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Summary

Due to growing impacts on biodiversity caused by global change and on-going intensifi-
cation of land use, monitoring of vegetation becomes increasingly important. National
and international programs for nature conservation and management aim to organize
these efforts. Mapping of habitats relevant for nature conservation often involves the
identification of patches of target habitats in a complex mosaic of vegetation types ex-
traneous for conservation planning. In field surveys, this is often a time-consuming and
work-intensive task. Limiting the necessary ground reference to a small sample of target
habitats and combining it with area-wide remote sensing data could greatly reduce and
therefore support the field mapping effort. But conventional supervised classification
methods need to be trained with a representative set of samples covering an exhaustive set
of all classes. Acquiring such data is work intensive and hence inefficient in cases where
only one or few classes are of interest. The usage of one-class classifiers (OCC) seems to
be more suitable for this task – but has up until now neither been tested nor applied for
large scale mapping and monitoring in programs such as those requested for the Natura
2000 European Habitat Directive or the High Nature Value (HNV) farmland Indicator.
It is important to uncover the possibilities and mark the obstacles of this new approach
since the usage of remote sensing for conservation purposes is currently controversially
discussed in the ecology community as well as in the remote sensing community. Thus,
the focal and innovative point of this thesis is to explore possibilities and limitations in
the application of one-class classifiers for detecting habitats of nature conservation value
with the help of multi-seasonal remote sensing and limited field data.

The first study is a pioneering work that ascertains the usage of an OCC is suitable
for mapping Natura 2000 habitat types (Chapter 2). Applying the Maxent algorithm
in combination with a low number of ground reference points of four habitat types and
easily available multi-seasonal satellite imagery resulted in a combined habitat map
with reasonable accuracy. There is potential in one-class classification for detecting rare
habitats – however, differentiating habitats with very similar species composition remains
challenging. Habitat types with a wide characterization are difficult to delineate even with
an OCC. Nevertheless, this rather simple and affordable approach has to be recommended
for further studies and could be used for pre-surveys of previously unmapped areas, as a



xx Summary

tool for identifying potential gaps in existing habitat inventories as well as a first way of
checking the changes in the distribution of habitats.
Motivated by these positive results, the topic of the second study of this thesis is

whether low and High Nature Value grasslands can be differentiated with remotely-sensed
reflectance data, field data and one-class classification. This approach could supplement
existing field survey-based monitoring approaches such as for the High Nature Value
farmland Indicator (Chapter 3). Three one-class classifiers together with multi-seasonal,
multispectral remote sensing data in combination with sparse field data were analysed
for their usage A) to classify HNV grassland against other areas and B) to differentiate
between three quality classes of HNV grassland according to the current German HNV
monitoring approach. Results indicated reasonable performances of the OCC to identify
HNV grassland areas, but clearly showed that a separation into several HNV quality
classes is not possible. This can be explained by the definition of the different HNV
classes in the field which bases on the presence of HNV character species. Thus the
difference between two quality classes can depend on the presence or absence of one single
species. The spectral signal related to this differences is too narrow to be detectable
by the tested classifiers or current remote sensing systems. Hence, with the presented
approach only HNV grasslands as a whole can be identified from the rest of the landscape
matrix based on its spectral signal. This could be of practical use in monitoring systems
for pre-classifying the landscape, e.g. in terms of a HNV grassland mask. Further studies
should focus on combining the presented approach with an object oriented classifier
or with land registry data for improving the results. Future developments in sensor
techniques may help to differentiate grasslands of high ecological value.
The first and second study show that usage of an OCC for detecting vegetation of

conservation value is feasible. But they demonstrate as well that the validation of OCC
results is complex and crucial. Among other things, the validation of OCC may be
affected by the landscape itself and the sampling design. Due to this, in the third study
(Chapter 4) the robustness and weak spots of an OCC were tested considering the effect
of landscape composition and sample size on accuracy measurements. For this purpose
artificial landscapes were generated to avoid the common problem of case-studies which
usually can only make locally valid statements on the suitability of a tested approach.
On the contrary, with simulated distribution data complete knowledge is given about the
properties of the target class and the landscape. Thereby, assessing and discussing the
robustness of OCC for usage with remote sensing data is possible in a more objective way.
In the presented study, the performance of the OCC increases with an increasing number
of target samples for training, as well as with an increasing number of background samples
for training – in the latter case with a saturation and decrease at a certain number of
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background samples. In respect to the prevalence of the target class in the artificial
landscape results are inconclusive. OCC performance increases with decreasing number of
pixels from similar classes in the artificial landscape. Whereas results concerning target
sample size and the amount of similar classes in the background confirm conclusions of
earlier studies from the field of species distribution modelling, results for background
sample size and prevalence of target class give new insights and a basis for further studies
and discussions. The OCC Maxent proves to be a robust and reliable classifier for mapping
vegetation types in combination with remote sensing data. These results can inform and
facilitate both conservation and classification efforts.

In conclusion the utilisation of an OCC together with reflectance and sparse field data
for addressing rare vegetation types of conservation interest proves to be useful in all
presented studies of this thesis. It is demonstrated that certain important habitats can
be classified without requiring additional information about the rest of the landscape.
This reduces sampling effort and thus provides the opportunity to support monitoring in
a more efficient and cost-effective way in the future. However, there are obstacles that
should be of concern in further studies. Due to their similar plant functional traits and
hence similar spectral properties some vegetation types, especially in grassland, remain
difficult or are impossible to distinguish even with this new method. Vegetation types with
a wide characterization concerning their plant composition, e.g. vegetation types with
a high inherent variability, are also with an OCC difficult to identify. It will always be
challenging and sometimes impossible to translate the vegetation continuum into discrete
classes. It is to hope that researchers from both the ecologists and the remote sensing
community will work together in a collaborative way to further improve their respective
capabilities for the common goal.





Zusammenfassung

Aufgrund des durch Klima- und Landnutzungswandel bedingten Verlustes der biologis-
chen Vielfalt gewinnt die Suche nach effizienten Methoden des Vegetationsmonitorings an
Brisanz. Es ist Aufgabe der nationalen und internationalen Naturschutzprogramme Moni-
toringkonzepte zu entwickeln und zu etablieren, die diesen Anforderungen gewachsen sind.
Naturschutzfachlich relevante Vegetationstypen kommen oft nicht großflächig, sondern nur
kleinteilig vor. Dabei sind sie in der Regel innerhalb einer Landschaftsmatrix von nicht
relevanten Vegetationstypen verteilt. Mit flächendeckenden Fernerkundungsdaten und
einem geringen Satz an Felddaten könnte ein naturschutzfachliches Monitoring sinnvoll
unterstützt und kosteneffizient gestaltet werden. Herkömmlich verwendet man für diese
Aufgabe Multiclass-Klassifikationsmethoden. Diese müssen jedoch mit einem großen
Satz an Trainingsdaten unterstützt werden, wobei jede in der Landschaft vorhandene
Klasse abgedeckt werden muss. In Fällen, in denen nur eine oder nur wenige Klassen
von Interesse sind, ist eine derartige Herangehensweise nicht effizient. Die Nutzung von
Einklassen-Klassifikatoren (one-class classifier: OCC) erscheint vielversprechender und
anwendungsorientierter für solche Aufgaben, wurde aber bisher für ein naturschutzfach-
liches Vegetationsmonitoring, etwa im Rahmen des Natura 2000 Monitorings oder des
High Nature Value (HNV) Farmland Monitorings, nicht getestet und analysiert. Da
zwischen Fernerkundlern und naturschutzfachlichen Anwendern teils große Uneinigkeit
über die Chancen und Grenzen des fernerkundlichen Monitorings für die oben genannte
Aufgabe besteht, ist es notwendig, die Diskussion hierzu transparent und offen zu hal-
ten. Im Zentrum dieser Arbeit steht daher die Analyse des Potentials von OCC für ein
naturschutzfachliches Fernerkundungsmonitoring.
In der ersten Studie der vorliegenden Arbeit werden erstmalig die Möglichkeiten der

Erfassung naturschutzfachlicher Vegetationstypen mit Hilfe eines OCC, multisaisonalen
Fernerkundungsdaten sowie einem kleinen Satz an Felddaten behandelt. Am Beispiel
von vier Lebensraumtypen des Natura 2000 Programms ließ sich mit diesem Ansatz
eine Verbreitungskarte mit ausreichender Genauigkeit erstellen. Klassen, welche eine
sehr ähnliche Artenzusammensetzung aufweisen bzw. eine weitgefasste Charakterisierung
haben, waren dabei besonders schwer zu trennen. Das grundlegende Potential eines OCC
für ein naturschutzfachliches Monitoring konnte in dieser ersten Studie jedoch klar unter
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Beweis gestellt werden. Ein einfacher und kostengünstiger Ansatz wie dieser könnte in
Zukunft bei der Vorauswahl zu kartierender Gebiete und der Erkennung mutmaßlicher
Veränderungen herangezogen werden.

Nachdem sich die Verwendung eines OCC als generell möglich und sinnvoll herausgestellt
hat, wurde in der zweiten Studie untersucht, inwiefern naturschutzfachlich relevantes Grün-
land nach dem Beispiel von HNV Farmland mit der beschriebenen Methode identifiziert
und qualitativ unterschieden werden kann. Es wurden multisaisonale Fernerkundungsdaten
sowie ein kleiner Satz Felddaten verwendet und dabei drei OCC auf ihre Verwendbarkeit
getestet: A) zur Identifikation von HNV Grünland in der Gesamtlandschaft; B) zur
Identifikation von drei HNV Grünland Wertstufen in der Gesamtlandschaft. Es zeigte
sich, dass mit der gewählten Methode hochwertiges Grünland zwar identifiziert werden
kann, eine weitere Unterteilung in die drei Wertstufen jedoch nicht möglich ist. Die drei
HNV Wertstufen werden anhand der Präsenz/Absenz von Indikatorarten im Feld definiert.
In der gesamten Artenzusammensetzung der verschiedenen Stufen zeigen sich allerdings
nicht genügend Unterschiede, die sich in den fernerkundlichen Daten widerspiegeln und
es konnte kein signifikanter Zusammenhang zwischen HNV Wertstufen und Reflektanz
nachgewiesen werden. Mittels des gewählten Ansatzes dieser Arbeit lässt sich daher allein
HNV Grünland klassifizieren. Für weitere Verwendungen könnte die Verschneidung einer
daraus generierten HNV Grünland Maske mit Daten zu Feldschlägen oder mit objekt-
basierten Klassifikationsansätzen in Erwägung gezogen werden. Zukünftige technische
Entwicklungen mit höherer spektraler Auflösung könnten eine weitere Differenzierung der
Grünland Wertstufen ermöglichen.

Die ersten beiden Studien ergaben, dass die Verwendung eines OCC unter bestimmten
Limitationen als sinnvoll erachtet werden kann. Es zeigt sich aber auch, dass die Vali-
dierung eines solchen Ansatzes schwierig, aber maßgeblich ist und daher eine ausreichende
Robustheit des Klassifikators gegeben sein muss. Aufgrund dessen wurde in der dritten
Studie die Stabilität eines OCC in Bezug auf die Landschaftszusammensetzung, sowie das
Stichprobendesign untersucht. Dazu wurden keine regionalen Erhebungen durchgeführt,
sondern künstliche Landschaften erzeugt, die einen vollständigen Überblick ermöglichen
und es gestatten, das Samplingdesign sowie die Landschaftszusammensetzung vollständig
zu kontrollieren. Während die Analyse zur Trainingsgröße und dem Anteil ähnlicher
Klassen in der Landschaft die Ergebnisse früherer Studien aus dem Feld des species
distribution modelling bestätigten, konnten neue Erkenntnisse bezüglich der Themen
Prävalenz und Umfang der Background Trainingsdaten gewonnen werden. Der OCC
Maxent erwies sich für die relevante Aufgabe als robuster und geeigneter Klassifikator.

Mit dieser Arbeit konnte gezeigt werden, dass ein OCC zusammen mit Fernerkundungs-
sowie Felddaten für ein naturschutzfachliches Monitoring gewinnbringend eingesetzt
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werden kann. Es ist möglich, die relevanten Klassen ohne genaueres Wissen über den
Rest der Landschaft zu extrahieren und identifizieren. Dies reduziert den notwendigen
Kartieraufwand und könnte Monitoringprogramme zukünftig effizient und kostengünstig
unterstützen. Eine Herausforderung bleibt die Differenzierung sehr ähnlich definierter
Klassen. Gerade im Bereich des Grünlandes werden die Grenzen der in dieser Arbeit
aufgezeigten Methode, bzw. des aktuellen Standes der Technik, sichtbar. Vegetationstypen
mit ähnlicher Artenzusammensetzung, und damit ähnlichen Pflanzenmerkmalen, sind
auch mit dieser Methode nicht vollständig abzugrenzen und zu identifizieren. Auch Vege-
tationstypen, die aufgrund ihrer vorgegebenen Definition nur unscharf charakterisiert sind,
sind schwer erfassbar. Diese Einteilung der natürlicherweise kontinuierlich vorkommenden
Vegetation in diskrete Klassen wird immer eine Herausforderung darstellen. Abschließend
kann festgestellt werden, dass die Einklassen-Klassifikation für ein naturschutzfachliches
Fernerkundungsmonitoring als anwendungsorientiert, sinnvoll und zukunftsträchtig er-
achtet werden kann und weiterführende Arbeiten hierzu vorangetrieben werden sollten.
Eine enge Zusammenarbeit von Fernerkundlern und Ökologen auf diesem Gebiet wäre
wünschenswert und vielversprechend.





1. Introduction

1.1. Preface

"Remote sensing is the science and art of obtaining information about an object, area
or phenomenon through the analysis of data acquired by a device that is not in contact
with the object, area or phenomenon under investigation" (Vanden Borre et al. 2011).
Since the launch of the first multispectral sensor Landsat 1 in 1972, the technology for
Earth observation from space has played an increasingly important role in understanding
and monitoring the surface of the world (Rose et al. 2015). Today more than 100 Earth
observation satellites are orbiting around Earth, carrying a wide variety of sensors (CEOS
2015). Remote sensing is widely studied and used in various fields of investigations, such
as ecology, meteorology, hydrology, geology, geography and more. Remote sensing is also
applied in the field of nature conservation to gain information on human-induced and
natural land cover changes, which are widely considered as one of the primary drivers
of species and habitat endangerment and biodiversity decline and therefore should be
monitored over broad areas (Hansen et al. 2001). This thesis focuses in particular on the
application of remote sensing for monitoring in a conservation context.

1.2. Remote sensing in a nutshell

Remote sensing is the process of obtaining information about an area or object without
being in direct contact with it. Two major benefits of using remote sensing to monitor and
map land surface areas are the possibility to retrieve information in otherwise inaccessible
or distant areas and its cost-efficiency in many cases (compared to wall-to-wall inventories
on the ground). Data acquisition is performed by sensors and operated from unmanned
airborne vehicles (UAV), airborne (airplanes) or spaceborne platforms (satellites). Two
forms of sensors exist, passive and active sensors (Figure 1.1). Images of passive sensors
are the result of measurements of electromagnetic energy emitted and reflected by the
Earth’s surface in sensor specific wavelength-regions (covered by the sensors bands)
(Pettorelli et al. 2014, Vanden Borre et al. 2011). These kind of data can be divided
into panchromatic, multispectral and hyperspectral remote sensing data, depending on
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the number and spectral continuity of the sensors bands. Panchromatic sensors have
only one band, which gathers information about the total radiance reaching each pixel.
Multispectral sensors have up to 10 usually rather broad bands (band width of 10 nm
and more), which provide aggregated information about reflectance of several parts of
the electromagnetic spectrum. Contrarily, hyperspectral sensors can have more than 200
narrow bands which provide very detailed information over a broad and continuous range
of the electromagnetic spectrum (usually from 400 to 2500 nm). Active sensors emit
electromagnet radiation signals that are then partially reflected by the Earth’s surface.
The reflected part of the transmitted signal is recorded by the sensor. Radar data as well
as LIDAR data belong to this group of active sensors.

Passive sensors Active sensors

Figure 1.1.: Different types of remote sensing sensors (adapted from Petorelli et al. 2014).

In former times, images taken out of airplanes were recorded on film and converted into
analogue photographs, but digital sensors have replaced these early analogue cameras.
Progress in technical development has led to images with not only higher spectral but
also higher spatial and temporal resolution (Schmidtlein et al. 2014, Vanden Borre et
al. 2011). In contrast to airborne data sensors on satellites have wider swath, providing
data with a larger spatial extend and therefore reducing the tedious and error prone
mosaicking of multiple small pictures. The focus of this thesis lay on the application of
spaceborne passive optical data.

1.3. Broad fields of application

Due to the technical limitation of the former available sensors, up to twenty years ago
remote sensing data was mainly applied on very broad spatial scale or vague thematic
issues. Early studies combining remote sensing and nature conservation assessed land-use
and land-cover changes such as deforestation in the Amazon basin (Skole & Tucker 1993)
or global changes in the distribution of cropland (Ramankutty & Foley 1999). Thanks to
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the development of sensors with higher spatial, temporal and spectral resolutions and
more advanced methods in recent approaches remote sensing is nowadays used on very
fine scales, right up to mapping the floristic composition as a continuum (Schmidtlein et
al. 2012) or for measuring pigment content of different tree species (Fassnacht et al. 2015).
Today there are numerous possibilities for the application of remote sensing: in urban
area change detection (Yang et al. 2003), for damage assessment in crisis areas (Klonus et
al. 2012), to identify critical bird breeding habitats (Goetz et al. 2010) and to assess the
effects of anthropogenic light on seabirds (Rodrigues et al. 2012), for monitoring glacier
movement (Schneevoigt et al. 2011), for landslide mass movement assessment (Strozzi
et al. 2005) or mining monitoring (Sen et al. 2012), for fire (Vogelmann et al. 2011) or
flood detection (Gianinetto & Villa 2007) as well as for volcano activity documentation
(Agustan et al. 2012).
Current and past advantage of the use of remote sensing data when working on vegetation

is the possibility to map in otherwise inaccessible or distant areas in a rapid and cost
saving way. In former days the interpretation of aerial photographs was standard in some
fields of application. Today, (semi-) automated, computer based methods are available,
but visual interpretation is still a standard in many operational processes. There are two
main types of remote sensing approaches for addressing vegetation: direct approaches
addressing observations of species and species composition, whereas indirect remote
sensing approaches aiming to identify environmental parameters as proxies (Turner et al.
2003). In this case remote sensing is used or studied for various subjects, in fundamental
as well as in applied research: in precision agriculture to map crop and herb distribution
across agricultural stands (Lopez-Granados et al. 2006), for detection of agricultural
expansion (Arvor et al. 2012), for identifying cropland and grassland on parcel level
(Esch et al. 2014) as well as for classifying crops on a subcontinental scale (Conrad et al.
2011). Remote sensing is also used for retrieval of forest-inventory variables (Kennedy et
al. 2010, Fassnacht et al. 2016). There are studies on wetland monitoring (Landmann et
al. 2013) as well as studies that took place in savannah regions (Ferner et al. 2015), some
aimed to assess the composition and quality of grasslands (Kawamura et al. 2008) or
the structure of heathland (Schmidt et al. 2017). Ecological parameters were addressed,
such as identifying carbon stocks in the Amazon basin (Asner et al. 2010) or different
pollination types (Feilhauer et al. 2016). Such possibilities of remote sensing based data
for assessing ecological properties of vegetation have been reviewed widely (Gillespie et al.
2008, Kerr & Ostrovsky 2003, Nagendra et al. 2001, Schimel et al. 2013, Turner et al.
2003, Ustin & Gamon 2010, Vanden Borre 2011, Wang et al. 2010).
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1.4. Remote sensing and nature conservation

While there is a large number of case-studies investigating the general potential of remote
sensing to assess vegetation properties the number of studies focusing on the development
of methods to directly support monitoring and reporting commitments of governmental
organizations and administrations is still limited. This contrasts the demand of these
organizations: International and national laws require information about the extent and
condition of areas of conservation interest. Thus, detailed monitoring programs are
needed; conserving biodiversity needs data. The ability to monitor the state and condition
of vegetation, landscapes and habitats is fundamental for developing appropriate and
optimized management strategies and for controlling their success. Long-term and reliable
information about changes of the target of conservation interest is essential. This includes
information about the distribution, structure, composition and functionality of this target
– may it be small areas or entire countries and beyond. In the context of this need, the
use of remote sensing is a matter to controversial discussions (Pettorelli et al. 2014)
and some studies on this subject implemented first applications. Buchanan et al. 2005
for instance used remote sensing data to identify moorland vegetation and its structure,
while Veitch et al. 1995 monitored heathland. Moorland vegetation and heathland are
examples for vegetation types of ecological and conservation value (Figure 1.2). Moreover,
both types are very often addressed by remote sensing approaches due to their noticeable
structures. Other studies tested whether coarse-scale field characteristics can provide
information on fine-scale indicators for Natura 2000 heathland (Spanhove et al. 2012)
or produced continuous fraction maps of grass encroachment in Natura 2000 heathland
(Mücher et al. 2013). Schuster et al. 2011 provided an approach to detect Natura 2000
grasslands by detecting the mowing dates via remote sensing, while Förster et al. 2008
studied the possibilities of combining GIS data and remote sensing data in an object based
approach to classify Natura 2000 forest and heathland types. Approaches to identify
the species composition of some Natura 2000 habitat types with hyperspectral remote
sensing and field data (Feilhauer et al. 2014) have recently been presented. Apart from
many studies that refer to Natura 2000, remote sensing is also used to detect invasive
species (Andrew & Ustin 2008, Hestir et al. 2008). For all the aforementioned studies, if
working on a fine spatial or thematic scale, combining the data of remote sensing with
reference field work data was either obligatory or at least strongly improved the results.
Although only a few standardized remote sensing based applications are used by nature
conservation agencies or organisations, the above mentioned studies and many others show
the potential usefulness of remote sensing methods for nature conservation, so research
must be driven forward. The monitoring of vegetation becomes increasingly important
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due to the impacts of global change and the on-going intensification of land use. National
and international programs for nature management and conservation aim to organize
this monitoring effort. In this context, two international programs of nature conservation
concern are going to be presented in detail.

Figure 1.2.: Murnauer Moos, Bavaria – Conservation area and Natura 2000 site: A highly
structured complex of bogs, fens and wet grasslands, surrounded by more
intensively used grasslands. Picture: Stenzel.

1.5. Natura 2000

In 1992, the European Union (EU) agreed upon the Natura 2000 Habitat Directive, a
large program dedicated to the conservation of target species and habitat types, the aim
of which is to create a network of protected areas. All EU member states are required
to designate Natura 2000 sites where special habitats or species occur and to report
about the state and condition of these species and habitat types on a six-year basis.
The Habitat Directive on the conservation of habitat types and of wild fauna and flora
(92/43/EEC), known as Fauna-Flora-Habitats (FFH) Directive, was adopted in 1992 as an
implementation instrument of the 1979 Bern Convention on the Conservation of European
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Wildlife and Natural Habitats. Together with the Birds Directive (79/409/EEC, amended
version 2009/147/EC), it constitutes the main legal framework for nature conservation
in the European Union (Vanden Borre et al. 2011). The Natura 2000 network was
established to guarantee an adequately large survival space for European species that are
threatened, endangered or have their main prevalence in Europe and thus giving Europe
a special responsibility. Therefore the program aims to ensure long-term survival for
European endangered and valuable species and habitats. All habitats protected by the
Habitats Directive are listed in its Annex 1, which currently consists of 231 habitat types
(HT). The definition of the habitat types is very heterogeneous, the majority is defined
by vegetation, whereas some are defined by physiographic features (Ssymank et al. 1998).
These habitat types may occur at different scales, from point locations to landscapes.
Such heterogeneity of the habitats poses a number of challenges. Most challenging is
that they can differ in their inherent variability a lot (Figure 1.3). Guidance on the
definition of habitat types is given in the European Interpretation Manual (European
Commission 2007), which was subsequently translated by the EU member states into
national interpretation guides, as well as into federal state interpretations. Today, about
18% of the European terrestrial area is designated as Natura 2000 site. It is important to
know that not all Natura 2000 sites are strictly preserved areas. There are core protected
zones as well as agricultural or forestal managed zones, since often the main part of the
site is still in private hand. For all sites there is a prohibition on deterioration. Other
restrictions exist as well, such as the ban on ploughing up grasslands. All European
member states must ensure that the sites are managed both ecologically and economically,
as one of the Natura 2000 guidelines says that there has to be a management plan for
every single site. This criterion is not fulfilled yet in many states. Another objective of the
program is that monitoring has to be implemented. Since the Habitat Directive requires
information about condition and change of habitat types on a six-year regular base, the
need for an extensive, reliable and cost efficient monitoring is immense. Every country
develops its own method to monitor and report. In Germany, for all species and habitat
types, there is a stratified random sample, considering the different biogeographical regions
(alpine, continental, atlantic). For each reporting period information about state and
change are collected according to a complex system of evaluation (e.g. species: population
size, reproduction rate; habitats: structure, characteristic species). For very rare species
there is no stratified sample but a complete census of all remaining occurrences.

