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Summary 

Tau is a microtubule associated protein which plays an important role in stabilizing 

microtubules (Mandelkow and Mandelkow, 2012). Tau is mainly an axonal protein but 

it is missorted into the somatodendritic compartment in Alzheimer disease (AD). This 

represents one of the earliest signs of neurodegeneration in AD (Braak et al., 1994). 

During early stages of development, Tau protein is ubiquitously expressed across all 

compartments of neurons whereas it becomes axonally sorted during differentiation 

and maturation (Zempel and Mandelkow, 2014). We investigated the sorting 

mechanisms of endogenous Tau in cultured primary neurons using microfluidic 

devices (MFCs) where cell compartments can be treated and observed separately. 

We found that blocking protein degradation pathways on the neuritic side of the 

microfluidic devices with the proteasomal or autophagy inhibitors (e.g. wortmannin, 

epoxomicin) increased the missorting of Tau into the dendrites on the neuritic side. 

This suggests that degradation of Tau in dendrites is a major determinant for the 

physiological axonal distribution of Tau. Notably, such missorted dendritic Tau 

showed a different phosphorylation pattern from axonal Tau, as it was 

phosphorylated mainly in the repeat domain (epitope of 12E8 antibody), but not in the 

proline-rich domains flanking the repeats (e.g. epitopes of PHF1 and AT8 antibodies). 

By contrast, the axonal Tau was phosphorylated at all three sites. The dendritically 

mislocalized Tau resulted in the loss of spines. Inhibition of local protein synthesis 

prevented the missorting of Tau induced by inhibition of protein degradation, 

indicating that the missorted dendritic Tau is locally synthesized. In support of this, 

Tau mRNA was detected not only in cell bodies and axons, but in dendrites as well. 

Taken together, the above results indicate that the protein degradation systems play 

an important role in the polarized distribution of Tau in neurons during differentiation. 

Another hallmark of Tau-dependent pathology in Alzheimer disease is its spreading 

between anatomically connected neurons and brain regions in a stereotypic pattern 

(Braak stages). This implies a release of Tau into the extracellular space and re-

uptake by other neurons (Wang and Mandelkow, 2016). The mechanism of Tau 

spreading is still a matter of debate. In the present study, we used microfluidic 

devices and showed that the trans-neuronal transfer of Tau protein can be achieved 

by exosomes (small membrane-bounded vesicles containing Tau) depending on 

synaptic connectivity. The spreading of GFP-Tau containing exosomes was 
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demonstrated directly by their uptake into neurons on the somal side, followed by 

transfer to second-order and third-order neurons in successive compartments of the 

MFCs. This implies the role of exosomes in the long distance spreading of Tau 

protein across different brain regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of figures 
 

viii 
 

List of figures 

 

Figure 1.1 Pathological hallmarks of Alzheimer disease  ............................................ 2 

Figure 1.2 The six different isoforms of Tau protein  ................................................... 3 

Figure 1.3 Phosphorylation sites of Tau protein and the epitopes of phosphorylation 
specific antibodies  ...................................................................................................... 5 

Figure 1.4 The ubiquitin conjugation pathway  .......................................................... 12 

Figure 1.5 Cellular events of macroautophagy  ......................................................... 14 
Figure 1.6 Photographs and picture of microfluidic chambers  .................................. 17 

Figure 1.7 Mechanisms involved in the prion-like protein transmission in 
neurodegenerative diseases  ..................................................................................... 20 

Figure 2.1 Principle of LDH assay  ............................................................................ 34 

Figure 2.2 Binding of the probe sets and the blocking probe (BL) to the target mRNA 
 .................................................................................................................................. 36 

Figure 2.3 Working schematic of the Quantigene ViewRNA ISH cell assay  ............. 37 

Figure 3.1 Localization of Tau in developing neurons  ........................................ 42-43 

Figure 3.2 Schematic representation of a microfluidic chamber showing separation of 
neurites from soma  ................................................................................................... 44 

Figure 3.3 Fluidic isolation in microfluidic chambers is intact even after 24hours. 45-46 

Figure 3.4 The protein degradation inhibitors used were active and non-toxic to 
neurons cultured in microfluidic chambers  ................................................................ 48 

Figure 3.5 The protein degradation inhibition by autophagy lead to Tau missorting 
............................................................................................................................. 49-50            

Figure 3.6 The protein degradation inhibition by the proteasome lead to Tau 
missorting  ........................................................................................................... 51-52 

Figure 3.7 Quantification of dendrites with Tau missorting induced by protein 
degradation inhibitors  ............................................................................................... 52 

Figure 3.8 The protein degradation inhibition by autophagy is specific and lead to Tau 
missorting  ........................................................................................................... 53-54 

Figure 3.9 The protein degradation inhibition by the proteasome is specific and lead 
to Tau missorting  ...................................................................................................... 55 

Figure 3.10 Tau in dendrites is phosphorylated predominantly at the 12E8 site  ....... 57 

Figure 3.11 Quantification of dendrites with missorted phosphorylated Tau induced 
by protein degradation inhibitors  ............................................................................... 60 

Figure 3.12 1N isoform of Tau is degraded by autophagy and the proteasome in 
dendrites  ............................................................................................................. 62-63 

Figure 3.13 Enhancement of the activity of autophagy by trehalose reduces Tau 
missorting into the dendrites ...................................................................................... 65 



List of figures 
 

ix 
 

Figure 3.14 Enhancement of the activity of the proteasome by rolipram reduces Tau 
missorting into the dendrites  ..................................................................................... 66 

Figure 3.15 Local treatment with protein degradation inhibitors suppresses protein 
degradation and lead to dendritic Tau mislocalization and spine loss ................. 67-68 

Figure 3.16 Protein translation inhibitors prevent Tau missorting ........................ 69-73 

Figure 3.17 Fluorescence insitu hybridization reveals Tau mRNA across all 
compartments of the neuron  ............................................................................... 74-75 

Figure 3.18 Tau redistributes into the somatodendritic compartment after 
experimental manipulations ................................................................................. 77-79 

Figure 3.19 Transmission of TauGFP exosomes from one neuronal population to the 
other in microfluidic chambers ............................................................................. 82-85 

Figure 3.20 Transmission of TauGFP exosomes from one neuronal population to the 
other can occur via axons .......................................................................................... 86 

Figure 3.21 Synaptic contacts are required for exosome-mediated transmission of 
TauGFP  ................................................................................................................ 89-94 

Figure 3.22 Tau containing exosomes are transmitted across neuronal populations 
independently of their origin ....................................................................................... 95 

Figure 4.1 & 4.3 Schematic representation of the different treatments and its 
consequences in neurons cultured in microfluidic chambers ........................... 98 &102 

Figure 4.2 Schematic representation of the distribution of Tau mRNA in a neuron . 101 

Figure 4.4 Schematic representation of the spreading of exosomes containing TauGFP  
in neurons cultured in triple chamber microfluidic devices ....................................... 106 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

1 

 

1   Introduction 

 

1.1   Alzheimer disease and other Tauopathies 

Alzheimer disease (AD) was first identified in 1907 by a German psychiatrist and 

pathologist, Dr. Alois Alzheimer in a post-mortem study on a 51-year old patient, 

Auguste D (Alzheimer, 1907). AD is the common form of dementia in developed 

nations and is one of the major health problems in aging populations. The dementia 

is characterized initially by synaptic loss (DeKosky and Scheff, 1990) followed by 

neuronal loss (Terry et al., 1981) and by progressive behavioral changes like loss of 

memory and other cognitive functions. It is estimated to cost the world 604 billion 

dollars/year and it is expected to triple by 2050 (Huang and Mucke, 2012).  

AD, a progressive neurodegenerative disease is characterized by abnormal protein 

deposits of intracellular neurofibrillary tangles (NFTs) and extracellular senile plaques 

in the brain. While NFTs consists of the hyperphosphorylated microtubule binding 

protein - Tau (Mandelkow and Mandelkow, 1998), the senile plaques are composed 

of beta-amyloid protein (Aβ) generated from amyloid precursor protein (APP) through 

cleavage by β- secretase (β-site APP cleaving enzyme (BACE)) and γ-secretase - a 

multi-subunit complex composed of presenilin (PS), nicastrin, anterior pharynx-

defective 1 (APH-1), and presenilin enhancer 2 (PEN-2) (Kovacs, 2009) (Fig. 1.1). 

Majority of AD cases (99%) are sporadic, which usually occur at a later stage around 

65 years or older. Approximately 1% of AD is familial, which is caused by mutations 

of APP or presenilins and have an earlier onset of the disease around 50 years 

(Murrell et al., 1991). As familial APP or PS mutations promote the generation of Aβ, 

this has led to the proposal of the amyloid cascade hypothesis which posits that the 

deposition of Aβ is the primary event driving AD pathogenesis including tau 

pathology (Hardy and Allsop, 1991). However, accumulating evidence highlights the 

critical role of Tau pathology in AD. On one hand, Tau pathology appears to be 

necessary for Aβ-induced neurodegeneration as reducing Tau ameliorates Aβ-

induced deficits invivo or in cultured cells (Roberson et al., 2007, Zempel and 

Mandelkow, 2014), on the other hand, Tau pathology does not necessarily occur 

downstream of Aβ deposits, as NFTs are also often detected in normal aged human 

brain in the absence of Aβ deposits, namely, primary age-related Tauopathy (PART) 

https://en.wikipedia.org/wiki/Nicastrin
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(Braak and Del Tredici, 2014). Indeed, it is the NFTs not senile plaques that are 

correlated with the severity of dementia in AD (Arriagada et al., 1992). 

 

Figure 1.1: Pathological hallmarks of Alzheimer disease. The extracellular plaques consist of the Aß peptide, 

which accumulate between neurons. The twisted fibers found inside neurons are referred to as neurofibrillary 

tangles (NFTs) and consist primarily of the protein Tau which is involved in microtubule stabilization in healthy 

brains. In Alzheimer disease it dissociates from the microtubules thereby resulting in destabilization of 

microtubules and eventually in the formation of NFTs. The tangles get deposited in the regions of the brain 

involved in learning and memory and eventually can spread to other regions and are thought to lead to the 

degeneration of neurons (Figure adapted from http://www.brightfocus.org/alzheimers/infographic/amyloid-

plaques-and-neurofibrillary-tangles). 

Besides AD, Tau aggregation is also found in a wide range of neurodegenerative 

diseases termed Tauopathies, including progressive supranuclear palsy (PSP), 

corticobasal degeneration (CBD), argyrophilic grain disease (AGD), Pick disease 

(PiD), Huntington disease (HD), and frontotemporal dementia with parkinsonism-17 

(FTDP-17) (Lee et al., 2001). The identification of Tau mutants of FTDP-17 in a group 

of familial tauopathies provided compelling evidence that Tau abnormalities alone are 

sufficient to cause Tauopathies (Lewis et al., 2000), thus establishing the key role of 

Tau in these neurodegenerative diseases. 

1.2   Tau – a microtubule associated protein  

Tau was discovered in 1975 in vitro, mainly as a factor involved in the assembly of 

tubulin subunits into the so called ‘36S’ rings and microtubules (Weingarten et al., 

1975). Tau protein prepared from mammalian brain consists of a mixture of several 

related polypeptides of relative molecular weight ranging from 50 to 70kDa (Steiner et 

al., 1990). Tau belongs to a group of proteins termed microtubule associated proteins 

 

http://www.brightfocus.org/alzheimers/infographic/amyloid-plaques-and-neurofibrillary-tangles
http://www.brightfocus.org/alzheimers/infographic/amyloid-plaques-and-neurofibrillary-tangles
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(MAPs) which also includes MAP1A, MAP1B, MAP1C, MAP2 and MAP4 (Maccioni 

and Cambiazo, 1995). Distinct from other MAPs, Tau is a component of PHFs, and 

thus catches wide research interest. 

1.2.1   Isoforms of Tau 

Human Tau is encoded by a single gene comprising 16 exons on chromosome 

17q21 (Neve et al., 1986). Exons 1, 4, 5, 7, 9, 11, 12 and 13 are constitutive while 

the others are subject to alternative splicing. Exons 0 and 1 contain the 5’ 

untranslated sequences of MAPT mRNA, while Exon 14 is part of the 3’ untranslated 

region of Tau mRNA. Exon 0 is part of the promoter, which is transcribed but not 

translated. The translation initiation codon ATG is in exon 1. Exons 4a, 6 and 8 are 

present only in mRNA of the peripheral tissue. The adult human brain contains six 

Tau isoforms which are generated via alternative splicing of exons E2, E3 and E10. 

These Tau isoforms differ by the presence of 0, 1 and 2 amino-terminal inserts (29 

residues each, encoded by E2 and E3) (0N, 1N and 2N) in combination with the 

presence of 3 or 4 carboxy-terminal tandem repeat domains (3R or 4R, the 2nd repeat 

is encoded by E10) (Crowther et al., 1989, Andreadis et al., 1992) (Fig. 1.2).   

 

 

 

 

 

 

Fig. 1.2: The six different isoforms of Tau protein. Alternative splicing of exons 2, 3 and 10 results in six 

different Tau mRNAs translated into six different isoforms of Tau protein which differ by the presence of 0, 1 or 2 

amino-terminal inserts (0N, 1N or 2N) and the presence or absence of repeat R2. This results in Tau isoforms of 

different number of aminoacids and molecular weight and are named as 3R or 4R species [Figure adapted from 

(Wang and Mandelkow, 2016)]. 

1.2.2 Tau domains and structure 

Based on its microtubule interactions and amino acid character, Tau can be 

subdivided into two major domains: (1) the assembly domain in the C-terminal half 
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comprising the repeat domains plus flanking regions which binds to and stabilizes 

microtubules; (2) the projection domain in the N-terminal half, which does not bind to 

microtubules, but projects away from the microtubule surface. The middle region of 

Tau (aa 150-240) within the projection domain is a proline-rich domain. It contains: 

(1) seven PXXP motifs, which are binding sites for signalling proteins with SH3 

domains, for instance, the tyrosine kinase fyn (Lee et al., 1998); (2) multiple 

threonine/proline (TP) or serine/proline (SP) motifs that are targets of proline-directed 

kinases which become hyperphosphorylated in AD and other Tauopathies. 

1.2.3 Post-translational modifications (PTMs) of Tau 

After synthesis, Tau is subjected to multiple post-translational modifications which 

appear to play critical roles in regulating Tau function, degradation and aggregation.  

1.2.3.1   Phosphorylation of Tau 

Tau is normally a phosphoprotein. Its phosphorylation is developmentally regulated 

so that fetal Tau (~7 phosphates per molecule)  is more highly phosphorylated than 

adult Tau (~2 phosphates) (Kenessey and Yen, 1993). However, in AD, the 

phosphorylation of Tau is increased to ~8 phosphates per molecule, about 3-4 times 

more than controls (Kopke et al., 1993). There are up to 85 potential phosphorylation 

sites (80 Ser/Thr, 5 Tyr) in the longest isoform of Tau (2N4R). Owing to the unfolded 

structure of Tau, most of these sites are accessible, with ~45 of them observed 

experimentally (Hanger et al., 2009).  

The kinases which phosphorylate Tau can be divided into three categories: (i) Proline 

directed serine/threonine kinases (PDPKs) such as glycogen synthase kinase 3β 

(GSK-3β), cyclin-dependent kinases (cdk5/cdc2), mitogen-activated protein kinase 

(MAPK), stress-activated kinases (e.g. JNK and p38), etc that phosphorylate Tau at 

SP/TP motifs clustering in the flanking regions of Tau. In AD and other Tauopathies, 

these SP/TP motifs are abnormally phosphorylated, generating epitopes for 

diagnostic antibodies AT8 (S202/T205), AT180 (T231/S235), PHF1 (S396/S404) etc 

that are widely used for labeling pathological Tau (Fig. 1.3) (ii) Non-proline directed 

serine/threonine kinases such as Microtubule-Affinity Regulating Kinase (MARK), 

Ca2+/Calmodulin-dependent protein kinase II (CaMPK II), cyclic AMP dependent 

kinase (PKA) and Casein Kinase II, which phosphorylate Tau at the KXGS motifs in 
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the repeat domain (Schneider and Mandelkow, 2008). (iii) tyrosine Kinases including 

the Src family kinases - Fyn kinase, Lck, Src, Syk, c-Abl phosphorylate the five 

tyrosine residues in all isoforms of Tau (Lebouvier et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3: Phosphorylation sites of Tau protein and the epitopes of phosphorylation specific antibodies. 

Various kinases and phosphatases target different phosphorylation sites of Tau protein. Phosphorylation of the 

SP/TP motifs by MAPK, GSK3ß and Cdk5 has a slight modulating effect on the microtubule binding of Tau, but 

phosphorylation at the KXGS motifs and at S214 by MARK, PKA or SADK can reduce its affinity to microtubules. 

The Src family kinases phosphorylate the tyrosine residues of Tau. The phosphatases, PP2A and PP2B 

dephosphorylate Tau. The epitopes of the different phospho-Tau specific antibodies have been indicated [Figure 

adapted from (Schneider and Mandelkow, 2008)]. 

Phosphorylation plays a critical role in regulating both physiological and pathological 

functions of Tau. Phosphorylation may fine-tune the binding of Tau to microtubules 

and therefore regulates the stabilization and assembly of microtubules. The 

hyperphosphorylation of Tau is observed in NFTs from all Tauopathies, and thereby 

has been implicated to play a role in driving Tau aggregation. However, this issue 

remains a matter of debate (see below). In addition, abnormal phosphorylation of Tau 

may retard its degradation and thus contributes to its accumulation and aggregation.  
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1.2.3.2   Other PTMs of Tau 

Tau is also subjected to other post-translational modifications. The abnormally 

phosphorylated Tau in AD brain was also glycosylated (Wang et al., 1996). 

Additionally, the KXGS motifs are hypoacetylated and hyperphosphorylated in AD 

patients and in a mouse model of Tauopathy (Cook et al., 2014).  

1.2.4   Aggregation of Tau 

The aggregation of Tau depends on two short hexapeptide motifs at the beginning of 

R2 and R3 (VQIINK and VQIVYK) of Tau that show propensity for β-structure (von 

Bergen et al., 2000). Disruption of these motifs by introducing proline mutations - β-

structure breaker abrogate the tendency of Tau for aggregation; on the contrary, 

strengthening the β-structure by mutations (e.g. ∆K280 or P301L) accelerates Tau 

aggregation (Khlistunova et al., 2007, Mocanu et al., 2008).  

Notably, phosphorylation at sites S262/S356 in the repeat region and S214 detaches 

Tau from microtubules and can infact protect Tau against aggregation (Schneider et 

al., 1999). Finally, Tau aggregation can be induced efficiently by polyanionic 

cofactors, regardless of phosphorylation, suggesting that phosphorylation is not 

necessary for Tau aggregation. Thus, it is possible that unknown cofactors trigger 

Tau aggregation in the Alzheimer brain, while phosphorylation may accelerate 

aggregation indirectly, for example by detaching Tau from microtubules (Wang and 

Mandelkow, 2012). Additionally, in a cell model of Tauopathy, stepwise proteolysis of 

Tau harboring the ∆K280 mutation resulted in the aggregation of Tau (Wang et al., 

2009, Wang et al., 2007), highlighting the critical role of truncation of Tau in 

aggregation. 

1.3   The distribution and functions of Tau  

Tau protein is mainly found in neurons, but debatably also in many non-neuronal 

cells (Migheli et al., 1988). In neurons, the subcellular distribution of Tau is 

developmentally regulated. Before developmental differentiation, Tau distributes 

evenly in the cell body and neurites. Later, when axons emerge and neurons are 

polarized, Tau becomes enriched in axons (Mandell and Banker, 1995), with minor 

amounts in dendrites and nuclei.  
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1.3.1 Axonal localization of Tau protein and its functions 

In neurons, Tau mainly distributes into the axons where it interacts with microtubules 

through the repeat domain and flanking regions and thereby stabilizes microtubules 

and promotes microtubule assembly (Mandelkow and Mandelkow, 2012). In addition, 

Tau seems to be essential for axonal elongation and maturation, as knockdown of 

Tau in cultured neurons inhibits neurite formation (Caceres and Kosik, 1990), 

whereas overexpression of Tau promotes neurite formation (Knops et al., 1991, 

Biernat and Mandelkow, 1999). Besides Tau’s role in regulating microtubule 

dynamics and neuronal polarization, it  may also regulate axonal transport via 

different mechanisms in terms of influencing the function of motor proteins - dynein 

and kinesin which transport cargos toward the minus-end (toward the cell body) and 

plus- end of microtubules (toward the axonal terminus), respectively (Stamer et al., 

2002). 

1.3.2  Somatodendritic localization of Tau protein and its potential toxic effects 

There is only a small amount of Tau found in dendrites but a recent study showed 

that the dendritic Tau may be involved in the regulation of synaptic plasticity, since 

pharmacological synaptic activation induces translocation of endogenous Tau from 

the dendritic shaft to the excitatory synapses in cultured neurons or acute 

hippocampal slices (Frandemiche et al., 2014). In addition, the postsynaptic Tau has 

been proposed to be essential for long term depression (LTD), which becomes 

defective in Tau knockout mice (Kimura et al., 2014, Regan et al., 2016). Finally, the 

dendritic Tau appears to be essential for Aβ-induced neurotoxicity (Zempel et al., 

2013). The dendritic Tau could serve as a protein scaffold to deliver the kinase FYN 

to postsynaptic sites, where it phosphorylates the subunit 2 of the NMDA receptor 

(NR2B), resulting in the stabilization of the interaction of this receptor with the 

postsynaptic density protein 95 (PSD95), powering up glutamatergic signalling and 

thereby enhancing Aβ toxicity (Ittner et al., 2010). Additionally, in cell culture studies, 

NMDA receptor activation was shown to phosphorylate Tau in dendrites thereby 

regulating its interaction with the PSD95-Fyn-NMDA receptor complex with potential 

implications in AD (Mondragon-Rodriguez et al., 2012). These findings highlight the 

toxic role of Tau in the somatodendritic compartment. 
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1.3.3  Nuclear localization of Tau protein and its functions 

In addition to its localization in the axons and somatodendritic compartment, Tau 

protein can also localize to the nucleus and could interact with the DNA and protect it 

as a response to stress (Sultan et al., 2011).  

1.4  Missorting of Tau into the somatodendritic compartment and its toxic 

effects 

Given the different subcellular functions of Tau, the impairment of the polarized 

distribution of Tau may thereby lead to neuronal dysfunction. In AD, the missorting of 

Tau into the somatodendritic compartment represented one of the earliest signs of 

neurodegeneration. The missorting of Tau starts as a granular staining of the soma, 

which precedes the formation of NFTs and the loss of synapses (Braak et al., 1994). 

