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Zusammenfassung

Numerische Modelle, welche für Wettervorhersagen und Klimaprojektionen verwendet wer-

den, simulieren das Zusammenspiel physikalischer Prozesse in der Atmosphäre. Bedingt durch

den hohen Rechenaufwand atmosphärischer Modelle treten jedoch häu�g Diskrepanzen zwis-

chen benötigter und verfügbarer Au�ösung atmosphärischer Daten auf. Ein möglicher Ansatz,

höher aufgelöste atmosphärische Daten aus vergleichsweise grobem Modelloutput zu gener-

ieren, ist statistisches Downscaling.

Die vorliegende Arbeit stellt multi-objektives Genetic Programming (MOGP) als Methode

für das Downscaling atmosphärischer Daten vor. MOGP wird verwendet, um Downscaling

Regeln (statistische Beziehungen) zu generieren, welche grobskalige atmosphärische Daten

auf die Punktskala oder ein höher aufgelöstes Gitter abbilden. Im Gegensatz zu klassischen

Regressionsansätzen, in welchen die Struktur des Regressionsmodells vorgegeben wird, en-

twickelt MOGP Modellstruktur und Modellparameter simultan. Dieses erlaubt es, auch nicht

lineare und multivariate Beziehungen zwischen Prädiktoren und Prädiktand zu berücksichti-

gen. Ein klassisches lineares Regressionsmodel schätzt den Erwartungswert des Prädiktanden,

eine Realisierung von Prädiktoren gegeben, und minimiert somit den mittleren quadratis-

chen Fehler (root mean square error, RMSE), aber unterschätzt im Allgemeinen die Varianz.

Mit einem multi-objektiven Ansatz können multiple Kostenfunktionen berücksichtigt werden,

welche nicht ausschlieÿlich auf die Minimierung des RMSE ausgelegt sind, sondern simultan

auch Varianz und Wahrscheinlichkeitsverteilung berücksichtigen.

In dieser Arbeit werden zwei verschiedene Anwendungen von MOGP für atmosphärisches

Downscaling präsentiert: Das Downscaling mesoskaliger ober�ächennaher atmosphärischer

Felder von einem 2.8 km auf ein 400 m Gitter und das Downscaling von Temperatur- und

Niederschlagszeitreihen von globalen Reanalysedaten auf lokale Stationen.

(1) Mit wachsender Rechenleistung werden integrierte Modellplattformen, welche Atmosphären-

modelle mit Landober�ächenmodellen und hydrologischen Bodenmodellen koppeln, immer

häu�ger verwendet, um auch die Interaktionen und Feedbacks zwischen den Komponenten

des Boden-Vegetations-Atmosphären Systems zu berücksichtigen. Aufgrund kleinskaliger Het-

erogenitäten in Landober�äche und Boden benötigen die Landober�ächen- und Bodenmod-

elle eine hohe Gitterau�ösung. Für atmosphärische Modelle hingegen ist eine solch hohe

Au�ösung rechnerisch nicht praktikabel. Daher �ndet sich typischerweise ein Skalenunter-
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schied zwischen atmosphärischer und Landober�ächen-/hydrologischer Modellkomponente.

Solch ein Skalensprung kann jedoch zu Problemen bei der Schätzung der turbulenten Flüsse

zwischen Atmosphäre und Boden führen, da die turbulenten Flüsse in nichtlinearer Weise

vom Zustand des Bodens und der bodennahen Atmosphäre abhängen. Die mit MOGP en-

twickelten Downscaling Regeln verwenden grob aufgelöste atmosphärische Daten und hoch

aufgelöste Landober�ächen-Informationen, um hoch aufgelöste Felder verschiedener boden-

naher atmosphärischer Variablen (Temperatur, Windgeschwindigkeit etc.) generieren. Die

Regeln basieren somit auf der Annahme, dass die bodennahe atmosphärische Grenzschicht

signi�kant von der Heterogenität der Landober�äche beein�usst wird. Zwar erreicht MOGP

für diese Anwendung nur selten eine signi�kante Reduktion des RMSE gegenüber einer reinen

Interpolation, jedoch kann, abhängig von der betrachteten atmosphärischen Variablen, ein

groÿer Teil der räumlichen Variabilität wiederhergestellt werden ohne oder mit nur sehr

geringem Anstieg des RMSE.

