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Summary

The contribution of this thesis is twofold. The main part deals with numerical methods in the con-
text of shape space analysis, where the shape space at hand is considered as a Riemannian manifold.
In detail, we apply and extend the time-discrete geodesic calculus (established by Rumpf and Wirth
[WBRS11, RW15]) to the space of discrete shells, i.e. triangular meshes with fixed connectivity. The
essential building block is a variational time-discretization of geodesic curves, which is based on a lo-
cal approximation of the squared Riemannian distance on the manifold. On physical shape spaces this
approximation can be derived e.g. from a dissimilarity measure. The dissimilarity measure between two
shell surfaces can naturally be defined as an elastic deformation energy capturing both membrane and
bending distortions. Combined with a non-conforming discretization of a physically sound thin shell
model the time-discrete geodesic calculus applied to the space of discrete shells is shown to be suitable
to solve important problems in computer graphics and animation. For example, shape interpolation and
extrapolation can be performed consistently within the proposed framework, since the geodesic calculus
is based on a classical Riemannian structure. In a Riemannian manifold, interpolation and extrapolation
can be realized by computing shortest geodesics and by applying the exponential map, respectively.
To extend the existing calculus, we introduce a generalized spline functional based on the covariant
derivative along a curve in shape space whose minimizers can be considered as Riemannian splines. We
establish a corresponding time-discrete functional that fits perfectly into the framework of Rumpf and
Wirth, and prove this discretization to be consistent. Several numerical simulations reveal that the opti-
mization of the spline functional—subject to appropriate constraints—can be used to solve the multiple
interpolation problem in shape space, e.g. to realize keyframe animation. To enable efficient computa-
tions in the space of discrete shells we make use of an approximative scheme, i.e. we compute classical
cubic splines in the space of mesh descriptors (the space of edge lengths, triangle volumes and dihedral
angles) and project the solution back to the manifold.
Based on the spline functional, we further develop a simple regression model which generalizes linear
regression to nonlinear shape spaces. In detail, a conventional data term measuring the deviation of
the regression curve from the input data is augmented by the spline functional, which acts as a penalty
term. In the limit, the corresponding minimizer is given by a geodesic curve that fits the given data best.
Practically, the penalty approach enables to control the fitting curve in a user-defined manner. Numerical
examples based on real data from anatomy and botany show the capability of the model.
Finally, we apply the statistical analysis of elastic shape spaces presented by Rumpf and Wirth [RW09b,
RW11a] to the space of discrete shells. To this end, we compute a Fréchet mean within a class of shapes
bearing highly nonlinear variations and perform a principal component analysis with respect to the met-
ric induced by the Hessian of an elastic shell energy. In particular, our model is shown to outperform a
standard Procrustes analysis, i.e. applying the Euclidean metric to the vector of nodal positions.

The last part of this thesis deals with the optimization of microstructures arising e.g. at austenite-marten-
site interfaces in shape memory alloys. For a corresponding scalar problem, Kohn and Müller [KM92,
KM94] proved existence of a minimizer and provided a lower and an upper bound for the optimal energy.
To establish the upper bound, they studied a particular branching pattern generated by mixing two dif-
ferent martensite phases. We perform a finite element simulation based on subdivision surfaces that sug-
gests a topologically different class of branching patterns to represent an optimal microstructure. Based
on these observations we derive a novel, low dimensional family of patterns and show—numerically and
analytically—that our new branching pattern results in a significantly better upper energy bound.
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Notation

Nomenclature
Some symbols are ambiguous but unique in the present context. For a functionalW = W[y1, . . . , yn],
the first Gâteaux derivative w.r.t. yi (resp. the ith argument) is denoted by either ∂yiW or ∂iW orW,i.

Differential geometry:
M generic Riemannian manifold or shape space, finite or infinite dimensional
g, gp generic Riemannian metric (at p ∈M)
dist Riemannian distance
x : ω ⊂ Rd →M (local) parametrization of finite dimensional manifold
D
dt covariant derivative along a curve
g, h first and second fund. form of an embedded surface in R3, respectively;

either as bilinear form or as matrix representation in R2,2

S : TpM→ TpM embedded shape operator; endomorphism on tangent space
s matrix rep. of shape operator in parameter domain, i.e. s = g−1h ∈ R2,2

Geodesic calculus:
K order resp. stepsize of time-discrete quantities; stepsize is given by τ = K−1

W approximation of squared Riemannian distance, i.e. dissimilarity measure
L, LK (time-discrete) length functional (of order K)
E , EK (time-discrete) path energy (of order K)
F , FK (time-discrete) spline energy (of order K)
exp, (EXPK) (time-discrete) exponential map (of order K)
log, ( 1

KLOG) (time-discrete) logarithm (of order K)
P,P (time-discrete) parallel transport map

Physical symbols:
Sδ ⊂ R3 thin shell with thickness δ > 0
δ physical thickness of a thin shell
S ⊂ R3 mid-layer of a thin shell; embedded surface
φ : S → R3 generic deformation of a smooth shell
G[φ] tangential distortion tensor w.r.t. φ, i.e. G[φ]=g−1gφ ∈ R2,2 (pointwise)
W generic deformation energy; dissimilarity measure
W generic energy density
η bending parameter η = δ2

λ, µ Lamé-Navier coefficients

Discrete shells:
S discrete shell, i.e. nodal positions of a triangle mesh
N , T , E set of nodes, faces and edges, respectively, of a triangle mesh
X,T,E node, face and edge, respectively, of a triangle mesh
Φ discrete deformation, i.e. piecewise affine transformation acting on S
W discrete deformation energy resp. discrete dissimilarity measure
GT , HT piecewise-constant, discrete first and second fund. forms as matrices in R2,2

BT matrix rep. of piecewise-constant discrete shape operator; BT = G−1
T HT

G[Φ]T piecewise-constant, discrete distortion tensor
N,NT , NE normal on triangle mesh; either associated with a face T or an edge E
θE dihedral angle associated with an edge E
dE area associated with an edge E; dE = 1

3(|T |+ |T ′|), if E = T ∩ T ′
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1 Introduction

Numerical methods in shape spaces

Computer animation films have become increasingly popular within the last two decades. Artists in
animation studios design sophisticated characters of rising complexity and authenticity. The character
models are typically represented by triangle meshes consisting of tens or even hundreds of thousands of
degrees of freedoms. Moreover, animators are able to generate movements of these artificial creatures
that are almost indistinguishable from natural motions. The development of flexible and effective tools
supporting artists in creating such authentic animations is linked to the mathematics of shape spaces.
In particular, a comprehensive understanding of both the geometry and the physics of natural deforma-
tions and motion paths of complex shapes is essential for the creation of realistic models and efficient
algorithms.

Figure 1.1: Morphing by means of interpolation (orange) computed between two input shapes (gray).

The numerical methods in shape spaces developed in this thesis are designed to be useful in various ap-
plications in computer graphics and animation. Typical problems in this field of activity are for instance:

• Morphing. Given two different poses of a complex shape, one aims at computing a natural and
visually appealing transformation, i.e. an interpolation, between them. In Fig. 1.1 we show the
morphing between two hand shapes.

• Keyframe animation. Given a sequence of character poses, so-called keyframes, one aims at com-
puting a realistic deformation path meeting all of the keyframes, i.e. a multiple interpolation. As
one can see in Fig. 1.2, a smooth keyframe animation is in general not realizable by morphing
consecutive keyframes.

• Shape modeling. Given a certain character pose one wants to (i) identify infinitesimal variations
that represent natural movements and (ii) extrapolate these small variations to create an animation
sequence of this motion. This method is referred to as ”animation without animating”, cf . Fig. 1.3.

• Detail transfer. When animating e.g. a running sequence of a character, one first designs the
physical motion on a coarse scale (for example, by using shape modeling and keyframe animation).
Afterwards, the fine scale details, e.g. the wrinkles on the skin, are added to a single frame of the
sequence. A desirable aim is that these details are then automatically transferred to the entire
sequence in a visually appealing manner.

1



1 Introduction

Figure 1.2: A keyframe animation (orange) allows for a temporally smooth interpolation of a given set
of keyframe poses (gray, left), in contrast to a consecutive morphing technique (green).

What is the contribution of this thesis? Although there exists a variety of established methods to
solve these problems, we identify and address two main issues in existing approaches. First, sev-
eral problems are frequently tackled with independent and heuristic approaches, which often disre-
gard important geometric features. For example, nonlinear operations are transferred to linear opera-
tions in a different space and afterwards the linear solution is projected back onto the original space
[SZGP05, WDAH10, FB11]. Thereby, some geometric intuition is lost in the final projection step and
the relation between the actual nonlinear solution and the projected linear solution is often hard to un-
derstand. However, it might be obvious to apply existing and established methods to new problems once
a geometric understanding is at hand. Second, the investigation and incorporation of relevant physical
properties is often missing or distorted by linearization artefacts [BS08]. For example, a geometrically
accurate approach is augmented by a non-physical regularization [KMP07]. Nevertheless, the existing
heuristic or linearized approaches typically outperform geometrically and physically sophisticated meth-
ods in terms of efficiency and computation times. Since performance is an (if not the) important quantity
in animation business, nonlinear physics-based methods are often considered as practically not feasible.
One goal of this thesis is to propose a comprehensive geometric calculus that induces consistent tools
for multiple applications in computer graphics that allow for a geometric interpretation. This leads to
the notion of shape spaces that are equipped with the mathematical structure of a Riemannian manifold.
Furthermore, we aim at a sound physical model to realize visually appealing simulation results induced
by potentially large and global deformations without using non-physical or artificial terms for regular-
ization. In particular, we are interested in a model that is invariant with respect to rigid body motions.
Finally, the corresponding temporal and spatial discretization is supposed to allow for robust and efficient
simulations. Hence, the entire modeling and discretization problem is a delicate balancing act between
geometric consistency and physical soundness on the one hand and efficiency and practicability on the
other hand.

Figure 1.3: Shape modeling: we determine plausible, infinitesimal variations of a neutral cactus pose
(gray) and compute extrapolations to create realistic motion paths (orange).
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How can we benefit from a Riemannian structure? It is due to Kendall [Ken84] that complex shapes,
e.g. curves, images or solid materials, are considered as individual elements or points in a high or even
infinite dimensional space, i.e. the shape space. Initially, this space is just a collection of shapes without
any mathematical structure. In particular, most shape spaces cannot be considered as linear vector spaces.
Nevertheless, one is interested in performing mathematical operations on the set of shapes, for instance,
for two given shapes one wants to compute a connecting path (cf . Fig. 1.1). The notion of an optimal
or shortest path then induces naturally a distance measure which allows e.g. for a statistical analysis. It
is a well-established ansatz to consider a given shape space as a Riemannian manifold. In a nutshell, a
Riemannian manifold can be described as a collection of points that is locally equivalent to the Euclidean
space, together with a so-called Riemannian metric, i.e. an instruction how to measure local variations.
On a Riemannian manifold the notion of a connecting path and hence a (locally) shortest path, a so-
called geodesic, is intrinsically given. Thereby, a geodesic connecting two points can be considered as
the solution of the interpolation problem. Similarly, one can extrapolate by extending geodesic paths
via the exponential map or transport details via the parallel transport—both are inherent concepts in
Riemannian manifold theory. Hence the mathematical structure of a Riemannian manifold leads to the
solution of a couple of problems relevant e.g. in computer graphics. In chapter 2 we review different
approaches to shape space modeling in the literature and in chapter 3 we provide a brief summary on
relevant concepts in Riemannian manifolds.

What is a suitable time-discretization? In a Riemannian setup, shortest curves, i.e. geodesics, are
defined as time-continuous objects. To introduce a temporal discretization we make use of the so-called
time-discrete geodesic calculus developed by Martin Rumpf, Benedikt Wirth and coworkers in a se-
quence of papers, cf . e.g. [Wir09, WBRS11, RW13]. This discrete calculus is based on a variational
time-discretization of geodesic curves and can be applied to a wide range of shape spaces. Besides the
notion of time-discrete geodesics, the framework additionally provides time-discrete analogons for sev-
eral basic but crucial geometric operators, e.g. for the exponential map and for parallel transport. Under
certain assumptions on the underlying manifold, Rumpf and Wirth [RW15] have shown consistency and
convergence of all time-discrete operators to their corresponding continuous counterparts.
From a practical point of view, the entire variational time-discretization is based on a local approximation
of the squared Riemannian distance. In particular, one does not need to have an explicit notion of the
Riemannian metric—although the distance is induced by the metric, one can also recover the metric from
the distance. This circumstance is useful especially when dealing with physical shape spaces: here the
a priori definition of a suitable Riemannian metric is not obvious whereas the derivation of a physically
meaningful dissimilarity measure is feasible. Eventually, exactly this dissimilarity measure represents the
approximation of the squared Riemannian distance. In chapter 4, we provide a brief but comprehensive
summary of the time-discrete geodesic calculus proposed by Rumpf and Wirth and present a consistency
proof of a time-discrete covariant derivative.

Which shape space is appropiate for animation? Although characters in animation movies appear as
solid bodies they are represented typically as hollow objects, whose ”skin” is described e.g. by triangle
meshes in the computer. This is due to the fact that the physical simulation of a solid is computationally
much harder than the corresponding simulation of the surface of that solid: if the solid is represented
within a (regular) grid with grid size h, one needs O(h−3) grid points to represent the interior but only
O(h−2) points to represent the surface. To obtain visually appealing animations the surface is modeled
physically as a thin shell, which is a three-dimensional material whose thickness is very small when
compared to other directions. Mathematically, a shell is represented by the midlayer of the material
which is typically described by a two-dimensional surface in R3. In order to deal with shells in the
computer, this midsurface is discretized e.g. by a polyhedral surface, hence the shape space considered
here is the space of triangle meshes, also referred to as (discrete) shell space.

3



1 Introduction

However, the physical modeling starts in the continuous setup, where we consider thin shells as being
made of an elastic material. Intuitively, elasticity accounts for the desired property that the object is
able to be deformed without being disrupted or irreversible damaged. An elastic deformation is hence
characterized by being reversible in the sense that the material will return to its initial shape and size
when the outer forces are removed. The elastic energy associated with the deformation of one shell
into another shell will eventually represent the dissimilarity measure on the shell space—the key ingre-
dient of the variational time-discretization. Although perfect elasticity is an approximation of the real
world, simulations based on elastic materials look indeed very natural and are mathematically well es-
tablished [Cia88, CM08]. Nevertheless, we eventually drop the pure elastic model and consider viscous
transformations. This results in a physical model that allows for the notion of paths—a concept that is
axiomatically not present in elasticity theory. From a physical point of view, one can think of a viscous
deformation as the concatenation of many infinitesimally small elastic deformations with subsequent
stress relaxation.
As mentioned above, the surface or shell representation seems to be advantageous in terms of the num-
ber of degrees of freedom. Nevertheless, the deformation of a shell is physically much more involved
than the deformation of a solid. A reason for this is that the mathematical description of a shell defor-
mation depends on the first and second fundamental forms of the shell’s midsurface, which are highly
nonlinear geometric objects. The differences become obvious when considering discretized surfaces,
e.g. triangle meshes. Typically, the elastic deformation of a solid can be described by means of the
standard linear finite elements method (FEM) as only first derivatives of the deformation are involved
in the energy. However, the numerical treatment of surface bending requires second derivatives of the
deformation resp. derivatives of the normal field which cannot be described by linear FEM. In particular,
it is not straightforward how to describe a derivative of a normal on a triangle mesh in the first place as
a polyhedral surface is naturally equipped with a piecewise constant normal field. One opportunity to
resolve this problem is to make use of higher order conforming methods, e.g. one introduces additional
degrees of freedom possibly without any geometric meaning that lead to large linear systems. In contrast,
we consider a non-conforming method in the spirit of Discrete Differential Geometry, whose degrees of
freedom are given by the nodal positions only. To this end, we propose a discrete shape operator on tri-
angle meshes that locally depends on six vertices which leads to a discrete bending model. Alternatively,
we make use of the popular Discrete Shells model [GHDS03] which depends on two triangles, i.e. four
vertices, only, and thus represents the smallest possible stencil to realize bending.
Summing up, the appropiate shape space for our purposes is the finite dimensional space of triangle
meshes, the so-called space of discrete shells. To enable a direct comparison of two different discrete
shells, we make use of the common fixed connectivity constraint, i.e. we postulate a one-to-one corre-
spondence between all nodes and all triangles. The discrete bending model is a core ingredient of a
physically sound dissimilarity measure on the space of discrete shells, which penalizes variations of the
first and second fundamental forms. As explained in the previous paragraph, the designation of a shape
space together with the notion of a dissimilarity measure enables a direct application of the time-discrete
geodesic calculus. In chapter 5 we present a detailed description as well as an empirical validation of our
discrete shell space model.

|
day 54

|
day 69

|
day 83

|
day 96

|
day 109

Figure 1.4: Discrete regression curve (bright) for sugar beet input shapes (dark) at 5 different days in
the vegetation period.
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What are relevant applications and desirable extensions? The time-discrete geodesic calculus ap-
plied to the finite dimensional space of discrete shells directly offers solutions to several problems listed
above: the interpolation problem between two shapes is solved by computing a time-discrete geodesic
(cf . Fig. 1.1), extrapolation is performed by means of the time-discrete exponential map and detail trans-
fer can be realized by the notion of a time-discrete parallel transport. In chapter 6, we show numerous
numerical simulation results and present a comprehensive qualitative and quantitative evaluation.

Finally, in chapter 7 we discuss three further applications and extensions of the existing calculus:

• Riemannian splines. The multiple interpolation problem, i.e. the computation of a smooth path
interpolating more than two keyframes, cannot be solved immediately by existing tools of the
geodesic calculus. For example, using piecewise geodesic interpolation generates a continuous
path that exhibits discontinuities in the velocity at the keyframes. In Euclidean space, cubic splines
minimize the total squared second time-derivative among all curves that pass through a given set
of interpolation points—this property is related to the minimization of bending energy. We build
on this observation and establish how splines can be variationally defined on general shape spaces
where keyframe poses act as interpolation points. To this end we introduce a generalized spline
energy based on the covariant derivative of the velocity field along the curve—an object which
represents a generalization of the second time-derivative. We present a corresponding time-discrete
functional that fits perfectly into the time-discrete geodesic calculus, and prove this discretization
to be consistent (see chapter 4). Additionally, we show that the optimization of the spline energy—
subject to appropiate constraints—can be used to solve the multiple interpolation problem, e.g. to
realize keyframe animation (cf . Fig. 1.2).

• Regression. Based on the (time-discrete) spline energy we develop a (time-discrete) regression
model which generalizes linear regression to shape spaces. To this end, we investigate time-
discrete geodesic paths in shape space which best approximate given time indexed input shapes in
a least squares sense. Here, we apply the regression model to the space of viscous fluidic objects
and present numerical simulation results based on real data from anatomy and botany. Fig. 1.4
shows a time-discrete geodesic regression path representing the growth process of sugar beet roots
over a vegetation period.

• Statistical analysis. Statistical models of the shape or appearance of a class of objects are widely
used in computer graphics to model the variability over the object class. Typically, the dimension
of the space of observations is orders of magnitude greater than the number of samples in the
training set, i.e. the underlying shape space is sampled very sparsely. In this scenario, the quality
of the model depends on the validity of the structure of the manifold. We aim at performing
basic statistical operations on the space of discrete shells. In this setup, the so-called Procrustes
analysis, i.e. pre-registering shapes and applying the standard Euclidean metric to the vector of
nodal positions, fails to capture nonlinear shell deformations appropiately. To account for this
inherent nonlinearity we apply the statistical analysis of elastic shape spaces presented by Rumpf
and Wirth [RW09b, RW11a] to the space of discrete shells and compute for example a principal
component analysis of a set of facial expressions.

These applications illustrate in particular that the numerical methods in shape spaces developed in this
thesis are not only limited to either the space of discrete shells nor to applications in computer graphics
and animation. In fact, the geodesic calculus and the corresponding extensions discussed here can be
used in various areas, for instance in computer vision and pattern recognition, medical image processing
or material sciences, and can be applied to different shape spaces, e.g. the space of viscous fluidic objects
(cf . Fig. 1.4).
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Optimizing branching patterns

Mathematical modeling has become an important tool in materials sciences since it provides a useful
guide in the search for new functionalities. Important applications include the formation of microstruc-
tures and phase transitions e.g. in shape memory alloys. Shape memory alloys are metals that are able
to recover their original shapes by external stimuli, e.g. by a change in temperature, after permanant
deformation. The reason for this effect lies in a particular behavior of the atomic lattice, namely a
solid-to-solid phase transition, e.g. at some specific temperature. If the material is at a high temperature
(called austenitic phase), it prefers a cubic lattice structure, whereas at a low temperature (called marten-
sitic phase), there are different preferred lattices with fewer symmetries. Most interesting are, however,
intermediate temperatures where both states, i.e. martensite and austenite, are present in the material
and hence also transition layers between these phases occur. In practice, one often observes complex
phase mixtures at these interfaces that lead to characteristic microstructures. By the Hadamard jump
condition there is a correspondence between coherent martensite-martensite resp. austenite-martensite
interfaces and a rank-one connection between the gradients of the (continuous) macroscopic deforma-
tion. However, typical materials do not fulfill such a condition at an austenite-single-martensite interface.
In physical experiments, one often observes fine twins of two variants of martensite, separated from a
uniform region of austenite by a transition layer bearing a certain microstructure. These observations
coincide with the mathematical modeling, since a coherent austenite-twinned-martensite transition is
possible—in the sense of the Hadamard jump condition—if an average deformation of two variants of
martensite is compatible with the austenite.
In this thesis, we focus on a simplified mathematical model describing such a coherent phase transition
between a totally rigid austenite and a twinned-martensite phase. Typically, the mathematical analy-
sis of phase transitions proceeds from nonlinear elasticity theory. The central goal is to determine the
microstructures and their energetics by studying a suitable energy functional for the transition layers. Al-
though the general situation is described most appropiately by a three-dimensional deformation acting on
a three-dimensional material, there exists a well-established reduced model based on a two-dimensional
domain and a scalar-valued function [KM92]. This two-dimensional model has proven to be able to
capture characteristic geometric properties of the microstructures occuring at an austenite-martensite in-
terface. Although many researchers have investigated this reduced model within the last two decades,
a precise description of an optimal microstructure, i.e. a minimizer of the mathematical model, has not
been found so far. However, there are many qualitative and quantitative results one can build on (cf .
e.g. [Con00b, Con06]). Most important, Kohn and Müller [KM94] have proven the existence of such
a minimizer and derived an energy scaling law in terms of certain physical parameters. These scaling
laws are optimal in the sense that they provide both an upper and a lower bound on the minimal en-
ergy, whereas the constants in the bounds still differ. To realize the upper bound, Kohn and Müller
constructed an explicit twinned-martensite structure represented by a certain test function. In particular,
their microstructure branches, i.e. refines in a self-similar way, when it approaches the austenite phase.
In chapter 8, we investigate an improvement of the upper bound which is realized by constructing explicit
test functions that are energetically advantageous. Based on the insight of a numerical experiment we
shall deduce a new branching pattern, that differs both geometrically and topologically from the one con-
sidered by Kohn and Müller. In particular, we show numerically and analytically that this new branching
pattern produces a better upper constant in the energy bounds.

Reading suggestion Chapter 2 to chapter 7 solely deal with the primary focus of this thesis, i.e. numer-
ical methods in shape spaces. A comprehensive description of our investigations of optimal branching
patterns is given in chapter 8 in a self-contained way.
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Collaborations and publications

The contributions and main results of this thesis are the outcome of various intense collaborations and
resulted in a sequence of joint publications.

The results on time-discrete geodesic calculus in the space of shells presented in chapter 6 are joint work
with Martin Rumpf, Peter Schröder (Caltech), Max Wardetzky (University of Göttingen) and Benedikt
Wirth (University of Münster), and have been published in [HRWW12, HRS+14]. I contributed to the
development of the time-discrete geodesic calculus, in particular its application to the space of shells,
and investigated the spatial discretization using tools from discrete differential geometry.
Riemannian splines and the application to the space of discrete shells—as presented in Sec. 4.3 resp.
Sec. 7.1—were investigated again in joint work with M. Rumpf, P. Schröder, M. Wardetzky and B. Wirth,
and resulted in another publication [HRS+16]. I contributed to the mathematical modeling of the nonlin-
ear model and elaborated the simplified LΘA-model and its efficient implementation. Rigorous aspects of
time-discrete Riemannian splines are about to be submitted [HRW16], where I provided the consistency
proof as presented in Sec. 4.3.
The work on time-discrete regression presented in Sec. 7.2 was initiated by a collaboration of M. Rumpf
and B. Wirth with Thomas Fletcher (University of Utah). I developed a simplification of the original,
fully nonlinear model and provided the resulting implementation and numerical experiments—in coop-
eration with Benjamin Berkels (RWTH Aachen University). The results were published in [BFH+13].
The work concerning the statistical analysis of an elastic shell space, which is presented in Sec. 7.3,
is based on a collaboration with William Smith and Chao Zhang (University of York), and has been
published in [ZHRS15]. Here, my contribution was the mathematical modeling as well as the preparation
of the general framework of the implementation, whereas C. Zhang assembled the corresponding code
fractions and performed the quantitative analysis (not shown in this thesis).
The investigation of optimal branching patterns in chapter 8 is joint work with Patrick W. Dondl (Uni-
versity of Freiburg) and M. Rumpf. The basic code structure to perform the subdivision finite element
simulations has been provided by P. Dondl, whereas I focussed on the actual numerical experiments as
well as on the numerical and analytical optimization of the reduced model. The results of the numerical
optimization have been published in [DHR16].

Finally, I contributed to three further publications, that are not considered in this thesis:

• S. Markett, C. Montag, B. Heeren, R. Sariyska, B. Lachmann, B. Weber, and M. Reuter. Voxel-
wise eigenvector centrality mapping of the human functional connectome reveals an influence of
the catechol-o-methyltransferase val158met polymorphism on the default mode and somatomotor
network. Brain Structure and Function, 221:2755-2765, 2016.

• S. Markett, M. Reuter, B. Heeren, B. Lachmann, B. Weber and C. Montag. Working memory ca-
pacity and the functional connectome - insights from resting-state fMRI and voxelwise eigenvector
centrality mapping, Brain Imaging and Behavior, 2017, accepted.

• B. Heeren, B. Wirth, S. Paulus, H. Goldbach, H. Kuhlmann and M. Rumpf. Statistical shape analy-
sis of tuber roots: a methodological case study on laser scanned sugar beets, in revision.
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2 Related work

2.1 Shape spaces and applications

During the past decades, the notion of shape spaces had an increasing impact on the development of
new methods in computer vision, graphics and imaging, ranging from shape morphing and modeling, to
shape statistics and computational anatomy. A variety of spaces of shapes has been investigated in the
literature, some of them are finite-dimensional and consider polygonal curves or triangulated surfaces
as shapes, but most approaches deal with infinite-dimensional spaces of shapes. In this section, we
provide a summary of related work on shape spaces, with a particular focus on those spaces that can be
considered as Riemannian manifolds. Eventually, we gather relevant references concerning applications
in shape spaces that are also considered in this thesis, such as interpolation and extrapolation, spline
curves, regression analysis and statistical models.

Shape spaces The classical treatment of shape space is due to Kendall [Ken84], where shapes are
considered as k-tuples of points in Rd, which can e.g. be interpreted as discretized curves or nodes
of triangulated surfaces, equipped with a quotient metric which is given by the Euclidean metric mod-
ulo translation, rotation and scaling. Linear vector spaces can be considered as shape spaces as well.
However, they are usually not a priori invariant with respect to translation or rotation, i.e. shape align-
ment is necessary as a preprocessing step. Examples include the vector space of landmark positions
[CTCG95, PMR05, SBYA05] or Lebesgue spaces [LGF00, TYW+03, DRT06]. Further classical shape
spaces are induced by the Hausdorff distance or by the Gromov-Hausdorff distance. Although the for-
mer one is not invariant with respect to rigid body motion, it has for instance been used to perform shape
statistics [CFKM06]. In contrast, the latter one defines an isometrically invariant distance measure be-
tween shapes and has been used e.g. for shape clustering [MS05] or classification [BBK08]. However,
as the lack of isometries is measured globally it is difficult to examine local isometry distortions.

Of particular interest for this work are shape spaces that also have the structure of a Riemannian manifold.
The study of spaces of shapes from a Riemannian perspective allows to transfer many important concepts
from classical geometry to these usually infinite-dimensional spaces. For example, paths, path lengths
and hence shortest paths, i.e. geodesics, are generically defined. Further classical geometric quantities,
such as exponential map, logarithm, covariant derivative and parallel transport, can be transferred like-
wise. In the following, we will review works related to three designated groups of shape spaces, namely
the space of curves, surfaces and volumetric objects (e.g. images).

For planar curves, different Riemannian metrics have been devised. In their seminal work, Michor
and Mumford [MM06] examined Riemannian metrics on the manifold of closed regular curves. They
showed the L2-metric in tangent space to be pathologic in the sense that it leads to arbitrarily short
geodesic paths1. To overcome the issue of degenerating geodesic paths they employed a curvature-
weighted L2-metric instead (see also [MM07]). For the same reason, Mennucci et al. [MYS08] used
Sobolev metrics in the tangent space of planar curves, with applications in image segmentation via active

1 Later, Michor and Mumford [MM05] showed that the vanishing geodesic distance phenomenon for the L2-metric occurs also
in more general shape spaces.
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contours [SYM07]. Klassen et al. [KSMJ04] proposed a framework for geodesics in the space of ar-
clength parameterized curves and implemented a shooting method to find them. As Riemannian metric,
they used the L2-metric on variations of the direction or curvature functions of the curves. Schmidt et al.
[SCC06] presented an alternative variational approach for the computation of these geodesics. Srivas-
tava et al. [SJJK06, SKJJ11] utilized an elastic string representation where curves can bend and locally
stretch. To this end, they assigned different weights to the L2-metric on stretching and bending variations
and obtained an elastic model of curves, which allowed them to define geodesics and distances between
curves in a way that is invariant to transformations including reparameterization. In a sequence of pa-
pers, Bruveris and co-workers inverstigated properties of the spaces of parametrized and unparametrized
curves in Rd, equipped with Sobolev metrics [Bru15, BMM14, BBMM14, BBM16]. For example in
[BBM16], the set of Sobolev metrics was divided into three groups: the L2-metric, which is on the one
hand simple and reparametrization invariant, but on the other hand unsuitable for shape analysis (cf .
[MM06]), the H1-metric, which was shown to be well suited for numerical computations and there-
fore useful in applications, and finally higher-order Sobolev metrics, whose theoretical properties make
them good candidates for use in shape analysis. In particular, the space of closed plane curves equipped
with a second-order Sobolev metric is geodesically complete. Hence Riemannian metrics for spaces of
curves obviously benefit from a second-order Sobolev term, which can be considered as a bending term
that regularizes curvature changes. This circumstance has also been exploited in physical simulations of
viscous or elastic rods, whose centerline is mathematically described by a curve (cf . [BWR+08, RW15]).

With regards to the space of surfaces, Kurtek et al. [?, KKDS10] studied L2-metrics on special rep-
resentations of parameterized surfaces. To this end, they considered geodesic paths between surfaces
parametrized over the unit sphere, using local changes of the area element as a Riemannian metric. As
opposed to physics-based approaches, parameterization-based metrics are not intrinsically blind to rigid
body motions. Moreover, their induced distance is related to the extrinsic difference between surfaces in
ambient space, so that even isometric surfaces might be far apart from one another. A combination of ex-
trinsic and intrinsic distance was presented in [BBK09]. Bauer and co-workers [BHM11, BHM12a,
BHM12b, BHM12c] generalized weighted L2-metrics (introduced in [MM07] for planar curves) to
higher dimensions, i.e. to the space of surfaces described by embeddings or immersions of a given
manifold. They computed geodesic equations and sectional curvatures and showed in particular that
these metrics overcome the degeneracy of the L2-metric; corresponding numerical results were shown in
[BB11].

Most relevant for this thesis is the work of Kilian et al. [KMP07] who investigated the (finite dimensional)
space of triangulated surfaces. To this end, they considered geodesics between consistently triangulated
meshes, with respect to a Riemannian metric measuring the stretching of triangle edges. While this met-
ric is invariant to rigid body motions, the lack of a bending term leaves a non-trivial kernel of the metric
tensor, including all isometric deformations of the triangular mesh. To avoid the resulting unphysical
wrinkling effects, a supplementary (non physical) regularization was incorporated. Liu et al. [LSDM10]
proposed a metric on a finite simplicial complex that measures resistance of an edge to stretching and
compression, quantified by changes in edge length, and bending, which is associated with directional
changes. In contrast to the latter examples, we make use of the regularizing effect of a bending energy
and stay entirely in a physical simulation framework.

Riemannian spaces have also been considered for volumetric shapes, where the metric imitates a phys-
ical energy dissipation induced by the deformation of a shape consisting of ductile or viscous material
[FJSY09, FW06, WBRS11, RW13]. Such physical approaches tend to yield intuitive paths and allow
for a simple and natural time-discretization. For example, Wirth et al. [WBRS11] defined time-discrete
geodesics as minimizers of a time-discrete path energy. In the context of viscous objects, the path energy
consists of a sum of elastic matching energies, whose Hessian at the identity coincides with the rate of
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viscous dissipation generated by the shape deformation. This viscous dissipation model can be applied
to two- and three-dimensional shapes, where the former ones represent a subset of the space of images.
A different approach to obtain a Riemannian structure on the space of images is using the metamor-
phosis approach [MY01, TY05b, TY05a, HTY09]. This approach generalizes the flow of diffeomor-
phism [DGM98] and considers the temporal change of image intensities and image intensity varia-
tions (controlled by the so-called material derivative) along motion paths. Physically, the underlying
metric describes the viscous dissipation in a multipolar fluid model [NŠ91]. Recently, Berkels et al.
[BER15] applied the variational time-discretization of geodesics proposed in [WBRS11] to the Rie-
mannian manifold induced by the metamorphosis approach. Moreover, the notion of optimal transport
[Mon81, Kan42, Kan48], in particular the formulation proposed by Benamou and Brenier [BB00], can
also used to define a Riemannian structure on the space of images, that are considered as measures (cf .
e.g. [PPKC10, PFR12, SS13]).

Only for a few nontrivial Riemannian shape spaces geodesic paths can be computed in closed form
(e.g. [YMSM08, SMSY11]), else the system of geodesic ODEs has to be solved using numerical time
stepping schemes (e.g. [KSMJ04, BMTY05]). Alternatively, geodesic paths connecting shapes can also
be approximated via the minimization of discretized path length [SCC06] or path energy functionals
[FJSY09, WBRS11]. Instead of discretizing the underlying flow the variational discretization proposed
by Rumpf and Wirth [WBRS11] is based on the direct minimization of a discrete path energy subject to
data given at the initial and the end time. This approach turned out to be very stable and robust, and even
for very small numbers of time steps one obtains qualitatively good results [RW13, MRSS15, BER15].
Building on this variational time-discretization, Rumpf and Wirth [RW15] developed a comprehensive
discrete geodesic calculus on finite- and on certain infinite-dimensional shape spaces with the structure
of a Hilbert manifolds, and presented a corresponding complete convergence analysis.
A main contribution of this thesis is the application of this discrete geodesic calculus to the space of
(discrete) shells. In particular, we present features and applications of the geodesic calculus, such as
(i) interpolation and extrapolation techniques, (ii) spline curves, (iii) a simple regression model and (iv)
a statistical analysis in shape space. In the remainder of this subsection, we report on related work
concerning these aspects and distinguish our contributions.

Interpolation and extrapolation Many shape interpolation schemes in computer graphics are based
on the following three-step procedure. First, select a number of geometric quantities or shape descrip-
tors that determine the shape (locally). Then, based on the input shapes, compute the interpolated or
extrapolated quantities. Finally, reconstruct the shape or the path in shape space, respectively, that best
matches the averaged quantities. The differences between various existing methods lie in the choice of
the geometric quantities. Depending on whether the quantities depend linearly or nonlinearly on the
vertex positions, the reconstruction is a linear or nonlinear least-squares problem.
Examples of linear reconstruction schemes were given by Sumner et al. [SZGP05] and by Lipman et
al. [LSLCO05]. The method proposed by Sumner et al. [SZGP05] uses deformation gradients of the
triangles as geometric quantities to be interpolated (cf . [SP04]). However, the interpolation is nonlinear
since the rotational components of the deformation gradients are extracted and nonlinearly blended by
taking the shortest path in the rotation group. Naturally, the blending of the rotations is done separately
for each triangle which might lead to undesirable interpolation results (cf . [WDAH10] for examples and
a discussion of this issue). Instead of treating all triangles individually, Lipman et al. [LSLCO05] pre-
sented a method that takes the connectivity information of the triangle mesh into account and considers
transformations that connect local frames in the mesh (cf . also [KG08]). To this end, a local coordinate
frame is constructed for each vertex of the mesh and so-called connection map encode the transformation
between neighbouring frames. A key property of this ansatz is that it represents the local geometry of a
mesh in a rotation-invariant way—in contrast to methods based on deformation gradients. Furthermore,
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the reconstruction process is performed in two steps: first the connection maps are used to compute local
frames, and based on the local frames, the vertex coordinates are reconstructed. This approach is well-
suited to represent deformations with rotational components (i.e. twists), but has problems when dealing
with deformations that include stretching.
Examples of nonlinear reconstruction schemes were given by Winkler et al. [WDAH10] and by Fröhlich
and Botsch [FB11]. Winkler et al. [WDAH10] used edge lengths and dihedral angles of the triangles of
a surface mesh as geometric quantities to be interpolated. In order to find the mesh that best matches the
interpolated edge lengths and angles they employed a rather complicated hierarchical shape matching
technique. To achieve an improvement in this direction, Fröhlich and Botsch [FB11] introduced a fast
reconstruction scheme for the interpolation based on edge lengths and dihedral angles. Their method
interpolates between simplified meshes and uses deformation transfer [BSPG06] to map the coarse inter-
polated shapes to a fine mesh—we will later pick up their method in the context of spline interpolation.
Besides, there are numerous interpolation techniques not depending on a reconstruction step. A classical
approach in this direction was presented by Alexa et al. [ACOL00]. They proposed a morphing technique
that blends the interiors of given two- or three-dimensional shapes in an as rigid as possible manner, i.e.
their method is locally least-distorting. As already mentioned above, Kilian et al. [KMP07] introduced
a framework of geometric modeling in the space of triangular meshes that allows for interpolation, ex-
trapolation and even parallel transport. This is closely related to our approach, however, we combine
the geometric modeling with a physics-based metric which was not the case in the work by Kilian et
al. [KMP07]. A more physical approach was considered by Chen et al. [CPSS10] which was motivated
by a number of physics-like but heuristic algorithms in geometry processing. They advocated a simple
geometric model for elasticity, i.e. the distance between the differential of a deformation and the rota-
tion group is penalized. Due to its geometric non-linearity, the model does not suffer from linearization
artifacts but is computationally almost as efficient as linear elasticity.
Recently, von Tycowisz et al. [vTSSH15] introduced a scheme for real-time nonlinear interpolation
which exploited the fact that the set of all possible interpolated shapes is a low-dimensional object in
a high-dimensional shape space. To this end they constructed a reduced optimization problem that ap-
proximates its unreduced counterpart and can be solved very efficiently. We refer to the paper of von
Radziewsky et al. [vRESH16] for further applications of this very efficient ansatz and in particular to the
work by Brandt et al. [BvTH16], where the reduction method was used to compute approximations to
time-discrete geodesics in the sense of [WBRS11].
Although we are only dealing with the interpolation of triangle meshes embedded in three-dimensional
space, we finally refer to [CWKBC13, CCW16] for related work on planar deformation techniques (cf .
also the review by Alexa [Ale02]).

Riemannian splines In a finite dimensional Riemannian manifold so-called Riemannian cubic poly-
nomials have been introduced first by Noakes et al. [NHP89] as smooth curves y : [0, 1] →M that are
stationary points of the functional F [y] =

∫ 1
0 gy

(
D
dt ẏ,

D
dt ẏ
)

dt satisfying certain boundary conditions.
Here D

dt denotes the covariant derivative along a curve, hence this representation is referred to as intrinsic
formulation. A necessary condition for optimality of the boundary value problem is given by the Euler–
Lagrange equation ∂yF [y] = 0 which turns out to be a fourth-order differential equation [NHP89]. In
particular, Crouch and Silva Leite [CSL95] considered the multiple interpolation problem by minimizing
F [y] subject to y(tj) = yj for a set of data points

(
(tj , y

j)1≤j≤J
)
⊂ [0, 1]×M.

Trouvé and Vialard [TV12] presented a mathematical framework to perform interpolation on time-
indexed sequences of 2D or 3D shapes where they focused on the finite dimensional case of landmarks.
They developed a spline interpolation method which is related to the Riemannian cubic polynomials
by Noakes et al. [NHP89]. However, their approach incorporates a control variable u with respect to
the Hamiltonian equations of the geodesics which can be interpreted as |u|2 = gy(

D
dt ẏ,

D
dt ẏ). Hinkle

et al. [HMFJ12] introduced a family of higher-order Riemannian polynomials defined by (Ddt)
kẏ = 0
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to perform polynomial regression on Riemannian manifolds. Solutions for k = 3 are referred to as
cubic polynomials. The higher-order covariant differential equation is transferred into a system of first-
order covariant differential equations which is solved by a numerical integrator scheme. This method is
eventually applied to the shape spaces of 2D image data represented by landmark positions.
Instead of dealing with the intrinsic formulation presented above, there are several papers dealing with
an extrinsic formulation, i.e. the minimization of

∫ 1
0 ‖ÿ‖

2 dt in the ambient space. The restriction of the
curve to the manifold is then realized as a constraint. Wallner [Wal04] proved existence of minimizers
in this setup for finite dimensional manifolds, and Pottmann and Hofer [PH05] showed that these min-
imizers are C2. Additionally, Hofer and Pottmann [HP04b] provided a method for the computation of
splines on parametric surfaces, level sets, triangle meshes and point set surfaces. Algorithmically, they
alternately computed minimizers in the tangent plane and projected them back to the manifold.
Besides the variational formulations there are numerous contributions dealing with subdivision schemes
to produce smooth interpolating curves on manifolds. Subdivision schemes for curves in linear spaces are
well established and mostly based on repeated computations of local (affine) averages (cf . e.g. [Dyn92,
Dyn02]). By replacing the operation of affine averaging either by a geodesic average or by projecting
the affine averages onto the manifold one generates a Riemannian extension. Wallner and Dyn [WD05]
showed that the Riemannian extension of cubic subdivision actually producesC1-curves; Wallner proved
C2-smoothness for a certain class of subdivision schemes in [Wal06]. More practically, Rahman et al.
[RDS+05] proposed a Deslauriers-Dubuc interpolation in the tangent space, where the mapping between
tangent space and manifold is realized by means of the exponential and logarithm.
In some applications it might be useful to seek for approximating rather than for interpolating curves
with respect to a given set of data points. This can be done by replacing the hard interpolation constraints
by soft penalty constraints [Rei67]. Recently, Brandt et al. [BvTH16] computed approximating curves in
the space of discrete shells by using the path energy

∫ 1
0 gy (ẏ, ẏ) dt as regularizer. A different approach

to approximating schemes are Beziér curves. Having the notion of geodesics at hand one can easily
transfer this concept to general manifolds. In fact, the Beziér curves are simply generated by applying
de Casteljau’s algorithm where linear interpolation is replaced by geodesic interpolation [PN07]. This
was applied to the shape space of images [ERS+15] resp. to the space of discrete shells [BvTH16]. Fi-
nally, Perl [Per15] introduced a Riemannian generalization of B-splines and cardinal splines and showed
numerical simulations in the space of shells (represented as subdivision surfaces as in [COS00]).
In this thesis, we focus on a variational formulation based on the intrinsic functional F to solve the
multiple interpolation problem. To this end, we consider general, possibly infinite dimensional manifolds
and derive a consistent time-discretization, which is eventually applied to the space of discrete shells.

Regression curves Time-dependent shape statistics and shape regression has already been investigated
in [DFBJ07], where the regression curve is obtained via a simultaneous kernel weighted averaging in
time. In the application to brain images the kernel on shape space is linked to the Sobolev metric from
the group of diffeomorphisms approach [MTY02]. A variational formulation of geodesic regression was
given by Fletcher [Fle11], where for given input shapes Si at times ti the (in a least squares sense) best ap-
proximating geodesic is computed as the minimizer of the energy E[S, v] = 1

2

∑
i dist2(expS(ti v),Si)

over the initial shape S of the geodesic path and its initial velocity or momentum v. Here, dist(·, ·) is the
Riemannian distance and exp the exponential map. Niethammer et al. [NHV11] presented a computa-
tionally efficient method in the group of diffeomorphisms shape space which is based on duality calculus
in constrained optimization. Hong et al. [HJS+12] proposed a generalization allowing for image meta-
morphosis, i.e. a simultaneous diffeomorphic image deformation and image intensity modulation.
In contrast to these approaches, we do not minimize over the initial data of geodesic shooting but directly
over the shapes along a time-discrete geodesic. Eventually, this is realized by a penalty approach, i.e. we
augment the data term by the intrinsic functional F considered in the context of Riemannian splines.
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Statistical models Statistical models of shape have been used widely in computer vision and graphics.
In a 2D setting, PCA-based models such as active shape [CTCG95] or appearance models [CET01]
provide a parametric representation of shape that can be used for segmentation, tracking and recognition.
In a 3D setting, they are typically used for fitting to noisy or ambiguous data or for 3D reconstruction via
analysis-by-synthesis [BV99, PS09, YWS+11, SHK11, SK15]. For a recent review of statistical shape
modeling see [BSBW14]. When doing statistics on manifolds the analysis is performed in a manner that
respects the Riemannian geometry of the manifold. This requires Riemannian notions of concepts such
as distance, mean value and covariance. In this direction, Pennec [Pen06] showed how to compute these
measures for a number of geometric primitives that do not form vector spaces. Fletcher et al. [FLPJ04]
went further, building statistical models on such manifolds via computation of the principal geodesics of
a set of data. Freifeld and Black [FB12] used this principal geodesic analysis to build nonlinear models
of human body shape variation. They defined a Lie group characterizing deformations of a triangle mesh
and performed statistical analysis on the resulting Riemannian manifold. However, their manifold of
deformations was not physically motivated.
Our approach is mostly related to the work presented by Rumpf and Wirth [RW09a, RW09b, RW11a].
They described a statistical analysis which is based on an elastic deformation energy and applied to vol-
umetric shapes represented as boundary contours of elastic objects. We adapt their statistical framework
to the space of (discrete) shells by replacing the elastic deformation energy by a suitable shell energy.

2.2 Discrete bending models

There are multiple ways how to represent an embedded surface in the computer. Typically, these ap-
proaches are either classified as explicit or as implicit representations. While implicit models are given
by e.g. levelset functions or phasefield models, we will focus on explicit representations given by polyhe-
dral surfaces, or more precisely, by triangle meshes. Closely related is the approximation or discretization
of functions on surfaces. In this section we discuss different approaches how to discretize curvature re-
lated quantites on polyhedral surfaces. Usually the corresponding necessary optimality conditions lead
to a fourth-order PDE.

A classical tool for the discretization of variational problems on triangle meshes is the finite element
method (FEM), cf . e.g. [Cia78, Hug87, ZT00, Bra07]. This approach can be divided into three groups,
namely (i) conforming, (ii) non-conforming and (iii) mixed methods. As we are dealing with a fourth-
order problem, linear C0-conforming finite elements do not provide the necessary regularity. Instead,
one can make use of a standard C1-conforming finite element method which offers a direct discretiza-
tion of the fourth-order PDE. However, one introduces additional degrees of freedom—possibly with-
out any geometric meaning—that lead to large linear systems [Cia78]. Alternatively, a H2-conforming
discretization can be build upon basis functions represented as so-called subdivision surfaces [COS00,
CO01, CSA+02, GKS02], where higher order smoothness is achieved by increasing the support of the
basis functions instead of introducing additional degrees of freedom1. Of course conformality is not a
necessary condition. Hence one might consider a non-conforming finite element method for discretiza-
tion, e.g. an adaption of the Crouzeix-Raviart element [WBH+07] or discontinuous Galerkin methods
[KMBG09]. Other non-conforming methods seek to replace continuous geometric objects by consistent
discrete counterparts instead of discretizing these geometric objects in the first place. This is e.g. the spirit
of discrete differential geometry (DDG), which is used in many well-established approaches in computer
graphics—we will also make use of this ansatz in our discretization. In mixed methods the fourth-
order PDE problem is split into two second-order PDEs, which are approximated either by linear or by
quadratic finite elements [Dzi88, ES10]. A group of fundamental examples is given by the discretization

1 This method will be discussed briefly in Sec. 8.1.
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2.2 Discrete bending models

of Willmore’s energy [Rus05, BGN07, BGN08, BR12, PPR14]. A variety of approaches discretizing
general plate and shell equations build on the Discrete Kirchhoff Triangle [BBH80, CB98, Bar13]. How-
ever, these splittings are often problem dependent and introduce additional degrees of freedom.

In the remainder of this section we review related works in geometry processing and computer graphics
that also deal with deformations of thin shells and curvature approximations on polyhedral surfaces,
i.e. discrete shells. Various researchers have formulated and discretized separately the membrane and
bending effects of a deformation, cf . e.g. [TPBF87]. To this end, the treatment of membrane energy for
triangulated meshes follows the widely studied models of elasticity in the context of FEM. In contrast,
the geometrically nonlinear treatment of bending energy, which accounts for change of curvature, is
more involved. As mentioned above, numerous approaches in graphics make use of tools from DDG
for the treatment of bending energy. Since the leading principle of DDG is ”Discretize theory, not
equations”, a consistent discrete theory is built up from scratch. In the following we consider (i) discrete
analogons of curvature related quantities, and (ii) deformation models of discrete shells, i.e. polyhedral
surfaces. As mentioned above, the majority of these approaches represents a non-conforming method of
discretization.

Discrete curvature Taubin [Tau95] was one of the first authors in computer vision to consider an esti-
mation of the curvature tensor of a surface from a polyhedral approximation. Using the theory of normal
cycles Cohen-Steiner and Morvan [CSM03] proved convergence results for integrated mean curvature
as well as the integrated second fundamental form. Their discrete notion of (integrated) mean curvature
reveals the so-called dihedral angle associated with an edge of the mesh which is defined as the angle
between the two adjacent triangle normals. However, their assumptions on the mesh are very restrictive
and there are no results for pointwise convergence. Wardetzky and co-workers [War06, War08, HPW06]
established a convergence analysis for the discrete mean curvature vector in this integrated setup and
showed that there is in general no convergence for the corresponding pointwise mean curvature vector
on general meshes. Meyer et al. [MDSB02] proposed a set of discrete differential geometry operators
for triangular meshes that are supposed to provide flexible tools to approximate important geometric
attributes, such as normal vectors or curvatures. They started from the notion of integrated quantities
which they consider as local spatial averages and derived a pointwise, discrete definition by dividing by
an associated area. Hildebrandt and Polthier [HP04a] introduced a discrete vertex-based shape operator
in the context of anisotropic surface filtering, which was derived from the cotangent formula [PP93].
Grinspun et al. [GGRZ06] provided a comparison of several discrete shape operators and proposed a
new operator by introducing further degrees of freedom. In detail, their matrix-valued shape operator
is constant on faces and is based on a normal field associated with edges. Such an edge normal is per
definition perpendicular to the corresponding edge, but the angle of rotation about this edge is another
degree of freedom. It was shown that this discrete shape operator passes a collection of empirical consis-
tency and convergence tests even if the mesh quality is very poor. A more rigorous approach to introduce
a generalized shape operator on polyhedral surfaces was performed by Hildebrandt and Polthier [HP11].
Again, they started from a weak (i.e. integrated) definition and derived a pointwise definition by testing
with approximations of delta distributions. As in [HPW06] convergence was shown under the assump-
tion of totally normal convergence of the polyhedral surface, whereas here also a pointwise convergence
result could be established. Finally, we refer to the work by Vása et al. [VVP+16] for a recent review on
curvature estimation on meshes.
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2 Related work

Discrete shell deformation models Terzopoulos et al. [TPBF87] first introduced the concept of elas-
tically deformable models for geometry or surface processing. In detail, they considered a separation of
an elastic energy into the sum of a membrane and bending energy measuring variations in first and sec-
ond fundamental forms, respectively. The entries of the fundamental forms were discretized by using a
second-order finite differences scheme on a regular and structured quad-grid. Grinspun et al. [GHDS03]
introduced their nowadays well-established Discrete Shells model based (i) on the dihedral angle repre-
sentation of integrated mean curvature [CSM03] and (ii) on the reasoning ”pointwise notion from spatial
averaging” as proposed in [MDSB02]. In particular, the discrete bending energy of their model, which
is supposed to measure squared differences of mean curvature, is still widely used in computer graphics,
animation and cloth simuations due to its simplicity (cf . also [BMF03]). On the other hand, this energy
depends on the mesh quality such that there is no convergence of this model to its continuum equivalent
as shown by numerical experiments in [GGRZ06]. Wardetzky et al. [WBH+07, BWH+06] presentend
a family of discrete isometric bending models for triangulated surfaces which were derived from an ax-
iomatic treatment of discrete Laplace operators. For flat reference configurations and isometric surface
deformations it was shown that the corresponding energies are quadratic in vertex positions. Further-
more, if the discrete Laplace operator is obtained by using the non-conforming Crouzeix-Raviart element
their discrete isometric bending model agrees with the Discrete Shells bending model [GHDS03] up to
second-order in the limit of small normal displacements of the plane. The work was extended for curved
reference configurations in [GGWZ07], where the resulting bending energies were shown to be cubic
in vertex positions. Botsch et al. [BPGK06] proposed a novel framework for 3D shape modeling that
achieves intuitive and robust deformations by emulating physically plausible surface behavior. Here, the
surface mesh is embedded in a layer of volumetric prisms, which are coupled through nonlinear, elastic
forces. To deform the mesh, the prisms are rigidly transformed while minimizing an elastic energy.
Besides the nonlinear approaches mentioned above, there is an abundant literature on deformation models
that include a linearization step. Linear methods are attractive for several reasons, e.g. they are fast, often
simple to implement and robust, i.e. the quadratic energy has a unique global minimum (if appropriate
boundary conditions are chosen). Following the comprehensive survey by Botsch and Sorkine [BK08],
linear deformation approaches can be classified into (i) shell-based techniques (e.g. [KCVS98, BK04])
and (ii) methods based on differential coordinates [SP04, LSLCO05, KG08]. Methods of the first kind
usually linearize the nonlinear elastic energy by replacing the change of first and second fundamental
forms by first and second order partial derivatives of the displacement function. To this end, these
methods typically have problems with large rotational deformations, as analyzed in [BS08]. Methods of
the second kind manipulate the shape e.g. via deformation gradients [SP04] or local frames [LSLCO05,
KG08], and are often translation-insensitive (see also [Sor06]).
In order to accelarate simulations that are based on nonlinear bending models one might consider the
space of triangular surface descriptors, i.e. edge lengths, dihedral angles and triangle areas, instead. This
results in an approximation with high computational efficiency since the involved energies are quadratic
in these variables. Based on a multiscale interpolation method by Winkler et al. [WDAH10] this ap-
proach was first introduced by Fröhlich and Botsch [FB11]. Alternatively, there are approaches in com-
puter graphics [GKS02] and cloth simulation [TWS06] that build on so-called subdivision finite element
methods—first introduced in mechanics by Cirak et al. [COS00]. Finally, we refer to Thomaszewski
and Wacker [TW06] for a review on bending models in engeneering and graphics as well as to Rumpf
and Wardetzky [RW14] for a survey of methods in geometry processing related to the mechanics of thin
elastic surfaces.
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3 Preliminaries

We give a brief summary on topics in both geometry and physics that are related to this thesis.

3.1 Background in differential geometry

In this thesis, we consider the geometric structure of possibly high-dimensional shape spaces repre-
sented as manifolds as well as the geometry of shells represented as embedded surfaces. Naturally, both
concepts are associated with a non-Euclidean, i.e. a Riemannian, structure and build on notions from
differential geometry. To avoid confusion, we examine a careful separation between these two concepts
right from the beginning. In the first part of this section, we present a survey on differential geometry and
geodesic calculus on finite dimensional manifolds based on do Carmo’s book [dC92]. These concepts
will be used later to derive a consistent generalization in infinite dimensional manifolds [Kli95, Lan95],
which are supposed to represent physical shape spaces. In the second part of this section, we introduce
characteristic geometric objects on two-dimensional embedded surfaces, such as curvature related quan-
tities, based on [Bär00, dC76]. These findings will later be incorporated in the mathematical modeling
of thin shells.

3.1.1 Finite dimensional Riemannian manifolds

We define a differentiable manifold M of dimension d < ∞ in the sense of Definition 2.1 in [dC92,
chap. 0], i.e. there is a family of injective mappings xα : ωα ⊂ Rd → M with ∪αxα(ωα) = M, such
that x−1

β ◦ xα is differentiable for any pair α, β with xα(ωα) ∩ xβ(ωβ) 6= ∅. For convenience, we will
assume in the following that there is one global parametrization x : ω ⊂ Rd →M with x(ω) =M. In
particular, x is twice differentiable, injective and regular in the sense that Dx has full rank. Furthermore
we will often drop the adjective ”differentiable” when referring to a differentiable manifoldM.

Definition 3.1.1 (Tangent space, canonical basis). The tangent space TpM ofM at p ∈M is defined as

TpM = {γ̇(0) | γ : (−ε, ε)→M is a smooth curve with γ(0) = p, ε > 0} .

If x : ω →M is a parametrization with x(ξ) = p for some ξ = (ξ1, . . . , ξd) ∈ ω, the set (X1, . . . , Xd)
with Xi = Xi(p) = Xi(ξ) = x,i(ξ) = ∂x

∂ξi
(ξ) is a basis of TpM, denoted as canonical basis.

Following Definition 2.1 in [dC92, chap. 1] we define:

Definition 3.1.2 (Riemannian metric). A Riemannian metric onM is a mapping g : p 7→ gp such that
gp : TpM× TpM → R is a bilinear, symmetric and positive-definite form, which varies smoothly in
the sense that ξ 7→ gij(ξ) := gx(ξ)(Xi(ξ), Xj(ξ)) is a differentiable function in ω. A manifold equipped
with a Riemannian metric is referred to as Riemannian manifold. As (gij)ij is a regular matrix in Rd,d

there is an inverse matrix g−1 ∈ Rd,d which is denoted by (gkl)kl, i.e. gijgjk = δik.

Remark 3.1.3. As mentioned above, we aim at the separation of the geometric structure of a possibly
high-dimensional shape space from the geometry of a shell represented as an embedded surface. Since
both concepts are associated with the notion of a metric in the sense of Def. 3.1.2, we shall denote the
metric associated with generic Riemannian manifolds by Riemannian metric and the metric on a two-
dimensional embedded surface by first fundamental form, cf . Sec. 3.1.2.
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3 Preliminaries

Definition 3.1.4 (Vector field). A vector field V onM is a mapping V : M → TM, where TM =
{(p,W ) : p ∈ M, W ∈TpM} is the tangent bundle. For I ⊂ R, a vector field V : I → TM along a
curve γ : I → M fulfills V (t) = V (γ(t)) ∈ Tγ(t)M. Considering a parametrization x : ω → M we
can write V (x(ξ)) =

∑d
i=1 vi(ξ)Xi(ξ), with vi : ω → R, ξ ∈ ω.

(i) We say V is differentiable iff. the functions vi are differentiable.

(ii) For a differentiable function f :M→ R we define (V f)(p) :=
∑d

i=1 vi(p)
∂f
∂ξi

(p), p = x(ξ).

As in [dC92] we denote the set of all differentiable vector fields onM by X (M) and all differentiable
functions onM by D(M). For X,Y ∈ X (M) and f ∈ D(M), one can consider functions X(Y f) or
Y (Xf). In general, these operations do not produce vector fields (as they involve derivatives of order
higher than one), but the following Lemma holds (cf . Lemma 5.2 in [dC92, chap. 0]):

Lemma 3.1.5. Let X,Y ∈ X (M). Then there exists a unique vector field (i.e. the Lie bracket) denoted
by [X,Y ] such that [X,Y ]f = X(Y f)− Y (Xf) for all f ∈ D(M).

A crucial concept in the context of geodesic calculus is the notion of a covariant derivative, which is
induced by the affine connection.

Definition 3.1.6 (Affine connection). An affine connection ∇ on a differentiable manifoldM is a map-
ping∇ : X (M)×X (M)→ X (M), (X,Y ) 7→ ∇XY , which satisfies the following properties:

(i) ∇fX+gY Z = f∇XZ + g∇Y Z

(ii) ∇X(Y + Z) = ∇XY +∇XZ

(iii) ∇X(fY ) = f∇XY +X(f)Y

where X,Y, Z ∈ X (M) and f, g ∈ D(M).

For a vector field X ∈ X (M), the mapping ∇X : X (M) → X (M) with Y 7→ ∇XY is referred to as
covariant derivative. Of particular interest is the covariant derivative of a vector field along a curve (cf .
Prop. 2.2 in [dC92, chap. 2]):

Proposition 3.1.7. LetM be a differentiable manifold with connection ∇. Then there exists a unique
correspondence which associates to a vector field V along a differentiable curve γ : I → M another
vector field D

dtV along γ such that

(i) D
dt(V +W ) = D

dtV + D
dtW , with W being another vector field along γ

(ii) D
dt(fV ) = df

dtV + f DVdt , with f : I → R smooth

(iii) If V (t) = W (γ(t)) for some W ∈ X (M) then DV
dt = ∇γ̇W .

The correspondence V 7→ DV
dt is called covariant derivative of V along γ.

In the following we make use of different notions and notations of variations of the Riemannian metric:

Definition 3.1.8 (Metric derivatives). Let p ∈ TpM and gp : TpM× TpM→ R be the metric.

