14 C9	C10C11	$-0.2(4)$		

P	C15 C22 C27	$137.0(2)$	C15P O2 C2	$91.79(18)$
P	C15 C28 C29	$159.0(2)$	C15C16 C17 C18	$177.9(3)$
P	C15 C28 C33	$-27.2(3)$	C15 C16 C21 C20	$-177.6(3)$
F1 C4	C5	F2	$1.1(4)$	C15 C22 C23C24

Table 1 Crystal data and structure refinement for 54.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR329
$\mathrm{C}_{38} \mathrm{H}_{20} \mathrm{~F}_{7} \mathrm{O}_{7} \mathrm{PW}$
936.36

123(2)
monoclinic
P2 $1 / \mathrm{c}$
16.5400(6)
10.6955(3)
22.9543(8)

90
123.793(2)

90
3374.65(19)

4
1.843
3.562

1824
$0.18 \times 0.14 \times 0.04$
$0.5665 ; 0.8706$
MoKa ($\lambda=0.71073$)
2.51 to 28.00°
0.993
$-21 \leq h \leq 21,-14 \leq k \leq 14,-30 \leq 1 \leq 30$
44240
8084 [Rint $=0.1087$]
8084/16/487
0.907
$R_{1}=0.0405, w R_{2}=0.0740$
$R_{1}=0.0936, w R_{2}=0.0853$
2.303/-2.261

Table 2 Bond Lengths for 54.

Atom Atom Length/Å
C1 O2 1.406(5)

C1 C3

C2	C9	$1.510(6)$
C3	C8	$1.379(7)$
C4	F1	$1.352(5)$

C5 C6 1.375(8)
C7 C8 1.375(7)
C9 C10 1.373(7)
C10 F3 1.356(5)
C11 F4 1.349(5)
C12 F5 1.349(5)
C13 F6 1.346(5)
C14 F7 1.338(5)

C15 C28 1.548(7)
C15 P 1.957(5)

| C16 | C17 | $1.403(7)$ |
| :--- | :--- | :--- | :--- |
| C18 | C19 | $1.390(7)$ |

C20 C21 1.386(7)

C22 C23 1.391(7)
C24 C25 1.393(8)
C26 C27 1.386(7)
C28 C33 1.403(7)
C30 C31 1.382(8)
C32 C33 1.383(7)
C34 W 2.003(6)
C35 W 2.042(6)
C36 W 2.031(5)
C37 W 2.044(6)
C38 W 2.029(6)
P W 2.5271(14)

Atom Atom		Length/Å
C1	O1	$1.454(6)$
C2	O2	$1.437(5)$
C2	P	$1.903(5)$
C3	C4	$1.387(7)$
C4	C5	$1.374(7)$
C6	C7	$1.380(8)$
C8	F2	$1.357(6)$
C9	C14	$1.392(6)$
C10	C11	$1.378(7)$
C11	C12	$1.375(7)$
C12	C13	$1.365(7)$
C13	C14	$1.375(6)$
C15	C16	$1.534(7)$
C15	C22	$1.554(7)$
C16	C21	$1.385(7)$
C17	C18	$1.374(7)$
C19	C20	$1.370(7)$
C22	C27	$1.384(7)$
C23	C24	$1.384(7)$
C25	C26	$1.355(8)$
C28	C29	$1.397(7)$
C29	C30	$1.393(7)$
C31	C32	$1.381(8)$
C34	O3	$1.150(6)$
C35	O4	$1.146(6)$
C36	O5	$1.154(6)$
C37	O6	$1.149(6)$
C38	O7	$1.156(6)$
O1	P	$1.639(3)$

Table 3 Bond Angles for 54.
Atom Atom Atom Anglel ${ }^{\circ}$

O2	C1	O1	$107.0(4)$
O1	C1	C3	$110.2(4)$
O2	C2	P	$103.2(3)$
C8	C3	C4	$114.4(5)$
C4	C3	C1	$127.6(5)$
F1	C4	C3	$119.0(5)$
C4	C5	C6	$118.6(5)$
C8	C7	C6	$117.7(5)$
F2	C8	C3	$117.3(5)$
C10	C9	C14	$115.6(4)$

Atom Atom Atom			
O2	C1	C3gle ${ }^{\circ}$	
C3	$109.9(4)$		
O2	C2	C9	$108.7(4)$
C9	C2	P	$122.2(4)$
C8	C3	C1	$117.9(4)$
F1	C4	C5	$117.3(5)$
C5	C4	C3	$123.8(5)$
C5	C6	C7	$120.8(5)$
F2	C8	C7	$118.0(5)$
C7	C8	C3	$124.7(5)$
C10	C9	C2	$120.4(4)$

C14	C9	C2	$123.8(4)$
F3	C10	C11	$117.2(4)$
F4	C11	C12	$120.0(5)$
C12	C11	C10	$119.2(5)$
F5	C12	C11	$119.7(5)$
F6	C13	C12	$120.1(4)$
C12	C13	C14	$119.8(5)$
F7	C14	C9	$120.2(4)$
C16	C15	C28	$111.4(4)$
C28	C15	C22	$112.8(4)$
C28	C15	P	$108.7(3)$
C21	C16	C17	$116.5(5)$
C17	C16	C15	$121.2(4)$
C17	C18	C19	$120.3(5)$
C19	C20	C21	$121.0(5)$
C27	C22	C23	$117.1(5)$
C23	C22	C15	$121.0(4)$
C23	C24	C25	$120.3(5)$
C25	C26	C27	$120.1(5)$
C29	C28	C33	$117.0(5)$
C33	C28	C15	$120.4(5)$
C31	C30	C29	$121.2(6)$
C31	C32	C33	$121.3(5)$
O3	C34	W	$178.5(5)$
O5	C36	W	$174.7(5)$
O7	C38	W	$174.9(4)$
C1	O2	C2	$108.2(3)$
O1	P	C15	$105.83(19)$
O1	P	W	$108.16(13)$
C15	P	W	$121.88(16)$
C34	W	C36	$87.9(2)$
C34	W	C35	$89.4(2)$
C36	W	C35	$83.7(2)$
C38	W	C37	$88.54(19)$
C35	W	C37	$176.72(19)$
C38	W	P	$94.41(15)$
C35	W	P	$88.30(15)$

Table 4 Torsion Angles for 54.

A	\mathbf{B}	\mathbf{C}	\mathbf{D}	Angle ${ }^{\circ}$
O2	C1	C3	C8	$154.5(5)$
O2	C1	C3	C4	$-21.2(7)$
C8	C3	C4	F1	$179.6(5)$
C8	C3	C4	C5	$-0.5(8)$
F1	C4	C5	C6	$-179.5(5)$

F3	C10	C9	$119.6(4)$
C9	C10	C11	$123.2(5)$
F4	C11	C10	$120.7(5)$
F5	C12	C13	$120.5(5)$
C13	C12	C11	$119.8(5)$
F6	C13	C14	$120.1(5)$
F7	C14	C13	$117.3(4)$
C13	C14	C9	$122.5(5)$
C16	C15	C22	$108.8(4)$
C16	C15	P	$108.6(3)$
C22	C15	P	$106.3(3)$
C21	C16	C15	$122.3(4)$
C18	C17	C16	$122.0(5)$
C20	C19	C18	$118.5(5)$
C16	C21	C20	$121.6(5)$
C27	C22	C15	$121.8(4)$
C24	C23	C22	$121.0(5)$
C26	C25	C24	$119.4(5)$
C22	C27	C26	$122.1(5)$
C29	C28	C15	$122.5(4)$
C30	C29	C28	$121.0(5)$
C32	C31	C30	$118.2(5)$
C32	C33	C28	$121.3(5)$
O4	C35	W	$176.0(5)$
O6	C37	W	$177.9(5)$
C1	O1	P	$112.8(3)$
O1	P	C2	$90.54(19)$
C2	P	C15	$99.7(2)$
C2	P	W	$125.21(15)$
C34	W	C38	$87.2(2)$
C38	W	C36	$174.5(2)$
C38	W	C35	$93.8(2)$
C34	W	C37	$88.4(2)$
C36	W	C37	$93.77(19)$
C34	W	P	$177.23(16)$
C36	W	P	$90.37(15)$
C37	W	P	$93.85(15)$

