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Abstract

For an understanding of the climate system’s variability, knowledge of the past climate is es-
sential. Continuous observations are not available for longer than the last 100 years, a period
that is insufficient to understand the variability and sensitivity of the climate system. Since
information of both is necessary to build good climate models, the reconstruction of the past
climate is fundamental. With palaeoclimate reconstructions it is possible to get information
about the past climate and the climate changes in the period and region of interest. In this
work these are the Levant region and the Balkans. The Levant region is situated around the
Jordan Valley in Israel.

In this work the presence of pollen and macrofossils is used as a proxy. In detail the method
bases on the assumption that the presence of a plant or more general of biometypes in a
certain area is addicted to the climate. This connection between the occurrence of the plants
and the climate is described by transfer functions. The nature of these transfer functions
has to be probabilistic because the climate-biosphere system is a stochastical system. In the
Collaborative Research Centre (CRC) 806 project B3 ”Our way to Europe” high-resolution
lacustrine sediment cores were drilled in March 2010 by Thomas Litt and his working group
at Lake Kinneret and Birkat-Ram. The sediment core situated on the Balkans was retrieved at
Lake Prespa in November 2009 as part of the CRC project B2.

This study presents the results of local palaeoclimate reconstructions based on methods
which are a statistical extension of the concept of biomisation, plant functional types and mu-
tual climatic range (MCR). In more detail the Bayesian Biome Model (BBM) is applied for
Lake Kinneret and Ein Gedi and the Bayesian Indicator Taxa Model (BITM) for Lake Prespa.
For Birkat Ram the Bayesian Indicator Taxa and Biome Model (BITBM) is newly developed and
applied. This method combines the BBM and BITM. Reconstructed are the near surface tem-
peratures, middle troposphere temperatures (850hPa level), the annual climatic water deficit
CWDANN and the annual precipitation amount PANN .

All presented palaeoclimate temperature reconstructions except Lake Kinneret share that the
surface and the middle troposphere temperature reconstructions are in accordance. It is also
shown that the CWDANN palaeoclimate reconstruction works and does not contradict PANN . The
marginal distribution for CWDANN is for example for Lake Prespa a reconstructed palaeoclimate
variable which allows more identifiable variation than in PANN . For Lake Prespa there are four,
for Birkat Ram three, for Ein Gedi also three and for Lake Kinneret no identifiable time ranges
with different climate in the marginal probability density function (pdf)s. In the case that
there are time ranges with different climate they are clearly identifiable in the palaeoclimate
reconstructions since the marginal distribution profiles before and after differ more or less.
Some of these time ranges are compared by application of a Student’s t-test for a significance
test.

Also presented is an interpolation of local reconstructions situated in the Levant or more
precise the Jordan Valley which allows a better assessment of climate changes. The Jordan
Valley climate field reconstruction (CFR) results is a dryer palaeoclimate than the modern
climate for PANN and no climate change for the considered temperatures for all fossil sites and
considered time slices. This result remains uncertain since there are some difficulties with the
climate database.
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Introduction

Today the human influenced climate change and the effects on humankind play an important

role in the public and of course also in political discussions. Movies, such as ”An Inconvenient

Truth” produced by Al Gore, the Winner of the Nobel Peace Prize 2007, showed these effects

to a broad public. For answering questions connected to this topic it is very important to un-

derstand the variability of the climate system today and in the past. Nowadays measurements

allow an objective quantification in terms of climatological variables. On a global scale these

continuous measurements are only available for the last 100 years, for example the dataset

provided by the Climate Research Unit (CRU). This time period is too short to examine and

understand the variability of the climate system. Historical and palaeo climatology tries to

fill this information gap with quantitative climate reconstructions. Historical climatology in

this context means the application of all kind of written data as proxy data. They are based

on indicators which are available on long time scales and which are influenced essentially by

climatic conditions. The nature of these so called proxies could be, for example, biological,

chemical or also historical reports. In this work pollen counts are used as proxy. The chapter

directly following gives an overview of the science of climate reconstructions focused on this

proxy.

One important question connected with climate change is the influence on the migration

of humans in the past. The study presented here is a contribution to the Collaborative Re-

search Centre (CRC) 806 ‚Our Way To Europe‘ (http://www.sfb806.uni-koeln.de/),

funded by the German Research Foundation (DFG). The title of the CRC indicates that this

project tries to answer the question of origin of modern man in Europe (which is one part of

migration of the humans in the past) and the corresponding driving factors. In more detail,

this study presents the results from palaeoclimate reconstructions in the southern Levant and

the Balkan regions (CRC subprojects B3 and B2), illustrated by Figure I. It bases on the CRC

806-logo which indicates the two most probable routes of migration of the modern man into

Europe. In Figure I the location of the bodies of water where the sediment core are drilled

(s. chap. 2.3) are marked. They form the most important database of the palaeoclimate recon-

structions presented in this work: Lake Prespa, Lake Kinneret, Ein Gedi and Birkat Ram. Since

climate change is one possible driver (s. e. g. CRC homepage or Müller et al. 2011) for human

migration and all Lakes are situated in the corridor of the eastern migration route this study

tries to answer if there is a palaeoclimate change. All required basic mathematical principles

for these palaeoclimate reconstructions are introduced in chapter 1. Chapter 2 presents all
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Introduction

Figure I.: Migration routes of the modern human into Europe (based on the CRC 806-logo). Marked
are the lake position used in this work.

necessary and used data in this work.

For Lake Prespa (situated on the Balkan) the Bayesian Indicator Taxa Model (BITM) is the

selected reconstruction method as presented in chapter 3. Previous applications of the BITM

reconstruct TJan, TJul and PANN (s. e. g. Simonis et al. 2012) or T 850hpa
Jan and T 850hpa

Jul (s. e. g.

Stolzenberger 2011). This study introduces a new possible climate variable for the real wa-

ter availability CWD (s. chap. 2.1.1, eq. 2.1 for details) and tries to show if it is possible to

reconstruct palaeoclimate described by CWD. For Lake Prespa this means a palaeoclimate re-

construction based on a three dimensional climate state vector
#–
C with four different kinds of

definition for
#–
C (s. eq. 3.1). The definition comprises the 2m surface climate variables TJan,

TJul and PANN as well as the middle troposphere variables T 850hpa
Jan and T 850hpa

Jul . It tries to show

if the results are in accordance.

Chapter 4 presents the result of an application of the Bayesian Biome Model (BBM) on the

Lake Kinneret sediment core data which is developed by Litt et al. (2012) for the Ein Gedi

sediment core. This chapter also tries to answer the same questions as for Lake Prespa: Is it

possible to reconstruct CWD or more precisely the annual amount CWDANN , are the results

of different definitions of the climate state vector in accordance and is there a climate change

identifiable? Due to the fact that for the BBM different settings are possible the different

setups were tested and compared. For Lake Kinneret is also tested if it is possible to use

another method for palaeoclimate reconstruction, the pollen-ratio model (PRM) (s. chap. 4.4

for details). Since later on in chapter 6 the Ein Gedi palaeoclimate reconstruction with other

settings as in Litt et al. (2012) is required chapter 4 presents the adaptations and the result for

CWDANN .

In chapter 5 is investigated for the Birkat Ram sediment core data if it is possible to re-

construct palaeoclimate with CWD. Additionally a new method is developed which is situated

VIII



between the BBM and BITM since the requirements for an application of these methods are not

exactly given (s. chap. 5.1 for details): The Bayesian Indicator Taxa and Biome Model (BITBM)

combines biome (BBM) and taxon (BITM) information. It is analysed if this is possible and the

reconstructed palaeoclimate is discussed in chapter 5.3.

Due to the fact that Lake Kinneret, Birkat Ram and Ein Gedi are all situated in the Jordan

Valley chapter 6 presents an approach summarizing the local palaeoclimate reconstructions in

a simple climate field reconstruction (CFR). Simple in this context means that no model like

e. g. the one used in Gebhardt (2003); Simonis (2009) is applied. In this work their approach

is simplified and applied to try to answer: if there is palaeoclimate change indicated in one of

the local palaeoclimate reconstructions, is it also identifiable in the whole Jordan Valley?

The following page shows the structure of this thesis. It is a flowchart showing the rela-

tion of the different chapters and the appendix. The flowchart includes the appendix which is

highlighted with a blue colour as background. The dotted lines show where to find the math-

ematics for each palaeoclimate reconstruction. The green coloured lines connect the database

to the palaeoclimate reconstructions. The cyan coloured lines indicate the connection of the

appendix chapters to the rest of the work. The red lines show how the Jordan Valley palaeo-

climate reconstruction is embedded in the work.

Directly after the appendix follows the Register part. It includes:

• List of Figures and Tables (p. 227),

• List of Acronyms,

• List of Symbols which lists the mathematical symbols divided in three parts dependent

on the mathematical dimension (scalar quantity, vectorial quantities and matrices),

• List of Taxa with all used taxa listed in alphabetical order. Additionally the shortcuts (if

defined), the sediment core and the assigned biome type (if definded, s. 4.2.2 for details)

are listed.

• a Glossary and

• the bibliography. The bibliography is divided in parts:

– Scientific Books

– Parts of Scientific Collections

– Scientific Articles

– Scientific Thesis (PhD thesis, Master thesis and diploma thesis)

– Electronic Data Sources (databases, websites and programs)

– Other Sources (the rest)
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The Science of Climate Reconstructions

This chapter gives an overview over the current state of art in the science of palaeoclimate

reconstructions, focused on pollen, since this is the selected proxy in this work. The basic

assumptions and mathematical tools for statistical palaeoclimate reconstruction as applied in

chapter 3, 4, 5 are introduced in the next chapter.

The science of palaeoclimate reconstructions has made a big progress in the last two decades.

Especially the need for statistics for palaeoclimate reconstructions has become evident in the

palaeo-science community, visible in the increasing number of publications in the past ten

years, e. g. Li et al. (2010); McShane, Wyner (2011); Ohlwein, Wahl (2012); Tingley et al.
(2012); Tingley, Huybers (2010); Tolwinski-Ward et al. (2014); Werner et al. (2013). The In-

tergovernmental Panel on Climate Change (IPCC) also emphasizes this in the Fifth Assessment

Report (AR5) (chapter 5, s. Masson-Delmotte et al. (2013)). In detail, the need of assessing

the uncertainty of palaeoclimate reconstructions and the relevance of Bayesian Hierarchical

Model (BHM) for this aim are discussed in the AR5.

The application of pollen as a proxy for palaeoclimate reconstructions has a long tradition in

palaeo science. Ohlwein, Wahl (2012) and Bartlein et al. (2011) maintain the fact that pollen-

climate transfer methods are used for at least 65 years. Ohlwein, Wahl (2012) also give an

overview of the development of probabilistic pollen-climate transfer methods and identify the

first approaches using mathematics for describing the relationship between pollen and climate

(Bernabo (1981), Howe, Webb III (1983) and Bartlein et al. (1984)). The connection between

pollen and climate in these publications is described with a deterministic multiple linear model

and stochastic errors. Multiple linear in this context implies that different climate variables are

incorporated in the model (Ohlwein, Wahl 2012). As explained in Ohlwein, Wahl (2012) ”these
models could exhibit high explained variability in calibration, but were found to be non general
enough for reconstructions”. Calibration, in this context, means the fitting of the pollen-climate

connection in the modern time frame.

The next step in the development of proxy-climate transfer functions was the expansion

of the perspective from local reconstruction methods to CFR methods. Local reconstructions

imply that the reconstruction is applied for one point at the earth’s surface and usually only

representative and interpretable for this geographical point. This locality refers to the place

where the proxy time series is received. In this study, the locality is the drilling location of

the sediment cores. One of the first steps from local reconstructions to CFR were explored by

Cook et al. (1994), who apply a canonical correlation analysis (CCA) on tree rings. As Ohlwein,
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The Science of Climate Reconstructions

Wahl (2012) pointed out: ”This is not a systematic field reconstruction method per se”, but it

is a ”closely-related method” which ”forms a truncated basis for a empirical orthogonal function
(EOF)”. As also mentioned in Ohlwein, Wahl (2012) EOFs are the basis of CFR. EOFs are an

important tool in the science of climatology to analyse the most important spatial and temporal

structures of a climatic field.

After these first efforts with CFR the perception that the application of the Bayes theorem

(for details s. chapter 1) and the consideration of the full probability density function (pdf) at

least for local reconstruction could enhance the analysis of uncertainty of the climate of the

past was an important step forward. The use of the Bayes theorem in palaeoclimatology was

first mentioned, as far as we know, in Birks (1998). Birks (1998) also gives a good overview

of the regression based methods and presents a good discussion of the respective advantages

and disadvantages of the methods. A more actual publication in this context is Bartlein et
al. (2011). Actually the Bayes theorem and pdfs were applied in Robertson et al. (1999), a

publication also mentioned in Birks (1998). Robertson et al. (1999) used the results of an

application of the Bayes theorem and a kernel density estimator to estimate the joint pdf for

carbon isotope index taken from tree rings and mean temperature of July and August (T mean
JA ).

Robertson et al. (1999) also compared this ”novel” method with regression based methods.

One step further in the development of probabilistic transfer function was the first detailed

introduction of the BHM by a Finnish research group (Schölzel (2006), section 2.2.1, p. 16). In

general, BHM allows the separation of uncertainty in different parts called levels. The Finnish

research group used the abundance of Chironomidaes (non-biting midges) as proxy in their

Bayesian response model (Vasko et al. (2000), Toivonen et al. (2001), Korhola et al. (2002)).

A collaboration of climatologists and palaeontologists, initialized by Prof. Dr. Andreas Hense

and Prof. Dr. Thomas Litt, developed pollen-climate transfer functions. A number of publica-

tions are the result of this collaboration from now on called ”Bonner Group”. The first result

was the statistical extension of the mutual climatic range (MCR) method (s. chapter 3, p. 23

for details) to the so called pdf method (Kühl 2002; Kühl et al. 2002). The method presented

in Kühl et al. (2002) bases on a bivariate normal distribution for the description of the transfer

function for January temperature (TJan) and July temperature (TJul). Gebhardt (2003); Geb-

hardt et al. (2008) compared two probability distributions as basis for the transfer functions:

a kernel density estimator and a Gaussian mixture model. He also presents an approach for

CFR, which differs from those mentioned above, based on data assimilation usually used in

numerical weather prediction: a physical coherent spatial interpolation of the local pdf recon-

structions (for more detailed information, s. chap. 6).

Another non-probabilistic pollen based reconstruction method, which fits into the context

of BHM, is presented in Haslett et al. (2006): the modern analogue technique (MAT), which

is in detail described in chapter 4. In a nutshell the MAT uses the similarity of the struc-

ture of modern pollen samples and those of the past. The reconstructed climate variables in
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Haslett et al. (2006) are the mean temperature of the coldest month (MTCO) and the growing

degree days above 5 ◦C (GDD5).

The final implementation of the pdf-method in BHM was developed by the ”Bonner Group”

and is presented in the PhD thesis of Schölzel (2006) who applied the so called BITM in the

Near East. Schölzel (2006) also studies in detail how the aforementioned classical regres-

sion based methods fit into the context of BHM. He also introduced the BBM based on plant

functional types (PFT) for the palaeoclimate reconstruction of Ein Gedi (Israel), which was

enhanced by Litt et al. (2012). The considered transfer function describe a multivariate pdf

for mean winter temperature (TDJF), mean summer temperature (TJJA) and annual precipita-

tion amount (PANN). The BBM is also applied for the sediment core drilled at Lake Kinneret

(Israel) and in detail described in chapter 4. Motivated by the success of reconstructing PANN ,

Simonis (2009) explores the potential of combining the BITM for TJan, TJul and PANN with the

variational method introduced by Gebhardt (2003).

Pollen are not the only possible proxy for which probabilistic reconstructions should be de-

veloped, e. g. Robertson et al. (1999). BHM offer the possibility to consider/handle different

kinds of proxies in a mathematically consistent way for reconstructing a conditional pdf of

the past climate given a mixture of different proxy data, often called multi-proxy approach.

Hughes, Ammann (2009) classify the different approaches for reconstructions of the past cli-

Transient  
Model Run 

Climate Field 
Reconstruction 

Bayesian  
Hierarchical 

Models 

Optimal  
Ensemble 

Simulations 

Proxy Surrogate 
Reconstructions 

Multi-proxy Cross-Validation 

Ensemble  
Kalman-Filters 

process
information

little

much

Datalittle much

Figure II.: Scheme for the classification of palaeoclimate reconstruction methods, redrawn after
Hughes, Ammann (2009)

mate, which is shown in Figure II. This scheme classifies the palaeoclimate reconstruction

methods on the basis of two characteristics: the understanding of the forming processes of

the proxy archives and the amount of available data required for each method. The classical

multi-proxy cross-validation and also the CFR are classified compared to BHMs as methods

with less processes information but all three approaches need a lot of data to achieve results.

Garreta (2010) and Garreta et al. (2010) provide the next important contribution to the
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development of palaeoclimate reconstructions. The study presents the capabilities of estimat-

ing a palaeoclimate reconstruction with the help of a Bayesian framework with a process-based

vegetation model.

Li et al. (2010) present a BHM for reconstructing the past climate based on tree rings,

borehole temperature and pollen abundance. Since they use synthetic proxies generated from

the output of a climate model it is also possible to quantify the reconstructed uncertainty

of the reconstructed annual mean temperature (T mean
ANN ). Tingley, Huybers (2010) present an

extension of the approach from Li et al. (2010): The reconstruction of the ”temporal evolution
of climate field from incomplete data”.

If we switch back to the reconstruction methods that incorporate the knowledge of the

process understanding, Birks et al. (2010) published an extensive discussion of the different

reconstruction methods available for pollen as proxy, in detail these are ”the indicator-species
approach involving bioclimate envelope modelling, the assemblage approach involving modern
analogue techniques and response surfaces and the multivariate calibration-function approach”.

Bartlein et al. (2011) also give an overview of reconstruction methods but more focused on

the global available reconstructions for the mid-Holocene (around 6000 years before present

(y. BP) ) and the Last Glacial Maximum (around 21000 y. BP). In detail, they present a short

discussion of the methods and then focus on a synthesis of the reconstruction results for four

temperature and two moisture climate variables.

The next contribution of the ”Bonner Group” was a new description for transfer functions

based on the BITM for TJan and TJul. In the diploma thesis of Stolzenberger (2011) transfer

functions are estimated with a generalized linear model (GLM) for different taxa and differ-

ent climate datasets. The results are compared with statistical verification methods (in detail

ROC-curves, Brier skill score and relative entropy). For the modern time frame, field recon-

structions based on transfer function estimated with the GLM, the Gaussian mixture model and

the normal distribution are compared. Also a GLM-BITM reconstruction for Lake Holzmaar is

presented.

Tingley et al. (2012) (together with the publication Tingley, Huybers (2010) is one of the

most general BHM description in connection with palaeoclimate reconstructions. The BHM in

Tingley et al. (2012) is based on the joint probability of six random variables and leads, after

an extensive discussion of the assumptions which are used for a simplification, to five different

levels of uncertainty. These levels allow to quantify the uncertainty contribution for the palaeo-

climate reconstruction of multiple proxy data, multiple instrumental data, the reconstructed

climate state and physical process(es) which form the proxy data and the instrumental data.

How the separation into level is done mathematically in general is described in chapter 1.2.

Tingley et al. (2012) also show how the classical methods like e. g. classical linear regression

fit in this complex BHM.

In comparison with Tingley et al. (2012) Ohlwein, Wahl (2012) set the focus on one proxy
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named pollen. Ohlwein, Wahl (2012) give an overview of the development of ”probabilistic
pollen-climate transfer methods” till 2012 and show how MCR resp. the BITM, MAT, PFT and

biomisation resp. the BBM, and process-based vegetation models like e. g. described in Garreta

(2010) fit in the framework of BHM for palaeoclimate reconstructions. Also the ”selection of
prior distributions” is discussed. As an example a case study with the PRM is presented, also

used in this study and therefore in detail described in chapter 4, which is a simplification of

the MAT for the ratio of two pollen taxa.

Parnell et al. (2012) also used a BHM for ”modelling the uncertainties in palaeoclimate recon-
structions”. They analyse real pollen proxy data with an extension of the BHM introduced in

Tingley et al. (2012). They incorporate the uncertainty of the chronological dating process of

the pollen samples of sediment cores. The special focus of this publication is the estimation of

the BHM level called likelihood, which is the probability for the pollen proxy data given the

climate data, in situation where ”repeated calls to the likelihood are costly”.

Garreta et al. (2012) present an extension of the reconstruction method presented in Garreta

et al. (2010). Garreta et al. (2012) study by using the vegetation model LPJ-GUESS, imbedded

in a BHM, the link between modern pollen samples and modern climate in Europe.

The publication of Crucifix (2012) is a very general review of ”traditional and novel ap-
proaches to palaeoclimate modelling”. The three main topics of the review are the process-

based, simulator-based and statistical modelling. Simulator-based modelling stands for the

evaluation of numerical general circulation model (GCM) developed and used by climatolo-

gists ”which encapsulate available knowledge on a huge variety of climate processes at different
spatial and temporal scales” (Crucifix 2012). An example for a GCM is mentioned in chap-

ter 1.1. Crucifix (2012) compares all three approaches, shows the advantages and disadvan-

tages and discusses how to connect them with BHM.

In 2013 some studies which apply the BHM developed by Tingley, Huybers (2010) and Tin-

gley et al. (2012) were published. First, Werner et al. (2013) evaluate a simplified version of

the just mentioned BHM and also a CCA for CFR over Europe. The evaluation is performed by

using proxy data generated by the National Center for Atmospheric Research (NCAR) Commu-

nity Climate System Model, version 1.4 (CCSM1v4). Secondly, Tingley, Huybers (2013) use

”instrumental, tree-ring, ice-core and lake-sediment records” for analysing ”temperature extremes
at high northern latitudes”.

Mairesse et al. (2013) applied the above mentioned data assimilation to estimate which cli-

matic field shows the best agreement with the information from a climate model with its imple-

mented forcings and local proxy based palaeoclimate reconstructions. For the Mid Holocene,

a period roughly from 7000 y. BP - 5000 y. BP, they compare the results of one model with

the opportunity to include or exclude data assimilation named LOVECLIM1.2 and three other

GCMs.

Guillot et al. (2013) present a new method for CFR named GraphEM. In detail, it is an
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adopted ”approach based on multivariate linear regression” which applies an expectation maxi-

mization (EM) algorithm. Briefly summarized, all available proxy data and instrumental tem-

perature data are regarded as realisation of a multivariate random vector with a Gaussian

distribution. The reconstruction of the pre-instrumental temperature data in this approach

is treated as missing value problem, in which Gaussian Markov random fields are used to

estimate the covariance matrix of the regarded Gaussian distribution.

Mukhopadhyay, Bhattacharya (2013) present an BHM approach called Bayesian Semipara-

metric Model. Their work is based on the above mentioned work of Haslett et al. (2006).

In detail Mukhopadhyay, Bhattacharya (2013) present a BHM for Chironomidaes and Pollen

whereat they ”model the species assemblages” with a ”zero-inflated multinomial distribution” and

”the species response functions” with ”Dirichlet-process based Gaussian mixtures”. The publica-

tion presents no palaeoclimate reconstruction but focuses on assessment of the model ade-

quacy via cross-validation for the aforementioned BHM.

Janson, Rajaratnam (2014) introduce another methodology for statistical palaeoclimate re-

constructions. The main focus of their publication is the development of a method ”which
combines quantile regression (QR) with autoregressive (AR) structures in the residuals”. As a

case study a palaeoclimate reconstruction for the mean global northern hemisphere temper-

ature of the last millennium is presented. Additionally, the method is evaluated with the so

called ”forward modelling” approach in order to get an impression how good the connection

between the proxies and the temperatures is reflected.

Tolwinski-Ward et al. (2014) explore the possibilities of probabilistic BHM in order to re-

construct climate with the proxy tree-ring width. In order to examine the sensitivity of the

method, numerical experiments with synthetical proxies are performed. The last part of the

article demonstrates again the flexibility of BHMs with a multiproxy based reconstruction of

local temperature and moisture of the Methuselah Walk, a locality in the White Mountains of

California. The second incorporated proxy is the isotope ratio of δ 13C.
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1
The Mathematics of Climate Reconstructions

In the introduction the need of palaeoclimate reconstructions was revealed as the lack of quan-

titative information for the climate of the past. In detail, this means that measurements which

quantify the climate with physically measurable and comparable quantities like for example

the air temperature, wind speed or precipitation amount are only available for a maximum

timeframe of about 200 years on some sparse locations. The longest continuous weather

record of this kind is available from 1780 until present at the Meteorological Observatory

Hohenpeissenberg in Southern Germany (Kapala 2003; Das Meteorologische Observatorium
Hohenpeißenberg). On a global scale, continuous measurements are only available for the last

100 years, for example the datasets provided by the CRU which are used in this study (s.

chap. 2.1, p. 7).

If quantitative climatic information is needed for longer time slices or other locations it

requires another type of data source. The science of palaeoclimatology tries to fill this in-

formation gap with statistical palaeoclimate reconstructions. The basis are indicators that are

available on long time scales and which are influenced essentially by climatic conditions. These

so called proxies or Climate Proxy, could be for example biological, chemical or also historical

reports.

This chapter introduces the basic idea and principles for the palaeoclimate reconstructions

presented in chapter 3, 4 and 5.

1.1. The Need for Statistic

Climate reconstructions base on transfer functions which connect the climate information and

the proxy information. The mathematical formulation of these transfer functions is a challeng-

ing task and will be described in the following.

First of all one has to consider the general nature of the transfer function formulation. The

climate system is a complex system (Hense 2002, 2005). In the considerations presented here,

the climate system is defined as a coupled system of several connected subsystems. In detail,

these are the atmosphere, the hydrosphere, the cryosphere, the biosphere and the lithosphere.

Every subsystem includes many processes. Some of these processes are connected and some
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not, but every process has uncertainties and many processes are non-linear. Some processes

are not known and some are not completely understood. These complexities are illustrated

Figure 1.1.: The complex earth climate system and related processes incorporated in the CCSM3.
source: Atmospheric Research (UCAR) (2004)

for example in Figure 1.1, which shows all incorporated subsystems and phenomena in the

CCSM3 developed from the NCAR.

Alone from this point of view it has to be pointed out, that every calculation that bases on the

climate system or parts of it has to regard these complexities and non-linearities. These facts

are extensively discussed in Gebhardt (2003); Li et al. (2010); Ohlwein, Wahl (2012); Schölzel

(2006); Simonis (2009); Stolzenberger (2011); Tingley et al. (2012). In science, these facts

are considered by the use of statistics, more precise by regarding all used variables as random

variables.

The definition of random variables Z, denoted with capital letters, is an important step

for the mathematical description of statistical quantities (s. e. g. Wilks 2011). The general

definition combines all important information of the considered quantity, which are

2



1.2. The Basic Concept

• the realisation z, e. g. the measurement of the summer temperature, denoted with small

letters,

• the sample space S that is the range of all theoretically possible realisations,

• the probability P(·) for each realisation. If the sample space is continuous and the

probability function is differentiable it is also possible to use the pdf f (·).

This leads to the definition of a univariate random variable (eq. 1.1a). In the case of a vectorial

realisation the random variable is a multivariate random variable (eq. 1.1b):

Z :=
{(

z, P(z)
)
, z ∈ S

}
=
{(

z, f (z)
)
, z ∈ S

}
, (1.1a)

#–
Z :=

{(
#–z ,P( #–z )

)
, #–z ∈ S

}
=
{(

#–z , f ( #–z )
)
, #–z ∈ S

}
. (1.1b)

Specially the consideration about the sample space is important for the specification of the

used cumulative distribution function (CDF) as probability.

1.2. The Basic Concept

The definition of statistical transfer functions requires a definition of the regarded random

variables. Two essential groups of random variables can be distinguished: the group of the

recent and the past ones. This division is based on the fact that different scales in space

and time are regarded (Schölzel 2006; Tingley et al. 2012). Specially Tingley et al. (2012)

discussed extensively difficulties which arise from the different scales that are reflected in the

underlying processes.

As mentioned in the last section, transfer functions connect climate information and proxy

information. Due to this and the arguments mentioned in this section, the minimum number

of necessary random variables are:

• the recent climate variables or more general environmental variables
#–
C =

{(
#–

c , f
(

#–

c
))

,
#–

c ∈ K
}
,

• the recent proxy variables
#–
P =

{(
#–

p , f
(

#–

p
))

,
#–

p ∈ P
}
,

• the past climate environmental variables
#–
C 0 =

{(
#–

c 0, f
(

#–

c 0

))
,

#–

c 0 ∈ K0

}
,

• and the past proxy variables
#–
P 0 =

{(
#–

p 0, f
(

#–

p 0

))
,

#–

p 0 ∈ P0

}
,

In this notation, all random variables that belong to the group called past are marked with an

index zero. Past, in detail, means that the random variables
#–
C 0 and

#–
P 0 are given at historic

3



Chapter 1. The Mathematics of Climate Reconstructions

time t0 as concluded by Schölzel (2006). Transfer functions in this statistical perception are

expressed as the joint probability or joint pdf of the involved random variables:

f #–
C ,

#–
P

(
#–

c ,
#–

p
)
, (1.2a)

f #–
C 0,

#–
P 0

(
#–

c 0,
#–

p 0

)
. (1.2b)

This interpretation is equivalent to a consideration of a random variable for the past time frame
#–
R 0 =

{(
#–

c 0,
#–

p 0, f #–
C 0,

#–
P 0

(
#–

c 0,
#–

p 0

))
,

#–

c 0 ∈ K0,
#–

p 0 ∈ P0

}
and the recent time frame

#–
R =

{(
#–

c ,
#–

p ,

f #–
C ,

#–
P

(
#–

c ,
#–

p
))

,
#–

c ∈ K, #–

p ∈ P
}

. The used pdf for this random variables are those defined in

equation 1.2. The notation for pdfs in equation 1.2 and in the following chapters summarizes

two facts: The subscript indicates which random variable is considered and in brackets the

dedicated realisation. As mentioned in the definition of a random variable in the last section,

pdfs are only available for continuous and differentiable random variables. Since small letters

denote pdfs, it has to be mentioned that the connection between discrete and continuous

random variables is straightforward and that the application of pdfs from now on could be

made w. l. o. g. (Schölzel 2006).

The joined pdfs in equation 1.2 or more general probabilities are the origin for a BHM as

defined in e. g. in Tingley et al. (2012) or Ohlwein, Wahl (2012). In more detail, BHMs apply

the Bayes theorem (Bayes 1763) on the joint probability or joint pdf and split it into a product

of conditional probabilities called levels. The complexity of the BHM depends on the number

of included random variables in the joint probability. Tingley et al. (2012) for example include

5 levels in the BHM and Ohlwein, Wahl (2012) four.

For the minimum number of involved random variables in equation 1.2 the Bayes theorem

leads to

f #–
C | #–P

(
#–

c | #–p
)

· f #–
P

(
#–

p
)

= f #–
P | #–C

(
#–

p | #–c
)

· f #–
C

(
#–

c
)
, (1.3a)

f #–
C 0|

#–
P 0

(
#–

c 0|
#–

p 0

)
· f #–

P 0

(
#–

p 0

)
= f #–

P 0|
#–
C 0

(
#–

p 0|
#–

c 0

)
· f #–

C 0

(
#–

c 0

)
. (1.3b)

In palaeoclimate reconstructions the main interest is the conditional probability climate given

proxy data. Equation 1.4 is the rearranged equation 1.3 with the commonly used notation for

BHM, which is also used e. g. in Simonis (2009) or Schölzel (2006):

f #–
C | #–P

(
#–

c | #–p
)

=
f #–

P | #–C

(
#–

p | #–c
)
·π #–

C

(
#–

c
)

m #–
P

(
#–

p
) , (1.4a)

f #–
C 0|

#–
P 0

(
#–

c 0|
#–

p 0

)
=

f #–
P 0|

#–
C 0

(
#–

p 0|
#–

c 0

)
·π #–

C 0

(
#–

c 0

)
m #–

P 0

(
#–

p 0

) . (1.4b)
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1.2. The Basic Concept

In this notation π... (·) generally denotes the prior distribution and m... (·) the marginal dis-

tribution. The remaining part of the right side of the equations f #–
P | #–C

(
#–

p 0|
#–

c 0

)
, is called the

likelihood and the left side of the equations is called the posterior probability/pdf.

The main assumption in this work and also in Gebhardt (2003); Schölzel (2006); Simonis

(2009); Tingley et al. (2012) is that the connection between environment and proxy in the

recent time frame is the same as in the past. This is expressed by

f #–
C 0|

#–
P 0

(
#–

c 0|
#–

p 0

)
= f #–

C | #–P

(
#–

c 0|
#–

p 0

)
=

f #–
P | #–C

(
#–

p 0|
#–

c 0

)
·π #–

C

(
#–

c 0

)
m #–

P

(
#–

p 0

) . (1.5)

The interpretation of this equation is that the connection between proxy and climate is still

stochastic, but the joint distribution of recent and proxy variables is identical (Schölzel 2006).

In more detail, this means that the transfer function is established on the modern proxy and

environmental random variables but evaluated with the realisations of the past.

The modern point of view, as shown by Schölzel (2006), is to consider the pdf with all in-

volved random variables including an additional random variable
#–

Θ. This random variable

describes the statistical model and it is often introduced in BHM (e. g. Ohlwein, Wahl 2012;

Schölzel 2006; Tingley et al. 2012). The joint probability without this random variable
#–

Θ is

obtained by integration over the complete parameter space VΘ which is called marginalisation

and done in equation 1.6 and 1.7. In this work (chap. 3.2, 4.2 and 5.2) the transfer functions

are estimated via maximum likelihood estimation (MLE) as in Gebhardt (2003); Kühl et al.
(2002); Schölzel (2006); Simonis (2009). Schölzel (2006) shows how this method is ”embed-
ded in the general concept of statistical transfer functions”. The results are summarized in the

following.

The analogue pdf to f #–
C 0|

#–
P 0

(
#–

c 0|
#–

p 0

)
in equation 1.5 in this point of view is

f #–
C 0|

#–
P 0,

#–
C ,

#–
P

(
#–

c 0|
#–

p 0,
#–

c ,
#–

p
)
=
∫
VΘ

f #–
C 0,

#–
Θ ,

#–
P 0,

#–
C ,

#–
P

(
#–

c 0,
#–

θ ,
#–

p 0,
#–

c ,
#–

p
)

f #–
P 0,

#–
C ,

#–
P

(
#–

p 0,
#–

c ,
#–

p
) d

#–

θ . (1.6)

The aforementioned marginalisation and the Bayes theorem are applied to obtain this pdf.

Schölzel (2006) applies again the Bayes theorem and uses the BHM notation to get

f #–
C 0|

#–
P 0,

#–
C ,

#–
P

(
#–

c 0|
#–

p 0,
#–

c ,
#–

p
)

=
∫
VΘ

f #–
P 0|

#–
C 0,

#–
Θ ,

#–
C ,

#–
P

(
#–

p 0|
#–

c 0,
#–

θ ,
#–

c ,
#–

p
) π #–

C 0|
#–
Θ ,

#–
C ,

#–
P

(
#–

c 0|
#–

θ ,
#–

c ,
#–

p
)

m #–
P 0|

#–
C ,

#–
P

(
#–

p 0|
#–

c ,
#–

p
) π #–

Θ | #–C ,
#–
P

(
#–

θ | #–c , #–

p
)

d
#–

θ (1.7)
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Then he assumes that

1.) ”
#–
C 0 is prior independent of

#–

θ ,
#–
C and

#–
P”, which reduces π #–

C 0|
#–
Θ ,

#–
C ,

#–
P

(
#–

c 0|
#–

θ ,
#–

c ,
#–

p
)

to

π #–
C 0

(
#–

c 0

)
and

2.) ”
#–
P 0 independent of

#–
C and

#–
P” which reduces m #–

P 0|
#–
C ,

#–
P

(
#–

p 0|
#–

c ,
#–

p
)

to m #–
P 0

(
#–

p 0

)
.

Schölzel (2006) also concludes that MLE of the ”optimal parameters
#–

θ opt” is equivalent to

a substitution of π #–
Θ | #–C ,

#–
P

(
#–

θ | #–c , #–

p
)

with Dirac’s delta function δ

(
#–

θ − #–

θ opt

)
. This function

”satisfies the criteria for probability density functions” (Schölzel 2006). All these considerations

allow to evaluate the integral in equation 1.7. The result is that the first pdf in the integral is

then independent of
#–
C and

#–
P given

#–

θ opt:

f #–
C 0|

#–
P 0,

#–
C ,

#–
P

(
#–

c 0|
#–

p 0,
#–

c ,
#–

p
)
= f #–

P 0|
#–
C 0,

#–
Θopt

(
#–

p 0|
#–

c 0,
#–

θ opt

) π #–
C 0

(
#–

c 0

)
m #–

P 0

(
#–

p 0

) (1.8a)

= fD(
#–
θ opt)

(
#–

p 0|
#–

c 0

) π #–
C 0

(
#–

c 0

)
m #–

P 0

(
#–

p 0

) (1.8b)

The last step in equation 1.8 from 1.8a to 1.8b reflects the aforementioned fact that the trans-

fer function or more precise the corresponding parameters
#–

θ opt are estimated on realisations

of modern proxy and environmental random variables but evaluated with the realisations of

the past. Compared to equation 1.5 here it is transferred to the modern point of view with the

more elaborated pdf on the left side. With that knowledge in background it is possible to use

the notation of equation 1.5 as shortcut in the remaining part of this work since equation 1.8b

shows that the right sides are equivalent in this approach.
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2
Database

This chapter gives an overview of the used climatological, botanical and palaeobotanical data

which are the basis for the palaeoclimate reconstructions presented in the following chapters.

2.1. Modern Climate Data

The palaeoclimate reconstructions presented in this thesis need a database of modern climatol-

gical data. In this work datasets developed from the CRU, the European Climate Assessment

& Dataset project (ECA&D) and the European Centre for Medium-Range Weather Forecasts

(ECMWF) are used. This chapter describes the used datasets. The selection of environmen-

tal parameters for the palaeoclimate reconstructions depends on the detailed definition of the

climate state vector
#–
C and can be found in chapter 3.1.2 for Lake Prespa and 4.2.3 for Israel.

2.1.1. CRU TS 3.1

The paleoclimate reconstructions of Lake Kinneret and Birkat Ram presented in chapter 4

and 5 are based on previous works of Schölzel (2006), Neumann et al. (2007) and Litt et al.
(2012). They used the CRU Time Series (CRU TS) dataset version 1.1 for the reconstruction of

near surface climatic values. The British Atmospheric Data Centre (BADC) provides version 3.1

which includes nine monthly climatological variables: mean temperature, diurnal temperature

range, maximum and minimum temperature, precipitation total, vapour pressure, cloud cover,

rain day counts and potential evapotranspiration (PET ). PET is included for the first time and

calculated from a variant of the Penman–Monteith formula (Harris et al. 2014).

In more detail the CRU TS 3.1 data are quality checked meteorological station observations

for the time slice from 1901 until 2009 interpolated on a regular 0.5 ◦×0.5 ◦ latitude-longitude

grid. The calculations presented in the following chapters are applied to

• TDJF , an average of the months December, January and February (Fig. 2.1),

• TJJA, an average of the months June, July and August (Fig. 2.2),

• PANN , the sum of the precipitation amount of the months from January to December

(Fig. 2.3),

7



Chapter 2. Database

• annual climatic water deficit (CWDANN), described in the following (Fig. 2.4),

• TJan,

• and TJul.

It is an ongoing discussion which combination of environmental parameters is the best to

be reconstructed (s. e. g. Telford, Birks 2011). Schölzel (2006) suggested and discussed the

usage of winter and summer temperatures instead of the coldest and warmest months. In pa-

leoclimate reconstruction often January and July are used for these months (s. e. g. Andreev,

Klimanov 2000; Cheddadi et al. 1998; Gebhardt 2003; Kühl et al. 2002; Seppä, Birks 2001;

Simonis 2009).

Simonis (2009) showed problems in reconstruction of the annual precipitation amount in

Europe and suggested to try another type of proxy data. An alternative is to reconstruct

another limiting factor of plants, like for example the climatic water deficit (CWD), which is

in general defined as the difference between PET and precipitation (P):

CWD := PET −P. (2.1)

Crimmins et al. (2011) among others analysed the connection between CWD and the distribu-

tion of plants and found out that it is a limiting factor. Additionally, CWD or the difference

P−PET is often utilized in the computation of climatic drought indices, like for instance the

Standardized Precipitation Evapotranspiration Index (SPEI) developed by Vicente-Serrano et
al. (2010).

Figure 2.1 to 2.4 show the geographical distribution of the climatic mean for TDJF , TJJA,

PANN and CWDANN for the time slice from 1961 till 1990 based on CRU TS 3.1 data. This thirty

year average is the classical definition of the term climate (s. Schölzel 2006, chap. 3.2, p. 33).

Further, the distribution maps for the taxa described in the next section (2.2) are also defined

for that time slice (T. Litt pers. comm.). The shown area is the largest available distribution

area of one taxon.

The displayed winter temperature in Figure 2.1 ranges from −50 ◦C in Siberia to 25 ◦C in

the deserts in North Africa and India. The direction of the gradient is southwest oriented. The

gradient of the summer temperatures in contrast (Figure 2.2) is almost meridional. The range

of TJJA covers an interval from −2.5 ◦C in Spitsbergen to 35 ◦C in the Western Sahara. Clearly

visible in the distribution of these 2m surface temperatures are the orographical effects from

the Himalaya and the Alps.

The climatic mean of the annual precipitation amount (PANN) presented in Figure 2.3 is

shown with square root transformation in order to improve the visibility of small values. The

regions with the lowest amount of precipitation are the deserts in North Africa, the Arabian

Peninsula and the Tibetan highland with values from zero up to 100 mm
year . The monsoon ar-

eas in Western India have the largest amounts of precipitation with values up to 5000 mm
year .
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Figure 2.1.: The geographical distribution of the 2m surface winter temperature (TDJF). In detail this is
the field of the climatic mean for the time slice 1961-1990 based on CRU TS 3.1 data.
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Figure 2.2.: The geographical distribution of the 2m surface summer temperature (TJJA). In detail this
is the field of the climatic mean for the time slice 1961-1990 based on CRU TS 3.1 data.

The direction of the gradient in the precipitation field is not as distinctive as in the tempera-

ture fields of TDJF and TJJA.

The geographical distribution of the climatic mean of the annual aggregated CWDANN is

shown in Figure 2.4 and it is, for the same reasons as for precipitation, transformed with the

square root. The most humid areas (CWD < 0, blue colour scale in Fig. 2.4) are the monsoon

areas at the Ganges basin with values lower than −2000 mm
year and also the Alps, the east coasts

of the British Isles and the Scandinavian Peninsula, the Islands of Japan and the coast of

Indochina are very humid regions with values up to −1000 mm
year . Also important to note is that
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Figure 2.3.: The geographical distribution of the annual precipitation amount (PANN). In detail this is
the field of the climatic mean for the time slice 1961-1990 based on CRU TS 3.1 data and
transformed with square root in order to improve the visibility of small values.
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Figure 2.4.: The geographical distribution of the annual climatic water deficit (CWDANN). In detail this
is the field of the climatic mean for the time slice 1961-1990 based on CRU TS 3.1 data
and transformed with square root in order to improve the visibility of small values and
two separate scales for a clearly visible differentiation between dry (red) and humid (blue)
areas. The green line separates the dry and humid areas and defines the zero level.

almost all coasts have CWDANN values below zero even if they border directly on a desert

which are indicated with CWDANN � 0 (red colour scale in Fig. 2.4) like for example in North

Africa. It could be assumed that this is an effect resulting from the Sea breeze. The Sahara

Desert in North Africa and the deserts on the Arabian Peninsula are the driest areas shown in

Figure 2.4 with CWDANN values greater than 2000 mm
year . Beside these deserts almost the rest of
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2.1. Modern Climate Data

the dry areas with values between green zero level line in Figure 2.4 and up to about 1000 mm
year

are continental areas. The spatial structure of the gradient is almost the same as the one

for precipitation due to the fact that the structure of the geographical distribution of annual

potential evapotranspiration (PETANN) (not shown) and PANN are very similar.

2.1.2. E-OBS

In this study another climatological dataset is used for the calculation of paleoclimate recon-

structions in chapter 4.4 and 6: E-OBS. Geographical E-OBS covers Europe, parts of North

Africa, the Anatolian Peninsula and parts of the Levant with a resolution in space of 0.5 or

0.25 degrees in longitude/latitude. The maximum available time interval ranges from 1950 to

2006 with a resolution of one day. As well as the CRU TS 3.1 dataset, it is estimated by inter-

polation of station data on a regular grid. Haylock et al. (2008) and van den Besselaar et al.
(2011) describe the interpolation process in detail, which differs from the procedure utilized

for CRU TS 3.1 data. The ECA&D provides the dataset which comprises the five climatological

variables daily mean temperature, daily minimum temperature, daily maximum temperature,

daily precipitation amount and daily averaged sea level pressure.

Longitude

La
tit

ud
e

33°E 34°E 35°E 36°E30
.5

°N
31

.5
°N

32
.5

°N
33

.5
°N

0

5

10

15

20

T
D

JF
 [°

C
]

(a) winter temperature TDJF

Longitude

La
tit

ud
e

33°E 34°E 35°E 36°E30
.5

°N
31

.5
°N

32
.5

°N
33

.5
°N

20

22

24

26

28

30

T
JJ

A
 [°

C
]

(b) summer temperature TJJA

Figure 2.5.: (a) and (b) are the geographical distribution of the climatic mean fields of TDJF and TJJA
based on E-OBS data in Israel. In detail these are the field of the climatic mean for the time
slice 1961-1990.

The calculation in chapter 4.4 and 6 use a mixture of the CRU TS and E-OBS dataset. Hence

the temporal scale is first adopted by averaging on the CRU TS time scale, in detail the monthly

mean temperatures and the monthly precipitations sum are calculated. In the next step, TDJF ,

TJJA and PANN are generated in the same way as described in the last section for the CRU TS 3.1
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Figure 2.6.: The geographical distribution of the climatic mean fields of the annual precipitation
amount PANN based on E-OBS data in Israel. In detail this is the field of the climatic mean
for the time slice 1961-1990.

data. The last step in the preparation of the E-OBS data as input for the reconstruction is the

calculation of the climatic mean for 1961 to 1990. The results are shown in Figure 2.5 and

2.6 only for Israel due to the fact that only in this region a higher spatial resolution of climate

data is needed. The Jordan Valley is identifiable in all four figures, most clearly in the summer

temperature. The temperature distribution shows decreasing values with increasing height.

2.1.3. ERA-Interim

Motivated by the results of Stolzenberger (2011), also reconstructions with air temperatures

at the 850hPa level are carried out. The selected database is the latest reanalysis product of the

ECMWF: ERA-Interim with a resolution of also 0.5 degrees in longitude/latitude. The datasets

described in the last two sections result from a simple interpolation on grid. The ERA-Interim

dataset is a reanalysis. In addition to the station data, this method includes a physical model

as a constraint for the interpolation that includes many other meteorological variables. The

result are physically consistent fields. Dee et al. (2011) describe the process in detail.

Figure 2.7 and 2.8 show the climatic mean of winter and summer temperature at the 850hPa-

level (T 850hpa
DJF , T 850hpa

JJA ). The underlying time interval is the maximum available time range

from 1989 till 2009. Compared to the 2m surface summer temperature based on CRU TS 3.1

shown in Figure 2.1 and 2.2 the effect of orography is reduced, only an effect of the Himalaya

is identifiable. The direction of the temperature gradient matches with the direction of the

gradient of the surface temperature. T 850hpa
DJF ranges from −28.6 ◦C in Eastern Siberia to 17.7 ◦C

in almost the complete southern part shown in the map. The T 850hpa
JJA -interval covers −2.3 ◦C in

Spitsbergen to 32.3 ◦C over the Arabian Peninsula.
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Figure 2.7.: The geographical distribution of the climatic mean fields of the winter temperatures at the
850hPa-level (T 850hpa

DJF ) based on ERA-Interim data. In detail this is the field of the climatic
mean for the time slice 1989-2009.
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Figure 2.8.: The geographical distribution of the climatic mean fields of the summer temperatures at the
850hPa-level (T 850hpa

JJA ) based on ERA-Interim data. In detail this is the field of the climatic
mean for the time slice 1989-2009.

2.2. Modern Vegetation Data

2.2.1. Distribution-Maps

The three methods BITM (Lake Prespa, chap. 3 and Neumann et al. (2007)), BBM (Lake

Kinneret and Ein Gedi, chap. 4) and BITBM (Birkat Ram, chap. 5.1) use the geographical

distribution of vegetation areas as modern vegetation data. The areas that are used here

13



Chapter 2. Database

base on printed maps which are digitized on the same grid as the CRU TS 3.1 data with a

software developed by Schölzel et al. (2002). This software handles many different types of

map projections of the printed maps as well as undefined map projections. Currently about

300 maps are digitized.
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Figure 2.9.: Geographical distribution area of Olea after Meusel et al. (1974). The dark grey colour
indicates the occurrence of the Olea, light grey represents Land and no presence of Olea
and blue is the Sea. The dotted rectangle is the considered maximum area for Olea.