(i) For vector fields V,W,Z ∈ X (M) we define

(Dpg)(Z)(V,W ) := Z(p)(g(V,W )) :=
d

dt

(
gp+tZ(V,W )

)∣∣∣
t=0

(3.1.1)

If V = Xi,W = Xj and Z = Xk we write gij,k = (Dpg)(Xk)(Xi, Xj) = Xk(p)(g(Xi, Xj)).
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3.1 Background in differential geometry

(ii) For vector fields V,W,Z ∈ X (M) we define

∇Z(gp(V,W )) := (Dpg)(Z)(V,W )− gp
(
∇ZV,W

)
− gp

(
V,∇ZW

)
. (3.1.2)

(iii) Let γ : I → M be a curve and V,W vector fields along γ. In local coordinates we write
V (t) =

∑
k vk(t)Xk(γ(t)) and V̇ (t) =

∑
k v̇k(t)Xk(γ(t)) with analogous expressions for W (t)

and Ẇ (t). Writing p = γ(t) for some t ∈ I we define

d

dt

(
gp(V,W )

)
:=
(
Dpg

)
(γ̇)
(
V,W

)
+ gp

(
V̇ ,W

)
+ gp

(
V, Ẇ

)
. (3.1.3)

The fundamental theorem of Riemannian geometry characterizes a particular connection:

Proposition 3.1.9. On a Riemannian manifoldM there exists a unique affine connection∇ satisfying

(i) ∇ is compatible with the Riemannian metric, i.e. ∇Zg(X,Y ) = 0 for all X,Y, Z ∈ X (M),

(ii) ∇ is symmetric (or torsion-free), i.e. ∇XY −∇YX = [X,Y ] for any vector fields X,Y .

Remark 3.1.10. Using the derivatives of the metric defined in Def. (3.1.8) we get from Prop. 3.1.9 (i):

(i) (Dpg)(Z)(X,Y ) = gp

(
∇ZX,Y

)
+ gp

(
X,∇ZY

)
(ii)

d

dt
(gp(X,Y )) = gp

(D
dt
X, Y

)
+ gp

(
X,

D

dt
Y
)

for all p ∈M and for all X,Y, Z ∈ TpM (cf . Prop. 3.2 and Cor. 3.3 in [dC92, chap. 2]).
Proof of Prop. 3.1.9: As in the proof of Thm. 3.6 in [dC92, chap. 2] one first assumes the existence of
such a∇. Using part (i) of Rem. 3.1.10 and Z(g(X,Y )) = (Dpg)(Z)(X,Y ) we get

X(g(Y, Z)) + Y (g(Z,X))− Z(g(Y,X))=
(i)
g(∇XY +∇YX,Z) + g(∇XZ −∇ZX,Y ) + g(∇Y Z −∇ZY,X)

=
(ii)

2g(∇XY, Z)− g([X,Y ], Z) + g([X,Z], Y ) + g([Y,Z], X)

hence

g(∇XY, Z) =
1

2

(
X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y )) + g([X,Y ], Z)− g([Y,Z], X)− g([X,Z], Y )

)
.

(3.1.4)

Since Z was chosen arbitrarily, this uniquely determines ∇. To prove existence, define ∇ by eq. (3.1.4)
and verify the axioms in Def. 3.1.6. �

In the following we assume to deal with the unique connection classified by Prop. 3.1.9. This distin-
guished connection is called Levi-Civita connection. Next, we introduce local coefficients of the Levi-
Civita connection in a coordinate basis:

Definition 3.1.11 (Christoffel symbols). Let x : ω ⊂ Rd → M be a local parametrization of a neigh-
bourhood of p ∈ M and Xi = x,i, i = 1, . . . , d, the canonical basis of TpM. The Christoffel symbols
Γkij = Γkij [p] are defined as the unique coefficients such that

∇XiXj =

d∑
k=1

ΓkijXk .

Remark 3.1.12. Prop. 3.1.9(ii) implies 0 = ∇XiXj −∇XjXi, i.e., Γkij = Γkji.
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Next, we express the covariant derivative along a curve γ : I →M by means of the Christoffel symbols.
Consider a parametrization x : ω ⊂ Rd → M with γ(I) ⊂ x(ω) and γ1, . . . , γd : I → ω such that
x(γ1(t), . . . , γd(t)) = γ(t). Furthermore, consider a vector field V (t) =

∑
k vk(t)Xk(γ(t)) along γ. In

terms of the Christoffel symbols the covariant derivative of V along γ is given by

DV

dt
=

d∑
k=1

(
v̇k +

d∑
i,j=1

Γkijvj γ̇i

)
Xk , (3.1.5)

which follows directly from (i) and (ii) of Prop. 3.1.7 and Def. 3.1.11. Actually, the Christoffel symbols
can be represented by the metric:

Proposition 3.1.13. Let g−1 = (gij)ij be the inverse of g = (gij)ij , i.e. gjigik = δjk. Then

Γmij =
1

2

d∑
k=1

gkm (gjk,i + gki,j − gij,k) .

Proof : Using (3.1.4) with X = Xi, Y = Xj and Z = Xk and gij,k = Xk(p)(g(Xi, Xj)) we get

d∑
l=1

Γlijglk = g(∇XiXj , Xk) =
(3.1.4)

1

2

(
gjk,i + gki,j − gij,k

)
. (3.1.6)

hence multiplying with gkm and summing over k yields the representation. �

Having the notion of a covariant derivative along a curve at hand, one can define the concept of parallel
transport which eventually leads to geodesic curves. In the following, let I ⊂ R and γ : I →M a curve
inM. Then a vector field V along γ is called parallel if

(
DV
dt

)
(γ(t)) = 0 for all t ∈ I .

Proposition 3.1.14. Let t0 ∈ I and V0 ∈ Tγ(t0)M. Then there exists a unique parallel vector field
V : I → TM along γ, i.e. DVdt = 0, with V (0) = V0. The map Pγ(t0)→γ(t) : Tγ(t0)M→ Tγ(t)M with
Pγ(t0)→γ(t)V0 = V (t) is a linear isomorphism.

Proof : Prop. 2.6 in [dC92, chap. 2] or Thm. 3.3 and 3.4 in [Lan95, VIII].

Definition 3.1.15 (Parallel transport). The linear isomorphism Pγ(t0)→γ(t) : Tγ(t0)M → Tγ(t)M with
Pγ(t0)→γ(t)V0 = V (t), where DV

dt = 0 and V (0) = V0, is called parallel transport.

Definition 3.1.16 (Geodesic). A curve γ : I → M is called a geodesic curve if its velocity vector is
transported parallely, i.e.

D

dt
γ̇(t) = 0 ∀t ∈ I . (3.1.7)

Since∇ is compatible with the metric, Rem. 3.1.10 (ii) implies for a geodesic curve γ : I →M:

d

dt
gγ(t) (γ̇(t), γ̇(t)) = 2 gγ(t)

(
D

dt
γ̇(t), γ̇(t)

)
= 0 . (3.1.8)

That means, the length of the velocity vector γ̇(t) is constant.

Definition 3.1.17 (Arc length parametrization). Let γ : [0, 1] → M be a curve. The arc length s of γ

is given by s(t) =
∫ t

0

√
gγ(r) (γ̇(r), γ̇(r)) dr. We say, that a curve γ is parametrized proportional to arc

length if there is a constant c > 0 such that s(t) = c t.
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3.1 Background in differential geometry

Remark 3.1.18. Eq. (3.1.8) reveals that geodesic curves are parametrized proportional to arc length.

Using local coordinates for γ and V = γ̇ as in (3.1.5) one can write the geodesic equation (3.1.7) as a
system of d second-order differential equations

γ̈k(t) +
d∑

i,j=1

Γkij [γ(t)] γ̇i(t) γ̇j(t) = 0 for k = 1, . . . , d .

Theorem 3.1.19 (Local existence and uniqueness of geodesics). For any point p ∈M there are numbers
δ, ε > 0 such that for all V ∈ TpM with |V | < ε there exists a unique geodesic γ : (−δ, δ) →M with
γ(0) = p and γ̇(0) = V . We will denote this unique mapping by t 7→ γ(t, p, V ), t ∈ (−δ, δ).

The proof of this theorem follows from the theory of ordinary differential equations, by noticing that
the geodesic equation is a second-order ODE. Existence and uniqueness then follow from the Picard
- Lindelöf theorem for the solutions of ODEs with prescribed initial conditions. Note that γ depends
smoothly on both p and V .

Using the following rescaling or homogeneity property of geodesic curves (cf . Lemma 2.6 in [dC92,
chap. 3]), Thm. 3.1.19 implies the existence of an operator on TpM, that maps an initial velocity V ,
with |V | sufficiently small, to γ(1, p, V ).

Lemma 3.1.20 (Homogeneity of geodesics). Let t 7→ γ(t, p, V ), t ∈ (−δ, δ), be the unique geodesic
with γ(0) = p and γ̇(0) = V . Then for α > 0 the curve t 7→ γ(t, p, αV ) is a gedesic on the interval
(− δ

α ,
δ
α) and γ(t, p, αV ) = γ(αt, p, V ).

Definition 3.1.21 (Exponential map). Let p ∈ M and let ε > 0 such that for each V ∈ TpM∩ Bε(0)
the evaluation γ(1, p, V ) is well-defined. We define the exponential map by

expp : Bε(0) ⊂ TpM→M , expp(V ) = γ(1, p, V ) .

Note that γ(t, p, V ) = expp(tV ) for t ∈ (−δ, δ). For ε > 0 sufficiently small, expp : Bε(0) ⊂ TpM→
M is a diffeomorphism. Furthermore, if U is an open neighbourhood of the origin in TpM such that
expp is a diffeomorphism on U we denote by expp(U) ⊂M the normal neighbourhood of p.

Definition 3.1.22 (Logarithm). Let p ∈ M and let Up denote the normal neighbourhood of p. Then the
map logp : Up → TpM with logp(q) = (exp−1

p )(q) is called logarithm.

Geometrically, logp(q) is the initial velocity of the unique geodesic connecting p and q. Note that
logp(γ(t)) = tV for γ(t) = γ(t, p, V ) and t ∈ (−δ, δ).

Geodesic curves are often characterized as locally shortest curves, which will be specified in the follow-
ing. The length of a curve γ : [0, 1]→M is defined by

L[γ] =

∫ 1

0

√
gγ(t) (γ̇(t), γ̇(t)) dt .

Note that L is invariant under reparametrization. For p, q ∈M the Riemannian distance is defined as

dist(p, q) = inf
γ:[0,1]→M geodesic
γ(0)=p, γ(1)=q

L[γ] .

If q is in the normal neighbourhood of p we have dist(p, q) = | logp(q)| since geodesics are parametrized
proportional to arc length. The following two propositions illustrate the length minimizing properties of
geodesic curves (cf . Prop. 3.6 and Cor. 3.9 in [dC92, chap. 3]).
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Proposition 3.1.23. Let p ∈ M and q be in the normal neighbourhood of p. Let γ, α : [0, 1] → M
be two piecewise differential curves connecting p and q, where γ is geodesic. Then L(γ) ≤ L(α) with
equality iff. γ([0, 1]) = α([0, 1]), i.e. γ and α are equal up to reparametrization.

Proposition 3.1.23 is no longer true if q is not contained in the normal neighbourhood of p.

Proposition 3.1.24. Let γ : [0, 1]→M be a piecewise differentiable connecting curve of p, q ∈M that
is parametrized proportional to arc length. If L[γ] is less or equal to the length of any other piecewise
differentiable curve connecting p and q, then γ is a geodesic. In particular, γ is regular.

3.1.2 Differential geometry on embedded surfaces

As a particular focus of this thesis is on discrete quantities approximating curvature related objects on
surfaces embedded in R3, we will briefly summarize basic notions of these subjects. For further reading
we refer to [Bär00, dC76, LR12]. For the remainder of this section let d = 2 andM ⊂ R3 is a regular
and embedded surface with a (local) parametrization x : ω ⊂ R2 →M. Let ξ ∈ ω and p = x(ξ) ∈ M.
The canonical basis of TpM is given by (X1, X2) with Xi = x,i, i = 1, 2.

Definition 3.1.25 (Normal field). Let S2 ⊂ R3 be the 2-dimensional unit sphere. The (unit) normal field
ofM is a mapping n :M→ S2 with n(p) ⊥ TpM for all p ∈M. We say thatM is orientable if there
is a continuous normal field1. In particular, as rank(Dx) = 2, we will write

n(p) = (n ◦ x)(ξ) =
x,1 × x,2
|x,1 × x,2|

(ξ) .

Definition 3.1.26 (First fundamental form). The first fundamental form in p ∈M is given by

gp : TpM× TpM→ R, gp(U, V ) := 〈U, V 〉R3 .

After choosing a basis of TpM—here and in the following the canonical basis (X1, X2)—we can repre-
sent gp by a symmetric, positive-definite matrix g = gξ ∈ R2,2 with

gij = gp(Xi, Xj) = 〈Xi, Xj〉R3 ,

i.e. we have g = DxTDx. The pull-back of gp to the parameter domain ω ⊂ R2 is defined as

gξ(u, v) = gp(Dxu,Dx v) = uT gv , u, v ∈ ω .

Geometrically, the first fundamental form is necessary to measure on the surface, e.g. to determine
lengths of curves or angles between tangent vectors. To simplify notation, we will often drop the in-
dex and write g = gp or g = gξ, respectively. In particular, g refers to the bilinear form as well as to
its representative matrix inR2,2. Note that g ∈ R2,2 is invertible, sinceM⊂ R3 is assumed to be regular.

Next, we introduce the notion of curvature on a regular surface, which is closely related to the differential
of the normal field. For a smooth function f :M→ R3 and p ∈ M, the differential dpf : TpM→ R3

is defined by

dpf(U) :=
d

dt
(f ◦ γ)

∣∣∣
t=0

,

where γ : (−ε, ε)→M is a smooth curve with γ(0) = p and γ̇(0) = U . In particular, dpf is independent
of the choice of γ, hence dpf is well defined [Bär00]. Furthermore, dpf : TpM→ Tf(p)f(M).

Definition 3.1.27. (Shape operator) LetM⊂ R3 be regular and orientable, p ∈M. The shape operator
Sp : TpM→ TpM at p is the linear mapping defined via Sp(U) = dpn(U) for U ∈ TpM.

1 In this thesis we only consider orientable surfaces.
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3.1 Background in differential geometry

As Tn(p)S
2 = n(p)⊥ = TpM the shape operator Sp is indeed an endomorphism on TpM. Furthermore,

Sp is self-adjoint with respect to the first fundamental form [Bär00, dC76], i.e. gp(SpU, V ) = gp(U, SpV )
for all U, V ∈ TpM. As for every self-adjoint endomorphism there is a unique corresponding bilinear
form we may define:

Definition 3.1.28. (Second fundamental form) Let M ⊂ R3 be regular and orientable, p ∈ M. The
second fundamental form h = hp is the unique bilinear form on TpM associated with Sp, i.e.

hp(U, V ) := gp(SpU, V ) , U, V ∈ TpM .

The corresponding matrix representation h = hξ ∈ R2,2 with respect to the canonical basis is given by

hij = hp
(
Xi, Xj

)
= gp

(
SpXi, Xj

)
=
〈
dpn ·

∂x

∂ξi
,
∂x

∂ξj

〉
R3

=
〈∂n(p)

∂ξi
,
∂x

∂ξj

〉
R3
. (3.1.9)

Hence we can represent the (symmetric) matrix h ∈ R2,2 by

h = DnTDx , Dn =

[
∂n(p)

∂ξ1
,
∂n(p)

∂ξ2

]
∈ R3,2 .

If we write Sp in the canonical basis (X1, X2), i.e. Sp(Xj) =
∑2

i=1 sijXi for j = 1, 2, the coefficient
matrix s = sξ ∈ R2,2 is the representation of Sp in the parameter domain. In particular, we have [Bär00]

sξ = g−1
ξ hξ . (3.1.10)

As Sp is self-adjoint its matrix representation sξ is diagonalizable:

Definition 3.1.29. (Curvatures) The eigenvalues κ1, κ2 of sξ are denoted as principal curvatures ofM
in p = x(ξ). The mean curvature in p is defined as the sum tr sξ = κ1 + κ2 and the Gaussian curvature
in p as the product det sξ = κ1 · κ2.

Let us emphasize that gξ, hξ and hence sξ depend on the parametrization x. However, it might be
useful to have a (matrix) representation of Sp that is independent of the local parametrization. Such a
representation was derived in [LR12] using the pseudo inverse Dx−1, i.e. the curvature tensor is defined
by

Sp = DxsξDx
−1 , Dx−1 = g−1

ξ DxT ∈ R2,3 . (3.1.11)

Note that Sp ∈ R3,3 whereas sξ ∈ R2,2. Again, we will often drop the index in Sp and sξ, respectively,
and S = Sp refers to a bilinear form on TpM or the corresponding matrix in R3,3.

Remark 3.1.30. For u1, u2 ∈ Tξω = R2, i.e. Ui = Dxui ∈ TpM, we have UTi SpUj = uTi sξuj .
Furthermore, UTi Spn = 0. Hence the eigenvalues of Sp are given exactly by κ1, κ2 and 0.
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3 Preliminaries

3.2 A spotlight on physics

In this section we briefly summarize important prerequisites from continuum mechanics that are relevant
for the definition of physically motivated dissimilarity measures on the space of thin shells and viscous
fluidic objects, respectively.

Elasticity theory First, we give a survey on the theory of elastic deformations; for further reading we
refer to [Cia88, MH94, Bra07]. Let O ⊂ R3 be a homogenous1 and solid object with boundary and φ ∈
W 1,2(O;R3) a potentially large and nonlinear deformation. Typically, one assumes that φ is orientation
preserving, i.e. detDφ(x) > 0 for all x ∈ O, and injective (i.e., no interpenetration of matter occurs).
We postulate the existence of an elastic deformation energyW[φ,O] associated with the deformation φ.
By definition, elastic means thatW solely depends on the Jacobian Dφ of φ. Furthermore, for so-called
hyperelastic materials,W[φ,O] is the integral of an elastic energy density W = W (Dφ), i.e.

W[φ,O] =

∫
O
W (Dφ) dx . (3.2.1)

A fundamental axiom of continuum mechanics is frame indifference, i.e. the invariance of the deforma-
tion energy with respect to rigid body motions. Hence, any coordinate transform x 7→ Qx + b for a
rotation Q ∈ SO(3) and a shift b ∈ R3 does not change the energy, i.e.

W (Dφ) = W (QTDφQ) ∀Q ∈ SO(3) .

A direct consequence is that W only depends on the so-called right Cauchy–Green strain tensor C[φ] =
DφTDφ, which geometrically represents the metric measuring the deformed length in the undeformed
reference configuration. Furthermore, we might assume O to be an isotropic material, i.e. a rotation of
the material before applying a deformation yields the same energy as before, i.e.

W (Dφ) = W (DφQ) ∀Q ∈ SO(3) .

It follows from the Rivlin-Erikson-Theorem [RE55] that the above two conditions lead to the fact that the
energy densityW only depends on the singular values λ1, λ2, λ3 ofDφ, the so-called principal stretches.
Instead of the principal stretches, one can equivalently describe the local deformation using the so-called
invariants of the deformation gradient,

I1 = ‖Dφ‖F =
√
λ2

1 + λ2
2 + λ2

3 ,

I2 = ‖cof Dφ‖F =
√
λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 ,

I3 = detDφ = λ1λ2λ3 ,

where ‖A‖F =
√

tr (ATA) for A ∈ Rd,d and the cofactor matrix is given by cof A = detAA−T for
A ∈ GL(d). Hence there is a function Ŵ : R3 → R with W (Dφ) = Ŵ (I1, I2, I3), where I1, I2, and
I3 can be interpreted as the locally averaged change of an infinitesimal length, area, and volume during
the deformation, respectively.

We shall furthermore assume that isometries, i.e. deformations with DφTDφ = 1, are local minimizers
with W (Dφ) = 0 [Cia88]. Typical energy densities in this class are given by

W (Dφ) = Ŵ (I1, I2, I3) = a1I
p
1 + a2I

q
2 + Γ(I3) , (3.2.2)

1 This will later result in energy densities that do not depend on x ∈ O.
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3.2 A spotlight on physics

for a1, a2 > 0 and a convex function Γ : [0,∞) → R with Γ(I3) → ∞ for I3 → 0 or I3 → ∞. In
this work we focus on p = q = 2 which corresponds to the Mooney–Rivlin model [Cia88]. The built-in
penalization of volume shrinkage, i.e. Ŵ (I1, I2, I3) → ∞ for detDφ → 0, enables us to control local
injectivity. Incorporation of such a nonlinear elastic energy allows to describe large deformations with
strong material and geometric nonlinearities, which cannot be treated by a linear elastic approach.

If we assume the Hessian of the energy density W at the identity to be given by

W,FF (1)(G,G) = λ(trG)2 +
µ

2
tr ((G+GT )2) , (3.2.3)

which can be realized in (3.2.2) for a particular choice of a1, a2, and Γ, then by the ansatz φτ (x) =
x+ τu(x) and a second order Taylor expansion we obtain [RW11b]

W (Dφτ ) = W (1) + τW,F (1)(Du) +
τ2

2
W,FF (1)(Du,Du) +O(τ3)

= 0 + 0 + τ2

(
λ

2
(trDu)2 +

µ

4
tr
((
Du+DuT

)2))
+O(τ3) .

That means for small deformations, the Hessian of the nonlinear elastic energy density W leads to the
typical energy density in linearized, isotropic elasticity

W lin(Dφ) =
λ

2
(tr ε[u])2 + µ tr (ε[u]2) (3.2.4)

for displacements u with u(x) = φ(x)−x and ε[u] = 1
2(Du+DuT ). A particular choice for a nonlinear

elastic energy density satisfying (3.2.3) was introduced in [Wir09] (cf . appendix A.1 of [WBRS11]) as

W (Dφ) =
µ

2
‖Dφ‖2F +

λ

4
(detDφ)2 −

(
µ+

λ

2

)
log detDφ− dµ

2
− λ

4
(3.2.5)

for d = 2, 3.

Remark 3.2.1. The nonlinear elastic density (3.2.5) is invariant with respect to rigid body motions, i.e.
W (Dφ) = 0 iff. φ(x) = Qx + b with Q ∈ SO(3). However, this is true for the linear elastic density
(3.2.4) only in an infinitesimal sense. In detail, W lin is invariant with respect to linearized rigid body
motions, i.e. W lin(Dφ) = 0 iff. φ(x) = Ax+ b with A ∈ R3,3 skew-symmetric.

In elasticity theory one typically considers variational problems minφ(W[φ,O] − F [φ, ∂O]), where F
represents a force acting on (some part of) the boundary ∂O of O. An existence theory for hyperelastic
materials whose corresponding energy density W fulfills certain properties was established by John Ball
[Bal77]. In a slightly different fashion, we will utilize W to define an elastic dissimilarity measure
between shapes. That means, given two shapes SA and SB which are supposed to describe two elastic
materials OA and OB , we aim in minimizing φ 7→ W[φ,SA] subject to the constraint1 φ(SA) = SB .
The dissimilarity measure is then given by (cf . eq. (6) in [RW11b])

delast(SA,SB) = min
φ:φ(SA)=SB

√
W[φ,SA] .

However, delast does not induce a notion of distance on the space of shapes. Indeed, neither a symme-
try property nor the triangle inequality hold in general [RW11b]. Furthermore, the axiom of elasticity
implies that W[φ,SA] does not depend on the path from SA to SB . Since we want to study paths in
shape spaces this so called stated-based elastic concept might not be satisfying. In the following we will
introduce a different physical setup that allows for the notion of paths in shape space. For a detailed
discussion of the differences of the state-based and path-based approach we refer to [RW11b].
1 In practice the hard constraint is realized by a penalty approach.
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3 Preliminaries

Viscous fluidic objects We summarize the physical background on the continuum mechanics of vis-
cous fluid transport and review the fundamental concept of viscous dissipation in a Newtonian fluid. This
summary is based on corresponding sections in [Wir09, WBRS11, RW11b].
In contrast to the elastic model presented above the viscous model for shapes allows for the notion of
a path between two given shapes SA and SB . We regard a path S(t), t ∈ [0, 1], as a time-continuous
deformation of S(0) = SA into S(1) = SB . Here, S(t) is generated by a motion field v(t) : S(t)→ Rd,
which represents the time derivative or the velocity field of the deformation. Formally, if φ : [0, 1] ×
S(0) → Rd describes a deformation path with S(t) = φ(t,S(0)), we have v(t) = φ̇(t, ·) ◦ φ(t, ·)−1 in
the Eulerian description1. Different from above, S(t) is here considered to be made of a viscous mate-
rial. This means, internal friction will occur during the deformation which results in so-called viscous
dissipation, that is, conversion of mechanical energy into heat. The viscous dissipation depends on the
motion field v(t), and will later induce a Riemannian metric on the space of shapes. This viscous flow
model is supposed to capture at least some characteristics of the usually much more complex underlying
physical processes one aims to represent (e.g. plant growth [BFH+13]).

Based on the common continuum assumption one studies the macroscopic behavior of a fluid via gov-
erning partial differential equations which describe the transport of fluid material. Viscosity describes the

x1

x2

x3

σ32

σ31

σ23

σ21
σ12

σ13

internal resistance in a fluid and may be thought of as a macro-
scopic measure of the friction between fluid particles. Mathemati-
cally, the friction is described in terms of the Cauchy stress tensor
σ = (σij)i,j=1,...,d, whose entries describe a force per area element. By
definition, σij is the force component along the ith coordinate direction
acting on the area element with a normal pointing in the jth coordinate
direction (cf . sketch on the right taken from [Wir09]). Hence, the di-
agonal entries of the stress tensor σ refer to normal stresses, e.g. due
to compression, and the off-diagonal entries represent tangential (shear) stresses. The Cauchy stress law
states that due to the preservation of angular momentum the stress tensor σ is symmetric [Cia88].

In a Newtonian fluid the stress tensor is assumed to depend linearly on the velocity gradient Dv. Since
the stress is supposed to vanish for rigid body motions (i.e. rotations and translations) and a rotational
component of the local motion is generated by the antisymmetric part 1

2(Dv − DvT ) of Dv, the stress
only depends on the symmetric part ε[v] = 1

2(Dv + DvT ) of the velocity gradient. If we separate
compressive stresses, reflected by the trace of the velocity gradient, from shear stresses depending solely
on the trace-free part of the velocity gradient, we obtain the representation of an isotropic Newtonian
fluid in matrix form [CM90], i.e.

σ = λ tr (ε[v])1+ 2µ ε[v] .

The physical parameters λ, µ > 0 are denoted Lamé coefficients [Bra07]. The local rate of viscous
dissipation—the rate at which mechanical energy is locally converted into heat due to friction—can now
be computed as

diss[v] =
λ

2
tr (ε[v])2 + µ tr (ε[v]2) . (3.2.6)

This corresponds directly to the mechanical definition of the stress tensor σ as the first variation of the
local dissipation rate with respect to the velocity gradient [WBRS11, RW11b]. Here tr (ε[v]2) measures
the averaged local change of length and tr (ε[v])2 the local change of volume induced by the deformation.
If each point x ∈ S(t) at time t ∈ [0, 1] moves at the velocity v(t, x) the total deformation of S(0) into

1 In contrast to a Lagrangian description, where all quantities (e.g. stresses) are evaluated in an undeformed reference config-
uration, in a Eulerian description we work on the defomed configuration. Hence, the concatenation with the inverse of φ is
needed to obtain a proper Eulerian description of the motion field v.
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3.2 A spotlight on physics

S(t) can be obtained by integrating the velocity field v in time. Then the accumulated global dissipation
of the motion field v in the time interval [0, 1] takes the form

Diss
(

(v(t))t∈[0,1]

)
=

∫ 1

0

∫
S(t)

diss[v(t)] dx dt . (3.2.7)

Later we will seek for a path with prescribed end points S(0) = SA and S(1) = SB , that minimizes its
global dissipation.

Remark 3.2.2. Even though the dissipation rate (3.2.6) looks like the energy density from linearized
elasticity (3.2.4), if the velocity v is replaced by the displacement u, the underlying physics is only related
in the sense that an infinitisimal displacement in the fluid leads to stresses caused by viscous friction, and
these stresses are immediately absorbed via dissipation, which reflects a local heating. This connection
is sometimes referred to as Rayleigh’s paradigm [Ray96], i.e. one derives a viscous dissipation model
from an elastic energy by replacing the elastic strain u ∼ φ− id by strain rates v ∼ φ̇.
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4 Time-discrete geodesic calculus

A starting point of this thesis is the development of a robust interpolation method in the space of (discrete)
shells with direct applications in computer graphics e.g. for morphing or keyframe animation. To this
end, we consider the shape space of (discrete) shells as Riemannian manifold. We aim at combining a
physically sound model of thin shells with a geometric description of locally shortest path, which are
geodesics in the Riemannian framework. Continuous geodesics are minimizers of the so-called path
energy. One way to approximate geodesic paths connecting two points in a generic manifold is via the
minimization of a discretized path energy. Instead of discretizing the underlying flow, the variational
time-discretization proposed by Rumpf and Wirth [WBRS11] is based on the direct minimization of
this discrete path energy subject to the prescribed data given at the initial and the end time. When
applied to the space of viscous fluidic, i.e. volumetric objects, this approach has proven to be be very
stable and robust, and even for very small numbers of time steps one obtains qualitatively good results
[Wir09, WBRS09, WBRS11]. Hence, the initial idea of the present work is to apply the variational time-
discretization to the space of shells in order to compute geodesics, i.e. interpolating paths between two
points in shell space.

Building on the variational time-discretization of geodesic paths, Rumpf and Wirth [RW13] developed a
comprehensive discrete geodesic calculus on the space of viscous fluidic objects and presented in [RW15]
a corresponding complete convergence analysis on general finite- and on certain infinite-dimensional
shape spaces with the structure of a Banach manifold. The generic definitions of several discrete geo-
metric objects, such as exponential map, logarithm and parallel transport, are appropiate to be transferred
directly to other shape spaces. To this end, we apply exactly this discrete geodesic calculus to the space
of shells to obtain useful and robust tools for applications in computer graphics such as extrapolation or
detail transfer.

Rumpf and Wirth [RW15] have already provided a glimpse in the direction of a time-discrete covariant
derivative along a curve via the notion of a discrete connection. Here, we propose a pointwise evaluation
of the time-discrete covariant derivative along a curve by means of the local construction of a so-called
discrete geodesic parallelogram and prove consistency of this definition. The notion of a time-discrete
covariant derivative eventually leads to the definition of a generalized spline energy which can be used to
tackle the multiple interpolation problem—a crucial task in keyframe animation and other related issues
in computer graphics. Although the main application of the geodesic calculus considered in this thesis
is the finite dimensional space of discrete shells, the theoretical results on the spline energy presented in
this chapter are in particular valid in general infinite dimensional manifolds.

This chapter is organized as follows: In Sec. 4.1, we define geodesics and related geometric quantities
in the generic framework of infinite dimensional manifolds. In Sec. 4.2, we review the variational time-
discretization and the corresponding convergence analysis. Finally, in Sec. 4.3, we derive a time-discrete
spline energy and prove consistency of this definition.

Remark 4.0.1. The main ideas as well as the convergence analysis presented in Sec. 4.1 and Sec. 4.2 were
developed by Rumpf and Wirth in a sequence of papers [Wir09, WBRS09, WBRS11, RW13, RW15,
Rum15]. The work on Riemannian splines in Sec. 4.3 is joint work with Martin Rumpf and Benedikt
Wirth and will be presented in a forthcoming paper [HRW16].
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4 Time-discrete geodesic calculus

4.1 Geodesic calculus on a Riemannian manifold

Geodesics are usually defined as curves that transport their velocity vector parallely or equivalently, that
are solutions of the geodesic equation (cf . Sec. 3.1). Both definitions are based on the notion of a co-
variant derivative. Alternatively, one can make use of the characteristic length minimizing properties of
geodesic curves in the sense of Prop. 3.1.23 and Prop. 3.1.24 to come up with an equivalent definition.
Fortunately, these properties literally hold for general manifolds, cf . e.g. Thm. 6.2 in [Lan95, VIII] and
the Corollary thereof. That means one can define geodesics by reparameterizing a minimizer of the
length functional such that it has constant speed. To avoid this reparameterization step as well as the
minimization of the non-convex length functional we make use of the path energy instead. We shall see
that minimizers of this path energy are in fact constant speed geodesics that also minimize the length
functional and fulfill the geodesic equation. Once a notion of geodesics is at hand, one can easily deduce
further geometric quantities, such as exponential map, parallel transport and covariant derivative.

In Sec. 4.1.1, we define geodesic curves on a general Riemannian manifold by a variational formulation.
We import existence and uniqueness results from [RW15] to show that this definition yields well-defined
geodesics. In Sec. 4.1.2, we define a covariant derivative and parallel transport and show that geodesics
defined by the variational framework are actually solutions of the geodesic equation. Finally, we de-
rive the exponential map from the initial value problem given by the geodesic equation, and its inverse
operator, the logarithm.

4.1.1 Path energy and geodesics

Given a smooth path (y(t))t∈[0,1] on a Riemannian manifold (M, g), the length of this path is defined as

L[(y(t))t∈[0,1]] =

∫ 1

0

√
gy(t)(ẏ(t), ẏ(t)) dt . (4.1.1)

Note that the path length is independent of reparameterization. This geometrically nice property leads to
analytical complications when dealing with the existence theory of shortest paths as well as to computa-
tional difficulties when optimizing this non-convex functional. The path energy is defined as

E [(y(t))t∈[0,1]] =

∫ 1

0
gy(t)(ẏ(t), ẏ(t)) dt . (4.1.2)

In contrast to L, the path energy is not independent of reparameterization. A direct application of the
Cauchy-Schwarz inequality shows that

L[(y(t))t∈[0,1]] ≤
√
E [(y(t))t∈[0,1]]

and equality holds if and only if gy(t)(ẏ(t), ẏ(t)) = const. We will see that minimizers of E will have
this constant speed property. Thus, to identify shortest paths for fixed boundary data y(0) = yA and
y(1) = yB with yA, yB ∈ M we will seek for minimizers of the path energy and minimizers will be
paths with constant speed.

Definition 4.1.1 (Geodesic path). For yA, yB ∈ M a minimizer of the path energy among all path
y : [0, 1]→M with y(0) = yA and y(1) = yB is denoted as geodesic path connecting yA and yB .

Rumpf and Wirth have shown in [RW15] that this variational definition is indeed well-defined, i.e. a
minimizer of E exists and is unique under suitable assumptions. We will summarize these theoretical
results here to maintain the self-containedness.
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4.1 Geodesic calculus on a Riemannian manifold

To state existence and uniqueness results from [RW15] we need a precise technical setup. Let V be
a separable, reflexive Banach space that is compactly embedded in a Banach space Y. Let M be the
closure of an open connected subset of V and hence a Banach manifold, potentially with boundary (in
which case we assume the boundary ∂M to be smooth). We assume M to be path-connected. Let
g :M×V ×V→ R be a Riemannian metric, which satisfies the following hypotheses:

(H1)


g is uniformly bounded and V-coercive in the sense c∗‖v‖2V ≤ gy(v, v) ≤ C∗‖v‖2V .

g is continuous in the sense |gy(v, v)− gỹ(v, v)| ≤ β(‖y − ỹ‖Y)‖v‖2V
for a strictly increasing, continuous function β with β(0) = 0.

Hypothesis (H1) is globally fulfilled only for quite special Riemannian manifolds. However, the setup is
also adequate to analyze general, possibly infinite-dimensional manifolds locally, where the linear space
V or its subsetM have to be interpreted as a chart of the considered manifold.

For yA, yB ∈ M, the next theorem states the existence of a connecting path with least energy. The
key point in the proof is the weak lower semi-continuity of the continuous path energy (4.1.2) using the
compact embedding of V into Y.

Theorem 4.1.2 (Existence of continuous geodesics, [RW15]). Let (M, g) be a Riemannian manifold
satisfying assumption (H1). For yA, yB ∈ M there exists a classical geodesic connecting yA and yB ,
i.e. a minimizer of E in the space of all paths (y(t))t∈[0,1] ∈ W 1,2((0, 1);M) with y(0) = yA and
y(1) = yB . In particular, y is Hölder continuous in the V-topology.

As in finite-dimensional Riemannian geometry the shortest geodesic between close points is unique as
stated in the next theorem (cf . also Cor. 5.2 in [Lan95, VIII]).

Theorem 4.1.3 (Uniqueness of short continuous geodesics, [RW15]). Under the assumptions of Theorem
4.1.2, for the metric g being C2(M;V′ ⊗V′)-smooth, classical geodesics are unique locally.

Once we have existence and uniqueness of geodesics, we can define a Riemannian distance of two points
yA, yB ∈M in the usual way, i.e.

dist(yA, yB) = min
y(0)=yA,y(1)=yB

L[(y(t))t∈[0,1]] =
√

min
y(0)=yA,y(1)=yB

E [(y(t))t∈[0,1]] . (4.1.3)

Remark 4.1.4. One can verify the axioms of a metric and show that the induced topology is equivalent
to the V-topology, i.e.

√
c∗‖yB − yA‖V ≤ dist(yA, yB) ≤

√
C∗‖yB − yA‖V.

4.1.2 Covariant derivative and parallel transport

Next, we derive a notion of a covariant derivative along a curve in a general manifold which is e.g. nec-
essary to obtain a concept of parallel transport. To this end, we first revisit the definition and formulation
by means of the Christoffel symbols used in the finite dimensional setup in Sec. 3.1. In particular, we
formulate a coordinate-free representation which can be transferred directly to the infinite dimensional
setup. Consistency is ensured as (i) the finite dimensional case appears as a special case of the general
setup and (ii) geodesics are precisely the solutions of the geodesic equations. For further reading we
refer to [Lan95] as well as to [Rum15].

As a motivation, we first consider a d-dimensional setup (d < ∞) using coordinates as in Sec. 3.1. The
Christoffel symbols were defined in Def. 3.1.11 by ∇XiXj =

∑d
k=1 ΓkijXk. To obtain a coordinate-free

formulation, we first define an operator Γ = Γp : TpM× TpM→ TpM by

Γ(U, V ) =

d∑
i,j=1

uivj∇XiXj =

d∑
i,j,k=1

ui vj ΓkijXk
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and get for tangent vectors U =
∑

i uiXi, V =
∑

j vjXj and W =
∑

k wkXk:

gp(Γ(U, V ),W ) =

d∑
i,j,k,l=1

ui vj wk Γlijgkl . (4.1.4)

On the other hand, from (3.1.6) we get

1

2

(
U(gp(V,W )) + V (gp(W,U))−W (gp(U, V ))

)
=

d∑
i,j,k=1

uivjwk gp(∇XiXj , Xk)︸ ︷︷ ︸
=
∑
l Γlijglk

. (4.1.5)

Comparing (4.1.4) and (4.1.5), we can define Γ implicitly without using coordinates by

gp(Γ(U, V ),W ) =
1

2

(
(Dpg) (V )(U,W ) + (Dpg) (U)(V,W )− (Dpg) (W )(U, V )

)
.

Definition 4.1.5 (Christoffel operator). For p ∈ M the Christoffel operator Γ = Γp is a mapping
Γp : TpM× TpM→ TpM. For U, V ∈ TpM the evaluation Γp(U, V ) is defined implicitly by

gp(Γp(U, V ),W ) =
1

2

(
(Dpg) (V )(U,W ) + (Dpg) (U)(V,W )− (Dpg) (W )(U, V )

)
∀W ∈ TpM .

(4.1.6)

Note that the symmetry of the metric implies the symmetry of the Christoffel operator. Existence of
such an operator is shown in Thm. 4.2 of [Lan95, VIII]. Furthermore, if we assume g to be coercive
(e.g. in the sense of (H1)) existence of Γp can be proved by means of the Riesz representation theo-
rem. Indeed, if (TpM, gp), with TpM = V, is a Hilbert space the mapping R : V → V′ defined by
R(v) : w 7→ gp(v, w) is an isometric isomorphism.

Next, we define a covariant derivative along a curve by means of the Christoffel operator as in Sec. 3.1.
Again, we start in a finite dimensional setup working with coordinates. Using (3.1.5) with the vector
field V (t) =

∑
k vk(t)Xk(γ(t)) along the curve γ : I →M, we get for W =

∑
l wlXl ∈ TpM

gp

(D
dt
V,W

)
=

d∑
k,l=1

(
v̇k +

d∑
i,j=1

Γkij γ̇jvi

)
wlgkl = gp

(
V̇ + Γp(V, γ̇),W

)
, (4.1.7)

where V̇ (t) =
∑

k v̇k(t)Xk(γ(t)) and Γp as in Def. 4.1.5. As above, we make use of (4.1.7) to define a
covariant derivative along a curve without using coordinates:

Definition 4.1.6 (Covariant derivative). Let γ : I → M be a curve and V : I → TM a vector field
along γ. We define the covariant derivative D

dtV of V along γ at p = γ(t) for t ∈ I implicitly by

gγ(t)

(D
dt
V (t),W

)
= gγ(t)

(
V̇ (t) + Γp (V (t), γ̇(t)) ,W

)
∀W ∈ Tγ(t)M . (4.1.8)

Remark 4.1.7. This is exactly the same formulation as in Thm. 3.1 in [Lan95, VIII]. As for the Christoffel
operator one can show existence by means of the Riesz representation theorem if g is coercive.

With a notion of a covariant derivative along a curve we can define parallel transport such as in the finite
dimensional setup (cf . Def. 3.1.15), which is indeed well-defined due to Thm. 3.3/3.4 in [Lan95, VIII]:

Proposition 4.1.8 (Parallel transport). Let γ : I → M be a curve. A vector field V : I → TM along
γ is called parallel if D

dtV (t) = 0 for all t ∈ I . For t0 ∈ I , V0 ∈ Tγ(t0)M, there is a unique parallel
vector field V : I → TM with V (t0) = V0. Furthermore, the map Pγ(t0)→γ(t) : Tγ(t0)M→ Tγ(t)M,
Pγ(t0)→γ(t)V0 = V (t) is a linear isomorphism.
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4.2 Variational time-discretization of the geodesic calculus

For a given vector V0 ∈ Tγ(t0)M one can solve D
dtV (t) = 0 with V (t0) = V0 as an ordinary differential

equation to perform the (unique) parallel transport of V0 along the path. The next theorem states that
geodesics as defined in Def. 4.1.1 are solutions of the geodesic equation (cf . eq. (3.1.7) in Sec. 3.1):

Theorem 4.1.9. If y : [0, 1]→M is a geodesic connecting y(0) and y(1), then D
dt ẏ = 0.

Proof. Consider the Euler–Lagrange equation of the path energy and apply integration by parts to obtain

0 = ∂yE [y](ϑ) =

∫ 1

0
(Dygy)(ϑ)(ẏ, ẏ) + 2gy(ẏ, ϑ̇) dt

=

∫ 1

0
(Dygy)(ϑ)(ẏ, ẏ)− 2(Dygy)(ẏ)(ẏ, ϑ)− 2gy(ÿ, ϑ) dt

for all smooth test vector fields ϑ along the path y. By the fundamental lemma we achieve

0 = gy(ÿ, ϑ) + (Dygy)(ẏ)(ẏ, ϑ)− 1

2
(Dygy)(ϑ)(ẏ, ẏ) = gy(ÿ + Γ(ẏ, ẏ), ϑ) = gy(

D

dt
ẏ, ϑ) . �

In particular, minimizers of the path energy satisfy the constant speed property; cf . Rem. 3.1.10 (ii).

Remark 4.1.10. If V : I → TM is a parallel vector field along a geodesic path y : I → M the angle
α(t) between the velocity field ẏ(t) and V (t) is fixed:

d

dt
cosα(t) =

d

dt

(
gy(V, ẏ)√

g(V, V )
√
g(ẏ, ẏ)

)
=
gy
(
D
dtV, ẏ

)
+ gy

(
V, Ddt ẏ

)√
g(V, V )

√
g(ẏ, ẏ)

= 0 .

Finally, we define the exponential map for a general manifold (cf . Def. 3.1.21):

Definition 4.1.11 (Exponential map). Let y = y(t, p, V ) be the solution of D
dt ẏ(t) = 0 for initial data

y(0) = p and ẏ(0) = V . The (geometric) exponential map expp : TpM = V → M is defined as
expp(V ) = y(1, p, V ).

To see that this definition is well-defined we refer to Prop. 4.2 in [Lan95, IV]. Obviously, we have the
scaling property y(t, p, V ) = expp(tV ), which implies that y(1, p, V ) is well-defined if ‖V ‖ is suffi-
ciently small (cf . Lemma 3.1.20). From the local uniqueness of short geodesic paths we deduce that
there exists δ > 0, such that expp : Bδ(0) → expp(Bδ(0)) is a bijection. In this case, we define
Up = expp(Bδ(0)) to be the normal neighbourhood of p. Hence the notion of an inverse mapping is
locally well-defined (cf . Def. 3.1.22):

Definition 4.1.12 (Logarithm). The inverse operator of the exponential map is called the (geometric)
logarithm logp : Up → TpM, where Up denotes the normal neighbourhood of p.

4.2 Variational time-discretization of the geodesic calculus

In a sequence of papers, Rumpf and Wirth [Wir09, WBRS09, RW13, RW15, Rum15] have introduced a
time-discrete analogon of the continuous geodesic calculus presented in the previous section. The result-
ing time-discrete geodesic calculus has already been applied to several Riemannian manifolds or shape
spaces, e.g. in [HRWW12, HRS+14, BER15, MRSS15, Per15]. In this section, we provide a survey
of the time-discrete geodesic calculus proposed by Rumpf and Wirth and summarize important conver-
gence results that will later be validated numerically on the space of (discrete) shells. As before, we start
with a variational formulation of discrete geodesics, defined via minimizers of a discrete path energy1.
1 Since we do not consider spatial discretization at all in this chapter, we will often omit the prefix ”time” when referring to a
time-discrete object.
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4 Time-discrete geodesic calculus

However, different from the continuous setting, the notion of a discrete geodesic will then serve as the
core ingredient of the entire discrete calculus. Hence, the name geodesic calculus is in particular justified
in the discrete setting.

In the continuous setting the starting point of a geometric calculus on a Riemannian manifold is usually
the definition of a Riemannian metric. However, as we will see, the discrete geodesic calculus is solely
based on the notion of a (squared) Riemannian distance resp. a local approximation thereof. Obviously, a
Riemannian distance is induced by the metric (cf . eq. (4.1.3)). On the other hand, given the Riemannian
distance dist, one can recover the Riemannian metric gp at some point p ∈M by

gp(V,W ) =
1

2
∂2

2 dist2(p, p)(V,W ) , V,W ∈ TpM . (4.2.1)

For many applications, e.g. when dealing with physical shape spaces, it is difficult to define a Riemannian
metric a priori. On the other hand, it is often much easier to come up with the notion of a distance, e.g. by
using a physically sound dissimilarity measure. To account for this circumstance as well as for the fact
that Riemannian distances are in practice hard to compute (as they require solving an optimization prob-
lem), the discrete geodesic calculus is actually based on an approximation of the squared Riemannian
distance which is easy to evaluate and consistent with the metric by definition due to (4.2.1).

4.2.1 Time-discrete path energy

In the following, we denote an ordered set of points Y K = (y0, . . . , yK) in the manifoldM as a time-
discrete K-path. Often we interpret this discrete path as a uniform sampling of a smooth curve y :
[0, 1] → M, i.e. we have yk = y(tk) with tk = kτ for k = 0, . . . ,K where τ = K−1 and K ∈ N
denotes the sample size. Instead of using a straightforward time-discretization of the continuous path
energy (4.1.2) we first consider the following estimates

L[(y(t))t∈[0,1]] ≥
K∑
k=1

dist(yk−1, yk) , E [(y(t))t∈[0,1]] ≥
1

τ

K∑
k=1

dist2(yk−1, yk) , (4.2.2)

where equality holds for geodesic paths due to the constant speed property. The first estimate is straight-
forward, and the second estimate follows with the Cauchy-Schwarz inequality, i.e.

K∑
k=1

dist2(yk−1, yk) ≤
K∑
k=1

(∫ kτ

(k−1)τ

√
gy(t)(ẏ(t), ẏ(t)) dt

)2

≤
K∑
k=1

τ

∫ kτ

(k−1)τ
gy(t)(ẏ(t), ẏ(t)) dt ,

since the expression on the right hand side is exactly τ E [(y(t))t∈[0,1]].

Remark 4.2.1. In the appendix (Lemma A.1.4 resp. A.1.5) we show a lower bound on the rightmost sum
in (4.2.2). In detail, let (y0, . . . , yK) ⊂M be an arbitrary time-discrete K-path. Then we have

dist2(y0, yK) ≤ K
K∑
k=1

dist2(yk−1, yk) ,

with equality iff. there is a geodesic y : [0, 1]→M such that y(kτ) = yk for k = 0, . . . ,K.

The estimate on the path energy in (4.2.2) as well as Rem. 4.2.1 suggest that the sum on the right hand
side might be a reasonable approximation of E . However, as already mentioned in the beginning, the
squared Riemannian distance dist2 is often difficult to compute in practice. Therefore we assume there
is a smooth functionalW :M×M→ R , such that for y, ỹ ∈M

W[y, ỹ] = dist2(y, ỹ) +O(dist3(y, ỹ)) . (4.2.3)
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4.2 Variational time-discretization of the geodesic calculus

Note that W is not required to be symmetric. For g smooth enough, a valid approximation of dist2 is
e.g. given byW[y, ỹ] = 1

2gy(ỹ − y, ỹ − y). In general, we will see later that gy = 1
2W,22[y, y] implies

(4.2.3) for smooth g andW .

We arrive at the following definition of a discrete path energy and a discrete path length (see [RW15]):

Definition 4.2.2 (Discrete length and energy). For a discrete K-path Y K = (y0, . . . , yK) with yk ∈ M
for k = 0, . . . ,K we define the discrete length LK and the discrete energy EK by

LK [Y K ] =
K∑
k=1

√
W[yk−1, yk] , EK [Y K ] = K

K∑
k=1

W[yk−1, yk] . (4.2.4)

Then a discrete geodesic (of order K) is defined as a minimizer of EK [Y K ] for fixed end points y0, yK .

In the remainder of this section we gather important theorems from [RW15], e.g. on the existence and
uniqueness of discrete geodesics (cf . also [Rum15]). These results will provide a solid ground for the
definition of further discrete geometric objects in the next section, which are based on discrete geodesics.
First of all, one needs to introduce a rigorous functional analytic setup. Let W : M×M → R be a
local approximation of the squared Riemannian distance dist2. In detail, it is supposed thatW is weakly
lower semi-continuous and that it satisfies the following hypotheses:

(H2)


There exist ε, C > 0 such that for all y, ỹ ∈M:
dist(y, ỹ) ≤ ε ⇒ |W[y, ỹ]− dist2(y, ỹ)| ≤ Cdist3(y, ỹ)

W is coercive in the senseW[y, ỹ] ≥ γ(dist(y, ỹ))
for a strictly increasing, continuous function γ with γ(0) = 0 and limd→∞ γ(d) =∞.

Theorem 4.2.3 (Existence of discrete geodesics, [RW15]). Given yA, yB ∈ M, there is a discrete
geodesic path (y0, . . . , yK) which minimizes the discrete energy EK over all discrete paths (ỹ0, . . . , ỹK)
with ỹ0 = yA and ỹK = yB .

Theorem 4.2.4 (Convergence of path energy, [RW15]). Under hypothesis (H2) there exists δ > 0 such
that dist(yA, yB) <

√
Kδ implies∣∣∣ min

(y0,...,yK)
y0=yA,yK=yB

EK [(y0, . . . , yK)]− dist2(yA, yB)
∣∣∣ = O(τ)

Theorem 4.2.5 (Equidistribution of points along discrete geodesics, [RW15]). Under hypothesis (H2)
there exists δ > 0 such that if dist(yA, yB) <

√
Kδ, then discrete geodesics satisfy dist(yk−1, yk) ≤ Cτ

for all k = 1, . . . ,K with the constant C > 0 only depending on dist(yA, yB).

Theorem 4.2.6 (Consistency conditions, [RW15]). Unter hypothesis (H1), if W is twice Gâteaux -
differentiable on M×M with bounded second Gâteaux derivative, then W[y, ỹ] = dist2(y, ỹ) +
O(dist3(y, ỹ)) for ỹ close to y ∈ M̊ implies

W[y, y] = 0 , W,2[y, y](V ) = 0 , W,22[y, y](V,W ) = 2gy(V,W )

for any V,W ∈ V. Furthermore,W,1[y, y](V ) = 0 and

W,11[y, y](V,W ) = −W,12[y, y](V,W ) = −W,21[y, y](V,W ) =W,22[y, y](V,W ) .

IfW is even three times Fréchet-differentiable, the implication becomes an equivalence.

Theorem 4.2.7 (Uniqueness of discrete geodesics, [RW15]). Let (H1) and (H2) hold and assume W
to be twice Fréchet-differentiable onM×M. For all yA ∈ M̊ and K ∈ N there exists ε > 0 such
that there exists a unique discrete geodesic (y0, . . . , yK) with y0 = yA and yK = yB for all yB with
‖yA − yB‖V < ε.
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4 Time-discrete geodesic calculus

4.2.2 Time-discrete geometric objects

Let p, q ∈M such that there is a unique geodesic y : [0, 1]→M with y(0) = p and y(1) = q. Then, by
Def. 4.1.12, the logarithm of q with respect to p is the initial velocity ẏ(0) ∈ TpM, i.e. logp(q) = ẏ(0).
The initial velocity ẏ(0) can be approximated by a difference quotient in time,

ẏ(0) =
y(τ)− y(0)

τ
+O(τ) .

Thus, we obtain
τ logp(q) = y(τ)− y(0) +O(τ2) .

This gives rise to a consistent definition of a time-discrete logarithm (see [RW15]):

Definition 4.2.8 (Discrete logarithm). Suppose the discrete geodesic (y0, . . . , yK) is the unique mini-
mizer of the discrete path energy (4.2.4) with y0 = p and yK = q. Then we define the discrete logarithm
( 1
KLOG)

p
(q) = y1 − y0. Note that 1

K is part of the symbol and not a factor.

We consider the difference y1 − y0 as a tangent vector at p = y0. In the special case K = 1 we have
(1

1LOG)
p
(q) = q − p. As in the continuous case, the discrete logarithm can be considered as a repre-

sentation of the nonlinear variation q of p in the (linear) tangent space of displacements1 on p.

In the continuous setting, the exponential map expp maps tangent vectors V ∈ TpM onto the end
point y(1) of the unique geodesic (y(t))t∈[0,1] with y(0) = p and ẏ(0) = V . That means, we have
expp(V ) = y(1) and, via a simple scaling argument, expp (tkV ) = y(tk), for k = 0, . . . ,K, where
tk = kτ and τ = K−1. Let us again consider a discrete geodesic (y0, . . . , yK) with y0 = p and yK = q.
Since V = ( 1

KLOG)
p
(q) = y1 − y0 is the discrete logarithm in the tangent space TpM, we aim at

defining a discrete power k exponential map EXPkp such that

EXPkp(V ) = EXPp(kV ) = yk .

This notation is motivated by the observation that exp(ks) = expk(s) on R or more general matrix
groups. Furthermore, we would like to have the following recursive property, which holds in the contin-
uous setup:

y(tk) = expp(kV ) = expy(tk−2)(2Vk−1) , Vk−1 := logy(tk−2) y(tk−1) , k ≥ 2 . (4.2.5)

That means, once we have defined a discrete version EXP2
p corresponding to expp(2·), we can use the

recursive relation (4.2.5) to define EXPkp for k ≥ 2 by

yk = EXPkp(V1) = EXP2
yk−2

(Vk−1) , Vk−1 = yk−1 − yk−2 , (4.2.6)

for given y0 = p and y1 = y0 + V1, as shown in Fig. 4.1.

y0 = p

V1 y1 y2
yk−2 yk−1

Vk−1

yk

Figure 4.1: A sketch of the polygonal path associated with the computation of EXPkp(V1).

1 Note that these displacements are indeed well-defined, as we assumed thatM embeds into a Banach space.
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4.2 Variational time-discretization of the geodesic calculus

Note that the discrete analogon of Vk−1 is exactly Vk−1 = (1
1LOG)

yk−2
yk−1 = yk−1 − yk−2.

It remains to define a discrete version EXP2
p corresponding to expp(2·). Formally, we have the identity

1
2 logp

(
expp(2V )

)
= V , i.e. we can define EXP2

y0
(y1 − y0) as the root of the function

z 7→ (1
2LOG)

y0
(z)− (y1 − y0)

for given y0, y1 ∈ M. In fact, we are seeking for a third point y2 ∈ M, such that (y0, y1, y2) is a
time-discrete geodesic for K = 2. Using Def. 4.2.2, a necessary condition of this is given by

0 = ∂2W[y0, y1](ψ) + ∂1W[y1, y2](ψ) ∀ψ ∈ V ,

where ∂iW denotes the Gâteaux derivative with respect to the ith argument ofW . Hence we define:

Definition 4.2.9 (Discrete exponential map). For given points y0, y1 ∈ M, V1 = y1 − y0, we define
EXP2

y0
(V1) as the solution of

∂2W[y0, y1](ψ) + ∂1W[y1, y](ψ) = 0 ∀ψ ∈ V ,

and hence EXPky0
(V1) = EXP2

yk−2
(Vk−1) for Vk−1 = yk−1 − yk−2 and k ≥ 2.

Remark 4.2.10. It is straightforward to verify that EXPKp = ( 1
KLOG)

−1

p
as long as the discrete loga-

rithm is invertible. In fact, the Euler–Lagrange equations for (y0, . . . , yK) being a discrete geodesic with
fixed end points y0 and yK are given by the K − 1 nonlinear equations

0 = ∂2W[yk−1, yk](ψ) + ∂1W[yk, yk+1](ψ) ∀ψ ∈ V , k = 1, . . . ,K − 1 , (4.2.7)

which have to be solved simultaneously. On the other hand, if we compute EXPky0
(y1 − y0) for given

y0, y1 ∈M and k = 2, . . . ,K, we get exactly the same system (4.2.7). However, in this case the system
can be solved sequentially.

Finally, we introduce a time-discrete notion of parallel transport along a discrete path as proposed in
[RW15]. In the continuous setting, given a path y : [0, 1] → M and a vector V0 ∈ Ty(0)M, parallel
transport Py(0)→y(τ)V0 of V0 along the path y is defined as the solution of the initial value problem
D
dtV (t) = 0 for t ∈ [0, τ ] and V (0) = V0.
There is a well-known first-order approximation of parallel transport called Schild’s ladder (cf . [EPS72,
KMN00]), which is based on the construction of a sequence of so-called geodesic parallelograms; this
method has been used e.g. by Lorenzi et al. [LAP11] to perform parallel transport of deformations along
time series of images (see also [PL11]). We once more use the notation yk = y(tk), tk = kτ , for samples
of the path y : [0, 1]→M. Given a tangent vector Vk−1 ∈ Tyk−1

M, the approximation Vk ∈ TykM of
the parallely transported vector Pyk−1→ykVk−1 via a geodesic parallelogram is illustrated in Fig. 4.2.
The scheme in Fig. 4.2 can be easily transferred to the time-discrete setup by replacing y by a discrete
path (y0, . . . , yK) and the geodesics that define the geodesic parallelogram by time-discrete geodesics,
e.g. of length 3. Conceptually, we will again replace tangent or velocity vectors V by displacements ζ of
points.

Definition 4.2.11 (Discrete geodesic parallelogram). Let p0, p1, p2 ∈ M. We define p̂ = p̂(p0, p1, p2)
such that (p0, p

c, p2) and (p1, p
c, p̂) are discrete geodesics for some pc ∈M. Then (p0, p1, p2, p̂) defines

a discrete geodesic parallelogram, pc is refered to as center point of the parallelogram.
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M
y(t)

yk−1

yk

ypk−1

ypk
yck•

Vk−1

Vk
•

•

•

•

ypk−1 = expyk−1
(Vk−1)

yck = expypk−1

(
1
2 logypk−1

(yk)
)

ypk = expyk−1

(
2 logyk−1

(yck)
)

Vk = logyk(ypk)

Figure 4.2: A sketch of the parallel transport of Vk−1 ∈ Tyk−1
M from yk−1 to yk along y via Schild’s

ladder. Here, yck is the midpoint of the two diagonals of the geodesic parallogramm, i.e. (ypk−1, y
c
k, yk)

and (yk−1, y
c
k, y

p
k), which are both geodesic curves.

Definition 4.2.12 (Discrete parallel transport). Let (y0, . . . , yK) be a discrete path in M̊ with yk − yk−1

sufficiently small for k = 1, . . . ,K and ζ0 a sufficiently small displacement of y0, given as yp0 = y0 +ζ0.
Then the discrete parallel transport of ζ0 along (y0, . . . , yK) is defined for k = 1, . . . ,K via the iteration

yk−1
yk

ζk−1

ypk−1

yck

ypk

ζk
yck = ypk−1 +

(
(1

2LOG)
ypk−1

(yk)
)
,

ypk = EXP2
yk−1

(yck − yk−1) ,

where ζk = ypk − yk is the transported displacement at yk. We define

PyK ,...,y0(yp0 − y0) = ypK − yK .

The notation is chosen such that PyK ,...,y0PỹK ,...,ỹ0 = PyK ,...,y0,ỹK ,...,ỹ0 .

Remark 4.2.13. In the kth step of the discrete parallel transport the Euler–Lagrange equations to deter-
mine yck and ypk = yk + ζk for given ypk−1 = yk−1 + ζk−1 and discrete path (y0, . . . , yK) are

W,2[ypk−1, y
c
k](ψ) +W,1[yck, yk](ψ) = 0 ∀ψ ∈ V ,

W,2[yk−1, y
c
k](ψ) +W,1[yck, y

p
k](ψ) = 0 ∀ψ ∈ V .

If W is symmetric, these conditions are the same as the Euler–Lagrange equations for inverse parallel
transport, so that P−1

yK ,...,y0
= Py0,...,yK . However, ifW is not symmetric this is not true in general.

In the remainder of this section we gather important theorems from [RW15], which examine the conver-
gence properties of the discrete geometric calculus as the time step size τ = 1

K tends to 0.
First, we state that sequences of successively refined discrete geodesic paths converge to a continuous
geodesic path. To this end, one considers continuous paths (y(t))t∈[0,1] onM which are composed of
shortest geodesic segments. This means, (y(t))t∈[ k−1

K
, k
K

] is a (possibly non-unique) shortest geodesic

path connecting y(k−1
K ) and y( kK ) for all k = 1, . . . ,K. We define an energy ẼK : L2((0, 1);Y)→ R

via

ẼK [(y(t))t∈[0,1]] =

{
EK
[(
y(0), y( 1

K ), . . . , y(K−1
K ), y(1)

)]
, if (y(t))t∈[0,1] is a pw. geodesic path

∞, else
.
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4.2 Variational time-discretization of the geodesic calculus

where EK denotes the discrete path energy in (4.2.4). Based on these notational preliminaries one
obtains the following convergence result:

Theorem 4.2.14 (Γ-convergence of the discrete energy, [RW15]). Assuming (H1) and (H2), the Γ-limit
of ẼK for K →∞ in the L2((0, 1);Y)-topology is E .

We refer to [DGDM83, Bra02] for an introduction to the concept of Γ-convergence. It is a fundamental
implication of the Γ-convergence ẼK → E , that minimizers of ẼK converge to minimizers of E , i.e. one
has actually shown convergence of time-discrete geodesic to continuous geodesics:

Corollary 4.2.15 (Convergence of discrete geodesics, [RW15]). Under (H1) and (H2), any sequence of
minimizers of ẼK contains a C0([0, 1];Y)-convergent subsequence, and the limit is a minimizer of E .