When thinking about monitoring one has to keep in mind that every EU member state
is requested to designate at least 10% of its terrestrial surface as a Natura 2000 site. So
the idea to use remote sensing data for direct monitoring as well as using remote sensing
products as parameters came up in several studies and is implemented in some countries.
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Figure 1.3.: Variation possibilities in one single Natura 2000 habitat type.

But until now, the operational use of at least semi-automated remote sensing analysis,
instead of aerial photograph interpretation (a more hand work-intensive type of remote
sensing) seems to be limited to pilot projects and exemplary cases (e.g. Bock et al. 2005,
Corbane et al. 2013, Diaz Varela et al. 2008, Feilhauer et al. 2014, Förster et al. 2008,
Mack et al. 2016, Schuster et al. 2011). Especially in its beginnings remote sensing
techniques failed or were imprecise in mapping very detailed habitats like Natura 2000
habitat types.

Nowadays, since new methods and technologies are evolving rapidly, the opportunities
for novel and operational applications of remote sensing data in monitoring are increasing.
However, there is still a need for valuable studies that focus on understanding and
identifying the right signals to differentiate and monitor, as well as creating new methods
or fostering promising ideas.

1.6. High Nature Value farmland

Another European program that requires broad monitoring of state and changes occurring
in selected landscapes is the High Nature Value farmland (HNV farmland) Indicator.
In the last 50 years intensification of agricultural land use systems drastically reduced
extensively used grassland areas as well as extensive crop fields, vineyards or structural
elements like hedges. But these areas are of high ecological value due to their high species
richness and occurrence of rare or endangered species. HNV farmland refers to farming
systems that support more extensively land uses, with low inputs of pesticides or fertilizers.
Cultivation as well as low stocking rates are beneficial to higher biodiversity (Veen et
al. 2009). Historically, many of the important habitats for rare and endangered species
have developed from a number of pre-industrial extensive agricultural practices which are
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now increasingly abandoned (Brunbjerg et al. 2015). HNV farmland is categorized into
three types: as farmland that supports 1) semi-natural habitats and vegetation, 2) low
intensity farming and diverse, small-scale mosaics of land use types, 3) rare species or
a high proportion of European or world populations (Andersen et al. 2003). Common
agricultural areas as well as agricultural sites in Natura 2000 or other conservation sites
could be HNV farmland. HNV farmlands have recently become part of the nature
conservation strategy within the EU, dictating the member states to develop a HNV
farmland indicator for monitoring areas still holding high nature values. As part of a
nature conservation strategy the European Union implemented an indicator as one of
many baseline indicators to identify and monitor changes in High Nature Value farmland
areas. This indicator is also part of the common agricultural policy (CAP) of the EU, as
a baseline indicator as well as an impact indicator of the success of conservation actions.
The HNV farmland indicator should represent the variation in biodiversity and natural
structures in the agricultural landscape while being easy to understand. The details
of how to implement such an indicator was at the discretion of each EU member state
(2009/147/EC). Since no rules have been specified on how to identify and monitor HNV
farmland areas, all EU member states address the national HNV farmland indicator in
different ways (Lomba et al. 2014 & 2015, Brunbjerg et al. 2015). Current approaches
are based on highly work intensive field-work and rough spatial extrapolation, or they
take place on very pragmatic, theoretical or superficial levels. HNV farmland in Germany
is monitored at a high spatial resolution; beside HNV farmland against no HNV farmland
three HNV farmland quality classes are established (Figure 1.4). The monitoring is
implemented on plots of Germany’s National Biodiversity Monitoring program in which
surveys of breeding birds were also carried out (Sudfeldt et al. 2012). The nationwide
representative sampling design consists of 2637 sample sites and is representative for the
whole of Germany. Its stratified sampling design is the result of 6 land use classes (e.g.
grassland, forest, urban) and 21 landscape types (defined by temperature, precipitation,
soil type etc.). Each sample site is 1 km2 in size. On these sites the German breeding
bird monitoring is implemented since 2004. Since 2009 the HNV farmland monitoring is
conducted on all sites that have at least 5% of arable land. On each sample plot all semi-
natural landscape elements are defined as HNV farmland (hedges, ditches, field margins).
Croplands, vineyards and grasslands that contain a certain amount of characteristic HNV
farmland vascular plant species are of high nature value as well (Benzler et al. 2015).
The monitoring is done on a four-year routine. From 2009 to 2013 the HNV farmland
indicator dropped from 13.1% to 11.7% and the trend is still decreasing. Especially in the
grassland areas a high decrease was noted, alerting policy makers as well as ecologists,
since up to two third off all plant species, rare as well as more common ones, depend on
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grassland. Therefore, loss in HNV grassland could lead to immense loss in biodiversity.

Figure 1.4.: Different stands of HNV grasslands and regular grassland, showing high
variability throughout the classes (Pictures: Stenzel, field campaign 2011 and
2012).

Some earlier studies aimed to assess the composition and quality of grasslands with
remote sensing data (Kawamura et al. 2008, Lauver 1997, Yamano et al. 2003, Franke et
al. 2012). For identifying HNV farmland with remote sensing data there a few approaches,
mostly working on a very rough scale (Belenyesi et al. 2008, Jackson et al. 2009, Parr et
al. 2006, Pointereau et al. 2007, Samoy et al. 2007, Weissteiner et al. 2011). Since the
definition of HNV farmland varies in each EU member state approaches on detecting it
with remote sensing have to be numerous and to vary a lot.

1.7. Remote sensing – A controversy discussed issue in
ecology

As seen before remote sensing is recognised as a powerful tool to acquire data on vegetation,
but up to date its use for operational monitoring and reporting applications is still limited.
One reason appears to be the knowledge gap between users like ecologists or nature
conservation agencies and producers or providers like the remote sensing community
(Vanden Borre et al. 2011). In the context of certain monitoring needs of international,
but also national and regional monitoring programs the usage and added value of remote
sensing is discussed controversially (Graef et al. 2009, Kerr & Ostrovsky 2003, Pettorelli
et al. 2014, Roughgarden et al. 1991).
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Users have long recognised the potential of remote sensing data in the visual inter-
pretation of aerial photographs since it is well known as an important tool for several
applications. Nevertheless the adoption of more advanced (semi-)automated analysis
techniques is lagging behind (Gross et al. 2009, Mehner et al. 2004). Some producers
even call ecologists to be reluctant to adopt new approaches (Aplin 2005). On the other
hand there is a huge mistrust in the user community, since some providers promised
heaven and Earth but could not fulfill their promises. As Vanden Borre et al. 2011
points out, many users are inexperienced with remote sensing data and products and
do not know what to expect from it. On the other hand, producers are sunken into
technological developments and details without knowing exactly what kind of application
the user needs or how exactly they intend to use it, have no knowledge of what are basic
requirements and what is incidental. Interdisciplinary studies aiming to develop products
specifically matching the scientific interests of both communities are not very common.
Mutual misunderstandings lead to unreasonable expectations, developments not suited for
the planned purpose, disappointment and general disbelief in the added value of remote
sensing (Kennedy et al. 2009, Turner et al. 2003). On the other hand there is a strong
interest among researchers, users and providers to better understand how conservation
and biodiversity research can benefit from remote sensing. Users, producers and their
corresponding research communities have lately begun to coordinate their works, and
precisely this synchronization is the key to improve the potential for remote sensing
data effectively supporting environmental operational applications (Petorelli et al. 2014).
Today it is not unusual to discover a session on the applications of satellite data to ecology
in meetings such as the International Association on Vegetation Science IAVS Symposium
in Brno, Czech Republic, in 2015, a conference with more than 700 participants. Its
remote sensing session, chaired by a geoecologist and a biogeographer, was well attended
and had fruitful discussions.

1.8. Observing from above – Added value and obstacles

The observation of Earth’s surface from above could have a huge added value for con-
servation monitoring: Optical remote sensing is based on physical measurements of the
reflectance of discrete wave lengths. From a technical point of view, the monitoring of
vegetation with remote sensing is the repeated measurement of an area with remote
sensing sensors with the intention to capture changes. It is based on the assumption that
what can be seen as a change on the ground is usually closely related to processes that
change the electromagnetic properties of the vegetation areas and are hence detectable
with remote sensing. These changes can be measured in terms of spatial and temporal
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extent, spatial and temporal stability as well as intensity and frequency. However, this
detection of changes is just the second step. The first step should always be to ensure that
it is possible to identify the target. If this is confirmed one can test if changes are to be
detected too and if no-change situations are also captured correctly. Changes can only be
detected by remote sensing if a change on the ground causes changes in the spectral signal
(Singh 1989). Measuring changes with remote sensing data typically requires knowledge
of the study site and the target class so that the features of the changed image can be
related to processes.

A big advantage for the application of remote sensing techniques is that vegetation has
a very characteristic electromagnetic spectrum which enables its detection (Figure 1.5).
It has low reflectance in the blue and visible red, and a peak in green and infrared. Since
the human eye cannot gain information about the infrared region, but green is part of our
visible range, plants appear green to us. Several insects (pollinators), however, can see
in the infrared wavelengths and can be attracted by certain infrared impressions (Koch
et al. 2009). With this green, infrared and near-infrared peaks and its small variations
due to species composition there is a region in the electromagnetic spectrum that could
be helpful for identifying and distinguishing vegetation types. The decision whether
to use hyper- or multispectral data depends on the objectives, as well as on costs and
available data (Aplin et al. 2005). Furthermore, remote sensing data can cover large
areas within short intervals and high spectral resolution, which is advantageous when
working in hard-to-access areas, and for areas that have various land cover classes. Such
a large geographic expansion of data cannot be achieved only by field work, at least not
exhaustively, and therefore remote sensing data could support studies or projects in case
of spatial extension.

But what are the obstacles in using remote sensing data for vegetation conservation
purpose? Even today with evolved spectral and spatial resolution of remote sensing
sensors and advanced methodical techniques, detecting and monitoring vegetation types
(semi-)automated with remote sensing seems to be a challenging task. One of the main
obstacles is that the target vegetation sticks not to the pixel boundaries, resulting in mixed
pixels. This is of course due to continuous vegetation occurrence as well as due to the
wide range of plant species composition and vegetation layering. Also other components
like open soil or litter could influence the reflectance signal. It will always be challenging
and sometimes impossible to put vegetation continuum into discrete classes (Lewis 1998).
One solution for this task is gradient mapping (Schmidtlein & Sassin 2004, Feilhauer et
al. 2014), but for some application where discrete classes are necessary a method like
this is not feasible. Another challenge is that the general spectral signature of plant
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Figure 1.5.: Electromagnetic spectrum and model reflectance curve of photosynthetic
active vegetation (curve after Feilhauer 2011).

compositions is usually very similar. Often there are just a few differences, which might
be due to structure, stress induced by nutrient availability or diseases, or aging.

Because of this one vegetation type can show differing spectral signals under different
environmental conditions. In this respect intraspecies variability can be higher than
interspecies variability. This leads to another challenge, the spatio-temporal variability
(Bruzzone & Persello 2009, Feilhauer & Schmidtlein 2011, Foody et al. 2006, Propastin
2009). Due to climatic reasons one type of vegetation may appear different at the same
time of one year but at different places, e.g. in higher and lower altitudes. In addition,
one type could appear rather different at the same place but at different times in the
year, due to phenology. Plants develop over time, plant communities as well. So one
single vegetation type could appear in many different shapes, i.e. could have rather
varying spectral signals throughout the year, at different sites, at different circumstances
(Feilhauer 2011). This can also be utilized: When working with multiseasonal data,
the combination of images of the same area taken at different times of the year, the
phenological curve of species or vegetation types could be recognised because even if it is
shifted slightly, e.g. after cold and long winter to later in the year, the form of the curve
stays more or less the same. Nowadays, this use of multiseasonal data is standard when
working with vegetation (Franke et al. 2012, Hunt et al. 2003, Toivonen & Luoto 2003,
Vogelmann et al. 2011).
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The mapping of vegetation types, i.e. of habitats with relevance for nature conservation
sometimes requires the complete mapping of an area, at times with dozens of different
land use or land cover types to differentiate, as well as the need to give information
about condition. In more specific approaches it could involve the identification of patches
of detailed target habitats in a complex mosaic of vegetation types not relevant for
conservation planning. Whereas in the former mentioned case several supervised and
unsupervised multiclass classification approaches are already conventional, far advanced
and used in applications, for the latter case implementation is more tricky and objective
of recent research.

1.9. Looking for the needle in the haystack: one-class
classification

When working with remote sensing data for detecting vegetation types sometimes one
has to look for the needle in the haystack. The problem is to map one or few classes of
interest in a large area that is mainly covered by numerous classes which do not need to
be identified nor separated.

Conventional supervised classification methods need to be trained with a representative
set of samples covering an exhaustive set of all classes and are in this case inefficient
for classifying one or few classes of interest (Mack et al. 2014). For classifying an area
on coarse scale, e.g. simple land cover classes forests, croplands, grasslands, detecting
some impressive events like fire losses or deforestation, or working in an area with only
few and very different vegetation types, multi-class classifiers are the method of choice.
The aforementioned examples can be well distinguished and are easy to sample. But if
not all occurring classes are defined in the training data a vital condition is not fulfilled
and significant classification errors can occur since all pixels of the not defined classes
will be mapped to one of the known classes (Boyd et al. 2006, Foody et al. 2006,
Mack et al. 2014). For some conservation purposes it is necessary to identify one single
target habitat from the vegetation matrix without needing any information about the
rest of the landscape. One of the Natura 2000 habitat types, to give an example, are
Molinion meadows, which are rare in most parts of Germany as well as in Europe, and
could be accompanied with vegetation types not of interest for conservation purposes.
Molinion meadows are a result of extensive farming practices and therefore endangered.
Information about condition and change of this one specific habitat type is important,
since it represents one of the species richest habitats in Central Europe. If one would
use a multiclass classifier for this purpose, one has to take into account that the target
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class, here the Molinion meadows, is defined on fine scale by species composition, and at
this level one has to define all other occurring classes and sample them. For conservation
purposes this would be a way to a cost intensive approach and would not at all help to
reduce field work but enlarge it, and therefore helps not to reduce sceptical positions.
The usage of one-class classifiers (OCC) seems to be more suitable for this task, but their
advancement and adjustment for monitoring vegetation with remote sensing has just
recently been started, including the work of this thesis.
OCC are classifiers that can deal with available presence while lacking absence data.

Particularly in remote sensing, OCC are used to map one specific class of interest. Training
these classifiers requires only reference data for the class of interest, while data for other
classes is not needed. This reduces the field sampling effort substantial. Among these
classifiers are three groups: the ones that actually used presence-only data like climate
envelope models (P: positives), one that adds pseudo-absences to the presence data
(PU: positive-unlabelled) and the third group which works with background data (PB:
positives-background) (Mack et al. 2016). Pseudo-absences are a spatial random sample
with additional constraints such as a minimum distance to observed presences or other
information about the target species (Zhang et al. 2015). Background data is a mere
random sample representing the distribution of environmental variables in the study
area and could also be called background distribution (Lahoz-Montfort et al. 2014). In
remote sensing the background is represented not by environmental layers, like in species
distribution modelling, but by different bands of a sensor ergo the reflectance of the area.
Binary classifiers, e.g. logistic regression, treat pseudo-absences or background as if they
were observed absences (Ferrier et al. 2002, Mack et al. 2016). In species distribution
modelling (SDM), as long as the occurrence rate of the target species in the landscape is
unknown, no occurrence probabilities can be calculated but only the relative likelihood
of occurrence (Phillips and Elith 2013) and these unscaled occurrence probabilities are
interpreted as relative site suitability (Hanewinkel et al. 2014). In remote sensing, since
one does not calculate environmental niche of a species but the combination of reflectance
that represents the target the best, one should not speak of suitability but of probability
or relative likelihood. OCC are well established in the field of SDM, where occurrence
records about one species together with environmental (or other) variables are used to
model the probable distribution. In remote sensing, where OCC are used to classify
satellite images, the presence of one class in a pixel leads naturally to the absence of all
other classes, whereas in SDM several species can occur at the same location. Interestingly,
OCC for vegetation mapping of conservation purposes are rather unknown.

The usage of OCC, remote sensing and field data for the task of mapping one class of
interest in a large area that is mainly covered by numerous classes which do not need to
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be identified nor separated seems to be promising, but has barely been studied. In the
context of conservation monitoring programs robust and reliable methods are needed and
both fundamental and applied research on this has to be pushed forward. At the same
time analyses of possibilities and limitations and their ecological reasons are necessary,
keeping the fruitful but sensitive teamwork on this topic alive.

1.10. Aims and Structure of this thesis

Even though remote sensing is studied and applied in numerous and diverse contexts
(chapter 1.3) it is not a common tool in nature conservation monitoring (chapter 1.4).
Mapping of habitats with relevance for conservation purposes often involves the identifica-
tion of patches of habitats in a complex mosaic of vegetation not relevant for conservation
planning. Conventional supervised classification methods need to be trained with a
representative set of samples covering all existing classes and are therefore inefficient
for classifying only few classes of interest (chapter 1.9). Limiting the necessary ground
reference to a small sample of target habitats and combining it with area wide remote
sensing data would greatly reduce and therefore support the field mapping effort. The
usage of one-class classifiers (OCC) seems to be suitable for this task, but has barely been
tested or applied in the context of large scale conservation mapping.

Therefore the focal and innovative point of this thesis is the exploration of the possibil-
ities and limitations of one-class classifiers for detecting habitats of conservation value
with the help of remote sensing and limited field data. The key issues of the thesis are:

◦ Can semi-automated one-class classification methods with remote sensing data and
limited field data map efficiently disperse habitat patches in a huge area – i.e. can
it support large scale monitoring programs such as Natura 2000 or High Nature
Value farmland?

◦ Can semi-automated one-class classification methods with remote sensing data and
limited field data differentiate between similar habitat types occurring in mosaic
like structures as well as differentiate between grasslands of different use-intensities
and therewith different nature values?

◦ How can success and failure of the above mentioned tasks be explained in an
ecological context?

◦ Do some one-class classifiers perform better than others in this respect?

◦ In which way are success and failure concerning the above mentioned tasks influenced
by landscape composition and sampling design?
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The thesis consists of three independent studies (chapter 2 to 4). Up to this point
two studies are published in peer-reviewed international journals while the third is in
preparation for submission:
The first study is a pioneering work that ascertains whether the usage of an OCC could
be suitable for mapping vegetation types of conservation value, taking the example of
Natura 2000 habitats (chapter 2). Since Natura 2000 is one of the most important
conservation programs in Europe and there is still a lack in satisfying European wide
monitoring it is of international interest to find new approaches supporting this issue.
Since the Natura 2000 habitat types are often rare but widespread, it is possible that an
OCC can solve this problem better than conventional methods. Applying and tuning the
Maxent algorithm (an OCC commonly known from species distribution modelling) with
low number of ground reference points along with multi-seasonal satellite imagery should
produce convincing habitat maps. Results should help to draw first conclusions in regard
to the aim of this thesis.

The second study consists of an examination of the potential of several OCC for mapping
and differentiating grassland of ecological value with remote sensing data (chapter 3).
The European High Nature Value (HNV) farmland indicator describes the amount
of non-intensive farmland. The expanse of more extensively used HNV grasslands is
constantly decreasing and their high biodiversity and uniqueness as habitats make them of
conservation value. Due to their almost identical plant functional traits the classification
of grasslands into several subclasses is known to be rather challenging. The results of three
OCC, each classifier with its individual technical focus, are compared regarding the mere
identification of HNV grassland in the landscape as well as the detailed differentiation of
three HNV grassland value classes. Success and failure are discussed in respect to the
ecological background.

Although there seems to be huge advantages of OCC for mapping vegetation types it is
important to point out some problematic instances concerning the accuracy assessment:
some errors do not appear in an accuracy assessment if the test set does not include the
unknown classes. Also results could be questioned to be trustworthy if validation data are
biased. If not all classes are known no information on true negatives and false negatives
are available (for instance if no information about the background is available or it is not
known if a given class belongs to the class of interest). Therefore it is of major interest to
evaluate if the performance of the OCC is stable and robust under changing conditions.
In the third study (chapter 4) robustness and weak spots of an OCC are tested in respect
to the effect of landscape composition and sampling design on accuracy measurements.
In sum this thesis introduces the utilisation of OCC for addressing rare vegetation

types with remote sensing data and gives impulses for future research that can be built



1.10. Aims and Structure of this thesis 17

upon it. Current possibilities and obstacles in identifying habitats of conservation value
with remote sensing data, field data and OCC are presented. These results should provide
a solid base for further work on applications, but also reveal the limitations of these
techniques.





2. Remote sensing of scattered Natura
2000 habitats using a one-class
classifier

2.1. Abstract

Mapping of habitats with relevance for nature conservation involves the identification
of patches of target habitats in a complex mosaic of vegetation types not relevant for
conservation planning. Limiting the necessary ground reference to a small sample of target
habitats would greatly reduce and there for support the field mapping effort. We thus
aim to answer in this study the question: can semi-automated remote sensing methods
help to map such patches without the need of ground references from sites not relevant
for nature conservation? Approaches able to fulfil this task may help to improve the
efficiency of large scale mapping and monitoring programs such as requested for the
European Habitat Directive. In the present study, we used the maximum-entropy based
classification approach Maxent to map four habitat types across a patchy landscape of
1000 km2 near Munich, Germany. This task was conducted using the low number of 125
ground reference points only along with easily available multi-seasonal RapidEye satellite
imagery. Encountered problems include the non-stationarity of habitat reflectance due
to different phenological development across space, continuous transitions between the
habitats and the need for improved methods for detailed validation. The result of the
tested approach is a habitat map with an overall accuracy of 70%. The rather simple and
affordable approach can thus be recommended for a first survey of previously unmapped
areas, as a tool for identifying potential gaps in existing habitat inventories and as a first
check for changes in the distribution of habitats.

This chapter has been published as: Stenzel, S., Feilhauer, H., Mack, B., Metz, A.,
Schmidtlein, S., 2014. Remote sensing of scattered Natura 2000 habitats using a one-class
classifier. International Journal of Applied Earth Observation and Geoinformation 33,
211–217.
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2.2. Introduction

Monitoring of vegetation becomes increasingly important due to impacts of global change
and on-going intensification of land use. National and international programs for nature
management and conservation aim to organize this monitoring effort. In 1992 the
European Union agreed upon the Natura 2000 habitat directive, a large monitoring
program dedicated to the conservation of certain habitats types in a network of protected
areas (Council Directive: 79/409/EEC, 92/43/EEC). Member states are required to
report about the state of the habitat types on a six-year basis. Across Europe, the
respective protected areas cover 13.7% of terrestrial surface (07/13; http://ec.europa.eu)
including 231 defined habitat types, which are usually corresponding to distinct vegetation
types. The reporting commitment hence demands a huge effort of mapping vegetation.
Most member states address this demand with field surveys, but there is still a lack
of knowledge on the distribution and state of habitats in large portions of area (Evans
2006). Here, remote sensing techniques that enable a (semi-) automatic assessment may
help. Current literature documents the potential of remote sensing for conservation
monitoring (see i.e. Nagendra et al. 2013, Turner et al. 2003, Vanden Borre et al. 2011,
for reviews). However, the implementation of advanced analysis techniques stays far
behind this potential (Fassnacht et al. 2006). For example, only 18 out of 25 European
member states are currently using remote sensing for the monitoring of Natura 2000 areas.
Most of them, however, rely on visual image interpretation (Vanden Borre et al. 2011).
The studies that are trying to take advantage of semi-automated classification methods
show a clear tendency toward applications in areas with an almost seamless mosaic of
relevant habitats (Alexandridis et al. 2009, Corbane et al. 2013). However, in reality, few
areas are entirely covered by target habitats. This means that most current studies avoid
to address an urgent problem. There is a strong demand toward classification techniques
that are able to identify isolated habitat islands in a matrix of non-relevant surface classes
(Boyd et al. 2006, Foody et al. 2006). Article 17 of the Habitat Directive claims the
monitoring of Natura 2000 habitat types is not restricted to revealed sites. Therefore
data need to be collected both in and outside the Natura 2000 sites to get a full overview
of conservation status of the habitat types (92/43/EEC). There are, however, to our
knowledge no studies addressing this problem using a realistic habitat mapping scenario.
Accordingly, we address the question if semi-automated remote sensing methods can help
to map disperse(and sometimes difficult to differentiate) habitat patches without ground
reference from non-relevant sites. We propose to use a small sample of ground reference
data from relevant habitats, multiseasonal, multispectral satellite imagery and a one-class
classifier (OCC) to address the problem. Limiting the required ground reference to a
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small sample of target habitats optimizes the field mapping effort. This may improve
the efficiency of large scale mapping and monitoring programs such as requested for the
European Habitat Directive.

