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Summary

Efficiently analyzing large amounts of high dimensional data derived from the simulation of industrial
products is a challenge that is confronted in this thesis. For this purpose, simulations are considered
as abstract objects and assumed to be living in lower dimensional space. The aim of this thesis is to
characterize and analyze these simulations, this is done by examining two different approaches. Firstly,
from the perspective of manifold learning using diffusion maps and demonstrating its application and
merits; the inherent assumption of manifold learning is that high dimensional data can be considered to
be located on a low dimensional abstract manifold. Unfortunately, this can not be verified in practical
applications as it would require the existence of several thousand datasets, where in reality only a few
hundred are available due to computational costs. To overcome these restrictions, a new way of cha-
racterizing the set of simulations is proposed where it is assumed that transformations send simulations
to other simulations. Under this assumption, the theoretical framework of shape spaces can be applied
wherein a quotient space of a pre-shape space (the space of simulations shapes) modulo a transforma-
tion group is used. It is propound to add into this setting, the construction of positive definite operators
that are assumed invariant to specific transformations. They are built using only one simulation and
as a consequence all other simulations can be projected to the eigen-basis of these operators. A new
representation of all simulations is thus obtained based on the projection coefficients in a very much ana-
logous way to the use of the Fourier transformation. The new representation is shown to be significantly
reduced, depending on the smoothness of the data.

The new representation of a simulation set allows the introduction of a new simulation data analysis
method whose properties will be detailed. The representation is also shown to improve the proper ortho-
gonal decomposition (POD), which is a method that reduces the expensive evaluation of one simulation
using a basis obtained from a few simulation snapshots. In the standard POD, the basis is very compact
and reduces the size of the problems significantly, nevertheless, it has a strong dependence on the chosen
snapshots in evaluating the basis. Our new approach overcomes this limitation and demonstrates this
using a numerical example.

Several extensions to this new approach are also included. The first one shows a method to treat
conformal transformations and demonstrate it with a given example. Next, an extension for computing
paths in the space of simulation shapes is also considered. Paths in shape space are defined as paths
along which a shape is transformed by preserving some (attribute) property such as an isometric one.
A path with a minimal length is called geodesic, in this context, this thesis shows that the evaluation
of geodesics in shape space can be considerably simplified using an invariant basis. An example for
planar shape spaces, demonstrating its capabilities will be presented by comparing it with a state of the
art approach for geodesic path computation.

Several industrial applications for time dependent datasets from engineering simulations are provided
to demonstrate the usefulness of the method and put forward several research directions and possible
new applications.
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CHAPTER 1

Introduction

Mathematics for Demanding Applications

Mathematics can be so astonishing and invaluable in confronting the many challenges involved in deal-
ing with demanding applications as they provide an array of perspectives whose resources appear to
be inexhaustible. Thus we will endeavor to convince the reader, of how maths can be applied to solve
time consuming challenges by demonstrating and presenting one example. The original motivation was
brought about by the restrictions involved in the analysis of thousands of simulations. Simulations are
an essential tool in the development and improvement of new industrial products and are obtained dur-
ing the virtual product development process. They are numerical solutions of mathematical models of
physical processes such as structural deformation, vibrations or heat exchange. Specialized software
tools are used to build extremely detailed models of a product defined on a 3D mesh. These models are
then numerically solved using high-performance computer clusters.

A simulation of many product variants (a bundle) that implements specific geometrical changes, ma-
terial parameters or load cases can thus be completed in a relatively short time. These changes are
made by engineers in order to satisfy the functional constraints of the product as well as to fulfill safety
regulations. This all contrasts with the time consuming decision process involved in realizing and eval-
uating those changes, since they are based on engineering judgment of complex 3D simulations; a very
detailed mesh of the orders of million of nodes and elements evaluated at several hundred time steps,
is a common representation of one simulation. Post-processing tools that actually visualize the model
behavior or evaluate meta-data from one simulation are used in such evaluations. The timely develop-
ment of new products as well as a lack of adequate post-processing tools for the evaluation of many
simulations, impose enormous pressure on industries aiming for shorter development phases thus creat-
ing a serious bottleneck situation in the product development. The need to find ways of speeding up the
analysis capabilities for the industry is, therefore, of the essence. To address these issues we use geo-
metrical approaches which are enhanced by theoretical principles dealing with idealized spaces beyond
Euclidean geometry. The principal assumption of data analysis methods, inspired by those principles,
is that a high-dimensional dataset has a much lower intrinsic dimensionality and that ways can be found
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1 Introduction

to identify and to represent such low dimensional structures. Use of geometrical approaches has already
proved to provide ground breaking methods both for analyzing data in image processing; in medicine
with many sound research results in those areas.

One simulation has a dimension which is of the order of the number of nodes times the number of
time steps as given by the numerical discretization. That is of the order of several millions. Fortunately,
in many cases, an intrinsic dimension is linked to each data set which is much lower; a low dimensional
space can then be assumed to contain simulations as objects within this space. Research using this
approach for data derived from industrial processes is scarcer than in other scientific disciplines. Our
goal is to make use of mathematical principles and deal with ways of characterizing simulation data sets
in lower dimensions to develop efficient data analysis methods.

Related Efforts

There are several related research procedures for the analysis of data from engineering simulations. A
common approach for the evaluation of several simulations is the so-called sensitivity analysis. In its
simplest form, one input variable is varied at a time, scalar output quantities of interest are evaluated
for a few simulation results and sensitivity is measured by linear regression. Extensions of the approach
are available in several ways, in particular in the form of response surface approaches [60], where the
most relevant quantities of interest are trained as fitted functions of the input parameters, based on the
results of a few numerical simulations. The underlying assumption is that the information content of
all simulations can be concentrated in the scalar quantities of interest. This is also the major drawback
of this approach, as it assumes that complex 3D overall behavior of the simulations can be reduced to
simple scalar quantities. In contrast to sensitivity analysis we aim at looking at the data in more detail
and work with the 3D simulation data. With this focus we group research efforts that deal directly with
simulation data adding them to the category of machine learning and other research efforts that are, so
far, not directly related to the analysis of simulations but are certainly relevant and should be considered.
This includes the analysis of 3D shape geometry, harmonic analysis on graphs and shape space analysis
that, in our opinion, play an important role in the methods discussed in this thesis.

Machine Learning

In the area of analysis of simulation bundles, several recent results that use dimensionality reduction
are available. The principal assumption is the existence of a low dimensional manifold that represents a
simulation bundle and one process that "learns" it from the available data.

One of the first studies analyzing engineering data from full numerical simulations was [Ackermann
et al., 2008], where the authors used principal component analysis (PCA) for detecting important para-
meters from nonlinear finite element simulations. Car crash simulations were analyzed in [Mei and
Thole, 2008] using clustering with a local distance measure. Regions of similar deformation behavior
were identified and evaluated with this approach. The PCA has also been used in [Thole et al., 2010] for
a group of simulations where some parameters were changed; the approach uses the first eigenvectors
of the covariance matrix of all given simulations as deformation modes.
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Methods based on the PCA are known to be efficient in many cases if the data variability is well reflec-
ted by the available data. The eigenvector basis from the PCA reflects those changes in an optimal way
and uses it to show individual deformation modes which in turn are used for extrapolating new virtual
simulations to show trends without calculating new time consuming simulations. While linear methods,
based on the singular value decomposition (SVD), such as the PCA, have proven to be successful for
industrial applications, it is nevertheless, known that if nonlinear correlations are present in the data, the
use of PCA is not optimal, e.g. [Lee and Verleysen, 2007]. In [Bohn et al., 2013] several methods from
machine learning have been used in the analysis of crash simulations. A pre-processing step using either
k-means or spectral clustering reduced the original big sized problem to several clusters, which can be
analyzed separately using local linear approximation based on tangent space estimation [Zhang et al.,
2011], principal manifold learning with sparse grids [Feuersänger and Griebel, 2009], and diffusion
maps [Coifman and Lafon, 2006]. In that study, good reconstruction capabilities using the nonlinear
principal manifold approach was shown, as well as the detection of principal effects. In addition, a low
dimensional representation of the simulations obtained using diffusion maps were shown to correlate
with specific input variables.

In [Iza Teran, 2013] the application of diffusion maps in the analysis of engineering data in crash
simulation were shown. Examples from vibration analysis and metal forming where also included. Fur-
thermore, it has been shown that from a random variation of several input variables, the most important
ones can be identified using clusters in a low dimensional representation.

We also mention recent efforts in machine learning to construct data-driven models for physical sys-
tems that incorporate domain knowledge exploiting invariance properties of such systems [Ling et al.,
2016] or learn it from training data using deep convolutional neural networks [Farfade et al., 2015].
Those studies have shown the advantages and importance of using invariance properties to design more
efficient methods for data analysis or for constructing models for physical systems.

Taking these research studies into account, one can observe that even if good progress has been
achieved, there is still a need to develop methods that improve the analysis capabilities especially in the
presence of nonlinear relationships in the simulation data.

Related Research

Analysis of 3D Geometry

The analysis of 3D shapes in computer graphics is an important field involving many links to our
research study. In the area of 3D shape analysis, objects are represented discretely through a sur-
face mesh embedded in R3. A number of methods have been developed for pose independent shape
classification [Lai et al., 2010], other applications include shape retrieval [Reuter et al., 2006], shape
segmentation [Reuter et al., 2009], invariant mesh representation [Lipman et al., 2005], and compres-
sion [Ben-chen and Gotsman, 2005], to name but a few. Many of these applications make use of the
Laplace-Beltrami operator, a generalization of the Laplace operator for surfaces. There are also several
works which use so called spectral descriptors like the heat kernel signature [Sun et al., 2009] and the
wave kernel signature [Aubry et al., 2011]. They are based on the calculation of features that requires
the calculation of the Laplace-Beltrami operator or the Schrödinger equation for each shape. This has
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1 Introduction

found applications chiefly for pose independent processing, which is a particular requirement in 3D
graphics for shape retrieval from archives and shape correspondence in the film industry. Pose changes
in these applications are assumed to be isometric, i.e. geodesic distances in the shape are preserved. In
this context, a method will not ideally distinguish between shapes with pose changes. By the way, this
contrasts with what we would like to achieve, namely to distinguish between two isometric shapes since
they are the result of a simulation with different input parameters.

We also mention [Ovsjanikov et al., 2012], where 3D shapes are compared based on the assumption
of the existence of a-priori known transformation that morphs one shape into another. While this last
approach is linked to ours, it is substantially different since it describes a shape using features which are
then implemented for classification or pose independent shape matching.

Harmonic Analysis on Graphs

As will be seen, our approach is based on finding a common orthogonal basis representation for sim-
ulations defined on a mesh. In addition a mesh is a particular representation of a graph. Therefore
developments in this area are relevant to our work. Wavelets on graphs [Coifman and Maggioni,
2006], [Hammond et al., 2011] and Treelets [Lee et al., 2008] can be used to find orthogonal multi-scale
representations on graphs. Treelets, in contrast to wavelets can be used in cases where the functions to
be represented are non-smooth. In all of these approaches, one construct from the data specific ortho-
gonal basis that are then effectively used to represent the data in a sparse way with great advantages for
classification tasks or further processing. Significant progress has been achieved in this area. Also more
recent approaches [Thanou et al., 2014] use dictionaries as frames, they are representations allowing
redundancies as opposed to orthogonal ones. The approach can represent datasets defined on graphs
very sparsely.

On the theoretical side, important results [Auscher and Hyt 2013] have been achieved in ways of
extending harmonic analysis on graphs. In this work, harmonic analysis on spaces of homogeneous
type have been analyzed. These spaces are defined as ones where a quasi-metric is defined. Using it,
meaningful notions of coarse parts and details of functions defined on a graph, can be studied.

Shape Space Analysis

In statistical shape analysis the idea is to consider geometrical information, in most of the cases as
landmark points, and calculate some statistics on it such as finding a mean shape which also means
eliminating location, scale and rotational effects. Mathematically speaking if those effects are elimina-
ted, one can define so called homogeneous spaces or quotient spaces where the element of this space
are actually equivalent classes which fulfill a specific property (for example being translation invariant).
Actually this is the way differential geometry deals with abstract spaces and even extends the concept
of differentiability into such spaces. Differential geometry is the study of invariant abstract objects with
a mathematical structure. Transformations are studied abstractly using groups which can be given a
differential structure (Lie-groups) under certain conditions. Group theory for the analysis of shape goes
back to Felix Klein’s Erlangen program that proclaims group theory to be the organizing principle of
geometry. In simple words the idea is that, if we start with one bigger space, lets say a manifold one, we
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can take a subset of this space, made of elements such that a specific condition or invariance property is
fulfilled. This subset forms a new space, a so called quotient space. The condition is actually expressed
through the group action and if this is a Lie-group, then we have again a manifold with a geometrical
structure dictated by the group action.

In the area of statistical shape analysis, statistics on shape manifolds, e.g. intrinsic and extrinsic
means, are studied. Started by the work of Kendall [Kendall et al., 1999], this is a very active research
area, recent work can be found in [Srivastava et al., 2005,Fletcher and Joshi, 2007], as well as in [Huck-
emann et al., 2010], [Rumpf and Wirth, 2011,Burghard et al., 2013] and references therein. Spaces with
different structures, dependent on the chosen group action, can be created in shape space analysis. Spe-
cific manifold structures of the quotient space are assumed and are used. For example the so called 2D
Kendall’s spaces [Kendall et al., 1999] which are generally defined as quotient spaces of landmarks over
the orthogonal group. Dealing with Kendall spaces with landmarks in 3D space is more complicated,
since the action of the group is not free and the quotient space is no longer a manifold. A fundamental
difference to methods applied in manifold learning is that in shape analysis a manifold structure of the
shape space is assumed to be known and is thus kept fixed. Additionally, we would like to mention
the mathematical work in the area of Riemannian geometries for plane curves and surfaces [Michor
and Mumford, 2006, Bauer et al., 2011], those papers, and several others referenced therein, highlight
the way to the definition of an abstract mathematical setting for those spaces that can be used for the
analysis of the space of simulations.

Characterizing and Analyzing Simulation Datasets

Simulations are numerical solutions of differential equations on a discrete domain. From a mathematical
point of view, they are abstract objects assumed living in a space which we would like to characterize.
We have a set of simulations for which some parameters have been changed such as material properties,
boundary or initial conditions or even the geometry of the domain. The goal, is to understand mathe-
matically the space of simulations as precisely as possible under such parameter variations, using a low
dimensional approximation of the original simulations.

The characterization of the space of simulations is done from two different perspectives in this thesis.
From the perspective of manifold learning, we use diffusion maps and show their advantages and limi-
tations for applications. Overcoming these limitations we will present a new way of characterizing the
space of simulations from the perspective of transformations that send simulations to other simulations
complemented by the theoretical framework of shape spaces. An invariant representation of a set of
simulations is found that on the one hand allows the derivation of a new data analysis method and on
the other hand enables an improvement of a reduced basis method specifically the proper orthogonal
decomposition (POD), a method to simplify the numerical solution of partial differential equations.

Learning a Manifold of Simulations

A simulation is obtained as the numerical solution of a partial differential equation on a very detailed
geometry, product variants correspond to changes in boundary conditions, material coefficients or local
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1 Introduction

geometrical changes. Having enough datasets, one can learn a space of all those simulations using me-
thods from machine learning. We use diffusion maps in this work and shown that its application already
delivers interesting results for applications. The method builds a similarity, positive definite, matrix L
of size m × m, where m refers to the number of simulations. In the continuous limit of infinite many
data samples and under certain conditions on the function defining the distance between simulations, the
matrix operator L converges to a continuous operator on a low dimensional manifold intrinsic to the high
dimensional data set. A representation of this space can be obtained using the principal eigenfunctions
up to some specific order that can be estimated. In the discrete case one uses the principal eigenvectors
to characterize this low dimensional space. Characterizing a simulations space with this method has the
limitation however that many datasets are not available, only a few hundred, due to the computational
cost. A second constraint of many manifold learning approaches, including diffusion maps is that the
reconstruction of datasets unavailable in a training set, is cumbersome. These limitations are confronted
under the assumption that simulations in a bundle set are obtained as transformations from a reference
simulation in a quotient space setting.

Symmetry and Simulation Shape Space

Addressing the limitations of some machine learning methods, we use the property that simulations are
actually numerical solutions of partial differential equations and therefore the principle of symmetry
applies, which means that solutions can be considered to be obtained as transformations of a reference
configuration. From this point of view a space of solutions can be obtained by defining so called orbits
(paths traced when a specific transformation is applied to a reference simulation) along which a specific
transformation occurs. The approach is inspired by symmetric principles to solve analytically differen-
tial equations. Unfortunately, such approaches cannot be extended in the case of numerical solutions
of differential equations, since the underlying complex partial differential equations are not available
and thus can only be solved numerically. We will show that under certain conditions the principles can
be applied to those cases, that is, we will endeavor to find the way to represent simulations in an orbit
space along a transformation group. This requires the use of the theoretical framework of shape spaces,
which implies that a space is posed as if created from a so called pre-shape space that contains the set
of all shapes modulo a transformation group. Let us mention the space of closed planar curves as an
example for illustration. The pre-shape space in this case is the space of all embeddings of the curves in
R2, a shape space in this case can be constructed by taking the quotient with respect to a transformation
such as rotations, translations or re-parameterizations of the curves. The quotient space is then made
of so called orbits that are the equivalence classes with respect to such transformations. According to
this, simulation shape space represents the space of simulations modulo a transformation group. Com-
plementary to this characterization, we will introduce the idea of constructing an orthogonal basis using
a positive definite operator that is invariant to the transformation group. The method builds from one
arbitrary simulation such an operator as a matrix Lb of size d × d, where d refers to the number of
nodes of the discretization. All simulations are thus projected onto this new basis. An equivalent repre-
sentation of all simulations in the new basis is achieved in this way. Use of this new representation is
observed to have several interesting properties. Firstly, the changes in the simulations are concentrated
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on fewer components of the orthogonal decomposition. This allows for a dimensionality reduction by
using the coefficients for those fewer components. Secondly, a separation of effects is enabled. That is,
for example, rotations, translations or different deformations modes for crash simulation, can be eval-
uated independently. Thirdly, the invariant basis is shown to be independent to parameter variations in
the simulation so that new simulations can avail of the same basis for its representation for different
parameter combinations. A method for analyzing many simulations efficiently in an industrial context
can be implemented based on these properties.

Basis of an Invariant Operator and the POD

As mentioned before, the differential equations that are solved in industrial applications are normally
not explicitly available. Nevertheless, for several physical processes it is already known which type of
mathematical models or their combinations are involved in a solver;

• In structural mechanics, the elasticity equations are involved.

• In crash simulations the plasticity equations.

• For fluid flow simulations, the most general model involves a nonlinear partial differential equa-
tion (PDE) namely a Navier-Stokes equation.

• For the transfer of heat we have the convection diffusion equations.

• For vibration analysis often linear eigenvalue problems coming from second order differential
equations are involved a so on.

For such cases, the use of a basis from an invariant operator is able to improve the method of reduced
basis methods (RBO). Specifically, we concentrated on an extension to the proper orthogonal decom-
position (POD). Given a PDE model together with a set of parameters and initial/boundary conditions,
the objective is to find a reduced basis representation of a set of simulations. Specifically by using
so called snapshots of a set of simulations for specific parameter combinations, the proper orthogonal
decomposition (POD) constructs an orthogonal basis with the property that the simulations, have been
attributed with, are represented under this new basis using very few basis components. Compared with
the size of the simulation or the number of parameters that are varied, a strong dimensionality reduction
is achieved. The focus of reduced basis methods of this type is the decomposition in linear subspaces
of lower dimension. Projecting the simulations onto this orthogonal basis allows us to obtain an equi-
valent low dimensional representation of the high dimensional simulations. A simplification of the PDE
by means of a Galerkin projection along the reduced basis is obtained. Unfortunately; the basis has a
strong dependence on the chosen snapshots so that if the input parameter of the simulation changes, the
basis will not be able to represent the new variations and therefore expensive simulations have to be
performed to evaluate a new basis. In this thesis we propose to use the basis obtained from an invariant
operator into the Galerkin projection, instead of the standard POD basis. It turns out that, the new basis
allows for input parameter changes without the need to recompute a new basis.
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Additional uses of the New Approach

We propose several other uses of the new concept developed in this thesis; an example of extending the
use of invariant operators to other types of transformations has been developed. The specific example
shows a way to consider conformal transformations.

The use of an invariant basis is also shown to enable the easy construction of paths in shape space.
Starting from an initial and a final shape, a sequence of shapes can be evaluated along a path. The
evaluation of minimal paths or geodesics in shape space is a research area where many efforts have been
made to speed up its expensive computation. Using an invariant basis we are now able to show examples
for planar shapes where such geodesic paths can be computed very easily and rapidly.

Contributions of our Research

The principal contributions of this thesis can be summarized as follows.

• We have shown the successful application of diffusion maps for the analysis of simulation data-
sets, highlighting capabilities and limitations. To evaluate its use, industrial application examples
have been analyzed.

• A main contribution is a new method for the analysis of simulation datasets, based on a new
mathematical characterization of such datasets. The approach can be interpreted as a method
to estimate group actions on datasets using a link, not explored to our knowledge in this area,
between an invariant space and an underlying positive definite operator from which an invariant
basis is computed. A kind of dimensionality reduction for all simulations can be obtained along
the different components of the orthogonal decomposition. In addition to having a low dimen-
sional representation of a simulation bundle, we have also shown how a separation of effects such
as rotations, translations or specific deformations can be obtained. Using such an effect separa-
tion, we have been able to construct so called synthetic or virtual simulations that are not obtained
from expensive finite element computations. This separation of effects could have very important
engineering applications.

• The presented new approach makes use of basis invariant to certain transformations. Using them
we have proposed a new way of carrying out the proper orthogonal decomposition (POD) in the
context of reduced basis representations. An exploration of the effectiveness of the new approach
in the case of a nonlinear convection diffusion equation has been shown. A large range of para-
meter changes is used along which, the character of the equation is modified from a diffusion
dominated to convection dominated one. The problem described is one of the most challenging
in the context of reduced basis methods.

• An extension of the invariant basis approach consists on an experimental exploration of the ap-
plicability of the new methodology for evaluating geodesics paths in shape space. An example in
planar shapes compares the new approach with a state-of-the-art method of geodesics calculation.
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• We have proposed and shown how to include conformal invariant transformations, extending the
case of isometric ones in a given example.

• A link of the new approach using invariant operators to analytical solution techniques, specifi-
cally to a Lie-group method has been demonstrated. An example of the solution of an ordinary
differential equation for varying initial conditions is used to demonstrate it.

• In using the new approach as well as diffusion maps, detailed analysis of several industrial datasets
has also been achieved.

• Finally, we have highlighted several extensions of the ideas and we have identified open research
questions.

Structure of the Thesis

This thesis is structured in the following way. Chapter 2 provides an overview of what simulation
bundles are from a mathematical and also from the application point of view. Chapter 3 consists of
mathematical definitions and concepts that are used for treating simulations as low dimensional manifold
in the context of diffusion maps. This chapter provides also background information that is used further
in Chapter 5. Chapter 4 presents an overview of nonlinear manifold learning approaches. The method of
diffusion maps is explained including how to use it for the analysis of simulation bundles. Its properties
and its limitations for this application are explained . Chapter 5 introduces the abstract spaces we
considered for introducing the next chapter; a new approach for the analysis of simulations. Quotient
spaces under a group action and its Riemannian structure are considered. Also an overview of how
geodesics in a quotient space are calculated is included as well as some notions about representation
theory.

Chapter 6 characterizes the space of simulations as quotient space over isometric transformations. We
further propose a way to represent transformations group actions by means of invariant operators and its
eigenfunctions including an analysis of the discrete setting for two of them. The numerical evaluation
of the operators is described and a discussion about the spectral approximation properties is included.

Chapter 7 introduces the new methodology for the analysis of simulations bundles, including its
properties.

Chapter 8 propose an extension of reduced basis methods in which the basis is replaced by an invari-
ant basis. An example for a nonlinear 1D partial differential equation (PDE) solved, using a Galerkin
approximation for a range of parameters is included for comparison to the proper orthogonal decom-
position standard approach.

Chapter 9 describes several extensions of the new method, an extension of the new approach for
conformal transformations is included. How to calculate orbit paths and a comparison with geodesic
paths in planar shapes is also included.

Chapter 10 describes several industrial applications. First an application of diffusion maps is de-
scribed in order to illustrate it as a comparison method for the new approach, then several applications
of the new method are included for vibration simulation and crash simulation comparing it with diffusion
maps if appropriate.
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1 Introduction

Chapter 11 summarizes this research study highlighting several open problems in different areas and
applications scenarios.
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CHAPTER 2

Simulations

In this chapter we will describe the type of data we are interested in analyzing as well as how simulations
are applied in an industrial environment. An important aspect to mention is that, in practice, we are
dealing with a specific mathematical model of a product with boundary and initial conditions and that
in the process of designing it, some physical parameters have been changed.

2.1 Simulations as Solutions of Partial Differential Equations

Let us use a specific model for clarifying the setting. Consider the following partial differential equation
(PDE) which contains some physical parameters that can be changed,

−div(q · ∇u) + u · ∇u +
∂u
∂t

= 0 in Ω

u = gp on Γp p = 1, . . . , k

q∇ · n = 0 on Γ2,

the parameters are q and the values at the boundary gp. For this example there are k + 1 parameters
with parameter domain P ∈ Rk+1. The set of parameters can be denoted by µµµ ∈ P. This is a simplified
nonlinear model of a quantity u that changes its character from diffusion to convection depending on
the value of q and in addition contains parameter dependent boundary conditions. The solution u can be
seen as a map u : P → V that to any µµµ ∈ P associates the solution u(µµµ) belonging to a suitable functional
space V .

In a virtual product development environment, this model represents a physical process described by
the quantity u. Examples of it are temperature, velocity, strain and so on. Engineers normally do not use
the quantity u directly for industrial product decisions, but a derived quantity evaluated on part of the
domain Ωobs or on the boundary Γ. An example of such derived quantities are the following integrals,

z1 =

∫
Ωobs

u(µµµ)dΩ, z2 =

∫
Γ

u(µµµ)dΓ,
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this quantities are actually the ones used for engineering decisions or as a part of an optimization over
the parameters or in a control system.

A further analysis goal in the product development is the parameter identification. That is the PDE
parameters are varied until the solutions approximate, as accurate as possible, some real measurements
from an experimental setup.

We describe the most general setting, the presentation from [Quarteroni et al., 2015] is followed
closely here. In general abstract form, a solution of a PDE representing a mathematical model is sought.
It can be written as: given µµµ ∈ P, find u(µ) ∈ V such that

G(u(µµµ), µµµ) = 0 ∈ V ′, (2.1.1)

where G : V × P → V ′ is a parametrized mapping representing the nonlinear PDE.

Taking all solutions for all available parameters, one can talk about the set of solutions,

ϕ(P) =
{
u(µµµ) ∈ V : µµµ ∈ P ⊂ Rp} , (2.1.2)

where ϕ : P → V, µµµ 7→ u(µµµ).

For solving each individual PDE, it is convenient to use the variational formulation. This involves
testing the model equations by so called test functions, so that following problem is solved instead

g(u(µµµ); v;µµµ) = 0 ∀v ∈ V, (2.1.3)

with g(.; .;µµµ) : V × V → R being defined by g(w; v;µµµ) = 〈G(w;µµµ), v〉 ∀w, v ∈ V . It is assumed that
the parametrized nonlinear problem is well posed (see [Quarteroni et al., 2015] for details about the
conditions) so that we can write the partial Fréchet derivative of g(z, .;µµµ) with respect to u at z as

dg[z](w; v;µµµ) = 〈DuG(z;µµµ)w, v〉 ∀v, w ∈ V,

whereby the mapping G is assumed to be continuously differentiable with partial Fréchet derivatives
DuG(z, µµµ) : V → V ′ and DµµµG(z, µµµ) : P → V ′.

2.1.1 Fidelity Models

To solve numerically the model 2.1.3 involves the use of an approximation on a suitable finite dimen-
sional subspace Vh of V . The so called fidelity model corresponding to 2.1.3 can be written as, find
uh(µµµ) such that

g(uh(µµµ); vh;µµµ) = 0 ∀vh ∈ Vh,

conditions for the discrete problem to be well posed can also be set (see [Quarteroni et al., 2015] for
details). Notice that to solve the nonlinear problem, one has to solve iteratively a linearized problem.
This is achieved through the use of Newton iterations, given µµµ ∈ P and an initial guess u0

h(µµµ) ∈ Vh, for
k = 0, 1, . . . until convergence, solve for δuh ∈ Vh using

dg[uk
h(µµµ)](δuh, vh;µµµ) = −g(uk

h(µµµ); vh;µµµ) ∀vh ∈ Vh
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2.1 Simulations as Solutions of Partial Differential Equations

and inserting into uk+1
h = uk

h + δuh.
Introducing a finite dimensional approximation uh(µµµ) =

∑Nh
j=1 u j

hB
j involves the use of a basis B j for

Vh. This basis is chosen in different ways but normally in industrial problems, the basis is given by
linear/nonlinear functions with compact support. A very large number of basis functions, of the order
of the number of elements, is required to achieve a given accuracy. As for the iterations in the Newton
method, one has to solve correspondingly, very large linear systems at each iteration.

Finite Element Spaces

For industrial problems the finite element method is the de facto high fidelity approximation technique,
so we will review here the principal aspects of the method.

Definition 2.1.1. Let Ω be an open set of Rd and k be a positive integer. A Sobolev space of order k on
Ω is the space of all functions f of L2(Ω) whose derivatives up to order k belong to L2(Ω):

Hk(Ω) =
{
f ∈ L2(Ω) : Dααα f ∈ L2(Ω) ∀ααα : |ααα| ≤ k

}
.

Here ααα = (α1, α2, . . . , αn) denote an n-tuple of non-negative integers so that Dααα f (xxx) =
∂|ααα| f (xxx)

∂xα1
1 ∂xα2

2 ...∂xαn
n

,

|ααα| = α1 + α2 + ... + αn.

In order to define approximations, that depends on a parameter h, a triangulation is defined for the
domain Ω. For example in many industrial problems in product design, domains are surfaces embedded
in R3. The triangulation is then a triangular mesh Th, covering the surface and consisting of non-
overlapping triangles K. The diameter of K is defined as hK and h is the maximum value of hK ,K ∈ Th.

A well known strategy to define finite element spaces is to consider continuous functions vh that are
polynomials of degree r on the single triangles, that is to define the space

Xr
h =

{
vh ∈ C0(Ω̄) : vh|K ∈ Pr ∀K ∈ Th

}
, r = 1, 2, . . . ,

and is also possible to define Vh = Xr
h ∩ V . Using element-wise (for each triangle) polynomials makes

the calculation of the discretization terms easy. An arbitrary element of Vh is expressed using a basis that
has non-empty intersections only with a small number of other functions on the basis, as a consequence
a very sparse matrix is obtained.

In order to give an idea about the role of the discretization size of the mesh hK in the approximation
to the original PDE, consider a linear elliptic model, whose variational formulation can be written as:
find u ∈ V such that

a(u, v) = fr(v) ∀v ∈ V,

a(u, v) is a bilinear form and we use a finite element discretization of this continuous problem defined
as: find uh ∈ Vh such that

a(uh, vh) = fr(vh) ∀vh ∈ Vh.

In this setting the following error estimate can be defined (see [Quarteroni et al., 2015] for details).

Theorem 2.1.2. Let u ∈ V be the exact solution of the above variational problem and let uh ∈ Vh be its
finite element approximation of degree r, where Vh = Xr

h ∪ V. Then if u ∈ V ∩ Hr+1(Ω), the following a
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priori error estimates hold:

‖u − uh‖H1(Ω) ≤
M
α

C

∑
K∈T

h2r
K |u|

2
Hr+1(K)

1/2

,

‖u − uh‖H1(Ω) ≤
M
α

Chr |u|Hr+1(Ω),

C being a constant independent of h and u.

Note that in order to increase the accuracy, one can refine the size of the mesh or use finite elements
of a higher degree. In industrial practice one uses polynomials of lower degree (up to 3) and a very fine
mesh. For example an industrial car model contains several million nodes and elements. It is clear that
handling many of these simulations for many parameter variations is a formidable task. The need for
data reduction methods is of the essence.

2.1.2 Simulation Bundle and PDE Solution Space

A simulation bundle, as we have treated in this thesis, is a set of simulations usually underlying the same
geometry and obtained as part of the product development cycle. Input parameters such as material
properties or load conditions are changed, generating a simulation for each one of this input changes.

Formally a simulation bundle is considered as a discrete subset of a larger space that is obtained by
considering all parameter variations µµµ ∈ P. That is, we assume there is a PDE model which is solved
to obtain a simulation, then the so called PDE solution manifold consists of all possible simulations,
written as

ϕ(P) =
{
u(µµµ) ∈ V : µµµ ∈ P ⊂ Rp} ,

where ϕ : P → V, µµµ 7→ u(µµµ) is the exact solution map. The corresponding high fidelity discrete
solution manifold is

ϕh(P) = {uh(µµµ) ∈ Vh : µµµ ∈ P} ⊂ Vh,

Note that calling it a solution manifold as is usually done in the PDE community is not justified from a
mathematical point of view. Nevertheless we will see in section 6.1, that in some cases we can talk about
a manifold. The high fidelity discrete solution manifold will be our study object along the following
chapters, where we will consider methods to characterize it for data analysis purposes.

The analysis of the effect of parameter changes on the solution of a partial differential equation is
cumbersome due to the size of the model, of the order of several millions degrees of freedom. In order
to reduce them, so called reduced basis methods have been introduced.

2.1.3 Reduced Basis Methods

In order to be able to handle large simulations under the influence of many parameters, one needs a
way to reduce the dimensionality of the data sets. Here one should distinguish two cases: firstly pure
data based methods that include linear (PCA) as well as nonlinear dimension reduction methods and
secondly the case where in addition to the solutions of the PDE (simulations), one knows or has access
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2.1 Simulations as Solutions of Partial Differential Equations

to the governing partial differential equations. For this cases, so called reduced basis methods have been
developed.

The principle of reduced basis methods [Quarteroni et al., 2015] is based on the construction of
suitable projections over a subspace VN of Vh of reduced dimension N � Nh. The subspace is generated
from a set of snapshots corresponding to solutions of the high fidelity problem for a set of parameters.
One special way to do that is the proper orthogonal decomposition (POD) which is another way of
referring to the principal component analysis (PCA).

Formally, using the fidelity model,

〈G(uh(µµµ);µµµ), vh〉 = 0 ∀vh ∈ Vh, (2.1.4)

the reduced basis formulation consist in finding uN(µµµ) ∈ VN , by enforcing orthogonality of the residual
of 2.1.4 to N linearly independent functions of Vh that span a subspace WN of dimension N, i.e. find
uN(µµµ) ∈ Vn such that

〈G(uN(µµµ);µµµ), wN〉 = 0 ∀wN ∈ WN . (2.1.5)

Considering all parameter variations µµµ ∈ P, the general form of the solution set, the so called PDE
solution manifold, can be written as

ϕ(P) =
{
u(µµµ) ∈ V : µµµ ∈ P ⊂ Rp} ,

where ϕ : P → V, µµµ 7→ u(µµµ) is the exact solution map. The corresponding high fidelity discrete
solution manifold is

ϕh(P) = {uh(µµµ) ∈ Vh : µµµ ∈ P} ⊂ Vh,

the reduced basis approach tries to approximate the elements of ϕh by a linear global approximation
under the separable form

uN(x, µµµ) =

N∑
j=1

α j(µµµ)ζ j(x) ∈ VN ,

while keeping N as small as possible and satisfying

inf
v∈VN
‖uh(µµµ) − v‖V < ε for all µµµ ∈ P.

For computations one would like to know the decay rate at which N is achieved. This will depend on
the differentiability of the solution map with respect to the parameter, the number of parameters, as well
as the nature of the problem.

Finally note that once N has been found, solving 2.1.5 consists in solving a set of N nonlinear equa-
tions for every µµµ ∈ P. This is high problem dependent and involves a trade-off between accuracy
and computational complexity (since building the nonlinear reduced terms involves computations that
depends on the much bigger size Nh). In addition the reduced problem projected using the Galerkin
method is not necessarily well posed.
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The Proper Orthogonal Decomposition for PDE solutions

The POD (Proper Orthogonal Decomposition) is one of the most applied approaches not only for re-
ducing the dimensionality of the data set, but also in the context of reduced basis approximations. It is
a simple scheme that at the same time delivers very good results even in the presence of nonlinearities
provided the simulations snapshots adequately sample the parameter space.

Consider a set Ps =
{
µµµ1, µµµ2, ..., µµµns

}
of ns parameter samples and the corresponding snapshots{
uh(µµµ1), uh(µµµ2), ..., uh(µµµns)

}
,

obtained from the PDE discrete fidelity approximation. The snapshot matrix can be build as Ms =

[uuu1|...|uuuns], where the vectors uuui ∈ R
Nh , 1 ≤ i ≤ ns are given by uuu( j)

i = u( j)
h (µµµi), for 1 ≤ i ≤ ns and

1 ≤ j ≤ Nh.
Given the SVD decomposition of the matrix Ms = US VT , for any N ≤ ns, the POD basis of dimen-

sion N is defined as the set of the first N left singular vectors ζζζ1, ..., ζζζN of U. Explicitly this basis can be
written as

ζζζ j =
1
σ j

Msψψψ j 1 ≤ j ≤ N,

where σ j is obtained from S = diag(σ1, ..., σr) (σ1 ≥ σ2 ≥ σr, r ≤ min(Nh, ns)) and ψψψ j are obtained
from V = [ψψψ1|...|ψψψns].

