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Introduction 1

1 Introduction
Cells are the basic biological unit of all living organisms. They are the fundamental unit of

structure and function. The outer boundary of a cell is the plasma membrane, consisting of a

phospholipid bilayer. Within the plasma membrane, enclosed by their own lipid bilayer,

distinct compartments, called organelles, can be identified. Organelles are specialized for

carrying out specific functions and each of them has a differentiate structure in comparison to

any other.

1.1 Peroxisomes

1.1.1 Peroxisome structure and features

Peroxisomes are round to oval organelles surrounded by a single membrane (Figure 1A). They

are present in all eukaryotic cells (with the only exception of the erythrocytes and

spermatozoa) (Schluter et al. 2006a). Their main functions are to protect the cell by the

damaging effects of reactive oxygen species (ROS) and to take part in the fatty acid oxidative

metabolism (Cooper & Beevers 1969; Lazarow & Duve 1976). Their size varies between

different cell types and within the same cell. Their size usually correlates with number per cell

(the more peroxisomes, the smaller they are) and with shape (smaller peroxisome are usually

round-shaped, whereas bigger peroxisomes are tubular) (van den Bosch et al. 1992; Wiese et

al. 2007; Schrader & Fahimi 2008). Their shape, number and protein repertoire are highly

variable in different species, tissues and cell types. Peroxisomes are promptly reacting to

different stimuli, physiological conditions and environmental changes (Islinger et al. 2012).

They can be rapidly assembled, they increase in number and, if not needed anymore,

degraded.

Peroxisomes are similar to lysosomes in morphology. Their biology is unique since they are

assembled from proteins synthetized in the cytoplasm on free ribosomes, but they replicate by

division, like mitochondria or chloroplasts (Lazarow & Fujiki 1985). In contrast to mitochondria

and chloroplasts, peroxisomal proteins are encoded by nuclear DNA. On the membrane and

inside the phospholipid by-layer, a multiplicity of proteins and enzymes are located. Electron

microscopy observation revealed that enzymes which are present in the peroxisome matrix

are electron dense structures; moreover, a crystalline core is described to constitute the

centre of the peroxisomal matrix (Figure 1, B and C).
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Figure 1 – Simplified schematic representation of peroxisome structure. (A) The lipid bilayer-delimited
vesicle contains a plethora of enzymes, among which the urate oxidase aggregate in an electron-dense
structure in the middle (modified from Molecular Expression;
http://micro.magnet.fsu.edu/cells/peroxisomes/peroxisomes.html - The Florida State University). (B)
View of a peroxisome at the transmission electron microscope. The highly diffractive region in the
middle, giving a regular pattern, is representative of the electron-dense urate oxidase enzyme,
organized in a crystal structure (modified from Berg et al. 2012). (C) Cytochemical localization of catalase
stained with the alkaline diamino-benzidine technique in rat hepatic peroxisomes (PO). In the same
panel, it is possible to recognize also mitochondria, which are different in shape, structure and
morphology (modified from Schrader & Fahimi 2008).

At the time of first description, they were named “microbodies” (Rhodin 1954) and identified

as organelles that carry out oxidative reactions, leading to the production of hydrogen

peroxide. Since hydrogen peroxide is highly toxic to the cell, damaging nucleic acids, lipids and

proteins, peroxisomes contain catalase, which neutralizes hydrogen peroxide toxicity either by

converting it to water or by using it to oxidize other organic compounds (Duve & Baudhuin

1966).

1.1.2 Peroxisomal metabolic activity

The enzyme content is currently described to consists of more than one hundred different

proteins (Wanders 2014). All these enzymes are involved in a variety of metabolic reactions in

different biochemical pathways, focused on energy metabolism. Despite differences between

species, reactions common to animals, plants and fungi include the oxidation of different fatty

acids for energy production and the scavenging of toxic molecules (mainly reactive oxygen

species) therefrom derived (Cooper & Beevers 1969; Lazarow & Duve 1976). Fatty acids are

processed in a variety of ways, according to their structure: β-oxidation of fatty acids,

demethylation of branched fatty acids, oxidation of dicarboxylic and polyunsaturated fatty

acids are taking place in peroxisomes. These reactions are important since they provide a

major source of metabolic energy. In animals, peroxisomes further specialized with an
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extended group of reactions. They are capable also of lipid biosynthesis, in particular of ether

phospholipids, cholesterol and dolichol. In the heart and brain, plasmalogens synthesis is

especially relevant, since these molecules are important components of cell membranes. In

the liver, cholesterol can be further metabolized in bile acids which are then secreted in the

gut. In peroxisomes, also other substrates are metabolized: for example, uric acid can be used

for synthesis of purine nucleotides and amino acids can be deaminated (Nishikawa et al. 2000)

(Figure 2).

Figure 2 – Main metabolic pathways in peroxisomes. The numerous enzymes in the peroxisomal matrix
catalyse reactions involved in the same pathways. Substrates are imported by several ABCD transporters
at the membrane (blue boxes). The most important represented pathway is the fatty acid β-oxidation
and the enzymes involved are named in light orange boxes. Other pathways are fatty acid α-oxidation
(enzymes in yellow), plasmalogens synthesis (enzymes in purple) and bile acid synthesis (enzymes in
bright and light orange). All enzymes are indicated with the gene abbreviation. sVLCFA=saturated very
long chain fatty acids; unVLCFA=unsaturated very long chain fatty acids; DCA= dicarboxylic acids;
DHCA=dihydroxycholestanoic acid; THCA=trihydroxycholestanoic acid; CDCA=chenodeoxycholic acid;
DHAP=dihydroxyacetone phosphate; CA=cholic acid. (From Waterham et al. 2016).

In plants and fungi, peroxisomes are associated with an even wider range of metabolic

reactions (Islinger et al. 2012), e.g. the synthesis of hormonal signal molecules, like jasmonate

and auxins, or secondary metabolites, like biotin or vitamin K1 (Baker et al. 2006; Kienow et al.

2008; Bartoszewska et al. 2011). In Penicillum species, it is known that peroxisomes take part

in the synthesis of penicillin (Sprote et al. 2009; Meijer et al. 2010). In a similar way, other

fungi produce toxins required for host invasion in peroxisomes (Imazaki et al. 2010).
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Peroxisomes may also contain enzymes involved in the glyoxylate cycle and for this reason

they are also referred as glyoxysomes (Breidenbach & Beevers 1967).

1.1.2.1 Fatty acids β-oxidation

Peroxisomal β-oxidation is found in virtually all cell types and organisms. It usually starts from

Very Long Chain Fatty Acids (VLCFA), C22 and longer. Other molecules that can enter the

peroxisomal β-oxidation are branched-chain fatty acids (e.g. pristanic acid), bile acid

intermediates (such as DiHydroxyCholic Acid – DHCA and TriHydroxyCholic Acid – THCA) and

long chain dicarboxylic acids. During β-oxidation, fatty acid molecules undergo multiple cycles,

consisting each of four different reactions (dehydrogenation, hydration, dehydrogenation and

thiolytic cleavage). At the end of each cycle, fatty acid chains are two carbon atoms shortened

and electrons are transferred to oxygen without energy gain, in contrast to mitochondrial

oxidation (Wanders et al. 2010). Shortened fatty acid chains, usually with eight carbon atoms,

esterified to acyl-CoA molecules, enter then the mitochondrial oxidation, where they undergo

the complete oxidation into water and carbon dioxide (Wanders et al. 1995; van Roermund et

al. 1995) (Figure 3C).

Slight variations can be observed in the oxidation of the bile acids intermediates, like Di- and

TriHydroxyCholestanoic Acid (DHCA and THCA). They undergo one cycle of β-oxidation in

peroxisomes to produce the CoA esters of the primary bile acids, chenodeoxycholic acid and

cholic acid, respectively. These molecules are then conjugated with taurine or glycine and the

product is then transported out of the peroxisomes to be transferred to the bile

(Ferdinandusse & Houten 2006; Russell 2003) (Figure 3D).
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Figure 3 – Lipid metabolism in peroxisomes. Peroxisomes include enzymes able to differently process a
variety of substrates. These include the α-oxidation of phytanic acid (A) and the β-oxidation of pristanic
acid (B), very long chain fatty acids (VLCFA – C) and dihydroxycholestanoic acid (DHCA) and
trihydroxycholestanoic acid (THCA – D). All these reactions require the activation of the lipid moiety with
Coenzyme A (CoASH). The part of the ether phospholipid synthesis taking place in the peroxisomes is
also here represented (E). (FromWanders et al. 2010).

1.1.2.2 Fatty acids α-oxidation

Fatty acids with a methyl group at the 3-position (phytanic acid, for example) cannot be

directly β-oxidized. For this reason, they need first to be α-oxidized. Specific peroxisomal

enzymes (phytanoyl-CoA 2-hydroxylase, 2-hydroxyphytanoyl-CoA lyase, and pristanal

dehydrogenase) shorten the fatty acid chain of one carbon obtaining a 2-methyl fatty acid,

which can then enter canonical β-oxidation (Jansen & Wanders 2006; Wanders et al. 2011)

(Figure 3, A and B).

1.1.2.3 Ether phospholipids synthesis

Ether phospholipids are a special class of phospholipids in which at the sn-1 position of the

glycerol backbone an ether bond is present, in contrast to other phospholipids

(phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) having an ester

bond. The major subgroup of ester phospholipid is the plasmalogens, characterized by an

unsaturated O-(1-alkenyl)(vinyl ether) group. The biosynthesis of ether phospholipids occurs

predominantly in the ER, but it requires two essential intra-peroxisomal steps catalysed by
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GlyceroNePhosphate O-Acyl Transferase (GNPAT; also known as DiHydroxyAcetonePhosphate

AcylTransferase - DHAPAT) and AlkylGlycerone Phosphate Synthase (AGPS, also known as

alkyldihydroxyacetonephosphate synthase), introducing the typical ether bond (Braverman &

Moser 2012) (Figure 3E). Another protein on the peroxisomal membrane, Far1, catalyses the

cytosolic reduction of fatty acyl-CoA to their respective fatty alcohols, which are subsequently

used inside the peroxisome as substrate by AGPS (Buchert et al. 2014).

1.1.2.4 Reactive oxygen species detoxification

All the previously described reactions occurring inside the peroxisomes are highly oxidative

and produce massive amounts of H2O2, inducing oxidative stress. O2 is reduced to H2O2 by

different flavin-containing oxidases (Antonenkov et al. 2010). The most important of those is

catalase, a heme-containing enzyme that can form H2O2 in a catalytic (2H2O2 → 2H2O + O2) and

peroxidatic (H2O2 + AH2 → A + 2H2O) manner (Kirkman & Gaetani 2007). In the peroxisomal

enzyme repertoire, other anti-oxidant enzymes, such as xanthine dehydrogenase, inducible

Nitric Oxide Synthase (iNOS), Cu/Zn SuperOxide Dismutase (SOD1), PeroxiReDoXin 5 (PRDX5),

Glutathione S-Transferase Kappa (GSTK1), ‘Microsomal’ Glutathione S-Transferase 1 (MGST-1)

and EPoxide Hydrolase 2 (EPHX2) are present (del Rio 2002; Islinger et al. 2009). Typical

electron donors are low molecular weight alcohols, formate, nitrite and formaldehyde. Some

indirect molecular evidences show that also glutathione and vitamin C may contribute in the

regulation of the peroxisomal redox state, since peroxisomal membrane pore proteins may

allow their diffusion in the peroxisomal matrix (Rokka et al. 2009; Ivashchenko et al. 2011).

Nevertheless, some of these enzymes are sources of superoxide anions (O•−
2) and nitric

oxide (•NO) (Loughran et al. 2013; Stolz et al. 2002). O•−
2 and •NO can rapidly combine to form

peroxynitrite (ONOO−) (Pacher et al. 2007) (Figure 4). Other reactions, like the synthesis of

plasmalogens, are reactive oxygen species scavengers (Wallner & Schmitz 2011; Bonekamp et

al. 2009).
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Figure 4 – Reactive oxygen species metabolism in peroxisomes. Oxidations of fatty acids and synthesis of
ether phospholipids generate high amounts of H2O2, that may damage the cell biomolecules. Thus, H2O2

is confined in the peroxisome, where catalase, glutathione-peroxidases (GPx), peroxiredoxins and
superoxide dismutase (SODs) neutralize it. In the process also reactive nitrogen species can enter the
pathway, through the oxidation of L-arginine operated by the nitric oxide synthase (NOS). (From
Schrader & Fahimi 2006a).

Moreover, peroxisomes contribute to the cellular redox metabolism and signalling, with

electron-transfer processes playing a messenger role in biological systems (Burgoyne et al.

2012). Cells produce two different types of redox signalling molecules: reactive oxygen species

(O•−
2, H2O2, and the hydroxyl radical •OH) and reactive nitrogen species (•NO, nitrogen dioxide

radical •NO2, nitrite NO−
2, ONOO−)(Nathan & Ding 2010). These molecules can induce both

reversible and irreversible oxidation of proteins and thereby differently influence the activity

of kinases, phosphatases, transcription factors, caspases, and metalloproteases (Berridge

2014). Furthermore, lipid peroxidation products can act as important messengers in signalling

events that lead to cell proliferation, differentiation, senescence or apoptosis (Ayala et al.

2014).

1.1.3 Peroxisome biogenesis

The biogenesis of peroxisomes involves several processes including the formation of

peroxisome committed vesicles, the import of peroxisomal membrane and matrix proteins,

peroxisomal growth, division and proliferation (Fujiki et al. 2014; Smith & Aitchison 2013).

These different processes are controlled by a class of conserved proteins called peroxins (pex),

reflecting their role in peroxisome biogenesis. In mammals, 13 different pex genes were
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identified. Among those, Pex3, Pex16 and Pex19 are called ‘early peroxins’ since they are

required in the first events leading to peroxisome biogenesis. Pex3 covers a critical role in the

commitment of ER-budding vesicles to the peroxisomal fate and in the formation of the

peroxisomal proteins importomer.

1.1.3.1 ‘Growth and division’ peroxisome biogenesis pathway

Phospholipids building the peroxisomal membrane originate from the endoplasmic reticulum

(Dimitrov et al. 2013; Agrawal & Subramani 2013). Peroxisomes are rather autonomous

organelles, meaning that existing ones grow and divide under normal conditions. This growth

is mediated by an increase of membrane surfaces through importing lipids and matrix proteins.

The division process includes elongation, constriction and fission (Schrader et al. 2012;

Schrader & Fahimi 2006a). Elongation and constriction are guided by Pex11 proteins (α, β and

γ isoforms, in mammals), each of them having specific functions in the division pathway (Figure

5): Pex11α and Pex11β overexpression increase peroxisome quantity in mammalian cells, but

that is not the case for Pex11γ (Li, X. et al. 2002). Pex11 genes are conserved across all the

eukaryotes (Koch et al. 2010). Interestingly, proteins shared with mitochondrial fission process

are taking part in peroxisome fission. These are DLP1/Drp1, Fis1, Mff and GDAP1 (Schrader et

al. 2015; Schrader et al. 2013). DLP1/Drp1 is involved in various cellular membrane fission and

fusion events and it is recruited and activated by Pex11β, oligomerize in ring-like structures,

causing the constriction sites and, binding Fis1 and Mff, the scission of the daughter

peroxisomes (Schrader et al. 2015; Williams et al. 2015). During cell division, like all the other

organelles, peroxisomes are symmetrically segregated in daughter cells.

1.1.3.2 De novo peroxisome biogenesis pathway

In challenging situations (environmental or metabolic pressure), higher amounts of

peroxisomes are needed, and they can be formed through alternative pathways. Peroxisomes

are formed de novo and this can be demonstrated in cells devoid of any peroxisome or

peroxisomal membrane, that are able to re-establish a peroxisome pool. Most probably, this

de novo peroxisome biogenesis starts from pre-peroxisomal vesicles that originate from the ER

(Dimitrov et al. 2013; Agrawal & Subramani 2013; Kim et al. 2006). Two peroxins in particular,

Pex3 and Pex16, have indeed been found on the ER membrane and are described to have a

specific role in the definition of ‘pre-peroxisomal compartments’. Pex19 is assumed to be

involved in the budding of pre-peroxisomal vesicles from the domains defined on the ER by
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Pex3 and Pex16 (Fujiki et al. 2014). These pre-peroxisomal vesicles are then enriched with

peroxisomal membrane proteins and peroxisomal matrix proteins, according the canonical

pathways (Figure 5). The import of peroxisomal membrane proteins and matrix proteins is

mediated by other members of the peroxin family.

Figure 5 – Schematic representation of peroxisome biogenesis pathways. (1) Peroxisome membrane
proteins (PMP) are either post-translationally or co-translationally incorporated in the ER membrane; in
this step, the ER-translocon Sec61 may be required for the incorporation. (2) PMPs are sorted in the ER
and they are targeted to specific subdomains (pER). (3-4) In a Pex19-dependent manner, PMPs are
exported from the ER in vesicular carriers, that later fuse with other vesicles containing complementary
sets of PMPs, among which Pex1 and Pex6. (5-6) The fusion of these vesicle carriers enable the forming
peroxisome to import matrix proteins, with the assistance of Pex3 and Pex19, and become metabolically
active. (7) Newly formed peroxisomes enrich the cellular peroxisome population, substituting the
‘growth and division’ pathway when it is blocked or impaired. (From Agrawal & Subramani 2016).

1.1.3.3 Peroxisomal membrane protein import

The embedding of membrane proteins and the import of matrix proteins is mediated by a

complex machinery involving several Pex proteins, plus a set of accessory proteins required for

Pex activity regulation, mainly via ubiquitination and deubiquitination (Hasan et al. 2013;

Schluter et al. 2006b).
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Peroxisomes do not possess their own genome, so the proteins dispatched to this

compartment are encoded by nuclear genes, synthetized in free cytosolic ribosomes and

transported to the peroxisomes. Pex3, Pex16 and Pex19 are the key peroxins for controlling

Peroxisomal Membrane Proteins (PMPs) repertoire. Pex19 may be able to recognize PMPs and

work as cytosolic chaperon (Rottensteiner et al. 2004). Pex3 is located in the peroxisomal

membrane and it works as docking site for the Pex19-PMP cargo complex (Fang et al. 2004).

Pex16 is not conserved across the eukaryotes, but in the species in which it is present, it was

shown to be co-receptor for the Pex3-Pex19-PMP complex (Honsho et al. 2002). Once Pex19 is

docked on the peroxisomal membrane with its cargo, Pex3 may induce a local remodelling of

the membrane. The hydrophobic domains of the cargo protein may then come closer and

hydrophobic forces would detach it from the chaperone, Pex19. Once this process is

completed, Pex19 is released in the cytosol and can be recycled for the embedding of a new

PMP (Figure 6). Some recent reports, based on research in yeast model, propose that PMPs are

inserted in the membrane already at the ER, via a Sec61-dependent mechanism and they exit

the ER already in pre-peroxisomal vesicles, that fuse with pre-existing peroxisomes (Thoms et

al. 2012).

1.1.3.4 Peroxisomal matrix protein import

Proteins directed to the peroxisomal matrix must contain a peroxisomal targeting signal (PTS).

Two PTSs were identified and characterized until now. The most common, PTS1 signal, is a C-

terminal tripeptide with the consensus sequence serine-lysine-leucine (S-K-L) (Brocard & Hartig

2006), but conserved exchanges are accepted [(S/A/C)-(K/R/H)-(L/M)]. In rare cases, proteins

may have a PTS2 signal, a nonapeptide at the N-terminus of the protein with consensus

sequence (R/K)-(L/I/V)-X5-(Q/H)-(L/I/V) (Subramani 1992). After the import into the matrix,

PTS2 signal is cleaved off (Lazarow 2006). The import of matrix proteins into the lumen of

peroxisomes requires a cytosolic receptor: Pex5 for PTS1-containing matrix proteins

(Braverman 1998), or Pex7 for PTS2-containing matrix proteins (Dodt et al. 2001). Other

peroxins, Pex13 and Pex14, form a gated pore onto which the matrix protein-receptor complex

docks. With the assistance of Pex2, Pex10 and Pex12, the cargo is released inside the matrix

and Pex1 and Pex6 allow the cytosolic receptor to be released for a new cycle or for

proteasomal degradation (Dammai & Subramani 2001) (Figure 6). Proteins are usually

transported through the membrane in the folded form and in oligomerized complexes, if

required for the protein function (McNew 1994).
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Figure 6 - Peroxisomal protein import. Peroxisomal membrane protein import depends on the Pex19
cytosolic chaperon and the Pex3 docking protein (with the facultative assistance of Pex16). On the other
hand, peroxisomal matrix protein import depends on two different cytosolic chaperons (Pex5 for PTS1-
containing proteins, Pex7 for PTS2-containing proteins) and several other peroxins at the peroxisomal
membrane to allow the release of the cargo from the chaperon and the crossing of the membrane.
(From Waterham et al. 2016).

1.1.4 Pex3, key component of peroxisome biogenesis

Pex3 is conserved across all the eukaryotes and it represents the key component of

peroxisome biogenesis, orchestrating the interactions with other peroxins, mediating the

successful sorting of membrane protein on peroxisome surface and providing lipid membrane

supply for the organelle growth. Most of the studies describing Pex3 mode of actions were

conducted in different yeast species (S. cerevisiae, H. polymorpha, Y. lipolytica), but in the last

few years also mammalian cell lines or fibroblasts from patients affected by mutation in one of

the PEX genes were used.

The first described Pex3 function is related to its role during peroxisomal membrane protein

embedding. In fact, as previously mentioned, Pex3 acts as docking factor for the Pex19-cargo

protein complex and it is able to locally remodel the membrane to facilitate the protein

insertion (Fang et al. 2004; Fujiki et al. 2006). Pex3 is also found at the membrane of

subdomains of the ER, which than evolve into pre-peroxisomal vesicles (Tam et al. 2005).

Moreover, Pex3-containing vesicles do not necessarily progress to mature peroxisomes, but

they might simply fuse to pre-existing ones, in order to supply lipids for membrane surface and

volume growth (van der Zand et al. 2012). More recently, new roles were described,
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connecting Pex3 to peroxisome inheritance during cell division, by means of interaction with

Inp1 (Munck et al. 2009), and to the autophagic clearance of damaged peroxisomes (process

also known as ‘pexophagy’) through ubiquitination and interaction with autophagy related

proteins (Yamashita et al. 2014; Burnett et al. 2015).

Different studies carried out on yeast on murine Pex3 proteins clarified its three-dimensional

structure and the nature of the interaction with other partner proteins (Sato et al. 2010;

Schmidt et al. 2012a; Hattula et al. 2014). The cytosolic domain of Pex3 is described as a

spheroid with a ‘twisted six-helix bundle’ fold. A hydrophobic surface located at the most distal

part from the peroxisome membrane constitutes the interaction domain with a hydrophobic

α-helix of Pex19, being responsible for the high affinity of these two proteins (Sato et al. 2008).

Thus, Pex19 can be efficiently captured from the cytoplasm and its conformation can be

changed to allow the release of the cargo protein. Another hydrophobic groove is located at

the apex of the spheroid proximal to the peroxisome membrane and it is most probably

required in post-translational membrane protein import (Schmidt et al. 2012b) (Figure 7). The

interaction with Pex19 significantly stabilize Pex3, limiting its thermal mobility and possibly

shielding hydrophobic residues, otherwise exposed to the aqueous environment (Schmidt et

al. 2010).

Figure 7 – Pex3 structure. (A) Surface representations of PEX3 with the bound PEX19-derived peptide
depicted as an orange ribbon. A hydrophobic surface located at the most distal part from the
peroxisome membrane (depicted in green) constitutes the interaction domain with a hydrophobic α-
helix of Pex19. Another hydrophobic groove, necessary for Pex3 post-translational insertion into the
membrane, is located at the opposite apex. Conserved amino acids are annotated. (Modified from
Schmidt et al. 2012b) (B) Unfolded structure of the six cytoplasmic α-helices. Red shadings show the
Pex19 binding regions (From Sato et al. 2010). (C) Scheme representing a view of Pex3 from the distal
side. Boxes represent the different α-helices and amino acids which are interacting with Pex19 are
annotated (From Sato et al. 2010).
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1.1.5 Peroxisome related pathologies

Mutations in genes involved in peroxisome biogenesis, in any of the enzyme of the metabolic

pathways or in any of the peroxisomal membrane metabolite transporter are causing severe

pathologies in human. Since peroxisomes play a crucial role in human metabolism, these

organelles are indispensable for normal life and their lack has detrimental effects and causes

often lethality within the first years of age, in humans (Wanders 2014; Waterham & Ebberink

2012). The spectrum of diseases is rather heterogeneous and two main groups of pathologies

can be identified: single Peroxisomal Enzyme Deficiencies (PEDs) and the Peroxisomal

Biogenesis Disorders (PBDs). The estimated combined incidence of these two groups of

disorders is of 1 in 5000 individuals with X-linked adrenoleukodystrophy as the most common

(Kemp et al. 2012).

1.1.5.1 Peroxisomal enzyme deficiencies

PEDs are disorders caused by a defect of individual peroxisomal proteins involved in one

specific catalysis step. Both peroxisomal matrix enzymes and peroxisomal membrane proteins

involved in metabolite transport can be affected. The clinical and biochemical consequences

are related to the specific function in peroxisomal metabolism of the mutated gene. Disorders

can be caused by enzymes involved in peroxisomal β-oxidation (X-linked

adrenoleukodystrophy, X-ALD, is the most frequently occurring - Engelen et al. 2014),

peroxisomal α-oxidation (Refsum disease - Pagon et al. 1993), glyoxylate metabolism (primary

hyperoxaluria type I), ether phospholipid biosynthesis (rhizomelic chondrodysplasia punctate,

RCDP - Barth et al. 1996; Heymans et al. 1985), peroxisomal bile acid synthesis and peroxide

metabolism (acatalasemia - Takahara 1952; Goth & Nagy 2013).

1.1.5.2 Peroxisomal biogenesis disorders

PBDs are caused by a heterogeneous group of autosomal recessive mutations affecting the

assembly and the maintenance of functional peroxisomes. 13 different Pex genes have been

identified until now to be causative of these pathologies. The affected Pex genes are mainly

involved in the import of peroxisomal membrane or matrix proteins, but recently a few

mutations in genes involved in peroxisome maintenance were described (Yik et al. 2009). The

clinical presentation of PBD patients ranges from severe, early-lethal, multisystemic disorders

to milder, late-onset progressive neurological diseases or even isolated visual or hearing

problems. For this reason, PBDs are classified in Zellweger spectrum disorders (ZSDs),
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rhizomelic chondrodysplasia punctate type 1 and type 5 and peroxisomal fission defects,

according to the severity of the symptoms.

ZSDs include the three best characterized manifestation of PBDs, namely (from the most to the

less severe) Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile

Refsum disease (IRD) (South et al. 2001). ZS patients display severe hypotonia, ocular

abnormalities, seizures, renal cysts, hepatic dysfunction and craniofacial deformities (large

anterior fontanel, prominent forehead, shallow orbital ridges, high arched palate and broad

nasal bridge). In the plasma, increased levels of substrates normally handled by peroxisomes,

such as VLCFAs, pristanic acid, phytanic acid, DHCA, THCA and pipecolic acid, and decreased

levels of end products of peroxisomal metabolism, such as plasmalogens, cholic,

chenodeoxycholic acid, and docosahexaenoic acid may be detected (Bootsma et al. 1999;

Dacremont & Vincent 1995). These patients do not complete the first years of life (Figure 8).

Figure 8 – Zellweger Syndrome patients. (A) In this patient the craniofacial deformities (prominent
forehead, shallow orbital ridges) are particularly prominent. (B) Another Zellweger Syndrome patient
shows severe hypotonia and other deformities. (Modified from Miller BF 2003).

NALD and IRD patients have highly variable clinical manifestations, all characterized by

developmental delays, progressively worsening. They usually reach their teens or even

adulthood (Berendse et al. 2016). Pex3, Pex16, and Pex19 mutations cause defects in the

import of both peroxisomal matrix and membrane proteins, and no peroxisome-like structure

can be detected anymore (Fujiki 2000); nevertheless, hypomorphic mutations in Pex3 and

Pex16 genes were described and they cause less severe clinical presentations with cells having

fewer but enlarged peroxisomes (Subramani 1992). Mutations in Pex1, Pex2, Pex5, Pex6,

Pex10, Pex12, Pex13, Pex14, and Pex26 genes affect only the import of peroxisomal matrix

proteins. Cells from PBD patients having mutations in one of these genes show peroxisomal

membrane remnants that may contain peroxisomal membrane proteins, the so-called ‘ghost
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peroxisomes’. The patients suffering of one of these mutations display only a few of the

symptoms that are typically associated with ZSDs, with hardly recognizable biochemical

defects.

Pex5L (encoding for the PTS1-protein receptor) cause RCDP type 5 (Baroy et al. 2015), while

Pex7 mutations (encoding for the PTS2-protein receptor) cause RCDP type 1 (Braverman &

Moser 2012); both have similar clinical symptoms: congenital contractures, cranial

abnormalities, severe hypotonia, cataract, skeletal deformities, and stippled calcification of

cartilage tissues.

Also peroxisome divisions can be affected by mutation in genes involved in the process: DLP1

(Waterham et al. 2007), Mff (Shamseldin et al. 2012), GDAP1 (Huber et al. 2013) and Pex11β

(Ebberink et al. 2012). These mutations cause mitochondrial encephalopathy and cells display

tubular peroxisomes. Since peroxisome fission machinery is partially shared with the

mitochondria fission machinery, also mitochondria may be affected. Despite altered

peroxisomal morphology in the analysed fibroblasts (so-called ‘pearls-on-a-string’

conformation), these patients do not display any biochemical parameters alterations.

1.1.5.3 Peroxisomal biogenesis disorder models

Due to the severity of PBDs, in order to gain further insight into their pathogenesis, biomedical

research aimed to the generation of animal models. Mouse models deficient for Pex2, Pex5,

Pex13 and Pex11b were generated (Baes & van Veldhoven 2006). All the clinical symptoms of

the ZS phenotype are recapitulated in these mice. Similar to what happens in human, null

models survive gestation, but die soon thereafter. Detailed analysis revealed changed brain

morphology, with altered distribution of cortical neurons, altered neuronal migration and

differentiation defects, extensive neuronal apoptosis (Pex5, Pex11b) and abnormal

morphology of Purkinje cells in the cerebellum (Pex2) (Faust 2003). Pex11b mutant mice show

only mild deficiencies in ß-oxidation and ether lipid biosynthesis and slight decrease of

peroxisome amount (Li, Xiaoling et al. 2002). Pex5 null mutants show morphologically

abnormal mitochondria with decreased respiratory chain complex activity, in liver, but no

oxidative damage, possibly due to the increase of glycolysis and of mitochondrial proliferation

(Dirkx et al. 2005). Pex5 conditional models for neural precursors or oligodendrocytes result in

moderate cortical migration defects, with progressive degeneration of axonal integrity and

maintenance of myelin, motor and cognitive impairment and premature death before 6

months of age (Baes & Aubourg 2009; Kassmann et al. 2007). Pex5 conditional knock-out in

the hepatocytes results in postnatal arrest of neuron migration (Krysko et al. 2007).
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Pex7 null mice recapitulate the RCDP phenotype (Braverman et al. 2010). The symptoms are

pinpointed to altered plasmalogens biosynthesis and their requirement in cerebellar, lens and

skeletal development, as well as spermatogenesis.

All the PBD mouse models were used to test potential therapeutic interventions, by means of

dietary supplementation of missing metabolites, already during gestation. These strategies

help to circumvent the lack of essential molecules for membrane formations, improving the

phenotype, but they did not avoid the accumulation of other unprocessed, toxic metabolites

(Braverman et al. 2013).

The attention is currently focused on peroxisome mosaicism in ZSD patient liver tissue and

fibroblast cell lines, namely the conditions in which some cells are able to import peroxisomal

proteins adjacent to others that show no import, in presence of a general Pex gene defect. The

hypothesis is that microenvironmental factors (e.g. different body temperature) can influence

peroxin activity (Steinberg et al. 2006).

Noteworthy, in parallel, also invertebrate models were generated. First publications in C.

elegans date back to the early 2000s. Using an RNAi approach, different peroxin homologs and

peroxisomal enzymes involved in α- and β-oxidation were inactivated, causing a

developmental arrest at the L1 stage and the missing initiation of postembryonic cell divisions,

similar to starvation-arrested larvae (Petriv et al. 2002; Thieringer 2003). More recently, also

PBDs models in D. melanogaster were established. Pex mutants faithfully recapitulate several

key features of human PBD, including impaired peroxisomal protein import, elevated VLCFA

levels and growth retardation. Moreover, disruption of Pex function results in spermatogenesis

defects (Chen et al. 2010). More in detail, Pex3 mutants are larval lethal, but in conditional

knock-down, in which Pex3 function is deleted in muscle, no peroxisome is detectable and this

results in flightless animals, possibly by disrupting energy metabolism (Nakayama et al. 2011;

Faust et al. 2014).

1.2 Zebrafish (Danio rerio)

1.2.1 Zebrafish in biomedical research

Zebrafish is the common name of Danio rerio (formerly classified as Brachydanio rerio), a

member of the Cyprinidae family. Zebrafish is a freshwater fish originating from the sub-

tropical regions in north-eastern India, northern Pakistan, Bangladesh, Bhutan and Nepal. Due

to its robustness, it became globally available also for domestic aquariums.
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In 1981 George Streisinger introduced zebrafish as genetic model to study vertebrate

development. During the last few decades, zebrafish emerged as one of the most important,

popular and potent experimental animal models in biomedical research (Figure 9). In fact, due

to several advantages of zebrafish, research broadened to different fields, including

neurobiology (Hughes 2013), cancer (Moore & Langenau 2016), cardiovascular development

(Kessler et al. 2015), immune system disease (Galindo-Villegas 2016), infection models (Hall et

al. 2016), tissue regeneration (Sehring et al. 2016), metabolic diseases (mainly diabetes and

lipid-related diseases) (Den Broeder et al. 2015) and ciliopathies (Song et al. 2016).

Figure 9 – Timeline of the most important technological milestones in zebrafish biomedical research.
(From Varshney, Sood et al. 2015).

Despite being a relatively simple vertebrate animal, there is a considerable conservation of

most of the human pathways in zebrafish. Embryonic development, biological functions,

cellular biology, physiology and diseases are comparable to humans. Thus, despite teleost fish

diverged from mammals during evolution more than 400 million years ago, zebrafish still share

a considerable amount of genetic identity with humans, and several zebrafish organ systems

are remarkably similar to those in humans.

1.2.2 Zebrafish genome features

In February 2001, the Wellcome Trust Sanger Institute initiated the zebrafish genome-

sequencing project and since 2013 the fully sequenced genome is available (Howe et al.

2013a). The zebrafish genome is the result of approximately 340 million years evolution, with
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additional rounds of whole-genome duplication, generating ohnologues genes (two copies of

the same gene in the same genome) (Amores et al. 2011; Wolfe 2000). Because of the genome

duplication, most of the time, ohnologues diverged to give two specialized paralogs (genes

derived from the same ancestor sequence), with different expression patterns (spatial and/or

temporal) and more restricted (less complex) functions. In some cases, only one copy

maintained its function and the other degraded into a pseudogene. Zebrafish possess 26.206

protein-coding genes (Collins et al. 2012) with a higher number of species-specific genes in

comparison to human or mouse (Kasahara et al. 2007). The zebrafish genome shares a great

genetic identity with human, with 71,4% of human genes having at least one zebrafish

orthologue (but only 47% have a one-to-one relationship), and 69% of zebrafish genes having

at least one human orthologue (Vilella et al. 2009). Few notable human genes (interleukin 6 –

IL-6, or leukaemia inhibitory factor – LIF) have no clearly identifiable zebrafish orthologue,

even if the corresponding receptors were identified: most probably other genes, not

recognized as orthologues, took over their function. 82% of the genes included in the Online

Mendelian Inheritance in Man (OMIM) database can be related to at least one zebrafish

orthologue.

1.2.3 Zebrafish life cycle

The main advantage of the zebrafish as animal model for biomedical research is its shorter life

cycle in comparison to other models and the relatively high fecundity, with 100-1000 eggs

produced per spawning (Kurtzman et al. 2010; Lawrence 2011). Eggs are spawned throughout

the year (Clelland & Peng 2009) and best spawning performance is limited to a short period at

dawn, with an optimal spawning frequency typically around 10 days (Niimi & LaHam 1974;

Darrow & Harris 2004).

Spawned eggs immediately start to develop and the ideal incubation temperature is 28,0 to

28,5°C. Within the first 45 minutes, the first cell division takes place. 4 hours post fertilization

(hpf) an embryo is composed of about one thousand cells that start to migrate over the yolk

with extensive rearrangements. Afterwards, further cell movements and the differential

activation of BMP, Wnt and Nodal signalling pathways in different areas, determine the

formation of the three primary embryonic germ layers. At the end of the gastrulation process,

11 hpf, the basic vertebrate body plan is established and the first individual somites are

formed in the anterior region, to progressively move to the posterior. At 18 hpf, 18 somite

pairs are clearly visible; at 24 hpf a complete fish is recognizable, and the heartbeat and
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associated blood flow can be observed. Within 48 hpf, embryogenesis is completed and larvae

hatch during the third day post fertilization (dpf). Cell differentiation processes continue until 5

dpf, especially in the brain and in the gastrointestinal tract; only at this point all the organs

have taken up their function and the mouth apparatus is completely formed, so that the larvae

can start to feed independently (Kimmel et al. 1995).

Despite a quick embryonic and early larval stage, the remaining developing steps take longer.

Larval stage lasts up to three weeks, when metamorphosis starts. Metamorphosis involves

changes in a variety of traits: absorption of the larval fins, ventral drop of the gut tube,

development of scales and of the pigmentation pattern (Ledent 2002). At 5 weeks of age,

when metamorphosis in completed, larvae enter the juvenile stage, with an exponential

growth, and reach puberty at 45 dpf in females. In captivity, reproductive maturity is reached

at the completion of the third month of age (Chen & Ge 2013) (Figure 10).

Figure 10 - Life cycle of zebrafish. Zebrafish develop rapidly from a one-cell zygote that sits on top of a
large yolk cell. Cells divide every 30-45 minutes and within 6 hours the embryo is made of thousands of
cells. Gastrulation begins approximately 6 hours post fertilization, and organogenesis starts immediately
afterwards. At 2-3 days animals hatch as free-swimming larvae and they begin to feed at 5 days.
Zebrafish reach sexual maturity around 3 months of age and can live for up to 5 years. (Modified from
D'Costa & Shepherd 2009).

Adult zebrafish exhibits sexual growth dimorphism in favour of females. Adult animals can be

distinguished based on differences in body size, shape and pigmentation: males are smaller,

more elongated with gold and blue stripes, whereas females are bigger, more rounded, with

silver and blue stripes and a whitish belly (Parichy et al. 2009; Brondolin et al. 2012). Under
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laboratory conditions, zebrafish do not differ much from animals in wild populations (Spence

et al. 2007): adult animals weight between 0,5 g and 0,9 g and are 22 mm to 38 mm long, with

females being on average bigger than males (Lawrence et al. 2007). No difference between

different zebrafish strains were reported, when kept in same housing conditions. Average

lifespan is 36 months, but there are reports of zebrafish living until 62 months (Gerhard et al.

