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Abstract 

Aptamers are single stranded DNA or RNA oligonucleotides which are able to interact with their 
designated target molecules with high affinity and specificity. The in-vitro procedure used for 
aptamer selection from a randomly designed oligonucleotide library is named Systematic Evolution 
of Ligands by EXponential enrichment (SELEX). Since aptamers, in comparison to antibodies,  bind to 
larger surface structures, these molecules have the potential to better discriminate between the 
enzymatically inactive zymogen and active enzymes. Indeed, it has been previously shown that a 
DNA-aptamer selected against activated protein C (APC) possesses a high selectivity over zymogenic 
protein C. 
APC is a serine protease which is generated from zymogenic protein C by thrombin-mediated 
proteolytic activation on the surface of endothelial cells. APC performs its anticoagulant activity by 
proteolytic inactivation of activated factors V (FVa) and VIII (FVIIIa) which act as procoagulant 
cofactors within the blood coagulation cascade. Besides its anticoagulant functions, APC shows anti-
inflammatory and anti-apoptotic activities which lead to endothelial barrier stabilization. Mild and 
moderate forms of inherited PC-deficiency predispose patients to an increased risk of venous 
thromboembolism while severe forms are associated with the development of purpura fulminans, a 
severe and potentially life-threatening thromboinflammatory disease comparable to severe sepsis. In 
severe sepsis acquired PC-deficiency plays a central role in the development of microvascular 
thrombosis leading to multiorgan failure. Substitution of septic patients with plasma-purified PC or a 
recombinant version of APC has been shown to improve outcome in terms of mortality rates. An 
increased incidence of bleedings, however, restricted the substitution of APC in patients with 
septicemia. Recombinant APC variants with impaired anticoagulant activity but intact cytoprotective 
properties are potentially safer drugs for the treatment of severe septicemia. Alternatively, specific 
ligands that selectively inhibit the anticoagulant activity of APC might offer several advantages over 
genetically engineered APC-variants. 
To increase the probability to select distinct APC binding sequences with divergent functional 
activities we used a capillary electrophoresis (CE)-based SELEX strategy. In addition different 
randomized ssDNA-libraries were applied, including a G-rich library to increase the likelihood of 
selecting G-quadruplex containing aptamers. The SELEX technology was further improved by 
developing a novel method for single-stranded DNA (ssDNA) production, allowing the convenient and 
rapid purification of ssDNA. 
A previously identified consensus motif dominated the selected aptamer pools despite using two 
differently structured randomized DNA-libraries during CE-SELEX. However, a G-quadruplex forming 
sequence raised up when using a G-rich DNA-library. Evaluation of the impact of identified aptamers 
on the amidolytic activity of APC combined with competition experiments using heparin as 
competitor revealed the so-called basic exosite of APC, which mediates its anticoagulant functions, 
as exclusive binding site. Further functional analysis clarified that, despite sharing the same binding 
site, different aptamers alter the functions of APC in different ways. Most interestingly, the G-
quadruplex-based aptamer protected APC from inactivation by plasma protein C inhibitor while the 
other APC-specific aptamers rather accelerated this process.  
To conclude, the described aptamers may be useful for fast and efficient inhibition of APC under 
APC-mediated bleeding situations. Since the anti-apoptotic and anti-inflammatory functions of APC 
are most likely not influenced by aptamer-binding, such aptamers may be used as an adjuvant 
therapy in hemophilia in which APC inhibition might at least partially compensate the absence or 
reduced activity of FVIII or FIX. Furthermore, the availability of specific ligands with high 
discriminatory power between the zymogenic and active form of APC might be useful for the 
quantification of the active enzyme in biological fluids. 
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1.1. Blood coagulation system 

The occurrence of vascular injury requires rapid clot formation in order to prevent 

hemorrhage. In the case of damaged endothelium, platelets adhere to the sub-

endothelium and, subsequent to instantaneous activation of the haemostatic system, 

fibrin production occurs, which forms a mesh over the platelet plug, sealing the site of 

injury. The explosive activation of the haemostatic system is due to the so-called ‘cascade’ 

system of coagulation in which inactive zymogens and cofactors are sequentially 

activated by proteolytic cleavage 1.  

The coagulation cascade, which was proposed for the first time in 1964, is explainable as 

a model consisting of the interlinked so-called intrinsic and extrinsic pathways (Figure 

1.1).   

The physiologically more important extrinsic pathway involves tissue factor (TF) and 

factor VII (FVII). Upon vascular injury, cells expressing membrane-bound tissue factor 

come into contact with activated factor VII (FVIIa) within the blood. The resulting TF-FVIIa 

complex, as a potent activator of the coagulation cascade, activates two substrates, 

namely, factor IX (FIX) and factor X (FX) 1,2. In turn, activated factor X (FXa) activates 

minute amounts of prothrombin to thrombin 3.  

Thrombin is the key enzyme of the coagulation system due to its biologically important 

functions such as platelet activation, fibrinogen conversion to fibrin, and feedback 

amplification of the plasmatic coagulation cascade. Indeed, thrombin activates the 

coagulation co-factors VIII and V. Activated FVIII (FVIIIa) serves as a cofactor of FIXa within 

the ‘tenase’ complex, which is a contraction of "ten" and the suffix "-ase". This means 

that the substrate FX gets activated through cleavage by the complex. Accordingly, 

together with FXa, activated FV (FVa) forms the prothrombinase complex which activates 

prothrombin to thrombin 1,4. 

At the final stage of the coagulation cascade, fibrinogen is converted by the act of 

thrombin to insoluble fibrin. The multi-step procedure starts with thrombin cleavage of 

fibrinogen to form soluble fibrin monomers. The newly formed fibrin mesh is stabilized by 

cross-linking catalysed through action of thrombin-activated coagulation factor XIII (FXIII) 
1.  
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The currently reputed model of in vivo coagulation agrees on the central role of tissue 

factor as the main coagulation initiator. As described above, this model asserts the rapid 

amplification of thrombin as an essential step in the development of a stable clot and the 

dependence of the model on coagulation factors and cellular elements 2. On the other 

hand, however, activation of the intrinsic pathway involves activation of factor XII (FXII) at 

negatively-charged surfaces exposed to the blood stream due to endothelial injuries. In 

the further course, activated FXII (FXIIa) activates Factor XI (FXI) which in turn activates 

FIX, closing the link between both, the extrinsic and intrinsic pathways 2.  

 

 

Figure 1.1.  The cascade model of coagulation with its intrinsic and extrinsic pathways. C1-inh : 

C1-inhibitor. TF : tissue factor. TFPI : tissue factor pathway inhibitor. AT : antithrombin, modified 

from Norris, 2003 1.  

1.2. Regulation of the coagulation system 

The rapid and efficient activation of blood coagulation is essential to avoid blood loss. 

However, to prevent a generalized activation of coagulation and excess fibrin deposition, 

local and transient activation of the system at the site of vascular injury is required. To 

achieve this goal, various regulatory mechanisms are exerted either by enzymatic 

inhibition or by modulation of the activity of the cofactors. 

As described above, the TF-VIIa complex as a potent initiator of the extrinsic pathway 

activates both, FIX and FX. A specific inhibitor of this complex is named the tissue factor 

pathway inhibitor (TFPI). TFPI is a multi-domain protein which is released from 
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endothelial cells and megakaryocytes and binds to the TF-VIIa complex subsequent to 

binding to FXa 5. The anticoagulant activity of TFPI reduces intravascular procoagulant 

activity in the very early stage and thereby down-regulates thrombin formation 6. 

Many of the activated coagulation enzymes are inhibited by the serine-protease inhibitor 

antithrombin, which mainly forms irreversible complexes with FXa and thrombin. At this, 

the inactivation of free thrombin and FXa by antithrombin occurs faster than that of 

thrombin and FXa bound to activation complexes which ensures the clearance of active 

enzymes from circulation and restriction of their activity to the site of vascular injury and 

corresponding clot formation 1. Heparin and heparin-like molecules from the endothelial 

cell surface stimulate the activity of antithrombin towards both enzymes 5. 

Another important system for the regulation of blood coagulation is the protein C (PC) 

anticoagulant pathway.  

1.3. Activated protein C  

1.3.1. APC structure  

Protein C is a vitamin K-dependent plasma protein which was purified for the first time 

from bovine plasma as described by Stenflo in 1976 7. APC is generated from zymogenic 

protein C by thrombin-mediated proteolytic activation 8. 

Thrombomodulin (TM), which is expressed on the vascular endothelium, forms a 1:1 

complex with thrombin which in turn activates PC bound to endothelial protein C 

receptor (EPCR) on the surface of endothelial cells. Circulatory APC is consisting of a light- 

and heavy-chain molecule held together by a single disulfide bond. The anticoagulant 

activity of APC is directed through irreversible proteolytic inactivation of FVa and  FVIIIa, 

thereby inhibiting further thrombin generation 9.  

Human PC consists of 419 amino acids and undergoes post-translational modifications 

including ß-hydroxylation at Asp71, N-linked glycosylation at residues 97, 248, 313 and 329 

and gamma-carboxylation of nine glutamic acid residues in the amino terminus, the so 

called Gla domain 10.  

Thrombin cleavage of the zymogen PC at Arg169 leads to elimination of the activation 

peptide (residues 158–169) and APC generation. The interaction of APC with different 

plasmatic and cellular proteins are directed by various amino acids embedded in domains 

termed exosites that are distinct from the active site triad consisting of His211, Asp257 and 

Ser360 that is characteristic for all coagulation enzymes 8. The so-called basic exosite, 

consisting of the 37-loop, the 60-loop, and the 70–80-loop is involved in the proteolytic 

inactivation of factors Va and VIIIa 11,12. Furthermore, a negatively charged exosite, which 

consists of acidic residues of the 162 helix is responsible for the interaction of APC with 
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protease activated receptor-1 (PAR-1), mediating the anti-apoptotic and anti-

inflammatory properties of APC 13 (Figure 1.2). 

 

Figure 1.2. Space-filling model of the APC. The basic exosite consisting of basic residues of the 39-

loop, the 60-loop, and the 70–80-loop are presented in red, while acidic residues of the 162 helix 

are exposed in blue. The green part located in the center of the molecule belongs to the catalytic 

triad. This model is configured based on the 1AUT structure from the crystal structure of APC 

deposited in the Protein Data Bank 13. 

 

 

1.3.2. APC anticoagulant activity 

APC performs its anticoagulant activity by irreversible proteolytic inactivation of activated 

FVa/ FVIIIa. The two cleavages responsible for FVa inactivation by APC occur at Arg306 and 

Arg506 in a sequential order including the first rapid cleavage at the Arg506 site followed by 

a slower cleavage at the Arg306 site 12. The exact mechanism by which APC inactivates FVa 

is unclear but according to the findings of some experiments, the main structures of APC 

that take part in cleavage of the Arg506 site are the 39-loop (Lys37-Lys39) and the 70-80–

loop (particularly Arg74 and Arg75) 14. In the presence of protein S (PS), the cleavage of 

Arg306 is accelerated by 20-fold and the presence of FXa protects FVa from inactivation by 

APC through selective blockage of the Arg506 cleavage site 15. 

APC-mediated inactivation of FVIIIa takes place at the homologous sites Arg336 and Arg562, 

located on the A1 and A2 subunits, respectively. Tendency for cleavage site selectivity is 

directed by the presence of other coagulation factors. While FIXa inhibits cleavage at the 

A2 site (Arg562), FX protects FVIIIa from inactivation through cleavage at the A1 site 

(Arg336) 16. Unlike FVa, a cleavage on each of the cleavage sites leads to almost complete 



Chapter 1: General introduction and outline 

6 
 

inactivation of FVIIIa. Protein S (PS) enhances the cleavage rate at the Arg562 site 

approximately 5 fold, however, it has only a moderate effect towards the Arg336 site 11.  

FV promotes inactivation of FVIIIa by acting in synergy with PS as a cofactor of APC in the 

inhibition of the FVIIIa - FIXa complex. A mutant form of FV known as FVLeiden, is less 

susceptible to proteolysis by APC due to amino acid substitution at Arg506 and the 

mutated FV does not display this anticoagulant cofactor activity. Since  cleavage at Arg506  

of FV by APC is prerequisite for its cofactor function, FV-Leiden has a 10-fold less 

efficiency as an APC-cofactor in the degradation of FVIIIa 17. It has been also described by 

Castoldi et al. that the procoagulant effects of the FVLeiden mutation is not only due to 

insensitivity of FVa to APC-mediated proteolysis but also to the loss of the above 

mentioned APC cofactor activity 18. 

Although the APC-mediated FVIIIa inactivation was confirmed in several investigations, 

spontaneous dissociation of A2 domain of FVIIIa might be the primary mechanism of 

FVIIIa inactivation due to the short plasmatic half-life of FVIIIa (~ 2 min) 19. 

1.3.3. APC  cytoprotective activity 

APC cytoprotective activities include anti-inflammatory activity, anti-apoptotic activity 

and protection of the endothelial barrier. These cytoprotective effects mostly require the 

two receptors EPCR and protease activated receptor-1 (PAR-1).   

The APC anti-inflammatory effect can be conveyed into the effect on endothelial cells and 

the effect on leukocytes. APC inhibits the release of inflammatory mediators from 

leukocytes and endothelial cells and down-regulates vascular adhesion molecules, leading 

to reduced leukocyte adhesion and tissue infiltration and, consequently, decreasing 

damage to the tissue 20. 

Breakdown of the monolayer of endothelial cells which separates the blood from 

underlying tissue plays a key role in inflammatory processes such as sepsis. APC enhances 

the endothelial barrier integrity by binding to EPCR and activation of PAR-1, leading to 

subsequent inhibition of inflammatory gene expression in endothelial cells 21. In animal 

and human studies, APC proved to inhibit endotoxin-induced pulmonary injury and 

inflammation due to inhibition of leukocyte accumulation and chemotaxis 22. 

In addition to an improved survival rate in murine endotoxemia models, a large 

randomized clinical trial also suggested the pharmacologically beneficial effects of APC in 

reducing mortality in sepsis 8. The PROWESS trial has urged approval of drotrecogin alfa 

(recombinant human activated protein C, (Xigris®, Eli Lilly) by the Food and Drug 

administration (FDA) in the clinical treatment of adults suffering from severe sepsis in the 

last quarter of 2001 23. However, subsequent studies in 2010 showed a lack of efficiency 

of APC in septic shock treatment and an increased incidence of bleeding. As a result, it 

was withdrawn from the market 24,25. The increased incidence of bleedings was related to 
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the anticoagulant activity of APC as conducted by the basic exosite apart from the 

cytoprotective related exosite.  

According to the above described findings that the anticoagulant and anti-inflammatory 

effects of APC are directed by distinct subdomains 26, the increased incidence of bleeding 

that encompassed the use of Xigris® may be controllable by the use of APC-specific 

inhibitors which affect the anticoagulant activity of APC while cytoprotective effects 

remain active. Furthermore, a specific ligand which interferes with the anticoagulant 

activity of APC might be helpful as an adjuvant therapy in hemophilia patients to 

compensate the lack of FVIII. In addition, having a specific ligand which could bind to APC 

with high affinity might be helpful in promoting diagnostic test systems to capture and 

detect the level and activity of APC in biological fluids. In this regard, aptamers represent 

a potent alternative to conventional antibodies. 

1.4. Aptamers 

Aptamers (from the Latin aptus - fit, and Greek meros - part) are oligonucleotide or 

peptide molecules which can bind to their target with high affinity and specificity 27. 

Nucleic acid aptamers (aptamers) are single-stranded DNA (ssDNA) or RNA 

oligonucleotides which can shape to specific three-dimensional structures including 

stems, loops, or G-quadruplexes 28. Based on their 3D structures, aptamers are able to 

bind to various molecular targets such as small molecules, proteins, nucleic acids, and 

even whole cells 29. The folding of the nucleic acid provides numerous interactions 

depending on the ligand which is responsible for aptamer-target binding such as 

electrostatic bonding, van der waals interactions, hydrogen bonding, base stacking effects 

and hydrophobicity or combination of these bindings 30. For protein targets, the aptamer 

binding site is mostly on the surface of the target whereby non-covalent interactions lead 

to maximum binding through optimum complementarities 29. 

The binding affinity of aptamers varies from the low nanomolar range for larger target 

molecules such as proteins to the micromolar range for small chemicals. A high selectivity 

of aptamers for their targets was described in many publications. In aptamers selected 

against coagulation factors, an active form-selectivity has been observed 13. Moreover, 

the so-called enantiomer-selectivity which refers to the discriminatory power of an 

aptamer between two enantiomer molecules was also reported for aptamers 31. 

Aptamers not only show comparable binding affinity for their target molecules, but also 

offer advantages over antibodies as they can readily be produced by chemical synthesis 

which reduces batch to batch variation, and show adequate stability to a wide range of 

pH and organic solvents 32. Modification of aptamers may lead to increased stability in 

biological fluids or binding enhancement 33. Some modifications specific for RNA 

aptamers such as changing of the 2´-OH groups of ribose to 2´-F or 2´-NH2 groups or 2´-O-

methyl substituted nucleotides protect them from nuclease degradation 34. A 3´-end 
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capping such as inverted thymidine (3´-idT) or making a 3´-3´ linkage as well as executing 

5´-caps by amine, phosphate or polyethyleneglycol (PEG) protect oligonucleotides from 

exonucleases 35,36.  

1.4.1. Aptamer selection procedure 

Systematic Evolution of Ligands by Exponential Enrichment (SELEX), which was described 

for the first time on 1990 27,37 is a technology for in vitro selection of high affinity nucleic 

acid aptamers recognizing a designated target molecule 28. SELEX consists of repetitive 

cycles of selection, partitioning and amplification of binding sequences to enrich specific 

sequences with reasonable binding affinity. Normally the procedure starts with a nucleic 

acid library which consists of a random region flanked by two primer binding sites 

necessary for the amplification step. Through incubation of the random library with the 

target molecules, by chance, some sequences are able to bind to the target molecules. 

These specific sequences will be eluted from the target molecules after the partitioning 

step and amplified by a PCR reaction. The partitioning step is the most crucial step of the 

SELEX procedure. This step, in which the strong binding DNA-molecules are separated 

from unbound or weakly bound sequences, may influence the yield of selection, also due 

to the potential contamination of bound sequences with unspecific oligonucleotides 

(Figure 1.3). 

Depending on the used DNA or RNA library for selection, a reverse transcription step is 

needed to transcribe RNA oligonucleotides to DNA strands which are necessary for the 

amplification process. The resulting double-stranded DNA has to be transformed into a 

new oligonucleotide pool by separating the relevant ssDNA or by in vitro transcription 

and subsequent purification of the synthesized RNA. This new pool of selected single-

stranded oligonucleotides is used for incubation with the target molecules in the next 

round of SELEX 28. Generally 8 to 12 selection cycles are needed to reach to high affinity 

aptamers. As assessed by measurement of the crude binding affinity, the enriched final 

pool will be subjected to the cloning and sequencing step to identify individual aptamers. 

Representative aptamer-clones are then chosen and used in binding assays to 

characterize their binding features in terms of affinity and specificity. 

