
Stochastic individual-based models
of adaptive dynamics and

applications to cancer immunotherapy

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Martina Vera Baar

aus

Ibbenbüren

Bonn, Oktober 2016





Angefertigt mit Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Anton Bovier

2. Gutachter: Prof. Dr. Anita Winter

Tag der Promotion: 24.02.2017

Erscheinungsjahr: 2017





i

Abstract

In this thesis stochastic individual-based models describing Darwinian evolution of asexual,
competitive populations are studied. A specialization of these models is developed to de-
scribe tumor development under immunotherapy and an arising extended model is analyzed
mathematically. In the first part (Chapter II) we consider a population with a large but non-
constant population size characterized by a natural birth rate, a logistic death rate modeling
competition, and a probability of mutation at each birth event. In this individual-based model
the population state at a fixed time is given as a measure on the space of phenotypes and
the evolution of the population is described by a continuous time, measure-valued Markov
process. We investigate the long-term behavior of the system in the limits of large population
size (K →∞), rare mutations (u → 0), and small mutational effects (σ → 0), proving conver-
gence to the canonical equation of adaptive dynamics. This limit equation is an ODE that
describes the evolution in time of the phenotypic value in a population consisting essentially
of one single phenotype. The main difficulty is that we take the three limits simultaneously,
i.e. u = uK and σ = σK , tend to zero with K, subject to conditions that ensure that the time
scale of birth and death events remains separated from that of successful mutational events.
This slows down the dynamics of the microscopic system and leads to serious technical diffi-
culties that require the use of completely different methods than in comparable works where
the limits are taken separately. More precisely, the time until a mutant phenotype fixates is
diverging (inK) and thus, we cannot use the law of large numbers to approximate the stochas-
tic system. In the second part (Chapter III) we propose an extension of the individual-based
model, which broadens the range of biological applications. The primary motivation was to
model cancer immunotherapy in order to simulate and describe qualitative the experiments
reported in Landsberg et al. [92], where tumors resist immunotherapy through inflammation-
induced reversible dedifferentiation. The main expansions are that we have three different
actors in this context (T-cells, cytokines, and cancer cells), that we distinguish cancer cells
by phenotype and genotype, that we include environment-dependent phenotypic plasticity,
and that we take into account the therapy effects. With this new setup we are able to model
various phenomena arising in immunotherapy. We argue why stochastic models may help
to understand the resistance of tumors to therapeutic approaches and may have non-trivial
consequences on tumor treatment protocols. Furthermore, we show that the interplay of ge-
netic mutations and phenotypic switches on different time scales as well as the occurrence of
metastability phenomena raise new mathematical challenges. The present thesis focuses more
on these aspects. More precisely, we study the behavior of the individual-based model which
includes phenotypic plasticity on a large (evolutionary) time scale and in the simultaneous
limits of large populations (K → ∞) and rare mutations (uK → 0), proving convergence to a
Markov jump process, which is a generalization of the usual polymorphic evolution sequence.
This can be seen as an extension of the results by Champagnat and Méléard (cf. [25, 30]).
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Chapter I

Introduction

In this thesis we study stochastic-individual based models for Darwinian evolution of asexual
reproducing, competitive populations. Furthermore, we specialize these models to be able to
describe tumor development under treatment with immunotherapy and investigate the ex-
tended individual-based models which arise from this applications mathematically. Biological
evolution, explaining the origin and the variation of species, is very complex and a result of
various underlying processes such as reproduction, variation by mutation and recombination of
genetic material, competition between individuals and species, and selection of the most adap-
tive traits. Cancer immunotherapy harnesses and enhances a patient’s own immune system
to treat cancer and is one of the most promising new cancer treatment approaches [34]. Also
the mechanisms behind cancer immunotherapy are driven by various underlying processes,
such as interaction between immune cells, cancer cells, and cytokines or the phenotypic and
genotypic heterogeneity of cancer cells. Much of the mathematical work in evolution theory
as well as in cancer immunology has taken place on a deterministic level, using dynamical
systems and differential equations [7]. Our aim is to study stochastic models which describe
the system on the level of individuals and use them to make predictions about the macroscopic
long-term behavior of the system, which incorporate the random effects of the microscopic
level. An evolutionary example for this is that a mutant, which appears in a large population
and is fitter than the other individuals, can die out accidentally with a certain probability and
therefore does not invade the population. With respect to cancer immunotherapy a further
example is that there can be randomness concerning whether a therapy destroys all cancer
cells or some remain, which might then lead to a relapse. Studying these models is challenging
from the mathematical point of view and requires to establish new methods, which may also
be useful to solve problems in other models as we will see e.g. in Chapter II.

The introduction is organized as follows. In the first section we give a short introduction
and historical overview of the biological theory of evolution and describe some of the main
mathematical formalizations and modeling approaches of evolution theory which were estab-
lished in the last century: population genetics (including quantitative genetics), evolutionary
game theory, and adaptive dynamics. We explain why stochastic individual-based models of
adaptive dynamics are a convenient tool to study mathematically certain aspects of the biolog-
ical theory of evolution and give some background information about these density-dependent
Markov processes. Then, we give a rough overview of the different therapeutic approaches of
cancer immunotherapy and argue why an expansion of the stochastic individual-based models
of adaptive dynamics is a good choice for modeling cancer immunotherapy.

In the second section we begin with studying a simple individual-based model describing
evolution of a population only as a result of interaction between individuals but ignoring
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variation, i.e. describing development due to ecological effects only, not long-term evolution.
We give three examples with concrete parameters and explain why the stochastic process
can be approximated for large populations by a deterministic function. After this we define
the stochastic individual-based model, which is the foundation of the models we study in
this thesis and describes the Darwinian evolution of a population including the effects of
interaction and variation. Variation is modeled by the possibility that a mutation can occur
at each birth event with a certain probability. In this type of models the evolution of the
population is described by a continuous time, measure-valued Markov process. Examples and
simulations are provided at the end of the section.

In the third section we give an overview of the thesis and present the main results. The-
orem II.4.1, a convergence result for the stochastic individual-based model, will appear soon
in Annals of Applied Probability as a joint work with A. Bovier and N. Champagnat. In
this publication, which is the content of Chapter II, we investigate the long-term evolution
of the system in the limit of large population size combined with rare mutations and small
mutational effects, proving the convergence to the canonical equation of adaptive dynamics
– in one step. In Chapter III we propose a model for cancer immunotherapy and present
an example which qualitatively models the experiment of Landsberg et al. [92], where tu-
mors escape cancer immunotherapy by phenotypic plasticity in presence of certain cytokines.
Furthermore, we study the influence of phenotypic plasticity on the long-term evolution of
asexually reproducing populations in the limits of a large population size combined with rare
mutations, proving the convergence to the extended version of the polymorphic evolution se-
quence. Parts of this chapter are already published in Scientific Reports as a joint work with
L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting, and A. Bovier.

Note that this introductory chapter gives the historical context and a more extensive
overview about different model approaches. The most relevant parts, directly related to the
mathematical work presented in this thesis, are also given in the introductions of Chapters II
and III in a condensed way. The two main chapters are related to each other but can be read
independently.

I.1 Modeling Darwinian evolution and cancer immunotherapy

The modern theory of biological evolution has its source in Charles Darwin’s book On the
Origin of Species [36], published in 1859, where he outlined the famous basic principles of
evolution which were later summarized by the phrase survival of the fittest. The scientific
theory of evolution is based on the principle of natural selection, which was independently
also conceived and described by Wallace [37]. It can be described by the following three basic
mechanisms:

Heredity: individuals can reproduce and pass their traits from generation to generation

Variation: traits vary among individuals with respect to morphology, physiology, etc.

Natural Selection: different traits have different rates of survival and reproduction (fitness)

Individuals which are better adapted to the environment survive and reproduce more likely
and thus transmit their traits to more descendants than less adapted individuals. This pro-
duces the process of natural selection and has the consequence that disadvantaged traits
disappear over time. These central ideas of Darwin and Wallace have remained largely un-
changed. What was missing in Darwin’s theory of natural selection was a proper scientific
theory of inheritance which explains the variation among individuals on which natural selec-
tion can act. To obtain that selection modifies populations gradually over a long period of
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time, as suggested by Darwin, a continuous supply of variation is necessary. During the 19th
century the idea of blending inheritance, which is based on the hypothesis that offsprings have
characteristics that are intermediate between their parents, was quite common, but Darwin
had reservations regarding this idea. Moreover, as was pointed out by Jenkin [82], variation
decays rapidly over time under blending inheritance. A proper mechanism of inheritance,
which is essentially still accepted today even if our modern understanding of heredity is much
more complex, was provided in 1866 by Gregor Mendel [100], who studied the reproduction
of peas. His predictions about how traits are inherited from one generation to the next led
to the formalism of Mendel’s law of inheritance. In other words, Mendel devised the mech-
anism of heredity for sexual reproduction that was missing in the theory by Darwin. The
Mendelian inheritance is based on phenotypic traits, which are determined by genes. Each
gene of a diploid organism consists of two alleles, one from each parent. Furthermore, it is
based on three laws: segregation, alleles segregate from each other and each gamete (sexual
reproductive cell, e.g. egg or sperm cell) carries only one allele for each gene; independent
assortment, genes segregate independently during the formation of gametes; and dominance,
one allele dominates the other in inheritance unless both are recessive. (Note that until the
1920’s it was not clear how Darwin’s and Mendel’s theory could be combined, see Subsection
I.1.1 for more details.)

Darwin’s and Mendel’s works are the foundation of the evolutionary theory we still use
today. Each organism on earth is characterized by a genotype, which contains the full hered-
ity information and is encoded in the DNA, and a phenotype, which describes an organism’s
actual properties, such as morphological or physiological properties. The distinction between
genotype and phenotype is fundamental in the study of inheritance of traits and their evo-
lution. In a population consisting of individuals with different phenotypes, the individuals
interact with each other, they compete e.g. for resources (area, nutrients, water, food, etc.),
or with other species (host, parasite, predator, prey, etc.). This has of course an effect on the
reproduction and survival ability for each individual. In other words, the selection process
acts on the phenotypes and is a consequence of the competition between the different actors.
Thus, adaptation of phenotypes depends on the outer environment and on the composition of
the rest of the population. The mechanism of heredity is given in two forms, either by asexual
reproduction, i.e. an organism just copies its genome, which results in two genotypic identical
organisms as long as there was no error in the process of replication, or by sexual reproduc-
tion, i.e. the genomes of two gametes recombine and form an organism which includes genetic
material from both gametes. Asexual reproduction is the primary form of reproduction for
single-celled organisms (e.g. bacteria), but also many plants and fungi reproduce asexually.
More complex organisms usually reproduce sexually. Variation in sexually reproducing species
is generated by the recombination of two different genotypes and by mutations in the genome
of the offsprings. In species reproducing asexually, variation is generated by mutations only.
A mutation is a permanent alteration of the genome of an organism and results for example
from errors in the process of replication. Note that there is general agreement that mutations
are the ultimate source of variation [40]. Without mutations the genotype frequencies in sex-
ually reproducing population would remain constant after a relatively short time such that
the population would not evolve anymore (cf. Hardy-Weinberg principle).

Until today there are still lots of open problems in the theory of evolution. Some examples
are how the adaptation of an individual to the environment should be quantified, how the
environment influences the phenotype giving rise to phenotypic plasticity, and how the com-
plex map between genotype and phenotype, linking heredity and ecological influences, works.
More general problems concern the mechanisms behind natural selection, which results in the
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survival of the fittest on long time scales, and separation, which gives rise to new species.
Hence, simplifications and approximations are necessary to understand the complex mecha-
nism of biological evolution. In the following, we describe some of the main mathematical
formalizations and modeling approaches of evolution theory which were established in the last
century and have different simplifications in order to focus on different aspects of evolution.

I.1.1 Population genetics

The theory of population genetics focuses on the genetic differences within a population and
studies changes in the allele frequencies, but usually ignores that individuals interact with
each other or, more general, are influenced by their environment. This simplification makes
it possible to model a realistic inheritance law in order to understand the complex patterns
of genetic variation. Population genetics has its origin in the fundamental work of Fisher,
Haldane, and Wright, developed already about one hundred years ago. However, the current
research in this field is still based and strongly influenced by their work. This pioneering work
also laid the foundation of the modern evolutionary synthesis, in which the disagreements
between Darwin’s and Mendel’s theories were overcome.

Among the scientists at the end of the 19th century there was already a disagreement
whether the process of evolutionarily changes is gradual, as Darwin argued, or occurs in
jumps, as e.g. Huxley believed. However, with the rediscovery of Mendel’s work in 1900 many
scientists rather believed in a non-Darwinian evolution process through jumps and some even
thought that Mendel’s work refuted Darwin’s idea of natural selection. This lead to a discord
between Darwinism and Mendelism. The problem was that Darwin focused on the evolution
of complex organisms, where the selection process acts on a large number of slight variants,
and Mendel focused in his studies on the inheritance of discrete phenotypic traits determined
by a single gene. In the early years of the twentieth century, eventually, Fisher, Haldane,
and Wright solved this problem by establishing a theoretical framework which integrates
the inheritance principles of Mendel in the Darwinian theory of the natural selection. More
precisely, Fisher showed in [58] that the correlation between relatives, measured by biometric
properties, can be explained by multiple Mendelian factors and random non-genetic influences
and that thus Mendel’s inheritance theory agrees with the theory of natural selection: The
discontinuous jump character of Mendelian genetics disappears if traits depend on many genes,
where each has only small contributions, and results in almost continuous variation and thus
gradual evolution. Haldane developed a mathematical theory of natural and artificial selection
in Mendelian populations, providing expressions for the evolutionary changes caused by slow
and rapid selection, in which traits depend on a single or on several genes and generations do or
do not overlap [70, 71]. In these models selection is acting on the differences in survival ability,
reproduction or mortality due to Mendelian genes. Furthermore, the interaction of natural
selection with mutation as well as with migration is mathematically analyzed and metastable
phenomena caused by genes which are disadvantageous alone but advantageous together are
mentioned. In [117] Wright described mathematically how the random process of reproduction
changes the gene frequency in finite populations, analyzed the interplay between this random
genetic drift and mutation, migration, and selection of various sorts, and synthesized these
processes into a single formula for the stationary distribution (cf. [11]). (Note that this
stationary distribution can be seen as an expansion of the Hardy-Weinberg principle, developed
in 1908 by Hardy and Weinberg, independently from each other, and stating that the genetic
variation within populations remains constant from one generation to the next in the absence
of other disruption processes such as mutation.) Furthermore, in 1932 Wright introduced the
concept of an evolutionary or adaptive landscape, where selection drives populations upwards
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on this fitness landscape towards a local peak while the genetic drift can push the population
away from such a local maximum and could potentially cause a peak shift [118].

The historical part about population genetics above is mainly taken from the introductory
books [52] and [56]. Note that both books focus on the purely mathematical theory and less
on population genetics itself. (See [47, 35] for alternative introductions.)

In general, population genetics incorporates experimental, observational and theoretical
aspects and is largely quantitative. Unfortunately, the complexity of nature often has the con-
sequence that the mathematical models of populations genetics, which are necessarily based
on simplifications, are eventuality obsolete because of new findings from experiments or ob-
servations [56]. However, the purely mathematical theory of population genetics is a very
large area of applied mathematical research, provides detailed models of the genome struc-
ture and the mechanisms of inheritance, and may help to make quantitative statements of
new findings qualitative. Apart from studying the forward going evolutionary process, as the
classical theory surrounding the Wright-Fisher model does, since the 1980’s it is also common
to focus on the retrospective analysis, i.e. to look backwards in time e.g. to the most recent
common ancestor [52, 56]. In particular, the retrospective models surrounding the Kingman
coalescent process have on the one hand rich mathematical structure and provide on the other
hand the necessary tools for the interpretation of genetic data and thus became a significant
part of the current research [52, 56]. The inheritance relationships between the individuals
are typically represented as a genealogical, coalescent or gene tree in this retrospective theory
[52]. However, also the classical prospective theory is still highly relevant and its tools can
be applied in the coalescent theory [56]. Most of the mathematical models used in popu-
lation genetics, including the Wright-Fisher and the Kingman coalescent mentioned above,
are simplified by a constant or effectively infinite population size but include mechanisms
that can be used to describe sexual reproduction [56]. Further common models in the field
are the Cannings model, the Moran model, the Wright-Fisher diffusion, Kimura’s stepping
stone model, and the Fleming-Viot process (cf. [52, 56]). Besides short-term dynamics of the
gene frequencies, also long-term evolution including mutation and selection can be studied by
population genetic models [40]. The selective advantage of an organism is often an a priori
given quantity in these models called fitness, which depends directly on the genome but ig-
nores the outer environment and the composition of the rest of the population [56]. Thus, by
natural selection the population tries to reach the maximum of a fixed adaptive landscape.
One of the problems about ignoring interaction is that it is hard to model the phenomenon
of a population splitting into two lines going their separate ways. Therefore, the origin of the
species is a barely understood problem of population genetics [104]. Furthermore, since selec-
tion acts on phenotypes, a knowledge of the genotype-phenotype map is required to be able
to study evolution. This map is affected i.a. by the dominance between alleles and epistatic
genes (which act as inhibitors of other genes) and thus, in general, extremely complicated.
As a consequence, a quantitatively description of long-term evolution on the DNA-level is
impractical [40]. Besides this, population genetic models of evolution usually assume that
phenotypic traits are controlled by genes at a single locus (position on a chromosome), but
most traits which are important for the evolutionary process are determined by several or
many genes at different loci [23].

Quantitative genetics is a branch of population genetics founded by Fisher [58], which
deals with evolution of phenotypic traits that vary (almost) continuously and are measured
on a metric scale. (See e.g. [57] or [22] for an introduction.) These traits are usually influenced
by genes at many different loci in the genome, rather than just one or two. In other words,
quantitative genetics studies the inheritance of quantitative rather than qualitative traits
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[57]. Examples for quantitative traits are weight and hight or, more specific, wing span in
birds and milk yield in cows. In general, many morphological, physiological, or economically
important traits are quantitative [22, 23]. Thus, understanding the inheritance mechanisms
of these quantitative differences is important for studying evolution by natural selection or
breeding. Though the Mendelian laws cannot be applied directly to quantitative traits, a
basic premise of quantitative genetics inheritance is that qualitative traits depend on genes
which are subject to these laws. Hence, this theory can be seen as an expansion of Mendelian
genetics. The main methodical differences are that quantitative genetics studies evolution
on the level of populations, not of individuals as population genetics does, and that for
this study the metric measurement not only the classification of the individuals is necessary,
i.e. quantitative genetics had to develop concepts for genetic properties of populations and
for inheritance of metric traits [57]. Therefore, it simplifies both the parents-offspring and
genotype-phenotype relation, but makes it possible to study natural selection of phenotypes
independently of genetic details [40]. An important feature of most metric traits is that, on
an appropriate scale, their frequency distribution is close to a normal curve [57, 23]. This can
be justified by considering that quantitative traits are usually controlled by a large number
of loci, whose alleles have only small contributions, and the central limit theorem [23, 22].
Thus, properties of the normal distribution and statistical techniques can be used to study
the evolution of quantitative traits. Furthermore, observed metric traits can be characterized
in terms of mean, variance, and covariance [57]. Of course quantitative traits are affected by
the environment. Quantitative genetics incorporates besides genetic also this environmental
dependence and describes the change in the distributions of the quantitative traits over time
(i.e. from generation to generation) [40].

In [90], Lande introduced a simple quantitative genetic discrete time model, where phe-
notypic traits depend on a genetic and an environmental component and which provides a
recursive equation for the evolution of the mean phenotypic trait. Selection acts in this model
on the phenotypic trait, favoring the fittest. Besides the case of constant phenotypic fitnesses,
also the case of frequency-dependent selection, where a phenotype’s fitness depends on the fre-
quencies of the different phenotypes present in the population modeling interaction between
the individuals, is considered in this paper [90]. Once the fitness function is determined,
the evolution of the main phenotypic trait value can be described in terms of the frequency
distribution and this fitness function. Moreover, if the variance of the trait distribution is
small, the change in the main trait value can be approximated by a deterministic recurrence
independent of the frequency distribution (cf. [40]). This was done for constant fitness by
Lande [91] and further developed for non-constant fitness in [80, 1, 114]. Lande’s theory had
a large impact on evolutionary biology because it integrates methods of quantitative genet-
ics into evolutionary genetics, it has a simple and intuitive character, where detailed genetic
information is not required, and thus it has received heuristic and predictive importance in
many applications. A further reason for the success of Lande’s theory was the introduction
of a powerful adaptive landscape concept for phenotypic traits, which is related to Wright’s
concept of an evolutionary landscape for genotypes mentioned above [23]. Note that there
is a close relationship between the deterministic recurrences obtained out of Lande’s theory
and the canonical equation of adaptive dynamics, which is a central object of this thesis (see
paragraph about adaptive dynamics).

I.1.2 Evolutionary game theory

An alternative framework which ignores genes and sexual reproduction and focuses on study-
ing phenotypic evolution in some interacting environment is evolutionary game theory. This
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concept was introduced around 1970 by Maynard Smith and Price [99]. The simplification of
asexuality allows to concentrate on the selection process as a result of interaction. While pop-
ulation genetics models are a good tool for studying the genetic variability of a population,
game theory models are convenient for studying phenotypic evolution in a more ecological
realistic manner. In Maynard Smith’s words, evolutionary game theory is a way of thinking
about evolution at the phenotypic level when the fitness or evolutionary advantage of an in-
dividual organism depends on its phenotype and on the frequencies of the other phenotypes
currently present in the population [98], i.e. the fitness is not a given (constant) quantity, but
depends on the population the individual lives in. This framework considers the individuals
of a population as playing games against each other and studies the resulting population
dynamics and equilibria, which may be attained by the population [98]. (Actually, this way
of considering evolution was already present in a paper published in 1930 by Fisher.) The
population state changes according to the rules of a game here. In this game of life, the
players are individuals of a population, the strategies are their heritable phenotypes, and
the payoff is their fitness in this environment. In other words, evolutionarily game theory
is an expansion of the classical game theory, which was established by von Neumann, Mor-
genstern, and Nash [115, 107, 106] to analyze economical and social behavior. In fact, the
concept of game theory turned out to be even more suitable to describe biological behavior
[98]. One reason for this is that the main assumptions of the classical theory are that players
behave rational and according to self-interest but it is not really reasonable to believe that
humans behave rationality. In the evolutionary context, the rational behavior is replaced by
the dynamics and stability of the population and self-interest by Darwinian fitness [98]. It is
more reasonable to expect a population to evolve to stable states, i.e. to assume evolutionary
stability, than to believe in a rational human behavior [98]. Similar as in the classical game
theory, the dynamics and equilibrium states of the system resulting from playing the game
are in the focus of interest here. Especially from the evolutionary point of view, the study of
successive invasion strategies is very common, i.e. analyzing whether an alternative mutant
strategy or rather phenotype that is initially rare can invade the current population state. Of
particular importance in this context is the so-called evolutionary stable strategy (ESS), an
extension of the usual Nash equilibrium. Once such a strategy is adopted by all individuals
in the population, no initially rare mutant strategy has a higher fitness (payoff) and can thus
invade the population [98]. In other word natural selection alone is sufficient to prevent that
mutant strategies successfully invade such a strategy, i.e. it is stable in the evolutionary sense.
In the simple model introduced in [99], the assumptions that the population is infinite and
reproduces asexually and that only pairwise symmetric contests take place lead e.g. to ESS
[98]. However, evolution is a process of steady change, so one can criticize that the evolution-
ary game theoretical approach focuses on equilibrium states [98]. Nevertheless, the idea of
ESS has caused huge success in the field and evolutionary game theory has been very helpful
to explain many complex and challenging aspects of biology, e.g. altruistic behaviors in the
context of Darwinian evolution. Furthermore, it gains increasing importance in other fields
like economics, sociology, anthropology, and philosophy.

I.1.3 Adaptive dynamics

Since the 1990s a new branch of phenotypical evolution theory, known as adaptive dynamics,
is developing, which has its origin in the works of Hofbauer and Sigmund [74], Metz et al.
[103], and Marrow et al. [95]. Though the term adaptive dynamics sometimes refers to general
long-term evolutionary dynamics of quantitative traits, driven by mutations and selection, we
use it for the particular theoretical framework developed in the second half of the 1990’s by
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Metz et al. [104], Dieckmann and Law [42], and Geritz at al. [63, 62] which integrates and
expands the methods of evolutionary game theory (cf. [40]). Note that the introduction to
adaptive dynamics given in [26] served as basis for parts of this paragraph.

Adaptive dynamics is a theoretical approach for modeling phenotypical evolution in various
complex ecological systems and provides the basis for the work presented in this thesis. Similar
to evolutionary game theory, genetic details and sexual reproduction are usually ignored to
simplify the study and the fitness of an individual depends on its own phenotype and on the
environment, more precisely on the composition of the population it lives in and interacts
with. One advantage of the theory of adaptive dynamics is that it integrates ecological
dynamics in the evolutionary process, which play an important role in natural selection, and
provides powerful tools, which can be applied to many different ecological situations, e.g.
to describe competitive or cooperative interactions between different individuals or species,
or to describe predator-prey, immune-pathogen, host-parasite or plant-insect relationships.
Moreover, standard models of adaptive dynamics can be expanded e.g. in order to study the
evolution of cancer under treatment (cf. Chapter III). The ideas and the concepts of adaptive
dynamics have undergone many developments and extensions over the last decades. Besides
the papers we mention below, there exist many more in the context of adaptive dynamics,
which focus on different biological aspects, but all of them have in common that they analyze
the ecological effect on evolution. On the webpage www.mv.helsinki.fi/home/kisdi/addyn.htm
Kisdi provides a huge list of adaptive dynamics references ordered according to their aim.
(Apart from the probabilistic approach we consider here, Diekmann et al. proposed in [44] a
corresponding deterministic approach based on partial differential equations.)

A fundamental idea of adaptive dynamics is that the current population can be assumed
to be close to an equilibrium, determined by the ecological system, when a new mutant ap-
pears. This allows to introduce the notion of invasion fitness, which measures the selective
advantage of a mutant that occurs in this environment. In the individual-based model we
study in Chapter II, the selective advantage of an individual can be measured in terms of the
growth rate of this individual, which depends on its phenotype and the environment it lives
in (cf. [59, 25, 30]). Of course this growth rate changes if the environment changes, however,
if the population forms the environment and is close to an equilibrium generated by ecological
dynamics, the initial growth rate of a mutant individual appearing in this population deter-
mines the possibility whether the mutant’s phenotypic trait can stabilize in the population
or not. In other words, it determines if a mutant’s phenotype can invade the population
and thus it is called invasion fitness. Moreover, using this notion an environment-depending
invasion fitness landscape can be constructed, which allows to describe the successive mutant
invasions and stationary population states determined by the underlying ecological dynam-
ics. The main biological assumptions justifying this approach are that the size of the studied
population is large and that mutations during the asexual reproduction process occur only
rarely. Note that this invasion fitness landscapes, despite sounding similar to the traditional
fitness landscapes introduced by Wright, is conceptually different [116].

Historically, successive invasions of ecological stable strategies were first studied in the
context of game theory by Hofbauer and Sigmund in [74]. In this work a dynamics to model
the effect of adaptation when selection is frequency dependent is proposed and related with
the stability of equilibria. The proposed ordinary differential equation (ODE) describes the
evolution of dominant strategies (phenotypes) in an essentially monomorphic population. (We
say that a population is monomorphic if all individuals have the same phenotypic trait.) To
justify this continuous change in dominant strategies, the additional assumption that occur-
ring mutants have only slightly different strategies than their predecessors, i.e. the mutational

http://www.mv.helsinki.fi/home/kisdi/addyn.htm


I.1. MODELING DARWINIAN EVOLUTION AND CANCER IMMUNOTHERAPY 9

effects are small, is necessary. The idea to deduce the evolutionary behavior of a global ecolog-
ical system from the possibilities of mutant invasions and to analyze this dynamics further as
the phenotypic difference between mutant and predecessor tends to zero were also exploited
in a context of predator-prey interaction by Marrow et al. [95]. Further, the concept of a
fitness landscape coevolving with the population was already present in this article, which
was later improved in [104] and [101]. In [103], Metz et al. deal with the question how fitness
should be defined for general ecological scenarios. One of the first really fundamental papers
of adaptive dynamics is the paper [104] by Metz et al., which combines the approaches of [74]
and [103] and, together with the papers by Dieckmann and Law [42] and Geritz at al. [63, 62],
forms the foundation of this framework. In this paper the authors use more complex models,
add a dynamical aspect to the approach of game theory, and specify the necessary biological
assumptions. Moreover, these four papers together introduce the basic elements, methods,
and graphical tools used in adaptive dynamics.

As pointed out in [104], the main assumption, large population size and rare mutations,
implies that the ecological and evolutionary time scale are separated in the sense that whether
a mutant’s trait is selected is entirely settled before a new mutation occurs. There is enough
time such that the mutant’s trait either vanishes or fixates in the population before a new
mutation occurs. Another common assumption in the context of studying a competitive pop-
ulation is called invasion implies fixation principle and means that if a mutant’s trait fixates
in the population, it replaces the previous (resident) type completely, i.e. long-term coexis-
tence is excluded. This allows to define an evolutionary time scale where the population is
monomorphic at any time t. Hence, the evolution proceeds can be modeled as a continu-
ous time Markov process which jumps from one phenotypic trait to another fitter one. This
stochastic process is usually called trait substitution sequence (TSS) and has been introduced
by Metz et al. [103] (see also [104] and [42]) and mathematically studied in [27, 25, 30]. The
TSS model is a fundamental element of adaptive dynamics and the approach leading to this
model as well as this model itself provide powerful tools for understanding various evolution-
ary phenomena, such as polymorphism or evolutionary branching, and are the foundation for
other biological concepts as the canonical equation of adaptive dynamics [25]. By polymor-
phism we mean the stable coexistence of different phenotypes, which arises if the invasion
implies fixation principle is not assumed (cf. [104] and [30]). The phenomenon of evolutionary
branching, meaning that a population initially concentrated around a single dominant phe-
notype (evolving over time) splits into two sub-populations of different dominant types going
their separate ways, was vaguely already mentioned in [74] and in detail first studied by Metz
et al. in [104] (see also [63, 62]). Moreover, Metz et al. identify the points in the phenotype
trait space, where such a phenomenon is likely to happen, the so-called evolutionary singular
strategies, and give a criterion for evolutionary branching depending on the derivatives of the
fitness function at these points. Note that the concept of evolutionary singular strategies
can be seen as a generalization of the evolutionary stable strategy concept introduced in the
context of evolutionary game theory [62].

Another important concept in the theory of adaptive dynamics is the canonical equa-
tion of adaptive dynamics (CEAD), which was introduced by Dieckmann and Law in [42] and
describes the evolution in time of the expected phenotypic trait value in a monomorphic, com-
petitive population before an evolutionary branching. In the adaptive dynamics approach the
evolutionary process of various ecological systems proceeds as a sequence of mutant invasions,
where only mutants with positive invasion fitness can invade. Thus, under the additional
assumption that the difference between mutant and resident trait is very small, Darwinian
evolution of quantitative traits in several coevolutionary scenarios can be modeled as a grad-
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ual process given by the solution of a differential equation, which has in the one dimensional
case the form

dxt
dt

= k(xt)∂1f(xt, xt), (I.1.1)

where xt denotes the trait value of the population, k(xt) is a non-negative coefficient and
f(y, xt) is the invasion fitness, i.e. the selective advantage of individuals with trait value y
occurring in an environment determined in terms of the resident trait value xt [42]. More-
over, ∂1f denotes the partial derivative with respect to the first variable, i.e. ∂1f(xt, xt) ≡
∂
∂yf(y, xt)∣y=xt , and is usually called selection gradient in the literature. In this deterministic
model, selection pushes the population to increase its fitness locally. Dynamics of this kind
have been proposed and studied by many authors e.g. as a hill-climbing process on an adaptive
landscape (cf. [42] and references therein). As mentioned in the paragraph about quantitative
genetics, there also exists a structurally similar equation for sexually reproducing populations,
which was introduced by Lande in [91] and later extended to frequency-dependent selection
[80, 114, 1]. This has motivated Dieckmann and Law to consider the equation (I.1.1) as a
sort of canonical equation of evolutionary models [42, 40]. Moreover, in [42] they proposed an
ordinary differential equation of this kind describing long-term phenotypic evolution of quanti-
tative traits in an asexual reproducing, competitive population, where the coefficient k(x) and
the invasion fitness f(y, x) are given as explicit expressions taking into account the ecological
processes at the level of the individuals. Dieckmann and Law called their ODE canonical
equation of adaptive dynamics and showed that the coefficient k(x) equals the product of the
population size, mutation rate, mutation variance, and a factor 1/2. (The distribution of the
mutant trait value is assumed to be symmetric, i.e. on average half of the occurring mutants
have a negative invasion fitness. See Equation (II.3.9) for the explicit equation.) Dieckmann
and Law’s derivation has the conceptual background of modeling the dynamics of a population
as a Markov process which incorporates reproduction, mutation, and selection [27]. Further-
more, the heuristics leading to the CEAD are based on the following biological assumptions:
the population size is large, mutations are rare, and mutations have a small (phenotypic) ef-
fect. In addition, an invasion implies fixation principle is assumed. One possibility to recover
the CEAD, which Dieckmann and Law used in [42], is to look at small mutational effects in
the TSS model. (Recall that the TSS model describes the evolution of the phenotypic trait in
a monomorphic population and is already a macroscopic approximation for large populations
with rare mutations.) A mathematically rigorous proof of this derivation was given later in
[27] (see also [24, 30]). One problem about this approach is that it gives no clue about how
the biological parameters, population size, probability of mutations, and size of mutational
effects should be compared to ensure that the CEAD approximation of the microscopic model
is correct. In Chapter II we show that it is also possible to apply the three limits directly
to the microscopic (individual-based) model by taking them simultaneously with an explicit
relation between the parameters and to recover the CEAD (see below).

The mathematical background of adaptive dynamics

While the biological theory of adaptive dynamics is based on partly heuristic derivations,
various aspects of the theory have been derived rigorously over the last years in the context of
stochastic individual-based models. Most of the models used in probability theory to describe
biological evolution can be traced back either to the Galton-Watson branching process or to
the Wright-Fisher model. The classical Galton-Watson process can be used e.g. to model the
total population size, when individual evolve independently, and can be extended to branch-
ing random walks or branching Brownian motion if the individuals move during their lifetime
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according to random walks or Brownian motion [54]. In this finite-dimensional branching
models the population either goes extinct or grows without any bound. No non-trivial equi-
librium can be predicted, which makes it hard to model long-term evolution [54]. On the
other hand, most of the models surrounding the Wright-Fisher model, frequently used in pop-
ulation genetics, are simplified by a fixed constant population size (e.g. the Moran model or
the Fleming-Viot process). However, in a biological reasonable model a population should be
able to regulate the population size itself adapted to the environment the individuals live in.
The individual-based model we study in this thesis attains this feature.

More precisely, we study a system of interacting particles modeling Darwinian evolution of
an asexual population (with a large but non-constant populations size) at the individual level.
Each individual in the population is characterized by its phenotype and has a natural birth
rate, a density-dependent logistic death rate modeling competition, and a probability of mu-
tation at each birth event. Thus, the three basic mechanisms of evolution, heredity, mutation,
and selection, are included. This model has the conceptual background of a continuous time,
branching random walk, in which the death rate of an individual with trait x depends in addi-
tion on the population density and is defined as a weighted sum of the entire population, with
weights depending on the trait the individuals carry [54]. This density-dependent component
can on the one hand prevent that the population grows without bound and thus give rise to
non-trivial stable population size, but destroys on the other hand the convenient branching
property since individuals do not evolve independent from each other anymore. This makes
the study of the model more difficult because most of the beautiful mathematics in the fields
of branching processes rely on the branching property [54]. The model has originally been
proposed to understand stochastically driven spatial pattern formations in ecological systems
by Bolker and Pacala [15], in which the dispersion of the population (plants) is described by
a measure-valued Markov process. This locally regulated model has been studied in parallel
by Dieckmann and Law [43] and is sometimes called BPDL model in the literature. Since the
1970s, studying measure-valued stochastic processes has become very popular in the math-
ematical community [38, 53, 94]. For modeling Darwinian evolution of quantitative traits,
these processes have the advantage that the real metric traits, not only classifications, can
be studied, i.e. the space of possible phenotypic traits in the population does not have to be
finite. This allows to define mutational events where each new mutant has a new randomly
chosen phenotypic trait and guarantees a steady supply of variation. In the last decades,
locally regulated models have been extensively studied in many works by various authors, e.g.
[54, 59, 89, 25, 13, 78, 30, 39, 67], either as a model of Darwinian evolution or as a model
of dispersal in a spatially structured population. In [59], Fournier and Méléard formulate a
pathwise construction of the locally regulated process in terms of a Poisson point process.
The model we define in Subsection I.2.2 is based on the formalization of this work.

As mentioned before, there are mathematically rigorous papers which show that this
model converges in the simultaneous limits of large population and rare mutations to the
trait substitution sequence [25, 30]. Furthermore, this jump process converges, in the limit of
small mutation steps, to the canonical equation of adaptive dynamics [27, 30]. In Chapter II
we analyze the situation when the limits of large population size, rare mutations, and small
mutation steps, are taken simultaneously and prove that this process, which models evolution
at the individual level, convergences to the CEAD – in one step. The fact that the mutants
only have an infinitesimal small evolutionary advantage in this approach slows down the
dynamics of the microscopic system and leads to serious technical difficulties. However, the
simultaneous limit has the advantage (amongst other things) that population size, probability
of mutations, and size of mutational effects can be compared on the individual level and thus
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our results can be better applied to concrete biological examples to predict their long-term
behavior. (See Sections II.1 and II.3 for further details about the relation to the other works
and the technical difficulties.)

I.1.4 Cancer immunotherapy

In Chapter III we propose an extension of the above mentioned individual-based process,
which broadens the range of biological applications. The primary motivation is modeling
cancer immunotherapy, i.e. we want to study the evolution of a cancer population under spe-
cial treatment. During the last decades, treatment of various cancers with immunotherapies
received a lot of attention in the medical as well as the mathematical modeling communities
[108, 88, 50, 72, 65, 76]. The editors of Science even chose cancer immunotherapy as the
breakthrough of the year 2013. Immunotherapy does not attack the cancer cells, as chemo-
and radiotherapy do, but targets the immune system [34]. Abnormal cells, which may lead
to cancer, can usually be detected and destroyed by the immune system. However, some of
these cells have the ability to avoid this, e.g. by reducing the expression of tumor antigens on
their surface such that they can not be recognized by the immune cells, or by suppressing the
immune system’s activity in their microenvironment. As a result, these cells can proliferate
and generate a cancerous tumor. There are various cancer immunotherapies which help to
circumvent these cancer cell’s escape mechanisms such that the immune system can detect
and destroy the tumor again. Current therapies can be divided into three major classes:
non-specific therapies, monoclonal antibodies, and vaccines [51]. Non-specific therapies use
cytokines or other chemicals, e.g. IL-2 and IFN-α, to stimulate the general immune response.
The strength and duration of an immune response is usually limited by special checkpoint
proteins to prevent overreaction and damage of normal cells. Some monoclonal antibodies,
like anti-CTLA-4 and anti-PD-1, can be used as immune checkpoint inhibitors and thus in-
crease the immune systems ability to destroy cancer cells. Another approach is the so-called
chimeric antigen receptor therapy, an adoptive cell transfer (ACT), where T-cells are taken
from a patient, genetically modified to present cancer specific antigen receptors, and then
infused back into the patient to target these cancer cells [111]. Also vaccines, made from
patient’s own tumor cells, are used to strengthen the immune response to specific cancer.

Similar as for chemo- and radiotherapy, resistance is an important issue for cancer immuno-
therapy. Recently, several theoretical concepts have been proposed to explain why a cancerous
tumor develops resistance during an initially successful therapy, leading to a relapse. A widely
accepted idea to explain relapses is that pre-existing mutants (tumor cell variants with ge-
netic aberrations) which exhibit therapy resistance are selected in a Darwinian evolutionary
process (cf. [76] and references therein). Moreover, genotypic and phenotypic heterogeneity
is a general feature of advanced tumors, which is considered to be the main driving force
for resistance and may be enhanced during therapy [76, 96, 65]. In contrast to genotypic
heterogeneity, phenotypic plasticity is a source of tumor heterogeneity caused by, in principle
reversible, phenotypic switches, i.e. the phenotypic trait of a cancer cell can change over time.
Furthermore, the phenotype can depend on the microenvironment, which changes during
therapy. Landsberg et al. report in [92] their experimental finding that reversible phenotypic
switches due to side effects of the immunotherapy cause resistance of the tumor. Chapter
III is motivated by these experiments, where melanoma (skin cancer) under ACT therapy
are investigated. In [76], Hölzel et al. emphasize the importance of developing a theoretical
framework that incorporates the different aspects of therapy resistance, more precisely that
integrates phenotypic plasticity, clonal selection, and reciprocal interactions between tumor
cells and the microenvironment. Phenotypic plasticity can be described for example by the
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systems biology concept of the epigenetic landscape and gene regulatory networks, see [76]
and references therein. Simple Markov models, which describe the tumor on the cell level,
have been used to study the dynamics of phenotypic proportions in human breast cancer cell
lines [69]. Also models based on (multi-type) branching processes have been used to describe
cancer on the cellular level, e.g. to study the evolutionary dynamics of cancer in response to
targeted combination therapy or the accumulation of driver and passenger mutations during
tumor progression [41, 21, 3, 20, 83]. A semi-deterministic model has been used to study the
influence of driver mutations on the spatial evolutionary dynamics of solid tumors, where the
spatial growth of cancer clones is deterministic, while mutants arise stochastically [4]. Simple
deterministic models have been successfully used to address phenotypic plasticity of the can-
cer stem cell and its therapeutic implications [93]. However, non of these models incorporate
all the effects of cancer immunotherapy described above.

There are serval reasons why an expansion of the stochastic individual-based model of
adaptive dynamics is a reasonable choice for modeling cancer immunotherapy. For example,
cancer cells reproduce asexually, tumors grow from a microscopic to a macroscopic level,
tumor development is microenvironment depending, tumor cells compete for resources, and
they interact with immune cells during treatment. The model expansions we use in Chapter
III take into account that there are different types of actors in this context (T-cells, cytokines,
and cancer cells) and that each cancer cell is characterized by its genotype and its associated
phenotypes. Furthermore, we include microenvironment-dependent phenotypic plasticity and
the therapy effects. Apart from studying the effects on cancer immunotherapy, this model
allows to study the interplay of genetic mutations and phenotypic switches on different time
scales and thus can describe phenotypic and genotypic evolution of a population.

I.2 Stochastic individual-based models

In this thesis we study the evolution of an asexual reproducing population that is composed of
a finite number of individuals, each of them characterized by a one-dimensional (phenotypic)
trait, taking into account the interaction between the individuals. As mentioned above, this
can be done with stochastic individual-based models, which we introduce in this section.
These models build the foundation for the work presented in Chapters II and III and are
based on the pathwise construction of the locally regulated process by Fournier and Méléard
[59].

In the first subsection we give a simple model only describing the evolution as a result
of interaction between individuals but ignoring variation. Thus, this is a model describing
ecology only. In the second subsection we define the actual model describing Darwinian
evolution, including the effects of interaction and variation. Variation is modeled by the
possibility that at each birth event a mutation may occur with a certain probability. If this
probability equals zero, one is again back in the case of the simple model.

I.2.1 Stochastic multi-type models for describing ecological dynamics

We start with a simple model which focuses on the ecological dynamics of the population (cf.
[10]). To this aim let us study the behavior of a population with two different phenotypic
traits in some common environment. In this example we call the phenotypic traits 1 and 2, i.e.
all individuals carry either the trait 1 or 2. Thus, a population consists of two subpopulations.
Let K ∈ N describe the capacity of the environment. This can be interpreted as the size of
the area or the amount of available resources. We are interested in the development of the
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densities of the two subpopulations, i.e. the number of individuals with trait 1 respectively
trait 2 per capacity of the environment K. The dynamics of the whole population is a result
of the dynamics of each individual in this population. In this simple individual-based model,
all individuals with trait i ∈ {1,2} reproduce with rate bi ∈ (0,∞) and die due to age with
rate di ∈ [0,∞), where bi − di > 0. Furthermore, they compete for limited area or resources:
For i, j ∈ {1,2}, the competitive pressure an individual with trait i feels from an individual
with trait j is given by cij/K, where cij > 0 and c11c22 ≥ c12c21. So, if we assume that the
population at time t consists of N1(t) individuals with trait 1 and N2(t) individuals with trait
2, then the current total death rate of an individual with trait i ∈ {1,2} equals

di +
ci1
K
N1(t) +

ci2
K
N2(t). (I.2.1)

Note that the capacity of the environment K gives the magnitude of the population size, but
depending on the phenotypes more or less individuals can survive in the same environment
(i.e. the population size does not stay constant over time but can also not increase to any
size).

In [55] (Chapter 11) Ethier and Kurtz showed that for each K ∈ N the evolution of a popu-
lation with the dynamics described above can be modeled by an (N0/K)2-valued Markov pure
jump process xK with the following infinitesimal generator: For all functions f ∶ (N0/K)2 → R
with compact support and xK ∈ (N0/K)2,

LKf(xK) = ∑
i∈{1,2}

(f (xK + ei
K

) − f (xK)) bixKi K (I.2.2)

+ (f (xK − ei
K

) − f (xK)) (di + ci1xK1 + ci2xK2 )xKi K, (I.2.3)

where e1 = (1,0) and e2 = (0,1). The first term describes birth and the second death. Note
that the second term, which models the competition in the population, is non-linear in xK

and that xK describes the development of the population densities, i.e. at time t there are
xK1 (t)K ≡ N1(t) individuals of type 1 and xK2 (t)K ≡ N2(t) individuals of type 2 present in
the population. Figure I.1 provides simulations of the Markov process xK with three different
sets of parameters.

A B C

Figure I.1: Simulation of the stochastic process xK withK = 500 and three different sets of parameters
(cf. Table I.1). In A trait 2 (red curve) goes extinct, in B trait 1 (blue curve) goes extinct and in C
both traits coexist.

The law of large numbers (cf. [55], Thm. 11.2.1) justifies that we can approximate the
Markov process xK for large K and on a finite time interval by the solution of the two-
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dimensional competitive Lotka-Volterra system

ṅ1(t) = n1(t)(b1 − d1 − c11n1(t) − c12n2(t)), (I.2.4)
ṅ2(t) = n2(t)(b2 − d2 − c21n1(t) − c22n2(t)).

In other words, the behavior of large populations can be approximated by the behavior of the
deterministic system I.2.4. Figure I.2 shows the unique solutions of the deterministic systems
approximating the stochastic processes simulated in Figure I.1.
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Figure I.2: Solution of the system I.2.4 with three different sets of parameters (cf. Table I.1).

Fortunately, the behavior of the two-dimensional competitive Lotka-Volterra system is
well know. The fixed points of the system are: (0,0), ((b1 − d1)/c11,0), (0, (b2 − d2)/c22) and

((b1 − d1)c22 − (b2 − d2)c12

c11c22 − c12c21
,
(b2 − d2)c11 − (b1 − d1)c21

c11c22 − c12c21
) , (I.2.5)

where the latter is possible if both coordinates are positive. (Observe that if b1 = b2, d1 = d2,
and c11 = c12 = c12 = c22, then each point on the line, which connects ((b1 − d1)/c11,0) and
(0, (b2 − d2)/c22), is a fixed point. We use this fact in Chapter II.) Whether a fixed point is
stable, depends on the parameters of the system. Figure I.3 shows the vector fields of the
deterministic systems corresponding to Figure I.2.
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Figure I.3: Vector fields of the system I.2.4 with three different sets of parameters (cf. Table I.1).
The fixed points are shown as red dots. In A, the system is attracted to the strictly stable fixed
point (1,0). In B, the system is attracted to the strictly stable fixed point (0,1). In C, the system is
attracted to the strictly stable fixed point (0.8,0.4). Thus, only in C both traits coexist.

Given any positive initial condition, the solution of (I.2.4) converges to a unique fixed
point, describing either the fixation of a single trait or the coexistent of both. (Note that
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by assuming c11c22 ≥ c12c21 we have excluded that the fixed point (I.2.5) is a saddle point.)
This means that a sufficiently large population evolves until it reaches its unique ecological
equilibrium, which corresponds to the strictly stable fixed point of the deterministic system.
After that time it only fluctuates around this value and no real evolution takes place (cf.
Figure I.1). Note that for finite K the population will go extinct if one waits long enough.