By construction, the POD basis is orthogonal and it minimizes over all possible N−dimensional or-
thonormal basis, the sum of the errors of each snapshot vector uuui and its projection over the orthonormal
basis.

In industrial applications the POD has been successfully used and provides adequate solutions provided
the variations of a set of simulations is adequately described by the sampling set.

In the following section, we will concentrate on the application setting and what industrial simulations
are.

2.2 Simulations in the Product Development

For this thesis we have considered simulations as numerical solutions of differential equations and in
particular we deal with such solutions used in the design of industrial products. For the solution of such
differential equations, a numerical model is first defined which contains a geometry as a discretization of
a domain where the solution is to be found. The model also contains a way to define material parameters
as well as boundary and initial conditions used for the solution step.

Simulations are obtained during the virtual product development where mathematical models of phys-
ical processes are solved numerically. The models could have a very high level of geometric detail (see
figure 2.1 for a car model in crash simulation) that includes information about the materials characteriza-
tion. This is represented as a function and many times it is the result of a nonlinear regression evaluated
using real measurements. A model also contains information about connections elements to join struc-
tural components such as welding joints. In addition, the applied loads to the model are characterized
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as precisely as possible.

Bundles of simulations are generated by solving the PDE many times for specific load cases or
changes in material properties, geometry or connections. The way those changes are performed re-
quires engineering knowledge, it is an iterative time consuming process where the performance of the
model is improved in several steps. The final goal is to satisfy safety regulations but at the same time
fulfilling cost constraints and manufacture-ability.

Model examples are the equations of elasticity, plasticity, fluid dynamics, structural vibrations, heat
transport, flow in porous media, radiation transport, chemical transport an so on. They are in general
nonlinear, so that they can not be solved analytically except for very simple non application relevant
cases. A discretization of the geometrical domain is performed using lamped masses, the finite differ-
ence method, the finite element method, finite volume or free mesh methods. To give an example how
fine a standard geometric discretization can be, a mesh in car crash simulation is of the order of 3-4
million nodes with similar amount of elements whereas the one for fluid dynamics is of the order of
30 million nodes or more. Computing those models requires the use of a high performance computer
cluster that includes thousand of processors. In such clusters one can evaluate hundred variants of a
model overnight.

The evaluation of each model requires the use of 3D visualization software where the results of one
simulation are animated and/or evaluated according to the deformations, pressure, velocity, acceleration,
temperature and so on (see figure 2.1 for an example of the 3D visualization).

Figure 2.1: Simulation of car crash deformations.

In an industrial context, the process of model generation and evaluation of simulation bundles contains
several phases (see figure 2.2). Preprocessing, solving and post-processing. The process is used for
different types of so called disciplines in the car industry like frontal crash, lateral crash, or passengers
safety. In other industrial areas, different types of physical problems are involved like structural analysis,
vibration analysis or computational fluid dynamics including different load case variations.
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Figure 2.2: Schematic industrial product development process

2.2.1 Preprocessing

This phase starts with the CAD information about the car design, or with some modules defining several
components that it can be built up into a complex system. Material or component data has to be specified
and assigned as well as the imposed load cases and constraints and this is done through so called prepro-
cessing software that contains meshing routines that helps engineers in the creation of a finite element
mesh or routines that automatically configure several components into one calculable system. Also for
some models a division into multiple parts is necessary with required material information but also with
information about the type of connections between them ( as welding joints, kinematic joints and so on).
The type of loads and its distribution is also added to the model with the assistance of software tools.
This process is time consuming and the final goal is the creation of so called input-decks, the input files
for the solvers.

2.2.2 Solving

Once input files for the solvers are available, a batch process can be initiated on a computer cluster
where the solver is started. For crash simulation there are different solvers like Pamcrash, Lsdyna and
Radioss. For other applications such as structural mechanics there is Ansys or Abacus. For vibration the
most popular is MSC-Nastran. For fluid dynamics calculation Star-CD is used as well as OpenFoam.
These are just examples, there are also many others commercial software according to the application
involved.
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2.2.3 Post-processing

Once the solutions are obtained, an evaluation of the solved quantities is performed by the engineer,
this evaluation uses specially developed 3D visualization software that is used to show graphically,
time dependent deformations, temperature fields, stresses and so on. The level of detail allows for a
realistic modeling of specific processes that can also be animated in such post-processing software.
In addition to the visualization analysis, engineers make use of predefined special quantities evaluated
from simulations that are subject to legal regulations and are a part of a standardization. Examples from
such quantities are the HIC index (Head Injury Index) which evaluates the severity of deceleration on
the neck of a dummy (a simplified model of a human body) involved in a car crash. Another example is
the intrusion that consists on the evaluation of the deformations at critical points in a car structure (like
for example in the firewall) for a specific time step that corresponds to the maximal deformation time.
Based on such quantities, the actual design process takes place.

Predefined quantities evaluated in the post-processing step are scalar or vector quantities derived from
the simulation results, many of them are used as acceptance criteria for products in industry (like the
HIC index). Notice that, the use of post-processing quantities implies a reduction of the dimensionality
of the problem. The use of those quantities also allows a faster design evaluation since those are scalar or
vector quantities but with few components which are meant to replace the time consuming evaluation of
detailed geometrical deformations, velocities or accelerations. Nevertheless, how representative those
quantities are with respect to the simulations results is actually an open problem.

2.2.4 Simulation Data Management Systems

In car companies the multidisciplinary product development process is assisted by simulation data man-
agement systems (SDM) that are in charge of retrieval, versioning and administration of all models,
simulations, output quantities and evaluation reports. The product development process demands the
creation and evaluation of several thousand models in different productions phases; from concept design
up to detail evaluation and optimization. Model evaluation requires extensive engineering judgment and
is time intensive. Due to this complexity, car companies use, for all phases mentioned above, specially
developed simulation data management systems (SDM) in their product development that allows the
control of the type of changes involved in the different development phases, enabling a more rapid
model evaluation of best design practices.

In spite of the development of such systems, engineering processes demands more analysis capa-
bilities to achieve economical or safer designs or to being able to reuse previous model construction
strategies. An SDM system is not flexible in the sense that once the post-processing quantities are selec-
ted at specific time steps at certain fixed locations, the evaluation of those quantities in other positions
or at different time steps demand running all the simulations once more, since all results are not saved
for further analysis. More flexible SDM systems have to be developed that precisely allows for such,
on demand analysis, with reduced computing and storage costs. In the next section we would like to
characterize the requirements for such a system to cope with current demands or to enable new types of
efficient data analysis capabilities.
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2 Simulations

2.2.5 New Generation of Simulation Data Management Systems

A flexible and efficient SDM system should have the following features:

• use highly detailed simulation output results as objects for doing database requests or data ana-
lysis, instead of using simplified scalar quantities,

• extract simulation outputs or post-processing values at arbitrary time steps without having to run
all simulations again,

• predict intermediate time steps not available in the calculated simulations,

• compare simulation results from other designs which do not have the same geometry,

• learn from previous designs and be able to recover such information when needed.

A system with all the above mentioned features do not exists for the industry at the moment. There
are nevertheless intensive research that focuses on some of this features. Specially the use of so called
"Reduced Models" is today an essential tool in industry. One of the most used methods for finding
reduced models is the proper orthogonal decomposition (POD). The method is effective if, the snapshots
used to construct the basis cover all the parameter variations adequately. This is actually a difficult
task due to the presence of nonlinearities and bifurcations. There are also technological barriers at
various levels like data handling, storage and efficient access. Some features such as the prediction
of simulations at intermediate steps or learning from previous designs are still a big challenge for the
industry.

In this thesis we will approach precisely those challenges using mathematics and propose a new
analysis method that contributes to the development of new efficient engineering analysis methods and
efficient simulation data managament (SDM) systems.
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CHAPTER 3

Differential Geometry Notions

In this thesis, we would like to characterize the space of simulations as an abstract space and be able
to define a distance between those simulation objects. Inherent to this characterization is the notion of
geometry and we would like to think of simulations as abstract objects living in an abstract space where
we can also define a distance between them. In mathematics this can be done using the concept of a
manifold (the abstract space) with a metric (to being able to measure distances), further we need also
a generalization of differentiability and how to evaluate distances on such spaces. In mathematics dif-
ferential geometry enables precisely the geometrical characterization of a space of abstract objects. In
particular we will consider Riemannian geometry, which studies differentiable manifolds with a Rieman-
nian metric as a distance construct. A generalization of the treatment of spaces beyond the Euclidean
space is achieved in this way to general spaces that locally resemble Euclidean space.

The definitions and material in differential geometry given here are standard and can be found in any
book on this topic (e.g [do Carmo, 1992, Michor, 2008]).

3.1 Beyond the Euclidean Space

In 1854, Bernhard Riemann gave his professorship lecture in Göttingen with the difficult task of doing
this for an audience with no knowledge of his area of study (differential geometry), actually only Gauss
was aware of this work. So it was really challenging for him to start talking about the fact that the most
familiar concept known as Euclidean geometry, was just one of many possible types of geometries. Ac-
tually the concept of geometry itself could be made completely abstract meaning a relationship between
abstract objects where one can define a distance to locate them and quantify such relationships through
a metric. That approach let us define spaces with different types of objects so that, one can for example,
go beyond points in Euclidean space and define points that are for example images, in a space where
each point represents an image or perhaps more simply, to use a spherical space where two parallel lines
can be traced over the surface, they will cross at some point whereas in the euclidean case, they will
never cross each other. Differential geometry studies precisely such settings where abstract objects can
be represented in a space.
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3 Differential Geometry Notions

3.2 Differential Geometry

3.2.1 Manifolds and the Tangential Space

To build abstract spaces, first one needs to clarify what a topological space is. Imagine you have a set of
objectsM (images, solutions of pdes, musical scores and so on) and you would like to think of them as
elements of an abstract space. This can actually be done, if one can define a structure where subsets T
of your set satisfy so called mathematical axioms ( a rule or a statement that is accepted as true without
proof), namely: a) that the set X itself and the empty set are members of T , (b) that the intersection of
any finite number of sets in T is in T , and (c) that the union of any collection of sets in T is in T . The
sets in T fulfilling those axioms are called open sets. Certainly to continue describing such an abstract
space you need a separability property in order to be able to discern between elements of such space.
That is why one introduces a so called Hausdorff property that enables precisely that.

Definition 3.2.1. A topological space is called Hausdorff if for any two points p, q ∈ M, p , q, there
exists disjoint open sets Up and Uq such that p ∈ Up and q ∈ Uq with Up ∩ Uq = ∅.

To describe the open sets one needs a basis B of the topology defined as a collection of open sets in
T , such that every open set can be written as a countable union of elements of the basis. The last thing
that one needs to characterize an abstract space is to give it, at least locally, a Euclidean geometry. Just
think about the surface of the Earth, for us it looks flat (Euclidean) and this is approximately true only
locally.

Definition 3.2.2. An n-dimensional topological manifold is a topological space that fulfills:

• M is Hausdorff,

• M has a countable basis of the topology,

• M is locally homeomorph to Rn.

Defining abstract spaces in this way provides a completely general structure to work with, but you
still can define much more. After all, in Euclidean space the concept of derivative is very useful in
practice (calculate gradients, velocity, acceleration and so on), but is this possible in an abstract manifold
space?, well the answer turns out to be yes!. For doing that, one needs to define differentiability and a
way of doing that is by using the concept of local homeomorphisms. They imply the existence of local
mappings from the manifold to the Euclidean space and are more generally known as manifold charts.

Definition 3.2.3. LetM be a topological manifold and let f : M → R be continuous. Let (U, x), (V, y)
be charts around p ∈ M, then we can write,

f ◦ y−1 = ( f ◦ x−1)(x ◦ y−1)

In order to use a generalization of the concept of differentiability ofM, one needs the differentiability
of the charts composition f ◦ y−1
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3.2 Differential Geometry

Definition 3.2.4. Two charts (x,U) and (y,V) are called C∞−compatible if the chart composition

x ◦ x−1 : y(U ∩ V)→ x(U ∩ V)

is a C∞ diffeomorphism (a differentiable continuous mapping where the inverse is also differentiable).

In order to avoid the ambiguity of having a chart dependency by such a definition, one speaks about
an atlas of charts with the above property and from that, one can create a maximal atlas as the set
containing all such atlases. Thus one can define a differentiable manifold.

Definition 3.2.5. An n-dimensional differentiable manifold is an n-dimensional topological manifold
together with a maximal C∞ atlas.

Very useful in applications in addition to differentiability is the approximation of a differentiable
transformation between manifolds. In Euclidean space one can write formally that, given f : Rn → Rm

differentiable, the differential d f at x is a linear approximation of f using d fx = Jx( f ) with f (x + v) =

f (x)+d fx(v)+φ(v) and limv→0 φ(v)‖v‖ = 0 where Jx(v) is the Jacobi matrix from f , the partial derivatives
from f are the images of the basis vectors in Rn under d fx.

To introduce the same concept for an abstract manifold, one can define for each point p on the
manifold an abstract vector space TpM called the tangential space at p and the linear map d fp : TpM→

T f (p)N, the differential of f at p. As before in order to fully define a differential for a manifold, one
needs to introduce charts on p where such differentiability is defined. This is done through equivalent
classes. Two curves α, β : (−ε, ε)→M with α(0) = p = β(0) are called equivalent, α ∼ β if for one and
then for all charts (U, x) on p: ˙(x ◦ α)(0) = ˙(x ◦ β)(0), then one can define the tangential vectors on M at
p.

Definition 3.2.6. The tangential vector onM at point p ∈ M are the equivalent classes with respect to
∼ of curves inM through p. The tangential space fromM in p is the set of all such equivalent classes:

TpM = {α : (−ε, ε)→M differentiable, ε > 0, α(0) = p} / ∼ .

For the equivalent classes of a curve, one uses the notation [α] = α̇(0) = d
dt

∣∣∣
t=0 α(t). The disjunctive

union of all tangential spaces is called tangential bundle: TM :=
⋃

p∈M TpM.
Now the differential for the manifold is defined as

Definition 3.2.7. Let f : M → N be a differential map, then the differential of f in p is defined as
follows

d fp : TpM→ T f (p)N , [α] 7→ [ f ◦ α].

Definition 3.2.8. Let M, N be differentiable manifolds and f : M → N be a differentiable map
between them. The map f is a submersion at a point p ∈ M if its differential is a surjective map.

Notice that once a differential map can be defined, it is natural to ask how to define the space of
differentiable functions on a manifold. In the analogy to defining tangential space, one can define it
through equivalent classes.
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3 Differential Geometry Notions

Definition 3.2.9. Let f , h be differentiable functions defined on an open neighborhood U from p.
Equivalent classes from functions are defined through,

f ∼ h↔ ∃V ⊂ U with: V open, f|V = h|V

Definition 3.2.10. Germs of differentiable functions in p are equivalent classes with respect to the
above definition, so that C∞p (M) = space of germs in p

Definition 3.2.11. A derivation on C∞p (M) is a linear mapping v : C∞p (M)→ R with,

v([ f ][g]) = v([ f ])g(p) + f (p)v([g]).

The set of derivations on Cp(M) is denoted as Dp(M)

Definition 3.2.12. Let v ∈ TpM and let f ∈ C∞(M), the Lie derivative of f in the direction v is defined
as:

Lv( f ) = d fp(v) =
d
dt

∣∣∣∣∣
t=0

f (α(t)),

where α : (−ε, ε)→M is a smooth curve inM with α(0) = p and α̇(0) = v.

The tangential bundle is an example of a more general abstract object; called a vector bundle.

3.2.2 Vector Bundles, Vector Fields

Definition 3.2.13. Let E and B be differential manifolds and let π : E → B be a differentiable mapping.
A vector bundle is a triple (E, π, B) with:

• the mapping π is surjective

• there exists an open covering {Ui}i∈I from B and diffeomorphisms

hi : π−1(Ui)→ Ui × R
n

with

– hi(π−1(x)) = {x} × Rn, x ∈ Ui

– hi ◦ h j
−1 : (Ui ∩ U j) × Rn → (Ui ∩ U j) × Rn

Definition 3.2.14. A differentiable mapping s : B→ E is called section of a vector bundle if π◦ s = Id.

Definition 3.2.15. A vector field is a section in a tangential bundle and therefore a differentiable map-
ping X :M→ TM with

π(X(p)) = p

for all p ∈ M.

As defined, tangential vectors can be identified with derivations on function germs, in an analogous
way it is possible to identify vector fields with derivations on the space C∞(M) of smooth functions
on M. The identification is given by the Lie derivative. For a vector field X one write LX( f )(p) :=
d fp(Xp) = Xp( f ).

24



3.2 Differential Geometry

Definition 3.2.16. Let X, Y be vector fields onM, the Lie bracket [X,Y] is defined by L[X,Y] = LX ◦

LY − LY ◦ LX . The Lie derivative from Y to X is defined as LXY := [X,Y]

The space of vector fields over a manifoldM together with the Lie bracket is an infinite dimensional
Lie-alegebra.

Definition 3.2.17. Let f : M → N a diffeomorphism, the image of the vector field X under f is a vector
field on N defined through

( f∗X)q := d f f −1(q)(X f −1(q)).

Let X be a vector field onM and let (U, x) be a chart around p inM. X, restricted to U can be written
as:

X|U =

n∑
i=1

ai ·
∂

∂xi

for smooth functions ai : U → R, one search a smooth curves γ : (−ε, ε)→M with

• γ(0) = p

• γ̇(t) = Xγ(t) ∀t ∈ (−ε, ε).

Definition 3.2.18. A curve γ : (−ε, ε)→M is called integral curve of the vector field X through p if

• γ(0) = p

• γ̇(t) = Xγ(t) for all t ∈ (−ε, ε).

Theorem 3.2.19. For all p ∈ M there exists an interval Ip around zero and a uniquely defined curve
γp : Ip →M with

γp(0) = p and γ̇p(t) = Xγp(t), ∀t ∈ Ip

Theorem 3.2.20. For all p ∈ M there exists an open neighborhood U from p and an interval I around
zero, such that for all q ∈ U the curve γq on I is defined. The mapping

I × U →M, (t, q) 7→ γq(t)

is differentiable.

Definition 3.2.21. The mapping (t, q) 7→ γq(t) is called the local flow of the vector field X. The integral
curves of X are also called flow lines from X. The flow defines for small enough parameter t a local
mapping ϕt : U ⊂ M → M through ϕt(q) := γq(t).

Definition 3.2.22. The mappings ϕt are local diffeomorphisms and it fulfills

ϕt ◦ ϕs = ϕt+s

for all parameter t, s for which ϕt, ϕs, ϕt+s are defined. The set {ϕt} is called a 1-parameter group of
local diffeomorphisms.
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3 Differential Geometry Notions

Definition 3.2.23. A vector field along a curve γ : I → M is a smooth mapping X : I → T M with
X(t) ∈ Tγ(t)M for all t ∈ I. The space of all vector fields along γ is written as X(γ).

3.2.3 Covariant Derivative and Riemannian Metric

The covariant derivative is a way of specifying a derivative along vector fields of a manifold. Being able
to define them is important for defining paths of minimal length on a manifold as we will see.

Definition 3.2.24. A covariant derivative or connection from Y to X onM is a mapping,

∇ : X × X → X

where Y , X ∈ X with the following properties:

• ∇XY is C∞(M)-linear in X

• ∇XY is R-linear in Y

• ∇X( f · Y) = X( f ) · Y + f · ∇XY

Now we would like to describe infinitesimal changes of a vector field along a curve.

Theorem 3.2.25. LetM be a manifold with covariant derivative ∇, then there exists a unique mapping

∇

dt
: X(γ)→ X(γ)

with the following properties:

• ∇
dt is R-linear

• ∇
dt ( f · X) =

d f
dt · X + f · ∇dt X

• ∇
dt (Xγ) = ∇ ˙γ(t)X

the mapping describe the infinitesimal changes of X along γ.

Definition 3.2.26. The torsion of a connection ∇ on TM is defined as the mapping

T : X × X, (X,Y) 7→ ∇XY − ∇Y X − [X,Y].

A connection is called torsion free if T ≡ 0.

Working with manifolds, turns out to be very useful in practice if a metric can be defined on them.

Definition 3.2.27. Let Sym2TpM :=
{
b : TpM× TpM→ R | symmetric bilinear form

}
.

Definition 3.2.28. Let Sym2TM :=
⋃

p∈M Sym2TpM (a vector bundle overM).

Definition 3.2.29. A Riemannian metric on M is a smooth section g ∈ Γ(Sym2TM) with gp positive
definitive for all p ∈ M.
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3.2 Differential Geometry

Definition 3.2.30. Let (M, g) be a Riemannian manifold, a connection ∇ is called metric with respect
to g if for all vector fields X,Y ,Z ∈ X, the following is fulfilled

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ).

Theorem 3.2.31. On a Riemannian manifold there exist a uniquely defined connection that is torsion
free and metric. This connection is called Levi-Civita.

3.2.4 Geodesics and Laplace-Beltrami Operator on a Manifold

Once a covariant derivative along a curve can be defined, a geodesic on a manifold can be defined.
Notice that geodesics for a manifold generalizes the use of straight lines on the plane traveled at constant
speed.

Definition 3.2.32. A curve γ : I →M is called a geodesic if,

∇

dt
γ̇ = 0

Definition 3.2.33. Let γ : [a, b]→M be a smooth curve, then the length of γ is defined by

L[γ] =

∫ b

a
‖γ̇(t)‖dt ‖γ̇(t)‖ =

√
g(γ̇(t), γ̇(t))

the length of a piecewise smooth curve is the sum of the lengths of the smooth pieces. A Riemannian
metric define a distance on a manifold.

Definition 3.2.34. Let p, q ∈ M, the distance between p and q is defined through

d(p, q) := in f
{
L[γ] | γ : piecewise C∞ − curve from p to q

}
.

Geodesics are critical points of the function length L.

Theorem 3.2.35. Let γ : [a, b] → M be a curve parametrized by arc length, i.e. ‖γ̇‖ = 1 and let γs(t)
be a variation of γ i.e a smooth mapping

(−ε, ε) × [a, b]→M, (s, t) 7→ γs(t)

with γ0 = γ. Setting δ = ∂
∂s |s=0, then the following is valid

δL(γs) = g(δγs, γ̇)|ba −
∫ b

a
g(δγs,

∇

dt
γ̇)dt

Lemma 3.2.36. A curve γ[a, b] →M parametrized by arc length with γ(a) = p and γ(b) = q is then a
geodesic if and only if, for all variations γs with γs(a) = p and γs(b) = q ∀s, the following is valid,

δL(γs) = 0,

that is, if γ a geodesic⇒ γ̈ = 0→ δL(γs) = 0.
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Definition 3.2.37. Let v ∈ TpM be a tangent vector to the manifold at p, the exponential map is
defined as Expp(v) = γv(1), where γv is the unique geodesic satisfying γv(0) = p with initial tangent
vector γ̇v(0) = v.

Given a Riemannian manifold (M, g) and a function f ∈ C∞ over M, the differential map dpφ :
TpM → R is linear for all p ∈ M. There exists a vector field in TM (the tangential bundle) called the
gradient of f , ∇g f such that,

< ∇g f (p), Xp >g(p)= dpφ(Xp) ∀Xp ∈ TpM.

Given a Riemannian manifoldM, X ∈ X(M) = space of vector fields, X : M → TM, C∞ = space
of functions overM, f :M→ R a differential form of grad k onM is an alternating k-linear mapping
over C∞:

w : X(M) × . . .X(M)→ C∞(M).

The space of differential forms of grad k is denoted by Ωk(M).

Definition 3.2.38. Let X be a vector field onM, the divergence of X is defined by

div(X) =
∑

i

g(∇ei X, ei),

where ei is a local orthonormal basis from TpM.

On a manifold we can also talk about operators acting on functions on it. A fundamental one is the
Laplace-Beltrami operator defined as:

∆g : C∞ → C∞

∆g = −divg · ∇g.

On the manifold (M, g) we further consider the eigenvalue problem for a given operator as defined by
∆Mψ = −λψ where λ is an eigenvalue of ∆M and ψ, are the corresponding eigenfunctions. The Laplace-
Beltrami operator is positive semi-definite [Rosenberg, 1997] and therefore, all eigenvalues λk, k ≥ 0
are real positive and isolated with finite multiplicity. The set of eigenfunctions {ψi} of the operator forms
an orthogonal base for functions onM, the following decomposition can be written for f ∈ C∞(M),

f =

∞∑
i=0

αiψi, αi =< f , ψi > . (3.2.1)

For any function f as defined by (3.2.1) one can instead of considering the function itself, equivalently
consider the vector α = [α1, α2, . . .] of spectral coefficients obtained by projecting the function along
the infinite dimensional eigen-space spanned by the eigenfunctions.
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3.2 Differential Geometry

3.2.5 Riemannian Curvature and the Second Fundamental Form

Definition 3.2.39. Let (M, g) be a Riemannian manifold with Levi-Civita connection, the Riemannian
Curvature is the mapping

R : X(M) × X(M) × X(M)→ X(M), (X,Y,Z) 7→ RX,YZ

for the vector fields X, Y , Z defined as

RX,YZ = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y].

Definition 3.2.40. The scalar curvature is defined as

scalg =
∑
i, j

R(ei, e j, e j, ei)

whereby an orthogonal basis of TpM is given by X = en, X⊥ = span {e1, . . . , en−1}.

Definition 3.2.41. Let M ⊂ M̄ be a Riemannian sub-manifold. The second fundamental form is
defined by

Π(X,Y) = (∇̄X̄Ȳ)⊥,

The second fundamental form is symmetric. An important case is the case of hyper-surfaces, in this
case choosing a normal vector N, the second fundamental form can be viewed as a R−valued bilinear
form

A(X,Y) =
〈
∇̄XY,N

〉
= −

〈
Y, ∇̄XN

〉
,

for every p ∈ M a basis of eigenvectors of the second fundamental form e1, . . . en ∈ TpM (n is the
dimension ofM) can be found so that

Ap(ei, e j) = λiδi j

The eigenvalues λi are called the principal curvatures. Important for us will be the mean curvature
defined as tr(A) and the Gauss curvature defined as det(A).

The mathematical framework introduced here is the one which actually allows us to treat the abstract
space of objects, which in our case are simulations. We will discuss in the following chapter a way to
obtain a representation of a space starting with a set of simulations. Here one assumes that they are high
dimensional objects embedded in a low dimensional space.
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CHAPTER 4

Simulations as a Nonlinear Manifold

4.1 Introduction

In this chapter we will describe a mathematical method for the data analysis of a set of numerical
solutions of a parametric partial differential equation (PDE). The method is one of the methods applied
in the area of manifold learning. It assumes that the data lies on a manifold whose intrinsic dimension
is much smaller than the dimension of the fidelity simulations and that the manifold can be recovered
approximately. The underlying PDE model itself is not available. Different methods to find such reduced
spaces are available, we will present one representative approach in this thesis.

In chapter 2 we presented a description of simulations as numerical solutions of a PDE. In industry
several of them are evaluated for different input design parameters as part of the product development
process. The set of simulations obtained in this way can be formally written as

ϕh(P) = {uh(µµµ) ∈ Vh : µµµ ∈ P} ⊂ Vh,

obtained by sampling for different parameter combinations inP. In this chapter we will treat the problem
of finding a low dimensional representation of the mapping ϕh(P) using simulation samples.

We treat simulations uh(µµµ) as high dimensional objects in some Euclidean space Rd. An isometric
embedding ϕs : M → Rd has brought the data to this space from a low dimensional manifold M
( dim(M) = M with M � d). Our data objects are the simulations, where the dimensionality is
considered to be given as the number of nodes multiplied, by the number of time steps. That gives an
order up to several millions.

The objective is to characterize and find the low dimensional object M in order to represent simu-
lations. We will describe how this can be done in this chapter; after giving an overview of methods
of dimension reduction, one method from manifold learning called diffusion maps is chosen. We will
explain its principles and its approximation properties in the continuous limit case of many simulations.
A justification of the use of this method for simulation data is also included in this chapter. Parts of this
chapter has been published in [Iza Teran, 2013].
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4 Simulations as a Nonlinear Manifold
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Figure 4.1: Nonlinear Dimension Reduction Methods (based on the classification as given in [Lee and Verleysen,
2007])

4.2 Methods of Nonlinear Dimension Reduction

An overview of some nonlinear dimension reduction methods, that can be useful for the analysis of
simulation results, will be given. For details of the different methods see [Lee and Verleysen, 2007].

Nonlinear dimensionality reduction methods assume that the information available from a dataset has
implicitly a lower dimension and that this lower dimensional structure can be identified. A natural step
in the process of identifying such structures is to embed the data into a lower dimensional space. By
using this process some information loss is unavoidable. According to the criteria used to evaluate this
loss, it is possible to characterize different methods (see figure 4.1).

We will concentrate on geometry preserving methods that are of different types as can be seen in
figure 4.1. Other types of methods such as artificial neural networks (ANN) will not be considered in
this study.

Distance preserving methods try to preserve everywhere the distance between the information in the
original dataset and in the embedding. If one uses a Euclidean metric, several methods can again be
defined, according to how pairwise distance preservation is defined. Traditional principal component
analysis (PCA) can be found in this category by its equivalence to multidimensional scaling (MDS).

Other types of methods are called topology preserving methods. Such methods do not aim at pre-
serving pairwise distances globally; a similarity function which is usually a decaying function of the
pairwise distances is used instead. As a consequence distance is preserved locally and the focus is more
toward preserving relationships such us being near to, similar to; or different from. It means that in
the embedding, there is some information loss, but these relationships are preserved in the lower di-
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4.3 Diffusion Maps

mensional representation. Inside this classification, one can find methods such us diffusion maps (DM),
laplacian eigenmaps (LE) and local linear embeddings (LLE).

Engineers can use both types of methods for extracting low dimensional patterns or structures from
several simulation datasets. To show the possible usefulness of such low dimensional representation, let
us consider as in illustration a car crash simulation; engineers are interested in designing a car whereby
the deformation inside the cabin is as low as possible whereas most of the time design objectives are in
concurrence. For example the objective could be to minimize weight and at the same time to maintain
structural integrity. In the product development an engineer has to evaluate many designs where several
design parameters have been altered; common questions that have to be confronted are: which designs
are similar to the optimal one, are they still feasible? which designs are similar for different parameter
variations?, can an alternative design be found that lies in between two designs but with fewer costs?. In
this thesis; we will treat topology based nonlinear dimension reduction methods to confront such engi-
neering problems and answer those questions. Using dimensionality reduction makes those engineering
problems much more manageable.

We would like also to mention that distance preserving methods can and have also been used in
this context [Mei and Thole, 2008, Thole et al., 2010]. Which method to use will depend on specific
requirements of engineering analysis that at the same time impose requirements on a dimensionality
reduction method.

Requirements for the analysis of engineering data:

• the datasets are very big (million from points and hundred of variables for each point),

• the physical problems that are simulated are strongly nonlinear,

• it should be possible to extract some patterns from thousands of such datasets,

• engineers are interested in relative correspondences in the data, as explained in the last section.

The requirements above, justify the use of a nonlinear dimensionality reduction methods for engi-
neering data. There are several topological based methods. From these we will consider diffusion maps.

4.3 Diffusion Maps

The method was introduced in [Lafon, 2004] and [Coifman and Lafon, 2006] and since then, it has
evolved into a number of applications and extensions. We summarize here the principles of the method.

Let (X, σ, µ) be a measure space with µ representing the distribution of the points on X, let k : X×X →
R be a kernel function with the following properties:

• symmetric and positive i.e ∀x, y ∈ X, k(x, y) ≥ 0,

• positive semi-definite, that means that for all real-valued bounded functions f defined on X,∫
X

∫
X

k(x, y) f (x) f (y)dµ(x)dµ(y) ≥ 0
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4 Simulations as a Nonlinear Manifold

• k(x, y) = η(‖x − y‖), with η exponentially decaying.

Given a dataset, one can associate a graph G(V, E) with it, where V is the set of nodes corresponding
to the observed points of the data set X and E are the edges of the graph with weights calculated from
k. Let d(x) =

∫
X k(x, y)dµ(y) be the degree function for the graph. The normalized kernel p(x, y) =

k(x, y)/d(x) can be considered as the transition probability of a random walk (a Markov chain) on X, the
integral operator P f (x) =

∫
X p(x, y) f (y)dµ(y) is a random walk operator on the data set. The transition

probability for going from x to y in t time steps is given by pt(x, y), the kernel of the t-th power Pt

of P. The idea of the method is that running the Markov chain forward in time, i.e taking powers of P,
reveals relevant geometrical structures of X. The Markov chain has a stationary distribution (obtained by
taking powers of P until the distribution does not change anymore) given by π(y) = d(y)/

∑
z∈X d(z). The

operator P can be made symmetric using a(x, y) = k(x, y)/(
√
π(x)

√
π(y)), this new operator A is compact

and has a discrete set of eigenvalues {λl}l≥0 and eigenfunctions {φl}l≥0 so that 1 = λ0 > |λ1| ≥ |λ2| ≥ ...

and Aφl = λlφl. The kernel satisfies a(x, y) =
∑

l≥0 λlφl(x)φl(y) and the first eigenfunction φ0 =
√
π. The

kernel p satisfies p(x, y) =
∑

l≥0 λlψl(x)ϕl(y) with ψl(x) = φl(x)/
√
π(x) , ϕl(y) = φl(y)

√
π(y), ψ0(x) = 1.

The Diffusion Distance

For the powers Pt of P we have pt(x, y) =
∑

l≥0 λ
t
lψl(x)φl(y). A distance between transition probabilities

can be naturally be defined as

D2
t (x, z) = ‖pt(x, .) − pt(z, .)‖2L2(X,dµ/π).

Using the expression of pt(x, y) in terms of the above eigenfunctions one gets,

D2
t (x, z) =

∑
l≥0

λ2t
l (ψl(x) − ψl(z))2.

The distance Dt can be computed to a preset accuracy δ with a finite number of terms:

Ma(δ, t) = max
{
l ∈ N such that |λl|

t > δ|λ1|
t
}
,

since the first eigenvector is constant, the remaining eigenvectors ψi define an Ma-dimensional embed-
ding

Ψt : x→ [λt
1ψ1(x), λt

2ψ2(x), ..., λt
Ma
ψMa(x)].

Depending on the decay of the eigenvalues λl, a low dimensional embedding that characterizeM is
obtained. Why this is the case can be understood if one treats the continuous limit from the discrete
representation evaluated using the high dimensional objects x, y ∈ X. This aspect will be covered in the
next section.

4.3.1 Discrete to Continous Formulation: The Laplace-Beltrami Operator

An important flexibility of diffusion maps is how to choose a specific kernel kε(x, y) = exp(−d(x, y)/ε2).
A very common choice for d(x, y) is to use d(x, y) = ‖x − y‖2, the obtained kernel exp(−‖x − y‖2/ε2)
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4.3 Diffusion Maps

is called Gaussian kernel. Other options are available such as using d(x, y) =
√
‖x − y‖2, the obtained

kernel exp(−
√
‖x − y‖2/ε2) is called Laplacian kernel. More possibilities include taken d(x, y) as the

earth movers distance [Rubner et al., 2000], the graph distance [Eshera and Fu, 1984] or the discrete
time warping distance [Petitjean et al., 2014]. For the following we will work, as it is commonly done
in the literature, with the Gaussian kernel but we emphasize that this is only one possible choice.

Let kε(x, y) = exp(−‖x − y‖2/ε) with x, y in Rd. The operator P acting on a sub-manifoldM ⊂ Rd

with uniform probability distribution is

Pε f (x) =

∫
M

pε(x, y) f (y)dy

in the limit case ε → 0. The following has been shown in [Belkin and Niyogi, 2008] for the case of
uniform density:

∆M = lim
ε→0

Pε − I
ε

,

where ∆M is the Laplace-Beltrami operator on the manifoldM. For any t greater than zero, kε(x, y) =

exp(−‖x− y‖2/ε), the Neumann heat kernel e−t∆M can be approximated on L2(M) by P
t
ε
ε , see [Coifman

and Lafon, 2006]
lim
ε→0

P
t
ε
ε = e−t∆M

For finite data, integrals are approximated by sums. A summary of the discrete expressions and their
continuous counterparts is shown in table 4.1.

Ki, j = exp(−‖xi − x j‖
2/ε) kε(x, y) = exp(−‖x − y‖2/ε)

Dii =
∑m

j=1 Ki, j , i, j = 1, . . . ,m dε(x) =
∫

X kε(x, y)dy
D−1K Pε f (x) =

∫
X kε(x, y)/dε(x) f (y)dy

L = D−1K − I ∆M = lim
ε→0

Pε−I
ε .

Table 4.1: Discrete expressions and their continuous counterparts.

The eigenfunctions and eigenvalues of the operators P and ∆M are related as shown in table 4.2.