2.3. Data and methods

The current study combines point based field data with areawide multiseasonal remote
sensing data (Figure 2.1). We use a maximum entropy-based OCC approach to generate
a set of habitat maps featuring logistic probabilities of habitat occurrences for each pixel.
Several OCC-maps of different habitat types are subsequently combined to build one
joined habitat map.

Multiseasonal 

remote      

sensing data

Point based    

field data       

class Xn

OCC Maxent

Map of area wide 

probability for class Xn

Threshold definition 

for class Xn

Decision step: If still several classes present,    

class with highest probability gets pixel

Combined map of 

n habitat types

Figure 2.1.: Workflow.

2.3.1. Field based data

The study took place south of Munich, Germany, the study site covers an area of
20 km × 50 km (Figure 2.2). This area is mainly characterized by grasslands, mires
and forest. The landscape was shaped by Pleistocene glaciers and features a rich variety
of mires and bogs. The moraine bedrock is calcareous; therefore most minerotrophic
plant communities are calciphil. In spring of 2012 four different types of Natura 2000
habitat types (HT) were sampled on ground. We focused on four grassland and open
wetland types, because they are common in the area and co-occur in mosaic structures
with partly continuous transitions. These four habitat types are the following (Natura
2000 classification key, LfU and LWF 2010): HT 6410: Molinia meadows on calcareous,
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peaty or clayey-silt-laden soils. HT 7120: Degraded raised bogs still capable of natural
regeneration. HT 7140: Transition mires and quaking bogs. HT 7230: Alkaline fens.
Ground reference data of habitat occurrences were collected in the area of investigation
using plots positioned in predefined areas from a habitat inventory. An initial seed of
reference plots was placed randomly within these areas and plots that did not pass a
homogeneity check or could not be assigned to one of the tar-get habitat types were
removed. Due to the spatial resolution of the RapidEye imagery (5 m) we selected a plot
size of 9 m× 9 m to avoid mixed pixels. All dominant and characteristic plant species
and some structural parameters (height, density, cover fractions of litter and open soil)
were recorded and the habitat type was assigned. We collected in total n = 125 Plots (50
for HT 6410, 39 for HT 7120, 10 for HT 7140, 26 for HT 7230). The location of the plots
was determined in the field with the GPS receiver Magellan(TM) Mobile Mapper 6 (error
< 2 m).

Subset

Figure 2.2.: Study site in Southern Germany (1, 000 km2, n = 125).

2.3.2. Remote sensing data

For this study, we used Earth observation (EO) data of the RapidEye sensors, which
feature a high spatial (5 m) as well as temporal (about 10 days) resolution and provide
spectral information in the blue (440−510 nm), green (520−590 nm), red (630−685 nm),
Red-Edge (690− 730 nm) and NIR (760− 850 nm) region. The RedEdge band has been
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developed especially for analyses targeting vegetation (Blackbridge 2013). When EO data
are used for vegetation analyses of small habitat patches, a high spatial resolution of
the imagery is desirable (Gillespie et al. 2008, Turner et al. 2003). Five images were
acquired uniformly distributed during the vegetation period in May, June, July, August
and September of 2011. 40.128.627 pixels covered the area of investigation. The RapidEye
data have been delivered as Level-1b imagery. The images have thus been radiometrically
as well as sensor corrected and were band aligned. The data were subsequently further
pre-processed with the operational, fully automatic processing system CATENA (Krauss
et al. 2013). In this processing chain, the satellite imagery was firstly automatically
orthorectified by physically correcting the sensor model of the Level-1 data and applying
it to the images (Krauss et al. 2013). The imagery was then projected onto a reference
digital elevation model (DEM), which was generated as best-of-DEM from SRTM C- and
X-band, Mona-Pro and GTOPO data with a 30 m spatial resolution (Krauss et al.2013).
This allows for the generation of the ortho images, which are finally atmospherically
corrected with ATCOR-3 to eliminate atmospheric and topographic effects using an
accurate spectral and radiometric sensor calibration as well as the DEM for mountainous
terrain (Richter 2009).

2.3.3. Maximum entropy modelling

The one-class classifier used in this study is based on the maximum entropy approach
(Sethna 2006, Shannon 1948). This method is particularly known for modelling potential
species distributions based on environmental parameters and has been implemented in
a software called Maxent (Phillips et al. 2004). As a general-purpose machine learning
method it is also suitable to map real distributions based on remote sensing data (Bradley
et al. 2012 for a critical discussion of the use of remote sensing data for modeling potential
and actual species distribution). Until now it is not well established in remote sensing
(but see Amici 2011 Cord 2012, Evangelista et al. 2009, Li & Guo 2010, Zimmermann et
al. 2011, for some applications). Since the maximum entropy approach is able to model
the spatial distribution of the response variable based on presence-only data, it is able to
deal with our topic of mapping diffuse habitat patches without ground reference from
non-relevant sites. The approach can be described from two perspectives, the statistical
(Elith et al. 2011) and the machine learning perspective (Dudík et al. 2004, Phillips
et al. 2004). In terms of statistics, the idea of the maximum entropy approach is to
minimize the relative entropy between two probability densities, one estimated from the
presence data of habitat types and one from the landscape, defined in covariate space
(Elith et al. 2011). The algorithm estimates a ratio of the f1(z)/f(z), where z is a vector
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of predictors (in our case the reflectance in a specific pixel), f1(z) is the conditional
probability density, i.e. the probability density of z given the target is present, and f(z)

is the unconditional probability density. The occurrence records are required for the
estimation of f1(z) and the background samples for f(z). The mathematical estimation
of the density is based on the maximum entropy principle and is described in detail
in Phillips et al. (2006) and Phillips & Dudik (2008). Maxent software allows a large
basis expansion of the original predictors z. These basis expansions are quadratic terms,
interactions step functions and hinge features calculated from the original covariates. If
chosen, the probability densities are estimated in this expanded feature space which allows
for an improved discrimination between the class of interest and the rest of the imagery.
To avoid over-fitting, a l1-regularization is used (Dudík et al. 2004). The regularization
parameter beta can be specified to regulate the amount of regularization. The data-output
of the Maxent modelling software is a map of predicted suitability (relative probability for
each pixel) ranging from 0 to 1 (Elith et al. 2011). Maxent is available free for educational
and non-commercial use as a multi-platform Java based software.

2.3.4. Our classification procedure

We built Maxent models that relate point-based information on each of the target habitat
types to area wide, multiseasonal surface reflectance. With five dates and five spectral
bands we had a set of 25 spatial predictor variables. No mask was applied to the image
and no derived indices were used, to keep the approach as simple as possible. A sample
of 10,000 background points was randomly taken from the imagery. For habitat presence
data we used 50 for HT 6410, 39 for HT 7120, 10 for HT 7140, 26 for HT 7230, all
divided into test and training data (1:1). The derived model provides a value of logistic
probability of occurrence for habitat types. The separate modelling of the four habitat
types resulted in four individual, pixel-based predictions. These predictions were joined
into one habitat map featuring distributions of the four classes. The logistic, relative
probability values of the output of different models depend on properties of background
and sampling and can-not be kept constant in different investigations. We approached the
problem by using consistent sets of predictor layers and an almost similar ratio of presence-
to background-data. We tested the influence of sampling by adopting Maxent models with
variable subsamples and found only minor effects on the results. To delineate habitats
from the landscape matrix we had to define an appropriate threshold of probability. This
task proved to be rather challenging. The optimal threshold with minimized scatter and a
minimum of missed habitats highly depends on the class of interest. The ‘sensitivity equals
specificity’ approach to deter-mine this threshold is a viable solution to this challenge
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(R package SDMTools, VanDerWal et al. 2012). The function is based on the sampled
ground reference data of one class as presence data, ground truth of the other three
classes as absence data, and this for all four cases. While this is not specificity in a
common sense it is well suited for defining a threshold. Values above this threshold, one
for each class, were set to zero. Conclusively, the final prediction was based on a maximum
rule of the individual OCC results. Accordingly, every pixel was allocated to the class
with the highest probability value, resulting in a combined map where every pixel was
associated either to one of the four habitat types or to no class. Maxent model building
and model prediction was done with the Maxent Wrapper (Oldenburg et al. 2012) within
the EnMAP-Box (Held et al. 2012). Threshold definition, threshold setting and merging
of the four predictions were done in the R statistical environment (R Core Team 2013)
using the packages raster (Hijmans, 2013) and SDMTools (VanDerWal et al. 2012).

2.3.5. Validation

The Maxent software provides information on the fit of the generated models using
measures such as the area under the curve (AUC). However, we have no information about
the absence of habitats in the landscape. Therefore, conventional validation measures are
not applicable. The habitat presence data were randomly divided into test and training
data (1:1). Based on these data, overall-accuracy (OAC), users-accuracy (AccUser) and
producers-accuracy (AccProd) were calculated for the classification and confusion of the
four habitat types (Table 2.1). It is important to note that these measures quantify in
our case merely the con-fusion between habitats, but not the accuracy that was achieved
in the detection of habitats within the landscape. For the latter, additional absence data
would be required. In addition, the miss rate is given by dividing the number of falsely
negative classified plots by the total number of plots. For further comparison, Cohens
Kappa is provided (Cohen 1968). As a second validation approach we computed three
values for each pixel (Figure 2.5). (a) We calculated how many classes were considered
in the majority voting. This served as an assessment of how many of the four different
classes had values larger than zero after setting the threshold and provides an overview
about ambiguous or unambiguous decisions. (b) We computed the probability value of the
most likely class in order to provide a general view of the strength of the decision. (c) We
assessed the Shannon index as an expression of how certain the decision for the class with
the maximum probability value was. Here an index of 0 indicates unambiguous conditions,
high values indicate similar probabilities for different classes, resulting in uncertainty
regarding the assignment to a single class. These three values provide complementary
information about the certainty or uncertainty of classification in each pixel. In all three
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figures unstable conditions are shown in red, stable conditions in blue.

2.4. Results

As a first result, probability maps of occurrence were derived for each of the four habitats
(Figure 2.3). These maps also illustrate that the frequency of habitats as well as the
sharpness of their delineation varies from class to class. Merging the four individual
habitat distribution maps results in the multi-class classification.

Table 2.1.: Confusion matrix of four habitat types: HT separability (training- and test-
data (bold)).

´

0 1 km

Figure 2.3.: Maxent classification output: occurrence probability of four different habitat
type classes (a) HT 6410, (b) HT 7120, (c) HT 7140, (d) HT 7230.

The validation of this classification resulted in an OAC of 73% for training data and 70%
for test data. The validation error was unevenly distributed across the classes. Degraded
raised bogs (HT 7120) were very well predicted, but also the distinction between Molinia
meadows (HT 6410), degraded raised bogs (HT 7120) and alkaline fens (HT 7230) was
reasonable. Transition mires and quaking bogs (HT 1740) mixed up with other classes:
AccProd varied between 40% and 84% (training 56% and 83%), AccUser ranged from
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6410 Molinia meadows 7120 Degraded raised bogs 7140 Transition mires

7230 Alkaline fens HT-Plot

¸

´
0 0,5 1 km

Figure 2.4.: Subset of the combined map of four habitat types.

29 to 100% (training 40% to 100%) (Table 2.1). Cohens Kappa was 0.58 for test data
(training 0.63). The identification of habitat types in the unknown landscape matrix was
possible with an underestimation of habitat occurrence of 8% (falsely negative classified
divided by total number of plots). Figure 2.4 shows a subset of the map with the four
habitat classes.
Figure 2.5 provides information on how many classes were involved in the pixel-wise

decision process. 95.1% of all pixels were not assigned to any habitat type after the
threshold setting. Of the classified pixels, 73% were assigned unambiguously. In 24%, 3%
and 1% of the classified pixels there were two, three and more candidate classes (Figure
2.5a). Concerning the habitat types separability we were able to reach an unexpected
classification depth (we are not aware of other work approaching this level of detail in
similar applications). 58% of the probability values of classified pixels were in the range
of 0.6–0.79, 25% of all probability values were above 0.8 (Figure 2.5b). The calculated
Shannon index for each classified pixel is between 0 and 1.4, most of the pixels have
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Figure 2.5.: a) Number of classes involved in decision process for each pixel. b) Highest
occurrence probability value for each pixel. c) Shannon Index for each pixel.

an index of 0.6 to 0.8 or 1 to 1.2 (Figure 2.5c). Moreover, it could be observed that
misclassified plots frequently feature a higher Shannon value than correctly classified
plots (Figure 2.6). This relationship is comprehensible since high Shannon values indicate
similar occurrence probabilities for all classes under consideration and thus a higher
ambiguity of the decision. The same applies to the maximum probability values. Here,
misclassified plots generally feature a lower maximum probability, indicating an increased
likelihood of confusion.
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Figure 2.6.: Relationship between correct/wrong classification results four all 125 plots
and Shannon Index together with maximum probability. The actual plots for
each habitat type were separately divided into correct/wrong classified plots
and whiskers-boxplots for their Shannon Index and maximum probability
value are given.

2.5. Discussion

The task of identifying disperse patches of habitats can be hardly resolved using multi-
class approaches (such as the maximum likelihood or support vector machines). These
classifiers require a training set comprising all classes of the area to be represented in
the reference data, which involves an extreme mapping effort. As an alternative, a mask
can be used to exclude all areas which do not belong to one of the classes of interest.
However, this requires a priori decisions or a pre-classification of the area. Methodological
alternatives to conventional classifiers are known under the terms classification with reject
option (Dubuisson & Masson 1993), partially supervised classification (Mantero et al.
2005, Marconcini et al. 2014) or one-class classifiers (Minter 1975, Phillips et al. 2004,
Sanchez-Hernandez et al. 2007a).

We decided to use Maxent particularly due to the reported strength of solving complex
classification problems with limited training data. An advantage of Maxent is its ability
to deal with presence-only data and small survey sample sizes (Phillips & Dudik 2008).
There is hence no need for ground reference information about the rest of the landscape.
Non-linear relations and multi-dimensional feature spaces can be described (Elith et
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al.2011). Further, continuous output about the spectral properties that are used for
habitat detection is given (Saatchi et al. 2008). However, as with all OCC a challenge is
a satisfactory validation of the resulting models if just presence-only data is available.

Apart from the problem of finding the targets in a non-relevant matrix, the discrimina-
tion of similar habitats tends to be difficult. For example, the discrimination of types
of grasslands that differ in shades of species composition has been rarely accomplished
(Franke et al. 2012). Unfortunately, this level of discrimination is frequently key to
the accomplishment of many habitat inventories. It has been proposed before to use
multiseasonal remote sensing data to resolve this problem (Franke et al. 2012, Hunt et
al. 2003, Toivonen & Luoto 2003, Vogelmann et al. 2011). The varying phenological
development of individual species contributes to the overall reflectance. Accordingly,
using several scenes from different times of the year could improve the detection of slight
differences in species composition. The RapidEye sensor, which has a good trade-off of
spatial, temporal and spectral resolution (Tyc et al. 2005), is well suited for tasks of
multi-season remote sensing of vegetation targets.

The potential to discriminate vegetation types with a distinct phenological development
may, however, be affected by an increased level of accumulated noise and inferences in
multi-seasonal data. To take full advantage of a unique phenological development, it is
inevitable that this development shows a synchronous trend across the area of investigation.
This synchrony is sometimes affected by influences of phenology. Unfortunately, climatic
effects may lead to a considerable asynchrony and cause a dissimilar spectral appearance
of otherwise similar vegetation stands. The impact of such climatic effects on vegetation
mapping is well known since the early days of remote sensing (e.g. Spurr 1948). In
multiseasonal data, these effects may accumulate and severely impair the mapping accuracy
(Feilhauer & Schmidtlein 2011, Feilhauer et al. 2013). Furthermore, disturbance events
or differences in land use may hamper the use of phenological differences by adding local
noise. In the present study, the benefits of multiseasonal data prevailed and enabled an
accurate detection of habitat types.
Our results indicate that the chosen method is capable to accurately predict Natura

2000 habitat types. Concerning the habitat type separability we were able to reach
a required classification depth with an OAC of 70%; identifying habitat types in the
landscape matrix was possible with an underestimation of 8%. Also the second validation
approach shows that the results of our classification approach are reliable. This validation
results in a map indicating where the classification is more and less reliable. For 73% of all
pixels classified as habitats, the classification was unambiguous. It has been shown that
mistakes are more frequent where probability values of different classes for each pixel were
more similar or in case of small maximum probability value of the winning class. These
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positive results were not granted since Maxent models are affected by a range of problems.
For example, individual Maxent models result in probabilities that are influenced by
sampling (Elith et al. 2011). Joining such results, as has been done here, needs some
care. We used the same background data for all models, a representative sample of
occurrences with no apparent sampling bias and a similar ratio between presence- and
background-data. Validation shows that these measures reduce the error to a bearable
minimum.
We can see that both AccProd and AccUser vary between the different habitat types

(Table 2.1). Especially results for HT 7140 lacked robustness. This type consists of
transition mires and is thus by definition a mixed class. Classes like this will continue to
be a big challenge (Evans 2006, Schmidtlein & Sassin 2004).
Comparing our results with existing studies is difficult, since the problem of huge,

unknown and non-relevant classes is commonly avoided by using masks or by working
in areas without non-relevant sites. Hence, a well-established method of validation does
not exist. We have to point out that most often validation examines the distinction
of class of interest from the rest, whereas here separability of very similar classes from
one another is measured. There are studies with similar goals and partially similar
methods but the results are difficult to compare since confusion matrices are lacking
or treating each class separately (Amici 2011, Li & Guo 2010). Other related studies
are limited to one class of interest (Sanchez-Hernandez et al. 2007a, 2007b), in contrast
to our study, where four habitat types are classified. Considering our results we like
to recommend this simple and affordable approach for further studies on surveys of
previously unmapped areas, identifying potential gaps in existing habitat inventories and
checking for changes in the distribution of habitats. Open challenges identified in this
study include the following points: (1) More adequate validation methods are urgently
required. Such validation should take into account confusions with the landscape matrix
instead of focusing solely on the confusion between habitats. Accordingly, some sort of
efficient sampling still has to take place in the entire landscape. (2) Another task is to
find a meaningful and reproducible solution for the definition of the threshold for the
transformation of probabilities into binary information on habitat occurrence. Here, more
research is needed. (3) For principal reasons, some problems may never be completely
resolved: the influence of spatial non-stationarity on vegetation and spectral pattern is
crucial, a problem which is attended just lately (Bruzzone and Persello 2009, Foody et
al. 2006, Propastin 2009). Spatial non-stationarity in the relation between vegetation
types and reflectance is induced by different phenological stages in different places at the
same time of a year (Feilhauer & Schmidtlein 2011). For example, meadows in an area
can feature similar species composition but different flowering aspects depending on their
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altitudinal position. To know about and deal with this variation requires more attention.
Compared to spectral libraries (Clark et al. 2007) we found no ill-posed problems

(Hadamard 1902, Garabedian 1964) meaning that the relation between vegetation traits
and reflectance was unambiguous. Given phenology, stress and stochasticity of species
composition, the assumption that vegetation reflectance can be re-constructed from
primary “pure” reflectance spectra is over-optimistic. We therefore think and support
that field data will remain crucial for successful mapping of vegetation.

2.6. Conclusions and outlook

We successfully identified dispersed patches of four habitat types scattered across a
complex background matrix of vegetation not relevant for nature conservation. With our
parsimonious approach, it was possible to accurately delineate and to distinguish very
similar habitat types, which is crucial for applications in conservation and management. In
addition, the discrimination between habitats and non-relevant sites was rather satisfying.
The chosen methodological approach has thus a promising potential for monitoring Natura
2000 habitats that tend to be rare in the landscape. It was possible to provide a consistent
classification of a large area using a small ground reference sample. Still, it has to be
kept in mind that the performance of any approach may depend on the vegetation types
under investigation. Further work will thus be necessary to test the transferability of the
method concerning time, area and target classes. Further research is also necessary in the
field of threshold definition to reduce underestimation and scatter. The establishing of a
conventional method of validation for approaches like this is of crucial importance.

Acknowledgement

This study was funded by the German Aerospace Center (DLR) on behalf of the German
Federal Ministry of Economics and Technology (BMWi) with research Grant # 50EE1033.



3. Identification of High Nature Value
farmland with remote sensing and
minimal field data

3.1. Abstract

In the last 50 years intensification of agricultural land use systems drastically reduced
extensively used grassland areas. These areas are of high ecological value due to high
species richness and occurring rare species. Therefore, recent European Union (EU) laws
stipulate the conservation and monitoring of this farmland, also called “High Nature
Value” (HNV) farmland. As a consequence of these new laws, a so called HNV indicator
system was implemented that requires all EU member states to establish a nationwide
monitoring system for HNV areas. These monitoring systems are challenged among
other by the difficult differentiation between grassland types which today at fine scale
is only possible with time and cost intensive field work. Due to this high work-load
and financial limitations, nationwide field campaigns have to be sample-based and hence
will not deliver a spatially consistent result. In this study, we examine whether low and
High Nature Value grasslands can be differentiated with remotely-sensed reflectance data,
which could support existing field survey-based monitoring approaches. We used multi-
seasonal, multispectral remote sensing data (RapidEye) in combination with sparse field
data (collected in southern Germany) and three one-class classifiers to classify A) HNV
grassland against other areas and to differentiate between B) three quality classes of HNV
grassland according to the current German HNV monitoring approach. The results for A)
indicated high performances of the tested approaches to identify HNV grassland areas.
Biased support vector machine delivered best overall results (high detection rate and
low false positive rates). However, the results also showed a consistent underestimation
of HNV grasslands. Results for B) showed that a separation into several HNV quality
classes is not possible with any of the tested approaches. We conclude that with the
presented approach HNV grasslands can be identified from the landscape matrix based on
its spectral signal. Combining the presented approach with an object oriented classifier
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or with land registry data could further improve the results.

This chapter has been published as: Stenzel, S., Fassnacht, F.E., Mack, B., Schmidtlein,
S., 2017. Identification of High Nature Value grassland with remote sensing and minimal
field data. Ecological Indicators 74, 28–38.

3.2. Introduction

Due to their high species richness and as habitats of numerous endangered species,
non-intensively used grassland regions are primary targets of nature conservation in
Europe (Dierschke & Peppler-Lisbach 2009, Rennwald 2000). In the European Common
Agricultural Policy (CAP) (Council Directive: 1974/2006/EC) these kinds of grasslands
are considered as an important part of High Nature Value (HNV) farmland. The concept
of HNV farming was developed in the 1990s from a growing understanding that the
conservation of biodiversity in Europe is linked to the persistence of low-intensity farming
systems (Baldock et al. 1993). The HNV farmland definition differentiates three HNV
types: i) farmland with a high proportion of semi natural features, ii) dominated by low
intensity farming or a mosaic of semi-natural and cultivated land and large-scale features,
and iii) as farmland supporting rare species or a high proportion of European or world
populations of species (Andersen et al. 2003).