A b1 = 5 d1 = 1 b2 = 4 d2 = 1 c11 = 4 c12 = 4 c21 = 4 c22 = 4

B b1 = 5 d1 = 1 b2 = 5 d2 = 1 c11 = 4 c12 = 4 c21 = 3 c22 = 4

C b1 = 5 d1 = 1 b2 = 5 d2 = 1 c11 = 4 c12 = 2 c21 = 3 c22 = 4

Table I.1: Parameters of the Figures I.1, I.2, and I.3

It is, of course, possible to study the corresponding multi-dimensional model. In this case,
the large population approximation leads to the multi-dimensional competitive Lotka-Volterra
system. In general, the long-term behavior of this system is very complex for higher dimen-
sions. (Zeeman proved in [120] that three-dimensional competitive Lotka-Volterra systems
admit Hopf bifurcations, which give rise to isolated periodic orbits. In [75] and [119], Hof-
bauer and So, and Xiao and Li give examples for systems with isolated periodic orbits. Smale
showed that if n ≥ 5, the n dimensional system can exhibit any asymptotic behavior [113].
In [73], Hirsch studied general n-dimensional competitive Lotka-Volterra systems and proved
that there exists an n − 1 dimensional manifold which attracts all non-convergent persistent
trajectories, i.e. the system is essentially n − 1 dimensional.)

However, if we assume that the competition matrix is symmetric and positive definit, the
multi-dimensional competitive Lotka-Volterra system has a unique, global, asymptotically
stable fixed point, i.e. if all components of n(0) are positive, n(t) converges as t → ∞ to
this fixed point (cf. e.g. Proposition 1.4 of [26] and references therein). Thus, the stochastic
process is attracted to this fixed point if the population size is large.

Since we want to study the Darwinian evolution of a single species and not only the
ecological interaction between different phenotypic traits, we are more interested in the case
where the traits of the individuals belong to a continuum. This allows to add mutational
events where each mutant has a new randomly chosen phenotypic trait, i.e. creates a new
type (cf. [10]).

I.2.2 Measure-valued models for describing Darwinian evolution

In this subsection, we define the stochastic individual-based model which is the foundation
of the models we study in this thesis (cf. [59, 25, 30, 10]). Note that although we study in
Chapters II and III the case of one-dimensional phenotypic traits only, we give the definition
of the more general model here.

The evolutionary process changes populations on a macroscopic level, but the basic mech-
anisms of evolution, heredity, mutation, and selection, act on the microscopic level of the
individuals. Hence, we describe the evolving population by a stochastic system of interacting
individuals, where each individual is characterized by a vector of phenotypic trait values.

Let l ≥ 1 and X a closed subset of Rl. Then, we call X the trait space of the population.
Furthermore, letM(X) be the set of finite non-negative measures on X , equipped with the
topology of weak convergence, and MP (X) ⊂ M(X) be the set of finite point measures on
X , i.e.

MP (X) ≡ {
n

∑
i=1

δ{xi} ∶ n ≥ 0, x1, . . . xn ∈ X} , (I.2.6)
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where δ{x} denotes the Dirac mass at x ∈ X . Our aim is to study the evolution of a population
as anMP (X)-valued, stochastic process (νt)t≥0 providing for each time t the population size
as well as the phenotypic trait distribution in the population. This process should take
into account the three basic mechanisms of evolution. Therefore, we introduce the following
biological parameters. For any x, y ∈ X ,

b(x) ∈ R+ is the rate of birth of an individual with trait x ∈ X .
d(x) ∈ R+ is the rate of natural death of an individual with trait x ∈ X .
c(x, y) ∈ R+ is the competition kernel which models the competitive pressure an individual

with trait x ∈ X feels from an individual with trait y ∈ X .
m(x) is the probability that a mutation occurs at birth from an individual with trait x ∈ X .
M(x, dh) is the mutation law of the mutational jump h. If a mutant is born from an

individual with trait x, then the mutant trait is given by x + h, where h is a random
variable with law M(x, dh). The support of this mutation law is a subset of X − x ≡
{h ∈ Rl ∶ x + h ∈ X}.

At any time t ≥ 0, we consider a finite population which consist of Nt individuals and each
individual is characterized by an element of X , its trait. Let us denote these traits by
x1(t), ..., xNt(t). (Note that we allow that different individuals carry the same trait, i.e.
we allow that xi(t) = xj(t) for some i ≠ j.) Then, we define the population state at time t as
the measure

νt =
Nt

∑
i=1

δxi(t). (I.2.7)

In the following, we roughly summarize the population dynamics (cf. [59]). At time t = 0,
we have a (possibly random) initial point measure ν0 ∈ MP (X). Each individual with trait
x ∈ X , alive at time t, has three independent exponentially distributed "clocks":

(i) a birth without mutation clock with parameter b(x)(1 −m(x)),
(ii) a birth with mutation clock with parameter b(x)m(x) and

(iii) a death clock due to natural death or competition with parameter d(x)+∑Nti=1 c(x,xi(t)).

If the birth without mutation clock of an individual rings, then the individual produces a new
individual and this individual carries the same trait as it parent. If the birth with mutation
clock of an individual (with trait x) rings, then the individual produces a new individual and
the trait of this individual is given by y = x+ h, where h is randomly chosen according to the
mutation law M(x, dh). Finally, if the death clock of an individual rings, then this individual
disappears. Note that the parameter of this clock depends on the current population state.
Whenever one of these events occurs, all clocks are reset.

In other words, we are looking for a homogenous measure-valued Markov process (νt)t≥0

with infinitesimal generator, L , defined for any bounded measurable function f fromMP (X)
to R and for all µ ∈ MP (X) by

L f(µ) = ∫X
(f (µ + δx) − f(µ)) (1 −m(x)) b(x)µ(dx) (I.2.8)

+∫X ∫Rl
(f (µ + δx+h) − f(µ))m(x)b(x)M(x, dh) µ(dx)

+∫X
(f (µ − δx) − f(µ)) (d(x) + ∫X

c(x, y)µ(dy)) µ(dx).
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The first and the second (linear) terms describe birth with and without mutations, whereas
the third (non-linear) term describes death due to age or competition. The selection process
is driven by the density-dependent non-linearity of the third term modeling the competition
in the population.

The following assumption allows to deduce the existence and uniqueness in law of a process
on D(R+,MP (X)) with infinitesimal generator L , see [59], where D(R+,MP (X)) denotes
the space of càdlàg functions from R+ toMP (X), endowed with the Skorokhod topology.

Assumption 1. (i) b, d, and c are measurable functions, and there exist b, d, c < ∞ such
that b(.) ≤ b, d(.) ≤ d, and c(. , .) ≤ c.

(ii) Either: There exists a constant C > 0 and a probability density M̄ on Rl such that for
all x ∈ X , M(x, dh) =M(x,h)dh with M(x,h) ≤ CM̄(h).

Or: The support of the probability measure M(x, dh) is finite for all x ∈ X .

In fact, in [59] Méléard and Fournier give an explicit pathwise description of the population
process, (νt)t≥0, in terms of Poisson measures. We recall this pathwise description in Sections
II.5 and III.4.1 of this thesis adapted to the models we are studying there. Though we
introduced this process to be able to study the case where the traits of the individuals belong
to a continuum, this definition is also valid if X is a discrete set.

I.2.3 Examples and Simulations

We start with a simple example, where X is finite. So, let X = {x1, x2, x3}. Then, we consider
an example with the following parameters

b(x1) = 8, b(x2) = 9, b(x3) = 10, (I.2.9)
d(xi) = 1, c(xi, xj) = 1, and m(xi) = 0.15 for all 1 ≤ i, j ≤ 3. (I.2.10)

Furthermore, we have a next neighbor mutation law i.e.

M(x1, x2−x1) = 1, M(x2, x1−x2) = 0.5, M(x2, x3−x2) = 0.5, and M(x3, x2−x3) = 1. (I.2.11)

Figure I.4 shows three realizations of the process. We use in the following the shorthand
notation ν(x) instead of ν({x}), for x ∈ X .

All simulations shown in this thesis are performed with a Gillespie algorithm implemented
by Boris Prochnau. Let us first explain in words how this particular example can be simu-
lated. Afterwards we give a more general pseudocode of the algorithm. It is mainly based on
elementary properties of Poisson point processes.

At time t = 0, we have a given initial population: ν0 = 6δx1 + δx2 ∈ MP (X). Let τ1 be
the first jump time of the process. Since the minimum of finitely many exponential random
variables is exponential distributed with the sum of the single parameters, τ1 is exponential
distributed with parameter

TotalRate ≡ ∑
x∈Supp(ν0)

ν0(x)
⎛
⎝
b(x) + d(x) + ∑

y∈Supp(ν0)
ν0(y)c(x, y)

⎞
⎠

(I.2.12)

Thus, τ1 is sampled according to Exp(138) in Figure I.4. Let x∗ ∈ Supp(ν0) be the trait
of the individual which causes the jump, then we can sample x∗ according to the following
probability measure

P[x∗ = x] =
ν0(x)[b(x) + d(x) +∑y∈Supp(ν0) c(x, y)ν0(y)]

TotalRate
, for x ∈ Supp(ν0) (I.2.13)
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A B

C

Figure I.4: Simulations of the process ν with ν0 = 6δx1 + 2δx2 . The biological parameters are given
above. In A and C the mutant trait x3 dies directly after it has appeared, whereas it starts growing
in B. Furthermore, in C the whole population is extinct after a relatively short time.

Hence, P[x∗ = x1] = 102/138 and P[x∗ = x2] = 36/138 in the example. Let E be the event
that the individual with trait x∗ causes at time τ1, then we can sample E according to

P[E = Birth without mutation] = b(x∗)(1 −m(x∗))
b(x∗) + d(x∗) +∑y∈Supp(ν0) c(x∗, y)ν0(y)

, (I.2.14)

P[E = Birth with mutation] = b(x∗)m(x∗)
b(x∗) + d(x∗) +∑y∈Supp(ν0) c(x∗, y)ν0(y)

, (I.2.15)

P[E = Death] =
d(x∗) +∑y∈Supp(ν0) c(x

∗, y)ν0(y)
b(x∗) + d(x∗) +∑y∈Supp(ν0) c(x∗, y)ν0(y)

. (I.2.16)

If E = Birth without mutation, then ντ1 = ν0 + δx∗ . If E = Birth with mutation, then
ντ1 = ν0 + δx∗+h, where h is sampled according to M(x∗, .), and finally if E = Death, then
ντ1 = ν0 − δx∗ . Now we can iterate, using ντ1 instead of ν0.

In Algorithm 1, we give the pseudocode that is the basis for all simulations we have shown
in this introduction. (The algorithm for the stochastic model of cancer immunotherapy is
an extension of this one and given in the appendix of Chapter III.) Below, we use the fol-
lowing notation: let D be some discrete set and X a D-valued random variable, then X is
sampled according to the weights {w(i), i ∈ D}, which means that P(X = i) = w(i)/∑i∈D w(i).
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Algorithm 1: Pseudo-code of the Gillespie algorithm used for generating the figures.
Data: Initial conditions: ν0 ∈ MP (X), Iterations: NIterations, Biological Parameters
T0 ← 0, νT0 ← ν0, k ← 0
while k ≤ NIterations do

for x ∈ Supp(νTk
) do

B(x) ← νTk
(x)b(x),

D(x) ← d(x) +∑y∈Supp(νTk
)
c(x, y)νTk

(y)

TotalEventRate ← ∑x∈Supp(νTk
)
B(x) +D(x),

Sample t ∼ Exp(TotalEventRate),
Tk+1 ← Tk + t,
Sample x∗ ∈ X according to the weights {B(x) +D(x), x ∈ Supp(νTk

)},
Sample E ∈ {Birth,Mutation,Death} according to {B(x∗)(1−m(x∗)),B(x∗)m(x∗),D(x∗)}
case E = Birth

νTk+1 ← νTk
+ δx∗

case E = Mutation
Sample h according to M(x∗, dh),
νTk+1 ← νTk

+ δx∗+h
case E = Death

νTk+1 ← νTk
− δx∗

k ← k + 1,

Note that this algorithm is only reasonable if the population consists of many individuals
of the same type. In this thesis we are only interested in this case since we study the limit of
rare mutational events. To describe the dispersion of a plant population or, more general, to
describe spatial patterns in biological populations, which was the intention in [15] and [43], it
is maybe more convenient to use the algorithm provided in [59].

In [30], Champagnat and Méléard give an example with simulations where X is not dis-
crete. The parameters of their example are adapted from a classical model of competition for
resources (cf. references of [30]):

X = [−2,2], d(x) ≡ 0, m(x) ≡ 0.1, b(x) = exp(−x
2

2σ2
b

) , c(x, y) = exp(−(x − y)
2

2σ2
c

)K−1,

andM(x, dh) is the law of a normal distributed random variable Y with mean 0 and variance
σ conditioned on x + Y ∈ X . Numerical simulations are provided for K = 1000, σ = 0.01,
σb = 0.9, σc = 1 and K = 1000, σ = 0.01, σb = 0.9, σc = 0.7. In both simulations the following
is observed: In a first phase, the population trait support, Supp(νt), is concentrated around
a single trait value that converges to zero. (The reason for this is that the growth rate is
maximal at x = 0.) In a second phase, there are two contrary selective pressures: mutant
traits close to zero have high birth rates but mutant traits far from the rest of the population
compete less. If σc is small enough, the decrease in competitive pressure compensates the
loss of reproductive efficiency and allows the appearance of new branches. Therefore, in the
simulation with σc = 0.7 < σb = 0.9, see Figure I.5 B, an evolutionary branching is observed
(the population splits into two subpopulations of different dominant types going their separate
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ways), but in the simulation with σc = 1 > σb = 0.9 not, see Figure I.5 A. Figure I.5 is taken
from [30] (cf. [30] Fig. 1).

A

8 1. Approches probabilistes et déterministes en dynamique adaptative

On suppose également que la loi de mutation m(x, h)dh est une gaussienne centrée de
variance �2, conditionnée à ce que le trait mutant x+h soit dans X . Ces paramètres
satisfont les hypothèses 1.2 d’après la proposition 1.3. Comme nous le verrons en
section 2.2, le paramètre K permet de contrôler la compétition maximale entre in-
dividus, et donc la taille de la population, qui est d’ordre K. Les simulations sont
réalisée par acceptation-rejet, qui permet ici une simulation exacte.

(a) p = 0.1, K = 1000, � = 0.01, �b = 0.9,
�↵ = 1.0.

(b) p = 0.1, K = 1000, � = 0.01, �b = 0.9,
�↵ = 0.7.

Figure 1.1 – Simulations numériques de la distribution de traits dans la population

(courbes du haut) et du nombre d’individus (courbes du bas) dans le modèle individu-centré

de paramètres (1.4). La population initiale est composée de K individus de même trait �1.0.

Dans ce modèle, le trait x = 0 est optimal pour le taux de croissance, mais la
compétition locale entre traits peut conduire à une séparation de la population en
sous-populations éloignées du trait optimal (voir fig. 1.1 (b)). Cette transition d’une
population essentiellement monotype à plusieurs sous-populations de traits distincts
en compétition s’appelle branchement évolutif (voir fig. 1.1 (b)). Comme on le verra
en section 1.4.3, la possibilité de branchement évolutif est gouverné par le signe de
�b � �↵. S’il est positif, la compétition est trop forte localement pour permettre une
stabilisation de la population autour du trait x = 0. Dans le cas contraire, le bénéfice
en terme de taux de croissance en x = 0 est su�sant pour stabiliser la population.

1.3 Comportement en temps long de systèmes de Lotka-
Volterra compétitifs [P13]

Les résultats présentés ici sont issus de la publication [P13] en collaboration avec
P.-E. Jabin et G. Raoul.
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Volterra compétitifs [P13]

Les résultats présentés ici sont issus de la publication [P13] en collaboration avec
P.-E. Jabin et G. Raoul.

Figure I.5: Numerical simulations taken from Champagnat and Méléard, Fig. 1 of [30]. In A, where
K = 1000, σ = 0.01, σb = 0.9, and σc = 1, there is no evolutionary branching. In B, where K = 1000,
σ = 0.01, σb = 0.9, and σc = 0.7, there is an evolutionary branching: the population splits into two
subpopulations of different dominant types going their separate ways.

I.3 The main results and outline of this thesis

This thesis is divided into two parts, which are the content of Chapters II and III. The topics
are related, however, the chapters can be read independent from each other. In the first part,
we study the long-term behavior of the stochastic individual-based model, defined in Section
I.2.2, in the limit of large population size combined with rare mutations and small mutational
effects, proving convergence to the canonical equation of adaptive dynamics (CEAD). This
part will appear in Annals of Applied Probability as joint work with Anton Bovier and Nicolas
Champagnat [8]. At the moment, it is available on www.imstat.org/aap/future_papers.html

M. Baar, A Bovier, and N. Champagnat. From stochastic, individual-
based models to the canonical equation of adaptive dynamics - In one
step. Preprint (arXiv:1505.02421, 2015), to appear in Ann. Appl.
Probab., 2016.

Chapter II contains this preprint, only some minor changes have been made and the layout
has been adapted to the layout of this thesis.

For studying the three limits, large population size, rare mutations, and small mutational
effects, we have to include the following scaling parameters in the individual-based model
defined in Section I.2.2.

K is the carry capacity of the system meaning that the competition kernel and the point
measure describing the population state are rescaled byK, i.e. we useK−1c(x, y) instead
of c(x, y) and νK ≡ 1

K ν instead of ν.

uK is the scaling parameter for the mutation probability, i.e. we use uKm(x) instead of
m(x).

http://www.imstat.org/aap/future_papers.html
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σK is the scaling parameter for the mutation size, i.e. a mutant’s trait y is given by x+σKh
instead of x + h, where x is the parent’s trait and h ∼M(x, dh).

Note that the carrying capacity K only gives the magnitude of the population size, i.e. the
actual population size changes over time, but stays of order K (cf. Section I.2.1).

In the main result of Chapter II, Theorem II.4.1, we identify a time scale on which the
sequence of measure-valued Markov processes νK , describing the evolution of the population,
converges in law to the CEAD if the three limits are taken simultaneously, i.e. uK and σK will
tend to zero as K → ∞. On this time scale, the evolution of populations with monomorphic
initial condition (meaning that all individuals have identically phenotypic traits) can be de-
scribed as a succession of mutant invasions. More precisely, we use conditions on the scaling
parameters that imply a separation of ecological and evolutionary time in the sense that if a
mutation occurs, either the individuals with this mutant trait die out or the mutant popula-
tion invades the resident population and converges to its ecological equilibrium, replacing the
resident population entirely, before a new invading (successful) mutant appears. However, we
allow non-invading (unsuccessful) mutation events during this time to avoid too restrictive
assumptions. On a longer time scale, the single invasion steps accumulate and give rise to a
macroscopic evolution of the population state, which can be described in terms of the CEAD.
In other words, the population stays essentially monomorphic with a trait evolving in time
according to this ordinary differential equation. The combination of the three simultaneous
limits entails some considerable technical difficulties. The fact that the mutants only have a
K-dependent small evolutionary advantage implies that the time of any macroscopic change
in population diverges with K and makes it impossible to use a law of large numbers as in
[25] to approximate the stochastic system with the corresponding deterministic system dur-
ing the time of invasion. Showing that the stochastic system still follows the corresponding
competition Lotka-Volterra system (with K-dependent coefficients) in an appropriate sense,
requires a completely new approach. Developing this approach is the main novelty of the
present thesis. The proof requires methods based on couplings with discrete time Markov
chains, combined with some standard potential theoretic arguments for the exit from a do-
main problem in a moderate deviations regime, as well as comparison and convergence results
of branching processes.

To be a bit more precise, we use the following conditions on the scaling parameters. There
exists a small α > 0 such that

K−1/2+α ≪ σK ≪ 1 and (I.3.1)

exp(−Kα) ≪ uK ≪
σ1+α
K

K lnK
, as K →∞, (I.3.2)

where f(K) ≪ g(K) means that f(K)/g(K) converges to zero as K → ∞. The time scale,
on which we control the population process, is t/(KuKσ2

K) and can be explained as follows.
The expected time for a mutation event to happen is of order (KuK)−1, the probability that
a mutant invades is of order σK , and an order of σ−1

K mutant invasions is necessary to observe
a macroscopic change in the trait value of the essentially monomorphic population in the
limit. Furthermore, the conditions on the scaling parameters can be explained as follows.
First, we can prove that the duration of one invasion phase is of order σ−1

K ln(K). Therefore,
the condition uK ≪ σ1+α

K /(K lnK) allows mutation events during some invasion phases but
ensures that there are never two invading (successful) mutational events during such a phase
and thus guarantees the separation of the ecological and evolutionary time scale. Second,
the random fluctuations of the population process are of order K−1/2, therefore the condition
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K−1/2+α ≪ σK ensures that the sign of a mutant’s fitness (evolutionary advantage) is not
influenced by the fluctuations of the population size. Finally, we prove that exp(Kα) is the
time the population stays within an O(εσK)-neighborhood of an attractive domain with high
probability. This is a moderate deviation result. Therefore, the condition exp(−Kα) ≪ uK
ensures that the population is still in this neighborhood when a mutation occurs.

In the third chapter of the thesis we expand the stochastic individual-based models used
in adaptive dynamics in order to describe cancer immunotherapy and to study the interplay
between phenotypic plasticity modeled by fast phenotypic switches and rare genotypic muta-
tions on a long evolutionary time scale. Some parts of this chapter have been published in
Scientific Reports as the following joint work with Loren Coquille, Hannah Mayer, Michael
Hölzel, Meri Rogava, Thomas Tüting, and Anton Bovier.

M. Baar, L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting, and
A. Bovier. A stochastic model for immunotherapy of cancer. Scientific
Reports, 6: 24169, 2016.

On the arXiv webpage, there is also a more detailed preprint of this publication available
(cf. arXiv:1505.00452, 2015). This arXiv version provides a basis for the third chapter of this
thesis. Sections III.1, III.3, III.4.3, and III.5 are taken from this preprint, only some minor
changes have been done. Section III.2 is rewritten such that the notations fit better to the
rest of this thesis and to be able to focus on more theoretical aspects in Section III.4. Section
III.4 contains the main mathematical work. In the publication as well as in the preprint,
we give some heuristic arguments why we should obtain a generalization of the polymorphic
evolution sequence in the new setup, whereas in Section III.4 of this thesis we give the proper
convergence result (cf. Thm. III.4.3 ) and a rigorous proof. Sections 3.2 and 3.3 of the preprint
are not used in this thesis. All figures and simulations in Chapter III are either new or redone
with new sets of parameters, except for the figures in Section III.4.3. All simulations are
based on a Gillespie algorithm implemented by Boris Prochnau.

The publication was initiated by a request from the medical scientists Hölzel and Tüting,
asking whether it might be possible to describe cancer immunotherapy with mathematical
models. They emphasized the importance of developing a theoretical framework that incor-
porates and thus may explain the different aspects of therapy resistance [76]. The primary
motivation was that such a model should be able to reproduce the key phenomena of the
experiments reported in Landsberg et al. [92]. In these experiments tumors (melanoma) re-
sist immunotherapy through an inflammation-induced reversible dedifferentiation, i.e. through
phenotypic plasticity. The identification of the most relevant underlying mechanisms lead-
ing to resistance of immunotherapy and the incorporation of them in a mathematical model,
which on the one hand is able to describe the experiments but stays on the other hand simple
enough to make numerical computations and theoretical understanding of the key phenomena
feasible, was the starting point and an important part of this work. As already mentioned in
Section I.1, there are several reasons for using an expansion of the stochastic individual-based
model defined in Section I.2.2 to model cancer immunotherapy. For example, these type of
models allow to describe several ecological situations and do not have a fixed population size
as for example Wright-Fisher models. This is important since tumor development is environ-
ment depending and the size of the tumor varies over time, especially during therapy. The
model we study in Chapter III is defined in Section III.2. The main expansions are:

(i) Three different classes of actors are included: T-cells, cytokines, and cancer cells.
(ii) For cancer cells, two types of transitions are allowed: genotypic mutations and pheno-

typic switches.
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(iii) Phenotypic changes can be affected by the microenvironment which is not modeled
deterministically but as particles undergoing the random dynamics as well.

(iv) For modeling the therapy effect, a predator-prey mechanism (between cancer cells and
immune cells) is included.

To our knowledge it is a novel feature of our models to describe the coevolution of immune
and tumor cells taking into account both, interactions and phenotypic plasticity. It is well
known that in the limit of large cell populations, these models are approximated by deter-
ministic kinetic rate models (cf. Theorem III.2.1), which are widely used in the modeling of
cell populations. However, these approximations are inaccurate if the numbers of individuals
in some sub-populations become small. In Section III.3 we give an example describing the
experiments of [92] qualitatively. We explain why random fluctuation might be the reason
for the different outcomes in the experiments. Note that it can be shown that the models are
capable to reproduce the experimental data quantitatively, with biological reasonable param-
eters. Furthermore, the model can be used as a tool to assist the development of improved
treatment protocols, for example to study the scenario with two types of T-cells. However,
this is not part of this thesis, for details see either the publication or [97]. This thesis fo-
cuses more on the new theoretical aspects which arise by incorporating phenotypic plasticity
in the standard model. More precisely, in Section III.4 we analyze the interplay between
the fast phenotypical changes by switching and the slow genotypical changes by mutation.
Without phenotypic plasticity and under conditions which separate the ecological and the
evolutionary effects, the evolution of the system can be described by a succession of mutant
invasions. This was studied mathematically rigorous by Champagnat and Méléard in [25, 30].
The main assumptions leading to this separation are that the population size is large and
that mutational events are rare. Thus, a natural question is whether this is still true if we
incorporate phenotypic plasticity in the model. Conditions such that this approximation is
correct are given in Section III.4, in the sense that the individual-based process, which in-
cludes phenotypic plasticity, converges in the simultaneous limits of a large population size
(K →∞) and rare mutational events (uK → 0) to a Markov jump process. More precisely, we
prove by expanding the techniques of [25] that the microscopic process converges in this limit
on the evolutionary time scale to a generalization of the polymorphic evolution sequences (cf.
Theorem III.4.3). The main difference in the proof is that we have to couple the process with
multi-type branching processes instead of normal branching processes, which also leads to a
different definition of invasion fitness in this setting. Furthermore, we discuss the interplay of
mutation and therapy.
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Chapter II

From stochastic, individual-based
models to the canonical equation of
adaptive dynamics - in one step.

The following chapter is already published online on the webpage of Annals of Applied Proba-
bility (www.imstat.org/aap/future_papers.html) and will appear in this journal as joint work
with Anton Bovier and Nicolas Champagnat [8].

We consider a model for Darwinian evolution in an asexual population with a large but
non-constant populations size characterized by a natural birth rate, a logistic death rate
modeling competition and a probability of mutation at each birth event. In the present paper,
we study the long-term behavior of the system in the limit of large population (K → ∞)
size, rare mutations (u → 0), and small mutational effects (σ → 0), proving convergence
to the canonical equation of adaptive dynamics (CEAD). In contrast to earlier works, e.g.
by Champagnat and Méléard, we take the three limits simultaneously, i.e., u = uK and
σ = σK , tend to zero with K, subject to conditions that ensure that the time scale of birth
and death events remains separated from that of successful mutational events. This slows
down the dynamics of the microscopic system and leads to serious technical difficulties that
require the use of completely different methods. In particular, we cannot use the law of
large numbers on the diverging time needed for fixation to approximate the stochastic system
with the corresponding deterministic one. To solve this problem we develop a "stochastic
Euler scheme" based on coupling arguments that allows to control the time evolution of the
stochastic system over time scales that diverge with K.

II.1 Introduction

In this paper we study a microscopic model for evolution in a population characterized by a
birth rate with a probability of mutation at each event and a logistic death rate, which has
been studied in many works before [25, 27, 28, 30, 59]. More precisely, it is a model for an
asexual population in which each individual’s ability to survive and to reproduce is a function
of a one-dimensional phenotypic trait, such as body size, the age at maturity, or the rate of
food intake. The evolution acts on the trait distribution and is the consequence of three basic
mechanisms: heredity, mutation and selection. Heredity passes the traits trough generations,
mutation drives the variation of the trait values in the population, and selection acts on
individuals with different traits and is a consequence of competition between the individuals

http://www.imstat.org/aap/future_papers.html
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for limited resources or area.
The model is a generic stochastic individual-based model and belongs to the models of

adaptive dynamics. In general, adaptive dynamics models aim to study the interplay between
ecology (viewed as driving selection) and evolution, more precisely, the interplay between the
three basic mechanisms mentioned above. It tries to develop general tools to study the long
time evolution of a wide variety of ecological scenarios [42, 46, 104]. These tools are based
on the assumption of separation of ecological and evolutionary time scales and on the notion
of invasion fitness [102, 103]. While the biological theory of adaptive dynamics is based on
partly heuristic derivations, various aspects of the theory have been derived rigorously over
the last years in the context of stochastic individual-based models [25, 27, 28, 30, 64, 74]. All
of them concern the limit when the population size, K, tends to infinity. They either study the
separation of ecological and evolutionary time scales based on a limit of rare mutations, u→ 0,
combined with a limit of large population [25, 30], the limit of small mutation effects, σ → 0,
[27, 30, 64], the stationary behavior of the system [74], or the links between individual-based
and infinite-population models [28]. An important concept in the theory of adaptive dynamics
is the canonical equation of adaptive dynamics (CEAD), introduced by U. Dieckmann and R.
Law [42]. This is an ODE that describes the evolution in time of the expected trait value in
a monomorphic population. The heuristics leading to the CEAD are based on the biological
assumptions of large population and rare mutations with small effects and the assumption that
no two different traits can coexist. (Note that we write sometimes mutation steps instead of
effects.) There are mathematically rigorous papers that show that the limit of large population
combined with rare mutations leads to a jump process, the Trait Substitution Sequence, [25],
and that this jump process converges, in the limit of small mutation steps, to the CEAD,
[30]. Since these two limits are applied separately and on different time scales, they give no
clue about how the biological parameters (population size K, probability of mutations u and
size of mutation steps σ) should compare to ensure that the CEAD approximation of the
individual-based model is correct.

The purpose of the present paper is to analyze the situation when the limits of large
population size, K → ∞, rare mutations, uK → 0, and small mutation steps, σK → 0, are
taken simultaneously. We consider populations with monomorphic initial condition, meaning
that at time zero the population consists only of individuals with the same trait. Then we
identify a time scale where evolution can be described as a succession of mutant invasions.
To prove convergence to the CEAD, we show that, if a mutation occurs, then the individuals
with this mutant trait can either die out or invade the resident population on this time scale.
Here invasion means that the mutant trait supersedes the resident trait, i.e., the individuals
with the resident trait become extinct after some time. This implies that the population
stays essentially monomorphic with a trait that evolves in time. We will impose conditions
on the mutation rates that imply a separation of ecological and evolutionary time scales, in
the sense that an invading mutant population converges to its ecological equilibrium before
a new invading (successful) mutant appears. In order to avoid too restrictive hypothesis on
the mutation rates, we do, however, allow non-invading (unsuccessful) mutation events during
this time, in contrast to all earlier works.

We will see that the combination of the three limits simultaneously, entails some con-
siderable technical difficulties. The fact that the mutants have only a K-dependent small
evolutionary advantage decelerates the dynamics of the microscopic process such that the
time of any macroscopic change between resident and mutant diverges with K. This makes it
impossible to use a law of large numbers as in [25] to approximate the stochastic system with
the corresponding deterministic system during the time of invasion. Showing that the stochas-
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tic system still follows in an appropriate sense the corresponding competition Lotka-Volterra
system (with K-dependent coefficients) requires a completely new approach. Developing this
approach, which can be seen as a rigorous "stochastic Euler-scheme", is the main novelty of
the present paper. The proof requires methods, based on couplings with discrete time Markov
chains combined with some standard potential theory arguments for the "exit from a domain
problem" in a moderate deviations regime, as well as comparison and convergence results of
branching processes. Note that since the result of [25] is already different from classical time
scales separations results (cf. [61]), our result differs from them a fortiori. Thus, our result can
be seen as a rigorous justification of the biologically motivated, heuristic assumptions which
lead to CEAD.

The remainder of this paper is organized as follows. In Section II.2 and II.3 we introduce
the model and give an overview on previous related results. In Section II.4 we state our results
and give a detailed outline of the proof. Full details of the proof are presented in the Section
II.6, II.7 and II.8. In the appendix we state and prove several elementary facts that are used
throughout the proof.

II.2 The individual-based model

In this section we introduce the model we analyze. We consider a population of a single asexual
species that is composed of a finite number of individuals, each of them characterized by a
one-dimensional phenotypic trait. The microscopic model is an individual-based model with
non-linear density-dependence, which has already been studied in ecological or evolutionary
contexts by many authors [28, 25, 30, 59]. The trait space X is assumed to be a compact
interval of R. We introduce the following biological parameters:

(i) b(x) ∈ R+ is the rate of birth of an individual with trait x ∈ X .
(ii) d(x) ∈ R+ is the rate of natural death of an individual with trait x ∈ X .
(iii) K ∈ N is a parameter which scales the population size.

(iv) c(x, y)K−1 ∈ R+ is the competition kernel which models the competitive pressure felt by
an individual with trait x ∈ X from an individual with trait y ∈ X .

(v) uKm(x) with uK ,m(x) ∈ [0,1] is the probability that a mutation occurs at birth from
an individual with trait x ∈ X , where uK ∈ [0,1] is a scaling parameter.

(vi) M(x, dh) is the mutation law of the mutational jump h. If the mutant is born from an
individual with trait x, then the mutant trait is given by x+σKh ∈ X , where σK ∈ [0,1] is
a parameter scaling the size of mutation and h is a random variable with law M(x, dh).
We restrict for simplicity the setting to mutation measures with support included in Z.

The three scaling parameters of the model are the population size, controlled by the scaling
parameter K, the mutation probability, controlled by the scaling parameter uK , the mutation
size, controlled by the scaling parameter σK . The novelty of our approach is that we consider
the case where all these parameters tend to their limit jointly, more precisely that both uK and
σK are functions of K and tend to zero as K tends to infinity (subject to certain constraints).

At any time t we consider a finite number, Nt, of individuals, each of them having a trait
value xi(t) ∈ X . It is convenient to represent the population state at time t by the rescaled
point measure, νK , which depends on K, uK and σK

νKt = 1

K

Nt

∑
i=1

δxi(t). (II.2.1)
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Let ⟨µ, f⟩ denote the integral of a measurable function f with respect to the measure µ. Then
⟨νKt ,1⟩ = NtK

−1 and for any x ∈ X , the positive number ⟨νKt ,1{x}⟩ is called the density of
trait x at time t. With this notation, an individual with trait x in the population νKt dies due
to age or competition with rate

d(x) + ∫X
c(x, y)νKt (dy). (II.2.2)

Let M(X) denote the set of finite nonnegative measures on X , equipped with the weak
topology, and define

MK(X) ≡ { 1

K

n

∑
i=1

δxi ∶ n ≥ 0, x1, ..., xn ∈ X} . (II.2.3)

Similar as in [59], we obtain that the population process, (νKt )t≥0, is aMK(X)-valued Markov
process with infinitesimal generator, LK , defined for any bounded measurable function f from
MK(X) to R and for all µK ∈ MK(X) by

LKf(µK) =∫X
(f(µK + δx

K
) − f(µK))(1 − uKm(x))b(x)KµK(dx) (II.2.4)

+ ∫X ∫Z
(f(µK +

δx+σKh
K

) − f(µK))uKm(x)b(x)M(x, dh)KµK(dx)

+ ∫X
(f(µK − δx

K
) − f(µK))(d(x) + ∫X

c(x, y)µK(dy))KµK(dx).

The first and second terms are linear (in µK) and describe the births (without and with
mutation), but the third term is non-linear and describes the deaths due to age or competi-
tion. The density-dependent non-linearity of the third term models the competition in the
population, and hence drives the selection process.

Assumption 2. We will use the following assumptions on the parameters of the model:

(i) b, d and c are measurable functions, and there exist b, d, c < ∞ such that

b(.) ≤ b, d(.) ≤ d and c(. , .) ≤ c.

(ii) For all x ∈ X , b(x) − d(x) > 0, and there exists c > 0 such that c ≤ c(x,x).

(iii) The support of M(x, . ) is a subset of Z ∩ X − x and uniformly bounded for all x ∈ X .
This means that there exists A ∈ N such that

M(x, dh) = ∑Ak=−A pk(x)δk(dh), where ∑Ak=−A pk(x) = 1 for any x ∈ X .

(iv) b, d,m ∈ C2(X ,R) and c ∈ C2(X 2,R) .
Assumptions (i) and (iii) allow to deduce the existence and uniqueness in law of a process

on D(R+, MK(X)) with infinitesimal generator LK (cf. [59]). Note that Assumption (iii)
differs from the assumptions in [59] because we restrict the setting to mutation measures with
support included in Z and that it ensures that a mutant trait remains in X . Assumption (ii)
prevents the population from exploding or becoming extinct too fast. Since X is compact,
Assumption (iv) ensures that the derivatives of the functions b, c, d and m are uniformly
Lipschitz-continuous.

Before we state the main result of the paper, Theorem II.4.1, in Section II.4, it will be
helpful to recall some earlier results for this class of models and to fix some more notation.
These results serve as a guideline to what behavior one should expect, even though on a
technical level proofs have to be changed completely.
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II.3 Some notation and previous results

We start with a theorem due to N. Fournier and S. Méléard [59] which describes the behavior
of the population process, for fixed u and σ, when K →∞.

Theorem II.3.1 (Theorem 5.3 in [59]). Fix u and σ. Let Assumption 2 hold and assume in
addition that the initial conditions νK0 converge for K → ∞ in law and for the weak topology
onM(X) to some deterministic finite measure ξ0 ∈ M(X) and that supK E[⟨νK0 ,1⟩3] < ∞.
Then for all T > 0, the sequence νK , generated by LK , converges for K → ∞ in law, in
D([0, T ],M(X)), to a deterministic continuous function ξ ∈C([0, T ],M(X)). This measure-
valued function ξ is the unique solution, satisfying supt∈[0,T ]⟨ξt,1⟩ < ∞, of the integro-differ-
ential equation written in its weak form: for all bounded and measurable functions, f ∶ X → R,

∫X
ξt(dx)f(x) =∫X

ξ0(dx)f(x) +∫
t

0
ds∫X

ξs(dx)um(x)b(x)∫
Z
M(x, dh)f(x+σh) (II.3.1)

+∫
t

0
ds∫X

ξs(dx)f(x)( (1−um(x)) b(x)−d(x)−∫X
ξs(dy)c(x, y)).

Without mutation one obtains convergence to the competitive system of Lotka-Volterra
equations defined below (see [59]).

Corollary II.3.2 (The special case u = 0 and ξ0 is n-morphic). If the same assumptions as
in the theorem above with u = 0 hold and if in addition ξ0 = ∑ni=1 zi(0)δxi, then ξt is given by
ξt = ∑ni=1 zi(t)δxi , where zi is the solution of the competitive system of Lotka-Volterra equations
defined below.

Definition II.3.3. For any (x1, ..., xn) ∈ X n, we denote by LV (n, (x1, ..., xn)) the competitive
system of Lotka-Volterra equations defined by

d zi(t)
dt

= zi(b(xi) − d(xi) −
n

∑
j=1

c(xi, xj)zj), 1 ≤ i ≤ n. (II.3.2)

Next, we introduce the notation of coexisting traits and of invasion fitness (see [30]).

Definition II.3.4. We say that the distinct traits x and y coexist if the system LV (2, (x, y))
admits a unique non-trivial equilibrium, named z(x, y) ∈ (0,∞)2, which is locally strictly
stable in the sense that the eigenvalues of the Jacobian matrix of the system LV (2, (x, y)) at
z(x, y) are all strictly negative.

The invasion of a single mutant trait in a monomorphic population which is close to its
equilibrium is governed by its initial growth rate. Therefore, it is convenient to define the
fitness of a mutant trait by its initial growth rate.

Definition II.3.5. If the resident population has the trait x ∈ X , then we call the following
function invasion fitness of the mutant trait y

f(y, x) = b(y) − d(y) − c(y, x)z(x). (II.3.3)

Remark 1. The unique strictly stable equilibrium of LV (1, x) is z(x) = b(x)−d(x)
c(x,x) , and hence

f(x,x) = 0 for all x ∈ X .
Coexistence and invasion fitness are closely related (cf. [79]).
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Proposition II.3.6. There is coexistence in the system LV (2, (x, y)) if and only if

f(x, y) ≡ b(x) − d(x) − c(x, y)z(y) > 0 and f(y, x) ≡ b(y) − d(y) − c(y, x)z(x) > 0. (II.3.4)

The following convergence result from [25] describes the limit behavior of the popula-
tions process, for fixed σ, when K →∞ and uK → 0. More precisely, it says that the rescaled
individual-based process converges in the sense of finite dimensional distributions to the "trait
substitution sequence" (TSS), if one assumes in addition to Assumption 2 the following "In-
vasion implies fixation" condition.

Assumption 3. Given any x ∈ X , Lebesgue almost any y ∈ X satisfies one of the following
conditions: (i) f(y, x) < 0 or (ii) f(y, x) > 0 and f(x, y) < 0.

Note that by Proposition II.3.6, this means that either a mutant cannot invade, or it
cannot coexist with the resident.

Theorem II.3.7 (Corollary 1 in [25]). Let Assumption 2 and 3 hold. Fix σ and assume that

∀V > 0, exp(−V K) ≪ uK ≪ 1

K ln(K)
, as K →∞. (II.3.5)

Fix also x ∈ X and let (NK
0 )K≥1 be a sequence of N-valued random variables such that (NK

0 /K)
converges for K → ∞ in law to z̄(x) and is bounded in Lp for some p > 1. Consider the
processes νK generated by LK with monomorphic initial state (NK

0 /K)δ{x}.
Then the sequence of the rescaled processes ν

K

t/KuK converges in the sense of finite dimensional
distributions to the measure-valued process

z(Xt)δXt , (II.3.6)

where the X -valued Markov jump process X has initial state X0 = x and infinitesimal generator

Aφ(x) = ∫
Z
(φ(x + σh) − φ(x))m(x)b(x)z(x)[f(x + σh,x)]+

b(x + σh)
M(x, dh). (II.3.7)

Here we write f(K) ≪ g(K) if f(K)/g(K) → 0 when K → ∞. Note that, for any s < t,
the convergence does not hold in law for the Skorokhod topology on D([s, t],M(X)), for
any topologyM(X) such that the total mass function ν ↦ ⟨ν,1⟩ is continuous, because the
total mass of the limit process is a discontinuous function. The main part of the proof of
this theorem is the study of the invasion of a mutant trait y that has just appeared in a
monomorphic population with trait x. The invasion can be divided into three steps. Firstly,
as long as the mutant population size ⟨νKt ,1{y}⟩ is smaller than some ε > 0 (independent of
K), the resident population size ⟨νKt ,1{x}⟩ stays close to z(x). Therefore, ⟨νKt ,1{y}⟩ can be
approximated by a branching process with birth rate b(y) and death rate d(y) + c(y, x)z̄(x)
until it goes extinct or reaches ε. Secondly, once ⟨νKt ,1{y}⟩ has reached ε, for large K,
νKt is close to the solution of LV (2, (x, y)) with initial state (z(x), ε), which reaches the ε-
neighborhood of (0, z(y)) in finite time. This is a consequence of Corollary II.3.2. Finally,
once ⟨νKt ,1{y}⟩ is close to z(y) and ⟨νKt ,1{x}⟩ is small, ⟨νKt ,1{x}⟩ can be approximated by
a subcritical process, which becomes extinct a.s. . The time of the first and third step are
proportional to ln(K), whereas the time of the second step is bounded. Thus, the second
inequality in (II.3.5) guarantees that, with high probability, the three steps of invasion are
completed before a new mutation occurs.
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Without Assumption 3 it is possible to construct the "polymorphic evolution sequence" (PES)
under additional assumptions on the n-morphic logistic system. This is done in [30]. Finally,
in [30], the convergence of the TSS with small mutation steps scaled by σ to the "canonical
equation of adaptive dynamics" (CEAD) is proved. We indicate the dependence of the TSS
of the previous Theorem on σ with the notation (Xσ

t )t≥0.

Theorem II.3.8 (Remark 4.2 in [30]). If Assumption 2 is satisfied and the family of initial
states of the rescaled TSS, Xσ

0 , is bounded in L2 and converges to a random variable X0, as
σ → 0, then, for each T > 0, the rescaled TSS Xσ

t/σ2 converges, as σ → 0, in the Skorokhod
topology on D([0, T ],X) to the process (xt)t≤T with initial state X0 and with deterministic
sample path, which is the unique solution of an ordinary differential equation, known as CEAD:

dxt
dt

= ∫
Z
h [hm(xt) z(xt) ∂1f(xt, xt)]+M(xt, dh), (II.3.8)

where ∂1f denotes the partial derivative of the function f(x, y) with respect to the first variable
x.

Remark 2. If M(x, ⋅) is a symmetric measure on Z for all x ∈ X , then the equation (II.3.8)
has the classical form, c.f. [42],

d xt
dt

= 1

2
∫
Z
h2 m(xt) z(xt) ∂1f(xt, xt)M(xt, dh), (II.3.9)

Note that this result does not imply that, applying to the individual-based model first the
limits (K,uK) → (∞,0) and afterwards the limit σ → 0 yields its convergence to the CEAD.
One problem of theses two successive limits is, for example, that the first convergence holds on
a finite time interval, the second requires to look at the Trait Substitution Sequence on a time
interval which diverges. Moreover, as already mentioned these two limits give no clue about
how K, u and σ should be compared to ensure that the CEAD approximation is correct.

II.4 The main result

In this section, we present the main result of this paper, namely the convergence to the
canonical equation of adaptive dynamics in one step. The time scale on which we control the
population process is t/(σ2

KuKK) and corresponds to the combination of the two time scales
of Theorems II.3.7 and II.3.8. Since we combine the limits we have to modify the assumptions
to obtain the convergence. We use in this section the notations and definitions introduced in
Section II.3.

Assumption 4. For all x ∈ X , ∂1f(x,x) ≠ 0.

Assumption 4 implies that either ∀x ∈ X : ∂1f(x,x) > 0 or ∀x ∈ X :∂1f(x,x) < 0. Therefore,
coexistence of two traits is not possible. Without loss of generality we can assume that, ∀x ∈ X ,
∂1f(x,x) > 0. In fact, a weaker assumption is sufficient, see Remark 3.(iii).

Theorem II.4.1. Assume that Assumptions 2 and 4 hold and that there exists a small α > 0
such that

K−1/2+α ≪ σK ≪ 1 and (II.4.1)

exp(−Kα) ≪ uK ≪
σ1+α
K

K lnK
, as K →∞. (II.4.2)
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Fix x0 ∈ X and let (NK
0 )K≥0 be a sequence of N-valued random variables such that NK

0 K
−1

converges in law, as K → ∞, to the positive constant z(x0) and is bounded in Lp, for some
p > 1.

For each K ≥ 0, let νKt be the process generated by LK with monomorphic initial state
NK

0 K
−1δ{x0}. Then, for all T > 0, the sequence of rescaled processes, (νKt/(KuKσK2))0≤t≤T ,

converges in probability, as K →∞, with respect to the Skorokhod topology on D([0, T ],M(X))
to the measure-valued process z(xt)δxt , where (xt)0≤t≤T is given as a solution of the CEAD,

dxt
dt

= ∫
Z
h [hm(xt) z(xt) ∂1f(xt, xt)]+M(xt, dh), (II.4.3)

with initial condition x0.

Remark 3. (i) If xt ∈ ∂X for t > 0, then (II.4.3) is d xt
dt = 0, i.e., the process stops.

(ii) We can prove convergence in a stronger topology. Namely, let us equipMS(X), the vector
space of signed finite Borel-measures on X , with the following Kantorovich-Rubinstein
norm:

∥µt ∥0 ≡ sup{∫X
fdµt ∶ f ∈ Lip1(X) with sup

x∈X
∣f(x)∣ ≤ 1} , (II.4.4)

where Lip1(X) is the space of Lipschitz continuous functions from X to R with Lipschitz
norm one (cf. [14] p. 191). Then, for all δ > 0, we will prove that

lim
K→∞

P [ sup
0≤t≤T

∥νKt/(KuKσK2) − z(xt)δxt∥0 > δ ] = 0. (II.4.5)

By Proposition II.9.1 this implies convergence in probability with respect to the Sko-
rokhod topology.