Operator Eigenfunctions Eigenvalues
Pε f (·) ψε,l λε,l

∆M ψl −ν2
l = lim

ε→0

λε,l−1
ε

lim
ε→0

P
t
ε
ε = e−t∆M ψl e−tν2

l = lim
ε→0

λt/ε
ε,l ,

Table 4.2: Eigenfunctions and eigenvalues relationship for the operators P and ∆M

Finally the following approximation has been shown in [Singer, 2006a] to be valid for data points that
are i.i.d. (ideally identically distributed) sampled from a uniform distribution,

1
ε

m∑
j=1

Li j f (x j) =
1
2

∆M f (xi) + O(
1

m1/2ε1/2+M/4 , ε) (4.3.1)
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4 Simulations as a Nonlinear Manifold

where M is the dimension of the manifold M, m is the number of data points and the notation O(., .)
means that there exists positive constants C1, C2 (independent of m and ε) such that∣∣∣∣∣O(

1
m1/2ε1/2+M/4 , ε

1/2)
∣∣∣∣∣ ≤ C1

1
m1/2ε1/2+M/4 + C2ε

1/2

for large m and small ε. The above results are interesting since they tell us that if we have enough
data, using the high dimensional objects x, y ∈ X, we can theoretically construct an operator on a low
dimensional manifoldM. The decay of the eigenvalues will let us decide about the dimensionality ofM
and the embedding give us a representation ofM. Let us give a simple example in order to understand
the principles of the method.

Diffusion Coordinates for a simplified 1D simulation dataset

As described in chapter 2 section 2.1.2, a simulation bundle is a set of PDE solutions obtained by varying
a set of input parameters. The PDE is solved usually using a computing intensive finite element solver.
Our analysis goal assumes that simulations are located on a low dimensional set that we would like to
identify. A parametrization of the simulations along such a low dimensional set allows for an efficient
analysis and a method of dimensionality reduction obtains such information based on the simulation
data.

For illustration we assume that simulations are given as 1D curves. We observe those curves as high
dimensional objects of the size of the number of nodes of the curve. Further we assume that to obtain
such curves only one parameter has been varied. We show that a parametrization along this parameter
can be found using diffusion maps.

Proposition 4.3.1. Let S α be a dataset defined as a 1D curve with Nh nodes. Assume the dataset has
been obtained from a numerical solver, where only one parameter α has been changed m−times. The
dataset containing a set of simulations can be represented as:

xi = (S αi(r1), S αi(r2), . . . , S αi(rNh)), i = 1, . . .m. (4.3.2)

Assertion: the simulations are located on a 1D curve that depends only on α.

Proof. The simulations are located in Rd with d = Nh. Since the models depend only on the parameter
α there exists a mapping ϕ(q) : R → Rd that takes points from R into Rd. Diffusion maps constructs a
similarity matrix K with matrix components calculated as k(xi, x j) = e−‖xi−x j‖

2/ε , i, j = 1, . . . ,m, where ε
is a parameter that represents the width of the Gauss function and xi ∈ R

d is given by expression (4.3.2).

The normalized kernel p(xi, x j) = k(xi, x j)/d(xi) is obtained using d(xi) =
∑m

j=1 k(xi, x j). For the
normalized kernel the following discrete operator can be constructed,

P f (xi) =

m∑
j=1

p(xi, x j) f (x j). (4.3.3)

The continuous counterpart of the sum given in equation (4.3.3) is given by an integral operator on
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4.4 Diffusion Maps for the Analysis of Simulations

the domain of the low dimensional manifoldM,

P f (x) =

∫
M

p(x, y) f (y)dµ(y), (4.3.4)

where the probability density from which the data is sampled is µ(y). Assuming a uniform probability
distribution, an approximation to the Laplace-Beltrami Operator is obtained according to expression
(4.3.1). Notice that in this expression, ε can not be chosen to be too small, an appropriate value of ε has
to be found to balance both parts, for details see [Singer, 2006a]. Using (4.3.1), an approximation to
the Laplace-Beltrami operator can be obtained. In our specific example, the operator corresponds to a
Laplacian in 1D with respect to α, and the eigenvalue problem can be written as,

d2 f
dα2 = λ f . (4.3.5)

For a non-closed curve with two end points and length αmax, the first nontrivial eigenfunction is of
the form cos( α

αmax
) [Lafon, 2004]. The eigenvectors of the similarity matrix in (4.3.3) approximate the

eigenfunctions of the limit operator (4.3.5) and therefore, one can approximately recover the parameter
α that generated the simulation up to a transformation, given by the cosine function. �

This example illustrates the principal idea of the method. We notice that those results assume that
the data is sampled from a uniform probability distribution. In practice this assumption is not always
true, taking into account those cases, requires modifications to the previous analysis. In addition; the
use of different normalizations for the discrete expressions has an influence on the continuous limits, for
details see [Nadler et al., 2006, Hein et al., 2007].

Diffusion maps is founded on the above mathematical principles as a method for dimensionality
reduction. Its applicability for the intended use in the analysis of simulations can now be explored.

4.4 Diffusion Maps for the Analysis of Simulations

We propose to analyze datasets consisting of simulations using diffusion maps. Each dataset contains
several data points which are the individual simulations, altogether they are called a simulation bundle.
As highlighted above the method starts with high dimensional data, the dimension being the number
of points in one simulation, and ends up with an approximation of a low dimensional manifold M
represented by an embedding on the first eigenvectors of a discrete positive definite operator.

Diffusion maps have been shown to be useful in many applications [Buchman et al., 2011,Neji et al.,
2009,Wartak and Bors, 2010,Ferguson et al., 2010,Sonday et al., 2009,Virshup et al., 2012] in particular
because of its organizational power allowing a parametrization of datasets and the fact that it allows the
identification of so called slow variables, a concept that is very important in the context of simulation
data as will be explained in the next section.

There are several aspects that should be taken into consideration in order to apply this method for the
analysis of simulation data. Through simple examples, we describe the type of information that can be
obtained from the diffusion maps coordinates for this case and how they allow the identification of slow
variables in a stochastic dynamical system, even when only a small number of simulations are available.
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4 Simulations as a Nonlinear Manifold

4.4.1 Stochastic dynamical systems and slow variables in a simulation bundle

Since real data is not uniformly sampled, there is a specific probability distribution µ, mostly unknown,
from which the data is sampled. Analyzing the effect of this distribution has been the subject of intensive
research [Hein et al., 2007].

As described above in the case of uniform sampling the limit operator is the Laplace-Beltrami op-
erator and for non-uniform sampling the limit operator is a Fokker-Planck type operator [Nadler et al.,
2006].

Let us describe this setting, given a transition probability density p(x, t|y, s) of finding the system at
location x at time t, given an initial location y at time s (t > s), satisfies the forward Fokker-Planck
equation [Coifman et al., 2008]

∂p
∂t

= ∇ · (∇p + p∇U(x)), (4.4.1)

with initial condition
lim
t→s+

p(x, t|y, s) = δ(x − y).

The backward Fokker-Planck equation in the backward variables y, s(s < t) is

∂p
∂s

= ∆p − ∇p · ∇U(y), (4.4.2)

where p(x) = e−U(x) = µ(x).

In [Nadler et al., 2006], a link to this equations to a continuous family of anisotropic diffusion pro-
cesses, built using a normalized Gaussian kernel have been found. We present the results of [Nadler
et al., 2006]. Assume that the data set X consists of a Riemannian manifold with density p(x) = e−U(x)

and let kε(x, y) be a Gaussian kernel, then for any function φ on X,∫
X

kε(x, y)φ(y)dy = φ(x) + ε(∆φ(x) + q(x)φ(x)) + O(ε3/2),

where q is a function that depends on the Riemannian geometry of the manifold and its embedding in
Rn. Let

k(α)
ε (x, y) =

kε(x, y)
pαε (x)pαε (y)

, (4.4.3)

where as shown in [Nadler et al., 2006],

pε(x) = p(x) + ε(∆p(x) + q(x)p(x)) + O(ε3/2)

and

p−αε = p−α
(
1 − αε

(
∆p
p

+ q
))

(1 + O(ε3/2)),

Finally the asymptotic expansion of the backward operator is given by

T (α)
b φ =

∫
X

k(α)
ε (x, y)

d(α)
ε (x)

φ(y)p(y) = φ(x) + ε

(
∆(φp1−α)

p1−α − φ
∆(p1−α)

p1−α

)
(4.4.4)
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where the normalization factor is given by

d(α)
ε (x) =

∫
k(α)
ε (x, y)p(y)dy = p−αε (x)p1−αx

[
1 + ε

(
(1 − α)q − α

∆p
p

+
∆p1−α

p1−α(x)

)]
. (4.4.5)

The infinitesimal generator of the diffusion is

Hbφ = lim
ε→0

Tb − I
ε

φ =
∆(φp1−α)

p1−α −
∆(p1−α)

p1−α φ

Inserting the expression p = e−U one obtains

Hbφ = ∆φ − 2(1 − α)∇φ · ∇U

For α = 1/2 one obtains the backward Fokker-Planck operator 4.4.2. In other words if a normalized
weighted graph is built in the way it has been shown, using a simulation dataset from a stochastic pro-
cess, in the limit a Fokker-Planck (FP) equation is obtained. In general the FP equation describes the
time evolution of the probability density function of a stochastic mechanical, physical, chemical or bio-
logical system. In the presence of a spectral gap the long term behavior of the system is approximately
described using only the first eigenfunctions of this operator. In other words for a stochastic system
with many random variables, the first eigenfunctions will describe the behavior of the slow variables
(or principal trends), corresponding to the conformational state changes. For example a system can
have many variables that oscillate very rapidly around a state as the system progresses in time, only
after a long time are there changes to a new state (conformational change). For many applications, the
slow variables are precisely the interesting ones. Having enough data sets, we can construct a discrete
approximation of this operator and its eigenvectors represent the slow variables of a stochastic process.

Consider a crash simulation where stochastic variability is induced naturally by changes in the input
parameters such as material, geometry or even numerical noise in the finite element calculation. In such
a process, it is important to study and identify so called conformational changes. In structural dynamics
this could correspond to a change in the bending state of a beam. This effect produces a bifurcation
in the deformations that propagate to the overall structure. We assume that for this stochastic process,
there is a corresponding Fokker-Planck operator from which we can extract the first eigenfunctions.
According to the theory, the slow variables of the system will describe the appearance of a bifurcation
point in the deformation (buckling mode) and this behavior can be recovered by the eigenvectors of a
discrete approximation of this operator. In the next subsection we would like to illustrate these ideas
with a specific example.

4.4.2 Slow variable for a simple simulation bundle

In this subsection we will illustrate a specific example that can also be evaluated analytically. This
example has been already presented in [Nadler et al., 2006] and [Iza Teran, 2013]. Assume that the
probability density µ, normally unknown, is given. We keep a 1D formulation for the purpose of sim-
plicity; this can be extended to 2D thanks to the specially chosen density.

In the context of equation (4.4.2), consider the potential U(x) = x2/2τwith the probability density µ =
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4 Simulations as a Nonlinear Manifold

e−U/
√

2πτ. We assume that a simulation bundle is obtained by sampling from this density (Brownian
movement of particles in a potential field [Nadler et al., 2006]). Using this density it is also possible to
define the continuous integral random walk operator

P̃εφ(x) =

∫ ∞

−∞

p̃ε(x, y)φ(y)µ(y)dy, (4.4.6)

where the following kernel normalization has been used,

p̃ε(x, y) =
kε(x, y)√

µε(x)
√
µε(y)

(4.4.7)

and kε(x, y) = exp(−‖x− y‖2/ε), µε =
∫

kε(x, y)µdy. The eigenvalues of the integral operator (4.4.6) are
λk = (τ/(τ + ε)) < 1, with corresponding eigenfunctions φk(x) = rk(x)exp(− x2

4(τ+ε) ), rk is a polynomial
of degree k.

In the limit ε → 0 this integral operator converge to the backward Fokker-Planck operator (4.4.2) and
the corresponding eigenfunctions ψ(x) of such an operator can be obtained by normalization of the ones
of (4.4.6) with

√
µ(y) = Caexp(−y2/(4τ)) (see [Nadler et al., 2006] for details).

A extension of this type of potential to two dimensions can be realized in the form U(x1, x2) =

x2
1/(2τ1)+ x2

2/(2τ2) and choose τ1 � τ2 so that x1 is the slow variable. This specially chosen probability
density has a separable structure µ(x1, x2) = µ1(x1) · µ2(x2). The eigenfunctions and eigenvalues are
given by

φi, j(x1, x2) = φ1,i(x1)φ2, j(x2) , λi, j = (τ1/(τ1 + ε))i · (τ2/(τ2 + ε)) j. (4.4.8)

Since we set τ1 � τ2, ordering the eigenfunctions by decreasing eigenvalue, the first nontrivial
eigenfunctions are φ1,0, φ2,0. Since the order of the polynomial is i and j, it can be seen that

φ1,0(x1, x2) = φ1,1(x1) · φ2,0(x2) = C · x1 · exp
− x2

1

4τ1

 exp
− x2

2

4τ2

 . (4.4.9)

After conjugation (dividing by
√
µ for each variable) it can be seen that this first eigenfunction de-

pends linearly only on x1

ψ1(x1, x2) = C · x1. (4.4.10)

The next task is to verify this analytical result. In order to do that, we will generate several data sets
sampled from the given 2D probability distribution µ(x1, x2) (see figure 4.2 using τ1 = 1, τ2 = 25 ).
Notice that the specific value of τ is not essential in this analysis, but the fact that τ1 � τ2. Using
these data sets we build a similarity matrix, normalize it (according to (4.4.7)) and obtain the first dif-
fusion coordinate (first eigenvector), plotting the values of x1 against the first non-constant eigenvector
ψ1 shows that, for m = 1000, a linear dependence is obtained except at the boundaries ( figure 4.3
(a)). Next we test the approach after the data sets are reduced drastically for example to only 100 data
points, the dependence is still clearly seen even for this very small amount of data sets (figure 4.3 (b)).
Aiming to theoretically support the assumption that even with a very small number of points (number

of datasets), the diffusion coordinates can still be useful is in itself difficult. In order to approximate
the eigenfunctions of the continuous Laplace-Beltrami operator or the Fokker-Planck operator we need
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Figure 4.2: Data sampled from a bivariate distribution
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Figure 4.3: Slow variable for data from a bivariate distribution: a) slow variable x1 vs eigenvector ψ1 using 1000
data points, (b) slow variable x1 vs eigenvector ψ1 using 100 data points

several thousand datasets. In the case of the Gauss kernel with a fixed value of ε, it is known (see [von
Luxburg et al., 2008]) that the rate of convergence of the eigenvectors is of the order O(1/

√
m). It is

also known that eigenvectors obtained from a reduced similarity matrix obtained by sampling from a
finer one can approximate the eigenvectors of the original matrix (using the Nyström approximation
see [Fowlkes et al., 2004]). A formal analysis of the convergence properties for very few data points is
certainly required.

Choosing the value of ε is still a very important issue in using eigenvectors for embedding a dataset
and implementing a gauss kernel as in our application. Since most of the time only a limited amount
of datasets are available, all proposed methods for setting ε are not practical. Therefore, an empirical
way of setting it has to be used such as for example the median. From a theoretical point of view, which
amounts to having enough data, some studies have been done in [Hein and Audibert, 2005].

Based on the theoretical results of this chapter, we propose a method for the analysis of simulation
bundles in the next section.
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4 Simulations as a Nonlinear Manifold

4.5 Diffusion Maps Methodology for a Simulation Bundle

In this section we will provide details of the application of diffusion maps to a simulation dataset in an
algorithmic way (see Algorithm 1). The training data set is saved on files in binary proprietary format.
So called post-processor software can be used to read this data and extract all or part of it into for
example ASCII format. We use the software Animator ® [GNS, ] to extract specific components of a
car or structure, the components we choose are the ones that are critical for the engineer in the sense of
structural behavior under crash or vibration response under excitation.

Notice that in our analysis we use simulation data on a finite element mesh directly or extract some
response curves for vibration analysis using again Animator. A finite element mesh contains nodes and
elements, we assume that the mesh connectivity is the same and use only the values defined at the nodes
on the mesh as data set. If the mesh connectivity is different a reference mesh can be used to map the
simulation values to it.

Algorithmus 1 : Diffusion maps for training data
Input : m finite element training data sets containing a variable x ∈ RNh , where Nh is the

number of nodes in a finite element mesh or the number of points on a curve
Output : Reduced representation [λt

1ψ1(x), λt
2ψ2(x), . . . , λt

jψ j(x) . . . , λt
MψM(x)] ∈ RM

1 foreach i ∈ {1, . . . ,m} do
2 foreach j ∈ {1, . . . ,m} do . calculate similarity matrix
3 K(i, j) = exp(−d(xi, x j)/ε2)
4 end
5 end
6 Q = diag(K · 1)
7 K(α) = (Qα)−1K(Qα)−1 . calculate kernel as given in 4.4.3
8 D = diag(K(α) · 1) . calculate normalization approximating 4.4.5
9 P = D−1/2KD1/2 . calculate approximation of 4.4.4

10 [Λ,U] = eig(P, r) . calculate first r eigenvalues λ j and eigenvectors U j

11 M = max{ j : λ j > 0.1}, t = 1, α = 1/2
12 return [λ1U1/U0, λ2U2/U0, ...λMUM/U0] . M dimensional embedding

4.6 Methodology

We will describe a general methodology that allows the analysis of finite element simulations-bundles.
Whereby four steps are identified:

• Extraction: the variables for the analysis are obtained from the simulation. These variables can
be of a different type such as scalars, vectors or tensors defined on nodes or elements of a finite
element mesh.

• Preprocessing: this step is necessary to cope with the problem of the data size (millions of nodes
and elements). The preprocessing contains simple sub-sampling, that is to just take consistently
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only subsets of the data. A further sub-step that is important to mention is the generation of
compact signatures. The data can be transformed in different ways in order to obtain a compact
representation; examples of such a transformation includes principal component analysis (PCA).

• Dimension Reduction: in this step a low dimensional representation is obtained from the dataset
that parameterizes the information, allowing the identification of intrinsic parameters. We use
diffusion maps as a dimensionality reduction framework. Notice that other dimension reduction
methods can be used at this point, without giving a complete justification, we do mention that
to our knowledge the connection to stochastic dynamical systems and the identification of slow
variables provided by this method is not available using other methods. This is a key point in the
analysis of simulation data.

• Exploration: this step can be done as long as the simulation variables are organized along the
low dimensional embedding space obtained in the dimension reduction step. All simulations can
be represented in this low dimensional setting and not only that, since diffusion maps are able to
identify intrinsic parameters from the data, we can explore all the dataset in a simplified setting
along such parameters. The engineer can obtain an overview of all his designs variants in this
way and the effect of the design variations can be explored along the intrinsic parameters.

The proposed method for the analysis of simulations turnouts to be very useful for real industrial
cases as has been shown in [Iza Teran, 2013] (see also section 10.1 for an application example), still
one can ask the question whether the proposed overall goal of this thesis of using geometrical math-
ematical principles can be extended even more, specially to address some inherent limitations. The
first one relates to the available number of simulations; according to the theory in order to verify the
approximation properties, one needs a large number of simulations. This is not achievable in practice,
normally at the most several thousand are available and in a more general case only a few hundred are
available. The second limitation relates to the reconstruction of high dimensional approximations based
on information in the low dimensional embedding. The method does not provide an efficient way of
reconstructing such approximations, a great disadvantage, since this is a very important aspect that is
very useful in applications.

The mentioned limitations of diffusion maps as a method for the analysis of simulations are critical
for applications and we will focus on a new approach to overcome them in the next chapters.
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CHAPTER 5

Quotient Spaces and Group Transformations

We have until now treated each simulation as a point in a very high dimensional space with a dimension
which is of the order of the number of nodes used for a discretization of the domain. But, a point
in this high dimensional space is assumed to be intrinsically low dimensional. The previous chapters
were all about how to recover such a low dimensional representation. In the following chapters we will
develop a different point of view and consider each simulation as obtained by some transformation from
a reference configuration. Although the transformations are not known we will work out this idea from
a mathematical point of view and see what can be obtained that can be useful for applications.

Our intended goal is being able to analyze many high dimensional simulations and for that we would
like to be able to identify and represent transformations that maps one simulation into another in a
parametric form with few parameters. Let us see how far can we get in achieving this. The adequate
mathematical setting for describing transformations is to use quotient spaces over manifolds under the
action of a transformation group. Specifically, we will consider the case of immersions and embeddings,
but in particular embeddings in R3 and R2 under the action of a transformation group. Choosing embed-
dings in R3 allows the treatment of many interesting cases such as crash simulation as the meshes are,
due to computational costs, surface meshes. Embeddings in R2 covers the case of plane curves obtained
as time dependent solutions of ordinary differential equations (ODE). A transformation group action
defines an orbit, that is the points that are obtained when a transformation is applied to a manifold.
Further the space of all orbits is called orbit space. We will see that one can distinguish between several
cases for those quotient spaces depending on the type of group action. A Riemannian structure can, un-
der suitable assumptions, be defined for the quotient space, and geodesics on it can be computed. This
characterization from a Riemannian point of view is useful for finding parameterizations of simulations
and for moving along the space of orbits, which is done following paths of minimal length on this space,
that is geodesics.

A special type of transformations are the ones that preserve the distance on the manifold, they are
called isometries of a manifold. For certain type of isometric transformations one can recognize a
very useful property for applications, namely that geodesics in the space of isometries can be evaluated
following a group action, that means, orbits are under certain conditions geodesics. Additionally, if the
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5 Quotient Spaces and Group Transformations

group action can be parametrized then simulations can be conveniently parametrized, for at least certain
isometric transformations. This is a very important observation, if ways are found to represent those
group actions, as otherwise the calculation of geodesics is a very time consuming process that involves
the solution of a differential equation in the high dimensional space of the simulations.

Representing group actions for some type of isometries is possible such as in the case of rotations
in Rn where a linear representation can be derived. Nevertheless we would not like to treat each case
separately depending on the type of isometry. For that we will use a link between an operator that is
invariant to the isometry group and a group representation. A few theoretical results are available here
for the rotation and translation group, the Laplace-Beltrami operator is isometric invariant and for the
rotation group, the eigenfunctions of it can be used as representations of the group. This link suggests
the possibility of using eigenfunctions of an isometric invariant operator to represent simulations. That
means, the eigenfunctions can be used as a a new basis for the representation of simulations, considered
as isometries that are embeddings in Rn. The projection coefficients to this eigenfunction basis will
reflect isometric group actions and any further analysis task can be equivalently done based on the
spectral coefficients and what is more important, it opens the possibility to significantly reducing the
effort for calculating geodesics since they are defined by the group actions as mentioned above. In
chapter 9 we will provide numerical evidence of this assertion.

Relevant material from differential geometry that are presented in this chapter, are standard, for details
see [Fletcher, 2004, Onishchik, 1993, Helgason, 1984] and references therein. This chapter uses the
concepts of chapter 3 as a prerequisite.

5.1 Preliminary Definitions

In chapter 3 we have introduced the concept of a topological space and based on it, we also defined
a differentiable manifold. One of the beauties of mathematics is that one can construct more complex
topological spaces by building them up from more simple ones. Subsets of Rn and also quotient spaces
of those spaces allows such constructs.

A simple example of a subspace of Rn is the circle defined as the set of points

S 1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
,

it is a topological space with the subspace topology of R2 ( U is in S 1 if there is a V ⊂ R2 with
U ∩ S 1 = V), the circle is sitting in R2 but as a topological space it is independent of the ambient space
it is sitting on, formally one can speak about an embedding.

Definition 5.1.1. Let X, Y be topological spaces, an embedding is a map ϕ : X 7→ Y such that ϕ is an
homeomorphism (a map that is continuous, invertible, and its inverse is also continuous). ϕ(X) has the
subspace topology of Y .

Definition 5.1.2. Let X, Y be topological spaces, an immersion is a mapping whose derivative is in-
jective on the tangent space of X at each point.

Spaces embedded or immersed into other spaces can provide a useful framework for constructing
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5.2 Groups

topological spaces. Consider for example embeddings of the circle in Rn like a square in R2 or the
same circle as embedding on the 2-sphere or as a knot (embedding of S 1 into R3). We notice that
in the context of simulations, considered as topological spaces we will encounter embeddings such us
surfaces embedded in R3 as well as immersions such as planar curves immersed in R2 (self-intersections
are allowed). A further way to increase this constructive framework even more are quotient spaces under
a group action as we will see in section 5.3. But first, let us give some background information on group
theory which is required for making use of quotient spaces.

5.2 Groups

One more mathematical formalism that is needed to be able to construct abstract spaces is group trans-
formations. Actually one can speak of a set of transformations which fulfill some axioms that turn them
into a group.

Definition 5.2.1. A group is a set G, together with an operation a · b that combines any two elements a,
b to form another element denoted a · b. A group and the operation satisfy the following axioms, called
group axioms.

• closure, for all a, b in G, the result operation is also in G

• associativity, for all a, b, c in G, (a · b) · c = a · (b · c)

• identity, there exists an element e in G, such that for every element a in G, e · a = a · e = a

• inverse, for each a in G, there exists an element b in G such that a · b = b · a = e, with e being the
identity element.

Definition 5.2.2. Given a group G and a set M, a group action is a map G × M → M written as
(a, p)� a · p that satisfies

• e · p = p for all p inM

• a1 · (a2 · p) = (a1a2) · p, for all a1, a2 ∈ G and p ∈ M

We notice that continuous groups illustrate a set of transformations that can be turned into an abstract
manifold; that in turn can even be differentiable. In this case one can talk about Lie groups.

5.2.1 Lie Groups

We will now connect to the definitions from section 3.

Definition 5.2.3. A group G is called Lie-group if G is a topological manifold and the mapping G ×
G, (a, b) 7→ ab−1 is differentiable.

Further one can also define the tangential space at the identity to the Lie-group manifold. This is
called Lie-algebra.
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5 Quotient Spaces and Group Transformations

Definition 5.2.4. The left, respectively right, multiplication on G are defined for each a ∈ G as:

la(b) = a · b, ra(b) = b · a.

Definition 5.2.5. A vector field X is called left invariant if

Tb(la)(X(b)) = X(la(b) := X(ab)

for all elements a and b in G.

Lemma 5.2.6. If X,Y are left invariant smooth vector fields on G, then their Lie bracket [X,Y] or
commutator is again left invariant.

Theorem 5.2.7. Let G be a Lie-group and let ggg be the set of all left-invariants vector fields on G. Then:

1. the set ggg is a real vector space that is isomorph to TeG and dim G = dim ggg.

2. the set ggg is a Lie-algebra with respect to the Lie bracket of two left-invariants vector fields.

Definition 5.2.8. The Lie-algebra ggg of a Lie-group is defined as the space of left-invariants vector fields
and accordingly the tangential space on G in e (the unity element in the group), with the commutator of
vector fields as Lie-bracket.

Definition 5.2.9. A mapping of Lie groups ϕ : G1 → G2 is called a Lie group homomorphism if it is
a smooth mapping and the following is satisfied:

• ϕ(e1) = e2, where e1 and e2 are the identity elements of G1, G2 respectively,

• ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G1

Definition 5.2.10. The image of a Lie group homomorphism c : R → G is called a one parameter
subgroup. A one parameter subgroup is both a smooth curve and a subgroup of G.

Not any one parameter subgroup is a Lie subgroup of G, but there is a bijective correspondence
between the Lie algebra and the one parameter subgroups.

Theorem 5.2.11. Let g be the Lie algebra of a Lie group G. Given any vector X ∈ g there is a unique
Lie group homomorphism cX : R→ G such that ċX(0) = X.

Definition 5.2.12. Let G be a Lie-group with Lie-algebra ggg. The mapping,

exp : ggg→ G, exp(X) := cX(1),

is called exponential map of the Lie-Group G.

Definition 5.2.13. A Riemannian metric 〈·, ·〉 on a Lie group G is said to be a bi-invariant metric if it
is invariant under both right and left multiplication, that is, r∗a 〈·, ·〉 = l∗a 〈·, ·〉 = 〈·, ·〉 for all a ∈ G.
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Theorem 5.2.14. For a Lie group G with bi-invariant metric, the Lie group exponential map exp(X)
agrees with the Riemannian exponential map at the identity Expe(X), that is for any tangent vector
X ∈ g

exp(X) = Expe(X).

This last observation allows us to write the geodesic at a point a ∈ G as the left multiplication of a
geodesic at identity as follows

γ(t) = a exp(tX),

with γ(0) = a and γ̇(0) = l∗a(X).

5.3 Quotient Spaces

The flexibility of constructing topological spaces can be enhanced through the use of equivalence rela-
tions. Remember a equivalence relation is a relation that satisfies transitivity, reflexivity and symmetry
properties. The set of equivalence classes can form a new topological space.

Definition 5.3.1. Let M be a topological space and let ∼ be an equivalence relation on M, and let
π : M 7→ M/ ∼ be the canonical projection map. The quotient topology on M/ ∼ is defined by
declaring any subset U ∈ M/ ∼ to be open if its pre-image π−1(U) is open inM.

For our purposes we will consider special types of quotient spaces, namely those constructed using
a group G acting on M. If a group G acts on a space M by homeomorphism, then we have the orbit
equivalence relation: x ∼ y if and only if x = a · y for some a ∈ G.

Definition 5.3.2. Given a group G acting onM, an orbit of a point x inM is the set of elements ofM
to which x can be moved by the elements of G. Formally for x ∈ M, the orbit of x is defined as

[x] = {a · x ∈ M | a ∈ G} .

The set of all orbits is called orbit space and is written asM/G.

In the case thatM consists of a single orbit,M is called homogeneous space and the group action is
called transitive. The isotropy subgroup of p is defined as Gp = {g · p = p}, that is Gp is a subgroup of
G that leaves p fixed.

Let ϕ be a distance preserving diffeomorphism (a differentiable mapping where the inverse is also
differentiable) ϕ : M → M′, between two Riemannian manifolds (M, g) and (M′, g′) with g = ϕ∗g′,
ϕ is geodesic distance preserving, it follows that dg′(ϕ(p), ϕ(q)) = dg(p, q). A global isometry is a map
fromM to itself which preserves the distance function dg, induced from the metric tensor g.

Definition 5.3.3. Vector fields on Riemannian manifolds, whose local flow consists of local isometries
are called Killing vector fields.

Lemma 5.3.4. Let X be a Killing vector field and γ : [0, 1]→M be a geodesic. Then

d
dt
〈X(γ), γ̇(t)〉γ(t) = 0.
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This last result is very interesting since it expresses the existence of a conservation property along a
symmetry.

A very special transformation group will prove to be very useful in our context, namely the isometry
group. Let G be a group of isometries of a metric spaceM, then G defines a natural group action

Θ : G ×M −→M

(a, p) 7→ a(p) (5.3.1)

Proposition 5.3.5. ( [Borzellino, 1992]) LetM be a Ck Riemannian manifold, then the isometry group
Isom(M) ofM is a Lie group and the mapping is of class Ck.

Definition 5.3.6. An action G onM is effective if for any a , e in G there exists a p inM such that
a · p , p

Definition 5.3.7. An action G onM is free if there exists a p inM with a · p = p, then a is the identity.

Definition 5.3.8. An action of G onM is properly discontinuous if, given any p ∈ M, there exists an
open set U inM such that the number of elements a of the group for which g(U) ∩ U , ∅ is finite.

Proposition 5.3.9. ( [Borzellino, 1992]) Every discontinuous group G of isometries of a ManifoldM
acts properly discontinuously.

Dealing with quotient spaces with respect to group actions sometimes leads to manifolds. In other
cases one has to be careful since the resulting space could not even be Hausdorff. A useful concept for
characterizing some of the resulting spaces is the one of Orbifolds. It is a generalization of the concept
of manifold and was introduced by Thurston [Thurston, 2002]. For an orbifold the space locally looks
like the quotient of a Euclidean space under the linear action of a finite group. It can also be thought of
as a surface with singularities and arise by the analysis of symmetries.

Definition 5.3.10. A (topological) orbifold O is a pair (XO,Ui), where XO is a Hausdorff space and Ui

is a covering of XO, that is XO = ∪iUi, which is closed under finite intersections. In addition to each
element of the open cover Ui there is associated a finite group Gi, an action of Gi on an open subset Vi

of Rn and a homeomorphism ϕi : U j ≈ Vi/Gi. Whenever Ui ⊂ U j, there is to be an injective group
homomorphism fi j : Gi ↪→ G j and an embedding ϕ̃i j : Vi ↪→ V j, which is equivariant with respect to fi j

(i.e for each γ ∈ Gi ϕ̃i j(γx) = fi j(γ)ϕ̃i j(x)) such that the following diagram commutes
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Vi V j

Vi/Gi V j/Gi

V j/G j

U jUi

ϕ̃i j

ϕi j = ϕ̃i j/Gi

fi j

ϕ j

⊂

ϕi

An immediate application of the above formal definition to quotient spaces is the following

Proposition 5.3.11. ( [Borzellino, 1992]) The quotient space of a manifoldM by a group G which acts
properly discontinuously and not necessarily free on M is an orbifold. The orbifold is called a good
one ifM is a Riemannian manifold. In this case the underlying space of the orbifold isM/G.

For the special case of free group actions, the quotient spaces are manifolds:

Theorem 5.3.12. If G is compact and acts freely onM, there exists a smooth structure onM/G such
that π :M→M/G is a principal G−bundle (a bundle where the mapping π is a group G, see definition
3.2.13 ) and in particular a submersion.

5.3.1 The Riemannian Structure ofM/G

The quotient space of a manifoldM by a group G can, as mentioned above be an orbifold, if the group
action is proper and discontinuous. If the action is in addition free, then the quotient is a manifold. This
is good news for our analysis but still we have to see how a Riemannian structure for the quotient space
in the case of isometric actions is defined. At this point we will need two more results and follow here
the approach presented in [Kähler, 2012, Huckemann et al., 2010] where more details can be found.

Theorem 5.3.13 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold. Then the following
statements are equivalent:

• the closed and bounded subsets ofM are compact.

• M is a complete metric space.

• M is geodesically complete (geodesics are defined for all t ∈ R, see section 3.2.4).

• there exist p ∈ M so that Expp is defined for all Xp ∈ TpM.
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Lemma 5.3.14 (Gauß). Let ε > 0 such that Expp on the ball Bε(0) ∈ TpM is a diffeomorphism on its
image and let r ∈ (0, ε). Then for each vector v ∈ TpM with ‖v‖ = 1, the geodesic γv(t) = Expp(tv)
is orthogonal to the image of Expp(∂Br(0)) of the sphere of radius r at the point γv(r). That is γ̇v(r) is
perpendicular to the tangent space Tγv(r)Expp(∂Br(0)).

Under the conditions of theorem 5.3.12 a Riemannian metric can be defined for the space M/G as
follows.

First, the Hopf-Rinow theorem 5.3.13 asserts that for a complete Riemannian manifold minimizing
geodesics can be defined between any two points in the manifold. Under the action of a group by
isometries, then

γ geodesic⇔ aγ geodesic for all a ∈ G.

Under the group action the orbit [p] = {ap : a ∈ G} is a submanifold of M that is diffeomorphic to
G/Ip, where Ip is the isotropy group at p defined as Ip = {a ∈ G : ap = p}. For a free action all isotropy
groups consist of only the unit element.

Now the tangent space TpM at p can be decomposed into a vertical subspace and an horizontal
orthogonal subspace as,

TpM = Tp[p] ⊕ HpM.

Tp[p] corresponds to the tangent space of the orbit and HpM is defined onM. In this situation one can
define curves t 7→ γ(t) based on whether the derivatives at t0 of them are horizontal or vertical. This
means horizontal if γ̇(t0) ∈ Hγ(t0)M and vertical if ˙γ(t0) ∈ Tγ(t0)[γ(t0)].

Still a relationship between the geodesics at p ∈ M and the tangential space is needed. In a neighbor-
hood of p defined by means of the exponential map, the Gauss Lemma 5.3.14 states that images under
the exponential map of spheres in TpM are orthogonal to the geodesics through p.

Now the projection in theorem 5.3.12,

π :M 7→ M/G := {[p] : p ∈ M} (5.3.2)

is equipped with the quotient space topology and is a submersion. Under this condition one can define
a Riemannian metric forM/G. This is possible because dπp induces the isomorphism

dπp|HpM : HpM→ T[p]M/G.

By push forwarding the metric inM one can define

〈v, w〉[p] = 〈(dπp)−1v, (dπp)−1w)〉p.

Now what is actually important for applications is the evaluation of distances in the quotient space. The
following considerations, allow us to understand the relationship between geodesics inM with respect
to the ones inM/G.

Definition 5.3.15. A curve γ : [a, b] → M is called horizontal, if γ̇(t) ∈ Hγ(t)M for all t ∈ [a, b]. A
horizontal geodesic is a geodesic which is also a horizontal curve.
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Proposition 5.3.16. A geodesic, horizontal at one point, is horizontal everywhere. Projections of hori-
zontal geodesics are geodesics inM/G.

Finally we can define a distance in the quotient space.

Proposition 5.3.17. LetM be a complete connected manifold. For any [p1], [p2] ∈ M/G the following
distance definitions coincide

dM/G([p1], [p2]) := in f
{
LM/G |γ : [0, 1]→M/G, γ(0) = [p1], γ(1) = [p2]

}
(5.3.3)

d̄M/G([p1], [p2]) := inf
a,b∈G

dM(ap1, bp2) = inf
a∈G

dM(p1, ap2) (5.3.4)

The expression 5.3.4 above implies a minimization problem that has to be solved. The following
definition formalizes this situation.

Definition 5.3.18. Let [p1], [p2] ∈ M/G. If there exist a ∈ G such that

d̂M/G([p1], [p2]) = dM(p1, ap2),

then p1 and ap2 are said to be in optimal position.

We notice that until now the quotient spaceM/G, under the conditions explained above, has a man-
ifold structure. But if the group actions is not free, this is not the case. Nevertheless, as demonstrated
in [Huckemann et al., 2010] the expression

d̂M/G([p1], [p2]) = inf
a∈G

dM(p1, ap2) (5.3.5)

can still be used and so called generalized geodesics could be defined instead.

