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1 Introduction 

1.1 How to treat the worlds obesity pandemic 

Over the past decades the population of the world has gained weight (Ng et al., 

2014). Weight gain is the result of an imbalance between energy intake and 

consumption. The most recent global health observatory data from the world 

health organization (WHO) on overweight and obesity has shown that in 2014, 

around 39% of adults aged 18 and older were overweight (body mass index 

(BMI) ≥25 kg/m²) and 13% were obese (BMI ≥30 kg/m²) (World Health 

Organization, 2016). Consequences of overweight and obesity are detrimental 

not only for the health of affected people but also for the economy, e.g. rising  

direct medical costs, productivity costs, transportation costs and human capital 

costs (Hammond and Levine, 2010). Particularly direct medical costs arise from 

diseases associated with overweight and obesity, i.e. the metabolic syndrome. 

Obese patients suffering from the metabolic syndrome usually fulfil at least two 

of the following criteria: excessive abdominal fat, hypertension, dyslipidemia and 

insulin resistance, type 2 diabetes, non-alcoholic fatty liver disease, 

cardiovascular complications and certain types of cancer (Grundy et al., 2004). It 

is estimated that around 2.8 million adults die every year as a result of being 

overweight or obese (World Health Organization, 2016). A systematic review and 

meta-analysis has associated obesity with a significantly higher all-cause 

mortality (Flegal et al., 2013). Until today, therapeutic options to treat 

overweight and obesity are rare. The basic therapy for the treatment of obesity 

includes dietetic treatment, exercise therapy and behavior therapy. Further 

therapeutic options like bariatric surgery and pharmacological interventions are 

only indicated if basic therapies do not lead to desired weight loss effects 

(Deutsche Adipositas-Gesellschaft (DAG) et al., 2014). In Germany, only two 



Introduction 

2 

pharmacological drugs have been approved for the treatment of obesity by the 

Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM): Orlistat und 

Liraglutide (as of October 2016). The inhibitor of pancreatic and gastrointestinal 

lipases Orlistat blocks absorption of 30% of ingested fat when eating a balanced 

diet (30% fat diet) (Zhi et al., 1994), leading to a reduction in energy intake. 

Liraglutide is a glucagon-like peptide 1 (GLP1) receptor agonist that stimulates 

insulin secretion and has originally been approved for the treatment of type 2 

diabetes (Bray et al., 2016). Because it delays emptying of the stomach and 

increases the feeling of satiety it has received additional approval for the 

treatment of adipositas in March 2015. Even though these drugs have proven to 

be useful in weight loss, they also have several drawbacks. Orlistat causes 

severe gastrointestinal side-effects (mainly steatorrhea), which are a strong 

burden for patients. Liraglutide needs to be injected subcutaneously and is 

therefore rather impractical for long-term application. All in all, there is an urgent 

need to find novel therapeutics against the ever growing pandemic of obesity. 

Importantly, so far we are lacking a treatment that directly targets adipose 

tissues, leading to enhanced “burning” of fat and circumventing major side 

effects that arise by targeting broadly expressed factors/receptors. 

In this thesis, a novel crosstalk of two signaling pathways in adipocytes 

(Publication 1) as well as a new way to deliver genes into adipose tissues 

(Publication 2) is investigated. The presented findings could be useful for the 

development of new therapeutic approaches for the treatment of obesity.  

1.2 Three shades of fat 

Basically, mammals have two ways to store energy: 1. “short-term” energy 

storage in the form of glycogen in liver and muscles and 2. “long-term” energy 

storage in the form of triglycerides in adipose tissues. The polysaccharide 

glycogen functions as the primary short-term energy source, which is broken-

down by enzymes in the liver and muscle upon fasting and exercise for fast 

energy release (Adeva-Andany et al., 2016). When glycogen storages are 

emptied, the body switches to fat catabolism for further energy supply.  The 

advantage of triglycerides over glycogen as energy storing molecule is that 
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triglycerides do not need to be stabilised with water and are therefore very 

energy dense (Berg et al., 2002). The main tissue to store triglycerides is white 

adipose tissue (WAT). In times of high caloric intake, WAT is able to accumulate 

excessive energy in the form of fat in unilocular lipid droplets in white adipocytes 

(Cinti et al., 1985). Up to a certain extent, fat accumulation merely leads to an 

enlargement of adipocyte size (hypertrophy), whereas further energy 

administration also increases adipocyte number (hyperplasia) (Krotkiewski et al., 

1983). Next to storing energy as triglycerides (lipogenesis) and releasing glycerol 

and fatty acids as energy source (lipolysis), WAT also functions as an endocrine 

organ which secretes a plethora of adipokines, cytokines and chemokines, 

thereby regulating whole-body metabolism (Galic et al., 2009; Vazquez-Vela et 

al., 2008). Two very prominent examples of such are adiponectin and leptin. 

Both adipokines mediate positive effects on metabolically active organs, like the 

adipose tissue itself, pancreas and liver (Stern et al., 2016), thereby positively 

influencing metabolism. 

Besides WAT, mammals posses another type of adipose tissue with discrete 

functions: brown adipose tissue (BAT) (Gesta et al., 2007). This type of adipose 

tissue was first described to be involved in heat production in hibernating 

mammals in the 1960’s (Hull and Segall, 1965; Smith, 1961). The function of 

BAT is to utilize stored chemical energy for the production of heat in a process 

called non-shivering thermogenesis (NST) (Foster and Frydman, 1978). The 

protein responsible for NST is the uncoupling protein 1 (UCP1). Brown adipocytes 

feature a high abundance of mitochondria, in which UCP1 is spanning the inner 

membrane to disrupt the proton gradient (Cinti et al., 1989; Heaton et al., 1978; 

Ricquier and Kader, 1976). Consequently, the excessive energy is no longer 

transformed to adenosine triphosphate (ATP) but is dissipated as heat (Nicholls 

et al., 1978). One major stimulus to activate BAT is cold. BAT is highly 

innervated by the sympathetic nervous system, which releases norepinephrine 

(NE) upon cold stimulation (Hull and Segall, 1965). NE induces the production of 

the second messenger cyclic adenosine monophosphate (cAMP) especially 

through β3-adrenoceptors in brown adipocytes (Rubio et al., 1995), which in turn 

activates cAMP-dependent protein kinase (PKA). PKA phosphorylates lipases like 

hormone-sensitive lipase (HSL) and adipose-triglyceride lipase (ATGL), resulting 

in the hydrolysis of triglycerides to glycerol and free fatty acids (Garton et al., 

1989; Kim et al., 2016), which finally serve as fuel for UCP1 dependent proton 
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leakage and thermogenesis (Fedorenko et al., 2012). In addition, PKA induces 

UCP1 expression in specific adipose depots to increase energy expenditure and 

improve metabolic health (Dickson et al., 2016). 

BAT is essential for the maintenance of a normal body temperature in human 

infants as their muscles are thus far not able to sustain euthermic conditions 

(Cannon and Nedergaard, 2004). The interest in BAT has dramatically increased, 

since it was found to be metabolically active in human adults (Cypess et al., 

2009; Saito et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al., 

2009). It is estimated that BAT activity can account for about 5% of the basal 

metabolic rate (van Marken Lichtenbelt and Schrauwen, 2011), corresponding to 

an amount of energy equivalent to consuming approximately 4.1 kg of fat within 

one year (Virtanen et al., 2009). However, BAT activity depends on sex (female 

> male), age (young > old), BMI (low > high) and ambient temperature (cold > 

warm) (Enerbäck, 2010). Especially in terms of reduced BAT activity in obese 

patients, it still remains elusive whether an increase in BMI leads to a loss of BAT 

function or vice versa.  

In addition to BAT, inducible brown adipocytes called brite (brown-in-white) or 

beige adipocytes also exist in WAT. These inducible brown cells are causative for 

a “browning” effect in WAT upon cold acclimatisation and are likewise dissipating 

energy as heat (Harms and Seale, 2013). Their abundance varies significantly 

between adipose depots, with the highest numbers found in inguinal and 

retroperitoneal fat and much lower numbers seen in perigonadal fat (Frontini and 

Cinti, 2010). Beige adipocytes share major characteristics with classical brown 

adipocytes, including multilocular fat droplets, a high mitochondrial content and 

expression of a brown-like gene program (Pfeifer and Hoffmann, 2014). On the 

other hand, they originate from two different precursor cell lines. Lineage tracing 

studies have revealed that classical brown adipocytes as well as skeletal muscle 

cells derive from a Pax7+/Myf5+ lineage, whereas white and beige adipocytes 

derive from Pax7-/Myf5- cells (Seale et al., 2008). It is still under debate, 

whether mature white adipocytes have the ability to transdifferentiate into beige 

adipocytes (Frontini et al., 2013; Vitali et al., 2012) or whether beige cells derive 

from a separate precursor cell line, which shares the same origin as white 

adipocytes (Lee et al., 2012; Vegiopoulos et al., 2010). This might be different 

for varying adipose depots. A multitude of ligands to induce browning and 

positive effects on whole-body metabolism have been described already, 
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amongst those are fibroblast growth factor 21 (FGF21), bone morphogenic 

protein 7 (BMP7), orexin, adenosine, GLP1, irisin, triiodothyronine (T3) and 

natriuretic peptides amongst others (Forest et al., 2016). Consequently, it is 

clear that activiating BAT as well as browning of WAT results in positive 

properties for metabolism and obesity-linked comorbidities (Kim and Plutzky, 

2016).  

1.3 Two signaling pathways involved in adipocyte 

development and function 

Development and function of white and brown adipocytes depends on a 

multitude of different signaling pathways, which have only partially been 

identified so far. One aspect of this work was the identification of a novel 

crosstalk between two very important pathways in brown adipocytes, i.e. the 

cyclic guanosine monophosphate (cGMP) and the activin receptor-like kinase 7 

(Alk7) pathways, which will be introduced in the following sections.  

1.3.1 The cGMP signaling pathway in adipocytes 

The second messenger cGMP is an important effector molecule, regulating 

diverse functions in many cells and tissues, e.g. phototransduction in 

photoreceptor cells of the eye, or vasodilation and bronchodilation by smooth 

muscle cells (Hamad et al., 2003; Sauzeau et al., 2000). Soluble (sGC) or 

particulate guanylyl cyclases (pGC) - activated by NO and natriuretic peptides, 

respectively - convert guanosine triphosphate (GTP) into cGMP (Potter, 2011). 

Downstream effectors of cGMP are cGMP-gated ion channels (mostly present in 

photoreceptors of the eye), cGMP-converting phosphodiesterases (PDEs) and 

most importantly cGMP-dependent protein kinases (PKG) (Francis et al., 2010). 

Activated PKG phosphorylates serine/threonine residues, thereby modulating 

several downstream proteins like RhoA (Haas et al., 2009; Sauzeau et al., 2000), 

RGS2 (Tang et al., 2003) and others, finally leading to transcriptional regulat ion 

of many different genes (Pilz and Casteel, 2003). Importantly, it has been 



Introduction 

6 

presented by our working group that PKGI is crucial for the induction of the 

master adipogenic factor peroxisome proliferator–activated receptor γ (PPARγ) as 

well as proteins of the thermogenic program (i.e. UCP1 and PPARγ-coactivator 1α 

(PGC1α)) in brown and white adipocytes (Haas et al., 2009; Mitschke et al., 

2013). In addition, major components of the cGMP/PKGI pathway are expressed 

in brown and white adipocytes as well as adipose tissues (Haas et al., 2009; 

Mitschke et al., 2013; Nisoli et al., 2003). A graphical overview of the cGMP 

singaling pathway in brown adipocytes is demonstrated in Figure 1. 

Analysis of mouse models for various up- and downstream effectors of cGMP 

have demonstrated an involvement of the cGMP/PKGI signaling pathway in the 

regulation of metabolism.  Global sGCβ1 knockout mice have a severe intestinal 

phenotype, leading to survival of mice only with special diets (Friebe and 

Koesling, 2009). Nevertheless, ablation of sGCβ1 reduces BAT mass, BAT-

dependent body surface temperature and UCP1 gene expression in newborn 

mice, indicating a crucial role of sGC in BAT differentiation and function 

(Hoffmann et al., 2015). Alterations in the natriuretic peptide/pGC pathway 

similarly verify a positive influence of cGMP on resistance to body weight gain, 

fat accumulation and insulin sensitivity (Bordicchia et al., 2012; Inuzuka et al., 

2010; Miyashita et al., 2009; Tamura et al., 2004). Correspondingly to sGCβ1 

knockout mice, PKGI knockout mice suffer from intestinal dysfunction leading to 

premature death (Pfeifer et al., 1998). Interestingly, newborn mice display 

reduced BAT mass and function (Haas et al., 2009), indicating that PKGI is 

essential for triggering cGMP effects in BAT. Furthermore, endogenous increase 

of cGMP levels via inhibition of PDE5 using sildenafil induces browning of inguinal 

WAT (WATi) in C57Bl/6 mice after short-term treatment (7 days) (Mitschke et 

al., 2013) as well as reducing body weight and improving energy balance after 

long-term (i.e. 12 weeks) HFD feeding (Ayala et al., 2007). These studies 

demonstrate a beneficial role of the cGMP/PKGI signaling pathway on whole-body 

metabolism and especially on brown fat function as well as browning of WAT. 

cGMP is involved in the regulation of many genes in diverse tissues and cell types 

(Pilz and Casteel, 2003). cGMP-regulated transcription factors include the cAMP-

response element binding protein CREB, the serum response factor SRF, and the 

nuclear factor of activated T-cells NF/AT. Furthermore, it has been shown in 

several different cell lines, including the white adipocyte cell line 3T3-L1 and 

primary brown adipocytes, that NO induces mitochondrial biogenesis (Nisoli et 
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al., 2003). The proposed molecular mechanism underlying this beneficial effect is 

a crosstalk of the cGMP/PKGI signaling pathway with the RhoA and insulin 

pathway in brown fat cells, which induces mitochondrial biogenesis and 

adipogenic differentiation (Haas et al., 2009). Publication 1 reveals the gene 

encoding for Alk7 as a novel gene regulated by cGMP as well as a crosstalk 

between the cGMP and Alk7 signaling pathways in brown adipocytes. 

