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Abstract

This study is part of the high resolution reanalysis project proposed for Germany

and Europe (Bollmeyer et al. 2014) within the framework of the Hans Ertel Cen-

tre for Weather Research (HErZ). The reanalysis for Germany assimilates among

other variables high resolution rainfall rates. For the most recent years, radar

data is assimilated, however, for periods before 2007 this data is not available and

another radar-like dataset is required. This study proposes the method HIRAIN

to generate an ensemble of probable space-time precipitation fields given a set

of observational data. HIRAIN works in two steps. First, a Bayesian statistical

model conditional on observations from synoptic stations and on satellite infor-

mation simulates the latent spatial Gaussian process that drives the occurrence

of precipitation exceeding a selected threshold. In a second step, realisations of

occurrence/non-occurrence of precipitation exceeding the same thresholds are ob-

tained given the simulated latent process. The occurrence/non-occurrence of pre-

cipitation is generated through two different methodologies. HIRAIN is extended

to several thresholds of precipitation amount and the final precipitation product

is generated from the fields occurrence/non-occurrence of the individual thresh-

olds. A Bayesian approach is used in HIRAIN to provide more realistic fields than

those produced by interpolation methods. In the Bayesian approach the data at

the observation locations are honored and the spatial covariance structure of the

spatial process is reproduced in each realisation. Moreover, the ability to gener-

ate ensemble of possible precipitation patterns provides valuable information of

precipitation uncertainties that plays also an important role in ensemble reanaly-

sis. HIRAIN produces precipitation dataset with hourly and 4 km resolution. This

product presents a more appropriate resolution for the purposes of the reanaly-

sis than the rainfall datasets available by the time the Germany reanalysis project

started.
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1. Introduction

Precipitation is an important variable that impacts many sectors of the society.

It is part of the hydrological cycle and information of its distribution and inten-

sities helps for predicting and managing natural disasters appropriately as well

as for city management, hydrology and agriculture. Many decisions are taken

based on the presence or absence of precipitation. Meteorological and hydrolog-

ical service centers strongly depend on reliable precipitation information among

other variables. Good meteorological and hydrological forecasts depend on ap-

propriate data sets that can represent the variability of precipitation. Low spatial

and temporal resolution data sets usually lead to poor performance because local

precipitation events can not be resolved or the diurnal cycle can not be correctly

modeled (Yang, Slingo 2001). Hydrological models have also shown bias when

the accuracy of the space-time representation of precipitation is poor (Villarini et
al. 2009) or when the data is not in scale compatible with that required by the

processes being modeled (Vischel et al. 2009).

Precipitation information is available from different sources such as direct mea-

surements from rain gauges or from remote-sensing estimation techniques. Rain

gauge observations are not able to fully represent the precipitation spatial vari-

ability due to the sparseness of the point measurements. Remotely-sensed data as

those derived from meteorological radar or satellite estimation techniques present

higher spatial resolution and coverage but also larger errors in the estimated

amounts. Besides, they are available only for the most recent observational pe-

riods.

Given the different limitations of the measurement instruments many approaches

have been developed, in order to generate more accurate precipitation products

with higher resolution. One approach is to merge precipitation data from differ-

ent sources. In this scenario, some authors (Adler, Coauthors 2003; De Vera, Terra

2012; Huffman, Coauthors 1997; Janowiak, Xie 1999; Sapiano, Arkin 2009; Vila

1



1. Introduction

et al. 2009; Xiaolan, Lin 2015; Xie, Arkin 1997; Xie et al. 2003, e.g.,) merge in-

direct satellite measurements and direct rain gauge observations. Others merge

rain gauge and radar precipitation estimates by employing geostatistical meth-

ods, such as ordinary kriging, kriging with external drifts and co-kriging (Bernd

et al. 2014; Haberlandt 2007; Krajewski 1987) or adjust radar estimates by sur-

face precipitation observations. RADOLAN, which provides a comprehensive high

spatio-temporal resolution precipitation dataset for Germany (Bartels et al. 2004)

is an example of the last method.

Another approach is to simulate precipitation using Bayesian models condi-

tioned on observations and covariates. Within this framework Sanso, Guenni 1999

proposed a model based on transformed truncated multivariate normal distribu-

tion to predict monthly precipitation in space and in time. Gaudard et al. 1999

used a spatial model to predict mean annual precipitation amounts. Berrocal et
al. 2008 employed a two-stage model assuming that different Gaussian processes

drive precipitation occurrence and precipitation amount. They applied it as a post-

processing technique for numerical forecasts on a daily time scale.

In other studies, as the one presented by Clark, Slater 2006, daily precipitation

ensembles are modeled with a locally weighted regression model based on rain

gauge observations. In their work spatial attributes from station locations are

used as covariates to predict the spatial variability in daily totals for a 300 km x

300 km area of western Colorado.

Precipitation is also a fundamental variable for climate change research and

monitoring. In order to investigate climate change, researchers need a self-consis-

tent dataset from the past. To this end, many efforts have been made in climate

retrospective analysis (reanalysis), which is obtained through the combination of

a physical model and observations to produce datasets that describe the past state

of the atmosphere, land surface and ocean (European Centre for Medium-Range

Weather Forecasts accessed 26 Februar 2016). Since a reanalysis is performed

for long periods back in time and precipitation is a very important variable to be

assimilated, the availability of historical precipitation datasets is fundamental.

The Hans Ertel Centre for Weather Research (HErZ) (Simmer et al. 2015),

funded by the German Meteorological Service (Deustcher Wetterdienst - DWD)

aimed at producing a high resolution reanalysis based on the numerical weather

prediction (NWP) model Consortium for Small Scale Modeling (COSMO). The ob-

2



jective of the project was to run two high resolution reanalysis, one for Europe

and the other with higher resolution for Germany. To this end, COSMO-EU and

COSMO-DE that operate with the COSMO model are used (Bollmeyer 2015; Wahl

et al. 2017). The reanalysis for Germany assimilates among other variables high

resolution precipitation rates through a latent heat nudging (LHN) scheme. For

this domain the reanalysis was run from 2007 to 2012 and radar precipitation

rates were assimilated. However, since radar data is not available before 2007

and in order to assimilate precipitation information in the reanalysis for periods

before 2007 another set of radar-like precipitation dataset is required.

After searching for available precipitation products many datasets were found,

however, none presented an appropriate time, spatial and temporal resolution. Ta-

ble 2.2 in chapter 2 presents and discusses in more detalis the available datasets.

In view of that, this study proposed a method to generate an appropriate precipi-

tation product for the purposes of the reanalysis.

The proposed method is divided in two steps. First, a Bayesian statistical model

conditional on precipitation observations from synoptic stations and on a covariate

is used to simulate probabilities of precipitation. In a second step, occurrence/non-

occurrence of precipitation above a certain threshold is generated given the sim-

ulated probabilities. HIRAIN is extended to several thresholds of precipitation

amount and the final precipitation product is generated from the fields occurrence-

/non-occurrence of the individual thresholds.

The advantage of a Bayesian approach is that uncertainties of the model param-

eters are considered for predictions and equal probable scenarios of the spatial

random process assumed to generate the observations can be simulated condi-

tioned on the data. The data at the observation locations are honored and the

spatial covariance structure of the spatial process is reproduced at each realisation.

This leads to more realistic fields than those produced by interpolation methods,

which tend to smooth the estimated variable. Moreover, the ability to generate en-

semble of possible precipitation patterns can be also very usefull for assimilation

in ensemble reanalysis.

Although this research is motivated by the need to produce precipitation data

for earlier years than 2007, the fields produced and presented here are for the year

2011, for which the method can be evaluated due to the available radar estimates

and a denser network of synoptic stations. The method shown here is applied to

3



1. Introduction

Germany, however the methodology is generally applicable.

The study developed in this doctoral thesis is presented as follows. Chapter 2

provides a brief review of regional reanalysis and presents the HErZ project in

more details as well as the importance of this study for the project. Chapter 3

describes the most commonly employed instruments to measure precipitation and

presents the datasets used in this work. Chapter 4 reviews important concepts of

spatial statistical modeling to provide some background for a better understanding

of the proposed method, which is presented in chapter 5. Chapter 6 describes how

the method is set up, chapter 7 shows the verification diagnostics, chapters 8 to

11 present the results of this study and lastly, chapter 12 closes this thesis with the

conclusions.

4



2. Regional reanalysis and the Hans Ertel
Centre for Weather Research (HErZ)

This chapter concentrates on two main topics. First, a general overview is provided

on the foundation of the Hans Ertel Centre for Weather Research (Hans-Ertel-

Zentrum für Wetterforschung, HErZ). In the second part, the focus is on a specific

research branch, namely the Climate Monitoring and Diagnostics. This branch is

responsible for carrying out the regional reanalysis for Europe and Germany and of

which this study is part. An overview is given on reanalysis in general and on the

regional reanalysis carried out within HErZ. The LHN scheme used to assimilate

high resolution precipitation in the reanalysis for Germany is described and the

relevance of generating an appropriate precipitation dataset for the purpose of the

reanalysis is highlighted.

2.1. HErZ

HErZ was created in 2011 to establish a stronger network between the German

universities and atmospheric research centres with the German national weather

service DWD (Simmer et al. 2015). The foundation of the centre was supported

by the German Federal Ministry of Transport, Building and Urban Development

and a 12-year core funding period of three four-year phases was foreseen for its

development.

The basic research on priority areas that will improve forecasting and climate

monitoring at DWD should be carried out at the universities and research centres

and then transfered as tools and models to DWD to be employed operationally. On

one hand, this network aims at improving the weather service and enabling it to

cope with future challenges. On the other hand, it enables the weather service to

cooperate and be involved more directly with the environment of universities and

5



2. Regional reanalysis and the Hans Ertel Centre for Weather Research (HErZ)

Table 2.1.: Research areas and institutions participating in the first phase of HErZ.
Institutions Projects

University of Bonn
Leibniz Center for

Tropospheric Research

Object- based analysis and
seamless prediction

Ludwig-Maximilians-
University of Munich

Ensemble- based
convective scale data assimilation

of remote sensing observations
Max Planck Institut

for Meteorology - Hamburg
Modeling of convective clouds and

stochastic parameterizations
University of Bonn

University of Cologne
A high-resolution

regional reanalysis
Free University of Berlin Comunication of weather warnings

and extreme weather information
for the Berlin conurbation

research centres. There are five areas that were chosen to be the priority areas

for research, namely atmospheric dynamics and predictability, data assimilation,

model development, climate monitoring and diagnostics, and the optimal use of

information from weather forecasting and climate monitoring for the benefit of

society. Each of these areas forms a work branch within HErZ. A summarized

overview of the branches during the first phase of the project (2011-2014) and

the correspondent research focus is presented in table 2.1.

Since this study is part of the first phase of the project carried out within the

climate monitoring and diagnostics branch, the following section 2.2 concentrates

only on this research group and on its activities.

2.2. The Climate Monitoring and Diagnostics branch

This branch is formed by the Meteorological Institute of the University of Bonn

(MIUB) and the Institute for Geophysics and Meteorology of the University of

Cologne (IGMK) in collaboration with DWD. The focus of this research group is

on continuous development of a self-consistent assessment and analysis of regional

climate in Germany and Central Europe from the beginning of the past century to

6



2.2. The Climate Monitoring and Diagnostics branch

the present time in an appropriate spatial and temporal resolution. During the

first phase of HErZ this branch concentrated on developing a regional reanalysis

system and carried it out for Germany and Central Europe.

A reanalysis integrates space and in situ observations through an assimilation

scheme method into a physical model. This concept was first proposed by Tren-

berth, Olson 1988 and Bengtsson, Shukla 1988 to produce estimates of the past

climate. The idea of reanalysis can be applied to generate datasets for the atmo-

sphere, the oceans and the biosphere (Bengtsson, Shukla 1988). In atmospheric

reanalysis, which is the focus of this research branch, information on meteorologi-

cal variables in a four-dimensional atmospheric field on a regular grid is produced

(Bollmeyer et al. 2014; Wahl et al. 2017), and the physical model used for that is

a NWP model.

Reanalyses have been carried out by different meteorological centres around the

world. Available global reanalyses are the National Centers for Environment Pre-

dictions/National Center for Atmospheric Research (NCEP/NCAR) global reanaly-

sis (Kalnay et al. 1996), the NCEP Climate Forecasting System Reanalysis (CFSR)

(Saha et al. 2010), the European Centre for Medium - Range Weather Forecasts

(ECWMF) ERA-40 (Uppala et al. 2005) and ERA-Interim (Dee et al. 2011), the

National Aeronautics and Space Administration (NASA) Modern-Era Retrospec-

tive Analysis for Research and Applications (MERRA) (Rienecker et al. 2011) and

the Japan Meteorological Agency (JMA) 25-year (Onogi et al. 2007) and 55-year

(Ebita et al. 2011) Reanalysis Project. Current regional reanalysis are the North

American Regional Reanalysis (NARR) (Mesinger et al. 2006), the European Re-

analysis and Observations for Monitoring (EURO4M) (European Reanalysis and

Observations for Monitoring Accessed 15 March 2016) and the Artic System Re-

analysis (ASR) (Bromwich et al. 2010).

For the reanalysis project within the climate monitoring and diagnostics branch

different expertise was required for providing the quality controlled and homoge-

nised data set, the statistical post-processing of operational forecasts, the analysis

of sytematic model errors of the respective regional model, and the verification

and calibration of impact models like e.g. hydrological models. In view of that,

the research was carried out in six different working packages (WP), namely: a)

WP1, which focused on developing the reanalysis system, b) WP2, responsible for

preparing the precipitation dataset for assimilation, c) WP3, in charge of the ver-

7



2. Regional reanalysis and the Hans Ertel Centre for Weather Research (HErZ)

ification by satellite and General Observation Period (GOP) data, d) WP4, which

performed, analyzed and interpreted reforecasts with the reanalysis system, e)

WP5, responsible for provided a comprehensive quality control of the reanalysis

datasets and for data publication and f) WP6, in charge of digitisation and homog-

enization of historical observational data.

The research of WP2 is the topic of this doctoral thesis and the final product of

this study will be used for the assimilation scheme in the reanalysis set up in WP1

for Germany. A short overview on WP1 is given first (section 2.2.1) and thereafter

the project part of WP2 is motivated (section 2.2.2).

2.2.1. WP1: Regional reanalysis for Europe and Germany

Two reanalysis systems are built using the NWP model COSMO, which is the op-

erational model of DWD with two domains, namely the COSMO-EU with the eu-

ropean domain and COSMO-DE with the domain of Germany. Their horizontal

resolutions are 7 km and 2.8 km, respectively. For the reanalysis setup these

were changed to 6.2 km and 2 km, and named as COSMO-REA6 and COSMO-

REA2, respectively. COSMO-REA6 uses ERA-Interim as lateral boundary condition

and COSMO-REA2 uses COSMO-REA6. Observational data are assimilated into

COSMO through a nudging technique or Newtonian relaxation, where the prog-

nostic variables of the model are relaxed toward observational data within a pre-

determined time window (Stauffer, Seaman 1990). The assimilated variables in-

clude geopotential, temperature, pressure, humidity and wind data in many levels

and from different sources. Rainfall rate is another important variable, however

only assimilated in COSMO-REA2 through the LHN scheme (Jones, Macpherson

1997), which is described below. A detailed list with all the assimilated variables,

the documentation of the COSMO model as well as a description of the technical

implementations to build both reanalysis sytems is provided by Bollmeyer 2015.

2.2.1.1. LHN assimilation scheme in COSMO-REA2

There are different techniques to assimilate data into a physical model. An overview

on that is given by Bollmeyer 2015. In COSMO-REA2 a modified version of the

LHN scheme used by Jones, Macpherson 1997 is employed. First a brief overview

8



2.2. The Climate Monitoring and Diagnostics branch

on the conventional LHN is provided and thereafter the modifications used in

COSMO-REA2 are presented.

The conventional LHN scheme is based on the knowledge that latent heat re-

leased due to the condensation of water vapor in the clouds is proportional to

surface rainfall rate. The precipitation particle takes a certain time interval ∆t to

travel the distance l from its formation to the ground. Within this time the traveled

path can be very complex and the particle can be transported in different direc-

tions inside the cloud while it is falling. The model, however, does not consider

this complexity and assumes that the particle travels the path l within one single

model column and one single time step. With this assumption the surface rainfall

rate is proportional to the latent heat released integrated vertically in the column

above (Stephan et al. 2008), which reads

R(lg) ∝

lg∫
l0

∆(LH(l))dl, (2.1)

where R is the precipitation rate, ∆(LH) the amount of latent heat release, l is the

path that a precipitation particle takes from its formation at l0 to the ground lg.

The amount of latent heat release ∆(LH) changes the temperature in an amount

of ∆T given as

∆TLHN(l) = (α−1)
1

cp
∆(LH(l)) (2.2)

where

α =
Robs

Rmod
(2.3)

Jones, Macpherson 1997 used the LHN scheme in a model with 17 km horizontal

resolution and a diagnostic computation of precipitation. When precipitation is

treated as a prognostic variable as in COSMO-REA2, the conventional LHN scheme

needs a few modifications. This is shown by Stephan et al. 2008 and is summarized

below.

As a prognostic variable, the precipitation takes some time to reach the ground.

This is because within a prognostic treatment the particle can be transported into

different directions after its formation. The conventional LHN scheme does not

9



2. Regional reanalysis and the Hans Ertel Centre for Weather Research (HErZ)

identifies the particle right after its generation and it continues to add or take

away energy for some time, even if this is no longer needed. Immediate informa-

tion on the already initialized precipitation rate is required. This is obtained by

introducing a reference precipitation Rre f that replaces Rmod in equation 2.3. This

is given through the vertically averaged precipitation flux,

Rre f =
1

ztop− z0

ztop∫
z0

[∑
i

ρ(z)qi(z)vi]dz (2.4)

where qi is the mass fraction of different forms of precipitate, i.e., rain, snow

or graupel and vi is the correspondent velocity of sedimentation. The fluxes are

vertically integrated from the layer ztop to the ground z0. The layer ztop is defined

as the first layer from above, in which the sum of the fluxes is higher than a pre-

specified threshold (0.1 mm/h).

Other modifications used in COSMO-REA2 include the computation of the LHN

increments based only on the vertical layers of the model with a positive latent

heat release in order to avoid negative LHN temperature increments and thus

cooling where rainfall rate should increase. Due to the fact that a high amount of

latent heat is released at the leading edge of convective cells in updraught regions,

the precipitation rates (Rmod) are low. This together with the high amount of latent

heat release leads to very high temperature increments. In order to attenuate that,

the limits for the scaling factor α are also changed from 3 to 2 for the upper and

from 1/3 to 0.5 for the lower limit. Besides, the scaling factor α is replaced by

ln(α)+1 to unbias the scheme in terms of adding or taken away absolute amounts

of heat energy.

2.2.2. WP2: Generation of precipitation product for the

assimilation in COSMO-REA2

The reanalysis for Germany carried out for the most recent period, namely from

2007 to 2012 assimilates radar precipitation rates in COSMO-REA2. However, for

periods back in time, meteorological radars are not available and in situ measure-

ments become sparser in time and in space. In order to run the reanalysis for past

periods, an appropriate dataset of precipitation is required.

10



2.2. The Climate Monitoring and Diagnostics branch

Table 2.2.: Available precipitation datasets.
Dataset Domain Period Time

step
Reso-
lution

Data Source, References

CHOMPS global 1998.01-
2007.12

daily 0.25° satellite,
Joseph et al. 2009
Yilmaz et al. 2010

CMAP global 1979.01-
present

monthly,
pentad

2.5° gauge, satellite,
Xie, Arkin 1997

CMORPH global 2002.12-
2016.02

sub-daily,
daily

0.25° satellite,
Joyce et al. 2004

CPC global 1979.01-
2005.12

daily 0.5° gauge,
Chen et al. 2008

CRU
TS3.21

global 1901.01-
2012.12

climatol.,
monthly

0.5° gauge,
Harris et al. 2014

GPCC global 1901.01-
2010.12

climatol.,
monthly

0.5°
1°

2.5°

gauge,
Becker et al. 2013

GPCP global 1996.01-
2015.01

daily 1° gauge,satellite,
Huffman et al. 2001

HOAPS global 1987.01-
2008.12

sub-daily,
monthly,
pentad,
climatol.

0.5° satellite,
Andersson et al. 2010

PERSIANN
CDR

global 1983.01-
2015.10

daily,
sub-daily

0.25° gauge, satellite,
Ashouri et al. 2015

PREC/L global 1948.01-
2013.01

monthly 0.5°
1°

2.5°

gauge,satellite,
Chen et al. 2002

E-OBS Europe 1950.01-
2015.06

daily 0.25°
0.5°

gauge,
Haylock et al. 2008

MSG-
based

gridded

Europe 2005.01-
present

15 min 3Km satellite,
Roebeling, Holleman 2009

After searching for precipitation data available before 2007, a large number of

datasets were found. However, no one presented the time coverage, the spatial

and the temporal resolutions needed for the project purpose. Table 2.2 provides

an overview on the datasets available in a global domain and for Germany.

These are gridded datasets and many of them are obtained through data merg-
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2. Regional reanalysis and the Hans Ertel Centre for Weather Research (HErZ)

ing from different sources. One of the highest resolutions is provided by the Me-

teosat Second Generation (MSG)-based gridded data. This would be appropriate

for assimilation, however it is only available since 2005. Other products provide

sub-daily data, as the CMORPH, HOAPS and PERSIANN-CDR. Besides the fact

that, the temporal resolution is not adequate for the purposes of the project, they

only cover the most recent periods. Lastly, the historical precipitation products are

daily or monthly data, as for instance CMAP, CRU TS3.21, GPCC, PREC/L, CPC

and E-OBS.

Given the lack of appropriate precipitation data, the WP2 proposed the method

named HIRAIN to generate an ensemble of probable space-time precipitation fields

given a set of observational data. HIRAIN is applied to the most recent period,

where radar data and a comprehensive set of rain gauge measurements are avail-

able for evaluation. Once an appropriate method is available, ensembles can be

generated for periods before 2007.
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3. Data sources

The datasets used in this study are provided by rain gauges, meteorological satel-

lite and radar. The following sections give a general overview of these instruments

and how precipitation is measured by them. The particular datasets employed in

this work are presented in the end of the chapter.

3.0.3. Rain gauges

"A rain gauge is a device used to measure the amount of liquid water obtained

from precipitation, including drizzle, rainfall, and the amount of water formed

from melting snow and hail" (Strangeways 2007). These devices have been used

since mid nineteenth and their number has increased all over the world in time.

The first rain gauges have operated manually going through the mechanical and

electronical technologies (Strangeways 2007).

The manual rain gauges consist of a graduated cylinder with 2 cm in diameter

inside a larger container with diameter of 20 cm and 50 cm tall. The height of

the water in the small graduated cylinder is measured, and in case of overflow the

excess of water is collected in the larger container and this is poured into another

graduated cylinder in order to measure the total rainfall. The gauges are read

either daily or when this is not possible weekly or monthly (Strangeways 2007).

The mechanical rain gauges are most used for measuring the average intensity

of precipitation and to know when the rain starts and stops. They can be float-

operated or weight-operated recordings. The former consists of a rotating drum

with a graduate sheet of cardboard and a funnel through which water is collected

into a container with a buoy inside. When precipitation falls, the collected water

in the container raises the buoy, which raises a pen that is connected to it and

to the cardboard through a lever. The pen marks on the paper the precipitation

over the time accordingly to the upward or downward movement of the buoy. In

the weight-operated the recordings are obtained by weighting the water inside a
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3. Data sources

suspended container. The weight of the water forces the container downwards and

this raises the pen connected to it making it to mark accordingly the precipitation

intensity (Strangeways 2007).

The electrical rain gauges or also called the tipping buckets are the most com-

mon automatic rain gauges used worldwide nowadays. The measurement reso-

lution can be up to the precipitation amount of 0.1mm. In these rain gauges the

collected liquid water is funneled into one of two small cups on either end of a

pivoting see-saw beam. When the cup reaches a calibrated weight, the beam drops

emptying it and bringing the other cup up into position for the next precipitation

increment. The switches of the beam are recorded as "counts" of incremental pre-

cipitation. Because the water is not stored in the gauges there is no need for main-

tenance visits to empty them and since their working mechanism is very simple,

there is very little to go wrong. However, they present also some disadvantages.

When the buckets tip some water is usually left standing until the next rain. In

case it takes a long time for the next rain to occur all the water left standing in the

bucket may evaporate (Agrimet Accessed 16 March 2016).

Precipitation measured by rain gauges present also some limitations. Because

they are not well distributed over the world, they indicate only the amount in a

localized area. In mountain areas and regions with difficult access, the distribu-

tion of installed rain gauges is poor, which makes the information of precipitation

scarce. The same happens over the oceans, where most of the measurements

come from islands due to the difficulty of employing gauges on ships and buoys

(Strangeways 2007).

The recordings obtained from rain gauges may contain measurement errors in-

troduced either by the limitations of the instrument itself or by the conditions

and environment, where the instrument is located. The catch of a rain gauge

may descrease with the increase of wind speed, for instance. Wetting, evapora-

tive losses and snow or ice, that blocks the subsequent rain, may also introduce

errors. Changes in instrumentation and changes in the environment surround-

ing the gauges as vegetation growth and removal, construction and demolition of

buildings may influence and introduce a discontinuity into the time series (Grois-

man, Legates 1994).
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3.0.4. Satellite

The state of Earth’s atmosphere, surface and ocean has been largely monitored

by means of remote sensing by instruments on board of satellites. Satellites do

not measure a specific variable itself instead they measure the amount of electro-

magnetic radiation that is either reflected or emitted by the Earth’s surface and

atmosphere. Through the amount of electromagnetic energy that reaches the on-

board sensors, information on cloud cover, cloud motions, vertical profile of the

temperature, rainfall, humidity, ozone or on other aspects as vegetation, dust,

fires, among many others can be estimated.