Definition 5.3.19. A curve γ in M/G is called generalized geodesic, if it is the projection of a hori-
zontal geodesic inM.

Up until now the presented mathematical background has an important theoretical context, never-
theless there is still the question of how to evaluate group actions in practice since the transformations
sending simulations to simulations are unknown. That is why we would like to introduce some notions
about representation theory that provides a constructive way to identify such group actions, as will be
seen in the next chapter.

5.4 Symmetric Spaces and Representation Theory

Of special interest for us are symmetric manifolds constructed as compact Lie groups. We will see that
being able to define symmetric spaces using a transformation group has interesting properties, but first
let us give some necessary definitions.

Definition 5.4.1. Let X be a set and ϕ be any mapping of X into itself. A point x ∈ X is called fixed
point of ϕ if ϕ(x) = x. The mapping is called involutive if ϕ is not the identity mapping, but ϕ ◦ ϕ = id.
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Definition 5.4.2. A (Riemannian) symmetric space is a connected Riemannian manifoldM such that
at each point p ∈ M, there is an involute isometry ϕp : M → M that has p as an isolated fixed point.
The term isolated means that there is a neighborhood U of p such that p is the only point in U that is a
fixed point of ϕp.

Theorem 5.4.3. A Riemannian symmetric space is complete, and if ϕp is an involutive isometry ofM,
then ϕp∗ is a reflection of the tangent space TpM, that means ϕp∗(X) = −X, and ϕp reverses geodesics
through p, that is ϕ(Expp(X)) = Expp(X) for all X ∈ TpM such that those geodesics exist.

Definition 5.4.4. A Riemannian manifoldM is called two-point homogeneous if for any pairs p1, p2 ∈

M, q1, q2 ∈ M satisfying d(p1, p2) = d(q1, q2), there exists an isometry a ofM such that a · p1 = q1

and a · p2 = q2.

Proposition 5.4.5. LetM be a Riemannian globally symmetric space of rank one (the rank is the max-
imum dimension of a subspace of the tangent space (to any point) on which the curvature is identically
zero). ThenM is a two-point homogeneous space.

Definition 5.4.6. Let H be a closed Lie subgroup of the Lie group G. Then the left coset of an element
a ∈ G is defined as aH = {ah : h ∈ H}. The space of all such cosets is denoted by G/H and is a smooth
manifold.

Any given symmetric spaceM can always be written as a homogeneous spaceM = G/Gp, where G
is a connected group of isometries ofM, and the isotropy subgroup Gp is compact.

An element a ∈ G induces a smooth mapping ϕa : M →M via the group action defined as ϕa(p) =

a · p. The mapping ϕa is a diffeomorphism.

Definition 5.4.7. Given a Lie group action of G on a manifold M, a G−invariant Riemannian metric
〈·, ·〉 onM is a metric such that the mapping ϕa is an isometry for all a ∈ G.

Theorem 5.4.8. Let G be a Lie group acting transitively on a manifold. If for some point p ∈ M, the
isotropy subgroup Gp is a connected, compact Lie subgroup of G, thenM has a G−invariant metric.

Theorem 5.4.9. Assume G, M and p satisfy the conditions of theorem 5.4.8. If α : G → G is a
isomorphism of G onto itself with fixed set Gp, thenM is a symmetric space.

The converse of this theorem is also true, see [Fletcher, 2004] for details.

Theorem 5.4.10. A connected Lie group G with bi-invariant metric is a symmetric space.

Summary. We would like to observe that all this abstract setting is important to be able to establish that
first, a Lie Group acting transitively by isometries under certain conditions is a symmetric space and
second, that for such an space geodesics are computed through the group action. Since G is a group of
isometries acting transitively on M, it is necessary to consider only geodesics starting at a base point
p. Geodesics are the image of the action of a one-parameter subgroup of G acting on the base point p.
This is summarized in the next theorem.
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Theorem 5.4.11. IfM is a symmetric space with G−invariant metric, then a geodesic γ starting at a
point p ∈ M is of the form

γ(t) = exp(tX) · p,

where X is a vector in the Lie algebra g.

5.4.1 Notions about Representation Theory

For symmetric spaces obtained from isometric group actions on a manifold there are very useful results
that links the representation of the group and operators that are invariant to the group action.

We follow here closely [Sugiura, 1990] for this section, where details can be consulted.

Definition 5.4.12. A unitary representation of a group G is a strongly continuous homomorphism π

of G into the group U(H) of unitary operators on a Hilbert space H. A mapping is called an homo-
morphism if it satisfies

π(ab) = π(a)π(b) (∀a, b ∈ G)

and an homomorphism is called strongly continuous if the mapping a � π(a)x is a continuous map-
ping from G to H for all x ∈ H.

Definition 5.4.13. A bounded linear operator T : H → H on a Hilbert space H is called unitary if it
satisfies:

• T is surjective,

• T preserves the inner product product i.e < T x,Ty >H=< x, y >.

Definition 5.4.14. Let (π,H) be a unitary representation of a group G. A closed linear subspace V of H
is called invariant under π if

π(a)V ⊂ V (∀a ∈ G).

A unitary representation π is called irreducible if H , 0 and H and 0 are the only invariant subspaces
of H. Non irreducible unitary representations are decomposed into irreducible representations.

Definition 5.4.15. Two unitary representations (π1,H1) and (π2,H2) are equivalent if there exists an
isometry A of H1 onto H2 satisfying

Aπ1(a) = π2(a)A (∀a ∈ G).

Definition 5.4.16. Let (π1,H1) and (π2,H2) be two unitary representations of G. A linear operator
T : H1 → H2 satisfying

Tπ1(a) = π2(a)T

is called an intertwining operator between H1 and H2.

Proposition 5.4.17. Let (π1,H1) and (π2,H2) be two finite dimensional unitary representations of G and
T be an intertwining operator between H1 and H2. Then, either T = 0 or T is a linear isomorphism.
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Proposition 5.4.18. Let (π,H) be a unitary representation of G. Then a closed subspace V of H is
invariant under π if and only if the orthogonal projection PV on V commutes with π(a) for all a ∈ G. In
this case the orthogonal complement V⊥ is also invariant under π.

Definition 5.4.19. Let B(H) be the algebra of bounded linear operators on a Hilbert space H and M be
a subset of B(H). The commutant M′ of M is defined by

M′ = {L ∈ B(H) | LU = UL ∀U ∈ M} .

Theorem 5.4.20 ((Schur’s Lemma)). Let (π,H) be a unitary representation of G and M = {π(a) | a ∈ G}.
Then, π is irreducible if and only if the commutant M′ is equal to the set C1 of scalar operators.

Corollary 5.4.21. Any irreducible unitary representation of a commutative group G is one-dimensional

Theorem 5.4.22. Any unitary representation π of a compact group G is a (Hilbert space) direct sum of
finite dimensional irreducible unitary representations. In particular any irreducible representation of a
compact group is finite dimensional.

We will now introduce a link between group representations and invariant operators to complete our
mathematical setting to be used for analyzing the space of simulations in the next chapter. Let’s start
with the following results,

Proposition 5.4.23 (Mitsuo Sugiura [Sugiura, 1990]). Let F be the space of complex valued C∞-
functions on R3. Then a representation Ta of the rotation group SO(3) on F is defined by

(Ta f )(x) = f (xa)

for a ∈ SO(3), f ∈ F and x ∈ R3. The Laplacian

∆ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

commutes with Ta for any a ∈ SO(3)
∆ · Ta = Ta · ∆.

Theorem 5.4.24 (Mitsuo Sugiura [Sugiura, 1990]). The space Hl of harmonic polynomials of degree l
is invariant under the representation Ta. Put Ta|Hl = Dl

a. Then Dl : a� Dl
a is a continous irreducible

representation of SO(3).

5.4.2 Conclusions

Assume a linear operator L exists invariant to a transformation group G. The eigenfunctions of this
operator are preserved with respect to this transformation group. In addition one can associate a linear
transformation T with elements of the group G say a1, a2 in the space of eigenfunctions so that,

T (a1)T (a2) = T (a1a2).
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T is called a group representation and it establishes a connection between the eigenfunctions of the
linear operator with representations of groups to which the operator is invariant.

According to Sigurdur Helgason [Helgason, 1984], there is a special case where the eigenspaces of
the Laplacian on a compact homogeneous space are irreducible representations. Assume we have a
compact Riemannian manifoldM on which a compact Lie group G acts isometrically and transitively.
The manifold can be thought of as G/K, where K is a closed subgroup of G. According to Helgason:
"For G/K symmetric the joint eigenspaces of the G-invariant differential operators on G/K are all irre-
ducible", for details see theorems 4.3 and 3.5 of [Helgason, 1984]. "If G/K is two-point homogeneous,
then the G-invariant differential operators on G/K are all polynomial in the operator" (see [Helgason,
1984], page 288).

These results are certainly very interesting since they establish that a group can be "represented"
by means of an invariant operator. Indeed, for the rotation group SO(3), it states that one can find a
representation in terms of the spherical harmonics functions and those are actually the eigenfunctions
of the Laplace-Beltrami operator on S 2 (see [Sugiura, 1990] for details).

The link between an invariant operator and the group representation is of highly theoretical interest,
the development of the theory that justifies its uses in applications is open and not within the scope of
this thesis. Nevertheless we will use the idea in applications constructing approximations of invariant
operators. As we will see in the next chapters we provide numerical evidence that demonstrate that
group actions can be represented by projections to the eigenfunctions of isometry invariant operators.

Let us summarize what has been stated along the series of theoretical results presented in this chapter.
First a quotient space of a manifoldM with respect to an isometric group G action can be built which
can be given a Riemannian structure; this allows to define a metric in the quotient space. Second,
under certain conditions, geodesics on the space of isometries are determined through the group actions
(geodesics are the image of the action of one-parameter subgroup of the isometry group G). Third using
representation theory, a representation of the group can be achieved, also under certain conditions, using
eigenspaces of operators that are invariant to the transformation group G. This suggests the possibility of
using the projections to the eigenspaces as a representation of the group actions. Notice also that unitary
representations and invariant operators are known especially in Quantum Physics. In this context we
mention the work in [Heine, 1993], where it is shown that the eigenfunctions of the Hamiltonian are
irreducible representations of symmetry groups. This implies or suggests the possibility of also using
other types of invariant operators and its eigenfunctions.

In the next chapter we will concentrate on the mathematical characterization of simulation results,
considered as being obtained as transformations of a reference simulation, and how to construct invariant
operators and the projections of the simulations to the eigenfunctions.
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CHAPTER 6

Simulations Space: Group Transformations and
Invariant Operators

In the previous chapter we have described the mathematical framework that allows us to analyze abstract
spaces making use of the algebraic structure of a transformation group acting on it. In other words one
can focus on the transformations to study an abstract space. This idea will be used in our task of
characterizing simulations as numerical solutions of partial differential equations.

A remarkable result from the theoretical treatment of differential equations (ordinary and partial) is
the use of Lie group symmetry principles, where a continuous transformation is found that transforms
solutions into solutions. This is a very powerful theoretical framework that allows to obtain analytical
solutions of differential equations. We let ourselves be inspired by Lie group symmetry principles for
characterizing the space of simulations.

Lie group symmetry principles are based on finding a way to represent solutions of differential equa-
tion as orbits that depend on group parameters. An orbit of solutions curves is a continuous family of
solutions parametrized along the group parameters. Methods using Lie group symmetries actually em-
ploy such orbits as candidates of new coordinate systems along which the differential equations become
easy to integrate. For specific types of differential equations, there are analytical methods to find such
coordinates or orbits, for details see [Olver, 1993]. In the context of the analysis of simulation space we
only have the simulations as discrete solution of some differential equation, we do not know about the
form of the PDE nor are we able to do any transformation on it, nevertheless Lie groups ideas still can
be used.

We characterize simulations as members of a quotient space under a transformation group, the ques-
tion we ask ourselves is whether simulations allow a parametrization along group parameters as done
in Lie group symmetry methods for differential equations. Interestingly enough, the answer to this
question, turns out to be, under certain conditions, yes.

To address this challenge, we would like to recall the general framework as defined in chapter 2.
Finding a PDE solution can be formulated as follows, given a parameter set µµµ ∈ P ∈ Rp, find u(µµµ) ∈ V
such that

G(u(µµµ), µµµ) = 0 in V ′,

59



6 Simulations Space: Group Transformations and Invariant Operators

where G : V × P → V ′ is a parametrized mapping representing the nonlinear PDE.
The so called fidelity discrete variation formulation corresponding to it can be written as,

〈G(uh(µµµ);µµµ), vh〉 = 0 ∀vh ∈ Vh.

The PDE solution space is defined as,

ϕ(P) =
{
u(µµµ) ∈ V : µµµ ∈ P ⊂ Rp}

where ϕ : P → V, µµµ 7→ u(µµµ) is the exact solution map, and the corresponding high fidelity discrete
simulation space is given by,

ϕh(P) = {uh(µµµ) ∈ Vh : µµµ ∈ P} ⊂ Vh.

For characterizing this simulation space, we will consider it as an abstract quotient space made of
equivalent classes. Such equivalent classes are defined by isometric group actions, so called orbits, send-
ing simulations to simulations. A representation of the group G is obtained by means of a G−invariant
operator that can be constructed provided a transformation preserving distance can be defined. For a
justification of this approach see section 5.4.1. Once the operator is evaluated, the orbits can be obtained
as projections to the eigenbasis of the invariant operator. The group actions are represented at the differ-
ent components of the orthogonal decomposition. For relevant examples it is shown, that those actions
are concentrated on just few components so that a dimensionality reduction can also be achieved in this
way.

Treating spaces of surfaces or curves as a quotient space over a group acting by isometries is a
procedure used in the context of shape spaces [Michor and Mumford, 2006, Bauer et al., 2011]. In this
thesis we assume simulations to be surfaces or curves where an isometric transformation takes place,
therefore we can consider them as shapes in the general framework of shape spaces. Parts of this chapter
have been presented in [Iza Teran and Garcke, 2016].

6.1 Simulation Space as Quotient Space over Isometries

The theoretical framework of shape spaces assumes that the transformation group G acts by isome-
tries. So we have concentrated on them for the following treatment and left the case of non-isometric
transformations as open for further study.

We will characterize the space of time dependent solutions of partial differential equations or ordinary
differential equations (PDEs, ODEs). It is obtained by changes on boundary and/or initial conditions on
a given fixed domain Ω. Further we assume the following,

• solutions u(µµµ) are surfaces S embedded (immersed) in R3 or are curves embedded (immersed) in
R2

• solutions u(µµµ) are considered to be isometries, i.e. at each time step the solution is isometric to a
reference one.

We will describe the space of solutions of an ODE/PDE as a quotient space. We would like to use the
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6.1 Simulation Space as Quotient Space over Isometries

general Riemannian framework of shape spaces [Bauer et al., 2011] for this. That is, we will consider
each simulation to be a shape and specify a construction for a quotient space of the space of smooth
embeddings (immersions) of S → R3,S → R2 modulo a transformation group G(S).

The abstract setting of [Michor and Mumford, 2006, Bauer et al., 2011] considers a pre-shape space
as the space of embeddings (immersions) of S into Rn as follows,

Proposition 6.1.1. [Bauer et al., 2011] The pre-shape space can be characterized as Frechet manifolds
given by

Emb(S,Rn) ⊂ Imm f (S,Rn) ⊂ Imm(S,Rn) ⊂ C∞(S,Rn)

where dim S ≤ n, Emb(S,Rn) is the set of embeddings of S in Rn, Imm f (S,Rn) is the set of free
immersions of S in Rn, Imm(S,Rn) is the set of all immersions (free and non-free) and C∞(S,Rn) is the
set of smooth functions from S to Rn .

Finally the shape space itself is defined as a quotient space,

Proposition 6.1.2. [Bauer et al., 2011] Let Imm(S,Rn), Emb(S,Rn) be the space of immersions
and embeddings of S in Rn, respectively. Let G(S) be a transformation group that acts smoothly on
Imm(S,Rn) and Emb(S,Rn) by composition from the right. Also the action of G(S) is by isometries.
Then the quotient spaces

Imm(S,Rn)/G(S) Emb(S,Rn)/G(S)

characterize the space of shapes and it is an infinite dimensional orbifold with a global quotient space
topology. For the case of embeddings the space is a manifold.

Shape spaces for simulations are good candidates for the right theoretical framework. It considers
continuous group actions which involves the use of an infinite dimensional setting, a highly interesting
theoretical topic which has been researched actively in the last years [Kriegl and Michor, 1997], [Michor
and Mumford, 2006]. Considering simulations in an infinite dimensional setting is certainly theoretic-
ally interesting, but it is beyond the scope of this thesis. For applications, to make things tractable, it is
usually assumed that transformations are discrete [Srivastava et al., 2011]. For our case of simulations,
they are obtained solving a PDE for a discrete set of parameters and therefore a discrete group action
could also be assumed. Under this conditions, the space of simulations can, according to the discussion
above, be characterized in a very general form as the quotients,

Emb(S,Rn)/G(S) Imm(S,Rn)/G(S). (6.1.1)

The specific character of this quotient (manifold or orbifold) will depend on the type of discrete group
action. This quotient space will contain orbits of isometries of S. That is, for example, we will have
orbits of rotations along specific axis, orbits of translations, orbits of global deformations of different
types and orbits of local deformations and so on. How to concretely construct those orbits and then
evaluate geodesic paths on such space will be the topic of the next section.
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6 Simulations Space: Group Transformations and Invariant Operators

6.2 Geodesics on the Quotient Space

For practical applications we also need a way to define a path along the above defined quotient spaces,
let us use for illustration the space Imm(S,Rn)/G(S), n = 2, 3. In this section we will explain how,
starting from a way to determine geodesics on the pre-shape space Imm(S,Rn), one can still obtain
geodesics in the quotient space. What is actually needed is a way to evaluate a distance between orbits
in the quotient space. The procedure requires two steps:

1. define a Riemannian metric in the space Imm(S,Rn), this defines the length of infinitesimal de-
formations of an object, for simplicity think of it as a surface or as a curve suffering a deformation,
the metric is denoted by 〈h, k〉 f with f ∈ Imm(S,Rn) (the space of immersions) and h, k are vector
fields T f Imm(S,Rn), n = 2, 3. After this metric has been defined, a computation of geodesics in
the space of immersions of S in Rn can be realized. This involves a minimization of

dImm( f1, f2 ◦ a) = min
F:[0,1]→Imm(S,Rn)

F(0)= f1,F(1)= f2

(∫ 1

0
(〈F′(t), F′(t)〉)1/2dt)

)
,

where f1, f2 are elements in Imm(S,Rn) and F is a path in Imm(S,Rn) indexed by t

2. the metric is chosen invariant under the action of the transformation group and the action is as-
sumed to be free, as a consequence the quotient under this action is a Riemannian submersion.
Because of that, a Riemannian metric in the quotient space is obtained. For any f ∈ Imm(S,Rn)
those vectors in T f Imm(S,Rn) that are perpendicular to the G(S) orbit through f (with respect to
the metric in Imm(S,Rn)) are called horizontal. As a consequence the geodesic distance between
two elements of the quotient space [ f1], [ f2] is given by

dQ([ f1], [ f2]) = min
a∈G

(dImm( f1, f 2 ◦ a))

that is, finding a geodesic on a quotient space requires the solution of two minimization problems. For
shape spaces this approach has been extensively studied. For general references see [Bauer et al., 2014],
for the special case of plane curves see [Srivastava et al., 2011, Michor and Mumford, 2006] and for
the case of surfaces with genus zero see [Kurtek et al., 2012], [Bauer et al., 2011]. Very important for
evaluating this distances is how a parametrization invariant metric is defined.

We observe that for applications using a conceptual framework of representing simulations by group
actions, requires a method to represent such actions.

6.3 Group Representations and Invariant Operators

We have stated in section 5.4.1 that finding a linear group representation is possible and not only that,
under some conditions as detailed in section 5.4.1, it is even possible to use the eigenfunctions of a group
invariant operator as a group representation. A particular example of this link has also been illustrated
in that section, the space of harmonic polynomials (eigenfunctions of the Laplace-Beltrami operator on
the sphere) of degree l is invariant under a linear group representation and is a continuous irreducible
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representation of the rotation group SO(3). We would like to focus on this connection between the
eigenfunctions of the linear operator with representations of a group to which the operator is invariant.
It might be natural to ask the question if such a construction works for other than the rotation group,
considering other isometric group actions. Is it possible to say something about the eigenfunctions as
unitary representations of the group? Are they irreducible?. These questions are still open, at least
to our knowledge and they are very interesting from a theoretical point of view, considering them in
our thesis is unfortunately out of scope for the analysis of simulations. Nevertheless the idea of using
eigenfunctions of invariant operators is very interesting and very useful for applications. Indeed, as it has
been described in section 5.4, for a Lie group acting transitively on a manifold a symmetric space can be
defined and geodesics in this space are computed through the group actions! To be precise, they are the
image of the action of a one-parameter subgroup of G acting on the base point p, see Theorem 5.4.11.
We hope the reader realizes what that means, the calculation of geodesics in the high dimensional space
of simulations is very expensive and the statements above suggest a new way to calculate geodesics
based on a group representation using eigenfunctions of an invariant operator. Specifically given a
simulation bundle assumed to undergo only isometric transformations an operator invariant to those
transformations can be constructed, the eigenfunctions can then be used as a basis for all simulations.
The projection coefficients to this new basis should, according to the theory, represent isometric group
actions and even more for the rotation group and the translation group they are geodesics in the space
of simulations! In the course of this thesis, numerical evidence will be provided that shows that the
rotation and translation group are represented in the new basis. In the case of plane curves, geodesics
in this space are demonstrated to be obtained by using the projection coefficients to the new basis as a
representation of the group actions.

Finally, we would like to mention an astonishing link between the orbit paths and geodesics which
has a very interesting formal aspect. Vladimir Arnold made the observation (see [Mumford and Michor,
2013] and references therein) that many basic equations in physics including the Euler equation for rigid
body motions as well the Euler equation for incompressible fluid dynamics can be seen as geodesic flows
on a Riemannian manifold. In addition this manifold is a Lie group manifold with a left invariant metric.
Under this condition, a geodesic in the manifold is a one-parameter group orbit. This gives a link from
Lie group transformations to geodesics on a manifold. In this thesis we will actually deal with orbits
that are the result of group actions!, we hope the reader will find such a link as interesting as we found
it from the theoretical as well as from the practical point of view.

6.4 Invariant Operators

An important component of our approach is the use of so called invariant differential operators and their
discrete approximations which have a special behavior under isometric transformations, or even more
general ones.

Invariant operators, as will be seen, can be constructed by using a distance (metric) with respect to
which the invariance is measured. That is, as long as we are able to define a distance that does not
change for a certain type of transformation, we can construct such operators using only one (arbitrary)
simulation. This implies that the operator built in this form is the same for all simulations. The operator
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6 Simulations Space: Group Transformations and Invariant Operators

will then depend on the metric used. In practice, each time a different metric is used for the construction
of the operator, we obtain a different operator.

Before going into the details of the construction of relevant invariant operators, let us recall that
simulations are numerical approximations of ODEs or PDEs and are therefore discrete, so even if the
proposed method is described on a continuous setting, for practical applications we will need to resort
to and take into account the discrete setting.

6.4.1 Simulation Discrete Setting

Simulations are discrete representations of the solution of a PDE on a domain and we would like to con-
struct discrete invariant operators corresponding to the continuous counterparts. We consider industrial
simulations as consisting of finite element numerical solutions on complex domains represented by a
mesh. But also, more generally, we assume that PDE solutions are given by values evaluated at specific
points over a domain (a point cloud) without necessarily taking into account any specific mesh repre-
sentation. Nevertheless, using the mesh is handy for the construction of invariant operators as will be
seen in the following sections. For the sake of simplicity we will treat surface meshes as approximations
of our simulations, in general volume meshes could be treated as well, but surface meshes are typically
used in the application domains we will consider

Simulation are defined on meshes K that are approximations of a 2-manifold S isometrically embed-
ded in R3. The following definition is one way to quantify how well a mesh K approximates a manifold
surface S, see [Belkin et al., 2008] for details.

Definition 6.4.1. Let K be a meshed surface approximating S, where the vertices of K are on S. We
say that K is an (ε, η) approximation of S if the following two conditions are fulfilled:

• For a face t in K, the maximum distance between any two points on t is at most ερ, where ρ is the
reach, defined as the infimum of the local distance between any point w in S and the medial axis
of the surface S.

• For a face t in K and a vertex p ∈ t, the angle between nt, the unit outward normal of the plane
passing through t, and np, the unit outward normal of S at p, is at most η.

Furthermore, we have restrictions of continuous functions on S to the mesh K:

Definition 6.4.2. Let f : S → R be a continuous function on S. The function f evaluated at the nodes
of a mesh K is called a mesh function f |K : K → R.

The approximation conditions above for a mesh to represent a surface can be stated as: first assuring
one has a fine enough mesh to represent a shape and secondly that the curvature is also well represented.
These conditions are also shown to give approximation conditions under which the graph distance on
the mesh dG approximates well the geodesic distance dS on the surface. We will present a formal result
about it in the following section.
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6.4.2 Approximating the Geodesic Distance on a Mesh

Approximation results under which the graph distance dG approximate the geodesics distance dS on a
manifold are given in [Bernstein et al., 2000], [Garcke, 2016]. The proof uses an intermediate approx-
imation to the geodesic distance called dP that is made of piecewise sections constructed using points
on the manifold S . The proof that dG ≈ dS is then naturally divided into two parts: dS ≈ dP and
dP ≈ dG. For assuring dP to be a good approximation to dS so called sampling condition were intro-
duced in [Bernstein et al., 2000]. For assuring that dG approximates dP, an intermediate result is used
that relates the geodesic distance and the Euclidean distance on the graph. The combination of both
parts is finally used to prove the main result relating those three distances.

We provide in this thesis a variation of the above mentioned result for the case of meshes approx-
imating surfaces in R3. For this purpose the so called (ε, η) approximation condition is used [Belkin
and Niyogi, 2008]. This assure that a mesh approximate a surface well. We use this condition to firstly
verify that it obeys the sampling condition from the original setting in [Bernstein et al., 2000] and as a
consequence dP approximates dS arbitrary well provided the (ε, η) approximation condition is verified.
Secondly an alternative intermediate result to the one provided in [Bernstein et al., 2000], which relates
the geodesic distance and the Euclidean distance on the graph is derived. The combination of both parts
using the same arguments as for the proof of the main theorem in [Bernstein et al., 2000] completes the
proof.

Let us first present some relevant results we need, starting with the sampling condition theorem from
[Bernstein et al., 2000]:

Theorem 6.4.3. Let ε̄ and δ be positive, with 4δ < ε̄. Suppose:

1. The graph G = (V, E) contains all edges (p, q) ∈ E for which dS (p, q) ≤ ε̄.

2. For every point m in S there is a data point pi for which dS (m, pi) ≤ δ.

Then for all pairs of data points p, q ∈ V we have

dS (p, q) ≤ dP(p, q) ≤ (1 + 4δ/ε̄)dS (p, q)

In the above theorem dG(p, q) and dP(p, q) are distances defined as:

dG(p, q) = min
P

(dE(p0, p1)‖ + · · · + dE(pk−1, pk))

dP(p, q) = min
P

(dS (p0, p1) + · · · + dS (pk−1 − pk))

where P = (p0 . . . , pk) varies over all paths along the edges of G connecting p(= p0) to q(= pk) and dE

denotes the Euclidean distance.

Also useful is the following proposition from [Bernstein et al., 2000].
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Proposition 6.4.4. We have the inequalities:

dS (p, q) ≤ dP(p, q)

dG(p, q) ≤ dP(p, q)

Further estimates are available which bounds the distance between the surface and any point k on the
mesh K and the distance between any point in the surface, p ∈ S and the mesh.

Lemma 6.4.5 ( [Belkin et al., 2008]). If a mesh K (ε, η)-approximates S with ε, η < 0.1 then the
following conditions hold:

1. For any point k ∈ K, dE(k, S ) ≤ (ε2 + ηε)ρ.

2. For any point p ∈ S , dE(p,K) ≤ (ε2 + ηε)ρ.

3. φ : K → S is an homeomorphism.

where dE(k, S ) is the distance from the point k on the mesh to the surface S and dE(p,K) is the distance
from the point p on the surface to the mesh K.

Now we will analyze the (ε, η) approximation condition and see whether a set of points satisfying it,
also satisfy the sampling condition.

Proposition 6.4.6. Let the mesh K approximate a surface satisfying the (ε, η) approximation conditions.
Then points on the mesh also satisfy the sampling condition as given in theorem 6.4.3

Proof. We will start with item 1 in theorem 6.4.3. Let p, q be points on the surface S which are also
points on the mesh K and let G be the graph constructed with those points. According to the (ε, η)
approximation condition, the maximum Euclidean distance between any two points in a face is at most
ερ. Therefore the graph G constructed using the condition dS (p, q) ≤ ερ with ε̄ = ερ, contains all edges
for which this condition is fulfilled. This completes the proof for item 1.

Item 2 establishes a closeness condition between every point in S and a point pi on the mesh. The
geodesic distance between a point m in S and a point on the mesh pi can be bounded using two times
the Euclidean distance between those points. This distance in turn can be bounded by the sum of the
distance to the mesh from any point on the surface (given by item 2 in Lemma 6.4.5) and the distance
between any point on a face and the point pi which is bounded by the (ε, η) approximation condition.

In detail, let us start using the following result from [Niyogi et al., 2008].

dS (m, pi) ≤ 2dE(m, pi).

The distance dE(m, pi) can be bounded by

dE(m, pi) ≤ dE(m, k) + dE(k, pi)
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where dE(m, k) is the distance between a point m in the surface and the point k on a face that is nearest
to the point m. The expression dE(k, pi) corresponds to the distance between the points k and pi on a
mesh face.

Notice that the distance dE(m, k) is per definition the distance between a point on the surface and the
mesh K so that the bound in item 2 from lemma 6.4.5 applies. Further notice that the distance dE(k, pi)
can be upper bounded using the (ε, η) approximation condition, using again that the distance between
any two points is at most ερ. In detail this means:

dS (m, pi) ≤ 2(dE(m, k) + dE(k, pi)),

using item 2 of lemma 6.4.5 and the (ε, η) approximation, we can write the estimate

dS (m, pi) ≤ 2ρ(ε2 + εη + ε) = 2ε̄(ε + η + 1).

Choosing δ = 2ρ(ε2 + εη + η)/16 = 2ε̄(ε + η + 1)/16 then

4δ =
ρ(ε2 + εη + η)

2
=
ε̄(ε + η + 1)

2
< ε̄

for ε, η small enough. In this way according to theorem 6.4.3 the sampling condition is verified for ε̄, δ
and ε, η small enough. �

Once the sampling condition is verified, we can assert that dP is a good approximation of dS . For
assuring that dG approximates well dS we first need the following result which is a slight modification
of lemma 3.2 in [Belkin et al., 2008].

Lemma 6.4.7. Given a positive real number λ such that λ < 1 and two points p, q on the surface S , let
dE(p, q) = ‖p − q‖ < ρ/2

√
6λ. Then we have that

(1 − λ)dS (p, q) ≤ dE(p, q) ≤ dS (p, q)

Proof. We follow the steps as given in the proof of lemma 3.2 in [Belkin et al., 2008] and obtain the
following inequality

dS (p, q) ≤ dE(p, q) +
dS (p, q)3

6ρ2

Using the condition dE(p, q) = ‖p − q‖ < ρ/2
√

6λ and that dS (p, q) ≤ 2dE(p, q) [Niyogi et al., 2008],
we obtain dS (p, q) < ρ

√
6λ. Now the inequality can be written as

(1 −
dS (p, q)2

6ρ2 )dS (p, q) ≤ dE(p, q),

we can upper bound dS (p, q)2 using dS < ρ
√

6λ finally obtaining

(1 − λ)dS (p, q) ≤ dE(p, q)
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The right hand side of the inequality in the lemma is just only the fact that the line segment between p
and q is the shortest arc connecting p and q. Finally we obtain the desired result

(1 − λ)dS (p, q) ≤ dE(p, q) ≤ dS (p, q)

�

Finally we can formulate an analog main theorem to the one in [Bernstein et al., 2000], [Garcke,
2016] as follows

Theorem 6.4.8. Let G = [Y, E] be a graph defined on a mesh K that (ε, η) approximates well the
surface S , given as a compact convex sub-manifold of R3 and let Y ⊂ S . For given two numbers
0 < λ1, λ2, δ̄ = λ2δ, the following holds

(1 − λ1)dS (p, q) ≤ dG(p, q) ≤ (1 + λ2)dS (p, q)

Proof. According to proposition 6.4.3, a mesh K which (ε, η) approximates the surface S also satisfies
the sampling condition so that theorem 6.4.3 applies and with proposition 6.4.4 we obtain

dG(p, q) ≤ dP(p, q) ≤ (1 + 4δ̄/ε̄) ≤ (1 + λ2)dS (p, q).

Now as given in [Bernstein et al., 2000], [Garcke, 2016], choose a path p0 p1 · · · pk connecting p(= p0)
to q(= pk) along graph edges which minimizes the total graph length. For the graph defined on a mesh
which (ε, η) approximates a surface S , we can use lemma 6.4.7 for each pair pi, pi+1 with λ = λ1. Then:

dS (p, q >) ≤ dS (p0, p1) + · · · + dS (pk−1, pk)

≤ (1 − λ1)−1dE(p0, p1) + · · · + (1 − λ1)−1dE(pk−1, pk)

= (1 − λ1)−1dG(p, q).

This proves the left-hand inequality. �

Now we can start to show how to construct an invariant operator that already includes several types
of distance preserving transformations, namely the Laplace-Beltrami operator.

6.4.3 The Laplace-Beltrami Operator

Let us start with the Laplace-Beltrami operator and recall some of the concepts already given in chapter
3. The operator is defined as

∆g : C∞ → C∞

∆g = −divg · ∇g

Specifically we consider the operator as defined for a surface ∆S := ∆g|S. The eigenvalue problem
∆Sψ = −λψ is restricted to the manifold (S, g), where λ is an eigenvalue of ∆S and ψ is the corres-
ponding eigenfunction. Since the operators we consider are positive definite [Rosenberg, 1997], all
eigenvalues λk, k ≥ 0 are real, positive, and isolated with finite multiplicity. The set of eigenfunctions
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{ψi} of the operator forms an orthogonal base for functions on S, therefore the following decomposition
can be written for f ∈ C∞(S):

f =

∞∑
i=0

αiψi, αi = 〈 f , ψi〉g (6.4.1)

For any function f as defined by (6.4.1) one can instead of considering the function itself, equivalently
consider the vector α = [α1, α2, . . .] of spectral coefficients obtained by projecting the function along
the infinite dimensional eigenspace spanned by the eigenfunctions. Those coefficients can be used as
coordinate functions instead of the original ones as follows:

Proposition 6.4.9. The difference between two functions f1 =
∑∞

i=0 α
i
1ψi, αi

1 = 〈 f1, ψi〉 and f2 =∑∞
i=0 α

i
2ψi, αi

2 = 〈 f2, ψi〉 using a decomposition with the corresponding eigenfunctions for an operator
∆g(S), is given by

‖ f1 − f2‖2 =

∞∑
i=0

〈αi
1 − α

i
2, ψi〉

2 = ‖α1 − α2‖
2

where α1, α2 are the spectral coefficients for the orthogonal decomposition.

Proof. to show the above just use the Parseval’s identity which establishes that

‖ f1 − f2‖2 = ‖α1 − α2‖
2.

�

6.4.4 The Laplace-Beltrami Operator on a Mesh

Let S be a 2−manifold (a surface) isometrically embedded in R3 and let ∆S be the Laplace-Beltrami
operator on this manifold. Under the assumption that the mesh K is a (ε, η) approximation of S, the
following operator can be defined [Belkin et al., 2008].

Definition 6.4.10. Let the number of vertices on t be denoted by #t and V(t) be the set of vertices of t,
then for any w ∈ V , the mesh Laplace operator is defined as

Lh
K f (w) =

1
4πh2

∑
t∈K

Area(t)
#t

∑
p∈V(t)

e−
dG (p,w)2

4h ( f (p) − f (w)). (6.4.2)

In (6.4.2), dG(p, w) denotes the graph distance on the mesh (shortest path for a triangular mesh) and
h is a parameter which corresponds to the size of the local neighborhood at a point. The graph distance
on the mesh approximates the geodesic distance on the surface according to theorem 6.4.8.

In the following theorem from [Belkin et al., 2008] one exploits that locally the Euclidean distance
is a good approximation of the geodesic distance to give approximation properties for the Laplace-
Beltrami operator on a surface by the mesh Laplace operator Lh

K . Note that in [Belkin et al., 2008] the
Euclidean distance dE(p, w) = ‖p − w‖ is used in the definition of Lh

K instead of dG(p, w). Due to the
(ε, η) approximation conditions, the graph distance is a better approximation of the geodesic distance
and therefore, it naturally holds for (6.4.2) as well.
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Theorem 6.4.11. (Laplace-Beltrami Approximation Theorem [Belkin et al., 2008]) Let Kε,η be a an
(ε, η)-approximation of S. Put h(ε, η) = ε

1
2.5+α + η

1
1+α for an arbitrary positive number α > 0. Then for

any function f ∈ C2(S) it holds

lim
ε,η→0

sup
Kε,η

∣∣∣∣∣∣∣∣Lh(ε,η)
Kε,η

f − ∆S f |Kε,η

∣∣∣∣∣∣∣∣
∞

= 0,

where the supremum is taken over all (ε, η)-approximations of S.