Sequence truncation for identifying the minimal binding motif is an important step to 

narrow down the critical binding domains. As assessed by predicted 2D structures, 

redundant regions are removed, and the properties such as binding affinity or specificity 

of the truncated aptamer checked. 
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Figure 1.3. Schematic representation of DNA aptamer selection. The starting point of each SELEX 

procedure is incubation of a synthetic random DNA oligonucleotide library with target molecules 

followed by repetition of the iterative steps of selection, amplification and preparation of single-

stranded DNA. In the selection step, binding sequences are partitioned from unbound and/or 

weakly bound oligonucleotides. The target-bound oligonucleotides are eluted and subsequently 

amplified by PCR. A new enriched pool of selected oligonucleotides is generated by preparation of 

the relevant ssDNA from the PCR products. This new enriched pool is used for the next SELEX 

round. Generally, 6 to 20 SELEX rounds are required for the selection of high affinity, target-

specific aptamers. Assessment of the enrichment of target specific oligonucleotides indicates the 

plateau of the SELEX procedure and the enriched library is subjected to cloning and sequencing to 

obtain individual aptamers.  

 

1.4.2. Capillary electrophoresis (CE) 

Electrophoresis involves an electrical field to attract or repulse the ingredients of a 

mixture in an electric field. It was introduced as a separation technique by Tiselius in 1937 

and led to the Nobel Prize in chemistry in 1948 38. Primary application of open tubes for 

electrophoresis was described by Hjertén in 1967 which continued in the early 1980s 
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using fused silica capillaries by Jorgenson and Lukacs 39. Electrophoresis inside a capillary 

not only brings about the advantages of performing electrophoresis in free solution but 

also reduces the detrimental effects of Joule heating. Furthermore, due to the high 

electrical resistance of the capillaries, high electrical field applications (100 to 500 V/cm) 

are operational which in turn provide short analysis times and high efficiency and 

resolution of separation 38,39. 

Another advantage of capillary electrophoresis is its instrumental simplicity. Briefly, as 

shown in Figure 1.4, both ends of a capillary column, as well as two electrodes providing 

electrical contact to a high voltage power supply, are placed in buffer reservoirs. The 

sample can be injected into the capillary through two different injection modes: 

Hydrodynamic injection or Electrokinetic injection. In hydrodynamic injection, which is 

the most common used injection technique, an applied pressure or vacuum for a certain 

period of time introduces the sample into the capillary column. In electrokinetic injection, 

an applied current or voltage causes the sample to migrate into the capillary column. This 

kind of injection is frequently applied for highly viscose materials 40. 

 

Figure 1.4. Diagram of capillary electrophoresis system. (A) The capillary electrophoresis system 

consists of a capillary column expanded between source and destination vial, both containing 
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electrophoresis buffer. The sample is injected into the capillary column and separated under high 

voltage applied to both ends of the capillary column. (B) In fused-silica capillaries, positively 

charged buffer ions are attracted to the negatively charged silanoate groups (Si-O-). This forms 

two inner layers of cations. Under the high voltage applied between the ends of the capillary, the 

more mobile layer which is distant from the silanoate groups moves in the direction of the 

negatively charged electrode, resulting in a constant bulk flow of electrolytes called the 

electroosmotic flow (EOF). Although the EOF is always toward the electrode having the same 

charge as the capillary wall, positively charged molecules move faster due to the electrophoretic 

attraction to the negatively charged electrode while negatively charged molecules are retained 

longer because of their contradictory electrophoretic mobility. Therefore, molecules are 

separated by mass/charge ratio within the flow.  

 

In fused-silica capillaries, silanol groups (Si-OH) which are attached to the interior wall of 

the capillary, are ionized through a first conditioning step using alkaline solution like KOH 

or NaOH. The silanoate groups (Si-O-) attract positively charged buffer ions to form two 

inner layers of cations, called the diffuse double layer. Under the high voltage applied 

between the ends of the capillary, the outer layer which is distant from the silanoate 

groups and therefore more mobile, moves in the direction of the negatively charged 

electrode, resulting in a constant bulk flow of electrolytes called the electroosmotic flow 

(EOF). This EOF represents the main trigger responsible for the mobility of injected 

materials within the capillary. Due to the greater force of the EOF than the 

electrophoretic mobility of the compounds, all injected molecules migrate from the inlet 

(anode) to the outlet (cathode) of the capillary 38. As a result of the electrophoretic 

attraction to the negatively charged electrode, positively charged molecules move faster 

while negatively charged molecules are retained longer because of their contradictory 

electrophoretic mobility. Therefore, depending on its mass and charge, each specific 

molecule possesses a specific retention time under the conditions defined by the 

electrophoresis setup 39. 

1.4.3. Capillary Electrophoresis-based SELEX (CE-SELEX) 

Conventional SELEX normally involves the immobilization of the target protein. Despite 

the advantages accompanied with immobilized targets such as efficient partitioning of 

bonded sequences from non-binders, some draw backs such as the need of so called 

counter selection to exclude sequences that show cross-reactivity to the applied solid 

support has to be mentioned. Another disadvantage of target immobilization may be the 

masking of specific structures which may affect the selection. Thus, homogenous 

selection methodologies such as capillary electrophoresis-based SELEX (CE-SELEX), which 

allows the selection of aptamers against free targets are an advantage and also provide a 

high resolving power that reduces the desirable number of cycles for selection to 4 to 6 

cycles instead of 8 to 12 cycles when using conventional selection schemes 41,42. 
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Potential disadvantages of CE-SELEX are the limitation of the sample volume which leads 

to restriction of the total number of ssDNA-molecues that can be introduced into the 

capillary, the difficulty of selecting aptamers against basic or low molecular weight target 

molecules, or thermal band broadening of CE because of Joule heating which restricts the 

ion composition of the partitioning buffer 39. Furthermore, the optimal conditions must 

be determined for each individual protein, randomized library and selection buffer 41,43. 

During the first step of CE-SELEX, a randomized ssDNA-library is incubated with the target 

molecule in free solution. After a certain incubation time, the mixture containing free 

target molecules, target-ssDNA complexes and free ssDNA is injected into a primed 

capillary. The loaded capillary is placed to span two reaction tubes filled with neutral to 

basic conductive buffer. In the case of the replacement of the negatively charged 

electrode in the end of the capillary, the positively charged free target proteins migrate 

faster while the negatively charged non-bound library retains longer within the capillary. 

Collecting the outlet fraction at the retention time specific for target-bound ssDNA offers 

the opportunity of gathering target-binding DNA-aptamers. 

Collected sequences are then amplified and generated single-strands subjected to the 

next round of the selection procedure. Usually 4 to 6 cycles of selection are required for 

the enrichment of an aptamer-pool showing peak bulk binding affinity. Subsequent 

analysis of included single aptamer-sequences by either cloning/sanger-sequencing or 

next-generation sequencing approaches finally leads to the identification of candidate 

sequences to be tested for binding affinity and specificity.  

1.5. Single-stranded DNA production 

After partitioning step of SELEX procedure, the enriched pool is subjected to the PCR 

amplification to increase the copy number of specific sequences. Double strand 

sequences resulted from PCR amplification could not introduced to the next selection 

cycle before single strand production has been performed. 

Several procedures has been described indicating single strand production from double 

strand PCR products such as alkaline-based denaturation of biotinylated PCR-products 

after immobilization onto streptavidin-coated magnetic beads (SMB) or enzymatic strand 

digestion after asymmetric PCR 44,45. Apparently, all of these procedures do accompany 

with their advantages and drawbacks. For example, alkaline-based treatment requires 

final neutralization or solvent exchange of the final product to achieve suitable ssDNA for 

proceeding with the next selection cycle.   

Biotin streptavidin separation including alkaline treatment is another rapid and efficient 

method in which PCR amplified double strands are immobilized onto SMBs using 

biotinylated forward or reverse primer followed by separation of desired non-biotinylated 
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strand from immobilized biotinylated one using alkaline treatment (NaOH). Further steps 

such as ethanol precipitation can increase ssDNA concentration. The posibility of 

releasing of biotinylated non-target strand and/or streptavidin due to the alkaline 

treatment is the major drawback of this method which results to loss of tertiary structure 

of specific strand due to re-anealing of complementary strand or introduction of a 

secondary target for selection, respectively 45,46.  

Lambda exonuclease selectively digests phosphorylated strand from 5’ to 3’ end with high 

affinity to phosphorylated 5’end rather than the hydroxylated 5’ end. The procedure is 

fast and efficient however, subsequent purifications such as phenol/chloroform 

extraction for lambda exonuclease elimination results in reduction in the yield of ssDNA 

production 45.  

Recently, we introduced a novel fast and convenient principle for the purification of 

ssDNA named Capture and Release (CaR) which has been described extensively in chapter 

3 47. Briefly, short biotinylated oligodeoxynucleotides, that are complementary to the 3’-

end of the target single stranded oligodeoxynucleotides (aptamers), are bound to 

streptavidin magnetic beads. Incubation of the loaded streptavidin magnetic beads with 

asymmetric PCR mixtures results in capturing of the ssDNA which can be easily released 

after washing by alteration of temperature and ion strength conditions (Figure 1.5). 

 

Figure 1.5. Principle of capture and release (CaR) procedure. Single-stranded DNA (ssDNA) is 

captured from crude assymetric PCR mixture using streptavidin magnetic beads (SMBs) loaded 

with short biotinilated DNA molecules complementary to the 3’ end of the ssDNA. Captured 
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ssDNA is released after washing by increasing the temperature and lower the ion strength 

conditions. 

1.6. Aptamers against coagulation factors 

Anticoagulation is an important therapeutic strategy for the prevention and treatment of 

thrombotic disorders. 

Heparin, is widely used as a parenteral antithrombotic due to its low cost and ease of 

monitoring. However, numerous shortcomings accompany heparin as it bears the risk of 

hemorrhage and heparin-induced thrombocytopenia 48. Warfarin, a member of the 

vitamin K antagonists, is an oral anticoagulant with a narrow therapeutic window and 

requires individualized dosing based on the international normalized ratio (INR). Due to 

the narrow therapeutic index and necessity for frequent laboratory monitoring associated 

with warfarin, there has been a desire for the development of new and effective 

anticoagulants. Among novel anticoagulants (NACs) direct thrombin and FXa inhibitors 

were designed. Some of these direct thrombin inhibitors are administered parenterally, 

including argatroban and bivalirudin; however, oral administration of dabigatran 

increases patient compliance in long term use. Having idarucizumab (Praxbind®) in hand 

as a monoclonal antibody designed for the reversal of anticoagulant effects is another 

advantage of dabigatran.  

Also direct acting factor Xa inhibitors are used for prophylaxis and/or treatment of 

embolic diseases. Andexanet-alpha which is a modified recombinant derivative of FXa, 

acts as an antidote for direct inhibitors of factor Xa including  apixaban, rivaroxaban and 

edoxaban 49,50. Lack of specific laboratory parameters available to monitor the 

anticoagulant impact is a major drawback of FXa inhibitors 51. Conventional coagulation 

monitoring assays such as activated partial thromboplastin time (aPTT) and prothrombin 

time (PT) are unable to accurately measure the degree of anticoagulation in patients 

undergoing therapy with NACs. Therefore, management of bleeding complication mostly 

comprises basic principles of bleeding management, including rapid assessment of the 

source, cause, and severity of bleeding, cessation of anticoagulation therapy and, if 

possible, reversal of anticoagulation effects, using specific antidote 52,53. 

To overcome the major drawbacks of NACs, an optimal anti-thrombotic drug which is 

safe, non-toxic and well adjustable is needed. Other optimal characteristics that might 

accompany with an anti-thrombotic drug are rapid onset of action, predictable dose-

response, selectivity for a specific biological target and reversible action 54. Among 

different researches for finding reasonable novel candidate molecules, aptamers appear 

as an emerging class of future anticoagulants. Chemical modifications of aptamers such as 

amino- or fluoro- modification at the 2’ position of pyrimidines as well as 3’ inverted 

deoxythimidine caps make RNA aptamers resistance to nuclease degradation. 

Conjugation of polyethylene glycol and other moieties lead to the reduction in aptamer 
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renal clearance during in vivo utilization. The general concept of antidote control of 

aptamers relies on Watson-Crick base pairing which alter the 3D structure of the aptamer, 

leading to loss of target binding affinity 55. On the other hand, aptamers can be used as 

capturing ligands to quantify the circulating level of certain coagulation factors in plasma 

as well as other biological fluids. For example, the application of an oligonucleotide 

(aptamer)-based enzyme capture assay (OECA) allows rapid quantification of circulating 

levels of APC under pathological conditions such as hip-replacement surgery. The test 

platform quantifies the activity of aptamer-captured APC through hydrolysis rates of a 

fluorogenic peptide substrate 56. 

Several aptamers have been selected against different coagulation factors such as 

thrombin, activated protein C, FVIIa and FIXa (Table 1.1). 

Table 1.1. Binding properties and application of selected aptamers against blood coagulation 

proteins  

 

Target Oligo type Binding 

affinity 

[nM] 

Binding site Application Reference 

Human α-

thrombin 

DNA ~ 200 Fibrinogen 

binding site of 

thrombin 

Thrombin 

procoagulant 

function Inhibition 

57 

Human α-

thrombin 

RNA 9.3 Heparin binding 

site of thrombin 

Thrombin-catalysed 

fibrin-clot inhibition 

58 

Human α-

thrombin 

DNA 0.5 Heparin binding 

site of thrombin 

Inhibition of 

thrombin-mediated 

activation of 

platelets and FV/VIII 

59 

Human 

Factor IXa 

RNA 0.65 EGF1 and/or 

EGF2 domain of 

FIX 

Inhibition of FX 

cleavage by FIXa-

FVIIa 

60 

VWF DNA ˃20 GPIbα binding 

domain on vWF 

Inhibition of  vWF-

dependent platelet 

activation 

61,62 

VWF Modified 

DNA/RNA 

oligonucleot

ide 

2 nM*  GPIbα binding 

domain on vWF 

Inhibition of  vWF-

dependent platelet 

activation 

63 



Chapter 1: General introduction and outline 

16 
 

APC RNA ~ 100 Not clear Inhibition of APC 

anticoagulant 

function 

64 

APC DNA 0.47 Heparin binding 

site 

Inhibition of APC 

anticoagulant 

function 

13 

* The binding affinity has been determined for A1 domain of VWF 

 

1.6.1. Thrombin binding aptamers 

The first DNA-aptamer against thrombin has been selected in 1992 by Bock et al 57. This 

aptamer, which was named later as HD1, interferes with thrombin catalyzed conversion 

of fibrinogen to fibrin. The structure of the aptamer, which was solved by structural 

analysis, is an antiparallel G-quadruplex and conducts it to one of the anion binding site of 

thrombin, named exosite I. The second thrombin-recognizing aptamer, which possesses a 

RNA structure, was selected two years later by Kubik and colleagues 58. Another DNA 

based thrombin binding aptamer which bears a G-quadruplex structure and binds to the 

heparin binding exosite of thrombin, known as exosite II, was identified by the same 

group 59. Later on, a bivalent aptamer consisting of the two DNA aptamers coupled via a 

poly- dA linker has been described as the most potent aptameric thrombin inhibitor. It 

binds to both anionic exosites without blocking the active site of the enzyme 65. This 

bivalent aptamer, HD1-22, has been used for the measurement of plasma thrombin 

levels. Through incubation of primed plasma samples in microtiter plates pre-coated with 

HD1-22, thrombin is captured and detected using a thrombin-specific fluorogenic peptide 

substrate. Compared to the available thrombin measurment techniques, which are based 

on the measurment of thrombin-antithrombin complexes (TAT) or prothrombin activation 

peptides (F1.2) as two cumulative markers in plasma, using an aptamer-based capturing 

assay for direct measurement of circulating levels of active thrombin better reflects the 

real time coagulation status 66. 

1.6.2. Factor IXa binding aptamer 

An aptamer specific for FIXa has been described in 2002 by Rusconi et al 60. This RNA 

aptamer, which is reinforced against nucleases by using 2'-fluoropyrimidines, was 

assessed in both in vitro and in vivo studies. The binding site and the impact of the 

aptamer on blockade of intrinsic and extrinsic coagulation pathways are controversially 

discussed. Although Rusconi et al. have an impression that the FIXa aptamer blocks either 

intrinsic or extrinsic pathway probably through binding protease and EGF2 domains of 

factor IXa, later experiment conducted by Gopinath et al. revealed that this aptamer 
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specifically blocks the extrinsic coagulation pathway with emphasizing on binding domain 

of the Gla and EGF1 domains on factor IXa 67. Rusconi et al also reported the binding site 

of EGF2 domain on FIXa for aptamer 60. The concept of using a complementary 

oligonucleotide as an aptamer-specific antidote was first described for the FIXa aptamer 

(Figure 1.5) and currently assessed in clinical trials. REG1 (Regado Biosciences) is an anti-

FIXa aptamer system containing the aptamer pegnivacogin (RB006) and anivamersen 

(RB007) in which RB007, the complementary oligonucleotide antidote, binds to RB006 by 

Watson-Crick base pairing and neutralizes its anti-FIXa activity 68. In a phase 1a study after 

intravenous injection of RB006 in healthy volunteers and in phase 1b study demonstrating 

the efficiency of RB006 as well as the-RB007 antidote in patients with stable coronary 

artery disease, no major bleeding or any other serious adverse events were observed 69,70. 

A subsequent phase 2a clinical trial demonstrated the effectiveness of the REG1 system 

when combined with platelet-directed therapy in patients suffering from stable cardiac 

artery disease (CAD), while a phase 2b (RADAR) study revealed the effectiveness of RB006 

in patients with acute coronary syndrom (ACS) undergoing cardiac catheterization 71. A 

randomized multicenter phase 3 trial planned to randomly allocate 13200 patients 

undergoing percutaneous coronary intervention and to compare the effectiveness of the 

REG1 system to bivalirudin faced early termination with 3232 patients due to severe 

allergic reaction in 1% of patients receiving REG1. Thus, according to the limited events 

and low statistical power resulting from the premature termination of the study, there 

was no evidence that using the REG1 system reduces ischaemic events or bleedings when 

compared to bivalirudin 72. 

 

 

Figure 1.5. The REG1 anticoagulation system which is composed of the anti-FIXa aptamer 

pegnivacogin (RB006) and the oligonucleotide antidote to RB006, anivamersen (RB007). Antidote 
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RB007 and the motif within RB006 which pairs to RB007 shown in red. P indicates polyethylene 

glycol; idT, inverted deoxythymidine; modified from Nimjee et al., 2006 73.  