In the Earth atmosphere electromagnetic radiation is unevenly attenuated at dif-

ferent wavelengths of the electromagnetic spectrum. For some spectral regions or

bands the atmosphere is transparent, i.e. the radiation is not or it is little absorbed

(atmospheric window), while for other frequencies the atmosphere absorbs most

of the radiation (absorption window). Based on that, depending on which aspect

of the Earth and Earth’s atmosphere is intended to be ’measured’, the satellite

remote sensing works with different spectral regions of the electromagnetic spec-

trum. The common variables that can be inferred from the measurements through

those spectral regions are described next.

The atmospheric window covers the visible and parts of the infrared spectrum,

particularly the thermal and mid infrared narrow bands shown as A and B in

Figure 3.1. In this window the radiation that reaches the satellite is usually from

the surface of the planet or from the top of the clouds. In the absorption window

as in the water vapour band only the radiation of the top of the atmosphere can

reach the satellite’s sensor (Janssen 1993). However, given the fact that an object

emits as well as absorbs in this spectral band, vertical profiles of humidity and

temperature can be detected.

In the visible spectral band the sensors onboard the satellites are able to detect

the solar radiation (Figure 3.1) that reaches the Earth and is reflected back by

the oceans, top of the clouds, surface of the Earth, etc. These measurements

dependent on the intensity, incidence angle of the sun light reaching a surface

and on the surface’s albedo. Besides that, it is limited to daytime. This channel

does not favour the distinction between low and high clouds, since all clouds have

basically the same reflectivity.
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3. Data sources

Figure 3.1.: Electromagnetic spectrum, atmospheric transmittance and relative intensity
of the solar and terrestrial radiation. (Extracted from Strangeways 2007)

The other limitation is that surface covered with snow present the same reflectivity

as clouds and thus it is difficult to differentiate between them in this spectral band.

In the infrared spectral band the radiation is mostly provenient from the Earth

radiation and the amount of energy that is detected by satellites provides infor-

mation about the temperature of the object that emitts it. Figure 3.1 shows that

the terrestrial radiation has a maximum at the thermal infrared band indicated

through the letter B. Clouds strongly absorb infrared radiation and thus strongly

emit it as well. The measurements around the window 11 µm is very useful to

detect the temperature of the top of the clouds or of the surface under cloud-free

atmosphere (Janssen 1993).
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Figure 3.1. (cont.): (Extracted from Strangeways 2007)

Since the temperature in the troposphere decreases with height, the colder the

temperature in an infrared image, the higher the cloud top is located. The ad-

vantage of this channel in comparison with the visible channel is that these mea-

surements are available all day long and it is possible to distinguish between low

and high clouds. However, it is not possible to distinguish between thin and thick

clouds. For cloudy sky the radiation of lower clouds can not be detected because

the radiation is absorbed in its way from the lower atmosphere to the satellite.

In the microwave wavelengths the atmosphere is transparent for most of the

spectral band (Figure 3.1) and the remote sensing depends on the emission, ab-

sorption and scattering of the radiation by the surface of the Earth, clouds, ocean,

etc ( Arkin, Ardanuy 1989). The radiation emitted in the microwave band by the

surface of the planet depends on the emissivity and its temperature. A disadvan-
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3. Data sources

tage of remote sensing in this sprectral band is that emissivity and temperature

over land are highly variable and thus the information in the microwave band

is also highly variable. This makes the use of the data difficult. Besides, high

sensitive sensors are needed to provide reasonable data. However, this spectral

band presents the best signal over oceans, since the emissivity is relatively con-

stant (Arkin, Ardanuy 1989). The advantage of microwave over infrared remote

sensing is that the radiation is not absorbed by the cirrus clouds and even clouds

with water droplets absorb very little in this frequency. This enables the radiation

of lower clouds to be detected by the satellite’s sensor in the presence of clouds in

the higher levels (Janssen 1993).

Satellites can be geostationary or polar orbiting. Geostationary satellites circle

the Earth once a day and are approximately 35.880 km distant from the planet.

When the satellite orbits the Earth with the same velocity as the planet rotates

around itself, it appears to have a fixed position in relation to the planet. When its

orbit is located around the equator it is called geosynchronous and in this case the

satellite is able to provide a continuous view of the atmosphere from about 70°N

to 70°S (Strangeways 2007).

Polar orbiting satellites cover the polar regions, where the geostationary satel-

lites do not have access. They are located at altitudes from about 400 km to 900

km and scan the planet in the north-south orientation. When their orbits are facing

the sun they are called sun-synchronous. While the Earth is rotating the satellite

scanns a different path in the planet until the whole Earth is scanned (Strangeways

2007). They observe each point on the planet twice a day.

There are many satellites in orbit for climate and weather monitoring. Some of

the current geostationary satellites are the GOES-15, GOES-13, GMS, MSG, INSAT-

3D, FY-2E and FY-2G. Among the polar-orbiting the NOAA-19, METEOR-3/TOMS,

METOP, Landsat, GPM core observatory can be cited (NOAA’s Geostationary and

Polar-Orbiting Weather Satellites Accessed 8 March 2016).

Since in this study infrared information of MSG network of satellites are used to

provide additional information of precipitation occurrence, the remainder of this

subsection will focus on this satellites’ sensor only.

MSG is a new generation of geostationary satellites developed by the European

Space Agency (ESA) in colaboration with the European Organization for the Ex-

ploitation of Meteorological Satellites (EUMETSAT). The current MSG network are
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the Meteosat- 7, 8, 9, 10 and 11 and they operate over Europe and Africa (Current

Satellites Accessed 16 March 2016). They carry onboard the Spinning Enhanced

Visible and Infrared Imager (SEVIRI) with 12 spectral channels. SEVIRI provides

a new image of the Earth every 15 minutes and the imaging spatial resolution is 3

km at the sub-satellite point for infrared channels and 3 visible channels, whereas

1 km for high resolution visible channels (Schmid Accessed 08 March 2016). For

the thermal infrared channels calibration is performed by onboard blackbody tar-

gets inserted into the optical path of the instrument.

The channels of the SEVIRI sensor are summarized below (Schmetz et al. 2002):

a) Visible channels at 0.6 µm and 0.8 µm are used for cloud detection and

tracking, and for monitoring land surface, vegetation and aerosol. b) Near infrared

channel at 1.6 µm gives information of aerosol and differentiate between snow and

cloud, ice and water clouds. c) Infrared at 3.9 µm provides land and sea surface

temperature and is used for detection of low clouds and fog. d) Water vapour

channels at 6.2 µm and 7.3 µm detect water vapour and wind in two different

levels in the troposphere. e) Infrared at 8.7 µm delivers information of thin cirrus

clouds and distinguishes between water and ice clouds. It provides also ozone

information. f) Infrared at 10.8 µm and 12.0 µm are used to detect temperature

of the top of the clouds. It is also used for detection of volcanic ash clouds and

cirrus cloud. g) Infrared at 13.4 µm is the CO2 absorption channel. In cloud

free-areas it provides the temperature of the lower troposphere.

3.0.5. Radar

Radar remote sensing is performed in the microwave band of the electromagnetic

spectrum. The radar emits electromagnectic pulses and receives the signal that

is scattered back by a target. The signal received back by the radar is called the

reflectivity (Z). The time the electromagnetic radiation takes to return to the

radar provides information about the location of the target, whereas the signal

strength that comes back gives information about the size and distribution of the

targets. When moving targets scatter electromagnetic waves there is a shift in

the frequency of these waves that is proportional to the velocity of the targets

(Rinehart 1997).

Doppler weather radars operate based on this knowledge and deliver informa-
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3. Data sources

Table 3.1.: Weather radar classification, wavelength and frequency of operation.
Band Wavelength Frequency

K 1.7-1.2 cm 18-27 GHz
X 4-2.5 cm 8-12 GHz
C 8-4 cm 4-8 GHz
S 15-8 cm 2-4 GHz
L 30-15 cm 1-2 GHz

tion of the location of the target, the radar reflectivity and the estimated velocity

at which the target moves.

Depending on the wavelengths that a radar operates it can be classified as K,

X, C, S, or L band radar. Table 3.1 indicates the approximate wavelength and

frequencies at which each of them operates.

Radar operating in the lower wavelenghts, as the K and X bands, have small

dishes and relatively low costs. Besides, they are easy to transport and may be ap-

propriate when measurements need to be done over different locations. However,

the signals are attenuated by heavy rain. Radar operating in the higher wave-

lengths as the C, S and L bands have the signal less affected by attenuation and

are more appropriate to monitor the approaching and development of a precip-

itating system at large distances from the radar. The disadvantage is the high

cost and the large dishes that can reach up to 8 m of diameter, what makes them

inappropriate for displacement (Rinehart 1997).

Typically, the radar scans at different elevations. The antenna rotates 360° and

does a full scan at the first elevation. After this is completed it tilts up in elevation

and performs a full scan. This is performed until the observational volume is fully

scanned.

From the radar reflectivity Z, rainfall rate R can be estimated. Marshall et al.
1947 were the first to report a relationship between Z and R. This is based on

the knowledge that "Z depends on the raindrop size distribution and the size of

the drops, and R depends on the raindrop size distribution, the size of the drops

and the fall velocity for a given drop diameter" (Fournier 1999). Thus, a Z−R

relationship can be build in order to estimate the rainfall rate from the reflectivity.
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This is an empirical equation and is given as

Z = aRb, (3.5)

where R is in mm/h and Z is in mm6/m3. Commonly the logaritmic radar reflectivity

is used,

Z = 10log10(
z

1mm6/m3 ), (3.6)

where Z has then units of dBZ, i.e., decibels relative to a reflectivity of 1 mm6/m3

(Rinehart 1997).

The paramters a and b in equation 3.5 are estimated and depend on local rainfall

conditions and on the radar characteristics. Thus, the parameters can vary from

one location to another, among storms, distance from the radar, raindrops distri-

bution, from one radar to another, etc. Usually when not much is known about the

weather local conditions the Marshall-Palmer Z-R relationship (Marshall, Palmer

1948) is used, where a = 200 and b = 1.6. Since this relationship does not always

represent the true nature of the rainfall and the radar features, errors may be

introduced in the estimates.

Ideally appropriate values for the parametes a and b should be estimated. Meth-

ods as the probability matching method (PMM) proposed first by Calheiros, Za-

wadzki 1987 have been applied to determine appropriate Z-R relationships. In

this method radar is calibrated against rain gauge observations, where the proba-

bility density function (PDF) of the radar reflectivity is forced to be similar to the

PDF of the rain gauge observations. "This approach eliminates the requirement

for simultaneous radar-gauge measurements as long as the gauge measurements

represent a sample of the local climatology" (Crosson et al. 1996).

Large rainfall uncertainties can be obtained by using a Z-R relationship that

does not represent the local rainfall distribution and the radar characteristics. Be-

sides, other common sources of errors are the attenuation of the radar beam by

heavy rain or clouds, clutter and bright band. Since "much of the rain that falls

to the ground begins as ice or snow "(Rinehart 1997) radar may sometimes re-

ceive the scattered signal from an ice particle and interpret it as a raindrop. When

a snowflake reaches the melting level in the atmosphere, i.e., the 0° isotherm, it
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3. Data sources

Figure 3.2.: Synoptic stations used for (left) training and (right) validating the model. The
colors in the left figure show the elevation in meters.

starts to melt from the outside into the inside. To the radar this particle will be

interpreted as a big water droplet that is slowly falling, which is another source

of uncertainty (Rinehart 1997). Although radars have the advantage to monitor

larger areas in comparison with synoptic stations and present also higher temporal

resolution, which enables them to detect storms that may be undetected by rain

gauges, the large uncertainties in the rainfall estimates need to be considered

when using such data.

3.0.6. The datasets used in the study

Hourly precipitation data from the observational network of DWD with measure-

ments starting at least in 1950 is used to train the method. This amounts 121

stations (Figure 3.2 (left)). Stations with long term measurements are selected

here, since the purpose of the project is to simulate precipitation for longer peri-

ods back in time. Another set of 1384 stations is used for validation (Figure 3.2
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(right)). This dataset does not include the training stations. All the data undergo

a basic quality control at DWD.

Infrared brightness temperature (IRBT) from the 10.8µm channel of Meteosat-

10 is used as covariate. The data has approximately 4 km x 4 km resolution and

is available every 15 minutes. Figure 3.3 summarizes how brigthness temperature

is obtained from the amount of radiative energy that reaches the satellite.

In order to have IRBT and precipitation data in the same resolution, the mini-

mum 15-minute IRBT inside every hour is used to represent the infrared informa-

tion within that hour. This approach is based on the following. A precipitation

event, in particular convective precipitation is most likely to occurr in the pres-

ence of high and thick clouds (Arkin et al. 1994). The higher the cloud, the lower

the temperature of its top and hence, the IRBT. Thus, the precipitation occurrence

inside an hour may be most associated with the minimum value of IRBT in that

hour.

Although during winter low IRBT may be frequently associated with the non-

precipitating cirrus clouds and not with the convective systems (Bellerby, Sun

2005), the performance of the method improves by using this information dur-

ing the winter as well.

Lastly, a dataset of radar-derived rainfall composites are used for validation.

These composites are obtained from a network of 16 Doppler weather radars cov-

ering Germany and operated by DWD. The radar scans are performed at every 5

minutes with 1 km spatial resolution and 1 degree resolution in the azimuth. The

reflectivities are quality controled at every scan to avoid that false echoes are con-

sidered as precipitation. The measurements are interpolated on a grid with 2.8 km

spatial resolution in order to produce the composites. Radar pixels at every scan

with false echoes detected are flagged. These are then considered in the interpo-

lation method as well. After the radar reflectivity is interpolated these values are

converted into rainfall rates through 5 different Z−R relationships based on the

meteorological conditions. The radar composites are compared to satellite data

usually over longer periods (as a month) to verify whether there are inconsisten-

cies. Besides, composites grid points with significant precipitation amount where

satellite data shows no clouds are masked (Stephan et al. 2008).

For comparison with the fields simulated with HIRAIN the composites are accu-

mulated at every hour and aggregated into a 4 km resolution grid.
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Energy from the Earth
and its atmosphere

Flux

Irradiance
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is described by

and can be transformed in to

Figure 3.3.: Relationship between the energy from the Earth and its atmosphere that
reaches the satellite sensors and the brightness temperature (Menzel Accessed
07 March 2016).
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4. Bayesian spatial modeling

Basic concepts of spatial statistical modeling are reviewed in this chapter. The

objective is to provide some background on the topic for a better understanding

of the method used in this doctoral thesis, which is presented in chapter 5.

One common interest in the field of spatial data analysis is to predict a certain

variable of interest in a space A ⊂ ℜ2 given the observations of that variable col-

lected at a finite number of sites. It is then assumed that the observations are

one possible realisation of an unknown underlying stochastic process, which is

defined overall in that space. Although the observations are available only at a

finite number of locations, they contain valuable information about the process

that generated them. Based on that, spatial statistical models are used to infere

the unknown spatial process from the datasets. The variable of interest can then

be predicted at unobserved locations by drawing realisations from this process

conditional on the observations.

One kind of statistical model commonly used to address this problem is a hier-

archical model. This considers the existence of conditional dependences among

the spatial process, the observations and the parameters. The latter may be pa-

rameters that describe the spatial structure of the process or that indicate the rela-

tionship between observations and covariates, when these are used. Sub-models

given by conditional probability distributions can be specified for each of these

quantities and then, treated hierarchically. If sub-models are specified for all the

three quantities, the model is a Bayesian hierarchical model (BHM).

In order to understand the mechanism of a BHM, firstly an introduction on

spatial stochastic process is given in section 4.1. Then, section 4.2 provides a

more detailed overview of hierarchical models with a Bayesian approach.

25



4. Bayesian spatial modeling

4.1. Spatial stochastic process

4.1.1. Overview

A spatial stochastic process or also called spatial random field in some space A⊂ℜ2

is a collection of random variables S at locations r ∈ A and written as

{S(r) : r ∈ A⊂ℜ
2}. (4.7)

The simplest spatial stochastic process is the Gaussian process. This assumes

that each random variable in the space A⊂ℜ2 is normally distributed. Such a pro-

cess is completely described by a mean function, µ(r) = E[S(r)] and a covariance

function, γ(r,r′) = Cov[S(r),S(r′)] (Diggle, Ribeiro Jr. 2007). The mean function

describes the expected value of the process and the covariance function describes

how the values deviate from the mean.

A stochastic process S(r) can be decomposed into three terms, namely a fixed

effect µ(r), a random effect U(r) and a random error ε(r),

S(r) = µ(r)+U(r)+ ε(r). (4.8)

The fixed effect µ(r) is given by the expected value and describes the deter-

ministic nature of the process. It can be constant, µ(r) = µ, variable in space

µ(r) = µ(r) or depend on covariates, µ(r) = dT (r)βββ , where d is a vector with the

covariates at the locations r and βββ is the vector with the regression coefficients.

The remaining terms, U(r) and ε(r) describe the stochastic nature of the spa-

tial process. They describe all the variability in the process that is not captured

by the deterministic term. The random effect U(r) describes the spatial depen-

dency among the random variables in the space A⊂ℜ2 and the random error ε(r)
represents the errors due to microscale variations and measurement errors.

Commonly, in order to represent a spatial stochastic process with a statistical

model, a single one is used on an entire domain. This implies that the process

is assumed to be stationary. A spatial Gaussian process is stationary when the

expected value µ(r) over the space A⊂ℜ2 is constant and the covariance depends

only on the distance h between two locations r and r′, i.e, h is the vector difference

rrr− rrr′. Additionaly if the covariance depends only on the absolute value of the
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distance between two locations and not on the direction, the process is stationary

and isotropic (Diggle, Ribeiro Jr. 2007). In practice, however, these assumptions

are usually relaxed and the process is considered intrinsic stationary when it is

stationary in the covariance structure.

In order for the statistical model to represent a legitimate surface of the station-

ary spatial process, the following conditions need to be satisfied: a) the correlation

in space between two locations needs to decrease as the distance between them

increases, b) the correlation function needs to be continuous and smooth at every

location in the domain A ⊂ ℜ2 and c) lastly, the correlation function needs to be

positive definite (Diggle, Ribeiro Jr. 2007).

Spatial continuity assures that S(r) is similar to the surroundings, otherwise,

S(r) can take any value. Mathematically this is described by the continuity and

differentiability of the stochastic process. There are two kinds of continuity and

differentiability, namely the mean square and the path continuity and differen-

tiability. Diggle, Ribeiro Jr. 2007 discuss that for stationary Gaussian processthe

mean square differentiability is an appropriate measure of the smothness.

A process is said to be mean square continuous if

E[{S(r+h)−S(r)}2]→ 0 (4.9)

as h→ 0, and it is mean square differentiable if

E[{S(r+h)−S(r)
h

−S′(r)}2]→ 0 (4.10)

as h→ 0.

Standard families of correlation functions that satisfy conditions a), b) and c)

are available. This study uses the exponential function, which is a special case of

the Matérn function.

The Matérn function reads,

ρ(h) = (2κ−1
Γ(κ))−1(h/φ)κKκ(h/φ), (4.11)

where Kκ() is the modified Bessel function of order κ, and κ > 0 is a shape pa-

rameter, which determines the smoothness of the spatial process. The parameter

φ > 0 is a scale parameter that has the dimension of a distance. The spatial Gaus-
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sian process defined by a Matérn covariance function is κ0−1 times mean-square

differentiable, where κ0 is the smallest integer greater than or equal to κ (Diggle,

Ribeiro Jr. 2007).

For κ = 0.5 the Matérn correlation function reduces to the exponential function,

ρ(h) = exp(−h/φ). (4.12)

4.1.2. Notation

In practice, a spatial stochastic process S(r) is studied in terms of a finite number

of random variables S at a finite number of locations ri ∈ A, where i : 1,2, ..,n. In a

statistical model this is represented by the random vector

S =


S(r1)

S(r2)

.

.

S(rn)

=


S1

S2

.

.

Sn

 , (4.13)

and each possible realisation s at the same locations reads

s =


s1

s2

.

.

sn

 . (4.14)

For a spatial process that is Gaussian, the joint distribution of the random vari-

ables S(r1), S(r2), ..., S(rn) is multivariate normal. Thus, this spatial process fol-

lows a multivariate normal distribution, namely S∼MV N(µµµ,Σ), where the vector
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µµµ contains the expected values at the locations ri,

E[S] =


E[S(r1)]

E[S(r2)]

.

.

E[S(rn)]

=


µ1

µ2

.

.

µn

= µµµ. (4.15)

and Σ is the covariance matrix, which provides information of the variance due to

the spatial process itself and due to microscale variations and measurement errors.

Σ is given as

σ
2R(φ)+ τ

2I. (4.16)

The parameter σ2 is the variance of the spatial process and it is constant when the

stationarity is the case. The term R(φ) is a matrix with the spatial correlations of

the random variables. The correlation depends on the parameter φ , which in turn

indicates the distance at which two random variables are no longer correlated.

This matrix reads,

R(φ) =

∣∣∣∣∣∣∣∣∣∣
ρ(rrr1,rrr1;φ) ρ(rrr1,rrr2;φ) ... ρ(rrr1,rrrn;φ)

ρ(rrr2,rrr1;φ) ρ(rrr2,rrr2;φ) ... ρ(rrr2,rrrn;φ)

... ... ... ...

ρ(rrrn,rrr1;φ) ρ(rrrn,rrr2;φ) ... ρ(rrrn,rrrn;φ)

∣∣∣∣∣∣∣∣∣∣
, (4.17)

where the entries ρ(rrri,rrr j;φ) are given by a correlation function.

The term τ2 is called nugget and provides the variance due to measurement

errors and microscale variations. It is commonly assumed that these errors are

not correlated in space. Hence, in this case the correlation matrix is the identity

matrix I.

4.2. Bayesian hierarchical modeling

Having reviewed the basic concepts of spatial stochastic processes and the features

of the Gaussian process, an introduction to hierarchical models is provided here.

Firstly, some concepts are presented of the probability theory that form the core
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4. Bayesian spatial modeling

of such models. This is followed by an overview of hierarchical models in general

and the section closes with the focus on the Bayesian approach. For simplicity the

terms probability distribution and distribution will be used interchangeably from

this point forward.

4.2.1. Basic concepts from the probability theory

A probability distribution of a random variable will be represented here by square

brackets [.]. If A is a random variable, then the probability distribution of A is [A].

Considering for instance two random variables, A and B, the conditional proba-

bility of A given B is represented as [A|B] and writes

[A|B] = [B|A][A]∫
[B|A][A]dA

=
[B|A][A]

[B]
, (4.18)

where [A] is also called the marginal distribution.

This is the Bayes’ Theorem and basically forms the core of hierarchical models.

The joint probability distribution of A and B, namely [A,B] can be written in

terms of a conditional and a marginal distribution as

[A,B] = [A|B][B] = [B|A][A]. (4.19)

By following the same logic, the joint probability distribution of nr randon vari-

ables can be factored as a product of nr − 1 conditional distributions and one

marginal distribution. Considering for instance a third random variable C, the

joint probability distribution of A, B and C is given as

[A,B,C] = [A|B,C][B|C][C]. (4.20)

From the joint probability distribution, the marginal distribution of a random

variable can be obtained by marginalizing the joint distribution over all other ran-

dom variables. Given the joint distribution of A and B, the marginal distribution

of A is given as

[A] =
∫
[A,B]dB =

∫
[A|B][B]dB. (4.21)

Considering the joint distribution of A, B and C, the marginal distribution of A is
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4.2. Bayesian hierarchical modeling

then given as

[A] =
∫ ∫

[A,B,C]dBdC =
∫ ∫

[A|B,C][B|C][C]dBdC. (4.22)

4.2.2. Hierarchical modeling

In spatial statistical modeling there are at least three quantities of interest, namely

the unknown spatial stochastic process S, the observations of a random variable Y

and the unknown model’s parameters θ .

Probability distributions are attributed to those quantities and then treated hi-

erarchically. Based on which quantities are modeled by probability distributions,

the models are classified either as empirical or as Bayesian (Cressie, Wikle 2011).

A brief overview of both approaches is presented below.

In an empirical hierarchical model (EHM) one sub-model is specified for the

process S and another for the random variable Y ,

[yyyo,ssso|θθθ ] = [yyyo|ssso,θθθ ][ssso|θθθ ], (4.23)

where the conditional probability distributions on the right hand side are theData model: [yyyo|ssso,θθθ ]

Process model: [ssso|θθθ ].
(4.24)

The vectors presented in the model are as follow. The observations of the variable

of interest Y at the locations rrro
i , i = 1,2, . . . ,n in a space A⊂ℜ2 are represented by

the vector

yyyo = (y(rrro
1),y(rrr

o
2), . . . ,y(rrr

o
n))

T = (yo
1,y

o
2, . . . ,y

o
n)

T . (4.25)

The stochastic process S at the same locations is given by the vector

ssso = (s(rrro
1),s(rrr

o
2), . . . ,s(rrr

o
n))

T = (so
1,s

o
2, . . . ,s

o
n)

T , (4.26)

and lastly, the vector θθθ = [θ1,θ2, ...,θk]
T , in turn, contains k model’s parameters.

In this approach uncertainties of the parameters are not considered. The pa-

rameters are estimated by some estimation algorithm, as the maximum likelihood
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4. Bayesian spatial modeling

and the estimation is plugged in the process and in the data sub-models (4.24)

as a fixed quantity. Thus, θθθ is replaced by its estimator θ̂θθ in those probability

distributions.