 

 

Figure 1: Graphical demonstration of the cGMP-signaling pathway in brown 

adipocytes. For details see main text. 

1.3.2 The TGFβ signaling pathway 

Alk7 is a membrane-bound type I receptor of the superfamily of TGFβ receptors. 

Signal transduction of this pathway occurs via activation of two types of 

receptors: type I and type II serine/threonine kinase receptors, which are 

generally present in the membrane as receptor dimers. Five type II and seven 

type I receptors (Alk1-7) have been identified. Upon ligand binding, a type II 

receptor dimer recruits a type I receptor dimer and phosphorylates it, generating 

a hetero-tetrameric receptor complex (Derynck and Zhang, 2003). Depending on 

the ligand bound, specific combinations of type I and type II receptors are 

formed. Type I receptor phosphorylation in turn leads to phosphorylation and 

thus activation of receptor-regulated Smads (R-Smads). There exist five different 
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R-Smads: Smad1, Smad2, Smad3, Smad5 and Smad8, which are activated by 

different receptor subtypes (Feng and Derynck, 2005). Activated R-Smads form a 

heteromeric complex with the co-factor Smad4. This complex in turn translocates 

into the nucleus and acts as transcription factor inducing or repressing gene 

transcription (Shi and Massague, 2003). One can differentiate between two 

major subgroups in the TGFβ signaling pathway, depending on the Smads 

intracellularly activated (see table 1). Smads 1, 5 and 8 are mainly activated by 

BMPs, which signal for the most part through BMP type I and II receptors. The 

classical TGFβ signaling pathway results in activation of Smad2/3. Ligands to 

activate these are TGFβ itself, activins, growth and differentiation factor (GDF) 3 

and 11 and nodal amongst others (Feng and Derynck, 2005). The binding of 

each of these ligands is specific for a certain complex of type I and type II 

receptors (ten Dijke and Hill, 2004).  

 

Table 1: List of R-Smads with corresponding type I and type II receptors as well 

as their main ligands. Alternative names are presented in brackets. Further details are 

given in the main text. Abbreveations: AcvRIa/b/c = Activin receptor type I a/b/c; 

AcvRIIa/b = Activin receptor type II a/b; AcvRLI = Activin receptor ligand type I; AMH = 

Anti-Müllerin hormone; AMHRII = AMH receptor type II; BMPRIa/b = BMP receptor type I 

a/b; BMPRII = BMP receptor type II; TβRI/II = TGFβ receptor type I/II.  

R-Smad Type I 

receptor 

Type II 

receptor 

Ligands 

Smad1 

Smad5 

Smad8 

Alk1 (AcvRLI) 

Alk2 (AcvRIa) 

Alk3 (BMPRIa) 

Alk6 (BMPRIa) 

BMPRII 

AMHRII 

BMP2/4 

BMP6 

BMP7 

AMH 

Smad2 

Smad3 

Alk4 (AcvRIb) 

Alk5 (TβRI) 

Alk7 (AcvRIc) 

AcvRIIa 

AcvRIIb 

TβRII 

TGFβ1/2/3 

Activin A/AB/B 

Nodal 

GDF1/3/11/15 
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1.3.3 Alk7 and its role in metabolism 

The activin-receptor type Ic (AcvR1c, Alk7) has first been discovered as an 

orphan receptor in the rat brain in 1996 (Ryden et al., 1996; Tsuchida et al., 

1996). In the same year it has also been isolated from a rat prostate cDNA 

library as well as adipose tissue (Kang and Reddi, 1996). Analysis of Alk7 

expression in different human tissues has discovered Alk7 abundance in brain, 

pancreas, heart, colon, small intestine and ovary (Bondestam et al., 2001).  

Adipose tissue has been revealed to be the major expression site of Alk7 in 

humans and mice years later (Carlsson et al., 2009; Murakami et al., 2012). The 

intracellular domain of Alk7 features a strong convergence to other TGFβ type I 

receptors (accordance in up to 78% of the amino acid sequences compared to 

the receptors Alk4 and Alk5), but a rather distinct extracellular domain (Ryden et 

al., 1996). Due to this convergence, Alk4, Alk5 and Alk7 signal through the same 

canonical downstream pathway (i.e. Smad2/3) (Watanabe et al., 1999). Alk7 has 

been deorphanized in 2001 by demonstrating that Nodal acts through this 

receptor and that it collaborates with the activin receptor type II b (ActRIIB) to 

confer responsiveness to Nodal (Reissmann et al., 2001). In addition, Activin AB 

and B (Tsuchida, 2004), GDF11 (Andersson et al., 2006) and GDF3 (Andersson 

et al., 2008) have been postulated to be functional ligands for Alk7. Investigation 

of efficacious responses of Alk7 to several TGFβ ligands has detected the 

strongest responsiveness of Alk7 to Activin B, a maximal efficacy of 26% and 

31% to GDF11 and Myostatin, respectively,  and no effect to Activin A (Khalil et 

al., 2016). As many ligands for Alk7 are key players during vertebrate 

development as well as in the male and female reproductive system, studies on 

the function of Alk7 have focused especially on these tissues (Bernard et al., 

2006; Miles et al., 2013; Munir et al., 2004; Roberts et al., 2003; Sandoval-

Guzman et al., 2012; Wang et al., 2006). Other tissues investigated for their role 

of Alk7 are brain (Jornvall et al., 2001) and heart (Ying et al., 2016), whereas 

the interest in its function in metabolism (particularly in the pancreas and 

adipose tissue) has accelerated over the years. 

Alk7 serves as marker for adipocyte differentiation, as its expression levels are 

upregulated during differentiation of the white adipocyte cell line 3T3-L1 

(Kogame et al., 2006). Furthermore, Alk7 and Activin B expression are correlated 

to factors implicated in metabolic disease in humans (Carlsson et al., 2009; 
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Sjoholm et al., 2006). Although global Alk7 knockout (Alk7-/-) mice do not differ 

in body weight in comparison to their wildtype littermates on a chow diet, they 

develop age-dependent hyperinsulinemia, reduced insulin sensitivity, impaired 

glucose tolerance as well as liver steatosis (Bertolino et al., 2008). On a HFD, 

Alk7-/- mice gain less body weight in comparison to their wildtype littermates 

accompanied by reduced weight of epididymal fat pads and total fat content. On 

the other hand, these mice are not healthier than their wildtype littermates on a 

HFD, as they also develop hyperinsulinemia, reduced insulin sensitivity and liver 

steatosis in the course of HFD feeding (Andersson et al., 2008). Moreover, mice 

with a nonsense mutation of the Acvr1c gene encoding for Alk7 have been 

analysed. This gene mutation results in a COOH terminal deletion of the Alk7 

kinase domain and subsequently in the global expression of a non-functional 

form of Alk7 (Yogosawa et al., 2012). In contrast to global Alk7-/- mice, these 

mice are not only resistant to diet-induced obesity (DIO) but also display 

improved obesity-induced glucose tolerance and insulin sensitivity in vivo 

(Yogosawa et al., 2012). The underlying mechanism has been described as a 

suppression of lipolysis by Alk7 through a Smad3-dependent downregulation of 

the master adipogenic transcription factor PPARγ and CCAAT/enhancer-binding 

protein alpha (C/EBPα), resulting in reduced lipase expression and lipolysis. The 

non-functional form of Alk7 in turn increases adipose lipase abundancy, which 

leads to a net decrease in fat accumulation (Yogosawa and Izumi, 2013; 

Yogosawa et al., 2012). Adipocyte-specific Alk7 knockout induces a likewise 

positive influence on metabolism (Guo et al., 2014). The proposed mechanism 

leading to resistance to DIO of these mice is an augmentation of β-adrenergic 

signaling through adipocyte-specific absence of Alk7 (Guo et al., 2014). Both 

proposed mechanisms of Alk7 signaling in white adipocytes are depicted in Figure 

2.  
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Figure 2: Proposed mechanisms of Alk7 signaling in white adipocytes. For details 

see main text. 

 

The key aspect of recent Alk7 studies has been its role in WAT. The starting point 

of this work was the discovery that the Acvr1c gene encoding for Alk7 is the 

most upregulated gene by cGMP treatment in brown adipocytes. As cGMP 

mediates positive effects on brown adipocyte function, I was hypothesizing that 

Alk7 abundancy would also have beneficial functions in brown adipocytes. The 

first part of this work therefore concentrates on the crosstalk between the cGMP- 

and Alk7-signaling pathway as well as overexpression/activation models of Alk7 

to decipher its role in brown adipocyte differentiation and function. 

Indeed, I found a so far unknown crosstalk between the cGMP and Alk7 signaling 

pathway along with differential effects of Alk7 on development of the adipogenic 

and thermogenic program in brown adipocytes, i.e. decreasing the expression of 

adipogenic markers but increasing UCP1 expression, which is presented in 

Publication 1.  
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1.4 Lentiviral gene transfer for studying brown 

and beige fat in vivo 

The second part of this work (Publication 2) focuses on the development and 

validation of an easy-to-handle and fast-to-accomplish method, which allows 

studying the role of various genes in differentiation and function of subcutaneous 

adipose tissues (i.e. brown and inguinal white) in vivo. In the first part of this 

work (Publication 1) it is demonstrated that Alk7 has differential effects on brown 

adipocyte differentiation and function in vitro with a possible benefit on 

thermogenic activity, as UCP1 is significantly upregulated by Alk7 activation. The 

next step was therefore to investigate effects of activated Alk7 in murine BAT in 

vivo. This can generally be performed in two ways. The first approach is 

pharmacological activation of Alk7 with specific ligands. In the case of Alk7 there 

are certain drawbacks to this approach. On the one hand, no established small 

molecule exists, which specifically acts through Alk7. On the other hand, 

administration of any Alk7 agonist not only targets Alk7 in BAT but also in other 

metabolically relevant tissues, i.e. pancreas and WAT, which would influence 

investigation of BAT-specific Alk7 in whole-body metabolism. The second 

approach - apart from pharmacological stimulation - is overexpression of a 

constitutively active form of Alk7 (caAlk7) in BAT. Following this approach, no 

further ligand administration is necessary. However, so far it has not been 

possible to induce overexpression of proteins specifically in BAT or WAT as no 

specific promoters for these tissues have been verified, i.e. the UCP1-promoter 

also drives protein expression in beige adipocytes (Kang et al., 2014). Therefore, 

the second part of this work (Publication 2) concentrates on the development 

and validation of a technique which circumvents the above mentioned problems: 

direct injection of lentiviral vectors into subcutaneous adipose tissues as a fast 

and efficient method to achieve specific expression (or knockdown) of a 

transgene in adipose tissue. 
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1.4.1 Characterisation of viral vectors 

There are two ways of delivering genes into cells. One is the use of non-viral 

vectors, which can enter cells through chemical or physical methods to overcome 

the cell membrane. These non-viral vectors are characterised by transient gene 

expression and poor efficiency to deliver transgenes. Their use to deliver 

transgenes in vivo is low (~30%) in comparison to other gene delivery 

approaches (Journal of Gene Medicine Database, 2016; Yin et al., 2014). Viral 

vectors, on the other hand, possess advantages over non-viral vectors, including 

efficient transduction of cells. Depending on the needs of the experiment, several 

viral vectors with unique characteristics based on different viruses are available. 

Importantly, these viral vectors are modified in a way that they are replication 

deficient. Nevertheless, they are able to induce immune responses in the host 

individual (Kay, 2011). Some of the most important viral vectors used to transfer 

genes into a host genome are derived from retroviruses, lentiviruses, 

adenoviruses and adeno-associated viruses (AAV), amongst others 

(Nayerossadat et al., 2012).  

Viral vectors can be distinguished according to their genome. A large group of 

viruses are the RNA-containing Retroviridae, which can be divided into simple 

and complex retroviruses (Pfeifer and Verma, 2001). Simple retroviruses are 

single-stranded RNA viruses, whose genome is integrated into the host genome 

of dividing cells only (Miller et al., 1990). Hence, in vivo application of simple 

retroviruses is restricted as most cells in a tissue are terminally differentiated. 

Genes can be transferred into tissues with simple retroviruses after all, by 

transducing cells in vitro and explanting these into respective tissues, termed “ex 

vivo gene therapy” (Verma and Somia, 1997).  

Lentiviruses are a subtype of retroviruses that feature the exceptional ability to 

transduce dividing as well as terminally differentiated, non-dividing cells (Lewis 

et al., 1992). The best-studied lentivirus is the human immunodeficiency virus 

(HIV). Integration into the host genome leads to stable transgene expression. 

