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P. Durcik, V. Kovač, K. A. Škreb, C. Thiele, Norm-variation of ergodic averages with

respect to two commuting transformations (2016), arXiv:1603.00631.
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Abstract

The quadrilinear singular integral form

Λ(F1, F2, F3, F4) =

∫

R4

F1(x, y)F2(x, y
′)F3(x

′, y′)F4(x
′, y)K(x− x′, y − y′)dxdydx′dy′

was motivated by the work of Kovač on the twisted paraproduct, who established bound-

edness in Lp spaces of a dyadic model of the quadrilinear form Λ. Here K is a smooth

two-dimensional Calderón-Zygmund kernel.

In this thesis we introduce a continuous variant of Kovač’s approach and address

boundedness of the quadrilinear form Λ. Moreover, we study further related multilinear

singular integral forms acting on two- and higher-dimensional functions, and discuss their

applications to certain problems in ergodic theory and additive combinatorics.

The content of this thesis is organized into six chapters. Chapter 1 is an introductory

chapter, stating the main results of Chapters 2–6.

In Chapter 2 we prove the estimate

|Λ(F1, F2, F3, F4)| ≤ Cp1,p2,p3,p4‖F1‖Lp1 (R2)‖F2‖Lp2 (R2)‖F3‖Lp3 (R2)‖F4‖Lp4 (R2)

for the exponents p1 = p2 = p3 = p4 = 4.

In Chapter 3 we extend the range of exponents to 2 < p1, p2, p3, p4 ≤ ∞, whenever

the exponents satisfy the scaling condition
∑4

j=1
1
pj

= 1.

In Chapter 4 we study double ergodic averages with respect to two general commuting

transformations and establish a sharp quantitative result on their convergence in the

norm, by counting their norm-jumps and bounding their norm-variation. This is a joint

work with Vjekoslav Kovač, Kristina Ana Škreb and Christoph Thiele.

In Chapter 5 we study side-lengths of corners in subsets of positive upper Banach

density of the Euclidean space. We show that if p ∈ (1, 2)∪ (2,∞) and d is large enough,

an arbitrary measurable set A ⊆ Rd×Rd of positive upper Banach density contains corners

(x, y), (x+ s, y), (x, y+ s) such that the `p norm of the side s attains all sufficiently large

real values. This is a joint work with Vjekoslav Kovač and Luka Rimanić.

As a byproduct of the approach in Chapters 4 and 5 we obtain an L4 × L4 → L2

bound for a two-dimensional bilinear square function related to a singular integral called

the triangular Hilbert transform. Boundedness of the triangular Hilbert transform is a

major open problem in harmonic analysis.

Chapter 6 is devoted to the simplex Hilbert transform, a higher-dimensional multi-

linear variant of the triangular Hilbert transform. The content of this chapter is a joint
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work with Vjekoslav Kovač and Christoph Thiele. We show that if the Hilbert kernel is

truncated to the region 0 < r ≤ |x| ≤ R < ∞ on the real line, then Lp bounds for the

truncated simplex Hilbert transform grow with a power less than one of the truncation

range in the logarithmic scale. Boundedness of the simplex Hilbert transform remains an

open problem.
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Introduction and statement of the main results

A large class of multilinear singular integral forms considered in harmonic analysis can

be schematically represented as

∫

Rn

( k∏

j=1

Fj(ρj(x))
)
K(ρ(x))dx (1)

for some k, n ≥ 2, surjective linear maps ρ : Rn → Rs and ρj : Rn → Rd, 1 ≤ j ≤ k,

d, s ≥ 1. Here K is a smooth s–dimensional Calderón-Zygmund kernel. That is, K̂ is a

function on Rs, which is smooth away from the origin and satisfies the standard symbol

estimates: there exists a finite constant Cα such that

|∂αK̂(ξ)| ≤ Cα‖ξ‖−|α| (2)

for all multi-indices α and all 0 6= ξ ∈ Rs. The form (1) is k-linear in the functions

Fj : Rd → C, 1 ≤ j ≤ k.

Typically, one is given an object of the type (1) defined via the Fourier transform

on an appropriate space of test functions, such as the Schwartz class. Then, the basic

questions of interest are Lp estimates of the form

∣∣∣
∫

Rn

( k∏

j=1

Fj(ρj(x))
)
K(ρ(x))dx

∣∣∣ ≤ C
k∏

j=1

‖Fj‖Lpj (Rd) (3)

for some choice of exponents 1 ≤ pj ≤ ∞ and the constant C which may depend on

k, n, d, s, ρj , ρ, pj and the constant Cα from (2), but not on the functions Fj . The symbol

estimates (2) are invariant under isotropic dilations of K̂ in L∞. A scaling argument

shows that bounds of the type (3) are possible only if

n− s = d

k∑

j=1

1

pj
.

Let us turn our attention to some familiar instances of (1) and (3). For x ∈ Rn we

will write x = (x1, . . . , xn).

Example 1 (Brascamp-Lieb). If K̂ is a constant function, then the study of (3) falls

under the theory of the Brascamp-Lieb inequalities. See the works by Bennett, Carbery,

Christ and Tao [2], [3]. ♦
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Example 2 (Coifman-Meyer). Let k ≥ 3, n = k, d = 1 and s = k − 1. Assume that the

linear maps ρj : Rk → R and ρ : Rk → Rk−1 are given by

ρj(x) = xj for 1 ≤ j ≤ k, ρ(x) = (xk − x1, . . . , xk − xk−1).

Then the Lp estimates (3) hold whenever the exponents satisfy 1 < pj ≤ ∞ and the

Hölder scaling condition
∑k

j=1
1
pj

= 1. This is the multilinear Coifman-Meyer theorem.

We refer to [31] and the references contained therein. ♦

Example 3 (Bilinear Hilbert transform). Let k = 3, n = 2, d = 1, s = 1. Let the maps

ρ1, ρ2, ρ3 : R2 → R be given by

ρ1(x) = x1, ρ2(x) = x1 + x2, ρ3(x) = x1 + βx2, (4)

where β 6= 0, 1 is a real parameter. Let ρ : R2 → R be given by ρ(x) = x2 and let

K̂(ξ) = iπsgn(ξ).

Then (1) is a trilinear form dual to the bilinear Hilbert transform. Lacey and Thiele proved

boundedness of the bilinear Hilbert transform in the grounbreaking papers [26], [27]. The

bilinear Hilbert transform satisfies Lp1 × Lp2 → Lp
′
3 bounds whenever 1 < p1, p2 ≤ ∞,

2
3 < p′3 <∞, and 1

p1
+ 1

p2
= 1

p′3
. This in particular implies (3) for the associated trilinear

form whenever the exponents satisfy
∑3

j=1
1
pj

= 1 and 1 < p1, p2, p3 ≤ ∞.

In the proof, the authors of [26], [27] develop techniques that are known as time-

frequency analysis, and are closely connected with the modulation symmetries that the

bilinear Hilbert transform exhibits. ♦

Example 4 (Two-dimensional bilinear Hilbert transform). Specifying k = 3, n = 4,

d = 2, s = 2, the linear maps ρ1, ρ2, ρ3 : R4 → R2 by

ρ1(x) = (x1, x2) + (x3, x4), ρ2(x) = (x1, x2) +B(x3, x4), ρ3(x) = (x1, x2), (5)

where B : R2 → R2 is linear, and ρ : R4 → R2 by ρ(x) = (x3, x4), one obtains the

two-dimensional bilinear Hilbert transform. It was studied by Demeter and Thiele [11],

who investigated its boundedness in Lp spaces in dependence on the map B. ♦

Example 5 (Twisted paraproduct). Up to symmetries, the only case for which the time-

frequency methods from [11] turned out to be insufficient was when

B(y1, y2) = (y1, 0).

This case was later called the twisted paraproduct, and it was addressed by Kovač [23] by

a completely different approach. Kovač proved that the twisted paraproduct satisfies Lp

bounds whenever
∑3

j=1
1
pj

= 1 and 1 < p1, p3 <∞, 2 < p2 ≤ ∞. ♦

The following observation will be used several times throughout the exposition. If we

are interested in Lp estimates for a form associated with the maps ρj , 1 ≤ j ≤ k, and

ρ, then it suffices to bound a form associated with the maps τj ◦ ρj ◦ σ, 1 ≤ j ≤ k, and
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τ ◦ ρ ◦ σ for arbitrary surjective linear maps τj : Rd → Rd, 1 ≤ j ≤ k, τ : Rs → Rs, and

σ : Rn → Rn. This follows by changing variables x→ σ(x) and observing

‖Fj ◦ τj‖Lpj (Rd) = | det τj |−1/pj‖Fj‖Lpj (Rd)

for each 1 ≤ j ≤ k. The integral kernel K ◦ τ remains Calderón-Zygmund, however, the

estimates (2) are in general not uniform in τ .

If in (5) with B(y1, y2) = (y1, 0) we compose ρ1, ρ2, ρ3 and ρ from the right with

σ : R4 → R4 given by

σ(y1, y2, y3, y4) = (y3, y4, y1 − y3, y2 − y4),

boundedness of the twisted paraproduct is equivalent to boundedness of a trilinear form

associated with the maps

ρ1(x) = (x1, x2), ρ2(x) = (x1, x4), ρ3(x) = (x3, x4)

and ρ(x) = (x1 − x3, x2 − x4). Note that for each x ∈ R2 one has

ρ1(x) · e1 = ρ2(x) · e1 and ρ2(x) · e2 = ρ3(x) · e2,

where e1 and e2 are the standard unit vectors in R2. Because of this we refer to the twisted

paraproduct as twisted or entangled. Informally, one can say that a form is entangled if it

can be written in such a way that the functions involved share some one-dimensional vari-

ables. Such forms exhibit generalized modulation symmetries. For instance, replacing F1

by (g⊗ 1)F1 in the twisted paraproduct has the same effect as replacing F2 by (g⊗ 1)F2,

for any g ∈ L∞(R). Here we have used the notation (f1 ⊗ f2)(x1, x2) := f1(x1)f2(x2).

The twisted paraproduct can be recognized as a more symmetric quadrilinear form
∫

R4

F1(x1, x2)F2(x1, x4)F3(x3, x4)F4(x3, x2)K(x1 − x3, x2 − x4)dx1dx2dx3dx4

with F4 being the constant function 1. By localizing K̂ to cones in the frequency plane

it suffices to consider the symbol

K̂(ξ1, ξ2) =

∫ ∞

0
ct ϕ̂(tξ1)ψ̂(tξ2)

dt

t
, (6)

where ϕ,ψ are Schwartz functions, ψ̂ is supported in {1/2 ≤ |ξ| ≤ 2}, and |ct| ≤ 1 are

measurable coefficients. That is, it suffices to consider the form

Λ(F1, F2, F3, F4) :=

∫ ∞

0
ct

∫

R4

F1(x1, x2)F2(x1, x4)F3(x3, x4)F4(x3, x2) (7)

t−2ϕ(t−1(x1 − x3))ψ(t−1(x2 − x4))dx1dx2dx3dx4
dt

t
.

To prove estimates for the twisted paraproduct, Kovač passed through a dyadic model of

the quadrilinear form (7), given by

Λd(F1, F2, F3, F4) :=
∑

|I|=|J |

∫

R4

F1(x1, x2)F2(x1, x4)F3(x3, x4)F4(x3, x2) (8)

|I|−21I(x1)1I(x3)(1Jl − 1Jr)(x2)(1Jl − 1Jr)(x4)dx1dx2dx3dx4.
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The sum runs over all dyadic intervals I and J of the same length, 1I denotes the

characteristic function of I, and Il, Ir denote the left and the right half of a dyadic

interval I, respectively.

In [23], Kovač showed that the dyadic quadrilinear form satisfies the estimates

|Λd(F1, F2, F3, F4)| ≤ C‖F1‖Lp1 (R2)‖F2‖Lp2 (R2)‖F3‖Lp3 (R2)‖F4‖Lp4 (R2),

whenever
∑4

j=1
1
pj

= 1 and 2 < p1, p2, p3, p4 ≤ ∞. In [23], boundedness of the twisted

paraproduct was then deduced by transferring from the dyadic quadrilinear form with

F4 = 1 to the continuous form using the square function of Jones, Seeger and Wright [22].

Using the fiber-wise Calderón-Zygmund decomposition by Bernicot [4] one was able to

extend the range of exponents from 2 < p1, p2, p3 <∞ to 1 < p1, p3 <∞ and 2 < p2 ≤ ∞.

It is natural to ask if the bounds for the twisted paraproduct can be proven di-

rectly, without passing through a dyadic model. More generally, one can ask whether the

continuous quadrilinear form (7) satisfies any Lp estimates. The question of obtaining

estimates for the form (7) with F4 not necessarily equal to 1 remained unresolved in [23].

The transference trick from the dyadic to continuous model does not apply in this case.

In Chapters 2 and 3 ([12] and [13]) we prove Lp estimates for the quadrilinear form

(7). The results from Theorem 1 from [12] and Theorem 1 from [13] are stated in the

following.

Theorem 1. Let 2 < p1, p2, p3, p4 ≤ ∞ and
∑4

j=1
1
pj

= 1. There exists a finite constant

C depending only on the exponents pj and the Schwartz seminorms of ϕ,ψ, such that for

any Schwartz functions F1, F2, F3, F4 on R2 one has the estimate

|Λ(F1, F2, F3, F4)| ≤ C‖F1‖Lp1 (R2)‖F2‖Lp2 (R2)‖F3‖Lp3 (R2)‖F4‖Lp4 (R2).

To prove Theorem 1 we refine the technique from [23], which was used to show bound-

edness of the dyadic quadrilinear form (8), and apply it in the Euclidean setting. First

by addressing the simpler L4 case [12], and then the general Lp case [13]. The latter

follows from certain generalized restricted weak-type estimates, and it can be obtained

after working in a localized setting.

The approach in [23] relies on a structural induction scheme involving repeated appli-

cations of the Cauchy-Schwarz inequality, telescoping identity and positivity arguments.

It is the easiest to adapt this approach to the Euclidean setting if the bump functions de-

composing the kernel (6) are Gaussians. This is the situation which resembles the perfect

dyadic model. The general case can then be reduced to the Gaussian case by carefully

decomposing the kernel and intertwining the induction scheme with dominations of the

bump functions by superpositions of Gaussians.

Multilinear singular integral forms such as (7) naturally appear in problems in er-

godic theory when studying ergodic averages along orbits of measure preserving trans-

formations. Let (X,F , µ) be a probability space and S : X → X a measure preserving

transformation, i.e. µ(S−1E) = µ(E). It is a classical result by von Neumann [33] that

16



for any f ∈ L2(X), the sequence of averages

Mn(f)(x) :=
1

n

n−1∑

i=0

f(Six) (9)

converges in L2(X) as n→∞. Birkhoff’s pointwise ergodic theorem [7] yields convergence

of these averages for almost every x ∈ X.

One can form a bilinear analogue of (9) by taking two commuting measure preserving

transformations S, T : X → X and consider

Mn(f, g)(x) :=
1

n

n−1∑

i=0

f(Six)g(T ix) (10)

for functions f, g ∈ L4(X). Such bilinear averages were motivated by Furstenberg and

Katznelson [18] in their work on a multidimensional extension of Szemerédi’s theorem.

L2 norm convergence of the sequence (Mn(f, g))∞n=1 is due to Conze and Lesigne [8] and

was generalized by Tao [36] to the case of several commuting transformations. Almost

everywhere convergence of double ergodic averages is a major open problem in ergodic

theory.

Conjecture 2. Let (X,F , µ) be a probability space, S, T : X → X commuting measure

preserving transformations, and f, g ∈ L∞(X). Then the limit

lim
n→∞

Mn(f, g)(x)

exists for a.e. x ∈ X.

This conjecture is only known to be true in very few special cases. Here we only

mention the work of Bourgain [6] who verifies this conjecture in the case when S = Tm

for m ∈ Z.

Classical proofs of norm convergence of ergodic averages give at most very little in-

formation on the rate of convergence. To quantify norm convergence of a sequence one

typically asks for certain norm-variation estimates, which in turn control the number of

jumps of the sequence of certain size. For an extensive treatment of variational estimates

and jump inequalities we refer to Jones, Seeger and Wright [22], and Avigad and Rute

[1]. In the case of single ergodic averages Mn(f), norm-variation estimates were studied

by Jones, Ostrovskii and Rosenblatt [21].

In Chapter 4 ([15]) we address quantitative norm convergence for the double er-

godic averages in (10). We obtain a sharp quantitative result on the convergence of

(Mn(f, g))∞n=1 in norm, by counting the norm-jumps of this sequence and bounding its

norm-variation. The following result is Theorem 1 from [15].

Theorem 3. There is a finite constant C such that for any σ-finite measure space

(X,F , µ), any two commuting measure-preserving transformations S, T on that space,

and all functions f, g ∈ L4(X) one has

m∑

j=1

‖Mnj (f, g)−Mnj−1(f, g)‖2
L2(X)

≤ C ‖f‖2
L4(X)

‖g‖2
L4(X)

for each choice of positive integers m and n0 < n1 < · · · < nm.
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In a certain model case, an analogue of Theorem 3 has been previously obtained by

Kovač [24]. Due to perfect localization in both time and frequency, the model case avoids

several of the difficulties arising in [15]. We approach Theorem 3 by transferring it to

the Euclidean space via Calderón’s transference principle. We first pass to the integer

lattice Z2, and then to R2. For F,G ∈ L4(R2), r > 0, and (x1, x2) ∈ R2 we introduce the

”rough” bilinear averages on R2 given by

Ar(F,G)(x1, x2) :=

∫

R
F (x1 + s, x2)G(x1, x2 + s) r−11[0,1)(r

−1s) ds.

Theorem 3 is a consequence of the following norm-variation estimate in the Euclidean

space, which is Theorem 2 from [15].

Theorem 4. There exists a finite constant C such that for any F, G ∈ L4(R2) one has

m∑

j=1

‖Arj (F,G)−Arj−1(F,G)‖2
L2(R2)

≤ C ‖F‖2
L4(R2)

‖G‖2
L4(R2)

(11)

for each choice of positive real numbers r0 < r1 < · · · < rm and m ∈ N.

The strategy of the proof of Theorem 4 is to approximate the rough characteristic

function of the unit interval by a smooth bump function and expand out the L2 norm in

(11). This eventually leads to studying singular integral forms similar to

∫

R4

F (x1 + s, x2)G(x1, x2 + s)F (x1 + t,x2)G(x1, x2 + t)K(s, t)dx1dx2dsdt (12)

for a two-dimensional Calderón-Zygmund kernel K. This object falls under (1) with

F1 = F3 = F , F2 = F4 = G, the maps ρj : R4 → R2 given by

ρ1(x) = (x1 + x3, x2), ρ2(x) = (x1, x2 + x3),

ρ3(x) = (x1 + x4, x2), ρ4(x) = (x1, x2 + x4),

and ρ : R4 → R2 by ρ(x) = (x3, x4). Composing ρj and ρ from the left with

τ1(y1, y2) = (y2, y1 + y2), τ2(y1, y2) = (y1, y1 + y2), τ3 = τ1, τ4 = τ2, τ = id,

and from the right with

σ(y1, y2, y3, y4) = (y1, y2, y3 − y1 − y2, y4 − y1 − y2),

it is equivalent to discuss bounds for the form
∫

R4

F (x2, x3)G(x1, x3)F (x2, x4)G(x1, x4)

K(x3 − x1 − x2, x4 − x1 − x2)dx1dx2dx3dx4. (13)

Structurally it resembles (7). Indeed, the maps ρj coincide with the ones in (7) after re-

labelling. However, the integral kernel is now singular along a different two-dimensional

subspace of R4. Decomposing the kernel into bump functions which are well localized in
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frequency, one of the key points is to obtain estimates analogous to those in Theorem 1

with careful careful control of the operator norm in terms of the Schwartz seminorms of

the bump functions. This in turn translates into the sharp variation-norm estimate for

the rough averages on R2, and finally establishes Theorem 4.

A further source of motivation for studying entangled multilinear singular integral

forms is provided by questions on distances in point configurations in ”thick” subsets of

the Euclidean space. The upper Banach density of a set A ⊆ Rd is defined as

δd(A) := lim sup
N→∞

sup
x∈Rd

∣∣A ∩ (x+ [0, N ]d)
∣∣

|x+ [0, N ]d| .

It is known that a set of positive upper Banach density in Rd, d ≥ 2, contains all large

distances. More precisely, if d ≥ 2 and δd(A) > 0, there exists λ0(A) such that for any

λ ≥ λ0(A) the set A contains points x, x+s with ‖s‖`2 = λ. This was shown independently

by Bourgain [5], Falconer and Marstrand [17], and Furstenberg, Katznelson and Weiss

[19]. However, the same statement fails if x, x+ s is replaced by a three term arithmetic

progression x, x + s, x + 2s. A counterexample was constructed by Bourgain in [5], and

it crucially uses the fact that the `2 norm satisfies the parallelogram identity.

Recently, Cook, Magyar, and Pramanik [9] investigated related questions on sizes of

common differences of three term arithmetic progressions, but with differences measured

in the `p norm for p 6= 2, rather than `2. They obtain the following result.

Theorem 5 (From [9]). For any p ∈ (1, 2) ∪ (2,∞) there exists dp ≥ 2 such that for

every integer d ≥ dp the following holds. For any measurable set A ⊆ Rd with δd(A) > 0

one can find λ0(A) > 0 such that for any real number λ ≥ λ0(A), there exist x, s ∈ Rd

such that x, x+ s, x+ 2s ∈ A and ‖s‖`p = λ.

Cook, Magyar and Pramanik reduce the proof of Theorem 5 to a harmonic analysis

problem, which they solve by using bounds for certain modulation invariant multilinear

singular integrals, similar to the bilinear Hilbert transform. See [32] and [10].

In Chapter 5 ([14]) we generalize Theorem 5 to corners in subsets of Rd × Rd, i.e.

patterns of the form (x, y), (x+ s, y), (x, y + s). The following is Theorem 2 from [14].

Theorem 6. For any p ∈ (1, 2) ∪ (2,∞) there exists dp ≥ 2 such that for every integer

d ≥ dp the following holds. For any measurable set A ⊆ Rd ×Rd with δd(A) > 0 one can

find λ0(A) > 0 such that for any real number λ ≥ λ0(A), there exist x, y, s ∈ Rd such that

(x, y), (x+ s, y), (x, y + s) ∈ A and ‖s‖`p = λ.

To obtain Theorem 6 we follow the outline from [9], but our proof differs in the har-

monic analysis part. In this part we need to show an estimate for a higher-dimensional

analogue of the form (13). More precisely, we prove an estimate for (13) with x1, x2, x3, x4
in Rd, F, G functions on Rd×Rd and K a smooth (2d)−dimensional Calderón-Zygmund

kernel.

19



As a byproduct of the approach in [15] and [14] we obtain an estimate for a two-

dimensional bilinear square function. The following corollary is from [15].

Corollary 7. Let ψ be a Schwartz function on R with ψ̂(0) = 0. For any Schwartz

functions F,G on R2 one has

∥∥∥
(∑

i∈Z

∣∣∣
∫

R
F (x1 + s, x2)G(x1, x2 + s)2−iψ(2−is)ds

∣∣∣
2)1/2∥∥∥

L2
(x1,x2)

(R2)
≤ Cψ‖F‖L4(R2)‖G‖L4(R2)

with a finite constant Cψ depending on ψ alone.

This result follows after expanding the L2 norm on the left hand-side, which immedi-

ately gives a form of the type (12). Bounds for the singular integral corresponding to the

bilinear square function from Corollary 7 are a major open problem in harmonic analysis.

Conjecture 8. For any Schwartz functions F,G on R2 one has

∥∥∥p.v.

∫

R
F (x1 + s, x2)G(x1, x2 + s)

ds

s

∥∥∥
Lr
(x1,x2)

(R2)
≤ Cp,q‖F‖Lp(R2)‖G‖Lq(R2) (14)

for some exponents 1 ≤ p, q, r ≤ ∞ satisfying 1
p + 1

q = 1
r .

This conjecture has been confirmed in a certain model case and when one of the

functions takes a special form. See the work by Kovač, Thiele and Zorin-Kranich [25].

The operator in (14) was also called the triangular Hilbert transform in [25].

The triangular Hilbert transform controls issues related to pointwise convergence of

double ergodic averages (18), as well as many known objects in harmonic analysis. Speci-

fying the functions F,G properly, from the conjectured bounds for the triangular Hilbert

transform one would obtain bounds for the Carleson operator

p.v.

∫

R
f(x− s)eiN(x)sds

s
,

which controls pointwise convergence of Fourier series. Here N is a measurable linearizing

function. Bounds for the triangular Hilbert transform would also imply bounds for the

one-dimensional bilinear Hilbert transform

p.v.

∫

R
f(x+ s)g(x+ βs)

ds

s
, (15)

where 0, 1 6= β ∈ R. Note that after dualizing (15) with a third function one obtains the

trilinear form discussed in (4). Boundedness of the triangular Hilbert transform would

even imply bounds uniform in the parameter β, which is a problem that has been studied

extensively in recent years, see [37], [20], [28], [34]. Furthermore, by the method of ro-

tations one could also deduce bounds for the two-dimensional bilinear Hilbert transform

(5) with an odd integral kernel, uniformly in the choices of the map B, including bounds

for the twisted paraproduct.
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More generally, one can define the simplex Hilbert transform of degree n ≥ 1 by

p.v.

∫

R

n∏

j=1

Fj(x+ sej)
ds

s
, (16)

where x ∈ Rn and e1, . . . , en are the standard unit vectors in Rn. If n = 1, it coincides

with the linear Hilbert transform, while the case n = 2 corresponds to the triangular

Hilbert transform. No Lp bounds are known for the simplex Hilbert transform if n ≥ 2.

Conjecture 9. Let n ≥ 2. For any Schwartz functions F1, . . . , Fn on Rn one has

∥∥∥p.v.

∫

R

n∏

j=1

Fj(x+ sej)
ds

s

∥∥∥
Lr
x(Rn)

≤ Cn,p1,...,pn
n∏

j=1

‖Fj‖Lpj (Rn)

for some exponents 1 ≤ p1, . . . , pn, r ≤ ∞ satisfying
∑n

j=1
1
pj

= 1
r .

Analogously to the case n = 2, by choosing the functions Fj properly, the simplex

Hilbert transform specializes to the polynomial Carleson operator

p.v.

∫

R
f(x− s)ei(N1(x)s+N2(x)s2+···+Nn−1(x)sn−1)ds

s
,

which was studied by Lie in [29] and [30]. It also specializes to the one-dimensional

multilinear Hilbert transform, which is another major open problem in harmonic analysis.

Conjecture 10. Let n ≥ 3. For any Schwartz functions f1, . . . , fn on R one has

∥∥∥p.v.

∫

R

n∏

j=1

fj(x+ js)
ds

s

∥∥∥
Lr
x(R)
≤ Cn,p1,...,pn

n∏

j=1

‖fj‖Lpj (R)

for some exponents 1 ≤ p1, . . . , pn, r ≤ ∞ satisfying
∑n

j=1
1
pj

= 1
r .

Dualizing (16) with an n-dimensional function F0, interchanging the order of integra-

tion and composing the maps

(x, s) 7→ x, (x, s) 7→ x+ sej for 1 ≤ j ≤ n, (x, s) 7→ s,

with suitable linear bijections, studying Lp bounds for the simplex Hilbert transform is

equivalent to studying Lp bounds for the more symmetric (n+ 1)−linear form

p.v.

∫

Rn+1

n∏

j=0

Fj(x0, . . . , xj−1, xj+1, . . . , xn)
1

x0 + · · ·+ xn
dx0 . . . dxn.

One may approach the multilinear and Hilbert simplex transform by truncating the

Hilbert kernel and searching for bounds in terms of the truncation parameters, as initiated

in [35], [38]. The truncated simplex Hilbert transform is defined by

Λn,r,R :=

∫

r≤|x0+···+xn|≤R

n∏

j=0

Fj(x0, . . . , xj−1, xj+1, . . . , xn)
1

x0 + · · ·+ xn
dx0 . . . dxn,
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where 0 < r < R <∞. We seek estimates of the form

|Λn,r,R| ≤ C
(

log
R

r

)α n∏

j=0

‖Fj‖Lpj (Rn) (17)

for some 0 ≤ α ≤ 1 and exponents 1 ≤ pj ≤ ∞ satisfying
∑n

j=0
1
pj

= 1, with a finite

constant C independent of the truncation parameters.

Conjecture 9 would follow from the bound with α = 0. On the other hand, Hölder’s

inequality gives the trivial bound with α = 1. Zorin-Kranich [38] improves this estimate

to o(log R
r ). He builds on the approach by Tao [35], using techniques from additive

combinatorics. Tao [35] obtains a o(log R
r ) bound for the truncated multilinear Hilbert

transform.

In Chapter 6 ([16]) we strengthen these results by showing (17) with a power α = 1−ε
for some ε > 0 depending only on n and the exponents pj , which can be taken from the

full open Banach range. The main work is spent in proving an estimate for a particular

choice of exponents. The following is Theorem 1 from [16].

Theorem 11. There exists a finite constant C depending only on n such that for any

Schwartz functions F0, . . . , Fn on Rn and any 0 < r < R we have

|Λn,r,R| ≤ C
(

log
R

r

)1−2−n+1

‖F0‖L2n (Rn)

n∏

j=1

‖Fj‖L2n−j+1
(Rn)

.

For other exponents, an estimate with a power less than one then follows by inter-

polation with the trivial estimate for α = 1. Our proof is a structural induction. The

induction base is on the level of the forms (7), which are much easier to handle than the

simplex Hilbert transform.

It is a natural question if Theorem 3 generalizes to the multiple ergodic averages

1

n

n−1∑

i=0

f1(S
i
1x)f2(S

i
2x) · · · fk(Sikx), (18)

where S1, S2, . . . , Sk : X → X are pairwise commuting measure preserving transforma-

tions, and if Theorem 6 generalizes to corners in (Rd)k

(x1, x2, . . . , xk), (x1 + s, x2, . . . , xk), (x1, x2 + s, . . . , xk), . . . , (x1, x2, . . . , xk + s) (19)

for k ≥ 3. The main obstruction is that one faces quantities such as the L2 norm of the

k-linear square function corresponding to the simplex Hilbert transform of degree k, and

its higher-dimensional analogues. If k ≥ 3, no Lp bounds for this square function are

known.

Conjecture 12. Let k ≥ 3. Let ψ be a Schwartz function on R with ψ̂(0) = 0. For any

Schwartz functions F1, . . . , Fk on Rk one has

∥∥∥
(∑

i∈Z

∣∣∣
∫

R

k∏

j=1

Fj(x+ sej)2
−iψ(2−is)ds

∣∣∣
2)1/2∥∥∥

Lr
x(Rk)

≤ Cψ,k,p1,...,pk
k∏

j=1

‖Fj‖Lpj (Rk)

for some exponents 1 ≤ p1, . . . , pk, r ≤ ∞ satisfying
∑k

j=1
1
pj

= 1
r .
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Note that if k = 2, the left hand-side specializes to the bilinear square function which

is bounded in Corollary 7.

Expanding out the L2 norm of such a square function of degree k ≥ 3 leads to

problems of similar complexity as the simplex Hilbert transform of degree k − 1. It

is encouraging that [16] obtains estimates for the truncations of the simplex Hilbert

transform with constants J1−ε for some 0 < ε < 1, in the number J of consecutive dyadic

scales. Estimates of this type could also be used to study (18) and (19). Furthermore,

for the problem (19) also a o(J) bound would suffice (see [35], [38]). However, one would

need to consider arbitrary scales rather than consecutive scales as in [16], [35], [38].

Similarly, generalizing the result by Cook, Magyar, Pramanik [9] to (k + 1)-term

arithmetic progressions in Rd,

x, x+ s, x+ 2s, . . . , x+ ks,

is related to a d-dimensional version of the k-linear square function corresponding to the

multilinear Hilbert transform. If k ≥ 3, no Lp bounds for this square function are known.

Conjecture 13. Let k ≥ 3. Let ψ be a Schwartz function on R with ψ̂(0) = 0. For any

Schwartz functions f1, . . . , fk on R one has

∥∥∥
(∑

i∈Z

∣∣∣
∫

R

k∏

j=1

fj(x+ js)2−iψ(2−is)ds
∣∣∣
2)1/2∥∥∥

Lr
x(R)
≤ Cψ,k,p1,...,pk

k∏

j=1

‖fj‖Lpj (R)

for some exponents 1 ≤ p1, . . . , pk, r ≤ ∞ satisfying
∑k

j=1
1
pj

= 1
r .

Conjecture 12 would imply Conjecture 13 by specifying the functions Fj properly.

The analogue of Conjecture 13 in the case k = 2 can be deduced from the boundedness

of the bilinear Hilbert transform. The case k = 2, p1 = p2 = 4, r = 2 can be alternatively

deduced from Corollary 7.
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[16] P. Durcik, V. Kovač, C. Thiele, Power-type cancellation for the simplex Hilbert trans-

form (2016), to appear in J. Anal. Math., available at arXiv:1608.00156.

[17] K. J. Falconer, J. M. Marstrand, Plane sets with positive density at infinity contain

all large distances, Bull. London Math. Soc. 18 (1986), no. 5, 471–474.

[18] H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for commuting trans-
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An L4 estimate for a singular entangled quadrilinear form

Polona Durcik

Abstract

The twisted paraproduct can be viewed as a two-dimensional trilinear form which

appeared in the work by Demeter and Thiele on the two-dimensional bilinear Hilbert

transform. Lp boundedness of the twisted paraproduct is due to Kovač, who in

parallel established estimates for the dyadic model of a closely related quadrilinear

form. We prove an (L4,L4,L4,L4) bound for the continuous model of the latter by

adapting the technique of Kovač to the continuous setting. The mentioned forms

belong to a larger class of operators with general modulation invariance. Another

instance of such is the triangular Hilbert transform, which controls issues related to

two commuting transformations in ergodic theory, and for which Lp bounds remain

an open problem.