A Bayesian hierarchical model (BHM) is a three-level model. Beside the two sub-

models considered in the empirical approach, a third sub-model for the parameters

in θθθ is specified. The model is then given as

[yyyo,ssso,θθθ ] = [yyyo|ssso,θθθ ][ssso|θθθ ][θθθ ] (4.27)

where the right hand side is as follows,
Data model: [yyyo|ssso,θθθ ]

Process model: [ssso|θθθ ]

Parameter model: [θθθ ].

(4.28)

The uncertainties in the parameters are considered in this approach. The param-

eter model is a probability distribution that needs to be specified by the user and

should give information on θθθ before considering the data collection. This distribu-

tion is then called the prior distribution.

This study used the Bayesian approach, in order to consider the uncertainties

of the parameters in the model and in the predictions. The next subsection will

threrefore concentrate only on this approach.

4.2.3. Bayesian approach

A BHM aims at estimating the joint probability distribution of all observed and un-

observed quantities (4.27). For that, two steps are performed. First, the posterior

distribution of θθθ and S is inferred given the observations yyyo, namely the distribu-

tion [ssso,θθθ |yyyo]. In the second step, given the posterior of these quantities, predic-

tions of sssp (the spatial process S at the unobserved locations rrrp
j , j = 1,2, . . . ,m) are

provided. This is obtained by simulating from the posterior predictive distribution

[sssp|yyyo].

The posterior distribution is derived by rewriting (4.27) and applying the Bayes’
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4.2. Bayesian hierarchical modeling

Theorem,

[ssso,θθθ |yyyo] =
[yyyo|ssso,θθθ ][ssso|θθθ ][θθθ ]∫

[yyyo|ssso,θθθ ][ssso|θθθ ][θθθ ]dsssodθθθ
=

[yyyo|ssso,θθθ ][ssso|θθθ ][θθθ ]
[yyyo]

. (4.29)

Omiting [yyyo] yields the unnormalized posterior distribution, which has the form

[ssso,θθθ |yyyo] ∝ [yyyo|ssso,θθθ ][ssso|θθθ ][θθθ ]. (4.30)

A similar logic is followed to derive the posterior predictive distribution [sssp|yyyo].

From the probability theory, the marginal distribution of yyyo is obtained by marginal-

izing the joint distribution [ssso,θθθ ,yyyo] over ssso and θθθ ,

[yyyo] =
∫
[yyyo,ssso,θθθ ]dsssodθθθ =

∫
[yyyo|ssso,θθθ ][ssso,θθθ ]dsssodθθθ . (4.31)

Replacing the predictive distribution [sssp|yyyo] in (4.31), this can be expressed as

[sssp|yyyo] =
∫ ∫

[sssp|ssso,θθθ ,yyyo][ssso,θθθ |yyyo]dsssodθθθ =
∫ ∫

[sssp|ssso,θθθ ][ssso,θθθ |yyyo]dsssodθθθ . (4.32)

Since sssp and yyyo are conditionally independent given ssso and θθθ , the second integral

follows directly from the first.

If the integral in (4.32) can be directly calculated, sssp can be predicted by draw-

ing samples from the posterior predictive distribution [sssp|yyy]. However, this is often

not the case and therefore, simulating directly from the distribution is not pos-

sible. In such scenarios, Markov Chain Monte Carlo (MCMC) simulations are a

useful tool.

Next section presents the basic concepts of MCMC simulations and how they are

used to approximate unknown probability distributions.

4.2.4. Markov chain Monte Carlo (MCMC) algorithms

A Markov chain is a sequence of random variables, for instance X1,X2, ...,Xt , ..., for

which, the distribution of Xt at any given moment t, depends only on the previous

random variable Xt−1. This is known as the Markov property (Gilks et al. 1996).

A Markov chain starts from a point X0 and is constructed by drawing samples

from a transition or also callled proposal distribution [Xt |Xt−1] that depends only
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4. Bayesian spatial modeling

on the previous state of the chain Xt−1. The MCMC simulations aim at producing a

Markov chain that converges to a stationary probability distribution. When MCMC

algorithms are used to approximate a posterior probability distribution, this is then

the stationary distribution.

Many algorithms have been developed to build MCMC sequences. In this section

only a few of them will be presented, namely the Metropolis-Hasting (Metropolis

et al. 1953; Hastings 1970), the Gibbs sampler (German, German 1984), and the

the Langevin-Hastings (Christensen et al. 2001), which is the algorithm used in

this study.

Considering that the Metropolis-Hastings algorithm is used to approximate the

posterior distribution [θθθ |yyyo]. The starting point θθθ t = θθθ 0 is drawn from a starting

distribution [θθθ 0]. A candidate θθθ ∗ for the next state θθθ t+1 is sampled from the pro-

posal distribution [θθθ ∗|θθθ t ] and the acceptance probability α(θθθ t ,θθθ t+1) is computed

as

α(θθθ t ,θθθ
∗) = min

(
1,
[θθθ ∗|yyyo][θθθ t |θθθ ∗]
[θθθ t |yyyo][θθθ ∗|θθθ t ]

)
, (4.33)

where [.|yyyo] is the posterior distribution.

If α(θθθ t ,θθθ
∗) = 1 the next state in the chain is θθθ t+1 = θθθ ∗, otherwise a random

number u is sampled from a uniform distribution U(0,1) and

θθθ t+1 =

θθθ ∗ if u < α

θθθ t if u > α

(4.34)

When the proposal distribution is symmetric, [θθθ t+1|θθθ t ] = [θθθ t |θθθ t+1] the method is

known as the Metropolis algorithm and the acceptance probability reduces to

α(θθθ t ,θθθ
∗) = min

(
1,
[θθθ ∗|yyyo]

[θθθ t |yyyo]

)
. (4.35)

A random walk Metropolis is a special case of the Metropolis algorithm, for

which the proposal has the form [θθθ ∗|θθθ t ] = [|θθθ t−θθθ ∗|] (Gilks et al. 1996).

It is expected that at each step of the simulation the distribution of the current

draw becomes closer to the stationary distribution. In general, for the Markov

chain to reach convergence, the simulations need to be run long enough. The

number of iterations needed is commonly problem dependent. There are many
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diagnostic tests that can be employed to investigate the convergence of the chain.

More on that topic is presented in the next section.

The fact that a draw in a MCMC sequence depends on the previous state makes

the chain autocorrelated. In practice, to obtain a sequence of independent random

variables, only every dth draw is retained. Besides that, the initial portion of the

chain generated before the convergence is achieved is also discarded. This is called

the burn-in.

Another approach to build MCMC sequences is the Gibbs sampler. The simula-

tion at each step cycles through all the b parameter subvectors in θθθ =(θ 1,θ 2, ...,θ b).

The proposal distribution is the full conditional distribution of each parameter in

θθθ . In this case, the acceptance probability is always 1 and therefore every draw is

accepted. The full conditional distribution of a parameter θ i contained in θθθ is its

distribution given all the other parameters and the observations, namely

[θ i
t+1|θθθ−i

t ,yyyo], (4.36)

where

θθθ
−i
t = (θ 1

t+1, ...,θ
i−1
t+1 ,θ

i+1
t , ...,θ b

t ) (4.37)

contains all the components in the vector θθθ with their current values except for θ i.

The method is carried out in the following steps. A starting point θθθ t = θθθ 0 for

all unknown parameters is drawn from a starting distribution [θθθ 0]. A sample θ i
t+1

from the full conditional distribution [θ i
t+1|θθθ

−i
t ,yyyo] is drawn. Every new value θ i

t+1

is updated in the full conditional distribution and used for the next draw. The

method cycles through all the parameters until the chain of every element in θθθ

has converged (Gelman et al. 2004).

The third algorithm presented here is the Langevin-Hastings method. It uses

as proposal a multivariate normal distribution with gradient information from the

posterior distribution in the mean. This directs the algorithm towards regions of

high posterior density and for spatial statistics this algorithm has shown better

performance than other MCMC methods (Waagepetersen et al. 2008).

Considering that Langevin-Hastings is used to approximate the posterior dis-
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tribuiton [ssso|yyyo], the proposal distribution has the form

MV N(ssso +(δ/2)
d log[ssso|yyyo]

dssso ,δ I) (4.38)

where d log[ssso|yyyo]
dssso is the gradient of the log-posterior distribution. The parameter δ

is a user-specified proposal variance.

Commonly in this approach the components of ssso are updated simultaneously.

MCMC schemes that update the components of ssso in turn have shown poor mixing

of the chains because the components are correlated (Waagepetersen et al. 2008).

The acceptance probability in this algorithm is the same as in the Metropolis-

Hastings (4.33).

4.2.5. MCMC convergence diagnostics

An important practical matter when using MCMC algorithms is to know when the

chain has reached stationarity. Many convergence diagnostics have been proposed

to investigate this. In this section an overview is provided of some diagnoctics

that are used in this study, namely the trace plots, autocorrelation plots, Geweke’s

diagnostic and the Heidelberg and Welch’s diagnostic.

The trace plots are simply a scatter plot of the samples versus the number of

iterations. They provide visual information of the mixing and of the stationarity of

the chain. A trace plot that shows jumps from one point of the posterior distribu-

tion to another in an opposite region in very few iterations indicates good mixing

of the chain. Stationarity can be checked through the evolution of the mean and

the variance. If they do not change much with the number of iterations it is usu-

ally a sign that the chain has reached stationarity. Although, such plots are an

easy and fast way to obtain this information, they are usually insufficient to proof

convergence and further tests are commonly required.

The autocorrelation plots show the dependence among draws. Poor mixing of

the chain is indicated through high autocorrelations between draws with large

lags.

The Geweke’s diagnostics (Geweke 1992) is a statistical test of the difference of

the means between the first and the last part of the chain. For the null hypothesis it

is assumed that both samples are from the same distribution and thus both means
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are equal, i.e., H0 : µ1 = µ2. If this is true the test statistic follows a standard

normal distribution. The test compares the first 10% with the last 50% of the chain

assuming that both parts are independent. Z-scores and p-values are computed.

A significance level α is chosen and if the p-value < α, the null hypothesis is

rejected. Rejection in this case means that both parts of the chain are not from the

same distribution. Hence, the chain has not reached convergence.

The Heidelberg and Welch’s diagnostic (Heidelberger, Welch 1983 and Heidel-

berger, Welch 1981) is divided in two parts. First, the stationarity is evaluated

and second, a half-width test is applied to the part of the chain that passes the first

test. In the first test the null hypothesis assumes that the samples come from a sta-

tionary distribution. It uses the Cramer-von-Mises statistic test that is first applied

to the entire chain. This test is successively applied after removing 10%, 20%,

30%, ..., etc of the chain until the null hypothesis is accepted or 50% of the chain

is removed. The latter indicates that the samples are not from a stationary distri-

bution and the MCMC simulation needs to be run longer. If the test is passed, the

number of samples to remove and the number of samples to retain are indicated.

The second part investigates whether the sample size that passed the first test is

large enough to accurately estimate the mean. To this end, the mean is computed

with the chain portion that passed the first test and a second mean is computed

using only half of this chain portion. If the ratio between both means is lower than

a chosen target value, the test is passed. Otherwise the MCMC simulations need

to be run longer.
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5. HIRAIN: a method to generate high
resolution precipitation product

This chapter presents the HIRAIN method to generate high resolution precipitation

product.

HIRAIN is carried out in two steps. Firstly, a BHM simulates at unobserved loca-

tions the latent spatial Gaussian process assumed to drive the occurrence of pre-

cipitation exceeding a certain threshold. Second, realisations of occurrence/non-

occurrence of precipitation above the same threshold is provided by two different

methodologies, given the simulations from the model.

This chapter presents the general ideia behind HIRAIN and chapter 6 discusses

its specific setup.

5.1. Assumptions

The definitions of the quantities involved in the method are presented before HI-

RAIN is described.

The observations and the stochastic process at the observation locations rrro
i are

defined as in (4.25) and (4.26), respectively. The covariate at the same locations

is represented by the vector

dddo = (d(rrro
1),d(rrr

o
2), . . . ,d(rrr

o
n))

T = (do
1 ,d

o
2 , . . . ,d

o
n)

T . (5.39)

At the unobserved locations rrrp
j the spatial process is given as

sssp = (s(rrrp
1),s(rrr

p
2), . . . ,s(rrr

p
m))

T = (sp
1 ,s

p
2 , . . . ,s

p
m)

T , (5.40)

the covariate as

dddp = (d(rrrp
1),d(rrr

p
2), . . . ,d(rrr

p
m))

T = (dp
1 ,d

p
2 , . . . ,d

p
m)

T (5.41)
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and the variable to be predicted as

yyyp = (y(rrrp
1),y(rrr

p
2), . . . ,y(rrr

p
m))

T = (yp
1 ,y

p
2 , . . . ,y

p
m)

T , (5.42)

which is the occurrence/non-occurrence of precipitation above a certain threshold.

Lastly, θθθ is the vector containing the model’s parameters.

In the first step, HIRAIN simulates the latent spatial process at the unobserved

locations, namely sssp with a Bayesian spatial generalized linear model (BSGLM)

adapted from the package "geoRglm" (Christensen, Ribeiro Jr. 2002) written in

the R statistical programming language (R Core Team 2013).

The BSGLM is based on the following considerations. The random responses

yo
i are assumed to follow an independent Bernoulli distribution with outcomes of

either 0 or 1. The underlying latent spatial process that drives the observations is

assumed to be Gaussian with isotropic and stationary covariance structure. The

response variables relate to the spatial process through the logit function,

yo
i ∼ Bernoulli(π(rrro

i ) = logit−1(s(rrro
i ))) for i = 1, . . . ,n, (5.43)

with the expected value of the responses equal to the probability π(rrro
i ) of the

outcome yo
i = 1,

E[yo
i |s(rrro

i )] = π(rrro
i ) =

exp(s(rrro
i ))

1+ exp(s(rrro
i ))

. (5.44)

It is assumed in the model that there is no nugget. The spatial stochastic process

is then decomposed as

S(rrro
i ) = µ(rrro

i )+U(rrro
i ), (5.45)

where the deterministic part µ(rrro
i ) is given by the linear predictor dddT (rrro

i )βββ , and

the random effect follows a multivariate normal distribution, notably U(rrro
i ) ∼

MV N(0,Σ). The elements of the covariance matrix Σ are given by σ2ρ(rrri,rrr j;φ),

where the correlation function is ρ(rrri,rrr j;φ) = exp(−h/φ) and h is the great circle

distance between two locations

h = rE cos−1(sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos(λ1−λ2)). (5.46)

The parameter rE = 6.378 km is the radius of the Earth considering the Earth to
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be a sphere. The variables (λi,ϕi) define a location ri in degree of longitude and

latitude, respectively.

5.2. The method

The goal of HIRAIN is to predict occurrence/non-occurrence of precipitation above

a threshold at unobserved locations, yyyp, given the observations yyyo and covariates

at both observed and unobserved locations, dddo and dddp. HIRAIN thus simulates

from the predictive distribution [yyyp|yyyo,dddo,dddp].

Further quantities involved in HIRAIN are the model’s parameters θθθ = (βββ ,σ2,φ)

and the spatial latent process at the observation and the prediction locations, i.e.,

ssso and sssp, respectively. All these quantities follow the conditional independence

structure presented in Figure 5.1. Quantities that are not connected by a line are

conditionally independent given the random variables at all other nodes (Diggle,

Ribeiro Jr. 2007).

The predictive distribution can be written as

[yyyp|yyyo,dddo,dddp] =
∫ ∫ ∫

[yyyp|yyyo,ssso,θθθ ,dddo,sssp,dddp][yyyo,ssso,θθθ ,dddo,sssp,dddp|yyyp]dθθθdsssodsssp

=
∫ ∫ ∫

[yyyp|sssp][sssp|yyyo,ssso,θθθ ,dddo,dddp,yyyp][yyyo,ssso,θθθ ,dddo,dddp]dθθθdsssodsssp

=
∫ ∫ ∫

[yyyp|sssp][sssp|ssso,θθθ ,dddp,yyyp][ssso|yyyo,θθθ ,dddo,dddp][yyyo,θθθ ,dddo,dddp]dθθθdsssodsssp

=
∫ ∫ ∫

[yyyp|sssp][sssp|ssso,θθθ ,dddp][ssso|yyyo,θθθ ,dddo][θθθ |yyyo,dddo,dddp]dθθθdsssodsssp

=
∫ ∫ ∫

[yyyp|sssp][sssp|ssso,θθθ ,dddp][ssso|yyyo,θθθ ,dddo][θθθ ]dθθθdsssodsssp, (5.47)

where some conditional distributions are simplified based on the conditional in-

dependence structure in Figure 5.1.

The vector θθθ contains the model’s parameters βββ , σ2 and φ . [θθθ ] is the prior

probability distribution. By using a conjugate prior for the parameters βββ and σ2,

the influence of βββ and σ2 can be integrated out analytically by marginalizing over

βββ and σ2. The marginalization over βββ and σ2 leads to which is a very complex

integral and can not be solved analytically.
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β, σ², φ

yo so

do

sp
yp

dp

Figure 5.1.: Conditional independence structure of HIRAIN.

[yyyp|yyyo,dddo,dddp] =
∫ ∫ ∫

[yyyp|sssp][sssp|ssso,φ ,dddp][ssso|yyyo,φ ,dddo][φ ]dφdsssodsssp

=
∫ ∫ ∫

[yyyp|sssp][sssp|ssso,φ ,dddp][ssso,φ |yyyo,dddo]dφdsssodsssp, (5.48)

Thus, simulating directly from [yyyp|yyyo,dddo,dddp] is not possible. In order to obtain re-

alisations of yyyp HIRAIN follows in two steps and adopts the following procedures.

In step 1 of HIRAIN the BSGLM estimates [sssp,φ |yyyo,dddo] and draws samples of so

and φ . The posterior predictive distribution [sssp|ssso,φ ,dddp] is then used to simulate

sssp at unobserved locations. Thus, the final product of the BSGLM are the samples

of sssp from (Diggle, Ribeiro Jr. 2007)

[sssp|yyyo,dddo,dddp] =
∫ ∫

[sssp|ssso,φ ,dddp][ssso,φ |yyyo,dddo]dφdssso. (5.49)

In step 2, yyyp is predicted conditionally on the simulations of sssp. This part is per-
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formed outside the BSGLM and employes two methodologies. One method draws

samples from the first distribution in the integral 5.48, namely the Bernoulli dis-

tribution [yyyp|sssp]. In a second approach values of yyyp are generated by thresholding

the simulated values of sssp, assuming a deterministic relation between Y and S.

In the following, sections 5.3 and 5.4 describe in detail how step 1 and step 2 of

HIRAIN are constructed.

5.3. Step 1: Predicting the latent process sssp

5.3.1. Posterior distributions

5.3.1.1. Formulation

The posterior distribution of ssso and φ can be written as (compare conditional

independence structure in Figure 5.1)

[ssso,φ |yyyo,dddo] ∝ [yyyo|ssso,φ ,dddo][ssso|φ ,dddo][φ ]

∝ [yyyo|ssso][ssso|φ ,dddo][φ ], (5.50)

where the likelihood reads [yyyo|ssso] =∏
n
i=1[y

o
i |π(rrro

i )] =∏
n
i=1 π(rrro

i )
yo

i (1−π(rrro
i ))

1−yo
i due

to the assumption 5.43. For the prior distribution [φ ] an inverse Gamma discrete

distribution is specified,

[φ ] =
β

αg
g φ−(αg+1)e−βg/φ

Γ(αg)
, φ > 0, (5.51)

where αg is the shape and βg is the scale parameter.

The posterior distribution of the parameters βββ and σ2 is known and has the

form (Diggle, Ribeiro Jr. 2007)

[βββ ,σ2|ssso,φ ] ∝ [ssso|βββ ,σ2,φ ][βββ ,σ2|φ ]

[ssso|βββ ,σ2,φ ][βββ |σ2,φ ][σ2|φ ], (5.52)
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where [ssso|βββ ,σ2,φ ] is the multivariate normal distribution

[ssso|βββ ,σ2,φ ] ∝ |σ2Ro(φ)|−1/2 exp
(
−1
2
(ssso−dddo

βββ )T |σ2Ro(φ)|−1(ssso−dddo
βββ )

)
(5.53)

and [βββ |σ2,φ ] and [σ2|φ ] are the following conjugate prior distributions

[βββ |σ2,φ ] ∝ 1, (5.54)

and a scaled inverse χ2 distribution on σ2,

[σ2|φ ] = (S2
σ nσ/2)nσ/2

Γ(nσ/2)
σ

2(−nσ/2+1)
exp(−nσ S2

σ/2σ
2), (5.55)

where nσ and S2
σ are the degrees of freedom and scale parameters, respectively.

The substitution of these distributions on the right hand side of (5.52) leads to

a normal scaled inverse χ2 posterior distribution (Diggle, Ribeiro Jr. 2007) of the

form

[βββ ,σ2|ssso,φ ] ∝ N−χ
2
sci(βββ

′,Vβββ ′,nσ +n,S2
1) (5.56)

with

βββ
′ =Vβββ ′ddd

oT Ro
−1ssso (5.57)

Vβββ ′ = (dddoT Ro
−1dddo)−1 (5.58)

S2
1 =

nσ S2
σ +sssoT

Ro
−1ssso−βββ ′TV−1

βββ ′ βββ ′

nσ +n
, (5.59)

where n is the number of observation locations.

5.3.1.2. Simulating ssso, βββ , σ2 and φ

Samples of βββ and σ2 can directly be drawn from (5.56). Samples of ssso and φ ,

however, can not be directly drawn from their posterior. The likelihood in the right

hand side of (5.50) consists of a high dimensional normalizing integral that can
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5.3. Step 1: Predicting the latent process sssp

not be solved analytically. Hence, a MCMC algorithm is employed to approximate

[ssso,φ |yyyo,dddo].

Values of ssso and φ are simulated sequentially. At each new iteration ssso is updated

given the current value of φ . In order to describe how the MCMC simulates ssso given

the current φ , it will be considered for a moment that φ is fixed.

The algorithm used to update the spatial process is the Langevin-Hastings method

and this approximates the distribution

[ssso|yyyo] ∝ [yyyo|ssso][ssso], (5.60)

for a given φ . [yyyo|ssso] is the likelihood and [ssso] is obtained by marginalizing the

joint distribution [ssso,βββ ,σ2] over βββ and σ2. [ssso] is an improper distribution given as

(Christensen, Ribeiro Jr. 2002)

[ssso]∝ |dddoT R−1
o dddo|−1/2|Ro|−1/2nσ SσsososoT (R−1

o −R−1
o dddo(dddoT R−1

o dddo)−1dddoT R−1
o )ssso−(n−p+nσ )/2

(5.61)

where Ro = Ro(φ) is the correlation matrix of ssso for a given φ .

Langevin-Hastings method may not work well if the components of ssso have very

different posterior variances. The correlation structure of the proposal might be

very different from the posterior correlation structure, where the components are

not independent. Therefore, ssso is commonly reparameterised such that its compo-

nents are less correlated a posteriori (Waagepetersen et al. 2008).

The reparameterisation in the BSGLM specifies that ssso = R0.5
o γγγ, where R0.5

o is the

Cholesky factorisation of the correlation matrix Ro = Ro(φ) and γγγ ∼ N(0, I). Then,

the Langevin-Hastings algorithm simulates from the posterior distribution [γγγ|yyyo]

and samples from [ssso|yyyo] are obtained through the multiplication of the samples of

γγγ by R0.5
o (Diggle, Ribeiro Jr. 2007). The proposal distribution used to update γγγ is a

multivariate normal distribution, namely MV N(γγγ +(δ/2)∇(γγγ)trunc,δ I), where δ is

a user-specified proposal variance and should be tuned such that 60% acceptance

rate is achieved (Waagepetersen et al. 2008). The term ∇(γγγ)trunc is the truncated

gradient of the log-posterior distribution of γγγ. This is obtained as follows.
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5. HIRAIN: a method to generate high resolution precipitation product

The posterior distribution of γγγ given the observations yyyo is of the form

[γγγ|yyyo] ∝

n

∏
i=1

[yi|R0.5
o γi][γγγ]. (5.62)

Applying the logarithm to it, this reads (Christensen, Waagepetersen 2002)

log[γγγ|yyyo] ∝const(y)+
n

∑
i=1

(
yo

i R0.5
o γi− log(1+ exp(R0.5

o γi))

)
− 1

2
γγγ

T (In−R−0.5
o dddo(dddoT R−1

o dddo)−1dddoT R−0.5
o )γγγ (5.63)

and the gradient of this logarithm gives

∇(γγγ)trunc =
∂ log[γγγ|yyyo]trunc

∂γγγ
=R0.5

o
T
(

yo
i −

exp(si)

1+ exp(si)

)n

i=1

−
(

In−R−0.5
o dddo(dddoT R−1

o dddo)−1dddoT R−0.5
o

T
)

γγγ,

(5.64)

where the term
(

yo
i − exp(si)/(1+ exp(si))

)
is bounded.

The acceptance probability reads

α(γγγ t ,γγγ t+1) =
[γγγ t+1|yyyo]exp(−1/2δ ||γγγ t−m(γγγ t+1)||2)
[γγγ t |yyyo]exp(−1/2δ ||γγγ t+1−m(γγγ t)||2)

, (5.65)

where m(γγγ) = γγγ +(δ/2)∇(γγγ)trunc is the proposal’s mean.

This procedure is repeated for every updated φ simulated through the random

walk Metropolis algorithm. A Gaussian distribution with mean rounded to the

nearest φ in the discrete prior set is used as proposal, namely N(φ ,δφ I). The term

δφ is the proposal variance, which must be provided by the user and should be

tuned such that the acceptance rate is about 25% (Waagepetersen et al. 2008).