 

1.6.3. Anti-vWF aptamers 

ARC-1172 is a DNA-aptamer recognizing von-Willebrand factor (vWF). The aptamer can 

strongly inhibit vWF-mediated platelet adhesion due to inhibition of the vWF A1-domain 

and platelet GPIbα membrane receptor interaction. Furthermore, by using specific 

antidote molecules, platelet functions could be efficiently restored 61. Later on, ARC-1779, 

a DNA/RNA-based aptamer was introduced. The molecule included a 5’- conjugation of 

PEG while the aptamer still showed high binding affinity to A1 domain of vWF 63. The first 

phase 1 clinical trial which investigated safety, pharmacokinetics and pharmacodynamics 

of the aptamer in healthy volunteers started in 2007 and was successfully completed in 

the same year (NCT00432770) (http://clinicaltrials.gov). Then, the next evaluation study 

suggested dose- and concentration-dependent inhibition of vWF activity and platelet 

function of ARC1779 without a significant increase in bleeding 74. In a phase 2 clinical trial 

started in 2008 in 36 patients undergoing carotid endarterectomy (CEA), intravenous 

injection of the aptamer was effective in reducing cerebral embolism 75. To conclude, 

between the years 2007 and 2010, among six registered clinical trials considering phase 1 

and 2 clinical trials of ARC-1779, one had been withdrawn and three phase 2 trials have 

been terminated due to the reason that the enrollment into studies was slower than 

expected. 

1.6.4. Anti-APC aptamers 

The first aptamer selected against APC was described in 1998 64. The non-modified RNA 

aptamer consisted of 167 nucleotides and showed an intermediate binding affinity to APC 

(KD = ~ 100 nM). However, the selectivity of the aptamer over zymogenic protein C was 

not evaluated. In 2009, the selection of DNA aptamers against APC was described. The 

aptamers showed enhanced affinity for APC in the subnanomolar range and a 200- to 

400-fold lower binding affinity to PC 13. According to the fact that DNA aptamers are 

fundamentally more resistant to enzymatic degradation in the plasma or whole-blood 

matrix compared to non-chemically modified RNA aptamers, a longer half-life in these 

matrices can be expected. Using the truncated aptamer variant HS02-52G, an 

oligonucleotide-based enzyme capture assay (OECA) was developed and validated. The 

assay allows the measurement of APC plasma levels under clinical conditions with a lower 

limit of detection of 22 pg/mL (0.4 pM) 56. Furthermore, HS02-52G aptamer binds to basic 

exosite of APC without affecting the anti-apoptotic and cytoprotective functions of the 

active enzyme. Thus the selective inhibition of the anticoagulant activity of APC offers a 

potential application of HS02-52G to stop APC-induced bleeding complications in patients 

receiving recombinant APC. 

http://clinicaltrials.gov/
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1.7. Aims and outlines of the thesis 

Aptamers are single-stranded DNA or RNA molecules which bind to their designated 

target molecules with high affinity and specificity. The ease of production and reduced 

batch to batch variability make aptamers interesting diagnostic tools as well as clinically 

applicable agents. Enzymes involved in the blood coagulation process are multi task 

proteins containing several functional domains. Activated protein C (APC) is a serine 

protease with plasmatic and cellular functions. Beside its role in inactivation of FVa and 

FVIIIa, it has cytoprotective effects which include anti-inflammatory and anti-apoptotic 

activities. The interactions of APC with FVa and FVIIIa are directed by the so-called basic 

exosite while the acidic exosite is involved in the interaction with protease activated 

receptor-1 (PAR-1), mediating the anti-apoptotic and anti-inflammatory properties of 

APC. Interference with each domain may lead to alteration of enzyme functions either by 

steric hindrance or allosteric inhibition.  

The aim of this study was first to identify aptamers that specifically recognize APC and 

then to elucidate the effect of these aptamers on the different functions of APC.  

The first priority to achieve aptamers that possess a high binding affinity is to set up a 

selection method accompanied with high efficiency and resolution of separation. To 

accomplish this goal, CE-SELEX was performed which accompanied with numerous 

advantages such as using target proteins in native free conformation and a high resolving 

power which leads to higher conversion rate of specific sequences in shorter time. 

Consecutive steps of a selection procedure as well as the evaluation of the binding affinity 

of selected aptamers to APC are described in chapter 2.  

Single-stranded DNA production is a crucial step during the aptamer selection procedure 

in order to provide an enriched library of aptamers needed for the next selection round.  

Accordingly, in chapter 3, a convenient and rapid method for ssDNA production named 

Capture and Release (CaR) that allows direct isolation and concentration of ssDNA from 

asymetric PCR-mixtures without the need for post-processing and conditioning steps is 

introduced. This method is described in the context of the CE-SELEX procedure but may 

also be implemented in other applications that require the generation of ssDNA. 

Due to the fact that different functions of APC such as anticoagulant and cytoprotective 

effects are directed by distinct exosites, selective modulation of APC functions might be 

aplicable according to the binding site of each specific ligand. Furthermore, as aptamers, 

in comparison to antibodies, bind to larger surface structures, binding of aptamers to the 

same or overlaping regions might cause distinct effects on the anticoagulant function of 

APC. Accordingly, in chapter 4 the selection and characterization of DNA-aptamers 

against APC using the established CE-SELEX and CaR methods is described. In addition a 

comprehensive functional characterization of the newly identified APC-aptamers has 

been performed. The found aptamer-mediated alterations of the anticoagulant functions 
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of APC opens the horizon in the prevention of APC-induced bleeding such as in trauma-

induced coagulopathy and supportive treatment approach in hemophilic patients. 
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Capillary electrophoresis for the selection of 

DNA aptamers recognizing activated protein C 

Adapted from 

Hamedani, N.S., and Muller, J. (2016). Capillary Electrophoresis for the Selection of DNA 

Aptamers Recognizing Activated Protein C. Methods in molecular biology (Clifton, N.J.) 1380, 

61-75. 
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2.1. Abstract 

Capillary electrophoresis-based SELEX (CE-SELEX) is an efficient technique for the isolation 

of aptamers binding to a wide range of target molecules. CE-SELEX has a number of 

advantages over conventional SELEX procedures such as the selection of aptamers can be 

performed on non-immobilized targets, usually within a fewer number of selection cycles. 

Here we describe a complete procedure of CE-SELEX using activated protein C (APC) as 

the target protein. 

2.2. Introduction  

Aptamers are single stranded DNA or RNA molecules which are able to bind to different 

target molecules ranging from small organic molecules to entire organisms. Aptamers are 

typically selected from randomized libraries of nucleic acids using a procedure termed 

Systematic Evolution of Ligands by Exponential Enrichment (SELEX) which was introduced 

for the first time in 1990 27,37. The SELEX-procedure consists of multiple rounds of 

selection, partitioning and amplification which are repeated to allow for the enrichment 

of aptamers with high binding affinity. This procedure will be completed by cloning 

and/or sequencing, and evaluation of individual aptamer sequences 76. 

During conventional SELEX, targets need to be immobilized onto solid supports to allow 

for efficient separation from non-binding ssDNA-molecules. However, further 

progressions led to the development of homogenous methods, such as capillary 

electrophoresis (CE)-SELEX, which allow the selection of aptamers against free targets 77.  

In CE-SELEX, the random library is incubated with the target molecules in free solution 

and then the mixture containing free target molecules, target-ssDNA complexes and free 

ssDNA is injected into a capillary column and separated under high voltage. Collecting the 

outlet fraction at the retention time specific for target-bond ssDNA brings about the 

opportunity of gathering target-binding DNA-aptamers. 

Besides homogeneous conditions, this kind of selection has additional advantages such as 

a high resolving power that reduces the number of cycles needed for selection to 4 to 6 

cycles instead of 8 to 12 cycles when using conventional selection schemes 42. However, 

also potential disadvantages do accompany CE-SELEX such as limitation in the total 
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number of ssDNA-molecues introduced to the capillary or the difficulty of selecting 

aptamers against basic or low molecular weight target molecules 43. 

In this chapter, a protocol for CE-SELEX of DNA-aptamers against activated Protein C 

(APC) is described. Although elucidated for the use of a ProteomeLab PA 800 System 

(Beckman Coulter, Krefeld, Germany), the described principles are also applicable when 

using other CE-systems. 

2.3. Materials 

2.3.1. Capillary electrophoresis 

1. Proteomelab TM PA 800 capillary electrophoresis (Beckman Coulter, Inc., Fullerton, 

CA, USA) equipped with UV/PDA detector. 

2. Bare fused-silica capillary, 67 cm total length, 50 cm effective length, 50 µm inner 

diameter (i.D.), 375 µm outer diameter (o.D.) (Beckman Coulter, Inc. Brea, CA, 

USA). 

3. Plastic vials, 0.5 ml. 

4. Glass vials, 2 ml and caps (Beckman Coulter, Inc. Brea, CA, USA).   

5. Random ssDNA-library IHT1: 5’- AAG CAG TGG TAA GTA GGT TGA - N40 - TCT CTT 

CGA GCA ATC CAC AC -3’. Order 1 µmol synthesis scale followed by PAGE 

purification. Store lyophilized powder at 2-8°C until dissolved. Aliquot and store 

resolved stock solutions (e.g. 100 µM) at < -20°C until used. 

6. Separation buffer: 25 mM Tris-HCl, 10 mM NaCl, 1 mM KCl, 1 mM CaCl2  and  1 

mM MgCl2 , pH 8.3 (see Note 1) (see Note 2). 

7. Human activated protein C (APC) (e.g. Haematologic Technologies, Essex Juction, 

Vermont, USA). Store stock solutions as indicated on label until used (see Note 3).  

8. Vivaspin®6 centrifugal concentrators with 10,000 Da MW cut-off (Sartorius 

Stedim, Goettingen, Germany). 

9. Washing buffers: 0.1 N NaOH; 0.1 N HCl; ultrapure water. 

2.3.2. Polymerase chain reaction (PCR) 

1. Thermal cycler. 

2. HotStarTaq Plus DNA polymerase including buffers.  
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3. Amplification primers targeting the fixed sequences of the library in full length, 

HPLC purified. Store lyophilized powder at 2-8 °C until dissolved. Aliquot and store 

resolved stock solutions (e.g. 100 µM) at < -20°C until used.   

4. Deoxynucleotide triphosphates solution, 25 mM of each. Aliquote and store stock 

solutions at -20°C until used. 

5. PCR tubes 0.2 ml. 

2.3.3. Agarose gel 

1. LE Agarose.  

2. Tris Borate-EDTA buffer: 50 mM Tris, 45 mM boric acid, and 0.5 mM EDTA, pH 8.4. 

3. 10 mg/mL Ethidium bromide. Aliquot and store stock solutions. Add adequate 

amount of ethidium bromide to agarose cooled to 50-60°C to reach a final 

concentration of 0.5 µg/ml (see Note 4). 

4. DNA molecular weight marker XIII, 50 base pair ladder. 

5. Loading buffer for gel electrophoresis: 40% succrose, 0.1% Xylene cyanol and 0.1% 

Bromophenol blue. Store stock solutions at 4-8°C until used. 

2.3.4. ssDNA production 

1. NanoDrop® ND-1000 UV/Vis-Spectrophotometer (Thermo Scientific). 

2. Thermomixer. 

3. Magnetic beads separator. 

4. Streptavidin-coated magnetic beads (SMB), Dynabeads M-280 Streptavidin (Life 

Technologies, Karlsruhe, Germany). Store the vial upright to keep the beads in 

liquid suspension since drying of the beads will result in reduced performance. 

Store the vial at 2-8°C, avoid freezing. 

5. 5’ -biotinylated capture molecules, complementary to a part of the 3’ primer-

binding section of the IHT1 library: 5’-Biotin-GTG TGG ATT GC-3’. Store lyophilized 

powder at 2-8°C until dissolved. Aliquot and store resolved stock solutions (e.g. 

100 µM) at  -20°C until used. 

6. Binding and washing buffer 1 (B&W 1): 5 mM Tris-HCl, 1 M NaCl, 0.5 mM EDTA, pH 

7.5. 

7. Binding and washing buffer 2 (B&W 2): 5 mM Tris-HCl, 1 M NaCl, pH 7.5. 
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8. Washing buffer: 10 mM Tris-HCl, 20 mM NaCl, pH 7.5. 

9. 5 M NaCl-solution. 

10.  Protease-free bovine serum albumin (BSA). Store at 4°C. 

11.  SMBs storage buffer: 1x PBS, 0.1% BSA, 0.02% NaN3 , pH 7.4.  

2.3.5. Filter retention analysis 

1. Phosphorimager. 

2. Dot-Blot system, e.g. Minifold® I Blotting System (Whatman, USA).  

3. T4 polynucleotide kinase. 

4. Phosphorimager screen and matching cassette. 

5. γ-32P ATP (PerkinElmer, Rodgau, Germany). 

6. Dulbecco's phosphate buffered saline containing 0.5 mM MgCl2  0.9 mM CaCl2. 

7. Illustra microspin G-25 columns. 

8. Nitrocellulose membranes, 0.45 μm pore size. 

9. Yeast tRNA, 10 mg/ml. 

2.4. Methods 

During the first step of CE-SELEX, the randomized library is incubated with the target 

molecule (e.g. APC). After incubation, a small volume of the sample is injected into a 

primed, silica-fused capillary for CE-based separation of non-binding from target-bound 

sequences. The loaded capillary is then placed to span two reaction tubes filled with 

neutral to basic conductive buffer solution. During separation under high voltage applied 

between the tubes, positively-charged buffer ions that are attracted to the negatively 

charged surface of the capillary do migrate to the cathodic end, resulting in a constant 

bulk flow of electrolytes that is called the electroosmotic flow (EOF) and represents the 

main trigger responsible for the mobility of injected materials within the capillary. 

Because the force of the EOF is greater than the electrophoretic mobility of the 

compounds, all injected molecules migrate from the inlet (anodic) to the outlet (cathodic) 

of the capillary 38. Due to the electrophoretic attraction the positively charged molecules 

move faster while negatively charged molecules are retained longer because of their 

contradictory electrophoretic mobilities. Therefore, depending on its mass and charge, 

each specific molecule possesses a specific retention time under the conditions defined 

by the electrophoresis setup 39. The negatively-charged ssDNA sequences which show 

binding affinity to the faster moving target protein molecules migrate at retention times 

that are shorter than that of the bulk non-binding ssDNA-library molecules. Thus, target-
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binding sequences can be collected from the outlet of the capillary within the so-called 

collection window that is the time between the start of the separation and the time that 

unbound sequences reach the outlet. 

Collected sequences are amplified and generated single-strands introduced to the next 

round of the above described CE-SELEX-procedure. Usually 4 to 6 cycles of selection are 

required for the enrichment of an aptamer-pool showing peak bulk binding affinity. 

Subsequent analysis of included single aptamer-sequences by either cloning/Sanger-

sequencing or next-generation sequencing approaches finally leads to the definition of 

candidate sequences to be tested for binding affinity by filter retention analysis.  

Due to the lower amount of ssDNA that is injected into the capillary, in comparison to 

other selection methods, an increased risk of contamination with non-target-specific 

sequences stemming  from capillary and/ or instrument contaminations must be 

considered. The most critical source of contamination are the unbound library-sequences 

which migrate in spatial proximity to the desired specific aptameric sequences. As the 

amount of the specific sequences is trivial when compared to the bulk library sequences, 

contamination of the outlet of the capillary with non-binding sequences obvioulsy 

reduces selection efficiency. Another source of contamination are the PCR-products from 

previous rounds of selection. Thus, rigorous separation of pre- and post-PCR areas as well 

as pre- and post-PCR materials is needed to avoid potential contaminations of evolved 

pools with previous-generation sequences.        

Within the following sections, the main general procedures for the selection of DNA-

aptamers against APC by CE-SELEX are described. Please consult the manual of the used 

CE-system / software for specific technical details.    

2.4.1. Installation and conditioning of a new capillary 

Install a new capillary for each individual selection. The following points describe the most 

critical steps during installation and use of a new capillary when running the Beckman 

Coulter PA 800 System. 

1. Remove seal retainer clips as well as the aperture plug and the O-ring form the 

cartridge. Firmly remove the used capillary by pulling it out from the cartridge 

inlet side. Insert the new capillary into the outlet side of the cartridge with the end 

utmost from the capillary detection window (near to the cartridge window). 

2. Push the capillary carefully into the cartridge base until it appears at the inlet. 

Protect detection window of the capillary from breakage (see Note 5). 

3. Once the end of the capillary appeares in the inlet side of the cartridge, pull it 

from the inlet side until the detection window appears centered within the 

cartridge window. 



Chapter 2: Capillary electrophoresis for the selection of DNA aptamers 

27 
 

4. Insert the capillary seal clips over the capillary at both inlet and outlet side. Use 

the Capillary Length Template to accordingly cut both ends of the capillary using 

the cleavage stone. In doing so, adjust the ends of the capillary to be one 

millimeter shorter than the electrodes within the final CE-Cartridge assembly. 

Then re-install the aperture plug and O-ring.  

5. Check the capillary ends under magnification and re-cut/ re-adjust the capillary in 

case of angled or denticulated ends.  

6. Condition the capillary before the first use. For silica-fused capillaries, use the 

conditioning program described below: 

Reagent Presseure Voltage Duration 

NaOH, 0.1 M 20 psi ---- 4 min 

Air drying 20 psi ---- 2 min 

ddH2O 20 psi ---- 2 min 

Separation buffer 20 psi ---- 4 min 

Separation buffer ---- 15 kV with 2 min 
ramping time 

6 min 

 

2.4.2. CE-based isolation of target-binding ssDNA-molecules 

2.4.2.1. Incubation of ssDNA-library and APC  

1. Dilute the starting library in separation buffer to yield a concentration of 25 µM in 

final volume of 20 µl (see Note 6). Use a final concentration of 0.5 µM of selected 

ssDNA pools during the subsequent cycles (see Note 7).  

2. Heat the thus diluted library to 90°C for 5 min using one single PCR tube and let it 

to return to the room temperature to allow for proper folding the random ssDNA-

molecules. 

3. Centrifuge the PCR tube shortly. 

4. Spike the APC target-protein into the ssDNA pool to reach the final concentration 

of 0.5 µM for the first cycle and incubate the mixture for 30 min at RT (see Note 8) 

(see Note 9).   

2.4.2.2. Injection into capillary and separation of components under EOF  

1. Wash both ends of capillary and electrodes with destilled water and dry it using 

cotton swabs. 

2. Place the single PCR tube containing target-ssDNA-mixture in injection site and 

prepare assembly needed for sample injection.  
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3. Add 100 µl of separation buffer each into tubes that will be defined and used as 

the inlet and outlet buffer vials during separation. 

4. Adjust the separation temperature for the capillary to 20°C. 

5. Perform separation using a program as described below (see Note 10): 

Step Reagent Presseure Voltage Duration Mode of action 

1 Target protein-
ssDNA mixture 

4 psi- inlet ---- 5s Hydrodynamic 
Injection (see Note 
11) (see Note 12) 

2 Moving the inlet of capillary from injection vial to an inlet vial containing 
separation buffer 

3 Separation 
buffer 

20 psi- 
both inlet 
and outlet 

25 kV1 

 
20 min2 

 
Separation with the 
positive electrode 
at the inlet 

4 End 
1 

Performing constant voltage should supply constant current during separation (see Note 13). 

2 Duration of separation depends on the retention time of the unbound fraction of ssDNA. 
Separation must be stop before the unbound ssDNA start to migrate out of the capillary. 
Determine collection window before start of the actual process for CE-SELEX (see Note 14). 

6. Remove the collected fraction vial with caution using a new pair of gloves and close  

cap immediately as any contamination with non-binders will reduce the efficiency 

of selection. 