1 Introduction

For four functions F1, F2, F3, F4 on R2 we denote their ”entangled product”

F (F1,F2,F3,F4)(x, x
′, y, y′) := F1(x, y)F2(x

′, y)F3(x
′, y′)F4(x, y

′). (1.1)

Let m be a bounded function on R2, smooth away from the origin and satisfying1

|∂αm(ξ, η)| . (|ξ|+ |η|)−|α| (1.2)

for all multi-indices α up to some large finite order. With any such m we associate a

quadrilinear form Λ = Λm defined as2

Λ(F1, F2, F3, F4) :=

∫

R2

F̂ (ξ,−ξ, η,−η)m(ξ, η)dξdη

for Schwartz functions Fj ∈ S(R2), where F := F (F1,F2,F3,F4). The object of this paper

is to establish the following bound.

Theorem 1. The quadrilinear form Λ satisfies the estimate

|Λ(F1, F2, F3, F4)| . ‖F1‖L4(R2)‖F2‖L4(R2)‖F3‖L4(R2)‖F4‖L4(R2). (1.3)

2010 Mathematics Subject Classification. Primary 42B15; Secondary 42B20.
1For two non-negative quantities A and B we write A . B if there is an absolute constant C > 0 such

that A ≤ CB. We write A .P B if the constant depends on a set of parameters P .
2The Fourier transform we use is defined in (2.1).
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When m is identically one, Λ corresponds to the pointwise product form

Λ(F1, F2, F3, F4) =

∫

R2

F1(x, y)F2(x, y)F3(x, y)F4(x, y)dxdy.

The bound (1.3) is then an immediate consequence of Hölder’s inequality and holds in a

larger range of exponents. In general, we can formally write Λ(F1, F2, F3, F4) as

∫

R4

F1(x, y)F2(x
′, y)F3(x

′, y′)F4(x, y
′)κ(x′ − x, y′ − y)dxdx′dydy′, (1.4)

where κ is a two-dimensional Calderón-Zygmund kernel.

The motivation for these objects originates in the study of the twisted paraproduct

[5]. We call the twisted paraproduct a trilinear form T = Tm defined as

T (F1, F2, F3) := Λ(F1, F2, F3, 1).

That is, the fourth function in the entangled product F is the constant function one.

The form T was proposed by Demeter and Thiele [2] as the dual of a particular case of

the two-dimensional bilinear Hilbert transform. This was the only case which could not

be treated with the time-frequency techniques in [2]. Lack of applicability of the latter is

closely related with general modulation symmetries that the operators T and Λ exhibit.

An example of such a symmetry is that for any g ∈ L∞(R) we have invariance

Λ((1⊗ g)F1, F2, F3, F4) = Λ(F1, (1⊗ g)F2, F3, F4),

where (f ⊗ g)(x, y) := f(x)g(y). This is evident from their entangled structure. One

can informally say that the generalized modulation invariance is present since several

functions depend on the same one-dimensional variable.

First bounds for T are due to Kovač [5], who established

|T (F1, F2, F3)| .(pj) ‖F1‖Lp1 (R2)‖F2‖Lp2 (R2)‖F3‖Lp3 (R2) (1.5)

whenever 1/p1 + 1/p2 + 1/p3 = 1 and 2 < p1, p2, p3 < ∞. His approach relied on

the Bellman function technique. The fiber-wise Calderón-Zygmund decomposition of

Bernicot [1] extended the range of exponents to 1 < p1, p3 <∞, 2 < p2 ≤ ∞.

Kovač observed that adding the fourth function F4 to T completes the cyclic structure

of the form and results in an object with a high degree of symmetry. For instance, for even

kernels κ one has Λ(F1, F2, F3, F4) = Λ(F3, F4, F1, F2). Moreover, T and Λ can be seen

as the smallest non-trivial examples of a family of entangled multilinear forms associated

with bipartite graphs, whose dyadic models were studied in [4].

To prove (1.5), Kovač passed through a dyadic version of Λ, which we call Λd. He

considered (1.4) with κ replaced by the perfect (dyadic) Calderón-Zygmund kernel

∑

I×J
ϕd
I (x)ϕd

I (x′)ψd
J(y)ψd

J(y′). (1.6)
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The sum in (1.6) runs over all dyadic squares3 I × J in R2. For a dyadic interval I, the

scaling function and the Haar function are defined as4

ϕd
I := |I|−1/21I and ψd

I := |I|−1/2
(
1Ileft half − 1Iright half

)
,

respectively. The large range of exponents in (1.5) was achieved by first proving a local

bound for the variant of Λd with the summation in (1.6) running over a subset of dyadic

squares called trees. Then, F4 was set equal to 1 and contributions of a single tree were

integrated into a global estimate. This established the desired estimate for the dyadic

model Td of T defined by the relation Td(F1, F2, F3) := Λd(F1, F2, F3, 1).

It remained to tackle T for continuous kernels. Via the cone decomposition, see [6],

this problem was first reduced to the case

κ(s, t) =
∑

k∈Z
2kϕ(2ks)2kψ(2kt), (1.7)

where ϕ,ψ ∈ S(R) are two Schwartz functions and ψ̂ is supported on {1 ≤ |ξ| ≤ 2}.
Their dilations by 2k can be seen as continuous analogues of ϕI , ψI . In [5], the bound

(1.5) was finally established by relating the special case of T , associated with (1.7), to

the dyadic Td. This was done by rewriting T and Td using convolutions and martingale

averages in the respective cases. Then, the square functions of Jones, Seeger and Wright

[3] were used to compare the continuous with the discrete averaging operator.

A natural question is what we can say about Λ if the function 1 is replaced by a com-

pletely general function F4. For the dyadic model Λd, Kovač proved (Lp1 ,Lp2 ,Lp3 ,Lp4)

estimates whenever pj are Hölder-type exponents satisfying 2 < pj <∞ for all j. See [5]

and [4]. However, due to the more complex structure of the form, one cannot efficiently

rewrite Λ and Λd in a similar way as T and Td to exploit the mentioned square functions.

Thus, the question about Λ associated with any m satisfying (1.2) remains.

In the present note we obtain an answer in this direction by adapting the technique

used to treat Λd in [5] to the continuous setting. We address the simplest L4 case only.

It is expected that suitable tree decompositions will eventually enable us to prove (1.3)

for a larger range of exponents. However, for the considered quadrilinear form we cannot

make use of the fiber-wise Calderón-Zygmund decomposition by Bernicot.

The core argument in [5] intertwines two applications of the Cauchy-Schwarz inequal-

ity, which gradually separates the functions Fj , and two applications of an algebraic

identity, which ”interchanges” the functions ϕd and ψd. This identity, involving a tele-

scoping argument in the dyadic case, is now replaced by a differential equality combining

the fundamental theorem of calculus and the Leibniz rule. The main issue in the continu-

ous setup is that the mentioned algebraic trick can be applied twice if the functions ϕ,ψ,

decomposing the kernel, are sufficiently symmetric. For example, even functions would

work. Moreover, they need to possess enough decay and have certain smoothness prop-

erties, which should be maintained throughout the process. Suitable candidates which

fulfil the requirements are, for instance, the Gaussian exponential functions.

3A dyadic square is a product of two dyadic intervals of the same length. A dyadic interval is an

interval of the form [2km, 2k(m+ 1)), k, m ∈ Z.
4We write 1A for the characteristic function of a set A ⊆ R.
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Although we cannot expect our functions ϕ,ψ to be even, much less the Gaussian

exponential functions, we are able to overcome the mentioned restrictions as follows.

First, the reduction to the case of a concrete kernel, such as (1.7), is done by a careful

choice of the functions ϕ,ψ. This way we obtain some of the required symmetry and

regularity. Second, after each application of the Cauchy-Schwarz inequality we dominate

certain functions with a suitable superposition of dilated Gaussian exponential functions.

This gradually reduces the two algebraic steps to the case of Gaussians, which most

resembles the dyadic telescoping trick.

Besides extending the exponent range, it would be of interest to obtain boundedness

results for the continuous models of the forms from [4], associated with bipartite graphs.

Let us briefly comment on another related open problem. There is a question of

establishing Lp estimates for the akin trilinear form

Λ4(F1, F2, F3) :=

∫

R
F̂ (ξ, ξ, ξ)sgn(ξ)dξ

where the entangled product F is now given by

F (x, y, z) := F1(x, y)F2(y, z)F3(z, x).

Passing to the spatial side, one has up to a constant

Λ4(F1, F2, F3) =

∫

R3

F1(x, y)F2(y, z)F3(z, x)
−1

x+ y + z
dxdydz.

The structure of Λ4 corresponds to the three-cycle and for this reason it is called the

triangular Hilbert transform. No Lp bounds for Λ4 or for its dyadic model are known.

Lack of the bipartite structure prevents to approach it with the techniques from [4].

Boundedness of Λ4 would imply boundedness for certain instances of the two- di-

mensional bilinear Hilbert transform and the twisted paraproduct. Further interest in

Λ4 arises from ergodic theory. It is proposed by Demeter and Thiele [2] to approach the

open question of pointwise almost everywhere convergence for ergodic averages

1

N

N∑

n=1

f(Tnx)g(Snx),

where S, T : X → X are two commuting measure preserving transformations on a prob-

ability space X, via an examination of the triangular Hilbert transform.

Acknowledgement. I am grateful to my advisor Prof. Christoph Thiele for his

constant support, valuable consultations on the problem and numerous suggestions on

improving the text. I am thankful to Vjekoslav Kovač for useful discussions.

2 Decomposition of the symbol

To begin, we reduce the general symbol to a particular function by decomposing m into

pieces which are supported on certain subsets of two double cones. We follow the main

32



ideas discussed in [6]. However, we do not discretize, but rather keep continuum in the

scale.

The Fourier transform we shall use throughout this note is defined as

f̂(ω) :=

∫

Rn
f(τ)e−2πiτ ·ωdτ. (2.1)

By a smooth partition of unity and symmetry in ξ, η we may assume that m is

supported on the double cone

{(ξ, η) : |ξ| ≤ 1.001|η|}

centered around the η-axis. Choosing double cones over single cones will allow us to use

functions that are symmetric around the origin. We can choose the partition of unity

such that (1.2) is preserved, possibly with a different constant.

η

ξ

Figure 1: Decomposition of m.

By B(0, R) we denote the ball of radius R centered at the origin in R2. Let θ be a

function on R2 such that θ̂ is smooth, real, radial and supported in the annulus B(0, 2.7)\
B(0, 1.7). We normalize so that for every (ξ, η) 6= 0 we have

∫ ∞

0
θ̂(tξ, tη)

dt

t
= 1.

This can be achieved, since θ̂ is radial and supported away from 0. Then we can write

m(ξ, η) =

∫ ∞

0
mt(ξ, η)

dt

t
,

where mt(ξ, η) := m(ξ, η)θ̂(tξ, tη).

In what follows we will be working with certain smooth bump functions, for which we

need the following technical lemma. Its proof can be found in the appendix.

Lemma 2. Let ε := 0.001. There exists a non-negative real-valued function f ∈ C∞0 (R)

which is supported in [1, 3], even about 2 and constantly equal 1 on [1+ε, 3−ε], such that

f1/2 and

(∫ ∞

x

f(t) + f(−t)
t

dt
)1/2

(2.2)

belong to C∞0 (R).
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Now consider m1. Its support is contained in the union of the rectangles

[−2, 2]× [−3,−1] and [−2, 2]× [1, 3].

Let f be the function from Lemma 2 and let ϑ1, ϑ2 ∈ S(R) be such that ϑ̂1(ξ) = f((ξ +

4)/2) and ϑ̂2(ξ) = f(ξ) + f(−ξ). Then ϑ̂1 ⊗ ϑ̂2 equals 1 on the support of m1. Thus, by

dilating ϑ̂1, ϑ̂2 in t, for every t > 0 we can write

mt(ξ, η) = mt(ξ, η)ϑ̂1(tξ)ϑ̂2(tη).

This can be rewritten further using the Fourier inversion formula on mt as

mt(ξ, η) =

(∫

R2

µt(u, v)e2πiutξe2πivtηdudv

)
ϑ̂1(tξ)ϑ̂2(tη),

where µt := t2m̂t(t·, t·). Integrating by parts sufficiently many times, using that (1.2)

holds for m(ξ/t, η/t) uniformly in t and considering the support of mt we obtain

|µt(u, v)| = t2
∣∣∣∣
∫

R2

mt(ξ, η)e−2πi(utξ+vtη)dξdη

∣∣∣∣ =

∣∣∣∣
∫

R2

mt

(ξ
t
,
η

t

)
e−2πi(uξ+vη)dξdη

∣∣∣∣
. (1 + |u|)−12(1 + |v|)−12.

Define ϕ(u), ψ(v) by

ϕ̂(u)(ξ) := (1 + |u|)−5(ϑ̂1(ξ))1/2eπiuξ, (2.3)

ψ̂(v)(η) := (ϑ̂2(η))1/2eπivη.

By Lemma 2 we have (ϑ̂1)
1/2 ∈ C∞0 (R), so the function ϕ(u) satisfies the bound

|ϕ(u)(x)| . (1 + |x|)−5 (2.4)

uniformly in u. We will apply this fact in the following section. Now we can write

m(ξ, η) =

∫ ∞

0

∫

R2

µ̃t(u, v)(ϕ̂(u)(tξ))2(ψ̂(v)(tη))2dudv
dt

t
,

where the coefficients µ̃t are defined as

µ̃t(u, v) := (1 + |u|)10µt(u, v).

Note that (ϑ̂1)
1/2 and (ϑ̂2)

1/2 are real-valued and even, so ϕ(u), ψ(v) are multiples of

translates of real-valued functions and thus real-valued.

To summarize, on a double cone we have decomposed Λ(F1, F2, F3, F4) into
∫

R2

∫ ∞

0
µ̃t(u, v)

∫

R2

F̂ (ξ,−ξ, η,−η)(ϕ̂(u)(tξ))2(ψ̂(v)(tη))2dξdη
dt

t
dudv.

By the rapid decay of the coefficients µ̃t it will suffice to prove (1.3) for the form
∫ ∞

0

∣∣∣
∫

R2

F̂ (ξ,−ξ, η,−η)(ϕ̂(u)(tξ))2(ψ̂(v)(tη))2dξdη
∣∣∣dt
t
, (2.5)

provided that the estimate holds uniformly in the parameters u, v.

From now on we assume that the functions Fj ∈ S(R2) are real-valued, as otherwise

we can split them into real and imaginary parts and use quadrisublinearity of (2.5).
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3 Proof of Theorem 1

The proof proceeds with studying the special case (2.5). For t > 0 and four functions

φi ∈ S(R) we define

Ltφ1,φ2,φ3,φ4(F1, F2, F3, F4) :=

∫

R2

F̂ (ξ,−ξ, η,−η)φ̂1(tξ)φ̂2(−tξ)φ̂3(tη)φ̂4(−tη)dξdη.

For the rest of this note we will consider objects of the type

Λφ1,φ2,φ3,φ4(F1, F2, F3, F4) :=

∫ ∞

0
Ltφ1,φ2,φ3,φ4(F1, F2, F3, F4)

dt

t

and

Λ̃φ1,φ2,φ3,φ4(F1, F2, F3, F4) :=

∫ ∞

0

∣∣∣Ltφ1,φ2,φ3,φ4(F1, F2, F3, F4)
∣∣∣dt
t
. (3.1)

Observe that (2.5) is obtained from (3.1) by choosing

φ1 = ϕ(u), φ3 = ψ(v),

φ2 = ϕ(−u), φ4 = ψ(−v).

This follows from (2.3) and from the functions ϑ̂1, ϑ̂2 being even.

We shall now express Ltφ1,φ2,φ3,φ4 on the spatial side. Let us denote by [f ]t the L1-

dilation of a function f by a parameter t > 0, i.e. [f ]t(x) := t−1f(t−1x). Then, [̂f ]t(ξ) =

f̂(tξ). Since the integral of the Fourier transform of a Schwartz function in R4 over the

hyperplane

{(ξ,−ξ, η,−η) : ξ, η ∈ R}
equals the integral of the function itself over the perpendicular hyperplane

{(p, p, q, q) : p, q ∈ R},

we can write Ltφ1,φ2,φ3,φ4(F1, F2, F3, F4) as

∫

R2

F ∗ ([φ1]t ⊗ [φ2]t ⊗ [φ3]t ⊗ [φ4]t)(p, p, q, q)dpdq.

Expanding the convolution, the last display can be identified as
∫

R6

F1(x, y)F2(x
′, y)F3(x

′, y′)F4(x, y
′)

[φ1]t(p− x)[φ2]t(p− x′)[φ3]t(q − y)[φ4]t(q − y′)dxdx′dydy′dpdq.

Now we are ready to start. The inequality (1.3), which we want to establish, is

homogeneous, so we may normalize

‖Fj‖L4(R2) = 1,

for j = 1, 2, 3, 4. Thus, we are set to show

Λ̃ϕ(u),ϕ(−u),ψ(v),ψ(−v)(F1, F2, F3, F4) . 1.
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The proof starts with an application of the Cauchy-Schwarz inequality. To preserve

the mean zero property of ψ(v), ψ(−v) we separate the involved functions according to the

variables y, y′ and estimate Λ̃ϕ(u),ϕ(−u),ψ(v),ψ(−v)(F1, F2, F3, F4) by
∫ ∞

0

∫

R4

∣∣∣∣
∫

R
F1(x, y)F2(x

′, y)[ψ(v)]t(q − y)dy

∣∣∣∣
∣∣∣∣
∫

R
F3(x

′, y′)F4(x, y
′)[ψ(−v)]t(q − y′)dy′

∣∣∣∣

[|ϕ(u)|]t(p− x)[|ϕ(−u)|]t(p− x′)dxdx′dpdq
dt

t
.

Applying the Cauchy-Schwarz inequality bounds this expression by the product

Λ|ϕ(u)|,|ϕ(−u)|,ψ(v),ψ(v)(F1, F2, F2, F1)
1/2Λ|ϕ(u)|,|ϕ(−u)|,ψ(−v),ψ(−v)(F4, F3, F3, F4)

1/2.

We estimate the first factor of the above display, the second is dealt with similarly.

To further separate the involved functions we would like to apply the Cauchy-Schwarz

inequality again, which now needs to be done in the complementary variables. So we need

to ”switch” the functions ϕ(u) and ψ(v). This is where we make use of the following lemma,

a continuous analogue of the telescoping identity from [5].

Lemma 3. Assume that we have two pairs of real-valued Schwartz functions (ρi, σi),

i = 1, 2, which satisfy

−t∂t|ρ̂i(tτ)|2 = |σ̂i(tτ)|2 for i = 1, 2. (3.2)

Then with c := |ρ̂1(0)|2|ρ̂2(0)|2 we have

Λσ1,ρ2(F1, F2, F3, F4) + Λρ1,σ2(F1, F2, F3, F4) = c

∫

R2

F1F2F3F4, (3.3)

where we have denoted Λσ,ρ = Λσ,σ,ρ,ρ.

Proof. By the fundamental theorem of calculus,
∫ ∞

0
∂t(|ρ̂1(tξ)|2|ρ̂2(tη)|2)dt = −|ρ̂1(0)|2|ρ̂2(0)|2. (3.4)

The left hand-side of (3.4) equals
∫ ∞

0
t∂t(|ρ̂1(tξ)|2)|ρ̂2(tη)|2dt

t
(3.5)

+

∫ ∞

0
|ρ̂1(tξ)|2t∂t(|ρ̂2(tη)|2)dt

t
.

The functions ρ, σ are real-valued, so ρ̂(η) = ρ̂(−η), and analogously for σ. Together with

(3.2) this shows that (3.5) can be written as

−
∫ ∞

0
σ̂1(tξ)σ̂1(−tξ)ρ̂2(tη)ρ̂2(−tη)

dt

t
−
∫ ∞

0
ρ̂1(tξ)ρ̂1(−tξ)σ̂2(tη)σ̂2(−tη)

dt

t
. (3.6)

Now multiply (3.4) by F̂ (ξ,−ξ, η,−η) and integrate in the variables ξ, η. It remains

to use (3.6) and to evaluate the right hand-side of (3.4) as −|ρ̂1(0)|2|ρ̂2(0)|2 times
∫

R2

F̂ (ξ,−ξ, η,−η)dξdη =

∫

R2

F (x, x, y, y)dxdy

=

∫

R2

F1(x, y)F2(x, y)F3(x, y)F4(x, y)dxdy.

This proves the claim.
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To apply Lemma 3 we would like to have ϕ(u) = ϕ(−u), as then we would get

Λ|ϕ(u)|,|ϕ(−u)|,ψ(v),ψ(v) = Λ|ϕ(u)|,ψ(v) .

However, we do not have ϕ(u) = ϕ(−u) in general. For this and to circumvent possible

lack of smoothness of |ϕ(±u)|, we dominate |ϕ(±u)| with a superposition of the Gaussian

exponential functions. Consider

Φ(x) :=

∫ ∞

1

1

α5
e−( xα)

2

dα =
1

2x4
(1− e−x2(x2 + 1)).

The function Φ is positive, continuous at zero and for large x comparable to x−4. Let us

denote the L1-normalized Gaussian rescaled by a parameter α > 0 by

gα(x) :=
1√
πα

e−( xα)
2

. (3.7)

Then we can write

Φ = π−1/2
∫ ∞

1

1

α4
gα dα.

Since |ϕ(±u)| satisfies the decay estimate (2.4), we can bound it pointwise by Φ multiplied

by some positive constant which is uniform in u. Positivity of the integrands in

Λ|ϕ(u)|,|ϕ(−u)|,ψ(v),ψ(v)(F1, F2, F2, F1) =

∫ ∞

0

∫

R4

(∫

R
F1(x, y)F2(x

′, y)[ψ(v)]t(q − y)dy
)2

[|ϕ(u)|]t(p− x) [|ϕ(−u)|]t(p− x′)dxdx′dpdq
dt

t
(3.8)

then allows us to dominate

Λ|ϕ(u)|,|ϕ(−u)|,ψ(v),ψ(v)(F1, F2, F2, F1) .
∫ ∞

1

∫ ∞

1
Λgα,gβ ,ψ(v),ψ(v)(F1, F2, F2, F1)

dα

α4

dβ

β4
.

To reduce to only one scaling parameter in the last line we split the integration into the

regions α ≥ β and α < β. By symmetry it suffices to estimate the region α ≥ β only, on

which we bound βgβ ≤ αgα for α, β ≥ 1. This leaves us with having to estimate

∫ ∞

1
Λgα,ψ(v)(F1, F2, F2, F1)

dα

α3
.

We shall now apply Lemma 3 with (ρ1, σ1) = (gα, hα) and (ρ2, σ2) = (φ, ψ(v)), where

we define hα(x) := α(gα)′(x) and φ is defined via

φ̂(ξ) :=

(∫ ∞

ξ
|ψ̂(v)(τ)|2dτ

τ

)1/2

. (3.9)

Since |ψ̂(v)|2 = ϑ̂2, by Lemma 2 the function φ̂ belongs to C∞0 (R). Note that the two pairs

of functions (ρi, σi) satisfy (3.2), which follows by a straightforward calculation. Lemma

3 now yields

Λgα,ψ(v)(F1, F2, F2, F1) = −Λhα,φ(F1, F2, F2, F1) + φ̂(0)2
∫

R2

F 2
1F

2
2 . (3.10)
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By the Cauchy-Schwarz inequality we have

∫

R2

F 2
1F

2
2 ≤ ‖F1‖2L4(R2)‖F2‖2L4(R2) = 1,

so it remains to consider the first term on the right hand-side of (3.10).

To estimate it we repeat the just performed steps, which will further separate the

functions F1, F2. The role of ϕ(±u) is now taken over by φ and the role of ψ(±v) is

assumed by hα. Therefore we can group the integrals in Λhα,φ according to the variables

x, x′, and bound |Λhα,φ(F1, F2, F2, F1)| by

∫ ∞

0

∫

R4

∣∣∣∣
∫

R
F1(x, y)F1(x, y

′)[hα]t(p− x)dx

∣∣∣∣
∣∣∣∣
∫

R
F2(x

′, y′)F2(x
′, y)[hα]t(p− x′)dx′

∣∣∣∣

[|φ|]t(q − y)[|φ|]t(q − y′)dydy′dpdq
dt

t
.

Applying the Cauchy-Schwarz inequality we obtain

|Λhα,φ(F1, F2, F2, F1)| ≤ Λhα,|φ|(F1, F1, F1, F1)
1/2Λhα,|φ|(F2, F2, F2, F2)

1/2.

Now we dominate the rapidly decaying function |φ| by a positive constant times Φ,

which gives for the first factor

Λhα,|φ|(F1, F1, F1, F1) .
∫ ∞

1

∫ ∞

1
Λhα,hα,gγ ,gδ(F1, F1, F1, F1)

dγ

γ4
dδ

δ4
. (3.11)

By symmetry it again suffices to estimate

∫ ∞

1
Λhα,gγ (F1, F1, F1, F1)

dγ

γ3
.

Lemma 3 with (ρ1, σ1) = (gα, hα) and (ρ2, σ2) = (gγ , hγ) gives

Λhα,gγ (F1, F1, F1, F1) = −Λgα,hγ (F1, F1, F1, F1) +

∫

R2

F 4
1 .

The key gain we obtain from having reduced to a single function F1 is that

Λgα,hγ (F1, F1, F1, F1) ≥ 0, (3.12)

which can be seen by writing the form in (3.12) in an analogous way as in (3.8) and using

positivity of gα. By our normalization,
∫
R2 F

4
1 = 1. Thus,

Λhα,gγ (F1, F1, F1, F1) ≤ 1.

This establishes the desired estimate for Λ̃ϕ(u),ϕ(−u),ψ(v),ψ(−v) .

4 Appendix

In this appendix we give the following remaining proof.
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Proof of Lemma 2. We construct a function f which has the prescribed behavior near

the endpoints of its support, so that the considered square roots are evidently smooth.

The construction essentially consists of algebraic manipulations of ϕ(x) := e−
1
x1(0,∞)(x).

Consider the function

g(x) := c ϕ1(x)ϕ2(2−
2

ε
x),

where ϕ1 and ϕ2 are defined as

ϕ1(x) := ((3− x)ϕ′(x))′ and ϕ2(x) :=
ϕ(x)

ϕ(x) + ϕ(1− x)
.

The constant c > 0 is chosen such that
∫
R g = 1. The function g is smooth, non-negative

and supported on [0, ε]. Since ϕ2 equals 1 for x ≥ 1, for δ := ε/2 we have

g = c ϕ1 on (−∞, δ).

The factor (3− x) in the definition of ϕ1 will be convenient when investigating (2.2).

We consider the antiderivative

f(x) :=

∫ x

−∞
g(t− 1)− g(3− t)dt,

which is smooth and even about x = 2, i.e. f(x) = f(4 − x). Moreover, it is supported

on [1, 3], positive on (1, 3) and constantly equals 1 on [1 + ε, 3− ε]. We have

f(x) = c (4− x)ϕ′(x− 1) on (−∞, 1 + δ). (4.1)

Thus, f1/2 is smooth at x = 1. Smoothness at x = 3 follows by symmetry.

Consider the integral in (2.2), which is due to oddness of the integrand equal to

h(x) :=

∫ x

−∞
−f(t) + f(−t)

t
dt.

The function h is even, supported on [−3, 3] and positive on (−3, 3). Using f(−t) =

f(t+ 4) and (4.1) we see that

h(x) = c ϕ(x+ 3) on (−∞,−3 + δ).

This shows smoothness of h1/2 at x = −3. By symmetry the same holds at x = 3, which

establishes the claim of the lemma.
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Lp estimates for a singular entangled quadrilinear form

Polona Durcik

Abstract

We prove Lp estimates for a continuous version of a dyadic quadrilinear form

introduced by Kovač in [6]. This improves the range of exponents from the prequel

[3] of the present paper.

1 Introduction

This article is a continuation of [3]. We are concerned with a quadrilinear singular

integral form involving the entangled product of four functions on R2

F (F1, F2, F3, F4)(x, y, x′, y′) := F1(x, y)F2(x′, y)F3(x′, y′)F4(x, y′).

For Schwartz functions Fj ∈ S(R2), the form is given by

Λ(F1, F2, F3, F4) :=

∫

R2

F̂ (ξ, η,−ξ,−η)m(ξ, η)dξdη,

where F := F (F1, F2, F3, F4) and m is a bounded function on R2, smooth away from the

origin. For all multi-indices α up to some large finite order it satisfies1

|∂αm(ξ, η)| . (|ξ|+ |η|)−|α|.

In [3] it is shown that

|Λ(F1, F2, F3, F4)| . ‖F1‖L4(R2)‖F2‖L4(R2)‖F3‖L4(R2)‖F4‖L4(R2). (1.1)

Our present goal is to prove Lp estimates for Λ in a larger range of exponents.

Theorem 1. For F1, F2, F3, F4 ∈ S(R2), the quadrilinear form Λ satisfies

|Λ(F1, F2, F3, F4)| .(pj) ‖F1‖Lp1 (R2)‖F2‖Lp2 (R2)‖F3‖Lp3 (R2)‖F4‖Lp4 (R2)

whenever
∑4

j=1
1
pj

= 1 and 2 < pj ≤ ∞ for all j.

This theorem is a consequence of the restricted type estimates given by Theorem 3

below. By the decomposition performed in [3], it suffices to prove Theorem 1 for m

2010 Mathematics Subject Classification. Primary 42B15; Secondary 42B20.
1We write A . B if there is an absolute constant C > 0 such that A ≤ CB. If P depends on a set of

parameters P , we write A .P B. We write A ∼ B if both A . B and B . A.
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reduced to a single cone in the frequency plane (ξ, η). More precisely, it is enough to

consider the form
∫ ∞

0
µt

∫

R2

F̂ (ξ, η,−ξ,−η)ϕ̂(u)(tξ)ψ̂(v)(tη)ϕ̂(−u)(−tξ)ψ̂(−v)(−tη)dξdη
dt

t
(1.2)

where ϕ(u)(x) = (1 + |u|)−25ϕ(x− u) and ψ(v)(x) = (1 + |v|)−10ψ(x− v). The functions

ϕ,ψ ∈ S(R) are real-valued and ψ is such that (
∫∞
η |ψ̂(τ)|2dτ/τ)1/2 belongs to S(R), u, v ∈

R and µt are measurable coefficients with |µt| ≤ 1. We remark that the decomposition

is not explicitly stated in this manner in [3], but it follows by a minor rephrasing of the

arguments. The estimate for (1.2) will be uniform in the parameters u, v.

Since the integral of the Fourier transform of a Schwartz function over a hyperplane

in R4 equals the integral of the function itself over the perpendicular hyperplane, we can

express the form (1.2) as

∫ ∞

0
µt

∫

R2

F ∗ [ϕ(u) ⊗ ψ(v) ⊗ ϕ(−u) ⊗ ψ(−v)]t(p, q, p, q)dpdq
dt

t
,

where (f1 ⊗ · · · ⊗ fn)(x1, . . . xn) := f1(x1) . . . fn(xn) and [f ]t(x1, . . . , xn) := t−nf(t−1x).

We truncate in the scale t, that is, for N > 0 we consider ΛNϕ,ψ = ΛNϕ,ψ,µ,u,v given by

ΛNϕ,ψ(F1, F2, F3, F4) :=

∫ 2N

2−N
µt

∫

R2

F ∗ [ϕ(u) ⊗ ψ(v) ⊗ ϕ(−u) ⊗ ψ(−v)]t(p, q, p, q)dpdq
dt

t
,

which is well defined for bounded measurable functions Fj with finite measure support.

We have the following analogue of Theorem 1 for ΛNϕ,ψ.

Theorem 2. For bounded measurable functions F1, F2, F3, F4 with finite measure support,

the quadrilinear form ΛNϕ,ψ satisfies the estimate

|ΛNϕ,ψ(F1, F2, F3, F4)| .(pj) ‖F1‖Lp1 (R2)‖F2‖Lp2 (R2)‖F3‖Lp3 (R2)‖F4‖Lp4 (R2) (1.3)

whenever
∑4

j=1
1
pj

= 1 and 2 < pj ≤ ∞ for all j.

The bound (1.3) is independent of N, u, v. Approximating Fj ∈ S in Lpj with smooth

compactly supported functions, Theorem 2 then implies Theorem 1. By the multilinear

interpolation and the restricted type theory discussed in [10], Theorem 2 is a consequence

of the following (generalized) restricted type estimates.

Theorem 3. For j = 1, 2, 3, 4, let Ej ⊆ R2 be a set of finite measure. Let k be the largest

index such that |Ek| is maximal among the |Ej |. Then there exists a subset E′k ⊆ Ek with

2|E′k| ≥ |Ek|, such that for any four measurable functions Fj with2 |Fj | ≤ 1Ej for all j

and |Fk| ≤ 1E′k we have the estimate

|ΛNϕ,ψ(F1, F2, F3, F4)| . |E1|α1 |E2|α2 |E3|α3 |E4|α4

whenever
∑4

j=1 αj = 1 and −1/2 ≤ αj ≤ 1/2 for all j.

2By 1A we denote the characteristic function of a set A ⊆ R2.
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Negative exponents αj correspond to quasi-Banach space estimates for the dual op-

erators of ΛNϕ,ψ, for which one may consult [10].

Assuming Theorem 1, we now mention how to extend Λ to a bounded operator on

Lp1 × Lp2 × Lp3 × Lp4 whenever pj are as in Theorem 1. If pj <∞ for all j, this follows

by density of S in Lpj . If pj = ∞ for some j, we argue by duality. Note that have

at most one exponent equal to ∞. We sketch the argument when p4 = ∞, the other

instances following by symmetry of the form. We know that there is an operator T

mapping L4 × L4 × L4 to L4/3 such that

Λ(F1, F2, F3, F4) =

∫
T (F1, F2, F3)F4.

We claim that for Fj ∈ S, ‖T (F1, F2, F3)‖L1 . ‖F1‖Lp1‖F2‖Lp2‖F3‖Lp3 . Then Λ can

be defined on S × S × S × L∞ and density arguments yield a bounded extension on

Lp1 × Lp2 × Lp3 × L∞. To see the claim we write

‖T (F1, F2, F3)‖L1([−M,M ]2) =

∫
T (F1, F2, F3)ϑ

where ϑ is a modulation times 1[−M,M ]2 . Then we approximate ϑ weakly in L4 with

smooth compactly supported functions having L∞ norms uniformly bounded by 1. Ap-

plying Theorem 1 for the tuple (p1, p2, p3,∞) yields the assertion.