The sequential updating of ssso and φ produces samples from the posterior distri-

bution [ssso,φ |yyyo,dddo].
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5.3. Step 1: Predicting the latent process sssp

5.3.2. Posterior predictive distribution

Going back to the predictive distribution in (5.48), the focus here will be on the

posterior predictive distribution [sssp|ssso,φ ,dddp] given as

[sssp|ssso,φ ,dddp] =
∫ ∫

[sssp|ssso,βββ ,σ2,φ ,dddp][βββ ,σ2|ssso,φ ,dddp]dβββdσ
2

=
∫ ∫

[sssp|ssso,βββ ,σ2,φ ,dddp][βββ ,σ2|ssso,φ ]dβββdσ
2. (5.66)

[sssp|ssso,βββ ,σ2,φ ,dddp] is a multivariate normal distribution with expected value

E[sssp|ssso,βββ ,σ2,φ ,dddp] = dddp
βββ + rT R−1

o (ssso−dddp
βββ ) (5.67)

and variance

Var[sssp|ssso,βββ ,φ ,σ2,dddp] = σ
2(Rp− rT R−1

o r), (5.68)

where Rp = Rp(φ) is the correlation matrix of sssp, and r = r(φ) is the matrix with

the cross-correlation between ssso and sssp.

The distribution [βββ ,σ2|ssso,φ ] is the normal scaled inverse-χ2 posterior in (5.56).

The integration in (5.66) has an analytical solution and yields the following multi-

variate-t distribution (Diggle, Ribeiro Jr. 2007)

[sssp|ssso,φ ,dddp]∼ tn+nσ
(µµµ1,S2

1Σ1), (5.69)

where

µµµ1 = rT Ro
−1ssso +(dddp− rT R−1

o dddo)βββ ′, (5.70)

Σ1 = Rp− rT Ro
−1r+(dddp− rT Ro

−1dddo)V ′
βββ
(dddp− rT Ro

−1dddo)T , (5.71)

with Ro = Ro(φ) and S2
1 is given by (5.59).

Simulating directly from this distribution provides samples of the stochastic pro-

cess sssp. The probability π(rrrp) is obtained by applying (5.44) to these samples.
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Figure 5.2.: Distance in km between all pairs of training synoptic stations.

5.4. Step 2: Generating precipitation occurrences yyyp

Having simulated the latent Gaussian process with the BSGLM, two methodologies

are investigated to generate occurrence/non-occurrence of precipitation above a

threshold.

One approach is to simulate yyyp as a spatially independent Bernoulli process

[yyyp|sssp], which considers that the precipitation process is conditionally independent

in space given sssp. This is named here Bernoulli sampling (BNS) and is consistent

with the assumption in step 1 that the observations yyyo are generated by a spatially

independent Bernoulli process. For neighbor distances between synoptic stations

of about 5.6 km to 13.35 km, this is justified. However, since the predictions

of yyyp are carried out on a 4km grid, the dependence in precipitation between

neighboring locations may not be ignored anymore.

An appropriate approach to generate yyyp should account for spatial dependencies

in the precipitation process. That is, after accounting for the spatial dependence

in the latent Gaussian process, there is likely a ’residual’ spatial dependence in the
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5.4. Step 2: Generating precipitation occurrences yyyp

occurrence/non-occurrence of precipitation.

The spatial dependence structure of the responses is unknown and would have

to be inferred from the observations yyyo. However, there is relatively large distance

between the observations in space. The minimum distance between two observa-

tion locations is 5.6 km. Figure 5.2 shows that most of the distances are greater

than 60 km and the bulk of the distances is concentrated between 200 km and

350 km. This makes it challenging to infer a reliable dependence structure for the

precipitation process. Further, MCMC simulations would be also required, making

the estimation procedure even more time consuming. Including this dependence

would greatly complicate inference and prohibit the use of ’geoRglm’.

For this reason, in a second approach yyyp is generated by thresholding the reali-

sations of sssp. This is called the thresholding method (THR). All regions above an a

priori defined threshold are considered to be regions with precipitation, whereas

no precipitation is assigned elsewhere. THR implicitly assumes that the precipi-

tation process is fully determined by the latent Gaussian process. This is incon-

sistent with the assumption in the BSGLM. However, the spatial dependence that

is considered in the process might nevertheless provide more realistic fields of

precipitation occurrence/non-occurrence.
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6. HIRAIN Setup

This chapter discusses the setup of HIRAIN and how it is applied to many thresh-

olds of precipitation amount to produce high resolution precipitation product.

The first part shows how the thresholds of precipitation are selected and the

second part describes the structure of HIRAIN.

6.1. Selecting thresholds of precipitation

In order to select the thresholds that best represent the precipitation intensities

in Germany, histograms are computed for hourly precipitation data from 1418

synoptic stations during the period from 2004 to 2011 (Figure 6.1).

The distributions show a common pattern during all seasons. Low intensity

of precipitation occurs more frequently than high intensity. However, there are

differences in the number of occurrences among the seasons.

The winter months (December-January-February (DJF)) show the highest fre-

quencies of precipitation equal 0.1 mm/h and between 0.1 mm/h and 0.5 mm/h

compared to the remaining seasons. Precipitation amounts ≥ 2.5 mm/h show

the lowest frequencies of the year during DJF. This pattern is expected given that

precipitation events are mostly originated from stratiform precipitating systems

during this time.

During March-April-May (MAM) there is a change in the pattern when com-

pared to DJF. The occurrence of precipitation equal 0.1 mm/h and between 0.1

mm/h and 0.5 mm/h starts decreasing, whereas for greater amounts (≥ 2.5 m/h)

it increases. Opposite to DJF, amounts between 5.0 mm/h and 7.0 mm/h are

observed during MAM.

In June-July-August (JJA) the number of low intensity precipitation (≤ 1.0

mm/h) decreases even more in comparison to DJF. Precipitation ≥ 2.5 mm/h
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Figure 6.1.: Histogram of precipitation during (a) December-January-February (DJF), (b)
March-April-May (MAM), (c) June-July-August (JJA) and (d) September-
October-November (SON) based on hourly data from 1418 synoptic stations
in the period from 2004 to 2011.

increases when compared to MAM and DJF. Amounts ≥ 15.0 mm/h are observed

during this season. This is due to the more frequent convective precipitating sys-

tems, which might explain the increase in the amount when compared to DJF and

MAM.

September-October-November (SON) show patterns that are very similar to JJA.

These observations suggest that precipitation in Germany ranges from intensi-

ties of 0.1 mm/h to about 7.0-10.0 mm/h for most events during the year. Extreme

events are rarer and occur mostly during JJA and SON.

The classes of precipitation shown in the histograms seem to be a good repre-

sentation of the precipitation intensities and their occurrences in Germany. The
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6.2. Setup

thresholds of precipitation amount to be used in this study are chosen based on

these classes and are the following: precipitation ≥ 0.1 mm/h, ≥ 0.5 mm/h, ≥
1.0 mm/h, ≥ 2.5 mm/h, ≥ 5.0 mm/h, ≥ 7.0 mm/h and ≥ 10.0 mm/h.

6.2. Setup

HIRAIN is first applied to occurrence/non-occurrence of precipitation≥ 0.1 mm/h.

The structure of the method is schematically represented in the flow chart of Fig-

ure 6.2. HIRAIN runs at hourly time scale and for each time independently, i.e.,

the run for time t does not depend on time t−1.

The method starts by preparing the BSGLM’s input data yyyo, dddo, dddp, rrro, rrrp for

the first threshold thr = 0.1 mm/h and for the first time t1. For convenience the

time and threshold indices are omitted in the notation of the quantities in the flow

chart.

The vector yyyo contains 0’s and 1’s representing the occurrence/non-occurrence

of precipitation ≥ 0.1 mm/h at the observation locations. The vectors dddo and

dddp contain the covariate, namely IRBT at the observation and at the prediction

locations, respectively. The corresponding coordinates are stored in the vectors

rrro and rrrp, where the former contains the locations of the 121 training synoptic

stations and the latter contains 37.207 centers of the grid cells of 4 km size over

the area of Germany.

The next step is the attribution of a prior distribution for the model’s parameters

[βββ ,σ2,φ ]. The specification of the prior is described in detail in appendix A. Once

the observed data is prepared and the prior distributions specified, HIRAIN enters

the step 1, where the BSGLM is run.

The model approximates the posterior distribution [ssso,φ |yyyo,dddo] through MCMC

simulations and simulates βββ and σ2 by sampling directly from the posterior dis-

tribution [βββ ,σ2|so,φ ]. Given the simulations of ssso and φ , sssp is simulated from the

posterior predictive distribution [sssp|ssso,φ ,dddp] ∼ tn+nσ
(µµµ1,S2

1Σ1). This requires the

inversion of the covariance matrix, which has dimenson of 37.207 x 37.207. A

lot of computational capacity would be required. Thus, the area of Germany is

divided in 8 smaller regions, in order to make the algorithm feasible.

In each region the simulations are conditioned on the borders of the neighborhood
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Table 6.1.: Latitude and longitude delimiting the 8 areas in Germany.
Area Longitude Latitude

1 6° - 11° 52.125° - 55.000°
2 10° - 15° 52.125° - 55.000°
3 6° - 11° 50.300° - 52.725°
4 10° - 15° 50.300° - 52.725°
5 6° - 11° 48.875° - 50.900°
6 10° - 15° 48.875° - 50.900°
7 6° - 11° 47.400° - 49.475°
8 10° - 15° 47.400° - 49.475°

areas, which have 1° in latitude and 0.6° in longitude. This makes the covariance

matrix much smaller and easier to be inverted. The 8 areas are shown by the map

in the flow chart and the corresponding size is presented in table 6.1.

Within this approach the simulations are performed in the following sequence:

sp
j is simulated in the area 1 first. Given the simulations in the boundary region

between area 2 and 1, samples are drawn for area 2. Simulations in the area 3

are conditioned on the simulations in the boundary region between area 1 and

3 and the region between area 2 and 3. The same logic is applied to the next

areas until realisations of sssp are drawn at every location rrrp in all 8 regions. Given

the simulated values of sssp, the model provides at the same locations of interest, rrrp,

the probability of precipitation ≥ 0.1 mm/h, namely π(rrrp), by applying the inverse

logit function to the values of sssp.

The end product of the BSGLM for time t1 is a simulated spatial Gaussian pro-

cess that drives occurrence/non-occurrence of precipitation≥ 0.1 mm/h with 4km

resolution and the corresponding probabilities of precipitation ≥ 0.1 mm/h.

The time is updated to t = t + 1, the corresponding input data is prepared and

the BSGLM is run again. This procedure is repeated while t ≤ t f , where t f is the

last time of interest.

Once step 1 is completed, HIRAIN enters step 2 to generate occurrence/non-

occurrence of precipitation ≥ 0.1 mm/h, namely yyyp. This is done through BNS

and THR. In BNS realisations of 0’s and 1’s are drawn at each grid point rp
j and

time steps, independently. In THR occurrence/non-occurrence of precipitation ≥
0.1 mm/h is obtained by thresholding the fields of π(rrrp) with Pt .
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y°, r°, rp , d°, dp and

[β, σ², φ] for

current “t” and

“thr”.

STEP1: BSGLM

MCMC approximates 

[s°, φ |y°, d°].

Sampling sp from

[sp |s°, φ, dp ] ~ tn+nσ(μ1, S1² Σ1),

given the simulated s° and φ.

The draws are sampled for each

area separate.

Providing the probability of

precipitation at the locations rp

given sp ,

π(rp
j )= exp(sp

j)/(1+exp(sp
j)).

STEP 2: Generating

yp given π(rp)

THR

& 

BNS

for  current “t” 

and “thr”.

Defining the locations with

precip occurrence, rp
rain.

This is rp for the next

threshold “thr”.

input

Defining thresholds of 

precipitation amount, 

thr = {0.1, 0.5, 1.0, 2.5, 5.0, 7.0, 

10.0} mm/h

i= i+1 

thr = thr [i] 

t = ti

t = t + 1

if  t ≤ tf
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Sampling from the posterior 

[β, σ²|s°, φ]. 

i = 1 
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thr [i] ≤ 

10.0

t = t1
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Fields of occurrence/non-occurrence of precipitation  ≥ 

thr = {0.1, 0.5, 1.0, 2.5, 5.0, 7.0, 10.0} mm/h.

NO

Figure 6.2.: Schematic representation of HIRAIN.
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The product provided by the step 2 is the variable of interest, yyyp with 4 km reso-

lution from time t1 to t f .

After completing step 1 and 2, HIRAIN is applied to the next threshold of pre-

cipitation, namely 0.5 mm/h. The time is set to t = t1 and the corresponding input

data is prepared. Here values of yyyo are obtained by assigning 1 to precipitation

amount ≥ 0.5 mm/h and zero otherwise. The coordinates rrro and the covariate dddo

do not change with the change of thr. However, the prediction locations are rrrp =

rrrp
rain, where the vector rrrp

rain contains the locations, for which precipitation ≥ 0.1

mm/h is simulated. The vector dddp contains the covariate at those locations. This

procedure is adopted to ensure the generation of consistent precipitation product,

although HIRAIN is applied to each threshold independently. With this approach

precipitation ≥ 0.5 mm/h can only be predicted at locations where precipitation

≥ 0.1 mm/h is to be true. If there is no precipitation in the lower threshold,

non-occurrence is assigned to the current threshold as well. Occurrence/non-

occurrence of precipitation ≥ 0.5 mm/h with 4 km resolution is obtained for the

time t1 to t f .

The threshold is then update to thr=1.0 mm/h and the same logic is used to

generate the corresponding yyyp. HIRAIN is repeated for further thresholds follow-

ing the same steps described above until thr=10.0 mm/h. Realisations of yyyp for

the different thresholds of precipitation amount are obtained as final product of

HIRAIN.
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This chapter presents the verification diagnostics used in this study to assess the

performance of HIRAIN.

7.1. Brier skill score

The Brier skill score (BSS, Brier 1950) is used to measure the relative improvement

of the probabilistic forecast over a reference RS

BSS = 1− BS
RS

, (7.72)

where

BS =
1
l

l

∑
k=1

(pk−ok)
2. (7.73)

BS is the Brier score and it compares the forecast probability pk with the observa-

tion ok, which has either a value of 1 or 0 whether the event occurred or not. The

score is computed over the total number of events l. The climatology is usually

used for the reference forecast RS. A perfect forecast provides BSS equal 1, nega-

tive values indicate that the model is worse than the reference forecast and a score

equal 0 indicates no improvement in relation to the reference.

7.2. Ensemble Brier skill score

This study also uses the ensemble Brier skill score (EBSS) to assess the perfor-

mance of HIRAIN. This skill score is an extention of the BSS to ensemble forecasts

and it is based on the approach used by Schwartz et al. 2010.

By extending the BSS into ensemble forecasts, the forecast F for each ensemble
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member is converted to binary information BP (0 or 1) based on the fact whether

the forecast exceeds or not a threshold T

BPki =

1 if Fki ≥ T

0 otherwise

and thus an ensemble probability EP is computed by averaging BP over all mem-

bers

EPi =
1
n

n

∑
k=1

BPki, (7.74)

where n is the total number of members, k refers to the kth ensemble member and

i to the ith grid point. EP takes on values between 0 and 1.

In the same way the observations are converted to a binary information as well,

namely BPo. This is compared to the EP through the ensemble Brier score (EBS),

which has the form of a Brier score and is written as

EBS =
1

Nd

Nd

∑
k=1

(EPk−BPok)
2 (7.75)

where Nd is the total number of grid points in the whole domain. The score can

take on values between 0 and 1.

A skill score can then be computed in relation to a reference ERS. This is the

EBSS and it is given as

EBSS = 1− EBS
ERS

. (7.76)

7.3. Fraction skill score

The fraction skill score (FSS) (Roberts, Lean 2008) is a version of the BSS in which

over a neighbor region the frequency of the predicted events is compared to the

frequency of the observations. "The purpose of this verification method is to obtain

a measure of how forecast skill varies with spatial scale" (Roberts, Lean 2008). The

idea behind it is that a model has good performance if the frequencies of predicted

and observed events in the nearby area are similar (Ebert 1998).
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7.3. Fraction skill score

In order to compute the FSS, prediction and observation fields are projected on

to the same spatial grid. Appropriate thresholds T are chosen to convert predic-

tions and observations to binary information, namely BP and BO, respectively. An

one is assigned to the grid point k if the threshold is exceeded and zero otherwise,

BPk =

1 if pk ≥ T

0 otherwise ,

BOk =

1 if ok ≥ T

0 otherwise ,

where pk and ok is the prediction and the observation, respectively at the grid

point k.

A spatial scale w is chosen to define a nearby area around each grid point, for

which predictions and observations are compared. This scale indicates the number

of nearby grid points that are used to delimit this area. Pointwise comparisons

use a scale of w =0. This means that no nearby grid point is considered for the

comparison. For instance if a scale of 2 is chosen, the area around each grid point

is delimited by 2 grid points to the right, 2 grid points to the left, 2 grid points to

the north and 2 grid points to the south. The same logic follows in the choice of

other scales.

By averaging BPk and BOk over the defined area, the fractional coverage of

predicted (NP) and observed (NO) events are obtained,

NPi =
1
N

N

∑
k=1

BPk (7.77)

NOi =
1
N

N

∑
k=1

BOk, (7.78)

where N is the total number of grid points in the area around i, and k refers to the

kth grid point inside the region. Figure 7.1 shows a schematic representation of a

nearby region surrounding the grid point represented by X with the corresponding

fractional coverage of forecast and observed events.

NP can be compared to NO through a fraction Brier score (FBS),
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7. Verification methods

X

Observation

NOi=X = 5/25

X

Forecast

NPi=X = 5/25

Figure 7.1.: Schematic representation of a nearby region surrounding the grid point X and
the fractional coverage of events for the (left) observations and (rigt) model
forecast. The grid points with a circle represent the locations with events.

FBS =
1

Nd

Nd

∑
i=1

(NPi−NOi)
2, (7.79)

where Nd is the total number of grid points in the whole domain. The score can

take on values between 0 and 1.

The FSS is computed with reference to the worst possible forecast when ob-

served and forecast events do not overlap.

FSS = 1− FBS
1

Nd
[∑

Nd
i=1 NP2

i +∑
Nd
i=1 NO2

i ]
. (7.80)

This score can take on values between 0 (no overlap) and 1 (perfect match).

7.4. Categorical verification scores

Based on the joint distribution of predicted and observed events/non-events cat-

egorical verification scores are appropriate for validating binary responses. The

joint distribution can be summarized by a categorical contingency table (Table

7.1) and the scores are computed based on its entries: hits, false alarms, misses

and correct negatives.
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7.4. Categorical verification scores

Table 7.1.: Contingency table
Observed

Forecast yes no total
yes hits false alarms forecast yes
no misses correct negatives forecast no

total observed yes observed no total

The hits indicate the number of times that predicted events are observed. The

false alarm gives the number of times that predicted events do not occur. Misses

indicate how many times observed events are not predicted and the correct nega-

tives are the number of times non-events are not predicted.

Based on this table, the verification scores used in this study are the following.

The frequency bias (BIAS),

BIAS =
hits+ false alarms

hits+misses
(7.81)

that provides the ratio between the number of forecast events and the observed

events. The perfect score is 1 and BIAS can range from 0 to ∞. When BIAS <1 the

model underestimates the frequency of events and for BIAS > 1 the frequency is

overestimated.

The probability of detection (POD),

POD =
hits

hits + misses
(7.82)

that provides the fraction of observed events that are correctly predicted. It ranges

from 0 (observations and predictions do not overlap) to 1 (all the observed events

are correct forecast).

The false alarm (FAR),

FAR =
false alarms

hits + false alarms
(7.83)

that gives the fraction of predicted events that are not observed. The score ranges

from 1 (no overlap between observations and predictions) to 0 (all predicted

events are observed).
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7. Verification methods

The odds ratio (OR),

OR =
(hits)(correct negatives)
(misses)(false alarms)

(7.84)

that provides the ratio of the odds of a hit to the odds of a false alarm. Usually the

logarithm of OR is used (Stephenson 2000). Higher log odds ratio indicate better

performance. Log odds ratio equal 0 indicates no skill.

The equitable threat score (ETS), or also called Gilbert skill score (GSS),

ET S =
hits−hits random

hits+misses+ false alarms−hits random
, (7.85)

where

hits random =
(hits+misses)(hits+ false alarms)

hits+misses+ false alarms+ correct negatives
, (7.86)

that measures how well the predicted event corresponds to the observed event,

accounting for hits due to random chance. It ranges from −1
3 to 1, where the latter

is the best statistic. ETS equal zero indicates no skill.

The last statistic computed from the contingency table and used in this study is

the Hanssen and Kuipers discriminant (HK), or also called true skill statistic (TSS)

or Peirce’s skill score (PSS),

HK =
hits

hits+misses
− false alarms

false alarms+ correct negatives
, (7.87)

It measures how well the predictions are able to separate "yes" events from "no"

events. It ranges from -1 to 1, where the latter is the best statistc. HK equal zero

indicates no skill.

7.5. Lorelogram

Lorelogram is an alternative to the variogram when working with categorical data

(Diggle 1990). It measures the dependence between correlated categorical re-

sponses. It was first used and proposed by Heagerty 1995 and it is based on

marginal pairwise log odds ratio. Higher values of the lorelogram indicate stronger
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7.5. Lorelogram

dependence. In this study the lorelogram is computed in space. Thus, it typically

decreases as the distance increases. This tool is used here to assess whether the

generated fields are able to represent the spatial dependence structure of precipi-

tation.
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8. Probability of precipitation

This chapter presents the probability of precipitation π(rrrp) obtained from the sim-

ulated sssp in the first step of HIRAIN. Results are shown here for precipitation ≥
0.1mm/h. This threshold presents the highest frequency of occurrence among the

thresholds throughout the year (Figure 8.2) and includes all possible intensities of

precipitation, from light to heavy. As this is also the resolution with what the syn-

optic stations measure precipitation, it is the threshold that defines precipitation

occurrence after all. Since the simulations for higher thresholds depend on the

good performance of HIRAIN for the first threshold, the evaluation of the BSGLM

to generate probability of precipitation ≥ 0.1 mm/h is shown here in more detail.

The probabilities of precipitation to exceed further thresholds are discussed later

in chapter 10.

8.1. Model evaluation

In step 1 of HIRAIN, the BSGLM is run for the hours with at least 3 training

synoptic stations measuring precipitation ≥ 0.1 mm/h. It provides 10 realisations

of sssp and the corresponding probabilities π(rrrp). Missing values are assigned to

these vectors for those hours with less than 3 stations with precipitation exceeding

the threshold.

In order to assess the performance of the BSGLM, π(rrrp) at 1384 validation sta-

tions is validated against the synoptic stations by means of the BSS. The climatol-

ogy of these stations is used as reference and it is based on hourly precipitation

data from 2004 to 2010. For the BSS, π(rrrp) is computed using the median sssp of

the posterior predictive distribution. For every hour with valid data a BSS is cal-

culated. The box-and-whisker plot in Figure 8.1 displays the variation in the BSS

within each month.

The full range of variation is shown by the whiskers representing the minimim
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Figure 8.1.: BSS for the probability of precipitation ≥ 0.1mm/h. The score is computed
hourly from December of 2010 to November of 2011. The dashed red line
indicates no skill.
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Figure 8.2.: Frequency of observed precipitation above a certain threshold at 1384 syn-
optic stations in the period between December of 2010 to November of
2011. The filled circles represent the mean frequency within a month and
the whiskers the corresponding standard deviation. The graph on the left
hand side has different y-axis than the graph on the right hand side.
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8.2. Categories of precipitation episodes

and maximum BSS. The bottom and top of the boxes indicate the first (Q1) and

third (Q3) quartile, respectively. The distance between them is the interquartile

range (IQR) and provides a measure of the dispersion of the score within a month.

The segment within the box is the median BSS and the open circles are the outliers.

These are BSSs, which are either greater than Q3 + 1.5IQR or lower than Q1−
1.5IQR.

In every month there is an improvement in the BS with respect to the score for

the climatological forecast. There is a skill in the predictions with respect to the

climatology. Based on the median of each box, the BSS ranges mostly from 0.4

to 0.6. An annual cycle can also be identified, although there is no significant

differences among the boxplots.

The skill score increases from December to March, decreases from April to the

summer months and starts increasing again afterwards until November. From Jan-

uary to March the highest BSSs with the lowest dispersion around the median are

found. During these months most of the precipitation events consisted of amounts

not greater than 2.5 mm/h (Figure 8.2). October presents similar behaviour in the

skill scores, however during this month precipitation≥ 5.0 mm/h is also observed.

Except for December of 2010, the lowest BSSs of the year are found in the late

spring and in the begining of summer. During this period there is high frequency

of precipitation with amounts ranging from 0.1 mm/h to amounts greater than 10

mm/h.

8.2. Categories of precipitation episodes

Three categories of precipitation cases with amount ≥ 0.1 mm/h are selected,

in order to further investigate which are the factors that play major roles in the

performance of the BSGLM and in the variability of the BSS throughout the year.

In these categories the following factors are considered for the investigation:

a) spatial distribution of the synoptic stations with precipitation, b) relationship

between observed precipitation and the covariate and c) the number of stations

with precipitation. The categories are identified as category A, category B and

category C.

In category A precipitation ≥ 0.1 mm/h is observed by 25 or more training sta
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8. Probability of precipitation

a) b) c)

Figure 8.3.: Example of the spatial distribution of the synoptic training stations in cate-
gories (a) A, (b) B and (c) C.

tions, which are well distributed over the country. In category B, precipitation

is observed by less than 25 stations, which are located over one region in Ger-

many. Opposite to category B, in category C less than 25 synoptic stations observe

precipitation, however they are wide distributed over the country.