2.4.2.3. Washing process between the runs 

As the separation procedure stops before the migration of unbound sequences out of the 

capillary, a precise washing step is required to remove the unboound sequences from the 

capillary while protecting the instrument as well as the surronding area from 

contamination by unspecific sequences (see Note 15). 

1. Use the 0.5 ml plastic vials and buffer trays for washing step (see Note 16). 

2. Clean the blue vial caps with destilled water and with aid of syringe.   

3. Try to fill the vials starting from the bottom to avoid air bubbles. 

4. All vials must be caped before starting the electrophoresis. 

5. Follow the program indicated below: 

Reagent Presseure Voltage Duration Mode of action 

HCl, 0.1M 20 psi ---- 5 min Reverse rinse wash  

NaOH, 0.1M 20 psi ---- 5 min Reverse rinse wash 

ddH2O 20 psi ---- 5 min Reverse rinse wash 

Washing buffer 20 psi ---- 5 min Reverse rinse wash 
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2.4.3. PCR-based amplification of selected ssDNA 

1. Prepare a PCR master mixture containing 0.8 mM dNTPs, 1 mM each forward and 

reverse primer, 1.5 mM MgCl2, 1.25 U/reaction HotStartTaq DNA polymerase and 

20 µl of sample in a total volume of 100 µl. 

2. Amplify collected ssDNA in a total of 5 reactions at 95°C for initial activation of 

HotStartTaq DNA polymerase followed by 30 cycles of 95°C for 30 s, 56°C for 30 s 

and 72°C for 30 s. 

3. Pool all PCR mixtures and check the quality by running 10 µl of PCR product mixed 

with 2 µl of 5x loading buffer on a 2% agarose gel. 

2.4.4. Asymmetric PCR and isolation of ssDNA  

The production of ssDNA is a crucial step of the SELEX-process. This paragraph describes 

the application of ‘Capture and Release’ (CaR) for the isolation of ssDNA from asymmetric 

PCR mixture (see Note 17) 47. During the approach described here, additional asymmetric 

PCR is performed on previously amplified selected ssDNA (see subheading 2.4.3).  

1. Dilute the yielded PCR products (see subheading 2.4.3) 1 in 10 using destilled 

water. 

2. Add 10 µl of the dilution to 10 PCR vials containing 90 µl of asymmetric PCR 

master mixture (prepared as described in subheading 2.4.3 but without addition 

of reverse primers). 

3. Perform reactions in a thermal cycler by applying 50 cycles of the temperature 

profile  described in subheading 2.4.3. Check the quality of ssDNA obtained from 

asymmetric amplification by running a 10 µl sample on a 2% agarose gel. 

4. Resuspend the streptavidin magnetic beads by shaking the vial vigorously and take 

1 mg of the beads (100 µl of 10 mg/ml stock suspention).  

5. Wash the beads three times using B&W 1 buffer and a suitable magnetic device. 

Incubate the beads in 200 µl B&W 1 containing 1 µM of capture molecules (2 µl of 

100 µM stock solution) for 30 min at room temperature. Prevent settling of the 

beads by shaking at 1200 rpm during incubation. 

6. Wash the beads three times using 1 ml of B&W 2.  

7. Pool and add the total of 1 ml of the asymmetric reaction mixtures to the loaded 

SMBs followed by spiking with 5 M NaCl to reach a final concentration of 100 mM.  

8. Incubate for 30 min at room temperature. Prevent setteling of the beads by 

shaking at 1200 rpm during incubation. 
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9. Wash the beads three times using washing buffer.  

10. Add 20 µl of pre-heated purified water to the beads and  incubate for 2 min at 

43°C to release captured ssDNA. Collect supernatant after separation of beads at 

43°C. 

11.  Determine the concentration of obtained ssDNA by nanodrop UV-measurement. 

12. Use isolated ssDNA for the next selection cycle. 

For storage, resuspend the loaded SMBs in storage buffer and store at 4°C until used.  

2.4.5. Filter retention experiment 

1. Add 5 to 10 pmol of purified ssDNA to a master mixture containing 5 µl T4 PNK 

buffer (10x), 2 µl T4 polynucleotide kinase (T4 PNK, 10 U/µl), 2 µl γ-32P ATP (3.3 

µM; 10 µCi/µl) in a final volume of 50 µl. 

2. Incubate the mixture for 30 min at 37°C. 

3. Prepare the G-25 columns by resuspending the resin by vortexing. Twist off the 

bottom closure and centrifuge at 735 x g for 1 min. 

4. Pipett the labeling reaction to the top-center of the resin. Avoid disturbing the 

resin bed (see Note 18). 

5. Purify the labeling reaction by centrifugation at 735 x g for 2 min. Discard used 

G25 column. 

6. Check the removal of unbound radioactivity as well as the integrity of the labeled 

DNA by PAGE-analysis. 

7. Dilute the 32P-labeled DNA 1:10 with 1x D-PBS, heat it up to 90°C for 5 min 

followed by cooling down to room temperature (see Note 19). This temperature 

treatment is necessary for obtaining stable conformation of ssDNA at room 

temperature. 

8. For each aptamer pool or single sequence to be tested, prepare a dilution series of 

the target protein (APC) in D-PBS containing 0.1% BSA and 10 µM yeast t-RNA. 

Pipette 24 µl of each dilution into a single well of a microtiter-plate. Always 

include a buffer-only sample. Run all analysis in at least duplicated. Add 1 µl of 

pre-diluted 32P-labeled to each of the designated wells.     

9. Cover the plate using parafilm and incubate it at 37°C for 30 min. 

10. Soak the nitrocellulose membrane in freshly prepared 0.4 M NaOH followed by 

washing with 1x D-PBS (without BSA and tRNA). 

11. Transfer the pre-treated nitrocellulose membrane into the Dot-Blot system, apply 

the vaccume and wash each well three times using 150 µl of 1x D-PBS. 

12. Use a 8-channel pipette to transfer 20 µl of the incubation mixtures to individual 

wells of the prepared blotting assembly.  
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13. Wash each well three times using 150 µl 1x D-PBS to remove non-target-bound 

sequences. 

14. Remove membrane from the device and allow to air dry. 

15. Pipett 0.8 µl of the used dilution of each applied 32P-labeled DNA onto the same or 

another nitrocellulose membrane. These spots represent the total amount of 

radioactivity (i.e. labeled DNA) that was introduced to each well. Cover 

membranes by using a thin plastic foil, assemble with screen and close cassette 

(see Note 20).  

16. Scan screen using the phosphorimager and quantify the single dots relative to the 

corresponding 100% spots. (Figure 2.1).  

17. Use 4-parametric regression analysis for calculation of KD-values. Sigmoidal curve 

patterns are needed to yield reliable results.    

 
Figure 2.1. Example of Dot-Blot images for the assessment of pool binding affinities over 

performed selection cycles. For testing of the starting random library, the indicated APC-

concentrations were applied in a transposed pattern (wells 3 to 14). The 100% spots were 

arranged in accordance with the according to the applied sample wells. The shown data revealed 

highest percentage of binding and affinity of the aptamer pool gathered after five cycles of 

selection.         

 

2.5. Notes 

1. All buffers should be prepared in ultrapure water using analytical grade reagents. 

Buffers should be filtered before use as present particles may interfere with 

proper electroosmotic flow or even plug the used capillary. 
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2. The composition of the buffer and the salt concentration can be varried according 

to the selection conditions. The current set by a certain voltage is a function of salt 

concentration in the separation buffer. However, exceeding more than the 

maximum tolerated current (300 mA) can harm the interface block of the 

instrument. 

3. As changing of the compositon of the used selection buffer can not only interfere 

with aptamer-binding but also produce fluctuations in the electropherogram, we 

strongly recommend to change the buffer of the used APC using Vivaspin®6 

concentrators by three consequtive addition of the separation buffer in the same 

volume as introduced APC followed by centrifugation at 2000 g in 4°C. The 

resulting APC concentration might be determined using NanoDrop® ND-1000 

UV/Vis-Spectrophotometer regarding to the APC extinction coefficient of 

𝐸1 𝑐𝑚,   280𝑛𝑚
1% = 14.5. 

4. The major drawback of ethidium bromide is its mutagenic potential. When used, 

ethidium bromide solution should therefore be handled with caution.   

5. Always use gloves while installing a new capillary as finger print reduces detection 

sensitivity in capillary window. Handle the capillary with caution as the detection 

window is fragile. 

6. No peak in electropherogram might be a sign of an air bubble at the bottom of the 

sample vial or insufficient quantity of sample in sample microvial. In these cases, 

remove the air bubble or increase the sample volume up to 100 µl, respectively.  

7. The concentration of random library has a significant impact on the initial number 

of unique sequences introduced to the target and the capillary. Due to the 

presence of multiple copies of binding sequences after the first selection cycles, a 

reduced concentration of ssDNA (e.g. 0.5 µM) during the consecutive selection 

cycles will not affect the efficiency of the selection.  

8. Injection of a sample with a different salt concentration than that of the separation 

buffer produces fluctuation in baseline of the electropherogram. Therefore, 

ensure that the incubation mixture of the ssDNA and the target protein 

corresponds to the composition of the selection buffer. 

9. Gradually reduce the protein concentration with each selection cycle. It has been 

previously shown that the efficiency of enrichment of best binders is directed by 

the stringency of the selection that is increased by reduction of the protein 

concentration 78. As the target concentration decreases, the presence of high 

affinty aptamers in the collected pool increases while the considerable point is the 

practical lower limit which means that once the target protein concentration 

drops below the kd value of the aptamer with highest binding affinity, further 
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decreasing in the protein concentration has no significant or only a slight impact 

on further enrichment 79. 

10. Under a certain condition applied to the capillary and by using the same buffer 

system, each target protein, bound fraction of the library- target protein and 

unbound ssDNA migrate at a certain time. In case of APC as the target protein, 

determination of the collection window required separate injections of protein 

and library in order to assess individual retention times (Figure 2.2). In our 

opinion, collection of target-binding sequences should be already stopped when 

the bulk library sequences become detectable by UV-measurements. 

 

Figure 2.2. Determination of aptamer collection window. Electropherograms obtained from 

separate injections (4 psi, 5 seconds) of the IHT1 random library (25 µM) with UV detection at 254 

nm and activated protein C (2 µM) with UV detection at 214 nm (inlet).  

 

11. There are two different posibilities for samples injection: 1) Hydrodynamic 

injection 2) Electrokinetic injection. In hydrodynamic injection, an applied pressure 

for a certain time introduces the sample to the capillary column which is known as 

the most frequently used injection technique. In electrokinetic injection, an 

applied current or voltage for a certain time causes the sample to migrate into the 

capillary column. This kind of injection is mostly applied for high viscosity 

materials which is not common in CE-SELEX 40. 

12. The volume of the sample introduced to the capillary (𝑉𝑖𝑛𝑗) by hydrodynamic 

injection  is a function of the capillary inner diameter, the viscosity of the buffer, 

the applied presure and injection time. The loaded volume can be calculated using 

the Hagen-Poiseuille equation 39: 
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𝑉𝑖𝑛𝑗 =  
∆𝑃 𝑑4𝜋 𝑡𝑖𝑛𝑗

128 𝜂𝐿
 

Where  

∆P = pressure difference across the capillary 

d = capillary inside diameter 

tinj = injection time 

η = buffer viscosity 

L = total capillary length 

13. Low or unsteady current might be an indicator of a plugged capillary. One solution 

is to rinse the capillary with ddH2O at 100 psi for 10 min. Change the capillary to a 

new one in case the problem persists 80. 

14. As the retention time indicated in an electropherogram is the migration time of 

the define compound to the detection window but not to the end of the capillary, 

the exact time at which each compound reaches to the end of the capillary can be 

calculated using equation below: 

𝑥 =  𝑡𝑚 + (
𝑙𝐸

𝑙𝐷
𝑡𝑚) 

𝑙𝐷: Capillary length to the detector or effective length 

𝑙𝐸: Capillary length from detection window to the end (which for beckman coulter PA 

800 capillaries is constant to 10.2 cm) 

𝑡𝑚: Migration time of the defined compound to the detection window 

 

15. Contamination of collected fractions with unspecific sequences should be 

considered in SELEX procedures using capillary electrophoresis. Due to the small 

amount of molecules injected into the capillary, contamination of the outlet with 

the bulk unbound sequences can negatively interfere with the next SELEX cycle. To 

avoid such a huge source of contamination, a strategy that prevents the bulk 

library sequences from reaching the outlet of the capillary is a necessity. 

Therefore, stopping the EOF during retention of the unbound sequences and 

flashing out these unbound sequences via the inlet of the capillary is a reasonable 

measure. 
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16. As the inlet of the capillary always comes into contact with unbound ssDNA at high 

concentrations during injection, it should always be assumed as a source of 

contamintaion. Thus, physical separation of vials/ rubbers used at the inlet or the 

outlet of the capillary is strongly recommened. Furthermore, the use of single-use 

plastic vials instead of glass vials will significantly reduce potential sources of 

contamination.   

17. Capture and Release (CaR) is an efficient procedure for isolation of ssDNA required 

for each selection cycle. Briefly, short biotinylated oligodeoxynucleotides, that are 

complementary to the 3’-end of the target single stranded oligodeoxynucleotides 

produced during asymmetric PCR, are bound to streptavidin magnetic beads. 

Incubation of the loaded streptavidin magnetic beads with asymmetric PCR 

mixtures results in capturing of the ssDNA which can be easily released after 

washing by altering temperature and ion strength conditions 47.  

18. Although the G-25 colums may be applied in conjunction with a fixed-angle rotor, 

we observed much better performance when using a swing-out rotor. 

19. The dilution factor depends on the intensity of radioactivity.  For example, after 

one half life of applied or available radioactivity (14.3 days), the dilution factor 

may be reduced to 1:5. 

20. The incubation time depends on the intensity of the radioactivity that retained on 

the nitrocellulose membrane. For samples freshly labeled with only little decayed 
32P ,incubation for a few hours might be sufficient while low levels of radioactivity 

may necessitate an overnight incubation. 
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3.1. Abstract 

Short biotinylated oligodeoxynucleotides immobilized on streptavidin-coated magnetic 

beads allow for convenient and rapid purification of single-stranded 

oligodeoxynucleotides from crude asymmetric PCR mixtures, facilitating the selection of 

DNA aptamers.    

3.2. Main manuscript 

The preparation of single-stranded DNA (ssDNA) after PCR-based amplification is a crucial 

step during the selection of DNA-aptamers, a process also termed as systematic evolution 

of ligands by exponential enrichment (SELEX) 57,81. Currently applied strategies range from 

asymmetric PCR and enzymatic strand digestion to the most commonly used alkaline-

based denaturation of biotinylated PCR-products after immobilization onto streptavidin-

coated magnetic beads (SMB) 44,45,82–84.  

The possibility to directly purify PCR-products even from crude reaction-mixtures might 

be the main reason for the common utilization of the SMB-based method. Separation of 

strands is usually done by alkaline-treatment rather than heat-denaturation, because of 

the massive release of streptavidin into solution at elevated temperatures 45,84. However, 

in this case final neutralization or solvent exchange of the product is required to proceed 

with the selection cycle. Furthermore, due to the strong association between biotin and 

streptavidin, SMBs are usually used once, significantly increasing costs.  

In principle, asymmetric PCR represents the method of choice for direct generation of 

ssDNA, 85 followed by gel-electrophoresis for the selective extraction and purification of 

ssDNA from dsDNA and reaction components 45. Not least due to the short length of 

random libraries used for SELEX (< 100 nts), however, loss of ssDNA during the 

purification processes is high. Moreover, gel components and conceivably applied nucleic-

acid dyes are additional sources of potential contamination 86.  

In order to combine the advantages of asymmetric PCR with SMB-based concentration 

and purification, we established a novel approach, named capture and release (CaR) that 

facilitates purification of ssDNA from crude PCR mixtures. During CaR, short biotinylated 

oligodeoxynucleotides (capture molecules), complementary to a defined site at the 3’-

end of the target-ssDNA are employed. After their immobilization onto SMBs they are 

added to (pooled) crude asymmetric PCR mixtures. During this step the capture molecules 

bind to the target-ssDNA and subsequently the beads are washed and finally taken up in a 

small volume of ultrapure water. Due to the strongly decreased concentration of 

monovalent and magnesium ions, the melting temperature (Tm) of the immobilized 

capture-molecules bound to the targets decreases 87 , allowing the release of pure ssDNA 
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at only moderately increased temperatures, whereby the integrity of the SMBs is 

preserved (Scheme 3.1). 

The CaR method was successfully applied during capillary-electrophoresis (CE)-based 

SELEX (CE-SELEX) 76,88. We employed two distinct ssDNA-libraries (IHT1 and IHT2N) and 

selected aptamers for two different protein targets, namely activated protein C (APC) and 

the activated A-subunit of factor XIII (FXIIIAa), two key enzymes of the coagulation 

cascade 56,89. For the design of corresponding capture molecules, an online tool for the 

prediction of DNA thermodynamics was used 87 (see ESI† for methodological details). As 

shown in Scheme 3.1 (IHT1) and Figure S 3.1 (IHT2N, ESI†), predicted melting 

temperatures between the library- and capture molecules mainly depend on the 

concentration of salt-ions but were also influenced by the concentration of capture 

molecules present during the different steps of CaR. Due to the inevitable presence of 

residual amounts of washing buffer associated with the SMB-pellet and the tube, a 

concentration of 5 mM of monovalent cations was assumed to be present during the final 

release step.    

 

Scheme 3.1. Principle of CaR and predicted melting temperatures of the IHT1-capture molecules 

at different buffer conditions during the different steps. A, Capture; B, Wash; C. Release. Tm-

values represent the melting temperature at which 5% [Tm(05)], 50% [Tm(50)], or 95% [Tm(95)] 

of captured ssDNA molecules are predicted to be released from the capture molecules. 

 

We first assessed the basic functionality of CaR using asymmetrically amplified DNA-

library IHT1 (ESI†). For capturing of ssDNA molecules, 5’-biotinylated IHT1 capture 

molecules were bound to SMB (200 pmole/ mg SMB; Figure S 3.2, ESI†). Subsequently, 

500 µl of pooled crude asymmetric PCR mixtures were added to 1 mg of SMB that were 

loaded with capture-molecules (SMB+). After incubation for 30 min at RT, SMB+ were 

washed and finally resuspended in 20 µl of ultrapure water. The release of captured 

ssDNA was assessed at RT and three elevated temperatures (37°C, 43°C, and 50°C). After 
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two minutes of incubation, SMB+ were separated by magnetic force and supernatants 

collected. Three consecutive elution steps using new batches of water at each 

temperature were conducted (Figure S 3.3, ESI†). 

Comparable yields of ssDNA in the low pmole range (low µM concentrations) were 

released at elevated temperatures with about 90% of the ssDNA being released during 

the first elution step as determined by UV-measurements (Figure 3.1A). Gel analysis and 

A260/A280 ratios revealed high purity of isolated single-strands (Figure S 3.3, ESI†). 