Let us briefly comment on the form Λ. For more extensive motivation we refer to

[3]. The instance of Λ which was first considered is the trilinear form3 Λ1(F1, F2, F3) :=

Λ(F1, F2, F3, 1). It was introduced by Demeter and Thiele [2]. This trilinear form can

also be seen as a simpler version of the twisted paraproduct proposed by Camil Muscalu

and sometimes one refers to it with that name as well.

Boundedness of Λ1 was established by Kovač [6], who first investigated a dyadic

model of Λ for a general function F4 by an induction on scales type argument. See also

[5]. This led to an estimate for a dyadic version of Λ1 whenever 2 < p1, p2, p3 < ∞ and

1/p1+1/p2+1/p3 = 1. Then Kovač passed to the bound for Λ1 using the square functions

of Jones, Seeger and Wright [4]. Bernicot’s fiber-wise Calderón-Zygmund decomposition

[1] extended the range of exponents to 1 < p1, p3 < ∞, 2 < p2 ≤ ∞. The transition to

the continuous case and the extension of the exponent range both relied on the special

structure arising from F4 = 1.

For the quadrilinear form with a general fourth function, the L4 estimate (1.1) was

derived by adapting the induction of scales techique by Kovač to the continuous setting.

In the present article we prove estimates in a larger range of exponents by extending his

method to the continuous localized context.

By a classical stopping time argument, Theorem 3 is reduced to estimating entangled

forms of the type
∫

Ω
|F ∗ [ϕ(u) ⊗ ψ(v) ⊗ ϕ(−u) ⊗ ψ(−v)]t(p, q, p, q)|dpdq

dt

t
.

Here Ω is a certain local region in the upper half space with ”regular” boundary. Control-

ling such objects with the technique from [6] requires an algebraic telescoping identity.

3In [3] we called this form T , not to be interchanged with the dual operator introduced above.
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In [3], its derivation relies on an identity involving the Fourier transform. The argument

is of global nature and we cannot directly repeat it in the localized setting.

We obtain the desired telescoping element in Proposition 8 in Section 2. To overcome

the mentioned difficulty, we first restrict the functions Fj to certain projections of the

region Ω. This allows us to discard the spatial localization of the form and proceed in the

manner of [3]. The issue in the described process is then in estimating boundary terms,

representing differences between local and global objects. This requires certain control

of the boundary and is carried out in Lemma 6 and Lemma 7 below. Our approach has

been inspired by Muscalu, Tao and Thiele [7].

To conclude we remark that in general we do not know of any arguments which could

extend the range of exponents from Theorem 1 to pj ≤ 2.

Acknowledgement. I would like to express my sincere gratitude to my advisor Prof.

Christoph Thiele for his guidance and support throughout this project.

2 Local telescoping

First let us set up some notation. A dyadic interval is a interval of the form [2km, 2k(m+

1)] for some k,m ∈ Z. We denote the set of all dyadic intervals by I and the set of

all dyadic intervals of length 2k by Ik. A dyadic square is the Cartesian product of

two dyadic intervals of the same length. For a dyadic square S we denote by `(S) its

sidelength. We write D for the set of all dyadic squares and Dk for the set of all dyadic

squares of sidelength 2k. Each S ∈ D is divided into four congruent dyadic squares of

half the sidelength, called the children of S. Conversely, each square in D has a unique

parent in D. Given any two dyadic squares, either one is contained in the other or they

are almost disjoint, by which we mean that their intersection has Lebesgue measure zero.

As in [6], we collect the squares into units called trees. A finite collection T ⊆ D
is called a tree if there exists a square RT ∈ T called the root, satisfying S ⊆ RT for

every S ∈ T . A tree is called convex if for all S1, S2, S3 we have that S1 ⊆ S2 ⊆ S3 and

S1, S3 ∈ T imply S2 ∈ T . A leaf of T is a dyadic square which is not contained in T , but

its parent is. We denote the set of leaves of T by L(T ). Note that the leaves of a convex

tree partition its root. We split T into generations of squares of sidelength 2k. For this

we denote

Tk := T ∩ Dk and T ck := Dk \ Tk.

For the union of all squares in Tk we write

Tk :=
⋃

S∈Tk
S.

Observe that for a convex tree T we have Tk ⊆ Tk′ if k ≤ k′, Tk′ 6= ∅.
The following lemma measures the size of the boundary of Tk. It is a variant of Lemma

4.8 from [7]. It estimates the cardinality of dyadic points

∆(Tk) := ∂Tk ∩ (2kZ× 2kZ),
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where ∂Tk denotes the topological boundary of Tk ⊆ R2. Note that ∂Tk is the union of

all dyadic line segments in

{
[p, p+ 2k]× {q} ⊆ Tk : (p, q) ∈ 2kZ× 2kZ, [p, p+ 2k]× [q − 2k−1, q + 2k−1] 6⊆ Tk

}

∪
{
{p} × [q, q + 2k] ⊆ Tk : (p, q) ∈ 2kZ× 2kZ, [p− 2k−1, p+ 2k−1]× [q, q + 2k] 6⊆ Tk

}
.

Lemma 4. For any convex tree T we have

∑

k∈Z
22k#∆(Tk) . |RT |.

Proof. It suffices to prove the claim for all dyadic points (p, q) ∈ ∂Tk such that [p−2k, p]×
[q − 2k, q] 6∈ Tk. For each such point consider the dyadic square

S(p, q, k) := [p− 2k, p− 2k−1]× [q − 2k, q − 2k−1]

which has area 22(k−1). We claim that squares of this form are pairwise almost disjoint.

This will prove the lemma, as they are contained in 3RT .

To see the claim, suppose that S(p, q, k) and S(p′, q′, k′) intersect in a set of positive

measure. If k = k′, then they must coincide since they are dyadic and of the same scale.

So suppose that k < k′, hence S(p, q, k) is contained in S(p′, q′, k′). Then the point (p, q)

is contained in the interior of [p′ − 2k
′
, p′]× [q′ − 2k

′
, q′], which is disjoint from Tk′ . This

shows that (p, q) ∈ Tk but (p, q) /∈ Tk′ , contradicting convexity of T .

With any collection of dyadic squares C ⊆ D we associate a region in the upper half

space R3
+. The region consists of Whitney boxes associated with S ∈ C and is defined by

ΩC :=
⋃

S∈C
S ×

[`(S)

2
, `(S)

]
.

The case C = T for a convex tree T is depicted in Figure 1. Observe that ΩT = ∪k∈ZΩTk =

∪k∈ZTk × [2k−1, 2k].

Figure 1: Projection of ΩT on R2
+. The bold lines represent S × `(S) for S ∈ T , while

the dotted lines correspond to S ∈ L(T ).
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Throughout the text, all two-dimensional functions will be measurable, bounded, with

finite measure support and positive. Denote

θ(x, y) := (1 + |(x, y)|4)−1.

For a function F on R2 and C ⊆ D we define

M(F, C) := sup
(p,q,t)∈ΩC

(F 2 ∗ [θ]t(p, q))
1/2.

Denote also

ϑ(x) := (1 + |x|)−4.

Now we consider a continuous variant of the Gowers box inner product used in [6]. The

following estimate joins a version of the box Cauchy-Schwarz inequality and an estimate

of the Gowers box norm by an L2-type average. This is the reason for the restricted range

of exponents in Theorem 1.

Lemma 5. For (p, q, t) ∈ ΩC we have

F ∗ [ϑ⊗ ϑ⊗ ϑ⊗ ϑ]t(p, q, p, q) ≤
4∏

j=1

M(Fj , C). (2.1)

Proof. Denote the left-hand side of (2.1) by A(p,q,t)(F1, F2, F3, F4) and rewrite it as
∫

R2

(∫

R
F1(x, y)F2(x′, y)[ϑ]t(q − y)dy

)(∫

R
F3(x′, y′)F4(x, y′)[ϑ]t(q − y′)dy′

)

[ϑ]t(p− x)[ϑ]t(p− x′)dxdx′ (2.2)

Now we apply the Cauchy-Schwarz inequality with respect to [ϑ]t(p−x)dx, [ϑ]t(p−x′)dx′,
which bounds this term by

A(p,q,t)(F1, F2, F2, F1)1/2A(p,q,t)(F4, F3, F3, F4)1/2.

By symmetry in (p, q) it follows that

A(p,q,t)(F1, F2, F2, F1) ≤ A(p,q,t)(F1, F1, F1, F1)1/2A(p,q,t)(F2, F2, F2, F2)1/2.

Now we write A(p,q,t)(Fj , Fj , Fj , Fj) in the same way as in (2.2) and apply the Cauchy-

Schwarz inequality with respect to dy, dy′. This yields

A(p,q,t)(Fj , Fj , Fj , Fj) ≤ (F 2
j ∗ [ϑ⊗ ϑ]t(p, q))

2 ≤ (F 2
j ∗ [θ]t(p, q))

2,

which proves the claim.

With functions φj ∈ L1(R), j = 1, 2, 3, 4, and C ⊆ D we associate the local form

ΘCφ1,φ2,φ3,φ4(F1, F2, F3, F4) :=

∫

ΩC
F ∗ [φ1 ⊗ φ2 ⊗ φ3 ⊗ φ4]t(p, q, p, q)dpdq

dt

t
.

To shorten the notation we write ΘCφ1,φ3 := ΘCφ1,φ3,φ1,φ3 .

The following two complementary lemmas will be used to control error and boundary

terms in Proposition 8.
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Lemma 6. For a convex tree T we have

∑

k∈Z
ΘTk
ϑ2,ϑ2

(F11T ck , F2, F3, F4) . |RT |
4∏

j=1

M(Fj , T ). (2.3)

Observe that by symmetry of (2.3), the same result holds under any permutation of

the arguments F11T ck , F2, F3, F4.

Proof. For k ∈ Z and t ∈ [2k−1, 2k] we consider

∫

Tk

∫

R4

F (F11T ck , F2, F3, F4)(x, y, x′, y′)[ϑ⊗ ϑ⊗ ϑ⊗ ϑ]t(p− x, q − y, p− x′, q − y′)

ϑ⊗ ϑ(t−1(p− x, q − y))ϑ⊗ ϑ(t−1(p− x′, q − y′))dxdydx′dy′dpdq. (2.4)

Note that (2.3) is obtained by integrating this term in t ∈ [2k−1, 2k] and summing over

k ∈ Z. We claim that for (x, y) ∈ T ck and (p, q) ∈ Tk there is a point (a, b) contained in

B(p, q) := {(p′, q′) ∈ ∂Tk : p′ = p or q′ = q} ∪∆(Tk) (2.5)

such that |(p, q)− (x, y)| ≥ |(p, q)− (a, b)|.
This can be seen as follows. By E we denote the intersection of ∂Tk and the line

segment between (p, q) and (x, y). If E contains dyadic points from ∆(Tk), we may set

(a, b) to be any of these points. Otherwise, E must contain a point of the form (p′, q′+α)

or (p′ + α, q′) for some p′, q′ ∈ 2kZ, α ∈ (0, 2k). Assume it contains at least one of the

form (p′, q′+α). For definiteness pick the one with the the least distance to (p, q). In case

q′ < q < q′ + 2k we know that (p′, q) ∈ ∂Tk and we set (a, b) = (p′, q). If q < q′, we set

(a, b) = (p′, q′) ∈ ∆(Tk). In case q > q′ + 2k we choose (p′, q′ + 2k) ∈ ∆(Tk). Analogously

we proceed in the remaining case, that is, if E consists only of points (p′ + α, q′).
Since ϑ⊗ ϑ ≤ θ and θ is radially decreasing, we have for (p, q), (x, y), (a, b) as above

ϑ⊗ ϑ(t−1(p− x, q − y)) ≤ θ(t−1(p− a, q − b)) ≤
∑

(a,b)∈B(p,q)

θ(t−1(p− a, q − b)).

Estimating ϑ⊗ ϑ(t−1(p− x′, q − y′)) ≤ 1, the term (2.4) is bounded by

∫

Tk

F (F11T ck , F2, F3, F4) ∗ [ϑ⊗ ϑ⊗ ϑ⊗ ϑ]t(p, q, p, q)
∑

(a,b)∈B(p,q)

θ(t−1(p− a, q − b))dpdq.

Applying Lemma 5, the last display is no greater than

(
M(F11T ck , Tk)

4∏

j=2

M(Fj , Tk)
)∫

Tk

∑

(a,b)∈B(p,q)

θ(t−1(p− a, q − b))dpdq.

Observe that by homogeneity of the inequality (2.3) we may assume M(Fj , T ) = 1 for

all j. Due to this fact and by symmetry in p, q, it suffices to further estimate

∑

Q∈Ik

∫

Q

∑

a:{a}×Q⊆∂Tk

∫

R
θ(t−1(p− a, 0))dpdq +

∑

(a,b)∈∆(Tk)

∫

R2

θ(t−1(p− a, q − b))dpdq.
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Integrating the function θ, the last display is estimated by a constant times

∑

Q∈Ik

∫

Q
t#{a : {a} ×Q ⊆ ∂Tk}+ t2#∆(Tk) . 22k#∆(Tk).

Therefore, up to a constant, (2.3) is bounded by

∑

k∈Z

∫ 2k

2k−1

22k#∆(Tk)
dt

t
.
∑

k∈Z
22k#∆(Tk) . |RT |,

which is the desired result in view of the normalization M(Fj , T ) = 1. The last inequality

follows from Lemma 4.

Lemma 7. For a convex tree T we have

∑

k∈Z
Θ
T ck
ϑ2,ϑ2

(F11Tk , F21Tk , F31Tk , F41Tk) . |RT |
4∏

j=1

M(Fj , T ). (2.6)

Proof. Proceeding in the exact same way as in the proof of Lemma 6 we see that the

left-hand side of (2.6) is bounded by

∑

k∈Z

( 4∏

j=1

M(Fj1Tk , T ck )
)∫

T ck

∑

(a,b)∈B(p,q)

θ(t−1(p− a, q − b))dpdq

.
∑

k∈Z

( 4∏

j=1

M(Fj1Tk , T ck )
)

22k#∆(Tk),

where B(p, q) is defined as in (2.5). We claim that for each j we have

M(Fj1Tk , T ck ) .M(Fj , T ).

Together with an application of Lemma 4 this will finish the proof.

The claim can be rephrased as follows: for each (p, q) ∈ T ck we have

(F 2
j 1Tk ∗ [θ]t(p, q))

1/2 .M(Fj , T ).

First we set (p, q) = 0 without loss of generality. Also, we may assume that Tk is contained

in the quadrant {(p, q) : p ≥ 0, q ≥ 0}, as otherwise we restrict Tk to each of the four

quadrants and all parts are treated in the same way. Denote

r := min
(a,b)∈∂Tk

|(a, b)|.

Take any point (a, b) which minimizes the distance and consider the closed cone C in R2

with vertex 0 and aperture π/2, its axis being the line spanned by (a, b). Observe that each

(x, y) ∈ Tk∩C satisfies |(x, y)| ≥ |(x, y)−(a, b)| and thus θ(x, y) ≤ θ(x−a, y−b). If Tk\C 6=
∅, then we iterate with Tk replaced by Tk \ C. We find a point (a′, b′) ∈ ∂Tk ∩ ∂(Tk \ C)

and a cone C ′ such that for each (x, y) ∈ (Tk \ C)∩C ′ we have |(x, y)| ≥ |(x, y)− (a′, b′)|
and so θ(x, y) ≤ θ(x− a′, y − b′). Since C ∪ C ′ covers Tk, for each (x, y) ∈ Tk we have

θ(x, y) ≤ θ(a− x, b− y) + θ(a′ − x, b′ − y).
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Therefore,

(F 2
j 1Tk ∗ [θ]t(0))1/2 . ( sup

(a,b,t)∈ΩTk

F 2
j 1Tk ∗ [θ]t(a, b))

1/2 ≤ sup
(a,b,t)∈ΩT

(F 2
j ∗ [θ]t(a, b))

1/2

as desired.

For a function f ∈ S(R) we consider the Schwartz seminorm

‖f‖ := sup
x∈R

(1 + |x|)8|f(x)|+ (1 + |x|)9|f ′(x)|.

Now we are ready to state the estimate which will take the place of the telescoping

identities used in [6], [3].

Proposition 8. Let (ρi, σi) be two pairs of real-valued Schwartz functions which satisfy

−t∂t|ρ̂i(tτ)|2 = |σ̂i(tτ)|2. (2.7)

Then we have for any convex tree T

ΘTρ1,σ2(F1, F2, F3, F4) + ΘTσ1,ρ2(F1, F2, F3, F4) .c |RT |
4∏

j=1

M(Fj , T ), (2.8)

where c = ‖ρ1‖2‖σ2‖2 + ‖σ1‖2‖ρ2‖2 + ‖ρ1‖2‖ρ2‖2.

Examples of functions satisfying (2.7) include Gaussian exponential functions and

their derivatives such as (ρ, σ) = (e−x
2
,−2xe−x

2
). Another example is a pair (ρ, σ) where

ρ is defined via ρ̂(ξ) := (
∫∞
ξ |σ̂(τ)|2dτ/τ)1/2 and |σ̂|2 ∈ C∞0 (R) is even, vanishes at zero

and is well behaved near the boundary of its support so that ρ̂ belongs to C∞0 (R). An

instance of such a pair has been explicitly constructed in [3].

Proof. By homogeneity of (2.8) we may assume M(Fj , T ) = 1 for all j. By scaling

invariance we may suppose |RT | = 1. Thus, we are set to establish

ΘTρ1,σ2(F1, F2, F3, F4) + ΘTσ1,ρ2(F1, F2, F3, F4) .c 1. (2.9)

Denote Ψ := ρ1 ⊗ ρ2 ⊗ ρ1 ⊗ ρ2. By the fundamental theorem of calculus we have

[Ψ]2k−1 − [Ψ]2k =

∫ 2k

2k−1

(−t∂t[Ψ]t)
dt

t
. (2.10)

We convolve the equality (2.10) with F and evaluate the convolution at (p, q, p, q). Then

we integrate in (p, q) over Tk and sum over k ∈ Z. Writing Tk as the almost disjoint union

of S ∈ Tk, the left-hand side of (2.10) becomes

L :=
∑

k∈Z

∑

S∈Tk

( ∑

S′ child of S

∫

S′
F ∗ [Ψ]`(S′)(p, q, p, q)dpdq −

∫

S
F ∗ [Ψ]`(S)(p, q, p, q)dpdq

)
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Since T is convex, each square S ∈ T \ {RT } has all four children S′ in T ∪L(T ). Thus,

the last display is a telescoping sum which equals

∑

S∈L(T )

∫

S
F ∗ [Ψ]`(S)(p, q, p, q)dpdq −

∫

RT
F ∗ [Ψ]`(RT )(p, q, p, q)dpdq.

We bound |Ψ| .c ϑ
2 ⊗ ϑ2 ⊗ ϑ2 ⊗ ϑ2 and apply Lemma 5. This yields

|L| .c

( ∑

S∈L(T )

|S|+ 1
)
. 1.

The last estimate follows since the leaves of T partition the root RT .

Now we consider the right-hand side of (2.10), which after convolving it with F ,

integrating over Tk and summing in k ∈ Z results in

R :=
∑

k∈Z

∫ 2k

2k−1

∫

Tk

F ((Fj)j∈J) ∗ (−t∂t[Ψ]t)(p, q, p, q)dpdq
dt

t
,

where J := {1, 2, 3, 4}. First we show that up to a controllable error, we may suppose

that the functions Fj are supported on Tk. For j ∈ J we write Fj = Fj1Tk +Fj1T ck . Then

R = M + E,

where the main term is defined as

M :=
∑

k∈Z

∫ 2k

2k−1

∫

Tk

F ((Fj1Tk)j∈J) ∗ (−t∂t[Ψ]t)(p, q, p, q)dpdq
dt

t

and the error term is

E :=
∑

((Xj,k)k∈Z)j∈J

∑

k∈Z

∫ 2k

2k−1

∫

Tk

F ((Fj1Xj,k)j∈J) ∗ (−t∂t[Ψ]t)(p, q, p, q)dpdq
dt

t
,

where the outer summation is over ((Xj,k)k∈Z)j∈J ∈ {T, T c}4 \ {(T, T, T, T )} for T :=

(Tk)k∈Z, T c := (T ck)k∈Z.

To treat E we expand −t∂t[Ψ]t = −t∂t([ρ1]t⊗[ρ2]t⊗[ρ1]t⊗[ρ2]t) and use the chain rule,

which results in four terms. By symmetry we consider only −t∂t([ρ1]t)⊗[ρ2]t⊗[ρ1]t⊗[ρ2]t,

on which we use the identity

−t∂t[ρ1]t = −t∂t
(1

t
ρ1

(x
t

))
=

1

t
ρ1

(x
t

)
+

1

t

x

t
ρ′1
(x
t

)
. (2.11)

and bound the right-hand side of (2.11) by .c [ϑ2]t. This gives |t∂t[Ψ]t| .c [ϑ2 ⊗ ϑ2 ⊗
ϑ2 ⊗ ϑ2]t. By Lemma 6 we then have |E| .c 1.

To estimate M we expand the convolution and interchange the order of integration

such that the integration in (p, q) becomes the innermost. For now we consider only this

innermost integral, which we write in the form
∫

Tk

−t∂t
((

[ρ1]t(p− x)[ρ1]t(p− x′)
)(

[ρ2]t(q − y)[ρ2]t(q − y′)
))
dpdq.
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Deriving the product of [ρ1]t(p − x)[ρ1]t(p − x′) and [ρ2]t(q − y)[ρ2]t(q − y′) yields two

terms. Using Fubini and moving differentiation outside the integral we arrive at

∑

Q∈Ik

(
− t∂t

∫

TQ,1

[ρ1]t(p− x)[ρ1]t(p− x′)dp
)∫

Q
[ρ2]t(q − y)[ρ2]t(q − y′)dq (2.12)

+
∑

P∈Ik

∫

P
[ρ1]t(p− x)[ρ1]t(p− x′)dp

(
− t∂t

∫

TP,2

[ρ2]t(q − y)[ρ2]t(q − y′)dq
)
, (2.13)

where for a dyadic interval Q we denote TQ,1 := ∪P :P×Q∈T P and TP,2 is defined analo-

gously. As both parts are treated in the same way, we further investigate only (2.12).

The identity (2.7) implies

−t∂t
∫

R
[ρ1]t(p− x)[ρ1]t(p− x′)dp =

∫

R
[σ1]t(p− x)[σ1]t(p− x′)dp,

which can be seen by an application of the inverse Fourier transform on (2.7). Hence,

− t∂t
∫

TQ,1

[ρ1]t(p− x)[ρ1]t(p− x′)dp =

∫

TQ,1

[σ1]t(p− x)[σ1]t(p− x′)dp+ b1,

where b1 is the boundary portion

b1 :=

∫

R\TQ,1
[σ1]t(p− x)[σ1]t(p− x′)dp+ t∂t

∫

R\TQ,1
[ρ1]t(p− x)[ρ1]t(p− x′)dp.

Therefore we have

M =
(∑

k∈Z
ΘTkσ1,ρ2((Fj1Tk)j∈J) + ΘTkρ1,σ2((Fj1Tk)j∈J)

)
+B1 +B2, (2.14)

where the boundary term B1 emerges from b1 and equals

B1 :=
∑

k∈Z

∫ 2k

2k−1

∑

Q∈Ik

∫

Q

∫

R\TQ,1
F ((Fj1Tk)j∈J)(x, y, x′, y′)

(
[σ1]t(p− x)[σ1]t(p− x′)) + t∂t

(
[ρ1]t(p− x)[ρ1]t(p− x′)

)
[ρ2]t(q − x)[ρ2]t(q − x′)

dxdydx′dy′dpdq
dt

t
.

The boundary term B2 arises from the treatment of (2.13) and is analogous to B1 with

(σ1, ρ2) replaced by (ρ1, σ2). For B1, B2 we derive by t using (2.11) and dominate the

resulting functions by .c ϑ
2. Note that

|B1 +B2| .c

∑

k∈Z
Θ
T ck
ϑ2,ϑ2

((Fj1Tk)j∈J) . 1,

where the last inequality follows by Lemma 7.

Summarizing, since L = R = M + E, using (2.14) yields the identity

L =
(∑

k∈Z
ΘTkσ1,ρ2((Fj1Tk)j∈J) + ΘTkρ1,σ2((Fj1Tk)j∈J)

)
+B1 +B2 + E. (2.15)
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Proposition 8 now follows by writing

ΘTρ1,σ2((Fj)j∈J) + ΘTσ1,ρ2((Fj)j∈J)

in the form

∑

k∈Z
ΘTkσ1,ρ2((Fj1Tk)j∈J) + ΘTkρ1,σ2((Fj1Tk)j∈J)

+
∑

((Xj,k)k∈Z)j∈J

∑

k∈Z
ΘTkρ1,σ2((Fj1Xj,k)j∈J) + ΘTkσ1,ρ2((Fj1Xj,k)j∈J),

where in the second line, the outer sum runs over ((Xj,k)k∈Z)j∈J ∈ {T, T c}4\{(T, T, T, T )}
for T as above. Using (2.15) together with

|L−B1 −B2 − E| .c 1

and evoking Lemma 6 two more times finally yields (2.9).

3 Tree estimate

In this section we derive an estimate for a quadrisublinear variant of ΛNϕ,ψ restricted to

ΩT for a convex tree T . This form is given by

Θ̃Tϕ,ψ(F1, F2, F3, F4) :=

∫

ΩT

∣∣F ∗ [ϕ(u) ⊗ ψ(v) ⊗ ϕ(−u) ⊗ ψ(−v)]t(p, q, p, q)
∣∣dpdqdt

t
.

It can also be recognized as a quadrisublinear version of ΘT
ϕ(u),ψ(v),ϕ(−u),ψ(−v) .

Proposition 9. We have the estimate

Θ̃Tϕ,ψ(F1, F2, F3, F4) . |RT |
4∏

j=1

M(Fj , T ). (3.1)

The proof of Proposition 9 proceeds in a very similar way as the proof of the L4 bound

(1.1). Besides replacing [3, Lemma 3] with Proposition 8, the only modification is the

choice of a faster decaying superposition of the Gaussian exponential functions (3.2). For

completeness we summarize all steps of the proof, interested readers are referred to [3].

Proof. By homogeneity and scale-invariance we may suppose M(Fj , T ) = 1 and |RT | = 1.

First we expand the left-hand side of (3.1) and use the triangle inequality to arrive at

∫

ΩT

∫

R2

∣∣∣∣
∫

R
F1(x, y)F2(x′, y)[ψ(v)]t(q − y)dy

∫

R
F3(x′, y′)F4(x, y′)[ψ(−v)]t(q − y′)dy′

∣∣∣∣

[|ϕ(u)|]t(p− x)[|ϕ(−u)|]t(p− x′)dxdx′dpdq
dt

t
.

By an application of the Cauchy-Schwarz inequality, this is bounded by

ΘT|ϕ(u)|,ψ(v),|ϕ(−u)|,ψ(v)(F1, F2, F2, F1)1/2ΘT|ϕ(u)|,ψ(−v),|ϕ(−u)|,ψ(−v)(F4, F3, F3, F4)1/2.
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As both terms are treated analogously, we consider the first one only. We shall

now apply the telescoping identity, for which we dominate ϕ(±u) with a superposition of

Gaussians. Denote the L1-normalized Gaussian exponential function rescaled by α > 0

by

gα(x) :=
1√
πα

e−( xα)
2

.

Consider the superposition of the functions gα given by

Φ(x) :=

∫ ∞

1

1

α21
e−( xα)

2

dα =
1√
π

∫ ∞

1

1

α20
gα(x)dα. (3.2)

For large x we have Φ(x) ∼ x20, which can be seen by the change of variables α′ = (x/α)2

and by inductive integration by parts. The power of α is now larger as in [3], as due to

Proposition 8 we need control over higher order Schwartz seminorms of gα.

Since ϕ(±u) ∈ S(R2), we can bound it by Φ times a positive constant, which is uniform

in u. By positivity of

ΘT|ϕ(u)|,ψ(v),|ϕ(−u)|,ψ(v)(F1, F2, F2, F1) =

∫

ΩT

∫

R2

(∫

R
F1(x, y)F2(x′, y)[ψ(v)]t(q − y)dy

)2

[|ϕ(u)|]t(p− x) [|ϕ(u)|]t(p− x′)dxdx′dpdq
dt

t
,

we can estimate this term up to a constant by
∫ ∞

1

∫ ∞

1
ΘT
gα,ψ(v),gβ ,ψ(v)(F1, F2, F2, F1)

dα

α20

dβ

β20
.

We split the integration into the regions α ≥ β and α < β. By symmetry it suffices to

estimate the region α ≥ β only, on which βgβ ≤ αgα for α, β ≥ 1. This leaves us with
∫ ∞

1
ΘT
gα,ψ(v)(F1, F2, F2, F1)

dα

α19
.

Now we are ready to apply Proposition 8 with (ρ1, σ1) = (gα, hα) and (ρ1, σ2) =

(φ, ψ(v)), where hα(x) := α(gα)′(x) and

φ̂(ξ) :=

(∫ ∞

ξ
|ψ̂(v)(τ)|2dτ

τ

)1/2

,

which is a Schwartz function by our condition on ψ. Proposition 8 yields

ΘT
gα,ψ(v)(F1, F2, F2, F1) . −ΘThα,φ(F1, F2, F2, F1) + c (3.3)

with c = ‖gα‖2‖ψ(v)‖2 + ‖φ‖2‖hα‖2 + ‖gα‖2‖φ‖2 . α16. Thus it remains to estimate the

form on the right-hand side of (3.3).

In the second iteration of the procedure we bound |ΘThα,φ(F1, F2, F2, F1)| by

∫

ΩT

∫

R2

∣∣∣∣
∫

R
F1(x, y)F1(x, y′)[hα]t(p− x)dx

∫

R
F2(x′, y′)F2(x′, y)[hα]t(p− x′)dx′

∣∣∣∣

[|φ|]t(q − y)[|φ|]t(q − y′)dydy′dpdq
dt

t
.
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Again we apply the Cauchy-Schwarz inequality and arrive to

|ΘThα,φ(F1, F2, F2, F1)| ≤ ΘThα,|φ|(F1, F1, F1, F1)1/2ΘThα,|φ|(F2, F2, F2, F2)1/2

Dominating the rapidly decaying |φ| by a positive constant times Φ gives

ΘThα,|φ|(F1, F1, F1, F1) .
∫ ∞

1

∫ ∞

1
ΘThα,gγ ,hα,gδ(F1, F1, F1, F1)

dγ

γ20

dδ

δ20
.

As before, by symmetry this reduces to having to estimate

∫ ∞

1
ΘThα,gγ (F1, F1, F1, F1)

dγ

γ19
.

Now we apply Proposition 8 to the pairs (ρ1, σ1) = (gα, hα) and (ρ2, σ2) = (gγ , hγ), giving

ΘThα,gγ (F1, F1, F1, F1) . −ΘTgα,hγ (F1, F1, F1, F1) + c

with c = ‖gα‖2‖hγ‖2 + ‖gγ‖2‖hα‖2 + ‖gα‖2‖gγ‖2 . α16γ16. Finally observe that

ΘTgα,hγ (F1, F1, F1, F1) ≥ 0,

which can be seen by writing it as an integral of a square multiplied with gα ≥ 0. Thus,

ΘThα,gγ (F1, F1, F1, F1) ≤ 1.

This concludes the proof in view of our normalization.

4 Completing the proof of Theorem 3

Now we are ready to establish the restricted type estimate from Theorem 3. We adapt

the approach of [10] and we also rely on [9].

Proof of Theorem 3. First note that by quadrilinearity of ΛNϕ,ψ it suffices to prove the

theorem for positive functions Fj , as otherwise we split them into real and imaginary,

positive and negative parts.

For j = 1, 2, 3, 4 let αj be such that −1/2 ≤ αj ≤ 1/2 and α1 + α2 + α3 + α4 = 1.

For each j let Ej ⊆ R2 be measurable. Without loss of generality we may assume |E1| is

maximal among the |Ej |. Note that for a = 2k we have the scaling identity

ΛNϕ,ψ(F1, F2, F3, F4) = a2Λ
N/a
ϕ,ψ (F1(a·), F2(a·), F3(a·), F4(a·)).

Since our bound will be independent of N , by
∑

j αj = 1 we may then suppose 1 ≤ |E1| ≤
4. All squares which we consider in this section are assumed to have their side-lengths in

the interval [2−N , 2N ].

For F on R2 we denote the quadratic Hardy-Littlewood maximal function by

M(F ) := sup
S

( 1

|S|

∫

S
F 2
)1/2

1S ,
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where the supremum is taken over all (not necessarily dyadic) squares in R2 with sides

parallel to the coordinate axes. From now on, by the word ”average” we will always mean

the second power average as in the definition of M(F ). Define the exceptional set

H :=

4⋃

j=1

{M(|Ej |−1/21Ej ) > 210}.

By the Hardy-Littlewood maximal theorem we have |H| ≤ 1/18. Let R be the set of all

dyadic squares R ⊆ H which are maximal with respect to set inclusion. Denote by 3R

the square with the same center as R but with three times the sidelength of R. We set

E′1 := E1 \ ∪R∈R3R. Then 2|E′1| ≥ |E1|.
Suppose we are given four functions Fj with |Fj | ≤ 1Ej for all j and |F1| ≤ 1E′1 . Since

αj ≤ 1/2 and |E1| ≤ 4, it suffices to prove

|ΛNϕ,ψ(F1, F2, F3, F4)| . |E1|1/2|E2|1/2|E3|1/2|E4|1/2.

If we set Gj := |Ej |−1/2Fj , then the inequality we need to establish reads

|ΛNϕ,ψ(G1, G2, G3, G4)| . 1.

Observe that ‖Gj‖L2(R2) ≤ 1 for all j.