An example of how the training stations are distributed in space within each

category is shown in Figure 8.3. It is important to keep in mind that this is only

an example. The stations do not need to be always located in western Germany in

category B, for instance. They can be concentrated on any region of the country.

The same is valid for categories A and C.

The precipitation cases studied in each category are visually selected. It is as-

sured that there are 4 precipitation events per month in each category, which

makes a total of 48 cases. Category A contains, however, only 46 cases, since

there were very few precipitation events during November of 2011 that satisfied

the requirements of category A. The selected cases are presented in table C.1 in

the appendix C.

The BSS for the precipitation cases within each category is investigated (Fig-

ures 8.4, 8.5 and 8.6). In general the cases show variability in the skill score in

every month. Although the boxplot in Figure 8.1 shows a tendency of the BSS

to decrease as the summer approaches, this behaviour is not seen in the cases of

the categories A, B and C. All three categories show that the skill score varies from
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Figure 8.4.: (Top) Number of training synoptic stations with precipitation ≥ 0.1 mm/h for
the cases in category A. The dashed black line represents the mean number of
stations with precipitation. (Bottom) BSS for the probability of precipitation
≥ 0.1 mm/h. The dashed green line is the mean BSS.

low to high values in every month.

For instance, while on December 05th, 2011 at 16 UTC in category A the BSS

is about 0.25, the next case on December 07th, 2011 at 19 UTC shows a much

higher skill score of 0.7. During the summer on June 06th, 2011 at 16 UTC the

BSS is about 0.22, whereas on June 08th, 2011 at 02 UTC the skill score is greater

than 0.7. A similar behaviour is seen during the other seasons of the year and in

the categories B and C as well.

On average, however, there is a difference in the BSS among the categories.

The skill score averaged over the precipitation cases in category A equals to about

0.6. The same value is obtained in category B, whereas in category C the average

is of about 0.4. Between category A and B there is not much difference in the

skill scores of the corresponding precipitation cases. Both categories show scores

ranging from 0.2 to 0.9. In category C, the BSS ranges from -0.15 to 0.71.

The studied cases indicate that the BSGLM performs well when precipitation is
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Figure 8.5.: Same as Fig. 8.4 but for precipitation cases in the category B.
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Figure 8.6.: Same as Fig. 8.4 but for precipitation cases in the category C.

observed by: a) more than 25 stations well distributed in space, and b) less than
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25 stations located over one region in Germany. The performance of the model

is less good when precipitation is observed by less than 25 stations that are wide

distributed over the country.

8.3. Cases

In order to investigate further why the model performs differently for precipitation

cases within the same category, two cases of each category are studied in more

detail. These cases present high and low BSS, respectively. The realisations of

π(rrrp) are assessed and the correlation is computed between observed precipitation

and IRBT at the training synoptic stations.

8.3.1. Category A

The precipitation events on May 15th, 2011 at 13 UTC and on June 22nd, 2011 at

16 UTC are selected within the category A. For the former the BSS is equal 0.25,

whereas for the latter this score amounts 0.6. (Table 8.1).

During the precipitation event occurred on May 15th, 2011 at 13 UTC, 29 train-

ing synoptic stations distributed from northeastern to southwestern Germany mea-

sured precipitation amount ≥ 0.1 mm/h. This is shown by the big diamonds in

Figure 8.7 (top left). The small diamonds represent the training stations with

precipitation < 0.1 mm/h. The IRBT is shown in colors in the same figure. The

covariate ranges from 224.5 K to 283.3 K at the training synoptic stations. The

remaining figures are three realisations of the probability of precipitation ≥ 0.1

mm/h simulated with the BSGLM. The validation synoptic stations with precipita-

tion ≥ 0.1 mm/h (< 0.1 mm/h) are shown in those same figures by the red (grey)

dots.

The realisations show that the north and the southwest part of Germany are

the regions with the highest probabilities of precipitation, with π(rrrp) ≥ 0.8. Many

of the validation synoptic stations with precipitation ≥ 0.1 mm/h (red dots) are,

however, located outside these regions, where the simulated probability is π(rrrp)

≤ 0.1. In a small area near the southwestern border of Germany, the validation

stations do not show precipitation, although the probability is π(rrrp) ≥ 0.8. The
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8. Probability of precipitation

Table 8.1.: Selected precipitation cases in category A and the corresponding BSS.
Cases BSS
15. May 2011, 13 UTC 0.25
22. June 2011, 16 UTC 0.6

Figure 8.7.: (top left) IRBT on May 15th, 2011 at 13 UTC from MSG given in kelvins (in
colors). The big (small) diamonds represent the training synoptic stations
with precipitation ≥ 0.1 mm/h (< 0.1 mm/h). The remaining maps are real-
isations of the probability of precipitation ≥ 0.1 mm/h. The red (grey) dots
represent the validation synoptic stations with precipitation ≥ 0.1 mm/h (<
0.1 mm/h).
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8.3. Cases

Figure 8.8.: Same as Fig. 8.7 but for precipitation on June 22nd, 2011 at 16 UTC.

disagreement between the validation stations and the predictions favours low BSS.

In order to investigate why the BSGLM performed poorly in this case, the cor-

relation coefficient is computed between the precipitation amount at the training

stations and the IRBT at the same locations. The idea is to verify whether the

model’s performance improves (worsens) given the agreement (disagreement) be-

tween the observations and the covariate. The coefficient and the summary of the

significance test is presented in Appendix D.

The correlation coefficient is very low and equal -0.16. The correlation is ex-

pected to be negative since precipitation amount increases as the IRBT decreases

and vice-versa. However, since the correlation is not significant at the 95% signifi-

cance level, this association might also happen by chance in this case. Besides, the

fact that the correlation is low indicates that low IRBT is not very often associated
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with precipitation at the stations and vice-versa. The lack of agreement between

station information and IRBT might influence the performance of the BSGLM.

For the second precipitation case selected in category A, namely the event oc-

curred on June 22nd, 2011 at 16 UTC there are 58 training stations with precipi-

tation amount ≥ 0.1 mm/h (Figure 8.8). The IRBT ranges from 213.1 K to 279.3

K at the training station locations.

The realisations show that most of the validation stations with precipitation ≥
0.1 mm/h are located in regions with π(rrrp) ≥ 0.8 and most of the stations with

no precipitation are located in areas with π(rrrp) ≤ 0.1. For a large number of

locations, the simulated probability agrees well with the observations. This seems

to favour a high BSS.

There are regions, however, where high probability of precipitation is simulated

at locations where the validation stations do not observe precipitation. This is

shown by the first realisation (Figure 8.8 (top right)). The probability of precipita-

tion is π(rrrp) ≥ 0.8 in northwestern Germany, while the validation stations do not

measure precipitation. The opposite pattern is found in southeastern Germany,

where very low probability (π(rrrp) ≤ 0.1) is simulated, but the synoptic stations

measured precipitation (Figures 8.8 (bottom)). For this area, the covariate pro-

vides low values of IRBT, but there is a very reduced number of training stations

and most of them do not measure precipitation. The fact, that the validation

stations are not in good agreement with the predicted probabilities in this area

does not mean that the model has bad performance, but that the data obtained

from the training stations do not provide enough information for the region. The

disagreement in those regions might influence the value of the BSS.

In both areas, the northwest and southeast of Germany, where the simulations

do not agree with the validation stations are the areas where the observations and

the covariate do not agree. In the wide region extending from the north to the

very southweast there is very good agreement between the simulations and the

observations. This is also the area for which observed precipitation is associated

with very low IRBT. This is confirmed by the significant correlation coefficient of

-0.3 between precipitation and IRBT.
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Table 8.2.: Selected precipitation cases in category B and the corresponding BSS.
Cases BSS
14. December 2010, 13 UTC 0.19
04. July 2011, 08 UTC 0.73

Figure 8.9.: Same as Fig. 8.7 but for precipitation on December 14th, 2010 at 13 UTC.

8.3.2. Category B

The precipitation cases selected in this category occurred on December 14th, 2010

at 13 UTC and on July 04th, 2011 at 08 UTC. The BSS obtained for these events

amounts to 0.19 and 0.73, respectively (table 8.2).

On December 14th, 2010 at 13 UTC there are 17 training stations with pre-

cipitation ≥ 0.1 mm/h. The IRBT at the station locations ranges from 230.1 K to
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Figure 8.10.: Same as Fig. 8.7 but for precipitation on July 04th, 2011 at 08 UTC.

267.8 K (Figure 8.9). Both realisations in the bottom of Figure 8.9 show probabil-

ity π(rrrp) ≥ 0.8 in the border region of the northeast area. However, most of the

validation stations in this region do not show precipitation occurrence.

All three realisations show very low probability of precipitation in the southeast

region, where many validation stations observed precipitation. The simulations

agree better with the validation stations in the central-east area, where there is

a greater aggregation of training synoptic stations. The northeast and southeast

area are not very well covered by training stations. Hence, not sufficient infor-

mation from observations are provided for that region. Another factor that might

influence the performance of the model is the absence of significant correlation

between precipitation and IRBT (see Appendix D). Beside that, the fact that ob-
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servations from outside the country are not used in the model might play a role in

the simulations as well.

For the case on July 04th, 2011 at 08 UTC, 23 training stations observed precip-

itation ≥ 0.1 mm/h and the IRBT at the observation locations ranges from 226.6

K to 289.0 K (Figure 8.10 (top left)). The observations and IRBT are in very good

agreement with a significant correlation of -0.67. The high coefficient indicates

that precipitation is associated with low IRBT. The average IRBT found at loca-

tions with precipitation ≥ 0.1mm/h is about 245.3 K and for stations without

precipitation the IRBT shows higher mean of about 277.6 K. The good agreement

between observed precipitation and the covariate seems to favour the good perfor-

mance of the model. Probability π(rrrp) ≥ 0.8 is simulated in the northeast region,

where precipitation is observed by the synoptic stations. In the areas without

precipitation the probability is π(rrrp) ≤ 0.1.

8.3.3. Category C

In this category precipitation on June 05th, 2011 at 16 UTC and on October 19th,

2011 at 15 UTC is investigated in more detail. For the former the BSS equals 0.33

and for the latter the skill score is 0.44 (table 8.3).

On June 5th, 2011 at 16 UTC, 19 training stations observed precipitation ≥
0.1mm/h and the IRBT at the observation locations ranges from 207.8 K to 294.9

K. At the station locations with precipitation the average IRBT is about 232.9 K,

whereas at the remaining stations this amounts 263.4 K. (Figure 8.11 (top left)).

The correlation coefficient is significant and equal -0.24. However, the fact that

the value is low indicates that precipitation occurrence is not always associated

with low IRBT at the training station locations.

HIRAIN generated probabilities π(rrrp) ≥ 0.8 for the majority of the areas where

the validation stations detected precipitation. However, there are regions where

this is not the case, as in the central-east area, where some realisations simulated

probabilities π(rrrp)≤ 0.1, while the validation stations observed precipitation. This

area is not well covered by the training stations (Figure 8.11 (top left)). Besides,

the large distance among them in the entire region going from western to the

central-eastern Germany does not favour the predictions. The region in the west

part of Germany presents prob ability π(rrrp) ≥ 0.8, while the validation stations do
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Table 8.3.: Selected precipitation cases in category C and the corresponding BSS.
Cases BSS
05. June 2011, 16 UTC 0.33
19. October 2011, 15 UTC 0.44

Figure 8.11.: Same as Fig. 8.7 but for precipitation on June 05th, 2011 at 16 UTC.

not observe precipitation. A denser network of training stations might improve

predictions in this case.

For the precipitation case on October 19th, 2011 at 15 UTC, 24 stations mea-

sured precipitation and the covariate at the observation locations ranges from

227.2 K to 277.3 K (Figure 8.12 (top left)). The agreement between the probabili-
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Figure 8.12.: Same as Fig. 8.7 but for precipitation on October 19th, 2011 at 15 UTC.

ties and the observations at the validation stations is better in southern than in

northwestern Germany. In the northwest, although observations and probabilities

agree, there are also validation stations with precipitation outside the area with

probability π(rrrp) ≥ 0.8. Instead, they are located in areas with probability π(rrrp) ≤
0.1. The lack of significant correlation between precipitation and IRBT (Appendix

D) might also contribute to decrease the performance of the model in some areas.

From the cases investigated in all three categories, the results suggest that the

performance of HIRAIN is influenced by the number of stations with precipitation

≥ 0.1 mm/h, their spatial distribution and by the relationship between precipita-

tion and covariate.

The more negative the correlation coefficient is between precipitation and IRBT,

the better are the predictions with the BSGLM and vice-versa. Beside that, the
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greater the number of training stations with precipitation and the shorter the dis-

tance among them in space, the better the performance of the model.

During DJF the precipitation is mostly originated from stratiform cloud systems.

These are usually well organized and present larger extensions than the convec-

tive precipitating systems. Thus, stratiform precipitation is often well distributed

spatially. These facts associated with low IRBT comprehend the conditions found

in category A that leads to good performance of the model.

During other seasons, specially during summer, the number of convective pre-

cipitation systems increases. Such precipitation events are usually more local and

associated with low IRBT, which are the characteristics found in category B that

also favour good performance of the BSGLM. However, the model will perform as

in category C in the presence of precipitation at only a few locations with small

spatial coverage and large geographical distance among them. In this scenario

predictions tend to be less good than when characteristics of category A and B are

present.

The fact that high and low BSS are found in the categories A, B and C (Figures

8.4 to 8.6) and that the BSGLM presents better performance during winter than

during the other seasons (Figure 8.1) indicates that favorable conditions for high

performance of the BSGLM appear more often during winter. The tendency of

the BSS to decrease in the summer months suggests that unfavorable conditions

appear more frequently in that period than during other seasons.
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9. Occurrence/non-occurrence of
precipitation

This chapter presents the results obtained from step 2 of HIRAIN, namely the

occurrence/non-occurrence of precipitation yp. The focus here is on the fields

generated for precipitation ≥ 0.1 mm/h. Fields for further thresholds will be

presented in chapter 10.

Occurrence/non-occurrence of precipitation is generated through BNS and THR.

Since THR requires a probability threshold (Pt) to produce the fields, the chapter

starts showing how to determine Pt . This is followed by the assessment of the

HIRAIN’s performance by validating yyyp from BNS and THR, respectively against

radar estimates.

9.1. Probability threshold Pt

Realisations of probability of precipitation ≥ 0.1 mm/h are validated against the

validation synoptic stations (Figure 3.2 (right)), in order to obtain Pt .

To this end, the realisations of π(rrrp) are converted to binary fields. First the

probability of 0.1 is used as a threshold. One is assigned to the grid points where

π(rrrp) is ≥ 0.1 and zero elsewhere. From the binary fields, an EP is computed by

averaging the 10 realisations at every hour (equation 7.74). Precipitation amount

of the validation stations are also converted to binary information, namely BPo.

One is assigned to stations with precipitation ≥ 0.1 mm/h and zero elsewhere.

Lastly, BPo is compared to EP through the computation of an EBS (equation 7.75).

The EBS is computed at every hour with valid data in the period from December

of 2010 to November of 2011. The same logic is followed for the other proba-

bilities from 0.2 up to 0.9. The scores are shown by the box-and-whisker plot in
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Figure 9.1.: EBS for precipitation ≥ 0.1 mm/h. Probabilities ranging between 0.1 and 0.9
are used as threshold to define occurrence/non-occurrence of precipitation.
EBS is computed at every hour with valid data in the period from December
of 2010 to November of 2011.

Figure 9.1. This shows how the EBS varies for each probability used as a threshold

to define occurrence/non-occurrence of precipitation. The whiskers show the min-

imim and maximum EBS. The bottom and top of the boxes indicate the quartiles

Q1 and Q3, respectively. The segment within the box is the median EBS and the

open circles are the outliers.

The probabilities between 0.4 and 0.5 are the best to define occurrence/non-

occurrence of precipitation≥ 0.1 mm/h. Although the differences among the EBSs

are not significant, the score is the closest to zero and has the lowest uncertainties

for the probabilities 0.4 and 0.5.

A contingency table is computed, in order to further investigate which probabil-

ity is the best to be used as threshold to generate yyyp with THR. As before, binary

fields are produced by thresholding π(rrrp) using the probabilities from 0.1 to 0.9.

These fields are compared to the observed binary information from the validation

stations. A separate contingency table is set up for each probability used to gen-

erate the binary fields. The categorical statistics POD, FAR, BIAS and log odds ratio
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Figure 9.2.: Log odds ratio, POD, FAR and BIAS for precipitation ≥ 0.1 mm/h. Prob-
abilities ranging between 0.1 and 0.9 are used as threshold to define
occurrence/non-occurrence of precipitation. The categorical statistics are
computed at every hour with valid data in the period from December of 2010
to November of 2011. The red line in the bottom right figure indicates BIAS
equal 1.

are computed from these tables at every hour with valid data. Figure 9.2 shows

the boxplots of them.

The Log odds ratio shows a median of approximately 2.5 for all probabilities.

The fact that this statistic has value greater than zero indicates that the number

of correct predictions is greater than the number of false alarms. The ratio does

not change with the probability used as threshold. The number of correct detec-

tions increases on the costs of the increase in false alarms when the probability

varies from 0.1 to 0.9. This statistic alone do not provide valuable information

for the selection of Pt . The remaining statistics (POD, FAR and BIAS), however,

change significantly with the probability. Their values decrease as the probability

increases.

The POD is the best for the probability of 0.1 (median equal 0.8), however, on
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9. Occurrence/non-occurrence of precipitation

the cost of a high value of FAR (median of about 0.6). The opposite is seen for the

probability of 0.9, for which the best FAR (with median around 0.25) is given on

the cost of the worst POD (with median of 0.15). The most appropriate probability

to generate yyyp with THR should provide the highest possible POD with the lowest

possible FAR.

BIAS values show that probabilities greater than 0.4 used as threshold under-

estimate the number of precipitation occurrences in comparison with the obser-

vations. Probabilities lower than 0.3, however, overestimate them. Probabilities

between 0.3 and 0.4 are most appropriate to detect precipitation occurrences,

since the median of the BIAS is close to 1.

From the joint analysis of the EBS, POD, FAR and BIAS, the probability of 0.4 is

selected for Pt . This provides the best statistics when occurrence/non-occurrence

of precipitation ≥ 0.1 mm/h is generated with THR.

9.2. Validation against meteorological radar

Since the final product obtained by HIRAIN aims at replacing radar estimates in

the assimilation scheme of the COSMO model, the fields of yyyp are compared with

radar estimates. It is important, however, to keep in mind that radar does not

provide observations but remotely-sensed estimates. On one hand, error sources

such as the attenuation of the radar beam, beam blockage and clutter may intro-

duce large uncertainties in the precipitation estimates. On the other hand, the

spatial coverage of radar allows for a better estimation of the spatial structure and

dependence of precipitation than raingauges do.

Hourly radar precipitation is aggregated on a grid with 4 km spatial resolution

and coverted to a binary field. An one is assigned to the grid points with precip-

itation ≥ 0.1 mm/h and zero elsewhere. Fields of yyyp obtained through THR are

produced by thresholding π(rrrp) at the above defined value of Pt=0.4. The BNS

samples from the Bernoulli distribution given π(rrrp) at each grid point to provide

yyyp.

The realisations from HIRAIN are compared to radar for the precipitation cases

in the categories A, B and C. A contingency table is set up for comparison of THR

and BNS with radar, respectively. The categorical statistics BIAS, POD, FAR, log
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9.2. Validation against meteorological radar

odds ratio, ETS and the HK are computed from these tables. It is also investi-

gated whether HIRAIN is able to reproduce the spatial dependence structure of

precipitation shown by radar.

9.2.1. Category A

9.2.1.1. Categorical statistics

In general THR leads to higher BIAS, POD, log odds ratio, ETS and HK than BNS

(Figures 9.3 and 9.4). However, THR and BNS produce similar values of FAR.

For most cases BIAS varies between 0.5 and 1.5 for both methods. The POD

ranges between 0.3 and 0.9, indicating that 30% to 90% of the occurrence of

precipitation ≥ 0.1 mm/h is detected by the realisations. This is obtained on the

costs of a FAR that ranges mostly between 0.1 and 0.5, i.e., 10% to 50% of the

predicted occurrence of precipitation is not observed by radar.

The log odds ratio, ETS and HK are greater than zero for all precipitation events

in the category. The former indicates that the odds of making a hit is greater

than the odds of making a false alarm. The ETS provides how well the predicted

occurrence of precipitation corresponds to the observation adjusted for hits to

happen by chance. This reaches up to 0.3. The HK indicates that the predictions

are able to separate between occurrence and non-occurrence of precipitation and

reaches up to 0.4.

In order to exemplify the results shown by the categorical statistics, a few inter-

esting cases will be described below.

On November 27th, 2011 at 15 UTC the realisations of yp produced the highest

BIAS in the category A (BIAS about 2.5). The POD is approximately 0.8 on the

cost of a FAR that amounts to 0.7. The ability to predict precipitation occurrence,

accounting for hits to happen by chance produced an ETS < 0.1, while the ability

to separate between occurrence and non-occurrence of precipitation shows a HK of

about 0.15. During this event, the training synoptic stations measured occurrence

of precipitation ≥ 0.1 mm/h at many more locations than radar (not shown).
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Figure 9.3.: BIAS, POD and FAR for the precipitation cases in category A. The categori-
cal statistics are computed by comparing radar occurrence/non-occurrence of
precipitation ≥ 0.1 mm/h to 10 realisations obtained with THR (blue) and to
10 realisations from BNS (red). The filled squares represent the average over
10 realisations and the whiskers, the standard deviation.
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Figure 9.4.: Same as Fig. 9.3 but for the categorical statistics log odds ratio, ETS and HK.

Since the predictions are conditioned on the synoptic stations only and do not

include radar information, the generated fields of yyyp agree better with the stations

than with radar. Precipitation occurrence is overestimated in comparison to radar
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9. Occurrence/non-occurrence of precipitation

not because of bad performance of the model, but because the observations from

stations and radar do not agree.

The precipitation event on May 31st, 2011 at 21 UTC shows an example with

good results for all categorical statistics. BIAS is of about 1 for THR and BNS.

The realisations of yp predict about 80% (THR) and 90% (BNS) of the precipita-

tion occurrences observed by radar. The false alarms produced by both methods

amounts to 20%. The log odds ratio is greater than zero, amounting to 1.7 for

THR and 1.3 for BNS. The ETS and HK amounts to 0.2 and 0.3, respectively. For

this event, radar and synoptic stations observed precipitation ≥ 0.1 mm/h in the

same region, which comprehends a large area in southern Germany and a smaller

region in the northeast part of the country (not shown). The covariate also agrees

well with the observed precipitation.

The precipitation event on June 06th, 2011 at 16UTC shows a case for which

all categorical statistics presented less good results. BIAS is approximately 0.5,

the realisations predict only 30% of the observed precipitation occurrences on the

cost of about 30% false alarm. Log odds ratio is approximately 0.6 and there is a

slight skill for correct predictions, accounting for hits to happen by chance (ETS ∼
0.08). The realisations present also weak ability to separate between occurrence

and non-occurrence of precipitation ≥ 0.1 mm/h. This is indicated by the low

value of HK of approximately 0.1. During this event precipitation ≥ 0.1 mm/h is

distributed over most part of the country. However, radar observed precipitation

over larger areas than the synoptic stations (not shown). The covariate shows low

IRBT in larger areas than the rainy areas observed by the stations.

9.2.1.2. Spatial dependence structure

Fields of occurrence/non-occurrence of precipitation ≥ 0.1 mm/h generated with

THR and BNS are presented for the cases on June 22nd, 2011 at 16 UTC and on

May 15th, 2011 at 13 UTC (selected in chapter 8). The case in June is shown here,

whereas the event occurred in May is shown in appendix D.

Table 9.1 summarizes the categorical statistics for the event in June and Fig-

ure 9.5 shows the area with precipitation observed by radar (in shaded) and two

realisations obtained with THR and BNS, respectively.
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9.2. Validation against meteorological radar

Table 9.1.: Categorical statistics for the precipitation case on June 22nd, 2011 at 16 UTC.
Statistics THR BNS

BIAS 0.85 0.77
POD 0.65 0.59
FAR 0.23 0.23

Log OR 1.09 0.95
ETS 0.14 0.11
HK 0.26 0.23

Figure 9.5.: a) Occurrence/non-occurrence of precipitation ≥ 0.1 mm/h on June 22nd,
2011 at 16 UTC observed by meteorological radar. Figures b) and c) show two
realisations obtained with THR and figures d) and e) present two realisations
from BNS.

89



9. Occurrence/non-occurrence of precipitation

●

●

●

●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 100 200 300 400 500

−
2

0
1

2
3

4
5

Distance (km)

Lo
re

lo
gr

am

a
●

●

●

●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 100 200 300 400 500

−
2

0
1

2
3

4
5

Distance (km)

Lo
re

lo
gr

am

b

Figure 9.6.: Lorelogram for the precipitation case on June 22nd, 2011 at 16 UTC. The
black curve is the radar lorelogram and the grey shaded area represents the
lorelograms computed for 50 realisations of occurrence/non-occurrence of
precipitation ≥ 0.1 mm/h obtained with a) THR and b) BNS.

The occurrence of precipitation tends to be slightly underestimated by HIRAIN

(BIAS < 1). Both methods tend to fail to reproduce the large rainy area in the

eastern south of Germany. This behaviour is represented by the realisations c)

and e) in Figure 9.5. This is probably due to a discrepancy between radar and

station observations, which in contrast to radar did not measure precipitation in

this region.