The mis-located dendritic Tau may cause neurotoxicity due to its toxic gain-of-

function. For example, in cultured primary neurons, overexpression of Tau causes 

the missorting of Tau into the dendrites, where it binds to microtubules, leading to 

inhibition of vesicle and mitochondrial transport, loss of ATP and eventually loss of 

spines. These defects can be rescued by expressing the kinase MARK2 which 

detaches Tau from microtubules via its phosphorylation (Thies and Mandelkow, 

2007). In addition, Aβ or other stressors may induce missorting of Tau in cultured 

neurons. In these cases, the missorted dendritic Tau may mediate toxicity by 

promoting the translocation of tubulin tyrosine ligase-like enzyme 6 (TTLL6) into 

dendrites, followed by polyglutamylation of microtubules, recruitment of spastin to 

microtubules and severing of microtubules by spastin (Zempel et al., 2013). Notably, 

the missorting of hyperphosphorylated Tau into the dendrites and spines may induce 

cognitive deficits even in the absence of signs of neurodegeneration. This may be 

because hyperphosphorylated Tau enters spines possibly through an actin-based 

process, resulting in synaptic dysfunction by preventing the synaptic recruitment of 

AMPA and NMDA receptors (Hoover et al., 2010).  

1.5   Proposed mechanisms underlying sorting and missorting of Tau 

Given the impact of the distribution of Tau on its physiological and pathological 

functions, it is of interest to study the mechanisms underlying sorting and missorting 
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of Tau. Some hypotheses to explain the polarized distribution of Tau are in the 

following chapter – 

1.5.1 Preferential distribution and translation of Tau mRNA in axons  

The localization of Tau mRNA to the cell body and the proximal region of axons 

(Litman et al., 1993) might play a role in the axonal localization of Tau protein 

although this is a matter of debate. Indeed, the cis-acting sequences at the 3’ UTR of 

Tau mRNA act as a zip code in its targeting to the axons (Aronov et al., 2001) and 

also play an essential role in its stabilization. In addition to the 3’ UTR, the 5’ UTR of 

Tau mRNA is also involved in the regulation of its translation in axons (Morita and 

Sobue, 2009). Aside from its localization in axons, Tau mRNA has also been 

identified in the proximal region of dendrites (Kosik et al., 1989), although no clear 

evidence exists. Therefore, the localization and translation of Tau mRNA in dendrites 

remains to be elucidated in detail. 

1.5.2 The retrograde diffusion barrier of Tau 

Recently, the polarized distribution of Tau has been attributed to the existence of a 

novel retrograde diffusion barrier at the axon initial segment. This barrier allows the 

anterograde flow of Tau into the axons, while preventing the retrograde flow back of 

the axonal Tau into the somatodendritic compartment, leading to the axonal retention 

of Tau (Li et al., 2011).  

1.5.3 Axonal transport of Tau 

The fast transport of Tau protein into the axons after its synthesis in the 

somatodendritic compartment has been proposed to explain the varying pattern of 

the localization of Tau protein in axons and its mRNA in the soma (Kosik et al., 

1989). However, the evidence that Tau undergoes fast axonal transport is still 

missing. Instead, the slow axonal co-transport of Tau with tubulin into the axon (Tytell 

et al., 1984) and/or the piggy backing of Tau on tubulin fragments (Konzack et al., 

2007) may contribute to the axonal localization of Tau. Indeed, active transport could 

contribute to the distribution of Tau over longer distances. 
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1.5.4  Higher affinity of Tau to microtubules in axons than in dendrites 

Another factor which might contribute to the polarized distribution of Tau is the 

differential affinity of Tau to microtubules in axons versus dendrites. The process of 

extraction of soluble proteins before fixing them revealed a tighter binding of Tau to 

the microtubules in axons than in dendrites (Kanai and Hirokawa, 1995). 

1.5.5 Differential degradation of Tau protein in axonal and somatodendritic 

compartments 

Finally, it has been speculated that the clearance of Tau is different in the 

somatodendritic compartment compared to the axons and thus may lead to the 

polarized distribution of Tau in neurons. This hypothesis is based on a single 

observation: when biotinylated Tau is injected into cultured neurons, it distributes 

across all compartments of the neuron for 24hrs. Afterwards the amount of Tau in the 

somatodendritic compartment (but not in axons) is gradually reduced and finally 

disappeared completely while Tau in the axons stays (Hirokawa et al., 1996). It has 

never been tested whether the disappearance of Tau in the somatodendritic 

compartment is indeed due to the clearance of Tau by the protein degradation 

systems.   

1.5.6  Mechanisms of Tau sorting  

As described above, the polarized distribution of Tau in neurons has been proposed 

to be regulated at both the mRNA and protein level via several mechanisms, 

however, the involvement of each mechanism in the sorting of Tau remains unclear. 

Since we and other groups recently showed that the protein degradation systems – 

autophagy and proteasome play an important role in preventing Tau aggregation and 

neurodegeneration (Wang et al., 2009, Kruger et al., 2012, Han et al., 2014), we 

wanted to understand whether the protein degradation systems indeed are involved 

in the sorting of Tau. 

1.5.6.1 The ubiquitin-proteasome system (UPS)  

The UPS plays an important role in the extra-lysosomal degradation of proteins in the 

cytosol, nucleus, endoplasmic reticulum and the cytoskeleton (Coux et al., 1996). 
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The UPS degrades target proteins earmarked with another small protein, ubiquitin, 

which is then directed towards the 26S proteasome for degradation.  

The 26S proteasome complex 

The 26S proteasome is an ATP-dependent protease complex of over 2.5 

megadaltons composed of three major subunits – a 20S catalytic core, which has the 

proteolytic activities and two 19S regulatory subunits on either end of the 20S 

catalytic core. The two ATPase containing 19S regulatory subunits unfold the 

substrate and translocate it to the 20S subunit (Wong and Cuervo, 2010) where it is 

then degraded.  

The ubiquitin conjugation pathway  

Ubiquitin is an 8.5kDa protein composed of 76 residues with seven lysine residues. 

Ubiquitin and ubiquitin-like proteins (Ubls) are produced as inactive precursor 

moieties which are processed by the deubiquitinating enzymes (DUBs) or the ULPs 

(Ubl specific proteases) to expose their glycine carboxylate residue. The processed 

ubiquitin is then activated by the ubiquitin-activating enzyme, E1, transferred to the 

ubiquitin-conjugating enzyme, E2 and finally conjugated to the lysine of the substrate 

with the help of the ubiquitin ligase, E3 (Kerscher et al., 2006) (Fig. 1.4). 

Small molecules that can suppress the activity of the proteasome system include 

epoxomicin, lactacystin, MG132, etc. Due to the non-specific effects of MG132 

(Braun et al., 2005), epoxomicin and lactacystin have been used in our study. On the 

other hand, well known activators of the proteasome include RNA aptamers (single 

stranded nucleic acids capable of repressing the enzymatic activity of proteins they 

bind to) (Lee et al., 2015) and a pharmacological stimulator, rolipram (Myeku et al., 

2016) which is one of the best chemical activators of the proteasome.    
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Fig. 1.4: The ubiquitin conjugation pathway.  The processed Ubl is activated by E1 (Orange box) transferred to 

E2 (green box) and ligated to substrate via E3 (Blue boxes) enzymes. After the ligation step, the DUBs and ULPs 

act to remove the ubiquitin from the substrates for Ubl recycling [Figure reproduced from (Kerscher et al., 2006)]. 

1.5.6.2 Autophagy  

Another important protein degradation pathway, autophagy, is involved in the 

removal of damaged organelles, protein aggregates, etc using lysosomes as a 

powerful tool. Autophagy can be classified into three main types based on the site of 

cargo sequestration such as microautophagy, macroautophagy and chaperone-

mediated autophagy (Klionsky, 2013).  

In microautophagy, the lysosomal membrane invaginates engulfing the cytoplasmic 

contents (Marzella et al., 1981) whereas in chaperone-mediated autophagy (CMA), 

the proteins are targeted to the lysosomes for degradation (Cuervo and Wong, 2014). 

Although the involvement of microautophagy in Tau degradation has not been 

reported the role of CMA in Tau degradation has been widely studied (Wang et al., 

2009). 
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Macroautophagy 

Macroautophagy (hereafter referred to as ‘autophagy’) involves the engulfment of the 

contents of the cytoplasm into double or multi-membraned vesicles which are 

targeted to the lysosomes for degradation. Hence macroautophagy is considered to 

be a ‘non-selective’ form of autophagy (Yang and Klionsky, 2010) involving 

autophagosome formation through four main steps – vesicle nucleation or 

phagophore formation, vesicle elongation, docking and fusion, breakdown and 

degradation  (Fig 1.5).  

In mammals, autophagy is stimulated by the deprivation of insulin or nutrients which 

inhibit the mammalian target of rapamycin (mTOR) which in turn inhibits UNC51-like 

kinase - ULK1 thereby activating the class III PI3Kinase, which encompasses the 

vacuolar protein sorting protein (Vps34). The Vps34 phosphorylates 

phosphatidylinositol to phosphatidylinositol 3-phosphate (PI3P) which is involved in 

membrane trafficking. The PI3P generated by the Vps34 activity interacts with the 

PI3P effectors – WIPI1 and WIPI2 (Nixon, 2013) followed by the elongation of the 

isolation membrane by the two conjugation systems - autophagy related protein 12 

(Atg12) and autophagy related protein 8 (Atg8) conjugation systems. Although not 

well characterized, autophagolysosomal fusion in mammals involves the lysosomal 

membrane binding protein LAMP2 and GTP binding protein Rab7. Finally, the 

cathepsins B,D and L are involved in the degradation of the autophagosomal content 

(Levine and Kroemer, 2008). 

Under physiological conditions, autophagy is induced by amino acid deprivation. 

Other important activators of autophagy include rapamycin, a lipophilic antibiotic and 

trehalose, a disaccharide (Rubinsztein et al., 2007, Sarkar et al., 2007). 
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Fig. 1.5: Cellular events of macroautophagy. The formation of autophagosomes in macroautophagy involves 

four main steps – vesicle nucleation, elongation, completion, breakdown and degradation. The fusion of 

lysosomes with autophagosomes results in the formation of autolysosomes where the engulfed material is 

degraded. While the PI3kinases are involved in the initial steps of macroautophagy, the Atg proteins are mainly 

involved in the vesicle elongation. The LAMP, Rab and the SNARE proteins are involved in the docking and 

fusion steps [Figure adapted from (Levine and Kroemer, 2008)].  

The class I PI3kinases inhibit autophagy whereas the class III PI3kinases activate 

autophagy by promoting the formation of autophagosomes. The early stage inhibitors 

of autophagy such as 3-methyladenine (3MA), wortmannin and LY294002 inhibit 

both the class I and class III PI3 kinases (Rubinsztein et al., 2007). Unexpectedly, 

3MA blocks class I PI3kinase persistently whereas it transiently blocks class III 

PI3kinase (Wu et al., 2010). Contrary to the effect of 3MA, wortmannin blocks class 

III PI3kinases persistently whereas its effect on class I PI3kinases is transient which 

makes it a more suitable inhibitor of autophagy among the others (Yang et al., 2013). 

Another potent inhibitor of autophagy, Bafilomycin A1, prevents the maturation of 

autophagosomes by preventing the fusion of autophagosomes with lysosomes 

(Yamamoto et al., 1998).  

1.5.6.3 The degradation of Tau by the proteasome and autophagy systems 

Both cell culture and in vitro studies support the proteasomal degradation of Tau. Tau 

protein ubiquitinated via the lysine 63 polyubiquitin chain could be directed to the 26S 
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proteasome and subsequently deubiquitinated and degraded (Babu et al., 2005). 

Moreover, the accumulation of Tau has been confirmed using proteasomal inhibitors 

(Hamano et al., 2009) whereas proteasomal enhancers led to Tau clearance and 

improved cognition (Myeku et al., 2016). In addition to the proteasomal degradation 

of Tau, several studies indicate the role of autophagy in degrading Tau. In a cell 

model of Tau aggregation, stimulating autophagy can reduce Tau aggregation; 

whereas, inhibiting autophagy can promote Tau aggregation (Wang et al., 2009). 

Stimulating autophagy also reduces the Tau level in cultured primary neurons, 

regardless of the phosphorylation state of Tau (Kruger et al., 2012). This indicates 

that stimulation of autophagy could be a potential therapeutic approach for 

Tauopathies.   

1.5.6.4  Compromised autophagy and proteasome systems in AD 

In AD, both proteasome and autophagy become compromised, which may contribute 

to Tau missorting and Tau aggregation. Proteasome inhibition has been well known 

to be involved in the pathogenesis in AD. The oligomers and aggregates of Tau (Ren 

et al., 2007) and the oligomers of Aß could bind to the 20S proteasome and inhibit its 

peptidase activity (Keck et al., 2003, Tseng et al., 2008) resulting in the accumulation 

of the ubiquitin conjugates of Tau and Aß. The decrease in the proteasomal activity in 

AD could be attributed to the increased accumulation of Tau aggregates and/or 

oligomers which can in turn block the entry pore of the proteasome.  In addition to the 

impairment of the proteasome, autophagy impairment is also well known to be 

involved in the pathogenesis in AD. Although the induction of macroautophagy and 

the accumulation of immature forms of autophagic vacuoles were identified in 

dystrophic neurites in the neocortex of AD brain samples (Nixon et al., 2005), these 

findings are caused by the impairment of the late steps of autophagy, i.e. the 

impaired clearance of autophagosomes rather than the initial steps (Boland et al., 

2008). Drugs like methylene blue are currently being tested in our lab which activate 

autophagy (Congdon et al., 2012) and have shown to reduce the level of pathological 

Tau species with improved learning and memory in a transgenic mouse model of 

tauopathy (Hochgrafe et al., 2015). Methylene Blue is thought to inhibit Tau 

aggregation and propagation in AD besides activating autophagy. So Methylene Blue 

can serve as a novel therapeutic strategy.  
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Although autophagy and proteasome could degrade Tau efficiently, potential 

problems exist in inhibiting the pathways in neuronal cultures to test their role in Tau 

sorting. For example, our previous study showed that inhibition of the proteasome or 

the autophagy system in primary neurons induced pronounced neurotoxicity (Kruger 

et al., 2012). Besides this, the inhibition of the proteasomal pathway activates 

autophagy (Ding et al., 2007) whereas inhibition of autophagy compromises the 

proteasomal system (Korolchuk et al., 2009) thereby increasing the level of 

proteasomal substrates. In order to avoid compensation by the two protein 

degradation pathways and to avoid the potential toxic effects of the compounds used, 

we sought to carry out our studies in neurons cultured in compartmentalized devices 

such as the microfluidic chambers which enable local treatments of neurons for long 

periods of time.  

1.6  Microfluidic chambers (MFCs) - an ideal tool to enable local treatment and 

co-culture of neuronal populations 

Microfluidic chambers allow to control, monitor and manipulate cellular 

microenvironments. The device is fabricated in polydimethylsiloxane (PDMS), an 

optically transparent material, making it suitable for sophisticated microscopic 

techniques. The device contains two mirror image compartments. There are four 

reservoirs or wells serving as loading inlets and the two wells on each side are 

connected by channels (Fig. 1.6a). The cells, when added to a well, are drawn into 

the connecting channels by capillary action. The two connecting channels on each 

side are in turn connected by 100-120 microgrooves with varying lengths. The size of 

the grooves is small enough to prevent the cell bodies of the neurons to pass to the 

other side. So the microgrooves act as ‘filters’ allowing the passage of neurites only 

to the other side (Taylor et al., 2005). Microfluidic chambers allow fluidic isolation of 

microenvironments on the somal or neuritic side by establishing a volume difference 

between the two compartments, with lesser volume on the side of treatment (Fig. 

1.6b). The hydrostatic pressure difference resulting from the fluidic isolation facilitates 

slow but continuous flow across microgrooves which counteracts diffusion of small 

molecules from the added side (e.g. neuritic side) to the other side (e.g. somal side) 

(Taylor et al., 2003), enabling the restriction of local treatments for more than 20 

hours.  
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Fig. 1.6: Photographs and picture of microfluidic chambers. (a) Photograph of a microfluidic chamber (RD-

Round device 150, top view) showing all the four wells with a diameter of ~6mm and a height of 4mm. The two 

wells on each side are connected by a channel which is 2mm wide, 7mm long and 100µm tall. The connecting 

channels are inturn connected by microgrooves (brown) which are 150µm long with a height of ~3µm and a width 

of 10µm. The representation shows the two wells on each side and their connecting channels in grey and yellow. 

(b) Schematic diagram of the side view of a microfluidic chamber indicating fluidic isolation. The somal side is 

shaded in grey and the neuritic side in yellow. Fluidic isolation is acheived by removing a small volume of medium  

(60 µl) from the neuritic side which can be detected by a lower liquid level on the neuritic side. Therefore the flow 

of liquid occurs from the somal to the neuritic side (orange arrow) (c) Photograph of a microfluidic device (TCND-

triple chamber neuron device 1000, top view) showing all the six wells and their connecting channels. The wells 

have a diameter of ~8mm and a height of 4mm. The first (grey) and the third (yellow) connecting channels have a 

length of 7mm, a width of 1.5mm and a height of 0.1mm, whereas the central chamber (purple) has a width of 

1mm, length of 15mm and a height of 0.1mm.. It contains two 500µm microgroove barriers (brown) which are 

10µm wide with a height of 3µm [Figure adapted from http://xonamicrofluidics.com/ and from (Taylor et al., 2005)]. 
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1.7   Spreading of Tau pathology in AD and other Tauopathies 

In AD, Tau aggregates appear in a hierarchical pattern, first in the entorhinal cortex, 

then in the hippocampus and later to the surrounding areas. Based on this sequential 

appearance, AD can be classified into 6 stages - Tau pathology initiates at the 

entorhinal cortex (Braak stages I and II), then spreads subsequently to the 

hippocampus (Braak stages III and IV) and finally to the broader regions of the 

neocortex and hippocampus (Braak stages V and VI) (Braak and Braak, 1991). Up to 

date, the mechanism underlying the progression of Tau pathology remains elusive. 

One hypothesis assumes that the hierarchical propagation of Tau pathology is due to 

the differential vulnerability of brain regions. In line with this view, in AD, the neurons 

prone to developing NFTs are projection neurons with long axons that are only poorly 

myelinated (Braak and Braak, 1996). They are intrinsically vulnerable, because (1) 

they have high energy requirements that may subject them to chronic oxidative stress 

(Yan et al., 2013); (2) their poor myelination increases their exposure to toxic 

environmental conditions, as myelin sheaths provide a mechanical barrier against 

pathogens and provide trophic support and protection against oxidative stress (Nave 

and Werner, 2014, Fruhbeis et al., 2013). A second hypothesis is based on the 

observation that neurons affected by Tau pathology are often anatomically connected 

(Hyman et al., 1984). Thus, Tau pathology may be due to the neuronal connectivity. 

The agent causing the spread of pathology e.g., stress granules, cytokines, trophic 

factors, etc, has also been a matter of debate. One current hypothesis holds that Tau 

itself spreads from cell to cell. These Tau species could act as seeds to induce the 

aggregation of Tau in the recipient neurons. Since this spreading pattern is similar to 

the propagation of prion pathology, Tau can thus be regarded as a prion-like protein 

(Fig. 1.7).  Consistent with this hypothesis, internalization of extracellular Tau 

aggregates induces a misfolded state of intracellular Tau (Frost et al., 2009). 

Additionally, formation of Tau aggregates was identified in mice injected with brain 

extracts from P301S mice (Clavaguera et al., 2009) or with extracts from humans 

who died from various Tauopathies (Clavaguera et al., 2013). The spreading of Tau 

followed a cell type specific pattern in AD and CBD (Boluda et al., 2015). 

The advancement of NFTs from the entorhinal cortex to neurons of the trans-synaptic 

circuit (de Calignon et al., 2012) and the trans-synaptic spreading of Tau pathology 
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along anatomically connected brain regions (Liu et al., 2012) highlights the role of 

synapses in the spreading of Tau pathology. Preformed Tau aggregates could also 

spread independently of synaptic connections indicating the existence of non-

synaptic mechanisms for Tau pathology spreading (Peeraer et al., 2015). Currently, 

there is a debate on what Tau species are transmitted between neurons. Proposed 

candidates are Tau oligomers or short fibrils (Guerrero-Munoz et al., 2015), although 

any of the Tau species might be transmitted in association with extracellular vesicles, 

particularly exosomes.  

1.7.1  Exosomes and spreading of Tau  

Exosomes are small membranous vesicles (50-150nm) (Lynch et al., 2009) formed 

by the endocytosis of molecules. The endosomes are either recycled to the plasma 

membrane or fuse with multivesicular bodies (MVBs). The subsequent fusion of the 

MVBs with the plasma membrane releases exosomes (Dujardin et al., 2014a). 

Exosomes are secreted by a wide variety of cell types including neurons (Faure et 

al., 2006). It has been reported that α-synuclein, prion protein and β-amyloid are 

present in exosomes (Fevrier et al., 2004, Kunadt et al., 2015, Rajendran et al., 

2006). Exosomes isolated from the conditioned medium of cultured cell lines over-

expressing Tau or CSF from AD patients may contain Tau (Saman et al., 2012, 

Simon et al., 2012), although this is a matter of debate. Interestingly, exosomes can 

be released at neuronal presynaptic terminals and taken up by postsynapses at 

Drosophila neuromuscular junctions (NMJ) (Korkut et al., 2013), and therefore qualify 

as carriers for trans-synaptic transmission of proteins. Thus, it would be of interest to 

investigate whether exosomes are involved in the trans-synaptic spreading of Tau 

pathology. 

Microfluidic chambers have been used to study the spreading of different forms of 

Tau. Using neurons cultured in microfluidic devices, only low molecular weight 

aggregates and short fibrils of Tau were taken up and trafficked anterogradely or 

retrogradely (Wu et al., 2013). Another study reported the uptake and trafficking of 

Tau monomers and oligomers towards the axon terminals (Usenovic et al., 2015). 

Using three chambered microfluidic devices, the importance of synapses in the 

transmission of Tau aggregates (Calafate et al., 2015) as well as transsynaptic 

transmission of phosphorylated high molecular weight Tau species (Takeda et al., 

2015) was demonstrated. 
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Fig. 1.7: Mechanisms involved in the prion-like protein transmission in neurodegenerative diseases. The 

pathological misfolded protein aggregates in the donor cell is released either in its aggregated form or fragmented 

into seeds which are then released. The released protein is then taken up by the recipient cell by bulk endocytosis 

either in its naked form or packaged in extracellular vesicles like exosomes, ectosomes, etc. The other possible 

mechanism of pathological protein spreading from one cell to the other is via direct synaptic transfer. The 

daughter seeds entering the neighboring cells might get missorted and could initiate further aggregation and 

spreading [Figure adapted from (Brettschneider et al., 2015)]. 
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1.8 Aims of this study 

The aims of this study were to use Microfluidic chambers (MFCs) to investigate the 

mechanism of Tau sorting and Tau spreading. MFCs allow one to treat neurons 

locally at the distal part of the dendrites or axons (Taylor et al., 2005) for prolonged 

periods of time. This allows one to address specific questions regarding the 

intracellular generation, distribution, and transcellular migration of Tau. 