We split R2×[2−N , 2N ] into the regions Ω{S} = S×[`(S)/2, `(S)], S ∈ D, and consider

the cases S ⊆ H and S 6⊆ H. By the triangle inequality we estimate

|ΛNϕ,ψ| ≤
∑

S⊆H
Θ̃
{S}
ϕ,ψ +

∑

S 6⊆H
Θ̃
{S}
ϕ,ψ .

First we consider the sum over S 6⊆ H. For k ∈ Z let Sk be the set of all dyadic

squares S for which

2k−1 < max
j∈{1,2,3,4}

sup
S′⊇S

( 1

|S′|

∫

S′
G2
j

)1/2
≤ 2k.

The supremum is taken over all (not necessarily dyadic) squares S′ ⊇ S in R2 with sides

parallel to the coordinate axes. Denote by Rk the collection of the maximal squares in

Sk with respect to set inclusion. For R ∈ Rk we define

TR := {S ∈ Sk : S ⊆ R},

which is a convex tree with the root R. Convexity follows from monotonicity of the

supremum. By construction, if S 6⊆ H, for each j the average of |Ej |−1/21Ej over S is no

greater than 210. Thus, the same holds for the average of Gj over S. Therefore,

{S : S 6⊆ H} ⊆
⋃

k≤10

Sk

and we can split the summation as

∑

S 6⊆H
Θ̃
{S}
ϕ,ψ ≤

∑

k≤10

∑

R∈Rk

∑

S∈TR
Θ̃
{S}
ϕ,ψ =

∑

k≤10

∑

R∈Rk
Θ̃TRϕ,ψ.
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For the forms on the right-hand side we have by Proposition 9 that

Θ̃TRϕ,ψ(G1, G2, G3, G4) . |R|
4∏

j=1

M(Gj , TR). (4.1)

To estimate the right-hand side of (4.1) we discretize the function θ by a standard

approximation with characteristic functions of balls of radius at least 1. We now sketch

the required argument. Denote by Br the ball of radius r centered at 0 in R2. We write

G2
j ∗ [θ]t = G2

j ∗ [θ1B1 ]t +G2
j ∗ [θ1Bc1 ]t.

Let (p, q, t) ∈ S × [`(S)/2, `(S)] ⊆ ΩTR and assume (p, q) = 0. On B1 we have

G2
j ∗ [θ1B1 ]t(0) . ‖θ‖L∞(R2)

1

(2t)2

∫

[−t,t]2
G2
j .

1

(2`(S))2

∫

[−`(S),`(S)]2
G2
j . 22k. (4.2)

For the part on Bc
1 we consider the function θ1Bc1 + 1

21B1 . It dominates θ1Bc1 , is positive

and radially decreasing. Therefore it can be approximated pointwise by a monotonously

increasing sequence of simple functions of the form

E =
n∑

i=1

ai1Bri , ri ≥ 1, ai > 0.

For E we have, using t ∼ `(S), that

G2
j ∗ [E]t(0) .

n∑

i=1

ai|Bri |
1

(ri`(S))2

∫

[−ri`(S),ri`(S)]2
G2
j . ‖θ‖L1(R2)2

2k.

This implies the estimate

G2
j ∗ [θ1Bc1 ]t(0) . 22k. (4.3)

By a translation argument, the same bound holds at any (p, q, t) ∈ ΩTR . Therefore, by

(4.2) and (4.3), we have M(Gj , TR) . 2k for each j and hence

∑

S 6⊆H
Θ̃
{S}
ϕ,ψ(G1, G2, G3, G4) .

∑

k≤10

24k
∑

R∈Rk
|R|. (4.4)

It remains to sum up the right-hand side of the last display. Since for R ∈ Rk there

is an index j such that on R we haveM(Gj) > 2k−1, by maximality of the squares in Rk

∑

R∈Rk
|R| =

∣∣∣
⋃

R∈Rk
R
∣∣∣ ≤

4∑

j=1

|{M(Gj) > 2k−1}|.

By the Hardy-Littlewood maximal theorem and ‖Gj‖L2(R2) ≤ 1, for each j we have

|{M(Gj) > 2k−1}| . 2−2k. Thus, (4.4) is up to a constant dominated by

∑

k≤10

22k . 1.

58



This establishes the desired estimate for S 6⊆ H.

Now consider the sum over all dyadic squares S contained in H. Every S ⊆ H is

contained in one maximal dyadic square R ∈ R. Let SR,k be the set of dyadic squares S

which are k generations below R ∈ R. That is, 2k`(S) = `(R). We split

∑

S⊆H
Θ̃
{S}
ϕ,ψ =

∑

R∈R

∑

k≥0

∑

S∈SR,k
Θ̃
{S}
ϕ,ψ .

For S ∈ SR,k we expand Θ̃
{S}
ϕ,ψ(G1, G2, G3, G4) and estimate |ϕ(u)|, |ψ(v)| . ϑ4 to arrive at

∫ `(S)

`(S)/2

∫

S

∫

R4

F (G1, G2, G3, G4)(x, y, x′, y′)[ϑ⊗ ϑ⊗ ϑ⊗ ϑ]t(p− x, q − y, p− x′, q−y′)

θ2(t−1(p− x, q − y)) dxdydx′dy′dpdq
dt

t
.

(4.5)

Since G1 is supported on the complement of 3R, we have |(p, q) − (x, y)| ≥ `(R) for

(p, q) ∈ S. We also have `(R) = 2k`(S) ∼ 2kt, therefore θ2(t−1(p − x, q − y)) . 2−8k.

Applying Lemma 5, the term (4.5) is then up to a constant dominated by

2−8k|S|
4∏

j=1

M(Gj , {S}).

Denote by R′ the parent of R. For each j we have

M(Gj , {S}) . 2kM(Gj , {R′}) . 2k.

The last inequality follows by the same approximation argument as before and using

that the averages of Gj over squares containing R′ are less than 210, which is true by

maximality of R. This establishes

∑

S⊆H
Θ̃
{S}
ϕ,ψ(G1, G2, G3, G4) .

∑

R∈R

∑

k≥0

∑

S∈SR,k
2−4k|S|.

Since
∑

S∈SR,k |S| ≤ |R|, the last display is estimated by

∑

R∈R
|R|
∑

k≥0

2−4k . |H| . 1.

For the second to last inequality we summed the geometric series and used disjointness

of R ∈ R. In the last step we used |H| ≤ 1/2.
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commuting transformations

Polona Durcik, Vjekoslav Kovač, Kristina Ana Škreb, and Christoph Thiele

Abstract

We study double ergodic averages with respect to two general commuting trans-

formations and establish a sharp quantitative result on their convergence in the norm.

We approach the problem via real harmonic analysis, using recently developed meth-

ods for bounding multilinear singular integrals with certain entangled structure. A

byproduct of our proof is a bound for a two-dimensional bilinear square function

related to the so-called triangular Hilbert transform.

1 Introduction

Many problems in ergodic theory are related to the convergence of certain averages

along the orbits with respect to one or several transformations. Let (X,F , µ) be a σ-

finite measure space and let S : X → X be a measure-preserving transformation, i.e. for

any E ∈ F we have S−1E ∈ F and µ(S−1E) = µ(E). The most classical result in this

direction is von Neumann’s mean ergodic theorem [38], which guarantees convergence of

the single ergodic averages

Mnf(x) :=
1

n

n−1∑

i=0

f(Six) (1.1)

in the L2(X) norm for any f ∈ L2(X). Classical proofs of this fact do not provide any

information on the rate of this convergence. With the aid of the spectral theorem, Jones,

Ostrovskii, and Rosenblatt [20] have observed the quantitative variant of this result in

the form of the norm-variation estimate

m∑

j=1

‖Mnjf −Mnj−1f‖2L2(X)
≤ C ‖f‖2

L2(X)
(1.2)

for any positive integers n0 < n1 < · · · < nm and with an absolute finite constant C. The

work of Bourgain [9] prequels (1.2) and his pointwise variation estimates imply the same

inequality albeit with the power 2 replaced by an arbitrary % > 2. Calderón’s transference

principle, a version of which we discuss in Section 6, reduces (1.2) to studying operators

in harmonic analysis that are well-understood by now.

Multiple ergodic averages were motivated by the work of Furstenberg and others [16],

[17], [18] connecting ergodic theory with arithmetic combinatorics. In this paper we

2010 Mathematics Subject Classification. Primary 37A30; Secondary 42B15, 42B20.
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are concerned with the bilinear case. Let S, T : X → X be two measure-µ-preserving

transformations such that ST = TS. For any two complex-valued measurable functions

f, g on X and any positive integer n one can define the double ergodic average Mn(f, g)

as a function on X given by

Mn(f, g)(x) :=
1

n

n−1∑

i=0

f(Six)g(T ix) (1.3)

for each x ∈ X. It is a classical result by Conze and Lesigne [10] that for any two functions

f, g ∈ L∞(X) on a probability space the sequence of averages (Mn(f, g))∞n=1 converges

in the L2 norm. Standard density arguments combined with log-convexity of Lp norms

extend this result to functions f ∈ Lp1(X), g ∈ Lp2(X), with convergence in the Lp norm,

as long as the exponents satisfy p < ∞ and 1/p ≥ 1/p1 + 1/p2. However, no explicitly

quantitative variant of this fact for completely general commuting transformations S, T

exists in the literature and this is the topic of the present paper.

Our main result is the following estimate for the averages (1.3).

Theorem 1. There is a finite constant C such that for any σ-finite measure space

(X,F , µ), any two commuting measure-preserving transformations S, T on that space,

and all functions f, g ∈ L4(X) we have

m∑

j=1

‖Mnj (f, g)−Mnj−1(f, g)‖2
L2(X)

≤ C ‖f‖2
L4(X)

‖g‖2
L4(X)

(1.4)

for each choice of positive integers m and n0 < n1 < · · · < nm.

Such quantitative estimate for multiple ergodic averages was stated as an open prob-

lem by Avigad and Rute in the closing section of [3], after the question had already

circulated in the community for a while. A result analogous to Theorem 1 was previously

established by the second author in [24], but only for a simplified model, where the ac-

tions of Z are replaced by actions of infinite powers Aω of a fixed finite abelian group A,

and which avoided challenges we address in this paper.

Unlike for (1.2), Calderón’s transference of (1.4) leads to a non-classical problem in

harmonic analysis, whose solution is the main point of our paper. We do not know of a

martingale approach to (1.4), even for particular cases of indices nj . This is in contrast

with the powerful martingale techniques for handling the single ergodic averages (1.1);

compare with [3], [9], [21].

The techniques of this paper do not immediately generalize to the multiple variants

of (1.3), i.e. to the analogous ergodic averages with respect to several commuting trans-

formations. However, such averages are also known to converge in the norm, as was first

shown by Tao [36], with a different proof given by Austin [2]. More generally, norm

convergence of multiple averages was established by Walsh [39] in the case when the

transformations generate a nilpotent group.

Almost everywhere convergence of the averages (1.3) is a longstanding open problem.

In the single average case (1.1), almost everywhere convergence is Birkhoff’s classical

pointwise ergodic theorem [6], with quantitative estimates discussed in Bourgain [9] and
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Jones, Kaufman, Rosenblatt, and Wierdl [19]. For two transformations S, T the task

simplifies if T is assumed to be a power of S, for instance S is invertible and T = S−1, and

was successfully studied by the analytic approach and an almost everywhere convergence

result was established by Bourgain [8]. Subsequently, a pointwise variation estimate

was established by Do, Oberlin, and Palsson [12]. The result from [12] also implies a

variant of our Theorem 1 with exponent % > 2 in the special case T = S−1. For further

partial progress on a.e. convergence for general commuting transformations we refer to

the preprint by Donoso and Sun [13] and references therein. In [13] the a.e. convergence

is verified under the additional assumption that (X,F , µ, S, T ) forms a so-called distal

system, i.e. a certain iterated topological extension of the trivial system.

Recall that the number of ε-jumps or ε-fluctuations of a sequence (an)∞n=1 in a Banach

space B, in our case L2(X), is defined as the supremum of the set of integers J for which

there exist indices

m1 < n1 ≤ m2 < n2 ≤ · · · ≤ mJ < nJ

such that ‖anj −amj‖B ≥ ε for j = 1, 2, . . . , J . A direct consequence of our main theorem

is that for all functions f, g of norm one in L4(X) the number of ε-jumps of the averages

(1.3) is at most Cε−2. In particular, the number of ε-jumps is finite for each ε > 0,

which implies norm convergence, i.e. it reproves the result by Conze and Lesigne [10].

It follows further that for any ε > 0 the sequence (Mn(f, g))∞n=1 can be covered by at

most Cε−2 + 1 balls of radius ε in the Hilbert space L2(X). Such a result is sometimes

called a uniform bound for the metric entropy. It was shown by Bourgain [7] that a.e.

convergence of certain sequences of functions, including the single ergodic averages (1.1),

necessarily implies the uniform bound on their metric entropy. In that light Theorem 1

can also be thought of as a partial progress towards the conjecture on a.e. convergence

of (1.3), even though the bilinear analogue of [7] does not appear in the literature.

Our main inequality may be reformulated as

‖Mn(f, g)‖V%n(N,Lp(X)) ≤ C1/2 ‖f‖Lp1 (X)‖g‖Lp2 (X),

with % = p = 2 and p1 = p2 = 4, where for 1 ≤ % <∞ the %-variation of a Banach-space-

valued function a : U → B with U ⊆ R is defined as

‖a‖V%(U ,B) := ‖a(t)‖V%t (U ,B) := sup
m∈N∪{0}

t0,t1,...,tm∈U
t0<t1<···<tm

( m∑

j=1

‖a(tj)− a(tj−1)‖%B
)1/%

.

If (X,F , µ) is a probability space, then for any f, g ∈ L∞(X), 1 ≤ p < ∞, and % ≥
max{p, 2} we have

‖Mn(f, g)‖V%n(N,Lp(X)) ≤ Cp,% ‖f‖L∞(X)‖g‖L∞(X)

for some finite constant Cp,% depending only on p and %. In order to see this, by the

monotonicity of Lp norms on a probability space in the case p < 2 we can use

‖Mnj (f, g)−Mnj−1(f, g)‖Lp(X) ≤ ‖Mnj (f, g)−Mnj−1(f, g)‖L2(X)
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and by their log-convexity for p > 2 we have

‖Mnj (f, g)−Mnj−1(f, g)‖Lp(X)

≤ (2‖f‖L∞(X)‖g‖L∞(X))
1−2/p‖Mnj (f, g)−Mnj−1(f, g)‖2/p

L2(X)
.

We then apply (1.4) and for that purpose in the latter case we need 2%/p ≥ 2.

The variation exponent 2 is best possible in Theorem 1. To see this, it suffices to

consider the special case |f | = |g| and S = T and notice that this special case is tan-

tamount to estimate (1.2), where the exponent 2 is well known to be sharp. The range

of exponents p1, p2, p, % in the above discussion is likely not exhausted as the analogous

work [24] in the simplified setting suggests.

This paper, while self-contained, builds on a technique for bounding multi-linear and

multi-scale singular integral operators gradually developed by the authors in [14], [15],

[22], [23], [24], [25], [26]. We consider the present application to quantitative norm con-

vergence for double ergodic averages a milestone in these efforts. A notable difference

from the almost everywhere result by Do, Oberlin, and Palsson [12] is that we do not use

wave packet analysis or time-frequency analysis, as these tools are not well-adapted to

our problem.

The technique we use resembles energy methods in partial differential equations. The

main ingredients are integration by parts, positivity arguments, and the Cauchy-Schwarz

inequality. The idea is to set up a partial integration scheme to produce positive terms,

similar to energies, and then use upper bounds on a sum of positive terms to control each

term individually. Unlike for most energy arguments in partial differential equations, here

the partial integration happens in the scale parameter, which is typical for the singular

integral theory. The structural complexity of the problem requires to iterate these steps,

with the Cauchy-Schwarz inequality used inbetween to reduce the complexity of the

expressions.

We elaborate more on the harmonic analysis part of the paper. For a one-dimensional

integrable function ϕ and two-dimensional functions F,G ∈ L4(R2), for t > 0, and for

(x, y) ∈ R2 we introduce the bilinear averages

Aϕt (F,G)(x, y) :=

∫

R
F (x+ s, y)G(x, y + s) t−1ϕ(t−1s) ds.

Theorem 1 will be a consequence of the following bilinear estimate where ϕ = 1[0,1) is

the characteristic function of the interval [0, 1).

Theorem 2. There exists a finite constant C such that for any F,G ∈ L4(R2) we have

∥∥A1[0,1)

t (F,G)
∥∥

V2
t ((0,∞),L2(R2))

≤ C ‖F‖L4(R2)‖G‖L4(R2).

By invariance of the left hand side under rescaling in t and by superposition, the

theorem implies an inequality independent of the choice of positive numbers t0 < · · · < tm:

m∑

j=1

‖Aϕtj (F,G)−Aϕtj−1
(F,G)‖2

L2(R2)
≤ C2

ϕ ‖F‖2L4(R2)
‖G‖2

L4(R2)
, (1.5)
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where

ϕ(s) =

∫

(−∞,0)
1[α,0)(s)

dµ(α)

−α +

∫

(0,∞)
1[0,α)(s)

dµ(α)

α

for some finite complex Radon measure µ on (−∞, 0) ∪ (0,∞). In particular, we get

(1.5) for compactly supported functions ϕ of bounded variation and the constant Cϕ is

then a universal multiple of the total mass of the measure µ. Moreover, by choosing

dµ(α) = −αϕ′(α)dα we can recover an arbitrary Schwartz function ϕ and in that case

the constant Cϕ in (1.5) is a multiple of
∫
R |sϕ′(s)|ds.

In the proof of Theorem 2 we gradually consider various classes of functions ϕ and

carefully control Cϕ for these classes. Indeed, we begin by showing that (1.5) holds for an

arbitrary Schwartz function. However, we will actually need to apply the theorem with

ϕ = 1[0,1), and this case is more subtle and requires more precise decay conditions in the

auxiliary estimates. Prior to our paper, inequality (1.5) was not known even for a single

nonzero function ϕ.

While deriving Theorem 1 from Theorem 2, the following discrete estimate will appear

along the way. It is worth stating as a separate corollary due to its elegant formulation.

For any two double sequences F̃ , G̃ : Z2 → R, for n ∈ N, and for (k, l) ∈ Z2 we define the

discrete averages Ãn by

Ãn(F̃ , G̃)(k, l) :=
1

n

n−1∑

i=0

F̃ (k + i, l) G̃(k, l + i). (1.6)

Corollary 3. There exists a finite constant C such that for any F̃ , G̃ ∈ `4(Z2) we have

∥∥Ãn(F̃ , G̃)
∥∥

V2
n(N,`2(Z2))

≤ C ‖F̃‖`4(Z2)‖G̃‖`4(Z2).

Inequality (1.5), even for Schwartz functions ϕ, is already new in the special case

tj = 2j . In this case we set ψ(s) := ϕ(s)− 2ϕ(2s) and define the square function

S(F,G)(x, y) :=

(∑

j∈Z

∣∣∣
∫

R
F (x+ s, y)G(x, y + s) 2−jψ(2−js) ds

∣∣∣
2
)1/2

.

A simple limiting argument as m→∞ in (1.5) yields the following corollary.

Corollary 4. For any F,G ∈ L4(R2) we have

‖S(F,G)‖L2(R2) ≤ Cψ‖F‖L4(R2)‖G‖L4(R2),

with a finite constant Cψ depending on ψ alone.

Indeed, square function estimates of this type are a stepping stone towards the proof

of Theorem 2; for example compare with Proposition 7 stated in Section 2.

In contrast with Corollary 4, no bounds are known for the corresponding bilinear

singular integral

T (F,G)(x, y) := p.v.

∫

R
F (x+ s, y)G(x, y + s)

ds

s
,
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which was introduced in [11] and later named the triangular Hilbert transform. Only

partial results in this direction exist; see [27] for a particular case when one of the functions

takes a special form. Moreover, Zorin-Kranich showed in [41], building on the approach

of Tao [35], that the truncations to m consecutive scales,

Tm(F,G)(x, y) :=
m∑

j=1

∫

R
F (x+ s, y)G(x, y + s) 2−jψ(2−js) ds,

have norms from Lp1(R2) × Lp2(R2) to Lp(R2) that grow like o(m) as m → ∞, for

any fixed choice of exponents 1 < p, p1, p2 < ∞ such that 1/p = 1/p1 + 1/p2. Using

Corollary 4 and the Cauchy-Schwarz inequality we improve this growth to O(m1/2) for

p = 2, p1 = p2 = 4, and then the interpolation with the trivial estimates coming from

Hölder’s inequality gives the growth O(m1−ε) for general exponents p, p1, p2 as before and

for some ε > 0 depending on them.

Furthermore, for given f, g ∈ L4(R) let us take

F (x, y) := f(x− y)R−1/4ϑ(R−1y), G(x, y) := g(x− y)R−1/4ϑ(R−1x),

where R > 0 and ϑ is a smooth compactly supported nonnegative function on R that is

constantly 1 on the interval [−1, 1]. By substituting z = x− y, observing

∫ R

−R

∫ R

−R

∣∣∣
∫

R
F (x+ s, y)G(x, y + s) 2−jψ(2−js) ds

∣∣∣
2
dxdy

≥
∫ R

−R

∣∣∣
∫

R
f(z + s) g(z − s) 2−jψ(2−js) ds

∣∣∣
2
dz,

applying Corollary 4, and letting R→∞ we recover the L4(R)×L4(R)→ L2(R) estimate

for the one-dimensional bilinear square function

S̃(f, g)(x) :=

(∑

j∈Z

∣∣∣
∫

R
f(x+ s) g(x− s) 2−jψ(2−js) ds

∣∣∣
2
)1/2

.

The only previously known proof of an Lp bound for S̃ employs wave-packet analysis,

i.e. it uses Khintchine’s inequality to reduce to an average of a family of bilinear singular

integrals parametrized by random signs and then recognizes these operators in the proof

of boundedness of the bilinear Hilbert transform [29], [30].

Somewhat related, there is an open problem stated in the introductory section of the

paper by Bernicot [4] to show Lp bounds for the bilinear square function

SΩ(f, g)(x) :=

(∑

ω∈Ω

∣∣∣
∫

R
f(x+ s) g(x− s) q1ω(s) ds

∣∣∣
2
)1/2

for an arbitrary collection of disjoint intervals Ω, which would be a bilinear variant of the

well-known result by Rubio de Francia [34]. Here q1ω denotes the inverse Fourier transform

of 1ω. Bernicot [4] has verified this conjecture for a particular case of equidistant intervals

of the same length, such as Ω = {[j, j + 1) : j ∈ Z}. The problem becomes simpler if

68



we replace 1ω with a smooth bump function adapted to ω, as was already observed

by Lacey [28] in the case of the intervals [j, j + 1), see also [5], [32], [33]. The above

bilinear square function S̃ is associated with smooth truncations of the lacunary intervals

Ω = {[2j , 2j+1) : j ∈ Z}.
This paper is organized as follows: In Section 2 we begin the proof of Theorem 2

by splitting the jumps into the “long ones” (i.e. those corresponding to the scales tj
that are dyadic numbers 2k, k ∈ Z) discussed in Lemma 8 and the “short ones” (i.e.

those corresponding to tj from a fixed interval [2k, 2k+1]) discussed in Lemmata 9 and 10.

Propositions 5–7 are the key results here. Their proofs are postponed to Sections 3–5 and

these three sections contain the main novelties of our approach. Finally, the somewhat

standard transition from Theorem 2 to Corollary 3 and then to Theorem 1 is presented

in details in Section 6.

2 Averages on R2, long and short variations

In this section we split Theorem 2 into long and short variation estimates and show how

to deduce these from Propositions 5, 6, and 7 below.

For two non-negative quantities A and B we write A . B if there exists a constant C >

0 such that A ≤ CB. When we want to emphasize dependence of the constant on some

parameters p, q, . . ., we denote them in the subscript, i.e. we write .p,q,.... Occasionally

we may omit writing down parameters that are understood. We write A ∼ B if both

A . B and B . A are satisfied.

For a function ϕ on Rd and t > 0 we set ϕt(x) := t−dϕ(t−1x). Consequently, Aϕt =

Aϕt1 . By S(Rd) we denote the class of all Schwartz functions on Rd, while the word

“smooth” will always mean C∞. The Fourier transform of an integrable function ϕ on

Rd is defined as

ϕ̂(ξ) :=

∫

Rd
ϕ(x)e−2πix·ξdx,

so the Fourier inversion formula takes form

ϕ(x) =

∫

Rd
ϕ̂(ξ)e2πix·ξdξ,

whenever ϕ, ϕ̂ ∈ L1(Rd). Derivatives of a single-variable function ϕ will be denoted ϕ′,
ϕ′′, etc. or Dϕ, D2ϕ, etc., while we write ∂nϕ for the partial derivatives. Let us remark

that we reserve the notation ϕ(n) for the upper indices.

Now we can formulate the three propositions that will be the key ingredients in the

proof of Theorem 2. Their own proofs will be postponed to the subsequent sections.

Proposition 5. Let λ > 1 and let ϑ, ϕ ∈ S(R) be such that

|ϑ(s)| ≤ (1 + |s|)−λ, |ϕ(s)| ≤ (1 + |s|)−λ

for all s ∈ R. Moreover, assume that ϑ̂ is supported in [−2−4, 2−4], while ϕ̂ is supported

in [−1, 1] and constant on [−2−2, 2−2]. Then for any m ∈ N, k0, . . . , km ∈ Z, and for any

real-valued F,G ∈ S(R2) normalized by

‖F‖L4(R2) = ‖G‖L4(R2) = 1 (2.1)
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we have

∣∣∣∣
m∑

j=1

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)

ϑ
2kj

(u)(ϕ
2kj
− ϕ

2kj−1 )(v) dxdydudv

∣∣∣∣ .λ 1. (2.2)

Proposition 6. Let λ > 1, t > 0 and let Φ ∈ S(R2) be such that

|Φ(u, v)| ≤ (1 + |u+ v|)−λt(1 + t|u− v|)−λ. (2.3)

for all u, v ∈ R. Moreover, assume that 2−2 ≤ |ξ + η| ≤ 1 for all (ξ, η) in the support of

Φ̂. Then for any real-valued F,G ∈ S(R2) normalized as in (2.1) and for any N ∈ N we

have

∣∣∣∣
N∑

j=−N

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)Φ2j (u, v) dxdydudv

∣∣∣∣ .λ 1. (2.4)

Proposition 7. Let λ > 1 and let Φ ∈ S(R2) be such that

|Φ(u, v)| ≤ (1 + |u+ v|)−λ(1 + |u− v|)−2λ (2.5)

for all u, v ∈ R. Moreover, assume that Φ̂ is supported in ([−2,−2−5] ∪ [2−5, 2])2. Then

for any real-valued F,G ∈ S(R2) normalized as in (2.1) and for any N ∈ N we have

(2.4).

Note that for ν = 3λ, the estimate

|Φ(u, v)| ≤ (1 + |u|)−λ/2(1 + |v|)−λ/2(1 + |u− v|)−ν (2.6)

implies (2.5) within an absolute constant. Moreover, (2.5) implies (2.6) with ν = λ,

modulo a constant. We will pass between the two formulations in the subsequent sections.

We also remark that the bump functions in (2.2) do not satisfy any estimates of the

type (2.3) or (2.5) within an absolute constant since there is no control on kj − kj−1.

However, the form in Proposition 5 has better cancellation properties than the one in

Proposition 7. The support of its multiplier symbol does not intersect the antidiago-

nal η = −ξ, which is the key property we need in the proof. This is also the case in

Proposition 6, which will be the main ingredient in the proof of Proposition 7.

In the rest of this section we concentrate on deducing Theorem 2 from these propo-

sitions. Throughout the text, χ will denote a fixed smooth frequency cutoff. More

precisely, we fix a function χ such that its Fourier transform χ̂ is smooth, even, non-

negative, supported in [−1, 1], constantly equal to 1 on [−2−1, 2−1], and monotone on

[2−1, 1]. Moreover, we can achieve that χ̂ is the square of some nonnegative smooth

function. Any constants are allowed to depend on χ and this dependence will not be

mentioned explicitly.
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2.1 Long variation

The following lemma is derived from Propositions 5 and 7.

Lemma 8. Let φ ∈ S(R) and assume that for some λ > 1 and constants C0, C1 one has

|φ ∗ χ24(s)| ≤ C0(1 + |s|)−λ, |φ(s)| ≤ C1(1 + |s|)−λ (2.7)

for all s ∈ R, and that for some λ > 1 and a constant C2 one has

|φ(u)φ(v)| ≤ C2(1 + |u+ v|)−λ(1 + |u− v|)−2λ (2.8)

for all u, v ∈ R. Moreover, assume that φ̂ is supported in [−1, 1] and constant on

[−2−2, 2−2]. If F,G ∈ L4(R2) are normalized by (2.1), then

‖Aφ
2k

(F,G)‖V2
k(Z,L2(R2)) .λ C

1/2
0 C

1/2
1 + C

1/2
2 . (2.9)

Observe that if φ̂ vanishes on [−2−2, 2−2], then the first estimate in (2.7) holds with

C0 = 0. In this case Lemma 8 yields

‖Aφ
2k

(F,G)‖V2
k(Z,L2(R2)) .λ C

1/2
2 . (2.10)

Proof of Lemma 8. Standard limiting arguments reduce the estimate (2.9) for each fixed

choice of the integers k0 < · · · < km to the case of Schwartz functions F and G. By

splitting into real and imaginary parts and using Minkowski’s inequality, we may assume

that F , G, and φ take only real values.

Fix integers k0 < k1 < · · · < km and denote

V (F,G) :=
m∑

j=1

∥∥Aφ
2kj

(F,G)−Aφ
2kj−1

(F,G)
∥∥2

L2(R2)
.

Expanding the L2 norm gives

V (F,G) =

m∑

j=1

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)

(φ
2kj
− φ

2kj−1 )(u)(φ
2kj
− φ

2kj−1 )(v) dxdydudv.

We have the identity

(φ
2kj
− φ

2kj−1 )(u)(φ
2kj
− φ

2kj−1 )(v) =
(
φ

2kj−1 (u)φ
2kj−1 (v)− φ

2kj
(u)φ

2kj
(v)
)

+ φ
2kj

(u)(φ
2kj
− φ

2kj−1 )(v)

+ (φ
2kj
− φ

2kj−1 )(u)φ
2kj

(v). (2.11)

Summing (2.11) over 1 ≤ j ≤ m, the first term on the right hand-side telescopes into

φ2k0 (u)φ2k0 (v)− φ2km (u)φ2km (v).
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Applying Hölder’s inequality in (x, y) for the exponents (4, 4, 4, 4) and using that (2.8)

implies
∫
R2 |φ(u)φ(v)|dudv .λ C2 we obtain

∣∣∣
∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)

(φ2k0 (u)φ2k0 (v)− φ2km (u)φ2km (v)) dxdydudv
∣∣∣ .λ C2‖F‖2L4(R2)

‖G‖2
L4(R2)

= C2.

(2.12)

By symmetry of the second and the third term on the right hand side of (2.11), it then

suffices to bound

Λ(F,G) :=
m∑

j=1

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)

φ
2kj

(u)(φ
2kj
− φ

2kj−1 )(v) dxdydudv.

Now we localize the multiplier symbol associated with this form. Let ω be defined by

ω := χ2−1−χ24 . Note that ω̂ is supported in [−2,−2−5]∪ [2−5, 2] and that χ̂24 + ω̂ equals

1 on [−1, 1], and in particular also on the support of φ̂. Then we can write

φ = φ ∗ χ24 + φ ∗ ω.

Using this decomposition we split Λ = Λχ24
+ Λω, where for a function ρ, the form Λρ is

defined by

Λρ(F,G) :=
m∑

j=1

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)

(φ ∗ ρ)
2kj

(u)(φ
2kj
− φ

2kj−1 )(v) dxdydudv.

By the assumptions (2.7) on φ, Proposition 5 gives

|Λχ24
(F,G)| .λ C0C1. (2.13)

Rewrite Λω by separating the functions in u and v as

Λω(F,G) =
m∑

j=1

∫

R2

(∫

R
F (x+ u, y)G(x, y + u)(φ ∗ ω)

2kj
(u)du

)

(∫

R
F (x+ v, y)G(x, y + v)(φ

2kj
− φ

2kj−1 )(v)dv
)
dxdy.

Applying the Cauchy-Schwarz inequality in x, y, and j gives

|Λω(F,G)| ≤ Λω,ω(F,G)1/2V (F,G)1/2, (2.14)

where for a function ρ we have set

Λρ,ρ(F,G) :=
m∑

j=1

∫

R2

(∫

R
F (x+ u, y)G(x, y + u)(φ ∗ ρ)

2kj
(u) du

)2
dxdy.
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Note that, up to increasing the quantity Λω,ω(F,G) by adding nonnegative terms, we may

assume that kj = j and that the summation is taken over all integers j from a sufficiently

large interval [−N,N ]. Expanding the square in Λω,ω(F,G) we can write this form as

m∑

j=1

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)(φ ∗ ω)
2kj

(u)(φ ∗ ω)
2kj

(v) dxdydudv.

By the assumption (2.8), Proposition 7 implies

Λω,ω(F,G) .λ C2. (2.15)

Inequalities (2.12), (2.13), (2.14), and (2.15) together give a bootstrapping estimate

V (F,G) .λ C2 + C0C1 + C
1/2
2 V (F,G)1/2.

This shows V (F,G) .λ C0C1 + C2 and hence proves (2.9).

2.2 Short variation

The following two closely related lemmata are derived from Proposition 7.

Lemma 9. Let φ ∈ S(R) and assume that for some λ > 1 and a constant C3 one has

∣∣∣
∫ 2

1
t∂t(φt(u))t∂t(φt(v))

dt

t

∣∣∣ ≤ C3(1 + |u+ v|)−λ(1 + |u− v|)−2λ (2.16)

for all u, v ∈ R. Moreover, assume that φ̂ is supported in [−1, 1] and constant on

[−2−4, 2−4]. If F,G ∈ L4(R2) are normalized by (2.1), then for each N ∈ N one has

( N∑

i=−N
‖Aφt (F,G)‖2

V2
t ([2

i,2i+1],L2(R2))

)1/2
.λ C

1/2
3 , (2.17)

with the implicit constant independent of N .