However, integration of retroviral or lentiviral vector DNA into the host genome is 

mostly random and can lead to disruption of important endogenous genes or 

activate proto-oncogenes (Hacein-Bey-Abina et al., 2003; Li et al., 2002; Themis 

et al., 2005). On the other hand, lentiviral vectors (LVs) exhibit low 

immunogenicity in comparison to other viral systems due to the removal of most 
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genes encoding viral proteins (Breckpot et al., 2007). Maximal packaging size of 

LVs is up to 10 kb and tissue-/cell-specific expression can be achieved with 

different approaches, e.g. specific promoters, pseudotyping or connecting special 

fusogens on the surface of the virus capsule (Bouard et al., 2009; Breckpot et 

al., 2007; Yang et al., 2006). Production of LV yields virus particle concentrations 

of about 1x109–7x109 inefectious particles (IP)/ml, depending on the method 

used for enrichment (Zimmermann et al., 2011). Over time, different LV systems 

were designed with self-inactivating vectors (SIN vectors) and split-genome 

packaging plasmids representing the most advanced LV systems, which result in 

high-titer LV preparations, improved efficacy as well as increased biosafety due 

to replication deficiency (Pauwels et al., 2009; Pfeifer and Hofmann, 2009). 

Importantly, LVs can be used for different in vivo applications to produce 

transgenic animals, e.g. lentiviral transgenesis (details see 1.4.2) (Pfeifer, 2004). 

Adenoviruses are double-stranded, nonintegrating DNA viruses, which infect 

dividing and non-dividing cells. Production of adenoviral vectors yields high 

vector concentrations with a high transduction efficiency and a packaging 

capacity of up to 38 kb (Luo et al., 2007). However, transgene expression is lost 

quickly, especially in tissues with a high cell turnover (e.g. hematopoietic cells) 

due to episomal expression of the vector which is not passed down to daughter 

cells. Immune responses against adenoviruses are common and represent a 

major hurdle to the efficient and safe use of adenoviral vectors (Hendrickx et al., 

2014).  

AAV is a non-enveloped single-stranded DNA virus infecting dividing and non-

dividing cells (Podsakoff et al., 1994) and inducing only mild immune responses 

in the host (Ferreira et al., 2014). The packaging genome of AAV is only up to 4 

kb and predominantly persists as episome in host cells (Daya and Berns, 2008; 

Pfeifer and Verma, 2001). Productive replication in the host cell only takes place 

in the presence of a helper virus, e.g. adenovirus (Atchison et al., 1965) or 

herpes simplex virus (Buller et al., 1981). Nevertheless, wild-type AAV can 

integrate site-specific in the human chromosome 19 in the absence of helper 

virus (Linden et al., 1996). To achieve long-term gene expression, recombinant 

AAV can be applied, which either persist in the host cell in form of an episome or 

integrate into the host genome (McCarty et al., 2004). 



Introduction 

15 

1.4.2 Techniques to express transgenes in mice 

Different methods to overexpress or knock down genes for in vivo experiments 

have been developed. The most commonly known and practised method is the 

use of plain transgenic mouse strains. Knockdown or overexpression of genes 

can further be induced by the application of inducible systems like the 

tetracycline-controlled transcriptional activation (Tet-On/Tet-Off) system or 

tissue specific expression with the cre-loxp recombination system. A faster 

technique to produce transgenic mice is the transfer of genes into embryos at a 

very early developmental stage, before any differentiation has taken place. The 

first experiments to implement this method have been performed with retroviral 

vector injections into fertilized oocytes (Jaenisch et al., 1975). It has been shown 

that retroviral vectors are not suitable for this method as their integrated DNA 

undergoes methylation and thereby causes silencing of the gene (Chan et al., 

1998; Jahner and Jaenisch, 1985). Alternatively, plain DNA can be inserted into 

the pronucleus via microinjection (DNA-MI) (Hammer et al., 1985). DNA-MIs 

offer a very low efficiency (only ~2% of treated embryos develop into transgenic 

animals) because many embryos die during the procedure, gene transfer rates 

are low and the method is applicable only in certain mouse strains (Wall, 1996). 

The use of lentiviral transgenesis to generate transgenic animals has proven to 

be an efficient alternative to retroviruses and DNA-MIs (Pfeifer, 2004). Embryos 

in the zygote or morula stage are surrounded by a physical barrier called zona 

pellucida. To overcome this barrier, the LVs have to be either injected into the 

perivitelline space lying between the zona pellucida and the cytoplasmic 

membrane of the zygote (subzonal injections) or the zona pellucida is simply 

removed (denudation) (Pfeifer, 2004; Pfeifer et al., 2002). Application of 

lentiviral transgenesis yields more than 8-fold higher number of transgenics per 

treated embryo than does DNA-MI (Pfeifer, 2004). Utilization of LVs with specific 

promoters allows for targeted expression of the gene, e.g. overexpression of a 

constitutively active variant of the G-protein-coupled receptor Gq in BAT, WATi 

and gonadal WAT (WATg) under control of a UCP1-promoter (Klepac et al., 

2016). However, this example also illustrates one drawback of lentiviral 

transgenesis, as so far no promoter is described, which specifically targets only 

one of these adipose depots. Furthermore, generating transgenic animals with 
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this method involves breeding of the animals and genotyping of the resulting 

offspring. 

In search of a faster and more efficient method to generate tissue-specific 

transgenic animals, direct virus injections into different tissues have been 

developed. Injections of adenovirus as well as AAV into BAT and WAT have been 

performed before (Liu et al., 2014; Nagamatsu et al., 2001). However, both 

virus families have certain disadvantages in comparison to lentiviruses as 

mentioned above, i.e. stronger immunogenicity, episomal expression and small 

packaging capacity. Lentiviruses, on the other hand, efficiently transfer genes 

into white and brown adipocytes in vitro (Balkow et al., 2015; Haas et al., 2009; 

Mitschke et al., 2013) and have been shown to transduce WATi (Fujiwara et al., 

2012; Gnad et al., 2014). Furthermore, they have been applied in the in vitro 

study in Publication 1 to analyse Alk7 signaling in brown adipocytes. Hence, in 

Publication 2 LVs were chosen for developing direct virus injections into adipose 

tissues in vivo. Moreover, one-and-the-same vector can be used to generate 

transgenic animals by subzonal injections, providing a second set of mice as 

experimental controls. Nevertheless, the described set-up/method could also be 

used for delivery of other viral vectors like adenoviral or AAV-derived vectors, 

with the above described advantages and drawbacks. 

1.4.3 Gene therapy in obesity 

The use of viral vectors for gene therapy is a constantly growing field for the 

treatment of many health issues. Figure 3A shows a maximum of 163 approved 

gene therapy clinical trials worldwide in 2015. Adenovirus, retrovirus, AAV and 

lentivirus made up more than 50% of vectors used for gene therapy clinical trials 

until February 2016 (Figure 3B). Furthermore, almost 2/3 of all indications 

addressed cancer diseases (Figure 3C). Thus, gene therapy resembles an 

important branch of therapeutical actions. 
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Figure 3: Gene therapy clinical trials worldwide. (A) Number of gene therapy clinical 

trials approved worldwide in the years 1989 – February 2016. (B) Proportion of vectors 

used in approved gene therapy clinical trials from 1989 – February 2016. (C) Proportion 

of indications addressed by approved gene therapy clinical trials from 1989 – February 

2016. All graphs are modif ied from (Journal of Gene Medicine Database, 2016). 

Many genes are involved in maintaining metabolic homeostasis, some of whose 

genetic variants have been associated with obesity in humans, e.g. leptin and its 

receptor, pro-opiomelanocortin (POMC), pro-protein convertase subtilisin/kexin 1 

(PCSK1), and melanocortin 4 receptor (MC4R) (Farooqi and O'Rahilly, 2005). 

However, to date no gene therapies for the treatment of obesity in humans exist. 

On the other hand, research is focusing on the development of new gene 

therapeutic options in mice and rats, hoping to find a way to transfer promising 

results to humans. A plethora of gene therapy based approaches for the 

prevention and treatment of obesity in mice and rats have already been 

developed, a big portion of which are focused on adenovirus or AAV as method to 

transfer genes of interest into the animals (Gao and Liu, 2014). For example, it 

has been shown in rats that administration of an AAV carrying the gene for leptin 

into the brain is effective in prevention and treatment of DIO (Kalra and Kalra, 

2002). Furthermore, a novel engineered hybrid capsid serotype of AAV (Rec2) 

has been designed to specifically transduce BAT of mice (Liu et al., 2014) and 
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can even be administered orally (Huang et al., 2016). However, so far there 

exists no method to target seperate adipose depots with lentiviral vectors 

specifically (e.g. only BAT or only WATi). As mentioned above, transgenesis with 

lentiviral vectors has certain advantages over other viral vectors, e.g. larger 

packaging capacity in comparison to AAV (see paragraph 1.4.1). Therefore, the 

second part of this work (Publication 2) focuses on the development and 

validation of a technique to fast and efficiently transduce subcutaneous adipose 

tissues (i.e. BAT and WATi). With this method, a plethora of genes can be 

studied in a timely manner, potentially leading to new gene therapeutic 

approaches for the treatment of obesity.  
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1.5 Thesis Outline 

Obesity is a constantly growing health threat to civilisations in the whole world. 

One suggested solution in fighting obesity is the activation of BAT to increase 

energy expenditure. Various pathways are involved in the regulation of brown fat 

development and activity. This thesis sheds light on one of these pathways as 

well as introduces a fast and efficient method to study the function of different 

genes in vivo: 

 

(1) Publication 1 introduces the role of Alk7 in brown adipocytes in vitro, 

focusing on a novel interplay of the Alk7 and cGMP signaling pathways and 

revealing differential effects of Alk7 on adipogenic and thermogenic 

differentiation. 

 

Balkow A, Jagow J, Haas B, Siegel F, Kilic A, Pfeifer A. A novel crosstalk 

between Alk7 and cGMP signaling differentially regulates brown adipocyte 

function. Mol Metab. 2015; 4(8): 576-583. 

 

 

(2) Publication 2 depicts the development and validation of a method for fast 

and efficient gene transfer into subcutaneous adipose tissues using direct 

injections of lentiviral vectors. 

 

Balkow A, Hoffmann LS, Klepac K, Glöde A, Gnad T, Zimmermann K, 

Pfeifer A. Direct lentivirus injection for fast and efficient gene transfer into 

brown and beige adipose tissue. J Biol Methods. 2016; 3(3): e48. 
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2 Publication 1 

2.1 Preamble 

cGMP, together with PKGI, is an important factor in brown and white adipocyte 

differentiation and function (Haas et al., 2009; Mitschke et al., 2013). cGMP 

boosts the insulin signaling in brown adipocytes through inhibition of Rho/ROCK 

activity, thereby inducing mitochondrial biogenesis and adipogenic 

differentiation, characterized by UCP1 and PPARγ upregulation along with other 

factors (Haas et al., 2009). cGMP is involved in the regulation of a plethora of 

genes, amongst those also the ligand TGFβ3 in murine cardiac fibroblasts 

(Abdelaziz et al., 2001; Pilz and Casteel, 2003). The type I TGFβ receptor Alk7 

has been shown to be highly expressed in WAT of mice and men and to a 

comparable extent in BAT of mice (Carlsson et al., 2009; Murakami et al., 2012). 

Importantly, Alk7 expression in the adipose tissue of obese patients is 

significantly reduced in comparison to lean controls (BMI difference ≥10 kg/m2) 

and negatively correlates to several clinical parameters of metabolic disease 

(Carlsson et al., 2009), indicating that Alk7 is relevant for the maintainance of a 

healthy lean state. This notion is reinforced by the finding that global Alk7 

knockout mice are, on the one hand, less prone to DIO in comparison to wildtype 

littermates, but on the other hand, develop insulin resistance and liver steatosis 

(Andersson et al., 2008). The molecular function of Alk7 has so far only been 

delineated in white adipocytes (Guo et al., 2014; Yogosawa and Izumi, 2013; 

Yogosawa et al., 2012), in which Alk7 abundancy is increased during 

differentiation (Kogame et al., 2006; Yogosawa et al., 2012). In the following 

publication, research is consequently focusing on the role of Alk7 in brown 

adipocytes, deciphering a novel crosstalk between the Alk7 and the cGMP 

signaling pathways.    
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A novel crosstalk between Alk7 and cGMP
signaling differentially regulates brown
adipocyte function
Aileen Balkow 1, Johanna Jagow 1, Bodo Haas 1,2, Franziska Siegel 1, Ana Kili�c 1, Alexander Pfeifer 1,*
ABSTRACT

Objective: Obesity is an enormous burden for patients and health systems world-wide. Brown adipose tissue dissipates energy in response to
cold and has been shown to be metabolically active in human adults. The type I transforming growth factor b (TGFb) receptor Activin receptor-like
kinase 7 (Alk7) is highly expressed in adipose tissues and is down-regulated in obese patients. Here, we studied the function of Alk7 in brown
adipocytes.
Methods: Using pharmacological and genetic tools, Alk7 signaling pathway and its effects were studied in murine brown adipocytes. Brown
adipocyte differentiation and activation was analyzed.
Results: Alk7 is highly upregulated during differentiation of brown adipocytes. Interestingly, Alk7 expression is increased by cGMP/protein kinase
G (PKG) signaling, which enhances brown adipocyte differentiation. Activin AB effectively activates Alk7 and SMAD3 signaling. Activation of Alk7
in brown preadipocytes suppresses the master adipogenic transcription factor PPARg and differentiation. Stimulation of Alk7 during late dif-
ferentiation of brown adipocytes reduces lipid content and adipogenic marker expression but enhances UCP1 expression.
Conclusions: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient
differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in
brown adipocytes.