Remark 4.2.16. Taking into account the equivalence of the V topology and the manifold topology men-
tioned in Remark 4.1.4, a similar argument can be given for the piecewise linear interpolation of discrete
geodesics (y0, . . . , yK) instead of piecewise geodesic interpolations.

Note that discrete minimizers of the discrete path length LK are in general unrelated to continuous
geodesics. Let us consider the case M = R2 \ Br, where Br = {x : |x| < r}, and W[y, ỹ] =
‖y − ỹ‖2, as depicted in Fig. 4.3. Then a discrete path (y0, . . . , yK) connecting yA = (−αr, 0) and
yB = (αr, 0), α > 1, that minimizes the time-discrete path energy tend to distribute uniformly along the
connecting curve, as stated in Thm. 4.2.5. If r � dist(yA, yB)/K this is not realizable along a straight
line connecting yA and yB , cf . Fig. 4.3. However, the distribution of points representing a discrete
minimizer of LK is arbitrary, since moving points along the connecting line does not alter the length.

Figure 4.3: In general, minimizers of the discrete path length do not converge to continuous geodesics.

For convergence of discrete logarithm, exponential map, and parallel transport, the following smoothness
hypotheses are required (in addition to (H1) and (H2)):

(H3) The metric g is C2(Y;V′ ⊗V′)-smooth.

(H4) The energyW is C4(M×M;R)-smooth with bounded derivatives.

In [RW15] it is shown that under hypotheses (H1) - (H4) one can expect local uniqueness of (1
2LOG)

and local existence of (EXP2). Moreover, Rumpf and Wirth have proven that all time-discrete geometric
objects introduced above converge to their continuous counterparts:

Theorem 4.2.17 (Convergence of discrete logarithm, [RW15]). Given y, ỹ ∈ M̊, assume that hypothe-
ses (H1) - (H4) hold, that the continuous and discrete geodesics between y, ỹ are unique, and that the
continuous geodesic lies in M̊. Then K( 1

KLOG)
y
ỹ → logy ỹ weakly in V (and thus strongly in Y) as

K →∞.

Theorem 4.2.18 (Existence and convergence of discrete exponential, [RW15]). Let y : [0, 1]→ M̊ be a
smooth geodesic. Under the hypotheses (H1) - (H4), EXPKy(0)(

ẏ(0)
K ) exists for K large enough, and for

τ = 1
K one obtains ∥∥EXPKy(0)

( ẏ(0)
K

)
− y(1)

∥∥
V

= O(τ) .
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4 Time-discrete geodesic calculus

Theorem 4.2.19 (Convergence of discrete parallel transport, [RW15]). Let y : [0, 1]→M be a smooth
path and ζ : [0, 1] → V a parallel vector field along y. For K ∈ N and τ = K−1 we set yk = y(kτ),
k = 0, . . . ,K. Then under the hypotheses (H1) - (H4), we have∥∥∥∥KPyK ,...,y0

(
ζ(0)

K

)
− ζ(1)

∥∥∥∥
V

= O(τ) .

More generally, if the sequence (yk)k only satisfies ‖yk − y(kτ)‖V ≤ ε, k = 0, . . . ,K, we still get∥∥∥∥KPyK ,...,y0

(
ζ(0)

K

)
− ζ(1)

∥∥∥∥
V

= O(τ + ε) .

4.3 Riemannian splines

For two points p0, p1 ∈ M a smooth interpolation y : [0, 1] → M with y(0) = p0 and y(1) = p1

is given by the connecting geodesic path. However, for a sequence 0 = t1 < t2 < . . . < tJ = 1 and
corresponding points p1, . . . , pJ ∈ M, there is in general no geodesic curve y : [0, 1]→M that fulfills
the interpolation constraints, i.e. y(tj) = pj for j = 1, . . . , J . In particular, a curve y satisfying the
interpolation constraints does in general not comply with the geodesic equation D

dt ẏ = 0. For example,
a piecewise geodesic curve connecting p1, . . . , pJ fulfills D

dt ẏ = 0 on each segment (tj , tj+1), j =
1, . . . , J−1, but exhibits discontinuities in ẏ at the interpolation points. Nevertheless, if one is interested
in a curve that on the one hand satisfies the interpolation constraints exactly and on the other hand is as
smooth as possible, one might consider the geodesic equation as a penalty term. This motivation leads
to the functional

F [(y(t))t∈[0,1]] =

∫ 1

0
gy(t)

(
D

dt
ẏ(t),

D

dt
ẏ(t)

)
dt , (4.3.1)

where D
dt denotes the covariant derivative along y as defined by Def. 4.1.6.

In the finite dimensional Euclidean setting, i.e.M = Rd and gp denotes the standard Euclidean product,
the covariant derivative of ẏ is simply given by the second time derivative ÿ, i.e. we have

FEuc[(y(t))t∈[0,1]] =

∫ 1

0
‖ÿ(t)‖2 dt . (4.3.2)

Consider a discretization of the unit interval I = [0, 1] with nodes Ih = {0=z0<z2< . . . <zN =1}. A
spline function of degree k on Ih is a function s ∈ Ck−1(I,Rd) such that s is a polynomial of degree≤ k
on each interval [zn−1, zn], n = 1, . . . , N . The following theorem is often refered to as Schoenberg’s
theorem although it has been proved first by de Boor1:

Theorem 4.3.1 (de Boor, 1963). For 0 = t1 < t2 < . . . < tJ = 1 and p1, . . . , pJ ∈ Rd there is a
unique minimizer y ∈ C2([0, 1],Rd) of FEuc that satisfies the interpolation constraints y(tj) = pj for
j = 1, . . . , J as well as one of the boundary conditions

ÿ(0) = ÿ(1) = 0 , (natural b.c.)

ẏ(0) = v0, ẏ(1) = v1 for given v0, v1 ∈ Rd , or (Hermite b.c.)

y(0) = y(1), ẏ(0) = ẏ(1), ÿ(0) = ÿ(1) . (periodic b.c.)

The minimizer is given by the unique cubic spline, i.e. a spline of degree 3, satisfying the interpolation
constraints and boundary conditions.
1 Actually, Schoenberg cites de Boor’s paper [dB63] when referring to this result in [Sch64b]. For further reading on this we
refer to [Sch73, Sch64a], a simple proof is given e.g. in [DH02, 7.4].
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4.3 Riemannian splines

As (4.3.1) can be seen as a generalization of (4.3.2) to Riemannian manifolds, we refer to F as spline
energy and we denote minimizers of F as Riemannian (cubic) splines.

Remark 4.3.2. We refer to our forthcoming paper [HRW16] for a detailed discussion of existence of such
interpolating splines, which is beyond the scope of this thesis. However, on general manifolds there may
be situations where global minimizers of the spline energy F do not exist. To ensure well-posedness one
can regularize the problem and consider minimizers of the augmented functional y 7→ F [y]+σE [y] with
σ > 0. Here E denotes the path energy as defined in (4.1.2). Under certain additional assumptions on
M and g one can then show existence of minimizers of F + σE (see [HRS+16, Sec. 9] and [HRW16]).
Minimizers of a linear combination of path energy and spline energy are often referred to as splines in
tension, cf . e.g. [Sch66].

4.3.1 Variational time-discretization

In this section, we derive a consistent time-discretization of the spline energy (4.3.1) that fits into the
framework of time-discrete geodesic calculus presented in Sec. 4.2. As a motivation we start taking a
look at the Euclidean setup, i.e.M = Rd. We consider a curve y : [0, 1] → M and for some stepsize
τ = K−1 a uniform sampling yk = y(tk) with tk = kτ for k = 0, . . . ,K. In the following, we focus
on the local configuration around some interior point yk, 0 < k < K. The continuous spline energy is
given by (4.3.2), i.e. the covariant derivative of ẏ is simply the second time derivative ÿ. Approximating
the integrand ‖ÿ(tk)‖2 by a second order finite difference quotient yields

‖ÿ(tk)‖2 ≈
∥∥∥∥2 yk − yk−1 − yk+1

τ2

∥∥∥∥2

= 4τ−4

∥∥∥∥yk − yk−1 + yk+1

2

∥∥∥∥2

.

The key insight is to interprete the local average 1
2(yk−1 + yk+1) as the midpoint of a geodesic in the

Euclidean space connecting yk−1 and yk+1, where a geodesic is given by the straight connecting line.
Replacing the Euclidean metric by a general Riemannian metric, i.e. the squared Euclidean distance
dist2

euc(p, q) = ‖p−q‖2 by the squared Riemannian distance dist2, and the local average by the midpoint
ỹk of a short geodesic connecting yk−1 and yk+1, one obtains

gy(tk)

(
D

dt
ẏ(tk),

D

dt
ẏ(tk)

)
≈ 4τ−4 dist2(yk, ỹk) .

If we finally substitute the squared Riemannian distance by the local approximationW , we arrive at

gy(tk)

(
D

dt
ẏ(tk),

D

dt
ẏ(tk)

)
≈ 4τ−4W[yk, ỹk] , (4.3.3)

ỹk is midpoint of the geodesic connecting yk−1 and yk+1.

Using the simple numerical quadrature
∫ 1

0 f(t) dt ≈ τ
∑K−1

k=1 f(tk) to integrate (4.3.3) we arrive at the
definition of a time-discrete spline energy:

Definition 4.3.3 (Time-discrete spline energy). For K ∈ N let Y K = (y0, . . . , yK) be a discrete K-path
inM. We define the time-discrete spline energy by

FK [Y K ] = 4K3
K−1∑
k=1

W[yk, ỹk] , (4.3.4)

subject to the constraint that (yk−1, ỹk, yk+1) is a discrete geodesic for k = 1, . . . ,K − 1, i.e.

ỹk = arg min
y∈M

(
W[yk−1, y] +W[y, yk+1]

)
, for k = 1, . . . ,K − 1 . (4.3.5)

41



4 Time-discrete geodesic calculus

Remark 4.3.4. Boundedness of the discrete spline energy does not necessarily imply boundedness of the
discrete path energy in general. Indeed, a discrete geodesic has zero discrete spline energy but positive
discrete path energy. As a consequence, minimizing the discrete spline energy might not be a well-posed
problem. However, one can consider the functional FK +σEK instead (cf . Rem. 4.3.2). Again, one can
show existence of discrete minimizers for every σ > 0 subject to the interpolation conditions as well as
the Γ-convergence of FK + σEK to FK + σEK (cf . [HRW16]). In what follows, however, we stick to
FK (without adding the path energy) since we never observed numerical instabilities in practice.

Definition 4.3.5 (Time-discrete spline). For K ∈ N let Y K = (y0, . . . , yK) be a discrete K-path inM.
Let 0 = i1 < i2 < . . . < iJ = K be an index set (J ≥ 2). We say that Y K is a time-discrete spline
interpolating yi1 , . . . , yiJ if it minimizes (4.3.4) while fixing yij for j = 1, . . . , J .

Remark 4.3.6. If J = 2, i.e. we only fix y0 and yK , the time-discrete spline is precisely the time-discrete
geodesic connecting y0 and yK .
Before proving consistency of the time-discrete spline energy, we will comment on the boundary condi-
tions. In the following, we formulate three types of boundary conditions, analogously to the Euclidean
case in Thm. 4.3.1. Therefore we temporarily consider a generalization of Def. 4.3.3 by introducing ghost
points y−1 and yK+1, which are supposed to extend the discrete path (y0, . . . , yK) in both directions. We
derive the boundary conditions in the generalized setting and eventually see that we do not need the ghost
points at all, i.e. end up with Def. 4.3.3 again. The generalized time-discrete spline energy is defined by

F̃K [y0, . . . , yK ] =FK [ y−1, y0, . . . , yK , yK+1 ] = 4K3
K∑
k=0

W[yk, ỹk] ,

s.t. ỹk = arg min
y∈M

(
W[yk−1, y] +W[y, yk+1]

)
, for k = 0, . . . ,K .

Different to Def. 4.3.3 the index in the sum as well as in the constraint equations now runs from k = 0
to k = K. The constraint equations can be expressed as the following necessary conditions which have
to hold for all test functions ψ ∈ V:

[0] 0 = ∂2W[y−1, ỹ0](ψ) + ∂1W[ỹ0, y1](ψ)

[1] 0 = ∂2W[y0, ỹ1](ψ) + ∂1W[ỹ1, y2](ψ)

...

[K − 1] 0 = ∂2W[yK−2, ỹK−1](ψ) + ∂1W[ỹK−1, yK ](ψ)

[K] 0 = ∂2W[yK−1, ỹK ](ψ) + ∂1W[ỹK , yK+1](ψ)

Natural boundary conditions The condition ÿ(0) = 0 resp. ÿ(1) = 0 is given by enforcing ỹ0 := y0

resp. ỹK := yK , i.e. we have W[y0, ỹ0] = 0 resp. W[yK , ỹK ] = 0. Obviously, the summation in F̃K

will then run from k = 1 to k = K−1 again. Furthermore, if we formally define

y−1 := EXP2
y1

(y0 − y1) , yK+1 := EXP2
yK−1

(yK − yK−1) , (4.3.6)

condition [0] and [K] are fulfilled by definition, hence we end up with the setting in Def. 4.3.3.

Hermite boundary conditions Instead of prescribing first derivatives at t = 0 and t = 1 we will
prescribe y1 and yK−1 (note that y0 and yK are always fixed). Again we set ỹ0 := y0 and ỹK := yK and
use (4.3.6) to get back the setting in Def. 4.3.3 (fixing at least y0, y1 and yK−1, yK).

Periodic boundary conditions We set y0 = yK to have a closed curve. In order to ensure higher
regularity we additionally postulate yK+1 := y1 and y−1 := yK−1. Plugging this into condtion [0] and
[K] we see that these two equations coincide, i.e. we have ỹK = ỹ0. Due to the periodic identification
summation runs from k = 0 to k = K−1 and we end up having K conditions for ỹ0, . . . , ỹK−1.
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4.3 Riemannian splines

4.3.2 Consistency of the time-discrete spline energy

In this section we prove consistency for the time-discrete spline energy (4.3.4), which is based on a
quantitative consistency error analysis of the approximation in (4.3.3).
Due to the variational constraint in the definition of FK , we have to ensure that the objects ỹk in (4.3.5),
k = 1, . . . ,K − 1, are indeed well-defined:

Definition 4.3.7 (Admissible path). A discrete path (y0, . . . , yK) is admissible, if ε = 2 maxk ‖yk −
yk−1‖V is small enough, s.t. for each 0<k<K any two points in Bε(yk) = {y ∈M : ‖y − yk‖V < ε}
can be uniquely connected by a discrete geodesic.

Remark 4.3.8. Let y : [0, 1] → M be a curve with yk = y(kτ) for k = 0, . . . ,K and τ = K−1.
Then we have maxk ‖yk − yk−1‖ ≤ τ‖ẏ‖∞. Hence for any ε > 0 there is a K ∈ N such that
maxk ‖yk − yk−1‖V < ε. This means that (y0, . . . , yK) is admissible if K is large enough.
Furthermore it follows directly from Remark 4.3.8:

Proposition 4.3.9. For y ∈ C1([0, 1],M), yk = y(kτ), τ = K−1 and K ∈ N we have

max
k=1,...,K

‖yk − yk−1‖V = O(τ) .

Our main result will be proved at the end of this section:

Theorem 4.3.10. We assume (H1) - (H4) to hold. Let y : [0, 1]→M be a smooth path with yk = y(tk)
for tk = τk, τ = K−1 and K ∈ N. We assume that K is large enough such that (y0, . . . , yK) is
admissible in the sense of Def. 4.3.7. We define ỹk for k = 1, . . . ,K − 1 such that (yk−1, ỹk, yk+1) is a
discrete geodesic. Then

gy(tk)

(D
dt
ẏ(tk),

D

dt
ẏ(tk)

)
= 4K4W[yk, ỹk] +O(τ) .

Using the first order consistency of the numerical quadrature rule
∫ 1

0 f(t) dt = τ
∑K−1

k=1 f(tk) + O(τ)
then results directly in the consistency of the time-discrete spline energy (4.3.4):

Theorem 4.3.11 (Consistency of time-discrete spline energy). We assume (H1) - (H4) to hold. Let
y : [0, 1] → M be a path with yk = y(tk) for tk = τk, τ = K−1 and K ∈ N. We assume that K is
large enough such that (y0, . . . , yK) is admissible in the sense of Def. 4.3.7. Then we have for the spline
energy F defined in (4.3.1) and the discrete spline energy defined in (4.3.4), respectively:∣∣FK [y0, . . . , yK ]−F [(y(t))t∈[0,1]]

∣∣ = O(τ) .

To prove Thm. 4.3.10 we will proceed as follows. In Thm. 4.3.12 we will first introduce a consistent

yk−1 yk+1

yk

ỹk

ŷk
Figure 4.4: Geodesic parallelogram, i.e.
(yk−1, ỹk, yk+1) and (yk, ỹk, ŷk) are dis-
crete geodesics.

approximation of the covariant derivative based on the
geodesic parallelogram construction shown in Fig. 4.4. In
particular, we will see in Cor. 4.3.13 that the geodesic par-
allelogram is actually flat, i.e. all edge lengths are of order
O(τ), whereas the length of the short diagonal connecting yk
and ŷk is of order O(τ2). Then we will show in Thm. 4.3.14
that the evaluation of the covariant derivative in the metric
can be approximated by the (properly scaled) squared dis-
tance of yk and ŷk. Finally, the rather technical Lemma
4.3.16 reveals that this quantity is proportional to the squared
distance of yk and ỹk, where the latter is the geodesic midpoint of the geodesic parallelogram. Then the
consistency statement in Thm. 4.3.10 is a direct consequence.

We start with an approximation of the covariant derivative based on the geodesic parallelogram construc-
tion in Fig. 4.4.
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4 Time-discrete geodesic calculus

Theorem 4.3.12. We assume (H1) - (H4) to hold. Let y : [0, 1] → M be a smooth curve and K ∈ N
large enough such that (y0, . . . , yK) is admissible in the sense of Def. 4.3.7, where yk = y(kτ) for
τ = K−1 and K ∈ N. For 0 < k < K we define ŷk such that (yk−1, yk, yk+1, ŷk) is a discrete geodesic
parallelogram. Then we have ∥∥∥∥Ddtẏ(tk)−K2(ŷk − yk)

∥∥∥∥
V

= O(τ) .

Proof. The proof consists of three parts. First, we consider D
dt ẏ(tk) based on the implicit definition of

the covariant derivative in Def. 4.1.6. Second, we investigate the equations defining the discrete geodesic
parallelogram depicted in Fig. 4.4. The last part combines the first two parts to obtain the final result.
Let us mention that the first two parts of the proof are similar to the proof of Thm. 5.10 in [RW15]. We
fix one tk = kτ and write yk = y(tk) and ẏk = ẏ(tk).

I. Covariant derivative. The evaluation of the covariant derivative D
dtζ along y is defined by Def. 4.1.6:

gyk(( Ddtζ)(tk), ψ) = gyk(ζ̇(tk), ψ) + gyk(Γ(ẏ(tk), ζ(tk)), ψ) , ∀ψ ∈ V . (4.3.7)

The consistency conditions in Thm. 4.2.6 imply gy= 1
2W,22[y, y]. Differentiation yields:

(Dygy)(ψ)(v, w) =
1

2

(
W,221[y, y](v, w, ψ) +W,222[y, y](v, w, ψ)

)
, ψ, v, w ∈ V .

Using this, Def. 4.1.5 of the Christoffel operator Γ : V ×V→ V implies that we have for all ψ ∈ V:

gyk(Γ(ẏk, ẏk), ψ) =1
2 [(Dygyk)(ẏk)(ψ, ẏk) + (Dygy)(ẏk)(ψ, ẏk)− (Dygy)(ψ)(ẏk, ẏk)]

=1
4

[
2W,221[yk, yk](ψ, ẏk, ẏk) + 2W,222[yk, yk](ψ, ẏk, ẏk)

−W,221[yk, yk](ẏk, ẏk, ψ)−W,222[yk, yk](ẏk, ẏk, ψ)
]

=1
4

[
2W,221[yk, yk](ψ, ẏk, ẏk) + W,222[yk, yk](ψ, ẏk, ẏk)−W,221[yk, yk](ẏk, ẏk, ψ)

]
=1

4

[
W,221[yk, yk](ψ, ẏk, ẏk)−W,211[yk, yk](ψ, ẏk, ẏk)

−W,212[yk, yk](ψ, ẏk, ẏk)−W,221[yk, yk](ẏk, ẏk, ψ)
]

=− 1
4

[
W,211[yk, yk](ψ, ẏk, ẏk) +W,221[yk, yk](ẏk, ẏk, ψ)

]
=− 1

4

[
W,112[yk, yk](ẏk, ẏk, ψ) +W,221[yk, yk](ẏk, ẏk, ψ)

]
, (4.3.8)

where we have used (cf . derivation of eq. (5.9) in [RW15]) Schwarz’s theorem and the identity

W,221[y, y] +W,222[y, y] = −W,211[y, y]−W,212[y, y] ,

which is obtained by differentiatingW,11[y, y] =W,22[y, y] = −W,21[y, y] = −W,12[y, y], cf . Thm. 4.2.6.

Next, we insert (4.3.8) and ÿk = ÿ(tk) = −2yk−yk−1−yk+1

τ2 +O(τ2) into (4.3.7), using gy= 1
2W,22[y, y]:

W,22[yk, yk]
(
( Ddt ẏ)(tk), ψ

)
=K2W,22[yk, yk](yk−1 + yk+1 − 2yk, ψ)

− 1
2

(
W,112[yk, yk] +W,221[yk, yk]

)
(ẏk, ẏk, ψ) +O

[
τ‖ψ‖V

]
. (4.3.9)

By the continuity ofW and its derivatives we can move the base point in (4.3.9) from yk to yck and get:

W,22[yck, y
c
k]
(
D
dt ẏ(tk), ψ

)
=K2W,22[yck, y

c
k](yk−1 + yk+1 − 2yk, ψ)

− 1
2

(
W,112[yck, y

c
k] +W,221[yck, y

c
k]
)

(ẏ(tk), ẏ(tk), ψ) (4.3.10)

+O
[ (
‖ Ddt ẏ(tk)‖V + ‖ÿk‖V + ‖ẏk‖2V

)
‖yk − yck‖V ‖ψ‖V + τ‖ψ‖V

]
.
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II. Discrete geodesic parallelogram. Next, we derive equations from the discrete geodesic parallelo-
gram in Fig. 4.4, i.e. we define ŷk and yck such that for all ψ ∈ V

W,2[yk−1, y
c
k](ψ) +W,1[yck, yk+1](ψ) = 0 , (4.3.11)

W,2[yk, y
c
k](ψ) +W,1[yck, ŷk](ψ) = 0 , (4.3.12)

which for the moment we assume to be uniquely solvable. As these are exactly the necessary conditions
for one step of discrete parallel transport via Schild’s ladder, we can write ŷk as

ŷk − yk+1 = Pyk+1,yk(yk−1 − yk) .
As in the proof of Thm. 5.10 in [RW15], we compute Taylor expansions ofW about (yck, y

c
k):

W[yk−1, y
c
k] =

∫ 1

0
(1− s)W,11[yck + s(yk−1 − yck), yck](yk−1 − yck, yk−1 − yck) ds ,

W[yck, yk+1] =

∫ 1

0
(1− s)W,22[yck, y

c
k + s(yk+1 − yck)](yk+1 − yck, yk+1 − yck) ds ,

W[yk, y
c
k] =

∫ 1

0
(1− s)W,11[yck + s(yk − yck), yck](yk − yck, yk − yck) ds ,

W[yck, ŷk] =

∫ 1

0
(1− s)W,22[yck, y

c
k + s(ŷk − yck)](ŷk − yck, ŷk − yck) ds .

Next, we differentiate these expressions with respect to yck, e.g. for the termW[yk, y
c
k] we obtain:

∂yckW[yk, y
c
k](ψ) =

∫ 1

0
(1− s)

(
− 2W,11[yck + s(yk − yck), yck](yk − yck, ψ)

+W,111[yck + s(yk − yck), yck](yk − yck, yk − yck, (1− s)ψ)

+W,112[yck + s(yk − yck), yck](yk − yck, yk − yck, ψ)
)

ds

=

∫ 1

0
(1− s)

(
− 2W,11[yck, y

c
k](yk − yck, ψ)

− 2

∫ 1

0
W,111[yck + rs(yk − yck), yck](yk − yck, ψ, s(yk − yck)) dr

+W,111[yck + s(yk − yck), yck](yk − yck, yk − yck, (1− s)ψ)

+W,112[yck + s(yk − yck), yck](yk − yck, yk − yck, ψ)
)

ds

=− 1 · W,11[yck, y
c
k](yk − yck, ψ)

+

∫ 1

0
(1− s)

∫ 1

0

(
− 2W,111[yck + rs(yk − yck), yck](yk − yck, ψ, s(yk − yck))

+ W,111[yck + s(yk − yck), yck](yk − yck, yk − yck, (1− s)ψ)
)

dr ds

+

∫ 1

0
(1− s)W,112[yck + s(yk − yck), yck](yk − yck, yk − yck, ψ) ds

=− 1 · W,11[yck, y
c
k](yk − yck, ψ)

+

∫ 1

0
(1− s)W,111[yck, y

c
k]((1− 3s)ψ, yk − yck, yk − yck) +O(‖v‖3V ‖ψ‖V) ds

+
1

2
W,112[yck, y

c
k](yk − yck, yk − yck, ψ) +

∫ 1

0
(1− s)O(s ‖yk − yck‖3V ‖ψ‖V) ds

=−W,11[yck, y
c
k](yk − yck, ψ) +

1

2
W,112[yck, y

c
k](yk − yck, yk − yck, ψ)

+O(‖yk − yck‖3V ‖ψ‖V) .
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4 Time-discrete geodesic calculus

Here we made use of the fundamental theorem of calculus, i.e. g(1) = g(0) +
∫ 1

0 g
′(r) dr for a function

g : [0, 1] → R, which was applied to g(s) = W,11[yck + s(yk − yck), yck](yk − yck, ψ). As in [RW15] we
use the fact that for a spatially differentiable trilinear form f we have for 0 ≤ r, s ≤ 1:

−2s f [a, a+ rsv](ψ, v, v) + (1− s) f [a, a+ sv](ψ, v, v) = (1− 3s) f [a, a](ψ, v, v) +O(‖v‖3 ‖ψ‖) ,

which after multiplication with (1 − s) integrates up to O(‖v‖3 ‖ψ‖) since
∫ 1

0 (1 − s)(1 − 3s) ds = 0.
The differentiation of the other three terms obtained by the Taylor expansions above works analogously:

∂yckW[yck, ŷk](ψ) =−W,22[yck, y
c
k](ŷk − yck, ψ)

+
1

2
W,221[yck, y

c
k](ŷk − yck, ŷk − yck, ψ) +O(‖ŷk − yck‖3V ‖ψ‖V) ,

∂yckW[yk−1, y
c
k](ψ) =−W,11[yck, y

c
k](yk−1 − yck, ψ)

+
1

2
W,112[yck, y

c
k](yk−1 − yck, yk−1 − yck, ψ) +O(‖yk−1 − yck‖3V ‖ψ‖V),

∂yckW[yck, yk+1](ψ) =−W,22[yck, y
c
k](yk+1 − yck, ψ)

+
1

2
W,221[yck, y

c
k](yk+1 − yck, yk+1 − yck, ψ) +O(‖yk+1 − yck‖3V ‖ψ‖V).

Next, we insert these four derivatives into (4.3.11) resp. (4.3.12). Then we subtract (4.3.11) from (4.3.12),
useW,11[yck, y

c
k] =W,22[yck, y

c
k] (cf . Thm. 4.2.6) and get:

0 = W,22[yck, y
c
k](yk−yck, ψ)− 1

2
W,112[yck, y

c
k](yk−yck, yk − yck, ψ) +O(‖yk−yck‖3V ‖ψ‖V)

+W,22[yck, y
c
k](ŷk−yck, ψ)− 1

2
W,221[yck, y

c
k](ŷk−yck, ŷk − yck, ψ) +O(‖ŷk−yck‖3V ‖ψ‖V)

−W,22[yck, y
c
k](yk−1−yck, ψ) +

1

2
W,112[yck, y

c
k](yk−1−yck, yk−1−yck, ψ) +O(‖yk−1−yck‖3V ‖ψ‖V)

−W,22[yck, y
c
k](yk+1−yck, ψ) +

1

2
W,221[yck, y

c
k](yk+1−yck, yk+1−yck, ψ) +O(‖yk+1−yck‖3V ‖ψ‖V)

= W,22[yck, y
c
k](yk + ŷk−yk−1−yk+1, ψ)

− 1

2

(
W,112[yck, y

c
k](yk−yck, yk−yck, ψ)−W,112[yck, y

c
k](yk−1−yck, yk−1−yck, ψ)

)
− 1

2

(
W,221[yck, y

c
k](ŷk−yck, ŷk − yck, ψ)−W,221[yck, y

c
k](yk+1−yck, yk+1−yck, ψ)

)
+O

(
(‖yk−yck‖3V + ‖ŷk−yck‖3V + ‖yk−1−yck‖3V + ‖yk+1−yck‖3V) ‖ψ‖V

)
= W,22[yck, y

c
k](yk + ŷk−yk−1 − yk+1, ψ)

− 1

2

(
W,112[yck, y

c
k](yk+yk−1−2yck, yk−yk−1, ψ) +W,221[yck, y

c
k](ŷk+yk+1−2yck, ŷk−yk+1, ψ)

)
+O

(
(‖yk−yck‖3V + ‖ŷk−yck‖3V + ‖yk−1−yck‖3V + ‖yk+1−yck‖3V) ‖ψ‖V

)
. (4.3.13)

In the last step, we have used that for the bilinear, symmetric form (v, w) 7→ F (v, w) we obtain:

F (v − x, v − x)− F (w − x,w − x)

=F (w + v − x, v − x)− F (v + w − x,w − x)− F (w, v − x) + F (v, w − x)

=F (w + v − x, v − w)− F (w,w + v − x) + F (v, v + w − x) + F (w,w)− F (v, v)

=2F (w + v − x, v − w) + F (w,w + v)− F (v, v + w)− F (w.v) + F (v, w)

=F (w + v − 2x, v − w) ,

which was applied for x = yck to F (v, w) = W,112[yck, y
c
k](v, w, ψ) with v = yk and w = yk−1, as well

as to F (v, w) =W,221[yck, y
c
k](v, w, ψ) with v = ŷk and w = yk+1.
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4.3 Riemannian splines

III. Combination. Finally, we add (4.3.10) to K2 · (4.3.13). To this end, we use

ẏ(tk) =
yk+1 − yk

τ
+O(τ) , ẏ(tk) =

yk − yk−1

τ
+O(τ) ,

as well as the consistency with the metric (cf . Thm. 4.2.6), i.e. gyck = 1
2W[yck, y

c
k]:

gyck
(
( Ddt ẏ)(tk), ψ

)
= K2 gyck(ŷk − yk, ψ)

− K2

4

(
W,112[yck, y

c
k](yk−yk−1, yk+yk−1−2yck, ψ)

+W,221[yck, y
c
k](ŷk−yk+1, ŷk+yk+1− 2yck, ψ)

)
− K2

4

(
W,112[yck, y

c
k](yk − yk−1, yk − yk−1, ψ)

+W,221[yck, y
c
k](yk+1 − yk, yk+1 − yk, ψ)

)
+O

( (
‖( Ddt ẏ)(tk)‖V + ‖ÿk‖V + ‖ẏk‖2V

)
‖yk − yck‖V ‖ψ‖V + τ‖ψ‖V

)
+O

(
K2 (‖yk−yck‖3V + ‖ŷk−yck‖3V + ‖yk−1−yck‖3V + ‖yk+1−yck‖3V) ‖ψ‖V

)
.

To estimate theW,112 terms, we consider the bilinear, symmetric formF (v, w) =W,112[yck, y
c
k](v, w, ψ):

F (yk−yk−1, yk+yk−1−2yck) + F (yk − yk−1, yk − yk−1) = F (yk − yk−1, 2yk−2yck)

= O(‖yk − yk−1‖V ‖yk−yck‖V ‖ψ‖V) .

To estimate theW,221 terms, we consider the bilinear, symmetric formF (v, w) =W,221[yck, y
c
k](v, w, ψ):

F (ŷk−yk+1, ŷk+yk+1− 2yck) + F (yk+1 − yk, yk+1 − yk)
=F (ŷk−yk, ŷk+yk+1− 2yck) + F (yk−yk+1, ŷk+yk+1− 2yck) + F (yk − yk+1, yk − yk+1)

=F (ŷk−yk, ŷk+yk+1− 2yck) + F (yk−yk+1, ŷk+ yk − 2yck)

=O
((
‖ŷk−yk‖V (‖ŷk− yck‖V + ‖yk+1− yck‖V) + ‖yk−yk+1‖V (‖ŷk−yck‖V + ‖yk−yck‖V)

)
‖ψ‖V

)
.

Now we insert these estimates using ‖( Ddt ẏ)(tk)‖V, ‖ÿk‖V, ‖ẏk‖V = O(1):

gyck
(
( Ddt ẏ)(tk), ψ

)
= K2 gyck(ŷk − yk, ψ)

+O
(
K2 ‖ŷk−yk‖V (‖ŷk− yck‖V + ‖yk+1− yck‖V) ‖ψ‖V

)
+O

(
K2 ‖yk−yk+1‖V (‖ŷk − yck‖V + ‖yk − yck‖V) ‖ψ‖V

)
+O

(
K2 ‖yk−1 − yk‖V ‖yck − yk‖V ‖ψ‖V

)
+O

(
‖yk − yck‖V ‖ψ‖V + τ‖ψ‖V

)
+O

(
K2 (‖yk−yck‖3V + ‖ŷk−yck‖3V + ‖yk−1−yck‖3V + ‖yk+1−yck‖3V) ‖ψ‖V

)
= K2 gyck(ŷk − yk, ψ) +O

(
K ‖ŷk − yk‖V ‖ψ‖V + τ‖ψ‖V

)
,

where we used that for j ∈ {k − 1, k + 1} we have

‖yj − yk‖V = O(τ) , ‖yj − yck‖V = O(τ) , ‖yj − ŷk‖V = O(τ) .
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4 Time-discrete geodesic calculus

Furthermore, since (yk, y
c
k, ŷk) is a short discrete geodesic, Lemma 4.3.16 below implies:

‖yk − yck‖V + ‖yck − ŷk‖V = O(‖yk − ŷk‖V) = O(τ) ,

which we used in the last step. Using the coercivity of the metric, we finally arrive at:

( Ddt ẏ)(tk) =K2(ŷk − yk) +O(K ‖ŷk − yk‖V + τ) = K2(ŷk − yk) +O(τ) ,

where the last step is due to the fact that ‖( Ddt ẏ)(tk)‖V = O(1). �

Indeed, the geodesic parallelogram is flat:

Corollary 4.3.13. Under the assumptions above we have

‖ŷk − yk‖V = O(τ2) .

Proof : Thm. 4.3.12 implies τ2‖
(
D
dt ẏ
)
yk
‖V = ‖ŷk − yk‖V +O(τ3), where

(
D
dt ẏ
)
yk

= O(1). �

Next, we show that the evaluation of the covariant derivative in the metric can be approximated by the
(properly scaled) squared distance of two opposite points in the geodesic parallelogram (cf . Fig. 4.4):

Theorem 4.3.14. We assume (H1) - (H4) to hold. Let y : [0, 1] → M be a path with yk = y(tk) for
tk = τk, τ = K−1 and K ∈ N. We assume that K is large enough such that (y0, . . . , yK) is admissible
in the sense of Def. 4.3.7. Fr 0< k <K, let (yk−1, yk, yk+1, ŷk) be a discrete geodesic parallogram.
Then

gyk

(
D

dt
ẏ(tk),

D

dt
ẏ(tk)

)
= K4W[yk, ŷk] +O(τ) .

In the proof we make use of the following lemma, which is proved in the appendix (cf . Lemma A.1.1):

Lemma 4.3.15. For y0, y1 ∈M with ‖y0 − y1‖V sufficiently small we get

(i) W[y0, y1] = W[y1, y0] +O(‖y0 − y1‖3V)

(ii) W[y0, y1] = gy1(y0 − y1, y0 − y1) +O(‖y0 − y1‖3V)

= gy0(y0 − y1, y0 − y1) +O(‖y0 − y1‖3V) .

Proof of Thm. 4.3.14: Using Thm. 4.3.12, Corollary 4.3.13 and the boundedness of the metric we get

gyk

(
D

dt
ẏ(tk),

D

dt
ẏ(tk)

)
= K4gyk(ŷk − yk, ŷk − yk) +K2 ‖ŷk − yk‖V︸ ︷︷ ︸

=O(τ2)

O(τ) +O(τ2) .

Using Lemma 4.3.15 and Corollary 4.3.13 we get

W[yk, ŷk] = gyk(ŷk − yk, ŷk − yk) +O(‖ŷk − yk‖3V) = gyk(ŷk − yk, ŷk − yk) +O(τ6) . �

Note that the evaluation of W[yk, ŷk] requires the construction of an entire geodesic parallelogram. In
practice, however, it might be reasonable to avoid computing ŷk explicitly. Fortunately, we can use
W[yk, ỹk] instead, which is a direct consequence of the following equidistribution property of a short
time-discrete geodesic, which is also proved in the appendix (cf . Lemma A.1.2):

Lemma 4.3.16. Let (y0, y1, y2) be a discrete geodesic. Then

(i) W[y0, y2] = 4W[y0, y1] +O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3) ,

(ii) W[y0, y1] =W[y1, y2] +O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3) .
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4.3 Riemannian splines

Note that Lemma 4.3.16 corresponds to an arclength parametrization result for continuous geodesics
(y(t))t∈[0,1] connecting y(0) = y0 and y(1) = y2, where we have for y1 = y(1

2):

dist2(y0, y2) = 4 dist2(y0, y1) = 4 dist2(y1, y2) .

Collecting all results from this section we are finally able to prove our main result in Thm. 4.3.10:

Proof of Thm. 4.3.10: Lemma 4.3.16 and Corollary 4.3.13 imply

W[yk, ŷk] = 4W[yk, ỹk] +O(max{‖yk − ỹk‖V, ‖ŷk − ỹk‖V}3) = 4W[yk, ỹk] +O(τ6) .

Plugging this into Thm. 4.3.14 proves the claim. �

4.3.3 Discussion and an open question

We have presented a consistent time-discretization of the covariant derivative along a curve that leads
to a time-discrete spline energy which is also first-order consistent. The evaluation of the discrete co-
variant derivative is based on the local construction of a discrete geodesic parallelogram. However, due
to Lemma 4.3.15 we can avoid constructing the geodesic parallelogram, i.e. computing the node ŷk
explicitly, when evaluating the discrete spline energy. This is realized by replacing the evaluation of
W[yk, ŷk] by 4W[yk, ỹk]. Nevertheless, we are still dealing with a constrained optimization problem,
since the geodesic midpoint ỹk is defined variationally. In particular, the constraint equations are non-
linear. That means, if the spline energy is optimized within a numerical simulation, e.g. via a gradient
descent scheme, one has to solve several nonlinear optimization problems for each energy or gradient
evaluation1. Moreover, since the constraints contain an optimality condition in terms of W , an overall
numerical optimization of the spline energy by a second-order approach, e.g. by a Newton-type method,
requires second derivatives of the objective functional and hence third derivatives of the functional W ,
which are in practice hard to compute.

Hence, an ultimate goal would be to get rid of the variational constraints and find a closed form of
the time-discrete spline energy (4.3.4). If Fig. 4.4 represents a flat geodesic parallelogram in R2, the
parallelogram law reads

2 ‖yk−1 − yk‖2 + 2 ‖yk − yk+1‖2 = ‖yk−1 − yk+1‖2 + ‖yk − ŷk‖2 ,

which yields a closed formula for ‖yk − ŷk‖2. Although the parallelogram law is only valid in normed
vector spaces, the following proposition quantifies the error when being transferred to a generic manifold,
where the squared Riemannian distance is locally approximated by a functionalW:

Proposition 4.3.17. Let δ > 0 and y ∈ M such that for any two points ya , yb ∈ Bδ(y) there is a
unique discrete geodesic connecting ya and yb. Let (y0, y1, y2, y3) ⊂ Bδ(y) be a discrete geodesic
parallelogram, i.e. there is yc such that (y0, y

c, y2) and (y1, y
c, y3) are discrete geodesics. If ε =

max{‖y0 − y1‖V, ‖y1 − y2‖V} we have

2W[y0, y1] + 2W[y1, y2] =W[y0, y2] +W[y1, y3] +O(ε3) .

1 We will see in Sec. 7.1 that this results in severe efficiency problems in practice.
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4 Time-discrete geodesic calculus

We shall use a result on short time-discrete geodesics which is proved in the appendix (cf . Lemma A.1.3):

Lemma 4.3.18. Let (y0, y1, y2) a discrete geodesic. Then∥∥∥∥y1 −
y0 + y2

2

∥∥∥∥
V

= max{‖y1 − y0‖V, ‖y2 − y1‖V}2 .

Proof of Prop. 4.3.17: From Thm. 4.3.16 (i) and (ii) we know

W[y1, y3] = 4W[y1, y
c] +O(ε3) ,

W[y0, y2] = 4W[y0, y
c] +O(ε3) = 2W[y0, y

c] + 2W[yc, y2] +O(ε3) .

Furthermore, we have

2W[y0, y1] = 2 gy1(y1 − y0, y1 − y0) +O(ε3)

= 2W[y0, y
c] + 2W[yc, y1]− 4 gy1(yc − y0, y

c − y1) +O(ε3) ,

2W[y1, y2] = 2 gy1(y1 − y2, y1 − y2) +O(ε3)

= 2W[y1, y
c] + 2W[yc, y2]− 4 gy1(yc − y2, y

c − y1) +O(ε3) ,

and hence with Lemma 4.3.18 we get

W[y0, y2] +W[y1, y3]− 2W[y0, y1]− 2W[y1, y2]

= 4 gy1(yc − y0, y
c − y1) + 4 gy1(yc − y2, y

c − y1) +O(ε3)

= 8 gy1(yc − y0 + y2

2
, yc − y1) +O(ε3)

= O(‖yc − y0 + y2

2
‖V︸ ︷︷ ︸

=O(ε2)

·‖yc − y1‖V) +O(ε3) . �

We aim at using this result to find another representation of Thm. 4.3.14, i.e. by writing

W[yk, ŷk] = 2W[yk−1, yk] + 2W[yk, yk+1]−W[yk−1, yk+1] +O(τ3)

and deduce a different definition of the time-discrete spline energy without additional constraints, i.e. by

F̃K [y0, . . . , yK ] = 4K3
K−1∑
k=1

(
2W[yk−1, yk] + 2W[yk, yk+1]−W[yk−1, yk+1]

)
. (4.3.14)

However, as W[yk, ŷk] is scaled by K4 in Thm. 4.3.14, we have not been able to derive a consistent
approximation in (4.3.14). Furthermore, (4.3.14) is only ensured to be strictly positive if W obeys the
triangle inequality, which is rarely the case in practice. Indeed, we observe certain terms in the sum in
(4.3.14) to become negative, in particular along flat segments, i.e. where yk does not differ a lot from the
geodesic midpoint of yk−1 and yk+1. Eventually, these negative terms induce numerical instabilities and
artefacts in the solution. Nevertheless, we will see in Sec. 7.1.4 that the minimization of (4.3.14) (subject
to the usual interpolation constraints) can result in reasonable approximations of time-discrete splines in
special cases.
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5 Thin shell modeling

In the previous chapter we introduced a time-discrete geodesic calculus for a generic Riemannian man-
ifoldM which was solely based on a suitable approximation of the squared Riemannian distance, i.e. a
(smooth) functional W : M×M → R. Now we consider the specific case whereM represents the
space of thin elastic shells. Physically, shells are deformable materials in three-dimensional space with
a high ratio from width to thickness, i.e. one of three spatial directions is orders of magnitude smaller
than the other two. Mathematically, these objects are described by compact, regular, embedded surfaces
in R3 which are supposed to represent the material’s middle layer. In the following, we derive a dissim-
ilarity measure on the space of thin shells based on elastic deformations and introduce a suitable spatial
discretization.

We start in Sec. 5.1 with the mathematical modeling of thin shells and deformations thereof which are
built on concepts from 3D elasticity. Given two shells S, S̃ ∈ M and an elastic deformation energy
φ 7→ W[S, φ], a physically sound dissimilarity measure can then be defined via

W[S, S̃] = min
φ:φ(S)=S̃

W[S, φ] . (5.0.1)

In Sec. 5.2 we introduce a spatial discretization of shells based on triangular meshes and define corre-
sponding discrete deformation energies in Sec. 5.3. A particular focus is on the definition of discrete cur-
vature functionals, thus we give a detailed numerical validation of our discrete bending model in Sec. 5.4.

Remark 5.0.1. Foundations of the discrete membrane and bending model have already been discussed
in the author’s diploma thesis [Hee11] and were published partly in [HRWW12]. However, the formal
mathematical derivation, the relation and comparison to other existing bending models and an experi-
mental validation of the proposed discrete shape operator are new contributions of this thesis.

5.1 Physics of thin elastic shells

In this section we derive a physically sound model for thin shells based on concepts from 3D elasticity
(cf . Sec. 3.2). Since the main focus of this work is on the geodesic calculus in the space of discrete shells,
i.e. triangular meshes, we will only give a short and often informal summary of smooth shell theory. This
summary is based on the comprehensive and detailed descriptions found in several works by Ciarlet and
co-workers [Cia00, Cia05, CM08].

5.1.1 Derivation of a two-dimensional shell model

The main objective of shell theory is to predict the stress and the displacement arising in an elastic shell
in response to given forces [CM08]. Such a prediction is made either by solving a system of partial dif-
ferential equations or by minimizing a functional, cf . Sec. 3.2. Formally, the Euler–Lagrange equations
of the variational problem represent a weak formulation of the corresponding differential equations, al-
though different regularity assumptions are made. We will stick to the variational formulation and show
how an elastic shell can be modeled by equations defined on a two-dimensional domain which is an
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5 Thin shell modeling

abstract idealization of the physical shell when its thickness is ”small”. These equations may be viewed
as a simplification of the equations of three-dimensional elasticity, obtained by eliminating some of the
terms of lesser order of magnitude with respect to the thickness of the shell. This simplification is done
by exploiting the special geometry of the shell, and especially, the assumed ”smallness” of the thickness
of the shell.

First, we introduce the mathematical description of the reference configuration of an elastic shell. Let
ω ⊂ R2 be a domain in the plane, δ > 0, and ωδ = ω × (− δ

2 ,
δ
2) ⊂ R3. Let θ : ω → R3 be an

immersion and a (local) parametrization of a regular surface S ⊂ R3, i.e. S = θ(ω). Then the mapping
θδ : ωδ → R3 with

θδ(ξ, z) = θ(ξ) + z (n ◦ θ)(ξ) , ξ = (ξ1, ξ2) ∈ ω , z ∈ (− δ
2 ,

δ
2) , (5.1.1)

is globally injective on ωδ if the immersion θ is globally injective on ω and δ > 0 is small enough
[Cia05]. In this case, the set S̄δ = θδ(ωδ) is defined as the reference configuration of an elastic shell with
thickness δ and midsurface S , cf . Fig. 5.1. The more general case of shells with variable thickness or with
a midsurface described by several charts can also be dealt with. The coordinates (ξ1, ξ2, z) of an arbitrary
point xδ ∈ ωδ are referred to as curvilinear coordinates of the point x̄δ = θδ(xδ) of the reference
configuration of the shell. A shell problem can now be modeled by means of a minimization problem
which is expressed in 3D Cartesian coordinates of a point x̄δ = θδ(xδ) in the reference configuration of
the shell. To this end, a deformation φδ ∈ W 1,2(S̄δ,R3) is characterized by a stored energy functionW
as in (3.2.1), i.e.

W[S̄δ, φδ] =

∫
S̄δ
W (Dφδ) dx̄δ , (5.1.2)

and the functionalW[S̄δ, φδ] is optimized subject to forces and boundary conditions. The natural point
of departure for the two-dimensional approach to shell theory is then to recast this problem in terms
of the curvilinear coordinates xδ = (ξ1, ξ2, z) describing the reference configuration of the same shell
[CM08]. Due to the regularity of θδ this is a simple application of the transformation formula on (5.1.2).
The resulting equations are referred to as the three-dimensional model of the shell problem.

In the two-dimensional approach to shell theory [Cia05], the above minimization problem is replaced
by a (presumably simpler) two-dimensional problem, which is eventually posed over the middle surface
S of the shell. The two-dimensional approach to shell theory yields a variety of different shell models,
which can be classified into two categories [Cia05]:

(i) The first category of models is obtained from the three-dimensional problem formulation by letting
the thickness δ > 0 of the shell go to zero. This can be formulated rigorously by means of
Γ-convergence [DGDM83, Bra02]. Depending on the scaling, boundary conditions and applied
forces one obtains either a so-called membrane shell model [LDR95, LDR96], or a flexual or
bending shell model [FJM02a, FJM02b, FJMM03].

(ii) The second category of models are obtained from the three-dimensional model by restricting the
range of admissible deformations by means of specific a priori assumptions that are supposed to
take into account the smallness of the thickness. For example, the (geometric) Kirchhoff-Love
assumptions [Kir50, Lov88], combined with mechanical assumption by John [Joh65], lead to Koi-
ter’s shell model [Koi66] (see also [RS10]). More general models of this category are of the
Middlin-Reissner type, e.g. the Cosserat model, which does not postulate the Kirchhoff-Love as-
sumption.

In the following, we derive our shell model in the spirit of the first category.
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5.1 Physics of thin elastic shells

5.1.2 Membrane and bending energies

In this section we briefly summarize the main re-
sults of a two-dimensional approach to shell the-
ory derived by means of Γ-convergence1. However,
this will be done in a rather informal and strongly
abridged way, for a comprehensive and detailed dis-
cussion we refer e.g. to [Cia05, CM08] and the ref-
erences below.

S
Sδ

δ

Figure 5.1: Elastic shell Sδ ⊂ R3 with finite
thickness δ > 0 and midsurface S .

Remark 5.1.1. Let us emphasize in particular that we focus on the qualitative understanding of the
rigorous derivations, i.e. we are interested in which objects the limit depends on. These objects will then
be used to define a physically sound dissimilarity measure between two thin shells. Hence we neglect
quantitative aspects, e.g. the detailed shape of limit integrands or values of physical constants in the limit,
as these will later be chosen individually for different applications.

We assume the shell S̄δ ⊂ R3 to be made of a homogeneous hyperelastic material, thus a deformation
φδ : S̄δ → R3 is characterized by the stored energy functional (5.1.2). Furthermore, we postulate that
the material is isotropic (cf . Sec. 3.2), i.e. the corresponding elastic energy density W : R3,3 → R+

satisfies (3.2.3). In particular, the stored energy density is minimized exactly on SO(3). For example,
one can think of a standard St Venant-Kirchhoff material whose corresponding energy density is given
by

W StVK(F ) =
λ

8
(tr (F TF − 1))2 +

µ

4
tr (F TF − 1)2 . (5.1.3)

Note that W StVK(Dφ) = λ
2 (trE)2 + µtrE2, with E = 1

2(DφTDφ − 1), hence W StVK is deduced from
W lin in (3.2.4) by replacing the linearized argument ε[u] by its nonlinear counterpart E.

Membrane model Le Dret and Raoult [LDR95, LDR96] established that the properly scaled three-
dimensional elastic energy (5.1.2) Γ-converges with respect to the weak W 1,p-topology as δ → 0. In
detail, they showed that a subsequence of deformations that minimize 1

δW weakly converges in W 1,p as
δ → 0. The weak limit deformation minimizes a so-called membrane shell energy that is precisely given
by the Γ-limit. The number p > 1 is governed by certain growth properties of the stored energy density
W . These growth conditions are fulfilled by typical energy densities representing isotropic materials,
e.g. by (5.1.3). Furthermore, if the original density W was frame-indifferent, then the limit density
is also frame-indifferent and depends on the metric of the deformed middle surface only [LDR96]. If
additionally W (F ) ≥ W (1) for all F ∈ R3,3, which is always the case in our examples as we assume
W (1) = 0 and W ≥ 0, the corresponding membrane shell energy is constant under compression, i.e.
the shell offers no resistance to crumpling [LDR96]. Although a closed formula for the integrand of the
limit model induced by a St Venant-Kirchhoff material is given in Prop. 16 in [LDR96], we will focus on
the qualitative description according to Rem. 5.1.1.
Indeed, for frame-indifferent and isotropic densities the limit membrane energy can be written as an
integral over the midsurface S whose integrand depends on the principal invariants of the right Cauchy-
Green strain tensor C[φ] = DφTDφ only (cf . Sec. 3.2), where φ : S → R3 is a deformation of the
midsurface S to Sφ = φ(S). In detail, the pointwise linear operator C[φ] measures the distortion of
tangent vectors which are mapped from TpS to Tφ(p)Sφ for some arbitrary point p ∈ S, i.e.

gp(C[φ]V,W ) = gφ(p)(DφV,DφW ) , V,W ∈ TpS . (5.1.4)

1 For an introduction to the concepts of Γ-convergence we refer to [DGDM83, Bra02].
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5 Thin shell modeling

If we assume that a local neighborhood of p and φ(p), respectively, are parametrized over the same
domain ω ⊂ R2 by immersions x, xφ : ω → R3, we can formally write φ = xφ◦x−1. This concatenation
property has been used in [CLR04, LDRS05] to derive a two-dimensional representation of C[φ] ∈ R3,3

by a distortion tensor G[φ] ∈ R2,2; we refer to [Hee11] for details. In particular, we can write

G[φ] = g−1gφ (5.1.5)

with g = DxTDx and gφ = (Dxφ)T (Dxφ) denoting the first fundamental form of the undeformed and
deformed configuration, respectively. Note that G[φ] as well as g and gφ are defined pointwise.
From the considerations above we deduce a membrane shell energy Wmem which is supposed to mea-
sure the dissimilarity in terms of tangential stretching and shearing induced by a deformation φ of the
undeformed (reference) shell S, i.e.

Wmem[S, φ] =

∫
S
Wmem(G[φ]) da . (5.1.6)

We shall make use of the polyconvex density defined in (3.2.5) with d = 2. In particular, we have
Wmem(G[φ]) = Wmem(trG[φ], detG[φ]) as well as Wmem(1) = 0 and dWmem(1) = 0.

Bending model (plate) Now we consider the functional (5.1.2) for a thin plate, i.e. θ = id and n ‖ e3

in (5.1.1). If we set ω = (−1, 1)2 and apply compressive boundary conditions, we have

S̄δ = (−1, 1)2 × (−δ
2
,
δ

2
) , φδ(x)

∣∣∣
x1=±1

= x∓ (a, 0, 0) ,

for some a ∈ (0, 1). The corresponding elastic energy (5.1.2) scales like δ3, i.e. the plate will accommo-
date the boundary conditions by bending while keeping its midsurface unstretched [FJM02b]. However,
as the volume of S̄δ scales like δ the integrand W (Dφδ) approaches zero much faster. That means, since
W is assumed to be minimized exactly on SO(3), the Jacobian Dφδ ∈ R3,3 tends in a certain sense
to SO(3). Friesecke, James and Müller [FJM02b] came up with a rigorous derivation of the thin-plate
limit of three-dimensional nonlinear elasticity theory, not just under the special compressive boundary
conditions considered above but under any boundary condition that does not induce tangential distortion
of the midsurface. As for the derivation of the membrane model, the mathematical setting in which
these results are formulated is that of Γ-convergence. However, due to the scaling mentioned above, for
the derivation of the bending model the limit process of 1

δ3W is considered for δ → 0. Although the
approaches are similar, the bending model is more difficult to derive since the limit functional contains
higher derivatives and one is thus dealing with a singular perturbation problem.

A special case of the convergence result in [FJM02b] is to consider (5.1.2) with an isotropic energy
density fulfilling (3.2.3), i.e. W,FF (1)(G,G) = 2µtr (E2) + λ(trE)2 with E = 1

2(G + GT ). Then
it is shown that 1

δ3W converges in the sense of Γ-convergence with respect to the W 1,2-topology to a
two-dimensional limit functional given by

W0
iso[φ] =

{
1
24

∫
ω

(
2µ tr (h[φ]2) + λµ

µ+λ/2(trh[φ])2
) √

det gφ dξ , on isometries φ : ω → R3

+∞ , otherwise
.

The limiting energy thus depends on the second fundamental form h[φ] = DnTDφ, where φ can be
thought of being a parametrization of the deformed plate φ(ω), i.e. n ‖ (φ,1×φ,2). Note that φ : ω → R3

is an isometry iff. (gφ)ij = φ,i · φ,j = δij , i.e. in particular det gφ = 1.
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5.1 Physics of thin elastic shells

Bending model (shell) More general, the two-dimensional midsurface S ⊂ R3 of the reference con-
figuration S̄δ = {x + z n(x) |x ∈ S, |2z| < δ} is already curved. Under similar assumptions as above,
Friesecke et al. [FJMM03] showed that the scaled energy 1

δ3W converges in the sense of Γ-convergence
with respect to the W 1,2-topology to a two-dimensional limit functional given by

W0[φ] =

{
1
24

∫
S minv∈R3 Q(Srel

φ (x) + v ⊗ n(x)) da , φ ∈ A
+∞ , otherwise

,

with the quadratic form Q(G) = W,FF (1)(G,G) and the admissible set of isometric deformations

A = {φ ∈W 2,2(S,R3) | (Dtanφ)T (Dtanφ) = 1 a.e. on S} .

Here the tangential derivative Dtanφ ∈ R3,2 can be extended to a proper rotation Q(x) = Q[φ](x) ∈
SO(3) if φ is isometric. The two-dimensional limit energy density depends on the relative shape opera-
tor Srel

φ (x) : TxS → TxS defined pointwise by

Srel
φ (x) = S(x)−Q(x)T Sφ(φ(x))Q(x) , (5.1.7)

where S(x) : TxS → TxS and Sφ(y) : TySφ → TySφ are the shape operators on the undeformed
and deformed configuration, respectively, where we have used the notation Sφ = φ(S) and y = φ(x)
for x ∈ S . The relative shape operator is supposed to measure the (pointwise) difference between the
shape operators on S and Sφ, respectively. However, as these operators live on different tangent spaces,
i.e. rotated planes in R3, we must include proper rotations to ensure well-definedness of the pointwise
difference. HenceQ(x) andQ(x)T denote the linear mappings between the two different tangent spaces,
as illustrated in the following diagram:

TxS TxS

Tφ(x)φ(S) Tφ(x)φ(S)

Q(x)

S(x)

Sφ(φ(x))

Q(x)T

The limit bending energy W0[φ] is only finite for deformations φ ∈ A, hence we will assume in
the remainder of this section that we are dealing with isometric deformations. In particular, we have
Q(x) = Dφ(x) ∈ SO(3) and Dφ(x)n(x) = nφ(φ(x)), where nφ denotes the normal on the deformed
surface. To this end, we can think of QT (Sφ ◦ φ)Q as being a pulled-back representation of the shape
operator Sφ on the deformed configuration. This pulled-back linear operator S∗φ : TxS → TxS is then
implicitly defined by

gx
(
S∗φ(x)V,W

)
= hφ(x) (DφV,DφW ) , V,W ∈ TxS , (5.1.8)

where g and h denote the first and second fundamental form, respectively. If we compare (5.1.8) with
(5.1.7) we get Srel

φ = S − S∗φ which coincides with the notation used in [HRWW12, HRS+14].

As for the membrane shell energy we use the analytic results presented above to extract a generic bending
shell energy in the spirit of Rem. 5.1.1 by setting

Wbend[S, φ] =

∫
S
Wbend(S

rel
φ ) da . (5.1.9)
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5 Thin shell modeling

In general, we make use of the density

Wbend(A) = α(trA)2 + (1− α) ‖A‖2F , α ∈ {0, 1} . (5.1.10)

In particular, for α = 1 we recover an adapted form of the Willmore energy measuring differences in
mean curvature, as it was used e.g. in [CLR04, LDRS05] for surface matching. Next, we introduce a
representation srel = srel(ξ) ∈ R2,2 of Srel(x) = Srel(x(ξ)) in the parameter domain defined by

srel = g−1(h− hφ) = s− G[φ]sφ = s− sφ , (5.1.11)

with s, sφ ∈ R2,2 being the matrix representations of the two shape operators in a common reference
domain ω ⊂ R2 (cf . Sec. 3.1). Note that we have G[φ] = 1 since we are dealing with isometric defor-
mations φ. We prove in Lemma A.1.6 in the appendix that for α = 0 we get

Wbend[S, φ] =

∫
S
‖Srel

φ ‖2F da =

∫
ω

tr
(

(s− sφ)2
)√

det g dξ , (5.1.12)

and for α = 1 we get

Wbend[S, φ] =

∫
S

(
trSrel

φ

)2
da =

∫
ω

(
tr (s− sφ)

)2√
det g dξ . (5.1.13)

Note that one can deduce already from (3.1.11) that ‖S‖2F = tr s2 6= tr (sT s) = ‖s‖2F . Hence the
integrand on the right hand side in (5.1.12) is not given by ‖s− sφ‖2F which was used in [Hee11].

Full elastic model Given a surface S ∈ M representing a physical shell with thickness δ > 0 and a
deformation φ : S → R3, a generic elastic deformation energy is given by∫

S
δWmem(G[φ]) + δ3Wbend(S

rel
φ ) da , (5.1.14)

with Wmem(A) = Wmem(trA,detA) as defined in (3.2.5) for d = 2 and Wbend as defined in (5.1.10).
Nevertheless, for convenience we shall consider in the following a rescaled version of (5.1.14), namely

WS [φ] =

∫
S
Wmem(G[φ]) + ηWbend(S

rel
φ ) da , (5.1.15)

where the bending weight η represents the squared thickness of the shell. Note that (5.1.15) is invariant
with respect to rigid body motions by construction, i.e.WS [φ] = 0 and dWS [φ] = 0 if φ(x) = Qx + b
with Q ∈ SO(3) and b ∈ R3. In particular, we have

WS [id] = 0, dWS [id] = 0. (5.1.16)

Remark 5.1.2. Using (5.0.1), we can derive a dissimilarity measureW : M×M → R for two given
shells S, S̃ ∈ M by minimizing (5.1.15) over all deformations satisfying φ(S) = S̃ . However, we do not
discuss whether this definition is actually well-defined, i.e. if there exists such a minimizer. Physically,
one might regard the second shell S̃ as a deformed version of the first shell S, i.e., the corresponding
material of S̃ is just in a deformed configuration compared to its configuration in S. Since every material
point has a well-defined position, one can view this correspondence as a priori information. In this
setup, one can then assume the dissimilarity measureW[S, S̃] to be well-defined. However, we will see
in the next section that the well-posedness of the corresponding discrete dissimilarity measure is trivial
by construction of the discrete shell space.
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5.2 Discrete shells and discrete shell space

5.2 Discrete shells and discrete shell space

The geodesic calculus introduced in chapter 4 is by construction in a time-discrete setup. In the previous
section we derived a thin shell deformation energy that induces a notion of a dissimilarity measure on
the space of shells represented as regular embedded surfaces. In this section we spatially discretize
these surfaces and corresponding energies to be able to actually compute e.g. time-discrete geodesics
in the space of discrete shells. In particular, we will derive a discrete deformation energy that can be
used as dissimilarity measure on this discrete shell space. By the introduction of a spatial discretization
the corresponding Riemannian manifold reduces to a finite dimensional space that can be represented
as a submanifold of Rd for a suitable d � 1. Although there are multiple ways how to discretize an
embedded surface, e.g. by levelset functions or phasefield models, we focus on polyhedral surfaces, or
more precisely, on triangle meshes.