Lemma 10. Let φ, F,G be as in the previous lemma. If in addition for some λ > 1

and a constant C2 the function φ satisfies (2.8) for all u, v ∈ R and if φ̂ vanishes on

[−2−4, 2−4], then for each N ∈ N we have the estimate

( N∑

i=−N
‖Aφt (F,G)‖2

V2
t ([2

i,2i+1],L2(R2))

)1/2
.λ C

1/4
2 C

1/4
3 , (2.18)

with the implicit constant independent of N .

Proof of Lemma 9. As in the proof of Lemma 8 we may assume that F, G ∈ S(R2) and

that F, G, and φ are real-valued.

Denote ψ(s) := (sφ(s))′, so that one has ψt(s) = −t∂t(φt(s)). By Lemma 12 (in the

Appendix) applied with a(t) = Aφt (F,G)(x, y) for each fixed (x, y), for any 2i ≤ t0 <

· · · < tm ≤ 2i+1 we have

m∑

j=1

‖Aφtj (F,G)−Aφtj−1
(F,G)‖2

L2(R2)
≤
∫

R2

∫ 2

1

(
Aψ

2it
(F,G)(x, y)

)2dt
t
dxdy.
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Indeed, this follows from Aψt (F,G) = −t∂t(Aφt (F,G)) and by rescaling in t. Taking the

supremum over all choices of tj and summing over −N ≤ i ≤ N we obtain

N∑

i=−N
‖Aφt (F,G)‖2

V2
t ([2

i,2i+1],L2(R2))
≤

N∑

i=−N

∫

R2

∫ 2

1

(
Aψ

2it
(F,G)(x, y)

)2dt
t
dxdy.

Expanding the square on the right hand-side, in order to finish the proof of Lemma 9 we

need to bound

N∑

i=−N

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)
(∫ 2

1
ψ2it(u)ψ2it(v)

dt

t

)
dxdydudv.

(2.19)

Observe that ψ̂(ξ) = −ξφ̂′(ξ) is supported in [−1,−2−4] ∪ [2−4, 1], so

Φ(u, v) :=

∫ 2

1
ψt(u)ψt(v)

dt

t

has its frequency support in ([−1,−2−5] ∪ [2−5, 1])2, and recall that we assume (2.16).

Proposition 7 implies boundedness of (2.19) within an absolute constant times C3, which

yields (2.17).

Proof of Lemma 10. Let all the notation and the assumptions be as in the proof of the

previous lemma. By Lemma 12 and the Cauchy-Schwarz inequality in (x, y) this time we

deduce

m∑

j=1

‖Aφtj (F,G)−Aφtj−1
(F,G)‖2

L2(R2)
.

∏

ρ∈{φ,ψ}

(∫

R2

∫ 2

1

(
Aρ

2it
(F,G)(x, y)

)2dt
t
dxdy

)1/2
.

Taking the supremum over tj , summing over −N ≤ i ≤ N , and applying the Cauchy-

Schwarz inequality in i we obtain

N∑

i=−N
‖Aφt (F,G)‖2

V2
t ([2

i,2i+1],L2(R2))
≤

∏

ρ∈{φ,ψ}

( N∑

i=−N

∫

R2

∫ 2

1

(
Aρ

2it
(F,G)(x, y)

)2dt
t
dxdy

)1/2
.

By the support assumptions on φ, (2.8), and (2.16), Proposition 7 applied twice concludes

that the right hand-side is no greater than an absolute constant times C
1/2
2 C

1/2
3 , which

in turn implies (2.18).

Finally, we are ready to deduce Theorem 2 from these lemmata. The first step is to

show the estimate (1.5) for a general Schwartz function ϕ.

2.3 Deriving Theorem 2 for a Schwartz function ϕ

Let F,G ∈ S(R2) be normalized by (2.1). If ϕ ∈ S(R) is such that ϕ̂ is supported in

[−1, 1] and constant on [−2−2, 2−2], then Lemmata 8 and 9 combined with the standard

separation into long and short jumps imply

∥∥Aϕt (F,G)
∥∥

V2
t ((0,∞),L2(R2))

.λ C
1/2
0 C

1/2
1 + C

1/2
2 + C

1/2
3 .ϕ 1. (2.20)
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The details can be found for instance in [21] or [12]. Note that the constants Ci depend

only on some Schwartz norm of ϕ of a sufficiently large degree. This gives (1.5) in the

particular case.

Now we show (2.20) for a general Schwartz function ϕ. Take ϕ ∈ S(R) and denote

θ := χ− χ2. Observe that θ̂ is supported in [−1,−2−2] ∪ [2−2, 1] and that

∑

k∈Z
θ̂(2kξ) = 1 (2.21)

for all 0 6= ξ ∈ R. Then we can write

ϕ = cχ+ (ϕ− cχ) = cχ+
∑

k∈Z
(ϕ− cχ) ∗ θ2k , (2.22)

where the number c is chosen such that ϕ̂(0) − cχ̂(0) = 0, i.e. c = ϕ̂(0). Note that the

series in (2.22) converges pointwise (in any summation order) since ϕ − cχ and θ are

Schwartz and θ has mean zero.

We proceed by bounding norm-variation of bilinear averages corresponding to the

individual terms in the expansion (2.22). For the part associated with cχ boundedness

follows from (2.20) since χ is Schwartz and χ̂ is constant near the origin:

‖Acχt (F,G)‖V2
t ((0,∞),L2(R2)) . 1. (2.23)

For the part associated with (ϕ− cχ) ∗ θ2k we show that the function ϑ = ϑ(k) defined by

ϑ := (ϕ− cχ)2−k ∗ θ

satisfies the estimate ∥∥Aϑt(F,G)
∥∥

V2
t ((0,∞),L2(R2))

. 2−|k| (2.24)

for any k ∈ Z. By scaling invariance of the left hand-side of (2.24) the same estimate

remains to hold for ϑ2k = (ϕ− cχ) ∗ θ2k , i.e. for each term in the series expansion (2.22).

Then, from (2.22), (2.23), (2.24), Minkowski’s inequality, and Fatou’s lemma we obtain

‖Aϕt (F,G)‖V2
t ((0,∞),L2(R2)) . 1 +

∑

k∈Z
2−|k| . 1,

which finishes the proof.

In order to verify (2.24), observe that ϑ̂ is supported in [−1,−2−2] ∪ [2−2, 1], so in

particular it is constant on [−2−2, 2−2]. Since ϕ̂ − cχ̂ vanishes at zero, we have |ϕ̂(ξ) −
cχ̂(ξ)| .ϕ min{|ξ|, |ξ|−1} and hence, by ϑ̂(ξ) = (ϕ̂− cχ̂)(2−kξ)θ̂(ξ) and the product rule,

∥∥|ξ|αDβϑ̂(ξ)
∥∥

L∞ξ (R)
.α,β 2−|k|

for any α, β ≥ 0. Therefore, 2|k|ϑ satisfies (2.7), (2.8), and (2.16) with the constants

independent of k. The estimate (2.24) then follows from (2.20) applied with ϕ = 2|k|ϑ
and by homogeneity.
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2.4 Deriving Theorem 2 for ϕ = 1[0,1)

Once again we can work with Schwartz functions F and G only. Let F,G ∈ S(R2) be

normalized by (2.1) and let χ, θ be as in the previous subsection. We have

1[0,1) = 1[0,1) ∗ χ+

−1∑

k=−∞
1[0,1) ∗ θ2k . (2.25)

By the Plancherel identity the series in (2.25) converges in the L2 norm. However, the

same series also converges a.e., which follows from the weak L2 boundedness of the maxi-

mally truncated convolution-type singular integrals. Alternatively, we can pass to an a.e.

convergent subsequence of partial sums, as taking the limit over a subsequence is enough

for our intended application.

By the discussion in Subsection 2.3 we obtain
∥∥A1[0,1)∗χ

t (F,G)
∥∥

V2
t ((0,∞),L2(R2))

. 1. (2.26)

Now we concentrate on the individual terms in (2.25) for negative values of k. By θ̃ we

denote the primitive of θ, i.e. θ̃(s) :=
∫ s
−∞ θ(u)du. Observe that, since θ has integral zero,

its primitive θ̃ decays rapidly. The arguments from the previous subsection give

‖Aθ̃t (F,G)‖V2
t ((0,∞),L2(R2)) . 1. (2.27)

By scaling invariance of the left hand-side, (2.27) also holds with θ̃ replaced by θ̃2k . We

will show that for each k < 0 and for the function ϑ = ϑ(k) defined by

ϑ(s) := 2kθ̃(s− 2−k)

we have the variational inequality

‖Aϑt (F,G)‖V2
t ((0,∞),L2(R2)) . 2k/8. (2.28)

Once this is shown, by scaling invariance of the left hand-side, the estimate (2.28) remains

to hold with ϑ replaced by ϑ2k . Then we need to observe that

1[0,1) ∗ θ2k = 2kθ̃2k − ϑ2k .

From (2.25), (2.26), (2.27), (2.28), Minkowski’s inequality, and Fatou’s lemma we finally

obtain

‖A1[0,1)

t (F,G)‖V2
t ((0,∞),L2(R2)) . 1 +

∑

k≤−1

(2k + 2k/8) . 1.

In order to see (2.28), note that the Fourier support of ϑ is contained in [−1,−2−2]∪
[2−2, 1]. For any λ > 0, ν > 0, and k < 0 we claim that

|ϑ(u)ϑ(v)| .λ,ν 2k(2−λ)(1 + |u|)−λ/2(1 + |v|)−λ/2(1 + |u− v|)−ν ,

(2.29)
∣∣∣
∫ 2

1
t∂t(ϑt(u))t∂t(ϑt(v))

dt

t

∣∣∣ .λ,ν 2k(1−λ)(1 + |u|)−λ/2(1 + |v|)−λ/2(1 + |u− v|)−ν .

(2.30)
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We have already commented how bounds of this form with ν = 3λ transform into bounds

(2.8) and (2.16). Once these two estimates are verified, the separation into short and

long jumps together with (2.10) and Lemma 10, which require (2.29) and (2.30) to hold

with λ > 1, give ∥∥Aϑt (F,G)
∥∥

V2
t ((0,∞),L2(R2))

.λ C
1/2
2 + C

1/4
2 C

1/4
3

with C2 ∼ 2k(2−λ) and C3 ∼ 2k(1−λ). Choosing λ = 5/4 we obtain (2.28).

Proof of (2.29). By the rapid decay of θ̃ we have

|θ̃(u− 2−k)θ̃(v − 2−k)| .λ,ν (1 + |u− 2−k|)−λ/2−ν(1 + |v − 2−k|)−λ/2−ν

≤ (1 + |u− 2−k|)−λ/2(1 + |v − 2−k|)−λ/2(1 + |u− v|)−ν ,

where we used |u− v| ≤ |u− 2−k|+ |v − 2−k|. From

(1 + |u− 2−k|)−λ/2 ≤ (1 + |u|)−λ/2(1 + 2−k)λ/2 .λ (1 + |u|)−λ/22−kλ/2

we then conclude (2.29).

Proof of (2.30). Observe that −t∂t(ϑt(s)) = ϑt(s) + (sϑ′(s))t. Thus, t∂t(ϑt(u))t∂t(ϑt(v))

consist of four terms. We will show (2.30) corresponding to (sϑ′(s))t, that is,

∣∣∣
∫ 2

1
(uϑ′(u))t(vϑ

′(v))t
dt

t

∣∣∣ .λ,ν 2k(1−λ)(1 + |u|)−λ/2(1 + |v|)−λ/2(1 + |u− v|)−ν . (2.31)

The analogous inequalities corresponding to the other terms are treated in the same

manner. To see (2.31) we first observe

(sϑ′(s))t = (s2kθ(s− 2−k))t = st−12kθt(s− t2−k)

and bound |θt(s)| .λ,ν (1 + |s|)−λ/2−ν−1 using t ∈ [1, 2]. Then we estimate

∣∣∣
∫ 2

1
uθt(u− t2−k)vθt(v − t2−k)

dt

t3

∣∣∣

.λ,ν |uv|
∫ 2

1

(
(1 + |u− t2−k|)(1 + |v − t2−k|)

)−λ/2−ν−1
dt.

By the triangle inequality |u − v| ≤ |u − t2−k| + |v − t2−k| and the Cauchy-Schwarz

inequality in t, this is bounded by

(1 + |u− v|)−ν |u|
(∫ 2

1
(1 + |u− t2−k|)−λ−2dt

)1/2
|v|
(∫ 2

1
(1 + |v − t2−k|)−λ−2dt

)1/2
.

Now, if |u| ≤ 2−k+2, then we estimate

(1 + |u|)λ/2|u|
(∫ 2

1
(1 + |u− t2−k|)−λ−2dt

)1/2

≤ (1 + |u|)λ/2+1
(∫ ∞

−∞
(1 + |u− t2−k|)−λ−2dt

)1/2

.λ 2k/2(1 + |u|)λ/2+1 .λ 2k(−1−λ)/2,
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where the second inequality follows by integrating in t. If |u| ≥ 2−k+2, then we have

|u− t2−k| ≥ |u|/2 and hence

(1 + |u|)λ/2|u|
(∫ 2

1
(1 + |u− t2−k|)−λ−2dt

)1/2

.λ (1 + |u|)λ/2+1(1 + |u|)−λ/2−1 = 1 ≤ 2k(−1−λ)/2.

The same estimates hold for the terms with v. After multiplication by 22k and division

by (1 + |u|)λ/2(1 + |v|)λ/2 this shows (2.31).

3 Proof of Proposition 5

Let us rewrite the form (2.2) from Proposition 5 in a more convenient way. Denote

ψ := ϕ− ϕ2. Then we have the telescoping identity

ϕ
2kj−1 − ϕ2kj

=

kj−1∑

l=kj−1

ψ2l . (3.1)

We insert (3.1) into (2.2) and substitute

x′ = x+ y + u, y′ = x+ y + v, F̃ (y, x′) := F (x′ − y, y), G̃(x, x′) := G(x, x′ − x).

Note that we still have ‖F̃‖L4(R2) = ‖G̃‖L4(R2) = 1. Omitting the tildas for notational

simplicity, it then suffices to show the inequality

∣∣∣∣
m∑

j=1

kj−1∑

l=kj−1

∫

R4

F (y, x′)G(x, x′)F (y, y′)G(x, y′)

ϑ
2kj

(x′ − x− y)ψ2l(y
′ − x− y) dxdydx′dy′

∣∣∣∣ . 1.

First, we would like to write the kernel as a superposition of elementary tensors in

the four variables x, y, x′, y′. Using the Fourier inversion formula we write

ϑ
2kj

(x′ − x− y)ψ2l(y
′ − x− y) =

∫

R2

ϑ̂(2kjξ)ψ̂(2lη)e2πiξ(x′−x−y)e2πiη(y′−x−y)dξdη.

Since ϕ̂ is supported in [−1, 1] and constant on [−2−2, 2−2], the function ψ̂ is supported

in [−1,−2−3] ∪ [2−3, 1]. If 2kjξ ∈ supp(ϑ̂) and 2lη ∈ supp(ψ̂), then

2l(ξ + η) = 2l−kj2kjξ + 2lη ∈ [−2,−2−4] ∪ [2−4, 2].

Let χ be as before, which guarantees that there exists a smooth nonnegative even function

ω̂, being the Fourier transform of some ω ∈ S(R), satisfying

ω̂(ξ)2 = χ̂(2−2ξ)− χ̂(24ξ).

The function ω̂ is supported in [−22,−2−5] ∪ [2−5, 22] and equal to 1 on [−2,−2−4] ∪
[2−4, 2]. For each (ξ, η) ∈ R2 we have

ϑ̂(2kjξ)ψ̂(2lη) = ϑ̂(2kjξ)ψ̂(2lη)ω̂(2l(ξ + η))2 (3.2)
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and hence

ϑ
2kj

(x′ − x− y)ψ2l(y
′ − x− y)

=

∫

R2

ϑ̂(2kjξ)e2πix′ξψ̂(2lη)e2πiy′ηω̂(2l(−ξ − η))e2πix(−ξ−η)ω̂(2l(−ξ − η))e2πiy(−ξ−η)dξdη.

The last expression can be viewed as the integral of the Fourier transform of the function

H(x1, x2, x3, x4) := ϑ
2kj

(x1 + x′)ψ2l(x2 + y′)ω2l(x3 + x)ω2l(x4 + y)

over the hyperplane

{(ξ, η,−ξ − η,−ξ − η) : ξ, η ∈ R}.

It equals the integral of H itself over the perpendicular hyperplane

{(p+ q, p+ q, p, q) : p, q ∈ R}.

Therefore, ϑ
2kj

(x′ − x− y)ψ2l(y
′ − x− y) can be written as

∫

R2

ϑ
2kj

(x′ − p− q)ψ2l(y
′ − p− q)ω2l(x− p)ω2l(y − q) dpdq

and the object we need to bound is

m∑

j=1

kj−1∑

l=kj−1

∫

R6

F (y, x′)G(x, x′)F (y, y′)G(x, y′)

ϑ
2kj

(x′ − p− q)ψ2l(y
′ − p− q)ω2l(x− p)ω2l(y − q) dxdydx′dy′dpdq. (3.3)

In order to estimate this form we adapt the arguments from [24] to the Euclidean

setting. First we apply the Cauchy-Schwarz inequality, which will reduce the complexity

of the form. To preserve the mean zero property of ω we rewrite (3.3) as

m∑

j=1

kj−1∑

l=kj−1

∫

R4

(∫

R
F (y, x′)F (y, y′)ω2l(y − q) dy

)(∫

R
G(x, x′)G(x, y′)ω2l(x− p) dx

)

ϑ
2kj

(x′ − p− q)ψ2l(y
′ − p− q) dx′dy′dpdq.

Taking absolute values, using the triangle inequality, and applying the Cauchy-Schwarz

inequality in the variables x′, y′, p, q, and t, we bound this expression by

Γ(F )1/2Γ(G)1/2, (3.4)

where we have denoted

Γ(F ) :=

m∑

j=1

kj−1∑

l=kj−1

∫

R4

(∫

R
F (y, x′)F (y, y′)ω2l(y − q)dy

)2

|ϑ|
2kj

(x′ − p)|ψ|2l(y′ − p) dx′dy′dpdq.
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Here the two appearances of the function ω have been separated, which allowed us to

change variables p→ p− q in the last expression. Integrating in p, using l ≤ kj and the

normalization of ϑ and ϕ, we get
∫

R
|ϑ|

2kj
(x′ − p)|ψ|2l(y′ − p)dp .λ 2−kj (1 + 2−kj |x′ − y′|)−λ. (3.5)

This fact can be shown along the lines of [37, Lemma 2.1]. For completeness and to keep

track of the constants we now give a detailed proof.

If |x′ − y′| ≤ 2kj+1/(λ− 1), then we can bound the left hand-side of (3.5) by

‖ϑ
2kj
‖L∞(R)‖ψ2l‖L1(R) .λ ‖ϑ‖L∞(R)‖ψ‖L1(R)2

−kj (1 + 2−kj |x′ − y′|)−λ.

If |x′ − y′| ≥ 2kj+1/(λ − 1), then let us denote by c the midpoint of x′ and y′. Without

loss of generality we may assume x′ < c < y′. We split the integral as
∫
R =

∫ c
−∞+

∫∞
c

and estimate it by

‖ϑ‖L1(R)2
−l(1 + 2−l|y′ − c|)−λ + 2−kj (1 + 2−kj |x′ − c|)−λ‖ψ‖L1(R). (3.6)

Since |x′ − c| = |y′ − c| = |x′ − y′|/2, l ≤ kj ,

2−l−1|x′ − y′| ≥ 2−kj−1|x′ − y′| ≥ (λ− 1)−1,

and the function s 7→ s(1+s)−λ is decreasing on the interval [(λ−1)−1,∞), the expression

(3.6) is at most

(‖ϑ‖L1(R) + ‖ψ‖L1(R)) 2−kj (1 + 2−kj−1|x′ − y′|)−λ.

It remains to note ‖ϑ‖L∞(R) ≤ 1, ‖ϑ‖L1(R) .λ 1, and ‖ψ‖L1(R) .λ 1, which shows the

claim.

Our inequality did not preserve the tensor structure in the variables x′ and y′ which

will be needed later in (3.13). For that purpose we further estimate (3.5) by a superpo-

sition of Gaussians as it was done in [14]. Denote

g(s) := e−πs
2

and σ(s) :=

∫ ∞

1
gα(s)α−λdα, (3.7)

where gα(s) = α−1g(α−1s), as before. Observe that σ(0) = (λ− 1)−1 and the change of

variables β = |s|/α gives

lim
|s|→∞

|s|λσ(s) =

∫ ∞

0
βλ−1e−πβ

2
dβ ∈ (0,∞),

so σ(s) is comparable to |s|−λ for large |s|. Therefore, using

(1 + |s|)−λ .λ σ(s) (3.8)

we can dominate the right hand-side of (3.5) up to a positive constant by σ
2kj

(x′ − y′).
This in turn controls

Γ(F ) .λ

∫ ∞

1

( m∑

j=1

kj−1∑

l=kj−1

∫

R5

F (y, x′)F (x, x′)F (y, y′)F (x, y′)

g
α2kj

(x′ − y′)ω2l(x− q)ω2l(y − q) dxdydx′dy′dq
)
α−λdα. (3.9)
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Integrating in q, summing in l, and using ω̂(ξ)2 =
∑3

i=−2

(
χ̂(2iξ)− χ̂(2i+1ξ)

)
we obtain

kj−1∑

l=kj−1

∫

R
ω2l(x− q)ω2l(y − q) dq =

3∑

i=−2

(χ
2kj−1+i − χ2kj+i

)(x− y).

Inserting this into (3.9), the integrand in α can be rewritten as

3∑

i=−2

m∑

j=1

∫

R4

F (y, x′)F (x, x′)F (y, y′)F (x, y′)

g
α2kj

(x′ − y′)(χ
2kj−1+i − χ2kj+i

)(x− y) dxdydx′dy′.

It suffices to prove an estimate uniform in α for each summand corresponding to a fixed

i and then integrate in α and sum over −2 ≤ i ≤ 3. For two functions ρ̃, ρ ∈ S(R) define

Θρ̃,ρ(F ) :=

m∑

j=1

∫

R4

F (y, x′)F (x, x′)F (y, y′)F (x, y′)

ρ̃
2kj

(x′ − y′)(ρ
2kj−1 − ρ2kj

)(x− y) dxdydx′dy′.

The needed estimate is a direct consequence of the following lemma applied with ρ = χ2i .

Lemma 11. For any real-valued F ∈ S(R2), real-valued ρ ∈ S(R) and α ∈ (0,∞) we

have

Θgα,ρ(F ) .ρ ‖F‖4L4(R2)
, (3.10)

where g(s) = e−πs
2
.

Proof. Once again we normalize F as in (2.1). The first step is an application of the

telescoping identity. If we denote

Θ̃ρ̃,ρ(F ) :=

m∑

j=1

∫

R4

F (y, x′)F (x, x′)F (y, y′)F (x, y′)

(ρ̃
2kj−1 − ρ̃2kj

)(x′ − y′)ρ
2kj−1 (x− y) dxdydx′dy′

and for t > 0 define the single-scale quantity

Ξρ̃,ρ,t(F ) :=

∫

R4

F (y, x′)F (x, x′)F (y, y′)F (x, y′)ρ̃t(x′ − y′)ρt(x− y) dxdydx′dy′,

then we have

Θρ̃,ρ(F ) + Θ̃ρ̃,ρ(F ) = Ξρ̃,ρ,2k0 (F )− Ξρ̃,ρ,2km (F ), (3.11)

Ξρ̃,ρ,t(F ) ≤ ‖ρ̃‖L1(R)‖ρ‖L1(R). (3.12)

The identity (3.11) follows from summation by parts: all intermediate terms cancel. To

see (3.12) we substitute u = x′ − y′, v = x− y, rewrite Ξρ̃,ρ,t(F ) as

∫

R2

(∫

R2

F (x− v, x′)F (x, x′)F (x− v, x′ − u)F (x, x′ − u) dxdx′
)
ρ̃t(u)ρt(v) dudv,
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and apply Hölder’s inequality in (x, x′) for the exponents (4, 4, 4, 4).

In order to show (3.10) we first use (3.11), which gives

Θgα,ρ(F ) = Ξgα,ρ,2k0 (F )− Ξgα,ρ,2km (F )− Θ̃gα,ρ(F ),

and hence applying (3.12) we get

|Θgα,ρ(F )| ≤ |Ξgα,ρ,2k0 (F )|+ |Ξgα,ρ,2km (F )|+ |Θ̃gα,ρ(F )| .ρ 1 +
∣∣Θ̃gα,ρ(F )

∣∣.

Therefore, it remains to estimate
∣∣Θ̃gα,ρ(F )

∣∣.
By the fundamental theorem of calculus we rewrite Θ̃gα,ρ(F ) as

Θ̃gα,ρ(F ) =

m∑

j=1

∫ 2kj

2kj−1

∫

R4

F (y, x′)F (x, x′)F (y, y′)F (x, y′)

(
− t∂t(gαt(x′ − y′))

)
ρ

2kj−1 (x− y) dxdydx′dy′
dt

t
.

For h(s) :=
√

2/πg′(
√

2s) we have −t∂t(ĝαt(ξ)) = |ĥαt(ξ)|2 and hence

− t∂t(gαt(x′ − y′)) =

∫

R
hαt(x

′ − p)hαt(y′ − p)dp. (3.13)

By this identity and the symmetry of Θ̃gα,ρ, which results from four repetitions of the

function F , we can express Θ̃gα,ρ(F ) as

m∑

j=1

∫ 2kj

2kj−1

∫

R3

(∫

R
F (y, x′)F (x, x′)hαt(x′ − p)dx′

)2
ρ

2kj−1 (x− y) dxdydp
dt

t
. (3.14)

Observe that the square in (3.14) is automatically non-negative, but the function ρ is

not non-negative in general. To obtain positivity and an elementary tensor structure in

x and y as in (3.13) we dominate |ρ| . σ by applying (3.8) as before, where σ is the

superposition of the Gaussians (3.7). This implies

∣∣Θ̃gα,ρ(F )
∣∣ .ρ

∫ ∞

1
Θ̃gα,gβ (F )β−λdβ.

We apply the telescoping identity (3.11) once more to get

Θ̃gα,gβ (F ) = Ξgα,gβ ,2k0 (F )− Ξgα,gβ ,2km (F )−Θgα,gβ (F ).

Now that we have reduced to Gaussian functions only, we have non-negativity of both

Θgα,gβ (F ) and Θ̃gα,gβ (F ). This can be seen by the fundamental theorem of calculus and

the equality (3.13), which allow us to write Θgα,gβ (F ) and Θ̃gα,gβ (F ) in the same way as

we did with the form in (3.14). Therefore, by (3.12) once again,

Θ̃gα,gβ (F ) ≤ Ξgα,gβ ,2k0 (F )− Ξgα,gβ ,2km (F ) ≤ 2‖g‖2
L1(R)

. 1.

This finishes the proof of Lemma 11.
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4 Proof of Proposition 6

Our aim is to reduce the proposition to Lemma 11 from the previous section. Let χ and

ω be the functions as in Section 3. Then ω̂ equals 1 on {ξ + η : (ξ, η) ∈ supp(Φ̂)}, so for

each (ξ, η) ∈ R2 we can write

Φ̂(ξ, η) = Φ̂(ξ, η)ω̂(ξ + η)2,

similarly as in (3.2). Choosing the same substitution as in Section 3 and performing

the analogous steps from (3.2) to (3.4) with kj and l being replaced by j, it remains to

estimate an analogous quantity to Γ(F ),

N∑

j=−N

∫

R6

F (y, x′)F (x, x′)F (y, y′)F (x, y′)

|Φ|2j (x′ − p, y′ − p)ω2j (x− q)ω2j (y − q) dxdydx′dy′dpdq.

Using the decay assumption on Φ we obtain

∫

R
|Φ|(x′ − p, y′ − p) dp ≤

∫

R
t(1 + t|x′ − y′|)−λ(1 + |x′ + y′ − 2p|)−λdp

.λ t(1 + t|x′ − y′|)−λ.

Estimating the right hand-side as in (3.8) by the superposition σ defined in (3.7) and

proceeding as we did with (3.9), it then suffices to bound

N∑

j=−N

∫

R4

F (y, x′)F (x, x′)F (y, y′)F (x, y′)gαt2j (x
′ − y′)(χ2j+i − χ2j+i+1)(x− y) dxdydx′dy′

uniformly in α, t ∈ (0,∞) and for each fixed −2 ≤ i ≤ 3. Such an estimate follows from

the particular case of Lemma 11 when ρ = χ2i+1 and kj = j.

5 Proof of Proposition 7

We would like to decompose the kernel of the form appearing on the left hand side of

(2.4) into elementary tensors analogous to those from Section 3. Then we could bound

this form by the Cauchy-Schwarz inequality and iterations of the telescoping identity and

positivity arguments. However, the multiplier support now intersects the axis η = −ξ, so

a desired decomposition is not readily available.

To overcome this issue, the idea is to transfer to the multiplier with the symbol (5.8)

below, which is homogeneous, i.e. constant on the rays through the origin, symmetric

with respect to η = −ξ, and smooth away from that axis. Since the form with a constant

multiplier is trivially bounded, we can then subtract the constant on η = −ξ from that

homogeneous multiplier. This leaves us with a function vanishing on η = −ξ up to a

certain positive order. By a bi-parameter lacunary decomposition with respect to the

axes η = ξ and η = −ξ we reduce to the consideration of certain angular regions to which
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the arguments from Section 3 may be applied. Due to the vanishing along η = −ξ we are

able to sum over all such regions.

We can assume that 1 < λ < 2, as the claim only becomes stronger as λ decreases to

1. Recall that the form from Proposition 7 is associated with the kernel

K(u, v) :=

N∑

j=−N
Φ2j (u, v).

Let θ be χ− χ2, so that θ̂ partitions the unity as in (2.21). Then
∫∞

0 θ̂(tτ)dtt is the same

constant for all 0 6= τ ∈ R and up to that constant K̂(ξ, η) equals

∫ ∞

0
K̂(ξ, η)θ̂(t|(ξ, η)|)dt

t
=

∫ ∞

0
K̂(t)(t(ξ, η))

dt

t
(5.1)

for all (ξ, η) 6= (0, 0), where K(t) is defined via its Fourier transform as

K̂(t)(ξ, η) := K̂(t−1(ξ, η))θ̂(|(ξ, η)|).

Observe that the support of K̂(t)(ξ, η) lies in the intersection of the annulus 2−2 ≤
|(ξ, η)| ≤ 1 with the quadruple cone 2−6 ≤ |η/ξ| ≤ 26, which in turn is contained in

the Cartesian product

([−1,−2−9] ∪ [2−9, 1])2. (5.2)

Let ϑ be such that ϑ̂ is a smooth nonnegative even function supported in [−2,−2−10] ∪
[2−10, 2] and such that (ξ, η) 7→ ϑ̂(ξ)ϑ̂(η) equals 1 on the set (5.2) and thus also on the

support of each K̂(t). Then

K̂(t)(ξ, η) = K̂(t)(ξ, η)ϑ̂(ξ)ϑ̂(η),

which implies

K(t)(u, v) =

∫

R2

K(t)(a, b)ϑ(u− a)ϑ(v − b) dadb. (5.3)

Using (5.1) and (5.3), the form from Proposition 7 can be rewritten as

∫

R2

∫ ∞

0
K(t)(a, b)

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)

ϑt(u− ta)ϑt(v − tb) dxdydudv
dt

t
dadb. (5.4)

Observe that for κ ∈ S(R2) defined by κ̂(ξ, η) = θ̂(|(ξ, η)|) we have

K(t)(a, b) =
N∑

j=−N

∫

R2

Φ2j/t(a− x, b− y)κ(x, y) dxdy

and by the support conditions on Φ̂ and κ̂ the sum is taken only over −N ≤ j ≤ N that

also satisfy 2−7 < 2j/t < 27. Thus, there are at most 14 non-zero summands for each
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fixed t and 2j/t ∼ 1 holds for each of them. From the assumption (2.5) transformed into

(2.6) and the rapid decay of κ it follows that

∣∣K(t)(a, b)
∣∣ .λ

∫

R2

(1 + |a− x|)−λ/2(1 + |b− y|)−λ/2(1 + |a− x− b+ y|)−λ|κ(x, y)| dxdy

.λ (1 + |a|)−λ/2(1 + |b|)−λ/2(1 + |a− b|)−λ.

Taking absolute values in (5.4) and denoting

I(x, y, a, t) :=

∫

R
F (x+ s, y)G(x, y + s)ϑt(s− ta)ds,

we can now bound (5.4) by

∫

R2

(1 + |a|)−λ/2(1 + |b|)−λ/2(1 + |a− b|)−λ
∫ ∞

0

∫

R2

|I(x, y, a, t)I(x, y, b, t)| dxdy dt
t
dadb.

Next, we apply the Cauchy-Schwarz inequality in x, y and t, which gives

∫

R2

(1 + |a− b|)−λ(1 + |a|)−λ/2
(∫ ∞

0

∫

R2

I(x, y, a, t)2 dxdy
dt

t

)1/2

(1 + |b|)−λ/2
(∫ ∞

0

∫

R2

I(x, y, b, t)2 dxdy
dt

t

)1/2
dadb. (5.5)

If we denote

J(a) := (1 + |a|)−λ/2
(∫ ∞

0

∫

R2

I(x, y, a, t)2 dxdy
dt

t

)1/2
,

the expression (5.5) can be rewritten as

∫

R

(∫

R
(1 + |a− b|)−λJ(a)da

)
J(b)db.

Applying the Cauchy-Schwarz inequality in b we obtain

(∫

R

(∫

R
(1 + |a− b|)−λJ(a)da

)2
db
)1/2(∫

R
J(b)2db

)1/2
. (5.6)

Note that the integral in a is the convolution of J with s 7→ (1 + |s|)−λ. By Young’s

convolution inequality from L1(R)× L2(R) to L2(R), the expression (5.6) is bounded by

a constant multiple of

‖J‖2
L2(R)

≤
∫

R
(1 + a2)−λ/2

∫ ∞

0

∫

R2

I(x, y, a, t)2 dxdy
dt

t
da.