BITM as well as BITBM use the geographical extent of a taxon, more specific the distribution

of a single species. Figure 2.9 shows for example the map of the geographical distribution of

Olea after Meusel et al. (1974) as used for reconstruction of Lake Prespa described in chapter 3.

The information presented on this map is subdivided in three different levels: occurrence of

Olea in dark grey, no occurrence of Olea light grey (land surface) and sea surface in blue.

One important point has to be kept in mind before using this vegetational dataset: Is the

taxon distribution only sensitive to climate? In detail every single taxon has to be checked

before using for reconstructions (Gebhardt 2003; Kühl 2002; Simonis 2009; Stolzenberger

2011). An additional important point to consider that the resolution of the digitalized maps

(0.5◦ × 0.5◦) is too coarse to include microclimate effects. These effects play an important role

in grid boxes with strong gradients in the orography, like for example in the alps. Hence the

information about the presence or absence of the regarded taxon in these grid boxes is not

representative. Gebhardt (2003); Kühl (2002); Simonis (2009); Stolzenberger (2011) just as

this study take this into account by filtering out those grid boxes where the difference between

the mean and the minimum height AMSL is larger than 400m. Digital Terrain Data (2013)

derived from the National Geophysical Data Center (NGDC) is used for filtering.

BBM in contrast to BITM uses the distribution of vegetation zones. Later on this vegetation

zones are referred as biomes or biome areas. Litt et al. (2012) define and use the biomes
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Figure 2.10.: Geographical distribution area of Olea after Meusel et al. (1974). The colours indicate the
same as in Figure 2.9. Additionally all grid boxes with an orography difference between
the mean and minimum height AMSL larger than 400m are marked in red.
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(b) Extended biome vegetation areas

Figure 2.11.: The maps of the vegetation zones in (a) and (b) in green define the Mediterranean biome
B1, in red define the Mediterranean Irano-Turanian subbiome B2 and in orange define the
Saharo-Arabian biome B3. (a) is redrawn after and used in Litt et al. (2012) and (b) is an
extension after Meusel et al. (1965). The dark green area B1−a and the cyan area B1−b are
the extension of the Mediterranean biome. More precise the extension B1−a is the South
Anatolian Mediterranean subbiome. The dark red area B2−b together with the red area B2
is the complete extend of the Irano-Turanian biome B2.

as shown in Figure 2.11a. They define three different biomes: The Mediterranean biome

B1 shown in green, the Mediterranean Irano-Turanian subbiome B2 and the Saharo-Arabian
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biome B3. For this study the complete extent of the Irano-Turanian (Fig. 2.11b, dark red area)

biome as well as the South Anatolian Mediterranean subbiome (Fig. 2.11b, dark green) has

been digitized. This is done for a better consideration of the continental climate (T. Litt pers.

comm.) and the Meditrranean climate in the reconstructions. The definition of the biome

areas B1, B2 and B3 differs due to a suspected error in the digitalisation. Thereby the most

changes are apparent for the Irano-Turanian biome area B2 and the Saharo-Arabian biome

B3 area: a slightly shift south of B2 and modification of the common border. The area of the

Mediterranean biome B1 is only slightly reduced on the eastern boundary. A detailed discussion

of the resulting effect can be found in chapter 4.2.3.

2.2.2. Modern Pollen Spectra

The PRM as applied in chapter 4.4 requires another kind of modern vegetation data: pollen

spectra at specific locations in the neighbourhood of the coring site for which the palaeoclimate

reconstruction is estimated. For this purpose the spectra which are described in Table 6.1 in

Weinstein (1979) are used. Both commonly used databases, PANGAEA (2012) and European
Pollen Database (EPD) (2012), and also no other database, as known by the author, have

entries with modern pollen spectra in the considered region. Therefore the tables in Weinstein

(1979) are selected. More precisely the spectra presented in these tables are annual averages

of airborne pollen spectra (s. Tab. B.7 and B.8). Weinstein (1979) defines the localities only
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Figure 2.12.: Localities of modern pollen spectra in Israel based on Weinstein (1979). Every number
refers to the site number and the geographical coordinate fixed with Google Maps (2012)
(Table B.6). Sites with black numbers are used and sites with red numbers are rejected.
Black number and red circle indicates localities marked with a comment in Weinstein
(1979). The vertical and horizontal dotted lines mark the centre of the grid points of the
E-OBS dataset. The grey shaded background indicates the availability of climate data.

by names. For the connection to the climate dataset geographical coordinates are required.
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Hence, Google Maps (2012) is applied to get the coordinates (red or black number in Fig. 2.12

s. Tab. B.6 for the data). In order to connect these spectra with the E-OBS-climate-dataset

every locality with available pollen spectra is assigned to one E-OBS-grid point. This is done

by calculating the distance between one E-OBS-grid point (black point in Fig. 2.12) and the

one or two nearest localities. Figure 2.12 shows the resulting 13 localities with modern pollen

spectra and modern climate information with black numbers and a line for visualizing the

assignment to the E-OBS-grid. In the original data table in Weinstein (1979) all localities are

annual averages of airborne pollen spectra except for four which are marked with a black

number and a red circle in Figure 2.12.

2.3. Sediment Cores

The essential part for palaeoclimate reconstructions of the past are proxy data of the past. The

pollen counts are obtained from pollen diagrams which base on sediment cores. Figure 2.13

shows such a pollen diagram for Birkat Ram. Sediment cores are drilled in different kind of

Figure 2.13.: Pollen diagram for Birkat Ram generated by Schiebel (2013) showing most relevant taxa.
For more information see Schiebel (2013, chap. 5.2, p. 47)

bodies of water. These bodies of water collect all pollen which reach the water surface area

or are transported in by any kind of inflow. Because of the last mentioned point the selection

of the used body of water by the geoscientists and/or palaeontologist is essential. Over the

time the pollen and also macrofossils are deposited on the ground of the body of water and

are then recoverable by drilling a core in the sediments.

The reconstructions presented in the next chapters base on sediment cores, or more precise
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on composite cores that were obtained in different drilling campaigns. The term ”composite
core” reflects the fact that it is not possible to obtain a sediment core of a length of about 10m

as a whole. A core of this length is maintained by drilling two holes in a very short distance.

This is e. g. for Lake Kinneret and Birkat Ram a distance of 2m (Schiebel 2013, chap. 4.2 and

4.3). In the next step the received sediments of every hole are cutted in such portions of about

2m that the point of cutting in both core is not the same, which means that the individual

segments have a short overlapping. By measuring the magnetic susceptibility of each segment

and then correlating the values it is possible to compose a complete profile of unlimited length.

The available data that is based on these cores and the coring sites are shortly described

in this section. In general, for every sediment core used in this study an age-to-depth model

based on calibrated radiocarbon data is available. Age-to-depth models assign every depth to

a calibrated age usually measured in calibrated years before present (y. cal BP)

2.3.1. Balkan peninsula - Lake Prespa

The sediment core Co1215 of Lake Megali Prespa was retrieved at 40◦ 57′ 50′′N, 20◦ 58′ 41′′E in

November 2009 as part of the CRC project B2. It has a length of 320cm. Lake Megali Prespa

from now on Lake Prespa, is situated on the Balkan Peninsula in south-west Macedonia.

Panagiotopoulos et al. (2013) performed the pollen analysis and characterises the Lake and

the environment shown in Figure 2.14: ”The transboundary Prespa catchment 1300km2 com-

Figure 2.14.: The Lake Prespa area: A projected satellite image (CRC806-Database Satellite WMS) on
the NASA digital elevation model. The two lakes in the centre of the satellite image are
Lake Megali Prespa and Lake Mikri Prespa.

prises two lakes: Megali and Mikri Prespa, with an approximate surface area of 253.6km2 and
47.4km2 respectively. . .Lake Prespa is situated at an altitude of 849m AMSL and is surrounded by
mountains with the highest peak at 2601m AMSL to the east, and several other peaks around or
above 2000m AMSL to the west and the north.. . .It has a mean water depth of 14m.”
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60 samples were taken out of 318cm long composite core for the palynological analysis of

the pollen with an interval ranging from 2− 8cm. From the 82 identified and counted taxa

26 are used for the palaeoclimate reconstruction presented in chapter 3. For these 26 it is

assumed that they are not anthropogenic influenced and only sensitive to climatic conditions.

Aufgebauer et al. (2012) established and discussed the age-to-depth model that is used in

this study and concluded that the core covers a time period of about 17000y.calBP.

2.3.2. Southern Levant - Jordan Valley

The sediment cores described in this section are all gained at locations in the southern Lev-

ant or, to be more precise, at locations in the Jordan Valley or in the direct neighbourhood.

All palaeoclimate reconstructions in this region which are presented in this study base on

cores analysed at or in cooperation with the Steinmann Institute for Geology, Mineralogy and

Palaeontology of the University of Bonn. The two latest sediment cores, namely Lake Kinneret

and Birkat Ram, were drilled as part of the CRC project B3 in March 2010 and analysed by

Schiebel (2013). Figure 2.15 shows the Jordan Valley, the Dead Sea in the South and Lake

Kinneret in the North.

Figure 2.15.: Southern Levant Area: A projected satellite image on a digital elevation model. Image
courtesy of Schölzel (2006)

2.3.2.1. Lake Kinneret

Lake Kinneret, in the literature also called Sea of Galilee or Lake Tiberias, has a surface area

of 166km2 and a catchment area of 2760km2 (Schiebel 2013). This lake has a maximum depth

of 43m and the lake surface lies 211m below mean sea level (BMSL). Schiebel (2013) also

described the origin of the water: two-thirds derive form the Jordan River and one-third
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originates from other streams, seasonal floods, direct rainfall and subaqueous springs. The

core was drilled near the centre of the Lake at 32◦ 49′ 13.8′′N and 35◦ 35′ 19.7′′E at a water

depth of 38.8m. The composite core is 17.8m long and sampled in 25cm intervals for the

palynological analysis. The results are 73 samples and 63 identified and counted taxa. The

palaeoclimate reconstruction in chapter 4 uses 42 of them. Schiebel (2013) also established

two different age-to-depth models which differ in the assumptions. The differences between

the age-to-depth models turn out in the lower part of the core below 10m. Depending on the

selected model the record spans an time range between 8600y.calBP and 9200y.calBP. In this

study the age model with increasing interpolated reservoir correction (V. Schiebel pers. comm.

and Schiebel 2013) is used.

2.3.2.2. Birkat-Ram

For the maar lake in the northern Golan Heights two composite cores are available:

1.) The first one was drilled in 1999 and palynological analysed by Schwab et al. (2004).

Schwab et al. (2004) also established an age-to-depth model for the 543cm long compo-

site core which covers about 6500y.calBP from the present to the past. The 140 samples

on which the pollen counts are based are gained in an interval ranging from 1−8cm. For

this sediment core the palaeoclimate reconstructions for TDJF , TJJA and PANN are avail-

able (s. Neumann et al. 2007; Schölzel 2006). Therefore nine of 153 identified taxa are

used.

2.) The second one was drilled, as mentioned above, within the CRC in March 2010 at

33◦ 13′ 54.3′′N, 35◦ 46′ 1.4′′E at water depth 14.5m. The composite core is 10.96m long.

Schiebel (2013) determined and discussed the age-to-depth model in connection with

the first drilled core, describe before, with the result that the covered time period ranges

from 0y.calBP to 30000y.calBP. Between 703cm and 746cm (10000 and≈ 17000y.calBP)

Schiebel (2013) detected a lower sedimentation rate and assumed a desiccation of Birkat

Ram. Schiebel (2013) analysed all 44 available sample layers and identified 59 taxa of

which six are used in chapter 5.

Birkat Ram lies at 940m AMSL and has an average surface area of 0.45km2 with a water

depth that depends on the season and ranges between 6m and 12m (Schiebel 2013). The

catchment area is quite small, about 1.5km2 (Schwab et al. 2004) and the main water source

is precipitation.

2.3.2.3. Ein Gedi

For the Dead Sea the analysed core was drilled 1997 at Ein Gedi spa at 415m BMSL (31◦ 30′ 0′′N,

35◦ 24′ 0′′E). The sediment core is extensively analysed and discussed in Migowski (2001),
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Migowski et al. (2004), Migowski et al. (2006), Litt et al. (2012). The composite sediment

core is 21m long and the pollen analysis is carried out on 58 sample layers (Litt et al. 2012).

26 taxa are selected for the palaeoclimate reconstruction developed in Schölzel (2006) and

enhanced in Litt et al. (2012). The Ein Gedi core covers the last 10000y.calBP (Migowski et al.
2004, 2006).

In contrast to the already described sediment cores the Ein Gedi core has recorded the

history of the Dead Sea basin which is characterized by a large catchment area (Litt et
al. 2012). It includes very distinctive vegetation zones, which are highly sensitive to climate

changes (Litt et al. 2012). This point is important for the selection of the used method for

palaeoclimate reconstruction (s. chap. 4)
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3
Lake Prespa

This chapter presents the result and the mathematical tools that are used for the palaeoclimate

reconstruction which bases on the sediment core data of Lake Prespa. The sediment core

and the location are described in chapter 2.3.1. The basic mathematical principles for this

purpose are introduced in chapter 1.2 and are extended in the first section of this chapter to

the Bayesian Indicator Taxa Model (BITM) which is applied here. The second and third section

of this chapter presents the palaeoclimate reconstruction for Lake Prespa. In more detail each

contributing part of the BITM is explained with respect to Lake Prespa. The main interest is the

posterior probability density function (pdf) and therefore it is presented in a separate section.

3.1. The Bayesian Indicator Taxa Model (BITM)

3.1.1. The development of the BITM

The BITM is an approach which was developed within the ”Bonner Group”. The latest version,

which is also used here, was developed and published by Schölzel (2006) for the sediment

core of Birkat Ram. It is a result of many years of research. Ohlwein, Wahl (2012) described

this development extensively. The milestones are summarized here.

Iversen (1944) and Hintikka (1963) published a graphical approach: bioclimatic ranges

for different kind of taxa. The idea for the BITM bases on the mutual climatic range (MCR)

method from Grichuk (1969). MCR is an refinement and improvement of the methods from

Iversen (1944) and Hintikka (1963). The MCR method combines the information of climate

maps (s. Fig. 2.1 to 2.8) and geographical distribution maps of taxa (s. e. g. Fig. 2.9 for Olea).

Figure 3.1a shows this principle, in detail for taxon Picea and the climate variables January

temperature (TJan), defined as the coldest month, and annual precipitation amount (PANN).

In detail each black point for Picea in Figure 3.1a represents one point of the geographical

distribution where the information of presence is available given the plotted coordinate com-

bination of TJan and PANN of the point. Due to the fact that MCR is a graphical approach a line

which encloses all these points is drawn. This enclosed line defines the climate phase space

for each taxon: Inside of this defined area the probability for a taxon to occur for the given

combination of climate variables is equal to one and outside of this area it is zero. This process
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Figure 3.1.: Principles of the MCR method (a) and the BITM (b):
(a) shows the palaeoclimate reconstruction principle of the MCR method. The black in-
tersection area of all taxa indicates the reconstructed climate. The figure is redrawn after
Schölzel (2006) and Grichuk (1969).
(b) shows the palaeoclimate reconstruction principle of the BITM. The blue bivariate pdfs
in (b) replace the blue areas in (a). The reconstructed climate is indicated by the grey
bivariate pdf. The cut in Figure (b) is only for better presentation of individual normal
distributions. Images courtesy of Ohlwein (2012).

of defining an area for the climatic range of a taxon is repeated for all taxa present in one

pollen sample layer of a sediment core. In Figure 3.1a this is shown for Ulmus and Myrica. The

intersection of all areas is then interpreted as the reconstructed climate.

The MCR approach has two main problems as pointed out by Ohlwein, Wahl (2012). First,

no uncertainty estimation is possible due to the sharp boundaries. As described in the last

paragraph the area in the climate phase space for one taxon describes only the two discrete

probability values zero and one. Additionally the shape is graphical defined which allows not

traceable and arbitrary shapes like for example for Ulmus in Figure 3.1a. This problem is called

overfitting. Secondly, if many taxa are included it is possible that more than one intersection

area exists, like for example the dark grey area in Figure 3.1a. Within the MCR approach there

is no statement possible to exclude or interpret this result. Pross et al. (2000) and Klotz et al.
(2004) enhance the MCR concept to the so called probability mutual climatic sphere (PCS) to

solve this problem.

The ”Bonner Group” enhance the MCR method to the so called probabilistic indicator taxa

approach or pdf method (Kühl et al. (2002)). Also Gebhardt (2003)/Gebhardt et al. (2008)

used this method. In detail this method interprets the areas above described for one taxon

as pdf or more precisely as conditional pdf of climate given the appearance of the taxon. In

Figure 3.1b these are the blue bivariate pdfs. The reconstruction of the climate is estimated

by multiplication of the taxon individual pdfs and is indicated by the grey bivariate pdf in
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Figure 3.1b. The cut in Figure 3.1b is only for better presentation of individual normal dis-

tributions. How these pdfs are estimated and the mathematics are discussed in the following

section.

The last step in the development was the integration of the pdf method from Kühl et al.
(2002) in the context of Bayesian Hierarchical Model (BHM) by Schölzel (2006) as presented

in the next section. The BITM is also used in Neumann et al. (2007), Simonis (2009)/Simonis

et al. (2012), Stolzenberger (2011).

3.1.2. The BITM - Introduction

The BITM as developed by Schölzel (2006) and applied here uses a climate state vector defined

as

#–
C := (TJan,TJul,PANN)

T or (3.1a)

:= (TJan,TJul,CWDANN)
T or (3.1b)

:=
(

T 850hpa
Jan ,T 850hpa

Jul ,PANN

)T

or (3.1c)

:=
(

T 850hpa
Jan ,T 850hpa

Jul ,CWDANN

)T

all with the realisations
#–

c ∈R3. (3.1d)

The modern climate state data, are the climate datasets already presented in chapter 2.1 and

the past climate state is the unknown property in this study. In equation 3.1 and later on T

reflects the fact that from now on if a vector is defined via its components it is always regarded

as a column vector.

The proxy used in the BITM are, as already mentioned, pollen data. On the one hand the

modern part of the proxy data are the distribution maps for the taxa as presented in chap-

ter 2.2.1 with the geographical information of presence and absence. On the other hand these

are the past proxy data, the data which has recorded the past: Here these are the pollen counts

of Nk different taxa in each pollen sample layer of the sediment core, which are presented in

chapter 2.3. How these counts are transferred into the information of presence and absence

for each taxon is described later in this section. The index of N indicates that the correspond-

ing mathematical counting index is in general k for taxa. From these considerations follows

the definition of the corresponding random vector analogously to Schölzel (2006):

#–
T := (T1, . . . ,TNk)

T with the realisations
#–

t ∈ {0,1}Nk . (3.2)

Here tk = 0 stands for absence and tk = 1 for presence of taxon k as mentioned in chapter 3.1.1.

The corresponding joint probability for the considered random variables is

P #–
C ,

#–
T

(
#–

c ,
#–

t
)
. (3.3)
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Compared to equation 1.2 (chap. 1.2, p. 4) the random variable
#–
P is replaced by

#–
T . The

application of the Bayes theorem leads analogously to chapter 1.2 and equation 1.4 to

P #–
C | #–T

(
#–

c |t1, . . . , tNk

)
=
P #–

T | #–C

(
t1, . . . , tNk |

#–

c
)
·π #–

C

(
#–

c
)

m #–
T (t1, . . . , tNk)

. (3.4)

One assumption inherent to the MCR method is that connection between the individual taxa

and the climate is independent from the connection to the other taxa. This is expressed by a

”pairwise conditional independence of all taxa given a certain climate state” (Schölzel (2006)).

Hence the so called likelihood splits as follows into

PT1,...,TNk |
#–
C

(
t1, . . . , tNk |

#–

c
)
=

Nk

∏
k=1
PTk|

#–
C

(
tk|

#–

c
)
. (3.5)

The PTk|
#–
C

(
tk|

#–

c
)

are the individual taxon specific part of the likelihood, and are the so called

transfer functions for each taxon. As mentioned in Ohlwein, Wahl (2012) ”these conditional
probabilities can be estimated directly e. g. via generalized linear model (GLM) with polynomials
of continuous covariates or indirectly”. The estimation via GLM is described in chapter 3.2.2.

The mentioned indirect method applies again the Bayes theorem on PTk|
#–
C

(
tk|

#–

c
)

and results

together with equation 3.4 and 3.5 in

P #–
C | #–T

(
#–

c |t1, . . . , tNk

)
=

π #–
C

(
#–

c
)

m #–
T (t1, . . . , tNk)

·
Nk

∏
k=1

P #–
C |Tk

(
#–

c |tk
)
·πTk (tk)

m #–
C

(
#–

c
) . (3.6)

Equation 3.6 is essentially the BITM used by Schölzel (2006) but it includes presence and

absence of taxa in the likelihood. The original concept of the MCR method, described in

the last section, and the deduced pdf method, the precursor method of the BITM, use only

the presence information for estimating the transfer functions. Schölzel (2006) solves this

problem by the assumption that the absence events tk = 0 are ”conditionally independent of the
climate state vector given further random variables like e.g. unknown soil properties, denoted by
a general condition” G (eq. 3.7). Finally Schölzel (2006) neglects all terms in the resulting

equation which don’t depend on the climate because they include no necessary information

for the palaeoclimate reconstruction:

P #–
C |TInd(1),...,Ind(N

k̃
)

(
#–

c |1, . . . ,1,G
)

∝ π #–
C

(
#–

c
)
·

Nk̃

∏
k̃=1

P #–
C |TInd(k̃)

(
#–

c |1,G
)

m #–
C

(
#–

c
) (3.7)

The new index for T in equation 3.7 reflects that

∀tInd(k̃) = 1 with Ind
(

k̃
)
∈ {1, . . . ,Nk} ∧ k̃ = 1, . . . ,Nk̃ (3.8)

26



3.2. The BITM in Detail for Lake Prespa

This neglecting step is also possible for the combination of equation 3.4 and 3.5 without the

application of the Bayes theorem on the likelihood and results in

P #–
C | #–T

(
#–

c |t1, . . . , tNk

)
∝ π #–

C

(
#–

c
)
·

Nk

∏
k=1
PTk|

#–
C

(
tk|

#–

c
)
. (3.9)

Until now probabilities are considered in the equations of this chapter, but it is possible to

switch to pdf w. l. o. g. which leads to the equations 3.10. Additionally ∝ is replaced by =

and equation 1.5, the main assumption for palaeoclimate reconstructions as presented and

described in chapter 1.2, is used. Equation 3.1 to 3.9 do not distinguish between the past and

the recent random variables and realisations due to the fact that the considerations are the

same. Equation 3.10a is the BITM-equation used in Schölzel (2006), Neumann et al. (2007),

Kühl et al. (2007) and Litt et al. (2009). Stolzenberger (2011) used only the likelihood part of

equation 3.10b for the palaeoclimate reconstruction. Summarized there are two different but

closely related possibilities to estimate the posterior pdf

f #–
C 0|

#–
T 0

(
#–

c 0|10, . . . ,10,G0

)
=π #–

C

(
#–

c 0

)
·

Nk̃

∏
k̃=1

f #–
C |TInd(k̃)

(
#–

c 0|10,G0

)
f #–

C

(
#–

c 0

) , (3.10a)

f #–
C 0|

#–
T 0

(
#–

c 0|
#–

t 0

)
=π #–

C

(
#–

c 0

)
·

Nk

∏
k=1
PTk|

#–
C

(
tk,0|

#–

c 0

)
Nk

∑
k=1

Nk

∏
k=1
PTk|

#–
C

(
tk,0|

#–

c 0

) . (3.10b)

The denominator in equation 3.10b is a direct consequence of this pdf approach. It is the

normalisation constant which ensures that the integral over the numerator is equal to one, the

essential requirement for a pdf.

3.2. The BITM in Detail for Lake Prespa

3.2.1. Determination of the Indicator Taxa

In BITM the word indicator represents the fact that presence of a certain taxon in one pollen

sample layer ι of the sediment core represents a certain climate state. For this aim the afore-

mentioned transformation of pollen counts to presence and absence of each climatic sensitive

taxon k0 of one sample layer ι needs to be estimated. Climatic sensitive implies that only taxa

which are only influenced by climate are selected for the palaeoclimate reconstruction . In this

study the same approach as in Neumann et al. (2007) and Litt et al. (2009) by exceeding a

threshold ϑk0 is used.
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The ϑk0 estimation bases on finding a gap in the empirical cumulative distribution function

(ECDF) for all samples of the regarded taxon of the sediment core. Figure 3.2 demonstrates

this approach for Lake Prespa and the taxon Alnus. Figure 3.2 shows the depth profile of the

relative abundance
#–

ω̃ k0 and the corresponding ECDF (Fig. 3.2b). One gap in the ECDF could
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Figure 3.2.: Alnus: (a) Depth profile of the relative abundance ω̃ι k0 in each pollen sample ι in dark grey.
The light grey area is the ten times and the very light grey the 100 times enlarged profile.
(b) is the corresponding ECDF. The threshold value ϑk0 is visualized in (a) by the different
shaded areas and in (b) by the vertical bold black line. The presence/absence information
is visualized in (a) with black dots (=presence) and circles (=absence).

be examined at 1.1% relative abundance. As described in Neumann et al. (2007) all values

below this threshold are ”interpreted as background noise” and hence interpreted as absence of

the taxon. The figures for the remaining taxa can be found in appendix A.1.2 on page 132 and

all defined threshold values are summarized in Table A.1 (p. 131).

Figure 3.2b also demonstrates the disadvantage of this determination: there are more gaps

detectable than the selected one. The advantage is that this approach also offers the possibility

to include the background knowledge of the palaeontologists by selection of the best ϑk0 .

Additionally Litt et al. (2009) pointed out that ”choosing different thresholds for a certain taxon
within a span of several percent leads to similar results regarding colonization and population
expansion”. And Neumann et al. (2007) pointed out ”that every taxon that is excluded due to
a high threshold value does not influence the reconstruction in an erroneous way. The model is
robust enough to react to a lack of taxon information with an increase of uncertainty, not with
misleading reconstructions.”

In cooperation with Dr. Kostas Panagiotopoulos M. Sc. the palaeontologist who analysed the

sediment core of Lake Prespa and counted the taxa and Dipl. Bio. PD Dr. Norbert Kühl, Nk0 = 26

taxa are selected for the palaeoclimate reconstruction. All resulting relative abundances ω̃ι k0
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of the Nι = 60 sample layers are summarized in one matrix

ΩΩΩ
Nι×Nk0 :=



ω̃11 · · · ω̃1k0 · · · ω̃1Nk0
...

. . .
...

ω̃ι 1 ω̃ι k0 ω̃ι Nk0
...

. . .
...

ω̃Nι 1 · · · ω̃Nι k0 · · · ω̃Nι Nk0


(3.11)

and then transferred with the above described approach into presence and absence result in

the indicator matrix

IIINι×Nk0
ϑ0

:=



011 · · · 11k0 · · · 01Nk0
...

. . .
...

1ι 1 1ι k0 0ι Nk0
...

. . .
...

0Nι 1 · · · 1Nι k0 · · · 0Nι Nk0


=



t11 · · · t1k0 · · · t1Nk0
...

. . .
...

tι 1 tι k0 tι Nk0
...

. . .
...

tNι 1 · · · tNι k0 · · · tNι Nk0


(3.12)

which is shown in Figure 3.3a. This matrix contains only zeros (light grey colours) and ones

(dark grey colours) and is the summarized past proxy realisation tι k0 and the database for the

palaeoclimate reconstruction of Lake Prespa.

One problem could arise in the BITM approach if many indicator taxa are included: A re-

duction of uncertainty due to the multiplication of taxon transfer functions (eq. 3.10) of taxa

which occur under too similar climatic conditions. Kühl et al. (2002)/Kühl (2002) developed

an algorithm for avoiding this. Gebhardt (2003)/Gebhardt et al. (2008), Simonis (2009)/Si-

monis et al. (2012) and Stolzenberger (2011) also used this approach which is also used in this

study for the palaeoclimate reconstruction of Lake Prespa. Due to the fact that the procedure

is not changed the important parts are summarized below.

The main part of this algorithm is the squared mahalanobis distance (Mahalanobis (1936))

estimated for the random variables Tk of two taxa a and b

D2 (Ta,Tb) =
(

#–

µ a−
#–

µ b

)T

ΣΣΣ
−1
a

(
#–

µ a−
#–

µ b

)
. (3.13)

In detail
#–

µ k=a,b and ΣΣΣk=a,b are the parameters of a multivariate Normal distribution, the mean

vector and the covariance matrix, estimated with the standard procedure via maximum likeli-

hood estimation (MLE) for a multivariate Normal distribution. The algorithm filters the above

described estimated presence/absence information IIINι×Nk0
ϑ0

for every sample layer of the sedi-

ment core. The remaining taxa with presence tι k0 = 1 of each sample layer fulfil D > ∆D = 0.2,

a value already used in Simonis (2009) for three-dimensional climate state vector (eq. 3.1).

The interpretation follows from the defintion of the mahalanobis distance D (Ta,Tb) of two
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Figure 3.3.: Indicator Taxa Matrices for Lake Prespa. All three figures show the absence information (tι k0 = 0) for each regarded taxon k0 in two
light grey colours and the PAZ as defined in Panagiotopoulos et al. (2013) in red and labelled on the top. The presence information
(tι k0 = 1) is shown in two dark grey colours in (a) and (c) and in two blue colours in (b). The shortcuts on the vertical axis of (a) refer
to the full taxon name in Table A.1 (p. 131). Figure (a) shows the original Indicator Taxa Matrix, a result of the ECDF approach, (c)
shows the filtered Indicator Taxa Matrix, a result of the filtering algorithm with the mahalanobis distance and (b) shows the difference
between them. The black numbers between (a) and (b) are the result of the sum over all sample layer ι for each taxon k0 with tι k0 = 1
in (a). The information next to this numbers are the corresponding results of the same summation for (b) with two exceptions: First if
the complete taxon is removed by the filtering c. r. is written. Secondly if there is no filtering effect n. e. is written.
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3.2. The BITM in Detail for Lake Prespa

taxa: If two taxa are compared the algorithm ensures that the probability to observe taxon b

(with
#–

µ b and ΣΣΣb) given the presence of taxon a is lower than 90%.

Figure 3.3c shows the result for all sediment layers summarized in the filtered indicator taxa

matrix IIINι×Nk0
f iltered . The regarded climate state vector in the algorithm is

#–
C = (TJan,TJul,PANN)

T .

Also shown in Figure 3.3 are the PAZ as defined in Panagiotopoulos et al. (2013). Visible

in the difference IIINι×Nk0
di f f (Fig. 3.3b) is that the filtering has no effect (n. e.) on ten taxa

of the selected taxa : Quercus cerris (Quce_Prm), Quercus ilex (Quil_m), Phillyrea (Phla_m),

Olea (Oleu_m), Cornus mas (Coms_m), Hippophae (Hirh_Prm), Buxus (Buse_m), Alisma cf. A.
plantago-aquatica (Alpl_Prm), Hedera (Hehe_m) and Ephedra (Ephed_Pr). Also three taxon

are completely removed by the filtering: Corylus (Coav_m), Tilia (Tilia_Prm) and Polemoni-
aceae (Poca__Prm).

The result for IIINι×Nk0
f iltered presented in Figure 3.3c is used for all palaeoclimate reconstructions

described in chapter 3.3. This is done to allow a comparison of the palaeoclimate recon-

struction results for
#–
C = (TJan,TJul,PANN)

T and
#–
C = (TJan,TJul,CWDANN)

T with respect to the

temperatures and to assess the uncertainty arranging from the different regarded water vari-

ables. Additionally CWDANN already includes PANN and therefore it is assumed that the extra

information which could be obtained by a second filtering based on
#–
C = (TJan,TJul,CWDANN)

T

is not large.

The index notation in equation 3.10 does not reflect the described threshold exceedance and

the mahalanobis filtering. If this is included the final equations for BITM which are applied on

every pollen sample layer ι of a sediment core are:

f #–
C 0|

#–
T 0

(
#–

c 0|10, . . . ,10,G0

)
=π #–

C

(
#–

c 0

)
· ∏

k
∀t f iltered

ι k0
=1

f #–
C |Tk

(
#–

c 0|10,G0

)
f #–

C

(
#–

c 0

) , (3.14a)

f #–
C 0|

#–
T 0

(
#–

c 0|
#–

t 0

)
=π #–

C

(
#–

c 0

)
·

∏
k

∀t f iltered
ι k0

=1

PTk|
#–
C

(
tk,0|

#–

c 0

)

∑
k

∀t f iltered
ι k0

=1

∏
k

∀t f iltered
ι k0

=1

PTk|
#–
C

(
tk,0|

#–

c 0

) . (3.14b)
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Chapter 3. Lake Prespa

3.2.2. Palaeoclimatic Transfer Functions

Transfer function are the second contribution of taxa for palaeoclimate reconstructions. As

aforementioned two methods are used for estimating the transfer functions: Gaussian mixture

models and GLMs. It is important to point out that all estimations of the climate transfer func-

tions have to regard the special character of precipitation: only positive values are allowed.

Therefore the inverse CDF method is applied on the precipitation data. This approach uses the

Gamma distribution G for a coordinate transformation that ensures that only positive values

are regarded. The inverse CDF method is a straightforward method and can be found in the

literature e. g. Gentle (2003). It is already used by Schölzel (2006) and Simonis (2009) for

palaeoclimate reconstructions. If not explicitly mentioned every estimation in the following

which involves precipitation uses this approach.

Estimation of Model Parameters - Maximum Likelihood Estimation

First MLE for the model parameters
#–

θ is presented. This method is used in both transfer

function concepts which are presented afterwards. Let Y1, . . . ,YNi denote a sample of size Ni

and each Yi is independent and identically distributed (iid) with unknown pdf fYi|
#–
Θ

(
yi|

#–

θ

)
which is described by the parameter vector

#–

θ . The joint probability density of the sample

given the parameter is then given as:

f #–
Y | #–Θ

(
#–

y
∣∣∣ #–

θ

)
=

Ni

∏
i=1

fYi|
#–
Θ

(
yi|

#–

θ

)
. (3.15)

The likelihood function is defined with fixed
#–

y and free variable
#–

θ :

L
(

#–

θ

∣∣∣ #–

y
)

:=
Ni

∏
i=1

f #–
Θ|Yi

(
#–

θ

∣∣∣yi

)
. (3.16)

The maximum likelihood estimator of the parameter vector
#–

θ is the vector
#–

θ opt which max-

imizes L . Since the logarithm is a strictly monotonic function,
#–

θ opt maximizes also the log-

likelihood function

`
(

#–

θ

∣∣∣ #–

y
)
= lnL

(
#–

θ

∣∣∣ #–

y
)
=

Ni

∑
i=1

ln f #–
Θ|Yi

(
#–

θ

∣∣∣yi

)
. (3.17)

In the case of a continuous and differentiable pdf it is possible to calculate the maximization

with the mathematical tool of curve sketching by calculating partial derivative of ` with re-

spect to the θi. The most important step for estimating the coefficients is then to define the

corresponding likelihood.

GLM and Palaeoclimatic Transfer Functions

GLMs for estimating the transfer functions were introduced by Schölzel (2006) and is one

topic of the Diploma thesis of Stolzenberger (2011) and the Master thesis of Schult (2013).
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3.2. The BITM in Detail for Lake Prespa

First a brief introduction into the theory of GLM and its application to palaeoclimate transfer

functions is given followed by the presentation of the result for Olea.

The theory presented here is a summary of the chapters 2, 3 and 7 of An Introduction to Gen-
eralized Linear Models written by Dobson, Barnett (2008). The model fitting process described

in Dobson, Barnett (2008, begin of chapter 2) is divided in four steps: model specification,

estimation of the parameters of the model, checking the adequacy of the model and inference.

The last two parts are not part of this thesis and therefore not described here.

Model specification - a model is specified by two parts: the probability distribution of the

response variable Y and an equation linking the response Y and explanatory variables X . For

GLMs the probability distributions or pdf all belong to the family of exponential distributions,

which includes the Normal, Binomial, Poisson and many other distribution (Dobson, Barnett

2008, chapter 2.3.2). The distribution of the exponential family can be written in the form of

equation 3.18. The functions a and b are called the natural parameter, c and d are for a specific

exponential pdf known (Dobson, Barnett 2008, chapter 3.2) :

fY, #–
Θ

(
y,

#–

θ

)
= exp

[
a(y)b

(
#–

θ

)
+ c
(

#–

θ

)
+d (y)

]
(3.18)

Table 3.1 summarizes the properties a, b, c and d for the most important pdfs of the exponential

family.

Table 3.1.: Poisson, Normal and Binomial distribution as members of the exponential family with a(y) =
y, after Dobson, Barnett (2008). Note that π in the Normal distribution N is the circle
constant and not the prior probability as defined in chapter 1.2

distribution pdf Natural parameter b(θ) c
(

#–

θ

)
d (y)

Normal N
exp

[
−(y−µ)2

2σ2

]
(2πσ2)

1
2

µ

σ2 − µ2

2σ2 −
1
2

ln
(
2πσ2

)
− y2

2σ2

Binomial Bin
(

n
y

)
py
(
1−p

)n−y ln
(

p
1−p

)
n ln
(
1−p

)
ln
(

n
y

)
Bernoulli Bern py

(
1−p

)n−y ln
(

p
1−p

)
ln
(
1−p

)
ln
(

1
y

)

The aforementioned monotone and differentiable linking equation g has the form (following

Dobson, Barnett (2008))

g [E(Y )] = α0 +α1x1 + . . .+αN j xN j = α0 +
N j

∑
j=1

α jx j︸ ︷︷ ︸
linear component

. (3.19)
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Chapter 3. Lake Prespa

at which E(·) is the general notation for the expectation value. With the following definitions

for the vector of responses
#–
Y , the vector of parameters #–

α and the design Matrix XXX which de-

fines the linear model,

#–
Y :=


Y1
...

YNi

 , (3.20a) g
[
E
(

#–
Y
)]

:=


g [E(Y1)]

...

g [E(YNi)]

 , (3.20b)

#–
α :=


α0
...

αN j

 , (3.21a) XXX :=



1 x11 · · · x1 j · · · x1N j

...
...

. . .
...

...
...

... xi j
...

...
...

...
. . .

...

1 xNi1 · · · xNi j · · · xNiN j


, (3.21b)

it is possible to write equation 3.19 in matrix notation as:

g
[
E
(

#–
Y
)]

=XXX #–
α . (3.22)

The link function g is described in more detail later in the context of palaeoclimatic transfer

functions when it is used.

For the estimation of the model parameters of GLMs two methods exist: MLE and least
squares. The estimation of the model parameter #–

α of the GLMs in this thesis are performed

with the statistical software R1. This software applies the MLE as described at the beginning of

this section. The required definition for the log-likelihood function ` based on equation 3.18

are

`(θ |y) = a(y)b(θ)+ c(θ)+d (θ) , (3.23a)

U (θ |y) = ∂`(θ |y)
∂θ

= a(y)b
′
(θ)+ c

′
(θ) , (3.23b)

The partial derivation U (·) of the log-likelihood is called the score statistic. With that tools

it is now possible to estimate the GLM for the different kind of distribution for the response

variables shown in Table 3.1.

The application of GLM as palaeoclimatic transfer functions is now straight forward. The

input data is discussed and presented in detail in chapter 2. The transfer functions considered

here connects the geographical distribution of a taxon (e. g. Figure 2.10 for Olea, p. 14) and

the geographical climate maps (e. g. Figure 2.4 for CWDANN , p. 10). From this follows that

the explanatory variable X in the case considered here is the modern climatic state
#–
C (eq. 3.1,

p. 25, chap. 3.1.2) at all grid points and the response variable Y is the modern occurrence

1in more detail with the base package stats of R version 3.0.1, s. Team (2013) for more details
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3.2. The BITM in Detail for Lake Prespa

of the taxa
#–
T at (eq. 3.2, p. 25) all grid points. It is important to note here again that both

information are used here (presence and absence) in contrast to the mixture model applied

for example in Simonis (2009).

This means that realisation of the explanatory variable
#–

x λϕ of the climate state
#–

c λϕ at each

grid point λϕ is defined as(
#–

x λϕ

)T

=
(

x1 x2 x3

)
λϕ

=
(

xλϕ 1 xλϕ 2 xλϕ 3

)
(3.24a)

≡
(

#–

c λϕ

)T

=
(

TJan TJul PANN

)
λϕ

(3.24b)

or
=
(

TJan TJul CWDANN

)
λϕ

. (3.24c)

In this work a GLM with a quadratic term is applied. These last two considerations lead too

the specification of the design matrix XXX

XXX :=



linear︷ ︸︸ ︷
1 x11 x12 x13 x11x12 x11x13 x12x13

quadratic︷ ︸︸ ︷
x2

11 x2
12 x2

13
...

...
...

...
...

...
...

...
...

...

1 xλϕ 1 xλϕ 2 xλϕ 3 xλϕ 1xλϕ 2 xλϕ 1xλϕ 3 xλϕ 2xλϕ 3 x2
λϕ 1 x2

λϕ 2 x2
λϕ 3

...
...

...
...

...
...

...
...

...
...

1 xNλϕ 1 xNλϕ 2 xNλϕ 3 ︸ ︷︷ ︸
bilinear

xNλϕ 1xNλϕ 2 xNλϕ 1xNλϕ 3 xNλϕ 2xNλϕ 3 x2
Nλϕ 1 x2

Nλϕ 2 x2
Nλϕ 3


(3.25)

at which Nλϕ denotes the total number of grid points over land surface. It is important to

note that the expansion from linear to quadratic introduces bilinear terms. Stolzenberger

(2011) and Schult (2013) emphasize that this part contributes important information like the

orientation in the climate phase space.

One point remains, the definition of the link function g. Due to the fact that the occurrence

of one taxon is a binary variable (only presence tλϕ = 1 or absence tλϕ = 0, mentioned in

chapter 3.1.1.), the corresponding probability distribution is the Bernoulli distribution or more

general the Binomial distribution with n = 1 (see Tab. 3.1 for the formula). If the identity

g
(
p
)
= p, (3.26)

is used as link function g, it is possible that the fitted values popt are not restricted to the

interval [0;1]. For restricting to that interval the so called tolerance function tol (·) is used

p =

XXX∫
−∞

tol (TTT )dTTT , (3.27)

with the characteristics tol (TTT )≥ 0 and
∫

∞

−∞
tol (TTT ) = 1, the requirements for a pdf. TTT is a matrix
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with the same properties as the design matrix XXX . If we define

tol (TTT ) :=
#–
α exp #–

αTTT

[1+ exp #–
αTTT ]2

(3.28)

for the case considered here, integrate then equation 3.27 and solve the result for #–
αTTT , the

equation for GLM (s. eq. 3.22) follows as

ln
(

p
1−p

)
︸ ︷︷ ︸

=:g(p)

= #–
αXXX . (3.29)

Here g
(
p
)

is called the logistic link function. The transfer function as used in equation 3.14b

is then interpreted as the aforementioned probability p estimated with the MLE #–
α opt

PTk|
#–
C

(
tk,0|

#–

c 0

)
:= p =

exp #–
α optXXX

1+ exp #–
α optXXX

. (3.30)

Figure 3.4 shows an example for the two-dimensional marginal distributions of the three-

dimensional PTk|
#–
C

(
tk,0|

#–

c 0

)
for Olea. Marginal here and later on denotes that an integration

over the remaining dimensions of the climate state vector is applied, e. g. for Fig. 3.4a:

PTk|
#–
C

(
tk,0|

#–

c 0 = (TJan,TJul,CWDANN)
T
)
=

∫
K0,CWDANN

PTk|
#–
C

(
tk,0|

#–

c 0

)
d(

#–

c 0,CWDANN ) (3.31)

Figure 3.4a and 3.4b are estimated with the CRU TS 3.1 climate dataset and 3.4c and 3.4d

with ERA-Interim for the 850hPa temperatures. The missing two dimensional marginal dis-

tributions (TJul/CWDANN resp. T 850hpa
Jul /CWDANN) can be found in appendix A.2 (Fig. A.10 on

p. 142) since Figure 3.4 only demonstrates how these transfer functions look like and what

are the main differences between CRU TS 3.1 and ERA-Interim. In Figure 3.4 each cross rep-

resents one of the aforementioned realisations
#–

c λϕ at all grid points over land surface. The

colour of them marks if the taxon is present (yellow) or absent (grey). The contour lines rep-

resent the two dimensional marginal distributions of the estimated three dimensional GLM ≡
the taxon specific palaeoclimate transfer function. The horizontal and vertical black line marks

the maximum value of the estimated GLM.

The range of all Nλϕ = 8438 realisations
#–

c λϕ in Figure 3.4 covers an interval of [−30;20] ◦C

for TJan, [5;40] ◦C for TJul, [−3000;2500] mm
year for CWDANN , [−20;15] ◦C for T 850hpa

Jan and [0;35] ◦C

for T 850hpa
Jul . This range does not change for the other taxa since it is the range of the considered

datasets described in chapter 2.1. The range of the 731 realisations
#–

c λϕ with Olea present

(tk = 1) is smaller: [−15;15] ◦C for TJan, [15;35] ◦C for TJul, [−1000;2000] mm
year for CWDANN ,

[−5;10] ◦C for T 850hpa
Jan and [10;30] ◦C for T 850hpa

Jul .

Summarized there is a difference in the input data for the GLM estimation in the temperatures,
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(c) ERA-Interim-CRU TS 3.1
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(d) ERA-Interim-CRU TS 3.1

Figure 3.4.: Palaeoclimatic transfer function for Olea estimated with a GLM based on the CRU TS 3.1
dataset ((a), (b)) resp. the ERA-Interim dataset for the 850hPa temperatures ((c) and
(d)). Each cross represents one realisation

#–

c λϕ at all grid points over land surface. The
colour of them marks if the taxon is present (yellow) or absent (grey). The contour lines
and the colour scale represent the two dimensional marginal distributions of the estimated
three dimensional GLM. Dark blue represent high values and light blue low values. The
horizontal and vertical black line marks the maximum value of the estimated GLM.
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which is in agreement with meteorological knowledge . More important is that the shape and

orientation of the point cloud in Figure 3.4c and 3.4d is slightly rotated and more compact

compared to Figure 3.4a, 3.4b. These differences lead to differences in the estimated GLM.

The estimated GLM for the surface climate variables has the shape of saddle. It matches for

the TJan/TJul marginal distribution (Fig. 3.4a). For a detailed evaluation of the TJan/CWDANN

marginal distribution (Fig. 3.4b) or how the input data in general is represented by the GLM

the tools of verification as done by Stolzenberger (2011) have to be applied. This is not

the aim of this study. Compared to the other presented transfer function the GLM in Fig-

ure 3.4c and 3.4d indicates a better agreement with the input dataset. This is in agreement

with Stolzenberger (2011) who pointed out that the transfer functions estimated with a GLM

and the temperatures of the middle troposphere (850hPa) are a better representation of the

input data.

3.2.3. π~C (~c) Prior Distribution for the climate state vector

In BHM the general aim is ”what is learnable from the data”. In this study and specially in

this chapter what is learnable from the pollen proxy data obtained from the sediment core of

Lake Prespa in terms of climate. More general learnable means in other words (Schölzel 2006,

p. 43): ”Every calculation of a posterior probability or probability density directly depends on the
selection of the corresponding prior probability or probability density.” Therefore the climate

prior π #–
C

(
#–

c 0

)
(s. eq. 3.14) has to be defined.

Schölzel (2006) describes and summarises in detail the different types of climate priors

for palaeoclimate reconstructions. The three categorised classes of priors are non-informative

priors, maximum entropy priors and subjective priors. He also emphasises that ”there is vast
information about the prior selection”. Due to the fact that the same type of prior is used in

this work the selection and classification of priors is not further considered here. Only the

influence on the posterior pdf is discussed in chapter 3.3. The prior type is an subjective prior

determined by product of the marginal distributions of the multivariate prior distribution, i. e.

π #–
C (

#–

c 0 = (c1,c2,c3)
T) : = fN

(
µ

prior
TJan

,σ prior
TJan

) (c1) · fN
(

µ
prior
TJul

,σ prior
TJul

) (c2) · fG
(

ν
prior
PANN

,λ prior
PANN

) (c3) (3.32a)

or
:= fN

(
µ

prior
TJan

,σ prior
TJan

) (c1) · fN
(

µ
prior
TJul

,σ prior
TJul

) (c2) · fN
(

µ
prior
CWDANN

,σ prior
CWDANN

) (c3) .

(3.32b)

The prior for the palaeoclimate reconstruction of the middle troposphere temperatures is of

course estimated with the corresponding parameters.