5.2.1 Structure of discrete shells

As mentioned above, we discretize thin shells resp. embedded surfaces by triangle meshes. A triangular
mesh is uniquely determined by its geometry and its connectivity. The geometry is described by the
embedding, i.e. the set of nodal positions of the vertices

N = {Xi ∈ R3 : i = 0, . . . , n− 1} ,

where n ∈ N is the number of nodes of the mesh. We often identify a vertex Xi ∈ N with its global
index i ∈ {0, . . . , n− 1} hence we may also write N = {0, . . . , n− 1}. The connectivity is encoded in
a mapping defined on the set of faces T , i.e.

πT : T → N 3 ,

that assigns each face three vertex indices. If m ∈ N denotes the number of faces in the mesh, we often
identify a face Tj ∈ T with its global index j ∈ {0, . . . ,m−1} and write T = {0, . . . ,m−1}. Moreover,
we might represent a face by its image under πT , i.e. Tj = πT (j) =: (j0, j1, j2) or Tj = (Xj0 , Xj1 , Xj2),
respectively. Note that all further structural properties of the mesh, such as neighboring relationships,
boundary etc., can be derived from T or πT , respectively. In particular, the set of edges

E = {(i, j) ∈ N 2 : ∃k ∈ T : i, j ∈ πT (k)}

is also determined by the mapping πT .

Definition 5.2.1 (Discrete shell). A discrete shell S is given as the collection of a set of nodes N ⊂ R3,
a set of triangles T and possibly a set of edges E . We write S = (N , T ) or S = (N , T , E).

Topology We assume that each mesh is a two-dimensional discrete manifold in the sense of Sec. 3.1
in [DKT08]. That means, that any pair of triangles either shares one edge or one node or that their
intersection is empty. In particular, we do not allow for hanging nodes, i.e. nodes that do not belong to
any face, or degenerated faces, i.e. faces with less than three different nodes.

Local structure As described above, each vertex X = Xi has a global index i ∈ {0, . . . , n − 1}.
Furthermore, as Xi belongs to at least one face T it has an additional local index j ∈ {0, 1, 2} with
respect to T . Analogously, each edge E of a mesh belongs to at least one face and hence it also has a
local index j ∈ {0, 1, 2} with respect to T . Moreover, we make use of the convention that an edge with
local index j (wrt. face T ) connects the nodes with local indices j− 1 and j+ 1 (wrt. face T ), where the
notation is modulo 3, i.e.

Ej = Xj−1 −Xj+1 , j ∈ {0, 1, 2} mod 3 .
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5 Thin shell modeling

That means Ej is opposite Xj in face T , if j is the local index wrt. face T . In the following, it will be
clear from the context if we are referring to the global or local index of a vertex or edge, respectively.

Orientation The order of the local indices of nodes within one face determines the orientation of the
face and hence of the mesh. Since we only consider (approximations of) orientable surfaces we assume
that all local indices are ordered consistently.

Local parametrizations We assume that each discrete shell S is parametrized over a reference or pa-
rameter domain Ω. Yet different from the continuous setting this reference domain is not a connected sub-
set of R2 but rather an abstract collection of multiple reference triangles as it is often used in the context
of subdivision surfaces (cf . [Rei95]). Thus each triangle T ∈ T of S, with T = (X0(T ), X1(T ), X2(T )),
is parametrized over a reference triangle given by the unit triangle

ω :=
(( 0

0

)
,

(
1
0

)
,

(
0
1

))
⊂ R2

via an affine mapping XT : ω → T , which is defined by

XT (ξ) := XT (ξ1, ξ2) := ξ1X1(T ) + ξ2X2(T ) + (1− ξ1 − ξ2)X0(T ) (5.2.1)

for the barycentric coordinates ξ ∈ ω, i.e. ξ = (ξ1, ξ2) with 0 ≤ ξ1, ξ2 ≤ 1 and ξ1 + ξ2 ≤ 1.

Formally, the reference domain is given by Ω = ω × T , a global parametrization via X : (ξ, i) 7→
XTi(ξ). Wherever it is possible, we drop the dependence of the local parametrization X on the face
Tj in the following and write X = XTj . Finally, we define the unit face normal NT on a triangle
T = (X0, X1, X2) by

NT =
(X1 −X0)× (X2 −X0)

‖(X1 −X0)× (X2 −X0)‖
.

5.2.2 Structure of discrete shell space

As pointed out in the previous section a discrete shell is uniquely determined by its geometry and con-
nectivity. Following Kilian et al. [KMP07] we will fix the connectivity and consider the geometry, i.e.
the nodal positions of the vertices, as only degress of freedom.

Definition 5.2.2 (Fixed connectivity constraint). We say that two triangular meshes SA = (NA, TA) and
SB = (NB, TB) are in dense correspondence if there is a 1-to-1-correspondence between all nodes and
all triangles. In particular, we have |NA| = |NB|, |TA| = |TB| and πTA = πTB . A set of triangular
meshes obeys the fixed-connectivity constraint if all elements are pairwise in dense correspondence.

We postulate that the dissimilarity between SA and SB is infinite if SA and SB are not in dense corre-
spondence. Hence we assume that we are dealing with an arbitrary but fixed component of the set of all
triangular meshes, where the component obeys the fixed connectivity constraint. Although this assump-
tion is very restrictive it is widely used in computer graphics [KMP07, FB11, vTSSH15]. There are two
important implications of this assumption:

1. The minimization problem in (5.0.1) is trivial, since for two given discrete shells S, S̃ having the
same connectivity, a piecewise affine deformation Φ : S→ S̃ is uniquely determined.

2. The discrete shell space can be identified with R3n, where n is the number of nodes.

In particular, it follows from the first point that we do not have to care about existence of optimal match-
ing deformations.
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Definition 5.2.3 (Discrete shell space). Given a discrete shell S̄ = (N̄ , T̄ ), the corresponding discrete
shell spaceM[S̄] is defined as an equivalence class, where the equivalence relation is given by the notion
of dense correspondence, i.e.

M[S̄] = {(N , T ) : |N̄ | = |N |, πT̄ = πT } .

If n = |N̄ | we identifyM = M[S̄] = R3n, in particular we drop the dependence on the representive
shell S̄ in the notation.

5.3 Discrete deformation energies

In this section we derive a discrete membrane model and a discrete bending model that reflect the struc-
tural properties of the corresponding continuous models introduced in Sec. 5.1.2. In particular, we in-
troduce a discrete analogon of the (relative) shape operator, which is based on unpublished work by
Wardetzky [War11], cf . also [Hee11].

5.3.1 Discrete membrane model

Let S ⊂ R3 be a regular embedded surface with (local) parametrization x : ω → S and ξ ∈ ω.
Following Def. 3.1.26 we can represent the first fundamental form g at some point x(ξ) by the matrix
gξ = Dx(ξ)TDx(ξ). According to (5.2.1), the local parametrization X of a a discrete shell S is affine,
hence its derivative is constant on each triangle T ∈ S, i.e.

DX|T =

(
∂XT

∂ξ1
,
∂XT

∂ξ2

)
=
[
X1(T )−X0(T )

∣∣∣X2(T )−X0(T )
]
∈ R3,2 .

Hence the definition of a discrete first fundamental form is straightforward:

Definition 5.3.1 (Discrete first fundamental form). For a discrete shell S = (N , T ) the elementwise
constant discrete first fundamental form is defined by

GT = (DX|T )TDX|T ∈ R2,2 , T ∈ T . (5.3.1)

To simplify notation we will often drop the dependence on T and write G = GT . Note that detGT = 0
iff. T has parallel edges, which is not admissible due to the assumption that S is a discrete manifold.
Hence GT is invertible for each T ∈ T .

Next we consider two discrete shells S = (N , T ) and S̃ = (Ñ , T̃ ) that are in dense correspondence.
On the one hand, we have elementwise constant first fundamental forms and a unique correspondence
between all faces, i.e. for each face T ∈ T there is a corresponding face T̃ ∈ T̃ . On the other hand, we
want to make use of the membrane model derived in Sec. 5.1.2 and in particular of the representation of
the distortion tensor (5.1.5). Hence to describe membrane distortions induced by a discrete deformation
Φ : S→ S̃ we arrive at an elementwise constant, discrete distortion tensor

G[Φ]|T = (GT )−1GTΦ
∈ R2,2 , T ∈ T , TΦ = T̃ ∈ T̃ . (5.3.2)

Again using the continuous membrane model in Sec. 5.1.2 and in particular the generic membrane energy
in (5.1.6) we define the discrete membrane energy by

Wmem[S, S̃] =

∫
S
Wmem(G[Φ]) da =

∑
T∈T
|T | ·Wmem(G[Φ]|T ) , S̃ = Φ(S) . (5.3.3)
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Note that a one point quadrature is sufficient as we are dealing with an elementwise constant discrete
distortion tensor. Different from (5.1.6), the discrete membrane energy directly depends on the unde-
formed and deformed discrete shell, since the discrete deformation in uniqely determined, as described
above. For the membrane energy density Wmem we can use exactly the same density as in (5.1.6). In the
applications we make use of an adapted form of the polyconvex density (3.2.5), i.e.

Wmem(G[Φ]|T ) =
µ

2
trG[Φ]|T +

λ

4
detG[Φ]|T −

(
µ

2
+
λ

4

)
log detG[Φ]|T − µ−

λ

4
.

Note that trG[Φ]|T controls the local change of length, i.e. the change of edge lengths, whereas detG[Φ]|T
controls the local change of volume, i.e. the change of triangle volumes. In particular, the density grows
quadratically for detG|TΦ

→∞ but due to the log-term it grows even faster for detG|TΦ
→ 0. This pre-

vents a local interpenetration of matter, i.e. the degeneration of triangles. Finally, we have Wmem(1) = 0
and dWmem(1) = 0 for the identity matrix 1 ∈ R2,2.

5.3.2 Discrete shape operator

In the previous section we have derived a matrix representation G ∈ R2,2 of the discrete distortion tensor
that lives in the reference domain. Furthermore, G = G[Φ]|T is constant on each triangle T . Hence we
aim at defining a matrix representation of a discrete shape operator B that also lives in the reference do-
main and is elementwise constant, i.e. we haveB = BT ∈ R2,2. If we make use of (3.1.10) we can write
BT = G−1

T HT and as GT has been defined in Def. 5.3.1 we just have to provide a matrix representation
H = HT ∈ R2,2 of a discrete second fundamental form that is constant on faces.

Let T ∈ T be an arbitrary triangle of a discrete shell S with a local parametrization X = XT as defined
in (5.2.1). Note that we have

∂X

∂ξ1
= X1 −X0 = E2 ,

∂X

∂ξ2
= X2 −X0 = −E1 . (5.3.4)

Plugging this into (3.1.9) yields for the entries of H = HT :

H11 =
〈
dN(E2), E2

〉
R3

H12 = −
〈
dN(E2), E1

〉
R3

H21 = −
〈
dN(E1), E2

〉
R3

H22 =
〈
dN(E1), E1

〉
R3

Using concepts from discrete differential geometry we associate the discrete normal field N on S with
edges (cf . [GGRZ06, DKT08]). More precisely, for an edge E ∈ S the corresponding edge normal NE

lives at the edge midpoint and is defined as the normalized sum of the unit face normals belonging to the
two adjacent faces. For boundary edges, we take the respective triangle normal. With normals associated
to edge midpoints, the (discrete) 1-form dN acts on line segments connecting these midpoints1. For
a triangle T with edges E0, E1, E2 we denote the corresponding edge normals by N0, N1, N2 and the
connecting line segments by Eij , i.e. Eij connects the midpoint of Ei with that of Ej , cf . Fig. 5.2. In
particular, we have the vector identity Ek = −2Eij , where k is the complementary index to i and j in
T . Using this notation, the fundamental theorem of calculus implies

dN(Ek) = −2 dN(Eij) = −2

∫
Eij

dN = −2 (Nj −Ni) = 2 (Ni −Nj) . (5.3.5)

1 A continuous 1-form ω on a manifoldM is a mapping with ω(p) ∈ T ∗pM for all p ∈ M, where T ∗pM is the dual space
of TpM. Continuous 1-forms are naturally evaluated as integrals along piecewise differentiable curves γ : [a, b] →M. An
important example is given by ω = df , where f :M→ R is a differentiable function. Here we have

∫
γ
ω = f(b)−f(a). The

concept of Discrete Exterior Calculus (DEC) aims at deriving a consistent theory of discrete forms on discrete manifolds, i.e.
polygonal surfaces with certain properties. Analogously to the continuous setup, discrete 1-forms (e.g. given as a differential
of a discrete function on a discrete manifold) are evaluated as integrals along discrete curves, i.e. polygonal chains. For further
information and a comprehensice introduction on DEC we refer to [Hir03, DHLM05, DKT08].

60



5.3 Discrete deformation energies

We can use (5.3.5) to simplify the entries of H = HT further, i.e.

H11 = 〈dN(E2), E2〉 = 2 〈N0 −N1, E2〉 = 2 〈N0, E2〉+ 2 〈N1, E0〉
H12 = −〈dN(E2), E1〉 = −2 〈N0 −N1, E1〉 = 2 〈N0,−E1〉 = 2 〈N0, E2〉
H21 = −〈dN(E1), E2〉 = −2 〈N2 −N0, E2〉 = 2 〈N0, E2〉
H22 = 〈dN(E1), E1〉 = 2 〈N2 −N0, E1〉 = 2 〈N0, E2〉+ 2 〈N2, E1〉

where we have used 〈Ni, Ei〉 = 0 and E0 + E1 + E2 = 0. Hence we get the representation

H = HT = 2
2∑
i=0

〈Ni, Ei−1〉Mi ,

with a basis (M0,M1,M2) of symmetric 2× 2 - matrices given by

M0 =

(
1 1
1 1

)
, M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
.

In the following, we will interprete the terms 〈Ni, Ei−1〉 geometrically. We refer to the height in T with
base Ei by hi, the neighboring triangle is denoted by Ti, i.e. T ∩Ti = Ei, cf . Fig. 5.2. Then the angle αi
at Ei between T and Ti is given by two times the angle between hi and Ni, since Ni is the angle bisector
of αi by definition. We further use hi = −Ei−1 + βEi for some β ∈ R and obtain

cos
αi
2

= 〈Ni,
hi
|hi|
〉 = − 1

|hi|
〈Ni, Ei−1〉 + β 〈Ni, Ei〉︸ ︷︷ ︸

=0

.

Since aT := |T | = 1
2 |hi| |Ei| we have 〈Ni, Ei−1〉 = −2 aT

|Ei| cos αi2 , hence

HT = −4 aT

2∑
i=0

cos αi2
|Ei|

Mi = −4 aT

2∑
i=0

cos π+θi
2

|Ei|
Mi , (5.3.6)

where θi denotes the dihedral angle at edge Ei, i.e. the angle between the face normals of T and Ti.

Xi

Xj

Xk

Ei

Ej
Ek

Ni

Nj
Nk

Ei−1 Ei

Tihi

Ni

αiT

Figure 5.2: Support of discrete shape operator (left) and geometric interpretation of coefficients (right).

Finally, using (5.3.1), (5.3.6) and (3.1.10), we get a matrix representation of our discrete shape operator

BT = G−1
T HT ∈ R2,2 . (5.3.7)

Since N is the outer unit normal field we want to have positive curvature for convex shapes. Indeed,
convex shapes have dihedral angles 0 < θ < π, hence − cos π+θ

2 > 0.
Remark 5.3.2. In the appendix A.2 we derive a formula for the embedded discrete shape operator. This
representation coincides with the one proposed in eq. (15) in [HRWW12].
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5 Thin shell modeling

5.3.3 Discrete bending model

Having a notion of a discrete shape operator given by (5.3.7) at hand, we can translate the general
representation of a bending energy given in (5.1.9) (with the density (5.1.10) and α ∈ {0, 1}) directly
into the discrete setup. Setting α = 0, as in (5.1.12), we can define a discrete bending energy via

Wbend[S, S̃] =
∑
T∈T

aT · tr
(

(BT −BΦ(T ))
2
)
, S̃ = Φ(S) , (5.3.8)

with aT = |T | as above. Alternatively, by choosing α = 1, as in (5.1.13), we can derive a discrete
version of the Willmore energy:

W̃bend[S, S̃] =
∑
T∈T

aT ·
(

tr (BT −BΦ(T ))
)2
, S̃ = Φ(S) . (5.3.9)

Note that a one point quadrature is again sufficient as we are integrating over an elementwise constant
density. In the remainder of this section we investigate another definition of a discrete Willmore energy
and derive a representation that corresponds to a non-conforming FEM approach. Furthermore, after
some simplifications, we obtain the Discrete Shells bending model [GHDS03] as a special case.

First of all, we derive a representation of discrete mean curvature. Let T ∈ S be an arbitrary triangle
of the discrete shell S. Analogously to the continous setting, the discrete mean curvature is defined as
trBT , hence it is also constant on faces. From (5.3.7) we knowBT = G−1

T HT . Using (5.3.1) and (5.3.4)
we get

G−1
T =

1

detGT

(
|E1|2 〈E1, E2〉
〈E1, E2〉 |E2|2

)
and hence, since detGT = 4 a2

T , we have

tr (G−1
T M0) =

1

detGT

(
|E1|2 + |E2|2 + 2 〈E1, E2〉

)
=
|E0|
4 a2

T

tr (G−1
T M1) =

1

detGT
(|E1|2) =

|E1|
4 a2

T

tr (G−1
T M2) =

1

detGT
(|E2|2) =

|E2|
4 a2

T

which implies

trBT = tr (G−1
T HT ) = −

2∑
i=0

cos(π+θi
2 )

aT
|Ei| . (5.3.10)

Now we consider the discrete mean curvature functional which can be written as a sum over edges:∫
S

trB da =
∑
T∈T

aT · trBT =
∑
T∈T

2∑
i=0

− cos

(
π + θi

2

)
|Ei| = −2

∑
E∈E

cos

(
π + θE

2

)
|E| .

We introduce an area dE ∈ R corresponding to an edge E, such that |S| =
∑

T∈T aT =
∑

E∈E dE ; a
suitable choice is given e.g. by dE = 1

3(Ti + Tj) if E = Ti ∩ Tj , cf . Fig. 5.3. Furthermore, we make use
of the notation lE = |E|. Then we rewrite the discrete mean curvature functional by introducing a mean
curvature density at edges: ∫

S
trB da =

∑
E∈E

dE ·

(
−2 cos(π+θE

2 )

dE
lE

)
.
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5.3 Discrete deformation energies

In the spirit of [MDSB02] an approximative discrete Willmore energy can be deduced by squaring the
mean curvature edge density, i.e.

∫
S
(trB)2 da ≈

∑
E∈E

dE ·

(
−2 cos(π+θE

2 )

dE
lE

)2

=
∑
E∈E

4 cos2(π+θE
2 )

dE
l2E . (5.3.11)

Remark 5.3.3. Wardetzky et al. [WBH+07] present a discretization of the Willmore functional using
the non-conforming Crouzeix-Raviart element. The corresponding discrete Willmore energy (i.e. eq. (7)
in [WBH+07]) coincides exactly with the right hand side of (5.3.11). This underlines the fact that
models derived by principles of Discrete Differential Geometry often correspond to non-conforming
FEM approaches.

Now we further simplify (5.3.11) to derive the Discrete Shells bending model proposed in [GHDS03]. A
Taylor expansion of the function f(θ) = −2 cos θ+π2 about θ = 0 yields f(θ) = θ + O(θ3). Let S be a
reference shell, i.e. the undeformed configuration. If we assume that we have an isometric1 deformation
Φ : S→ R3, i.e. lΦ(E) = lE and dΦ(E) = dE , we obtain up to higher order terms∫

S
tr (B −BΦ ◦ Φ) da =

∑
E∈E

dE

(
θE − θΦ(E)

dE
lE

)
.

Again in the spirit of [MDSB02], one arrives at the Discrete Shells bending model by squaring the
discrete density, i.e.

WDS
bend[S, S̃] =

∑
E∈E

(θE − θΦ(E))
2

dE
l2E , S̃ = Φ(S) . (5.3.12)

Intuitively, WDS
bend can be considered as a simplification of (5.3.9). Although (5.3.12) coincides exactly

with the Discrete Shells bending energy introduced in [GHDS03], the authors in [GHDS03] derive their
discrete bending energy by using results from [CSM03].

αE

E

Figure 5.3: Support of the Discrete Shells bending energy [GHDS03]; the dihedral angle θE = αE − π
at an edge E is defined as the angle between adjacent triangle normals, where αE is the angle between
the two faces. The darker region represents the area dE associated with E.

1 When deriving (discrete) bending models, one typically assumes to deal with inextensible materials which are characterized by
mostly isometric deformations, cf . e.g. [GHDS03, BWH+06]. This corresponds to the analytic results presented in Sec. 5.1.2,
where bending modes are of higher order and hence only decisive when the present deformation is (almost) isometric.
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5 Thin shell modeling

5.4 Numerical validation of discrete curvature functionals

In this section we validate our discrete shape operator and corresponding discrete curvature quantities
empirically. Recall, that the mean curvature is defined as the trace of the shape operator.

What can be expected? In their work on discrete minimal surfaces Pinkall and Polthier [PP93] intro-
duced the nowadays well-established cotangent formula that provides a discrete representation of the
(integrated) mean curvature vector sitting at a vertex of the mesh (cf . also [Dzi88, Dzi91, DMSB99]).
Their formula is derived from the discretization of the Dirichlet energy by linear FEM and employs the
fact that the Laplace-Beltrami operator of the embedding represents the mean curvature vector. Follow-
ing these lines, Wardetzky and co-workers [War06, War08, HPW06] established a convergence analysis
for the discrete mean curvature vector in this integrated (functional) setup and show that there is in gen-
eral no convergence for the corresponding pointwise mean curvature vector on general meshes. Indeed,
pointwise convergence of curvatures cannot be expected in general: If normals could be approximated to
orderO(h2) then curvatures (corresponding to normal derivatives) could be approximated to orderO(h).
However, unless one imposes extra assumptions on the underlying discrete data, normals are in general
only known to order O(h). In [HPW06] the authors provide conditions for convergence of polyhedral
surfaces and their discrete geometric properties to smooth surfaces embedded in R3 in an appropriately
chosen norm. For instance, it is shown that so-called totally normal convergence, i.e. convergence of
surfaces in Hausdorff distance together with convergence of their normals in L∞, suffices to ensure con-
vergence of curvature operators, e.g. the mean curvature vector, in the H−1 norm, i.e. in an integrated
or weak sense. Due to the famous Schwarz lantern example it is obvious that convergence of surfaces
in Hausdorff distance is in general not sufficient and a notion of normal convergence is indeed required.
Our empirical validation underlines these results as we observe convergence only in an integrated sense.

We validate our discrete shape operator and corresponding discrete curvature quantities on a discretiza-
tion of the standard torus S = S(a, b) ⊂ R3 with radii 0 < a < b, i.e. we use b = 1 and a = 0.2 in all
examples below. The torus is parametrized by some parametrization X : Ω = [0, 2π]2 → R3 with

X(u, v) =

 (b+ a cos v) cosu
(b+ a cos v) sinu

a sin v

 , (u, v) ∈ Ω . (5.4.1)

Hence v parametrizes the inner circle of radius a and u parametrizes the outer circle with radius b.
Furthermore, for the principal curvatures κ1, κ2 we have the expressions

κ1(u, v) = κ1(X(u, v)) =
1

a
, κ2(u, v) = κ2(X(u, v)) =

cos v

b+ a cos v
, (u, v) ∈ Ω ,

as well as
√

det g(u, v) = a (b+a cos v). In this section we denote the mean curvature by h = κ1 +κ2.

We consider different tesselations of Ω, see Fig. 5.4. Let S ⊂ R3 be the discrete shell representing
an approximation of the corresponding embedding, i.e. for a triangle t ⊂ Ω with nodes (uk, vk) ∈ Ω,
k = 0, 1, 2 the corresponding triangle T ⊂ S has nodes X(uk, vk) ∈ S, k = 0, 1, 2. We define the
curvature functional C(A) and the Willmore functionalW(A), respectively, for some area A ⊂ Ω by

Cκ(A) =

∫
A
κ(u, v)

√
det g(u, v) dudv , Wκ(A) =

∫
A
h(u, v)2

√
det g(u, v) dudv ,

for κ ∈ {κ1, κ2, h}, where h = κ1 + κ2 denotes the mean curvature. Note that Cκ(A) andWκ(A) can
be computed explicitly.
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Energy based on our triangle-averaged shape operator The discrete curvature functional C(A) for
some area A ⊂ S is defined by

Cour
κ (A) =

∫
A
κdx =

∑
T∈A

aT κT ,

Wour
κ (A) =

∫
A

tr (B)2 dx =
∑
T∈A

aT h
2
T ,

where κT is induced by the elementwise constant discrete shape operator BT as defined in (5.3.7). That
means κT denotes the eigenvalues, i.e. the principal curvatures, or the mean curvature hT = tr (BT ),
respectively.

Hinge energy The integrated curvature measures derived in [CSM03] were used in [GHDS03] to in-
troduce a simple hinge-based bending energy, cf . Sec. 5.3.3. For comparison we will consider

CDS
h (S) =

∑
E∈E

θE lE , WDS
h (S) =

∑
E∈E

θ2
E

dE
l2E ,

where CDS
h is obtained by Cour

h by a Taylor expansion, cf . Sec. 5.3.3, and WDS
h corresponds to the Discrete

Shells bending energy as in (5.3.12).

Cotangent formula vertex energy A notion of discrete mean curvature can be derived by FEM dis-
cretizations of the Laplace-Beltrami operator, which leads to the well-established cotangent formula
[PP93, DMSB99]. Let {φi}1≤i≤n denote the standard piecewise linear FEM basis (i.e. hat functions)
which are defined by φi(Xj) = δij and linear interpolation on triangles. The mass matrix M ∈ Rn,n is
defined by Mij =

∫
φiφj dx and the stiffness matrix L ∈ Rn,n by Lij =

∫
∇φi · ∇φj dx. Then one can

write

Lij =
1

2
(cotαij + cotβij) , for i ∼ j , Lii =

∑
j∼i

Lij ,

where j ∼ i means that Xi and Xj share one edge E = (i, j) and αij and βij denote the vertex angles
opposite to the edge (i, j) in the two triangles adjacent to (i, j). The integrated mean curvature vector
associated with a vertex Xi ∈ S ⊂ R3n is hence given by∫

S
hNφi dx = (LS)i =

1

2

∑
j∼i

(cotαij + cotβij)(Xj −Xi) .

If one uses a lumped mass matrix, i.e. a diagonal matrix with diagonal entries ai equal to the ith row sum
of M , one can deduce a mean curvature vector hiNi ∈ R3 associated with vertex Xi and furthermore a
notion of mean curvature hi = ‖hiNi‖ by

hcot
i = ‖hiNi‖ = ‖(M−1LS)i‖ =

1

2ai

∥∥∥∥∥∥
∑
j∼i

(cotαij + cotβij)(Xj −Xi)

∥∥∥∥∥∥ .
In general, ai can be any area associated with the nodeXi, see [MDSB02] for several possible definitions.
Based on the findings above one defines

Ccot
h (S) =

1

2

∑
i∈N

∥∥∥∑
j∼i

(cotαij + cotβij)(Xj −Xi)
∥∥∥ ,

Wcot
h (S) =

∑
i∈N

ai

∥∥∥ 1

2ai

∑
j∼i

(cotαij + cotβij)(Xj −Xi)
∥∥∥2
.
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5 Thin shell modeling

Note that the representation of the approximative Willmore energies Wh coincides with the different
energies considered in [GGRZ06].

To prescribe the nodal positions on the torus we discretize Ω = [0, 2π]2 by a regular grid

Ωδ = {(iδu, jδv) : 0 ≤ i ≤M, 0 ≤ j ≤ N}

with gridsizes δu = 2πM−1 and δv = 2πN−1 for integers M,N > 0. In the default setting we want
to obtain a triangulation of the torus with aspect ratio about 1 for all triangles. To this end we postulate
aM = bN , if not stated otherwise. As we have chosen a = 0.2 and b = 1 in the torus parametrization
(5.4.1), we get M = b/aN = 5N .
We might add noise to the grid, i.e. we distort the gridpoints by setting ((i + σi(β))δu, (j + σj(β))δv),
where σ(β) is a random number in (−β, β). Since we add noise in the parameter domain it is always
guaranteed that we are dealing with inscribed approximations, i.e. all nodes of the discrete shell lie on
the (continuous) embedded torus. Hence this kind of distortion is referred to as tangential distortion resp.
tangential noise in the following.

Figure 5.4: Tesselations (with valences): regular (6), criss-cross (4+8), equilateral (6) and mixed (4-8)
from left to right. Here we have used M = N = 10 and periodic boundary.

The set of nodal positions of Ωδ is triangulated in four different manners, as depicted in Fig. 5.4. In
detail, we make use of a

• regular tesselation: all triangles are right-angled and all vertices have valence 6,

• criss-cross tesselation: all triangles are right-angled and vertices have either valence 4 or 8,

• equilateral tesselation: all triangles are equilateral and all vertices have valence 6,

• mixed tesselation: all triangles are right-angled and vertices have valences between 4 and 8.

Of course, the property of right-angled and equilateral triangles is lost as soon as one applies tangen-
tial distortion to the regular grid Ωδ. The equilateral tesselation is also known as Schwartz lantern, if
X : Ω → R3 is the parametrization of a cylinder. In particular, if M/N2 > c for a constant c > 0 and
M,N → ∞ the area (resp. the normals) of the discrete shell does not converge to the area (resp. the
normals) of the continuous cylinder. The same phenomenon applies for the torus.

Our numerical convergence tests suggest that the eigenvalues of the elementwise constant, discrete shape
operator B = BT , i.e. the principal curvatures κ1, κ1, and therefore the mean curvature h = trB =
κ1 + κ2, converge weakly to their continuous counterparts (cf . Fig. 5.5). Indeed, for all four tesselations
and for κ ∈ {κ1, κ2, h} we have

εour
loc = max

t⊂Ω

∣∣∣∣Cκ(t)− Cour
κ (X(t))

Cκ(t)

∣∣∣∣→ 0 , if M,N →∞ ,
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Figure 5.5: Maximum local error εour
loc for integrated eigenvalues (blue and violet) as well as trace (red)

of discrete shape operator. Left to right: Regular, criss-cross, equilateral and mixed tesselation of torus
(M = 5N ); dotted lines with tangential noise (β = 0.5).

even if one applies a substantial amount of tangential noise (up to β = 0.5). Note that for β > 0.5
triangles are no longer guaranteed to be non-degenerated as gridpoints might overlap.
This represents the common results on convergence analysis of discrete curvatures as reported e.g. in
[CSM03, HPW06], where one has shown convergence only in an integrated (i.e. weak) sense. For com-
parison, we also consider the relative error of the mean curvature functional, i.e.

ε♦ =

∣∣∣∣∣Ch(Ω)− C♦h (S)

Ch(Ω)

∣∣∣∣∣
for all models ♦ ∈ {our,DS, cot}. In Fig. 5.6 we see that ε♦ → 0 if the number of vertices, which is of
order O(M · N) = O(N2), goes to infinity. This result holds for all four different tesselations and for
tangential noise (up to β = 0.5).
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Figure 5.6: Relative error in mean curvature functional ε♦ with increasing number of vertices. Discrete
shape operator (red), hinge energy (violet) and cotangent formula (blue); no tangential noise (solid
lines) vs. tangential noise (β = 0.5, dotted lines). Left to right: Regular, criss-cross, equilateral and
mixed tesselation of torus (M = 5N ).

Furthermore, the empirical (weak) convergence still holds if we deviate from the condition M = 5N ,
which corresponds to a moderate aspect ratio. Indeed, if we choose M = 50N resp. M = N/2, which
results in a very high aspect ratio, we still observe ε♦ → 0 asM,N →∞ for all models and for different
tesselations, as shown in Fig. 5.7 resp. Fig. 5.8 (solid lines). If we additionally add tangential noise (Fig.
5.7 and Fig. 5.8, dotted lines) our energy and the hinge based energy outperfrom the energy based on the
cotangent formula (if M = N/2).

Finally, we show by some further numerical experiments that one cannot aspect (strong) convergence
of mean curvature in L2 or even in L∞ in general. First, we consider the L2-error of discrete mean
curvatures κ ∈ {κ1, κ2, h} induced by our discrete shape operator B = BT , with T = X(t) for some
t ⊂ Ω, i.e.

εour
L2 =

∑
t⊂Ω

∫
t
(κ(u, v)− κX(t))

2
√

det g(u, v) dudv .

Fig. 5.9 reveals numerical convergence for κ ∈ {κ1, κ2, h} and for all four different tesselations in the
absence of tangential noise (solid lines). However, this is probably due to the fact that we have used very
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Figure 5.7: Relative error in mean curvature functional ε♦ with increasing number of vertices. Discrete
shape operator (red), hinge energy (violet) and cotangent formula (blue). Left to right: Regular, criss-
cross, equilateral and mixed tesselation of torus (M = 0.5N ), dotted line with tangential noise (β =
0.5), as depicted in bottom row.
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Figure 5.8: Relative error in mean curvature functional ε♦ with increasing number of vertices. Discrete
shape operator (red), hinge energy (violet) and cotangent formula (blue). Left to right: Regular, criss-
cross, equilateral and mixed tesselation of torus (M = 50N ), dotted line with tangential noise (β = 0.5),
as depicted in bottom row.

regular tesselations, which is emphasized by the failure of convergence already for very little tangential
noise (Fig. 5.9, dotted lines). This reproduces the results in the form of counterexamples given e.g. in
[HPW06].
The same behaviour can be observed if one computes the relative error of the discrete Willmore func-
tional, i.e.

ε♦W =

∣∣∣∣∣Wh(Ω)−W♦h (S)

Wh(Ω)

∣∣∣∣∣ ,
as shown in Fig. 5.10. Again, in the absence of tangential noise we observe numerical convergence for
all three models (solid lines). However, the convergence fails already for very little tangential distortion
(dotted lines). Here we have used the torus (equilateral tesselation, M = 5N ) as well as an inscribed
approximation of the unit sphere (cf . Fig. 5.10, right).
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Figure 5.9: L2-error for eigenvalues (blue and violet) as well as trace (red) of discrete shape operator
with increasing number of vertices, subject to no tangential noise (solid) and tangential noise (β = 0.1,
dashed). Left to right: Regular, criss-cross, equilateral and mixed tesselation of torus.
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Figure 5.10: Relative error ε♦W for Willmore energy with increasing number of vertices based on discrete
shape operator (red), hinge energy (violet) and cotan formula (blue). Computations were performed on
torus (left; equilateral, M = 5N ) and unit sphere (right) and with different amount of tangential noise,
i.e. β = 0 (solid), β = 0.1 (loosely dashed), β = 0.25 (densely dashed). The relative error for the hinge
energy is less than 3%.

The failure of convergence, or less dramatically the dependence on the mesh, has also been studied in
[GGRZ06]. In detail, Grinspun et al. [GGRZ06] investigate several different notions of discrete mean
curvature, including the three models considered here. In particular, they propose an extended and im-
proved version of our discrete shape operator, that is not based on edge normals defined as averaged
triangle normals, cf . Sec. 5.3.2. Indeed, one can admit the angle of rotation of an edge normal NE about
the edge E as an additional degree of freedom, whereas this angle is prescribed in our definition. Allow-
ing these additional degrees of freedom induces a discrete shape operator and a notion of discrete mean
curvature, respectively, that seems to result in a consistent approximation of the Willmore functional.
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6 Time-discrete geodesic calculus in the space of
discrete shells

Based on the work by Rumpf and Wirth [Wir09, WBRS11, RW15], we have presented a comprehensive
time-discrete geodesic calculus for generic Riemannian manifolds in chapter 4. In particular, this calcu-
lus is built on a dissimilarity measure that is supposed to approximate the squared Riemannian distance
locally. Furthermore, we have deduced a physically sound dissimilarity measure for the space of shells
given by the combination of a membrane energy and a bending energy in chapter 5. While the former one
was easy to translate to a spatially discretized setting, the spatial discretization of the latter one required
a non-conforming approach and incorporates ideas from Discrete Differential Geometry.
In this chapter we apply the time-discrete geodesic calculus to the space of discrete shells represented
as triangle meshes with fixed connectivity. The dissimilarity measure, i.e. the core ingredient of the
calculus, is precisely given by the sum of the discrete membrane and the discrete bending energy. Time-
discrete geodesics are then obtained by transferring the notion of the discrete path energy to the discrete
shell space. The definition of further discrete geometric objects are obtained analogously.

The chapter is organized as follows. In Sec. 6.1 we comment on the physical interpretation of the varia-
tional time-discretization, i.e. the optimization of the time-discrete path energy, which is built on elastic
energies. Additionally, we prove that the Hessian of generic elastic shell energies induces indeed a
Riemannian metric on the space of shells. In Sec. 6.2 we show applications of time-discrete geodesic
calculus in the space of discrete shells, e.g. for shape interpolation and extrapolation and for detail trans-
fer. In particular, we investigate the convergence behaviour empirically, which has been predicted by
analytical results in Sec. 4.2.2. We report on several issues concerning an efficient implementation and
optimization in Sec. 6.3 and give a final discussion as well as an outlook for future work in Sec. 6.4.

To keep this section self-contained, we state the definition of time-discrete geodesics in shell space:

Definition 6.0.1 (Time-discrete geodesic in the space of shells). Given two shells SA and SB we refer to
the minimizer (S0,S1, . . . ,SK) of the time-discrete path energy

EK [S0, . . . ,SK ] = K
K∑
k=1

W[Sk−1,Sk] , W[S, S̃] = min
φ:φ(S)=S̃

WS [φ] , (6.0.1)

with S0 = SA and SK = SB as a time-discrete geodesic, whereWS has been defined in (5.1.15).

We refer to Rem. 5.1.2 for a comment on the well-definedness ofW[S, S̃]. Next, we recall the discrete
deformation energies derived in Sec. 5.3 to define a dissimilarity measure on the space of discrete shells:

Definition 6.0.2 (Discrete energies). Given two discrete shells S = (N , T , E) and S̃ = (Ñ , T̃ , Ẽ) that
are in dense correspondence, i.e. there is a unique affine deformation Φ with S̃ = Φ(S). The discrete
deformation energy W = WS[Φ] = W[S, S̃] is defined by

W[S, S̃] = Wmem[S, S̃] + ηWbend[S, S̃] ,
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6 Time-discrete geodesic calculus in the space of discrete shells

where the bending weight η = δ2 represents the squared thickness of the shell. The discrete membrane
energy and the discrete bending energy, respectively, are given by

Wmem[S, S̃] =
∑
T∈T

aT ·Wmem(G[Φ]|T ) ,

Wbend[S, S̃] =
∑
T∈T

aT ·Wbend(BT −BΦ(T )) ,

where G[Φ] ∈ R2,2 denotes the discrete distortion tensor defined in (5.3.2) and B ∈ R2,2 the matrix
representation of the discrete shape operator defined in (5.3.7). The membrane density Wmem and the
bending density Wbend, respectively, are defined as

Wmem(A) =
µ

2
trA+

λ

4
detA−

(
µ+

λ

2

)
log detA− µ− λ

4
,

Wbend(A) = α(trA)2 + (1− α) tr (A2) , α ∈ {0, 1} .

For α = 1, a simplification leads to the Discrete Shells bending energy [GHDS03], cf . Sec. 5.3.3, i.e.

WDS
bend[S, S̃] =

∑
E∈E

(θE − θΦ(E))
2

dE
l2E .

In analogy to Def. 6.0.1 this leads to the notion of time-discrete geodesics in the space of discrete shells:

Definition 6.0.3 (Time-discrete geodesic in the space of discrete shells). Given two discrete shells
SA,SB ∈ M = R3n we refer to the minimizer (S0,S1, . . . ,SK) of the time-discrete path energy

EK [S0, . . . ,SK ] = K
K∑
k=1

W[Sk−1,Sk] , (6.0.2)

with S0 = SA and SK = SB , as a time-discrete geodesic.

The variational formulation of the time-discrete geodesics leads to the following necessary optimality
conditions:

0 = ∂SkEK [S0, . . . ,SK ] , k = 1, . . . ,K − 1 ,

⇐⇒ 0 = ∂2W[Sk−1,Sk] + ∂1W[Sk,Sk+1] , k = 1, . . . ,K − 1 , (6.0.3)

where ∂iW refers to the variation with respect to the ith argument of W. Note that for a functional
F = F [X] we make use of the notation

0 = ∂XF [X] :⇔ 0 =
d

dt
(F [X + tV ])

∣∣∣
t=0
∀V ∈ X ,

where the test directions V live in a suitable test space X , which is simply X = R3n if we consider
variations of discrete shell energies. To compute time-discrete geodesics we have to solve the system of
nonlinear equations (6.0.3) simultaneously, where we fix the two end shapes S0 and SK .
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6.1 Physics and geometry

6.1 Physics and geometry

In the previous chapter we have introduced elastic energies induced by a thin shell deformation. Here
we discuss the connection to a viscous dissipation model, cf . Sec. 3.2. While nonlinear elasticity is
based on the stored potential energy of reversible deformations, viscous dissipation models depend on
irreversible energy conversion into heat during a deformation. Despite this conceptual difference, a
viscous deformation may be seen as the limit of many infinitesimally small elastic deformations with
subsequent stress relaxation [Wir09]. The coupling of both concepts is the motivation of the variational
time-discretization from a physical point of view. Furthermore, it leads to a physical justification of
deformation paths based on consecutive elastic deformations despite the fundamental axiom of elasticity
which prevents the notion of paths. In particular, this resulting formulation coincides with Rayleigh’s
paradigm [Ray96], where the dissipation density is given by the second derivative of an elastic energy
density at the identity. According to this, we eventually show that the Hessian of the (discrete) elastic
energy defined above induce a well-defined Riemannian metric on the space of (discrete) shells.

6.1.1 Elastic vs. viscous formulation

Here we report on an interpretation of the variational time-discretization of geodesics from a physical
point of view (see [Wir09, WBRS09, WBRS11, RW11b] for details). The framework of elastic defor-
mations does not provide a natural notion of paths between two shapes: due to the fundamental axiom
of elasticity, the state and energy of an elastically deformed object is completely independent of the path
along which this final configuration was reached. Moreover, a nonlinear elastic deformation energy is
in general neither symmetric nor does it satisfy the triangle inequality, hence it will not induce a metric
distance1.

A physically different concept is the approach of viscous deformations (cf . Sec. 3.2). To this end, the
distance between two shapes is based on viscous dissipation, i.e. the conversion of energy into heat due
to internal friction between particles, induced by the deformation of one into the other.
From a physical point of view, shells are three-dimensional materials which are only described mathe-
matically by a two-dimensional surface. Hence the viscous dissipation model (cf . Sec. 3.2) can also be
applied to the space of shellsM. Let S be a smooth surface embedded into R3 and let Sδ denote the
corresponding material around S , where δ denotes a scale parameter that reflects the physical thickness
of the shell. Consider now a family (ψt)0≤t≤1 : Sδ → R3 of diffeomorphisms with ψ0 = Id. Then
ψt generates a deformation path ψt(Sδ) of an initial shell Sδ. If we suppose that shells were made of a
viscous material, then such a deformation would lead to viscous friction within the shell’s volume. The
density of this viscous friction—which represents precisely the viscous dissipation—can be described
as a quadratic function diss[vt] = diss(ε[vt]) of the symmetrized gradient ε[vt] of the corresponding
Eulerian flow field vt = ψ̇t ◦ ψ−1

t . For instance, in a Newtonian fluid, the local dissipation rate reads

diss[v] =
λ

2
(tr (ε[v]))2 + µtr ((ε[v])2) ,

as seen in Sec. 3.2. This approach imposes a Riemannian structure onM where the metric g at a point
Sδ is given by the viscous dissipation rate

gSδ(v, v) =

∫
Sδ

diss[v] dx . (6.1.1)

1 Nevertheless, the elastic setup is particularly appropriate when we are interested in unidirectional comparisons of a number of
shapes with one single distinguished shape, for instance when computing an elastic average of a whole set of input shapes as
it will be done in Sec. 7.3.
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6 Time-discrete geodesic calculus in the space of discrete shells

Here the velocity field v represents a tangent vector at Sδ. This leads to a natural setting to find (optimal)
paths between shapes, i.e. geodesics with respect to the metric (6.1.1), by minimizing

E [(ψt)0≤t≤1] =

∫ 1

0

∫
ψt(Sδ)

diss[vt] dx dt , (6.1.2)

which represents exactly the path energy. Furthermore, a distance between any two shapes is then defined
as the minimum path length of a connecting geodesic, which in particular fulfills characteristic properties
such as symmetry and triangle inequality.

The missing concepts of paths—and hence the lack of measurable path length—in the elasticity-based
shape space has the effect that the shape space is in general not metrisable. Moreover, an elastic defor-
mation energy is neither symmetric nor does it satisfy the triangle inequality. Both properties only hold
in the limit of infinitesimal deformations, the regime of linearized elasticity, where the elastic energy
is essentially quadratic. However, this fact provides a hint to the connection between the elastic and
the viscous perspective: a viscous deformation may be seen as the limit of many infinitesimally small
elastic deformations with subsequent stress relaxation. This relation describes the physical motivation
of the variational time-discretization of geodesic paths in an elastic shape space, where a geodesic is
discretized by minimizing a sum of elastic energies between consecutive shapes along a time-discrete
path, cf . Def. 6.0.1. To this end, we illustrate in the following that the resulting discrete geodesics are
indeed a consistent approximation within a viscous dissipation model (cf . [Wir09]). In particular, one
can recover the viscous fluid model for vanishing time step size. Additionally, this connection recovers
Rayleigh’s paradigm [Ray96], where one derives viscous dissipation models from elastic energies by
replacing elastic strains by strain rates.

We make use of the notation Sδk = ψtk(Sδ) with tk = kτ for k = 0, . . . ,K and τ = K−1. More-
over, let φk : Sδk−1 → Sδk be a matching deformation and WSδk−1

[φk] =
∫
Sδk−1

W (Dφk) dx the cor-
responding elastic energy. It has been shown in [Wir09, Sec.6.2.3], that the time-discrete path energy
EK = K

∑K
k=1WSδk−1

[φk] is consistent, i.e. it turns into the time-continuous dissipation functional

Diss[(vt)0≤t≤1] =

∫ 1

0

∫
ψt(Sδ)

1

2
λ(tr ε[vt])

2 + µtr (ε[vt]
2) dx dt , (6.1.3)

for K →∞. We set vk = 1
τ (φk − id) and apply a second order Taylor expansion:

W (Dφk) = W (1+ τDvk) = W (1) + τW,A(1) : Dvk +
τ2

2
W,AA(1)Dvk : Dvk +O(τ3) .

Note that the energy density W attains its minimum 0 at the identity, hence W,A(1) = 0. Furthermore,
the rigid body motion invariance of W implies W,AA(1)A = 0 for all skew-symmetric matrices A ∈
Rd×d and thus W,AA(1)Dv : Dv = W,AA(1)ε[v] : ε[v]. According to Sec. 3.2 we may now choose the
deformation energy density W in such a way that we obtain

W,AA(1)ε[v] : ε[v] = λ(tr ε[v])2 + 2µtr (ε[v]2)

for given parameters λ and µ. Collecting the results above we finally obtain

EK = K
K∑
k=1

∫
Sδk−1

W (Dφk) dx =

(
K

K∑
k=1

∫
Sδk−1

τ2

2
W,AA(1)Dvk : Dvk dx

)
+O(τ) ,

i.e. in the limit K → ∞ (i.e. τ → 0) we recover the desired dissipation integral (6.1.3). Furthermore,
the resulting Riemannian metric, given by the dissipation rate (6.1.1), is associated with the Hessian of
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6.1 Physics and geometry

the nonlinear deformation energy. This representation coincides with Rayleigh’s formulation [Ray96],
where the dissipation density is given by the second derivative of an elastic energy density at the identity.

Hence one may conclude that the variational time-discretization is indeed consistent with the time-
continuous viscous dissipation model of geodesic paths. The total energy dissipation (6.1.3), i.e. the
accumulated viscous friction along the deformation path, is exactly given by (6.1.2) and properly ap-
proximated by the discrete path energyK

∑K
k=1WSδk−1

[φk], i.e. the sum of elastic deformation energies.
In particular, geodesics in shell space correspond to paths of least energy dissipation.

Remark 6.1.1. As already shown in [Wir09, WBRS11, RW11b], the variational time-discretization ful-
fills a series of desired properties. For example, a rigid body motion invariance is inherited from the
elastic matching problems. In contrast, a straightforward linear time-discretization of the motion field vt
in (6.1.2) does not ensure such an invariance; we refer to [Wir09, Sec.6.2] for a comprehensible illus-
tration. Furthermore, the variational time-discretization allows to approximate geodesics with only few
intermediate shapes and is particularly usefull to be combined with an efficient multiscale approach.

6.1.2 On the metric

From Sec. 4.2.2 we know that one can expect convergence of a time-discrete geodesic to a continuous
geodesic with respect to a particular metric. However, the convergence result is subject to strong assump-
tions on the manifold and the underlying metric and we do not show that these assumptions hold for the
space of shells. Nevertheless, we will show that the Hessian of the elastic deformation energy induces a
Riemannian metric on the space of shells, both in the (spatially) smooth and discrete setup.

Metric on the space of smooth shells First, we state the theorem on the non-degeneracy of the smooth
Hessian, which has been proved in [HRS+14]1. For the Theorem we consider a slight modification of
the elastic energy (5.1.15), i.e. we define

WS [φ] =

∫
S
W (g − g∗φ) + ηW (h− h∗φ) da ,

with g, h being the first and second fundamental forms, respectively, of the undeformed surface, and
g∗φ, h

∗
φ being the pulled back forms of the deformed surface (see [HRS+14] for details). For the density

W we require that (i) W (0) = 0, (ii) dW = 0 at the zero matrix, and (iii) d2W is positive definite at the
zero matrix. These requirements correspond to the fact that if the shell is in a stress free configuration,
then the deformation identity id is a minimizer of WS and thus (i) WS [id] = 0 and (ii) dWS [id] = 0.
Additionally, we assume (iii) that the energy is strictly convex (modulo rigid body motions) in a neigh-
bourhood of a minimizer. These assumptions capture most thin elastic materials [Cia00] and a typical
choice is the squared Frobenius norm W (A) = ‖A‖2F .

Theorem 6.1.2 (Non-degeneracy of smooth Hessian). LetM denote the space of smooth shells. For V
a tangent vector field to M at some smooth S ∈ M, Hess(WS)(V, V ) = 0 if and only if V induces
an infinitesimal rigid motion. Consequently, gS(V,W ) = 1

2Hess(WS)(V,W ) is indeed a Riemannian
metric on the space of smooth shells modulo infinitesimal rigid body motions.

For the proof we refer to the appendix of [HRS+14]. Note that in general the Hessian Hess(f) = ∇(df)
of a function f :M→ R depends on the choice of a Riemannian metric through the covariant derivative
∇. Thus in general it is meaningless to define a Riemannian metric as the Hessian of a function without
presuming such a metric to be given. However, at a critical point of a function (i.e. a point where df = 0),
the Hessian Hess(f) is independent of the choice of metric [Mil63]. This is our setting since a given
shell is the minimizer of its elastic energy.
1 The proof was essentially done by Max Wardetzky and Benedikt Wirth.
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6 Time-discrete geodesic calculus in the space of discrete shells

Metric on the space of discrete shells Now we consider the space of discrete shellsM = R3n given
by triangulated surfaces. Then for S ∈ M we have TSM = R3n. According to Def. 6.0.2, we define
WS[S̃] = Wmem[S, S̃] + ηWDS

bend[S, S̃], for S, S̃ ∈ M, where WDS
bend denotes the Discrete Shells bending

energy [GHDS03]. We have shown in [HRS+14]:

Theorem 6.1.3 (Non-degeneracy of discrete Hessian). Let S ∈ M, withM = R3n, and V ∈ TSM.
Then HessWS[S](V,V) = 0 if and only if V induces an infinitesimal rigid motion. Consequently,
gS(V,W) = 1

2HessWS[S](V,W) is a Riemannian metric on the space of discrete shells modulo rigid
body motions.

Proof. Suppose that HessWS[S](V,V) = 0 for some vector field V sitting at the vertices. Then V
is both in the kernel of the Hessian of discrete membrane energy and the Hessian of discrete bending
energy since both are positive semi-definite operators. Consider two adjacent triangles T1 and T2. After
subtracting global translations induced by V, for V to be in the kernel of the Hessian of membrane energy
implies that V induces an infinitesimal rotation of T1 since the edge lengths of T1 must not change. The
same holds for T2. Since V is also in the kernel of the Hessian of bending energy, it follows that V must
not induce a change of the dihedral angle between T1 and T2. Hence V induces a single infinitesimal
rotation of the hinge T1 ∪ T2. Iterating this argument over the entire mesh proves the claim.

6.2 Exploring the geometry of the space of shells

In this section we show results of the time-discrete geodesic calculus applied to the space of discrete
shells. In Sec. 6.2.1 and Sec. 6.2.2, respectively, we discuss the impact of the physical model parameters
and report on features such as a lack of symmetry and non-uniqueness of geodesic paths. Furthermore,
we apply the definition of other time-discrete geometric objects—such as a discrete notion of logarithm,
exponential map and parallel transport—as derived in Sec. 4.2.2 on generic Riemannian manifolds, to
the space of discrete shells. In Sec. 6.2.3 resp. Sec. 6.2.4, we show their usefulness in applications as
e.g. extrapolation method or tool to realize a nonlinear detail transfer. Finally, we report on empirical
convergence tests in Sec. 6.2.5.

Remark 6.2.1. The results of this section are partly joint work with Martin Rumpf, Peter Schröder, Max
Wardetzky and Benedikt Wirth, and have been published in [HRWW12] and [HRS+14].

6.2.1 Natural regularization and physical tuning

First, we discuss the physical parameters of our model and point out that our framework effortlessly

Figure 6.1: Discrete geodesic (η = 10−4)
representing the motion of a finger (all
shells superimposed), color-coded by dis-
sipation rate (low high).

allows a physically based tuning of “best” paths between
shells. The choice of physics-based deformation energies of-
fers several advantages. Due to everyday experience, physi-
cal models come close to human intuition so that our frame-
work tends to lead to intuitive discrete geodesic paths. In
particular, along a discrete path one can separate bending
from stretching effects. The former especially play an im-
portant role for near-isometric deformations (see Fig. 6.1),
an ubiquitous case in applications. Here, the energy dissipa-
tion due to bending serves as the proper path selection mech-
anism. In the following, we discuss the impact of the phys-
ical parameters in detail. Obviously, the parameters η, λ, µ
in our deformation energy have a physical interpretation and
can be adjusted to change the typical behavior of shells.
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6.2 Exploring the geometry of the space of shells

Figure 6.2: Almost isometric geodesic between two hemispheres with fixed rim (η = 10−4).

As discussed previously, the bending weight η represents the approximate squared thickness δ2 of the
shell, a measure of resistance against bending: On the one hand geodesics with low η allow for crumpling
(Fig. 6.2), and if the initial and final shell are near-isometric, this property is approximately maintained
for intermediate shells during the deformation.

Figure 6.3: The bending term serves as a natural regularization; there is no need for artificial regu-
larizers as in [KMP07] (top row, η = 0.8). Decreasing η leads to the occurance of creases until the
underlying matching deformations are finally only as-isometric-as-possible (bottom, left to right: inter-
mediate shape of a geodesic with η = 0.8, 0.01, 0.0001).

On the other hand, a larger value of η prevents crumpling (Fig. 6.3), which is especially desired in
applications where one expects smooth intermediate shapes if the end poses are smooth. Hence the
parameter η may also be seen as the natural regularization parameter and there is no need for artificial
regularizers as it was used in [KMP07]. The parameters λ and µ represent the respective resistance

Figure 6.4: Discrete geodesics between two bracket
shapes with fixed rim (all shapes superimposed),
color-coded by detG[Φ] (left, 0 1.5) and
trG[Φ] (right, 0 2.5).

against area and length changes, whose relative
magnitudes also influence the appearance of dis-
crete geodesics: In the previous examples we have
pointed out that area compression can be avoided
by out-of-plane buckling (i.e. crumpling) for suf-
ficiently small bending resistance. This can also
be seen in Fig. 6.4 (bottom) where a high ratio
µ/λ = 20 of shear to dilation resistance leads to
the formation of loops. An alternative effect oc-
curs for a low ratio µ/λ = 1/20 between shearing
and dilation resistance, which allows for a simul-
taneous shell contraction in one and extension in
the opposite direction (Fig. 6.4 top). Note that the
central constriction of the intermediate shells is
found as a means to reduce the bending resistance
locally. However, the tuning of the parameters λ
and µ is rather of theoretical interest, hence we
will set λ = µ = 1 in all subsequent experiments.
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6 Time-discrete geodesic calculus in the space of discrete shells

Finally, we show that the bending parameter η is not only a regularization weight but can also be used
to manipulate the visual appearance of the deformation path. In particular, it can be used to simulate
different physical materials, such as paper, aluminum foil, rubber, cloth or metal and corresponding
optimal deformation paths, i.e. geodesics, are perfectly consistent with the intuitively optimal way to
deform such a material. As already discussed above, a low bending parameter η induces almost isometric
deformation paths. In Fig. 6.5 (top) this leads to the effect that the handle is folded in order to be pushed
through the outer frame. On the other hand, a larger η prevents folding at the cost of involving a fair
amount of tangential stretching of the outer frame resp. compression of the handle (Fig. 6.5, bottom).
Hence the physical behaviour of the deformation reminds either of a thin metal sheet (Fig. 6.5, top) or of
a material made of rubber (Fig. 6.5, bottom).

Figure 6.5: Discrete geodesic for low (top, η = 0.005) and high (bottom, η = 0.1) bending resis-
tance. Stiff materials prefer the handle being folded (inducing bending dissipation) whereas soft materi-
als stretch the outer frame (i.e. induce membrane distortion) to avoid folding.

Another example is given in Fig. 6.6, where a low bending weight η essentially represents a flat sheet of
paper or aluminum foil, that is rolled up in two orthogonal directions (top). Again, this deformation path
is almost isometric as tangential distortion is highly expensive. On the other hand, if η is increased the
optimal path no longer stays in the submanifold of isometric deformations but rather prefers a ”short-
cut” by introducing a little bit of tangential distortion (Fig. 6.6, bottom). Visually, this represents the
behaviour of a piece of cloth that is not very stiff at all. Note that in both examples in Fig. 6.5 and Fig.
6.6 a simple rotation of the end poses is not allowed due to the dense correspondence assumption. For
instance, if the four boundary edges of the plate in Fig. 6.6 are labeled clockwise by A, B, C and D,
then in the first pose A is supposed to be aligned with C, whereas in the last pose B is supposed to be
aligned with D, which cannot be resolved by a global rotation.

Figure 6.6: Discrete geodesic for low (top, η = 10−6) and high (bottom, η = 10−1) bending resistance.
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6.2 Exploring the geometry of the space of shells

6.2.2 Features of time-discrete geodesic paths

In this section we discuss two features of time-discrete geodesics: lack of symmetry and non-uniqueness.

Lack of symmetry Time-discrete geodesics are in general not symmetric, that means a path from
A to B will be (slightly) different from a path from B to A. In particular, the approximation of the
Riemannian distance given by the square root of the optimal path energy EK , is not symmetric either.
This is due to the fact that the dissimilarity measure W in Def. 6.0.2 is not symmetric in its arguments, as
the density is integrated over the undeformed shell. However, the lack of symmetry of min EK decreases
with increasing K, as will be shown numerically in Sec. 6.2.5. Furthermore, already for a very low
number K the lack of symmetry in the time-discrete geodesic is visually not perceptable: in Fig. 6.7
we show a time-discrete geodesic between two hand poses A and B, where the top row shows results
from computations of A→B and the bottom row shows (reversed) results from B→A. Note, that both

-
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Figure 6.7: Time-discrete geodesics A→B (top) vs. B→A (bottom) between two hand poses (both
η = 10−4). The underlying dissipation is represented by the two energy densities, i.e. Wmem (top row,
0 0.01) and Wbend (bottom row, 0 10).

energies are mainly concentrated at the joints, where dissipation due to bending is significantly larger
than dissipation due to tangential distortion (cf . also Fig. 6.1). The relative difference between path
energies of the two sequences is 3%. The deformation energy W between two corresponding shapes in
the two sequences is less than 0.01% of the deformation energy from the first to the final shell.
The issue of missing symmetry in our model has also been investigated in [BvTH16]. The authors
conclude that a straightforward symmetrization of the deformation energy by using W[A,B]+W[B,A],
does not lead to significantly different results but slows down the numerical simulation instead.

Non-uniqueness Geodesic paths need not be unique, and in particular buckling modes might lead to
multiple (shortest) geodesic paths between two input shells (cf . Fig. 6.8). The flat plate as an intermediate
shape is avoided since it would induce high tangential distortion. Therefore the bumps flip to the other
side succesively, while the order of flipping does not effect the accumulated dissipation. Different paths
are induced by different initializations. Note that the example shown in Fig. 6.5 (top) also leads to a
non-unique geodesic, as the left part of the handle could have been pushed through the frame first as
well.

Figure 6.8: Symmetric setups can lead to non-unique geodesic paths.
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6 Time-discrete geodesic calculus in the space of discrete shells

6.2.3 Geodesic interpolation and extrapolation

Obviously, time-discrete geodesics provide a natural interpolation tool in discrete shell space. Now we
apply the notion of a time-discrete exponential map as introduced in Sec. 4.2.2 to the space of discrete
shells in order to generate a consistent extrapolation tool.