HNV grasslands are often leftovers from traditional land use and are hence found at low
nutrient sites featuring habitats for specialist species (plants and animals) with narrow
niches (Henle et al. 2008, Sukopp et al. 2006). HNV grasslands have therefore been
assigned with a high conservation value (Critchley et al. 2003, Sullivan et al. 2010). Since
the 1970s, due to the intensification of agricultural land use systems, the area of grasslands
in general and of species rich HNV grasslands in particular is decreasing dramatically
(Haber 2014, Korneck et al. 1998, Meisel 1983, Veen et al. 2009). Currently, permanent
grassland covers 15% of the European Union (EU) and 34% of the European agricultural
area (European Union 2010, Eurostat 2015). According to the European environmental
agency (EEA 2010), today only one quarter of these grasslands can still be considered as
non-intensive, meaning that most areas are already depleted of species. Since grasslands
contribute an essential part of species richness (Veen et al. 2009) such a decrease is a
major threat to the conservation of biodiversity (Stoate et al. 2009).
To limit further losses of semi-natural or extensive grasslands, several conservation

programs were established. The aim of these programs is to ensure that high species
richness will coexist alongside productive agricultural areas (Armsworth et al. 2012,
Scherr & McNeely 2008). For an evaluation of the applied measures, some indicators have
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been proposed and put forward by the EU Rural Development policy framework (Benzler
2009, 2012). This also includes the HNV farmland indicator which aims on quantifying
the proportion of ecological valuable farmland in Europe.

Since every EU state independently decides about the way to derive the HNV farmland
indicator, a variety of differing approaches exists (Oppermann et al. 2012). In many
cases available land use-, land cover-, remote sensing- or species-data have been used,
while in some other cases specific field surveys have been conducted (Evaluation Expert
Network 2009). However, no European wide standardized framework exists and some of
the conducted approaches have either been highly work-intensive of were lacking accuracy.
For example, the German Federal Agency for Nature Conservation found CORINE data
as well as evaluations on farm-level too coarse for monitoring HNV farmland areas, since
they often appear as small patches in a matrix of intensively managed areas (Begemann et
al. 2007). Integration of the HNV farmland monitoring into other national programs was
not achievable because of misfits in spatial resolution, temporal resolution or thematic
content.

The current monitoring method in Germany for identifying HNV grassland areas uses
a list of HNV character species for the identification of HNV grasslands (Benzler et al.
2015) (in this study, the focus lays on grassland areas, hence we refrain from presenting
the additionally existing approaches to identify HNV crop fields or HNV agricultural
landscape elements). Every four years, a number of fixed 1 km2 sample areas are checked
for the appearance of HNV character species to evaluate a trend in changes of grassland.
In a hierarchic approach, every seemingly species-rich and homogeneous area is examined
for character species by using transects. According to the number of character species the
plot is assigned to one of three HNV quality classes (not to be confused with the three
HNV types of Andersen et al. 2003 described above). The results of this sample based
approach are then extrapolated at the national scale. Although this approach is already
highly optimized in terms of workload, the regular monitoring is labour-intensive due
to the relatively large amount of monitoring sites, which have to adequately represent
approximately 5 million hectare of grasslands in Germany.

In this context, the application of (high temporal and spatial) resolution remote sensing
data have been discussed in the scientific literature as an efficient supplement to field-based
monitoring systems that are used to identify and monitor natural vegetation areas (e.g.
Feilhauer et al. 2014, Förster et al. 2008, Rocchini et al. 2013, Schmidtlein & Sassin 2004,
Schuster et al. 2015, Stenzel et al. 2014 and many more). Several more studies had a
specific focus on HNV areas but mainly used comparably coarse remote sensing and other
spatial data to identify areas of HNV farmland on broad scales (e.g., Weissteiner et al.
2011, Belenyesi et al. 2008, Pointereau et al. 2007, Samoy et al. 2007, Parr et al. 2006,
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Jackson et al. 2009). On the other hand, the number of studies on finer scales is very
sparse. One exception is the study of Hazeu et al. 2014 who used fraction of vegetation
cover and land cover/use data products derived from multi-seasonal SPOT4/5 and Rapid
Eye data to map HNV farmland types. Additionally, multi-seasonal remote sensing data
was used in a step-wise classification approach based on object-based image analyses to
highlight changes in the HNV farmland landscape. Another relevant study stems from
Sullivan et al. 2011 who studied the possibilities of using fine-scale spatial data to map
semi-natural habitat cover on farms for the identification of HNV farmland in Ireland.
Although not directly pointing on remote sensing data, the authors clearly state that the
more commonly used broad scale mapping methods for HNV farmland have a high risk
of overseeing farmland biodiversity on the individual farm level.
In our study, we addressed this knowledge gap by attempting to match the current

German practice for surveying HNV areas in the field with remote sensing data. The
current HNV grassland mapping procedure in Germany consists of (1) an identification
of the HNV grasslands themselves and (2) a differentiation between three HNV quality
classes. A differentiation of other (intensively used) agricultural areas is not relevant.
With typical supervised classification methods in remote sensing, all classes need to be
covered by the training data to ensure classification success. However, collecting sufficient
and accurate training data (especially in non-relevant patches) is connected to financial
challenges. This raises the question, whether alternative methods exist to differentiate
HNV grassland from other grassland with remote sensing data. Potential approaches
include the integration of a mask that can be used to exclude all areas which do not belong
to the classes of interest, but this requires a priori information or a pre-classification of
the area which again requires reliable reference information. Suitable methodological
alternatives to conventional multi-class supervised classifiers include classification with
reject option (Dubuisson & Masson 1993), partially supervised classification (Mantero
et al. 2005) or one-class classifiers (Mack et al. 2016, Minter 1975, Phillips et al. 2004).
These methods have in common that they focus on few or only one target class and
thereby minimize the required reference information.
Here, we combine a small sample of ground reference data from relevant grassland

classes with multi-seasonal, multispectral RapidEye data and recent one-class classifiers
(OCC) from the field of machine learning. The big advantage of using an OCC is that it
can deal with presence only data, so no sampling in non-relevant areas is needed. This can
increase the efficiency of large scale mapping and monitoring as needed for HNV farmland
monitoring. The proposed approach can only work (1) if the HNV grassland areas are
spectrally separable from all intensively used grasslands (including various intensity levels
and species compositions) and (2) if the three defined HNV quality classes differ in their
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spectral properties.

Based on earlier research, we hypothesize that a spectral separation of intensively and
non-intensively used grassland might be possible due to differing functional traits of
the two grassland types affecting the spectral properties of the plants. While in highly
intensive grassland areas, plants are typically not facing shortage of environmental factors
such as nutrient or water supply, non-intensively used grasslands can often be found
to be short on at least one of these factors. In non-limited environments, competitive
species featuring for example tall-growing, productive grasses, or herbs with large leaves
both with high chlorophyll content typically prevail, while in limited environments, other
species featuring properties adapted to survive under non-optimal conditions (e.g., smaller
or shorter leaves, thicker wax layers, etc.) occur (Cingolani et al. 2005, Pierce et al. 2013).
In addition the effect of intensive or extensive mowing or grazing has a huge impact
on occurring plant functional traits. Such differences in traits were found to influence
the spectral properties of plants and hence support their differentiation (Kattenborn et
al. 2016 (submitted), Schmidtlein et al. 2012). On the other hand, we assume that
the distinction of multiple HNV quality classes will be more challenging as their species
composition largely overlaps (see also Section 3.3.1).

Accordingly, the main objectives of the present study are to (i) investigate if HNV
grassland can be accurately discriminated against all other landscape elements using
remote sensing and plot based field data of HNV grassland only, (ii) to analyse if it is
possible to use the same method to differentiate between HNV quality classes, and finally
(iii) to compare different OCC algorithms for their practicality to address objectives (i)
and (ii).

3.3. Data and methods

3.3.1. Field based data

We defined HNV grassland based on the current German approach of HNV monitoring
(Benzler et al. 2015) and also sampled our plots accordingly. The core element of
the approach is a list of HNV character species which contains species that are not
necessarily rare or endangered, but are characteristic for extensively used grasslands of a
region. Examples of such indicator species are Achillea ptarmica L., Knautia arvensis
(L.) Coult., Succisa pratensis Moench, Tragopogon pratensis L. During the field survey,
each homogeneous area (in terms of species composition) is screened from outside the
field for occurrences of HNV character species. Then, every seemingly species-rich plot
is examined for HNV character species by using a 2m× 30m transect. In the current
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German approach, each transect is then assigned to one of three quality classes based on
the number of occurring HNV character species (not to be confused with the three HNV
types of Andersen et al. 2003):

◦ HNV 1: Exceptionally High Nature Value farmland (8 or more HNV character
species).

◦ HNV 2: Very High Nature Value farmland (6 or 7 HNV character species).

◦ HNV 3: Moderately High Nature Value farmland (4 or 5 HNV character species).

The different classes of HNV grasslands in the study area have been inventoried during
field surveys in the growing seasons of 2011 and 2012.
The study site is located in southern Germany, in the foothills of the Bavarian Alps,

and covers an area of 20 km × 50 km (Figure 3.1). It is characterised by grasslands,
extensive peatlands, mires and forest. The moraine bedrock in the study site is calcareous
and therefore most minerotrophic plant communities are calciphil. The grassland in the
area of investigation had been shaped by a variety of land use systems, from intensive to
extensive and small to medium parcel sizes. Peatland has been under severe anthropogenic
pressure through drainage, cultivation and peat removal (Franke et al. 2012).
Seventy-five grassland sites were surveyed in the field. The location of the plots was

determined with a differential GPS receiver of type Magellan (TM) Mobile Mapper 6
(positional error < 2m). An initial set of reference plots was placed randomly within
the study area. Plots occurring outside of grasslands or that did not pass a homogeneity
check (we visually checked that the corresponding RapidEye pixel lay in a spectrally
homogeneous area and not at a border between two spectrally differing areas) were
removed before the field survey. Following the official guidelines of the German HNV
monitoring system, all HNV character species and additionally the dominant species (in
terms of coverage) were recorded along the transects. The HNV quality class was then
assigned based on the number of occurring HNV character species, while the dominant
species were not directly used in the study but gave some ecological information about
each plot.

From the 75 surveyed grassland sites, 43 were assigned to the non-HNV grassland class,
12 to HNV-3, 14 to HNV-2 and 6 to HNV-1 (a total of 32 HNV grassland sites). For
extended validation, 28 additional non-grassland plots were obtained from the LUCAS
(Land Use/Cover Area Frame Statistical Survey) database. Implemented by Eurostat,
this survey produces harmonized land cover/use statistics (http://www.ec.europa.eu/
eurostat/web/lucas) and gave in our case information about presence or absence of

http://www.ec.europa.eu/eurostat/web/lucas
http://www.ec.europa.eu/eurostat/web/lucas
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grasslands. All non-grassland plots extracted from the LUCAS data were additionally
verified by visual comparison with the RapidEye data and by considering field photographs
provided by LUCAS. Additionally, we excluded plots located at the edges of grassland.

0 5 102,5 Kilometers

HNV plot

non-HNV plot

Figure 3.1.: Location of surveyed grassland sites within the study area in Bavaria,
Germany.

3.3.2. Remote sensing data

We used data from RapidEye, a system that features a high spatial (5m) and temporal
(about 10 days) resolution and provides spectral information in the blue (440− 510nm),
green (520−590nm), red (630−685nm), RedEdge (690−730nm) and NIR (760−850nm)
region of the radiometric spectrum. When remote sensing data are used for vegetation
analyses of small habitat patches, high spatial resolution of the imagery is desirable
(Gillespie et al. 2008, Turner et al. 2003). Furthermore, the availability of spectral
information in the near infrared (NIR), and the RedEdge is supposed to be valuable as
the NIR carries valuable information to separate plant species (Fassnacht et al. 2014,
Feilhauer et al. 2015). We used five images per year, unevenly distributed over the
vegetation period from April to September 2011 and 2012 (see Table 3.1). The uneven
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distribution is a consequence of limited data availability due to cloud cover. The decision
to use five images was based on earlier research that showed that less than 5 images led to
notably worse results, while using more than 5 scenes resulted in only marginally improved
results (Stenzel et al. 2015). The RapidEye data were delivered as Level-1b imagery and
were further pre-processed with the automatic processing system CATENA (Krauss et al.
2013). For further information see Stenzel (2014). With five images each consisting of
five spectral bands we built an image stack of 25 bands for each year, which served as
input to the subsequent classification procedure. While free RapidEye data is available in
limited amounts for scientific purposes, the current cost of such high-resolution imagery
(RapidEye, Ikonos, Geoeye) is around 1-14e/km2 depending on sensor and acquisition
mode (Ørka & Hauglin 2016).

Table 3.1.: Dates of RapidEye data.

3.3.3. Classifiers

As outlined in the introduction, there is an increasing demand toward classification
techniques that are able to identify habitat patches in a matrix of non-relevant landscape
classes (Boyd et al. 2006, Foody et al. 2006). One-class classifiers (OCC), based on
presence-only data, are able to map patches of specific target classes without ground
reference from all other non-relevant classes. In our study, we compare the usage of
the three OCC-algorithms: Maxent, One-class support vector machine (OCSVM) and
Biased support vector machine (BSVM). In addition, we compare the OCC results for
the differentiation of several HNV quality classes with results obtained from a supervised
support vector machine (SVM) classification (multi-class classifier).

The Maxent classifier is based on the maximum entropy approach (Shannon 1948,
Sethna 2006). This method has earlier been applied for modelling potential species
distributions based on environmental parameters (Elith et al. 2011, Dudik et al. 2004,
Phillips et al. 2004). The algorithm is able to perform efficiently even with few occurrence
records (Pearson et al. 2007, Wisz et al. 2008). We used Maxent version 3.3.3k with
default settings and have chosen the logistic output format. The algorithm has been
implemented in a multi-platform Java based software called Maxent (Phillips et al. 2004).
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The semi-supervised one-class SVM (OCSVM) is one of the most common positive-
samples-only classifiers in remote sensing. It was formerly used for anomaly detection
(Banerjee et al. 2006) or studies about incomplete and unreliable training data (Munoz-
Mari et al. 2007) and has recently been engineered for change detection (Camps-Valls
2008). When few or less precise training samples are available, the OCSVM can produce
unreliable results (Munoz-Mari et al. 2010). Therefore, as with other pattern recognition
and machine learning algorithms, it is crucial to parameterize the OCSVM with care.

The biased SVM (BSVM) is a special form of a binary SVM and is adapted to solve an
OCC problem with a positive and unlabelled data training set. It maximises sample size
while minimizing numbers of unlabelled samples classified as positive. It also constrains
positives to be correctly classified including noise error. Therefore the two main parameters
on positive and negative errors are weighted separately (Liu et al. 2003). We used the
R-package ‘one-class’ which provides extensive possibilities for parameter tuning and easy
data handling for Maxent, OCSVM and BSVM (Mack 2015).

For the attempts to classify multiple HNV quality classes, we additionally tested a
multi-class SVM algorithm. This algorithm can be considered standard in the supervised
classification of remote sensing data. Here, we first applied a minimum noise fraction
(MNF) transformation (Green et al. 1988) to the RapidEye raster stack. Earlier studies
have shown that using the first few MNF components as input to a supervised SVM leads
to generally high classification performances for separating vegetation species (Fassnacht
et al. 2014) if highly correlated data (e.g., hyperspectral or multi-temporal) are used.
Subsequently, the SVM classification was based on the available reference data from the
three HNV quality classes and a workflow that was earlier described by Fassnacht et al.
(2015). In short, we used a SVM algorithm implemented in the “e1071” package of R
and applied a radial basis function kernel. Based on the reference data, the classifier was
tuned for the two kernel parameters gamma and cost with an automated grid search. This
automated grid search allows to optimally adapt the classifier to the data while at the
same time prevents over-fitting (see Kuhn & Johnson 2014 for more detailed information).

3.3.4. Classification scenarios

For monitoring HNV grasslands it is interesting to not only differentiate between HNV
grassland and the rest of the landscape, but also between the three different HNV quality
classes. Therefore, we applied the classifiers to two scenarios: A: HNV grassland vs rest
(‘finding HNV grassland’) and B: 3 classes HNV-1, -2, -3 vs rest (‘differentiating HNV
grassland’) (Figure 3.2).
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Figure 3.2.: Workflow.

3.3.5. Classification process

First, the OCC models were trained with the extracted reflectance information from
the positions of the surveyed sites and the corresponding information on the categorical
classes from the field survey. Afterwards the trained OCC models were applied to the full
RapidEye scene.

The derived OCC results provide a pixel-based value of probability of occurrence for
each class. All results were rescaled from zero to one. To delineate HNV grassland
from the rest of the landscape, we had to define an appropriate threshold of probability.
Earlier studies described an optimal threshold as the threshold that minimises scatter
and simultaneously minimises missed habitats. This translates into a threshold where
sensitivity equals specificity. This threshold can be automatically retrieved with available
tools (R package ‘SDMTools’: VanDerWal et al. 2012) and was shown to be successful in
former OCC studies (e.g., Stenzel et al. 2014). For Scenario B, the three predictions for
the three HNV quality classes were joined into a single map. Every pixel was allocated
to the class with the highest probability value of the three individual OCC runs. This
resulted in a map where every pixel was associated either to one of the three HNV quality
classes or to none.

Being aware that in Scenario B alternative approaches to OCC exist and are more
commonly used, we wanted to compare the OCC approach against a multiclass approach.
That is we calculated a SVM classification for the HNV-1, -2, -3 classes. Because we have
no class information about the rest of the landscape, we used the result of Maxent for 2011
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in Scenario A as a HNV grassland mask which we applied to the RapidEye image stacks.
Within the remaining pixels the 3 different HNV quality classes were differentiated. The
decision to use the Maxent result of 2011 as mask was somewhat arbitrary but based on
the good classification results of the corresponding model runs in combination with the
visual impression of the classification maps.

All classifications were conducted for two data sets stemming from 2011 and 2012
which allowed us to draw some conclusions on the robustness of the applied methods.
Field data for each class was divided randomly into training and test data (2:1), 20
model iterations were run and mean results are reported. All processing was done in the
statistical environment R (Raster package: Hijmans 2013, R Core Team 2013).

3.3.6. Validation

The major benefit of the OCC approach - the ability to deal with presence only data - is
challenging for validation. For OCC approaches, conventional validation measures are
difficult or impossible to apply or are only partly suitable to assess reliable classification
accuracy. As a consequence, we calculated several statistical measures of classification
performance that could be obtained based on the available reference data. To get
information about classifier performance concerning absences of HNV grassland areas
we applied two dataset: (1) absences from LUCAS data (LUCAS-no-grassland plot:
bareland, water, urban area, woodland, wetland, cropland), (2) absences from own field
work (grassland plots that are non-HNV-grassland).

Sensitivity (true positive rate or producer’s accuracy): This measure describes how
many of the areas classified as HNV grassland indeed are HNV grassland areas. With the
HNV grassland presence data (test data) we calculated sensitivity or true positive rate
(TPR) defined as:

TPR =

∑
TP∑

(TP + FN)
(3.1)

where TP are true positives and FN are false negatives. Hence, the TPR describes the
proportion of HNV grassland reference areas that are correctly classified as such.

Specificity (true negative rate): For the two datasets of absences (non-HNV-grassland,
LUCAS-no-grassland) we calculated the specificity or true negative rate (TNR) defined
as:
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TNR =

∑
TN∑

(TN + FP )
(3.2)

where TN are true negatives and FP are false positives. Hence the TNR describes the
proportion of non HNV grassland areas that are correctly identified as such. As we
calculated TNR separately for the non-HNV-grassland plots of our own reference data
and for the LUCAS-no-grassland plots we can also make distinct statements concerning
the separability of (1) HNV grassland areas from non-grassland areas and (2) HNV
grassland areas from other intensive grassland areas.

Overall accuracy: Last, we calculated with all test data (presence test data, non-HNV-
grassland data and LUCAS-no-grassland data) the overall accuracy (OAC) defined as:

OAC =

∑
TP +

∑
TN∑

(TP + TN + FP + FN)
(3.3)

As the quantitative validation of the OCC maps is challenging, we additionally judged
the quality of the obtained classification map based on a visual comparison between the
classification maps and the remote sensing data. Such a visual assessment can serve as
a supplement of the numeric validation procedure and is also important to judge the
suitability of the produced maps for supporting practical field work. The location of the
presented subsets of the classifications maps were selected so that they contain samples
of all three HNV quality classes and are representative for the study area.

Comparable validation for the multi-class SVM approach was challenging. Applying the
Maxent 2011 mask was a necessary restriction, to exclude all non-HNV-grassland areas,
but leads to change in available validation samples. Moreover it leads to the situation that
one could not include LUCAS-no-grassland or non-HNV-grassland plots into validation,
since the mask predefines that all remaining area is one of the three HNV grassland
classes. Therefore just overall accuracy concerning the confusion matrix of the three
classes against each other is calculated for the multi-class SVM, so the comparison of
the OCC results with the premasked SVM classification result is limited and focuses on
visual comparison.

Additional insights were obtained by regressing reflectance values against numbers of
HNV character species per plot. This was done using partial least squares regression
(Wold et al. 2001) as implemented in the autoPLS package (Schmidtlein et al. 2012)
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and served as a test of linear relation between spectral information and HNV character
species numbers.

3.4. Results

For Scenario A, that is classification of HNV grassland area against the rest of the
landscape matrix, we observed reasonable sensitivity values (true positive rate) of 72%,
75% and 81% for Maxent 2011, Maxent 2012 and OCSVM 2011, respectively, but a
low value of only 53% for OCSVM 2012. The BSVM resulted in a perfect sensitivity
(100%). Specificity (true negative rate) for LUCAS-samples (non-grassland areas) is
almost always up to 100%. Specificity values obtained with non-HNV-grassland field
samples are reasonable for both Maxent and OCSVM 2011 (86%, 74%, 77% respectively)
but only fair for OCSVM 2012 (65%) and almost perfect for BSVM (98%, 95%). Overall
accuracy is reasonable for Maxent and OCSVM 2011 (85%, 82%, 83%) and fair for
OCSVM 2012 (71%) and again almost 100% for BSVM.
For Scenario B, that is the differentiation of the three HNV quality classes against

each other and the landscape matrix, the sensitivity values drop for all approaches.
Sensitivity does not reach reasonable values for Maxent (59%, 59%), is even worse for
OCSVM (44%, 28%) but shows reasonable values for BSVM (94%, 81%). In the case of
the no-grassland areas from the LUCAS data, specificity is almost perfect for Maxent
(93%, 100%), reasonable for OCSVM (89%, 89%), and perfect for BSVM. Specificity for
non-HNV grassland samples is varying a lot between the different approaches (Maxent:
44%, 65%, OCSVM: 51%, 65%, BSVM: 84%, 79%). Overall accuracy is reasonable for
Maxent (62%, 73%) and fair for OCSVM (59%, 60%), and reaching reasonable values
of 91% and 89% for BSVM. The overall accuracy for the premasked multi-class SVM
reaches 58% and 55%, but keep in mind that comparison is limited due to reduction of
validation data set (Table A.4; Figure 3.5).