(iii) The main result of the paper actually holds under weaker assumptions. More precisely,
Assumption 4 can be replaced by

Assumption 4’. The initial state νK0 has a.s. (deterministic) support {x0} with x0 ∈ X
satisfying ∂1f(x0, x0) /= 0.

The reason is that, since x ↦ ∂1f(x,x) is continuous, the Assumption 4 is satisfied
locally and since x ↦ ∂1f(x,x) is Lipschitz-continuous, the CEAD never reaches an
evolutionary singularity (i.e., a value y ∈ X such that ∂1f(y, y) = 0) in finite time. In
particular, for a fixed T > 0, the CEAD only visits traits in some interval I of X where
∂1f(x,x) /= 0. By modifying the parameters of the model out of I in such a way that
∂1f(x,x) /= 0 everywhere in X , we can apply Thm. II.4.1 to this modified process ν̃ and
deduce that ν̃t/KuKσ2

K
has support included in I for t ∈ [0, T ] with high probability, and

hence coincides νt/KuKσ2
K

on this time interval.

(iv) The condition uK ≪ σ1+α
K

K lnK allows mutation events during an invasion phase of a mutant
trait, see below, but ensures that there is no "successful" mutational event during this
phase.

(v) The fluctuations of the resident population are of order K−1/2, thus K−1/2+α ≪ σK ensures
that the sign of the initial growth rate is not influenced by the fluctuations of the popula-
tion size. We will see later that if a mutant trait y appears in a monomorphic population
with trait x, then its initial growth rate is b(y)−d(y)− c(y, x)⟨νKt ,1⟩ = f(y, x)+o(σK) =
(y − x)∂1f(x,x) + o(σK) since y − x = O(σK).
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(vi) exp(Kα) is the time the resident population stays with high probability in an O(εσK)-
neighborhood of an attractive domain. This is a moderate deviation result. Thus the
condition exp(−Kα) ≪ uK ensures that the resident population is still in this neighbor-
hood when a mutant occurs.

(vii) The time scale is (KuKσK2)−1 since the expected time for a mutation event is (KuK)−1,
the probability that a mutant invades is of order σK and one needs O(σ−1

K ) mutant
invasions to see an O(1) change of the resident trait value. This is consistent with the
combination of Theorems II.3.7 and II.3.8.

(viii) Note that the ε that we use in the proof of the theorem and in the main idea below
will not depend on K, but it will converge to zero in the end of the proof of Theorem
II.4.1. The constant M introduced below will be fixed all the time. It depends only the
parameters of the model, but not on K and ε.

(ix) The conditions on the initial states NK
0 K

−1 imply that E[⟨νKt ,1⟩p] < ∞, uniformly in
K and t, and therefore, since p > 1, the family of random variables {⟨νKt ,1⟩}K≥1,t≥0 is
uniformly integrable (cf. [25] Lem. 1).

II.4.1 The main idea and the structure of the proof of Theorem II.4.1

Under the conditions of the theorem, the evolution of the population will be described as a
succession of mutant invasions.

We first control a single invasion step. Namely, we show that there is a time scale that is
long enough for exactly one mutant population to fixate and for the resident trait to die out,
but sufficiently short, such that no two successful mutant populations can exist during this
time. We say the mutant trait fixates in the population. Note that this does not prevent the
appearance of other mutant traits that do not invade. Second, we consider a much longer time
scale on which the single invasion steps aggregate and give rise to a macroscopic evolution
that converges to the CEAD.

Study of a single invasion step: In order to analyze the invasion of a mutant, we divide
the time until a mutant trait has fixated in the population into two phases (compare with
Figure II.1).

Phase 1 (Section II.6) Here we fix a small ε > 0 and prove the existence of a constant,
M < ∞, independent of ε, such that, as long as all mutant densities are smaller than εσK , the
resident density stays in an MεσK-neighborhood of z(x). Note that, because mutations are
rare and the population size is large, the monomorphic initial population has time to stabilize
in an MεσK-neighborhood of this equilibrium z(x) before the first mutation occurs. (The
time of stabilization is of order ln(K)σ−1

K and the time where the first mutant occurs is of
order 1/KuK).

This allows us to approximate the density of one mutant trait y1 by a branching process
with birth rate b(y1) and death rate d(y1) − c(y1, x)z(x) such that we can compute the
probability that the density of the mutant trait y1 reaches εσK , which is of order σK , as well
as the time it takes to reach this level or to die out. Therefore, the process needs O(σ−1

K )
mutation events until there appears a mutant subpopulation which reaches a size εσK . Such
a mutant is called successful mutant and its trait will be the next resident trait. (In fact, we
can calculate the distribution of the successful mutant trait only on an event with probability
1 − ε, but we show that on an event of probability 1 − o(σK), this distribution has support
in {x + σKh ∶ 1 ≤ h ≤ A}. Therefore, the exact value of the mutant trait is unknown with
probability ε, but the difference of the possible values is only of order σK .)
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We prove in this step also that there are never too many different mutants alive at the
same time. From all this we deduce that the subpopulation of the successful mutant reaches
the density εσK , before a different successful mutant appears. Note that we cannot use large
deviation results on our time scale as used in [30] to prove this step. Instead, we use some
standard potential theory and coupling arguments to obtain estimates of moderate deviations
needed to prove that a successful mutant will appear before the resident density exists an
MεσK-neighborhood of its equilibrium.

Phase 2 (Section II.7) We prove that if a mutant population with trait ys reaches
the size εσK , it will increase to an MεσK-neighborhood of its equilibrium density z(ys).
Simultaneously, the density of the resident trait decreases to εσK and finally dies out. Since
the fitness advantage of the mutant trait is only of order σK , the dynamics of the population
process and the corresponding deterministic system are very slow. Even if we would start
at a macroscopic density ε, the deterministic system needs a time of order σ−1

K to reach an
ε-neighborhood of its equilibrium density.

The law of large numbers, see Theorem II.3.1 or Chap. 11 of [55], allows to control the dis-
tance between the stochastic process and its deterministic limit only on finite, K-independent
time intervals. In the regime considered in [25] and [30], namely σ > 0 independent of K,
this suffices to control the stochastic process during this transition phase, since the mutant
population of trait ys only needs a finite, K-independent time, to grow from size ε to the
ε-neighborhood of z̄(ys). In the regime we consider here, this is no longer possible and a new
technique is needed. The method we develop to handle this situation can be seen as a rigorous
stochastic "Euler-Scheme" and will be explained in detail in Section II.7. Nevertheless, the
proof contains an idea which is strongly connected with the properties of the deterministic
dynamical system. Namely, the deterministic system of equations for the case σK = 0 has an
invariant manifold of fixed points with a vector field independent of σK pointing towards this
manifold. Turning on a small σK , we therefore expect the stochastic system to stay close to
this invariant manyfold and to move along it with speed of order σK .

With this method we are able to prove that, in fact, the mutant density reaches the
MεσK-neighborhood of z(ys) and the resident trait dies out. Note that it is possible that an
unsuccessful mutant is alive at this time. Therefore, we prove that after the resident trait has
died out, there is a time when the population consists only of one trait, namely the one that
had fixed, before the next successful mutant occurs.

Note that Figure II.1 is only an artist’s sketch and not a "real" simulation.

Convergence to the CEAD: (Section II.8) The proof of convergence to the CEAD uses
comparison of the measure valued process νKt with two families of control processes, µ1,K,ε

and µ2,K,ε, which will converge to the CEAD as K →∞ and then ε→ 0. To make more precise
statements, we need the following order relation ≼ for random variables. Roughly speaking,
X ≼ Y will mean that Y is larger than X in law.

Notation. (a) Let X and Y be R-valued random variables on a probability space (Ω,F ,P).
We write X ≼ Y , if there is a random variable, Ỹ on Ω, such that Y and Ỹ have the
same distribution, and that for all ω ∈ Ω, X(ω) ≤ Ỹ (ω).

(b) For µ, ν ∈ M(X), we write ν ≼ µ, if:
(i) ⟨ν,1⟩ ≤ ⟨µ,1⟩ and
(ii) sup{x ∈ X ∶ x ∈ Supp (ν)} ≤ inf {x ∈ X ∶ x ∈ Supp (µ)}

Note that (i) and (ii) imply that, for all monotone increasing functions f ∈ Lip1(X , [−1,1])



II.4. THE MAIN RESULT 35

  Figure II.1: Typical evolution of the population during a mutant invasion.

and for all 0 ≤ t ≤ T ,
∫X

f(x)dνt ≤ ∫X
f(x)dµt. (II.4.6)

This notion of order between measures is not very informative, except for measures which are
close to Dirac masses, where it means that the masses and the supports of the measures are
ordered. This is in particular the case for the measures µ1,K,ε and µ2,K,ε defined below.

Given T > 0, with the results of the two invasion phases, we will define for all ε > 0 two
measure-valued processes, in D([0,∞),M(X)), such that, for all ε > 0,

lim
K→∞

P [∀ t ≤ T
KuKσ

2
K

∶ µ1,K,ε
t ≼ νKt ≼ µ2,K,ε

t ] = 1, (II.4.7)

and, for all ε > 0 and i ∈ {1,2},

lim
K→∞

P
⎡⎢⎢⎢⎢⎣

sup
0≤t≤T /(KuKσ2

K)
∥ µi,K,ε

t/(KuKσK2) − z(xt)δxt ∥0
> δ(ε)

⎤⎥⎥⎥⎥⎦
= 0, (II.4.8)

for some function δ such that δ(ε) → 0 when ε → 0. This implies (II.4.5) and therefore the
theorem.

The control processes, µ1,K,ε and µ2,K,ε, are constructed as follows. Let θKi be the random
time of the i-th invasion phase, i.e., the first time after θKi−1 such that a mutant density is
larger than εσK , and let RKi be the trait of the i-th successful mutant. Knowing the random
variables θKi−1 and RKi−1, we are able to approximate θKi and RKi : After the (i-1)th invasion
phase (of the process νK), we define two random times, θK,1i and θK,2i , and two random
variables RK,1i and RK,2i in X , such that

lim
K→∞

P [∀i≤sup{j ∈N ∶ θKj ≤ T
KuKσ

2
K

} ∶ RK,1i ≼ RKi ≼ RK,2i and θK,2i ≼θKi ≼ θK,1i ] = 1. (II.4.9)

Thus we define µ1,K and µ2,K through

µ1,K
t ≡ z1

t δRK,1i
, for t ∈ [θK,1i , θK,1i+1 ), (II.4.10)

µ2,K
t ≡ z2

t δRK,2i
, for t ∈ [θK,2i , θK,2i+1 ). (II.4.11)
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for some appropriate masses z1
t and z2

t . In fact, z1
t will be approximately z̄(RK,1i ) for t ∈

[θK,1i , θK,1i+1 ), and z2
t approximately z̄(RK,2i ) for t ∈ [θK,2i , θK,2i+1 ). We will prove that the times

θK,1i and θK,2i are (approximately) exponentially distributed with parameters of orderKuKσK ,
and that the difference of RKi −RKi−1 is of order σK . The processes µ1,K,ε and µ2,K,ε will be
constructed by slightly modifying the two processes µ1,K and µK,2 in order to make them
Markovian. This will imply by standard arguments from [55] that the processes µ1,K

t/KuKσ2
K

and µ2,K

t/KuKσ2
K

converge to z(xt)δxt when σK → 0, where xt is the solution of the canonical
equation of adaptive dynamics.

We have now prepared the setting to be able to perform the steps of the proof of Theorem
II.4.1 as indicated in the outline given in Section II.4.1 in Sections II.6, II.7, and II.8. Before
this, we need a few more notations and preparatory results that we collect in Section II.5.
Four technical propositions are delegated to an appendix.

All the remaining sections are devoted to the proof of the Theorem II.4.1.

II.5 An augmented process and some elementary properties

In the proof of Theorem II.4.1 we need to construct an augmented process (ν̃K , LK) that
keeps track of part of the history of the population, namely LKt is the number of mutations
that occurred before t. We first describe this process, then define it by a stochastic equation
from which one finds that it is a Markov process with an explicitly given generator.

LetMK
F (N0 × X) ≡ { 1

K ∑
n
i=1 δξ(i) ∶ n ≥ 0, ξ(1), . . . , ξ(n) ∈ N0 × X} denote the set of finite

non-negative point measures on N0 × X rescaled by K. We write ξ(i) = (ξ1(i), ξ2(i)), where
ξ1(i) ∈ N0 and ξ2(i) ∈ X . The augmented process, (ν̃K , LK), is a continuous time stochastic
process with state space MK

F (N0 × X) × N0. The label k of an individual with trait (k, x)
denotes that there were k − 1 mutational events in the population before the trait (k, x)
appeared for the first time in the population. As in [59], we give a pathwise description of
(ν̃K , LK).

Notation. Let µK = 1
K ∑

n
i=1 δξ(i) ∈ MK

F (N0 × X) and

Mk(µK)≡K ∫
N0×X

1{ξ1=k}µ
K(dξ) (II.5.1)

be the number of individuals holding a mutation of label k. Then we rewrite µK as follows,

µK = 1

K

∞
∑
k=1

Mk(µK)
∑
j=1

δ(k,xkj )
, where

∞
∑
k=1

Mk(µK) = n. (II.5.2)

In fact, the xk1, ..., x
k
Mk(µK) will be equal in our situation, because the only variation in the

trait value is driven by mutational events. We need to define three functions. First, H ∶
MK

F (N0 × X) ↦ (N0 × X)N2
0 is defined as

H(µK) ≡

⎛
⎜⎜⎜⎜
⎝

(0, x0
1) (0, x0

2) . . . (0, x0
M0(µ)) (0,0) (0,0) . . .

(1, x1
1) (1, x1

2) . . . . . . (1, x1
M1(µ)) (1,0) . . .

(2, x2
1) (2, x2

2) . . . (2, x2
M2(µ)) (2,0) (2,0) . . .

⋮ . . . . . . . . . . . . . . . ⋱

⎞
⎟⎟⎟⎟
⎠

, (II.5.3)

Second, h ∶ MK
F (N × X) ↦ (X)N2

0 us given in terms of H by

hij(µK) ≡ the second component of Hij(µK), (II.5.4)
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i.e., if Hij(µK) = (i, x), then hij = x. Third, H̃ ∶ MK
F (N × X) ↦ XN0 is defined as follows: if

µ = 1
K ∑

n
i=1 δξ(i), then

H̃(µ) ≡ (ξ2(σ(1)), ξ2(σ(2)), . . . , ξ2(σ(n)), 0, . . . ), (II.5.5)

where ξ2(σ(1)) ≤ . . . ≤ ξ2(σ(n)).

Definition II.5.1. Let (Ω,F ,P) be an abstract probability space. On this space, we define
the following independent random elements:

(i) an X -valued random variable X0 (the random initial trait),

(ii) a sequence of independent Poisson point measures, (Ndeath
k (ds, di, dθ))k≥0, on R+×N×R+

with intensity measure ds∑n≥0 δn(di)dz,
(iii) a sequence of independent Poisson point measures, (Nbirth

k (ds, di, dθ))k≥0, on R+×N×R+
with intensity measure ds∑n≥0 δn(di)dz,

(vi) a Poisson point measures, Nmutation(ds, di, dθ, dh), on R+ × N × R+ × {−A, ...,A} with
intensity measure ds∑n≥0 δn(di)dz∑Aj=−A δj(dh).

Moreover, we define the augmented process (ν̃K , LK) by setting LK0 ≡ 0, ν̃K0 ≡ 1
KN

K
0 δX0 , and,

for t > 0,

(ν̃Kt , LKt ) = (ν̃K0 , LK0 ) (II.5.6)

+ ∑
k≥0

(∫
t

0
∫
N0
∫
R+
1{i≤Mk(ν̃K

s−), θ≤b(hk,i(ν̃
K
s−))(1−uKm(hk,i(ν̃Ks−)))}

× ( 1
K δHk,i(ν̃Ks−)

,0)Nbirth
k (ds, di, dθ)

− ∫
t

0
∫
N0
∫
R+
1{i≤Mk(ν̃K

s−), θ≤d(hk,i(ν̃
K
s−))+∫N0×X c(hk,i(ν̃

K
s−),ξ2)ν̃

K
s−(dξ)}

× ( 1
K δHk,i(ν̃Ks−)

,0)Ndeath
k (ds, di, dθ))

+ ∫
t

0
∫
N0
∫
R+
∫{−A,...,A}

1{i≤K⟨ν̃K
s− ,1⟩, θ≤b(H̃i(ν̃

K
s−))uKm(H̃i(ν̃Ks−))M(H̃i(ν̃Ks−),h)}

× ( 1
K δ(L(s−)+1, H̃k,i(ν̃Ks−)+σh)

,1)Nmutation(ds, di, dθ, dh).

Note that the process (ν̃Kt , LKt )t≥0 is a Markov process with generator

L̃Kf((ν̃, L)) (II.5.7)

= ∑
k≥0

⎛
⎝∫X

(f (ν̃ + δ(k,x)
K , L) − f(ν̃, L)) (1 − uKm(x))b(x)Kν̃((k, dx))

+∫X
(f (ν̃ − δ(k,x)

K , L) − f(ν̃, L))(d(x) + ∫
N0×X

c(x, ξ2)ν̃(dξ))Kν̃((k, dx))
⎞
⎠

+∫
N0×X

∫
Z
(f (ν̃ + δ(L+1,x+σKh)

K , L+1) − f(ν̃, L))uKm(x)b(x)M(x, dh)Kν̃(d(k, x)).

Naturally, the process generated by LK defined in Section II.2 is a projection of the process
with generator L̃K .

The first elementary property we give is that we there exists a rough upper bound for the
total mass of the population.
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Lemma II.5.2. Under the same assumptions as in Theorem II.4.1, there exists a constant,
V > 0, such that

lim
K→∞

P[ inf{t ≥ 0 ∶ ⟨ν̃Kt ,1⟩ ≥ 4b/c} < exp(V K)] = 0. (II.5.8)

Proof. Apply Theorem 2 (a) and then Theorem 3 (c) of [25].

II.6 The first phase of an invasion

Our first task is to control the trait value (other than the resident trait) where the population
first attains a density εσK , as well as the time when this happens. Since we need to do this for
O(σ−1

K ) steps, we need to control this with probability at least 1− o(σK) . Before stating the
main result of this section as Theorem II.6.2 below, we need to introduce some notation. We
want to analyze such a step from a monomorphic initial condition that satisfies the following
assumption that is stronger than what is assumed in Theorem II.4.1.

Assumption 5. Fix ε > 0. Let (RK)K≥0 be a sequence random variables with values in X .
Then, there exists a constant M̃ > 0 (independent of ε and K) such that for all K large enough

LK0 = 0 and ν̃K0 = NK
RKK

−1δ(0,RK) (II.6.1)

where NK
RK

∈ N is a sequence of random variable with ∣z(RK) −NK
RK
K−1∣ < M̃εσK a.s.. We

call RK the resident trait.

The following proposition asserts that if we start with an initial condition as in Theo-
rem II.4.1, after a short time the state of the population satisfies the stronger conditions of
Assumption 5.

Proposition II.6.1. Fix ε > 0. Suppose that the assumptions of Theorem II.4.1 hold. Then,
there exists a constant M̃ > 0 (independent from ε and K), such that

lim
K→∞

P [inf{t≥0 ∶ ∣⟨ν̃Kt ,1⟩−z̄(x)∣<M̃εσK} < ln(K)σ−1
K ∧ inf {t≥0 ∶ L(t)≥1}] = 1. (II.6.2)

Since we can assume for the moment that Assumption 5 hold, we do not state the proof
here. In fact, it can be proven in similar way as Lemma II.7.4 (a). We begin with several
notations, which we use in the lemmata below.

Notation. Fix ε > 0. Suppose that Assumption 2, 4, and 5 hold. Let τKk be the k-th mutant
time and let Y K

k ∈ X be the trait of the k-th mutant, i.e.,

τKk ≡ inf{t ≥ 0 ∶ LKt = k} and Y K
k ≡ hk,1(ν̃KτK

k
). (II.6.3)

We denote by θKinvasion the first time such that a mutant density is larger than εσK , i.e.,

θKinvasion ≡ inf {t ≥ 0 ∶ ∃k ∈ {1, . . . , LKt } such that Mk(ν̃Kt ) > εσKK} , (II.6.4)

and let RK1 be the trait value of the mutant which is larger than εσKK at time θKinvasion, i.e.,

RK1 ≡ hk1,1(ν̃
K
θKinvasion

) with k1 = inf {k ≥ 1 ∶Mk(ν̃K
θKinvasion

) > εσKK} . (II.6.5)
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Note that k1 is the label of the first surviving mutant, i.e., k1 − 1 mutations happened before
the first surviving mutant appeared. Furthermore, let θKdiversity be the first time such that
⌈3/α⌉ different traits are present in the population, i.e.,

θKdiversity ≡ inf

⎧⎪⎪⎨⎪⎪⎩
t ≥ 0 ∶

LK(t)
∑
k=0

1{Mk(ν̃Kt )≥1} = ⌈3/α⌉
⎫⎪⎪⎬⎪⎪⎭
, (II.6.6)

and similarly let θKmut. of mut. the first time such that a "2nd generation mutant" occurs, i.e.,
a mutant which was born from a mutant that in turn was born from the resident trait RK .
Note that

θKmut. of mut. ≤ inf {t ≥ 0 ∶ ∃k ∈ {1, . . . , LKt } such that ∣RK − Y K
k ∣ > AσK} . (II.6.7)

Then, we define
θ̂K ≡ θKinvasion ∧ θKdiversity ∧ θ

K
mut. of mut. ∧ exp(Kα). (II.6.8)

The following theorem collects the main results of this section.

Theorem II.6.2. Fix ε > 0. Under the Assumptions 2, 4, and 5, there exists a constant
M > 0 (independent of ε and K) such that for all K large enough

(i) ν̃K0 = NK
RK
K−1δ(0,RK), where ∣z(RK) −NK

RK
K−1∣ < (M/3)εσK a.s..

(ii) We can construct on (Ω,F ,P) two random variables, RK,11 and RK,21 , such that

P [RK,11 ≤ RK1 ≤ RK,21 and RK,21 −RK,11 ≤ AσK] = 1 − o(σK), and (II.6.9)

P [RK,11 = RK1 = RK,21 ] = 1 −O(ε). (II.6.10)

The distributions of RK,11 and RK,21 are given in Corollary II.6.10.

(iii) We can construct on (Ω,F ,P) two exponential random variables, EK,1 and EK,2, with
parameters of order σKuKK, such that

P [EK,2 ≤ θKinvasion ≤ EK,1 + ln(K)σ−1−α/2
K ] = 1 − o(σK). (II.6.11)

The distributions of EK,1 and EK,2 are given in Lemma II.6.7.

Moreover, until the first time of invasion, θKinvasion, the resident density stays in an εMσK-
neighborhood of z̄(RK), the number of different living mutant traits is bounded by ⌈α/3⌉, and
there is no mutant of a mutant, with probability 1 − o(σK). i.e.,

P [θKinvasion < inf {t≥0 ∶ ∣M0(ν̃Kt )−⌈Kz(RK)⌉ ∣ > εMσKK} ∧ θKdiversity ∧ θ
K
mut. of mut.] (II.6.12)

= 1 − o(σK).

Remark 4. The constant M > 0 depends only on α and on the functions b(.), d(.), c(., .), and
m(.), but not on K, RK , and ε.



40 II.6. THE FIRST PHASE OF AN INVASION

II.6.1 Exit time from an attractive domain

Lemma II.6.3. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold. Then, there
exists a constant M > 0 (independent of ε and K) such that

lim
K→∞

σ−1
K P[ inf {t ≥ 0 ∶ ∣M0(ν̃Kt ) − ⌈Kz(RK)⌉∣ > εMσKK} < θ̂K] = 0. (II.6.13)

The statement is stronger than the corresponding one in [25], Thm. 3(c), since the diameter
of the domain converges to zero, when K tends to infinity and since it gives control of the
speed of convergence to 0 of the probabilities. Therefore, it does not follow from the classical
results about the time of exit from an attractive domain (cf. [61]). Our proof is based on a
coupling with a discrete Markov chain and some standard potential theoretical argument.

Proof. Define
Xt ≡ ∣M0

t − ⌈Kz(RK)⌉∣ (II.6.14)

and, for all M ≥ 0,

τ0 ≡ inf{t > 0 ∶Xt = 0} and τMεσKK
≡ inf{t > 0 ∶Xt ≥MεσKK}. (II.6.15)

Note that τ0 and τMεσKK
are stopping times with respect to the natural filtration of Xt, which

is equal to σ (M0
s; s ≤ t), and that the process (M0

t )t≥0 is not Markovian. We can associate with
the continuous time process Xt a discrete time (non-Markovian) process Yn, which records the
sequence of values that Xt takes. (This can be formally defined by introducing the sequences
Tk of the stopping times which record the instances when Xt ≠ Xt− and setting Yn = XTn .)
Now, we can compute

P [τMεσKK
< τ0 ∧ θKinvasion ∧ θKdiversity ∧ θ

K
mut. of mut.] (II.6.16)

with respect to the stopping times defined for the discrete time process Yn and exploit the
natural renewal structure on Yn. Therefore, we prove the following claim.

Claim. For 1 ≤ i≪K, and K large enough,

P [Yn+1 = i + 1∣Yn = i, Tn+1 < θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.] (II.6.17)

≤ 1

2
− (c/4b)K−1i + (c/b)εσK ≡ pK+ (i),

where c, b, c, and b are the lower, respectively upper bounds for birth and competition rates.
Recall from Remark 1 that the equilibrium z(RK) is equal to b(RK)−d(RK)

c(RK ,RK) and observe that
there are at most ⌈3/α⌉εσKK mutant individuals alive at any time t < θKinvasion ∧ θKdiversity ∧
θKmut. of mut.. Therefore, for 1 ≤ i≪K and K large enough,

P[Yn+1 = i + 1∣Yn = i, Tn+1 < θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.] (II.6.18)

≤ (1−m(RK)uK)b(RK)
(1−m(RK)uK)b(RK)+d(RK)+c(RK ,RK)K−1(⌈Kz(RK)⌉+i)

∨ d(RK)+c(RK ,RK)K−1(⌈Kz(RK)⌉−i)+c̄⌈3/α⌉εσKK
(1−m(RK)uK)b(RK)+d(RK)+c(RK ,RK)K−1(⌈Kz(RK)⌉−i)

≤ b(RK)−m(RK)uKb(RK)
2b(RK)−m(RK)uKb(RK)+c(RK ,RK)K−1i ∨

b(RK)−c(RK ,RK)K−1(i−1)+c̄⌈3/α⌉εσKK
2b(RK)−m(RK)uKb(RK)−c(RK ,RK)K−1i

≤ 1

2
− (c/4b)K−1i + (c/b)⌈3/α⌉εσK .

This proves the claim. Next we introduce a coupling, i.e., we define a discrete time process
Zn with the following properties
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(i) Z0 = Y0,

(ii) P [Zn+1=i+1, Yn+1=i+1∣Yn=Zn=i, Tn+1< θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.]

= P [Yn+1=i+1∣Yn=i, Tn+1< θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.],

(iii) P [Zn+1=i+1, Yn+1=i−1∣Yn=Zn=i, Tn+1< θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.]

= pK+ (i) − P [Yn+1 = i+1∣Yn=i, Tn+1< θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.],

(iv) P [Zn+1=i+1∣Yn < Zn=i, Tn+1< θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.] = p

K
+ (i),

(v) P [Zn+1 = i−1∣Yn < Zn=i, Tn+1< θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.] = 1 − pK+ (i).

Note that by construction Zn ≥ Yn a.s. for all n such that Tn < θKinvasion∧θKdiversity∧θ
K
mut. of mut.

and the marginal distribution of Zn is a Markov chain with transition probabilities

P[Zn+1 = j∣Zn = i] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 for i = 0 and j = 1

pK+ (i) for i ≥ 1 and j = i + 1

1 − pK+ (i) for i ≥ 1 and j = i − 1

0 else.

(II.6.19)

Now we define a continuous time process, Z̃, associated to Zn. To do this, let (T̃j)j∈N be the
sequence of jump times of Z̃, i.e., Z̃t ≡ Zn if t ∈ [T̃n, T̃n+1), defined for all j ∈ N as follows

T̃j − T̃j−1 =
⎧⎪⎪⎨⎪⎪⎩

Tj − Tj−1 if Tj < θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.

Wj else,
(II.6.20)

where Wj are independent exponential random variables with mean (Ctotal rateK)−1, where
Ctotal rate = 4bc(b + d + c(4bc)). By Lemma II.5.2, Ctotal rateK is an upper bound for the total
event rate of ⟨ν̃Kt ,1⟩, and therefore also for M0

t .
Define τZMεσKK

≡ inf{n ≥ 0 ∶ Zn ≥ MεσKK} and τZ0 ≡ inf{n ≥ 0 ∶ Zn = 0}. Then, since
Z̃t ≥Xt a.s. for all t < θKinvasion ∧ θKdiversity ∧ θ

K
mut. of mut.,

P[τMεσKK
< τ0 ∧ θKinvasion ∧ θKdiversity ∧ θ

K
mut. of mut.] ≤ P[τZMεσKK

< τZ0 ]. (II.6.21)

Applying Proposition II.9.2 yields that, for allM ≥ 32⌈3/α⌉(cb)/(bc) such that Z0 ≤ 1
3MεσKK

and large K large enough,

P[τZMεσKK
< τZ0 ] ≤ exp (−K2α) . (II.6.22)

Next we prove that the process Xt returns many times to zero before it reaches for the first
time the valueMεσKK. More precisely, we first prove a lower bound on the number of returns
to zero of the discrete time process Zn. Then we calculate the time for a return to zero. From
now on we assume that M ≥ 32⌈3/α⌉(c b)/(b c). We define the following stopping times with
respect to the natural filtration of Z which records the number of jumps the process Z needs
for m zero-returns:

τZm returns ≡ inf {n ≥ 1 ∶
n

∑
i=1

1Zi=0 =m} . (II.6.23)

Let Qm ≡ P[τZm returns < τZMεσKK
< τZ(m + 1) returns] be the probability that the Markov chain Zn

returns exactly m times to zero before it reaches the value MεσKK. We have

Q0 = P[τZMεσKK
< τZ0 ] ≤ exp (−K2α) , (II.6.24)
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and, due to the Markov property, for m ≥ 1 ,

Qm = P [τZ0 < τZMεσKK
] (1 − P1 [τZMεσKK

< τZ0 ])m−1 P1 [τZMεσKK
< τZ0 ] , (II.6.25)

where the last term in the product is smaller than exp (−K2α). Thus,

Qm ≤ exp (−K2α) for all m ≥ 0. (II.6.26)

Let B be the random variable which records the number of zero returns of Zn before Zn
reaches MεσKK. In other words, B = n if and only if τZn returns < τZMεσKK

< τZn + 1 returns, and
we obtain that

P[B ≤ n] =
n

∑
i=0

Qi ≤ (n + 1) exp (−K2α) . (II.6.27)

Set I1 ≡ T̃τZ1 return
and Ij ≡ T̃τZj returns

− T̃τZ(j − 1) returns
for j ≥ 2. For any j, Ij is the random time

between the (j − 1)th and the j-th zero return of the associated continuous time process Z̃t
and

B

∑
i=1

Ii ≤ inf{t ≥ 0 ∶ Z̃t ≥MεσKK} ≤
B+1

∑
i=1

Ii. (II.6.28)

We get an upper bound for the probability which we want to compute

P[ inf {t ≥ 0 ∶ ∣M0(ν̃Kt ) − ⌈Kz(RK)⌉∣ > εMσKK} < θ̂K] (II.6.29)

≤
∞
∑
l=n

P [inf{t ≥ 0 ∶ Z̃t ≥MεσKK} < exp(Kα) , B = l] + P[B ≤ n].

According to (II.6.28), if B = l and if in addition more than l/2 of the l random times Ij in
the sum are larger than 2l−1 exp(Kα), then inf{t ≥ 0 ∶ Z̃t ≥MxεσKK} is larger than exp(Kα).
Therefore, for all l ≥ n,

P [inf{t ≥ 0 ∶ Z̃t ≥MεσKK} < exp(Kα) , B = l] (II.6.30)

≤ P [∑li=1 1{Ij<2l−1 exp(Kα)} > l/2 , B = l].

As mentioned before, Ctotal rateK is an upper bound for the total event rate of ⟨ν̃Kt ,1⟩. Thus
we can bound the jump times by a sequence of independent, exponential random variables
(Vj)j∈N with mean (Ctotal rateK)−1. Namely,

T̃j − T̃j−1 ≡ Tj − Tj−1 ≽ Vj if Tj ≤ θKinvasion ∧ θKdiversity ∧ θ
K
mut. of mut.. (II.6.31)

Otherwise the random times T̃j − T̃j−1 are by definition independent and exponentially dis-
tributed with mean (Ctotal rateK)−1. The process Z̃ has to make at least two jumps to return
to zero. Hence,

Ii ≽ W̃i, for all i ∈ N, (II.6.32)

where (W̃i)i∈N is a sequence of i.i.d. exponential random variables with mean (Ctotal rateK)−1.
Thus,

P [∑li=1 1{Ij<2l−1 exp(Kα)} > l
2 ,B = l] ≤ P [∑li=1 1{W̃i<2l−1 exp(Kα)} >

l
2] . (II.6.33)
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Since P[W̃i < 2l−1 exp(Kα)] = 1 − exp(−Ctotal rateKl
−1 exp(Kα)) and (W̃i)i≥1 are indepen-

dent, we obtain that ∑li=1 1{W̃i<2l−1 exp(Kα)} is binomially distributed with n = l and p = 1−
exp(−Ctotal rateK l−1 exp(Kα)). Therefore, the right hand side of (II.6.33) is equal to

l

∑
i=l/2

(l
i
)(1 − exp (−Ctotal rateKl

−1eK
α

))i (exp (−Ctotal rateKl
−1eK

α

))l−i . (II.6.34)

For the following two computations we use the elementary facts that (l
i
) < 2l and l < 2l, for all

l ∈ N and i ≤ l. We obtain that, for large K enough, the left hand side of (II.6.29) is bounded
from above by

∞
∑
l=n

l

∑
i=l/2

(l
i
)(1 − exp (−Ctotal rateKl

−1eK
α

))i (exp (−Ctotal rateKl
−1eK

α

))l−i + P [B ≤ n]

≤
∞
∑
l=n

l

2
2l (1 − exp (−Ctotal rateKl

−1eK
α

))
l/2 + P [B ≤ n] .

By (II.6.27) we see that P [B ≤ n] = o(σK) if the variable n fulfills the following condition

n≪ exp (K2α)σK . (II.6.35)

Therefore, we choose n = ⌈exp (2Kα)⌉ and get, for large K enough,

P[ inf {t ≥ 0 ∶ ∣M0(ν̃Kt ) − ⌈Kz(RK)⌉∣ > εMσKK} < θ̂K] (II.6.36)

≤
∞
∑

l=⌈exp(2Kα)⌉
4l (1 − exp (−Ctotal rateKl

−1eK
α

))
l/2 + o(σK)

≤
∞
∑

l=⌈exp(2Kα)⌉
(4 (1 − exp (−Ctotal rateKe

−Kα

))
1/2)

l

+ o(σK)

≤ 2 (42 (1 − exp (−Ctotal rateKe
−Kα

)))
1
2
⌈exp(2Kα)⌉ + o(σK)

≤ 2 (42Ctotal rateKe
−Kα

)
1
2
⌈exp(2Kα)⌉ + o(σK)

≤ o(Ke−K
α

) + o(σK),

where we used that exp(−x) ≥ 1 − x for x ≥ 0 and K exp(K−α) ≪ σK .

II.6.2 Controlling the number LKt of mutations by Poisson processes

Lemma II.6.4. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold and let M
be the constant of Lemma II.6.3. Then,

lim
K→∞

σ−1
K (1 − P [∀ 0 ≤ t ≤ θ̂K ∶ A1,K(t) ≼ LKt ≼ A2,K(t) ]) = 0, (II.6.37)

where A1,K and A2,K are Poisson counting processes with parameter aK1 uKK and aK2 uKK
with

aK1 ≡ (z(RK) − εMσK) b(RK)m(RK), (II.6.38)

aK2 ≡ (z(RK) + ε (M + ⌈3/α⌉)σK) (b(RK)m(RK) +Cb,m,ML AσK) , (II.6.39)

and Cb,m,ML is a constant depending only on the functions b(.),m(.) and M(., h) for h ∈
{−A, . . . ,A}.



44 II.6. THE FIRST PHASE OF AN INVASION

Proof. We obtain from the last lemma that

P [∀ 0≤t≤ θ̂K ∶ z(RK) − εMσK ≤ ⟨ν̃t,1⟩ ≤ z(RK) + ε (M + ⌈ 3
α
⌉)σK] = 1 − o(σK).

Therefore, define

A1,K(t) = ∫
t

0
∫
N0
∫
R+
∫{−A,...,A}

1{i≤K(z(RK)−εMσK), θ≤b(RK)uKm(RK)M(RK ,h)} (II.6.40)

×Nmutation(ds, di, dθ, dh)

and similarly

A2,K(t) = ∫
t

0
∫
N0
∫
R+
∫{−A,...,A}

1{i≤K(z(RK)+ε(M+⌈ 3
α
⌉)σK)} (II.6.41)

× 1{θ≤uK(b(RK)m(RK)M(RK ,h)+Cb,m,ML AσK)}

×Nmutation(ds, di, dθ, dh),

Since θ̂K ≤ θKmut. of mut., any mutant trait differs at most AσK from the resident trait, RK .
Thus, we have thatuK(b(RK)m(RK)M(RK , h) + Cb,m,ML AσK) is a rough upper bound for
the mutation rate per individual for an appropriate choice of Cb,m,ML . Note that Ai,K are
Poisson counting process with parameter aKi uKK. By construction, we obtain (II.6.37).

II.6.3 Controlling the number Mk
(ν̃t) of offspring of the k-th mutant by

birth-death processes

Lemma II.6.5. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold and let M
be the constant in Lemma II.6.3. Then,

lim
K→∞

σ−1
K (1 − P[∀ 1 ≤ k ≤ LK

θ̂K
, ∀t ≤ θ̂K ∶ ZK,1k (t) ≼Mk(ν̃t) ≼ ZK,2k (t) ] ) = 0, (II.6.42)

where ZK,1k (t) resp. ZK,2k (t) are N0-valued processes, which are zero until time τKk , the first
time s.t. Mk(ν̃t) ≠ 0, and afterwards linear, continuous time birth-death processes with initial
state 1 at time τKk , birth rates per individual

bK,1k = bK,2k = b(Y K
k ) (1 − uKm(Y K

k )) , (II.6.43)

and death rate per individual

dK,1k = d(Y K
k ) + c(Y K

k ,RK) (z(RK) +MεσK) + c⌈3/α⌉εσK (II.6.44)

resp. dK,2k = d(Y K
k ) + c(Y K

k ,RK) (z(RK) −MεσK) . (II.6.45)

Furthermore, define Z̃K,1k (t) ≡ ZK,1k (τk + t) and Z̃K,2k (t) ≡ ZK,2k (τk + t), then the processes
{(Z̃K,1k , Z̃K,2k )}k≥1 are independent and identically distributed.

Proof. For any t ≤ θ̂K , any individual of Mk(ν̃t) gives birth to a new individual with the same
trait with rate b(Y K

k ) (1 − uKm(Y K
k )) and dies with rate d(Y K

k ) + ∫N×X c(Y
K
k , ξ2)ν̃Kt (dξ),

which belongs to the following interval

[d(Y K
k ) + c(Y K

k ,RK)(z̄(RK) −MεσK), (II.6.46)

d(Y K
k ) + c(Y K

k ,RK)(z̄(RK) +MεσK) + c̄⌈3/α⌉εσK].
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Thus, let us define, for k ≤ Lθ̂K ,

Z̃K,1k (t) ≡∫
τk+t

τk
∫
N0
∫
R+
1{i≤Z̃K,1

k
(s−), θ≤b(Yk)(1−uKm(Yk))}

Nbirth
k (ds, di, dθ) (II.6.47)

− ∫
τk+t

τk
∫
N0
∫
R+
1{i≤Z̃K,1

k
(s−), θ≤d(Y K

k
)+c(Y K

k
,RK)(z(RK)+MεσK)+c̄⌈3/α⌉εσK}

×Ndeath
k (ds, di, dθ)

and similarly

Z̃K,2k (t) ≡∫
τk+t

τk
∫
N0
∫
R+
1{i≤Z̃K,1

k
(s−), θ≤b(Yk)(1−uKm(Yk))}

Nbirth
k (ds, di, dθ) (II.6.48)

− ∫
τk+t

τk
∫
N0
∫
R+
1{i≤Z̃K,1

k
(s−), θ≤d(Y K

k
)+c(Y K

k
,RK)(z(RK)−MεσK)}N

death
k (ds, di, dθ),

and a similar construction for k > Lθ̂K , where the random variables Y K
k are replaced by i.i.d.

ones with distribution fK ∗M(RK , ⋅), independent of all the previously introduced random
variables, where fK is the homothety of ratio σK . Note that, the Poisson point measuresNbirth

k

and Ndeath
k are independent of Y K

k and τk, and that the processes Z̃K,1k and Z̃K,2k only depend
on Nbirth

k , Ndeath
k , Y K

k and τk. By construction, conditionally on Y K
k = y and τk = s, the

process Z̃K,1k is distributed as a linear birth-death processes with birth rate b(y)(1−uKm(y))
and death rate d(y) + c(y,RK)(z̄(RK) +MεσK) + c̄⌈3/α⌉εσK , and similarly for Z̃K,2k . In
particular, the law of (Z̃K,1k , Z̃K,2k ) does not depend on τk. Therefore, defining Gk ≡ σ(ν̃t, t ≤
τk, Y

K
k ,Nbirth

` ,Ndeath
` ,1 ≤ ` ≤ k − 1), for all bounded measurable functions F1, . . . , Fk on

D(R+,Z2
+),

E [F1(Z̃K,11 , Z̃K,21 ) . . . Fk(Z̃K,1k , Z̃K,2k )] (II.6.49)

= E [F1(Z̃K,11 , Z̃K,21 ) . . . Fk−1(Z̃K,1k−1 , Z̃
K,2
k−1)E[Fk(Z̃K,1k , Z̃K,2k ) ∣ Gk]]

= E [F1(Z̃K,11 , Z̃K,21 ) . . . Fk−1(Z̃K,1k−1 , Z̃
K,2
k−1)E[Fk(Z̃K,1k , Z̃K,2k ) ∣ Y K

k ]]

= E [F1(Z̃K,11 , Z̃K,21 ) . . . Fk−1(Z̃K,1k−1 , Z̃
K,2
k−1)]E[Fk(Z̃K,1k , Z̃K,2k )],

where the last equality follows from the fact that the random variable Y K
k is independent of

(Z̃K,1` , Z̃K,2` ) for 1 ≤ ` ≤ k − 1. Actually, (Y K
k )1≤k≤L

θ̂K
are i.i.d. random variables, with law

fK ∗M(RK , ⋅). This implies by induction that the processes {(Z̃K,1k , Z̃K,2k )}k≥1 are i.i.d..

II.6.4 Controlling survival of the k-th mutant population

Notation. Let us define BK
k ≡ 1inf{t≥τk ∶Mk(ν̃t)≥εσKK}<inf{t≥τK ∶Mk(ν̃t)=0}.

This random variable indicates whether or not the k-th mutant population, which appeared
at time τk, invades, i.e., reaches εσKK individuals before dying out. The following lemma
introduces a sequence of i.i.d. random variables (B1,K

k ,B2,K
k ) which are 2-tuples of Bernoulli

random variables constructed from the processes ZK,1k (t) and ZK,2k (t) defined in Lemma II.6.5,
such that (BK

k )k≥0 is stochastically dominated by the sequences (Bi,K
k )k≥0.

Lemma II.6.6. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold and let M
be the constant of Lemma II.6.3. Then,

lim
K→∞

σ−1
K (1 − P[∀ 1 ≤ k ≤ LK

θ̂K
∶ B1,K

k ≼ BK
k ≼ B2,K

k ]) = 0, (II.6.50)
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where ((B1,K
k ,B2,K

k ))k≥1 is a sequence of i.i.d. 2-tuples of Bernoulli random variables such
that B1,K

k ≤ B2,K
k a.s. Its distribution is characterized by

σKq
K
1 (h) ≡ P[B1,K

k = 1 ∣ Y K
k = RK + hσK] (II.6.51)

=
⎧⎪⎪⎨⎪⎪⎩

σK (h∂1f(R
K ,RK)

b(RK) − εC1
Bernoulli) if 1 ≤ h ≤ A,

0 otherwise

and

σKq
K
2 (h) ≡ P[B2,K

k = 1 ∣ Y K
k = RK + hσK] (II.6.52)

=
⎧⎪⎪⎨⎪⎪⎩

σK (h∂1f(R
K ,RK)

b(RK) + εC2
Bernoulli) if 1 ≤ h ≤ A,

0 otherwise,

where C1
Bernoulli and C

2
Bernoulli depend only on α, M , and CL (the Lipschitz constant of our

parameters). Then, for i = 1,2 and k ≥ 1, Bi,K
k is a Bernoulli random variable of parameter

σKp
K
i , where

pKi ≡
A

∑
h=1

qKi (h)M(RK , h). (II.6.53)

Remark 5. (i) For all k ≥ 1, P[B1,K
k = 0∣B2,K

k = 1] = 1 − pK1
pK2

and is thereby of order ε.

(ii) We use in here the assumption that ∂1f(x,x) > 0 for all x ∈ X .

Proof. Let ZK,1k (t) resp. ZK,2k (t) as defined in Lemma II.6.5 and define

B̃i,K
k ≡ 1

inf{t≥τk ∶ZK,ik
(t)≥εσKK}<inf{t≥τk ∶ZK,ik

(t)=0} for i = 1,2. (II.6.54)

Then, due to the last lemma

P[∀1 ≤ k ≤ LK
θ̂K

∶ B̃1,K
k ≼ BK

k ≼ B̃2,K
k ] = 1 − o(σK). (II.6.55)

For all 1 ≤ k ≤ LK
θ̂K

, we obtain with Proposition II.9.3, that

∣P[ inf {t≥τk ∶ ZK,ik (t)≥εσKK} < inf {t≥τk ∶ ZK,ik (t)=0}∣ Y K
k ] − [bi,K

k
−di,K
k

]+
bi,K
k

∣ (II.6.56)

= o (exp(−Kα)),

where, using that f(x,x) = 0 for all x, we have

b1,Kk − d1,K
k = f(Y K

k ,RK) − (c(Y K
k ,RK)M + c̄⌈3/α⌉)εσK − uKb(Y K

k )m(Y K
k ) (II.6.57)

= ∂1f(RK ,RK)(Y K,1
k −RK) − (c(Y K

k ,RK)M + c̄⌈3/α⌉)εσK +O(σ2
K),

and similarly

b2,Kk − d2,K
k = ∂1f(RK ,RK)(Y K

k −RK) + c(Y K
k ,RK)MεσK +O(σ2

K). (II.6.58)
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Recall that the sequence (Y K
k )k≥1 used to construct the processes ZK,1k and ZK,2k is a sequence

of i.i.d. random variables with distribution M(RK , ⋅). Since bi,Kk − di,Kk < 0 if Y K
k −RK < 0,

we obtain

P [B̃1,K
k = 1] = E [P [B̃1,K

k ∣Y K
k ] = 1] (II.6.59)

≥
A

∑
h=1

(∂1f(R
K ,RK)σKh−(c(Y Kk ,RK)M+c̄⌈3/α⌉)εσK+O(σ2

K)
b(RK) )M(RK , h).

Therefore, there exists a constant C1
Bernoulli > 0 (which depends only on α, M , and CL) such

that the sum in the right hand side of (II.6.59) is, term by term, bounded from below by

σK
A

∑
h=1

(h∂1f(R
K ,RK)

b(RK) − εC1
Bernoulli)M(RK , h) (II.6.60)

and similarly there exists a constant C2
Bernoulli > 0 such that

P[B̃2,K
k = 1] ≤ σK

A

∑
h=1

(h∂1f(R
K ,RK)

b(RK) + εC2
Bernoulli)M(RK , h). (II.6.61)

Next, we introduces two couplings, i.e.i.e., we define a sequences of i.i.d. 2-tuples of Bernoulli
random variables ((B1,K

k ,B2,K
k ))k≥1 with the following properties

(i) P[B1,K
k =0, B̃1,K

k =0 ∣ Y K
k =RK+ hσK] = P[B̃1,K

k =0 ∣ Y K
k =RK+ hσK] and

P[B1,K
k =1, B̃1,K

k =1 ∣ Y K
k =RK+ hσK] = qK1 (h)σK

(ii) P[B2,K
k =1, B̃2,K

k =1 ∣ Y K
k =RK+ hσK] = P[B̃2,K

k =1 ∣ Y K
k =RK+ hσK] and

P[B2,K
k =1, B̃2,K

k =0 ∣ Y K
k =RK+ hσK] = 1 − qK2 (h)σK .