A	B	C	D	Angle $^{\circ}$
O1	C1	C3	C8	$-87.7(6)$
O1	C1	C3	C4	$96.6(6)$
C1	C3	C4	F1	$-4.5(8)$
C1	C3	C4	C5	$175.3(5)$
C3	C4	C5	C6	$0.7(9)$

	C5	C6		0.5(9)		C6	C7 C8	-1.7(9)
	C7	C8	F2	179.7(5)		C7	C8 C3	1.9(9)
	C3	C8	F2	-178.6(5)	C1	C3	C8 F2	5.1(7)
	C3	C8	C7	-0.8(8)	C1	C3	C8 C7	-177.1(5)
O 2	C2	C9	C10	-122.2(5)	P	C2	C9 C10	118.0(5)
O 2	C2		C14	52.1(6)	P	C2	C9 C14	-67.7(6)
	C9	C10		-175.3(4)	C2	C9	C10F3	-0.6(7)
	C9	C10	C11	2.5(8)	C2	C9	C10C11	177.3(5)
F3		C11	F4	-1.2(8)	C9		C11F4	-179.1(5)
F3		C11	C12	177.4(5)	C9		C11-12	-0.5(8)
F4	C11	C12	F5	-1.3(8)	C10	C11	C12 F5	-179.9(5)
F4		C12	C13	177.6(5)	C10	C11	C12C13	-1.0(8)
F5		C13	F6	0.4(8)	C11	C12	C13F6	-178.4(5)
F5	C12	C13	C14	179.2(5)	C11	C12	C13C14	0.3(8)
	C13	C14	F7	0.8(7)	C12	C13	C14F7	-177.9(4)
	C13	C14	C9	-179.3(5)	C12	C13	C14C9	1.9(8)
	C9	C14	F7	176.6(4)		C9	C14F7	2.0(8)
	C9	C14	C13	-3.2(8)		C9	C14C13	-177.8(5)
C28	C15	C16	C21	103.2(5)	C22	C15	C16 C21	-21.8(6)
P	C15	C16	C21	-137.1(4)	C28	C15	C16 C17	-76.8(5)
C22	C15	C16	C17	158.3(4)		C15	C16C17	43.0(5)
C21	C16	C17	C18	1.9(7)	C15	C16	C17C18	-178.2(4)
	C17	C18	C19	-0.4(7)	C17	C18	C19 C20	-1.4(8)
	C19	C20	C21	1.8(8)	C17	C16	C21 C20	-1.4(7)
	C16	C21	C20	178.6(4)	C19	C20	C21 C16	-0.4(8)
C16	C15	C22	C27	-88.5(5)	C28	C15	C22 C27	147.3(5)
	C15	C22	C27	28.2(5)	C16	C15	C22 C23	88.5(5)
C28	C15	C22	C23	-35.6(6)		C15	C22 C23	-154.7(4)
C27	C22	C23	C24	-1.8(8)	C15	C22	C23 C24	-179.0(5)
C22	C23	C24	C25	0.7(8)	C23	C24	C25 C26	0.5(9)
C24	C25	C26	C27	-0.3(9)	C23	C22	C27 C26	2.0(7)
C15	C22	C27	C26	179.2(5)	C25	C26	C27 C22	-1.0(8)
	C15	C28	C29	-151.3(4)	C22	C15	C28 C29	-28.7(6)
	C15	C28	C29	89.0(5)	C16	C15	C28 C33	31.7(6)
C22	C15	C28	C33	154.3(4)		C15	C28 C33	-88.0(5)
C33	C28	C29	C30	0.5(7)	C15	C28	C29 C30	-176.6(4)
C28	C29	C30	C31	-0.3(8)	C29	C30	C31 C32	0.3(8)
C30	C31	C32	C33	-0.6(8)	C31	C32	C33 C28	0.8(8)
C29	C28	C33	C32	-0.7(7)	C15	C28	C33 C32	176.4(4)
	C1	O1	P	-33.0(4)	C3	C1	O1 P	-152.5(3)
O1	C1	O2	C2	46.1(5)	C3	C1	O2 C2	165.8(4)
C9	C2	O2	C1	-168.9(4)	P	C2	O2 C1	-37.8(4)
C1	O1	P	C2	8.8(3)	C1	01	P C15	-91.5(3)
	O1	P	W	136.4(3)	O2	C2	P O1	16.3(3)
C9	C2	P	O1	138.7(4)	O2	C2	P C15	122.5(3)
	C2	P	C15	-115.2(4)	O2	C2	P W	-96.5(3)

C9 C2 P	W	25.8(5)	C16C15P	O1	-92.1(3)
C28C15P	O1	29.3(4)	C22C15P	O1	151.0(3)
C16C15P	C2	174.5(3)	C28C15P	C2	-64.1(4)
C22C15P	C2	57.6(3)	C16C15P	W	31.8(4)
C28C15P	W	153.2(3)	C22C15P	W	-85.1(3)
O3 C34W	C38	-41(20)	O3 C34W	C36	136(20)
O3 C34 W	C35	52(20)	O3 C34W	C37	-130(20)
O3 C34W	P	85(20)	O7 C38W	C34	-9(5)
O7 C38W	C36	-36(6)	O7 C38W	C35	-98(5)
O7 C38W	C37	79(5)	O7 C38W	P	173(5)
O5 C36W	C34	-51(5)	O5 C36W	C38	-24(6)
O5 C36W	C35	39(5)	O5 C36W	C37	-139(5)
O5 C36W	P	127(5)	O4 C35W	C34	77(7)
O4 C35W	C38	164(7)	O4 C35W	C36	-11(7)
O4 C35W	C37	29(10)	O4 C35W	P	-102(7)
O6 C37W	C34	49(12)	O6 C37W	C38	-38(12)
O6 C37W	C36	137(12)	O6 C37W	C35	97(12)
O6 C37W	P	-132(12)	O1 P W	C34	5(3)
C2 P W	C34	109(3)	C15P W	C34	-118(3)
O1 P W	C38	131.25(18)	C2 P W	C38	-124.6(2)
C15P W	C38	8.4(2)	O1 P W	C36	-46.12(18)
C2 P W	C36	58.0(2)	C15P W	C36	-168.9(2)
O1 P W	C35	37.59(19)	C2 P W	C35	141.7(2)
C15P W	C35	-85.2(2)	O1 P W	C37	-139.92(18)
C2 P W	C37	-35.8(2)	C15P W	C37	97.3(2)

Table 1 Crystal data and structure refinement for 55.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcmg }} / \mathrm{mm}^{3}$
$\mathrm{m} / \mathrm{mm}^{-1}$
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR276
$\mathrm{C}_{38} \mathrm{H}_{17} \mathrm{~F}_{10} \mathrm{O}_{7} \mathrm{PW}$
990.34

100(2)
triclinic
P-1
10.5469(4)
12.5556(5)
14.8775(5)
66.8310(10)
78.2940(10)
80.5270(10)
1765.68(11)

2
1.863
3.421

960
$0.30 \times 0.10 \times 0.05$
$0.4268 ; 0.8476$
MoKa ($\lambda=0.71073$)
2.87 to 28.00°
0.985
$-13 \leq h \leq 10,-16 \leq k \leq 16,-19 \leq \mathrm{l} \leq 19$
41272
8403 [$\mathrm{R}_{\text {int }}=0.0360$]
8403/378/514
1.126
$R_{1}=0.0303, w R_{2}=0.0729$
$R_{1}=0.0367, w R_{2}=0.0766$
2.220/-1.406

Table 2 Bond Lengths for 55.