Based on the accuracy measurements, BSVM resulted as the most suitable classifier
to identify HNV grassland in our test area and to differentiate between the three HNV
quality classes. Maxent and OCSVM both reached moderate accuracies, with the OCSVM
being slightly worse in most cases. The BSVM reaches high OAC values in both scenarios
but these values are somewhat relativized by an examination of the actual classification
maps (see subsets in Figure 3.3 and Figure 3.4). BSVM produced results in which classes
were accurately differentiated on the reference plot scale, but the HNV grasslands areas in
general seem to be notably underestimated. This can for example be observed by focusing
on the shape of the agricultural field (in the false colour composite panel) in which the
HNV grassland sample plot of Figure 3.3 is located. Supposedly, the whole field would be
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Figure 3.3.: Subset of the classification maps (Maxent, OCSVM, BSVM) for HNV grass-
land vs rest at two actual plot-sites, plus multiseasonal false colour image
(May11_band4, Aug11_band4, Sep11_band4) of the site.

classified into the HNV grassland area when applying field methods, while the BSVM only
classified a small fraction of the field into the target class. Furthermore, for Scenario A,
the classification maps of the BSVM show increased variability across the two examined
years when compared to Maxent and OCSVM (Figure 3.3), which gave relatively stable
classification patterns across the years. Examining the classification maps of scenario B a
high instability both for classified area as well as for the different HNV quality classes
can be seen for every classifier and for the different years. The most stable results can be
recognised for the premasked multi-class SVM approach (Figure 3.4).
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Figure 3.4.: Subset of the classification maps (Maxent, OCSVM, BSVM) for HNV-1, -2, -3
vs rest at an actual plot-site, plus results of the multi-class SVM (within the
masked area that was defined as HNV grassland by Maxent 2011 classification
result (see Figure 3.3).
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Figure 3.5.: Accuracy measurements for Scenario A and B for the different classifiers for
2011 and 2012. Sensitivity, specificity, Overall accuracy.
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3.5. Discussion

Up to now, the potential of remote sensing for the detection of high ecological value
grassland areas (such as High Nature Value (HNV) grassland) has barely been studied
on fine scales. However, spatially explicit data from remote sensing could provide
important information for applications such as biodiversity conservation or monitoring
of land use intensification and is also needed for reports to the EU Rural Development
policy framework. Here, we tested the application of recent implementations of one-class
classifiers (OCC) to map HNV grassland against all other landscape elements from multi-
temporal RapidEye data (Scenario A). Furthermore, we extended the approach with an
additional subdivision of the HNV grassland areas into three sub-categories defined by
the German Federal Agency for Nature Conservation (Scenario B).

From the tested approaches, BSVM provides the best accuracy measures in all cases,
followed by Maxent and OCSM with OCSM reaching notably lower accuracies. These
three OCC can be distinguished into two groups depending on the data used for training:
P-classifiers are only trained on presence samples of the target class (P for positives), PU-
classifiers additionally learn from unlabelled (U) samples (such as background samples).
While OCSVM is a P-classifier Maxent and BSVM belong to the PU-classifiers. The better
and more stable performance of Maxent and BSVM (Baldeck & Asner 2015, Li & Guo
2010, Liu et al. 2003, Mack et al. 2016) is likely to be based on the additional information
from the background data, thereby making PU-classifiers usually more expensive in
respect of processing time (Munoz Mari et al. 2010).

Separating HNV areas from the landscape matrix worked almost perfect for BSVM
and fine for Maxent and OCSVM, but the separation of the three HNV quality classes
was not possible with Maxent and OCSVM. Given the small size of training and test
samples and the high variability in species composition of the examined HNV quality
classes a high underestimation of the target class, especially regarding Scenario B, could
be expected and was confirmed by the medium sensitivity values. Specificity showed in all
cases that HNV grassland could be well separated from other landcover classes (specificity
LUCAS data) with high accuracy. The differentiation between HNV grassland and other
grasslands (specificity of non-HNV-grassland) was more complicated as indicated by
dropping accuracy measures. Nevertheless, accuracies were still reasonable for Scenario
A (all classifiers) while for Scenario B only BSVM provides reasonable results. The
observed results vary between the years, but we could not identify a clear trend concerning
this variation. Only BSVM performed consistently better for the year 2011. However,
the differences to 2012 are minimal. There are obvious reasons for variations of the
results between the years including slightly varying farmland management, phenology
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and different dates for data recording. Varying classification results due to phenology
have been reported frequently in earlier studies attempting vegetation classification from
remote sensing data (Blackburn & Milton 1995, Key et al. 2001). However, based on our
results, we can only confirm earlier findings (Stenzel et al. 2015) that the applied number
of five annual RapidEye scenes seems to deliver comparably stable results in terms of
accuracy.
While the numerical validation of the classifications indicated high performances for

Scenario A, visual interpretation of the resulting maps slightly lowered the expectations.
The maps of Maxent and OCSVM which both produced less accurate results according
to the obtained performance measures, showed an overestimation of the actual HNV
grassland areas. Contrary, the maps of BSVM showed a consistent underestimation
of HNV grassland when assuming a spatial consistency of the assigned class within an
individual field. This also indicates a slight over-adaptation of the BSVM to the data.
Putting these findings into the view of a practitioner, the BSVM could be a valuable

tool to reliably identify HNV grassland areas without including too many false positives.
This would help to avoid wasting resources by sending field crews to areas wrongly
classified as HNV grassland. At the same time, the BSVM is less suitable for mapping
the actual extent of HNV grassland areas, as it most probably will underestimate the
areas according to the field guidelines. For operational application, a combination of
BSVM results with land-registry data could be a suitable approach to identify fields with
potential HNV grasslands. On the other hand, the Maxent classifier might be a better
application oriented choice for mapping the actual HNV grassland area. Maxent showed
reasonable accuracies and high temporal stability (the differences between the mappings
results of the two years were relatively low). Judged on expert knowledge of the area, the
presumable borders of the HNV grassland areas are mapped reasonably well. Therefore it
could support a preselection for the actual field work.
For making any of these approaches interesting for operational approaches a cost-

efficiency analysis would be required. Such an analysis would have to compare the
additional cost caused by the remote sensing data against the savings obtained by a
potentially more efficient field campaign and the additional information provided based
on the spatial consistency of the remote sensing product. Such cost-efficiency studies are
still very sparse in the remote sensing community but have been presented for example in
a forestry context (see Fassnacht et al. 2016 for a short summary). Newly available free
remote sensing data for example from the recent Sentinel-2 mission could further foster
remote-sensing based approaches for monitoring HNV areas. The lower spatial-resolution
of Sentinel-2 could be an obstacle for the approach in the presented study but this could
be partly compensated by the increased spectral information. Further research is required
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to draw final conclusions on this matter.
From an ecological perspective, the good results for Scenario A match our hypothesis

that the functional traits shaping the reflectance properties of species in intensively used
grassland areas differ from those of species in extensively used HNV grassland areas
and conforms with earlier studies (e.g., Schmidtlein et al. 2012). A notable correlation
between grassland usage intensity and optical remote sensing data has already been
identified in earlier studies (e.g., Franke et al. 2012). Franke et al. 2012 also pointed out
that spatially explicit data on grassland use intensity could provide valuable information
for biodiversity conservation as well as for monitoring land use intensification in areas
with high nature value which agrees with our findings.

For Scenario B, our results showed that with the given approach there is no relevant
signal in the reflectance of grasslands to divide it into the defined HNV quality classes.
This again matches our hypothesis. The definition of the HNV quality classes based on
character species leads to a situation in which a single occurrence of one HNV character
species makes the differences between classes HNV 1 and 2 (or 2 and 3). As none of
these individual character species is likely to make up for a notable portion of a 5 by 5 m
RapidEye pixel, it seems obvious that a differentiation of the HNV quality classes based
on their spectral properties will be challenging in most cases. This is also mirrored in
earlier studies on remote-sensing based estimations of alpha-diversity in grasslands which
typically reported notably higher error rates than a single species (e.g., Hall et al. 2010).
As a consequence, the results for Scenario B are all notably worse than those of Scenario
A (Figure 3.5, Table A.4). Highest OAC values were produced by the BSVM, followed by
Maxent. OCSVM was outperformed in nearly every case of Scenario B. Focusing on the
classification maps for Scenario B, huge differences in the classification patterns between
the classifiers as well as between the two years can be observed (Figure 3.4). More or
less the same areas are addressed as HNV grassland, but the variability of the HNV
quality class allocated to each pixel is high. This applies to all of the tested classifiers and
therefore, the still very high accuracies reported for the BSVM (in all validation cases)
may be seen as a good example for the existing problem of validation when reference
data is as sparse as in the current case: The reported accuracies are correct for what they
are testing (i.e. the quality of the model based on the available samples), but they do
not necessarily agree with the wall-to-wall mapping accuracy or reliability. The difficulty
to separate the three classes of HNV grassland with the applied remote sensing data is
further confirmed by the multi-class SVM approach. Even so the visual impression of the
SVM maps gives the most stable results (Figure 3.4), there is still a lot of fuzziness in the
maps, and confusion matrix of the three different classes gave only fair results.
These results indicate that a separation of the three current HNV quality classes,
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defined by occurrence of special HNV character species, cannot be accomplished at least
with this kind of multispectral data and with a pixel resolution of 5m. To further examine
this assumption that the separability of the three HNV quality classes is not possible
due to their spectral similarity, the RapidEye reflectance values were regressed against
plot HNV character species number by partial least squares regression (Wold et al. 2001)
using the autoPLS package (Schmidtlein et al. 2012). This resulted in a R2 value of 0.17
for the calibration and 0.07 for the validation set. This further underlines that there is
not much detectable variability within the spectral information that relates to the number
of HNV character species and therefore the defined HNV quality classes.

The results of our study are closely related to the addressed HNV farmland type
(extensive grassland) and its quality classes. Earlier studies focusing on HNV farmland
mostly addressed other HNV farmland types which focuses on structural diversity of
agricultural areas (Weissteiner et al. 2011) which in most cases also led to the application
of spatial data with coarser grain (Parr et al. 2006, Pointereau et al. 2007). Furthermore,
as Hazeu et al. 2014 have already pointed out: all classification methods to identify HNV
farmland with remote sensing data must be adapted to regional characteristics such as
field size, type of landscape in regard to the complexity of the HNV farmland definitions,
as well as temporal variability and bioclimatological characteristics.

3.6. Conclusions and outlook

An accurate pre-identification of potential High Nature Value (HNV) grasslands from
satellite data could be of help for nature conservation administration when planning
obligatory field surveys. Here, we tested the suitability of multi-temporal, multispectral
RapidEye data in combination with recent one-class classifiers to differentiate three HNV
quality classes of farmland areas in a diverse agricultural landscape in South Germany.

Our results showed that the differentiation of the three HNV quality classes (defined
based on the number of characteristic HNV species) was impossible with multitemporal
RapidEye data, due to lack of spectral variability between the three classes. However,
the differentiation between HNV grassland and the rest of the landscape was successful.

Further improvements of these results could be achieved by integrating more spectral
information (e.g., from new systems such as Sentinel-2 or upcoming hyperspectral missions)
and by further optimizing existing one-class classifier algorithms (e.g., more sophisticated
parameter tuning). Embedding the presented classification scenarios into an object-based
approach could be beneficial to improve on the mapping omissions which were observed
for the BSVM - the most successful algorithm in the sample-based evaluation.
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Generating a HNV grassland mask by excluding a huge amount of the rest of the
landscape in which with a very high probability no HNV grassland is occurring could
reduce the amount of fieldwork to a more manageable extent. This could be valuable to
support field campaigns and reduce related costs by reducing the frequency of erroneous
field visits to non-HNV areas. Also the possibility of using a multi-class classifier approach
with an OCC HNV grassland mask has to be studied further.

Although HNV farmland detection methods are in general to some point promising,
remote sensing does not provide the appropriate solution for adequate monitoring alone.
Especially the differentiation of several grassland usage intensity classes due to their
similar plant functional traits - and hence similar spectral properties - is challenging.

Acknowledgement

This study was funded by the German Aerospace Center (DLR) on behalf of the German
Federal Ministry of Economics and Technology (BMWi) with research Grant # 50EE1033.



4. How do landscape patterns affect the
mapping of rare target classes? –
Remote sensing based classification of
habitats with Maxent

4.1. Abstract

For conservation purposes robust and standardised monitoring methods are needed. If
remote sensing based mapping of rare habitats is attempted in a landscape with many
other land-cover classes, one-class classifiers (OCC) are a promising option. The validation
of OCC results is complex yet crucial and it may be affected by the landscape composition
and the sample size. Due to this, the robustness and weak spots of an OCC were tested in
this study with regard to their effects on the accuracy measurements and therefore on the
reliability of the results. For this purpose artificial landscapes were generated to avoid the
typical problem of case-studies, typically only making locally valid statements about the
suitability of a tested approach. On the contrary, simulated distribution data provides
complete knowledge about the properties of the target class and the landscape. Therefore,
assessing and discussing the robustness of OCC for usage with remote sensing data is
possible in a more objective way. In the presented study, the performance of the OCC
improved with an increasing number of target samples for training, as well as with an
increasing number of background samples for training. In the latter case the study revealed
a saturation and decrease at a certain number of background samples. Results were
inconclusive with respect to the prevalence of the target class in the artificial landscape.
OCC performance increased with a decreasing number of pixels from similar classes in
the artificial landscape. Whereas results concerning target sample size and the amount of
similar classes in the background confirmed conclusions of earlier studies from the field
of species distribution modelling, results for background sample size and prevalence of
target class gave new insights and a basis for further studies and discussions. The tested
OCC Maxent proved to be a robust and reliable classifier for mapping vegetation types
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in combination with remote sensing data.

This chapter is submitted as: Stenzel, S., Dolos, K., Fassnacht, F.E., Schmidtlein, S.,
201X. How do landscape patterns affect the mapping of rare target classes? – Remote
sensing based classification of habitats with Maxent (Ecological Informatics).

4.2. Introduction

Several national and international attempts and programs to stop the loss of biodiversity
have increased the demand for effective vegetation monitoring approaches to support
nature conservation. It is challenging to obtain information over large areas for the
purpose of landscape management particularly when some of the target classes are rare.
As an example serve Natura 2000 habitat types (HT) (Council Directive 79/409/EEC,
92/43/EEC), which are defined based on a very fine semantic scale (typically on the
level of species composition, meaning on one or more plant communities), additionally
complicating their detection and separation. In this context remote sensing is recognized
as a possible support technique, especially in combination with field data (Corbane et al.
2013, Feilhauer et al. 2014, Mücher et al. 2013, Schuster et al. 2011, Vanden Borre et
al. 2011). However, special remote sensing approaches need to be developed. Standard
methods such as conventionally supervised classifications are not well-suited for efficiently
identifying a rare target habitat type in a complex landscape as they require extensive and
expensive reference data for all occurring classes. If a remote sensing-assisted mapping of
rare target classes is attempted in a given landscape with many other land-cover classes,
one-class classifiers (OCC) are a promising option (Amici et al. 2011, Cord 2011, Liu &
Guo 2010, Mack et al. 2016, Stenzel et al. 2014, 2017).
OCC are also used in the field of species distribution modelling (SDM), which has a

similar objective (identifying the distribution of a single species). Most current species
distribution models are based on statistical correlations between species occurrence and
spatial environmental data. Some OCC require environmental information as well as
reference information on both, target species presence and absence for a sample location
(presence-absence data; therefore also called binary classifiers). Other OCC methods
require only presence records and environmental information (Boyd et al. 2006, Foody et
al. 2006). The latter group can be further subdivided into models that only use presence
records and other approaches that additionally draw samples from the environmental
information at random locations (Mack et al. 2016). This so called background data is
meant to represent the distribution of environmental variables in the study area (presence-
background data) (Lahoz-Montfort et al. 2014). This background data is likely to contain
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both, presence and absence samples. One of the best established and frequently applied
OCC in species distribution modelling is Maxent (Phillips et al. 2004), an algorithm and
a software package developed for modelling species distributions with species occurrence
records along with a large random sample of the background environment (Phillips &
Dudık 2008). Maxent applies the maximum entropy principle (Sethna 2006, Shannon 1948)
for fitting the model so that the estimated distribution deviates from a uniform distribution
only to the lowest degree required to explain observations. The good performance of
Maxent in modelling rare species with low sample sizes (Elith et al. 2006) raises the
question of whether this could also be true for the task to model rare habitat types in
remote sensing, in particular in the presence of similar classes.

Although Maxent has shown its potential to efficiently map target classes from remote
sensing data (Cord & Rödder 2011, Li & Guo 2010, Mack et al. 2014, Stenzel et al. 2014),
there are still some challenges to face. Model performance for identifying a target class
is known to be affected by landscape patterns, its environmental properties and by the
sampling design (Elith et al. 2011). From a remote sensing perspective this relates to
the landscape composition, its corresponding spectral properties and the sampling design.
There are two sampling design driven data properties: 1) the number of positive field
observations for the target class, and 2) the number of background points used in model
fitting. Regarding landscape patterns, there are two additional data properties: 3) the
prevalence of the target class in the landscape (here: number of target class pixels divided
by the total number of pixels), and 4) the similarity of the target class spectra to the
spectra of other land-cover classes in the landscape.
So far, all conducted studies using remote sensing for monitoring nature conservation

areas via Maxent are case studies conducted over limited geographical extents. Therefore,
the reported performance of Maxent in these studies is valid for a single study area
with the given landscape composition that is used to sample the background data. A
generalization of these local findings to judge Maxent’s ability to map a given target
habitat is limited as landscapes in central Europe are heterogeneous and changes in the
size and composition of the background might have a notable influence on the obtained
results. This subject is broadly discussed in the species distribution modelling community
(Bean et al. 2012, Halvorsen et al. 2016, Hernandez et al. 2006, Wisz et al. 2008) with
focus on environmental variables but has hardly been addressed in remote sensing.

This has some practical implications, as illustrated by the following examples. For the
development of operational remote sensing supported monitoring systems, it is important
to have reliable estimates of how much reference data has to be collected during the field
surveys to reach an optimal balance between cost of the data acquisition and obtained
accuracy. Amongst other factors, the minimum amount of reference data in an OCC
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based approach will depend on the landscape composition, which varies across study sites
and hence cannot be determined in a general way based on case studies. One way to
progress towards more general conclusions is to apply simulated distribution data. This
data allows for controlling how factors are combined, how species are distributed and
enables a complete validation (Miller 2014, Lahoz-Montfort 2014) as complete knowledge
about the properties of the target class and the landscape is given.
The application of simulated data where the class membership of each pixel is known

exactly is a common approach in the field of algorithm testing, but has rarely been applied
to address more application-oriented objectives. We argue that by examining artificial
remote sensing datasets with varying amounts of land cover classes and background
information, as well as with differing proportions of pixels belonging to the class of interest
and co-occurring similar habitats, we are able to assess and discuss the robustness of
Maxent for the usage with remote sensing data in a more objective way. This makes it
possible to retrieve generalizable information about strength and weakness of Maxent.
Generalization is needed to assess the potential of the method for a broader application
in nature conservation and monitoring activities based on remote sensing data and to
ultimately find an optimized balance between field work and classification accuracy.
To support monitoring for nature conservation with remote sensing and field data it

is of particular importance to get information about the needed extent of field surveys
and to estimate the potential of this approach for reliable habitat distribution maps.
Therefore, in this study we investigate how (1) the sample size of the target class and
2) the number of background points, 3) the prevalence of the target class and (4) the
similarity of classes in the background to the target class affect the performance of Maxent
based classification and thereby the variation in validation results. It is of importance for
further works to know about the robustness of an OCC for the aforementioned purpose.
The tests have been conducted using simulated data sets constructed from true reflectance
assessed by remote sensing data (Figure 4.1).
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Figure 4.1.: Objectives.

4.3. Methods

4.3.1. Field data

Four Natura 2000 habitat types (HT) were examined in this study: HT 6410 Molinion
meadows on calcareous, peaty or clayey-silt-laden soils; HT 7120 Degraded raised bogs still
capable of natural regeneration; HT 7140 Transition mires; HT 7230 Alkaline fens (LfU &
LWF 2010). Since all four habitat types were nutrient-limited wetland habitats, occurring
together in mosaic-like structures and building a natural gradient, they share many species
and trait characteristics. Ground truth data originates from a field campaign in southern
Germany in 2011 and 2012. In this area, the four habitat types often occurred together
in big mosaic structures with other non-protected land-cover types (grasslands, forests,
crop fields). Especially the similarity of the four habitat types and their co-occurrence,
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often with continuous transitions, made this data set suitable for our experiment. Based
on expert knowledge of the area we extended the sample points gathered in the field by
visual interpretation, but only for sites where we reliably knew that one of the habitat
types occurred. The assignment followed the Natura 2000 classification key (LfU and
LWF 2010).

4.3.2. Remote sensing data

We used reflectance data from multi-temporal RapidEye imagery of 2011. We used five
scenes and all five spectral bands of the sensor at a pixel size of 5m. The individual
bands were standardized resulting in 25 predictors with value ranges from 0 to 1 (see
Stenzel et al. 2014 for more details).

4.3.3. Artificial landscape

To test the influence of variation in the reference sample and landscape (background)
composition, several artificial datasets were created. From the pool of habitat type
reflectance (extracted from the imagery at the field sampling sites) as well as from the
background reflectance pool (a random sample representing the overall matrix), a defined
quantity of pixels was drawn to create multi-seasonal artificial landscapes (AL) for which
the class (one of the habitat types or background) of every pixel was known. We created
12 different artificial landscapes for each of the four different habitat types, each consisting
of 50,000 pixels. The number of pixels belonging to the target class (prevalence) varied for
each artificial landscape respectively and so did the number of pixels belonging to one of
the other three habitat types, which were relatively similar to the target class (similarity
of background). For each of these 48 artificial landscapes we ran Maxent models with
varying training sample sizes for the target class and background points (27 different
combinations). For each combination of landscape and sampling design 200 replicates
were calculated resulting in 259,200 models in total (Table 4.1).

4.3.4. OCC

We trained Maxent (Phillips et al. 2004) with default settings, but changed the parameter
addsamplestobackground=F to be in full control of background samples and sample sizes.
This is not recommended for studies aiming at the best model for a particular dataset,
since this default setting is known to improve results. Each model was then applied to the
corresponding artificial landscape. We used Maxent’s logistic output, which represents
an index of suitability rather than probability, if one is dealing with species (Elith et al.



4.3. Methods 59

Table 4.1.: Overview over all possible variation in landscape and sampling design.

2006, Lahoz-Montfort et al. 2014) and which presents a relative likelihood for target class
membership in case of predicting an object using its reflectance. In the context of remote
sensing data and habitats, one has to keep in mind that each pixel, having a specific
reflectance value, can only be classified as one class, rejecting all other classes. Hence, it
is reasonable to convert likelihoods into binary classes. Here, we calculated a threshold
that was optimized for a maximum sum of sensitivity and specificity (also used e.g., by
Bean et al. 2012 and Liu et al. 2005 (R Dismo package; Hijmans & Elith 2016). For
details on the software and the principles underlying see for example Elith et al. (2011).

4.3.5. Accuracy assessment

Validation was performed for each habitat type with a random sample set extracted from
the AL with 50 samples for the target class (positives) and 50 samples not belonging
to target class (negatives). Mean of AUC (threshold independent), Kappa, sensitivity
and specificity (all threshold dependent) were calculated for the 200 iterations of every
parameter combination (R package SDMTools; VanDerWal et al. 2012). For all models
the accuracy measures of the 200 iterations were aggregated and depicted in illustrative
heat maps.

4.3.6. Spectral similarity

Furthermore, to display the similarity of the 4 habitat types and the background we
calculated Euclidean distances between (i) the sample pixels of each habitat type; (ii)
between samples of each habitat type to the other habitat types; and (iii) between samples
of each habitat type and samples of the background. In addition, a rank-based, non-metric
multidimensional scaling (NMDS; Kruskal 1964) was applied. Since we had no null values
in our dataset we used the Euclidean distance and random starting configuration. NMDS
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is a widely applied standard, which is able to maximize rank order correlation, cope
with non-linear features and linearises the fit between species data and environmental or
spectral variation (Schmidtlein et al. 2010). The NMDS aims at reducing the difference
between the distances of the original matrix and its counterparts found in ordination space.
This difference is expressed as stress. In the past, ordination methods have often been
applied in ecological studies to depict structures of communities as well as for finding the
ecological relation between vegetation structure and environmental variables (Jongman
et al. 1995). Nowadays, their application has been broadened to remote sensing data
(Schmidtlein & Sassin 2004, Feilhauer et al. 2011).

All calculations were performed in the R statistical environment (R Core Team 2015).