Expanding I, this equals

∫

R
(1 + a2)−λ/2

∫ ∞

0

∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)

ϑt(u− ta)ϑt(v − ta) dxdydudv
dt

t
da. (5.7)
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Observe that this form is associated with the multiplier symbol

M(ξ, η) :=

∫ ∞

0
ϑ̂(tξ)ϑ̂(tη)ρ̂(t(ξ + η))

dt

t
, (5.8)

where we have denoted

ρ(s) := (1 + s2)−λ/2. (5.9)

Note that the function ρ̂ is even and hence M(ξ, η) = M(−η,−ξ). Moreover, M is

constant on any line through the origin and in particular M(ξ,−ξ) = M(1,−1) for any

0 6= ξ ∈ R. Now we write

M(ξ, η) = M(1,−1) +
(
M(ξ, η)−M(1,−1)

)

and split the form (5.7) into the two corresponding parts. The part associated with the

constant multiplier yields M(1,−1) times
∫

R4

F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)δ(0,0)(u, v) dxdydudv

=

∫

R4

F (x, y)2G(x, y)2 dxdy ≤ ‖F‖2
L4(R2)

‖G‖2
L4(R2)

= 1,

where δ(0,0) denotes the Dirac measure concentrated at the origin. Thus, our remaining

task is to estimate the form associated with the symbol M0 := M −M(1,−1).

For each (ξ, η) ∈ R2 \ {(ξ, η) : ξ = η or ξ = −η} we decompose

M0(ξ, η) =
∑

k∈Z

∑

j∈Z
M0(ξ, η)θ̂(2j+k(ξ − η))θ̂(2j(ξ + η)). (5.10)

If we denote

m(k)(ξ, η) := M0(ξ, η)θ̂(2k(ξ − η))θ̂(ξ + η)

and

m(ξ, η) :=
∑

k≥0

m(k)(ξ, η) = M0(ξ, η)
(∑

k≥0

θ̂(2k(ξ − η))
)
θ̂(ξ + η),

and split the summation in (5.10) over the regions k ≥ 0 and k < 0, we obtain

M0(ξ, η) =
∑

k∈Z

∑

j∈Z
m(k)(2j(ξ, η)) =

∑

j∈Z
m(2j(ξ, η)) +

∑

k<0

∑

j∈Z
m(k)(2j(ξ, η)).

Here we used that M0(ξ, η) = M0(2j(ξ, η)) by homogeneity.

First we treat the form associated with the multiplier symbol
∑

j∈Z
m(2j(ξ, η)). (5.11)

Observe that m is compactly supported in the strip 2−2 ≤ |ξ+η| ≤ 1. Moreover, we have

|qm(u, v)| .λ (1 + |u+ v|)−λ(1 + |u− v|)−2. (5.12)

Indeed, this estimate can be seen by bounding the inverse Fourier transform of

(ξ, η) 7→ m(ξ, η) +M(1,−1)φ(ξ, η), (5.13)
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where we have set

φ(ξ, η) :=
(∑

k≥0

θ̂(2k(ξ − η))
)
θ̂(ξ + η).

Therefore, the inverse Fourier transform of (5.13) is nothing but

(u, v) 7→
∫

R

∫ ∞

0
ρ(a)ϑt(u− ta)ϑt(v − ta)

dt

t
da

convolved with the Schwartz function qφ and by the support localization of φ we may

assume that t ranges over a fixed bounded subinterval of (0,∞). It remains to observe

that
∣∣∣
∫

R
ρ(a)ϑt(u− ta)ϑt(v − ta)da

∣∣∣ .ϑ,λ (1 + |u− v|)−2

∫

R
ρ(a)(1 + |u+ v − 2a|)−2λda

.λ (1 + |u− v|)−2(1 + |u+ v|)−λ.

which in turn implies (5.12). Boundedness of the form associated with (5.11) now follows

from Proposition 6 applied with Φ = qm and by letting N →∞.

It remains to consider the form associated with the symbol

∑

k<0

∑

j∈Z
m(k)(2j(ξ, η)). (5.14)

Note that m(k) is supported in the strip 2−2 ≤ |ξ + η| ≤ 1 for each k. To estimate the

form associated with (5.14) it now suffices to show that for each k < 0 we have

|~m(k)(u, v)| .λ 2k(λ−1) (1 + |u+ v|)−2 2−k(1 + 2−k|u− v|)−2, (5.15)

with the implicit constant independent of k. Once we have that, boundedness of the form

associated with the symbol in (5.14) for a fixed k follows from Proposition 6 applied with

Φ = ~m(k) and by letting N → ∞. In the end it remains to sum the geometric series:∑
k<0 2k(λ−1) .λ 1.

The estimate (5.15) will be deduced by integration by parts in the Fourier expansion

of m(k) once we verify the necessary symbol estimates. At this point we switch to the

frequency coordinates ξ− η and ξ+ η, which are better suited for our problem. First, we

claim that for any 0 ≤ n ≤ 2, |α| ∼ 1, and 0 < |β| ≤ 1 we have

∣∣∂β∂nα
(
M0(α+ β, β − α)

)∣∣ .λ |β|λ−2,
∣∣∂2
β∂

n
α

(
M0(α+ β, β − α)

)∣∣ .λ |β|λ−3. (5.16)

For now let us assume that the estimates in (5.16) hold. For 0 ≤ n ≤ 2 define

µ(n)(α, β) := ∂nα
(
M0(α+ β, β − α)

)

and note that µ(n)(α, 0) = 0. Therefore, for any |α| ∼ 1, 0 < |β| ≤ 1, and 0 ≤ n ≤ 2, the

first estimate in (5.16) implies

∣∣∂nα
(
M0(α+ β, β − α)

)∣∣ =
∣∣∣
∫ β

0
∂2µ

(n)(α, γ)dγ
∣∣∣ .λ |β|λ−1. (5.17)
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The estimates (5.16) and (5.17) together imply that for any 0 ≤ l, n ≤ 2 one has

∣∣∂lβ∂nα
(
M0(α+ 2kβ, 2kβ − α)θ̂(2α)θ̂(2β)

)∣∣ .λ 2k(λ−1),

which is by the homogeneity of M0 equivalent to

∣∣∂lβ∂nα
(
m(k)(2−kα+ β, β − 2−kα)

)∣∣ .λ 2k(λ−1). (5.18)

We proceed by verifying (5.15). Let us write

uξ + vη = 2−k(u− v)2k−1(ξ − η) + (u+ v)2−1(ξ + η).

Changing variables (α, β) = (2k−1(ξ − η), 2−1(ξ + η)) gives

~m(k)(u, v) =

∫

R2

m(k)(ξ, η)e2πi(uξ+vη)dξdη

= 2−k+1

∫

R2

m(k)(2−kα+ β, β − 2−kα)e2πi(2−k(u−v)α+(u+v)β)dαdβ.

If |u− v| ≤ 2k and |u+ v| ≤ 1, then we bound

|~m(k)(u, v)| . 2−k‖m(k)‖L∞(R2) .λ 2k(λ−1) 2−k,

which implies (5.15) in this case. Here we used (5.18) to control the L∞ norm and

observed

{
(α, β) : m(k)(2−kα+ β, β − 2−kα) 6= 0

}
⊆ ([−2−1,−2−3] ∪ [2−3, 2−1])2. (5.19)

Now assume that |u− v| ≥ 2k and |u+ v| ≥ 1. Integrating by parts we bound |~m(k)(u, v)|
by a constant multiple of

2−k(2−k|u−v|)−2|u+v|−2
∣∣∣
∫

R2

∂2
β∂

2
α(m(k)(2−kα+β, β−2−kα))e2πi(2−k(u−v)α+(u+v)β)dαdβ

∣∣∣.

Together with (5.18) and (5.19) this shows (5.15) in the present case. If |u− v| ≥ 2k and

|u + v| ≤ 1, or vice versa, we simply combine the arguments from both of the discussed

cases.

It remains to show (5.16) and for that we need

|ρ̂′(ξ)| .λ |ξ|λ−2, |ρ̂′′(ξ)| .λ |ξ|λ−3 (5.20)

for |ξ| ≤ 1, where ρ is our very particular choice of function (5.9). The following formulae

that hold for ξ > 0 can be found using [40] or [1]:

ρ̂(ξ) = 2πλ/2ξ(λ−1)/2K(1−λ)/2(2πξ)/Γ(λ/2),

ρ̂′(ξ) = −4π1+λ/2ξ(λ−1)/2K(λ−3)/2(2πξ)/Γ(λ/2),

ρ̂′′(ξ) = 4π1+λ/2ξ(λ−3)/2
(
2πξK(λ−5)/2(2πξ)−K(λ−3)/2(2πξ)

)
/Γ(λ/2),
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where Kα is the modified Bessel function of the second kind, given for α 6∈ Z and z > 0

by the series

Kα(z) =
π

2 sin(απ)

( ∞∑

n=0

1

n!Γ(n− α+ 1)

(z
2

)2n−α
−
∞∑

n=0

1

n!Γ(n+ α+ 1)

(z
2

)2n+α
)
.

From this expansion we read off the asymptotic behaviors in a neighborhood of 0:

|Kα(z)| ∼α zmin{α,−α}, |ρ̂′(ξ)| ∼λ |ξ|λ−2, |ρ̂′′(ξ)| ∼λ |ξ|λ−3,

which establish (5.20). Alternatively, to obtain these estimates one could decompose ρ̂

into the Littlewood-Paley pieces and argue by scaling. Finally, differentiation of M(α +

β, β − α) using (5.20) and the product rule gives (5.16).

6 Ergodic averages, deriving Theorem 1 from Theorem 2

Take m ∈ N and arbitrary positive integers n0 < n1 < · · · < nm. For F,G ∈ L4(R2)

denote At(F,G) := A
1[0,1)

t (F,G), so that

At(F,G)(x, y) =
1

t

∫

[0,t)
F (x+ s, y)G(x, y + s) ds

=
1

t

∫

[x+y,x+y+t)
F (u− y, y)G(x, u− x) du. (6.1)

Applying Theorem 2 to the scales tj = nj and arbitrary functions F,G ∈ L4(R2) normal-

ized as in (2.1) gives

m∑

j=1

‖Anj (F,G)−Anj−1(F,G)‖2
L2(R2)

. 1. (6.2)

Now we transfer the obtained estimate from R2 to Z2. Recall the definition (1.6) of

the averages Ãn and observe that they can be rewritten as

Ãn(F̃ , G̃)(k, l) =
1

n

∑

i∈Z
k+l≤i≤k+l+n−1

F̃ (i− l, l) G̃(k, i− k). (6.3)

Pick arbitrary F̃ , G̃ ∈ `4(Z2) normalized by ‖F̃‖`4(Z2) = ‖G̃‖`4(Z2) = 1. Define the

functions F,G : R2 → R as

F (x, y) :=
∑

i,l∈Z
F̃ (i− l, l)1[i,i+1)(x+ y)1[l,l+1)(y),

G(x, y) :=
∑

i,k∈Z
G̃(k, i− k)1[k,k+1)(x)1[i,i+1)(x+ y).

Note that F and G are constant on certain skew parallelograms of area 1 and ‖F‖L4(R2) =

‖G‖L4(R2) = 1 as well. Splitting the integral (6.1) into the pieces over i ≤ u < i + 1 we

get

An(F,G)(k + α, l + β) =
1

n

∑

i∈Z
ai F̃ (i− l, l) G̃(k, i− k), (6.4)
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for any k, l ∈ Z, α, β ∈ [0, 1), where we have denoted

ai =
∣∣[i, i+ 1) ∩ [k + l + α+ β, k + l + α+ β + n)

∣∣.

Observe that
ai = 1 when k + l + 2 ≤ i ≤ k + l + n− 1,

ai = 0 when i ≤ k + l − 1 or i ≥ k + l + n+ 2,

ai ∈ [0, 1] otherwise.

Comparing (6.4) with (6.3) it immediately follows that

∣∣An(F,G)(k + α, l + β)− Ãn(F̃ , G̃)(k, l)
∣∣ ≤ 1

n

∑

i∈{0,1,n,n+1}

∣∣F̃ (k + i, l) G̃(k, l + i)
∣∣,

so for any n ∈ N we get

∥∥An(F,G)(k + α, l + β)− Ãn(F̃ , G̃)(k, l)
∥∥
`2
(k,l)

(Z2)
≤ 4

n
.

Observe that this estimate is uniform in α, β ∈ [0, 1). Consequently,

∣∣∣‖Anj (F,G)(k + α, l + β)−Anj−1(F,G)(k + α, l + β)‖`2
(k,l)

(Z2)

−‖Ãnj (F̃ , G̃)− Ãnj−1(F̃ , G̃)‖`2(Z2)

∣∣∣ ≤ 8

nj−1
,

so, taking the L2([0, 1)2) norm in (α, β),

∣∣∣‖Anj (F,G)−Anj−1(F,G)‖L2(R2) − ‖Ãnj (F̃ , G̃)− Ãnj−1(F̃ , G̃)‖`2(Z2)

∣∣∣ ≤ 8

nj−1
.

Combining this with (6.2) and using
∑m

j=1 n
−2
j−1 ≤

∑∞
n=1 n

−2 . 1 we conclude

m∑

j=1

∥∥Ãnj (F̃ , G̃)− Ãnj−1(F̃ , G̃)
∥∥2

`2(Z2)
. 1.

If we multiply the right hand side by ‖F̃‖2`4(Z2)‖G̃‖2`4(Z2), then by homogeneity the in-

equality remains to hold for arbitrary F̃ , G̃ and this establishes Corollary 3.

Finally, we transfer to the measure-preserving system (X,F , µ, S, T ). Let f, g ∈ L4(X)

be normalized by ‖f‖L4(X) = ‖g‖L4(X) = 1. Take a point x ∈ X and fix a positive integer

N ≥ nm. The function F̃x,N : Z2 → R defined by

F̃x,N (k, l) :=

{
f(SkT lx) if 0 ≤ k, l ≤ 2N − 1,

0 otherwise

and analogously defined G̃x,N keep track of the values of f and g along the forward

trajectory of x. Observe that for integers 0 ≤ k, l < N and 0 < n ≤ N we have

Mn(f, g)(SkT lx) =
1

n

n−1∑

i=0

f(Sk+iT lx)g(SkT l+ix) = Ãn
(
F̃x,N , G̃x,N

)
(k, l),
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where we used ST = TS and the definition (1.6). The fact that S and T are measure-

preserving enables us to write

‖Mnj (f, g)−Mnj−1(f, g)‖2
L2(X)

=

∫

X

∣∣Mnj (f, g)(x)−Mnj−1(f, g)(x)
∣∣2dµ(x)

=
1

N2

∫

X

N−1∑

k,l=0

∣∣Mnj (f, g)(SkT lx)−Mnj−1(f, g)(SkT lx)
∣∣2dµ(x)

≤ 1

N2

∫

X

∥∥Ãnj (F̃x,N , G̃x,N )− Ãnj−1(F̃x,N , G̃x,N )
∥∥2

`2(Z2)
dµ(x)

for each 1 ≤ j ≤ m. Similar computation as above gives

1 = ‖f‖4
L4(X)

=
1

4N2

∫

X

2N−1∑

k,l=0

|f(SkT lx)|4dµ(x) =
1

4N2

∫

X
‖F̃x,N‖4`4(Z2)dµ(x).

Taking F̃ = F̃x,N , G̃ = G̃x,N in Corollary 3 gives

m∑

j=1

∥∥Ãnj (F̃x,N , G̃x,N )− Ãnj−1(F̃x,N , G̃x,N )
∥∥2

`2(Z2)
. ‖F̃x,N‖4`4(Z2) + ‖G̃x,N‖4`4(Z2).

Integrating this inequality in x over X and dividing by N2 yields

m∑

j=1

‖Mnj (f, g)−Mnj−1(f, g)‖2
L2(X)

. 1

for any n0 < n1 < · · · < nm. This completes the proof of Theorem 1.

7 Appendix

The following inequality (7.1) is taken from [21]; we reproduce a proof for the convenience

of the reader. An alternative inequality serving the same purpose appears in [31].

Lemma 12. If a : [2i, 2i+1]→ R is a continuously differentiable function, then

sup
2i≤t0<···<tm≤2i+1

m∑

j=1

|a(tj)− a(tj−1)|2 . ‖a(t)‖L2
t ((2

i,2i+1),dt/t)‖ta′(t)‖L2
t ((2

i,2i+1),dt/t),

(7.1)

sup
2i≤t0<···<tm≤2i+1

m∑

j=1

|a(tj)− a(tj−1)|2 ≤ ‖ta′(t)‖2
L2
t ((2

i,2i+1),dt/t)
. (7.2)

Proof. To obtain (7.1) we first show that for any 2i ≤ t0 < · · · < tm ≤ 2i+1 and each

index 1 ≤ j ≤ m one has

|a(tj)− a(tj−1)|2 . ‖a(t)‖L2
t ((tj−1,tj),dt/t)

‖ta′(t)‖L2
t ((tj−1,tj),dt/t)

. (7.3)
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It suffices to prove this under the assumptions that a is non-negative and absolutely

continuous. Indeed, in general we then split a = a+ − a− where a+ = max(a, 0) and

a− = −min(a, 0). Note that a+, a− and satisfy the required properties and that

‖a+(t)‖L2
t ((tj−1,tj),dt/t)

≤ ‖a(t)‖L2
t ((tj−1,tj),dt/t)

, ‖ta′+(t)‖L2
t ((tj−1,tj),dt/t)

≤ ‖ta′(t)‖L2
t ((tj−1,tj),dt/t)

and analogously for a−, a′−. Using the triangle inequality and applying (7.3) to a+ and

a− we obtain the inequality for any real-valued absolutely continuous function a.

Let us assume that a is as claimed above. Then

|a(tj)− a(tj−1)|2 ≤
∣∣a(tj)

2 − a(tj−1)2
∣∣ ≤

∣∣∣
∫ tj

tj−1

t(a(t)2)′
dt

t

∣∣∣ =
∣∣∣
∫ tj

tj−1

2a(t)ta′(t)
dt

t

∣∣∣.

Applying the Cauchy-Schwarz inequality in t we bound this up to a constant by

(∫ tj

tj−1

a(t)2dt

t

)1/2(∫ tj

tj−1

(ta′(t))2dt

t

)1/2
,

which shows (7.3). Summing over j and applying the Cauchy-Schwarz inequality we

obtain

m∑

j=1

|a(tj)− a(tj−1)|2 .
( m∑

j=1

‖a(t)‖2
L2
t ((tj−1,tj),dt/t)

)1/2( m∑

j=1

‖ta′(t)‖2
L2
t ((tj−1,tj),dt/t)

)1/2

≤ ‖a(t)‖L2
t ((2

i,2i+1),dt/t) ‖ta′(t)‖L2
t ((2

i,2i+1),dt/t)

for any 2i ≤ t0 < · · · < tm ≤ 2i+1, which establishes (7.1).

To see (7.2) we estimate

|a(tj)− a(tj−1)|2 =
∣∣∣
∫ tj

tj−1

ta′(t)
dt

t

∣∣∣
2
≤ (tj − tj−1)

∫ tj

tj−1

(ta′(t))2dt

t2
≤ 2i

∫ tj

tj−1

(ta′(t))2dt

t2
.

The first inequality follows from the Cauchy-Schwarz inequality in t, while for the second

inequality we used the crude bound tj − tj−1 ≤ 2i. Thus,

m∑

j=1

|a(tj)− a(tj−1)|2 ≤ 2i
∫ 2i+1

2i
(ta′(t))2dt

t2
≤
∫ 2i+1

2i
(ta′(t))2dt

t
,

which gives (7.2).

Acknowledgments

P. D. and C. T. are supported by the Hausdorff Center for Mathematics. V. K. and K.
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On side lengths of corners in positive density subsets of the

Euclidean space

Polona Durcik, Vjekoslav Kovač, and Luka Rimanić

Abstract

We generalize a result by Cook, Magyar, and Pramanik [3] on three-term arith-

metic progressions in subsets of Rd to corners in subsets of Rd ×Rd. More precisely,

if 1 < p < ∞, p 6= 2, and d is large enough, we show that an arbitrary measurable

set A ⊆ Rd ×Rd of positive upper Banach density contains corners (x, y), (x+ s, y),

(x, y+ s) such that the `p-norm of the side s attains all sufficiently large real values.

Even though we closely follow the basic steps from [3], the proof diverges at the part

relying on harmonic analysis. We need to apply a higher-dimensional variant of a

multilinear estimate from [5], which we establish using the techniques from [5] and

[6].

1 Introduction

The upper Banach density of a set A ⊆ Rd is defined as

δd(A) := lim sup
N→∞

sup
x∈Rd

∣∣A ∩ (x+ [0, N ]d)
∣∣

|x+ [0, N ]d| ,

where | · | denotes the d-dimensional Lebesgue measure, so that |x + [0, N ]d| = Nd. If

d ≥ 2 and δd(A) > 0, then there exists a sufficiently large λ0(A) > 0 such that for any

real number λ ≥ λ0(A) the set A contains points x and x + s with ‖s‖`2 = λ. This fact

was shown independently by Bourgain [2], Falconer and Marstrand [7], and Furstenberg,

Katznelson, and Weiss [9]. Here ‖ · ‖`2 denotes the Euclidean norm. More generally, we

denote the `p-norm on Rd by

‖s‖`p :=





( d∑
i=1
|si|p

)1/p
for 1 ≤ p <∞,

max
1≤i≤d

|si| for p =∞,

if s = (s1, . . . , sd). It is another observation by Bourgain [2] that the same statement fails

if we replace the trivial pattern x, x+ s by a 3-term arithmetic progression

x, x+ s, x+ 2s.

2010 Mathematics Subject Classification. Primary 05D10; Secondary 11B30, 42B20.
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Indeed, the set A obtained as a union of the annuli n − 1/10 ≤ ‖x‖2`2 ≤ n + 1/10 as n

runs over the positive integers clearly has density δd(A) > 0, but if x, s ∈ Rd are such

that x, x+ s, x+ 2s ∈ A, then the parallelogram law

2‖x+ s‖2`2 + 2‖s‖2`2 = ‖x+ 2s‖2`2 + ‖x‖2`2

implies that n − 2/5 ≤ 2‖s‖2`2 ≤ n + 2/5 for some integer n. Therefore, the `2-norms of

the common differences s of the 3-term progressions in A cannot attain values in the set

∞⋃

n=1

(√5n− 3

10
,

√
5n− 2

10

)
,

which contains arbitrarily large numbers.

An interesting phenomenon occurs in large dimensions if one replaces the `2-norm by

other `p-norms. A recent result by Cook, Magyar, and Pramanik [3] sheds new light on the

Euclidean density theorems by establishing that a set of positive upper Banach density

still contains 3-term arithmetic progressions such that the `p-norms of their common

differences attain all sufficiently large values when 1 < p <∞ and p 6= 2.

Theorem 1 (from [3]). For any p ∈ (1, 2)∪ (2,∞) there exists dp ≥ 2 such that for every

integer d ≥ dp the following holds. For any measurable set A ⊆ Rd satisfying δd(A) > 0

one can find λ0(A) > 0 having the property that for any real number λ ≥ λ0(A), there

exist x, s ∈ Rd such that x, x+ s, x+ 2s ∈ A and ‖s‖`p = λ.

The authors of [3] place this result in the context of the Euclidean Ramsey theory

and demonstrate that it is sharp with regard to the exponent p. Indeed, measuring the

common differences in the `1 or the `∞-norm allows for quite straightforward counterex-

amples. They only leave the optimal value of the dimension threshold dp as an open

problem.

The aim of this paper is a generalization of Theorem 1 to so-called corners, which are

patterns in Rd × Rd of the form

(x, y), (x+ s, y), (x, y + s) (1.1)

for some x, y, s ∈ Rd, s 6= 0. The fact that any subset of Z × Z of positive upper

density contains a corner was proved by Ajtai and Szemerédi [1], while the first “reason-

able” quantitative upper bounds (of the form n2/(log log n)c with c > 0) for subsets of

{1, . . . , n} × {1, . . . , n} without corners are due to Shkredov [17], [18].

We are interested in finding corners exhibiting all sufficiently large side lengths in

positive upper Banach density subsets of Rd ×Rd. Here is the main result of this paper.

Theorem 2. For any p ∈ (1, 2) ∪ (2,∞) there exists dp ≥ 2 such that for every integer

d ≥ dp the following holds. For any measurable set A ⊆ Rd × Rd satisfying δ2d(A) > 0

one can find λ0(A) > 0 with the property that for any real number λ ≥ λ0(A), there exist

x, y, s ∈ Rd such that (x, y), (x+ s, y), (x, y + s) ∈ A and ‖s‖`p = λ.
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It is easy to see that Theorem 2 implies Theorem 1. One simply observes that if

A ⊆ Rd has δd(A) > 0, then the set Ã defined by

Ã := {(x, y) ∈ Rd × Rd : y − x ∈ A}

satisfies δ2d(Ã) > 0. For this purpose it is convenient to change the coordinates on Rd×Rd
to (x′, y′) = (x + y, y − x)/

√
2 and rotate the cubes [0, N ]2d in the definition of δ2d(Ã),

possibly at the cost of losing a multiplicative constant. Moreover, any corner in Ã with

side s via the projection (x, y) 7→ y− x gives rise to a 3-term arithmetic progression in A

with s as its common difference. The same argument also enables the use of the previously

mentioned counterexamples, which rule out the possibility of Theorem 2 holding for p = 1,

2, or ∞.

We need to emphasize that our proof of Theorem 2 closely follows the outline of [3].

The most significant novelty appears in the harmonic analysis part of the proof, where

we need to prove an estimate for certain “entangled” singular multilinear forms, stated

as Theorem 3 below. For previous work on patterns in sufficiently dense subsets of the

Euclidean space we refer for instance to [2], [12], and [15]. Bourgain [2] has shown that

any set of positive upper Banach density in Rk contains isometric copies of all sufficiently

large dilates of a fixed non-degenerate k-point (i.e. (k − 1)-dimensional) simplex; non-

degeneracy being essential there. Moreover, Lyall and Magyar [15] extended his result to

Cartesian products of two non-degenerate simplices. In particular, they are able to detect

patterns like (x, y), (x + s, y), (x, y + t) with ‖s‖`2 = ‖t‖`2 , which have more degrees of

freedom than the corners in definition (1.1), and as such are easier to handle.

We now turn to the analytical ingredients that will be needed in the proof of Theo-

rem 2. For 1 ≤ p <∞ let ‖ · ‖Lp denote the Lebesgue Lp-norm defined by

‖f‖Lp :=
(ˆ

Rd
|f(x)|pdx

)1/p

and let Lp(Rd) be the corresponding Banach space of a.e.-classes of measurable functions

f such that ‖f‖Lp <∞. Denote by ∂κf := ∂κ11 · · · ∂κdd f the partial derivative of a function

f : Rd → C with respect to the multi-index κ = (κ1, . . . , κd), the order of which will be

written |κ| := κ1+ · · ·+κd. Finally, we use the notation f̂ and qf for the Fourier transform

and its inverse respectively, both initially defined for Schwartz functions f by (2.1) and

(2.2) below, and then extended to tempered distributions.

Theorem 3. Suppose that m ∈ C∞(R2d) satisfies the standard symbol estimates, i.e. for

any multi-index κ there exists a constant Cκ ∈ [0,∞) such that
∣∣(∂κm)(ξ, η)

∣∣ ≤ Cκ‖(ξ, η)‖−|κ|
`2

(1.2)

for all (ξ, η) ∈ Rd×Rd, (ξ, η) 6= (0, 0). Suppose also that the tempered distribution K = qm

is equal to a bounded compactly supported function (denoted by the same letter). Then

for any real-valued F,G ∈ L4(R2d) we have the estimate

∣∣∣
ˆ

(Rd)4
F (x+ u, y)G(x, y + u)F (x+ v, y)G(x, y + v)K(u, v)dudvdxdy

∣∣∣ ≤ C‖F‖2L4‖G‖2L4 ,

with a constant C ∈ [0,∞) depending only on the dimension d and the constants Cκ.
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We will only need a particular case of the theorem when F = G, but the given

formulation is more natural since the proof will perform different changes of variables in

F and G.

The singular integral form in Theorem 3 will appear by expanding out a certain

square function quantity; see the proof of Proposition 8 below. It is more singular than

the form used in [3] for the same purpose, so we cannot invoke any standard references

on modulation-invariant operators. In fact, boundedness of a related singular integral

operator, defined as

T (F,G)(x, y) := p.v.

ˆ

R
F (x+ u, y)G(x, y + u)

du

u
, (x, y) ∈ R2, (1.3)

and called the triangular Hilbert transform, is currently an open problem; see [14] for the

partial results.

Only recently the techniques required for bounding the form in Theorem 3 were devel-

oped as byproducts of the papers [5] and [6], both of which are primarily concerned with

unrelated problems. Indeed, Theorem 3 can be viewed as a higher-dimensional variant of

an auxiliary estimate from [5], which established a norm-variation bound

sup
0<t0<t1<···<tm

m∑

j=1

‖Atj (F,G)−Atj−1(F,G)‖2
L2 ≤ C‖F‖2L4‖G‖2L4 (1.4)

for two-dimensional bilinear averages

At(F,G)(x, y) :=
1

t

ˆ t

0
F (x+ u, y)G(x, y + u)du, (x, y) ∈ R2.

Inequality (1.4) in turn proved a quantitative result on the convergence of ergodic av-

erages with respect to two commuting transformations. Moreover, the paper [6] studied

multilinear analogs of (1.3), with a more modest goal of proving boundedness with con-

stants growing like (log(R/r))1−ε as R/r → ∞, where the integration variable u is now

restricted to intervals [−R,−r] and [r,R] for 0 < r < R. Interestingly, early instances of

the method used for solving these problems were devised for bounding significantly less

singular variants of the operator (1.3), such as

T (F,G)(x, y) := p.v.

ˆ

R2

F (x+ u, y)G(x, y + v)K(u, v)dudv, (x, y) ∈ R2;

see [4] and [13]. Roughly speaking, the mentioned technique can be described as follows.

Instead of decomposing the given operator and bounding its pieces, one rather performs a

structural induction and gradually symmetrizes it by repeated applications of the Cauchy-

Schwarz inequality and an integration by parts identity. Eventually, the operator in

question becomes so symmetric that a monotonicity argument applies, bounding it simply

by single-scale objects.

Finally, let us say a few words about the organization of this paper. In Section 2 we

give a detailed self-contained proof of Theorem 3. Unlike in [5], where the proof of a special

case was given, we do not need any finer control of the constant C here, and are able to
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make use of further ideas from [6]. Section 3 contains the predominantly combinatorial

part of the proof: we derive Theorem 2 from Theorem 3 by mimicking the steps from

[3]. Consequently, we frequently refer to [3] and only comment on the ingredients that

have to be altered. Finally, in Section 4 we discuss the current obstructions to extending

Theorem 1 to longer progressions and Theorem 2 to generalized corners.

2 The analytical part: Proof of Theorem 3

If A and B are two nonnegative quantities, then A .P B will denote the inequality

A ≤ CB, with some finite constant C depending on a set of parameters P . We will write

A ∼P B if both A .P B and B .P A hold. The standard inner product on Rd will

be written (x, y) 7→ x · y, while the Euclidean norm ‖ · ‖`2 will simply be denoted by

‖ · ‖ in this section. Moreover, let S(Rd) be the Schwartz space on Rd and let i denote

the imaginary unit. We normalize the Fourier transform of a d-dimensional Schwartz

function f as in

f̂(ξ) :=

ˆ

Rd
f(x)e−2πix·ξdx, (2.1)

so that the inverse Fourier transform is given by the formula

qf(x) =

ˆ

Rd
f(ξ)e2πix·ξdξ. (2.2)

Throughout this section we will use the following notation for the standard Gaussian

function on Rd and its partial derivatives:

g(x) := e−π‖x‖
2
,

hi(x) := ∂ig(x) for i = 1, . . . , d.

Moreover, for a function f : Rd → C we will denote by ft its L1-normalized dilate by

t > 0, defined as

ft(x) := t−df(t−1x). (2.3)

An important property of the Fourier transform is f̂t(ξ) = f̂(tξ).

We begin by stating an “integration by parts” lemma, which will be used several

times in the proof of Theorem 3. Its one-dimensional variant can be found in [4] or [5],

but we prefer to give a self-contained proof. For real-valued functions ψ,ϕ ∈ S(Rd) and

F ∈ S(R2d) we define the singular integral form

Θψ,ϕ(F ) :=

ˆ ∞

0

ˆ

(Rd)6
F (x, x′)F (x, y′)F (y, x′)F (y, y′)

ψt(x− q)ψt(y − q)ϕt(x′ − p)ϕt(y′ − p)dxdydx′dy′dpdq
dt

t
. (2.4)

Note that Θψ,ϕ(F ) can be rewritten as
ˆ ∞

0

ˆ

(Rd)4

(ˆ

Rd
F (x, x′)F (x, y′)ψt(x− q)dx

)2
ϕt(x

′ − p)ϕt(y′ − p)dx′dy′dpdq
dt

t

=

ˆ ∞

0

ˆ

(Rd)4

(ˆ

Rd
F (x, x′)F (y, x′)ϕt(x′ − p)dx′

)2
ψt(x− q)ψt(y − q)dxdydpdq

dt

t
,
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so that Θψ,ϕ(F ) ≥ 0 when ϕ ≥ 0 or ψ ≥ 0.

Lemma 4. For any real-valued function F ∈ S(R2d) and any α, β > 0 we have the

estimate
d∑

i=1

Θhiα,gβ
(F ) . ‖F‖4

L4 ,

where the implicit constant is an absolute one, i.e. independent of α, β, d, and F .