By construction, B1,K
k ≤ B̃1,K

k , a.s., and B̃2,K
k ≤ B2,K

k a.s. for all k ≥ 1 and these random
variables satisfy (II.6.51) and (II.6.52).

II.6.5 Controlling the time of the arrival of the first successful mutant

Notation. (a) For i ∈ {1,2}, define

TK,ik ≡ inf {t ≥ 0 ∶ ZK,ik (τk + t) = 0 or ZK,ik (τk + t) > εσKK} . (II.6.62)

Obverse that (TK,ik )k≥1 are i.i.d. random variables that are independent of AK,i.

(b) Define IK = k1 ≡ inf{k ≥ 1 ∶ BK
k = 1} and IK,i ≡ inf{k ≥ 1 ∶ BK,i

k = 1}. Then, IK,i are
independent of AK,i, and we have

P [{IK,2 ≼ IK ≼ IK,1} ∩ {τIK ≤ θ̂K}] = P [τIK ≤ θ̂K] − o(σK). (II.6.63)

(c) Define RK1 ≡ Y K
inf{k≥1∶BK

k
=1}.

In fact, we prove at the end of this section that P[τIK ≤ θ̂K] = 1 − o(σK), i.e., RK1 is with
high probability the random variable which gives the value of the next resident trait and τIK ,
the first time where a successful mutant appears, is approximately exponential distributed as
stated in lemma below. Note that this time is a random time, but not a stopping time.
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Lemma II.6.7. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold and let M
be the constant of Lemma II.6.3. Then,

lim
K→∞

σ−1
K (P [τIK ≤ θ̂K] − P[{EK,2 ≼ τIK ≼ EK,1} ∩ {τIK ≤ θ̂K}]) = 0, (II.6.64)

where EK,1 and EK,2 are exponential random variables with mean aK1 p
K
1 σKuKK respectively

aK2 p
K
2 σKuKK.

In other words, we have P[EK,2 ≼ τ
IK

≼ EK,1∣τIK ≤ θ̂K] = 1 − o(σK), provided that
lim infK→∞ P[τIK ≤ θ̂K] > 0.

Proof. Let AK,it be defined as in Lemma II.6.4 and observe that
τ
IK

= inf {t ≥ 0 ∶ LKt = IK}. Then, we obtain by construction,

P[{ inf {t ≥ 0 ∶ AK,2t =IK,2} ≼ τIK ≼ inf {t≥0 ∶ AK,1t = IK,1}} ∩ {τIK ≤ θ̂K}] (II.6.65)

= P [τIK ≤ θ̂K] − o(σK).

By definition, IK,1 and IK,2 are geometrically distributed with parameter pK1 σK , resp. pK2 σK .
AK,1 and AK,2 are Poisson counting processes with parameter aK1 uKK, resp. aK2 uKK. There-
fore, the times between each pair of successive events is exponential distributed with param-
eter aK1 uKK resp. aK2 uKK. Since the random variables IK,i are independent of AK,i and
the sum of a geometrically distributed number of independent exponentially distributed ran-
dom variables is again exponentially distributed, we get that inf{t ≥ 0 ∶ AK,1t = IK,1} and
inf{t ≥ 0 ∶ AK,2t = IK,2} are exponentially distributed with parameter aK1 uKKp

K
1 respectively

aK2 uKKp
K
2 .

II.6.6 No surprises happen before the successful mutant invades

In the next lemma we prove that a mutant invades with high probability before the resident
population exits the neighborhood of this equilibrium, before too many different mutant traits
are present and before a mutant of a mutant appears.

Lemma II.6.8. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold and let M
be the constant of Lemma II.6.3. Then,

lim
K→∞

σ−1
K P [θKinvasion ≥ θKdiversity ∧ exp(Kα) ∧ θKmut. of mut.] = 0. (II.6.66)

Proof. We start with proving the following

P [θKdiversity < (KuKσ1+α
K )−1 ∧ θKinvasion ∧ θKmut. of mut.] = o(σK). (II.6.67)

Define

ẐK,2k (s) ≡
⎧⎪⎪⎨⎪⎪⎩

0 for s < inf{t ≥ 0 ∶ AK,2t = k}
ZK,2k (τk + s − inf{t ≥ 0 ∶ AK,2t = k}) for s ≥ inf{t ≥ 0 ∶ AK,2t = k}.

By construction of AK,2 and ẐK,2, the left hand side of (II.6.67) does not exceed

P
⎡⎢⎢⎢⎢⎣

inf

⎧⎪⎪⎨⎪⎪⎩
t≥0 ∶

AK,2t

∑
k=1

1{1≤ẐK,2
k

(t)≤εσKK} ≥ ⌈ 3
α
⌉ − 1

⎫⎪⎪⎬⎪⎪⎭
< (KuKσ1+α

K )−1
⎤⎥⎥⎥⎥⎦
+ o(σK). (II.6.68)
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Next, we compute an upper bound for the mutation events that happen before (KuKσ1+α
K )−1.

Since AK,2 is a Poisson counting process with parameter aK2 uKK, Chebyshev’s inequality
implies that

P [AK,2
(KuKσ1+α

K
)−1

≥ 2aK2 σ
−1−α
K ] ≤

Var(AK,2
(KuKσ1+α

K
)−1

)

(2aK2 σ
−1−α
K )2

= 1

aK2 σ
−1−α
K

. (II.6.69)

Next we need an upper bound for the lifetimes of the mutant’s traits, TK,2k . First, observe
that the probability that ZK,2k goes extinct after it has reached the value ⌈εσKK⌉ converges
to zero very fast. More precisely, Proposition II.9.3 and II.9.4 (a) imply that

P [inf {t ≥ 0 ∶ ZK,2k = ⌈εσKK⌉} < inf {t ≥ τk ∶ ZK,2k = 0} < ∞] (II.6.70)

= P [inf {t ≥ τk ∶ ZK,2k = 0} < ∞] − P [inf {t ≥ 0 ∶ ZK,2k = ⌈εσKK⌉} > inf {t ≥ τk ∶ ZK,2k = 0}]

= o(exp(−Kα)).

Note that, for each k, ZK,2k , conditioned on extinction, is a subcritical linear birth-death
process (cf. [81]). Let ŽK,2k denote the conditioned process. If ZK,2k is subcritical, then
conditioning has no effect, otherwise the birth-death rates are exchanged. Denote by b̌K,2k the
birth rate and ďK,2k the death rate of ŽK,2k . Then there exist uniform constants, Č1 > 0 and
Č2 > 0, such that Č1σK ≤ ďK,2k − b̌K,2k ≤ Č2σK , for all k < IK,2. Thus, [6] p. 109 entails, for all
k < IK,2,

P [TK,2k ≤ t] ≥
ďK,2k − e(ď

K,2
k

−b̌K,2
k

)tďK,2k

b̌K,2k − e(ď
K,2
k

−b̌K,2
k

)tďK,2k

− o(exp(−K−α)). (II.6.71)

The error term o(exp(−K−α)) appears since ZK,2k , for k < IK,2, is conditioned on extinction
before reaching the value ⌈εσKK⌉ and not only on extinction. Choose t = (ďK,2k −b̌K,2k )−1 ln(K),
Then,

P [TK,2k ≤ (ďK,2k − b̌K,2k )−1 ln(K)] =
ďK,2k (1 −K)

b̌K,2k (1 −K) −K(ďK,2k − b̌K,2k )
− o(exp(−K−α)) (II.6.72)

= 1 +
ďK,2k − b̌K,2k

b̌K,2k (1 −K) −K(ďK,2k − b̌K,2k )
− o(exp(−K−α))

= 1 −O(σKK−1)

and hence

P [∀1 ≤ k < IK,2 ∶ TK,2k ≤ (Č1σK)−1 ln(K)] = 1 − o(σK). (II.6.73)

Therefore, we can bound the first summand of (II.6.68) by 2aK2 σ
−1−α
K times the probability that

more than ⌈3/α⌉−1 mutation events of AK,2 take place in an interval of length (Č1σK)−1 ln(K).
More precisely, (II.6.68) is smaller than

2aK2 σ
−1−α
K P [AK,2(Č1σK)−1 ln(K) ≥ ⌈3/α⌉ − 1] + o(σK). (II.6.74)
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Thus, for α small enough, the proof of (II.6.67) is concluded by the observation that

P [AK,2(Č1σK)−1 ln(K) ≥ ⌈3/α⌉ − 1] (II.6.75)

= e−a
K
2 uKK(Č1σK)−1 ln(K)

∞
∑

i=⌈3/α⌉−1

(aK2 uKK(Č1σK)−1 ln(K))i

i!

≤ (aK2 uKK(Č1σK)−1 ln(K))⌈3/α⌉−1

= o(σ3−α
K ),

where the last equality holds since uKKσ−1
K ln(K) ≪ (σK)α.

Next, we want to prove that

P [θKmut. of mut. < (KuKσ1+α
K )−1 ∧ θKinvasion ∧ θKdiversity] = o(σK). (II.6.76)

Set, for all λ ≥ 0,

G(λ) = E [exp(−λ∫
∞

0
Zt dt) ∣ Z0 = 1] , (II.6.77)

where (Zt, t ≥ 0) is a linear birth-death process with individual birth rate b and individual
death rate d. Applying the strong Markov property and the branching property at the first
jump time of Z and using the facts that
G(λ)2 = E [exp (−λ ∫

∞
0 Zt dt)∣Z0 = 2] and E [exp (−λτfirst jump) ∣ Z0 = 1] = b+d

b+d+λ , we obtain

bG(λ)2 − (b + d + λ)G(λ) + d = 0. (II.6.78)

Thus, since

limλ↓0G(λ) = limλ↓0 E [exp (−λ ∫
∞

0 Zt dt)1{τextinction<∞} ∣ Z0 = 1] (II.6.79)

+ limλ↓0 E [exp (−λ ∫
∞

0 Zt dt)1{τextinction=∞} ∣ Z0 = 1]

= P[τextinction < ∞] + 0,

which is 0 in the subcritical case and 1 − d/b in the supercritical case, it follows that

G(λ) =
b + d + λ −

√
(b + d + λ)2 − 4bd

2b
. (II.6.80)

Let Z̃K,2k (t) ≡ ZK,2k (τk + t), i.e., a linear birth-death process with birth rate bK,2k and death
rate dK,2k . Observe that ∫

∞
0 Z̃K,2k (t)dt gives an upper bound for the sum of the lifetimes of

all individuals with label k. Since the mutation rate of any individual in the population is
smaller than b̄uK , the probability that a mutant appears, which was born from an unsuccessful
mutant with label k, is bounded from above by

1 −E [exp (−uK b̄ ∫
∞

0 Z̃K,2k (t)dt)∣ τextinction < inf{t ≥ 0 ∶ Z̃K,2k (t) > εσKK}] (II.6.81)

≤ 1 −E [exp (−uK b̄ ∫
∞

0 Z̃K,2k (t)dt)∣ τextinction < ∞] + o(exp(−Kα)).
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Since Z̃K,2k (t), conditioned on extinction, is a sub-critical linear birth-death process, the right
hand side of (II.6.81) is equal to 1 −GE[Z̃K,2

k
∣τextinction<∞](uK b̄) + o(exp(−Kα)) and

GE[Z̃K,2
k

∣τextinction<∞](uK b̄) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

bK,2
k

+dK,2
k

+uK b̄−
√

(bK,2
k

+dK,2
k

+uK b̄)2−4bK,2
k

dK,2
k

2bK,2
k

if dK,2k > bK,2k

dK,2
k

+bK,2
k

+uK b̄−
√

(dK,2
k

+bK,2
k

+uK b̄)2−4dK,2
k

bK,2
k

2dK,2
k

if bK,2k > dK,2k

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2bK,2
k

+uK b̄−O(uKσ−1K )
2bK,2
k

if dK,2k > bK,2k

2dK,2
k

+uK b̄−O(uKσ−1K )
2dK,2
k

if bK,2k > dK,2k

= 1 −O(uKσ−1
K ) = 1 − o(σ2+α

k K−2α).

Note that we used for the second equality that ∣bK,2k −dK,2k ∣ = ξσK for some ξ > 0. By (II.6.69),
the total number of unsuccessful mutations until (KuKσ1+α

K )−1 ∧ θKinvasion ∧ θKdiversity is with
probability 1 − o(σK) smaller or equal 2aK2 σ

−1−α
K . Therefore, we finally obtain that the prob-

ability to have one mutant of an unsuccessful mutant during that time is o(σK). On the
other hand, let PKt be a Poisson counting process with parameter b̄uKεσKK and (Z̃K,1t , t ≥ 0)
a linear birth-death process with initial state 1 and birth rate bK,1(Y K

IK
) and death rate

dK,1(Y K
IK

), then the probability to have one mutant of the successful mutant until the time
(KuKσ1+α

K )−1 ∧ θKinvasion ∧ θKdiversity is bounded from above by

P[PK
τ Z̃

K,1

εσKK

≠ 0∣τ Z̃
K,1

εσKK
< τ Z̃

K,1

0 ] + o(σK) (II.6.82)

= E[1{PK
τZ̃
K,1

εσKK

≠0} (1{τ Z̃K,1εσKK
≤tK} + 1{τ Z̃K,1εσKK

>tK}) ∣τ Z̃
K,1

εσKK
< τ Z̃

K,1

0 ] + o(σK)

≤ (1 − exp(−b̄uKεσKKtK)) + P[τ Z̃
K,1

εσKK
> tK ∣τ Z̃

K,1

εσKK
< τ Z̃

K,1

0 ] + o(σK),

for each tK , because the mutation rate per individual is bounded by b̄uK and there are at most
εσKK successful mutant individuals alive until θKinvasion. If we choose tK = ln(K)σ−1−α/2

K , then
by Proposition II.9.4, all terms in the last line of (II.6.82) are o(σK). This implies (II.6.76).

Note that we have θKinvasion = τ
IK

+ inf {t ≥ 0 ∶ MIK(ν̃τ
IK

+t) > εσKK}. Let EK,1 be an
exponential distributed random variable with mean aK1 p

K
1 σKuKK. Then,

P [τIK + inf {t ≥ 0 ∶MIK(ν̃τ
IK

+t) > εσKK} ≥ θKdiversity ∧ e
Kα

∧ θKmut. of mut.] (II.6.83)

≥ P [EK,1 + TK,1
IK

≥ (KuKσ1+α
K )−1] − o(σK).

Let Z̃K,1 as defined before, then again by Proposition II.9.4

P [TK,1
IK

> ln(K)σ−1−α/2
K ]=P [τ Z̃

K,1

εσKK
> ln(K)σ−1−α/2

K ∣τ Z̃
K,1

εσKK
<τ Z̃

K,1

0 ] = o(σK). (II.6.84)

Since ln(K)σ−1−α/2
K ≪(KuKσ1+α

K )−1, the Markov inequality for the function f(x) = xn, where
n is smallest even number which is larger than 2/α, yields

P [EK,1 + TIK > (KuKσ1+α
K )−1] ≤ P [EK,1 > (2KuKσ1+α

K )−1] + o(σK) (II.6.85)

≤
(2KuKσ1+α

K )nn!

(aK1 pK1 uKKσK)n
= O(σ2

K).
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The following lemma shows that there are no two successful mutants during the first phase
of an invasion.

Lemma II.6.9. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold and let M
be the constant of Lemma II.6.3. Then,

lim
K→∞

σ−1
K P[ There is a successful mutation in time interval [τIK , θ

K
invasion]] = 0. (II.6.86)

Proof. Let PKsuc. mut.(t) the process which recodes the number of successful mutants born after
τ
IK

until τ
IK

+ t. Then,

P [for all t ≥ 0 such that τIK + t < θ̂K ∶ PKsucc. mut.(t) ≼ PKt ] = 1 − o(σK), (II.6.87)

where PKt is Poisson process with parameter aK2 p
K
2 σKuKK. Define ZK,2

IK
(t) as in Lemma

II.6.5. Then P[∀t ≤ θ̂K ∶ MIK(ν̃t) ≼ ZK,2
IK

(t)] ≥ 1 − o(σK). Note that PKt and ZK,2 are
independent by construction. Therefore, as in the last lemma, or each tK ,

P[ There is a successful mutation in [τIK , θ
K
invasion] ] (II.6.88)

≤ P[PK
τZ

K,2

εσKK

≠ 0∣τZ
K,2

εσKK
< τZ

K,2

0 ] + o(σK)

≤ (1 − exp(−aK2 pK2 σKuKKtK)) + P[τZ
K,2

εσKK
> tK ∣τZ

K,2

εσKK
< τZ

K,2

0 ] + o(σK).

With tK = ln(K)σ−1−α/2
K , by Proposition II.9.4, all terms in the last line of (II.6.88) are

o(σK).

II.6.7 Finishing up: control of the distribution of the next resident trait

Corollary II.6.10. Fix ε > 0. Suppose that the assumptions of Theorem II.6.2 hold and let
M be the constant of Lemma II.6.3. Then, there exist two X -valued random variables RK,11

and RK,21 with distribution

P[RK,11 = RK + σKh] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M(RK ,1)qK1 (1)
pK2

+ 1 − pK1
pK2

if h = 1

M(RK ,h)qK1 (h)
pK2

if h ∈ {2, ...,A},
(II.6.89)

and

P[RK,21 = RK + σKh] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M(RK ,h)qK1 (h)
pK2

, if h ∈ {1, ...,A − 1}
M(RK ,A)qK1 (A)

pK2
+ 1 − pK1

pK2
if h = A,

(II.6.90)

such that

lim
K→∞

σ−1
K (1−P [RK,11 ≼ RK1 ≼ RK,21 ∣θKinvasion<θKdiversity∧θ

K
mut. of mut.∧e

Kα

])=0. (II.6.91)

Proof. Define

RK,11 ≡
⎧⎪⎪⎨⎪⎪⎩

Y K
IK
, if IK,1 = IK,2,

RK + σK , otherwise,
and RK,21 ≡

⎧⎪⎪⎨⎪⎪⎩

Y K
IK
, if IK,1 = IK,2,

RK +AσK , otherwise.
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By construction of BK,i
k and Y K,i

k , we have that (II.6.91) holds. Next, we compute

P [Y K
IK,2 =R

K+σKh, IK,1=IK,2] = P [Y K
1 =RK+σKh, BK,1

1 =1∣BK,2
1 =1] (II.6.92)

=
P[Y K

1 =RK+σKh, BK,1
1 =1]

P[BK,2
1 =1]

= M(RK , h)qK1 (h)
pK2

and P[IK,1 /= IK,2] = 1−∑Ah=1
M(RK ,h)qK1 (h)

pK2
= 1−pK1 /pK2 . Since P[RK,11 = RK+σKh] = P[Y K

IK,2
=

RK + σKh, IK,1 = IK,2] + 1{h=1}P[IK,1 /= IK,2] and similarly for RK,21 , we deduce (II.6.89)
and (II.6.90).

II.7 The second phase of an invasion

Theorem II.7.1 below describes precisely how the invading mutant replaces the resident pop-
ulation. This section is the central piece of the entire paper.

Notation. Let us denote

θKfixation = inf {t ≥ θKinvasion ∶ ∣Supp(ν̃Kt )∣ = 1 and ∣⟨ν̃t,1⟩ − z̄(RK1 )∣ < (M/3)εσK}

i.e., the first time after θKinvasion such that the population is monomorphic and in the (M/3)εσK-
neighborhood of the corresponding equilibrium.

Theorem II.7.1. Fix ε > 0. Under the Assumptions 2, 4, and 5, there exists a constant,
M > 0, such that, for all K large enough,

(i) ν̃K0 = NK
RK
K−1δ(0,RK), where ∣z(RK) −NK

RK
K−1∣ < (M/3)εσK a.s..

(ii) At the first time of invasion, θKinvasion, the resident density is in an εMσK-neighborhood
of z̄(RK), the number of different living mutant traits is bounded by ⌈α/3⌉ and there is
no mutant of a mutant, with probability 1 − o(σK). (cf. Theorem II.6.2)

(iii) The time between θKinvasion and θKfixation is smaller than 5 ln(K)σ−1−α/2
K , with probability

1 − o(σK).

(iv) The trait of the population at time θKfixation is the trait of the mutant whose density
was larger than εσK at time θKinvasion, i.e., Supp(ν̃KθKfixation

) = (IK ,RK1 ), with probability

1 − o(σK). The distribution of RK1 can be approximated as in Corollary II.6.10.

Moreover, until time θKfixation, the total mass of the population stays in the O(σK)-neighborhood
of z̄(RK), the number of different living mutant traits is bounded by ⌈α/3⌉, and there is no
second successful mutant, with probability 1 − o(σK).

To prove this theorem, we divide this phase into five steps, as illustrated in Figure II.2.

Step 1 From θKinvasion to θKmut. size ε, the first time when a mutant’s density reaches the value ε.
During this period we approximate the mutant density by a continuous time branching
process, which is supercritical (of order σK). Thus we obtain that θKmut. size ε − θKinvasion
is of order (ln(K)σ−1

K ).
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Step 2 From θKmut. size ε to θ
K
mut. size Cεcross

, the first time when the mutant density reaches a
value Cεcross (defined in Eq. (II.7.1) below). This step can be seen as the "stochastic
Euler scheme". The idea is that the total mass of the population stays close to a function
which depends only on the density of the successful mutant. This allows to approximate
the number of mutants by a discrete time Markov chain until the mutant density has
increased by ε. Furthermore we control the number of jumps needed to increase by ε
and use upper and lower bounds for one jump time of the associated continuous time
process to control the time of this step. Then we recompute the parameters and start
again. Iterating, we obtain that θKmut. size Cεcross

− θKmut. size ε is also of order ln(K)σ−1
K .

Step 3 From θKmut. size Cεcross
until θKres. size ε, the first time when the density of the resident

trait RK decreases to the value ε. The proof is very similar to the proof of Step 2, the
only difference is that we approximate the number of resident individuals by a discrete
Markov chain, which decreases slowly.

Step 4 From θKres. size ε until θ
K
res. size 0, the first time when the resident trait RK goes extinct.

We approximate the dynamics of the resident trait by a continuous time branching
process which is subcritical (of order σK) and therefore goes extinct, a.s., after a time
of order ln(K)σ−1

K .

Step 5 From θKres. size 0 until θKfixation. Even if it is unlikely that this time period is larger than
0, we have to obtain an upper bound for this time.

Figure II.2: Evolution of the population after the destiny of the successful mutant has reached the
value εK .

Notation. Fix ε > 0. Suppose that the assumptions of Theorem II.7.1 hold. Set

Cεcross ≡ ⌈( inf
x∈X

b(x)−d(x)
c(x,x) ) ε−1⌉ ε

2
, (II.7.1)

and θK2 succ. mut. ≡ inf {t ≥ 0 ∶ ∑∞
k=0 1Mk(ν̃t)≥εσKK ≥ 3} . (II.7.2)
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Moreover, for any ξ ≥ 0,

θKmut. size ξ ≡ inf {t ≥ 0 ∶ ∃k ≥ 1 ∶Mk(ν̃t) = ⌈ξK⌉} , (II.7.3)

θKres. size ξ ≡ inf {t ≥ 0 ∶M0(ν̃t) = ⌈ξK⌉} , (II.7.4)

and let SK be a sequence in K such that 1 ≪ SK ≪ εσ−1
K .

Remark 6. Using similar arguments as in the proofs of Lemma II.6.3, II.6.8, and II.6.9, we
obtain

lim
K→∞

σ−1
K P [θKinvasion + 5σ

−1−α/2
K ln(K) > θKdiversity ∧ θ

K
2 succ. mut. ∧ eK

α

] = 0. (II.7.5)

More precisely, until the time θKdiversity∧θ
K
2 succ. mut.∧exp(Kα) the total mass of the population

stays with high probability in theO(σK) neighborhood of z̄(RK). This can be proved similarly
as Lemma II.6.3 or II.7.2. Since we have only an approximation of order σK (not εσK), we have
less precise bounds for the rates of the mutants and for their success probability. Nevertheless,
we can bound the mutant subpopulations from above by linear branching processes which are
slightly supercritical of order σK .

II.7.1 Step 1: a mutant’s density reaches the value ε

The following lemma shows that the total mass stays from the beginning (including the first
phase) until θKmut. size ε in the MεσK neighborhood of z(x).

Lemma II.7.2. Fix ε > 0. Suppose that the assumptions of Theorem II.7.1 hold. Then, there
exists a constant M > 0 (independent of ε and K) such that

lim
K→∞

σ−1
K P[ inf {t ≥ 0 ∶ ∣⟨ν̃t,1⟩ − z(RK)∣ >MεσK} (II.7.6)

< θKmut. size ε ∧ θK2 succ. mut. ∧ θKdiversity ∧ exp(Kα)] = 0.

Proof. The proof of this lemma is very similar to the one of Lemma II.6.3, therefore we omit
some details. Define

Xt ≡ ∣⟨ν̃t,1⟩K − ⌈Kz(RK)⌉∣. (II.7.7)

We associate with the continuous time process Xt a discrete time (non-Markov) process Yn
which records the sequence of values that Xt takes on.

Claim. For 1 ≤ i ≤ εK and K large enough,

P [Yn+1=i+1∣Yn=i, Tn+1 < θKmut. size ε ∧ θK2 succ. mut. ∧ θKdiversity] (II.7.8)

≤ 1

2
− (c/4b)K−1i + (2Cb,d,cL A/b)εσK ≡ pK+ (i),

where Cb,d,cL is the sum of the Lipschitz constants for the birth, death and competition rate.

This can be proven exactly as in Lemma II.6.3, using the facts that b(RK) = d(RK) +
c(RK ,RK)z̄(RK) and that all mutant traits are at a distance of at most 2AσK from RK ,
and hence, ∣b(x) − b(RK)∣ < CbLσK2A, ∣d(x) − d(RK)∣ < CdLσK2A, and ∣c(x, y) − c(RK ,RK)∣ <
CcLσK2A for all traits x and y alive in the population. By continuing as in Lemma II.6.3 we
obtain (II.7.6).
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Next we prove that θKinvasion−θKmut. size ε is smaller than ln(K)σ−1−α/2
K . We use the following

notation.

Notation. θ̃K ≡ inf {t ≥ 0 ∶ ∣⟨ν̃t,1⟩ − z(RK)∣ >MεσK} ∧ θK2 succ. mut. ∧ θKdiversity.

Lemma II.7.3. Fix ε > 0. Suppose that the assumptions of Theorem II.7.1 hold. Let M be
the constant from Lemma II.7.2. Then,

lim
K→∞

σ−1
K P[ θKmut. size ε > (θKinvasion + ln(K)σ−1−α/2

K ) ∧ θ̃K] = 0. (II.7.9)

Proof. To prove this lemma we use a coupling with a linear continuous time birth-death
process. From the results on Phase 1 and Lemma II.7.3, we know that θKinvasion is, with
probability 1 − o(σK), smaller than θ̃K . Recall IK ≡ k1, the label of the first successful
mutation (see (II.6.5)). For any t ∈ (θKinvasion, θ̃K], any individual of Mk1(ν̃t) gives birth to a
new individual with the same trait, RK1 , with rate

(1 − uK m(RK1 ))b(RK1 ) ∈ [b(RK1 ) − uK b , b(RK1 )], (II.7.10)

and dies with rate

d(RK1 ) + ∫X×N0

c(RK1 , ξ)dν̃t(ξ), (II.7.11)

which is smaller than dZ ≡ d(RK1 )+c(RK1 ,RK)(z(RK)+MεσK)+c(ε+⌈3/α⌉σK)AσK . Similarly
as in Lemma II.6.5 we construct, by using a standard coupling argument, a processes Zt such
that

Zt ≤Mk1(ν̃θKinvasion+t) (II.7.12)

for all t such that θKinvasion+t ≤ θ̃K ∧ inf{t ≥ 0 ∶Mk1(ν̃t) ≥ εK}. The processes Zt is a branching
process starting at ⌈εσKK⌉, with birth rate per individual bZ = b(RK1 ) − b̄uK and with death
rate per individual dZ . For all ε < infx∈X

∂1f(x,x)
2(M+A+1) , we have

bZ − dZ ≥ f(RK1 ,RK) − cσK(Mε +A(ε + ⌈3/α⌉σK)) ≥ σK inf
x∈X

∂1f(x,x)
2 . (II.7.13)

Thus Zt is super-critical of order σK . Let τZi be the first hitting time of level i by Zt, then
by Proposition II.9.4

P[τZ⌈εK⌉ > τ
Z
0 ] ≤ exp(−Kα). (II.7.14)

Furthermore, we have the following exponential tail bound, see [2] page 41,

P [τZ⌈εK⌉≥ ln(K)σ−1−α/2
K ∣τZ⌈εK⌉ < τ

Z
0 ] ≤ exp

⎛
⎝
−
⎢⎢⎢⎢⎢⎣

ln(K)σ−1−α/2
K

emaxn≤⌈εK⌉En[τZ⌈εK⌉∣τ
Z
⌈εK⌉ < τ

Z
0 ]

⎥⎥⎥⎥⎥⎦

⎞
⎠
, (II.7.15)

and maxn≤⌈εK⌉En[τZ⌈εK⌉∣τ
Z
⌈εK⌉ < τ

Z
0 ] ≤ O(ln(K)σK) (compare with Proposition II.9.3). There-

fore,

P [τZ⌈εK⌉ < ln(K)σ−1−α/2
K ] ≥ (1 − e−σ

−α/3
K )(1 − e−K

α

) = 1 − o(σK), (II.7.16)

which implies the claim.



II.7. THE SECOND PHASE OF AN INVASION 57

II.7.2 Step 2: the mutant density reaches a value Cε
cross (Stochastic Euler

scheme)

Recall that the trait of the successful mutant is RK + σKh where h ∈ {1, . . . ,A}. Due to the
regularity assumptions (iv) in Assumption 2, we have the following estimates:

b(RK + σKh) = b(RK) + b′(RK)σKh +O((σKh)2) (II.7.17)
d(RK + σKh) = d(RK) + d′(RK)σKh +O((σKh)2)
r(RK + σKh) = r(RK) + r′(RK)σKh +O((σKh)2)

c(RK + σKh,RK) = c(RK ,RK) + ∂1c(RK ,RK)σKh +O((σKh)2)
c(RK ,RK + σKh) = c(RK ,RK) + ∂2c(RK ,RK)σKh +O((σKh)2)

c(RK+σKh,RK+σKh) = c(RK,RK)+(∂1c(RK,RK)+∂2c(RK,RK))σKh +O((σKh)2).

The deterministic system: Although we cannot use a law of large numbers, to understand
the behavior of the stochastic system it is useful to look at the properties of the corresponding
deterministic Lotka-Volterra system. The limiting system when K → ∞, with σK = 0, takes
the simple form

dm0
t

dt
= m0

t (r(RK) − c(RK ,RK)(m0
t +m

k1
t )) , (II.7.18)

dmk1
t

dt
= mk1

t (r(RK) − c(RK ,RK)(m0
t +m

k1
t )) . (II.7.19)

The corresponding vector field is depicted in Figure II.3. This system has an invariant mani-
fold made of fixed points given by the roots of the equation

m0 +mk1 = r(RK)/c(RK ,RK) = z̄(RK), (II.7.20)

with m0,mk1 ≥ 0. This manifold connects the fixed points of the monomorphic equations,
(z̄(RK),0) and (0, z̄(RK)). Note that z̄(RK) has the interpretation of the total mass of
the population in equilibrium. A simple computation shows that the Hessian matrix on the
invariant manifold is given by

H(m0,mk1) = −c(RK ,RK)(m
0 m0

mk1 mk1) . (II.7.21)

The corresponding eigenvectors are (1,−1) with eigenvalue 0, and (m0, z̄(RK) −m0) with
eigenvalue −c(RK ,RK)z̄(RK).

It follows that the perturbed system

dm0
t

dt
=m0

t (r(RK) − c(RK,RK)m0
t − c(RK,RK+ σKh)m

k1
t ) , (II.7.22)

dmk1
t

dt
=mk1

t (r(RK+σKh)−c(RK+σKh,RK)m0
t −c(RK+σKh,RK+σKh)m

k1
t ) , (II.7.23)

has an invariant manifold connecting its fixed points (z̄(RK),0) and (0, z̄(RK +σKh)), where
z̄(RK+σKh) = r(RK+σKh)/c(RK+σKh,RK+σKh) in a σK-neighborhood of the unperturbed
invariant manifold (see Figure II.3). Thus the perturbed deterministic system will move
quickly towards a small neighborhood of this invariant manifold and then move slowly with
speed O(σK) along it. Since the invariant manifold is close to the curve m0 +mk1 = z̄(RK),
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Figure II.3: Right: Vector field of the unperturbed system (σK = 0), Left: Vector field of the
perturbed system (σK = 0.01). Parameters are given in Table II.1

Table II.1: Parameters of the Figures II.3

b(RK)=2 d(RK )=1 c(RK ,RK)=1 c(RK ,RK+σKh)=1−2σK

b(RK+σKh)=2+σK d(RK+σKh)=1−σK c(RK+σKh,R
K
)=1−2σK c(RK+σKh,R

K
+σKh)=1−σK

it is reasonable to choose as variables Mt = m0
t +m

k1
t . The motion of the system will then

be close to the curve φ̃(mk1
t ) defined by the condition that the derivative of Mt vanishes for

Mt = φ̃(mk1
t ).

Since

dMt

dt
=Mt (r(RK) − c(RK ,RK)Mt) (II.7.24)

− [(∂1c(RK ,RK) + ∂2c(RK ,RK))Mt − r′(RK)]σKhmk1
t +O(σ2

K).

Setting the right hand side to zero yields the leading orders in σK

φ̃(mk1
t ) = z(RK) + σKhmk1

t ( r
′(RK)
r(RK) −

∂1c(RK ,RK)+∂2c(RK ,RK)
c(RK ,RK) ) +O(σ2

K). (II.7.25)

We expect that the stochastic system also evolves along this curve. I.e., we will show that
mk1 increases while the total mass stays close to the curve defined in (II.7.25).

Define the function

φ(y) ≡ z(RK) + σKhy ( r
′(RK)
r(RK) −

∂1c(RK ,RK)+∂2c(RK ,RK)
c(RK ,RK) ) , (II.7.26)

and the stopping time

θKnear φ(i ε
2
) ≡ inf {t ≥ θKmut. size i(ε/2) ∶ ∣⟨ν̃t,1⟩ − φ(i(ε/2))∣ < (M/3)εσK} . (II.7.27)

The dependence of φ with respect to the mutant density allows us to decompose the increase
of the mutant density into successive steps during which the total mass does not move more
than MεσK .

Lemma II.7.4. Fix ε > 0. Suppose that the assumptions of Theorem II.7.1 hold. Then, there
exists a constant M > 0 (independent of ε, K, and i) such that and for all 2 ≤ i ≤ 2ε−1Cεcross,

(a) Soon after θKmut. size i(ε/2), the total population size is close to φ(i ε2):
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lim
K→∞

σ−1
K P[θKnear φ(i ε

2
) > (θKmut. size i(ε/2) + SK) ∧ θK2 succ. mut. ∧ θKdiversity

∧ inf {t ≥ θKmut. size i(ε/2) ∶ ∃k ≥ 1 ∶Mk(ν̃t) = ⌈(i ± 1
2)(ε/2)K⌉} ] = 0.

(b) A change of order ε for the mutant density takes more than o(σ−1
K ) time:

lim
K→∞

σ−1
K P[ inf {t ≥ θKmut. size i(ε/2) ∶ ∃k ≥ 1 ∶Mk(ν̃t) = ⌈(i ± 1

2)(ε/2)K⌉}

< (θKmut. size i(ε/2) + SK) ∧ θKnear φ(i ε
2
) ∧ θ

K
2 succ. mut. ∧ θKdiversity] = 0.

(c) At the time when the mutant density has changed of order ε the total population size is
still close to φ(i ε2):

lim
K→∞

σ−1
K P[ inf {t ≥ θKnear φ(i ε

2
) ∶ ∣⟨ν̃t,1⟩ − φ(i

ε
2)∣ >MεσK} < θK2 succ. mut. ∧ θKdiversity

∧ inf {t ≥ θKmut. size i(ε/2) ∶∃k ≥ 1 ∶Mk(ν̃t)=⌈(i ± 1)(ε/2)K⌉} ] = 0.

(d) A change of order ε for the mutant density takes no more than (iσK)−1−α/2 time:

lim
K→∞

σ−1
K P[ θKmut. size (i+1)(ε/2) > (θKnear φ(i ε

2
) + (iσK)−1−α/2) ∧ θK2 succ. mut.

∧ θKdiversity ∧ inf {t ≥ θKnear φ(i ε
2
) ∶ ∣⟨ν̃t,1⟩ − φ(i(ε/2))∣ >MεσK} ] = 0.

Remark 7. For each ε > 0, Lemma II.7.4 implies that the mutant density reaches the value
Cεcross with high probability, since ε is independent of K. Moreover, for all ε > 0,

P [θKmut. size Cεcross > (θKmut. size ε +
ln(K)
σ
1+α/2
K

) ∧ θK2 succ. mut. ∧ θKdiversity] = o(σK) (II.7.28)

and P [ ∣⟨ν̃θKmut. size Cεcross
,1⟩ − φ(Cεcross)∣ >MεσK] = o(σK). (II.7.29)

Proof. We will prove the lemma by induction over i. Base clause: Compare with Lemma
II.7.2 and II.7.3 that there exists a constant M > 0 such that ∣⟨ν̃θKmut. size ε

,1⟩ −φ(0)∣ is smaller
than MεσK and that θKmut. size ε < θK2 succ. mut. ∧ θKdiversity both with probability 1 − o(σK).

Induction step from i − 1 to i: Assume that the lemma holds true for i − 1, then be prove
separately that (a)-(d) are true for i, as long as i < 2ε−1Cεcross

Proof. of (a) for i by assuming that the lemma holds for i−1. In the proof we use the following
notation

θ̃Ki ≡ θK2 succ. mut. ∧ θKdiversity ∧ inf {t≥θKmut. size i(ε/2) ∶ ∃k≥1 ∶Mk(ν̃t) = ⌈(i ± 1
2)

ε
2K⌉} . (II.7.30)

Note that θ̃Ki differs from θ̃K defined in Lemma II.7.3. We will prove (a) provided it happens
before θ̃Ki and we use the estimates of step (b) for i to prove that it indeed happens before
θ̃Ki with high probability.

If the Lemma is true for i − 1, we know that (with (d))

P [∣⟨ν̃θKmut. size i(ε/2)
,1⟩ − φ((i−1) ε2)∣ <MεσK] = 1 − o(σK). (II.7.31)

Since φ(x) − φ(y) = O(h(x − y)σK), we have with probability 1 − o(σK) either

inf {t ≥ θKmut. size i(ε/2) ∶ ∣⟨ν̃t,1⟩ − φ(i
ε
2)∣ < (M/3)εσK} = θKmut. size i(ε/2), (II.7.32)
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which implies (a) for i, or at least

∣⟨ν̃θKmut. size i(ε/2)
,1⟩ − φ(i ε2)∣ < (M + ∣h ( r

′(RK)
r(RK) −

(∂1c(RK ,RK)+∂2c(RK ,RK))
c(RK ,RK) )∣) εσK . (II.7.33)

Similarly as in many previous lemmata we want to coupleK⟨ν̃t,1⟩ with a discrete time Markov
chain. Therefore, let

Xi
t = ∣K⟨ν̃t,1⟩ − ⌈φ(i ε2)K⌉∣, (II.7.34)

and T i0 = θKmut. size i(ε/2) and (T ik)k≥1 be the sequences of the jump times of ⟨ν̃t,1⟩ after
θKmut. size i(ε/2). Then let Y i

k be the associated discrete time process which records the val-
ues that Xi

t takes after time θKmut. size i(ε/2).

Claim. There exists a constant, Cb,d,cderivative > 0, such that for all ⌈Cb,d,cderivativeεσKK⌉ ≤ j <
⌈εK⌉ and K large enough,

P[Y i
n+1 = j + 1∣Y i

n = j, Tn+1 < θ̃Ki ] ≤ 1
2 − εσK =∶ pK+ . (II.7.35)

Moreover, we can choose

Cb,d,cderivative = sup
x∈X

1
c(x,x) (4b(x) +A∣ r

′(x)c(x,x)
r(x) − ∂1c(x,x) − ∂2c(x,x)∣) . (II.7.36)

If ⟨ν̃t,1⟩K > ⌈φ(i(ε/2))K⌉ at time t = T in, then ⟨ν̃T in ,1⟩K = ⌈φ(i(ε/2))K⌉ +Y i
n and, condition-

ally on FT in , the left hand side of (II.7.35) is equal to the probability that the next event is a
birth. Namely,

∑k≥0 b(hk,1(ν̃T in))M
k(ν̃T in)

∑k≥0 (b(hk,1(ν̃T in)) + d(hk,1(ν̃T in)) + ∫N×X c(hk,1(ν̃T in), ξ)dν̃T in(ξ))M
k(ν̃T in)

(II.7.37)

≤ (b(RK)∑k≥0M
k(ν̃T in) + σKhb

′(RK)Mk1(ν̃T in) +C
b
L2AσK⌈ 3

α⌉σKεK +O(σ2
KK))

×(∑k≥0 (b(RK) + d(RK) +∑k≥0
c(RK ,RK)

K Mk(ν̃T in))M
k(ν̃T in)

+σKhMk1(ν̃T in)(b
′(RK)+d′(RK) + ∂1c(RK ,RK)+∂2c(RK ,RK)

K
(M0(ν̃T in)+M

k1(ν̃T in)))

− (Cb,d,cL )2AσK⌈3/α⌉σKεK −O(σ2
KK))

−1

.

For the inequality we have used the fact that, conditioned on Tn < θ̃Ki , there at most σKε⌈3/α⌉
many unsuccessful mutant individuals which differ at most 2AσK from the resident trait RK .
Since ∑k≥0M

k(ν̃T in) = ⟨ν̃T in ,1⟩K which equals ⌈φ(i(ε/2))K⌉ + j conditioned on j = Y i
n, the

right hand side of the last inequality is smaller or equals

(b(RK) + σKhb′(RK)
Mk1(ν̃

Tin
)

⌈φ(i(ε/2))K⌉+j +O(σ2
K)) (II.7.38)

×(b(RK) + d(RK) + c(RK ,RK) ⌈φ(i(ε/2))K⌉+j
K + σK

hMk1(ν̃
Tin

)
⌈φ(i(ε/2))K⌉+j

× (b′(RK)+d′(RK) + ∂1c(RK ,RK)+∂2c(RK ,RK)
K

(M0(ν̃T in)+M
k1(ν̃T in))) −O(σ2

K))
−1
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and by definition of φ the denominator equals

2b(RK)σK + 2σKhb
′(RK)

Mk1(ν̃
Tin

)
⌈φ(i(ε/2))K⌉+j + c(R

K ,RK) jK −O(σ2
K) (II.7.39)

+ σKh[i ε2 ( r
′(RK)
z(RK) + ∂1c(RK,RK) + ∂2c(RK,RK)) +

Mk1(ν̃
Tin

)
⌈φ(i(ε/2))K⌉+j

× (d′(RK)−b′(RK) + ∂1c(RK ,RK)+∂2c(RK ,RK)
K

(M0(ν̃T in) +Mk1(ν̃T in)))].

Thus, we obtain that the right hand side of (II.7.37) is bounded from above by

1

2
− c(RK ,RK)

3b(RK) jK−1 − σKh
4b(RK)[i

ε
2 ( r

′(RK)
z(RK) − ∂1c(RK ,RK) − ∂2c(RK ,RK)) (II.7.40)

+
Mk1(ν̃

Tin
)

⌈φ(i(ε/2))K⌉+j ( − r
′(RK) + ∂1c(RK ,RK)+∂2c(RK ,RK)

K
(M0(ν̃T in) +Mk1(ν̃T in)))] +O(σ2

K).

In the case where ⟨ν̃t,1⟩K < ⌈φ(i(ε/2))K⌉ at time t = T in, we obtain the same inequality but
with an opposite sign in front of the third term. Since

∣ iε2
r′(RK)
z(RK) −

Mk1(ν̃
Tin

)
K

r′(RK)K
⌈φ((ε/2))K⌉±j − (∂1c(RK ,RK) + ∂2c(RK ,RK))( iε2 −

Mk1(ν̃
Tin

)
K ) ∣ (II.7.41)

< (ε/2) ∣ r
′(RK)
z(RK) − ∂1c(RK ,RK) − ∂2c(RK ,RK)∣,

we deduce the claim. Since we choose M such that M ≥ 3Cb,d,cderivative, we can construct a
Markov chain Zin such that Zin ≥ Y i

n, a.s., for all n such that T in < θ̃Ki ∧ inf{t ≥ θKmut. size i(ε/2) ∶
∣⟨ν̃t,1⟩ − φ(i(ε/2))∣ < 1

3MεσK} and the marginal distribution of Zn is a Markov chain with
Zi0 = Y i

0 and transition probabilities

P[Zin+1 = j2∣Zin = j1] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pK+ for j1 ≥ 1 and j2 = j1 + 1,

1 − pK+ for j1 ≥ 1 and j2 = j1 + 1,

0 else.
(II.7.42)

Let Cexit = supx∈X 2A∣ r
′(x)
r(x) −

(∂1c(x,x)+∂2c(x,x))
c(x,x) ∣. Then,by applying Proposition II.9.5 (b), we

obtain, for all a ≤ (M +Cexit)εσKK and K large enough,

Pa[ inf{n ≥ 0 ∶ Zin ≥ 2(M +Cexit)εσKK} < inf{n ≥ 0 ∶ Zin ≤ (M3 )εσKK}] (II.7.43)

≤ exp (−Kα) .

Next define Bi ≡ inf{n ≥ 0 ∶ Zin ≤ 1
3MεσKK}. This is the random variable, which counts the

number of jumps Zi makes until it is smaller than εσKK. Note that (T in+1 − T in), the times
between two jumps of Xi

t , are exponential distributed with a parameter (b(RK) + d(RK) +
c(RK ,RK)z(RK))z(RK)K +O(σKK) if T in+1 is smaller than θ̃Ki . Thus,

(T il+1 − T
i
l ) ≼ E

i
l , (II.7.44)

where (Eil )l≥0 is a sequence of independent exponential random variables with parameter
infx∈X b(x)z̄(x)K. Therefore,

P[θKnear φ(i ε
2
) > θ

K
mut. size i(ε/2) + SK ∧ θ̃Ki ] (II.7.45)

≤ P [ ∑B
i

l=0E
i
l > SK] + P [θ̃Ki < θKmut. size i(ε/2) + SK ∧ θKnear φ(i ε

2
)] .
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Our next goal is to find a number, ni, such that P[Bi > ni] is o(σK). Since the transition
probabilities of Zi do not depend on the present state, we have that Zin − Zi0 has the same
law as ∑nk=1 V

i
k , where (V i

k)k∈N is a sequence of i.i.d. random variables with

P[V i
k = 1] = pK+ and P[V i

k = −1] = 1 − pK+ (II.7.46)

and E[V i
k ] = −2εσK and ∣V i

k ∣ = 1. Furthermore, we get

P [Bi ≤ ni] ≥ P [inf {j ≥ 0 ∶ Zj −Z0 ≤ −⌈(3
2M +Cexit)εσKK⌉} ≤ ni] (II.7.47)

≥ P [∑nik=1 V
i
k ≤ −⌈(

3
2M +Cexit)εσKK⌉]

and by applying the

Hoeffding’s Inequality. (Appendix 2 in [110]) Let Y1, . . . , Yn be independent random
variables such that, for all j ∈ N, aj ≤ Yj −E[Yj] ≤ bj for some real constants aj , bj. Then, for
x > 0,

P [ ∑nj=1 Yj −E[Yj] ≥ x] ≤ exp (−2x2 (∑nj=1(aj − bj)2)−1) . (II.7.48)

we obtain
P [∑nik=1 V

i
k ≥ −2εσKni + (ni)1/2+α/2] ≤ 2 exp(−(ni)α). (II.7.49)

With ni ≡ ⌈K(3
2M + Cexit)⌉, we get −2εσKni + (ni)1/2+α/2 ≤ −⌈(3

2M + Cexit)εσKK⌉, since
K− 1

2
+α ≪ σK . Applying the exponential Chebyshev’s inequality (with λ =Kα)

P [∑
⌈K( 3

2
M+Cexit)⌉

l=0 Eil > SK] ≤ exp(−λSK)E [exp(λ∑
⌈K( 3

2
M+Cexit)⌉

l=0 Eil)] (II.7.50)

≤ exp(−λSK)
⎛
⎝

infx∈X b(x)z̄(x)K
infx∈X b(x)z̄(x)K − λ

⎞
⎠

⌈K( 3
2
M+Cexit)⌉+1

≤ exp (−λSK + (⌈K(3
2M +Cexit)⌉ + 1) ln (1 + λ

infx∈X b(x)z̄(x)K−λ))

≤ exp
⎛
⎝
− λSK + λ

3
2M +Cexit + 1

infx∈X b(x)z̄(x)
+O(λ2K−1)

⎞
⎠
≤ exp (−Kα) .