According to this result, for a mesh fine enough which also approximates the curvature of S well,
we expect to get an approximation of the corresponding continuous Laplace-Beltrami operator on this
surface.

6.4.5 The Laplace-Beltrami Operator under Isometric Transformations

We will consider in this section surfaces, that are assumed to be smooth connected complete Riemannian
2-manifolds. The geodesic distance induced by the Riemannian metric on the surface S is denoted by
dS : S × S 7→ R+. Also we are given a discrete surface mesh K that in the continuous limit, is assumed
to approximate a surface S.

Further let ϕi be a distance preserving diffeomorphism ϕi : S → Si between two Riemannian man-
ifolds (S, g) and (Si, gi) and let K̄ =

{
Ki

}m

i=1
be a set of meshes which are assumed to have the same

connectivity and approximate a set of ϕi transformed surfaces Si, i = 1, . . . ,m. The transformation is
such that geodesic distances are kept the same. In other words the transformation ϕi : S → Si, between
two surfaces is an isometry. Then S,Si are called isometric and the restriction to the discrete mesh are
assumed to preserve geodesic distances as well. In this ideal case the following diagram commutes.

S Si

K Ki

ϕi

ϕi
|K

Here ϕi
|K is a discrete version of ϕi.

Notice that in a discrete setting it is a-priori not clear as to how to handle geodesic distance preserva-
tion. We can nevertheless accept that an error is made by the evaluation of geodesic distances and make
the assumption that this error is kept small. A related concept covering this assumptions has already
being introduced through the so called ε− isometry [Bronstein et al., 2006].

Definition 6.4.12. Given two surfaces S,Si in the set of all surfaces, a transformation ϕ : S 7→ Si is
said to have a distortion given by

dis ϕ ≡ sup
s,s′∈S

|dS(s, s′) − dSi(ϕ(s), ϕ(s′))| (6.4.3)

If in addition for every q ∈ Si there exists s ∈ S such that dS i(q, ϕ(s)) ≤ ε, ϕ is called an ε-isometry
and the spaces S,Si are called ε-isometric.
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A discrete point on a mesh is assumed to be sampled on the surface and we approximate the geodesic
distance on the surface by using the graph distance on the mesh. Therefore the discrete nature of the
mesh introduces an approximation in the calculation of geodesic distances. For the numerical evaluation
of the operator we use a Gaussian kernel (see expression (6.4.2)) for all points on a mesh. A discrete
version of the Laplace-Beltrami operator is obtained in this way that, as described previously, converges
to the continuous counterpart as one refines the mesh. This approximation error is assumed fixed for a
certain mesh size. Now consider another mesh subject to an ε−isometric transformation, constructing
the operator using the graph distance will inevitably introduce an error with respect to the one on the
first mesh, under this setting we assume that the error in the evaluation of the operator due to the discrete
approximation has a Gaussian noise character. That is we assume that in the evaluation of the discrete
operator, one obtains a noisy representation whose noise is sampled from a Gaussian distribution. Under
the above assumptions we can assert the following for an ε−isometric transformation.

Proposition 6.4.13.

1. Let a deformed surface S be given and let a geodesic distance preserving mapping ϕi transform
S into a series of deformed surfaces Si, i = 1, . . . ,m. The Laplace-Beltrami operator constructed
using the geodesic distance in S is the same for each Si.

2. Let the set of deformed meshes K̄ =
{
Ki

}m

i=1
be given as approximations of the surfaces Si and also

let a set of transformations ϕi
|K , i = 1, . . . ,m be ε-isometric. Further assume that the ε-isometric

transformations produces a Gaussian noise perturbation of the metric. Then the approximation
of the Laplace-Beltrami operator Lh

K given in (6.4.2), constructed using graph distances for one
mesh K, differs only by a scaling factor with respect to each of the ones constructed using the
deformed meshes i = 1, . . . ,m in the set K̄.

Proof. Let ϕi be a diffeomorphism ϕi : S → Si between two Riemannian manifolds (S, g) and (Si, gi),
where g = ϕi∗gi. Further let ϕi be geodesic distance preserving, i.e. dgi(ϕi(p), ϕi(q)) = dg(p, q). Notice
that the Laplace-Beltrami operator is invariant to geodesic preserving transformations. For any Si that
is a deformed surface which is obtained from S using a geodesic distance preserving mapping ϕi, we
can therefore follow that the operator can not distinguish S and Si as different manifolds; we just have
different charts. As a consequence, the Laplace-Beltrami operator will be the same for all Si.

For now, consider a set of deformed meshes K̄ =
{
Ki

}m

i=1
, each Ki approximating a manifold Si.

We assume that, through a specific ε− isometric transformation ϕi
|K , Ki can be obtained from K. Fur-

ther Ki approximates a manifold surface Si and according to 6.4.8, the graph distance evaluated in Ki

approximates the geodesic distance in Si.
In the discrete setting, for each and every new ε−isometric transformation ϕi

|K we assume that a per-
turbation of the operator Lh

K (6.4.2) for K is introduced. According to the assumption in the proposition
regarding noise, through the approximate evaluation of the geodesic distances using the graph distances,
the transformations introduce Gaussian noise η with covariance matrix σ2 so that

dG(ϕ(s), ϕ(s′)) = dG(s, s′) + η(s − s′). (6.4.4)

For the numerical calculation of the discrete approximation of the Laplace-Beltrami operator Lh
K

given in (6.4.2) on the mesh K a Gaussian kernel weight matrix W̃ := e−dG(s,s′)2/(4h) has to be calculated.
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Figure 6.1: Isometric deformations of a car part

For the mesh Ki, a corresponding Gaussian kernel matrix W := e−dG(ϕ(s),ϕ(s′))2/(4h) is built instead. The
components of these weights matrices can be shown to differ only by a scaling factor [Meyer and Shen,
2014]

W̃n,m = e−2(σ/δ)2
Wn,m (6.4.5)

where δ = 4h is the width of the Gaussian kernel. That is, the noise in expression (6.4.4) introduce a
perturbation of the weighted kernel matrix of the operator. This argument has already being used for
the analysis of the perturbation of the eigenvectors of the graph Laplacian and involves the use of a
theoretical result presented in [Karoui, 2010]. The perturbation analysis due to noise as used in [Meyer
and Shen, 2014] is analogous to the case treated here, the difference being that in [Meyer and Shen,
2014] the Euclidean distance is used in expression (6.4.4). As for our setting, we assume that the
geodesic distance is locally well approximated by the euclidean distance so that the use of expression
(6.4.5) can be justified for our case. �

The above result is very interesting, it shows that under some specific assumptions, the approximated
operator (6.4.2) can be used for all given ε−isometric transformed meshes. The difference being a
scaling factor with respect to the one for mesh K, as long as σ does not vary locally.

Considering simulations which are obtained through the application of an isometric (distance pre-
serving) transformation on a mesh could appear restrictive, but as we have seen small deviations from
the isometric case are permissible. In addition it will be seen that even in this setting many appli-
cations (see Chapter 9) can be realized. As a motivating example consider deformed surfaces which
are obtained from a numerical simulation of a car crash, using different material parameters. The de-
formations obtained in the example models physical deformations that do not elongate or tear the part.
Therefore the car part only deforms but the distances inside the part are preserved, figure 6.1 illustrates
these (approximately) isometric deformations.

Notice that, in spite of having evidence that transformations between simulations can be considered
as being nearly isometric, there are ways to deal with more general transformations by modifying the
distance used in the construction of the operator. We will see this for one example in the next section.
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6.4.6 An Operator for Point Clouds

The use of the Laplace-Beltrami operator is already very useful for applications, nevertheless one can
certainly think about other types of invariant operators. We will introduce in this section another operator
that has been used in the context of nonlinear independent component analysis (NICA) [Singer and
Coifman, 2008], and which is valid for a stochastic Itô process. The independent processes are given by

dp(i) = αi(p(i))dt + bi(p(i))dw(i), i = 1, . . .Nh,

where αi and bi are unknown drift and noise coefficients, and ẇi are independent white noises. In the
NICA setting one assumes that one is not able to observe p = (p(1), p(2), . . . , p(Nh)), but the result of a
mapping ϕ(p).

Our application area is the analysis of simulations in engineering, as an example let us take again
crash simulations for cars. In industry a finite element model is used that solves the equations of struc-
tural mechanics under time dependent deformations. This model is solved for a set of parameters that
can vary randomly, this is the case for reliability design or robustness studies. One has some materi-
al parameters or some load conditions that vary randomly according to some probability distribution.
Whether or not the assumption of an Itô process is valid for this setting is open, but there are approaches
in structural dynamics that use such assumption (see [Spanos and Wu, 1994] for the Itô formulation
characterizing accumulated structural deformations). In the following we will assume that the operator
for the independent components can be used for our application. For its construction, we use the points
of the deformed surface meshes from the simulations.

Given Nh points p(1), · · · , p(Nh) ∈ RM in the unobservable space Sp, they are mapped to the points
η(1), · · · , η(Nh) ∈ Rd in another space Sη by a nonlinear transformation ϕ. This mapping and its inverse
can be linearly approximated on a ball Bδ(p(k)) around any given point p(k) by its differential due to the
locality of the ball and also assuming that the map is smooth enough. The first order Taylor expansion
is then

η = ϕ(p) = η(k) + Jϕ(p(k))(p − p(k)) + O(‖p − p(k)‖2), for p ∈ Bδ(p(k)), (6.4.6)

where Jϕ(p(k)) is the Jacobian of ϕ evaluated at p(k) and also η(k) = ϕ(p(k)).
This expression allows the evaluation of a first order approximation of the distance

‖η − η(k)‖2 = ‖Jϕ(p(k))(p − p(k))‖2 + O(‖p − p(k)‖3),

while for the inverse map ϕ−1 one can write

‖p − p(k)‖2 = ‖Jϕ−1(η(k))(η − η(k))‖2 + O(‖p − p(k)‖3),

see [Singer and Coifman, 2008, Kushnir et al., 2012] for details. According to this approximation, a
ball Bδ(p(k)) in Sp centered at p(k) is therefore mapped to a small ellipsoid in Sη centered around η(k).
This ellipsoid can be identified with the covariance matrix Ck,δ of its inner points [Singer and Coifman,
2008], i.e.

Ck,δ = E[(η − η(k))(η − η(k))T ], (6.4.7)
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by making use of the linearity of the expectation and using the approximation (6.4.6). It has been proved
in [Singer and Coifman, 2008] that

Jϕ(p(k))JT
ϕ (p(k)) =

d + 2
δ2 Ci,δ + O(δ), (6.4.8)

where Sp ⊂ RM, and that a second-order approximation of the local distance ‖p − p(k)‖2 can be written
using C+

k,δ, the pseudo-inverse of Ck,δ, as

‖p(l) − p(k)‖2 =
1
2

δ2

d + 2
(η(l) − η(k))T

[
C+

k,δ + C+
l,δ

]
(η(l) − η(k)) + O(‖p(l) − p(k)‖4) (6.4.9)

Using expression (6.4.9), the local distance in the unobservable space can be approximated. We sum-
marize this approximation in the following proposition, see [Singer and Coifman, 2008, Kushnir et al.,
2012] for details.

Proposition 6.4.14.

Let p, w ∈ Sp, and let η, β be their respective mappings to the observable space Sη. Then the distance
in Sp (using local coordinates) can be written as:

‖p − w‖2
RM =

1
2

(η − β)T
[
(JϕJT

ϕ )−1(η) + (JϕJT
ϕ )−1(β)

]
(η − β) + O(‖η − β‖4

Rd ), (6.4.10)

where d ≤ M, and Jφ is the Jacobian of the transformation. Using an approximation at the midpoint,
the distance in Sp can be shown to be given by

d(p, w) = ‖p − w‖2
RM = (η − β)T

[
(JϕJT

ϕ )−1(
η + β

2
)
]

(η − β) + O(‖η − β‖4
Rd ), (6.4.11)

The Jacobian at the midpoint is given by

(JJT )−1(
η + β

2
) = 2[JJT (η) + JJT (β)]−1 + O(‖η − β‖2)

Using the distance in (6.4.11), the matrix operator of size Nh × Nh can be constructed using the weights

Ap,w = exp(−‖p − w‖2/ε). (6.4.12)

Now the matrix is normalized via
Wr,norm := D−1/2

r AD−1/2
r , (6.4.13)

where Dr is a diagonal matrix with elements

Dp,p
r :=

Nh∑
p′=1

Ap,p′ .

Further Wr,norm is transformed into a row stochastic matrix by

Wr,rs := D−1
rs Wr,norm (6.4.14)
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with Drs the diagonal matrix with elements Dp,p
rs =

∑Nh
p′=1 W p,p′

r,norm. The kernel Wr,rs is similar to the
symmetric kernel

Ws = D−1
rs Wr,normD−1

rs , (6.4.15)

Wr,rs with eigenvectors ψ and Ws with eigenvectors ψs and share the same eigenvalues. The eigenvectors
are related by ψs = D1/2

rs ψ. See [Talmon and Coifman, 2015, Kushnir et al., 2012], for details.

It has been demonstrated in [Singer and Coifman, 2008] that the discrete operator

L = D−1Wr,rs − I, (6.4.16)

with A (6.4.12) evaluated using (6.4.11), converges to a Fokker-Planck operator in the non-observable
space Sp. The eigenvectors of the graph Laplacian (6.4.16) approximate also the eigenfunctions in the
non-observable space in the limit Nh → ∞, ε → 0

LSp f = ∆ f − ∇U · ∇ f , U = −2 log µ, (6.4.17)

where µ is the density function in Sp. As can be seen from this result, through this construction we
are actually recovering an operator in Sp. Additionally, it has been demonstrated that, under some
conditions, the top eigenvector corresponding to the top nontrivial eigenvalue of the operator (6.4.16)
is actually a function of only the first non-observable variable, the second of the second one and so on,
see [Singer, 2006b] for details.

Notice that this construction, not only allows us to obtain the non-observable variables, but it also
provides an operator which is invariant to a nonlinear transformation. This constitutes a very important
and interesting result for our invariant operator approach.

We propose to use this stochastic setting for the case of simulations as solutions of a PDE model sub-
ject to small parameter changes. Given m simulations, they can be assumed to be obtained as a stochastic
simulation undergoing a nonlinear transformation from a reference simulation. The transformation is
unknown but the realizations for different parameter combinations are known. The data points p are
assumed to have been obtained by sampling from an unknown probability distribution µ on the space
Sp. To construct the operator of independent components we take the values of the nodes of a surface
mesh K, which is defined as before as an approximation of a 2-manifold Sp isometrically embedded in
R3. A discrete operator for such points can be constructed as an alternative to the approximation of the
Laplace-Beltrami operator considered previously.

The operator is valid for one simulation, but for our setting we are considering a simulation bundle
where each simulation is assumed to be obtained through a stochastic realization ϕi of a nonlinear
transformation ϕ from a reference simulation, ϕi : S → Si. In this setting, a set of m simulations
is available to us and our objective is to construct, based only on this information, an operator that is
invariant to the nonlinear transformation ϕ. As explained above, such an operator can be constructed.
One starts with one reference simulation and takes all others to form a cloud around each point in
the reference one. Then from this cloud, the covariance matrix Ck,δ is used to approximate the term
Jϕ(p(k))JT

ϕ (p(k)) and its inverse, in order to be able to evaluate expression (6.4.11) locally at each point
k of the reference simulation. In this way the discrete operator obtained through expression (6.4.16)

75



6 Simulations Space: Group Transformations and Invariant Operators

is invariant to the given transformation and therefore the same for each and everyone of the given m
simulations in the bundle.

Illustrative example

To illustrate the construction of the operator of independent components, we would like to describe
a simple example from [Singer and Coifman, 2008]. Let p = [p1, p2] with p1, p2 being uniformly
distributed random variables. We are not able to observe them directly but only after a nonlinear trans-
formations given by η = [η1, η2] with η1 = p1 + (p2)3 and η2 = p2 − (p1)3. See figure 6.2 (a) for a
representation of the non-observable variables p and figure 6.2 (b) for the observable η after the nonlin-
ear transformation.

The Jacobian Jϕ is not available, but JϕJT
ϕ and its inverse can be estimated from the data. We use

algorithm 3 to evaluate the operator. In the example before, we have d = M = 2 and can construct
Nh (2 × 2) sample covariance matrices obtained from a set of m observable simulations in a simulation
cloud around each point in Sη. The approach assumes that a stochastic simulations can be performed for
a small time step, each one starting from a different initial condition. The idea is to create a simulation
burst (or cloud) around a starting or nominal configuration, see figure 6.2 (c) for a representation of a
simulation burst for our simple example. By using this cloud, one calculates an estimate of the distance
between the non-observable variables. Constructing the matrix operator and calculating the eigenvectors
of it, one obtains the independent components. In figure 6.2 (a), (b) the color corresponds to the values
of the first eigenvector that is, to the first identified independent component for the example. Notice that
once the eigenvectors are calculated, they can be used as a common basis for the simulation cloud. All
simulations can therefore be projected onto the eigenbasis obtaining as a result the spectral coefficients
of all simulations.

6.4.7 Operator for Planar Shapes

Up until now, we have concentrated on treating simulations as surfaces embedded in R3 or in taking
3D point clouds from a mesh, but extending the approach of constructing an invariant operator for
simulations considered as curves embedded in R2 is straightforward. We now need to consider planar
shapes and an invariant operator can be constructed using the distance along the curve, or path length
along the curve as a geodesic distance and proceeding as in the previous cases. That is, a matrix operator
is constructed using a Gaussian function for all pairwise distances on the curve. Built in this way, the
operator will be invariant to changes that preserve this distance and the eigenvector basis of this operator
can be used as a basis for the shape space of this type of planar curves.

6.5 Numerical Evaluation of the Operators

In this section we will describe how to evaluate all of these operators numerically.
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(a) non-observable data (b) observed data

(c) simulation burst

Figure 6.2: Illustration of the construction of the operator for independent components
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6.5.1 Evaluation of the Laplace-Beltrami operator

The evaluation of the Laplace-Beltrami operator and the corresponding eigenvector basis for a data
set bundle is described algorithmically in this section. Expression (6.4.2) is used whereby the graph
distance d(p, w) is evaluated using a shortest path algorithm for triangular surface meshes as described
in [Mitchell et al., 1987]. The software implementation used in this work is MeshLP 1 that has been
modified so that it does not use a matlab interface.

Algorithm 2 describes the general procedure for the evaluation.

Algorithmus 2 : Spectral decomposition of the Laplace-Beltrami operator

Input : reference simulation xr: A surface embedded in R3, given as triangular mesh with Nh

points and N f faces.
Parameter : ρ, h, nev

Output : p first eigenvectors of the Laplace-Beltrami operator, invariant to distance preserving
transformations

1 foreach k̃ ∈ {1, . . . ,N f } do . estimate areas of each face
2 foreach i ∈ {1, 2, 3} do . 1/3 of area assigned to each vertex
3 area[k̃i] = (area of face k̃)/3 . face k̃ vertices indexed by k̃i

4 end
5 end
6 foreach k ∈ {1, . . . ,Nh} do . weight matrix with graph distances

7 [ids, dists] = graphdist(k, xr, ρ ·
√

h) . distances on xr up to ρ ·
√

h
8 foreach l, d ∈ [ids, dists] do
9 W[k, l] = area[k] · area[l] · exp(−d2/(4h))/(4πh2)

10 end
11 end
12 D = diag(W · 1)
13 L = W − D . compute graph Laplacian
14 solve [U,E] = eig(L) . non-trivial eigenvectors
15 return first nev non-trivial eigenvectors U

6.5.2 Evaluation of the Operator for the Independent Components

In analogy to the evaluation of the approximation of the Laplace-Beltrami operator, the evaluation of
the operator for the nonlinear components is described algorithmically in this section.

Algorithm 3 describes the general procedure for the evaluation.

6.5.3 Evaluation of the Operator for Planar Shapes

Algorithm 4 describes the steps for the evaluation on an operator for curves embedded in 2D.

1 http://www.geomtop.org/software/meshlp.html
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Algorithmus 3 : Spectral decomposition of the NICA operator

Input : 1) reference simulation xr: A surface embedded in R3, given as Nh points.
2) data set bundle {x j}, j = 1, . . . ,m: Surfaces embedded in R3, where each one is
given by Nh points. The points of the x j are assumed to form for each point in xr a
simulation cloud obtained by a nonlinear transformation of the reference simulation.

Parameter : δ, ε, nev

Output : p first eigenvectors of operator, invariant to a nonlinear transformation
1 foreach k ∈ {1, . . . ,Nh} do . local Jacobi matrices at p(k)

2 empirically estimate local covariance matrix Ck,δ from data set bundle {x j} after (6.4.7)
3 JJt[k] = pseudoinverse of Ck,δ · 5/δ2

4 end
5 foreach l ∈ {1, . . . ,Nh} do
6 foreach k ∈ {1, . . . ,Nh} do . calculate weight matrix
7 estimate d(k, l) after (6.4.11) and using JJt[k]
8 A[k, l] = exp(−d(k, l)/ε)
9 end

10 end
11 Compute Wr,rs using (6.4.13 and 6.4.14) . compute matrix
12 solve [U,E] = eig(Wr,rs) . non-trivial eigenvectors

13 return nev first non-trivial eigenvectors D1/2
rs U

Algorithmus 4 : Calculation of an operator for planar curves

Input : A curve q0 given as an immersion in R2 with Nh points
Output : An operator assumed invariant to transformations between shapes and its

corresponding eigenvectors as basis
Parameter : ε

1 For the curve q0, evaluate the cumulative path length Dist(i, j), i = 1, . . .Nh, j = 1, . . .Nh

along the curve for all points
2 foreach j in Nh do
3 foreach i in Nh do
4 Calculate K1(i, j) = exp(−Dist(i, j)/(4ε))
5 end
6 end
7 Normalize and get symmetric matrix K (see steps 7-9 in Algorithm 1 )
8 Solve [U, E] = eig(K, p)
9 return p first non-trivial eigenvectors U

6.6 Approximating a Basis in Simulation Space

The goal of defining operators that are assumed to be valid for all simulations in a bundle is to use the
projection on the eigenvectors of these operators to represent all simulations in the bundle. Notice that
in this case, the eigenvectors of such operators can be used as a basis for the set of simulations. To
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6 Simulations Space: Group Transformations and Invariant Operators

explain this, let us return to our setting for analyzing the solution space,

ϕh(P) = {uh(µµµ) ∈ Vh : µµµ ∈ P} ,

obtained by evaluating many numerical solutions uh(µ) of a PDE for a given sampling of the parameter
space P. As described in section 6.1, our intention is to treat this space as the quotient of the space of
surfaces embedded in R3 or curves embedded in R2,

M := Emb(S,Rn)/G(S),

made of equivalence classes or orbits with respect to a discrete group action G. Now, the use of op-
erators invariant to the transformation group G allows for a very interesting result, namely it opens
the possibility of obtaining an equivalent representation of the simulation space. Indeed, under the in-
variance assumption, the operators are the same for all elements of the space Emb(S,Rn)/G(S). As a
consequence an orthogonal basis obtained from those operators will also be the same for all the ele-
ments of the solution space. In the discrete setting this is achieved using the orthogonal basis of the
operators constructed using algorithms 2, 3 and 4 for the Laplace-Beltrami operator, the operator for the
independent components, or the operator for planar shapes, respectively. Since the discrete operators
and corresponding orthogonal basis are assumed to be approximately invariant to the transformation
group G, one can project all simulations to the obtained basis in each case. A way to evaluate what
"approximately" means has been explained in section 6.4.5. Note also the analysis of the perturbation
due to noise in section 6.4.5 can also be applied for the operator of independent components and the
operator of planar shapes since a Gaussian kernel is also used for these cases.

Projecting all simulations to another basis will, in general, not be of any advantage since we need, in
the case of a discrete approximation of the operators, as many basis elements as number of nodes Nh

on the mesh or points of a curve (for the case of plane shapes) in order to represent each simulation.
Nevertheless we will see in section 6.8 that depending on the degree of smoothness of the simulations,
the decay of the spectral coefficient is polynomial. We remark though that, since we are dealing with
discrete data, we will have to calculate approximations of the operators and this implies that one has to
actually justify the use of the eigenvectors as approximations of the corresponding eigenfunctions. This
will be clarified in the following section where we will concentrate only on the case of 3D surfaces and
3D point clouds.

6.7 Spectral Approximation of the Operators

We have seen in section 6.4.4, 6.4.6 that under some specific assumptions, starting with a discrete
simulation and building a discrete operator, point-wise convergence to a continuous operator can be
obtained. Nevertheless a convergence of the eigenspace is not guaranteed by such operator convergence.
We would like to clarify, when such convergence can be expected and if it is reasonable to assume that
these conditions are fulfilled in the discrete case.
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6.7.1 Structure of the Eigenfunctions

The eigenfunctions of the Laplace-Beltrami operator on a surface can be viewed as a generalization of
the use of a Fourier basis in Euclidean space for the Laplace operator. Using such eigenfunctions as a
basis, a smooth function defined on a surface can be decomposed, so that the first spectral coefficient
corresponds to eigenfunctions describing the low frequency part of the function and the rest corresponds
to the high frequency parts of it, (see [Grebenkov and Nguyen, 2013, Jakobson et al., 2001]).

For the operator of independent components, the eigenvector corresponding to the first eigenvalue,
in increasing order, recovers the first independent component, the second one the second an so on
[Singer and Coifman, 2008], see section 6.4.6 for the setting. Additionally, in this stochastic setting, the
first eigenfunctions (ordered according to increasing eigenvalues) of the limit Fokker-Planck operator
correspond to the slow variables of a stochastic dynamical system and the independent components
can be shown to be solutions to Sturm-Liouville differential equations, see again [Singer and Coifman,
2008].

The solutions of those differential equations can be shown to be generators for different type of poly-
nomials, e.g. Jacobi, Laguerre or Hermite types, see [Gomez-Ullate et al., 2008]. In addition, it is
also known that special solutions to the Fokker-Planck equation are polynomials that can be used in an
orthogonal decomposition for less smooth functions [Tran et al., 2013].

In our setting, an orthogonal decomposition based on the use of eigenfunctions of some specific
operator will be able to decompose a function into several components. If the function f is smooth, it is
known from spectral approximation theory that the decay of the spectral coefficients will, depending on
the degree of smoothness of the function, achieve exponential convergence for f ∈ C∞, see e.g [Costa,
2004]. If the function is not smooth and has for example some discontinuities, it is also known that
the exponential convergence is lost due to the Gibbs phenomena. But at least in regions far away
from the discontinuity it can be recovered see e.g. [Gottlieb et al., 1992]. The approach to control the
Gibbs phenomena consists in a change of the basis for the decomposition using special polynomials.
These again can be shown to be, for specific cases, solutions of specific Fokker-Planck type differential
equations, see [Tran et al., 2013]. We notice that in both cases, for smooth and, after changing the basis,
for non-smooth functions we do have a few spectral coefficients that are large and correspond to the
first eigenfunctions, while the rest are smaller. We will return to this feature, but first let us discuss the
discrete setting.

6.7.2 The Discrete Case

In section 6.4, we have reviewed some results that allows us to obtain convergence of a discrete mesh-
Laplacian to a continuous operator given some conditions on the mesh or some large sampling limit
for a point cloud. Little is known about the convergence of the discrete eigenvectors and eigenvalues
to the corresponding eigenfunctions and eigenvalues, this is not obtained from the convergence of the
operators. This area is an active field of research, we will mention the following result that follows
from [Dey et al., 2010]:

Theorem 6.7.1. Given a smooth m-manifoldS and a simplicial mesh K which is an (ε, η) approximation
of it, let {λi} and

{
λD

i

}
denote the set of non-decreasing discrete eigenvalues of the Laplace-Beltrami
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operator ∆S and its approximation Lh
K (see 6.4.2) respectively. For any fixed j, we have that

lim
h,ε,η, ε

h4→0
|λ j − λ

D
j | = 0

The question of convergence of the eigenfunctions using the same construction as given in [Dey
et al., 2010] is to our knowledge still open. We also mention the work in [Reuter et al., 2009], where the
Laplace-Beltrami eigenvalue problem is discretized using a finite element formulation and as such can
be constructed using convenient convergence properties depending on the mesh size and the degree of
the shape functions used for the discretization, although the convergence to the eigenspace has not been
treated in this study. Note that in our case we would like to build an operator based on the data, so that
we have not the flexibility of choosing a discretization such as in [Reuter et al., 2009].

A different setting to prove convergence is the stochastic one, based on convergence in probability.
We have mentioned here the work in [Belkin and Niyogi, 2008] where it has been shown that the
eigenstructure of the weighted graph Laplacian converges to the one on the manifold and a recent result
that extended such results for the so called connection Laplacian, where the convergence to the Fokker-
Planck operator is treated as a special case of the more general setting of the connection Laplacian
[Singer and Wu, 2013].

To summarize, based on the mentioned results, the use of a discrete approximation of the eigenfunc-
tions of the Laplace-Beltrami operator and the operator of independent components, can to a certain
extend be justified in our approach.

6.7.3 Discrete Orthogonal Decomposition

Once the eigenvectors ψ̄i, i = 1, . . . ,Nh of some discrete operator are given, we can project a given
mesh function f|K defined on a mesh K along them and obtain as a result a set of spectral coefficients
αi, i = 1, . . . ,Nh. The following expression can be written as an analogous expression of the continuous
case (6.4.1):

f|K =

Nh∑
i=1

αiψ̄i, αi = 〈 f|K , ψ̄i〉, (6.7.1)

where Nh corresponds to the number of nodes on the mesh K, which can be very large. Using the
approximation Lh

K of the Laplace-Beltrami operator a large number of eigenvectors might be necessary
to reconstruct the mesh data, depending on its smoothness, which directly affects the degree of decay
of the spectral coefficients. The way the corresponding spectral coordinates decay will determine how
much information is concentrated in the first coefficients. Note that this is analogously to the Fourier
decomposition for 1D signals. In this case exponential decay can be achieved for analytical functions.

Now assume K is a mesh which approximates the reference manifold S. Let Si, i = 1, . . . ,m be the
manifolds obtained by the application of diffeomorphisms ϕi with corresponding approximations given
by ϕi

|Ki for the mesh Ki. Let the function f|K : Kr → R be evaluated at the nodes of the mesh and let
f i
|K : Ki → R be the resulting functions after the application of ϕi. The functions f i, f correspond in our

setting to the numerical solutions of a partial differential equation using the finite element method. They
are actually discrete and defined on the mesh Ki,K, respectively. In what follows we will use the same
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6.7 Spectral Approximation of the Operators

notation as the continuous counterpart for the functions on the mesh explicitly mentioning when the
context changes. Further, for simplicity we assume that the functions f , f i are k−times differentiable.
From now on, we will use ψ for both the eigenfunctions and for the eigenvectors, which case is treated
will be clear from the context. Under the assumption of isometric transformations as explained section
6.4.5 the following holds:

Proposition 6.7.2. Let an orthogonal basis consisting of Nh eigenvectors ψ j, j = 1, . . . ,Nh be given,
which is obtained from the approximation of the Laplace-Beltrami operator (6.4.2). Then all mesh
functions f i can be represented as

f i =

Nh∑
j=1

αi
jψ j,

where αi
j are the spectral coefficients obtained by the projection of f i into the eigenvector basis

{
ψ j

}Nh

j=1
.

Proof. This is a consequence of the application of expression (6.4.2), under the assumption that the
basis is invariant under isometric transformations, see Proposition 6.4.13. �

For the operator (6.4.16), we are in a stochastic setting. Let a set of simulations be represented as
functions f i : Si → R be obtained as realizations of an independent stochastic Ito processes and obtained
as nonlinear transformations from a non-observable reference simulation. This operator approximates a
Fokker-Planck operator in the non-observable space and is therefore invariant with respect to the nonlin-
ear transformations (see section 6.4.6 for details). Further, we assume convergence in probability to the
eigenfunctions of the continuous operator. The eigenvectors of (6.4.16) approximate the eigenfunctions
of the invariant Fokker-Planck operator after [Singer and Coifman, 2008] and can be used as invariant
basis for all simulations. Under this assumptions we can write,

Proposition 6.7.3. Let an orthogonal basis consisting of Nh eigenvectors ψ j, j = 1, . . . ,Nh be given,
obtained from the approximation of the operator as given in expression (6.4.16). Assuming that those
eigenvectors approximate the eigenfunctions of a Fokker-Planck operator of an Itô stochastic process
as described in section 6.4.6, then all functions f i can be represented as

f i =

Nh∑
j=1

αi
jψ j, (6.7.2)

where αi
j =< f i,D1/2

rs ψ j > are the spectral coefficients obtained by the projection of f i into the eigen-

vector basis
{
ψ j

}Nh

j=1
using a weighted scalar product.

Proof. The operator given in (6.4.16), under the assumptions of section 6.4.6, is constructed using a
distance in the non-observable space (see Proposition 6.4.14). This makes the operator invariant with
respect to the nonlinear transformations of the reference non-observable simulation. Assuming con-
vergence in probability to the eigenfunctions of the continuous operator, the eigenvectors approximate
the eigenfunctions of the invariant Fokker-Planck operator and can therefore be used as the invariant
basis. �
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As explained, for the Laplace-Beltrami operator as well as for the operator of the independent com-
ponents, they are invariant to specific transformations. As a consequence we could use the eigenvectors
as basis and project a set of mesh functions along the same basis. This property, combined with the ob-
servation about the possibility of achieving a strong decay behavior of the spectral coefficients, suggest
a method for data analysis which potentially reduces the dimensionality of the data along the spectral
coefficients.

6.8 Approximation Properties

Note that in this section we only consider the stochastic setting. We will show that under certain condi-
tions, one can expect a strong decay of the spectral coefficients depending on the orthogonal functions
used and the smoothness properties of the data.

As before, we will focus on numerical simulations, where we know the approximation properties,
since the data stems from a finite element mesh, which discretizes a partial differential equation. The
smoothness of the solution, combined with considerations about the spectral approximation estimation
based on discrete data, allow us to obtain an estimation that depends on the smoothness of the function
and therefore clarifies the observed strong decay of the spectral coefficients, at least for a simplified
setting.

We assume that we have obtained an orthogonal decomposition as given in proposition 6.7.3, then the
following can be written,

Proposition 6.8.1 (Decay of the Spectral Coefficients). In the orthogonal expansion given in proposition
6.7.3, for smooth functions f i ∈ Ck, i = 1, . . . ,m, the spectral coefficients αi

l, l = 1, . . .Nh decay as

|αi
l| ≤

C
(al)k ‖ f

i
(k)‖w,

depending on the degree of smoothness (k) of the functions f i, i = 1, . . . ,m.

For the proof of this proposition we will need the following additional results.

Proposition 6.8.2. Given the eigenvalue problem for the Fokker-Planck operator (expression (6.4.17)),
the operator can be separated by the use of an orthogonal transformation and it can be shown that the
separated problems are 1D backward Fokker-Planck-like operators obeying specific Neumann boundary
conditions. The solution of the eigenvalue problems with such operators corresponds to the solution of
Sturm-Liouville problems.

Proof. This result was shown first in [Singer, 2006b] for linear independent component analysis (ICA).
Please note that the operator in expression (6.4.17) is the one on the unobservable manifold Sp assumed
to be a subset of Rd. The observable space is nonlinearly transformed but we are able to approximate
the operator in the observable space as detailed in section 6.4.6. Due to this construction, we are left
with a Fokker-Planck operator on a linear manifold of dimension d, the linear ICA is posed as given N
observations of the m−vector X, find the unknown independent random variables S 1, S 2, . . . S d and the
mixing matrix Am×d so that X(i) = AS (i), i = 1, 2, . . .N. Since the unobservable manifold is planar, the
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data density is a product of d one-dimensional densities p(X) =
∏d

j=1 p j(S j), where p j is the density of
S j. The potential U in (6.4.17) is then a sum of one-dimensional potentials U(X) =

∑d
j=1 U j(S j), with

U j(S j) = −2logp j(S j).
The Laplacian operator ∆ is invariant to orthogonal transformations so that,

∆ =

d∑
j=1

∂2

∂X2
j

=

d∑
j=1

∂2

∂S 2
j

.

This result shows that by constructing the NICA operator using expression (6.4.16), one approximates
the continuous operator

L =

d∑
j=1

∂2

∂S 2
j

−
∂U j(S j)
∂S j

∂

∂S j
.

This operator is separable and can be written as L =
∑d

j=1L j, where each L j is a one-dimensional
Fokker-Planck operator in the interval (a j, b j) with Neumann boundary conditions

L j =
d2

dS 2
j

−
dU j(S j)

dS j

d
dS j

.

The eigenvalue problem of L j is a Sturm-Liouville problem

d
dS j

(
e−U j

dψ j

dS j

)
+ λ je−U jψ j = 0 S j ∈ (a, b). (6.8.1)

The operator L j has an infinite set of eigenfunctions and eigenvalues. The eigenfunctions of L are
tensor products of the one-dimensional eigenfunctions. �

Proposition 6.8.3. Let f ∈ Ck, and its spectral coefficients f̂l = 〈 f , ψl〉, where ψl, l = {0, 1, . . . , } are the
eigenfunctions of the Sturm-Liouville eigenvalue problem,

d
dx

(
e−U dψ

dx

)
+ λe−Uψ = 0 x ∈ (−1, 1). (6.8.2)

Then the following holds,

| f̂l| ≤
C

(λl)k ‖ f(k)‖L2
w(−1,1),

provided: p is zero at the boundary or the boundary conditions,

α1ψ(−1) + β1ψ
′(−1) = 0, α2

1 + β2
1 , 0 (6.8.3)

α2ψ(1) + β2ψ
′(1) = 0, α2

2 + β2
2 , 0 (6.8.4)

are satisfied.