Proof of Lemma 4. We claim that

d∑

i=1

(
Θhiα,gβ

(F ) + Θgα,hiβ
(F )
)

= π‖F‖4
L4 . (2.5)

By the remark preceding the lemma, all terms on the left-hand side of (2.5) are nonneg-

ative. Therefore, (2.5) implies the inequalities

d∑

i=1

Θhiα,gβ
(F ) . ‖F‖4

L4 ,
d∑

i=1

Θgα,hiβ
(F ) . ‖F‖4

L4 .

This establishes the claim of Lemma 4, up to the verification of (2.5).

To show the identity (2.5) we observe that by the fundamental theorem of calculus

d∑

i=1

(ˆ ∞

0
(2παtξi)

2e−2π‖αtξ‖
2
e−2π‖βtη‖

2 dt

t
+

ˆ ∞

0
e−2π‖αtξ‖

2
(2πβtηi)

2e−2π‖βtη‖
2 dt

t

)

= π

ˆ ∞

0

(
− t∂t

(
e−2π‖αtξ‖

2
e−2π‖βtη‖

2))dt
t

= π

for any ξ = (ξ1, . . . , ξd) ∈ Rd and η = (η1, . . . , ηd) ∈ Rd such that (ξ, η) 6= (0, 0). Using

ĝ(ξ) = e−π‖ξ‖
2

and ĥi(ξ) = 2πiξiĝ(ξ) this can be rewritten as

d∑

i=1

(ˆ ∞

0
|ĥiαt(ξ)|2|ĝβt(η)|2dt

t
+

ˆ ∞

0
|ĝαt(ξ)|2|ĥiβt(η)|2dt

t

)
= π. (2.6)

Note that for real-valued Schwartz functions ϕ and ψ one has
ˆ

(Rd)2
|ψ̂t(ξ)|2|ϕ̂t(η)|2e2πi((x−y)·ξ+(x′−y′)·η)dξdη

=

ˆ

(Rd)2
ψt(x− q)ψt(y − q)ϕt(x′ − p)ϕt(y′ − p)dpdq. (2.7)

Indeed, for a function ρ we denote ρ̃(s) := ρ(−s), so that the Fourier transform of ρ̃ is

the complex conjugate of ρ̂. Equality (2.7) follows by noticing that its right-hand side

equals

(ψt ∗ ψ̃t)(x− y)(ϕt ∗ ϕ̃t)(x′ − y′),
which in turn transforms into the left-hand side using the Fourier inversion formula and

ψ̂t ∗ ψ̃t = |ψ̂t|2, ϕ̂t ∗ ϕ̃t = |ϕ̂t|2.
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Now we multiply (2.6) by

F (x, x′)F (x, y′)F (y, x′)F (y, y′)e2πi((x−y)·ξ+(x′−y′)·η)

and integrate in x, y, x′, y′ and ξ, η. Then we apply the inversion formula (2.7) twice, once

with (ψ,ϕ) = (hiα, gβ) and once with (ψ,ϕ) = (gα, h
i
β), and recall the definition (2.4).

This gives

d∑

i=1

(
Θhiα,gβ

(F ) + Θgα,hiβ
(F )
)

= π

ˆ

(Rd)4
F (x, x′)F (x, y′)F (y, x′)F (y, y′)δ(0,0)(x− y, x′ − y′)dxdydx′dy′ = π‖F‖4

L4 .

Here δ(0,0) denotes the Dirac measure concentrated at the origin and it is a well-known

fact that its Fourier transform is the function constantly equal to 1 on the whole space

Rd × Rd.

Observe that for ν > 0 and x ∈ Rd we have

(1 + ‖x‖)−ν ∼ν
ˆ ∞

1
e−πβ

−2‖x‖2 dβ

βν+1
. (2.8)

This formula is easily verified by continuity and considering the limiting behavior as

‖x‖ → ∞, when the ratio of the two sides converges to

lim
‖x‖→∞

ˆ ∞

1
e−π(‖x‖/β)

2
(‖x‖/β)ν

dβ

β
=

ˆ ∞

0
e−πα

2
αν−1dα =

1

2
π−ν/2Γ

(ν
2

)
∈ (0,∞).

It will be used in the proof of Theorem 3 to gradually reduce to forms in which all

bump functions are Gaussians or their derivatives. Gaussians possess several convenient

algebraic properties, such as positivity, elementary tensor structure, and the fact that

they relate differentiation to multiplication.

Proof of Theorem 3. By a density argument we can assume that F and G are real-valued

Schwartz functions. Substituting

x′ = x+ y + u, y′ = x+ y + v

and introducing the functions

F̃ (a, b) := F (b− a, a), G̃(a, b) := G(a, b− a)

the form in question can be written as

ˆ

(Rd)4
F̃ (y, x′)G̃(x, x′)F̃ (y, y′)G̃(x, y′)qm(x′ − x− y, y′ − x− y)dxdydx′dy′. (2.9)

We need to bound its absolute value by a constant times

‖F‖2
L4‖G‖2L4 = ‖F̃‖2

L4‖G̃‖2L4 .
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Let us henceforth omit writing tildes on the functions in (2.9). We will say that the form

(2.9) is associated with the symbol m.

The first step is to decompose the kernel qm into elementary tensors in the variables

x, y, x′, y′, which will allow for an application of the Cauchy-Schwarz inequality.

Let φ ∈ S(R2d) be a nonnegative radial function supported in the annulus {τ ∈ R2d :

1 ≤ ‖τ‖ ≤ 2} and not identically equal to 0. The constants in any estimates that follow

are allowed to depend on φ without explicit mention. Then

D :=

ˆ ∞

0
φ(tξ, tη)‖(tξ, tη)‖2e−π‖(tξ,tη)‖2 dt

t

is the same constant for each (ξ, η) 6= (0, 0). Therefore, for each such pair (ξ, η) we can

write

m(ξ, η) = D−1
ˆ ∞

0
m(ξ, η)φ(tξ, tη)‖(tξ, tη)‖2e−π‖(tξ,tη)‖2 dt

t
.

Using the identity

‖(ξ, η)‖2 = ‖ξ + η‖2 − 2ξ · η (2.10)

we can split further

m = m[1] +m[2],

where

m[1](ξ, η) := D−1
ˆ ∞

0
m(t)(tξ, tη)‖tξ + tη‖2e−π‖(tξ,tη)‖2 dt

t
,

m[2](ξ, η) := −2D−1
ˆ ∞

0
m(t)(tξ, tη)(tξ · tη)e−π‖(tξ,tη)‖

2 dt

t
,

and we have set

m(t)(ξ, η) := m(t−1ξ, t−1η)φ(ξ, η).

Now we separately study the forms associated with m[1] and m[2].

First we consider m[1]. This is the easier term, as it vanishes on the plane ξ + η = 0,

which brings useful cancellation to our form. The remaining part of the proof related to

m[1] can be compared with Sections 3 and 4 in [5].

Define the functions ϕ(t) and ϑ(i,t) via their Fourier transforms as

ϕ̂(t)(ξ, η) := m(t)(ξ, η)e2πξ·η,

ϑ̂(i,t)(ξ, η) := ϕ̂(t)(ξ, η)
(
(ξi + ηi)e

−2−1π‖ξ+η‖2)2.

Observe that by ‖ξ + η‖2 =
∑d

i=1(ξi + ηi)
2 and (2.10) used in the exponent we have

m[1](ξ, η) = D−1
d∑

i=1

ˆ ∞

0
ϑ̂(i,t)(tξ, tη)

dt

t
. (2.11)
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By the Fourier inversion formula we can write

ϑ
(i,t)
t (x′ − x− y, y′ − x− y)

=

ˆ

(Rd)2
ϕ̂(t)(tξ, tη)

(
(tξi + tηi)e

−2−1π‖tξ+tη‖2)2e2πi((x′−x−y)·ξ+(y′−x−y)·η)dξdη

= − 1

2π2

ˆ

(Rd)2
ϕ̂
(t)
t (ξ, η)e2πi(x

′·ξ+y′·η)(ĥi
2−1/2t

(−ξ − η)
)2
e2πi(x·(−ξ−η)+y·(−ξ−η))dξdη.

(2.12)

To pass from the second to the third line we have used ĥi(ξ) = 2πiξie
−π‖ξ‖2 . Using the

definition of the Fourier transform, (2.12) can be, up to a constant, viewed as the integral

of the Fourier transform of the 4d-dimensional function

H(a, b, c, d) := ϕ
(t)
t (x′ + a, y′ + b)hi

2−1/2t
(x+ c)hi

2−1/2t
(y + d)

over a 2d-dimensional subspace of R4d parametrized by

{(ξ, η,−ξ − η,−ξ − η) : ξ, η ∈ Rd}. (2.13)

The integral of the Fourier transform of H over the above mentioned subspace equals the

integral of the function H itself over the orthogonal complement of this subspace. This

fact can be found for instance in [16], and it is easily verified by performing an orthogonal

change of variables, which rotates the two subspaces onto 2d-dimensional coordinate

planes in R2d × R2d. The orthogonal complement of (2.13) can be parametrized by

{(−p− q,−p− q,−p,−q) : p, q ∈ Rd}.

Therefore, (2.12) is a constant multiple of
ˆ

(Rd)2
ϕ
(t)
t (x′ − p− q, y′ − p− q)hi

2−1/2t
(x− p)hi

2−1/2t
(y − q)dpdq.

Combining this with the decomposition of m[1] given in (2.11), we see that the form

associated with m[1] can be, up to a constant, recognized as

d∑

i=1

ˆ ∞

0

ˆ

(Rd)6
F (y, x′)G(x, x′)F (y, y′)G(x, y′)hi

2−1/2t
(x− p)hi

2−1/2t
(y − q)

ϕ
(t)
t (x′ − p− q, y′ − p− q)dxdydx′dy′dpdqdt

t
. (2.14)

Note that vanishing of the multiplier on ξ + η = 0 is crucial for the cancellation in x and

y on the spatial side.

Now we are ready to proceed with an application of the Cauchy-Schwarz inequality.

We separate the functions in (2.14) with respect to the variables x, y and rewrite (2.14)

as

d∑

i=1

ˆ ∞

0

ˆ

(Rd)4

(ˆ

Rd
F (y, x′)F (y, y′)hi

2−1/2t
(y − q)dy

)(ˆ

Rd
G(x, x′)G(x, y′)hi

2−1/2t
(x− p)dx

)

ϕ
(t)
t (x′ − p− q, y′ − p− q)dx′dy′dpdqdt

t
.
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Then we apply the Cauchy-Schwarz inequality in x′, y′, p, q, t and in i, after which it

remains to bound

d∑

i=1

ˆ ∞

0

ˆ

(Rd)4

(ˆ

Rd
F (y, x′)F (y, y′)hi

2−1/2t
(y − q)dy

)2∣∣ϕ(t)
t (x′ − p, y′ − p)

∣∣dx′dy′dpdqdt
t

(2.15)

and an analogous term involving the function G, which we omit. Note that we changed

the variable p to p− q while simplifying (2.15). The next step is to reduce to Gaussians

using the formula (2.8). We have

|ϕ(t)(u, v)| .d,(Cκ) (1 + ‖(u, v)‖)−2d−1

∼d
ˆ ∞

1
e−πβ

−2‖(u,v)‖2 dβ

β2d+2
=

ˆ ∞

1
gβ(u)gβ(v)

dβ

β2
. (2.16)

The first estimate above can be verified integrating by parts in the Fourier expansion

of ϕ(t). It holds uniformly in t > 0, with the implicit constant depending only on d

and the constants Cκ appearing in (1.2). The second estimate above is simply (2.8) for

x = (u, v) ∈ R2d and ν = 2d + 1. Substituting (2.16) into (2.15) and expanding out the

square dominates (2.15) by a constant multiple of

ˆ ∞

1

d∑

i=1

Θhiα,gβ
(F )

dβ

β2
,

where α = 2−1/2 and we recall the definition (2.4). By Lemma 4, the last display is

bounded by a constant multiple of

ˆ ∞

1
‖F‖4

L4

dβ

β2
= ‖F‖4

L4 ,

which concludes the proof of boundedness of the form associated with m[1].

It remains to consider the form associated with the multiplier symbol m[2], which does

not vanish on ξ+ η = 0. This part of the proof can be compared with Section 5 in [5]. In

the one-dimensional case [5], the multiplier was symmetrized to become constant on the

axis ξ + η = 0. Then that constant was subtracted from the multiplier and a lacunary

decomposition with respect to the critical axis was performed. In the present higher-

dimensional setting we also reduce the problem to parts vanishing on the problematic

plane ξ + η = 0. However, working with Gaussians allows us to do that by using several

related algebraic identities.

Applying the Fourier inversion formula to m(t) and using ‖(ξ, η)‖2 = ‖ξ‖2 + ‖η‖2 in

the exponent we can write

m[2](ξ, η) = −2D−1
ˆ

(Rd)2

ˆ ∞

0

}m(t)(u, v)(tξ · tη)e−π‖tξ‖
2
e−2πiu·tξe−π‖tη‖

2
e−2πiv·tη

dt

t
dudv.

Using ξ · η =
∑d

i=1 ξiηi and taking the inverse Fourier transform of

ξie
−π‖tξ‖2−2πiu·tξ and ηie

−π‖tη‖2−2πiv·tη,

108



we see that the form associated with m[2] can be, up to a constant, recognized as

d∑

i=1

ˆ

(Rd)2

ˆ ∞

0

}m(t)(u, v)

ˆ

(Rd)4
F (y, x′)G(x, x′)F (y, y′)G(x, y′)

hit(x
′ − x− y − tu)hit(y

′ − x− y − tv)dxdydx′dy′
dt

t
dudv. (2.17)

Now we would like to reduce the parameters u and v to only one parameter, which

gives more symmetry. For this we first write (2.17) as

d∑

i=1

ˆ

(Rd)2

ˆ ∞

0

}m(t)(u, v)

ˆ

(Rd)2

( ˆ

Rd
F (y, x′)G(x, x′)hit(x

′ − x− y − tu)dx′
)

(ˆ

Rd
F (y, y′)G(x, y′)hit(y

′ − x− y − tv)dy′
)
dxdy

dt

t
dudv.

Then we use ∣∣}m(t)(u, v)
∣∣ .d,(Cκ) (1 + ‖u‖)−d−1(1 + ‖v‖)−d−1,

which can be deduced analogously to the first estimate in (2.16), and apply the Cauchy-

Schwarz inequality in x, y, and t. This yields

d∑

i=1

(
ˆ

Rd
(1 + ‖u‖)−d−1

( ˆ ∞

0

ˆ

(Rd)2

(ˆ

Rd
F (y, x′)G(x, x′)

hit(x
′ − x− y − tu)dx′

)2
dxdy

dt

t

)1/2
du

)2

.

Indeed, note that after application of the Cauchy-Schwarz inequality the integrals in u

and v have separated and they are equal. By another application of the Cauchy-Schwarz

inequality, this time in u, we obtain

(ˆ

R
(1 + ‖u‖)−d−1du

) d∑

i=1

(
ˆ

Rd
(1 + ‖u‖)−d−1

ˆ ∞

0

ˆ

(Rd)2

( ˆ

Rd
F (y, x′)G(x, x′)

hit(x
′ − x− y − tu)dx′

)2
dxdy

dt

t
du

)
. (2.18)

We evaluate the first integral in u and dominate (1 + ‖u‖)−d−1 in the second integral

using (2.8), analogously to the domination in (2.16). Expanding the square in (2.18), it

then remains to bound

ˆ ∞

1

d∑

i=1

ˆ

Rd
gα(u)

ˆ ∞

0

ˆ

(Rd)4
F (y, x′)G(x, x′)F (y, y′)G(x, y′)

hit(x
′ − x− y − tu)hit(y

′ − x− y − tu)dxdydx′dy′du
dt

t

dα

α2
. (2.19)

Note that it suffices to consider the expression in (2.19) for each fixed α and obtain

estimates that are uniform in α ≥ 1. Taking the Fourier transform of

d∑

i=1

ˆ

Rd
gα(u)hit(a− tu)hit(b− tu)du
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in variable (a, b) gives a constant multiple of

(tξ · tη)e−π‖(tξ,tη)‖
2
e−π‖αtξ+αtη‖

2
.

Therefore, the form (2.19) for a fixed α is, up to a constant, associated with the symbol

ˆ ∞

0
(tξ · tη)e−π‖(tξ,tη)‖

2
e−π‖αtξ+αtη‖

2 dt

t
. (2.20)

Now that we have symmetrized the multiplier in u and v, we go backwards: we again

use the identity (2.10) and write twice the expression in (2.20) as

ˆ ∞

0
‖tξ + tη‖2e−π‖(tξ,tη)‖2e−π‖αtξ+αtη‖2 dt

t
(2.21)

−
ˆ ∞

0
‖(tξ, tη)‖2e−π‖(tξ,tη)‖2e−π‖αtξ+αtη‖2 dt

t
. (2.22)

The term (2.21) is easier to handle, and can be treated similarly as (2.11). Indeed,

note that (2.21) can be further rewritten as

α−2
d∑

i=1

ˆ ∞

0
e−π‖(tξ,tη)‖

2
(

(αtξi + αtηi)e
−2−1π‖αtξ+αtη‖2

)2dt
t
. (2.23)

Performing the steps analogous to (2.11)–(2.14) and observing α−2 ≤ 1, since we only

consider α ≥ 1, it suffices to bound

d∑

i=1

ˆ ∞

0

ˆ

(Rd)6
F (y, x′)G(x, x′)F (y, y′)G(x, y′)hiαt(x− p)hiαt(y − q)

g21/2t(x
′ − p− q)g21/2t(y′ − p− q)dxdydx′dy′dpdq

dt

t
(2.24)

uniformly in the parameter α. Separating the functions with respect to the variables x, y

and applying the Cauchy-Schwarz inequality analogously to (2.15), we estimate the last

display by
( d∑

i=1

Θhiα,gβ
(F )
)1/2( d∑

i=1

Θhiα,gβ
(G)
)1/2

. ‖F‖2
L4‖G‖2L4 ,

where β = 21/2 and the last inequality follows from Lemma 4.

It remains to consider the second term (2.22). Here we first use an integration by

parts identity to transfer to a multiplier vanishing on the critical plane ξ+ η = 0. By the

fundamental theorem of calculus we have

2π

ˆ ∞

0
‖(tξ, tη)‖2e−π‖(tξ,tη)‖2e−π‖αtξ+αtη‖2 dt

t
(2.25)

+ 2π

ˆ ∞

0
e−π‖(tξ,tη)‖

2‖αtξ + αtη‖2e−π‖αtξ+αtη‖2 dt
t

(2.26)

=

ˆ ∞

0

(
− t∂t

(
e−π‖(tξ,tη)‖

2
e−π‖αtξ+αtη‖

2))dt
t

= 1
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for (ξ, η) 6= (0, 0). Since (2.22) is up to a constant equal to the term in (2.25), and the

form associated with the constant symbol 1 is trivially bounded, it remains to consider

the form associated with (2.26). Note that it is analogous to (2.21), up to scaling in α.

Expanding ‖αtξ + αtη‖2 as in (2.23) and performing the steps analogous to (2.11)–

(2.14) we again arrive at the form (2.24), which is bounded by the preceeding discussion.

This finishes the proof.

3 The combinatorial part: Proof of Theorem 2

As mentioned in the introduction, our strategy of proof closely follows that in [3]. In our

presentation we try to find a compromise between elaborating the key steps and avoiding

repetition.

For a fixed 1 < p < ∞ the authors of [3] start by defining a measure supported on

Sλ = {s ∈ Rd : ‖s‖`p = λ} that detects the correct size (of common differences or sides)

in the `p-norm. More precisely, for each λ > 0 we define σλ formally via the oscillatory

integral

σλ(s) := λ−d+p
ˆ

R
e2πit(‖s‖

p
`p
−λp)dt,

which turns out to be a measure that is mutually absolutely continuous with respect to

the surface measure on Sλ. The form

Nλ(f) :=

ˆ

(Rd)2

ˆ

Sλ

f(x, y)f(x+ s, y)f(x, y + s)dσλ(s)dxdy

counts corners with respect to this measure. The main idea is to approximate Nλ(f) by

a more convenient and smoother integral, defined using an appropriate Schwartz cutoff

function, at which point we will be able to count the number of corners using a result

from additive combinatorics.

Let ψ : R → [0, 1] be a Schwartz function such that ψ̂ is nonnegative and compactly

supported, ψ(0) = 1, and ψ̂(1) > 0. All constants in any estimates that follow are allowed

to depend on ψ and this dependence will be suppressed from the notation.

For ε, λ > 0 define a function ωελ : Rd → C that approximates the measure σλ by

ωελ(s) := λ−d+p
ˆ

R
e2πit(‖s‖

p
`p
−λp)ψ(ελpt)dt = λ−dε−1ψ̂

(
ε−1
(
1− ‖λ−1s‖p`p

))
.

It is a nonnegative, bounded, and compactly supported function (by our assumptions on

ψ̂). Note that

ωελ(s) = λ−dωε1(λ−1s),

so the notation is still consistent with (2.3) from the previous section. Moreover, in [3] it

is shown that ˆ

Rd
ωελ(s)ds = c1(ε)

ˆ

Rd
ω1
λ(s)ds, (3.1)

where

c1(ε) ∼p,d 1, (3.2)
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for 0 < ε < 1/100d. Define

Mε
λ(f) :=

ˆ

(Rd)3
f(x, y)f(x+ s, y)f(x, y + s)ωελ(s)dsdxdy.

The first goal is to prove thatM1
λ(f) is large provided that the function 0 ≤ f ≤ 1 is

dense.

Proposition 5. For any 1 < p < ∞, any positive integer d, any 0 < δ ≤ 1, and any λ

and N satisfying 0 < λ ≤ N the following holds. If f : Rd × Rd → [0, 1] is a measurable

function supported in [0, N ]d × [0, N ]d and such that
´

[0,N ]2d f ≥ δN2d, then

M1
λ(f) &p,d,δ N

2d.

When proving Proposition 5, we borrow the following idea from [3]. In that paper the

authors cut Rd into boxes that can be thought of as scaled images of [0, 1]d. On each of

these boxes one then uses Roth’s theorem for compact abelian groups [2], the underlying

group being the d-dimensional torus Td. We prove a similar result regarding corners in

the unit box [0, 1]d × [0, 1]d, which is equivalent to the same statement on Td × Td.

Lemma 6. Let 0 < δ ≤ 1 and let f : Rd×Rd → [0, 1] be a measurable function supported

in [0, 1]d × [0, 1]d and such that
´

[0,1]2d f ≥ δ. Then

ˆ

([0,1]d)3
f(x, y)f(x+ s, y)f(x, y + s)dsdxdy &d,δ 1.

Even though this lemma could be considered a quantitative variant of the well-known

corners theorem [1], we could not find the exact reference to the corners theorem on

compact abelian groups in the literature, so we deduce Lemma 6 from its more familiar

finitary formulation using the averaging trick of Varnavides [20].

Proof of Lemma 6. Suppose that a positive integer n is large enough so that each subset

S ⊆ {0, 1, . . . , n − 1}2 of cardinality at least (δ/8)n2 must contain a corner. Such n

certainly exists by the result of Ajtai and Szemerédi [1], and by the theorem of Shkredov

[18] we even know that it is sufficient to take any n ≥ exp(exp(8/δ)c) for some absolute

constant c.

First, we note that the set

A :=
{

(x, y) ∈ [0, 1]d × [0, 1]d : f(x, y) ≥ δ

2

}

has measure at least δ/2 and that f ≥ (δ/2)1A, where 1A denotes the indicator function

of A. Therefore, it is enough to show
ˆ

([0,1]d)3
1A(x, y)1A(x+ s, y)1A(x, y + s)dsdxdy &d,δ 1. (3.3)

Take ε = δ/16d and observe

 

(0,ε/n]d×([0,1−ε]d)2

( 1

n2

n−1∑

i,j=0

1A(u+ it, v + jt)
)
dtdudv ≥ |A ∩ [ε, 1− ε]2d| ≥ δ

2
− 4dε =

δ

4
,
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where
ffl

denotes the average value of the function on the given set. Defining

T :=
{

(t, u, v) ∈ (0, ε/n]d × [0, 1− ε]d × [0, 1− ε]d :
1

n2

n−1∑

i,j=0

1A(u+ it, v + jt) ≥ δ

8

}
,

from the previous estimate we get

|T | ≥ δ

8

( ε
n

)d
(1− ε)2d &d,δ 1. (3.4)

For each triple (t, u, v) ∈ T we consider the set

Bt,u,v :=
{

(i, j) ∈ {0, 1, . . . , n− 1}2 : (u+ it, v + jt) ∈ A
}
.

Since Bt,u,v contains at least (δ/8)n2 elements, by the choice of n we conclude that Bt,u,v
must contain a corner (i, j), (i+ k, j), (i, j + k), which can be rewritten as

∑

i,j,k∈{0,1,...,n−1}
k≥1, i+k,j+k≤n−1

1A(u+ it, v + jt)1A(u+ it+ kt, v + jt)1A(u+ it, v + jt+ kt) ≥ 1.

Integrating this over (t, u, v) ∈ T , using (3.4), and changing variables to

x = u+ it, y = v + jt, s = kt

we obtain
∑

i,j,k∈{0,1,...,n−1}
k≥1, i+k,j+k≤n−1

1

kd

ˆ

[0,kε/n]d×([0,1]d)2
1A(x, y)1A(x+s, y)1A(x, y+s)dsdxdy &d,δ 1. (3.5)

It remains to observe that the left-hand side of (3.5) is at most n3 times the left-hand

side of (3.3), recalling that n can be taken to be a function depending only on δ.

Proof of Proposition 5. It is straightforward to adapt the proof of the analogous propo-

sition from [3] in the language of corners, replacing Roth’s theorem on compact abelian

groups [2] with Lemma 6.

Our next aim is to prove that Nλ and Mε
λ are in some sense close to each other.

Proposition 7. For any p ∈ (1, 2)∪ (2,∞) there exists γp > 0 such that for any positive

integer d, any 0 < ε < 1, and any λ and N satisfying 0 < λ ≤ N the following holds. If

f : Rd × Rd → [−1, 1] is a measurable function supported in [0, N ]d × [0, N ]d, then

|Nλ(f)−Mε
λ(f)| .p,d ε

dγp−1N2d.

The proof of this proposition uses uniformity norms or the Uk-norms, which Gowers

introduced in his work on Szemerédi’s theorem on the integers [10],[11]. For a measurable

function f : Rd → C we define the Gowers uniformity norm on Rd of degree k by

‖f‖2k
Uk

:=

ˆ

(Rd)k+1

∆h1 · · ·∆hkf(x)dxdh1 · · · dhk,

where ∆hf(x) := f(x)f(x+ h). A linear change of variables immediately yields

‖ft‖Uk = t−d(1−(k+1)/2k)‖f‖Uk (3.6)

for all t > 0.
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Proof of Proposition 7. By a density argument we can assume that f is continuous.

From the discussion preceding the proof we know how ‖ωηλ − ωελ‖U3 is defined for

0 < η < ε. The authors of [3] also give a meaning to ‖σλ − ωελ‖U3 by interpreting it as

the limit limη→0+ ‖ωηλ − ωελ‖U3 , which is justified by the facts that (ωηλ)η>0 is a Cauchy

net in the U3-norm and that it converges vaguely to σλ as η → 0+. Moreover, in [3] it is

shown that for any 1 < p < ∞, p 6= 2 there exists a constant γp > 0 such that for each

integer d, any 0 < ε < 1, and any λ > 0 one has

‖σλ − ωελ‖U3 .p,d λ
−d/2εdγp−1. (3.7)

Indeed, it suffices to work out the case λ = 1 and the general result follows from the

scaling identity (3.6).

On the other hand, by applying the Cauchy-Schwarz inequality three times, for an

arbitrary measurable function g : Rd → R supported in a constant dilate of the cube

[−λ, λ]d one obtains

∣∣∣
ˆ

(Rd)3
f(x, y)f(x+ s, y)f(x, y + s)g(s)dsdxdy

∣∣∣ . N2dλd/2‖g‖U3 ,

the so-called generalized von Neumann’s theorem, this time for corners. Setting g =

ωηλ − ωελ and letting η → 0+ we get

|Nλ(f)−Mε
λ(f)| . N2dλd/2‖σλ − ωελ‖U3 . (3.8)

It remains to combine (3.7) and (3.8) and the claim follows.

As the final step, we use Theorem 3 to connect M1
λ(f) and Mε

λ(f), where λ goes

through a sequence of scalars. Motivated by [3], we define

kελ(s) := ωελ(s)− c1(ε)ω1
λ(s),

which is consistent with the notation (2.3), and also set

Eελ(f) :=Mε
λ(f)− c1(ε)M1

λ(f),

where c1(ε) is the constant from (3.1). We prove the following result.

Proposition 8. Let 0 < ε < 1, and let d and J be positive integers. Suppose that

λ1 < λ2 < · · · < λJ are positive numbers such that λj+1/λj ≥ 2 for each 1 ≤ j ≤ J − 1.

If f : Rd × Rd → [−1, 1] is a measurable function supported in [0, N ]d × [0, N ]d, then

J∑

j=1

|Eελj (f)|2 .d,ε N
4d. (3.9)
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Proof of Proposition 8. Using the definition of Eελ(f) and applying the Cauchy-Schwarz

inequality we estimate:

J∑

j=1

|Eελj (f)|2 ≤
J∑

j=1

(ˆ

(Rd)2
f(x, y)

∣∣∣
ˆ

Rd
f(x+ s, y)f(x, y + s)kελj (s)ds

∣∣∣dxdy
)2

≤ ‖f‖2
L2

J∑

j=1

ˆ

(Rd)2

( ˆ

Rd
f(x+ s, y)f(x, y + s)kελj (s)ds

)2
dxdy

= ‖f‖2
L2

ˆ

(Rd)4
f(x+ u, y)f(x, y + u)f(x+ v, y)f(x, y + v)K(u, v)dudvdxdy,

where we have written K(u, v) :=
∑J

j=1 k
ε
λj

(u)kελj (v). It was verified in [3] that m = K̂

satisfies the symbol estimates (1.2) with the constants Cκ depending only on κ, d, and ε.

Therefore, Theorem 3 can be applied and yields

J∑

j=1

|Eελj (f)|2 .d,ε ‖f‖2L2‖f‖4L4 ≤ N4d.

We now deduce Theorem 2 from Propositions 5, 7, and 8.

Proof of Theorem 2. We argue by contradiction. Recall the constant γp from Proposi-

tion 7. If Theorem 2 does not hold, then for some 1 < p <∞, p 6= 2 and some d > 1/γp
there exists a measurable set A ⊆ R2d with δ2d(A) > 0 such that the side lengths of corners

in A, measured in the `p-norm, avoid values from some positive sequence (λj)
∞
j=1 converg-

ing to +∞. We can sparsify this sequence if necessary, so that it satisfies λj+1/λj ≥ 2

for each index j. Fix any positive integer J . It will be enough to consider finitely many

scales λ1 < · · · < λJ .

By the definition of upper Banach density, for any fixed 0 < δ < δ2d(A), there exists

a number N ≥ λJ for which there is xN ∈ R2d such that |A ∩ (xN + [0, N ]2d)| ≥ δN2d.

If we denote AN := (−xN + A) ∩ [0, N ]2d, then AN is a measurable subset of [0, N ]2d

with measure at least δN2d such that the side length of any corner inside AN avoids the

values λ1, . . . , λJ . The latter property immediately implies that Nλj (1AN ) = 0 for each

1 ≤ j ≤ J .

Let us apply the three auxiliary propositions with f = 1AN , recalling that this is the

indicator function of AN . Note that limε→0+ ε
dγp−1 = 0 by our choice of d. Therefore, if

ε > 0 is taken small enough (depending on p, d, δ), then (3.2) and Propositions 5 and 7

give

|Eελj (f)| ≥ c1(ε)M1
λj

(f)− |Nλj (f)−Mε
λj

(f)| &p,d,δ N
2d.

Consequently,
J∑

j=1

|Eελj (f)|2 &p,d,δ JN
4d. (3.10)

Combining (3.9) and (3.10), and dividing by N4d, we conclude that J .p,d,δ,ε 1. Recalling

that J could have been taken arbitrarily large we arrive at the contradiction.
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It is worth observing that a variant of the bound (3.9) with a constant o(J) on the

right-hand side would have been sufficient. It is plausible that such a bound could be easier

to establish than the uniform estimates in Theorem 3 and Proposition 8. However, the

scales λ1 < · · · < λJ in such a bound must comprise an arbitrary lacunary sequence. For

instance, obtaining a o(J) estimate for consecutive dyadic scales λj = 2j is considerably

easier; compare with the closing remarks in the next section.

4 Remarks on possible generalizations

It is natural to ask if the generalization of Theorem 1 holds for k-term arithmetic pro-

gressions in Rd,
x, x+ s, x+ 2s, . . . , x+ (k − 1)s,

and if Theorem 2 extends to the generalized k-element corners in (Rd)k−1,

(x1, x2, . . . , xk−1), (x1+s, x2, . . . , xk−1), (x1, x2+s, . . . , xk−1), . . . , (x1, x2, . . . , xk−1+s).

The result that any positive upper density subset of Zk−1 has to contain a nontrivial k-

element corner is popularly known as the multidimensional Szemerédi theorem and was

first shown by Furstenberg and Katznelson [8].

The following proposition is a straightforward generalization of the aforementioned

counterexample of Bourgain. It prohibits p from taking any integer value less than k.

Proposition 9. Let d, k, p be positive integers such that p ≤ k − 1. There exists a

measurable set A ⊆ Rd of positive upper Banach density such that no λ0 > 0 satisfies the

property that for each λ ≥ λ0 one can find a k-term arithmetic progression x, x+ s, . . . ,

x+ (k − 1)s in A with ‖s‖`p = λ.

Proof of Proposition 9. Take x = (x1, . . . , xd) and s = (s1, . . . , sd) in Rd such that x+ js

has nonnegative coordinates for j = 0, . . . , p and observe the identity

p∑

j=0

(−1)p−j
(
p

j

)
‖x+ js‖p`p = p!‖s‖p`p . (4.1)

It is a direct consequence of the scalar identity

p∑

j=0

(−1)p−j
(
p

j

)
(α+ jβ)l =

{
0 for l = 0, 1, . . . , p− 1,

p!βp for l = p,

applied with l = p, α = xi, β = si, i = 1, . . . , d, which in turn can be easily established

by induction on p.