Hence, the left hand side of (II.7.45) is bounded from above by

exp (−Kα)+2 exp(−(K(3
2M+Cexit))α)+P [θ̃Ki < (θKmut. size i(ε/2) + SK) ∧ θKnear φ(i ε

2
)] . (II.7.51)

This proves the lemma if we can show that

P[θ̃Ki < (θKmut. size i(ε/2) + SK) ∧ θKnear φ(i ε
2
)] = o(σK). (II.7.52)

According to Remark 6 and Lemma II.7.3, we have that

P[θK2 succ. mut. ∧ θKdiversity < θ
K
mut. size i(ε/2) + SK] = o(σK). (II.7.53)

Therefore, the following proof of (b) for i implies (a) for i.

Proof. of (b) for i by assuming that the lemma holds for i−1. Note that the random elements
Bi, T i, V i, W i, Xi, Y i, and Zi are not the ones of the last proof. They will be defined
during this proof. In fact, the structure of the proof is similar to the one of (a), except that
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we prove a lower bound for the time of a change of order ε for the mutant density instead
of upper bound for the time of a change of order εσK of the total mass. We couple Mk1

t ,
for t ≥ θKmut. size i(ε/2), with a discrete time Markov chain (depending on i). Therefore, let
T i0 = θKmut. size i(ε/2) and (T ik)k≥1 be the sequences of jump times of Mk1

t after θKmut. size i(ε/2).
Furthermore, let (Y i

n)n≥0 be the discrete time process which records the values that Mk1
t takes

i.e., Y i
0 =Mk1(ν̃T i0) = ⌈Ki(ε/2)⌉ and Y i

n =Mk1(ν̃T in). Observe that if

θ̃Ki > θKnear φ(i ε
2
) ∧ inf {t ≥ θKmut. size i(ε/2) ∶ ∣⟨ν̃t,1⟩ − φ(i

ε
2)∣ ≥ 2(M +Cexit)εσKK} , (II.7.54)

we know from the inequality (II.7.43) that the probability that θKnear φ(i ε
2
) is larger than inf{t ≥

θKmut. size i(ε/2) ∶ ∣⟨ν̃t,1⟩ − φ(i(ε/2))∣ ≥ 2(M +Cexit)εσKK} is smaller than exp(−Kα). Define

θ̂Ki ≡ inf {t ≥ θKmut. size i(ε/2) ∶ ∣⟨ν̃t,1⟩ − φ(i
ε
2)∣ ≥ 2(M +Cexit)εσKK} (II.7.55)

∧ θKnear φ(i ε
2
) ∧ θ

K
2 succ. mut. ∧ θKdiversity

and
C̃fitness ≡ inf

x∈X
∂1f(x,x)/ b. (II.7.56)

Note that θ̂Ki ≠ θ̂K . Then, for all −⌈ ε4K⌉ ≤ j ≤ ⌈ ε4K⌉, for K large enough and for ε small
enough, we have that

P [Y i
n+1 = ⌈i ε2K⌉ + j + 1∣Y i

n = ⌈i ε2K⌉ + j, T in+1 < θ̂Ki ] (II.7.57)

∈ [1
2 +

1
2 C̃fitness σK ,

1
2 + 2AC̃fitness σK],

since the left hand side of (II.7.57) is equal to the expectation of the probability that the next
event is a birth without mutation conditioned on FT in . Namely,

b(RK+σKh)(1−uKm(RK−σKh))
(b(RK+σKh)+d(RK+σKh)+∫N×X c(RK+σKh, ξ)dν̃Tn(ξ))

(II.7.58)

= b(RK+σKh)[b(RK+σKh)+d(RK+σKh)+c(RK+σKh,RK)(φ(i ε2)−
⌈i ε2K⌉+j

K )

+c(RK+σKh,RK+hσK)(
⌈i ε2K⌉+j

K )+ξ1(εσKCcL(⌈ 3
α⌉+2(M+Cexit)))]

−1
+O(uK)

= b(RK+σKh)[2b(RK+σKh)−f(RK+σKh,RK)+c(RK+σKh,RK)(φ(i ε2)−
r(RK)

c(RK ,RK))

+σKh∂2c(RK ,RK)(
⌈i ε2K⌉+j

K )+ξ1(εσKCcL(⌈ 3
α⌉+2(M+Cexit)))]

−1
+O(uK).

for some ξ1 ∈ (−1,1). By definition of φ of (II.7.58) is equal to

b(RK + σKh)[2b(RK + σKh) − ∂1f(RK ,RK)σKh + c(RK + σKh,RK)σKh (II.7.59)

× (i ε2)(
r′(RK)
r(RK) −

∂1c(RK ,RK)
c(RK ,RK) ) + ξ1 (εσKCcL (⌈ 3

α⌉ + 2(M +Cexit))) ]
−1

+O(σKjK + σ2
K + uK)

= b(RK + σKh)[2b(RK + σKh) − σKh (1 − i ε2
c(RK ,RK)
r(RK) )∂1f(RK ,RK)

+ ξ1(εσKCcL(⌈ 3
α⌉ + 2(M +Cexit)))]

−1
+O(σKjK + σ2

K + uK)

= 1

2
+ σKh (1 − i ε2

c(RK ,RK)
r(RK) ) ∂1f(RK ,RK)

b(RK) + εσKξ1
(CcL(⌈

3
α
⌉+2(M+Cexit))
b(RK) +O(σKjK + σ2

K + uK).
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Then, because i < 2ε−1Cεcross implies that 1− i ε2
c(RK ,RK)
r(RK) > 0, we obtain (II.7.57). Thus we can

construct a Markov chain Zin such that Zin ≥ Y i
n, a.s., for all n such that T in < θ̂K and such

that the marginal distribution of Zin is a Markov chain with transition probabilities

P[Zin+1 = j2∣Zin = j1] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 + 2AC̃fitnessσK for j2 = j1 + 1,
1
2 − 2AC̃fitnessσK for j2 = j1 − 1,

0 else.
(II.7.60)

We define a continuous time process, Z̃i, associate to Zin. To do this, we define first (T̃ ij )j∈N,
the sequence of jump times, by T̃ i0 = 0 and

T̃ ij − T̃ ij−1 =
⎧⎪⎪⎨⎪⎪⎩

T ij − T ij−1 if T ij < θ̃K ,
W i
j else,

(II.7.61)

whereW i
j are exponential random variables with mean (⌈K(i+ 1

2)(ε/2)⌉(b+d+c(4b/c)))
−1. We

set Z̃it = Zin if t ∈ [T̃ in, T̃ in+1). Obverse that we obtain by construction Z̃it ≥Mk1(ν̃θKmut. size i(ε/2)+t
),

for all t such that θKmut. size i(ε/2) + t ≤ θ̂
K
i . Next we want to show that

P [inf {t ≥ 0 ∶ Z̃it ≥ ⌈K(i + 1
2)(ε/2)⌉} > SK] = 1 − o(σK). (II.7.62)

Therefore, let BZ
i = inf{n ≥ 0 ∶ Zin = ⌈K(i+ 1

2)(ε/2)⌉}. We can construct (Xi
j)j≥1 a sequence of

independent, exponential random variables with parameter xKi ≡ ⌈K(i+1
2)(ε/2)⌉(b+d+c(4b/c))

such that
(T̃ ij+1 − T̃ ij ) ≽Xi

j for all 1 ≤ j ≤ BZ
i . (II.7.63)

Our next goal is to find a barrier, ni, such that BZ
i is smaller than ni only with very small

probability. Since the transition probabilities of Zi do not depend on the present state,
Zi
BZi

− Z0 is stochastically equivalent to ∑jk=1 V
i
k , where (V i

k)k∈N are i.i.d. random variables
taking values ±1 with probabilities

P[V i
k = 1] = 1

2 + 2AC̃fitnessσK and P[V i
k = −1] = 1

2 − 2AC̃fitnessσK . (II.7.64)

Note that E[V i
k ] = 4AC̃fitnessσK and ∣V i

k ∣ = 1. Furthermore, we get

P [BZ
i ≤ ni] = P [∃⌈(ε/4)K⌉ ≤ j ≤ ni ∶ ∑jk=1 V

i
k ≥ ⌈(ε/4)K⌉] . (II.7.65)

Hoeffding’s inequality implies that, for j ≥ ⌈(ε/4)K⌉,

P [∑jk=1 V
i
k ≥ 4AC̃fitnessσKj + j1/2+α/2] ≤ 2 exp(−jα). (II.7.66)

We take ni ≡ εK(8AC̃fitnessσK)−1 and get for all ⌈(ε/4)K⌉ ≤ j ≤ ni,

4AC̃fitnessσKj + j
1/2+α/2 ≤ ⌈(ε/4)K⌉, (II.7.67)

since K− 1
2
+α ≪ σK . Then, the probability that BZ

i ≤ εK(8AC̃fitnessσK)−1 is bounded from
above by 2 exp(−Kα). Therefore, the left hand side of equation (II.7.62) is larger than

P [∑εK(8AC̃fitnessσK)−1
j=1 Xi

j > SK] − 2 exp(−Kα), (II.7.68)
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By applying the exponential Chebyshev’s inequality we get, similarly as in (a),

P [∑εK(8AC̃fitnessσK)−1
j=1 Xi

j ≤ SK] (II.7.69)

= P [−∑εK(8AC̃fitnessσK)−1
j=1 Xi

j ≥ −SK]

≤ exp(KαSK)E [exp(−KαXi
j)]

εK(8AC̃fitnessσK)−1

≤ exp(KαSK) exp(εK(8AC̃fitnessσK)−1 ln( xKi
xKi +Kα))

≤ exp(KαSK − εK(8AC̃fitnessσK)−1CK−1+α)), for some small C > 0,
≤ exp (−Kα) .

This proves that P[ inf{t ≥ 0 ∶ Z̃it ≥ ⌈K(i + 1
2)(ε/2)⌉} > SK] ≥ 1 − 3 exp (−Kα), and therefore

(b) and (a) for i, provided that the lemma holds for i − 1.

Proof. of (c) for i by assuming that the lemma holds for i−1. Note that the random elements
T i, Xi, and Y iare not the ones of the last proof. As in (a) we couple K⟨ν̃t,1⟩ with a discrete
time Markov chain. Therefore, let

Xi
t = ∣K⟨ν̃t,1⟩ − ⌈φ(i(ε/2))K⌉∣ (II.7.70)

and T i0 = θKmut. size i(ε/2) and (T ik)k≥1 be the sequences of the jump times of ⟨ν̃t,1⟩ after
θKmut. size i(ε/2). Then, let Y

i
k be the associated discrete time process which records the values

that Xi
t takes after time θKmut. size i(ε/2).

Claim. There exists a constant C̃b,d,cderivative such that for all j < ⌈εK⌉ and K large enough,

P [Y i
n+1=j+1∣Y i

n=j, Tn+1< θ̃Ki ] ≤ 1

2
− c

3b
jK−1 + εσKC̃b,d,cderivative ≡ p

K
+ (j), (II.7.71)

Moreover, we can choose C̃b,d,cderivative ≡ supx∈X
A

4b(x) ∣ r
′(x)
z(x) − ∂1c(x,x) − ∂2c(x,x)∣.

From (a) we know that the left hand side of (II.7.71) is smaller or equals

1

2
− c(RK ,RK)

3b(RK) jK−1 + εσKh
8b(RK) ∣ r

′(RK)
z(RK) − ∂1c(RK ,RK) − ∂2c(RK ,RK)∣ +O(σ2

K). (II.7.72)

This proves the Claim. Note that pK+ (j) depends on j. Since we can chooseM ≥ 8C̃b,d,cderivative
3b
c ,

continuing as in Lemma II.6.3 implies that (c) is true for i, provided that the lemma holds
for i − 1.

Proof. of (d) for i by assuming that the lemma holds for i − 1. Again we couple Mk1
t , for

t ≥ θKnear φ(i ε
2
), with a discrete time Markov chain. Let T i0 = θKnear φ(i ε

2
) and (T ik)k≥1 be the

sequences of the jump times of Mk1
t after θKnear φ(i ε

2
). Then, let (Y i

n)n≥0 be the discrete time

process which records the values that Mk1
t , i.e.,

Y i
0 =Mk1(ν̃T i0) ∈ [K( iε2 −

ε
4) − 1,K( iε2 +

ε
4) + 1], (II.7.73)

and Y i
n =Mk1(ν̃T in). Define

θ̂Ki ≡ inf {t≥θKnear φ(i ε
2
) ∶ ∣⟨ν̃t,1⟩ − φ(i

ε
2)∣ >MεσK} ∧ θK2 succ. mut. ∧ θKdiversity. (II.7.74)
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Note that this θ̂Ki differs only a bit from the one defined in (b). From the proof of (b), we
know that the density of the mutant trait has the tendency to increase. More precisely, since
i ≤ Cεcross(2/ε), we have, for all −⌈ ε4K⌉ ≤ j ≤ ⌈ ε2K⌉, for K large enough and ε small enough,

P[Y i
n+1 = ⌈i ε2K⌉ + j + 1∣Y i

n = ⌈i ε2K⌉ + j, T in+1 < θ̂Ki ] ≥ 1
2 + σK

infx∈X ∂1f(x,x)
2b

(II.7.75)

By Continuing in a similar way as in (b) with bounding the random variables in the in the
other direction (as in (a)), implies that (d) is true for i, provided that the lemma holds for
i − 1.

II.7.3 Step 3: the density of the resident trait RK decreases to ε

Similarly as in Step 2 we define a function which allows us to approximate the total mass of
the population for a given density of the resident trait.

Notation. Let us define

ψ(x) ≡ z(RK) + σKh(z̄(RK) − x) ( r
′(RK)
r(RK) +

∂1c(RK ,RK)+∂2c(RK ,RK)
c(RK ,RK) ) . (II.7.76)

Note that φ(y) = ψ (φ(y) − y) +O(σ2
K). Therefore, since ∣⟨ν̃θKmut. size Cεcross

,1⟩ − φ(Cεcross)∣ <

MεσK with probability 1−o(σK), we get that at time θKmut. size Cεcross
the density of the resident

population belongs to an interval centered at φ(Cεcross)−Cεcross with diameter 2(M+⌈3/α⌉)εσK
with probability 1 − o(σK), and hence

ψ(M0(ν̃θKmut. size Cεcross
)K−1) = ψ(φ(Cεcross) −Cεcross) +O(εσ2

K) (II.7.77)

= φ(Cεcross) +O(σ2
K)

with probability 1−o(σK). Thus, the total mass of the population also belongs to an interval
centered at ψ(φ(Cεcross) −Cεcross) with diameter 2(MεσK +O(σ2

K)) < 2(M + 1)εσK .

Notation. Let us define

C̃Kcross ≡ ⌈(φ(Cεcross) −Cεcross − ε)2/ε⌉ (ε/2) and (II.7.78)

θnear ψ(C̃εcross− ε2 )
≡ inf {t ≥ θKmut. size Cεcross ∶ ∣⟨ν̃t,1⟩ − ψ(C̃

ε
cross − ε

2)∣ < (M/3)εσK} . (II.7.79)

Note that the term −ε in the definition of C̃Kcross ensures that resident population is larger
than C̃Kcross at time θKmut. size Cεcross

.

First, we need a lemma to connect Step 2 and Step 3.

Lemma II.7.5. Fix ε > 0. Suppose that the assumptions of Theorem II.7.1 hold. Then, there
exists a constant M > 0 (independent of ε and K) such that,

(a) Soon after θKmut. size Cεcross
, the total population size is close to ψ(C̃εcross − ε

2):

lim
K→∞

σ−1
K P[θnear ψ(C̃εcross− ε2 ) > θ

K
mut. size Cεcross + SK ∧ θK2 succ. mut. ∧ θKdiversity

∧ inf {t ≥ θKmut. size Cεcross ∶M
0(ν̃t) = ⌈(C̃εcross ± 3ε/4)K⌉} ] = 0.

(b) A change of order ε for the resident density takes more than o(σ−1
K ) time:
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lim
K→∞

σ−1
K P[ inf {t ≥ θKmut. size Cεcross ∶M

0(ν̃t) = ⌈(C̃εcross ± 3ε/4)K⌉}

< θKmut. size Cεcross + SK ∧ θnear ψ(C̃εcross− ε2 ) ∧ θ
K
2 succ. mut. ∧ θKdiversity] = 0.

(c) At the time when the resident density has changed of order ε the total population size is
still close to ψ(C̃εcross − ε

2):

lim
K→∞

σ−1
K P[ inf {t ≥ θKnear ψ(C̃εcross− ε2 )

∶ ∣⟨ν̃t,1⟩ − ψ(C̃εcross − ε
2)∣>MεσK} < θK2 succ. mut.

∧θKdiversity ∧ inf {t ≥ θKmut. size Cεcross ∶M
0(ν̃t) = ⌈(C̃εcross ± ε)K⌉} ] = 0.

(d) A change of order ε for the resident density takes no more than (iσK)−1−α/2 time:

lim
K→∞

σ−1
K P[ θKres. size C̃εcross−ε

> θKmut. size Cεcross + (iσK)−1−α/2) ∧ θK2 succ. mut. ∧ θKdiversity

∧ inf {t ≥ θKnear ψ(C̃εcross− ε2 )
∶ ∣⟨ν̃t,1⟩ − ψ(C̃εcross − ε

2)∣ >MεσK} ] = 0.

Proof. Apply the methods of (a) to (d) from Lemma II.7.4.

Next, we have the following similar lemmata as in Step 2, for them let us define

θKnear ψ(i ε
2
) ≡ inf{t ≥ θKres. size i(ε/2) ∶ ∣⟨ν̃t,1⟩ − ψ(i(ε/2))∣ < (M/3)εσK}. (II.7.80)

Lemma II.7.6. Suppose that the assumptions of Theorem II.7.1 hold. Then, there exists a
constant M > 0 (independent of ε, K, and i) such that, for all ε > 0 and for all (C̃εcross −
ε)(2/ε) ≥ i ≥ 2,

(a) Soon after θKres. size i(ε/2), the total population size is close to ψ(i ε2):

lim
K→∞

σ−1
K P[θKnear ψ(i ε

2
) > θ

K
res. size i(ε/2) + SK ∧ θK2 succ. mut. ∧ θKdiversity

∧ inf {t ≥ θKres. size i(ε/2) ∶M
0(ν̃t) = ⌈(i ± 1

2)(ε/2)K⌉} ] = 0.

(b) A change of order ε for the resident density takes more than o(σ−1
K ) time:

lim
K→∞

σ−1
K P[ inf {t ≥ θKres. size i(ε/2) ∶M

0(ν̃t) = ⌈(i ± 1
2)(ε/2)K⌉}

< θKres. size i(ε/2) + SK ∧ θKnear ψ(i ε
2
) ∧ θ

K
2 succ. mut. ∧ θKdiversity] = 0.

(c) At the time when the resident density has changed of order ε the total population size is
still close to ψ(i ε2):

lim
K→∞

σ−1
K P[ inf {t ≥ θKnear ψ(i ε

2
) ∶ ∣⟨ν̃t,1⟩ − ψ(i(ε/2))∣ >MεσK} < θK2 succ. mut.

∧ θKdiversity ∧ inf {t ≥ θKres. size i(ε/2) ∶M
0(ν̃t) = ⌈(i ± 1)(ε/2)K⌉} ] = 0.

(d) A change of order ε for the resident density takes no more than (iσK)−1−α/2 time:

lim
K→∞

σ−1
K P[ θKres. size (i−1)(ε/2) > (θKnear ψ(i ε

2
) + (iσK)−1−α/2) ∧ θK2 succ. mut. ∧ θKdiversity

∧ inf {t ≥ θKnear ψ(i ε
2
) ∶ ∣⟨ν̃t,1⟩ − ψ(i(ε/2))∣ >MεσK} ] = 0.
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Proof. Apply the methods of (a) to (d) from Lemma II.7.4.

Remark 8. Lemma II.7.5 and II.7.6 imply that the density of the resident trait decreases to
the value ε. Moreover,

P [θKres. size ε > θKmut. size Cεcross +
ln(K)
σ
1+α/2
K

∧ θK2 succ. mut. ∧ θKdiversity] = o(σK) (II.7.81)

and P [ ∣⟨ν̃θKres. size ε ,1⟩ − ψ(ε)∣ >MεσK] = o(σK). (II.7.82)

II.7.4 Step 4: the resident trait RK goes extinct

After the time θKres. size ε we have to wait less than ln(K)σ1+α/2
K time to know that the resident

trait is extinct with high probability.

Notation. Define θKnear ψ(0) ≡ inf{t ≥ θKres. size ε ∶ ∣⟨ν̃t,1⟩ − ψ(0)∣ < (M/3)εσK}.

Lemma II.7.7. Suppose that the assumptions of Theorem II.7.1 hold. Then, there exists a
constant M > 0 (independent of ε and K) such that, for all ε > 0

(a) Soon after θKres. size ε, the total population size is close to ψ(0):

lim
K→∞

σ−1
K P[θKnear ψ(0) > θ

K
res. size ε + SK ∧ θK2 succ. mut. ∧ θKdiversity

∧ inf {t ≥ θKres. size ε) ∶M
0(ν̃t) = ⌈(1 ± 1

4)εK⌉} ] = 0.

(b) A change of order ε for the resident density takes more than o(σ−1
K ) time:

lim
K→∞

σ−1
K P[ inf {t ≥ θKres. size ε ∶M0(ν̃t) = ⌈(1 ± 1

4)εK⌉}

< θKres. size ε + SK ∧ θnear ψ(0) ∧ θK2 succ. mut. ∧ θKdiversity] = 0.

Proof. See proof of Lemma II.7.4

Lemma II.7.8. Suppose that the assumptions of Theorem II.7.1 hold. Then, there exists a
constant M > 0 (independent of ε and K) such that, for all ε > 0

lim
K→∞

σ−1
K P[ θKres. size 0 > (θKnear ψ(0) + ln(K)σ−1−α/2

K ) ∧ θK2 succ. mut. ∧ θKdiversity (II.7.83)

∧ inf {t ≥ θKnear ψ(0) ∶ ∣⟨ν̃t,1⟩ − ψ(0))∣ >MεσK} ] = 0.

Proof. To prove this lemma we use a coupling with a continuous time branching process as
in the proof of lemma II.7.3. For any θKnear ψ(0) ≤ t ≤ θ

K
2 succ. mut. ∧ θKdiversity ∧ inf{t ≥ θKnear φ(0) ∶

∣⟨ν̃t,1⟩ −ψ(0))∣ >MεσK}, any individual of M0(ν̃t) gives birth to a new individual with trait
RK with rate

(1 − uK m(RK))b(RK) ∈ [b(RK) − uK b , b(RK)], (II.7.84)

and dies with rate

d(RK) + c(RK ,RK)M0(ν̃t) + ∫X×N
c(RK , ξ)d̃νt(ξ), (II.7.85)
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which is larger than dZ ≡ d(RK) + c(RK ,RK + σKh)z(RK + σKh) − CMtotal deathεσK where
CMtotal death ≡ M + c⌈3/α⌉ − 2h∂2c(RK ,RK). Therefore, we construct, by using a standard
coupling argument, a process Zt such that

Zt ≥M0(ν̃t) (II.7.86)

for all θKnear ψ(0) ≤ t ≤ θ
K
2 succ. mut. ∧ θKdiversity ∧ inf{t ≥ θKnear φ(0) ∶ ∣⟨ν̃t,1⟩ −ψ(0))∣ >MεσK}. The

process Zt is a linear birth-death process starting at ⌈5
4εK⌉, with birth rate per individual

bZ = b(RK) and with death rate per individual dZ . Since

bZ − dZ = f(RK ,RK + σKh) +CMtotal deathεσK (II.7.87)

= −σKh∂1f(RK+σKh,RK+σKh) +CMtotal deathεσK +O((σKh)2)
≡ −σKξK

is negative and of order σK , the process Zt is sub-critical.
Note that ξK ≥ infx∈X

∂1f(x,x)
2 > 0. Let τZi be the first hitting time of level i by Zt, then

we have
P[τZ⌈2εK⌉ < τ

Z
0 ] ≤ exp(−Kα) (II.7.88)

compare with the proof of Proposition II.9.5. Since Zt ≥ M0(ν̃t), we obtain also that, with
high probability, M0(ν̃t) stays smaller than ⌈2εK⌉ before it dies out. For any t ≥ 0 and n ∈ N,
the distribution of the extinction time of Zt for bZ ≠ dZ is given by:

Pn(τZ0 ≤ t) = (dZ − dZ exp((dZ − bZ)t)
bZ − dZ exp((dZ − bZ)t)

)
n

. (II.7.89)

(cf. [6] p. 109 and [25]). Therefore, we can compute in our case where dZ − bZ = σKξK with
ξK uniformly positive

P[τZ0 ≤ ln(K)σ−1−α/2
K ] =

⎛
⎜
⎝

dZ − dZ exp ((dZ − bZ) ln(K)σ−1−α/2
K )

bZ − dZ exp ((dZ − bZ) ln(K)σ−1−α/2
K )

⎞
⎟
⎠

5
4
εK

(II.7.90)

=
⎛
⎝

dZ − dZKξKσ
−α/2
K

dZ − σKξK − dZKξKσ
−α/2
K

⎞
⎠

5
4
εK

=
⎛
⎝

1 − ξKσK

dZ(KξKσ
−α/2
K − 1) + σKξK

⎞
⎠

5
4
εK

≥ (1 − σK(5
4εK)−1K−1)

5
4 εK

≥ 1 −O(σKK−1) ≥ 1 − o(σK),

which proves the lemma.

II.7.5 Step 5: the population becomes monomorphic and stays close to its
equilibrium

After the extinction time of the resident trait, we have to wait at most ln(K)σ−1−α/2
K time

until the population is monomorphic with trait RK + σKh.
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Lemma II.7.9. Suppose that the assumptions of Theorem II.7.1 hold. Then, there exists a
constant M > 0 (independent of ε and K) such that, for all ε > 0

lim
K→∞

σ−1
K P[θKfixation > (θKres. size 0 + ln(K)σ−1−α/2

K ) ∧ θK2 succ. mut. ∧ θKdiversity (II.7.91)

∧ inf {t ≥ θKnear φ(0) ∶ ∣⟨ν̃t,1⟩ − ψ(0)∣ >MεσK}] = 0.

Proof. By the last lemmata, we have θKfixation = inf{t ≥ θKres. size 0 ∶ ∣Supp(ν̃Kt )∣ = 1, ∣⟨ν̃t,1⟩ −
ψ(0)∣ < (M/3)εσK} with probability 1− o(σK). Set D ≡ {k ∈ N ∶ 1 ≤Mk(ν̃θKres. size 0

) < εσKK}.
Then ∣D∣ ≤ ⌈3/α⌉, and none of these traits are successful since we have seen that θKres. size 0

is smaller than θK2 succ. mut. and θKdiversity with probability of order 1 − o(σK). By applying
Proposition II.9.3 and using the Markov inequality, we obtain that the life time of each of
these subpopulations is with probability 1 − o(σK) smaller than ln(K)σ−1−α/4

K . Therefore, if
no new mutant is born between θKres. size 0 and θKres. size 0 + ln(K)σ−1−α/4

K , we obtain the claim.
On the other hand, as in Lemma II.6.4, the number of mutants born in the time interval
[θKres. size 0, θ

K
res. size 0 + ln(K)σ−1−α/2

K ] is stochastically dominated by a Poisson point process,
AK(t), with parameter a uKK, where a ≡ supx∈X z(x)b(x)m(x) + 1. Hence, the probability
to have no new mutant in this interval is

P[AK(ln(K)σ−1−α/2
K ) = 0] = exp(− ln(K)σ−1−α/2

K a uKK) (II.7.92)

≥ exp(−σα/2K ) ≥ 1 − o(1).

Because the probability that a mutant is successful is of order σK , the probability that a
successful mutant is born between times θKres. size 0 and θKres. size 0 + ln(K)σ−1−α/2

K is o(σK).
Since

P[AK(ln(K)σ−1−α/2
K ) ≤ ⌈3/α⌉] (II.7.93)

= exp (− ln(K)σ−1−α/2
K auKK)

⌈3/α⌉
∑
i=0

ln(K)σ−1−α/2
K a uKK

i

≥ 1 − (ln(K)σ−1−α/2
K a uKK)⌈3/α⌉+1

≥ 1 − σ3/2
K = 1 − o(σK),

there are maximal ⌈3/α⌉ unsuccessful mutations in this interval. With the same argument as
before the life time of each of these subpopulations is with probability 1−o(σK) smaller than
ln(K)σ−1−α/4

K . Therefore, with probability 1−o(σK) the maximal possible time interval where
at least one mutant individual is alive is smaller or equal ln(K)σ−1−α/4

K + ⌈3/α⌉ ln(K)σ−1−α/4
K

≪ ln(K)σ−1−α/2
K . Recall from Lemma II.7.7 that if ∣⟨ν̃t,1⟩ − ψ(0)∣ > (M/3)εσK at the first

time when the population is again monomorphic, then the time the process needs to enter
the (M/3)εσK-neighborhood of ψ(0) is smaller than SK , which can be chosen smaller than
σ1+α
K /(KuK). This proves the lemma.

This ends Step 5 and the second invasion phase. Note that the estimates of the two phases
do not depend on the exact trait value of the resident trait, especially the a priori different
constants M . In fact, we can use in all lemmata the same constant M , namely the largest.
Therefore, we can apply our results for the successful mutant trait RK1 = RK + σKh, which is
the next resident trait by using the strong Markov property for (ν̃, L) at the stopping time
θKfixation.
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II.8 Convergence to the CEAD

Our goal is to find T0 > 0 and to construct, for all ε > 0, two measure valued processes,
(µ1,K,ε

t , t ≥ 0) and (µ2,K,ε
t , t ≥ 0), in D([0,∞),M(X)) such that

lim
K→∞

P [∀ t ≤ T0
KuKσ

2
K

∶ µ1,K,ε
t ≼ νKt ≼ µ2,K,ε

t ] = 1, (II.8.1)

and for j ∈ {1,2}

lim
K→∞

P [ sup
0≤t≤T0

∥ µi,K,ε
t/(KuKσK2) − z(xt)δxt ∥0

> δ(ε) ] = 0, (II.8.2)

for some function δ independent of x,K such that δ(ε) → 0 when ε → 0. This easily im-
plies (II.4.5) for all T ≤ T0.

The result for all T > 0 then follows from the strong Markov property. Indeed, the
construction below implies that there exists a stopping time

τ ∈ [T0/2KuKσ2
K , T0/KuKσ2

K] (II.8.3)

(a fixation time) such that, with probability converging to 1, νKτ has a unique (random) point
Y as support and a total mass belonging to [z̄(Y ) −MσK , z̄(Y ) +MσK]. Hence (II.8.1)
and (II.8.2) also hold for the process (νKτ+t, t ≥ 0), and (II.4.5) is thus true for all T ≤ 3T0/2.
We obtain (II.4.5) for any fixed T > 0 by induction.

II.8.1 Construction of two processes µK,1 and µK,2 such that µ1,K
t ≼ νKt ≼ µ

2,K
t

Fix T > 0. Let θKi denote the random time of i-th invasion (i.e., θKi = θKi,invasion), θKi,fixation the
time of i-th fixation and RKi the trait of the i-th successful mutant. Let us fix the following
initial conditions RK,10 = RK0 − AσK , RK,20 = RK0 + AσK and θK,10 = θK,20 = 0. Assume that
we have constructed θK,1i and θK,2i , and RK,1i and RK,2i . By Theorem II.6.2 and the Markov
property, we can construct two random variables RK,1i+1 and RK,2i+1 such that

RK,1i+1 −R
K,1
i ≤ RKi+1 −RKi ≤ RK,2i+1 −R

K,2
i (II.8.4)

with probability 1−o(σK). Moreover, RK,1i+1 −R
K,1
i = RKi+1−RKi = RK,2i+1 −R

K,2
i with probability

1 −O(ε) and RK,2i+1 −RK,1i+1 ≤ AσK . The distributions of RK,1i+1 −RK,1i and RK,2i+1 −RK,2i are (cf.
Corollary II.6.10)

rε1(RKi , h) ≡ P[RK,1i+1 = RKi + σkh] (II.8.5)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M(RKi ,1)qε1(RKi ,1)
pε2(RKi ) + 1 − pε1(RKi )

pε2(RKi ) if h = 1

M(RKi ,h)qε1(RKi ,h)
pε2(RKi ) if h ∈ {2, ...,A}

and

rε2(RKi , h) ≡ P[RK,2i+1 = RKi + σkh] (II.8.6)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M(RKi ,h)qε1(RKi ,h)
pε2(RKi ) if h ∈ {1, ...,A − 1}

M(RKi ,A)qε1(RKi ,A)
pε2(RKi ) + 1 − pε1(RKi )

pε2(RKi ) if h = A,
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where

qε1(x,h) = h
∂1f(x,x)
b(x)

−C1
Bernoulliε, qε2(x,h) = h

∂1f(x,x)
b(x)

+C2
Bernoulliε (II.8.7)

and pεj(x) = ∑Ah=1 q
ε
j(x,h)M(x,h) for j = 1,2. (Note that we changed a bit the notations

of Corollary II.6.10 to make explicit the dependence on ε and RKi .) Since we assumed that
the fitness gradient ∂1f(x,x) is positive and uniformly lower bounded on X , the transition
probabilities rεj(x,h), j = 1,2 are uniformly Lipschitz-continuous functions of x with some
Lipschitz constant CrLip. By Theorem II.6.2 and Lemmata II.6.7 and II.6.4, we can construct
two exponential random variables, EK,1i+1 and EK,2i+1 ,with parameters aK,ε1 (RKi )pε1(RKi )σKuKK
and aK,ε2 (RKi )pε2(RKi )σKuKK given by

aK,ε1 (x) = (z̄(x) − εσKM)b(x)m(x) (II.8.8)

aK,ε2 (x) = (z̄(x) + εσK(M + ⌈3/α⌉))(b(x)m(x) +Cb,m,ML AσK), (II.8.9)

such that

P (EK,2i+1 ≤ θKi+1 − θKi,fixation ≤ E
K,1
i+1 + ln(K)σ−1−α/2

K ) = 1 − o(σK). (II.8.10)

Note that this inequality involves θKi,fixation instead of θKi since we apply the Markov property at
the fixation time of Lemma II.7.9 before we can apply Theorem II.6.2. However, Lemma II.7.9
entails that we also have

P (EK,2i+1 ≤ θKi+1 − θKi ≤ EK,1i+1 + 6 ln(K)σ−1−α/2
K ) = 1 − o(σK). (II.8.11)

We then define

θK,1i+1 − θK,1i ≡ EK,1i+1 + 6 ln(K)σ−1−α/2
K and θK,2i+1 − θK,2i ≡ EK,2i+1 . (II.8.12)

In addition, by their construction in Section II.6, it is clear that the random vectors {(EK,1i+1 ,

EK,2i+1 , R
K,1
i+1 −R

K,1
i , RK,2i+1 −R

K,2
i )}i≥0 are independent conditionally on (RKj )j≥0.

Lemma II.8.1. With the previous notations, the processes µK,1 and µK,2 in D([0,∞),M(X))
defined for all t ≥ 0 by

µ1,K
t = (z̄(RKj ) − (Mε +C)σK)δ

RK,1i
, for t∈[θK,1i , θK,1i+1 ) ∩ [θKj , θKj+1), (II.8.13)

µ2,K
t = (z̄(RKj ) + (Mε+⌈ 3

α
⌉ ε+C)σK) δ

RK,2i
, for t∈[θK,2i , θK,2i+1 ) ∩ [θKj , θKj+1), (II.8.14)

for some constant C independent of K,x, ε, satisfy for all T > 0

lim
K→∞

P [∀ t ≤ T
KuKσ

2
K

∶ µ1,K
t ≼ νKt ≼ µ2,K

t ] = 1. (II.8.15)

Note that the support of µj,K , j = 1,2, is defined from the sequences (RK,ji )i≥0 and
(θK,ji )i≥1 but the mass of µj,K is defined from the sequences (RKi )i≥0 and (θKi )i≥1.

Proof. Let us fix T > 0 and Γ > 0. Since each of the steps previously described holds with
probability 1− o(σK), we deduce that the above construction can be done on a good event of
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probability 1 − o(1), for all integers i ≤ Γ/σK . Since in addition, on X , aK,ε2 (x)pε2(x) is uni-
formly bounded from below by a positive constant a, the random variables EK,2i can be cou-
pled with i.i.d. exponential ones of parameter aKuKσK , and hence P[θK,2⌊Γ/σK⌋ < T /(KuKσ2

K)]
is smaller than the probability that a Poisson process with parameter aKuKσK is larger that
⌊Γ/σK⌋ at time T /(KuKσ2

K). By the law of large numbers for Poisson processes, we deduce
that if Γ > Ta (which we assume true in the sequel),

lim
K→∞

P [θK,2⌊Γ/σK⌋ <
T

KuKσ
2
K

] = 0. (II.8.16)

Let us recall that, on the previous good event of probability 1 − o(1), the number, the
trait, and the size of the living mutant populations and the size of the resident population are
controlled at any time in the i-th first phase (Lemmata II.6.3 and II.6.9). In addition, during
the i-th second phase, the number, trait, and size of living mutant populations are controlled
(see all the Lemmas of Section II.7), the total mass of the population stays within theMεσK-
neighborhood of φ(y) or ψ(y) for some y ∈ [0, z̄(RKi )] (Lemmata II.7.4 and II.7.6). Since
∣φ(y) − z̄(RKi )∣ ≤ CσK and ∣ψ(y) − z̄(RKi )∣ ≤ CσK for some constant C, as seen in (II.7.26)
and (II.7.76), and since the sequences (Rj,Ki )i≥0 for j = 1,2 and (RKi )i≥0 are all increasing on
the good event, we deduce the required comparison between the supports of µ1,K

t , νKt , and
µ2,K
t for t ≤ T

KuKσ
2
K

, on the good event. Since we used z̄(RKj ) to define the masses of µ1,K
t

and µ2,K
t , the required comparison between the masses is also clear.

Note that, since the function z̄ may not be non-decreasing, replacing z̄(RKj ) by z̄(RK,1j )
in the definition of µ1,K

t may not imply the required comparison between the masses of µ1,K
t ,

νKt , and µ2,K
t .

The next goal is now to prove the convergence of both processes µK,j
t/KuKσ2

K

for j = 1,2 to
z̄(xt)δxt in probability in L∞(M(X), ∥⋅∥0). For this, we will use standard convergence results
of Markov jump processes. However, the two processes µK,j , j = 1,2 are not Markov because
the i-th jump rates and transition probabilities defined above depend on RKi which is close,
but different from RK,ji . Therefore, we introduce a small parameter, η > 0, and we construct
two Markov processes µK,j,ε,η, j = 1,2 in D([0,∞),M(X)) such that

lim
K→+∞

P [µK,1,ε,η(t−1/(KuKσK))∨0
≼ µ1,K

t ≼ νKt ≼ µ2,K
t ≼ µK,2,ε,ηt , ∀t ≤ T

KuKσ
2
K

∧ SKη ] = 1, (II.8.17)

where SKη is the first time where the distance between the support of µK,1,ε,ηt , and µK,2,ε,ηt

is larger than η. The last equation will be proved below in Section II.8.2. The time-shift of
−1/(KuKσK) in µK,1,ε,η is due to the terms 6 ln(K)σ−1−α/2

K in (II.8.12). We will next study
the convergence of these two Markov processes when K →∞ and prove in Section II.8.3 that,
for a convenient choice of η, there exists some T0 > 0 independent of K,x, ε, η such that

lim
K→+∞

P [SKη < T0
KuKσ

2
K

] = 0. (II.8.18)

II.8.2 Proof of (II.8.17)

For all x ∈ X , we define (r̄ε,η1 (x,h),1 ≤ h ≤ A), and (r̄ε,η2 (x,h),1 ≤ h ≤ A) by, for all 1 ≤ ` ≤ A,

∑`h=1 r̄
ε,η
1 (x,h) ≡ [∑`h=1(rε1(x,h) +CrLipη)] ∧ 1 ≥ supy∈[x,x+η]∑`h=1 r

ε
1(y, h) (II.8.19)
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and

∑`h=1 r̄
ε,η
2 (x,h) ≡ [∑`h=1(rε2(x,h) −CrLipη)] ∨ 0 ≤ infy∈[x,x+η]∑`h=1 r

ε
1(y, h). (II.8.20)

Note that r̄ε,η1 (x, ⋅) and r̄ε,η2 (x, ⋅) are probability distributions on {1, . . . ,A} for all x ∈ X and
that, by standard coupling arguments, for all x < y such that y − x ≤ η, the distribution
r̄ε,η1 (x, ⋅) is stochastically dominated by the distribution rε1(y, ⋅) and the distribution rε2(x, ⋅)
is stochastically dominated by the distribution r̄ε,η2 (y, ⋅). We define similarly

āK,ε,η1 (x) ≡ aK,ε1 (x)pε1(x) −CaLipη ≤ inf
y∈[x,x+η]∩X

aK,ε1 (y)pε1(y), (II.8.21)

and
āK,ε,η2 (x) ≡ aK,ε2 (x)pε2(x) +CaLipη ≥ sup

y∈[x−η,x]∩X
aK,ε2 (y)p2(y), (II.8.22)

where CaLip is a uniform Lipschitz constant for the functions aK,εj pεj , j = 1,2. Note that
aK,ε,η1 (x) > 0 for all x ∈ X if η is small enough.

It is then clear that there exist two Markov chains (R̄K,j,ηi )i≥0, j = 1,2, with initial con-
dition R̄K,j,η0 = RK,j0 and with transition probabilities r̄K,ε,ηj (x,h) from x to x + h, such that,
for all i ≥ 0 satisfying R̄K,2,ηi − R̄K,1,ηi ≤ η,

R̄K,1,ηi+1 − R̄K,1,ηi ≤ RK,1i+1 −R
K,1
i and RK,2i+1 −R

K,2
i ≤ R̄K,2,ηi+1 − R̄K,2,ηi ≤ RK,1i+1 −R

K,1
i . (II.8.23)

Similarly, there are random variables ĒK,j,ηi+1 , j = 1,2, independent and exponentially dis-
tributed with parameters āK,ε,ηj (R̄K,j,ηi ) conditionally on (R̄K,j,ηi )i≥0, such that ĒK,2,ηi+1 ≤ EK,2i+1

and EK,1i+1 ≤ ĒK,1,ηi+1 . We then define θ̄K,j,ηi+1 − θ̄K,j,ηi = EK,j,θi+1 with θ̄K,j,η0 = 0.
Since the function z̄ is C z̄Lip-Lipschitz, it is clear that (II.8.17) is satisfied for the processes

µ̄K,1,ε,ηt = (z̄(X̄K,1,η
t ) − (Mε + C̄)σK −C z̄Lipη)δX̄K,1,η

t
(II.8.24)

and µK,2,ε,ηt = (z̄(XK,2,η
t ) + (Mε + ⌈3/α⌉ε + C̄)σK +C z̄Lipη)δXK,2,η

t
, (II.8.25)

where

X̄K,1,η
t = R̄K,1,ηi , for t ∈ [θ̄K,1,ηi + 6i ln(K)σ−1−α/2

K , θ̄K,1,ηi+1 + 6(i + 1) ln(K)σ−1−α/2
K ), (II.8.26)

and
XK,2,η
t = R̄K,2,ηi , for t ∈ [θ̄K,2,ηi , θ̄K,2,ηi+1 ). (II.8.27)

By construction, the processes XK,2,η and µK,2,η are Markov jump processes, but the process
X̄K,1,η is not because of the terms 6 ln(K)σ−1−α/2

K involved in its definition. However, the
process µK,1,ε,ηt = (z̄(XK,1,η

t ) − εσKM −C z̄Lipη)δXK,1,η
t

is Markov, where

XK,1,η
t = R̄K,1,ηi , for t ∈ [θ̄K,1,ηi , θ̄K,1,ηi+1 ). (II.8.28)

The proof of (II.8.16) above also applies to the processes µK,1,ε,η, and µ̄K,1,ε,η. Since in
addition the support of µK,1,ε,ηt is non-decreasing, it follows that

µK,1,ε,η
(t−6Γ ln(K)σ−2−α/2K )∨0

≼ µ̄K,1,ε,ηt for all t ≤ T /(KuKσ2
K) (II.8.29)

with probability 1 + o(1). Our assumption (II.4.2) entails (II.8.17).
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II.8.3 Convergence of XK,j,η when K → +∞ and proof of (II.8.18)

The two Markov processes XK,1,η
t/(KuKσK), and XK,2,η

t/(KuKσK) fit exactly to the framework and
assumptions of Theorem 2.1 of Chapter 11 of [55]: their state spaces are (up to a translation)
a subset of σKZ, and their transition rates from z to z+hσK have the form σ−1

K [βh(z)+O(σK)]
for some Lipschitz functions βh. For such a process X, provided X0 converges a.s. to x0, the
process (Xt/σK , t ≥ 0) converges when σK → 0 almost surely in L∞([0, T ]) for all T > 0 to
the unique deterministic solution of the ODE dx(t)/dt = ∑h hβh(x) with x(0) = x0. In our
situation, we obtain, for j = 1,2, that

lim
K→+∞

sup
t∈[0,T ]

∣XK,j,η

t/(KuKσ2
K) − xj(t)∣ = 0 a.s., (II.8.30)

where x1 and x2 are the unique solutions such that x1(0) = x2(0) = x of the ODEs

dx1(t)
dt

= (z̄(x1(t))b(x1(t))m(x1(t))pε1(x1(t)) −CaLipη)∑Ah=1 hr̄
ε,η
1 (x1(t), h) (II.8.31)

and
dx2(t)
dt

= (z̄(x2(t))b(x2(t))m(x2(t))pε2(x2(t)) +CaLipη)∑Ah=1 hr̄
ε,η
2 (x2(t), h). (II.8.32)

Lemma II.8.2. For all T > 0, and for j = 1,2,

sup
t∈[0,T ]

∣xj(t) − xt∣ ≤ CTeCT (η + ε), (II.8.33)

for a constant C independent of x, T , ε, and η, where xt is the solution of the CEAD (II.4.3)
with initial condition x0 = x.

Proof. We only write the proof for j = 1, the case j = 2 being similar. Since the functions
r̄ε,ηj , j = 1,2, z̄, b, m and p1 are bounded by constants independent of K, ε, η, we have for all
t ∈ [0, T ] and for a constant C > 0 that may change from line to line,

∣xt − x1(t)∣ ≤ CCaLipηT + ∫
t

0

RRRRRRRRRRR
(z̄bmpε1)(x1(s))

A

∑
h=1

hr̄ε,η1 (x1(s), h) (II.8.34)

− (z̄bmpε1)(xs)
A

∑
h=1

h2M(xs, h)∂1f(xs, xs)
b(xs)pε1(xs)

RRRRRRRRRRR
ds

≤ C(CaLip +AC
r
Lip)Tη +C ∫

t

0
∣xs − x1(s)∣ds

+C ∫
t

0

A

∑
h=1

∣rε1(xs, h) −
hM(xs, h)∂1f(xs, xs)

b(xs)pε1(xs)
∣ds,

where the last inequality follows from the uniform Lipschitz-continuity of all functions involved
in the computation. Now, ∣pε2(x)−pε1(x)∣ ≤ Cε and pεj(x) ≥ c > 0 for j = 1,2, for some constants
C, c > 0 independent of ε and x. Hence, there exists a constant C such that

∣xt − x1(t)∣ ≤ CT (η + ε) +C ∫
t

0
∣xs − x1(s)∣ds (II.8.35)

+C ∫
t

0

A

∑
h=1

∣qε1(xs, h) − h
∂1f(xs, xs)
b(xs)

∣M(xs, h)ds.

In view of (II.8.7), we obtain ∣xt − x1(t)∣ ≤ CT (η + ε) +C ∫
t

0 ∣xs − x1(s)∣ds. Gronwall’s lemma
ends the proof of Lemma II.8.2.
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In view of Lemma II.8.2, there exists T0 > 0 independent of x, ε, η such that, for all η ≥ ε,
supt∈[0,T0] ∣xj(t) − xt∣ ≤ η/4. Let us fix η = ε. Combining (II.8.30) with the last inequality
entails (II.8.18).