(2) Studien zur Auswirkung des Klimawandels benötigen oft hochaufgelöste oder lokale atmo-

sphärische Daten. Der Output globaler Klimamodelle, mit Hilfe derer Klimaprojektionen er-

stellt werden, ist gemeinhin zu grob. MOGP wird verwendet, um Tagesmaximum, -minimum

und -mittel der Temperatur sowie den täglich akkumulierten Niederschlag an lokalen Sta-

tionen in Europa zu schätzen. Die Resultate werden mit linearen Regressionsmethoden ver-

glichen. Für das Downscaling von Temperatur liefert eine klassische lineare Regression bereits

sehr gute Resultate, welche MOGP im Allgemeinen an Qualität übertre�en. Für Niederschlag

hingegen sind die MOGP Resultate vielversprechend, auch im Vergleich zu generalisierten lin-

earen Modellen. Insbesondere die Repräsentation von Niederschlagsextremen und räumlicher

Korrelation (letzteres ist nicht Bestandteil der Kostenfunktionen) sind vielversprechend.
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Abstract

Numerical models are used to simulate and to understand the interplay of physical processes

in the atmosphere, and to generate weather predictions and climate projections. However,

due to the high computational cost of atmospheric models, discrepancies between required

and available spatial resolution of modeled atmospheric data occur frequently. One approach

to generate higher-resolution atmospheric data from coarse atmospheric model output is sta-

tistical downscaling.

The present work introduces multi-objective Genetic Programming (MOGP) as a method

for downscaling atmospheric data. MOGP is applied to evolve downscaling rules, i.e., sta-

tistical relations mapping coarse-scale atmospheric information to the point scale or to a

higher-resolution grid. Unlike classical regression approaches, where the structure of the re-

gression model has to be prede�ned, Genetic Programming evolves both model structure and

model parameters simultaneously. Thus, MOGP can �exibly capture nonlinear and multi-

variate predictor-predictand relations. Classical linear regression predicts the expected value

of the predictand given a realization of predictors minimizing the root mean square error

(RMSE) but in general underestimating variance. With the multi-objective approach multi-

ple cost/�tness functions can be considered which are not solely aimed at the minimization of

the RMSE, but simultaneously consider variance and probability distribution based measures.

Two areas of application of MOGP for atmospheric downscaling are presented: The down-

scaling of mesoscale near-surface atmospheric �elds from 2.8 km to 400 m grid spacing and

the downscaling of temperature and precipitation series from a global reanalysis to a set of

local stations.

(1) With growing computational power, integrated modeling platforms, coupling atmospheric

models to land surface and hydrological/subsurface models are increasingly used to account for

interactions and feedback processes between the di�erent components of the soil-vegetation-

atmosphere system. Due to the small-scale heterogeneity of land surface and subsurface, land

surface and subsurface models require a small grid spacing, which is computationally unfeasi-

ble for atmospheric models. Hence, in many integrated modeling systems, a scale gap occurs

between atmospheric model component and the land surface/subsurface components, which

potentially introduces biases in the estimation of the turbulent exchange �uxes at the surface.

Under the assumption that the near surface atmospheric boundary layer is signi�cantly in�u-

enced by land surface heterogeneity, MOGP is used to evolve downscaling rules that recover
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high-resolution near-surface �elds of various atmospheric variables (temperature, wind speed,

etc.) from coarser atmospheric data and high-resolution land surface information. For this

application MOGP does not signi�cantly reduce the RMSE compared to a pure interpolation.

However, (depending on the state variable under consideration) large parts of the spatial vari-

ability can be restored without any or only a small increase in RMSE.

(2) Climate change impact studies often require local information while the general circulation

models used to create climate projections provide output with a grid spacing in the order of

approximately 100 km. MOGP is applied to estimate the local daily maximum, minimum

and mean temperature and the daily accumulated precipitation at selected stations in Europe

from global reanalysis data. Results are compared to standard regression approaches. While

for temperature classical linear regression already achieves very good results and outperforms

MOGP, the results of MOGP for precipitation downscaling are promising and outperform a

standard generalized linear model. Especially the good representation of precipitation ex-

tremes and spatial correlation (with the latter not incorporated in the objectives) are encour-

aging.
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1
Introduction

The dynamical processes in the atmosphere (and at the land surface and in the subsurface)

act at intrinsic spatial and temporal scales. Turbulent eddies have a spatial extension of sev-

eral centimeters to a few hundred meters and a life span between seconds and a few minutes;

convective events occur over a wide range of scales from several meters to several kilometers

with durations between minutes and hours; large scale oscillation patterns, such as the El

Niño and La Niña phases of the El Niño Southern Oscillation ENSO typically persist over

several months (cf. Fig. 1.1).