4.4. Results

Euclidean distances among target class pixels and similar class pixels were smaller than
between each target class and the background (Figure 4.3). This underlined the validity
of the experimental approach. Within class similarity was highest for HT 7140, lowest
for HT 7120, probably the latter induced by highest structure variability caused by
varying amounts of woody parts of dwarf shrubs, resulting in fuzzy results for this class.
Dissimilarity of habitat types to the background was low for HT 7120 and HT 7140 and
higher for HT 7230 and HT 6410. Within class dissimilarity was smaller than between class
dissimilarity for all four habitat types individually. Dissimilarity of all four habitat types
to the others was smaller than to the landscape. Results show, that the interpretation of
each of the habitat types as target class and the remaining habitat types as similar class
pixels was valid.
The NMDS on the reflectance data of the habitat types and on a random subset of

the background (each class n=500, stress value = 0.08) explained 92% of total variance
(Figure 4.2). Data points belonging to the background sample had high loadings on the
first axis indicating low similarity to the other classes. Data points belonging to one of
the 4 habitat types overlapped. HT 7120 data points had also higher loadings on the first
axis and also on the second axis, and thus were less similar to the other habitat types.
The other three habitat types strongly overlapped indicating high similarity. This is in
accordance with results of figure 4.3 and our basic assumption of similarity of classes and
dissimilarity with background.
Figure 4.4 to 4.7 show different measures for model quality (AUC, Kappa, specificity,

sensitivity) for all four habitat types. Values for these measures depended on the artificial
landscape (Figure 4.4 to 4.7, a)) and on the sampling design (Figure 4.4 to 4.7, b)).
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Figure 4.2.: NMDS, results for the four different target classes and background (=0) from
reflectance pool (Distance: Euclidian, stress: 0.08).

Figure 4.3.: Boxplot of euclidean distances of rescaled reflectance, results for the four
different target classes (only = distances within classes; similars = distances of
target class and similar classes; bg = distances of target class and background).
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Figure 4.4.: HT 6410: a): Influence of the number of target class samples and background
sample size on model performance (AUC, Kappa, sensitivity, specificity). Here,
the composition of the AL was kept constant. Model quality increased with
increasing sample size for the target. Regarding the background, maximum
values were reached at 1,000-30,000. b): Influence of artificial landscape
(AL) composition. The graph shows how model performance (AUC, Kappa,
sensitivity, specificity) depends on the number of pixels from similar habitats
and from the target class. Training sample size and background sample size
are kept constant. Model quality decreased with increasing similarity of the
background and increasing share of target class.
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Figure 4.5.: HT 7120: a): Influence of the number of target class samples and background
sample size on model performance (AUC, Kappa, sensitivity, specificity). Here,
the composition of the AL was kept constant. Model quality increased with
increasing sample size for the target. Regarding the background, maximum
values were reached at 1,000-30,000. b): Influence of artificial landscape
(AL) composition. The graph shows how model performance (AUC, Kappa,
sensitivity, specificity) depends on the number of pixels from similar habitats
and from the target class. Training sample size and background sample size
are kept constant. Model quality decreased with increasing similarity of the
background and increasing share of target class.
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Figure 4.6.: HT 7140: a): Influence of the number of target class samples and background
sample size on model performance (AUC, Kappa, sensitivity, specificity). Here,
the composition of the AL was kept constant. Model quality increased with
increasing sample size for the target. Regarding the background, maximum
values were reached at 1,000-30,000. b): Influence of artificial landscape
(AL) composition. The graph shows how model performance (AUC, Kappa,
sensitivity, specificity) depends on the number of pixels from similar habitats
and from the target class. Training sample size and background sample size
are kept constant. Model quality decreased with increasing similarity of the
background and increasing share of target class.
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Figure 4.7.: HT 7230: a): Influence of the number of target class samples and background
sample size on model performance (AUC, Kappa, sensitivity, specificity). Here,
the composition of the AL was kept constant. Model quality increased with
increasing sample size for the target. Regarding the background, maximum
values were reached at 1,000-30,000. b): Influence of artificial landscape
(AL) composition. The graph shows how model performance (AUC, Kappa,
sensitivity, specificity) depends on the number of pixels from similar habitats
and from the target class. Training sample size and background sample size
are kept constant. Model quality decreased with increasing similarity of the
background and increasing share of target class.
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Overall performance was very high, resulting in accuracies ranging between 0.83 and
1 and the different accuracy measures showed similar trends. Outcomes for HT 7120
were fuzzier than for the other habitat types or even inconclusive. This is a result of the
aforementioned within high dissimilarity in this class.
(1) The performance of Maxent increased with increasing number of target samples

during the training stage for all HT.
(2) The performance of Maxent increased with increasing number of background samples

during training stage clearly until 1,000 samples, with a saturation or decrease when
passing 10,000 – 30,000 samples (the results for each individual HT show that the tipping
point is reached at different levels, and depending on training sample size, but there is
always such a stagnation or tipping point).

(3) Results were inconclusive with respect to the number of pixels of the target class in
artificial landscape. Decrease of model quality with high prevalence was observed for HT
6410 and HT 7230, the contrary was observed for HT 7140 and no clear pattern emerged
for HT 7120.

(4) The performance of Maxent increased with decreasing number of pixels from similar
classes in the AL for all but HT 7120. Here results were inconclusive.

4.5. Discussion

The aim of this study was to analyse the effect of landscape composition and sampling
design on the classification accuracy of rare target classes. Maxent, we hoped, would be a
promising tool for addressing this task because it has been applied successfully in species
distribution modelling. Four Natura 2000 habitat types, which need to be monitored and
for which status reports must be delivered to the European Union, served as examples.
Our results were meant to improve the basis of knowledge on which effective monitoring
tools and sampling designs for remote sensing and OCC based monitoring of rare habitat
types can be developed.

In the SDM community there are several previous studies that evaluated the influence
of factors such as sample size relationships or parameter tuning on model performance of
different SDM, including Maxent, but not with the parameter combination of our study.
Some of them should be mentioned to give a small overview about recent work. Bean et al.
2012 tested distribution data for one species across multiple years and presented negative
effects of temporally or spatially biased sample size on threshold selection. Bradley 2016
worked with 15 plant species from the US regarding the question of whether presence-only
SDM based on locations of high species abundance predict abundance more effectively
than models based on occurrences. High abundance models consistently showed greater
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separation between intermediate and high abundance ranks than any occurrence models.
Also, high abundance models had the greatest separation between intermediate ranks
of abundance. Velásquez-Tibatá et al. 2016 tested the effects of small sample sizes and
large georeferencing error and emphasized the high importance of species environmental
tolerances. Stockwell et al. 2002 studied the effects of composition of training sample
and sample size with different sizes of training data and sampling with replacement.
Only few studies tested the effect of variation in parameters and jointly analysed their
relative effects. Dorman et al. 2008 tested variable selection alongside correction method,
modelling technique, uncertainty and collinearity. They conducted an analysis quantifying
uncertainty in each step during the model-building sequence to variation in model validity
and climate change projection uncertainty, leading to 81 different model approaches and
over 700 projections. They discovered that model type and data quality dominated the
results for climate projections. Since comparison of different model types is conducted
frequently and comparison of model types has received good results they appeal to study
effects of data quality more detailed. Thibaud et al. 2014 introduced a new virtual
framework to study the relative importance of factors involved in the construction of
SDM, including the tuning parameters’ missing covariate, spatial autocorrelation, sample
size, sampling design and modelling technique. Most studies used real occurrence data,
a few studies, however, used simulated data and described it as a powerful evaluation
framework that allows for a profound quality assessment (Zurell et al. 2010, Miller
2014). The complexity of a final model in general is determined by the choices of model
selection, regularization method, and strictness of criteria (Reineking 2006, Halvorsen et
al. 2016). Maxent stable performance in many studies may be explained by the way it
uses regularization to avoid over-fitting. The amount of regularization varies flexibly with
each given sample size to ensure stable performance. L-1-regularization omits irrelevant
variables from the model by using shrinkage parameter (Phillips 2006). This procedure is
regarded as one of the main reasons for its good performance (e.g., Elith 2006, Phillips
2008, Wisz 2008, Hernandez et al. 2006). Maxent has been assessed as robust concerning
small sample sizes, and it had, among other, the best predictive power across all sample
sizes, and since it performed well in our work it can be recommended for further studies.

Variation in target class sample size (1): Our study shows that an increased number
of target class samples improved the classification accuracy for all habitat types. Results
of models with a sample size of 10 were very poor, whereas at a sample size of 30 model
predictions were already stable and reasonable. This increase in model quality was caused
by a better description of the predictor distributions of the target class and, thereby,
an enhanced separability from the background distribution. The minimum number of
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positive samples is thus influenced by the number and complexity of predictor variables.
These findings were very much in line with former studies on the effects of positive sample
size: Wisz et al. 2008 tested 12 SDM for 46 species on varying target sample sizes (n = 10,
30, 100) and found that no algorithm predicted consistently well with sample size below
n=30). Guisan et al. 2007 proved with 10 SDM, 50 species and up to 13 predictors that
increasing number of occurrences (classes of n = 0 − 40, 41 − 130, 131270, > 271) used
for model training result in better models, which tended to be more sensitive to grain.
Hernandez et al. 2006 found the same when testing four SDM on 17 animals species for
six different sample size treatments (n = 5, 10, 25, 50, 75, 100) with up to 10 predictors.
Maxent performed most capably, and they point out that results are better for species with
small geographic ranges and limited environmental tolerance (see our discussion of target
prevalence). At some point the distributions are well described and a further increase does
not add much information to the model, thus maximum model accuracy is approached.
Knowing the right number of positive records at which the increase in model accuracy
levels off can be considered as the most time and cost effective field sampling strategy.
When positive sample size increases, accuracy should also increase until achieving its
maximum, reaching an asymptote. The maximum accuracy and the sample size at which
it is reached depends on the study area, particularly on the number of classes, the overlap
among their predictor distributions, data quality and spatial resolution (Hernandez et
al. 2006). This was also confirmed by our results, which show that maximum qualities
were lower for landscapes with a high proportion of similar classes in the landscape.
Accordingly, insufficient occurrence data is of big concern because classification quality
is influenced by the number of records used in model building. When sample sizes are
small, outliers have more influence than when more data is available to buffer their effects
(Wisz et al. 2008).

Variation in background sample size (2): With increasing number of background
samples model accuracy increased until saturation. In some cases, model accuracy even
dropped at higher numbers of background points suggesting that there is a case specific
optimal number of background points. In this study, the optimal number of background
points varied between 10,000 and 30,000 for the four habitat types. These values are
confirmed by other studies (Elith et al. 2006, Phillips & Dudik 2008) and match more or
less the default Maxent value for background sample size of 10,000. That there should
be an optimal number of background points undermines the assumption that more data
on the background improve the description of the background distribution of predictors
and hence improve the model. However, the pattern of an optimal background sample
size is related to target class sample size (number of positive samples) and its ability to
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adequately describe the target class distribution. If the target class does not have a well
defined predictor distribution compared to the background distribution, adding a lot of
of background data could decrease the signal to noise ratio until the algorithm cannot
detect the systematic pattern any more. Accordingly, for fuzzy classes like HT 7120 the
optimal number of background data was lower than for the others. However, we cannot
provide the reason here but we would like to open this topic for discussion in the field
of presence-background modelling, since, interestingly, there a practically no studies on
this until now. So far, we conclude that it is useful to increase the number of background
data systematically until model quality saturates or decreases again. We suggest treating
background sample size as another tuning parameter during model development.

Influence of prevalence of target class (3): Here prevalence is defined as number of
target class pixels divided by the total number of pixels. The results from other studies,
where models for species with broad geographic and environmental ranges seem to be
less accurate than those for species with smaller ranges (Manel et al. 2001, Kadmon et
al. 2003, Thuiller 2004, Luoto et al. 2005, Elith et al. 2006), were neither confirmed nor
rejected. While many studies have tested the effect of sample size on accuracy, not a
single study has manipulated the target range while controlling all other factors. This
prevents evaluating the effects of prevalence versus e.g. sample size on model accuracy
(Hernandez et al. 2006). Indeed, in the case of species distribution models based on
environmental data, it is reasonable to assume that prevalence is negatively correlated
with model accuracy. First, prevalence in the study region is often correlated with
niche marginality of the species, i.e. overlap of target class distribution and background
distribution. Therefore low niche marginality and high prevalence often leads to low
separability of predictor distributions. Second, if a target has a small range it is likely that
more of its environmental space is covered with fewer samples than a target with a large
range (Breiner et al. 2015, Kadmon et al. 2003). For spectral data there is in our opinion
no reason to expect such correlation among prevalence, sample size and overlap among
target class and background distribution and therefore no reason why rare habitats should
yield higher model accuracies. Spatially rare habitats as well as common habitats could
both have low or high variance in their spectral signal; e.g. predictions for rare habitats
with a narrow variance in spectral signal based on few records are likely to be as good
as those based on a large number of samples, which is not valid for rare habitats with a
wider variance in reflectance. However, to make a clear statement, a larger gradient of
prevalence is needed and additionally explicit assessment of how spectral distributions
overlap among target class and background.

Influence of similar classes in the background (4): The more similar class samples
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occur in the AL the worse were the models. A higher proportion of similar classes in
the landscape and thereby in the background sample reduced the dissimilarity among
distributions. This can be seen easily in the ordination (Figure 4.2). The overlap of
background and target class is considerably larger if background is including some samples
of the 3 similar habitat types. Overlapping distributions in predictor space naturally
reduce model accuracy in classification models. This insight can be a starting point
for determining minimum sample sizes for habitat modelling, e.g. by determining the
optimal distance between target class spectra and landscape spectra to improve model
quality. This is comparable to the effect of niche marginality (see e.g. Dolos et al. in
prep., Hernandez et al. 2006, Heino 2005).

Implication for habitat mapping: OCC such as Maxent proved useful to support
mapping of rare habitat types because less field sampling is required. Based on our
study we suggest assessing the required sample size for ground reference data for Natura
2000 habitat types based on a small data set (maybe sites known already from previous
mappings) in advance of the main field campaign. Such a study can be based on remote
sensing data and added information on the presence of habitat types in the landscape.
Overlap of target class spectra with background can be used together with within class
and between class similarity (see Figure 4.3, 4.2) to estimate the required presence sample
size or training data set. Sample size estimation based on the effect size is very common
in ecological field studies but less common in remote sensing.

4.6. Conclusion and outlook

Landscape properties and sampling design influenced maximum and actual model accuracy.
The influence of target class prevalence in the landscape was inconclusive while the presence
of similar classes clearly impaired classification accuracy. For monitoring of rare habitat
types which occur in a mosaic with similar habitat types, a higher number of positive
samples for model fitting is required and can counteract the effect of stronger overlap of
target class and background distributions. We recommend assessing the sample size of
positive observations to approach the maximum model accuracy in pre-studies based on
former studies usually available for protected habitat types or a new but small dataset.
This will help to decide in advance if the respective habitat type can be mapped with the
required accuracy based on remote sensing data and OCC and how much sampling effort
will be necessary.

Additionally, maximum model accuracy can be approached by an optimal number
of background points. Background data are gratis because they are unlabeled samples
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from the predictor data. In any study using background data it seems reasonable to
systematically assess the effect of different background sample sizes and to choose the
optimal one at the turning point or when model accuracy values saturate. This is just
another step in model tuning similar to adjusting e.g. the number of trees when using
random forests or boosted regression trees, or adding a kernel function when using support
vector machines. Finally, we showed that already quite small sample sizes of n = 30

were sufficient to create Maxent models for four rare habitat types with acceptable
accuracy. All these results encourage to further assess the potential of Maxent (and other
OCC) together with remote sensing data as large scale monitoring support for protected
vegetation such as Natura2000 habitat types.
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5. Synopsis

The focal and innovative point of this thesis is the exploration of the possibilities and
limitations in the application of one-class classifier (OCC) for detecting habitats of
conservation value with the help of remote sensing and limited field data.
The results of the first study prove that the application of the OCC Maxent together

with remote sensing data is suitable for mapping rare vegetation types of high conservation
value. With such an approach it is possible to identify Natura 2000 habitat types scattered
within a complex background matrix of vegetation not relevant for nature conservation.
It was achieved to delineate and to distinguish similar habitat types, which is crucial
for applications in conservation and management. The discrimination between habitats
and non-relevant sites was satisfactory. Also, it was possible to provide a consistent
classification of a large area using a small amount of ground reference sample. In conclusion,
there seems to be an undrawn potential in one-class classification for detecting habitats of
low prevalence. However, the differentiation of related habitats with very similar species
composition remains a challenge. Habitat types with a wide definition and heterogeneous
species composition are difficult to delineate even with OCC. The procedure applied in this
study seems to be promising, but further work will be needed to test the transferability
of the method at different points in time, areas and for other target classes. Further
research is also necessary in the field of threshold definition to reduce underestimation and
scatter. Establishing a standard method of validation for approaches like this is crucial.
Still, this rather simple and affordable approach is highly recommended for application
in further studies (accordingly, the number of studies working on one-class classification
for monitoring vegetation is already increasing). OCC could be used for pre-surveys of
previously unmapped areas as a tool for identifying potential gaps in existing habitat
inventories or as a first check for changes in the distribution of habitats. The first study
confirms the initial assumption of this thesis that the application of OCC is promising for
vegetation conservation monitoring.

The results of the second study show that there are further possibilities but also
some limitations when working with OCC and reflectance data for mapping vegetation
of conservation concern. While the differentiation between High Nature Value (HNV)
grassland and the rest of the landscape was successful, the differentiation of three HNV
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quality classes was not possible using OCC and multi-temporal remote sensing data due
to a lack of spectral variability between the quality classes. The assignation of different
HNV classes is performed by presence or absence of HNV character species in the field.
However, this did not lead to a sufficiently different spectral signal for being assigned
to the right class and no clear correlation between HNV quality classes and reflection
was found. Identifying grassland with high ecological values is possible by means of
remote sensing. Nonetheless, the classification of grassland into several quality subclasses
is still challenging since different grassland plant communities have almost identical
plant functional traits. Further improvements of results could probably be achieved
by integrating more spectral information (e.g. from new systems such as Sentinel-2 or
upcoming hyperspectral missions) and by further optimizing existing OCC algorithms
(e.g. flexible parameter tuning). Also, generating a HNV grassland mask by excluding the
major part of the landscape in which with a very high probability no HNV grassland is
occurring could reduce the amount of fieldwork to a more manageable extent. This could
be helpful to support field campaigns and lessen related costs by reducing the frequency of
erroneous field visits to non-HNV areas. Furthermore, the possibility of using a multi-class
classifier approach in combination with this OCC based HNV grassland mask has to be
tested in further studies. The investigated OCC performed different. Maxent, as in many
other studies of species distribution modelling, proved again to be robust and reliable,
due to its nature and settings it overestimated the area. The biased support vector
machine (BSVM) has to be emphasised as well and performed equivalently, but due to its
nature and standards it underestimated the area. Embedding the presented classification
scenario into an object-based approach could be beneficial to improve mapping omissions
especially for BSVM. It can be concluded that this method of grassland quality detection
is promising, but remote sensing and one-class classification alone are not sufficient for
adequate monitoring. In particular the differentiation of several grassland usage intensity
classes is and will be challenging due to their similar plant functional traits – and hence
similar spectral properties – and should be the topic of further research.
While it was shown that usage of OCC together with reflectance data for detecting

vegetation of conservation value is feasible it became apparent that validation of OCC
results is crucial and thus their robustness is of great importance. The third study
therefore tested the robustness and weakness of the OCC Maxent regarding the effect
of landscape composition and sample size on accuracy measurements. For this purpose,
artificial landscapes with simulated distribution data were generated. This allowed for
complete knowledge of the properties of the landscape and the target class and thus
for assessing and discussing the robustness of the OCC for usage with remote sensing
data in a more objective way. The investigation of the importance of the target sample
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size and the amount of similar classes in the background confirms the results of earlier
studies concerning species distribution modelling (SDM): The performance of the OCC
improves with increasing number of training samples and also with a decreasing number
of pixels from similar classes in the artificial landscape. Further analysis of the role of
background sample size and the prevalence of the target class give new insights and a
basis for further studies and discussions: The performance of the OCC improves with
an increasing number of background samples for training, exhibiting saturation and
even a decrease of performance at a certain number of background samples. It can be
concluded that an intermediate amount of background pixels is needed, contradicting the
common belief of ’the more the better’. The reasons for this turning point seem to be
very important and should be subject of further research. Results are inconclusive with
respect to the prevalence of the target class in the artificial landscape. However, some
presumption could be made, i.e. that rare habitats as well as common habitats could
both have low or high variance in their spectral signal. This is different from SDM, where
a target with a small range is likely to have more of its environmental space covered with
fewer samples than a target with a large range. For further studies, a larger gradient of
prevalence should be covered and additionally, a more explicit assessment of how spectral
distribution overlap among target class and background is needed. It is recommended
to use a simulated region with controlled complexity to evaluate the effects of several
parameters on model performance. In summary, this study proves the OCC Maxent to be
a robust and reliable classifier for mapping vegetation types for conservation purposes in
combination with remote sensing data. Data availability is always of importance because
model quality is obviously influenced to some degree by the number and choice of samples
used in model training. Additionally, the landscape composition plays an important role
and has an influence on model performance and sample choice.

In this thesis the application of OCC in combination with reflectance data for mapping
rare vegetation types of conservation interest was tested and proved to be useful. It
could be clearly shown that these habitats could be classified without having information
about the rest of the landscape, thus reducing sampling effort and supporting a more
efficient and cost-effective monitoring. Here, OCC prove to be advantageous compared to
multiclass approaches. The OCC Maxent is found to be a robust and reliable classifier.
Ideas for future research can and should be built upon the results of this thesis. However,
there are still obstacles that should be of concern in further studies. Some targets,
especially certain grassland vegetation types, are difficult or impossible to separate by
means of OCC due to their similar plant functional traits leading to non-separable
spectral properties. Vegetation types with a wide characterization concerning their plant
composition, e.g. vegetation types with a high inherent variability, are also with an OCC
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difficult to identify. One has to keep in mind that it will always be challenging and
sometimes impossible to force vegetation into discrete classes that is naturally occurring
as a continuum. Since monitoring programs are in need of these discrete classes, this
forced separation is sometimes inevitable. It remains necessary that researchers from both
sides, the ecology and the remote sensing community, will work together in a collaborative
way to further improve their respective capabilities for the common goal.



Bibliography

Agustan, K., F., Pamitro, Y. E., and Abidin, H. Z. (2012). “Understanding the 2007–2008
eruption of Anak Krakatau Volcano by combining remote sensing technique and seismic
data”. In: International Journal of Applied Earth Observation and Geoinformation 14.1,
pp. 73–82.

Alexandridis, T. K., Lazaridou, E., Tsirika, A., and Zalidis, G. C. (2009). “Using Earth
Observation to update a Natura 2000 habitat map for a wetland in Greece”. In: Journal
of Environmental Management 90.7, pp. 2243–2251.

Amici, V. (2011). “Dealing with vagueness in complex forest landscapes: A soft classification
approach through a niche-based distribution model”. In: Ecological Informatics 6.6,
pp. 371–383.

Andersen, R. (2003). Developing a high nature value indicator. Report for the European
Environment Agency (EEA). Copenhagen.

Andrew, M and Ustin, S (2008). “The role of environmental context in mapping invasive
plants with hyperspectral image data”. In: Remote Sensing of Environment 112.12,
pp. 4301–4317.

Aplin, P. (2005). “Remote sensing: ecology”. In: Progress in Physical Geography 29.1,
pp. 104–113.

Armsworth, P. R., Acs, S., Dallimer, M., Gaston, K. J., Hanley, N., and Wilson, P. (2012).
“The cost of policy simplification in conservation incentive programs: The cost of policy
simplification in AES”. In: Ecology Letters 15.5, pp. 406–414.

Arvor, D., Meirelles, M., Dubreuil, V., Bégué, A., and Shimabukuro, Y. E. (2012).
“Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived
indices”. In: Applied Geography 32.2, pp. 702–713.

Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J.,
Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M.,
and Hughes, R. F. (2010). “High-resolution forest carbon stocks and emissions in the
Amazon”. In: Proceedings of the National Academy of Sciences 107.38, pp. 16738–16742.

Baldeck, C. A. and Asner, G. P. (2015). “Single-Species Detection With Airborne Imaging
Spectroscopy Data: A Comparison of Support Vector Techniques”. In: IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 8.6, pp. 2501–2512.



78 Bibliography

Baldock, D. (1993). Nature conservation and new directions in the EC common agricultural
policy. The potential role of EC policies in maintaining farming and management systems
of high nature value in the Community.