2002).

1.2.4 Advantages of zebrafish as biomedical model

The zebrafish combines several advantages, which made it a suitable model for biomedical

research.

1 – Easiness to maintain: due to the small size of the adult animals, zebrafish can be kept in

large numbers in a limited space; thus, zebrafish are relatively inexpensive to maintain.

Moreover, it is possible to keep and analyse large populations, minimizing the effect of inter-

individual variability.

2 – Easiness of breeding: each female can produce hundreds of embryos per spawning,

throughout the whole year. This allows the possibility of making large genetic and

pharmacological screens. Embryos undergo rapid development and organogenesis is

completed within three days; it is possible to obtain a new generation after three months.

3 – Ex utero fertilization: embryos are fertilized and develop externally the body of the mother.

Thus, embryos are immediately accessible, representing an ideal vertebrate model system for

the study of the embryonic development.

4 – Transparency: During embryonic development, embryos are completely transparent;

mutant lines unable to develop pigments are available, and the pigmentation process can be

blocked or delayed using non-toxic chemical compounds. The translucent body of zebrafish

embryos facilitates non-intrusive visualisation of organs and biological processes, allowing in

vivo imaging and quantification.

5 - Size of embryos: embryos are sturdy and large enough (0,7 mm) to enable experimental

manipulations, such as microinjections or transplantation of cells.

6 – Genomic manipulation: zebrafish are suitable both for ‘forward genetics’ and ‘reverse

genetics’ studies. Large-scale forward genetics screens are possible; phenotypical defects are

identified prior the mutation (spontaneous or induced) causing it (Driever et al. 1996). In

recent years, also reverse genetics screens became common thanks to the availability of

different genome manipulation techniques, enabling the generation of knock-down or knock-
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out models. Transgenic lines can also be easily generated so that valuable tools are established

and can be used for a more detailed analysis of biological processes. Newer transgenic

techniques allow conditional gene activation or inactivation (Ni et al. 2012).

1.2.5 Gene manipulation in zebrafish

1.2.5.1 Antisense Morpholino Oligonucleotide knock-down

Gene expression can be transiently knocked-down using antisense morpholino

oligonucleotides (AMOs) (Nasevicius & Ekker 2000). AMOs are 25-mer synthetic

oligonucleotides, specifically designed to hybridize with mRNA molecules. AMOs can be

injected in the cytoplasm of 1-cell stage embryo, without being rapidly degraded by nucleases

and evocating immune response. Different strategies can be adopted: AMOs can be designed

to anneal around the start codon of an mRNA, preventing protein translation initiation (Figure

11A); they can also be designed to bind a splicing site on the pre-mRNA molecule so that the

protein cannot be properly spliced, leading to a frameshift, due to intron retaining or exon

skipping (Figure 11, B’ and B’’).

Figure 11 – Antisense morpholino oligonucleotide (AMO) knock-down modes of action. (A) The AMO
can be designed to target the sequence 5’ of the translation start site, inhibiting the progression of the
initiation complex. (B’-B’’) An AMO can be designed to be complementary to a splicing donor or
acceptor site, so that the splicing machinery fails in its recognition, causing intron retaining (B’) or exon
skipping (B’’). (Modified from Eisen & Smith 2008).

AMO knock-down allows rapid and effective study of gene function, even if this approach is

limited to processes occurring during the first 5 days of development, since the AMO

molecules are then degraded or diluted through the subsequent cell divisions.

Multiple genes can be knocked down at the same time, injecting AMO molecules targeting the

different mRNAs. This can be useful to tackle redundant gene functions or to assess interaction
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between proteins belonging to the same pathway. However, the AMO approach is prone to off

target effects, due to sequence similarities in the genome.

1.2.5.2 Chemical mutagenesis screening

While developmental defects are evident during the first day after fertilization, mutations in

genes regulating other processes may become apparent during the larval or the juvenile stage,

when AMO action has vanished.

In the early 1990s, large-scale forward genetic screens were initiated in zebrafish to identify

mutants with early embryonic developmental defects. The screens used an effective and

efficient mutagen, N-Ethyl-N-NitrosUrea (ENU), able to transfer an ethyl group to nucleobases,

especially to thymine, thus inducing point mutations (Davis & Justice 1998). Fish carrying gene-

specific mutations can be identified by locus-specific PCR, positional cloning methods or by

whole-exome sequencing (Henke et al. 2013). This approach was also adopted in reverse

genetics screens, searching for mutations in genes of interest. The biggest of these projects is

the Zebrafish Mutagenesis Project (ZMP)

(https://www.sanger.ac.uk/resources/zebrafish/zmp/) aiming to generate a knock-out of every

protein-coding gene in the zebrafish genome (Kettleborough et al. 2013). As of October 2016,

ZMP has generated 36.296 alleles in 14.697 genes, roughly half of the zebrafish genome, and

more than 80% of them have been made available to the scientific community.

1.2.5.3 Transcription Activator-Like Effector Nucleases (TALEN)

In 2010, the Transcription Activator-Like Effector Nucleases (TALENs) emerged as faster,

cheaper and efficient way to introduce locus-specific double-strand breaks in the genome,

generating disruptive mutations (Miller et al. 2011; Wood et al. 2011; Huang et al. 2011).

Similar to Zinc Finger Nucleases (ZFNs) (Doyon et al. 2008), TALENs are fusion proteins,

combining a DNA-binding domain and the endonuclease domain of FokI. The DNA-binding

domain is inspired from the one of secreted proteins of the plant pathogenic bacteria of genus

Xanthomonas. A TALEN DNA-binding domain combines 12 to 30 modules (usually 18). Each

module is a repeated unit of 33 amino acids in which only two residues, at position 12 and 13,

termed the Repeat Variable Di-residue (RVD), are variable and they give specificity for the

single nucleotide that they recognize. Since the FokI nuclease is active only as a dimer, two

TALEN arrays (left and right) need to be assembled to recognize the two different strands. The

optimal spacer between the two recognition sites is recommended to be 14-20 bp (Ma et al.
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2013; Reyon et al. 2012) (Figure 12). TALENs broadened the possible target sequence

repertoire, basically without limitations, and provide high degree of specificity (Huang et al.

2011). Due to the multiple cloning steps required to assemble the TALEN arrays, the main

effort was addressed to gain efficient processes in a shorter time. The most successful

assembly methods are the Golden Gate, suitable for most zebrafish laboratories (Bedell et al.

2012), and the FLASH (Fast Ligation based Automatable Solid phase High throughput), suitable

for laboratories aiming to perform large-scale targeted mutagenesis experiments (Cade et al.

2012). To date, only 20 different genes were successfully targeted with TALENs in zebrafish.

Moreover, it was demonstrated that TALENs induce hotspots for homology recombination

induction and that TALEN pairs targeting two sites can induce large genomic deletions (Gupta

et al. 2013).

Figure 12 - Schematic representation of the assembly of Transcription Activator-Like Effector Nucleases
at the genomic target site. Each monomer binds to opposite DNA strands; each motif of the DNA binding
domains (fourteen for each TALEN, in the figure) recognize a single nucleotide. Two monomers of the
FokI nuclease are brought in close proximity, so that they can be active and produce a double strand
break on the DNA. (From Varshney, Sood et al. 2015).

1.2.5.4 Cluster of Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-

associated protein (Cas9)

The breakthrough in genome editing techniques came in 2013 with Cluster of Regularly

Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9) (Hwang et

al. 2013; Chang et al. 2013). CRISPR/Cas9 system is inspired by the adaptive immune system in

archaea and bacteria; the most popular is the system derived from S. piogenes (Jinek et al.

2012). Cas9 is the effector RNA-guided endonuclease. It requires two RNAs, the programmable

target specific CRISPR RNA (crRNA) and the transactivating RNA (tracrRNA). crRNA contains a

20 bp sequence complementary to the target, with the only requirements to have an

protospacer adjacent motif (PAM), namely an invariable sequence, that in case of S. piogenes
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Cas9 is NGG (less frequently, NAG) (Hsu et al. 2013). Once the crRNA binds the target

sequence, it recruits the tracrRNA, which is necessary for the correct positioning and activation

of Cas9.

To further simplify and strengthen the system, crRNA and tracrRNA binary system was

replaced by a chimeric single-guide RNA (sgRNA) sequence, that is possible to synthetize using

a ‘cloning-free’ assembly method (Gagnon et al. 2014; Varshney, Pei et al. 2015) (Figure 13).

Moreover, a zebrafish codon optimized version of Cas9 (zCas9) was generated (Liu et al. 2014).

Several tools were developed to predict target efficiency in inducing mutations and in

transmission to the next generation, but no prediction turned out to be statistically significant

(Moreno-Mateos et al. 2015). In parallel, mutated Cas9s able to recognize PAM sites other

than NGG (or NAG) were developed to increase the targetable loci in zebrafish genome

(Kleinstiver et al. 2015).

Figure 13 - Schematic representation of the assembly of Cluster of Regularly Interspaced Short
Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9) at the genomic target site. The target
specific CRISPR RNA (crRNA), containing the 20bp target sequence upstream of the S. piogenes
protospacer adjacent motif, 5’-NGG-3’, and the transactivating RNA (tracrRNA) here are replaced by the
chimeric single-guide RNA (sgRNA) sequence. The binding of the sgRNA to the target genome locus
recruits and activates the Cas9 effector nuclease to produce a double strand break. (From Varshney,
Sood et al. 2015).

Jao et al. demonstrated that it is possible to target multiple genes simultaneously (up to 10

with only a modest loss in efficiency) and this is especially convenient in presence of functional

duplicates in zebrafish genome (Jao et al. 2013); this is called multiplexing mutagenesis. Heat-

shock inducible and tissue-specific expression of Cas9, associated with GFP expression as

transgenesis marker, allow now both temporal and spatial expression of the system, to obtain

conditional knockouts (Yin et al. 2015; Ablain et al. 2015).
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Even though CRISPR/Cas9 improved mutagenesis effectiveness, it also raised concerns related

to specificity and off-target effects. Several studies addressed this point and they concluded

that a low, but measurable rate of off-targets occurs (Varshney, Pei et al. 2015). However,

given off-target mutations can easily be outcrossed away from the desired mutation in

zebrafish, several strategies to lower or avoid off-targets were developed. These include: the

generation of a mutant version of the Cas9, called “nickase”, that cleaves only one strand and

need to work as a dimer to be effective (Ran et al. 2013); the use of truncated sgRNAs (tru

sgRNAs) which are shorter by two or three nucleotides and have also shown to be more target-

specific (Fu et al. 2014); the replacement of the catalytical domain of Cas9 with the FokI

nuclease domain (Tsai et al. 2014).

1.2.5.5 Potentials of nuclease gene targeting

The principle common to all the strategies for specific gene targeting is the induction of a

Double Strand Break (DSB) in the spacer sequence, in the case of ZFNs and TALEN, or in the

target sequence, usually 3 bp upstream of the PAM sequence, in the case of CRISPR/Cas9

(Porteus & Carroll 2005). Thus, these nucleases can be imagined as custom restriction enzymes

that recognize and cut at specific sequence sites in the genome (Pennisi 2013; Bogdanove &

Voytas 2011). The break can be repaired either by Non-Homologous End Joining (NHEJ) or

Homology-Directed Repair (HDR) (Symington & Gautier 2011) (Figure 14). NHEJ is preferred

but imprecise and it is used to generate traditional gene knock-outs (Burma et al. 2006); the

occurring insertion or deletion of one or more nucleotides in the open reading frame can cause

a frameshift. HDR precisely repairs the DSB, but it requires a guide DNA template and it is used

to create precise modifications in the genome; knock-in of specific sequences, desired

transgenes, or dominant negative missense mutations are then available.
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Figure 14 – Double strand break repair mechanisms. Independently from the used nuclease, the result is
the generation of a double strand break (DSB) at the target site. The DSB can either be repaired by
error-prone non-homologous end joining (NHEJ), which often leaves insertions or deletions, or if a donor
template DNA is supplied, the DSB can be repaired (hopefully) perfectly by homology directed repair
(HDR). (Modified from Varshney, Sood et al. 2015).

1.2.6 Study of metabolic disorders in zebrafish

Although relatively recent, zebrafish proved to be a suitable biomedical model for the study of

metabolic disorders. In fact, it helps the comprehension of the biochemical, molecular and

genetic basis of cell metabolism, as well as the understanding of the key molecular changes at

the onset and during the progression of a disease. Pathologies can be easily studied at the

level of the whole animal, but also in single tissues. The most important techniques for

metabolism studies are all available in zebrafish: fluorescent reporter lines, transgenesis,

imaging approaches, metabolomics, and isotope tracing (Santoro 2014). These findings may

provide a solid platform to facilitate the identification of valid drug targets and to test new

drug-based human therapies.

Zebrafish possess all the key organs required for metabolic control in human and their

development and morphogenesis are accurately described. Appetite circuits that are present

in the hypothalamus, the pancreas and the insulin-sensitive tissues are conserved between

zebrafish and humans (Tiso et al. 2009; Kinkel & Prince 2009). Thus, models for diseases

associated with different types of dyslipidaemia and diabetes can be generated and studied.

Fluorescent lipid dies allow the application of imaging methods with subcellular resolution to a

whole organism (Anderson et al. 2011).
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Despite the several advantages, critical differences between zebrafish and mammals should be

considered when studying metabolic phenotypes. For example, zebrafish and humans are

exposed to different oxygen partial pressure levels. Zebrafish experience a more variable

amount of dissolved oxygen and, to maintain blood oxygenation constant, it is not rare that

zebrafish experience hypoxia (low oxygen levels) in some tissues. Thus, zebrafish developed a

wider repertoire of strategies to protect the tissues from hypoxic conditions, which may

produce ROS damaging nucleic acids, lipid membranes and proteins. For example, in zebrafish,

there is a preference for glycolytic oxygen-independent production of ATP, rather than oxygen-

dependent β-oxidation of fatty acids (Anastasiou et al. 2011; Malek et al. 2004; Tseng et al.

2011).

Another important difference is the temperature regulation. Zebrafish are ectothermic

animals, meaning that the internal temperature control relies only for a small amount, if not at

all, on internal physiological sources. Thus, zebrafish exposed to temperature fluctuations

switch towards glycolysis, in order to gain high amount of heat in a short time (Shaklee et al.

1977).

Apart from intrinsic differences in the metabolism, other limitations in the use of zebrafish as a

potent model to study metabolic disorders are represented by the size of the animals.

Furthermore, the current techniques to measure food intake (Anderson et al. 2011) and

energy expenditure (Makky et al. 2008) in the zebrafish model are not as sophisticated as

those in rodents. Alternative methods to evaluate metabolic rate include acid production (van

der Velden et al. 2011). Finally, high genetic diversity is common even in fish of the same strain

and it might be appropriate to perform metabolic phenotyping in inbred lines (Guryev et al.

2006).

1.2.7 Development of therapeutical approaches

The generation of disease models in zebrafish made available valuable tools for innovative

drug discovery strategies. Thus, new targets and metabolically active drugs can be identified

and tested in an easily accessible in vivo model. This kind of drug screenings are reliable and

low-cost during pre-regulatory phases, allowing also high-throughput screening of drug

libraries (Ali et al. 2011; Lessman 2011). Zebrafish embryos can be exposed to different

chemical compounds or to different concentrations and their development can be monitored

with the aim of improving the zebrafish phenotype that mimics a specific human disease.

Larvae remain available also after the exposure to the drug, so that further manipulations can

be performed. High-throughput screenings identified positive hits for the treatment of a
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plethora of diseases like cardiovascular defects, polycystic kidneys, cancer and obesity.

Furthermore, zebrafish were used for testing psychotropic, antimicrobial and

immunosuppressant drugs, for the identification of bioactive natural products and for

toxicology studies (Mandrekar & Thakur 2009; Esch et al. 2012). Some drugs identified with

this method are now in early clinical trials in cancer patients, whereas a drug boosting the

production of blood stem cells has successfully concluded phase 1 of clinical trials (Callaway

2013).

1.3 Neural crest and its derived tissues
One of the main advantages of zebrafish as model of biomedical interest is the transparency of

the embryos and the quick ex utero development, providing an important platform for the

study of developmental biology. Thus, the dynamics underlying the formation of different cell

populations and different tissues could be clarified and tools for the dissection of the cellular

events were made available.

1.3.1 Neural crest during embryogenesis

During the embryonic development of all vertebrates, it is possible to identify a multipotent

stem cell population, defined as neural crest (NC). It is the defining feature of the vertebrate

phylum, indeed. This cell population emerges during neurulation at the neural plate border.

Wnt, Fibroblast growth factor (Fgf), retinoic acid and Notch signalling jointly produced by

ectoderm and mesoderm cooperate in the induction of this transient tissue (Milet & Monsoro-

Burq 2012). The aforementioned signalling pathways activate a series of transcription factors

(Snail/slug, Foxd3, Sox9/10) that define the NC territory and guide the next development steps

(McKeown et al. 2013). Later, NC extensively migrates to colonize the peripheral tissues. When

cells delaminate from the NC, they undergo an Epithelium-to-Mesenchyme Transition (EMT).

During the migration, cell cooperation and cell guidance drive them to the final target tissues.

It is currently not clear whether NC cells are predetermined or differentiate as a result of the

signals that they encounter in their environment during migration (McKinney et al. 2013).

Most likely, NC is composed of a heterogeneous cell population with different degrees of

multipotency and plasticity.

During migration, NC cells maintain transient cell-cell contacts by expression of adhesion

molecules. During this process, it is possible to assist to contact-inhibition of locomotion (CIL),

a complex process during which migratory cells momentarily stop upon physical contact with
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one another and subsequently repolarise in the opposite direction (Mayor & Carmona-

Fontaine 2010). Nevertheless, NC cells migrate in large groups and they release

chemoattractant molecules, establishing local gradients (Carmona-Fontaine et al. 2011). This

chemotactic phenomenon allows collective NC cells migration in spite of low cell-cell adhesion.

Negative and positive cues (fibronectin, laminins and collagens) subdivide the NC cells into

different streams and establish their precise targeting to specific tissues (Sasselli et al. 2012).

Different cell populations derive from the neural crest and their identity depends on the

positioning of the progenitor cells along the body axis of the embryo. Cephalic NC cells (CNC,

spanning from the diencephalon to the third somite) mainly contribute to the craniofacial

structures producing bones and cartilages of the face, teeth, blood vessels, eye and muscles

and connective tissues of the ear, pigment cells, peripheral nervous system (Dupin et al. 2006;

Le Douarin et al. 2012; Theveneau & Mayor 2011). Cardiac NC cells migrate to the heart and

they are essential for septation. Trunk NC cells (TNC, spanning posteriorly the fourth somite)

form pigments cells, the dorsal root and sympathetic ganglia of the peripheral nervous system,

and endocrine cells of the adrenal gland; a subpopulation form the enteric peripheral nervous

system, controlling the digestive track (Theveneau & Mayor 2011) (Figure 15).

Figure 15 - Derivatives of the cephalic and the trunk neural crest cells (NC) and the basic pathways of the
trunk NC cells migration during early embryonic time. Dorsally migrating trunk NC cells move between
the surface ectoderm and somites, developing into melanocytes of the epidermis and hair. Ventrally
migrating trunk NC cells move between the neural tube and somites, giving elements of the peripheral
nervous system, medulla of the adrenal and melanocytes of the skin. (Modified from Cichorek et al.
2013).
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1.3.2 Pigment cell populations

One of the main features of the zebrafish, Danio rerio, is the stereotyped pattern of four to five

dark (blue) and four light (yellow) stripes along its body axis. This characteristic is the reason

for its common name, zebrafish.

As mentioned, both the cranial and the trunk NC give rise to the pigment cells. While the

cranial pigment population migrates directly to the target tissue, the pigment cells originating

from the trunk NC follow a stereotyped path. They migrate dorso-laterally and the migration is

controlled by endothelin and Eph/ephrin signalling, while the final targeting is controlled by

Sdf1 (Belmadani et al. 2009).

Notably, there are some important differences between the pigmentation patterning

establishment between mammals and fish. Mammals have only one pigment cell population,

the melanocyte, and the final pigmentation pattern is determined by the ratio of two

polymers, the eumelanin (brown to black) and the pheomelanin (yellow to red). Moreover,

pigments produced in the melanocytes are then released and transferred to other dermis cell

populations, like the keratinocytes (Wang et al. 2016).

In fish (but also in amphibians and reptiles), up to seven different pigment cell populations are

represented. In zebrafish three pigment cell populations are the most common: xanthophores,

containing pteridine and carotenoid-based yellow to red pigments; melanophores, containing

melanin-based pigments; iridosomes, containing light-reflecting stacks of uniformly spaced

membrane-bound guanine platelets (Bagnara & Taylor 1970; Bagnara et al. 2007). Other cell

types are erytrophores, leucophores, cyanophores and erythro-iridophores. Each pigment-

producing cell has a distinct shape (dendritic for the melanophores; compact roundish in the

light stripes or stellate in the top layer of the dark stripes for xanthophores; oval or polygonal,

more or less packed, for iridophores) and stores the pigments in specialized vesicular

organelles, without transfer from these cells to others. The final pigmentation pattern is

determined by the distribution and ratio of different pigment cells in several layers in the

dermis. In particular, xanthophores cover the outermost layer, absorbing short-wave light;

iridophores in the middle layer reflect the light while melanophores in the basal layer absorb

the remaining light (Hirata et al. 2003; Bagnara et al. 1968).

1.3.3 Pigmentation pattern formation in zebrafish

In zebrafish, the pigmentation pattern is established according a periodicity along the dorso-

ventral axis and develops following morphological landmarks (Svetic et al. 2007; McClure
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1999). The larval and adult pigment patterns in zebrafish are regulated through different

mechanisms.

During embryonic development, xanthophores uniformly cover the hypodermis of the flank.

Melanophores migrate along the route determined by the peripheral neurons innervating the

skin, first dorsally and anteriorly over the head (Knight et al. 2003), and later in the trunk, to

form four distinct stripes (Kimmel et al. 1995; Milos et al. 1983):

1 - A dorsal stripe extending from two converging V-shaped stripes on the head region

extending to the tail along the dorsal apex of the myotomes;

2 – A lateral stripe at the level of the horizontal myoseptum;

3 – A ventral band, extending from the head region between the eyes, over the dorsal yolk sac

and to the top of the tail;

4 – A ventral band over the ventral surface of the yolk sac (Figure 16).

Figure 16 – Embryonic pigmentation pattern formation in zebrafish. The four embryonic melanophore
stripes are highlighted with different colours: dorsal stripe in green, lateral stripe in blue, ventral stripe
in red and melanophores of the yolk sack in yellow.

During this process, also other melanophores precursors, called melanoblasts, are generated

and they localize in proximity of the dorsal root ganglia. These cells remain in a stem-like state,

until they are reactivated, proliferate and migrate to the periphery, following the path

determined by axons of peripheral motor neurons, to replace deteriorated melanophores.

Melanophore progenitors enter the skin as melanoblasts predominantly over the dorsal and

ventral myotomes and along the horizontal myoseptum (Dooley, Mongera, Walderich &

Nusslein-Volhard 2013a; Budi et al. 2011).

The pattern generated during embryonic development persists during the whole larval stage.

Afterwards, zebrafish larvae enter a metamorphosis stage, in which the four melanophore

stripes evolve to the striped pigment pattern of the adult (Singh et al. 2014; Parichy et al.

2000). At the beginning of this process (18 dpf – 21 dpf) iridophores appear in the skin through

the horizontal myoseptum, which serves as a morphological landmark that orients the stripe
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pattern. This leads to the formation of a contiguous stripe of dense cells, constituting the first

light stripe. Melanoblasts from the dorsal root ganglia migrate along the characteristic

pathways and, after reaching the periphery, they stop to proliferate and start to melanise

(Figure 17).

Figure 17 – Schematic showing the different origins and migration routes of melanophores and
iridophores, both during the premetamorphic stage (larval development) and postmetamorphic stage.
Melanophore progenitors migrate along the peripheral neurons innervating the skin, whereas
iridophores migrate through the horizontal myoseptum and disperse dorsoventrally. (Modified from
Singh et al. 2014).

Pigmented melanophores tend to align dorsally and ventrally the first iridophore light stripe,

forming two “primary” dark stripes. Afterwards, they rarely divide and do not show extensive

movements (Singh et al. 2014). In contrast to melanophores, iridophores keep on proliferating.

Repulsion and clustering cues lead to the appearance of loose iridophores, which spread both

dorsally and ventrally, to establish all the other iridophore light stripes at a given distance from

the existing ones. Over the course of weeks, melanophores migrate from the dorsal root

ganglia to the spaces between the light stripes, forming additional “secondary” dark stripes,

for a total amount of 4-5 dark stripes detectable in adult zebrafish. Since melanophores do not

proliferate in the dermis, they dramatically expand in size to completely fill the space between

the light stripes (Hawkes 1974) (Figure 18). During this process, larval xanthophores persist

and begin to proliferate and cover the entire dorsolateral skin, at the onset of metamorphosis.

When covering iridophores, xanthophores acquire a flat shape with small cytoplasmic

protrusion; in contrast, upon encountering melanophores, xanthophores acquire a dendritic

shape, with long cytoplasmic protrusion and they show faint pigmentation (Mahalwar et al.

2014).
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Figure 18 – Scheme showing the major developmental events leading to stripe pattern formation during
metamorphosis. At the beginning, iridophores densely cluster along the anteroposterior axis, along the
horizontal myoseptum, forming the first interstripe. Loose iridophores along the borders of the first
interstripe start to disperse, while the first melanophores appear in the presumptive stripe region.
Migrating loose iridophores aggregate into dense clusters and organize new interstripes at a given
distance from the existing one, while melanophores grow in size. The repetition of these processes leads
to the formation of an alternating pattern of stripes and interstripes. (Modified from Singh et al. 2014).

1.3.4 Melanocytes

The primary function of melanocytes is the production of the melanin pigment. Melanin is

capable to absorb ultraviolet (UV) and visible light, protecting cell components, especially DNA,

from radiation damage. Melanophores are able to proliferate and they adjust their

pigmentation intensity and distribution in response to neural and hormonal cues.

Melanosomes, the vesicular organelles synthetizing and containing melanin, can move along

microtubules generating lighter shades when concentrated around the nucleus of the cell, or

darker shades by dispersing in the cytoplasm (Logan et al. 2006). Many developmental markers

for this lineage were identified, in particular enzymes for melanin synthesis. Melanocyte

specific markers are dopachrome tautomerase (Dct, also known as tyrosinase related protein-

2, Tyrp2), tyrosinase-related protein-1 (Tyrp1), tyrosinase (Tyr), premelanosomal protein 17

(Pmel17) and melanoma antigen recognized by T cells 1 (MART1).

1.3.4.1 Melanocyte lineage establishment

Melanophore differentiation from the NC is driven by transcriptional regulation of essential

genes. Sox10 is required for proper development of all neural-crest derived tissues, including

all three types of chromatophores in zebrafish (Dutton et al. 2001). The main transcription

factor for this cell population is Microphthalmia associated Transcription Factor (Mitf) and its

mutation influences normal specification and survival, with the result of reduced melanocyte

number (Goding 2000; Hodgkinson et al. 1993). In zebrafish, two mammalian mitf homologs

were identified, mitfa and mitfb, and they together recapitulate expression and function of the
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single mammalian Mitf gene. Nevertheless, mitfb is not expressed in melanophores or their

precursors, even if ectopic expression can rescue melanophore development in mitfa mutants.

These findings suggest for a subfunctionalization of an ancestral locus occurred after gene

duplication (Lister et al. 2001). Transcription of mitfa is regulated by extracellular factors, in

particular the wnt signalling pathway, which stabilizes β-catenin and allows its translocation

into the nucleus to interact with tcf/lef transcription factors (Dorsky et al. 2000). Moreover,

mitfa expression is upregulated by sox10 and pax3, but repressed by foxd3, which binds the

forkhead sites in the promoter region of mitfa (Ignatius et al. 2008). Kit signalling is required

for establishment and survival of embryonic and early metamorphic melanophore progenitors.

Kit also promotes melanoblast motility, independent of other morphogenetic effects, and in

case of its mutation, melanophores are found principally near their sites of origin (Wehrle-

Haller et al. 2001; Parichy et al. 1999; Dooley, Mongera, Walderich & Nusslein-Volhard 2013b).

Mitf (especially mitfa, in zebrafish), can bind the promoter region of different genes involved in

melanin synthesis, like Tyr, Tyrp1 and Dct (Bertolotto et al. 1998). These enzymes are

synthetized on ribosomes of the rough ER and they are transported through the Golgi

complex, where they undergo glycosylation, a process essential for their structure and

function (Beermann et al. 1995).

1.3.5 Melanosomes

Melanosomes are organelle typical of melanin producing cells (melanophores or melanocytes).

They are surrounded by a unique membrane, they can reach the size of 500 nm and it is the

place where the melanin is synthetized and stored. They are used to eventually transport

melanin in different regions of the cell (e.g. around the nucleus) or to neighbouring cells (e.g.

melanosome to keratinocyte transfer in mammalian cells - Wu & Hammer 2014). Since

melanosomes are the bioreactor where melanin synthesis take place, enzymes involved in its

biosynthesis are included in this organelle.

1.3.5.1 Melanosome biogenesis

The origin of this organelle is still matter of debate, since different studies highlighted the

presence of features that track back melanosomes either to lysosomes or to the endoplasmic

reticulum. In fact, melanosomes contain enzymes and other proteins that are also present in

lysosomes, like Lysosomal-Associated Membrane Proteins (LAMPs), participating in autophagy

and regulation of intravesicular pH (Eskelinen 2006), or acid phosphatase (Hunziker & Geuze
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1996). Some LAMPs are found exclusively in melanosomes and this lead to the formulation of

the hypothesis that melanosomes belong to a separate lineage (Raposo et al. 2001); thus the

endoplasmic reticulum is named as possible alternative origin of this organelle (Park et al.

2009). Most likely, pre-melanosomal vesicles derive both from multivesicular early

endosome/lysosome structures and from the ER.

Melanosomes show a progressive maturation and four different stages are described. After

the budding of the pre-melanosomal vesicles, it is possible to identify stage I melanosomes as

round, small vesicles. They are characterized by an amorphous matrix and internal membrane

invagination. Pmel17 is already present at this point (Kushimoto et al. 2001) and later it starts

to organize in a fibrillary matrix. This one, along with the presence of tyrosinase, is a marker of

stage II melanosomes. During stage III the synthesis of melanin starts and it is deposited on the

fibrillary matrix; stage IV represents fully melanised compartments, in which the internal

matrix is not recognizable anymore and tyrosinase activity decreases (Hearing 2005; Marles et

al. 2003) (Figure 19).

Figure 19 - Ultrastructural characterization of melanosomes. Electron microscopy analyses of MNT-1
human melanoma cells. The four stages of melanosome development (I-IV) are clearly distinguishable.
M=mitochondria; N=nucleus. Scale bar: 0,5 μm. (Modified from Raposo & Marks 2007). Table describing
the characteristics of the developmental stages of melanosomes during melanin synthesis. (Modified
from Cichorek et al. 2013).

Functional melanosomes are required to modulate proliferation, differentiation and migration

of melanophore cells (Wasmeier et al. 2008; Hirobe 2011; Hirobe & Terunuma 2012). They

have an impact on Mitf transcription factor activity, modulating the transcription of genes

influencing melanocyte survival (cyclin-dependent kinase 2 - Cdk2, p16INK4a, T-box

transcription factor 2 - Tbx2 and p21 - CDKN1A), motility (Met), differentiation and apoptosis

(Bcl2 and hypoxia-inducible factor 1a - Hif1a) (Chiaverini et al. 2008; Levy et al. 2006).



36 Introduction

1.3.5.2 Melanin biosynthesis

Melanin synthesis in the melanocyte is a tightly regulated process. The main trigger initiating

melanin synthesis is the activation of the melanocortin 1 receptor (MC1R) by its ligand, the α-

melanocyte stimulating hormone (AMSH). AMSH is an endogenous peptide hormone

generated by proteolytic cleavage of proopiomelanocortin (POMC), produced in the pituitary

gland. Indeed, MC1R regulates also the balance of the production of two different forms of

melanin, the eumelanin and the pheomelanin (Garcia-Borron et al. 2014). MC1R activation

stimulates cAMP signalling pathway and the activation of Mitf. This transcription factor

activates tyrosinase transcription stimulation as well as by posttranscriptional regulation

mechanisms. MC1R is also required for the cAMP-dependent increase of the melanosomal pH

(initially acidic) to near-neutral values, to enhance tyrosinase catalytic efficiency (Cheli et al.

2009)(Figure 20). In fact, on the membrane of the melanosomes V-ATPase, a proton pump,

and several transporters of the solute carrier (slc) family were identified and proven to be

essential for the pH regulation (Dooley, Schwarz et al. 2013; Basrur et al. 2003b).

Figure 20 – Melanin biosynthesis is initiated by the activation of the melanocortin 1 receptor (MC1R)
operated by α-melanocyte stimulating hormone (AMSH). Other alternative pathways can also influence
melanocyte activation. The final event is the activation of Mitf transcription factor, which is responsible
for the biosynthesis of those enzymes, catalysing melanin synthesis. Mitf transcription factor drives the
expression of several genes including Sox10 and Pax3. (From D'Mello et al. 2016).
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At the beginning of melanin synthesis, there is the tyrosinase-mediated oxidation of L-tyrosine

to dopaquinone. This molecule undergoes a cascade of redox reaction giving at the end

dopachrome and DiOxyPhenylAlanine (DOPA). Here the biosynthetic pathways producing

either eumelanin or pheomelanin diverge: in the first case, dopachrome tautomerase catalyses

the conversion of DOPA to 5,6-DiHydroxyIndole (DHI) and 5,6-DiHydroxyIndole-2-Carboxilic

Acid (DHICA) which are oxidized and polymerize in eumelanin (Edge et al. 2006); in the second

case, DOPA form adducts with sulfhydryl compounds (such as cysteine) which are oxidized and

converted into pheomelanin (Ito & Prota 1977) (Figure 21). These reactions produce

considerable amounts of highly reactive O-quinones, that may regulate sulfhydryl enzymes

activity. The concentration of cysteine inside the melanosome may be the cue regulating the

balance between eumelanin and pheomelanin (Land, E. J. et al. 2003).

Melanin is used to absorb light and to trap free radicals generated by radiations. Melanosomes

can be transported to different regions of the cell along microtubules, facilitated by both

dynein and kinesin motors (Seabra & Coudrier 2004).

Figure 21 – Eumelanin and pheomelanin biosynthetic pathways. Tyrosinase, TYRP1, and TYRP2 are
involved in the production of eumelanin, while only tyrosinase (and the amino acid cysteine) is
necessary to produce pheomelanin. (From d'Ischia et al. 2015).
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2 Aim of this thesis
Peroxisomal Biogenesis Disorders (PBDs) are a class of pathologies, affecting 1 every 5000

new-borns in the world population. The disease is caused by a heterogeneous group of

autosomal recessive mutations affecting the peroxin genes, controlling the assembly and the

maintenance of functional peroxisomes. Patients usually do not survive the first year of age

due to the disrupted peroxisomal metabolism, leading to the accumulation of substrate and

the lack of product molecules of enzymes localized in peroxisomes. As a consequence, patients

suffer of brain disorders, progressive cognitive impairment, craniofacial dysmorphism and liver

failure (Bootsma et al. 1999; Dacremont & Vincent 1995). Currently, no treatment for PBDs is

available, except dietary palliative supplementation (Klouwer et al. 2015).

Previous efforts aimed to the generation of animal models impaired for peroxin controlling the

dynamics of peroxisomal matrix proteins, reproducing the spectrum of PBDs (Baes & van

Veldhoven 2006). Nevertheless, a vertebrate model deficient for one of the early peroxins

(pex3, pex16 and pex19) still does not exist. Invertebrate models deficient for early peroxins

did not help in filling the gap of knowledge in understanding the consequences of a total lack

of peroxisome generation and maintenance (Petriv et al. 2002; Thieringer 2003; Nakayama et

al. 2011; Faust et al. 2014).

The aim of this thesis is therefore to generate a zebrafish model for Peroxisomal Biogenesis

Disorders, targeting the unique identified homolog of human PEX3. Preliminary experiments

show that pex3 expression in zebrafish recapitulate mammalian one. The generated model is

characterized during organogenesis and development using genetic, cell biological,

biochemical and immunohistochemical tools, taking advantage of zebrafish exclusive features

(ex utero embryonic development, transparency throughout embryogenesis, large number of

progenies).
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3 Materials and Methods

3.1 Materials

3.1.1 Common materials

If not mentioned otherwise, all chemicals used were ordered from one of the following
companies: Bio-Rad, Eppendorf, IDT, Invitrogen, Roche, Macheray-Nagel, Manzel-Gläser,
Merck, Promega, Roth, Sigma-Aldrich, Stratagene or VWR.