Following Def. 4.2.9 the time-discrete exponential map is built on an iterative scheme computing single
shooting steps sequentially. The setup of such a single shooting step is considering the necessary con-
ditions for a discrete path (S0,S1,S2) to be a time-discrete geodesic connecting S0 and S2. Due to the
variational definition, this is the case iff. S1 is a solution of the necessary condtion (6.0.3), i.e. a root of
the mapping

S 7→ ∂2W[S0,S] + ∂1W[S,S2] .

Analogously, (S0,S1,S2) is a time-discrete geodesic starting with S0 and S1 iff. S2 is a solution of the
same necessary condtion (6.0.3), i.e. a root of the mapping

S 7→ ∂2W[S0,S1] + ∂1W[S1,S] .

Note that existence is ensured if ‖S1 − S0‖ is sufficiently small [RW15]. By Def. 4.2.9 the root of this
map is defined to be the discrete exponential map EXP2

S0
(S1 − S0), which is thought of as a one-step

geodesic extrapolation starting at S0 in direction S1 − S0. To further extrapolate the sequence this
shooting step is repeated iteratively, i.e. we solve

0 = ∂2W[Sk−2,Sk−1] + ∂1W[Sk−1,Sk] , k = 2, . . . ,K, (6.2.1)

sequentially for Sk, where the initial shapes S0 and S1 are given. Note that (6.2.1) coincides exactly
with the K − 1 necessary conditions (6.0.3) for (S0, . . . ,SK) to be a discrete geodesic. In particular,
the interpolated geodesic (S0, . . . ,SK) and the geodesic extrapolation from S0 in direction S1 − S0

coincide because the defining system of Euler–Lagrange equations is the same and the minimizer of the
variational problem is unique. For discrete shells S0,SK close to each other, the latter is guaranteed due
to the non-degeneracy of the Hessian, which implies local strict convexity. Geodesic interpolation can

-
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Figure 6.9: Shape extrapolation is applied to generate a strong twisting of a helix with η = 10−5.

be considered as a map from a geodesic path (S0, . . . ,SK) to a difference vector S1−S0, while geodesic
extrapolation can be seen as a map from a difference vector S1−S0 to a geodesic path connecting S0 to
SK . Due to the consistency of the variational definition these operations are exactly the discrete coun-
terparts of the smooth logarithm map, which maps a geodesic path to an initial velocity vector, and the
smooth exponential map which maps an initial velocity to a geodesic path.

80



6.2 Exploring the geometry of the space of shells

Remark 6.2.2. Above we have made use of a difference vector V = S̃ − S which is physically thought
of as a displacement of S or geometrically considered as a tangent vector in shell space at the point
S. However, this notion is ambiguous due to the inherent rigid body motion invariance of our model.
Imagine Φ is a rigid body motion, e.g. a large translation, then Φ(S̃) equals S̃ in shell space but Φ(S̃)−S
is not comparable to V any longer. Although the displacement formulation is used formally in the
notation of the discrete exponential map, we actually never compute displacements when performing
geodesic shooting, since they are not present in the variational formulation (6.2.1).

In Fig. 6.9 we show an example of geodesic extrapolation based on initial data taken from the com-
putational results in [FB11] (cf . Fig. 6). The generation of the strongly twisted helix demonstrates the
robustness of the time-discrete geodesic extrapolation, both for large time steps and large nonlinear initial
variation (Fig. 6.9, top) as well as for many small time steps and small initial offset (Fig. 6.9, bottom).

−1
3 0 1
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3
5
3 2

0 1 2

Figure 6.10: Top: Geodesic interpolation for 0 ≤ t ≤ 1 of given shells at time 0 and 1, geodesic
extrapolation for t < 0 and t > 1 (local dissipation rate is color coded as 0 1; bending weight
η = 1). Bottom: The total dissipation rate (membrane contribution in light gray, bending contribution
in dark gray) stays constant along the path.

Geodesic inter- and extrapolation can naturally be combined by e.g. first interpolating between two given
end poses and then extrapolating the motion in both directions. This is illustrated in Fig. 6.10, where
the shapes at times t = 0 and t = 1 were given as input shapes. Another striking feature of computing
(approximative) geodesic paths are constant dissipation rates along the path (Fig. 6.10, bottom), which
corresponds geometrically to the property gy(ẏ, ẏ) = const that holds for geodesic paths. This property
of equidistribution of dissipation is in particular visible when comparing to other approaches: the two
gray elephant poses in Fig. 6.11 are connected via a discrete geodesic with K = 4 and for η = 10−5.
The geodesic is extended using geodesic extrapolation. On the right the corresponding rate of viscous
dissipation is plotted for the 6 time steps. Furthermore, black lines indicate the dissipation rates for the
corresponding sequence from Fig. 11 in [WDAH10].

-
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0.0 1.0

Figure 6.11: Geodesic interpolation and extrapolation of the two gray poses (left) revealing constant
dissipation rates (right, gray) opposed to the interpolation method by [WDAH10] (right, black lines).
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6 Time-discrete geodesic calculus in the space of discrete shells

In animation applications geodesic shooting can further be used to generate natural motions of three-
dimensional models without much user interaction. Given a particular shell S, one can compute eigen-
modes of the Hessian of the elastic deformation energy ∂2

2W[S,S] corresponding to the lowest eigen-
values e.g. by a standard inverse power iteration. Due to Thm. 6.1.3, the first 6 eigenvalues are trivial,
representing the translations and rotations, respectively, in 3D space. Computing eigenvectors of the Hes-
sian of an elastic energy to launch natural animations has also been done to perform physical simulations
based on Newton’s law of motion [HSTP11, vTSSH13]. Slightly different to these physical simula-
tions, moving S in the direction of eigenmodes—corresponding to low but non-trivial eigenvalues—by
means of geodesic shooting represents a deformation of S in a direction with least energy dissipation.
Hence the motion along these so-called dissipation modes induces energetically preferred deformations
that look very natural. In particular, the dissipation rates are again constant which is not the case for
physical simulations as in [HSTP11, vTSSH13]. In Fig. 6.12 we demonstrate geodesic extrapolation of
a shell S along two different dissipation modes, given by the second and fourth non-trivial eigenmode
of ∂2

2W[S,S] with eigenvalues λ = 4.85 (left) and λ = 5.91 (right), respectively. Shown are the initial
shell with the corresponding eigenmode scaled by±5 and the extrapolated shells based on 10, 20 and 30
iterations of the time-discrete extrapolation. As mentioned above, the dissipation rates are constant up to
numerical errors (Fig. 6.12, bottom).

−30 0 30 −30 0 30

Figure 6.12: Geodesic extrapolation along low dissipation modes (bending weight η = 10−3).

6.2.4 Parallel transport and curvature

In Sec. 4.2.2 we have introduced a well-known first order approximation of continuous parallel transport
named Schild’s ladder. In the continuous setting it is based on a Riemannian parallelogram construction
(cf . Fig. 4.2), whose building elements are local geodesic interpolation and extrapoltion operations. To
obtain a fully time-discrete scheme we have simply replaced these geometric operations by their time-
discrete counterparts. In this section we apply the idea of time-discrete parallel transport to the space of
discrete shells and show applications in animation e.g. for detail transfer.

The construction of a (time-discrete) Riemannian parallelogram is illustrated in Fig. 6.13. Given three
shells SA, SB , and SC , we can construct a fourth shell SD, such that the (time-discrete) geodesics
SC ↔ SB and SA ↔ SD share the same midpoint S×. To compute SD we proceed as follows:

(i) compute the (time-discrete) geodesic from SC to SB and mark its midpoint S×,

(ii) compute SD through (time-discrete) extrapolation starting from SA in direction S×.

82



6.2 Exploring the geometry of the space of shells

SA

SB

SC

SA

SB

SC

S×

SA

SB

SC

S×

SA

SB

SC

S×

SD

S0

S1

S′0 S′1

S×1

SN

S′N

U U′

Figure 6.13: Top: Stepwise construction of a single (discrete) geodesic parallelogram. Bottom: Iterative
construction for the time-discrete parallel transport of U along (S0, . . . ,SN ) to U′.

Let U be a variation of S0 towards some shell S′0 represented by the (time-discrete) logarithm. A
sequence of N such parallelograms then transports U along the path from S0 to SN and one obtains
a variation U′ of SN in the direction S′N represented again by the (time-discrete) logarithm. In Fig.
6.13 we show a schematic example for N = 5, where the curved lines correspond to smooth geodesic
segments, whereas the dots represent the corresponding time-discrete geodesics with K = 4. Fig. 6.14
uses such a concatenation of geodesic parallelograms to transport a smile along a path from a neutral to a
disgusted facial expression. Note that in practice the (discrete) logarithms U resp. U′ are not computed
explicitly, since the algorithm is based on the corresponding shapes S′0 resp. S′N only.

Figure 6.14: Time-discrete parallel transport of the difference between a smiling (upper left) and a
neutral face (lower left) along a path (bottom row) towards a disgusted face (bottom right), resulting in
a smile with a frown (upper right).
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6 Time-discrete geodesic calculus in the space of discrete shells

However, given a shell surface S and two variants S′ and S′′ of this shell, there are different ways to
combine these two nonlinear shell variations in a new shell S′′′ (cf . Fig. 6.15):

(A) construct a single geodesic parallelogram S,S′,S′′,S′′′,

(B) transport (S,S′′) along a discrete geodesic from S to S′ via a sequence of parallelograms, or

(C) transport (S,S′) along a discrete geodesic from S to S′′ via a sequence of parallelograms.

Due to the holonomy in Riemannian manifolds with non-zero curvature, the results will differ (Fig. 6.15).

(A)
d

n s

(B)
d

n s

(C)
d

n s

Figure 6.15: Different results S′′′ of combining an expression of disgust (S′ = d) with a smile (S′′ = s),
starting from a neutral face (S = n). The colored contours on the right show differences due to holonomy.

In particular, that means the space of shells is not flat, but curved. Another example of holonomy is
shown in Fig. 6.16: if a tangent vector is parallely transported along a closed curve, it will in general not
return to its initial direction. Theoretically, this poses limitations on the extent to which parallel transport
can robustly be used for deformation transfer. However, practically the example in Fig. 6.16 indicates that
parallel transport still remains a very robust and useful tool: even though there is a numerical difference
between the starting and end point due to holonomy, it is hardly perceptible visually.

H E F H

Figure 6.16: A bump map (as a variation of the flat hexagon H) is transported along a closed curve
(H → E → F → H) in shell space (η = 10−5). The L2(H)-distance between the initial and the final
bump map on the shell H due to holonomy is 0.0125.
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6.2 Exploring the geometry of the space of shells

For shell space, a rough understanding of its curvature has yet to be developed. However, Fig. 6.17 pro-
vides a further glimpse into this direction. Here, a triangle of three time-discrete geodesics

D

E

F

η = 10−1

D E

F

M

d e f

M

d e f

η = 10−5

D E

F

M ′

d′ e′ f ′

M ′

d′ e′ f ′

Figure 6.17: Geodesic triangles indicate positive
curvature of shell space.

with K = 17 is computed between three given
shells D, E, and F . On the geodesic edge from
D (t = 0) to E (t = 1) intermediate shells
are displayed for t = 1

4 (d, d′), t = 1
2 (e, e′),

and t = 3
4 (f, f ′). Furthermore, the associated

geodesic barycenters (the point with the least av-
erage geodesic distance to the vertices), M and
M ′ respectively, are shown. Note that the points
on the edges of the geodesic triangles are posi-
tioned such that the length of solid line segments
connecting the barycenter reflects the geodesic
distance between the end points. However, these
lengths are slightly larger than they would be
in a flat Riemannian space, indicating a positive
sectional curvature. The curvature is more pro-
nounced for smaller nominal shape thickness δ.
Note that η = δ2 can be interpreted as the relative
weight between bending and membrane dissipa-
tion. Intuitively, the bending term prefers paths
along which the local shell curvature at each point
transitions uniformly in time from the initial to the
final value. However, since this cannot happen
isometrically, the membrane term prevents such
a uniform transition, resulting in a more curved
shell space. Note that the shell space curvature is not uniform. Indeed, if in Fig. 6.17 the shell M
is replaced by a flat hexagon, the distance relations even indicate a very slight negative curvature (not
displayed here).
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6 Time-discrete geodesic calculus in the space of discrete shells

6.2.5 Empirical convergence

In this section we investigate the empirical convergence of the time-discrete geodesic calculus applied to
the space of discrete shells. In particular, we compare the experimental results to the analytical results
predicted in Sec. 4.2.2. Recall that the convergence analysis provided in [RW15] is based on restrictive
(smoothness) assumptions on the manifold as well as on the metric and the approximating functionalW .
In particular, the assumptions are not fulfilled for the space of (continuous) shells equipped with a metric
as considered in Sec. 6.1.2. Nevertheless, we will show that the empirical convergence rates coincide
with the analytical ones for several geometric objects living in the finite dimensional space of discrete
shells.

Let uτ be the approximative solution to a generic problem depending on a stepsize τ > 0. To quantify
the numerical error for a sequence of decreasing stepsizes (τk)k≥0, we make use of the so-called exper-
imental order of convergence (eoc). If the exact solution u is not known one chooses a large M > 0
and defines uM = uτm , i.e. the numerical solution corresponding to the stepsize τM , as ground truth.
Then the error ek induced by the solution uk resulting from a stepsize τk is defined as ek = ‖uk − uM‖,
measured in some suitable error norm. Assuming there are constants p, C > 0 with ek = Cτpk for all k,
the experimental order of convergence eoc (which is supposed to approximate p) is defined as

eoc =
log(ek−1/ek)

log(τk−1/τk)
.

In the following, we make use of the sequence τk = 2−k for k = 0, . . . ,M with M ∈ {6, 7}.

First, we investigate the convergence of the optimal time-discrete path energy EK , which is according to
Thm. 4.2.4 of first order. To this end we consider the energy of multiple geodesic paths computed pair-
wise between different face expressions shown in Fig. 6.18. In Tab. 6.1 we show convergence of min EK

as well as a decreasing lack of symmetry of the ”distance” measure dist(SA,SB) =
√

minY K EK [Y K ],
for a curve Y K = (S0, . . . ,SK) with S0 = SA and SK = SB (cf . also Sec. 6.2.2).

neutral smile disgust surprise

Figure 6.18: Face expressions used in convergence experiments.

We also observe first order convergence of the path energy when considering a large nonlinear defor-
mation as shown in Tab. 6.2. Note that the lack of the triangle inequality for the dissimilarity measure√

W(., .) implies the fact that we might have decreasing sequences minY K EK [Y K ] for increasing K.
In fact,

√
W(SA,SB) ≤

√
W[SA,SC ] +

√
W[SC ,SB] would imply

E1[SA,SB] = W[SA,SB] ≤ min
S

2 (W[SA,S] + W[S,SB]) = min
S

E2[SA,S,SB] ,

which obviously does not hold.
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6.2 Exploring the geometry of the space of shells

neutral to smile smile to neutral
K min EK eoc min EK eoc
1 1.529 1.530
2 1.520 1.520
4 1.518 1.59 1.518 1.59
8 1.517 / 1.517 /
16 1.517 / 1.517 /
32 1.517 1.517

neutral to disgust disgust to neutral
K min EK eoc min EK eoc
1 1.941 2.024
2 1.947 1.988
4 1.954 0.91 1.974 1.26
8 1.958 1.00 1.968 1.32
16 1.961 2.00 1.966 1.00
32 1.962 1.964

neutral to surprise surprise to neutral
K min EK eoc min EK eoc
1 5.395 5.627
2 5.348 5.459
4 5.350 0.17 5.405 1.40
8 5.357 0.83 5.385 1.34
16 5.363 1.59 5.376 1.70
32 5.366 5.372

smile to disgust disgust to smile
K min EK eoc min EK eoc
1 2.670 2.786
2 2.667 2.723
4 2.673 0.68 2.701 1.30
8 2.678 1.00 2.692 1.32
16 2.681 1.32 2.688 1.59
32 2.683 2.686

smile to surprise surprise to smile
K min EK eoc min EK eoc
1 8.406 8.586
2 8.242 8.316
4 8.200 2.09 8.245 1.66
8 8.205 1.42 8.223 1.59
16 8.207 1.59 8.216 1.46
32 8.208 8.212

disgust to surprise surprise to disgust
K min EK eoc min EK eoc
1 6.730 6.550
2 6.491 6.406
4 6.423 1.59 6.371 0.76
8 6.401 1.51 6.380 1.70
16 6.393 1.59 6.383 2.00
32 6.389 6.384

Table 6.1: Experimental order of convergence (eoc) for the (minimal) discrete path energy min EK

computed pairwise for the face expressions as shown in Fig. 6.18, η = 1.0. Note that the first example
(top, left) has already converged forK = 8. The lack of symmetry (computed as relative error, not shown
in the table) decreases linearly in K and is about 0.1% for K = 32 in all examples.

SA→SB SB→SA
K EK eoc EK eoc
1 4.906 5.466
2 4.898 5.139
4 4.922 0.66 5.038 1.31
8 4.941 0.90 4.999 1.23
16 4.953 1.14 4.982 1.27
32 4.960 1.74 4.974 1.59
64 4.963 4.970

SB
SA

Table 6.2: Experimental order of convergence (eoc) for the (minimal) discrete path energy EK in both
directions SA → SB and SB → SA using η = 10−4. The input data SA and SB is depicted on the right
(here with a time-discrete geodesic with K = 4).
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6 Time-discrete geodesic calculus in the space of discrete shells

In Tab. 6.3 we further show convergence of time-discrete geodesics, measured inL∞(‖.‖L2) resp.L∞(
√

W).
Note that the analytical results do not provide a convergence order for discrete geodesics.

K L∞(
√

W) eoc L∞(‖ ‖L2) eoc
2 13.20 85.95
4 6.67 0.98 40.07 1.10
8 3.29 1.02 18.43 1.12
16 1.47 1.16 7.85 1.23
32 0.51 1.53 2.61 1.58

K L∞(
√

W) eoc L∞(‖ ‖L2) eoc
2 19.62 74.40
4 8.74 1.17 37.94 0.97
8 3.85 1.18 17,98 1.08
16 1.60 1.27 7.75 1.21
32 0.54 1.57 2.59 1.58

Table 6.3: Experimental order of convergence (eoc) for time-discrete geodesics in both directions SA →
SB (left) and SB → SA (right) for the input data shown in Tab. 6.2; η = 10−4. The error is measured in
two different ”norms”, i.e. L∞(

√
W) and L∞(‖ ‖L2), respectively.

Furthermore, we investigate the experimental convergence of the discrete exponential map, which is
supposed to be of first order as stated in Thm. 4.2.18. Again, we observe the same order in terms of eoc
as shown in Tab. 6.4 for two different ”norms”. Finally, we confirm the first order convergence of the
time-discrete parallel transport which corresponds to the results in Thm. 4.2.19, cf . Tab. 6.5 where we
show two different examples again measured in two different norms.

K
√

W eoc ‖ ‖L2 eoc
2 0.575 8.34
4 0.303 0.92 3.93 1.08
8 0.145 1.06 1.84 1.08
16 0.063 1.21 0.89 1.00
32 0.021 1.58 0.51 0.65

K
√

W eoc ‖ ‖L2 eoc
2 0.637 0.374
4 0.338 0.91 0.186 1.01
8 0.163 1.06 0.090 1.05
16 0.070 1.21 0.046 0.97
32 0.024 1.58 0.030 0.60

Table 6.4: Experimental order of convergence (eoc) of the discrete exponential map based on input
data SA and SB as in Tab. 6.2; η = 10−4. Left: for ζ ≈ logSA(SB) we measured the error between
EXPKSA(ζ/K) and SB in two different ”norms”; right: switching SA and SB .

K
√

W eoc ‖ ‖L2 eoc
1 2.224 51.708
2 1.044 1.09 22.232 1.22
4 0.544 0.94 9.832 1.18
8 0.344 0.66 4.104 1.26
16 0.304 0.21 1.376 1.58

K
√

W eoc ‖ ‖L2 eoc
1 2.842 118.551
2 1.434 0.99 49.118 1.28
4 0.732 0.97 21.072 1.22
8 0.408 0.85 8.680 1.28
16 0.320 0.34 2.848 1.61

Table 6.5: Experimental order of convergence (eoc) for the discrete parallel transport based on face
expressions in Fig. 6.18 and measured in two different ”norms” (η = 1). Left: transported variation
”disgust” along path from ”neutral” to ”smile”; right: transported variation ”smile” along path from
”neutral” to ”disgust” (as shown in Fig. 6.14 for K = 4).
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6.3 Implementation

6.3 Implementation

The minimization of the discrete path energy is a nonlinear optimization problem in R3n (K−1), where
n is the number of vertices of the triangulated shells, K + 1 the number of shapes. On the other hand,
computing a single shooting step is a nonlinear optimization problem in R3n, but in order to generate a
sequence of K + 1 shapes this has to be solved K − 1 times.
We apply a standard Newton’s method to solve the necessary conditions (6.0.3) resp. (6.2.1) combined
with an inexact line search method subject to either Armijo’s rule or the strong Wolfe conditions. The
stopping criterion is based on a threshold of εKn in the squared l2-norm for the energy gradient (with
e.g. ε ∼ 10−8). Implementation details of the minimization methods can be found in [NW99]; we give
explicit formulas for the energy gradient and the energy Hessian in the appendix A.5.

It is well-known that Newton’s method converges quadratically to the solution if one starts the iteration
in the convergence radius, i.e. ”close” to the optimum. Otherwise, convergence might be very slow
or the method might even get stuck in (undesired) local minima. In Sec. 6.3.1 we discuss the impact
of a suitable initialization as well as the benefit of a cascadic scheme in time in order to handle high
temporal resolutions. Furthermore, we discuss the issue of the inherent rigid body motion invariance
in the numerical optimization in Sec. 6.3.2. Finally, we describe how an efficient hierachical scheme in
space is used to accelerate convergence in Sec. 6.3.3.

6.3.1 Initialization

For the geodesic shooting problem we only have to solve (a couple of) relatively small problems. Hence
we focus on the efficient optimization of the time-discrete path energy EK (with K fairly large) to
compute time-discrete geodesics here. Let us assume we are given two (discrete) input shells SA,SB ∈
R3n and some integer K � 1 and we want to compute a time-discrete geodesic of length K + 1, i.e.
a discrete path (S0,S1, . . . ,SK) with S0 = SA and SK = SB that satisfies the system of necessary
conditions (6.0.3).
As mentioned above, the performance of Newton’s method depends on the initialization. A straight-
forward choice for the initialization is the nodalwise linear interpolation of the two input shells. How-
ever, if the input shapes differ by a large nonlinear deformation the linear interpolation might introduce
self-intersections, degenerated triangles and odd angles (cf . Fig. 4.4 in [Hee11]). These artefacts often
hamper the numerical optimization substantially, in the worst case the iteration does not converge.
Alternatively, one might initialize the sequence by the ”trivial” path (SA,SA, . . . ,SA,SB). How-
ever, that means, the initialization is far apart from the final solution and in particular shapes Sk with
0� k < K have to be deformed significantly. These large deformations are computationally hard to
resolve, hence we make use of an approach proposed in [Per15]: We consider the weighted average
functional

S 7→ (K − k) W[S0,S] + kW[S,SK ] , (6.3.1)

and iteratively minimize (6.3.1) for k = 1, . . . ,K − 1 to get Sk, starting the kth iteration with the ini-
tilization S = Sk−1. This procedure benefits from the fact that in each iteration the start value Sk−1

is close to the optimum Sk due to the different scaling of the two terms in (6.3.1). Hence we solve a
sequence of K − 1 smaller problems sequentially which results in a good approximation to the actual
time-discrete geodesic. In practice, it is often reasonable to make use of this iteration first and then
initialize the optimization of the full time-discrete path energy with the resulting sequence than starting
with the latter one with a bad initialization.

Finally, we report on two further strategies to create good initialiations that can be used alternatively or
additionally to the iterative scheme proposed above.
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6 Time-discrete geodesic calculus in the space of discrete shells

Cascadic scheme If K = 2L for some integer L > 1 one might make use of the cascadic scheme
described in Sec. 4.3.3 in [Hee11]:

1 for l = 0, . . . , L− 1 do
2 // in parallel
3 for m = 1, . . . , 2l do
4 compute S as midpoint of a short geodesic (S(m−1)·2L−l ,S,Sm·2L−l);
5 set S(2m−1)·2L−l−1 = S;
6 end
7 end

Odd-even-scheme If K = 2L for some integer L > 0 one might apply M iterations of the so-called
odd-even-scheme, which optimizes alternately all odd resp. all even shapes, while fixing the other ones:

1 for m = 1, . . . ,M do
2 // update odd shapes (in parallel)
3 for l = 1, . . . , L do
4 compute S as midpoint of a short geodesic (S2(l−1),S,S2l);
5 set S2l−1 = S;
6 end
7 // update even shapes (in parallel)
8 for l = 1, . . . , L− 1 do
9 compute S as midpoint of a short geodesic (S2l−1,S,S2l+1);

10 set S2l = S;
11 end
12 end

6.3.2 Dealing with rigid body motions

Our shell model is invariant with respect to rigid body motions. That means if S denotes a (discrete)
shell and Φ(x) = Qx + b, Q ∈ SO(3), b ∈ R3, is a rigid body motion, we have W[S,Φ(S)] = 0. For
computing a three-point interpolating geodesic between two discrete shells S0 and S2 one has to find a
root of

Fint : S 7→ ∂2W[S0,S] + ∂1W[S,S2] ,

whereas for a single step of geodesic shooting from S0 in direction S1 − S0 one has to find a root of

Fext : S 7→ ∂2W[S0,S1] + ∂1W[S1,S] .

Solving F [S] = 0 in both cases could be done by means of Newton’s method, i.e. for a given initial value
S0 we compute Sk iteratively for k > 0 by computing

DF [Sk−1] ∆S = −F [Sk−1] , (6.3.2)

Sk = Sk−1 + τk∆S ,

where the stepsize τk ∈ [τmin, τmax] is found by an inexact line search using e.g. Armijos rule [NW99].
However, DF is not invertible due to the rigid body motion invariance, i.e. it has a six-dimensional
kernel (cf . Thm. 6.1.2 resp. Thm. 6.1.3). In the following, we describe two different possibilities how to
resolve this problem.
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6.3 Implementation

Dirichlet conditions An elementary and popular approach to handle the singularity of the system
matrix (here induced by the rigid body motion invariance) is to impose Dirichlet boundary conditions, i.e.
fix a certain region of the (discrete) shell while minimizing. This is valid due to the embeddingH2 ↪→ C0

resp. the trace theorem. In practice this is realized by manipulating the linear system (6.3.2): if the kth
node is supposed to be fixed, one sets DFik = DFki = δik as well as (∆S)lk = 0 for l = 0, 1, 2 in the
solution ∆S = (∆S0,∆S1,∆S2), where ∆Sl ∈ Rn. Theoretically, it suffices to fix two nodes since
we have six degrees of freedom representing the rigid body motion invariance. However, one usually
prescribes a whole (connected) region of vertices, depending on the application [BK04]. For instance, in
Fig. 6.1 we fixed the longest phalanx and in Fig. 6.7 or Fig. 6.12 we fixed the entire wrist region.

Lagrange ansatz As a motivation, let us consider a generic functional F = F [S]. The necessary
condition of the unconstrained optimization problem minSF [S] reads DSF = 0. For a family of
(constraint) functionals Gl = Gl[S], l = 1, . . . , L, the corresponding constrained optimization problem
is given by solving

DSF = 0 , subject to Gl[S] = 0 , for l = 1, . . . , L . (6.3.3)

For some α ∈ RL, an equivalent formulation of (6.3.3) is derived by defining the Lagrange functional

L[S, α] = F [S] +
L∑
l=1

αl Gl[S]

and solving D(S,α)L[S, α] = 0, which is again equivalent to solving the system{
DSF [S] +

∑
l αlDSGl[S] = 0 ,

Gl[S] = 0 , l = 1, . . . , L .
(6.3.4)

In particular, the solution of (6.3.3) does not require an explicit formulation of the functional F but only
of the gradient DSF . Hence we shall use the identification F = DSF and solve D(S,α)L[S, α] = 0 for
appropiate constraint functionals.

In our setup, the constraint functionals are supposed to prescribe the six degrees of freedom correspond-
ing to the rigid body motion invariance. This is done by postulating that the zeroth and first momentum
of the solution S of F [S] = 0 coincides with the zeroth and first momentum of a particular reference shell
Ŝ. We define (linear) functions T̂i = Ti[Ŝ], R̂i = Ri[Ŝ], i = 0, 1, 2, such that T̂i(S) = 0 and R̂i(S) = 0
iff. the zeroth and first momentums of Ŝ and S, respectively, coincide. Let Φ = (Φ0,Φ1,Φ2) : Ŝ→ R3

denote a deformation with Φ(Ŝ) = S. Using the dense correspondence between Ŝ and S we can define
the displacement U(x̂) = Φ(x̂)− x̂ = x− x̂, with U = (U0,U1,U2) and x̂ = (x̂0, x̂1, x̂2) ∈ Ŝ. To fix
the zeroth momentum, we postulate that the integral average of x̂ 7→ U(x̂) vanishes, i.e. we set

T̂i(S) := Ti[Ŝ](U) :=

∫
Ŝ
Ui(x̂) da =

∫
Ŝ
xi − x̂i da

for i = 0, 1, 2 (modulo 3). To fix the first momentum, we postulate that the integral average of x̂ 7→
U(x̂)× x̂ vanishes, i.e. we set

R̂i(S) := Ri[Ŝ](U) :=

∫
Ŝ
Ui(x̂)x̂i+1 −Ui+1(x̂)x̂i da =

∫
Ŝ
(xi − x̂i)x̂i+1 − (xi+1 − x̂i+1)x̂i da

for i = 0, 1, 2 (modulo 3). If we write S = (S0,S1,S2), with Sj ∈ Rn for j = 0, 1, 2, we get

T̂i(S) = Ti[Ŝ](S) = M̂(Si − Ŝi) · 1 ,
R̂i(S) = Ri[Ŝ](S) = M̂(Si − Ŝi) · Ŝi+1 − M̂(Si+1 − Ŝi+1) · Ŝi ,

where 1 = (1, . . . , 1)T ∈ Rn and M̂ = M[Ŝ] ∈ Rn,n is the mass matrix corresponding to linear FEM
basis functions on Ŝ.
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6 Time-discrete geodesic calculus in the space of discrete shells

Writing further F = (F 0, F 1, F 2) with F j : S→ Rn and ∂iF j [S] := ∂SiF
j [S] ∈ Rn,n, we finally get

D(S,λ,µ)L[S, λ, µ] =



F 0[S] + λ0M̂1 + µ0M̂Ŝ1 − µ2M̂Ŝ2

F 1[S] + λ1M̂1 + µ1M̂Ŝ2 − µ0M̂Ŝ0

F 2[S] + λ2M̂1 + µ2M̂Ŝ0 − µ1M̂Ŝ1

M̂(S0 − Ŝ0) · 1
M̂(S1 − Ŝ1) · 1
M̂(S2 − Ŝ2) · 1

M̂(S0 − Ŝ0) · Ŝ1 − M̂(S1 − Ŝ1) · Ŝ0

M̂(S1 − Ŝ1) · Ŝ2 − M̂(S2 − Ŝ2) · Ŝ1

M̂(S2 − Ŝ2) · Ŝ0 − M̂(S0 − Ŝ0) · Ŝ2


,

which represents the left hand side in (6.3.4) with α = (λ, µ). Moreover, D2
(S,λ,µ)L[S, λ, µ] is given by

∂0F
0[S] ∂1F

0[S] ∂2F
0[S]

∂0F
1[S] ∂1F

1[S] ∂2F
1[S]

∂0F
2[S] ∂1F

2[S] ∂2F
2[S]

M̂1
0
0

0
M̂1
0

0
0

M̂1

M̂Ŝ1

−M̂Ŝ0

0

0
M̂Ŝ2

−M̂Ŝ1

−M̂Ŝ2

0
M̂Ŝ0

(M̂ · 1)T 0T 0T 0 0 0 0 0 0

0T (M̂ · 1)T 0T 0 0 0 0 0 0

0T 0T (M̂ · 1)T 0 0 0 0 0 0

(M̂Ŝ1)T −(M̂Ŝ0)T 0T 0 0 0 0 0 0

0T (M̂Ŝ2)T −(M̂Ŝ1)T 0 0 0 0 0 0

−(M̂Ŝ2)T 0T (M̂Ŝ0)T 0 0 0 0 0 0


,

which is required to solve (6.3.4) via Newton’s method. To this end, we replace (6.3.2) by

D2
(S,λ,µ)L[S, λ, µ] (∆S,∆λ,∆µ) = −D(S,λ,µ)L[S, λ, µ] ,

which has a unique solution (∆S,∆λ,∆µ) ∈ R3n × R3 × R3 since D2
(S,λ,µ)L is invertible. Note,

that the solution depends on the chosen reference shell Ŝ that prescribes the zeroth and first momentum.
However, this dependence is not crucial and can be removed easily in a post-processing step by applying
some kind of rigid registration to translate and rotate the solution to the desired place in space.

6.3.3 Multiresolution schemes

The efficiency of the nonlinear optimization can be increased by a multiresolution scheme, cf . e.g.
[KCVS98, KVS99, GSS99, KBS00]. As Kilian et al. [KMP07], we decimate all input meshes simul-
taneously where we use the sum of per-mesh quadric error metrics proposed by Garland and Heckbert
[GH97] to prioritize halfedge collapses. In particular, the coarse meshes still have the same connec-
tivity since each halfedge collapse is applied to all input meshes. The nonlinear optimization, e.g. the
minimization of the discrete path energy, is then performed on the coarse meshes, having less degrees
of freedom. Afterwards, the solution of the coarse level is prolongated to the original resolution. This
prolongated coarse solution turns out to be an excellent initial value to launch the optimization on the
high resolution level, thus Newton’s method typically converges within a few iterations (cf . Fig. 6.19).
In principle, this two-step procedure can be extended to more levels, building a genuine hierarchy as in
the context of progressive meshes [HDD+93, Hop96, Hop98]. Then the optimization is performed on
each level, initialized with the prolongated solution of the previous level. In the remainder of this section
we comment on the two main building blocks of an efficient and effective multiresolution scheme, i.e.
the decimation and the prolongation.
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6.3 Implementation

Decimation The quadric error metric [GH97] has been designed to maintain the overall geometrical
shape as well as possible while decreasing the complexity of the mesh. In detail, a cost value is assigned
to each edge Eij , connecting vertex Xi and Xj , that reflects the violation of the local geometry if we
collapse Eij to a single vertex Xi resp. Xj , i.e. remove vertex Xj resp. Xi. Furthermore, a suggestion
for the optimal position of the remaining vertex Xi resp. Xj is given along the way. Alternatively, one
can position the remaining vertex along the previously removed edge, i.e. Xk = λXi + (1 − λ)Xj , if
k ∈ {i, j} is the global index of the remaining vertex. We refer to the author’s diploma thesis [Hee11]
for a detailed discussion of the decimation method.

Prolongation The performance of the prolongation method is crucial for the quality of the initial value
on the next level, i.e. the prolongated coarse solution, and hence for the overall convergence behaviour.
In [KMP07] the prolongation is performed by (i) using so-called relative local coordinates and (ii) by
propagating information gathered by the prolongation of the input shapes, see Sec. 4.3.2 in [Hee11] for
details. In the fashion of classical progressive meshes, this method depends on several hierachical levels,
hence multiple additional optimization parameters have to be adjusted.
To overcome this issue, we make use of an approach based on the separation of low frequency shape
information from high frequency detail information (cf . [BK03, BK04]), since this method is built on
the construction of only two levels, i.e. the original resolution and one additional coarse level. Usually,
the coarse resolution contains at most thousand vertices and Newton’s method converges within a few
steps on the reduced space, in particular if we choose a smart initialization (cf . Sec. 6.3.1). Afterwards,
the low frequency shape information—already captured in the coarse meshes—is prolongated to the high
resolution by solving a Bi-Laplace equation. Finally, the high frequency information containing all geo-
metrical details is reconstructed from a reference mesh by means of gradient-based deformation transfer
[SP04, BSPG06]. This particular scheme has e.g. been used in [FB11] in the context of optimizing de-
formation energies of (discrete) shells. We refer to the appendix A.3 for a detailed description of the
multiresolution scheme used in our implementation.

Figure 6.19: A sketch of the multilevel computation of a time-discrete geodesic.

Remark 6.3.1. Note that we sometimes observe a lack of proper termination of the solver for large η
values (η > 1) representing a strong bending energy. Another numerical difficulty is caused by the
fact that the mesh decimation algorithm in its current implementation does not take into account the
local deformation strength, which varies across the shell. Thus, regions of strong deformation might get
coarsened although they should better stay finely resolved. To overcome this issue one could replace the
quadric error metric by a metric sensitive to local dissipation rates.
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6 Time-discrete geodesic calculus in the space of discrete shells

6.4 Discussion and outlook

We have presented a comprehensive time-discrete geodesic calculus on the space of discrete shells which
offers several useful tools in typical applications in computer graphics, such as interpolation, extrapo-
lation and detail transfer. Those tools inherit beneficial properties from the underlying geometric struc-
ture of the shape space, e.g. the interpolation and extrapolation are consistent by definition as they are
realized by geodesic connection and geodesic shooting, respectively. Furthermore, the variational time-
discretization has proved to be a robust scheme that generates appealing results already for coarse time
steps and is intrinsically suitable for a cascadic approach. From a physical point of view, the (discrete)
deformation energy induces a physically sound metric on the space of (discrete) shells. The physical
parameters can be used to control the visual appearance of the geodesic path in an intuitive and plausible
manner. In particular, no additional and artificial regularizer has to be incorporated.
So far we have only considered a smooth (i.e. geodesic) interpolation between two shapes. In Sec. 7.1
we will modify our model in order to solve the multiple interpolation problem, i.e. find a smooth curve
that interpolates between a couple of prescribed shapes. This method is in particular useful for keyframe
animation, an important tool in typical computer graphics applications. From a computational point
of view, there is still room for improvements, especially in terms of increasing the efficiency of the
algorithm. Let us metion that there are several works using an efficient construction of subspaces
which leads to a notable real-time performance in shape interpolation and deformation-based model-
ing [vTSSH15, BvTH16, vRESH16]. A different approach to accelerate computations is to combine our
shell model with a skeleton based animation scheme (cf . e.g. [LCF00, WSLG07, JBK+12]). Moreover, it
would be desirable to get rid of the fixed connectivity constraint in order to be able to compute geodesic
paths between meshes with different connectivities. This could either be realized by adding a corre-
sponding matching term at the beginning and end of the sequence or by using ideas from the functional
maps representation introduced by Ovsjanikov et al. [OBCS+12].
Finally, it would be interesting to further exploit local curvature properties of the shell space. So far, little
is known about the local and global curvature of shape spaces. Even though such knowledge may not
have direct applications in shape animation or exploration, it will help to understand what can be expected
from different geometric modeling approaches. For instance, shape spaces of an elliptic character (with
positive curvature) may exhibit multiple different shortest geodesics between two given shapes. The
example of non-unique shortest geodesics (cf . Fig. 6.8) thus reveals a (locally) positive curvature of
shell space. Furthermore, initially parallel geodesics converge in a shape space with positive curvature,
implying less freedom for shape deformation and modeling. On the other hand, geodesic paths in shape
spaces of hyperbolic nature (with negative curvature) are expected to be unique. However, initially
close geodesics diverge exponentially, implying instability with respect to small velocity perturbations.
Finally, if a shape space turns out to be almost flat, then after a reparameterization of the shape space
geodesics become straight lines and all Riemannian operations become linear, which might be exploited
for efficient algorithms. Nevertheless, the computation of sectional curvatures by transporting vectors
parallely along a closed loop (cf . Fig. 6.16) by means of Schild’s ladder is numerically very unstable. In
fact, Effland [Eff17] shows that the scaling has to be chosen very carefully, otherwise consistency cannot
be expected. Moreover, he proposes a different local approximation of the curvature tensor which is
shown to be consistent. Instead of using holonomy properties of the manifold one could also make use
of a different curvature notion to exploit the local curvature properties in shell space. For example, the
definition proposed by Wald [Wal35] approximates the Gauss curvature of an embedded surface locally
by means of quadruples which can possibly be transferred to general manifolds.
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In this chapter we present further applications of the fundamental concepts of the discrete geodesic cal-
culus, i.e. the time-discrete geodesic and time-discrete exponential map. In Sec. 7.1 we apply the notion
of Riemannian splines—developed in a general setup in Sec. 4.3—to the space of discrete shells. In par-
ticular, we propose an approximation that allows one to compute spline curves efficiently. In Sec. 7.2 we
introduce a generalization of simple linear regression to a generic Riemannian manifold. We demonstrate
and evaluate our discrete regression model on the space of viscous volumetric objects by means of real
data applications both in 2D and 3D. Finally, we apply the elastic PCA model developed by Rumpf and
Wirth [RW09a, RW09b, RW11a] to the space of discrete shells in Sec. 7.3. The results presented in the
three sections of this chapter have been published in [HRS+16], [BFH+13] and [ZHRS15], respectively.

7.1 Time-discrete splines in the space of shells

In Sec. 4.3 we have introduced a notion of Riemannian splines as a tool for multiple interpolation in a
general Riemannian manifold. Furthermore, we have proposed a consistent time-discretization that fits
perfectly into the variational framework of the time-discrete geodesic calculus presented in Sec. 4.2. In
this section we apply the notion of time-discrete splines to the space of discrete shells introduced in
Sec. 5.2. Interpolating curves in the space of triangular meshes are useful for many applications in com-
puter graphics such as keyframe based animation (cf . Fig. 7.2). In particular, globally smooth curves
are more desirable than piecewise smooth curves, cf . Fig. 7.1. Using splines for smoothly interpolating
keyframe poses of animated characters in Euclidean space goes back at least to the pioneering works of
Kochanek and Bartels [KB84] and Lasseter [Lak87] in the 1980s. However, realizing shape interpola-
tion through curves in the space of shells—which is considered as a Riemannian manifold—is relatively
recent.

Using splines for solving the multiple interpolation problem in (discrete) shell space comes at a price,

Figure 7.1: Piecewise geodesic (left) vs. spline
(right) interpolation on Riemannian manifolds
(sphere for illustration). Notice C1-discontinuities
for piecewise geodesic interpolation.

though. As seen in the previous chapter, the Rie-
mannian metric on shell space is closely related
to elastically deforming shells and encapsulates
both bending and stretching contributions. For
triangle meshes the bending contributions depend
on dihedral angles, which are nonlinear functions
of vertex positions (cf . Def. 6.0.2). Consequently,
splines in shell space lead to highly nonlinear op-
timization problems, whose computational com-
plexity must be reduced to yield practical algo-
rithms.
To address this challenge we switch from ver-
tex positions as primary variables to the so-called
LΘA-representation in the spirit of [WDAH10]
and [FB11]. In this formulation, the primary vari-
ables are the edge lengths of triangles (L), dihedral angles between adjacent triangles (Θ), and triangle
areas (A). Splines in LΘA-space can be evaluated through solving a simple linear system. However, the
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resulting curve in LΘA-space will in general not be realizable as a sequence of triangle meshes in 3D
Euclidean space. Instead, we project to the closest curve of realizable triangle meshes in a least squares
sense. Overall, this formulation greatly outperforms nonlinear optimization for computing splines based
on vertex positions.

Figure 7.2: A (periodic) spline in shell space (orange) allows for a temporally smooth interpolation of a
given set of shell keyframe poses (gray, left), in contrast to a piecewise geodesic interpolation (green). In
particular, the trajectories of the right hand of the character illustrate the smoothness of the spline when
compared to the piecewise geodesic curve.

In order to keep this section self-contained, we recall the notion of time-discrete splines in Sec. 7.1.1
before applying them to discrete shell space. To improve the performance and efficiency of our algorithm
we introduce the LΘA-representation as a suitable approximation in Sec. 7.1.2. In Sec. 7.1.3 we give
details on the implementation and finally we discuss and compare our models in Sec. 7.1.4.

Remark 7.1.1. All results presented in this section are joint work with Martin Rumpf, Peter Schröder,
Max Wardetzky and Benedikt Wirth, and have been published in [HRS+16].

7.1.1 Nonlinear approach

Splines on Riemannian manifolds Given a sequence of J ≥ 2 different time points tj ∈ [0, 1] and
associated data points as keyframe poses yj ∈M, j = 1, . . . , J , we seek a smooth curve y : [0, 1]→M
that satisfies the interpolation constraints

y(tj) = yj , j = 1, . . . , J . (7.1.1)

For J > 2 there is in general no interpolating geodesic, i.e. a curve y satisfying (7.1.1) as well as
D
dt ẏ(t) = 0 for all t ∈ [0, 1]. Moreover, piecewise geodesic interpolation paths are not smooth at the
times tj . As motivated already in Sec. 4.3, we tackle this problem by relaxing the condition D

dt ẏ = 0.
Instead of requiring the interpolating curve to satisfy D

dt ẏ = 0 exactly, we can penalize a deviation from
this constraint by introducing the spline energy (cf . (4.3.1))

F [y] =

∫ 1

0
gy(t)

(
D

dt
ẏ(t),

D

dt
ẏ(t)

)
dt .

In addition to the interpolation constraints, we may optionally impose one of the two boundary conditions

ẏ(0) = v0, ẏ(1) = v1 for given v0, v1 ∈ TM , (Hermite b. c.)

y(0) = y(1), ẏ(0) = ẏ(1) , (periodic b. c.)

where TM denotes the tangent bundle onM. The case without additional conditions is referred to as
natural boundary condition. In Sec. 4.3 we have seen that for M = Rd equipped with the Euclidean
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metric minimizers of F are given by cubic splines [dB63]. Accordingly, we denoted a minimizer y of
F [y] under the interpolation constraint (7.1.1) as a Riemannian spline. In Def. 4.3.3 we have defined the
time-discrete spline energy based on a generic dissimilarity measureW by

FK [y0, . . . , yK ] = 4K3
K−1∑
k=1

W[yk, ỹk] , (7.1.2)

for a discrete path (y0, . . . , yK). Here, ỹk is defined by requiring that (yk−1, ỹk, yk+1) is a time-discrete
geodesic connecting yk−1 and yk+1 for k = 1, . . . ,K − 1, i.e.,

ỹk = arg min
y∈M

(
W[yk−1, y] +W[y, yk+1]

)
. (7.1.3)

We have proved in Thm. 4.3.11 that FK is a consistent first-order approximation of F (under suitable
assumptions on the manifold M and on W). However, as mentioned in Rem. 4.3.2 resp. Rem. 4.3.4,
existence of minimizers is not guaranteed. This issue can be resolved by augmenting the (discrete) spline
energy by the (discrete) path energy [HRW16]. Nevertheless, we stick to the spline energy (without
adding the path energy) since we never observed instabilities or blow-ups in our applications.

Splines in shell space Now we apply the notion of (time-discrete) interpolating splines to the discrete
shell space introduced in Sec. 5.2. As before we assume the fixed-connectivity constraint (cf . Def. 5.2.2).
Hence we can identify a discrete shell with its vector of nodal positions S ∈ R3n, where n is the number
of vertices of one triangle mesh. As in Def. 6.0.2, we make use of a discrete deformation energy W to
obtain a suitable discrete dissimilarity measure on discrete shell space, which is then used to replace the
continuous dissimilarity measure W in (7.1.2) and (7.1.3), respectively. Yet different from Def. 6.0.2,
we will define W to be the full Discrete Shells energy as proposed in [GHDS03]. This choice will allow
us to directly derive a corresponding energy in the simplified LΘA-space, which will be considered in
Sec. 7.1.2.

For a discrete shell S ∈ R3n, let L[S] = (lE [S])E ∈ R|E|, Θ[S] = (θE [S])E ∈ R|E| and A[S] =
(aT [S])T ∈ R|T | be the vector of edge lengths, dihedral angles and triangle areas, respectively. Further-
more, we associate to an edge E the area measure dE = 1

3(aT1 + aT2), if E = T1 ∩ T2. Having these
definitions at hand, our discrete deformation energy for deforming S into S̃ is

W[S, S̃] = µWL[S, S̃] + λWA[S, S̃] + ηWΘ[S, S̃] , (7.1.4)

with physical parameters µ, λ, η ≥ 0 and

WL[S, S̃] =
∑
E∈E

dE [S]
( lE [S]− lE [S̃]

lE [S]

)2
,

WA[S, S̃] =
∑
T∈T

aT [S]
(aT [S]− aT [S̃]

aT [S]

)2
,

WΘ[S, S̃] =
∑
E∈E

lE [S]2
(θE [S]− θE [S̃])2

dE [S]
.

Note that µWL + λWA can be considered as a quadratic approximation of Wmem in Def. 6.0.2, whereas
WΘ coincides exactly with WDS

bend defined in (5.3.12) and used in Def. 6.0.2. The colored font is for later
reference when we introduce our LΘA-approximation for efficiently computing splines.
In all numerical experiments we use µ = λ = 1, since local change of length (controlled by µ) and
local change of area (controlled by λ), respectively, should be penalized equally. However, the optimal
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Figure 7.3: Left: J = 3 fixed keyframe poses (gray). Right: Different views of piecewise geodesic
(green) and spline interpolation (orange), respectively, using K = 10, η = 10−3.

bending parameter η = δ2 depends on the application since δ represents the physical thickness of the
shell (see Fig. 7.7).
We aim at computing a spline curve in discrete shell space that interpolates a given set of discrete shells
Sj ∈ R3n at times tj = kjτ with j = 1, . . . , J , where we assume kj ∈ {0, . . . ,K} without loss of
generality1. To this end, one has to minimize the discrete spline energy

FK [S0, . . . ,SK ] = 4K3
K−1∑
k=1

W[Sk, S̃k] , (7.1.5)

among all discrete curves (S0, . . . ,SK) subject to the interpolation conditions Skj = Sj for tj = kjτ
and j = 1, . . . , J and the additional built-in constraints

S̃k = arg min
S∈R3n

(
W[Sk−1,S] + W[S,Sk+1]

)
, 0 < k < K . (7.1.6)

Fig. 7.3 depicts a discrete spline curve for three different keyframe poses of a cactus-type discrete shell
and compares it to the piecewise geodesic interpolation (K = 10). The boundary keyframe poses S0 and
S10 are given as deformations of the cactus rest pose S5 in two orthogonal directions, which leads to a
sharp corner at S5 when performing piecewise geodesic interpolation.

Boundary conditions Our exposition has so far focussed on natural boundary conditions. Periodic
boundary conditions are incorporated by identifying Sk = S(k+K) mod K for k = 0, . . . ,K. Hermite
boundary conditions, which prescribe endpoint velocities and are useful for blending purposes, are in-
corporated in the time-discrete setup by fixing S0 and S1 as well as SK−1 and SK , respectively. A
comparison of Hermite and natural boundary conditions is shown in Fig. 7.4.

Limitations Although the interpolating spline curves in discrete shell space look very nice, a big lim-
itation is computational time. Indeed, since the mappings S 7→ {lE [S], dE [S], θE [S], aT [S]} are non-
linear functions, the minimization of FK is a nonlinear problem in R3n(K+1−J) with K − 1 nonlinear
constraints given by (7.1.6). In our numerical experiments this leads to slow convergence even for rela-
tively small n and K. For example, the computation of the short cactus sequence (n = 5261, K = 10)
1 This restriction can easily be removed using varying time step sizes and suitable adaptations of the energy.
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7.1 Time-discrete splines in the space of shells

Figure 7.4: Interpolation of two keyframe poses (gray) via a spline curve with natural boundary con-
ditions (green; equivalent to a geodesic curve) and with Hermite boundary conditions (orange) for
K = 10, η = 10−3. The Hermite boundary conditions are emulated by fixing two additional keyframe
poses S1 and S9 (light gray, taken from the piecewise geodesic curve in Fig. 7.3).

shown in Fig. 7.3 can take several hours. In order to overcome this limitation, we will introduce an
effective change of variables in the next section.

7.1.2 LΘA approximation

To remedy the problem of high computational cost, we introduce a change of variables in order to turn
the nonlinear optimization problem for computing splines in shell space into a linear one. For this change
of coordinates we heavily build on the two-step approximation scheme proposed by Fröhlich and Botsch
[FB11]. In detail, for a discrete shell S ∈ R3n we consider the vectors of edge lengthsL = L[S], dihedral
angles Θ = Θ[S], and triangle areas A = A[S] as primary degrees of freedom. The key observation is
that with these degrees of freedom, the discrete deformation energyW becomes quadratic, provided that
the terms in (7.1.4) which depend on purple colored shells are not part of the optimization. To achieve
this, we work with what we call reference meshes, i.e., we replace the purple colored terms in (7.1.4) by
a priori given meshes (Ŝ0, . . . , ŜK). In the simplest case, this a priori information is given by using a
constant reference mesh Ŝk = S, k = 0, . . . ,K, for one particular keyframe pose S ∈ R3n.
Collecting all new primary variables in one variable Z = (L,Θ, A) living in the LΘA-configuration
space Z := R|E|×R|E|×R|T |, we get an approximation of (7.1.4) via

ŴLΘA[Z, Z̃] = µŴL[L, L̃] + λŴA[A, Ã] + ηŴΘ[Θ, Θ̃] , (7.1.7)

where the .̂ indicates that the functional is now quadratic but dependent on the reference meshes. We re-
fer to this as the LΘA-energy. Note that the parameters µ, λ, η ≥ 0 have the same physical interpretation
as in (7.1.4). As in the nonlinear setup we set µ = λ = 1 and chose η = δ2 depending on the application.
The discrete interpolation problem can now be re-formulated as follows. We construct a spline curve in
the LΘA-space defined as a minimizer of

F̂KLΘA[Z0, . . . ,ZK ] = 4K3
K∑
k=1

ŴLΘA(Zk, Z̃k) , (7.1.8)
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where (Zk−1, Z̃k,Zk+1) is a geodesic in the LΘA-space, i.e.,

Z̃k = arg min
Z∈Z

(
ŴLΘA[Zk−1,Z] + ŴLΘA[Z,Zk+1]

)
.

Since ŴLΘA is quadratic, one obtains the explicit solution Z̃k as a linear combination of Zk−1 and Zk+1

with coefficients depending on Ŝk−1 and Ŝk only. In particular, if we make use of a constant reference
mesh, then Z̃k = 1

2(Zk−1 + Zk+1). This can be inserted into (7.1.8) so that we end up with an uncon-
strained optimization problem. Hence a minimizer of (7.1.8) is a (weighted) cubic spline in the linear
space Z = R|E|×R|E|×R|T |.

Note that there is no interaction between edge lengths, triangle areas and dihedral angles in a minimizer
(Z0, . . . ,ZK) of (7.1.8). Moreover, there is no spatial coupling between any two different edge lengths,
i.e., an edge length lkE of the kth pose interacts only with lengths ljE of the same edge E and poses j 6= k.
The same applies for dihedral angles and triangle areas. As a consequence, the Euler-Lagrange equation
for (7.1.8) splits into numerous independent (K + 1)-dimensional linear systems, i.e., one for each edge
length, dihedral angle, and triangle area, which can be solved efficiently and in parallel. Moreover, if one
chooses a constant reference mesh, then the matrices representing these linear systems are all given by

1 −2 1
−2 3 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . .

 ∈ RK+1,K+1,

which coincides (for interior quantities) to the 2nd order finite difference approximation of 4th derivatives.

However, intermediate values for edge lengths, dihedral angles, and triangle areas, provided by a min-
imizer (Z0, . . . ,ZK) of (7.1.8), are generally not realizable as an embedded triangle mesh. Hence
we consider a reconstruction in a least squares sense, similar to [FB11]. For given optimal values
Zk = (Lk,Θk, Ak) we define Sk as the minimizer of the nonlinear mapping

S 7→ ŴLΘA(Z[S],Zk) , (7.1.9)

where ŴLΘA is defined as in (7.1.7). We find the minimizer via the Gauss–Newton method (see Section
6 in [FB11] for details, the ”target” values are given by Zk). Furthermore we use exactly the same
physical parameters µ, λ, η ≥ 0 as in the optimization of (7.1.8). The reconstruction can be seen as a
projection of the point Z ∈ Z onto the submanifold which is given by all sets of edge lengths, dihedral
angles and triangle areas that are actually realizable as an embedded triangle mesh. Necessary conditions
for points to lie in this submanifold are given by the Gauss-Codazzi equations, see, e.g., [WLT12] for a
discrete version. Computationally, the reconstruction is the hardest part in theLΘA-space approximation
method. Fortunately, it can be parallelized.

Remark 7.1.2. Optimal Z-variables obtained as solutions of linear systems may have negative lengths or
areas. This happens rarely in practice and is most easily addressed by setting corresponding edge or area
weights to zero (in the reconstruction).

Remark 7.1.3. Different from [FB11], we use an additional area term, i.e., λ > 0 in (7.1.4) and (7.1.7).
While we empirically found that this term is not required for meshes with a reasonable aspect ratio,
there are examples (e.g., the running horse application) where we observe artifacts in the reconstruction
if λ = 0. Moreover, when optimizing (7.1.5), the stability of the optimization is increased and the
convergence time is decreased if λ > 0.
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7.1 Time-discrete splines in the space of shells

7.1.3 Implementation

The nonlinear minimization of (7.1.5) under constraint (7.1.6) is solved via a gradient descent with step-
size control in all primal variables Sk; in the appendix of [HRS+16] we provide the requisite partial
derivatives. Again, the optimization is performed within the multiresolution scheme presented in Sec.
6.3.3, which is built on the gradient-based deformation transfer introduced in [SP04, BSPG06] and sum-
marized in the appendix A.3. This multiresolution scheme is used for the optimization of (7.1.5) as well
as for minimizing (7.1.9). The issue of the inheret rigid body motion invariance is again resolved as
described in Sec. 6.3.2.

Our LΘA-space approximation consists of four steps:
1. simultaneous mesh decimation for all keyframe poses,

2. LΘA-space optimization based on solution of multiple but small linear systems (on coarse level),

3. mesh reconstruction by means of Gauss–Newton (on coarse level),

4. prolongation to fine level.

For the reconstruction—the computationally dominant part—we reproduce the computation times stated
in [FB11], as listed in Table 7.1.

#nodes G.-N. decim. reconstr.
cactus 5.2k 500 140 80
horse 8.5k 700 190 130
armadillo 166k / 7800 3800

Table 7.1: Performance statistics for mesh reconstruction (times in ms) measured on Dell Intel(R)
Core(TM) i7-2600 3.40GHz. From left to right: number of vertices of high resolution mesh, time for one
Gauss–Newton iteration on the original resolution, for the multiresolution preprocessing, i.e., the gen-
eration of coarse meshes from fine meshes (decimation), and for the reconstruction (see [FB11, Tab. 1]).
On the coarse mesh, one Gauss–Newton step takes about 50ms. On the original Armadillo model, the
Gauss–Newton step failed due to memory restrictions.

model (K, γ) decim. coarse prol. fine
opt./recon. opt./recon.

cactus (20, .05) 0.1 1.7 1.7 83
cactus (170, .05) 0.3 22 14 762
horse (40, .10) 0.2 22 5 238

armad. (50, .006) 5.2 80 200 /

Table 7.2: Total runtime (in s, without parallelization) ofLΘA-space scheme for computing spline curves
of length K + 1: mesh decimation with γ indicating the fraction of remaining nodes, optimization and
reconstruction on coarse level, prolongation using detail transfer, and optimization and reconstruction
on fine level using the previous result as initialization for the reconstruction step.

To enable real-time computations one can take the prolongation of the coarse solution as the final so-
lution, which is visually sufficient. In some examples, we observe local mesh degenerations in single
shapes after reconstruction and prolongation, e.g., at the fingers in Fig. 7.2 and the tail in Fig. 7.6, which
are removed in a post-processing step. One may also perform the LΘA-optimization for the high resolu-
tion keyframe poses. However, in our experiments, the resulting shells may differ quantitatively but not
qualitatively from the computationally more efficient prolongation of coarse grid discrete spline curves.
Total runtimes (without parallelization) of the LΘA-space approximation are shown in Table 7.2. In ad-
dition, the reconstruction and the prolongation (which amounts to more than 90% of the cost) can easily
be parallelized, thereby reducing runtime proportionally to the number of available threads.
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7.1.4 Discussion and outlook

Figure 7.5: Piecewise geodesic (green) and spline
curve interpolation (orange) induce similar trajec-
tories but differences in speed.

If we compare the spline interpolation to piece-
wise geodesic interpolation, there are two strik-
ing differences: (i) The trajectory of the spline
curve exhibits a time-continuous acceleration
(∇ẏẏ) and thus is visually smooth, whereas
a piecewise geodesic curve suffers from cor-
ners at the keyframe poses (see Fig. 7.2,
7.3, 7.10). The continuous acceleration can
in particular be seen in the energy plots in
Fig. 7.11 and 7.12. (ii) The spline curve
balances acceleration along the path leading
to a continuous variation in speed (see Fig.
7.5), whereas the piecewise geodesic approxi-
mately has (piecewise) constant speed. Fur-
thermore, splines can incorporate different kinds
of boundary conditions, which leads to flexi-
bility in animation, compare, e.g., Fig. 7.3 and
7.4.

Figure 7.6: Overshooting in spline interpolation.

Overshooting As in the Euclidean case, a
particular feature of spline interpolation is the
so-called overshooting—a consequence of the
smoothness requirement. Fig. 7.6 shows an ex-
ample of this effect for the case of (discrete) Rie-
mannian splines in shell space (orange shapes).
For certain applications this feature might be un-
desired, though.

Dependence on physical parameters Given a set of input shells the resulting spline depends on the
physical parameters λ, µ, and η of the model (see Fig. 6.4 for the dependence of discrete

D E F D

δ=10

δ=10−4

Figure 7.7: Periodic spline D→E→ F →D with
K = 12 and different bending weights η = δ2. The
discrete segments E→F and F→D are not shown
due to the symmetry of the problem.

geodesics on λ and µ). Let us focus here on the
dependence of splines on the thickness parame-
ter η. In the limit η → 0 the energy W mea-
sures the deviation from isometric deformations
so that a spline stays near the submanifold of iso-
metrically deformed shells. For larger values of η
splines may leave this submanifold—also for in-
put shells which are all isometric to each other.
Such an example is depicted in Fig. 7.7, where we
computed a periodic spline D → E → F → D
with different bending weights. Note that all in-
put shells D,E, F are isometric deformations of
a regular and flat hexagon H . For δ = 10−4 the
spline (almost) stays in the subspace of isometric
deformations of H , whereas this is no longer the
case for δ = 10, as can be seen by the bending of
the middle shape in the bottom row.
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7.1 Time-discrete splines in the space of shells

Physical soundness The nonlinear model is consistent with the notion of Riemannian splines and
follows rigorously from the underlying physical model. The simplified LΘA-model shows the same
qualitative behavior as the nonlinear model and is significantly more efficient. Indeed, the simplified en-
ergy is quadratic, and geometric compatibility conditions between the triangle lengths, angles, and areas
are ignored during the energy minimization, resulting in many but small easily solvable decoupled prob-
lems. Yet, using reference meshes in order to obtain a quadratic energy might seem unsatisfactory from
a physical point of view since strains are measured with respect to these (artificial) reference meshes.