 

The following questions were investigated using MFCs: 

 

1. The role of the protein degradation systems (proteasome, autophagy) for the 

clearance and missorting of Tau  
 

2. The toxic effect of Tau accumulation in dendrites 

 

3. The localization and translation of Tau mRNA in dendrites 

 

4. The trans-synaptic spreading of Tau via exosomes 

 

 
 

 



Materials and Methods 
 

22 
 

2   Materials and Methods 

2.1  Materials 

All chemicals were purchased from Calbiochem, Sigma, Affymetrix or Enzo. 

2.1.1  Antibodies: 

Primary antibodies: 

Antibody Company 

K9JA Dako 

PHF1 Peter Davies 

AT8 Pierce 

12E8 Elan pharmaceuticals 

ß actin                                                                                       Sigma 

p62 (SQSTM1) Abnova 

DA9 Peter Davies 

Ubiquitin Dako 

MAP2 (Mouse)                                                                          Sigma 

MAP2 (Chicken)                                                                        Millipore 

SA4473 Eurogentec 

YL1/2                                                                                        Serotec 

Flotillin                                                                                       BD trans 

GluR1 Chemicon 

Synaptophysin Sigma 

Secondary antibodies: 

All secondary antibodies – Amca, Cy2, CF488, A488, Cy3, Tritc, Cy5, CF647 and 
A647 were purchased from dianova. 

 



Materials and Methods 
 

23 
 

Dyes for cell culture: 

DiI Cytoskeleton 

Rhodamine Phalloidin Molecular Probes 

 

2.1.2  Molecular weight markers: 

Protein magic marker Fermentas 

Page ruler prestained protein ladder Fermentas 

 

2.1.3  Kits 

ECL western blotting detection kit                                               Amersham 

ViewRNATM ISH Cell Assay for 

Fluorescence RNA In SituHybridization 
(RNA FISH) kit 

Affymetrix 

BCA kit (Bicinchoninic acid kit)                                                      Sigma 

Cytotoxicity detection kit Roche Applied Science 

 

2.1.4  Cell culture media and reagents: 

Neurobasal medium Gibco (Life technologies)                                                                       

Dulbecco’s PBS                                                                            Sigma 

Donor Horse serum                             Sigma 

NS-21        PAN-biotech 

Penicillin/ Streptomycin        PAN-biotech 

Pyruvate Sigma 

L-Glutamine PAA 

Trypsin-EDTA Sigma 

Hank’s BSS Sigma 
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Ham’s F12  PAA 

Fetal Bovine Serum   Millipore 

 

2.1.5  Chemicals 

The protein degradation inhibitors - Wortmannin, Bafilomycin, Epoxomicin and 

Lactacystin were purchased from Calbiochem. The protein synthesis inhibitors - 

cycloheximide and anisomycin were purchased from Sigma, Munich, Germany. 

Trehalose was purchased from Sigma and Rolipram was purchased from Enzo. 

Unless stated otherwise all the above chemicals (except trehalose) were prepared in 

DMSO. 

2.1.6  Softwares 

AIDA Fuji 

LSM700 Image processing software, 

ZEN 

Zeiss 

 

EndNote X7 Thomson Reuters, UK 

Image J 1.49o NIH, USA 

XFluor4 Tecan 

 

2.1.7  List of equipments: 

Centrifuges & Vortex 

Centrifuge 5804   Eppendorf 

Mini spin – Table top centrifuge   Eppendorf 

Vortex - Genie 2                                                              Scientific industries,INC 
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Cell culture hood & incubators 

Cell culture hood Scanlaf 

37 °C CO2 incubator Thermo Scientific 

37°C waterbath Memmert GmbH 

 

Microscope 

LSM 700 Zeiss 

Episcope/Apotome Zeiss 

Fluoview 1000 Olympus 

 

Other equipments 

37°C incubator/shaker Biozym 

Fujifilm LAS4000 camera Fuji 

TECAN plate reader   Safire 

 

2.1.8  Buffers 

10X Blotting Buffer                                     480mM Tris-HCl, 390mM Glycine, 50% 

Methanol, 1% SDS 

                          

1X SDS Running Buffer                           0.025M Tris-HCl, 0.192M Glycine, 0.1% 

SDS 

10X TBST                                            100mM Tris-HCl pH 7.5, 1.5M NaCl, 5% 
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Tween 20 

5X SDS Sample Buffer                              1.25M Tris-HCl pH 6.8, Glycerol, 50% 

SDS, 0.25% Bromophenol Blue 

2X SDS Sample Buffer                              0.5M Tris-HCl pH 6.8, Glycerol, 10% 

SDS, 0.1% Bromophenol Blue 

Lysis Buffer                                                50mM Tris HCl, pH 7.4, 150mM NaCl, 

1mM EDTA,1mM EGTA, 1% Triton X-100 

 

Lysis Buffer: 

Tris HCl pH 7.4                                                                         50mM 

Sodium chloride                                                                      150mM 

EDTA 1mM 

EGTA 1mM 

Triton X-100                                                                                   1% 

 

For western blot sample preparation: 

Stock protease solution 

One tablet from Complete mini protease inhibitor cocktail (Roche diagnostics, USA) 

is dissolved in 2mL distilled water to prepare a 25X stock protease solution. 

Working protease solution: 

Reagent Volume added 

Sodium orthovanadate (2mM) 4µL 
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Stock protease                                                                        160µL 

Okadaic acid                                                                               1µL 

Glycerol – 3- phosphate (60mM)                                               40µL 

 

The above mixture is diluted in 795µL lysis buffer to prepare 1000µL working 

solution. 

2.1.9  Microfluidic chambers 

Round device with 150µm microgroove 

barrier (RD150) 

Xona microfluidics 

Round device with 900µm microgroove 

barrier (RD900) 

Xona microfluidics 

Triple chamber neuron device with 

1000µm microgroove barrier 

(TCND1000) 

Xona microfluidics 

 

2.2 Methods: 

2.2.1 Preparation of primary neuronal cultures 

Rat dissection and primary neuron preparation: 

Cortical or hippocampal neurons were prepared from embryonic day 18 (E18) rat 

embryos and cultured according to Banker’s protocol. The instruments for dissection 

were sterilized with ethanol and placed inside the laminar flow hood. Before 

anaesthetizing the rats, few dishes were filled with Hank’s BSS (HBSS) and pre-

cooled on ice. Using 2 to 3mL isofluorane (Sigma-Aldrich), the rat was anaesthesized 

followed by the rinsing of its abdomen with 70% ethanol, incision and removal of its 

uterus. The fetuses were then removed from the uterus and their heads were 

sectioned immediately and placed in one of the dishes with cold Hank’s BSS. Under 
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a dissection microscope the brains were dissected out and submerged inside the 

HBSS in the dishes on ice. After removing the cerebral hemispheres, the cortex was 

cut in half and thalamus was removed completely. The tissues were then turned and 

the meninges were peeled off. The tissues containing both the cortex and 

hippocampus were then transferred into a new petridish with HBSS. Under a 

dissection microscope, the hippocampus from each tissue was cut gently using a 

small scissor. The same procedure was repeated for all of the cerebral hemispheres 

from all embryos. 

Finally, the separated hippocampus and cortical tissues were transferred to 15 ml 

and 50 ml falcon tubes respectively. The HBSS is then removed and to the cortical 

and the hippocampal tissues were added ~5mL and ~2mL trypsin respectively and 

placed in 37°C water bath for 8 minutes. The trypsination reaction was stopped by 

adding plating medium (Neurobasal medium with supplements) or HBSS with Horse 

serum to each tube. When the tissue gets settled down in the tubes, the supernatant 

containing both trypsin and medium is removed. Subsequently, around 1mL HBSS 

pre-warmed at 37°C was added to each tube and the tissues were gently dissociated 

by pipetting them up and down. The dissociated cells were then filled with pre-

warmed HBSS and ~10µL of this suspension was mixed with 10µL of trypan blue for 

5 mins at room temperature to identify the number of dead cells. Next, 10µL of the 

trypan blue-treated cell suspension was added in a Neubauer chamber for cell 

counting under a bright field microscope. The number of trypan blue staining 

negative cells in the four grids was counted and the cell density was calculated 

according the formula: cell density (no./ml)= cell number/4 X 104 X dilution factor. 

Prior to plating of neurons in 24-well or the 6-well plates, the autoclaved coverglasses 

were coated with poly-D-lysine dissolved in Dulbecco’s PBS for 2 days in 37°C 

incubator. On the day of seeding of neurons, the plates were washed thrice with 

prewarmed Dulbecco’s PBS. Once the primary neuronal cultures were prepared, the 

cells were seeded in the 6-well and 24-well plates with neurobasal medium 

(supplemented with penicillin/streptomycin, L-Glutamine, Horse serum, pyruvate and 

NS-21) pre-warmed in the 37°C incubator. For hippocampal neurons, 0.6 × 105 cells 

and 3 ×105 cells were plated in each well in 24-well plates and in 6-well plates 

respectively. After 4 days, the cultures were treated with 5µg/mL cytosine 

arabinoside (Sigma, Munich, Germany) to suppress glial growth. 
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2.2.2  Preparation & assembly of microfluidic chambers: 

Preparation of microfluidic chambers and coverglasses 

For culturing of neurons in microfluidic chambers, the coverglasses (Deckgläser 

round coverglasses, 25mm or Deckgläser microscopic coverglasses, 24 X 50mm) 

used to assemble the microfluidic chambers with, were autoclaved, and then coated 

with 1mg/mL poly-D-lysine dissolved in autoclaved water for 2 days in 37°C 

incubator. On the day of primary neuron preparation, the coverglasses were washed 

three times with autoclaved water to remove unbound poly-D-lysine. The 

coverglasses were subsequently dried inside the cell culture hood for 2 to 3hrs with 

the coated side facing upwards. The microfluidic chambers were sequentially washed 

once with 70% ethanol and once with autoclaved water and dried for 2 to 3hrs.  

Just before the seeding of neurons, the dried microfluidic chambers were taken with 

a sterile forceps and placed gently on the coated coverglass with the feature side 

(side of the chamber containing the entry ports to the connecting channels and 

microgrooves) facing downwards. Next, the chamber is gently pressed against the 

coverglass with the forceps on all its regions and the assembly of the chamber with 

coverglass is carefully lifted up by holding the coverglass. The setup is then flipped to 

check if the bonding is formed without air bubbles. If the presence of any gaps is 

visible then the chamber is carefully removed from the coverglass and once more 

placed and gently pressed against the coverglass. Once the assembly is done, the 

setup is placed inside a 6-well plate or a dish. The same procedure is repeated for all 

the chambers. One of the wells of the 6-well plates is left empty but later filled with 

water to avoid evaporation of medium from the chambers in the other wells. 

2.2.3  Seeding of neurons in microfluidic chambers: 

Around 1mL of the dissociated neurons was precipitated by centrifugation at 300Xg 

for 5 mins. The supernatant was then removed carefully without disturbing the cell 

pellet, and the cell pellets were resuspended in ~ 200 – 500µL of neurobasal medium 

The cell density was measured again and adjusted to ~6 × 106 cells/ml with 

neurobasal medium. Then 5µL of the cell suspension was taken in a 10µL pipette 

and dispensed carefully with the pipette tip placed at the junction of one well and its 

connecting channel. The cell suspension is drawn quickly by capillary action across 

the connecting channel. The chamber was then incubated inside the 37°C incubator 
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for 5 mins for the cells to attach to the coverglass. Afterwards, cells were seeded in 

another well on the same side following the same procedure. After another 5mins of 

incubation, neurobasal medium is added to all the wells of each chamber with more 

medium added on the cell-seeded side so that the hydrostatic pressure difference 

could drive more cells into the connection channel and attach near the microgrooves. 

This would enable more neurons to project dendrites through the microgrooves to the 

neuritic side. After 4 days, the chambers were treated with 5µg/mL cytosine 

arabinoside (Sigma, Munich, Germany) to suppress glial growth. 

In cases of neuronal co-culture, once the first order neurons cultured on one side of 

the microfluidic chambers have reached 14 Days in vitro (DIV), another population of 

neurons were seeded on the other side (called as the ‘neuritic side’). The neurons 

were left to grow for additional 10 to 11 days.  

For local treatment of neurons grown in microfluidic devices, around 60 µl of medium 

was removed from the side to be treated to achieve fluidic isolation (see Fig 1.6b in 

Introduction).   

2.2.4 Western Blotting 

Sample preparation for western blot 

The neurons in 6-well plates were briefly washed with cold 1x PBS and 100µL of the 

lysis buffer containing protease and phosphatase inhibitors were added to each well. 

Subsequently, the cells were then scrapped off the wells using a cell scrapper 

(24x24cm, blade width 13mm) and collected in 1.5mL eppendorf tubes and kept in 

ice for 20 minutes to completely disassemble microtubules. If required, the tubes are 

centrifuged at 14,000 rpm for 20mins at 4°C. To 40µL of the supernatant, 5x sample 

buffer was added and heated at 95°C for 5mins. The remaining of the supernatant 

was used for protein estimation to ensure equal loading. The samples were then 

stored at -20°C refrigerator until used.  

Protein estimation by bicinchoninic acid (BCA) assay 

The formation of the purple-coloured product in the BCA assay involves the 

macromolecular structure of protein, peptide bonds and the presence of four amino 

acids (Cysteine, Cystine, Tryptophan, Tyrosine). The protein concentrations are 

determined with reference to a standard protein such as bovine serum albumin 
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(BSA). A set of dilutions of the standard BSA of known concentrations were prepared 

and measured together with the protein sample of unknown concentration in a 24-

well plate.                                         

                                               Standard (Volume in µL) 

H2O 25 20 15 10 0 

BSA 

(1µg/µL) 

0 5 10 15 25 

 

The BCA solution was prepared by mixing one part of copper sulfate (Sigma-Aldrich) 

with 50 parts of BCA (Sigma). Each well of the 24-well plate with or without protein 

was made upto 25µL with water and to that 200 µl of BCA reagent was added. The 

24-well plate was then incubated at 37°C in dark for 30 minutes. The absorbance 

was then measured at 562nm using TECAN infinite M200 plate reader. 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) was 

performed to electrophoretically separate the proteins based on their molecular 

weight according to a modified protocol (Matsudaira and Burgess, 1978). Using SDS, 

the protein is first denatured and as a result of the protein’s binding with SDS, it 

obtains a negative charge. Followed by the addition of SDS, the proteins are heated 

to 95°C together with DTT to enhance denaturation.  

The denatured proteins are then applied to the wells of the polyacrylamide gel 

submerged in running buffer and an electric current is applied across the gel which 

results in the negatively-charged proteins to migrate depending on their size. The 

protein separation is performed using a discontinuous buffer system in SDS-PAGE. 

Early on, the proteins focus into a single sharp band in the stacking gel. A change of 

pH and the elimination of the ion gradient in the resolving gel enable the proteins to 

separate by the molecular size sieving.  

A setup with glass plates oriented vertically containing 1 mm spacers in between was 

used for casting gels. Separating gel and stacking gel were prepared as first 
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described by Ornstein, 1964. The casting of the SDS-PAGE gels were done as 

following: First the separating gel (composition described in the table below) was 

poured between the assembled glass plates followed by covering with a layer of 

isopropanol. Once the separating gel has polymerized, the layer of isopropanol was 

removed and washed with water. The stacking gel (composition described in the 

table below) was poured over the polymerized separating gel. Immediately following 

this, the comb was placed in between all the gel plates.  

Components Separating gel 

10% 

Separating gel 

17% 

Stacking gel 

4% 

 mL mL mL 

40% Acrylamide/Bis acrylamide 

(37.5:1) 

15 25.6 5.4 

1M Tris HCl, pH 8.8 22 22 - 

0.25M Tris HCl, 

pH 6.8 

- - 27 

10% SDS 0.6 0.6 0.54 

TEMED 0.12 0.12 0.108 

10% APS 0.065 0.065 0.15 

H2O 22 11.5 - 

H2O + Bromophenol Blue - - 20.9 

 

When the stacking gel solution is polymerized, the entire gel setup was placed in the 

electrophoresis chamber filled with the 1x SDS running buffer. The comb was then 

removed and the protein sample was mixed with 5x SDS sample buffer and heated to 

95°C for 5 minutes. The denatured protein samples were then loaded in the wells of 
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the stacking gel. The molecular weight marker and page ruler were also loaded in the 

other wells and electrophoresis was performed at 170 volts for 1hour. 

Blotting 

After electrophoresis, SDS gels were equilibrated in western blotting buffer (1x). The 

proteins in the gel were then transferred on to a methanol activated PVDF membrane 

by using electric current of 100mA for 60 minutes. Following electroblotting, the 

membrane was blocked in 4% milk dissolved in TBST (1x) overnight. Subsequently, 

the membrane was incubated with specific primary antibody (diluted in TBST) at 

37°C for 1 hour or overnight at 4°C. Following incubation with the primary antibody, 

the membrane was washed three times with 1X TBST and incubated with a 

peroxidase conjugated secondary antibody (diluted in TBST) at 37°C for 1 hour. The 

membrane was again washed three times with 1X TBST. The ECL based detection 

system was used to detect the luminescent product of the secondary antibody.  

Detection by Enhanced Chemiluminescence method 

A mixture of solutions A and B from the ECL kit (GE-Healthcare) is prepared in a 1:1 

ratio and added to the membrane and incubated in dark for 5mins. Air bubbles were 

removed and the membrane is developed inside the ImageQuant LAS4000 western 

blot developer machine (GE-Healthcare). 

2.2.5  LDH assay: 

The LDH measurement is a colorimetric assay for the quantification of cell death and 

cell lysis. This method is based on measuring the activity of Lactate dehydrogenase 

(LDH), a soluble cytosolic enzyme which is released as a result of the loss of 

membrane integrity. So the amount of released enzyme correlate with the amount 

lysed/dead cells and can be used as an indicator of membrane integrity. For the 

measurement of cytotoxicity, the Detection Kit from Roche Applied Science was used 

according to manufacturer's instructions.  

LDH kit (Roche Applied Science, Indianapolis, IN, USA) measures the release and 

activity of LDH present in the culture medium in a two-step reaction. In the first step, 

oxidation of lactate to pyruvate results in the reduction of NAD+ to NADH and H+ 

catalyzed by LDH. In the second step, diaphorase acts as a catalyst to transfer the 

H/H+ from NADH and H+ to the tetrazolium salt INT (2-[4-iodophenyl]-3-[4-
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nitrophenyl]-5-phenyltetrazolium chloride) which is reduced to formazan, a red 

coloured product which absorbs strongly at 490nm (Fig 2.1). 

Primary neurons were seeded at a density of 3 × 106 cells in microfluidic chambers. 

After 3 weeks the neurons were treated with the different protein degradation 

inhibitors on the neuritic side for 24 hours. After treatment of neurons in microfluidic 

chambers with the different protein degradation inhibitors, the medium from the 

somal and the neuritic sides were collected in eppendorf tubes separately. 

The dye (composed of INT and sodium lactate) and the catalyst (Diaphorase/NAD+ 

mixture) from the cytotoxicity detection kit were mixed in a ratio of 45:1. Then 50µL of 

medium from the somal and neuritic sides of each chamber from each condition were 

mixed with 50µL of the above mixture in a 96 well plate and incubated at room 

temperature in dark for 30minutes. Then the reaction was stopped by the addition of 

10µL of 1N HCl and incubated again for 1hour at 4°C. After incubation, the 

absorbance was measured at 490nm.  

                           

Fig. 2.1: Principle of LDH assay. The enzyme, lactate dehydrogenase (LDH) released into the medium from 

damaged cells catalyzes the oxidation of lactate to pyruvate and reduces NAD+ to NADH and H+. The enzyme 

diaphorase transfers the H+ from NADH and H+ to the tetrazolium salt (INT) which is then converted to red-

coloured formazan which absorbs at 490nm (Figure adapted from www.thermofisher.com).                      

 

2.2.6  Indirect Immunofluorescence: 

Indirect immunofluorescence is a two-step procedure where the cells are first labeled 

with target-specific, unlabeled primary antibodies which are then recognized by the 

addition of secondary antibodies that are conjugated with fluorophores. Since 

multiple secondary antibody molecules can bind to each primary antibody, this 

method provides signal amplification by increasing the number of fluorophore 

Damaged cells

Lactate

Pyruvate

LDH

NADH + H+

NAD+

INT

Diaphorase

Formazan
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molecules per antigen, which cannot be achieved with a direct immunofluorescence 

assay. 

After treatment of the primary neurons in microfluidic chambers, the chambers were 

slowly and carefully removed from the coverglass to make sure that no damage 

occurs to the neurons. Once the chamber was removed, the coverglass was 

immediately placed in a fixing solution containing 3.7% Formaldehyde (Sigma)/4% 

Sucrose in PBS (pH 7.4) for 30 minutes at 37°C (Deshpande et al., 2008). The cells 

were then washed three times with 1XPBS, permeabilized with 0.1% triton X-100 for 

10 minutes at room temperature and afterwards blocked in 5% BSA for 1hr at room 

temperature followed by incubation with the primary antibodies for 1hr at 37°C or 

overnight at 4°C. Subsequently, the cells were washed with 1X PBS for three times 

each for 10 minutes to remove unbound primary antibodies. After washing, the cells 

were incubated with secondary antibodies for 1hr at 37°C. This is followed by 

washing with 1X PBS for three times each for 5mins. Finally the cells were washed 

with distilled water once and mounted on microscopic slides using Fluoromount G 

mounting medium (Beckman Coulter, USA). 

Primary antibody Dilution 

K9JA 1:1000 

MAP2 (Sigma) 1:200 

MAP2 (Abcam) 1:100 

p62 1:500 

12E8 1:1000 

PHF1 1:1000 

AT8 1:1500 

Ubiquitin 1:50 
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SA4473 1:50 

YL 1/2 1:1000 

Flotillin 1:500 

GluR1 1:100 

Synaptophysin 1:500 

The following secondary antibodies were used: Amca, Cy2, A488, CF488, Cy3, Tritc, 

Cy5 and A647. All of these fluorescently labeled secondary antibodies were used at 

a dilution of 1:200. 

2.2.7  Fluorescence in situ hybridization 

The fluorescence in situ hybridization was done using a ‘ViewRNATM ISH Cell Assay 

for Fluorescence RNA In SituHybridization (RNA FISH)’ kit from Panomics, according 

to the manufacturer’s protocol. 

 

Fig. 2.2: Binding of the probe sets and the blocking probe (BL) to the target mRNA. Following fixation of 

neurons they are permeabilized and incubated with the probe set mix which contains the probe sets (red) and the 

blocking probe (BL, blue). 20 pairs of the target specific probe sets bind to the target RNA transcript building the 

landing platform for the branched DNA which is formed in the next steps. The naked RNA sequence inbetween 

the probe sets are covered by the addition of target specific blocking probes to build a chimeric DNA/RNA double 

strand (Figure provided by Affymetrix).  

The target – rat Tau mRNA is 5159 bases long. The coding region of rat Tau mRNA 

is 145-1269. The probe set covers region 123-1158 of the rat Tau sense mRNA (Fig 

2.2). Once the probe set binds to the target mRNA, the preamplifier molecules 

hybridize to their respective pair of probe set oligonucleotides followed by the binding 

of multiple Amplifier molecules to their respective preamplifiers. Next, several label 

Probe sets

Blocking Probe = BL Target mRNA transcript
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probe oligonucleotides with the fluorescent dye hybridize to the corresponding 

amplifiers. Since the probe sets, pre amplifiers, amplifiers and label probe mixes are 

DNA oligos, the amplification of signal follow a so called ‘branched DNA’ pattern (Fig 

2.3). By this technology, an 8,000 fold amplification of signal occurs for one mRNA 

transcript. 