Numerical models are used to simulate the dynamical and physical processes in the atmo-

sphere (and at the land or subsurface) in order to make predictions of future weather and

climate conditions 1 and to improve understanding of the interplay of the processes involved.

Atmospheric models typically rely on a set of prognostic hydro-thermodynamic partial di�er-

ential equations and a set of diagnostic equations, which together describe the atmospheric

state and its change in time. The set of equations is discretized using �nite di�erences, �nite

elements etc. or via a spectral approach and solved by numerical integration schemes. Solving

the equations is computationally expensive.

General Circulation Models (GCMs), which cover the whole globe, are therefore restricted to

a relatively coarse grid spacing (typically in the order of 100 kilometers) by the available com-

putational power. In climate modeling, regional climate models (RCMs) use a smaller grid

spacing as these are nested into the GCMs and applied over smaller (regional) domains (e.g.,

continental Europe with a grid spacing of 7 km). The grid spacing can be decreased further

by carrying out multiple nesting steps (e.g., up to 3 km for the Alpine region) (cf. Fig. 1.2).

Also in operational numerical weather prediction (NWP) such model chains are common.

GCMs provide initial conditions (taken from an analysis run) and boundary conditions to

limited area model NWP models with a smaller grid spacing typically for continental do-

mains (e.g., COSMO-EU covering a European domain with a 7 km grid spacing). Even more

local models with smaller grid spacing (e.g., COSMO-DE covering Germany with a grid spac-

ing of 2.8 km) receive initial and boundary conditions from the continental scale models.

Atmospheric processes that are not resolved by the model resolution - note that for numer-

1Weather refers to the short term atmospheric state. Climate refers to long term (30 years or longer) statistics
of (daily) weather.
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1. Introduction

Figure 1.1.: Important atmospheric processes and their intrinsic spatial and temporal scales (follow-
ing e.g., Laing and Evans, 2011).

ical reasons the e�ective resolution of a model corresponds to at least four grid boxes - are

accounted for by parameterization schemes. GCMs incorporate cloud schemes, most RCM

and NWP applications incorporate convection schemes, and even high-resolution simulations

with grid spacings of a few hundred meters still require turbulence schemes. In large eddy

simulations (LES) of the atmospheric boundary layer, which is feasible for very small domains

only, the large eddies, which are responsible for the major part of the turbulent exchange of

mass, energy and momentum, are resolved. However, the smaller eddies, typically in the

inertial subrange, are parameterized even in LES simulations.

With the atmosphere being a (deterministic) chaotic system2 its numerical modeling is in-

evitably subject to large uncertainties. Overall uncertainty results from uncertainties of initial

and boundary conditions, and uncertainties induced by numerical discretization and parame-

terization schemes. Especially the latter are known to constitute a major source of uncertainty.

GCMs often have di�culties with the representation of clouds and precipitation. In higher

resolution models the representation of convection and turbulent exchange of energy, moisture

and momentum are still challenging.

Modeled atmospheric data is of use to many communities. The value of modeled atmospheric

data to other communities is limited by uncertainty (and potentially systematic errors) and

by the available grid spacing. Hydrological models, land surface models, agricultural models

etc. require atmospheric data often at high spatial resolutions as many hydrological and land

surface modeling applications use a small grid spacing (100 m or less) to account for the

heterogeneity of land surface and soil at small scales. Using coarser-scale atmospheric data as

forcing for such simulations can induce biases for example in the estimation of the turbulent

2Deterministic chaos refers to systems for which any small change in the initial state can (after some time)
lead to a completely di�erent development of the system state.
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Figure 1.2.: Domain extent and grid spacing of common types of atmospheric models.

�uxes as the �uxes are described by nonlinear functions of the state of the land surface and the

lowermost atmosphere. With increasing computational power integrated modeling platform

coupling subsurface, land surface and atmospheric models are used more and more frequently.

For computational reasons and to improve the simulation of the turbulent exchange �uxes

such platforms often employ mosaic approaches (assigning several land and subsurface grid

boxes to one atmospheric model column). An appropriate atmospheric downscaling might

further improve the �ux estimation as well as the simulation of threshold dependent processes

such as snow melt or soil freezing. Moreover, climate change impact modeling (vegetation

modules, crop modules, hydrological modules etc.) requires local (up to point scale) atmo-

spheric information.