2 4 6 8
10−12

10−6

100

maxk ‖Sj−1
k − Sjk‖l2

maxk ‖Lj−1
k − Ljk‖l2

maxk ‖Θj−1
k −Θj

k‖l2
maxk ‖Aj−1

k −Ajk‖l2

Figure 7.8: Maximum difference in cactus sequence
from Fig. 7.3 for j = 1, . . . , 8 fixpoint iterations,
measured in different norms.

A more physical approach could be recovered by a
fixpoint iteration that alternates between comput-
ing an interpolation path via minimizing (7.1.8)
and updating the reference meshes. As exempli-
fied in Fig. 7.8 such a fixpoint iteration is expected
to converge but typically only leads to very mi-
nor interpolation corrections. The decoupling be-
tween edge lengths, dihedral angles, and triangle
areas represents a more severe deviation from the
original model, which may result in different in-
terpolation paths already for simple cases (cf . Fig.
7.10).

Robustness While theLΘA-model enables fast computations and works for largeK and n, the Gauss–
Newton iteration inside the LΘA-scheme is quite sensitive to mesh quality and physical parameters. For
example, it sometimes requires a fine parameter tuning in order to enforce convergence to non-degenerate
meshes in all reconstructions. In contrast, the constrained optimization of the nonlinear model is very
robust and prevents any mesh degenerations.

Mathematical well-posedness Since theLΘA-model mainly acts in the EuclideanLΘA-configuration
space, it enjoys all nice mathematical properties of standard Euclidean spline interpolation. In contrast,
the existence and convergence analysis for the nonlinear model (i.e., the minimization of F in the con-
tinuous and F in the discrete case) is considerably more involved. Nevertheless it can be performed
exploiting similar variational tools as have been used in [RW15]. For details we refer to [HRW16].

Outlook We currently work on a reformulation of the fully nonlinear model that does not depend on

0 6 12

Figure 7.9: Minimizer of F̃K (blue) and of FK (red). Left:
trajectory of top node of cactus, right: energy density plots.

nonlinear constraints anymore. A gen-
eralization of the parallelogram law
leads to the time-discrete functional F̃K

as defined in (4.3.14). However, this
does not offer a consistent approxima-
tion of the spline functional as shown
in Sec. 4.3.3. In practice, nevertheless,
minimizers of F̃K are often very good
approximations of minimizers of the
time-discrete spline functional FK (as
defined in (7.1.5)). The results shown
in Fig. 7.9 are based on the input data
from Fig. 7.3 withK=12, fixing Sk for k ∈ {0, 6, 12}. Since the minimizer of F̃K and F̃K , respectively,
are visually indistinguishable, we plot the trajectory of the top node of the cactus in the (x, y)-plane (Fig.
7.9, left). A quantitative comparison in terms of the mapping k 7→ W[Sk, S̃k], with (Sk−1, S̃,Sk+1)
being a discrete geodesic, is shown in Fig. 7.9 (right).
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Figure 7.10: Top row: Spline curve interpolation between J = 3 fixed ellipsoids (K = 12, η = 10−1).
Bottom, left: Representation of ellipsoids in R2 by their half axes in x- and y-directions. Plotting the
evolution of eccentricity along the deformation one can see the difference between the piecewise geodesic
(green), the nonlinear spline (orange circles), and the LΘA-space approximation (orange diamonds).
Bottom, right: Comparison in terms of the energy density k 7→ W[Sk, S̃k] of piecewise geodesic (green)
vs. nonlinear spline (orange, top) and analogous comparison of the nonlinear spline vs. the LΘA-space
curve (bottom, ordinate rescaled by 10).

8 10 12 14 16 18 20 22 24 26 28 30 32

8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 7.11: Left: Extract from a spline curve through five fixed keyframe poses (at k = 0, 10, 20, 30, 40,
three of which are shown in gray) computed via the LΘA-scheme (η = 1, K = 40). The energy plots
show the LΘA-space energy k 7→ ŴLΘA[Zk, Z̃k] (top row) and the nonlinear energy k 7→ W[Sk, S̃k]
(second row) for the piecewise geodesic (green) and the spline (orange) interpolation. Right: Zoomed
contours of the mouth in keyframe pose S10, S20, and S30 with trajectories of the corners of the mouth.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 7.12: Energy plot of the LΘA-space energy k 7→ ŴLΘA[Zk, Z̃k] for a spline (orange) and
piecewise geodesic (green) interpolation between 17 fixed keyframe poses (gray), computed by LΘA-
space approximation with η = 10−3, K = 170, and natural boundary conditions.
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7.2 Time-discrete regression

7.2 Time-discrete regression

This section is concerned with the derivation of a simple regression model on manifolds that represents
a generalization of linear regression in the Euclidean space. In detail, for a given set of manifold-valued
data points we aim at finding a geodesic curve that fits the data points best. The approach is based on the
fact that geodesic curves are the generalization of linear curves in manifolds. Linear curves as well as

Figure 7.13: Regression curve (black) for 20 input
points on the unit sphere for a strong penalty weight
(left) and just a mild curve smoothing (right).

geodesic curves have two characteristic proper-
ties: they are the shortest connecting curves be-
tween two given points and they have vanishing
(geodesic) curvature. Similar to the previous sec-
tion on splines we shall use the latter one to char-
acterize geodesic regression curves, since the for-
mer one leads to degenerated curves (if the corre-
sponding end points are not fixed). To this end
we control the vanishing curvature property by
means of a penalty approach which is realized by
augmenting the objective functional, i.e. the data
term, with the spline energy. In applications, this
penalty approach enables the control of the real-
ization of the regression curve, as shown in Fig.
7.13.

In Sec. 7.2.1, we first present the continuous regression model and then introduce our time-discretization.
In Sec. 7.2.2, this fairly general, time-discrete regression model is applied to a concrete shape space,
namely the space of viscous fluidic objects (cf . Sec. 3.2). In this particular manifold, the method is used
to analyze root growth in botany and morphological changes of brain structures due to aging. In terms
of implementation, fluidic objects are represented as deformations of suitable reference shapes, which
renders the computation of the discrete regression curve as a PDE constrained optimization for a family
of deformations. We present these rather technical details as well as a sequence of minor simplifications
of the overall model in Sec. 7.2.3. Finally, we comment on future work in Sec. 7.2.4.

Remark 7.2.1. All results presented in this section are joint work with Benjamin Berkels, Tom Fletcher,
Martin Rumpf and Benedikt Wirth, and have been published in [BFH+13].

7.2.1 Derivation of the discrete regression model

Let us consider sets of input shapes {yik}i=1,...,ik for k = 0, . . . ,K, which represent sets of statistical
measurements at times tk ∈ [0, 1] on the shape manifoldM. As a notational simplification let us suppose
already here that all times tk at which input shapes are given are multiples of the time step size τ = 1

K
of the discrete model to be introduced later. Indeed, this is no severe restriction because a generalization
to discrete geodesics with non-constant time step sizes is straightforward. As a motivation, let us first
consider the Euclidean setup, i.e. M = Rd equipped with the standard Euclidean metric. Then the
simple linear regression problem is to find a linear function y : [0, 1] → Rd, usually parametrized as
y(t) = mt+ b with m, b ∈ Rd, such that

K∑
k=0

ik∑
i=1

‖y(tk)− yik‖2

is minimal. Considering general manifolds M, one now replaces the linear function y(t) = mt + b
by a geodesic curve y : [0, 1] → M and the Euclidean distance by some functional W : M×M →
R that measures the dissimilarity between the input shapes yik and the associated shapes y(tk) on the
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geodesic curve. In analogy to the standard linear regression model in Rd, whereW[x, y] = ‖x − y‖2,
the dissimilarity measureW[·, ·] might be (an approximation of) the squared (geodesic) distance onM
(cf . [Fle11]) or another in general nonlinear measure of shape dissimilarity. Given such a dissimilarity
measure, the simple regression problem on general manifolds is to minimize the data term

R[y] =

K∑
k=0

ik∑
i=1

W[y(tk), y
i
k] , (7.2.1)

under the constraint that y is actually a geodesic, namely that it fulfills the geodesic equation D
dt ẏ = 0.

Similar to the previous section, where we considered splines in the space of shells, we will relax this
hard constraint by considering a penalty approach instead. As before, the penalty functional is given by
the spline energy F (as defined in (4.3.1)) that penalizes violations from the geodesic equation. Then the
generalized regression model on manifolds formulated as a penalty approach is to minimize

Rε[y] = R[y] + ε−1F [y] = R[y] + ε−1

∫ 1

0
gy(t)

(
D

dt
ẏ(t),

D

dt
ẏ(t)

)
dt (7.2.2)

for a small penalty parameter ε.

Analogously to the previous section we now derive a discrete analog of the above continuous variational
problem and specifically ask for a discrete geodesic regression curve. Again, we consider discrete curves
(y0, . . . , yK) in shape space and assume (potentially after reindexing) that {yik}i=1,...,ik is the set of input
shapes attached to the time tk = kτ . If ik = 0 then the corresponding set is empty, and in what follows
the associated sums over i are defined to be zero. With this notation at hand, the discrete geodesic
regression problem is to find a discrete path Y K =(y0, . . . , yK) such that the data term

R[Y K ] =

K∑
k=0

ik∑
i=1

W[yk, y
i
k] (7.2.3)

is minimal under the constraint that Y K is a discrete geodesic, i.e. Y K minimizes EK [(y0, . . . , yK)]
among all discrete paths with same end shapes y0 and yK . As in the time-continuous setting, we relax
this hard constraint in the following. Replacing the continuous spline functional F by the time-discrete
spline functional FK as defined in Def. 4.3.3, the time-discrete regression problem is to minimize

Rε,K [Y K ] = R[Y K ] + ε−1FK [Y K ] = R[Y K ] + ε−1 4K3
K−1∑
k=1

W[yk, ỹk] , (7.2.4)

subject to the constraints

ỹk = arg min
y∈M

(W[yk−1, y] +W[y, yk+1]) . (7.2.5)

Instead of the (discrete) spline functional, one can also consider the (discrete) path energy (cf . Def. 4.2.2)
as a penalty term (cf . [BvTH16]). However, for decreasing ε this leads to degenerated curves, as the (dis-
crete) path energy penalizes the total length of the curve whereas the (discrete) spline energy penalizes
the geodesic curvature of the curve. Fig. 7.14 shows results of the discrete geodesic regression approach
for different penalty parameters ε. For decreasing ε one observes an increased rounding effect towards
the right of the curve, which reflects the global impact of the round input shapes on the resulting approx-
imate discrete geodesic. These results are compared to regression curves obtained when replacing the
proposed penalty by the simpler penalty ε−1EK [.]. The latter leads to a collapse of the regression curve
to a global shape average (as defined in Sec. 7.3, cf . [RW09b]).

The discrete regression model developed in this section is fairly general. In the next section, it will be
applied to a concrete shape space, namely the space of viscous fluidic objects (cf . Sec. 3.2).
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Figure 7.14: Results of the discrete geodesic regression for given input objects at 6 timesteps (top row)
are shown for different penalty functionals and different ε, respectively. The penalty is either given by
the discrete spline energy ε−1FK [Y K ] (left) or by the discrete path energy ε−1EK [Y K ] (right).

7.2.2 Shape regression in the space of viscous fluidic objects

Now we apply the general approach of discrete geodesic regression to a physically motivated shape space
of viscous fluidic objects (denoted byM) with a metric induced by the notion of viscous dissipation (cf .
Sec. 3.2). Given a shape S, a family (φ(t))t∈[0,1] of deformations of S is associated with an Eulerian
velocity field v(t) = φ̇(t) ◦ φ−1(t), and shape variations are equivalence classes of such motion fields
with ṽ ∼ v if ṽ ·n = v ·n on ∂S, where n is the outer normal on ∂S. As described in Sec. 3.2, a physically
motivated metric on shape variations is given by the minimal rate of dissipation in a Newtonian fluid
occupying S when its free boundary moves according to the shape variation, i.e.

gS(v, v) = min
{ṽ | ṽ·n=v·n on ∂S}

∫
S

diss[v] dx , diss[v] = λ
2 (tr ε[ṽ])2 + µtr (ε[ṽ]2) ,

where diss[v] denotes the local rate of viscous dissipation as in (3.2.6). In this context, a matching func-
tionalW to approximate the resulting squared Riemannian distance dist2(S,S ′) locally can be defined
via the minimization of a deformation energy Ŵ[S, φ] =

∫
SW (Dφ) dx over all matching deforma-

tions φ with φ(S) = S ′ for some particular elastic energy density W . There are primarily two options
to choose a W which both ensure the requested consistency of the functional W and the metric g, i.e.
1
2D

2
φŴ[S, id] = gS , cf . Thm. 4.2.6. One could consider a simple linearized model with the density

defined in (3.2.4), i.e.
W l(Dφ) = λ

2 (tr ε[φ− id])2 + µtr (ε[φ− id]2) .

The advantage of W l is that it is quadratic in φ so that the Euler–Lagrange equations for a functional
composed of such energy densities will be linear. However, this is at the expense of the resulting energy
being rigid body motion invariant only in an infinitesimal sense so that a relatively large number K of
time steps is required when optimizing the time-discrete path energy to obtain an approximate frame
indifference of discrete geodesic paths (cf . also Rem. 3.2.1). Full rigid body motion invariance for large
deformations can be guaranteed only for certain classes of nonlinear models W = Wnl. A specifically
useful example is the energy density defined in (3.2.5), i.e.

Wnl(Dφ) =
µ

2
tr (DφTDφ) +

λ

4
det(Dφ)2 −

(
µ+

λ

2

)
log detDφ− dµ

2
− λ

4
.

In our application of discrete geodesic regression the computationally most demanding task is the con-
tinual computation of the shapes S̃k via (7.2.5). Therefore, it turns out to be favorable to use the linear
deformation energyW l, i.e.

W l[S, S̃] := min
φ(S)=S̃

Ŵ l[S, φ] with Ŵ l[S, φ] =

∫
S
W l(Dφ) dx , (7.2.6)
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7 Splines and statistics in shape spaces

in the definition of the S̃k as well as in the definition of the discrete spline energy FK , along with a large
number of time steps K leading to a sufficiently small time step size τ = 1

K . Thus the condition on S̃k
in (7.2.5) turns into

S̃k = arg min
S∈M

(
W l[Sk−1,S] +W l[S,Sk+1]

)
. (7.2.7)

The treatment of the data term in (7.2.3) is computationally less critical. Since we would like to consider
large scale variations between shapes of the discrete geodesic Sk and corresponding input shapes Sik, we
make use of the nonlinear deformation model (by usingW = Wnl) here. Hence the terms in (7.2.3) read

Wnl[Sk,Sik] := min
φ(Sk)=Sik

Ŵnl[Sk, φ] with Ŵnl[Sk, φ] =

∫
Sk
Wnl(Dφ) dx . (7.2.8)

To render the method computationally feasible, we assume all deformations to be defined on a compu-
tational domain D containing all shapes under consideration (we use D = [0, 1]d in the applications).
Furthermore, we suppose that the material properties outside any of the shapes are by a factor δ softer
than inside the shapes (δ = 0.01 in the examples). Thus, we replace Ŵnl/l[S, φ] by

Ŵnl/l
δ [S, φ] :=

∫
D

((1− δ)χS + δ)Wnl/l(Dφ) dx ,

where the superscript l or nl identifies the linear and the nonlinear model, respectively.

To emphasize the qualitative behavior of geodesic regression we have computed the regression curve
for a very basic test case. Fig. 7.15 displays a discrete geodesic and shows the differences with respect
to the corresponding group averages (obtained by minimizing (7.2.3) without constraint) and Fig. 7.16
underlines that the resulting regression curves are actually very close to discrete geodesics.

input

Sk
t

Figure 7.15: Top: regression input shapes (Sik)
i=1,...,5
k=0,...,5 (gray) and group averages (black), bottom: dis-

crete regression curve (Sk)5
k=0.

ε = 0.3

ε = 0.03

Figure 7.16: Difference between the discrete regression curve (black) and the true discrete geodesic (red)
connecting its end shapes for different ε.
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7.2 Time-discrete regression

Furthermore, we applied the geodesic regression approach to the statistical analysis of the aging of the
human corpus callosum and to the growth of sugar beet roots over a vegetation period. Fig. 7.17 shows
the discrete regression curve for the corpus callosum input shapes, which clearly reflects a substantial
thinning of the structure with increasing age (cf . the results in [Fle11] on a similar data set).

age|
20

|
30

|
40

|
50

|
60

|
70

|
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|
90

Figure 7.17: Discrete geodesic regression curve for 31 shapes representing slices of the corpus callosum
of humans at different age (2nd to 8th decade). On the right the 7 contours are overlayed showing a
thinning process with increasing age (blue to red).

Fig. 7.18 presents results obtained for 2D slices of sugar beet roots. Here, we also show the effect of an
increasing number of intermediate shapes along the regression curve. Fig. 7.19 once more demonstrates
that already for moderately small penalty parameter ε the resulting curves are very close to a geodesic.

t

Figure 7.18: From top to bottom: 2D input slices of sugar beets at five time points (gray) and shape
averages for each time (black), regression curves for ε = 0.08 and K = 4, 8, 12.

ε = 8 ε = 0.8 ε = 0.08

Figure 7.19: Difference between the discrete regression curve (black) and the true discrete geodesic (red)
connecting the end shapes for three different values of ε.
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7 Splines and statistics in shape spaces

Finally, Fig. 7.20 shows some quantitative analysis of the regression curve for sugar beets in 3D.

|
day 54

|
day 69

|
day 83

|
day 96

|
day 109

Figure 7.20: For the discrete sugar beet regression curve the shapes Sk in the front are color coded
according to the signed distance from the shape average at each time point and the input shapes in the
back according to the distance from the regression shape in front (colorcode: −0.127 0.061,
maximal root height ≈ 0.75).

Remark 7.2.2. The examples above are based on MRI scans. The raw data has been obtained by thresh-
olding the MRI signal to obtain characteristic functions on D = [0, 1]3. Afterwards, we restricted each
data set to the largest connected component and applied some hole-filling and smoothing tool. The 2D
data sets are obtained by considering particular slices of the pre-processed 3D data sets.

7.2.3 The optimization algorithm

In this section we briefly describe the main algorithmic ingredients to minimize (7.2.4) in the context
of the space of viscous fluidic objects. The main difference to the space of discrete shells considered
before is the fact that we do not have a one-to-one-correspondence between different shapes here. This
means, shapes as well as deformations between shapes have to be considered as degrees of freedom. To
this end, the presented variational approach for shape regression is based on functionals which depend on
shapes and deformations defined on these shapes. To render the method computationally feasible, we first
parametrize shapes via deformations acting on reference shapes and work solely with deformations as
unknowns. Then, we consider a gradient descent algorithm for the PDE constrained variational approach.

Parametrizing shapes via deformations For the actual computation of discrete regregression curves
in the space of viscous objects, we parametrize shapes via deformations as in [RW13]. As an example,
let us consider the computation of time-discrete geodesics as minimizers of the discrete path energy

EK [S1, . . . ,SK−1;φ1, . . . , φK ] = K
K∑
k=1

W[Sk, φk] , s.t. φk(Sk−1) = Sk ,

Sk−1 Sk

Ŝk−1 Ŝk-

-

6 6

ψk−1 ψk

φk

φ̂k

Figure 7.21: Expressing
shapes and deformation via
parametrizing and reference
matching deformations as in
[RW13].

where—in the fashion of [WBRS11]—the degrees of freedom areK−1
shapes (S0 and SK are given) and K optimal matching deformations.
In contrast, the approach described in [RW13] replaces the shapes
S0, . . . ,SK as arguments of the energy EK by associated parametriz-
ing deformations ψk. These parametrizing deformations are defined
over a set of reference domains Ŝk such that Sk is implicitly deter-
mined via Sk = ψk(Ŝk). Following [RW13] further, one can as-
sume that reference matching deformations φ̂1, . . . , φ̂K are given with
Ŝk = φ̂k(Ŝk−1). As depicted in Fig. 7.21, the matching deformations
φk as original dependant variables can then be replaced by concatinat-
ing parametrizing deformations and reference matching deformations,
i.e. φk = ψk ◦ φ̂k ◦ ψ−1

k−1. Using the transformation rule one can now rephrase all energy terms as in-
tegrals over the reference domain Ŝk. By this technique, instead of K deformations and K−1 domain
descriptions (as in [WBRS11]) one only considers K + 1 parametrizing deformations.
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7.2 Time-discrete regression

We now apply this concept to our situation, which can be thought of as a generalization of the approach
considered in [RW13]. The shapes Sk of the discrete regression curve as well as the constraint shapes
S̃k are hence represented via parametrizing deformations ψk and ψ̃k of fixed reference shapes Ŝk, i.e.
Sk = ψk(Ŝk) and S̃k = ψ̃k(Ŝk) (cf . Fig. 7.22). Likewise, we consider parametrizing deformations
ψik on Ŝk describing the input shapes, i.e. Sik = ψik(Ŝk) for i = 1, . . . , ik. Using these parametrizing
deformations we can now rephrase:

i) the deformations φ̃k from Sk onto S̃k, which occur in (7.2.4) via (7.2.7), by

φ̃k = ψ̃k ◦ ψ−1
k ,

ii) the deformations φik from Sk onto the input shapes Sik, which are used in (7.2.1) via (7.2.8), by

φik = ψik ◦ ψ−1
k .

Sk−1

Sik
Sk Sk+1

S̃k

Ŝk−1 Ŝk Ŝk+1
- -- -

6 6 6

�
�
�
�
��

@
@@Iψk−1

ψk

ψik

ψk+1

φ̂k φ̂k+1

ψ̃k

Figure 7.22: A diagram illustrating the parametrization of the shapes Sk via deformations over reference
shapes Ŝk. Here, φ̂k are given deformations such that Ŝk = φ̂k(Ŝk−1).

Realization of the objective functional To ensure that φik matches (at least approximately) Ŝk onto
the input shape Sik we employ a penalty functional

P[Ŝk,Sik, ψik] :=

∫
D
|χŜk − χSik ◦ ψ

i
k|2 dx̂ (7.2.9)

which is added to the data term (7.2.3) for all k = 0, . . . ,K and i = 1, . . . , ik.
To simplify notation, we denote by ΨK := (ψk, (ψ

i
k)i=1,...,ik)k=0,...,K the vector of all deformations

which are considered as our actual degrees of freedom and by Ψ̃K := (ψ̃1, . . . , ψ̃K−1) the vector of
all constraint deformations. The energy Rε,K [SK ] over which we minimize in (7.2.4) is rewritten as an
energy Rε,Kδη [ΨK ] = Rε,Kδη [ΨK , Ψ̃K ] of Ψ and Ψ̃, i.e.

Rε,Kδη [ΨK ] =
K∑
k=0

(
ik∑
i=1

(
Ŵnl
δ [ψk(Ŝk), ψik◦ψ−1

k ]+ 1
ηP[Ŝk,Sik, ψik]

))

+
4K3

ε

K−1∑
k=1

Ŵ l
δ[ψk(Ŝk), ψ̃k ◦ ψ−1

k ] , (7.2.10)

where we use η = 0.1 in all examples. By the transformation rule we obtain a computationally more
efficient reformulation of the involved deformation energies, i.e.

Ŵnl/l
δ [ψk(Ŝk), ψ ◦ ψ−1

k ] =

∫
D
((1−δ)χŜk+ δ)Wnl/l

(
Dψ(Dψk)

−1
)

detDψk dx̂ ,

for ψ = ψik or ψ = ψ̃k, respectively.

111



7 Splines and statistics in shape spaces

Realization of the constraint We aim at minimizing (7.2.10) subject to the constraint (7.2.7). Recall
that for k = 1, . . . ,K − 1 the components ψ̃k of the vector of deformations Ψ̃K describe the middle
shape S̃k = ψ̃k(Ŝk) of a discrete 3-shape geodesic with end shapes Sk−1 = ψk−1(Ŝk−1) and Sk+1 =
ψk+1(Ŝk+1). If we insert the parametrization over reference deformations into (7.2.6) and (7.2.7), the
parametrization ψ̃k of S̃k is precisely given by the minimizer of the mapping

ψ 7→

(
min

φ−:(φ−◦ψk−1)(Ŝk−1)=ψ(Ŝk)
Ŵ l
δ[ψk−1(Ŝk−1), φ−] + min

φ+:(φ+◦ψ)(Ŝk)=ψk+1(Ŝk+1)
Ŵ l
δ[ψ(Ŝk), φ+]

)
.

Making use of the reference matching deformations φ̂k resp. φ̂k+1 as depicted in Fig. 7.22, i.e. we have
Ŝk = φ̂k(Ŝk−1) and Ŝk+1 = φ̂k+1(Ŝk), we can re-write the (violet) matching constraints as

φ−(Sk−1) = (φ− ◦ ψk−1)(Ŝk−1)= ψ(Ŝk) = (ψ ◦ φ̂k)(Ŝk−1) = (ψ ◦ φ̂k ◦ ψ−1
k−1)(Sk−1) ,

φ+(S̃k) = (φ+ ◦ ψ)(Ŝk)= ψk+1(Ŝk+1) = (ψk+1 ◦ φ̂k+1)(Ŝk) = (ψk+1 ◦ φ̂k+1 ◦ ψ−1)(S̃k) .

We now modify (7.2.7) by eliminating the minimization over φ−/+ and set φ− = ψ ◦ φ̂k ◦ ψ−1
k−1 and

φ+ = ψk+1 ◦ φ̂k+1 ◦ ψ−1, respectively. This leads to the simplified constraint formulation

ψ̃k = arg min
ψ

(
Ŵ l
δ[ψk−1(Ŝk−1), ψ ◦ φ̂k ◦ ψ−1

k−1] + Ŵ l
δ[ψ(Ŝk), ψk+1 ◦ φ̂k+1 ◦ ψ−1]

)
.

Note that we have artificially introduced a point-to-point correspondence ψk+1◦φ̂k+1◦φ̂k◦ψ−1
k−1 between

Sk−1 and Sk+1, which was not the case originally. Nevertheless, in the limit for K →∞ and ε→ 0 the
discrete path experimentally converges to a continuous geodesic (cf . Fig. 7.16 and 7.19).
To fully exploit the quadratic deformation energy in the context of the above-mentioned constraint it is
advantageous to further replace Ŵ l

δ[ψ(Ŝk), ψk+1 ◦ φ̂k+1 ◦ ψ−1] by Ŵ l
δ[ψk+1(Ŝk+1), ψ ◦ φ̂−1

k+1 ◦ ψ
−1
k+1],

which is quadratic in ψ and replaces the relaxation of the energy minφ(S)=Sk+1
Ŵ l[S, φ] in (7.2.7) by

the relaxation of a similar energy based on the inverse deformation minφ(S)=Sk+1
Ŵ l[Sk+1, φ

−1]. For
our applications (e.g. Fig. 7.16) we experimentally validated that for this computationally motivated
modification the resulting discrete curves converge towards discrete geodesics. Altogether we obtain the
following variational definition,

ψ̃k := arg min
ψ

Ck[ψk−1, ψ, ψk+1] (7.2.11)

for all k = 1, . . . ,K − 1, where

Ck[ψk−1, ψ, ψk+1] :=Ŵ l
δ[ψk−1(Ŝk−1), ψ ◦ φ̂k ◦ ψ−1

k−1]

+ Ŵ l
δ[ψk+1(Ŝk+1), ψ ◦ φ̂−1

k+1 ◦ ψ
−1
k+1] + νŴ l[D,ψ] .

Here, we added νŴ l[D,ψ] as regularizer with ν ∼ 10−2h to ensure that not only the compositions of
deformations are regular but also the deformation ψ (here h denotes the grid size).

Dealing with rigid body motions Different from the nonlinear energy Ŵnl, which is strictly rigid
body motion invariant, the quadratic energy Ŵ l is rigid body motion invariant solely in an infinitesimal
sense (cf . Rem. 3.2.1). Thus, in the case of large shape variability in the input data it turned out to be
appropriate to enforce the preservation of the center of mass,

∫
D((1 − δ)χŜ + δ)ψ dx̂ = 0, and the

preservation of the angular momentum,
∫
D((1− δ)χŜ + δ)

(
Dψ −DψT

)
dx̂ = 0, assuming the input

shapes are co-aligned with respect to the zero moment and the direction of the first moment. This is
implemented as an additional set of linear constraints in the minimization in (7.2.11) and in the outer
minimization with respect to the energy termWnl

δ [Ŝk, ψk]. The latter is realized by a projective gradient
descent scheme (cf . also [Ber10, 3.2.4]), the former by a Lagrange multiplier approach.
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7.2 Time-discrete regression

Reference shapes and matching deformations We assume the reference shapes Ŝk and sufficiently
smooth reference matching deformations φ̂k : Ŝk−1 → Rd with φ̂(Ŝk−1) = Ŝk to be given. Otherwise,
we pre-compute Ŝk as the shape mean of the input shapes at time tk in the sense of [RW09b], i.e.

Ŝk = arg min
S∈M

ik∑
i=1

Wnl[S,Sik] .

Afterwards, we pre-compute reference matching deformations φ̂k by solving the registration problem

φ̂k = arg min
φ

(
P[Ŝk−1, Ŝk, φ] + λH[Ŝk−1, φ]

)
,

where P has been defined in (7.2.9), H is a regularization functional and λ > 0 represents the regular-
ization parameter. Typically, we choose eitherH[S, φ] = Ŵnl

δ [S, φ] or the Dirichlet energy

H[S, φ] =
1

2

∫
D

((1−δ)χS + δ) ‖Dφ‖2 dx .

Inverse reference matching deformations φ̂−1
k (needed to evaluate the constraint (7.2.11)) and reference

parametrizations ψik of the input data are pre-computed analogously.

Spatial discretization and optimization For the spatial discretization we employ multilinear finite
elements on the computational domain D = [0, 1]d, which is overlaid with a regular square grid of
2n+1, n ∈ N, nodes in each direction. Energies are computed via Simpson quadrature on each element.
Furthermore, we apply a cascadic approach, first computing the regression curve with a coarse spatial
resolution for all involved deformations and then proceeding iteratively from coarse to fine. In this
cascadic approach one can also adopt the reference shapes Ŝk and the associated reference deformations
φ̂k starting on the coarsest level with a single reference shape chosen as one of the coarsely resolved end
shapes.
We apply a standard Fletcher–Reeves nonlinear conjugate gradient descent to the above minimization
problem, which at each step requires evaluation of the functional Rε,Kδη [Ψ] := Rε,Kδη [Ψ, Ψ̃[Ψ]] and its
gradient. For the functional evaluation, the quadratic optimization problem (7.2.11) is solved for each
k = 1, . . . ,K − 1 by a preconditioned linear conjugate gradient iteration. Using the standard adjoint
method in constrained optimization [Fle87] we obtain the Gâteaux derivative of Rε,Kδη [Ψ]. For details we
refer to the appendix A.4.

7.2.4 Conclusion and outlook

We have described a time-discrete geodesic regression approach on manifolds and applied it to the shape
space of viscous fluidic objects. The method requires the solution of a PDE constrained optimization
problem for deformations defined on a family of reference shapes. Applications in the context of plant
growth and anatomical brain structures demonstrate the method’s potential in time-dependent shape
statistics. The current implementation based on a gradient descent approach requires several hours to
compute a regression geodesic for 2D shapes and several days for 3D shapes. There is a great potential
for faster energy relaxation using Newton type methods and more efficient parallel implementations.
In the future, it would be interesting to investigate the generalization to more general classes of regression
curves, e.g. in the spirit of Hinkle et al. [HMFJ12]. Furthermore, the application to other shape spaces,
e.g. the space of discrete shells, is immediate. However, due to the fixed connectivity constraint imposed
on the discrete shell space it is difficult to obtain suitable data sets. One possibility to solve this problem
is to create consistent triangulations via remeshing in a pre-processing step. A more promising solution,
however, is to only represent the discrete regression curve by triangular meshes (which are in dense
correspondence) while the input data is given implicitly, e.g. as level set functions. The data term (7.2.1)
then consists of matching functionals between implicit surfaces and triangular meshes (cf . [IRS15]).
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7.3 PCA in the space of shells

Statistical models, such as a principal component analysis (PCA), are supposed to extract low-dimen-
sional but essential information from a possibly high-dimensional data set, that represents the variability
(or variance) within the data set as well as possible. Typically, variability is measured with respect to an
inner product, or more generally, with respect to a Riemannian metric. The performance and usefulness
of a statistical model therefore depends substantially on the choice of such a metric. For example, a PCA
performed in standard Euclidean space assumes that the input data lies on (or can be well approximated
by) a hyper-planar manifold, the axes of which are those that capture maximal variance. This makes
it optimal with respect to linear variations but a poor choice when the data contains highly nonlinear
variations.
Important applications in computer vision and graphics include the statistical modeling of human faces
[YWS+11, SHK11, SK15] and bodies [ASK+05, FB12, PMRMB15], which are often represented as
triangular meshes, i.e. discrete shells. In this case, shape variability is usually induced by changes in
identity or dynamic deformations, which typically include highly nonlinear variations. A widespread ap-
proach in computer vision is to perform statistical modeling of triangle meshes by means of the so-called
Procrustes analysis [Sib78, Ken84, BV99, PS09]. In this setup, all shapes are registered by rigid body
motions and afterwards a linear analysis based on the Euclidean metric is applied to the vector of nodal
positions. However, this approach fails to capture nonlinear variations properly. In contrast, the results
presentend in the previous chapter suggest that the time-discrete geodesic calculus on discrete shells,
which is built on a physically-motivated, nonlinear model of surfaces, potentially provides a useful tool
in modeling the nonlinear variability in a sparsely sampled set of triangular meshes. This motivates the
idea to perform statistical shape analysis in (discrete) shell space.

In Sec. 7.3.1, we define a (nonlinear) distance measure by means of the (discrete) elastic shell deforma-
tion energy derived in Sec. 5.3 and introduce a notion of covariance based on the Hessian of such an
elastic energy which has been proven to be suitable metric on shell space (cf . Sec. 6.1.2). In analogy to a
standard PCA in linear Euclidean space, we extract principal components based on an eigendecomposi-
tion of the resulting covariance matrix. The resulting principal components are able to capture nonlinear
articulations and complex deformations. In Sec. 7.3.2, we finally provide results on human face and body
data and discuss our PCA model.

Remark 7.3.1. The nonlinear elastic PCA model has been proposed originally by Rumpf and Wirth in
the space of volumetric objects [RW09a, RW09b, RW11a]. We report here on applying this elastic PCA
to the space of discrete shells. The results presented in this section are joint work with Martin Rumpf,
William Smith and Chao Zhang and have been published in [ZHRS15].

7.3.1 Fréchet mean and covariance operator

A principal component analysis (PCA) relies on notions of averaging and covariance and uses an eigen-
decomposition of the covariance matrix in order to extract linear principal components. Following
[RW09a, RW09b, RW11a] we now introduce for a given set of input data (i) a general notion of an
average (depending on a distance measure dist) and (ii) a covariance operator as a generalization of a
covariance matrix (depending on an inner product g). We introduce two particular choices for dist and g,
respectively, namely the standard Euclidean distance/metric, which represents Procrustes analysis, and
a physically-based distance/metric induced by an elastic shell deformation energy. The corresponding
PCA is refered to as Euclidean PCA in the former and as elastic resp. shell PCA in the latter setup.

Consider a given set of input data S1, . . . ,Sm which we now consider as triangular meshes that are in
dense correspondence. Hence we can represent each mesh Si by its vector of nodal positions Si ∈ R3n.
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For a given (squared) distance measure W : R3n×R3n → R the group average Ŝ ∈ R3n is given by the
Fréchet mean [Fré48] (cf . also [Kar77])

Ŝ := arg min
S∈R3n

m∑
i=1

W[Si,S] . (7.3.1)

In the Euclidean setup we have W[S, S̃] = ‖S − S̃‖2 and hence Ŝeuc = 1
m

∑m
i=1 Si. However, in the

elastic PCA setup we define W to be the discrete shell deformation energy as defined in Def. 6.0.2, i.e.

W[S, S̃] = Wmem[S, S̃] + ηWDS
bend[S, S̃] , (7.3.2)

and (7.3.1) becomes a nonlinear optimization problem. In particular, the elastic average Ŝelast has to
fulfill the necessary condition

∑m
i=1 ∂2W[Si, Ŝelast] = 0.

Inherently a PCA is defined on a linear space. Hence we will consider the linear space of nodal displace-
ments Ui = Si − Ŝ ∈ R3n, i = 1, . . . ,m, from the average Ŝ. Given an inner product g on R3n, we
define the covariance operator

CovV =
1

m

m∑
i=1

g(V,Ui)Ui (7.3.3)

and the Gram matrix C = (Cij)ij ∈ Rm,m via

Cij := g(Ui,Uj) . (7.3.4)

Obviously, C is symmetric and positive semi-definite, that means there is a spectral decomposition
C = OΛOT , Λ = diag(λ1, . . . , λm), where λ1 ≥ . . . ≥ λm ≥ 0 are eigenvalues of C and O is an
orthogonal matrix, i.e. OOT = OTO = 1m. We define W1, . . . ,Wm via

Wk :=
1√
λk

m∑
i=1

OikUi (7.3.5)

if λk > 0 and Wk = 0 else. A straightforward calculation reveals that

CovWk =
λk
m

Wk

and g(Wk,Wl) = δkl, i.e. W1, . . . ,Wm are in fact eigenvectors of Cov . Formally, we can extend
W1, . . . ,Wm to an orthonormal basis of R3n with CovWk = 0 for k > m.
Note that eigenvectors of Cov are usually found by a spectral decomposition of the (3n)-by-(3n) co-
variance matrix. However, as in most applications m� 3n it is more efficient to decompose C ∈ Rm,m
as defined in (7.3.4) and obtain eigenvectors via (7.3.5).

Remark 7.3.2. Due to the rigid body motion invariance the representation of a discrete shell S ∈ R3n

is not unique. In fact, S is represented by an equivalence class induced by rigid body motions. This
issue becomes crucial when defining nodal displacements U = S − Ŝ, as we can construct an arbitrary
large displacement by a simple translation. However, this obstacle is overcome by taking S such that
‖S− Ŝ‖2 ≤ ‖S̃− Ŝ‖2 for all S̃ in the equivalence class.
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For a data set U1, . . . ,Um the first component V(1) of a PCA is defined as

V(1) = arg max
‖V‖=1

m∑
i=1

g(V,Ui)
2 = arg max

‖V‖=1
g(CovV,V) , (7.3.6)

where we used the definition (7.3.3) of Cov in the second equality. If we now write V =
∑

k αkWk,
i.e. represent V in the orthonormal basis as defined in (7.3.5), we get g(CovV,V) =

∑
k α

2
kλk. Hence

(7.3.6) is equivalent to solving

ᾱ = arg max
‖α‖=1

m∑
k=1

α2
kλk .

As λ1 is the largest eigenvalue we have ᾱ = (1, 0, 0, . . .) and hence V(1) = W1. Similarly we obtain
further components V(k) as V(k) = Wk for k = 2, . . . ,m. Hence the principal components are given
by the eigendisplacements of Cov as defined in (7.3.5).

Choice of metric We have not specified an inner product g on the space of discrete shells yet. For
the Euclidean setup, which corresponds to a Procrustes analysis, we can define g as the standard scalar
product on R3n, i.e. geuc(U,V) = UTV. We have seen in Sec. 6.1.2 that for an elastic deformation
energy as defined in (7.3.2) the bilinear form

gelast(U,V) =
1

2
UT (HessW)[Ŝelast, Ŝelast]V (7.3.7)

in fact defines a metric on the space of discrete shells modulo rigid body motions. Here HessW =
∂2

2W ∈ R3n,3n denotes the Hessian matrix w.r.t. the second argument of W which is a positive semi-
definite symmetric matrix whose nullspace corresponds to displacements induced by rigid body motions.

Representation of principal modes Our PCA model amounts to an average shape Ŝ ∈ R3n and
eigendisplacements (Wk)k obtained by the PCA. A simple linear representation of these dominant
modes is to compute meshes via Ŝ + tWk, where t ∈ [−T, T ]. However, a more reasonable way
to express pure nonlinear variations is to use the nonlinear shooting method via the time-discrete expo-
nential map (cf . Sec. 6.2.3). Here, we use the exponential map on shell space as a natural extrapolation
of shell variations given by the (nonlinear) principal modes of variation. Hence we consider the elastic
average Ŝ as start point and a (possibly scaled) mode tWk, t ∈ [−T, T ], as the initial velocity.

Projection and reconstruction In an analogous fashion to Euclidean PCA, the elastic PCA can also
be used for reconstructing shapes from a set of PCA coefficients. Given the elastic average Ŝ, the eigen-
vectors (Wk)k and some (possibly unseen) shape S ∈ R3n, we first compute the nodal displacement
U = S − Ŝ. We then project U onto the elastic PCA space Wm, where Wm is the linear subspace
spanned by the principal modes Wk, k = 1, . . . ,m. The projection is given by

PWm : U 7→ PWmU :=
m∑
k=1

gelast(Wk,U)Wk .

Finally, we are able to get the reconstruction via nonlinear shooting, i.e. we compute EXPŜ(PWmU).
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7.3 PCA in the space of shells

7.3.2 Qualitative results and discussion

Here, we provide a qualitative evaluation of the elastic PCA model1. We visualize the dominant principal
modes and compare reconstructions using Euclidean and elastic PCA. We use two datasets

Figure 7.23: Human bodies data with large non-
linear, articulated deformations (FAUST dataset
[BRLB14]).

in our experiments. The first dataset contains
scans of human bodies drawn from the FAUST
dataset [BRLB14]. The 5 training shapes are
shown in Fig. 7.23. The meshes are watertight,
genus zero and we apply groupwise simplifica-
tion to reduce their resolution to 6,000 vertices.
For this dataset, Euclidean PCA fails to obtain a
meaningful average, let alone principal compo-
nents due to the articulated motion (cf . Fig. 7.24).
The second dataset is the B3D(AC)2 [FGR+10]
dataset containing facial motion sequences in dense correspondence. From this dataset, we extract a
subset containing 40 expressions of a single subject. The meshes are genus three (holes for the mouth
and eyes) with a boundary. Once again, we apply groupwise simplification to reduce the mesh resolution
to 3,000 vertices. Note that in both cases, the training data is extremely sparse and that there are large,
nonlinear deformations between shapes.

• -� • -�

Figure 7.24: First two principal modes of variation for elastic model (left) and Euclidean model (right).

In Fig. 7.24 we show the first two principal components for the body data. The elastic average for elastic
PCA and the linear average for Euclidean PCA are depicted in the middle column

Figure 7.25: Vertex trajectories of first
mode of elastic PCA vs. Euclidean PCA.

(shapes in dark gray), respectively. In each row, we show a
geodesic path traversing from the average in each direction
along the principal component. The elastic PCA modes suc-
cessfully capture the nonlinear, articulated motion. The first
mode appears to represent the raising and lowering of the
arms and the second the bending of the leg. Euclidean PCA
fails to capture meaningful deformations and leads to degen-
erated surfaces. To emphasize the nonlinear nature of the
elastic PCA modes, we show vertex trajectories for the first
principal component in Fig. 7.25. This is done by generating
a sequence of shapes by nonlinear shooting and plotting the
resulting trajectories in red. For comparison, the Euclidean
PCA trajectories are shown in blue. Obviuosly, our elastic shell PCA leads to nonlinear trajectories.

1 The corresponding quantitative evaluation has been done by Chao Zhang and is not shown here, cf . [ZHRS15].
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7 Splines and statistics in shape spaces

In Fig. 7.26 (left), we present the first three principal components for the facial expression data. We
show Euclidean PCA in the first row and elastic PCA with nonlinear shooting in the second row. Note
that, while both Euclidean and elastic PCA capture similar characteristics in their principal three modes,
elastic PCA with nonlinear shooting prevents the surface from folding over itself and retains a more
plausible face shape. For example, mode 1 of Euclidean PCA appears to correspond approximately to
mode 3 of elastic PCA but elastic PCA preserves a more plausible chin shape in the positive direction.

first mode second mode third mode d=5 d=10 d=39

Figure 7.26: Left: First three principal modes for Euclidean (top) and elastic PCA (bottom). Right:
reconstruction of unseen shape (rightmost shape) using d principal modes taken from Euclidean (top)
and elastic PCA (bottom).

In Fig. 7.26 (right) we show the result of reconstructing an unseen face using an increasing number d of
model dimensions. The results in the top row are for Euclidean PCA and in the bottom row for elastic
PCA. Obviously, there is a perceptual improvement in the reconstruction results using elastic PCA. Using
only d = 5 dimensions, elastic PCA has successfully reconstructed the strong elastic deformation of the
smile while the Euclidean PCA reconstruction does not successfully convey the smiling expression.

Remark 7.3.3. Fig. 7.24, Fig. 7.25 and Fig. 7.26 have been prepared by Chao Zhang (cf . [ZHRS15]).

Discussion and outlook We have presented a principal component analysis (PCA) on discrete shell
space, providing a hybrid between physical and statistical modeling of shape variation. Principal com-
ponents are obtained via an eigendecomposition of a covariance matrix arising from an inner product
based on the Hessian of an elastic energy. In contrast to a PCA in the ambient Euclidean space, i.e. the
widespread Procrustes analysis, our model is better able to capture the nonlinear variations present in
articulated body pose data and face expression data with complex deformations.
However, we here consider the linear space of (possibly large) nodal displacements and not the tangent
space in a Riemannian setup of infinitesimal displacements1. This is computationally more efficient (no
higher resolution of geodesic paths from the average to each input shapes is required) and surprisingly
sufficient also for large displacements, probably due to the involved nonlinear elastic deformation energy
and its invariance with respect to rigid body motions. Nevertheless, the ultimate goal is to present a fully
Riemannian PCA on the space of shells in the spirit of Fletcher et al. [FLJ03, FLPJ04]. In this setup,
the PCA is performed on the logarithms of the input shapes with respect to the average. The logarithm
enables the linear representation of possibly highly nonlinear deformed input shapes in the tangent space
at the average. Additionally, the average itself is a proper Riemannian average, i.e. the functional (7.3.1)
sums over all (squared) Riemannian distances to the input data. Here it is in particular crucial to exploit
efficient optimization schemes to compute the Riemannian average, as each evaluation of the functional
(7.3.1) requires the computation of m time-discrete geodesics of a certain length. Finally, it is also
desirable to derive a formulation that does not require the computation of nodal displacements at all, cf .
1 Nevertheless, the input displacements as well as the resulting principal modes can be considered as approximate tangent
vectors in the Riemannian tangent space at the average shape, whereas this approximation is only valid locally.
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7.3 PCA in the space of shells

Rem. 7.3.2. This applies to the assembling of Gram’s matrix (7.3.4) via (7.3.7), as well as to several
operations during projection and reconstruction of unseen data.
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8 Optimal branching patterns

Martensitic phase transitions lead to mixtures of distinct phases or phase variants with characteristic
fine-scale structures. An almost universal phenomenon is that of twinning, whereby distinct variants of
the martensite phase occur in long, thin lamellae. This twinning is typically due to the presence of an
interface to the more stable austenite phase—which is determined by higher crystallographic symmetry.
The formation of microstructures along these so-called austenite-twinned-martensite interfaces can be
explained on the basis of elastic energy minimization, cf . [Kha67, Kha69, Kha83, BJ87, BJ92]. From
a mathematical point of view, the fine-scale structure arises because the elastic functional is not lower
semi-continuous. Hence minimizing sequences develop spatial oscillations which correspond physically
to the observed microstructure. In particular, elastic energy minimization is able to reproduce some
general features of the microgeometry, such as the orientation and direction of interfaces. On the other
hand, this method does not allow for a prediction of characteristic length scales. To account for these fine-
scale structures one has to include a surface energy, which offers a selection criterion [Mül90, Mül93].
The minimization of an elastic energy plus a surface term has been considered by many authors, cf . e.g.
[Kha83, Roi69, BJ87]. A typical choice is the strain-gradient type functional

Eκ[u] =

∫
ΩL

1
2 κ

2 u2
yy + σ (u2

y − 1)2 + u2
x dx dy , (8.0.1)

for ΩL = (0, L) × (0, 1) ⊂ R2 and a macroscopic deformation1 u : ΩL → R. The boundary x = 0
corresponds to the austenite-martensite interface. For simplicity, we assume the austenite phase {x < 0}
to be completely rigid, i.e. we impose the Dirichlet boundary condition

u = 0 at x = 0 , (8.0.2)

which accounts for the elastic compatability at the interface. More generally and actually more realis-
tically, one can relax this hard boundary condition and augment (8.0.1) by a term describing the elastic
energy in the austenite, e.g. the Dirichlet energy

∫
x<0 |∇u|

2 dx dy or the H1/2-norm of the boundary
function y 7→ u(0, y) [KM92, Con06]. The double-well potential σ(u2

y − 1)2 + u2
x represents the elas-

tic energy of the martensite, where the preferred values ∇u = (0,±1) are the stress-free states of two
distinct variants of martensite. Note that this particular choice of potential accounts for the assumption
that we are dealing with two variants of martensite with equal volume fractions; we refer to the work
by Zwicknagl [Zwi14] and Diermeier [Die16] for the treatment of general and low-volume fractions,
respectively. The strain-gradient term 1

2κ
2u2
yy represents surface or interfacial energy. Several models

have been suggested for this interfacial energy, however, most of them are based on second derivatives of
the deformation [Bha04]. Due to the structure of the double-well potential and the boundary condition
(8.0.2), oscillations are expected primarily in uy, such that the essential variation is mainly in y-direction.
Hence the uyy-term is believed to be sufficient to regularize the problem [KM94]. As motivated above,
there is no minimizer of Eκ[u] for κ = 0, although it is easy to construct a minimizing sequence (uk)k
with Eκ[uk] → 0 as k → ∞. However, as soon as κ > 0, the minimum is attained (cf . Thm. 2.1 in
[KM94]) since the higher-order term 1

2κ
2u2
yy limits the oscillations of uy and establishes a length scale

for the microstructure [KM94, Con00b].
1 Actually, the objective material is three-dimensional, i.e. Ω̃ ⊂ R3, deformed by a macroscopic deformation ũ : Ω̃ → R3.
However, in this thesis we confine ourselves to the reduced, i.e. two-dimensional and scalar-valued, problem. For the treatment
of the more general vector-valued problem as well as the derivation of the reduction we refer e.g. to [Bha04, Zwi14].

121



8 Optimal branching patterns

Prior to the seminal work by Kohn and Müller [KM92, KM94], most of the approaches to minimize
(8.0.1) subject to (8.0.2) assume a one-dimensional configuration for the martensitic twinning. This
means, all interfaces separating different variants of martensite are parallel for x > δ and there is a small
boundary layer (0, δ) × (0, 1) where linear interpolation is used to account for the Dirichlet boundary
condition (cf . Fig. 8.1, left). To this end, the optimal elastic energy is supposed to scale as κ1/2L1/2.
However, for fixed κ > 0 and L→∞ (or equivalently for fixed L > 0 and κ→ 0), the optimal scaling
law is actually κ2/3L1/3 [KM92, KM94]. In particular, the twins are not essentially one-dimensional—
they branch as they approach the austenite (cf . Fig. 8.1, middle). Intuitively, this behaviour can be
explained as follows. The elastic energy prefers fine twins at the austenite-martensite interface, however,
far from this interface, the fine-scale structure is no longer energetically advantageous but costs surface
energy—hence the twins coarsen.

0 δ L 0 δ L 0 δ L

Figure 8.1: One-dimensional construction of parallel martensite interfaces (left) and branching con-
structions considered by Kohn and Müller [KM92, KM94] (middle) as well as by Li [Li03] (right). Dif-
ferent colors represent regions with uy = ±1. Linear interpolation is considered only in the boundary
layer (0, δ)× (0, 1).

Nevertheless, the analysis of Kohn and Müller [KM92, KM94] as well as many further investigations
[Con00b, Con06] are based on a slightly different functional which is supposed to approximate (8.0.1) or
at least characteristic properties of the functional or its minimizers. In detail, one studies the minimization
of the energy functional

Fε[u] =

∫
ΩL

ε |uyy|+ u2
x dx dy (8.0.3)

for ΩL = (0, L)× (0, 1) ⊂ R2 and a suitable u ∈ A with

A = {u ∈ H1(ΩL) : uy = ±1 a.e. ,

uyy is Radon measure on ΩL with finite mass, u = 0 at x = 0} .

From an analytical point of view, the minimization of (8.0.1) involves lots of technical details such as
smoothing sawtooth functions, whereas the optimization of (8.0.3) is basically a geometric problem. In-
deed, the essential unknown is the set {(x, y) ∈ ΩL : uy(x, y) = 1} which determines u via integration
in y-direction (if one imposes e.g. u(x, 0) = u(x, 1) = 0). The elastic energy of the martensite is now
represented solely by u2

x and the surface energy density ε|uyy| effectively counts the number of inter-
faces. As in the original model (8.0.1), one can relax the hard boundary condition incorporated in A and
augment Fε by a term describing the elastic energy in the austenite, cf . [KM92, Con06].

The rigorous connection between the diffuse interface model (8.0.1) and the sharp interface model
(8.0.3) has not been investigated in detail so far, however, there are a couple of remarks in this direction
[KM94, Con00a]. We refer to [MM77, Mod87] for a rigorous analysis of a related first-order problem
and to [Mül90, Mül93] for results on a corresponding one-dimensional problem. However, we provide a
quantitative relation between the constants κ in (8.0.1) and ε in (8.0.3), respectively, which also offers a
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link between (8.0.1) and (8.0.3). Let us consider a small neighborhood of an interface where uy changes
sign from approximately −1 to approximately +1. We have the elementary inequality

1
2κ

2 u2
yy + σ (u2

y − 1)2 ≥
√

2σ κ |1− u2
y| |uyy| ,

which becomes sharp if κuyy = ±
√

2σ(u2
y − 1), i.e., if we choose the right profile locally. Defining

W (s) = (1 − s2)2, the corresponding (optimal) interfacial energy of (8.0.1) can be computed as (cf .
[KM92, eq. (12)]):∫

1
2κ

2 u2
yy + σW (uy) dy =

√
2σ κ

∫
W 1/2(uy)uyy dy =

√
2σ κ

∫ 1

−1
W 1/2(z) dz =

4
√

2σ

3
κ .

On the other hand, the sharp interface model (8.0.3) assigns 2ε to such an interface, i.e. we have

2ε =
4
√

2σ

3
κ ⇒ ε =

2
√

2σ

3
κ . (8.0.4)

Kohn and Müller [KM94] prove the existence of a minimizer of (8.0.3) and show that there are constants
c, C > 0 such that

c ε2/3L1/3 ≤ min
u∈A

Fε[u] ≤ C ε2/3L1/3 , (8.0.5)

subject to the condition that ε> 0 is sufficiently small, which is assumed to be the case throughout this
thesis. In order to recover the upper bound they use an explicitly constructed branching pattern (cf .
Fig. 8.1, middle) which – after some optimization – yields a constant C ≈ 6.86 [KM92, eq. (45)]; the
corresponding constant in the lower bound is c ≈ 2.08 [KM94, Lemma 2.8]. However, an explicit con-
struction of the minimizer is still an open problem, although characteristic properties of such a minimizer
have already been proved. For example, Conti [Con00b] provided a local upper bound on the energy and
on the minimizer itself and proved self-similarity of the minimizer near the austenite-martensite inter-
face in the sense that the sequence uj(x, y) = θ−2j/3u(θjx, θ2j/3y) admits a W 1,2-strongly converging
subsequence (0 < θ < 1).

What is the contribution of this thesis? The objective of this work is to present a new type of branch-
ing pattern and to show numerically and analytically that it leads to a significantly lower constant C in
the upper bound in (8.0.5). Since the explicit formulation of the minimizer is still unknown our new
pattern provides a hint in this direction that might be useful in further analytical investigations.

The remainder of this chapter is organized as follows. In Sec. 8.1, the diffuse interface model (8.0.1)
is optimized numerically by means of a conforming finite element method. Based on the insight from
this numerical simulation, we (numerically) investigate a novel, low dimensional family of branching mi-
crostructures for the sharp interface model (8.0.3) in Sec. 8.2. In Sec. 8.3, we construct explicit branching
patterns for different models that allow for a closed-form computation of an upper bound. We finally dis-
cuss our findings and their implications in Sec. 8.4.

Remark 8.0.1. The results presented in Sec.8.1 and Sec. 8.2 are joint work with Martin Rumpf and Patrick
Dondl, and have been published in [DHR16].
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8 Optimal branching patterns

8.1 Simulations based on subdivision finite elements

The new branching pattern investigated in this thesis is derived from the results of a finite element simu-
lation of the diffuse interface model (8.0.1). As motivated above, this functional approximates the sharp
interface model (8.0.3) without imposing the nonlinear condition |uy| = 1, which is hard to realize nu-
merically. To minimize the energy (8.0.1) via a conforming finite element method, H2-regular ansatz
functions have to be taken into account. We construct an appropiate ansatz space by using (Loop) sub-
division surface basis functions which results in a H2-conforming method [Loo87]. There are many
papers investigating the theory of subdivision surfaces, describing the corresponding implementation
and performing numerical simulations. Most relevant, Reif [Rei95] developed a unified framework to
prove C1-regularity using the so-called characteristic map embedding. Later, Reif and Schröder [RS01]
showed H2-regularity and Arden [Ard01] investigated further approximation properties of subdivision
surfaces. The H2-regularity is in particular essential for higher order finite element simulations, as per-
formed e.g. in [COS00, DSB07, CL11]. In terms of the implementation of an efficient subdivision code
we refer to [Sta99, SZ00, BLZ00, GKS02].

To compute a minimizer u ∈ H2(Ω) of (8.0.1) we set L = 1, i.e. we have Ω = (0, 1)2, and consider
zero Dirichlet boundary conditions on ∂Ω. For a given function u0 : Ω → R and for some T > 0, we
define a L2-gradient flow u(t, x, y) : [0, T ]× Ω→ R with u(0, x, y) = u0(x, y) by

(ut, φ)L2 = −∂uEκ[u](φ) , (8.1.1)

where ∂uEκ[u](φ) := d
dsEκ[u + sφ]|s=0 denotes the Gâteaux-derivative of Eκ in some test direction

φ ∈ H2(Ω) ∩ H1
0 (Ω). However, Eκ is not convex, hence the Hessian of Eκ is not positive definite.

That means, multiple equilibria of (8.0.1) may exist and the gradient flow can expand in u. In order to
treat the gradient flow in a numerically efficient manner, we use a convex-concave splitting algorithm
proposed by Eyre [Eyr98]. To this end, one decomposes the energy functional into a convex energy plus
a concave energy, i.e. Eκ = G+

κ,λ + G−κ,λ. In this decomposition, G+
κ,λ is convex for all λ > 0 and

G−κ,λ is (essentially) concave for all λ > c for a finite constant c > 0. Then one evolves (8.1.1) using a
semi-implicit timestepping scheme in which G+

κ,λ is treated implicitly and G−κ,λ explicitly. This splitting
method has become popular especially for treating diffuse interface equations such as the Cahn-Hilliard
equation which is related to (8.0.1), e.g. in [BEG07]. Motivated by [BEG07] we define

G+
κ,λ[u] :=

∫
Ω

1

2
κ2u2

yy + λu2
y + u2

x dx dy , G−κ,λ[u] := (Eκ −G+
κ,λ)[u] . (8.1.2)

Note that G+
κ,λ is designed such that u 7→ ∂uG

+
κ,λ[u] is linear. As we assume |uy| ≈ 1 we can choose a

(finite) λ > 0, such that

G−κ,λ[u] = σ

∫
Ω

1−
(

2 +
λ

σ

)
u2
y + u4

y dx dy

is concave. We write uk(x, y) = u(kτ, x, y) for some time stepsize τ > 0 and apply (8.1.1) to (8.1.2):

(uk+1 − uk, φ)L2 = −τ
(
∂uG

+
κ,λ[uk+1](φ) + ∂uG

−
κ,λ[uk](φ)

)
. (8.1.3)

Note that G+
κ,λ is treated implicitly, whereas G−κ,λ is treated explicitly.

For the spatial discretization we introduce a regular triangulation1 Ωh of Ω with n nodes (xi, yi) ∈ R2,
i = 1, . . . , n. We approximate uk by Uk(x, y) :=

∑
i Ū

k
i ϕi(x, y), where (ϕi)1≤i≤n is the basis function

1 In the context of subdivision surfaces, one is interested in dealing with regular control meshes, i.e. meshes with as many regular
vertices as possible—a regular vertex is a vertex with valence 6. In particular, the domain Ω = [0, 1]2 can be described by
a mesh having nothing but regular vertices in the interior. However, the treatment of (irregular) boundary vertices is more
involed, see e.g. [BLZ00].
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8.1 Simulations based on subdivision finite elements

set consisting of subdivision functions. In a nutshell, the graph of ϕi is defined as the subdivision surface
with reference net Ωh and control vertices (xj , yj , δij). The effective unknowns are collected in the
coefficient vector Ūk = (Ūki )i ∈ Rn. Hence we can rewrite (8.1.3) in matrix-vector-notation as a linear
system(

M + τκ2Lyy + 2τλLy + 2τLx
)
Ūk+1 =

(
M + 2τ (2σ + λ) Ly − 4τσQ[Uk]

)
Ūk , (8.1.4)

which is solved for Ūk+1 ∈ Rn in every iteration step for given Ūk ∈ Rn and n× n - matrix quantities

Mij =

∫
Ω
ϕiϕj dx dy , (Lz)ij =

∫
Ω
∂zϕi ∂zϕj dx dy , Q[ω]ij =

∫
Ω
ω2(x, y) ∂yϕi ∂yϕj dx dy .

In our numerical scheme we approximate these integrals by a three-point Gauss integration. With all
the relevant matrices pre-assembled, this time stepping system is fairly easy to implement and can be
shown to be unconditionally stable (as long as the convexity and concavity conditions are observed).
Each iteration step then consists of updating the right hand side and solving (8.1.4). Since the system
matrix on the left-hand-side in (8.1.4) does not depend on k, it can be factorized once at the beginning,
e.g. by a Cholesky-factorization. The Dirichlet boundary condition is fulfilled by setting corresponding
entries in Ūk to zero.