Atom Atom	Length $/ \AA$
W C34	$2.025(4)$

W	C36	$2.047(4)$
W	C38	$2.063(4)$
P	O1	$1.639(2)$
P	C15	$1.944(3)$
F2	C5	$1.339(4)$

F4 C7 1.339(4)
F6 C10 1.346(4)
F8 C12 1.339(4)
F10 C14 1.348(4)
O2 C1 1.421(4)

O3	C34	$1.132(5)$
O5	C36	$1.134(5)$

O7 C38 1.130(5)
C2 C9 1.518(5)
C3 C8 1.402(5)
C5 C6 1.377(6)
C7 C8 1.378(5)
C9 C10 1.391(5)
C11 C12 1.373(5)

| C13 | C14 | $1.379(5)$ |
| :--- | :--- | :--- | :--- |
| C15 | C16 | $1.549(5)$ |

C16 C21 1.394(5)

C 17	C 18	$1.382(5)$
C 19	C 20	$1.379(5)$
C 22	C 27	$1.399(5)$
C 23	C 24	$1.392(5)$
C 25	C 26	$1.378(6)$
C 28	C 33	$1.396(5)$
C 29	C 30	$1.384(5)$
C 31	C 32	$1.380(5)$

Atom Atom		Length/Å
W	C35	$2.044(4)$
W	C37	$2.055(4)$
W	P	$2.5090(8)$
P	C2	$1.890(3)$
F1	C4	$1.343(4)$
F3	C6	$1.340(4)$
F5	C8	$1.341(4)$
F7	C11	$1.339(4)$
F9	C13	$1.340(4)$
O1	C1	$1.425(4)$
O2	C2	$1.429(4)$
O4	C35	$1.139(5)$
O6	C37	$1.137(5)$
C1	C3	$1.524(5)$
C3	C4	$1.396(5)$
C4	C5	$1.377(5)$
C6	C7	$1.381(6)$
C9	C14	$1.389(5)$
C10	C11	$1.382(5)$
C12	C13	$1.379(5)$
C15	C28	$1.537(4)$
C15	C22	$1.555(4)$
C16	C17	$1.402(5)$
C18	C19	$1.390(5)$
C20	C21	$1.388(5)$
C22	C23	$1.400(5)$
C24	C25	$1.392(6)$
C26	C27	$1.396(5)$
C28	C29	$1.399(5)$
C30	C31	$1.390(5)$
C32	C33	$1.392(5)$

Table 3 Bond Angles for 55.

Atom Atom Atom			Angle/ ${ }^{\circ}$
C34	W	C35	$86.91(15)$
C35	W	C36	$88.93(16)$
C35	W	C37	$175.34(14)$
C34	W	C38	$86.89(15)$
C36	W	C38	$173.36(14)$
C34	W	P	$177.47(11)$
C36	W	P	$92.45(10)$
C38	W	P	$94.19(10)$

Atom Atom Atom			Anglel $^{\circ}$
C34	W	C36	$86.48(15)$
C34	W	C37	$88.82(15)$
C36	W	C37	$88.94(15)$
C35	W	C38	$90.29(15)$
C37	W	C38	$91.35(15)$
C35	W	P	$95.37(11)$
C37	W	P	$88.86(10)$
O1	P	C2	$91.38(13)$

$\left.\begin{array}{lllrlllr}\text { O1 } & \text { P } & \text { C15 } & 101.86(13) & & \text { C2 } & \text { P } & \text { C15 } \\ \text { O1 } & \text { P } & \text { W } & 111.68(9) & \text { C2 } & \text { P } & \text { W } & 120.58(14) \\ \text { C15 } & \text { P } & \text { W } & 122.65(10) & & \text { C1 } & \text { O1 } & \text { P }\end{array}\right) 115.6(2)$

Table 4 Torsion Angles for 55.

A B	C D	Angle ${ }^{\circ}$
C34W	P O1	-12(3)
C36W	P O1	53.15(15)
C38W	P O1	-127.01(14)
C35W	P C2	37.26(16)
C37W	P C2	-140.79(16)
C34W	P C15	109(3)
C36W	P C15	174.31(16)
C38W	P C15	-5.85(16)
C15P	O1 C1	105.0(2)
C 2 O 2	C1 O1	28.6(3)
P O1	C1 O2	-16.3(3)
C1 O2	C2 C9	103.7(3)
O1 P	C2 O2	14.4(2)
W P	C2 O2	130.51(16)
C15P	C2 C9	145.0(2)
O2 C1	C3 C4	-137.7(3)
O2 C1	C3 C8	46.9(4)
C8 C3	C4 F1	174.5(3)
C8 C3	C4 C5	-3.9(5)
F1 C4	C5 F2	4.7(5)
F1 C4	C5 C6	-176.8(3)
F2 C5	C6 F3	1.7(5)
F2 C5	C6 C7	-180.0(3)
F3 C6	C7 F4	-1.5(5)
F3 C6	C7 C8	179.5(3)
F4 C7	C8 F5	-0.6(5)
F4 C7	C8 C3	-179.2(3)
C4 C3	C8 F5	-175.3(3)
C4 C3	C8 C7	3.2(5)
O2 C2	C9 C14	138.5(3)
O2 C2	C9 C10	-34.7(5)
C14C9	C10F6	-178.3(3)
C14C9	C10C11	-0.9(5)
F6 C10	C11F7	-1.4(5)
F6 C10	C11-12	179.2(3)
F7 C11	C12F8	0.1(6)
F7 C11	C12C13	179.5(4)
F8 C12	C13F9	-0.9(6)
F8 C12	C13C14	179.3(4)
F9 C13	C14F10	2.9(6)
F9 C13	C14C9	-178.9(3)
C10C9	C14F10	177.8(3)
C10C9	C14C13	-0.4(6)
O1 P	C15C28	-158.9(2)

A B	C D	Angle ${ }^{\circ}$
C35W	P O1	142.30(15)
C37 W	P O1	-35.74(14)
C34W	P C2	-117(3)
C36W	P C2	-51.89(16)
C38W	P C2	127.94(16)
C35W	P C15	-96.54(16)
C37W	P C15	85.41(16)
C2 P	O1 C1	0.9(2)
W P	O1 C1	-122.4(2)
C2 O2	C1 C3	150.4(3)
P O1	C1 C3	-135.5(2)
C1 O2	C2 P	-26.6(3)
C15P	C2 O2	-88.2(2)
O1 P	C2 C9	-112.5(3)
W P	C2 C9	3.7(3)
O1 C1	C3 C4	-17.9(4)
O1 C1	C3 C8	166.8(3)
C1 C3	C4 F1	-1.0(5)
C1 C3	C4 C5	-179.4(3)
C3 C4	C5 F2	-176.9(3)
C3 C4	C5 C6	1.6(5)
C4 C5	C6 F3	179.8(3)
C4 C5	C6 C7	1.6(5)
C5 C6	C7 F4	176.8(3)
C5 C6	C7 C8	-2.2(5)
C6 C7	C8 F5	178.3(3)
C6 C7	C8 C3	-0.3(5)
C1 C3	C8 F5	0.4(5)
C1 C3	C8 C7	179.0(3)
P C2	C9 C14	-99.3(3)
P C2	C9 C10	87.6(4)
C2 C9	C10F6	-5.0(6)
C2 C9	C10C11	172.5(3)
C9 C10	C11F7	-178.9(3)
C9 C10	C11-C12	1.6(6)
C10C11	C12F8	179.5(3)
C10C11	C12C13	-1.1(6)
C11-12	C13F9	179.7(4)
C11-12	C13C14	-0.1(6)
C12C13	C14F10	-177.3(3)
C12C13	C14C9	0.9(6)
C2 C9	C14F10	3.9(5)
C2 C9	C14C13	-174.3(3)
C2 P	C15C28	64.5(2)