� 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords Alk7; cGMP; Brown adipocytes; UCP1; Activin
1. INTRODUCTION

Obesity is not only an esthetic, but a major health issue with a steadily
growing, global prevalence. Health consequences of overweight and
obesity include diabetes, cardiovascular diseases and some types of
cancer. Presently, there are only few drugs that can be used to treat
obesity. Brown adipose tissue (BAT) has emerged as a potential target
for the development of novel anti-obesity drugs. BAT dissipates energy
in the form of heat upon cold exposure or b-adrenergic stimulation [1e
4]. b-adrenergic signaling induces break-down of triglycerides to free
fatty acids (FFA) and glycerol. The FFA serve as fuel for the mito-
chondrial uncoupling protein 1 (UCP1), which disrupts the proton
gradient through the inner mitochondrial membrane, thereby funneling
energy to produce heat instead of ATP in brown adipocytes (BA). Taken
together, activation of BAT leads to increased energy expenditure,
which has positive effects on whole-body metabolic homeostasis.
The delineation of regulatory pathways would be an important basis for
development of novel BAT-centered therapies. Recently, cyclic gua-
nosine monophosphate (cGMP) was identified as a major factor that
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controls adipogenic and thermogenic differentiation of brown adipo-
cytes [5e7]. The effects of cGMP in BAT are mediated by protein ki-
nase G (PKG) [7,8].
The transforming growth factor-b (TGF-b) superfamily has been
implicated in different biological processes including tumor growth and
white adipose tissue inflammation amongst others [9,10]. The type I
TGFb receptor Activin receptor-like kinase 7 (Alk7) is highly expressed
in adipose tissues of rodents and humans [11,12]. Interestingly, Alk7
expression is reduced in obese patients and negatively correlates with
clinical parameters of metabolic disease [11], indicating that Alk7 is
relevant for the maintenance of a healthy lean state. Moreover, global
Alk7 knockout mice are partially resistant to diet-induced obesity in
comparison to their wildtype (wt) littermates [13] but develop insulin
resistance and liver steatosis [14].
The TGFb receptor family is heterogenous and its receptors can be
activated by a plethora of ligands. Known ligands for Alk7 are Nodal
[15], GDF11 [16], GDF3 [13] and Activin AB and B [17]. After ligand
binding, SMAD2 and 3 are phosphorylated by Alk7 as shown in rat
PC12 pheochromocytoma cell line [18], murine MIN6 insulinoma cells
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[19] and the murine white adipocyte cell line 3T3-L1 [20]. Phos-
phorylated SMADs form complexes with the cofactor SMAD4 and
regulate gene expression together with additional transcription factors
[21]. In addition to the canonincal SMAD2/3 pathway, SMAD-
independent pathways of Alk7 signaling include MAPK, RhoA/ROCK,
AKT/PI3K and Wnt/b-Catenin pathways [22].
So far, studies of Alk7 focused on its role in white adipose tissue.
Here, we investigated its role in brown adipocytes and a possible
interplay of cGMP with Alk7 signaling. We found that Alk7 expression
is regulated by cGMP/PKG pathway. Alk7 activation differentially
regulates adipogenic and thermogenic differentiation of brown
adipocytes.

2. MATERIAL AND METHODS

2.1. Adipogenic differentiation
Stromal vascular fraction (SVF) cells isolated from BAT of wt or
PKGI�/� mice were immortalized and differentiated into mature
brown adipocytes as described previously [7,8,23,24]. In short,
immortalized SVF cells were seeded and cultured in growth medium
[DMEM supplemented with 5% fetal bovine serum (FBS), 1% peni-
cillin/streptomycin (P/S)]. Two days after seeding (day �2) the me-
dium was exchanged to differentiation medium (growth medium
supplemented with 20 nM insulin and 1 nM triiodothyronine). Dif-
ferentiation was induced two days later (day 0) by replacing the
medium with induction medium (differentiation medium supple-
mented with 0.5 mM isobutylmethylxanthine and 1 mM dexametha-
sone) for 48 h. Until day 7 post induction the medium was
replenished with differentiation medium every second day. Treatment
with either 200 mM 8-Br-cGMP or 8-pCPT-cGMP started on day �2.
Chronic Activin AB (both 10 ng/ml) treatment started on day �2 or
day 4 of differentiation, as indicated in the respective experiments.
For SMAD3 phosphorylation experiments cells were acutely treated
with Activin AB or Activin B (10 ng/ml) for 60 min on day 0 or day 7 of
differentiation.

2.2. Lentiviral plasmids and transduction of brown adipocytes
Lentiviral vectors were obtained either by cloning wt (LV-Alk7) or
constitutively active (LV-caAlk7; kindly provided by Chun Peng) human
Alk7 into the Bam HI and Sal I sites of the vector p156rrlsinPPTCMV,
which carries a cytomegalovirus promoter. The control vector
(p156rrlsinPPT) contained neither promoter nor transgene (LV-ctrl).
The production of lentiviruses and infection of cells were performed as
previously described [7,8,23]. In brief, cells were seeded on six-well
plates. After 8 h, the medium was changed to medium containing
amounts of lentivirus corresponding to 50 ng of viral reverse tran-
scriptase per six-well plate, and incubated overnight. Adipogenic dif-
ferentiation was performed as described above.

2.3. Measurement of lipolysis
Glycerol release was measured on day 7 in BA that were differentiated
in the absence or presence of Activin AB. Cells were washed with
lipolysis medium [DMEM without phenol red (Invitrogen)] and incu-
bated with lipolysis medium supplemented with 2% essential fatty
acidefree BSA at 37 �C and 5% CO2 with or without addition of Activin
AB (10 ng/ml) or norepinephrine [NE; 1 mM (SigmaeAldrich)] in the
respective samples. After 2 h media were collected and glycerol
concentration was determined by addition of free glycerol reagent
(SigmaeAldrich). After an incubation of 5 min at 37 �C, absorption was
measured at 540 nm against lipolysis medium, which was not
2 MOLECULAR METABOLISM - (2015) 1e8 � 2015 The Authors. Published by Elsevier GmbH.
incubated with cells, and a glycerol standard. Glycerol release was
calculated and normalized to the protein content of the wells.

2.4. RNA isolation and qPCR analysis
Total RNA was isolated from cells using InnuSOLV (Analytik Jena,
Germany) reagent. 500 ng of RNA was reverse transcribed using the
Transcriptor First Strand Synthesis Kit (Roche). qPCR was performed
with SYBR Green (Roche) or Power SYBR Green (ABI) PCR master mix
using the qPCR instruments HT7900 or ViiA7 (both Applied Bio-
systems). Primers are listed in the Supplementary Table 1. Fold
changes were calculated using relative quantification methods with
mHPRT serving as internal control.

2.5. Oil Red O staining
Cells were fixed in phosphate-buffered saline (PBS) containing 4%
paraformaldehyde for 10 min at room temperature. After washing with
PBS, the cells were incubated with Oil Red O (SigmaeAldrich) solution
(3 mg/ml in 60% isopropyl alcohol) for 1 h at room temperature,
washed with distilled water and visualized.

2.6. Western blot analysis
Protein lysates were prepared as previously described [7,8] with
radioimmunoprecipitation assay buffer supplemented with protease
inhibitor cocktail Complete (Roche), 1 mM Na3VO4, and 10 mM NaF.
Protein contents were determined by the Bradford method. Western
blotting was performed as described previously [7,8]. The following
antibodies were used: antibodies against aP2, and PPARg from Santa
Cruz Biotechnology; antibodies against PSMAD3, SMAD3, HSL, ATGL
from Cell Signaling Technology; antibody against UCP1 from Sigmae
Aldrich and antibodies against Tubulin (Dianova). Secondary horse
radish peroxidaseelinked antibodies against goat (Pierce), mouse
(Dianova), and rabbit (Cell Signaling) were used. All bands were
quantified by densitometric analysis with Image J software.

2.7. Luciferase reporter assays
HIB1B cells were transiently cotransfected with firefly and Renilla
luciferase expression vectors using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions. 24 h after transfection
cells were treated with Activin AB or B (10 ng/ml) for another 18 h.
Luciferase assays were performed with the Dual-Luciferase Reporter
Assay System (Promega) according to the assay protocol. Cell lysates
were prepared following the manufacturer’s instructions. The activity
of the firefly luciferase was normalized to the corresponding Renilla
activity value for each sample. The 2000bp Alk7 promoter was divided
into three subunits (0e1000bp ¼ Alk7A; 500e1500bp ¼ Alk7B;
1000e2000bp ¼ Alk7C) and each subunit was cloned into the pGL3-
basic luciferase vector. The UCP1 (pGL3-basic) promoter luciferase
construct was kindly obtained by Dr. Stephan Herzig, Deutsches
Krebsforschungszentrum, Heidelberg. Vectors without promoter were
used as a negative control. The internal control was pRL-TK vector
(Promega) expressing Renilla luciferase under the control of the herpes
simplex virus thymidine kinase (TK) promoter.

2.8. Statistical analysis
Values are presented as means � SEM. Statistical differences among
multiple groups were determined using oneway analysis of variance
(ANOVA) with NewmaneKeuls Multiple Comparison Test, unless
otherwise indicated. Unpaired, two-tailed student’s t-tests were used
for single-comparisons. GraphPad Prism 5 was used to calculate P-
values.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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3. RESULTS

3.1. Alk7 expression increases during brown adipocyte
differentiation and is modulated by cGMP/PKGI
To study Alk7 expression during BA differentiation, we used pre-
adipocytes isolated from newborn mice and differentiated them to
mature BA (Suppl. 1). Alk7 expression was significantly upregulated
between day 4 and day 7 of differentiation reaching a 17- � 2.5-fold
increase at day 6 of differentiation in comparison to undifferentiated
preadipocytes (day�2) (Figure 1A). Mature BA (day 7) showed an 8.3-
� 1.3-fold higher expression of Alk7 than preadipocytes (Figure 1A). In
comparison to Alk7, the expression level of PPARg significantly
increased already at day 2 of differentiation and exhibited no significant
further upregulation until the end of differentiation (Suppl. 1B).
To study whether enhanced differentiation is correlated with Alk7
expression, we treated the cells with cGMP, which enhances differ-
entiation of BA [7]. cGMP treatment increased Alk7 mRNA expression
2.1- � 1.2-fold and 50.2- � 17.6-fold in preadipocytes and in mature
BA, respectively, compared to the untreated control (Figure 1B).
Interestingly, Alk7 mRNA expression was reduced by 95 � 3.9% in
mature BA deficient for PKGI (PKGI�/�) as compared to wt BA
(Figure 1C) indicating that cGMP signaling controls also basal Alk7
levels in BA. To further examine the mechanism of cGMP/PKGI-
dependent regulation of Alk7 expression, the Alk7 promoter was
divided into three different parts and cloned into a luciferase reporter
backbone (Figure 1D). Luciferase assays were performed in the BA
cell-line HIB1B in the presence and absence of cGMP. The 30 part of
the Alk7 promoter (Alk7C) exhibited the highest luciferase activity
under basal conditions and cGMP treatment significantly enhanced
Alk7C promoter activity by 36%, whereas the other (50 and middle part)
elements of the promoter did not respond to cGMP (Figure 1E).
These data show that Alk7 expression increases during differentiation
and that Alk7 expression is regulated by the cGMP/PKGI signaling
pathway at the transcriptional level.
Figure 1: Alk7 expression is upregulated in mature adipocytes and modulated by the
points during differentiation. (B) Alk7 mRNA expression after chronic 8-pCPT-cGMP (200
expression in differentiated brown wt or PKGI�/� adipocytes with and without chronic 8-p
into three different parts (light blue ¼ Alk7A 0e1000 bp; blue ¼ Alk7B 500e1500 bp; dark
of the Alk7 promoter activity with and without cGMP treatment. Data are presented as mean
no cGMP treatment or as indicated; þ(p < 0.05; ANOVA) significant difference vs. d-2, d
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3.2. Expression of Alk7 ligands and activation of the Alk7 signaling
pathway by Activins
Next, we analyzed the expression of the endogenous Alk7 ligands
GDF11, Nodal, GDF3 and Activins in brown preadipocytes and mature
BA. Activins are homo- or heterodimers composed of the subunits
Inhibin bA and bB. The mRNA of all ligands analyzed was detected in
BA and preadipocytes (Figure 2A). Expression of the individual ligands
was not significantly changed during BA differentiation (Figure 2A).
Nevertheless, we observed major differences in expression levels of
the potential Alk7 ligands (Inhibin bA > GDF11 > Inhibin
bB >> GDF3 > Nodal) (Figure 2A). Inhibin bA showed the highest
expression levels (ca. 300-fold higher in comparison to Nodal), fol-
lowed by GDF11 (>130-fold in comparison to Nodal) and Inhibin bB
(more than 50-fold in comparison to Nodal) (Figure 2A). GDF11 is a
weak ligand for Alk7 and has previously been shown to predominantly
signal via Alk4 and Alk5 [11]. Therefore, we focused on Activin AB
(Inhibin bA/Inhibin bB) and B (Inhibin bB) for further experiments.
Treatment of mature BA with Activin AB and B activated the canonical
Alk7 downstream signaling pathway resulting in SMAD3 phosphory-
lation (PSMAD3) (Figure 2B, C). The level of PSMAD3 was significantly
higher after treatment with Activin AB than with Activin B. Activin AB-
induced PSMAD3 did not increase in adipocytes overexpressing Alk7
(LV-Alk7, Suppl. 2A, 2B) in comparison to control cells (Figure 2B, C)
presumably due to already high endogenous expression of Alk7 in
mature BA. Since Activins can also signal through Alk4 and Alk5, we
studied the effect of a constitutive active mutant of Alk7 (LV-caAlk7,
Suppl. 2A, 2B) in BA. LV-caAlk7 also induced PSMAD3 showing that
active Alk7 stimulates SMAD3 signaling. Thus, Activin AB effectively
activates Alk7 and canonical SMAD signaling in BA.