3.1.2 Equipment
Name Company
Artemia hatching cylinder Tecniplast

Autoclaves
H+P Varioklav steam sterilizer EP-2
H+P Varioklav steam sterilizer Typ25 T

Bacterial incubator Memmert 400

Binoculars
Olympus SZX16 with DP21-SAL CCD camera
Olympus SZ40

Capillaries WPI

Centrifuges
Eppendorf Centrifuge 5415R;
Beckman Coulter Allegra X-15R;
Beckman Coulter Avanti J-26 XP

Confocal microscope Zeiss LSM 710

Fish Incubators
MIR-162 Sanyo
Rumed E400

Fluorescence binocular Olympus ZSX16
Gel documentation Biozym, Alpha DigiDoc
Gel electrophoresis systems Bio-Rad
Light microscope Olympus AX70
Microinjector Eppendorf FemtoJet
Micromanipulator Narishige M-152
Micropipette puller Flaming/Brown P97 Sutter Instrument Co.
Microwave Panasonic NN-E235M
Multi-Linking WTU Tecniplast
Multiplate reader Tecan Infinite® 200 PRO

PCR cycler
Bio-Rad C1000TMThermal Cycler
Bio-Rad S1000TMThermal Cycler

pH-meter Mettler Toledo FiveEasy FE20
Power supply Bio-Rad Power Pac 3000
Realtime PCR cycler Bio-Rad C1000TMThermal Cycler
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with CFX96™ Optical Reaction Module
Rocking platform shaker Heidolph DuoMax 1030
Rotator Snijders test tube rotator

Rotors
Beckman Coulter JA-10;
Beckman coulter 70Ti; SW55Ti

Scales
Sartorius BL 1500 S
Sartorius B 211 D

Slide Micrometer ProSciTech Pty Ltd

Spectrophotometer
NanoDrop Peqlab Biotechnology GmbH, ThermoFisher
Scientific

Thermo mixers
Eppendorf Thermo mixer comfort
Thermo Mixer MHR13 HCL

Ultracentrifuge Beckman Coulter Optima LE-80 K UZ

Ultracentrifuge tubes
Beckman Coulter g-max Kit, Quick-Seal®,
Polypropylene, 13 x 25 mm

Vortexer Vortex Genie2
Water Bath Memmert VNB
ZebTec standalone Tecniplast

3.1.3 Standards, Kits and Enzymes

Name Company
2-log DNA ladder mix NEB
4x Laemmli Sample Buffer Bio-Rad
Ampicillin Roth
Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit Invitrogen
DIG RNA labelling Kit (SP6/T7) Roche
DNA loading dye NEB
DNaseI Roche
GoTaq polymerase Promega
Griess reagent Kit ThermoFisher Scientific
iQTM SYBR® Green Supermix 2x Bio-Rad
Kanamycin Roth
Lysozyme Roth
NucleoSpin extract II Kit Macherey-Nagel
NucleoSpin Plasmid AX-100 Kit Macherey-Nagel
PCR Nucleotide mix Roche
Penicillin-Streptomycin (10.000U/ml) Invitrogen
Phenol Red Sigma-Aldrich



Materials and Methods 43

Phusion High-Fidelity DNA polymerase NEB
PierceTMECL Western Blotting Substrate ThermoFisher Scientific
Precision Melt Supermix Bio-Rad
Precision Plus Protein™ Unstained Standard Bio-Rad
Proteinase K Roth
PureLink® RNA Mini Kit Ambion
QuantiTect reverse cDNA transcription Kit Qiagen
Restriction endonucleases and buffers NEB
RNA later® ThermoFisher Scientific
RNAse A Sigma-Aldrich
SP6 mMessage mMachine Kit Ambion
SuperScript II Reverse Transcriptase Kit Invitrogen
SybrSafe DNA gel stain Invitrogen
T4 DNA ligase and buffer NEB
T7 mMessage mMachine Kit Ambion
TOPO TA cloning Kit Invitrogen
TRIzol RNA isolation reagent ThermoFisher Scientific
Tween-20 Sigma-Aldrich

3.1.4 Buffers and solutions
If not mentioned otherwise, all buffers and solutions are prepared using bidistilled autoclaved
water. If a solution was prepared as stock solution, the dilution factor is mentioned. All buffers
and solutions are stored at room temperature; if that is not the case, the storing temperature
is mentioned.

Solution Composition
100x Bafilomycin A1 10 μM Bafilomycin A1 in DMSO (-20°C)
10x SDS-running buffer 250 mM Tris-HCl pH 8,3, 1,9 M glycine, 1% SDS

10x TBST
200 mM Tris-HCl pH 7,5, 1,5 M NaCl, 1% Tween-
20

10x Transfer buffer 250 mM Tris-HCl pH 8,3, 1,9M glycine

20x PBS
2.6 M NaCl, 140 mM Na2HPO4, 60 mM
NaH2PO4; pH 7,4

20x SSC 175,3 g NaCl, 88,2 g citric acid trisodium; pH 7,0

250x Bezafibrate
5 mM 2-[4-[2-(4-
Chlorobenzamido)ethyl]phenoxy]-2-
methylpropanoic acid in 2% DMSO (4°C)

2x Coenzyme Q2 (CoQ2)
20 μg/ml Coenzyme Q2 in 0,2 ml isopropanol
and 0,8 ml sterile water (-20°C)
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4-Amino-5-methylamino-2ʹ,7ʹ-
difluorofluorescein diacetate (DAF-FM
diacetate) staining solution

5 μM 4-Amino-5-methylamino-2ʹ,7ʹ-
difluorofluorescein diacetate in embryo
medium (4°C, protect from light)

50x Phenylthiourea (PTU) stock solution 0,15% w/v phenylthiourea in fish water
5-bromo-4-chloro-3-indolylphosphate (BCIP)
stock

50 mg/ml in DMF (-20°C)

Alcian Blue staining solution
1% v/v concentrated HCl, 70% v/v ethanol, 0.1%
w/v alcian blue in water (protect from light)

Alkaline Tris buffer
100 mM Tris-HCl, pH 9,5, 50 mM MgCl2, 100
mM NaCl and 0,1% Tween-20 (4°C)

Ampicillin stock solution 50 μg/ml (-20°C)

Bleaching solution
0,4 ml 10% KOH, 0,15 ml 30% H2O2, 5 ml sterile
water (prepare fresh)

Blocking buffer 2% v/v sheep serum, 2 mg/ml BSA in 1x PBT

Danieau’s medium
17 mM NaCl, 2 mM KCl, 0,12 mM MgSO4, 1,8
mM Ca(NO3)2, 1,5 mM HEPES pH 7,6

E3 Embryo medium
5 mM NaCl, 0,17 mM KCl, 0,33 mM CaCl2, 0,33
mMMgSO4

EDTA 0,5 M EDTA (pH 8,0)

Fixative solution
4% w/v formaldehyde (ultrapure, methanol
free) in 1x PBS (4°C)

Hank’s Stock Solution #1 80 g/l NaCl, 4 g/l KCl
Hank’s Stock Solution #2 3,58 g/l Na2HPO4 anhydrous, 6 g/l KH2PO4

Hank’s Stock Solution #4 14,4 g/l CaCl2
Hank’s Stock Solution #5 24,6 g/l MgSO4

Hank’s Stock Solution #6 35 g/l NaHCO3 (-20°C)

Hybridization Mix
50% deionized formamide, 5x SSC, 0,1% Tween-
20, 50 μg/μl heparin, 500 μg/ml RNAse-free
tRNA; pH 6,0 (4°C)

Injection buffer 0,1 M KCl, 0,0625% Phenol red in 1X PBS

Instant Ocean stock
150 g of Instant Ocean salt mix in 1 l aqua
bidest

Labelling solution
225 μl NBT stock solution and 175 μl BCIP stock
solution in 50 ml alkaline Tris buffer + 2%
PolyVinyl Alcohol (PVA)

Lysis buffer 25 mM NaOH, 0.2 mM EDTA; pH 12.0

Melanin extraction buffer
50 mM Tris-HCl pH 7,0, 0,5% SDS, 2 mg/ml
pronase in 1x PBT

NCS-PBST 10% v/v sheep serum, 1% DMSO in 1x PBT
Neutralization buffer 40 mM Tris-HCl; pH 5.0
Nitro blue tetrazolium (NBT) stock 50 mg in 0,7 ml DMF and 0,3 ml sterile water (-
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20°C)
PBT 0,1% Tween-20 in 1x PBS

RIPA buffer
25 mM Tris-HCl pH 7,6, 150 mM NaCl, 1% v/v
NP-40, 1% w/v sodium deoxycholate, 0.1% w/v
SDS

Stop solution 1 mM EDTA, 0,1% Tween-20 in 1x PBS
Sucrose gradient stock 2 M sucrose in 20 mM HEPES (-20°C)

TAE
40 mM Tris acetate (pH 8,0), 20 mM acetic acid,
1 mM EDTA

TELT
50 mM Tris (pH 7,5), 62,5 mM EDTA, 2,5 M LiCl,
0,4% Tween-20 (-20°C)

Tricaine
400 mg tricaine in 100 ml fish water, pH 7,0
(4°C)

X-Gal
2% w/v 5-bromo-4-chloro-3-indolil-β-D-
galactopyranoside stock solution in DMF (-20°C)

3.1.5 Fish lines

Name Genotype Source

AB wildtype
Hammerschmidt lab (Köln)
https://zfin.org/action/genotype/view/ZDB-GENO-
960809-7

pex3CRIPSR pex3(231_232del) This work
pex3sa11684 pex3(1157+1G>A) Zebrafish Mutation Project
pex3TALEN10L+10R pex3(13_20del) This work
pex3ZMP (or pex3sa17571) pex3(106A>T) Zebrafish Mutation Project
Tg[foxd3:GFP] Tg[foxd3:GFP] (Gilmour et al. 2002)

Tg[kita:mCherry]
Tg[kita:Gal4;

UAS:mCherry]
(Distel et al. 2009)

Tg[mitfa:GFP] Tg[mitfa:GFP] (Curran et al. 2009)

Tg[sox10:mRFP] Tg[sox10:mRFP] (Mongera et al. 2013)

3.1.6 Standard fish food
23g of dried Great Salt Lake artemia cysts (brine shrimps) are soaked in 250 ml aqua bidest for
15 minutes at room temperature; afterwards, they are incubated in an artemia hatching
cylinder in 4 l aqua bidest and 1,5 l Instant Ocean stock solution at 28°C for 24 hours, under
gentle air reshuffling and constant illumination; before brine shrimps collection, unhatched
cysts are discarded; hatched naupili are washed in aqua bidest and concentrated, before
resuspension in a 1:1 solution in aqua bidest. Freshly prepared artemia solution is fed twice
per day directly in fish tanks, at the amount of ~0,1 ml per adult fish.
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Diet is daily supplemented with SDS dried food, according to the individual animals need, in
terms of quantity and quality of the food.

Name Company
SDS small granular food Special Diet Services
SDS-100 powder food Special Diet Services
SDS-200 powder food Special Diet Services
SDS-300 powder food Special Diet Services

3.1.7 Oligonucleotides
All primers were synthesized by Integrated DNA Technologies (IDT) in desalted or PAGE
purified quality and shipped lyophilized. Primers were resuspended in aqua bidest to a final
concentration of 100 μM.

Oligonucleotides for gene cloning
Forward (5’-3’) Reverse (5’-3’)

pex3FL TAAACCCGCTCTTGCTTCTC TGCTGTACGGCATGAGAGAT

pex3ΔMTS TAGGATCCTAAACCCGCTCTTGCTTCTC TAGAATTCTCACTTCTGAAGAAAGTGGCTTGGAATTT

slc24a5 TAGAATTCCCGTCATCTGTGTTCTGC TATCTAGATGTTATGTCGGGCATCTTGA

slc45a2 TAGGATCCTCTTACCATCCAGAACCATG TATCTAGATTGAGGCTTATTCTGTACATCACAT

Oligonucleotides for CRISPR/Cas9 sgRNA cloning
Forward (5’-3’) Reverse (5’-3’)

pex3 exon3 target TAGGAATTTTTAGTCAACAGAA AAACTTCTGTTGACTAAAAATT
pex3 intron1 target TAGGTGATGGATGATTGCCTCT AAACAGAGGCAATCATCCATCA

Oligonucleotides for High Resolution Melting Analysis (HRMA)
Forward (5’-3’) Reverse (5’-3’)

pex3CRISPR-exon3 TGTTATCAATGCTCCCCACTC CACACACACGTGCATAACTCA
pex3CRISPR-intron1 GGCATAGTCAAATCAAAGTTGAAA TGATATGCTGCAAGCAAGAAC
pex3ENU-sa11684 AGCGAAATTCCAAGCCACTT AAACAGCCACACAGGAAGG
pex3ENU-sa17571 GCAGGTGTTTATCTGCTTGGT CTCCGAGCTTGAGCAATGTA
pex3TALEN-target1and2 CCCGCTCTTGCTTCTCTTATT ACAAACACCCCAGTGAAGATG
pex3TALEN-target3 TCGGTGTCAAGTCTGTTAAAATG GGTTCAGTTGCCCACGTTAG
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Oligonucleotides for qRT-PCR
Forward (5’-3’) Reverse (5’-3’)

amsh ATCTGACACAGACTCACTGC CCCAGATCCTCATCATAGGC
cdkn1a CATCACAGATTTCTACCAAGCC GAAGGTAGATGCAGGTCAAGAG
cebpa AGCCAAGCAAGAATGAGACC GTGTTGAGAGTGGTGGTAGG
cpt1a GGGCTACACAGAAGATGGTC ATAGTTTGGCACTCAGTTGGG
dct TTATAATATGGTGCCCTTCTTCCC TCTGTTGTCCAGTTCTTCGAG
elf1α ATGACTCCACTGAGCCC GGACGAAGGCAACACTG
foxd3 GAACTATAGGCAGCACTGGA TACCTGTACTGAAAGCATTCCT
hmox1a ATCTACAGCACAAAGATGGACTC TGACGTGGCTGTCTTTAGTG
mc1r GACCACTAGCATGAAGGGAG GGACAGGTGAGAATTAGGATGAG
mitfa ACAGCAATCATGCTCTTCCTC GATGGAGTAACGGATAATTCCCT
nd-1 mt GCCTACGCCGTACCAGTATT GTTTCACGCCATCAGCTACTG
pex3 GAGAGGCAATCATCCATCAC CTTTAGATCCTCCCAGATTTCAAG
polg1 GAGAGCGTCTATAAGGAGTAC GAGCTCATCAGAAACAGGACT
pparaa AACTGGAGTACGACAAGTGTG AAACGAATAGCGTTGTGGGA
pparg ACATCTACAGTAGTGCAGTC TTAGTACAGGTCCCGCATGA
ppargc1a GGATAGCTTTCTGGGAGGAC CATCTATCTTCTCAAACAGGTTGG
rpl13 TCGTATTGCTCCAAGACCA CCTCCAAGGTGAAGCCA
si.ch211-199 TCTCTAAAGCGACTGAAGAAACTC CAGGAGTAAGTGGTTCCCAG
sox10 CCAATCGCATTACAAGAGCC CTGTGACTCTGACCTGTAGC
tyr TATTGACAGCATCTTTGAGCAG CACCATGAAGTATCCGTCGT

3.1.8 Antisense Morpholino Oligonucleotides (AMOs)
All Antisense Morpholino Oligonucleotides (AMOs) were designed and synthesized by Gene
Tools, LLC and shipped lyophilized. AMOs were resuspended in aqua bidest to a final
concentration of 1 mM.

Oligonucleotides for gene knock-down
AMO (5’-3’)

foxd3 TGCTGCTGGAGCAACCCAAGGTAAG (Lister et al. 2006)

pex11α TCGTGAAGCTGATGAAAGTTTCCAT
pex14 TGGAGGAATGCTATTAACTACCTGA
pex16 GTTTCTCCATGTAGAGCACCGACAT
pex19 TGCTCTGATGCTGACGCCATCTTGC
pex3 ACTCAACATTTTAACAGACTTGACA
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3.1.9 Vectors

Name Source Link for vector map
pCMV-
Sport6.1

Hoch lab https://www.biocat.com/bc/data/IMAGE/lightbox.php?p=pCMV.S
PORT6.1&cmd=map

pCRII-TOPO Invitrogen https://tools.thermofisher.com/content/sfs/manuals/topota_ma
n.pdf

pCS2plus Hoch lab http://www.snapgene.com/resources/plasmid__files/image_
consortium_plasmids/pCS2+/

pDR274 Addgene (Hwang et al. 2013) https://www.addgene.org/42250/

pMLM3613 Addgene (Hwang et al. 2013) https://www.addgene.org/42251/

3.1.10 Antibodies

Primary
Antibodies

Antigen Source Obtained from Dilution

α-pex3 pex3 rabbit Aviva Systems Biology 1:200
α-tyr tyrosinase mouse Invitrogen 1:200
α-cat catalase goat ThermoFisher Scientific 1:200

1D4B
lysosome-associated
membrane glycoprotein
1

rat DSHB 1:150

H-69
endoplasmic reticulum,
rough, glycoprotein

rat DSHB 1:100

α-digoxygenin,
Fab fragments,
AP conjugated

Digoxygenin-UTP sheep Roche 1:10.000

Secondary
Antibodies

Antigen Source Obtained from Dilution

α-rabbit IgG647 Rabbit Ig donkey Dianova 1:500
α-mouse IgGCy3 Mouse Ig donkey Dianova 1:500
α-rabbit IgG488 Rabbit Ig donkey Dianova 1:500
α-goat IgG647 Goat Ig donkey Dianova 1:500
α-rat IgGHRP Rat Ig donkey Santa Cruz 1:15.000
α-mouse IgGHRP Mouse Ig donkey Santa Cruz 1:15.000
α-rabbit IgGHRP Rabbit Ig donkey Santa Cruz 1:15.000
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3.1.11 Micrororganisms

Name Genotype Source

E. coli DH5α
fhuA2 Δ(argF-lacZ) U169 phoA glnV44 Φ80 Δ(lacZ)
M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17

Stratagene

E. coli TOP10F’
F’(laclqTn10(TetR)) mcrAΔ(mrr-hsdRMS-mcrBC)
Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-
leu)7697 galUgalKrpsLendA1 nupG

Invitrogen

3.1.12 Cell lines

Name Source Link for information
Mus musculus skin melanoma
B16-F0

Förster lab https://www.lgcstandards-atcc.org/Products/All/CRL-
6322.aspx

Mus musculus embryo fibroblasts
NIH/3T3

Hoch lab https://www.lgcstandards-atcc.org/Products/All/CRL-
1658.aspx?geo_country=de

3.1.13 Bacterial culture media
LB: 10 g tryptone; 5 g yeast extract; 10 g NaCl; add 1 l aqua bidest; adjust to pH 7,0 and
autoclave.
LB agar w/o antibiotic: 10 g tryptone; 5 g yeast extract; 10 g NaCl; 20g agar; add 1 l aqua
bidest; adjust to pH 7,0 and autoclave; plate when cooled to 55°C; if required add antibiotics at
proper concentration before plating bacteria.

3.1.14 Cell culture media
Dulbecco's Modified Eagle's Medium (DMEM), supplemented with 10% Fetal Calf Serum (FCS)
and 1% Penicillin-Streptomycin (Invitrogen).

3.1.15 Softwares
Adobe Illustrator CS5
Adobe Photoshop CS5
Alpha DigiDoc
Bio-Rad CFX Manager 3.0
Bio-Rad Precision Melt Analysis Software 1.2
Chromas Lite 2.6
ImageJ
Microsoft Office 2011
PerlPrimer
ZEN Light 09 Zeiss
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3.2 Methods
3.2.1 Fish work

3.2.1.1 Fish maintenance
Zebrafish (Danio rerio) were raised in Tecniplast ZebTec stand alone or Multi-Linking WTU
systems, on a 14 h light/10 h dark cycle in standard condition (water temperature=28°C;
pH=7,2; absent NH3; [NO2]<1mg/l; [NO3]<50mg/l), according to Westerfield (Westerfield 2000).
All the animals were reared in the LIMES Zebrafish Facility. All animal experiments were
performed in accordance with Tierschutzgesetz §8 Abs.1, with European Union animal welfare
Directive 2010/63/EU and with Tierversuchsvorhaben AZ 84-02.04.2013.A274 of the LANUV
NRW.

3.2.1.2 Embryo collection and raising
Embryos were obtained from natural crossings. The evening before the experiment, after the
regular feeding, a male and a female fish (around 6 to 12 months of age) of the desired
genotype were selected and put in the same external 1 l-breeding tank, separated by a
transparent plastic inlet. Breeding tanks were put in an external incubator at 28,5°C, with
light/dark cycle adjusted to optimal experimental conditions. The morning of the experiment,
breeding tanks were taken out of the incubator, still during the dark phase, exposed to light
and the transparent plastic inlet was removed. Fish immediately started to spawn fertilized
embryos, which sank to the bottom of the tank, through a net to prevent cannibalism from
parental fish. Embryos were collected with a plastic pipette, washed with fish water, and used
for experimental procedures.
After the experiment, embryos were transferred in Petri dishes containing 20 ml of freshly
prepared embryo medium with 0,0005% w/v methylene blue (to prevent bacterial and algae
proliferation) and, starting from 24 hpf, 1x PTU to prevent melanin synthesis, if required.
Embryos were raised in an incubator at 28,5°C. Each Petri dish did not contain more than 50
embryos. Embryos were checked for survival every 12 hours and dead embryos were removed
from the plate. Embryos were staged as previously described (Kimmel et al. 1995).
Embryos imported from external lab, were preventively subjected to bleaching procedure, to
prevent pathogen import. 24 hpf embryos were rinsed twice in bleaching solution and
afterwards twice in embryo medium and raised according to standard protocol; in case
embryos did not hatch within 3 dpf, they were manually dechorionated.

3.2.1.3 Larvae collection and fixation
Before collection, embryos were staged (Kimmel et al. 1995) and synchronous ones were
collected in Petri dishes containing embryo medium.
For early stage embryos (8 hpf or 12 hpf), Petri dish was coated with a thin layer of 1% agarose
to prevent embryo disruption; embryos were exposed to proteinase K (200 μg/ml in embryo
medium) for 5 minutes. At short intervals, Petri dish was gently swirled to allow chorion
residuals to float away. As soon as most of the embryos were dechorionated, they were
washed twice with embryo medium and collected in tubes with the lowest amount possible of
embryo medium. For later stage embryos, if not hatched yet, chorion was removed using a
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pair of fine-tip forceps. Embryos were then collected in tubes with the lowest amount possible
of embryo medium.
For fixation, 1 ml of fixative solution was added and samples were stored overnight at 4°C
under gentle shaking. Fixed samples were either used directly for downstream application, or
washed once with methanol and then stored in methanol for several months at -20°C.

3.2.1.4 Scales isolation, fixation and bleaching
Adult fish of the desired genotype were anesthetized in tricaine and viewed under a
stereobinocular. Scales were removed from the trunk region, from the side, gently pulling with
fine forceps. Scales were immediately transferred to a tube containing fixative solution,
whereas the fish was transferred to a separate tank and monitored in the next days for
complete recovery.
Scales were incubated overnight at 4°C under gentle shaking in fixative solution. Fixed samples
were washed twice in PBT for 5 minutes and then incubated in bleaching solution for 10
minutes at room temperature to remove melanin pigment which might interfere with
following imaging. Bleached scales were then washed four time in PBT for 5 minutes and
immediately used for downstream applications.

3.2.1.5 Adult organ preparation
Adult fish were sacrificed according to current legislation. All different tissues (brain, eyes, gill,
heart, liver, kidney, intestine, ovary, testis and carcasses) were dissected according to standard
protocol (Gupta & Mullins 2010). Organs were rapidly transferred into fresh tubes containing
250 μl of TRIzol RNA Isolation reagent and immediately homogenized with a pestle; additional
750 μl of TRIzol RNA Isolation reagent were added and samples were snap frozen in liquid
nitrogen and stored at -80°C, until further processing.

3.2.1.6 TALENs-mediated mutant generation
pex3TALEN mutant alleles were generated according to Huang et al. (Huang et al. 2011). Plasmid
containing the coding sequences for the TALENs DNA-binding domains were obtained from the
Hornung lab. DNA-binding domain coding sequences were in-frame sub-cloned in a new vector
at the 5’ of the FokI nuclease coding sequence. mRNAs were transcribed from the digested
plasmid template using T7 mMessage mMachine (Ambion) as per manufacturer’s protocol. All
the mRNAs were resuspended in RNase-free water and stored at -80°C in aliquots.

3.2.1.7 CRISPR/Cas9-mediated mutant generation
pex3CRISPR mutant alleles were generated according to Hwang et al. (Hwang et al. 2013). Cas9
mRNA was transcribed from PmeI-digested pMLM3613 plasmid template (purchased from
Addgene) using T7 mMessage mMachine (Ambion) as per manufacturer’s protocol. For sgRNAs
generation, proper oligonucleotides (see Oligonucleotides) were purchased from Integrated
DNA Technologies and cloned into pDR274 (purchased from Addgene www.addgene.org)
according to Hwang et al. (Hwang et al. 2013). Transcription of sgRNAs was performed using
the HindIII-digested sgRNA-containing vector as template and the MAXIscript T7 kit (Ambion)
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as per manufacturer’s protocol. Both the Cas9 mRNA and the sgRNAs were resuspended in
RNase-free water and stored at -80°C in aliquots.

3.2.1.8 mRNA, Antisense Morpholino Oligonucleotides (AMOs) or chemicals injection
Microinjections were performed in freshly collected one-cell stage embryos of the appropriate
genotype. For mutant generation, either with the TALENs of the CRISPR/Cas9 technique,
embryos derived from AB strain crossed and raised in the LIMES Zebrafish Facility, previously
sequenced for the genomic locus were used. mRNAs, AMOs or chemicals were dissolved in
injection solution at the proper concentration. For mRNAs, the concentration is either
indicated in the experimental description, or it is ~60 ng/μl for pex3FL or pexΔMTS mRNAs or
~120 ng/μl for slc24a5 or slc45a2 mRNA; for AMOs the concentrations are 250 μM for pex3
AMO, 250 μM for pex11α AMO, 333,3 μM for pex14 AMO, 250 μM for pex16 AMO or 200 μM
for pex19 AMO; for chemicals, either CoQ2or CoQ2H2were injected at the concentration of 10
μg/ml.
Embryos injected in parallel with only injection solution were used as negative control.
Embryos were arrayed on an acrylic slide with V-shaped drills fixed on the bottom of a Petri
plate filled with embryo medium. Solutions were loaded in glass needles pulled from capillaries
and the injected drop was adjusted to an optimal volume of ~1,5 nl, with the aid of a
micrometer slide. Adjustments were obtained regulating injection pressures parameter on the
FemtoJet microinjector (Eppendorf). Injections were controlled via a M-152 micromanipulator
(Nasherige).
At the end of the injection procedure, embryos were moved to Petri dishes containing fresh
embryo medium and checked for survival at 8 hpf and 24 hpf, discarding the dead ones.

3.2.1.9 Bafilomycin A1 exposure
At 24 hpf, embryo medium in Petri dishes was replaced with fresh embryo medium containing
100 nM Bafilomycin A1 in DMSO. At 48 hpf, embryos were washed twice with fresh embryo
medium, and further incubated.
Embryos treated in parallel with DMSO only were used as negative control.

3.2.1.10 bezafibrate (PPARγ) activator exposure
At 12 hpf, embryo medium in Petri dishes was replaced with fresh embryo medium containing
20 μM Bezafibrate in 2% DMSO. Before the experiment end, embryos were washed twice with
fresh embryo medium.
Embryos treated in parallel with 2% DMSO only were used as negative control.

3.2.1.11 Larval weight determination
For determination of larval weight, larvae of the desired developmental stage were transferred
in embryo medium containing tricaine. As soon as the animals were not swimming anymore,
they were delicately dried on a paper wipe for few seconds and moved on a weighing paper.
Weight was determined in grams, on a fine scale, to the fourth decimal digit.
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3.2.2 Histology

3.2.2.1 Immunofluorescence
For protein localization analysis in wildtype or mutant embryos, or in whole scales, antibody
stainings were performed. If stored in methanol, fixed tissues were rehydrated through a
methanol/PBT series, for 5 minutes each step, at room temperature, under gentle shaking.
Tissues were permeabilized incubating them with proteinase K (10 μg/ml) for an appropriate
time, adjusted to the embryonic developmental stage, or for the thickness of the tissue.
Tissues were fixed again in fixative solution for 20 minutes at room temperature and washed
four times for 5 minutes in PBT at room temperature. Samples were then washed in distilled
water for one hour at room temperature and permeabilized in pre-cooled acetone for 7
minutes at -20°C. Samples were washed four times for 5 minutes in PBT at room temperature
and blocked in NCS-PBT for one hour, prior to overnight incubation at 4°C with the primary
antibody, diluted in PBT, as suggested.
Samples were washed four times for 5 minutes in PBT at room temperature and then
incubated overnight at 4°C with the secondary antibody, diluted in PBT, as suggested. Samples
were washed four times for 5 minutes in PBT and then soaked either in glycerol or
Fluoromount+DAPI before mounting for imaging.

3.2.2.2 In situ hybridization
For pex3 transcript localization analysis during embryogenesis, fixed wildtype zebrafish larvae
of different stages were used in an in situ hybridization approach, according to standard
protocol (Thisse & Thisse 2008), with minor modifications. Fixed embryos were placed in tubes
and rehydrated through a methanol/PBT series for 5 minutes each step, at room temperature,
under gentle shaking. Embryos were permeabilized incubating them with proteinase K (10
μg/ml) for an appropriate time, adjusted to the embryonic developmental stage (30 sec for 6-
somite stage, 1 min for 24 hpf embryos, 3 min for 48 hpf embryos, and 7 min for 5 dpf
embryos). Embryos were fixed again in fixative solution for 20 minutes at room temperature
and washed four times for 5 minutes in PBT at room temperature. Samples were then pre-
hybridized in hybridization mix for 4 hours at 70°C prior to overnight hybridization in 200 μl of
hybridization mix containing 33,3 ng of antisense digoxygenin-labelled RNA probe at 68°C.
Probes were denaturated at 80°C for 10 minutes and immediately stored on ice, before use.
The next day samples were transferred to PBT: first, through a hybridization mix (without tRNA
and heparin)/2x SSC series for 10 minutes each step, at 68°C, under gentle shaking; then with
two washings with 0,2x SSC for 30 minutes each, at 68°C, under gentle shaking; then through a
new 0,2x SSC/PBT series for 10 minutes each step, at room temperature, under gentle shaking.
Samples were blocked in blocking solution for 4 hours, prior to overnight incubation at 4°C
with the α-digoxygenin, Fab fragments, AP conjugated, diluted as suggested in blocking
solution. Samples were washed six times for 15 minutes in PBT and then three times for 5
minutes in alkaline Tris buffer. Embryos were then moved into plastic 24-well plates and
stained in 800μl of labelling solution, as long as the desired staining intensity is reached.
Staining was blocked washing the samples with stop solution for 5 minutes each step, at room
temperature, under gentle shaking and then soaked in glycerol before mounting for imaging.
Sense digoxygenin-labelled RNA probes were used in parallel as negative control.
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3.2.2.3 Alcyan Blue staining
Fixed embryos of the desired developmental stage were washed with PBT four times for 5
minutes under gentle shaking and then incubated in bleaching solution for 30 minutes at room
temperature to remove melanin pigment which might interfere with following imaging.
Samples were then rinsed twice with PBT and transferred into Alcian Blue staining solution
overnight at room temperature. Embryos were washed four times for 5 minutes under gentle
shaking in a solution of 1% v/v HCl-70% v/v ethanol in water and then rehydrated through a
HCl-ethanol/PBT series for 5 minutes each step, at room temperature, under gentle shaking.
Samples were finally soaked in glycerol before mounting for imaging.

3.2.2.4 DAF-FM staining
Larvae of the selected stage of development were transferred in DAF-FM diacetate staining
solution and incubated for 2 h in the dark at 28°C. After incubation, larvae were rinsed with
embryo medium twice and the tubes were then place in ice to euthanize the animals. Embryo
medium was then replaced with glycerol before mounting the samples for imaging.

3.2.2.5 Imaging and quantification
For morphological parameter measurements (larval length, tail length/total length ratio,
larva/yolk ratio) and for pigment intensity quantification, embryos or larvae of the desired
developmental stage were transferred in embryo medium containing tricaine. In order to
facilitate melanophore count, embryos or larvae were first treated with epinephrine for 5 min
to contract the melanosomes, let them recover for 20 minutes in embryo medium until full
melanophore contraction was reached and then placed in embryo medium containing tricaine.
As soon as the animals were not swimming anymore, pictures of individual animals were taken
at the Olympus SZX16 microscope, with the same parameter for all the experimental groups.
Images were then processed and analysed using ImageJ or Photoshop CS6 software. Images
were not adjusted for brightness and contrast, if not otherwise stated.
For melanophore lineage precursors count in transgenic animals, embryos of the desired
developmental stage were sacrificed and fixed overnight as previously described (see Larvae
collection and fixation). Embryos were then rinsed twice with PBT and soaked in
Fluoromount+DAPI before mounting for imaging. Images were taken at the Zeiss LSM 710
confocal microscope. Images were the processed and analysed using Zeiss ZEN software.
Images were not adjusted for brightness and contrast. Maximum intensity projections were
obtained for each data set and the melanophore precursor cell clusters were counted
afterwards.

3.2.3 Molecular work

3.2.3.1 PCR techniques
For amplification of polynucleotide sequences the following polymerases were used according
to manufacturer’s protocols: GoTaq (Promega) and Phusion High-Fidelity DNA Polymerase
(NEB).
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3.2.3.2 Isolation of plasmid DNA in analytical quality (Miniprep)
For testing colonies for successful transformation, 3vml of an E. coli overnight culture was
centrifuged for 2 minutes at 13000 rpm and the pellet was resuspended in 200 μl TELT buffer
with 10 mg/ml lysozyme. After 5 minutes of incubation at room temperature, cells were boiled
(99°C) for 3 minutes in a termomixer. After cooling in ice for 5-10 minutes, samples were
centrifuged at full speed for 20 minutes at 4°C. 200 μl of isopropanol were added to the
supernatant. Plasmid DNA was precipitated by centrifugation at full speed for 30 minutes at
4°C. DNA was washed with 1 ml of 70% ethanol, precipitated again by centrifugation at 13000
rpm for 5 minutes at 4°C, air dried and resuspended in 50 μl aqua bidest.
For preparation of high amounts of pure plasmid DNA, Nucleospin Plasmid AX-100 Kit
(Macherey-Nagel) was used according to manufacturer’s instructions.

3.2.3.3 Gel electrophoresis and DNA clean-up
Agarose gels at the proper concentration (usually 1%, for smaller fragments 2%, in TAE buffer)
were used for electrophoretic separation of DNA fragments. Gel fragments were detected
using a UV-transilluminator (366 nm) and the desired fragment was excised with a clean
scalpel. For clean-up of DNA fragments out of agarose gel pieces, NucleoSpin extract II Kit
(Macherey-Nagel) was used according to manufacturer’s instructions. The concentration of
DNA was measured using a Nanodrop spectrophotometer (Peqlab Biotechnology GmbH,
ThermoFisher Scientific).

3.2.3.4 Restriction digestion and ligation of DNA fragments
Enzymatic digestion of DNA was done using New England Biolabs (NEB) restriction
endonucleases and appropriate buffers according to manufacturer’s protocol. Ligation of DNA
fragments into plasmid vectors was carried out overnight at 16°C in a total volume of 20 μl,
including 2μl 10x ligation buffer and 1 U T4 DNA ligase (NEB).

3.2.3.5 mRNA in vitro synthesis
mRNAs were generated from plasmids containing the coding sequence of the desired gene
under the control of either the SP6 or T7 promoter. Plasmids were linearized with a unique
restriction endonuclease, cutting at the 3’ of the coding sequence. Obtained linear template
was run on an agarose gel, cleaned up (see Gel electrophoresis and DNA clean-up) and used as
template for in vitro transcription with SP6 mMessage mMachine Kit (Ambion) or T7
mMessage mMachine Kit (Ambion) as per manufacturer’s protocol. After precipitation, mRNAs
were resuspended in RNase-free water and stored at -80°C in aliquots. The concentration of
mRNAs was measured using a Nanodrop spectrophotometer (Peqlab Biotechnology GmbH,
ThermoFisher Scientific).

3.2.3.6 Digoxygenin-labelled RNA probe synthesis
pex3 digoxygenin-labelled RNA probes were generated from pCRII-TOPO vector, containing the
gene whole coding sequence and the two promoters SP6 and T7 on opposite ends. Plasmid
was linearized with unique restriction endonucleases, cutting either at one or the other end of
the coding sequence. Obtained linear templates were run on an agarose gel, cleaned up (see
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Gel electrophoresis and DNA clean-up) and used as template for in vitro digoxygenin-labelled
RNA probe synthesis with DIG RNA labelling Kit (SP6/T7) (Roche) as per manufacturer’s
protocol. After precipitation, digoxygenin-labelled RNA probes were resuspended in RNase-
free water and stored at -80°C in aliquots, after the addition of RNA later® (ThermoFisher
Scientific) and 0,5 M EDTA pH 8,0 at the final ratio of 20:9:1. The concentration of digoxygenin-
labelled RNA probes was measured using a Nanodrop spectrophotometer (Peqlab
Biotechnology GmbH, ThermoFisher Scientific).

3.2.3.7 Isolation of genomic DNA from tissues
Genomic DNA was isolated from whole embryos or from caudal fin sections according to the
HotShot genomic DNA extraction protocol (Mosimann et al. 2013). Tissue was incubated in 50
μl alkaline lysis buffer at 95°C for one hour, cooled on ice for 5 minutes and an equal volume of
neutralization buffer was added. Debris were removed by spinning down the samples at 5000
rpm for 15 minutes at 4°C and supernatant containing genomic DNA was transferred to fresh
tubes. The concentration of DNA was measured using a Nanodrop spectrophotometer (Peqlab
Biotechnology GmbH, ThermoFisher Scientific).

3.2.3.8 Isolation of total RNA from tissues
Total RNA was isolated either from pools (12-15) of whole embryos of the same stage, or from
freshly dissected isolated adult organs. Tissue was homogenized with a pestle in 250 μl TRIzol
RNA Isolation reagent; after homogenization, additional 750μl TRIzol RNA Isolation reagent
were added. Samples were eventually stored at -80°C up to six months. Colourless total RNA-
containing fraction was isolated according to manufacturer’s protocol. Downstream cleaning
was performed with RNA PureLink® RNA Mini Kit according to manufacturer’s protocol. The
concentration of RNA was measured using a Nanodrop spectrophotometer (Peqlab
Biotechnology GmbH, ThermoFisher Scientific). Purified RNA was aliquoted and stored at -
80°C.

3.2.3.9 Reverse transcription of RNA into cDNA
1 μg of total RNA was reverse transcribed into cDNA using QuantiTect reverse transcription kit
(Qiagen) including DNase treatment. cDNA synthesis was carried out according to
manufacturer’s protocol, including a control reaction, which did not include the reverse
transcriptase (-RT control). cDNA was stored at -20°C.

3.2.3.10 Quantitative RT-PCR
The C1000TM Thermal Cycler with CFX96™ Optical Reaction Module (Bio-Rad) was used to
perform quantitative real-time PCR experiments. Amplification after each PCR cycle was
detected via iQTM SYBR® Green Supermix (Bio-Rad). cDNA probes of reverse transcribed total
RNA served as template. All PCR reactions were done as technical triplicates in 96-well plates
in a total volume of 15 μl. Data were analysed with CFX Manager 3.0 software (Bio-Rad).
Expression is always shown relative to a control condition or sample and relative to two
independent internal expression control, which were rpl13 and elf1α in all experiments.
Expression data were calculated according to the ΔΔCt method. Primers for qRT-PCR assays
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were tested for efficiency before use and results were considered for corrected expression
values. Primer dimers formation was excluded by melt curve analysis.

3.2.3.11 High Resolution Melting Analysis (HRMA)
The C1000TM Thermal Cycler with CFX96™ Optical Reaction Module (Bio-Rad) was used to
perform High Resolution Melting Analysis (HRMA). Amplification after each PCR cycle and high
resolution melting profile were detected via Precision Melt Supermix (Bio-Rad). Genomic DNA
adjusted for concentration served as template. All PCR reactions were done as technical
triplicates in 96-well plates in a total volume of 15 μl. Standard protocol was modified as
follows: initial denaturation 3 min at 95°C; target amplification with denaturation 10 sec at
95°C, annealing 10 sec at 60°C and elongation 30 sec at 72°C repeated for 48 cycles; final
elongation 5 min at 72°C; melting 2 min at 95°C and reannealing 5 min at 25°C repeated for 3
cycles; melting data acquisition from 75°C to 87°C, with 0.1°C incremental steps and 15 sec
hold before fluorescence measurements. Data were analysed with Precision Melt Analysis
software (Bio-Rad). Melting profiles were always compared with a wildtype sample, in all
experiments, and with a homozygous mutated allele sample, if available. Automatic sample
clustering was refined by manual analysis of normalized melting curves and melt peaks.
Primers for HRMA were tested for uniqueness and identity of the amplified PCR product.
Primer dimers formation was excluded by melt curve analysis.
For sequencing of the amplicon from HRMA experiments, either they were cloned into pCRII-
TOPO vector (see TOPO TA cloning) and 4-8 positive clones were sent for sequencing or they
were directly sent for sequencing (see DNA sequencing).