W P	C15C28	75.4(2)	O1 P C15C16	83.0(2)
C2 P	C15C16	177.4(2)	W P C15C16	-42.6(2)
O1 P	C15C22	-37.3(2)	C 2 P C15C22	57.1(2)
W P	C15C22	-162.91(18)	C28C15C16C21	10.7(4)
C22C15	C16C21	-110.8(3)	P C15C16C21	129.1(3)
C28C15	C16C17	-171.5(3)	C22C15C16C17	67.0(4)
P C15	C16C17	-53.1(3)	C21 C16C17C18	2.1 (5)
C15C16	C17C18	-175.7(3)	C16C17C18C19	-0.4(5)
C17C18	C19 C20	-1.7(5)	C18C19 C20 C21	2.0(5)
C19 C20	C21 C16	-0.2(5)	C17C16 C21 C20	-1.8(5)
C15C16	C21 C20	176.0(3)	C28C15 C22 C27	-128.1(3)
C16C15	C22C27	-6.2(4)	P C15C22C27	109.5(3)
C28C15	C22C23	47.8(4)	C16C15C22C23	169.7(3)
P C15	C22C23	-74.6(3)	C27 C22 C23 C24	-3.4(5)
C15C22	C23C24	-179.5(3)	C22 C23 C24 C25	1.9(5)
C23C24	C25C26	0.9(5)	C24 C25 C26 C27	-2.2(6)
C25C26	C27 C22	0.6(6)	C23C22 C27 C26	2.2(5)
C15C22	C27 C26	178.2(3)	C16C15 C28 C33	90.9(4)
C22C15	C28C33	-146.3(3)	P C15C28C33	-23.4(4)
C16C15	C28C29	-83.0(4)	C22C15 C28 C29	39.9(4)
P C15	C28C29	162.7(3)	C33C28 C29 C30	-0.2(5)
C15C28	C29C30	174.0(3)	C28C29 C30 C31	0.1(6)
C29 C30	C31 C32	0.6(6)	C30 C31 C32 C33	-1.2(6)
C31 C32	C33 C28	1.2(6)	C29 C28 C33 C32	-0.5(5)
C15C28	C33 C32	-174.4(3)	C35W C34O3	123(13)
C36W	C34O3	-148(13)	C37W C34O3	-59(13)
C38W	C34O3	32(13)	P W C34O3	-83(14)
C34W	C3504	9(6)	C36W C35O4	-77(6)
C37W	C3504	-14(7)	C38W C35O4	96(6)
P W	C3504	-170(6)	C34W C36O5	-9(4)
C35W	C3605	78(4)	C37W C36O5	-98(4)
C38W	C36O5	-5(5)	P W C36O5	173(4)
C34W	C3706	-36(8)	C35W C37O6	-12(9)
C36W	C3706	51(8)	C38W C37O6	-123(8)
P W	C3706	143(8)	C34W C38O7	19(3)
C35W	C3807	-68(3)	C36W C38O7	16(4)
C37W	C3807	108(3)	P W C38O7	-163(3)

Table 1 Crystal data and structure refinement for 60.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{Y}^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR323
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{O}_{7} \mathrm{PW}$
732.24

123(2)
triclinic
P-1
15.3955(4)
17.2661(5)
18.0841(5)
105.9080(15)
104.5500(16)
113.2330(16)
3881.1 (2)

6
1.880
4.605

2136
$0.40 \times 0.12 \times 0.02$
$0.2603 ; 0.9135$
$\operatorname{MoKa}(\lambda=0.71073)$
1.95 to 28.00°
0.992
$-20 \leq h \leq 20,-22 \leq k \leq 22,-23 \leq 1 \leq 23$
83764
18559 [Rint $=0.0915$]
18559/5/1045
0.949
$R_{1}=0.0374, w R_{2}=0.0659$
$R_{1}=0.0767, w R_{2}=0.0742$
2.424/-1.722

Table 2 Bond Lengths for 60.

Atom Atom Length/Å
C1 O1 1.419(6)
C3 C9 1.534(6)
C3 C4 1.560(7)
C4 O2 1.448(5)
C4 C8 1.527(6)
$\begin{array}{lll}\mathrm{C} 5 & \mathrm{C} 14 & 1.498(6)\end{array}$
$\begin{array}{lll}\mathrm{C} 6 & \mathrm{C} 7 & 1.535(7) \\ \mathrm{C} 7 & \mathrm{C} 8 & 1.320(7)\end{array}$
C8 C12 1.505(7)
C14 C15 1.409(7)
C15 F1 1.375(5)

| C 16 | C 17 | $1.378(8)$ |
| :--- | :--- | :--- | :--- |
| C 17 | C 18 | $1.381(8)$ |
| C 18 | C 19 | $1.366(7)$ |
| C 20 | O 3 | $1.161(6)$ |
| C 21 | O 4 | $1.151(6)$ |
| C 22 | O 5 | $1.166(7)$ |
| C 23 | O 6 | $1.159(6)$ |
| C 24 | O 7 | $1.144(6)$ |
| O1 | P 1 | $1.610(3)$ |

Table 3 Bond Angles for 60.
Atom Atom Atom Angle/ ${ }^{\circ}$
O1 C1 C2 110.7(5)
C9 C3 C4 114.9(4)
C9 C3 P1 109.8(3)
C4 C3 P1 102.5(3)
O2 C4 C8 110.7(4)
O2 C4 C3 110.5(4)
C8 C4 C3 101.9(4)
O2 C5 P1 106.2(3)
C7 C6 C10 111.0(4)
C10 C6 C3 115.9(4)
C8 C7 C6 111.6(4)
C7 C8 C12 128.1(4)
C12 C8 C4 120.0(4)
C19 C14 C5 124.2(4)
C16 C15 F1 118.2(5)
F1 C15 C14 117.0(4)
F2 C16 C17 120.6(5)
F3 C17 C16 119.9(6)
C16 C17 C18 119.8(5)
F4 C18 C17 119.8(5)

Atom Atom		
C1	Cength/Å	
C2	$1.491(8)$	
C3	C6	$1.547(6)$
C3	P1	$1.885(5)$
C4	C13	$1.504(7)$
C5	O2	$1.416(5)$
C5	P1	$1.882(5)$
C6	C10	$1.538(7)$
C7	C11	$1.515(6)$
C14	C19	$1.407(6)$
C15	C16	$1.346(7)$
C16	F2	$1.343(6)$
C17	F3	$1.336(6)$
C18	F4	$1.342(6)$
C19	F5	$1.338(6)$
C20	W1	$1.999(6)$
C21	W1	$2.034(6)$
C22	W1	$2.019(6)$
C23	W1	$2.026(6)$
C24	W1	$2.046(6)$
P1	W1	$2.5150(13)$

F5	C19	C18	$117.1(4)$	F5	C19	C14	$120.7(4)$
C18	C19	C14	$122.2(5)$	O3	C20	W1	$176.9(5)$
O4	C21	W1	$176.2(5)$	O5	C22	W1	$175.8(5)$
O6	C23	W1	$173.7(4)$	O7	C24	W1	$176.2(4)$
C1	O1	P1	$128.4(3)$	C5	O2	C4	$108.4(3)$
O1	P1	C5	$96.63(19)$	O1	P1	C3	$103.21(19)$
C5	P1	C3	$92.0(2)$	O1	P1	W1	$117.10(14)$
C5	P1	W1	$114.83(15)$	C3	P1	W1	$126.68(15)$
C20	W1	C22	$91.0(2)$	C20	W1	C23	$86.9(2)$
C22	W1	C23	$85.5(2)$	C20	W1	C21	$85.5(2)$
C22	W1	C21	$92.1(2)$	C23	W1	C21	$171.9(2)$
C20	W1	C24	$91.0(2)$	C22	W1	C24	$173.6(2)$
C23	W1	C24	$88.5(2)$	C21	W1	C24	$94.2(2)$
C20	W1	P1	$170.46(16)$	C22	W1	P1	$93.09(16)$
C23	W1	P1	$102.04(14)$	C21	W1	P1	$85.76(14)$
C24	W1	P1	$85.88(14)$				

Table 4 Torsion Angles for 60.