Proof. The proposition is a result of spectral approximation theory for Sturm-Liouville problems. The
following approach has been shown in [Canuto, 2006]. There are two cases that have to be distinguished,
the first one is the regular one, whose approximation properties actually depends on the boundary con-
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ditions and the second one is independent of them, but requires that the data density term p decays to
zero on one of the boundaries of the domain. We will treat both cases individually.

Let us consider the general form of the Sturm-Liouville problem (6.8.2),

− (pψ′)′ + qψ = λwψ x ∈ (−1, 1). (6.8.5)

In this expression p, q, w are given real valued functions such that:

• p is continuously differentiable, strictly positive in (-1,1) and continuous at x = ±1

• q is continuous, nonnegative and bounded in (-1,1)

• the weight function w is continuous, nonnegative and integrable over (−1, 1).

For the problem (6.8.5), boundary conditions for ψ will be defined. Depending on the coefficients p, q
and w, specific families of polynomials eigenfunctions (see [Canuto, 2006, Mohammad, 2006]) can be
used as basis for a spectral approximation of a general function f . For example under the assumption
that the probability distribution from which the data is sampled is Gaussian, then the eigenfunctions are
Hermite polynomials.

(a) The "regular" case. The first task is to verify that a kind of convergent "Fourier" decomposition
can be found using a conveniently defined inner product. Indeed, it is known (see [Courant
and Hilbert, 1953] chapter V section 3) that under the assumptions α1 β1 ≤ 0 and α2 β2 ≥ 0,
the eigenvalues of the regular Sturm-Liouville problem form an infinite, unbounded sequence of
nonnegative numbers, 0 ≤ λ0 < . . . < λl < λl+1 < . . . and have multiplicity 1. The eigenfunctions
ψl are mutually orthogonal with respect to the inner product

(u, v)w =

∫ 1

−1
u(x)v(x)w(x)dx, (6.8.6)

that is (ψr, ψs)w = 0 if r , s. Additionally the eigensystem {ψl, l = 0, 1, . . .} is complete in the
weighted space L2

w(−1, 1) so that

‖ f − f̄ ‖L2
w(−1,1) → 0 as N → +∞,

where f̄ =
∑N

l=0 f̂lψl, N > 0 and ‖ψl‖L2
w(−1,1) = 1.

Now, an estimation of the convergence rate of the decay of the coefficients of a function f ∈
L2
w(−1, 1) can be made using (6.8.5), (6.8.6) and integration by parts

f̂l = ( f , ψl)w =
1
λl

∫ 1

−1
f [−(pψ′l)

′ + qψl]dx (6.8.7)

=
1
λl

∫ 1

−1
[−(p f ′)′ + q f ]ψldx −

1
λl

[p(ψ′l f − ψl f ′)]1
−1 (6.8.8)

=
1
λl

(
1
w
L j f , ψl

)
w

−
1
λl

[p(ψ′l f − ψl f ′)]1
−1. (6.8.9)
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Using the boundary conditions, the second term vanishes and we obtain the result

f̂l =
1
λl

(
1
w
L j f , ψl

)
w

=
1
λl

( f(1), ψl)w,

where f(1) = 1
wL j f and L j f := −(p f ′)′ + q f .

Iterating this result one finally obtains

f̂l =
1

(λl)k

(
1
w
L j f(k−1), ψl

)
w

=
1

(λl)k

(
f(k), ψl

)
w .

(b) The "singular" case occurs when p vanishes for at least one point on the boundary. The solution
should, in this case satisfy p(x) f ′(x)→ 0 as x→ ±1.

Assume f ∈ X is square integrable with respect to the weights q and w and that the derivative of
f is integrable with respect to the weight p,

X =
{
v ∈ L2

w(−1, 1) ∩ L2
q(−1, 1) |v′ ∈ L2

p(−1, 1)
}
.

Then the following variational formulation of (6.8.5) can be written,∫ 1

−1
(pu′v′ + quv)dx = λ

∫ 1

−1
uvwdx for all v ∈ X. (6.8.10)

as in the regular case, the eigenvalues of (6.8.10) form an unbounded sequence of nonnegative
real numbers 0 ≤ λ0 ≤ . . . ≤ λk ≤ . . .; each with finite multiplicity. The system of corresponding
eigenfunctions ψk is orthogonal and complete in L2

w(−1, 1) (see [Canuto, 2006] chapter 5 for
details on the justification of this assertions).

As in the regular case, an approximation of the convergence rate of the decay of the coefficients
of a function f ∈ L2

w(−1, 1) can be estimated using (6.8.10) and integration by parts

f̂l =
1
λl

∫ 1

−1
(pψ′l f ′ + qψl f )dx (6.8.11)

=
1
λl

∫ 1

−1
[−(p f ′)′ + q f ]ψldx +

1
λl

[p f ′ψl]1
−1 (6.8.12)

=
1
λl

(
1
w
L j f , ψl

)
w

+
1
λl

[p f ′ψl]1
−1 (6.8.13)

Using the condition at the boundary, the second term vanishes and we obtain the result

f̂l =
1
λl

(
1
w
L j f , ψl

)
w

=
1
λl

( f(1), ψl)w.

Iterating this result as before, one finally obtains

f̂l =
1

(λl)k

(
1
w
L j f(k−1), ψl

)
w

=
1

(λl)k

(
f(k), ψl

)
w .
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Notice that only in the singular case we can assert that the problem has a convergence decay rate,
independent of the boundary conditions, but dependent on the smoothness of the function. �

Proof of Proposition 6.8.1

Proof. For the proof we have combined three results. First the decomposition in expression 6.7.2 is con-
structed using approximations of the eigenfunctions of the Fokker-Planck operator of an Itô stochastic
process. This operator can be decomposed in 1D independent Sturm-Liouville problems. Proposition
6.8.2 justify this decomposition. Next using proposition 6.8.3 that establishes that depending on the type
of Sturm-Liouville problem and its boundary conditions, an estimation of the decay rate of the spectral
coefficients can be found. Finally as shown in [Singer, 2006b], the first eigenfunctions of the operator
given in (6.4.17) provides the independent components and they corresponds to the eigenfunctions of
the 1D independent Sturm-Liouville problems so that for the spectral coefficients αi

l, l = 1, . . .Nh, the
decay can be approximated as

|αi
l| ≤

C
(λl)k ‖ f

i
(k)‖w,

depending on the degree of smoothness k of the functions f i, i = 1, . . . ,m.
Continuing in the vein of the main result, notice that proposition 6.8.3 cannot be used directly for our

case since only discrete data is available. How to formally apply this continuous result to the discrete
case is, to our knowledge still open, nevertheless consider the work done in [Donoho and Johnstone,
1994] where an analysis of the estimation error between a function and its discrete approximation has
been completed. An ideal estimator is obtained using a Nt-term approximation using wavelets, the rate
of decay is shown to depend on the smoothness of the mother wavelet (for details see [Donoho and
Johnstone, 1994]). The combination of these results finally shows the main proposition albeit the above
mentioned analysis. �

We note that in the scope of the results above, the operator of independent components can be separat-
ed into independent eigenfunctions of 1D Sturm-Liouville problems, they are therefore ideal candidates
as a basis for a set of simulations. Also the results above show that at least; for smooth functions, the
decay of the first spectral coefficients can be high. For applications this is not necessarily the case.
Functions defined at the mesh points are generally not smooth. Nevertheless, we will see in the next
chapter that for smooth functions as well as for non-smooth ones, low dimensional information about the
data sets can be gained through the use of a single basis and by analyzing the first spectral coefficients.
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CHAPTER 7

New Data Analysis Method

Our particular interest lies in the analysis of many simulation results, which are obtained from the
numerical solution of partial differential equations with the finite element method. In chapter 6 using
the theoretical setting of chapter 5 a way to treat a simulation space as a quotient space with respect to
a group G acting by isometries has been proposed. Under certain conditions, geodesics on the space of
isometries are determined through the group actions and a representation of the group can be achieved
using eigenspaces of operators that are invariant to the transformation group G. This suggests the
possibility of using the projections to the eigenspaces as a representation of the group actions. Since
simulations are discrete we justified the use of discrete invariant operators in chapter 6 and showed that,
under certain conditions, only few spectral coefficients will be large depending on the smoothness of
the functions representing the simulations. A method of data analysis for simulations can, using those
results, be established. The idea is to make use of the projection coefficients of all simulations to the
eigenvector basis from a discrete invariant operator and see how far they can be used for representing
isometric group actions. Very interesting results are obtained for such a discrete setting that reflect some
of the properties studied in the theoretical part.

7.1 Simulation Data Analysis Method

We propose a method of data analysis for simulations that involves a dimensionality reduction and a sep-
aration of effects along several components. A summary of the procedure can be found in algorithm 5.
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Algorithmus 5 : Algorithm for Analysis of Simulation Bundles
Input : m simulations f i ∈ RNh , i = 1, . . . ,m, where Nh is the number of nodes
Parameter : Component index p
Output : multiscale analysis of simulations

1 Take up to p ≤ Nh first eigenvectors of either the Laplace-Beltrami
2 (algorithm 2) the operator of independent components (algorithm 3) or the operator for

plane curves (algorithm 4)
3 foreach i in {1, . . . ,m} do
4 α̂i = Up × f i ∈ Rp

5 end
6 Evaluate the variance of the spectral coefficients α̂i

7 Take r components with the highest variance V = {pk}k=1,...,r
8 Identify group transformations at each component pk ∈ V using the spectral coordinates for

component pk

The approach first constructs a positive definite invariant operator using for it an arbitrary simulation.
The eigenvectors of this operator are orthogonal and can then be used as a basis for representing all
simulations in a dataset. The new representation in this basis are the projection coefficients, their special
features we now would like to investigate in detail. Once the projection coefficients are obtained, the
method exploits their decay properties. Regarding this, we have applied the approach to many industrial
simulations and observed:

• a strong decay of the spectral coefficients,

• variations of the spectral coefficients concentrate on few components of the orthogonal decom-
position with decreasing variance,

• using a linear combination of the basis with the spectral coefficients at one specific component of
the orthogonal decomposition, translations or rotations for a car part in crash simulation can be
obtained.

.
To support these observations let us illustrate them with an example in crash simulation. A total

of 116 simulations are evaluated using the finite element solver LSDYNA, the simulations are 3D de-
formations. The thickness of 9 parts of the car structure are varied randomly up to 30%. A fixed time
step is used (for details about the example see section 10.2.2). In Figure 7.1, the first 19 projection
coefficients Cxk,Cyk,Czk k ∈ [1, 19] for each direction x, y and z using the basis evaluated from the
Laplace-Beltrami operator approximation for the undeformed geometry are shown, the first coefficient
for k = 0 is not used for clarity since it is several order of magnitude bigger then the next ones. It
can be observed that the variations are concentrated on a few coefficients for all directions. In order to
quantify those variations we evaluate the variance, for the illustrated example they are plotted in Figure
7.2. Thresholding until a certain number of components and deciding about the importance of each
component in the orthogonal decomposition can be realized from those variances. For the plots we have
also used the coefficients for k = 0 to show the variance changes.
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The behavior of the variance is a direct consequence of the way the spectral coefficients behave.
Proposition 6.8.1 is an attempt to explain this behavior formally. According to it, the decrease of the
projection coefficients will be dependent on the degree of smoothness of the function on the mesh.
How fast this decay is, depends according to proposition 6.8.1 on the magnitude of the eigenvalues at
each component of the orthogonal decomposition. If the eigenvalues decrease fast, so will decay the
coefficients.

Coefficients Cx for the deformation in x Coefficients Cy for the deformation in y

Coefficients Cz for the deformation in z

Figure 7.1: First projection coefficients Cxk,Cyk,Czk k ∈ [1, 19] of the deformations in the directions x, y and
z of 116 crash simulations, the coefficients for k = 0 are not included for clarity since they are several orders of
magnitude bigger than the next ones
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Variance in x Variance in y

Variance in z

Figure 7.2: Variance of the first projection coefficients Cxk,Cyk,Czk k ∈ [0, 19] of the deformations of 116 crash
simulations in logarithmic scale

Effect separation along the projection coefficients.

A separation of effects can also be obtained from the evaluation of the spectral coefficients. In order
to have a visual representation of them let us use the same example as before. We use the operator
of independent components build using algorithm 3. Up until now for the 116 simulations the amount
of projection coefficients we obtain are 116 × 3 directions × number of nodes. Taking all spectral
coefficients for one simulation for the directions x, y and z and using the common basis, a deformed
geometry can be reconstructed as a linear combination of the basis. For this experiment, all coefficients
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for all components are the same for all reconstructed deformations with exception of the ones for the
first component. For it we take the corresponding ones for the first component from each simulation
for each direction. Since the basis is the same, this reconstruction is possible and they will reflect the
variation of only the first coefficient. Figure 7.3 (a) shows a few geometries reconstructed using this
approach. It can clearly be seen that translations transformations are recovered. The same procedure
applied for the second component recovers a rotation as seen in figure 7.3 (b). More details about the
application of these properties can be found in section 10.2.5.

(a) Translation (b) Rotation

Figure 7.3: Recovered translations and rotations using the coefficients of the first and second component respec-
tively

The observed behavior of the translations and rotations shows a numerical evidence of the group
representation properties of the eigenfunctions of invariance operators. See Theorem 5.4.24 for the case
of the rotation group.

Multiscale aspect of the orthogonal decomposition.

A further observation can be made about the orthogonal decomposition obtained using the same basis.
We will use one of the crash examples simulations from the example above and project the 3D defor-
mations along the common basis. For each direction x, y and z we obtain a set of coefficients at a fixed
time step.

Using the same connectivity of the original mesh, all mesh deformations can be reconstructed using
the Laplace-Beltrami basis. For that we use f i =

∑p
j=1 α

i
jψ j for several values of p, f i corresponds to

the deformation in x, y or z direction respectively.
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Figure 7.4: Reconstruction using the first p coefficients. p = 20 coefficients (upper), p = 100 (lower) and original
data (middle).

Figure 7.5: Magnitude of spectral coefficients for the deformations in the directions x, y and z at a fixed time step
t = 7

From figure 7.4, it can be clearly seen that using p = 20 only a very coarse approximation of the part
can be obtained. Adding more coefficients, e.g. p = 100, recovers more details of the part. It can also
be clearly seen in figure 7.5 that most of the coefficients are small, with a few bigger ones. This is an
essential feature which will be exploited for applications (see chapter 10 for details).

Based on the above observations we can assert that the proposed method enables the analysis of a
simulation bundle in a multi-scale fashion. We have observed that in the case of using an approxima-
tion of the Laplace-Beltrami operator on a surface, for smooth functions approximating the simulations,
coarse variations of a dataset bundle correspond to the spectral coefficients at the first components of
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the decomposition, details correspond to the higher components. Using the operator for the independent
components, the first orthogonal component allows us to identify the variations along the first inde-
pendent components. This observations has motivated the approach. What precisely coarse is, has
many interpretations that have to be analyzed, nevertheless in multiple examples we have evaluated
(see Chapter 10 for some of them) one can speak about multi-scale in the sense of coarse variations
and fine details for the Laplace-Beltrami operator. Also as seen in section 6.8, under certain conditions
the coefficients have a strong decay, therefore the “essential” part of a dataset is concentrated on few
coefficients. Notice that also if desired, all coefficients up to some component can be taken as features
representing the simulations and that up to dimension three the projection coefficients can be used dir-
ectly as embedding coordinates for visualization. For dimension larger then three, a further method of
dimension reduction can be used to obtain an embedding up to dimension three. For our study we use
diffusion maps as a tool for further dimension reduction. See chapter 4 for details about the method and
section 10.1 for an application of Diffusion maps to simulation results.

We used here the first coefficients up to component p for each simulation for classification and clus-
tering. For full reconstruction we will take in addition, the coefficients of one reference simulation for
components p + 1 to Nh for all simulations, where Nh is the number of nodes. Also a reconstruction
for analyzing simulations at a particular component p can be achieved by freezing all coefficients with
exception of the ones at component p. This will have important applications described in chapter 10.

7.2 Analysis of the Building Blocks of the Approach

We will as before assume that Simulations stems from a 2-manifold S. For the surface S, we will use a
mesh representation K approximating S and represented as a surface in R3. In the case of solutions of
ordinary differential equations (ODE), they are treated as curves embedded in R2.

The space Emb(S,Rn) is the space of embeddings of the surface S in R3, or the space of embeddings
in R2 for the case of ODEs respectively. From the elements of this space we will study the ones that are
a result of the action of a transformation group G, that is, we will deal with the elements of the quotient
Emb(S,Rn)/G(S).

We can recognize the following elements in the approach.

• a transformation group G (Lie group), for example Isom(S),

• a metric space Emb(S,Rn), where the group action acts on,

• invariant generalized coordinates of Emb(S,Rn)/G(S). In our case they are the orthogonal basis
from an invariant positive definite operator

• a transformation, which we call the invariantization transform, sending an element of Emb(S,Rn)
to the invariant space Emb(S,Rn)/G(S). In our case this transformation is realized by the projec-
tion to the orthogonal basis.

In an approximate way we obtain invariant coordinates due to the eigenvector basis, which is a discrete
approximation of the basis of the space Emb(S,Rn)/G(S). Since the basis is obtained from an invariant
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operator, these projection coefficients reflect the group action required to obtain a specific simulation.
How group actions are represented in a basis of an invariant operator has a theoretical justification
that we have started to explore in section 6.3. We would like to illustrate the aspect of the group
representation properties in the following section.

7.3 ODE Bundles and Group Transformations

A set of solutions of a differential equation will be analyzed with the new approach. In particular, we
see a connection to Lie-group methods [Olver, 1993] that are well known in the analytical solution of
ordinary and partial differential equations. Those methods have evolved under several names, but the
principal idea is to use symmetry principles.

We would like to exemplify first the connection of our operator approach to those principles with the
following example. Let us consider the system of time dependent ordinary differential equations (ODE),

ẏ = y3 + x2y − x − y (7.3.1)

ẋ = x3 + xy2 − x + y, (7.3.2)

the system of odes is to be solved in the integration interval t ∈ [−4, 4] and we consider a bundle of 11
such solutions solved with different initial conditions given by y0 = 0.4 · cos(θ), x0 = 0.4 · sin(θ) and
θ ∈ [0, 2π] (see figure 7.6 ).

Figure 7.6: ODE bundle made of 11 simulations obtained by solving the equations with different initial conditions

The solution of this ODE using Lie group methods consists in finding a coordinate transformation
along which the differential equations are invariant to a transformation group. For this case, the follow-
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ing transformation x = r · cos(θ), y = r · sin(θ) transforms this equation into,

dr
dθ

= r(1 − r2), (7.3.3)

which is separable in the new variables. The solutions are invariant under the continuous group trans-
formation (r, θ) 7→ (r, θ + γ) where γ is the group parameter and it corresponds to rotations with respect
to the origin. Figure 7.6 shows several solutions of this differential equation that have been obtained
numerically, i.e. without using the parametrization. As soon as the group parametrization is found, the
orbits that represents one specific set of group actions, corresponds to solutions for the ODEs for some
specific initial conditions.

For our setting only the numerical solution of the ODEs are available. The solutions of the ODE for
different initial conditions are shown in figure 7.6, they are distributed circularly around a center point
at the origin, that is, one arbitrary solution and therefore all others can be obtained by a rotation around
the origin.

In our method we have constructed an operator using an arbitrary simulation that is assumed invariant
to isometric transformations (in this case the rotations). Such an operator can be constructed by consid-
ering a parametrization of one arbitrary solution along its length. A distance along such a curve can be
defined which is independent on the rotation of the curve and by using this distance a discrete operator
can be built with all pairwise distances between all points in the curve. Algorithm 4 in section 6.4.7
describes how this operator can be constructed. From the obtained discrete operator, one can calculate
its orthogonal decomposition and use it as basis for the representation of all other solutions.

Figure 7.7 shows 50 projection coefficients to the invariant basis, from a total of 801 obtained for each
simulation since the discretization of the solution has Nh = 801 points. For the components x and y of
the 11 simulations corresponding coefficients are obtained. Observe the strong decay of the coefficients
in figure 7.7.

(a) (b)

Figure 7.7: Projection coefficients for the 11 ODE solutions, (a) in x, (b) in y

According to our proposed approach, the group actions are reflected along the projection coefficients.
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(a) (b)

Figure 7.8: 11 ODE solutions (a) and (b) rotation orbit given by coefficients x, y of the first component

Figure 7.9: 51 ODE solutions interpolated from the rotation orbit

That is, we take the coefficients of the first components, which has the highest absolute values for all
the 11 solutions to evaluate the action of the transformation group. There are 11 coefficients for the x
direction and 11 for the y direction. The coefficients for the first component represents the orbit of the
group action. Plotting all pairs altogether, we obtain figure 7.8 (b). It can be clearly seen that this orbit
encode the information of the group action (a rotation) as expected.

In the analytical Lie group method, once the invariant equation is found (equation 7.3.3), one can
easily obtain any other solution along the group orbit. In our case we have no equation to evaluate but,
we can interpolate intermediate points along the circle orbit to compute any intermediate solution. That
is we reconstruct those solutions using the common basis and the interpolated coefficients along the
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circle as coefficients for the first component. For the other components we get the coefficients using the
same approach. The solutions obtained in this way are shown in Figure 7.9.

Notice that the described process of getting those extra "synthetic solutions" justifies our assertion
that, using invariant operators a kind of numerical Lie group method is obtained that operates on solu-
tions, without the knowledge of the analytical differential equations.

7.4 Comparison with other related Methods.

We will describe shortly other methods that make use of a convenient basis to represent a dataset.
Principal Component Analysis is the most used method for such task but there are other approaches
which uses a graph representation of the dataset.

Principal Component Analysis.

Due to its simplicity, the Principal Component Analysis (PCA) is one of the most employed methods for
dimensionality reduction [Lee and Wasserman, 2010], we use it as a baseline method. Given a dataset
X =

{
X1, X2, . . . , Xm

}
, Xi ∈ Rn, PCA requires the computation of the eigenvalues and eigenvectors of

the covariance matrix XcXT
c . An efficient way of doing it, is via its connection to the SVD decomposition

given by [US V] = svd(Xc), where Xc is a centered representation of X. U is a column matrix of the
eigenvectors of XcXT

c , S is a diagonal matrix whose diagonal elements are the singular values which are
the square roots of the eigenvalues of the covariance matrix. V is the complementary base. When the
eigenvalues are ordered in a descending order, then the corresponding first eigenvector represents the
first main variation of the dataset, the second to the second and so on. Often only a few coefficients are
necessary to reconstruct each data so that Xi ≈

∑p
k=1〈Uk, Xi〉Uk with p < m � n. The approach then

reduces to the calculation of p eigenvectors.

In the case of numerical simulations in a finite element space, each simulation can be considered as
a point in Rn, n = 3Nh, where Nh is the number of vertices, in order to apply the PCA. Comparing the
basis for the PCA, Laplace-Beltrami operator and the operator of independent components one observes
significant differences. PCA can concentrate the variability of the data in just m coefficients, where m
is the number of simulations available. The other operators are bigger, of the order of the number of
nodes Nh, but the first coefficients are large in comparison with the rest and that is the reason why
we can use them for data analysis. As shown those coefficients can be related to the coarse part of
the geometry [Karni and Gotsman, 2000] for the Laplace Beltrami operator and to the first nonlinear
components for the operator of independent components [Singer and Coifman, 2008]. For the PCA
case, if we attempt to view it as an operator, the first coefficients are related to the variability of the data
and not to a smooth part of the geometry nor any nonlinear component. The PCA works well if the
data is localized around a linear manifold, in other cases nonlinear dimensionality reduction methods
are needed. The operator approach proposed in this thesis a way to obtain the information of this low
dimensional structures, we can decompose the data variability in a flexible manner by changing the
operator, which is constructed to preserve a quantity or property.
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Other Decompositions

For dealing with meshes other decompositions can be used. For example Wavelets for graphs have been
used successfully [Coifman and Maggioni, 2006,Hammond et al., 2011] as a multi-scale representation
that is able to represent local features on graphs, contrasting with the global character of the PCA
decomposition. Treelets [Lee et al., 2008] can be used to find multi-scale representations on graphs for
the cases where the data on the graph is non-smooth.

In contrast to these studies, we are interested in finding a multi-scale orthogonal decomposition of
not only one dataset but many. We are dealing with a specific type of data sets, namely simulation
data, that is numerical solutions of partial differential equations and propose to study the structure of
simulation data sets by using its orbits, defined as the trajectories obtained by following the action of
a transformation group. The orbits are gained using a basis obtained from an operator invariant to the
transformation group. We have observed in our numerical studies that a representation of a specific
group can be obtained using an invariant operator. Specifically for the case of isometries using the
Laplace-Beltrami operator on a surface mesh and its orthogonal decomposition, we are able to show
numerically that orbits can be obtained for the translation group in the first component and for the
rotation group in the second component and so on. Other isometric group actions are reflected in other
components of the orthogonal decomposition.

The use of wavelets or treelets for the decomposition of data defined on a graph can certainly be a
very interesting extension of our work. Nevertheless, in our opinion it is not obvious, in the case of
simulations, how to extend the invariance property to such a basis in contrast to the ones obtained from
an invariant operator. Notice also, that directly linked to the invariance is the possibility of analyzing
simulations in the context of shape spaces. Shape spaces are per definition quotient spaces of a so called
pre-shape space with respect to a transformation group acting by isometries.

Using shape spaces in a Riemannian manifold framework allows for the use of a specially defined
metric. That is, in such a space a base manifold (in our case the space of embeddings or immersions
in R2 or R3) is used and the quotient map with respect to a transformation group is assumed to be
a Riemmanian submersion. This assumption is commonly used in the area of shape spaces and we
would like to think of simulations as a certain kind of shape subject to some transformations so that
those concepts can be extended to the treatment of simulations. The use of a Riemannian submersion
allows the use of the metric in the space of immersions for the quotient space of simulations allowing
an essential simplification.

Finally using invariant operators contains also a fundamental difference to all other approaches men-
tioned above, namely once the operator is setup, the basis can be used for any instance of a specific
transformations even if the data representing them were not available in the training set (see Section
7.3 for an example). The application we have in mind is the analysis of simulation bundles. Those
are obtained by the numerical solution of differential equations where some set of parameters has been
varied. In this setting we propose to obtain a low dimensional representation of such spaces using the
group orbits, that can be represented by the spectral coefficients obtained by projecting the data sets to
the common invariant base.
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7.5 Operator Invariance Dependence

Taking a closer look at the proposed method, the important step is the construction of the operators.
For example pose invariance of a deformation can be achieved using an approximation of the Laplace-
Beltrami operator constructed using geodesic distances in the finite element mesh. For a stochastic
Itô process one can even obtain invariance to a general nonlinear transformation. After obtaining dis-
crete approximations of these operators, we project the data to the eigenvectors of the operator spectral
decomposition and obtain a new representation.

To put the method in a general form, the main idea is to define a metric that is invariant to some
transformation group and then using it to construct an invariant operator. The approach is very flexible if
we manage to identify the metric and build with it the correct invariant operator corresponding to the way
simulations are assumed or observed to behave under change of parameters. Notice that for the isometric
case we have used a metric that involves a geodesic distance (approximated by the graph distance). For
the case of the independent components the distance in the non-observable space evaluated using data
in the transformed space is used to construct the operator. A further example of a way to define a
different metric is explained in section 9.1. We also mention the Bi-Laplacian distance as another type
of metric that can be used in the context of our method, this distance is pose invariant, noise resilient
and insensitive to small topological changes of the mesh [Lipman et al., 2010].

Notice also that other types of operators can be used, a particular related example is the Schrödinger
operator [Iglesias and Kimmel, 2012]. A pose invariant signature for the analysis of surface meshes has
been successfully implemented in [Aubry et al., 2011]. Notice that an orthogonal decomposition can be
obtained from this invariant operator and with it, a similar type of analysis as the one proposed here can
be implemented.
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CHAPTER 8

Reduced Basis Methods with Invariant Basis

In the context of the analysis of simulations as solutions of partial differential equations, engineers are
interested in obtaining approximate surrogate models to avoid the expensive solution phase. These mo-
dels are constructed based on physical arguments or more generally using so called simulation snapshots
from which an orthogonal basis can be gained using principal component analysis, the basis is reduced to
a few components. Once the basis is available, for the cases in which the model equations are available,
a simplified system of differential equations can be derived using a Galerkin formulation that is later
solved for the spectral coefficients. Let us consider the invariance property of our approach using the
orthogonal eigenbasis of the corresponding operator in the Galerkin formulation, so that these can be
used as an invariant basis. These approaches are studied in the context of reduced basis methods, where
as mentioned above, the partial differential equations are supposed to be known. We propose the use
of the orthogonal basis of invariant operators in the context of the reduced basis method. Specifically
we deal with an extension of one approach into this area, namely the proper orthogonal decomposition
(POD).

Firstly, we will analyze the effect of the use of an invariant basis in the case of parameterized partial
differential equations. Then we will show by means of an example, a method to utilize simulation
snapshots to construct an invariant basis that is able to learn an intrinsic nonlinear parameterization.
Finally we will deal with a specific nonlinear PDE and derive a Galerkin formulation using, on the one
hand a standard POD for determining a basis; and on the other hand, using an invariant basis. Numerical
results obtained with both approaches are then compared.

8.1 Reduced Basis and Parameter Identifiability

As described in section 8, the principle of the reduced basis method (RBM) consists of searching a low
dimensional representation in order to approximate the elements of the space of solutions

ϕN(P) = {uN(µµµ) ∈ VN : µµµ ∈ P} ⊂ VN ,

using a linear global approximation under the separable form
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uN(x, µµµ) =

N∑
j=1

α j(µµµ)ζ j(x), (8.1.1)

while keeping N as small as possible and satisfying

inf
v∈VN
‖u(µµµ) − v‖V < ε for all µµµ ∈ P.

In the standard POD, given a set of snapshots one can obtain an orthogonal basis ζ j using the singu-
lar value decomposition. This basis concentrates the variability of the data at few components of the
orthogonal decomposition [Quarteroni et al., 2015]. Notice however that the basis obtained in this way
depends implicitly on the parameter set µµµ since it is obtained from the snapshots evaluated for a specific
parameter sampling. In our proposed approach instead, the basis is constructed precisely independent
to the transformations that occur as a result of a specific parameter change. This highlights a very in-
teresting observation, the projection coefficients to this basis reflect the parameter variations directly
independent of the basis. Let us state this observation a little bit more formally.

Proposition 8.1.1. Given a simulation dataset {ui}i=1,m ∈ R
Nt obtained using a sample of input para-

meters µµµ ∈ P. Assuming all simulations are obtained by a distance preserving transformation or in a
stochastic Itô setting by a nonlinear transformation. All simulations can be expressed using an ortho-
gonal basis ψ which is independent of the input parameter variations in P.

Proof. An operator that is invariant to distance preserving transformations is the Laplace-Beltrami op-
erator, evaluated as described in section 6.4.4. For a stochastic Itô setting an operator invariant to a
nonlinear transformation can be constructed as described in section 6.4.6. Evaluating the eigenvectors
from each of these operators an orthogonal decomposition of the given simulation bundle can be written
as

ui(x, µµµ) =

Nt∑
j=1

α
j
i (µµµ)ψ j(x), (8.1.2)

the independence of the basis from the parameter µµµ is a consequence of the invariance assumption.
Further simulations for a specific input parameter combination, not in a training set, can be represented
using the invariant basis. �

We will demonstrate the usefulness of this proposition by using it in several forms in the following
sections.

8.2 POD Snapshots with an Invariant Basis

In the context of simulations, the variation of several input parameters produces a corresponding solu-
tion. Often the solutions depend only on a few parameters, which is a-priori unknown, and in addition,
the influence of such parameters on the solution is also unknown. Finding them is very important for
engineers when developing new products.
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The proposed invariance principles in this thesis are adequate to address both aspects that have been
mentioned before. That is, to extract nonlinear parameter dependences from the data and to estimate
their influence in the corresponding solutions. The proper orthogonal decomposition (POD) is the stan-
dard approach used in industry [Quarteroni et al., 2015]. Simulation snapshots are obtained and with
them a basis is calculated representing the variability of the data. We assert that even in the case of being
able to sample simulations as desired, the POD has limitations in the presence of nonlinearities and we
would like to show them in an example. We will construct a synthetic example that should approximate
the behavior of a 3D object under different deformations caused by a nonlinear parameter variation. In
applications, each of these deformations will correspond to a finite element solution where some input
parameters have been changed.

The example contains synthetic deformations, that is, they are not obtained by a finite element simula-
tion but instead we morph isometrically a reference geometry. The morphing is achieved by modifying
several parameters in a nonlinear way. The final objective is to demonstrate how well such parameters
are identified using only the morphed deformations as input information using the standard POD and the
new approach. In the standard POD, the projection coefficients are used as a reduced representation of a
simulation dataset for further processing in a Galerkin solution. In this example we will use a specially
chosen set of projection coefficients corresponding to a nonlinear function. Based only on the snapshots,
we would like to recover the introduced nonlinear parameter variations using the operator approach and
the standard POD method.

Figure 8.1: original part Figure 8.2: deformed part

Consider the 3D object in figure 8.1, it has a total of 1000 nodes. This will be our original geometry
that will be deformed to obtain the synthetic simulations. We employ the following procedure:

1. A Laplace operator approximation with a Gauss kernel, using the graph distances between points
in the cloud is calculated. The eigenvectors of this operator form an orthogonal basis and we can
reconstruct the geometry with them.
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2. For the reconstruction we will only use 10 coefficients. A distortion of the geometry is obtained
as a consequence of the thresholded reconstruction, see figure 8.2.

3. We define now the following three functions z1(x, y), z2(x, y) and z3(x, y). Let R =
√

x2 + y2 + εm,
with εm = 2.2e−16, then

z1 = exp(−A1 × sin(R/B1)/R)

z2 = A2 × cos(R/B2)/R

z3 = A3 × sin(R/B3)5/R2

with A1 = 500, B1 = 10, A2 = 1000, B2 = 10, A3 = 10000, B3 = 10.

4. There are 3 coordinate directions and corresponding spectral coefficients x, y, z for each direction.
The values of x, y correspond to a uniform mesh of size 13× 13 and those values are taken for the
spectral coefficients. The spectral coefficient in the third direction z is replaced by the values of
z1, z2 and z3. Therefore, a total of 169 (13 × 13) spectral coefficients are constructed as follows:

C(i, :, :) = [(x(i), y(i), z1(i)); (x(i), y(i), z2(i)); (x(i), y(i), z3(i)); c4; . . . ; c10], (8.2.1)

with i = 1, . . . , 169. The coefficients c4, . . . , c10 ∈ R
3 are kept the same for all synthetic simula-

tions and are equal to the spectral coefficients of one simulation.

5. On the basis of the set of 169 coefficients, 169 synthetic simulations are obtained using the eigen-
vectors of the operator from step 1 multiplied by the corresponding coefficients.

We will concentrate on the direction z, which is the direction where changes in the parameter take
place and compare the actual variation in this direction with the corresponding ones obtained using
the operator approach and the ones obtained with the POD by using the singular value decomposition
(SVD). For the POD we took only the component z of the 3D coordinates of the deformations and
evaluate the covariance matrix of size 169 × 1000.

For the operator approach, we will use the one described in section 6.4.6, namely the operator of
independent components (NICA). The input data for our algorithm are the 169 3D meshes. The given
dataset is projected to the operator basis and the corresponding coefficients 169 × 3 of size 1000 are
evaluated. We have chosen the three largest values of the coefficients for all simulations in the z direction
as before getting in total 169 coefficients.

Figure 8.3 shows the corresponding parameters as recovered using the operator of independent com-
ponents and using the POD, evaluated using the SVD. A normalization is used in order to compare it
with the original parameter for each of the three parameters used. The recovered parameters using the
operator approach agrees very well with the original parameter variation. Using the POD the agreement
is also very good, but not for all parameters as seen in figure 8.3 (c) for the parameter 3.

We have also analyzed the effect of adding 30% uniform noise to our simulations, the corresponding
parameters as recovered using the operator approach and using the POD are shown in figure 8.4. The
presence of noise affects both approaches negatively, nevertheless the approximation of the parameters
for the new approach is overall better in comparison with the one using the standard POD approach.

106



8.2 POD Snapshots with an Invariant Basis

(a) Values of parameter 1 and projection coefficients vs.
simulation index

(b) Values of parameter 2 and projection coefficients vs.
simulation index

(c) Values of parameter 3 and projection coefficients vs.
simulation index

Figure 8.3: Comparison of original and recovered parameters (projection coefficients). A unique orthogonal
basis is used and all 169 simulations are projected to this basis. The projection coefficients for the orthogonal
components with higher variations from the SVD and from the operator approach (NICA) are used.
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(a) Values of parameter 1 and projection coefficients vs.
simulation index

(a) Values of parameter 2 and projection coefficients vs.
simulation index

(a) Values of parameter 3 and projection coefficients vs.
simulation index

Figure 8.4: Comparison of original and recovered parameters (projection coefficients). A unique orthogonal basis
is used and all 169 simulations (with noise added) are projected to this basis. The projection coefficients for the
orthogonal components with higher variations from the SVD and from the operator approach (NICA) are used.
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8.3 Galerkin-POD with Invariant Operators.