To match the requirements of the users, modeled atmospheric data is often processed using

model output statistics, e.g., for bias correction, to reduce systematic errors. The discrep-

ancy between required resolution and available resolution from the models (representativeness

problem) is addressed by downscaling techniques3. In practice many downscaling techniques

combine the correction of model errors and representativeness problem. For regionalized or

local climate projections, a vast number of empirical-statistical downscaling techniques have

emerged over the past decades.

The multi-objective Genetic Programming (MOGP) approach presented in this study di�ers

from the majority of downscaling techniques in two ways: (1) Genetic Programming allows the

implementation of symbolic regression. That is, model structure and model parameters are

evolved simultaneously, such that nonlinear and multivariate predictor-predictand relations

can be �exibly accounted for. For most present techniques (e.g., most regression approaches,

3The nesting of regional climate models into general circulation models is referred to as dynamical downscal-
ing. Empirical-statistical approaches are referred to as empirical-statistical downscaling.
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1. Introduction

analog techniques) the model structure has to be prede�ned and only the model parameters

are optimized. (2) Most existing techniques either aim at matching modeled and reference

probability distributions (e.g., quantile mapping or stochastic weather generators) or aim at

a pointwise match of the reference data (e.g., most regression techniques including neural

networks). The multi-objective approach allows to incorporate multiple �tness/cost function

when �tting the downscaling model. That is, distribution based measures, such as the inte-

grated quadratic distance, can be considered together with measures comparing reference and

prediction pointwise, such as the root mean square error.

The presented work has been carried out in the framework of the Transregional Collaborative

Research Center 32 on Patterns in Soil-Vegetation-Atmosphere-Systems. Initial motivation

of the work is the development of an improved atmospheric downscaling scheme to be applied

in fully coupled subsurface-land surface-atmosphere simulations with the Terrestrial Systems

Modeling Platform (TerrSysMP) developed within TR32. During the work on this thesis the

COST action VALUE on Validating and Integrating Downscaling Methods for Climate Change

Research has set up a set of downscaling experiments for climate data aiming at a comprehen-

sive intercomparison of existing downscaling techniques which has motivated an additional

application of MOGP.

The Chapters 2-4 o�er background information on the di�erent aspects involved in this work.

Chapter 2 introduces Genetic Programming and can be skipped by readers familiar to GP.

Chapter 3 provides background information on the integrated modeling of the soil-vegetation-

atmosphere system focusing on the representation of land-surface heterogeneity, existing at-

mospheric disaggregation approaches and introduces the TerrSysMP. Furthermore, the at-

mospheric component model of TerrSysMP, COSMO, which has been used for this study, is

described in more detail. Downscaling approaches, mainly designed for downscaling of cli-

mate data, are reviewed in Chapter 4. The MOGP downscaling approach is introduced in

Chapter 5. The detailed setup and the results of MOGP for downscaling near-surface at-

mospheric �elds (from 2.8 km to 400 m grid spacing) are described in Chapter 6. For this

MOGP application high-resolution modeled data serves as reference. Thus, the downscaling

aims to account purely for the representativeness problem ignoring potential model errors. In

Chapter 7 we apply MOGP to the �rst experiment set up by COST-VALUE, which considers

the downscaling of climate data time series from GCM scale to point scale. For this appli-

cation observation data serves as reference. Hence, the downscaling accounts for both, the

representativeness problem and potential model errors, simultaneously without distinguishing

between the two. The major results of this thesis and their implications are summarized and

discussed in the conclusion in Chapter 8. Parts of Chapter 5, 6 and Appendix A are published

in Simmer et al. (2015) and Zerenner et al. (2016).
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2
Genetic Programming

Genetic Programming addresses the problem of automatic programming, namely, the problem

of how to enable a computer to do useful things without instructing it, step by step, how to do

it (John R. Koza in Banzhaf et al., 1997).

Genetic Programming (GP) automatically creates program code to solve user de�ned tasks

requiring only a minimum of information by the user. In particular the user is not required

to prescribe the size and shape of the solution. GP belongs to the evolutionary computation

techniques, which are based on the Darwinian concept of survival of the �ttest.

For a given problem a generation of initial solutions is created randomly (or incorporating prior

knowledge). Each of these candidate solutions is applied to the problem and evaluated. The

solutions from the existing generation are then modi�ed to form a new generation (cf. Fig. 2.1).

The better a candidate solution performs, the more likely it contributes to the successive

generation. The evolution is stopped and the best solution found returned when a certain

number of generations de�ned by the user is reached (or when a solution is found that performs

su�ciently well).