A	B	C D	Angle ${ }^{\circ}$
C9	C3	C4 O2	88.9(5)
P1	C3	C 4 O 2	-30.2(4)
C6	C3	C4 C13	96.0(4)
C9	C3	C4 C8	-153.4(4)
P1	C3	C4 C8	87.5(3)
C4	C3	C6 C7	27.9(5)
C9	C3	C6 C10	33.4(6)
P1	C3	C6 C10	157.8(4)
C3	C6	C7 C8	-18.5(5)
C3	C6	C7 C11	164.9(4)
C6	C7	C8 C12	-176.9(5)
C6	C7	C8 C4	0.6(6)
C1	3 C 4	C8 C7	-108.3(5)
2	C4	C8 C12	-47.3(6)
3	C4	C8 C12	-164.8(4)
P1	C5	C14C19	-76.5(5)
P1	C5	C14C15	99.0(5)
5	C1	C15C16	-172.0(5)
C5	C1	C15F1	4.7(7)
C1	4 C 1	C16F2	178.1(4)
	4 C 15	C16C17	-1.8(8)
	5C16	C17F3	177.7(5)
	5C16	C17C18	-2.3(8)
	6 C 17	C18F4	-177.6(5)
	6 C 17	C18C19	3.9(9)
	7 C 18	C19F5	-179.9(5)

A	B	C	D	Angle ${ }^{\circ}$
C6	C3	C4	O 2	-145.3(4)
C9	C3	C4	C13	-29.8(6)
P1	C3	C4	C13	-148.9(3)
C6	C3	C4	C8	-27.7(5)
C9	C3	C6	C7	154.1(4)
P1	C3	C6	C7	-81.5(4)
C4	C3	C6	C10	-92.8(5)
C10	C6	C7	C8	105.5(5)
C10	C6	C7	C11	-71.1(6)
C11	C7	C8	C12	-0.7(9)
C11	C7	C8	C4	176.9(5)
O2	C4	C8	C7	134.9(4)
C3	C4	C8	C7	17.4(5)
C13	C4	C8	C12	69.5(6)
O2	C5		C19	42.8(6)
O 2	C5		C15	-141.6(4)
C19	C1	C15	C16	3.9(7)
C19	C14	C15	F1	-179.3(4)
F1	C15	C16	F2	1.4(7)
F1	C15	C16	C17	-178.5(5)
F2	C16	C17	F3	-2.2(8)
F2	C16	C17	C18	177.8(5)
F3	C17	C18	F4	2.5(8)
F3	C17	C18	C19	-176.0(5)
F4	C18	C19	F5	1.6(7)
F4	C18	C19	C14	179.9(5)

C17C18C19C14	-1.6(8)	C15C14C19F5	176.1(4)
C5 C14C19F5	-8.0(7)	C15C14C19C18	-2.2(7)
C5 C14C19C18	173.7(5)	C2 C1 O1 P1	154.2(4)
C14C5 O2 C4	-166.9(4)	P1 C5 O2 C4	-42.9(4)
C13C4 O2 C5	175.3(4)	C8 C4 O2 C5	-62.5(5)
C3 C4 O2 C5	49.6(4)	C1 O1 P1 C5	-151.8(5)
C1 O1 P1 C3	114.5(5)	C1 O1 P1 W1	-29.5(5)
O2 C5 P1 O1	-82.6(3)	C14C5 P1 O1	38.9(4)
O2 C5 P1 C3	21.0(3)	C14C5 P1 C3	142.4(3)
O2 C5 P1 W1	153.4(2)	C14C5 P1 W1	-85.1(3)
C9 C3 P1 O1	-20.5(4)	C6 C3 P1 O1	-147.4(3)
C4 C3 P1 O1	102.2(3)	C9 C3 P1 C5	-117.8(3)
C6 C3 P1 C5	115.3(3)	C4 C3 P1 C5	4.9(3)
C9 C3 P1 W1	118.8(3)	C6 C3 P1 W1	-8.1(4)
C4 C3 P1 W1	-118.5(2)	O3 C20W1 C22	-106(10)
O3 C20W1 C23	169(10)	O3 C20W1 C21	-14(10)
O3 C20W1 C24	80(10)	O3 C20W1 P1	10(11)
O5 C22W1 C20	-64(7)	O5 C22W1 C23	22(7)
O5 C22W1 C21	-150(7)	O5 C22W1 C24	44(8)
O5 C22W1 P1	124(7)	O6 C23W1 C20	6(4)
O6 C23W1 C22	-85(4)	O6 C23W1 C21	-12(5)
O6 C23W1 C24	97(4)	O6 C23W1 P1	-178(4)
O4 C21 W1 C20	-18(7)	O4 C21W1 C22	72(7)
O4 C21 W 1 C23	0(8)	O4 C21W1 C24	-109(7)
O4 C21W1 P1	165(7)	O7 C24W1 C20	102(7)
O7 C24W1 C22	-6(8)	O7 C24W1 C23	15(7)
O7 C24W1 C21	-173(7)	O7 C24W1 P1	-87(7)
O1 P1 W1 C20	-73.2(10)	C5 P1 W1 C20	39.1(10)
C3 P1 W1 C20	152.3(10)	O1 P1 W1 C22	42.1(2)
C5 P1 W1 C22	154.4(2)	C3 P1 W1 C22	-92.4(3)
O1 P1 W1 C23	128.2(2)	C5 P1 W1 C23	-119.5(2)
C3 P1 W1 C23	-6.4(2)	O1 P1 W1 C21	-49.7(2)
C5 P1 W1 C21	62.6(2)	C3 P1 W1 C21	175.7(2)
O1 P1 W1 C24	-144.2(2)	C5 P1 W1 C24	-31.9(2)
C3 P1 W1 C24	81.2(2)		

Table 1 Crystal data and structure refinement for 66.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR487
$\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{6} \mathrm{PW}$
758.37

123
monoclinic
P21/C
10.7296(9)
9.0614(7)
31.331(2)

90
91.689(3)

90
3044.8(4)

4
1.654
3.898
1496.0
$0.22 \times 0.14 \times 0.08$
$0.2932 ; 0.7461$
MoKa ($\lambda=0.71073$)
4.54 to 56°
0.998
$-14 \leq h \leq 14,-11 \leq k \leq 11,-41 \leq \mathrm{l} \leq 41$
44254
$7328\left[R_{\text {int }}=0.1716, R_{\text {sigma }}=0.0955\right]$
7328/24/383
1.260
$R_{1}=0.0916, w R_{2}=0.1767$
$R_{1}=0.1153, w R_{2}=0.1842$
2.75/-7.61

Table 2 Bond Lengths for 66.

Atom Atom Length/Å
W P 2.544(3)
$\begin{array}{lll}W & \text { C20 } & 1.994(11) \\ W & \text { C21 } & 2.015(10)\end{array}$
W C22 2.044(12)
W C23 2.032(12)
W C24 2.048(12)
P F 1.633(7)

P O1 1.492(8)
P C1 1.937(9)
O2 C20 1.147(14)

O3 C21 1.154(14)
O4 C22 1.127(15)
O5 C23 1.132(15)
O6 C24 1.122(15)
C1 C2 1.513(13)

C1 C8 1.565(13)
C1 C14 1.543(13)

C2	C3	$1.390(15)$
C2	C7	$1.384(15)$
C3	C4	$1.396(16)$
C4	C5	$1.40(2)$
C5	C6	$1.39(2)$

Table 3 Bond Angles for 66.