For the estimation of this prior type the modern climate state on the location of Lake Prespa

is used. In more detail histograms of the complete available time series of the CRU TS 3.1 and
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3.2. The BITM in Detail for Lake Prespa

ERA-Interim for the 850hPa temperatures (presented in chap. 2.1.1 and chap. 2.1.3) are used

for the definition of the required parameters. For a first guess the parameters µ prior
... and σ prior

...

of the univariate marginal distributions are estimated with MLE. Then the resulting µ prior
... is

rounded to the next integer. The variance σ prior
... is set to larger value as the estimated in order

to allow to get enough information from the likelihood part of the BHM. Figure 3.5 and Ta-

ble 3.2 show the result. Since the precipitation is not normally distributed the aforementioned

inverse cumulative distribution function (CDF) method is applied (chap. 3.2.2) to obtain the

parameters for the gamma distribution. Figure 3.5 demonstrates also that the defined climate

prior is a good representation of the modern climate state.
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Figure 3.5.: Definition of the climate prior for Lake Prespa.
Each histogram bases on the complete available time series of the CRU TS Version 3.1 resp.
ERA-Interim dataset on the location of Lake Prespa. The coloured curves are the estimated
univariate climate prior pdfs. The corresponding parameters are listed in Table 3.2.
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Chapter 3. Lake Prespa

Table 3.2.: Parameters for the climate prior for Lake Prespa.

µTJan = 0.0 ◦C µTJul = 19.0 ◦C µT 850hpa
Jan

= 0.0 ◦C µT 850hpa
Jul

= 17.0 ◦C

σTJan = 5.0 ◦C σTJul = 5.0 ◦C σT 850hpa
Jan

= 2.0 ◦C σT 850hpa
Jul

= 2.0 ◦C

µPANN = 850 mm
year νPANN = 8.0278 µCWDANN = 10.0 mm

year

σPANN = 300 mm
year λPANN = 0.0094 σCWDANN = 300.0 mm

year

3.3. Lake Prespa - Palaeoclimate Reconstruction Result

Figures 3.6 and 3.7 show the estimated result of the palaeoclimate reconstruction for Lake

Prespa in terms of depth profile of the one-dimensional marginal pdfs. The term marginal is

already defined in chapter 3.2.2. The integration required for the pdf is applied over the two

remaining dimensions of the climate state vector. Thereby abscissa depth is replaced by age in

y.calBP due to the fact that an age-to-depth model established by Aufgebauer et al. (2012) is

available (s. chap. 2.3.1). These pdfs are shown with a coloured scale, ranging from blue for

low values to red for high values. The solid black line marks the mode, which is the highest

value of each pdf in each sample layer. The dashed black lines mark the 10%, 25%, 75% and

the 90% quantile2. The dotted line is the median, which is equal to the 50% quantile. The

red line is the weighted arithmetic mean for each layer, which is interpreted as the numerical

calculated expectation value. The weights are the values of the marginal pdf.

The palaeoclimate reconstruction presented in Figure 3.6a, 3.6b and 3.6c base on taxa

transfer functions estimated with CRU Time Series (CRU TS) 3.1 as climate dataset and
#–
C = (TJan,TJul,PANN)

T . Additionally Figure 3.6d shows the marginal pdf for CWDANN whose

setup differs only in the third component of the climate state vector3. The corresponding

figures for TJan and TJul are not shown since the result is equal.

Figure 3.7 presents the palaeoclimate reconstruction of the temperatures at the 850hPa

level. Surface temperatures based on the temperatures T 850hpa
Jan and T 850hpa

Jul could be deter-

mined with a simple height correction (s. e. g. for palaeoclimate reconstructions Stolzenberger

2011), based on the temperature gradient of the standard atmosphere (6.5×10−3 K
m), the mean

height of the 850hPa level (1500m) and the height above mean sea level (AMSL) for Lake

Prespa (849m AMSL, s. chap. 2.3.1): ∆T ≈ 5 ◦C. In general the results of the palaeoclimate

reconstruction of the surface temperatures (Fig. 3.6) are in accordance with the results of

Panagiotopoulos et al. (2013). This is not the case for PANN and CWDANN , a fact that is dis-

cussed in the following.

In all figures a linear trend is estimated for several time slices for a better evaluation of

2The quantiles are estimated with the wtd.quantile function of the R-package Hmisc (Harrell Jr., with contribu-
tions from Charles Dupont and many others. 2013)

3in detail
#–
C = (TJan,TJul ,CWDANN)

T
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Table 3.3.: Results for the parameters of the estimated linear trends in Figures 3.6 and 3.7. The the acronym t. r. X stands for time range X .
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4
a -0.0003 0.0000 -0.0022 -0.0141 -0.0002 -0.0001 -0.0180 0.0189
±σ 0.0003 0.0002 0.0177 0.0282 0.0002 0.0003 0.0256 0.0342
b 4.1426 21.6325 880.7740 50.5454 0.7013 16.0536 920.2494 -33.5076
±σ 0.3471 0.2816 20.1403 32.0933 0.1810 0.3485 29.1066 38.9868

t.
r.

3

a -0.0001 0.0001 -0.0057 0.0085 -0.0001 0.0000 0.0018 0.0117
±σ 0.0002 0.0002 0.0069 0.0161 0.0001 0.0001 0.0064 0.0190
b 2.6475 20.7931 973.1271 -121.8717 0.0623 15.2152 923.0577 -190.9814
±σ 1.7879 1.1211 50.3786 117.8900 0.6402 0.9527 46.8177 138.6456

t.
r.

2

a -0.0005 0.0003 -0.0012 0.0082 -0.0003 0.0001 -0.0027 -0.0201
±σ 0.0006 0.0001 0.0124 0.0245 0.0003 0.0002 0.0278 0.0440
b 5.7528 16.9299 1009.8411 -307.4034 2.3911 13.7953 1035.6623 33.9167
±σ 7.1863 1.6707 149.5257 295.7989 3.8424 1.8240 336.3809 532.3978

t.
r.

1

a 0.0014 0.0000 -0.0026 0.0123 0.0009 0.0002 -0.0049 -0.0184
±σ 0.0015 0.0005 0.0311 0.0717 0.0010 0.0003 0.0586 0.1027
b -21.8232 20.3297 935.8191 -149.9581 -16.8841 11.9143 859.0741 372.3711
±σ 22.8469 8.2093 480.1508 1106.8871 16.0768 4.6550 905.0205 1585.9224
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Chapter 3. Lake Prespa

climate changes. This trend is estimated on the numerical expectation value (red line) of

the marginal pdfs of each climatolgical variable ci. For the following time ranges trends are

estimated :

time range 4 PAZ 1a to 1b, in detail pollen sample layer 1 to 11 which is equal to 0y.calBP ≈⇔
2cm and 2007y.calBP ≈⇔ 74cm (Nι = 11)

time range 3 PAZ 1c to middle of 1e, in detail pollen sample layer 12 to 26 which is equal to

2713y.calBP ≈⇔ 82cm and 9849y.calBP ≈⇔ 170cm (Nι = 15)

time range 2 directly subsequent the next layer in PAZ 1e to second layer in PAZ 2b, in detail

pollen sample layer 27 to 42 which is equal to 10239y.calBP ≈⇔ 178cm and 13547y.calBP
≈⇔ 246cm (Nι = 16)

time range 1 directly subsequent the next layer in PAZ 2b to PAZ 2c, in detail pollen sample

layer 43 to 60 which is equal to 13790y.calBP ≈⇔ 251cm and 17022y.calBP ≈⇔ 319cm

(Nι = 18)

These four time ranges, numbers from past to present and shortened from now on with t. r. X ,

are identifiable in all palaeoclimate reconstructions since the marginal pdfs profile before and

after differs sometimes more sometimes less. In detail the definition of the time ranges bases

in principle on a visual analysis of the TJan palaeoclimate reconstruction (Fig. 3.6a): What are

the distinguishable zones? Due to the large variability in PAZ 2b and PAZ 2c the lower part of

the profile is divided in two parts (t. r. 1 and 2). A fact that is supported by the visual analysis

of the CWDANN marginal pdf profile (Fig. 3.6d): The profile in PAZ 2a differs from PAZ 2b and

PAZ 2c.

The result of all estimated linear trends are summarized in Tab. 3.3. All slopes a of the

estimated linear trends in Figure 3.6 and 3.7 (ci = a · t +b) are small with a maximum value of

|a|= 0.0201 for the t. r. 2 and CWDANN with a large error (σ =±0.0440≡ 219%). If all errors

are converted to relative errors (not shown) these are large for the most cases, except t. r. 2

and TJul (σ = 0.0001≡ 33%). Thereby the largest relative errors for a arise for PANN . The slopes

for the temperatures are in general one order of magnitude lower than those of CWDANN and

PANN with a maximum value of |a| = 0.0014. The same holds for the most of the associated

errors except that they differ not one order of magnitude. If the time ranges are compared

among themselves it becomes obvious that time ranges 3 and 4 have lower values for a and

also smaller relative errors for a and b.

The conclusion is that it is an acceptable approximation to consider only the intercept b as a

representation of the expectation value in each time range or a simple mean of the expectation

values in each layer (red line) for a simple hypothesis testing. This hypothesis testing is carried

out with a Student’s t-test for the means in the respective time ranges with null hypothesis that
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3.3. Lake Prespa - Palaeoclimate Reconstruction Result

the means are equal. For this aim the R-function4 t.test() is used. A significance level of 0.05

is applied for all tests.

It is indicated in all four subfigures of Figure 3.6 that there is a climate change which is

diverse in its strength/ intensity in the considered climate variables. The clearest changes are

indicated in the palaeoclimate reconstruction of TJan (Figure 3.6a) which is discussed first:

The difference between t. r. 1 and t. r. 2 is insignificant, the Student’s t-test results in a p-value

of 0.85 for the two group means −0.8 ◦C and −0.5 ◦C, so that the null hypothesis (means are

equal) is accepted on a 5% significance level. The deviation between the values of group

means and the respective slopes is large, but the uncertainty of the slope a and the intercept

b is also large (s. Tab. 3.3). This is in agreement with the aforementioned conclusion for

applying the Student’s t-test. The large variability in a short time in the considered time ranges

is the reason for that uncertainty. The greatest change between two time ranges is identifiable

between t. r. 2 and 3: The slopes b difference is ≈ 3 ◦C (s. Tab. 3.3). The hypothesis testing

also supports this with the lowest p-value for TJan: 4.5×10−4 (group means 2.1 ◦C and −0.8 ◦C)

which leads to a rejection of the null hypothesis. The comparison of t. r. 3 and t. r. 4 also shows

a significant difference (p-value 0.0032 with mean values of 3.9 ◦C and 2.1 ◦C) .

The visual analysis of the marginal pdf profile supports this: There are more and larger

jumps in t. r. 3 than in t. r. 4 in relation to the estimated trend lines. This also holds for

t. r. 3 versus t. r. 2 except that there is one extremely large jump (≈−8 ◦C). An extrapolation

of the estimated linear trends from t. r. 2 into t. r. 3 resp. t. r. 3 into t. r. 4 and a consideration

of the quantile curves indicates that the estimated lines are outside of the 25% / 75% quantile

curves. In some cases they are actually outside of the 10% resp. 90% quantile curves. This

point of view supports the just mentioned climate changes between the time ranges and a

slight warming since the oldest time slice compared to the modern time slice.

The palaeoclimate reconstruction result for TJan PAZ 2b is in agreement with Panagiotopou-

los et al. (2013): This analysis assumes a cold climate with oscillations in PAZ 2b. Also the

rising winter temperatures in PAZ 1 can be confirmed as well as the so called 8.2-event ≡
PAZ 1d: This event is associated with temperature oscillations in a very short time range

which are identifiable in Figure 3.6a. Also proved are rising temperatures in the Middle and

Late Holocene. The large winter temperature decline in PAZ 2a is not confirmable.

The palaeoclimate reconstruction of TJul (Figure 3.6b) shows four clearly discriminable time

ranges but the climate changes are not as large as for TJan. With a cooling average of ≈ 1 ◦C

t. r. 1 is visual more distinguishable from t. r. 2 as it is the case for TJan. This is due to fact

that the variability in t. r. 1 is larger for TJul if the large jump at the border of PAZ 2c is left out

in this consideration. This is illustrated using the expectation value (red line): oscillations of

TJan ≈ 3.5 ◦C compared to TJul ≈ 7 ◦C. The Student’s t-test results in a p-value of 0.048 (group

means 21.1 ◦C and 20.0 ◦C) which leads to a rejection of the null hypothesis on the given

4with its default setup (two-sided, no equal variances) of the base package stats of R version 3.0.1,
s. Team (2013) for more details
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Figure 3.6.: Marginal posterior pdfs fC0|~T0

(
c0|~t0

)
for TJan, TJul , PANN and CWDANN for the Lake Prespa palaeoclimate reconstruction based on

equation 3.14b. In detail all base on the filtered Indicator Taxa Matrix for Lake Prespa III
Nι×Nk0
f iltered (Fig. 3.3c). (a), (b) and (c)

base on
#–
C = (TJan,TJul ,PANN)

T and CRU TS 3.1 as estimation dataset. (d) differs only in the definition the climate state vector
(

#–
C = (TJan,TJul ,CWDANN)

T ). The pdfs are shown with a coloured scale, ranging from blue for low values to red for high values.
The solid black line mark the mode, which is the highest value of each pdf in each sample layer. The dashed black lines mark the 10%,
25%, 75% and the 90% quantile. The dotted line is the median, which is equal to the 50% quantile. The red line is the weighted
arithmetic mean for each layer, which is interpreted as the numerical calculated expectation value. The weights are the values of the
marginal pdf. The PAZ as defined in Panagiotopoulos et al. (2013) are shown in black and are labelled with the according depth. The
age-to-depth model is established by Aufgebauer et al. (2012) (mentioned in chapter 2.3.1).
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3.3. Lake Prespa - Palaeoclimate Reconstruction Result

significance level. If the complete marginal pdf is considered and not the expectation value

alone the climate change has to be classified as a change of the variability and not as shift to

a colder time range. This is a fact which is also supported by the order of magnitude of the

p-value.

The comparison of t. r. 2 with t. r. 3 with the hypothesis testing results in a p-value of

0.0013 for the group means 20.0 ◦C and 21.2 ◦C (null hypothesis rejected). The analysis of the

marginal pdf in t. r. 3 indicates variability on the scale of t. r. 1 but on a larger time scale and

with a longer period with higher TJul values (around 6000y.calBP) as the estimated trend. A

comparison of t. r. 3 with t. r. 4, the time range which includes the modern climate, shows

that the difference between these time ranges on average is comparably small: The p-value is

0.22 with mean values of 21.2 ◦C and 21.7 ◦C. This leads to the conclusion that the only time

range with a significant difference to the modern TJul climate for a longer time scale is t. r. 2.

This cooling in TJul is supported by the above presented extrapolation of the linear trend of

t. r. 2 into t. r. 3 and t. r. 4 and a consideration of the quantile curves: the extrapolation is

outside of the 10% quantile except for the two time slices in PAZ 1c (around 2500y.calBP and

3500y.calBP), the also recognizable 8.2-event and time slice 9000y.calBP. These results are

in accordance with Panagiotopoulos et al. (2013): ”a negligible decline in summer temperatures
in PAZ 2a” and ”climate oscillations in PAZ 2b”.

The marginal pdf for the climatolgical variable ci = PANN presented in Figure 3.6c shows

almost no climate change: The extrapolation of each estimated linear trend into the other

ones are within the 25% / 75% quantile curves. The only time range that differs from the

other ones is t. r. 1: The variability in this time range is larger than in the other time ranges.

A comparison of t. r. 1 with e. g. t. r. 4 by applying the Student’s t-test results in a p-value

of p = 0.59 for 879 mm
year and 896 mm

year which leads to an acception of the null hypothesis that

the mean values for these time ranges are equal. This fact does not change if the complete

marginal pdf profile is considered: The 10% / 90% quantile curves vary in the complete profile

but only in the lowest/oldest time slice the range of them shifts to lower annual precipitation

values. Two results of Panagiotopoulos et al. (2013) can be confirmed: the already mentioned

climate oscillations and the short time range variation within 8.2-event ≡ PAZ 1d.

In contrast to the PANN palaeoclimate reconstruction CWDANN (Figure 3.6d) indicates four

clearly discriminable time ranges. Just to remind: CWDANN > 0 is equivalent to dry and

CWDANN < 0 to wet environmental condition. On average the climate in t. r. 1 is dry with

a large variability. The change compared to t. r. 2 is clearly recognizable and significant as the

Student’s t-test shows a p-value of 0.0025 for the group means 39 mm
year and −208 mm

year . This is also

the case if the marginal pdf, represented by the quantile curves, is considered: The aforemen-

tioned trend extrapolated into t. r. 2 lies outside of the 75% quantile curve. But a comparison

of t. r. 1 with t. r. 4, the quasi modern climate, indicates that on average the climate in t. r. 1 is

not significantly different (p-value of 0.99 for 39 mm
year and 38 mm

year).
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On average the difference of t. r. 2 to t. r. 3 is also significant as the result of the Student’s

t-test shows: a p-value of 0.0010 for −208 mm
year and −62 mm

year . Although in t. r. 2 almost all

time slices show a marginal pdf where 75% of the pdf-range indicates a wet climate: the 75%

quantile curve lies below CWDANN ≡ 0 except for time slice 11990y.calBP (≡ 214cm). On

average the climate in t. r. 3 is also wet (group mean −62 mm
year) but the variability is larger as

in t. r. 2. This variability is in the order of magnitude of t. r. 1 (≈ 200 mm
year) but not on the time

scale: there is e. g. a longer period with values of CWDANN > 0 around 6000y.calBP. The

climate change (on average) from t. r. 3 to t. r. 4 is significant on the 5% significance level

(p-value of p = 0.01 for −62 mm
year and 38 mm

year). In summary the time ranges differ significantly

among themselves but only time range 2 with a significantly different climate to the modern

time slice.

There is only partial accordance with the results of Panagiotopoulos et al. (2013): Confirmed

are a dry climate on average as well as climate oscillations in PAZ 2c. These oscillations con-

tinue in the next zone, PAZ 2b. Also confirmed is the 8.2-event ≡ PAZ 1d but not as described

by Panagiotopoulos et al. (2013) with a short return to return to dry but wet conditions. Rather

disproved than confirmed is the moisture deficit in PAZ 2a since CWDANN < 0 in Figure 3.6d.

Additionally, the described increasing moisture availability in PAZ 1e which should continue

in PAZ 1c, 1b, 1a is disproved. Figure 3.6d indicates a decreasing moisture availability. Since

two components of the middle troposphere temperature reconstruction are also a PANN resp.

CWDANN reconstruction, the final conclusion for these variables is drawn after the discussion

of Figure 3.7c and 3.7d.

The result for the palaeoclimate reconstructions of the middle troposphere temperatures in

Figure 3.7 is different for some of the marginal pdfs. The ordinate scale in Figure 3.7 is the

same as in 3.6 so that one main difference between the 850hPa temperature reconstruction

and those of surface values becomes obvious: A slightly narrower marginal pdf profile for

T 850hpa
Jan quantified by the distance between e. g. the 10% and 90% quantile curves: T 850hpa

Jan ≈
max4− 5 ◦C (with 5 ◦C in the lower part of the sediment core) and TJan ≈ max6 ◦C. This fact

holds true exept for two layers in PAZ-2b with T 850hpa
Jan ≈ max >> 20 ◦C and TJan ≈ max15 ◦C.

The distance for T 850hpa
Jul ≈ TJul ≈ max6 ◦C, PANN ≈ max1000 mm

year and CWDANN ≈ max1200 mm
year

is the same. The discussed differences between the time ranges in the surface temperature

palaeoclimate reconstruction (Fig. 3.6) are generally persistent respective to the significance

and the direction of the change. The exceptions are presented in the following.

The just mentioned fact of a narrower marginal pdf for T 850hpa
Jan is also indicated with a

reduced variability in PAZ-2c. This is e. g. also visible in the jumps of the expectation value

(red line): ∆TJan ≈ 3◦C and ∆T 850hpa
Jan ≈ 1◦C. Also the time ranges are more similar so that the

aforementioned warming since the oldest time slice is weaker. The most clear quantifiable

change is that T 850hpa
Jan is on average in t. r. 2 more similar to t. r. 3 as it is the case for TJan: The

p-value is 0.0018 for the group means−1.60 ◦C −0.37 ◦C, so that the null hypothesis is rejected.
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Figure 3.7.: Marginal posterior pdfs fC0|~T0

(
c0|~t0

)
for T 850hpa

Jan , T 850hpa
Jul , PANN and CWDANN for the Lake Prespa palaeoclimate reconstruction based on

equation 3.14b. In detail all base on the filtered Indicator Taxa Matrix for Lake Prespa III
Nι×Nk0
f iltered (Fig. 3.3c). (a), (b) and (c) base on

#–
C =

(
T 850hpa

Jan ,T 850hpa
Jul ,PANN

)T
and ERA-Interim for the 850hPa temperatures as estimation dataset. (d) differs only in the definition the

climate state vector (
#–
C =

(
T 850hpa

Jan ,T 850hpa
Jul ,CWDANN

)T
). The mapping of the figure is identical to Figure 3.6.
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Chapter 3. Lake Prespa

The differences for the palaeoclimate reconstructions of TJul and T 850hpa
Jul are not as easily

identifiable as in the last case. The most important result is that the main difference between

them is almost only a shift of about 5 ◦C. The marginal pdf for T 850hpa
Jul is also a little narrower

but it is not easy to recognize and quantify this in the younger/upper part of the palaeoclimate

reconstruction. In the older/lower part (≈ t. r. 1 and t. r. 2) narrow is here equivalent to a

reduced variability of 6 ◦C compared to 4 ◦C for e. g. the expectation value. So one main con-

clusion is that the aforementioned height correction for the middle troposphere temperatures

is generally confirmed, whereby the better representation for this fact is TJul ⇔ T 850hpa
Jul .

One important result for the palaeoclimate reconstructions of PANN and CWDANN as compo-

nent of different setups of the climate state vector is that they are in general in accordance

and not inconsistent. In detail this means that on average (comparison of the group means)

the sign of the differences between the different time ranges is the same. As aforementioned

the interquantile distance is also the same.

The group means are on average different whereby the greatest differences appear for PANN

in t. r. 1 with |∆| ≈ 103 mm
year and t. r. 4 with |∆| ≈ 25 mm

year . A direct consequence of the last

mentioned result is that the oldest time range is more discriminable in Figure 3.7c than in

3.6c from the rest of the marginal pdf profile. Thereby this is not statistically significant:

The Student’s t-test result is a p-value of 0.05 which is equal to the defined significance level.

Additionally the trend extrapolation from t. r. 1 in t. r. 2 in Figure 3.7c supports this: It lies

almost lower as the 25% quantile curve instead of almost above. The only fact of the PANN

palaeoclimate which is reliable are the climatic oscillations in t. r. 1.

The palaeoclimate reconstruction for CWDANN presented in Figure 3.7d differs from Fig-

ure 3.6d on average in each time range except in t. r. 2: t. r. 1 with |∆| ≈ 49 mm
year , t. r. 3 with

|∆| ≈ 47 mm
year and t. r. 4 with |∆| ≈ 55 mm

year . Thereby the change in t. r. 4 is from dry (Fig. 3.6d) to

wet (Fig. 3.7d) environmental conditions. On average t. r. 1 becomes more wet and t. r. 3 and

t. r. 4 more wet as the comparison of Figure 3.6d and 3.7d indicates. As a direct consequence

the result from Figure 3.6d that t. r. 2 is the only time range which differs significantly from the

modern time range is weakened: Figure 3.6d with p = 1.5×10−8 compared with Figure 3.7d

with p = 0.0005, so the null hypothesis is rejected and the difference of the mean values is

significant.

The aforementioned conclusions of the palaeoclimate reconstruction results of the water

variables respective Panagiotopoulos et al. (2013) are also consistent with the results dis-

cussed in the last two paragraphs. Over all it is important to note that the palaeoclimate

reconstruction of PANN and CWDANN of Lake Prespa are in general sensitive to the setup of the

climate state vector
#–

c , more precisely: What are the other components (middle troposphere

temperatures or surface temperatures)?

In this last paragraph the palaeoclimate reconstruction results for Lake Prespa are briefly

summarized: There are four discriminable time ranges identifiable in the surface temperature
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palaeoclimate reconstructions for TJan and TJul with greater climate changes for TJan than for

TJul. For TJan the greatest change between two time ranges is identifiable between t. r. 2 and 3.

Time range 3 also differs significantly from the modern climate. For TJul only one time range

is identifiable with a significant difference to the modern TJul climate for a longer time scale:

t. r. 2. The palaeoclimate reconstruction of the middle troposphere temperatures T 850hpa
Jan and

TJul (Fig. 3.7a resp. 3.7b) support this results: In general the differences between the time

ranges are persistent respective to the significance and the direction of the change compared

to the surface temperature results presented in Figure 3.6a resp. 3.6b. The most clear quantifi-

able change is that T 850hpa
Jan is on average in t. r. 2 more similar to t. r. 3 as it is the case for TJan.

Also the marginal pdfs for T 850hpa
Jan and T 850hpa

Jul are slightly narrower than those of TJan and TJul.

As a consequence the simple height correction mentioned in the beginning is also confirmed.

The result for the palaeoclimate reconstructions of the water variables PANN and CWDANN is

different from that: One important result is that the different setup of the climate state vector

yields to results which are in general not inconsistent. This means that the sign of the differ-

ences between the group means of the time ranges is the same. For both PANN reconstruction

results, Figure 3.6c and 3.7c, only the climatic oscillations in t. r. 1 are reliable. Compared to

the PANN palaeoclimate reconstruction both CWDANN results (Figure 3.6d and 3.7d) indicate

four clearly discriminable time ranges. These differ significantly among themselves with only

one time range with a really visible and significantly different climate to the modern time slice:

time range 2.
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4
Lake Kinneret and Ein Gedi

This chapter presents the result and the mathematical tools that are used for the palaeoclimate

reconstruction that bases on the sediment core data of Lake Kinneret and Ein Gedi with a focus

on Lake Kinneret. The sediment cores and the locations are described in chapter 2.3.2. The

basic mathematical principles for this purpose are introduced in chapter 1.2 and are extended

in the first section of this chapter to the Bayesian Biome Model (BBM) which is applied for

both sediment cores. The following section describes the estimation of each component of

the BBM with the corresponding results for Lake Kinneret due to the fact that the sediment

core of Ein Gedi is already analysed in Litt et al. (2012). The next part shows an experiment

with the pollen-ratio model (PRM) for both sediment cores. Directly follows the palaeoclimate

reconstruction for Ein Gedi whereby the focus are the adaptations of Litt et al. (2012) on the

requirements of the Jordan Valley reconstruction presented in chapter 6. In the last section

some general conclusions for a palaeoclimate reconstruction with the BBM are presented.

4.1. The Bayesian Biome Model - Introduction

The BBM is developed by Schölzel (2006) and after some improvements successfully applied

to the Ein-Gedi Sediment core (Litt et al. 2012). It bases on the concept of biomisation, which

is an ”empirical classification scheme of plant taxa into well defined groups” (Schölzel 2006). For

this purpose each plant taxon which could be identified in the palaeo record is assigned to one

biome (s. chap. 4.2.2). In a nutshell the BBM is a reduction of complexity of the vegetation

(Schölzel (2006), 5.1).

BBM defines a biome as a vegetation area. It can be characterized by:

• the botanical composition, defined as a list of the taxa assigned to the biome type;

• the geographical distribution, here synonymous to the vegetation areas;

• the climatic range, defined by a list of typical ranges for climate variables
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The basic hypothesis of the biome model is (see Schölzel (2006), p. 56):

”Climate changes during the Holocene did not change the number of biomes or their
botanical composition, but caused a relocation of the three territories (two in the case
of Kinneret). The influence of each biome on the Dead Sea (or Lake Kinneret), as had
been recorded by the fossil pollen spectra of the sediment core, changed over time.”

The Bayesian Indicator taxa method, used for the palaeoclimate reconstructions described

in chapter 3, defines the ”transfer functions as climate given taxa ” (Schölzel 2006, chap. 5.1,

p. 56). This is no reasonable interpretation in the case of biomes, e.g. ”climate given a 75%

probability of biome”. Litt et al. (2012) describe the correct view: ”we always observe a mixture
signal of all biomes”.

#–B := (b1, . . . ,bNl )
T ,

#–

b ∈ {1,2, . . . , l, . . . ,Nl}Nl (4.1)

defines the random variable for biomes needed for the following definitions. Since the purpose

is to estimate the probability or pdf of climate data given proxy data the starting point is

P #–
C ,

#–
P

(
#–

c ,
#–

p
)
=

Nl

∑
l=1
P #–

C ,
#–
P ,Bl

(
#–

c ,
#–

p ,bl

)
(4.2)

The right hand side reflects the above described mixture signal of all biomes and is the sum-

mation over all different biome types Nl. The Application of the Bayes theorem on both sides

of the equation leads to

P #–
C | #–P

(
#–

c
∣∣∣ #–

p
)
=

Nl

∑
l=1
PBl |

#–
P

(
bl|

#–

p
)
P #–

C | #–P ,Bl

(
#–

c
∣∣∣ #–

p ,bl

)
(4.3)

The equation for the BBM is obtained after the realisation of three further steps:

1.) Assume that the connection between climate and biomes is conditional independent

given the proxy data (established by Litt et al. (2012)).

2.) The application of the basic assumption described in chapter 1.2 (eq. 1.5 on p. 5).

3.) Another application of the Bayes theorem to get the required definition for the biome

transfer function:

P #–
C 0|

#–
P 0

(
#–

c 0|
#–

p 0

)
=

Nl

∑
l=1
PBl |

#–
P

(
bl0 |

#–

p 0

)PBl |
#–
C

(
bl0 |

#–

c 0

)
π #–

C

(
#–

c 0

)
PBl (bl0)

(4.4)

This is in principle the equation for the palaeoclimate reconstructions based on the BBM. The

reconstructions presented in the following are pdfs. As discussed in the last chapter 3 it is

possible to switch to a posterior probability density function w. l. o. g. for every pollen sample
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layer ι found in depth dι

f #–
C 0|

#–
P 0

(
#–

c 0|
#–

p 0

)
= π #–

C

(
#–

c 0

)
·

Nl

∑
l=1

WBl0

PBl |
#–
C

(
bl0 |

#–

c 0

)
mBl (bl0)

. (4.5)

In equation 4.5 PBl |
#–
P

(
bl0 |

#–

p 0

)
is replaced by the biome probability WBl0

(s. chap. 4.2.2 for

details) and denotes the contribution of the pollen spectrum. Also PBl (bl0) is replaced by

mBl (bl0) since it fulfils the definition for a marginal probability. PBl |
#–
C

(
bl0 |

#–

c 0

)
is the biome

transfer function or biome likelihood described in chapter 4.2.3.

4.2. The BBM in Detail for Lake Kinneret

The BBM is used for the reconstruction for Lake Kinneret because the circumstances are similar

to those of Ein Gedi: The vegetation zones changes within a few kilometres in this area and the

collection area for the pollen, present in the core, covers a wide region. This section explains

each component of the BBM and presents the corresponding results for Lake Kinneret.

4.2.1. π~C (~c0) Prior Distribution for the climate state vector

Chapter 6 presents an approach which could be classified as climate field reconstruction (CFR):

an interpolation of the local palaeoclimate reconstructions in the Jordan Valley. As mentioned

in chapter 3.2.3 in BHM the general aim is ”what is learnable from the data”. Because in

chapter 6 the aim is to learn from the data something about the climate changes in the Jor-

dan Valley a climate prior π #–
C

(
#–

c 0

)
for the whole Valley is defined. The estimation process

Table 4.1.: Definition of the climate prior for the Jordan Valley in Israel

µTDJF = 12.0 ◦C µTJJA = 25.0 ◦C µT 850hpa
DJF

= 5.0 ◦C µT 850hpa
JJA

= 21.0 ◦C

σTDJF = 4.0 ◦C σTJJA = 4.0 ◦C σT 850hpa
DJF

= 2.0 ◦C σT 850hpa
JJA

= 2.0 ◦C

µPANN = 410 mm
year νPANN = 4.912 µCWDANN = 1000 mm

year

σPANN = 185 mm
year λPANN = 0.012 σCWDANN = 250 mm

year

is not changed compared to the Lake Prespa palaeoclimate reconstruction. The climate prior

definition in equation 3.32 is not changed for the three-dimensional climate state vector here.

For two dimensions the definition changes only in that way, that it is only a product of the re-

quired two marginal distributions which are connected to the corresponding climate variable.

The result of the estimation for the required parameters in the definition of the climate prior

are presented in Table 4.1.
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Chapter 4. Lake Kinneret and Ein Gedi

4.2.2. WBl0
Biome Probability

WBl0
is the probability that a biome contributes to a climate state, that is going to be recon-

structed (Schölzel 2006). Its determination bases on the calculation of affinity scores. For that

reason it replaces the probability PBl |
#–
P

(
bl0 |

#–

p 0

)
in equation 4.5. If all relative abundances

ω̃ι k0 are summarized in the same way as in chapter 3.2.1 (s. eq. 3.11, p. 29) in one matrix

ΩΩΩ
Nι×Nk0 the affinity score matrix is defined as

AAANι×Nl0 :=

max
(
ΩΩΩ

Nι×Nk0 −ϑϑϑ
Nι×Nk0 ,0

)
ΩΩΩ

Nι×Nk0
max(k0)

−ϑϑϑ
Nι×Nk0

 ·


m11 · · · m1 l0 · · · m1Nl0
...

. . .
...

mk0 1 mk0 l0 mk0 Nl0
...

. . .
...

mNk0 1 · · · mNk0 l0 · · · mNk0 Nl0


.

︸ ︷︷ ︸
=:MMMNk0

×Nl0

(4.6)

This matrix summarizes the affinity scores for all Nι = 73 sample layers and Nl0 = 2 numbers

of biomes for Lake Kinneret . The assignment of each taxon to one biome is described by the

biome assignment matrix MMMNk0×Nl0 . Each column vector #–m l0 (in eq. 4.6 marked in green)

describes if the regarded taxon k0 belongs to this biome l0 (mk0l0 = 1) or not (mk0l0 = 0). The

corresponding values for Lake Kinneret are shown in the Appendix in Table B.1 (p. 145) and

in Table C.1 for Ein Gedi (p. 201).

The ΩΩΩ
Nι×Nk0
max(k0)

denotes the maximum value in each column vector
#–

ω̃ k0 . Together with the

maximum function in the numerator this transfers the relative abundances ω̃ι k0 to deviation

from the maximum value of each taxon.

ϑϑϑ
Nι×Nk0 is the taxa threshold matrix which summarizes all taxon specific threshold values ϑk0 .

Due to the fact that the threshold is defined for each taxon it is a matrix with column-wise

constant values. For the Lake Kinneret pollen data different settings were tested for evaluating

the influence of this factor: ∀k0ϑk0 = 0, ϑk0 = Qk0

(
#–

ω̃ k0

)
= 33% the 33% quantile of

#–

ω̃ k0 and a

taxon specific individual definition. The last mentioned ϑk0 estimation approach is the same as

described in chapter 3.2.1. The approach has still the same advantages and disadvantages but

it also allows the interpretation why it is introduced in equation 4.6: The subtraction is done

for decreasing the influence of clusters in each taxon profile which are regarded as background

noise (Litt et al. 2012).

The required figures for the taxon specific individual threshold definitions, depth profile of
#–

ω̃ k0 and ECDF, can be found in appendix B.1.2 on page 147. The corresponding results for ϑk0

are summarized in Table B.1 (p. 145).

The biome probability WBl0
for the pollen sample found in depth dι is now given, after a
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normalisation for each layer

WBl0
:=

aι l0
Nl0

∑
l0=1

aι l0

. (4.7)

This normalisation ensures that the requirement for a probability is fulfilled. Together with

equation 4.6 this definition of the biome probability WBl0
is an alternative to the equation used

in Litt et al. (2012).

The palaeoclimate reconstruction for the Lake Kinneret sediment core includes only two

biome types: the Mediterranean l or resp. l0 = 1 and Irano-Turanian l or resp. l0 = 2. The

reason is that only one taxon is included in the palaeoclimate reconstruction which is assigned

to the Saharo-Arabian biome (l or resp. l0 = 3) at the Ein-Gedi reconstruction. It could also be

assigned to the Irano-Turanian biome. Additionally the Lake Kinneret is not that focus point

of the three Biomes like the dead sea.

Figure 4.1 shows the biome probability WBl0
for these two biome types and summarizes
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Figure 4.1.: Depth profile of the biome probability WBl0
for Lake Kinneret estimated with different

threshold values ϑk0 . The area under the curves represents the Mediterranean biome prob-
ability WBl0=1 and above the curves to one represents the Irano-Turanian biome probability
WBl0=2 . The vertical lines separate the local pollen assemblage zones (LPAZ) of Lake Kin-
neret defined in Schiebel (2013, chap. 5.1.3, Tab. 5.1 and Fig. 5.1). The red curve is the
result from Schiebel (2013) for the ratio of trees & shrubs/grasses & herbs pollen.

the results for different threshold values ϑk0 . Additionally the result for the ratio trees &

shrubs/grasses & herbs pollen and the local pollen assemblage zones (LPAZ) defined by Schiebel

(2013) are shown. The area below the curves is the biome probability WBl0=1 for the Mediter-

ranean biome. Consequently the probability WBl0=2 for the Irano-Turanian biome is the area

between one and the curves. The influence of the different threshold compared ϑk0 = 0 is

an increasing of the probability for the Mediterranean biome in the upper part of the record
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(LPAZ 5 till the end of LPAZ 3 at about 850cm) and a decrease in lower part (from the end

of LPAZ 2 till the end of LPAZ 1). In this regard LPAZ 2 is the transition zone. It is clearly

deducible that the trend of the biome probability varies in the same way as the ratio trees

& shrubs/grasses & herbs. This fits very well with the fact that the Irano-Turanian biome is

a steppe biome type dominated by grasses & herbs (Schiebel 2013). Also identifiable is that

for almost all LPAZ (LPAZ 5 till the end of LPAZ 2 at about 1250cm) there is no preferred

biome type, since the biome probability always varies around 0.5. Only in the lower part of

the sediment core the Irano-Turanian biome is preferred.

4.2.3. PBl |~C
(

bl0

∣∣~c0
)

Biome Likelihood - Biome Transfer Function

The biome likelihood or biome transfer function PBl |
#–
C

(
bl0 |

#–

c 0

)
connects the modern climate

data and the modern biome distribution maps (s. Fig. 2.11, p. 15). The transfer functions

presented in chapter 3.2.2 describe the same for a single taxon but in contrast to taxa there

is no information available about the absence of a biome. Therefore Litt et al. (2012) use

a quadratic discriminant analysis (QDA) for estimating PBl |
#–
C

(
bl0 |

#–

c 0

)
in the BBM for the

palaeoclimate reconstruction based on the Ein Gedi sediment core.

A detailed description of QDAs can be found in Venables, Ripley (2002) and is here only

shortly described. The general purpose of a discriminant analysis is to assign objects into

groups, determining the boundary between them. The considered boundary here is the bound-

ary between biomes in the climate phase space. For this aim the Bayes theorem is applied on

the biome likelihood:

PBl |
#–
C

(
bl = l| #–c

)
:=

f #–
C |Bl

(
#–

c
∣∣∣bl = l

)
·πBl (bl = l)

m #–
C

(
#–

c
) . (4.8)

Thereby bl = 1 reflects the aforementioned fact that only the presence information of each

biome is available. The prior knowledge is defined as

πBl (bl = l) :=
NBl obs

Nobs
=

NBl obs

∑
Nl
l=1 NBl obs

=: RFBl . (4.9)

NBl obs is the number of all grid points i := λϕ in the biome area maps at which presence

information of biome type Bl is available. Nobs is the number of grid points i with presence

information of any biome type Bl. In other words the prior knowledge is the relative frequency

RFBl of biome type Bl referred to the number of biome area grid points Nobs.

As last step it is necessary to define f #–
C |Bl

(
#–

c
∣∣∣bl = 1

)
, the so called group pdf. In the present

case a multivariate normal distribution NMV

(
#–

c ,
#–

µ l,ΣΣΣl

)
is assumed . The exact values of the

covariance matrix ΣΣΣl and the mean
#–

µ l of each class l are not known.
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If PBl |
#–
C

(
bl = l| #–c

)
is maximised the best or most likely boundary between the groups is

estimated. In other words equation 4.8 defines the maximum likelihood function for the clas-

sification problem. As mentioned at the beginning of chapter 3.2.2 it is also possible to apply

the log-likelihood function. In the context of classification problems with a multivariate normal

distribution as class pdf this function is called the discriminant function:

dBl

(
#–

c
)
=
(

#–

c − #–

µ l

)T

ΣΣΣ
−1
l

(
#–

c − #–

µ l

)
+ ln |ΣΣΣl|−2ln(πBl (bl = l)) . (4.10)

It is derived from equation 4.8 by taking the natural logarithm, inserting NMV

(
#–

c ,
#–

µ l,ΣΣΣl

)
and

omitting all terms not depending on the parameters related with biome type l. The estimation

of
#–

µ l, ΣΣΣl and the associated coefficients #–
α opt which describe the boundary, is performed with

the statistical software R1. For the input data of the estimation process different configurations,

which are described in the following, are tested and verificated.

On the other hand the definition of the climate state vector
#–
C resp. the realisation

#–

c com-

pared to Lake Prespa (s. eq. 3.1, p. 25) is changed here. First of all different dimensions are

considered, in detail the climate state vector is defined as

#–
C := (C1,C2,C3)

T with the realisations
#–

c ∈R3 or (4.11a)
#–
C := (C1,C2)

T with the realisations
#–

c ∈R2. (4.11b)

Secondly mean winter temperature (TDJF) and mean summer temperature (TJJA) are used (s.

chap. 2.1.1, p. 7). Thirdly different coordinate combinations are used. In equation 4.11 this

fact is already regarded by the coordinate definition with Ci. In detail ten two-dimensional and

four three-dimensional combinations out of the near surface climate variables TDJF , TJJA, PANN

and CWDANN and the climate variables at 850hPa, the middle troposphere, T 850hpa
DJF and T 850hpa

JJA

are tested (s. apx. B.3 Tab. B.4 for detailed definition of the combinations). The associated

climate datasets are described in chapter 2.1. Fourthly three different databases for the near

surface climate variables are tested: CRU TS 3.1, E-OBS and a mixture of CRU TS 3.1 and

E-OBS for the Jordan Valley palaeoclimate reconstruction.

On the other hand, as mentioned in chapter 2.2.1, four different configurations for the

biome areas are used. The first of these so named ”biome setups” are the biome areas B1, B2

and B3 as defined in Litt et al. (2012) and presented in Figure 2.11a (biome setup 1). The

three remaining base on Figure 2.11b, at which the first one does not change the definition of

B1, B2 and B3 (biome setup 2). For biome setup 3 the Mediterranean biome area is extended:

B1 := B1 +B1−a +B1−b (s. Fig. B.15). In addition for last biome setup 4 the Irano-Turanian

biome is extended: B2 := B2 +B2−a (s. Fig. B.16).

Together with the aforementioned different climate configurations each possible setup is

1in more detail with the package MASS for R version 3.0.1, s. Venables, Ripley (2002) for more details
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Chapter 4. Lake Kinneret and Ein Gedi

abbreviated with one setup number (s.no.). Table B.2 in appendix B.3 summarizes all defined

setup numbers. In order to evaluate all setups a tool known in probabilistic forecast verification

is applied: the Brier skill score defined for each biome Bl. First the related Brier score has to

be defined (after Brier 1950):

BSBl =
1

Nobs

Nobs

∑
i=1

[
PBl |

#–
C

(
bl = l| #–c i

)
−Ei (l)

]2
. (4.12)

The biome likelihood PBl |
#–
C

(
bl = l| #–c i

)
for biome Bl is then evaluated at all grid points i, de-

fined above with the given climate state realisation
#–

c i. The detailed configuration of
#–

c i for the

dimensions, the combinations of climate variables and the climate dataset for the estimation

is predetermined by the just mentioned setup number. Ei (l) is a function that returns one if

biome Bl is present at grid point i and zero otherwise. It is important to emphasise that the

Brier score is zero if the result of the biome likelihood matches exactly with the biome area.

For the calculation of the Brier skill score BSS a reference score BSre f is required. Here

in this thesis two different reference scores are defined by replacing the Biome likelihood in

equation 4.12 with the above defined relative frequency RFBl and a reference probability of

ZV = 1
Nl

, so that the two Brier skill scores are defined by:

BSSRF
Bl

=1− BSBl

BS
RFBl
re f

, (4.13a)

BSSZV
Bl

=1− BSBl

BSZV
re f

. (4.13b)

Both scores converge to one if BSBl is similar to the reference score (Stefanova, Krishnamurti

2002; Stolzenberger 2011). For the palaeoclimate reconstruction of Lake Kinneret and Birkat-

Ram (s. chap. 5) only two biome types are available. As a result the Brier skill scores for

B1 and B2 are identical, since the biome likelihood PB1|
#–
C

(
b1 = 1| #–c

)
is substitutable with

PB2|
#–
C

(
b2 = 2| #–c

)
due to the fact that both together sum up to one.

The aim is to compare different setups. Therefore all required climate variables for the

verification are calculated with the same dataset. Figure 4.2 shows the result for the CRU

TS 3.1 dataset and Figure 4.3 for the ERA-Interim dataset, both for a total of two biomes. The

respective Figures B.17 and B.18 for a total of three biomes are shown in appendix B.2. For the

verification with the CRU TS 3.1 dataset the temperatures T 850hpa
DJF and T 850hpa

JJA are determined

with a simple height correction, based on the temperature gradient of the standard atmosphere

(6.5× 10−3 K
m), the mean height of the 850hPa level (1500m) and the CRU TS 3.1 orography

as already applied in Stolzenberger (2011), Simonis (2009) or Gebhardt (2003). For the ERA-

Interim verification this is done the other way round, for the near surface temperatures. It is

important to emphasise that every setup number in Table B.2, B.3, B.4 and B.5 in appendix B.3
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for a total of two biomes

Figure 4.2.: Verification of the biome likelihoodPB1|
#–

C

(
b1 = 1| #–c

)
with Brier skill score BSSZV

B1
and BSSRF

B1

for a total of two biomes. The parameters which determine the biome likelihood are esti-
mated as given by the setup number shown on the x-axis. The setup numbers are defined
in Table B.2. The climate input data for the verification is always the CRU TS 3.1 dataset.
The dotted grey vertical lines separate the different ”biome setups” as specified on top of the
Figures (grey numbers). The black vertical lines separate the different climate databases
as input data in the estimation process.

defines the same setup aside from the total number of biomes.

The distribution of the data points in the figures for the BSSRF
Bl

is similar to those of the

BSSZV
Bl

. This follows from the similarity in the definition of the reference scores, since the only

difference in the definition is that BSZV
re f is always greater than BS

RFBl
re f . As a result the clusters

for BSSZV
Bl

are more compact an shifted to slightly higher values. Consequently BSSZV
Bl

is more

convenient for a general overview and BSSRF
Bl

for a more detailed consideration.

Summarized there are some general results for a total of two and three biomes: One is that

the highest values for the Brier skill scores are obtained with the dataset that is applied in the

estimation process. This is an important result which maintains that there is no error in the

estimation of the scores since by construction of the Brier skill scores this is the expected result.

Another result is, that if all calculated BSS...Bl
forPBl |

#–
C

(
bl = l| #–c

)
estimated with surface climate

values (all s.no. except 29 - 56) are compared, the biome likelihood estimated with the E-OBS-

dataset alone (s.no. 57 - 72) has the highest variance. This is probably a direct consequence of

the considered geographical region, since it is situated in the edge of the E-OBS dataset area

and therefore boundary effects in the result cannot be excluded completely. In contrast the

mixture dataset (s.no. 73 - 88) varies in the same order as the CRU TS 3.1-dataset (s.no. 1 -

28). The variance of BSS...Bl
values forPBl |

#–
C

(
bl = l| #–c

)
estimated with ERA-Interim-dataset and
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(b) BSSRF
B1

for a total of two biomes

Figure 4.3.: Verification of the biome likelihoodPB1|
#–

C

(
b1 = 1| #–c

)
with Brier skill score BSSZV

B1
and BSSRF

B1

for a total of two biomes. The parameters which determine the biome likelihood are esti-
mated as given by the setup number shown on the x-axis. The setup numbers are defined
in Table B.3. The climate input data for the verification is always the ERA-Interim dataset.
The dotted grey vertical lines separate the different ”biome setups” as specified on top of the
Figures (grey numbers). The black vertical lines separate the different climate databases
as input data in the estimation process.

verificated on CRU TS 3.1-dataset is also high, but this is not the case the other way round. It

is also identifiable that the BSS...Bl
for setups based on a three-dimensional climate state vector

(red dots in the figures)) range at the top for the most biome setup. The exceptions are the

verification of the E-OBS-dataset (s.no. 57 - 72) and the s.no. 29 - 56 for a total of three biomes

verificated on the CRU TS 3.1-dataset (s. Fig. B.17).