The POD indicates that THR is able to detect 65% of the precipitation occur-

rences observed by radar, while BNS detects 59% of them. This is, however, ob-

tained on the cost of 23 % false alarm for BNS and THR. In both methods, the

odds of making a hit is greater than the odds of making a false alarm. They are

also able to detect occurrence of precipitation accounting for hits to happen by

chance and to separate between occurrence and non-occurrence of precipitation

≥ 0.1 mm/h (table 9.1).

Figure 9.5 reinforces what is shown by the categorical statistics: THR has better

performance in comparison to BNS. The fields generated with THR are more ho-

mogeneous and similar to radar than those produced by BNS. The noisier spatial

structure obtained from BNS is due to the fact that the method does not account

for spatial dependence in the process of occurrence/non-occurrence of precipita-

tion. Opposite to BNS, THR thresholds the fields of sp, which in turn accounts for
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9.2. Validation against meteorological radar

the spatial dependence in the latent Gaussian process and thus, produces more

homogeneous fields.

The spatial dependence structure is further investigated by the means of a lorel-

ogram (Figure 9.6). The radar field has a large log odds ratio of about 4 for

neighbor locations. This large dependence is well reproduced by THR, whereas

BNS largely underestimates nearby spatial dependence. As already suggested vi-

sually in Figure 9.5, this shows that ignoring spatial dependence at nearby lo-

cations is less appropriate than assuming conditional dependence to generate

occurrence/non-occurrence of precipitation.

Opposite to BNS, THR tends to overestimate the dependence at distances be-

tween 30 km and 150 km approximately. This is, however, not a general feature

of THR, but a particularity of this precipitation case. During other times, the lorel-

ograms for THR largely differ (not shown). The underestimation by BNS of the

nearby dependencies, however, is general.

9.2.2. Category B

9.2.2.1. Categorical statistics

The categorical statistics for the precipitation cases in category B show more vari-

ability and reach also higher values in comparison to the cases in category A (Fig-

ures 9.7 and 9.8).

There are cases in category B, for which the realisations detect less than 30% of

the occurrences observed by radar, whereas in category A POD is equal or greater

than 30% for all events. The FAR can reach up to 80% in category B and the log

odds ratio, ETS and HK showed also negative values.

The precipitation event on January 18th, 2011 at 06 UTC is a case that shows

good BIAS, however with poor results for the other categorical statistics. The

predicted occurrences of precipitation is very similar to the observations (BIAS of

about 1), however they are not necessarily located in the same region, as indi-

cated by a POD of about 0.35 and FAR of 0.65. The ETS, HK and log odds ratio

show values very near to zero. Thus, there is poor ability to predict precipitation

occurrences, accouting for hits due to chance and to separate between occurrence
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Figure 9.7.: Same as Fig. 9.3 but for the precipitation cases in category B.
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Figure 9.8.: Same as Fig. 9.3 but for the precipitation cases in category B and for the
categorical statistics log odds ratio, ETS and HK.

and non-occurrence of precipitation. Besides, the odds of making a hit is slightly

greater than the odds of making a false alarm. During this case, 10 synoptic
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9. Occurrence/non-occurrence of precipitation

stations located in western Germany observed precipitation ≥ 0.1 mm/h. The

covariate is in good agreement with the stations. However, radar observed precip-

itation in a smaller region (not show). Besides, radar detects precipitation in the

southeast part of the country while the stations do not.

Opposite to that is seen on May 21st, 2011 at 15 UTC for which all categorical

statistics are poor. BIAS is about 0.3, POD is not larger than 0.2 and FAR is approx-

imately 0.55. There is poor skill regarding the correctly predicted yp, accounting

for hits to happen due to chance (ETS near zero). The ability to separate between

occurrence and non-occurrence is also poor (HK near zero). Besides, the low log

odds ratio shows that the odds of making a hit is not much higher than the odds of

making a false alarm. Radar observed precipitation in a much larger area than the

stations (not shown). The covariate is in better agreement with radar than with

the stations as well. In this case, the categorical statistics are poor due to poor

information given as input to the model.

The precipitation occurrence on November 26th, 2011 at 24 UTC shows the

highest BIAS in category B (about 2.5). The POD is approximately 0.6 and 0.75 for

BNS and THR, respectively on the costs of a FAR of 0.75. The correct predictions

accounting for hits to happen by chance produced ETS of about 0.15. There is

good ability to differentiate between occurrence and non-occurrence as showed

by the high HK of about 0.4. The log odds ratio shows values of about 1.5.

Radar detects precipitation in a smaller area than the stations (not shown). The

covariate does not provide good information to the model. There is not much

difference in the IRBT between rainy and non-rainy areas. For this event, MCMC

simulations show poor convergence of the chains, what might results in less good

predictions.

9.2.2.2. Spatial dependence structure

The spatial dependence structure is investigated in more detail for the precipita-

tion events on July 4th, 2011 at 08 UTC (Figure 9.9) and on December 14th, 2010

at 13 UTC (in appendix D). For the event in July, the rainy area observed by the

synoptic stations agrees with the rainy area detected by radar. The correspondent

categorical statistics are summarized in table 9.2.

Although the differences in the statistics between THR and BNS are small, THR

94



9.2. Validation against meteorological radar

Table 9.2.: Categorical statistics for the precipitation case on July 04th, 2011 at 08 UTC.
Statistics THR BNS

BIAS 1.2 1.07
POD 0.79 0.69
FAR 0.34 0.36

Log OR 1.82 1.36
ETS 0.25 0.19
HK 0.39 0.32

Figure 9.9.: Same as Fig. 9.5 but for the precipitation case on July 04th, 2011 at 08 UTC.
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Figure 9.10.: Same as Fig 9.6 but for the precipitation case on July 04th, 2011 at 08 UTC.

presents better values than BNS, except for BIAS. THR predicts 79% of the ob-

served occurrences on the cost of 34% of false alarm, whereas BNS has a lower

POD of 69% on the cost of a higher FAR of 36%. This is also notable by comparing

the realisations in Figure 9.9 with radar. THR agrees better with radar than BNS.

There is skill in the realisations regarding the correct predictions, accounting

for hits to happen by chance. This is given by ETS of 0.25 for THR and and

0.19 for BNS. The ability to separate between occurrence and non-occurrence of

precipitation is also best when THR is used (HK of 0.30 for THR and 0.32 for

BNS).

The spatial structure observed by radar is in general very well captured by the

realisations in both methods (Figure 9.10). THR is able to reproduce the spatial

structure at all distances, whereas BNS disagrees with radar at nearby locations

and at approximately 420 km. It underestimates the dependency at nearby loca-

tions and overestimates them at about 420 km. The latter is, however, a particu-

larity of this precipitation case. For most distances, radar can be considered as one

realisation of HIRAIN, regardless of which method is used to generate the fields

occurrence/non-occurrence.
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9.2. Validation against meteorological radar

9.2.3. Category C

9.2.3.1. Categorical statistics

The ability of HIRAIN to correctly predict precipitation occurrences observed by

radar decreased in category C in comparison to categories A and B. POD is not

greater than 0.6 here (Figure 9.11). The ETS and HK statistics also presented

lower values in category C than in categories A and B (Figure 9.12). ETS ranges

from 0 to 0.2, while HK reaches up to 0.4. More precipitation events in category C

show log odds ratio, ETS and HK near zero than in categories A and B. Thus, the

odds of making a hit is more often comparable to the odds of making a false alarm

in category C than in the categories A and B. The correct predictions by chance

increase and the ability to differentiate between occurence and non-occurrence

decreases in category C compared to the others. FAR is comparable to category B

and ranges mostly from 0.2 to 0.7.

The precipitation event on March 09th, 2011 at 20 UTC shows an example,

where BIAS is approximately 1, however with poor POD and FAR. The POD is

about 0.2 and FAR is approximately 0.9. In this case, the number of grid points

with observed and predicted precipitation agrees, however the locations with ob-

served and predicted precipitation is different. The predictions show precipitation

in a different region than radar (not shown). This is because the training stations

observed precipitation at different locations than radar does. Since ETS and HK

are both nearly zero, there is not much skill to predict precipitation occurrence

accounting for hits to happen by chance and to separate occurrences from non-

occurrences.

On March 13th, 2011 at 22 UTC the predictions are strongly underestimated in

comparison to radar. BIAS is approximately 0.3, the POD is about 0.1 and the FAR

amounts to 0.4. The log odds ratio is greater than zero, whereas ETS and HK are

nearly zero. In this case the strong disagreement between predictions and radar is

due to the fact that only 9 training stations observed precipitation ≥ 0.1 mm/h in

the western south of Germany, while radar detected precipitation for a larger area

in the west part of the country (not shown).

The event on September 04th, 2011 at 16 UTC presents good categorical statis-

tics. POD is of about 0.5, FAR approximately 0.1 and the log odds ratio is the

highest in the category C (near 2). The ETS and HK amount to 0.2 and 0.4, respec
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9. Occurrence/non-occurrence of precipitation
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Figure 9.11.: Same as Fig. 9.3 but for the precipitation cases in category C.
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Figure 9.12.: Same as Fig. 9.3 but for the precipitation cases in category C and for the
categorical statistics log odds ratio, ETS and HK.

tively. The occurrences of precipitation ≥ 0.1 mm/h is, however, underestimated

by HIRAIN (BIAS ∼ 0.5).
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9. Occurrence/non-occurrence of precipitation

For this event radar shows precipitation ≥ 0.1 mm/h in a large area in the

western Germany extending from north to south (not shown). The training sta-

tions are in good agreement with radar in the south, whereas the agreement

tends to decrease towards the north. Radar presents a larger rainy area there

than the stations. The covariate shows stronger agreement with the training sta-

tions in the south than in the north area. From these observations, the predicted

occurrence/non-occurrence of precipitation ≥ 0.1 mm/h shows good agreement

with radar in the southern. In the northern the predictions underestimate the

radar observations (not shown).

9.2.3.2. Spatial dependence structure

A field of occurrence/non-occurrence of precipitation ≥ 0.1 mm/h in category C

is shown for October 19th, 2011 at 15 UTC (Figure 9.13) and for June 05th, 2011

at 16 UTC (appendix D). The correspondent categorical statistics for October are

summarized in table 9.3.

THR and BNS predict precipitation occurrence ≥ 0.1 mm/h in southern and

northwestern Germany, however, the locations are displaced in comparison to

radar. As shown in chapter 8 there is not significant correlation between precipi-

tation observed by the training stations and the covariate, which might contribute

to the disagreement between the simulated fields and radar as well.

The categorical statistics for this case confirm what is seen visually. Precipitation

occurrence is underestimated by both methods (BIAS < 1).

THR and BNS predict correctly only 38% and 36%, respectively of the radar

observations on the costs of a false alarm of 38% and 40%, respectively. The odds

of making a hit is greater than the odds of making a false alarm. However, there

is poor ability to predict precipitation occurrence, accouting for hits to happen by

chance. The ability to separate the occurrences from the non-occurrences is given

by a HK of 0.17 for THR and 0.14 for BNS.

Even though the predicted regions with precipitation≥ 0.1 mm/h do not exactly

match the rainy regions observed by radar, the spatial dependency structure of

radar is well reproduced by THR and BNS (Figure 9.14). It is emphasized once

more the difference between both methods at the nearby locations.
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9.2. Validation against meteorological radar

Table 9.3.: Categorical statistics for the precipitation case on October 19th, 2011 at 15
UTC.

Statistics THR BNS
BIAS 0.62 0.60
POD 0.38 0.36
FAR 0.38 0.40

Log OR 0.83 0.71
ETS 0.09 0.08
HK 0.17 0.14

Figure 9.13.: Same as Fig. 9.5 but for the precipitation case on October 19th, 2011 at 15
UTC.
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9. Occurrence/non-occurrence of precipitation
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Figure 9.14.: Same as Fig. 9.6 but for the precipitation case on October 19th, 2011 at 15
UTC.
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10. HIRAIN extended to multiple thresholds

HIRAIN is now extended to thresholds of precipitation amounts of 0.5 mm/h, 1.0

mm/h, 2.5 mm/h, 5.0 mm/h, 7.0 mm/h and 10.0 mm/h.

HIRAIN starts with the threshold of 0.1 mm/h and simulates sssp and π(rrrp) (step

1) as well as realisations of yyyp (step 2) of the 0.1 mm/h threshold process. The

procedure is then repeated for the next lowest threshold, namely 0.5 mm/h. The

estimation of the posterior distribution is independent of the estimates of the lower

threshold. The observations yyyo are now binary values obtained by assigning 1

when rainfall amount is ≥ 0.5 mm/h and 0 otherwise. The prior distributions for

βββ , σ2 and φ are the same as used for the threshold, thr=0.1 mm/h and discussed

in Appendix A.

Occurrence/non-occurrence of precipitation above 0.5 mm/h is simulated only

at the grid points where there is precipitation ≥ 0.1 mm/h. Threshold exceedance

of 0.5 mm/h may only occur where the threshold of 0.1 mm/h is exceeded. This

assures that the fields are consistent throughout the thresholds, although they

are generated independently. This procedure is further repeated until HIRAIN

produces fields yyyp of every threshold selected in this study.

Since the greatest differences in the ability of HIRAIN to predict yyyp in terms of

the BSS is among the precipitation thresholds of 0.1 mm/h, 2.5 mm/h and 7.0

mm/h, the evaluation of HIRAIN is presented here only for precipitation ≥ 2.5

mm/h and ≥ 7.0 mm/h.

The amount of 2.5 mm/h corresponds to moderate rain and occurs less often

than the events with lower amounts of precipitation (Figure 8.2). From the thresh-

olds selected in this study, 2.5 mm/h is also the greatest threshold for which pre-

cipitation occurrences can still be found in most months during the year.

The occurrences of precipitation ≥ 7.0 mm/h are mostly concentrated on the

summer months. The spatial distribution of the synoptic stations with precipita-

tion also becomes reduced. Beside that, when this scenario meets the condition,
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10. HIRAIN extended to multiple thresholds

where the rainy stations are wide distributed over the country, the performance of

HIRAIN tends to decrease. These are the characteristics of category C presented in

chapter 8. Thus, it is expected that the higher the threshold of precipitation, the

more difficult it is to generate yyyp.

10.1. Probability of precipitation

10.1.1. Model evaluation

The performance of HIRAIN in predicting probability of precipitation ≥ 2.5 mm/h

is validated against the validation synoptic stations (Figure 3.2 (right)) by means

of the BSS.

The median of the BSS in Figure 10.1 amounts to 30%. The BSS slightly in-

creases during the months from July to September of 2011. HIRAIN performs best

during July, for which the median of the BSS is about 30%. The BSS of August and

September are very similar. From January to June and during October the median

of the skill score amounts to about 20%. In December 2010 only 11 hours show

precipitation ≥ 2.5 mm/h, and the BSS is close to zero, i.e., there is no increase

in the skill with respect to climatology. At these 11 hours, 4 to 9 synoptic stations

observed precipitation. These stations are located in one region in Germany (as in

category B). Besides, they do not present good agreement with the IRBT. At some

hours, the stations are concentrated in the border of the country. As seen in chap-

ter 8, all these conditions showed to be very unfavorable for good performance of

the BSGLM and explains why the model presented no skill during December.

Occurrence of precipitation ≥ 7.0 mm/h is only seen from May to September

of 2011. The median of the BSS during these months varies from 0.1 to 0.25.

Although the skill scores are low, they indicate skill in the predictions with respect

to the climatology. The highest median BSS of 0.25 is seen in July. However, there

is also more dispersion of the scores around the median during July than during

the other months.

As the precipitation threshold increases, the number of stations with precipi-

tation decreases. As seen in chapter 8, the skill is reduced when the number of

observations is below 25, specially when they are wide distributed over the coun-
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10.1. Probability of precipitation
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Figure 10.1.: Same as Fig. 8.1 but for probability of precipitation ≥ 2.5mm/h.
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Figure 10.2.: Same as Fig. 8.1 but for probability of precipitation ≥ 7.0mm/h.

For the 7.0 mm/h threshold there might not be enough training synoptic stations

to represent the rainy area. This provides poorer predictions. Opposite to the
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10. HIRAIN extended to multiple thresholds

training stations, the network of the validation stations is much denser (Figure

3.2) and it is able to better represent the rainy regions. This might favour the poor

BSS for the 7.0 mm/h threshold.

Increasing the number of training stations might contribute to better predic-

tions, since precipitation observed with a denser network would provide enough

input data to the BSGLM for higher amounts of precipitation as well. However, in-

creasing the number of training stations already showed to slow down the running

time of HIRAIN.

10.1.2. Cases

The simulated probability fields for the thresholds of 2.5 mm/h and 7.0 mm/h are

shown here for the cases on June 22nd, 2011 at 16 UTC (category A) and on July

4th, 2011 at 08 UTC (category B).

The BSS amounts to 55% and 72%, respectively. There is a slight decrease in

the ability of the BSGLM to simulate π(rrrp) with the increase of the precipitation

threshold. For precipitation amount ≥ 0.1 mm/h the BSS amounts to 60% and

73%, respectively (tables 8.1 and 8.2).

In order to compute the correlation coefficient between precipitation and IRBT,

precipitation amount <2.5 mm/h is replaced here by zero. The amounts ≥ 2.5

mm/h are retained and the correlation is calculated using this new precipita-

tion dataset. The same logic is followed with the threshold of 7.0 mm/h. The

idea behind this is to assess whether there is a relationship between precipitation

occurrrence/non-occurence≥ 2.5 mm/h and≥ 7.0 mm/h and IRBT. The summary

of the significance test can be found in Appendix D.

For the case on June 22nd, 2011 at 16 UTC, there is a significant correlation

coefficient of -0.29 between precipitation and IRBT. The IRBT at the rainy stations

presents mean equal 224.5 K, whereas for the non-rainy observations the mean

IRBT is 235.3 K. The model agrees well with the validation stations in the region

going from the central towards the northern Germany and in part of the south-

western region. There is precipitation ≥ 2.5 mm/h and low IRBT in these areas

(Figure 10.3(top left)). The realisations show probability of precipitation π(rrrp) ≥
0.8 there. Between both areas, in the central part of the country, the simulated

probability is π(rrrp) ≥ 0.8, however, the validation stations do not show precipita-
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10.1. Probability of precipitation

Table 10.1.: Selected cases with precipitation ≥ 2.5 mm/h and the corresponding BSS.
Cases BSS
22. June 2011, 16 UTC 0.55
4. July 2011, 08 UTC 0.72

Figure 10.3.: Same as Fig. 8.7 but for precipitation ≥ 2.5 mm/h on June 22nd, 2011 at
16 UTC.

tion. IRBT and the training stations do not agree very well there (Figure 10.3 (top

left)). While IRBT presents very low values, the observations show occurrence and

non-occurrence of precipitation ≥ 2.5 mm/h in the region.
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10. HIRAIN extended to multiple thresholds

Figure 10.4.: Same as Fig. 8.7 but for precipitation ≥ 2.5 mm/h on July 4th, 2011 at 08
UTC.

Opposite feature is seen in the southeastern Germany, where there is precipita-

tion detected by the validation stations, however the simulations show very low

probability of occurrence (π(rrrp) ≤ 0.1 for most of the realisations). This was

already observed for precipitation ≥ 0.1 mm/h and is also found for the other

precipitation thresholds between 0.1 mm/h and 2.5 mm/h (not shown).

For the precipitation event of category B on July 4th, 2011 at 08 UTC there is

a high correlation coefficient between precipitation and IRBT of -0.65. The dif-

ference between the covariate at rainy and non-rainy station locations is notable.

Mean IRBT of 235 K is found for rainy locations, whereas for non-rainy stations

the mean is 275.1 K.

The simulations predicted probability π(rrrp) ≥ 0.8 at locations where the val-

idation stations detected precipitation ≥ 2.5 mm/h, except at 4 locations near
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10.1. Probability of precipitation

Table 10.2.: Selected cases with precipitation ≥ 7.0 mm/h and the corresponding BSS.
Cases BSS
22. June 2011, 16 UTC 0.28
4. July 2011, 08 UTC 0.47

Figure 10.5.: Same as Fig. 8.7 but for precipitation ≥ 7.0 mm/h on June 22nd, 2011 at
16 UTC.

the eastern border, where stations detected precipitation and the probability is

predicted to be π(rrrp)≤ 0.1 (Figure 10.4). Validation stations with no precipitation

are located in areas with probability π(rrrp) ≤ 0.1.

The probabilities of precipitation ≥ 7.0 mm/h show BSS of 0.28 and 0.47 for

the events on June 22nd, 2011 at 16 UTC and on July 04th, 2011 at 08UTC,
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10. HIRAIN extended to multiple thresholds

Figure 10.6.: Same as Fig. 8.7 but for precipitation ≥ 7.0 mm/h on July 4th, 2011 at 08
UTC.

respectively (Table 10.2). In comparison to lower thresholds, the performance of

the BSGLM decreased considerably.

On June 22nd, 2011 at 16 UTC there is a significant correlation coefficient of

-0.27 between precipitation and IRBT. The IRBT averaged in space is 219.1 K

(234.8 K) for the rainy (non-rainy) locations.

The predictions obtained with the BSGLM show probabilities π(rrrp) ≥ 0.8 mostly

for the central-north part of Germany and in the southwest, where precipitation

≥ 7.0 mm/h is also observed by the validation stations (Figure 10.5). Opposite to

that, in the southeast and in the central part, the predicted probability is π(rrrp) ≤
0.1, but the validation stations observed precipitation.
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10.2. Occurrence/non-occurrence of precipitation

On July 04th, 2011 at 08 UTC the correlation coefficient between precipitation

and IRBT is significant and equal -0.49. The spatial average of the IRBT is 232.8

K for rainy and 273.2 K for non-rainy locations.

Most validation stations with precipitation ≥ 7.0 mm/h are located in areas

with predicted probability π(rrrp) ≥ 0.8 (Figure 10.6). However, there are in the

eastern border validation stations with precipitation where the probability ≤ 0.1,

and stations with precipitation < 7.0 mm/h in areas with probability ≥ 0.8.

As seen in chapter 8, it is challenging to estimate correctly the parameter φ

when the number of observations with precipitation is reduced. Beside that, in

the area with very low IRBT there are also training stations with no precipitation

(Figure 10.6 (top left)). This case reinforces the fact that the number of rainy

stations and the agreement between precipitation and covariate play important

roles in the model’s performance.

10.2. Occurrence/non-occurrence of precipitation

The predicted fields of yp for precipitation ≥ 2.5 mm/h and ≥ 7.0 mm/h are dis-

cussed here. As shown for the precipitation threshold of 0.1 mm/h, the probability

threshold Pt for THR is defined first. Occurrence/non-occurrence of precipitation

≥ 2.5 mm/h and ≥ 7.0 mm/h is generated using THR and BNS. This section closes

with the validation of yp against meteorological radar.

10.2.1. Probability threshold Pt

The probability threshold Pt is obtained here as described in the section 9.1.

The EBS for precipitation ≥ 2.5 mm/h (Figure 10.7) is lower than the EBS for

the previous thresholds, namely 0.1 mm/h, 0.5 mm/h and 1.0 mm/h (not shown).

As the threshold increases the number of non-occurrences also increases. The large

number of correctly predicted non-occurrences contributes to the decrease of the

EBS. The median of the EBS is the highest, with the value of 0.05 when the prob-

ability of 0.1 is used to separate occurrence from non-occurrence of precipitation

≥ 2.5 mm/h. The median decreases to approximately 0.025 as the probability

increases from 0.1 to 0.4. Probabilities greater than 0.4 show approximately a

constant median of EBS of about 0.025.
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10. HIRAIN extended to multiple thresholds
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Figure 10.7.: Same as Fig. 9.1 but for precipitation ≥ 2.5mm/h.
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Figure 10.8.: Same as Fig. 9.1 but for precipitation ≥ 7.0mm/h.
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10.2. Occurrence/non-occurrence of precipitation

For precipitation ≥ 7.0 mm/h EBS shows even lower values (Figure 10.8) than

the EBS for the previous thresholds (2.5 mm/h and 5.0 mm/h). The median of

the EBS decreases from 0.03 to 0.02 as the probability increases from 0.1 to 0.4

and remains constant for probabilities ≥ 0.4.

The categorical statistics are presented in the Figures 10.9 and 10.10. The me-

dian of the log odds ratio ranges between 2 and 3 for both thresholds. Although

there is not significant difference, there is a slight increase in the ratio as the prob-

abilitiy increases. This is, however, more evident for precipitation amount ≥ 7.0

mm/h. For this case, the uncertainity in the log odds ratio and the number of

outliers also decreases as the probability approaches 0.9. Hence, as for the lower

thresholds of precipitation, the odds of making a hit is greater than the odds of

making a false alarm for all probability thresholds.

The other statistics, namely POD, FAR and BIAS change significantly as the prob-

ability used as threshold to define occurrence/non-occurrence of precipitation in-

creases.

In general precipitation≥ 2.5 mm/h (Figures 10.9 (top right)) shows lower POD

than the previous thresholds (for instance precipitation≥ 0.1 mm/h in Figure 9.2).

POD for precipitation ≥ 7.0 mm/h (Figure 10.10 (top right)) is also lower than

for the previous thresholds. This statistics decreases faster with the increase of the

probability.

The FAR increases as the threshold of precipitation increases (Figures 9.2, 10.9

and 10.10 (bottom left)). While the median of FAR ranges between 0.3 to 0.6 for

threshold of 0.1 mm/h, this statistics varies from 0.5 to 0.8 for precipitation ≥ 2.5

mm/h and varies around 0.8 for precipitation ≥ 7.0 mm/h.

BIAS shows that the number of forecast events is greater than the observed

events when the probabilities of 0.1 and 0.2 are used to define occurrence/non-

occurrence of precipitation ≥ 2.5 mm/h and ≥ 7.0 mm/h (Figures 10.9 and 10.10

(bottom right)). The opposite is seen for probabilities ≥ 0.5, i.e., the number of

forecast events is lower than the number of observed events. For both thresholds

BIAS decreases as the Pt increases. The best BIAS is obtained when probabilities

between 0.3 and 0.4 are used to define occurrence/non-occurrence of precipita-

tion.