Atom Atom Atom	Angle ${ }^{\circ}$		
C20	W	P	$171.6(3)$
C20	W	C21	$92.1(5)$
C20	W	C22	$90.3(5)$
C20	W	C23	$88.5(5)$
C20	W	C24	$89.6(5)$
C21	W	P	$91.0(3)$
C21	W	C22	$89.6(5)$
C21	W	C23	$179.0(5)$
C21	W	C24	$89.1(5)$
C22	W	P	$97.6(3)$
C22	W	C24	$178.7(5)$
C23	W	P	$88.5(3)$
C23	W	C22	$89.6(5)$
C23	W	C24	$91.7(5)$
C24	W	P	$82.6(3)$
F	P	W	$103.5(3)$
F	P	C1	$97.4(4)$
O1	P	W	$115.9(3)$

Atom Atom		
C6	Cength/A	
C7	$1.394(16)$	
C8	C9	$1.404(14)$
C8	C13	$1.379(15)$
C9	C10	$1.383(16)$
C10	C11	$1.384(17)$
C11	C12	$1.398(17)$
C12	C13	$1.389(16)$
C14	C15	$1.377(14)$
C14	C19	$1.374(14)$
C15	C16	$1.397(16)$
C16	C17	$1.412(17)$
C17	C18	$1.395(17)$
C18	C19	$1.415(15)$
N1	C25	$1.315(15)$
N1	C26	$1.397(14)$
N1	C28	$1.454(15)$
N2	C25	$1.308(15)$
N2	C27	$1.388(14)$
N2	C31	$1.465(14)$
C26	C27	$1.353(16)$
C26	C29	$1.477(16)$
C27	C30	$1.485(16)$

Atom Atom Atom			
C9	C8	C1 1	$119.9(9)$
C13	C8	C1	$121.7(9)$
C13	C8	C9	$118.2(10)$
C10	C9	C8	$120.8(11)$
C9	C10	C11	$119.9(11)$
C10	C11	C12	$120.0(11)$
C13	C12	C11	$119.0(12)$
C8	C13	C12	$121.8(11)$
C15	C14	C1	$122.6(9)$
C19	C14	C1	$119.2(9)$
C19	C14	C15	$118.2(10)$
C14	C15	C16	$123.0(10)$
C15	C16	C17	$118.7(10)$
C18	C17	C16	$118.7(10)$
C17	C18	C19	$120.3(10)$
C14	C19	C18	$121.0(10)$
O2	C20	W	$178.6(11)$
O3	C21	W	$178.5(11)$

O1	P	F	$107.0(4)$	O4	C22	W	$175.7(11)$
O1	P	C1	$106.8(4)$	O5	C23	W	$176.3(12)$
C1	P	W	$123.4(3)$	O6	C24	W	$175.3(12)$
C2	C1	P	$110.2(6)$	C25	N1	C26	$108.5(9)$
C2	C1	C8	$111.0(8)$	C25	N1	C28	$127.0(11)$
C2	C1	C14	$110.8(8)$	C26	N1	C28	$124.5(10)$
C8	C1	P	$108.5(6)$	C25	N2	C27	$107.9(9)$
C14	C1	P	$106.0(6)$	C25	N2	C31	$127.4(10)$
C14	C1	C8	$110.2(8)$	C27	N2	C31	$124.7(10)$
C3	C2	C1	$119.5(9)$	N2	C25	N1	$110.3(10)$
C7	C2	C1	$123.2(10)$	N1	C26	C29	$122.3(11)$
C7	C2	C3	$117.4(10)$	C27	C26	N1	$105.6(10)$
C2	C3	C4	$122.3(12)$	C27	C26	C29	$132.1(11)$
C3	C4	C5	$118.8(13)$	N2	C27	C30	$121.3(10)$
C6	C5	C4	$120.0(12)$	C26	C27	N2	$107.8(10)$
C5	C6	C7	$119.5(12)$	C26	C27	C30	$130.9(11)$
C2	C7	C6	$122.1(12)$				

Table 4 Torsion Angles for 66.

A B	C D	Angle ${ }^{\circ}$
P C1	C2 C3	56.2(11)
P C1	C2 C7	-124.5(9)
P C1	C8 C9	-142.6(9)
P C1	C8 C13	43.2(11)
P C1	C14C15	-131.1(9)
P C1	C14C19	52.1(10)
C1 C2	C3 C4	-179.4(10)
C1 C2	C7 C6	179.2(10)
C1 C8	C9 C10	-178.2(10)
C1 C8	C13C12	176.1(10)
C1 C14	C15C16	-178.2(10)
C1 C14	C19C18	177.7(9)
C2 C1	C8 C9	-21.4(13)
C2C1	C8 C13	164.3(9)
C2 C1	C14C15	109.3(10)
C2C1	C14C19	-67.5(11)
C2 C3	C4 C5	0.1(17)
C3C2	C7 C6	-1.4(15)
C3C4	C5 C6	-1.2(18)
C4C5	C6 C7	1.0(18)
C5C6	C7 C2	0.4(17)
C7 C2	C3 C4	1.2(15)
C8C1	C2 C3	-64.0(11)
C8C1	C2 C7	115.3(10)
C8C1	C14C15	-13.9(13)

C8C1	C14C19	$169.3(9)$	C29 C26 C27C30	$4(2)$
C8C9	C10C11	$4.7(19)$	C31 N2 C25N1	$-177.2(10)$
C9 C8	C13C12	$1.7(17)$	C31 N2 C27C26	$177.6(10)$
C9 C10C11C12	$-3.5(19)$	C31 N2 C27C30	$-5.2(17)$	

Table 1 Crystal data and structure refinement for 67.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection $/{ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR491
$\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{FN}_{2} \mathrm{O}_{6} \mathrm{PW}$
814.48

150
monoclinic
P2 $1 / n$
9.4393(6)
18.6273(13)
19.1677(13)

90
101.739(3)

90
3299.7(4)

4
1.639
3.603
1624.0
$0.12 \times 0.11 \times 0.1$
$0.6256 ; 0.7459$
MoKa ($\lambda=0.71073$)
4.92 to 55.998°
0.997
$-12 \leq h \leq 11,-24 \leq k \leq 24,-25 \leq \mathrm{l} \leq 23$
50312
7957 [Rint $=0.1211, R_{\text {sigma }}=0.1085$]
7957/0/421
0.938
$R_{1}=0.0527, w R_{2}=0.1077$
$R_{1}=0.1052, w R_{2}=0.1252$
2.34/-3.57

Table 2 Bond Lengths for 67. Atom Atom Length/Å

W	P	$2.5362(17)$
W	C20	$2.008(7)$
W	C21	$2.042(8)$
W	C22	$2.008(8)$
W	C23	$2.053(8)$
W	C24	$2.044(8)$
P	F	$1.615(4)$
P	O1	$1.505(4)$
P	C1	$1.935(6)$
O2	C20	$1.151(8)$
O3	C21	$1.142(8)$
O4	C22	$1.157(8)$
O5	C23	$1.144(8)$
O6	C24	$1.149(8)$
C1	C2	$1.541(9)$
C1	C8	$1.531(8)$
C1	C14	$1.549(8)$
C2	C3	$1.393(9)$
C2	C7	$1.402(9)$
C3	C4	$1.382(9)$
C4	C5	$1.396(10)$
C5	C6	$1.373(10)$
C6	C7	$1.385(9)$
C8	C9	$1.400(8)$

Atom Atom		Length/A
C8	C13	$1.400(9)$
C9	C10	$1.395(9)$
C10	C11	$1.386(9)$
C11	C12	$1.388(9)$
C12	C13	$1.385(9)$
C14	C15	$1.391(9)$
C14	C19	$1.394(8)$
C15	C16	$1.385(9)$
C16	C17	$1.397(9)$
C17	C18	$1.382(10)$
C18	C19	$1.387(9)$
N1	C25	$1.341(8)$
N1	C26	$1.396(8)$
N1	C28	$1.497(8)$
N2	C25	$1.328(8)$
N2	C27	$1.384(7)$
N2	C33	$1.493(8)$
C26	C27	$1.360(9)$
C26	C31	$1.490(8)$
C27	C32	$1.489(9)$
C28	C29	$1.486(9)$
C28	C30	$1.543(10)$
C33	C34	$1.524(9)$
C33	C35	$1.504(9)$

Table 3 Bond Angles for 67.