3.3. Early activation of Alk7 diminishes adipogenic differentiation
Next, we studied the effect of early activation of Alk7 with Activin AB
starting at the preadipocyte stage (day �2 to day 7). Treatment with
both Activin AB or B induced phosphorylation of SMAD3 in ctrl and LV-
cGMP/PKGI pathway. (A) Alk7 mRNA expression in brown adipocytes at different time
mM) treatment at day 0 and day 7, normalized to untreated controls. (C) Alk7 mRNA
CPT-cGMP (200 mM) treatment. (D) Scheme of the endogenous Alk7 promoter divided
blue¼ Alk7C 1000e2000 bp) and cloned into a luciferase-reporter vector. (E) Analysis
� SEM from 3 independent experiments. *(p < 0.05; ANOVA) significant difference vs.
0 and d2.
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Figure 2: Alk7 signaling is activated by Activins and early activation of Alk7 diminishes adipogenic differentiation. (A) mRNA expression of Inhibin bA (Inh.bA), Inhibin bB
(Inh.bB), GDF11, Nodal and GDF3 in preadipocytes and mature adipocytes. (BeE) Western blot analysis of SMAD3 phosphorylation (PSMAD3) in mature brown adipocytes (day 7)
or preadipocytes overexpressing Alk7 with Activin AB or B treatment for 60 min. (FeI) Analysis of brown adipocytes chronically treated with Activin AB (day �2 to day 7). (F)
Representative Oil Red O staining. (GeI) Western blot analysis of PPARg, aP2 and UCP1 expression in comparison to Tubulin. Data are presented as mean � SEM from 3 to 5
independent experiments. *(p < 0.05; ANOVA), **(p < 0.01; ANOVA),***(p < 0.001; ANOVA) significant difference vs. untreated cells; $$(p< 0.01; ANOVA) significant difference vs.
Activin AB and Activin B treated ctrl and LV-ctrl cells; #(p < 0.05; ANOVA) significant difference vs. Activin B treatment and LV-caAlk7 cells.

Brief communication
ctrl preadipocytes albeit not significantly (Figure 2D, E). Preadipocytes
overexpressing LV-Alk7 responded to Activin AB with a significant
increase in PSMAD3 (Figure 2D, E).
Notably, early Activin treatment suppressed adipogenic differentiation
as seen in Oil Red O stainings (Figure 2F). This was confirmed by
analysis of PPARg, aP2 and UCP1 protein levels. PPARg and aP2 were
reduced by 82 � 1.9% and 79 � 0.5%, respectively (Figure 2G, H).
UCP1 was reduced by 90 � 2.7% in comparison to untreated cells
(Figure 2I). Transduction of preadipocytes with LV-caAlk7 suppressed
differentiation with a significant reduction of PPARg expression by
70� 17.2% (Suppl. 2C). These data show that basal levels of SMAD3/
Alk7 signaling are low in preadipocytes and that early activation of Alk7
or expression of a constitutively active Alk7 suppresses expression of
PPARg and adipogenic differentiation.
4 MOLECULAR METABOLISM - (2015) 1e8 � 2015 The Authors. Published by Elsevier GmbH.
3.4. Differential effects of Alk7 on adipogenic and thermogenic
programs in mature BA
To study the role of Alk7 signaling in mature BA, we activated Alk7
during the last three days of differentiation (day 4 to day 7) using
Activin AB. Activin AB treatment of mature BA reduced intra-
cytoplasmic lipid content as shown by reduced Oil Red O staining
(Figure 3A). Furthermore, Activin AB treatment significantly reduced
protein levels of the adipogenic markers PPARg and aP2 (Figure 3B,
C), as well as of the lipases HSL and ATGL (Figure 3D, E). Lipolysis is
an important parameter of BA function, because it liberates FFA that
activate UCP1 and serve as fuel for thermogenesis. We found a
significantly reduced lipolysis in Activin AB treated BA under basal
conditions (Figure 3F) as well as after norepinephrine stimulation
(Suppl. 2D).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 3: Activation of Alk7 in mature brown adipocytes reduces adipogenic differentiation but enhances UCP1 expression. (AeG) Analysis of adipocytes transduced
with LV-ctrl or LV-Alk7 virus or untransduced cells treated with and without Activin AB (day 4 to day 7). (A) Representative Oil Red O stainining. (BeE) Western blot analysis of
PPARg, aP2, HSL and ATGL; Tubulin was used as loading control. (F) Analysis of lipolysis by measuring glycerol release of brown adipocytes treated with and without Activin AB
(day 4 to day 7). (G) Western blot analysis of UCP1. (H) UCP1 promoter activity in HIB1B control (ctrl) cells or cells transfected with empty vector or LV-Alk7 with and without Activin
AB treatment. (I) UCP1 promoter activity in HIB1B control (ctrl) cells or transfected with empty vector or LV-caAlk7. Data are presented as mean � SEM from 3 to 6 independent
experiments. *(p < 0.05; ANOVA); **(p < 0.01; ANOVA), ***(p < 0.001; ANOVA) significant difference vs. all untreated cells or as indicated. þ(p < 0.05; t-test), þþ(p < 0.01; t-
test), þþþ(p < 0.001; t-test) significant difference as indicated.
Unexpectedly, activation of Alk7 increased the protein levels of the
thermogenic marker UCP1 more than 1.6-fold (Figure 3G). To further
analyze this effect of Alk7 on UCP1 levels, we studied UCP1 promoter
activity in HIB1B cells. Cells were transfected with vectors carrying
Alk7 or caAlk7 or a control vector and treated with Activin AB.
MOLECULAR METABOLISM- (2015) 1e8 � 2015 TheAuthors. Published by Elsevier GmbH. This is an open ac
www.molecularmetabolism.com
Overexpression of Alk7 alone induced a significant upregulation of the
UCP1 promoter activity by 1.7- � 0.1-fold. Activin AB treatment
caused a 1.9- � 0.2-fold increase as compared to untreated control
(Figure 3H). caAlk7 transfection also resulted in a 1.9- � 0.2-fold
increase in UCP1 promoter activity, comparably to Alk7
cess article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 5
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overexpression (Figure 3I). These data demonstrate that Alk7 nega-
tively regulates the adipogenic program but enhances the thermogenic
program by activation of UCP1 transcription in BA.

3.5. Effect of Alk7 on cGMP-mediated regulation of adipogenic and
thermogenic programs
cGMP facilitates adipogenic and thermogenic differentiation of BA [7].
Simultaneous activation of Alk7 by Activin AB and cGMP signaling from
day 4 to day 7 reduced cGMP effects on adipogenesis as seen in Oil
Red O stainings (Figure 4A). Furthermore, Activin AB treatment
significantly reduced the effects of cGMP on PPARg and aP2
expression by 44% and 36.5% respectively (Figure 4B, C). Alk7
signaling had a similar inhibitory effect on the cGMP-induced increase
of HSL and ATGL expression (Figure 4D, E). Strikingly, Activin AB and
cGMP had additive effects on UCP1 protein expression. cGMP treat-
ment alone lead to a 3.8- � 0.6-fold increase in UCP1 expression as
compared to untreated control cells. Combination of Activin AB and
cGMP treatment increased UCP1 protein levels to 8.1- � 1.7-fold in
comparison to untreated control (Figure 4F). In conclusion, cGMP ef-
fects on the adipogenic program are counteracted by Alk7 activation,
whereas UCP1 expression is positively enhanced.
Figure 4: Differential regulation of cGMP effects by Alk7 activation. Analysis of BA chr
AB (day 4 to day 7). (A) Representative Oil Red O stainings. (BeF) Western blot analysis
mean � SEM from 3 to 6 independent experiments. *(p < 0.05; ANOVA); **(p < 0.01; A

6 MOLECULAR METABOLISM - (2015) 1e8 � 2015 The Authors. Published by Elsevier GmbH.
4. DISCUSSION

4.1. Alk7 expression is modulated by cGMP/PKGI
Only a few years ago, metabolically active BAT was found to be present
in human adults [25]. It is estimated that BAT activity is responsible for
ca. 5% of daily basal metabolic rate in humans. If activated this would
correspond to the dissipation of about 4 kg of white fat per year
[26,27]. Therefore, BAT attracted a lot of attention as a way to increase
energy expenditure in order to fight the rising prevalence of obesity.
The second messenger cGMP acts through PKGI to facilitate adipo-
genic and thermogenic differentiation of BAT [7]. cGMP regulates BA
differentiation through different pathways: (i) cGMP inhibits Rho/ROCK
activity, thereby enhancing insulin signaling in BA [7]. (ii) cGMP in-
creases UCP1 and PPARg transcription [7]. (iii) Here, we show that the
TGFb type I receptor Alk7 is regulated by the cGMP/PKGI signaling
pathway, thus, identifying a so far unknown interaction of the cGMP/
PKGI with the TGFb pathway in BA.
Alk7 is expressed at very low levels in brown preadipocytes and
expression is significantly upregulated 4 days after induction of dif-
ferentiation. Treatment with cGMP further enhances Alk7 expression in
BA. This effect is blunted in PKGI�/� adipocytes and caused by an
onically treated with 200 mM 8-Br-cGMP (day �2 to day 7) and additionally with Activin
of PPARg, aP2, HSL, ATGL and UCP1 (Tubulin loading control). Data are presented as
NOVA), ***(p < 0.001; ANOVA) significant difference as indicated.
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increase in Alk7 promoter activity. Moreover, basal Alk7 levels in
PKGI�/� BA are reduced to w5% of the levels observed in wt cells.
The type of cGMP-dependent Alk7 regulation is different from the
previously reported direct interaction of PKGI with the TGFb family
member bone morphogenetic protein (BMP) receptor [28].

4.2. Alk7 acts as a potential brake for cGMP effects on adipogenic
differentiation
Several ligands for Alk7 have been described including Nodal [15],
GDF11 [16], GDF3 [13] and Activin AB and B [17]. We found, that the
subunits of Activins, i.e. Inhibin bA and Inhibin bB, are most highly
expressed in BA. Activin AB induced SMAD3 phosphorlyation most
efficiently demonstrating that Alk7 signaling occurs through the ca-
nonical pathway in BA. Alk7-mediated activation of SMAD3 signifi-
cantly reduced abundance of the master adipogenic transcription
factor PPARg in BA, which is induced in early adipogenesis. Stimu-
lation of Alk7 during early differentiation had a deleterious effect and
abrogated BA differentiation due to the significantly reduced expres-
sion of PPARg. Interestingly, reduced PPARg expression was only seen
after activation of Alk7 by Activins, whereas sole overexpression of
Alk7 did not change PPARg levels indicating that Alk7 expression and
activation needs to be tightly regulated during BAT differentiation.
It was shown previously that activated SMAD3 suppresses PPARg
expression in the 3T3-L1 white adipocyte cell line. The underlying
mechanism for SMAD3-dependent regulation of PPARg is the inter-
action of SMAD3 with C/EBP and the subsequent repression of C/EBP-
mediated transcription of PPARg promoter [29]. Moreover, Yogosawa
et al. have shown that SMAD3 disrupts the positive feedback loop
between the adipogenic master regulators PPARg and C/EBPa in white
adipocytes [20].
Alk7 activation during the end/late stage of differentiation (last 3 days
of adipogenesis) resulted in differential effects on the adipogenic and
thermogenic programs of BA. Abundance of adipogenic markers, lipid
content and lipolysis was significantly reduced in Activin AB treated
cells. In line with these findings, Guo et al. recently published that
Activin B treatment of mouse embryonic fibroblast (MEF) during dif-
ferentiation to white adipocytes results in reduced levels of PPARg
and HSL, as well as reduction of lipolysis [30]. Unexpectedly, we
found that protein expression of UCP1 is upregulated after Alk7
activation in BA, by enhancing UCP1 promoter activity through SMAD
activation.
The differential effects of Alk7 in mature BA were especially pro-
nounced after cGMP treatment. On one hand, we propose that Alk7
acts as a potential safety mechanism to ensure that overstimulation of
the adipogenic program by cGMP is avoided. On the other hand, Alk7
activation together with cGMP treatment had an additive effect on
UCP1 expression and doubled the amount of UCP1 protein as
compared to cGMP treatment alone. In obese patients with decreased
Alk7 expression [11], it could be of clinical interest to enhance cGMP
signaling in BAT to endogenously increase Alk7 expression and boost
UCP1 activity.

5. CONCLUSION

The type 1 TGFb receptor Alk7 is highly expressed in BA. We found that
Alk7 and cGMP/PKGI signaling are tightly connected in BA to ensure a
balance between the adipogenic and thermogenic program e favoring
the thermogenic capabilities of BA if Alk7 is activated together with
cGMP. Understanding the link between the cGMP/PKGI and Alk7
signaling pathway could proof beneficial when looking for new targets
for anti-obesity drug development.
MOLECULAR METABOLISM- (2015) 1e8 � 2015 TheAuthors. Published by Elsevier GmbH. This is an open ac
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Suppl. 1: Differentiation of brown adipocytes (A) Scheme of brown adipocyte differentiation 

protocol (B) PPAR mRNA expression in brown adipocytes at different time points during 

differentiation. Data are presented as mean ± SEM from 3 independent experiments. *(p<0.05; 

ANOVA), **(p<0.01; ANOVA) significant difference vs. d-2; 
$$

(p<0.01; ANOVA), 
$$$

(p<0.001; 

ANOVA) significant difference vs. d0. 