The biome likelihood estimated only with climate data from the E-OBS-dataset is not applied

in any palaeoclimate reconstruction presented in this work. Therefore the s.no. 57 - 72 are not

discussed in detail. If a biome prediction is required alone the results presented in Figure 4.3

and B.18 show an interesting fact: It is possible to apply the ERA-Interim-dataset as input even

if the likelihood fit is estimated with the CRU TS 3.1-dataset (s.no. 1 - 28) and the result is

not much worse than the fit based on the ERA-Interim-dataset s.no. 29 - 56. Also not clearly

detectable is the ”best” biome setup for a total of two biomes. For biome setup two or three

show in general higher BSS...Bl
values than one or four in Figure 4.2 and 4.3. However slightly

higher values can be found in biome setup number three, which is supposed to be a result of

the approximately same order of magnitude for the number of biome points (NB1 obs = 61 and

NB2 obs = 141 ).

For a total of three biomes, as required for the Ein Gedi palaeoclimate reconstruction, it is
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4.3. Lake Kinneret - Palaeoclimate Reconstruction Result

necessary and possible to regard the three different BSS...Bl
in the Figures B.17 and B.18. The

majority (90%) of the data points in the plots for biome type B1 show higher BSS...Bl
values

than those for the other two biome types. The Brier skill scores for biome type B2 calculated

with the ERA-Interim-dataset show no substantial lower values than those calculated with the

CRU TS 3.1-dataset. Also the pattern of the data points for every biome type is similar.

The conclusion is that the new digitalisation of the biome maps has a slightly positive effect

and consequently one of the new biome setups (two till four) could and should be applied. Also

a three-dimensional climate state vector should be applied in the reconstruction. It should be

considered that the aim in palaeoclimate reconstructions is not to predict the biome likelihood

PBl |
#–
C

(
bl = l| #–c

)
alone. Therefore the effect of the biome setup should be also examined in

connection with palaeoclimate reconstructions.

4.2.4. mBl

(
bl0
)

Marginal Probability

The estimation of the marginal probability mBl (bl0) is the same as in Litt et al. (2012). It is an

integration over the hole climate space K0 over the product of the biome likelihood and the

climate prior:

mBl (bl0) :=
∫
K0

PBl |
#–
C

(
bl0 |

#–

c 0

)
π #–

C

(
#–

c 0

)
d

#–

c 0. (4.14)

4.3. Lake Kinneret - Palaeoclimate Reconstruction Result

All figures (Fig. 4.4, 4.6, 4.7 and 4.8) in this chapter show the estimated result of the palaeo-

climate reconstruction for Lake Kinneret in terms of a depth profile of the one-dimensional

marginal pdfs. The term marginal is already defined in chapter 3.2.2. The design of the fig-

ures for the posterior pdf for the Lake Kinneret palaeoclimate reconstruction is the same as

that of the Lake Prespa figures, which is already described at the beginning of chapter 3.3

(s. p. 40) and repeated in the caption of Figure 4.4. The palaeoclimate reconstruction pre-

sented in Figure 4.4a, 4.4b and 4.4c bases on the biome likelihood PBl |
#–
C

(
bl = l| #–c

)
whose

setup for the estimation is defined by s.no. 212 and the biome probability WBl0
estimated with

an individual definition of ϑk0 = individual. Additionally Figure 4.4d shows the marginal pdf

for CWDANN whose setup3 differs only in the third component of the climate state vector. The

corresponding figures for TDJF and TJJA are not shown since the result is equal.

All pdfs in Figure 4.4 show no significant signal for a period with climatic change. The 10%

and 90% quantile show only a maximum variation of less than 2K for the temperatures and

resp. 120 mm
year for PANN or CWDANN . The conclusion of no climatic changes matches with the

2 s.no. 21 is equal to: biome setup 3,
#–
C = (TDJF ,TJJA,PANN)

T and CRU TS 3.1 as estimation dataset
3in detail ϑk0 = individual and s.no. 20 which equal to biome setup 3,

#–
C = (TDJF ,TJJA,CWDANN)

T and CRU TS 3.1
as estimation dataset
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(d) s.no. 20

Figure 4.4.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , TJJA, PANN and CWDANN for the Lake Kinneret palaeoclimate reconstruction. In detail all

base on the biome probability WBl0
estimated with an individual definition of ϑk0 = individual. (a), (b) and (c) base on s.no. 21 (biome

setup 3,
#–
C = (TDJF ,TJJA,PANN)

T and CRU TS 3.1 as estimation dataset) and (d) on s.no. 20 which is equal to s.no. 21 and differs only
in the definition the climate state vector (

#–
C = (TDJF ,TJJA,CWDANN)

T ). The pdfs are shown with a coloured scale, ranging from blue
for low values to red for high values. The solid black line marks the mode, which is the highest value of each pdf in each sample layer.
The dashed black lines mark the 10%, 25%, 75% and the 90% quantile. The dotted line is the median, which is equal to the 50%
quantile. The red line is the weighted arithmetic mean for each layer, which is interpreted as the numerical calculated expectation
value. The weights are the values of the marginal pdf. The bold black numbers transfer the marked ticks of the depth axis in y.calBP
(s. chap. 2.3, p. 17) according to the age-to-depth model established by Schiebel (2013) and mentioned in chapter 2.3.2.1. The LPAZ
are also shown and labelled with the according age.
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4.3. Lake Kinneret - Palaeoclimate Reconstruction Result

result for the biome probability WBl0
(s. chap. 4.2.2), since no biome type is clearly preferred

up to a depth of approximate 1250cm ≡ 6271±84
99 y.calBP. On the contrary the marginal

posterior pdfs show no evidence for a climate change in the lower part (' 1250cm), only

less variation is detectable. If the definition of the BBM is considered (s. eq. 4.5) it becomes

obvious that the weighted biome likelihoodsPBl |
#–
C

(
bl0 = l| #–c

)
multiplied with the climate prior

π #–
C

(
#–

c 0

)
play an important role and have to be regarded in detail:

PBl ,
#–
C

(
bl0 ,

#–

c 0

)
:=PBl |

#–
C

(
bl0 = l| #–c

)
π #–

C

(
#–

c 0

)
. (4.15)

The marginal distributions of this probability are presented in Figure 4.5 dedicated to the re-

construction presented in Figure 4.4. The marginal prior pdf is shown with a dashed line,

the coloured green line represents the Mediterranean biome B1 and the red one the Irano-

Turanian biome B2. The box plots are the visualisation of the input dataset for the estimation

of PBl |
#–
C

(
bl = l| #–c

)
with the same mapping of the colours. They are estimated with the stan-

dard function of the statistical software R in which the five vertical lines are estimated as the

quantiles which are very close to the 0,25,50,75,100% quantiles4.

The comparison of the box plots, i. e. of the input data, shows that there is no distinction

possible between B1 and B2 based alone on TDJF values. This is not the case for TJJA, PANN and

CWDANN: at least 50% of B1 values illustrate a clear difference to those of B2. This changes for

the marginal distributions of the prior-likelihood product, since the multivariate distributions

also include covariance structures. All four figures show a great influence of the prior on the

resulting mixture product. This is no unexpected result due to the fact that a BHM is applied

and, as aforementioned, the result has to be regarded with respect to the prior. Another

possible explantation for this high sensitivity towards the prior is that the likelihoods of the

observations (here the climate input data) do not contain enough information to estimate

roubst values for PBl |
#–
C

(
bl = l| #–c

)
. For TDJF and PANN the mode of the prior is exactly the

intersection point of PB1,
#–
C

(
b10 ,

#–

c 0

)
and PB2,

#–
C

(
b20 ,

#–

c 0

)
( of B1 and B2). This is not true for

TJJA and CWDANN: the mode of the prior is almost identical with the mode of PB1,
#–
C

(
b10 ,

#–

c 0

)
.

Additionally almost the complete area under π #–
C

(
#–

c 0

)
is identical to B1.

Similar difficulties could be identified in the palaeoclimate reconstruction for 850hPa tem-

peratures. Figure 4.6 presents the marginal pdf for T 850hpa
DJF (4.6a) and PANN (4.6b) with

ϑk0 = individual and biome setup 4. This biome setup is selected by the reason that it reaches

the highest Brier skill scores values for the verification based on CRU TS 3.1 data (Figure 4.2).

The comparison of this palaeoclimate reconstruction with the one discussed in the last para-

graphs is only reasonable if the aim is to reconstruct surface temperatures with transfer

functions estimated with 850hPa temperatures. This makes the selection of biome setup 4

4for more detail s. R-help for boxplot.stats
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Figure 4.5.: Marginal distributions of PBl ,
#–

C

(
bl0 ,

#–

c 0

)
as defined in eq. 4.15 (solid coloured lines) and

the climate prior π #–

C

(
#–

c 0

)
(dashed black line) for TDJF , TJJA, PANN and CWDANN dedicated

to the palaeoclimate reconstruction presented in Figure 4.4. The box plots are the visu-
alisation of the input dataset for the estimation of the biome likelihoods (biome setup 3).
Green colours represent the Mediterranean biome B1 and red colours the Irano-Turanian
biome B2.

reasonable. The surface temperatures are obtained by the application of the temperature cor-

rection described in chapter 4.2.3. If the aim is to reconstruct 850hPa temperatures it is better

to select biome setup 3 (Fig. 4.3). In Figure 4.6a there is almost no variability detectable.

This is also the case for the marginal pdf for TJJA (only shown in Figure B.19) but not so
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Figure 4.6.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for T 850hpa

DJF and PANN for the Lake Kinneret palaeo-
climate reconstruction. In detail all base on the biome probability WBl0

estimated

with an individual definition of ϑk0 = individual and s.no. 56 ( (biome setup 4,
#–
C =(

T 850hpa
DJF ,T 850hpa

JJA ,PANN

)T
and ERA-Interim as estimation dataset for the 850hPa tempera-

tures). The mapping of the figure is identical to Figure 4.4.

eye-catching like here. The absence of variability is not a result of the narrow prior pdf as

Figure 4.7 proves for T 850hpa
DJF and σT 850hpa

DJF
= σT 850hpa

JJA
= 4.0 ◦C. The reconstructed marginal pdf

for PANN in Figure 4.6b shows more variability compared to Figure 4.4c and a general shift

of the complete marginal pdf-depth profile to higher values of PANN , which is a result of the

connection in the transfer function to the lower temperature values at 850hPa.
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Figure 4.7.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for T 850hpa

DJF for the Lake Kinneret palaeoclimate recon-
struction with an alternative value of the standard deviation of the climate prior. In detail
the same setup as in Figure 4.6 is applied. Only the standard deviation of π #–

C

(
#–

c 0

)
is

modified to σ
T 850hpa

DJF
= σ

T 850hpa
JJA

= 4.0 ◦C. The mapping of the figure is identical to Figure 4.4.

The analysis of the reconstructions estimated with different biome setups (Figures only

shown in apx. B.4) reveals that the adjustment of this parameter has only little effects. Chang-

ing only the biome setup compared to the palaeoclimate reconstruction presented in Fig-

ure 4.4a - 4.4c shows that the greatest change appears compared to biome setup 1 (Fig. B.20):

a shift of about 1K of the marginal pdfs for the temperatures and an increase of variability in

the 10% and 25% quantiles of the TJJA profile. The comparison with biome setup 2 (Fig. B.21)

shows only a slight increase of variability in the aforementioned quantiles of the TJJA profile.

In the last remaining biome setup, biome setup 4 (Fig. B.22), the complete marginal pdf depth

profile for TDJF shows a decrease of variability and the associated PANN pdf depth profile an

increase.

As aforementioned the biome probability WBl0
is estimated with different configurations. The

influence on the posterior pdf is evaluated referred to the same palaeoclimate reconstruction

as in the last paragraph (Figure 4.4a - 4.4c). The definition of ϑk0 = 0 for all used taxa reduces

the variability in all marginal pdfs in a rigorous manner, almost all variability is vanished

(Fig. B.23). This is especially apparent for the marginal pdf for Pann due to the fact that all

changes in the setup discussed so far do not have an effect in the same order of magnitude

on the variability on the whole pdf. The third definition tested for the taxon thresholds ϑk0 ,

the definition with the 33% quantile of
#–

ω̃ k0 (ϑk0 = Qk0

(
#–

ω̃ k0

)
= 33%), leads in palaeoclimate

reconstructions to scarcely discernible changes (Fig. B.24).

The analysis of the three-dimensional palaeoclimate reconstruction and the considerations

in chapter 4.2.3 motivate to evaluate the contribution of the considered climate state vector.
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Figure 4.8.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , PANN and CWDANN for the Lake Kinneret palaeoclimate reconstruction. In detail all base

on the biome probability WBl0
estimated with an individual definition of ϑk0 = individual. (a) and (c) base on s.no. 15 (biome setup 3,

#–
C = (TDJF ,PANN)

T and CRU TS 3.1 as estimation dataset) and (b) and (d) on s.no. 18 which is equal to s.no. 15 and differs only in the
definition of the climate state vector (

#–
C = (TDJF ,CWDANN)

T ). The mapping of the figure is identical to Figure 4.4.
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In more detail: How large is the effect in the palaeoclimate reconstruction if TJJA is left out

in the definition of
#–
C? Figure 4.8 presents the result. The dimension reduction has almost

no effect on the marginal pdf for TDJF , only a slight reduction of the variability in the 10%

quantile and more variability in the whole pdf for CWDANN in the complete profile.

In summary, the lack of difference of these two biomes in climate phase space is obvious:

They do not allow a palaeoclimate reconstruction with a climatic change based on the BBM

with two biome types, where especially TJJA and CWDANN do not differ. And with the whole

discussion in background it leads to the conclusion that most of the variation especially in the

palaeoclimate reconstruction in Figure 4.4 is an impact of WBl0
.

4.4. The Pollen-Ratio Model

As discussed in the last section the BBM with two biomes allows no detection of periods with

climate change. The clear shift in the lower part of the depth profile of the biome probabil-

ity WBl0
(Fig. 4.1) indicates a climatic change and motivates to try another method for the

palaeoclimate reconstruction: the pollen-ratio model (PRM) as presented in Ohlwein, Wahl

(2012) and already mentioned in the introduction. Ohlwein, Wahl (2012) classify/describe

the PRM as a ”special case of the modern analogue technique (MAT)”. In a nutshell the (tradi-

tional) MAT connects the composition of modern pollen spectra with the modern climate. As

similar identified fossil pollen spectra in the sediment core allow to reconstruct the palaeocli-

mate with an inversion of the afore established connection applied on the fossil pollen spectra.

Ohlwein, Wahl (2012) also explain that the MAT and consequently PRM fits into the concept

of BHM in the same way as the BBM as presented in chapter 4.1. The PRM uses only the two

different pollen counts of the complete available spectrum and applies ”the concept of response
surfaces” (Ohlwein, Wahl 2012). ”A response surface is essentially a smoothed representation of
the pollen data associated with a gridded version of the modern (uni- or multi-variate) climate
space used for analogue selection in the MAT” (Ohlwein, Wahl 2012). These response surfaces

are the pollen-climate transfer function and are estimated with a GLM which differs from the

one described in chapter 3.2.2.

The main difference is that the response variable in the PRM are the aforementioned two

different pollen counts pi. These are in general pollen counts of two different groups i whereat

the group definition is not fixed. This grouping step allows to assign specific taxa k into a

group i, or in other words to include all pollen counts pi k of important taxa by summation:

pi = ∑
Nk
k=1 pi k. With this notation it is not excluded that only two taxa are applied in the PRM,

so that pk ≡ pi. In the BITM-GLM (s. chap. 3.2.2) the response variable is binary (s. p. 35) and

hence corresponding distribution is Bernoulli. Based on the just described characteristics of pi
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4.4. The Pollen-Ratio Model

the required distribution is the Binomial distribution

Bin
(

pi|Ni,p
)
=

(
Ni

pi

)
ppi
(
1−p

)Ni−pi (4.16a)

Ni =
Ni=2

∑
i=1

Nk

∑
k=1

pi k. (4.16b)

whereat Ni is the total amount of pollen counts.

Compared to the BITM-GLM in chapter 3.2.2 two important points remain: Point one is ”that
it cannot be used simultaneously to reconstruct more than one climatic variable” (Ohlwein, Wahl

2012). In the notation used here this means that the climate state vector is one-dimensional.

Point two is that GLM with linear terms is applied. Consequently the design matrix XXX in the

case considered here has two columns, which are column one and two of the design matrix

defined in equation 3.25. Ohlwein, Wahl (2012) also explain that ”the name pollen-ratio model
originated form an alternative but equivalent description by using the ratio pi=1

pi=1+pi=2
”.

Figure 4.9 presents the result of the PRM-GLM estimation based on the E-OBS gridded

dataset (s. chap. 2.1.2) and the modern pollen spectra described in chapter 2.2.2. The data

points are the pollen ratio of Artemisia and Quercus versus PANN or TDJF or TJJA on 14 locations

(s. Tab. B.6, p. 198). The colour indicates if the location is situated in the Mediterranean,

Irano-Turanian or Saharo-Arabian biome area defined in Figure 2.11b. The line is the esti-

mated GLM result based on the assumption that Ni is 1000 on every location.
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Figure 4.9.: PRM-GLM result for PANN , TDJF and TJJA versus the pollen ratio of Artemisia and Quercus.
The data points are the pollen ratios on 14 locations in Israel (s. Tab. B.6, p. 198). The
colour indicates if the location is situated in the Mediterranean (green), Irano-Turanian
(red) or Saharo-Arabian biome area (orange) defined in Figure 2.11b. The line is the GLM
estimation result.

This allows to convert the percentages in Table B.7 and B.8 to the required counts pi. This is

done to enable a first test if it is possible to apply the PRM for a palaeoclimate reconstruction
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Chapter 4. Lake Kinneret and Ein Gedi

for Lake Kinneret although no information about Ni is available. Beside the fact that data

coverage is sparse, the PRM-GLM presented in Figure 4.9 shows one main problem which is

independent from Ni: The distribution of the data points covers a to small interval in the cli-

mate phase space (≈ [250;550] mm
year , ≈ [10;14]TDJF

◦C and ≈ [23;28]TJJA
◦C) to allow a robust GLM

estimation. Especially the absence of low precipitation values is a problem. Beside the data-

point for PANN for the Saharo-Arabian biome (location Be’er-Sheva) there is no clear boundary

in the climate phase space to separate the biomes based on data presented in Figure 4.9. Ad-

ditionally the distance of location Be’er-Sheva to the assigned E-OBS-grid point is nearly at the

maximum distance allowed. Another pollen ratio does not change the distribution of the data

points regarding the climate phase space. Therefore a PRM-GLM based on the data described

in this section is not inverted and applied in a palaeoclimate reconstruction.

4.5. Ein Gedi - Palaeoclimate Reconstruction Result

The palaeoclimate reconstruction for Ein Gedi presented in Litt et al. (2012) is adapted to

the requirements of the Jordan Valley reconstruction presented in chapter 6. These in the

following discussed adaptations are :

1.) the update of the database for the near surface climate variables on CRU TS 3.1. The

results in Litt et al. (2012) base on the CRU TS 1.0 dataset (New et al. 2000). The

update on the mixture of CRU TS 3.1 and E-OBS for the Jordan Valley palaeoclimate

reconstruction is discussed in chapter 6.3.

2.) the change of the prior distribution π #–
C

(
#–

c 0

)
for the climate state vector (s. chap. 4.2.1,

Tab. 4.1 for the Jordan Valley values). In Litt et al. (2012) the palaeoclimate reconstruc-

tion is estimated on transferred PANN values, transferred with the inverse CDF method

already mentioned in chapter 3.2.2. Also the prior in Litt et al. (2012) is defined on

these values. Figure 4.10 shows the marginal pdf of the original Ein Gedi prior (Litt et
al. 2012), the Jordan Valley prior and the original prior applied in the Birkat Ram palaeo-

climate reconstruction presented in Neumann et al. (2007). Figure 4.10 shows that the

difference between the Jordan Valley prior applied in the palaeoclimate reconstruction

presented in this work is small. The area between them is quite small 5×10−07 and the

difference between the maxima too (13 mm
year). It is important to mention that the Jordan

Valley prior is defined on PANN . The change for the component of the TDJF is comparably

large (compare µLitt
TDJF

= 0.0 ◦C and σLitt
TDJF

= 5.0 ◦C with Tab. 4.1).

3.) the expansion of the dimension of the climate state vector
#–
C resp. the realisation

#–

c from

two to three dimensions (s. eq. 4.11),
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Figure 4.10.: Comparison of marginal prior pdfs in Israel for PANN . The parameters for the Jordan Valley
prior pdf are defined in chapter 4.2.1 Table 4.1 on page 4.1. The values for the Birkat Ram
prior pdf are defined in Neumann et al. (2007). The parameters for the Ein Gedi prior
pdf are defined in Litt et al. (2012). All maxima of the pdfs are marked with a vertical
line in the respective colour (PANN

JordanValley−max = 327 mm
year , PANN

BirkatRam−max = 692 mm
year and

PANN
EinGedi−max = 314 mm

year ).

4.) the change of the biome setup. The palaeoclimate reconstruction in Litt et al. (2012)

bases of course on biome setup 1. As the different biome setups are in detail discussed in

chapter 4.3 here only is presented the analysis what happens if biome setup 3 is applied.

These adaptations are described step by step in the following.

Figure 4.11a and 4.11c show the result with a climate prior distribution very close to the

definition in Litt et al. (2012): The parameters for the TDJF are identical and for the PANN the

Jordan Valley parameters are applied. A direct comparison with the result in Litt et al. (2012)

(s. Fig. C.1) reveals that the update of the database from CRU TS 1.0 on CRU TS 3.1 has

only little effects on the palaeoclimate reconstruction. The predominant part and the most

important features of the marginal pdf depth profiles are conserved: The complete structure

and consequently also the structure of the expectation value and three time ranges with

different significant trends. A directly visible difference is a reduced variability. Also a shift of

about 70 mm
year of the complete profile for PANN to higher precipitation values is identifiable and

probably also a result of the small differences of the climate priors discussed above.
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Figure 4.11.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF and PANN for the Ein Gedi palaeoclimate reconstruction estimated with different climate

priors π #–

C

(
#–

c 0

)
. In detail all base on the biome probability WBl0

estimated with an individual definition of ϑk0 = individual and

s.no. 1 (biome setup 1,
#–
C = (TDJF ,PANN)

T and CRU TS 3.1 as estimation dataset). (a) and (c) present the result with a climate
prior distribution very close to the definition in Litt et al. (2012): The parameters for TDJF are µLitt

TDJF
= 0.0 ◦C and σLitt

TDJF
= 5.0 ◦C. The

parameters for PANN are the Jordan Valley parameters. (b) and (d) present the result estimated with the Jordan Valley prior as defined
in Table 4.1. The mapping of the figure is identical to Figure 4.4. The x-coordinate in the palaeoclimate reconstruction for Ein Gedi
is age in y.calBP due to the fact that the age-to-depth model established by Migowski et al. (2004, 2006) is very reliable due to
laminated layers. The LPAZ defined in Litt et al. (2012) are also shown.

72



4.5. Ein Gedi - Palaeoclimate Reconstruction Result

The complete change of the climate prior to the Jordan Valley Prior has more consequences.

Due to the fact that the PANN component of the prior is identical, the differences between

Figure 4.11c and 4.11d are neglectable and a consequence of the other component of the

climate prior. The change for TDJF has more impact and emphasizes again how important it is

to interpret the result with respect to the prior. The shift of the complete marginal pdf depth

profile to higher TDJF values of about 12 ◦C is a directly identifiable consequence of that since it

is in the same order of magnitude as the difference between µLitt
TDJF

and µTDJF . Nevertheless the

same three time ranges with different significant trends are detectable but with other results:

On the one hand the gradients of the trends are inverted. On the other hand the gap between

LPAZ 3 and the other two time ranges indicates a slight warming instead of significant cooling.

In order to interpret the last mentioned fact it is necessary to regard the marginal distribu-

tions PBl ,
#–
C

(
bl0 ,

#–

c 0

)
(Fig. 4.12) together with the depth Profile of the biome probability WBl0

(Fig. 4.13) as the analysis of the Lake Kinneret palaeoclimate reconstruction in the last section

suggests. The box plots in Figure 4.12 are as in Figure 4.5 the visualisation of the input data.
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Figure 4.12.: Marginal distributions of PBl ,
#–

C

(
bl0 ,

#–

c 0

)
as defined in eq. 4.15 (solid coloured lines) and

the climate prior π #–

C

(
#–

c 0

)
(dashed black line) for TDJF dedicated to the palaeoclimate

reconstruction presented in Figure 4.11. The box plots are the visualisation of the input
dataset for the estimation of the biome likelihoods (biome setup 1). Green colours rep-
resent the Mediterranean biome B1, red colours the Irano-Turanian biome B2 and orange
colours the Saharo-Arabian biome B3.

Although they base on biome setup 1 and not on biome setup 3 the discussed results in chap-

ter 4.3 concerning the distinction of B1 and B2 persist, because applying biome setup 3 brings

along some differences in the data but they are negligible small and not important in this con-

sideration. B3 compared with B1 and B2 based on the box plots for TDJF allows a distinction
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Chapter 4. Lake Kinneret and Ein Gedi

of the biomes: It differs least 50% from B1 and 75% from B2. The figures of PBl ,
#–
C

(
bl0 ,

#–

c 0

)
for PANN are not shown due to the aforementioned neglectable difference in the palaeoclimate

reconstruction. The comparison of PBl ,
#–
C

(
bl0 ,

#–

c 0

)
shows that the new climate prior moves

the position of B1 curve relative to the others: In Figure 4.12a B1 is the coolest and in 4.12b

the warmest biome. Also the differences between the biomes are overall smaller indicated by

the fact that the modes in Figure 4.12b cover only an interval of 4 ◦C instead of 8 ◦C in Fig-

ure 4.12a. Both realisations of PBl ,
#–
C

(
bl0 ,

#–

c 0

)
have their errors in describing the input data:

In the first case the covered domain compared with the input data is wrong. In the second

case the order of the curves in the climate phase space is not correct.

The analysis of the depth profile of the biome probability WBl0
(Fig. 4.13) explains the jump

in the palaeoclimate reconstructions in Figure 4.11 at the borders of LPAZ 3. The greatest
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Figure 4.13.: Depth profile of the biome probability WBl0
for Ein Gedi estimated with taxon specific

individual thresholds ϑk0 (redrawn after Litt et al. 2012). The curve for WBl0=1 equivalent
to the Mediterranean biome is shown in green, for WBl0=2 equivalent to the Irano-Turanian
biome in red and WBl0=3 equivalent to the Saharo-Arabian biome in orange. The vertical
lines separate the local pollen assemblage zones (LPAZ) of Ein Gedi defined in Litt et al.
(2012). The x-coordinate here is the age in y.calBP. The dotted horizontal lines mark the
probability of 1

3 and the dashed-dotted the probability of 2
3 .

gradients in the depth profile of WBl0
can be found at these borders. The jump in Figure 4.11a

is clearly visible because the best distinguishable biomes B1 and B3 in Figure 4.12a have the

largest and opposite gradients at these borders. Additionally the values for WBl0=2, which

is climatically situated between them but more similar to B3, goes down resp. up at these

borders. The same holds for Figure 4.11b and Figure 4.12b but with changed roles: B1 and

B2 are the contrasting biomes and B3 instead of B2 is the multiplier. But due to the fact that

the differences of PBl ,
#–
C

(
bl0 ,

#–

c 0

)
shown in Figure 4.12b are smaller the jump is less distinctive

in 4.11b. Summarized the Mediterranean biome B1 and its discriminability from the other
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4.5. Ein Gedi - Palaeoclimate Reconstruction Result

biomes B2 and B3 together with the high values and gradients of WBl0=1 are the main reasons for

the aforementioned change from cooling to warming and also for the detected palaeoclimate

change in LPAZ 3.

The next step, as mentioned at the beginning of this chapter is the expansion of the cli-

mate state vector from two to three dimensions. Figure 4.14 and 4.15 present the result. The
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Figure 4.14.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF and PANN for the Ein Gedi palaeoclimate re-

construction. In detail all base on the biome probability WBl0
estimated with an individual

definition of ϑk0 = individual and s.no. 7 (biome setup 1,
#–
C = (TDJF ,TJJA,PANN)

T and CRU
TS 3.1 as estimation dataset). The mapping of the figure is identical to Figure 4.4 resp.
4.11.

differences between the components of the marginal posterior pdfs of the palaeoclimate re-

75



Chapter 4. Lake Kinneret and Ein Gedi

constructions which are available for two and three dimensions, Figure 4.14a versus 4.11b

and 4.14a versus 4.11d, are negligible small: For TDJF a shift of the expectation value pro-

file (red solid line) of about 0.5 ◦C and the 10% quantile profile (lowest dashed black line) is

reduced from about 7 ◦C to 6 ◦C. Also the jump at the borders of LPAZ 6 is negligibly reduced.

For PANN the variability in the profile of the modus (black solid line) is reduced and the es-

timated linear trends is hardly affected. In the marginal pdf profile for TJJA (Fig. 4.15) is no
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Figure 4.15.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TJJA for the Ein Gedi palaeoclimate reconstruction.

In detail all base on the biome probability WBl0
estimated with an individual definition of

ϑk0 = individual and s.no. 7 (biome setup 1,
#–
C = (TDJF ,TJJA,PANN)

T and CRU TS 3.1 as
estimation dataset). The mapping of the figure is identical to Figure 4.4 resp. 4.11.

time range identifiable with a climatic change. The explanation for this result is given in the

next paragraphs in which the effect of a change of the biome setup from 1 to 3 is discussed.

Furthermore all s/results of the expansion of the climate state vector are in agreement with

those in chapter 4.3 based on Figure 4.8.

The change of the biome setup from one to three (Fig. 4.16 versus 4.14 and 4.15) has

more impacts on the palaeoclimate reconstruction as the expansion of the climate state vector,

especially here in the Ein Gedi TDJF marginal pdf profile: no jump identifiable (Fig. 4.16a

versus 4.14a) but much variability in mode (black solid line). The first mentioned fact is

supported by an almost continuous line of the linear fit in the profile in Figure 4.16a. The

explanation is provided by the analysis of PBl ,~C
(bl0 ,~c0) shown in Figure 4.17. The modus of

the TDJF probability for B1 is indistinguishable from B3 and the clear discriminable biome B2

has not the same pronounced gradients in the biome probability profile WBl0=2 at the borders

of LPAZ 3 like the other ones. Additionally WBl0=2 has no high probability values and the

other biomes B1 and B3 parallel quite low values for a larger time range. In this discussed
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4.5. Ein Gedi - Palaeoclimate Reconstruction Result

configuration that would result in a time range in the marginal pdf profile for TDJF with a

climate change signal. This hypothesis is supported by the fact that there is at least one

timeslice at 6740y.calBP situated in LPAZ 2 where the expectation value differs from the rest

in LPAZ 2 by a value of about 2 ◦C.

The corresponding TJJA palaeoclimate reconstruction (Figure 4.17b) also shows no time

range with a climate change. The curve of the expectation value (red solid line) and mode

(black solid line) is similar to 4.15, but the jumps/gradients in the curve of the mode in LPAZ 4

and LPAZ 2 in 4.16b are larger/more pronounced. The reason for no time range with climate

change in 4.15 is the same as described in the last paragraph for TDJF but with moved position

of the probability PB2,~C
(b20 ,~c0) relative to the other: B2 is the warmest biome (Figure not

shown). A position of each PBl ,~C
(bl0 ,~c0) relative to the others as shown in Figure 4.17b is also

no indicator for a climate change signal as the result in Fig. 4.16b demonstrates. The box plot

for B3 and TJJA shows that the input data does not allow any differentiation between B3 and B2

but it differs 75% from B1, so that the only explanation for the curve progression is a result of

covariance structures. So the result for TJJA has to be interpreted with caution. Switched back

to the PBl ,~C
(bl0 ,~c0) and the palaeoclimate reconstruction: A time frame with climate change

in that configuration is only possible if B1 gets low values as it is the case for the timeslices at

6740y.calBP and 8660y.calBP (≡ pollen sample layer 37 and 51).

The box plot for B3 of the water variables (Fig. 4.17c and 4.17d) shows that the input data

allows a differentiation of the biomes due to the fact that it has only a maximum overlap of

25%. The locations ofPBl ,~C
(bl0 ,~c0) fit only for PANN so that the result for CWDANN , just like the

others, has to be interpreted with caution. The palaeoclimate reconstructions for the water

variables indicate a time range with climate change, the time range associated with LPAZ 3.

The result for PANN is in agreement with the other already presented results (Fig. 4.11c, 4.11d

and 4.14b), only negligible changes in the variation of estimated quantile curves (dashed

lines), the mode (solid black line) and the expectation value (red solid line). As already

mentioned, the palaeoclimate reconstruction of CWDANN (Fig. 4.16d) shows in LPAZ 3 a jump

of 100 mm
year to lower values. Despite the just mentioned problems with PBl ,~C

(bl0 ,~c0) this is in

agreement with the PANN reconstruction since lower CWDANN values mean, that more water

is available (s. p. 10). As in the Lake Kinneret palaeoclimate reconstruction for CWDANN , the

corresponding figures to Figure 4.16d for TDJF and TJJA are not shown since the result is equal

to the shown results in Figure 4.16a and 4.16b.
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Figure 4.16.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , TJJA, PANN and CWDANN for the Ein Gedi palaeoclimate reconstruction. In detail all base

on the biome probability WBl0
estimated with an individual definition of ϑk0 = individual. (a), (b) and (c) base on s.no. 21 (biome

setup 3,
#–
C = (TDJF ,TJJA,PANN)

T and CRU TS 3.1 as estimation dataset) and (d) on s.no. 20 which is equal to s.no. 21 and differs only
in the definition the climate state vector (

#–
C = (TDJF ,TJJA,CWDANN)

T ). The mapping of the figure is identical to Figure 4.4 resp. 4.11.
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4.5. Ein Gedi - Palaeoclimate Reconstruction Result

The analysis of the two water variable palaeoclimate reconstructions is also in agreement

with the hypothesis that the dominant biome type in the WBl0
profile, here B1, has to be clearly

discriminable in PBl ,~C
(bl0 ,~c0), at least the modes and not in between as it is the case in Fig-

ure 4.17b for TJJA. It should also be mentioned that despite some differences all PBl ,~C
(bl0 ,~c0)
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Figure 4.17.: Marginal distributions of PBl ,
#–

C

(
bl0 ,

#–

c 0

)
as defined in eq. 4.15 (solid coloured lines) and

the climate prior π #–

C

(
#–

c 0

)
(dashed black line) for TDJF , TJJA, PANN and CWDANN dedicated

to the palaeoclimate reconstruction presented in Figure 4.16. The box plots are the visu-
alisation of the input dataset for the estimation of the biome likelihoods (biome setup 3)
so that for B1 and B2 they show the same result as in Figure 4.5. The mapping of the
colours is identical to Figure 4.12.
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Chapter 4. Lake Kinneret and Ein Gedi

for B1 and B2 in Figure 4.17 and 4.5 do not contradict each other with respect to the position

of the mode and shape.

4.6. The Bayesian Biome Model - Conclusions

With the BBM it is possible to find a time range with palaeoclimate change if some require-

ments are fulfilled:

• One biome in the depth profile of WBl0
has to dominate for several pollen sample lay-

ers/time slices. Dominating here implies high WBl0
values and low for the other ones.

• Additionally this dominating biome has to be clearly discriminable in the PBl ,~C
(bl0 ,~c0),

the clearer the better. If more than two biomes are considered in the BBM then a location

of this biome between the other one is critical.

• If the number of considered biomes is greater than two and two of the biomes have an

identical mode for PBl ,~C
(bl0 ,~c0), then the biome which is clearly discriminable has to

be the dominating one in WBl0
. This fact is one reason why it is possible to identify a

period with climate change in the reconstruction for Ein Gedi and not in the one for

Lake Kinneret.

• The probability PBl ,~C
(bl0 ,~c0) of one biome is always strongly influenced by the climate

prior: In the climate phase space which is splitted into several areas by the QDA, this

biome is the one which is situated at the edges. In the cases considered in this chapter

this is the Mediterranean biome B1

• The data basis for the QDA is thin/sparse which has the consequence that the QDA result

is not robust especially for the Mediterranean biome.
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5
Birkat Ram

This chapter presents the result and the mathematical tools that are used for the palaeoclimate

reconstruction which bases on the new sediment core data of Birkat Ram. The sediment core

and the locations are described in chapter 2.3.2. The basic mathematical principles for this

purpose are introduced in chapter 1.2 and are extended in the first section of this chapter to

the new Bayesian Indicator Taxa and Biome Model (BITBM) which is applied to the sediment

core. The following section describes the estimation of each component of the BITBM with the

corresponding results for Birkat Ram. Directly follows the palaeoclimate reconstruction result

for Birkat Ram.

5.1. Bayesian Indicator Taxa and Biome Model - Introduction

The palaeoclimate reconstruction for the maar lake Birkat Ram presented in this chapter

bases on the pollen counts of the new sediment core as described in chapter 2.3.2.2. The

”old” Birkat Ram core and the corresponding result of the palaeoclimate reconstruction is

described in Neumann et al. (2007) and the database in detail in Schölzel (2006). Schölzel

(2006) also discussed that the identified pollen in the sediment core indicate that the Birkat Ram

area was always situated in the Mediterranean biome/climate. Therefore he only applied taxa

distribution maps which describe the distribution in Mediterranean biome or more precisely

in the direct vicinity of Birkat Ram (s. Schölzel 2006, chap. 3.3.2).

As discovered by Schiebel (2013) this is only the case for the time frame from present time

to approximately 10000y.calBP or in other words in the Holocene (s. Schiebel 2013, chap. 6).

The ”new” Birkat Ram sediment core covers approximately a time range of 30000y.calBP

(s. Schiebel 2013, chap. 5.2.3, p. 49 para. 3). From 17000y.calBP taxa assigned to the

Irano-Turanian dominate. To reflect that fact the BITM, as described in chapter 3.2, is ex-

tended/expanded to the BITBM. A similar approach is used in Kühl et al. (2007, p. 3313) by

applying the general condition G (eq. 3.7). The BITM includes individual taxa as well as biome

climate by regarding a taxon random variable as defined in equation 3.2, a biome random vari-

able as defined in equation 4.1 and a climate state random variable as defined for example in

equation 3.1. Consequently the starting point is the joint probability P #–
C ,

#–
T ,Bl

(
#–

c ,
#–

t ,bl

)
. The
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goal is to achieve the probability resp. pdf of climate given proxy data (as it is the case for the

BITM and the BBM) or in the case considered here taxa and biome data: P #–
C | #–T ,Bl

(
#–

c | #–t ,bl

)
. As

described in chapter 4.1 the reconstructed palaeoclimate is always a mixture signal of different

biome types Nl. Hence it has to be summed over the different biome types which is equal to

marginalisation and similar to equation 4.3

P #–
C | #–T

(
#–

c
∣∣∣ #–

t
)
=

Nl

∑
l=1
PBl |

#–
T

(
bl|

#–

t
)
·P #–

C | #–T ,Bl

(
#–

c
∣∣∣ #–

t ,bl

)
(5.1)

To interpret the meaning of P #–
C | #–T ,Bl

(
#–

c
∣∣∣ #–

t ,bl

)
it is necessary to apply again the Bayes theo-

rem:

P #–
C | #–T ,Bl

(
#–

c | #–t ,bl

)
=
P #–

C ,
#–
T ,Bl

(
#–

c ,
#–

t ,bl

)
P #–

T ,Bl

(
#–

t ,bl

) =
P #–

T |Bl ,
#–
C

(
#–

t |bl,
#–

c
)
·PBl |

#–
C

(
bl|

#–

c
)
·P #–

C

(
#–

c
)

P #–
T ,Bl

(
#–

t ,bl

) (5.2)

The next step is to regard the assumption of pairwise conditional independence of all taxa

given a certain climate state and biome type. This is an extension of the BITM assumption

already presented in chapter 3.1.2. The result is that P #–
T |Bl ,

#–
C

(
#–

t |bl,
#–

c
)

splits into a product

analogous to equation 3.5:

P #–
T |Bl ,

#–
C

(
#–

t |bl,
#–

c
)
=

Nk

∏
k=1
PTk|

#–
C ,Bl

(
tk|

#–

c ,bl

)
(5.3)

The BITBM equation is obtained after the realisation of two further steps: First the results of

equation 5.1, 5.2 and 5.3 are summarized in one equation and the common notations for prior

and marginal distributions as described in chapter 1.2 (after eq. 1.4) are used since they fulfil

the required definitions. Secondly the basic assumption as described in chapter 1.2 (eq. 1.5

on p. 5) and also mentioned in chapter 4.1 in the introduction of the BBM (eq. 4.4 on p. 52)

is applied here:

P #–
C 0| #–T 0

(
#–

c 0

∣∣∣ #–

t 0

)
=

Nl

∑
l=1
PBl |

#–
T

(
bl0 |

#–

t 0

)
·

[
Nk

∏
k=1
PTk|

#–
C ,Bl

(
tk0 |

#–

c 0,bl0

)]
·PBl |

#–
C

(
bl0 |

#–

c 0

)
·π #–

C

(
#–

c 0

)
m #–

T ,Bl

(
#–

t 0,bl0

)
(5.4)

This is in principle the equation for the palaeoclimate reconstructions based on the BITBM.

Some more steps have to be done: The multiplication index has to reflect that only taxa which

are present in the regarded pollen sample layer ι found in depth dι are multiplied (tι k0 = 1) as

analogous done for the BITM in equation 3.14. And as last step PBl |
#–
T

(
bl0 |

#–

t 0

)
is replaced by

82
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the biome probability WBl0
analogous to the BBM equation 4.5 (s. chap. 5.2.2 for details):

P #–
C 0|

#–
T 0

(
#–

c 0|
#–

t 0

)
= π #–

C

(
#–

c 0

)
·

Nl

∑
l=1

WBl0

 ∏
k

∀tι k0=1

PTk|
#–
C ,Bl

(
tk0 |

#–

c 0,bl0

) ·PBl |
#–
C

(
bl0 |

#–

c 0

)
mT,Bl (t0,bl0)

(5.5)

5.2. The BITBM in Detail for Birkat Ram

Analogous to chapter 3.2 and 4.2 all parts of equation 5.5 which contribute to the palaeo-

climate reconstruction are discussed in detail in this section. Hereby the focus is set on the

differences to BITM and BBM. Also the corresponding result for each part is presented.

5.2.1. π~C (~c0) Prior Distribution for the climate state vector

For the same reasons as in chapter 4.2.1 a climate prior for the whole Jordan Valley is applied.

As consequence the same parameters as shown in Table 4.1 are used.

5.2.2. WBl0
Biome Probability

The biome probability WBl0
is estimated in the same way as in chapter 4.2.2 (eq. 4.6 and

4.7) for Lake Kinneret. The principal difference is that only taxa which are used for the

indicator taxa matrix IIINι×Nk0
ϑ0

(s. chap. 5.2.3 for details) are included in the estimation of

WBl0
. Due to the fact that Birkat Ram is not far away from Lake Kinneret the same biome

types are available/possible. These selected taxa are (T. Litt pers. comm.): Artemisia and

Plantago for the Irano-Turanian biome type B2 and Pistacia, Olea, Quercus ithaburensis type
and Quercus calliprinos type for the Mediterranean biome type B1. For consistency the required

taxon specific threshold values ϑk0 are the same as later on applied for IIINι×Nk0
ϑ0

and can be

found in Table D.1.

Figure 5.1 presents the resulting depth profile of the biome probability WBl0
for Birkat Ram.

The area below the curve represents the Mediterranean biome probability WBl0=1 and between

one and the curve represents the Irano-Turanian biome probability WBl0=2 . The x-coordinate in

all figures presented in this chapter is age in y.calBP due to the fact that only one reliable age-

to-depth model established by Schiebel (2013) is available (s. chap. 2.3.2.2). The hatched area

between ≈ 10000 and 17000y.calBP (≡ 703cm and 746cm) marks the range where Schiebel

(2013) assumed a desiccation of Birkat Ram. The shown WBl0
profile is divided in three differ-

ent zones: 0 to ≈ 10000y.calBP, ≈ 10000 to ≈17000y.calBP and ≈ 17000 to ≈30000y.calBP.

The first zone could be named Holocene zone since it lies completely in this geological epoch.

It consists of 28 pollen sample layers and it shows a clear preference that Birkat Ram is lo-

cated in the Mediterranean biome type, which is in agreement with Neumann et al. (2007);
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Figure 5.1.: Depth profile of the biome probability WBl0
for Birkat Ram. The area below the curve

represents the Mediterranean biome probability WBl0=1 and between one and the curve
represents the Irano-Turanian biome probability WBl0=2 . The vertical lines separate the local
pollen assemblage zones (LPAZ) of Birkat Ram defined in Schiebel (2013, chap. 5.2.3,
Tab. 5.2 and Fig. 5.3 ≡ Fig. 2.13 in this work). The x-coordinate is age in y.calBP due
to the fact that only one age-to-depth model established by Schiebel (2013) is available
(s. chap. 2.3.2.2). The hatched area between ≈ 10000 and 17000y.calBP (≡ 703cm and
746cm) marks the range where Schiebel (2013) assumed a desiccation of Birkat Ram.

Schiebel (2013); Schölzel (2006). In detail preference means that 93% of the data points fulfil

WBl0=1 > 0.5 and 67% fulfil WBl0=1 ≥ 0.7.

Only two layers (186cm ≈⇔ 1501y.calBP and 211cm ≈⇔ 1741y.calBP) have values of round

about 0.5. This is a direct consequence of an increase of pollen counts from the Irano-Turanian

taxon Plantago (s. Fig. D.1.2 resp. Fig. 5.2, PlSM_BR) and at the same time a decrease of

Mediterranean taxa Olea (s. Fig. D.1.2 resp. Fig. 5.2, Oleu_BR) and additionally overall low

pollen count values for the remaining Mediterranean taxa. Schiebel (2013, chap. 6.4.3) refers

this period in the Hellenistic, Roman and Byzantine time period with a strong anthropogenic

influence on Olea, so that this part of the signal has to be interpreted as human made and it

has to be specially regarded in the palaeoclimate reconstruction in chapter 5.3. There are two

other similar parts in the signal in the Holocene part: around 514cm ≈⇔ 6059y.calBP/539cm ≈⇔
6336y.calBP and 647cm ≈⇔ 8424y.calBP/673cm ≈⇔ 8927y.calBP. The first one has similar cir-

cumstances as the pollen sample layer around 186cm ≈⇔ 1501y.calBP / 211cm ≈⇔ 1741y.calBP.

The main difference is that all other Mediterranean taxa (Pistacia, Quercus ithaburensis type
and Quercus calliprinos type) have higher pollen count values, especially Quercus ithaburensis
type and consequently the assigned probability WBl0=1 has higher values since more taxa are

included in the estimation. Schiebel (2013, chap. 6.4.2) relates this with beginning of olive

cultivation in the Chalcolithic period so that this part of the signal has also to be regarded in
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5.2. The BITBM in Detail for Birkat Ram

chapter 5.3. The circumstances for the second one are different: Only Plantago and Quercus
ithaburensis type are included in estimation of WBl0

so that each biome is represented by only

one taxon. This situation occurs only in LPAZ 2 around the above mentioned sample layers and

in the first pollen sample layer. Schiebel (2013) analysed more taxa and concluded that this

part of the signal is connected with the so called 8.2-event of rapid climate change with re-

turn of the Irano-Turanian steppe vegetation which is in agreement with the biome probability

result despite the spare data in the estimation.

The second zone in the WBl0
-profile consists of only one pollen sample layer. It is the zone

where Schiebel (2013) assumed a desiccation of Birkat-Ram and consequently the age-to-

depth model covers a large time interval. Schiebel (2013) also concluded that due to this

discontinuity in the sediment layers ”no conclusion concerning a possible dispersion of Mediter-
ranean vegetation can be drawn”. This fits with the result for WBl0

presented here since in zone

one the Mediterranean biome type is most likely and in the third zone the Irano-Turanian

biome with a large jump in the desiccation-zone.

As already mentioned the last zone which consists of 15 pollen sample layers shows a clear

preference for the Irano-Turanian biome with WBl0=2 values all in the order of 90%. It matches

also with the result from Schiebel (2013) of dominating ”steppe-like character of the vegetation
in the vicinity of Birkat Ram” in this period. Summarized the biome probability WBl0

result

here is in a good agreement with the results of the pollen analysis of Schiebel (2013) which

includes all taxa detected in the Birkat Ram sediment core.