II.8.4 End of the proof

Proof of Theorem II.4.1. Defining µ̄K,1,ε = µK,1,ε,ε and µK,2,ε = µK,2,ε,ε and combining (II.8.17)
and (II.8.18), we see that we have defined a constant, T0 > 0, such that

lim
K→+∞

P [µ̄K,1,ε(t−1/(KuKσK))∨0
≼ µ1,K

t ≼ νKt ≼ µ2,K
t ≼ µK,2,εt , ∀t ≤ T0

KuKσ
2
K

] = 1, (II.8.36)

This is (II.8.1) with µK,1,εt = µ̄K,1,ε(t−1/(KuKσK))∨0
. It only remains to check (II.8.2).

Using that η = ε, we get

∥µK,1,ε
t/KuKσ2

K

− z̄(x(t))δx(t)∥
0

(II.8.37)

≤ C (ε + σK + ∣z̄(xt) − z̄(XK,1,η

(t−σK)∨0/KuKσ2
K

)∣ + ∣xt − x1((t − σK) ∨ 0)∣

+ ∣XK,1,η

(t−σK)∨0/KuKσ2
K

− x1((t − σK) ∨ 0)∣)

≤ C ′ ⎛
⎝
ε + σK + sup

t∈[0,T ]
(∣x(t−σK)∨0 − xt∣ + ∣xt − x1(t)∣ + ∣XK,1,η

t/KuKσ2
K

− x1(t)∣)
⎞
⎠
,

for some finite constants C,C ′ > 0. The analogous estimate holds for for µ2,K,η

t/KuKσ2
K

. Setting for

example δ(ε) =
√
ε, (II.8.2) follows from (II.8.30), Lemma II.8.2 and the uniform continuity

of xt. This ends the proof of Theorem II.4.1.

II.9 Appendix

In this section, we state and prove several elementary results, which we used in the proof of
our main theorem. Recall that ∥ . ∥0 is the Kantorovich-Rubinstein norm on the vector space
of finite, signed measures on X , i.e.,

∥µt∥0 ≡ sup{∫X
fdµt ∶ f ∈ Lip1(X) with sup

x∈X
∣f(x)∣ ≤ 1} , (II.9.1)

where Lip1(X) is the space of Lipschitz continuous functions from X to R. Let MF (X) be
the set of non-negative finite Borel-measures on X .

Proposition II.9.1. Let {νK,K ≥0} and µ be random elements in D([0,T ],MF (X)). If, for
all δ > 0,

lim
K→∞

P [ sup
0≤t≤T

∥νKt − µt∥0 > δ ] = 0, (II.9.2)

then νK converges in probability, as K → ∞, with respect to the Skorokhod topology on
D([0, T ],M(X)) to µ.

Proof. Let us equipMF (X) with the topology of weak convergence. Obverse that this topol-
ogy is metrizable with the Kantorovich-Rubinstein norm, see [14] Vol. II, p. 193. Let Λ be
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the class of strictly increasing, continuous mapping of [0, T ] onto itself. If λ ∈ Λ, then λ(0) = 0
and λ(T ) = T . The Skorokhod topology on D ([0, T ], (MF (X), ∥ . ∥0)) is generated by the
distance

d(µ, ν) = inf
λ∈Λ

⎧⎪⎪⎨⎪⎪⎩
max

⎧⎪⎪⎨⎪⎪⎩
sup
t∈[0,T ]

∣λ(t) − t∣, sup
t∈[0,T ]

∥µt − νλt∥0

⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎬⎪⎪⎭
, (II.9.3)

on D ([0, T ], (MF (X), ∥ . ∥0)), see e.g. [12], Chap. 3. Since the identity lies in Λ it is clear that
d(µ, ν) ≤ supt∈[0,T ] ∥µt − νt∥0. Therefore, if a sequence of random elements with state space
D([0, T ],MF (X)) equipped with the metric induced by the norm supt∈[0,T ] ∥µt∥0 convergences
in probability to µ, it also convergences in probability to µ if D([0, T ],MF (X)) is equipped
with the metric d.

Proposition II.9.2. Fix ε > 0 and let σK a sequence in K with K−1/2+α ≪ σK ≪ 1. Let Zn
be a Markov chain with state space N0 and with the following transition probabilities

P[Zn+1 = j∣Zn = i] = p(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, for i = 0 and j = 1,
1
2 −C1iK

−1 +C2εσK , for i ≥ 1 and j = i + 1,
1
2 +C1iK

−1 −C2εσK , for i ≥ 1 and j = i − 1,

(II.9.4)

for some constants C1 > 0 and C2 ≥ 0. Let τi be the first hitting time of level i by Z and let Pa
denote the law of Z conditioned on Z0 = a. Then, for all M ≥ 8C2

C1
and for all a ≤ 1

3MεσKK

lim
K→∞

eK
2α

Pa [τ⌈MεσKK⌉ < τ0] = 0. (II.9.5)

Remark 9. The proposition can be seen as a moderate deviation result for this particular
Markov chain. More precisely, we can prove that there exist two constants M > 0 and C3 > 0
which depend only on C1 and C2 such that for a < 1

3MεσKK

Pa [τ⌈MεσKK⌉ < τ0] ≤ exp (−C3K
−1 ((1

3MεσKK)2 − a2)) , (II.9.6)

for all K large enough.

Proof. We calculate this probability with some standard potential theory arguments (cf. [17]).
Let h⌈MεσKK⌉,0(a) be the solution of the Dirichlet problem with λ = 0, i.e.,

L h⌈MεσKK⌉,0(x) = 0, for 0 < x < ⌈MεσKK⌉ (II.9.7)

h⌈MεσKK⌉,0(x) = 1, for x ≥ ⌈MεσKK⌉
h⌈MεσKK⌉,0(x) = 0, for x = 0.

Therefore, we obtain for 0 < a < ⌈MεσKK⌉

Pa[τ⌈MεσKK⌉ < τ0] = h⌈MεσKK⌉,0(a) =
∑ai=1

1
π(i)

1
p(i,i−1)

∑⌈MεσKK⌉
i=1

1
π(i)

1
p(i,i−1)

, (II.9.8)

where π = (π(0), π(1), π(2), . . .) is an invariant measure of the one-dimensional Markov chain
Zn. In our case any invariant measure π has to satisfy, for all i ≥ 1,

π(0) = p(1,0)π(1) and π(i) = p(i − 1, i)π(i − 1) + p(i + 1, i)π(i + 1). (II.9.9)
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Therefore, π with π(0) = 1, π(1) = 1
p(1,0) and π(i) = ∏i−1

j=1
p(j,j+1)
p(j,j−1)

1
p(i,i−1) is the unique invariant

measure for the Markov chain Zn. Thus we get from (II.9.8) that

h⌈MεσKK⌉,0(a) =
∑ai=1∏i−1

j=1
p(j,j−1)
p(j,j+1)

∑⌈MεσKK⌉
i=1 ∏i−1

j=1
p(j,j−1)
p(j,j+1)

(II.9.10)

=
∑ai=1 exp (∑i−1

j=1 ln (1+2C1K
−1j−2C2εσK

1−2C1K−1j+2C2εσK
))

∑⌈MεσKK⌉
i=1 exp(∑i−1

j=1 ln(1+2C1K
−1j−2C2εσK

1−2C1K−1j+2C2εσK
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶f(j)

)
.

For all j ≤MεσKK we can approximate f(j) as follows

f(j) = ln (1 + 4C1K
−1j−4C2εσK

1−2C1K−1j+2C2εσK
) (II.9.11)

= 4C1K
−1j−4C2εσK

1−2C1K−1j+2C2εσK
−O (( 4C1K

−1j−4C2εσK
1−2C1K−1j+2C2εσK

)2)

= 4C1
j
K − 4C2εσK +O (( jK )2 + εσK j

K + ε2σ2
K)

= 4C1
j
K − 4C2εσK +O ((MεσK)2)

Therefore,

h⌈MεσKK⌉,0(a) ≤
∑ai=1 exp(∑i−1

j=1 4C1
j
K +O ((MεσK)2)

∑⌈MεσKK⌉
i=1 exp(∑i−1

j=1 4C1
j
K − 4C2εσK −O ((MεσK)2)

(II.9.12)

≤
a exp(2C1a

2K−1 +O (a(MεσK)2)

∑⌈MεσKK⌉
i=1 exp (2C1K−1(i2−i) − 4C2εσKi −O ((i−1)(MεσK)2))

≤
a exp(2C1a

2K−1 +O (a(MεσK)2)

∑⌈MεσKK⌉
i= 1

2
⌈MεσKK⌉ exp(2C1K−1i2−(2C1K−1+4C2εσK)i−O (i(MεσK)2))

.

Choosing M ≥ 8C2

C1
, if a < MεσKK

3 , then

h⌈MεσKK⌉,0(a) ≤
a exp(2C1a

2K−1 +O (a(MεσK)2)
1
2⌈MεσKK⌉ exp ((1

2C1M−2C2)Mε2σ2
KK−O ((εσM)3K+εσKM))

≤ 2a(⌈MεσKK⌉)−1 exp (C1K
−1 (2a2 − 1

4(⌈MεσKK⌉)2))
≤ exp (−C3K

−1 ((1
3⌈MεσKK⌉)2 − a2)) . (II.9.13)

Since K−1/2+α ≪ σK when K tends to infinity, (II.9.5) follows.

Proposition II.9.3. Let (Zt)t≥0 be a branching process with birth rate per individual b and
death rate per individual d. Let τi be the first hitting time of level i by Z and let Pj denote
the law of Z conditioned on Z0 = j, and Ej the corresponding expectation. Then

Pj [τk < τ0] = (d/b)j − 1

(d/b)k − 1
for all 1 ≤ j ≤ k − 1, (II.9.14)

∣P1[τk < τ0] −
[b − d]+

b
∣ ≤ k−1 and (II.9.15)

E1[τk ∧ τ0] ≤ 1 + ln(k)
b

, (II.9.16)
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where [b − d]+ ≡ max{b−d ,0}. Moreover, if Zt is slightly super-critical, i.e., b = d + ε, then

max
n≤k

En[τk ∧ τ0]
Pn[τk < τ0]

≤ 1 + ln(k)
ε

(II.9.17)

Proof. Let pj ≡ Pj[τk < τ0]. Then p0 = 0, pk = 1, and pj = b
b+d pj+1 + d

b+d pj−1 for all 1 ≤ j ≤ k−1
by the Markov property. From this recursion, we obtain the characteristic polynomial

P (x) = bx2 − (b + d)x + d. (II.9.18)

With its roots 1 and d/b, we obtain the following general solution for the recursion

pn = κ0 ⋅ 1n + κ1(
d

b
)
n
, (II.9.19)

where κ0 and κ1 are constants. From the initial condition p0 = 0 and pk = 1, we obtain
κ0 = −((db )

k − 1)−1 and κ1 = ((db )
k − 1)−1. Therefore,

pn =
(db )

n − 1

(db )k − 1
and p1 =

d
b − 1

(db )k − 1
= 1

1 + d
b + . . . + (db )k−1

. (II.9.20)

If d ≥ b, this computation implies that p1 ≡ P1[τk < τ0] ≤ 1/k and [b − d]+ = 0. If d < b,

P1[τk < τ0] −
b − d
b

=
d
b − 1

(db )k − 1
− (1 − d

b )
(db )

k − 1

(db )k − 1
=

(db − 1)(db )
k

(db )k − 1
=

d
b − 1

1 − ( bd)k
(II.9.21)

=
d
b (1 −

b
d)

1 − ( bd)k
= 1

b
d(1 +

b
d + . . . + ( bd)k−1)

= 1
b
d + . . . + ( bd)k

≤ 1

k
.

Similarly, if en ≡ En[τk∧τ0], then en is the solution of the following non-homogeneous Dirichlet
problem:

L en = −1, for n ∈ {1, .., k − 1} (II.9.22)
en = 0, for n ∈ N0 ∖ {1, .., k − 1},

where (L f)(x) = x(b[f(x+ 1) − f(x)] + d[f(x− 1) − f(x)]) is the generator of the branching
process Z. Therefore, we have to solve the following non-homogeneous recurrence

en+2 − b+d
b en+1 + d

b en =
−1

b(n+1) and e0 = ek = 0 (II.9.23)

We solve this by variation of parameters. Thus, we first solve the associated linear homoge-
neous recurrence relation:

hn+2 − b+d
b hn+1 + d

bhn = 0 (II.9.24)

As we have seen before hn = κ2 1+κ3(db )
j for any κ2, κ3 ∈ R solves the equation. Obverse that

this functions are the harmonic functions of L . Second, we have to find a particular solution.
Let (x1j , x2j) the solution of the system of linear equations

x1j + (db )
j+1x2j = 0 (II.9.25)

x1j + (dd)
j+2x2j = − 1

b(j+1) , (II.9.26)
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then

epn = ∑n−1
j=0 x1j1

n +∑n−1
j=0 x2j(db)

n
= −1

b−d ∑
n
j=1

1
j +

1
b−d ∑

n
j=1

1
j (

b
d)
j
(db)

n
(II.9.27)

= 1
b−d ∑

n
j=1

1
j ((

d
b)
n−j

− 1)

is a particular solution. Now, we obtain we obtain the following general solution for the
recurrence:

en = hn + epn = κ2 + κ3(db )
n + 1

b−d ∑
n
j=1

1
j ((

d
b)
n−j

− 1). (II.9.28)

We have the boundary condition e0 = ek = 0, therefore κ2 and κ3 are given by the solution of
the following system of linear equations

κ2 + κ3(db )
0 + 1

b−d ∑
0
j=1

1
j ((

d
b)

0−j
− 1) = 0, (II.9.29)

κ2 + κ3(db )
k + 1

b−d ∑
k
j=1

1
j ((

d
b)
k−j

− 1) = 0, (II.9.30)

and we obtain that

en = 1
b−d

k

∑
j=1

1
j
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With this formula we can easily prove the second inequality of the proposition,

e1 = 1
b−d

k

∑
n=1

1
n

(db )
k−n − 1

(db )k − 1
(1 − d

b ) + 0 ≤ 1
b

k

∑
n=1

1
n ≤ 1 + ln(k)

b
. (II.9.32)

Finally, we obtain for slightly super-critical Zt, i.e., with b = d + ε,
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which proves (II.9.17).

Proposition II.9.4. Let (ZKt )t≥0 be a sequence branching process with birth rate per individ-
ual b ≥ 0 and death rate per individual d ≥ 0 and ∣b − d∣ = O(σK), where K−1/2+α ≪ σK ≪ 1.
Let τi be the first hitting time of level i by Z and let Pj denote the law of Z conditioned on
Z0 = j.

(a) The invasion probability can be approximated up to an error of order exp(−Kα):

lim
K→∞

exp(Kα) ∣ P1 [τ⌈εσKK⌉ < τ0] −
[b − d]+

b
∣ = 0. (II.9.34)
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(b) If b > d (super-critical case), we have exponential tails, i.e.,

lim
K→∞

exp(σ−α/3K )P1 [τ⌈εσKK⌉ > ln(K)σ−1−α/2
K ∣τ⌈εσKK⌉ < τ0] = 0 (II.9.35)

and

lim
K→∞

exp(Kα)P⌈εσKK⌉ [τ⌈εK⌉ > τ0] = 0 (II.9.36)

Proof. (a) Compare with (II.9.14) that

P1 [τ⌈εσKK⌉ < τ0] =
(d/b) − 1

(d/b)⌈εσKK⌉ − 1
. (II.9.37)

If b > d (sub-critical case), there exist two constants Csub > 0 and C̄sub > 0 such that 1 +
CsubσK ≤ d/b ≤ 1 + C̄subσK . Therefore, the left hand side of (II.9.37) does not exceed

C̄subσK
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exp(CsubσK⌈εσKK⌉−O(σ3
KεK))−1

= o(e−K
α

). (II.9.38)

The last equality holds, since K2α ≪ σ2
KK. If b > d (super-critical case), we obtain similarly
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(b) Compare with [2] page 41, that
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where the last inequality holds, because we can apply Proposition II.9.3
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≤ O(ln(K)σ−1
K ).

On the other hand, we have

P⌈εσKK⌉ [τ⌈εK⌉ > τ0] = 1 − (d/b)⌈εσKK⌉ − 1

(d/b)⌈εK⌉ − 1
≤ exp(−K2α) (II.9.42)

since d/b = 1 −O(σK) and K2α ≪ σKεK.

Proposition II.9.5. Let (ZKn )n≥0 a sequence of discrete time Markov chain with state space
Z and with transition probabilities

P[ZKn+1 = j∣ZKn = i] = p(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 +CσK , if j = i + 1,
1
2 −CσK , if j = i − 1,

0, else,
(II.9.43)

for some constant C ≠ 0. Let τi be the first hitting time of level i by ZK and let Pj denote the
law of ZK conditioned on ZK0 = j and let σK a zero sequence such that K− 1

2
+α ≪ σK ≪ 1.
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(a) If ZK is slightly supercritical, i.e., C > 0, then, for all i ≥ 1

lim
K→∞

exp(Kα) Pi⌈(ε/2)σKK⌉ [τ(i−1)⌈(ε/2)σKK⌉ < τ(i+1)⌈(ε/2)σKK⌉] = 0. (II.9.44)

(b) If ZK is slightly subcritical, i.e., C < 0, then, for all constants C1,C2,C3 > 0

lim
K→∞

exp(Kα) P(C1+C2)⌈εσKK⌉ [τ(C1+C2+C3)⌈εσKK⌉ < τC1⌈εσKK⌉] = 0. (II.9.45)

Proof. Since the transition probabilities of ZK do not depend on the state of ZK , we have
that

Pi⌈(ε/2)σKK⌉ [τ(i−1)⌈(ε/2)σKK⌉>τ(i+1)⌈(ε/2)σKK⌉]=P⌈(ε/2)σKK⌉ [τ0>τ2⌈(ε/2)σKK⌉] (II.9.46)

By (II.9.14) the left side of (II.9.46) is equal

1 − (1 − 2CσK +O(σ2
K))⌈(ε/2)σKK⌉

1 − (1 − 2CσK +O(σ2
K))2⌈(ε/2)σKK⌉ ≥ 1 − exp(−K2α), (II.9.47)

since σ2
KK ≫K2α. With the same arguments, we obtain also (II.9.45).
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Chapter III

A stochastic model for
immunotherapy of cancer and the
polymorphic evolution sequence for
populations with phenotypic plasticity

In this chapter we propose an extension of the individual-based model in population dynamics
introduced in Section I.2, which broadens the range of biological applications. The primary
motivation is modeling of immunotherapy of malignant tumors. The main expansions are that
we have three different actors in this context (T-cells, cytokines, and cancer cells), that we
distinguish cancer cells by phenotype and genotype, that we include environment-dependent
phenotypic plasticity, and that we take into account the therapy effects. We illustrate the new
setup by using it to model various phenomena arising in immunotherapy and we argue why
stochastic models may help to understand the resistance of tumors to therapeutic approaches
and thus may have non-trivial consequences on tumor treatment protocols. Furthermore, we
show that the interplay of genetic mutations and phenotypic switches on different time scales
as well as the occurrence of metastability phenomena raise new mathematical challenges. In
the present thesis we focuses more on these theoretical aspects which arise by including pheno-
typic plasticity in the standard individual-based model describing the evolution of an asexual
reproducing, competitive population. More precisely, we study the behavior of this process
on a large (evolutionary) time scale and in the simultaneous limits of large population size
(K → ∞) and rare mutations (uK → 0), proving convergence to a Markov pure jump pro-
cess, which can be seen as a generalization of the polymorphic evolution sequence (cf. [25, 30]).

Parts of the presented results were previously published in Scientific Reports [9] as a joint
work with L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting, and A. Bovier (cf. Section
I.3 for details).

III.1 Introduction

The treatment of various cancers with immunotherapies received a lot of attention in the
medical as well as the mathematical modeling communities during the last decades [108, 88, 50,
72, 65, 76]. Many different therapeutic approaches were developed and tested experimentally.
As for the classical therapies such as chemo- and radiotherapy, resistance is an important issue
also for immunotherapy: although a therapy leads to an initial phase of remission, very often
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a relapse occurs. The main driving forces for resistance are considered to be the genotypic and
phenotypic heterogeneity of tumors, which may be enhanced during therapy, see [76, 96, 65]
and references therein. A tumor is a complex tissue which evolves in mutual influence with its
environment [32]. In this chapter, we consider the example of melanoma (tumors associated to
skin cancer) under T-cell therapy. Our work is motivated by the experiments of Landsberg et
al. [92], which investigate melanoma in mice under adoptive cell transfer (ACT) therapy. This
therapeutic approach involves the injection of T-cells which recognize a melanocyte-specific
antigen and are able to kill differentiated types of melanoma cells. The therapy induces an
inflammation and the melanoma cells react to this environmental change by switching their
phenotype, i.e. by passing from a differentiated phenotype to a dedifferentiated one (special
markers on the cell surface disappear). The T-cells recognize the cancerous cells through the
markers which are down regulated in the dedifferentiated types. Thus, they are not capable
of killing the dedifferentiated cancer cells anymore and a relapse is often observed. The
phenotype switch is enhanced, if pro-inflammatory cytokines, called TNF-α (Tumor Necrosis
Factor), are present. A second reason for the appearance of a relapse is that the T-cells
become exhausted and are not working efficiently anymore. This problem was addressed by
re-stimulation of the T-cells, but this led only to a delay in the occurrence of the relapse.
Of course, other immune cells and cytokines are also present. However, according to the
careful control experiments, their influence can be neglected in the context of the phenomena
considered here. Cell division is not required for switching, and switching is reversible. This
means that the melanoma cells can recover their initial (differentiated) phenotype [92]. The
switch is thus a purely phenotypic change which is not induced by a mutation. Figure III.1
is a graphical representation of the relevant underlying mechanisms, reported in [92].

Figure III.1: Dynamics of the experiments described in [92].

In this chapter, we propose a quantitative mathematical model that can reproduce the
phenomena observed in the experiments of [92], and which allows to simulate different therapy
protocols, including some where several types of T-cells are used. It is an extension of the
individual-based stochastic models of adaptive dynamics, introduced in Metz et al. [104] and
developed and analyzed by many authors in recent years (see e.g. [15, 16, 43, 27, 25, 28, 19,
29, 33]), to the setting of tumor growth under immunotherapy. More precisely, the main
expansions are:

(i) Three different classes of actors are included: T-cells, cytokines, and cancer cells.
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(ii) For cancer cells two types of transitions are allowed: genotypic mutations and phenotypic
switches.

(iii) Phenotypic changes can be affected by the environment which is not modeled determin-
istically as in [29] but as particles undergoing the random dynamics as well.

(iv) For modeling the therapy effect, a predator-prey mechanism (between cancer cells and
immune cells) is included.

(v) A birth-reducing competition term is included which takes into account that competition
may also affect the reproduction behavior.

In general, these class of stochastic models describe the evolution of interacting cell popula-
tions, in which the relevant events for each individual (e.g. birth and death) occur randomly.
It is well known that in the limit of large cell-populations, these models are approximated by
deterministic kinetic rate models (cf. Theorem III.2.1), which are widely used in the modeling
of cell populations. However, these approximations are inaccurate and fail to account for
important phenomena if the numbers of individuals in some sub-populations become small.
In such situations, random fluctuation may become highly significant and completely alter the
long-term behavior of the system. For example, in a phase of remission during therapy, the
cancer and the T-cell populations drop to a low level and may die out due to fluctuations. A
number of (mostly deterministic) models have been proposed that describe the development
of a tumor under treatment, focusing on different aspects. For example, a deterministic model
for ACT therapy is presented in [50]. Stochastic approaches were used to understand certain
aspects of tumor development, for example rate models [69] or multi-type branching processes;
see the book by Durrett [49] or [20, 3, 48]. To our knowledge, however, it is a novel feature of
our models to describe the coevolution of immune- and tumor cells taking into account both
interactions and phenotypic plasticity. Our models can help to understanding the interplay
of therapy and resistance, in particular in the case of immunotherapy, and may be used to
predict successful therapy protocols.

Besides being able to describe the experiments and making predictions about therapy pro-
tocols, we are also interested in more theoretical aspects which arise by including switching
rates in the standard model, more precisely, in the interplay between the fast phenotypical
changes by switching and the slow genotypical changes by mutation. In this context, the
typical questions of adaptive dynamics arise again. E.g., can we describe the evolution of the
system by successive mutant invasions, or rather, under which conditions does the microscopic
process which incorporates fast phenotypical switches converge in the limit of a large popula-
tion size in combination with only rare mutational events to a Markov jump process and how
does this jump process look like. In fact, we prove by expanding the techniques of [30] that the
microscopic process converges in this limit on the evolutionary time scale to a generalization
of the Polymorphic Evolution Sequences (PES) introduced in [30] (cf. Theorem III.4.3). The
main difference in the proof is that we have to couple the process with multi-type branching
processes instead of normal branching processes, which leads also to a different definition of
invasion fitness in this setting.

The remainder of this chapter is structured as follows. In Section III.2 we define the
model and state the convergence towards a quadratic system of ODEs in the large population
limit. In Section III.3, we present an example which qualitatively models the therapy carried
out in Landsberg et al. [92]. We point out a phenomenon of relapse caused by random
fluctuations. In Section III.4 we consider the case of rare mutations. We start with giving
a pathwise definition of the individual-based model which is only extended by phenotypic
plasticity (cf. Subsection III.4.1). In Subsection III.4.2 we state and prove the convergence of
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this process to the Polymorphic Evolution Sequences with phenotypic Plasticity (PESP). In
Subsection III.4.3, we study the interplay of mutation and therapy. We consider birth-reducing
competition between tumor cells and show that the appearance of a mutant genotype may be
enhanced under treatment.

III.2 The microscopic model

Let us introduce the model we analyze. Since we want to be able to model the evolution of
the tumor during immunotherapy, we consider a tumor system that is composed of a finite
number of cancer cells, T-cells, and cytokines, where each cancer cell is characterized by a
tuple consisting of genotype and phenotype and each T-cell is characterized by its specificity.
More precisely, we introduce a general model which contains three types of actors:

Cancer cells: each cell is characterized by a genotype and a phenotype. These cells can
divide (with or without mutation), die (due to age, competition or therapy), and switch
their phenotype. We assume that the switch is inherited by the descendants of the
switched cells.

T-cells: each cell can divide, die, and produce cytokines.

Cytokines: each messenger can vanish and influence the switching of cancer cells.

Thus, the trait space, X , of the population is in this chapter a finite set of the form

X = G × P ⊍Z ⊍W = {g1, . . . , g∣G∣} × {p1, . . . , p∣P∣} ⊍ {z1, . . . , z∣Z∣} ⊍ {w1, . . . ,w∣W∣} (III.2.1)

where G is the set of cancer genotypes, P is the set of cancer phenotypes, Z is the set of T-cell
types, and W the set cytokine types.

We write ∣ ⋅ ∣ for the number of elements of a set and ⊍ for disjoint unions of sets. The
relation between G and P is encoded in the switch kernels (see below). They specify which
phenotypes are expressed by a given genotype and influence the proportions of the different
phenotypes in a (dynamic) environment.

In the following, we introduce the biological parameters (separately for each type of actors,
i.e G × P, Z, and W) which determine the dynamics of the population:

K ∈ N is a parameter scaling the population size and the resources. It is usually called
carrying-capacity of the environment.

Cancer cells: For any (g, p) ∈ G × P,
b(p) ∈ R+ is the rate of birth of a cancer cell with phenotype p.

d(p) ∈ R+ is the rate of natural death of a cancer cell with phenotype p.

c(p, p̃)K−1 ∈ R+ and cb(p, p̃)K−1 ∈ R+ are the competition kernels which model the com-
petitive pressure felt by a cancer cell with phenotype p from one with phenotype p̃.

The first term results in a higher death rate and the second term, called birth-reducing
competition, in a lower birth rate (it inhibits cell division). If the total birth rate is
already at a level zero, then cb(p, p̃)K−1 ∈ R+ acts as an additional death rate.

t(z, p)K−1 ∈ R+ is the therapy kernel which models the effect of immunotherapy. It is a
death rate of a cancer cell of phenotype p due to the presence of a T-cell of type z.

In addition, `killw (z, p) ∈ N0 cytokines of type w are deterministically produced at each
killing event (see also below).
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sg(p, p̃) ∈ R+ and sgw(p, p̃)K−1 ∈ R+ are the natural and cytokine-induced switch kernels
which model the switching from phenotype p to p̃ of cancer cell with genotype g.

uKm(g) is the probability that a mutation occurs at birth from a cancer cell with genotype
g, where uK ∈ [0,1] is a scaling parameter.

M((g, p), (g̃, p̃)) is the mutation law, i.e. if a mutant is born from a cancer cell with trait
(g, p), then the mutant’s trait is (g̃, p̃) with probability M((g, p), (g̃, p̃)). By definition
M((g, p), (g, p)) = 0 and ∑g̃,p̃M((g, p), (g̃, p̃)) = 1.

T-cells: For any z ∈ Z,
b(z) ∈ R+ is the rate of birth of a T-cell with type z.

d(z) ∈ R+ is the rate of natural death of a T-cell with type z.

b(z, p)K−1 ∈ R+ is the reproduction kernel. It models the rate of reproduction of a T-cell
with trait z in presence of a cancer cell of phenotype p. In addition, `prodw (z, p) ∈ N
cytokines of type w are deterministically produced at each reproduction event.

Cytokines: For any w ∈ W,

d(w) ∈ R+ is the natural death rate of a cytokines with type z.

`kill
w (z, p) ∈ N0 and `prod

w (z, p) ∈ N are the amounts of cytokines of type w, which are deter-
ministically produced at each killing respectively reproduction event.

Note that the cytokines are produced when a cancer cell dies due to therapy or a T-cell
reproduces and have no own birth rate.

At any time t, we consider a finite number Nt of individuals, each of them having a trait
value xi(t) ∈ X . As in the last chapter, we represent the population state at time t by the
rescaled point measure on X , which depends on K

νKt = 1

K

Nt

∑
i=1

δxi(t). (III.2.2)

Let νKt (x) = νKt ({x}) for x ∈ X and νKt (p) = ∑g∈G νKt (g, p) for p ∈ P. (Note that we used
in the last chapter the notation ⟨νKt ,1{x}⟩ for νKt ({x})). Furthermore, let ⌊⋅⌋± denote the
positive/negative part of the argument. With this notation, a cancer cell with trait (g, p) in
the population νKt reproduces an offspring with rate

⌊b(p) − ∑
p̃∈P

cb(p, p̃)νKt (p̃)⌋
+
, (III.2.3)

which is with probability uKm(p) a mutant. It dies due to age or competition or therapy
with rate

d(p) + ∑
p̃∈P

c(p̃, p)νKt (p̃) + ⌊b(p) − ∑
p̃∈P

cb(p, p̃)νKt (p̃)⌋
−
+ ∑
z∈Z

t(z, p)νKt (z) (III.2.4)

(if the death is caused by a T-cell of type z, then `killw (z, p) cytokines of type w appear) and
it switches its phenotype with rate

∑
p̃∈P

(sg(p, p̃) + ∑
w∈W

sgw(p, p̃)νKt (w)). (III.2.5)
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A T-cell with trait z in the population νKt reproduces an offspring with rate

b(z) + ∑
p∈P

b(z, p)νKt (p) (III.2.6)

If the birth event is caused due to the presence of cancer cells, then `prodw (z, p) cytokines of
type w appear. T-cells and cytokines die with their natural death rate independent of the
current population state. Note that all other rates depend on the current population state.

Thus, for each K ≥ 1 the population process, (νKt )t≥0, is a Markov process with state
space MK(X), the set of finite point measures on X rescaled by K as in the last chapter.
The infinitesimal generator of the process can be found in the appendix of this chapter. (For
the explicit construction of this Markov process in terms of independent Poisson processes or
Poisson point measures, see [55] Chap. 11 or [59].)

The figure below (Fig. III.2) provides a schematic representation of the transitions for a
population with trait space X = {(g, p), (g, p̃)} ⊍ {z} ⊍ {w}, which constitute our model for
the ACT therapy described in Landsberg et al. [92], see Subsection III.3.

Figure III.2: Dynamics of the process (without mutations) modeling the experiments described in
[92]. Here, p denotes differentiated melanoma cells, p̃ dedifferentiated melanoma cells, z T-cells, and
w TNF-α. At each arrow the rate for occurrence of the corresponding event is indicated (e.g. birth is
illustrated with two arrowheads and death with an arrow directed to † ).

Remark 10. (i) Since X is finite in this chapter we could also represent the population
state as an ∣X ∣-dimensional vector. More precisely, let E be a subset of R∣X ∣ and EK ≡
E ∪ {n/K ∶ n ∈ N0}, then for fixed K ≥ 1, the population process can be constructed as
Markov process with state space EK by using independent standard Poisson processes
(cf. [55] Chap. 11).

(ii) For an extension to a non finite trait space, e.g. if G,P,Z, andW are compact subsets of
Rk for some k ≥ 1, the modeling of switching the phenotype and production of cytokines
have to be changed in the following way: Each cancer cell with trait (g, p) ∈ G,P has
instead of the natural switch kernel sg(p, p̃) a natural switch rate ŝ((g, p)) combined with
a probability measure S(g,p)(dp̃) on P and instead of the cytokine-induced switch kernel
sgw(p, p̃)K−1 a cytokine-induced switch kernel ŝ((g, p),w)K−1 combined with a family
probability measure {S(w,(g,p))(dp̃)}w∈W on P. Furthermore, the numbers `killw (z, p) have
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to be changed in a family {`killz,(g,p)(dw)}z∈Z of finite point measures on W. Similar,
for each T-cell of type z ∈ Z, the numbers `prodw (z, p) have to be changed in a family
{`prodz,p (dw)}p∈P of finite point measures on W. The infinitesimal generator belonging to
this process is also given in the appendix.

III.2.1 The Law of Large Numbers

Suppose the mutation rate is fixed, i.e. uK ≡ 1, and the initial conditions converge, then the
sequence of rescaled processes (νK)K≥1 converges almost surely as K → ∞ to the solution
of a quadratic system of ODEs, as stated below. In fact, it follows directly from the law of
large numbers for density depending processes of Ethier and Kurtz (cf. [55] Chap. 11). The
deterministic system, which provides (partial) information on the stochastic system, consists
of a logistic part, a predator-prey relation between T-cells and cancer cells, a mutation and a
switch part. Theorem II.3.1 is the corresponding result for the model of the last chapter.

Theorem III.2.1. Fix uK ≡ 1. Suppose that the initial conditions converge almost surely to
a deterministic limit, i.e. limK→∞ ν

K
0 = ν0, where ν0 is a finite measure on X . Then, for every

T > 0, exists a deterministic function ξ ∈ C([0, T ],MF (X)) such that

lim
K→∞

sup
t∈[0,T ]

∣∣νKt − ξt∣∣TV = 0 a.s., (III.2.7)

where ∣∣ . ∣∣TV is the total variation norm. Moreover, let n be the unique solution to the follow-
ing quadratic dynamical system:

For all (g, p) ∈ G × P,

ṅ(g,p)(t) = n(g,p)(t) ((1 −m(g)) ⌊b(p) −∑(g̃,p̃) cb(p, p̃)n(g̃,p̃)(t)⌋+
− d(p)

−∑(g̃,p̃) c(p, p̃)n(g̃,p̃)(t) − ⌊b(p) −∑(g̃,p̃) cb(p, p̃)n(g̃,p̃)(t)⌋−
−∑z t(z, p)nz(t) −∑p̃ (sg(p, p̃) +∑ws

g
w(p, p̃)nw(t)) )

+∑p̃ n(g,p̃)(t) (sg(p̃, p) +∑ws
g
w(p̃, p)nw(t))

+∑(g̃,p̃) n(g̃,p̃)(t)m(g̃)⌊b(p̃) −∑(g′,p′) cb(p̃, p′)n(g′,p′)(t)⌋+
M((g̃, p̃), (g, p)),

for all z ∈ Z,

ṅz(t) = nz(t) (b(z) − d(z) +∑(g,p) b(z, p)n(g,p)(t)), (III.2.8)

for all w ∈ W,

ṅw(t) = − nw(t)d(w) +∑(g,p) n(g,p)(t)(∑z (`killw (z, p) t(z, p) + `prodw (z, p) b(z, p))nz(t)),

and with initial condition: nx(0) = ν0(x) for all x ∈ X .

Then, ξ is given as ξt = ∑x∈X nx(t)δx.

Proof. This result follows from Theorem 2.1 in Chapter 11 of [55], since we can construct the
process as described in Remark 10 (i). For more details see [97].

It is an important feature of stochastic models opposed to deterministic ones that popula-
tions can die out. There are two main reasons for the extinction of a population for finite K:
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first, the trajectory of the population size is transient and passes during therapy typically
through a low minimum. In this case, random fluctuations can lead to extinction before the
population reaches its equilibrium. Second, fluctuations around a finite equilibrium cause
extinction of a population after a long enough time. The second case happens at much longer
times scales than the first one. (We will see later that time of exit from an attractive domain
is of order exp(V K) for some constant V > 0 as in the model before (cf. Thm II.3.7).) In both
cases, the value of K plays a crucial role, since it determines the amplitude of the fluctuations
and thus the probability of extinction. The relevant mutations in the setup of cancer therapy
are driver mutations and appear only rarely. In this case, more precisely, when the mutation
probabilities, uKm(g), tend to zero as K → ∞, mutations are invisible in the deterministic
limit. Due to the presence of the switches the analysis of the system is difficult. Unlike in
the last chapter, it is not a generalized Lotka-Volterra system of the form ṅ = nf(n), where f
is linear in n. In Section III.4 we show how to deal mathematically with rare mutations and
their interactions with fast phenotypic switches or therapy.

III.3 Immunotherapy: Relapse due to random fluctuations

In this section we present an example which qualitatively models the experiment of Landsberg
et al. [92], where melanoma escape ACT therapy by phenotypic plasticity in presence of TNF-
α. Mutations and birth-reduction competition are not considered (i.e. cb ≡ 0 and uK ≡ 0),
since this was not investigated in the experiments. Let us denote by p the differentiated cancer
cells, by p̃ the dedifferentiated cancer cells, by z the T-cells of the experiments which can only
recognize (are specific for) the differentiated cancer cells p, and by w the TNF-α proteins. We
start with describing the deterministic system and denote by n the solution to the following
system of four differential equations:

ṅp = np(b(p) − d(p) − c(p, p)np− c(p, p̃)np̃− s(p, p̃) − sw(p, p̃)nw− t(z, p)nz) + s(p̃, p)np̃
ṅp̃ = np̃(b(p̃) − d(p̃) − c(p̃, p̃)np̃ − c(p̃, p)np − s(p̃, p)) + s(p, p̃)np + sw(p, p̃)nwnp
ṅz = nz(b(z, p)np − d(z))
ṅw = −nwd(w) + (`killw (z, p) t(z, p) + `prodw (z, p) b(z, p))npnz. (III.3.1)

The solution to the deterministic system (III.3.1) with parameters Table (III.1) can be seen
on Figure III.3.
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Figure III.3: Solutions to the deterministic system (III.3.1) with parameters (III.1). In A, with
immunotherapy: With initial conditions (np,np̃,nz,nw)(0) = (0.5,0,0.02,0) the system is attracted
to the fixed point Ppp̃zw. In B, without immunotherapy: With initial conditions (np,np̃,nz,nw)(0) =
(0.5,0,0,0) the system is attracted to the fixed point Ppp̃00.
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There are three fixed points in this example: P0000 where all populations sizes are zero,
Ppp̃00 where the T-cells and TNF-α are absent and both melanoma populations are present,
and Ppp̃zw where all populations are present. Ppp̃zw is the only stable fixed point. (The
deterministic system is attracted to this fixed point, see Figure III.3 A.) Ppp̃00 is stable in the
invariant subspace {nz = 0} (i.e. if the T-cell population is zero, see Figures III.3 B and III.4
A) and P0000 is stable in the invariant subspace {np = 0,np̃ = 0} (i.e. if the tumor is eradicated,
see Figure III.4 B). To highlight the qualitative features of the system, we choose parameters
such that the minimum of the T-cell population during remission is low, and such that the
equilibrium value of melanoma of type p in presence of T-cells is low, whereas equilibrium
values of both melanoma types in absence of T-cells are high. For initial conditions such
that the number of differentiated melanoma cells, np(0), is large, the number of injected T-
cells, nz(0), is small, and the numbers of dedifferentiated melanoma cells, np̃(0), and TNF-α
molecules, nw(0), are small or equal to zero, the deterministic system is attracted to Ppp̃zw:
the T-cell population, nz, increases in presence of its target p, TNF-α is secreted, and the
population of differentiated melanoma cells, np, shrinks due to killing and TNF-α induced
switching, whereas the population of dedifferentiated melanoma cells, np̃, grows.

A B
0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.02

0.04

0.06

0.08

0.10

nz

n w

Figure III.4: Vector fields of the deterministic system. The black dots show Ppp̃zw, the blue dots
Ppp̃00, and the red dots P0000. (A) For the invariant subspace {nz = 0}. (B) For the invariant subspace
{np = 0,np̃ = 0}.

For the stochastic system, several types of behavior can occur with certain probabilities:
either the trajectory stays close to that of the deterministic system and the system reaches a
neighborhood of the fixed point Ppp̃zw (Fig. III.5 A) or the T-cell population, νK(z), dies out
and the system reaches a neighborhood of Ppp̃00 (Fig. III.5 B) or the tumor is eradicated, i.e
νK(p) and νK(p̃) die out, and the system reaches P0000 (Fig. III.5 C). In the second case the
TNF-α population, νK(w), becomes extinct shortly after the extinction of the T-cells, νK(z),
and the population of differentiated melanoma cells, νK(p), can grow again. Moreover, TNF-
α inducing the switch from p to p̃ vanishes and we observe a relapse which consists mainly of
differentiated cells.This case was often observed in the experiments. Depending on the choice
of parameters (in particular switching, therapy or cross-competition), a variety of different
behavior is possible.

A therapy can only be called successful if the whole tumor is eradicated or kept small for
a long time. Thus, a natural idea to obtain this is to inject two types of T-cells in future
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A B

C

Figure III.5: Simulations of the evolution of melanoma under T-cell therapy for parameters (III.1),
initial conditions νK0 = 0.5δp+0.02δz and K = 500. The graphs show the number of individuals divided
by K versus time. Three scenarios are possible for therapy with T-cells of one specificity: (A) T-cells
z survive and the system is attracted to Ppp̃zw (B) T-cells z die out and the system is attracted to
Ppp̃00 (C) the tumor is eradicated and the system reaches P0000.

therapies as suggested in [92]. To model this scenario, one needs to add T-cells attacking
the dedifferentiated cells as new actors to the setting described above. The corresponding
deterministic system contains one extra predator-prey term. The introduction of a second
T-cell type which recognizes and kills only the dedifferentiated cancer cells (cells with trait
p̃) leads to a more complex system with two new fixed points. One of these, namely the
one where all populations are non-zero, is the new stable fixed point of the system. Starting
from our choice of initial conditions, the deterministic system converges to Ppp̃zpzp̃w, but the
stochastic system can hit one of the invariant hyperplanes due to fluctuations similar as in
the one T-cell case. The scenario with two type of T-cells is studied in detail in [9] and [97].

b(p) = 0.5 d(p) = 0.3 c(p, p) = 0.175 c(p, p̃) = 0.1 s(p, p̃) = 0.005 sw(p, p̃) = 0.4

b(p̃) = 0.5 d(p̃) = 0.3 c(p̃, p) = 0.1 c(p̃, p̃) = 0.2 s(p̃, p) = 0.05 -
b(z, p) = 5 d(z) = 0.35 t(z, p) = 15 - - -

- d(w) = 0.3 `kill
w (z, p) = 0 `prod

w (z, p) = 1 - -

Table III.1: Parameters of the Figures III.3, III.4 and III.5

The parameters of this section are chosen ad hoc to highlight the influence of randomness
and the possible behavior of the system. However, it can be shown that our models are capable
to reproduce the experimental data of Landsberg et al. [92] quantitatively, with biological
reasonable parameters. For more details see either [9] or [97].
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Figure III.6: Solution of the deterministic system for two T-cell typewith initial conditions
(np,np̃,nzp ,nzp̃ ,nw)(0) = (0.5 , 0 , 0.02 , 0.02 , 0). The system is attracted to the new fixed point (cf.
[9] and [97]).

III.4 The interplay between rare mutations and fast switches

In this section we study more theoretical aspects which arise by including switching rates
in the standard model. More precisely, we are interested in the interplay between the fast
phenotypical changes by switching and the slow genotypical changes by mutation.

The model we defined in Section III.2 can be seen as a generalization of one of the stan-
dard individual-based models of adaptive dynamics, usually called BPDL-Process, which was
introduced in publications of Bolker, Pacala, Dieckmann, and Law [15, 16, 43]. (See Section
I.1 for more background information.) The simultaneous limits of large populations (K →∞)
and rare mutations (uK → 0), under conditions which separate the ecological and the evolu-
tionary effects, were studied mathematically rigorous by Champagnat and Méléard [25, 30].
At this scale the system has time to equilibrate between two mutational events. On the mu-
tation time scale (evolutionary time scale) the population can be described as a Markov jump
process along a sequence of equilibria of, in general, polymorphic populations. An important
(and in some sense generic) special case occurs when the mutant population fixates while the
resident population dies out in each step. The corresponding jump process is called the Trait
Substitution Sequence (TSS) in adaptive dynamics. Champagnat [25] derived criteria in the
context of individual-based models under which convergence to the TSS can be proven (cf.
Thm. II.3.7). The general process is called the Polymorphic Evolution Sequence (PES). It is
described partly implicitly in [30], as it involves the identification of attractive fixed points in
a sequence of Lotka-Volterra equations that are in general not tractable analytically. Costa
et al. study an extension of the model with a predator-prey relation [33]. The predator-prey
kernel is an explicit function of parameters describing defense strategies for preys, together
with the ability of predators to circumvent the defense mechanism. In the simultaneous limits
of large populations and rare mutations convergence to a Markov jump process that gener-
alizes the PES is derived. Furthermore, by taking the subsequent limit of small mutational
effects (σ → 0), convergence to an extended version of the canonical equation of adaptive
dynamics (CEAD) is obtained in the case of monomorphic prey and predator populations. In
[29], Champagnat et al. construct a stochastic multi-resource chemostat model (based on the
standard one) which couples deterministic and stochastic dynamics. In the simultaneous lim-
its of large populations and rare mutations, convergence to an extended PES is observed for
this process, too. Collet et al. develop and analyze an individual-based model of the adaptive
dynamics for sexual reproducing populations, i.e. for Mendelian diploids [31]. By taking the
simultaneous limits of large populations and rare mutations convergence to a Markov jump
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process generalizing the TSS is derived (cf. also [18]) and by the taking the subsequent limit
of small mutational effects a canonical equation for sexual reproducing population is obtain.

The goal of this section is to extend the techniques of adaptive dynamics used in the articles
mentioned above to prove that our process (ignoring therapy and birth-reducing competition)
converges, in the simultaneous limits of large populations and rare mutations, also to an
extended PES. Furthermore, we discuss in Subsection III.4.3 the relation between therapy
and mutations.

III.4.1 Explicit construction of the population process with phenotypic
plasticity

To derive a generalization of the PES in the presence of fast switches in the phenotypic
space, space in the absence of therapy (i.e. no predator-prey term present), we start with the
definition and construction of the process we want to analyze. Since T-cells are not present,
the trait space X always equals G × P in this section, except in Subsection III.4.3.

For each K ≥ 1, the population process νK is a MK(X)-valued Markov processes with
infinitesimal generator LK , defined, for any bounded measurable function φ ∶ MK(X) → R
and for all µK ∈ MK(X) by

LKφ(µK) (III.4.1)

= ∑
(g,p)∈G×P

(φ (µK + δ(g,p)
K ) − φ(µK)) (1 − uKm(g))b(p)KµK(g, p)

+ ∑
(g,p)∈G×P

∑
(g̃,p̃)∈G×P

(φ (µK + δ(g̃,p̃)
K ) − φ(µK))uKm(g)M((g, p), (g̃, p̃))b(p)KµK(g, p)

+ ∑
(g,p)∈G×P

(φ (µK − δ(g,p)
K ) − φ(µK)) (d(p) + ∑

p̃∈P
c(p, p̃)µK(p̃))KµK(g, p)

+ ∑
(g,p)∈G×P

∑
p̃∈P

(φ (µK + δ(g,p̃)
K − δ(g,p)

K ) − φ(µK)) sg(p, p̃)KµK(g, p).