 

Fig. 2.3: Working schematic of the Quantigene ViewRNA ISH cell assay. The cells were first fixed and 

permeabilized followed by digestion with the protease to allow accessibility. Target specific probe set is then 

added which binds to the target RNA as described above. Signal amplification then occurs by the branched DNA 

technology via a sequential hybridization of the preamplifier, amplifier and the label probe mixes. A fully 

assembled signal “amplification” tree with all the probe sets bound to the target mRNA transcript produces a 8000 

fold amplification for that transcript. Finally, the target mRNAs can be visualized with a fluorescence microscope 

(Figure adapted from Affymetrix ‘QuantiGene ViewRNA ISH Cell Assay User Manual’). 

 

In brief, neurons were fixed with 3.7% Formaldehyde (sigma) / 4% sucrose for 30 

minutes at 37 °C, then permeabilized with the detergent solution (Panomics) for 5 

minutes and washed twice with PBS. Afterwards, the neurons were digested with the 

protease (1:10000, panomics) for 10 minutes at room temperature and washed thrice 

Sample 
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with 1X PBS. The cells were incubated with the probe set for rat Tau mRNA diluted in 

pre-warmed diluent (1:100, panomics) at 40°C for 3 hours. After washing with the 

‘washing buffer’ (panomics) thrice each for 2 minutes, neurons were incubated with 

pre-amplifier, Amplifier and Label probe mix in respective pre-warmed diluents (1:25, 

panomics) each for 30 minutes at 40°C, with washes in between for 2 minutes with 

washing buffer (panomics). Finally the neurons were washed in washing buffer thrice 

and blocked in 5% BSA for 1 hour at room temperature, followed by incubation with 

primary antibodies - K9JA (1:1000, DAKO) and MAP2 (1:200, Sigma) for 1 hour at  

37°C. After washing with PBS thrice, the neurons were incubated for 1 hour with Cy3 

labelled (1:200) and A647 labeled secondary antibodies (1:200, Dianova, USA). After 

secondary incubation the cells were washed thrice with PBS and the coverslips were 

mounted using prolong gold anti-fade reagent.  

 

2.2.8  Methods used in studying transmission of TauGFP exosomes 

Tranfections in cell culture 

Transfections of N2a cells with Tau construct (human Tau tagged with GFP at the N 

terminus (longest isoform in CNS, 2N4R or hTau40, for short TauGFP)) were 

performed with lipofectamine 2000 (Invitrogen) according to manufacturer´s manual. 

Twenty-four hours after transfection, the conditioned medium was removed followed 

by washing of the cells with warm PBS and split into new flasks. Cortical neurons 

were infected with adeno-virus expressing the same Tau construct tagged with CFP 

at the N-terminus (TauCFP). 

Exosome purification  

Exosomes were purified from conditioned medium of N2a cells or cultured cortical 

neurons (DIV14-21) as described previously (Thery et al., 2006). Briefly, conditioned 

medium was collected and centrifuged at 300 × g for 10 minutes to remove cells. The 

supernatant was then sequentially centrifuged at 2000 × g for 10 minutes to remove 

dead cells and at 10,000 × g for 30 minutes to remove cell debris. Afterwards, the 

supernatant was then isolated and centrifuged at 100,000 × g for 70 minutes. The 

pellet (exosomes + contaminating proteins) was washed with PBS to eliminate 

contaminated proteins and centrifuged at 100,000 × g for 70 minutes to collect 
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purified exosomes. The exosomes were then used for treatment of cultured primary 

neurons. 

Treatment of exosomes in microfluidic chambers 

Primary rat hippocampal neurons were co-cultured in both the connecting channels 

of microfluidic chambers (Xona microfluidics, USA) with 150µm and 900µm long 

microgrooves. When the 1st order neurons are aged DIV14, 2nd order neurons were 

seeded on the other connecting channel and allowed to grow until it reaches DIV4 or 

DIV10/11. At the time of treatment with exosomes, the 1st order neurons were at 

DIV18 or DIV25 and the second order neurons were at DIV4 or DIV10/11. The 

treatment of exosomes was done in the 1st order neurons by adding 10µL of the 

exosomal preparation to 40µL of medium in each well for 24hrs. For control 

experiments to test the possibility of exosomal release, microfluidic chambers with 

150µm microgrooves with only the 1st order neurons were treated with exosomes 

(10µL in each well containing 40µL medium) for 24hrs. After 24hrs, the chambers 

were removed and cells fixed for immunofluorescence as described above. 

2.2.9  Imaging techniques 

Confocal imaging 

The stained cells were observed with a 40x and a 63x objective on a LSM700 

microscope (Zeiss, Oberkochen, Germany) using lasers, beam splitters and filters 

according to the fluorophores. The smart-setup of the ZEN software was used to 

select the different lasers for imaging different fluorescent dyes. The laser power was 

used at 1.0% to avoid saturation of the dyes. A Z-stack of the images was taken, 

which was merged using the ‘maximum intensity projection’ option in the ZEN 

software.  

Time lapse imaging 

Imaging in episcope was done with a 40x objective and 1x optical zoom with a 

AxioCam MR R3 camera and a 1X camera adapter. All imaging in episcope (Zeiss, 

Oberkochen, Germany) were done using a HXP lamp with appropriate filter sets and 

an apotome image was created using the ‘apotome’ option in the ZEN software and 

the Z stacks merged using ‘orthogonal projection’ of the apotome image. For time 

lapse imaging in microfluidic chambers, a Z stack with a thickness of around 40µM 
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was imaged for every 5mins for up to 20hours. The microfluidic chamber was imaged 

by closing it with a lid supplied with considerable amount of humidity to avoid 

evaporation of small amounts of the medium during imaging up to 20hours (when 

diffusion of the A488 dye in microfluidic chambers was tested to validate fluidic 

isolation). For live imaging of DiI added to neurons in microfluidic chambers, a 

Fluoview1000 confocal microscope (Olympus, Hamburg, Germany) with a 60X 

objective live-cell imaging chamber and ZDC system for Z-drift compensation was 

used for image acquisition. During imaging, the microfluidic chambers were kept 

inside the imaging chamber (37°C, 65% humidity, supplied with 5% CO2). Live 

imaging was done for every half an hour for up to 3hrs. 
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3   Results 

3.1 Localization of Tau in developing neurons 

Tau is mainly an axonal protein in mature neurons, but during different stages of 

neuronal polarization, Tau displays a distinct distribution pattern. Although Tau is 

mainly sorted into the axons after seven to ten days in culture (Mandell and Banker, 

1995), it is not clear when this exactly happened. 

In order to confirm the localization of endogenous Tau in cultured neurons and to find 

the exact time point of the axonal localization of Tau, we fixed the neurons at 

different stages of development. In very young neurons starting from DIV1 until DIV9 

(Fig. 3.1a, i-v), Tau protein is ubiquitously expressed in all cellular compartments. 

Starting from DIV7, the staining of Tau becomes progressively weaker in the 

somatodendritic compartment. Axonal localization is clearly seen at DIV10, when Tau 

staining diminishes in the somatodendritic compartment, resulting in a striking 

difference of Tau staining between DIV9 and DIV10 (Fig. 3.1a, compare v & vi and 

quantification in Fig. 3.1b). At more mature ages (DIV14 - DIV21), Tau localization 

is mainly found in the axons with only basal levels in the somatodendritic 

compartment (Fig. 3.1a, vii, viii and quantification in Fig. 3.1b). This is consistent 

with early findings (Mandell and Banker, 1995). 
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(a, i-viii) Rat hippocampal neurons (DIV 1-21) cultured in 24-well coverglasses were fixed and stained 
at different ages. Each panel represents a double immunostaining for MAP2 (green) and Tau (red). (i-
v) Tau is distributed abundantly in soma and the processes of all neurons from DIV1-DIV9 as indicated 
by arrows in the merged panels. MAP2 in contrast is absent from axons as early as DIV3 (ii). (vi-viii) At 
DIV10, Tau immunoreactivity disappears from the somatodendritic compartment and Tau is sorted 
mainly to the axons. At DIV14 and DIV21, a more stringent axonal localization is observed (indicated 
by arrows). Scale bar = 20µm. 
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 Fig. 3.1. a. Localization of Tau in developing neurons 
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(b) Quantification of neurons at different ages with Tau missorting reveals 100% of neurons from 
DIV1-DIV9 (bars 1-5) showing Tau localization across all compartments. Whereas from DIV10 
onwards, an axonal sorting of Tau is observed (bars 6-8). Error bars, SEM from n = 65-130 neurons 
from 3 independent cultures in each stage. ***p < 0.005 using Student's t test. 
 

3.2 The role of protein degradation systems in the sorting of Tau  

How the ubiquitous distribution of Tau in young neurons is shifted to the mainly 

axonal distribution in mature neurons is not clear. As Tau is a substrate of both the 

proteasome and autophagy, we tested whether one or both of them is indeed 

involved in the sorting of Tau.  

3.2.1 Investigation of the sorting mechanism of Tau in microfluidic chambers  

To investigate the role of the degradation systems in the sorting of Tau, we examined 

whether suppression of the activity of the proteasome or autophagy by inhibitors 

would increase the dendritic Tau level leading to the missorting of Tau. Our previous 

study had shown that inhibition of either the proteasome or autophagy in primary 

neurons for a time longer than 6hrs induced pronounced neurotoxicity, while a 

shorter time less than 6hrs did not affect Tau level at all (probably due to the long 

half-life of Tau) or even reduced the level of Tau due to the compensatory activation 

of the proteasome (Kruger et al., 2012). Thus, in order to test the role of the protein 

degradation systems in the sorting of Tau, we wanted to treat primary neurons for a 

long time without inducing pronounced neurotoxicity and compensation. We took 

advantage of microfluidic devices, which allow neuronal cell bodies to grow on one 

side (somal side) while neurites grow through the microgrooves to the other side 

Fig 3.1. b. Quantification of neurons at different ages with  
Tau missorting 
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(neuritic side) (Fig. 3.2). We chose to use microfluidic devices with short 

microgrooves (150µm), which allow some dendrites to grow to the neuritic side. We 

focused on dendrites growing to the neuritic side which were treated with the  

proteasome or autophagy inhibitors.   

 

Microfluidic chamber showing the somal and neuritic sides (connecting channels) connected by 
microgrooves which have a length of 150µm and a width of 10 µm. The somal side contains cell 
bodies, dendrites (green) and axons (red). The neuritic side contains only axons and dendrites. The 
microgrooves do not allow the entry of the cell bodies so that only the neurites can pass through from 
the somal to the neuritic side. 

3.2.2 Validation of the microfluidic chamber system for local treatment of 

compounds 

Although some recent studies showed that the application of fluidic isolation in 

microfluidic chambers can sustain the local treatments for over 20 hours (Taylor et 

al., 2005), we tested the fluidic integrity of the microfluidic chamber system by 

applying Alexa 488 IgG (Wu et al., 2013) on either the neuritic or the somal side for 

24 hours. While strong fluorescence signals were detected on the somal side (Upper 

panel) or on the neuritic side (Lower panel), no trace of Alexa 488 IgG was found on 

Fig. 3.2: Schematic representation of a microfluidic chamber showing  
separation of neurites from soma 
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the opposite side which was not treated (Fig. 3.3a). This result demonstrated that 

fluidic isolation was intact for over 24 hours in our culture system.  

We further validated the fluidic integrity using A488 fluorescent dye (0.1mM, 0.7kDa) 

to ensure that our inhibitors that were small in size (<1kDa) would not diffuse to the 

opposite side. After applying fluidic isolation in a microfluidic chamber (with 150µm 

long microgroove) without cells, the A488 dye was added to the side of lesser volume 

and imaged live for over 20hrs. Representative images at different time points 

starting from less than 5min up to 20hrs are shown (Fig. 3.3b). There was no 

leakage of the dye either in the microgrooves or to the other side of the chamber 

even after 20hrs. This proved that fluidic isolation was intact for long time periods, 

which enabled us to carry out experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) After achieving fluidic isolation, Alexa-488 labelled IgG (green) was added either to the somal side 
(upper panel) or to the neuritic side (lower panel) for 24 hours. In this case fluidic isolation was 
achieved by maintaining a volume difference of around 60 µL between the somal and neuritic sides. 
Note that strong fluorescent signals were detected on the antibody-treated side, while no fluorescence 
is visible on the opposite side even after 24hrs. Scale bar = 20µm. 
 
 
 
 

Fig. 3.3. a. Fluidic isolation in microfluidic chambers is intact  
even after 24 hours  
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(b) Time lapse imaging of a microfluidic chamber (without cells) where the dye A488dye (0.1mM) was 
added on the side of lower volume as indicated. Images represent different time points starting from 
less than 5 min up to 20hrs. Note that there is no fluorescence of the A488 dye in the microgrooves 
and on the opposite side, indicating that there is no diffusion of the A488 dye to the opposite side. This 
validates the integrity of fluidic isolation in microfluidic chambers. Scale bar = 20µm. 
 
 
 
3.2.3 The degradation inhibitors suppress protein degradation and are non-

toxic to neurons cultured in microfluidic devices 

We first tested the efficacy of the protein degradation inhibitors to be used in our 

experiments. Wortmannin (Harold et al., 2007) and bafilomycin (Rubinsztein et al., 

2009) have been used classically for the inhibition of autophagy. Likewise 

epoxomicin and lactacystin (Yew et al., 2005) have been used for the inhibition of the 

proteasome.  We measured the efficacy of these inhibitors by monitoring the amount 

of the autophagy substrate - p62 (Itakura and Mizushima, 2011)  or the proteasomal 

substrates - ubiquitinated proteins (Myeku et al., 2016) via western blotting. An 

increase in the level of p62 was found in neuronal cultures treated with the 

autophagy inhibitors (bafilomycin or wortmannin) (Fig. 3.4a). A similar increase of 

A488 dye added on the side of lower volume 

Fig. 3.3. b.  Fluidic isolation in microfluidic chambers is intact  
even after 20 hours  
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ubiquitinated proteins was found after treatment with the proteasome inhibitors 

(lactacystin or epoxomicin) (Fig. 3.4b). This result shows that the protein degradation 

inhibitors used were active. 

Next, we wanted to measure the toxicity of the different protein degradation inhibitors 

used in our study. In order to suppress the protein degradation systems, we treated 

neurons on the neuritic side of the microfluidic devices with either the autophagy 

inhibitors - wortmannin or bafilomycin or with the proteasomal inhibitors - epoxomicin 

or lactacystin for 24 hours. We then assessed the potential neurotoxicity induced by 

these treatments using the LDH release assay. As expected, the local application of 

these inhibitors on the neuritic side did not cause cytotoxicity on the somal or on the 

neuritic side, as the control and the treated neurons showed similar level of LDH 

release at both the somal and neuritic sides respectively (Fig. 3.4c). This is in 

contrast to the dramatic cell death induced by overall treatment of primary neurons 

with degradation inhibitors as has been previously reported by us (Kruger et al., 

2012). Notably, much higher LDH release was detected in the somal side than the 

neuritic side. This might be because the somal side contains cell bodies and also 

much more dendrites and axons than the neuritic side. This result shows that the 

protein degradation inhibitors used were non-toxic when applied locally. 
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Rat hippocampal neurons (DIV 21 – 25) were treated with the different autophagy or proteasomal 
inhibitors - Wortmannin (inhibits autophagy, 1 µM, 24hrs), Bafilomycin (inhibits autophagy, 0.2µM, 
24hrs), Epoxomicin (inhibits the proteasome, 0.2 µM, 24hrs), Lactacystin (inhibits the proteasome, 0.5 
µM 24hrs). The samples were collected and western blots were carried out using the antibodies for the 
autophagy and proteasome substrates – p62 and ubiquitinated substrates respectively. 
(a) Treatment with the autophagy inhibitors - bafilomycin (compare lanes 1 and 2) or wortmannin 
(compare lanes 3 and 4) lead to an increase in the autophagy substrate - p62. 
(b) Treatment with the proteasomal inhibitors - lactacystin (compare lanes 1 and 2) or epoxomicin 
(compare lanes 3 and 4) lead to an increased level of ubiquitin conjugates.  
 
 
 
 

 

 

 

 

 

 

 

 

 
Neurons were treated with the autophagy (bars 3 – 6) or proteasomal (bars 7 – 10) inhibitors on the 
neuritic side for 24h. The medium from the somal and neuritic sides were collected for LDH release 
assay. 
(c) Cytotoxicity measured with LDH release assay. Protein degradation inhibitors applied only on the 
neuritic side did not result in a significant increase in LDH release either on the neuritic side [compare 
red bars of DMSO (Ctr, bar 2) vs inhibitor treated cultures (bars 4, 6, 8 & 10)] or on the somal side 
[compare blue bars of DMSO (Ctr, bar 1) vs inhibitor treated cultures (bars 3, 5, 7 & 9)]. Error bars, 
SEM from n = 4-8 chambers in each condition. *p < 0.05, ***p < 0.005 using Student's t test. 
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3.2.4 Inhibition of the autophagy system in dendrites induces Tau missorting 

In order to test the role of the protein degradation system - autophagy on the 

missorting of Tau, we treated neurons on the neuritic side of the microfluidic devices 

with the autophagy inhibitors – wortmannin or bafilomycin for 24 hours and then 

checked the Tau distribution. Axons and dendrites were monitored with Tau antibody 

- K9JA and with an antibody against the dendritic marker - MAP2 respectively. 

Compared to the control neurons treated with vehicle (DMSO) (Fig. 3.5a) which 

showed ~16% (16.7±3.11%) Tau missorting, wortmannin (Fig. 3.5b, 75.6±6.72%) 

and bafilomycin (Fig. 3.5c, 56.1±5.28%) treated cultures showed a significantly 

higher percentage (~50-80%) of dendrites with Tau accumulation on the neuritic side 

(quantification in Fig. 3.7a). This result indicates that the disappearance of Tau 

from dendrites during differentiation is caused by autophagic degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rat hippocampal neurons (DIV 21-25) cultured in microfluidic devices were treated on the neuritic side 
for 24h with DMSO (control, a). The dendrites were stained with MAP2 antibody (green) and total Tau 
with K9JA antibody (red). Magnified images of the insets are shown on the right with a pair of eye-
guiding dotted lines to highlight a dendrite with or without Tau.  
(a) In the vehicle-treated control (DMSO, <0.1%), Tau is predominantly localized to the axons [see 
merged images at the bottom in (a)]. Only a small fraction of dendrites colocalizes with Tau. Scale 
bars in the main images = 20µm, in insets = 5µm. 
 

Fig  3.5: The protein degradation inhibition by autophagy lead  
to Tau missorting 
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Treatment on the neuritic side for 24h with the autophagy inhibitors - wortmannin (b) or bafilomycin (c) 
(b & c) In cultures treated with wortmannin (b, 1µM, 24hrs) or with bafilomycin (c, 0.2µM, 24hrs), the 
fraction of dendrites with Tau increases strongly (see quantification in 3.7a) where a clear 
colocalization of Tau with MAP2 (merged images at the bottom in b & c, indicated by arrows) could be 
seen. Scale bars in the main images = 20µm, in insets = 5µm. 
 

 

Fig  3.5: The protein degradation inhibition by autophagy lead  
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3.2.5 Inhibition of the proteasome system in dendrites induces Tau missorting 

In order to test the influence of the other protein degradation system – the 

proteasome on the missorting of Tau, we treated neurons on the neuritic side with the 

proteasome inhibitors – epoxomicin or lactacystin for 24 hours and then checked the 

Tau distribution. Axons and dendrites were monitored with Tau antibody - K9JA and 

with antibody against - MAP2, a dendritic marker. Compared to the control neurons 

treated with vehicle (DMSO) (Fig. 3.5a) which showed ~16% (16.7±3.11%) Tau 

missorting, epoxomicin showed ~76% (75.9±3%) Tau missorting (Fig. 3.6a) and 

lactacystin showed ~69% (68.9±3.73%) Tau missorting (Fig. 3.6b). This result 

demonstrates that the disappearance of dendritic Tau during differentiation can be 

achieved either by autophagic or proteasomal degradation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rat hippocampal neurons (DIV 21-25) cultured in microfluidic devices were treated on the neuritic side 
for 24 h with the proteasome inhibitor - epoxomicin (a). The dendrites were stained with MAP2 
antibody (green) and total Tau with K9JA antibody (red). Magnified images of the insets are shown on 
the right with a pair of eye-guiding dotted lines to highlight a dendrite with or without Tau.   
(a) In cultures treated with epoxomicin (a, 0.2µM, 24hrs), the fraction of dendrites with Tau increases 
strongly (see quantification in 3.7a) where a clear colocalization of Tau with MAP2 (merged images at 
the bottom in a, indicated by arrow) could be seen. Scale bars in the main images = 20µm, in insets = 
5µm. 
 

 

   

 

Fig  3.6: The protein degradation inhibition by the proteasome lead  
to Tau missorting 
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Treatment on the neuritic side for 24h with the proteasomal inhbitor - lactacystin (b). 
(b) In cultures treated with lactacystin (b, 0.5µM, 24hrs), the fraction of dendrites with Tau increases 
strongly (see quantification in 3.7a) where a clear colocalization of Tau with MAP2 (merged images at 
the bottom in b, indicated by arrow) could be seen. Scale bars in the main images = 20µm, in insets = 
5µm. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

(a) Quantification of dendrites on the neuritic side showing co-localization of Tau with MAP2 following 
treatment with DMSO (Ctr, bar 1) or with the autophagy (bars 2 & 3) or proteasomal (bars 4 & 5) 
inhibitors. Error bars, SEM from n = 100 to 150 dendrites from 3-4 chambers in each condition. ***p < 
0.005 using student’s t-test. 

b. Lactacystin treatment (Proteasome inhibitor – 0.5µM, 24hrs), neuritic side 

Fig 3.7 a. Quantification of dendrites with  
Tau missorting induced by protein degradation inhibitors 
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In order to examine the efficacy and specificity of the protein degradation inhibitors, 

the dendrites were monitored after treatment with the autophagy substrate - p62 or 

with the proteasomal substrates - ubiquitinated proteins. Missorting of Tau into the 

dendrites was monitored with MAP2 and Tau antibodies. Compared to the control 

neurons treated with vehicle (DMSO) (Fig. 3.8a, 2.1±0.27), wortmannin (Fig. 3.8b) 

significantly increased p62 level (20.3±1.47) while epoxomicin (Fig. 3.9b) elevated 

the amount of ubiquitinated substrates in the dendrites on the neuritic side 

(36.7±1.08), as revealed by immunofluorescence, suggesting the successful 

suppression of autophagy (quantification in Fig. 3.8c) and the proteasome 

(quantification in Fig. 3.9c). Overall, the inhibition of autophagy or the proteasome 

resulted in a significant increase in the percentage of dendrites with Tau missorting 

suggesting a role of the protein degradation pathways in the sorting of Tau. 