 

Figure 3.1. Key-characteristics of the CaR procedure. Open bars show results of the first elution, 

striped bars: 2nd, gray bars: 3rd. A, Yield of ssDNA at different elution temperatures. B, Prove of 

sequence-specificity. C, Degree of streptavidin-contamination at different elution temperatures. 

D, Leakage of capture molecules from SMB.   

 In order to prove the specificity of CaR, non-loaded SMB or SMB loaded with non-

complementary IHT2N capture molecules were introduced to the described assay with 

captured ssDNA released at 43°C (ESI†). As shown in Figures. 3.1B and S 3.4 (ESI†), only 

the application of SMB+ enabled the isolation of IHT1-ssDNA from crude asymmetric 

reaction mixtures, demonstrating the sequence specificity of the assay.  

To assess the potential rate of contamination of produced ssDNA with streptavidin, 1 mg 

of non-loaded SMB in 20 µl of ultrapure water were incubated for 2 min at RT, 37°C, 43°C, 

50°C, 70°C or 90°C. After the separation of beads, supernatants were tested for the 
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presence of streptavidin-(subunits) (streptavidin) by ELISA (ESI†). Three consecutive 

experiments using the same SMBs were performed at each temperature. As shown in 

Figure 3.1C, even at RT, a detectable amount of streptavidin (~6 fmole [300 pM 

concentration]) leaked from the SMB during the first elution step. Up to a temperature of 

43°C, leakage only marginally increased to a total of ~7 fmole (~350 pM) while a further 

apparently exponential increase in leakage was observed at temperatures of 50°C or 

higher. 

These data demonstrate that the amount of streptavidin contamination depends on the 

elution temperature used, the amount of SMB used, and the total yield of ssDNA. For 

instance, when considering an elution temperature of 43°C and a yield of 20 pmol of 

ssDNA (1 µM concentration), the degree of contamination on a molar basis would be 

0.04% (400 ppm) when using 1 mg of SMB. 

It has been previously described that the interaction between biotin and streptavidin gets 

weakened in non-ionic aqueous solutions in a temperature-dependent manner 46. Thus, 

besides adverse release of streptavidin from the SMB, also the leakage of biotinylated 

capture molecules from streptavidin into solution had to be considered. To study this 

effect, SMB were loaded with 3’-fluorescence-labelled capture molecules (200 pmole/ 

mg) and treated as described for the streptavidin release experiments. The concentration 

of capture molecules in the supernatants was determined by fluorescence measurements 

(ESI†). Indeed, it was found that significant amounts of capture molecules leaked into 

solution. Up to an elution temperature of 43°C, however, leaked amounts were limited to 

a maximum of ~ 2 pmole (100 nM concentration) during the three consecutive 

experiments, corresponding to a loss of ~ 1% of SMB-bound capture molecules per 

incubation (Figure 3.1D). Nevertheless, at a yield of 20 pmole of ssDNA (1 µM 

concentration), the degree of contamination would be up to 10% under these conditions. 

In summary, these results demonstrate that ssDNA prepared by SMB-based CaR will be 

contaminated with streptavidin and biotinylated antisense molecules.  

The contamination of ssDNA-preparations with SMB-derived streptavidin has also been 

described for the, in comparison to heat denaturation, more gentle alkaline (NaOH)-

based denaturation of immobilized PCR-products 83,84,90. For example, Civit et al. achieved 

ssDNA-concentrations of ~ 40 nM while the contaminating concentration of streptavidin, 

as also measured by ELISA, was reported to be ~ 150 pM 84. This corresponds to ~ 3,750 

ppm, an approximately 10-fold higher rate than observed in the present study. However, 

due to the use of different SMB and/ or different (mainly qualitative) methods for the 

detection of streptavidin in different studies, a more comprehensive comparison of 

contamination rates appears to be difficult. The same is true for the following adverse 

effect. 

Since alkaline conditions also negatively affect the interaction between biotin and 

streptavidin, the NaOH-based denaturation of SMB-bound PCR-products also leads to the 
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contamination of ssDNA with released double-stranded PCR-products and/ or (re-

annealing) complementary strands 45,83. While biotinylated capture molecules exclusively 

bind to their corresponding target-region at the 3’-end of the isolated aptamers. Thus, in 

comparison to NaOH-denaturation of full-length complementary strands, binding of 

released capture molecules will, if at all, lead to considerably lower interference with the 

tertiary structure of the selected aptamers.    

In contrast to the previously described methods for ssDNA-generation, the characteristics 

of CaR determine that potential aptamers that find their 3’end involved in intra-molecular 

folding patterns may not be efficiently captured and therefore be sorted out during 

selection. Indeed, one might argue that, at least during the first cycle of CaR-based SELEX, 

aptamers are not solely selected for target binding but also with respect to proper 

annealing to the applied capture molecules. Due to the presence of high overall sequence 

diversity at coincidently high frequency of identical or similar sequence patterns during 

the first selection cycles, however, this appears to be more of a fact than a problem.    

Using the IHT1 and IHT2N ssDNA libraries, asymmetric PCR/ CaR was applied during CE-

SELEX to obtain DNA-aptamers recognizing activated protein C (APC) and the activated A-

subunit of factor XIII (FXIIIAa) 56,89. Since APC was used successfully during previous 

selections 64, this enzyme was mainly considered as a model target for evaluation 

purposes. In contrast, the selection of aptamers against FXIIIAa has not been described so 

far. In total, 6 selection cycles were performed during 3 independent selections (APC 

targeted by IHT1 and IHT2N, FXIIIAa targeted by IHT1, ESI†). The yield and purity of ssDNA 

obtained during the different cycles of IHT1- and IHT2N-based selections was found to be 

comparable (Tables S 3.1- S 3.3, ESI†). After selection, the starting- and enriched libraries 

were radioactively labelled in order to (i) sensitively assess the purity of prepared ssDNA 

by PAGE and (ii) to determine the binding affinity by filter retention analysis (ESI†).  

As shown in Figures. 3.2A and 3.2B, distinct bands as determined by denaturing PAGE 

confirmed the high quality of CaR-prepared ssDNA. More importantly, filter retention 

analysis revealed successful enrichment of DNA aptamers by CaR-SELEX binding to APC or 

FXIIIAa. Highest apparent binding affinities of gathered pools were obtained after 4 to 6 

cycles of selection (Figures. 3.2C and 3.2D).  



Chapter 3: Capture and Release (CaR): A simplified procedure for ssDNA isolation 

42 
 

 

Figure 3.2. Quality of CaR-produced ssDNA (aptamers) and target binding patterns. A, B, PAGE 

analysis of radioactively labelled original IHT1 and IHT2N libraries and aptamer pools obtained 

after 1 to 6 selection cycles (A, APC-SELEX; B, FXIIIAa-SELEX). Different background levels on the 

screen on the left were caused by an artefact during exposure. C, D, Filter retention analysis. C, 

Percentage of binding of IHT1- (open bars) and IHT2N- (closed bars) derived aptamer pools to 

APC (100 nM). D, Binding of IHT1-derived aptamer pools to FXIIIAa (100 nM). 

 

Cloning and sequencing of the selected aptamers led to the identification of individual 

sequence clones from which ssDNA was produced by CaR (Figure S 3.5, ESI†) and tested 

by filter retention analysis. As shown in Figure S 3.6 (ESI†), determined binding affinities 

of all individual sequences were within the high picomolar to low nanomolar range. As 

expected, in silico two-dimensional DNA folding analysis indicated that the 30-ends of 

found aptamers are accessible to the used capture molecules (Fig. S 3.7, ESI†).    

Having shown the usefulness of CaR during aptamer selection and single clone ssDNA-

production, we next focused on the reusability of the applied SMB+ for ssDNA-

production. For this purpose, asymmetrically amplified ssDNA (clone #1 of the IHT1-based 

selection against APC, Figure S 3.5, ESI†) was pooled and aliquotes of 500 µl each 

introduced to repetitive CaR using the same batch of SMB+ (ESI†). As shown in Figure S 

3.8 and Table S 3.4 (ESI†), comparable yields of highly pure ssDNA were achieved during 

four consecutive experiments. 
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In conclusion, we introduced a novel fast and convenient method for the purification of 

ssDNA. In contrast to previously described applications, CaR allows isolation and 

concentration of ssDNA from crude reaction mixtures in a single tube without the need 

for any post-processing steps like pH-adjustment or sample purification. Thus, we believe 

that, not least due to its scalable nature, the combination of asymmetric PCR and CaR will 

also be implemented in other applications that require the generation of ssDNA in the 

future. 

3.3. Electronic supplementary information ( ESI†) 

3.3.1. Chemicals and reagents 

Protease-free bovine serum albumin (BSA), biotin-labelled BSA, rabbit whole antiserum 

against streptavidin, and all general chemicals were purchased from Sigma-Aldrich 

(Taufkirchen, Germany). HRP-labelled goat anti-rabbit antibodies were purchased from 

Dako (Hamburg, Germany). Streptavidin-coated magnetic beads (Dynabeads M-280 

Streptavidin) were purchased from Life Technologies (Karlsruhe, Germany). Recombinant 

human activated protein C (APC) was purchased from Eli Lilly (Giessen, Germany). 

Recombinant human activated FXIII A subunit (FXIIIAa) was purchased from Zedira 

(Darmstadt, Germany). The randomized ssDNA libraries IHT1 (5'- AAG CAG TGG TAA GTA 

GGT TGA - N40 (25% each A/G/C/T) - TCT CTT CGA GCA ATC CAC AC -3’) and IHT2N (5'- GAT TGT 

TAC TGT CAC GAG GAT- N40 (40% G, 20% each A/C/T) - ATA GCA CAT TAG TTC AGA TAC -3’) were 

synthesized and PAGE-purified by Microsynth (Balgach, Switzerland). IHT1 and IHT2N-

amplification primers (targeting the shown fixed sequences of the libraries in full length) 

and the below described capture molecules were synthesized and HPLC-purified by 

Eurogentec (Seraing, Belgium). The used BM chemiluminescence substrate was 

purchased from Roche (Mannheim, Germany).   

3.3.2. Prediction of DNA hybridization profiles and design of capture-

molecules 

The fraction of DNA duplexes (capture molecule - target ssDNA) over temperature 

(‘melting curves’) of a given sequence under given buffer conditions (concentration of 

capture-molecules, monovalent ions, and Mg2+ ions) was assessed using the ‘DNA 

thermodynamics & hybridization’ tool available on the ‘biophysics’ sub-domain of 

idtdna.com (http://biophysics.idtdna.com). This sub-domain runs stable and tested 

software to be included into the IDT SciTools collection 87. Details on applied formulas and 

calculations can be found at http://biophysics.idtdna.com/HelpMelt.html. The applied 

software returned the predicted fractions of duplex (0 to 1) over an integer temperature 

range of 0 to 100°C. No absolute accordance to real-world conditions was expected. 

However, obtained values were used as a basis for the design of the IHT1- and IHT2N-
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capture-molecules and to assess the chosen concentration of monovalent cations within 

the used washing buffer. Based on the returned data (melting profiles), the following 

sequences were chosen for the capture-molecules: 

 

IHT1-capture-molecule:  5’-Biotin-GTG TGG ATT GC-3’ 

IHT2N-capture-molecule:  5’-Biotin-GTA TCT GAA CTA AT-3’ 

 

Temperatures at which 5%, 50%, or 95% of duplexes (capture molecule - target ssDNA) 

were predicted to be denatured were assessed from the returned data sets. For the IHT1-

capture-molecule, the corresponding values for each step of CaR are shown in Scheme 

3.1 of the main manuscript. Figure S 3.1 shows the returned melting profiles at different 

buffer conditions and derived Tm-values for the IHT2N-capture-molecule. 
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Figure S 3.1. (A) IHT2N-related melting curves (capture molecule - target ssDNA) as predicted by 

the ‘DNA thermodynamics & hybridization’ tool. Underlying buffer conditions: Capturing step: 

circles; Washing step: boxes; Release: triangles. (B) Details on buffer conditions and melting 

temperatures at which 5% [Tm(05)], 50% [Tm(50)], or 95% [Tm(95)] of captured ssDNA molecules 

are predicted to be released from the capture molecules.  

 

3.3.3. Binding of capture-molecules to streptavidin-coated magnetic 

beads (SMB) 

5’-biotinylated capture-molecules were bound to SMB as follows. Dynabeads M-280 

Streptavidin (SMB) were washed 3x using B&W buffer (5 mM Tris-HCl, 1 M NaCl, 0.5 mM 

EDTA, pH 7.5) followed by incubation with B&W containing 1 µM of capture molecules 

(200 µl for each mg of SMB > 200 pmole of capture molecules / mg of SMB). The mixture 

was incubated at RT for 30 min under vigorous shaking to prevent beads from settling. 

After incubation, SMBs were washed 3x using B&W- (without EDTA). For storage, loaded 

SMB were suspended in 1 × PBS, 1 mg/ml BSA, 0.2 mg/ml NaN3, pH 7.4 and stored at 4°C 

until used. Before use, the needed amount of stored (loaded) SMB was washed 3x using 

B&W-.  

3.3.4. Assessment of binding and adverse release of capture 

molecules to/ from SMB using fluorescence measurements 

In order to assess the amount of capture-molecules bound to or release from the SMB, 3’-

FAM-labelled IHT1-capture-molecules (5’-biotinylated) were applied. After adding to 

B&W at 1 µM concentration, each 200 µl of this solution were incubated with 1 mg of 

SMB (washed 3x using B&W) for 30 min under vigorous shaking. Subsequently, beads 

were removed by magnetic force and the amount of FAM-labelled molecules remaining in 

the supernatant was determined by fluorescence measurements using black 96-well 

microtiter plates and a Synergy 2 microplate reader (Biotek, Bad Friedrichshall, Germany) 

and a λex 485 / λem 528 nm filter set.  

To assess the temperature-dependent detachment of capture molecules from the SMBs, 

3’-FAM-labelled IHT1-capture-molecules (5’-biotinylated) were bound to the SMB as 

described above. After incubation in ultrapure water (1 mg loaded SMB / 20 µl) at 

different temperatures, the absolute amount of fluorescence in the supernatants was 

measured.  

The FAM-labelled IHT1-capture-molecules could be detected down to sub-nanomolar 

concentrations in TE-buffer (20 mM Tris-HCl, 1 mM EDTA, pH 8.0). Thus, solutions to be 

tested were diluted in TE-buffer and the relative or absolute amounts of capture-

molecules quantified by the standard-curve method.  
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Regarding determination of SMB-binding-capacity, merely 5% of the total fluorescence 

remained within the supernatant when using varying amounts of SMB around 1 mg, 

indicating efficient binding of capture-molecules when using 1 mg of SMB for 

immobilization of 200 pmole of (non-fluorescent) capture-molecules (Figure S 3.2). 

Results on the adverse release of capture-molecules from SMB are shown in Figure 3.1D.  

 

 

 

Figure S 3.2. Binding of 3’-fluorescently-labelled capture molecules to SMB introduced in different 

amounts. Values represent the relative amount of fluorescence that remained in solution after 

incubation.     

3.3.5. Exponential amplification and asymmetric PCR 

Initial exponential amplification of IHT1- or IHT2N-target-molecules was performed in a 

final volume of 100 µl using the following reaction mixtures and cycling conditions: 1 x 

PCR buffer (containing Tris-HCl, pH 8.7, KCl, and (NH4)2SO4), 1.5 mM MgCl2, 200 µM each 

dNTP, 1 µM each forward- and reverse-primer, 1.25 U HotStarTaq Plus DNA polymerase, 

and 20 µl of the sample. Thermal cycling was done using the following profile: 95°C for 3 

min followed by the indicated number of cycles of 95°C for 30 sec, 56°C (IHT1) or 58°C 

(IHT2N) for 30 sec, and 72°C for 30 sec.  

For the production of target single-strands, asymmetric PCR was applied using the 

reaction mixtures and conditions as described for the exponential amplification but 

without reverse primers. Ten µl of a 1 in 10 dilution of previously cycled exponential 

amplification mixtures were used as template. Before introduction to CaR, pooled 

reaction mixtures were spiked with a final concentration of 100 mM NaCl (using a 5 M 

stock solution). 
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3.3.6. Production of asymmetrically amplified IHT1-library for 

evaluation purposes 

Asymmetrically amplified IHT1-library that was applied for evaluation purposes was 

prepared as follows. For initial exponential amplification, 10 µl of a 167 nM solution of 

the original IHT1-ssDNA-library (1012 molecules) were added to the mastermix and 

amplified for 15 cycles. Subsequently, 50 cycles of asymmetric PCR were performed after 

introduction of 10 µl of 1 in 10 diluted exponential amplification products.       

3.3.7. Assessment of quality and purity of ssDNA after asymmetric 

PCR/ CaR during basic assay evaluation   

It should be noted that no special efforts were done to optimize the yield of ssDNA as 

produced by asymmetric PCR during this study which solely focused on the general 

functionality of the CaR procedure. Thus, total yields of isolated ssDNA may increase in 

case of further optimization of the asymmetric PCR procedure. 

Single bands of dsDNA or ssDNA were observed when performing gel analysis of 

asymmetrically amplified IHT1-molecules (Figure S 3.3A, lane 1 and Figure S 3.4, lane 1). 

In order to assess the release of captured ssDNA at different elution temperatures, 500 µl 

of crude pooled asymmetric IHT1-reaction mixtures were added to 1 mg of SMB loaded 

with 200 pmole of IHT1-capture molecules (SMB+). After incubation for 30 min at RT, the 

SMB+ were washed 3x at RT using 1000 µl of 10 mM Tris-HCl, 20 mM NaCl, pH 7.6 and 

finally taken up in 20 µl of ultrapure water pre-heated to designated temperature (RT, 

37°C, 43°C, or 50°C). After 2 min of incubation in a water bath set to corresponding 

temperature, SMB+ were separated by magnetic force and supernatants collected. The 

final elution step was repeated 2x using new batches of water.  

As shown in Figure 3.1A of the main manuscript, the majority of captured ssDNA was 

readily released from the IHT1-capture molecules at elevated temperatures during the 

first elution step. The quality of achieved ssDNA (see Figure 3.1A for total yields) was 

determined by gel analysis (Figure S 3.3A) while yield and purity was assessed by triplicate 

UV-measurements (A260/A280 ratios) using a NanoDrop® ND-1000 UV/Vis-

Spectrophotometer (Thermo Scientific) (Figure S 3.3B).       
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Figure S 3.3. (A) Agarose gel analysis (stained with ethidium bromide) of ssDNA yielded by CaR 

during the first elution at different temperatures. Lane 1: introduced crude asymmetric IHT1-PCR 

mixture. Lanes 2, 4, 6, and 8: 1 in 10 dilutions of ssDNA released from the IHT1-capture molecules 

at RT, 37°C, 43°C and 50°C, respectively. Lanes 3, 5, 7, and 9: corresponding supernatants 

(asymmetric PCR mixtures) after incubation with SMB+. Lane 10: 50 bp dsDNA ladder. (B) 

A260/A280 ratios of obtained ssDNA as determined by UV-measurements. 