3.2.3.12 DNA sequencing
For sequence assessment, the desired polynucleotide sequence (either an isolated PCR- or
HRMA-amplicon, or a vector) was sent to SeqLab, according to their instructions. For
sequencing, either a primer contained in the vector sequence or the specific primer added to
the reaction tube were used. In case of direct sequencing of HRMA amplicon, PCR product
purification (removal of PCR primers and dNTPs) was requested and amplification primers
were separately provided. Sequence results were individually validated through chromatogram
analysis.

3.2.3.13 SDS-PAGE gel electrophoresis and Western Blot
SDS polyacrylamide gels at the proper concentration (12% running gel) were used for
electrophoretic separation of proteins. Samples were run at 60 V until samples entered the
running gel, then at 110 V in SDS-running buffer. Proteins were then transferred on methanol-
activated PDVF membranes, blotting for 1 hour at 100 V at 4°C in Transfer Buffer. Membranes
were blocked with 5% milk powder in TBTS and incubated with primary antibody overnight at
4°C under gentle shaking, at the indicated dilution. Membranes were then washed three times
for 5 minutes in TBST at room temperature and decorated with secondary antibody for one
hour at room temperature under gentle shaking. Membranes were washed again three times
for 5 minutes in TBST and developed with PierceTMECL Western Blotting Substrate. Films were
exposed as long as clear bands were appearing (usually between 1 minutes and 10 minutes).
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3.2.4 Biochemical work

3.2.4.1 Melanosome separation
B16 murine skin melanoma cells were collected. Pellet was resuspended in 1 ml of 0,25 M
sucrose in HEPES and sonicated (2 cycles) to disrupt cells. Cell lysate was layered on top of a
discontinuous sucrose gradient (from 1,0 M to 2,0 M, with 0,2 M steps) and tubes were
ultracentrifuged for one hour at 100.000xg at 4°C. At the end of the centrifugation step, the
melanosomal fraction could be easily identified as a dark grey-black layer located at the
interface between the 1,6 M and the 1,8 M sucrose gradient. This fraction was collected using
a glass pipette, transferred into fresh tubes, centrifuged again for 30 minutes at 16.100xg at
4°C and resuspended in 500 μl 0,25M sucrose in HEPES. Samples were centrifuged again for 30
minutes at 16.100xg at 4°C and resuspended in 500 μl RIPA buffer. Melanosomal fraction was
sonicated (2 cycles) to disrupt membranes and processed in SDS-PAGE gel electrophoresis.

3.2.4.2 CoQ2 reduction
0,5 ml of CoQ2 stock solution was pipetted into a tube and 25 μl of a 0,05 M solution of NaBH4

in water was added. The mixture was vortex-mixed for 2 minutes and incubated at room
temperature in the dark for 30 minutes. The resulting CoQ2H2 was extracted into 5 ml of
hexane and the organic phase was washed three times with 1,5 ml of water. The hexane layer
was separated and evaporated to dryness overnight and CoQ2H2was resuspended in in 0,1 ml
isopropanol and 0,4 ml sterile water. Success in reduction procedure and concentration were
measured using a Nanodrop spectrophotometer (Peqlab Biotechnology GmbH, ThermoFisher
Scientific): the main absorbance peak of CoQ2decreased in magnitude and shifted from 275
nm to 287 nm (CoQ2H2).

3.2.4.3 ROS/RNS quantification
Pools containing five embryos of the same developmental stage were collected in single tubes,
embryo medium was removed as much as possible and 450 μl of PBT were added; embryos
were homogenized on ice with a pestle. Tubes were centrifuged 30 minutes at full speed at 4°C
and supernatant was used to perform either the reactive oxygen species (ROS) quantification
via Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit or the reactive nitrogen species
(RNS) quantification via the Griess reagent Kit assay, according to manufacturer’s instruction.
Each sample was measured in triplicates on a 96-well plate; for ROS quantification, absorbance
was measured at 585 nm, whereas for RNS quantification, absorbance was measured at 548
nm.

3.2.4.4 Pigment Absorbance measurements
Pigment absorbance measurements were performed according to Dong et al. (Dong & Yao
2012), with minor modifications. Pools containing 5 to 10 embryos of the same developmental
stage were collected in single tubes, embryo medium was removed as much as possible and
200 μl of melanin extraction buffer were added. Samples were incubated at 37°C for 4 hours
and then centrifuged at 10.000xg for 30 minutes at 4°C. Pellets were resuspended in 0,9% NaCl
and centrifuged again at 10.000xg for 30 minutes at 4°C; pellets were resuspended in 170μl of
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8M urea/1M NaOH and centrifuged again at 10.700xg for 30 minutes at room temperature.
Melanin containing surnatant was used for pigment absorbance measurement. The spectrum
was measured in the range between 330 nm and 510 nm and the total pigmentation
absorbance was calculated integrating the area under the absorbance curve in this range.

3.2.5 Microbiological work

3.2.5.1 Transformation of chemo-competent bacteria
For transformation of plasmid vectors into competent bacteria, cells were thawed on ice. 100
ng of plasmid DNA were added to 100 μl of bacterial suspension. After incubation on ice for 30
minutes, cells were heat-shocked at 42°C for 45 seconds and subsequently cooled on ice. 100
μl of LB medium without antibiotics were added and vials were incubated at 37°C in a shaking
thermomixer for 1 hour. Bacteria were then plated onto LB agar plates with appropriate
antibiotics.

3.2.5.2 TOPO TA cloning
After PCR amplification of the desired polynucleotide sequence, dATP overhangs were added
in a GoTaq polymerase reaction, which was done at 72°C for 10 minutes. Cloning into pCRII-
TOPO vector was performed according to manifacturer’s (Invitrogen) protocol and
transformation into TOP10F’ bacteria according to the protocol described above (see
Transformation of chemo-competent bacteria).

3.2.6 Bioinformatics

3.2.6.1 Oligonucleotides design
PerlPrimer software (Marshall 2004) was used to design optimal pairs of primers for PCR, qRT-
PCR and HRMA applications. Primer size was restricted between 18 and 23 nucleotides;
aligning temperature (Tm) should be comprised between 57°C and 62°C (with an optimal Tm
of 60°C). For cloning purposes, restriction enzyme sites were added at the 5’ end of the
primers, when necessary. Primers were ordered and obtained from Integrated DNA
Technologies.
For Antisense Morpholino Oligonucleotides, target gene sequences were provided to Gene
Tools, LLC. They designed an optimal morpholino oligonucleotide satisfying the general
requirements (i.e. 40-60% GC content without significant self-complementarity or stretches of
4 or more contiguous G, should form no more than 16 contiguous intrastrand hydrogen
bonds).

3.2.6.2 Sequence alignments
The Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990) was used to align
nucleotide or protein sequences retrieved from online databases. Results were ordered
according to increasing E-values, parameter that describes the number of hits one can expect
to see by chance when searching a database of a particular size. Other available parameters
are the query cover (the percentage of the input sequence which is considered in the shown
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result), similarity (only for protein sequences) and identity scores. The alignment of the
sequence was also displayed.
Multiple alignment was performed using MUltiple Sequence Comparison by Log-Expectation
(MUSCLE) algorithm (Edgar 2004). For visualization of multiple alignments, Jalview plugin was
used (Waterhouse et al. 2009). Aligned amino acid sequences were edited for function
conservation and residues consensus according to a BLOSUM62 similarity matrix (Thompson et
al. 1994).

3.2.6.3 Protein domains prediction
Prediction of transmembrane domains and cytoplasmic α-helices was based on structural data
obtained from murine pex3 crystal structure data (Schmidt et al. 2012b; Sato et al. 2010;
Hattula et al. 2014), integrated with HMMTOP prediction based on the amino acid sequence
(Tusnady & Simon 2001).

3.2.6.4 Transcription factors binding site prediction
Prediction of transcription factors binding sites in promoter regions of different genes was
performed using JASPAR tool (Mathelier et al. 2016). This database collects transcription factor
DNA-binding preferences, modelled as Position Weight Matrices, used for scanning genomic
sequences. The desired matrix was selected from the list and the 2 kb region upstream of the
transcription start of the desired gene was used as input; to increase specificity of the results,
the threshold score was set at 92% (Wasserman & Sandelin 2004).

3.2.7 Statistics

3.2.7.1 Data analysis
For all the gene expression, ROS or RNS quantification and mitochondrial DNA quantification
experiments, data were obtained by three independent samples; for demographic
experiments, the starting population consisted of at least 100 embryos for each experimental
group; for pigmentation intensity quantification or melanophore number determination
experiments, between 20 and 25 embryos or juvenile larvae were analysed for each
experimental group.
Data were analysed using either t-test or 2-way ANOVA and Bonferroni post hoc correction. All
p-values are indicated in the figures (* 2p<0,05; ** 2p<0,005; *** 2p<0,001; n.s. not
significant).

3.2.7.2 Average distance from stripe axis calculation
For determination of melanophore distribution during larval metamorphosis, migration of
individual cells on the skin was translated on a bi-dimensional model (Luciani et al. 2011).
Position of the cells belonging to the same stripe was described as xy coordinates. These
coordinates were used for the calculation of a linear regression describing the mean position,
namely the presumptive axis of the stripe. After that, we calculated the average distance of
each pigment cell from the axis of the stripe and this was related to the wildtype positive
control.
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4 Results
PEX3 is recognized as the key component of peroxisome biogenesis. It is described to have

multiple function in this process, interacting with other peroxins, mediating the successful

sorting of membrane protein on peroxisome surface and supplying lipid membrane during the

organelle growth. As described in the introduction, mutation affecting PEX3 were

characterized in human, being lethal within the first four weeks after birth. Due to the multiple

roles in peroxisome biogenesis and homeostasis, PEX3 is an appropriate candidate gene to

establish a Peroxisomal Biogenesis Disease model in vertebrates. Making use of the several

advantages of zebrafish model organism, among which rapid ex utero embryonic

development, transparency, and availability of large number of animals, it is possible to get a

deeper knowledge of the molecular events underlying the progression of the disease (Santoro

2014; Seth et al. 2013).

4.1 Identification of the zebrafish homolog of the human PEX3
In order to support the following analysis, an in silico homology study of the human PEX3 in

the genomes of mouse, fruit fly, and zebrafish was performed. HomoloGene (Group) and

ENSEMBL Genome Browser (Gene: PEX3 - ENSG00000034693 - Summary - Homo sapiens -

Ensembl genome browser 84 Ensembl release 85 – July 2016) databases annotate unique

homologs for all the species. In zebrafish, the unique homolog, named pex3 (gene ID:

ENSDARG00000013973), is located on chromosome 20. The predictions indicate two putative

transcripts. The first one (transcript ID: ENSDART00000012826) consists of 1938 bp, containing

the coding sequence for the full length pex3 protein. The predicted molecular weight of the

protein is approximately 42kDa. The second unprocessed transcript (transcript ID:

ENSDART00000153008) is composed of 783 bp, due to a cryptic splicing site after the eighth

exon resulting in the retention of the following intron (Table 1).
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The presence of redundant genes cannot be excluded due to the fact that zebrafish underwent

a number of duplication, followed by major genomic rearrangements, starting at the base of

the teleost radiation, approximately 300–450 millions of years ago (Taylor et al. 2001). In fact,

each duplicated gene can undergo neo-functionalization (novel functional properties) or sub-

functionalization (subdivision of the original protein functions), in case of positive selection

leading to the conservation of both copies, or can degenerate into pseudogenes, in case of

accumulation of deleterious mutations (Holland et al. 1994; Postlethwait 2007). The identified

pex3 was subjected to a reverse analysis based on both the coding sequence, versus the whole

zebrafish genome, and on the amino acids sequence, versus the whole zebrafish proteome.

At the genomic level, no similar sequence was found. Multiple results from different sources -

amongst them NIH MGC Project (Strausberg et al. 2002) and the Welcome Trust Sanger

Institute (Howe et al. 2013b) genome assemblies - show pex3 itself as the only positive hit,

hinting to the degeneration or loss of the duplicated copy of pex3. Similarly, at the protein

level, only pex3 polypeptide emerged as hit with an E-value lower than the default threshold.

Remarkably, the same search detected other proteins having a partial homology overlap,

limited to amino acids strands spanning as much as 100 residues (Table 2). Most of the times,

this could be due to a similar topology (i.e. similar composition in the tertiary structure of a

particular region of the protein, for example). Nevertheless, these hits cannot be included in

putative isoforms of the duplicated pex3 gene, since they are associated with other domains

absent in mammalian Pex3 or they lack other domains defining pex3 function. It is rather the

case that the two genes may be derived from a common ancestor and independently evolved,

still conserving partial features. Interestingly, one of the positive hits, apolipoprotein B-100, is

involved in autophagy as regulator of lipids metabolism and it has the capability of binding

lipid droplets, similar to what was described for pex3, in mammals (Zamani et al. 2016).
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Description Accession Query cover E-value Identity

peroxisomal biogenesis factor 3 NP_956522.1 100% 2e-128 100%

PREDICTED: kinesin-like protein
KIF21B

XP_009304054.2 42% 0,068 14%

PREDICTED: potassium voltage-gated
channel subfamily G member 2-like

XP_690900.2 8% 1,2 21%

PREDICTED: serine/threonine-
protein kinase pim-1-like

XP_009302304.2 47% 1,5 15%

potassium channel subfamily K
member 15

NP_001104701.1 12% 1,5 11%

retinol dehydrogenase 13 NP_001038920.1 7% 3,8 24%

PREDICTED: apolipoprotein B-100 XP_694827.6 31% 4,7 12%

Table 2 – Identification of possible pex3 paralogues in Danio rerio genome and annotation of genes
having partial sequence homology (Identity>10%; query coverage>5%).

These data show that only one isoform of pex3 gene is present in zebrafish and it can be

excluded the existence of a second redundant homolog that may interfere with the following

analysis.

4.2 Pex3 gene structural analysis
Further in silico analysis was performed determining the gene structure conservation across

different model organisms. Gene assemblies were analyzed both at the level of exon-intron

composition and at the level of gross genomic region organization.

In Drosophila, Pex3 is encoded by a single exon transcript; in all the other species analyzed in

this work, zebrafish pex3 homologs are encoded by mRNAs derived from the splicing of twelve

exons (Table 3). 5’-, 3’-UTR encoding exons and introns are rather heterogeneous and variable

in length. In contrast, all the exons, except for exons 5 and 8, share the same length. Exon5 in

zebrafish is 3 bp shorter (resulting in an in-frame shift in the ORF, leading to the absence of a

single amino acid) when compared to human and murine ones. Exon 8 in mouse is 3 bp shorter

and in zebrafish is 24 bp shorter when compared to the human one (resulting in an in-frame

shift of the ORF, in both cases).
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Exon HS PEX3 MM Pex3 DR pex3
1 136 314 219

7969 6344 372
2 132 132 132

3699 3644 75
3 82 82 82

5124 5149 172
4 44 44 44

2795 1363 2307
5 125 125 122

297 167 88
6 67 67 67

107 99 111
7 55 55 55

548 717 121
8 169 166 145

2457 2261 1166
9 71 71 71

4219 959 97
10 123 123 123

5953 3420 2271
11 97 97 97

3894 2772 93
12 868 853 781

Table 3 – Exon/intron structure comparison between pex3 transcripts in human (HS), mouse (MM) and
zebrafish (DR). Numbers represent the lenghts (in base pairs) of exons and introns. Alternating, there
are exons (in yellow) and introns (in white). Exon containing the start codon is highlighted in green;
exons containing the stop codon is highlighted in red.

The overall genomic region organization analysis showed no similarity between zebrafish

genome and the one of the furthermost analyzed model, D. melanogaster. However, the

genomic regions surrounding PEX3 in human and Pex3 in mouse include the adat2 (adenosine

deaminase, tRNA specific, 2) in a head-to-head orientation at the 5’-end of the gene, similarly

to what happens in zebrafish (Table 4; for further details, see Appendix).
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Gene 5’-end Gene 3’-end

Zebrafish adat2
adenosine
deaminase,

tRNA-specific 2

Human ADAT2
adenosine
deaminase,

tRNA-specific 2
VDAC1P8

voltage-
dependent

anion channel 1
pseudogene 8

FUCA2
fucosidase,
alpha-L- 2,
plasma

Mouse Adat2
adenosine
deaminase,

tRNA-specific 2
Fuca2

fucosidase,
alpha-L- 2,
plasma

Fruit fly
Pdi

(P4HB)

prolyl 4-
hydroxylase,

beta
polypeptide

CG32147
(PGPEP1)

pyroglutamyl-
peptidase I

FucTA Msh6
MSH6
mutS

homolog 6

Table 4 – Evolutionary comparison of the genomic region surrounding pex3 gene in different species in
terms of conservation of the locus.

4.3 Prediction of pex3 functional domains
The predicted peptide sequences encoded by the identified homologs in the different species

were then analyzed for similarity in amino acid composition. BLAST results show that zebrafish

pex3 shares 74% of identical and 85% of similar residues when compared to the human

homolog. Afterwards, topology analysis with secondary structure and transmembrane coils

prediction tools (Chou & Fasman 1974; Tusnady & Simon 2001) was performed. Indeed,

zebrafish pex3 is predicted to possess a short N-terminal transmembrane domain (residues 16-

33) followed by six α-helices (amino acids 53-95, 100-146, 158-192, 202-240, 249-291, 313-

357) (Figure 22). The N-terminus is predicted to be intra-luminal, whereas the C terminus

cytoplasmic.

Figure 22 – Schematic representation of pex3 locus in zebrafish genome (full boxes are the coding
sequence containing exons, whereas empty boxes are the 5’- and 3’-UnTranslated Regions [UTR]) and of
the predicted secondary structure of the encoded peptide (in blue, the predicted transmembrane
domain; in yellow, the predicted α-helices; numbers underneath indicate the corresponding amino acids
positions in the primary polypeptide structure).



Results 67

This prediction is in line with previous studies (Sato et al. 2010; Schmidt et al. 2012b) showing

a similar topology of the protein after crystal structure determination. Multiple protein

sequences alignment shows that the predicted transmembrane domain and α-helices align

with the correspondent regions in the homologous proteins of other model organisms (Figure

23). These regions of the protein are demonstrated to be critical for the binding of the main

interaction partner, pex19, and they are described to be necessary for the insertion of

peroxisomal membrane proteins into the peroxisomal membrane (Sato et al. 2010). In fact,

identity scores from the alignments of zebrafish pex3 with the correspondent regions of the

human or murine homologs show even higher degree of conservation in comparison to full-

length alignments (Table 5). The identity scores range between 87% and 100%, except for the

fourth α-helix, which shows higher variability (Figure 22 and Table 3). The most heterogeneous

regions lie on the coiled-coil strands linking the different α-helices, in particular the one

between α-helix 5 and α-helix 6. These regions were not described to have a special function,

other than allowing a certain flexibility of the remaining polypeptide chain in such a way to

accommodate the interaction with other proteins.

Transmem. α-hel 1 α-hel 2 α-hel 3 α-hel 4 α-hel 5 α-hel 6

Id Sim Id Sim Id Sim Id Sim Id Sim Id Sim Id Sim

HS PEX3 75% 88% 88% 95% 93% 87% 77% 91% 46% 55% 86% 93% 82% 93%

MM Pex3 75% 88% 88% 95% 96% 100% 83% 94% 49% 59% 86% 93% 82% 95%

Table 5 - Identitiy (Id) and similarity (Sim) scores for each of the predicted functional regions of
zebrafish pex3 protein (see Figure 22) derived from multiple BLAST alignments with equivalent regions
of the human (HS) or murine (MM) homologs.
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Figure 23 - Multiple alignment of fruit fly (Dm), zebrafish (Dr), human (Hs) and murine (Mm) pex3
proteins. The aligned amino acid sequences were edited for function conservation and residues
consensus according to a BLOSUM62 similarity matrix. Colors shadowing indicates similar biochemical
properties of the residues, whereas the height of the bars is proportional to the conservation of the
region surrounding that specific residue. Predicted domains of pex3 proteins are depicted below the
amino acid sequences (see Figure 22).
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4.4 pex3 expression in zebrafish
Following the identification and validation of a single PEX3 homolog in zebrafish, the

expression profile was determined with both an in silico and an experimental approach.

Queries to different databases collecting gene expression profiles were made to estimate

zebrafish pex3 expression at different time points, in different tissues or under different

physio-pathological conditions or stimulations.

Expressed Sequence Tag (EST) profiles database (Group) shows approximate gene expression

patterns as inferred from EST counts and cDNA library sources. According to EST annotation,

pex3 transcript is detected only at the pharyngula stage (24-48 hpf), but not in other stages

during embryonic development (Table 6).

Developmental
stage

Transcripts per
million (TPM)

Gene EST/
Total EST

egg 0 0/3836

gastrula 0 0/6989

segmentation 0 0/11064

pharyngula 40 1/24767

hatching 0 0/42929

larval 0 0/19943

juvenile 0 0/7503

Table 6 – Summary of pex3 expression pattern in different zebrafish developmental stages according to
Expressed Sequence Tag (EST) database.

Experimental gene expression data from Gene Expression Omnibus (GEO) give a more

comprehensive view of pex3 expression. Indeed, pex3 is detected already during the first cell

divisions and its levels constantly increase in the following hours, until the end of

embryogenesis. It is likely that the first detected transcripts are maternally derived - this kind

of transcripts can be detected up to 5 hpf (Giraldez et al. 2006) – and they are afterwards

replaced by embryonic expression, that increases.

As both EST counts and GEO expression profiles may be affected by false positive calls, due to

limitation of the techniques, additional experimental approaches were adopted in order to

gain a more detailed overview about pex3 expression. In order to refine the spatio-temporal

description of pex3 expression, qRT-PCR (Figure 24) and in situ hybridization (Figure 25) were

performed on whole embryos at different stages of the first five days of development. pex3

transcript can be detected by qRT-PCR already at the earliest tested time point, 8 hpf, and its
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levels stay constant also in the following developmental stages (12 hpf, 24 hpf and 48 hpf). Its

transcription increased by 2,5-fold at 120 hpf.

Figure 24 – pex3 expression determined in different zebrafish embryonic stages via qRT-PCR. Expression
normalized to the expression at 8 hpf.

While qRT-PCR data give a quantitative information about gene expression, in situ

hybridization data suggest the spatial gene expression. At 12 hpf, pex3 expression localizes in

all the cells of the yolk syncytial layer, without a particular spatial restriction, meaning that a

general requirement of peroxisomes exists, at this stage (Figure 25 A-A’). At 24 hpf, the

expression is detectable in all the embryonic tissues, but it is particularly strong in the

developing brain region, in the optic cups, and in a cell layer developing along the body axis,

presumably the neural crest cells, in the trunk (Figure 25 B-B’). The same expression pattern is

observed at 48 hpf. The highest expression localizes in the brain and in the medulla oblungata.

Also the developing sensory organs, in particular the optic cup and the otic vesicles, display a

strong pex3 expression, as well as the residual neural crest cell layers (Figure 25 C-C’). pex3

expression at 120 hpf is the most informative, because the development of the different

organs in the zebrafish larva at this stage is completed and the size of the animal allows higher

resolution in the pattern description. Once again, the central nervous system and the sensory

organs are the areas where the expression of pex3 is higher. In the central nervous system,

telencephalon, medulla oblungata and olfactory epithelium are the most interested parts. In

the eye, the expression is not spread anymore, as it was at earlier time points, but it is now

restricted in three concentric cell population, namely, proceeding from the middle to the

outside, the retinal perinuclear layer, the inner nuclear layer and the outer nuclear layer. Also

the gills filaments show high pex3 expression, whereas in the rest of the body the expression is

quite weak. Interestingly, higher magnification of the more superficial epidermal layers shows
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the presence of single cells, dispersed in the head regions, whereas in the trunk they line in a

stripe on the dorsal part, and in two additional stripes in the lateral part (Figure 25 E-E’’’).

Figure 25 - pex3 expression determined in different zebrafish embryonic stages via in situ hybridization.
(A-A’) 12 hpf. (B-B’) 24 hpf. Transcript presence is enhanced in brain (b), optic cup (oc) and neural crest
cells (ncc – black arrowheads). (C-C’) 48 hpf. pex3 highest expression localizes in brain (b), medulla
oblungata (mo), optic cup (oc) otic vesicles (ov) and in residual neural crest cell layers (ncc – black
arrowheads). (D-D’) 120 hpf. pex3 is expressed in telencephalon (t), medulla oblungata (mo), eye (e),
gills filaments (gf) and olfactory epithelium (oe). (E-E’’’) Higher magnification captures of previous
samples show that in the eye, pex3 expression is restricted in the perinuclear layer (PNL), the inner
nuclear layer (INL) and the outer nuclear layer (ONL). Single cells are dispersed in the head regions
(black arrowheads) and in the trunk (stars). Scale bars: 200 μm in panels A, A’, B, B’, C and C’; 1 mm in
panels D, D’, E and E’; 500 μm in panels E’’ and E’’’.

Since transcription of a gene is not necessarily reflecting its translation into protein, the

expression pattern of pex3 was analyzed also with immunofluorescence stainings. The results

do not differ from the expression patterns detected with in situ hybridization or qRT-PCR

methods. At 5 dpf, pex3 is present in the entire body. The area with the highest pex3

expression is the central nervous system (Figure 26 A): here it is possible to observe groups of

cells with enhanced pex3 expression (Figure 26 A’). Interestingly, the protein presence and the

expression determined with in situ hybridization mirror each other at the level of the eye, in

the already described three concentric cell population: retinal perinuclear layer, the inner

nuclear layer and the outer nuclear layer (Figure 26 A’’). In the trunk region it is possible to

observe a broad pex3 expression, involving all the tissues. Remarkably, the inter-somite areas

are enriched in pex3 protein (Figure 26 B). These areas accommodate the axons projecting

from the spinal cord into the peripheral tissues and further along the same direction of the
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muscular fascicle bundles. The observation of more superficial layers allows the detection of a

group of cells enriched in pex3 protein expression. They line up in a stripe, similarly to what is

observed at the transcriptional level with in situ hybridization (Figure 26 B’).

Figure 26 - pex3 expression determined in 5 dpf zebrafish embryos via immunofluorescence stainings.
(A) pex3 is enriched in the olfactory epithelium (oe) and in the yolk sack wall layer (ysl). (A’) pex3
presence is especially high in the central nervous system and in particular in a group of cells (picture
corresponds to box in panel A) (A’’) In the eye, the retinal perinuclear layer (PNL), the inner nuclear layer
(INL) and the outer nuclear layer (ONL) are stained (B-B’) In the trunk region pex3 is enriched at the
dorsal stripe melanocytes (DSM), in inter-somite areas (is), along the same direction of the muscular
fascicle bundles (stars) and in a group of cells in the epidermal layer. Scale bars: 500 μm in panel A; 20
μm in panel B; 200 μm in panel C; 100 μm in panel D; 50 μm in panel E.

EST profiles database offers also expression data related to different organs at the adult stage

(Table 7). pex3 expression is remarkably elevated in the eye, heart, kidney, liver and

reproductive system.
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Adult organ
Transcripts per
million (TPM)

Gene EST/
Total EST

bone 0 0/7413

brain 0 0/88205

eye 16 1/59653

fin 0 0/33258

gills 0 0/12723

heart 33 1/30017

intestine 0 9/4130

kidney 19 1/50205

liver 58 1/17174

lymphoreticular 0 0/1178

muscle 0 0/116351

olfactory rosettes 0 0/35226

reproductive system 22 4/179524

skin 0 0/9225

Table 7 – Summary of pex3 expression pattern in different organs in zebrafish adult animals according
to Expressed Sequence Tag (EST) database.

Similar to what was done for the different stages of embryonic developments, GEO database

was queried. For adult zebrafish, pex3 expression data are referred to different physiological

conditions or in response to different stimulations. Analysis restricted to specific organs shows

that pex3 expression is remarkably elevated in the whole brain, and in particular in the pineal

gland, without a specific tendency in relation with the night hours - pineal gland produces

melatonin- and serotonin-derived hormones, modulating the circadian rhythm - the gender or

the age of the fish (Toyama et al. 2009; Arslan-Ergul & Adams 2014).

qRT-PCR experiments performed on isolated organs from adult animals confirmed ubiquitous

expression of pex3, but the highest expression was detected in brain (approximately 8-fold,

when normalized to whole body) and in ovaries (approximately 8-fold). Other organs in which

the transcript was detectable at relatively high levels were heart, kidneys and eyes (Figure 27).
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Figure 27 - pex3 expression determined in different organs in zebrafish adult animals via qRT-PCR.
Expression normalized to whole body (remaining carcasses). n.d. = not determined.

4.5 Pex3morphants do not show abnormal development
Due to the strong expression of the gene already during the first embryonic developmental

stages, the possibility to obtain information about pex3 function, knocking down the

translation of the mRNA into protein using antisense morpholino oligonucleotides (AMOs) was

explored. At least two different strategies can be designed for AMO-based experiments. They

can either bind the mature mRNA molecules in proximity of the start codon, preventing the

ribosome to dock and start the translation, or the pre-mRNA on a splicing site, causing the

retention of an intron or the skip of an exon, statistically resulting in frameshift of the open

reading frame in two out of three cases (Ekker 2000).

A pex3 translational blocker morpholino (pex3 AMO TB) was used and the injected amount

was titrated, in order to find the optimal quantity inducing a phenotype without toxicity. It was

determined that zebrafish embryos tolerate up to 375 fmol of pex3 AMO TB, whereas higher

amounts induced complete lethality within 8 hpf, hinting to an unspecific effect of the injected

molecule. pex3 AMO-injected embryos were observed for lethality, development and

behavioral defects (Figure 28).
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Figure 28 – Dose-dependent lethality of pex3 translational blocker (TB) antisense morpholino
oligonucleotide (AMO) monitored in the first 5 dpf. At high amounts (>750 pmol) pex3 AMO TB causes
nearly complete lethality within 12 hpf (red box), whereas at lower amounts there is a dose-dependent
lethality taking place between 36 hpf and 48 hpf (yellow box). Numbers represent percentage of
survived injected embryos at each time point.

After injecting different quantities of pex3 AMO TB in one-cell stage embryos, a dose-

dependent lethality of about 30% was observed between 36 hpf and 48 hpf, upon injection of

the highest tolerated amount (Figure 28). After this stage and up to 5 dpf, there is no

difference between the experimental groups in terms of survival rate. Surviving embryos do

not show any phenotypical difference in comparison to control embryos and the swimming

behavior is not altered. In light of this observation, it is possible to conclude that pex3 knock

down via AMO is able to induce a response which is specific and limited to a specific

developmental time window (36 hpf – 48 hpf), but its efficiency is still not sufficient to allow an

accessible phenotype analysis. Nevertheless, these preliminary results hint to a role of pex3

during development, within 48 hpf.

4.6 Generation and validation of a pex3 loss of function zebrafish

model
As described, pex3 ubiquitous expression starts early during zebrafish embryonic

development, with already a strong maternal component and it greatly increases until the

adulthood, with an enrichment in specific organs (brain, liver, kidney, reproductive system).
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Based on phenotypical important effects of a Pex3 mutation in yeast (Kiel et al. 1995; Hettema

et al. 2000) or in fruit fly (Nakayama et al. 2011), main developmental defects were expected

also in zebrafish embryos. Nevertheless, the antisense morpholino oligonucleotide approach

proved to be limiting, due to the lack of an evident morphant phenotype.

To address these issues, different strategies were used with the goal of generating a pex3 loss

of function model in zebrafish. On one side, biased genome targeting technologies, such as

TALENs or CRISPR/Cas9, were used to generate DNA double strand breaks in the pex3 locus, to

induce non homologous end joining (NHEJ)-mediated imprecise repairs. On the other, alleles

from random ENU-induced mutagenesis screening were available and used for pex3 functional

analysis.

4.6.1 TALENs-guided mutation generation

In order to generate a pex3 loss of function model, the largely accessible TALENs were used, in

first instance (Clark et al. 2011). Three TALEN pairs targeting the first exon, differing for

targeting site or length of the spacer between the pairs, were generated. The three chosen

sequences were verified for specificity using BLAST algorithm, searching for similar sequences

in zebrafish genome and none of the hits could fully cover any target sequence, except for the

pex3 genomic sequence, with less than four mismatches (Table 8).
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TALEN ID Sequence Gene Identity E-value

10L TCTGTTAAAATGTTGAGTTC

transmembrane protein 251 (tmem251) 16/20 1,4

heat shock transcription factor 1 (hsf1) 16/20 1,4

zgc:171695 15/20 5,6

12L TTTCATCAAACGCCATAAGA

uncharacterized LOC103909823 15/20 5,6

si:ch1073-90m23.1 15/20 5,6

phospholipid-transporting ATPase ID-like 15/20 5,6

zgc:158296 15/20 5,6

10R TTCCTCTTATGGCGTTTGAT phospholipid-transporting ATPase ID-like 15/20 5,6

11R TTTCCTCTTATGGCGTTTGA phospholipid-transporting ATPase ID-like 15/20 5,6

12R TTACCTCCAACAAACACCCC

solute carrier family 12 (sodium/chloride
transporters), member 3

16/20 1,4

family with sequence similarity 3, member
C (fam3c)

16/20 1,4

suppressor of variegation 3-9 homolog 1b
(suv39h1b)

15/20 5,6

uncharacterized LOC101882959 15/20 5,6
protein arginine methyltransferase 9
(prmt9)

15/20 5,6

cytoplasmic polyadenylation element
binding protein 3 (cpeb3)

15/20 5,6

family with sequence similarity 3, member
A (fam3a)

15/20 5,6

zgc:195220 15/20 5,6
homeodomain interacting protein kinase
1a (hipk1a)

15/20 5,6

Table 8 – Identification of the possible off targets in the TALEN-based mutation generation approach.
Each DNA binding sequence was verified and genes with less than five mismatches were anotated.

All constructs were validated in a cell culture system for cutting efficiency, as well as for

efficacy in inducing frameshift mutations (see Appendix). According to the results of the

preliminary test, TALEN pair 10L/10R is the most effective in generating a frameshift mutation.

This pair was then chosen to produce mRNAs to be injected into zebrafish embryos. Different

concentrations of the TALENs mRNA pair were tested to optimize the balance between

efficient mutation induction and survival rate, and the best conditions were found to be the

injection of a total amount of 200 pg of mRNA, with the two constructs at a 1:1 ratio.
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4.6.2 CRISPR/Cas9-guided mutation generation

Alternative to TALENs, a CRISPR/Cas9-based targeting approach was used, since it promised

higher efficiency and allows more flexibility in target design. With the help of ZiFiT targeter

software package (Sander et al. 2010), two suitable target sites close to the 5’-end of pex3

sequence were identified, one in intron 1 and the other in exon 3. The two identified candidate

targets were screened for potential off targets using CRISPOR (Haeussler et al. 2016), an

algorithm implementing eight other off target prediction tools, taking into account different

parameters including efficiency score, guide activity and method of sgRNA production. Both

targets possess a specificity score higher than the threshold, they have the highest predicted

efficiency scores (Moreno-Mateos et al. 2015) and there is no locus in the genome with less

than three mismatches in the seed sequence (12 bp adjacent to the PAM), ensuring low

likelihood of off target binding (Table 9).

sgRNA ID Sequence
Specificity
score

Predicted
efficiency

Gene
Off target sequence

(mismatches)

Exon3 GGTGATGGATGATTGCCTCT 93 42

fynb
GATTATGGTTGATTTCCTCT
* * * *

ARHGEF12 (1 of
2)

GGAGTTGGATGATTTCCTCC
* * * *

klf3
GGCGATGGAGGACTGGCTCT
* * * *

cers4a
TGTGGTGGATGATTTGCTCT
* * **

si:ch211-79l20.4
GCTGATGGATGATGGCTTTT
* * * *

Intron1 GGAATTTTTAGTCAACAGAA 65 25

CR391998.1
GGAATTTTTATTGAACACAG

* * * *

LTN1
GCAACTTTTATTCAACAAAA
* * * *

nop58
GGAGTGTTGAGTCACCAGAA

* * * *

SERBP1 (3 of 3)
CTAATGTTTAGTCGACAGAA
** * *

si:ch211-
229i14.2

GCCATTTTTGGTCAACAAAA
** * *

slc35d1a
GTAATGTTTAATCTACAGAA
* * * *

slc6a2
GGATTTTGAAGTCATCAGAA

* ** *

Table 9 – Specifity and efficiency prediction of the target sequences of the CRISPR/Cas9-based mutation
generation approach and identification of the possible off targets. Specificity scores ranges from 0 to
100; scores above 50 are recommended (Hsu et al. 2013). Efficiency prediction according to (Moreno-
Mateos et al. 2015). Each DNA binding sequence was verified for ff targets with CRISPOR (Haeussler et
al. 2016) and genes with four mismatches in an exon or in a predicted regulatory region were anotated,
including the off target sequence (stars show the mismatches).
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The two constructs were validated directly in zebrafish embryos, injecting different amounts of

sgRNA or Cas9 mRNA, at different ratios, in order to balance mutation induction efficacy with

the toxic effects of injection of high quantities of nucleic acids. Both tested constructs

effectively cut the targeted regions and induce frameshift mutations (see Appendix). For this

reason, being desirable to induce a mutation in the protein coding sequence, only the exon3-

targeting sgRNA was used to establish a mutant allele. Optimal conditions for efficiently induce

mutation were found to be in the injection of 12,5 pg of sgRNA and 25 pg of Cas9 mRNA.

4.6.3 Commercial ENU-induced mutagenesis alleles

In the course of the generation of mutant pex3 alleles with TALENs or CRISPR/Cas9 methods,

the Wellcome Trust Sanger Institute made two additional alleles available. They were

identified in the context of the Zebrafish Mutation Project (ZMP) (Kettleborough et al. 2013).

The allele sa17571 carries an A>T missense mutation in the second exon and the resulting stop

codon substitute amino acid 36, proximal to the C-terminus of the transmembrane segment,

depriving the cytoplasmic protein interaction domain. The allele sa11684 generates two

different splicing variants due to a G>A mutation in the essential splicing site at the 5’ of intron

11. The mutation causes the retention of the intron (Figure 29). According to bioinformatics

predictions, it interrupts the natural protein sequence after amino acid residue 337, at the C-

terminal part of the sixth α-helix, and introduces five more amino acids encoded by the intron,

followed by a stop codon (see Appendix). Nevertheless, the mutation in the sa11684 allele

creates a cryptic splicing site, since in homozygous carriers it is still possible to detect the

wildtype transcript, beside the one retaining intron 11, being then impossible to use this allele

for the generation of a pex3 loss of function model in zebrafish.
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Figure 29 – Validation of the pex3sa11684 ENU allele. The mutation should affect a donor splicing site,
causing the retention of the intron between exon 11 and exon 12. Wildtype sample shows a single band
corresponding to pex3 mRNA at around 1,2 kb; heterozygous sample shows an additional band for a
longer mRNA; homozygous mutant sample shows the same pattern of the heterozygous, hinting to the
fact that the mutation causes only a partial misplicing of the transcript (cryptic splicing site).