Led by the example for three-term progressions, we define

A :=
∞⋃

n=1

{
x ∈ [0,∞)d : n− 2−p−2 ≤ ‖x‖p`p ≤ n+ 2−p−2

}
. (4.2)

As before, the set A is made up of parts of spherical shells, but this time with respect to

the `p-norm. It is easy to see that it still satisfies δd(A) > 0.
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Suppose that x, s ∈ Rd are such that x+ js ∈ A for j = 0, 1, . . . , k− 1. We only need

to consider the first p + 1 terms of this progression. By construction, ‖x + js‖p`p differs

from some positive integer nj by at most 2−p−2. From (4.1) we see that p!‖s‖p`p differs

from the integer
∑p

j=0(−1)p−j
(
p
j

)
nj by at most

p∑

j=0

(
p

j

)∣∣‖x+ js‖p`p − nj
∣∣ ≤

p∑

j=0

(
p

j

)
2−p−2 =

1

4
.

Consequently, ‖s‖`p cannot attain values in the set

∞⋃

n=1

((4n− 3

4p!

)1/p
,
(4n− 1

4p!

)1/p)
, (4.3)

which is unbounded from above.

Example (4.2) from the previous proof also leads to a counterexample for generalized

corners, by considering

Ã :=
{

(x1, x2, . . . , xk−1) ∈ (Rd)k−1 : x1 + 2x2 + · · ·+ (k − 1)xk−1 ∈ A
}
.

Once again, this set has δ(k−1)d(Ã) > 0, but the `p-norm of the side s of each k-element

corner in Ã cannot belong to the set (4.3).

There is still a chance that Theorems 1 and 2 generalize to k ≥ 4 and any 1 ≤ p ≤ ∞
other than 1, 2, . . . , k − 1, and ∞. However, the corresponding analogs of Theorem 3

would involve operators of complexity similar as to the so-called multilinear and simplex

Hilbert transforms (see [14],[19],[21]), for which no Lp-boundedness results are known

at the time of writing. An encouraging sign is that the papers [19] and [21] establish

estimates for the truncations of these operators with constants o(J) in the number of

consecutive dyadic scales J , while [6] improves this bound to J1−ε for some ε > 0. As

one needs to consider arbitrary (and not only consecutive dyadic) scales for the intended

application, we believe that generalizations to large values of k are still out of reach of

the currently available techniques.
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Power-type cancellation for the simplex Hilbert transform

Polona Durcik, Vjekoslav Kovač, and Christoph Thiele

Abstract

We prove Lp bounds for the truncated simplex Hilbert transform which grow with

a power less than one of the truncation range in the logarithmic scale.

1 Introduction

The simplex Hilbert transform of degree n ≥ 1 is given by

Λn := p.v.

∫

Rn+1

n∏

i=0

Fi(x0, . . . , xi−1, xi+1, . . . , xn)
1

x0 + · · ·+ xn
dx0 . . . dxn.

It is a multilinear form in the n+ 1 functions F0, . . . , Fn, which for simplicity we assume

to be in the Schwartz class. If n = 1, then the simplex Hilbert transform is the form

obtained by dualization of the classical Hilbert transform. The case n = 2 was called

the triangular Hilbert transform in [4]. A major open problem is whether for n ≥ 2 the

simplex Hilbert transform satisfies any Lp bounds of the type

|Λn| ≤ C
n∏

i=0

‖Fi‖pi .

Partial progress in the case n = 2 was made in [4] for a dyadic model and under the

additional assumption that one of the functions Fi takes certain special forms.

The papers [5] and [6] initiated the study of growth of the bounds for the truncated

simplex Hilbert transform

Λn,r,R :=

∫

r≤|x0+···+xn|≤R

n∏

i=0

Fi(x0, . . . , xi−1, xi+1, . . . , xn)
1

x0 + · · ·+ xn
dx0 . . . dxn

for some truncation parameters 0 < r < R. The trivial estimate

|Λn,r,R| ≤ 2
(

log
R

r

) n∏

i=0

‖Fi‖pi (1.1)

with Banach space exponents 1 ≤ pi ≤ ∞ satisfying the Hölder scaling
∑n

i=0 1/pi = 1

follows by substituting x0 = x− x1− · · · − xn, applying Hölder’s inequality in x1, . . . , xn,

and integrating in x. Alternatively, if one is careless about the actual constant 2, one

can simply break the kernel into about log(R/r) many scales and estimate each scale

separately.
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Using techniques from additive combinatorics, Zorin-Kranich [6] improved this bound

to o(log(R/r)) when R/r →∞ in the open range 1 < pi <∞ with the Hölder scaling. A

special case of this result was shown before by Tao [5].

The main result of this paper is the following bound.

Theorem 1. There exists a finite constant C depending only on n such that for any

Schwartz functions F0, . . . , Fn on Rn and any 0 < r < R we have

|Λn,r,R| ≤ C
(

log
R

r

)1−2−n+1

‖F0‖2n
n∏

i=1

‖Fi‖2n−i+1 . (1.2)

By interpolation of (1.2) with (1.1) we obtain the following corollary.

Corollary 2. Let 1 < p0, . . . , pn < ∞ and 1/p0 + · · · + 1/pn = 1. There exist a finite

constant C and a number ε > 0, both depending only on n and p0, . . . , pn, such that for

any Schwartz functions F0, . . . , Fn on Rn and any 0 < r < R we have

|Λn,r,R| ≤ C
(

log
R

r

)1−ε n∏

i=0

‖Fi‖pi .

In particular, this strengthens the results from [5] and [6]. The special case n = 2 was

commented on in [2], where it followed from boundedness of a certain square function. A

modification of our arguments could yield bounds for a simplex transform associated with

more general Calderón-Zygmund kernels on R replacing K(t) = 1/t, but we do not aim

for that kind of generality here. The reader can also consult [4] and [6] for the ways of

encoding various lower-dimensional or less singular operators into Λn, so that Corollary 2

gives nontrivial estimates for the truncations of these operators too, even though some

of them are already known to be (uniformly) bounded.

The proof of Theorem 1 is a special case of a more general estimate in Lemma 3 on

auxiliary forms involving an additional parameter 1 ≤ k ≤ n, which is in turn proved

by induction on that parameter. The induction uses higher-dimensional analogues of

the arguments in [1], [2], and [3], i.e. intertwined applications of the Cauchy-Schwarz

inequality (2.8) and an integration by parts identity (2.15). The base case is closely

related to the quadrilinear forms studied in [1] and [3].

In Section 4 we discuss a dyadic version of Theorem 1.

2 Proof of Theorem 1

We fix an integer n ≥ 2 and numbers 0 < r < R. One can suppose that log(R/r) > 1,

since otherwise (1.2) is even weaker than (1.1). We also fix Schwartz functions F0, . . . , Fn
as in Theorem 1. It is enough to work with real-valued functions, since complex-valued

functions may be split into their real and imaginary parts. By homogeneity we may

assume that the functions are normalized as

‖F0‖2n = ‖F1‖2n = ‖F2‖2n−1 = · · · = ‖Fn‖21 = 1. (2.1)
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Next, we pass from rough to smooth truncations of the simplex Hilbert transform.

Let us write

ϕ(x) :=
1[−R,R]\[−r,r](x)− (g(x/R)− g(x/r))

x
=

1[−1,1](x/R)− g(x/R)

x
−
1[−1,1](x/r)− g(x/r)

x
,

where g is the Gaussian function g(x) := e−πx
2
. Note that ϕ is integrable uniformly in

the truncation parameters 0 < r < R and that the bound

∣∣∣
∫

Rn+1

n∏

i=0

Fi(x0, . . . , xi−1, xi+1, . . . , xn)ϕ(x0 + · · ·+ xn)dx0 . . . dxn

∣∣∣ ≤ ‖ϕ‖1‖F0‖2n
n∏

i=1

‖Fi‖2n−i+1

follows from the change of variables x0 = x − x1 − · · · − xn and Hölder’s inequality in

x1, . . . , xn. Therefore, in order to prove Theorem 1 it suffices to prove the estimate for

the kernel
g(x/R)− g(x/r)

x
= −

∫ R

r
t−2g′(t−1x)dt.

That is, it suffices to obtain, in lieu of (1.2),

∣∣∣
∫ R

r

∫

Rn+1

n∏

i=0

Fi(x0, . . . , xi−1, xi+1, . . . , xn)

ht(x0 + · · ·+ xn)dx0 . . . dxn
dt

t

∣∣∣ ≤ C
(

log
R

r

)1−2−n+1

, (2.2)

where h is the derivative of g, and we use subscripts to denote L1-normalized dilates of

functions:

ht(x) := t−1h(t−1x).

For the inductive statement we need to define further expressions. For 0 ≤ k ≤ n we

define Fk as a function of variables x0, . . . , xn, x
0
0, x

1
0, . . . , x

0
n, x

1
n ∈ R by

Fk :=
k∏

i=0

∏

(rk+1,...,rn)∈{0,1}n−k

Fi(x0, . . . , xi−1, xi+1, . . . , xk, x
rk+1

k+1 , . . . , x
rn
n ). (2.3)

Note that Fk does not depend on xk+1, . . . , xn and x00, x
1
0, . . . , x

0
k, x

1
k. Each factor Fi in

the product has the property that for each k+1 ≤ j ≤ n it is independent of precisely one

of the variables x0j or x1j . If n = 3, the structure of Fk for k = 3, 2, and 1 is illustrated in

Figures 1–3 in the next section. The set {0, . . . , k}×{0, 1}n−k is viewed as set of vertices

of a polytope in Rn. To each hyper-face of the polytope we associate a variable and to

each vertex a function Fj of the adjacent n variables. In the cases k = 0 and k = 1,

the polytope is an n-dimensional cube, while for k = n the polytope is an n-dimensional

simplex.

For 2 ≤ k ≤ n and α, αk, . . . , αn ∈ (0,∞) we define

Λkα,αk,...,αn
:=

∫ R

r

∫

Rn−k+1

∫

R2n−2k

∫

Rk

∣∣∣
∫

R
Fk htαk

(xk − pk)dxk
∣∣∣

gtα(x0 + · · ·+ xk−1 + pk + · · ·+ pn)dx0 . . . dxk−1
( n∏

i=k+1

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk . . . dpn

dt

t
. (2.4)
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For 1 ≤ k ≤ n and α, αk, . . . , αn ∈ (0,∞) we define

Λ̃kα,αk,...,αn
:=

∫ R

r

∫

Rn−k+1

∫

R2n−2k

∣∣∣
∫

Rk

∫

R
Fk htαk

(xk − pk)dxk

htα(x0 + · · ·+ xk−1 + pk + · · ·+ pn)dx0 . . . dxk−1
∣∣∣

( n∏

i=k+1

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk . . . dpn

dt

t
. (2.5)

The differences between (2.4) and (2.5) are the occurrence of gtα versus htα and the

position of the absolute value signs. Also, we have no need to define (2.4) for k = 1.

Observe the trivial identity

h = 21/2 h2−1/2 ∗ g2−1/2 .

Therefore the left hand-side of (2.2) is bounded by

21/2Λn
2−1/2, 2−1/2 .

The estimate (2.2) is then a consequence of the following lemma.

All constants in what follows will depend on n and k and we write A . B if there

exists a finite constant C depending on n and k such that A ≤ CB.

Lemma 3. For any 2 ≤ k ≤ n and any α, αk, . . . , αn ∈ [2−(n−k+1)/2,∞) we have the

estimates

Λkα,αk,...,αn
, Λ̃kα,αk,...,αn

.
(
ααk . . . αn

)2(
log

R

r

)1−2−k+1

. (2.6)

For k = 1 and any α, α1, . . . , αn ∈ (0,∞) we have the estimate

Λ̃1
α,α1,...,αn

. 1.

Proof of Lemma 3. We induct on 1 ≤ k ≤ n and let us begin by establishing the inductive

step. Take 2 ≤ k ≤ n and α, αk, . . . , αn ∈ [2−(n−k+1)/2,∞). We first reduce the desired

bound on Λ̃kα,αk,...,αn
to that on Λkα,αk,...,αn

. We can dominate pointwise

|h(x)| .
∫ ∞

1
gβ(x)β−4dβ (2.7)

for each x ∈ R. Indeed, the right hand-side of (2.7) is comparable to x−4 for large |x|.
By the triangle inequality and (2.7) we can then bound

Λ̃kα,αk,...,αn
.
∫ ∞

1
Λkαβ,αk,...,αn

β−4dβ.

Assuming the estimate (2.6) for Λkα,αk,...,αn
, the right hand side of the last display is

integrable in β. Since α ∈ [2−(n−k+1)/2,∞) is arbitrary, it suffices to prove upper bounds

for Λkα,αk,...,αn
.
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Now we apply the Cauchy-Schwarz inequality in the variable t, which yields

(
Λkα,αk,...,αn

)2 ≤
(

log
R

r

)∫ R

r

(∫

Rn−k+1

∫

R2n−2k

∫

Rk

∣∣∣
∫

R
Fk htαk

(xk − pk)dxk
∣∣∣

gtα(x0 + · · ·+ xk−1 + pk + · · ·+ pn)dx0 . . . dxk−1
( n∏

i=k+1

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk . . . dpn

)2dt

t
.

We expand the definition of Fk and for each fixed t we apply the Cauchy-Schwarz in-

equality in all remaining integration variables but xk. This way we obtain

(
Λkα,αk,...,αn

)2 ≤
(

log
R

r

)∫ R

r
MtNt

dt

t
, (2.8)

where

Mt :=

∫

Rn−k+1

∫

R2n−2k

∫

Rk

(∫

R

k−1∏

i=0

∏

(rk+1,...,rn)∈{0,1}n−k

Fi(x0, . . . , xi−1, xi+1, . . . , xk, x
rk+1

k+1 , . . . , x
rn
n )

htαk
(xk − pk)dxk

)2

gtα(x0 + · · ·+ xk−1 + pk + · · ·+ pn)dx0 . . . dxk−1

( n∏

i=k+1

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk . . . dpn

and

Nt :=

∫

Rn−k+1

∫

R2n−2k

∫

Rk

∏

(rk+1,...,rn)∈{0,1}n−k

Fk(x0, . . . , xk−1, x
rk+1

k+1 , . . . , x
rn
n )2

gtα(x0 + · · ·+ xk−1 + pk + · · ·+ pn)dx0 . . . dxk−1
( n∏

i=k+1

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk . . . dpn.

To estimate Nt pointwise for each fixed t, we first integrate in pk getting rid of gtα,

then introduce the variables yi and qi via x0i = x1i − yi and pi = x1i − qi, respectively.

Next, we apply Hölder’s inequality in variables x0 through xk−1 and x1k+1 through x1n.

Finally, we integrate the remaining Gaussian factors in yi and qi for k + 1 ≤ i ≤ n. This

yields

Nt ≤ ‖F 2
k ‖2

n−k

2n−k = ‖Fk‖2
n−k+1

2n−k+1 = 1, (2.9)

so we have obtained an estimate which is uniform in t > 0.

It remains to control

∫ R

r
Mt

dt

t
. (2.10)

127



Expanding the square in the definition of Mt, the expression (2.10) becomes the special

case k = j of the following more general expressions defined for j ≥ k:

Θ(j) :=

∫ R

r

∫

Rn−k+1

∫

R2n−2k+2

∫

Rk

Fk−1 (2.11)

gtα(x0 + · · ·+ xk−1 + pk + · · ·+ pn)dx0 . . . dxk−1

htαj (x
0
j − pj)htαj (x

1
j − pj)dx0jdx1j

( n∏

i=k
i 6=j

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk . . . dpn

dt

t
.

Also define

Θ := −
(

1 + α−2
n∑

j=k

α2
j

)∫ R

r

∫

Rn−k+2

∫

R2n−2k+2

∫

Rk−1

∫

R
Fk−1 htα2−1/2(xk−1 − pk−1)dxk−1

htα2−1/2(x0 + · · ·+ xk−2 + pk−1 + · · ·+ pn)dx0 . . . dxk−2
( n∏

i=k

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk−1 . . . dpn

dt

t
.

We claim that

Θ +
n∑

j=k

Θ(j) . 1. (2.12)

Before proving the claim, we show how it can be used to control Θ(k). Note that Θ(k)

is non-negative because the real-valued terms in the expression assemble into an integral

of a square that came from previous application of the Cauchy-Schwarz inequality. The

terms Θ(j) are also non-negative for each j ≥ k; the argument is the same after renaming

the variables. Therefore, comparing the definitions of Θ and Λ̃kα,αk,...,αn
,

Θ(k) ≤
n∑

j=k

Θ(j) . 1 + |Θ| ≤ 1 +
(

1 + α−2
n∑

j=k

α2
j

)
Λ̃k−1
α2−1/2,α2−1/2,αk,...,αn

.

By the induction hypothesis (i.e. the statement for k − 1), we may estimate this display

further by

. α−2
(
α2 +

n∑

j=k

α2
j

)
(α2αk . . . αn)2

(
log

R

r

)1−2−k+2

. (ααk . . . αn)4
(

log
R

r

)1−2−k+2

,

where we have estimated the sum of the squared alphas by their product. We combine

this estimate with (2.8) and (2.9). Multiplying with log(R/r) and taking the square root

shows (2.6) for the given k, completing the induction step up to the verification of the

claim (2.12).

To see this claim, we employ the Fourier transform which we normalize as

f̂(ξ) :=

∫

R
f(x)e−2πixξdx.
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For fixed x0, . . . , xk−1, x0k, x
1
k, . . . , x

0
n, x

1
n the integral in pk, . . . , pn in Θ(j) is the integral

of the function

H(q, q0k, q
1
k, . . . , q

0
n, q

1
n) :=gtα(q + x0 + · · ·+ xk−1)

htαj (q
0
j − x0j )htαj (q

1
j − x1j )

( n∏

i=k
i 6=j

gtαi(q
0
i − x0i )gtαi(q

1
i − x1i )

)

over the (n− k + 1)-dimensional subspace

{(pk + · · ·+ pn, pk, pk, pk+1, pk+1, . . . , pn, pn) : pk, . . . , pn ∈ R}

of R2n−2k+3. The orthogonal complement of this subspace is

{(η, ξk, −ξk − η, ξk+1, −ξk+1 − η, . . . , ξn, −ξn − η) : η, ξk, . . . , ξn ∈ R}.

The previously mentioned integral is equal to the integral of the Fourier transform of H

over this orthogonal complement, which in turn becomes
∫

Rn−k+2

ĝtα(η)ĥtαj (ξj)ĥtαj (−ξj − η)
n∏

i=k
i 6=j

ĝtαi(ξi)ĝtαi(ξi + η)

e2πi((x0+···+xk−1)η−
∑n

i=k(x
0
i ξi+x

1
i (−ξi−η))) dηdξk . . . dξn. (2.13)

Quite similarly, the integral in pk−1, . . . , pn in Θ can be expressed as
∫

Rn−k+2

̂htα2−1/2(η) ̂htα2−1/2(−η)

n∏

i=k

ĝtαi(ξi)ĝtαi(ξi + η)

e2πi((x0+···+xk−1)η−
∑n

i=k(x
0
i ξi+x

1
i (−ξi−η))) dηdξk . . . dξn. (2.14)

Now we state the crucial “telescoping” or “integration by parts” identity

(
1 + α−2

n∑

j=k

α2
j

)∫ R

r

̂htα2−1/2(η) ̂htα2−1/2(−η)
n∏

i=k

ĝtαi(ξi)ĝtαi(ξi + η)
dt

t

+
n∑

j=k

∫ R

r
ĝtα(η)ĥtαj (ξj)ĥtαj (−ξj − η)

n∏

i=k
i 6=j

ĝtαi(ξi)ĝtαi(ξi + η)
dt

t

= π
(
Gr(η, ξk, . . . , ξn)−GR(η, ξk, . . . , ξn)

)
, (2.15)

where for t > 0 we have denoted

Gt(η, ξk, . . . , ξn) := ĝtα(η)

n∏

j=k

ĝtαj (ξj)ĝtαj (ξj + η).

To see this identity, we use the fundamental theorem of calculus, together with ĝ(ξ) =

e−πξ
2
, which yields that the right hand side of the identity (2.15) equals

−
∫ R

r
πt∂t(Gt(η, ξk, . . . , ξn))

dt

t

=

∫ R

r
2π2t2

(
α2η2 +

n∑

j=k

α2
j (ξ

2
j + (ξj + η)2)

)
Gt(η, ξk, . . . , ξn)

dt

t
.
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Using ĥ(ξ) = 2πiξĝ(ξ) gives

ĥ(tα2−1/2η)ĥ(tα2−1/2(−η)) = (2πitα)22−1η(−η)ĝ(tα2−1/2η)ĝ(tα2−1/2η) = 2π2t2α2η2ĝ(tαη)

and

ĥ(tαjξj)ĥ(tαj(−ξj − η)) = 4π2t2α2
jξj(ξj + η)ĝ(tαjξj)ĝ(tαj(ξj + η)),

so the left hand side of (2.15) becomes

∫ R

r

(
1 + α−2

n∑

j=k

α2
j

)
2π2t2α2η2Gt(η, ξk, . . . , ξn)

dt

t

+

∫ R

r

( n∑

j=k

4π2t2α2
jξj(ξj + η)

)
Gt(η, ξk, . . . , ξn)

dt

t
.

A straightforward polynomial identity finally establishes (2.15).

The terms on the left hand side of (2.15) correspond to the terms on the left hand

side of (2.12): one only needs to multiply (2.15) with Fk−1 and the complex exponential

from (2.13), (2.14), and perform the remaining integrations. We thus need to show that

the corresponding terms for the right hand side of (2.15) can be bounded by a constant.

However, for t = r or t = R we have

∣∣∣
∫

Rn−k+1

∫

R2n−2k+2

∫

Rk

Fk−1

gtα(x0 + · · ·+ xk−1 + pk + · · ·+ pn)dx0 . . . dxk−1
( n∏

i=k

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dpk . . . dpn

∣∣∣ ≤ ‖F0‖2
n−k+1

2n

k−1∏

i=1

‖Fi‖2
n−k+1

2n−i+1 = 1,

(2.16)

i.e. these single-scale estimates are uniform in t > 0 and αi > 1. This follows by first

introducing new variables y, yi, and qi via x0 = y−x1−x2−· · ·−xk−1, x0i = x1i −yi, and

pi = x1i − qi. With these new variables, we first apply Hölder’s inequality in x1, . . . , xk−1,
then integrate in y, then apply Hölder’s inequality in x1k, . . . , x

1
n, and finally integrate in

yi and qi for k ≤ i ≤ n.

Inserting (2.15) into (2.13) and (2.14), passing to the spatial side and using the esti-

mate (2.16) we obtain the desired claim (2.12). This completes the proof of the inductive

step.

It remains to establish the base case k = 1 of the induction, i.e. to estimate Λ̃1
α,αk,...,αn

.

Unlike in the inductive step we do not dominate one of the functions h. Instead we apply

the Cauchy-Schwarz inequality to (2.5) immediately in such a way that each of the terms

on the right hand side invokes cancellative functions h. This is possible only in the case

k = 1 because here the integration in the variables x0 and x1 separates. More precisely, we

apply the Cauchy-Schwarz inequality in the integrals over the variables x02, x
1
2, . . . x

0,
n x1n,

p1, . . . , pn, and t to obtain

(
Λ̃1
α,α1,...,αn

)2 ≤ Θ̃(1)(F0)Θ̃
(1)(F1), (2.17)
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where for 1 ≤ j ≤ n and a Schwartz function F on Rn we have set

Θ̃(j)(F ) :=

∫ R

r

∫

Rn

∫

R2n

∏

(r1,...,rn)∈{0,1}n
F (xr11 , . . . , x

rn
n )

htαj (x
0
j − pj)htαj (x

1
j − pj)dx0jdx1j

( n∏

i=1
i 6=j

gtαi(x
0
i − pi)gtαi(x

1
i − pi)dx0i dx1i

)
dp1 . . . dpn

dt

t
.

Similarly as in the inductive step, we now have

n∑

j=1

Θ̃(j)(F ) . 1 (2.18)

for any F with ‖F‖2n = 1. Namely, Θ̃(j)(F ) coincides with Θ(j) for k = 1, except for

the choice of functions F making up Fk−1. Moreover, F0 does not depend on x0, so

the integral in x0 is merely the integral of a Gaussian. Likewise, the integral in x0 in

the definition of Θ for k = 1 is an integral over the derivative of a Gaussian and hence

vanishes. Thus claim (2.18) follows analogously to claim (2.12).

It remains to observe that Θ̃(j) ≥ 0 for each 1 ≤ j ≤ n, which is again analogous to the

proof of the inductive step: simply observe that we are integrating squares of real-valued

expressions. Together with (2.18) this implies

Θ̃(1)(F0), Θ̃(1)(F1) . 1,

which by (2.17) concludes the proof of the base case k = 1 of the induction.

3 An illustration of the induction steps

Figures 1–3 represent the induction scheme for n = 3. The polyhedra in Figures 1–3

represent the structure of Fk for k = 3, 2, and 1 in this order. The vertices represent

the various factors Fj in the definition of Fk, while the faces represent the arguments in

these factors, such that adjacency of a face to a vertex means that the argument appears

in the corresponding factor of Fk.

F0

F1
F2

F3

F0

F1
F2

F0

F1
F2

Figure 1: Case k = 3.

The passage from left to right polyhedron in each figure represents the effect of the

Cauchy-Schwarz inequality (2.8), passing from a form Λkα,αk,...,αn
involving Fk on the left

to a form Mt or Θ(k) involving Fk−1 on the right.
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The shaded faces of the left polyhedra correspond to the variable xk in Λkα,αk,...,αn
ap-

pearing in the cancellative function h. On the right hand side this variable has bifurcated

into two variables x0k and x1k in Θ(k), both of which still carry cancellation.

Comparing the right polyhedron in one figure to the left polyhedron in the next figure,

the shaded faces move to a different location indicating the effect of the telescoping

estimate (2.12). Note that the picture depicts only the most important of, in general

many, terms in the telescoping identity. In all but the last figure we have only one shaded

face on the left polyhedron, since after domination of one function h by Gaussians only

one function h survives.

F0

F1
F2

F0

F1
F2

F0

F1

F0

F1

F0

F1

F0

F1

Figure 2: Case k = 2.

The last figure corresponds to the base case, which is treated differently. On the

one hand we have two shaded faces of the left polyhedron, and on the other hand the

Cauchy-Schwarz inequality does not change the geometry of the polyhedron, but merely

the labeling of the corners. This stabilization of the process is ultimately the reason that

the recursion stops.

F0

F1

F0

F1

F0

F1

F0

F1

F0

F0

F0

F0

F0

F0

F0

F0

Figure 3: Case k = 1.

4 Dyadic model of the simplex Hilbert transform

In this section we discuss the analogue of Theorem 1 for the dyadic model of the truncated

simplex Hilbert transform. Define

Λd
n,m :=

m−1∑

l=0

∑

(I0,...,In)∈Il
εl,I0,...,In

∫

(R+)n+1

n∏

i=0

Fi(x0, . . . , xi−1, xi+1, . . . , xn)2−l
( n∏

i=0

hIi(xi)dxi

)
,
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where n,m ≥ 1, R+ = [0,∞), and for l ∈ Z we denote

Il := {(I0, . . . , In) : 0 ∈ I0 ⊕ · · · ⊕ In, Ii dyadic interval, Ii ⊂ R+, |Ii| = 2l, 1 ≤ i ≤ n}.

Here a dyadic interval is any interval of the form [2lm, 2l(m + 1)) with m, l ∈ Z and ⊕
is the addition of the Walsh group; see [4] for further details. The otherwise arbitrary

coefficients εl,I0,...,In are assumed to be bounded in the absolute value by 1 and we have

denoted by hI the L∞-normalized Haar function on I. A convenient property of the Haar

functions is that

hI1⊕I2(x1 ⊕ x2) = hI1(x1)hI2(x2)

whenever I1, I2 are dyadic intervals of the same length, x1 ∈ I1, x2 ∈ I2, and I1 ⊕ I2 is

defined to be yet another dyadic interval of that same length whose left endpoint is the ⊕-

sum of the left endpoints of I1 and I2. Indeed, this is simply the character property of the

more general Walsh functions. In dyadic models it is common to replace 1/(x0 + · · ·+xn)

with kernels such as

K(x0, . . . , xn) =
∑

l

εl2
−l
h[0,2l)(x1 ⊕ · · · ⊕ xn) =

∑

l

∑

(I0,...,In)∈Il
εl2
−l

n∏

i=0

hIi(xi).

This time the trivial estimate grows linearly in the number of scales m and we want

to improve on this trivial bound with a power less than one.

Theorem 4. There exists a finite constant C depending only on n ≥ 1 such that for any

tuple F0, . . . , Fn of finite linear combinations of Haar functions and any m ≥ 1 we have

|Λd
n,m| ≤ Cm1−2−n+1‖F0‖2n

n∏

i=1

‖Fi‖2n−i+1 .

Sketch of proof. Fix positive integers n,m and functions F0, . . . , Fn normalized as in (2.1).

In order to perform the structural induction we introduce expressions indexed by 1 ≤ k ≤
n

Λd,k :=
m−1∑

l=0

∑

(I0,...,In)∈Il

∫

(R+)2n−2k

∣∣∣∣
∫

(R+)k+1

Fk(2−l)n−k+1
( k∏

i=0

hIi(xi)dxi

)∣∣∣∣

( n∏

i=k+1

1Ii(x
0
i )1Ii(x

1
i )dx

0
i dx

1
i

)
,

where Fk is defined as in (2.3). We claim that

Λd,k . m1−2−k+1
(4.1)

for each 1 ≤ k ≤ n. Since |Λd
n,m| ≤ Λd,n, this then implies the theorem.

We prove (4.1) by induction on k and begin with the inductive step. Let 2 ≤ k ≤ n.

Performing the analogous steps from (2.8) to (2.9) we obtain

(
Λd,k

)2 . m
m−1∑

l=0

Md
l , (4.2)
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where

Md
l :=

∑

(I0,...,In)∈Il

∫

(R+)2n−k

∣∣∣∣
∫

R+

k−1∏

i=0

∏

(rk+1,...,rn)∈{0,1}n−k

Fi(x0, . . . , xi−1, xi+1, . . . , xk, x
rk+1

k+1 , . . . , x
rn
n )

2−lhIk(xk)dxk

∣∣∣∣
2

(2−l)n−k
( k−1∏

i=0

1Ii(xi)dxi

)( n∏

i=k+1

1Ii(x
0
i )1Ii(x

1
i )dx

0
i dx

1
i

)
.

Therefore it remains to control
∑m−1

l=0 Md
l , which can be rewritten, in analogy with display

(2.11), as

m−1∑

l=0

∑

(I0,...,In)∈Il

∫

(R+)2n−k+2

Fk−1 (4.3)

(2−l)n−k+2
( k−1∏

i=0

1Ii(xi)dxi

)(
hIk(x

(0)
k )hIk(x

(1)
k )dx

(0)
k dx

(1)
k

)( n∏

i=k+1

1Ii(x
(0)
i )1Ii(x

(1)
i )dx

(0)
i dx

(1)
i

)
.

The identity (2.15) is now replaced by the dyadic “telescoping” identity

∑

(I0,...,In)∈Il

(( k−1∏

i=0

hIi(xi)
)( n∏

i=k

(
1Ii(x

(0)
i )hIi(x

(1)
i ) + hIi(x

(0)
i )1Ii(x

(1)
i )
))

+
( k−1∏

i=0

1Ii(xi)
)( n∏

i=k

(
1Ii(x

(0)
i )1Ii(x

(1)
i ) + hIi(x

(0)
i )hIi(x

(1)
i )
)))

= 2n−k+2
∑

(I0,...,In)∈Il−1

( k−1∏

i=0

1Ii(xi)
)( n∏

i=k

1Ii(x
(0)
i )1Ii(x

(1)
i )
)
. (4.4)

In order to verify it, we split each interval Ii on the left hand side into its left “child” I0i
and its right “child” I1i , so that (4.4) turns into

1

2

∑

(I0,...,In)∈Il

(( k−1∏

i=0

(
1I0i

(xi)− 1I1i
(xi)

))( n∏

i=k

(
1I0i

(x
(0)
i )1I0i

(x
(1)
i )− 1I1i

(x
(0)
i )1I1i

(x
(1)
i )
))

+
( k−1∏

i=0

(
1I0i

(xi) + 1I1i
(xi)

))( n∏

i=k

(
1I0i

(x
(0)
i )1I0i

(x
(1)
i ) + 1I1i

(x
(0)
i )1I1i

(x
(1)
i )
)))

=
∑

(I0,...,In)∈Il−1

( k−1∏

i=0

1Ii(xi)
)( n∏

i=k

1Ii(x
(0)
i )1Ii(x

(1)
i )
)
.

This identity becomes apparent once we observe that the tuple (Is00 , . . . , I
sn
n ) for some

(s0, . . . , sn) ∈ {0, 1}n+1 belongs to Il−1 if and only if the number of si that are equal to

1 is even.

What we have in (4.3) can be recognized as one of the terms beginning with 1’s in

(4.4), after multiplying (4.4) by Fk−1, integrating and finally summing over the intervals

and l. All terms in the second line of (4.4) lead to non-negative expressions analogous to

(2.11), so it suffices to control their sum. What remains after summing the above identity
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in l, up to single-scale quantities analogous to (2.16), are the terms beginning with h’s.

By the triangle inequality, these terms lead to at most 2n times

m−1∑

l=0

∑

(I0,...,In)∈Il

∫

(R+)2n−2k+2

∣∣∣∣
∫

(R+)k
Fk−1 (2−l)n−k+2

( k−1∏

i=0

hIi(xi)dxi

)∣∣∣∣

( n∏

i=k

1Ii(x
(0)
i )1Ii(x

(1)
i )dx

(0)
i dx

(1)
i

)
,

which can be recognized as Λd,k−1. Applying the induction hypothesis combined with

(4.2) finishes the inductive step.

The base case k = 1 can be deduced similarly as in the previous section.
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