Summary of Results for the Synthetic Simulation

We can observe that the proposed approach has the following properties:

• it requires as many coefficients as number of nodes in the mesh (several thousand), the POD
requires as many as the number of datasets. Nevertheless the approach concentrates most of the
data variation in very few spectral coefficients,

• it has the special property of being geometry aware as we obtain eigenvectors of an operator valid
for a 3D geometry, in contrast to the POD case,

• from the synthetic data, we were able to approximate very well; the low dimensional independent
parameters even in the presence of large amounts of noise in the data,

• the above results imply that the basis obtained from the operator approach has a generalization
ability to cope with variations that are not available in the snapshots. Notice that this is a con-
sequence of proposition 8.1.1

The above results are very important for applications using the POD. Obtaining the basis as suggested
using an invariant operator, could improve reduced order models of the standard Galerkin-POD method.

8.3 Galerkin-POD with Invariant Operators.

In this section we will show, by means of some examples, firstly the way the new invariant basis is
included in a Galerkin approach and secondly we will study awareness to nonlinearities. Special atten-
tion is given to whether or not the new basis is able to reflect parameter changes in the simulation not
covered by the snapshots.

8.4 POD with an Invariant Basis.

The basis we generate by using an invariant operator has a different character as the one obtained from
the snapshots. As mentioned in section 6.8, the number of basis functions necessary to represent a
simulation vary according to the smoothness of the data. For smooth functions few basis vectors are
necessary to represent the function under the new basis. This invariant basis, once obtained, can be used
in a Galerkin approximation to solve a given partial differential equation. It is certainly interesting to
investigate how the reduced model behaves since the basis is actually independent to suitable parameter
variations.

To demonstrate the behavior of the reduced Galerkin system under the new basis, we use the following
nonlinear ODE Burgers equation with appropriate boundary and initial conditions,

∂

∂t
u(t, x) + u(t, x)

∂

∂x
u(t, x) − q

∂2

∂x2 u(t, x) = f (t, x), (8.4.1)

this is a commonly used model in the context of the POD as a test example, since it has properties similar
to the Navier-Stokes equation with a combination of diffusion and convection parametrized by q, which
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8 Reduced Basis Methods with Invariant Basis

can be taken as the Reynolds number. This example and the standard POD formulation are based
on [Jarvis, 2012] where more details can be found. First let us consider the finite element discretization
of the above equation which involves the use of an approximation of u(t, x) defined as

un(t, x) =

Nh∑
j=0

α j(t)B j(x), (8.4.2)

where Nh is the number of nodes and the basis B j(x) has local compact support. For this example we
choose the following standard hat functions

Bi(x) =


x−xi−1

h for x ∈ [xi−1, xi]
xi+1−x

h for x ∈ [xi, xi+1]
0 otherwise,

(8.4.3)

Rewriting the nonlinear term as 1
2
∂[u(t,x)2]

∂x , the Galerkin weak formulation is given by,

Nh∑
j=0

(
α̇ j(t)

∫ 1

0
B j(x)Bi(x)dx +

1
2
α j(t)2

∫ 1

0
B′j(x)Bi(x)dx

+ qα j(t)
∫ 1

0
B′j(x)B′i(x)dx

)
=

∫ 1

0
f (t, x)Bi(x)dx

(8.4.4)

The equation (8.4.4) is a system of Nh + 1, including Dirichlet boundary conditions. This can be written
as

α̇(t) = M−1
[
F(t) −

1
2

B(α(t))α(t) − qCα(t)
]

(8.4.5)

α(0) = M−1G (8.4.6)

with Mi j = 〈B j(x),Bi(x)〉, Ci j = 〈B′i ,B
′
j〉, Fi(t) = 〈 f (t, x),Bi(x)〉, Gi = 〈u0(x),Bi(x)〉, i, j = 0, . . . ,Nh,

this equations can then be solved for α(t). The zero Dirichlet boundary conditions are used and for the
initial conditions we use

u0 =

{
1 for x ∈ [0, 1/4]
e−(x−0.25)/0.21 for x ∈ (1/4, 1]

(8.4.7)

8.4.1 Reduced Order Model

The mass matrix M is symmetric and therefore can be decomposed as M = LLT . Then the weighted
snapshots matrix is defined as Y1 = LT Y where Y is the Nh × m matrix containing m time snapshots of
the finite element calculation. If Y is of rank k then Y1 is also of rank k

The basis obtained in the proper orthogonal decomposition (POD) minimizes over all possible m−di-
mensional orthonormal basis W = [w1|, . . . |wm] ∈ RNh×m, the sum of the squares of the error between
each snapshot simulation and its projection onto the subspace spanned by W. This is equivalent [Quarter-
oni et al., 2015] to finding the eigenvectors of

Y1YT
1 ψ = λψ. (8.4.8)
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8.4 POD with an Invariant Basis.

Using the singular value decomposition one can write

Y1 = UΣVT , (8.4.9)

where U is a unitary matrix of dimension Nh × Nh, Σ is diagonal of dimension Nh ×m and VT is unitary
of size m × m. The vectors Ui satisfy

max
m∑

j=1

∣∣∣∣〈Y j
1,Ui

〉
RNh

∣∣∣∣2 s.t ‖Ui‖RNh = 1 and 〈Ui,Uk〉RNh = 0 for k = 1, . . . , i − 1. (8.4.10)

If Y has rank k, for i = 1, . . . k, only Σii entries are nonzero and one can write Y1 = UkΣk(Vk)T , where
k means the first k vectors of the matrix U,V and Σk is the k × k principal sub-matrix of Σ.

Now one can find the spatial POD basis vector by taking ζr
i (x) = L−1Ui(x) for i = 1, . . . r with

r ≤ k. Using a POD basis, one can replace this basis in the weak form (8.4.4), using the approximation
uN(t, x) ≈ u(t, x)

uN(t, x) =

r∑
j=1

αr
j(t)ζ

r
j(x), (8.4.11)

by doing that, one reduce the order of the ODE system (8.4.4) from Nh + 1 to r. For each time step, one
solve only for the coefficients αr

j.
The POD reduced model can then be shown to be given by

α̇r(t) =

[
Fr(t) −

1
2

(Φr)T B(Φrαr(t))Φrαr(t) − qCrαr(t)
]

(8.4.12)

αr(0) = (Φr)Tα(0), (8.4.13)

denoting the collection of POD vectors by Φr, then Fr
i (t) =

〈
f (t, x), ζr

i (x)
〉

and Cr = (Φr)TCΦr.
Up until now we have presented the traditional POD formulation. Our proposed method uses an

invariant basis which is also an orthogonal basis so that a natural extension to the POD consists in
replacing the basis with ours to obtain an equivalent expression to (8.4.12). In other words, we have
replaced the POD basis ζr

i (x) = L−1Ui(x) with the basis ψi(x) obtained from an operator invariant to
a transformation that transforms simulations into simulations. We will next describe how we obtained
this operator for this specific problem.

8.4.2 The Invariant Operator.

The solutions to the PDE (8.4.1) are curves that, as the time increases, shows an apparent movement
along the x axis. Depending on the parameter q, this movement will be dominated by a diffusion or by
a pure convection (translation) as can be seen in figure 8.5.

We will now take a closer look at the shapes of the curves, each of them for each and every time
step can be assumed to be obtained by transforming a reference curve. That is, a new shaped curve
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8 Reduced Basis Methods with Invariant Basis

(a) (b)

Figure 8.5: Solution curves for the nonlinear PDE (8.4.1) for a) q=20 diffusion dominated and (b) q=400 convec-
tion dominated ranges

is obtained from the reference one. In addition the transformation can be assumed as preserving the
length along the curve. That is, the transformation is a distance preserving, i.e an isometric one. This
observation suggests a way to construct an invariant operator by considering each curve to be a planar
shape.

Using as input the solution for one specific time step, lets say for t = 0 of the simulation for q = 20 we
have constructed a distance preserving operator based on Algorithm 4. The eigenvectors of this operator
are then the invariant basis that can be used instead of the one in the standard POD approach. Based
on this basis we have implemented an extension of the POD method by replacing the new basis in the
Galerkin approximation. As before a reduced system of ODEs for the spectral coefficients has to be
solved. Specifically we solve (8.4.12) for q = 20 using p = 20 invariant basis U i = ψi(x), i = 1, . . . , 20.

We have noticed that, there are no visual differences between the curves obtained solving the original
ODE, the POD approximation or the invariant basis approximation. The result for all of them can be
seen in figure 8.5 (a).

Of strong interest in the context of the POD approximation is to obtain reduced models that are
valid for a range of parameters of the ODE/PDE. At the same time one would like to avoid the need
to obtain a new POD-basis if the parameter range changes, as this implies calculating new simulation
snapshots. These requirements have practical interest since the solution of the ODE/PDE in an industrial
environment is expensive. The use of a reduced model is also very handy in other processes such as in
a control or optimization loops. Calculating new basis in such processes is simply not practicable.

For the reduced solution of (8.4.1) we have solved the Galerkin equation (8.4.12) in two different
ways for the same parameter q = 400. In the first one we have used the POD basis obtained for q = 20
and in the second one we have used our invariant basis obtained from an arbitrary simulation (in this
case it is obtained from the curve at t = 0).

Figure 8.6 shows the result of these calculation that have to be compared with the solution of the
ODE shown in figure 8.5 (b). As can be seen from these results, the solutions for the invariant basis and
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(a) (b)

Figure 8.6: Solution curves for the reduced nonlinear PDE 8.4.1 for q=400 using a) 20 POD basis (b) 20 Invariant
basis

the ones for the POD, both show deviations from the exact solution. Nevertheless the solution with the
invariant basis is closer to the numerical solution with q = 400 (figure 8.5 (b)).

In order to be able to assert the reasons for those deviations, we have first focused on the integration of
the reduced ODE. In both cases we have used an integration method based on a Matlab solver. There are
several implementations of it including the ones that can solve the more difficult stiff problems. We have
tested several available implementations ode45, ode23 and ode113 without any noticeable improvement
in the final result.

Even if a better ode integrator is not available, we can do the test in an idealized case in which the
solver performs in an ideal way. That is, we use the solution for q = 400 and project it to the POD-basis
as well as to the invariant basis and further reconstruct the solution using 20 basis vectors. Figure 8.7
shows the result of the reconstruction for the POD basis and for the invariant basis, Figure 8.7 (b) shows
a significant improvement in the quality of the approximation with respect to Figure 8.6 (b).

The solution of the ODE equation 8.4.4 and the reduced POD system with the new basis can be
repeated for several parameters in the interval q ∈ [20, 400]. A projection of all simulations to the POD
basis for q = 20 and to the invariant basis can then be done with a subsequent reconstruction using 20
components. Doing this evaluation, and taking the mean of the median of the error for all time steps
for each value of q, we have obtained the results shown in figure 8.8 where it can be clearly be seen
that the error, by using the invariant basis, stays constant for the all range of values of the parameter
q (curve labeled as New). This behavior contrasts with the error obtained using the POD basis whose
absolute value increases drastically as the value of the parameter q is increased (curve labeled as POD
Basis). Recalculating the basis for each parameter maintains the error barely constant as seen in figure
8.8 (curve labeled as Basis recomputed). To have a better overview over the error for the different cases,
we repeat the plot using a logarithmic scale in 8.9. This experiment verifies proposition 8.1.1 which
establishes that the basis is independent of the input parameters. The solution of the reduced system
using the invariant basis (curve labeled POD Basis new) in figure 8.7) shows an improvement with
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8 Reduced Basis Methods with Invariant Basis

(a) (b)

Figure 8.7: Solution curves obtained by reconstruction using 20 basis for q=400 using a) the POD basis (b) the
invariant basis

respect to the standard POD but it is not independent of the parameter q. This behavior is assumed to
be caused by the integration of the reduced ODE since the basis itself has been shown as capable of
representing the simulation curves for the all range of the parameters q (curve labeled New). From this
experiment we presume that the results obtained by solving the Galerkin reduced system are affected by
the performance of the Matlab integrator. These results suggest that the integrators are not adequate to
solve the reduced ODE using the invariant basis.

The POD-Galerkin approximation is very useful as a method for creating a reduced model from a
PDE or ODE, the actual dimension of the problem gets reduced in several orders of magnitude. We
have shown that modifying the basis in the POD using an invariant basis could produce reduced models
that are more general. That is, the basis can still be used, even if PDE/ODE contains parameters that
modify the behavior of the solution.

If an invariant basis could be used in the POD approach, then one could actually construct a better
POD that overcomes the limitations of the standard one in cases where instabilities are present or when
one uses snapshots in a certain parameter range which deviates significantly from the actual parameter
variations.

We conclude here with the description of the proposed new methodology for data analysis and the
POD extension. Further extensions and industrial applications are described in the next chapters.
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8.4 POD with an Invariant Basis.

Figure 8.8: Median of the mean of the error with respect to the full Galerkin 8.4.4 for the standard POD reduced
solution using a fixed basis for the parameter q = 20 (POD Basis), the modified POD solution with the invariant
basis (POD Basis new), the reconstruction from the invariant basis (New Basis) and the POD solution where a
basis is calculated for each and every parameter (Basis recomputed). A total number of 20 basis functions are
taken for the reduced solutions and for the reconstruction
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8 Reduced Basis Methods with Invariant Basis

Figure 8.9: Median of the mean of the logarithm of the error with respect to the full Galerkin 8.4.4 for the standard
POD reduced solution using a fixed basis for the parameter q = 20 (POD Basis), the modified POD solution with
the invariant basis (POD Basis new), the reconstruction from the invariant basis (New Basis) and the POD solution
where a basis is calculated for each and every parameter (Basis recomputed). A total number of 20 basis functions
are taken for the reduced solutions and for the reconstruction
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CHAPTER 9

Extensions

Several extensions of the proposed approach described in section 7.1 will be discussed in this chapter.
Firstly we will show how to deal with transformations that are not distance preserving, namely con-
formal transformations and we will provide an example of them. Next we will present a methodology to
evaluate paths in shape space. A path in shape space refers to a sequence of shapes from a given initial
to a final one. All elements of the sequence are supposed to be contained in the space of the shapes
one is dealing with, where paths of minimal length are called geodesics. In chapter 5 we presented an
abstract setting that establishes that in the case of isometries, under certain conditions, geodesics are
defined as one-parameter group transformations and that group actions can be represented using eigen-
functions of isometric invariant operators. Based on this, we proposed in section 7.1 a method for data
analysis that in some way evaluates group actions using the projection coefficients to the eigenvectors
of discrete isometric invariant operators. Those projections can be associated with the orbits and they
have been shown experimentally to be orbits for the case of rotations and translations. In other words so
called orbit paths are shown experimentally to recover approximations of geodesic paths for those cases.
We would like to see how far can we get with this approximation for other invariances than rotations
and translations, that is are we able to recover geodesic paths in some specific cases? Since for plane
shapes, methods for finding geodesic paths are available, an example in the area of plane shapes will be
considered to illustrate this approximation and then we will show a method to evaluate orbit paths in the
solution space of deformations in crash simulations.

9.1 Invariance to Conformal Transformations

In section 6.4.4 we have proposed an operator that is invariant to isometric (distance preserving) trans-
formations. In section 6.4.6 an operator is proposed for the case of an stochastic Itô process. Here, a
dataset contains a small nonlinear variations forming a cloud around a reference configuration. Based
on this cloud a local approximation of the Jacobian of the nonlinear transformation can be estimated.
As a result, as shown in section 6.4.6 an operator invariant to a nonlinear transformation can be build for
this special case. Still one more case can be defined using the same Laplace-Beltrami operator provided
a suitable definition of invariance can be found. This is precisely the case for conformal transformations
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(area preserving). We will use the following definitions for conformal invariance:

Definition 9.1.1. Let (M, g) be a differentiable connected Riemannian manifold with associated metrics
g, g̃. A conformal change is given by g̃ = e2ϕg where ϕ is a smooth function onM.

Definition 9.1.2. A metrically defined operator Lg is called conformal invariant if Lg̃ = e−2φLg

Proposition 9.1.3. [Ngô, 2012] The Laplace-Beltrami operator on a surfaceM is conformally invari-
ant.

Proof. This has been shown in [Ngô, 2012] and it can be obtained using local coordinates. The Laplace-
Beltrami operator in local coordinates can be written as

∆g̃ =
1√
| det g̃|

∂

∂x j

( √
| det g̃|g̃i j ∂

∂xi

)
.

In this expression replace
g̃i j = e−2ϕgi j√

| det g̃| = enϕ
√
| det g|.

obtaining

∆g̃ =
1√
| det g̃|

∂

∂x j

( √
| det g̃|g̃i j ∂

∂xi

)
=

1

enϕ
√
| det g|

∂

∂x j

(
enϕ

√
| det g|e−2ϕgi j ∂

∂xi

)
=

1

enϕ
√
| det g|

∂

∂x j

(
e(n−2)ϕ

√
| det g|gi j ∂

∂xi

)
=

1

e2ϕ
√
| det g|

∂

∂x j

( √
| det g|gi j ∂

∂xi

)
+

1

enϕ
√
| det g|

∂

∂x j

(
e(n−2)ϕ) √| det g|gi j ∂

∂xi

= e−2ϕ∆g + (n − 2)e−2ϕgi j ∂ϕ

∂x j

∂

∂xi
.

For a surface n = 2 and this implies conformal invariance according to the definition 9.1.2. �

From proposition 9.1.3 one can see that the difference between the operators under a conformal
transformation is only the conformal factor. For simulation data sets that undergo only conformal trans-
formations the same operator can be used (albeit the conformal factor). As for our approach presented
in section 7, in order to represent a simulation bundle we need a unique basis calculated from an approx-
imation of an operator invariant to a transformation (for example isometric). For this conformal case,
under the conditions explained above, this is still possible. We will provide an illustrative example for
this case using the space of concentric spheres. Using a unique basis for this case, an approximation of
a geodesic path in this space is also achieved using the projections into this basis.
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9.1.1 Space of Concentric Spheres

The space of concentric spheres has been treated in [Bauer et al., 2012] where the geodesics under
different type of metrics are calculated. The space of concentric spheres is a subspace of the space

Bi = Imm(S 2,R3)/Diff (S 2)

and is therefore a shape space according to [Bauer et al., 2012]. Different type of metrics on the space
of immersions are analyzed in [Bauer et al., 2012]. A general form of this metric for surfaces immersed
in R3 is given by

G f (h, k) =

∫
S 2

Φ(Area( f ), µ)g̃(h, k)dArea

where g̃ is the Euclidean metric on R3, h, k ∈ C∞(S 2,R3) are tangent vectors of the immersion f : S 2 →

R3 and Φ : R2 → R>0 is a positive smooth function that depends on the area of the immersion f (S 2) and
on the mean curvature µ. Based on this metric, the geodesic equation in the shape space of concentric
spheres has been derived in [Bauer et al., 2012] and is given as,

rtt = −r2
t

1
Φ

[
1
r

Φ + ∂vΦ4r2π +
1
r2 (∂µΦ)

]
where v and µ corresponds to the area and mean curvature arguments in Φ, that is Φ(v, µ). We recall the
special case Φ = Area−1, where the equation simplifies to rtt=0, an explicit solution can be found in this
case

r = C1 × t + C2.

That is the geodesic equation depends only linearly on the radius for this special case.
Now using our approach, we can take the Laplace-Beltrami basis for the sphere which are given by

the spherical harmonics functions given by,

ψm
l (θ, φ) =


N0

l Pl(cosθ) if m = 0
√

2Nm
l cos(mφ)Pm

l (cosθ) if m > 0
√

2Nm
l sin(−mφ)P−m

l (cosθ) if m < 0.

Notice first that, such a basis is the same for all concentric spheres in the set and that projections of 3d
sphere surface points along the spherical harmonics will produce spectral coefficients that only change
linearly with respect to the radius of the sphere. A compact representation of a dataset can be obtained
using a change of basis to the Laplace-Beltrami basis, i.e. for the concentric spheres a simple linear
representation of this shape space is obtained.

Finally we will compare this evaluation with a numerical solution. We have constructed 1000 spheres
with different radius, see figure 9.1. For the experiment we have randomly varied the radius of the
spheres as shown in figure 9.2 for the values of the radius that have been used for the experiment.
The spheres are approximated on a triangular mesh. We have taken one arbitrary mesh and calculated
numerically the approximation of the Laplace-Beltrami operator and solve the eigenvalue problem for
it as described in Algorithm 2. Finally we have projected all coordinates of all 1000 spheres to the
eigenbasis and have obtained the orbit coordinates for all spheres. Figure 9.3 shows a plot of the orbit
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coordinates corresponding to the spectral coefficients for the second component of the decomposition
for all spheres colored according to the value of the radius. The approximation clearly shows a linear
relationship as a function of the radius.

Figure 9.1: concentric spheres Figure 9.2: set of radius used for all 1000 spheres

Figure 9.3: simple geodesic for concentric spheres, the color corresponds to the radius of the spheres
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9.2 Fast Evaluation of Paths in Shape Space and Simulation Space

In this section we will describe a new method for calculating paths in shape space as a direct extension
of the operator approach presented in this thesis. The method uses the eigenbasis of an operator that is
invariant to specific transformations. The quotient space of embeddings of a manifold in Rn modulo a
transformation group is considered. Orbits of this space, with respect to a group action, are the spectral
coordinates obtained by projecting the given shapes to a unique eigenbasis. The method is applied to
the shape space of plane curves and to a simulation bundle of car deformations under crash. It is shown
that the proposed methodology can be used for applications exploring shape spaces and also that it has
the potential of significantly improving existent methods for geodesic calculations in shape space.

9.2.1 Analysis on Shape Spaces

Shape spaces are infinite dimensional spaces. The analysis of shape spaces has been intensively studied
from a theoretical point of view and there are also many applications in several areas such as medicine,
biology and archeology among others. For developments in this area see [Bauer et al., 2011,Bauer et al.,
2014, Michor, 2008, Srivastava et al., 2011] and the references therein.

A mathematical representation of the space of shapes considers at first a so called pre-shape space
that contains those shapes under some constraints such as for curves being an immersion or embedding
in R2, or a set of landmarks representing an object or the set of surfaces as immersions or embeddings
in R3. In a second step, one identifies members of this pre-shape space that belong to the same trans-
formation group or orbit, typically considered transformations are rotations, translations, scaling and
re-parameterizations. If the pre-shape space is a Riemannian manifold, then the shape space (set of
orbits) inherits, under certain conditions, the Riemannian structure of the pre-shape space, see chapter 5
for details. Shape spaces constructed in this way are quotient spaces of the pre-shape space with respect
to a transformation group.

Critical factors that enable the analysis of shape spaces are the representation type (parametrized
curve, mesh, parametrized surface, etc) and the definition of a Riemannian metric. The selection of a
metric affects also the computing efficiency and analysis interpret-ability.

We propose, based on our results on invariant operators, the use of an equivalent representation of
elements of shape space that under certain conditions allows for an efficient calculation of geodesic
paths (along which a shape gets transformed into a new target shape) in this space.

The calculation of geodesics has received a lot of attention in the last years, see [Bauer et al., 2014,
Srivastava et al., 2011] and references therein. For quotient spaces of shapes, constructing geodesics
paths is known to be a very time consuming task. Approaches trying to speed up those calculations have
been done recently, in particular see [Srivastava et al., 2011].

Firstly, our contributions consist in describing shapes using a basis representation along group actions
or orbits, secondly based on this representation a new method we call, Orbit Path is described that
allows the rapid evaluation of geodesics in the orbit space and finally we will show applications of this
methodology for the case of plane curves and for simulations of time dependent deformations of cars
under crash.

121



9 Extensions

Section 9.2.2 reviews the standard mathematical setting for analyzing the space of plane shapes, fol-
lowing with a description of the invariant operator used for the case of plane curves. Next we will
describe the general accepted framework for the construction of geodesic paths for one specific imple-
mentation. It follows a description of our proposed methodology and its evaluation and then two types
of applications are discussed. Finally we will provide an overview of open research questions.

9.2.2 Shape Space as Quotient Space

We will give an overview of the analysis of plane shape spaces in the square root velocity framework
(SRV) as described in [Srivastava et al., 2011], where also full details about the evaluation of geodesic
paths can be consulted.

The abstract framework for shape spaces primarily considers a so called pre-shape space. In the case
of planar curves this is the space of all immersions Imm(D,R2) (notice that this includes embeddings
since all embeddings are immersions) of a parametrized curve β in R2 with domain D. This is a large
space that contains immersed closed and open curves. Typically such a pre-shape space already removes
translation and scale variability. Other useful transformations are also included, such as the square root
velocity representation defined by q : D→ R2, q(t) = β̇/

√
‖β‖ (see [Srivastava et al., 2011] for details).

The pre-shape space of closed curves can be defined as

Cc =

{
q ∈ L2(S 1,R2) |

∫
S 1
‖q(t)‖2dt = 1,

∫
S 1

q(t)‖q(t)‖dt = 0
}
,

where the first condition rescales the shape to unit length and the second condition reflects a closure
condition (start points are the same as end points) also in general for closed curves one speaks about
immersions of the circle S 1 into R2.

To give a Riemannian structure to those shape spaces, one has to deal with its tangent spaces. For the
specific case of closed curves this has been shown to be given by

Tq(Cc) =
{
v ∈ L2(S 1,R2) | < v, w >= 0, ∀w ∈ Nq(Cc)

}
,

where Nq(Cc) is orthogonal to Tq(Cc).

Assuming that a transformation group G acts over Cc by isometries, a quotient space can be build that
inherits a Riemannian metric from Cc. The orbit of q ∈ Cc is given by

[q] =
{
(q ◦ γ)

√
γ̇ | γ ∈ G

}
.

Under these conditions an orbit is associated with the same shape (up to isometries). To compare
shapes invariants to a transformation γ a comparison between orbits [q] must be done and for that, a
metric in the space of orbits S = {[q] | q ∈ Cc} needs to be be defined.

To find such a metric, one starts considering the space L2(S 1,R2), where the space of closed curves
Cc is a subset of it. The standard metric in L2(S 1,R2) enables the construction of a Riemannian structure
in Cc, using it one can define geodesic paths between elements of Cc. Given a path α : [0, 1]→ Cc such
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9.2 Fast Evaluation of Paths in Shape Space and Simulation Space

that α(0) = q0, α(1) = q1, its length is defined by

L[α] =

∫ 1

0
<

dα
dτ
,

dα
dτ

>1/2 dτ,

a minimizing geodesic is obtained by using the infimum over all paths. The length of this geodesic is
then given by

dc(qo, q1) = inf
{α:[0,1]→Cc | α(0)=qo, α(1)=q1}

L[α] (9.2.1)

A geodesic in Cc is a critical point of

E(α) ≡
1
2

∫ 1

0
<

dα
dτ
,

dα
dτ

> dτ. (9.2.2)

A geodesic distance in the quotient space or space of orbits S = {[q] | q ∈ Cc} can be shown to
correspond to those geodesics in Cc that satify (see section 6.2 for details),

ds([qo], [q1]) = inf
γ∈Γ

dc(q0, (q1 ◦ γ)
√
γ̇). (9.2.3)

We will now review the concrete steps for the evaluation of the geodesic distance.

9.2.3 Geodesics in the Shape Space of Planar Shapes

Interesting for applications in the analysis of planar shapes is how to calculate geodesic paths. That
is given two plane curves β0, β1, how to find a geodesic path between them in the space of closed
curves Cc. Also notice that one would consider shapes that differ only by translations, rotations or
re-parameterizations, as being the same shape. This involves exactly finding geodesics on the quo-
tient space that have been obtained by taking the quotient with respect to rotations, translations or
re-parameterizations.

Evaluating a geodesic path in the quotient space involves two main steps: first a geodesic path is
found in the space of immersions Imm(D,R2) using the Path-Straightening algorithm in order to solve
the minimization problem (9.2.1). Secondly an aligning step is solved over a specific transformation,
this involves a second minimization using (9.2.3).

The Path-Straightening method as described in [Srivastava et al., 2011] is used. The idea of the
method is to set an arbitrary path in shape space and straighten it in several iterations in order to find
a minimizing geodesic. We only list the steps in the algorithm (see algorithm 6). For details of the
algorithm we refer to [Srivastava et al., 2011].

Finally to obtain geodesics in the quotient space, the joint optimization task defined in equation (9.2.3)
must be solved. This task is specific to the transformation group used, for examples of the approach for
rotations and re-parameterizations see [Srivastava et al., 2011].

Up to here we have described the classical approach for the analysis in the space of plane curves. Now
we will take our perspective of defining an operator for a set of simulations (or set of planar curves). Is it
possible to define a common operator for a set of planar shapes? What type of information with respect
to the geodesic paths is recovered in the orbit representation? The next sections try to give answers to

123
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Algorithmus 6 : Calculation of geodesic path in Cc

Input : two curves β0 and β1 in Cc

Output : a geodesic path joining β0 and β1 given as a series of m intermediate shapes
βi, i . . .m

1 Compute the representations qo and q1 in Cc

2 Initialize a path α between qo and q1 in the space of open curves C0

3 Project it back into Cc

4 Compute the velocity vector field dα/dτ along the path
5 Compute the covariant integral of the velocity vector field
6 Compute the backward parallel transport
7 Compute the full gradient vector field of the energy E given in (9.2.2) with respect to α
8 Update the path and check if the minimum has been reached otherwise repeat from step 4

these questions.

9.2.4 Orbits Paths as a Method for the Evaluation of Paths in Shape Space

As explained in chapter 6, the symmetries of a quotient manifold with respect to a group of isometric
transformations can be expressed by means of the eigenfunctions of a positive definitive operator and the
corresponding spectral coefficients (or projection coefficients). Transformations are represented along
some specific components of an orthogonal decomposition via the spectral coefficients. These coeffi-
cients have been shown to provide low dimensional coordinates for simulation data sets. In addition,
it has also been shown that paths in such a low dimensional simulation space can be found following
such coordinates (see section 7.3 and section 9.1.1). Now we would like to treat planar shapes from this
perspective, we will see that this provides interesting results.

We propose a method for evaluating paths in the shape space of plane curves;

• let S be a set of planar shapes,

• let U be a set of eigenvectors obtained from a path-length invariant operator constructed using
algorithm 4,

• let C be the set of projection coefficients up to order p,

instead of using the shape in its full high dimensional representation, we use "orbits" made of spectral
coordinates. For a set of similar shapes, the variation between them can be approximately represented
by the changes in the spectral coefficients. The orbits reflects the action of the transformation group
on the first few components in an orthogonal decomposition. Taking only the orbits up to a specific
component p, a low dimensional representation of a set of shapes is obtained along which (shortest)
paths can be calculated.

We show in the next example that surprisingly, orbit paths have the ability to approximate geodesic
paths very well, at least for the examples we have shown. To obtain the orbit paths shown, we have taken
the spectral coordinates of the initial shape and the ones of the final shape. Between those values of the
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orbits one can subdivide the orbit ranges in equally spaced sets and reconstruct the obtained shapes at
the subdivision points. The procedure is described using algorithm 7

Algorithmus 7 : Calculation of orbit path between source and target shape

Input : A source xs shape and a target shape xt, each given as Nh points ∈ R2, m the
number of desired shapes in the orbit path

Output : An orbit path of Pa shapes between source and target shapes, given as points{
xi, j,k

}
i=1,2, j=1,...,Nh,k=1,...,m

where xk=1 = xs and xk=m = xt

1 Calculate an invariant operator and its eigenvectors U for the source shape xs using
algorithm 4

2 Coefs = U × xs . spectral coefficients for xs as matrix of size (Nh, 2)
3

4 Coeft = U × xt . spectral coefficients for xt as matrix of size (Nh, 2)
5

6 Stepx = [Coefs − Coeft]i, j/m i = 1, . . . ,Nh, j = 1 . Subdivision of the orbit
range in x

7

8 Stepy = [Coefs − Coeft]i, j/m i = 1, . . . ,Nh, j = 2 . Subdivision of the orbit
range in y

9

10 foreach k ∈ {1, . . . ,m} do . reconstruct the orbit path
11 [Coefx]k = [Coefs] j=1 + [Stepx] × k
12 [Coefy]k = [Coefs] j=2 + [Stepy] × k
13 xi=1,k = [Coefx]k × U
14 xi=2,k = [Coefy]k × U
15 end
16 }

For comparison the geodesic paths in the examples are evaluated using the approach described in
[Srivastava et al., 2011] which actually uses projections from the pre-shape space into the quotient
space. That is, it computes horizontal geodesics as described in section 9.2.3.
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Figure 9.4: orbit path

Figure 9.5: geodesic path using elastic metric

Figure 9.6: orbit path

Figure 9.7: geodesic path using elastic metric

Figure 9.8: orbit path

Figure 9.9: geodesic path using elastic metric
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Figure 9.10: orbit path

Figure 9.11: geodesic path using elastic metric

Figure 9.12: orbit path

Figure 9.13: geodesic path using elastic metric

The results obtained for the orbit paths in figures 9.4, 9.6, 9.8, 9.10 and 9.12 can be compared with
the ones for the geodesic paths obtained in figures 9.5, 9.7, 9.9, 9.11 and 9.13. The results are certainly
interesting, at least from two points of view,

• determining shortest paths from given paths in such an orbit space approximately allows you to
find geodesic paths. This means that for the examples we have shown, the geodesic path between
two shapes is approximately linear for the representation of these plane shapes using an invariant
basis.

• following a path in orbit space actually shows geometry preserving transitions between two
shapes.

An additional important observation for plane shapes is that, as the examples show, the use of a
unique operator such as for example, one based on path length for curves, allows to obtain a basis that
can actually be used for arbitrary plane shapes. This aspect needs to be studied further, in order to
understand under which conditions a violation of distance preservation is allowed. For now let us give
an example where one can see this behavior more clearly.

Using a sequence of hand images where one of the fingers becomes gradually reduced, (see figure
9.14), the procedure in Algorithm 7 is used. We then take the image of the first hand as reference
and calculate an operator and the eigenvectors using the path length along this shape. The projection
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coefficients corresponding to the first image and the final image (where the finger is reduced to its
minimum size) are used to recover the complete path in shape space using algorithm 7.

Figure 9.14: Representation of a total of 20 hand shapes with reduction in one of the fingers. These have been
obtained by using a linear combination of 50 coefficients of an orthogonal decomposition. The first 5 coefficients
corresponds to one specific hand shape, the rest (45) are taken from a reference shape and are kept the same for
all 20 hand shapes. Each hand curve has a different color. Here we can observe that the variability in the shape of
the hands is reflected already in the first 5 coefficients of the orthogonal decomposition

As before we will use an orbit path as an approximation of the geodesic path. Figure 9.15 shows the
approximated geodesic path between the initial hand shape and the final one (with the maximal finger
reduction). The reconstructed path provides a geometry preserving transformation of the hand. For this
case the decay of the spectral coefficients starts at around the component fifth. We have used the first 5
components for representing the variability of the shapes. For shape reconstruction we have used instead
50 (the last 45 coefficients are kept constant equal to the ones on the initial hand). The total number of
points for representing each of the original test hands were 704 points.

Figure 9.15: Recovered path in orbit space

We would like to mention another observation about the type of operator used. The hand shape
changes are very localized and even if they are not locally distance preserving, the rest of the hand
shape is preserved so one might just ask whether the use of an operator based on Euclidean distance
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Figure 9.16: First eigenvectors of the Laplacian using Euclidean distances. The colors correspond to the values of
the second, third and fourth eigenvectors respectively starting from the left.

could also be used in this case. That is, we can build the graph Laplacian as in Algorithm 4, but instead
of using the path length, we just use the Euclidean distance to form the matrix K. Since there are no
pose changes for most of the hand shape, we expect that the eigenvectors of this Laplacian are a good
basis for all hand geometries. This can be verified by looking at the first eigenvectors for this operator
(see figure 9.16).

The eigenvectors follow the form of the fingers, so that one can use such a basis for this case and
obtain the same orbit path.

Summarizing, we can say that in plane space, there are several operators that can be constructed
and the basis obtained from them can be used. The spectral coefficients corresponding to the first
components are adequate to calculate a geodesic path between two shapes, for the examples used. In
the next section we will show whether the orbit path approach can be applied for the more complicated
shapes obtained from crash simulation.

9.2.5 Orbit Paths in Crash Simulation

The previous section has detailed a way to evaluate orbits in plane shape space. Simulations can actually
be considered as a special type of different shapes obtained as a result of the solutions of ordinary or
partial differential equations. The calculation of what we call an orbit path, can also be used in the more
difficult case of simulations.

We would like to apply it to an example of a strong deformation of a beam under compression. The
beam model is solved using LSDYNA and 17 time steps are calculated. The initial geometry (without
deformation) has been used for calculating the discrete approximation of the Laplace-Beltrami operator
as described in algorithm 2. The initial deformation and the deformations corresponding to the last
time step, can be projected along the eigen-basis. Figure 9.17 shows fewer time steps of the simulation
obtained from LSDYNA.

The orbit path approach can also be used for this case. Algorithm 7 can be used replacing the invariant
operator by the discrete Laplace-Beltrami operator and using one more set of spectral coefficients for the
direction z. We assume that no intermediate shapes for the time steps are available between the original
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Figure 9.17: Beam deformation obtained from an LSDYNA crash simulation.

and final deformed shape and so try to recover the deformation trajectory between them using the orbit
coordinates (the spectral coefficients) from the initial and final deformation states. We will evaluate in
this case a linear orbit path that can be re-sampled at an arbitrary number of points in shape space. See
figure 9.18 for the reconstructed orbit path obtained in this way.