Banerjee, A., Burlina, P., and Diehl, C. (2006). “A support vector method for anomaly
detection in hyperspectral imagery”. In: IEEE Transactions on Geoscience and Remote
Sensing 44.8, pp. 2282–2291.

Bean, W. T., Stafford, R., and Brashares, J. S. (2012). “The effects of small sample size
and sample bias on threshold selection and accuracy assessment of species distribution
models”. In: Ecography 35.3, pp. 250–258.

Begemann, F., Schröder, S., Wenkel, K., and Weigel, H. (2007).Monitoring und Indikatoren
der Agrobiodiversität.

Belenyesi, M. (2008). “Delineation of high nature value areas in Hungary.” In: Using
Evaluation to Enhance the Rural Development Value of Agri-environmental Measures.
Ed. by P. Koorberg. Pärnu, Estonia.

Benzler, A (2009). The implementation of the HNV farmland indicator in Germany.
– (2012). “Measuring extent and quality of HNV farmland in Germany.” In: High Nature
Value Farming in Europe. Ed. by R. Oppermann and G. Beaufoy. Ubstadt-Weiher,
pp. 507–510.

Benzler, A., Hünig, C., and Fuchs, D. (2015). “Methodik und erste Ergebnisse des
Monitorings der Landwirtschaftsflächen mit hohem Naturwert in Deutschland. Beleg
für aktuelle Biodiversitätsverluste in der Agrarlandschaft.” In: Natur und Landschaft
90.7, pp. 309–316.

Blackbridge (2013). RapidEye, http://blackbridge.com/rapideye/products/index.html.
Blackburn, G. A. and Milton, E. J. (1995). “Seasonal variations in the spectral reflectance

of deciduous tree canopies”. In: International Journal of Remote Sensing 16.4, pp. 709–
720.

Bock, M., Rossner, G., Wissen, M., Remm, K., Langanke, T., Lang, S., Klug, H., Blaschke,
T., and Vrščaj, B. (2005). “Spatial indicators for nature conservation from European to
local scale”. In: Ecological Indicators 5.4, pp. 322–338.

Boyd, D. S., SanchezHernandez, C., and Foody, G. M. (2006). “Mapping a specific class
for priority habitats monitoring from satellite sensor data”. In: International Journal of
Remote Sensing 27.13, pp. 2631–2644.

Bradley, B. A. (2016). “Predicting abundance with presence-only models”. In: Landscape
Ecology 31.1, pp. 19–30.

Bradley, B. A., Olsson, A. D., Wang, O., Dickson, B. G., Pelech, L., Sesnie, S. E., and
Zachmann, L. J. (2012). “Species detection vs. habitat suitability: Are we biasing habitat
suitability models with remotely sensed data?” In: Ecological Modelling 244, pp. 57–64.



Bibliography 79

Breiner, F. T., Guisan, A., Bergamini, A., and Nobis, M. P. (2015). “Overcoming limitations
of modelling rare species by using ensembles of small models”. In: Methods in Ecology
and Evolution 6.10, pp. 1210–1218.

Brunbjerg, A. K., Bladt, J., Brink, M., Fredshavn, J., Mikkelsen, P., Moeslund, J. E.,
Nygaard, B., Skov, F., and Ejrnæs, R. (2015). “Development and implementation of a
high nature value (HNV) farming indicator for Denmark”. In: Ecological Indicators 61,
pp. 274–281.

Bruzzone, L. and Persello, C. (2009). “A Novel Approach to the Selection of Spatially
Invariant Features for the Classification of Hyperspectral Images With Improved
Generalization Capability”. In: IEEE Transactions on Geoscience and Remote Sensing
47.9, pp. 3180–3191.

Buchanan, G., Pearce-Higgins, J., Grant, M., Robertson, D., and Waterhouse, T. (2005).
“Characterization of moorland vegetation and the prediction of bird abundance using
remote sensing: Remote sensing of moorlands”. In: Journal of Biogeography 32.4, pp. 697–
707.

CEOS (2015). The CEOS Earth Observation Handbook. Satellite earth observatins in
support of climate information challenges. Special 2015 COP21 Edition. Online at:
http://database.eohandbook.com.

Camps-Valls, G. and Rojo-Alvarez, J. L. (2008). “Kernel based framework for multitempo-
ral and multisource remote sensing data classification and change detection”. In: IEEE
Transactions on Geoscience and Remote Sensing 46.6, pp. 1822–1835.

Cingolani, A. M., Posse, G., and Collantes, M. B. (2005). “Plant functional traits, herbivore
selectivity and response to sheep grazing in Patagonian steppe grasslands”. In: Journal
of Applied Ecology 42.1, pp. 50–59.

Clark, R., Swayze, G., Wise, R., Livo, E., Hoefen, T., Kokaly, R., and Sutley, S. (2007).
USGS Digital Spectral Library Splib06a: U.S. Geological Survey. Digital Data Series,
vol. 231. http://speclab.cr.usgs.gov/spectral.lib06.

Cohen, J. (1968). “Weighted Kappa: Nominal scale agreement with provision for scaled
disagreement or patial credit”. In: Psychological Bulletin 70.4.

Conrad, C., Colditz, R. R., Dech, S., Klein, D., and Vlek, P. L. G. (2011). “Temporal
segmentation of MODIS time series for improving crop classification in Central Asian
irrigation systems”. In: International Journal of Remote Sensing 32.23, pp. 8763–8778.

Corbane, C., Alleaume, S., and Deshayes, M. (2013). “Mapping natural habitats using
remote sensing and sparse partial least square discriminant analysis”. In: International
Journal of Remote Sensing 34.21, pp. 7625–7647.



80 Bibliography

Cord, A. (2012). “Potential of Multi-Temporal Remote Sensing Data for Modeling Tree
Species Distributions and Species Richness in Mexico.” PhD thesis. University of
Wuerzburg, Germany.

Cord, A. and Rödder, D. (2011). “Inclusion of habitat availability in species distribution
models through multi-temporal remote-sensing data?” In: Ecological Applications 21.8,
pp. 3285 –3298.

CouncilOfTheEuropeanCommunities (1979). “Council Directive 79/409/EEC of 2 April
1979 on the Conservation of Wild Birds.” In: url: http://sedac.ciesin.columbia.
edu/entri/texts/cons.wild.birds.1979.html.

– (1992). “Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural
Habitats and of Wild Fauna and Flora.” In: url: http://eur-lex.europa.eu/legal-
content/{EN}/{TXT}/?uri={CELEX}:31992L0043.

– (2006). “Council Directive 1974/2006/EC of 15 December 2006 on the rules for the
application of Council Regulation (EC) No 1698/2005 on support for rural development
by the European Agricultural Fund for Rural Development (EAFRD).” In: url: http:
//eur-lex.europa.eu/legal-content/{EN}/{TXT}/?uri={CELEX}:32006R1974.

– (2010). “Council Directive 2009/147/EC of the European Parliament and of the Council
on the conservation of wild birds.” In: url: http://www.ecolex.org/ecolex/
ledge/view/{RecordDetails};jsessionid=90B0F1A51EC0A3435141652323F905BE?

id={LEX}-{FAOC}092236\&index=documents.
Critchley, C., Burke, M., and Stevens, D. (2004). “Conservation of lowland semi-natural
grasslands in the UK: a review of botanical monitoring results from agri-environment
schemes”. In: Biological Conservation 115.2, pp. 263–278.

Dierschke, H. and Peppler-Lisbach, C (2009). “Erhaltung und Wiederherstellung der
Struktur und floristischen Biodiversität von Bergwiesen. 15 Jahre wissenschaftliche
Begleitung von Pflegemaßnahmen im Harz”. In: Tuxenia Mitteilungen der Floristisch-
Soziologischen Arbeitsgemeinschaft 29, pp. 145–179.

Dormann, C. F., Purschke, O., Márquez, J. R. G., Lautenbach, S., and Schröder, B.
(2008). “Components of uncertainty in species distribution analysis: A case study of the
great grey shrike”. In: Ecology 89.12, pp. 3371–3386.

Dubuisson, B and Masson, M (1993). “A statistical decision rule with incomplete knowledge
about classes.” In: Pattern Recognition 26, pp. 155–165.

Dudik, M., Phillips, S., and Schapire, R. (2004). “Performance Guarantees for Regularized
Maximum Entropy Density Estimation”. In: Appearing in Proceedings of the 17th
Annual Conference on Computational Learning Theory Appearing in Proceedings of
the 17th Annual Conference on Computational Learning Theory, 2004.

http://sedac.ciesin.columbia.edu/entri/texts/cons.wild.birds.1979.html
http://sedac.ciesin.columbia.edu/entri/texts/cons.wild.birds.1979.html
http://eur-lex.europa.eu/legal-content/{EN}/{TXT}/?uri={CELEX}:31992L0043
http://eur-lex.europa.eu/legal-content/{EN}/{TXT}/?uri={CELEX}:31992L0043
http://eur-lex.europa.eu/legal-content/{EN}/{TXT}/?uri={CELEX}:32006R1974
http://eur-lex.europa.eu/legal-content/{EN}/{TXT}/?uri={CELEX}:32006R1974
http://www. ecolex.org/ecolex/ledge/view/{RecordDetails};jsessionid=90B0F1A51EC0A343 5141652323F905BE?id={LEX}-{FAOC}092236\&index=documents
http://www. ecolex.org/ecolex/ledge/view/{RecordDetails};jsessionid=90B0F1A51EC0A343 5141652323F905BE?id={LEX}-{FAOC}092236\&index=documents
http://www. ecolex.org/ecolex/ledge/view/{RecordDetails};jsessionid=90B0F1A51EC0A343 5141652323F905BE?id={LEX}-{FAOC}092236\&index=documents


Bibliography 81

Díaz Varela, R. A., Ramil Rego, P., Calvo Iglesias, S., and Muñoz Sobrino, C. (2008). “Au-
tomatic habitat classification methods based on satellite images: A practical assessment
in the NW Iberia coastal mountains”. In: Environmental Monitoring and Assessment
144.1-3, pp. 229–250.

EEA (2010). The European Environment – State and Outlook 2010: Synthesis. European
Environment Agency, Copenhagen.

Elith, J., Graham, C., Anderson, R., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J.,
Huettmann, F., Leathwick, J., Lehmann, A., Li, J., Lohmann, L., Loiselle, B., Manion,
G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J., Peterson, A. T., Phillips, S.,
Richardson, K., Scachetti-Perreria, R., Schapire, R., Soberon, J., Williams, S., Wisz,
M. S., and Zimmermann, N. (2006). “Novel methods improve prediction of species’
distributions from occurrence data”. In: Ecography 29.2.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. (2011). “A
statistical explanation of MaxEnt for ecologists: Statistical explanation of MaxEnt”. In:
Diversity and Distributions 17.1, pp. 43–57.

Esch, T., Metz, A., Marconcini, M., and Keil, M. (2014). “Combined use of multi-seasonal
high and medium resolution satellite imagery for parcel-related mapping of cropland and
grassland”. In: International Journal of Applied Earth Observation and Geoinformation
28, pp. 230–237.

European-Commission (2007). Interpretation manual of european union habitats - EUR27.
– (2008). Implementation of Article 6(4), first subparagraph, of Council Directive 92/43/EEC
during the period 2004–2006. Summary report. Brussels: European Commission, DG
Environment. Tech. rep.

European-Union (2010). Agricultural statistics. Main results 2008–2009.
Eurostat (2015). Agriculture, forestry and fishery statistics, 2015 edition.
Evaluation-Expert-Network (2009). The application of the High Nature Value impact
indicator.

Evangelista, P. H., Stohlgren, T. J., Morisette, J. T., and Kumar, S. (2009). “Mapping
Invasive Tamarisk (Tamarix): A Comparison of Single-Scene and Time-Series Analyses
of Remotely Sensed Data”. In: Remote Sensing 1.3, pp. 519–533.

Evans, D. (2006). “The habitats of the European Union habitats directive”. In: Biology
and environment: Proceedings of the Royal Irish Academy 106.3, pp. 167 –173.

Fassnacht, F. E., Neumann, C., Forster, M., Buddenbaum, H., Ghosh, A., Clasen, A.,
Joshi, P. K., and Koch, B. (2014). “Comparison of Feature Reduction Algorithms for
Classifying Tree Species With Hyperspectral Data on Three Central European Test
Sites”. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 7.6, pp. 2547–2561.



82 Bibliography

Fassnacht, F. E., Stenzel, S., and Gitelson, A. A. (2015). “Non-destructive estimation of
foliar carotenoid content of tree species using merged vegetation indices”. In: Journal
of Plant Physiology 176, pp. 210–217.

Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T.,
Straub, C., and Ghosh, A. (2016). “Review of studies on tree species classification from
remotely sensed data”. In: Remote Sensing of Environment 186, pp. 64–87.

Fassnacht, F. E., Li, L., and Fritz, A. (2015). “Mapping degraded grassland on the
Eastern Tibetan Plateau with multi-temporal Landsat 8 data — where do the severely
degraded areas occur?” In: International Journal of Applied Earth Observation and
Geoinformation 42, pp. 115–127.

Fassnacht, K. S., Cohen, W. B., and Spies, T. A. (2006). “Key issues in making and using
satellite-based maps in ecology: A primer”. In: Forest Ecology and Management 222.1-3,
pp. 167–181.

Feilhauer, H. (2011). “Steadiness in spatiotemporal links between species composition and
reflectance (Dissertation)”. PhD thesis. Bonn: Rheinische Friedrich-Wilhelms-Universität
Universität.

Feilhauer, H., Asner, G. P., and Martin, R. E. (2015). “Multi-method ensemble selection
of spectral bands related to leaf biochemistry”. In: Remote Sensing of Environment 164,
pp. 57–65.

Feilhauer, H., Dahlke, C., Doktor, D., Lausch, A., Schmidtlein, S., Schulz, G., and Stenzel,
S. (2014). “Mapping the local variability of Natura 2000 habitats with remote sensing”.
In: Applied Vegetation Science 17.4, pp. 765–779.

Feilhauer, H., Doktor, D., Schmidtlein, S., and Skidmore, A. K. (2016). “Mapping pol-
lination types with remote sensing”. In: Journal of Vegetation Science 27.5, pp. 999–
1011.

Feilhauer, H., Faude, U., and Schmidtlein, S. (2011). “Combining Isomap ordination
and imaging spectroscopy to map continuous floristic gradients in a heterogeneous
landscape”. In: Remote Sensing of Environment 115.10, pp. 2513–2524.

Feilhauer, H. and Schmidtlein, S. (2011). “On variable relations between vegetation
patterns and canopy reflectance”. In: Ecological Informatics 6.2, pp. 83–92.

Feilhauer, H., Thonfeld, F., Faude, U., He, K. S., Rocchini, D., and Schmidtlein, S. (2013).
“Assessing floristic composition with multispectral sensors—A comparison based on
monotemporal and multiseasonal field spectra”. In: International Journal of Applied
Earth Observation and Geoinformation 21, pp. 218–229.

Ferner, J., Linstädter, A., Südekum, K.-H., and Schmidtlein, S. (2015). “Spectral indicators
of forage quality in West Africa’s tropical savannas”. In: International Journal of Applied
Earth Observation and Geoinformation 41, pp. 99–106.



Bibliography 83

Ferrier, S., Drielsma, M., Manion, G., and Watson, G. (2002). “Extended statistical
approaches to modelling spatial pattern in biodiversity in northeast New SouthWales.
II. Community-level modelling”. In: Biodiversity and Conservation 11, pp. 2309–2338.

Foody, G. M., Mathur, A., Sanchez-Hernandez, C., and Boyd, D. S. (2006). “Training
set size requirements for the classification of a specific class”. In: Remote Sensing of
Environment 104.1, pp. 1–14.

Franke, J., Keuck, V., and Siegert, F. (2012). “Assessment of grassland use intensity by
remote sensing to support conservation schemes”. In: Journal for Nature Conservation
20.3, pp. 125–134.

Förster (2008). “Approaches to utilising QuickBird data for the monitoring of NATURA
2000 habitats”. In: Community Ecology 9.2, pp. 155–168.

Garabedian, B. (1964). Partial differential equations. New York: Wiley.
Gianinetto, M. and Villa, P. (2007). “Rapid Response Flood Assessment Using Mini-
mum Noise Fraction and Composed Spline Interpolation”. In: IEEE Transactions on
Geoscience and Remote Sensing 45.10, pp. 3204–3211.

Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P., and Saatchi, S. (2008).
“Measuring and modelling biodiversity from space”. In: Progress in Physical Geography
32.2, pp. 203–221.

Goetz, S., Steinberg, D., Betts, M., Homes, R., Doran, P., Dubayah, R., and Hofton,
M. (2010). “Lidar remote sensing variables predict breeding habitat of a Neotropical
migrant bird”. In: Ecology 91.6, pp. 1569–1576.

Graef, F., Bilo, M., and Weddeling, K. (2009). Einsatz von Fernerkundung im Rahmen
des FFH-Monitorings in Deutschland - Workshop -. BfN Skripten 249. Bonn.

Green, A., Berman, M., Switzer, P., and Craig, M. (1988). “A transformation for order-
ingmultispectral data in terms of image quality with implications for noise removal”. In:
IEEE Transactions on Geoscience and Remote Sensing 26.1, pp. 65–74.

Gross, J. E., Goetz, S. J., and Cihlar, J. (2009). “Application of remote sensing to parks
and protected area monitoring: Introduction to the special issue”. In: Remote Sensing
of Environment 113.7, pp. 1343–1345.

Guisan, A., Graham, C. H., Elith, J., Huettmann, F., and the NCEAS Species Distribution
Modelling Group (2007). “Sensitivity of predictive species distribution models to change
in grain size”. In: Diversity and Distributions 13.3, pp. 332–340.

Haber, W. (2014). Landwirtschaft und Naturschutz. Weinheim.: Wiley-VCH.
Hadamard, J. (1902). “Sur les problèmes aux dérivées partielles et leur signification
physique.” In: Princeton University Bulletin 13, pp. 49–52.



84 Bibliography

Hall, K., Johansson, L., Sykes, M., Reitalu, T., Larsson, K., and Prentice, H. (2010).
“Inventorying management status and plant species richness in semi-natural grasslands
using high spatial resolution imagery”. In: Applied Vegetation Science 13.2, pp. 221–233.

Halvorsen, R., Mazzoni, S., Dirksen, J. W., Næsset, E., Gobakken, T., and Ohlson, M.
(2016). “How important are choice of model selection method and spatial autocorrelation
of presence data for distribution modelling by MaxEnt?” In: Ecological Modelling 328,
pp. 108–118.

Hanewinkel, M., Cullmann, D. A., Michiels, H.-G., and Kändler, G. (2014). “Converting
probabilistic tree species range shift projections into meaningful classes for management”.
In: Journal of Environmental Management 134, pp. 153–165.

Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J.,
Shafer, S., Cook, R., and Bartlein, P. J. (2001). “Global Change in Forests: Responses
of Species, Communities, and Biomes”. In: BioScience 51.9, p. 765.

Hazeu, G., Milenov, P., Pedroli, B., Samoungi, V., Van Eupen, M., and Vassilev, V. (2014).
“High Nature Value farmland identification from satellite imagery, a comparison of two
methodological approaches”. In: International Journal of Applied Earth Observation
and Geoinformation 30, pp. 98–112.

Heino, J. (2005). “Positive relationship between regional distribution and local abundance
in stream insects: a consequence of niche breadth or niche position?” In: Ecography 28,
pp. 345–354.

Held, M., Jakimow, B., Rabe, A., Linden, S. van der, Wirth, F., and Hostert, P. (2012).
EnMAPBox Manual, Version 1.4. Humboldt-Universität zu Berlin, Germany.

Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., McCracken, D.,
Moritz, R. F., Niemelä, J., Rebane, M., Wascher, D., Watt, A., and Young, J. (2008).
“Identifying and managing the conflicts between agriculture and biodiversity conservation
in Europe–A review”. In: Agriculture, Ecosystems & Environment 124.1-2, pp. 60–71.

Hernandez, P., Graham, C., Master, L., and Albert, D. (2006). “The effect of sample size
and species characteristics on performance of different species distribution modeling
methods”. In: Ecography 29, pp. 773 –785.

Hestir, E. L., Khanna, S., Andrew, M. E., Santos, M. J., Viers, J. H., Greenberg, J. A.,
Rajapakse, S. S., and Ustin, S. L. (2008). “Identification of invasive vegetation using
hyperspectral remote sensing in the California Delta ecosystem”. In: Remote Sensing of
Environment 112.11, pp. 4034–4047.

Hijmans, R. J. (2013). Raster: Geographic Data Analysis and Modeling. R Package Version
2.1–49. http://CRAN.R-project.org/package=raster.

Hijmans, R. J., Phillips, S., Leathwick, J., and Elith, J. (2016). Dismo Package R: Species
Distribution Modeling.



Bibliography 85

Hunt, E., Everitt, J., Ritchie, J., Moran, M., Booth, D., Anderson, G., Clark, P., and
Seyfried, M. (2003). “Applications and research using remote sensing for rangeland
management.” In: Photogrammetric Engineering & Remote Sensing 69.6, pp. 675–693.

Jackson, S. F., Walker, K., and Gaston, K. J. (2009). “Relationship between distributions
of threatened plants and protected areas in Britain”. In: Biological Conservation 142.7,
pp. 1515–1522.

Jogman, R., Ter Braak, C., and Van Tongeren, O., eds. (1995). Data analysis in community
and landscape ecology. Cambridge University Press.

Kadmon, R., Farber, O., and Davin, A. (2003). “A Systematic Analysis of Factors Affecting
the Performance of Climatic Envelope Models”. In: Ecological Applications 13.3, pp. 853
–867.

Kattenborn, T., Fassnacht, F., Pierce, S., Lopatin, J., Grime, P., and Schmidtlein, S.
(2016). “Linking plant strategies and plant traits derived by radiative transfer modelling.”
In: Journal of Vegetation Science. (submitted).

Kawamura, K., Watanabe, N., Sakanoue, S., and Inoue, Y. (2008). “Estimating forage
biomass and quality in a mixed sown pasture based on partial least squares regression
with waveband selection”. In: Japanese Society of Grassland Sciences 54, pp. 131–145.

Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y.,
and Adams, P. (2009). “Remote sensing change detection tools for natural resource
managers: Understanding concepts and tradeoffs in the design of landscape monitoring
projects”. In: Remote Sensing of Environment 113.7, pp. 1382–1396.

Kerr, J. T. and Ostrovsky, M. (2003). “From space to species: ecological applications for
remote sensing”. In: Trends in Ecology & Evolution 18.6, pp. 299–305.

Key, T., Warner, T., McGraw, J., and Fajvan, J. (2001). “A Comparison of Multispectral
and Multitemporal Information in High Spatial Resolution Imagery for Classification
of Individual Tree Species in a Temperate Hardwood Forest”. In: Remote Sensing of
Environment 75.1, pp. 100–112.

Klonus, S., Tomowski, D., Ehlers, M., Reinartz, P., and Michel, U. (2012). “Combined
Edge Segment Texture Analysis for the Detection of Damaged Buildings in Crisis
Areas”. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 5.4, pp. 1118–1128.

Koch, K., Bhushan, B., and Barthlott, W. (2009). “Multifunctional surface structures of
plants: An inspiration for biomimetics”. In: Progress in Materials Science 54.2, pp. 137–
178.

Korneck, D., Schnittler, D., Klingenstein, F., Ludwig, G., Takla, M., Bohn, U., and May,
U. (1998). “Warum verarmt unsere Flora? Auswertung der Rote-Liste der Farn- und
Blütenpflanzen Deutschlands.” In: Ursachen des Artenrückgangs von Wildpflanzen und



86 Bibliography

Möglichkeiten zur Erhaltung der Artenvielfalt. Schriftenreihe für Vegetationskunde 29,
pp. 299–444.

Krauss, T., dAngelo, P., Schneider, M., and Gstaiger, V. (2013). “The fully automatic op-
ticalprocessing system CATENA at DLR.” In: International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences Volume XL-1/W1, ISPRS
Hannover Workshop 2013, 21–24 May, pp. 177–183.

Kruskal, J. (1964). “Nonmetric multidimensional scaling: A numerical method”. In: Psy-
chmetrika 29.2, pp. 115–129.