5.2.3. Indicator Taxa and Taxa Transfer Function

The part in the BITBM which accounts the contribution of the individual taxa is the product

in the numerator of equation 5.5. It is quasi a BITM which differs from the one applied on the

”old” Birkat-Ram sediment core (s. chap. 2.3.2.2 and Neumann et al. 2007). First the transfer

functions are directly estimated via GLM in the same way as in chapter 3.2.2 and therefore

no further application of the Bayes theorem is required as it is the case for eq. 3.6. Second

the distribution map for each single taxa differ. Neumann et al. (2007); Schölzel (2006) ap-

plied, as mentioned, only Mediterranean distribution maps based on Feinbrun-Dothan, Danin

(1998). In the case considered here a summary of them together with the maps presented in

chapter 2.2.1 is used.

As indicators six taxa are selected (T. Litt pers. comm.) which are the same as those listed in

the estimation of the biome probability WBl0
. These taxa are also present in the pollen samples

of the ”old” Birkat Ram sediment core. The transformation of pollen counts to presence and

absence information summarized in the required indicator taxa matrix IIINι×Nk0
ϑ0

is done with

the same approach as in chapter 3.2.1. The corresponding figures for the ϑk0-estimation are

presented in appendix D.1.2. Especially for Quercus ithaburensis type the advantage of a pos-

sible adaptation of ϑk0 to include the background knowledge of the palaeontologist is taken:
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Chapter 5. Birkat Ram

Quercus ithaburensis type is only present in a contiguous zone in the estimated indicator profile

(s. Fig. 5.2 row Qud_BR and Fig. D.1.2).

In contrast the palaeoclimate reconstruction of Lake Prespa only six taxa are the past proxy

database so that no mahalanobis distance filtering is required (s. p. 29). The resulting indicator

taxa matrix is shown in Figure 5.2 with the same mapping as in Fig. 3.3a/3.3c for the absence

time [y cal. B.P.]
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Figure 5.2.: Indicator Taxa Matrix for Birkat Ram III
Nι×Nk0
ϑ0

. The figure shows the absence information
(tι k0 = 0) for each regarded taxon k0 in two light grey colours and the presence information
(tι k0 = 1) in two dark grey colours. (same mapping as in Fig. 3.3a/3.3c) The shortcuts on
the vertical axis refer to the full taxon name in Tab. D.1 (p. 205). The assignment of the taxa
to the biomes is marked by the coloured dots: Mediterranean biome B1 in green and Irano-
Turanian biome B2 in red (for details also Tab. D.1). The vertical lines separate the local
pollen assemblage zones (LPAZ) of Birkat Ram defined in Schiebel (2013) (chap. 5.2.3,
Fig. 5.3 and Table 5.2 or Fig. 2.13 in this work). The hatched area between ≈ 10000 and
17000y.calBP (≡ 703cm and 746cm) marks the range where Schiebel (2013) assumed a
desiccation of Birkat Ram.

information (tι k0 = 0, two light grey colours ) and the presence information (tι k0 = 1, two

dark grey colours). The shortcuts on the vertical axis refer to the full taxon name in Tab. D.1

(p. 205). The hatched area marks as in Fig. 5.1 the range where Schiebel (2013) assumed a

desiccation of Birkat Ram. The assignment of the taxa to the biomes is marked by the coloured

dots: Mediterranean biome B1 in green and Irano-Turanian biome B2 in red (for details also

Tab. D.1).

These so called ”biome marker” are important: The aforementioned taxon part of the

BITBM,

∏
k

∀tι k0=1

PTk|
#–
C ,Bl

(
tk0 |

#–

c 0,bl0

)
, (5.6)

includes one further difference to the BITM of chapter 3.2. The probability has two conditions

(climate and biome) instead of one (climate), which is considered as follows. If the summation
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in equation 5.5 is e. g. at biome type Bl=1 (here equal to the Mediterranean biome) only

taxa which are assigned to this biome type (bι l0 = l) and regarded as present (tι k0 = 1) are

multiplied.

Two properties of the indicator taxa matrix IIINι×Nk0
ϑ0

presented in Figure 5.2 are important to

note: In all pollen sample layers or resp. time slices are at least two taxa regarded as present

except 255cm ≈⇔ 2180y.calBP. Secondly in the first of the three zones identified in Figure 5.1

every layer has at least one Mediterranean taxon regarded as present and the third zone at

least two Irano-Turanian taxa. This result is in agreement with the findings of the last chapter

since the dominating biome type has always at least one assigned taxon regarded as present.

5.2.4. PBl |~C
(

bl0

∣∣~c0
)

Biome Likelihood - Biome Transfer Function

The biome likelihood or biome transfer function PBl |
#–
C

(
bl0 |

#–

c 0

)
has the same functionality as

in the BBM. Chapter 4.2.3 describes in detail the estimation via QDA which is also used here

with the same setups for the estimation. Due to the fact that biome setup 3 is rated as the

best and selected for the palaeoclimate reconstruction for Lake Kinneret and Ein Gedi it is also

applied here. The exact s.no. is specified in chapter 5.3.

5.2.5. mBl

(
bl0
)

Marginal Probability

The last not yet defined and described part of the BITBM is the definition of the marginal

probability mBl (bl0). It differs from the normalization of the BBM presented in chapter 4.2.4.

Here the normalisation is defined as the sum over the numerator of equation 5.5

mT,Bl (t0,bl0) :=
Nl

∑
i=1

 ∏
k

∀tι k0=1

PTk|
#–
C ,Bi

(
tk0 |

#–

c 0,bi0

) ·PBi|
#–
C

(
bi0 |

#–

c 0

)
. (5.7)

This normalisation ensures that the result of the BITBM fulfils the mathematical definition for

a probability. The results of the palaeoclimate reconstruction presented in the following base

on

P #–
C 0|

#–
T 0

(
#–

c 0|
#–

t 0

)
= π #–

C

(
#–

c 0

) Nl

∑
l=1

WBl0
·

 ∏
k

∀tι k0=1

PTk|
#–
C ,Bl

(
tk0 |

#–

c 0,bl0

) ·PBl |
#–
C

(
bl0 |

#–

c 0

)

Nl

∑
i=1


 ∏

k
∀tι k0=1

PTk|
#–
C ,Bi

(
tk0 |

#–

c 0,bi0

) ·PBi|
#–
C

(
bi0 |

#–

c 0

)
,

(5.8)

which is the summary of equation 5.7 and 5.5 and applied on each pollen sample layer of

Birkat Ram.
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5.3. Birkat Ram - Palaeoclimate Reconstruction Result

All figures (Fig. 5.3 and 5.4) in this chapter show the estimated result of the palaeoclimate re-

construction for Birkat Ram in terms of a depth profile of one-dimensional marginal probabili-

ties PC0|~P0
(c0|~p0). The term marginal is already defined in chapter 3.2.2. Thereby x-coordinate

depth is replaced by age in y.calBP due to the fact that only one age-to-depth model estab-

lished by Schiebel (2013) is available (s. chap. 2.3.2.2). The mapping of the figures for the

posterior probabilities for the Birkat Ram palaeoclimate reconstruction is in principle the same

as that of the Lake Prespa, Lake Kinneret and Ein Gedi figures, which is already described

at the beginning of chapter 3.3 (s. p. 40). Only the meaning of the coloured scale changes

slightly since the presented results are probabilities: The scale ranges from blue for probability

values equal to zero to red for probability values equal to one. Also the mode is not shown

in the figures. The hatched area between ≈ 10000 and 17000y.calBP (≡ 703cm and 746cm)

marks again as in Fig. 5.1 and 5.2 the range where Schiebel (2013) assumed a desiccation of

Birkat Ram.

The palaeoclimate reconstruction presented in Figure 5.3a, 5.3b and 5.3c bases on the biome

likelihood PBl |
#–
C

(
bl0 |

#–

c 0

)
whose setup for the estimation is defined by s.no. 211. Additionally

Figure 5.3d shows the marginal probability for CWDANN whose setup (s.no. 202) differs only in

the third component of the climate state vector. The corresponding figures for TDJF and TJJA are

not shown. Since differences to the presented marginal probabilities are hardly identifiable.

Figure 5.4 presents the palaeoclimate reconstruction of the temperatures at the 850hPa level.

A detailed discussion why biome setup 4 instead of 3 is applied can be found in chapter 4.3

in the discussion of Figure 4.6. Also the connection of the 850hPa to surface temperatures is

described in that chapter.

In all figures a linear trend is estimated for several time slices for a better evaluation of cli-

mate changes. This trend is estimated on the numerical expectation value (red line, definition:

Fig. 4.4 and chap. 3.3 ) of the marginal probabilities of each climatic variable ci as also done

in chapter 3.3. For the following time range trends are estimated whereby the most borders

coincide with the LPAZ-borders which are defined by threshold exceedance of dominant taxa

(Schiebel 2013):

time range 3 LPAZ 7 to 5, in detail pollen sample layer 1 to 11 which is equal to −55y.calBP
≈⇔ 0cm and 2180y.calBP ≈⇔ 255cm

time range 2 LPAZ 4 to 2 directly before the layer with the jump in the biome probability

profile (s. chap. 5.2.2, next to last paragraph), in detail pollen sample layer 12 to 28

which is equal to 2613y.calBP ≈⇔ 299cm and 9507y.calBP ≈⇔ 703cm

1 s.no. 21 is equal to biome setup 3,
#–
C = (TDJF ,TJJA,PANN)

T and CRU TS 3.1 as estimation dataset
2 s.no. 20 is equal to biome setup 3,

#–
C = (TDJF ,TJJA,CWDANN)

T and CRU TS 3.1 as estimation dataset

88



5.3. Birkat Ram - Palaeoclimate Reconstruction Result

time range 1 directly subsequent the next layer in LPAZ 2 to 1, in detail pollen sample layer

29 to 44 which is equal to 13984y.calBP ≈⇔ 728cm and 31767y.calBP ≈⇔ 1090cm

These three time ranges (numbers from past to present) differ from the zones mentioned in

the discussion of the biome probability profile in chapter 5.2.2. But these zones are identifiable

in all palaeoclimate reconstructions since the marginal probability profile before and after the

so named transition zone between time range 1 and 2 differs sometimes more sometimes less.

In general the results of the palaeoclimate reconstruction of the surface climate (Fig. 5.3)

are in accordance with the results of Schiebel (2013), despite the fact that reconstruction bases

only on six selected taxa. In detail Schiebel (2013, p. 6, chap. 2.1, para. 2; p. 15 chap. 3.3

Table 5.1.: Results for the parameters of the estimated linear trends in Figures 5.3 and 5.4.
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c i
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C
W

D
A

N
N

Fi
g

5.
4d

t.
r.

3
(R

-B
1,

o.
) a -0.0002 -0.0001 -0.0090 0.0025 0.0000 0.0000 -0.0144 0.0019

±σ 0.0002 0.0001 0.0120 0.0086 0.0000 0.0001 0.0315 0.0087
b 12.9 24.7 378.1 971.1 5.2 20.8 436.7 1013.1
±σ 0.3 0.1 14.7 10.5 0.0 0.1 38.7 10.7

t.
r.

2
(R

-B
2)

a 0.0000 0.0000 -0.0088 0.0128 0.0000 0.0000 -0.0061 0.0013
±σ 0.0001 0.0000 0.0040 0.0046 0.0000 0.0000 0.0163 0.0015
b 13.4 23.9 477.0 829.3 4.7 20.3 407.8 993.0
±σ 0.5 0.3 25.1 28.7 0.2 0.2 101.5 9.3

t.
r.

1
(R

-B
3,

u.
) a -0.0001 0.0000 -0.0009 -0.0012 0.0000 0.0000 -0.0026 0.0000

±σ 0.0000 0.0000 0.0003 0.0003 0.0000 0.0000 0.0008 0.0000
b 11.0 26.7 251.5 1069.4 4.7 21.6 336.6 987.3
±σ 0.6 0.2 6.4 8.6 0.0 0.2 19.3 0.0

para. 2; p. 72 chap. 7 para. 2) described a change to colder and dryer environmental conditions

after the Holocene with the onset of the Younger Dryas (YD). For the CWDANN-reconstruction

this matches also since CWDANN > 0 is equal to a dry environment and therefore a shift to

higher values is equal to a dryer environment. More precisely the accordance means that

there is a slight climate change signal in LPAZ 1 compared to the rest of the profile which is

identifiable in all four subfigures of Figure 5.3.

In detail all slopes a of the estimated linear trends in Figure 5.3 (ci = a · t +b) are small with

a maximum value of 0.0128±σ = 0.0046 for the time range 2 in Fig. 5.3b so that an acceptable

approximation is to consider only the intercept b as a representation of the expectation value

in each time range or simple mean of the expectation values in each layer (red line) for a

simple hypothesis testing. The result of the linear fits are summarized in Tab. 5.1.
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The already mentioned gaps in the WBl0
-profile in chapter 5.2.2 are identifiable in all marginal

probabilities in Figure 5.3 by a wider probability range resp. larger variance. Indicated is this

by larger interquantile distances in the figures and also with jumps in the expectation value

(red line). These are much smaller than the jumps in the WBl0
profile. Best visible is this in

the marginal probabilities of the water variables in Fig. 5.3c and 5.3d at about 1700y.calBP,

6300y.calBP and 8500y.calBP. This is in accordance with the discussed position of the jumps

in WBl0
. The influence on the reconstructed surface temperatures TDJF and TJJA is small with

∆T ≈ max0.5K ) and slopes a ≈ 0. The influence on the reconstructed water variables PANN

and CWDANN is larger since the estimated linear trends here have slope values with values

different from zero (Tab. 5.1).

Another result which holds for all four marginal probabilities PC0|~P0
(c0|~p0) is the lack of

variability in time range 1. This is in accordance with the applied indicator taxa (chap. 5.2.3)

since only two taxa (Artemisia⇔ Arte_BR and Plantago⇔ PlSM_BR) are regarded as present

and contribute to the palaeoclimate reconstruction. Only the top layer of time range 1 is

different: Quercus ithaburensis type ⇔ Qud_BR contributes to the result with larger values in

the marginal probabilities PC0|~P0
(c0|~p0) (more red colours) but not with discernible effects on

the rest.

Also indicated in all four figures is that there is a slight, as already mentioned, climate

change at the transition zone. This change is identifiable by gradients in all curves in Fig-

ure 5.3. The confidence in this climatic change depends on the reliability in this reconstruction

in general (only six taxa). But it is also possible to apply a Student’s t-test with a significance

level of 0.05 as also done in chapter 3.3. This is done with R3 for the mean of all expectation

values (red line) in time range 1 versus time range 3 with null hypothesis that the means are

equal and results in p-values between 1×10−9 and 1×10−16. This is equal to a rejection (oth-

erwise acceptance) of the null hypothesis so that the hypothesis test supports the assumption

of climate change. If only the figures are considered the extrapolation of the estimated linear

trend from time zone 1 into time zone 2 indicates that the estimated lines lie in all four figures

outside of the 25% resp. 75% quantile curves. This is not the case for the discussed jumps

in the CWDANN reconstruction between the time range from 11000y.calBP till 6000y.calBP

and for a comparison of time range 2 with time range 3. This fact also supports the climate

change hypothesis. Thereby the greatest changes are identifiable for the PANN reconstruction,

best demonstrated by the intercept value b since it is almost doubled. The relative changes of

b for the other climate variables are in the same order of magnitude: 120% for TDJF , 90% for

TJJA and 75% for CWDANN .

Between time range 2 and 3 there is slight difference in the reconstructions but not as dis-

tinctive as for time range 1 and 2. If the jumps are left out than the main differences are lower

values in time range 2 than in 3 for all marginal probabilities presented in Figure 5.3 (less red

3in more detail with the R-function t.test() and its default setup (two-sided, no equal variances) of the base
package stats of R version 3.0.1, s. Team (2013) for more details
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Figure 5.3.: Marginal posterior probabilityPC0|~P0
(c0|~p0) for TDJF , TJJA, PANN and CWDANN for the Birkat Ram palaeoclimate reconstruction. In detail

all base on the biome probability WBl0
estimated with an individual definition of ϑk0 = individual. (a), (b) and (c) base on s.no. 21

(biome setup 3,
#–
C = (TDJF ,TJJA,PANN)

T and CRU TS 3.1 as estimation dataset) and (d) on s.no. 20 which is equal to s.no. 21 and differs
only in the definition of the climate state vector (

#–
C = (TDJF ,TJJA,CWDANN)

T ). The mapping of the figure is identical to Figure 4.4.91
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colours in the image plot).

The temperature reconstructions additionally shows no substantial difference of the inter-

cepts (bt.r.2 ∈ [bt.r.3−σ ;bt.r.3 +σ ]). The only variation in the red lines are a result of WBl0
with, as

just mentioned, no substantial effect on the trends. Only the jump at about 8500y.calBP could

be interpreted as not human made (s. discussion of WBl0
), but it is not distinguishable from the

others. Therefore there is no evidence for a temperature change throughout the Holocene.

The situation for the marginal probability profiles for PANN and CWDANN is different but

also similar: Similar are the circumstances for 8500y.calBP. It is also not distinguishable

from the jumps which are regarded anthropogenic. But the jumps in the expectation value

(red line) are comparatively large (≈ 10% relative change) to the temperature ones (≈ 3%).

Due to that fact there is a difference in the estimated linear trends between time range 2 and

3. The Student’s t-test with the same setup as the last one results in p-values of 2.3× 10−4

(PANN) and 2.3× 10−5 (CWDANN) which are five orders of magnitude smaller than those of

the last one. Additionally if the whole marginal probability profiles in time range 2 and 3

are considered without the jumps, more precisely if the quantile curves are considered, then

the difference in the PANN reconstruction between these two time ranges are in the order of

magnitude of ≈max50 mm
year . Thereby the driest part is the top layer and the wettest at the top

of LPAZ 4 with an increase in between (equivalent becoming slightly more humid) and a slight

decrease after the maximum. For CWDANN the difference is larger (≈max150 mm
year) between the

time ranges. And compared to PANN time range 2 is separated by distinctive gradients at the

borders. The final conclusion for the PANN and also for the CWDANN reconstruction is drawn

after the discussion of Figure 5.4.

The result for the palaeoclimate reconstructions of the temperatures at the 850hPa level in

Figure 5.4 is different. The ordinate scale in Figure 5.4 is the same as in 5.3 so that one

main difference between the 850hPa temperature reconstruction and those of surface values

becomes obvious: A narrow profile for PC0|~P0
(c0|~p0) quantifiable in the distance between e. g.

the 10% and 90% quantile curves: T 850hpa
DJF ≈ max6K and TDJF ≈ max11K, T 850hpa

JJA ≈ max6K

and TJJA ≈ max11K. The distance for PANN ≈ max450 mm
year and CWDANN ≈ max800 mm

year is the

same. The next difference for the marginal profiles PC0|~P0
(c0|~p0) is that for CWDANN and

T 850hpa
DJF compared to the according subfigures in Figure 5.3 there is no more climate change

detectable neither at the transition zone nor between time range 2 and 3: All differences

for b are within the standard deviation σ (Tab. 5.1) and the quantile curves show almost no

variation throughout the profile.

The T 850hpa
JJA and PANN result in Figure 5.4b and 5.4c indicate that there is a climate change.

The T 850hpa
JJA result is in accordance with the reconstruction of the surface temperature TJJA

since it shows also a warming with the onset of the YD. Thereby the p-value for the Student’s

t-test for time range 1 versus 2 is in the same order of magnitude (1× 10−16). For PANN the

result is a little bit different since the climate change is visible but much less pronounced as
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Figure 5.4.: Marginal posterior probability PC0|~P0
(c0|~p0) for T 850hpa

DJF , T 850hpa
JJA , PANN and CWDANN for the Birkat Ram palaeoclimate reconstruction.

In detail all base on the biome probability WBl0
estimated with an individual definition of ϑk0 = individual. (a), (b) and (c) base on

s.no. 56 (biome setup 4,
#–
C =

(
T 850hpa

DJF ,T 850hpa
JJA ,PANN

)T
and CRU TS 3.1 as estimation dataset) and (d) on s.no. 55 which is equal to

s.no. 56 and differs only in the definition of the climate state vector (
#–
C =

(
T 850hpa

DJF ,T 850hpa
JJA ,CWDANN

)T
). The mapping of the figure is

identical to Figure 4.4.
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Chapter 5. Birkat Ram

in the palaeoclimate reconstruction estimated with the transfer function of the surface values:

the p-value is only 0.0099. The intercepts b±σ differ but only seen from time range 1. But

compared to T 850hpa
DJF and CWDANN there is a variability identifiable. The shape of the expecta-

tion value curve (red line) for PANN here shows also jumps like the PANN curve in Figure 5.4c

in the same pollen sample layers or resp. time slices, whereas two of them are large. This

is caused by Mediterranean biome probability values of almost one (WBl0=1 ≈ 1) together with

fact that Quercus ithaburensis type ⇔ Qud_BR is regarded as present in these pollen sample

layers. This taxon induced these problems only in the reconstruction of the temperature at

the 850hPa level but it is too important to omit it in the complete reconstruction. An outcome

which is obtained in all components of the reconstruction in Figure 5.4 is that there is no dif-

ference visible between time range 1 and 2 if the jumps are excluded (anthropogenic or not)

in this consideration. Overall it is important to note that the palaeoclimate reconstruction of

PANN and CWDANN of Birkat Ram in general are very sensitive to the setup of the climate state

vector
#–

c , more precisely: What are the other components (middle troposphere temperatures

(850hPa level) or surface temperatures)?

In summary it is noted that the climate change to higher summer temperatures (TJJA and

T 850hpa
JJA ) with the onset of the YD is very reliable so that this hypothesis from Schiebel (2013) is

confirmed. The hypothesis of dryer environmental conditions could be only partly confirmed

since only the palaeoclimate reconstruction applied with the surface based transfer functions

clearly provide this. For the BITBM as a whole it becomes also obvious that it is not as robust

against anthropogenic outliers/influences as BITM but not so sensitive as the BBM. But for a

reliable conclusion the BITBM has to be applied at a sediment core with more taxa.
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6
Jordan Valley

Motivated by the successful climate field reconstruction (CFR) of Gebhardt (2003)/Gebhardt

et al. (2008) and Simonis (2009)/Simonis et al. (2012) which allows a better assessment of

possible climate changes in the past this chapter presents a simplified version of their approach

for the Jordan Valley. In this chapter the work of Gebhardt (2003)/Gebhardt et al. (2008) and

Simonis (2009)/Simonis et al. (2012) is namend the previous work. The basic hypothesis

in their approach is the possibility to describe the past climate
#–

c 0 as deviation
#–

c ′ from the

modern climate state
#–

c :=
#–

c mod:
#–

c ′ :=
#–

c 0−
#–

c (6.1)

Past climate in this context means to evaluate the climate state of a certain defined time slice

at all considered locations.

First the Jordan Valley is defined as the analysis area. The following section describes the

simplifications of mathematics of the previous work. Directly follows a discussion of the adap-

tations of the local palaeoclimate reconstructions whereat the results are discussed in detail in

chapter 4 resp. 5. The next section describes the selection of contemplable time slices for the

CFR. The last part presents the results.

6.1. Jordan Valley - Definition of the analysis ”Area”

The climate data for near surface temperatures TDJF and TJJA and the precipitation PANN is

available on a regular latitude-longitude grid. The location vector #–r n is defined on the center

of the grid boxes. The data is described in detail in chapter 2.1. In this chapter it is the aim

to evaluate the palaeoclimate reconstructions along the Dead Sea Rift or more precisely along

the Jordan Valley. Therefore it is necessary to specify this area by defining each coordinate

combination of the location vector #–r n=1,...,NGB situated in the Jordan Valley. For this purpose

the underlying orography is applied as shown in Figure 6.1.

Due to the fact that the resolution of the CRU TS 3.1 dataset is too coarse to represent the

Jordan Valley (only six grid boxes) alone a mixture with another climate dataset is considered:

the E-OBS dataset. Figure 6.1 shows both: the CRU TS 3.1 and E-OBS orography as well as

the respectively defined Jordan Valley grid boxes. The later on applied discretisation of the
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Figure 6.1.: Definition of the Jordan Valley location vector.
(a) shows the CRU TS 3.1 and (b) the E-OBS orography. The sediment cores are marked
with red dots. The grid boxes which define the Jordan Valley location vector are marked in
cyan colour for the definition based on CRU TS 3.1 and in magenta colour for the E-OBS
definition. The hatched boxes mark the assigned boxes of the sediment cores.

Jordan Valley is the E-OBS definition (marked with magenta colour in Fig. 6.1) resulting in

NGB = 13 grid boxes whereupon the numbering starts with n = 1 at the Jordan estuary.

The climate variable CWDANN is not used in this CFR. There are two reasons for that: One

is that for E-OBS there is no equivalent data product available. The other is that especially for

Birkat Ram the discussion of the palaeoclimate reconstruction of the surface climate together

with the middle troposphere enlightens that this component shows no evidence for a possible

climate change.

Just described was the definition of the Jordan Valley. The discretisation of the climate

variables as well as the later on presented discrete cost function is analogously defined as in

the previous work: They summarized the whole climate state field which is later on applied to

one vector
#–

c :

#–

c =

(
1TDJF · · · nTDJF · · · NGBTDJF

1TJJA · · · nTJJA · · · NGBTJJA
1PANN · · · nPANN · · · NGBPANN

)T

(6.2)

If the climate state at location #–r n is required this is equivalent of using
n #–

c defined as:

n #–

c =
#–

c ( #–r n) =


nTDJF
nTJJA

nPANN

=

(
0 · · · nTDJF · · ·0 0 · · · nTJJA · · ·0 0 · · · nPANN · · ·0

)T

(6.3)
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6.1. Jordan Valley - Definition of the analysis ”Area”

The index notation with n. . . = . . .( #–r n) and the discretisation is also defined for the other

applied variables
#–

c ′ and
#–

c 0. Figure 6.2 shows one of the resulting profiles for the used

climate variables in this approach: TDJF . The abscissa represents the aforementioned Jordan

Valley grid boxes. The blue points represent the available data at each grid point. The vertical
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Figure 6.2.: The climate profile in the Jordan Valley for TDJF .
The abscissa represents the Jordan Valley grid boxes. The blue points represent the avail-
able data at each grid point (E-OBS and CRU TS 3.1). The vertical black lines mark the
locations of the sediment cores Ein Gedi, Lake Kinneret and Birkat Ram. The dashed black
line indicates the result of a GLM with quadratic term which takes into account the inverse
CDF method discussed in chap. 6.2.3 and the solid black lines are the corresponding 99.5%
confidence bands.

black lines mark the locations of the sediment cores Ein Gedi, Lake Kinneret and Birkat Ram

which are also named fossil sites in this chapter. In this approach it is assumed that this profile

could be described by a simple GLM with quadratic term. This GLM is estimated independently

for each component of the climate state vector with the statistical software R1. The result which

takes into account the inverse CDF method (chap. 6.2.3) is indicated by the dashed black line

in Figure 6.2. The solid black lines are the 99.5% confidence bands for the estimated GLM.

The R package visreg2 provides this functionality.

For the application in the later on presented CFR it is necessary to describe this profile for

the whole Jordan Valley: The coefficients β... which define the profile are known and therefore

1in more detail with the base package stats of R version 3.0.1, s. Team (2013) for more details, and also chap. 3.2.2
2in more detail with package version 2.2-2 (2016-02-05) s. Breheny, Burchett (2016) for more details
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Chapter 6. Jordan Valley

the expectation value state at each grid point #–r n could be estimated via

n #–

c =


nTDJF
nTJJA

nPANN

=

βa1 +βb1 ·n+βc1 ·n2 + n
εTDJF

βa2 +βb2 ·n+βc2 ·n2 + n
εTJJA

βa3 +βb3 ·n+βc3 ·n2 + n
εPANN

 . (6.4)

This notation is refined with some additional definitions: First the coefficients are summarized

in one column vector (≡ (. . .)T ):

#–

β :=
(

βa1 βa2 βa3 βb1 βb2 βb3 βc1 βc2 βc3

)T

. (6.5)

Secondly the definition of the location vector described by the grid box numbers (eq. 6.6a)

and its component wise squared (eq. 6.6b):

#–n :=
(

1 · · · n · · · NGB

)T

, (6.6a)
#–

n2 :=
(

12 · · · n2 · · · N2
GB

)T

. (6.6b)

And thirdly the analysis area matrix RRR:

RRR :=


#–
1

#–
0

#–
0 #–n

#–
0

#–
0

#–

n2 #–
0

#–
0

#–
0

#–
1

#–
0

#–
0 #–n

#–
0

#–
0

#–

n2 #–
0

#–
0

#–
0

#–
1

#–
0

#–
0 #–n

#–
0

#–
0

#–

n2

 (6.7)

Thereby
#–
0 and

#–
1 are column vectors of length NGB with only zeros and resp. ones as entries.

RRR summarizes the definition of the analysis area. With this definitions it is now possible to

rewrite equation 6.4 for the whole climate state vector of the Jordan Valley (eq. 6.2) with

#–

c :=RRR ·
#–

β + #–
ε . (6.8)

#–
ε is analogously defined to

#–

c and summarizes the error ε in equation 6.4 at each grid point

and is later on discussed in detail in chapter 6.2.1.

6.2. The Cost Function J

The presented approach in this study is a simplified version of the CFR approach presented in

the previous work which bases on the minimization of a cost function J :

J = Jveg +JMod . (6.9)
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6.2. The Cost Function J

This cost function summarizes the contributions of several paleoclimate reconstructions at

different locations and one time slice in a vegetational part Jveg and a model part in JMod .

This is a common approach in Meteorological data assimilation. Its result is a CFR which fits

best to the palaeoclimate reconstruction at all locations. Its mathematical concept is presented

in details in Gebhardt (2003). In this study the focus is set on the required adaptation for the

quasi linear profile which is used as model part. Therefore the starting point in this study is

the already discretised cost function.

6.2.1. The Model Cost Function JMod

The basic hypothesis in this approach and also in the previous work is that it is always possible

to describe the past climate
#–

c 0 as deviation
#–

c ′ from the modern climate state
#–

c . In this

work this hypothesis is extended to the assumption that the profile in the past time frame

also follows a quasi linear profile due to the fact that this deviation is small. Gebhardt (2003,

chap. 6.1) also assumes that this deviation is small, a fact which is supported by the local

reconstructions presented in this work. This requires first to rewrite equation 6.1 with the

help of equation 6.8:

#–

c ′ =

=:
#–
c 0︷ ︸︸ ︷

RRR ·
#–

β 0 +
#–
ε 0 −

=:
#–
c︷ ︸︸ ︷(

RRR ·
#–

β + #–
ε

)
(6.10a)

=RRR ·
(

#–

β 0−
#–

β

)
︸ ︷︷ ︸+( #–

ε 0− #–
ε )︸ ︷︷ ︸ (6.10b)

=RRR ·
#–

β
′ + #–

ε
′ (6.10c)

Equation 6.10c expresses the climate state deviation dependent on the quasi linear profile

deviation
#–

β ′. The second part is to express this (deviation small and quasi linear profile)

mathematically. This is done by

#–

β
′ ·

#–

β
′T = 0⇔

(
#–

β 0−
#–

β

)
·
(

#–

β 0−
#–

β

)T

= 0 (6.11)

This method is called Ridge Regression and therefore the parameter #–
ε ′ which summarizes

the errors is set to zero. The model part following Gebhardt (2003) is then given by

JMod

(
#–

β 0

)
= γM ·

(
#–

β 0−
#–

β

)
·
(

#–

β 0−
#–

β

)T

(6.12)

The factor γM is a weighting factor based on several minimization runs. The applied γM later on

is the one which fulfils Jveg
γMJMod

≈ 1 at the cost function minimum JR. In other words both parts

are equally weighted at the minimum. This as also done in the previous work. The used values

γM for the palaeoclimate reconstruction in this work can be found in Table E.1 in appendix E.1.
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Chapter 6. Jordan Valley

6.2.2. The Vegetational Cost Function Jveg

The discretised cost function applied in Gebhardt (2003, eq. 6.35) transferred to the nomen-

clature of this study is defined by

Jveg =−
S

∑
s=1

(
ln
[

s f #–
C | #–P

(
s #–

c 0 |
#–

p
)]

∆sinφs

)
(6.13)

In equation 6.13 the evaluation of each palaeoclimate reconstruction s f #–
C | #–P (. . .) is written with

dependence on the past climate
s #–

c 0 at each fossil site #–r s. To write it dependent on the whole

field the previous work used a simple matrix multiplication:

s #–

c 0 = sPPP · #–c 0 =
sPPP ·
(

RRR ·
#–

β 0

)
. (6.14)

The matrix sPPP contains only zeros and ones at the position of the fossil sites. The computation

of ∆sinφs is not changed compared to the previous work and is the difference between the sine

of the latitude of the northern and the southern grid box boundary.

Also mentioned in the previous work is the problem that the palaeoclimate reconstructions

are estimated with data gained at the height of the fossil site hsite. But the quasi linear profile

is estimated at the mean grid box height hmean, so that strictly spoken the current form of the

vegetational cost function (eq. 6.13) is evaluated with the past climate
s #–

c 0,hsite . Therefore

the previous work applied a simple height correction for temperature based on the tempera-

ture gradient of the standard atmosphere (γd = 6.5× 10−3 K
m)3 by a linear extrapolation. For

precipitation no height correction is reasonable so that with sPANN ,0,hsite ≡
sPANN ,0,hmean the past

climate state is estimated as defined by equation 6.15a (equal for the present climate state).

s #–

c 0,hsite =


sTDJF
sTJJA

sPANN


0,hsite

=

=
s #–

c 0,hmean︷ ︸︸ ︷
sTDJF
sTJJA

sPANN


0,hmean

+

=:s
∆T︷ ︸︸ ︷

γd

(
shsite− shmean

)
=: #–e h︷ ︸︸ ︷1

1

0

 (6.15a)

= sPPP
(

RRR
#–

β 0

)
+ s

∆T #–e h (6.15b)

Equation 6.15b is derived by inserting equation 6.1, 6.10c and 6.14 into 6.15a. The discrete

vegetational cost function Jveg dependent on quasi linear profile for the past time slice
#–

β 0 is

then given by:

Jveg

(
#–

β 0

)
=−

S

∑
s=1

(
ln
[

s f #–
C | #–P

(
sPPP
(

RRR
#–

β 0

)
+ γd

(
shsite− shmean

)
#–e h|

#–

p
)]
·∆sinφs

)
. (6.16)

3s. also chap. 4.2.3 below eq. 4.13 on p. 58
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6.2. The Cost Function J

6.2.3. Inverse CDF Method for The Linear Profile

One problem remains which has already been addressed by Schölzel (2006): It has to be

ensured that the minimum of J is estimated only for reasonable precipitation values (PANN ≥
0). Schölzel (2006) and Simonis (2009) solve this with the inverse CDF method (already

mentioned in chap. 3.2.2). The inverse CDF for the climate state vector
n #–

c in the Jordan

Valley at location #–r n is estimated with

n #–u =


nu1
nu2
nu3

= #–
ϕ prior

(
n #–

c
)
=


nTDJF −µ

prior
TDJF

σ
prior
TDJFnTJJA −µ

prior
TJJA

σ
prior
TJJA

F−1
N (0,1)

(
FG(ν prior,λ prior) (

nPANN )
)

 (6.17)

In this equation the values of the climate prior of the Jordan Valley (s. chap. 4.2.1 for de-

tails) are used for the transformation. This implicates the hypothesis that the climate prior

is valid/applicable and identical for all past time slices. A fact which is already used in the

palaeoclimate reconstructions presented in chapter 4 and 5. The GLM result for TDJF indicated

in Figure 6.2 already takes the inverse CDF method into account.

All considerations for the quasi linear profile in chapter 6.1, 6.2.1 and 6.2.2 for
#–

c 0,hmean are

also valid for #–u 0,hmean . If #–u 0,hmean :=RRR ·
#–

β 0 replaces equation 6.10 then
s #–

c 0,hsite is given by

s #–

c 0,hsite =
#–
ϕ
−1
prior

(
sPPP
(

RRR
#–

β 0

))
+ s

∆T #–e h (6.18)

This equation also shows why it is necessary to write the cost function dependent on
#–

β 0 instead

of
#–

β ′, as done in the previous work, since the necessary constraint

q
(

n #–

c 0−
n #–

c
)
= q

(
n #–

c 0

)
−q
(

n #–

c
)

(6.19)

is not fulfilled for #–
ϕ prior (·) resp. #–

ϕ
−1
prior (·). The final version of the discrete cost function which

is minimized with respect to
#–

β 0 is than given by

J
(

#–

β 0

)
= −

S

∑
s=1

(
ln
[

s f #–
C | #–P

(
#–
ϕ
−1
prior

(
sPPP
(

RRR
#–

β 0

))
+ γd

(
shsite− shmean

)
#–e h|

#–

p
)]
·∆sinϕs

)
+γM ·

(
#–

β 0−
#–

β

)
·
(

#–

β 0−
#–

β

)T

.

(6.20)

The minimum at
#–

β R,0 of this nine dimensional cost function J is calculated by finding the

roots of the gradient
#–

∇ #–

β 0
J
∣∣∣ #–

β 0=
#–

β R,0
= 0 (necessary condition) and checking the definiteness of

the Hessian matrixHHH #–

β 0
(J ) (sufficient condition). In detail this means that the Hessian matrix

has to be positive definite for
#–

β R,0.
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The j component of this gradient is defined by the partial derivative of J with respect to

j-th element of
#–

β 0 =: β j:

∂J
∂β j

= −
S

∑
s=1

{[
s f #–

C | #–P

(
s #–

c 0,hsite

)]−1

·
∂

s f #–
C | #–P

( s #–

c 0,hsite

)
∂

s #–

c 0,hsite

·
∂

#–
ϕ
−1
prior

(
s #–u 0,hmean

)
∂

s #–u 0,hmean

·SSS #–e β j

}
+γM ·2(β0 j−β j) .

(6.21)

At this juncture the notation is shortened by the applying equation 6.18 (
s #–

c 0,hsite = . . .). Addi-

tionally two shortcuts are defined: First the product sPPP RRR defines the matrix SSS. Second #–e β j is

a column vector with the same dimension as
#–

β 0 in which only the j-th component is one and

the rest is zero.

The i-th and j-th element of the Hessian matrixHHH #–

β 0
(J ) is defined by the second derivative

∂ 2

∂βi∂β j
:

∂ 2J
∂βi∂β j

=
S

∑
s=1

{[
s f #–

C | #–P

(
s #–

c 0,hsite

)]−2

·
[∂

s f #–
C | #–P

( s #–

c 0,hsite

)
∂

s #–

c 0,hsite

·
∂

#–
ϕ
−1
prior

(
s #–u 0,hmean

)
∂

s #–u 0,hmean

·SSS #–e β j

]2

−
[

s f #–
C | #–P

( s #–

c 0,hsite

)]−1
·

∂ 2 s f #–
C | #–P

(s #–

c 0,hsite

)
∂

(s #–

c 0,hsite

)2 ·
[ ∂

#–
ϕ
−1
prior

(
s #–u 0,hmean

)
∂

s #–u 0,hmean

·SSS #–e β j

]2

−
[

s f #–
C | #–P

( s #–

c 0,hsite

)]−1
·

∂
s f #–

C | #–P

(s #–

c 0,hsite

)
∂

s #–

c 0,hsite

·
∂ 2 #–

ϕ
−1
prior

(
s #–u 0,hmean

)
∂

(s #–u 0,hmean

)2 ·
[
SSS #–e β j

]2
}

+γM ·2δi j

(6.22)

The main problem remaining is that the derivatives of #–
ϕ
−1
prior

(
s #–u 0,hmean

)
and s f #–

C | #–P

( s #–

c 0,hsite

)
are not analytically evaluable. Due to that fact the minimization is executed numerically

with the R-routine optim. In details the limited-memory Broyden–Fletcher–Goldfarb–Shanno

algorithm for box-constrained optimization (L-BFGS-B)4 is applied to estimate the minimum

of J (eq. 6.20) without the factor ∆sinϕs. On the one hand the difference between the three

involved factors is negligible. On the other hand as shown by equation 6.21 the derivation

of this factor yields no contribution to the gradient. Since the numerical estimation of the

minimum also applies the gradient this factor is omitted.

Due to numerical uncertainties it is also necessary to shrink the minimization to values of
#–

β 0 which result in physically reasonable values. This is done by restricting the range for
#–

β 0

with the upper and lower limit of

#–

β upper,0 =
(

9.000 9.000 −3.400 0.500 0.500 0.010 0.025 0.025 0.001
)T

, (6.23a)

#–

β lower,0 =−
(

9.000 9.000 9.000 0.500 0.500 0.010 0.025 0.025 0.001
)T

. (6.23b)

4s. Byrd et al. (1995) for details
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6.3. CRU TS 3.1-E-OBS Mixture- Palaeoclimate Reconstruction Results

This is for the normal distributed components of n #–u (TDJF and TJJA) a range of approximately

nine sigma. The transformation of the third component of n #–u is not symmetric and therefore

the upper range has to be adapted. Figure E.1 in appendix E.1 presents the resulting possible

ranges for the profile transferred to the climate phase space.

6.3. CRU TS 3.1-E-OBS Mixture- Palaeoclimate Reconstruction

Results

The preceding pages introduce a CFR for the Jordan Valley based on a mixture of the CRU

TS 3.1 and E-OBS dataset. The local palaeoclimate reconstructions s f #–
C | #–P (. . .) presented in

chapter 4 and 5 have to reflect that. This is done by a modification of the input dataset for

the estimation of the transfer functions. Both, GLM and QDA transfer functions are estimated

based on a dataset which is a combination of CRU TS 3.1 and E-OBS.

All these palaeoclimate reconstructions show structures indicated in the marginal distribu-

tions which are very similar to the reconstructions based on the CRU TS 3.1 dataset alone.

This is Best visible in the characteristics of the quantile curves and the distances between

them. Therefore only the marginal distributions which show important differences are dis-

cussed here. The remaining figures for marginal distributions can be found in the appendix at

which for

Ein Gedi Figure E.2 is the counterpart for 4.16a, 4.16b and 4.16c,

Lake Kinneret Figure E.3 is the counterpartfor 4.4a, 4.4band 4.4c,

Birkat Ram Figure E.4 is the counterpart for 5.3a, 5.3b and 5.3c.

The most important characteristic is that the TJJA palaeoclimate reconstruction for Birkat Ram

shows no warming with the onset of the Younger Dryas (YD) (Fig. 6.3a). It is identifiable

that the 10% resp. 90% quantile curves show no variation if the jump positions discussed in

chapter 5.3 are excluded. Only the expectation value curve (red line) indicates a large jump

with the onset of the YD (at about 17000y.calBP). The result for the marginal distribution

for PANN (shown in the appendix) is similar to the differences between the CRU TS 3.1 and

ERA-Interim based palaeoclimate reconstruction: The climate change is visible but much less

pronounced as in the palaeoclimate reconstruction estimated with the transfer function based

on the CRU TS 3.1 dataset alone.

For Ein Gedi there is a change detectable in the marginal distribution for PANN (Fig 6.3b)

but the time frame (LPAZ 6) with larger values is still identifiable. The difference is that the

jumps at the borders of this zone are less distinct.

One possible explanation for the changes in the palaeoclimate reconstructions is that there

are differences in the climate dataset due to the fact that the investigation area is situated at the
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Figure 6.3.: Marginal posterior distributions s f #–

C | #–P

(
c0|

#–

p 0

)
for Birkat Ram (a) with c0 = TJJA and

Ein Gedi (b) with c0 = PANN . In detail all base on the biome probability WBl0
esti-

mated with an individual definition of ϑk0 = individual and s.no. 84 (biome setup 3,
#–
C = (TDJF ,TJJA,PANN)

T and a combination of CRU TS 3.1 and E-OBS as estimation dataset).
The mapping of the figure is identical to Figure 4.4.

borders of E-OBS-dataset region. Especially the problems with TJJA of Birkat Ram (≡ BRTJJA )

in the discussion/conclusions of the CFR later on have to be regarded since BRTJJA , BRPANN and
EGPANN are the only marginal distributions which indicate climate changes. In the following

the index BR. . . is a shortcut for Birkat Ram, EG. . . for Ein Gedi and LK . . . for Lake Kinneret.
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6.4. Time slices Selection

6.4. Time slices Selection

For an application of the CFR introduced in chapter 6.1 and 6.2 it is necessary to select con-

templable time slices. For this aim it is required to choose the fossil site with the most reliable

age-to-depth model. In this case this is Ein Gedi due to the fact that it has a laminated sediment

core structure. Schiebel (2013, chap. 6, Fig. 6.2) also selected Ein Gedi as the ”reference” core

in the detailed pollen analysis of the fossil sites located in the Jordan Valley. The term ”dated

pollen samples” in the following paragraphs reflects the fact that for the regarded pollen sam-

ple layer an age-to-depth model is available.

Therefore it is tested if there are dated pollen samples in the Lake Kinneret and the Birkat Ram

sediment core given an age of an Ein Gedi dated pollen sample. In the process it is assumed

that the error of the Ein Gedi age-to-depth model is zero and those of the two others include

errors. The second step is to filter this result. Figure 6.4 shows the result of that process.

0

500

1000

1500

0 2500 5000 7500 10000
time [y cal. B.P.]

de
pt

h 
[c

m
]

Cores Lake Kinneret − incr. reservoir cor. Birkat Ram − reservoir cor.

Figure 6.4.: Age-to-depth models for the time slices selection for the Jordan Valley palaeoclimate re-
construction:
Shaded grey areas: age-to-depth models established by Schiebel (2013).
Blue error bars: age of pollen sample layers of Birkat Ram. Black error bars: age of pollen
sample layers of Lake Kinneret.
Vertical lines: pollen sample layers of the Ein Gedi. The line type marks the assignment
of the dated pollen sample layers: solid: one-to-one and onto (s. Tab. 6.1); long dashed:
more than one contemplable; short dashed: Birkat Ram has one but Lake Kinneret has
more than one contemplable; dotted: remaining dated pollen samples of Ein Gedi.

The shaded grey areas mark the complete available age-to-depth models of both fossil sites
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Chapter 6. Jordan Valley

Table 6.1.: Selected time slices for the Jordan Valley palaeoclimate reconstruction.
All Pollen sample layers with a one-to-one and onto assigned dated pollen sample layer for
the selected time slice of the Ein Gedi pollen sample.

No. Ein Gedi Lake Kinneret Birkat Ram

1 5 ≡ 910y.calBP 5 ≡ 95cm 6 ≡ 132cm

2 7 ≡ 1200y.calBP 8 ≡ 150cm 7 ≡ 161cm

3 10 ≡ 1790y.calBP 13 ≡ 275cm 9 ≡ 211cm

4 11 ≡ 1970y.calBP 15 ≡ 323cm 10 ≡ 230cm

5 29 ≡ 5570y.calBP 44 ≡ 1064cm 18 ≡ 460cm

6 37 ≡ 6740y.calBP 58 ≡ 1394cm 23 ≡ 559cm

7 41 ≡ 7190y.calBP 60 ≡ 1444cm 24 ≡ 584cm

which are established by Schiebel (2013). The blue error bars mark the age of all available

pollen sample layers of Birkat Ram and the black ones those of Lake Kinneret. All pollen sam-

ple layers of the Ein Gedi sediment core are marked with vertical lines. The solid lines mark

those where the just described process results in one Ein Gedi, one Lake Kinneret and one

Birkat Ram dated pollen sample or in other words with a one-to-one and onto assignment of

the considered dated pollen sample. These pollen sample layers are listed in Table 6.1. For

the age marked with a long dashed line (2620y.calBP) Birkat Ram and Lake Kinneret have

more than one contemplable dated pollen sample. For the ages marked with short dashed

lines Birkat Ram has one but Lake Kinneret has more than one contemplable dated pollen

sample (2190y.calBP, 4310y.calBP, 4880y.calBP, 6090y.calBP and 6380y.calBP). The re-

maining dated pollen samples of Ein Gedi are marked with dotted lines. For the seven time

slices presented in Table 6.1 the Jordan Valley CFR method as introduced in chapter 6.1 and

6.2 is applied. With some considerations about the mathematical implementation it could be

possible to reconstruct more than these time slices, but first it has to be analysed if the in-

troduced approach works as the following chapter 6.5 tries to answer. After that it has to be

evaluated if it is worth to apply this method to other time slices.

6.5. Jordan Valley - Palaeoclimate Reconstruction Result

This chapter presents the result of the minimization of J . Since this palaeoclimate recon-

struction has to be analysed for the whole Jordan Valley the past climate is determined by
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#–

c R,0,hmean = #–
ϕ
−1
prior

(
RRR

#–

β R,0

)
, (6.24a)

s #–

c R,0,hmean =
#–
ϕ
−1
prior

(
sPPP
(

RRR
#–

β R,0

))
(6.24b)

and not with the height corrected version as defined by equation 6.18. The difference between

equation 6.24a and 6.24b is the matrix multiplication with sPPP to obtain the palaeoclimate for

one fossil site.

A detailed analysis of the Jordan Valley palaeoclimate reconstruction also implicates errors.

This is done in the same way as in the previous workby utilizing the connection between the

Hessian matrix at the minimum
#–

β R,0 and the covariance matrix ΣΣΣ #–

β R,0
.