From the results provided by EBS and the categorical statistics the following is

concluded. BIAS presents the best values when the probability is between 0.3 and
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10. HIRAIN extended to multiple thresholds
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Figure 10.9.: Same as Fig. 9.2 but for precipitation ≥ 2.5mm/h.

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●
●

● ●

●

●●
●

●●

●

●

●

●
●

●
●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
2

4
6

8

probability

L
O

G
 O

D
D

S
 R

A
T

IO

●●●●

●●

●

●●

●

●●
●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●●

●●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●
●
●●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●●

●

●

●

●

●●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

probability

P
O

D

●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●
●

●

●

●

●

●●

●

●

● ●●

●

●

●
●

●

●

●●●●

●

●●●●

●

●

● ●●

●

●

●

●

●●●●●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

probability

F
A

R

●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●●
●
●
●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●
●●●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●
●
●●

●

●

●

●●

●

●
●

●

●
●●●
●
●●

●

●●
●●●

●

●

●

●
●●
●
●
●●

●
●

●●

●

●

●●

●

●●●●
●●●●●●

●

●

●
●

●

●
●
●

●

●

●

●●●
●●
●

●

●
●

●

●
●

●
●

●

●

●

●
●●●●●●
●
●●●●●●●●●●●●●●
●●
●

●

●●
●

●

●

●
●
●●

●

●●●●

●
●
●

●●●

●

●●●●●
●●●●
●
●●
●
●
●
●
●

●
●●●

●

●
●

●

●●●●●●●
●●●●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
5

1
0

1
5

probability

B
IA

S

Figure 10.10.: Same as Fig. 9.2 but for precipitation ≥ 7.0mm/h.
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10.2. Occurrence/non-occurrence of precipitation

0.4. Comparing POD and FAR, the appropriate probability should present the

highest possible value of POD with the lowest possible value of FAR. The box-and-

whiskers plots show that none of the extreme probabilities satisfy this requirement,

however, that probabilities between 0.2 and 0.4 are the most appropriate. The log

odds ratio increases as the probability threshold increases, although there is no

significant differences. Based on this evaluation, the probability of 0.4 is the one

that best defines the occurrence/non-occurrence of precipitation ≥ 2.5 mm/h and

≥ 7.0 mm/h. As for the lower thresholds of precipitation amount, this probability

is further used as Pt in THR.

10.2.2. Validation against meteorological radar

10.2.2.1. Cases

Occurrence/non-occurrence of precipitation ≥ 2.5 mm/h and ≥ 7.0 mm/h are

presented here for June 22nd, 2011 at 16 UTC and for July 4th, 2011 at 08 UTC

(Figures 10.11, 10.13, 10.15 and 10.17).

There is good agreement between the fields of yyyp generated with THR and BNS

and radar for precipitation ≥ 2.5 mm/h in the event in June (Figure 10.11). This

is confirmed by the categorical statistics summarized in table 10.3. BIAS shows

that the number of predicted precipitation occurrences is similar to the observed

number in both methods (BIAS of 1.07 for THR and 1.02 for BNS). The perfor-

mance of HIRAIN is for this precipitation threshold better than for precipitation ≥
0.1 mm/h. The latter presented BIAS of 0.85 for THR and 0.77 for BNS.

In terms of the correct predictions HIRAIN performs less good for precipitation

≥ 2.5 mm/h than for lower thresholds. THR detects 55% and BNS 47% of the

observed events of precipitation ≥ 2.5 mm/h on the cost of a false alarm of 48%

for THR and 53% for BNS. However, the categorical statistics log odds ratio, ETS

and HK are better for precipitation≥ 2.5 mm/h than for precipitation≥ 0.1 mm/h.

The ability to detect occurrence of precipitation accounting for hits to happen

by chance produced an ETS of 0.25 for THR and 0.19 for BNS, while the ability to

separate between occurrence and non-occurrence of precipitation ≥ 2.5 mm/h is

indicated by a HK of 0.41 and 0.32, respectively.

THR has better performance in reproducing the spatial dependence structure ob-
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10. HIRAIN extended to multiple thresholds

Table 10.3.: Categorical statistics for precipitation ≥ 2.5 mm/h on June 22nd, 2011 at 16
UTC.

Statistics THR BNS
BIAS 1.07 1.02
POD 0.55 0.47
FAR 0.48 0.53

Log OR 2.01 1.62
ETS 0.25 0.19
HK 0.41 0.32

Figure 10.11.: Same as Fig. 9.5 but for occurrence/non-occurrence of precipitation ≥ 2.5
mm/h.
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Figure 10.12.: Same as Fig. 9.6 but for the precipitation ≥ 2.5 mm/h.

served by radar than BNS (Figure 10.12). Similar to the 0.1 mm/h threshold,

the radar field has here a large log odds ratio of about 4.5 for neighbor locations,

which is well reproduced by THR, but underestimated by BNS. Except for the

nearby distances, both method reproduced very well the spatial structure of radar.

For the precipitation case on July 4th, 2011 at 08 UTC the area with precipi-

tation ≥ 2.5 mm/h observed by radar is overestimated by THR and BNS (Figure

10.13). This is reinforced by the BIAS > 1 (1.76 for THR and 1.59 for BNS) (table

10.4).

The performance of HIRAIN to reproduce occurrence/non-occurrence of precip-

itation ≥ 2.5 mm/h decreased in comparison to the 0.1 mm/h threshold. The

POD indicates that 68% (THR) and 59% (BNS) of the observed events exceeding

2.5 mm/h are correctly predicted on the costs of a FAR of 61% and 62%, respec-

tively. Comparing these statistics to those for precipitation ≥ 0.1 mm/h, the latter

presented better performance. However, the ratio of the odds of making a hit to

the odds of making a false alarm is greater for precipitation ≥ 2.5 mm/h than

for precipitation ≥ 0.1 mm/h. The ability to separate between occurrence and

non-occurrence of precipitation is also better for the current threshold than for

0.1 mm/h. Predictions for precipitation ≥ 2.5 mm/h present an HK of 0.47 (THR)

and 0.40 (BNS), whereas for precipitation ≥ 0.1 mm/h this statistic is 0.39 and

0.32, respectively.
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10. HIRAIN extended to multiple thresholds

Table 10.4.: Categorical statistics for precipitation ≥ 2.5 mm/h on July 4th, 2011 at 08
UTC.

Statistics THR BNS
BIAS 1.76 1.59
POD 0.68 0.59
FAR 0.61 0.62

Log OR 2.12 1.83
ETS 0.22 0.19
HK 0.47 0.40

Figure 10.13.: Same as Fig. 9.5 but for occurrence/non-occurrence of precipitation ≥ 2.5
mm/h on July 4th, 2011 at 08 UTC.
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Figure 10.14.: Same as Fig. 9.6 but for precipitation ≥ 2.5 mm/h on July 4th, 2011 at 08
UTC.

Beside the fact that HIRAIN overestimates the rainy area, the spatial structure

of precipitation ≥ 2.5 mm/h can be considered as one realisation of HIRAIN up

to the distance of approximately 330 km ( Figure 10.14). The difference between

THR and BNS at the nearby distances is once more emphasized. THR has better

performance than BNS in reproducing the log odds ratio of about 4 shown by

radar.

The realisations of yyyp for the 7.0 mm/h threshold for June 22nd, 2011 at 16

UTC largely overestimate the rainy area observed by radar (Figure 10.15). BIAS

is 5.23 for THR and 5.15 for BNS (table 10.5). This indicates that the number of

grid points with precipitation predicted by HIRAIN is about 5 times greater than

the number of grid points where precipitation is observed. The training stations

and radar did not detect precipitation ≥ 7.0 mm/h in the same region. The rainy

area detected by radar is much smaller than the one covered by the stations. As

seen for other precipitaiton events, in such cases the disagreement between the

predictions and radar does not indicate poor performance of HIRAIN, but it is due

to the fact that radar and stations do not agree.

The spatial dependence structure is well reproduced by both methods (Figure

10.16), except for the underestimation of the log odds ratio by BNS at nearby lo-

cations. Both methods slightly overestimate the spatial dependence at distances

between 100 km and 170 km, approximately. However, this is a particularity of
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10. HIRAIN extended to multiple thresholds

Table 10.5.: Categorical statistics for precipitation ≥ 7.0 mm/h on June 22nd, 2011 at 16
UTC.

Statistics THR BNS
BIAS 5.23 5.15
POD 0.56 0.48
FAR 0.89 0.90

Log OR 2.25 1.88
ETS 0.08 0.06
HK 0.44 0.35

Figure 10.15.: Same as Fig. 9.5 but for occurrence/non-occurrence of precipitation ≥ 7.0
mm/h.

120



10.2. Occurrence/non-occurrence of precipitation

●

●

●

●

●

●
●

● ●
● ●

● ●
●

● ● ● ● ●
● ●

● ●

●
● ●

●
●

●
● ●

● ● ● ● ● ● ●
●

●
●

●

●
● ● ● ● ● ●

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Distance (km)

Lo
re

lo
gr

am

a ●

●

●

●

●

●
●

● ●
● ●

● ●
●

● ● ● ● ●
● ●

● ●

●
● ●

●
●

●
● ●

● ● ● ● ● ● ●
●

●
●

●

●
● ● ● ● ● ●

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Distance (km)
Lo

re
lo

gr
am

b

Figure 10.16.: Same as Fig. 9.6 but for precipitation ≥ 7.0 mm/h.

this precipitation case and it is more pronounced for BNS.

The predictions of yyyp for July 4th, 2011 at 08 UTC also overestimated the area

with precipitation ≥ 7.0 mm/h observed by radar (Figure 10.17). The categorical

statistics (table 10.6) show high values of BIAS, low POD and high FAR. ETS is

nearly zero and indicates that correct predictions might often happen by chance.

As for the previous case, the disagreement between radar and HIRAIN is caused

due to the fact that radar and the training stations do not agree. Although the

predictions do not reproduce the radar field, they are in agreement with the vali-

dation stations (not shown).

The lorelograms (Figure 10.18) illustrate the features presented by the realisa-

tions. There is no spatial dependence in the structure of precipitation ≥ 7.0 mm/h

observed by radar at distances larger than 200 km, whereas the realisations show

spatial dependence up to 350 km for THR and approximately 420 km for BNS. Ex-

cept for the difference between THR and BNS at nearby distances, the realisations

reproduce the radar spatial structure only up to approximately 130 km in both

methods.
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10. HIRAIN extended to multiple thresholds

Table 10.6.: Categorical statistics for precipitation ≥ 7.0 mm/h on July 4th, 2011 at 08
UTC.

Statistics THR BNS
BIAS 4.6 4.25
POD 0.33 0.30
FAR 0.93 9.93

Log OR 1.31 1.30
ETS 0.04 0.04
HK 0.21 0.19

Figure 10.17.: Same as Fig. 9.5 but for occurrence/non-occurrence of precipitation ≥ 7.0
mm/h on July 4th, 2011 at 08 UTC.
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Figure 10.18.: Same as Fig. 9.6 but for precipitation ≥ 7.0 mm/h on July 4th, 2011 at 08
UTC.
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11. Precipitation Product

The final product generated with HIRAIN in this study are hourly fields of precipi-

tation with 4 km spatial resolution in the area of Germany from December of 2010

to November of 2011.

The precipitation product is obtained by combining the fields of yyyp for the

thresholds of 0.1 mm/h, 0.5 mm/h, 1.0 mm/h, 2.5 mm/h, 5.0 mm/h, 7.0 mm/h

and 10.0mm/h. The field yyyp of one threshold is subtracted from the other to de-

termine areas with precipitation for different classes. The subtraction of the field

of yyyp for precipitation ≥ 0.5 mm/h from the field yyyp for precipitation ≥ 0.1 mm/h

determines the regions with precipitation amount ranging from 0.1 mm/h to 0.5

mm/h. The same logic is adopted for the other thresholds. Thus, fields of precip-

itation are produced in the classes between 0.1 mm/h and 0.5 mm/h, 0.5 mm/h

and 1.0 mm/h, 1.0 mm/h and 2.5 m/h, 2.5 mm/h and 5.0 mm/h, 5.0 mm/h and

7.0 mm/h, 7.0 mm/h and 10 mm/h and ≥ 10.0 mm/h. This procedure is applied

hourly to the entire period.

In order to illustrate the product obtained with HIRAIN, simulations are shown

for the cases on June 22nd, 2011 at 16 UTC (Figure 11.1) and on July 04th, 2011

at 08 UTC (Figure 11.3). In both figures two realisations out of 10, obtained with

THR are shown in (b) and (c) and two realisations from BNS are in (d) and (e),

whereas (a) presents the corresponding radar field. Radar precipitation is ploted

based on the same precipitation classes, for which the realisations are generated,

i.e., between 0.1 mm/h and 0.5 mm/h, 0.5 mm/h and 1.0 mm/h, and so forth.

The evaluation is performed against radar data by the means of FSS. For that,

spatial scales ranging from 0 to 10 are adopted. In the former, the simulated fields

and radar are compared pointwise. From the scale of 1 to 10, an area surrounding

each grid point is delimited, for which simulations and radar are compared.

Figures 11.2 and 11.4 show the FSS for the precipitation thresholds of 0.1

mm/h, 0.5 mm/h, 1.0 mm/h, 2.5 mm/h, 5.0 mm/h and 7.0 mm/h for June 22nd,
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11. Precipitation Product

Figure 11.1.: (a) Precipitation in mm/h on June 22nd, 2011 at 16 UTC given by (a) radar,
(b,c) two realisations from THR and (d,e) two realisations from BNS.

2011 at 16 UTC and for July 04th, 2011 at 08 UTC, respectively. The measure

given in the x axes is the size in km2 of the area corresponding to the scale ranging

from 0 to 10.

FSS increases as the area/scale increases for both precipitation cases and for

all thresholds. The lowest FSS is found when the simulations are compared

with radar pointwise. The best performance of HIRAIN for all areas/scales is for

occurrence/non-occurrence of precipitation≥ 0.1 mm/h (Figures 11.2 a) and 11.4

a)). The performance diminishes as the threshold increases. The latter has already

been verified in the evaluation presented in chapters 8 to 10.

Precipitation ≥ 0.1 mm/h on June 22nd, 2011 at 16 UTC (Figure 11.2 (a))

show FSS ranging between 0.77 and 0.99 as the size of the area varies from 0 to

120 km2 for the first realisation obtained with THR. The second realisation shows
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Figure 11.2.: FSS for the two realisations obtained with THR and BNS shown in Fig. 11.1
for the thresholds of (a) 0.1 mm/h (b) 0.5 mm/h (c) 1.0 mm/h, (d) 2.5
mm/h, (e) 5.0 mm/h and (f) 7.0 mm/h.

similar behaviour with FSS between 0.74 and 0.98. BNS presents FSS ranging

between 0.72 and 0.97 for both realisations. Although the less homogeneous

spatial structure produced by BNS, the difference in the FSS between THR and

BNS is relatively small.

Occurrences of precipitation ≥ 0.5 mm/h and ≥ 1.0 mm/h do not present con-

siderable difference in the FSS between both realisations neither for THR nor for
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11. Precipitation Product

BNS (Figure 11.2 b),c)). Precipitation ≥ 0.5 mm/h shows FSS ranging from ap-

proximately 0.7 to 0.96, whereas for 1.0 mm/h the score ranges from 0.6 to 0.93.

The FSS tends to decrease for all areas/scales when occurrence/non-occurrence

of precipitation ≥ 2.5 mm/h is considered (Figure 11.2 d)). There is a slight

difference in the curves between both realisations but there are not relevant dif-

ferences between THR and BNS. The first realisation shows FSS ranging from

approximately 0.55 to 0.95, whereas the second shows values between 0.5 and

0.9.

There is a notable decrease in the performance of HIRAIN for the higher thresh-

olds (5.0 and 7.0 mm/h) (Figure 11.2 e),f)). For these precipitation thresholds

there is a difference in the curves between both realisations and between THR

and BNS. Occurrence of precipitation ≥ 5.0 mm/h presents FSS ranging from

0.44 to 0.83 for the first realisation obtained with THR, whereas this decreases

slightly for the second realisation with values between 0.38 to 0.83. With BNS

the first realisation shows FSS ranging from 0.41 to 0.87, whereas for the second

realisation the score varies from 0.38 to 0.86. Occurrence of precipitation ≥ 7.0

mm/h presents even lower FSS values. They range between 0.22 and 0.51 for the

first realisation of THR and between 0.3 and 0.63 for the second realisation. With

BNS FSS is between 0.2 to 0.57 for the first realisation and betwenn 0.27 to 0.67

for the second one.

HIRAIN is able to simulate very well the occurrence/non-occurrence of precip-

itation for the thresholds of 0.1 mm/h, 0.5 mm/h and 1.0 mm/h in areas ≥ 60

km2, for which FSS tends to 1. For precipitation ≥ 2.5 mm/h, the performance

tends to 100% when the simulations in areas between 80 km2 and 100 km2 are

compared to radar. For the higher thresholds the compared areas need to be much

larger than 120 km2 for the maximum performance of HIRAIN (not shown in the

figures).

The FSS computed for precipitation on July 04th, 2011 at 08 UTC (Figure 11.4)

shows in general similar characteristics to those found previously, however, FSS

increases faster with the increase of the area/scale for precipitation ≥ 5.0 mm/h

and ≥ 7.0 mm/h than in the previous case (Figures 11.4 (e,f)).

HIRAIN has a good performance in reproducing occurrence/non-occurrence of

precipitation ≥ 0.1 mm/h, with FSS ranging from 0.75 for a pointwise compari-

son to 0.99 for comparison in areas of about 120 km2. This is shown by both reali-
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Figure 11.3.: Same as Fig. 11.1 but for rainfall event at 08 UTC on July 04th.

sations and both methods (THR and BNS).

For the thresholds of 0.5 mm/h, 1.0 mm/h and 2.5 mm/h there is a slight dif-

ference in the curves of FSS between both realisations, but not between THR and

BNS. The first realisation for the 0.5 mm/h threshold shows FSS ranging from 0.7

to 0.99, while for the second realisation the scores are between 0.6 and 0.99. For

precipitation ≥ 1.0 mm/h the FSS ranges from 0.55 to 0.99 for the first realisa-

tion and between 0.6 and 0.99 for the second. For the 2.5 mm/h threshold FSS

varies from 0.52 to 0.97 and from 0.53 to 0.96 for the first and second realisation,

respectively.

Differences between the performance of BNS and THR are found in the sec-

ond realisation for precipitation ≥ 5.0 mm/h (e). FSS ranges from from 0.4 to

0.92 for THR and from 0.38 to 0.94 for BNS. The first realisation do not show dif-

ferences between the curves and the skill score is between 0.3 and 0.92. For precip
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Figure 11.4.: Same as Fig. 11.2 but for the realisations in Fig. 11.3 for the rainfall event
at 08 UTC on July 04th, 2011.

itation ≥ 7.0 mm/h, this pattern is reversed. A difference in the curves between

THR and BNS is seen for the first realisation. This presents FSS ranging from 0.19

to 0.87 for THR and from 0.2 to 0.89 for BNS. The second realisation shows FSS

between 0.21 and 0.89 for both methods.
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12. Summary and Conclusion

Within the framework of climate research, climate retrospective analysis (reanaly-

sis) contributes to a better understanding and monitoring of climate change. Self-

consistent datasets have been produced to describe past states of the atmosphere,

land surface and ocean at many research centers around the world.

The Hans Ertel Centre for Weather Research (HErZ), funded by the German Me-

teorological Service (DWD) set up a high resolution reanalysis based on the NWP

model COSMO for Germany and Europe (Bollmeyer et al. 2014). The reanalysis

for Germany assimilates among other variables high resolution precipitation rates

through a LHN scheme. For this domain the reanalysis has been already run from

2007 to 2012 and radar precipitation rates were assimilated. For the period before

2007 radar data is not available and another set of radar-like precipitation dataset

is required for the assimilation. Many precipitation products are available, how-

ever, none presented an appropriate time, spatial and temporal resolution needed

for the purpose of this reanalysis. In view of that, this study proposes HIRAIN, a

method to generate a more appropriate precipitation dataset for the assimilation.

Although this research is motivated by the need to produce high resolution

dataset for earlier years than 2007, HIRAIN firstly generated precipitation fields

for the year 2011. Due to the available radar estimates and a denser network of

synoptic stations, the method could be evaluated. Once an appropriate method is

available, ensembles can be generated for periods before 2007.

HIRAIN works in two steps. First, a Bayesian statistical model conditional on

precipitation data from synoptic stations and satellite IRBT simulates a latent spa-

tial Gaussian process at unobserved locations. It is assumed that this process drives

the occurrence of precipitation equal or greater than a certain threshold. In a sec-

ond step occurrence/non-occurrence of precipitation above the same threshold is

generated given the simulated process. Many thresholds of precipitation amount

are chosen, for which the occurrence/non-occurrence is simulated. A final pre-
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12. Summary and Conclusion

cipitation product is obtained from the realisations of precipitation occurrence of

each threshold.

The approach used in this work differs from others in many ways. Previous stud-

ies using Bayesian models have typically simulated the occurrence/non-occurrence

and the amount of precipitation (Sanso, Guenni 1999; Gaudard et al. 1999; Berro-

cal et al. 2008). However, they have done it for lower spatial and temporal reso-

lutions than required for this project. Here, the Bayesian statistical model is used

to generate fields on a grid with 4km resolution and hourly time scale.

Predicting quantitative precipitation levels with the Bayesian model requires

estimation of additional parameters. This is very difficult with the resolution used

here given the limited number of available synoptic stations for longer periods

back in time. Moreover, estimating additional parameters for a model to estimate

precipitation for multiple years in hourly time steps would make the method overly

complicated. In this scenario, the method proposed in HIRAIN is computationally

tractable and more feasible to provide radar-like precipitation fields.

The advantage of a Bayesian approach is that uncertainties of the model param-

eters are considered for predictions, and equally probable scenarios of the spatial

random process assumed to generate the observations can be simulated condition-

ally on the data. The data at the observation locations are honored and the spatial

covariance structure of the spatial process is reproduced in each realisation. This

leads to more realistic fields than those produced by interpolation methods, which

tend to smooth the estimated variable. Moreover, the ability to generate ensem-

ble of possible precipitation patterns can also be very usefull for assimilation in

ensemble reanalysis.

In order to predict the occurrence/non-occurrence of precipitation exceeding a

threshold, two different methodologies are applied. One approach simulates oc-

currence as a spatially independent Bernoulli process, which considers that the

precipitation process is conditionally independent in space given the latent spatial

process. This is named here Bernoulli sampling (BNS) and is consistent with the

assumption that the precipitation observations are generated by a spatially inde-

pendent Bernoulli process. For the neighboring distances between synoptic sta-

tions of about 5.6 km to 13.35 km, this is justified. However, because the predic-

tions of occurrence/non-occurrence are carried out on a 4km grid, the dependence

between precipitation at neighboring locations may not be ignored anymore.
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A more appropriate approach to generate these fields should account for spatial

dependencies in the precipitation process. That is, after accounting for the spa-

tial dependence in the probability of precipitation (captured in the structure of S),

there is likely a ’residual’ spatial dependence in the occurrence/non-occurrence

of precipitation above a threshold. However, the spatial dependence structure of

the responses is unknown and would have to be inferred from the observations.

Given the synoptic stations design, it is challenging to infer a reliable dependence

structure. Moreover, proper treatment of this residual dependence in the obser-

vations would require estimation of further parameters with the BSGLM. Hence,

additional MCMC simulations would be required, making the estimation proce-

dure more time consuming. Including this dependence would greatly complicate

inference and prohibit the use of ’geoRglm’.

For this reason, in a second approach occurrence/non-occurrence is generated

by thresholding the realisations of the spatial Gaussian process. This is called the

thresholding method (THR). All regions above an a priori defined threshold are

considered to be regions with precipitation, whereas no precipitation is assigned

otherwise. In this approach, it is implicitly assumed that the precipitation process

is fully determined by the latent Gaussian process. This is inconsistent with the

assumption in the BSGLM, however, the spatial dependence that is considered in

the process might nevertheless provide more realistic fields.

The performance of HIRAIN is evaluated for each threshold of precipitation

amount separatelly. For the lowest threshold that comprehends all precipitation

intensities, namely precipitation ≥ 0.1 mm/h, the simulations showed to be sen-

sitive to the spatial distribution of the observations, the number of observations

with precipitation and the degree of relation between ground observations and

satellite information.

Through the evaluation of the simulations against a second dataset of synop-

tic stations, high performance is achieved when larger numbers of stations with

precipitation are present, more than 25 stations with precipitation are wide dis-

tributed and well distributed over the country or less than 25 rainy stations, how-

ever, concentrated over one region were considered and when there are high neg-

ative correlation coefficient between precipitation and IRBT. Any change in these

configurations decreases the model’s performance.

The performance is reduced when a small number of stations with precipitation
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is wide distributed over the country. When very few observations present large

distances among them, it is very difficult for the model to infer a reliable scale

parameter. Beside the fact that the predictions are not reliable themselves, the

time required for the MCMC simulations to converge increases considerably. The

performance is the lowest, when this condition meets weak relationship between

precipitation and IRBT.

Every month in the period from December 2010 to November 2011 presents

cases with good and bad performance. However, in general the simulations agree

better with the validation stations during winter than the other seasons, especially

summer. This difference indicates that the favorable conditions for high perfor-

mance of HIRAIN are present more often during winter than during summer.