Atom Atom Atom			Angle l°
C20	W	P	$169.8(2)$
C20	W	C21	$91.2(3)$
C20	W	C22	$88.6(3)$
C20	W	C23	$90.7(3)$
C20	W	C24	$90.4(3)$
C21	W	P	$88.08(19)$
C21	W	C23	$177.8(3)$
C21	W	C24	$89.9(3)$
C22	W	P	$81.22(19)$
C22	W	C21	$92.4(3)$
C22	W	C23	$88.7(3)$
C22	W	C24	$177.6(3)$
C23	W	P	$90.20(19)$
C24	W	P	$99.8(2)$
C24	W	C23	$89.1(3)$
F	P	W	$106.53(15)$

Atom Atom Atom			
C10	Angle $^{\circ}$		
C9	C8	$121.2(6)$	
C11	C10	C9	$120.4(6)$
C10	C11	C12	$118.7(6)$
C13	C12	C11	$121.1(6)$
C12	C13	C8	$121.0(6)$
C15	C14	C1	$120.6(5)$
C15	C14	C19	$117.5(6)$
C19	C14	C1	$121.8(6)$
C16	C15	C14	$122.3(6)$
C15	C16	C17	$118.9(7)$
C18	C17	C16	$119.9(6)$
C17	C18	C19	$120.1(6)$
C18	C19	C14	$121.3(6)$
O2	C20	W	$176.0(6)$
O3	C21	W	$178.4(6)$
O4	C22	W	$177.5(6)$

F	P	C1	$97.7(2)$
O1	P	W	$113.01(19)$
O1	P	F	$105.7(2)$
O1	P	C1	$106.6(3)$
C1	P	W	$124.7(2)$
C2	C1	P	$110.6(4)$
C2	C1	C14	$110.5(5)$
C8	C1	P	$103.3(4)$
C8	C1	C2	$112.4(5)$
C8	C1	C14	$110.1(5)$
C14	C1	P	$109.7(4)$
C3	C2	C1	$122.2(6)$
C3	C2	C7	$117.0(6)$
C7	C2	C1	$120.5(6)$
C4	C3	C2	$121.9(7)$
C3	C4	C5	$119.7(7)$
C6	C5	C4	$119.4(7)$
C5	C6	C7	$120.5(7)$
C6	C7	C2	$121.3(7)$
C9	C8	C1	$122.8(6)$
C13	C8	C1	$119.7(6)$
C13	C8	C9	$117.5(6)$

O5	C23	W	$177.6(6)$
O6	C24	W	$176.5(6)$
C25	N1	C26	$108.6(5)$
C25	N1	C28	$125.3(5)$
C26	N1	C28	$125.7(5)$
C25	N2	C27	$110.0(5)$
C25	N2	C33	$124.2(5)$
C27	N2	C33	$125.8(5)$
N2	C25	N1	$108.0(5)$
N1	C26	C31	$121.8(6)$
C27	C26	N1	$107.0(5)$
C27	C26	C31	$131.2(6)$
N2	C27	C32	$122.8(6)$
C26	C27	N2	$106.3(6)$
C26	C27	C32	$130.8(6)$
N1	C28	C30	$106.4(5)$
C29	C28	N1	$111.4(5)$
C29	C28	C30	$112.3(6)$
N2	C33	C34	$109.0(5)$
N2	C33	C35	$111.2(5)$
C35	C33	C34	$113.1(5)$

Table 4 Torsion Angles for 67.

A	B	C	D	Anglel $^{\circ}$
P	C1	C2	C3	$38.2(7)$
P	C1	C2	C7	$-147.2(5)$
P	C1	C8	C9	$-110.9(6)$
P	C1	C8	C13	$68.1(6)$
P	C1	C14	C15	$-144.9(5)$
P	C1	C14	C19	$40.2(7)$
C1	C2	C3	C4	$175.7(6)$
C1	C2	C7	C6	$-175.2(6)$
C1	C8	C9	C10	$177.9(6)$
C1	C8	C13 C12	$-178.3(6)$	
C1	C14	C15	C16	$-177.1(6)$
C1	C14	C19	C18	$178.3(6)$
C2	C1	C8	C9	$8.3(9)$
C2	C1	C8	C13	$-172.6(6)$
C2	C1	C14 C15	$92.8(7)$	
C2	C1	C14 C19	$-82.0(7)$	
C2	C3	C4	C5	$-0.6(11)$
C3	C2	C7	C6	$-0.3(10)$
C3	C4	C5	C6	$-0.4(10)$
C4	C5	C6	C7	$1.0(10)$

A B C D	Angle $/^{\circ}$
C14C1 C2 C7	-25.5(8)
C14C1 C8 C9	132.0(6)
C14C1 C8 C13	-48.9(8)
C14C15C16C17	-0.3(10)
C15C14C19C18	3.3(9)
C15C16C17C18	1.5(10)
C16C17C18C19	-0.3(10)
C17C18C19C14	-2.2(10)
C19C14C15C16	-2.0(10)
N1 C26C27N2	1.0(7)
N1 C26C27C32	178.1(6)
C25N1 C26C27	-1.3(7)
C25N1 C26C31	179.7(6)
C25N1 C28C29	35.9(9)
C25N1 C28C30	-86.8(7)
C25N2 C27C26	-0.3(7)
C25N2 C27C32	-177.7(6)
C25N2 C33C34	-92.0(7)
C25N2 C33C35	33.4(8)
C26N1 C25N2	1.1(7)

C5	C6	C7	C2	$-0.6(10)$		C26N1
C7	C2	C3	C4 429	$-152.4(6)$		
C8	C1	C2	C3	$1.0(10)$	$-76.6(8)$	C26N1
C28 C30	$84.8(7)$					
C8	C1	C2	C7	$98.0(7)$	C27N2	C25N1

Table 1 Crystal data and structure refinement for 75.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma^{\circ}{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Tmin; Tmax
Radiation
2Θ range for data collection ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

GSTR512
$\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{CrFNO}_{6} \mathrm{P}$
782.84

100
monoclinic
P2 $1 / \mathrm{n}$
11.4922(13)
16.1502(19)
22.301(2)

90
99.382(4)

90
4083.8(8)

4
1.273
0.371
1660.0
$0.21 \times 0.18 \times 0.06$
$0.4482 ; 0.7459$
$\operatorname{MoKa}(\lambda=0.71073)$
5.374 to 55.998°
0.998
$-15 \leq h \leq 13,-21 \leq k \leq 21,-21 \leq 1 \leq 29$
62963
9852 [$\mathrm{R}_{\text {int }}=0.0537, \mathrm{R}_{\text {sigma }}=0.0383$]
9852/2/482
1.076
$R_{1}=0.0418, w R_{2}=0.1103$
$R_{1}=0.0656, w R_{2}=0.1300$
0.47/-0.64

Table 2 Bond Lengths for 75.

Atom Atom Length/Å
$\mathrm{Cr} \quad \mathrm{P} \quad$ 2.3974(6)
$\mathrm{Cr} \quad \mathrm{C} 20 \quad 1.860(2)$

Cr	C 21	$1.889(2)$
Cr	C 22	$1.898(2)$
Cr	C 23	$1.907(2)$

$\mathrm{Cr} \quad \mathrm{C} 23 \quad 1.907(2)$

Cr	C24	$1.890(2)$
P	F	$1.5712(14)$
P	O 1	$1.5325(14)$

P C1 1.9422(18)
O2 C20 1.148(3)
O3 C21 1.144(2)
O4 C22 1.148(2)
O5 C23 1.143(2)
O6 C24 1.147(2)
C1 C2 1.538(2)
C1 C8 1.537(2)
C1 C14 1.539(2)
C2 C3 1.396(3)
C2 C7 1.390(2)
C3 C4 1.386(3)
C4 C5 1.383(3)
C5 C6 1.386(3)
C6 C7 1.388(3)
C8 C9 1.399(3)
C8 C13 1.399(3)
C9 C10 1.397(3)
C10 C11 1.379(3)
C11 C12 1.388(3)
${ }^{1} 2-X, 1-Y, 1-Z$

Table 3 Bond Angles for 75.