4.6.4 Establishing High Resolution Melting Analysis (HRMA) to validate mutant

alleles

One of the biggest challenges in generating a new allele via genome editing methods is the

identification of mutated alleles. In fact, the events at the targeted region vary from a single

base pair exchange, without a change in the transcript size, to a single base pair insertion or

deletion, to indels spanning a few dozen nucleotides. Because of this, conventional molecular

biology methods (PCR or Southern Blot) are not suitable, since they are not able to

discriminate different alleles. Different strategies were developed for the detection of these

allele variants consisting in small variation, including Restriction Fragment Length

Polymorphism (RFLP)(Cooper & Schmidtke 1984), T7 or surveyor endonuclease digestion

(Vouillot et al. 2015) or methods based on different mobility of heteroduplexes (Cariello &

Skopek 1993). In this work, a High Resolution Melting Analysis (HRMA) approach was adopted

(Vossen et al. 2009). This strategy relies on the difference in melting profiles of short

amplicons, monitored by the release of an intercalating fluorescent agent at the increase of
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the temperature. The method allows the detection of small insertions or deletion or even

single nucleotide exchanges. The presence of different alleles generated with genome editing

techniques can be discriminated, given a high sensitivity of the detection instrument in terms

of smallest temperature variation possible.

In the case of TALEN- or CRISPR/Cas9-generated mutant alleles, animals injected at the one-

cell stage were analyzed for somatic mutations at the age of three months, using as specimen

a caudal fin clip. It is known that there is a positive correlation between somatic mutations and

germ line transmission (Bedell et al. 2012).

For the TALEN-based generation of a pex3 mutant allele, twenty-four candidate fish were

tested and two of them (2/24, 8%) displayed a melting profile of the amplicon deviating from

that of wildtype reference sample (Figure 30). Positive hits were confirmed via sequencing of

the HRMA amplicons. One of the candidate mutant alleles was a six-nucleotide deletion in the

spacer region between the two DNA binding sequences, resulting in the deletion of amino

acids at positions 5 and 6 (threonine and tryptophan). The other candidate was an eight-

nucleotide deletion, predicted to produce a frameshift in the open reading frame with a

premature stop codon after 9 amino acids (see Appendix). The fish somatically carrying the

eight-nucleotide deletion was used to establish a mutant line by crossing it with wildtype

breeder, and F1 progenies were screened for the mutation. Indeed, sequencing of the pex3

locus in the F1 progeny highlighted that some of the animals were carrying the same mutation

detected in the F0 parental fish (see Appendix).

Figure 30 – HRMA identification of the TALEN-generated mutant pex3 alleles. Normalized melt curves
(fluorescence of the sample during the melting steps, normalized to the maximum set to 100%), melt
peaks (first derivative graphs of the previous panels) and difference curves (difference of the curves in
the first panel with the one set as reference, namely the wildtype sample) are represented. Only the
wildtype reference (in red) and the positive candidates (six nucleotides deletion in blue and eight
nucleotides deletion in green) are depicted in the panels.

Similarly, also the CRISPR/Cas9-injected fish were tested for the presence of somatic mutations

in pex3 locus. Five out of thirteen screened fish (5/13, 38%) displayed altered melting profiles
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of the amplicon when compared to the wildtype reference sample (Figure 31). HRMA

amplicons were sequenced to confirm the results. Two candidates revealed no difference in

the sequence. Other three positive hits represented respectively a single nucleotide exchange,

resulting in a predicted silent mutation, a three-nucleotide deletion, resulting in the deletion of

amino acids in position 78 (glutamic acid), and a two-nucleotide deletion, predicted to produce

a frameshift in the open reading frame with a premature stop codon after 94 amino acids (see

Appendix). The fish carrying this last allele was crossed with a wildtype breeder and F1

progenies were screened for the mutation. Indeed, some F1 generation fish were carrying the

mutated pex3 allele identified in the F0 parental fish (see Appendix).

Figure 31 - HRMA identification of the CRISPR/Cas9-generated mutant pex3 alleles. Normalized melt
curves (fluorescence of the sample during the melting steps, normalized to the maximum set to 100%),
melt peaks (first derivative graphs of the previous panels) and difference curves (difference of the
curves in the first panel with the one set as reference, namely the wildtype sample) are represented.
Only the wildtype reference (in red) and the positive candidates (point mutation in yellow, two
nucleotides deletion in blue and three nucleotides deletion in green) are depicted in the panels.

Same validation process was used also for the identification of fish carrying the commercial

allele sa17571 (Figure 32).

Figure 32 - HRMA identification of the commercial ENU-generated mutant pex3sa17571 allele. Normalized
melt curves (fluorescence of the sample during the melting steps, normalized to the maximum set to
100%), melt peaks (first derivative graphs of the previous panels) and difference curves (difference of
the curves in the first panel with the one set as reference, namely the wildtype sample) are represented.
Wildtype reference (in red) and a positive heterozygous candidate (in blue) are depicted in the panels. In
the melt peaks graph is possible to distinguish the classical ‘shoulder’ emerging in heterozygous samples
(arrow).
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All the above described methods for the generation of mutant alleles imply severe drawbacks,

namely the possibility of off targets or secondary hits in other loci in the genome. In particular,

TALENs DNA binding domain and CRISPR/Cas9 sgRNA could recognize other similar regions in

the genome, since it is demonstrated for both methods that few mismatches are tolerated,

allowing the binding and the activation of the effector endonucleases (Koo et al. 2015;

Pattanayak et al. 2014). ENU mutagenesis generated alleles, however, could carry a second

unscreened hit in another independent locus on the same chromosome, for example, and it

may segregate with the mutated gene of interest, causing an unrelated phenotype. In this

project, in order to rule out off target mutations in the CRISPR/Cas9-generated mutant pex3

allele and potential secondary hits in the ENU-generated mutant, experiments were performed

on trans-heterozygous CRISPR and sa17571 carriers, hereafter named pex3CRISPR/ZMP (Figure 33).

Figure 33 – Summary of the generated trans-heterozygous pex3 mutant model. (A) The two regions
targeted with CRISPR/Cas9 and by the Zebrafish Mutation Project approach respectively are indicated in
the structure of zebrafish pex3 gene. The resulting mutations and the predicted generated peptides are
indicated (predicted transmembrane domain in blue, residual α-helix in yellow and frameshifted peptide
in red dots). (B-C’) Sequencing validation of pex3CRISPR (B’) and the pex3ZMP (C’) mutant alleles; the yellow
boxes highlight the mutation (in comparison to wildtype alleles, B and C).
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4.7 In pex3 mutants peroxisomal and mitochondrial metabolism is

impaired, resulting in increased oxidative stress
Since pex3 is known to be one of the key regulator of peroxisome homeostasis in eukaryotic

cells, a loss of function in this gene is expected to impair the peroxisome biogenesis process,

with repercussion on the metabolic reactions catalyzed by enzymes residing in the organelle.

Studies in other model organisms indicate that the detrimental effects of a pex3 mutation are

principally caused by an altered metabolism. In Y. lipolitica, survival of Δpex3 cells is

dependent on the energy source on which the yeast is grown and this is explained with the

required presence of peroxisomes to process the substrate (Bascom et al. 2003). In D.

melanogaster, the pex3 full knock out is larval lethal (Nakayama et al. 2011), whereas a tissue-

specific knock out in muscles results in lethality at the pharate adult stage, impaired wing

extension and decreased locomotion (Faust et al. 2014). This last phenotype is independent

from neuronal activity, but it is related to fatty acid metabolism for energy production, with a

toxic accumulation of long acyl chain lipids and ROS in the tissues, leading to mitochondrial

damage. Surprisingly, pex3CRISPR/ZMP fish do not show any premature lethality: they complete

the embryonic developmental stage and they survive until adulthood. With this background

information, we focused our analysis on peroxisome and mitochondria function, trying to

identify any detrimental consequence at the cell level.

4.7.1 In pex3CRISPR/ZMP zebrafish peroxisomal metabolism is impaired

4.7.1.1 Pex3 is essential for peroxisome biogenesis also in zebrafish

Pex3 is one of the key regulators of peroxisome homeostasis, being involved in the regulation

of their size and number. The main function of pex3 lies in the de novo peroxisome biogenesis,

where it defines pre-peroxisomal domains on the endoplasmic reticulum and it is the

interaction partner of pex19, the cytosolic chaperon of peroxisomal membrane proteins. pex3

loss of function impairs peroxisome biogenesis. Indeed, in pex3CRISPR/ZMP embryos, there is no

signal for pex3 protein, indicating that the protein is not produced. Even the predicted peptide

derived from the translation of the CRISPR/Cas9-generated allele, that might be detected since

the antibody epitope covers the amino acid residues 31-80 at the N-terminus of the protein, is

not produced or is immediately degraded. Immunofluorescence staining for one of the

proteins exclusively residing in the peroxisomes, catalase (cat), revealed an alteration of the

distribution pattern, in absence of pex3 (
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Figure 34). This effect is the same observed in other models for Peroxisomal Biogenesis

Disorders, in which peroxisomes are not competent for protein import anymore. Thus,

peroxisomal enzymes remain soluble in the cytoplasm, they are misrouted to other cellular

compartments such as endoplasmic reticulum or lysosomes, or they enter the degradation

pathway (Shimozawa et al. 1999; Ghoneim et al. 2011).

Figure 34 – Immunofluerescence staings for validation of pex3 knock out and assessment of peroxisomal
function. (A-B) In trunk region of pex3CRISPR/ZMPembryos, no signal for pex3 protein is detectable (B), in
comparison to wildtype (A) indicating that the protein is not produced. (A’-B’) In absence of pex3, the
peroxisomal marker catalase lose the vesicular pattern resembling the one of pex3 (A’) and the protein
is rather diffuse and spread in the cell (B’). (A’’-B’’) Magnification of areas from previous panels. Scale
bars: 200 μm in panels A, A’, B and B’; 20 μm in panels A’’ and B’’.

4.7.1.2 Absence of peroxisomes lowers the energy status of zebrafish

Having verified that peroxisomes are missing in pex3CRISPR/ZMPembryos and that this defect is

not lethal, it was investigated whether the mutation has an impact on cell biology and

metabolism. In previous studies, the absence of peroxisome was described to cause the

impossibility of processing fatty acids as energy substrates. They eventually accumulate in the

organism, causing toxicity (Bascom et al. 2003; Faust et al. 2014). Due to the fact that missing

peroxisome prevent the efficient use of a number of carbon sources and they do not only

provide energy, but also building blocks for growth sustainment, peroxisome defects result in

retarded growth. (Poirier et al. 2006; Fan et al. 1996). The development of pex3CRISPR/ZMP,

compared to wildtype siblings, was followed in the first 90 dpf, until the breeding adult stage.
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Different body parameters were monitored, including wet weight, body length, tail length

(compared to total body length) and body/yolk area ratio (Bagatto et al. 2001) (Figure 35).

Figure 35 – Effects of the impaired peroxisome function on growth. (A) Zebrafish pex3CRISPR/ZMP are
delayed in growth, when compared to wildtype siblings, especially after the feeding starts. (B)
pex3CRISPR/ZMP mutants do not gain weight as fast as wildtype siblings, being on average approximately
27% lighter at 90 dpf. (C-D) Growth rate of pex3CRISPR/ZMP mutants is reduced during embryonic and early
larval stages. At 7 dpf, there is a significant difference in tail length (compared to total body length) and
in the larva/yolk sac area ratio, when compared to wildtype siblings. This values hints to a reduced
absorption of the lipids from the yolk sac during the first developmental stages.

During the first 7 dpf both size and weight of the embryos of the two groups do not differ

significantly (Figure 35 A-B), since larvae do not feed consistently during this stage (mouth

apparatus opens only at 5 dpf - Kimmel et al. 1995). Nevertheless, at 7 dpf, the tail length is

shorter and body/yolk area ratio is significantly lower in pex3CRISPR/ZMP larvae, indicating that the

yolk consumption is reduced (Figure 35 C-D). In fact, during the first stages of zebrafish

development, when the growth is not sustained by external diet, the only available feeding

source are the lipids stored in the yolk sac, which are mobilized and processed by peroxisomes,

particularly abundant in the yolk sac wall (Krysko et al. 2010). Later on, starting at 22 dpf, the

body length profile of the two groups diverges, being significantly different, with pex3CRISPR/ZMP

juvenile larvae approximately 17% shorter in comparison to wildtype control animals at 90 dpf.
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Similarly, also the wet body weight was significantly decreased starting at 15 dpf and at the

end of the experiment, pex3CRISPR/ZMP juvenile larvae are approximately 27% lighter. Further

experiments would be aimed to determine whether the reduced growth rate is caused by a

different feeding behavior of the two experimental groups or by a different way to

metabolically process the diet components.

4.7.1.3 In pex3CRISPR/ZMP mutants oxidative stress is increased and mitochondrial activity is

reduced

In case of defective peroxisome biogenesis, peroxisomal enzymatic activity is impaired. Thus,

detoxification of peroxide compounds and peroxisomal β-oxidation of fatty acids are missing,

with a number of effects at the cell level, ranging from gene regulation to biomolecules

composition and regulation of cell cycle.

Detoxification of peroxide compounds in peroxisomes involves the action of catalase,

transforming H2O2 in H2O and O2. If this process is impaired or not efficient, as it is in the case

of missing peroxisomes, superoxide anion radicals (O2˙-) are produced and they react with

nitric oxide (NO˙) to give peroxynitrite (OONO-). It results in an overall increase of the oxidative

stress in the cell, with increasing peroxides and decreased amount of NO˙ (Schrader & Fahimi

2006b). For these reasons, the relative amounts of these compounds in extracts of

pex3CRISPR/ZMPand of wildtype embryos at 24 hpf and 48 hpf were measured (Figure 36). Levels

of peroxides progressively increase by 2,5- to more than 4-folds in the first 48 hours in trans-

heterozygous embryos and in parallel also the amounts of NO˙ dramatically decrease and drop

to approximately 20% relative to the wildtype animals.
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Figure 36 – The defective peroxisomal metabolism increases oxidative stress by increasing the free reactive
oxygen species (ROS) and reducing the superoxide anion radicals’ nitrogen acceptors (RNS) in a progressive way,
between 24 hpf (A) and 48 hpf (B).

Additionally, to assess the significance of the data in vivo, a fluorescent dye for the detection

of nitric oxide in cells, the DAF-FM diacetate (4-Amino-5-Methylamino-2',7'-Difluorofluorescein

Diacetate) was used. This molecule is non-fluorescent until it reacts with NO˙ to form a

fluorescent benzotriazole, which is additionally trapped in the cell due to the hydrolysis of the

diacetate esters (Lepiller et al. 2007). Both wildtype and pex3CRISPR/ZMPembryos were stained.

Stained embryos highlight that in wildtype conditions, NO˙ is present throughout the whole

body and the concentration is particularly increased in the yolk region (Figure 37 B). In mutant

embryos, instead, NO˙ amount is remarkably reduced and the decrease in the yolk is evident,

whereas the central nervous system remains the only area where NO˙ is detectable (Figure 37

D). This is explained by the presence of a different non-peroxisomal isoform of nitric oxide

synthase in neurons.
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Figure 37 – In pex3CRISPR/ZMP mutants the pool of superoxide anion radicals’ nitrogen acceptors is
depleted. (A-D) The yolk sac, the region showing the highest staining intensity in wildtype animals (B),
shows no fluorescence in the mutants; residual staining is present in the central nervous system (D). Of
notice, pex3CRISPR/ZMP mutants develop pigmentation later in comparison to wildtype, but it clearly
detectable at 3 dpf. Scale bars: 1 mm.

Increased levels of oxidative stress in the cell cause mitochondrial damage. Mitochondria

might also act as a central hub that directly or indirectly controls a wide number of cellular

processes including proliferation, ATP synthesis and cell death (Panieri & Santoro 2016). In

light of the previous results, the average number of mitochondrial DNA copies per cell at 48

hpf was estimated, by calculating the ratio of the mitochondrial gene mt-nd1 and the nuclear

gene polg1 (Figure 38) (Artuso et al. 2012). In pex3mutants, the amount of mitochondrial DNA

copies is reduced to approximately one third, hinting to a reduced mitochondria number as a

consequence of missing peroxisomes. Moreover, this would also better explain the previously

observed reduced growth rate (Figure 35) as a consequence of reduced capability to process

carbon sources for energy gaining.
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Figure 38 - Increased oxidative stress in the cell causes mitochondrial damage. At 48 hpf, the average
number of mitochondrial DNA copies per cell is significantly decreased, justifying the previously
observed reduced growth rate.

4.7.1.4 Oxidative stress induces pparγ-mediated mitochondria proliferation and

peroxisomal activity

When the number of peroxisomes or mitochondria drops below a certain level and the

intracellular signals indicate the need of a higher amount of these organelles, cells activate

different mechanisms to stimulate their proliferation. In particular, there is the activation of

nuclear receptors which drive the transcription of genes involved in the change of organelle

number, structure and enzymes contained in the organelle matrix. In the last years, evidences

of components shared by peroxisome and mitochondria proliferation processes increased,

including in the list DLP1/Drp1, Fis1, Mff, and GDAP (Schrader et al. 2016). These events are

mediated by a class of nuclear receptors, the peroxisome-proliferator activating receptors

(PPARs). Thus, the upstream promoter regions of different peroxin genes for the presence of

putative PPARs binding sites were analyzed (Figure 39). Indeed, pex genes, either involved in

the de novo peroxisome biogenesis pathway or in the ‘growth and division’ are enriched in

binding sites for pparγ.
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Figure 39 – Promoter region analysis for peroxin genes involved in the de novo biogenesis of
peroxisomes (pex3, pex16 and pex19) or in the ‘growth and division’ biogenesis (pex11α, pex11β and
pex11γ). Predicted binding sites for PPARγ transcription factor (in association with RXR cofactor), either
in the forward strand or in the reverse strand, are annotated. Actin promoter was used as control.

Interestingly, molecules sensing the oxidative status of the cell, like coenzyme Q (CoQ), were

identified as modulators of the activation of these PPARs. The redox status of this molecule

modulates its potency in activation of the nuclear receptor pparγ: only the reduced form of

CoQ (CoQH2) binds with high affinity pparγ, whereas the oxidized form not (Yan et al. 2006;

Schmelzer et al. 2010). For this reason, pex3CRISPR/ZMP embryos were supplemented with a

particular variant of CoQ, the Coenzyme Q2 (CoQ2), either in the reduced (CoQ2H2) or oxidized

form, in order to investigate whether itwould be able to activate pparγ and the transcription

of genes rescuing peroxisome metabolic activity. The average count of mitochondrial DNA

copies per cell and the transcription of pparγ target genes involved in peroxisome metabolism

were analyzed (Figure 40). Upon CoQ2H2 injection in pex3CRISPR/ZMP embryos, the number of

mitochondria is only partially rescued, with a significant increase similar to the one reached by

exposing embryos to a control activator of pparγ, but not reaching the levels comparable to

wildtype animal. When injecting the oxidized form of CoQ2, no increase in the count of the

average number of mitochondrial DNA copies per cell was observed (Figure 40 A). In parallel,

the transcription levels of pparγ and known pparγ-controlled genes involved in lipid and

xenobiotic metabolism (cebp and cpt1a), oxidative stress (hmox1a and si.ch211-199) and cell
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cycle regulation (cdkn1a) (Semple et al. 2006; Sugden et al. 2010) were monitored at 24 hpf. In

general, all these genes are downregulated at least 2-fold in pex3CRISPR/ZMP mutants, but

expression levels are approaching wildtype expression when pex3CRISPR/ZMP embryos were

injected with CoQ2H2 or stimulated with the pparγ activator, but not when injected with the

oxidized form of CoQ2 (Figure 40 B).

Figure 40 – Supplementation of the reduced ubiquinolic form of coenzyme Q2 (CoQ2H2) rescues the
metabolic activity in pex3CRISPR/ZMP embryos and modulates the activity of pparγ. (A) Upon CoQ2H2

injection in pex3CRISPR/ZMP embryos, the number of mitochondria is partially rescued, similarly to what
happens when embryos of the same genotype are exposed to a pparγ activator. This does not happen
when injecting the oxidized form of CoQ2. (B) Transcription levels of pparγ are not altered, but pparγ-
regulated genes involved in lipid and xenobiotic metabolism (cebp and cpt1a), oxidative stress (hmox1a
and si.ch211-199) and cell cycle regulation (cdkn1a) at 24 hpf are restored to wildtype expression levels
when pex3CRISPR/ZMPembryos are injected with CoQ2H2, but not when injected with the oxidized form of
CoQ2.

In light of these results, we could conclude that oxidative stress in pex3CRISPR/ZMP animals is able to

induce the insurgence of protective mechanisms, including the proliferation of organelles re-

equilibrating the redox status in the cell. In particular, we observed that the presence of a

redox sensor molecule, namely CoQ2 and its ratio between the oxidized and reduced forms,

manages to modulate the activation of pparγ nuclear receptor which mediates the

transcription of genes involved in the change of organelle number or structure.
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4.8 Pex3mutation affects neural crest-derived tissues development
Mutant animals display morphological defects involving different tissues (Figure 41). In fact,

the most evident phenotype is a different pigmentation pattern: in pex3 trans-heterozygous

mutants the typical dark light-reflecting stripes are less intensely pigmented, giving the

appearance that they are missing. Moreover, the head shape is altered, due to altered

formation of mandible structures. Remarkably, both of the mentioned tissues, pigment cell

and cartilage-bone structures in the cranial region, originate from a common embryonic tissue,

the neural crest (Dupin & Sommer 2012).

Figure 41 – Comparison of pex3CRISPR/ZMP mutants with wildtype siblings at 60 dpf. Wildtype animals
develop the stereotyped pigmentation pattern alternating dark melanophore stripes and light-reflecting
iridophore stripes, along the sagittal body axis. Mutant animals lack evident melanophore stripes and
the mandibular structure is altered (red arrow head). Scale bar: 5 mm.

4.8.1 Pex3mutation affects proper melanophores migration and development

4.8.1.1 Pex3 mutation prevents the maturation of a fully pigmented melanophore stripe

As shown in Figure 41, the most characteristic trait of the trans-heterozygous animals is the

absence of the typical striped pattern, giving the name to zebrafish. The final striped pattern is

generated by the interaction of three different cell populations: melanophores, iridophores

and xanthophores (Singh & Nusslein-Volhard 2015).

Mutant embryos are already distinguishable at 2 dpf due to the lower amount of dark

melanophore cell which are detectable at this developmental stage (Figure 42). Wildtype
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animals at this stage usually develop a stereotyped melanocyte distribution pattern. It consists

of a V-shaped motif in the head region, six stripes in the trunk region (two dorsal, two lateral

on both sides, two ventral at the border with the yolk sack elongation and further back on

both sides) and a few dispersed cells around the yolk sac (Kimmel et al. 1995) (Figure 42 B).

pex3CRISPR/ZMP embryos lack most melanophores, except for only a few ones that start to

organize on the head region and along the dorsal stripe. Moreover, also pigmentation in the

eye is remarkably reduced (Figure 42 B’).

Figure 42 - Comparison of pex3CRISPR/ZMPmutants with wildtype siblings at 48 hpf. (A) Sibling embryos
from a heterozygous crossing can be sorted for the genotype according pigmentation presence at this
developmental stage. pex3CRISPR/ZMP embryos lack nearly completely any melanophore. (B-B’) Single
embryos from the wildtype and the transheterozygous pex3CRISPR/ZMP groups. Wildtype animals develop
the stereotyped pigmentation pattern with one dorsal, two lateral and two ventral stripes. Ate the same
stage, pex3CRISPR/ZMP embryos develop few melanocytes in the anterior region (black arrows) and also the
pigmentation in the eye is defective (red arrow). Scale bars: 500 μm in panel A; 1 mm in panels B and B’.

The phenotype transiently recovers during the following stages of embryonic development,

since melanocytes become present and organize in stripes in the stereotyped pattern. At adult

stage, mutant animals display again a major problem in pigmentation patterning (Figure 41). A

closer analysis shows that melanophore stripes are indeed present in a regular size, number

and shape, but the light-reflecting capability of each stripe is strongly impaired, giving the

appearance that they are missing (Figure 43).
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Figure 43 - Comparison of the pigmentation pattern in pex3CRISPR/ZMP adult mutants in comparison to
wildtype siblings. (A) Wildtype animals shows alternating dark melanophore light-absorbing stripes
(white arrowheads) and yellow-to-silver light-reflecting iridophore stripes (see scheme on the top right
corner). (B) Mutant animals still have melanophore stripes (white arrows) but their melanin content is
reduced, making them less contrasting to the iridophore stripes (see scheme on the top right corner).
Scale bars: 2,5 mm.

Reduced amounts of melanin in each single melanocyte contribute to the reduced visibility of

the stripe. Moreover, other overlying pigment cells, iridophores and xanthophores, dim the

melanocyte stripes. The observed phenotype is similar to the one caused by other known

mutations, for example golden and albino, which affect the genes slc24a5 (Lamason et al.

2005) and slc45a2 (Dooley, Schwarz et al. 2013) respectively. Both encode for antiporters

localized at the membrane of the melanosomes, organelles designated for melanin synthesis

typical of melanocytes. slc24a5 and slc45a2 regulate the pH of the melanosomal compartment,

being responsible for the activation of tyrosine hydroxylase, an enzyme catalyzing the limiting

step of melanin synthesis, namely the conversion of tyrosine in L-DOPA. Also hdac1 mutation

produces a similar phenotype by prolonging the expression of foxd3 in the neural crest and

preventing mitfa transcription. mitfa is the main transcription factor regulating the

transcription of melanin synthesis enzyme genes and its lack results in absent melanophore

stripes (Ignatius et al. 2008), similar to the defects seen in pex3CRISPR/ZMPmutants.

To verify that the phenotype is really caused by the absence of pex3, in vitro transcribed

wildtype pex3 mRNA was injected in pex3CRISPR/ZMP mutant embryos. Indeed, embryos were

rescued for the pigmentation phenotype at 2 dpf (Figure 44 B). Similarly, also the injection of

murine Pex3 was able to rescue the pigmentation phenotype in most cases (Figure 44 C),

confirming that a mutation in zebrafish pex3 is responsible for the observed phenotype and

that the gene function is conserved across different species.
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Figure 44 - Rescue of mutant phenotype with the injection of pex3 wildtype mRNAs. (A-B) Wildtype
pigmentation pattern at 48 hpf (A) is completely rescued when injecting 100 ng of zebrafish full length
wildtype pex3 (Drpex3) mRNA in transheterozygous pex3CRISPR/ZMP embryos (B). (C) The same effect can
be obtained when animals of the same genotype are injected with the same amount of murine full
length wildtype Pex3 (Mmpex3) mRNA, even if there are still few exceptions in which there is no
(dashed circles) or partial (red arrow) rescue. Scale bars: 500 μm in all panels.

In order to confirm the essential role of pex3 in the melanocytes, a more detailed study of the

gene expression was performed. As already observed in the in situ hybridization expression

patterns, at 5 dpf single cells were positively stained in the more superficial epidermal layers of

the head region and of the trunk (Figure 25 E’’-E’’’). In light of the observed mutant phenotype,

these cells are assumed to be melanocytes, indeed. The original staining protocol prevents

proper visualization of pigmentation as it includes a tyrosinase inhibitor, phenylthiourea (PTU)

and a bleaching step through hydrogen peroxide to remove eventual melanin. Since

pigmentation usually develops starting at 2 dpf and gene expression needs to be confirmed

also at the protein level, protein expression in 3 dpf embryos was investigated. Transgenic

indicator line Tg[kita:Gal4; UAS:mCherry] was used to mark melanocyte precursors

(melanoblasts - Distel et al. 2009). Stainings against pex3 show that there is an accumulation of

the protein in mCherry+ cells, confirming an enhanced pex3 expression in pigment cells also at

the translational level.



Results 97

Figure 45 – Pex3 is enriched in the melanocytes already during embryonic development. (A-A’’) Pex3
protein expression is compared to the expression of a transgene labelling the melanocyte precursors
and the melanocytes themselves (Tg[kita:Gal4; UAS:mCherry expression]). (A) mCherry is expressed
especially in two groups of cell corresponding to the dorsal and one of the lateral melanocyte stripes.
(A’) pex3 immunofluorescence stains the same group of cells and this can be verified by a substantial
overlapping of the fluorescence signals at the level of the melanocyte stripes (A’’). (B-B’’) Details of the
pictures from the previous panels, corresponding to the boxed areas. Scale bars: 20 μm in panels A, A’
and A’’; 10 μm in panels B, B’ and B’’.

4.8.1.2 The impaired melanocyte function in pex3CRISPR/ZMP embryos is independent from

peroxisomes

Due to the observations that the pigmentation pattern of larval and adult zebrafish is altered

upon a pex3 loss of function and that pex3 is usually highly expressed in zebrafish pigment

cells, two different hypotheses can be formulated to explain the mechanism. On the one hand,

the missing melanocytes can be justified as a secondary effect of the lack of the peroxisome,

which can possibly provide signal molecules originating there. On the other hand, the

phenotype may be pex3 exclusively related, independent from the peroxisome function. In

order to test both these hypotheses, the phenotype produced by the injection of various

antisense morpholino oligonucleotides (AMOs) blocking the translation of some pex genes,

differently involved in peroxisome homeostasis, was screened. (Figure 46).
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Figure 46 - pex3CRISPR/ZMP phenotype is specific for this peroxin (A-B) Embryos injected with pex3 AMO
phenocopy pex3CRISPR/ZMP due to the reduced pigmentation absorbance at 2 dpf, while the injection of
other AMOs targeting pex genes involved in peroxisome de novo biogenesis (pex16 and pex19), in
peroxisome growth and division (pex11α) or in the import of peroxisomal matrix proteins (pex14)
cannot reduce the light absorption capability due to melanin (A). The effect is already evident at the
macroscopic level in pelleted embryo lysates (B).

The only AMO which causes an altered pigmentation in the embryos is the pex3 AMO TB,

recapitulating the phenotype already observed in mutant zebrafish. At 48 hpf, the light

absorption capability of embryos injected with pex3 AMO TB is significantly reduced to only

50% to that of wildtype animals injected with control injection solution. Other AMOs for genes

involved in peroxisomal homeostasis, either involved in peroxisome de novo biogenesis (pex16

and pex19), or in the fission of existing peroxisomes (pex11α), or in the import of matrix

protein into the lumen (pex14) were unable to produce a significant drop in embryo

pigmentation intensity. Therefore, it is excluded that other peroxins has a direct impact on the

observed impairment in melanocyte development in pex3CRISPR/ZMPmutants.
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4.8.1.3 Pex3 mutation is responsible of a foxd3-induced repression of melanocyte

maturation

In order to further understand the relationship between the mutation in pex3 and the reduced

synthesis of melanin in the melanocytes, it was analyzed whether the enzymes of the melanin

biosynthesis pathway are correctly synthetized and localized within the cell. Tyrosinase (tyr),

the main enzymes regulating melanin synthesis, was chosen as marker for pigment cell

functionality. Tyr localizes into the melanosomes and catalyzes three distinct reactions in the

melanogenic pathway, transforming tyrosine in dihydroxyindol through intermediate

molecules (Land, Edward J., Ramsden, Christopher A. & Riley, Patrick A. 2003).

Immunofluorescence stainings highlight the presence of tyr in the melanocytes of the truncal

stripes in wildtype 3 dpf larvae. On the contrary, in pex3CRISPR/ZMP mutants, melanocytes reveal

a strong reduction in the same regions, making it difficult to pinpoint the single melanophore

cells (Figure 47). Similarly, when looking at single melanocytes stained for tyrosinase in same

age wildtype larvae, they display the typical melanosomal vesicular pattern, located

perinuclearly, where they originate, as well as in the dendrite-like structures (Figure 47 A). In

pex3CRISPR/ZMP mutants, the overall levels of tyrosinase are decreased by approximately 85%, the

number of vesicles is remarkably reduced and located prevalently around the nucleus, without

reaching the dendrite-like structures. Moreover, a pool of the protein does not localize on the

vesicular structures, but it appears more diffuse (Figure 47 B).
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Figure 47 (on previous page) - pex3 is required for proper melanocytes function. (A-B’)
Immunofluorescence stainings for tyrosinase on the medial plane sections in trunk region reveal the
presence of tyr in the melanocytes of the dorsal stripe in wildtype 3 dpf larvae (A) but a strong reduction
of tyr protein in visible in the same region of pex3CRISPR/ZMP mutants. Transmission light images (A’ and B’)
are used as orientation reference. (A’’-B’’) Immunofluorescence stainings for tyrosinase at single
melanocyte level. Wildtype melanocytes show a strong tyr signal in vesicular fashion, prevalently
accumulated in the central region of the cell and extending to the dendrite-like structure (A’’).
Melanocytes in pex3CRISPR/ZMP mutants display a lower tyr signal, with a more diffuse distribution pattern
(B’’). (C) Quantification of tyrosinase content of single melanocytes in wildtype and transheterozygous
pex3CRISPR/ZMP embryos at 3 dpf, based on immunofluorescence staining.

Since a variety of conditions may explain the absence of tyrosinase, it was first investigated

whether the cause was a dysregulation at the transcriptional level (Mort et al. 2015).

Transcription factors involved in the regulation of melanophore proliferation, maturation and

function at 36 hpf were analyzed (Figure 48). This development stage was chosen because

pigment cell fate is then being committed, and both embryonic transcription factors leading to

pigment cell specification from the neural crest, as well as transcription factors specific for the

initiation of melanocyte related enzymes are present (Cheung & Briscoe 2003). Sox10, an early

transcription factor involved in determining the cell fate of neural crest, is not differentially

expressed in trans-heterozygous animals, when compared to wildtype. Nevertheless,

expression of foxd3 is 10-fold higher in pex3CRISPR/ZMP mutants and mitfa is reduced to

approximately half the amount.

Figure 48 - Quantitative RT-PCR determination of melanocyte specific transcription factors activity at 36
hpf. The analysis reveals an increased expression of foxd3 repressor with a consequent decrease in mitfa
expression.
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Since the effective translation into functional protein should reflect the differential gene

expression, foxd3 and mitfa presence was visualized by making use of transgenic indicator

lines for these two genes, Tg[foxd3:GFP] (Gilmour et al. 2002) and Tg[mitfa:GFP] (Curran et al.

2009). In order to reproduce the pex3CRISPR/ZMP mutant phenotype, the knock down strategy

previously validated was adopted (Figure 46). In pex3 translational blocker AMO injected

Tg[foxd3:GFP] embryos, a 1,4-fold increase in fluorescence at 36 hpf was observed, indicative

of an increased activity of the gene promoter. This fact is mirrored by a parallel 0,7-fold

decrease of fluorescence in pex3 translational blocker AMO injected Tg[mitfa3:GFP] embryos

(Figure 49).

Figure 49 – The altered expression of foxd3 and mitfa was verified also with transgenic reporter lines in
a pex3 morphant model. The experiments show that in the morphants, foxd3:GFP expression is
increased and it translates into an increased fluorescence of the reporter protein, associated to a
reduced expression of the mitfa:GFP expression, with consequent decreased fluorescence.

Indeed, foxd3 is a repressor of mitfa, the transcription factor driving the expression of

enzymes controlling melanin synthesis, like tyrosinase, tyrosinase related proteins 1 (tyrp1)

and dopachrome tautomerase (dct). In mutant embryos, tyr and dct expression is reduced as

well, explaining the reduced amount of tyr previously described (Figure 50 A).

Melanocyte homeostasis is prevalently controlled by hormonal stimulation operated by

melanocortins and their respective receptors, being part of the proopiomelanocortin signaling

axis (Lerner 1993; Pawelek 1985; Pawelek et al. 1992). It was investigated whether pigment

cell formation is properly stimulated, verifying the production of the α-melanocyte stimulating
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hormone (amsh) and of the melanocortin 1 receptor (mc1r), which determine the amount and

distribution of dark pigments (Yale Journal of Biology and Medicine 1980). Both transcripts are

significantly downregulated, with levels of both ligand and receptor reduced by approximately

80% (Figure 50 B). As a result, also the levels of the cytoplasmic effectors of the melanocyte

stimulation signaling, ppara, pparg and ppargc1a (Mangelsdorf et al. 1995), are remarkably

reduced (Figure 50 C).

Figure 50 - Quantitative RT-PCR determination of melanocyte activation signaling and melanin synthesis
activity at 36 hpf. (A) As already demonstrated at the protein level, due the reduction of mitfa
expression, the transcription of tyr is reduced, as well as the one of dct. (B-C) Melanocytes activating
factors are significantly downregulated (B) and, as a result, also the levels of the cytoplasmic effectors of
the melanocyte stimulation signaling are remarkably reduced (C) in pex3CRISPR/ZMP mutants.
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Thus, the delay and the reduced amount of pigmentation in trans-heterozygous pex3 zebrafish

mutants at 48 hpf is caused by an increased foxd3-mediated repression of melanocytes

activation and development, resulting in a quantitative lack of melanin synthesis enzymes and

their incorrect localization within the melanocytes.

4.8.1.4 Foxd3 knock down prevents the repression of mitfa transcription and rescues the

pigmentation in pex3 mutant embryos

The previous observations highlighted that pex3 loss of function has a primary impact on

foxd3, which is upregulated. An attempt to recover the phenotype in pex3CRISPR/ZMP mutants,

downstream of the upregulated foxd3 transcription, would be its knock down by means of a

translational blocker AMO (Lister et al. 2006). 150 fmol of the AMO were injected in mutant

embryos and the effect on pigmentation development and on gene regulation was observed

(Figure 51). While at 2 dpf, pex3CRISPR/ZMP embryos have a light absorbance capacity reduced by

about 50% in comparison to wildtype animals of the same age, if foxd3 is knocked down, total

pigmentation intensity is rescued, without any significant difference with wildtype (Figure 51

A). In addition, the AMO injection itself reduces the transcription of foxd3, and at the same

time mitfa levels are not significantly different in comparison to wildtype, indicating an arrest

of the foxd3-operated repression. Consequently, also tyr and dct levels are restored (Figure 51

B-C).
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Figure 51 (on previous page) – Knock down of the transcript inhibits the foxd3-operated mitfa
repression and restores the wildtypic phenotype. (A) At 2 dpf, pex3 mutant embryos injected with foxd3
AMO develop pigmentation capable to absorb light in amounts comparable to wildtype, rescuing the
reduced pigmentation absorbance of uninjected pex3CRISPR/ZMP embryos. (B-C) foxd3 AMO injection in
pex3 transheterozygous embryos reduces the transcription of foxd3, and at the same time mitfa levels
are restored, indicating an arrest of the foxd3-operated repression (B). This turns in normal levels of the
melanin biosynthesis enzymes, tyr and dct (C).