1
2
HHH #–

β R,0
=ΣΣΣ

−1
#–

β R,0
. (6.25)

This approach originates from Gauthier (1992) and Rabier, Courtier (1992). The square roots

of diagonal elements of ΣΣΣ #–

β R,0
yield than to the error bars of the palaeoclimate reconstruction

as e. g. presented in Figure 6.5, 6.6a or 6.6b for one time slice. This is the CFR for the time

slice 5570y.calBP.

6.5.1. Jordan Valley Palaeoclimate Reconstruction for 5570y.calBP

This time slice is chosen because the Ein Gedi reconstruction shows an increase in the annual

precipitation amount in the local pollen assemblage zones (LPAZ) 3. This is discussed in

chapter 4.5 where it is also suggested as the variable to evaluate in this application. The

mapping of Figure 6.5, 6.6a and 6.6b is identical to 6.2. In all three figures the palaeoclimate

reconstruction values of the profile of the past time slice (solid line) and the confidence band

(dashed lines) based on equation 6.25 are added in orange. Thereby these confidence band

represents the 68.3% =±σu3 =±σuPANN
interval.

The results for all fossil sites and climate variables (
s #–

c R,0,hmean ) are summarized in Table E.2

(apx. E.3.2). One result of all CFR is, as shown exemplarily in Figure 6.5 for ci=3,R,0,hmean :=

PANN ,R,0,hmean , that the uncertainty of the palaeoclimate profile grows with increasing distance

to grid point no. 1 or in other words the intercept. This result is not surprising and is in ac-

cordance with a general characteristic of regression problems: The error growth with growing

distance to the intercept which is here grid point no. 1.

Another result for PANN ,R,0,hmean in Figure 6.5 is that the estimated palaeoclimate profile for

PANN ,R,0,hmean is almost constant since the value for βc3 ≈ −0.0003 (s. eq. 6.4 for the defini-

tion of βc ...) is very small. The profile for the modern time slice shows quadratic behaviour
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Figure 6.5.: The profile reconstruction in the Jordan Valley for PANN ,R,0,hmean for the time slice
5570y.calBP.
The mapping of the figure is defined analogously to Fig. 6.2: The abscissa represents the
Jordan Valley grid boxes. The green points represent the available data at each grid point
(E-OBS and CRU TS 3.1). The vertical black lines mark the locations of the sediment
cores Ein Gedi, Lake Kinneret and Birkat Ram. The dashed black line indicates the re-
sult of a GLM with quadratic term and the solid black lines are the corresponding 99.5%
confidence bands. In orange the palaeoclimate profile (minimum of J ) with the same
mapping of the line types as the modern time slice GLM except that the confidence bands
represent the 68.3% interval based on ±σu3 = ±σuPANN

. The values for the fossil sites are
marked with an orange dot (EG = Ein Gedi), a triangle (LK = Lake Kinneret) and a square
(BR = Birkat Ram).

(βc3 =−0.0027). One consequence is that the climate anomaly defined by

sc ′i := sci,R,0,hmean − sci,hmean (6.26)

is larger for larger grid point numbers which is mathematically precise
∣∣∣BRPANN

′
∣∣∣> ∣∣∣LKPANN

′
∣∣∣>∣∣∣EGPANN

′
∣∣∣. This characteristic is nearly valid for all time slices and variables as presented in

Table 6.2. In a nutshell one result for all time slices is, despite the just mentioned explanation

for sPANN
′ in Figure 6.5: ∣∣∣∣BRc ′i

∣∣∣∣> ∣∣∣∣LKc ′i

∣∣∣∣> ∣∣∣∣EGc ′i

∣∣∣∣ . (6.27)

The only exception is s−5570TDJF
′ with a value of zero as indicated in Figure 6.6a which is dis-

cussed in detail in the following. For sPANN
′ equation 6.27 is even valid without the absolute

value and therefore the result for the reconstructed palaeoclimate based on the minimum of

108



6.5. Jordan Valley - Palaeoclimate Reconstruction Result

Table 6.2.: The Jordan Valley CFR result for the climate anomaly sc ′i for all considered time slices and
fossil sites s. The first row in this table contains sci,hmean , the values for the modern time
slice and the other rows the values for the climate anomaly sc ′i as defined by equation 6.26.

time slice Ein Gedi Lake Kinneret Birkat Ram

No. [y
.c

al
B

P]

E
G

T D
JF
′ [
◦ C

]

E
G

T J
JA
′ [
◦ C

]

E
G

P A
N

N
′ [

m
m

ye
ar
]

LK
T D

JF
′ [
◦ C

]

LK
T J

JA
′ [
◦ C

]

LK
P A

N
N
′ [

m
m

ye
ar
]

B
R
T D

JF
′ [
◦ C

]

B
R
T J

JA
′ [
◦ C

]

B
R
P A

N
N
′ [

m
m

ye
ar
]

0 0 13.2 26.6 259.5 11.1 25.6 464.3 10.1 25.1 514.9

1 910 0.0 0.0 -81.0 0.3 0.0 -230.5 0.4 0.0 -251.1
2 1200 0.2 0.1 -81.2 2.1 0.9 -230.7 3.1 1.3 -251.3
3 1790 -0.1 0.0 -81.4 -0.7 0.0 -230.9 -1.0 0.0 -251.6
4 1970 0.1 0.0 -81.3 1.3 0.0 -230.8 1.8 -0.0 -251.5
5 5570 0.0 0.1 -85.4 0.0 1.2 -274.4 -0.0 1.7 -321.1
6 6740 -0.6 -0.3 -81.4 -5.1 -3.1 -231.0 -7.6 -4.6 -251.7
7 7190 0.0 -0.0 -81.4 0.1 -0.1 -231.0 0.1 -0.2 -251.7

the cost function in a first assessment is that the past climate is dryer as the modern time slice.

Keep in mind that the presented uncertainty range of the palaeoclimate profile in Figure 6.5 is

the confidence interval of 68.3% and not the 99.5% (modern time slice) it leads to the conclu-

sion that this just mentioned climatic change for PANN ,R,0,hmean for time slice 5570y.calBP varies

in certainty: In addition to the aforementioned growing uncertainty ranges the palaeoclimate

and the modern confidence bands only show an overlap for Birkat Ram. This is not the case for

Lake Kinneret and Ein Gedi so that the certainty of a climate change based on the minimum

of the cost function is higher for Lake Kinneret and Ein Gedi than for Birkat Ram. A detailed

analysis follows in the discussion of the time series in chapter 6.5.2.

Figure 6.6a presents the CFR for TDJF ,R,0,hmean . It indicates that there is no climate change

identifiable for all TDJF ,R,0,hmean as shown in Table 6.2 even if the uncertainty range σuTDJF

is incorporated in this consideration. The remaining palaeoclimate reconstruction profile

TJJA,R,0,hmean shows that there is a slight change to higher summer temperatures with grow-

ing grid point number (Fig. 6.6b). Due to the fact that this derivation is small and within the

68.3% confidence interval a climate change is relatively uncertain.

Neither the winter nor the summer temperatures indicate a palaeoclimate change for this

period a fact which is supported by the local palaeoclimate reconstructions discussed in the

chapter 4.3, 4.5, 5.3 and 6.3 and in the following chapter 6.5.2.
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Figure 6.6.: The profile reconstruction in the Jordan Valley for TDJF ,R,0,hmean and TJJA,R,0,hmean for the time
slice 5570y.calBP.
The mapping of the figures is defined analogously to Fig. 6.5 the only difference is the
colour of the available data points: for TDJF it is blue and for TJJA red.

6.5.2. Jordan Valley Palaeoclimate Reconstruction - Time Series

The most important aim of the Jordan Valley CFR is to evaluate the local palaeoclimate re-

constructions and the possible indicated climate changes there. Therefore the profiles for

the remaining time slices can be found in appendix E.3.1. The analysis of the CFR is now
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continued by time series plots which are comparable to the marginal posterior distributions
s f #–

C | #–P

(
c0|

#–

p 0

)
of the local palaeoclimate reconstructions as for example presented in Fig-

ure 6.3. These time series plots are the visualisation of Table 6.2 or resp. E.2 .
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Figure 6.7.: The palaeoclimate CFR result LKPANN R,0,hmean for Lake Kinneret summarized as a time series.
The abscissa represents the age in y.calBP. In green the palaeoclimate CFR result based on
an application of equation 6.24b. The values LKPANN R,0,hmean (minimum of J ) are marked
with a triangle and the error bars represent the 68.3% interval based on ±σu3 = ±σuPANN
(s. eq.6.25). The mapping for the modern time slice GLM value for Lake Kinneret is the
same as in Figure 6.2 except that here it only represents the value at grid point no. 9.

The aforementioned result of a palaeoclimate for annual precipitation amount dryer than the

modern climate persists at first glance for all fossil sites and analysed time slices as Figure 6.7,

E.11 and E.12 or the corresponding data in Table 6.2/E.2 indicate: For Ein Gedi these are

values between 174 and 179 mm
year with small errors between +σuPANN

= 30 and −σuPANN
= 25 mm

year

compared to them of the two other fossil sites. The result for Lake Kinneret lies between

189 and 234 mm
year (errors between +σuPANN

= 233 and −σuPANN
= 122 mm

year) and for Birkat Ram

between 193 and 264 mm
year (errors between +σuPANN

= 417 and −σuPANN
= 129 mm

year). The overlap

of the error bars with the modern time slice varies beginning with no overlap for Ein Gedi

(Fig. E.11), half of them overlap for Lake Kinneret (Fig. 6.7) and all overlap for Birkat Ram

(Fig. E.12). In summary all results of this Jordan Valley CFR yield to values including the error

bars of around 200 mm
year for all fossil sites and time scales. If the overlap as well as the range of

the error bars is taken as a measure of uncertainty of the palaeoclimate reconstruction Ein Gedi

is the one with the most reliable result followed by Lake Kinneret and than by Birkat Ram.

If the result is regarded in detail this has to be treated with caution due to the following facts:

The minimization of J yields to the Jordan Valley profile which fits best to the modern profile
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and the marginal posterior distributions s f #–
C | #–P

(
c0|

#–

p 0

)
for all components of the climate state

vector. If the values for sPANN ,hsite ≡
sPANN ,hmean are analysed together with the marginal distri-

bution figures for sPANN ,0,hsite (s. e. g. Fig. 6.3 or apx. E.2) it becomes obvious that the modern

profile for sPANN ,hsite lies almost in the 50% interquantile range of the marginal distributions

for all three Figures but for EGPANN ,hsite it is too dry and for LKPANN ,hsite and BRPANN ,hsite too

wet compared to the expectation value of the complete profile s f #–
C | #–P

(
c0|

#–

p 0

)
(red lines in

the considered figures in apx. E.2). This includes the modern time slice marginal distribution

(assigned to the first pollen sample layer) which can be regarded as poor representation of the

modern time slice since the dating is not precise as Figure 6.4 indicates.

Since the minimization of J results in sPANN ,R,0,hmean values, as just mentioned, which fit best

to both parts Jveg and JMod of the cost function (s. eq. 6.9), the result fits to this approach.

But why is there a difference between the modern time slice value of the GLM fit and the

expectation value of the local reconstructions for the first pollen sample layer? On the one

hand it is possible that the modern Jordan Valley profile described by a GLM with quadratic

terms is mathematical not the best representation for the modern Jordan Valley climate for
sPANN ,hsite . One conceivable solution for palaeoclimate reconstructions is an application of the

method developed by Simonis (2009). It is based on a simple model for the annual precipita-

tion amount which is an application of the omega equation. On the other hand the dataset for

the estimation of the modern Jordan Valley profile should be assessed critically. The approach

presented here uses a mixture of two datasets to enlarge the geographical resolution of the

Jordan Valley (chap. 6.1). The result for the local palaeoclimate reconstructions are discussed

in chapter 6.3 in which one problem is already addressed: the investigation area is situated at

the borders of E-OBS-dataset region. But it is not possible to exclude the effect if the borders

based on the available data and analyses presented in this work for the Jordan Valley. Later on,

after the discussion of the temperature reconstructions, the mixing of the datasets is regarded

in more detail.

As mentioned in chapter 6.3, BRTJJA,0,hsite , BRPANN ,0,hsite and EGPANN ,0,hsite are the only marginal

posterior distributions which indicate climate changes in the past as discussed in the previous

chapters (4.3, 4.5 and 5.3). But the palaeoclimate change for BRTJJA appear with the onset of

the YD at about 17000y.calBP which is outside of the time range allowing a CFR for the Jor-

dan Valley with the three considered fossil site data in this work here as Figure 6.4 indicates.

Hence all Jordan Valley CFR for the temperatures should indicate no palaeoclimate change.

This is the case as the time series plots (Fig. 6.8 and E.11 and E.12) show at a first glance

for all considered time slices except 6740y.calBP. Thereby the result for the 6740y.calBP time

slice for Ein Gedi fits since both palaeoclimate reconstructions (EGTDJF ,0,hmean and EGTJJA,0,hmean )

overlap with the modern time slice value and the difference between the minimization re-

sults is relatively small (s. Tab. E.2 for the absolute values). The difference between them

(EGTDJF
′ = −0.6 ◦C and EGTJJA

′ = −0.3 ◦C) indicate a small cooling for both temperature re-
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Figure 6.8.: The palaeoclimate CFR results LKTDJF ,R,0,hmean and LKTJJA,R,0,hmean for Lake Kinneret summa-
rized as a time series.
The mapping of the figures is defined analogously to Fig. 6.7 the only difference is the
colour: for TDJF it is blue and for TJJA red.

constructions but within the confidence range. For Lake Kinneret and Birkat Ram the Jor-

dan Valley CFR result for 6740y.calBP indicates cooling with no overlap of the error bars

for LKTDJF
′ = −5.1 ◦C and BRTDJF

′ = −7.6 ◦C and only a small for for LKTJJA
′ = −3.1 ◦C and

BRTJJA
′ =−4.6 ◦C.
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To get an explanation for the difficulties with time slice 6740y.calBP it is necessary, as done

for sPANN ,0,hmean , to consider the marginal posterior distributions s f #–
C | #–P

(
c0|

#–

p 0

)
together with

the modern profile values for the temperatures. For this, the temperature height correction

has to be applied as mentioned e. g. on page 100. Therefore not sT...,hsite 6≡ sT...,hmean is valid but
sT...,hsite ≡ sT...,hmean +

s
∆T (based on eq. 6.18) with the values EG

∆T = 3.3 ◦C, LK
∆T = 3.5 ◦C,

and BR
∆T =−4.1 ◦C. If this is done, similar results to those of the annual precipitation amount

become obvious: The modern profile lies in all considered figures in the 80% interquantile

range of the marginal distributions (s. apx. E.2) and for Lake Kinneret actually in the 50%

interquantile range. But for Ein Gedi and Lake Kinneret the modern profiles indicate too high

temperatures, compared to the expectation value of the complete profile and for Birkat Ram

too cold temperatures. The discussion of this bad representation of the modern time slice

marginal distributions in connection with the annual precipitation amount (GLM and input

dataset ) can be transfered to the result for the temperatures. For the temperatures there

is an additional possible explanation: Is the temperature correction really necessary for this

simple kind of CFR? If it is leaved out in this comparison with the marginal distributions, than

the modern profile value is not that bad representation of the modern time slice for Ein Gedi

and Lake Kinneret. Due to the fact that this result is not consistent for all fossil sites it is not

followed up by a minimization of the cost function without the height correction.

For a complete explanation of the result of time slice 6740y.calBP it has again to be kept in

mind that the cost function summarized contributions from Jveg and JMod . Here it is necessary

to consider the differences to the other considered time slices: First for Ein Gedi there is a

very small distance between the modern time slice value and the maximum of the probability

density function (pdf) of EGTDJF ,0,hsite . Second EGTJJA,0,hsite has the highest pdf value in the

marginal profile resulting in a small interquantile range. And third for Birkat Ram the distance

between the modern time slice value and the pdf-maximum of BRTDJF ,0,hsite is also smaller than

for the other time slices. Since the grid point of Ein Gedi is situated near the grid point which

represents the intercept differences, they have a large impact on the whole Jordan Valley CFR

profile. In other words the pdf values of the fossil site Ein Gedi move the whole profile to

lower temperatures.

In the discussion of Figure 6.7 the difficulties of mixing two different datasets was shortly ad-

dressed. For a complete analysis of this the Jordan Valley profiles for TDJF und TJJA (Fig. 6.2 resp.

6.6a and 6.6b) have to be included in the considerations. Some important facts have to be

mentioned before: First both datasets use different orography (s. e. g. Fig. 6.1). The CRU

TS 3.1 temperature data is interpolated on the height of the E-OBS orography with the already

introduced height correction based on the temperature gradient of the standard atmosphere

γd (s. e. g. chap. 6.2.2). Furthermore the CRU TS 3.1 dataset has no border since it is available

for the complete earth so that effects due to borders can be excluded for this dataset. Also the

geographical extension of the E-OBS dataset is larger for the temperature than for the precip-
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itation amount dataset (s. Webpage). Second the interpolation is not available for the annual

precipitation amount.

Analysing Figure 6.5 it is recognizable that the distribution of the input data covers a large

interval for grid point no. 3 (EG) and from 10 to 13 of ≈ 700 mm
year compared to the rest (≈

300 mm
year). In Figure 6.6 this is only identifiable for grid point no. 12 and 13 (≈ 11 ◦C) compared

to ≈ 5 ◦C for the other ones. Additionally there is a gap in the distribution of the data points

for these two grid points which is the main reason for the large spread. This visible grouping

of the data points can be assigned to the two datasets used (not visualized in the figures).

If a large spread is linked with difficulties in the mixing of the datasets the following can be

concluded: The height correction based on the incorporated orography is not unproblematic

since the problems appear not at the same grid points where the precipitation amount profiles

indicate a large spread. Additionally the boundary of the temperature dataset, as mentioned

in the last paragraph, is not that near as for the precipitation dataset, so therefor the mixing

of the dataset and also the CFR has to be regarded with care.

6.5.3. Jordan Valley palaeoclimate reconstruction - Summary and Conclusion

In summary the Jordan Valley CFR results in a dryer palaeoclimate than the modern climate

with PANN values around 200 mm
year for all fossil sites and considered time slices. If the overlap as

well as the range of the error bars is taken as a measure of uncertainty of the palaeoclimate

reconstruction Ein Gedi is the one with the most reliable result followed by Lake Kinneret and

than by Birkat Ram. Also the result of the local reconstructions in the previous chapters of no

palaeoclimate change in the summer and winter temperatures is confirmed. For each of the

reconstructed Jordan Valley profiles (s. apx. E.3.1 or Fig. 6.5 and 6.6) the uncertainty of the

palaeoclimate profile grows with increasing distance to grid point no. 1 or in other words the

intercept. This is in accordance with a general characteristic of regression problems: The error

growth with increasing distance to the intercept which is here grid point no. 1. Also valid is

that the climate anomaly defined by equation 6.26 fulfils∣∣∣∣BRc ′i

∣∣∣∣≥ ∣∣∣∣LKc ′i

∣∣∣∣≥ ∣∣∣∣EGc ′i

∣∣∣∣ (6.28)

for all time slices.

But all quantitative results for the temperatures and the annual precipitation amount have to

be handled with care since the Jordan Valley CFR approach is problematic. Mathematically and

numerically the method works but there are some problems with the input data additionally to

problems of the local reconstructions as discussed in the analyses of figures in the last section.

If this discussion is extended one question respective the input datasets arises: Why isn’t E-

OBS used allone as input climate dataset for the palaeoclimate reconstructions? One answer

is that the covered area isn’t large enough to estimate all required transfer functions alone,
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neither the biome nor the taxon specific transfer functions. For the biome this is especially

the extended distribution area of the Irano-Turanian which lies partly outside of the E-OBS

dataset area. Another one is that a re-digitalization of the distribution maps has to be done

in which the question of representation arises: Is the distribution represented by the maps

really sensitive enough for the high geographical resolution of the E-OBS dataset? With the

mixing of both dataset in the estimation of the transfer functions this problem is partly avoided

since this is quasi equal to an averaging of both. The only effect of the averaging is a slightly

reduced BSS...Bl
. Additionally it is mentioned in chapter 4.2.3 that the main characteristics of

the marginal distributions persist. Due to the other problems in all parts of the palaeoclimate

reconstructions in the Jordan Valley this re-digitalization is not done.

Another question is: Why isn’t another dataset used? First the CRU TS 3.1 data alone has

a too coarse spatial resolution (s. chap. 6.1). Another gridded dataset based on observations

with a high resolution for at least the complete Eurasian continent and the Mediterranean area,

which is required, isn’t available (as known by the author). Additionally all known available

reanalyses with a geographical high resolution have the same problem that the required area

is not available or is situated in the fringe.

If this availability of geographical high resolution climate data is solved there are also other

difficulties: One main problem is that the local reconstructions, especially Birkat Ram and

Lake Kinneret, have to be optimized (details in chap. 6.5.3). Switched back to the Jordan

Valley CFR approach there are also methodical problems: The selection resp. definition of

the intercept position has a large influence on the whole result. An equal weighting of all

fossil sites is not possible, even if the factor ∆sinϕs (s. chap. 6.2.3) is incorporated in the

minimization. Another approach, as for example the CFR introduced by Gebhardt (2003)

could solve this problem. If this is not done the question of representation of modern Jordan

Valley climate by the GLM profile as introduced in chapter 6.1 has then to be solved.
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7
Summary, Conclusion and Outlook

The first part of this chapter gives an short overview over all results of this work and assesses

them in connection with the ojectives mentioned in the introduction. In chapter 7.2 an outlook

to further work is given.

7.1. Summary and Conclusion

General Summary

All local palaeoclimate reconstructions presented in this work are marginal distributions of

a reconstructed multivariate (almost all with three dimensions) probability density function

(pdf) (chap. 3 and 4) or probability (chap. 5). For all estimated marginal distributions the

associated marginal quantiles are estimated as well as the weighted mean which is interpreted

as a numerical expectation value. These quantities are determined to allow a better evalu-

ation and interpretation of the corresponding marginal distributions. For Lake Prespa and

Birkat Ram a linear trend is estimated for several time slices for a better evaluation of climate

changes. This trend is estimated on the numerical expectation value of the marginal pdfs of

each climatolgical variable ci. For Lake Prespa there are four and for Birkat Ram there are

three time ranges. The numbers are from past to present and time range X is shortened from

now on with t. r. X . These t. r. are identifiable in all palaeoclimate reconstructions since the

marginal distribution profiles before and after differ more or less. Some of these time ranges

are compared by application of a Student’s t-test with a significance level of 0.05 to evaluate

the climate change.

For all considered fossil sites marginal distributions for the temperature of the coldest sea-

son/month (TJan for Lake Prespa resp. TDJF for the other ones) and the warmest season/month

(TJul resp. TJJA ) are available. Due to the fact, as mentioned in the introduction, that the

Ein Gedi palaeoclimate reconstruction is only adapted to the Jordan Valley situation for this

fossil site no middle troposphere (850hPa level) temperature palaeoclimate reconstruction is

estimated. For the other fossil sites 850hPa temperature reconstructions of the coldest sea-

son/month (T 850hpa
Jan resp. T 850hpa

DJF ) and the warmest season/month (T 850hpa
Jul resp. T 850hpa

JJA )

are discussed. Surface temperatures based on the middle troposphere temperatures could be
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determined with a simple height correction (s. e. g. Stolzenberger 2011), based on the tem-

perature gradient of the standard atmosphere (6.5× 10−3 K
m), the mean height of the 850hPa

level (1500m) and the height above mean sea level (AMSL) of the drilled sediment core which

are also referred as fossil sites. As also mentioned in chapter 2.1.1 it is an ongoing discussion

which and which combination of environmental parameters is the best to be reconstructed.

Also available for all fossil sites are palaeoclimate reconstructions of climate variables which

describe the water availability: The ”classical” annual precipitation amount PANN and the cli-

matic water deficit (CWD) accumulated for one year (CWDANN).

All presented palaeoclimate temperature reconstructions except Lake Kinneret share that

the surface and the middle troposphere temperature reconstructions are in accordance. All

of them validate that more (Lake Prespa and Birkat Ram) or less (Lake Kinneret) the tem-

perature height correction mentioned on page 40 is correct. Also shown is that the CWDANN

palaeoclimate reconstruction works and does not contradict PANN . The marginal distribution

for CWDANN is for example for Lake Prespa a reconstructed palaeoclimate variable which al-

lows more identifiable variation than in PANN . The results of each fossil site is summarized in

more detail in the following.

Lake Prespa

For the sediment core of Lake Prespa the Bayesian Indicator Taxa Model (BITM) is selected

as palaeoclimate reconstruction method. Therefore the pollen counts are transferred with a

threshold definition to presence and absence information. This method allows to take ex-

pert knowledge into account and the result is the indicator taxa matrix. This indicator taxa

matrix is then filtered with an algorithm which ensures that taxa with to similar transfer

functions are excluded in the palaeoclimate reconstruction (s. chap. 3.2.1 for details). The

transfer functions for the required taxa base on generalized linear model (GLM) estimated

for a three dimensional climate state vector. The setup is in detail described in chapter 3.2.2.

The required climate prior for the BITM is a subjective prior defined by a product of the

marginal distributions of the multivariate prior distribution (s. chap. 3.2.3 and eq. 3.32 for

details). The parameter definition bases on histograms of the modern climate at the fos-

sil site. Both results are then applied to estimate four different palaeoclimate reconstruc-

tions of a three dimensional climate state vector
#–
C := (TJan,TJul,PANN)

T , (TJan,TJul,CWDANN)
T ,(

T 850hpa
Jan ,T 850hpa

Jul ,PANN

)T

or
(

T 850hpa
Jan ,T 850hpa

Jul ,CWDANN

)T

(s. eq. 3.1 for details).

The estimated marginal distributions are presented in Figure 3.6 and 3.7 and discussed in

chapter 3.3. Briefly summarized the results are: There are four discriminable time ranges iden-

tifiable in the surface temperature palaeoclimate reconstructions for TJan and TJul with greater

climate changes for TJan than for TJul. For TJan the greatest change between two time ranges

is identifiable between t. r. 2 and 3. Time range 3 differs also significantly from the modern

climate. For TJul only one time range is identifiable with a significant difference to the modern

TJul climate for a longer time scale: t. r. 2. The palaeoclimate reconstruction of the middle tro-
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posphere temperatures T 850hpa
Jan and TJul (Fig. 3.7a resp. 3.7b) supports this results: In general

the differences between the time ranges are persistent respective to the significance and the

direction of the change compared to the surface temperature results presented in Figure 3.6a

resp. 3.6b. The most clear quantifiable change is that T 850hpa
Jan is on average in t. r. 2 more sim-

ilar to t. r. 3 as it is the case for TJan. Also the marginal pdfs for T 850hpa
Jan and T 850hpa

Jul are slightly

narrower than those of TJan and TJul. As a consequence the simple height correction mentioned

in the beginning is also confirmed. The result for the palaeoclimate reconstructions of the

water variables PANN and CWDANN is different from that: One important result is that different

definitions of the climate state vector yield to palaeoclimate reconstruction results which are

in general not inconsistent. This means that the sign of the differences between the group

means of the time ranges is the same. For both PANN reconstruction results, Figure 3.6c and

3.7c, only the climatic oscillations in t. r. 1 are reliable. Compared to the PANN palaeoclimate

reconstruction both CWDANN results (Figure 3.6d and 3.7d) indicate four clearly discriminable

time ranges. These differ significantly among themselves with only one time range with a

really visible and significantly different climate to the modern time slice: time range 2.

Lake Kinneret

For Lake Kinneret the Bayesian Biome Model (BBM) is the selected palaeoclimate reconstruc-

tion method since Lake Kinneret has a large catchment area (s. chap. 2.3.2.1 for details). For

the BBM the taxa are assigned to the Mediterranean or Irano-Turanian biome. Then the pollen

taxa counts of all taxa are summarized to the according biome probability WBl0
(s. chap. 4.2.2

for details). The required thresholds ϑk0 for the so called noise reduction are determined with

different methods: ϑk0 = 0, ϑk0 = Qk0

(
#–

ω̃ k0

)
= 33% the 33% quantile of

#–

ω̃ k0 and a taxon spe-

cific individual definition. The influence of the different thresholds is evaluated: Compared to

ϑk0 = 0 there is an increase of the probability for the Mediterranean biome in the upper part

of the record and a decrease in lower part (s. Fig. 4.1). It is clearly deducible that the trend of

the biome probability WBl0
varies in the same way as the ratio trees & shrubs/grasses & herbs

defined by Schiebel (2013). This fits very well with the fact that the Irano-Turanian biome is

a steppe biome type dominated by grasses & herbs (Schiebel 2013). Also identifiable is that

only in the lower part of the sediment core the Irano-Turanian biome is preferred, since the

biome probability always varies around 0.5 in the rest of the profile. Later on also the influence

on the palaeoclimate reconstruction is examined. The climate prior distribution is estimated

analogously to the Lake Prespa climate prior with histograms of the modern climate of the

Jordan Valley (s. chap. 4.2.1 for details). This is done due to the fact that the Lake Kinneret

palaeoclimate reconstruction result is used later on in the Jordan Valley climate field recon-

struction (CFR) (s. chap. 6) and the aim in chapter 6 is to learn about climate changes in the

Jordan Valley from the data. The biome transfer functions or biome likelihoodsPBl |
#–
C

(
bl0 |

#–

c 0

)
(s. chap. 4.2.3 for details) are estimated with various setups: different biome distributions, dif-

ferent climate datasets and definitions of the climate state vector. The result is verified with
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the Brier skill score BSS in order to discover the most promising combination of the parame-

ters. The conclusion from the verification result allone is that a three dimensional climate state

vector has to be applied. The selection of the biome setup depends on the aim of the palaeo-

climate reconstruction: biome setup 3 is selected for surface temperature reconstructions and

biome setup 4 for middle troposphere temperature reconstructions.

The palaeoclimate reconstruction result is that none of setups allows a reconstruction of a

period with climate change which is identifiable in any of the presented marginal distributions.

The only identifiable result is that there is some variation dependent on the biome probability

WBl0
. The conclusion of the application of the BBM with two biomes is: The lack of difference

of the two regarded biomes in climate phase space does not allow a palaeoclimate reconstruc-

tion with a climatic change based on the BBM, where especially TJJA and CWDANN do not differ.

Thereby the CWDANN and PANN palaeoclimate reconstruction results do not contradict them-

selves. The middle troposphere temperature reconstructions do not completely contradict the

surface temperature reconstructions since the sign of the height correction is correct. But the

structure (almost no variation) and the absolute value of the height correction does not fit.

The problems of the BBM with two biomes motivates to test the pollen-ratio model (PRM) as

presented in chapter 4.4. In a nutshell the PRM introduced by Ohlwein, Wahl (2012) connects

the composition of modern pollen spectra described by a ratio of two pollen taxa with the

modern climate. The inversion of this connection allows a palaeoclimate reconstruction. The

already mentioned E-OBS climate dataset and the pollen spectra presented in chapter 2.2.2

form the database for the estimation of the PRM-GLM. The result presented in Figure 4.9

shows that the distribution of the data points covers a too small interval in the climate phase

space to allow a robust GLM estimation. Especially the absence of low precipitation values

is a problem. Therefore a PRM-GLM based on this data is not inverted and applied in a

palaeoclimate reconstruction.

Ein Gedi

Due to the fact that the Jordan Valley CFR (s. chap. 6) requires an Ein Gedi palaeoclimate

reconstruction with other settings as in Litt et al. (2012) the BBM is applied with a three

dimensional climate state vector, CRU Time Series (CRU TS) 3.1, biome setup 3 and the Jordan

Valley prior distribution (s. chap. 4.5). The estimated result is compared to Litt et al. (2012):

The change of the biome setup from 1 to 3 and the change of the climate prior has the most

impacts on the palaeoclimate reconstruction since the period with a climate change in the

summer temperature TDJF is not identifiable. The climate change period for PANN is robust

since it is identifiable in all presented marginal distributions but with different absolute values

(s. chap. 4.5 for details). Also the palaeoclimate reconstruction result for CWDANN is consistent

to PANN: A period with climate change to a more wet climate is identifiable.

The conclusions which analyse the circumstances when it is possible to find a time range

with palaeoclimate change are repeated here (s. chap. 4.6):
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• One biome in the depth profile of WBl0
has to dominate for several pollen sample lay-

ers/time slices. Dominating here implies high WBl0
values and low for the other ones.

• Additionally this dominating biome has to be clearly discriminable in the PBl ,~C
(bl0 ,~c0),

the clearer the better. If more than two biomes are considered in the BBM then a location

of this biome between the other one is critical.

• If the number of considered biomes is greater than two and two of the biomes have an

identical mode for PBl ,~C
(bl0 ,~c0), then the biome which is clearly discriminable has to

be the dominating one in WBl0
. This fact is one reason why it is possible to identify a

period with climate change in the reconstruction for Ein Gedi and not in the one for

Lake Kinneret.

• The probability PBl ,~C
(bl0 ,~c0) of one biome is always strongly influenced by the climate

prior: In the climate phase space which is splitted into several areas by the quadratic

discriminant analysis (QDA), this biome is the one which is situated at the edges. In the

cases considered in this chapter this is the Mediterranean biome B1

• The data basis for the QDA is thin/sparse which has the consequence that the QDA result

is not robust especially for the Mediterranean biome.

Birkat Ram

For Birkat Ram a new method is developed which is situated between the BBM and BITM

since the requirements for an application of these methods are not exactly given (s. chap. 5.1

for details). The Bayesian Indicator Taxa and Biome Model (BITBM) combines biome (BBM)

and taxon (BITM) information by an application of the Bayes theorem on the joint probability

P #–
C ,

#–
T ,Bl

(
#–

c ,
#–

t ,bl

)
. Presented in equation 5.5 is the applied BITBM:

P #–
C 0|

#–
T 0

(
#–

c 0|
#–

t 0

)
= π #–

C

(
#–

c 0

)
·

Nl

∑
l=1

WBl0

 ∏
k

∀tι k0=1

PTk|
#–
C ,Bl

(
tk0 |

#–

c 0,bl0

) ·PBl |
#–
C

(
bl0 |

#–

c 0

)
mT,Bl (t0,bl0)

.

The BITBM is applied on six taxa (T. Litt pers. comm.) of which four are assigned to the

Mediterranean biome type and two are assigned to the Irano-Turanian biome type. The re-

quired biome probability WBl0
is estimated in the same way as for Lake Kinneret. For con-

sistency the required taxon specific threshold values ϑk0 are the same as later on applied for

IIINι×Nk0
ϑ0

. The resulting depth profile of the biome probability WBl0
is divided in three differ-

ent zones which are also identifiable in the palaeoclimate reconstruction. The first zone (0 to

≈ 10000y.calBP) shows a clear preference that Birkat Ram is located in the Mediterranean

biome type. The second zone (≈ 10000 to ≈17000y.calBP) is the zone where Schiebel (2013)
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assumed a desiccation of Birkat-Ram. The third zone (≈ 17000 to ≈30000y.calBP) shows a

clear preference for the Irano-Turanian biome . The biome probability WBl0
result here is in a

good agreement with the results of the pollen analysis of Schiebel (2013) which includes all

taxa detected in the Birkat Ram sediment core. For the same reasons as for Lake Kinneret and

Ein Gedi the Jordan Valley climate prior is applied. The part in the BITBM which describes

the contribution of the individual taxa is the product in the numerator of equation 5.5 which

is a quasi nested BITM. The transfer functions PTk|
#–
C ,Bl

(
tk0 |

#–

c 0,bl0

)
are directly estimated via

GLM in the same way as for Lake Prespa (s. chap. 5.2.3 resp. 3.2.2). The indicator taxa are

the same as those used in the estimation of the biome probability WBl0
. The transformation of

pollen counts to presence and absence information summarized in the required indicator taxa

matrix IIINι×Nk0
ϑ0

is done with the same approach as for Lake Prespa (s. chap. 5.2.3 resp. 3.2.1).

In contrast to the palaeoclimate reconstruction of Lake Prespa only six taxa are the past proxy

database so that no mahalanobis distance filtering is required. The biome likelihood or biome

transfer function PBl |
#–
C

(
bl0 |

#–

c 0

)
has the same functionality as in the BBM and is also esti-

mated with a QDA (s. chap. 5.2.4 resp. 4.2.3). Due to the fact that biome setup 3 is rated as

the best and selected for the palaeoclimate reconstruction for Lake Kinneret and Ein Gedi it is

also applied here. The marginal probability mBl (bl0) in equation 5.5 is defined as the sum over

the numerator of this equation. This normalisation ensures that the BITBM result fulfils the

mathematical definition for a probability.

All parts of the BITBM are applied to estimate four different palaeoclimate reconstruc-

tions of a three dimensional climate state vector
#–
C := (TJan,TJul,PANN)

T , (TJan,TJul,CWDANN)
T ,(

T 850hpa
Jan ,T 850hpa

Jul ,PANN

)T

or
(

T 850hpa
Jan ,T 850hpa

Jul ,CWDANN

)T

. The resulting marginal distributions

of the Birkat Ram palaeoclimate reconstruction are presented in Figure 5.3 and 5.4. In sum-

mary it is noted that the climate change to higher summer temperatures (TJJA and T 850hpa
JJA )

with the onset of the Younger Dryas (YD) is very reliable so that this hypothesis from Schiebel

(2013) is confirmed. The hypothesis of dryer environmental conditions could be only partly

confirmed since only the palaeoclimate reconstruction applied with the surface based transfer

functions clearly provide this. For the BITBM as a whole it becomes also obvious that it is not

as robust against anthropogenic outliers/influences as BITM but not so sensitive as the BBM.

But for a reliable conclusion the BITBM has to be applied at a sediment core with more taxa.

Overall it is important to note that the palaeoclimate reconstructions of PANN and CWDANN

of Birkat Ram in general are very sensitive to the setup of the climate state vector
#–

c , more

precisely: What are the other components (middle troposphere temperatures (850hPa level)

or surface temperatures)?

Jordan Valley

The successful CFR of Gebhardt (2003) and Simonis (2009) allows a better assessment of

possible climate changes in the past. This motivates to apply a simplified version of their

variational approach for the fossil sites situated in the Jordan Valley: Ein Gedi (EG), Lake Kin-
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neret (LK) and Birkat Ram (BR). The basic hypothesis in their approach and the approach

presented here is the possibility to describe the past climate
#–

c 0 as deviation
#–

c ′ from the mod-

ern climate state
#–

c :=
#–

c mod (s. eq. 6.1). Past climate in this context means to evaluate the

climate state of a certain defined time slice at all considered locations. The analysis area is the

Jordan Valley. Its definition bases on the orography of the E-OBS climate dataset (s. chap. 6.1

for details). The CFR for the Jordan Valley bases on the minimization of a cost function. In this

study the CFR is a interpolation of the local palaeoclimate reconstructions. The simplifications

of mathematics of this cost function from Gebhardt (2003) and Simonis (2009) are described

in chapter 6.2. The cost function in the approach applied here summarizes the contributions

of the paleoclimate reconstruction of Ein Gedi, Lake Kinneret and Birkat Ram for one time

slice in a vegetational part Jveg and the derivation
#–

c ′ in a model part JMod . The minimization

result of the cost function is a CFR which fits best to the palaeoclimate reconstruction at all

locations and also quasi linear profile which is used as model part. This quasi linear profile is

a GLM with quadratic term which takes into account the modern climate by application of
#–

c ′.

Directly after these defintions follows a discussion of the adaptations of the local palaeo-

climate reconstructions. These adaptations are that all palaeoclimate reconstructions applied

in this variational approach use transfer functions which are estimated with a mixture of two

climate datasets: E-OBS and CRU TS 3.1. All of these palaeoclimate reconstructions show

structures indicated in the marginal distributions which are very similar to the reconstructions

based on the CRU TS 3.1 dataset alone. The most important features of the local palaeoclimate

reconstructions persist. Seven time slices are selected for the CFR: 910y.calBP, 1200y.calBP,

1790y.calBP, 1970y.calBP, 5570y.calBP, 6740y.calBP and 7190y.calBP. For this selection

the most reliable age-to-depth model of the Ein Gedi sediment core is choosen as the ”refer-

ence” date. Then all pollen sample layers with an one-to-one and onto assignment of their

age-to-depth model to the Ein Gedi date are selected.

For these time slices the cost funtion is minimized. Summarized the Jordan Valley CFR

results in a dryer palaeoclimate than the modern climate with PANN values around 200 mm
year for

all fossil sites and considered time slices. If the overlap as well as the range of the error bars is

take as a measure of certainty of the palaeoclimate reconstruction Ein Gedi is those with the

most reliable result followed from Lake Kinneret and than from Birkat Ram. Also the result of

the local reconstructions in the previous chapters of no palaeoclimate change in the summer

and winter temperatures is confirmed. For each of the reconstructed Jordan Valley profiles

the uncertainty of the palaeoclimate profile grows with increasing distance to the intercept.

This is in accordance with a general characteristic of regression problems: The error growth

with growing distance to the intercept. Also valid is that the climate anomaly defined by

equation 6.26:
sc ′i := sci,R,0,hmean − sci,hmean
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fulfils equation 6.28 ∣∣∣∣BRc ′i

∣∣∣∣≥ ∣∣∣∣LKc ′i

∣∣∣∣≥ ∣∣∣∣EGc ′i

∣∣∣∣
for all time slices.

But all quantitative results for the temperatures and the annual precipitation amount have to

be handled with care since the Jordan Valley CFR approach is problematic. Mathematically and

numerically the method works but there are some problems with the input data additionally

to problems of the local reconstructions as discussed in the analyses of figures in chapter 6.3.

If this discussion is extended one question respective the input datasets arises: Why isn’t E-

OBS used allone as input climate dataset for the palaeoclimate reconstructions? One answer

is that the covered area isn’t large enough to estimate all required transfer functions alone,

neither the biome nor the taxon specific transfer functions. For the biome this is especially

the extended distribution area of the Irano-Turanian which lies partly outside of the E-OBS

dataset area. Another one is that a re-digitalization of the distribution maps has to be done

in which the question of representation arises: Is the distribution represented by the maps

really sensitive enough for the high geographical resolution of the E-OBS dataset? With the

mixing of both dataset in the estimation of the transfer functions this problem is partly avoided

since this is quasi equal to an averaging of both. The only effect of the averaging is a slightly

reduced BSS...Bl
. Additionally it is mentioned in chapter 4.2.3 that the main characteristics of

the marginal distributions persist. Due to the other problems in all parts of the palaeoclimate

reconstructions in the Jordan Valley this re-digitalization is not done.

Another question is: Why isn’t another dataset used? First the CRU TS 3.1 data alone has

a too coarse spatial resolution (s. chap. 6.1). Another gridded dataset based on observations

with a high resolution for at least the complete Eurasian continent and the Mediterranean area,

which is required, isn’t available (as known by the author). Additionally all known available

reanalyses with a geographical high resolution have the same problem that the required area

is not available or is situated in the fringe.

If this availability of geographical high resolution climate data is solved there are also other

difficulties: One main problem is that the local reconstructions, especially Birkat Ram and

Lake Kinneret, have to be optimized (details in chap. 6.5.3). Switched back to the Jordan

Valley CFR approach there are also methodical problems: The selection resp. definition of

the intercept position has a large influence on the whole result. An equal weighting of all

fossil sites is not possible, even if the factor ∆sinϕs (s. chap. 6.2.3) is incorporated in the

minimization. Another approach, as for example the CFR introduced by Gebhardt (2003)

could solve this problem. If this is not done the question of representation of modern Jordan

Valley climate by the GLM profile as introduced in chapter 6.1 has then to be solved.
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7.2. Outlook

The outlook and suggestion for further work is directly connected with the last mentioned

difficulties of representation of modern Jordan Valley climate by the GLM profile. Another

possibility of a CFR is a Bayesian Hierarchical Model (BHM). There have been great efforts in

the science of climate reconstructions especially in the last decade as mentioned in the intro-

duction part on page XI. The paper of Tingley et al. (2012) which presents the concept of BHM

with multiple levels for palaeoclimate reconstructions brought this science on a mathemati-

cally robust level. As pointed out by Tingley et al. (2012), it is possible to reconstruct climatic

fields if this aim or more precisely level is incorporated in the definition of the applied BHM.

One part of the ongoing Paleo Modelling (PalMod) project WG3 is exactly the implementation

of the approach from Gebhardt (2003) as a so called process level in a BHM (Nils Weitzel, pers.

comm.), so that it is possible to reconstruct physically consistent climatic fields. Another aim in

this PalMod project is to apply a complex BHM on real proxy data (Nils Weitzel, pers. comm.).

In contrast Tingley et al. (2012) presents the application of BHM with simulated proxy data.

Nils Weitzel (pers. comm.) also explores the extension of the so called data level in the BHM:

He designed Markov Chain Monte Carlo (MCMC) to estimate the regression parameters of

tranfer functions instead of the maximum likelihood estimation (MLE) applied in this work.

Another suggestion, which is also investigated in the PalMod project, is the incorporation of

different proxies in the BHM, called classically multiproxy approach. If this is sucessfully in-

cluded it is also possible to reconstruct climate parameters which are available over land and

ocean. At the moment it is only feasible to consider either land or the ocean.

Another suggestion is the extension of the verification part of the Diplomathesis of Stolzen-

berger (2011). Stolzenberger (2011) verifies transfer functions based on a two dimensional

climate state vector
#–
C := (TJan,TJul)

T for some selected taxa. Her research was to find the best

climate input dataset for the estimation of transfer functions. Schult (2013) verifies transfer

functions estimated from European taxa distribution maps (cf. chap. 2.2.1) with taxa distribu-

tion maps available for Northern America with the same tools as Stolzenberger (2011). Some

of this research can also be done with the R-package biomod21. This research has to be ex-

tended especially for the complete taxapool mentioned in chapter 2.2.1 and also the biome

distributions. The ongoing Bachelor thesis of Lisa Wacker (supervised by Prof. Dr. Andreas

Hense and Prof. Dr. Thomas Litt) looks at the spatial variation of biomes in the Dead Sea basin

when changing the amount of precipitation. If this sensitivity analysis is finished and in the

best case extended by temperature it would be also a promising task to apply the BITBM for

another contemplable sediment core with more taxa. Sophie Stolzenberger explores in her on-

going PhD thesis the comparison between model simulations which are taken from the PMIP3

database and GLM- based climate reconstructions based on pollen data. The aim is to opti-

mize the model data by including the probabilistic information of the occuring taxa. A clearly
1https://cran.r-project.org/package=biomod2 for details
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change in summer temperatures can be detected for the Mid Holocene over Europe (Sophie

Stolzenberger pers. comm.).

One other suggestion is that the time scale of the available pollen proxy records in Israel has

to be extended backwards in the past to investigate also the suggested climate change in the

summer temperature (TJJA and T 850hpa
JJA ) with the onset of the YD in the Birkat Ram palaeocli-

mate reconstruction with a CFR. Stein et al. (2011a,b) extend the time scale for Ein Gedi with

a new sediment core drilled within the Dead Sea Deep Drilling Project (DSDDP) campaign

2010/2011 which is part of the International Continental Scientific Drilling Program (ICDP).

The established age-to-depth model from Torfstein et al. (2015, 2013) suggests that the core

covers approximately the last150000y.calBP. One part of Sophie Stolzenbergers PhD thesis

(in preparation) is the palaeoclimate reconstruction by using the BBM and bases on the pollen

counts (PhDthesis by Andrea Miebach and Chunzhu Chen (in preparation) ) of this sediment

core. In the PANN palaeoclimate reconstruction there is a clear identifiable climate change pe-

riod in the time period between approximate 120000y.calBP and 133000y.calBP. Her results

also confirm the conclusions of chapter 4.6 for the BBM for the condition when it is possible

to reconstruct a period with climate change (Sophie Stolzenberger pers. comm.).

Mentioned in the introduction of this thesis was the motivation of the Collaborative Research

Centre (CRC) 806: The answer of the question of origin of modern man and their way to

Europe. This work provides a contribution to that by exploring periods with climate change on

the suggested Eastern migration corridor. Climate change is one possible driver for movements

of modern man since climate influences the availability of food. Food in turn is the main driver

for migration. Raichlen et al. (2014) indicates a very interesting mathematically description

of movements of human hunter-gatherers. It would be interesting to combine this model

with the probabilistic climate reconstruction results of this thesis and the results from Sophie

Stolzenberger and Nils Weitzel.
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A
Lake Prespa

This appendix chapter presents additional information and figures for the palaeoclimate re-

construction of Lake Prespa which bases on the BITM.

A.1. Thresholds for the Determination of the Indicator Taxa

The first section presents the table with all defined threshold values ϑk0 as required for the

definition of the indicator taxa matrix IIINι×Nk0
ϑ0

(s. chap. 3.2.1). The second part presents the

depth profile figures of the relative abundance
#–

ω̃ k0 and the corresponding empirical cumulative

distribution function (ECDF) for each regarded taxon listed in Table A.1.