Atom Atom Atom			Angle l°
C 20	Cr	P	$174.69(6)$
C 20	Cr	C 21	$92.09(8)$
C 20	Cr	C 22	$86.24(9)$
C 20	Cr	C 23	$93.01(8)$
C 20	Cr	C 24	$88.54(9)$
C 21	Cr	P	$88.64(6)$
C 21	Cr	C 22	$87.83(8)$
C 21	Cr	C 23	$174.48(9)$
C 21	Cr	C 24	$88.62(9)$

Atom Atom		Length/A
C12	C13	$1.387(3)$
C14	C15	$1.399(3)$
C14	C19	$1.396(3)$
C15	C16	$1.390(3)$
C16	C17	$1.379(3)$
C17	C18	$1.386(3)$
C18	C19	$1.391(3)$
N	C25	$1.524(2)$
N	C29	$1.520(2)$
N	C33	$1.518(2)$
N	C37	$1.520(2)$
C25	C26	$1.521(3)$
C26	C27	$1.530(3)$
C27	C28	$1.522(3)$
C29	C30	$1.524(3)$
C30	C31	$1.523(3)$
C31	C32	$1.528(3)$
C33	C34	$1.525(3)$
C34	C35	$1.527(3)$
C35	C36	$1.524(3)$
C37	C38	$1.527(3)$
C38	C39	$1.525(3)$
C39	C40	$1.526(3)$
C41	C42	$1.372(4)$
C41	C43	$1.383(4)$
C42	C43	$1.382(4)$
C43	C411	$1.384(4)$

C22	Cr	P	99.05(6)	C16	C17	C18	119.37(19)
C22	Cr	C23	94.59(9)	C17	C18	C19	120.66(19)
C23	Cr	P	86.08(6)	C18	C19	C14	120.75(18)
C24	Cr	P	86.23(6)	O2	C20	Cr	179.08(19)
C24	Cr	C22	173.57(8)	O3	C21	Cr	178.38(19)
C24	Cr	C23	89.42(9)	O4	C22	Cr	171.96(16)
F	P	Cr	108.53(5)	O5	C23	Cr	176.77(19)
F	P	C1	99.76(7)	O6	C24	Cr	176.33(18)
O1	P	Cr	113.50(5)	C29	N	C25	111.29(14)
01	P	F	107.02(8)	C33	N	C25	108.61(14)
O1	P	C1	103.65(7)	C33	N	C29	109.12(14)
C1	P	Cr	122.72(6)	C33	N	C37	111.23(14)
C2	C1	P	109.49(11)	C37	N	C25	108.28(14)
C2	C1	C14	109.15(14)	C37	N	C29	108.33(14)
C8	C1	P	108.06(11)	C26	C25	N	115.96(15)
C8	C1	C2	110.08(14)	C25	C26	C27	109.48(17)
C8	C1	C14	110.67(14)	C28	C27	C26	112.08(19)
C14	C1	P	109.37(12)	N	C29	C30	116.24(15)
C3	C2	C1	121.13(16)	C31	C30	C29	109.12(15)
C7	C2	C1	121.14(16)	C30	C31	C32	112.52(16)
C7	C2	C3	117.39(17)	N	C33	C34	115.36(15)
C4	C3	C2	121.53(17)	C33	C34	C35	109.26(16)
C5	C4	C3	120.31(18)	C36	C35	C34	112.47(17)
C4	C5	C6	118.94(18)	N	C37	C38	115.41(15)
C5	C6	C7	120.51(18)	C39	C38	C37	109.53(15)
C6	C7	C2	121.31(17)	C38	C39	C40	112.11(16)
C9	C8	C1	122.45(17)	C42	C41	C43 ${ }^{1}$	119.7(2)
C9	C8	C13	117.85(17)	C41	C42	C43	120.3(2)
C13	C8	C1	119.70(16)	C42	C43	C41 ${ }^{1}$	119.9(2)
C10	C9	C8	120.68(19)				
${ }^{12-X}, 1-Y, 1-Z$							

Table 4 Torsion Angles for 75.

A	B	C D	Angle ${ }^{\circ}$	A	B C D	Angle/ ${ }^{\circ}$
P	C1	C2 C3	45.6(2)	C14	C1 C2 C3	165.34(16)
P	C1	C2 C7	-141.21(15)	C14	C1 C2 C7	-21.5(2)
P	C1	C8 C9	-124.30(16)	C14	C1 C8 C9	115.97(18)
P	C1	C8 C13	56.78(18)	C14	C1 C8 C13	-62.9(2)
P	C1	C14C15	-138.82(15)	C14	C15C16C17	-0.1(3)
P	C1	C14C19	47.3(2)	C15	C14C19C18	0.3(3)
C1	C2	C3 C4	173.09(17)	C15	C16C17C18	-0.1(3)
C1	C2	C7 C6	-172.77(17)	C16	C17C18C19	0.3(3)
C1	C8	C9 C10	-179.90(16)	C17	C18C19C14	-0.5(3)
C1	C8	C13C12	179.87(16)	C19	C14C15C16	0.0(3)
C1	C14	C15C16	-174.05(18)	N	C25 C26 C27	167.17(16)

C1	C14	C19C18	174.38(17)	N	C29 C30 C31	-173.58(16)
C2		C8 C9	-4.8(2)	N	C33 C34C35	-179.02(15)
C2	C1	C8 C13	176.31(15)	N	C37-38C39	157.14(15)
C2	C1	C14C15	101.41(19)	C25	N C29C30	-49.4(2)
C2	C1	C14C19	-72.4(2)	C25	N C33C34	179.24(15)
C2		C4 C5	-0.6(3)	C25	N C37C38	-70.62(19)
C3	C2	C7 C6	0.6(3)	C25	C26 C27C28	-178.56(18)
C3	C4	C5 C6	1.1 (3)	C29	N C25C26	-56.6(2)
C4	C5	C6 C7	-0.8(3)	C29	N C33C34	-59.3(2)
C5	C6	C7 C2	-0.1(3)	C29	N C37C38	168.57(15)
C7	C2	C3 C4	-0.3(3)	C29	C30 C31 C32	-172.40(16)
C8	C1	C2 C3	-73.0(2)	C33	N C25C26	63.6(2)
C8	C1	C2 C7	100.13(19)	C33	N C29C30	-169.18(15)
C8	C1	C14C15	-19.9(2)	C33	N C37C38	48.6(2)
C8	C1	C14C19	166.26(16)	C33	C34 C35C36	-178.53(17)
C8	C9	C10C11	0.4(3)	C37	N C25C26	-175.52(16)
C9		C13C12	0.9(3)	C37	N C29C30	69.58(19)
C9	C10	C11-12	0.3(3)	C37	N C33C34	60.2(2)
	OC11	C12C13	-0.4(3)	C37	C38C39C40	174.72(16)
	1 C 12	C13C8	-0.2(3)	C41	C42C43C41 ${ }^{1}$	0.1(4)
	3C8	C9 C10	-1.0(3)	C43	C41 C42C43	-0.2(4)

[^0]: MS (selected data $m / z(\%)): 732.1[M]^{+}$, $536.1 \quad\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}\right]^{+}, 452.1$ $\begin{array}{lllll}{\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}\right.} & -3 \mathrm{CO}]^{+}, & 212.1 & {\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}-3 \mathrm{CO}-\mathrm{W}(\mathrm{CO})_{2}\right]^{+},} & 136.1\end{array}$