 

Suppl. 2: Lentiviral overexpression of Alk7, PPARexpression analysis and glycerol release. (A) 

mRNA analysis of Alk7 in ctrl, LV-ctrl, LV-Alk7 and LV-caAlk7 BA using primers concomitantly 

directed against human and murine Alk7. (B) Schematic representation of lentiviral constructs and 

representative Blot of BA overexpressing myc-tagged LV-Alk7 or LV-caAlk7 using antibody directed 

against the myc-tag. Pan-Cadherin serves as endogenous control. (C) mRNA analysis of PPAR in 

ctrl, LV-ctrl, LV-Alk7 and LV-caAlk7 BA on day 3 of differentiation. (D) NE-induced lipolysis in 

brown adipocytes treated with and without Activin AB (day 4 to day 7) and stimulated with 

norepinephrine (1µM) for 2h. Data are presented as mean ± SEM from 3-5 independent experiments. 
#
(p<0,05; ANOVA) significant difference vs. all other conditions; *(p<0,05; ANOVA), **(p<0,01; 

ANOVA) significant difference vs d-2 or as indicated if control –NE is not taken into consideration. 

 

Suppl. Table 1: qRT-PCR primers. 

Primer Forward reverse Reference  

Murine 

Alk7 

GTCAGAGTATCACGAGCAG

GGCTCCTT 

TTCACACACAGCTGGGAGATGG

TCTTC 

 

MurineAl

k7 (ABI) 

GTACATGGCTCCCGAAATGC GGCAACTGGTACTCCTCAACAAC  

Human+

Murine 

Alk7 

CAGAATCCTAAAGTGGGAA

CCAA 

TTCATTGTATCATCAAGCATTTC  

HPRT ACATTGTGGCCCTCTGTGTG

CTCA 

CTGGCAACATCAACAGGACTCCT

CGT 

Haas et al 

2009 

HPRT(A

BI) 

GTCCCAGCGTCGTGATTAGC TCATGACATCTCGAGCAAGTCTT

T 

 

Inhibin 

ßA 

AGGCGGCGCTTCTCAAC CCTCTATCTCCACATACCCGTTC

T 

 

Inhibin 

ßB 

CCTGAGTGAATGCACACCAC CGAGTCCAGTTTCGCCTAGT  

GDF11 CAGCCCTCTCTGCTGTCATTT TCCCCAGTTAGGGGTTTCAGT  

Nodal AGCCAAGAAGAGGATCTGG

TATGG 

GACCTGAGAAGGAATGACGGTG

AA 

 

GDF3 ATGCAGCCTTATCAACGGCT

T 

AGGCGCTTTCTCTAATCCCAG  

PPAR TCCGTAGAAGCCGTGCAAGA

GATCA 

CAGCAGGTTGTCTTGGATGTCCT

CG 
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2.3 Epilogue 

The presented publication highlights several new findings regarding Alk7 and 

brown adipocytes: 

1. Alk7 is vastly expressed in mature brown adipocytes, resembling findings that 

have been made in the white adipocyte cell line 3T3-L1 as well as in primary 

white adipocytes (Kogame et al., 2006; Yogosawa et al., 2012). 

2. Alk7 expression is highly dependent on the cGMP/PKGI signaling pathway, as 

its expression is upregulated in cGMP-treated cells and diminished in PKGI-/- 

cells. This effect seems to appear at the transcriptional level through direct 

interaction of the cGMP/PKGI signaling pathway with the Alk7 promoter.  

3. Brown adipocytes express several ligands for Alk7 and mediate downstream 

actions via the canonical SMAD3 signaling pathway, with Activin AB serving as 

the more potent ligand to activate Alk7 in comparison to Activin B. 

4. A tight regulation of Alk7 signaling is crucial for normal adipocyte 

differentiaton, i.e. activation of Alk7 early in adipocyte development inhibits cell 

differentiation. 

5. Alk7 activation in terminally maturing adipocytes differentially regulates 

expression of adipogenic and thermogenic proteins and, most importantly, 

enhances UCP1 expression on a transcriptional level. 

6. cGMP effects in brown adipocytes  are attenuated by Alk7 activation, with the 

major except for UCP1 abundance, which is further boosted by Activin AB 

treatment, resulting in a synergistic effect. 

 

Alk7 is known to be a marker for mature white adipocytes since 2006 (Kogame 

et al., 2006; Yogosawa et al., 2012), but expression levels of Alk7 during 

differentiation of brown adipocytes as well as of Alk7 ligands have not been 

analyzed up to now. Furthermore, SMAD3 phosphorylation by Alk7 activation has 

been presented in several cell types, e.g. white adipocytes (Yogosawa et al., 

2012), PC12 cells (Jornvall et al., 2001) and human trophoblast cells (Munir et 

al., 2004), but never in brown adipocytes. Additionally, one proposed mechanism 

of Alk7 signaling in white adipocytes is through downregulation of PPARγ 

expression, thereby negatively regulating lipolysis (Yogosawa and Izumi, 2013; 

Yogosawa et al., 2012). The same mechanism seems to apply in brown 

adipocytes as presented here. Importantly, the presented publication features a 
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novel impact of Alk7 on UCP1 expression. In contrast, it has been demonstrated 

before, that other members of the TGFβ/SMAD3 signaling pathway rather 

suppress UCP1 expression in brown and beige adipocytes (Fournier et al., 2012; 

Singh et al., 2014).  The here demonstrated data are therefore highlighting Alk7 

as an exceptional receptor among the TGFβ-receptor family. Specific activation of 

Alk7 in BAT could serve beneficial for UCP1-dependent energy expenditure. 

Moreover, a link between the cGMP and Alk7 signaling pathways has so far not 

been investigated. This newly unraveled link could be responsible for Alk7 

reduction in adipose tissue of obese patients, as it has also been found that 

components of the cGMP-signaling pathway (i.e. PKGI, phosphorylated eNOS and 

phosphorylated VASP) are downregulated in WATg of obese mice (Handa et al., 

2011). We propose that Alk7 in brown adipocytes functions as an endogenous 

brake of the cGMP-signaling pathway, avoiding overstimulation of the adipogenic 

program by cGMP and at the same time enhancing UCP1 expression to facilitate 

energy expenditure. Promoting cGMP signaling to enhance Alk7 signaling in BAT 

could therefore be of clinical benefit for obese patients.  
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3 Publication 2 

3.1 Preamble 

The study presented in Publication 1 is based on an in vitro approach, which 

unravels Alk7 as a novel target for the upregulation of UCP1, thereby possibly 

mediating a beneficial effect on BAT activity and energy expenditure in vivo. 

However, the available techniques so far made it almost impossible to 

overexpress and activate Alk7 specifically in BAT. For example, the UCP1 

promoter can be activated in brown and in beige adipocytes, resulting in 

transgene expression in BAT and WATi if global transgenic mice are produced 

with subzonal injections (Kang et al., 2014; Klepac et al., 2016). Furthermore, so 

far no small molecule exists, which binds to Alk7 specifically (i.e. Activin AB and 

B also activate Alk4 and Alk5). Additionally, administration of such a small 

molecule would target and activate Alk7 in all Alk7 expressing tissues. To 

overcome this problem, a method for direct lentivirus injection into subcutaneous 

adipose depots was developed and validated in the following publication. LVs 

were chosen to be employed in this technique, as they have several advantages 

over other viral vectors, e.g. genome integration into dividing as well as 

terminally differentiated cells (Lewis et al., 1992), leading to stable transgene 

expression, large packaging capacity (Pfeifer, 2004; Pfeifer and Hofmann, 2009) 

and lower immunogenicity in comparison to other viral systems like adenovirus 

(Breckpot et al., 2007).  

  



www.jbmethods.org� 1

ProtocolJournal of Biological Methods  | 2016 | Vol. 3(3) | e48 
DOI: 10.14440/jbm.2016.123

POL Scientific

Direct lentivirus injection for fast and efficient gene 
transfer into brown and beige adipose tissue
Aileen Balkow1, Linda S. Hoffmann1, Katarina Klepac1,2, Anja Glöde1,3, Thorsten Gnad1, Katrin Zimmermann1, 
Alexander Pfeifer1,2,3,4*
1Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany 
2Research Training Group 1873, University of Bonn, 53127 Bonn, Germany 
3BIGS DrugS International Graduate School, University of Bonn, 53127 Bonn, Germany  
4PharmaCenter, University of Bonn, 53127 Bonn, Germany

*Corresponding author: A. Pfeifer, Email: alexander.pfeifer@uni-bonn.de

Competing interests: The authors have declared no competing interests exist.

Abbreviations used: BAT, brown adipose tissue; UCP1, uncoupling protein 1; WAT, white adipose tissue; WATi, inguinal white adipose tissue; PE, polyethylene; GFP, green 
fluorescent protein; CMV, cytomegalovirus; aP2, fatty acid-binding protein 4; AAV, adeno-associated virus

Received April 12, 2016; Revision received May 23, 2016; Accepted June 27, 2016; Published July 16, 2016

ABSTRACT

Brown adipose tissue is a special type of fat contributing to energy expenditure in human newborns and adults. Moreover, 
subcutaneous white adipose tissue has a high capacity to adapt an energy-consuming, brown-like/beige phenotype. 
Here, we developed an easy to handle and fast to accomplish method to efficiently transfer genes into brown and beige 
fat pads in vivo. Lentiviral vectors are directly injected into the target fat pad of anesthetized mice through a small inci-
sion using a modified, small needle connected to a microsyringe, which is well suited for infiltration of adipose tissues. 
Expression of the target gene can be detected in brown/beige fat one week after injection. The method can be applied 
within minutes to efficiently deliver transgenes into subcutaneous adipose tissues. Thus, this protocol allows for studying 
genes of interest in a timely manner in murine brown/beige fat and could potentially lead to new gene therapies for obesity.

Keywords: beige adipose tissue, brown adipose tissue, gene transfer, lentivirus

BACKGROUND

There is a high medical need to develop new strategies to treat 
overweight and obesity as these conditions have reached pandemic 
dimensions. Obesity and its comorbidities, such as type 2 diabetes, 
cardiovascular disease and certain kinds of cancer, are a major threat 
to global health  [1,2]. Brown adipocytes are promising targets as they 
consume energy and could be used to increase energy expenditure and 
facilitate weight loss and thereby counteract obesity.

Brown adipocytes are rich in mitochondria and express specifically 
the uncoupling protein 1 (UCP1). UCP1 is activated by free fatty acids 
and uncouples the proton gradient within the mitochondria leading to 
generation of heat instead of ATP. Cold exposure leads to sympathet-
ic activation of lipolysis and consequent activation of UCP1 by the 
released free fatty acids [3]. Newborn humans and small mammals 
possess brown adipose tissue (BAT) that produces heat to maintain 
body temperature [4]. Importantly, metabolically active BAT can also 
be found in human adults [5,6,7] and activation and/or recruitment of 
human BAT can increase whole body metabolism [8,9].

Apart from interscapular BAT, inducible brown adipocytes, so called 
beige or brite (brown-in-white) cells, have been found disseminated in 

white adipose tissue (WAT). Beige cells also contain a high number of 
UCP1-expressing mitochondria and consume energy similar to “clas-
sical” brown adipocytes [10]. The number of beige adipocytes can be 
increased by different stimuli like cold exposure or by certain drugs 
[11]. Among WAT depots the subcutaneous, inguinal WAT (WATi) has 
a high susceptibility to browning in mice and men [12,13,14]. Even 
though the knowledge about brown and beige adipocytes has increased 
significantly during the last years there are still many open questions.

Lentiviruses are enveloped, single stranded RNA viruses that belong to 
the family of Retroviridae. An important difference between lentiviruses 
and simple retroviruses is that lentiviruses have the unique ability to 
infect non-dividing, terminally differentiated eukaryotic cells. There-
fore, they are widely used as an efficient method for gene transfer [15].

Here we describe a protocol of direct lentivirus injection into subcu-
taneous brown and beige adipose depots for efficient gene transfer into 
brown/beige adipocytes. The role of target genes can thereby be studied 
in brown and beige fat in vivo as well as in whole body metabolism 
without the need to establish transgenic mouse lines. Furthermore, this 
method could also serve as a potential gene therapy approach which 
specifically targets subcutaneous beige or brown fat depots.

How to cite this article: Balkow A, Hoffmann1 LS, Klepac K, Glöde1 A, Gnad T, Zimmermann K, Pfeifer A. Direct lentivirus injection for 
fast and efficient gene transfer into brown and beige adipose tissue. J Biol Methods 2016;3(3):e48. DOI: 10.14440/jbm.2016.123
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Development of the protocol
Lentiviruses efficiently transfer genes into white and brown adipo-

cytes in vitro [16,17] and have been shown to transduce WAT [18,19]. 
We have developed and optimized the protocol for lentivirus injection 
into BAT and to induce beige cells in WATi. Importantly, the custom 
adapted injection device allows for the injection of small volumes 
through a very small needle to avoid significant tissue damage. The set-
up provides clear visual control during injection without contamination 
of the glass syringe by virus.

Experimental design
The use of lentivirus allows employing a large variety of constructs. 

Lentivirus can either be used to overexpress genes or to knockdown genes 
using shRNA or miRNA [20]. For every experiment it is important to use 
respective controls. The buffers used for dissolving the viral particles, 
e.g., phosphate buffered saline (PBS) or Hank’s balanced salt solution 
(HBSS), can be used for mock injections. Moreover, either “empty” 
viruses without transgene cassette or viral vectors carrying a reporter 
gene like green fluorescent protein (GFP) can be injected as controls. 
Especially for shRNAs or miRNAs a scrambled control vector should 
be used. It is possible to have intra-individual, internal controls within 
one mouse by injecting the gene of interest into only one fat lobe and 
the respective control into the other. This is useful if overexpression 
or knockdown efficiency within one mouse is investigated but should 
not be applied if whole body metabolism is studied.