Evolutionary computation contains not only GP, but also many related techniques such as

genetic algorithms (GA) or gene expression programming (GEP). In this work we stick to

the classical (tree-based) Genetic Programming. The content of this chapter largely relies on

the textbooks by Banzhaf et al. (1997), Mitchell (1998), Poli et al. (2008), A�enzeller et al.

(2009) and the pioneering work by Koza (1992). After introducing the fundamental elements

generate population
 of programs

run programs and 
evaluate their quality

breed better programs

solution

Figure 2.1.: Concept of Evolutionary Computation: Given a problem to solve, a population of
potential solutions is frequently tested and updated until the termination criterion is met (Figure
adapted from Poli et al., 2008).
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2. Genetic Programming

of a GP system and the associated terminology (Sec. 2.1), we walk through a standard GP

algorithm step by step (Sec. 2.2). Finally some real world applications of GP are presented

(Sec. 2.3).

2.1. Terminology and Definitions

Parse tree In classical GP the solutions (individuals) are represented by parse trees, which

consist of functions and terminals. Each element of a parse tree is also referred to as a node.

Figure 2.2 shows an example of a parse tree representing a simple equation. The tree consists

of 9 nodes arranged on 4 levels. Parse trees are read bottom to top. That is, the parse tree

in Figure 2.2 is evaluated as follows:

(1) 4 is multiplied with c,

(2) 2 is divided by 3,

(3) the result of (2) is multiplied with b,

(4) the results of (1) and (3) are subtracted.

Hence, the parse tree represents the equation 4c− 2
3b. This is a simple example of a parse tree

containing only arithmetic functions (minus, times, divide), variables (c, b) and constants (2,

3, 4). Dependent on the problem to solve, parse trees can be much larger and much more

complex.

minus

timestimes

divide 

2 3 

b 4 c 

Figure 2.2.: Example of a parse tree representing the simple equation 4c− 2
3b.

Terminal set The terminal set T provides the basic input to the parse trees. Thus, terminals

terminate the branches of the tree. The terminal set can contain numerical constants, variables

(for instance in regression problems) and any kind of zero-argument functions. In the example

parse tree shown in Figure 2.2 the terminals used are the numerical constants 2, 3 and 4, and

the variables b and c.

Function set The function set F contains all of the functions and statements available to

the GP system. The type of functions can be very diverse. Examples of possible functions

and statements are:

� Arithmetic functions, i.e., plus, minus, multiply, divide,

� Transcendental functions, e.g., trigonometric functions and logarithmic functions,
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2.1. Terminology and De�nitions

� Boolean functions, i.e., AND, OR, NAND, NOR,

� Conditional statements, e.g., IF ... THEN ... ELSE ...,

� Loop statements, e.g., FOR ... DO ...,

� Subroutines.

In the example parse tree shown in Figure 2.2 the function used are subtraction (minus),

multiplication (times) and division (divide).

Arity The arity of a function is the number of input arguments. All elements of the terminal

set have arity zero. The elements of the function set have an arity of at least one.

Genetic Operators During the evolutionary process, again and again new populations of

candidate solutions are created from the already existing ones by applying genetic operators.

The three standard genetic operators commonly used in tree-based GP are:

(1) Reproduction The reproduction operator is the most straightforward. An individual

is selected from the current generation, copied and inserted into the new population

(cf. Fig. 2.3).

(2) Crossover The crossover operator combines two individuals (parents). At �rst two

individuals from the current generation are selected to serve as parents. From each par-

ent a subtree is chosen randomly. The subtrees are exchanged (cf. Fig. 2.3). Crossover

transforms two existing individuals into two new individuals.

(1) Reproduction

(2) Crossover

(3) Mutation

Figure 2.3.: The three common genetic operators used in standard (tree-based) Genetic Program-
ming.
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2. Genetic Programming

(3) Mutation Mutation operates on one individual only. There are several variants of

the mutation operator. In our algorithm we use the standard subtree-mutation. An

individual from the current generation is selected. From this individual a randomly

chosen subtree is cut o� and replaced by a new randomly generated subtree (cf. Fig. 2.3).

The mutation operator allows new program sequences to enter the evolutionary process.

Fitness function The �tness or �tness function is the measure used in GP to quantify

how well a candidate solution solves the problem given and is used to evaluate the candidate

solutions. During the evolutionary process the �tness also determines how likely an individual

is selected to serve as parent in the creation of a new generation. The most simple way is to

set the selection probability of the individuals proportional to their �tness.