 

 

 

 

 

 

 

 

 

 

 
Rat hippocampal neurons (DIV 21-25) cultured in microfluidic devices were treated on the neuritic side 
for 24 h with DMSO (control, a). The dendrites were stained with MAP2 antibody (green) and total Tau 
with K9JA antibody (red). The anti-p62 antibody (cyan) was used to monitor the level of the autophagy 
substrate - p62. Magnified images of the insets are shown on the right with a pair of eye-guiding dotted 
lines to highlight a dendrite with or without Tau.   
(a) In the vehicle-treated control (DMSO, <0.1%), Tau is predominantly localized to the axons (see 
merged images at the bottom in a). Only a small fraction of dendrites colocalizes with Tau. The level of 
p62 remains low. Scale bars in the main images = 20µm, in insets = 5µm 
 
 

Fig  3.8: The protein degradation inhibition by autophagy is specific and 
lead to Tau missorting 
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Treatment on the neuritic side for 24h with the autophagy inhbitor - wortmannin (b). 
(b) In cultures treated with wortmannin (1µM, 24hrs), the fraction of dendrites with Tau increases 
strongly where it colocalizes with MAP2 (merged images at the bottom in b) and the dendrites with 
Tau localization also show an elevated level of p62 as indicated by arrows (compare high 
magnification of a and b to see an increase in p62). Scale bars in the main images = 20µm, in insets = 
5µm. 
 
 
 

 

 

 

 

 

 

 

 

 

(c) Quantification of the average number of the p62 puncta per 100µm length of each dendrite on the 
neuritic side of the control (bar 1) and wortmannin (bar 2) treated cultures. Error bars, SEM from n = 
15 – 20 dendrites from 3 chambers in each condition. ***p < 0.005 using Student's t test. 
 

 

Fig  3.8: The protein degradation inhibition by autophagy is specific  
and lead to Tau missorting  
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Rat hippocampal neurons (DIV 21-25) cultured in microfluidic devices were treated on the neuritic side 
for 24 h with DMSO (control, a). The dendrites were stained with MAP2 antibody (green) and total Tau 
with K9JA antibody (red). The anti-ubiquitin antibody (cyan) was used to monitor the level of ubiquitin. 
Magnified images of the insets are shown on the right with a pair of eye-guiding dotted lines to 
highlight a dendrite with or without Tau.   
(a) In the vehicle-treated control (DMSO, <0.1%), Tau is predominantly localized to the axons (see 
merged images at the bottom in a). Only a small fraction of dendrites colocalizes with Tau. The level of 
ubiquitin remains low. Scale bars in the main images = 20µm, in insets = 5µm.  
 

 

 

 

 

 

 

 

 

 

 

Treatment on the neuritic side for 24h with the proteasome inhbitor - epoxomicin (b). 
(b) In cultures treated with epoxomicin (0.2µM, 24hrs), the fraction of dendrites with Tau increases 
strongly where it colocalizes with MAP2 (merged images at the bottom in b) and the dendrites with 
Tau localization also show an elevated level of ubiquitin as indicated by arrows (compare high 
magnication of a and b to see an increase in ubiquitin). Scale bars in the main images = 20µm, in 
insets = 5µm. 
(c) Quantification of the average number of the ubiquitin puncta per 100µm length of each dendrite on 
the neuritic side of the control (bar 1) and epoxomicin (bar 2) treated cultures. Error bars, SEM from n 
= 15 – 20 dendrites from 3 chambers in each condition. ***p < 0.005 using Student's t test.  
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Fig  3.9: The protein degradation inhibition by the proteasome is specific  
and lead to Tau missorting  
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3.2.6 Differential phosphorylation states of dendritic and axonal Tau 

Tau in AD and other Tauopathies is hyperphosphorylated (Kopke et al., 1993) and 

the hyperphosphorylation has been proposed to drive the missorting of Tau. Indeed, 

the diffusion barrier at the axonal initial segment cannot restrain phosphorylated Tau 

within axons (Li et al., 2011). In addition, it has been reported that in cultured 

neurons, Aβ oligomers induce Tau missorting into the somatodendritic compartment 

and the missorted Tau is phosphorylated mainly at the 12E8 and AT8 sites (Zempel 

et al., 2010). These observations prompted us to examine the phosphorylation status 

of the dendritic Tau induced by inhibition of protein degradation. We analyzed the 

phosphorylation state of Tau protein accumulating in the dendrites after inhibition of 

protein degradation, with phosphorylation-dependent antibodies - 12E8, PHF1 and 

AT8.  Missorted dendritic Tau showed phosphorylation mainly at the 12E8 sites 

(pS262/pS356) upon treatment with either the autophagy inhibitor - wortmannin (in 

66.9±5.6% dendrites) or the proteasomal inhibitor - epoxomicin (in 68.5±4.81% 

dendrites) (Fig. 3.10, a-c & quantification in Fig. 3.11a), but not at the AT8 

(pS202/pT205) (Fig. 3.10, d-f) and the PHF1 (pS396/pS404) (Fig. 3.10, g-i) sites. 

On the other hand, the axonal Tau exhibited phosphorylation at all these sites. Thus, 

the dendritic and axonal Tau are differentially phosphorylated. Based on this 

observation, we can conclude that the dendritic Tau degraded by the autophagy and 

the proteasomal pathways is phosphorylated mainly at the 12E8 site. 
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Rat hippocampal neurons (DIV 21-25) cultured in microfluidic devices treated on the neuritic side for 
24 h either with DMSO (control, a), or with the autophagy inhibitor, wortmannin (b) or proteasomal 
inhibitor, epoxomicin (c). Phosphorylation-dependent Tau antibody - 12E8 (cyan) was used to probe 
the phosphorylation state of Tau at S262/S356 residues. All stainings were done in combination with 
the Tau antibody - K9JA (red) to indicate total Tau and the MAP2 antibody (green) to indicate 
dendrites. Magnified images of the insets are shown on the right with pairs of eye-guiding dotted lines 
in each image to highlight dendrites with or without colocalization with phospho Tau and total Tau.  
(a-c) In the vehicle treated control (DMSO, <0.1%), Tau sorts mainly to the axons (a). Treatment with 
wortmannin (1µM, 24hrs) or epoxomicin (0.2µM, 24hrs) on the neuritic side causes an increase in the 
accumulation of Tau in the dendrites (indicated by K9JA staining) which is phosphorylated at the 12E8 
site (b,c, quantification in 3.11a). The magnified insets of wortmannin and epoxomicin treated cultures 
on the right of (b) and (c) represent a clear colocalization of MAP2 with 12E8 Tau and total Tau. Scale 
bars in all main images = 20µm, in all the insets = 5µm. 

Fig 3.10: Tau in dendrites is phosphorylated predominantly at the 12E8 site 

c. Epoxomicin treatment (Proteasome inhibitor – 0.2µM), 24hrs, neuritic side 
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Treatment on the neuritic side for 24h with either DMSO (d) or with the autophagy inhibitor – 
wortmannin (e) or with the proteasomal inhibitor – epoxomicin (f). Staining was done with the 
phosphorylation-dependent Tau antibody – AT8 (cyan) to probe the phosphorylation state of Tau at 
S202/T205 residues in combination with the Tau antibody - K9JA (red) to indicate total Tau and the 
MAP2 antibody (green) to indicate dendrites. 
(d-f) In the vehicle treated control (DMSO, <0.1%), Tau sorts mainly to the axons (d). Treatment with 
wortmannin (1µM, 24hrs) or epoxomicin (0.2µM, 24hrs) on the neuritc side did not result in an 
increase in the accumulation of phospho Tau (AT8 site) in the dendrites (e, f, quantification in 3.11a) 
although an accumulation in total Tau levels (missorting of Tau) was found. The magnified insets of 
wortmannin and epoxomicin treated cultures on the right of (e) and (f) represent a clear colocalization 
of MAP2 with total Tau and not with AT8 Tau. Scale bars in all main images = 20µm, in all the insets = 
5µm. 
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Fig 3.10: Tau in dendrites is not phosphorylated at the AT8 site 
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Treatment on the neuritic side for 24h with either DMSO (g) or with the autophagy inhibitor – 
wortmannin (h) or with the proteasomal inhibitor – epoxomicin (i). Staining was done with the 
phosphorylation-dependent Tau antibody – PHF1 (cyan) to probe the phosphorylation state of Tau at 
S396/S404 residues in combination with the Tau antibody - K9JA (red) to indicate total Tau and the 
MAP2 antibody (green) to indicate dendrites.  
(g-i) In the vehicle treated control (DMSO, <0.1%), Tau sorts mainly to the axons (g). Treatment with 
wortmannin (1µM, 24hrs) or epoxomicin (0.2µM, 24hrs) on the neuritic side did not result in an 
increase in the accumulation of phospho Tau (PHF1 site) in the dendrites (h, i, quantification in 3.11a) 
although an accumulation in total Tau levels (missorting of Tau) was found. The magnified insets of 
wortmannin and epoxomicin treated cultures on the right of (h) and (i) represent a clear colocalization 
of MAP2 with total Tau and not with PHF1 Tau. Scale bars in all main images = 20µm, in all the insets 
= 5µm.  

 h. Wortmannin treatment (Autophagy inhibitor - 1µM), 24hrs, neuritic side  

i. Epoxomicin treatment (Proteasome inhibitor – 0.2µM), 24hrs, neuritic side 

g. Vehicle ctr (DMSO, <0.1%) 
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(a) Quantification of dendrites on the neuritic side shows co-localization of MAP2 with phospho-Tau 
species – 12E8 (bars 1-3), AT8 (bars 4-6) and PHF1 (bars 7-9) following different treatments. Error 
bars, SEM from n = 50 to 100 dendrites from 3 chambers in each condition. ***p < 0.005 using 
Student's t test. NS- not significant. 
 
 
3.2.7 Isoforms of Tau degraded in dendrites by autophagy and the proteasome 

The human brain expresses 6 isoforms of Tau, while the rat or mouse brain 

expresses mainly 3 isoforms of the 4R Tau. The different isoforms of Tau may have 

different functions, as the impairment of the ratio between 4R and 3R Tau isoforms 

(Lee et al., 2001, Gong et al., 2005) induced by Tau mutations can cause 

Tauopathies, and the generation of Tau isoforms is developmentally regulated. 

Recent studies showed that the different Tau isoforms may distribute in different 

subcellular compartments in neurons. It has been reported that the 1N isoform of Tau 

was found to be localized mainly to the nucleus but absent in axons whereas the 0N 

and 2N isoforms were found to be localized to the cell bodies and axons (Liu and 

Gotz, 2013). Thus, we further analyzed the isoform composition of the missorted 

dendritic Tau induced by the inhibition of protein degradation. Indeed, the two N-

terminal inserts of Tau play an important role in its subcellular distribution. As rat 

 

 Fig 3.11. a. Quantification of dendrites with missorted phosphorylated Tau induced by 
protein degradation inhibitors 
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brain mainly expresses 4R Tau, we used antibodies against the N terminal inserts of 

Tau to differentiate between the different isoforms. For instance, we used an antibody 

against the first insert of Tau to detect the 1N Tau isoforms. The dendrites were 

monitored with anti-MAP2 antibody. Compared with the DMSO-treated control (Fig. 

3.12a), which showed missorting of Tau in ~14% (13.8±0.95%) of dendrites, the 

autophagy inhibition with wortmannin (Fig. 3.12b, in 62.8±3.12% dendrites) or the 

proteasomal inhibition with epoxomicin (Fig. 3.12c, in 72.8±2.2% dendrites) 

significantly elevated the missorting of the 1N Tau into the dendrites (quantification 

in Fig. 3.12d). The localization of 0N and 2N Tau isoforms in the dendrites remains 

still to be elucidated. 
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Rat hippocampal neurons (DIV 21-25) cultured in microfluidic devices were treated on the neuritic side 
for 24 h either with DMSO (control, a) or with the autophagy inhibitor - wortmannin (b) or with the 
proteasomal inhibitor - epoxomicin (c). Staining was done with MAP2 antibody (green) for dendrites 
and SA4473 antibody (red) against the 1N Tau isoforms. Magnified images of the insets are shown on 
the right with a pair of eye guiding dotted lines to highlight a dendrite with or without Tau.   
(a) In the vehicle-treated control (DMSO, <0.1%), Tau is predominantly localized to the axons [see 
merged images at the bottom in (a)]. Only a small fraction of dendrites colocalizes with Tau. 
(b, c) In cultures treated with wortmannin (b, 1µM, 24hrs) or with epoxomicin (c, 0.2µM, 24hrs), the 
fraction of dendrites with 1N Tau isoform increases strongly (see quantification in d) where a clear 
colocalization of 1N Tau with MAP2 (merged images at the bottom in b & c) could be seen. Scale bars 
in the main images = 20µm, in insets = 5µm. 
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 Fig 3.12: 1N isoform of Tau is degraded by autophagy and the proteasome in dendrites 
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(d) Quantification of dendrites on the neuritic side showing co-localization of 1N Tau with MAP2 
following different treatments. Error bars, SEM from n = 50 to 100 dendrites from 3 chambers in each 
condition. ***p < 0.005 using Student's t test.  
 

3.2.8 Enhancement of the activity of autophagy or of the proteasome reduces 

Tau missorting  

To further validate that the protein degradation systems are involved in the sorting of 

Tau, we tested an alternative approach - stimulating the degradation systems instead 

of suppressing them, since stimulation of the protein degradation systems has been 

suggested to be of therapeutic potential for Tauopathies. We noticed that even under 

physiological conditions, ~15% of the dendrites showed missorting of Tau. We 

therefore asked whether stimulation of the autophagy or of the proteasome system 

can reduce the basal amount of Tau missorting. Our previous study had shown that 

trehalose induces autophagy (Kruger et al., 2012) in primary neurons and in an N2a 

cell model of Tauopathy and efficiently reduces the level of Tau and Tau aggregation. 

Since trehalose is free of toxic effects even at higher concentrations (Rodriguez-

Navarro et al., 2010), we used a concentration of 150mM for treatment of neurons in 

microfluidic devices. We applied trehalose (150mM) on the neuritic side for 24hrs 

(Fig. 3.13a) with sucrose (150mM)-treatment serving as control. Trehalose treatment 

indeed supressed missorting of Tau, as only 3.4% (3.4±0.15%) of dendrites showed 

the presence of Tau, which is far below the control level (missorting in ~15% 

 Fig 3.12. d. Quantification of dendrites with 1N Tau isoform missorting induced by 
protein degradation inhibitors 

  
1                           2                            3 

0

20

40

60

80

100

Ctr Wor Epo

%
 o

f 
d

e
n

d
ri

te
s
 o

n
 t

h
e
 n

e
u

ri
ti

c
 s

id
e
 

w
it

h
 m

is
s
o

rt
e
d

 1
N

 i
s
o

fo
rm

 o
f 

T
a
u

*** 

14% 

63% 

73% 

   1                        2                         3 



Results 

 

64 

 

dendrites) (quantification in Fig. 3.13b). These results thereby confirm the role of 

autophagy in degrading dendritic Tau. 

Similar to the activation of autophagy, we wanted to enhance the proteasome activity 

in neurons in microfluidic chambers. A recent study showed that rolipram could 

enhance the cAMP-PKA activity leading to phosphorylation of the proteasomal 

subunits and thereby enhance its proteolytic activities in mice (Myeku et al., 2016). 

We first tested the concentration at which rolipram efficiently reduced the amount of 

ubiquitin conjugates in cultured primary neurons. We found that rolipram enhances 

the proteasomal activity at a concentration of 10μM at which the amount of ubiquitin 

conjugates were significantly lower than in the vehicle-treated control (Fig. 3.14a & 

quantification in Fig. 3.14b). We applied rolipram (10μM) on the neuritic side for 

24hrs (Fig. 3.14c) with vehicle (DMSO) (<0.1%) - treatment serving as control. 

Rolipram treatment indeed supressed missorting of Tau (in 4.3±0.57% dendrites) far 

below the control level (in 13.8±2.32% dendrites) (quantification in Fig. 3.14d) 

thereby confirming the role of the proteasome in degrading dendritic Tau. 

The above two findings indeed confirm the role of the protein degradation pathways – 

autophagy and the proteasome as a prerequisite for the polarity development of the 

neuron. 
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Rat hippocampal neurons (DIV 21-25) cultured in microfluidic chambers were treated on the neuritic 
side for 24h with Sucrose (150mM, as control) or with Trehalose (150mM), an enhancer of autophagy 
(a). The dendrites were stained with MAP2 antibody (green) and total Tau with K9JA antibody (red). 
Magnified images of the insets are shown on the right of (a) with a pair of eye guiding dotted lines to 
highlight a dendrite with or without Tau.   
(a) In cultures treated with trehalose (150mM, 24hrs) on the neuritic side, the fraction of dendrites with 
Tau decreases strongly (see quantification in b) and a more stringent localization of Tau to the axons 
is seen. The magnified insets of the dendrites on the right of (a) represent reduced colocalization of 
Tau with MAP2. Scale bars in the main images = 20µm; in all the insets = 5µm. 
(b) Quantification of dendrites on the neuritic side showing co-localization of Tau with MAP2. Although 
treatment with sucrose (150mM, 24hrs, bar 1) still resulted in a small fraction of dendrites with 
missorted Tau (as seen in DMSO treated cultures), treatment with trehalose (150mM, 24hrs, bar 2) 
resulted in a significantly reduced missorting of Tau. Error bars, SEM from n = 100 to 250 dendrites 
from 3 chambers in each condition. ***p < 0.005, using Student's t test.  
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                        
(a) Hippocampal neurons were treated with DMSO (<0.1%) or rolipram (10 µM) for 24h and the 
samples were collected and western blots were carried out using the antibody for ubiquitinated 
proteasomal substrates. Treatment with rolipram lead to a decreased level of ubiquitin conjugates 
(compare lanes 1 and 2). 
(b) Quantification of the blot of (a) shows a decrease in the ubiquitin conjugates after treatment with 
rolipram (compare bars 1 and 2). Error bars, SEM from 3 independent experiments. *p < 0.05, using 
Student's t test. 

 

Fig 3.13: Enhancement of the activity of autophagy by trehalose reduces  
Tau missorting into the dendrites 

a. Trehalose (autophagy enhancer – 150mM), 24hrs, neuritic 
side, reduces Tau missorting into the dendrite 
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Fig 3.14: Enhancement of the activity of the proteasome by rolipram reduces  
the level of ubiquitin conjugates 

a. Western blot analysis of the ubiquitin 
conjugates following treatment of neurons with 

rolipram, a proteasome enhancer 
 

b. Quantification of the blot of (a) of ubiquitin 
conjugates after treatment with rolipram 
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(c) In cultures treated with rolipram (10µM, 24hrs) on the neuritic side, the fraction of dendrites with 
Tau decreases strongly (see quantification in d). The magnified insets of the dendrite on the right of (c) 
represent reduced colocalization of Tau with MAP2. Scale bars in the main images = 20µm; in all the 
insets = 5µm. 
(d) Quantification of dendrites on the neuritic side showing co-localization of Tau with MAP2 following 
different treatments. Although treatment with DMSO (<0.1%, 24hrs, bar 1) still resulted in a small 
fraction of dendrites with missorted Tau, treatment with rolipram (10µM, 24hrs, bar 2) significantly 
reduced missorting of Tau. Error bars, SEM from n = 100 to 250 dendrites from 3 chambers in each 
condition. *p < 0.05, using Student's t test.  
 
 

3.2.9  Accumulation of Tau protein in dendrites via the inhibition of protein 

degradation systems results in loss of spines 

Previous studies showed that the missorting of Tau into dendrites can cause loss of 

spines (Thies and Mandelkow, 2007, Zempel et al., 2010). By analogy, we wanted to 

examine if the accumulation of Tau in the dendrites induced by inhibition of the 

protein degradation systems could lead to spine loss as well.  

Therefore we applied the autophagy inhibitor – wortmannin (1µM) (Fig. 3.15b) or the 

proteasomal inhibitor – epoxomicin (0.2µM) (Fig. 3.15c) on the neuritic side of  

microfluidic chambers for 24hrs. For controls we treated neurons with DMSO (<0.1%, 

vehicle control) on the neuritic side (Fig. 3.15a). We labeled spines using phalloidin-

actin staining. Whereas Tau-free dendrites in DMSO-treated controls had a spine 

density of ~17 per 20µm (17.32±0.98/20µm) length, there was approximately a two-

fold decrease in the spine density in the Tau-containing dendrites in neurons treated 
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with wortmannin (7.56±0.21/20µm) or epoxomicin (6.6±0.75/20µm) (quantification 

in Fig. 3.15d). To further elucidate whether the missorting of Tau is essential for the 

spine loss induced by the inhibition of protein degradation, we treated neurons from 

Tau-knockout mice cultured in microfluidic chambers on the neuritic side with the 

protein degradation inhibitors. No spine loss was observed in neurons treated with 

wortmannin or epoxomicin. This result suggests that the missorting of Tau into 

dendrites after application of inhibitors of the protein degradation systems causes 

spine loss.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rat hippocampal neurons (DIV 21-25) cultured in microfluidic devices were treated on the neuritic side 
for 24h either with DMSO (control, a) or with the autophagy inhibitor - wortmannin (b) or with the 
proteasomal inhibitor - epoxomicin (c). The dendrites were stained with MAP2 antibody (green), total 
Tau with K9JA antibody (cyan) and F-actin with phalloidin (red) to indicate spines.  
(a) In the vehicle-treated control (DMSO, <0.1%), Tau is predominantly localized to the axons and not 
present in dendrites and the dendrites have a normal spine distribution (arrows).  
(b, c) In cultures treated with wortmannin (b, 1µM, 24hrs) or with epoxomicin (c, 0.2µM, 24hrs), Tau 
can be observed in dendrites and in these cases the spine number is dramatically reduced (see 
quantification in d, bars 2 and 3). Scale bar = 2µm. 
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(d) Quantification of the spine density of the dendrites on the neuritic side after treatment with DMSO 
(ctr, bar 1) or with protein degradation inhibitors (wor and epo, bars 2 and 3). Error bars, SEM from  
n = ~20 dendrites from 3-4 chambers in each condition. ***p < 0.005 using Student's t test.  

3.2.10 Tau protein is locally synthesized in dendrites  

Next we sought to figure out the source of the dendritic Tau. There could be two 

potential origins of dendritic Tau: (1) it could originate from the cell body or axons due 

to diffusion/transport; or (2) it could be locally synthesized in the dendrites. The local 

translation of Tau in the axons driven by the mTOR signaling pathway (Morita and 

Sobue, 2009) has been identified. By analogy, we asked whether the dendritic Tau 

could be produced by local synthesis as well. We tested if blocking local protein 

synthesis could prevent Tau missorting induced by the inhibition of protein 

degradation. Neurons cultured in microfluidic devices were treated on the neuritic 

side with protein translation inhibitors - cycloheximide (Kleiman et al., 1993) or 

anisomycin (Ghirardi et al., 2004) together with the protein degradation inhibitors - 

wortmannin or epoxomicin for 24 hours. As described above, axons and dendrites 

were monitored with Tau antibody - K9JA and with anti-MAP2 antibody respectively. 