4.8.1.5 Mitfa repression affects exclusively melanophores and not other developing organs

In mammals there is a single mitfa homolog, MITF in humans and Mitf in mice. In general, a

mutation inMitf gene is known to mediate not only pigmentation abnormalities due to altered

melanocyte differentiation (Tachibana et al. 1996), but also profound deafness, and severe eye

size reduction in homozygotes, with attenuated phenotypes already in the heterozygous

condition (Hodgkinson et al. 1998). Since the two duplicated copies of the gene in zebrafish,

mitfa and mitfb, show a conservation in the melanogenic potential, with overlapping

expression pattern (Lister et al. 2001), it was verified whether the pex3 mutation inducing a

reduction in mitfa expression in zebrafish, has an impact in tissues other than the pigment

cells. A possible further phenotype in the eye size or in the developing ear could be expected

and for this reason the eye area was measured (Le et al. 2012) and the development of the ear

by scoring the presence of the otoliths within a proper otic vesicle structure was verified (Yao

et al. 2016) (Figure 52).

Figure 52 – mitfa altered expression in pex3CRISPR/ZMPmutants during embryonic development has no
impact on eye size (A) and on otic vesicle development (B) in comparison to wildtype siblings, within 96
hpf.
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None of the above mentioned parameters showed a significant difference when comparing

wildtype animals and pex3CRISPR/ZMP mutants, with eyes being of the same size along the whole

development between 24 hpf and 96 hpf and ear structures fully developing between 48 hpf

and 72 hpf. Thus, a pex3 loss of function in zebrafish affects primarily the melanocyte during

embryogenesis, having a specific function in this cell population.

4.8.1.6 Pex3 possesses a melanosomal targeting signal driving the protein to melanosomes

Since it is possible to exclude that the pex3 mutation causing a mitfa downregulation has a

general wider function in the whole animal and that peroxisomes directly influence

melanocytes homeostasis, the phenotype can be pinpointed to an intrinsic feature of pex3

protein in melanophore cell type.

Proteins that are post-translationally targeted to melanosomes possess a melanosomal

targeting signal (MTSs) at the C-terminus, at a certain distance from transmembrane domains

(Bonifacino & Traub 2003). In particular, for proteins that are either embedded in the

melanosomal membrane or in the melanosomal lumen, a bipartite signal is described. It

consists of a dileucine based sorting signal, surrounded by acidic amino acids, accompanied by

a YXXΦ-type signal (with Φ being a bulky hydrophobic amino acid). pex3 C-terminus sequence

was aligned with the C-terminus sequences of other known melanosomal proteins (tyr, tyrp1,

dct, pmel17) from zebrafish, human and mouse (Table 10). Indeed, zebrafish pex3 shows the

characteristic MTS following the last α-helix, with a dileucine motif surrounded by two aspartic

acid residues, one immediately preceding and the other at a distance of two amino acids C-

terminally, in addition to the YXXΦ-type signal, with Φ being a phenylalanine. In contrast,

other peroxins necessary for the import of matrix protein into the lumen (pex14) or taking part

in the de novo peroxisome biogenesis (pex16 and pex19), do not present any of the above

mentioned features, reinforcing the hypothesis that the trans-heterozygous phenotype is

exclusively due to a mutation in pex3 and not a secondary effect of a peroxisomal disorder.
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Table 10 - Alignment of C-terminal regions of melanosomal residing proteins (tyrosinase – tyr,
dopachrome tautomerase – dct, tyrosinase related protein – tyrp, premelanosome protein 17 – pmel17)
from human (HS), mouse (MM) or zebrafish (DR), with different zebrafish pex proteins. Only pex3
possesses a non-canonical melanosomal targeting signal, composed of a degenerate dileucine-based
sorting signal (red box, with leucine residues in red) and a YXXΦ-type signal (blue box, with tyrosine
residues in blue).

The previous analysis revealed the presence of a MTS in the pex3 sequence. Its in vivo

requirement, namely whether it is able to target the protein to the melanosome, was

assessed. The presence of pex3 on the membrane of melanosome was checked with the help

of melanosomal marker, tyr (Figure 53). Immunofluorescence co-stainings in 2 dpf embryo

melanocytes show that tyr accumulates in a vesicular pattern and most of these vesicles are

enriched in pex3 (Figure 53 A’’). Nevertheless, only part of the pex3+ vesicles do co-localize

with tyr+ vesicles, hinting the fact that only a pool of the cellular pex3 protein is required to

exert the function at the melanosome, while the rest is required at other cellular

compartments.
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Figure 53 (on previous page) – In melanocytes of 2 dpf wildtype zebrafish embryos, the identified
melanosomal targeting signal in pex3 protein sequence indeed targets the protein to the melanosomes
(A) since it co-localizes with the melanosomal marker tyr (A’-A’’, white arrows). Scale bar: 5 μm.

The same kind of experiments was also performed on isolated single scales from adult animals.

In this tissue, melanocytes accumulate at the exposed distal part, whereas they are absent in

the proximal part, covered by the neighboring scale. In scales from wildtype animals, the

distribution of pex3 and tyr was similar to that observed in embryonic melanocytes, where

most of the tyr+ vesicles are also enriched in pex3 (Figure 54 A-A’’). Instead, in scales from

pex3CRISPR/ZMPmutants the tyrosinase vesicles are reduced in number and size, consistently with

what already described. The staining is not localized exclusively in the vesicles anymore, but it

spreads in the cytoplasm. This observation is in line with previous studies showing that,

whenever tyrosinase cannot be correctly delivered to melanosomes, due to their lack or to the

absence of carrier proteins, it is misrouted to other cell compartments or degraded (Chen et al.

2002; Costin et al. 2003; Toyofuku et al. 2002).

Figure 54 - (A-A’’) At protein level, pex3 co-localizes with melanosome marker tyr also in scales from
wildtype adult animals, indicated by white arrows (B-B’’) In scales from transheterozygous pex3CRISPR/ZMP

adult animals, due to the missing pex3 protein (B), tyr+ vesicles (B’) are smaller (white arrows) and less
intensively stained (white arrows). Scale bars: 2 μm in all panels.
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4.8.1.7 Pex3 is functionally required in melanosomes

pex3 localizes at the melanosomes in pigment cells and in the protein sequence there is a MTS.

Thus, it makes sense to further explore its biological function and its impact on the organelle

homeostasis. To this end, the role of pex3 was dissected by using a construct in which the stop

codon was shifted in front of the newly identified MTS. Both pex3 full-length (FL) or the pex3

without the MTS (ΔMTS) were injected in pex3CRISPR/ZMPmutant embryos and the rescues of

peroxisomal or melanosomal function, detectable by the presence of their respective markers

cat and tyr, were followed (Figure 55). In trans-heterozygous embryos injected with pex3FL

mRNA, both the peroxisomal and the melanosomal functions are brought back in melanocytes

(Figure 55 C-D’’). The injection of pex3ΔMTSmRNA restores only the peroxisomal function, but

not the melanosomal one (Figure 55 E-F’’).
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Figure 55 – The identified melanosomal targeting signal in pex3 protein sequence has a biological
function in melanosome homeostasis. Immunofluorescence stainings for the peroxisomal marker
catalase (cat) and the melanosomal marker tyrosinase (tyr). In transheterozygous pex3CRISPR/ZMPmutants,
both the peroxisomal (A-A’’) and the melanosomal (B-B’’) functions are impaired, since no staining for
both the markers is detectable. Upon pex3FL mRNA injection, both functions are restored (C-D’’); on the
other hand, upon pex3ΔMTS mRNA the melanosomal function is not restored since the tyrosinase
staining is still missing, even if pex3 is detectable (F-F’’) and the peroxisomal function is restored as well
(E-E’’). Scale bars: 2 μm in panels A-A’’, B-B’’, C-C’’ and E-E’’; 5 μm in panels D-D’’ and F-F’’.

The development of the pigmentation pattern in the first 2 dpf was verified (Figure 56). As

already showed in Figure 44, upon injection of pex3FL mRNA, the pigmentation phenotype in

trans-heterozygous embryos is rescued. The count of melanocytes in the three stripes in the
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truncal region of interest is similar to the count in wildtype animals, if not even slightly

increased. Similarly, the total light absorption value of these melanocytes is possibly higher

than the wildtype. These results can be explained by the fact that the amount of pex3

produced after injection of pex3 mRNA is likely to be higher than the endogenous wildtype

amount, inducing the cellular machinery to be even more efficient in regulating the

melanocyte homeostasis events and the melanin production. Injection of pex3ΔMTS mRNA is

only able to rescue the count of the melanocytes on the dorsal stripe, but not in the lateral and

in the ventral ones, and also the total light absorbance in embryo lysates is only partially

improved, but still significantly reduced in comparison to wildtype embryos.

Figure 56 - pex3 requires the melanosomal targeting signal to support the generation of functional
melanosomes during embryogenesis. (A-D) Batches of 2 dpf wildtype embryos, as positive control (A),
transheterozygous pex3CRISPR/ZMP embryos uninjected (B) or injected with either pex3FL mRNA (C) or
pex3ΔMTS mRNA (D). (A’-D’) Magnifications of the trunk region of single dechorionated embryos from
previous panels show differences in the count and pigmentation intensity of the melanocytes in the
different stripes in the region of interest. Count of melanocytes on the dorsal, lateral and ventral stripes
in the region of interest (E) and total pigmentation intensity from embryos lysates (F) at 2 dpf under
different conditions. pex3ΔMTS mRNA is not able to rescue the total pigmentation intensity and the
melanocyte count as effectively as pex3FL mRNA, when injected in pex3CRISPR/ZMP embryos. Scale bars: 5
mm in panels A, B, C and D; 1 mm in panels A’, B’, C’ and D’.
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According to those last results, the identified MTS is necessary for full restoration of

melanocyte function. In zebrafish melanocytes pex3 is differently targeted to peroxisomes or

melanosomes. This could be based on a different accessibility of the targeting signals or on the

presence of different protein pools which are interacting with pex3.

4.8.1.8 In pex3CRISPR/ZMPmutants, melanosome pH is dysregulated affecting their function

In order to further support the theory that pex3 is required for proper melanosome

development and that in absence of this protein on the organelle membrane melanosome

activity is impaired, Bafilomycin A1, an inhibitor of the V1 proton pump portion of the V-

ATPase complex was used (Dooley, Schwarz et al. 2013). In such a way melanosome

functionality should be restored by regulating the inner pH. Bafilomycin A1 was applied to 24

hpf developing pex3CRISPR/ZMP embryos and the effect on pigmentation development was

monitored (Figure 57).

Figure 57 – Inhibition of the V1 proton pump portion of the V-ATPase complex with Bafilomycin A1
restore the optimal melanosomal pH and allows melanin production. pex3CRISPR/ZMP embryos treated with
50 μM Bafilomycin A1 for 8 hours at 24 hpf (C-C’), but not with control medium (1% DMSO, B-B’)
develop pigmentation similarly to wildtype embryos (A-A’) at 48 hpf. Scale bars: 5 mm in panels A, B and
C; 1 mm in panels A’, B’ and C’.

Indeed, the treatment with Bafilomycin A1 improved the activity of melanosomes in trans-

heterozygous pex3CRISPR/ZMP embryos and melanocytes could be distinctly observed in those

animals at 48 hpf. Thus, the absence of pex3 in melanocytes prevents the activity of the

enzymes involved in melanin synthesis, through a modulation of the luminal pH. By increasing
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the pH of the melanosome using Bafilomycin A1, the optimal pH for tyrosinase is restored and

melanin production is resumed.

4.8.1.9 pex3 has the same molecular function on melanosomes as on peroxisomes

On the melanosomes, pex3 might exert a function similar to the one on the peroxisomes,

namely cooperating in the insertion of membrane protein defining specific domain on the lipid

bilayer. In order to test this hypothesis, mRNAs for slc24a5 of slc45a2 were generated. slc24a5

and slc45a2 encode for melanosomal transmembrane antiporters, regulating the pH of the

organelle during different stages of its maturation and controlling the activation of melanin

synthesis enzymes (Dooley, Schwarz et al. 2013; Lamason et al. 2005). Should pex3 have the

same molecular function (import of membrane protein) on melanosomes as on peroxisomes

and be required to integrate transmembrane proteins into the organelles, then simple

overexpression of these antiporters should not rescue the pex3CRISPR/ZMPmutant pigmentation

phenotype. In fact, after injection of slc24a5 or slc45a2 mRNA in trans-heterozygous embryos,

only a partial rescue of the pigmentation at 2 dpf was observed, with few melanocytes

developing in the head region and along the dorsal part of the trunk, with an intensity of

pigments remarkably reduced in comparison to wildtype animals (Figure 58).
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Figure 58 (on previous page) - golden (slc24a5) and albino (slc45a5) need pex3 to be functional. (A-C)
Batches of pex3CRISPR/ZMP mutant embryos at 2 dpf uninjected (A) or injected with slc24a5 mRNA (B) or
slc45a2 mRNA (C). (D-G) Single dechorionated embryos from the previous panels (D, F and G) and a
same stage wildtype embryo (E) for comparison. Injection of either golden mRNA or albino mRNA does
not completely rescue the pigmentation phenotype; few fully pigmented cells are present in the head
region and around the yolk, but the typical stripes are still totally missing in the trunk region. Scale bars:
5 mm in panels A, B and C; 1 mm in panels D, E, F and G.

4.8.1.10 Pex3 affects melanoblasts proliferation and melanocytes migration

The functionality of melanosomes in the melanocytes is required for them to be able to

modulate proliferation, differentiation and migration (Wasmeier et al. 2008; Hirobe 2011;

Hirobe & Terunuma 2012). Since in absence of pex3 the melanosomal function is impaired, it is

necessary to get a deeper insight into the detailed process leading to this defect. In particular,

melanocyte biogenesis is a well characterized process and different regulatory elements are

described (Mort et al. 2015; Singh & Nusslein-Volhard 2015). One of the advantages of

zebrafish is its transparency during the embryonic development, which takes place ex utero;

moreover, different indicator lines for the regulatory elements in melanocyte homeostasis

were previously generated, giving the possibility to follow these processes in vivo. Different

indicator lines were used, allowing to follow the expression of transcription factors or

receptors involved in melanoblasts development:

- Tg[sox10:mRFP] (Mongera et al. 2013), is expressed in the branchial arch region, in the

dorsal neural tube, around the otic vesicles and along the walls of the dorsal aorta and

the ventral notochord;

- Tg[foxd3:GFP] (Gilmour et al. 2002), is expressed in neural crest-derived glial and

pigment cell precursors and in glial cells associated with axons of the lateral line

system; foxd3 acts as repressor of mitfa transcription;

- Tg[mitfa:GFP] (Curran et al. 2009), is expressed in lateral stripes along the dorsal

aspect of the hindbrain and trunk region; mitfa drives the expression of enzymes that

are part of the melanin biosynthesis pathway;

- Tg[kita:Gal4; UAS:mCherry] (Distel et al. 2009), is expressed in migrating melanocytes

and in quiescent melanoblasts precursors localizing at the dorsal root ganglia; kita

expression is necessary for the melanoblasts survival during migration and for their

retention in an undifferentiated state.

For each of the above-mentioned indicator lines, a morphant model was established by

injecting pex3 translational blocker AMO, which proved to phenocopy the trans-heterozygous

model in terms of pigmentation development (Figure 46). The number of cell clusters positive
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for the marker in the region of interest was determined at 2 dpf, with the only exception of

Tg[kita:Gal4; UAS:mCherry] indicator line, for which the time point was shifted to the earliest

detectable time point, namely 3 dpf. In such a way, cell differentiation and proliferation could

be monitored and it was possible to resolve at which point of the melanoblast development

the process is impaired due to the pex3 loss of function (Figure 59).

Figure 59 - pex3 is not necessary for the initiation but for the proper melanoblasts proliferation and
differentiation. (A-C’) Sample pictures for the count of cell clusters on different melanophores stripes at
different points of their ontogenesis in Tg[sox10:mRFP] (A-A’), Tg[foxd3:GFP] (B-B’) or Tg[mitfa:GFP] (C-
C’) at 2 dpf either injected with control injection solution (left panels) or containing 250 μM pex3 AMO
(right panels). (D-D’) Sample pictures for the count of dorsal root ganglia clusters in Tg[kita:Gal4;
UAS:mCherry] at 3 dpf either injected with control injection solution (left panel) or containing 250 μM
pex3 AMO (right panel). (E-G) Count of cell clusters on different melanophores stripes at different points
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of their ontogenesis in Tg[sox10:mRFP] (E), Tg[foxd3:GFP] (F) or Tg[mitfa:GFP] (G) at 2 dpf. (H) Count of
dorsal root ganglia clusters in Tg[kita:Gal4; UAS:mCherry] at 3 dpf. In the morphant model, the count is
reduced in comparison to the control samples, especially for the late mitfa and the melanoblast kita
markers. Scale bars: 50 μm. (Experiment perform in collaboration with Verena Monika Juchems).

sox10 or foxd3,marking the first stages of pigment cell development from the neural crest, are

only partially affected, since the number of cell clusters expressing the fluorescent indicator is

only slightly dysregulated in comparison to injected control embryos (Figure 59 A-A’, B-B’, E-F).

The effect is eventually limited to the dorsal stripe, whereas it is not possible to count the

number of the cell clusters in the ventral region, since they did not emerge at this stage, yet.

For later stages in the melanocyte development, GFP expression under control of the mitfa

promoter indicates that there is a reduced number of expressing cell clusters, in both the

dorsal and the lateral stripes in morphant larvae (Figure 59 C-C’, G). Also kita promoter derived

expression is detected in a significantly lower number of cluster at the dorsal root ganglia,

indicating a lower proliferation of quiescent stem-like progenitors and lower potential for

further melanophore replacement (Figure 59 D-D’, H). These results point to an impaired

melanoblasts development upon pex3 loss of function, with a lower number of cells reaching

the fully mature stage, a lower number of generated precursor cells which can replace other

melanocytes and a delay in the migration progression, especially related to the dorsal and

lateral stripes.

4.8.1.11 Embryonic melanoblasts development influences melanocyte proliferation until

the metamorphic phase

Melanocyte precursors emerging during embryonic development are recruited to replace

dying melanophores during the whole life cycle. In zebrafish, a rearrangement in the pigment

cell distribution is happening and the adult stripe pattern is determined during metamorphic

phase (21-35 dpf) (Singh & Nusslein-Volhard 2015). Since in pex3 mutants a lower number of

melanophore precursors is generated during embryogenesis, it was assessed whether this has

an impact on later events. pex3CRISPR/ZMP embryos were injected with either pex3FL or

pex3ΔMTS mRNAs and the number of melanocytes and pigmentation intensity of the different

stripes were quantified in the region of interest between 5 dpf and 30 dpf (Figure 60).
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Figure 60 - Melanoblast defects caused by pex3 loss of function have an impact on the post
metamorphic development of pigmentation. Number of melanocytes on dorsal (A), lateral (C) and
ventral (E) melanophore stripes between 5 dpf and 30 dpf. Relative pigmentation intensity of the dorsal
(B), lateral (D) and ventral (F) stripes between 5 dpf and 30 dpf. Both values are reduced when
comparing transheterozygous pex3CRISPR/ZMP to wildtype; they are restored after injection of pex3FL
mRNA, but not upon pex3ΔMTSmRNA injection. All p values refer to the whole time series; each dataset
is tested for significant difference in comparison pex3CRISPR/ZMP sample.

When comparing both the cell count and the pigmentation intensity values for the

transheterozygous pex3CRISPR/ZMP injected embryos in comparison to wildtype controls, they are

significantly reduced for all stripes. In particular, the pigmentation intensity values in the single

stripes start to divert from the wildtype after 15 dpf, indicating that at this point a new wave of

events, additional to those observed during embryogenesis, is producing the phenotype

observed in the adult animals. Injection of pex3FL mRNA restores both cell count and

pigmentation intensity, occasionally in a measure even higher than in wildtype animals. This



Results 117

indicates that pex3 protein produced after injection of the full-length version of the coding

sequence stimulates the cellular machinery even more efficiently than the normal protein

dose. This is sufficient to also rescue the initiation of metamorphic events, even if the protein

is likely not to be present anymore. In pex3ΔMTS mRNAs injected pex3CRISPR/ZMP mutants, the

values trend is similar to the untreated pex3CRISPR/ZMP embryos, hinting to the fact that the

construct cannot rescue. Considering that no effect should be expected beyond 5 dpf, due to

the degradation of the injected mRNAs after this period (Fink et al. 2006), the post-

metamorphic development of pigmentation, with a reduced number of melanocytes and a

reduced light absorption, is caused by the lower amount of mature melanophores arising few

days post-fertilization and by the lower amount of quiescent melanocyte precursors.

4.8.1.12 Pex3 is responsible for the post-metamorphic melanocyte migration and

distribution

The final analysis focused on the post-metamorphic pigmentation pattern in juvenile animals

(30 dpf). In particular, it was determined how pex3 dysfunction could affect the melanocyte

distribution, with regard to the function of the newly identified MTS in the pex3 protein

sequence. For this reason, animals from the previous analysis were further screened (Figure

61).

Figure 61 - Macroscopic pigment distribution seems unaffected in pex3CRISPR/ZMP mutants after the
metamorphosis stage. 30 dpf juvenile animals, wildtype (A) as control, transheterozygous pex3CRISPR/ZMP

(B) or transheterozygous pex3CRISPR/ZMP injected with either pex3FL mRNA (C) or pex3ΔMTS mRNA (D).
Macroscopic observation of the larvae does not highlight any major alteration of the standard
pigmentation pattern, especially in the melanocyte distribution in the trunk region (white arrowheads).
Scale bars: 2 mm.
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The mere macroscopic observation of the juvenile fish does not show any major alteration in

the distribution of the melanocytes. Nevertheless, in the trunk region there is a different

dispersion of the melanocytes both dorsally and ventrally of the first iridophores interstripe,

which emerges along the myoseptum (see arrows in Figure 61). Normally, soon after the

beginning of the metamorphic stage, melanophores line up in two stripes, and only then they

start to increase in size, keeping the number unaltered (Kimmel et al. 1995; Singh & Nusslein-

Volhard 2015). These events can be observed only in wildtype and in pex3CRISPR/ZMP larvae

injected with pex3FL mRNA (Figure 62 A-A’’), but not in pex3CRISPR/ZMPmutant larvae, even if

injected with pex3ΔMTSmRNA (Figure 62 A’-A’’’). The migration of melanophore on the skin of

larvae was translated on a bi-dimensional model and a linear regression was calculated to

describe the mean position, along the axis of the stripe (Luciani et al. 2011). After that, the

average distance of each pigment cell from the axis of the stripe was calculated (Figure 62 B-

B’’’, C). In pex3CRISPR/ZMP juvenile fish, the average distance is approximately ten times higher

when compared to wildtype animals, and these values can be reduced to approximately one

third when pex3CRISPR/ZMP embryos are injected with pex3FL mRNA, but not with pex3ΔMTS

mRNA. Taken together, these results demonstrate that the impaired early proliferation,

maturation and migration events in the chromophore cell lineage have an influence on the

fate of this cell population at a later time point, during metamorphosis. This results in

inappropriate timing and aspect of the stereotyped striped pattern of adult zebrafish.
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Figure 62 - (A-A’’’) Melanocyte distribution in the trunk region of juvenile animals (30 dpf), wildtype (A),
control pex3CRISPR/ZMP (A’) or pex3CRISPR/ZMP injected with either pex3FL mRNA (A’’) or pex3ΔMTS mRNA
(A’’’). (B-B’’’) Graph of a representative regression model for each of the analyzed conditions. Each dot
represents a single melanocyte, while the red dotted line represents the mean position in the sample. In
wildtype (B) and pex3CRISPR/ZMP samples injected with pex3FL mRNA (B’’) the single melanocytes are closer
to the average position in comparison to control pex3CRISPR/ZMP (B’) or pex3CRISPR/ZMP injected with
pex3ΔMTS mRNA (B’’’). (C) Quantification of the relative average distance from the first interstripe,
measured on the same samples. pex3FL mRNA, but not pex3ΔMTS mRNA injection reduces the
dispersion in pex3CRISPR/ZMP to levels comparable to wildtype animals. Scale bars: 200 μm in panels A, A’,
A’’ and A’’’.

4.8.1.13 A possible conserved role of pex3 in mammalian melanocytes

Pex3 loss of function in zebrafish is responsible for the altered pigmentation phenotype, and

the pex3 localization can be restricted to a C-terminal melanosomal targeting signal which

drives the protein on the membrane of the melanosome. In light of these results, it was

investigated whether the mechanism and function could also potentially be conserved in other

species, in particular in human and mouse. Alignment of the C-terminal sequence of zebrafish,

human and murine pex3 proteins shows that the bipartite signal identified in zebrafish is
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conserved, with the dileucine motif surrounded by two aspartic acid residues and the YXXΦ-

type signal (Table 11).

Table 11 - Alignment of C-terminal regions of pex3 proteins from human (HS), mouse (MM) or zebrafish
(DR). They all possess the identified non-canonical melanosomal targeting signal. Degenerate dileucine-
based sorting signal (red box, with leucine residues in red) and a YXXΦ-type signal (blue box, with
tyrosine residues in blue) are highlighted.

This result hints to a possible conserved mechanism targeting pex3 on the membrane of

melanosomes also in other species, having there a function. A cell culture system based on B16

mouse melanoma cell line was used (Overwijk & Restifo 2001). Immunofluorescence co-

stainings in B16 cells do not show a strong co-localization of pex3 with the melanosomal

marker tyr. Nevertheless, the melanosomal fraction could be isolated by ultracentrifugation of

cell lysate (Kushimoto et al. 2001; Basrur et al. 2003a) and an enrichment of pex3 was found in

tyr-positive melanosomal fraction. At the same time, the presence of other compartments

which could contribute to melanosome biogenesis like endoplasmic reticulum or early

endosomes (Schiaffino 2010) are either absent or remarkably reduced (Figure 63).
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Figure 63 (on previous page) – The purified melanosomal fraction from mammalian melanoma cells is
enriched in pex3 protein. (A) Sucrose gradient ultracentrifugation of a cell lysate of B16 mouse
melanoma cells. At the end of the procedure it is possible to detect a band at the interface between the
1,6 M and the 1,8 M sucrose gradient (red arrow) enriched in melanosomes, visible because of the
presence of melanin. (B) Western blot analysis of the purified melanosomal fraction shows the absence
of endoplasmic reticulum contamination and a strong reduction of endosome contribution, still showing
the presence of the melanosomal marker and an enrichment in pex3 content.

In summary, the observations hint to the fact that pex3 might have a conserved role in

controlling and regulating melanosome biogenesis homeostasis also in mammalian

melanocytes, through a mechanism similar to the one just described for zebrafish.
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5 Discussion
The fundamental role of metabolism in health and disease opened the need for a deeper

comprehension of the mechanisms controlling it. In order to easily and thoroughly study the

impact of metabolism on organ development and tissue homeostasis, the generation of

experimental models is needed (Vander Heiden et al. 2009; Suhre & Gieger 2012). In

particular, the recent availability of new biochemical technologies and the establishment of

animal systems helped to find answers to open questions in cellular metabolism.

Peroxisomes have a key role in cell metabolism. In this organelle, there are more than one

hundred enzymes involved in a multiplicity of biosynthetic pathways. They are responsible of

the catalysis of several enzymatic reactions related to lipid metabolism (detoxification of

reactive oxygen species, oxidation of fatty acids, ether phospholipids synthesis) and the

impairment of any of those has an impact on cell homeostasis. Impaired β-oxidation of very

long chain fatty acids or β- and α-oxidation of methyl-branched fatty acids results in the lack of

proper substrates for energy production in the mitochondria and the accumulation of toxic

molecules in the cell. Missing ether phospholipid biosynthesis causes abnormal membrane

composition, whereas missing peroxide detoxification increases oxidative stress (Klouwer et al.

2015). Due to the cell high metabolic requirements, peroxisomes are highly dynamic

organelles and the cell can promptly react to different environmental and metabolic stress

conditions, to adjust their number, their size and their enzymatic content. The cell can start

this adjustment process from already existing peroxisomes, in the so-called ‘growth and

division’ pathway. If this is not sufficient, the cell can generate brand-new peroxisomes from

vesicles budding from the endoplasmic reticulum following the de novo biogenesis pathway

(Agrawal & Subramani 2016; Schrader et al. 2016). These so-called ‘pre-peroxisomal’ vesicles

are then enriched with peroxisomal membrane proteins which are necessary for the import of

the peroxisomal matrix proteins, synthetized in the cytoplasm.

A class of genes, called peroxins (pex), regulates peroxisome homeostasis. Peroxins control

membrane dynamics during fission and growth in size. Moreover, they control the import of

peroxisomal matrix enzymes in the peroxisomal matrix. One of the most important peroxins is

pex3, defining the pre-peroxisomal compartment on the endoplasmic reticulum in the de novo

peroxisome formation (Agrawal et al. 2011), controlling the embedding of peroxisomal

membrane proteins (Fujiki et al. 2006), regulating the subdivision of existing peroxisomes into

daughter cells during mitosis (Knoblach et al. 2013) and being the target of ubiquitination

during the autophagic clearing of nonfunctional peroxisomes (Motley et al. 2012).
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In this study, expression pattern of pex3 in zebrafish is described. The first vertebrate model

for this gene loss of function is generated and characterized. Peroxisomal and mitochondrial

metabolism are impaired causing oxidative stress and reduction of mitochondria amount.

pparγ activation and transcription of genes involved in lipid metabolism or oxidative stress

reduction can rescue the phenotype. Moreover, pex3 mutation causes lack of most

melanophores in embryos and reduced pigmentation in adult melanocytes. This phenotype is

independent of peroxisome; indeed, it has to be attributed to the melanosomal targeting

signal (MTS) identified at the C-terminus of pex3. If pex3 is not addressed to melanosomes,

they do not mature properly; moreover, foxd3-induced repression of the transcription of

genes involved in the melanin biosynthesis pathway is prolonged. Zebrafish melanophores are

then delayed in proliferation and migration and this has an impact also during metamorphosis,

altering the pigment cell distribution, necessary for stripes formation.

5.1 In zebrafish developing embryos, pex3 is expressed also in developing

sensory organs, gill filaments and melanophores
Distribution pattern of peroxisomes in zebrafish embryos and in adults were previously

described, based on in situ hybridization experiments and on cytochemical procedures to

reveal catalase activity (Krysko et al. 2010). Krysko et al. evaluated the expression of

peroxisome markers pex14 and catalase with an in situ hybridization approach during early

embryonic stages (24 hpf and 48 hpf). They described a ubiquitous expression, enhanced in

the head region. Moreover, functional peroxisomes were detected in the wall of the yolk sack,

in liver parenchymal cells, in the epithelium of the proximal renal tubules and in the intestinal

epithelium at 96 hpf. These data closely resemble the well-established pattern of peroxisome

distribution in mammals and human (Baes & van Veldhoven 2006).

The present study focused on a single peroxin gene, pex3, and its expression at different

developmental stages and in each adult organ. Due to the presence of peroxisomes in all cell

types and to the key role of pex3 in peroxisome biogenesis, it was expected to find a broad

expression of this gene. The data confirmed ubiquitous pex3 expression and refined published

expression patterns. pex3 expression is detected already at 8 hpf without interruption with the

maternally supplied mRNAs (Giraldez et al. 2006), and progressively increases till 120 hpf.

During embryonic development, from a spatially non-restricted expression pattern, pex3

becomes increasingly enriched in the central nervous system. pex3 presence is enhanced in

specific CNS regions, both at the mRNA and at the protein level. pex3 higher expression might
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correlate with an increased requirement of peroxisomes, due to particularly high metabolic

activity in those areas, or with a specific function exerted by peroxisomes in terms of synthesis

of molecules having a role in signaling or metabolism modulation. Besides this observation,

new domains not previously described for pex3 expression were identified during zebrafish

embryogenesis. pex3 was found in the developing sensory organs (optic cup, otic vesicles and

olfactory epithelium), the gill filaments and in clusters of cells in the epidermis, identified as

melanocytes. This outstanding expression might be connected to a particular necessity of

pex3, restricted to those organs or to a specific stage in their development.

The different methods adopted to determine pex3 expression in zebrafish (in situ

hybridization, qRT-PCR and immunofluorescence) gave partially different results. In fact, the

present study detected expression in organs which were not previously reported, such as

specific regions of the brain and melanophore cells in the skin. The fact that the automated

transcript analysis did not detect transcript in some organs may depend on the relative

abundance of pex3 transcript in comparison to others or to biological variation in the samples

(Glaus et al. 2012; Trapnell et al. 2013).

Furthermore, the analysis complements data obtained in mammals. For example, the

International Mouse Phenotyping Consortium made available Pex3 expression patterns based

on a conditional approach, in which the coding sequence of the LacZ gene was inserted into

the gene ORF (Koscielny et al. 2014, release 4.3). Here, similarly to zebrafish, the brain is one

of the most intensively stained organs, especially in the cortical part. Interestingly also the

pineal gland displays a staining for pex3 expression (Figure 64 A-A’). Other tissues which are

positively stained are the adrenal medulla (Figure 64 B), the fibrocartilaginous intervertebral

discs and other cartilage structures of the rib cage (Figure 64 C-C’) and, similarly to zebrafish,

groups of cells in the dermis layer of the skin (Figure 64 C’’). Thus, the pex3 expression data

obtained in zebrafish mirror the mouse expression data and prepare the ground for knowledge

transfer between different model organisms.
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Figure 64 – Pex3 expression pattern in mouse. (A-A’) LacZ staining in the brain shows particularly high
expression in the cortical part and in the pineal gland (arrowheads). (B) Also the adrenal gland is one of
the tissues in which high Pex3 expression can be detected, especially in the medulla portion (dashed
circle). (C-C’’) Fibrocartilaginous intervertebral discs (arrows in panel C) cartilage structures of the rib
cage (C’) and groups of cells in the dermis layer of the skin (arrows in panel C’’) are also positive for Pex3
expression. (Modified from http://www.mousephenotype.org/data/genes/MGI:1929646).

5.2 Pex3 mutant alleles are responsible for mild forms of Peroxisomal

Biogenesis Disorders
In contrast to the lethal or severely impairing effects in other established pex3 loss of function

models (yeast - Kragt et al. 2005 and fruit fly - Nakayama et al. 2011), the observed phenotype

in the zebrafish pex3 loss of function is not dramatic. First of all, the knock down models

showed that lethality occurred only at high amounts of injected pex3 AMO TB and it seems to

be a toxic effect of the nucleic acid, rather than a specific phenotype. A dose-dependent

lethality is observed at lower amounts of injected AMO between 36 hpf and 48 hpf, but the

effect is not penetrant enough to allow a comprehensive analysis of the onset of the

phenotype. In the pex3CRISPR/ZMP mutants, no lethality could be observed in zebrafish at the

embryonic and larval stage, despite studies describing at least three different mutations in

human PEX3 which causes lethality within the first four months after birth (Ghaedi et al. 2000;

Shimozawa et al. 2000; Muntau et al. 2000). Recently, additional PEX3 mutations were

described in humans. In the first case, residue 347, rather at the C-terminus of the protein, is

mutated from aspartic acid to tyrosine. The male patient was not diagnosed until the age of 30

and he reached the age of 36. He suffered of a mild form of Peroxisomal Biogenesis Disorder,

the Infantile Refsum Disease (IRD), and the main symptoms were psychomotor regression,
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late-onset leukodystrophy, peripheral neuropathy, hearing impairment, renal cysts, and

renal hypertension. Fibroblasts contained peroxisomal structures positive for catalase (Matsui

et al. 2013). In the second case, two novel compound heterozygous mutations were identified

in a 9-year-old boy. The mother-inherited allele encodes for a truncated PEX3 version, after

amino acid at position 300; the allele inherited from the father shows a change of the amino

acid in position 331, from glycine to arginine. The patient suffers from mild biochemical

abnormalities, with accumulation of VLCFA and reduction of plasmalogens. Cultured

fibroblasts display abnormal peroxisomal mosaic pattern, with cells with import-competent

peroxisomes and cells without (Maxit et al. 2016). Thus, PEX3 mutant alleles might exist in the

population, without giving any clinical symptom, or developing into disease at relatively late

stage. They might not be identified, due to a possible residual activity or to a non-obligate

PEX3 role in peroxisome biogenesis, in human. The few mutations classified as early lethal

might be encoding for a mutated version of PEX3 protein, that only when present in

homozygosity might negatively affect the cellular processes and the functionality of other

interacting proteins. Nevertheless, it has to be excluded a dominant negative effect of these

early lethal mutations, since a mutation giving clinical symptoms in heterozygosity was never

described.

5.3Metabolic differences between zebrafish and human account for

dissimilarities in phenotypes
Some differences between zebrafish and human metabolism exist. First of all, zebrafish and

humans are exposed to different oxygen partial pressure levels; zebrafish experience a more

variable amount of dissolved oxygen, depending on depth, turbulence and chemicals. Despite

the optimal standardized breeding condition in any facility and the physiological and molecular

strategies to maintain constant blood oxygenation, it is not rare that zebrafish experience

hypoxia (low oxygen levels). Thus, zebrafish depend much more on glycolytic production of

ATP, preferring it to β-oxidation of fatty acids. The higher usage of anaerobic reactions induced

the development of a variety of efficient ways to detoxify ROS, in comparison to humans, and

this different oxidative status might have an impact on metabolic pathways (Anastasiou et al.

2011; Malek et al. 2004; Tseng et al. 2011). Another important difference is the temperature

regulation. Zebrafish are ectothermic animals, meaning that the internal temperature control

relies only for a small amount, if not at all, on internal physiological sources. Thus, zebrafish
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exposed to temperature fluctuations switch towards glycolysis, in order to gain high amount of

heat in a short time (Shaklee et al. 1977).

Moreover, peroxisome assembly is a temperature-sensitive process. This means that catalase-

positive vesicle cannot be detected in fibroblasts from patients suffering of Peroxisomal

Biogenesis Disorders that are cultured at 37°C, but in some cases, prevalently associated with

mutations in PEX2 gene, they do gain functional peroxisomes when cultured at 30°C (Moser et

al. 1995; Osumi et al. 2000). Authors speculated that patients may be a mosaic for peroxisome

occurrence from cell to cell, due to the different body temperatures (Giros et al. 1996). Finally,

it has to be considered that the temperature range in which zebrafish could live in the wild is

really broad, as low as 6°C in winter to over 38°C in summer (Spence et al. 2008), and the

standard temperature kept in the LIMES Zebrafish facility is 28°C.

These considerations invite for a cautious interpretation of findings in zebrafish related to

metabolism, since they might not completely reflect the cellular and tissue physiology in

mammals.