In order to provide further evidence for the proposed principle of CaR, underlying 

sequence-specificity was verified by the use of SMB loaded with IHT2N-capture molecules 

during CaR being performed with asymmetrically amplified IHT1-library. Besides SMB 

loaded with IHT1-capture molecules, also non-loaded beads that were passed through all 

incubation/ washing steps as described in ‘Binding of capture-molecules to streptavidin-

coated magnetic beads (SMB)’ (but in the absence of capture molecules), were run in 

parallel as controls. Again, 500 µl of crude pooled asymmetric PCR mixtures and 1 mg of 

SMB were used during each reaction. 

As shown in Figure S 3.4, only the use of IHT1-capture molecules yielded detectable 

amounts of IHT1-ssDNA as determined by gel analysis (see Figure 3.1B for obtained yield). 

The corresponding A260/A280 ratio was found to be 1.97 for the first elution. 
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Figure S 3.4. Yield and quality of ssDNA isolated from IHT1 asymmetric amplification by CaR using 

non-loaded SMB or SMB loaded with specific (IHT1) or non-specific (IHT2N) capture molecules. 

Lane 1: introduced crude asymmetric IHT1-PCR mixture. Lanes 3, 5, and 7: 1 in 10 dilutions of 

ssDNA as obtained by the use of IHT1-capture molecules, IHT2N-capture molecules or non-loaded 

SMBs, respectively. Lanes 2, 4, and 6: corresponding supernatants (asymmetric PCR mixtures) 

after incubation with loaded or non-loaded SMB.  

 

3.3.8. Quantification of streptavidin released from the SMB 

Non-loaded SMB that were passed through all incubation / washing steps as described in 

‘Binding of capture-molecules to streptavidin-coated magnetic beads (SMB’) (but in the 

absence of capture molecules), were applied to assess the potential adverse 

contamination with streptavidin at different incubation temperatures. Concentrations of 

streptavidin were measured by an immunoassay as follows. Primarily, Maxisorp 

microtiter modules were coated with 10 µg/ml BSA-Biotin (100 µl/well) in coating buffer 

(30 mM Na2CO3, 200 mM NaHCO3 [pH 9.0]) overnight at 4°C followed by 3 times rinsing 

with 300 µl of washing buffer (1 x PBS [pH 7.4], 3 mM MgCl2, 0.05 % Tween 20; general 

washing procedure using an automated plate washer [ELx50, Biotek, Bad Friedrichshall, 

Germany]). Remaining binding sites were blocked by incubation with blocking buffer 

(1xPBS [pH 7.4], 2 mg/ml BSA, 0.05 % Tween 20) for 2h at RT. After incubation for 2h at 

RT, remains were aspirated and sealed modules stored at 4°C until used. To run the assay, 

standards or samples were diluted in washing buffer containing 1 mg/ml BSA (WB+) and 

100 µl of the dilutions were added to the wells and incubated for 1h at RT. After washing, 

100 µl of rabbit whole antiserum against streptavidin (diluted 1:2000 in WB+) were added 

to the wells and also incubated for 1h at RT. Subsequently, wells were washed and 100 µl 

of HRP-labelled goat anti-rabbit antibodies (diluted 1:2000 in WB+, yielding a final 

concentration of 0.125 µg/ml) added and incubated for another hour at RT. Finally, after 

washing, bound HRP was detected using BM chemiluminescence substrate (100 µl well) 

and a Synergy 2 microplate reader (Biotek, Bad Friedrichshall, Germany). Applied 

streptavidin standard curves were prepared by half-logarithmic dilution series and 

showed a linear range from 530 down to 1.7 pM (31.6 down to 0.1 ng/ml). Original 

samples were diluted in WB+ to match the covered range and the absolute content of 

streptavidin calculated. The corresponding results are shown in Figure 3.1C.  

3.3.9. CE-SELEX against APC and FXIIIAa   

CE-based separations were performed using a PA800 capillary electrophoresis system 

(Beckman Coulter, Krefeld, Germany) and 32 Karat software. A 60 cm long (50 cm to the 

detection window) uncoated fused silica capillary with an inner diameter of 50 µm 

(Beckman Coulter) was conditioned before the first use and rinsed between runs with an 

pressure of 50 psi (for 5 min each) with 100 mM HCl, 100 mM NaOH, destilled water, and 
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selection / separation buffer (25 mM Tris-HCl, 30 mM NaCl, 1 mM KCl, 1 mM CaCl2 and 1 

mM MgCl2, pH 8.3). Applied ssDNA-libraries (IHT1 or IHT2N) were added to 20 µl of 

selection buffer in a final concentration of 25 µM (500 pmole) for the first selection cycle 

and heated to 85°C for 5 min followed by snap cooling on ice. Subsequently, the target 

protein (either APC or FXIIIAa) was added and the mixture was incubated at RT for 30 min 

before hydrodynamic injection into the capillary (using 4 psi pressure for 5 second, 

thereby introducing ~ 40 nL of the sample into the capillary). Separation of protein from 

non-binding ssDNA-molecules took place under electroosmotic flow at a voltage of 25 kV. 

As determined during previous experiments, the collection window was set during the 

first 20 min of separation. Samples were collected into tubes containing 150 µl of 

separation buffer. Library molecules that remained in the capillary were flushed out by 

reverse rinsing. A total of 120 µl of the collected molecules (6 x 20µl) were exponentially 

amplified for 30 (IHT1) or 35 (IHT2N) cycles. Subsequently performed asymmetric PCR 

was routinely conducted for 50 cycles. In case of formation of unwanted by-products (as 

determined by gel-analysis), however, cycle numbers of asymmetric PCR were reduced to 

30 - 45 in order to retain amplification specificity. Subsequently, single reactions were 

pooled and a total of 500 µl introduced to CaR for isolation of ssDNA. At this, captured 

ssDNA was eluted at 43°C. A constant amount of enriched library (0.5 µM; 20 pmole) was 

used during the following selection cycles. In contrast, the concentration of the target 

enzymes was gradually reduced from 1 µM during the first selection cycle to low nM-

concentrations during the sixth (last) cycle.  

 

3.3.10. Yield and purity of ssDNA as produced by asymmetric PCR/ CaR 

during SELEX       

The following Tables S 3.1 - S 3.3 show the yield and purity of ssDNA obtained from 

asymmetric PCR/ CaR during the process of SELEX as determined by UV-measurements.    

 

Table S 3.1. Yield and purity of ssDNA after each cycle of IHT1-based APC-SELEX. 

  1st 

cycle 

2nd 

cycle 

3rd 

cycle 

4th 

cycle 

5th 

cycle 

6th 

cycle 

A260 1.48 1.05 1.022 0.645 1.121 0.811 

A280 0.781 0.576 0.542 0.335 0.606 0.426 

A260/A280 1.9 1.83 1.89 1.92 1.85 1.90 

Conc. [µM] 1.95 1.39 1.34 0.85 1.48 1.07 
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Table S 3.2. Yield and purity of ssDNA after each cycle of IHT2N-based APC-SELEX. 

 1st 

cycle 

2nd 

cycle 

3rd 

cycle 

4th 

cycle 

5th 

cycle 

6th 

cycle 

A260 0.715 1.46 1.06 1.134 1.038 1.185 

A280 0.408 0.74 0.535 0.577 0.522 0.631 

A260/A280 1.75 1.96 1.98 1.96 1.99 1.88 

Conc. [µM] 0.93 1.90 1.38 1.48 1.35 1.54 

 

Table S 3.3. Yield and purity of ssDNA after each cycle of IHT1-based FXIIIAa-SELEX. 

 1st 

cycle 

2nd 

cycle 

3rd 

cycle 

4th 

cycle 

5th 

cycle 

6th 

cycle 

A260 0.469 1.048 1.353 1.235 1.130 1.719 

A280 0.245 0.530 0.715 0.668 0.601 0.885 

A260/A280 1.91 1.98 1.89 1.85 1.88 1.94 

Conc. [µM] 0.62 1.38 1.78 1.63 1.49 2.26 

 

3.3.11. Filter retention assay  

The affinity of the single-stranded random pools, enriched libraries, and obtained single 

aptamer molecules was assessed by filter retention assay. Molecules (10 pmole) were 

radioactively 5′-phosphorylated using 20 U of T4 Polynucleotide Kinase (New England 

Biolabs, USA) in 70 mM Tris–HCl buffer [pH 7.6] containing 10 mM MgCl2, 5 mM 

dithiothreitol, and 300 μM [γ-32P]ATP (PerkinElmer, USA) and then purified using G-25 

microspin columns (GE Healthcare, Munich, Germany). The integrity of the enriched 

libraries was qualitatively determined using 12% denaturing polyacrylamide gel 

electrophoresis. 

To determine the dissociation constants, serially diluted APC or FXIIIAa (0-1 µM) were 

incubated with 0.5 nM 32P-labeled ssDNA for 30 min at 37°C in PBS [pH 7.4] containing 1 

mg/ml BSA, 10 µM tRNA, 1 mM CaCl2 and 50 µM MgCl2. After incubation, the reactions 

were passed through pre-equilibrated 0.45 µm nitrocellulose membranes followed by 

three washings using 150 μl of PBS [pH 7.4] containing 1 mM CaCl2 and 50 µM MgCl2 and 

then dried out. The retained radioactivity was quantified using a FUJIFILM FLA-3000 

PhosphorImager equipped with AIDA Imagequant software (Fujifilm, Düsseldorf, 

Germany). Data were fitted by 4-parameter logistic curve fit presuming a 1:1 binding 
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stoichiometry of ssDNA:target protein. Kd values were determined from at least two 

independent experiments.  

 

3.3.12. Cloning and sequencing 

The aptamer pool from the SELEX cycle that showed the highest apparent binding affinity 

was cloned into pGEM®-T vectors (Promega, Mannheim, Germany). For the IHT1- and 

IHT2N-based selections against APC, 19 and 32 colonies were sequenced, respectively. 

For the IHT1-FXIIIAa-selection, 32 colonies were sequenced. Sequencing was done using 

M13 primers and an ABI 3130xl Genetic Analyzer (Applied Biosystems, Darmstadt, 

Germany).  

 

3.3.13. Production of identified individual aptamers by asymmetric 

PCR/ CaR and determination of binding affinity 

Identified single aptamers were produced from PCR-products using asymmetric/ CaR. 

Aptamers were radioactively labeled and tested for binding affinity as described above. 

The capture-efficiency and quality of the yielded ssDNA is demonstrated in Figure S 3.5. 

The results of the filter retention analysis are shown in Figure S 3.6.  

As can be seen in Figure S 3.5, probably due their individual tertiary structures, single 

monoclonal ssDNA aptamers did not clearly separate from the corresponding double-

stranded PCR products during electrophoresis. This was especially true for the FXIIIAa-

aptamers and the aptamers #2 and #3 of the IHT2N-based selection against APC. In cases 

were distinct bands of ssDNA could be assessed, virtually complete capturing of ssDNA 

from the asymmetric PCR mixtures could be observed.           
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Figure S 3.5.  Agarose gel analysis (stained with ethidium bromide) of asymmetric PCR mixtures, 

obtained ssDNA (1:10 diluted) and supernatants after removal of loaded SMB (from left to right 

within each group) after introduction of identified single aptamer-clones to asymmetric PCR/ CaR. 

A, B: selection against APC using the IHT1 (A) and IHT2N library (B) respectively. C, selection 

against FXIIIAa using the IHT1 ssDNA library. A 50bp dsDNA-ladder was used in each gel. 
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Figure S 3.6. Filter retention analysis of individual aptamers. (A) IHT1-based APC-SELEX. (B) IHT2N-

based APC-SELEX. (C) IHT2N-based FXIIIAa-SELEX. Shown KD-values were determined by 4-

parameter logistic curve fit; n.d., not determined; N/A, no binding observed up to 1 µM.  
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3.3.14. In silico folding predictions 

The mfold web sever as available at: http://mfold.rna.albany.edu/?q=mfold/dna-folding-

form was used at default settings to predict the folding patterns of the identified single 

aptamers 91. Predicted foldings of the 4 efficiently binding APC-aptamers are shown in Fig. 

S7. As expected, the 3’-ends of the single sequences appear to be accessible to the 

corresponding capture molecules. The same was found for the FXIIIAa-binding aptamers 

(data not shown). However, since these predictions are limited to Watson-Crick base 

pairing in two-dimensional space, their validity is limited. 

 

Figure S 3.7. Folding patterns of the identified APC-binding aptamers as determined by mfold. 

 

3.3.15. Determination of the reusability of loaded SMB 

Clone #1 identified during IHT1-based selection against APC was used to assess the 

reusability of SMB loaded with (IHT1) capture molecules (SMB+). After release of 

captured ssDNA by 3 consecutive incubations with a fresh batches of water, SMB+ were 

washed and again introduced to the CaR-procedure. In total, 4 cycles of capture and 

release were performed. As shown in Figure S 3.7, virtually complete capturing of ssDNA 

from the asymmetric PCR mixtures could be observed. As shown in Table S 3.4, 

comparable yields and purities were found.     

http://mfold.rna.albany.edu/?q=mfold/dna-folding-form
http://mfold.rna.albany.edu/?q=mfold/dna-folding-form
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Figure S 3.8. Agarose gel analysis (stained with ethidium bromide) of obtained ssDNA by 

consecutive usage of SMB+ during CaR. Lanes 1, 4, 8, and 11: introduced crude asymmetric PCR 

mixture; lanes 2, 5, 9, 12: 1 in 10 dilution of yielded ssDNA when using SMB+ for the first, second, 

third and fourth time, respectively; lanes 3, 6, 10 and 13: supernatants after incubation of 

asymmetric PCR mixture with the SMB+ for the first, second, third and fourth time, respectively; 

lane 7: 50 bp dsDNA ladder. 

 

Table S 3.4. Yield and purity of ssDNA obtained after consecutive use of SMB+. 

 1st use 2nd use 3rd use 4th use 

A260 0.432 0.513 0.524 0.508 

A280 0.214 0.246 0.272 0.261 

A260/A280 2.02 2.08 1.93 1.95 

Conc. [µM] 0.58 0.68 0.69 0.67 
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4.1. Abstract 

Protease exosites act as key regulator elements of protease function. Here we 

investigated, if the functions of activated protein C (APC) can be modulated by exosite 

binding aptamers. APC is a multifunctional serine protease that controls blood 

coagulation and exhibits anti-inflammatory and cytoprotective functions. We showed that 

APC-aptamers binding to the basic exosite selectively inhibit the anticoagulant functions 

of APC and can be used to enhance or inhibit the inactivation of APC by endogenous 

inhibitors resulting in a drastically reduced or enhanced catalytic life of APC. While 

enhancing the catalytic life of APC offers an interesting approach in the treatment of 

septicemia and in the prevention of tissue damage after arterial infarction, selective 

inhibition of the anticoagulant functions of APC is of particular interest in the prevention 

of APC-induced bleeding such as in trauma-induced coagulopathy and as supportive 

treatment approach in hemophilic patients. 

4.2. Main manuscript 

Activated protein C (APC) is a multifunctional serine protease that controls blood 

coagulation by down-regulation of thrombin formation 8. APC is generated from its 

inactive precursor protein C (PC) on the surface of endothelial cells in a thrombin-

dependent manner. This process is augmented, if PC is bound to the endothelial cell 

protein C receptor (EPCR). APC that is released into the flowing blood acts as an 

anticoagulant by proteolytic cleavage of the activated cofactors V (Va) and VIII (VIIIa), 

while APC that remains bound to EPCR expresses cytoprotective functions involving 

cleavage of protease receptors-1 and -3 (PAR-1/PAR-3) 92–94.  

Dysfunctions of the APC-pathway either inherited or acquired are involved in the 

pathogenesis of various thrombo-inflammatory diseases. Patients with mild to moderate 

inherited PC-deficiency are at an increased risk for venous thromboembolism, while 

severe PC-deficiency is associated with a high risk to develop purpura fulminans, a severe 

thrombo-inflammatory disorder, affecting the microvasculature of the skin and vital 

organs 95–97. Acquired APC dysfunction is observed in patients with septicemia where it is 

involved in the development of microvascular thrombosis leading to severe organ 

dysfunction and organ failure 98,99. Overwhelming APC formation has been described in 

trauma patients and seems to be a critical factor in the development of trauma-induced 

coagulopathy 100,101. 

Its involvement in the pathogenesis of various thrombo-inflammatory disorders makes 

APC and the PC-pathway to attractive candidates for therapeutic interventions. A plasma 

purified PC concentrate is successfully used in the treatment of severe PC-deficiency and 

of meningococcal septicemia 102,103. A recombinant version of APC, drotrecogin alfa, has 
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been shown to decrease 28-day mortality in severe sepsis but was withdrawn from the 

market because the positive outcomes could not be confirmed in follow-up studies 24,25. A 

major complication of APC treatment was the development of bleeding. Since the 

therapeutic efficacy of APC in the treatment of severe sepsis is mainly based on its 

cytoprotective properties, mutants were generated showing diminished anticoagulant 

activities but preserved cytoprotective functions 104,105. The catalytic-life of APC in whole 

blood is approximately 20 min and regulated by two natural inhibitor proteins, namely 

alpha1-antitrypsin and protein C inhibitor (PCI) 106,107. Substitution at Leu194 generates an 

APC mutant showing a 4-6-fold prolonged half-life 108. Although these variants suggest 

therapeutic opportunities, their production is cost intensive and they compete with wild-

type endogenous APC for receptor signaling, leading to the need of high dosages.  

Modulation of the APC activity by small molecules or other compounds could be an 

attractive alternative to genetically engineered APC variants. Besides the active center, 

the basic and acidic exosites of APC are interesting target regions for such an approach. In 

this study we used the aptamer technology to study if the APC activity can be selectively 

inhibited and/or the catalytic life of APC modulated. To increase the probability to select 

distinct APC binding sequences we used several selection strategies. In addition to 

previously applied conventional SELEX procedures, capillary electrophoresis (CE)-based 

SELEX (CE-SELEX) was used and different randomized ssDNA-libraries were applied, 

including a G-enriched library to increase the likelihood of selecting G-quadruplex 

containing aptamers. Using these approaches, a variety of aptamers has been selected 

showing binding affinities to APC ranging from 0.2 to 20 nM (Table S 4.1) and no 

significant binding to the structurally related serine proteases thrombin and activated 

factor VII as well as to the APC precursor PC (Table S 4.2). Remarkably, a previously 

described consensus sequence (5‘-TATCMCGNATGGGS-3‘), that was identified during two 

independent runs of conventional SELEX, also dominated CE-SELEX (Figure 4.1A). As 

assessed by next generation sequencing (NGS) (Figure S 4.1), each CE-based selection was 

dominated by one individual aptamer that contained this consensus sequence. The 

maximum enrichment comprised more than 80% of sequences independent of the type 

of library used (Figure S 4.1). Such an enrichment during CE-SELEX appears to be 

unparalleled and indicates that the degree of heterogeneity achieved during aptamer 

selection is mainly influenced by the target molecule whereas the applied selection 

strategy is of minor influence. However, a structurally different APC aptamer (NB3) could 

be selected from the G-enriched library. Thioflavin T staining of original and selected 

truncated aptamer variants (Figure S 4.2) confirmed the presence of a G-quadruplex 

structure within the NB3-aptamer (Figure 4.1B / Figure S 4.3). Furthermore, as assessed 

by in silico analysis, this putative G4 motif seems not to be involved in intramolecular 

Watson-Crick base pairing (Figure 4.1A), indicating that aptamer NB3 might indeed be 

dominated by a G4 structure. This assumption is further supported by the relatively high 

free energy value (delta G) of the mfold-based NB3 secondary structure that indicates a 
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relatively low stability and therefore suggests the presence of an alternate, more stable 

pattern within the predicted loop-section of the NB3 aptamer.   