Figure 8.2: Different zooms for a minimizer of Eκ in (8.0.1) with 106 elements on Ω=[0, 1]2 with
κ=2

√
5 · 10−3 and σ = 10, where blue resp. red encodes uy ≈ ±1. The spatial resolution is shown

in the square zoom (top, right); the circle zoom (bottom, right) highlights an inner needle.

By this method the (numerical) minimizer u of (8.0.1) can be computed robustly and independently of the
choosen initial data u0. Fig. 8.2 depicts corresponding uy-values which induce a characteristic branching
pattern. Due to the double-well potential in (8.0.1), we observe |uy| ≈ 1 everywhere outside of small
transition layers (where uy changes sign) and boundary layers close to x = 0 and x = 1, respectively.
Obviously, the pattern is topologically different from the branching pattern investigated by Kohn and
Müller [KM92], where the inner needles (Fig. 8.2, circle zoom) are not taken into account (cf . Fig. 8.1,
middle). Furthermore, the pattern in our simulations differs geometrically from the pattern proposed by
Li [Li03], where inner needles are generated on every level (cf . Fig. 8.1, right) whereas in our pattern
they arise every other level. Let us mention that a topologically equivalent, however geometrically some-
what distorted pattern has been found in less accurate simulations by Muite [Mui09].
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8 Optimal branching patterns

8.2 Optimal branching patterns for a reduced sharp interface model

In this section, we will use the findings for the diffuse interface model from the previous section to derive
a geometrically simple, reduced model for the sharp interface problem (8.0.3). Then we optimize over its
degrees of freedom and compare it in terms of the stored energy with correspondingly optimized version
of the patterns proposed by Kohn and Müller (cf . Fig. 8.1, middle) and by Li (cf . Fig. 8.1, right).

8.2.1 A reduced sharp interface model

Topology In the reduced model we consider functions u : Ω → R with |uy| = 1 a.e. by construc-
tion. In fact, we divide Ω into regions bounded by piecewise polygonal lines. Connected components
separated by these lines then describe regions with uy = ±1 and the polygonal lines represent interfaces
where the gradient of u jumps. Using the boundary condition along y = 0, one can explicitly reconstruct
u on Ω by integrating in y-direction, i.e. u is completely determined by these interfaces1. In the follow-
ing, we describe how the piecewise polygonal interfaces are constructed topologically. The positions of
the vertices of the polygonal lines represent the geometric degrees of freedom (to be optimized later). As
the construction is refined subsequently for x↘ 0, the interfaces actually form a branching pattern.

The branching pattern is constructed by defining needles of different size, which are bounded by

Figure 8.3: Trunk is green,
facets yellow and spikes red.

polygonal lines—as mentioned above. We assume that one needle con-
sists of a trunk (t) and a spike (s) on top of it, material outside a needle
is refered to as facet (f), cf . Fig. 8.3. The generation of a particular
branching pattern is described best by the action of an automaton A.
We consider the alphabet {f, s, t, |}, where | denotes an interface. The
initial word is given by ω0 = f . A branching pattern afterK iterations
is defined by

BK = ω0; A(ω0); . . . ; AK(ω0) ,

where ; represents the generation of a new level. The action of A on a
word is realized letter by letter where A(|) = | for all patterns. Different branching patterns are charac-
terized by the action of A on the three letters {f, s, t}. The new branching pattern (NEW) described in
Sec. 8.1 (cf . Fig. 8.2) is characterized by

A(s) = t , A(t) = A(f) = f | s | f ,

as depicted in Fig. 8.4. The pattern (KM) proposed by Kohn and Müller [KM92] (cf . Fig. 8.1, middle)
is generated by the rules

A(s) = t, A(t) = t, A(f) = f | s | f ,

and the pattern (L) investigated by Li [Li03] (cf . Fig. 8.1, right) is given by the rules

A(s) = A(f) = f | s | f .

Note that there are no trunks t in the Li model.

A periodic cell PK with K levels is now defined by computing BK (as described above) and then re-
flecting half of the pattern to either side along two straight additional interfaces (as shown in Fig. 8.4,
right). The constructed pattern consists of connected components (bounded by polygonal lines) which
will later represent different phases of martensite, i.e. regions with uy = ±1 (cf. Fig. 8.4 vs. 8.5). This
construction enables a periodic extension in y-direction. In particular, the (periodic) boundary conditions
u(x, 1) = u(x, 0) are fulfilled by construction.
1 In particular, we will ensure u(x, 1) = u(x, 0) by suitable reflections and periodic extensions to be described later.
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8.2 Optimal branching patterns for a reduced sharp interface model

B0 B1 B2 B3

6x

Figure 8.4: Constructing a periodic cell P3 with K = 3 levels. Starting from the intial word
B0 = ω0 = f , the automaton is applied three times to construct B1,B2,B3 (using the (NEW) scheme).
Afterwards, a y-periodic cell P3 is constructed by reflecting half of the pattern B3 to either side along
two straight additional interfaces (right). Color code: facet ( ), spike ( ) and trunk ( ), black lines
denote interfaces separating regions with |uy| = ±1. All patterns Bk and P3 have been rotated by 90◦

for better visualization. Note that the color coding does not represent different phases of martensite (as
in Fig. 8.5).

Geometry Now we describe the geometric arrangement of Ω = [0, L] × [0, 1] as well as the degrees
of freedom of the reduced model. There is a region without branching between x = l and x = L
(cf . Fig. 8.5). Here we allow for a lamellar pattern which is advantageous far away from the austenite-
martensite interface at x = 0. Branching starts at x = l, where we shall consider l ∈ (0, L] as a
degree of freedom. The kth branching level (whose topology is described by the automaton) is located
between xk = θkl and xk−1 = θk−1l, for k > 0. By construction, the pattern is symmetric along
y = 1

2 , ensuring periodic boundary conditions as mentioned above. We choose constant zero boundary
condidions u(x, 0) = u(x, 1) = 0 which directly implies u(x, 1

2) = 0, i.e. ux(x, 1
2) = 0. We assume

that the tip of an (initial) needle and the tip of all needles being generated within this initial needle lie
on a horizontal line. Note that this only applies to (NEW) and (L) as (KM) never produces new needles
within one existing needle.

Lx0 = lx1· · ·xK

0

1
4

1
2

3
4

1

Figure 8.5: Periodic cell P4 for (KM), (L) and (NEW) from left to right, with xk = θkl for k ≥ 0 and
l < L. Here the color encodes the sign of uy. The computational domain CK = [xK , x0] × [1

4 ,
1
2 ] is

surrounded by the dotted line in the (NEW) scheme. By construction, the pattern is symmetric along
y = 1

2 , ensuring periodic boundary conditions, i.e. u(x, 0) = u(x, 1). Later, PK is rescaled in y-
direction by N−1 to allow N repetitions in y-direction within Ω.
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8 Optimal branching patterns

Derivation of surface energy The surface energy counts the number of interfaces, i.e. the number of
jumps of |uy| in y−direction. In particular, as |uy| = 1, there is a jump height of 2. Let Ik denote the
number of interfaces in Sk = {(x, y) : xk < x < xk−1} ⊂ PK . Then we have∫

Sk
ε|uyy|dx dy = 2ε (xk−1 − xk) Ik = 2ε (1− θ)θk−1l Ik

for the interface energy. Obviously

Ik = 2 · (1 + 2
k∑
i=1

si) , (8.2.1)

where si denotes the number of spikes in Si between two parallel interfaces shown as vertical black
lines in Fig. 8.4 (right). Note that each spike consists of two interfaces and that there are also interfaces
parallel to the x-axis which have to be accounted for. If we consider N repetitions of a rescaled cell PK
we get

FK,εsurf [θ,N, l] =

∫
xK<x<l

ε|uyy| dx dy = 2εN(1− θ)l
K∑
k=1

θk−1Ik , (8.2.2)

and the surface energy of the laminates in {(x, y) ∈ Ω : l < x < L} reads

Bε,L
surf[N, l] =

∫
l<x<L

ε|uyy|dx dy = 4εN(L− l) . (8.2.3)

Finally, the remaining surface energy in Ω∂ := [0, xK ]× [0, 1] is given by

RK,εsurf [θ,N, l] =

∫
Ω∂

ε|uyy|dx dy = 2εN(1− θ)l
∑
k>K

θk−1Ik . (8.2.4)

Note that we observe the well-known scaling behaviour

FK,εsurf [θ,N, l] +RK,εsurf [θ,N, l] =

∫
0<x<l

ε|uyy|dx dy = csurf(θ) 2ε l N , (8.2.5)

where csurf(θ) will be specified later. Subsequently, we deduce different recursive definitions for the
sequences (si)i, depending on the model (NEW), (KM) and (L), respectively. In particular, this enables
to write (8.2.1) as a closed formula which allows the evaluation of the infinite sum in (8.2.4).

(NEW) According to the automaton (cf . Fig. 8.4), each spike at some level k becomes a trunk on level
k + 1, which is enclosed by two finer spikes. Additionally, each spike at some level k creates one spike
in its trunk at level k + 2. Hence we have the recursive formula s1 = 1, s2 = 2 and

si = 2si−1 + si−2 , i > 2 .

This is a generalized Fibonacci sequence, i.e. we have the explicit representation

si =
αi − βi

2
√

2
, α = 1 +

√
2 , β = 1−

√
2 .

Hence

2

k∑
i=1

si =
α√
2

k−1∑
i=0

αi − β√
2

k−1∑
i=0

βi =
α√
2

αk − 1

α− 1
− β√

2

βk − 1

β − 1
=

1

2
αk+1 +

1

2
βk+1 − 1 ,
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8.2 Optimal branching patterns for a reduced sharp interface model

and finally

Ik = αk+1 + βk+1 .

Proof of Fibonacci representation: For a recursive sequence ak = pak−1 + qan−2 for k > 1 and a0 and
a1 given, we have an = rαn−sβn

α−β , where α and β are the roots of x2−px−q = 0 and r, s are determined

by a0 and a1. For p = 2, q = 1, a0 = 1 and a1 = 2 we get an = rαn−sβn
2
√

2
with α = 1 +

√
2 and

β = 1−
√

2. We further solve

1 = a0 =
r − s
2
√

2
, 2 = a1 =

rα− sβ
2
√

2

for r and s, i.e. r = s+ 2
√

2 and 4
√

2 = s(α− β) + 2
√

2α, i.e. s = 2− α = β and r = α.

(KM) As prescribed by the automaton, each spike at some level k becomes a trunk on level k+ 1, which
is enclosed by two finer spikes. Hence we have si = 2i−1 for i > 0 and obtain

Ik = 2
(

1 + 2 ·
k∑
i=1

si

)
= 2

(
1 + 2 ·

k−1∑
i=0

2i
)

= 2
(

1 + 2
2k − 1

2− 1

)
= 2k+2 − 2 .

(L) Each spike at some level k generates one interior spike and two outer spikes on level k + 1. Hence
we have si = 3i−1 for i > 0 and obtain

Ik = 2
(

1 + 2 ·
k∑
i=1

si

)
= 2

(
1 + 2 ·

k−1∑
i=0

3i
)

= 2
(

1 + 2
3k − 1

3− 1

)
= 2 · 3k .

Derivation of elastic energy For the computation of the elastic energy it is convenient to introduce a
computational domain CK ⊂ PK which is limited to CK = [θK l, l] × [1

4 ,
1
2 ], as indicated by the dotted

lines in Fig. 8.5 (right). The geometry of CK is described by θ and the y coordinates of the interior vertices
of the polygonal interfaces. As indicated in Fig. 8.6, we denote the vertices on the line with xk = θkl
by yk,n for n = 1, . . . nk and the open sets of constant slope uy between the lines xk−1 = θk−1l and
xk = θkl byRk,i for i = 1, . . . ik. That means we have

uy|Rk,i = −uy|Rk,i+1

for all k > 0 and for all i > 0. In the following we show that ux is constant onRk,i for all i, k.

Proposition 8.2.1. For [yk−1,n(k,i), yk,n(k,i)] being the upper edge ofRk,i, the piecewise constant quan-
tity ux on the stripe CK ∩ {xk ≤ x ≤ xk−1} is described iteratively by

ux|Rk,0 = 0 ,

ux|Rk,i+1
= ux|Rk,i + 2 sign

(
uy
∣∣
Rk,i

) yk−1,n(k,i) − yk,n(k,i)

θk−1l − θkl
, i ≥ 0 . (8.2.6)

Proof: See Lemma A.1.7 in the appendix.

Using Prop. 8.2.1 the elastic energy in CK is given by

Felast[CK ] =

∫
CK
u2
x dx dy =

K∑
k=1

∑
i>0

(ux|Rk,i)
2 · |Rk,i| .
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8 Optimal branching patterns

y

x

xk−1 = θk−1l

xk = θkl

yk−1,1 yk−1,2 yk−1,3 yk−1,4 yk−1,5

yk,1 yk,2 yk,3 yk,4 yk,5 yk,6

Rk,1 Rk,2

Rk,3

Rk,4 Rk,5 Rk,6

Rk,7

Rk,8

Figure 8.6: Degrees of freedom in y-direction (black dots), i.e. yk,n for n = 1, . . . , nk for each level
k. Areas Rk,i separated in y-directions by interfaces and in x-direction by dotted, artificial lines along
x = xk−1 and x = xk, respectively, represent regions with constant slope ux.

Due to the symmetry of PK we have Felast[PK ] = 4Felast[CK ]. If we now rescale PK in y-direction by
N−1 (to allow N repetitions of PK) we have ux ∼ N−1 and |Rk,i| ∼ N−1. The total elastic energy
FKelast in {(x, y) ∈ Ω : xK < x < l} is then given by summing over all N repetitions of PK , i.e. if we
collect all yk,i in a vector Y we have

FKelast[θ,N, l,Y] =

∫
xK<x<l

u2
x dx dy = 4N−2

K∑
k=1

∑
i>0

(
ux|Rk,i

)2
· |Rk,i| . (8.2.7)

Note that there is no contribution to the elastic energy in the stripe {(x, y) ∈ Ω : l < x < L }, i.e.∫
l<x<L

u2
x dx dy = 0 .

Finally, the remaining elastic energy in Ω∂ = [0, xK ]× [0, 1] is given by∫
Ω∂

u2
x dx dy = 4N−2

∑
k>K

∑
i>0

(
ux|Rk,i

)2
· |Rk,i| . (8.2.8)

Since ux|Rk,i ∼ l−1 and |Rk,i| ∼ l, we observe the well-known scaling behaviour

FKelast[θ,N, l,Y] = celast(θ,Y) l−1N−2 .

Remark 8.2.2. In contrast to the surface energy, we neither have a closed formula for the finite sum in
(8.2.7) nor for the infinite sum in (8.2.8), which causes two problems. First, we are only able to perform
computations for a finite number of levels K, the remaining term in (8.2.8) has to be estimated from
above. We present a suitable upper bound subsequently. Second, Ik and hence the number of regions
Rk,i grows exponentially in k, which results in a rapidly growing number of terms in the sum in (8.2.7)
which have to be evaluated. Accordingly, the computation time as well as memory requirements increase
dramatically, which renders numerical simulations unfeasible for large K. Although the choice K ≈ 15
already touches the computational limit, the resulting rest term in (8.2.8) is vanishing in comparison to
(8.2.7).
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8.2 Optimal branching patterns for a reduced sharp interface model

Boundary conditions and rest terms So far, the degrees of freedoms (dof s) are given by the division
ratio θ ∈ (0, 1) in x-direction, a number N ∈ N that represents the repetitions of periodic cells in y-
direction, a parameter l ∈ (0, L] which defines the beginning of the branching and a vector Y collecting
all degrees of freedom in y-direction within the computational domain (cf . Fig. 8.6). More precisely, we
have Y =

⋃
k≥0 (yk,i)i. In the following, we will make use of the notation

Y = YK ∪ Y∞ , with YK =
K⋃
k=0

(yk,i)i , Y∞ =
⋃
k>K

(yk,i)i .

In particular, YK contains a finite number of dof s, whereas Y∞ is infinite. Note that a function u : Ω→ R

is uniquely determined by θ, l,N and Y, since for each x ∈ (0, L) we can compute u(x, y) by integration
in y-direction using the boundary condition along y = 0, i.e. u(x, y) = u(x, 0) +

∫ x
0 uy(x, z) dz.

According to Rem. 8.2.2, we restrict ourselves to the optimization of the first K levels, hence the dof s in
y-direction are actually given by YK . In the following, we describe how to set Y∞ in order to (i) account
for the boundary conditions u(0, y) = 0 and (ii) enable a suitable upper bound on (8.2.8).

We assume N = 1, i.e. we are dealing with only one periodic cell (the general case for arbitrary N will
be considered later). First, we enlarge the set Y∞. As illustrated in Fig. 8.6 the sequence (yk,i)i lives in
the computational domain, i.e. yk,i ∈ (1

4 ,
1
2) for i = 1, . . . , nk and k ≤ K. For k > K, however, we will

extend the sequence of dof s (as illustrated in Fig. 8.7) by considering

yk,0 = 0 < yk,1 < . . . < yk,nk = 1 , k > K .

Our construction of u in Ω∂ = [0, xK ]× [0, 1], i.e. the definition of Y∞ for given θ, l and N , is based on
the construction in Lemma 2.2 resp. Lemma 2.3 by Conti [Con00b]. The main idea of our construction is
that the particular branching pattern, i.e. (NEW), (L) or (KM), is extended infinitely in terms of the topo-
logical structure prescribed by the automaton. To this end, the surface energy in Ω∂ of our constructed
function u is precisely given by (8.2.4) and we have to provide only an upper bound for (8.2.8).

z1
k z2

k z3
k

yk,0 yk,1 yk,2 yk,3 yk,4 yk,5 yk,6

y
0 1

x

xk+1

xk

xk−1
1 Set yk,0 = 0 and j = 1.
2 for i = 1, . . . , nk − 1 do
3 if yk,i is tip of spike then
4 yk,i = 1

2(zj−1
k + zjk);

5 else
6 yk,i = zjk;
7 j = j + 1;
8 end
9 end

10 Set yk,nk = 1;

Figure 8.7: Algorithm to define the geometric degrees of freedom yk,i for k > K in the boundary layer
Ω∂ = [0, xK ]× [0, 1] by means of the discontinuities of (vk)y denoted by zik.

Let u∂(y) = u(xK , y) be the function along x = xK and u0(y) = 0 for all y ∈ [0, 1]. We define the
linear interpolation ul : Ω∂ → R between u∂ and u0 by

ul(x, y) =
x

xK
u∂(y) .
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8 Optimal branching patterns

Since |(u∂)y| = 1 we have |(ul)y| ≤ 1. As introduced above, Ik denotes the number of interfaces in
{(x, y) : xk < x < xk−1}. For k > K we define a function vk : [0, 1]→ R such that

vk(iI
−1
k ) = ul(xk, iI

−1
k ) , i = 0, . . . , Ik ,

and |(vk)y| = 1 a.e. In particular, we have vk(0) = vk(1) = 0. By construction, (vk)y changes sign (at
most) Ik times, whereas we might assume that it changes sign exactly Ik times, since |(ul(x, y))y| < 1

for x < xK . Let 0 < z1
k < z2

k < . . . < zIkk < 1 be the (ordered) discontinuities of (vk)y, as depicted in
Fig. 8.7 (left). We define the positions of the yk,i by the algorithm shown in Fig. 8.7 (right). Note that
this procedure is well-defined if we set

nk := Ik + #{spikes on level k + 1}+ 1 , k > K .

Furthermore, if yk,i corresponds to the tip of a spike on level k + 1, then neither yk,i−1 nor yk,i+1

correspond to the tip of another spike (at least for the three types of automatons considered here). As
mentioned above, u is completely determined in Ω∂ by θ, l and Y∞. Analogously to the proof of Lemma
2.3 in [Con00b], we arrive at (2.17) and get for Sk = {(x, y) : xk < x < xk−1} and hk = I−1

k with
k > K: ∫

Sk
(u− ul)2

x dx dy ≤ 16

3

I−2
k

xk−1 − xk
.

Using Lemma A.1.8 in the appendix (with ly = 1 and lx = xk−1 − xk) we have∫
Sk
u2
x dx dy =

∫
Sk

(u− ul)2
x dx dy +

∫
Sk

(ul)
2
x dx dy

≤ 16

3

I−2
k

(1− θ) θk−1 l
+

∫ 1

0

(ul(xk−1, y)− ul(xk, y))2

xk−1 − xk
dy .

Due to the linearity of x 7→ ul(x, y) we get for k > K:∫ 1

0

(ul(xk−1, y)− ul(xk, y))2

xk−1 − xk
dy = (xk−1 − xk) ·

∫ 1

0

(ul(xk−1, y)− ul(xk, y)

xk−1 − xk

)2
dy

= (xk−1 − xk) ·
∫ 1

0

(ul(xK , y)− ul(0, y)

xK − 0

)2
dy

=
xk−1 − xk

x2
K

·
∫ 1

0
u2
∂(y) dy .

Finally, we sum over all k > K and obtain∫
Ω∂

u2
x dx dy ≤ 8

3

θ

(1− θ) l
∑
k>K

I−2
k θ−k + x−2

K ·
∫ 1

0
u2
∂(y) dy ·

∑
k>K

(xk−1 − xk)

=
8

3

θ

(1− θ)l
∑
k>K

I−2
k θ−k +

‖u(xK , .)‖2L2(0,1)

θK l
.

Next, we give an upper bound on the term
∑

k>K I
−2
k θ−k, which depends on the model. For k > 0 the

following estimates hold for the number of interfaces (with α = 1 +
√

2 and β = 1−
√

2 as above):

Ik =


αk+1 + βk+1 > αk+1 − 1 > αk , for (NEW) ,
2 · 3k, for (L) ,
2k+2 − 2 > 2 · 2k , for (KM) .

(8.2.9)
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Hence the geometric series
∑

k>K I
−2
k θ−k converges if α2θ > 1 for (NEW), 4θ > 1 for (KM) and

9θ > 1 for (L) and an upper bound on the limit is given by θ−K cKrem(θ) with:

cKrem(θ) =



(α2)−K α2θ
α2θ−1

, for (NEW) ,

9−K 9θ
9(9θ−1) , for (L) ,

4−K 4θ
4(4θ−1) , for (KM) .

Finally, we account for the case that N ∈ N has been chosen arbitrarily, i.e. we obtain for N ∈ N:∫
Ω∂

u2
x dx dy ≤ 8

3

θ cKrem(θ)

(1− θ)θK lN2
+
‖u(xK , .)‖2L2(0,1)

θK l
=: RKelast[θ,N, l,Y] . (8.2.10)

Here ‖u(xK , .)‖2 depends on (yK,i)i and scales like N−2, i.e. RKelast[θ,N, l,Y] ∼ l−1N−2 as expected.

Remark 8.2.3. Due to the estimates in (8.2.9), the upper bound on
∑

k>K I
−2
k θ−k is sharp for (L), but not

for (NEW) and (KM). For instance, already for moderate k we actually have |βk| � 1, i.e. Ik ≈ αk+1

for (NEW), hence cKrem(θ) could actually be scaled by a factor α−2.

Due to Rem. 8.2.2 we are only able to perform simulations for a finite number K ∈ N. Nevertheless, we
have constructed the extension of u in the boundary layer Ω∂ , such that the surface energy of u in Ω∂ is
exactly given by (8.2.4). In the following, we give a closed formula for the surface energy, i.e. the sum
of (8.2.2) and (8.2.4), depending on the model.

(NEW) Using Ik = αk+1 + βk+1 we get for αθ < 1:

csurf(θ) = (1− θ)
∞∑
k=1

θk−1Ik = (1− θ)
(
α2

∞∑
k=0

(αθ)k + β2
∞∑
k=0

(βθ)k
)

=
α2 (1− θ)

1− αθ
+
β2 (1− θ)

1− βθ
. (8.2.11)

(L) Using Ik = 2 · 3k we get for 3θ < 1:

csurf(θ) = (1− θ)
∞∑
k=1

θk−1Ik = 6 (1− θ)
∞∑
k=0

(3θ)k =
6 (1− θ)
1− 3θ

.

(KM) Using Ik = 2k+2 − 2 we get for 2θ < 1:

csurf(θ) = (1− θ)
∞∑
k=1

θk−1Ik = 8 (1− θ)
∞∑
k=0

(2θ)k − 2 (1− θ)
∞∑
k=0

θk =
8 (1− θ)
1− 2θ

− 2 .

Using csurf(θ), the surface energy (8.2.5) can be computed explicitly.
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8.2.2 Numerical optimization and results

Summing the surface energies (8.2.2), (8.2.3) and (8.2.4), as well as the elastic energies (8.2.7) and
(8.2.10) we obtain the objective functional for ε > 0 and K ∈ N, namely

FK,ε[θ,N, l,YK ] = FK,εsurf [θ,N, l] +RK,εsurf [θ,N, l] +Bε,L
surf[N, l]

+ FKelast[θ,N, l,Y
K ] +RKelast[θ,N, l,Y

K ] . (8.2.12)

Optimizing FK,ε for N yields N ∼ ε−1/3 l−2/3, i.e. we get the expected scaling FK,ε ∼ ε2/3 l1/3. Note
that we allow for a lamellar and a branching pattern, controlled by the variable 0 < l ≤ L. In constrast,
in the construction presented in [KM92, KM94], branching starts already at the very right boundary of
Ω which corresponds to fixing l = L.

We now optimize FK,ε in (8.2.12) with respect to θ ∈ (0, 1), l ∈ (0, L] and YK for fixed ε > 0, L = 0.5,
N = 2 and K ∈ N for the three different reduced models (L), (KM) and (NEW). One may also consider
N ∈ N as an additional degree of freedom which is realized by assuming N ∈ R in the simulations. In
order to compare the results to the finite element simulation of the diffuse interface model shown in Fig.
8.2, where κ = 2

√
5 · 10−3 and σ = 10 we set ε = 2

√
2σ

3 κ ≈ 0.013 in the reduced model—according to
(8.0.4). The simulation is initialized on levelK = 4 with the patterns shown in Fig. 8.5. After optimizing
all degrees of freedom on this level, K is increased by one by extrapolating the solution of the last level
and the whole pattern is optimized again1. This procedure is repeated iteratively.

a b c 4 6 8 10 12 14 16 18 20 22
0.2

0.22

0.24
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0.3
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10 14 18
0.210

0.215

0.220

Figure 8.8: From left to right: optimal patterns of the reduced model (with ε = 0.013 and fixed
N = 2) for (KM) with K = 12, (L) with K = 14 and (NEW) with K = 17, restricted to the do-
main [θK l, l] × [3/8, 5/8]. Right: Optimal energy for (NEW) in red, (L) in blue and (KM) in green,
with enlargements of crucial details. Dotted lines are extrapolations without optimization, nevertheless,
energies are monotonically decreasing. Numerical optimization breaks down for (KM) if K > 12 due to
degeneration of geometry on high levels.

The optimal patterns of the reduced models (for fixed N = 2) are compared to each other in Fig. 8.8.
First, the reduced (KM) pattern degenerates already at level K = 13 , i.e. monotonicity of the sequence
(yk,i)i for k ≈ K is violated. In particular, it is energetically not competitive (cf. Fig. 8.9 and 8.8, right).
Qualitatively, the optimal pattern of (NEW) in Fig. 8.8c, is very similar to the optimal pattern of the
diffuse interface model in Fig. 8.2. Striking is the fact that all needles of (NEW) are actually diamond-
shaped, i.e. bounded by a polygon consisting of four straight lines. Up to some numerical perturbations
(probably due to boundary effects) this can also be observed in the pattern in Fig. 8.2. However, these
straight lines are not mandatory in the reduced model due to the freedom to move yk,i. For instance, this

1 We comment on the definition of this extrapolation at the end of this section.
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8.2 Optimal branching patterns for a reduced sharp interface model

is not the case for the optimal pattern of (L) and (KM), cf. Fig. 8.8a and 8.8b.

The similarity between the optimal (NEW) pattern and the optimal pattern of the diffuse interface model
also holds quantitatively. First, for (NEW) the optimal value θ = 0.273 reflects very well the corre-
sponding measured ratio θ ≈ 0.26 in Fig. 8.2. Second, the ratio ”width-to-height” of the largest needle
is approximately 2.6 in Fig. 8.2 and 2.7 for the optimal pattern of (NEW) in Fig. 8.8c. Furthermore, this
ratio decreases in both patterns almost equally when going to the second largest needle.
Among the reduced models the (NEW) pattern performs best energetically, with a relative difference of
> 1% with respect to the optimal energy of (L), see Fig. 8.9. Although the difference is not particularly
large, it is stable with respect to a variation of the model parameters ε, L and N (not shown here).

FK,ε RKelast l θ

NEW 0.2113 5.1 · 10−4 0.146 0.273
L 0.2140 2.9 · 10−4 0.158 0.198

KM 0.2371 1.3 · 10−2 0.119 0.366

Figure 8.9: Optimal values for NEW (K = 17), L (K = 14) and KM (K = 12) for fixed N = 2.

In particular, this remains true when optimizing over all degrees of freedom, i.e. considering N ∈ R
as additional degree of freedom (cf . Fig. 8.10). Fig. 8.10 further reveals that the difference ∆FK,ε of
the optimal energies is of order 10−3 whereas the error (due to the estimate (8.2.10) in the boundary
layer Ω∂) is of order 10−4. Furthermore, the estimate (8.2.10) is not sharp and hence RKelast is dominant
for small K which leads to a substantial over-prediction of the energy in this regime. This effect is in
particular striking in the energy decay of our model (NEW) for K < 13 (cf . Fig. 8.8, right), as explained
in Rem. 8.2.3.

FK,ε RKelast N l θ

NEW 0.2073 4.4 · 10−4 2.661 0.095 0.273
L 0.2096 2.5 · 10−4 2.689 0.101 0.198

Figure 8.10: Optimal values for NEW (K = 17) and L (K = 14) with free N ∈ R. Note that
∆FK,ε ∼ 10−3 whereas RKelast ∼ 10−4.

We compute C = min(FK,ε)L−1/3 ε−2/3 to compare our results to the upper constant C ≈ 6.86 given
in [KM92] and get C ≈ 4.81 (N = 2 fixed) or even C ≈ 4.72 (free N ∈ R) for (NEW) and C ≈ 4.87
or C ≈ 4.78 for (L), respectively.

On the extrapolation For arbitrary 0 < k < K, the geometric degrees of freedom (yk,i)i are dis-
tributed along x = xk. Let (ỹk,i)i ⊂ (yk,i)i denote the set of points that do not represent the tip of a
spike on level k + 1, cf . Fig. 8.7. Due to the well-defined action of the automaton, one can determine
for each pair (ỹk,i, ỹk,i+1), if the segment [ỹk,i, ỹk,i+1] represents a spike, a trunk or a facet on level k.
If, for instance, [ỹk,i, ỹk,i+1] represents a spike, we denote the value |ỹk,i+1 − ỹk,i| as the width of that
particular spike. Furthermore, let s̄k ∈ R denote the arithmetric mean value of all spike widths on level
k. Likewise, we define the width of a trunk and the width of a facet and corresponding mean values
t̄k, f̄k ∈ R. Let Sk, Tk, Fk ∈ N denote the number of spikes, trunks and facets, respectively, on level k.
Then we have for some c > 0:

s̄k Sk + t̄kTk + f̄kFk = c ∀k . (8.2.13)

As Sk, Tk, Fk → ∞ we have sk, tk, fk → 0 for k → ∞. Nevertheless, in an optimized branching
structure with K levels, we observed two interesting features numerically (for 0� k � K):
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8 Optimal branching patterns

1. The variance about the mean values s̄k, t̄k and f̄k, respectively, is very small.

2. The ratios t̄k/s̄k and f̄k/s̄k (and hence all other ratios of s̄k, t̄k and f̄k) are (approximately) inde-
pendent of k, i.e. constant.

Moreover, we made that observation for all three models, whereas the numerical values of the respective
ratios differ between the models. Nevertheless, having optimized a pattern with K levels, we are able
to extrapolate the branching pattern geometrically to some level k for k > K, by using (8.2.13) and the
constant ratios. Note that Sk, Tk and Fk are prescribed by the automaton. One can refer from Fig. 8.8
(right) that this extrapolation is indeed very reasonable, as the energy further decays. However, we were
only able to extrapolate to a moderate number of additional levels due to memory restrictions.

8.3 Non-optimized self-similar branching patterns

In the last section, we derived elastic energies for reduced branching models. However, as mentioned in
Rem. 8.2.2, we were not able to find a closed formula depending on all degrees of freedom, i.e. θ ∈ (0, 1),
N > 0, l ∈ (0, L] and the y-positions of the nodes Y = (yk,i)k,i (as depicted in Fig. 8.6). In this section,
we derive a closed formula for the elastic energy of Li’s model as well as for our branching model by
prescribing Y in an appropiate way and setting l = L (for simplicity). This ansatz produces a self-similar
branching pattern and allows us to evaluate the total energy for infinitely many refinement levels, i.e. to
compute a non-optimized limit functional1. Analogously to the construction of the test function for the
upper bound in [KM92, KM94], we shall optimize the limit functionals for the remaining degrees of
freedom and obtain a better constant in the upper bound.

A limit for the non-optimized Li model

First, we compute the limit energy for a non-optimized Li pattern as shown in Fig. 8.1 (right). We
assume that there are 2N3k−1 periodic cells (as depicted in Fig. 8.11) on the kth level with width
wk = (2N3k−1)−1 and height hk = (θk−1 − θk)L for k > 0. The only degrees of freedom are N > 0
and 0 < θ < 1, analogously to the computation of the constant for the upper bound in [KM92]. Note
that u = 0 on the left and right boundary of the periodic cell (and hence ux = 0 along the boundary)
which is essential to ensure periodicity.

|ux| = 2wk
6hk

|ux| = 2wk
6hk

|ux| = 0 |ux| = 0

1
wk
6 3

wk
6 5

wk
6

hk

wk

Figure 8.11: Left: Periodic cell Pk = [0, wk]× [0, hk] rotated by 90◦, right: one refinement step.

1 Here the term non-optimized refers to the fact that certain degrees of freedom are prescribed.
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8.3 Non-optimized self-similar branching patterns

For θ < 3−1 the surface energy in Ω = [0, L]× [0, 1] is given by (cf . (8.2.9))

Fsurf[N, θ, L, ε] = 2NεL(1− θ)
∞∑
k=0

(
2 · 3k+1θk

)
=

12NεL(1− θ)
1− 3θ

.

The elastic energy of a single periodic cell Pk = [0, wk]× [0, hk] (cf . Fig. 8.11) is given by

Felast[Pk] =

∫
Pk
u2
x dx dy =

(
2
wk
6hk

)2
· 5

6
wkhk =

5w3
k

54hk
.

Hence the total elastic energy in Ω = [0, L]× [0, 1] is given by

Felast[N, θ, L] =
∞∑
k=0

2N3k Felast[Pk] = 2N
∞∑
k=0

3k
5((2N)−13−k)3

54 (1− θ)Lθk

=
10

54 · 8N2(1− θ)L

∞∑
k=0

(32θ)−k =
5

24
N−2L−1 · θ

(9θ − 1)(1− θ)

for θ > 3−2. Altogether we have for 3−2 < θ < 3−1:

F [N, θ, L, ε] = 12NLε
1− θ
1− 3θ

+
5

24
N−2L−1 θ

(9θ − 1)(1− θ)
.

As in [KM92], we first optimize for N > 0. Solving ∂NF [N, θ, L, ε] = 0 yields

N̄ =
3

√
5

144
L−2/3ε−1/3

(
θ(1− 3θ)

(9θ − 1)(1− θ)2

)1/3

.

Plugging this back into F [N, θ, L, ε] yields

F [θ, L, ε] := min
N>0

F [N, θ, L, ε] = 3
2

3
√

60 · L
1
3 ε

2
3 ·
( θ (1− θ)

(1− 3θ)2(9θ − 1)

)1
3
.

Now we optimize for 3−2 < θ < 3−1. We get θ̄ ≈ 0.17018 as unique solution of ∂θF [θ, L, ε] = 0 in the
interval (3−2, 3−1). Plugging θ̄ back into F [θ, L, ε] yields

F [L, ε] := min
3−2<θ<3−1

min
N>0

F [N, θ, L, ε] = 3
2

3
√

60 ·
( θ̄ (1− θ̄)

(1− 3θ̄)2(9θ̄ − 1)

)1
3 · L

1
3 ε

2
3 = C · L

1
3 ε

2
3 ,

with C ≈ 6.08, whereas the upper constant in the construction in [KM92, KM94] is C ≈ 6.86.

A limit for our non-optimized model

Next, we compute the limit energy for a non-optimized version of our branching pattern. As in [KM92,
KM94] and for Li’s model above, the key ingredient is the construction of a so-called periodic cell which
induces the self-similarity. A fundamental property of such a periodic cell Pk = [0, wk]× [0, hk] is that
the corresponding elastic energy only depends on the width wk > 0 and the height hk > 0, i.e.

Felast[Pk] = Felast[wk, hk] =

∫
Pk
u2
x dx dy ,

and possibly on further geometric properties that can be represented relatively within a single cell, such
as e.g. certain angles of interfaces. Moreover, to evaluate the integral on the right hand side it is a
necessary condition that ux = ck at the ”left” boundary of Pk, where ck = 0 is the only admissible

137
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choice due to boundary conditions. In contrast to the model of Kohn-Müller (cf . Fig. 8.1, middle) or
the model of Li (cf . Fig. 8.11), whose self-similar patterns are each based on one fundamental periodic
cell, we shall make use of three different periodic cells, namely A, B and C, respectively, for our model.
However, we will ensure Felast[C] = 0 by construction, hence we are dealing effectively with two non-
trivial periodic cells. The topological construction of our branching pattern is depicted in Fig. 8.12 (top),
where light and dark gray regions correspond to uy = ±1, respectively. The two non-trivial periodic
cells A resp. B of our construction are shown in Fig. 8.12 (bottom) on the left resp. right hand side. The
trivial cell C is given by a rectangle indicated by diagonal red lines in Fig. 8.12 (top). We denote the
layer {(x, y) : θk+1 < x < θk} by the kth level of the construction for k ≥ 0. Cells on the kth level are
denoted by Ak, Bk and Ck, respectively. We have the topological refinement rules:

Ak 7→ {Ck+1 ,Bk+1 ,Ak+1} , Bk 7→ {A′k+1 ,B′k+1 , C′k+1} , Ck 7→ {Ak+1} . (8.3.1)

Here P ′ corresponds to a reflected cell P , with (P ′)′ = P and Felast[P ′] = Felast[P]. In Fig. 8.12 (top)
our pattern is depicted with four refinement levels (in x-direction). According to (8.3.1), the zeroth level
is given by {A0}, the first level by {C1,B1,A1} and the second level by {A2,A′2,B′2, C′2, C2,B2,A2}.
Note that these rules induce the same branching pattern as the automaton described in Sec. 8.2.1, cf . also
Fig. 8.4, i.e. the cell shown in Fig. 8.12 (top) corresponds topologically to B4 in Fig. 8.4 up to one global
duplication-reflection operation. However, we here make use of periodic cells as atomic modules instead
of spikes, trunks and facets used by the automaton.

h0

h1

h2

h3

wa0

wa2

wb1 wa1

θ0

θ1

θ2

θ3

ϕk ϕk
ϕkhk

wak wbk

yk

yk

yk

Figure 8.12: One quarter (in y-direction, here horizontal axis) and four refinement levels (in x-direction,
here vertical axis) of our self-similar branching pattern (top) consisting of three fundamental periodic
cells, namely A (bottom, left), B (bottom, right) and C (top, diagonal red lines).
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8.3 Non-optimized self-similar branching patterns

Now we consider the geometric structure of the periodic cells. Let wak, w
b
k, w

c
k > 0 be the width of Ak,

Bk and Ck, respectively, and let hk = θkL− θk+1L = (1− θ)Lθk be the height of a cell on the kth level
(cf . Fig. 8.12, top). Then we haveAk = [0, wak]×[0, hk], Bk = [0, wbk]×[0, hk] and Ck = [0, wck]×[0, hk].
To satisfy the fundamental property of periodic cells mentioned above, i.e. ux = 0 along the red lines in
Fig. 8.12 (top), we have to ensure by construction that wak = wbk as well as that all interfaces on the kth
level have the same angle ϕk > 0, cf . Fig. 8.12 (bottom). The latter one is equivalent to the condition
that yk = tanϕk · hk is constant on each level. If ak, bk ∈ N denote the number of corresponding cells
Ak resp. Bk on the kth level, we can then compute the total elastic energy by

Felast[Ω] = Felast[L,N, θ] = 4N ·
∑
k≥0

(
akFelast[Ak] + bkFelast[Bk]

)
, (8.3.2)

since Felast[Ck] = 0 by construction. Here N denotes the number of repetitions of the branching pattern
in y-direction.

To evaluate Felast[Ak] = Felast[w
a
k, hk, yk] and Felast[Bk] = Felast[w

b
k, hk, yk], we have to find a closed

form of (wak)k and (yk)k, where wbk = wak for all k. We observe from the refinement rules (8.3.1) as well
as from Fig. 8.12 (top) the recursive relation

wak = wak−2 − 2wak−1 , k ≥ 2 ,

where we set wa0 = 1 (for the time being) and wa1 < 1 is a degree of freedom. As in Sec. 8.2.1 this is
again a generalized Fibonacci sequence with a closed form representation given by

wak = c1(wa1) · (
√

2− 1)k − c2(wa1) · (−
√

2− 1)k ,

with constants ci(wa1) ∈ R. Obviously, wak > 0 for all k ∈ N iff. c2(wa1) = 0. A simple calcu-
lation reveals that this is the case iff. wa1 =

√
2 − 1, i.e. we have c1(wa1) = 1. Taking into account

hk−1

hk
wak+1

yk−1

yk

that we actually have wa0 = (4N)−1 and setting γ =
√

2− 1, we
arrive at the formula

wak =
γk

4N
, k ≥ 0 .

One can infer from the figure on the right the relation

yk = yk−1 − wak+1 , k > 0 ,

where y0 = cwa2 with c > 1 to be chosen later. An evaluation of
a finite geometric series yields

yk =
γ2

4N
·
(
c− 1− γk

1− γ

)
=

γ2

4δN
·
(

(δc− 1) + γk
)
, k ≥ 0 ,

where we set δ = 1− γ = 2−
√

2 < 1. Note that γk → 0 as k →∞. Since yk → 0 as k →∞ we must
have δc = 1, i.e. c = δ−1 > 1. We obtain

yk =
γ2

4δN
γk , k ≥ 0 ,

Next, we compute the terms Felast[Ak] and Felast[Bk]. Note that ux = 0 in the dark gray regions of the
cells Ak resp. Bk in Fig. 8.12 (bottom).
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According to Prop. 8.2.1, we have |ux| = 2 yk/hk in the light gray regions. Hence the elastic energies
are given by u2

x multiplied by the area of the light gray regions, i.e.

Felast[Ak] = 4

(
yk
hk

)2

·
(
hkw

a
k − 1

2hkyk)
)

=
4 y2

k(w
a
k −

1
2yk)

hk
, (8.3.3)

Felast[Bk] = 4

(
yk
hk

)2

·
(
hkw

a
k − 2 1

2hkyk)
)

=
4 y2

k(w
a
k − yk)
hk

. (8.3.4)

To evaluate the infinite sum in (8.3.2) we need to have a closed form for (ak)k and (bk)k. Both sequences
fulfill the recursive relation ak = 2ak−1 + ak−2 for k > 1, where we have a0 = a1 = 1 and b0 = 0,
b1 = 1. Hence we obtain

ak =
αk + βk

2
, bk =

αk − βk

2
√

2
, k ≥ 0 , (8.3.5)

with α = 1+
√

2 and β = 1−
√

2, as above. Finally, we can plug (8.3.3), (8.3.4) and (8.3.5) into (8.3.2):

Proposition 8.3.1. The elastic energy of N repetitions of our infinite branching pattern is given by

Felast[N, θ, L] =
θ

64N2(1− θ)L
·
( 4 +

√
2

α2θ − 1
+

4 + 3
√

2

α4θ + 1

)
. (8.3.6)

The energy is finite iff. the geometric series converge iff. θ > α−2 for α = 1 +
√

2.

Proof : See Prop. A.1.9 in the appendix.

Using (8.2.5) and (8.2.11), the corresponding surface energy is given by

Fsurf[N, θ, L, ε] = 2ε LN
(α2 (1− θ)

1− αθ
+
β2 (1− θ)

1− βθ

)
,

which is finite iff. θ < α−1. Hence the total energy reads

F [N, θ, L, ε] =
θ

64N2(1− θ)L
· f1(θ) + 2ε LN(1− θ)f2(θ) ,

with N > 0, θ ∈ (α−2, α−1) and

f1(θ) =
4 +
√

2

α2θ − 1
+

4 + 3
√

2

α4θ + 1
, f2(θ) =

α2

1− αθ
+

β2

1− βθ
.

Again, we first optimize for N > 0, i.e. ∂NF [N, θ, L, ε] = 0 yields

N̄ =
1

4
θ1/3(1− θ)−2/3L−2/3ε−1/3f1(θ)1/3f2(θ)−1/3 .

Hence
F [θ, L, ε] = min

N>0
F [N, θ, L, ε] = 3

4 ε
2/3 θ1/3 (1− θ)1/3 L1/3 f1(θ)1/3 f2(θ)2/3 .
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8.4 Conclusion

Finally, we optimize for θ ∈ (α−2, α−1). An optimization by means of a computer algebra program
yields an optimal theta θ̄ ≈ 0.23900 and hence

F [L, ε] = min
θ∈(α−2,α−1)

min
N>0

F [N, θ, L, ε] = C L1/3 ε2/3 ,

with C ≈ 6.02, which is better than the constant C ≈ 6.86 in the upper bound in [KM92, KM94] and
also slightly better than the constant C ≈ 6.08 induced by the non-optimized Li model.

The gap between the optimal upper constants computed in this section and the ones obtained in the nu-
merical simulations in the previous section is probably due to the fact, that we have prescribed certain
degrees of freedom to generate a periodic cell in the former approach. For example, the fixation of Y pre-
vents our branching pattern to produce diamond-shaped needles as seen in cf . Fig. 8.8c, and the fixation
of l = L forces the model to start branching directly at the right boundary x = L of Ω = [0, L]× [0, 1],
instead of allowing a (probably cheaper) lamellar pattern far away from the left boundary x = 0.

8.4 Conclusion

In this thesis, we have investigated an improvement of the upper bound for a minimizer of the sharp
interface model (8.0.3), i.e. a better constant C in (8.0.5). To this end, we have computed a (numerical)
minimizer of the related diffuse interface model (8.0.1) by means of a conforming finite element method
(FEM) based on subdivision surface basis functions. The microstructure induced by (the y-derivative of)
the minimizer reveals a particular branching pattern, that differs topologically resp. geometrically from
the construction studied by Kohn and Müller [KM92, KM94] resp. by Li [Li03].
Based on the insights from the numerical experiment we have constructed a novel, low dimensional
family of branching microstructures for the sharp interface model (8.0.3). Optimized over all geometric
degrees of freedom, our reduced model generates a branching pattern that shows a striking geometric
resemblance of the FEM results and yields a significantly better constant C in (8.0.5). Although being
inferior to our new branching pattern, the pattern proposed by Li [Li03] also improves the upper constant
C induced by the Kohn-Müller pattern [KM92]. These findings suggest that the incorporation of inner
needles within the branching pattern is obviously energetically advantageous. Furthermore, the possibil-
ity to merge a laminated structure into a branching structure when approaching the austenite-martensite
interface is probably favorable. In contrast, the original model proposed by Kohn and Müller solely
considers a pure branching pattern.
Unfortunately, we have not been able to derive a closed-form expression for the elastic energy induced
by the reduced model which depends on all geometric degrees of freedom (dof s). Nevertheless, we have
shown that prescribing a certain subset of dof s leads to a periodic and self-similar microstructure whose
energy can be described in a closed form. Optimizing this energy analytically and with respect to all
remaining dof s again reveals significantly better constants for the upper bound in (8.0.5)—although being
inferior to the ones obtained by the numerical optimization of all dof s. For example, the prescribtion of
certain dof s prohibits the incorporation of a laminated structure which was admissible in the numerical
optimization. Nevertheless, it is probably feasible but laboriuos to derive a closed-form expression that
allows for laminates as well.

Future work From a computational point of view it is certainly worthwhile to perform further FEM
simulations with an substantially increased spatial resolution. This might reveal additional branching
layers that have not been visible so far. An ultimate goal in this direction is definitely the implementation
of an adaptive scheme (as e.g. in [GKS02]), since the high resolution is actually only required locally, i.e.
at branching interfaces close to the boundary. Concerning the investigation of the reduced models for the
sharp interface problem, it might be interesting to relax the condition of a totally rigid austenite phase.
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8 Optimal branching patterns

To this end, one would study a more general model that accounts for the elastic energy in the austenite
by means of an additional boundary term, as e.g. in [KM92, Con06]. Finally, it remains an open problem
to examine whether the function u that represents our new branching pattern is a minimizer of (8.0.3).
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[DMSB99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. Implicit fairing of irregular
meshes using diffusion and curvature flow. In Proc. of SIGGRAPH 99, Annual Conference
Series, pages 317–324, 1999.

[DRT06] Samuel Dambreville, Yogesh Rathi, and Allen Tannenbaum. A shape-based approach to
robust image segmentation. In Proc. of Conference on Image Analysis and Recognition,
volume 4141 of Lecture Notes in Computer Science, pages 173–183, 2006.

[DSB07] Patrick W. Dondl, Ching-Ping Shen, and Kaushik Bhattacharya. Computational analysis
of martensitic thin films using subdivision surfaces. Internat. J. Numer. Methods Engrg.,
72(1):72–94, 2007.

[Dyn92] Nira Dyn. Subdivision schemes in computer-aided geometric design. In Advances in
numerical analysis, Vol. II, volume 2, pages 36–104. Oxford Univ. Press, New York,
1992.

[Dyn02] Nira Dyn. Interpolatory subdivision schemes. In Armin Iske, Ewald Quak, and Michael S.
Floater, editors, Tutorials on Multiresolution in Geometric Modelling, pages 25–50.
Springer, Berlin, 2002.

[Dzi88] Gerhard Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In
S. Hildebrandt and R. Leis, editors, Partial Differential Equations and Calculus of Varia-
tions, volume 1357 of Lecture Notes in Math., pages 142–155. Springer, Berlin, 1988.

[Dzi91] Gerhard Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58(6):603–611,
1991.

[Eff17] Alexander Effland. Discrete Riemannian Calculus on Shape Space. Dissertation, Univer-
sity of Bonn, 2017.

[EPS72] Jürgen Ehlers, Felix A. E. Pirani, and Alfred Schild. The geometry of free fall and light
propagation. In General relativity (papers in honour of J. L. Synge), pages 63–84. Claren-
don Press, Oxford, 1972.

[ERS+15] Alexander Effland, Martin Rumpf, Stefan Simon, Kirsten Stahn, and Benedikt Wirth.
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[PN07] Tomasz Popiel and Lyle Noakes. Bézier curves and C2 interpolation in Riemannian man-
ifolds. J. Approx. Theory, 148(2):111–127, 2007.

[PP93] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their con-
jugates. Experimental Mathematics, 2 (1):15–35, 1993.
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A Appendix

A.1 Proofs of technical lemmas

Local estimates on the approximate squared distance function

Lemma A.1.1. For y0, y1 ∈ M with ‖y0 − y1‖V sufficiently small s.t. |W[y0, y1] − dist2(y0, y1)| =
O(dist3(y0, y1)) we get

(i) W[y0, y1] = W[y1, y0] +O(‖y0 − y1‖3V) ,

(ii) W[y0, y1] = gy1(y0 − y1, y0 − y1) +O(‖y0 − y1‖3V)

= gy0(y0 − y1, y0 − y1) +O(‖y0 − y1‖3V) .

Proof : Part (i) is induced by the symmetry of dist. The smoothness of W (i.e. continuity in the first
argument ofW,11) implies for arbirary v, w ∈ V:

‖W,11[y1+t(y0−y1), y1](v, w)−W,11[y1, y1](v, w)‖ ≤ t ‖y0 − y1‖V ‖v‖V ‖w‖V . (A.1.1)

We use (a) a second order Taylor expansion ofW[y0, y1] around (y0, y0) withW[y, y] = 0,W,1[y, y] = 0
and W,2[y, y] = 0, (b) the smoothness of W as in (A.1.1) and (c) the consistency with the metric in
Thm. 4.2.6, i.e.W,11[y, y] = 2 gy:

W[y0, y1] =

∫ 1

0
(1− t)W,11[y1+t(y0−y1), y1](y0 − y1, y0 − y1) dt

=

∫ 1

0
(1− t)W,11[y1, y1](y0−y1, y0−y1) + (1−t) t ‖y1+t(y0−y1)− y1‖V ‖y0−y1‖2V dt

= 2 gy1(y0 − y1, y0 − y1) ·
∫ 1

0
(1− t) dt+ ‖y0 − y1‖3V

∫ 1

0
(1− t) t dt

= gy1(y0 − y1, y0 − y1) +O(‖y0 − y1‖3V)

The second part of (ii) follows analogously (or by using the continuity of the metric). �

Lemma A.1.2. Let (y0, y1, y2) be a discrete geodesic. Then

(i) W[y0, y2] = 4W[y0, y1] +O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3) ,

(ii) W[y0, y1] =W[y1, y2] +O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3) .

Proof: The Euler–Lagrange equation for the discrete geodesic (y0, y1, y2) reads

W,2[y0, y1] +W,1[y1, y2](ψ) = 0 ∀ψ ∈ V . (A.1.2)

Using a first order expansion andW[y, y] = 0 we can rewrite

W[y0, y1] =

∫ 1

0
W,1[y1+t(y0−y1), y1](y0 − y1) dt ,

W[y1, y2] =

∫ 1

0
W,2[y1, y1+t(y2−y1)](y2 − y1) dt .
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Defining ylin
ij (t) = yi + t (yj − yi) we obtain for a test direction ψ ∈ V

W,2[y0, y1](ψ) = ∂y1

(∫ 1

0
W,1[y1+t(y0−y1), y1](y0 − y1) dt

)
(ψ) ,

=

∫ 1

0
W,11[ylin

10 (t), y1](y0 − y1, ψ) · (1− t) +W,12[ylin
10 (t), y1](y0 − y1, ψ)−W,1[ylin

10 (t), y1](ψ) dt ,

and analogously

W,1[y1, y2](ψ) = ∂y1

(∫ 1

0
W,2[y1, y1+t(y2−y1)](y2 − y1) dt

)
(ψ) ,

=

∫ 1

0
W,21[y1, y

lin
12 (t)](y2 − y1, ψ) +W,22[y1, y

lin
12 (t)](y2 − y1, ψ) · (1− t)−W,2[y1, y

lin
12 (t)](ψ) dt .

InsertingW,2[y0, y1] andW,1[y1, y2] into the Euler–Lagrange equation (A.1.2) we obtain

0 =

∫ 1

0
(1− t)

(
W,11[y1+t(y0−y1), y1](y0 − y1, ψ) +W,22[y1, y1+t(y2−y1)](y2 − y1, ψ)

)
+W,12[y1+t(y0−y1), y1](y0 − y1, ψ) +W,21[y1, y1+t(y2−y1)](y2 − y1, ψ)

−W,1[y1+t(y0−y1), y1](ψ) dt−W,2[y1, y1+t(y2−y1)](ψ) (A.1.3)

for all ψ ∈ V.

Next, usingW,1[y, y] =W,2[y, y] = 0 and expanding the last two terms of (A.1.3)

W,1[y1+t(y0−y1), y1](ψ) =

∫ 1

0
tW,11[y1 + tr(y0 − y1), y1](y0 − y1, ψ) dr ,

W,2[y1, y1+t(y2−y1)](ψ) =

∫ 1

0
tW,22[y1, y1 + tr(y2 − y1)](y2 − y1, ψ) dr

we obtain

0 =

∫ 1

0
(1− t)

(
W,11[y1+t(y0−y1), y1](y0 − y1, ψ) +W,22[y1, y1+t(y2−y1)](y2 − y1, ψ)

)
+W,12[y1+t(y0−y1), y1](y0 − y1, ψ) +W,21[y1, y1+t(y2−y1)](y2 − y1, ψ)

−t
(∫ 1

0
W,11[ylin

10 (tr), y1](y0 − y1, ψ) dr +W,22[y1, y
lin
12 (tr)](y2 − y1, ψ) dr

)
dt .

Using the smoothness property (A.1.1)—where analogous estimates hold forW,22 and the mixed second
derivatives—and the consistency with the metric in Thm. 4.2.6, i.e.

W,11[y, y] =W,22[y, y] = −W,12[y, y] = −W,21[y, y] = 2gy , (A.1.4)

we achieve

0 = gy1(y0 − y1, ψ) + gy1(y2 − y1, ψ) +
(
c1‖y0 − y1‖2V + c2‖y1 − y2‖2V

)
· ‖ψ‖V

= gy1(y0 − y1, ψ) + gy1(y2 − y1, ψ) +O(max{‖y0 − y1‖V, ‖y1 − y2‖V}2)‖ψ‖V .

Testing this equation first with ψ = y2 − y1 and then with ψ = y1 − y0 yields

gy1(y0 − y1, y0 − y1) = − gy1(y0 − y1, y2 − y1) +O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3) (A.1.5)

= gy1(y2 − y1, y2 − y1) +O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3) .(A.1.6)
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Using (a) a second order Taylor expansion of W[y0, y2] around (y1, y1), (b) the smoothness of W and
(c) the consistency with the metric (A.1.4) we get:

W[y0, y2] =

∫ 1

0
(1− t) d2

dt2
W[y1+t(y0−y1), y1+t(y2−y1)] dt

=

∫ 1

0
(1− t)

(
W,11[y1+t(y0−y1), y1+t(y2−y1)](y0 − y1, y0 − y1)

+W,12[y1+t(y0−y1), y1+t(y2−y1)](y0 − y1, y2 − y1)

+W,21[y1+t(y0−y1), y1+t(y2−y1)](y2 − y1, y0 − y1)

+W,22[y1+t(y0−y1), y1+t(y2−y1)](y2 − y1, y2 − y1)
)

dt

= gy1(y0−y1, y0−y1)− gy1(y0−y1, y2−y1)− gy1(y2−y1, y0−y1) + gy1(y2−y1, y2−y1)

+

∫ 1

0
(1− t) t dt ·

(
‖y0−y1‖V + ‖y2−y1‖V

)
·
(
‖y0−y1‖V + ‖y2−y1‖V

)2

= gy1(y0 − y1, y0 − y1)− 2 gy1(y0 − y1, y2 − y1) + gy1(y2 − y1, y2 − y1)

+O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3) .

Finally, we get from (A.1.6), (A.1.5) and Lemma A.1.1(ii)

4W[y0, y1]−W[y0, y2] = 4gy1(y0 − y1, y0 − y1)

−gy1(y0 − y1, y0 − y1) + 2gy1(y0 − y1, y2 − y1)− gy1(y2 − y1, y2 − y1)

+O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3)

= O(max{‖y0 − y1‖V, ‖y1 − y2‖V}3)

which proves (i).

Hence we get from (A.1.6), (A.1.5) and Lemma A.1.1(ii)

W[y0, y1]−W[y1, y2] = gy1(y0 − y1, y0 − y1)− gy1(y2 − y1, y2 − y1)

+ O(max{‖y0 − y1‖V, ‖y2 − y1‖V}3)

= O(max{‖y0 − y1‖V, ‖y2 − y1‖V}3)

which proves (ii). �

Lemma A.1.3. Let (y0, y1, y2) a discrete geodesic. Then∥∥∥∥y1 −
y0 + y2

2

∥∥∥∥
V

= max{‖y1 − y0‖V, ‖y2 − y1‖V}2 .

Proof: The optimality condition for (y0, y1, y2) being a discrete geodesic is given by

W,2[y0, y1](ψ) +W,1[y1, y2](ψ) = 0 . (A.1.7)

A Taylor expansion around (y1, y1) and the consistency of the metric (A.1.4) yields

W,2[y0, y1](ψ) =W,2[y1, y1](ψ) +

∫ 1

0
W,21[y1 + t(y0 − y1), y1](ψ, y0 − y1) dt

= 0 +

∫ 1

0
W,21[y1, y1](ψ, y0 − y1) + tO(‖y0 − y1‖2V‖ψ‖V) dt

=W,21[y1, y1](ψ, y0 − y1) +O(‖y0 − y1‖2V‖ψ‖V)

= 2 gy1(ψ, y1 − y0) +O(‖y0 − y1‖2V‖ψ‖V)
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and

W,1[y1, y2](ψ) = 2 gy1(ψ, y1 − y2) +O(‖y2 − y1‖2V‖ψ‖V) .

Plugging this into the optimality condition (A.1.7) we get

0 = 4 gy1

(
ψ, y1 −

y0 + y2

2

)
+O(‖y2 − y1‖2V‖ψ‖V) +O(‖y0 − y1‖2V‖ψ‖V) ,

and using the coercivity of gy1 finishes the proof. �

Upper bound on the squared Riemannian distance

Lemma A.1.4. Let (y0, . . . , yK) ⊂M be a discrete K-path. Then we have

dist2(y0, yK) ≤ K
K∑
k=1

dist2(yk−1, yk) .

Proof: As dist(y0, yK) ≤
∑K

k=1 dist(yk−1, yk) is trivial, we have to show
(∑K

k=1 ak

)2
≤ K

∑K
k=1 a

2
k

for ak = dist(yk−1, yk) ≥ 0. Obviously (a1 + a2)2 ≤ 2 (a2
1 + a2

2). We show the statement of the lemma
by induction in K, whereas the basis for K = 2 has been given. Inductive step K  K + 1:(

K+1∑
k=1

ak

)2

=

(
K∑
k=1

ak

)2

︸ ︷︷ ︸
≤K

∑K
k=1 a

2
k

+ 2 aK+1

K∑
k=1

ak︸ ︷︷ ︸
≤Ka2

K+1+
∑K
k=1 a

2
k

+a2
K+1 ≤ (K + 1)

K∑
k=1

a2
k + (K + 1)a2

K+1 . �

Lemma A.1.5. Let (y0, . . . , yK) ⊂M be a discrete K-path. Then we have

dist2(y0, yK) = K
K∑
k=1

dist2(yk−1, yk)

iff. there is a geodesic y : [0, 1]→M such that y(kτ) = yk for k = 0, . . . ,K and τ = K−1.

Proof: Let y : [0, 1] → M be a geodesic between y(0) and y(1) and yk = y(tk) for tk = kτ and
k = 0, . . . ,K. We define fk(s) = tk−1 + τ s for s ∈ [0, 1], i.e. f ′(s) = τ and (y ◦ fk)′(s) = ẏ(f(s))τ .

dist2(y0, yK) =
[y geod.]