5.4pex3 facilitates peroxisome interaction with other organelles
In the last years, several studies addressed the intracellular localization of peroxisomes and

there are strong evidences that they interact with other organelles like mitochondria

(Mattiazzi Usaj et al. 2015; Schrader et al. 2013), lysosomes (Kim et al. 2016; Chu et al. 2015;

Jin et al. 2015) and lipid droplets (Zehmer et al. 2009). The importance of these interactions

are not clear, yet, but they are usually associated with economy strategies in sharing proteins

and metabolite required for the same function in different organelles (Dixit et al. 2010; Jin et

al. 2015). In most cases, these interactions involve membrane-anchored proteins having a

domain able to bind specific classes of lipids part of the membrane of the counterpart

organelles (Chu et al. 2015; Binns et al. 2006).

Thus, peroxisomes should not be thought of as isolated organelles in the cytoplasm,

communicating and exchanging metabolites exclusively by simple passive diffusion, but they

are rather part of dynamic networks (Daniele & Schiaffino 2016).

Interestingly, the sequence analysis of pex3 highlighted the presence of regions which are

highly conserved with proteins, such as Apolipoprotein B 100, which are known to bind lipids

and have the task to sort lipids within and between cells. Moreover, lipid binding ability was

demonstrated also for pex3 protein, both in association with lipoproteins and with liposomes

(Pinto et al. 2009). This lipid binding activity is also associated with the local perturbation of
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lipid bilayer structure in order to embed peroxisomal membrane proteins. Considering these

observations, in the described pex3CRISPR/ZMP zebrafish model, missing peroxisomes might have

an impact on other organelles. In fact, mitochondria are also affected by pex3 mutation: their

metabolic activity and their number are remarkably reduced, most probably because of the

reduced flux of substrate for fatty acid oxidation or increased oxidative stress (Figure 38). This

would explain the observed reduced growth rate as a consequence of an energy deficit due to

a reduced capability to process carbon sources. Moreover, the resulting oxidative stress in

pex3CRISPR/ZMP animals should be able to induce the activation of protective mechanisms,

including the proliferation of organelles re-equilibrating the redox status in the cell. In

particular, the presence of a redox sensor molecule, namely CoQ2, manages to modulate the

activation of pparγ nuclear receptor. Its ratio between the oxidized and reduced forms

mediates the transcription of genes involved in the change of organelle number or structure

(Figure 40).

pex3 would not only be a structural component on the membrane of peroxisomes, but it might

be able to guide and establish contacts with other cell compartments, through the recognition

of specific lipids which are bound by cytoplasmic domains. With this study, the effect of

interaction of peroxisomes with other organelles, especially with mitochondria, are defined at

the cellular level. This means that loss of pex3 is not only responsible of the impairment of

peroxisomal metabolism, but it also affects mitochondria function, leading to increased

oxidative stress. This is most likely the result of a loss of peroxisome-mitochondria liaison, in

which peroxisomes seem to be a crucial factor. Furthermore, the effect of missing peroxisomes

disrupting contacts with other organelles was explored at a higher level, namely in the

embryonic development of zebrafish, with a range of cell populations in need of different

hormonal and metabolic requirements.

Melanosome biogenesis is matter of long debate and a clear model describing this process is

still missing. The most accepted model describes melanosomes originating from early

endosomal compartments (Raposo et al. 2001). Later, these compartments undergo different

maturation stages, distinguishable by morphology, enzymatic content and melanin content

(Marks & Seabra 2001; Yamaguchi et al. 2007). However, recent evidences highlight a much

more complex dynamic regulating melanosome biogenesis, with a multitude of membrane

contact sites which involve different cellular compartments at different time points.

Melanosome-mitochondrion contacts might control the quality of the maturing melanosomes,

in order to ensure a proper membrane trafficking (Daniele et al. 2014). In the pex3CRISPR/ZMP

zebrafish model both a reduced mitochondria average count and a defective melanosome
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maturation were observed. Considering these information, the observed peroxisomal defect

might have an impact on melanosome biogenesis. Future experiments should prove whether

altered peroxisomal biogenesis has a direct impact on melanosome biogenesis, or rather due

to the influence of mitochondrial function. To this end, the injection of the pex3FL or

pex3ΔMTS mRNA in pex3CRISPR/ZMPmutant background and the measurement of mitochondrial

abundance will clarify this aspect. Moreover, it is now recognized that melanosomal protein

trafficking includes an endoplasmic reticulum transit step (Theos et al. 2006) and an

involvement of the peroxin complex to assist the targeting and embedding of the proteins to

specific domains cannot be excluded, similarly to what is described for proteins directed to

lipid droplets (Schrul & Kopito 2016).

The same reasoning can be extended to other cell types in which peroxisomes turned out to

exert a characteristic function. Chondrocyte migration is also affected in pex3

transheterozygous zebrafish. Recently, it was demonstrated that altered peroxisomal

proliferation has a negative impact on chondrocyte activity, recapitulating an osteoarthritis

model (Kim et al. 2016). They link the phenotype with mitochondrial damage. Peroxisome and

mitochondria dysfunctions activate the expression of several miRNAs with predicted functions

in lysosome regulation, preventing the autophagy and degradation of the damaged cellular

components (Levine & Kroemer 2008; Okamoto 2014).

5.5Melanosomes and melanin synthesis are affected by cellular

metabolism
Melanogenesis is a process regulated at different levels. Both the lack and the excess of

melanin production are deleterious for the cell because, in one case, there would be a lack of

DNA protection from UV-light mediated damage and, in the opposite case, the hyperactivation

of the system can cause inflammatory responses or even malignant melanoma (Slominski et al.

2004). Melanogenesis is under the influence of modifying agents acting in a multidimensional

network. Signaling pathways activated by receptor-dependent and -independent mechanisms

contribute to induce the synthesis of melanin and they can influence the equilibrium to one or

the other isoforms of the different biopolymers. The presence of metabolites in the

melanosomal compartment can also promote or arrest the melanin synthesis, by limiting the

substrate concentration, as in the case of dopaquinone to be transformed in dopachrome and

dihydroxyindole carboxylic acid (Prota 1995), or the enzymatic activity, as in the case of H2O2

that is a potent inhibitor of tyrosinase (Schallreuter & Wood 1989). Also nitric oxide has
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melanogenic activity, via stimulation of guanylate cyclase which produces cGMP as second

messenger in the signal pathway (Romero-Graillet et al. 1996).

Melanosomes are metabolically active organelles and they could detect the effect of impaired

peroxisomal metabolism (Slominski et al. 1993). In fact, melanosomes can sequester the host

cell metabolism, switching to the most convenient mechanism according to the actual energy

status, either activating oxidative catabolism or anaerobic glycolysis (Scislowski et al. 1984) and

altering the intracellular availability of NAD/NADH and NADP/NADPH (Scislowski & Slominski

1983). The ratio in eumelanin rather than pheomelanin synthesis is determined by the redox

potential inside the melanosome. A reducing environment with abundance of cysteine and/or

glutathione in fully reduced thiolate state, both actively transported through the melanosomal

membrane, stimulates eumelanin production; an oxidizing environment shifts the synthesis

towards pheomelanin production (Hearing 2000; Potterf et al. 1999; Prota 1995). Therefore,

the actual activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione

peroxidase, glutathione reductase and thioredoxin reductase/thioredoxin supports the

melanogenic pathway (Schallreuter et al. 1994).

Recent studies reported that in cells actively producing melanin, it is necessary the presence of

the NAD(P)H:quinone oxidoreductase-1 (NQO1) enzymes and its expression positively

correlates with that of tyrosinase (Choi et al. 2010; Yamaguchi et al. 2010). NQO1 is a

flavoenzyme that exerts its role in the cellular defense mechanism against oxidative stress and

catalyzes the reduction of quinones in hydroquinones, without an intermediate semiquinone.

Thus, the differential phenotype rescue of pex3CRIPSR/ZMPembryos supplemented with either the

oxidized or the reduced form of CoQ2, may involve a direct induction of tyr expression,

bypassing an eventual peroxisome homeostasis genes induction. Moreover, pparγ might have

a direct role in pigmentation stimulation, by stimulating Tyr activity and the expression

of Tyr and Mitf, in the melanocytes (Grabacka et al. 2008; Lee et al. 2007).

In light of this information, a mutation in pex3might play a fundamental role in melanogenesis

at different levels, both considering the known role in peroxisome biogenesis homeostasis, and

a putative novel function specific for the melanosomes. In first instance, pex3CRIPSR/ZMP zebrafish

are devoid of functional peroxisomes, inferred by the loss of the catalase vesicular pattern in

the cell. Absence of peroxisomes may affect all the other peroxisome-residing enzymes,

including several antioxidant enzymes which lose their metabolic activity (Waterham et al.

2016), thus altering the cell redox status and the synthesis of different melanin isoforms.
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5.6pex3 is targeted also to melanosomes and exert its function on their

membrane
In this study, a melanosomal targeting signal needed for pex3 localization to the melanosome

membrane was identified. At the melanosome pex3 might cooperate with other proteins in

the insertion of melanosomal proteins onto the membrane of the organelle. This feature is

characteristic of pex3 and does not involve other peroxins (Table 10). In fact, other peroxins

necessary for the import of matrix protein into the lumen (pex14) or taking part in the de novo

peroxisome biogenesis (pex16 and pex19) seem not taking part in melanosome homeostasis,

since their knock-down did not produce any effect in pigmentation intensity, in 2 dpf embryo

lysates. Moreover, the fact that pex3ΔMTS mRNA construct was able to rescue the

peroxisomal function, but not the proper proliferation and maturation of melanoblasts,

reinforces the hypothesis that the trans-heterozygous phenotype is not a secondary effect of a

peroxisomal disorder, but it is caused by an intrinsic property of pex3 (Figure 60). Thus, pex3

would be exerting a role in the regulation of the homeostasis of an organelle different than

peroxisomes.

slc24a5 (Lamason et al. 2005) and slc45a2 (Dooley, Schwarz et al. 2013) are genes encoding for

antiporters present on the membrane of zebrafish melanosomes. They regulate the ion flux

through the membrane, in order to keep the proper intra-luminal pH, necessary for the activity

of enzymes involved in melanin biosynthesis. A mutation in either one of the genes causes a

phenotype similar to pex3CRISPR/ZMP animals, with lower melanophore amounts at embryonic

stage and poorly pigmented stripes at adult stage. In absence of pex3, even if overexpressed,

slc24a5 and slc45a2 can barely rescue the embryonic pex3CRISPR/ZMP pigmentation phenotype.

Only few melanosomes develop in the anterior region of the animals (Figure 58). This hints to

the impossibility for slc24a5 and slc45a2 to exert their function on the melanosomes.

According to this experiments, it is possible to propose a model in which pex3 would have the

same molecular function on melanosomes as on peroxisomes. This means that pex3 protein

would be anchored at the membrane of the melanosome and pex3 would act as docking

receptor to facilitate the insertion of melanosomal proteins onto the membrane. If this is the

case, this model would add a new player in the poorly understood process of protein delivery

to melanosomes in pigment cells (Sitaram & Marks 2012; Toyofuku et al. 2002; Chen et al.

2002). Moreover, also other transporters or channels found on the melanosome membrane

might not be correctly localized in pex3CRISPR/ZMP animals, preventing the trafficking of molecules

between the cytoplasm and the lumen and vice versa. Melanin synthesis is under the control
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of different stimuli such as concentrations of cysteine and glutathione, which are actively

transported through the membrane. Thus, an incorrect concentration of these molecule

prevents melanin synthesis and correct pigmentation pattern development.

The proposed model is partially in accordance with what was recently published by Schrul and

Kopito (Schrul & Kopito 2016). In mammalian cells, they observed that a PEX3-farnesylated

PEX19 complex is necessary for the insertion of newly synthetized UBXD8 in specific

endoplasmic reticulum subdomains. UBXD8 is a protein present especially in the membrane of

lipid droplets and requires a non-canonical insertion pathway through endoplasmic reticulum.

In the model they propose, peroxins are part of a shared targeting machinery, having the

endoplasmic reticulum as hub for mutual control of delivery of metabolic enzymes to their

specific target organelle involved in lipid storage and consumption.

5.7pex3 influences melanin synthesis sensing mechanism in

melanophores
So far, the molecular function of pex3 protein was described. However, the phenotypical

description of pex3CRIPSR/ZMP zebrafish embryos includes a broader range of events, which

influence the whole cell homeostasis. In fact, the mutation has consequences also on the

proliferation and migration of melanophores. The observed pigmentation phenotype hints to a

pex3 function specific for the melanophore cell population, independent of the peroxisome.

Several studies addressed the maturation of melanoblasts and melanocytes in relation to the

melanin synthesis and there is a consensus that defective melanosomes prevent cells to

proceed with cell cycle (Falletta et al. 2014; Choi et al. 2014; Hirobe 2011). The way the

melanophores sense the incorrect function of melanosomes is still partially unexplored.

Nevertheless, several studies show that this mechanism might include tyrosinase localization.

In fact, tyrosinase mislocalizes in a variety of other pathological conditions, in which

melanosomal function is impaired (Manga et al. 2001; Sprong et al. 2001; Sone & Orlow 2007).

Indeed, also in pex3CRIPSR/ZMP melanophores, tyrosinase is not targeted to melanosome only

anymore, with a strong reduction of the number and the size of tyr+ vesicles in

immunofluorescence stainings.

The results show that pex3 action on melanosome proliferation is necessary and sufficient in

the first developmental stages, when the melanophore cell population is specified and

delaminates from the neural cell crest, and the melanoblast precursors are established and

migrate to the dorsal root ganglia. In pex3CRISPR/ENU mutants, melanophores could not
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proliferate in the proper number, preventing the establishment of the proper pigmentation

pattern. Nevertheless, the rescue of pex3 expression in the first developmental days through

the injection of pex3FLmRNA, is sufficient to restore the pigment cell number. The rescue goes

beyond the actual action of the injected mRNA, since it lasts through the metamorphosis

stage, preserving pigment cell count and pigmentation intensity and it allows a convergence of

the pigment cells to the final lateral stripe position nearly comparable to the one in wildtype

animals.

5.8Defective pex3 localization impairs proliferation and migration of

specific cell populations
The key findings of this study are the defective proliferation and migration of the

melanoblasts, when pex3 is mutated in zebrafish. Melanocytes are affected also when the

protein is only lacking the C-terminal melanosomal targeting signal, preventing its localization

at the melanosome. Moreover, in the described pex3CRISPR/ZMP zebrafish model, foxd3 is

upregulated, leading to mitfa repression and dysregulation of the enzymes involved in melanin

synthesis and of the genes involved in the melanocyte stimulation pathway.

When describing the pigmentation phenotype, there is a similarity with other published

zebrafish mutants, e.g. colgate. In this mutant, histone deacetylase 1 (hdac1) gene is affected.

In mutant hdac1 embryos, neural crest derived melanophores and their precursor are delayed

in differentiation and migration. This comes as result of increased and prolonged expression of

foxd3 which represses mitfa, directly interacting at the promoter region (Ignatius et al. 2008).

Interestingly, hdac1 expression pattern is ubiquitous during the first embryonic stages, but it

restricts at 36 hpf-48 hpf to the branchial arches, fin bud mesenchyme, hindbrain and otic

vesicle, covering partially pex3 expression domains (Pillai et al. 2004; He et al. 2016). The same

gene was also previously described to be involved in the regulation of other neural crest-

derived tissues during zebrafish embryonic stages, even if with different spatial and temporal

requirements (Ignatius et al. 2013). Since the gene regulation in colgate and pex3 mutants is

rather similar, gene expression domains are mainly overlapping and affected tissues

(melanophores and neural crest-derived tissues) are the same, it is possible to speculate that

the two genes might be genetically interacting in the same pathway, producing the phenotype.

Further experiments should be addressed in clarifying whether this is true and the possible

mechanism linking the peroxin to intranuclear gene regulation. A hint is offered by previously

published work, describing the bifunctional activity of a different peroxin, PEX14 (also known
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as NF-E2 associated polypeptide-2 – NAPP2), acting both as a polypeptide transport modulator

and transcriptional corepressor (Gavva et al. 2002). In this last function, in human erythroid

K562 cell line, PEX14 would interact with HDAC1, but not with other HDACs, regulating the

accessibility to the promoter region of certain genes. Considering all this information, pex3

might be able to regulate gene expression, by modification of trans-acting elements on the

genome.

Interestingly, the pineal gland is a region in which pex3 expression was detected with in situ

hybridization experiments and foxd3 transgenic reporter is clearly visible in zebrafish (Curran

et al. 2009). The same observations hold true also in mammals (Ge et al. 2005; Thorrez et al.

2008) (Figure 64 A’). The expression of the two genes in the same domain of the brain might

put those in close correlation, with a possible regulation of foxd3 operated by pex3 by means

of a not yet identified mechanism. Interestingly, in pex3CRISPR/ZMPmutants, foxd3 is nearly 10-

fold upregulated and by knocking it down, the mutant phenotype is rescued, with total

pigmentation intensity and enzymes involved in the melanin biosynthesis pathway similar to

wildtype (Figure 51). This information becomes even more relevant if it is considered that the

pineal gland is an endocrine gland located in the brain in which several hormones are

produced. One of those is the α-melanocyte stimulating hormone, responsible for the

stimulation of melanin production in the periphery (D'Agostino & Diano 2010) which was

shown to be down-regulated in the presented pex3CRISPR/ZMP zebrafish model. Thus, future

studies should address the question whether the expression of pex3 (or foxd3 knock out or

knock down) in the pineal gland in pex3CRISPR/ZMP embryos is sufficient to rescue the

pigmentation phenotype, through a specific gene regulation in that organ. Tools like transgenic

lines used in this study for the quantification and migration of melanocyte precursors would

help to carry on a transcriptomic analysis in a uniformed sample and to obtain a homogeneous

picture of the gene regulation events.

5.9Other tissues and cell population depending on melanin production

could be affected in pex3 zebrafish mutants
According to the results of this study, due to the ubiquitous expression of pex3 (Figure 25 and

Figure 27) and the presence of the protein on the membrane of the melanosomes (Figure 53

and Figure 54), all the cell types producing and storing melanin would be affected in the

pex3CRIPSR/ZMP zebrafish model. Due to defective melanosomes also these other would suffer

different kind of dysfunctions. Indeed, melanophores are not the only cell type having
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melanosomes; they were detected also in the cochlea and in the inner ear, in the brain, in the

eye, in the heart, in the adipose tissue and in the lung. Their function in the different tissues

can vary, but it is mainly associated to UV-light protection and reactive oxygen species

scavenging and protection (Plonka et al. 2009).

The most curious function of melanin is the one associated to certain regions of the brain, in

which melanosomes and the melanin herein produced might have a neuroprotective and

neuroendocrine function (Zucca et al. 2004). A brain region producing a particular form of

melanin, the neuromelanin, is the substantia nigra. It controls motor activity and the circadian

rhythm (Zucca et al. 2014). Future studies could address whether pex3mutation might have an

impact on the endocrine activity of this part of the brain and whether pathological conditions

similar to the human Parkinson’s disease or schizophrenia might develop in the long term

(Shibata et al. 2008; Dawson & Dawson 2003).

5.10 pex3CRISPR/ENU mutants stand out as disease model for

pharmacological screenings
In this work, the first vertebrate model for a Peroxisomal Biogenesis Disorder based on the loss

of function of pex3 was generated. Previous attempts of treating patients suffering from PBDs

are addressed to alleviate symptoms, rather than curative therapies (Klouwer et al. 2015).

Supportive interventions consist in dietary supplementation of those intermediate metabolites

which cannot be synthetized, due to the absence of peroxisomes, like docosahexaenoic acid

(DHA; C22:6ω3), glyceryl trioleate and glyceryl trierucate (the 4:1 mixture of those is also

known as Lorenzo’s oil), cholic acid (first treatment officially approved by the American Food

and Drug Administration), plasmogen precursors or citrate. Among the most technologically

advanced, but invasive, approaches there are attempts of tissue-specific gene therapy (Hiebler

et al. 2014), orthotopic liver transplantation (van Maldergem et al. 2005) and bone marrow

transplantation, especially for the syndromes in which leukodystrophy develops in infancy

(Aubourg et al. 1990). Because the PBDs spectrum is quite wide and that symptoms are rather

heterogeneous, with higher variance in terms of morbidity and mortality, there is no univocal

treatment.

Nevertheless, zebrafish cannot be considered a suitable animal model to perform metabolic

studies, due to the problems connected to the control of food intake and to the peculiar way

to breed animals in the laboratories. Moreover, in contrast to the human disease, in which

mutations in almost all the peroxins cause early lethality, the mutation of pex3 is not lethal and
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this can be and much milder. This can be attributed to differences in metabolism, making

zebrafish less dependent on peroxisomes (see Metabolic differences between zebrafish and

human account for dissimilarities in phenotypes). A possible pharmacological intervention to

modulate the metabolic phenotype consists in the activation of peroxisome proliferation

through ppar-family transcription factors. Several molecules (thiazolidinediones, pioglitazone,

rosiglitazone and fibrates, for example) are already on the market as ppar agonists for the

treatment of dyslipidemia and type 2 diabetes mellitus. Even if they are specific in the ppar

binding, if assumed for long periods they have important side effects, including genotoxicity,

reduction of bone mass and resistance, edema because of fluid retention, heart failure and

myocardial ischemia (Bortolini et al. 2013; Home 2011). Thus, this kind of treatment might not

be suitable for the cure of genetic conditions. An alternative may derive from the data showing

that only the reduced form of CoQ2 (CoQ2H2) is able to activate pparγ-dependent transcription

of target genes. In fact, since CoQ2 is extremely lipophilic, its scaffold may be used for the

generation of an optimized molecule for the distribution (by reducing the length of the

isoprenyl units or by substituting hydrophilic groups on the benzoquinone ring). Once

delivered in the oxidized (ubiquinone) form to the cell, the molecule should be able to sense

the internal redox status, switching to the reduced (ubiquinol) form and being active, only in

case of necessity.

The idea to interfere with melanosome biogenesis in pex3CRISPR/ZMPmutant is more intriguing. In

fact, the availability of this new zebrafish model offers a new tool to tackle the need of a

robust drug treatment. Due to the availability of large numbers of animals, their quick

embryonic development and the early onset of the disease-related phenotype, zebrafish pex3

mutant model carries several advantages to progress pharmaceutical research into the

advanced preclinical phase. The phenotype caused by the pex3 loss of function develops

within the first 2 dpf and it can be easily scored with multiple parameters (count of

melanophores in different region of interest, spectrophotometric measurements on different

specimens). Thus, a quantitative analysis is easily accessible and possible in a relatively quick

time, while this is not possible with other vertebrate models.

In this study, a potential mechanism is outlined, in which pex3 positively controls melanosome

formation. Since it is difficult to envision a rescuing approach, in which a chemical compound

substitutes pex3 protein function, it is easier to aim to a blockage of pex3 interaction with

other proteins, to prevent the generation of functional or hyperactive melanosomes. This

approach is particularly advantageous in several pigmentation disorders, where there is an
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excess of melanin production or it is uncontrolled, such as melasma, age spots, acanthosis

nigricans or melanoma (Stollery 2015; Pillaiyar et al. 2015; Que et al. 2015).

The role of pex3 and its localization might be conserved also in mammals, as observed in the

murine melanoma B16 cell line. Interestingly, a metanalysis of numerous published gene

expression datasets highlighted a potential therapeutic approach for the treatment of

melanoma. Pex3 expression during melanoblast differentiation and migration to mature

melanocyte, the first stages of transformation into in situ and invasive metastatic melanoma

was analyzed (Figure 65). During the differentiation phase, there is an increasing expression of

Pex3 reaching its maximum when the cell needs to produce melanin into functional

melanocytes. Later, Pex3 expression maintains constant levels, also in the initial transforming

phase, but a drop is detectable when the cells acquire invasive and metastatic properties,

which is in line with the reduced pigmentation of certain types of metastatic melanomas

(Brożyna et al. 2016).

Figure 65 – Summary of the results of a metanalysis of numerous published murine gene expression
datasets related to melanocyte lineage. During the differentiation phase, there is an increasing
expression of Pex3, going along with the appearance of cell specific markers and the activation of
different signaling pathways. Different physical and biological factors may induce variation in the Pex3
expression, resulting in an alteration of the proliferation profile. Pex3 peak expression is reached when
the cell needs functional melanocytes for melanin production. Later, Pex3 expression levels remain
constant, also in the initial transforming phase; but a drop is detectable when the cells acquire invasive
and metastatic properties, associated to the expression of oncogene markers associated to cell
proliferation.
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When the association between pex3 expression and pigmentation is confirmed and pex3

would prove a possible predictor to foresee the outcome of melanoma in the clinical practice,

pex3 might be a suitable target for therapeutic purposes, either directly to inhibit the protein

interactions promoting melanogenesis, or as an anchor to address cytotoxic drugs.

Since the protein structure and the domains interacting with other proteins are well

characterized (Sato et al. 2010; Hattula et al. 2014), by means of drug design molecular

modelling it is possible to project different lead compounds, to further be tested in zebrafish,

after the enrichment of the chemical space with different covalently bound moieties.
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6 Conclusions
This study aimed to describe the consequences of pex3 loss-of-function in the zebrafish

vertebrate model. According to the results of the experiments, a model in which pex3 has a

dual role can be proposed: a general one referred to the already known regulation of

peroxisome homeostasis, present in all cell populations, and the other referred to the control

of melanosome biogenesis, specific of melanophore cells.

As expected, in pex3CRISPR/ZMP mutants there is an impairment in peroxisomal function and

metabolism. In details, the absence of pex3 prevents the import of peroxisomal enzymes, such

as catalase or those involved in very long chain fatty acid oxidation, in the organelle matrix.

This results in reduced peroxisomal function: energy sources cannot effectively be used,

causing reduced growth rate, and ROS detoxification is impaired, with a parallel decrease of

RNS concentrations. Thus, also the average number of mitochondria per cell is reduced.

Activation of peroxisome biogenesis can be induced by providing a redox sensor molecule,

namely Coenzyme Q. It can induce pparγ-mediated expression of genes of the lipid

metabolism or oxidative stress reduction pathways, only when present in the reduced form.

This study provided important elements in defining a novel function of pex3 in a specific cell

population, the melanophores. In fact, pex3CRISPR/ZMPmutants display an altered pigmentation

pattern already during embryogenesis and then later, at adult stage. Indeed, pex3 was found

to be present on the melanosomes, organelles required for melanin synthesis. The route

bringing pex3 on the melanosome remains unclear. In absence of pex3 - either because it is

totally missing or not targeted to the organelle due to the lack of the MTS – melanosome

function is impaired and melanophore lineage cannot generate the correct striped pattern,

typical of zebrafish. This mechanism is independent from peroxisomes, since it was observed

that the injection of a truncated form of pex3, lacking the C-terminal MTS, can rescue

peroxisome biogenesis in pex3CRISPR/ZMP embryos. The final phenotype is also mediated by an

upregulation of foxd3, a repressor of mitfa, factor activating the transcription of enzymes

involved in the melanin biosynthetic pathway. A defective establishment of the melanophore

lineage precursors during embryogenesis affects the development of the proper adult striped

pattern, in zebrafish. pex3 presence during the first days of embryonic development is

sufficient to rescue not only the embryonic pigmentation pattern, but also partially the post

metamorphosis one, in pex3CRISPR/ZMPmutants.

Preliminary data hint to a conserved similar function also in mammals.
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Thus, pex3 is proposed to have the same molecular function on melanosomes as on

peroxisomes, in mediating the import of membrane and matrix proteins on these two

organelles, in order to ensure their function. It means that, beside of the well-established

function on the peroxisome membrane, on the melanosomes pex3 acts as component of the

importomer complex, cooperating with a pool of other proteins in the import of melanosomal

proteins. A defective import mechanism prevents proper melanosome maturation, which

impacts on melanophore lineage cells migration and proliferation. Whenever the melanophore

lineage establishment during embryogenesis is rescued in pex3CRISPR/ZMP animals, this is

sufficient to support the following metamorphosis stripe pattern determination.

Moreover, this study offers a valuable model for the study of pigmentation disorders. It opens

new possibilities for the pharmaceutical research and for the discovery of new drug

treatments.
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Figure 66 – Model summarizing the main findings of the present study. In zebrafish, pex3 has a dual
role: a general one, linked to peroxisome homeostasis, in all cell types, and a second one linked to
melanosome biogenesis, in melanophore cells lineage. The discriminant factor is the melanosomal
targeting signal, newly identified at the C-terminus of the protein sequence.
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7 Summary
Previous efforts aimed to understand the consequences of a dysregulated control of

peroxisome biogenesis and of the dynamics of peroxisomal matrix proteins. Nevertheless,

previous publications did not fill the existing gap in understanding the molecular events

underlying the progression of Peroxisomal Biogenesis Disorders at systemic level. In particular,

a vertebrate model deficient for one of the early peroxins (Pex3, Pex16 and Pex19) was never

generated (Baes & van Veldhoven 2006).

In this work, the generation and characterization of a zebrafish model for Peroxisomal

Biogenesis Disorders (PBDs) is described. The unique homolog of human PEX3 was identified

and its expression pattern was determined querying different online databases and with

experimental techniques (in situ hybridization, qRT-PCR, immunofluorescence), during

embryogenesis and at adult stage. This helped to identify new domains in which pex3 is

expressed and that were not previously described in mammals: specific regions in the brain,

developing sensory organs (optic cup, otic vesicles and olfactory epithelium), gill filaments and

clusters of cells in the epidermis, identified as melanocytes. Different genome editing methods

(TALENs, CRISPR/Cas9) were successfully applied to generate a loss-of-function model

(pex3CRISPR/ZMP).

Different from what observed in C. elegans (Petriv et al. 2002) or D. melanogaster (Nakayama

et al. 2011), zebrafish pex3CRISPR/ZMP mutants do not show any premature lethality and they

survive to adulthood, even if they lack functional peroxisomes. Nevertheless, their peroxisomal

and mitochondrial metabolism are impaired, lowering the energy status, increasing the

oxidative stress and reducing the mitochondria abundance. This phenotype can be rescued

through the activation of pparγ nuclear receptor, that induces the transcription of genes

involved in lipid and xenobiotic metabolism, oxidative stress reduction and cell cycle

regulation.

Surprisingly, zebrafish pex3CRISPR/ZMP embryos display additional major defects in the neural

crest derived tissues, like pigment cell and cartilage-bone structures in the cranial region. In

pex3CRISPR/ZMP mutants, embryos lack most melanophores, whereas melanophores are poorly

pigmented at adult stage. In these animals, there is a prolonged foxd3-induced repression of

the transcription of genes involved in the melanin biosynthesis. The phenotype develops

independent of peroxisome and the discriminant factor is the identified C-terminal

melanosomal targeting signal (MTS) driving pex3 on the melanosomes. In absence of this MTS,

pex3 does not localize to melanosomes, whereas peroxisomes do not suffer any dysfunction.
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Therefore, melanosomes do not mature properly, inducing a delay in the proliferation and

migration of zebrafish embryo melanophores. This has an impact also later, during

metamorphosis, for establishing of the correct pigmentation stripes pattern. Thus, pex3

presence on melanosome during embryogenesis is necessary for correct proliferation,

maturation and migration events, in melanophore cell lineage.

The results of this study offer a model in which pex3 has the same molecular function on

melanosomes and on peroxisomes. pex3 mediates the import of membrane and matrix

proteins on these two organelles, in order to ensure their function. To achieve this role of

importomer complex component on different organelles, pex3 might interact and cooperate

with different pools of proteins. When pex3 is missing from the melanosome - either because

it is mutated or not targeted due to the lack of the MTS – melanosome function is impaired

and melanophore lineage cannot generate the correct striped pattern, typical of zebrafish.

Preliminary data hint to a conserved similar function also in mammals.

Moreover, this study offers a valuable animal model for the study of pigmentation disorders. It

opens new possibilities for the pharmaceutical research and for the discovery of new drug

treatments.
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8 Appendix

8.1 Pex3mutation reduces chondroblast differentiation and migration
In pex3 loss of function zebrafish, the head shape is altered, due to defective formation of

mandible structures. In order to verify the dynamics leading to the development of this

morphological abnormality, an alcian blue staining in developing embryos at 72 hpf was

performed (Figure 67). Alcian blue is an anionic dye able to stain acidic polysaccharides such as

glycosaminoglycan in cartilages and sialoglycan in chondrocytes (Walker & Kimmel 2007).

Indeed, when comparing wildtype and pex3CRISPR/ZMP stained embryos, it is possible to detect

differences in the pattern. In mutants, first, the global staining of cartilage structures is much

less intense, especially in the region of the mandibular and the developing gill arches. It can be

detected both from a dorsal view (Figure 67 A-B) and from a lateral view (Figure 67 C-D). The

stereotypic hyosymplectic, palatoquadrat and Meckel’s cartilages are barely detectable.

Moreover, during this developmental stage, cells which are involved in the deposition of the

cartilage proteoglycan matrix, the chondrocytes, migrate from the neural crest to reach the

periphery (Yan et al. 2002). These cells are similarly stained with alcian blue. In trans-

heterozygous pex3 mutants, the number of detectable peripheral chondroblasts is markedly

reduced in comparison to wildtype (Figure 67).
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Figure 67 (on previous page) – Alcian blue staining reveals altered morphogenesis of the cranial cartilage
structures and distribution of the migrating chondrocytes in pex3CRISPR/ZMPembryos at 2 dpf. (A-A’) At this
stage the Meckel’s cartilage (Mc) the palatoquadrat cartilage (pqc), the hyosymplectic cartilage (hsc)
and the gills arches (ga) are clearly distinguishable in wildtype embryos. Moreover, single chondrocytes
migrating from the neural crest to reach the periphery are clearly detectable (white arrowheads). (B-B’)
In pex3CRISPR/ZMPmutants, the mentioned cartilage structures are barely visible and it is not possible to
detect any migrating chondrocyte. This results in an altered facial cranial morphology, with the
mandibular part not extending (dashed line in panel B’ represent the projection of the wildtype sample
in panel A’).

These results show that, in addition to the described effect influencing proliferation,

maturation and migration of precursors of pigment cells, in pex3CRISPR/ZMP embryos, the

migration and function of another neural crest-derived cell type, the chondrocyte, is impaired.