Treatment with cycloheximide together with wortmannin (Fig. 3.16b) or with 

epoxomicin (Fig. 3.16c) profoundly reduced Tau missorting [CHX+Wort: in 

11.8±1.07% dendrites, CHX+Epox: in 19.7±8.72% dendrites] to a level comparable to 

that in vehicle-treated controls (DMSO: in 13.5±3.64% dendrites) (Fig. 3.16a, 

quantification in Fig. 3.16h). We confirmed this observation by using another 

protein translation inhibitor – anisomycin together with wortmannin (Fig. 3.16d ) or 

Fig 3.15: Local treatment with protein degradation inhibitors suppresses protein 
degradation and lead to dendritic Tau mislocalization and spine loss 

d. Quantification of the dendritic spine density on the neuritic side after treatment  
with protein degradation inhibitors 
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with epoxomicin (Fig. 3.16e). Similar results were obtained as cycloheximide 

treatment [Ani+Wort: in 19.8±4.36% dendrties, Ani+Epox: in 21.2±5.03% dendrites]. 

These results indicate that the dendritic Tau induced by inhibition of protein 

degradation is derived from local synthesis. 

As we showed above, missorting of Tau was observed in ~15% of dendrites under 

physiological conditions (quantification in Fig. 3.16h, bar 1). When we treated 

neurons in microfluidic chambers on the neuritic side with protein translation 

inhibitors - cycloheximide (10µM) (Fig. 3.16f) or anisomycin (10µM) (Fig. 3.16g) 

alone for 24hrs, no missorting of Tau was detected. In addition, we have shown that 

stimulation of protein degradation can reduce missorting of Tau to a level lower than 

that under physiological conditions (Fig. 3.13 & 3.14). Collectively, these data 

suggests that the local synthesis of Tau in dendrites occurs physiologically, and the 

compromise of the degradation systems in some dendrites (~15% dendrites) may 

result in Tau missorting.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rat hippocampal neurons (DIV 21-25) cultured in microfluidic chambers were treated on the neuritic 
side for 24h with DMSO (control, a). The dendrites were stained with MAP2 antibody (green) and total 
Tau with K9JA antibody (red). Magnified images of the insets are shown on the right with a pair of eye 
guiding dotted lines to highlight a dendrite with or without Tau missorting.   
(a) In the vehicle-treated control (DMSO, <0.1%), Tau is predominantly localized to the axons (see 
merged images at the bottom in a). Only a small fraction of dendrites colocalizes with Tau (~15%). 
Scale bars in the main images = 20µm; in all the insets = 5µm. 
 
 

Fig 3.16: Protein translation inhibitors prevent Tau missorting 
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Treatment on the neuritic side for 24h with the protein translation inhibitor - cycloheximide combined 
either with the autophagy inhibitor - wortmannin (b) or with the proteasomal inhibitor - epoxomicin (c).  
(b, c) When the neurons were treated with cycloheximide (10µM) together with wortmannin (1µM) (b) 
or with epoxomicin (0.2µM) (c) for 24hrs, there was no significant increase in the dendritic 
accumulation of Tau seen and the percentage of dendritically mislocalized Tau remains as low as in 
the control (quantification in h, see bars 5 and 7). Scale bars in the main images = 20µm; in all the 
insets = 5µm. 
 

Fig 3.16: Protein translation inhibitors prevent Tau missorting 
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Treatment on the neuritic side for 24h with the protein translation inhibitor - anisomycin combined 
either with the autophagy inhibitor - wortmannin (d) or with the proteasomal inhibitor - epoxomicin (e). 
(d, e) When the neurons were treated with anisomycin (10µM) together with wortmannin (1µM) (d) or 
with epoxomicin (0.2µM) (e) for 24h, there was no increase in the accumulation of Tau seen and the 
percentage of dendritically mislocalized Tau remains as low as in the control (quantification in h, see 
bars 9 and 11). Scale bars in the main images = 20µm; in all the insets = 5µm. 
 
 
 
 
 
 

No missorting of Tau 
into the dendrite 

Fig 3.16: Protein translation inhibitors prevent Tau missorting 
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Treatment on the neuritic side for 24h with just cycloheximide (f) or with anisomycin (g). 
(f, g) When the neurons were treated with cycloheximide (10µM) alone (f) or with anisomycin (10µM) 
alone (g) for 24hrs, there was no accumulation of Tau in the dendrites on the neuritic side seen 
(quantification in h, see bars 2 and 3). Scale bars in the main images = 20µm; in all the insets = 5µm. 
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(h) Quantification of dendrites on the neuritic side showing co-localization of Tau with MAP2 following 
different treatments. Error bars, SEM from n = 100 – 150 dendrites from 3-4 chambers in each 
condition. No significant difference between Ctr (bar 1), CHX+Wor (bar 5), CHX+Epo (bar 7), 
Ani+Wort (bar 9) and Ani+Epox (bar 11). Protein translation inhibitors – cycloheximide (bar 2) and 
anisomycin (bar 3) prevent Tau missorting. 
 
 

3.2.11 Tau mRNA distributes to the dendrites, axons and cell bodies  

Since we showed that missorted Tau in the dendrites was derived from local 

synthesis, the distribution of Tau mRNA in dendrites was no surprise. However, up to 

date, the subcellular distribution of Tau mRNA in neurons remains an issue under 

debate. While it was demonstrated that Tau mRNA only localizes to the cell body and 

the proximal region of the axon (Litman et al., 1993), the other study argued that it 

distributes to proximal dendrites as well (Kosik et al., 1989). Thus, to clarify this 

issue, we performed fluorescence in situ hybridization assays to assess the 

distribution of Tau mRNA in cultured rat hippocampal neurons. The rat Tau mRNA 

probe we used was around 1135 base pairs long covering the entire coding region of 

Tau mRNA and could detect all the isoforms of Tau mRNA. 

The in situ hybridization process was followed by immunostaining with the 

somatodendritic marker MAP2 and the axonal marker - Tau (K9JA antibody) (Fig. 

Fig 3.16: Protein translation inhibitors prevent Tau missorting 

 h. Quantification of dendrites with Tau missorting after treatment with protein  
translation inhibitors alone or together with protein degradation inhibitors 
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3.17a). Although Tau mRNA predominantly distributes into the cell body 

(180.36±21.66 Tau mRNA puncta/cell body), a small amount of Tau mRNA was 

detected in dendrites as well (19.9±3.48 Tau mRNA puncta/50-100µm length of a 

dendrite; Fig. 3.17, a & quantification in Fig. 3.17b, bars 1 and 2). To rule out the 

possibility of non-specificity of the probe used, staining without probe was also done 

in parallel. No positive signal for mRNA was observed (Fig. 3.17c). This observation 

together with the above finding that the dendritic Tau was due to local synthesis, 

confirms our result that Tau mRNA is present in the dendrites and is actively 

translated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Tau mRNA in cultured rat hippocampal neurons (DIV 21-25) monitored by fluorescence in situ 
hybridization with a rat Tau mRNA probe. Axons and dendrites were visualized by immunostaining 
with pan-Tau antibody K9JA (blue) and anti-MAP2 antibody (red), respectively following the insitu 
hybridization procedure. First panel shows staining with MAP2 antibody for dendrites and cell bodies, 
second panel shows staining with K9JA antibody for Tau, highlighting axons, followed by the third 
panel indicating Tau mRNA localization (green puncta). Note that Tau mRNA is present across all 
compartments of the neuron. The dendrites also contain a sparse distribution of Tau mRNA as 
indicated by white arrows. Scale bar = 5µm. 

Fig 3.17. a.  Fluorescence insitu hybridization reveals Tau mRNA across  
all compartments of the neuron 
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(b) Quantification of the average number of Tau mRNA puncta in the cell body (bar 1) v.s dendrites 
(bar 2). Error bars, SEM from n = 50 - 60 dendrites from 3 individual experiments. ***p < 0.005 using 
Student's t test.  
(c) Tau mRNA in cultured rat hippocampal neurons (DIV 21-25) monitored by fluorescence in situ 
hybridization without adding Tau mRNA probe. Axons and dendrites were visualized by 
immunostaining with pan-Tau antibody K9JA (blue) and anti-MAP2 antibody (red), respectively 
following insitu hybridization procedure. First panel shows staining with MAP2 antibody for dendrites 
and cell bodies, second panel shows staining with K9JA antibody for Tau, highlighting axons. Since no 
probe was used in the analysis the third panel is blank showing the absence of mRNA puncta which 
indicate the specificity of the probe used in the Fluorescence insitu hybridization (FISH) analysis. 
Scale bar = 5µm. 
 
 

3.3 Impact of experimental manipulations on the missorting of Tau protein   

Tau is mainly in the axons of mature neurons under physiological conditions (Zempel 

and Mandelkow, 2014), but surprisingly, the missorting of Tau in the majority of 

mature cultured neurons was often observed (Migheli et al., 1988, Papasozomenos 

and Binder, 1987, Mondragon-Rodriguez et al., 2012, Dotti et al., 1987). The cause 

of the missorting in these studies has not been addressed.  

The role of fixation in the physiological localization of Tau protein has been studied in 

human fibroblasts (Rossi et al., 2008) although only a few fixation methods were 

used and a confirmatory study in neurons was lacking which could lead to erroneous 

interpretations. By analogy, the fixation protocols might be responsible for the 

observed missorting of Tau in cultured neurons in other studies.  

Fig 3.17: Fluorescence insitu hybridization reveals Tau mRNA across  
all compartments of neurons 
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We therefore investigated the role of fixation protocols in the sorting of endogenous 

Tau in mature neurons in culture, in order to figure out an ideal protocol that can 

result only in a basal level of Tau missorting. We tested a variety of fixation protocols 

used widely in the literature to study Tau missorting. We focused on the influence of 

the fixative, fixation temperature and fixation time on the distribution of Tau. In 

addition, in some protocols sucrose was added to the fixation solution in order to 

preserve the native state of tubulin (Morejohn and Fosket, 1984). Thus we also 

examined the impact of sucrose on Tau distribution.   

Neurons fixed with formaldehyde together with sucrose at 37°C for 30 minutes 

(Deshpande et al., 2008) resulted in only ~15% of neurons with Tau missorting (Fig. 

3.18a, i & quantification in Fig. 3.18b) although fixing neurons with formaldehyde 

for 30 minutes at 37°C (Mann et al., 1987) in the absence of sucrose resulted in 

around 25% of neurons with Tau missorting (Fig. 3.18a, ii). Fixation with 

glutaraldehyde (Weber et al., 1978) for 30minutes at 37°C resulted in all cells with 

missorted Tau irrespective of the presence or absence of sucrose (Fig. 3.18a, iii, iv 

& quantification in Fig. 3.18b). Fixing neurons with formaldehyde in combination 

with sucrose (Kusser and Randall, 2003) for 15 minutes at room temperature (Fig. 

3.18a, v) resulted in around 25% of neurons with missorted Tau. On the other hand, 

fixing neurons with formaldehyde at room temperature for 15minutes (Mondragon-

Rodriguez et al., 2012) in the absence of sucrose (Fig. 3.18a, vi) resulted in around 

60% of neurons with Tau missorting.  All neurons in cultures showed missorting of 

Tau when fixed with glutaraldehyde at room temperature for 15minutes irrespective 

of the presence or absence of sucrose (Fig. 3.18a, vii & viii). Interestingly, while 

fixation with cold methanol (-20°C) (Dotti et al., 1987) resulted in around 60% 

neurons with Tau missorting (Fig. 3.18a, ix), fixation with acetone (Alshammari et al., 

2016) also resulted in missorting of Tau in a significantly higher percentage of 

neurons (around 80%) (Fig. 3.18a, x & quantification in Fig. 3.18b). Overall, the 

optimal procedure to ensure proper sorting of Tau to the axonal compartment, would 

be to fix neurons with formaldehyde together with sucrose for 30minutes at 37°C 

(Fig. 3.18a, i and bar1 circled in orange in Fig. 3.18b). This is because the fast 

penetrance of formaldehyde in combination with the protein preserving nature of 

sucrose and 37°C enable the analysis of proteins in its native form and localization. 
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Rat hippocampal neurons (DIV 21) cultured conventionally on coverglasses in 24-well plates and fixed 
with different fixation procedures and stained. Each figure represents a double immunostaining for Tau 
(red) and MAP2 (green).  
(a, i-iv) Neurons fixed with Formaldehyde and sucrose for 30minutes at 37degrees show a basal level 
of Tau missorting (i, ~15% neurons with Tau missorting) whereas when fixed with Formaldehyde alone 
for 30minutes at 37degrees a little higher level of missorting was seen (arrow in ii, ~25% neurons with 
Tau missorting). When neurons were fixed with glutaraldehyde with or without sucrose for 30minutes 
at 37 degrees (iii & iv, 100% neurons with Tau missorting) all neurons in the culture showed 
mislocalization of Tau (indicated by arrows, quantification in b). Scale Bar = 20µm. 

Fig 3.18. a. Tau redistributes into the somatodendritic compartment after experimental 
manipulations  
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(a, v-viii) Missorting of Tau was also observed when neurons were fixed with Formaldehyde and 
sucrose for 15minutes at room temperature (v, ~25% neurons with Tau missorting) although a little 
higher than the basal level (~15% neurons with Tau missorting). Tau missorting was significantly 
higher when neurons were fixed with Formaldehyde for 15 minutes at room temperature (vi, ~60% 
neurons with Tau missorting). When neurons were fixed with glutaraldehyde with or without sucrose 
for 15minutes at room temperature (vii & viii, 100% neurons with Tau missorting), all neurons showed 
mislocalization of Tau (indicated by arrows, quantification in b). Scale Bar = 20µm. 

Fig 3.18. a. Tau redistributes into the somatodendritic compartment after experimental 
manipulations  
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(a, ix & x) Tau missorting was significantly higher when neurons were fixed with ice-cold methanol for 
10minutes at room temperature (ix, ~60% neurons with Tau missorting) and with ice-cold acetone for 
10minutes at room temperature (x, ~80% neurons with Tau missorting) as indicated by arrows. Scale 
Bar = 20µm.  
 
 
 

 
(b) Quantification of neurons with Tau missorting following fixation with different fixation procedures.  
Error bars, SEM from n = 50-80 neurons from 3 independent cultures in each condition. 

20µm 

Fig 3.18. a.  Tau redistributes into the somatodendritic compartment after experimental 
manipulations  
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3.4 Spreading of Tau via exosomes 

Having delineated the mechanisms for Tau sorting to the axons, we next investigated 

the spreading of Tau protein from one neuronal population to another. Given the load 

of Tau protein in the axons, one could predict that it could possibly spread to the 

adjacent neurons (Zempel and Mandelkow, 2014) to exert its toxic effects and might 

continue to spread further. Although several mechanisms have been proposed, one 

of the important modes of Tau spreading across different neuronal populations could 

be via exosomes since exosomes are released by neurons (Faure et al., 2006) and 

were found to contain Tau (Polanco et al., 2016). The mechanism of Tau spreading 

across neurons via exosomes remains still elusive. It could be either that the 

exosomes are released from one neuron and then taken up by the adjacent neuron 

or the exosomes containing Tau could get transmitted across neurons via synapses 

although the evidence for this mechanism is still missing. 

Since endogenous Tau can be released via exosomes, we examined whether 

exosomes can act as carriers to mediate the transmission of Tau between cells. In 

order to directly monitor Tau-containing exosomes, we prepared exosomes from N2a 

cells transiently over-expressing human Tau tagged with GFP at the N-terminus 

(longest isoform in CNS, 2N4R or hTau40, for short - TauGFP). To investigate the 

neuron-to-neuron transmission of exosomal Tau, we took advantage of microfluidic 

devices since it allows the culture of two populations of neurons in two separate 

chambers connected by microgrooves, enabling the direct observation of the transfer 

of exosomal Tau from neurons on one side (somal side) to neurons on the other side 

(neuritic side) (schematic in Fig. 3.19,b and d). One caveat is that the uptake of 

exosomes can occur both at the somatodendritic and axonal compartments of 

neurons (Fruhbeis et al., 2013). Thus even though exosomes were added to the 

somal side of the chamber, some neurons on the neuritic side projecting through 

microgrooves might obtain exosomes via direct axonal uptake, independently of the 

transfer of exosomes from neurons seeded on the somal side. To solve this issue, we 

seeded the 1st order neurons on the somal side two weeks earlier than the 2nd order 

neurons on the neuritic side, anticipating that the projections from the 1st order 

neurons occlude the microgrooves and thus eliminate axons and dendrites from the 

2nd order neurons to project through microgrooves to the other side.  
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To test whether indeed only the 1st order neurons project through the microgrooves, 

we selectively stained either the 1st order neurons on the somal side (Fig. 3.19c) or 

the 2nd order neurons on the neuritic side (Fig. 3.19a) with DiI and monitored the 

staining of cells by live imaging. When the 2nd order neurons were stained with DiI, 

the cell bodies of some of the 1st order neurons on the somal side were also positive 

for DiI, because their neurites projected through microgrooves into the neuritic side 

(arrowhead in Fig. 3.19a). By contrast, when the 1st order neurons were stained with 

DiI, no cell bodies of the 2nd order neurons were positive for DiI, although neurites 

from the 1st order neurons that projected through microgrooves into the neuritic side 

were labeled by DiI (Fig. 3.19c). These results confirm that only the 1st order neurons 

projected through the microgrooves. Accordingly, when the 1st order neurons were 

treated with TauGFP exosomes, any TauGFP found in the neurites or cell bodies of the 

2nd order neurons would indicate its transmission from the 1st order neurons. 

Treatment of the 1st order neurons on the somal side at DIV25 with TauGFP exosomes 

resulted in the transmission of TauGFP across neurites in microgrooves (Fig. 3.19e, 

left panels), indicating the uptake and transmission of TauGFP exosomes by the 1st 

order neurons on the somal side. In addition, in ~4% (4.3±0.4%) of the 2nd order 

neurons (DIV11), the accumulation of TauGFP puncta in cell bodies was observed 

(Fig. 3.19e, right panels), suggesting the transmission of TauGFP from the 1st order 

neurons to the 2nd order neurons. The TauGFP in 2nd order neurons was visible in 

flotillin positive vesicles, likely exosomes (Fig. 3.19f). Such TauGFP puncta in 2nd 

order neurons may come from two sources: (1) from TauGFP exosomes internalized 

by the 1st order neurons; (2) from newly synthesized exosomes in the 1st order 

neurons which contain TauGFP released by the internalized exosomes. To distinguish 

between these two possibilities, we pre-treated 1st order neurons with spiroepoxide 

(5µM) to block the biogenesis of exosomes (Li et al., 2013) before treatment with 

TauGFP exosomes. The spiroepoxide treatment does not affect the transmission of 

TauGFP, as TauGFP puncta were observed in ~4% of the 2nd order neurons (Fig. 

3.19g). This rules out novel synthesis (option 2) and indicates that TauGFP exosomes 

can be taken up by 1st order neurons and then directly be transmitted to 2nd order 

neurons (option 1). As a second line of investigation, we sought to test whether 

TauGFP exosomes internalized by the 1st order neurons can be directly transmitted to 

the 2nd order neurons (option 1). To this end, we isolated exosomes from N2a cells 
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co-transfected with FlotillinGFP and RFP-Tau (TauRFP). We utilized 3-chamber 

devices, as they allow the observation of the transmission of exosomes to an 

additional population of neurons in the 3rd chamber. We reasoned that if puncta in 

the 2nd or 3rd order neurons contain both TauRFP and FlotillinGFP, they would 

represent the exosomes internalized by the 1st order neurons, as it is unlikely that 

the newly synthesized exosomes in the 1st or 2nd order neurons encapsulate both 

TauRFP and FlotillinGFP released by the internalized exosomes. As shown in Fig. 

3.19h, when the 1st order neurons were treated with TauRFP and FlotillinGFP 

exosomes, majority of puncta in the 2nd order neurons were positive for both TauRFP 

and FlotillinGFP. In addition, puncta containing TauRFP and FlotillinGFP were also 

observed in the 3rd order neurons. These results suggest that exosomes can indeed 

be directly transmitted between neurons.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a-d) The 1st order hippocampal neurons were seeded on the somal side (left) of the microfluidic 
chamber. Fourteen days later, the 2nd order hippocampal neurons were seeded on the neuritic side 
(right) and cultured for additional 10-11 days. Neurons were treated on the neuritic side (a) or somal 
side (c) with DiI for 2h to 3h. The living cells were then imaged using fluorescence microscopy. When 
the 2nd order neurons on the neuritic side were treated with DiI (a, top right panel), cell bodies of the 1st 
order neurons whose neurites projected through microgrooves to the neuritic side were positive for DiI 
staining (arrowhead in a, top left panel), by contrast, cell bodies of neurons that do not project to the 
neuritic side were not positive for DiI staining (arrows in a, bottom left panel). When the 1st order 
neurons on the somal side were treated with DiI (c, top left panel), their processes that projected 
through microgrooves to the neuritic side were stained by DiI (c, top right panel). However, no cell 
bodies of the 2nd order neurons (arrows in c, bottom right) were positive for DiI staining, indicating that 
the 2nd order neurons do not project through microgrooves to the somal side. The result of a and c is 
illustrated by b and d respectively. The flow of the conditioned medium (indicated by arrow) prevents 
the diffusion of added Dil from treated side to the opposite side. Scale bar = 10µm. 

Fig. 3.19: Transmission of TauGFP exosomes from one neuronal population to 

the other in microfluidic chambers 
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(e) Uptake and transmission of TauGFP by neurons cultured in microfluidic chambers with short 
microgrooves (150µm). The 1st order neurons were treated with TauGFP exosomes at DIV25 for 24 
hours, when the 2nd order neurons were at DIV11. Neurons were stained with antibodies against 
MAP2 (red) and tubulin (blue). Arrows indicate TauGFP positive vesicles. Note that TauGFP puncta were 
detected in the microgrooves (left panel) and also in the 2nd order neurons on the neuritic side (right 
panels) that was not treated with TauGFP exosomes, indicating the uptake and the transmission of 
TauGFP via exosomes between the two populations of neurons. Scale bar in Left panels = 20µm; right 
panels = 10µm. 

Fig. 3.19: Transmission of TauGFP exosomes from one neuronal population to 

the other in microfluidic chambers 
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(f) The direct transmission of exosomes from 1st order neurons to the 2nd order neurons in microfluidic 
chambers. Neurons were treated as described in (e). Neurons were stained with antibodies against 
MAP2 (blue) and Flotillin (red). Arrows indicate TauGFP exosomes. The colocalization of TauGFP with 
Flotillin indicate that Tau is indeed located in the exosomes. Scale bar = 10µm. 
 