A.1.1. Threshold and Taxa Table

Table A.1.: Taxa used for the palaeoclimate reconstruction of Lake Prespa and the corresponding thresh-
olds ϑk0

No. Taxon name Shortcut Threshold [%]

1 Abies Abies_Prm 2.00

2 Quercus cerris Quce_Prm 4.60

3 Quercus robur Quru_Prm 5.50

4 Quercus ilex Quil_m 10.5

5 Fagus Fasy_f 0.90

6 Alnus Algl_m 1.10

7 Betula Betu_m 1.10

8 Corylus Coav_m 2.50

9 Fraxinus Frax_Prm 1.25

10 Tilia Tilia_Prm 1.00

11 Ulmus Ulmu_Prmf 0.75

12 Phillyrea Phla_m 0.70

13 Olea Oleu_m 0.35

continued on next page. . .
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. . . continuation

No. Taxon name Shortcut Threshold [%]

14 Cornus mas Coms_m 0.00

15 Hippophae Hirh_Prm 0.50

16 Buxus Buse_m 0.00

17 Polygonaceae undiff. Poav_Prh 0.00

18 Polemoniaceae Poca__Prm 0.00

19 Alisma cf. A. plantago-aquatica Alpl_Prm 0.00

20 Typha Tyla_Prh 0.65

21 Sambucus Sani_m 0.00

22 Hedera Hehe_m 0.00

23 Nymphaea Nyal_m 0.00

24 Pistacia Pista_Pr 0.28

25 Ephedra Ephed_Pr 0.60

26 Chenopodium Cheno_Pr 2.40

A.1.2. Threshold ϑk0 Definition

The mapping of all following figures in this chapter is the same as for Figure 3.2 for taxon

Alnus: Shown on the left side is the depth profile of the relative abundance
#–

ω̃ k0 and on the

right side the corresponding ECDF. The depth profile of the relative abundance ω̃ι k0 in each

pollen sample ι is shown in dark grey. The light grey area is the ten times enlarged and the

very light grey the 100 times enlarged profile. The threshold value ϑk0 is visualized by the

different shaded areas in the depth profile and by the vertical bold black line in the ECDF.

The resulting presence/absence information is visualized in the depth profile with black dots

(=presence) and circles (=absence).
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Figure A.1.: Lake Prespa, definitions of the thresholds (part 1).
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Figure A.2.: Lake Prespa, definitions of the thresholds (part 2).
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Figure A.3.: Lake Prespa, definitions of the thresholds (part 3).
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Figure A.4.: Lake Prespa, definitions of the thresholds (part 4).
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Figure A.5.: Lake Prespa, definitions of the thresholds (part 5).
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Figure A.6.: Lake Prespa, definitions of the thresholds (part 6).
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Figure A.7.: Lake Prespa, definitions of the thresholds (part 7).
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Figure A.8.: Lake Prespa, definitions of the thresholds (part 8).
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Figure A.9.: Lake Prespa, definitions of the thresholds (part 9).
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Appendix A. Lake Prespa

A.2. Palaeoclimate Transfer Functions: Additional Figures

Figure A.10 shows the missing two dimensional marginal distributions for Figure 3.4 (s. p. 37).

The estimation is described in detail in chapter 3.2.2. The mapping of Figure A.10 is identical

to Figure 3.4:

Each cross represents one realisation
#–

c λϕ over land surface at all grid points. Their colour

marks the presence (yellow) or absence (grey) of the taxon. The contour lines and the colour

scale represent the two dimensional marginal distributions of the estimated three dimensional

GLM. Dark blue areas represent high values and light blue ones low values. The horizontal

and vertical black line mark the maximum value of the estimated GLM.
Olea 1961−1990

T J uly [°C]

C
W

D
A

N
N

 [m
m

/y
ea

r]

−35 −25 −15 −5 5 15 25 35−3
00

0
−2

00
0

−1
00

0
0

10
00

20
00

30
00

 0.1 
 0.1 

 0.2  0.2  0.3 

 0.3 
 0.4 

 0.
4 

 0.5 

 0.5 

 0.6 

 0.6 

 0.7 

 0.7 

 0.8 

 0.8 

 0.9 

 0.9 

Olea 1961−1990

T J uly [°C]

C
W

D
A

N
N

 [m
m

/y
ea

r]

−20 −10 0 5 10 20 30−3
00

0
−2

00
0

−1
00

0
0

10
00

20
00

30
00

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 
 0.7 

 0.8 

 0.9 

Figure A.10.: Remaining marginal distribution of the transfer function shown in Figure 3.4 for Olea and
CRU TS 3.1 (left) resp. ERA (right).

A.3. Palaeoclimate Reconstruction Result: Additional Figures

Figure A.11 shows the filtered Indicator Taxa Matrix IIINι×Nk0
f iltered for Lake Prespa with age scale.

Figure 3.3c is the associated figure with depth scale. The age-to-depth model is established by

Aufgebauer et al. (2012) (mentioned in chapter 2.3.1). The mapping of the figure is identical

to Figure 3.3c:

The absence information (tι k0 = 0) for each regarded taxon k0 is shown in two shades of light

grey and the presence information (tι k0 = 1) in two shades of dark grey. The pollen assemblage

zones (PAZ) as defined in Panagiotopoulos et al. (2013) are marked in black and labelled on

the top of the figure. The shortcuts on the vertical axis refer to the full taxon name in Table A.1.
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A.3. Palaeoclimate Reconstruction Result: Additional Figures
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Figure A.11.: Indicator Taxa Matrix III
Nι×Nk0
f iltered shown in Fig 3.3c for Lake Prespa with age scale.
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B
Lake Kinneret

This appendix chapter presents additional information and figures for the palaeoclimate re-

construction of Lake Kinneret which bases on the BBM. The data tables for the PRM presented

in chapter 4.4 can be found here, too.

B.1. Thresholds and Biome Assignment

The first section presents the table with all defined threshold values ϑk0 and entries of the

biome assignment matrixMMMNk0×Nl0 as required for the estimation of the biome probability WBl0

(s. chap. 4.2.2). The second part presents the depth profile figures of the relative abundance
#–

ω̃ k0 and the corresponding ECDF for each regarded taxon listed in Table B.1.

B.1.1. Threshold and Taxa Biome Assignment Table

Table B.1.: Taxa used for the palaeoclimate reconstruction of Lake Kinneret, the assigned biome type
and the corresponding thresholds ϑk0 .
The assigned biome type is indicated by the column vectors #–m l0 of the biome assignment
matrixMMMNk0×Nl0 . It describes whether the regarded taxon k0 belongs to this biome type l0
(mk0l0 = 1) or not (mk0l0 = 0). In general the first column #–m 1 represents a Mediterranean

and the second column #–m 2 a Irano-Turanian biome type.

No. Taxon name Shortcut #–m 1
#–m 2 Threshold [%]

1 Adonis type Adoni_K 0 1 0

2 Anemone type Anemo_K 0 1 0

3 Apiaceae Apiac_K 0 1 1.7

4 Artemisia Artem_K 0 1 3.1

5 Brassicaceae Brass_K 0 1 1.65

6 Campanulaceae Campa_K 0 1 0

7 Cannabis type Canna_K 0 1 0

8 Caryophyllaceae Caryo_K 0 1 0.7

continued on next page. . .
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Appendix B. Lake Kinneret

. . . continuation

No. Taxon name Shortcut #–m 1
#–m 2 Threshold [%]

9 Centaurea Centa_K 0 1 0.5

10 Cerealea type Cerea_K 0 1 2.2

11 Chenopodiaceae Cheno_K 0 1 4.5

12 Cistus type Cistu_K 1 0 0

13 Elatine type Elati_K 0 1 0

14 Ephedra dyst Ep_dt_K 0 1 0

15 Ephedra frag Ep_fg_K 0 1 0

16 Ericaceae Erica_K 1 0 0

17 Fabaceae Fabac_K 0 1 1.6

18 Fumana type Fuman_K 1 0 0

19 Hypericum type Hyper_K 0 1 0

20 Juglans Jugla_K 1 0 0

21 Liguliflorae Ligul_K 0 1 7.2

22 Linum type Linum_K 0 1 0

23 Malvaceae Malva_K 0 1 0

24 Olea Olea__K 1 0 3.8

25 Papaver type Papav_K 0 1 0

26 Phillyrea Phill_K 1 0 0.3

27 Pinus Pinus_K 1 0 2.6

28 Pistacia Pista_K 1 0 1.2

29 Plantago Plant_K 0 1 1

30 Poaceae Poace_K 0 1 10

31 Quercus calliprinos type Qu_ca_K 1 0 5.6

32 Quercus indet Queru_K 1 0 0.45

33 Quercus ithaburensis type Qu_it_K 1 0 3.8

34 Rhamnus type Rhamn_K 1 0 0

35 Rubiaceae Rubia_K 0 1 0.3

36 Rumex Rumex_K 0 1 0.45

37 Sanguisorba type Sangu_K 1 0 1

38 Scabiosa type Scabi_K 0 1 0

39 Styrax type Styra_K 0 1 0

40 Thalictrum type Thali_K 0 1 0

41 Tubuliflorae Tubul_K 0 1 1.95

42 Vitis Vitis_K 1 0 0.3
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B.1. Thresholds and Biome Assignment

B.1.2. Threshold ϑk0 Definition

The mapping of all following figures in this chapter is an extension of Figure 3.2: Shown

on the left side is the depth profile of the relative abundance
#–

ω̃ k0 and on the right side the

corresponding ECDF. The depth profile of the relative abundance ω̃ι k0 in each pollen sample

ι is shown in dark grey. The light grey area is the ten times enlarged and the very light grey

one the 100 times enlarged profile. The threshold value ϑk0 is visualized by the differently

shaded areas in the depth profile and by the vertical bold black line in the ECDF. The dots

directly below the abscissa in the depth profile indicate whether the taxon in this pollen sample

layer contributes to the biome probability WBl0
in this layer (=black) or not (=circle). The

coloured box indicates the entry mk0l0 = 1 for the regarded taxon and is the assigned biome

type presented in Table B.1: shaded in green represents a Mediterranean and shaded in red

a Irano-Turanian biome type.
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Figure B.1.: Lake Kinneret, definitions of the thresholds (part 1).
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Figure B.2.: Lake Kinneret, definitions of the thresholds (part 2).
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Figure B.3.: Lake Kinneret, definitions of the thresholds (part 3).

150



B
.1.

Thresholds
and

B
iom

e
A

ssignm
ent

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

depth [cm]

10 x
 2.20

0
20

40
60

80

● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● 86.30

● ● ● ● ● ● ● ● ● ● 13.70

Cerealia type

0 500 1000 1500 2000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

depth [cm]

10 x
 2.20

0
20

40
60

80

● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● 86.30

● ● ● ● ● ● ● ● ● ● 13.70

Cerealia type

0 500 1000 1500 2000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

4 6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

depth [cm]

10 x
 4.50

0
20

40
60

80

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● 78.08

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 21.92

Chenopodiaceae

0 500 1000 1500 2000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

4 6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

depth [cm]

10 x
 4.50

0
20

40
60

80

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● 78.08

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 21.92

Chenopodiaceae

0 500 1000 1500 2000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
20

40
60

80
10

0

depth [cm]

100 x
 0.000

20
40

60
80

● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● 100.00

Cistus type

0 500 1000 1500 2000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
20

40
60

80
10

0

depth [cm]

100 x
 0.000

20
40

60
80

● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● 100.00

Cistus type

0 500 1000 1500 2000

Figure B.4.: Lake Kinneret, definitions of the thresholds (part 4).
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Figure B.5.: Lake Kinneret, definitions of the thresholds (part 5).
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Figure B.6.: Lake Kinneret, definitions of the thresholds (part 6).
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Figure B.7.: Lake Kinneret, definitions of the thresholds (part 7).
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Figure B.8.: Lake Kinneret, definitions of the thresholds (part 8).
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Figure B.9.: Lake Kinneret, definitions of the thresholds (part 9).
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Figure B.10.: Lake Kinneret, definitions of the thresholds (part 10).
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Figure B.11.: Lake Kinneret, definitions of the thresholds (part 11).
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Figure B.12.: Lake Kinneret, definitions of the thresholds (part 12).
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Figure B.13.: Lake Kinneret, definitions of the thresholds (part 13).
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Figure B.14.: Lake Kinneret, definitions of the thresholds (part 14).
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Appendix B. Lake Kinneret

B.2. Biome Likelihood/Transfer Function PBl|~C
(

bl0

∣∣~c0
)
: Additional

Figures

This chapter presents additional figures for the estimation of the biome likelihood - biome

transfer function PBl |
#–
C

(
bl0 |

#–

c 0

)
as described in chapter 4.2.3. Firstly, the biome areas for

biome setup 3 and 4 are presented, directly followed by the figures for the verification of

the biome likelihood for a total of three biomes (BSSRF
Bl

and BSSZV
Bl

). Thereby Figure B.17 is

associated with Figure 4.2 and Figure B.18 with Figure 4.3.
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Figure B.15.: Definition of the biome areas denoted by biome setup = 3 bases on Fig. 2.11b. The
Mediterranean biome area B1 is extended. In detail it is defined as B1 := B1+B1−a+B1−b.
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Figure B.16.: Definition of the biome areas denoted by biome setup = 4 bases on Fig. 2.11b. The
Mediterranean biome area B1 and the Irano-Turanian biome area B2 are extended. In
detail these biome areas are defined as B1 := B1 +B1−a +B1−b and B2 := B2 +B2−a.
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(a) BSSZV
B1

for a total of three biomes
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(b) BSSZV
B2

for a total of three biomes
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(c) BSSZV
B3

for a total of three biomes
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(d) BSSRF
B1

for a total of three biomes
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(e) BSSRF
B2

for a total of three biomes
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(f) BSSRF
B3

for a total of three biomes

Figure B.17.: Verification of the biome likelihoodPBl |
#–

C

(
bl = l| #–c

)
with Brier skill score BSSZV

Bl
and BSSRF

Bl
for a total of three biomes. The parameters

which determine the biome likelihood are estimated as given by the setup number shown on the x-axis. The setup numbers are
defined in Table B.4. The climate input data for the verification is always the CRU TS 3.1 dataset. The dotted grey vertical lines
separate the different ”biome setups” as specified on top of the Figures (grey numbers). The black vertical lines separate the different
climate databases as input data in the estimation process.

163



0 20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

setup number

br
ie

r 
sk

ill
 s

co
re

 [1
]

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

CRU ERA EOBS CRU+EOBS

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●
●●

●
●●

●

●
●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●●

●
●

●

●

●
●

●●
●● ●

●
●

●

●

●

●

●

●
●

● ●2D 3D

(a) BSSZV
B1

for a total of three biomes
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(b) BSSZV
B2

for a total of three biomes
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(c) BSSZV
B3

for a total of three biomes
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(d) BSSRF
B1

for a total of three biomes
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(e) BSSRF
B2

for a total of three biomes
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(f) BSSRF
B3

for a total of three biomes

Figure B.18.: Verification of the biome likelihoodPBl |
#–

C

(
bl = l| #–c

)
with Brier skill score BSSZV

Bl
and BSSRF

Bl
for a total of three biomes. The parameters

which determine the biome likelihood are estimated as given by the setup number shown on the x-axis. The setup numbers are
defined in Table B.5. The climate input data for the verification is always the ERA-Interim dataset for the 850hPa temperatures. The
dotted grey vertical lines separate the different ”biome setups” as specified on top of the Figures (grey numbers). The black vertical
lines separate the different climate databases as input data in the estimation process.
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B.3. Verification Data Tables for the Biome Likelihood/Transfer Function PBl |~C (bl0 |~c0)

B.3. Verification Data Tables for the Biome Likelihood/Transfer

Function PBl|~C
(

bl0

∣∣~c0
)

As mentioned in chapter 4.2.3 different possible setups for the estimation of the biome likeli-

hood were verificated. This appendix chapter presents the data tables with the results for the

Brier skill scores defined in chapter 4.2.3 (p. 58). The setup numbers (s.no.) are defined in

this tables by the column predictors, KlimDataSet and biome setup. More detailed the column

• predictors define the number of dimensions of the considered climate state vector as de-

fined in equation 4.11 as well as the combinations of the climate variables (TDJF , TJJA,

T 850hpa
DJF , T 850hpa

JJA , PANN or CWDANN) for the estimation of the biome likelihoodPBl |
#–
C

(
bl0 |

#–

c 0

)
.

• KlimDataSet breaks down which kind of climate data set is applied for the estimation of

the biome likelihood PBl |
#–
C

(
bl0 |

#–

c 0

)
. Thereby

– 1 is equivalent to CRU TS 3.1 for TDJF , TJJA, PANN and CWDANN ,

– 2 is equivalent to CRU TS 3.1 for PANN and CWDANN and ERA-Interim for T 850hpa
DJF

and T 850hpa
JJA ,

– 3 is equivalent to E-OBS for TDJF , TJJA and PANN and

– 4 is equivalent to mixture of CRU TS 3.1 and E-OBS for TDJF , TJJA and PANN .

• biome setup breaks down which definition of the biome areas is applied for the estimation

of the biome likelihood. Thereby

– biome setup 1 defines the biome areas B1, B2 and B3 as presented in Figure 2.11a,

– biome setup 2 defines the biome areas B1, B2 and B3 as presented in Figure 2.11b,

– biome setup 3 defines the biome areas B1, B2 and B3 as presented in Figure B.15 and

– biome setup 4 defines the biome areas B1, B2 and B3 as presented in Figure B.16.

The other columns in these tables show the result for the Brier score for each regarded biome

type Bl. In detail

• RFBl is the relative frequency of each biome Bl (s. eq. 4.9),

• BSBl is the Brier score for each biome (s. eq. 4.12),

• BSSRF
Bl

Brier skill score calculated with the reference score BS
RFBl
re f (s. eq. 4.13a),

• BSSZV
Bl

Brier skill score calculated with the reference score BSZV
re f (s. eq. 4.13b),

• Nobs number of grid points with presence information of any biome type Bl (s. eq. 4.9).

165



Appendix B. Lake Kinneret

The column clim.− rec. in Table B.2 and B.3 indicates if there is available a palaeoclimate and

where it can be found. If the number of the figure is not highlighted the referred number is

assigned to Lake Kinneret marginal pdfs. A red highlighted number is assigned to Birkat Ram

marginal probabilities and a orange highlighted number to Ein Gedi marginal pdfs.

It is important to emphasize that every setup number in Table B.2, B.3, B.4 and B.5 defines

the same setup aside from the total number of biomes. Summarized Table B.2 shows the

database for Figure 4.2, Table B.3 for Figure 4.3, Table B.4 for Figure B.17 and Table B.5 for

Figure B.18.
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Table B.2.: Table with the data for the verification of biome likelihood PBl |~C
(

bl0

∣∣~c0
)

verificated with the CRU TS 3.1 climate dataset for a total of
two biomes. A detailed description of the columns can be found at the beginning of chapter B.3.

s.
no
.

R
F B

1

B
S B

1

B
SS

R
F

B
1

B
SS

ZV B
1

R
F B

2

B
S B

2

B
SS

R
F

B
2

B
SS

ZV B
2

N
ob

s

pr
ed

ic
to

rs

K
li

m
D

at
aS

et

bi
om

e
se

tu
p

cl
im

.−
re

c.

1

23
.1

5%

0.095 0.469 0.622

76
.8

5%

0.095 0.469 0.622

10
8

TDJF , PANN 1

1

4.11 ,

C.1b ,

C.1d

2 0.074 0.583 0.704 0.074 0.583 0.704 TDJF , TJJA 1

3 0.052 0.709 0.793 0.052 0.709 0.793 TJJA, PANN 1

4 0.093 0.477 0.628 0.093 0.477 0.628 TDJF , CWDANN 1

5 0.058 0.671 0.766 0.058 0.671 0.766 TJJA, CWDANN 1

6 0.050 0.716 0.798 0.050 0.716 0.798 TDJF , TJJA, CWDANN 1

7 0.046 0.744 0.817 0.046 0.744 0.817 TDJF , TJJA, PANN 1 B.20,

4.14a ,

4.15 ,

4.14b

8

10
.7

6%

0.029 0.694 0.883

89
.2

4%

0.029 0.694 0.883

15
8

TDJF , PANN 1

2

9 0.060 0.372 0.759 0.060 0.372 0.759 TDJF , TJJA 1

10 0.023 0.761 0.908 0.023 0.761 0.908 TJJA, PANN 1

11 0.027 0.720 0.892 0.027 0.720 0.892 TDJF , CWDANN 1

12 0.023 0.761 0.908 0.023 0.761 0.908 TJJA, CWDANN 1

13 0.023 0.763 0.909 0.023 0.763 0.909 TDJF , TJJA, CWDANN 1

14 0.017 0.820 0.931 0.017 0.820 0.931 TDJF , TJJA, PANN 1 B.21

continued on next page. . .
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15
30

.2
0%

0.052 0.753 0.792

69
.8

0%

0.052 0.753 0.792

20
2

TDJF , PANN 1

3

4.8a, 4.8c

16 0.073 0.652 0.706 0.073 0.652 0.706 TDJF , TJJA 1

17 0.048 0.771 0.807 0.048 0.771 0.807 TJJA, PANN 1

18 0.031 0.852 0.875 0.031 0.852 0.875 TDJF , CWDANN 1 4.8b, 4.8d

19 0.036 0.831 0.857 0.036 0.831 0.857 TJJA, CWDANN 1

20 0.024 0.887 0.905 0.024 0.887 0.905 TDJF , TJJA, CWDANN 1 4.4d,

4.16d ,

5.3d

21 0.029 0.862 0.884 0.029 0.862 0.884 TDJF , TJJA, PANN 1 4.4a-4.4c,

B.23, B.24,

4.16a -

4.16c , ,

5.3a - 5.3c

22

6.
06

%

0.029 0.483 0.882

93
.9

4%

0.029 0.483 0.882

10
07

TDJF , PANN 1

4

23 0.032 0.430 0.870 0.032 0.430 0.870 TDJF , TJJA 1

24 0.038 0.341 0.850 0.038 0.341 0.850 TJJA, PANN 1

25 0.024 0.575 0.903 0.024 0.575 0.903 TDJF , CWDANN 1

26 0.040 0.298 0.840 0.040 0.298 0.840 TJJA, CWDANN 1

27 0.027 0.519 0.891 0.027 0.519 0.891 TDJF , TJJA, CWDANN 1

28 0.026 0.550 0.898 0.026 0.550 0.898 TDJF , TJJA, PANN 1 B.22

continued on next page. . .
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23

.1
5%

0.142 0.200 0.430

76
.8

5%

0.142 0.200 0.430

10
8

T 850hpa
DJF , PANN 2

1

30 0.474 -1.666 -0.897 0.474 -1.666 -0.897 T 850hpa
DJF , T 850hpa

JJA 2

31 0.186 -0.048 0.254 0.186 -0.048 0.254 T 850hpa
JJA , PANN 2

32 0.130 0.267 0.478 0.130 0.267 0.478 T 850hpa
DJF , CWDANN 2

33 0.195 -0.095 0.221 0.195 -0.095 0.221 T 850hpa
JJA , CWDANN 2

34 0.237 -0.334 0.050 0.237 -0.334 0.050 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

35 0.224 -0.261 0.103 0.224 -0.261 0.103 T 850hpa
DJF , T 850hpa

JJA , PANN 2

36

10
.7

6%

0.050 0.482 0.801

89
.2

4%

0.050 0.482 0.801

15
8

T 850hpa
DJF , PANN 2

2

37 0.146 -0.521 0.416 0.146 -0.521 0.416 T 850hpa
DJF , T 850hpa

JJA 2

38 0.112 -0.171 0.550 0.112 -0.171 0.550 T 850hpa
JJA , PANN 2

39 0.042 0.558 0.830 0.042 0.558 0.830 T 850hpa
DJF , CWDANN 2

40 0.119 -0.236 0.525 0.119 -0.236 0.525 T 850hpa
JJA , CWDANN 2

41 0.108 -0.120 0.570 0.108 -0.120 0.570 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

42 0.108 -0.120 0.570 0.108 -0.120 0.570 T 850hpa
DJF , T 850hpa

JJA , PANN 2

continued on next page. . .
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30

.2
0%

0.400 -0.897 -0.600

69
.8

0%

0.400 -0.897 -0.600

20
2

T 850hpa
DJF , PANN 2

3

44 0.398 -0.890 -0.593 0.398 -0.890 -0.593 T 850hpa
DJF , T 850hpa

JJA 2

45 0.256 -0.216 -0.025 0.256 -0.216 -0.025 T 850hpa
JJA , PANN 2

46 0.329 -0.563 -0.318 0.329 -0.563 -0.318 T 850hpa
DJF , CWDANN 2

47 0.219 -0.038 0.125 0.219 -0.038 0.125 T 850hpa
JJA , CWDANN 2

48 0.352 -0.671 -0.409 0.352 -0.671 -0.409 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

49 0.382 -0.814 -0.529 0.382 -0.814 -0.529 T 850hpa
DJF , T 850hpa

JJA , PANN 2
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6.
06

%

0.034 0.402 0.864
93

.9
4%

0.034 0.402 0.864

10
07

T 850hpa
DJF , PANN 2

4

51 0.061 -0.072 0.756 0.061 -0.072 0.756 T 850hpa
DJF , T 850hpa

JJA 2

52 0.067 -0.170 0.734 0.067 -0.170 0.734 T 850hpa
JJA , PANN 2

53 0.039 0.318 0.845 0.039 0.318 0.845 T 850hpa
DJF , CWDANN 2

54 0.069 -0.219 0.723 0.069 -0.219 0.723 T 850hpa
JJA , CWDANN 2

55 0.056 0.017 0.776 0.056 0.017 0.776 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2 5.4d

56 0.056 0.025 0.778 0.056 0.025 0.778 T 850hpa
DJF , T 850hpa

JJA , PANN 2 4.6a, 4.7,

4.6b, B.19,

5.4a - 5.4c

57

23
.1

5%

0.115 0.351 0.538

76
.8

5%

0.115 0.351 0.538
10

8
TDJF , PANN 3

1
58 0.090 0.493 0.639 0.090 0.493 0.639 TDJF , TJJA 3

59 0.402 -1.262 -0.610 0.402 -1.262 -0.610 TJJA, PANN 3

60 0.137 0.228 0.451 0.137 0.228 0.451 TDJF , TJJA, PANN 3
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.7
6%

0.089 0.075 0.645

89
.2

4%

0.089 0.075 0.645
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8

TDJF , PANN 3

2
62 0.073 0.243 0.709 0.073 0.243 0.709 TDJF , TJJA 3

63 0.541 -4.639 -1.166 0.541 -4.639 -1.166 TJJA, PANN 3

64 0.422 -3.398 -0.689 0.422 -3.398 -0.689 TDJF , TJJA, PANN 3
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30
.2

0%

0.125 0.407 0.500

69
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0%

0.125 0.407 0.500

20
2

TDJF , PANN 3

3
66 0.111 0.475 0.557 0.111 0.475 0.557 TDJF , TJJA 3

67 0.441 -1.092 -0.764 0.441 -1.092 -0.764 TJJA, PANN 3

68 0.344 -0.631 -0.375 0.344 -0.631 -0.375 TDJF , TJJA, PANN 3
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93
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0.083 -0.451 0.670
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07

TDJF , PANN 3
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70 0.034 0.411 0.866 0.034 0.411 0.866 TDJF , TJJA 3

71 0.097 -0.697 0.614 0.097 -0.697 0.614 TJJA, PANN 3

72 0.054 0.058 0.786 0.054 0.058 0.786 TDJF , TJJA, PANN 3

73

23
.1

5%

0.122 0.314 0.512

76
.8

5%

0.122 0.314 0.512

10
8

TDJF , PANN 4

1
74 0.086 0.518 0.657 0.086 0.518 0.657 TDJF , TJJA 4

75 0.069 0.613 0.724 0.069 0.613 0.724 TJJA, PANN 4

76 0.086 0.519 0.657 0.086 0.519 0.657 TDJF , TJJA, PANN 4
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77
10

.7
6%

0.064 0.334 0.744

89
.2

4%

0.064 0.334 0.744

15
8

TDJF , PANN 4

2
78 0.057 0.402 0.771 0.057 0.402 0.771 TDJF , TJJA 4

79 0.035 0.630 0.858 0.035 0.630 0.858 TJJA, PANN 4

80 0.046 0.526 0.818 0.046 0.526 0.818 TDJF , TJJA, PANN 4

81

30
.2

0%

0.084 0.603 0.665

69
.8

0%

0.084 0.603 0.665

20
2

TDJF , PANN 4

3
82 0.083 0.605 0.667 0.083 0.605 0.667 TDJF , TJJA 4

83 0.061 0.710 0.755 0.061 0.710 0.755 TJJA, PANN 4

84 0.040 0.812 0.841 0.040 0.812 0.841 TDJF , TJJA, PANN 4 6.3a ,

6.3b ,

E.2 , E.3,

E.4

85

6.
06

%

0.053 0.066 0.787

93
.9

4%

0.053 0.066 0.787

10
07

TDJF , PANN 4

4
86 0.031 0.449 0.874 0.031 0.449 0.874 TDJF , TJJA 4

87 0.062 -0.090 0.752 0.062 -0.090 0.752 TJJA, PANN 4

88 0.040 0.298 0.840 0.040 0.298 0.840 TDJF , TJJA, PANN 4
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Table B.3.: Table with the data for the verification of biome likelihood PBl |~C
(

bl0

∣∣~c0
)

verificated with the ERA-Interim climate dataset for a total of
two biomes. A detailed description of the columns can be found at the beginning of chapter B.3.
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1

23
.1

5%

0.116 0.350 0.538

76
.8

5%

0.116 0.350 0.538

10
8

TDJF , PANN 1

1

4.11 ,

C.1b ,

C.1d

2 0.071 0.601 0.716 0.071 0.601 0.716 TDJF , TJJA 1

3 0.118 0.339 0.529 0.118 0.339 0.529 TJJA, PANN 1

4 0.119 0.329 0.522 0.119 0.329 0.522 TDJF , CWDANN 1

5 0.117 0.343 0.533 0.117 0.343 0.533 TJJA, CWDANN 1

6 0.039 0.782 0.845 0.039 0.782 0.845 TDJF , TJJA, CWDANN 1

7 0.038 0.788 0.849 0.038 0.788 0.849 TDJF , TJJA, PANN 1 B.20,

4.14a ,

4.15 ,

4.14b

8

10
.7

6%

0.028 0.706 0.887

89
.2

4%

0.028 0.706 0.887

15
8

TDJF , PANN 1

2

9 0.063 0.346 0.749 0.063 0.346 0.749 TDJF , TJJA 1

10 0.045 0.527 0.819 0.045 0.527 0.819 TJJA, PANN 1

11 0.036 0.625 0.856 0.036 0.625 0.856 TDJF , CWDANN 1

12 0.041 0.577 0.837 0.041 0.577 0.837 TJJA, CWDANN 1

13 0.016 0.833 0.936 0.016 0.833 0.936 TDJF , TJJA, CWDANN 1

14 0.014 0.849 0.942 0.014 0.849 0.942 TDJF , TJJA, PANN 1 B.21
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30

.2
0%

0.044 0.789 0.822

69
.8

0%

0.044 0.789 0.822

20
2

TDJF , PANN 1

3

4.8a, 4.8c

16 0.154 0.268 0.383 0.154 0.268 0.383 TDJF , TJJA 1

17 0.078 0.629 0.687 0.078 0.629 0.687 TJJA, PANN 1

18 0.033 0.842 0.867 0.033 0.842 0.867 TDJF , CWDANN 1 4.8b, 4.8d

19 0.047 0.778 0.813 0.047 0.778 0.813 TJJA, CWDANN 1

20 0.034 0.837 0.863 0.034 0.837 0.863 TDJF , TJJA, CWDANN 1 4.4d,

4.16d ,

5.3d

21 0.055 0.740 0.781 0.055 0.740 0.781 TDJF , TJJA, PANN 1 4.4a-4.4c,

B.23, B.24,

4.16a -

4.16c , ,

5.3a - 5.3c

22

6.
06

%

0.036 0.361 0.855

93
.9

4%

0.036 0.361 0.855

10
07

TDJF , PANN 1

4

23 0.061 -0.075 0.755 0.061 -0.075 0.755 TDJF , TJJA 1

24 0.036 0.362 0.855 0.036 0.362 0.855 TJJA, PANN 1

25 0.033 0.425 0.869 0.033 0.425 0.869 TDJF , CWDANN 1

26 0.038 0.331 0.848 0.038 0.331 0.848 TJJA, CWDANN 1

27 0.040 0.290 0.838 0.040 0.290 0.838 TDJF , TJJA, CWDANN 1

28 0.037 0.356 0.853 0.037 0.356 0.853 TDJF , TJJA, PANN 1 B.22
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29
23

.1
5%

0.065 0.637 0.742

76
.8

5%

0.065 0.637 0.742

10
8

T 850hpa
DJF , PANN 2

1

30 0.032 0.821 0.873 0.032 0.821 0.873 T 850hpa
DJF , T 850hpa

JJA 2

31 0.036 0.797 0.856 0.036 0.797 0.856 T 850hpa
JJA , PANN 2

32 0.069 0.614 0.726 0.069 0.614 0.726 T 850hpa
DJF , CWDANN 2

33 0.033 0.817 0.870 0.033 0.817 0.870 T 850hpa
JJA , CWDANN 2

34 0.033 0.815 0.868 0.033 0.815 0.868 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

35 0.033 0.816 0.869 0.033 0.816 0.869 T 850hpa
DJF , T 850hpa

JJA , PANN 2

36

10
.7

6%

0.020 0.791 0.920

89
.2

4%

0.020 0.791 0.920

15
8

T 850hpa
DJF , PANN 2

2

37 0.015 0.840 0.939 0.015 0.840 0.939 T 850hpa
DJF , T 850hpa

JJA 2

38 0.010 0.892 0.958 0.010 0.892 0.958 T 850hpa
JJA , PANN 2

39 0.020 0.792 0.920 0.020 0.792 0.920 T 850hpa
DJF , CWDANN 2

40 0.012 0.877 0.953 0.012 0.877 0.953 T 850hpa
JJA , CWDANN 2

41 0.018 0.812 0.928 0.018 0.812 0.928 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

42 0.019 0.801 0.923 0.019 0.801 0.923 T 850hpa
DJF , T 850hpa

JJA , PANN 2
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30

.2
0%

0.066 0.687 0.736

69
.8

0%

0.066 0.687 0.736

20
2

T 850hpa
DJF , PANN 2

3

44 0.031 0.854 0.877 0.031 0.854 0.877 T 850hpa
DJF , T 850hpa

JJA 2

45 0.040 0.811 0.841 0.040 0.811 0.841 T 850hpa
JJA , PANN 2

46 0.042 0.801 0.833 0.042 0.801 0.833 T 850hpa
DJF , CWDANN 2

47 0.026 0.878 0.897 0.026 0.878 0.897 T 850hpa
JJA , CWDANN 2

48 0.026 0.879 0.898 0.026 0.879 0.898 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

49 0.033 0.843 0.867 0.033 0.843 0.867 T 850hpa
DJF , T 850hpa

JJA , PANN 2

50

6.
06

%

0.032 0.431 0.870
93

.9
4%

0.032 0.431 0.870

10
07

T 850hpa
DJF , PANN 2

4

51 0.033 0.415 0.867 0.033 0.415 0.867 T 850hpa
DJF , T 850hpa

JJA 2

52 0.026 0.551 0.898 0.026 0.551 0.898 T 850hpa
JJA , PANN 2

53 0.034 0.395 0.862 0.034 0.395 0.862 T 850hpa
DJF , CWDANN 2

54 0.033 0.422 0.868 0.033 0.422 0.868 T 850hpa
JJA , CWDANN 2

55 0.022 0.607 0.910 0.022 0.607 0.910 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2 5.4d

56 0.018 0.688 0.929 0.018 0.688 0.929 T 850hpa
DJF , T 850hpa

JJA , PANN 2 4.6a, 4.7,

4.6b, B.19,

5.4a - 5.4c

57

23
.1

5%

0.131 0.266 0.477

76
.8

5%

0.131 0.266 0.477
10

8
TDJF , PANN 3

1
58 0.092 0.483 0.632 0.092 0.483 0.632 TDJF , TJJA 3

59 0.497 -1.793 -0.988 0.497 -1.793 -0.988 TJJA, PANN 3

60 0.308 -0.731 -0.232 0.308 -0.731 -0.232 TDJF , TJJA, PANN 3
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10

.7
6%

0.112 -0.163 0.553

89
.2

4%

0.112 -0.163 0.553

15
8

TDJF , PANN 3

2
62 0.241 -1.514 0.034 0.241 -1.514 0.034 TDJF , TJJA 3

63 0.629 -5.547 -1.514 0.629 -5.547 -1.514 TJJA, PANN 3

64 0.608 -5.329 -1.431 0.608 -5.329 -1.431 TDJF , TJJA, PANN 3

65

30
.2

0%

0.163 0.228 0.349

69
.8

0%

0.163 0.228 0.349

20
2

TDJF , PANN 3

3
66 0.267 -0.266 -0.068 0.267 -0.266 -0.068 TDJF , TJJA 3

67 0.508 -1.409 -1.031 0.508 -1.409 -1.031 TJJA, PANN 3

68 0.470 -1.229 -0.879 0.470 -1.229 -0.879 TDJF , TJJA, PANN 3

69

6.
06

%

0.100 -0.751 0.601
93

.9
4%

0.100 -0.751 0.601

10
07

TDJF , PANN 3

4
70 0.057 -0.004 0.771 0.057 -0.004 0.771 TDJF , TJJA 3

71 0.092 -0.612 0.633 0.092 -0.612 0.633 TJJA, PANN 3

72 0.067 -0.183 0.731 0.067 -0.183 0.731 TDJF , TJJA, PANN 3

73

23
.1

5%

0.152 0.147 0.393

76
.8

5%

0.152 0.147 0.393

10
8

TDJF , PANN 4

1
74 0.098 0.451 0.610 0.098 0.451 0.610 TDJF , TJJA 4

75 0.158 0.114 0.370 0.158 0.114 0.370 TJJA, PANN 4

76 0.109 0.387 0.564 0.109 0.387 0.564 TDJF , TJJA, PANN 4
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77
10

.7
6%

0.092 0.044 0.633

89
.2

4%

0.092 0.044 0.633

15
8

TDJF , PANN 4

2
78 0.066 0.313 0.736 0.066 0.313 0.736 TDJF , TJJA 4

79 0.072 0.249 0.712 0.072 0.249 0.712 TJJA, PANN 4

80 0.063 0.341 0.747 0.063 0.341 0.747 TDJF , TJJA, PANN 4

81

30
.2

0%

0.104 0.508 0.585

69
.8

0%

0.104 0.508 0.585

20
2

TDJF , PANN 4

3
82 0.157 0.254 0.371 0.157 0.254 0.371 TDJF , TJJA 4

83 0.118 0.440 0.528 0.118 0.440 0.528 TJJA, PANN 4

84 0.133 0.371 0.470 0.133 0.371 0.470 TDJF , TJJA, PANN 4 6.3a ,

6.3b ,

E.2 , E.3,

E.4

85

6.
06

%

0.062 -0.097 0.750

93
.9

4%

0.062 -0.097 0.750

10
07

TDJF , PANN 4

4
86 0.055 0.029 0.779 0.055 0.029 0.779 TDJF , TJJA 4

87 0.063 -0.099 0.750 0.063 -0.099 0.750 TJJA, PANN 4

88 0.062 -0.094 0.751 0.062 -0.094 0.751 TDJF , TJJA, PANN 4
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Table B.4.: Table with the data for the verification of biome likelihood PBl |~C
(

bl0

∣∣~c0
)

verificated with the CRU TS 3.1 climate dataset for a total of
three biomes. A detailed description of the columns can be found at the beginning of chapter B.3.
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8.
50

%

0.038 0.516 0.730

28
.2

3%

0.060 0.704 0.708

63
.2

7%

0.031 0.869 0.905

29
4

TDJF , PANN 1

1

2 0.056 0.279 0.598 0.060 0.705 0.709 0.087 0.628 0.731 TDJF , TJJA 1

3 0.019 0.754 0.863 0.053 0.737 0.740 0.037 0.842 0.886 TJJA, PANN 1

4 0.039 0.505 0.724 0.072 0.646 0.650 0.047 0.796 0.853 TDJF , CWDANN 1

5 0.029 0.629 0.793 0.073 0.638 0.643 0.067 0.712 0.792 TJJA, CWDANN 1

6 0.026 0.670 0.816 0.039 0.810 0.812 0.033 0.857 0.897 TDJF , TJJA, CWDANN 1

7 0.023 0.704 0.835 0.033 0.838 0.840 0.025 0.894 0.923 TDJF , TJJA, PANN 1

8

5.
41

%

0.015 0.712 0.886
44

.9
0%

0.063 0.746 0.759

49
.6

8%

0.048 0.807 0.826

31
4

TDJF , PANN 1

2

9 0.038 0.268 0.710 0.073 0.706 0.721 0.077 0.691 0.721 TDJF , TJJA 1

10 0.012 0.775 0.911 0.084 0.662 0.679 0.072 0.711 0.739 TJJA, PANN 1

11 0.018 0.648 0.861 0.081 0.674 0.691 0.074 0.704 0.733 TDJF , CWDANN 1

12 0.018 0.657 0.864 0.110 0.556 0.578 0.105 0.582 0.622 TJJA, CWDANN 1

13 0.012 0.766 0.907 0.050 0.799 0.809 0.048 0.807 0.826 TDJF , TJJA, CWDANN 1

14 0.008 0.842 0.937 0.053 0.787 0.798 0.044 0.825 0.842 TDJF , TJJA, PANN 1
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0.030 0.790 0.823
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9%

0.070 0.706 0.711

43
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8%

0.042 0.828 0.835

35
8

TDJF , PANN 1

3

16 0.081 0.429 0.519 0.074 0.691 0.696 0.099 0.599 0.616 TDJF , TJJA 1

17 0.027 0.808 0.838 0.090 0.621 0.627 0.063 0.743 0.753 TJJA, PANN 1

18 0.024 0.833 0.860 0.076 0.682 0.687 0.066 0.732 0.743 TDJF , CWDANN 1

19 0.025 0.820 0.848 0.105 0.558 0.565 0.092 0.627 0.643 TJJA, CWDANN 1

10 0.015 0.891 0.908 0.046 0.806 0.809 0.044 0.820 0.828 TDJF , TJJA, CWDANN 1

21 0.018 0.876 0.896 0.053 0.778 0.781 0.040 0.838 0.845 TDJF , TJJA, PANN 1

22

5.
25

%

0.025 0.487 0.802
81

.3
4%

0.051 0.665 0.867

13
.4

1%

0.025 0.781 0.837

11
63

TDJF , PANN 1

4

23 0.040 0.187 0.686 0.049 0.675 0.871 0.042 0.642 0.733 TDJF , TJJA 1

24 0.032 0.347 0.747 0.057 0.626 0.852 0.024 0.791 0.845 TJJA, PANN 1

25 0.023 0.543 0.823 0.053 0.649 0.860 0.035 0.700 0.777 TDJF , CWDANN 1

26 0.036 0.269 0.718 0.065 0.571 0.830 0.032 0.722 0.793 TJJA, CWDANN 1

27 0.024 0.513 0.812 0.035 0.771 0.909 0.014 0.876 0.907 TDJF , TJJA, CWDANN 1

28 0.022 0.550 0.826 0.036 0.761 0.905 0.015 0.871 0.904 TDJF , TJJA, PANN 1
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8.
50

%

0.052 0.329 0.626

28
.2

3%

0.176 0.133 0.144

63
.2

7%

0.125 0.461 0.611

29
4

T 850hpa
DJF , PANN 2

1

30 0.163 -1.099 -0.171 0.234 -0.155 -0.140 0.242 -0.041 0.249 T 850hpa
DJF , T 850hpa

JJA 2

31 0.074 0.052 0.471 0.051 0.751 0.754 0.080 0.655 0.751 T 850hpa
JJA , PANN 2

32 0.055 0.298 0.609 0.188 0.070 0.082 0.153 0.340 0.524 T 850hpa
DJF , CWDANN 2

33 0.082 -0.054 0.412 0.109 0.464 0.471 0.164 0.296 0.492 T 850hpa
JJA , CWDANN 2

34 0.087 -0.117 0.377 0.220 -0.086 -0.072 0.303 -0.305 0.058 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

35 0.081 -0.040 0.420 0.179 0.115 0.127 0.243 -0.046 0.245 T 850hpa
DJF , T 850hpa

JJA , PANN 2

36

5.
41

%

0.025 0.512 0.806
44

.9
0%

0.170 0.312 0.347

49
.6

8%

0.145 0.419 0.475

31
4

T 850hpa
DJF , PANN 2

2

37 0.082 -0.595 0.368 0.128 0.483 0.509 0.127 0.491 0.541 T 850hpa
DJF , T 850hpa

JJA 2

38 0.057 -0.105 0.562 0.115 0.534 0.557 0.064 0.742 0.767 T 850hpa
JJA , PANN 2

39 0.028 0.463 0.787 0.157 0.366 0.398 0.143 0.429 0.485 T 850hpa
DJF , CWDANN 2

40 0.061 -0.189 0.528 0.179 0.278 0.316 0.186 0.257 0.329 T 850hpa
JJA , CWDANN 2

41 0.057 -0.120 0.556 0.148 0.403 0.434 0.155 0.382 0.441 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

42 0.054 -0.056 0.581 0.219 0.115 0.160 0.179 0.283 0.353 T 850hpa
DJF , T 850hpa

JJA , PANN 2
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43

17
.0

4%

0.214 -0.513 -0.274

39
.3

9%

0.305 -0.276 -0.256

43
.5

8%

0.080 0.675 0.689

35
8

T 850hpa
DJF , PANN 2

3

44 0.229 -0.622 -0.366 0.229 0.042 0.057 0.131 0.467 0.488 T 850hpa
DJF , T 850hpa

JJA 2

45 0.144 -0.022 0.140 0.187 0.215 0.227 0.058 0.766 0.776 T 850hpa
JJA , PANN 2

46 0.191 -0.350 -0.136 0.304 -0.275 -0.255 0.124 0.494 0.515 T 850hpa
DJF , CWDANN 2

47 0.125 0.116 0.256 0.176 0.261 0.273 0.191 0.225 0.257 T 850hpa
JJA , CWDANN 2

48 0.202 -0.426 -0.201 0.239 -0.001 0.015 0.134 0.456 0.478 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

49 0.208 -0.473 -0.240 0.313 -0.312 -0.292 0.129 0.476 0.497 T 850hpa
DJF , T 850hpa

JJA , PANN 2

50

5.
25

%

0.029 0.407 0.771
81

.3
4%

0.058 0.618 0.848

13
.4

1%

0.029 0.755 0.817

11
63

T 850hpa
DJF , PANN 2

4

51 0.054 -0.085 0.581 0.087 0.424 0.771 0.048 0.586 0.691 T 850hpa
DJF , T 850hpa

JJA 2

52 0.058 -0.160 0.552 0.084 0.446 0.780 0.026 0.772 0.830 T 850hpa
JJA , PANN 2

53 0.035 0.289 0.725 0.069 0.547 0.820 0.037 0.681 0.763 T 850hpa
DJF , CWDANN 2

54 0.061 -0.218 0.529 0.108 0.286 0.717 0.048 0.583 0.689 T 850hpa
JJA , CWDANN 2

55 0.049 0.008 0.617 0.056 0.630 0.853 0.015 0.867 0.901 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

56 0.048 0.033 0.626 0.065 0.575 0.831 0.017 0.856 0.893 T 850hpa
DJF , T 850hpa

JJA , PANN 2

57

8.
50

%

0.075 0.037 0.463

28
.2

3%

0.148 0.267 0.276

63
.2

7%

0.055 0.764 0.830

29
4

TDJF , PANN 3

1
58 0.054 0.308 0.614 0.167 0.174 0.185 0.189 0.187 0.413 TDJF , TJJA 3

59 0.120 -0.538 0.142 0.350 -0.727 -0.705 0.185 0.204 0.426 TJJA, PANN 3

60 0.055 0.291 0.604 0.300 -0.481 -0.462 0.353 -0.521 -0.097 TDJF , TJJA, PANN 3
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61

5.
41

%

0.044 0.141 0.659

44
.9

0%

0.124 0.500 0.526

49
.6

8%

0.068 0.727 0.754

31
4

TDJF , PANN 3

2
62 0.043 0.162 0.668 0.116 0.533 0.557 0.105 0.578 0.619 TDJF , TJJA 3

63 0.206 -3.022 -0.594 0.483 -0.953 -0.853 0.230 0.081 0.170 TJJA, PANN 3

64 0.297 -4.792 -1.296 0.458 -0.851 -0.756 0.266 -0.063 0.040 TDJF , TJJA, PANN 3

65

17
.0

4%

0.079 0.440 0.528

39
.3

9%

0.138 0.422 0.431

43
.5

8%

0.052 0.790 0.799

35
8

TDJF , PANN 3

3
66 0.088 0.376 0.475 0.113 0.526 0.533 0.115 0.531 0.550 TDJF , TJJA 3

67 0.247 -0.746 -0.470 0.429 -0.795 -0.768 0.166 0.324 0.352 TJJA, PANN 3

68 0.270 -0.907 -0.605 0.452 -0.893 -0.864 0.226 0.080 0.117 TDJF , TJJA, PANN 3

69

5.
25

%

0.062 -0.245 0.519
81

.3
4%

0.224 -0.478 0.413

13
.4

1%

0.157 -0.350 -0.006

11
63

TDJF , PANN 3

4
70 0.038 0.228 0.702 0.068 0.549 0.821 0.059 0.489 0.619 TDJF , TJJA 3

71 0.083 -0.662 0.358 0.379 -1.499 0.008 0.286 -1.461 -0.834 TJJA, PANN 3

72 0.036 0.285 0.724 0.163 -0.074 0.574 0.127 -0.096 0.183 TDJF , TJJA, PANN 3

73

8.
50

%

0.054 0.306 0.613

28
.2

3%

0.116 0.427 0.434

63
.2

7%

0.053 0.770 0.834

29
4

TDJF , PANN 4

1
74 0.056 0.275 0.596 0.098 0.515 0.521 0.121 0.478 0.623 TDJF , TJJA 4

75 0.026 0.667 0.814 0.099 0.512 0.518 0.082 0.648 0.746 TJJA, PANN 4

76 0.029 0.633 0.795 0.099 0.512 0.518 0.085 0.636 0.737 TDJF , TJJA, PANN 4

continued on next page. . .