In this case, it was not possible to further characterize this phenotypical aspect, to determine

whether it is connected to the lack of peroxisomes in the cells, or to some other unknown

mechanism.
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8.2 Additional data

8.2.1 Zebrafish pex3 genomic sequence

AGACTCTATCTGTTATCTGCAGTTAGCCTGTCTGCAGCTAACATGAGAACTTATT
GCCATGTAGCATTGTGCTAGCTAGTGAGTTACGTCTAAACCCGCTCTTGCTTCTC
TTATTTCTTTTCATTTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGA
ATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTGGAGG
TAACTAACGTGGGCAACTGAACCTCATCCATGCATACATATCAGTGACTGTTCAC
TAGCTGTAACTATTTCTTGTTTTTAATAAAATACTTGTAGCTATAGCATGTTAAT
ATGATGTGATGTGTAGTTTAGCGTGTTATTACAGTGTTGACAACCATTATATATT
TTTTCCACATTCAGCCCTTCAATCTCAGTTCACCTGTCACCTAGTTTTTCTATTG
GCATAGTCAAATCAAAGTTGAAATGGACTTTACCCTGGAATTTTTAGTCAACAGA
AAGGCTTTATTTAACTGAATAGTTCTTGCTTGCAGCATATCACTTTGTTAACATG
GATGCTATACTATATTGTAATCTCAAACTTTTTATTTGCAGGTGTTTATCTGCTT
GGTAAATATGCACAGAGAAAAATTCAGGAGATGCAGGAGCGAGAGGCAGCTGAAT
ACATTGCTCAAGCTCGGAGACAGTTTCATTTTGAAAGCAACCAAAGGACATGCAA
CATGACAGGTAAACTAAATACCGCCATAACTGATGTTTATGTTGTTATAATTATT
TATGGAGTATGTAATTTGTTTTTTGTAGTGTTATCAATGCTCCCCACTCTCCGAG
AGGCAATCATCCATCACCTGAACTCAGAGAGTCTCACTGCTTTGCTGAAGACTAA
GTGAGTTATGCACGTGTGTGTGTGTGTGTGTGTTTGTGTGTGTGTGTGTGTGTGT
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGTAGAAGC
TTAACTACATTATAAATGTAAAAGAATATAAATGACGCAAGTGATCATGTCTTTC
TCTACAGGCCAGCAAATAAACTTGAAATCTGGGAGGATCTAAAGATTATAAGTGA
GATTATTTCTCATTTTTATGTAGTTTGTCATATATTGTTTTTTTCATTCATTCAT
TTTCTTTTCGGCTTAGTCTCTTTATTAATTAGAGGTTGCCCCAGCAGAATGAACC
GCCAACTTATCCAGCATATGTTTTACACAGTGGATGCCCTTCCGACTGCAACCCA
AGACTGGAAAACATCCATACATCCTCATTCACTAGATACACTATGGCCAATTTAG
TTTATGCAATCTTGCTACCCACTGCACCACTGTGTCGCCTATTGGTTTTTTTTTT
TTTCATTCAGTCATTTTCTTTCAGCTTAGTCCCTTTATTAATCAGGGGTTGGCCC
AGCGGAATGAACCGCCAACTTATCCAGCATATGTTTTACGCTGAGGATGCCCTTT
CAGCAGGCAACTTAGTACTTGAAAACACTCATCATACACTCTGACATGCACACAT
ACACTACAGCCAATTTAATTTATTCAATTCACCTATAGCACATGTCTTTAGATTG
TGGGGGAAACTGGAGCACCCTGAGGAAACCCACGAGAACATGAGGAGAACATGCA
AACTACACACAGAAATGCCAACTTACCCAGCCAGGGCTCGAATCCTCAACCTTCT
TGCTGTGAGGCGATCATGCTACCCACTGCGCCACTGTGATGCCCTATTGTTTTTA
TTGAGAATAAATATTTTGTATATAGCAATTGAATTTATTTTGTTTATGAACAGTA
AAATTACAGTAAAAATGTTGACATTTCAATTCACTCATTCCTTTTAAAATTTAAT
ATAATTGAATATTTTTTTTTATTTTACAGAATTTCCTTTTTAACATTCTCAATCA
AAAAATCTTAAAAATAATAAATAACTTTTTTTCAAAGAAATTGAATATCAGAGTG
AGCTAAATTGTCAATTGTATTCAAGTAGTAAACAGTTGTAGTAATAATTGAAACT
TTTTTTTTTAAGTACAATGTAGCAAATTCCACTGACATCATGTGGGTTATTAAAA
AATGACTAATAGATATTAAAGCATTGTCTAGGCTCAATTCTACTATGAAACACCC
ACTATTGACAATCAGAATAATTCACACCCTACAATTCTGGGAATCTTCTGTTTTA
CAATACATCACATTCAAGAATTAAAATACGTCATGACCAGAAATTCTGCTGAAAT
CTCAACCATGCCTTTTAGCAATGTTTAAGCTTAATTTGCACAAACAATTCCAGGA
GGATAGGTTCTGCTATTGTTTTCAATTAATTAATTAAAGCGTGGTGTTGGAATAT
TTAATCAATTCCATGCGTGTTCAATAAAAAAGGTTAGGTTTTTCTTTAAGGTTTA
ACATATTAGCAATTTAATGCATACAACTGAATAATTTGATTTACAGAATTCTGTT

5’UTR Exon 1

ORF start

Dfsdsdfsdfsdf
sdfsdfsdfsdfa
sdfadfsdfsdfs
dfsdfsdfsdfsd
fsttffffff

Exon 2

Exon 3

Exon 4
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ATCCTCAATGCAATGCAAAAATTACATTCAGGATGTGCGCACAGGTTTCATTTCC
TGACTTCAACTTATATAGGCAGCTGATATTAACAGGTGGAGTTTAATGGAATTTT
TCACTTGTCAATCATTCTCCAGTCCTCCAATTTTAGACTATCAGGCCTGTGCTTC
ATCTACTTCTGCAAAAATGTTTTATTGGTATGCAAAGCAAATCACACTCATAAAA
AAGTTCAGGTAATATTTGACCTTTAAGCAATACAAATACAATTGTTTAATGAAAA
GAAAAAAAAGGCAAAAATGTTTACAATTTTTCCCAGACAGTATCCATACTCTCAT
CTTTTATAAGTTGAAGAGAAGTTGATTCATTAATGTATTGCAAAATTAAGTGTAA
CAACTTGTAACGGGGTGGCAATGTGGCTCAGTGGTTAGCACTGTCGCCTCATAGC
AAGAAGTTTGCTGGTTTGAGTCACGGCTGGGCCAGTTGGCATTTCTGTGTGGAGT
TTGCATGTTCTCCCTGTGTTTGCATGGGTTTCCTCCAGATCCTCCGGTTTCCCCA
ACAGTCCAAAGACATGCACTATAGATGAACTGAATAAGCTAAAATAGCTGTAGTG
TATGTGTATGAATGGGTGTATGGCTGTTTCCCAGAACTGGGTTTCAGCTGGAAGG
GCATCCGCTACGTAAAACATGTTGGAATAGTTGGCAGTTCATTCCGCTGTGGTGA
CCCCTGTGAAATAAGGGACTAAGCCGAATTAATGGATAAACTTGTAATGGCCACC
TTTAGACCGCTTCTCATTGCCACTTTTGACTTTTAAAAATAGCCAATATTAGGCC
TAGGTTCAGTCGTTTTAACAACACTAAGACTGAAATCCAATAATTATGACATTTC
GGAATGCTGCTCCATTCCTTTTTCTAAAACACCCATCTCTGTGTTCAGGTTTTAC
CCGCAGCATTGTAGCCGTTTACAGCACCTGCATGCTGGTTGTGTTACTCAGAGTT
CAGCTCAACATAATCGGTGGATATCTGTACCTAGATAACTCTGTGACGAAAAATG
GAATGGTACGTCAGTTTTTTTAACAGCATAGCAATCCGATTTTATCATGTTGAAG
CACATGAACATTTAATTTCTCTCATGCTCCAATTTTAGACCCCCTTAGCACCACC
TGATGTTCAACAACAGTATCTTTCCAGTATCCAACATCTTCTTGGAGAAGGTGAG
GACAATGTCAGATCTGTATAAGAGCGTATAATCTGTACTACAGGTTAATCCTCTG
TTTGCACATATCCCCTGTAGCTGACACTGATGTTTGTTTTGTGTTTTTTAGGGCT
CATGGAACTGATAACTGTGGTCAAGAAAGCTGTTCAGGAAGTTTTTGGACTGTAT
GTTGAGTAATTGATTTGAGAATTAATTTGAATCTACTCTATTGGCGAGTGCAGCC
ATCATGTGGTGACAAAATTGTATGTTTATCAAGAGAGAAAACTACTGTCCGTGTC
TCCTCAGGGTGTCTCTGAAGCAGAGTTTGTCTCTACAAGAGCTGGAGCAACAGTT
GACACAGATCAGACAGTTAGTGGAGGACGACTCCTCTAAATACAAAAGTCTTTCC
TGGTACATGATGCCTGATGAAGAGAACACACTTGCCTCACAGGTAGATATATATG
ATATAATTTATACATAATTTCTTAATTGCATACAGTTGAAGTCAAAATATTTTTT
TTAACAGAGCAAGAAATTTTTCATATATTTCTTATACATATAGAGATTTTTTTTT
TCTGGAGAAAGTCTTATTTGTTTTATTTATTACCCTAACTTGCCTATTTAAACTA
ATTAGTCTAGTTGAGCCTTTAAATTGCACTTTAGGCTGAATATGTACTGTCATCA
TGGCAAAGATAAAATAAATCAGTTATTACAAATTAGTTATTAATCTAATGTTTAG
AAATTATGTTTATTATATTAAATTAATAAATTATGTTTAGAAATGTGTTGATTTT
TTTCTCCATTAAACAGAAATTGGGGGAAAAATATACAGGGGGGCTAATAATTCAG
GAAAGCTTCAACTGTATATAATGCATTCATTCATTTTGTTTCTGGGTCAAAGCTG
TTTGATTTTGTAATCCATGTATAATTACAATAAAAAAATGACCAATTTAAATGTA
ATATATACAGGAAGCATATTAAATGCAAGTAAGAGCTTTACTTAAATGTTTCTTT
GATGGTGTCTACTTAAATGTCTCCAATAATTTTTGTAAAACTAAAATGTCATTGG
GTAAAATAATATTCTATTGTCATTTAGCCTAACAGATGTATTTATTAATCCCTCC
AGGATTTTGCAGTGATTTATTTTCTTTTTATATCTGCAACCTAAAATTAATGGTT
TTGTGATTGTAATTCAAAAAAAGTCTTAAGCATTATTTCCTTTAATATGTGTGTT
TTGCTGTGAAAATATACACAAATGTTTTATTTTTTATTACATTTATTTTTCTTTT
TTGATCTCAAGAACCACTGGATCTCAAAATCCTGAATGCACTGATTTGTGTAAAA
ATAAAACGATATTATTGTTCTGACCATTACTGATTACAATGTATTATATACAGTA
TATATATATATATATATATATATATATATATATATATATATATATATATATATAT
ATATATATATATATATATATATATATTGTAATCATTGAGCATCAAATTGGCACAT
TAGTGTAATTTCCGAATGATCGTATAACACTAAAAACTGTATTGATGATAAAAAT
GACATTTTATGTTTCTCTGTTTATTTATTCCTGTATAATGACATTTTTTCTAGGC
CTGTGGTCTCACAGAGAATGATGTCACAACGATAAAGCTACTAAATGAAACCAGA

Exon 5

Exon 6

Exon 7

Exon 8

Exon 9
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GATATGCTGGAAAGGTGAGGAAAAGGAGTACTTGCACTAATCAGAGATCACTAAA
ACAATCTTTTGAGCACCAGGTACTAATTGCTCCACAACTTCTACTTCTTTTTTCA
GTCCAGACTTCAATATTGTTCTTCACACTTGCTTGAATCGAGGATTTGTCAGATT
TCTAGACAACATGGCAGAGTTTTTCCGACCCCCGCAGAGAGACTCCACTCCCTCC
AGCACACCTGACCAGTCAGTGGACATGCTTTTCATTTCATTGAGAAAAATGACTG
AGTGGACATGGTTAATAATAATAATAATTATTGGGGCACTTAAAAGGTTTATTTA
CAAAGGTTTCAGGGAACAACATAAGCTTAAGTAAATAAATTGTAAACATTTAAAG
GTAATTCTGGCTTCTCTCATAATTCTGGATTGTGAGAAAAAACATCATTACATTG
TGAAAACAATTACAAGTTAGAAGCTCAAGCTTTAATTGTGCCATGCAGAATTTAC
ATTTCACATTTTTATTCTTTATCATTTCATTTTTAACTTCACACAGTCTTGGTTC
TGAATTCTGAATTTGCATCTCAATTCTGACTTATTTTATTTTACACAGATCAGAT
TTTTTCCGTAATTCTGAATTTACATCTCACATTATCCCATAAAAGGATTGGTCAG
CCATAAATTCTGTCATTATTTACTGACTGTTTACTTGTTCCAAACCTGTTTGAGA
TTGTATTTGTTGTGTTGAACACAAAAAAAAAGATTTTTTGAAGAATGTTAAAAAC
CTGTAACTATTTACTTCCATAGTATTTGTTTTTCCTACTATGGAAGTCAACAGTT
ACAGGATTTTAGGGTGCTTTCACACCTACACTTTTGTTTCGTAACGTGTCTCGTT
TGCCCAGTTACCGCGGTTCGTTTGGCATATGTGAACAGGGCAATCACGCTCTGTT
CCGCGCCAAAGTAATCGCTCCGTGATCGCTTGAATGAGGTGGTCTCGGCTCGATT
GAAACGAACCCTGGAGCGGTTCAATTACAGTGAGAAAGCGATTCGATCTGAGCGC
GGTTTTATCACAGTGTTTTATGGATATGTAATAGGCATACGGCGATATGAAGAGA
GAATTATGAGTATGGCGGGAAGTTTCCCGAGTCTCCGGATGCCCGCAAACGAGTG
ATGATCTCCCGGTAATCTTGCATCTCCCTCCCTGTCCTCAAATAGGCTACATCGC
GCACCCTTCTCACCCCTCCCCACTGCATCTCTCCTCAGACACATCGCGCGCGCAC
CCTGTCAATCACCACCAAACCCCCACCTCTCCTGACAGCTGAGCGGGACGCTGCA
AAATAAACCCTGACACTCTGACCAATGTAAGGAGAGTTTACTCGCACGTGACTTG
TTTTAGCTCTTTTGGTCTGATTAGAAACTTTGCAATGTGAAAGTGAACCGCTCCA
AGAGCAAAGAGCAACAATGTAACAATTGTAATCTCTGTTTCGGAACAACTGAATC
GATTCACAGGTGTGAAAGCACCCTTAAACTTTCTTAAAAATATTTTTGTGTTCAA
CAGAATAGAGAAACTCAGAGGTTGAAACCATTTGAGGATGAGTAAATTATTAGTT
TTGAGTGAATTATCCCTTTAACTGTACGTTCACACTGAAGGCGGCAAGAGCGTCA
AAGTACTGGAAGTCATTCATTTTCAATGGGAGCCGGCGACGGCTTCATCAGTGTG
AGTGTTGAGAAGAGTTGAAATCAAGTCAACTTTATAGTAATGAGGTATGACGCGG
TTCAGCGGCAAGCAATTGGTATGTAGAAGTCAACCGCTTGAGAGGAGTCCAGAGA
ACACAGCCCTATGAACATTGGTTCTGACCAGAGTTCCCAAAGTTTTGATTATTGC
GGTCACTGGAGTTCCAATTATTTACAATGTTTTCTTACAGGGACTTAAATATAAA
AAAAGTTACTGGCGAGTTGCTGATGTGCATTAATGTTATATATGTTTTTTTTAAA
TGGGAATCTTATGCTAACTAATGACAGTACAAAAAAGTATAGCTGCTTCAGAATA
TTTCAGACATATGGACATATTGGATATAGTCTATTTCTATGTATAGTTTAGCAAA
GCCACAGCACTCGCAACAACAGGATCTTCCGTATAGGTAAATCAATTTCATAAAA
GATGCGCAACACTTTCACACTAAAAAGCACATTTTTATGCAGAAATGTTAGTGAT
TTGCTGATGTGCTGCAACGGCTCCTTTAAATACAAGATCAATGTAGCAAATTTTG
ATGCTCTCACTGCCGGTGTGGACGCAATTTAGTTCTAAATTTAGGTCTCATATTT
CTGATCTTTTTCTTTAAAATTTTCACCTCACATTTGACTTTTTCCTAAAGATTTC
TTAATTTAAATCTCACATTAATTCTTAGTTTACATCCCACAATTTTTACCTTGTT
TTCTCTACATTTTGACCTTACATGTTAACAGTTCATTTATTAATCTGTTTTTAAA
TGACTGAAAACTGTTGTTTTATCCCTCCAGACTATCGCATGTAAGCCTCCCACTA
GCCAAAATCATTCCCATTATCAACGGACAGATTCATTCAATATGCAGCGAAATTC
CAAGCCACTTTGTTCAGGTGAGCACCTTCATATAAACTGACTCTTTTTCATTTAA
ATCATATATAAGCTTCCCATACACAACTTGTTCCTTCCTGTGTGGCTGTTTTTAG
GATCTCCTGTTGATAGACCAGGTAAAAGAATTTGCCGCCAACGTATACGAAACCT
TCAGCACCCCTCAGGAACTTCAGAAGTGAGCAAGACATAAAAGCAAAACTCCTAG
AAATCTCTCATGCCGTACAGCACAGAATTGCTCTCCTCACGCGCCAAAAAAATCA

Exon 10

Exon 11
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ORF end
3’UTR
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ACCTGGAGTGAAAAAAAAAACTTGAATCAAGTTCTAAGTGTGTGTTAAAGGAGTT
CAGATTCACTGTTGTTAGTAGGCATTCAGTTTGGAGTAGCTTTAGCTGACCCCTC
TGTATGCTGTGACCCTCTTAACATTGTCCAGGGCATGCCAAGGTTTGTAGTCTAT
AATAAACTGTAGCACATTATTTATTTATATTTTAATAAAACAAACCCCTTTAGCA
TAACATTGTCATTAATATCACAAATAAAAAGGAAAACAACTTGTTCACCGGACTC
AATTCTGACAGCCTTACATCTGCAGTATGGACTTAAATGGGTGAATTGTGGTCAT
TTTGTATATTATATCAATATTATACCTGAGGTTGCAGCTTCTGGACCAAAACTCA
CCTTTGCACCAATAAACTGCTAAGCACATGGATATTTGGGAGCATTTTTGTTTGT
ATCGACTTTCATTTTGAACGGCTCTACTACTAACTGATGGGAATCATTTGCAAAA
TGGTACAGTTCGTAGTATGCTCTTCTGTTTTTTTTGTAAAATGACCCATGAATGT
TAATGAATAATAATGTGAGTAATATTATCGGAACTATTCATTAAAAT

8.2.2 pex3 transcripts coding sequence

Exons are indicated in alternate colors.

ATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTG
GAGGTGTTTATCTGCTTGGTAAATATGCACAGAGAAAAATTCAGGAGATGCAGGAGCGAGAGGCAGCTGA
ATACATTGCTCAAGCTCGGAGACAGTTTCATTTTGAAAGCAACCAAAGGACATGCAACATGACAGTGTTA
TCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTCTCACTGCTTTGCTGA
AGACTAAGCCAGCAAATAAACTTGAAATCTGGGAGGATCTAAAGATTATAAGTTTTACCCGCAGCATTGT
AGCCGTTTACAGCACCTGCATGCTGGTTGTGTTACTCAGAGTTCAGCTCAACATAATCGGTGGATATCTG
TACCTAGATAACTCTGTGACGAAAAATGGAATGACCCCCTTAGCACCACCTGATGTTCAACAACAGTATC
TTTCCAGTATCCAACATCTTCTTGGAGAAGGGCTCATGGAACTGATAACTGTGGTCAAGAAAGCTGTTCA
GGAAGTTTTTGGACTGGTGTCTCTGAAGCAGAGTTTGTCTCTACAAGAGCTGGAGCAACAGTTGACACAG
ATCAGACAGTTAGTGGAGGACGACTCCTCTAAATACAAAAGTCTTTCCTGGTACATGATGCCTGATGAAG
AGAACACACTTGCCTCACAGGCCTGTGGTCTCACAGAGAATGATGTCACAACGATAAAGCTACTAAATGA
AACCAGAGATATGCTGGAAAGTCCAGACTTCAATATTGTTCTTCACACTTGCTTGAATCGAGGATTTGTC
AGATTTCTAGACAACATGGCAGAGTTTTTCCGACCCCCGCAGAGAGACTCCACTCCCTCCAGCACACCTG
ACCAACTATCGCATGTAAGCCTCCCACTAGCCAAAATCATTCCCATTATCAACGGACAGATTCATTCAAT
ATGCAGCGAAATTCCAAGCCACTTTGTTCAGGATCTCCTGTTGATAGACCAGGTAAAAGAATTTGCCGCC
AACGTATACGAAACCTTCAGCACCCCTCAGGAACTTCAGAAGTGA

8.2.3 Predicted pex3 amino acid sequence
MLSSTWNFIKRHKRKFIFTGVFVGGVYLLGKYAQRKIQEMQEREAAEYIAQARRQFHFESNQRTCNMTVL
SMLPTLREAIIHHLNSESLTALLKTKPANKLEIWEDLKIISFTRSIVAVYSTCMLVVLLRVQLNIIGGYL
YLDNSVTKNGMTPLAPPDVQQQYLSSIQHLLGEGLMELITVVKKAVQEVFGLVSLKQSLSLQELEQQLTQ
IRQLVEDDSSKYKSLSWYMMPDEENTLASQACGLTENDVTTIKLLNETRDMLESPDFNIVLHTCLNRGFV
RFLDNMAEFFRPPQRDSTPSSTPDQLSHVSLPLAKIIPIINGQIHSICSEIPSHFVQDLLLIDQVKEFAA
NVYETFSTPQELQK
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Zebrafish (chr. 20; 37.857.614-37.866.424)

Human (chr. 6; 143.450.807-143.490.010)
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Mouse (chr. 10; 13.523.842-13.553.142)

Fruit fly (chr. 3L; 15.144.355-15.146.379)
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8.2.5 TALENs binding sites
All TALENs were targeting the first exon (here depicted in red; ORF start highlighted in yellow).
DNA binding sites are underlined.

8.2.5.1 TALENs 10L + 10R
TALEN 10L TALEN 10R

TGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCAT

8.2.5.2 TALENs 10L + 11R
TALEN 10L TALEN 11R

TGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCAT

8.2.5.3 TALENs 12L + 12R
TALEN 12L

CTTTTCATTTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCAT

TALEN 12R
AAGAGGAAATTCATCTTCACTGGGGTGTTTGTTGGAGGTAACTAACGTGGGCAACTGAACCTCATC

8.2.6 CRISPR/Cas9 sgRNAs binding sites

8.2.6.1 sgRNA targeting intron 1
The whole sequence of zebrafish pex3 intron 1 is here annotated; sgRNA binding site is
underlined.

GTAACTAACGTGGGCAACTGAACCTCATCCATGCATACATATCAGTGACTGTTCACTAGCTGTAACTATT
TCTTGTTTTTAATAAAATACTTGTAGCTATAGCATGTTAATATGATGTGATGTGTAGTTTAGCGTGTTAT
TACAGTGTTGACAACCATTATATATTTTTTCCACATTCAGCCCTTCAATCTCAGTTCACCTGTCACCTAG
TTTTTCTATTGGCATAGTCAAATCAAAGTTGAAATGGACTTTACCCTGGAATTTTTAGTCAACAGAAAGG
CTTTATTTAACTGAATAGTTCTTGCTTGCAGCATATCACTTTGTTAACATGGATGCTATACTATATTGTA
ATCTCAAACTTTTTATTTGCAG

8.2.6.2 sgRNA targeting exon 3
The whole sequence of zebrafish pex3 exon3 is here annotated; sgRNA binding site is
underlined.

TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTCTCACTGCTTT
GCTGAAGACTAA
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8.2.7 Commercial ENU-induced mutagenesis alleles

8.2.7.1 Allele sa17571
ENU-induced mutation is highlighted in yellow; other mismatches are annotated SNPs
naturally occurring in zebrafish population, or due to differences between strains. Below, the
predicted coding sequence (with exons in alternate colors) and the predicted translation into
protein are indicated.

wt TTGGTAAATATGCACAGAGAAAAATTCAGGAGATGCAGGAG
sa17571 TTGGTAAATATGCACAGAGATAAATTCMGGAGATGCAGGAG

******************** ****** *************

ATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTT
GGAGGTGTTTATCTGCTTGGTAAATATGCACAGAGATAA

MLSSTWNFIKRHKRKFIFTGVFVGGVYLLGKYAQR

8.2.7.2 Allele sa11684

ENU-induced mutation is highlighted in yellow; other mismatches are annotated SNPs
naturally occurring in zebrafish population, or due to differences between strains. Below, the
predicted coding sequence (with exons in alternate colors and the predicted retained intron, in
green) and the predicted translation into protein (with newly inserted amino acids at the C-
terminus in red) are indicated.

wt TTCCAAGCCACTTTGTTCAGGTGAGCACCTTCATATAAACT
sa11684 TTCCAAGCCACTTTGTTCAGATGAGCACCTTCATATAAACY

******************** *******************

ATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTG
GAGGTGTTTATCTGCTTGGTAAATATGCACAGAGAAAAATTCAGGAGATGCAGGAGCGAGAGGCAGCTGA
ATACATTGCTCAAGCTCGGAGACAGTTTCATTTTGAAAGCAACCAAAGGACATGCAACATGACAGTGTTA
TCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTCTCACTGCTTTGCTGA
AGACTAAGCCAGCAAATAAACTTGAAATCTGGGAGGATCTAAAGATTATAAGTTTTACCCGCAGCATTGT
AGCCGTTTACAGCACCTGCATGCTGGTTGTGTTACTCAGAGTTCAGCTCAACATAATCGGTGGATATCTG
TACCTAGATAACTCTGTGACGAAAAATGGAATGACCCCCTTAGCACCACCTGATGTTCAACAACAGTATC
TTTCCAGTATCCAACATCTTCTTGGAGAAGGGCTCATGGAACTGATAACTGTGGTCAAGAAAGCTGTTCA
GGAAGTTTTTGGACTGGTGTCTCTGAAGCAGAGTTTGTCTCTACAAGAGCTGGAGCAACAGTTGACACAG
ATCAGACAGTTAGTGGAGGACGACTCCTCTAAATACAAAAGTCTTTCCTGGTACATGATGCCTGATGAAG
AGAACACACTTGCCTCACAGGCCTGTGGTCTCACAGAGAATGATGTCACAACGATAAAGCTACTAAATGA
AACCAGAGATATGCTGGAAAGTCCAGACTTCAATATTGTTCTTCACACTTGCTTGAATCGAGGATTTGTC
AGATTTCTAGACAACATGGCAGAGTTTTTCCGACCCCCGCAGAGAGACTCCACTCCCTCCAGCACACCTG
ACCAACTATCGCATGTAAGCCTCCCACTAGCCAAAATCATTCCCATTATCAACGGACAGATTCATTCAAT
ATGCAGCGAAATTCCAAGCCACTTTGTTCAGGTGAGCACCTTCATATAA

MLSSTWNFIKRHKRKFIFTGVFVGGVYLLGKYAQRKIQEMQEREAAEYIAQARRQFHFESNQRTCNMTVL
SMLPTLREAIIHHLNSESLTALLKTKPANKLEIWEDLKIISFTRSIVAVYSTCMLVVLLRVQLNIIGGYL
YLDNSVTKNGMTPLAPPDVQQQYLSSIQHLLGEGLMELITVVKKAVQEVFGLVSLKQSLSLQELEQQLTQ
IRQLVEDDSSKYKSLSWYMMPDEENTLASQACGLTENDVTTIKLLNETRDMLESPDFNIVLHTCLNRGFV
RFLDNMAEFFRPPQRDSTPSSTPDQLSHVSLPLAKIIPIINGQIHSICSEIPSHFVQVSTFI
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8.2.8 HRMA amplicons

Forward and reverse primers are underlined in the sequence. Exons are indicated in red,
introns in black, ORF start is highlighted in yellow.

>pex3CRISPR-exon3
TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTCTCACTGCTTT
GCTGAAGACTAAGTGAGTTATGCACGTGTGTGTG

>pex3CRISPR-intron1
GGCATAGTCAAATCAAAGTTGAAATGGACTTTACCCTGGAATTTTTAGTCAACAGAAAGGCTTTATTTAA
CTGAATAGTTCTTGCTTGCAGCATATCA

>pex3TALEN-target1and2
CCCGCTCTTGCTTCTCTTATTTCTTTTCATTTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGG
AATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGT

>pex3TALEN-target3
TCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCAT
CTTCACTGGGGTGTTTGTTGGAGGTAACTAACGTGGGCAACTGAACC

>pex3ENU-sa17571
GCAGGTGTTTATCTGCTTGGTAAATATGCACAGAGAAAAATTCAGGAGATGCAGGAGCGAGAGGCAGCTG
AATACATTGCTCAAGCTCGGAG

>pex3ENU-sa11684
AGCGAAATTCCAAGCCACTTTGTTCAGGTGAGCACCTTCATATAAACTGACTCTTTTTCATTTAAATCAT
ATATAAGCTTCCCATACACAACTTGTTCCTTCCTGTGTGGCTGTTT

8.2.9 TALENs preliminary efficiency tests

In order to validate the efficacy of different TALENs pairs in inducing frameshift mutations, a
cell culture system was used. For each combination of TALENs pair, four wells of a 24-well
plate seeded with NIH 3T3 cells were transfected with plasmids containing zebrafish pex3
coding sequence and the two TALENs, in the right combination. 24 hours post transfection,
plasmid DNA was collected from each well and the target region was amplified in a HRMA
experiments, in triplicates. Amplicons from each experimental group were sent for sequencing.

TALEN 10L TALEN 10R
wt TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
A3.1 --TCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
A4.1 ----GGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATG--ATTTCATCAAACGCCATAAGAGGAA
A2.1 TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATG-AATTTCATCAAACGCCATAAGAGGAA
A1.1 ------TGTCAAGTCTGTTAAAATGTTGAGTTCTAC-----ATTTCATCAAACGCCATAAGAGGAA

****************************** *************************
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TALEN 10L TALEN 11R
wt TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAA
B1.1 ----GGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAA
B3.1 --TCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAA
B4.1 TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAA
B2.1 -TTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGG-ATTTCATCAAACGCCATAAGAGGAAA

************************************ **************************

TALEN 12L TALEN 12R
wt CTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTGGAGGTAA
C2.1 CTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTGGAGGTAA
C3.1 CTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTGGAGGTAA
C4.1 --ACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTGGAGGTAA
C1.1 -----TGGAATTTCATCAAACGCCATAAGAGGAAA------TTCACTGGGGTGTTTGTTGGAGGTAA

****************************** **************************

8.2.10 CRISPR/Cas9 preliminary efficiency tests

In order to validate the efficacy of different sgRNA constructs in inducing frameshift
mutations, sgRNA and Cas9 mRNA were injected directly in zebrafish embryos in different
amounts and at different ratios. For each experimental setup, a pool of randomly picked 10
embryos was collected, genomic DNA was extracted and used as template for target region
amplification in a HRMA experiments, in triplicates. Amplicons from each experimental
group were sent for sequencing.

S. piogenes Cas9 PAM is highlighted in yellow.

sgRNA intron1
wt1 CCCTGGAATTTTTAGTCAACAGAAAGGCTTTATTTAACTGAATAGTTCTTGCTTGCAGCA
Pool2 -CCTGGAATTTTTAGTCAACAGAAAGGCTTTATTTAACTGAATAGTTCTTGCTTGCAGCA
Pool4 CCCTGGAATTTTTAGTCAACAGAAAGGCTTTATTTAACTGAATAGTTCTTGCTTGCAGCA
Pool1 --CTGGAATTTTTAGTC-ACAGAAAGGCTTTATTTAACTGAATAGTTCTTGCTTGCAGCA
Pool3 --CTGGAATTTTTAGT-----GAAAGGCTTTATTTAACTGAATAGTTCTTGCTTGCAGCA

************** ***************************************

S. piogenes Cas9 PAM is highlighted in yellow (to be read on the antisense strand).

sgRNA exon3
wt TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Pool4 TGTTATCAATGCTCCCCACTCTCCGAGA----ATCATCCATCACCTGAACTCAGAG----
Pool2 TGTTATCAATGCTCCCCACTCTCCGAGAGGC-ATCATCCATCACCTGAACTCAGAGAG--
Pool1 TGTTATCAATGCTCCCCACTCTCCGAGG--CAATCATCCATCACCTGAACTCAG------
Pool3 TGTTATCAATGCTCCCCACTCTCCG-------ATCATCCATCACCTGAACTCAGAGAGTC

************************* **********************
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8.2.11 TALENs-induced somatic mutations and germ line transmission
TALEN 10L TALEN 10R

wt TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
Fish12 TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACAT--------ATCAAACGCCATAAGAGGAA
Fish7 TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTA------ATTTCATCAAACGCCATAAGAGGAA

*********************************** **************

The fish somatically carrying the eight-nucleotide deletion (fish 12) was used for the mutant
line establishment, crossing it with wildtype breeder, and F1 progeny embryos were
screened for the mutation. Below, the predicted coding sequence and the predicted
translation into protein (with newly inserted amino acids after the frameshift, in red) are
indicated.

wt TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
Fish12 TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACAT--------ATCAAACGCCATAAGAGGAA
Embryo2 ---CGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
Embryo3 ---CGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
Embryo6 -TTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
Embryo7 TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAA
Embryo1 --TCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACAT--------ATCAAACGCCATAAGAGGAA
Embryo4 ---CGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACAT--------ATCAAACGCCATAAGAGGAA
Embryo5 -TTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACAT--------ATCAAACGCCATAAGAGGAA
Embryo8 TTTCGGTGTCAAGTCTGTTAAAATGTTGAGTTCTACAT--------ATCAAACGCCATAAGAGGAA

*********************************** ********************

ATGTTGAGTTCTACATATCAAACGCCATAA

MLSSTYQTP

8.2.12 CRISPR-Cas9-induced somatic mutations and germ line transmission

sgRNA exon3
wt TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Fish8 -GTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Fish1 ---TATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Fish13 TGTTATCAATGCTCCCCACTCTCCGA--GGCAATCATCCATCACCTGAACTCAGAGAGTC
Fish7 ----ATCAATGCTCCCCACTCTCCGA---GCAATCATCCATCACCTGAACTCAGAGAGTC
Fish5 -GTTATCAATGCTCCCCACTCTCCGAGGGGCAATCATCCATCACCTGAACTCAGAGAGTC

********************** *******************************

The fish somatically carrying the two-nucleotide deletion (fish 13) was used for the mutant
line establishment, crossing it with wildtype breeder, and F1 progeny embryos were
screened for the mutation. Below, the predicted coding sequence (with exons in alternate
colors) and the predicted translation into protein (with newly inserted amino acids after the
frameshift, in red) are indicated.
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wt TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Fish13 TGTTATCAATGCTCCCCACTCTCC--GAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo4 TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo5 TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo7 TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo1 TGTTATCAATGCTCCCCACTCTCCGAGAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo2 TGTTATCAATGCTCCCCACTCTCC--GAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo3 TGTTATCAATGCTCCCCACTCTCC--GAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo6 TGTTATCAATGCTCCCCACTCTCC--GAGGCAATCATCCATCACCTGAACTCAGAGAGTC
Embryo8 TGTTATCAATGCTCCCCACTCTCC--GAGGCAATCATCCATCACCTGAACTCAGAGAGTC

************************ **********************************

ATGTTGAGTTCTACATGGAATTTCATCAAACGCCATAAGAGGAAATTCATCTTCACTGGGGTGTTTGTTG
GAGGTGTTTATCTGCTTGGTAAATATGCACAGAGAAAAATTCAGGAGATGCAGGAGCGAGAGGCAGCTGA
ATACATTGCTCAAGCTCGGAGACAGTTTCATTTTGAAAGCAACCAAAGGACATGCAACATGACAGTGTTA
TCAATGCTCCCCACTCTCCGAGGCAATCATCCATCACCTGAACTCAGAGAGTCTCACTGCTTTGCTGAAG
ACTAA

MLSSTWNFIKRHKRKFIFTGVFVGGVYLLGKYAQRKIQEMQEREAAEYIAQARRQFHFESNQRTCNMTVL
SMLPTLRGNHPSPELRESHCFAED

8.2.13 Accession number list

Accession numbers of the genes used for the identification of the non-canonical
melanosomal targeting signal in zebrafish pex3. Tyrosinase – tyr, dopachrome tautomerase –
dct, tyrosinase related protein – tyrp, premelanosome protein 17 – pmel17 and peroxins -
pex from human (HS), mouse (MM) or zebrafish (DR).

Gene designation Gene ID
DR_dct ENSDARG00000006008
DR_pex14 ENSDARG00000028322
DR_pex16 ENSDARG00000058202
DR_pex19 ENSDARG00000004891
DR_pex3 ENSDARG00000013973
DR_tyr ENSDARG00000039077
DR_tyrpa1a ENSDARG00000029204
DR_tyrpa1b ENSDARG00000056151
HS_DCT ENSG00000080166
HS_PMEL17 ENSG00000185664
HS_TYR ENSG00000077498
HS_TYRP1 ENSG00000107165
MM_Dct ENSMUSG00000022129
MM_Pmel17 ENSMUSG00000025359
MM_Tyr ENSMUSG00000004651
MM_Tyrp1 ENSMUSG00000005994
MM_Pex3 ENSMUSG00000019809
HS_PEX3 ENSG00000034693
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10Abbreviations

°C Degrees Celsius
μ Micro-
A Adenine
A Anterior
Adat Adenosine deaminase, tRNA-specific
Agps Alkylglycerone phosphate synthase
AMO Antisense morpholino oligonucleotide
Amsh α-melanocyte stimulating hormone
AP Alkaline phosphatase
ATP Adenosine triphosphate
BAAT Bile Acid-CoA-Amino acid N-acyltransferase
BCIP 5-bromo-4-chloro-3'-indolyphosphate
BLAST Basic Local Alignment Search Tool
bp Base pairs
BSA Bovine Serum Albumin
C Cytosine
cAMP Cyclic adenosine monophosphate
Cas CRISPR associated protein
Cat Catalase
Cdkn Cyclin dependent kinase inhibitor
cDNA Complementary DNA
Cebp CCAAT/enhancer binding protein
CIL Contact-Inhibition of locomotion
CMV Cytomegalovirus
CNC Cephalic neural crest
CNS Central nervous system
CoA Coenzyme A
CoQ2 Coenzyme Q2
CoQ2H2 Reduced coenzyme Q2
Cpt Carnitine palmitoyltransferase
CRISPR Clustered regularly interspaced short palindromic repeats
crRNA CRISPR RNA
D Dorsal
Da Dalton
DAF-FM 4-Amino-5-Methylamino-2’,7’-Difluorofluorescein diacetate
DAPI 4',6-diamidino-2-phenylindole
dATP Deoxyadenosine triphosphate
Dct Dopachrome tautomerase



188 Abbreviations
del Deletion
DHA Docosahexanoic acid
Dhapat Dihydroxyacetone-phosphate acyltransferase
DHCA Dihydroxycholic acid
DHI 5,6-Dihydroxyindole
DHICA 5,6-Dihydroxyindole-2-carboxilic acid
DM Drosophila melanogaster
DMEM Dulbecco/Vogt modified Eagle's minimal essential medium
DMF N-N-dimethylformamide
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
DNAse Deoxyribonuclease
DOPA Dihydroxyphenylalanine
dpf Days post fertilization
DR Danio rerio
DSB Double strand break
ECL enhanced chemiluminescence
EDTA Ethylenediaminetetraacetic acid
eGFP Enhanced green fluorescent protein
Elf Elongation factor
EMT Epithelium-to-mesenchyme transition
ENU N-ethyl-N-nitrosourea
ER Endoplasmic reticulum
EST Expressed sequence tag
EZRC European Zebrafish Resource Centre
f Femto-
FCS Fetal Calf Serum
FL Full length
FLASH Fast ligation based automable solid phase high throughput
Fox Forkhead box
g local acceleration due to gravity
g Gram
G Guanine
GEO Gene expression omnibus
GFP Green fluorescent protein
Gnpat Glyceronephosphate O-acyltransferase
Hdac Histone deacetylase
HDR Homology-directed repair
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
Hmox Heme oxygenase 2
hpf Hours post fertilization
HRMA High resolution melting analysis



Abbreviations 189
HS Homo sapiens
IgG Immunoglobulin G
iNOS Inducible nitric oxide synthase
IRD Infantile Refsum Disease
k Kilo-
K Lysine
kb Kilobase
Kit V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
l Litre
L Left
L Leucine
LAMP Lysosome-associated membrane glycoproteins
LB Lysogeny broth (or Luria-Bertani medium)
M Molar concentration
m Meter
m Milli-
MART Melanoma antigen recognized by T-cells
Mc1r Melanocortin 1 receptor
min Minute
Mitf Microphthalmia-associated transcription factor
MM Mus musculus
mol Mole
mRNA Messenger RNA
Mt-nd Mitochondrial NADH-ubiquinone oxidoreductase chain
MTS Melanosome targeting signal
n Nano-
N Any nucleotide
NAD Nicotinamide adenine dinucleotide
NADP Nicotinamide adenine dinucleotide phosphate
NALD Neonatal adrenoleukodystrophy
NBT nitro-blue tetrazolium
NC Neural crest
NHEJ Non-homologous end joining
OMIM Online Mendelian Inheritance in Man
ORF Open reading frame
p Pico-
P Posterior
PAGE Polyacrylamide gel electrophoresis
PAM Protospacer adjacent motif
PBD Peroxisomal biogenesis disorder
PBS Phosphate buffered saline
PCR Polymerase chain reaction
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PED Peroxisomal enzyme deficiency
Pex Peroxin
Pmel Premelanosomal protein
PMP Peroxisomal membrane protein
Polg DNA polymerase gamma, catalytic subunit
POMC Pro-opiomelanocortin
Ppar Peroxisome proliferator-activated receptor
Ppargc Peroxisome proliferator-activated receptor γ coactivator
PTS Peroxisomal targeting signal
PTU Phenylthiourea
qRT-PCR Quantitative real-time polymerase chain reaction
R Right
RCDP Rhizomelic chondrodysplasia punctate
RFLP Restriction fragment length polymorphism
RFP Red fluorescent protein
RNA Ribonucleic acid
RNAi RNA interference
RNAse Ribonuclease
RNS Reactive Nitrogen Species
ROS Reactive Oxygen Species
Rpl Ribosomal protein
rpm Rotation per minute
RVD Repeat variable di-residue
S Serine
SDS Sodium dodecyl sulphate
sec Second
sgRNA Single guide RNA
Slc Solute carrier
SNP Single nucleotide polymorphism
SOD Superoxide dismutase
Sox (Sex determining region Y)-box
SSC Saline sodium citrate
T Thymine
TALEN Transcription activator-like effector nuclease
TB Translational blocker
TBS Tris-buffered saline
THCA Trihydroxycholic acid
TNC Trunk neural crest
tracrRNA Transactivating RNA
tRNA Transfer RNA
Tyr Tyrosinase
Tyrp Tyrosine related protein
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U Unit
UAS Upstream activating sequence
UTP Uridine-5'-triphosphate
UTR Untranslated region
UV Ultraviolet
V Ventral
v/v Volume per volume
VLCFA Very long chain fatty acid
w/v Weight per volume
wt Wildtype
X-ALD X-linked adrenoleukodystrophy
Y Tyrosine
ZFN Zinc finger nuclease
ZMP Zebrafish mutation project
ZS Zellweger syndrome
Δ Deletion
Φ Bulky hydrophobic amino acid