 

 

 

 

 

 

 

 

 

 

 

(g) Inhibition of the synthesis of exosomes does not affect the transmission of TauGFP mediated by 
exogenous exosomes. The 1st order neurons cultured in microfluidic chambers with short 
microgrooves (150µm) were treated first with the exosome synthesis inhibitor, spiroepoxide (5µM) for 
2 hours and subsequently with TauGFP exosomes for 24 hours at DIV25, when the 2nd order neurons 
were at DIV11. Neurons were stained with an antibody against tubulin (red). Arrows indicate TauGFP 
positive vesicles. Note that TauGFP puncta were detected in the microgrooves (left panel) and also in 
the 2nd order neurons on the neuritic side (right panels) that was not treated with TauGFP exosomes. 
This indicates the uptake and the transmission of exogenously added TauGFP via exosomes between 
the two populations of neurons and rules out the possibility for the transmission of newly 
biosynthesized exosomes. Scale bar in left and right panels = 10µm. 

Fig. 3.19: Transmission of TauGFP exosomes from one neuronal population to 

the other in microfluidic chambers 
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(i) Direct transmission of exosomes from 1st order (or 1st population) neurons to the 2nd and 3rd order 
(or 2nd and 3rd population) neurons in microfluidic chambers. The 1st order neurons were treated with 
TauRFP and FlotillinGFP positive exosomes (20µg) at DIV24 for 24 hours, when the 2nd and 3rd order 
neurons were at DIV17 and DIV10 respectively. Neurons were stained with an antibody against tubulin 
(blue). Arrows indicate TauRFP and FlotillinGFP positive vesicles. Note that TauRFP and FlotillinGFP 
positive puncta were detected in the 2nd and 3rd order neurons that were not treated with exosomes, 
indicating the uptake and the transmission of exosomes between the three populations of neurons. 
Scale bar = 10µm. 

 

 

 

 

 

 

 

 

 

(ii) Quantification of colocalized FlotillinGFP and TauRFP puncta in the three populations of neurons. 
Majority of the puncta in 2nd (bar 2, 94.5±3.7% of 220 puncta in 3 different microfluidic chambers) and 
3rd populations (bar 3, 85.7±7.1% of 105 puncta in 3 different microfludic chambers) of neurons were 
positive for both TauRFP and FlotillinGFP. Error bars, SEM from n = 100 - 220 puncta counted from 3 
chambers.  

(h) (i) 

Fig. 3.19: Transmission of TauGFP exosomes from one neuronal population to 

the other in microfluidic chambers 
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3.4.1 Transmission of TauGFP exosomes can occur via axons 

The microfluidic devices with short microgrooves (~150µm) used in the above 

experiments allow axons and dendrites of the 1st order neurons to reach the neuritic 

side, enabling the potential transfer of TauGFP exosomes to 2nd order neurons. To 

distinguish between axons and dendrites, we performed experiments in microfluidic 

devices with long microgrooves (~900µm) that prevent dendrites to project to the 

neuritic side. TauGFP puncta were detected in both microgrooves and 2nd order 

neurons (Fig. 3.20), indicating that transmission of TauGFP can occur through axons.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
The transmission of TauGFP exosomes from axons of the 1st order neurons to the 2nd order neurons 
cultured in microfluidic chambers with long microgrooves (900µm). The 1st order neurons were treated 
with TauGFP exosomes at DIV25 for 24 hours, when the 2nd order neurons were at DIV11. Neurons 
were stained with an antibody against tubulin (red). Arrows indicate TauGFP positive exosomes. Note 
that TauGFP puncta were detected in the microgrooves (left panel) and also in the 2nd order neurons on 
the neuritic side (right panels) that was not treated with exosomes. Since no dendrites project through 
the long microgrooves (900µm) to the neuritic side, the transmission of TauGFP exosomes occurs 
through axons of the 1st order neuron to the 2nd order neurons. Scale bars in left and right 
panels=10µm. 

Fig. 3.20: Transmission of TauGFP exosomes from one neuronal population to 
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3.4.2 Synaptic contacts are required for exosome-mediated transmission of 

Tau 

Since recent studies have suggested that the spreading of Tau occurs by a trans-

synaptic mechanism (de Calignon et al., 2012, Dujardin et al., 2014b, Liu et al., 

2012), we sought to determine whether and how the transmission of TauGFP 

exosomes can occur from the axons of the 1st order neurons to the 2nd order 

neurons. 

Two possible mechanisms may explain the exosome-mediated transmission of Tau. 

(i) Transmission takes place directly across trans-synaptic connections from 1st order 

to 2nd order neurons. (ii) Exosomes in 1st order neurons are released into the 

conditioned medium and then internalized by 2nd order neurons at extrasynaptic sites 

(Fig. 3.21a). We analyzed the formation of synapses in 2nd order neurons (DIV11) on 

the neuritic side by examining the co-localization of the post-synaptic marker GluR1 

(green) and the pre-synaptic marker synaptophysin (red) (Fig. 3.21b). Mature 

synapses were observed in 2nd order neurons (DIV11) (Fig. 3.21, b3), although at a 

lower density than in mature neurons (DIV 25 or DIV18) on the somal side (Fig. 3.21, 

b1, b2 and quantification in b5). Thus, synaptic contacts may contribute to TauGFP 

transmission in this case.  

To further determine the potential role of synaptic contacts in the transmission of Tau, 

we examined whether the transmission of TauGFP exosomes can occur when no 

synapses are present in 2nd order neurons. To this end, we selectively treated the 1st 

order neurons (DIV18) when the 2nd order neurons were at a very early stage (at 

DIV4). No synaptic contacts were detected in 2nd order neurons at DIV4 (Fig. 3.21, 

b4). Notably, no TauGFP puncta were detected in the cell bodies of the 2nd order 

neurons at DIV4 (before synapse formation, Fig. 3.21c, right panels), although 

TauGFP puncta in microgrooves were detected as indicated by arrows (Fig. 3.21c, left 

panels). This indicates that although TauGFP exosomes were taken up by the 1st 

order neurons on the somal side, they were not transmitted to 2nd order neurons. 

Taken together, these results suggest that synaptic contacts are necessary for the 

transmission of Tau by exosomes. The low transmission of Tau into young neurons 

(DIV4) could be explained either because these neurons have not yet developed an 

uptake mechanism for exosomes, or because the TauGFP exosomes were not 

released on the neuritic side by the 1st order neurons. To clarify this issue we 
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checked the uptake of TauGFP exosomes in young neurons (DIV4) by an 

immunofluorescence assay. TauGFP exosomes were detected in neurons (arrows in 

Fig. 3.21d), indicating the internalization of exosomes. This result suggests that once 

TauGFP exosomes were internalized by the 1st order neurons, they were rarely 

released into conditioned medium on the neuritic side by neurites of the 1st order 

neurons. Thus the transmission of TauGFP from the 1st order neurons to the 2nd order 

neurons (DIV11) occurs through synaptic contacts: TauGFP exosomes are released 

by presynapses and taken up by postsynapses.  

To highlight the importance of synaptic connections for the transmission of Tau by 

exosomes, we performed another set of experiments using 3-chamber devices. 

Neurons were seeded in the 1st and 3rd chambers, but not 2nd chamber (Fig. 3.21e) 

of a triple chamber device. Thus the axons from the two populations of neurons 

projected to the 2nd chamber, but no synapses were formed between them. 

Treatment of the neurons in the 1st chamber with TauGFP exosomes resulted in the 

distribution of TauGFP puncta in microgrooves between 1st chamber and 2nd chamber 

(Fig. 3.21e), indicating the uptake of TauGFP exosomes by neurons in the 1st 

chamber. However, no TauGFP exosomes were detected in microgrooves between 

the 2nd and 3rd chamber and also in neurons in the 3rd chamber. This means that no 

transmission of TauGFP occured between the two populations of neurons. On the 

contrary, when neurons were seeded in all the three chambers of the triple chamber 

devices, spreading of TauGFP exosomes was observed across the 2nd and 3rd 

chambers as well. A clear transmission of TauGFP exosomes from the 1st to the 2nd 

and to the 3rd order neurons was observed (Fig. 3.21f, i and ii) confirming the role of 

synaptic connections in the transmission of TauGFP exosomes. 

Collectively, these data argue that exosomes can mediate the trans-synaptic 

transmission of Tau. Notably, when the 1st order neurons were treated with 

exosomes that were disrupted by sonication, no TauGFP puncta were detected in the 

microgrooves and the 2nd order neurons, indicating that the integrity of exosomes is 

necessary for the transmission of Tau protein.  
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(a) Diagram illustrating the possible mechanisms underlying exosome-mediated Tau transmission. (i) 
Transmission occurs specifically through trans-synaptic connections from 1st order to 2nd order 
neurons. (ii) Exosomes in 1st order neurons are released into the conditioned medium and then 
internalized by the 2nd order neurons, although based on our observations, the exosomes containing 
TauGFP was found not to be released into the medium.  
 

 

 

 

 

 

 

 

 

 

 

Fig 3.21: Synaptic contacts are required for exosome-mediated  

transmission of Tau
GFP
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(b) Formation of synaptic contacts at different states of maturation. (b1 – b4) Neurons were stained for 
post-synaptic marker GluR1 (green) and pre-synaptic marker synaptophysin (SynPh) (red). The co-
localization of GluR1 and synaptophysin indicates formation of synaptic contacts (white arrows in 
merged panels). Synaptic connections were formed in the 1st order mature neurons (DIV 25 or DIV18) 
on the somal side (b1, b2) and also in the 2nd order old neurons on the neuritic side (DIV11) (b3), but 
not in the 2nd order young neurons (DIV4) (b4). Scale bar = 10µm. (b5) Quantification of synapse 
density shown in b1-b4. Synapses are formed in neurons at DIV11 (bar 3), although the density is 
lower than that in mature neurons (DIV18, bar 2 and DIV25, bar 1). Notably, nearly no synapses are 
formed in young neurons at DIV4 (bar 4).  
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     (c) No transmission of TauGFP exosomes from mature neurons (DIV18) to very young neurons (DIV4) 
cultured in microfluidic chambers. The 1st order neurons were treated with TauGFP exosomes at DIV18 
for 24 hours, when the 2nd order neurons were at DIV4. Neurons were stained with an antibody 
against tubulin (red). Arrows indicate TauGFP positive exosomes in the microgrooves (left side, middle), 
but not in the 2nd order neurons on the neuritic side (right side, bottom) that was not treated with 
exosomes, indicating no transmission of TauGFP via exosomes between the two populations of 
neurons. Scale bar in the left panels = 20µm; in the right panels = 10µm. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d) The internalization of TauGFP exosomes by young neurons (DIV4). Young neurons (DIV4) were 
treated with TauGFP exosomes for 24 hours and then stained with an antibody against tubulin (red). 
Arrows indicate TauGFP positive exosomes. Note that TauGFP puncta are detected inside neurons, 
suggesting the uptake of TauGFP exosomes by young neurons from the medium. Scale bar=10µm. 
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(e) No transmission of TauGFP exosomes from neurons cultured in 1st chamber (DIV10) to neurons 
cultured in 3rd chamber (DIV 10). The 1st order neurons were treated with TauGFP exosomes for 24 
hours. Neurons were stained with an antibody against tubulin (red). Arrows indicate TauGFP positive 
exosomes in the first channel and in the axons projecting from the 1st order neurons. Note the 
absence of TauGFP positive exosomes in the third chamber indicating no transmission of TauGFP via 
exosomes between the two populations of neurons. Scale bar = 10µm. 
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transmission of Tau
GFP

  
(e) 

First pop (DIV10) in 

first chamber

Flow of medium

Microgrooves 

(500µm)

Second pop (DIV10) 

in third chamber

Microgrooves 

(500µm)

No spreading of TauGFP exoTauGFP exo added

Axon Axon

First pop (DIV10) in 

first chamber 
Microgrooves Microgrooves 

TauGFP exo

Tubulin

Merge

Tubulin

TauGFP exo

Merge Merge Merge

TauGFP exo

Tubulin Tubulin

TauGFP exoTauGFP exo

Second pop (DIV 10) 

in third chamber 

10µm 

 



Results 

 

93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) Transmission of TauGFP exosomes from 1st order neurons in the first chamber to the 2nd and 3rd 
order neurons in the second and third chambers respectively. The 1st order neurons cultured in the 1st 
chamber were treated with TauGFP exosomes at DIV24 for 24 hours. TauGFP exosomes added to the 
1st order neurons cultured in 1st chamber (DIV24) are transmitted to neurons cultured in the 2nd 
(DIV17) and to the 3rd (DIV10) chambers. Neurons were stained with an antibody against tubulin (red). 
Arrows indicate TauGFP positive exosomes . Note the presence of TauGFP positive exosomes in all the 
three populations of neurons indicating transmission of TauGFP via exosomes between the three 
different populations of neurons. Scale bars = 10µm. 
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(ii) Quantification of neurons with TauGFP positive exosomes in all the three chambers. There is a clear 
transmission of TauGFP exosomes from the first to the second and the third populations of neurons. 
The decrease in the percentage of neurons with TauGFP exosomes in the third chamber (DIV10, bar 3) 
in comparison to the neurons in the first chamber (DIV24, bar 1), indicate the role of synapses in the 
transmission of TauGFP exosomes. Error bars, SEM from n = 200-300 neurons counted from 3 
chambers.  

   
3.4.3 Tau containing exosomes, independently of their origin, are transmitted 

across neuronal populations  

  

To exclude the possibility that the transmission of exosomal Tau between neurons is 

only applied to exosomes derived from N2a cells, we treated neurons in microfluidic 

devices with exosomes derived from neurons infected with adeno-virus expressing 

CFP-Tau40 (TauCFP). Similar to treatment with N2a cell-derived exosomes, CFP 

puncta were observed in the 2nd order neurons (arrows in Fig. 3.22, right panels), 

suggesting exosomes can indeed serve as a carrier to regulate the transfer of Tau 

between neurons independently of the origin of exosomes. 
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Uptake and transmission of TauCFP by cultured primary neurons via exosomes derived from cultured 
neurons. Uptake and transmission of exosomes containing TauCFP by neurons cultured in microfluidic 
chambers with long microgrooves (900µm). The 1st order neurons at DIV25 were treated for 24 hours 
with exosomes isolated from primary cortical neurons infected with adeno-virus expressing TauCFP, 
when the 2nd order neurons were at DIV11. Neurons were then fixed and stained with antibody against 
MAP2 (red). Arrows denote TauCFP exosomes. Note that TauCFP exosomes were detected in the 2nd 
order neurons on the neuritic side, indicating their uptake by 1st order neurons on the somal side, 
transport across the microgrooves, and synaptic transmission to the neurons on the neuritic side. 
Scale bar = 10µm. 
 

 

 

 

 

 

 

Fig 3.22: Tau containing exosomes are transmitted across neuronal populations 
independently of their origin 
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4   Discussion 

4.1 Sorting mechanisms of Tau protein 

4.1.1 Developmental regulation of the distribution of Tau in neurons 

Tau is a microtubule associated protein which is mainly expressed in neurons. In 

mature neurons, Tau occurs mostly in axons, but in young neurons, Tau distributes 

evenly into the cell body and neurites. The subcellular distribution of Tau appears to 

be strictly regulated during development (Zempel and Mandelkow, 2014). Early 

studies showed that the dominant axonal distribution of Tau emerges after seven to 

ten days in culture (DIV 7-10) (Mandell and Banker, 1995). Consistent with previous 

studies, we observed that Tau protein was distributed across all compartments of 

cultured neurons starting from DIV1 until DIV9. But at DIV10, a sudden decrease in 

the localization of Tau in the somatodendritic compartment occurred, leading to the 

dominant axonal distribution of Tau. Our results suggest that the sorting mechanisms 

of Tau are established at DIV10. However, the details of the sorting mechanisms of 

Tau, remains a matter of debate (Hirokawa et al., 1996).   

4.1.2 Polarized distribution of Tau protein in neurons 

Due to the dominant axonal distribution of Tau, it has been regarded as an axonal 

protein (Binder et al., 1985). However, several recent studies demonstrated that 

despite the minor amount of Tau in dendrites, the Tau protein distributing into the 

somatodendritic compartment may have important physiological functions, e.g. 

regulation of synaptic plasticity (Kimura et al., 2014, Regan et al., 2016) . Importantly, 

it is essential for Aβ-induced neurotoxicity (Ittner et al., 2010, Mondragon-Rodriguez 

et al., 2012) . Furthermore, the increase of dendritic Tau itself is sufficient to induce 

spine loss (Thies and Mandelkow, 2007). In addition, the mislocalization of Tau 

protein into the somatodendritic compartment is a hallmark of Alzheimer disease and 

other Tauopathies (Li et al., 2011). These observations prompted us to study the 

sorting mechanisms of Tau, as the breakdown of them could cause missorting of Tau 

in pathological situations. Multiple mechanisms have been proposed to underlie the 

axonal sorting of Tau (or conversely, the loss of Tau from the somatodendritic 

compartment) (Hirokawa et al., 1996, Litman et al., 1993, Morita and Sobue, 2009, 

Kanai and Hirokawa, 1995, Li et al., 2011). 
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4.1.3 The role of protein degradation systems in the axonal sorting of Tau 

protein 

 

The following reasons prompted us to investigate the role of the protein degradation 

systems in Tau distribution. (1) It has been proposed that the differential turnover of 

Tau in axons versus in the somatodendritic compartment may play a role in Tau 

distribution. This proposal was based on the observation that Tau microinjected into 

primary neurons initially distributes through the whole neuron (cell body, axons and 

dendrites), but later persists only in axons (Hirokawa et al., 1996). It was assumed 

that the disappearance of exogenous microinjected Tau from the somatodendritic 

compartment was due to its degradation. In fact, since lysosomes (an essential 

component of autophagic degradation) are enriched in the somatodendritic 

compartment of neurons (Parton et al., 1992), it was speculated that a more efficient 

degradation of Tau would occur in dendrites. However, the disappearance of 

exogenous Tau can also be interpreted by the existence of a retrograde diffusion 

barrier of Tau at the axonal initial segment discovered in our lab recently (Li et al., 

2011) as the diffusion barrier prevents axonal Tau from diffusing into the dendrites 

while it allows dendritic Tau to diffuse or get transported into the axons. More 

investigation is needed to clarify this issue. (2) If the differential turnover of Tau 

indeed contributes to axonal Tau sorting, then the incomplete degradation of Tau in 

dendrites would explain the physiological dendritic distribution of Tau. (3) We and 

other groups showed that autophagy plays a dominant role in Tau degradation in 

neurons (Wang et al., 2009, Brown et al., 2005, Feuillette et al., 2005, Kruger et al., 

2012), but the involvement of the proteasome in Tau degradation is still unclear as 

the inhibition of the proteasome in primary neurons lead to the compensatory 

stimulation of autophagy. As the protein degradation inhibitors induce toxic effects in 

conventional neuronal cultures, we used in this study microfluidic chambers which 

compartmentalize neurons allowing the “local” treatment with different inhibitors.  

 

Using microfluidic chambers we show here that the degradation of dendritic Tau 

occurs by both the proteasome and autophagy pathways, as suppressing these 

pathways dramatically increased the dendritic accumulation of Tau protein 

(schematic in Fig. 4.1), in addition to increasing the substrates of these pathways – 

p62 (Fig. 3.8) and ubiquitinated substrates (Fig. 3.9). Thus the impairment of the 
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protein degradation systems may be one of the major causes of Tau missorting. It is 

noteworthy that in AD, both the proteasome and autophagy pathways become 

compromised (Wang and Mandelkow, 2012), which could be one of the reasons for 

the missorting of Tau into the somatodendritic compartment. 

 

 
Fig 4.1. Schematic representation of the different treatments and its consequences in neurons cultured in 

microfluidic chambers. (a) In the absence of protein degradation inhibitors, Tau (red) sorts mainly into the axons 

and MAP2 (green) into the somatodendritic compartment. (b) When treated with the protein degradation inhibitors 

(wortmannin or bafilomycin against autophagy and epoxomicin or lactacystin against the proteasome; violet box) 

on the neuritic side, an increased number of dendrites with Tau accumulation (yellow) were observed indicating 

local inhibition of degradation of Tau in the dendrites. (c) In the presence of the protein degradation inhibitors 

(wortmannin or epoxomicin) and the protein translation inhibitors (cycloheximide or anisomycin; pale blue box), 

Tau sorts mainly into the axons indicating that local translation of Tau mRNA in the dendrites is necessary for Tau 

missorting. 
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We noticed that there is a basal level of Tau missorting (~16%) in the dendrites of 

cultured neurons even under physiological conditions (Fig. 3.7a, bar 1). Stimulation 

of the autophagy with trehalose (Kruger et al., 2012) (Fig. 3.13) or the proteasome 

with rolipram (Myeku et al., 2016) (Fig. 3.14) significantly reduced such missorting, 

indicating that at least in part the basal level of Tau missorting is due to less active 

protein degradation systems in these dendrites. This result highlights the important 

role of protein degradation systems in maintaining the polarized distribution of Tau in 

neurons and suggests that reducing Tau missorting by enhancing the activity of the 

autophagy or proteasome system could serve as a valuable therapeutic strategy in 

AD and other tauopathies.  

4.1.4 Protein degradation inhibition results in missorting of Tau with differential 

phosphorylation status and isoform distribution 

Abnormal phosphorylation is known to be a hallmark of Tau pathology, and therefore 

we tested its relationship to Tau missorting (Zempel and Mandelkow, 2014).  Indeed, 

after application of protein degradation inhibitors, missorted Tau in dendrites showed 

a different phosphorylation pattern compared to Tau in axons. While the axonal Tau 

was phosphorylated at the 12E8, PHF1 and AT8 sites, the dendritic Tau was mainly 

phosphorylated at the 12E8 site after inhibition of protein degradation (Fig. 3.10 & 

schematic in Fig. 4.3). This suggested that there might be a polarized distribution of 

kinase or phosphatase activity towards Tau. This could be explained as follows:  

(i) Possible role of phosphatases: PP2A, which is mainly present in axons (Zhu et al., 

2010) cannot dephosphorylate Tau at the PHF-1 epitope (Qian et al., 2010) although 

it could dephosphorylate other sites of Tau such as S262, the 12E8 epitope. This 

could explain the enrichment of PHF-1 positive Tau and lower amount of 12E8 Tau in 

axons. On the other hand, PP2B, present mainly in dendrites, can dephosphorylate 

Tau at the PHF-1 epitope (Liu et al., 2005). This may explain why the dendritic Tau is 

phosphorylated at 12E8 sites, but not PHF1 and AT8 sites. Indeed, the localization of 

12E8 Tau in dendrites has been observed (Kishi et al., 2005), in young neurons 

(~DIV7) where Tau sorting has not started yet.  

(ii) Possible role of kinases: It is known that GSK3β which phosphorylates Tau at the 

AT8 and PHF1 sites shows preferential activity in dendrites (Jiang et al., 2005). 

However here we observed high AT8 and PHF1 phosphorylation of axonal Tau but 
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not dendritic Tau. This suggests that the axonal Tau may be phosphorylated by 

kinases other than GSK3β, while in the dendrites the activity of GSK3β toward Tau 

phosphorylation may be antagonized by the phosphatase activity. Another well-

known kinase, MARK, phosphorylates Tau at S262 (Schneider et al., 1999), the 12E8 

epitope. Although it has been reported that MARK2 phosphorylates MAP2 and leads 

to shortening of dendrites (Terabayashi et al., 2007), this effect could also be 

attributed to the phosphorylation of Tau at the 12E8 sites. This may explain the 

specific degradation of 12E8 positive Tau in dendrites.  