The biological parameters (m(.), b(.), etc.) are defined in Section III.2. The first and second
terms describe the births (without and with mutation), the third term describes the deaths
due to age or competition, and the last term describes the phenotypic plasticity. Note that
the first, second, and last terms are linear (in µK ), but the third term is non-linear.The only
difference to the standard model is the presence of the fourth term that correspond to the
phenotypic switches. However, this term changes the dynamics sustainably. The system of
differential equations which arises in the large population limit without mutation (uK = 0) is
not a generalized Lotka-Volterra system anymore, i.e. has not the form ṅ = nf(n), where f is
linear in n.

Since we want to approximate the process later by multi-type branching processes, it is
useful to give a pathwise description of νK in terms of Poisson point measures (cf. [59]). Let
us recall this construction. Let (Ω,F ,P) be an abstract probability space. On this space, we
define the following independent random elements:

(i) a convergent sequence (νK0 )K≥1 ofMK(X)-valued random measures (the random initial
population),

(ii) ∣X ∣ independent Poisson point measures (Nbirth
(g,p) (ds, di, dθ) )(g,p)∈X on [0,∞) × N × R+

with intensity measure ds∑n≥0 δn(di)dθ,
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(iii) ∣X ∣ independent Poisson point measures (Nmut.
(g,p)(ds, di, dθ, dx) )(g,p)∈X on [0,∞) × N ×

R+ × X with intensity measure ds∑n≥0 δn(di)dθ∑x̃∈X δx̃(dx).

(iv) ∣X ∣ independent Poisson point measures (Ndeath
(g,p) (ds, di, dθ) )(g,p)∈X on [0,∞) ×N ×R+

with intensity measure ds∑n≥0 δn(di)dθ,

(v) ∣X ∣ independent Poisson point measures (N switch
(g,p) (ds, di, dθ, dp) )(g,p)∈X on [0,∞) ×N ×

R+ × P with intensity measure ds∑n≥0 δn(di)dθ∑p̃∈P δp̃(dp),

Then, νK is given by the following equation

νKt = νK0 + ∑
(g,p)∈X

∫
t

0
∫
N0
∫
R+
1{i≤KνKs−(g,p), θ≤b(p)(1−uKm(g))}

1
K δ(g,p)N

birth
(g,p) (ds, di, dθ) (III.4.2)

+ ∑
(g,p)∈X

∫
t

0
∫
N0
∫
R+
∫X

1{i≤KνKs−(g,p), θ≤b(p)uKm(g)M((g,p),x)}
1
K δxN

mut.
(g,p)(ds, di, dθ, dx)

− ∑
(g,p)∈X

∫
t

0
∫
N0
∫
R+
1{i≤KνKs−(g,p), θ≤d(p)+∑p̃∈P c(p,p̃)νKs−(p̃)}

1
K δ(g,p)N

death
(g,p) (ds, di, dθ)

+ ∑
(g,p)∈X

∫
t

0
∫
N0
∫
R+
∫P
1{i≤KνKs−(g,p), θ≤sg(p,p̃)}

1
K

(δ(g,p̃) − δ(g,p))N switch
(g,p) (ds, di, dθ, dp̃).

Remark 11. This construction uses that X is a finite set and is in some sense closer to the
definition given in [55] (p. 455). For non finite trait spaces the process can be constructed as
in [59] or Section II.5.

III.4.2 The generalized Polymorphic Evolution Sequence.

In this subsection we consider the case of rare mutations in large populations on a time scale
such that a population reaches equilibrium before a new mutant appears:

∀V > 0, exp(−V K) ≪ uK ≪ 1

K lnK
, as K →∞ (III.4.3)

and prove that the individual-based process with phenotypic plasticity convergences to a gen-
eralization of the PES. Let us start with describing the techniques of adaptive dynamics used
in [30] to prove that the standard individual-based process (without phenotypic plasticity)
convergences to the PES.

The key element in the proof of the convergence to the PES used in Champagnat and
Méléard [30] is a precise analysis of how a mutant population fixates, which we now describe
(cf. also Thm. II.3.7). Note that a crucial assumption in [30] is that the large population
limit is a competitive Lotka-Volterra system with a unique stable fixed point n̄. Thus, the
main task is to study the invasion of a mutant that has just appeared in a population close
to equilibrium. The invasion can be divided into three steps:

First, as long as the mutant population size is smaller than Kε, for a fixed small ε > 0, the
resident population stays close to its equilibrium. Therefore, the mutant population can be
approximated by a branching process. Second, once the mutant population reaches the level
Kε, the whole system is close to the solution of the corresponding deterministic system (this
is a consequence of Thm. II.3.1) and reaches an ε-neighborhood of n̄ in finite time. Third,
the subpopulations which have a zero coordinate in n̄ can be approximated by subcritical
branching processes.
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The durations of the first and third steps are proportional to ln(K), whereas that of the
second step is independent of K. Thus, the second inequality in (III.4.3) guarantees that,
with high probability, the three steps of invasion are completed before a new mutation occurs.

In the first invasion step the invasion fitness of a mutant plays a crucial role. Given a
population in a stable equilibrium that populates a certain set of traits, say M ⊂ X , the
invasion fitness f(x,M) is the growth rate of a population consisting of a single individual
with trait x /∈ M in the presence of the equilibrium population n̄ on M . In the case of the
standard model, it is given by

f(x,M) = b(x) − d(x) − ∑
y∈M

c(x, y)n̄y (III.4.4)

(cf. Def. II.3.5). Positive f(x,M) implies that a mutant appearing with trait x from the equi-
librium population on M has a positive probability (uniformly in K) to grow to a population
of size of order K; negative invasion fitness implies that such a mutant population will die
out with probability tending to one (as K → ∞) before it can reach a size of order K. The
reason for this is that the branching process (birth-death process) which approximates the
mutant population in Champagnat and Méléard’s proof is supercritical if f(x,M) is positive
and subcritical if f(x,M) is negative.

In order to describe the dynamics of a phenotypic heterogeneous population on the evolu-
tionary time scale, we have to generalize (among other things) the notion of invasion fitness
to the case where fast phenotypic switches are present. The issue here is to analyze the prob-
ability that a mutant with a new genotype will fixate. Since switches between phenotypes
associated to the same genotype happen at times of order one, the growth rate of the initial
mutant phenotype does not determine the probability of fixation. See [31] for a similar issue
in a simple sexual reproducing model. In the proof of Theorem III.4.3, we will see that we can
approximate the mutant’s dynamics by a multi-type branching process until it is macroscopic,
i.e. until the density reaches the level Kε. It is well known that a continuous time multi-type
branching process is supercritical if and only if the largest eigenvalue of the infinitesimal gen-
erator of its mean matrix is larger than zero (cf. [6, 112]). Therefore, this eigenvalue will be
an appropriate generalization of the invasion fitness in our case.

The competitive Lotka-Volterra system with phenotypic plasticity.

Let us begin with a recurrence assumption about the phenotypic plasticity. For all g ∈ G, let
Xg be the Markov chain, which describes the phenotypic plasticity, i.e. a stationary Markov
chain with state space P and with transition probability

P[Xg
i = p̃ ∣Xg

i−1 = p] =
sg(p, p̃)

∑p̂∈P sg(p, p̂)
, if ∑

p̂∈P
sg(p, p̂) > 0 (III.4.5)

and
P[Xg

i = p ∣Xg
i−1 = p] = 1, if ∑

p̂∈P
sg(p, p̂) = 0. (III.4.6)

Then, we assume the following:

Assumption 6. For all g ∈ G, all communication classes of Xg are recurrent.

In other words, Xg can be decomposed in finitely many irreducible Markov chains, which
are recurrent. For every (g, p) ∈ G × P, let us denote the communication class associated
with (g, p) by [p]g. This is the communication class of Xg which contains p, i.e. p can be
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Figure III.7: Example of a Markov chain Xg. Here, P = {p1, . . . , p10} and Xg has four communi-
cation classes: {p1, p2, p3, p4},{p5, p6, p7},{p8},{p9, p10}. The class {p8} has only one element, i.e.
∑10
i=1 s

g(p8, pi) = 0 in this example.

seen as a representative of the class, which has an equivalence relation depending on g. Since
we have seen in the experiments that the phenotypic change is reversible, this assumption
is reasonable. It ensures that if we start with a large enough population consisting only of
individuals carrying the same trait (g, p), then after a short time all phenotypes of [p]g will
be present in the population, but non of the other classes.

Next, let us have a look at the large population limit of the individual-based process
without mutation (uK ≡ 0). Fix d traits in the population: (g,p) = ((g1, p1), . . . , (gd, pd)) ∈
(G × P)d, suppose that the support of the initial conditions is given by these traits and that
the sequence of the initial conditions converges almost surely to a deterministic limit, i.e.

lim
K→∞

νK0 =
d

∑
i=1

ni(0)δ(gi,pi) a.s., where ni(0) > 0 for all i ∈ {1 . . . d}. (III.4.7)

Then, compare with Theorem III.2.1, for every T > 0, the sequences of processes νK ∈
D([0, T ],MK(X)) generated by LK with initial state νK0 converges almost surely to a de-
terministic function ξ ∈ C([0, T ],M(X)). Moreover, let X(g,p) be the set of traits which can
be reached by switching, i.e.

X(g,p) ≡
d

⋃
i=1

{gi} × [pi]gi . (III.4.8)

With this notation, ξ is given by ξ(t) = ∑x∈X(g,p) nx(t)δx, where n is the solution of the
competitive Lotka-Volterra system with phenotypic plasticity defined below. (The initial
condition of n is given by ni(0) for all i ∈ {1 . . . d}.)

Definition III.4.1. For any (g,p) ∈ (G × P)d, we denote by LV S(d, (g,p)) the competitive
Lotka-Volterra system with phenotypic plasticity. This is an ∣X(g,p)∣-dimensional system of
ODEs defined for all (g, p) ∈ X(g,p) by

ṅ(g,p) = n(g,p)(b(p)−d(p)− ∑
(g̃,p̃)∈X(g,p)

c(p, p̃)n(g̃,p̃)− ∑
p̃∈[p]g

sg(p, p̃))+ ∑
p̃∈[p]g

sg(p̃, p)n(g,p̃). (III.4.9)

We choose the name competitive Lotka-Volterra system with phenotypic plasticity to
emphasize that we add phenotypic plasticity (induced by switching rates) in the usual com-
petitive Lotka-Volterra system. However, the system LV S is not a system of generalized
Lotka-Volterra equations, which could be misleading by using this name.

Next, we introduce the notation of coexisting traits in this context (cf. [30] and Definition
II.3.4 for the standard model).
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Definition III.4.2. For any d ≥ 2, we say that the distinct traits (g1, p1), . . . , (gd, pd) coexist
if the system LV S(d, (g,p)) admits a unique non-trivial equilibrium n̄(g,p) ∈ (0,∞)∣X(g,p)∣

which is locally strictly stable meaning that all eigenvalues of the Jacobian matrix of the
system LV S(d, (g,p)) at n̄(g,p) have strictly negative real parts.

Note that if (g1, p1), . . . , (gd, pd) coexist, then all traits of X(g,p) coexist and the equilib-
rium n̄(g,p) is asymptotically stable. We will prove later that if the traits (g1, p1), . . . , (gd, pd)
coexist, then the invasion probability of a mutant trait (g̃, p̃) which appears in the resident
population X(g,p) close to n̄(g,p) is given by the function

1 − q(g,p)(g̃, p̃), (III.4.10)

where q(g,p)(g̃, p̃) is given as follows: Let us denote the elements of [p̃]g̃ by p̃ = p̃1, . . . , p̃∣[p̃]g̃ ∣.
Then, q(g,p)(g̃, p̃) is the first component of the smallest root of

u(y) = 0, (III.4.11)

where u is a map from R∣[p̃]g̃ ∣ to R∣[p̃]g̃ ∣ defined for all i ∈ {1, . . . , ∣[p̃]g̃ ∣ by

ui(y) ≡ b(p̃i) y2
i +

∣[p̃]g̃ ∣
∑
j=1

sg(p̃i, p̃j) yj + d(p̃i) + ∑
(g,p)∈X(g,p)

c(p̃i, p)n̄(g,p)(g,p) (III.4.12)

− (b(p̃i) +
∣[p̃]g̃ ∣
∑
j=1

sg(p̃i, p̃j) + d(p̃i) + ∑
(g,p)∈X(g,p)

c(p̃i, p)n̄(g,p)(g,p)) yi.

In fact, (1−q(g,p)(g̃, p̃)) is the probability that a single mutant survives in a resident population
with traits X(g,p). We obtain this by approximating the mutant population with multi-type
branching processes (cf. proof of Theorem III.4.6). The function (1 − q(g,p)(g̃, p̃)) plays the
same role as the function [f(y;x)]+/b(y) in the standard case (cf. Theorem II.3.7).

To obtain that the process jumps on the evolutionary time scale from one equilibrium to
the next, we need an assumption to prevent cycles, unstable equilibria or chaotic dynamics
in the deterministic system (cf. [30] Ass. B).

Assumption 7. For any given traits (g1, p1), . . . , (gd, pd) ∈ G × P that coexist and for any
mutant trait (g̃, p̃) ∈ X ∖ X(g,p) such that 1 − q(g,p)(g̃, p̃) > 0, there exists a neighborhood
U ⊂ R∣X(g,p)∣+∣[p̃]g̃ ∣ of (n̄(g,p),0, . . . ,0) such that all solutions of LV S(d + 1, ((g,p), (g̃, p̃)))
with initial condition in U ∩ (0,∞)∣X(g,p)∣+∣[p̃]g̃ ∣ converge as t → ∞ to a unique locally strictly
stable equilibrium in R∣X(g,p)∣+∣[p̃]g̃ ∣ denoted by n∗((g,p), (g̃, p̃)).

We write n∗ and not n̄ to emphasize that some coordinates of n∗ can be zero. Furthermore,
we use the shorthand notation ((g,p), (g̃, p̃)) for ((g1, p1), . . . , (gd, pd), (g̃, p̃)). Assumption 7
does not have to hold for all traits in X ∖X(g,p) only for those traits (g̃, p̃) which can appear in
the resident population by mutation, i.e. only if ∑(g,p)∈X(g,p) m(g)M((g, p), (g̃, p̃)) is positive.

Note that it is possible to extend the definitions and assumptions for the study of rare
mutations and fast switches in populations with non discrete trait space if one assumes that
an individual can change its phenotype only to finitely many other phenotypes. This must
be encoded in the switching kernels. More precisely, for all (g, p) ∈ G × P the communication
class [p]g should contain finitely many elements.
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Convergence to the generalized Polymorphic Evolution Sequence.

In this subsection we state the main theorem of this chapter and give the general idea of the
proof illustrated by an example.

Theorem III.4.3. Suppose that the Assumptions 6 and 7 hold. Fix (g1, p1), . . . , (gd, pd) ∈
G ×P coexisting traits and assume that the initial conditions have support X(g,p) and converge
almost surely to n̄(g,p), i.e. limK→∞ ν

K
0 = ∑x∈X(g,p) n̄x(g,p)δx a.s.. Furthermore, assume

that

∀V > 0, exp(−V K) ≪ uK ≪ 1

K ln(K)
, as K →∞. (III.4.13)

Then, the sequence of the rescaled processes (νKt/KuK)t≥0, generated by LK with initial state
νK0 , converges in the sense of finite dimensional distributions to the measure-valued pure jump
process Λ defined as follows: Λ0 = ∑(g,p)∈X(g,p) n̄(g,p)(g,p)δ(g,p) and the process Λ jumps for
all (ĝ, p̂) ∈ X(g,p) from

∑
(g,p)∈X(g,p)

n̄(g,p)(g,p)δ(g,p) to ∑
(g,p)∈X((g,p),(g̃,p̃))

n∗(g,p)((g,p), (g̃, p̃))δ(g,p) (III.4.14)

with infinitesimal rate

m(ĝ)b(p̂)n̄(ĝ,p̂)(g,p)(1 − q(g,p)(g̃, p̃))M((ĝ, p̂), (g̃, p̃)). (III.4.15)

Remark 12. (i) The convergence cannot hold in law for the Skorokhod topology (cf. [25]).
It holds only in the sense of finite dimensional distributions onMF (X), the set of finite
positive measures on X equipped with the topology of the total variation norm.

(ii) The process Λ is a generalized version of the usual PES. Therefore, we call Λ Polymorphic
Evolution Sequence with phenotypic Plasticity (PESP).

(iii) Assumption 7 is essential for this statement. In the case when the dynamical system
has multiple attractors and different points near the initial state lie in different basins
of attraction, it is not clear and may be random which attractor the system approaches.
The characterization of the asymptotic behavior of the dynamical system is needed
to describe the final state of the stochastic process. This is in general a difficult and
complex problem, which is not doable analytically and requires numerical analysis. Thus,
we restrict ourselves to the Assumption 7.

We describe in the following the general idea of the proof, which is quite similar to the
one given in [30]. As in the last chapter the population is either in a stable phase or in
an invasion phase. Until the first mutant appears the population is in a stable phase, i.e.
the population stays close to a given equilibrium. From the first mutational event until the
population reaches again a stable state, the population is in an invasion phase. In fact, the
mutant either survives and the population reaches fast a new stable state (where the mutant
trait is present) or the mutant goes extinct and the population is again in the old stable state.
After this the populations is again in a stable phase until the next mutation, etc..

Note that we prove in the following that the invasion phases are relatively short (O(ln(K)))
compared to the stable phase (O(1/uKK)). Since we study the process on the time scale
1/KuK , the limit process proceeds as a pure jump process which jumps from one stable state
to another.

The stable phase: Fix ε > 0. Let X(g,p) be the support of the initial conditions, For large
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K, the population process νK is, with high probability, still in a small neighborhood of the
equilibrium n̄(g,p) when the first mutant appears. In fact, using large deviation results on
the problem of exit from a domain (cf. [61]), we obtain that there exists a constant M > 0
such that the first time νK leave the Mε-neighborhood of n̄(g,p) is bigger than exp(V K)
for some V > 0 with high probability. Thus, until this stopping time, mutations born from
individuals with trait x ∈ X(g,p) appear with a rate which is close to

uKm(x)b(x)Kn̄x(g,p).

The condition (III.4.13), more precisely 1/(KuK) ≪ exp(V K) for all V > 0, ensures that
the first mutation appears before this exit time. Note that we expand here the arguments
of the corresponding results of Champagnat (cf. Thm. 3 of [25]) to the multi-type case with
phenotypic plasticity. We prove this in Theorem III.4.4.

The invasion phase: We divide the invasion of a given mutant trait (g̃, p̃) into three steps, in
a similar way as done in [25] and [30] (cf. Figure III.8).

In the first step, from a mutational event until the mutant population goes extinct or the
mutant density reaches the value ε, the number of mutant individuals is small (cf. Fig. III.8,
[0, t1]). Thus, applying a perturbed version of the large deviation result we used in the first
phase, we obtain that the resident population stays close to its equilibrium density n̄(g,p)
during this step. Using similar arguments as Champagnat et al. [25, 30], we prove that the
mutant population is well approximated by a ∣[p̃]g̃ ∣-type branching process Z, as long as the
mutant population has less than εK individuals. More precisely, let us denote the elements of
[p̃]g̃ by p̃1, . . . , p̃∣[p̃]g̃ ∣, then, for each 1 ≤ i ≤ ∣[p̃]g̃ ∣, each individual in Z (carrying trait (g̃, p̃i))
undergoes

(i) birth (without mutation) with rate b(p̃i),

(ii) death with rate d(p̃i) +∑(g,p)∈X(g,p) c(p̃i, p)n̄(g,p)(g,p) and

(iii) switching to phenotype p̃j with rate sg̃(p̃i, p̃j) for all 1 ≤ j ≤ ∣[p̃]g̃ ∣.

This continuous time multi-type branching process is supercritical if and only if the largest
eigenvalue of the infinitesimal generator of its mean matrix, which we denote by λmax, is
larger than zero. Hence, the mutant invades with positive probability if and only if λmax > 0.
Moreover, the probability that the density of the mutant’s genotype, νK(g̃), reaches ε at some
time t1 is close to the probability that the multi-type branching process reaches the total mass
εK, which converges as K →∞ to (1 − q(g,p)(g̃, p̃)).

In the second step, we obtain as a consequence of Theorem III.2.1 that once the mutant
density has reached ε, for large K, the stochastic process νK can be approximated on any
finite time interval by the solution of LV S(d + 1, ((g1, p1), . . . , (gd, pd), (g̃, p̃))) with a given
initial state. By Assumption 7, this solution reaches the ε-neighborhood of its new equilib-
rium n∗((g,p), (g̃, p̃)) in finite time. Therefore, for large K, the stochastic process νK also
reaches with high probability the ε-neighborhood of n∗((g,p), (g̃, p̃)) at some bounded (K
independent) time t2.

In the third step, we can use similar arguments as in the first. Since n∗((g,p), (g̃, p̃)) is
a strongly locally stable equilibrium (Assumption 7), the stochastic process νKt stays close
n∗((g,p), (g̃, p̃)) and we can approximate the densities of the traits (g, p) ∈ X((g,p),(g̃,p̃)) with
n∗(g,p)((g,p), (g̃, p̃)) = 0 by ∣[p]g ∣-type branching processes which are subcritical and therefore
become extinct a.s..
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The time of the first and third step are proportional to ln(K), whereas the time of the sec-
ond step is bounded. Thus, the second inequality in (III.4.13) guarantees that, with high
probability, the three steps of invasion are completed before a new mutation occurs. After
the last step the process comes back to a stable phase, but with a possible different resident
population, until the next mutation happens.

1

population size

O(ln(K)) O(1) O(ln(K))

υ

ε

t t t1

t
t

2 3
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0.8
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Figure III.8: The three steps of one invasion phase.

An example: Figure III.8 shows the invasion phase of a single mutant with trait (g̃, p̃1),
which appeared (at time 0) in a population close to n̄(g,p) (indicated by the dashed lines).
In this example the resident population consists of two coexisting traits (g, p1) and (g, p2)
and the mutant individuals can switch to one other the phenotype only, i.e. [p̃1]g̃ = {p̃1, p̃2}.
The parameters of the simulation III.8 are given in Table III.2. The stable fixed point of

b(p1) = 3 d(p1) = 1 c(p1, p1) = 1 c(p1, p2) = 0.7 c(p1, p̃1) = 0.7 c(p1, p̃2) = 0.7 sg(p1, p2) = 1

b(p2) = 3 d(p2) = 1 c(p2, p1) = 0.7 c(p2, p2) = 1 c(p2, p̃1) = 0.7 c(p2, p̃2) = 0.7 sg(p2, p1) = 2

b(p̃1) = 5 d(p̃1) = 1 c(p̃1, p1) = 0.7 c(p̃1, p2) = 0.7 c(p̃1, p̃1) = 1 c(p̃1, p̃2) = 0.7 sg̃(p̃1, p̃2) = 1.5

b(p̃2) = 4 d(p̃2) = 1 c(p̃2, p1) = 0.7 c(p̃2, p2) = 0.7 c(p̃2, p̃1) = 0.7 c(p̃2, p̃2) = 1 sg̃(p̃2, p̃1) = 2

K = 2000 uK = 0 νK0 (g, p1) = 1.5 νK0 (g, p2) = 0.8 νK0 (g̃, p̃1) = 1/K νK0 (g̃, p̃1) = 0 HKG

-

Table III.2: Parameters of Figure III.8

the system LV S(2, ((g, p1), (g, p2))) is n̄((g, p1), (g, p2)) ≈ (1.507,0.809). The infinitesimal
generator of the mean matrix of the multi-type branching process that approximates the
mutant population in the first step is approximately

(0.879 1.5
2 −0.621

) . (III.4.16)

Since the largest eigenvalue of this matrix is positive (≈ 2.016), the mutant population
reaches with positive probability the second invasion step (cf. Figure III.8). Furthermore,
n∗ ≈ (0,0,2.608,1.608) is the unique locally strictly stable fixed point of the dynamical system
LV S(4, ((g, p1), (g, p2), (g̃, p̃1), (g̃, p̃2))). The dynamical system and hence also the stochastic
process reach in finite time the ε-neighborhood of this value. The infinitesimal generator of the
mean matrix of the multi-type branching process that approximates the resident population
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in the third step is approximately

(−1.951 2
1 −2.951

) . (III.4.17)

The largest eigenvalue of this matrix is negative (≈ −0.951) meaning that the process is
subcritical and goes extinct a.s.. Therefore, there exists a time t3 such that all individuals
which carry trait (g, p1) or (g, p2) are a.s. dead at time t3.

The proof of Theorem III.4.3.

In this paragraph we prove the convergence to the PESP. (The proof uses the same arguments
and techniques as [30], which were developed in [25]. However, some extension are necessary,
if fast phenotypic switches are included in the process, which we state and prove in this
subsection.) We start with an expansion of Theorem 3 of [25]. Part (i) of the following theorem
strengthens Theorem III.2.1, and part (ii) studies the problem of exit from an attractive
domain in the polymorphic case with phenotypic plasticity.

Theorem III.4.4. (i) Assume that the initial conditions have support {(g1, p1), . . . (gd, pd)}
and are uniformly bounded, i.e. , for all 1 ≤ i ≤ d, νK0 (gi, pi) ∈ A, where A is a compact
subset of R>0. Then, for all T > 0

lim
K→∞

sup
t∈[0,T ]

∣∣νKt − ∑
x∈X(g,p)

nx(t, νK0 )δx∣∣
TV

= 0 a.s., (III.4.18)

where n(t, νK0 ) ∈ R∣X(g,p)∣ denotes the value of the solution of LV S(d, (g,p)) at time
t with initial condition nx(0, νK0 ) = νK0 (x) for all x ∈ X(g,p). Note that the measure
∑x∈X(g,p) nx(t, ν

K
0 )δx depends on K, since the initial condition and hence the solution of

LV S(d, (g,p)) depend on K.

(ii) Let (g1, p1), . . . , (gd, pd) ∈ X coexist. Assume that, for any K ≥ 1, Supp(νK0 ) = X(g,p).
Let τmut. be the first mutation time. Furthermore, let us define the first exit time from
the ξ-neighborhood of n̄x(g,p) by

θK,ξexit ≡ inf {t ≥ 0 ∶ ∃x ∈ X(g,p) such that ∣νKt (x) − n̄x(g,p)∣ > ξ} . (III.4.19)

Then, there exist ε0 > 0 and M > 0 such that for all ε < ε0, there exists V > 0 such that
if the initial states of νK belong to the ε-neighborhood of n̄x(g,p), the probability that
θK,Mε
exit is larger than eKV ∧ τmut. is converging to one, i.e.

lim
K→∞

sup
nK∈(N/K)∣X(g,p)∣∩Bε(n̄(g,p))

P [θK,Mε
exit < eKV∧ τmut. ∣ νK0 (x) = nKx for all x ∈ X(g,p)] = 0,

(III.4.20)
where nK ≡ (nKx )x∈X(g,p) and Bε(n̄(g,p)) denotes the ε-neighborhood of n̄(g,p).
Moreover, (III.4.20) also holds if, for all (g, p) ∈ X(g,p), the total death rate of an indi-
vidual with trait (g, p)

d(p) + ∑
(g̃,p̃)∈X(g,p)

c(p, p̃)νKt (g̃, p̃) (III.4.21)

is perturbed by an additional random process that is uniformly bounded by ∣X ∣cmaxε, where
cmax = maxx,y∈X c(x, y).
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Remark 13. (i) One consequence of the second part of (ii) is that, with high probability, the
process stays in the Mε-neighborhood of n̄x(g,p) until the first time that a mutant’s
density reaches the value ε. In other words, let θKInvasion denote the first time that a
mutant’s density reaches the value ε, i.e

θKInvasion ≡
⎧⎪⎪⎨⎪⎪⎩
t ≥ 0 ∶ ∃(g, p) ∉ X(g,p) ∶ ∑

p̃∈[p]g
νKt (g, p̃) ≥ ε

⎫⎪⎪⎬⎪⎪⎭
. (III.4.22)

Then, the probability that θK,Mε
exit is larger than eKV ∧ θKInvasion is converging to one. We

use this result also for the third invasion step.

(ii) Since n̄(g,p) is a locally strictly stable fixed point of the system LV S(d, (g,p)), there
exists a constant M > 0 such that for all ε > 0 small enough

for all trajectories n(t) with ∣∣n(0) − n̄(g,p)∣∣ < ε ∶ sup
t≥0

∣∣n(t) − n̄(g,p)∣∣ <Mε.

Proof. The proof is an expansion of the arguments of the proof of Theorem 3 of [25]. The main
task of (i) is to show that a large deviation principle on [0, T ] holds if we modify the process
a bit. The main task of (ii) is to show that we can use the classical estimates for time of exit
from a domain (cf. [61]) for the jump process νK . Note that Freidlin and Wentzell study in
the book [61] mainly small white noise perturbations of dynamical systems. However, there
also are some comments on the generalization to dynamical systems with small jump-like
perturbations (cf. [61], Sec. 5.4).

Proof of (i). In Chapter 10 of [45], Dupuis and Ellis prove the Laplace principle for
continuous time Markov Processes with continuous statistics including diffusions and jump
processes. Such a Laplace principle is equivalent to a large deviation principle with the same
rate function (cf. Section 1.2 of [45]). (The first general large deviation results for these
processes are due to Freidlin and Wentzell [61].) In fact, the process, we are studying, does
not full fill the conditions of the Laplace principle of Dupuis and Ellis, but we show that a
modification does. To this aim, observe that any solution of LV S(d, (g,p)) with uniformly
bounded initial condition is uniformly bounded, too. (This is true because we can bound the
total mass of the population from above by a one dimensional competitive Lotka-Volterra
system (cf. Def. II.3.3).) More precisely, for all x ∈ X(g,p)

sup
t≥0

nx(t, νK0 ) ≤ max
p,p̃,p̂∈P

(2
b(p)
c(p̃, p̂)

) ∨max(A) ≡ C (III.4.23)

We begin with some notation. First, fix δ > 0, let χ be a map from R∣X(g,p)∣
≥0 to [0,C + δ]∣X(g,p)∣

defined by

χ(y) ≡ (χ(g,p)(y))(g,p)∈X(g,p) with χ(g,p)(y) =
⎧⎪⎪⎨⎪⎪⎩

y(g,p) if y(g,p) ∈ [0,C + δ]
C + δ else.

(III.4.24)

Let (Y K)K≥1 be a sequence of continuous time, R∣X(g,p)∣-valued Markov processes with in-
finitesimal generator LK , defined on continuous differential functions with compact support,
f ∈ C1

c (R∣X(g,p)∣,R), by

LKf(y) ≡ ∑
(g,p)∈X(g,p)

a(g,p)(y)
∂f(y)
∂y(g,p)

(III.4.25)

+K ∫
R∣X(g,p)∣

(f (y +K−1z) − f(y) −K−1 ∑
(g,p)∈X(g,p)

z(g,p)
∂f(y)
∂y(g,p)

) µy(dz),
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where

a(g,p)(y) ≡ χ(g,p)(y)(b(p) − d(p) − ∑
(g̃,p̃)∈X(g,p)

c(p, p̃)χ(g̃,p̃)(y) − ∑
p̃∈[p]g

sg(p, p̃)) (III.4.26)

+ ∑
p̃∈[p]g

sg(p̃, p)χ(g,p̃)(y)

and µy is a finite point measure defined as follows. Let e(g,p) denote the "(g, p)"-th unit
vector in R∣X(g,p)∣, then

Supp(µy) ⊆ ⋃
(g,p)∈X(g,p), p̃∈[g]p

{ e(g,p), −e(g,p), e(g,p) − e(g,p̃) } ⊂ R∣X(g,p)∣ (III.4.27)

and

µy({e(g,p)}) ≡ b(p)χ(g,p)(y), (III.4.28)

µy({−e(g,p)}) ≡ χ(g,p)(y)(d(p) + ∑
(g̃,p̃)∈X(g,p)

c(p, p̃)χ(g̃,p̃)), (III.4.29)

µy({e(g,p) − e(g,p̃)}) ≡ sg(p, p̃)χ(g,p̃)(y). (III.4.30)

Furthermore, define τ ≡ inf{t ≥ 0 ∶ ∃x ∈ X(g,p) s.t. νK(x) > C + δ} ∧ τmut., then the processes
Y K (considered as measure-valued process) and νK have the same law on the time interval
[0, τ]. In contrast to νK , Y K satisfy the conditions assumed in Theorem 10.2.6 of [45]. Thus,
for each T > 0, the sequence of (Y K)K≥0 with Y K(0) = Y0 satisfies the Laplace principle on
D([0, T ],R∣X(g,p)∣) with rate function

I0T (φ) =
⎧⎪⎪⎨⎪⎪⎩

∫
T

0 L(φ(t), φ̇(t))dt if φ is absolute continuous on [0, T ]
∞ else,

(III.4.31)

where

L(φ(t), φ̇(t)) ≡ sup
α∈R∣X(g,p)∣

⎛
⎝

∣X(g,p)∣

∑
i=1

αiφ̇i(t) − ∫
R∣X(g,p)∣

(e∑
∣X(g,p)∣
i=1 αiyi − 1)µφ(t)(dy)

⎞
⎠
. (III.4.32)

Note that L(φ(t), φ̇(t)) is zero if and only if φ is absolute continuous and φ̇(g,p)(t) = a(g,p)(φ(t))
for all (g, p) ∈ X(g,p). Moreover, the Laplace principle holds uniformly on compacts.

(Freidlin and Wentzell state in [61] a comparable result in terms of action functionals (cf.
Thm 5.2.1 of [61]). Namely, KI0T (φ) is the action functional for the sequence (Y K

t , PKy ) in
the metric ρ0T (φ,ψ) = sup0≤t≤T ∣φt − ψt∣ uniformly in the initial point as K →∞. PKy is used
to emphasize that the initial conditions depend on K.)

As already mentioned the Laplace principle is equivalent to the large derivation principle.
Thus, for each closed subset F of D([0, T ],R∣X(g,p)∣)

lim sup
K→∞

1

K
ln

⎛
⎝

sup
Y K0 ∈A

PY K0 [Y K ∈ F ]
⎞
⎠
≤ − inf

φ∈F
I0T (φ). (III.4.33)

If we choose

F δ ≡ {φ ∈ D([0, T ],R∣X(g,p)∣) ∶ φ(0) ∈ A and sup
t∈[0,T ]

∣φ(t) − n(t, φ(0))∣ ≥ δ}, (III.4.34)
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then inequality (III.4.33) becomes

lim
K→∞

1

K
ln

⎛
⎝

sup
Y K0 ∈A

PY K0 [ sup
0≤t≤T

∣Y K − n(t, Y K
0 )∣ ≥ δ]

⎞
⎠
≤ − inf

φ∈F δ
I0T (φ). (III.4.35)

Thus, on the event {τmut. < T}, we have

lim
K→∞

1

K
ln

⎛
⎝

sup
νK0 ∈A

PνK0

⎡⎢⎢⎢⎢⎣
sup

0≤t≤T
∣∣νKt − ∑

x∈X(g,p)
nx(t, νK0 )δx∣∣

TV
≥ δ

⎤⎥⎥⎥⎥⎦

⎞
⎠
≤ − inf

φ∈F δ
I0T (φ). (III.4.36)

Since any solution of LV S(d, (g,p)) that starts in A does not leave [0,C]∣X(g,p)∣, the set
F δ does not contain such a solution. Therefore, infφ∈F δ IT (φ) is non-zero. Using the Borel-
Cantelli Lemma, this implies (III.4.18) provided that limK→∞ P[τmut. < T ] = 0.

Proof of (ii). In Section 5.4 of [61], Freidlin and Wentzell explain how some of their
results on the problem of exit from a domain for diffusion processes can be generalized to
dynamical systems with small jump-like perturbations under some conditions. In fact, we
need a generalization of Theorem 4.4.2 of [61]. As in the proof of (i) the jump processes νK

do not belong to the class of processes Freidlin and Wentzell consider in Section 5.4.. However,
we define similar as in (i) processes, Y K , which will belong to this class and have the same
law until θK,εexit ∧ τmut.: Fix ε > 0, let χ̃ be a map from R∣X(g,p)∣

≥0 to R∣X(g,p)∣
≥0 defined by

χ̃(y) ≡
⎧⎪⎪⎨⎪⎪⎩

y if y ∈ BMε(n̄(g,p))
n̄(g,p) +Mε

y−n̄(g,p)
∣∣y−n̄(g,p))∣∣ else.

(III.4.37)

Let (Y K)K≥1 be a sequence of continuous time, R∣X(g,p)∣-valued Markov processes with in-
finitesimal generator L̃K defined as above except that χ is replaced by χ̃. Let θK,Mε,Y

exit denote
the first exit time from the Mε-neighborhood of n̄(g,p) of the process Y K , i.e.

θK,Mε,Y
exit ≡ inf {t ≥ 0 ∶ Y K

t ∉ BMε(n̄(g,p))} . (III.4.38)

Then, by applying the generalized version of Theorem 4.4.2 of [61] (cf. [61], p.138) to Y K we
obtain that for all ε > 0 small enough there exists Vε such that for every α > 0

lim
K→∞

sup
y∈Bε(n̄(g,p))

Py [θK,Mε,Y
exit > exp(K(Vε + α))] = 0. (III.4.39)

Moreover, let V (n̄(g,p), y) denote the quasipotential of the dynamical system with respect
to n̄(g,p), i.e.

V (n̄(g,p), y) ≡ inf {IT1T2(φ) ∶ φ ∈ C([T1, T2],R∣X(g,p)∣), φT1 = n̄(g,p), φT2 = y, T1 ≤ T2} .
(III.4.40)

The endpoints of the interval [T1, T2] are not fixed and IT1T2(φ) is defined as above. The
constant Vε is given by Vε ≡ miny∈BMε(n̄(g,p)) V ((n̄(g,p)), y). Since n̄(g,p) is a locally strictly
stable fixed point there exists M > 0 such that for all ε > 0 small enough all trajectories
of LV S(d, (g,p)) which start in Bε(n̄(g,p)) stay in BMε/2(n̄(g,p)). On the other hand,
L(φ(t), φ̇(t)) = 0 if and only if φ(t) is a solution of LV S(d, (g,p)). Thus Vε > 0, which
implies (III.4.20).

If the total death rate of an individual is perturbed by an additional random process that
is uniformly bounded by ∣X ∣cmaxε, we can construct (by using the pathwise construction via
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Poisson point measures) two sequences of continuous time, R∣X(g,p)∣-valued Markov processes
Y K,1,ε and Y K,2,ε such that

Y K,1,ε
t ≤ νKt ≤ Y K,2,ε

t for all t ∈ [0, τ], (III.4.41)

where Y K,1,ε
t and Y K,1,ε

t have the same generators as Y K except that the death rate d(p) is
replaced by d(p)+∣X ∣cmaxε respectively d(p)−∣X ∣cmaxε. The corresponding dynamical systems
have unique locally strictly stable fixed point which lie in BM̂ε(n̄(g,p)) for some constant
M̂ > 0. (This can be obtained by applying the implicit function theorem. For the stability of
the fixed point see e.g. [68]. Moreover, see [31] for a similar consideration.) Using the same
arguments for Y K,1,ε and Y K,2,ε as above ends the proof.

The following Lemma describes the asymptotic behavior of τmut. and can be seen as an
extension of Lemma 2 of [25] or Lemma A.3 of [30].

Lemma III.4.5. Let (g1, p1), ..., (gd, pd) ∈ X coexist. Assume that, for anyK ≥ 1, Supp(νK0 ) =
X(g,p). Let τmut. denote the first mutation time. Then, there exists ε0 > 0 such that if the
initial states of νK belong to the ε0-neighborhood of n̄x(g,p), then, for all ε ∈ (0, ε0),

lim
K→∞

P
⎡⎢⎢⎢⎢⎣
τmut. > ln(K), sup

t∈[ln(K),τmut.]
∣∣νKt − ∑

x∈X(g,p)
n̄x(g,p)δx∣∣

TV
< ε

⎤⎥⎥⎥⎥⎦
= 1, (III.4.42)

Furthermore, (τmut.uKK)K≥1 converges in law to an exponential distributed random variable
with parameter ∑(g,p)∈X(g,p) m(g)b(p)n̄(g,p)(g,p) and the probability that the mutant, which
appears at time τmut., is born from an individual with trait (g, p) ∈ X(g,p) converges to

m(g)b(p)n̄(g,p)(g,p)
∑(g̃,p̃)∈X(g,p) m(g̃)b(p̃)n̄(g̃,p̃)(g,p)

(III.4.43)

as K →∞.

Proof. There exist constants C > 0 and V > 0, such that on the time interval [0, exp(KV )]
the total mass of the population, νKt (X), is bounded from above by C (cf. proof of Thm.
III.4.4 (i)). Therefore, we can construct an exponential random variable A with parameter
C ′KuK , where C ′ = Cmaxg∈G,p∈Pm(g)b(p), such that

A ≤ τmut. on the event {τmut. < exp(KV )}. (III.4.44)

Thus, P [τmut. > ln(K)] ≥ P[A > ln(K)] = e−C
′ ln(K)KuK . Since (III.4.13) implies that

ln(K)KuK converges to zero as K →∞, we get limK→∞ P[τmut. > ln(K)] = 1.
The fixed point n̄(g,p) is asymptotic stable. Thus, ∃ε0 > 0 ∶ ∀ε̃ ∈ (0, ε0) ∃T (ε̃):

whenever ∥n(g,p)(0) − n̄(g,p)∥ < ε0, then sup
t≥T (ε̃)

∣n(g,p)(t) − n̄(g,p)∣ < ε̃/2. (III.4.45)

In words, there exists a finite time T (ε̃) such that all trajectories, which start in the ε0
neighborhood of the fixed point, stay after T (ε̃) in the ε̃/2-neighborhood of the fixed point.

Next, we apply the last theorem: By (i), for all ε̃ ∈ (0, ε0) ∃T (ε̃) such that, for K large
enough,

∣∣νKT (ε̃) − ∑
x∈X(g,p)

n̄x(g,p)δx∣∣
TV

< ε̃. (III.4.46)
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Then, by (ii), there exist ε0 > 0 and M > 0: for all ε̃ ∈ (0, ε0) there exists V > 0 such that

lim
K→∞

P
⎡⎢⎢⎢⎢⎣

sup
t∈[T (ε̃), eKV∧τmut.)

∣∣νKt − ∑
x∈X(g,p)

n̄x(g,p)δx∣∣
TV

<Mε̃

⎤⎥⎥⎥⎥⎦
= 1. (III.4.47)

Furthermore, for all ε̃ ∈ (0, ε0) there exists K0 ∈ N such that T (ε̃) < ln(K) for all K ≥ K0.
Thus, setting ε =Mε̃, ends the proof of (III.4.42), provided that limK→∞[τmut. < eKV ] = 1.

Again, we can construct for all ε > 0 two exponential random variables A1,K,ε and A2,K,ε

with parameters

a1uKK ≡ ∑
(g,p)∈X(g,p)

uKm(g)b(p)(n̄(g,p)(g,p) + ε)K (III.4.48)

and
a2uKK ≡ ∑

(g,p)∈X(g,p)

uKm(g)b(p)(n̄(g,p)(g,p) − ε)K (III.4.49)

such that

A1,K,ε ≤ τmut. ≤ A2,K,ε on the event {T (ε̃) < τmut. < eKV }, (III.4.50)

where T (ε̃) is the time defined in equation (III.4.46) and ε̃ = ε/M . Moreover, we have

lim
K→∞

P[τmut. < ln(K)] = 0 and lim
K→∞

P[A2,K,ε > eKV ] = 0, (III.4.51)

because uKKeKV → ∞ as K → ∞. Therefore, for all ε > 0, the probability of the event
{T (ε̃) < τmut. < eKV } converges to one as K goes to infinity. Furthermore, the random
variables A1,K,εuKK and A2,K,εuKK converge both in law to the same exponential distributed
random variable with parameter

∑
(g,p)∈X(g,p)

m(g)b(p)n̄(g,p)(g,p) (III.4.52)

as first K → ∞ and then ε → 0. The random variables A, A1,K,ε and A2,K,ε can easily be
constructed by using the pathwise description of νK (cf. Lemma II.6.4 or [29]).

Theorem III.4.6 (The three steps of invasion). Let (g1, p1), . . . , (gd, pd) ∈ X coexist. Assume
that, for any K ≥ 1, Supp(νK0 ) = X(g,p) ∪ {(g̃, p̃)}. Let τmut. denote the next mutation time
(after time zero) and define

θK,ξNo Jump ≡ inf {t ≥ 0 ∶ νKt (g̃) = 0 and ∣∣νKt −∑x∈X(g,p) n̄x(g,p)δx∣∣TV
< ξ}

θK,ξJump ≡ inf {t ≥ 0 ∶ ∣∣νKt −∑x∈X((g,p),(g̃,p̃)) n
∗
x((g,p), (g̃, p̃))δx∣∣

TV
< ξ

and ∀x̂ ∉ {x ∈ X ∶ n∗x((g,p), (g̃, p̃)) > 0} ∶ νKt (x̂) = 0}.

Assume that we have a single initial mutant, i.e. νK0 (g̃, p̃) = 1/K. Then, there exist ε0 > 0,C >
0, and M > 0 such that for all ε ∈ (0, ε0) if ∣∣νK0 −∑x∈X(g,p) n̄x(g,p)δx∣∣TV < ε,

lim
K→∞

P [θK,Mε
No Jump < θ

K,Mε
Jump ] ≥ q(g,p)(g̃, p̃) −Cε, (III.4.53)

lim
K→∞

P [θK,Mε
Jump < θK,Mε

No Jump] ≥ 1 − q(g,p)(g̃, p̃) −Cε, (III.4.54)

where 1 − q(g,p)(g̃, p̃) is the invasion probability defined in (III.4.10) and

∀η > 0, lim
K→∞

P [θK,Mε
Jump ∧ θ

K,Mε
No Jump ≥

η

uKK
∧ τmut.] ≤ Cε. (III.4.55)
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The structure of the proof is similar to the one of Lemma 3 in [25]. However, we have to
extend the theory to multi-type branching processes. Thus, the proof is not a simple copy
the arguments in [25]. Before we prove the theorem, let us collect some properties about
multi-type continuous time branching processes. Most of the properties, can be found either
in [6] or [112]. The limit theorems, we need in the following, were first obtained by Kesten
and Stigum [85, 84, 86] in the discrete time case and by Athreya [5] in the continuous time
case.

Let Z(t) be a k-dimensional continuous time branching process. Assume that Z(t) is
nonsingular and that the first moments exist. (Note that a process is singular if and only
if each individual has exactly one offspring and that the existence of the first moments is
sufficient for the non-exposition hypothesis.) Then, the mean matrix of Z(t) is a k×k matrix
defined by

M(t) = {mij(t), i, j = 1, . . . , k}, where mij(t) ≡ E[Zj(t)∣Z(0) = ei] (III.4.56)

and ei is the i-th unit vector in Rk. It is well known (cf. [6] p. 202) that there exists a matrix
A, called the infinitesimal generator of the semigroup {M(t), t ≥ 0}, such that

M(t) ≡ exp(At) =
∞
∑
n=0

tn(A)n

n!
. (III.4.57)

Furthermore, let r = (r1, . . . , rk) be the vector of the branching rates, meaning that every
individual of type i has an exponentially distributed lifetime of parameter ri and let M be the
mean matrix of the corresponding discrete time process, i.e. M ≡ {mij , i, j = 1, . . . , k}, where
mij is the expected number of type j offsprings of a single type-i-particle in one generation.
Then, we can identify the infinitesimal generator A as

A =R(M − I), (III.4.58)

where R = diag(r1, . . . , rk), i.e. rij = riδi(j) and I is the identity matrix of size k.
Under the basic assumption of positive regularity, namely that there exists a time t0 such

that M(t0) is strictly positive, the Perron-Frobenius theory can be used to deduce that

(i) the largest eigenvalue of M(t0) is real-valued and strictly positive,

(ii) the algebraic and geometric multiplicities of this eigenvalue are both unity and

(iii) there exists an eigenvector with this eigenvalue, which is strictly positive.

By (III.4.57), all eigenvalues of M(t) are given by eλit, where {λi; i = 1, . . . , k} are the eigen-
values of the infinitesimal generator A and both matrixes have the same eigenvectors, which
implies that we can determine the left and right eigenvectors u and v of λmax(A) with all
coordinates strictly positive, and such that

k

∑
i=1

viui = 1 and
k

∑
i=1

ui = 1. (III.4.59)

Thus, the behavior of a Z can be classified in terms of the largest eigenvalue of its infinitesimal
generator, λmax(A). More precisely, the process Z is called supercritical, critical, or subcritical
according as λmax(A) is larger, equal, or smaller than zero.