2.2. Preparing and Running GP

Preparation Figure 2.4 illustrates input and output of a standard GP system. The user

provides function and terminal sets. An appropriate selection of functions and terminals is of

great importance to successfully employ GP to solve a given problem. Further, a su�cient set

of training data has to be supplied. The outcome is evaluated by the �tness function. Like

the de�nition of functions and terminals, also an appropriate �tness function is essential to a

successful GP setup. The user can specify some additional run parameters, such as the size

of each population, maximum number of levels or nodes for the parse trees or the selection

properties of reproduction, crossover and mutation operators. Finally, a termination criterion

has to be provided that de�nes when to stop the GP run. The termination criterion can be

reaching a certain �tness value or a certain number of generations.

GP

terminal setfunction set training data
termination

criterion
fitness

function parameters

solution
(program code)

Figure 2.4.: Illustration of input and output to Genetic Programming. What happens inside the
black box is shown in Fig. 2.5 and explained in the text.

Execution Figure 2.5 shows the typical structure of a GP system. The number of gen-

erations run so far is saved as the variable gen. The termination criterion is indicated by

genmax, the maximum number of generations to run. The number of individuals in the cur-

rent generation is saved as the variable ind. The number of individuals in each generation is

indgen.
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select 1 parent

no

yes

gen←0

apply 
individuals to
training data

termination
criterion met?

(e.g. gen=gen
max

?)

calculate
 fitness 

of individuals

select 2 parents

(randomly)
 select 

genetic operator

select 1 parent

perform
 reproduction

perform
 reproduction

perform
 crossover

perform
 mutation

insert 1 child
 into new

 population

insert 2 children
 into new

 population

insert 1 child
 into new

 population

ind←0

ind←ind+1 ind←ind+2 ind←ind+1

ind = ind
gen

?

yes

create 
initial 

generation

gen←gen+1

p(mutation)p(crossover)p(reproduction)

return
best

individual

no

Figure 2.5.: Flowchart of the main steps of Genetic Programming. A detailed description can be
found in the text.
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(1) First an initial population (generation 0) of candidate programs is generated. The

variable gen is set to zero, i.e., gen ←0. The initial generation can be created either

randomly or include already known approximate solutions of the given problem.

(2) The individuals are applied to the training data provided by the user.

(3) The outcome of each individual is evaluated according to the �tness function.

(4) If the termination criterion is met (e.g., if the maximum number of generations is reached

or if a satisfactory solution is found) the algorithm stops and and the best individual

is returned. If the termination criterion is not met, the algorithm continues with the

creation of a new, hitherto empty (ind←0), generation:

(a) A genetic operator is randomly selected based on the selection property p.

(b) Depending on the operator selected one or two parents are drawn from the current

generation.

(c) The genetic operator is applied to the parent(s).

(d) The o�spring is inserted into the new population. That means the number of

individuals in the new population is increased by one (ind←ind+1) for mutation

or reproduction, or by two (ind←ind+2) for crossover.

(e) Starting from (a) this sequence is repeated until enough individuals for the new

generation have been created (i.e., until ind=indgen).

(5) After the new generation is created the algorithm continues at (2).

2.3. Real World Applications

Over the years GP has been applied to a variety of real world problems. Based on thousands

of GP applications over the last decades, some criteria have emerged indicating if GP is likely

to be a suitable method for a problem (e.g., Poli et al., 2008). GP is likely to perform well

� when the relation between the relevant variables is either unknown or at least not fully

understood,

� when �nding the shape and size of the solution is a mayor part of the problem,

� when su�cient amounts of training/test data are available,

� when there are good possibilities to test the performance of a candidate solution, but

poor chances to directly obtain a su�cient solution,

� when conventional mathematics do not (or can not) provide an analytic solution,

� when an approximate solution is acceptable (or the only solution that is ever likely to

be obtained),

� when small improvements in performance may have large impacts for applications.
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Symbolic Regression Many real world applications of GP are symbolic regression prob-

lems. Symbolic regression refers to the �tting of observed data with the structure of the

regression model unknown. Symbolic regression is often used for data where the underlying

process is not known or not yet understood well enough to describe it in terms of a mathe-

matical formula. Symbolic regression has been one of the earliest applications of GP (Koza,

1992). Common �tness functions of symbolic regression problems are the mean error or the

root mean square error between the output of the GP solutions and the desired outcomes as

contained in the training data set.

Regression problems occur in almost any scienti�c area (and not only there). Also the detec-

tion of downscaling rules considered in the later chapters of this work ranks among the sym-

bolic regression problems. Here, mappings are established which predict the high-resolution

data from coarser-resolution information using observed or modeled data at high-resolution

for training.