Mice that have been injected with lentivirus can be included into long 
term studies, because the lentivector integrates into the host genome. 
Expression of the transgene is stable for at least 6 weeks [19].

Comparison with other methods
Until now, fat tissue specific overexpression or knockdown of target 

genes was mostly accomplished by generating specific transgenic or 
knockout mouse models by subzonal injections of lentivirus into fertilized 
oocytes or using the Cre-lox recombination system, respectively [21]. 
Even though these methods are proficient in transferring or deleting 
the gene of interest into specific tissues by tissue-specific promoters, 
they are also very time consuming and expensive. Furthermore, a large 
number of mice are needed for breeding to establish a specific mouse line.

Direct lentiviral injection into brown/beige fat, does not involve 
breeding or genotyping of mouse lines and hence dramatically reduces the 
time required to express a gene of interest in fat pads as well as number 
of animals and costs. Another advantage of the method described here is 
the gene transfer into specific fat pads (e.g.,  only WATi, but not BAT). 
So far this cannot be accomplished with transgenesis as there are no 
promoters available which specifically target only one of these fat pads, 
e.g.,  the UCP1 promoter is active in both brown and beige cells [22].

The described set-up/method can also be used to deliver genes of 
interest into existing transgenic animals as well as for delivery of other 
viral vectors [23], like vectors derived from adenovirus or adeno-as-
sociated virus (AAV). AAV-derived particles are considered biohazard 
level 1; however, a major disadvantage is the small packaging capacity 
of classical AAV vectors [24,25]. An important feature of lentiviral 
vectors is their integration into the host genome ensuring long-term 
expression. Moreover, one-and-the-same vector can be used to generate 
transgenic animals by subzonal injection (lentiviral transgenesis) [20].

Using the method described here, it is possible to generate genetically 
modified mice within minutes.

Limitations
We recommend using mice of at least 4 weeks of age for injections 

into BAT and WATi. The presented method is primarily designed for 
subcutaneous fat tissues, which are easily accessible via a small skin 
incision. In principal, injections into visceral fat are possible, but injection 
into the epididymal adipose tissue would require opening the abdominal 
cavity. In the adipose tissue, not only adipocytes will be transduced 
with this method but all present cells (e.g., preadipocytes, fibroblasts, 
immune cells, endothelial cells). Adipocyte-specific expression can 
be achieved with specific promoters to control expression of the target 
gene, e.g.,  the fatty acid-binding protein 4 (aP2) promoter for all fat 
cells or the UCP1 promoter for only brown and beige fat cells [22]. To 
achieve cell-specific transduction, one could design viruses that have 
an adipocyte-specific fusogen that delivers the virus to designated cell 
types only [26]. ASC-1, PAT2, and P2RX5 could serve as specific surface 
markers for white, beige and brown adipocytes [27].

MATERIALS

General considerations on safety issues
All experiments have to be performed in accordance to relevant 

guidelines and protocols and have to be approved by local authorities 
including ethics/animal health committees. The study described herein 
has been approved by the Landesamt für Natur, Umwelt und Verbrauch-
erschutz, NRW, Germany. Working with lentiviruses is restricted to 
biosafety level 2 (BSL-2) facilities. Appropriate personal protection 
equipment such as gloves and lab coat are required when working 
with these vectors. The paper “State-of-the-Art Lentiviral Vectors for 
Research Use: Risk Assessment and Biosafety Recommendations” by 
Katia Pauwels et al. (2009) [28] provides a good overview about risk 
assessment and biosafety recommendations when working with lenti-
viral vectors. Mice injected with replication-deficient virus are usually 
classified as BSL-1 organisms and can therefore be handled as any other 
BSL-1 laboratory mouse. However, as legislation might differ between 
countries, it is essential to review the local guidelines and precautions 
for handling viruses in BSL-2 facilities as well as lentiviral-injected 
mice before starting with the procedure.

Animals
We have successfully overexpressed transgenes with direct lentivirus 

injection into brown (interscapular BAT) and beige (WATi) adipose 
tissue in C57Bl/6 mice at 4 weeks of age or older. Other mouse strains 
might be as suitable for the method as C57Bl/6 mice, but adjustment of 
the protocol might be necessary. For example when using ob/ob mice, 
it is necessary to adjust the number of viral particles depending on the 
increase in adipose tissue mass compared to wild-type controls. We 
recommend testing the procedure with Trypan blue solution or with a 
reporter construct (e.g., GFP) before starting with the actual experiments.

Reagents
99 Ethanol 70%
99 Isoflurane (Abbott), 1–2.5% (w/v) in oxygen. CAUTION: 

Isoflurane is harmful if inhaled, swallowed or upon skin con-
tact. Wear appropriate personal protection equipment and use 
devices with carbon filters to minimize exposure to isoflurane.

99 Trypan blue solution, 0.4%, CAUTION: Trypan blue might be 
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hazardous to your health, wear appropriate personal protection 
equipment such as gloves when working with trypan blue.

99 Packaging plasmids pMDLg/pRRE, RSV-rev and pMD.G for 
lentivirus production

99 High titer lentivirus encoding the desired gene or reporter. The 
virus is produced according to established protocols [21]. The 
lentiviral vector was obtained by cloning GFP into the Bam 
HI and Sal I sites of the vector p156rrlsinPPT, which carries a 
ubiquitous CMV promoter. CAUTION: Adhere to biosafety 
regulations and only use the virus within a BSL-2 facilities. 
The virus can only be handled within a safety cabinet. Wear 
appropriate personal protection equipment such as gloves 
and lab coat.

99 HBSS (Hank’s Balanced Salt Solution, Life technologies)
99 Carprofen (Rimadyl, Pfizer)

Reagent setup
Virus solution. High titer lentivirus should be prepared according 

to established protocols [21,29]. In short, HEK 293T cells (ATCC) are 
seeded on poly-L-lysine-coated 150-mm2 dishes and co-transfected with 
the lentiviral vector plasmid as well as the packaging plasmids pMDLg/
pRRE, RSV-rev and pMD.G. After transfection, cells are incubated at 
37°C and 3% CO2 overnight. The transfection medium is then exchanged 
and cells are further incubated at 37°C and 10% CO2. The secreted virus 
is harvested after another 24 h and 48 h by collecting the supernatant of 
the cells. This supernatant is centrifuged by an ultracentrifuge (Beck-
man Coulter) with SW32Ti rotor at 61,700 g at 17°C for 2 h to pellet 
the secreted virus. The virus pellet is resuspended in HBSS. Combined 
virus suspensions after 24 h and 48 h are concentrated by centrifuga-
tion over a 20% (w/v) sucrose cushion in a SW55Ti rotor (Beckman 
Coulter) at 53,500 g at 17°C for 1.5 h and again solved in HBSS. The 
physical titer of the lentivirus can be assessed by colorimetric reverse 
transcriptase (RT) assay (Roche). Dilute lentivirus in HBSS, to achieve 

desired volume for injection (i.e. 20–30 µl for each fat lobe). In this 
protocol 1000 ng/25 µl (BAT) and 1000 ng/30 µl (WATi) of lentivirus 
were injected into each fat lobe.

Equipment
99 Surgical swabs (Paul Hartmann)
99 Animal hair clipper (AESCULAP GT420)
99 Isoflurane anesthesia system (Vapor, Dräger)
99 Nanopass33 (33G needle for pen injectors, Terumo Corp.)
99 Fine-Bore Polyethylene (Polythene) Tubing (ID 0.28 mm, OD 

0.61 mm, Smiths Medical)
99 Microsyringe (Hamilton)
99 Tungsten carbide scissors (Fine Science Tools)
99 Surgical scissors (Fine Science Tools)
99 Curved forceps (Fine Science Tools)
99 Straight forceps (Fine Science Tools)
99 Michel suture clips (Fine Science Tools)
99 Michel clip applicator (Fine Science Tools)
99 Heating pad

Equipment setup
Injection device. Cut off outer plastic rim around the pen-needle (Fig. 

1A) and connect it to the polyethylene (PE) tubing (20–30 cm in length). 
Be careful not to puncture the tubing with the pen needle which is sharp 
at both sides. Connect a Hamilton microsyringe to the other side of the 
tubing (Fig. 1B). To test whether all connections are tight and correctly 
sealed, flush the injection device with PBS. The virus solution can now 
be drawn up with the microsyringe into the plastic tubing and will be 
visible within the tubing. The injection device is now ready to use.

CAUTION: Adhere to biosafety regulations in terms of 
handling and disposal of virus and virus containing material.

PROCEDURE

In vitro testing of lentiviral vectors
We recommend testing your lentiviral construct in vitro before injecting it into mice. Such a test could be performed 

as follows:
1.	 Seed preadipocytes and let attach.
2.	 Transduce with different amounts of virus (e.g.,  50 ng and 200 ng per 6-well).
3.	 Differentiate the cells according to standard differentiation protocol [19,30].
4.	 Expression of the transgene can be quantified using qRT-PCR for mRNA expression, Western blotting for 

protein expression (Fig. S1A-S1B) or microscopic analysis at different time points during differentiation if 
using a reporter gene (Fig. S1C-S1D).

In vivo injection of lentiviral vectors
5.	 Inject mice with analgesic (Carprofen 5 mg/kg body weight) 30 min before starting the procedure.
6.	 Under the safety cabinet draw up the desired amount of virus. We recommend using a volume of 20–30 µl 

in each fat lobe of BAT and WATi.
7.	 Anaesthetize mice with isoflurane: Anesthesia is induced with 2.5% (w/v) isoflurane and maintained with 1% 

(w/v) isoflurane in O2. CAUTION: Test if anesthesia is deep enough by pinching the skin between the toes. 
No withdrawal should be observed.
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8.	 Shave the small area in the interscapular region for injections into BAT (Fig. 1C) and at the flanks, proxi-
mal of hip joints for injections into WATi/beige fat with hair clipper (Fig. 1D). Clean the skin with ethanol.

9.	 Make a 0.5–0.8 cm incision in the skin using surgical scissors (see red lines in Fig. 1C and 1D).
10.	 Hold skin open with tweezers to expose fat pad. Visualize BAT with surrounding/adjacent white fat pads 

(Fig. 1E) or the dorsal tip of the WATi pad (Fig. 1F). For injections into WATi use tweezers to shift the fat 
pad upwards through the incision and expose the pad without completely removing it from its native position.

11.	 Take the injection device and carefully insert the pen needle into the fat pad. Only when the needle is inserted 
deep enough start to inject lentiviral vectors into multiple (5–10) distinct spots in the fat pad using the fine 
needle (total 20–30 µl per lobe).

12.	 After the virus solution is injected completely, carefully take out the needle and dispose the needle together 
with the tubing according to local regulations.

13.	 Close the incision with Michel suture clips.
14.	 Post surgery, monitor health status of the mice daily and treat the mice with analgesic (Carprofen 5 mg/kg 

body weight) for two days or longer if you have hints that the mouse is still in pain (not normal behavior, 
e.g.,  less exploring and rearing; outer appearance, e.g.,  shaggy fur, blurry eyes, inflammation of the wound). 
Recovery from the small surgery is usually very quick and the suture clips can be removed or are lost generally 
after 7–14 days. CAUTION: always refer to approval by local ethics/animal health committees.

15.	 Analysis: The injected mice can be retained for any desired time period from days up to several weeks and 
can even be used for further in vivo experiments after the appropriate recovery time (e.g., metabolic mea-
surements, special dietaries, glucose tolerance tests).

Timing
Steps 5-6, preparation and pre-treatment of mice: 30 min
Steps 7-13: 10-15 min

Step 14: 2 days or longer
Step 15: Any desired time point

Figure 1. Set up of injection device and establishment of protocol. A. Original pen needle (dashed line indicates the cutting area) (left) and needle 
after cutting off plastic rim (right). Scale bar = 0.5 cm. B. Illustration showing setup of injection device. C and D. Pictures of anesthetized and shaved 
mouse, incision sites are marked by a red line in the interscapular region (C) or at the flanks, proximal of hips (D). E. Situs after injection of 10 μl and 
20 μl Trypan blue solution in BAT. F. Situs after injection of 10 μl and 20 μl Trypan blue solution in the upper region of WATi. G. Dissected BAT from (E). 
H. Dissected WATi from (F).
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Figure 2. GFP fluorescence in interscapular BAT after lentivirus injection.  A-C. 1000 ng RT of lentivirus carrying GFP under control of a CMV pro-
moter (GFP) in 25 μl HBSS or 25 μl PBS were injected into each interscapular BAT lobe of 4-week-old male mice and analyzed after 1 week. A. Bright field 
(BF, left) and fluorescent images (FL, right) of PBS (upper panel) and GFP (lower panel) injected BAT. B. GFP expression assessed by Western blotting. 
Respective blots of GFP and the loading control GAPDH are shown. C. GFP expression assessed by immunohistological staining. PFA-fixed BAT sections 
were triple stained with antibodies directed against GFP (green) and Perilipin (red) as well as with ToPro3 (blue) to stain the nuclei. Scale bar = 50 µm.