Observe that the following properties are equivalent (cf. [112] p. 95-99 and [109]):

Z is irreducible ⇔ M is irreducible ⇔ A is irreducible ⇔ M(t) is irreducible for all
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t > 0 ⇔ M(t) > 0 for all t > 0.

In particular, irreducible implies positive regular. Note that a matrix is irreducible if it is
not similar via a permutation to a block upper triangular matrix and that a Markov chain is
irreducible if and only if the transition matrix is irreducible.

The following lemma is an expansion of Theorem 4 of [25] for multi-type branching pro-
cesses.

Lemma III.4.7. Let (Z(t))t≥0 be a non-singular and irreducible, k-dimensional continuous
time Markov branching process and q the extinction vector of Z, i.e.

qi ≡ P[Z(t) = 0 for some t ≥ 0∣Z(0) = ei] for 1 ≤ i ≤ k. (III.4.60)

Furthermore, let (tK)K≥1 be a sequence of positive numbers such that ln(K) ≪ tK , define
Tρ ≡ inf{t ≥ 0 ∶ ∑ki=1Zi(t) = ρ} and assume that for all i, j ∈ {1, . . . , k} and t ∈ [0,∞)

E[Zj(t) ln(Zj(t))∣Z(0) = ei] < ∞. (III.4.61)

(i) If Z is subcritical, i.e. λmax(A) < 0, then for any ε > 0

lim
K→∞

P [T0 ≤ tK ∧ T⌈εK⌉ ∣Z(0) = ei] = 1 for all i ∈ {1, . . . , k} (III.4.62)

and

lim
K→∞

inf
x∈∂BεK

P [T0 ≤ tK ∣Z(0) = x] = 1, where ∂BεK ≡ {x ∈ Nk0 ∶ ∑ki=1 xi = ⌈εK⌉}.

(III.4.63)
Moreover, for ū = max1≤i≤k ui

min1≤j≤k uj
and for any ε > 0,

lim
K→∞

sup
x∈Bε2K

P [T⌈εK⌉ ≤ T0 ∣Z(0) = x] ≤ ūε, where Bε2K ≡ {x ∈ Nk0 ∶ ∑ki=1 xi ≤ ⌈ε2K⌉}.

(III.4.64)

(ii) If Z is supercritical, i.e. λmax(A) > 0, then for any ε > 0 (small enough)

lim
K→∞

P [T0 ≤ tK ∧ T⌈εK⌉ ∣Z(0) = ei] = qi for all i ∈ {1, . . . , k} (III.4.65)

and

lim
K→∞

P [T⌈εK⌉ ≤ tK ∣Z(0) = ei] = 1 − qi for all i ∈ {1, . . . , k}. (III.4.66)

Moreover, conditionally on survival, the proportions of the different types present in the
population converge almost surely as t→∞ to the corresponding ratios of the components
of the eigenvector: for all i = 1, . . . , k,

lim
t→∞

Zi(t)
∑kj=1Zj(t)

= vi

∑kj=1 vj
, a.s. on {T0 = ∞}. (III.4.67)

Proof. We start with the proof of (i). Since Z(t) is in this case a subcritical irreducible con-
tinuous time branching process and E[Zj(t) ln(Zj(t))∣Z(0) = ei] < ∞, we obtain by applying
Satz 6.2.7 of [112] the existence of a constant C > 0 such that

lim
t→∞

1 − qi(t)
eλmax(A)t = Cui, (III.4.68)
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where qi(t) ≡ P[Z(t) = 0 ∣ Z(0) = ei]. Moreover, we have a non-explosion condition. Thus,
for all ε > 0, either T⌈εK⌉ equals infinity or it converges to infinity as K → ∞. Putting both
together, there exists a sequence sK with limK→∞ sK = +∞ such that

lim
K→∞

P [T0 ≤ tK ∧ T⌈εK⌉∣Z(0) = ei] ≥ lim
K→∞

P [T0 ≤ sK ∣Z(0) = ei] = lim
K→∞

qi(sK) = 1. (III.4.69)

The branching property implies that for all x ∈ Nk, P[Z(t) = 0 ∣Z(0) = x] = ∏k
i=1(qi(t))xi (cf.

[109] p. 25). So, we get

inf
x∈∂BεK

P [T0 ≤ tK ∣Z(0) = x] = inf
x∈∂BεK

P [Z(tK) = 0 ∣Z(0) = x] = inf
x∈∂BεK

k

∏
i=1

(qi(tK))xi .

(III.4.70)
For all i ∈ {1, . . . , k}, 1 ≥ (qi(tK))xi ≥ (qi(tK))⌈εK⌉ and by (III.4.68) we have 1 − qi(tK) =
O(eλmax(A)tK). Furthermore,

lim
K→∞

(1 + wK
K

)
K

= exp(0) = 1 for any sequence (wK)K≥1 with lim
K→∞

wK = 0 (III.4.71)

implies that, for all tK with tK ≫ ln(K) and C > 0, since limK→∞Ce
λmax(A)tk⌈εK⌉ = 0,

lim
K→∞

(1 −Ceλmax(A)tk)⌈εK⌉ = 1. (III.4.72)

Thus, taking the limit K → ∞ in (III.4.70), we archive the desired equation (III.4.63). To
prove inequality (III.4.64) we use the fact that (∑ki=1 uiZi(t))e−λmaxt is a martingale (cf. [5],
Prop. 2). By applying Doob’s stopping theorem to the stopping time T⌈εK⌉ ∧T0 we obtain for
all x ∈ Bε2K that

E [(
k

∑
i=1

uiZi(T⌈εK⌉)) e−λmax(A)T⌈εK⌉1{T⌈εK⌉<T0}∣Z(0) = x] =
k

∑
i=1

uixi. (III.4.73)

Therefore, since λmax(A) < 0 in the subcritical case,

E [min
1≤i≤k

ui⌈εK⌉1{T⌈εK⌉<T0}∣Z(0) = x] ≤ max
1≤i≤k

ui⌈ε2K⌉, for all x ∈ Bε2K , (III.4.74)

which implies (III.4.64).
Let us continue with proving (ii). Since Z(t) is supercritical in this case, applying Theorem

5.7.2 of [6] yields that
lim
t→∞

Z(t)(ω)e−λmax(A)t =W (ω)v (III.4.75)

exists a.s., where W is a nonnegative random variable. Furthermore, since we assumed that
E[Zj(t) ln(Zj(t))∣Z(0) = ei] < ∞, for all i ∈ {1, . . . , k},

P[W = 0∣Z(0) = ei] = qi, E[W ∣Z(0) = ei] = ui (III.4.76)

and W has an absolutely continuous distribution on (0,∞). All coordinates of v are strictly
positive and W > 0 a.s. on the event {ω ∶ T0(ω) = ∞}. Hence, we have

Z(t) = O (eλmax(A)t) a.s. on {T0 = ∞}. (III.4.77)

This implies, for K large enough, P[Z(tK) < ⌈εK⌉, T0 = ∞] = 0 and thus

lim
K→∞

P[T0 = ∞, T⌈εK⌉ ≥ tK] = 0. (III.4.78)
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Note that we used that tK ≫ ln(K). Since P [T0 = ∞∣Z(0) = ei] = 1− qi, we deduce (III.4.66).
On the other hand, there exist two sequences s1

K and s2
K , which converge to infinity asK →∞,

such that, for K large enough, s1
K ≤ tK∧T⌈εK⌉ ≤ s2

K a.s.. This implies (III.4.65), because for all
i ∈ {1, . . . k} and l = 1,2, hold limK→∞ P[T0 < slK ∣Z0 = ei] = qi. Note that equation (III.4.67)
is a simple consequence of (III.4.75).

Using these properties about multi-type branching processes we can now prove the theorem
about the three steps of invasion.

Proof of Theorem III.4.6. The first invasion step. Let us introduce the following stopping
times

θK,Mε
exit = inf {t ≥ 0 ∶ ∣∣νKt −∑x∈X(g,p) n̄x(g,p)δx∣∣TV >Mε} (III.4.79)

θ̃Kε = inf {t ≥ 0 ∶ νKt (g̃) ≥ ε } (III.4.80)

θ̃K0 = inf {t ≥ 0 ∶ νKt (g̃) = 0 } (III.4.81)

Until θ̃Kε the mutant population νKt (g̃) influences only the death rate of the resident popu-
lation and this perturbation is uniformly bounded by cmaxε, where cmax ≡ maxx,x̂∈X c(x, x̂).
Thus, by applying Theorem III.4.4 (ii), we obtain

lim
K→∞

P [θK,Mε
exit < eKV ∧ τmut. ∧ θ̃Kε ] = 0. (III.4.82)

On the time interval [0, θK,Mε
exit ∧ τmut. ∧ θ̃Kε ], the resident population can be approximated by

∑x∈X(g,p) n̄x(g,p)δx and no further mutant appears. This allows us to approximate νKt (g̃) by
multi-type branching processes.

Let k ≡ ∣[p̃]g̃ ∣. Similar as in the controlling results of Section II.6 we construct two (N0)k-
valued processes X1,ε(t) and X2,ε(t), using the pathwise definition in terms of Poisson point
measures of νKt , which control the mutant population νKt (g̃). To this aim let us denote the
elements of [p̃]g̃ by p̃ = p̃1, . . . , p̃k. Then, we define X1,ε by

X1,ε(t) (III.4.83)

≡X1,ε(0) +
k

∑
j=1
∫

t

0
∫
N0
∫
R+
1{i≤X1,ε

j (s−), θ≤b(p̃i)−ε}
ejN

birth
(g̃,p̃j)(ds, di, dθ)

−
k

∑
j=1
∫

t

0
∫
N0
∫
R+
1
{i≤X1,ε

j (s−), θ≤d(p̃j)+∑(g,p)∈X(g,p) c(p̃j ,p)n̄(g,p)(g,p)+cmaxMε}
ejN

death
(g̃,p̃j)(ds, di, dθ)

+
k

∑
j=1
∫

t

0
∫
N0
∫
R+
∫[p̃]g̃

1{i≤X1,ε
j (s−), θ≤sg̃(p̃j ,p̃l)}

(el − ej)N switch
(g̃,p̃j) (ds, di, dθ, dp̃l),

and similar X2,ε by

X2,ε(t) (III.4.84)

≡X2,ε(0) +
k

∑
j=1
∫

t

0
∫
N0
∫
R+
1{i≤X2,ε

j (s−), θ≤b(p̃i)+ε}
ejN

birth
(g̃,p̃j)(ds, di, dθ)

−
k

∑
j=1
∫

t

0
∫
N0
∫
R+
1
{i≤X2,ε

j (s−), θ≤d(p̃j)+∑(g,p)∈X(g,p) c(p̃j ,p)n̄(g,p)(g,p)−cmaxMε}
ejN

death
(g̃,p̃j)(ds, di, dθ)

+
k

∑
j=1
∫

t

0
∫
N0
∫
R+
∫[p̃]g̃

1{i≤X2,ε
j (s−), θ≤sg̃(p̃j ,p̃l)}

(el − ej)N switch
(g̃,p̃j) (ds, di, dθ, dp̃l),
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where ej is the j-th unit vector in Rk and Nbirth, Ndeath, and N switch are the collections
of Poisson point measures defined in Subsection III.4.1. Note that X1,ε(t) and X2,ε(t) are
k-type branching processes with the following dynamics: For each 1 ≤ i ≤ k, each individual
in X1,ε(t), respectively X2,ε(t), with trait (g̃, p̃i) undergoes

(i) birth (without mutation) with rate b(p̃i) − ε, respectively b(p̃i) + ε

(ii) death with rate D(g,p)(p̃i) + cmaxMε, respectively D(g,p)(p̃i) − cmaxMε,
where D(g,p)(p̃i) = d(p̃i) +∑(g,p)∈X(g,p) c(p̃i, p)n̄(g,p)(g,p)

(iii) switching to phenotype p̃j with rate sg̃(p̃i, p̃j) for all 1 ≤ j ≤ k (in both processes).

Furthermore, the processes X1,ε(t) and X2,ε(t) have the following property: There exists a
K0 > 1 such that for all p̃i ∈ [p̃]g̃ and for all K ≥K0

∀ 0 ≤ t ≤ θK,εexit ∧ τmut. ∧ θ̃Kε ∶ X1,ε
i (t) ≤ νKt (g̃, p̃i)K ≤X2,ε

i (t). (III.4.85)

Hence, if θ̃Kε ≤ θK,εexit ∧ τmut., then

inf{t ≥ 0 ∶X2,ε(t) = ⌈εK⌉} ≤ θ̃Kε ≤ inf{t ≥ 0 ∶X1,ε(t) = ⌈εK⌉}. (III.4.86)

On the other hand, if inf{t ≥ 0 ∶X2,ε(t) = 0} ≤ inf{t ≥ 0 ∶X2,ε(t) = ⌈εK⌉} ∧ θK,εexit ∧ τmut., then

θ̃K0 ≤ inf{t ≥ 0 ∶X2,ε(t) = 0}. (III.4.87)

Next, let us identify the infinitesimal generator of the control processes X1,ε and X2,ε.
Therefore, define, for i = 1, . . . , k,

f(g,p)(g̃, p̃i) ≡ b(p̃i) −D(g,p)(p̃i) −
k

∑
j=1

sg̃(p̃i, p̃j). (III.4.88)

(Note that f(g,p)(g̃, p̃i) would be the invasion fitness of phenotype p̃i if there was no switch
back from the other phenotypes to p̃i.) Then, by Equation (III.4.58), the infinitesimal gener-
ators are given by the following matrixes

A(X l) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

f l,ε(g,p)(g̃, p̃1) sg̃(p̃1, p̃2) . . . sg̃(p̃1, p̃k)
sg̃(p̃2, p̃1) f l,ε(g,p)(g̃, p̃2)

⋮ ⋱ ⋮
sg̃(p̃k, p̃1) . . . f l,ε(g,p)(g̃, p̃k)

⎞
⎟⎟⎟⎟⎟⎟
⎠

for l = 1,2, (III.4.89)

where f1,ε
(g,p)(g̃, p̃i) ≡ f(g,p)(g̃, p̃i)−ε(1+cmaxM) and f2,ε

(g,p)(g̃, p̃i) ≡ f(g,p)(g̃, p̃i)+ε(1+cmaxM).
We prove in the following that the number of mutant individuals grow with positive

probability to εK before dying out if and only if λmax of A(g̃,p̃) ≡ limε→0 A(X1,ε) is strictly
positive. Thus, λmax(A(g̃,p̃)) is an appropriate generalization of the invasion fitness of the
class [p̃]g̃:

F[p̃]g̃(g,p) ≡ λmax(A(g̃,p̃)). (III.4.90)

Since the birth and death rates of X1,ε and X2,ε are positive and since Assumption 6 implies
that M(X1,ε) and M(X2,ε) are irreducible, we obtain that the processes X1,ε and X2,ε are
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non-singular and irreducible. Thus, X1,ε and X2,ε full fill the conditions of Lemma III.4.7.
For l = 1,2, let q(X l,ε) denote the extinction probability vector of X l,ε, i.e.

q(X l,ε) ≡ (q1(X l,ε), . . . , qk(X l,ε)), where qi(X l,ε)) ≡ P [X l,ε(t) = 0 for some t ∣X l,ε(0) = ei] .

Note that q(X l,ε) = (1, . . . ,1) if X l,ε is not supercritical. To characterize q(X l,ε) in the
supercritical case, let us introduce the following function

u ∶ [0,1]k × (−η, η) → Rk, where η is some small enough constant, (III.4.91)

defined, for all 1 ≤ i ≤ k, by

ui(y, ε) ≡ (b(p̃i) − ε) y2
i +

k

∑
j=1

sg(p̃i, p̃j) yj +D(g,p)(p̃i) + cmaxMε (III.4.92)

− (b(p̃i) − ε +
k

∑
j=1

sg(p̃i, p̃j) +D(g,p)(p̃i) + cmaxMε) yi.

Observe that u(y, ε) is the infinitesimal generating function of X1,ε and u(y,−ε) the one of
X2,ε. Furthermore, the extinction vector of a multi-type branching process is given as the
smallest solution such that the generating function is zero (cf. [6] p. 205 or [112] Chap. 5).
Thus, in the supercritical case q(X1,ε) is the unique solution of

u(y, ε) = 0 for y ∈ [0,1)k (III.4.93)

and q(X2,ε) is the unique solution of

u(y,−ε) = 0 for y ∈ [0,1)k. (III.4.94)

These solutions are in general not analytic. Applying Lemma III.4.7 to X1,ε and X2,ε we
obtain that there exists C1 > 0 such that for all η > 0, ε > 0 sufficiently small and K large
enough

P [θK,Mε
No Jump <

η
KuK

∧ θK,Mε
exit ∧ τmut. ∧ θ̃Kε ] ≥ P [inf{t ≥ 0 ∶X2,ε(t) = 0} < η

KuK
]

≥ q1(X2,ε) −C1ε (III.4.95)

and

P [θ̃Kε < η
KuK

∧ θK,Mε
exit ∧ τmut. ∧ θ̃K0 ] ≥ P [inf{t ≥ 0 ∶X1,ε(t) = 0} < η

KuK
]

≥ 1 − q1(X1,ε) −C1ε. (III.4.96)

If X2,ε is sub- or critical for ε small enough, then limε↓0 q1(X2,ε) = limε↓0 q1(X1,ε) = 1. In the
supercritical case, let q ∈ [0,1)k be the solution of u(y,0) = 0. Then, by applying the implicit
function theorem there exists an open set U ⊂ R containing 0, an open set V ⊂ Rk containing
q, and a unique continuously differentiable function g ∶ U → V such that

{(ε, g(ε))∣ε ∈ U} = {(ε,y) ∈ U × V ∣u(y, ε) = 0}. (III.4.97)

By definition, g(0) = q and q1 = q(g,p)(g̃, p̃). We can linearize and obtain that there exists a
constant C2 > 0 such that

q1(X1,ε) ≤ q(g,p)(g̃, p̃) +C2ε and q1(X2,ε) ≥ q(g,p)(g̃, p̃) −C2ε (III.4.98)
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Therefore,

lim
K→∞

P [θK,Mε
No Jump ∧ θ̃

K
ε < η

KuK
∧ θK,Mε

exit ∧ τmut.] ≥ 1 − 2(C1 +C2)ε. (III.4.99)

Conditionally on survival, the proportions of the different phenotypes in X1,ε converge almost
surely as t → ∞ to the corresponding ratios of the components of the eigenvector, which are
all strictly positive (cf. Lemma III.4.7, Eq. (III.4.67)). Furthermore, there exists a constant
C3 > 0 such that for all ε small enough

lim
K→∞

P [{θ̃Kε < η
KuK

∧ θK,Mε
exit ∧ τmut.} ∩ { inf{t ≥ 0 ∶X1,ε(t) = 0} < ∞}] < C3ε (III.4.100)

and θ̃Kε converges to infinity as K →∞. Thus, conditionally on {θ̃Kε < η
KuK

∧ θK,Mε
exit ∧ τmut.},

there exists a (small) constant C4 > 0 such that the probability that the densities of the
phenotypes {p̃1, . . . , p̃k}, are all larger than C4ε at time θ̃Kε convergences to one as first K →∞
and then ε → 0. More precisely, there exists constants C4 > 0 and C5 > 0 such that for all ε
small enough,

lim
K→∞

P [θ̃Kε < η
KuK

∧ θK,Mε
exit ∧ τmut., ∃i ∈ {1, . . . k} ∶ νK

θ̃Kε
(p̃i) ≤ C4ε] ≤ C5ε. (III.4.101)

The second invasion step. By Assumption 7, any solution of LV S(d + 1, ((g,p), (g̃, p̃)))
with initial state in the compact set

A ≡ {x ∈ R∣X(g,p)∣ ∶ ∣x − n̄(g,p)∣ ≤Mε} × [C4ε, ε]k (III.4.102)

converge as t→∞ to the unique locally strictly stable equilibrium n∗((g,p)), (g̃, p̃)). There-
fore, for all ε > 0 there exists T (ε) ∈ R such that any of these trajectories do not leave the set

{x ∈ R∣X(g,p)∣+k ∶ ∣x − n∗((g,p)), (g̃, p̃))∣ ≤ ε2/2} (III.4.103)

after time T (ε). Back to the stochastic system, let us introduce on the event {θ̃Kε < η
KuK

∧
θK,Mε
exit ∧ τmut.} the following stopping time

θK,εnear n∗ = inf {t ≥ θ̃Kε ∶ ∣∣νKt −∑x∈X((g,p),(g̃,p̃)) n
∗
x((g,p), (g̃, p̃))δx∣∣

TV
< ε2}. (III.4.104)

Then, we conclude by using the strong Markov property at θ̃Kε and Theorem III.4.4 (i) on
[0, T (ε)] that there exists a constant C6 > 0 such that, for all ε small enough,

lim
K→∞

P[θ̃Kε < τmut. ∧ η
KuK

and sup
s∈[θ̃Kε ,θ̃Kε +T (ε)]

∣∣νKs − ∑
x∈X(g,p)

nx(s, νK0 )δx∣∣
TV

≤ ε2] (III.4.105)

≥ 1 − q(g,p)(g̃, p̃) −C6ε,

which implies

lim
K→∞

P [θ̃Kε < θK,εnear n∗ < τmut. ∧ η
KuK

] ≥ 1 − q(g,p)(g̃, p̃) −C6ε. (III.4.106)

We used that, at time θ̃Kε , the stochastic process νK (considered as element of R∣X(g,p)∣+k) lies
in the compact set A, where A is defined in (III.4.102).
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The third invasion step. After time θK,εnear n∗ we use again comparisons with multi-type
branching processes to show that all individuals carrying a trait which is not present in the
new equilibrium n∗ die out. To this aim let us define

X n∗
extinct = {(g, p) ∈ X((g,p),(g̃,p̃)) ∶ n∗(g,p)((g,p), (g̃, p̃)) = 0} (III.4.107)

For proving that the populations with traits in X n∗
extinct stay small after θK,εnear n∗ and that

the populations with traits not in X n∗
extinct stay close to its equilibrium value after θK,εnear n∗ , let

us define

θK,εnot small = inf {t ≥ θK,εnear n∗ ∶ ∃(g, p) ∈ X
n∗
extinct such that νKt (g, p) > ε} (III.4.108)

and

θK,Mε
exit n∗ ≡ inf {t ≥ θK,εnear n∗ ∶ ∣∣ν

K
t −∑x∈X((g,p),(g̃,p̃)) n

∗
x((g,p), (g̃, p̃))δx∣∣

TV
>Mε} . (III.4.109)

By using first the strong Markov property at θK,εnear n∗ , we can apply Theorem III.4.4 (ii) and
obtain that there exist constants M > 0 and C7 > 0 such that for all ε small enough

lim
K→∞

P [θ̃Kε < θK,εnear n∗ < τmut. ∧ η
KuK

and θK,Mε
exit n∗ < e

KV ∧ τmut. ∧ θ
K,ε
not small ] < C7ε (III.4.110)

This is obtained in a similar way as Equation (III.4.82) in the first step. Note that (g, p) ∈
X n∗
extinct implies that (g, pi) ∈ X n∗

extinct for all pi ∈ [p]g, which is a consequence of Assumption 6.
Using the same arguments as in the first step, we can construct, for all (g, p) ∈ X n∗

extinct, a
∣[p]g ∣-type continuous time branching process Y ε,(g,p)(s) with initial condition

Y
ε,(g,p)
i (0) = νK

θK,εnear n∗
(g, pi)K for all pi ∈ [p]g (III.4.111)

such that for all K large enough and for all t ∈ [θK,εnear n∗ , θ
K,Mε
exit n∗ ∧ θ

K,ε
not small ∧ τmut.]

νKt (g, pi)K ≤ Y ε,(g,p)
i (t − θK,εnear n∗) for all pi ∈ [p]g. (III.4.112)

Furthermore, Y ε,(g,p)(t) is characterized as follows: For each pi ∈ [p]g, each individual in
Y ε,(g,p)(t) with trait (g, pi) undergoes

(i) birth (without mutation) with rate b(pi)

(ii) death with rate d(pi)+∑(ĝ,p̂)∈X(g,p),(g̃,p̃) c(pi, p̂)n
∗
(g,p)((g,p), (g̃, p̃))−cmax(M +∣X n∗

extinct∣)ε

(iii) for all 1 ≤ j ≤ ∣[p]g ∣ switch from phenotype pi to pj with rate sg(pi, pj).

LetA(Y ε,(g,p)) denote the infinitesimal generator of the process Y ε,(g,p). Since the equilibrium
n∗((g,p), (g̃, p̃)) is locally strictly stable (cf. Assumption 7), the eigenvalues of the Jacobian
matrix of the dynamical system at n∗((g,p), (g̃, p̃)) are all strictly negative. If ε is small
enough, this implies that all eigenvalues of {A(Y ε,(g,p)), (g, p) ∈ X n∗

extinct} are strictly negative.
(There exists an order of the elements of X(g,p),(g̃,p̃) such that the Jacobian matrix is an
upper-block-triangular matrix and {A(Y 0,(g,p)), (g, p) ∈ X n∗

extinct} are on the diagonal.) Thus,
for all ε small enough, the branching processes {Y ε,(g,p), (g, p) ∈ X n∗

extinct} are all subcritical.
Moreover, we can apply Lemma III.4.7 and get, for all ε small enough and (g, p) ∈ X n∗

extinct

lim
K→∞

P [inf{t ≥ 0 ∶ Y ε,(g,p)(t) = 0} ≤ η

KuK
] = 1, (III.4.113)
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and there exists a constant C8 such that for all ε small enough and (g, p) ∈ X n∗
extinct

lim
K→∞

P [inf{t ≥ 0 ∶ Y ε,(g,p)(t) = ⌈εK⌉} ≤ inf{t ≥ 0 ∶ Y ε,(g,p)(t) = 0}] ≤ C8ε. (III.4.114)

Hence, there exists a constant M > 0 and C9 > 0 such that, for all η > 0 and ε small enough,

lim
K→∞

P [θ̃Kε < θK,Mε
Jump < τmut. ∧

η

KuK
∧ θK,εnot small ] ≥ 1 − q(g,p)(g̃, p̃) −C9ε, (III.4.115)

which finishes the proof of the theorem.

Combining all the previous results, we can prove similar as in [25] that for all ε > 0, t > 0
and Γ ⊂ X ,

lim
K→∞

P[Supp(νKt/KuK) = Γ, all traits of Γ coexist in LV S(∣Γ∣,Γ), (III.4.116)

and ∣∣νKt/KuK − ∑
x∈Γ

n̄x(Γ)δx∣∣TV < ε] = P[Supp(Λt) = Γ]

where Λ is the PES with phenotypic plasticity defined in Theorem III.4.3. Finally, generalizing
this to any sequence of times 0 < t1 < . . . < tn, implies that (νKt/KuK)t≥0 converges in the sense
of finite dimensional distributions to (Λt)t≥0 (cf. [25] Corollary 1 and Lemma 1), which ends
the proof of Theorem III.4.3.

Examples.

Figure III.9 shows examples, where in a population consisting only of type (g, p) and being
close to n(g, p) a mutation to genotype g̃ occurs. In this example, g̃ is associated with two
possible phenotypes p̃1 and p̃2.

A B

Figure III.9: Simulations of the invasion phase with K = 1000. (A) The mutant phenotype p̃1 has a
negative initial growth rate but can switch to p̃2 which has a positive one. The fitness of the genotype
g̃ is positive. (B) The fitness of the mutant genotype g̃ is positive, although each phenotype has
a negative initial growth rate. This is possible because an outgoing switch is a loss of a cell for a
phenotype, but not for the whole genotype.

In example (A), we start with a single mutant carrying trait (g̃, p̃1) and which can switch
to p̃2 but the back-switch is relative weak (cf. Table III.3). According to definition (III.4.88)
we have f(g,p)(g̃, p̃1) < 0 and f(g,p)(g̃, p̃2) > 0. However, the global fitness of the genotype g̃



III.4. THE INTERPLAY BETWEEN RARE MUTATIONS AND FAST SWITCHES 117

is positive. More precisely, it is given by the largest eigenvalue of ( −3 2
0.6 1 ), which equals ap-

proximatively 1.280. Therefore, the multi-type branching process approximating the mutant
population in the first step is supercritical. This does not depend on the ion the phenotypic
trait of the first mutant, i.e. we would have the same if we would have started with a single
mutant carrying trait (g̃, p̃2)). However, the probability of invasion depends this. In this
example, the invasion probability is given by the solution of

2y2
1 + 2y2 + 3 − 7y1 = 0, (III.4.117)

4y2
2 + 0.6y1 + 2.4 − 7y2 = 0. (III.4.118)

Thus, if we start with the trait (g̃, p̃1), the invasion probability is approximately 0.199.
Whereas it is 0.338 if the first one has trait (g̃, p̃2). In Figure III.9 (A), the mutant popula-
tion with genotype g̃ survives and the stochastic process is attracted to the new equilibrium
n∗((g, p), (g̃, p̃1), (g̃, p̃2)) ≈ (0,0.543,2.554), which is a strictly stable.

b(p) = 3 d(p) = 1 c(p, p) = 1 c(p, p̃1) = 1 c(p, p̃2) = 0.7 - νK0 (g, p) = 2

b(p̃1) = 2 d(p̃1) = 1 c(p̃1, p) = 1 c(p̃1, p̃1) = 1 c(p̃1, p̃2) = 0.5 sg̃(p̃1, p̃2) = 2 νK0 (g̃, p̃1) = 1/K
b(p̃2) = 4 d(p̃2) = 1 c(p̃2, p) = 0.7 c(p̃2, p̃1) = 0.5 c(p̃2, p̃2) = 1 sg̃(p̃2, p̃1) = 0.6 νK0 (g̃, p̃2) = 0

Table III.3: Parameters of Figure III.9 (A)

In example (B), f(g,p)(g̃, p̃1) and f(g,p)(g̃, p̃2) are both negative. Nevertheless, the fitness
of the genotype is positive and thus the mutant invades with positive probability. (It is given
by the largest eigenvalue of ( −3 2

2 −0.4 ), which equals approximatively 0.685.) However, the
invasion probability is smaller in this example. It is approximately 0.127 if we start with
the trait (g̃, p̃1) and 0.207 else. In Figure III.9 (B), the mutant population survives and
the process is attracted to the stable fixed point n∗((g, p), (g̃, p̃1), (g̃, p̃2)) ≈ (0,1.153,1.745).
Hence, this examples illustrate that the usual definition of invasion fitness fails for populations
with phenotypic plasticity.

b(p) = 3 d(p) = 1 c(p, p) = 1 c(p, p̃1) = 1 c(p, p̃2) = 0.7 - νK0 (g, p) = 2

b(p̃1) = 2 d(p̃1) = 1 c(p̃1, p) = 1 c(p̃1, p̃1) = 1 c(p̃1, p̃2) = 0.5 sg̃(p̃1, p̃2) = 2 νK0 (g̃, p̃1) = 1/K
b(p̃2) = 4 d(p̃2) = 1 c(p̃2, p) = 0.7 c(p̃2, p̃1) = 0.5 c(p̃2, p̃2) = 1 sg̃(p̃2, p̃1) = 2 νK0 (g̃, p̃2) = 0

Table III.4: Parameters of Figure III.9 (B)

III.4.3 Interplay of mutation and therapy

In the previous subsection we considered the probability of invasion of a mutant when the
resident population is at an equilibrium given by a stable fixed point. In the context of
therapy, there are phases when populations shrink and regrow due to treatment and relapse
phenomena. In the medical literature, there are frequent allusions to the possibility that such
growth cycles may induce fixation of a “super-resistant mutant", see e.g. [60, 65, 66]. It is
important to understand whether and under what circumstances such effects may happen.

In this subsection we show an example where the appearance of a mutant genotype may
indeed be enhanced under treatment. We consider birth-reducing competition (BRC) between
tumor cells. In such a case, a large population at equilibrium may encounter fewer births
and hence mutations, than a smaller population growing towards its equilibrium size. Let
us discuss in more detail how the birth-reducing competition can have a crucial effect on
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the mutation time scale. For the sake of simplicity we ignore in this subsection the effect of
switching the phenotype and the usual competition, i.e. we consider an example where all
switching rates and the usual competition kernel are set to zero. Since the presence of TNF-α
only influences the switch between phenotypes, it does not play any role. So, let us consider
a melanoma population of type (g, p) which can be attacked by T-cells but cannot change its
phenotype, i.e. it cannot escape therapy by switching. However, on a longer time scale it is
able to mutate to a fitter type of melanoma (g̃, p̃), which cannot be attacked by the T-cells.
Now we are interested whether therapy can lead to earlier mutations. This is the simplest
scenario where the effect of therapy in this context can be explained.

As in the last subsection we are interested in the case of a large population size (K →∞)
in combination with rare mutations (uK → 0). The interesting scaling of the mutation rate
is KµKg → α > 0 as K → ∞. Thus, mutational events happen slightly faster than in the last
subsection. In [97], Mayer gives a more detailed analysis of the same scenario when mutational
events happen as fast as in the last subsection, i.e. KµKg → 0 as K →∞.

Observe that the total mutation rate of the population of type (g, p) at time t is

uKm(g) ⌊b(p) − cb(p, p)νKt (g, p)⌋+ ν
K
t (g, p)K. (III.4.119)

This is a positive and concave function of νKt (g, p) on the interval [0, b(p)/cb(p, p)], see Figure
III.10. Without therapy and before the first mutant appears, the melanoma population can

b(p)
2cb(p,p)

b(p)
cb(p,p)

0

n̄(g,p) = b(p)−d(p)
cb(p,p)

d(p)
cb(p,p)

uKK
b(p)2

4cb(p,p)

mutation rate

population size

Figure III.10: Initial total mutation rate of the population (g, p).

be approximated by the solution of

ṅ(g,p) = n(g,p)([b(p) − cb(p, p)n(g,p)]+ − d(p)) (III.4.120)

Thus, if the melanoma population is close to its equilibrium n̄(g,p) = (b(p) − d(p))/cb(p, p) at
the beginning, we can approximate the first mutation time by an exponential random variable
with parameter

uKKm(g)d(p)n̄(g,p). (III.4.121)

Since the mutation rate is maximal at νKt (g, p) = b(p)
2cb(p,p) , we conclude that if n̄(g,p) >

b(p)
2cb(p,p) ,

then smaller populations (more precisely populations which stay a long enough time between
d(p)/cb(p, p) and n̄(g,p)) have a higher total mutation rates. This effect is illustrated in Figure
III.11. If the population starts below its equilibrium (cf. Figure III.11 (A) ), the mutant
occurs in the simulations in average earlier than when the population starts at equilibrium
(cf. Figure III.11 (B)).
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A B

Figure III.11: Simulations of mutation events in a population, where competition is acting via birth
reduction (K = 103 and uK = 1/K). The number of individuals divided by 1000 is plotted versus time.
Effect for an initial population which is small (A), or at equilibrium (B).

b(p) = 4 d(p) = 0.1 cb(p, p) = 3 cb(p, p̃) = 0.8 m(g) = 1 νK0 (g, p) = 0.1 resp. 1.3

b(p̃) = 6 d(p̃) = 1 cb(p̃, p) = 0.8 cb(p̃,p̃) = 1 νK0 (g̃, p̃) = 0

Table III.5: Parameters of Figure III.11

During therapy, a tumor which is close to equilibrium can shrink to a small size: the
injection of T-cells in the system lowers the population size of melanoma, and thus the total
mutation rate in the tumor population of type (g, p) can be larger during treatment. This
means that treatment could lead to earlier mutations and thereby accelerate the evolution
towards more aggressive tumor variants.

The following example provides an interesting situation of interplay between therapy and
mutation. By lowering the melanoma population, the T-cell therapy actually increases the
probability for it to mutate to a potentially fitter and pathogenic genotype, which is not
affected by the T-cells. Under treatment (Figure III.12), the fitter mutant occurs on average
much earlier than without therapy (Figure III.11 (B)).

Figure III.12: Simulations of mutation events in a melanoma population under therapy, where com-
petition is acting via birth reduction (K = 103 and uK = 1/K). The mutant occurs earlier than in the
simulation without therapy (cf. Figure III.11 (B)).

Another effect of therapy, which we don’t discuss in detail, is that a mutant has a higher
invasion probability if it appears in a smaller melanoma population, since the mutant competes
for resources with less other melanoma cells. Furthermore, the proliferation of the mutant
population is may be faster under therapy, too.
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b(p) = 4 d(p) = 0.1 cb(p, p) = 3 cb(p, p̃) = 0.8 m(g) = 1 νK0 (g, p) = 1.3

b(p̃) = 6 d(p̃) = 1 cb(p̃, p) = 0.8 cb(p̃,p̃) = 1 νK0 (g̃, p̃) = 0

b(z, p) = 20 d(z) = 6 t(z, p) = 10 νK0 (z) = 0.1

Table III.6: Parameters of Figure III.12

III.5 Discussion and clinical relevance

Therapy resistance is a major issue in the treatment of advanced stages of cancer. We have
proposed a stochastic mathematical model that allows to simulate treatment scenarios and
applied it to the specific case of immunotherapy of melanomas. Comparison to experimental
data is so far promising (cf. [9] and [97]). The models pose challenging new mathematical
questions, in particular due to the interplay of fast phenotypic switches and rare driver muta-
tions as we have seen e.g. in Section III.4. First numerical results point to a significant effect
of stochastic fluctuations in the success of therapies. More precise experimental data will be
needed in the future to fit crucial model parameters. While our models describe the actions of
individual cells and cytokines, they do not by far resolve the full complexity of the biological
system. In particular, they do not reflect the spatial structure of the tumor and its microen-
vironment. Also, the distinction of only two phenotypes of the tumor cells is a simplification.
The same is true for the interaction with other immune cells and cytokines. This reflects on
the one hand the limitation due to available experimental data, on the other hand the use
of a model of reduced complexity also makes numerical computations and theoretical under-
standing of the key phenomena feasible. The rates entering as model parameters therefore
have to be understood as effective parameters, e.g. the death rate of T-cells accounts for their
natural death as well as the exhaustion phenomenon. In principle it is possible to increase
the resolution of the model; this, however, increases the number of parameters that need to
be determined experimentally which would pose a major challenge. Already at the present
stage, the model parameters are not known well enough and are adjusted to reproduce the
experimental findings. Some parameters that would be very useful to see measured precisely
are:

(i) birth and death rates of tumor cells, both in differentiated and dedifferentiated types.
Currently these are estimated from the growth rate of the tumor, but this yields only
the difference of these rates;

(ii) killing rates of T-cells, both of the differentiated and the dedifferentiated tumor cells;

(iii) rates of phenotypic switches, both in the absence and the presence of TNF-α;

(iv) death rates of T-cells and their expansion rates when interacting with tumor cells.

Nevertheless, we see the proposed model as a promising tool to assist the development of
improved treatment protocols. Simulations may guide the choice of experiments such that the
number of necessary experiments can be reduced. The obvious strength of our approach is to
model reciprocal interactions and phenotypic state transitions of tumor and immune cells in
a heterogeneous and dynamic microenvironment in the context of therapeutic perturbations.

The clinical importance of phenotypic coevolution in response to therapy has been recently
documented in patients’ samples from melanomas acquiring resistance to MAPK inhibitors
[77]. Of note and similar to our previous study, dedifferentiation of melanoma cells was iden-
tified as a major mechanism of escape from MAPK inhibitors [105, 87]. Hence, malignant
melanoma is a paradigm for a phenotypic heterogeneous tumor and a future goal is to in-
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corporate this increasing knowledge of melanoma cell plasticity into our method to refine its
capability to model complex interactions with immune cells.

Importantly, phenotypic plasticity in response to therapy is a widespread phenomenon
and non-small cell lung cancer represents a prominent example. Our mathematical approach
could represent a valuable tool to support this research, too. Finally, our results suggest that
stochastic events play an unanticipated critical role in the dynamic evolution of tumors and the
emergence of therapy resistance that requires further experimental and clinical investigation.
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III.6 Appendix

III.6.1 Infinitesimal generator

The measure-valued process (νKt )t≥0 described in section III.2 is a Markov process whose law
is characterized by its infinitesimal generator LK (cf. [55] Chapter 11 and [59]). The generator
acts on bounded measurable functions φ fromMK(X) into R, for all µK ∈ MK(X) by

(LKφ) (µK) (III.6.1)

= ∑
(g,p)∈G×P

(φ (µK+
δ(g,p)
K

) − φ(µK)) (1 − uKm(g))⌊ b(p)−∑
p̃∈P

cb(p, p̃)µ
K
(p̃)⌋

+
KµK(g, p)

+ ∑
(g,p)∈G×P

∑
(g̃,p̃)∈G×P

(φ (µK+
δ(g̃,p̃)
K

) − φ(µK))uKm(g)M((g, p), (g̃, p̃))⌊b(p)− ∑
p′∈P

cb(p, p
′
)µK(p′)⌋

+
KµK(g, p)

+ ∑
(g,p)∈G×P

(φ (µK −
δ(g,p)
K

) − φ(µK)) (d(p) + ∑
p̃∈P

c(p, p̃)µK(p̃) + ⌊b(p) − ∑
p̃∈P

cb(p, p̃)µ
K
(p̃)⌋

−
)KµK(g, p)

+ ∑
(g,p)∈G×P

∑
z∈Z

(φ (µK −
δ(g,p)
K

+∑w∈W `killw (z, p) δw
K

) − φ(µK)) t(z, p)µK(z)KµK(g, p)

+ ∑
(g,p)∈G×P

∑
p̃∈P

(φ (µK+
δ(g,p̃)
K

−
δ(g,p)
K

) − φ(µK)) (sg(p, p̃) +∑w∈Ws
g
w(p, p̃)µ

K
(w))KµK(g, p)

+ ∑
z∈Z

(φ (µK+ δz
K

) − φ(µK)) b(z)KµK(z)

+ ∑
z∈Z

(φ (µK −
δz
K

) − φ(µK))d(z)KµK(z)

+ ∑
z∈Z
∑
p∈P

(φ (µK+ δz
K
+∑w∈W`

prod
w (z, p)

δw
K

) − φ(µK)) b(z, p)µK(p)KµK(z)

+ ∑
w∈W

(φ (µK −
δw
K

) − φ(µK))d(w)KµK(w)

and for the extension to a non-finite trait space the infinitesimal generator is given by

(LKφ) (µK) (III.6.2)

= ∫G×P
(φ (µK+

δ(g,p)
K

) − φ(µK)) × (1 − uKm(g))⌊ b(p)−∫P
cb(p, p̃)µ

K
(dp̃)⌋

+
KµK(d(g, p))

+ ∫G×P ∫G×P
(φ (µK+

δ(g̃,p̃)
K

) − φ(µK))uKm(g)M((g, p),d(g̃, p̃))⌊b(p)−∫P
cb(p, p

′
)µK(dp′)⌋

+
KµK(d(g, p))

+ ∫G×P
(φ (µK−

δ(g,p)
K

) − φ(µK)) (d(p) + ∫P
c(p, p̃)µK(dp̃) + ⌊b(p)−∫P

cb(p, p̃)µ
K
(dp̃)⌋

−
)KµK(d(g, p))

+ ∫G×P ∫Z
(φ(µK−

δ(g,p)
K

+ ∫W
δw
K
`killz,(g,p)(dw)) − φ(µK)) t(z, p)µK(dz)KµK(d(g, p))

+ ∫G×P ∫P
(φ (µK+

δ(g,p̃)
K

−
δ(g,p)
K

) − φ(µK))S(g,p)(dp̃) ŝ(g, p)Kµ
K
(d(g, p))

+ ∫G×P ∫W ∫P
(φ (µK+

δ(g,p̃)
K

−
δ(g,p)
K

) − φ(µK))Sw,(g,p)(dp̃) ŝ((g, p),w)µK(dw)KµK(d(g, p))

+ ∫Z
(φ (µK+ δz

K
) − φ(µK)) b(z)KµK(dz)

+ ∫Z
(φ (µK− δz

K
) − φ(µK))d(z)KµK(dz)

+ ∫Z ∫P
(φ(µK+ δz

K
+ ∫W

δw
K
`prodz,p (dw)) − φ(µK)) b(z, p)µK(dp)KµK(dz)

+ ∫W
(φ (µK− δw

K
) − φ(µK))d(w)KµK(dw).
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III.6.2 Pseudo-code

Algorithm 2: Pseudo-code of the Gillespie algorithm used for generating the figures.
Data: Initial conditions: νK0 ∈ M

K
(X), Iterations: NIterations, Parameters of Section III.1.

T0 ← 0, νKT0
← νK0 , k ← 0

while k ≤ NIterations do
for x ∈ Supp(νKTk

) do
if x = (g, p) ∈ G × P then

B(x) ←KνKTk
(g, p) ⌊b(p) −∑(g̃,p̃)∈Supp(νK

Tk
) cb(p, p̃)ν

K
Tk

(g̃, p̃)⌋+
D(x) ←KνKTk

(g, p) (d(p) + ⌊b(p) −∑(g̃,p̃)∈Supp(νK
Tk

) cb(p, p̃)ν
K
Tk

(g̃, p̃)⌋−
+∑(g̃,p̃)∈Supp(νK

Tk
) c(p, p̃)ν

K
Tk

(g̃, p̃)),

T (x) ←KνKTk
(g, p) ∑z∈Supp(νK

Tk
) t(z, p)ν

K
Tk

(z),

S(x) ←KνKTk
(g, p) ∑p̃∈P (sg(p, p̃) +∑w∈Supp(νK

Tk
) s
g
w(p, p̃)ν

K
Tk

(w)),

P (x) ← 0,

if x = z ∈ Z then
B(x) ←KνKTk

(z) b(z), D(x) ←KνKTk
(z) d(z), T (x) ← 0, S(x) ← 0

P (x) ←KνKTk
(z) ∑(g,p)∈Supp(νK

Tk
) b(z, p)ν

K
Tk

(g, p),

if x = w ∈ W then
B(x) ← 0, D(x) ←KνKTk

(w) d(w), T (x) ← 0, S(x) ← 0, P (x) ← 0,

TotalTraitRate(x) ← B(x) +D(x) + T (x) + P (x) + S(x)

TotalEventRate ← ∑x∈Supp(νK
Tk

)TotalTraitRate(x),

Sample t ∼ Exp(TotalEventRate), Tk+1 ← Tk + t

Sample xchosen ∈ X according to {TotalTraitRate(x), x ∈ Supp(νKTk
)},

Sample E ∈ {Birth,Death,Therapy,Production,Switch} according to
{B(xchosen),D(xchosen), T (xchosen), P (xchosen), S(xchosen)},
case E = Birth

if xchosen = (g, p) ∈ G × P then
Sample B ∈ {No Mutation,Mutation} according to {1 − uKm(g), uKm(g)}
case B = No Mutation

νKTk+1 ← νKTk
+ 1
K
δxchosen

case B = Mutation
Sample (g̃, p̃) according to M((g, p), (g̃, p̃))

νKTk+1 ← νKTk
+ 1
K
δ(g̃,p̃)

else
νKTk+1 ← νKTk

+ 1
K
δxchosen

case E = Death
νKTk+1 ← νKTk

− 1
K
δxchosen

case E = Therapy (Note that xchosen = (g, p) for some (g, p) ∈ G × P in this case.)
Sample z ∈ Z according to {t(z, p)νKTk

(z), z ∈ Supp(νKTk
) ∩ Z}

νKTk+1 ← νKTk
− 1
K
δ(g,p) +∑w∈W `killw (z, p) 1

K
δw

case E = Production
Sample (g, p) ∈ Supp(νKTk

) according to {b(xchosen, p)ν
K
Tk

(g, p), (g, p) ∈ Supp(νKTk
)}

νKTk+1 ← νKTk
+ 1
K
δxchosen +∑w∈W `prodw (xchosen, p)

1
K
δw

case E = Switch (Note that xchosen = (g, p) for some (g, p) ∈ G × P in this case.)
Sample p̃ ∈ P according to {sg(p, p̃) +∑w∈Supp(νK

Tk
) s
g
w(p, p̃)ν

K
Tk

(w), p̃ ∈ P}

νKTk+1 ← νKTk
− 1
K
δ(g,p) + 1

K
δ(g,p̃)

k = k + 1

We use the following notations: let D be some discrete set and X a D-valued random variable, then X
sampled according to the weights {w(i), i ∈ D} means that P(X = i) = w(i)/∑i∈D w(i).
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The depth diagram of the algorithm we used to generate the simulations in this thesis is given
in Figure III.13.

Figure III.13: Depth diagram of the program.
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