∫ 1

0
gy(t)

(
ẏ(t), ẏ(t)

)
dt =

K∑
k=1

∫ tk

tk−1

gy(t)

(
ẏ(t), ẏ(t)

)
dt

=
K∑
k=1

τ

∫ 1

0
gy(fk(s))

(
ẏ(fk(s)), ẏ(fk(s))

)
ds

=
K∑
k=1

τ−1

∫ 1

0
g(y◦fk)(s)

(
˙(y ◦ fk)(s), ˙(y ◦ fk)(s)

)
ds

=
[y◦fk geod.]

K

K∑
k=1

dist2
(

(y ◦ fk)(0), (y ◦ fk)(1)
)

= K

K∑
k=1

dist2(yk−1, yk) ,

where we have used that y ◦ fk = y|[tk−1,tk] is a geodesic as y is a geodesic.
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For the other implication we use the proof of Lemma A.1.4 and get

dist2(y0, yK) = K
K∑
k=1

dist2(yk−1, yk) ≥
( K∑
k=1

dist(yk−1, yk)
)2
≥
(

dist(y0, yK)
)2
,

whereas the last inequality becomes an equality iff. all yk lie on a geodesic y and the first inequality
becomes an equality iff. dist(yk−1, yk) = dist(yk, yk+1) for all k (cf . proof of Lemma A.1.4). That
means there are 0 = t0 < . . . < tK = 1, such that yk = y(tk), and y = arg minỹ E [ỹ] is a geodesic. The
constant speed property of geodesic curves implies tk = k/K. �

Representation of the relative shape operator in the reference domain

Lemma A.1.6. Let S ⊂ R3 be a regular surface patch and φ : S → R3 an isometric deformation
thereof. For p ∈ S let x : ω → R3 a (local) chart with x(ξ) = p for some ξ ∈ ω. Let S(p) : TpS → TpS
be the shape operator of the undeformed surface S and S∗φ(p) : TpS → TpS be the pulled-back shape
operator of the deformed surface φ(S), i.e.

gp (S(p)v, w) = hp (v, w) , gp
(
S∗φ(p)v, w

)
= hφ(p) (Dφv,Dφw) . (A.1.8)

for all v, w ∈ TpS. We define for the relative shape operator Srel
φ (p) = S(p)− S∗φ(p) a matrix represen-

tation srel
φ (ξ) ∈ R2,2 in the parameter domain by

srel
φ (ξ) = g−1(ξ)

(
h(ξ)− hφ(ξ)

)
,

where g, h ∈ R2,2 are the first and second fundamental form of S, respectively, and hφ ∈ R2,2 the
second fundamental form of φ(S), represented in the parameter domain. Then we have

‖Srel
φ (p)‖2F = tr (srel

φ (ξ))2 and tr (Srel
φ (p)) = tr (srel

φ (ξ)) .

Proof: In the following we drop the specification of the point p ∈ S resp. ξ ∈ ω in the notation. We have

‖Srel
φ ‖2F = ‖S − S∗φ‖2F =

2∑
i,j=1

[
〈ei, Sej〉R3 − 〈ei, S∗φej〉R3

]2
,

trSrel
φ = tr (S − S∗φ) =

2∑
i=1

[
〈ei, Sei〉R3 − 〈ei, S∗φei〉R3

]
,

where (e1, e2, e3) is the canonical basis of R3. Let us assume that a neighboorhoud of p ∈ S is
parametrized by some chart x : ω ⊂ R2 → R3. For ξ ∈ ω such that p = x(ξ) we have another
basis (v1, v2, n) with [v1|v2] = Dx(ξ) and n = n(p) with

ei = a1iv1 + a2iv2 + a3in , ai :=

a1i

a2i

a3i

 = [v1|v2|n]−1ei

Hence using the linearity of S we can write

〈ei, Sej〉 = 〈a1iv1 + a2iv2 + a3i n︸︷︷︸
∈TpS⊥

, a1j Sv1︸︷︷︸
∈TpS

+a2j Sv2︸︷︷︸
∈TpS

+a3j Sn︸︷︷︸
=0

〉 =

2∑
k,l=1

akialj g(vk, Svl)︸ ︷︷ ︸
=hkl
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Since gp(vk, S∗v l) = hφ(p)(Dφvk, Dφvl) = hφkl w.r.t. the chart xφ = φ ◦ x, we analogously get

〈ei, S∗φej〉 =

2∑
k,l=1

akialjh
φ
kl .

If we set A := [a1|a2|a3] = [v1|v2|n]−1, we have with g = [v1|v2]T [v1|v2] and vi ⊥ n:

AAT =

 g−1 0
0

0 0 1

 .

Let h̃ ∈ R3,3 with h̃i,j = hij if i, j < 3 and h̃ij = 0 else. Then using the representations above we have

‖Srel
φ ‖2F =

2∑
i,j=1

[
〈ei, Sej〉R3 − 〈ei, S∗φej〉R3

]2
=

3∑
i,j=1

[ 2∑
k,l

akialj(hkl − hφkl)
]2

=

3∑
i,j=1

(
AT (h̃− h̃φ)A

)2

ij
= ‖AT (h̃− h̃φ)A‖2F = tr

(
AT (h̃− h̃φ)AAT (h̃− h̃φ)A

)

= tr
( g−1 0

0

0 0 1

 h− hφ 0
0

0 0 0

 g−1 0
0

0 0 1

 h− hφ 0
0

0 0 0

)
= tr

(
g−1(h− hφ)

)2

and analogously

trSrel
φ =

2∑
i=1

[
〈ei, Sei〉R3 − 〈ei, S∗φei〉R3

]
= tr

(
g−1(h− hφ)

)
,

which finishes the proof. �

Lemmas on branching

Proposition A.1.7. For [yk−1,n(k,i), yk,n(k,i)] being the upper edge ofRk,i, the piecewise constant quan-
tity ux on the stripe CK ∩ {xk ≤ y ≤ xk−1} is described iteratively by

ux|Rk,0 = 0 ,

ux|Rk,i+1
= ux|Rk,i + 2 sign

(
uy
∣∣
Rk,i

) yk−1,n(k,i) − yk,n(k,i)

θk−1l − θkl
, i ≥ 0 . (A.1.9)

Proof: Since ux(x, 1
2) = 0, we have ux|Rk,0 = 0. We now investigate the behaviour of ux when passing

an interface separatingRk,i andRk,i+1. Assume, this interface has a slope α = ∆x
∆y with ∆x = xk−1−xk

and ∆y = yk−1,n(k,i) − yk,n(k,i). We denote the adjacent regions by Q1 and Q2, respectively, as shown
in Fig. A.1, i.e. Q1 := {(s, t) : s ≤ ∆x, t > αs} and Q2 := {(s, t) : s ≤ ∆x, t < αs}. Note that we
have uy = ±1 on Q1 and uy = ∓1 on Q2. The following evaluations of ux resp. u in [0,∆x]× [0,∆y]
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yyk,n(k,i) yk−1,n(k,i)

x

xk−1

xk

Rk,i

Rk,i+1

s∆y

t

∆x

s̄

αs̄

Q1

Q2

Figure A.1: Local notation accross a single interface separating regions with uy ± 1.

hold:

ux(t, 0) =
u(∆x, 0)− u(0, 0)

∆x
=: u0

x ,

u(t, 0) = u(0, 0) + t ux(t, 0) = u(0, 0) + t u0
x ,

u(0, s) = u(0, 0)∓ s ,
u(∆x, s) = u(∆x, 0)± s ,
u(αs, s) = u(αs, 0)± s = u(0, 0) + αsu0

x ± s .

Hence we have on Q1

u(∆x, s)− u(αs, s)

∆x− αs
=
u(∆x, 0)± s−

(
u(0, 0) + αsu0

x ± s
)

∆x− αs
=

∆xu0
x − αsu0

x

∆x− αs
= u0

x ,

and on Q2

u(αs, s)− u(0, s)

αs
=
u(0, 0) + αsu0

x ± s−
(
u(0, 0)∓ s

)
αs

=
αsu0

x ± 2s

αs
= u0

x ± 2
∆y

∆x
. �

Lemma A.1.8. Let R = (0, lx)× (0, ly) and uL, uR : (0, ly)→ R. Consider u : R→ R with u(0, y) =
uL(y) and u(lx, y) = uR(y), and the linear interpolation ul(x, y) = (xuL(y)+(1−x)uR(y))/lx. Then

∫
R
u2
x dx dy =

∫
R

(u− ul)2
x dx dy +

∫ ly
0 (uL − uR)2 dy

lx
.

Proof : We write ulx = (ul)x. First, we have ulx(x, y) = (uL(y)− uR(y))/lx and hence

∫
R
u2
lx = l−2

x

∫ ly

0

∫ lx

0
(uL(y)− uR(y))2 dx dy =

∫ ly
0 (uL − uR)2 dy

lx
.

Second, we have ∫
R

(u− ul)2
x =

∫
R
u2
x +

∫
R
u2
lx − 2

∫
R
uxulx =

∫
R
u2
x −

∫
R
u2
lx ,
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since ∫
R
uxulx =

∫ ly

0

∫ lx

0
ux(x, y)ulx(x, y) dx dy =

∫ ly

0

uL(y)− uR(y)

lx

(∫ lx

0
ux(x, y) dx

)
dy

=

∫ ly

0

uL(y)− uR(y)

lx

(
u(lx, y)− u(0, y)

)
dy =

∫ ly

0

(uL(y)− uR(y))2

lx
dy

=

∫ lx

0

∫ ly

0

(uL(y)− uR(y))2

l2x
dy dx =

∫
R
u2
lx . �

Proposition A.1.9. The elastic energy of N repetitions of our infinite branching pattern is

Felast[N,L, θ] =
θ

64N2(1− θ)L
·
( 4 +

√
2

α2θ − 1
+

4 + 3
√

2

α4θ + 1

)
.

Proof: We set α = 1 +
√

2, β = 1−
√

2, γ =
√

2− 1 and δ = 2−
√

2. The elastic energy terms in one
quarter stripe (as depicted in Fig. 8.12, top), i.e. (4N)−1Felast[N,L, θ], can be computed by plugging
(8.3.3),(8.3.4) and (8.3.5) into (8.3.2):∑
k≥0

akFelast[Ak] =
2

(1− θ)L
∑
k≥0

(αk + βk) ·
y2
k(w

a
k −

1
2yk)

θk

=
1

(1− θ)L

(
2
∑
k≥0

αky2
kw

a
kθ
−k + 2

∑
k≥0

βky2
kw

a
kθ
−k −

∑
k≥0

αky3
kθ
−k −

∑
k≥0

βky3
kθ
−k
)

and∑
k≥0

bkFelast[Bk] =

√
2

(1− θ)L
∑
k≥0

(αk − βk) ·
y2
k(w

a
k − yk)
θk

=

√
2

(1− θ)L

(∑
k≥0

αky2
kw

a
kθ
−k −

∑
k≥0

βky2
kw

a
kθ
−k −

∑
k≥0

αky3
kθ
−k +

∑
k≥0

βky3
kθ
−k
)
.

Using wak = (4N)−1γk for k ≥ 0 and

yk =
γ2

4δN
γk , y2

k =
γ4

16δ2N2
γ2k , y3

k =
γ6

64δ3N3
γ3k , k ≥ 0 ,

we can write ∑
k≥0

αky2
kw

a
kθ
−k =

γ4

64δ2N3

∑
k≥0

(
α2θ
)−k

=
γ4

64δ2N3

α2θ

α2θ − 1
,

∑
k≥0

αky3
kθ
−k =

γ6

64δ3N3

∑
k≥0

(
α2θ
)k

=
δ

2
· γ4

64δ2N3

α2θ

α2θ − 1
,

where we have used γ2/δ2 = 1/2 and γα = 1. Note that the geometric series converge iff. θ > α2.
Analogously, using γ = −β and β−1 = −α, we get

∑
k≥0

βky2
kw

a
kθ
−k =

γ4

64δ2N3

∑
k≥0

(
−β4

θ

)k
=

γ4

64δ2N3

∑
k≥0

(
−α4θ

)−k
=

γ4

64δ2N3

α4θ

α4θ + 1
,

∑
k≥0

βky3
kθ
−k =

γ6

64δ3N3

∑
k≥0

(
−β4

θ

)k
=

γ6

64δ3N3

∑
k≥0

(
−α4θ

)−k
=
δ

2
· γ4

64δ2N3

α4θ

α4θ + 1
.
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Convergence is ensured since θ > α2 > α4.

Finally, plugging everything together, we obtain∑
k≥0

akFelast[Ak] + bkFelast[Bk] =
2 +
√

2

(1− θ)L
∑
k≥0

αky2
kw

a
kθ
−k +

2−
√

2

(1− θ)L
∑
k≥0

βky2
kw

a
kθ
−k

− 1 +
√

2

(1− θ)L
∑
k≥0

αky3
kθ
−k − 1−

√
2

(1− θ)L
∑
k≥0

βky3
kθ
−k

=
2 +
√

2

(1− θ)L
· γ4

64δ2N3
· α2θ

α2θ − 1
+

2−
√

2

(1− θ)L
· γ4

64δ2N3
· α4θ

α4θ + 1

− δ

2
· 1 +

√
2

(1− θ)L
· γ4

64δ2N3
· α2θ

α2θ − 1
− δ

2
· 1−

√
2

(1− θ)L
· γ4

64δ2N3
· α4θ

α4θ + 1

=
γ4

64δ2N3(1− θ)L
·
[
(2 +

√
2) · α2θ

α2θ − 1
− δ

2
· (1 +

√
2) · α2θ

α2θ − 1

+ (2−
√

2) · α4θ

α4θ + 1
− δ

2
· (1−

√
2) · α4θ

α4θ + 1

]
=

θ

256N3(1− θ)L
·
( 4 +

√
2

α2θ − 1
+

4 + 3
√

2

α4θ + 1

)
.

where we used γ2/δ2 = 1/2 and γα = 1 in the last step. Multiplication by 4N finishes the proof. �

A.2 On the discrete embedded shape operator

In Sec. 5.3.2 we have introduced a matrix representation B ∈ R2,2 of a discrete shape operator on the
reference domain. However, the definition of the discrete shape operator defined in our corresponding
publication [HRWW12] is given on an embedded polyhedral surface. To establish a connection between
these two representations, we derive in this section the discrete shape operator on an embedded polyhe-
dral surface S ⊂ R3, i.e. a linear operator represented by a matrix in R3,3.
As in Sec. 5.3.2 we start with the assumption that the embedded shape operator is constant on faces. Yet
different from Sec. 5.3.2, the derivation of the embeddded representation will be based on the pulled-
back defintion (5.1.8) induced by a deformation Φ : S → R3, i.e. we write B∗T [Φ] ∈ R3,3 for a face
T ∈ S. Finally, we will show that the mean curvature induced byB∗T [id] ∈ R3,3 coincides with the mean
curvature induced by BT ∈ R2,2 as defined in (5.3.7).

We aim at defining a (pulled-back) shape operator B∗T [Φ] that is elementwise constant, i.e. we have

gT (B∗T [Φ]V,W ) = hΦ(T ) (DΦV,DΦW ) (A.2.1)

for all V,W ∈ R3. Similar to Sec. 5.3.2, B∗T [Φ] lives in the three-dimensional subspace BT ⊂ R3,3

defined by
BT = {M ∈ R3,3 : MNT = 0 , M symmetric } .

If RT,π ∈ SO(3) denotes a rotation in the plane of T by π the subspace BT is spanned by

Mi = (RT,πEi)⊗ (RT,πEi) , i = 0, 1, 2 ,

whereEi denotes an edge of T . Now we writeB∗T [Φ] =
∑

j b
Φ
j Mj and the three coefficients bΦ0 , b

Φ
1 , b

Φ
2 ∈

R are uniqely defined by the evaluation of (A.2.1) for three different choices of V,W ∈ R3. We make
the choice V = W = Ei for i = 0, 1, 2, which yields the linear system

gT (B∗T [Φ]Ei, Ei) = hΦ(T ) (DΦEi, DΦEi) , i = 0, 1, 2 . (A.2.2)
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Since g simply denotes the standard Euclidean scalar product in R3 we have due to Lemma A.2.1

gT (B∗T [Φ]Ei, Ei) =
2∑
j=0

bΦj

(
〈Ei, RT,πEj〉R3

)2
= 4|T |2

∑
j 6=i

bΦj . (A.2.3)

For the evaluation of the right hand side in (A.2.2), i.e. the evalutation of a discrete second fundamental
form, we make use of the derivation in Sec. 5.3.2 (cf . also [Hee11, HRWW12]), which results in (5.3.5):

hΦ(T ) (DΦEi, DΦEi) = 2〈NΦ
j −NΦ

k , E
Φ
i 〉R3 =: HΦ

i , (A.2.4)

where NΦ and EΦ are quantities living on the deformed mesh. In particular, NΦ
i is the edge normal

sitting at the midpoint of EΦ
i . Plugging (A.2.3) and (A.2.4) into (A.2.2) we can solve for the coefficients

bΦj and arrive at

bΦi =
1

8|T |2
(HΦ

i −HΦ
j −HΦ

k ) .

Using EΦ
i + EΦ

j + EΦ
k = 0 and 〈NΦ

i , E
Φ
i 〉 = 0 yields

HΦ
i −HΦ

j −HΦ
k = 2〈NΦ

j −NΦ
k , E

Φ
i 〉 − 2〈NΦ

k −NΦ
i , E

Φ
j 〉 − 2〈NΦ

i −NΦ
j , E

Φ
k 〉

= 2
(
〈NΦ

j , E
Φ
i 〉 − 〈NΦ

k , E
Φ
i 〉 − 〈NΦ

k , E
Φ
j 〉+ 〈NΦ

i , E
Φ
j 〉 − 〈NΦ

i , E
Φ
k 〉+ 〈NΦ

j , E
Φ
k 〉
)

= 2
(
〈NΦ

j , E
Φ
i + EΦ

k 〉+ 〈NΦ
k ,−EΦ

i − EΦ
j 〉+ 〈NΦ

i , E
Φ
j − EΦ

k 〉
)

= 2
(
〈NΦ

j ,−EΦ
j 〉+ 〈NΦ

k , E
Φ
k 〉+ 〈NΦ

i ,−2EΦ
k − EΦ

i 〉
)

= −4〈NΦ
i , E

Φ
k 〉 = −4〈NΦ

i , E
Φ
i−1〉 = −8

|TΦ|
|EΦ

i |
cos

αΦ
i

2
,

where the last identity has been derived in Sec. 5.3.2. Hence we get as matrix representation for the
embedded, pulled-back discrete shape operator

B∗T [Φ] =
1

8|T |2
∑
i=0

(HΦ
i −HΦ

j −HΦ
k )Mi = − 1

|T |2
2∑
i=0

|TΦ|
cos

π+θΦ
i

2

|EΦ
i |

Mi , (A.2.5)

which coincides with eq. (14) in [HRWW12].

For Φ = id a linearization of this representation leads to the triangle-averaged operator defined in eq.
(4) in [GGRZ06]. This can be seen by using the Taylor expansion −2 cos θ+π2 ≈ θ + O(θ2) as in
Sec. 5.3.2. Furthermore, for the identity mapping Φ = id we get for the mean curvature

trB∗T [id] = − 1

|T |

2∑
i=0

cos π+θi
2

|Ei|
trMi = −

2∑
i=0

cos π+θi
2

|T |
|Ei| ,

since trMi = |Ei|2 for i = 0, 1, 2, which coincides exactly with (5.3.10).

Lemma A.2.1. Let T ⊂ R3 be a triangle with edges E0, E1, E2 ∈ R3 and face normal N . Let Ri be a
rotation of Ei by π in the plane of T , i.e. one can write Ri = Ei ×N . Then we have

〈Ei, Rj〉R3 =

{
2 |T |, i 6= j
0, i = j

.

Proof: Obviously 〈Ei, Ri〉 = 0 as Ri ⊥ Ei. If i 6= j we have |T | = 1
2 |Ei × Ej |. Hence

〈Ei, Rj〉2 = 〈Ei, Ej ×N〉2 = (det[Ei |Ej |N ])2 = det
(

[Ei |Ej |N ]T [Ei |Ej |N ]
)

= |Ei|2 |Ej |2 − 〈Ei, Ej〉2 = |Ei × Ej |2 = 4 |T |2 . �
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A.3 Multiresolution scheme based on deformation transfer

In this section we describe the multilevel scheme applied to various optimization problems in this thesis.
Its core ingredient is the gradient-based deformation transfer that has been proposed in [BSPG06, SP04],
for additional information we refer to [KCVS98, KVS99, KBS00, BK03, BK04].

Consider a sequence of high resolution input meshes S1, . . . ,SN with n vertices, i.e. Si ∈ R3n. Our
objective is to compute a high resolution optimal shape S = S[S1, . . . ,SN ], e.g. an average shape.
Analogously, the method can be applied to compute a sequence of optimal shapes, e.g. a time-discrete
geodesic but for simplicity we assume here to have only one optimal shape. Since solving a (nonlinear)
optimization problem in a large dimensional space R3n is neither easy nor efficient, we make use of a
hierarchical scheme, i.e. we follow three steps, cf . Fig. A.2:

(i) compute simplifications (by means of mesh decimation) of the input meshes,

(ii) optimize the low dimensional simplifications and

(iii) prolongate the optimal shapes to the high resolution space.

Simplification We choose one of the input meshes to be the so-called reference mesh Ŝ, e.g. Ŝ = S1.
The sequence S1, . . . ,SN is then simplified simultaneously and we obtain a sequence of coarse meshes
C1, . . . ,CN with m� n vertices, i.e. we have Ci ∈ R3m. In the following we refer to Ĉ as the coarse
reference mesh, i.e. Ĉ = C1 in this example. Note that the simplication method have to ensure that all
vertices qi ∈ Cj , i = 1, . . . ,m, in the coarse mesh also exist in the corresponding high resolution mesh
(just having a different index). That means there is a mapping π : Nc → Nh between the two node index
setsNc = {1, . . . ,m} andNh = {1, . . . , n}, such that qi = pπ(i) for some pπ(i) ∈ Sj and i = 1, . . . ,m.

Optimization on the coarse level This depends on the application, e.g. we might minimize the dis-
crete path energy or compute an average shape C = C[C1, . . . ,CN ].

Prolongation We compute a high resolution solution S by lifting the coarse solution C ∈ R3m toR3n.
Therefor we separate low frequency shape information from high frequency detail information and treat
them differently (cf . Fig. A.2). This procedure is based on the work by Botsch et al. [BSPG06] and will
be desribed in detail in the following.

Recovering low frequency shape information

First, we compute a low frequency base mesh B̂ ∈ R3n corresponding to the reference mesh Ŝ. This is
done by solving the Bi-Laplace problem (often refered to as thin-plate problem), i.e.

∆2
M (b̂i) = 0 ∀i ∈ Nh ,
b̂π(i) = q̂i ∀i ∈ Nc .

(A.3.1)

where b̂i ∈ R3 and q̂i ∈ R3 are the nodal positions of B̂ and Ĉ, respectively. Note that b̂π(i) = q̂i = p̂π(i)

for all i ∈ Nc by definition of π where p̂i ∈ R3 are nodal positions of Ŝ. Then we compute a low
frequency optimal base mesh B ∈ R3n with nodal positions bi ∈ R3 corresponding to the (yet unknown)
optimal shape S by solving

∆2
M (bi) = 0 ∀i ∈ Nh
bπ(i) = qi ∀i ∈ Nc .

(A.3.2)
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where qi are the nodal positions of the coarse optimal shell C. To discretize the Laplace-Beltrami oper-
ator ∆M we make use of the cotan formula [PP93, DMSB99, MDSB02] (cf . also Sec. 5.4), i.e.

∆M (pi) =
2

Ai

∑
j∼i

(cotαij + cotβij)(pi − pj) , (A.3.3)

where j ∼ i means that pj is a neighbour of pi, Ai is an area associated with pi and αij and βij are
certain angles within the 1-ring of pi. If P = (pi)i is the vector of nodal positions we can interprete
(A.3.3) as linear system, assemble a matrix L and have ∆M (pi) = (LP )i. Furthermore, we define
∆k
M (pi) = (Lk P )i.

Let us comment on the discrete Bi-Laplace equation ∆2
M (pi) = 0 used above. Here pi ∈ R3 represents

a node of some discrete shell, which is represented by its vector of nodal positions P = (pi)i. The most
important thing to be aware of is that ∆M depends on this shell itself, i.e.M = P . In detail, the cotan
weights depend on the embedding, i.e. the nodal positions, and hence we actually have L = L[P ]. This
means, the equation ∆k

M P = 0 resp. its discretization Lk P = 0 is not linear in P . However, due to the
required efficiency it is unfeasible to solve the full nonlinear thin-plate problem. To overcome this issue,
it is a common practice to assemble the matrix L once by using some particular mesh, e.g. the designated
reference mesh Ŝ. Then the problems (A.3.1) resp. (A.3.2) become linear in B̂ resp. B.

reference optimal

high

base

coarse

R3n

R3m

Ŝ

B̂ (∆2 = 0)

S

B (∆2 = 0)

C
C1...
CN
}→Ĉ

Φ̂ Φ

fix
nodes

fix
nodes

=⇒
deform. transfer

a

b

c

e

d

Figure A.2: Multiresolution scheme based on deformation transfer [BSPG06]. (a) compute coarse refer-
ence mesh Ĉ by decimation while keeping positions of remaining vertices fixed, i.e. Ĉ ⊂ Ŝ; (b) compute
reference base mesh B̂ by solving Bi-Laplace equation while fixing vertices prescribed by Ĉ; (c) solve
nonlinear optimization problem on coarse level to obtain optimal coarse mesh C; (d) compute optimal
base mesh B by solving Bi-Laplace equation while fixing vertices prescribed by C; (e) apply transfor-
mation transfer Φ̂⇒ Φ to obtain optimal high resolution mesh S = Φ(B).

Transferring high frequency detail information

We might think of the high resolution reference mesh Ŝ ∈ R3n as being a deformed version of the high
resolution base mesh B̂ ∈ R3n. This deformation Φ̂ : B̂ → Ŝ can be described by computing the
deformation gradient DΦ̂|T for each triangle T . Once having these gradients we are able to reconstruct
Ŝ from the information stored in B̂ and (DΦ̂T )T by solving a linear system. That means we can write
Ŝ = A(B̂, (DΦ̂T )T ), whereA is a linear operator. Using this property we can now transfer the gradient
based information by replacing B̂ in the reconstruction step by some different base mesh B, i.e. we de-
fine S := A(B, (DΦ̂T )T ). In the remainder of this section we describe this deformation transfer in detail.
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We consider a mesh S with vertex positions pi ∈ R3, i = 1, . . . , n and faces Tj , j = 1, . . . ,m. Linear
FEM basis functions Ψi : S→ R (also known as hat functions) are located at vertices, i.e. Ψi(pj) = δij .
A deformation Φ(S) of S can be described by its vector of nodal positions (qi)i, qi = Φ(pi) ∈ R3,
i = 1, . . . , n. Alternatively, the piecewise linear deformation Φ : S → R3 resp. the deformation
gradient is explicitly given by

Φ(x) =
n∑
i=1

Ψi(x)qi , ∇Φ(x) =
n∑
i=1

∇Ψi(x) qTi .

If x ∈ Tj and qj0 , qj1 , qj2 are the (deformed) nodal positions of Φ(Tj) we have q(x) =
∑

k Ψjk(x)qjk
and

∇Φ(x) =

2∑
k=0

∇Ψjk(x)qTjk =

2∑
k=0

∇Ψjk

∣∣
Tj
qTjk

as∇Ψi ∈ R3 is constant on each triangle. Hence we get

Gj [Φ] := ∇Φ(x)
∣∣
Tj

=
[
∇Ψj0

∣∣
Tj
, ∇Ψj1

∣∣
Tj
, ∇Ψj2

∣∣
Tj

]
·
[
qj0 , qj1 , qj2

]T ∈ R3,3 . (A.3.4)

The gradients of the basis functions are uniquely defined by the following equations

(pj1 − pj0) · ∇Ψj0 = −1 (pj1 − pj0) · ∇Ψj1 = 1 (pj1 − pj0) · ∇Ψj2 = 0
(pj2 − pj0) · ∇Ψj0 = −1 (pj2 − pj0) · ∇Ψj1 = 0 (pj2 − pj0) · ∇Ψj2 = 1

Nj · ∇Ψj0 = 0 Nj · ∇Ψj1 = 0 Nj · ∇Ψj2 = 0

where Nj = Ñj/|Ñj |, Ñj = (pj1 − pj0) × (pj2 − pj0) is the unit triangle normal of Tj . This system
reveals an explicit formula of the matrix [∇Ψj0

∣∣
Tj
,∇Ψj1

∣∣
Tj
,∇Ψj2

∣∣
Tj

] ∈ R3,3, which can be plugged
into (A.3.4), and one obtains

Gj [Φ] =
[
(pj1 − pj0) , (pj2 − pj0) , Nj

]−T ·
−1 1 0
−1 0 1
0 0 0

 · [qj0 , qj1 , qj2]T . (A.3.5)

Hence we can define a global matrix A[S] ∈ R3m,n, that only depends on the undeformed nodal posi-
tions, i.e.

A[S] ·

q1
...
qn

 =

G1[Φ]
...

Gm[Φ]

 .

Now suppose we are given gradients G′j ∈ R3,3 for j = 1, . . . ,m that correspond to an (unknown)
deformation. Then we can reconstruct the deformed positions p′i ∈ R3, i = 1, . . . , n, by solving the
weighted least squares problem

A[S]TD[S]A[S] ·

p
′
1
...
p′n

 = A[S]TD[S]

G′1
...
G′m


where D[S] ∈ Rm,m is a diagonal matrix containing area elements of S. As A[S]TD[S]A[S] turns out
to be the matrix representation of the discrete Laplace-Beltrami operator, we essentially have to solve a
Poission problem.
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The high frequency detail information of Ŝ is encoded in a deformation Φ̂ : B̂→ Ŝ of the reference base
mesh B̂. Recall that all base meshes only contain low frequency information as the high frequencies have
been smoothed out by the Bi-Laplace filtering. The detail information Φ̂ : B̂ → Ŝ is now transfered to
B, which already contains the low frequency information of the optimal coarse shell C, by the gradient-
based deformation transfer, i.e. by solving

A[B]TD[B]A[B] ·

q1
...
qn

 = A[B]TD[B]

G1[Φ̂]
...

Gm[Φ̂]


for (q1, . . . , qn) which represents the nodal position vector of the desired shell S. The deformation
gradients Gj [Φ̂] on the right hand side can either be obtained by (A.3.5) or the explicit formula

Gj [Φ̂] =
[
p̂j1 − p̂j0

∣∣∣ p̂j2 − p̂j0 ∣∣∣Nj [Ŝ]
]
·
[
b̂j1 − b̂j0

∣∣∣ b̂j2 − b̂j0 ∣∣∣Nj [B̂]
]−1

where (j0, j1, j2) are the local node indices of the jth triangle and p̂i ∈ Ŝ resp. b̂i ∈ B̂.
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A.4 Partial derivatives of constrained functionals

In this section we compute partial derivatives of the discrete regression functional (7.2.10), which is
defined subject to a variational constraint. We focus on the formulation in the continuous, i.e. infinite
dimensional, setup. For an analogous computation in the finite-dimensional, discrete setup, we refer
to the appendix of [HRS+16]. Note that the regression functional consists of a weighted sum of the
(constrained) spline energy and a (simple) data term. Hence the following computations are in particular
helpful to compute partial derivatives of the spline energy.

We define Ψ = (ψ0, . . . , ψK) and Ψ̃ = (ψ̃1, . . . , ψ̃K−1), where ψ̃k = ψ̃k[ψk−1, ψk+1]. To keep things
simple, we focus here on the original discrete regression functional (7.2.4), which reads

R[Ψ, Ψ̃] =

K∑
k=0

ik∑
i=1

W[ψk, φ
i
k] + c

K−1∑
k=1

W[ψk, ψ̃k] ,

ψ̃k = arg min
ψ

Ck[ψk−1, ψk+1, ψ] , k = 1, . . . ,K − 1 ,

Ck[ψk−1, ψk+1, ψ] =W[ψk−1, ψ] +W[ψ,ψk+1] .

The condition on the ψ̃k can locally be rewritten in terms of the corresponding optimality condition,

0 = ∂ψCk[ψk−1, ψk+1, ψ̃k](ϑ) = ∂2W[ψk−1, ψ̃k](ϑ) + ∂1W[ψ̃k, ψk+1](ϑ) ∀ϑ , k = 1, . . . ,K − 1 .

Upon differentiation with respect to ψj , j ∈ {k − 1, k + 1},

0 = ∂ψj∂ψC
k[ψk−1, ψk+1, ψ̃k](ϑ, θ) + ∂ψ∂ψCk[ψk−1, ψk+1, ψ̃k](ϑ, ∂ψj ψ̃k(θ)) ∀ϑ, θ .

Now choose pk to solve

0 = c (∂ψ̃kR)[Ψ, Ψ̃](ϑ) + ∂ψ∂ψCk[ψk−1, ψk+1, ψ̃k](pk, ϑ) ∀ϑ

= c (∂ψ̃kR)[Ψ, Ψ̃](ϑ) +
(
∂2

2W[ψk−1, ψ̃k] + ∂2
1W[ψ̃k, ψk+1]

)
(pk, ϑ) ∀ϑ ,

then the Gâteaux derivative ofR with respect to ψk in some test direction ϑ is given by

∂ψk

(
R[Ψ, Ψ̃]

)
(ϑ) = (∂ψkR)[Ψ, Ψ̃](ϑ) + c (∂ψ̃k−1

R)[Ψ, Ψ̃](∂ψk ψ̃k−1(ϑ))

+ c (∂ψ̃k+1
R)[Ψ, Ψ̃](∂ψk ψ̃k+1(ϑ))

= (∂ψkR)[Ψ, Ψ̃](ϑ)− c ∂ψ∂ψCk−1[ψk−2, ψk, ψ̃k−1](pk−1, ∂ψk ψ̃k−1(ϑ))

− c ∂ψ∂ψCk+1[ψk, ψk+2, ψ̃k+1](pk+1, ∂ψk ψ̃k+1(ϑ))

= (∂ψkR)[Ψ, Ψ̃](ϑ) + c ∂ψk∂ψC
k−1[ψk−2, ψk, ψ̃k−1](pk−1, ϑ)

+ c ∂ψk∂ψC
k+1[ψk, ψk+2, ψ̃k+1](pk+1, ϑ)

= (∂ψkR)[Ψ, Ψ̃](ϑ) + c ∂2∂1W[ψ̃k−1, ψk](pk−1, ϑ)

+ c ∂1∂2W[ψk, ψ̃k+1](pk+1, ϑ) .

where

(∂ψkR)[Ψ, Ψ̃](ϑ) =

ik∑
i=1

∂1W[ψk, φ
i
k](ϑ) + c ∂1W[ψk, ψ̃k](ϑ) .
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A.5 Derivatives of discrete deformation energies

First derivatives for the Discrete Shells bending energy

Let S ∈ R3n be a discrete shell and S̃ = Φ(S). The Discrete Shells bending energy [GHDS03], as
defined in (5.3.12), is given (up to a multiplicative constant) by

W̃bend[S, S̃] =
∑
E∈E

(θE − θΦ(E))
2

AE
|E|2 j

k

i

d
E

a

Tk

Tl

l

b

c

α

δ

β

γwhere AE = |T1| + |T2| if E = T1 ∩ T2 and θE , θΦ(E) denote
the dihedral angle at the undeformed and deformed edge, respec-
tively. Furthermore,Ak,l will denote the area of element Tk = ijk
and Tl = jil, respectively, pι ∈ R3 will denote the vertex position
for ι = i, j, k, l. Using the notation in the figure on the right we
have

|E| = |pj − pi| ,

Ak = |Tk| =
1

2
|d× a|, Al = |Tl| =

1

2
|b× c| ,

Nk =
1

2Ak
d× a, Nl =

1

2Al
b× c .

When we differentiate W̃bend with respect to nodal positions, we end up with differentiating the quatities
above with respect to four vertices (namely i, j, k, l in local coordinates). We denote the variation of a
quantity Q w.r.t. some node p ∈ {i, j, k, l} by ∇pQ ∈ R3. Note that one distinguishes between two
cases, namely i, j vs. k, l.

∇j |E| =
E

|E|
∇i|E| = −

E

|E|
, ∇k|E| = ∇l|E| = 0 ,

∇kAk =
1

2
(d cot δ − a cotα) =

1

2
Nk × E ,

∇kθE = − |E|
2Ak

Nk , ∇lθE = − |E|
2Al

Nl .

The further derivatives are are little bit more subtle, for derivations we refer to the appendix of [DMA02].

∇iθe =
cotα

|e|
Nk +

cotβ

|e|
Nl =

|d| cosα

2Ak
Nk +

|c| cosβ

2Al
Nl =

−e ∗ d
|e|2

(
−∇kθE

)
+
e ∗ c
|e|2

(
−∇lθE

)
∇jθe =

cot δ

|e|
Nk +

cot γ

|e|
Nl =

|a| cos δ

2Ak
Nk +

|b| cos γ

2Al
Nl =

−e ∗ a
|e|2

(
−∇kθE

)
+
e ∗ b
|e|2

(
−∇lθE

)
We finally write down the full derivatives with respect to the undeformed configuration:

∇k
(θE − θ̃E)2|E|2

Ak +Al
= 2(θE − θ̃E)

|E|2

Al +Ak
∇kθE −

(θE − θ̃E)2|E|2

(Ak +Al)2
∇kAk

∇l
(θE − θ̃E)2|E|2

Ak +Al
= 2(θE − θ̃E)

|E|2

Al +Ak
∇lθE −

(θE − θ̃E)2|E|2

(Ak +Al)2
∇lAl

∇i
(θE − θ̃E)2|E|2

Ak +Al
= 2(θE − θ̃E)

|E|2

Al +Ak
∇iθE −

(θE − θ̃E)2|E|2

(Ak +Al)2
(∇iAk +∇iAl)−

2(θE − θ̃E)2

Ak +Al
E

∇j
(θE − θ̃E)2|E|2

Ak +Al
= 2(θE − θ̃E)

|E|2

Al +Ak
∇jθE −

(θE − θ̃E)2|E|2

(Ak +Al)2
(∇jAk +∇jAl) +

2(θE − θ̃E)2

Ak +Al
E

where we have used the notation θ̃E = θΦ(E). The derivatives with respect to the deformed configuration
are given by the first term of each row multiplied by −1.
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Second derivatives for the Discrete Shells bending energy

We will use the same notation as above: nodes related to one hinge (i.e. two triangles sharing one edge)
are denoted by i, j, k, l. Note that E = E(i, j), θ = θ(i, j, k, l), Ak = Ak(i, j, k) and Al = Al(i, j, l).
Furthermore we will use the following notation:

HE =
(∆θ)2|E|2

A
, ∆θ := θE − θ̃E , A := Ak +Al ,

as well as εi = −1, εj = 1, εk = εl = 0. We will denote first derivatives with respect to some node
p ∈ {i, j, k, l} by ∇p and second derivatives by Hqp = ∇q∇p, where q ∈ {i, j, k, l}. Wherever a
distinction is necessary, quantities with a tilde refer to variables living in the deformed domain S̃, e.g.
θ̃E = θΦ(E). Likewise we write p̃ if we refer to some node living in the deformed doamin. According to
results from above we have for p ∈ {i, j, k, l}:

∇p̃HE = −2(θE − θ̃E)
|E|2

A
∇p̃θE = −2

∆θ |E|2

A
∇p̃θE

and

∇pHE = 2∆θ
|E|2

A
∇pθE −

(∆θ)2

A2
|E|2

(
∇pAl +∇pAk

)
+ εp 2

(∆θ)2

A
E .

Writing a⊗ b = abT for some vectors a, b ∈ R3, we obtain for q ∈ {i, j, k, l}:

∇q̃∇p̃HE = 2
|E|2

A

(
∇p̃θE ⊗∇q̃θE −∆θ H̃pqθE

)
and

∇q∇pHE = 2∇pθE ⊗
[ |E|2
A
∇qθE −

|E|2 ∆θ

A2

(
∇qAl +∇qAk

)
+ εq2

∆θ

A
E
]

+ 2
|E|2 ∆θ

A
HpqθE

−
(
∇pAl +∇pAk

)
⊗
[
2
|E|2 ∆θ

A2
∇qθE − 2

|E|2(∆θ)2

A3

(
∇qAl +∇qAk

)
+ εq2

(∆θ)2

A2
E
]

− |E|
2(∆θ)2

A2

(
HpqAl +HpqAk

)
+ 2 εpE ⊗

[
2

∆θ

A
∇qθE −

(∆θ)2

A2

(
∇qAl +∇qAk

)]
+ 2 εp

(∆θ)2

A
DqE

as well as

∇q∇p̃HE = − 2

A
∇p̃θE ⊗

[
|E|2∇qθE −

∆θ

Ak +Al

(
∇qAk +∇qAl

)
+ 2 ∆θ εqE

]
,

and

∇q̃∇pHE = − 2

A

[
|E|2∇pθE −

∆θ

Ak +Al

(
∇pAk +∇pAl

)
+ 2 ∆θ εpE

]
⊗∇q̃θE .

Remarks: We have to be careful when commuting the operators ∇p and ∇q̃ as the ⊗-operator is not
symmetric. An easy example is given by f : Rn × Rn → R, f : (x, y) 7→ 1

4 |x|
2 · |y|2. Then

∇x∇yf(x, y) = y ⊗ x 6= x⊗ y = ∇y∇xf(x, y). But obviously

∇q∇p̃HE = (∇p̃∇qHE)T , ∇q̃∇p̃HE = (∇p̃∇q̃HE)T ∇q∇pHE = (∇p∇qHE)T .

Let f : R3 → R be a scalar valued function and n = (n1, n2, n3)T : R3 → R3 be a vector field. Then:

D(f(x) · n(x)) = n(x)⊗∇f(x) + f(x) ·Dn(x) ∈ R3,3 .

Here and in what follows we will write D for the Jacobian and∇ for the gradient, i.e.∇f = (Df)T .
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Geometric derivatives

Here we compute Hpqθe, HpqAr, DqE ∈ R3,3 for r ∈ {k, l} and p, q ∈ {i, j, k, l}. We define

N := NT :=
Ek × Ei
|Ek × Ei|

=
Ei × Ej
|Ei × Ej |

=
Ej × Ek
|Ej × Ek|

,

where Ep = Xp+1 −Xp−1 is the edge opposite node Xp in T and

A := |T | = |Ek × Ei|
2

=
|Ei × Ej |

2
=
|Ej × Ek|

2
.

For some f : Rn → Rn and g := |.| : Rn → R we have∇|f(x)| ∈ Rn, i.e. the chain rule implies

∇|f(x)| =
(
D(g ◦ f)(x)

)T
=
(
Dg
(
f(x)

)
Df(x)

)T
=
((
∇g
)T (

f(x)
)
Df(x)

)T
=
(f(x)T

|f(x)|
Df(x)

)T
.

Hence we obtain for∇pA = 1
2∇p|Ek × Ei|:

∇pA =
1

2

((Ek × Ei)T

|Ek × Ei|
(
(∇pEk)× Ei + Ek × (∇pEi)

)︸ ︷︷ ︸
=Ep×

)T
=

1

2
(−Ep)×N =

1

2
N × Ep .

For a, b ∈ R3 we define a× : b 7→ a×b, i.e. a× is a skew-symmetric 3×3-matrix, Pa : b 7→ (id−a⊗a)b
is a projection map and Ra : b 7→ (id− 2a⊗ a)b is a reflection map. Then

DpN = Dp

(
|Ek × Ei|−1(Ek × Ei)

)
= −|Ek × Ei|−2(Ek × Ei)⊗ (N × Ep) + |Ek × Ei|−1Ep×

= |Ek × Ei|−1
(
− (N ⊗N)Ep ×+Ep ×

)
=

1

2A
(id−N ⊗N)Ep× =: (2A)−1PN Ep× ,

where we have used that a⊗ (a× b) = −a(b× a)T = aaT b× = (a⊗ a)b×. We can deduce

Dp(A
−1N) = −A−2N ⊗∇pA+A−1DpN

=
−A−2

2
N ⊗ (N × Ep)︸ ︷︷ ︸

N⊗N Ep×

+A−1
(
(2A)−1 PN︸︷︷︸

id−N⊗N

Ep ×
)

=
1

2A2
(id− 2N ⊗N)Ep× =:

1

2A2
RN Ep × .

Next we compute second derivatives Hpq of dihedral angles θe w.r.t. nodes p, q ∈ {i, j, k, l}. Recall:

∇kθE = − |E|
2Ak

Nk , ∇lθE = − |E|
2Al

Nl .

With the calculations for∇p(A−1N) = (Dp(A
−1N))T above we get

HkkθE = −|E|
2
∇k(A−1

k Nk) = − |E|
(2Ak)2

(RNk(E×))T ,

HllθE = −|E|
2
∇l(A−1

l Nl) = − |E|
(2Al)2

(RNl(−E×))T ,

and obviouslyHkl = Hlk = 0. In the implementation we used− (RNk(E×))T = (E×)+4∇kA⊗Nk.
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Recall further

∇iθE =
cotα

|E|
Nk +

cotβ

|E|
Nl =

|d| cosα

2Ak
Nk +

|c| cosβ

2Al
Nl =

−E ∗ d
|E|2

(
−∇kθE

)
+
E ∗ c
|E|2

(
−∇lθE

)
=
−E ∗ d
|E|2

( |E|
2Ak

Nk

)
+
E ∗ c
|E|2

( |E|
2Al

Nl

)
=
−E ∗ d

2|E|

(
A−1
k Nk

)
+
E ∗ c
2|E|

(
A−1
l Nl

)
and

∇jθE =
cot δ

|E|
Nk +

cot γ

|E|
Nl =

|a| cos δ

2Ak
Nk +

|b| cos γ

2Al
Nl =

−E ∗ a
|E|2

(
−∇kθE

)
+
E ∗ b
|E|2

(
−∇lθE

)
=
−E ∗ a
|E|2

( |E|
2Ak

Nk

)
+
E ∗ b
|E|2

( |E|
2Al

Nl

)
=
−E ∗ a

2|E|

(
A−1
k Nk

)
+
E ∗ b
2|E|

(
A−1
l Nl

)
.

Hence

HikθE =
1

2
(A−1

k Nk)⊗
−E
|E|
− |E|

2
Di(A

−1
k Nk) =

−1

2Ak|E|
(Nk ⊗ E) +

E ∗ d
|E|2

HkkθE ,

HjkθE =
1

2
(A−1

k Nk)⊗
E

|E|
− |E|

2
Dj(A

−1
k Nk) =

1

2Ak|E|
(Nk ⊗ E) +

E ∗ a
|E|2

HkkθE ,

HilθE =
1

2
(A−1

l Nl)⊗
−E
|E|
− |E|

2
Di(A

−1
l Nl) =

−1

2Al|E|
(Nl ⊗ E)− E ∗ c

|E|2
HllθE ,

HjlθE =
1

2
(A−1

l Nl)⊗
E

|E|
− |E|

2
Dj(A

−1
l Nl) =

1

2Al|E|
(Nl ⊗ E)− E ∗ b

|E|2
HllθE ,

and

HiiθE =∇i
(
|E|−2

(
(E ∗ d)∇kθE − (E ∗ c)∇lθE

))
=− 2

|E|3
(
(E ∗ d)∇kθE − (E ∗ c)∇lθE

)
⊗ −E
|E|

+ |E|−2
[
∇kθE ⊗∇i(E ∗ d)︸ ︷︷ ︸

=−d

+(E ∗ d)HikθE −∇lθE ⊗∇i(E ∗ c)︸ ︷︷ ︸
=−c

−(E ∗ c)HilθE

]
=|E|−2

[
2∇iθE ⊗ E −∇kθE ⊗ d+∇lθE ⊗ c+ (E ∗ d)HikθE − (E ∗ c)HilθE

]
,

and

HjjθE =∇j
(
|E|−2

(
(E ∗ a)∇kθE − (E ∗ b)∇lθE

))
=− 2

|E|3
(
(E ∗ a)∇kθE − (E ∗ b)∇lθE

)
⊗ E

|E|

+ |E|−2
[
∇kθE ⊗∇j(E ∗ a)︸ ︷︷ ︸

=a

+(E ∗ a)HjkθE −∇lθE ⊗∇j(E ∗ b)︸ ︷︷ ︸
=b

−(E ∗ b)HjlθE

]
=|E|−2

[
− 2∇jθE ⊗ E +∇kθE ⊗ a−∇lθE ⊗ b+ (E ∗ a)HjkθE − (E ∗ b)HjlθE

]
,

and

HjiθE =∇j
(
|E|−2

(
(E ∗ d)∇kθE − (E ∗ c)∇lθE

))
=− 2

|E|3
(
(E ∗ d)∇kθE − (E ∗ c)∇lθE

)
⊗ E

|E|

+ |E|−2
[
∇kθE ⊗∇j(E ∗ d)︸ ︷︷ ︸

=d−E

+(E ∗ d)HjkθE −∇lθE ⊗∇j(E ∗ c)︸ ︷︷ ︸
=c+E

−(E ∗ c)HjlθE

]
=|E|−2

[
− 2∇iθE ⊗ E +∇kθE ⊗ (d− E)−∇lθE ⊗ (c+ E) + (E ∗ d)HjkθE − (E ∗ c)HjlθE

]
.
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We further have Hki = Hik, Hkj = Hjk, Hli = Hil, Hlj = Hjl and Hij = Hji.

Remark on the calculation of dihedral angles: For every edge E we have to calculate the dihedral angle,
i.e. the angle from Nk to Nl. We use the formula a× b = |a| |b| sin(^(a, b)) a×b

|a×b| , thus we obtain

θE = sin−1
(

(Nk ×Nl) ·
E

|E|

)
.

Derivatives for the membrane energy

Let S ⊂ R3 be an embedded surface, parametrized by the mapping x : ω ⊂ R2 → R3. In the discrete
setting, S is replaced by a triangle mesh S and ω is replaced by a topological reference mesh Ω ⊂ R2.
On the one hand, Ω inherits the connectivity from the mesh S appoximating the hypersurface S. On the
other hand, Ω consists of unit triangles only, as it solely prescribes the topology. A local parametrization
of a triangle Ti ⊂ S over the unit triangle is given by XTi , a global paramtrization is a collection of local
parametrizations, i.e. X = (Xi)i : Ω→ S.
When we assume that the integrand f is constant on elements, i.e. f = (fT )T∈T , we have∫

S
f da =

∫
Ω
f(X(ξ))

√
detG(ξ) dξ =

1

2

∑
T∈T

fT
√

detGT ,

where the discrete first fundamental form is also constant on faces, i.e. GT = DXT
TDXT . The factor 1

2
represents the area of a single unit triangle. For a (discrete) variation Ψ of the (discrete) parametrization
X we write Ψ = (Ψ1,Ψ2,Ψ3) : Ω → R3, i.e. ∇Ψi ∈ R2 and DΨ ∈ R3,2. According to the interface
functions provided in the QuocMesh library, we long for a representation

∂X

(∫
S
f da

)
(Ψ) =

1

2

∑
T∈T

∂X

(
fT
√

det g|T
)

(Ψ) =
1

2

∑
T

A
∣∣
T

: DΨ (A.5.1)

for the first variation and

∂2
X

(∫
S
f da

)
(Ψ,Φ) =

1

2

∑
T∈T

∂2
X

(
fT
√

det g|T
)

(Ψ,Φ)

=
1

2

∑
T∈T

(
tr (A1DΦA2DΨ) + tr (A3DΦTA4DΨ) + tr (A5DΦ)tr (A6DΨ)

)
for the second variation, with some matrices A,A3 ∈ R3,2 and Ai ∈ R2,3 for i 6= 3, that have to be
computed in derived classes.

However, whren computing variations it is more convenient to start in the continuous setup. We consider
two surfaces S1,S2 being parametrized via x1,2 : ω → R3, the membrane energy is defined by

Wmem[S1,S2] :=

∫
S1

Wmem(g−1
1 g2) dx

with
Wmem(A) :=

µ

2
trA+

λ

4
detA− (

µ

2
+
λ

4
) log detA− µ− λ

4
.

We define G := g−1
1 g2, with g1,2 denoting first fundamental forms, and α := λ

2 detG − µ − λ
2 . For a

continuous variation ψ : ω → R3 of x2 resp. x1 we obtain

∂x2Wmem[S1,S2](ψ) =

∫
ω
Dx2

(
µg−1

1 + αg−1
2

)√
det g1︸ ︷︷ ︸

=A∈R3,2

: Dψ dξ (A.5.2)
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and

∂x1Wmem[S1,S2](ψ) =

∫
ω
−Dx1

(
µg−1

1 g2g
−1
1 +

(
α−W (G)

)
g−1

1

)√
det g1︸ ︷︷ ︸

=A∈R3,2

: Dψ dξ . (A.5.3)

Note that in the discrete setup, the matrix-valued function A is constant on triangles, i.e. we obtain
A = (AT )T , which can be plugged into (A.5.1).

For the second variations we consider another continuous variation φ : ω → R3. We make use of the
notation ∂xigi(φ) = DφTDxi +DxTi Dφ, as well as

d1W = µG +
(
α−W (G)

)
1 , d2W = µg−1

1 + αg−1
2 .

First, we compute ∂x2∂x2Wmem[S1,S2](φ, ψ). Differentiating the integrand of (A.5.2) yields:

∂x2

[
Dx2d2W : Dψ

]
(φ) =Dφd2W : Dψ +Dx2

[(λ
2

detG g1g
−1
2 : g−1

1

(
∂2g2(φ)

))
g−1

2 − αg−1
2

(
∂2g2(φ)

)
g−1

2

]
: Dψ

= tr
(
DψT1Dφd2W

)
+
λ

2
detG

(
g−1

2 :
(
DφTDx2 +DxT2 Dφ

))
Dx2 g

−1
2 : Dψ

− α
[
Dx2g

−1
2

(
DφTDx2 +DxT2 Dφ

)
g−1

2

]
: Dψ

= tr
(
d2WDφT1Dψ

)
+ λdetG tr

(
g−1

2 DxT2 Dφ
)
· tr
(
g−1

2 DxT2 Dψ
)

− αtr
(
DψTDx2g

−1
2 DφTDx2g

−1
2

)
− αtr

(
DψTDx2g

−1
2 DxT2 Dφg

−1
2

)

=tr
(
d2WDφT1Dψ

)
+ λ detG tr

(
ADφ

)
· tr
(
ADψ

)
− αtr

(
ADφADψ

)
− αtr

(
g−1

2 DφTBDψ
)

where A := g−1
2 DxT2 ∈ R2,3 and B := Dx2g

−1
2 DxT2 ∈ R3,3.

Next, we compute ∂x1∂x1Wmem[S1,S2](φ, ψ), i.e. we differentiate the integrand of (A.5.3). Using

I1 := −
√

det g1 (Dx1d1Wg−1
1 )

we obtain:

∂x1

[
I1 : Dψ

]
(φ) =− 1

2

√
det g1

(
g−1

1 : ∂x1g1(φ)
)(

Dx1d1Wg−1
1 : Dψ

)
−
√

det g1Dφd1Wg−1
1 : Dψ

−
√

det g1Dx1 (∂x1d1W )(φ) g−1
1 : Dψ +

√
det g1Dx1 d1W g−1

1 ∂x1g1(φ) g−1
1 : Dψ .

We define A := g−1
1 and B = d1W g−1

1 . Furthermore, we introduce the notation Mr := MDxT1 ,
Ml := Dx1M and Mlr := Dx1MDxT1 for matrices M ∈ R2,2. We get

(det g1)−
1
2 ∂x1

[
I1 : Dψ

]
(φ) =− tr (ArDφ) tr (BrDψ)− tr (g−1

1 (d1W )TDφT1Dψ)−Dx1 (∂x1d1W )(φ) g−1
1 : Dψ

+ tr (DψTDx1 d1W g−1
1 DφTDx1 g

−1
1 ) + tr (DψTDx1 d1W g−1

1 DxT1Dφg
−1
1 )

=tr (ArDφ) tr (BrDψ) + tr (BTDφT1Dψ) +Dx1 (∂x1
d1W )(φ) g−1

1 : Dψ

− tr (ArDφB
T
l Dψ)− tr (ADφTBTlrDψ) ,
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where

∂x1d1W (φ) =− µg−1
1 ∂x1g1(φ) g−1

1 g2 −
(λ detG

2
g1g

−1
2 : g−1

1 ∂x1g1(φ) g−1
1 g2

)
1

−
(
− µ

2
1 : g−1

1 ∂x1g1(φ) g−1
1 g2 −

(λ
4

detG − µ

2
− λ

4

)
g1g

−1
2 : g−1

1 ∂x1g1(φ) g−1
1 g2

)
1

=− µg−1
1 DφTDx1 G − µg−1

1 DxT1DφG − λ detGtr (DφTDx1g
−1
1 )1

+
µ

2

[
tr
(
g−1
1 DφTDx1g

−1
1 g2

)
+ tr

(
g−1
1 DxT1Dφg

−1
1 g2

)]
1

+
(λ

2
detG − µ− λ

2

)
tr
(
DxT1Dφg

−1
1

)
1

=− µg−1
1 DφTDx1 G − µg−1

1 DxT1DφG

+ µtr
(
g−1
1 g2g

−1
1 DxT1Dφ

)
1− βtr

(
ArDφ

)
1 .

where β = λ
2 detG + µ+ λ

2 . Hence, with C = g−1
1 g2g

−1
1 we get

Dx1 (∂x1
d1W )(φ) g−1

1 : Dψ =− µtr
(
DψTDx1g

−1
1 DφTDx1 g

−1
1 g2g

−1
1

)
− µtr

(
DψTDx1g

−1
1 DxT1Dφg

−1
1 g2g

−1
1

)
+ µtr

(
CrDφ

)
tr
(
ArDψ

)
− βtr

(
ArDφ

)
tr
(
ArDψ

)
=− µtr

(
CrDφArDψ

)
− µtr

(
CDφTAlrDψ

)
+ µtr

(
CrDφ

)
tr
(
ArDψ

)
− βtr

(
ArDφ

)
tr
(
ArDψ

)
and

(det g1)−
1
2 ∂x1

[
I1 : Dψ

]
(φ) =− tr (ArDφ) tr (BrDψ)− tr (BTDφT1Dψ) + µtr (CrDφArDψ)

+ µtr (CDφTAlrDψ)− µtr (CrDφ)tr (ArDψ) + βtr (ArDφ)tr (ArDψ)

+ tr (ArDφB
T
l Dψ) + tr (ADφTBTlrDψ) .

Finally, we compute the mixed derivative ∂x2∂x1Wmem[S1,S2](φ, ψ) and obtain:

Dx1 ∂x2(d1W )(φ) g−1
1 : Dψ =µ tr

(
Dx1g

−1
1 (DφTDx2 +DxT2Dφ)g−1

1 DψT
)

+ ∂x2

(λ
2

detG −W (G)
)

(φ) · tr
(
Dx1g

−1
1 DψT

)
=µ tr

(
g−1
1 DxT2︸ ︷︷ ︸
=:A2

Dφg−1
1 DxT1︸ ︷︷ ︸
=:A1

Dψ
)

+ µ tr
(
g−1
1︸︷︷︸

=:A

DφT Dx2g
−1
1 DxT1︸ ︷︷ ︸
B

Dψ
)

− ∂x2

(
W (G)− λ

2
detG

)
(φ) · tr

(
g−1
1 DxT1︸ ︷︷ ︸
=:A1

Dψ
)
,

where

∂x2

(
W (G)− λ

2
detG

)
(φ) = Dx2(µg−1

1 + αg−1
2 ) : Dφ− λ

2
detG · g1g−1

2 : g−1
1 (DφTDx2 +DxT2Dφ)

= tr
((
µg−1

1 + (
λ

2
detG − µ− λ

2
)g−1

2

)
DxT2Dφ

)
− λ detGtr (g−1

2 DxT2Dφ)

= tr
((
µg−1

1 − (
λ

2
detG + µ+

λ

2
)︸ ︷︷ ︸

=β

g−1
2

)
DxT2Dφ

)
.
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Hence with A = g−1
1 , Aj = ADxTj , B = Dx2g

−1
1 DxT1 and C = (µg−1

1 − βg
−1
2 )DxT2 :

−Dx1 ∂x2
d1W (φ) g−1

1 : Dψ =− µtr
(
A2DφA1Dψ

)
− µtr

(
ADφTBDψ

)
+ tr

(
CDφ

)
· tr
(
A1Dψ

)
.

To use the interfaces in the QuocMesh library we need some matrix expressions (with m = 2 and
n = 3). Assume φ, ψ : Rm → Rn are differentiable functions with φ = (φ1, . . . , φn) and DφT =
[∇φ1| . . . |∇φn] ∈ Rm,n, where ∇φi = (Dφij)j ∈ Rm. Let A,B ∈ Rm,n with A = (Aij)ij =
[a1| . . . |an] and B = (Bij)ij = [b1| . . . |bn]. Then we have:

tr (ADφBDψ) =
∑
i

(ADφBDψ)ii =
∑
i,j,k,l

AijDφjkBklDψli =
∑
i,j,k,l

DψliAij ·DφjkBkl

=
∑
j,l

(∇ψl)Taj · (∇φj)T bl =
∑
j,l

(∇ψl)TajbTl ∇φj =
∑
k,l

(∇ψl)TakbTl ∇φk

=
n∑

k,l=1

akb
T
l︸︷︷︸

∈Rm,m

∇φk · ∇ψl ,

tr (ADφ)tr (BDψ) =
∑
i,j

AijDφji ·
∑
k,l

BklDψlk =
∑
i,j,k,l

AijDφjiBklDψlk =
∑
i,j,k,l

DψlkBkl ·DφjiAij

=
∑
j,l

(∇ψl)T bl · (∇φj)Taj =
∑
j,l

(∇ψl)T blaTj ∇φj =
∑
k,l

(∇ψl)T blaTk∇φk

=

n∑
k,l=1

bla
T
k︸︷︷︸

∈Rm,m

∇φk · ∇ψl .

Let A ∈ Rm,m and B ∈ Rn,n with A = (Aij)ij = [a1| . . . |am] and B = (Bij)ij . Then we have:

tr (ADφTBDψ) =
∑
i

(ADφTBDψ)ii =
∑
i,j,k,l

AijDφkjBklDψli =
∑
i,j,k,l

DψliAij ·DφkjBkl

=
∑
j,k,l

(∇ψl)Taj ·DφkjBkl =
∑
k,l

(∇ψl)TBkl
∑
j

Dφkjaj =
∑
k,l

(∇ψl)TBklA∇φk

=

n∑
k,l=1

BklA︸ ︷︷ ︸
∈Rm,m

∇φk · ∇ψl .
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