In addition to identifying the phosphorylation status of Tau protein degraded in the 

dendrites, we also obtained information on the isoforms of Tau degraded in the 

dendrites. We found that the 1N isoforms of Tau (i.e. 1N3R and 1N4R) accumulate in 

the dendrites upon inhibition of both the autophagic and proteasomal degradation 

(Fig. 3.12). This indicates the localization of the 1N isoform mainly in the axonal 

compartment whereas degradation takes place in the dendrites. This is contrary to 

the findings of Liu & Gotz who identified the 1N Tau isoform in the neuronal nucleus, 

cell bodies and dendrites but not in the axons (Liu and Gotz, 2013). The reason for 

this discrepancy could be the different neuronal culture systems used in both studies 

and the role of experimental manipulation in determining the localization of Tau (see 

later part of discussion).  

4.1.5 Tau mRNA is present in the dendrites of neurons and is actively 

translated 

Tau is generally considered to be produced in the cell body and proximal axons, 

where the mRNA is located (Litman et al., 1993). The localization of Tau mRNA in 

the proximal region of dendrites was also shown (Kosik et al., 1989) which was 

proposed to decline distally due to the reduction of ribosomes, but no direct evidence 

for the proximo-distal change of Tau mRNA distribution was shown. In our study, we 

showed that Tau mRNA, although it was abundantly localized in the soma, a sparse 

distribution in the dendrites and axons was also observed (schematic in Fig. 4.2). 

The study of Kosik et al (1989) did not identify Tau mRNA beyond proximal dendrites 

which could be due to a lower sensitivity of the in situ hybridization technique used at 

that time. In our study, the fluorescence in situ hybridization technique gives 8000 

fold amplification of fluorescence of every RNA molecule (Fig. 3.17).  
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Fig. 4.2. Schematic representation of the distribution of Tau mRNA in a neuron. Fluorescence insitu 

hybridization revealed Tau mRNA (orange puncta) distribution mainly to the cell body (green) with a sparse 

distribution in the axon (red) and in the dendrite (green).  

It is known that the local translation of proteins  in dendrites and spines (Steward and 

Levy, 1982) is required for activity-dependent synaptic modifications (Steward and 

Schuman, 2003). Thus, the translational machinery such as polyribosomes exists in 

dendrites and spines. The distribution of Tau mRNA in dendrites indicates that Tau 

may be actively translated in dendrites. Indeed, suppression of protein translation 

dramatically reduces dendritic Tau suggesting that the active translation of Tau does 

occur in dendrites (Fig. 3.16).   

Local translation of Tau mRNA has been reported to occur in axons which appears to 

be controlled by the 5’ TOP sequence in the 5’ UTR of Tau mRNA (Morita and 

Sobue, 2009). It seems that the 5’ TOP sequence in the UTR of tau mRNA also 

controls the translation in the dendrites. This evidence has not been investigated in 

detail so far. Our data clearly indicates that Tau mRNA is localized in the dendrites 

(Fig. 3.17) and is actively translated (Fig. 3.16). This resolves the debate on both the 

Tau mRNA localization and translation in dendrites.  

Overall, our results argue that the minor amount of Tau in the somatodendritic 

compartment results from the balance of local synthesis and local protein 

degradation. 
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Fig. 4.3. Schematic representation of the different treatments and its consequences in neurons cultured in 

microfluidic chambers. (a) In the absence of protein degradation inhibitors, Tau (red) sorts mainly into the axons 

and MAP2 (green) into the somatodendritic compartment. (b) When treated with the protein degradation inhibitors 

(wortmannin against autophagy and epoxomicin against the proteasome; violet box) on the neuritic side, an 

increased number of dendrites with missorted Tau phosphorylated at the 12E8 site (cyan) were observed. (c) In 

the absence of Tau, the dendrites show a normal spine distribution (brown protrusions). (d) Loss of spines was 

observed in dendrites with missorted Tau after inhibition of the protein degradation systems.  
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4.1.6  Inhibition of protein degradation causes missorting of Tau into dendrites 

and spine loss 

In line with previous observations of the loss of spines due to missorting of Tau  

(Zempel et al., 2010, Thies and Mandelkow, 2007), we found that Tau accumulation 

in the dendrites induced by protein degradation inhibition resulted in the loss of 

spines as well (Fig. 3.15 & schematic in Fig. 4.3). Since protein degradation 

inhibition does not induce spine loss in Tau-knockout neurons, we conclude that the 

missorted Tau is the culprit of spine loss. The missorted Tau may cause spine loss 

via the following two mechanisms - (i) It could bind to microtubules in dendrites and 

thereby prevent the binding of motor proteins leading to the inhibition of mitochondrial 

transport, loss of ATP and eventually spine loss (Thies and Mandelkow, 2007), (ii) 

The missorting of Tau into the dendrites could result in the breakdown of 

microtubules in the dendrites by the sequential recruitment of TTLL6 and spastin 

(Zempel et al., 2013) which could eventually lead to loss of spines. 

Although overexpression of Tau (Thies and Mandelkow, 2007) or 

hyperphosphorylation (Hoover et al., 2010) caused Tau to enter the spines and 

destroy them, we did not detect Tau protein in the spines after inhibition of protein 

degradation. This could be explained in two ways (i) the missorted endogenous Tau 

could cause spine loss much earlier and faster than the exogenous Tau or (ii) the 

amount of endogenous Tau is too low compared to exogenous Tau.  

In conclusion, this study demonstrates that: (1) the degradation systems of the 

proteasome and the autophagy are responsible for the polarized distribution of Tau 

during differentiation; (2) dendritic Tau can be synthesized locally; (3) Tau mRNA is 

distributed across the entire neuron with the majority in the soma and minor fractions 

in the axons and dendrites; (4) the dendritic Tau protein is phosphorylated at the 

12E8 site and is mainly in the form of the 1N isoform; (5) the inhibition of protein 

degradation results in the missorting of Tau into the dendrites and in the loss of 

spines. 

4.1.7 Chemical fixation can lead to artefacts of Tau mislocalization  

Although it is well accepted that Tau is mainly distributed into the axons, some 

studies observed nearly even distribution of Tau in all cellular compartments in 
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cultured neurons (Dotti et al., 1987, Mondragon-Rodriguez et al., 2012). The cause of 

such discrepancies has not been well addressed. Here we showed that the protocols 

used for fixation of neurons can dramatically affect the distribution of Tau and thus 

lead to artefacts. Factors such as the fixative, time of fixation and the temperature, 

notably the absence or presence of sucrose, can all lead to artefacts of Tau 

missorting. The best procedure turned out to be to fix cells with formaldehyde plus 

sucrose at 37°C, which minimized missorting of Tau (Fig. 3.18).  

As Tau binds to microtubules in axons, any fixation protocol that disrupts 

microtubules would accordingly affect the axonal localization of Tau, because (1) the 

high affinity of Tau with axonal microtubules (Kanai and Hirokawa, 1995) contributes 

to the axonal distribution of Tau, as it could retain Tau in axons; (2) the microtubule is 

essential for the diffusion barrier. Since the stability of microtubules is vulnerable to 

temperature changes, low or room temperature can quickly lead to disassembly of 

microtubules. Therefore, it is not surprising that the fixation at 37°C shows lowest 

missorting of Tau in protocols using different fixatives. Formaldehyde, due to its low 

molecular weight, can penetrate cells more quickly than glutaraldehyde and thereby 

can exert fixative effects faster than glutaraldehyde. This may account for the lower 

missorting using formaldehyde than using glutaraldehyde, when the other conditions 

are the same. In fact, we found that fixation with glutaraldehyde resulted in the 

missorting of Tau in all neurons irrespective of the fixation temperature or time, the 

presence or absence of sucrose. Thus, glutaraldehyde is not a suitable fixative to be 

used for investigating Tau distribution. In addition, fixing neurons with methanol or 

acetone resulted in a significant increase in Tau missorting in comparison with 

fixation using Formaldehyde (Fig. 3.18). In line with our observation, fixation using 

methanol (Dotti et al., 1987) induced much higher missorting of Tau than fixation 

using formaldehyde supplemented with sucrose (Mandell and Banker, 1995). 

It is worth to point out that although formaldehyde appears to be the best fixative of 

all tested, formaldehyde could detach proteins from microtubules (Rossi et al., 2008) 

and thereby potentially lead to microtubule breakdown. Of note, sucrose is well-

known to preserve the native state of tubulin (Morejohn and Fosket, 1984). This may 

explain why the supplement of sucrose in the fixative can further reduce the observed 

missorting of Tau.  

 



Discussion 

 

105 

 

4.2 Trans-synaptic transmission of Tau protein via exosomes 
 
Some recent studies proposed that Tau pathology can spread via a trans-synaptic 

mechanism along anatomical circuits (Dujardin et al., 2014b, Liu et al., 2012, de 

Calignon et al., 2012). However, direct evidence showing transmission of Tau from 

presynaptic to postsynaptic compartments, and the nature of the transmitted Tau, is 

difficult to obtain and still controversial. Microfluidic devices are excellent tools to 

study the transitions of Tau between cell compartments and across cells. By co-

culturing neurons in microfluidic devices, we found that treatment of the 1st order 

neurons with exosomes containing TauGFPresulted in the transmission of TauGFP into 

the 2nd order neurons, indicating that exosomes can act as carriers to mediate the 

transmission of Tau (Fig. 3.19e). The transmission of Tau is likely due to the direct 

transition of exosomes from the 1st order neurons to the 2nd order neurons, because 

(i) TauGFP colocalized with the vesicle marker – flotillin after transmission from the 1st 

order to the 2nd order neurons (Fig. 3.19f) (ii) In line with other observations pointing 

to the role of axonal trafficking of different Tau species (Wu et al., 2013), our study 

also indicates that TauGFP inside exosomes could be transmitted along the axons to 

other neuronal populations (Fig. 3.20). Moreover, we found that it is specifically the 

exogenously added exosomes which get transmitted across synapses to the next 

neuronal population. We ruled out the role of “endogenous” exosomes by (i) inhibiting 

their synthesis in the 1st order neurons (Fig. 3.19g) (ii) adding exosomes containing 

markers for both flotillin and Tau (Fig. 3.19h) and still observed the occurrence of the 

transmission of the added exosomes.  

 

The exosome-mediated transmission of TauGFP requires synaptic connections 

between the 1st order neurons on the somal side and 2nd order neurons on the 

neuritic side. This view is based on three observations. (1) No exosomes were 

detected in conditioned medium on the neuritic side, indicating that the transition of 

TauGFP does not occur because of the release of exosomes of 1st order neurons into 

the conditioned medium of the 2nd order neurons and then internalized by 2nd order 

neurons at extrasynaptic sites. (2) There is no transmission of TauGFP exosomes from 

the 1st order to the young 2nd order neurons (DIV4) on the neuritic side (which lack 

synaptic connections), indicating that synaptic contacts are necessary for exosome-

mediated Tau transmission. (3) In the 3-chamber microfluidic devices, no 
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transmission of TauGFP was observed from neurons in the 1st chamber to neurons in 

the 3rd chamber, when no neurons were seeded in the 2nd chamber. To the contrary, 

when neurons were cultured in all the three chambers of a 3-chamber microfluidic 

device, transmission of TauGFP was observed from neurons in the 1st chamber to 

neurons in the 2nd and the 3rd chamber. The difference between these two cases is 

that in the first case (only two populations of neurons) no synapses were formed 

between the two neuronal populations, while in the second case, synapses were 

formed between the 1st and 2nd order neurons and 2nd and 3rd order neurons (Fig. 

3.21e,f & schematic in Fig. 4.4). This confirms the role of synapses in transmitting 

Tau containing exosomes.  

 
Fig. 4.4. Schematic representation of the spreading of exosomes containing Tau

GFP
 in neurons cultured in 

triple chamber microfluidic devices. (a) Neurons were cultured only in the first and the third chamber and 

TauGFP exosomes (green puncta) were added to the first population of neurons. No spreading of TauGFP 

exosomes was observed to the second population of neurons in the third chamber (absence of green puncta) due 

to lack of synapses between the first and the second populations of neurons. (b) Neurons were cultured in all the 

three chambers of a triple chamber microfluidic device and TauGFP exosomes (green puncta) were added to the 

first population of neurons. The spreading of TauGFP exosomes were observed in the second and the third 

populations of neurons indicating the essential role of synapses in the spreading of Tau pathology. 
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Our results argue that the trans-synaptic transmission of TauGFP occurs because 

exosomes are preferentially transmitted across the presynapses of the 1st order 

neurons to the postsynapses of the 2nd order neurons. However, it should be pointed 

out that the internalized exosomes added to the somal side are preferentially 

transmitted via pre-synaptic terminals to the neurons on the neuritic side. By contrast, 

the fusion of multivesicular bodies with membranes in cell bodies and dendrites may 

result in the release of “endogenous” exosomes at these sites as well (Lachenal et 

al., 2011). Taken together, our study implies that exosomes are capable of spreading 

of Tau pathology via trans-synaptic transmission. 
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6   Appendix 

Probesets used for fluorescence insitu hybridization: 

The binding region of probe sets is RED and the binding region of the blocking probe 
(BL) is GREEN on rat Tau mRNA (see Fig. 2.2 in ‘Materials and Methods’). 
 

cDNA sequence of Rattus norvegicus microtubule-associated protein Tau (Mapt), 
mRNA. [Rattus norvegicus] ref|NM_017212| 
 

gtctccgccacccaccagctccagcaccagcagcagcgccggcgccaccgcccaccttctgctgtcgccgccgcc

acaaccaccttcccctccgctgtcctcttctgtcctcgcctcctgtcgattatcaggctttgaagcagcatggct

gaaccccgccaggagtttgacacaatggaagaccaggccggagattacactatgctccaagaccaagaaggagac

atggaccatggcttaaaagctgaagaagcaggcatcggagacaccccgaacatggaggaccaagctgctgggcat

gtgactcaagctcgagtggccggcgtaagcaaagacaggacaggaaatgacgagaagaaagccaagggcgccgat

ggcaaaacgggggcgaagatcgccacacctcggggagcagccactccgggccagaaaggcacatccaatgccacc

aggatcccagccaagaccacacccagcccaaagactcctccaggatcaggtgaaccaccaaaatccggagaacga

agcggctacagcagccccggctcgcccggaacccctggcagtcgctcccgtaccccatccctaccaacgccgccc

acccgagagcccaaaaaggtggcagtggttcgcactccccctaagtcaccgtctgccagtaagagccgcctacag

actgcccctgtgcccatgccagacctaaagaacgtcaggtccaagattggctccactgagaacctgaagcaccag

ccgggaggcggcaaggtgcagataattaataagaagctggatcttagcaacgtccagtccaagtgtggctcaaag

gacaatatcaaacacgtcccgggcggaggcagtgtgcaaatagtctacaagccagtggacctgagcaaggtgacc

tccaagtgtggttccttagggaacatccatcacaagccaggaggtggccaggtagaagtaaaatcagagaagctg

gacttcaaggatagagtccagtcgaagattggctccttggataacatcacccatgtccctggaggagggaataag

aagattgaaacccacaagctgaccttcagggagaatgccaaagccaagacagaccatggagcagaaatcgtgtac

aagtcacctgtggtgtctggggacacatctccacggcacctcagcaacgtctcctccacgggcagcatcgacatg 

gtggactctccacagcttgccacgttagccgatgaagtgtccgcctctttggccaagcagggtttgtgatcaggc

ccctggggccgtcactgatcatggagagaagagagagtgagagtgtggaaaaaaaaaaaaaaaaaagaatgacct

ggcccctcaccctctgccctccccgctgctcctcatagacaggctgaccagcttgtcacctaacctgcttttgtg

gctcgggtttggctcgggacttcaaaatcagtgatgggaaaaagtaaatttcatctttccaaattgatttgtggg

ctagtaataaaatatttttaaggaaggaaaaaaaaaaaaacacgtaaaaccatggccaaacaaaacccaacattt

ccttggcaattgttattgaccccgccccccccctctgagttttagagggtgaaggaggctttggatggaggctgc

ttctggggattggctgagggactagggcaactaattgcccacagccccatcttaggggcatcagggacagcggca

gcaatgaaagacttgggacttggtgtgtttgtggagccgtaggcaggtgatgttaactttgtgtgggtttgaggg

aggactgtgatagtgaaggctgagagatgggtgggctgggagtcagaggagagaggtgaggaagacaggttggga

gaggggacattggctccttgccaaggagcttgggaagcacaggtagccctggctgcctgcagcagtcttagctag

cacagatgcctgcctgagaaagcacagtggggtacagtgggtgtgtgtgccccttctgaagggcagcccatggga

gaaggggtattgggcagaaggaaggtaggccagaaggtggcaccttgtagattggttctctgaaggctgaccttg

ccatcccagggcactggctcccaccctccagggagggaggtcctgagctgaggagcttccctttgctctcacagg

aaaacctgtgttactgagttctgaagtttggaactacagccatgattttggccaccatacagacctgggacttta

gggctaaccagttctttgtaaggacttgtgcctcttgcgggaacatctgcctgttctcaagcctggtcctctggc

acttctgcagtgtgagggatgggggtggtattctgggatgtgggtcccangcctcccatccctcgcacagccact 

gtatcccctctacctgtcctatcatgcccacgtctgccatgagagccagtcactgccgtccatacatcacgtctc

accgtcctgagtgcccagcctccccaagccccatccctggcccctgggtagttatggccaatatctgctctacac

taggggttggagtccagggaaggcaaagatttgggccttggtctctagtcctacgttgcacgaatccaaccagtg

tgcctcccacaaggaaccttacaaccttgtttggtttgctccatcatttcccatcgtggatgggagtccgtgtgt

gcctggagattaccctggacacctctgcttttttttttttactttagcggttgcctcctaggcctgactccttcc

catgttgaactggaggcagccacgttaggtgtcaatgtcctggcatcagtatgaacagtcagtagtcccagggca

gggccacacttctcccatcttctgcttccaccccagcttgtgattgctagcctcccagagctcagccgccattaa

gtccccatgcacgtaatcagcccttcataccccaatttggggaacataccccttgattgaaatgttttccctcca

gtcctatggaagcggtgctgcctgccctgctggagcagccagccatctccagagacgcagccctttctctcctgt

ccgcaccctgttgcgctgtagtcggattcgtctgtttgtctgggttcaccagagtgactatgatagtgaaaagaa

aaagaaaaagaaaaaagaaaaaagaaaaaaaaaaaaggacgcatgttatcttgaaatatttgtcaaaaggttgta

gcccaccgcagggattggagggcctggatattccttgtcttcttcgtgacttaggtccaggccggtgcagtgcta

ccctgctgggacatcccatgttttgaagggtttcttcttcatctgggaccctgcagacactggattgtgacattg

gaggtctatgacattggccaaggcctgaagcacaggacccgttagaggcagcaggctccgactgtcagggagagc

ttgtggctggcctgtttctctgagtgaagatggtcctctctaatcacaacttcaagtcccacagcagccctggca

gacatctaagaactcctgcatcacaagagaaaaggacactagtaccagcagggagagctgtggccctagaaattc 



Appendix 

 

121 
 

catgactctccactacatatccgtgggtcctttccaagccttggcctcgtcaccaagggcttgggatggactgcc

ccactgatgaaagggacatctttggagacccccttggtttccaaggcgtcagccccctgaccttgcatgacctcc

tacagctgtaaggatgaggcctttaaagattaggaacctcaggcccaggtcggccactttgggcttgggtacagt

tagggacgatgcggtagaaggaggtggccaacctttcccatataagagttctgtgtgcccagagctaccctattg

tgagctccccactgctgatggactttagctgtccttagaagtgaagagtccaacggaggaaaaggaagtgtggtt

tgatggtctgtggtcccttcatcatggttacctgttgtggttttctctcgtatacccatttacccatcctgcagt

tcctgtccttgaataggggtgggggtactctgccatatctcttgtagggcagtcagcccccaagtcatagtttgg

agtgatctggtcagtgctaataggcagtttacaaaggaattctggcttgttacttcagtgaggacaatcccccaa

gggccctggcacctgtcctgtctttccatggctctccactgcagagccaatgtctttgggtgggctagatagggt

gtacaatttgcctggttcctccaagctcttaatccactttatcaatagttccatttaaattgacttcaatgataa

gagtgtatcccatttgagattgcttgtgttgtggggtaaaggggggaggaggaacatgttaagataattgacatg

ggcaaggggaagtcttgaagtgtagcagttaaaccatcttgtagccccattcatgatgttgaccacttgctagag

agaagaggtgccataaggctagaacctagaggcttggctgtcccaccaacaggcaggcttttgcaaggcagaggc

agccagctaggtccctgacttcccagccaggtgcagctctaagaactgctcttgcctgctgccttcttgtggtgt

ccagagcccacagccaatgcctcctcaaaaccctggcttccttccttctaatccactggcacatcagcatcacct

ccggattgacttcagatccacagcctacactactagcagtgggtaagaccacttcctttgtccttgtctgttctc 

cagaaaagtgggcatggaggcggtgttaataactataggtctgtggctttatgagccttcaaacttctctctagc

ttctgaaagggttacttttgggcagtattgcagtctcaccctcccgatgggctgtagcctgtgcagttgctgtac

tgggcatgatctccagtgcttgcaagtcccatgatttctttggtgattttgagggtggggggagggacatgaatc

atcttagcttagcttcctgtctgtgaatgtccatatagtgtactgtgttttaacaaacgatttacactgactgtt

gctgtacaagtgaatttggaaataaagttattactctgattaaacaaaaaaaaaaaaaa 

 

Quantigene ViewRNA ISH cell assay kit components and storage conditions: 

Component Description Storage 

10X PBS Aqueous buffered solution 15-30deg 

Detergent solution  Aqueous buffered solution 15-30deg 

Protease  Aqueous buffered solution 2-8deg 

Probe Set Diluent  Aqueous buffered solution 

containing formamide and 

detergent 

2-8deg 

Amplifier Diluent Aqueous buffered solution 

containing formamide and 

detergent 

2-8deg 

Label probe diluent Aqueous buffered solution 

containing detergent 

2-8deg 

PreAmplifier Mix DNA in aqueous buffered 

solution containing 

PreAmp4 

-20deg 
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Amplifier Mix DNA in aqueous buffered 

solution containing Amp4 

-20deg 

Label Probe Mix Fluorescent dye-labeled 

oligonucleotides in 

aqueous buffered solution 

containing LP4-488 

-20deg 

Wash Buffer Component 1 Aqueous buffered solution 

containing detergent 

15-30deg 

Wash Buffer Component 1 Aqueous buffered solution  15-30deg 

QuantiGene ViewRNA 

Probe Set 

RNA-specific DNA 

oligonucleotides designed 

against a target of interest 

and are compatible with 

Type 4 Signal Amplifiers 

-20deg 

 

Adapted from Affymetrix ‘QuantiGene ViewRNA ISH Cell Assay User Manual’ 
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