183



. . . continuation

s.
no
.

R
F B

1

B
S B

1

B
SS

R
F

B
1

B
SS

ZV B
1

R
F B

2

B
S B

2

B
SS

R
F

B
2

B
SS

ZV B
2

R
F B

3

B
S B

3

B
SS

R
F

B
3

B
SS

ZV B
3

N
ob

s

pr
ed

ic
to

rs

K
li

m
D

at
aS

et

bi
om

e
se

tu
p

77

5.
41

%

0.033 0.363 0.747

44
.9

0%

0.108 0.563 0.585

49
.6

8%

0.070 0.719 0.746

31
4

TDJF , PANN 4

2
78 0.038 0.264 0.708 0.106 0.572 0.594 0.107 0.573 0.614 TDJF , TJJA 4

79 0.019 0.632 0.854 0.130 0.473 0.500 0.110 0.560 0.602 TJJA, PANN 4

80 0.020 0.609 0.845 0.097 0.609 0.629 0.078 0.686 0.716 TDJF , TJJA, PANN 4

81

17
.0

4%

0.054 0.618 0.678

39
.3

9%

0.118 0.507 0.515

43
.5

8%

0.057 0.767 0.776

35
8

TDJF , PANN 4

3
82 0.081 0.428 0.519 0.103 0.570 0.576 0.121 0.509 0.529 TDJF , TJJA 4

83 0.032 0.774 0.810 0.127 0.466 0.475 0.094 0.619 0.634 TJJA, PANN 4

84 0.021 0.849 0.873 0.088 0.631 0.636 0.071 0.712 0.724 TDJF , TJJA, PANN 4

85

5.
25

%

0.037 0.256 0.713

81
.3

4%

0.093 0.387 0.757

13
.4

1%

0.053 0.544 0.660

11
63

TDJF , PANN 4

4
86 0.039 0.220 0.698 0.055 0.638 0.856 0.048 0.586 0.691 TDJF , TJJA 4

87 0.047 0.054 0.635 0.142 0.061 0.627 0.093 0.199 0.403 TJJA, PANN 4

88 0.027 0.464 0.793 0.050 0.672 0.870 0.023 0.801 0.851 TDJF , TJJA, PANN 4
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Table B.5.: Table with the data for the verification of biome likelihood PBl |~C
(

bl0

∣∣~c0
)

verificated with the ERA-Interim climate dataset for a total of
three biomes. A detailed description of the columns can be found at the beginning of chapter B.3.
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1

8.
50

%

0.047 0.401 0.666

28
.2

3%

0.080 0.607 0.612

63
.2

7%

0.044 0.810 0.863

29
4

TDJF , PANN 1

1

2 0.070 0.098 0.497 0.102 0.496 0.502 0.159 0.318 0.508 TDJF , TJJA 1

3 0.043 0.446 0.691 0.096 0.525 0.531 0.055 0.765 0.830 TJJA, PANN 1

4 0.038 0.510 0.726 0.141 0.304 0.313 0.114 0.509 0.645 TDJF , CWDANN 1

5 0.046 0.407 0.669 0.121 0.405 0.412 0.088 0.622 0.727 TJJA, CWDANN 1

6 0.028 0.637 0.798 0.063 0.690 0.694 0.067 0.713 0.793 TDJF , TJJA, CWDANN 1

7 0.025 0.677 0.820 0.056 0.723 0.727 0.057 0.753 0.821 TDJF , TJJA, PANN 1

8

5.
41

%

0.014 0.723 0.890
44

.9
0%

0.093 0.623 0.642

49
.6

8%

0.079 0.683 0.714

31
4

TDJF , PANN 1

2

9 0.043 0.159 0.666 0.148 0.402 0.433 0.177 0.290 0.359 TDJF , TJJA 1

10 0.023 0.556 0.824 0.106 0.570 0.592 0.084 0.666 0.698 TJJA, PANN 1

11 0.019 0.637 0.856 0.197 0.206 0.246 0.185 0.259 0.330 TDJF , CWDANN 1

12 0.024 0.528 0.813 0.156 0.371 0.404 0.141 0.438 0.492 TJJA, CWDANN 1

13 0.011 0.777 0.912 0.091 0.634 0.653 0.095 0.619 0.655 TDJF , TJJA, CWDANN 1

14 0.007 0.859 0.944 0.084 0.661 0.679 0.077 0.694 0.723 TDJF , TJJA, PANN 1
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17
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4%

0.027 0.810 0.840

39
.3

9%

0.093 0.612 0.618

43
.5

8%

0.070 0.715 0.727

35
8

TDJF , PANN 1

3

16 0.118 0.166 0.297 0.144 0.395 0.404 0.206 0.162 0.196 TDJF , TJJA 1

17 0.044 0.688 0.737 0.117 0.509 0.517 0.073 0.702 0.714 TJJA, PANN 1

18 0.022 0.843 0.867 0.175 0.265 0.276 0.164 0.333 0.360 TDJF , CWDANN 1

19 0.032 0.775 0.810 0.144 0.397 0.406 0.123 0.499 0.519 TJJA, CWDANN 1

20 0.023 0.834 0.861 0.086 0.642 0.647 0.082 0.665 0.678 TDJF , TJJA, CWDANN 1

21 0.034 0.761 0.799 0.094 0.604 0.610 0.068 0.725 0.736 TDJF , TJJA, PANN 1

22

5.
25

%

0.031 0.367 0.755
81

.3
4%

0.067 0.558 0.824

13
.4

1%

0.036 0.694 0.772

11
63

TDJF , PANN 1

4

23 0.059 -0.189 0.540 0.097 0.363 0.747 0.086 0.262 0.450 TDJF , TJJA 1

24 0.031 0.368 0.756 0.065 0.570 0.829 0.034 0.709 0.783 TJJA, PANN 1

25 0.029 0.408 0.771 0.092 0.397 0.761 0.065 0.444 0.586 TDJF , CWDANN 1

26 0.035 0.302 0.730 0.079 0.476 0.792 0.048 0.585 0.691 TJJA, CWDANN 1

27 0.036 0.268 0.717 0.066 0.564 0.827 0.035 0.702 0.778 TDJF , TJJA, CWDANN 1

28 0.032 0.362 0.753 0.063 0.585 0.835 0.031 0.729 0.798 TDJF , TJJA, PANN 1
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0.025 0.675 0.819

28
.2

3%

0.038 0.815 0.817

63
.2

7%

0.018 0.923 0.945

29
4

T 850hpa
DJF , PANN 2

1

30 0.017 0.788 0.882 0.034 0.831 0.833 0.035 0.851 0.892 T 850hpa
DJF , T 850hpa

JJA 2

31 0.014 0.817 0.898 0.043 0.787 0.790 0.034 0.855 0.895 T 850hpa
JJA , PANN 2

32 0.032 0.594 0.774 0.044 0.785 0.787 0.030 0.871 0.907 T 850hpa
DJF , CWDANN 2

33 0.019 0.759 0.866 0.072 0.647 0.651 0.070 0.697 0.781 T 850hpa
JJA , CWDANN 2

34 0.019 0.760 0.866 0.029 0.859 0.861 0.025 0.893 0.923 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

35 0.015 0.801 0.889 0.026 0.871 0.873 0.018 0.924 0.945 T 850hpa
DJF , T 850hpa

JJA , PANN 2

36

5.
41

%

0.010 0.809 0.924
44

.9
0%

0.043 0.825 0.834

49
.6

8%

0.033 0.868 0.880

31
4

T 850hpa
DJF , PANN 2

2

37 0.010 0.797 0.920 0.044 0.823 0.832 0.043 0.827 0.843 T 850hpa
DJF , T 850hpa

JJA 2

38 0.005 0.898 0.960 0.064 0.741 0.754 0.059 0.764 0.787 T 850hpa
JJA , PANN 2

39 0.009 0.824 0.930 0.041 0.834 0.843 0.035 0.861 0.875 T 850hpa
DJF , CWDANN 2

40 0.009 0.815 0.927 0.091 0.632 0.651 0.091 0.637 0.672 T 850hpa
JJA , CWDANN 2

41 0.011 0.782 0.913 0.045 0.820 0.829 0.040 0.839 0.854 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

42 0.010 0.813 0.926 0.047 0.810 0.820 0.037 0.851 0.865 T 850hpa
DJF , T 850hpa

JJA , PANN 2
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0.037 0.741 0.782

39
.3

9%

0.066 0.723 0.727

43
.5

8%

0.029 0.882 0.887

35
8

T 850hpa
DJF , PANN 2

3

44 0.017 0.881 0.900 0.048 0.798 0.801 0.035 0.858 0.864 T 850hpa
DJF , T 850hpa

JJA 2

45 0.024 0.831 0.858 0.071 0.702 0.707 0.052 0.789 0.797 T 850hpa
JJA , PANN 2

46 0.025 0.821 0.849 0.052 0.784 0.787 0.035 0.859 0.865 T 850hpa
DJF , CWDANN 2

47 0.018 0.876 0.895 0.089 0.627 0.633 0.080 0.676 0.689 T 850hpa
JJA , CWDANN 2

48 0.015 0.897 0.913 0.045 0.810 0.813 0.034 0.862 0.868 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

49 0.019 0.867 0.888 0.051 0.785 0.788 0.033 0.865 0.871 T 850hpa
DJF , T 850hpa

JJA , PANN 2

50

5.
25

%

0.028 0.436 0.782
81

.3
4%

0.061 0.596 0.840

13
.4

1%

0.033 0.713 0.786

11
63

T 850hpa
DJF , PANN 2

4

51 0.026 0.478 0.798 0.078 0.489 0.797 0.050 0.566 0.677 T 850hpa
DJF , T 850hpa

JJA 2

52 0.022 0.554 0.828 0.046 0.698 0.880 0.024 0.795 0.847 T 850hpa
JJA , PANN 2

53 0.031 0.367 0.755 0.059 0.611 0.846 0.031 0.733 0.801 T 850hpa
DJF , CWDANN 2

54 0.029 0.411 0.773 0.059 0.611 0.846 0.032 0.728 0.797 T 850hpa
JJA , CWDANN 2

55 0.019 0.624 0.855 0.034 0.778 0.912 0.015 0.874 0.906 T 850hpa
DJF , T 850hpa

JJA , CWDANN 2

56 0.015 0.691 0.881 0.033 0.781 0.913 0.018 0.847 0.886 T 850hpa
DJF , T 850hpa

JJA , PANN 2

57

8.
50

%

0.066 0.154 0.528

28
.2

3%

0.219 -0.081 -0.067

63
.2

7%

0.119 0.490 0.632

29
4

TDJF , PANN 3

1
58 0.081 -0.043 0.418 0.195 0.039 0.051 0.287 -0.233 0.110 TDJF , TJJA 3

59 0.177 -1.270 -0.267 0.286 -0.410 -0.392 0.086 0.629 0.732 TJJA, PANN 3

60 0.308 -2.964 -1.212 0.182 0.103 0.114 0.320 -0.377 0.006 TDJF , TJJA, PANN 3
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61

5.
41

%

0.033 0.359 0.746

44
.9

0%

0.259 -0.046 0.008

49
.6

8%

0.195 0.221 0.297

31
4

TDJF , PANN 3

2
62 0.159 -2.106 -0.231 0.207 0.162 0.205 0.184 0.263 0.334 TDJF , TJJA 3

63 0.283 -4.524 -1.190 0.444 -0.795 -0.702 0.145 0.421 0.477 TJJA, PANN 3

64 0.549 -9.718 -3.249 0.393 -0.588 -0.507 0.205 0.182 0.261 TDJF , TJJA, PANN 3

65

17
.0

4%

0.074 0.477 0.560

39
.3

9%

0.237 0.009 0.024

43
.5

8%

0.129 0.475 0.496

35
8

TDJF , PANN 3

3
66 0.255 -0.805 -0.520 0.202 0.156 0.169 0.235 0.043 0.082 TDJF , TJJA 3

67 0.329 -1.329 -0.960 0.393 -0.647 -0.622 0.127 0.483 0.505 TJJA, PANN 3

68 0.457 -2.235 -1.723 0.365 -0.529 -0.506 0.177 0.280 0.310 TDJF , TJJA, PANN 3

69

5.
25

%

0.074 -0.495 0.422
81

.3
4%

0.338 -1.228 0.115

13
.4

1%

0.251 -1.161 -0.610

11
63

TDJF , PANN 3

4
70 0.054 -0.082 0.582 0.110 0.277 0.713 0.086 0.263 0.451 TDJF , TJJA 3

71 0.082 -0.644 0.365 0.328 -1.161 0.142 0.238 -1.045 -0.524 TJJA, PANN 3

72 0.051 -0.036 0.600 0.173 -0.140 0.547 0.125 -0.076 0.198 TDJF , TJJA, PANN 3

73

8.
50

%

0.053 0.322 0.622

28
.2

3%

0.196 0.034 0.046

63
.2

7%

0.111 0.520 0.654

29
4

TDJF , PANN 4

1
74 0.071 0.085 0.490 0.154 0.239 0.248 0.204 0.124 0.368 TDJF , TJJA 4

75 0.055 0.297 0.608 0.211 -0.040 -0.027 0.168 0.277 0.478 TJJA, PANN 4

76 0.039 0.493 0.717 0.158 0.219 0.228 0.131 0.437 0.594 TDJF , TJJA, PANN 4

continued on next page. . .
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0.027 0.481 0.794
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0%

0.234 0.054 0.103

49
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8%

0.184 0.264 0.335

31
4

TDJF , PANN 4

2
78 0.045 0.123 0.652 0.170 0.312 0.347 0.192 0.231 0.305 TDJF , TJJA 4

79 0.035 0.308 0.725 0.230 0.070 0.118 0.194 0.222 0.297 TJJA, PANN 4

80 0.028 0.456 0.785 0.147 0.406 0.436 0.120 0.521 0.567 TDJF , TJJA, PANN 4

81

17
.0

4%

0.045 0.683 0.733

39
.3

9%

0.215 0.098 0.112

43
.5

8%

0.141 0.425 0.448

35
8

TDJF , PANN 4

3
82 0.113 0.199 0.326 0.166 0.307 0.317 0.205 0.167 0.201 TDJF , TJJA 4

83 0.057 0.600 0.663 0.226 0.052 0.066 0.169 0.312 0.340 TJJA, PANN 4

84 0.073 0.481 0.563 0.172 0.280 0.291 0.104 0.578 0.595 TDJF , TJJA, PANN 4

85

5.
25

%

0.043 0.142 0.668

81
.3

4%

0.172 -0.134 0.550

13
.4

1%

0.121 -0.040 0.225

11
63

TDJF , PANN 4

4
86 0.053 -0.062 0.590 0.096 0.366 0.748 0.083 0.283 0.466 TDJF , TJJA 4

87 0.049 0.004 0.615 0.142 0.064 0.628 0.090 0.224 0.422 TJJA, PANN 4

88 0.049 0.023 0.622 0.095 0.374 0.752 0.047 0.596 0.699 TDJF , TJJA, PANN 4
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B.4. Additional Figures Palaeoclimate Reconstruction Result

All figures presented in this section show results for the palaeoclimate reconstruction which

bases on the sediment core of Lake Kinneret. The discussion of the results can be found in

chapter 4.3. The mapping of the figures is identical to Figure 4.4:

All figures show the marginal posterior pdf fC0|~P0
(c0|~p0) with a coloured scale, ranging from

blue for low values to red for high values. Each solid black line marks the mode, which is the

highest value of each pdf in each sample layer. The dashed black lines mark the 10%, 25%,

75% and the 90% quantile. The dotted lines represent the median, which is equal to the 50%

quantile. Each red line marks the weighted arithmetic mean for each layer. The weights are

the values of the marginal pdf, which is interpreted as the numerically calculated expectation

value. The bold black numbers transfer the marked ticks of the depth axis in y.calBP (s.

chap. 2.3, p. 17) according to the age-to-depth model established by Schiebel (2013) and

mentioned in chapter 2.3.2.1. The local pollen assemblage zones (LPAZ) are also shown and

labelled with the according age.

All presented Figures base on a three-dimensional climate state vector
#–
C with different

setup dependent on the s.no. which defines also the biome setup and the estimation dataset.

Summarized, B.19 is as a supplement to already presented Figures. Fig. B.20, B.21 and B.22

show the influence of different biome setups on the palaeoclimate reconstructions as discussed

in chapter 4.3. And finally Fig. B.23 and B.24 show the influence of the factor ϑk0 as also

discussed in chapter 4.3. In detail:

Fig. B.19 Is a supplement to Figure 4.6 (4.6a and 4.6b) in which TJJA is estimated with the

standard climate prior compared to Fig. 4.7. It bases on ϑk0 = ind. and s.no. 56.

(⇔ #–
C =

(
T 850hpa

DJF ,T 850hpa
JJA ,PANN

)T

, biome setup 4 and ERA as database for the estimation)

Fig. B.20 Has to be compared with Figure 4.4a to 4.4c and bases on ϑk0 = ind. and s.no. 7.

(⇔ #–
C = (TDJF ,TJJA,PANN)

T , biome setup 1 and CRU TS 3.1 as database for the estimation)

Fig. B.21 Has to be compared with Figure 4.4a to 4.4c and bases on ϑk0 = ind. and s.no. 14.

(⇔ #–
C = (TDJF ,TJJA,PANN)

T , biome setup 2 and CRU TS 3.1 as database for the estimation)

Fig. B.22 Has to be compared with Figure 4.4a to 4.4c and bases on ϑk0 = ind. and s.no. 28.

(⇔ #–
C = (TDJF ,TJJA,PANN)

T , biome setup 4 and CRU TS 3.1 as database for the estimation)

Fig. B.23 Has to be compared with Figure 4.4a to 4.4c and bases on ϑk0 = 0 and s.no. 21.

(⇔ #–
C = (TDJF ,TJJA,PANN)

T , biome setup 3 and CRU TS 3.1 as database for the estimation)

Fig. B.24 Has to be compared with Figure 4.4a to 4.4c and bases on ϑk0 = Qk0

(
#–

ω̃ k0

)
= 33%

and s.no. 21, Qk0

(
#–

ω̃ k0

)
= 33% is the 33% quantile of

#–

ω̃ k0 .

(⇔ #–
C = (TDJF ,TJJA,PANN)

T , biome setup 3 and CRU TS 3.1 as database for the estimation)
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Appendix B. Lake Kinneret
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Figure B.19.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for T 850hpa

DJF , T 850hpa
JJA and PANN for the Lake Kinneret

palaeoclimate reconstruction (ϑk0 = ind. and s.no. 56).
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Figure B.20.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , TJJA and PANN for the Lake Kinneret palaeo-

climate reconstruction (ϑk0 = ind. and s.no. 7).
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Figure B.21.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , TJJA and PANN for the Lake Kinneret palaeo-

climate reconstruction (ϑk0 = ind. and s.no. 14).
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Figure B.22.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , TJJA and PANN for the Lake Kinneret palaeo-

climate reconstruction (ϑk0 = ind. and s.no. 28).
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Figure B.23.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , TJJA and PANN for the Lake Kinneret palaeo-

climate reconstruction (ϑk0 = 0 and s.no. 21).
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Figure B.24.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF , TJJA and PANN for the Lake Kinneret palaeo-

climate reconstruction (ϑk0 = Qk0

(
~̃ωk0

)
= 33% and s.no. 21).
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Appendix B. Lake Kinneret

B.5. Pollen-Ratio Model

This section presents all data tables required for the PRM as applied in chapter 4.4. All tables

are already described in chapter 2.2.2. Table B.7 and B.8 are the digitized versions of Ta-

ble 6.1 in Weinstein (1979). The connected geographical coordinates are shown in Table B.6

and visualized in Figure 2.12. The coloured locality/site numbers in Table B.6, B.7 and B.8

indicate whether the location is situated in the Mediterranean (green) , Irano-Turanian (red)

or Saharo-Arabian biome area (orange) defined in Figure 2.11b.

Table B.6.: Geographical coordinates of the various localities with Airborne Pollen Spectra in Israel
(alternative spelling = a. s.)

Locality Geographical coordinates

comment
No. Name

Google Maps E-OBS

[◦N] [◦E] [◦N] [◦E]

1 Qiryat-Shemona 33.20794167 35.57023056 33.125 35.625 a. s.: Kirjat-

Schmona
2 Zefat 32.96465 35.49601389 32.875 35.375 a. s.: Safed

3 Tiberias 32.79586111 35.530975 32.875 35.625

4 Nazareth 32.69962778 35.30355833 NA NA

5 Nahariyya 33.01133889 35.09466389 NA NA

6 Haifa 32.83029722 34.97433889 32.875 35.125 critical, great

shift
7 Bet-She’an 32.49710278 35.49733611 32.375 35.375

8 Afula 32.61048056 35.28794444 32.625 35.375

9 Pardes-Hannah 32.47632778 34.97606944 NA NA

10 Netanya 32.32151111 34.85323889 NA NA

11 Tel-Aviv 32.06615833 34.77782222 32.125 34.875

12 Jerusalem 31.76831667 35.21371111 31.875 35.125

13 Jericho 31.85698056 35.46056667 31.875 35.375

14 Hebron 31.53256667 35.09983333 31.625 35.125

15 Rehovot 31.89276944 34.811275 31.875 34.875

16 Qiryat-Gat 31.61115 34.76846389 31.625 34.875 a. s.: Kirjat-Gat

17 Ashqelon 31.66594444 34.55946667 31.625 34.625

18 Be’er-Sheva 31.25296944 34.79148056 31.375 34.875 critical, great

shift
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B.5. Pollen-Ratio Model

Table B.7.: Tab. 6.1 after Weinstein (1979) Part 1 - Annual averages of airborne pollen spectra in
various localities in Israel (totally counted pollen = 100%). The coloured taxon name in-
dicates the assigned biome type defined in Table B.1 for Lake Kinneret ( Mediterranean or
Irano-Turanian biome type).

Locality-No. 1 2 3 4 5 6 7 8 9

PPPPPPPPPPTaxon

Locality

Q
ir

ya
t-

Sh
em

on
a

Ze
fa

t

Ti
be

ri
as

N
az

ar
et

h

N
ah

ar
iy

ya

H
ai

fa

B
et

-S
he

’a
n

A
fu

la

Pa
rd

es
-H

an
na

h

Quercus 6.4 4.3 2.4 4.9 3.5 5.6 8.5 2.7 6.1

Pinus 2.6 4.2 2.8 20.2 6.4 7.5 1.6 9.5 8.5

Olea 8 17 2.9 6.9 6.2 5.4 15 3.9 9.8

Pistacia 0.4 0.3 0.2 0.8 0.8 1 0.2 0.3 0.6

Cupressus 6.3 12.7 1.7 4.1 5 9.3 1.1 8.5 3.9

Eucalyptus 9 9 34.5 14.9 20.5 20 11.6 19.7 7.1

Casuarina 4.6 0.7 4.6 4.2 11.4 8 2.4 4.6 6.6

Rosaceous trees NA 0.6 0.5 0.5 1.9 0.2 1 0.7 0.2

Other arboreal pollen 1.9 0.7 2.1 1.4 4.6 2.5 2.1 3.9 2.1

Total arboreal pollen 39.2 49.5 51.7 56.9 60.3 59.5 43.5 53.8 44.9

Cereals 2.5 1.5 2.4 0.7 1.6 0.7 3.3 1.4 0.9

Gramineae 13.9 12.9 11.1 8.5 10.7 13.3 17.1 10.5 13.4

Compositae 7.4 1.8 4.9 2.9 4.6 2.7 3.8 1.2 1.9

Cruciferae 2.3 1.5 0.5 2 0.9 0.7 0.7 2.1 9.1

Chenopodiaceae 6.2 3.5 5.5 7.8 2.7 8 15.4 6.2 12.1

Umbelliferae 2 2.9 1.8 0.6 2.7 0.9 7.5 5.3 0.5

Papilionaceae 2 0.9 3.9 1.9 1.7 1 0.9 0.9 1.8

Artemisia 14.3 14.5 7.2 5.9 3.9 6.8 0.6 3.8 8

Ephedra 0.1 0.2 0.1 0.8 0.3 0.1 0.2 0.3 0.1

Centaurea 0.9 1.4 0.3 0.9 0.9 0.2 1.6 0.6 1.1

Poterium 0.2 2.5 0.3 3.8 0.1 1 0.1 0.1 0.1

Other nonarboreal pollen 9 6.9 8.7 5.7 6.3 4.4 7.1 13.5 6.1

Total nonarboreal pollen 60.8 50.5 48.3 42.1 39.7 40.5 56.5 46.2 55.1
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Appendix B. Lake Kinneret

Table B.8.: Tab. 6.1 after Weinstein (1979) Part 2 - Annual averages of airborne pollen spectra in
various localities in Israel (Total counted pollen = 100%). The coloured taxon name indi-
cates the assigned biome type defined in Table B.1 for Lake Kinneret ( Mediterranean or
Irano-Turanian biome type).

Locality No. 10 11 12 13 14 15 16 17 18

PPPPPPPPPPTaxon

Locality
N

et
an

ya

Te
l-

A
vi

v

Je
ru

sa
le

m

Je
ri

ch
o

H
eb

ro
n

R
eh

ov
ot

Q
ir

ya
t-

G
at

A
sh

qe
lo

n

B
e’

er
-S

he
va

Quercus 4.2 2.2 3.8 1.7 8 1.3 0.6 1.9 1.1

Pinus 7.8 5.6 8.7 1.4 3.9 25.2 3 2.8 2.6

Olea 9.2 8.3 7.4 2.6 3.3 2.1 4.6 9 1.8

Pistacia 0.1 0.1 0.1 0.1 0.2 0.4 NA 0.1 0.3

Cupressus 2 11 1.3 9.7 0.1 9.2 0.5 0.8 0.2

Eucalyptus 24.9 12.8 5 0.8 3.6 13 12.8 14.1 23.5

Casuarina 4 4.9 5.3 9.6 6.9 9.5 19.5 13 17.2

Rosaceous trees 0.7 0.5 1 0.6 0.8 0.4 1.3 1.1 2.3

Other arboreal pollen 1.6 2.4 2.3 11.4 1.6 1.8 5.4 2.4 10.6

Total arboreal pollen 54.5 47.8 35 37.9 28.4 58.8 46.7 45.2 59.6

Cereals 0.7 0.9 2.9 0.7 3.5 1.7 2.9 0.6 0.8

Gramineae 10.1 11.2 15.2 7.6 16.2 7.7 15.9 12.9 8.2

Compositae 5.1 3.4 5.4 1.7 4.1 3.1 2.2 4.5 2.3

Cruciferae 1 1.4 3.6 2.5 2.6 1.4 2.9 0.4 1.4

Chenopodiaceae 12.3 10.3 11.6 25.7 8.7 6.7 7.9 10.1 11.1

Umbelliferae 0.4 1.8 3 0.6 0.1 0.8 2 3.1 0.3

Papilionaceae 1 1.9 2 2.2 1.8 1.3 1.5 1.3 0.5

Artemisia 8.6 8.5 9.7 12.9 16.9 11.5 9.3 13.4 2.9

Ephedra 0.6 0.1 0.4 0.1 0.4 1.5 0.1 5 0.1

Centaurea 1.1 2.9 0.9 0.2 0.1 0.6 1.1 1.8 1

Poterium 0.2 0.8 3.6 0.9 7.9 0.5 0.2 0.4 NA

Other nonarboreal pollen 4.3 7.6 4.8 6.2 5.9 5.4 7.1 1.3 11.8

Total nonarboreal pollen 45.5 52.2 65 62.1 71.6 41.2 53.3 54.8 40.4
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C
Ein Gedi

This appendix chapter presents additional information and figures for the palaeoclimate re-

construction of Ein Gedi which bases on the BBM.

C.1. Threshold and Taxa Biome Assignment Table

This section presents the table with all defined threshold values ϑk0 and entries of the biome as-

signment matrixMMMNk0×Nl0 as required for the estimation of the biome probability WBl0
(s. chap. 4.2.2)

and defined in Litt et al. (2012).

Table C.1.: Taxa used for the palaeoclimate reconstruction of Ein Gedi, the assigned biome type and the
corresponding thresholds ϑk0 after Litt et al. (2012).
The assigned biome type is indicated by the column vectors #–m l0 of the biome assignment
matrixMMMNk0×Nl0 . It describes whether the regarded taxon k0 belongs to this biome type l0
(mk0l0 = 1) or not (mk0l0 = 0). In general the first column #–m 1 represents a Mediterranean,

the second column #–m 2 a Irano-Turanian and the third column #–m 3 a Saharo-Arabian biome
type.

No. Taxon name Shortcut #–m 1
#–m 2

#–m 3 Threshold [%]

1 Acacia 0 0 1 0.10

2 Arbutus 1 0 0 0.10

3 Artemisia Artem_K 0 1 0 2.00

4 Cedrus 1 0 0 0.05

5 Centaurea Centa_K 0 1 0 0.80

6 Ceratonia 1 0 0 0.10

7 Cerealea type Cerea_K 0 1 0 1.00

8 Chenopodiaceae Cheno_K 0 0 1 40.00

9 Cistus type Cistu_K 1 0 0 0.10

10 Cupressaceae 1 0 0 0.10

11 Ephedra Ep_dt_K 0 1 0 0.50

12 Helianthemum 1 0 0 0.05

continued on next page. . .
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Appendix C. Ein Gedi

. . . continuation

No. Taxon name Shortcut #–m 1
#–m 2

#–m 3 Threshold [%]

13 Laurus 1 0 0 0.10

14 Olea Olea__K 1 0 0 1.50

15 Phillyrea Phill_K 1 0 0 0.10

16 Phoenix 0 0 1 0.10

17 Pinus Pinus_K 1 0 0 0.50

18 Pistacia Pista_K 1 0 0 0.40

19 Poaceae Poace_K 0 1 0 4.00

20 Quercus calliprinos type Qu_ca_K 1 0 0 1.00

21 Quercus ithaburensis type Qu_it_K 1 0 0 0.10

22 Sarcopoterium 1 0 0 0.30

23 Tamarix 0 0 1 0.20

24 Tubuliflorae Tubul_K 0 1 0 10.00

25 Zizyphus 0 0 1 0.05

26 Zygophylum 0 0 1 0.10

C.2. Palaeoclimate Reconstruction Result: Additional Figures

This section presents Figure C.1 which is a supplement to Figure 4.11. Figure C.1 shows the

results for the palaeoclimate reconstruction which bases on the sediment core of Ein Gedi but

estimated with nearly the same prior but different input climate datasets: CRU TS 1.0 (Litt

et al. 2012) and CRU TS 3.1. The detailed discussion of the results can be found in chapter 4.5.

The only difference in the prior distributions π #–
C

(
#–

c 0

)
for the climate state vector in Figure C.1

is the definition of the PANN component. As mentioned on page 70 in the discussion of Fig-

ure 4.10 the Jordan Valley values (s. Tab. 4.1) are applied in the estimation of Figure C.1b

and C.1d. Also discussed there are the differences between the original Litt et al. (2012) prior

and the Jordan Valley prior.
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(c) Litt et al. (2012), Fig. 5c
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(d) zoom in of Fig. 4.11c

Figure C.1.: Marginal posterior pdfs fC0|~P0
(c0|~p0) for TDJF and PANN for the Ein Gedi palaeoclimate reconstruction estimated with different climate

datasets: CRU TS 1.0 (Litt et al. (2012)) and CRU TS 3.1. All four figures are estimated with ϑk0 = ind. and biome setup 1. In detail
(a) and (c) are the coloured versions of the figures presented in Litt et al. (2012)(Image courtesy of Dipl. Met. Dr. Christian Ohlwein).
The pdfs are shown with a coloured scale, ranging from blue for low values to cyan to green to yellow and finally to red for highest
values. (b) and (d) are identical to Figure 4.11a and 4.11c, only the ordinate is adjusted so that they match with (a) and (c).

203





D
Birkat Ram

This appendix chapter presents additional information and figures for the palaeoclimate re-

construction of Birkat Ram which bases on the BITBM.

D.1. Thresholds and Biome Assignment

First this section presents the table with all defined threshold values ϑk0 and entries of the

biome assignment matrixMMMNk0×Nl0 as required for the estimation of the biome probability WBl0

(s. chap. 4.2.2). The second part presents the depth profile figures of the relative abundance
#–

ω̃ k0 and the corresponding ECDF for each regarded taxon listed in Table D.1.

D.1.1. Threshold and Taxa Biome Assignment Table

Table D.1.: Taxa used for the palaeoclimate reconstruction of Birkat Ram, the assigned biome type and
the corresponding thresholds ϑk0 .
The assigned biome type is indicated by the column vectors #–m l0 of the biome assignment
matrixMMMNk0×Nl0 . It describes whether the regarded taxon k0 belongs to this biome type l0
(mk0l0 = 1) or not (mk0l0 = 0). In general the first column #–m 1 represents a Mediterranean

and the second column #–m 2 a Irano-Turanian biome type.

No. Taxon name Shortcut #–m 1
#–m 2 Threshold [%]

1 Artemisia Arte_BR 0 1 4

2 Plantago PlSM_BR 0 1 0.44

3 Pistacia Pieu_BR 1 0 0.8

4 Olea Oleu_BR 1 0 3

5 Quercus ithaburensis type Qud_BR 1 0 9

6 Quercus calliprinos type Que_BR 1 0 1.2
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Appendix D. Birkat Ram

D.1.2. Threshold ϑk0 Definition

The mapping of all following figures in this chapter is the same as for Figure 3.2: On the left

side is shown the depth profile of the relative abundance
#–

ω̃ k0 and on the right side the cor-

responding ECDF. The depth profile of the relative abundance ω̃ι k0 in each pollen sample ι is

shown in dark grey. The light grey area is the ten times and the very light grey the 100 times

enlarged profile. The threshold value ϑk0 is visualized by the different shaded areas in the

depth profile and by the vertical bold black line in the ECDF. The resulting presence/absence

information is visualized in the depth profile with black dots (=presence) and circles (=ab-

sence). These dots also indicate whether the taxon in this pollen sample layer contribute to

the biome probability WBl0
in this layer (=black) or not (=circle) (s. chap. 5.2.2).
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Figure D.1.: Birkat Ram, definitions of the thresholds (part 1).
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Figure D.2.: Birkat Ram, definitions of the thresholds (part 2).
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E
Jordan Valley

This appendix chapter presents additional information and figures for the Jordan Valley CFR .

E.1. Additional Information on the Cost Function

This section presents the table with all values used for the weighting factor γM in the cost

function. γM is a weighting factor as mentioned at the end of chapter 6.2.1 on page 99

which is defined by several minimization runs so that both parts of the cost function (Jveg

and JMod) contribute 50% of the cost function value JR at the minimum or in other words
Jveg

γMJMod
is in the order of one. This section presents also the mentioned figure which indi-

cates the possible ranges in the climate phase space for the minimization with limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm for box-constrained optimization (L-BFGS-B)

(at the end of chapter 6.2.3 on page 103). Equation A.1 presents
#–

β , the values for the modern

climate state which is shown with solid lines in Figure E.1.

Table E.1.: Values for the weighting factor γM in the cost function.

No. time slice γM[1]
Jveg

γMJMod
[1]

1 0910y.calBP 8000 1.019

2 1200y.calBP 8125 1.027

3 1790y.calBP 7250 1.061

4 1970y.calBP 7500 1.014

5 5570y.calBP 7750 1.036

6 6740y.calBP 7375 1.069

7 7190y.calBP 8000 1.013

#–

β =
(

0.3806 0.4725 −4.7846 −0.0076 −0.0139 0.0819 −0.0064 −0.0025 −0.0027
)T

(A.1)
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Appendix E. Jordan Valley
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Figure E.1.: Resulting
#–

c R,0,hmean ranges for the estimation of the minimum of the cost function at
#–

β R,0
with the R-routine optim and the setup L-BFGS-B (s. chap. 6.2.3 for details). The solid lines
represent the modern climate state profiles based on

#–

β (eq. A.1) as presented for example
in Figure 6.2 for TDJF . The dashed lines represent

#–

β upper,0 resp.
#–

β lower,0 as defined in
equation 6.23a resp. 6.23b. For the transformation to

#–

c R,0,hmean equation 6.24a is applied.
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E.2. Additional Figures CRU TS 3.1-E-OBS Mixture- Palaeoclimate Reconstruction Results

E.2. Additional Figures CRU TS 3.1-E-OBS Mixture- Palaeoclimate

Reconstruction Results

This section presents the local palaeoclimate reconstructions results based on a mixture of the

CRU TS 3.1 and E-OBS dataset as mentioned and discussed in chapter 6.3. In detail these are

the marginal posterior distributions s f #–
C | #–P

(
c0|

#–

p 0

)
presented in Figure E.2, E.3 and E.4. All

base on the biome probability WBl0
estimated with an individual definition of ϑk0 = individual

and s.no. 84 (biome setup 3,
#–
C = (TDJF ,TJJA,PANN)

T and a combination of CRU TS 3.1 and

E-OBS as estimation dataset). Thereby

Ein Gedi Figure E.2 is the counterpart for 4.16a, 4.16b and 4.16c,

Lake Kinneret Figure E.3 is the counterpart for 4.4a, 4.4band 4.4c,

Birkat Ram Figure E.4 is the counterpart for 5.3a, 5.3b and 5.3c.

The mapping of the figures is identical to Figure 4.4:

All figures show the marginal distributions pdf s f #–
C | #–P

(
c0|

#–

p 0

)
with a coloured scale, ranging

from blue for low values to red for high values. Each solid black line marks the mode which

is the highest value of each pdf in each sample layer. The dashed black lines mark the 10%,

25%, 75% and the 90% quantile. The dotted lines are the median which is equal to the 50%

quantile. Each red line marks the weighted arithmetic mean for each layer. The weights are

the values of the marginal pdf which is interpreted as the numerical calculated expectation

value.

For Lake Kinneret (Fig. E.3) the bold black numbers transfer the marked ticks of the depth

axis in y.calBP according to the age-to-depth model established by Schiebel (2013). The LPAZ

also defined in Schiebel (2013) are shown and labelled with the according age.

For the Ein Gedi and Birkat Ram figures the abscissa represents the age in y.calBP. The

age-to-depth model for Ein Gedi is, as mentioned in Figure 4.11, established by Migowski

et al. (2004, 2006). For Ein Gedi the LPAZ defined in Litt et al. (2012) are also shown. For

Birkat Ram (Fig. E.4) the age-to-depth model as well as the LPAZ are established by Schiebel

(2013) as mentioned at the beginning of chapter 5.3. The hatched area between ≈ 10000 and

17000y.calBP (≡ 703cm and 746cm) marks again as in Figure 5.4 the range where Schiebel

(2013) assumed a desiccation of Birkat Ram. As in Figure 5.4 the mode is not shown in

Figure E.4.
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Figure E.2.: Marginal posterior pdfs s f #–

C | #–P

(
c0|

#–

p 0

)
for TDJF , TJJA and PANN for the Ein Gedi palaeocli-

mate reconstruction (ϑk0 = ind. and s.no. 84).
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Figure E.3.: Marginal posterior pdfs s f #–

C | #–P

(
c0|

#–

p 0

)
for TDJF , TJJA and PANN for the Lake Kinneret palaeo-

climate reconstruction (ϑk0 = ind. and s.no. 84).
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Figure E.4.: Marginal posterior probability s f #–
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for TDJF , TJJA and PANN for the Birkat Ram

palaeoclimate reconstruction (ϑk0 = ind. and s.no. 84).
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E.3. Additional Figures and Tables for the Jordan Valley

Palaeoclimate Reconstruction

This section presents the remaining figures of the Jordan Valley CFR. The detailed discussion

can be found in chapter 6.5.

The first part (chap. E.3.1) presents the profile reconstructions for the time slices 0910y.calBP,

1200y.calBP, 1790y.calBP, 1970y.calBP, 6740y.calBP and 7190y.calBP which are not shown

in chapter 6.5. The mapping of Figure E.5, E.6, E.7, E.8, E.9 and E.10 is the same as in

Figure 6.5 and 6.6: The abscissa represents the Jordan Valley grid boxes. The blue (TDJF)

resp. red (TJJA) resp. green (PANN) data points represent the available data at each grid point

(E-OBS and CRU TS 3.1). The vertical black lines mark the locations of the sediment cores

Ein Gedi, Lake Kinneret and Birkat Ram. The dashed black line indicates the result of a GLM

with quadratic term. The solid black lines are the corresponding 99.5% confidence bands. Pre-

sented in orange is the palaeoclimate profile (minimum of J ) with the same mapping of the

line types as the modern time slice GLM except that the confidence bands represent the 68.3%

interval based on ±σu3 = ±σuPANN
. The values for the fossil sites are marked with an orange

dot (EG = Ein Gedi), a triangle (LK = Lake Kinneret) and a square (BR = Birkat Ram).

The second part (chap. E.3.2) presents the remaining palaeoclimate CFR results for Ein Gedi

and Birkat Ram summarized as a time series and already mentioned and discussed in chap-

ter 6.5.2. The mapping of Figure E.11 and E.12 is the same as in Figure 6.7 and 6.8: The

abscissa represents the age in y.calBP. Indicated in blue colour (TDJF) resp. red colour (TJJA)

resp. green colour (PANN) is the palaeoclimate CFR result based on an application of equa-

tion 6.24b. The values EG. . .R,0,hmean resp. BR. . .R,0,hmean (minimum of J ) are marked with a dot

in Figure E.11 resp. a square in Figure E.12. The error bars represent the 68.3% interval based

on ±σu3 =±σu... (s. eq.6.25). The mapping for the modern time slice GLM value for Ein Gedi

resp. Birkat Ram is the same as in Figure 6.2 except that here it represents only the value at

grid point no. 3 resp. 11.

Table E.2 presents the database for all figures presented in chapters 6.5.2 and E.3.2.
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E.3.1. Profile Results
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Figure E.5.: The Jordan Valley profile reconstruction result for time slice 910y.calBP and the climate
variables TDJF hmean , TJJAhmean and PANN hmean . The mapping of the figures is defined analo-
gously to Fig. 6.5 and in detail repeated in the beginning of chapter E.3.
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Figure E.6.: The Jordan Valley profile reconstruction result for time slice 1200y.calBP and the climate
variables TDJF hmean , TJJAhmean and PANN hmean . The mapping of the figures is defined analo-
gously to Fig. 6.5 and in detail repeated in the beginning of chapter E.3.
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Figure E.7.: The Jordan Valley profile reconstruction result for time slice 1790y.calBP and the climate
variables TDJF hmean , TJJAhmean and PANN hmean . The mapping of the figures is defined analo-
gously to Fig. 6.5 and in detail repeated in the beginning of chapter E.3.
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Figure E.8.: The Jordan Valley profile reconstruction result for time slice 1970y.calBP and the climate
variables TDJF hmean , TJJAhmean and PANN hmean . The mapping of the figures is defined analo-
gously to Fig. 6.5 and in detail repeated in the beginning of chapter E.3.
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Figure E.9.: The Jordan Valley profile reconstruction result for time slice 6740y.calBP and the climate
variables TDJF hmean , TJJAhmean and PANN hmean . The mapping of the figures is defined analo-
gously to Fig. 6.5 and in detail repeated in the beginning of chapter E.3.
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Figure E.10.: The Jordan Valley profile reconstruction result for time slice 7190y.calBP and the climate
variables TDJF hmean , TJJAhmean and PANN hmean . The mapping of the figures is defined analo-
gously to Fig. 6.5 and in detail repeated in the beginning of chapter E.3.
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Appendix E. Jordan Valley

E.3.2. Time Series
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Figure E.11.: The palaeoclimate CFR results EGTDJF ,R,0,hmean , EGTJJA,R,0,hmean and EGPANN R,0,hmean for
Ein Gedi summarized as a time series. The mapping of the figures is defined analogously
to Fig. 6.7 and in detail repeated in the beginning of chapter E.3.
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E.3. Additional Figures and Tables for the Jordan Valley Palaeoclimate Reconstruction
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Figure E.12.: The palaeoclimate CFR results BRTDJF ,R,0,hmean , BRTJJA,R,0,hmean and BRPANN R,0,hmean for
Birkat Ram summarized as a time series. The mapping of the figures is defined analo-
gously to Fig. 6.7 and in detail repeated in the beginning of chapter E.3.
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Table E.2.: The Jordan Valley CFR result for all climate variables (ci,R,0,hmean) and for all considered time slices and fossil sites s.
The first row in this table contains sci,hmean the values for the modern time slice GLM and the other rows the minimization result ci,R,0,hmean

of the cost function J . The errors of the modern time slice represent the 99.5% confidence interval (s. chap. 6.1 for details). The other
errors base on equation 6.25 and represent the 68.3% =±σui =±σ... confidence interval (s. chap. 6.5.1 for details).

time slice Ein Gedi Lake Kinneret Birkat Ram

No. [y.calBP] TDJF ±σTDJF TJJA±σTJJA PANN±σPANN TDJF ±σTDJF TJJA±σTJJA PANN±σPANN TDJF ±σTDJF TJJA±σTJJA PANN±σPANN

[◦C] [◦C] [mm
year ] [◦C] [◦C] [mm

year ] [◦C] [◦C] [mm
year ]

0 0 13.2±0.3 26.6±0.2 259.5±11.8
11.3 11.1±0.3 25.6±0.2 464.3±19.0

18.3 10.1±0.3 25.1±0.2 514.9±22.0
21.2

1 910 13.2±0.4 26.6±0.3 178.5±22.9
20.5 11.4±2.6 25.6±1.9 233.7±141.9

91.1 10.5±3.8 25.1±2.7 263.7±232.9
128.6

2 1200 13.4±0.4 26.7±0.3 178.3±24.8
22.0 13.3±2.5 26.4±1.7 233.5±173.3

103.0 13.2±3.6 26.3±2.4 263.5±294.5
145.2

3 1790 13.1±0.5 26.6±0.5 178.2±28.9
25.1 10.5±3.0 25.6±2.9 233.4±233.2

121.5 9.1±4.3 25.1±4.3 263.3±414.9
169.1

4 1970 13.3±0.5 26.6±0.5 178.2±28.4
24.8 12.4±2.9 25.6±2.9 233.4±229.0

120.3 11.9±4.2 25.1±4.2 263.4±406.7
167.8

5 5570 13.2±0.4 26.8±0.4 174.1±28.2
24.5 11.2±2.6 26.7±2.8 189.9±201.5

101.8 10.1±3.8 26.8±4.0 193.8±333.2
128.6

6 6740 12.6±0.4 26.3±0.5 178.1±27.8
24.3 6.1±2.8 22.5±3.2 233.3±217.9

117.2 2.5±4.0 20.5±4.6 263.2±383.8
163.7

7 7190 13.2±0.5 26.6±0.4 178.1±28.1
24.5 11.2±3.1 25.4±2.9 233.3±233.0

121.4 10.2±4.4 24.9±4.1 263.2±417.0
169.4
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Glossary

Climate Proxy

Indicators which are influenced essentially by climatic conditions. The nature of these

could be for example biological, chemical or also historical reports.

Climatic Water Deficit

Describes the effective usable water for the plants (s. e. g. Crimmins et al. 2011)

Holocene

Time period in Earth history defined as the time period from approximate 10000 years

before present (y. BP) - present (s. NOAA Palaeoclimatology 2016).

Mid Holocene

Time period in Earth history: roughly from 7000 y. BP - 5000 y. BP (s. NOAA Palaeoclima-
tology 2016).

Middle and Late Holocene

Time period in Earth history defined in Panagiotopoulos et al. (2013) as 7900y.calBP -

present

Younger Dryas

Time period in Earth history defined in Panagiotopoulos et al. (2013) as 7900y.calBP

13200y.calBP - 11500y.calBP
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