To localize the binding region of the newly selected aptamers, crossblocking experiments 

using previously characterized APC binders have been performed. The NB-aptamers 

compete with the APC-aptamer HS02-52G and unfractionated heparin for binding to the 

basic exosite as assessed by crossblocking experiments (Figure 4.1C, Figure S 4.4).  

 

Figure 4.1. Structure and binding characteristics of APC aptamers. (A) In-silico-prediction of 

secondary structures and key characteristics extracted from m-fold web server on 09/17/2015. 

The consensus sequence is shown in highlighted format, G-quadruplex forming nucleotides have 

been defined by a surrounding quadrangle. Dissociation constants (Kd) measured by filter 

retention assay are shown in nM. (B) G-quadruplex detection assay. SYBRGreen or ThT (1 µM) 

were incubated with aptamers at a final concentration of 1 µM in microtiter plates followed by 

fluorescence measurement in λex/ λem of 425/500 nm and 497/520 nm for ThT and SYBRGreen, 

respectively. A G4 forming sequence, 45Ag, was used as positive control while the sequence 

45noG4 lacking the ability to form G4 structures was used as negative control. Error bars 

correspond to standard deviation of three measurements. (C) Unlabeled crossblocking 

experiments. NB-aptamers at the indicated concentrations were incubated with rAPC (final 

concentration: 180 pM). Subsequently the reaction mixture was transferred to wells of a 

microtiter module coated with HS02-52G aptamers. The amount of APC bound to HS02-52G was 
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measured through hydrolysis rates of an APC-specific fluorogenic peptide substrate. Results are 

shown as means of duplicates. 

 

Protein-binding aptamers have been reported to affect molecular interactions distantly 

from their binding site 109. Hence, we studied if the APC aptamers interfere with the 

catalytic center of APC by studying the hydrolysis rates of two distinct peptide substrates. 

All APC-aptamers led to a partial decrease in conversion rates of the sensitive fluorogenic 

substrate Pyr-Pro-Arg-AMC, albeit on different levels (Figure 4.2A). With a maximum 

reduction of 25% NB2- and NB3-aptamers showed a weaker inhibitory effect than NB1 

and HS02-52G. Similar results were obtained, when the fluorogenic substrate was 

replaced by a chromogenic substrate (p-Glu-Pro-Arg-MNA) or if truncated variants of the 

aptamers were tested (Figure S 4.5). These results strongly suggest that the inhibitory 

effect of the aptamers on substrate conversion is based on allosteric rather than steric 

effects and that this effect depends on the individual sequence of the aptamers. 

As expected from the proposed binding site, all APC aptamers showed a dose-dependent 

inhibition of APC-induced FVa cleavage as tested using a prothrombinase assay (Figure 

4.2B). Full inhibition was achieved with NB1, NB2, and HS02-52G, whereas full-length NB3 

only partially inhibited the APC induced proteolysis of FVa. The lower effect of NB3 is also 

reflected by the corresponding IC50 values (Table S 4.3). In this experimental approach, 

the impact of aptamers on the activity of exogenously added APC in a purified system was 

tested. However, these results not necessarily reflect the in-vivo situation where APC is 

continuously generated through the thrombin-TM complex and where aptamers might 

interact with a variety of plasma components and blood cells. To study the influence of 

the APC aptamers on endogenously generated APC within the  plasma  matrix, we 

initiated thrombin formation in plasma in the presence of recombinant thrombomodulin. 

The results confirmed that all APC aptamers inhibit the anticoagulant activities of APC 

albeit on a different level. In contrast to the results obtained using the prothrombinase 

assay, NB3 was found to be a more potent APC inhibitor than NB1 and NB2. Among all 

APC aptamers tested a truncated version of NB3 (NB3-49) and HS02-52G were found to 

be the most efficient ones (Figure 4.2C). NB3-49 was found to be an effective APC 

inhibitor but on a lower level compared to HS02-52G when replacing plasma by whole 

blood (Figure 4.2D).  
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Figure 4.2. Functional properties of APC aptamers. (A) Influence of APC aptamers on peptide 

substrate conversion. Increasing concentrations of APC aptamers were incubated with rAPC at a 

final concentration of 180 pM and hydrolysis rates of a fluorogenic peptide substrate (Pyr-Pro-

Arg-AMC) were measured. Substrate conversion measured w/o aptamers was set as 100%. (B) 

Influence of APC aptamers on APC catalyzed FVa-proteolysis. Purified FVa (150 pM) was incubated 

with rAPC (4.5 pM) in the presence of increasing concentrations of APC-aptamers for 30 min. 

After addition of FXa (1.3 pM) and prothrombin (25 nM) the amount of thrombin formed was 

measured through hydrolysis rates of a fluorogenic thrombin substrate. (C) Influence of APC 

aptamers on the anticoagulant activity of endogenously generated APC in human plasma. Pooled 

normal human plasma was spiked with rabbit thrombomodulin (2 U/ml) and increasing 

concentrations of APC aptamers. Subsequently, thrombin formation was initiated by addition of 

recombinant tissue factor (5 pM) and the time-dependent amount of thrombin generated 

monitored through the endogenous thrombin potential (ETP). (D) APC inhibiting activities of APC 

aptamers in whole blood. Contact phase activator (50 µl) was added to 100 µl of citrated whole 

blood containing different concentration of each aptamer. Time to clot formation was detected 

subsequent to addition of CaCl2 (25 mM). 

 

A higher stability of the NB3 aptamers containing a stable G4-structure might explain the 

higher efficacy of this aptamer when compared to the other NB-aptamers. Owing to its 

substantial Watson-Crick-based stem region, such a stability effect may also determine 

the high inhibiting capacity of HS02-52G.  

However, besides blocking the binding sites for the procoagulant substrates FVa and 

FVIIIa (Figures S 4.6 – 4.7), the APC activity can also be inhibited by modulating 

endogenous control mechanisms. Similar to unfractionated heparin, the HS02-52G 
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aptamer accelerates the rate of APC inactivation by PCI following a template mechanisms 
13. From genetically engineered APC variants it is known that replacement of amino acids 

at position 194 and 254 generates an APC variant resistant to endogenous inhibition 

resulting in a prolonged half-life 108. Since these sites are located within or nearby the 

basic exosite of APC, we studied if the APC NB-aptamers 1-3 influence the inactivation 

rates of APC similar to HS02-52G. Studying plasma half-life times in the presence of 

saturating concentrations of the APC aptamers, the aptamers NB1 and NB2 similar as 

HS02 increased APC inactivation rates but on a lower level (Figure 4.3A). The reduced 

half-lifes correlated well with the increased formation of APC-PCI complexes as tested by 

a sandwich ELISA. Most interestingly, however, the G-quadruplex-based NB3 aptamer 

varients, protected APC from APC/PCI-complex formation (Figure 4.3B).  

 

Figure 4.3. Influence of APC aptamers on inhibition of APC by endogenous inhibitors. (A) 

Recombinant APC (final concentration of 1.9 nM) was spiked to PC-deficient plasma in the 

presence of 100 nM NB aptamers followed by sub-sampling and capturing of APC using sheep 

anti-human PC antibody primed plates. Residual activity of APC was measured through 

fluorogenic peptide substrate conversion. (B) Subsequently, a HRP-conjugated goat anti-human 

PCI antibody was added to the wells and APC-PCI complex formation was monitord using BM 

chemiluminescence substrate. The luminescence intensity corresponds to the time point of 120 min 

incubation of HS02-52G aptamer was considered as 100% value. NB1-83, solid circles; NB2-81, 

solid triangles; NB3-82, solid squares; HS02-52G (positive control), open squares; AD02-52, open 

diamonds. Results are shown as means of duplicates. (C) Categorization of APC aptamers based on 

their impact on functions of APC. 

 

Overall, as outlined in figure 4.3C the aptamers can be categorized in APC anticoagulant 

activity inhibiting aptamers with and without heparin-like activities and a third class of 

APC anticoagulant inhibitors inducing resistance to endogenous APC inhibitors. Since the 

acidic exosite of APC is not involved in aptamer binding the allosteric aptamers show no 

effect on the cytoprotective functions of APC 13. These features qualify NB3 as a novel 

candidate molecule for the development of a specific and potent APC inhibitor as 

envisaged for the adjuvant treatment of patients with hemophilia 110–112. Furthermore, 

rapid and selective down-regulation of the anticoagulant activity of APC seems to be 

especially interesting in trauma-induced coagulopathy (TIC) patients where a reversible 

and short acting APC inhibitor is required and where active-site acting inhibitors bear the 
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risk to induce an adverse thrombo-inflammatory reaction. Moreover this study shows 

that aptamers can be used to study and dissect different functional epitopes within a 

protease exosite not only adding new insights into the architecture and organization of 

the basic exosite of APC but also showing that aptamers are useful for epitope binning 

similar to monoclonal antibodies. 

4.3. Supplementary information 

4.3.1. Chemicals and materials  

All basic chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany). The 

randomized single-stranded (ss) DNA libraries IHT1 (5'- AAG CAG TGG TAA GTA GGT TGA - 

N40 (25% each A/G/C/T) - TCT CTT CGA GCA ATC CAC AC -3’), IHT2N (5'- GAT TGT TAC TGT 

CAC GAG GAT- N40 (40% G, 20% each A/C/T) - ATA GCA CAT TAG TTC AGA TAC -3’), 

individual aptamers HS02-52G and 3’-biotinylated HS02-52G (5’-GCC TCC TAA CTG AGC 

TGT ACT CGA CTT ATC CCG GAT GGG GCT CTT AGG AGG C-3’), NB1, NB2, and NB3 (see 

Table 1 for sequences), as well as the control oligonucleotides AD02-52 (5’-GCC TCC TAA 

GAG CCC CAT CCG GGA TAA GTC GAG TAC AGC TCA GTT AGG AGG C-3’), 45Ag (5’-GGG 

TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG -3’) and 45noG4 (5’- 

CAT ACA TAC ATT TCA CAA TTC ACA TTA CAT TCA CAA TCC ATT CAT-3’) were synthesized 

and PAGE-purified by Microsynth (Balgach, Switzerland). IHT1 and IHT2N-amplification 

primers and 5’-biotinylated capture molecules for the IHT1 library (5’- Biotin-GTG TGG 

ATT GC-3’) and the IHT2N library (5’- Biotin-GTA TCT GAA CTA AT-3’) were synthesized 

and HPLC-purified by Eurogentec (Seraing, Belgium).  

The composition of the PBS buffer (1x, pH 7.4) was as follows: 137 mM NaCl, 2.7 mM KCl, 

9.6 mM Na2HPO4, and 1.5 mM KH2PO4. The used D-PBS-buffer (containing 0.9 mM CaCl2 

and 0.5 mM MgCl2 in the 1x concentrated solution) was purchased as a 10x concentrate 

at a pH of 5.3 from Sigma (cat. no.: D1283). The pH was adjusted to 7.4 during 

preparation of the 1x concentrated buffer.. Recombinant human activated protein C 

(rAPC, Xigris®) was purchased from Eli Lilly (Windlesham, Surrey, UK), recombinant 

human Factor VIIa (NovoSeven®) was obtained from Novo Nordisk (Bagsværd, Denmark). 

Argatroban was obtained from Mitsubishi Pharma (Düsseldorf, Germany). Human FVIII 

was purchased from CSL Behring (Marburg, Germany). Plasma-derived human Protein C 

(Ceprotin®) was from Baxter (Unterschleißheim, Germany). Unfractionated heparin (UFH) 

was purchased from Ratiopharm (Ulm, Germany). Human alpha-thrombin, activated 

human FIX and human FX was from Haematologic Technologies, Inc. (Essex Junction, USA) 

and was purchased from Cellsystem (Troisdorf, Germany). The aPTT reagent Actin FS was 

purchased from Siemens Healthcare Diagnostics. Phospholipids was obtained from Rossix 

(Mölndal, Sweden). G-25 columns were purchased from GE Health Life Sciences (Freiburg, 

Germany). T4 Polynucleotide Kinase (PNK) was obtained from New England Biolabs 

(Frankfurt, Germany) and [γ-32P] ATP was purchased from PerkinElmer (Rodgau, 



Chapter 4: Modifying substrate specificity of APC using aptamers 

65 
 

Germany). The fluorogenic APC peptide substrate PCa 5791 (Pyr-Pro-Arg-AMC) was 

purchased from Loxo (Dossenheim, Germany) and Fluorogenic FXa substrate, I-1100 (Boc-

Ile-Glu-Gly-Arg-AMC) was obtained from Bachem (Weil am Rhein, Germany). The 

chromogenic APC substrate p-Glu-Pro-Arg-MNA was part of the Berichrom Protein C Kit 

(Siemens Healthcare, Marburg, Germany). Reagents for thrombin generation (5 pM TF-

reagent [PPP-reagent], thrombin calibrator, FluCa buffer and the fluorogenic thrombin 

substrate Z-Gly-Gly-Arg-AMC) were purchased from Stago (Düsseldorf, Germany). Rabbit 

thrombomodulin was purchased from Sekisui (Pfungstadt, Germany). Protein C-deficient 

plasma was purchased from Affinity Biologicals (Ontario, Canada).  

 

4.3.2. Capillary electrophoresis-(CE)-SELEX 

All CE separations were performed using the ProteomeLab PA 800 (Beckman Coulter, Inc., 

Fullerton, CA, USA) as previously described 47,113. In brief, 2 independent selections each 

comprising 6 cycles of CE-SELEX against rAPC were performed using the ssDNA-libraries 

IHT1 or IHT2N. The concentration of rAPC within the equilibrium mixture with (selected) 

ssDNA was reduced with each selection cycle to increase stringency. Generation of ssDNA 

for subsequent selection cycles was isolated from asymmetric PCR mixtures by Capture 

and Release (CaR) using the IHT1 or IHT2N capture molecules as previously described 47.      

 

4.3.3. Next generation sequencing and data analysis 

NGS was performed using the Illumina sequencing by synthesis technology on a HiSeq 

1500 instrument. For adapter ligation with some adaptations, the TruSeq DNA PCR-Free 

(LT) sample preparation kit (Ref.15037063, Illumina) was used. A detailed description of 

the sample preparation protocol has recently been published 114. Data processing of the 

raw sequencing data was done by AptaIT (Munich, Germany) using the COMPAS software. 

 

4.3.4. In silico secondary structure predictions 

The ‘DNA folding form’ on the mfold web sever available at 

http://mfold.rna.albany.edu/?q=mfold 91 was used at default settings to predict the 

Watson-Crick-based intramolecular folding patterns of the identified single aptamer 

sequences. The web-based QGRS mapper software available at 

http://bioinformatics.ramapo.edu/QGRS/analyze.php 115 was used at default settings to 

assess the presence of putative G4-forming sequences (G4 motifs) within the aptamers.   
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4.3.5. Detection of G-quadruplex formation by Thioflavin T-staining  

In general, aptamers and G4-positive (45Ag) or negative controls (45noG4) were heated 

to 90°C followed by cooling to RT in G4-buffer (50 mM Tris-HCl, pH 7.5 containing 50 mM 

KCl) and preserved on ice until analyzed. 

For PAGE-analysis, 30 pmol of aptamers and controls were mixed with 40% sucrose 

solution and loaded on native 20% polyacrylamide gels supplemented with 50 mM KCl. 

Electrophoresis was performed at 4°C for 4 hours at 80 volts in running buffer (Tris 

Borate, pH 8.3; 89 mM Tris, 89 mM boric acid, and 20 mM KCl) using a MINI Protean Gel 

System (Bio-Rad, Munich, Germany). Gels were subsequently stained with either 

SYBRGreen (1x) or thioflavin T (ThT, 1 µM) in running buffer and bands analyzed using a 

Chemidoc imaging system equipped with image lab 5.0 software (Bio-Rad). 

For analysis in solution, aptamers and controls (1 µM) were stained in G4-buffer at RT 

with either ThT  (1 µM) or SYBRGreen (1x) using black 96-well ½ AreaPlate microplates 

(Perkin Elmer, Rotgau).  Fluorescence (λex = 425 nm / λem = 500 nm for ThT and λex = 497 

nm / λem = 520 nm for SybrGreen) was measured using a 2300 EnSpire Multimode Plate 

Reader (Perkin Elmer, Rodgau, Germany).      

 

4.3.6. Determination of dissociation constants and binding 

competition experiments 

Determination of binding affinities and binding competition experiments were performed 

using filter retention analysis as previously described in detail 113. In brief, aptamers were 

labeled at the 5’end using PNK and [γ-32P] ATP and labeled molecules purified by the use 

of G25 columns. For determination of dissociation constants (Kd), APC, PC, FVIIa or 

human α-thrombin were serially diluted (0-2 µM) in D-PBS buffer, pH 7.4 containing 0.1% 

BSA and 10 µM yeast tRNA (D-PBS+) and 32P-labeled aptamers added (1 nM final 

concentration). During HS02-52G competition experiments, increasing concentrations of 

non-labeled aptamers (0-1 µM) were incubated with APC (20 nM final concentration) for 

10 min followed by addition of 32P-labeled HS02-52G molecules (1 nM final 

concentration). For UFH competition experiments, increasing concentrations of non-

labeled UFH (0-500 µM final concentration) were incubated with APC (20 nM final 

concentration) for 10 min followed by addition of 32P-labeled aptamers (1 nM final 

concentration). In general, reaction mixtures were incubated for 30 min at 37°C and 

subsequently passed through pre-equilibrated 0.45 µm nitrocellulose membranes 

followed by three washes using D-PBS+. The radioactivity remaining on the filter was 

quantified after exposure to a phosphor screen by a FLA 5100 imaging system (Fujifilm 

Life Science, Düsseldorf, Germany).  
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4.3.7. OECA-based binding competition experiments 

Competition of binding between HS02-52G and the NB aptamers to APC was also 

assessed using the APC OECA setting as previously described 56. In brief, increasing 

concentrations of aptamers (0-100 nM final concentration) were incubated with APC (180 

pM final concentration) for 1 h at room temperature (RT). The mixture was then 

transferred to the wells of microtiter modules primed with immobilized HS02-52G 

aptamers and incubated for 2 h at RT. After washing, the amount of APC bound to the 

immobilized HS02-52G aptamers was measured using 100 µl of 300 µM of the fluorogenic 

substrate PCa 5791 (λex = 360 nm / λem = 460 nm) in dilution buffer (10 mM Tris.HCl, 4 

mM CaCl2, 154 mM NaCl, pH 8.5) and a Synergy 2 microplate reader (Biotek, Bad 

Friedrichshall, Germany). 