Image and Signal Processing In the area of image and signal processing GP has been

used, for instance, to visually classify objects (e.g., Smart and Zhang , 2003), for content based

image-retrieval (e.g., Torres et al., 2009) or to detect certain image features (e.g., Tackett ,

1993).

Compression and Data Mining So called programmatic compression has been already

considered in Koza (1992). Programmatic compression treats an image as a function of row

and column index of each pixel. Such functions can be derived using GP and serve as a lossy1

compressed version of an image. The technique of programmatic compression has been further

studied and applied to both images and sounds in Nordin and Banzhaf (1996). Lossless2 image

compression using GP has been �rst considered in Fukunaga and Stechert (1998) who evolve

non-linear models predicting the value of a pixel from a subset of neighboring values. Kattan

and Poli (2008) proposed a lossless data compression in which GP combines well known

compression algorithm such that optimal reduction of the �le length is achieved.

Bioinformatics and Medicine A large number of studies considers classi�cation and data

mining for large biomedical data sets, such as gene microarray data, by means of GP (e.g.,

Hong and Cho, 2006; Yu et al., 2007).

Economic Modeling In the economic sector GP has been, for instance, employed for evolv-

ing trading rules (e.g., Yu et al., 2005) or to predict stock indices (e.g., Chen et al., 1999).

Geosciences Compared to other areas, such as bioinformatics or economics, GP has been

rarely applied to geoscienti�c tasks. Parasuraman et al. (2007) and Kim and Kim (2008), for

1In lossy �le compression certain information is permanently eliminated (especially redundant information).
When the �le is uncompressed, only a part of the original information is available. Applied for instance to
a graphic lossy compression typically reduces the resolution the graphic.

2In lossless �le compression no information from the original �le is lost. When the �le is uncompressed, the
original �le is fully restored.
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2. Genetic Programming

instance, use GP (or genetic algorithms) for evapotranspiration modeling. Wang (1991) em-

ploy genetic algorithms for calibrating conceptual run-o� models. The few studies employing

GP to the downscaling of general circulation model output (Coulibaly , 2004; Liu et al., 2008;

Hashmi et al., 2011) are reviewed in detail in Section 4.4.
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3
Integrated Modeling of the Soil-Vegetation-Atmosphere

System

The Transregional Collaborative Research Center 32 studies Patterns in Soil-Vegetation-

Atmosphere Systems using monitoring, modeling and data assimilation (Vereecken et al.,

2010; Simmer et al., 2015). Processes in soil, vegetation and atmosphere act over a large

range of spatial and temporal scales. The land surface is strongly heterogeneous with respect

to topography and texture with especially the latter being strongly a�ected by human usage.

Typically atmospheric models are computationally signi�cantly more expensive than land

surface and subsurface models and therefore applied with comparatively coarse grid spacings.

E�ects of subscale land surface heterogeneity on the turbulent exchange between land surface

and atmosphere can be partly accounted for by parameterization schemes. An overview of

the treatment of land surface heterogeneity in atmospheric modeling is given in Section 3.1.

Not only the land surface is strongly heterogeneous but also the lower atmospheric boundary

layer, which is signi�cantly in�uenced by land surface heterogeneity. Atmospheric disaggre-

gation or subgrid-scale parameterizations aim to account for the spatial variability in the low-

ermost atmosphere with the ultimate goal of scale-consistent coupling between atmospheric

models and surface (and subsurface) schemes or models. In Section 3.2 existing approaches

are reviewed with a special focus on the 3-step downscaling scheme by Schomburg et al. (2010),

which has been developed in the �rst phase of TR32. The 3-step scheme has been designed

for downscaling mesoscale near-surface atmospheric �elds from 2.8 km to 400 m grid spacing.

In the central step of the scheme, which aims to reconstruct the �ne-scale structures of the

�elds, a linear regression utilizing high-resolution land surface information is applied. The

3-step scheme performs well for a subset of the atmospheric state variables required by land

surface and subsurface models and/or under certain weather conditions. By applying MOGP

to the downscaling of atmospheric near-surface �elds at the mesoscale, we aim to account also

for complex and nonlinear processes in the lower atmospheric boundary layer, which cannot

be captured by a simple linear regression (cf. Chap. 6).