ANTICIPATED RESULTS

In vitro testing of lentiviral vectors
To test that your lentiviral vector is working in principle, it is rec-

ommended to test it in vitro before injecting it into your mice. We 
transduced brown (BA) and inguinal white adipocytes (WAi) with two 
different amounts of lentivirus carrying GFP under the control of a 
cytomegalovirus (CMV) promoter (i.e., 50 ng and 200 ng per 150,000 
seeded cells) and differentiated the cells to mature adipocytes according 
to standard protocol. Proteins from terminally differentiated cells were 
isolated and Western blotting was performed to analyze GFP expression, 

which was only present in transduced BA and WAi but not in untrans-
duced control (ctrl) cells (Fig. S1A-S1B). During differentiation GFP 
expression was confirmed by means of fluorescent microscopy, showing 
expression of GFP in preadipocytes (d-2) as well as in mature BA and 
WAi (d7) (Fig. S1C-S1D).

Establishment of protocol using Trypan blue solution
Before injecting precious lentivirus solutions, we recommend to get 

used to the protocol with the use of Trypan blue solution. After following 
the protocol as outlined in the PROCEDURE section the adipose tissue 
pads should appear in a blue color as shown in Figure 1E-1H.
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GFP expression in BAT and WATi
One week after injection of 1000 ng lentivirus carrying GFP under 

the control of a cytomegalovirus (CMV) promoter per BAT lobe, flu-
orescence was clearly visible in the dissected fat pads (Fig. 2A). The 
results were validated using Western blotting (Fig. 2B), which showed 
expression of GFP in lentivirus-injected mice but not in mice injected 
with PBS. Furthermore, we performed immunofluorescent staining of 
GFP, Perilipin (adipocyte marker) and ToPro3 (nucleus staining) in 
PFA-fixed sections of lentivirus-injected BAT pads to analyze brown 
adipocyte specific GFP expression (Fig. 2C). Similar results were 
obtained after injection of WATi (Fig. 3A-3C). Even though the same 

amount of lentivirus (i.e., 1000 ng/fat lobe) was injected into BAT and 
WATi, expression levels of GFP were significantly lower in WATi in 
comparison to BAT (Fig. 4A). This is probably due to the larger overall 
size of WATi, which reduces the number of viral particles per gram of 
tissue. We recommend using a higher amount of lentivirus for injections 
into WATi than into BAT. Sirius Red staining of lentivirus-injected BAT 
pads detected no damage in the injected tissue due to the small injection 
needle used (Fig. 4B).

In conclusion, we present a fast and easy applicable method to ef-
ficiently transfer genes into murine brown and beige adipocytes using 
lentiviral vectors.

Figure 3. Expression of GFP in inguinal WAT (WATi) after lentivirus injection. A-C. 1000 ng RT of lentivirus carrying GFP under control of a CMV 
promoter (GFP) in 30 μl HBSS or 30 μl PBS were injected into each WATi pad of 10-week-old male mice and analyzed after 1 week. A. Bright field (BF, 
left) and fluorescent images (FL, right) of PBS (upper panel) and GFP (lower panel) injected WATi. B. GFP expression assessed by Western blotting. 
Respective blots of GFP and the loading control GAPDH are shown. C. GFP expression assessed by immunohistological staining. PFA-fixed WATi sections 
were triple stained with antibodies directed against GFP (green) and Perilipin (red) as well as with ToPro3 (blue) to stain the nuclei. Scale bar = 50 µm.
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Figure 4. Comparison of GFP expression in BAT and WATi and Sirius Red staining of BAT. A. GFP expression in BAT and WATi after injection of 1000 
ng RT of lentivirus carrying GFP into each fat lobe assessed by Western blotting (top) and quantitative analysis (bottom). *P < 0.05 (n = 3). B. Representa-
tive BAT sections of PBS- and GFP-injected mice, stained with Sirius Red for collagen (I and III) fibres. Scale bar top = 1 mm; scale bar bottom = 100 µm.

TROUBLESHOOTING Potential problems and their causes and solutions are listed in Table 1.

Table 1. Troubleshooting.

Step Problems Causes Suggestions

6 Impossible to 
draw up virus

•	 Virus solution is too viscous •	 Dilute in larger volume of virus solvent

•	 PE tubing is damaged •	 Use a new piece of tubing and be very careful when connecting it to the 
pen needle

•	 Pen needle is damaged or 
clogged

•	 Use a new pen needle

7 Anaesthesia does 
not work

•	 Isoflurane dose is too low •	 Carefully increase dose of isoflurane until mouse loses consciousness 
and does not react to pinch test anymore. Check mouse constantly for 
signs of awakening.

•	 Isoflurane anesthesia system is 
not set up properly

•	 Check all connections

14 Incision becomes 
inflamed

•	 Surgical instruments were not 
properly cleaned

•	 Sterilize and autoclave all used surgical instruments properly

•	 Hair was not properly removed 
and entered the wound

•	 Remove fur in a larger area around the incision. Use ethanol to clean 
sticking hair

•	 Transferred gene induces inflam-
mation

15 No or too low 
expression of 
transferred gene

•	 Fat pads were not injected 
properly

•	 Practice the method using Trypan blue solution (see Fig. 1E-1H) to 
make sure the correct spots are injected. Be careful not to put the nee-
dle too deep or too shallow. Try to inject in as many different spots as 
possible to ensure expression in the whole tissue.

•	 Low expression efficiency of 
lentiviral vector

•	 Test efficiency of lentiviral vector in vitro, if possible try to increase 
amount of injected lentivirus

•	 Analysis is done too early •	 We recommend waiting at least 48–72 h post injection before starting 
with analysis to ensure proper transduction of the tissues and expres-
sion of the transferred gene.
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Figure S1. Example for testing of lentiviral constructs in vitro in brown and white 
adipocytes. Brown adipocytes (BA) differentiated from preadipocytes isolated from BAT 
of newborn mice and white adipocytes (WAi) differentiated from preadipocytes isolated 
from inguinal white adipose tissue of 12-weeks old mice were transduced with CMV-
GFP lentivirus (50 ng or 200 ng RT); untransduced cells served as control (ctrl). A and B. 
Western blotting of GFP expression in BA and WAi; tubulin serves as loading control. C 
and D. Microscopic pictures of GFP expression in BA and WAi in preadipocytes (d-2) 
and mature adipocytes (d7). Scale bars = 20 µm. 
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3.3 Epilogue 

The presented method for direct lentivirus injections into subcutaneous adipose 

tissues has several advantages over production of transgenic mouse lines: 

1. It is time saving in many aspects: 

 Production of a new transgenic mouse line usually takes several months, 

whereas direct lentiviral injections can be applied within minutes to 

overexpress or knock down a gene of interest. 

 Even if a transgenic mouse line already exists, regular breeding and 

genotyping to receive the right amount of mice with the desired genotype 

is very time consuming. By means of direct lentiviral injections, it is 

possible to generate as many transgenic mice, including appropriate 

controls, as needed. No genotyping or breeding is necessary. 

 The use of a transgenic mouse line requires waiting until mice of the right 

genotype reach a desired age before experiments can be performed. 

Direct lentiviral injections, on the other hand, can be performed in any 

mice older than 4 weeks. 

2. The above mentioned points also reduce costs for housing, breeding and 

genotyping of mice. 

3. Only mice with the correct genotype will be produced, thereby reducing animal 

numbers dramatically. 

4. Transgenes can be expressed in only one adipose depot specifically. 

5. Already existing transgenic mouse lines can further be modified with this 

technique. 

6. One-and-the-same vector can be used to produce global transgenic mice with 

the help of subzonal injections, thereby serving as an additional experimental 

control to direct lentivirus injections. 

Overall, brown and beige adipocytes are in the focus of research as possible 

targets to treat obesity. The method presented here could be of substantial 

interest for any researcher investigating signaling pathways in adipose tissues. It 

makes the study of transgenes for their influence on brown/beige fat activity and 

energy expenditure in vivo easily accessible. By this, a plethora of genes can be 

studied in a timely manner, potentially leading to new gene therapies for the 

treatment of obesity or at least identifying novel targets for pharmaceutical 

interventions.  
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4 Conclusion 

In recent years, activation of brown and beige fat has emerged as potential 

target to increase energy expenditure and thereby fight obesity in humans. 

Factors involved in regulation of adipose tissue function can either derive from 

adipose tissue itself or from other organs like the pancreas, liver, muscle, heart 

and brain. Examples for such factors are adiopnectin (Hu et al., 1996; Scherer et 

al., 1995), insulin (Renold et al., 1950), FGF21 (Nishimura et al., 2000; Xu et al., 

2009), irisin (Bostrom et al., 2012), natriuretic peptides (Crandall et al., 1989) 

and endocannabinoids (Cota et al., 2003), respectively.  

In this thesis, the impact of the type I TGFβ receptor Alk7 on brown adipocyte 

function is unraveled. Activation of Alk7 by Activin AB differentially regulates 

adipogenic and thermogenic pathways, leading to an upregulation of UCP1 

expression (Balkow et al., 2015). Activin AB/B could therefore be a novel adipose 

derived factor which increases UCP1 expression in brown adipocytes. 

Importantly, the Alk7 signaling pathway is closely connected to the cGMP-

signaling pathway in brown adipocytes; probably representing a potential safety 

mechanism to ensure that overstimulation of the adipogenic program by cGMP is 

avoided (Balkow et al., 2015). As obese patients exhibit decreased Alk7 

expression (Carlsson et al., 2009), it could be of clinical benefit to enhance cGMP 

signaling in BAT to endogenously increase Alk7 expression and by this boost 

UCP1 activity as well as energy expenditure. However, testing this hypothesis 

requires further in vivo studies. 

The second part of the thesis is dealing with the development and validation of 

an easy-to-handle and fast applicable method to transduce brown and beige 

adipose tissue via direct lentiviral injections in vivo (Balkow et al., 2016). As the 

procedure is undertaken within less than an hour to efficiently produce 

transgenic mice, it could be of substantial interest for any researcher 

investigating various signaling pathways in adipose tissues, without the need of 

creating whole new transgenic mouse lines. By this, a multitude of genes can be 
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studied in a timely manner, potentially identifying novel targets for 

pharmaceutical interventions or even new gene therapies for the treatment of 

obesity. 

Furthermore, the presented method can be applied to investigate Alk7-effects in 

BAT in vivo. This could be conducted by overexpressing either caAlk7 or known 

ligands for Alk7 (i.e. Activin AB/B) and subsequently analyzing transgenic mice 

for aspects of whole-body metabolism, e.g. by submission to a HFD or a cold 

stimulus. The Alk7-induced upregulation of UCP1 expression should increase 

energy expenditure, subsequently resulting in resistance to DIO as well as to 

increased cold tolerance.  

In conclusion, the presented work in this thesis is uncovering two novel 

approaches for the investigation of brown adipocyte differentiation and function, 

thereby possibly revealing new targets to fight the obesity pandemic. 
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Summary 

 

The obesity pandemic is increasing worldwide and is a major threat to human 

health. Comorbidities associated with obesity are type 2 diabetes, cardiovascular 

disorders, non-alcoholic fatty liver disease and even some types of cancer. 

Presently, we lack reliable and easy applicable medication without major side-

effects to treat obesity. Recents studies have unvailed the existance of energy-

consuming brown adipose tissue (BAT) in human adults. This tissue has therefore 

become the focus of research to develop novel anti-obesity therapies.  

The presented thesis depicts two novel approaches to investigate the 

development and function of brown adipocytes. The first approach identifies the 

type I TGFβ receptor Activin receptor-like kinase 7 (Alk7) as a novel cyclic 

guanosin monophosphate (cGMP)-regulated target in brown adipocytes. cGMP is 

an important second messenger in adipocytes that activates PKGI to induce 

adipogenic and thermogenic differentiation. Interestingly, exogenous cGMP 

treatment of brown adipocytes increases Alk7 expression. Activin AB is a potent 

ligand activating Alk7 downstream-signaling in brown adipocytes, which is 

mediated by phosphorylation of SMAD3. Activation of Alk7 during terminal 

differentiation of brown adipocytes differentially regulates adipogenic and 

thermogenic protein expression. It induces downregulation of several adipogenic 

markers and upregulation of the major thermogenic marker UCP1. Importantly, 

this effect is augmented in cGMP-treated brown adipocytes. Alk7 could therefore 

serve as potential endogenous brake of the cGMP signaling pathway, avoiding 

overstimulation of the adipogenic program by cGMP and at the same time 

enhancing UCP1 expression to facilitate energy expenditure. 

To be able to analyze effects of the Alk7/cGMP signaling pathway as well as of 

other signaling pathways in BAT in vivo, the second part of this work describes 

the development and validation of an easy-to-handle and fast-to-accomplish 

method for direct lentiviral injections into subcutaneous adipose tissues. 

Lentiviral vectors are directly injected into the target fat pad of anesthetized 

mice through a small incision using a microsyringe connected to a modified, 

small needle, which is well suited for infiltration of adipose tissues. Expression of 

the target gene can be detected in the respective adipose tissue as early as one 

week after injection and is stable over months due to the use of lentiviral 

vectors, which integrate stably into the host genome. Delivery of transgenes into 



 

 

the fat pads of one mouse is carried out within minutes. The method therefore 

allows for studying genes of interest in murine brown/beige fat in a timely 

manner. Consequently, it could be of substantial interest for any researcher 

investigating signaling pathways in adipose tissues, potentially leading to new 

gene therapies for the treatment of obesity. 

In conclusion, two approaches targeting brown/beige adipocytes are unraveled in 

this thesis. These could be useful for the development of novel treatments for 

obesity. The first approach reveals Alk7 as a potential target to increase 

thermogenic capacity in brown adipocytes. The second approach describes an 

efficient method to produce adipose-specific transgenic mice, which allows the 

study of several genes/signaling pathways with respect to their metabolic 

consequences in vivo. 
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