With the objective to simulate radar-like datasets, the ability of HIRAIN to cap-

ture the spatial dependence structure detected by radar is investigated. To this

end, the predicted occurrence/non-occurrence of precipitation exceeding a thresh-

old is validated against radar data. Categorical statistics and the lorelogram show

that THR agree better with radar than BNS. Through the lorelograms there is a

clear difference between the log odds ratio of THR and BNS at neighboring lo-

cations. THR estimates very well the log odds ratio of radar, whereas BNS un-

derestimates it at those locations. This difference is also seen in the fields of

occurrence/non-occurrence. The spatial structure produced by BNS is more punc-

tual than that produced by THR. The latter shows more homogeneous and realistic

fields.

For the higher thresholds of precipitation amount, it becomes more difficult to

simulate the fields. The reduced number of stations with precipitation above a se-

lected threshold and the unfavorable spatial distribution play the most important

role for these simulations. The first threshold for which this difficulty appears is

precipitation ≥ 2.5mm/h. The estimation of the scale parameter is more difficult

and therefore it takes also longer to tune the model. This increases the time the

Bayesian model needs to run. Similar degree of difficulty is found for precipitation

amounts between 2.5 mm/h and 7.0 mm/h. For amounts larger than 7.0 mm/h

this difficulty increases even more, when too few stations detect precipitation and

the relation between precipitation and IRBT is very weak. However, since larger

precipitation amounts are also usually associated with convective clouds, there

is a stronger relationship between station information and IRBT, which tends to
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improve the performance of HIRAIN in this case.

The final precipitation product produced in this study is a 1-year dataset for Ger-

many with hourly and 4 km resolutions. This product is obtained from the occur

rence/non-occurrence fields of the individual thresholds. In comparison with

radar the ability of HIRAIN to predict precipitation is the best for lower than for

higher amounts. The performance also increases when an area surrounding the

grid point under consideration is compared to the same area in the radar field.

The larger the area, the better the performance.

HIRAIN can be applied to any geographical region and can be extended to fur-

ther thresholds of precipitation amounts and finer resolutions. The resolution

adopted in this study most appropriately matched the feasibility of the method

with the purposes of the reanalysis. The final product presents better resolu-

tions than the precipitation datasets available by the time the Germany reanalysis

project started. The method is evaluated and available to produce precipitation

datasets also for other time periods.

It is proposed as future work to evaluate the reanalysis for Germany when these

generated fields are assimilated in the COSMO model. Beside that, it is also

suggested further implementations in HIRAIN to improve the prediction’s perfor-

mance. The inclusion of other covariates besides IRBT might improve predictions,

especially for precipitation cases as seen in category C, where there is not enough

precipitation information and thus, it is challenging for the BSGLM to estimate the

scale parameter φ .

The running time of HIRAIN should be optimized through parallelisation. This

will allow for further implementations in the method as the use of more precipi-

tation thresholds. Hence, high resolution precipitation fields can be generated for

finer classes of precipitation amount.

The realisations obtained with HIRAIN provide also valuable information of pre-

cipitation uncertainties that plays an important role in ensemble reanalysis (Bach

et al. 2016). In this scenario, it is also suggested as future work to increase the

number of realisations obtained with HIRAIN, once HIRAIN has been parallelized.

The larger the number of realisations, the more accurate is the information about

the precipitation uncertainties. This allows for estimating the sensitivity of the

reanalysis to the uncertainties in the observations and might contribute for better

performance of ensemble reanalyses.
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A. Prior probability distribution

As seen in chapter 4, a Bayesian hierarchical model is given by a data model, a

process model and a parameter model. In this chapter the focus will be only on

the parameter model. This is given through a probability distribution containing

prior information about the parameters before the observations are collected. It is

described here which prior information is provided and which considerations are

assumed in the BSGLM.

The parameters that require a prior probability distribution in the model are βββ ,

σ2 and φ . The former is a vector that contains the regression coefficients β0 and

β1 that provide the relationship between the covariate and the occurrence/non-

occurrence of precipitation. The parameter σ2 is the variance of the spatial Gaus-

sian process and φ is the scale that indicates the distance up to which occurrences/-

non-occurrences are correlated in space.

Usually non-informative priors are used when there is no previous information

about the parametes. In such cases, all values for a given range have the same

probability to occur and the model obtains most of the information from the ob-

served data. When some previous information is known a most appropriate prior

can be provided to the model.

In this study it is assumed that the regression coefficients in βββ are uniformly dis-

tributed over (−∞,+∞), whereas informative priors are used for the parameters σ2

and φ . Given the fact that the number of observations is reduced, it is challenging

to estimate the parameters only from the data. Providing additional information

through the priors facilitates, therefore, the estimation.

Prior information of σ2 and φ is obtained from the climatology, which is based

on hourly precipitation data from the validation stations in the period from 2004

to 2010 and from 2012 to 2014. Since the period of study is from December of

2010 to November of 2011, data in the period from January to November of 2011

as well as from December of 2010 is not used.
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Figure A.1.: (a) Inverse scaled χ2 distribution with df=100 and scale=10. (b) Inverse
gamma distribution with shape=7.1 and scale=2000. (c) Inverse gamma
distribution with shape=7.1 and scale=1000. The parameter φ is given in
km.

Precipitation is converted to binary information. An one is assigned to the sta-

tions and to the hours with precipitation ≥ 0.1 mm/h and zero elsewhere. Lorelo-

grams are computed for every hour with valid data. It is assumed that the spatial

dependence structure of occurrence/non-occurrence of precipitaiton is described

by an exponential covariance function. Thus, the function σ2
∗ exp(−h/φ∗) is fitted

to the lorelograms. The h is the distance between two stations in space and the

parameters σ2
∗ and φ∗ are estimates of σ2 and φ . Histograms of these estimates are

generated for each month, separately. An scaled inverse χ2 and an inverse gamma

distribution is fitted to the histograms of σ2
∗ and φ∗, respectively.

The fitted inverse gamma distributions provided very high probabilities of oc-

currence for small values of φ (φ ≤ 100 km). When these distributions are used

as prior distributions in the BSGLM, the distance up to which the outcomes are

correlated in space is very small. This generates fields of probability of precipi-

tation with a more punctual structure than that of the precipitation fields. The

BSGLM presented poor performance even for cases with precipitation covering

large spatial areas. Therefore, in order to predict more realistic probability fields,

the inverse gamma distribution for every month is centered at larger values and

this is thus used as prior for φ .
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Due to the similarities of the probability distributions among different months,

an inverse gamma with shape of 7.1 and scale of 2000 is adopted for the pe-

riod from May to September of 2011 (M-S), and for the months from October to

November of 2011, January to April of 2011 and December of 2010 (O-A) this

distribution has the same shape, however with scale of 1000 (Figure A.1 (b) and

(c)). During M-S the curve is centered at about 250 km and distances below 100

km present probability about zero. For the period O-S the gamma distribution

is centered at about 130 km and distances lower than 50 km present probability

about zero.

The same logic is adopted to estimate a probability distribution to be used as

prior for σ2. Given the fact that, the number of training stations used in the study

is reduced, that βββ uses a non-informative prior and φ uses wide dispersion dis-

tributions, the prior of σ2 needed to have narrower dispersion than the formers

to enable the MCMC simulations to converge. The chains would not converge for

many precipitation cases otherwise. Based on that, the scaled inverse χ2 distribu-

tion is chosen to be very narrow and centered at the value for which the histograms

showed the highest frequency of occurrence. Since there is not much difference

among the curves for different months, the scaled inverse χ2 distribution with 100

degrees of freedom and scale of 10 is adopted as prior from December of 2010 to

November of 2011 (Figure A.1 a)).

The prior distributions adopted to simulate probability of precipitation ≥ 0.1

mm/h are also used for the higher thresholds of precipitation amount. Since the

number of stations with precipitation occurrence decreases as the threshold in-

creases, it becomes harder to obtain estimates φ∗ and σ2
∗ from the climatology.

143





B. MCMC convergence diagnostics

As already described in chapter 5, MCMC simulations are performed with the BS-

GLM to approximate the model’s parameter φ and the spatial Gaussian process ssso

at the observation locations rrro. In order to assure that the samples of φ and ssso are

drawn from a stationary distribution, convergence diagnostics are required. To

illustrate the diagnostics used in this study, an example is shown for the simula-

tions of probability of precipitation ≥ 0.1 mm/h on June 22, 2011 at 22 UTC. For

simplicity the results are presented for 8 of 121 observation locations.

The tests are applied to the chains of φ and ssso obtained from 15.000 iterations

with no burn.in. First, the trace and autocorrelation plots are visually investigated

(Figures B.1 and B.2). The trace plots indicate good mixing and convergence

seems to be reached in the first few iterations. The autocorrelation shows how

nearby samples in the chain are correlated and it is useful for defining an appro-

priate value for thin in the model. The autocorrelation graphs show that 100 is a

good value for thin, since after about 100 iterations the autocorrelation decreases

and tends to zero.

Beside the visual investigation, the Heidelberg and Welch’s diagnostics as well

as the Geweke’s diagnostic are applied. The Heidelberg and Welch’s diagnostics

are separated in two tables: table B.1 shows the stationarity test and table B.2

presents the halfwidth test.

In the stationarity test the samples of φ and ssso passed the test, except for one

location (not shown). The number of iterations to dismiss and the p-value from

the Cramer-von-Mises statistic test is shown in table B.1. The test is performed at

the significance level of 95%. The rejected case presented p-value equal 0.0173

(not shown). The start iterations shown in table B.1 suggest the most appropriate

value for burn.in.

145



B. MCMC convergence diagnostics

Figure B.1.: Trace plots of φ and the Gaussian process at 8 observation locations simulated
for precipitation ≥ 0.1 mm/h on June 22, 2011 at 22 UTC.

Figure B.2.: Same as Fig. B.1 but for autocorrelation of the samples.
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In the second part, the halfwidth test verifies at the significance level of 95%

whether the chain size that passes the stationary test is long enough to estimate

the mean value. The target value to which the ratio of both means is compared

amounts to 0.1. Table B.2 shows the mean value and the halfwidth. From the 113

locations not shown in the tables, 104 passed this test.

The z-scores and p-values computed for the Geweke’s convergence diagnostics

are shown in Table B.3. The test is performed at the significance level of 95%.

From the 113 observation locations not shown in the table, 95 passed the test.

Given the fact that, it is chalenging to estimate the model’s parameters from the

reduced number of training stations used in this study, the following approach is

adopted to determine convergence.

If the chain of φ and the chains of ssso for 90% of the observation locations passed

the tests, those chains that did not passed them, are again visually investigated.

If the trace plots at those locations show visually to be approximately stationary,

the samples are stored for all locations. Otherwise the BSGLM needs to be tuned

again.

The diagnostics for the other thresholds of precipitation amount present very

similar results (not shown). However, it is important to highlight that the higher

the threshold, the more difficult it is to tune the model.

It was determined that the MCMC simulations should perform 15.000 iterations,

with a burn.in of 5.000 and store only every 100th sample. These numbers are

obtained from the convergence diagnostics applied to every threshold of precipi-

tation amount used in this study.
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B. MCMC convergence diagnostics

Table B.1.: Heidelberg and Welch’s Stationarity Test. Precipitation ≥ 0.1 mm/h
stationarity test start iteration p-value

phi passed 1 0.3694
S[1] passed 1 0.3252
S[2] passed 4501 0.1506
S[3] passed 1 0.4134
S[4] passed 1 0.4704
S[5] passed 1 0.1527
S[6] passed 1 0.2606
S[7] passed 1 0.1072
S[8] passed 1 0.0602

Table B.2.: Heidelberg and Welch’s Halfwidth Test. Precipitation ≥ 0.1 mm/h
halfwidth test mean halfwidth

phi passed 303.4311 12.672
S[1] passed -6.1118 0.256
S[2] passed -1.9184 0.126
S[3] failed -0.9651 0.111
S[4] passed -6.9516 0.258
S[5] passed -6.1610 0.196
S[6] passed -6.1642 0.198
S[7] failed 0.2300 0.106
S[8] passed -5.3149 0.170

Table B.3.: Geweke’s Test. Precipitation ≥ 0.1 mm/h
convergence test z-score p-value

phi passed 1.46097 0.072
S[1] passed -1.50007 0.066
S[2] failed -3.06146 0.001
S[3] passed -0.36144 0.358
S[4] passed -0.41824 0.337
S[5] failed 1.66405 0.048
S[6] passed 0.48878 0.312
S[7] passed -0.02855 0.488
S[8] failed 2.51832 0.005
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C. Precipitation cases

The precipitation cases selected for the categories A, B and C described in chapter

8 are presented in the following tables.

Table C.1.: Precipitation cases in the categories A, B and C.
Category A Category B Category C

2010/12/01 18UTC 2010/12/02 19UTC 2010/12/04 21UTC
2010/12/05 16UTC 2010/12/06 24UTC 2010/12/09 21UTC
2010/12/07 19UTC 2010/12/07 18UTC 2010/12/13 23UTC
2010/12/10 21UTC 2010/12/14 13UTC 2010/12/19 09UTC
2011/01/06 08UTC 2011/01/08 02UTC 2011/01/08 09UTC
2011/01/06 16UTC 2011/01/08 23UTC 2011/01/11 16UTC
2011/01/13 09UTC 2011/01/15 24UTC 2011/01/18 15UTC
2011/01/25 14UTC 2011/01/18 06UTC 2011/01/19 20UTC
2011/02/04 08UTC 2011/02/01 23UTC 2011/02/03 05UTC
2011/02/11 05UTC 2011/02/04 05UTC 2011/02/12 24UTC
2011/02/13 05UTC 2011/02/05 09UTC 2011/02/13 10UTC
2011/02/27 01UTC 2011/02/15 05UTC 2011/02/15 09UTC
2011/03/14 05UTC 2011/03/10 02UTC 2011/03/09 20UTC
2011/03/16 20UTC 2011/03/10 23UTC 2011/03/09 23UTC
2011/03/17 12UTC 2011/03/13 21UTC 2011/03/13 22UTC
2011/03/17 22UTC 2011/03/16 11UTC 2011/03/16 22UTC
2011/04/03 20UTC 2011/04/03 08UTC 2011/04/04 13UTC
2011/04/04 01UTC 2011/04/05 24UTC 2011/04/27 06UTC
2011/04/04 06UTC 2011/04/14 01UTC 2011/04/27 18UTC
2011/04/12 11UTC 2011/04/26 07UTC 2011/04/29 17UTC
2011/05/14 19UTC 2011/05/12 11UTC 2011/05/12 14UTC
2011/05/15 13UTC 2011/05/19 24UTC 2011/05/15 17UTC
2011/05/22 16UTC 2011/05/21 15UTC 2011/05/22 13UTC
2011/05/31 21UTC 2011/05/28 22UTC 2011/05/31 11UTC
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C. Precipitation cases

Table C.2.: Cont. table C.1
Category A Category B Category C

2011/06/06 16UTC 2011/06/05 02UTC 2011/06/05 16UTC
2011/06/08 02UTC 2011/06/06 23UTC 2011/06/06 18UTC
2011/06/16 18UTC 2011/06/22 12UTC 2011/06/18 10UTC
2011/06/22 16UTC 2011/06/30 13UTC 2011/06/29 18UTC
2011/07/07 20UTC 2011/07/04 08UTC 2011/07/09 19UTC
2011/07/10 20UTC 2011/07/09 23UTC 2011/07/10 18UTC
2011/07/13 17UTC 2011/07/10 16UTC 2011/07/18 12UTC
2011/07/13 22UTC 2011/07/27 20UTC 2011/07/25 01UTC
2011/08/06 20UTC 2011/08/11 03UTC 2011/08/03 18UTC
2011/08/08 12UTC 2011/08/15 03UTC 2011/08/05 15UTC
2011/08/14 16UTC 2011/08/18 21UTC 2011/08/08 18UTC
2011/08/24 20UTC 2011/08/21 13UTC 2011/08/24 18UTC
2011/09/04 20UTC 2011/09/03 24UTC 2011/09/04 16UTC
2011/09/08 07UTC 2011/09/11 15UTC 2011/09/07 17UTC
2011/09/11 18UTC 2011/09/19 09UTC 2011/09/11 24UTC
2011/09/18 09UTC 2011/09/27 09UTC 2011/09/17 06UTC
2011/10/06 20UTC 2011/10/12 24UTC 2011/10/06 08UTC
2011/10/07 13UTC 2011/10/18 12UTC 2011/10/07 09UTC
2011/10/08 15UTC 2011/10/19 09UTC 2011/10/19 15UTC
2011/10/09 22UTC 2011/10/26 16UTC 2011/10/26 05UTC
2011/11/26 01UTC 2011/11/26 24UTC 2011/11/25 17UTC
2011/11/27 15UTC 2011/11/27 14UTC 2011/11/25 22UTC

- 2011/11/29 24UTC 2011/11/26 02UTC
- 2011/11/30 06UTC 2011/11/30 03UTC
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D. Significance Test

A two sided significance t-test is applied to the correlation coefficient between

precipitation amount at the training synoptic stations and IRBT.

The following tables show the summary of the tests for the precipitation cases

in chapters 8 and 10.

Table D.1.: Category A. Precipitation ≥ 0.1 mm/h on May 15th, 2011 at 13 UTC.
correlation coefficient -0.159
t -1.757
df 118
p-value 0.081
95% confidence interval -0.329 0.020

Table D.2.: Category A. Precipitation ≥ 0.1 mm/h on June 22nd, 2011 at 16 UTC.
correlation coefficient -0.303
t -3.440
df 117
p-value 0.0008
95% confidence interval -0.458 -0.130

Table D.3.: Category B. Precipitation ≥ 0.1 mm/h on December 14th, 2010 at 13 UTC.
correlation coefficient -0.063
t -0.688
df 119
p-value 0.492
95% confidence interval -0.239 0.117
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D. Significance Test

Table D.4.: Category B. Precipitation ≥ 0.1 mm/h on July 04th, 2011 at 08 UTC.
correlation coefficient -0.673
t -9.889
df 116
p-value 2.2e-16
95% confidence interval -0.764 -0.564

Table D.5.: Category C. Precipitation ≥ 0.1 mm/h on June 05th, 2011 at 16 UTC.
correlation coefficient -0.244
t -2.712
df 116
p-value 0.007
95% confidence interval -0.407 -0.066

Table D.6.: Category C. Precipitation ≥ 0.1 mm/h on October 19th, 2011 at 15 UTC.
correlation coefficient -0.143
t -1.549
df 115
p-value 0.124
95% confidence interval -0.316 0.39

Table D.7.: Category A. Precipitation ≥ 2.5 mm/h on June 22nd, 2011 at 16 UTC.
correlation coefficient -0.293
t -3.321
df 117
p-value 0.001
95% confidence interval -0.449 -0.119

Table D.8.: Category B. Precipitation ≥ 2.5 mm/h on July 04th, 2011 at 08 UTC.
correlation coefficient -0.652
t -9.257
df 116
p-value 1.3e-15
95% confidence interval -0.744 -0.534
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Table D.9.: Category A. Precipitation ≥ 7.0 mm/h on June 22nd, 2011 at 16 UTC.
correlation coefficient -0.277
t -3.123
df 117
p-value 0.002
95% confidence interval -0.436 -0.102

Table D.10.: Category B. Precipitation ≥ 7.0 mm/h on July 04th, 2011 at 08 UTC.
correlation coefficient -0.493
t -6.102
df 116
p-value 1.4e-08
95% confidence interval -0.618 -0.343
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E. Spatial dependence structure

E.1. Further precipitation cases

Realisations of occurrence/non-occurrence of precipitation ≥ 0.1 mm/h obtained

with THR and BNS are presented here for the precipitation cases on May 15th,

2011 at 13 UTC (category A), on December 14th, 2010 at 13 UTC (category B)

and on June 05th, 2011 at 16 UTC (category C).

For the precipitation event in May radar and the training stations are not in

good agreement (Figure E.1 a)). Radar estimated precipitation in a larger area

than the stations. In addition to that, there is no significant correlation between

precipitation and IRBT, as shown in chapter 8.

The realisations of HIRAIN underestimated the occurrence of precipitaiton≥ 0.1

mm/h in comparison to radar (BIAS < 1) (table E.1). POD is 0.41 for THR and

0.36 for BNS on the costs of the FAR values of 0.44 and 0.48, respectively. The odds

of making a hit is greater than the odds of making a false alarm in both methods.

The correct predictions accounting for hits to happen by chance produce an ETS

of 0.10 and 0.07 for THR and BNS, respectively. The ability to separate between

occurrence and non-occurrence of precipitation is indicated by the HK of 0.18

(THR) and 0.13(BNS). The realisations shown in Figure E.1 reassure the results

presented by the categorical statistics. Both methods presented poor performance

in comparison to radar.

Both THR and BNS are able to reproduce the spatial dependence structure of

precipitation ≥ 0.1 mm/h for larger distances than 100 km (Figure E.2). THR

overestimated the spatial dependence from neighboring locations to the distance

up to 100 km, whereas BNS underestimated it at neighboring locations and over-

estimated it from distances between 40 km and 90 km, approximately.
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Table E.1.: Categorical statistics for the precipitation case on May 15th, 2011 at 13 UTC.
Statistics THR BNS

BIAS 0.74 0.71
POD 0.41 0.36
FAR 0.44 0.48

Log OR 0.85 0.61
ETS 0.10 0.07
HK 0.18 0.13

Figure E.1.: Same as Fig. 9.5 but for the precipitation case on May 15th, 2011 at 13 UTC.
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Figure E.2.: Same as Fig 9.6 but for the precipitation case on May 15th, 2011 at 13 UTC.

For the precipitation occurrence on December 14th, 2010 at 13 UTC HIRAIN

shows good performance for THR and BNS (Figure E.3), although the rainy region

is a bit overestimated (BIAS > 1, table E.2). HIRAIN detected 58% (THR) and 49%

(BNS) of the precipitation ≥ 0.1 mm/h observed by radar, however, on the costs of

the high FAR values of 63% and 65%, respectively. This result is confirmed by the

visual verification when comparing the realisations to radar in Figure E.3. HIRAIN

simulates a larger rainy area in the central-eastern part of Germany and predicts

precipitaiton in the northeast region of the country, where radar do not observe

precipitation.

There is a skill in HIRAIN in terms of the correct predictions accounting for hits

to happen by chance and regarding the ability to separate between occurrence and

not-occurrence of precipitation. This is shown by the values of ETS of about 0.15

(THR) and 0.12 (BNS) and of HK of 0.31 (THR) and 0.24 (BNS). The fields of yyyp

generated with THR are more realistic than those obtained from BNS (Figure E.3).

This is reinforced by the lorelograms (Figure E.4). The spatial dependence struc-

ture is well reproduced with THR, except for distances between approximately 330

km and 380 km, which is a particularity of this precipitation case. BNS, however,

underestimates the log odds ratio at neighboring locations, which is a deficiency

of this method, and overestimates the spatial dependence at distances larger than

300 km.
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Table E.2.: Categorical statistics for the precipitation case on December 14th, 2010 at 13
UTC.

Statistics THR BNS
BIAS 1.54 1.4
POD 0.58 0.49
FAR 0.63 0.65

Log OR 1.34 1.05
ETS 0.15 0.12
HK 0.31 0.24

Figure E.3.: Same as Fig. 9.5 but for the precipitation case on December 14th, 2010 at 13
UTC.
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Figure E.4.: Same as Fig. 9.6, but for the precipitation case on December 14th, 2010 at
13 UTC.

For the precipitation case in category C, namely on June 05th, 2011 at 16 UTC,

radar and training stations are in good agreement (Figure E.5 a)). There is also

a significant correlation of -0.24 between precipitation and IRBT, as shown in

chapter 8.

Precipitation≥ 0.1 mm/h observed by radar is underestimated by HIRAIN (BIAS

< 1) (table E.3). Only 29% (THR) and 28% (BNS) of the observed occurrences

are predicted by HIRAIN and on the costs of a FAR of 33% and 35%, respectively.

This is reinforced by the fields of yyyp in Figure E.5. The odds of making a hit is

greater than the odds of making a false alarm in both methods (log odds ratio

> 0). There is low skill regarding the correct predictions accounting for hits to

happen by chance (ETS of 0.07 (THR) and 0.05 (BNS)). The ability to separate

between occurrence and non-occurrence of precipitation ≥ 0.1 mm/h is given by

the HK of 0.13 (THR) and 0.10 (BNS).

Although there is not much difference between the categorical statistics for

THR and BNS (table E.3), the spatial structure obtained with THR is different

from the one of BNS (Figures E.5 and E.6). The spatial structure in the reali-

sations obtained with BNS are more similar to that one of radar, than the real-

isations produced by THR. In this case Pt = 0.4 does not seem to be the most

appropriate probability to threshold the realisations of sssp. BNS is more able

than THR to detect precipitaiton occurrence in the area that extends from north-
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Table E.3.: Categorical statistics for the precipitation case on June 05th, 2011 at 16 UTC.
Statistics THR BNS

BIAS 0.44 0.44
POD 0.29 0.28
FAR 0.33 0.35

Log OR 0.75 0.59
ETS 0.07 0.05
HK 0.13 0.10

Figure E.5.: Same as Fig. 9.5 but for the precipitation case on June 05th, 2011 at 16 UTC.
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Figure E.6.: Same as Fig. 9.6, but for the precipitation case on June 05th, 2011 at 16 UTC.

western to southeastern Germany. However, BNS is not able to reproduce the

neighboring spatial dependence.

These results are reinforced by the lorelograms in Figure E.6. Except for nearby

locations, the radar lorelogram can be assumed to be a realisation of BNS. The

THR is able to reproduce the spatial dependence of radar only at distances larger

than approximately 95 km. At lower distances the log odds ratio is overestimated

by this method.
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