 

4.3.8. APC amidolytic assay 

The influence of aptamer binding on the amidolytic activity of APC was assessed in the 96-

well format using fluorogenic and chromogenic APC peptide substrates. For fluorogenic 

measurement, increasing concentrations of aptamers (0-316 nM final concentration) 

were incubated with rAPC (180 pM final concentration) in assay buffer (10 mM Tris-HCl, 

137 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, 0,1% BSA, pH 7.4) in a total volume of 50 µl in 

white F8 Fluoronunc modules (Thermo Fisher Scientific [Nunc], Wiesbaden, Germany). 

For chromogenic measurement, rAPC (370 pM final concentration) was incubated with 

increasing concentrations of aptamers (0-100 nM final concentration) in standard 

transparent 96-well round-bottom plates, pre-coated with BSA (2% BSA in PBS, pH 7.4 

containing 0.05% Tween 20). Subsequently, 50 µl of PCa 5791 or p-Glu-Pro-Arg-MNA at a 

final concentration of 150 µM or 140 µM, respectively were added and substrate 

hydrolysis rates measured (chromogenic: λabs = 405 nm/fluorogenic: λex = 360 nm / λem 

= 460 nm) using the Synergy 2 microplate reader (Biotek). 

 

4.3.9. FVa and FVIIIa inactivation assays 

To determine the influence of aptamer binding on APC-mediated inactivation of FVa, 150 

pM FVa in assay buffer (20 mM Tris-HCl [pH 7.6], 137 mM NaCl, 5 mM CaCl2, 1 mg/ml BSA 

and freshly added 10 µg/ml phospholipids) was incubated with 0.25 ng/ml (4.5 pM) rAPC 

in the presence of increasing concentrations of aptamer (0-200 nM). After incubation for 

30 min, 25 µl of the mixture were transferred to a well containing 1.3 pM human FXa and 

10 mM fluorogenic thrombin substrate (Pefaflour I-1650) and supplemented to a total 

volume of 75 µl with assay buffer. Finally, 50 µl of 25 nM human prothrombin were added 
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to the reaction mixture and thrombin catalyzed substrate hydrolysis was monitored using 

Synergy 2 microplate reader and a λex 360 / λem 460 nm filter set. 

To determine the influence of aptamers binding on APC-mediated inactivation of FVIIIa a 

tenase assay was used. This assays measures the FVIIIa-activity through the rate of FXa-

formation. In Brief, activated FVIII was prepared by incubation of 1 U recombinant human 

FVIII with 0.025 U human α-thrombin in PBS buffer ([pH 7.4] 1 mg/ml BSA) in a total 

volume of 100 ml. After 2 min of incubation at room temperature, argatroban  (final 

concentration of 100 µM) was added to terminate thrombin activation. Activated FVIII at 

a concentration of 0.16 U/µl was incubated with 10 nM rAPC in assay buffer (20 mM Tris-

HCl [pH 7.6], 137 mM NaCl, 10 mg/ml phospholipids, 5 mM CaCl2, 1 mg/ml BSA) in the 

absence or presence of aptamers or controls (0.32–316 nM). After incubation for 30 min, 

25 µl of the mixtures was transferred to the wells of black F16 Fluoronunc modules 

(Thermo Fisher Scientific, Nunc) containing 3 nM human FIXa and 333 µM Boc-Ile-Glu-Gly-

Arg-AMC in a total volume of 75 µl assay buffer. Subsequently, 50 µl 25 nM human FX in 

assay buffer was added to the wells and the kinetic of FXa-mediated substrate hydrolysis 

monitored using a Synergy 2 microplate reader. 

 

4.3.10. Thrombin generation assay 

Increasing concentrations of aptamers and controls (0 – 800 nM final concentration) were 

added to pooled normal human plasma spiked with 2 U/ml rabbit thrombomdulin (TM). 

Plasma samples w/o rabbit TM and aptamers were applied as controls. Thrombin 

generation in the samples was monitored by calibrated automated thrombography (CAT) 

using standard reagents (Stago, Düsseldorf, Germany) and a Fluoroskan Ascent FL plate 

reader (Thermo Scientific) as previously described 116.  

 

4.3.11. APC anticoagulant activity in whole blood 

Whole blood clotting times were measured using aPTT reagents and the semi-automated 

10-channel ball-coagulometer KC10 (Amelung, Lemgo, Germany [now: Diasys, Flacht, 

Germany]). In brief, 100 µl of citrated whole blood containing different concentration of 

each aptamer (0.32 - 1 µM final concentration) and 50 µl of the contact phase activator 

Actin FS (Siemens Healthcare Diagnostics) were added to the system-specific cuvettes and 

incubated at 37°C for 3 min. Subsequently, 50 µl of 25 mM CaCl2 solution were added to 

start the clotting reaction. Time to detectable clot formation was measured mechanically 

and given in seconds. 
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4.3.12. APC-APC-inhibitor complex formation testing 

The inactivation rates of APC in plasma in the presence and absence of the different APC-

aptamers were assessed using a combined functional and immunological assay. In this 

assay normal human plasma was replaced by PC-deficient plasma to avoid competition 

between endogenous PC and exogenously added APC for binding to the PC antibodies. 

PC-deficient citrated plasma was spiked with argatroban and corn trypsin inhibitor (CTI) 

reaching final concentrations of 100 µM and 25 µg/ml, respectively. Subsequently, the 

plasma was recalcified (10 mM Ca2+ final concentration) using a 1 M CaCl2 stock solution. 

Primed plasma aliquotes were then spiked with aptamers or controls (100 nM final 

concentration) and sub-samples taken at the indicated time points. Each sub-sample was 

diluted 1 to 10 in D-PBS buffer containing 0.1% BSA and 22.2 µM of the APC inhibitor 

aprotinin and stored on ice. After completion of the sample series, 100 µl of the diluted 

sub-samples were incubated at RT for 1 h in the wells of microtiter-modules coated with 

the sheep anti-human PC antibody. 

White Maxisorp F8 Fluoronunc microtiter modules (Nunc) were coated with sheep anti-

human PC antibody (10 µg/ml, 100 µl/well) in coating buffer (Na2CO3 30 mM, NaHCO3 200 

mM, pH 9) at 4°C overnight. After three times of automated washing (ELx50 microplate 

washer, Biotek, Bad Friedrichshall, Germany) with D-PBS washing buffer (1x D-PBS, pH 

7.4, 0.05% Tween 20; 300 µl/ well), remaining binding sites were blocked by incubation 

with 200 µl/well blocking buffer (1x D-PBS, pH 7.4, 2 mg/ml BSA, 0.05 % Tween 20) for 2 h 

at RT. After incubation, the blocking buffer was aspirated from the wells (using the Elx50 

microplate washer) and primed microtiter-modules sealed and stored at 4°C until used.   

After washing, the residual activity of the immobilized APC was monitored using a 

fluorogenic peptide substrate (300 µM) in substrate buffer (100 µl/well). Substrate 

hydrolysis was monitored at 360ex/460em nm by kinetic measurement for 2 h using the 

Synergy 2 microplate reader (Biotek). Thereafter, a HRP-conjugated goat anti-human PCI 

antibody (0,5 µg/ml; 100 µl/well) was added to the wells and incubated for 1h at RT. 

Subsequent to washing, in order to assess the amount of APC-PCI complexes captured in 

the wells, BM chemiluminescence substrate (Roche) was added (100 μl/well) and 

luminescence intensity measured at 460 nm using the Synergy 2 microplate reader.  

 

4.4. Supplementary tables and figures 
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Table S 4.1. Aptamer sequences identified by cloning / sanger sequencing of two distinct selection 

procedures, IHT1 and IHT2N. 

Aptamer Selecti
on 
library 

Sequence (5’ to 3’) Binding 
affinity 
[nM] 

NB1 IHT1 AAGCAGTGGTAAGTAGGTTGACACATTAGGGCGGGGTA

CTCCTATCACGTATGGGGGCCTGTGTCTCTTCGAGCAA

TCCACAC 

20.24 

NB2 IHT2N GATTGTTACTGTCACGAGGATATCACGTATGGGGGGCC

GGCATGAGGGCCGCGCGTGACAATAGCACATTAGTTCA

GATAC 

1.57 

NB3 IHT2N GATTGTTACTGTCACGAGGATTGGGGGTTGGGTGGATA

GGCTGGCGTCGGGGCAGGTCAGTATAGCACATTAGTTC

AGATAC 

0.17 

HS02-52G D1 GCCTCCTAACTGAGCTGTACTCGACTTATCCCGGATGG

GGCTCTTAGGAGGC 

0.68 

 

Table S 4.2. Binding affinities of full length aptamers, truncated variants and HS02-52G to 

recombinant APC, plasma derived Protein C, as well as the structurally similar serine proteases 

plasma derived thrombin and recombinant activated factor VII. 

Aptamer  rAPC pPC pFIIa rFVIIa 

NB1-83 20.24 n.b. n.b. n.b. 

NB1-46 1.27 n.b. n.b. n.b. 

NB2-81 1.57 n.b. n.b. n.b. 

NB2-57 0.95 n.b. n.b. n.b. 

NB2-57G 0.79 n.b. n.b. n.b. 

NB2-51 4.72 n.b. n.b. n.b. 

NB3-82 0.17 n.b. n.b. n.b. 

NB3-49 0.05 n.b. ˃ 1 µM n.b. 

NB3-47 0.07 ˃ 1 µM n.b. n.b. 

NB3-49C 0.87 n.b. n.b. n.b. 

NB3-49CC 0.01 n.b. ˃ 1 µM ˃ 0.1 µM 

HS02-52G 0.68 ˃ 1 µM ˃ 1 µM n.b. 

r, recombinant; p, plasma derived; n.b., no binding. Values are given as means of two 

measurement. 
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Table  S 4.3. Half maximal inhibitory concentrations (IC50) of full length and truncated APC 

aptamers on APC amidolytic and anticoagulant activities. 

  
  
  
Aptamer 

  
  
  
Kd [nM] 

IC50 [nM]     
Competition 

experiment using 

HS02-52G (Filter 

retention assay) 

 [Fig. S 4.4 A] 

Competition 

experiment  using 

HS02-52G (OECA 

assay)  

[Fig. S 4.4 B] 

Competition 

exoeriment 

using UFH 

[Fig. S 4.4 C] 

NB1-83 20.24 138.7 4.18 6194 

NB1-46 1.27 166.5 3.2 7581 

NB2-81 1.47 144.4 10.92 1843 

NB2-57G 4.48 129.1 13.10 996 

NB3-82 0.17 180.1 5.98 5548 

NB3-49 0.05 115.3 6.35 9838 

HS02-52G 0.68 46.79 0.49 78410 

 

  

  

Aptamer 

IC50 [nM]       

Amidolytic 

activity (using 

Fluorogenic 

substrate) 

[Figure S 4.5 

A] 

Amidolytic 

activity (using 

chromogenic 

substrate) 

[Figure S 4.5 

B] 

FVa 

inactivation 

assay    

[Figure S 4.6] 

FVIIIa 

inactivation 

assay  

[Figure S 

4.7] 

Calibrated 

automated 

thrombography 

[Figure 4.2C] 

NB1-83 1.74 1.83 6.63 14.38 627.6 

NB1-46 1.31 0.86 5.93 11.22 n.b. 

NB2-81 3.54 3.03 6.96 38.48 n.b. 

NB2-57G 2.47 2.87 90.85 43.01 n.b. 

NB3-82 0.86 4.37 11.64 13.12 150.8 

NB3-49 1.16 0.90 13.53 8.26 46.56 

HS02-52G 0.36 0.32 1.52 4.91 35.65 

n.b., no binding. Values are given as means of two measurement. 
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Figure S 4.1. Monitoring of CE-SELEX by next generation sequencing. The evolution profiles of the 

most abundant sequences identified from (A) IHT1-based selection and (B) IHT2N-based selection. 
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Figure S 4.2. In-silico-prediction of secondary structures and key characteristics of full-length and 

truncated variants of NB1 (A), NB2 (B), and NB3 (C) extracted from m-fold web server on 

17.09.2015. In each group, the numbering follows the same order as full-length aptamer. The 

consensus sequence highlighted in gray. Each circle or quadrangle represents the corporation of 

the intended nucleotide in a bulge and G-quadruplex forming motif, respectively. Addition of 

complementary nucleotides was specified with * while nucleotides replaced by a complementary 

nucleotide (according to the Watson-Crick base pairing) marked with †. Dissociation constant (Kd) 

is shown in nM. 
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Figure S 4.3. G-quadruplex analysis. (A) Non-denaturing polyacrylamide gel electrophoresis (20% 

acrylamide gel supplemented with 50 mM KCl) for G-quadruplex structure detection using 

SybrGreen (1x) staining or (B) Thioflavin T (1 µM) staining. (C) The fluorescence enhancement 

resulting from polyacrylamide gel electrophoresis stained by Thioflavin T. The intensity of the 

45Ag band used as positive control was considered for intensity normalization. (D) Fluorescence 

enhancement of SybrGreen (1x) and Thioflavin T (1 µM) incubated with NB aptamers and related 

truncated variants. Error bars correspond to standard deviation of three measurements.  
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Figure S 4.4. Binding competition experiment. (A) Increasing concentrations of NB aptamers were 

incubated with rAPC at a final concentration of 20 nM followed by addition of radioactively 

labeled HS02-52G as the competitor. The reaction mixture passed through nitrocellulose 

membranes and remaining radioactivity was quantified. (B) NB aptamers as competitors were 

incubated with rAPC at a final concentration of 180 pM followed by transfering the mixture to the 

wells primed with immobilized HS02-52G aptamers. Residual amount of APC after washing was 

measured using an APC-specific fluorogenic substrate. Reduced APC amidolytic activity is an 

indicator of the replacement of NB aptamers by capturing ligand, HS02-52G. (C) Increasing 

concentrations of unfractionated heparin (UFH) were incubated with rAPC (20 nM final 

concentration) followed by addition of radioactively labeled NB aptamers. The reaction mixture 

passed through nitrocellulose membranes and remaining radioactivity was quantified. The 

intensity in the wells without competitor was defined as 100% value. Values are given as means of 

two measurements. 
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Figure S 4.5.  Influence of APC-aptamers and truncated variants on APC amidolytic activity. 

Recombinant APC (180 pM) was incubated with increasing concentrations of APC-aptamers  and 

cleavage rates of the (A) fluorogenic peptide substrate (Pyr-Pro-Arg-AMC) at a final concentration 

of 150 µM or the (B) chromogenic peptide substrate (p-Glu-Pro-Arg-MNA) at a final concentration 

of 140 µM measured. HS02-52G and AD02-52 were used as positive and negative controls, 

respectively. Data are shown as means of duplicates. 

 

Figure S 4.6. The impact of increasing concentrations of the full-length NB aptamers and 

truncated variants on APC-mediated inactivation of FVa. Purified factor Va (150 pM final 

concentration) was incubated with 4.5 pM rAPC in the presence of NB aptamers. Thrombin 

catalyzed substrate hydrolysis was monitored in the prothrombinase/tenase assay. Aptamers 

HS02-52G and AD02-52 have been used as positive and negative controls, respectively. All results 

are shown as means of duplicates. 
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Figure S 4.7. The impact of increasing concentrations of the full-length NB aptamers and 

truncated variants on APC-mediated inactivation of FVIIIa.Thrombin activated FVIII (0.16 U/ml) 

was incubated with APC (10 nM) in the presence of different concentration of aptamers or 

nagative control, AD02-52G. FXa-catalyzed substrate conversion was monitored after addition of 

FIXa and FX in final concentration of  2 nM and 8.3 nM, respectively. 

 

Figure S 4.8. Influence of APC aptamers and truncated variants on inhibition of APC by PCI. (A) 

Recombinant APC (final concentration of 1.9 nM) was spiked to PC-deficient plasma in the 

presence of 100 nM NB aptamers followed by sub-sampling and capturing of APC using sheep 

anti-human PC antibody primed plates. Residual activity of APC was measured through 

fluorogenic peptide substrate conversion. (B) Subsequently, a HRP-conjugated goat anti-human 

PCI antibody was added to the wells and APC-PCI complex formation was monitord using BM 

chemiluminescence substrate. The luminescence intensity corresponds to the time point of 120 

min incubation of HS02-52G aptamer was considered as 100% value. Aptamers HS02-52G and 

AD02-52 have been used as positive and negative controls, respectively. Results are shown as 

means of duplicates. 
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Abbreviations 

A260  Absorbance at 260 nM 

A280  Absorbance at 280 nM 

APC  Activated protein C 

ATP  Adenosine 5'-triphosphate 

B&W  Binding and washing buffer 

BSA  Bovine serum albumin 

CaR  Capture and release 

CE  Capillary electrophoresis 

Conc.  Concentration 

CTI  Corn trypsin inhibitor 

DNA  Deoxyribonucleic acid 

dNTPs  Deoxynucleotide triphosphate 

D-PBS  Dulbeco’s phosphate buffer saline 

EGF1  Epidermal growth factor 1 

EGF2  Epidermal growth factor 2 

ELISA  Enzyme-linked immunosorbent assay 

EOF  Electroosmotic flow 

EPCR  Endothelial protein C receptor 

ESI  Electronic supplementary information 

FII  Factor II (prothrombin) 

FIIa  Activated factor II (thrombin) 

FIX  Factor IX 

FIXa  Activated factor IX 

FV  Factor V 

FVa  Activated factor V 

FVII  Factor VII 
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FVIIa  Activated factor VII 

FVIII  Factor VIII 

FVIIIa  Activated factor VIII 

FX  Factor X 

FXa  Activated factor X 

FXI  Factor XI 

FXII  Factor XII 

FXIIa  Activated factor XII 

FXIII  Factor XIII 

GPIbα  Platelet glycoprotein Ib alpha chain 

HPLC  High performance liquid chromatography 

HRP  Horseradish peroxidase 

i.D.  Inner diameter 

Kd  Dissosiation constant 

kV  Kilo volt 

mA  mili amper 

MW  Molecular weight 

NOACs  new oral anticoagulants 

NGS  Next generation sequencing 

o.D.  Outer diameter 

OECA  Oligoenzyme capture assay 

PAGE  Polyacrylamide gel electrophoresis 

PAR-1  Protease activated receptor 1 

PAR-3  Protease activated receptor 3 

PBS  Phosphate buffer saline 

PC  Protein C 

PCI  Protein C inhibitor 

PCR   Polymerase chain reaction 

pM  Picomolar 
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PS  Protein S 

psi  Pound-force per square inch  

rpm  rotate per minute 

RT  room temperature 

SELEX  Systematic evolution of ligands by exponential enrichment 

SMB  Streptavidin magnetic bead 

SMB+  Streptavidin magnetic bead loaded with capture molecules 

ssDNA  single-stranded DNA 

TF  Tissue factor 

TFPI  Tissue factor pathway inhibitor 

TM  Thrombomodulin  

U  Unit  

UFH  Unfractionated heparin 

UV  ultra violet 

Vinj  Volume of injection 

WB  washing buffer 

WB+  washing buffer containing 1mg/ml BSA 

λem  emmision wavelength 

λex  excitation wavelength 
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