The deformations in figure 9.18 and figure 9.17 are the same for the last and end states following the
order of the rows and from left to right. The state 2 shows approximately the same deformation. Starting
with state 3, the differences are much greater as shown in the folding of the structure.

Even though there are differences in the corresponding deformations compared to the LSDYNA cal-
culations, we emphasize that they were obtained without using any intermediate LSDYNA calculation.
We have linearly interpolated in the orbit space and for that we have used only the initial and the end
deformations. An improvement of this approximation can be achieved if intermediate simulations are
available. Then one can evaluate an approximation of a geodesic distance using intermediate orbit
points.

As it can be seen, the orbit path approach has the potential to enable the interpolation of deformations
at time steps not available in the original simulation. There is a keen interest in gaining some more
information for engineering applications on a deformation process where only the initial and final stages
are available. That is, one is able to measure only those stages and engineers would like to know, what
the intermediate deformed shapes look like to achieved this final stage. We have shown that a first
approximation can indeed be obtained using the orbit path estimation. A few samples around final and
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Figure 9.18: Beam deformation obtained from evaluation of the orbit path in the range between the
initial and the final deformations.

initial shapes will certainly improve a lot the approximation compared to a LSDYNA simulation.
There are other approaches that could be used for finding a geodesic path in shape space which

unfortunately initially requires the solution of the geodesic equation. This involves the solution of a
global optimization whose size is of the order of the number of nodes (see [Kilian et al., 2007]). We
also notice that even this task can be greatly simplified using our approach, that is, one solves the
geodesic equation but uses instead orbit coordinates. Because of the spectral decay of the orbits for the
first coefficients, a lower dimensional problem have to be solved instead.
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CHAPTER 10

Analysis of Simulation Bundles

In this chapter we will present a series of industrial applications as examples for the type of engineering
analysis that can be done using the methods developed in this thesis.

We will first describe the application of diffusion maps for metal forming, as a way to illustrate
how this methodology of dimension reduction can be used for the analysis of simulations. For details
about this and other applications of diffusion maps see [Iza Teran, 2013]. Next we will concentrate on
response curves from vibration analysis (NVH). We will compare the results given in [Iza Teran, 2013]
with the ones obtained using the new proposed invariant operator approach. Finally we will concentrate
on an example in crash simulation taken from [Iza Teran, 2013] and we show how to extend the type
of analysis that can done, on the basis of the new approach using the same data sets. A part of these
examples have been presented in [Iza Teran and Garcke, 2016].

10.1 Analysis of Simulation Bundles using Diffusion Maps

The application of the methodology as described in section 4.6 is presented here for an application
in metal forming. In this approach a similarity matrix is constructed using all available simulations
and from it a set of eigenvalues and eigenvectors are obtained that approximate a low dimensional
representation of all simulations. See section 4.3 for some details about the method. In this case in
addition to the trivial eigenvalue by 1, only the first few eigenvalues are significant, correspondingly
we use the second and third eigenvectors (ψ1, ψ2) as diffusion coordinates. As explained in section
4.4.1 simulation data can be considered as a high dimensional dynamical system. Using diffusion maps
one can extract the slow variables of the system in such a way that the first non-trivial eigenvector
corresponds to the first slow variable, the second to the next slow variable and so on. There could
be more variables, nevertheless by projecting to a 2D embedding, we are at least able to see the first
most dominant ones. Another aspect is the point of view of clustering and classification, the second
eigenvector is very informative (spectral clustering). Organizing the simulations according to the order
given by the second eigenvector shows a way to parameterize or cluster all the data. The clustering
obtained in this way is already very useful in practice, since the engineer can automatically see which
of the variables have a larger impact on his design.
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10.1.1 Metal Forming

We will consider material parameter changes that produce variations in the plastic strain of a plate (a
quarter disc). In the metal forming simulation, this is an interesting output variable that evaluates the
permanent (inelastic) distortion of metals under applied stresses that strain the material beyond its elastic
limit. The ability of metals to flow in a plastic manner without fracture is the fundamental basis for all
metal forming processes.

The material law considers the effect of elastic-plastic hardening with a Swift-Law σ = K · (ε0 + ε)n

as well as anisotropies, defined by several parameters r0, r45, r90, rm and ∆r.
In order to obtain the simulation data for the analysis, the parameters K and r0 were varied randomly

up to 3 times the nominal value generating input data for a total of 80 simulations, generated using
LSDYNA ® [LSTC, 2004]. This and other applications of diffusion maps are described in [Iza Teran,
2013].

From each simulation the plastic strain (extraction step) is extracted, so that a set of vectors m =

80 of dimension Nh = 1780 is obtained. The general procedure for nonlinear dimension reduction
with diffusion maps described in algorithm 1 is used, building a similarity matrix with weights wi j =

exp
[
−( ‖xi−x j‖

ε )
]
. The value of ε is chosen equal to the standard deviation of the data.

The result can be seen in figure 10.1, each point in the plot corresponds to one simulation, in addition
the value of the corresponding parameter K is displayed as a color for each point, corresponding to each
simulation.

In figure 10.1 by analyzing the information from this 2D embedding (exploration step), one can ob-
serve that the simulations have been categorized according to the intensity of the plastic strain. This can
be verified for example by observing the corresponding strain distributions for a number of simulations
on the left compared with the ones on the right of the 2D Embedding. Also observing the simulations
toward the middle (x = 0.05), one can recognize points where the strain distributions show a more local
distribution on the disc, whereas the ones on the right branch of points, shows a plastic strain distributed
around the border of the disc.

An important additional observation in this 2D plot is that the input parameter (in this case the stiffness
factor K) follows a very clear pattern as a function of the changes on the plastic strain for all simulations.

10.2 Applications Analysis Simulation Bundles using Invariance

In this section, the new approach presented in this thesis will be compared with diffusion maps. Several
industrial examples are used to highlight the differences and usefulness of the new method.

10.2.1 Comparative Analysis of Vibration Response Curves

Standard Diffusion Maps

The first example is concerned with the analysis of noise, vibration & harshness. This example was
first presented in [Iza Teran, 2013]. A car is considered as a structure made of several components (the
doors, roof parts, console, lateral stiffeners, support structure, etc.). We will use an industrial example

134



10.2 Applications Analysis Simulation Bundles using Invariance
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Figure 10.1: Metal forming embedding in 2D, the color insert represents the value of the parameter K

that contains around 1000 components and each of them is represented using a very fine mesh structure
with different types of elements (shells, volumes, beams). For this discretized structure a dynamic
simulation is performed that calculates the behavior under simulated road operating conditions. For the
engineers it is important to simulate the response of the structure to specific excitations. This response
was calculated with the dynamic simulation software NASTRAN ® .

For this study several model variations have been performed changing some input parameters such
as thickness, material or geometry. The decision about an ideal configuration is normally a conflicting
objective, subject to several design restrictions. For example a structural component should be, from the
point of view of the dynamics, stiff but at the same time this implies an increase in weight.

The response of the structure is analyzed at several points of interest in the structure. Figure 10.2
(a) shows a typical vibration mode (amplified for visualization), the response (see figure 10.2 (b)) to a
specific excitation at points of interest (for example at the console front) shows the engineer how well
a design fulfills the dynamical requirements for comfort and vibration, and can be evaluated from these
vibration modes.
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a) Vibration mode (scaled to show deformations)
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Figure 10.2: NVH-Analysis, vibration mode and response curve

In the EU project SIMDAT (IST-2004-511438), the AUDI-AG has completed a series of model vari-
ations, with changes in the thickness of some of the components, changes in the mass of the cooler or
the introduction of small structural changes such as small stiffeners at the doors. A total of 39 models
were simulated using NASTRAN ® software, each one of them representing a specific change.

The variable of interest here is the response of the structure at specific points. A set of 39 vectors of
length (Nh = 500) is extracted from the NASTRAN ® simulations. The general procedure for nonlinear
dimension reduction using diffusion maps (see Algorithm 1) is used. For this example we would also
like to show the effect of using two different type of distances for building a similarity matrix using the so
called kernel weight wi j = exp

[
−d(xi, x j)/ε2

]
in algorithm 1. The first kernel weight using the distance

d(xi, x j) =

√
‖xi − x j‖

2 is called Laplacian kernel and the second kernel weight using the distance

d(xi, x j) = ‖xi − x j‖
2 is called Gaussian kernel. For both cases, the second and third eigenvectors have

been chosen for the embedding purposes. The result can be seen in figure 10.3 and figure 10.4, where in
addition to the response curves, the change in some of the car models is superposed graphically. Each
response curve has been given a number and this number is displayed in figure 10.3 and figure 10.4.

In [Iza Teran, 2013] only a Laplacian kernel was used, important observations can be done based
on the results in figures 10.3, 10.4. Each point represents one response curve in the plot and one can
visually verify that there is a specific shape of the response curve that can be associated to a specific car
model parameter change for the mass, thickness, stiffness and for the introduction of ribs at the doors.
The cluster of results for the response curve that are associated with changes in thickness is very dense.
The response curve for this cluster is correspondingly very similar. It can be stated that modifications in
the car design based on the thickness variations that have been done, does not have a strong effect on the
shape of the response curve. The introduction of changes in the cooler mass or on the cooler stiffness
has a strong influence on the shape of the response curve as well as changes in the mass distributions.
The introduction of doors-stiffeners changes has also a significant influence. It can be stated that in
general both types of kernels produce embeddings that separates specific outliers with one observable
exception for the out-lier 12 (marked as red star in figure 10.3, 10.4). As it is shown in figure 10.4 the
simulation 12 is not identified as an out-lier for the Gauss kernel whereas in figure 10.3 this simulation
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Figure 10.3: 2D embedding with diffusion maps using a Laplacian kernel showing a parameterization of vibration
response curves obtained from 39 NVH simulations. Some geometrical or material parameter changes that were
made in the input model are shown together with the corresponding simulation response curves

is clearly separated using the Laplacian kernel.

In the next section we will compare diffusion maps with the operator approach, for that we will use
only the result with the Laplacian kernel. A systematic comparison of both kernels with respect to the
operator approach will be the focus of a future publication.

The Operator Approach

For the invariant operator approach that has been proposed in this thesis, one needs to define an adequate
operator that can be considered as invariant to the changes present in a simulation. For this case we
observe that the response curves are 2D plane curves and therefore one can use the operator approach
as described in Algorithm 4. Using the eigenvector basis obtained in this way, all the 39 curves can be
projected into this basis. In Figure 10.5, the first 30 coefficients for the 39 NVH response curves are
plotted, obtained after projection to a common basis.

We have observed that the first coefficients are responsible for the largest variations and the further
one gets to the higher ones, then the more details are recovered from the curves.
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Figure 10.4: 2D embedding using a Gauss kernel showing a parameterization of vibration response curves ob-
tained from 39 NVH simulations. Some geometrical or material parameter changes that were made in the input
model are shown together with the corresponding simulation response curves

Figure 10.5: Spectral coefficients for 39 NVH response curves
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To compare the operator approach with diffusion maps, we have chosen two scales with the largest
variations from the first components. In this example we have chosen the third and fourth components.
Notice that the plot of the spectral coefficients in Figure 10.5 suggests also to consider other components.
In this context we mention that still a method has to be developed to decide automatically about the
embedding dimensions. The variance of the spectral coefficients as mentioned in section 7.1 can be used
for that purpose. Nevertheless the proposed method has a multi-scale behavior since at each component
of the orthogonal decomposition, different variations of the response curves can be obtained. That is,
the comparison between simulations turns out to be far more profuse in the new approach as it will be
seen. The 2D-embedding shown in Figure 10.6 for the new approach is different to the one obtained
with diffusion maps. We would like to mention specific differences with two examples in more detail.

Figure 10.6: Embedding with coefficients for the third and fourth components, of an orthogonal decomposition
using the new approach. Also shown are the response curves and the corresponding variation of the input data for
the simulations for a few outliers
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Figure 10.7: Embedding with locations of points corresponding to simulations 12, 39, 35 and 27

Figure 10.7 shows the points corresponding to simulations 12, 39, 35 and 27. As can be seen in figure
10.3 (see red stars), using diffusion maps for calculating a low dimensional embedding, those points are
shown as very near. The new approach instead shows that they are different. As can be seen in 10.8 the
curves corresponding to simulations 12 and 39 do differ at specific locations. Similarly for simulations
35 and 27, they are shown in diffusion maps as very near, but as Figure 10.9 shows, they differ locally
at several positions.
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Figure 10.8: Curves for simulations 12 and 39
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Figure 10.9: Curves for simulations 35 and 27

The example shows that the new approach can improve the clustering obtained from the curves.
Specially, at least for this example, a much richer capability to differentiate between response curves is
observable.

10.2.2 Analysis in Crash Simulation

Nowadays, finite element simulations in industry are used to study the physical behavior of products.
We consider the example of car parts under deformations due to a crash. The development of new
car models demands the creation of thousands of simulations where some material parameters or the
geometry are varied. The analysis of the combined effect of those changes in the crash behavior is an
open problem and designs are nowadays made, based on engineering judgment in a time consuming
trial and error process.

We illustrate in this section the application of our proposed data analysis method to the case of crash
simulations comparing it with diffusion maps where possible. Consider a frontal crash simulation of a
Chevrolet C2500 pick-up truck, a model with around 60,000 nodes from the National Crash Analysis
Center1. We use 126 simulations2 of a vehicle frontal crash (see Figure 10.10) where 9 part thicknesses
are varied randomly by up to ±30%. The variation in the thickness of these 9 parts results in different
deformations of the original structure, see also [Bohn et al., 2013].

1 http://www.ncac.gwu.edu/
2 Computed with LS-DYNA http://www.lstc.com/products/ls-dyna
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The Model and Standard Diffusion Maps

(a) (b)

Figure 10.10: Truck under frontal crash (a) and parts that have thickness changes (b)

Figure 10.11: Embedding using the second, third and fourth eigenvectors. Each point corresponds to a crash
deformation shape for the two structural beams shown in the inset. The color of the points in the plot corresponds
to the thickness of one of the parts

In [Bohn et al., 2013] this data set was used for nonlinear dimensionality reduction. There, the norm
of the difference of the deformations of two structural beams between the two time steps 6 and 7 was

used as feature vectors. A total of m = 116 simulations were used with f i
k =

√
‖xi

k − y
i
k‖, where

xi
k, y

i
k ∈ R

3, k = 1, . . . ,Nh = 1714, and xi
k, y

i
k denote the position of grid point k of simulation i at the
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time step 6 and 7, respectively. An m × m matrix was obtained and the second and third and fourth
eigenvectors where used as a lower-dimensional representation of all simulations using diffusion maps,
see section 4.6 and [Bohn et al., 2013, Iza Teran, 2013] for details.

The distribution of the values for the deformation in each branch differs, a closer look at the frontal
part of the car shows two types of bending (buckling mode) of a structural beam (see inserted deformed
parts of figure 10.11). The color coding in the 3D plot corresponds to the value of the thickness of one
of the structural parts and can, as it is seen, be used as indicator of the buckling behavior.

Now we would like to use the operator approach for analyzing this dataset. As for the clustering
shown in figure 10.11, the same branching behavior is observed using orbit coordinates so that we
concentrate in other type of results that are only possible with the new approach.

10.2.3 Operator based Approach

Based on the same data set, we have constructed an approximation of the Laplace-Beltrami operator
using geodesic distances for one structural part. Algorithm 2 is used for the mesh at time t = 0. The
eigenvectors of the operator can then be used to evaluate the scalar product αi

j = 〈 f i, ψ j〉 to obtain the
spectral coefficients for any mesh function.

The new approach enables several types of analysis in addition to the ones provided by diffusion
maps. First, we will investigate the decomposition into coarse parts and details of a function on a mesh
stemming from crash simulations.

Decompositions of Deformation and Mesh Associated Variables

The deformations are now the considered mesh functions f i, one for each coordinate x, y and z, i.e. 3
per simulation at time step t = 7.

Using the same connectivity of the original mesh, all mesh deformations can be reconstructed using
the Laplace-Beltrami basis for the x, y, and z directions. For that we use f i =

∑p
j=1 α

i
jψ j for several

values of p.

Figure 10.12: Reconstruction using the first p coefficients. p = 20 coefficients (upper), p = 100 (lower) and
original data (middle).
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Figure 10.13: Magnitude of spectral coefficients for the deformations in the directions x, y and z at a fixed time
step t = 7

From figure 10.12, it can be clearly seen that using p = 20 only a very coarse approximation of the
part can be reconstructed. Adding more coefficients, e.g. p = 100, recovers more details of the part. It
can also be clearly seen in figure 10.13 that most of the coefficients are small, with a few bigger ones.
This is an essential feature which will be explored for a classification task later in this section.

So far, we have been able to show that the deformed geometry of a car part can be represented using
an orthogonal basis of the eigenvectors of an operator. In addition, any function f ∈ Ck(M) on the mesh
can be represented by a linear combination of the eigenvectors. This implies that also, other variables
associated to each node can be represented using the same orthogonal basis for example: nodal strains,
temperatures, velocities, and so on. To demonstrate it, we will use as nodal variable the norm of the
difference of the deformations between two time steps (6 and 7) of the car crash simulation. We use the
same basis obtained from the Laplace-Beltrami operator evaluated from the geometry at time t = 0. The
norm of the difference between the deformations at time steps 6 and 7 is a mesh function with values at
the nodes of the mesh. This quantity is projected to the basis and a reconstruction of it using different
values of p can be seen in figure 10.15. As it can be observed in figure 10.15, the reconstructed quantity
shows almost no difference with respect to the original one (see figure 10.14). The same color scale is
used for figure 10.14 and figure 10.15.
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Figure 10.14: Difference of the deformations between time steps 6 and 7 in a crash simulation. The color on the
shape represents the magnitude of the norm of the difference between the deformations at the specified time steps

(a) reconstruction with p = 20 (b) reconstruction with p = 200

Figure 10.15: Reconstruction of the deformations between two time steps using p coefficients, the color on the
shape represents the magnitude of the norm of the difference between the deformations at time steps 6 and 7
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Data Analysis of Deformations in Crash Simulations

We will also investigate the use of the spectral coefficients as input to the nonlinear dimensionality
reduction procedure. We will project as before all m feature vectors f i corresponding to the norm of the
deformations difference along the eigenvectors of the approximation of the Laplace-Beltrami operator.
The result is a set of m coefficients, each of size Nh, where Nh is the number of nodes of the deformed
beam.

The coefficients decay very fast, i.e. similar to figure 10.13, the energy of the signal is concentrated
in very few coefficients and one can equivalently use these coefficients instead of the feature vectors
f i (our raw data). Due to the decay, we just would like to keep the most significant ones and compare
the embedding with diffusion maps using the first p = 4 and p = 20 coefficients with the embedding
obtained using the raw data.

Figure 10.16 shows a comparison of these embeddings, where each point corresponds to the em-
bedding of one feature vector f i. The color of the points is given by the value of one of the varied
part thicknesses. It shows that this thickness has a high correlation with the resulting clustering of the
deformation results and therefore graphically verifies the differences in the classification due to the ei-
genvectors. It is interesting to see that with only m vector of coefficients of size p = 4, the structure
of the embedding is almost the same and can be used for classification instead of using the m raw fea-
ture vectors information of size Nh = 1714. This has a number of implications, but the important one
is that the embedding is actually completely dominated by the first few components in the orthogonal
decomposition, which correspond to the coarse variations.
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Figure 10.16: Comparison of diffusion maps embeddings for the car crash data using different number of projec-
tion coefficients to the Laplace-Beltrami basis as feature vectors. The color of the points corresponds to the value
of the thickness of one part which is varied for each simulation
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10.2.4 The Pre-image Problem in Crash-Simulation

The use of dimensionality reduction in applications is characterised through the interplay between the
so called restriction and extension phases. This has already being studied in several applications such
as in image processing and earth structure classification, see [Thorstensen et al., 2011, Kushnir et al.,
2012]. We will elaborate on this for a particular application in crash simulation.

Given a training set of data in a high dimensional spaceRNh , dimensionality reduction methods extract
a low dimensional representation in Rp, p � Nh in such a way that each of the training data can be
identified with an element in this new space, this is sometimes called the restriction phase. Such a
mapping can be done in several ways and generally one tries to preserve some property of the high
dimensional space such as the geometric distance or the topology (see [Lee and Verleysen, 2007] for
a detailed description). The structure of the embedding should enable you to find the corresponding
position in the lower dimensional space for any new test data point in the higher dimensional space.

Ideally, after obtaining this parameterization, one would like to obtain a high dimensional approx-
imation that corresponds to a specific point in the low dimensional representation not in the training
set. This is very important for applications in image segmentation and denoising. Given some embed-
ding coordinates, this so called extension phase now enables the reconstruction of the corresponding
high dimensional data set in RNh . This is an ill posed problem since the same embedding coordinates
could correspond to different high dimensional extensions. How to find them is known as the pre-image
problem and has been extensively studied and is still an open problem, see e.g. [Kushnir et al., 2012].

The use of the proposed operator approach introduces a transformation with a fundamental simpli-
fication, the pre-image now gets parameterized with very few coefficients that are able to reconstruct
a coarse version of the analysis quantity, e.g. in the example from section 10.2.3 with as few as four
parameters.

We will now investigate the application of the method to the pre-image problem in crash simulation,
where it has another very interesting property, namely it corresponds to obtaining an approximation
of a numerical simulation without using the finite element software. Note that crash simulation is a
highly nonlinear process and trying to interpolate between existing simulations based on the original
input parameter space will in general not produce satisfactory results. One simulation of a real model
in the car industry takes several hours using up to hundreds of computing nodes, the advantage is clear
if one would be able to get an approximate behavior without investing that huge amount of computing
resources. An approach in this direction was presented in [Bohn et al., 2013].

We will use again the data set from section 10.2.3, a frontal crash simulation of a truck with around
60,000 nodes and 17 time steps. A total of 126 simulations were obtained by varying randomly the
thickness of 9 structural components, 116 data sets are used for the training phase and 10 data sets are
used as testing data. As in section 10.2.3 the analysis variable is the norm of the difference between the
deformations at time step 6 and 7 ( the feature vector).

We have 116 feature vectors which are functions defined at the nodes of a mesh. Just to evaluate
how different the feature vectors might be, let us take the squared nodal distance difference between two
arbitrary selected feature vectors. Figure 10.17 shows two examples of such differences. As expected
the squared differences could be large for arbitrary selected datasets.
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We use the same procedure as done in section 10.2.3 where instead of using the feature vectors, we
use the projection coefficients to the eigenvectors of the Laplace-Beltrami operator. As shown in section
10.2.3, using the coefficients until component p = 4 where enough for classification using diffusion
maps. The training data is accordingly projected to the basis of eigenvectors and we use the coefficients
until component p = 4 as feature vector for each simulation as before.

Our goal is to measure the quality of the low dimensional embedding, found using the projection
coefficients until component p = 4 as a substitute of the embedding using diffusion maps. The idea is,
based on the coordinates of the training data as vectors in R4, to pick a training simulation which is near
to a test simulation. Each chosen training data set can be considered as an estimate of a corresponding
test simulation.

We will proceed as follows. First the ten simulations from the test set are also projected to the
eigenvector basis. Next we use the low dimensional coordinates of the test set and find the nearest
neighbor, for each test simulation (now represented as a vector in R4), to the coordinates of the training
simulations (also in R4).

There are ten simulations in the training set which are near to a corresponding test simulation. As
a way of quantifying how close those training simulations are to the test simulations, the mean of the
squared differences between the test data set and the corresponding nearest neighbor from the training
set for all ten test simulations is shown in figure 10.18.

For other nonlinear dimensionality reduction procedures, e.g. diffusion maps, we have observed in
the course of our research that using the nearest neighbor in the low dimensional coordinates produces
on average a worse “estimation” result.

We can see that using the embedding coordinates from the training set, an estimation of a simulation
result for several test simulations is possible. How to predict so called “virtual” numerical simulations
using a combination of the eigenvectors will be discussed in section 10.2.5.
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(a) example 1

(b) example 2

Figure 10.17: a), b): We consider deformations between two consecutive time steps. Shown in each picture is the
differences of the deformations between two arbitrarily chosen simulations from the training data
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Figure 10.18: Squared mean error between ten test simulations and corresponding estimations from the training
data, found using nearest neighbors evaluated on the projection coefficients for each simulation up to component
p = 4.
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10.2.5 Time Dependent Analysis of Crash Simulations

The properties of the introduced approach allow also the efficient analysis of time dependent informa-
tion, this is due to the use of a common basis for all simulations and time steps. Car crash simulations
are time dependent, in very few milliseconds the structure of a car can deform greatly. Furthermore, an
unstable behavior can originate from small variations in the material properties, initial load conditions
or numerical conditioning. This phenomenon is called buckling and is a serious problem for the robust
design of car components. Relevant for an engineer is not only the identification of principal bifurcation
modes, but also the study of the time of origin of the unstable behavior.

Our approach now allows a time dependent analysis of such unstable deformation characteristics.

We will use the same Chevrolet truck example as before, but to visualize the time dependent behavior
we employ more time steps and therefore now use 167 simulations and 141 time steps, where again 9
plate thicknesses are varied.

We proceed along the lines of section 6.4 using the Laplace-Beltrami operator in algorithm 2 for the
mesh at time t = 0. The eigenvectors of the operator are taken as basis for all 167 simulations × 141
time steps. The projection coefficients represent all simulations over all time steps in this basis. There
are Nh = 1741 coefficients, nevertheless we observe that the variations for all simulation and time steps
is concentrated around the first ones.

We would like to study the type of information that can be gained from the coefficients of the first
component (p = 1) of the orthogonal decomposition. For this first component, we have chosen the
projection coefficients for the deformations in the direction x, y and z. Figure 10.19 shows a graphical
representation of those coefficients. Each point represents a simulation at a specific time step, the color
of the points corresponds to the time step.

There are several observations that can be made from the obtained configuration in figure 10.19. We
can see that these reduced coordinates of the simulations give an organization of the data in time. A bi-
furcation clearly starts about half-way during the crash simulation, while one can see how the positions
of the simulations for the last time steps appear mixed with those of previous ones. This corresponds
with the rebound effect in a crash, where the car bounces back from the obstacle after the inertia of the
movement is absorbed. Other embedding methods can be applied to the same data, but dealing with all
time steps simultaneously is very limited. The usual approach is to use the PCA for time dependent ana-
lysis as well, so as a first example let us calculate it using all simulations from one time step, where the
bifurcation is clearly present. The spectral coefficients obtained by projecting the deformations for some
selected time steps along these principal components becomes the low dimensional structure shown in
figure 10.20 (a), this approach does not produce adequate results since the variability over all time steps
is not taken into account. Computing a PCA using all simulations and time steps improves the results,
but only to some degree, see figure 10.20 (b). Although a time behavior is now visible and a small
separation is recognizable near the end, the clear separation and different results due to the bifurcation
cannot be recognized in the embedding, in particular the time around which the bifurcation initiates
is not visible as is the case in figure 10.19. Other nonlinear dimensionality reduction methods could
in principle be used for dealing with this data set. But then, either the embedding method has to be
computed as many times as time steps are available, where the switching of the eigenvectors makes re-
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Figure 10.19: Reduced 3D representation of 23547 (167 simulations× 141 time steps) time dependent simulation
results, obtained by the spectral decomposition of the Laplace-Beltrami operator. The coordinates of each point,
which indicates a simulation at a specific time, are the first spectral coefficients for each direction x, y, and z of
the deformations of a car part, they are colored according to the corresponding time step of the simulation.

covering a time dependent low dimensional structure very cumbersome, if at all possible. Alternatively,
one could attempt to embed other time steps into the coordinates obtained from one time step using the
Nyström method, but this is as limited as the PCA example above. Using all simulations and all time
steps is not feasible since one has to deal with large full matrices, and cannot go to a formulation in the
size of the mesh, or relevant parts of it, as is possible for PCA or our approach.

As can be seen in this example, projecting all simulations to the same basis from the Laplace-Beltrami
operator enables a new type of data analysis approach. The projection coefficients to the basis are used
for analysis. For this example, the coefficients of the first component of the orthogonal decomposition,
already delivers a lot of information about the variability encountered in a simulation bundle where a
set of parameters have been changed.
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(a) Embedding using a PCA representation computed from one time step.

(b) Embedding using a PCA representation computed from all time steps.

Figure 10.20: Reduced 3D representation of simulations over several time steps, obtained with PCA. The points
indicate a simulation at a specific time and are colored according to the corresponding time step of the simulation.
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Reconstruction of Simulations

Using the same data as for the example above, we have also observed an interesting behavior by the
reconstruction making use of the fast decay of the first spectral coefficients. We have selected one
arbitrary simulation at a specific time step (time step 11 from 152) as a reference from which we save
all spectral coefficients. For all other simulations we keep only the first 100 coefficients for all time
steps and append to each one of them, the coefficients of the reference simulation starting from 101 to
the end, that is to the number of nodes of the simulation.

Figure 10.21: Histogram of the error in percentage for the reconstruction of 76 simulations × 142 time steps
(= 10792) using the first 100 spectral coefficients. The coeffcients starting from 101 to the end (number of nodes
of the simulation) are kept constant (for all simulations and for all time steps) and correspond to the coefficients
of one reference simulation for time step 11

We use 142 time steps for a total of 76 simulations and reconstruct, using the appended coefficients,
a total of 10792 = (142 × 76) simulations. A relative maximum difference of 7.7% is obtained. The
maximal displacement in [mm] is 4553 and the minimum is 3352, and we have subtracted the mean
value to compensate for rigid body motions. This result shows numerically that the principal variations
of the dataset are concentrated on the first coefficients. Figure 10.21 shows the distribution of the error
with respect to the corresponding simulation for all the dataset.

A further capability of the use of single basis from an operator has been studied. The experiment
suggest that a further application of the proposed approach could be in the area of data compression.
Nevertheless much more research have to be done to verify it.
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Finally we would like to present a further application of the proposed approach which goes into the
area of creating synthetic simulations. We will see that this is possible, based on the information on the
variability of the projection coefficients for the different components of the orthogonal decomposition.

Crash Modes

The deformations in a crash process are a complex mixture of different effects such as translations,
rotations, local and global bending and torsion. How the different modes interact, in particular in relation
to the changes in the model is of great importance for engineering analysis.

In another context, comparing simulations with experiments is a difficult task due to the variability
of manufacturing parts, the material modeling and due to experimental conditions. Analyzing how
different deformation modes differ from the real experiment and morphing a mesh corresponding to it
is a mayor need.

Our approach turns out to be useful in addressing the above mentioned challenges. We have used the
same Chevrolet truck example as before but we studied ways of identifying and decomposing different
crash effects along independent modes.

We mentioned in section 6.3 a very interesting theoretical link between the eigenfunctions of an
operator invariant to a transformation group and the representation of the group. The idea is that in
some cases, a linear representation of a transformation group can be found. We will show in an ex-
periment that in the discrete case, using the eigenvector basis a representation of group actions along
different components of the orthogonal decomposition of the operator of independent components can
be achieved.

We will fix a specific time step (7 from 17) and evaluate for this shape, the operator of independent
components. A total of 115 simulations are used and it is assumed that at each point of a reference
simulation, a cloud of 115 points is formed that allows us to evaluate a local Jacobian. See algorithm
3 for the construction of this operator. Our aim is to be able to identify the independent modes of a
complex mixture of them in a crash process. That this is possible can be seen in the following results.
We use the first Nt = 4 components of the orthogonal decomposition. A reconstruction of a simulation
reflecting only the transformations along some component p can be done by fixing all the coefficients of
the orthogonal decomposition with exception of the p one. The value of the coefficient for component
p corresponds to the one of the specific simulation and time step, in this way we can reconstruct 115
simulations reflecting the changes only for the component p.

A few reconstructed simulations for the first component, that is for p = 1 is shown in figure 10.22. It
can be seen that it corresponds to a translation.
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Figure 10.22: Translation mode identified using component p = 1 of an orthogonal decomposition of the operator
of independent components

Some few reconstructed simulations obtained for the next component, that is for p = 2 are shown in
figure 10.23. It can be seen that it corresponds to a rotation.

Figure 10.23: Rotation mode identified using component p = 2 of an orthogonal decomposition of the operator of
independent components

The next reconstructed simulations are obtained for the third component in the orthogonal decompos-
ition, that is for p = 3. Figure 10.24 shows that it corresponds to a deformation. The next reconstructed
simulations are obtained for the fourth component, that is for p = 4. Figure 10.25 shows that it corres-
ponds to a local deformation.
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Figure 10.24: Deformation mode identified using component p = 3 of an orthogonal decomposition of the oper-
ator of independent components

Notice that the extraction of these independent modes constitute a numerical example of the relationship
between group actions and its representation through eigenvectors of an invariant operator as discussed
in section 6.3.

Figure 10.25: Deformation mode identified using component p = 4 of an orthogonal decomposition of the oper-
ator of independent components

Still we would like to mention one more possibility to increase the number of modes that can be
obtained if a certain amount of simulations are available. We recall the process of obtaining orbit
paths introduced in section 9.2.4. The process described there, makes use of algorithm 7 to obtain
a deformation path between two given shapes. Given only two deformation stages, one can obtain
an arbitrary amount of intermediate deformations between those two. We have chosen two arbitrary
deformations and calculate an orbit path between them. This is illustrated in figure 10.26.
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Figure 10.26: Deformation orbit path evaluated using an orthogonal decomposition of the operator of independent
components

We would like to emphasize the flexibility inherent into this process. A large amount of different
deformation modes can be obtained in this way by just changing the initial and final deformations. We
can expect a large number of applications of this procedure in an engineering context.
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CHAPTER 11

Summary and Open Research

Now at the end of this thesis we hope the reader agrees fully or partially with us on the statement:
"Mathematics can be so astonishing and invaluable in confronting challenges in applications, providing
perspectives and resources that appear to be inexhaustible". In any case, even if you disagree with that,
we hope we were able to provide the reader with interesting topics and perspectives in an area which, in
our opinion, still requires further research.

We can summarize the developments in this thesis from different aspects;

From a mathematical point of view we have demonstrated a method to characterize simulation results
as elements of an abstract simulation space. Conditions under which this space is a manifold have also
been explained. Orbits of some group actions as elements of this space have been represented in a lower
dimensional space, enabling easier analysis of such simulation bundles. In addition a new method for
dimension reduction has been proposed that is able to cope with nonlinearities. The method has been
justified mathematically using approximation theory for spectral orthogonal decomposition.

Even if the objective of the thesis was to originally deal with simulation bundles, an extension for
the analysis of plane shapes has been realized. The use of an invariant basis for the analyzed examples
suggests a significant reduction in the evaluation costs for calculating geodesic paths for the space of
curves embedded in R2. This topic has to be investigated further.

An extension of the proper orthogonal decomposition (POD) method that is more general than the
standard approach has been presented. For a nonlinear PDE example we have been able to show that, due
to the invariance property, a Galerkin approximation can still be used if the parameters of the differential
equations change. The basis does not need to be recalculated as in the standard POD approach.

The proposed approach is shown to provide a convenient representation for simulation results of
finite element simulations with the possibility of creating approximate solutions without carrying out
an expensive simulation. In addition, a reduced representation of an orbit space is shown to potentially
reduce the evaluation cost for calculating geodesic paths for simulations.

Several industrial applications are able to show the usefulness of the new approach as a data analysis
tool. We expect that many areas, not only in the area of simulation in engineering, could benefit from it.

We see a need for further research also in several of these aspects.
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Though we have been able to show that approximative geodesic paths can be obtained using the
new approach, it still remains to be demonstrated formally and numerically as to how well they can be
approximated.

Where the differential equations are available we have shown that an extension of the proper ortho-
gonal decomposition (POD) can be realized that is independent, under certain conditions, of the para-
meter variations of the equations for which the invariance assumption is valid. Nevertheless the solution
of the nonlinear ODE example underwent problems in the integration of the reduced POD system, so
that one had to analyze as to why different integration schemes failed. Once this is known an approach
that overcomes such limitations can be devised.

Solving the geodesic equation for 3D shapes is very time consuming. Putting this differential equation
in terms of orbit coordinates could potentially reduce the solution times due to the lower dimensionality
of those coordinates.

Our approach has the flexibility to incorporate other types of transformation invariance through the
operator. A direct extension to the approach is the use of the affine invariant Laplace-Beltrami operator
as described in [Raviv et al., 2011]. Its use could significantly increase the flexibility in representing
variations in the solutions of finite element simulations of physical processes. Also other types of
invariant operators can be used as the Schrödinger operator [Iglesias and Kimmel, 2012] as well as
other types of invariant metrics such as the Bi-Laplacian distance [Lipman et al., 2010]. It is expected
that using them, the analysis capabilities of the proposed method can be significantly enhanced.

A known open problem in the numerical solution of parametrized partial differential equations by
spectral methods is how to find the best basis for solving a PDE. In this thesis we have identified a rela-
tionship between special functions (solutions of the Sturm-Liouville problem) and invariant operators,
we conjecture that the way to choose a basis for a spectral method or for a reduced basis method should
be based on the types of invariance that are expected in the solutions. How to formalize and prove this
conjecture is still open.

Further research is needed to explore the link between group representations and invariant operators.
In particular a theoretical treatment about group representation in the cases of invariant operators on
meshes is needed.

The basis of the Laplace-Beltrami operator is known to have a slow decay rate, particularly for non-
smooth functions. Much better alternatives have been developed in the last years using wavelets on
graphs or treelets. A better basis that compactly represents a given mesh function can be obtained using
those approaches. Use of such basis for the analysis of simulations can provide a natural extension to
our approach if ways can be defined to consider it as invariant to some type of transformations.
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