Kuhn, M. and Johnson, K. (2014). Applied Predictive Modeling. new York, NY: Springer.
Lahoz-Monfort, J. J., Guillera-Arroita, G., and Wintle, B. A. (2014). “Imperfect detection
impacts the performance of species distribution models: Imperfect detection impacts
species distribution models”. In: Global Ecology and Biogeography 23.4, pp. 504–515.

Landmann, T., Schramm, M., Huettich, C., and Dech, S. (2013). “MODIS-based change
vector analysis for assessing wetland dynamics in Southern Africa”. In: Remote Sensing
Letters 4.2, pp. 104–113.

Lauver, C. and Wisthler, J. (1997). “Mapping species diversity patterns in the Kansas
shortgrass region by integrating remote sensing and vegetation analysis”. In: Journal of
Vegetation Science 8, pp. 387–394.

Lewis, M. (1998). “Numeric classification as an aid to spectral mapping of vegetation
communities”. In: Plant Ecology 136, pp. 133–149.

LfU and LWF (2010). Handbuch der Lebensraumtypen nach Anhang I derFauna-Flora-
Habitat-Richtlinie in Bayern. Augsburg & Freising-Weihenstephan.

Li, W. and Guo, Q. (2010). “A maximum entropy approach to one-class classification of
remote sensing imagery”. In: International Journal of Remote Sensing 31.8, pp. 2227–
2235.

Liu, B., Dai, Y., Li, X., Lee, W., and Yu, P. (2003). Building text classifiers using positive
and unlabeled examples. In Proceedings of the Third IEEE International Conference on
Data Mining, Melbourne, FL, USA, 19–22 November 2003, pp. 179–188.

Liu, C., Berry, P., Dawson, T., and Pearson, R. G. (2005). “Thresholds of Occurrence in
the Prediction of Species Distributions”. In: Ecography 28, pp. 385–393.

Lomba, A., Alves, P., Jongman, R. H. G., and McCracken, D. I. (2015). “Reconciling
nature conservation and traditional farming practices: a spatially explicit framework
to assess the extent of High Nature Value farmlands in the European countryside”. In:
Ecology and Evolution 5.5, pp. 1031–1044.

Lomba, A., Guerra, C., Alonso, J., Honrado, J. P., Jongman, R., and McCracken, D.
(2014). “Mapping and monitoring High Nature Value farmlands: Challenges in European
landscapes”. In: Journal of Environmental Management 143, pp. 140–150.



Bibliography 87

Lopez-Granados, F., Jurado-Exposido, M., and Pena-Barragan, J. (2006). “Using remote
sensing for identification of late-season grass weed patches in wheat”. In: Weed Science
54, pp. 346–353.

Luoto, M., Pöyry, J., Heikkinen, R. K., and Saarinen, K. (2005). “Uncertainty of bioclimate
envelope models based on the geographical distribution of species: Uncertainty of
bioclimate envelope models”. In: Global Ecology and Biogeography 14.6, pp. 575–584.

Mack, B. (2015). oneClass: One-Class Classification in the Absence of Test Data, Version
0.1-1: Software. Available online: https://github.com/benmack/oneClass.

Mack, B., Roscher, R., Stenzel, S., Feilhauer, H., Schmidtlein, S., and Waske, B. (2016).
“Mapping raised bogs with an iterative one-class classification approach”. In: ISPRS
Journal of Photogrammetry and Remote Sensing 120, pp. 53–64.

Mack, B., Roscher, R., and Waske, B. (2014). “Can I Trust My One-Class Classification?”
In: Remote Sensing 6.9, pp. 8779–8802.

Manel, S., Williams, H. C., and Ormerod, S. (2001). “Evaluating presence-absence models
in ecology: the need to account for prevalence: Presence-absence modelling”. In: Journal
of Applied Ecology 38.5, pp. 921–931.

Mantero, P., Moser, G., and Serpico, S. (2005). “Partially Supervised classification of
remote sensing images through SVM-based probability density estimation”. In: IEEE
Transactions on Geoscience and Remote Sensing 43.3, pp. 559–570.

Marconcini, M., Fernandez-Prieto, D., and Buchholz, T. (2014). “Targeted Land-Cover
Classification”. In: IEEE Transactions on Geoscience and Remote Sensing 52.7, pp. 4173–
4193.

Mehner, H., Cutler, M., Fairbairn, D., and Thompson, G. (2004). “Remote sensing of
upland vegetation: the potential of high spatial resolution satellite sensors”. In: Global
Ecology and Biogeography 13, pp. 359–369.

Meisel, K. (1983). “Zum Nachweis von Grünlandveränderungen durch Vegetationserhe-
bungen.” In: Tuxenia Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft
3, pp. 407–415.

Miller, J. A. (2014). “Virtual species distribution models: Using simulated data to evaluate
aspects of model performance”. In: Progress in Physical Geography 38.1, pp. 117–128.

Minter, T. (1975). Single-Class Classification. LARS Symposia. Paper 54.
Munoz-Mari, J., Bruzzone, L., and Camps-Valls, G. (2007). “A Support Vector Domain

Description Approach to Supervised Classification of Remote Sensing Images”. In: IEEE
Transactions on Geoscience and Remote Sensing 45.8, pp. 2683–2692.

Munoz-Marí, J., Bovolo, F., Gómez-Chova, L., Bruzzone, L., and Camp-Valls, G. (2010).
“Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing
Data”. In: IEEE Transactions on Geoscience and Remote Sensing 48.8, pp. 3188–3197.



88 Bibliography

Mücher, C. A., Kooistra, L., Vermeulen, M., Borre, J. V., Haest, B., and Haveman,
R. (2013). “Quantifying structure of Natura 2000 heathland habitats using spectral
mixture analysis and segmentation techniques on hyperspectral imagery”. In: Ecological
Indicators 33, pp. 71–81.

Nagendra, H. (2001). “Using remote sensing to assess biodiversity”. In: International
Journal of Remote Sensing 22.12, pp. 2377–2400.

Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H., Tarantino, C., Adamo, M., and
Mairota, P. (2013). “Remote sensing for conservation monitoring: Assessing protected
areas, habitat extent, habitat condition, species diversity, and threats”. In: Ecological
Indicators 33, pp. 45–59.

Oldenburg, C., Stenzel, S., and Schmidtlein, S. (2012). MaxEnt-Wrapper. Manual for
Application: MaxEnt-Wrapper (1.4). Karlsruhe Institute of Technology, Germany.

Oppermann, R., Beaufoy, G., and Jones, G. (2012). High Nature Value Farming in Europe.
Ubstadt-Weiher: Verlag Regionalkultur.

Orka, H. and Hauglin, M. (2016). Use of remote sensing for mapping of non-native conifer
species. INA Fagrapport 33 (76 pp).

Parr, S., O’Donovan, G., and Finn, J. (2006). Mapping the Broad Habitats of the Burren
Using Satellite Imagery.

Pearson, R. G., Raxworthy, C. J., Nakamura, M., and Townsend Peterson, A. (2007).
“Predicting species distributions from small numbers of occurrence records: a test case
using cryptic geckos in Madagascar: Predicting species distributions with low sample
sizes”. In: Journal of Biogeography 34.1, pp. 102–117.

Pettorelli, N., Laurance W., F., O’Brien, T., Wegmann, M., Nagendra, H., and Turner, W.
(2014). “Satellite remote sensing for applied ecologists: opportunities and challenges.”
In: Journal of Applied Ecology 51, pp. 839–848.

Pettorelli, N., Safi, K., and Turner, W. (2014). “Satellite remote sensing, biodiversity
research and conservation of the future”. In: Philosophical Transactions of the Royal
Society B: Biological Sciences 369.1643, pp. 20130190–20130190.

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). “Maximum entropy modeling
of species geographic distributions”. In: Ecological Modelling 190.3-4, pp. 231–259.

Phillips, S. and Dudik, M. (2008). “Modeling of species distributions with Maxent: new
extensions and a comprehensive evaluation”. In: Ecography 31, pp. 161–175.

Phillips, S., Dudik, M., and Schapire, R. (2004). “A Maximum Entropy Approach to Species
Distribution Modeling”. In: Proceedings of the Twenty-First International Conference
on Machine Learning, pp. 655–662.

Phillips, S. and Elith, J. (2013). “On estimating probability of presence from use–availability
or presence–background data”. In: Ecology 94.6, pp. 1409–1419.



Bibliography 89

Pierce, S., Brusa, G., Vagge, I., and Cerabolini, B. E. L. (2013). “Allocating CSR plant
functional types: the use of leaf economics and size traits to classify woody and
herbaceous vascular plants”. In: Functional Ecology 27.4, pp. 1002–1010.

Pointereau, P., Paracchini, M., Terres, J., Jiguet, F., and Biala, K. (2007). Identification
of High Nature Value Farmland in France Through Statistical Information and Farm
Practice Surveys.

Propastin, P. A. (2009). “Spatial non-stationarity and scale-dependency of prediction ac-
curacy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia”.
In: Remote Sensing of Environment 113.10, pp. 2234–2242.

R-CoreTeam (2013). R: A language and environment for statistical computing.
– (2015). R: A language and environment for statistical computing.
Ramankutty and Foley, J. (1999). “Estimating historical changes in global land cover:
Croplands from 1700 to 1992”. In: Global biochemical cycles 13.4, pp. 997–1027.

Reineking, B. and Schroeder, B. (2006). “Constrain to perform: Regularization of habitat
models”. In: Ecological Modelling 193.3-4, pp. 675–690.

Rennwald, E. (2000). “Verzeichnis und Rote Liste der Pflanzengesellschaften Deutschlands.”
In: Schriftenreihe für Vegetationskunde, Landwirtschaftlicher Verlag, Bonn 35. Ed. by
B. für Naturschutz.

Richter, R. (2009). Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-
2/3 User Guide, Version 7.0, January 2009).

Rocchini, D., Foody, G. M., Nagendra, H., Ricotta, C., Anand, M., He, K. S., Amici,
V., Kleinschmit, B., Förster, M., Schmidtlein, S., Feilhauer, H., Ghisla, A., Metz, M.,
and Neteler, M. (2013). “Uncertainty in ecosystem mapping by remote sensing”. In:
Computers & Geosciences 50, pp. 128–135.

Rodrigues, P., Aubrecht, C., Gil, A., Longcore, T., and Elvidge, C. (2012). “Remote
sensing to map influence of light pollution on Cory’s shearwater in São Miguel Island,
Azores Archipelago”. In: European Journal of Wildlife Research 58.1, pp. 147–155.

Rose, R. A., Byler, D., Eastman, J. R., Fleishman, E., Geller, G., Goetz, S., Guild, L.,
Hamilton, H., Hansen, M., Headley, R., Hewson, J., Horning, N., Kaplin, B. A., Laporte,
N., Leidner, A., Leimgruber, P., Morisette, J., Musinsky, J., Pintea, L., Prados, A.,
Radeloff, V. C., Rowen, M., Saatchi, S., Schill, S., Tabor, K., Turner, W., Vodacek, A.,
Vogelmann, J., Wegmann, M., Wilkie, D., and Wilson, C. (2015). “Ten ways remote
sensing can contribute to conservation: Conservation Remote Sensing Questions”. In:
Conservation Biology 29.2, pp. 350–359.

Roughgarden, J., Running, S. W., and Matson, P. A. (1991). “What Does Remote Sensing
Do For Ecology?” In: Ecology 72.6, pp. 1918–1922.



90 Bibliography

Saatchi, S., Buermann, W., Steege, H. ter, Mori, S., and Smith, T. B. (2008). “Modeling
distribution of Amazonian tree species and diversity using remote sensing measurements”.
In: Remote Sensing of Environment 112.5, pp. 2000–2017.

Samoy (2007). Validation and Improvement of High Nature Value Identification: National
Approach in the Walloon Region in Belgium and the Czech Republic.

Sanchez-Hernandez, C., Boyd, D. S., and Foody, G. M. (2007a). “Mapping specific
habitats from remotely sensed imagery: Support vector machine and support vector
data description based classification of coastal saltmarsh habitats”. In: Ecological
Informatics 2.2, pp. 83–88.

– (2007b). “One-Class Classification for Mapping a Specific Land-Cover Class: SVDD
Classification of Fenland”. In: IEEE Transactions on Geoscience and Remote Sensing
45.4, pp. 1061–1073.

Scherr, S. J and McNeely, J. A (2008). “Biodiversity conservation and agricultural sus-
tainability: towards a new paradigm of ’ecoagriculture’ landscapes”. In: Philosophical
Transactions of the Royal Society B: Biological Sciences 363.1491, pp. 477–494.

Schimel, D. S., Asner, G. P., and Moorcroft, P. (2013). “Observing changing ecological
diversity in the Anthropocene”. In: Frontiers in Ecology and the Environment 11.3,
pp. 129–137.

Schmidt, J., Fassnacht, F. E., Lausch, A., and Schmidtlein, S. (2017). “Assessing the
functional signature of heathland landscapes via hyperspectral remote sensing”. In:
Ecological Indicators 73, pp. 505–512.

Schmidtlein, S., Faude, U., Stenzel, S., and Feilhauer, H. (2014). “Remote Sensing of
Vegetation for Nature Conservation.” In: Land Use and Land Cover Mapping in Europe
– Practices & Trends. Ed. by I. Manakos and M. Braun. Springer, 203–215.

Schmidtlein, S and Sassin, S (2004). “Mapping of continuous floristic gradients in grasslands
using hyperspectral imagery”. In: Remote Sensing of Environment 92.1, pp. 126–138.

Schmidtlein, S., Feilhauer, H., and Bruelheide, H. (2012). “Mapping plant strategy types
using remote sensing”. In: Journal of Vegetation Science 23.3, pp. 395–405.

Schmidtlein, S., Tichý, L., Feilhauer, H., and Faude, U. (2010). “A brute-force approach
to vegetation classification: Isopam classification”. In: Journal of Vegetation Science
21.6, pp. 1162–1171.

Schneevoigt, N. J., Sund, M., Bogren, W., Kääb, A., and Weydahl, D. J. (2012). “Glacier
displacement on Comfortlessbreen, Svalbard, using 2-pass differential SAR interfer-
ometry (DInSAR) with a digital elevation model”. In: Polar Record 48.01, pp. 17–
25.

Schuster, C., Ali, I., Lohmann, P., Frick, A., Förster, M., and Kleinschmit, B. (2011).
“Towards Detecting Swath Events in TerraSAR-X Time Series to Establish NATURA



Bibliography 91

2000 Grassland Habitat Swath Management as Monitoring Parameter”. In: Remote
Sensing 3.12, pp. 1308–1322.

Schuster, C., Schmidt, T., Conrad, C., Kleinschmit, B., and Förster, M. (2015). “Grassland
habitat mapping by intra-annual time series analysis – Comparison of RapidEye and
TerraSAR-X satellite data”. In: International Journal of Applied Earth Observation
and Geoinformation 34, pp. 25–34.

Sen, S., Zipper, C., Wynne, R., and Donovan, P. (2012). “Identifying Revegetated Mines
as Disturbance/Recovery Trajectories Using an Interannual Landsat Chronosequence”.
In: Photogrammetric Engineering & Remote Sensing 78, pp. 223–235.

Sethna, J. (2006). Statistical Mechanics: Entropy, Order Parameters, and Complexity.
Oxford University Press, Oxford.

Shannon, C. (1948). “A mathematical theory of communication.” In: Bell Syst. Tech. J.
27, pp. 379–423.

Singh, A. (1989). “Review Article Digital change detection techniques using remotely-
sensed data”. In: International Journal of Remote Sensing 10.6, pp. 989–1003.

Skole (1993). “Tropical deforestation and habitat fragmentation in the Amazon: satellite
data from 1978 to 1988.” In: Science 260, pp. 1905–1910.

Spanhove, T., Vanden Borre, J., Delalieux, S., Haest, B., and Paelinckx, D. (2012). “Can
remote sensing estimate fine-scale quality indicators of natural habitats?” In: Ecological
Indicators 18, pp. 403–412.

Spurr, S. (1948). Aerial Photographs in Forestry. New York: Ronald Press.
Ssymank, A., Hauke, U., Rückriem, C., and Schröder, E. (1998). Das europäische Schutzge-
bietssystem Natura 2000. BfN Handbuch zur Umsetzung der Flora-Fauna-Habitat
Richtlinie und der Vogelschutzrichtlinie. Bundesamt für Naturschutz.

Stenzel, S., Feilhauer, H., and Schmidtlein, S. (2015). Multi-seasonal remote sensing for
monitoring vegetation (msave), Project report #50EE1033 for the German Aerospace
Center (DLR), unpubl.

Stenzel, S., Fassnacht, F. E., Mack, B., and Schmidtlein, S. (2017). “Identification of
high nature value grassland with remote sensing and minimal field data”. In: Ecological
Indicators 74, pp. 28–38.

Stenzel, S., Feilhauer, H., Mack, B., Metz, A., and Schmidtlein, S. (2014). “Remote sensing
of scattered Natura 2000 habitats using a one-class classifier”. In: International Journal
of Applied Earth Observation and Geoinformation 33, pp. 211–217.

Stoate, C., Báldi, A., Beja, P., Boatman, N., Herzon, I., Doorn, A. van, Snoo, G. de, Rakosy,
L., and Ramwell, C. (2009). “Ecological impacts of early 21st century agricultural change
in Europe – A review”. In: Journal of Environmental Management 91.1, pp. 22–46.



92 Bibliography

Stockwell, D. and Peterson, A. T. (2002). “Effects of sample size on accuracy of species
distribution models”. In: Ecological Modeling 148, pp. 1–13.

Strozzi, T., Farina, P., Corsini, A., Ambrosi, C., Thüring, M., Zilger, J., Wiesmann, A.,
Wegmüller, U., andWerner, C. (2005). “Survey and monitoring of landslide displacements
by means of L-band satellite SAR interferometry”. In: Landslides 2.3, pp. 193–201.

Sudfeldt, C., Dröschmeister, R., Wahl, J., Gottschalk, T., Grüneberg, C., Mitschke,
A., and Trautmann (2012). “Programme und Anwendungen.” In: Vogelmonitoring in
Deutschland. Naturschutz und biologische Vielfalt 119. Bonn, p. 257.

Sukopp, H., Pretscher, P., and Sukopp, U. (2006). “Artenschutz in Deutschland. Konzepte,
Strategien und Bilanz der letzten 100 Jahre.” In: Natur und Landschaft 81.1, pp. 18–21.

Sullivan, C. A., Bourke, D., Skeffington, M. S., Finn, J. A., Green, S., Kelly, S., and
Gormally, M. J. (2011). “Modelling semi-natural habitat area on lowland farms in
western Ireland”. In: Biological Conservation 144.3, pp. 1089–1099.

Sullivan, C. A., Skeffington, M. S., Gormally, M. J., and Finn, J. A. (2010). “The
ecological status of grasslands on lowland farmlands in western Ireland and implications
for grassland classification and nature value assessment”. In: Biological Conservation
143.6, pp. 1529–1539.

Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A. C., and Guisan, A. (2014).
“Measuring the relative effect of factors affecting species distribution model predictions”.
In: Methods in Ecology and Evolution 5.9, pp. 947–955.

Thuiller, W. (2004). “Patterns and uncertainties of species’ range shifts under climate
change”. In: Global Change Biology 10.12, pp. 2020–2027.

Toivonen, T. and Luoto, M. (2003). Landsat TM images in mapping of semi-natural
grasslands and analysing of habitat pattern in an agricultural landscape in south-west
Finland.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., and Steininger, M.
(2003). “Remote sensing for biodiversity science and conservation”. In: Trends in Ecology
& Evolution 18.6, pp. 306–314.

Tyc, G., Tulip, J., Schulten, D., Krischke, M., and Oxfort, M. (2005). “The RapidEye
mission design”. In: Acta Astronautica 56.1-2, pp. 213–219.

Ustin, S. L. and Gamon, J. A. (2010). “Remote sensing of plant functional types: Tansley
review”. In: New Phytologist 186.4, pp. 795–816.

Ustin, S. L., Riaño, D., and Hunt, E. R. (2012). “Estimating canopy water content from
spectroscopy”. In: Israel Journal of Plant Sciences 60.1, pp. 9–23.

VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., and Storlie, C. (2012). SDM-
Tools: Species Distribution Modelling Tools: Tools for Processing Data AssociatedWith



Bibliography 93

Species Distribution Modelling Exercises. R Package Version 1.1-13.http://CRAN.R-
project.org/package=SDMTools.

Vanden Borre, J., Paelinckx, D., Mücher, C. A., Kooistra, L., Haest, B., De Blust, G., and
Schmidt, A. M. (2011). “Integrating remote sensing in Natura 2000 habitat monitoring:
Prospects on the way forward”. In: Journal for Nature Conservation 19.2, pp. 116–125.

Veen, P., Jefferson, R., Smidt, J. de, and Straaten, J. van der (2009). Grasslands in Europe
of high nature value. the Netherlands: KNNV Publishing.

Veitch, N., Webb, N., and Wyatt, B. (1995). “The application of geographic information
systems and remotely sensed data to the conservation of heathland fragments”. In:
Biological Conservation 72, pp. 91–97.

Velásquez-Tibatá, J., Graham, C. H., and Munch, S. B. (2016). “Using measurement error
models to account for georeferencing error in species distribution models”. In: Ecography
39.3, pp. 305–316.

Vogelmann, J. E., Kost, J. R., Tolk, B, Howard, S, Short, K, Xuexia Chen, Chengquan
Huang, Pabst, K, and Rollins, M. G. (2011). “Monitoring Landscape Change for
LANDFIRE Using Multi-Temporal Satellite Imagery and Ancillary Data”. In: IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4.2,
pp. 252–264.

Wang, K., Franklin, S. E., Guo, X., and Cattet, M. (2010). “Remote Sensing of Ecology,
Biodiversity and Conservation: A Review from the Perspective of Remote Sensing
Specialists”. In: Sensors 10.11, pp. 9647–9667.

Weissteiner, C. J., Strobl, P., and Sommer, S. (2011). “Assessment of status and trends of
olive farming intensity in EU-Mediterranean countries using remote sensing time series
and land cover data”. In: Ecological Indicators 11.2, pp. 601–610.

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., and
NCEAS Predicting Species Distributions Working Group† (2008). “Effects of sample
size on the performance of species distribution models”. In: Diversity and Distributions
14.5, pp. 763–773.

Wold, S., Sjoestroem, M., and Eriksson, L. (2001). “PLS-regression: a basic tool of
chemometrics.” In: Chemometrics and Intelligent Laboratory Systems 58.2, pp. 109–130.

Yamano, H., Chen, J., and Tamura, M. (2003). “Hyperspectral identification of grassland
vegetation in Xilinhot, Inner Mongolia, China”. In: International Journal of Remote
Sensing 24.15, pp. 3171–3178.

Yang, L., Xian, G., Klaver, J., and Deal, B. (2003). “Urban Land-Cover Change Detec-
tion through Sub-Pixel Imperviousness Mapping Using Remotely Sensed Data”. In:
Photogrammetric Engineering & Remote Sensing 69.9, pp. 1003–1010.



94 Bibliography

Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Zhang, X., and Wang, L. (2015).
“Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance
and Niche Properties”. In: PLOS ONE 10.3, e0120056.

Zimmermann, H., Von Wehrden, H., Damascos, M. A., Bran, D., Welk, E., Renison, D.,
and Hensen, I. (2011). “Habitat invasion risk assessment based on Landsat 5 data,
exemplified by the shrub Rosa rubiginosa in southern Argentina: HABITAT INVASION
RISK ASSESSMENT”. In: Austral Ecology 36.7, pp. 870–880.

Zurell, D., Berger, U., Cabral, J. S., Jeltsch, F., Meynard, C. N., Münkemüller, T.,
Nehrbass, N., Pagel, J., Reineking, B., Schröder, B., and Grimm, V. (2010). “The
virtual ecologist approach: simulating data and observers”. In: Oikos 119.4, pp. 622–635.



Appendix A.

Data



96 Appendix A. Data

Table A.1.: Natura 2000 LRT – plot coordinates (UTM WGS84 Zone 32N).
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Table A.2.: HNV – plot coordinates (UTM WGS84 Zone 32N).
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Table A.3.: List of species (Wisskirchen & Haeupler).
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Table A.4.: Accuracy measures chapter 3
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