During the second phase of the TR32 the integrated Terrestrial Systems Modeling Platform

(TerrSysMP) has been set up by Shrestha et al. (2014). TerrSysMP o�ers a highly modular

platform coupling the atmospheric model COSMO, the land surface model CLM and the sub-

surface model ParFlow via an external coupling interface. In Section 3.3 TerrSysMP and its
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3. Integrated Modeling of the Soil-Vegetation-Atmosphere System

components are brie�y introduced. In the current setup TerrSysMP optionally includes the

3-step downscaling algorithm by Schomburg et al. (2010).

To improve the downscaling algorithm a new and larger reference data set has been created

by carrying out high-resolution simulations (400 m grid spacing) with the most recent version

of the COSMO model. The COSMO model is thus reviewed in more detail in Section 3.4

focusing on the COSMO-DE con�guration, which has been adapted for the high-resolution

simulations (cf. Sec. 6.1.1).

3.1. Land Surface Heterogeneity in Earth System Modeling

The land surface is an important constituent of the earth system as it represents the inter-

face between atmosphere, biosphere and subsurface hydrology. The land surface exchanges

momentum, energy, and water and other constituents, such as CO2, with the atmosphere

and thus impacts weather and climate. In atmospheric modeling so-called soil-vegetation-

atmosphere transfer schemes (SVATs) are used to capture these interactions. Typical SVATs

are composed of sub-models (soil modules, vegetation modules, snow modules, land surface

hydrology modules) interacting with the atmosphere and with each other. SVATs calculate

the surface-atmosphere exchange �uxes of momentum, energy (radiation, sensible heat, la-

tent heat), moisture and other constituents, such as CO2, as lower boundary condition to the

atmospheric models.

The accurate representation of the turbulent exchange �uxes in models is challenging as the

�uxes result from an interacting chain of parameterized processes above and below the land

surface (e.g., Schomburg , 2011). The turbulent exchange �uxes are typically parameterized

following the Monin-Obhukov similarity theory (e.g., Stull , 2012). Monin-Obhukov theory

describes turbulent motion within the lower atmosphere above homogeneous terrain. In real-

ity the land surface is not homogeneous, but heterogeneous with respect to many parameters

and over a wide range of spatial scales. Land surface heterogeneity is created by:

� vegetation cover and surface type (vegetation, bare soil, urban area, etc.),

� terrain morphology (elevation, slope, orientation),

� soil characteristics,

� variability of climatic forcings (e.g., spatial precipitation patterns)

(Giorgi and Avissar , 1997). The heterogeneity of the land surface a�ects the land-atmosphere

exchange of energy, momentum, moisture and other constituents and thus impacts energy and

moisture budgets. The turbulent exchange over forested areas is typically much stronger than

over bare soil areas. This is, �rstly, due to the much larger roughness of forests leading to

a more pronounced coupling between land surface temperature and near-surface air temper-

ature. Secondly, the roots of the trees can access deep soil moisture reservoirs leading to

moister conditions in the lower atmosphere compared to bare soil areas caused by transpi-

ration (Schomburg , 2011). This is just one example of how the turbulent exchange �uxes

are a�ected by land surface characteristics. Idealized simulations with a mesocale model by
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Avissar and Pielke (1989) have shown, for instance, strong di�erences for (maximum) latent

and sensible heat �uxes over di�erent surfaces (460 W/m2 di�erence between sensible heat

�uxes over water bodies and urban areas; 610 W/m2 di�erence between built up areas and

cropland). Measurement campaigns have con�rmed large di�erences in the turbulent �uxes

for di�erent land surfaces (e.g., LITFASS Lindenberg Inhomogeneous Terrain - Fluxes between

Atmosphere and Surface, Beyrich and Mengelkamp, 2006 ; EVA-GRIPS Evaporation at Grid

and Pixel Scale, Mengelkamp et al., 2006).

Atmospheric models are computationally expensive and therefore limited in grid spacing.

Even with increasing computational power (and smaller grid spacing) the land surface re-

mains heterogeneous at the subgrid-scale. Many e�ects induced by subgrid-scale land surface

heterogeneity can be parameterized (e.g. Avissar and Pielke, 1989; Avissar , 1992; Koster and

Suarez , 1992; Seth et al., 1994; Leung and Ghan, 1995; Schlünzen and Katzfey , 2003; Heine-

mann and Kerschgens, 2005; Ament and Simmer , 2006).

The e�ects of land surface heterogeneity are often split into aggregation and dynamical e�ects

(e.g., Giorgi and Avissar , 1997). Aggregation e�ects occur when two land surface processes

F and G are nonlinearly dependent on the heterogeneous surface variables x, y such that the

grid box averaged e�ect of x on F cannot be represented by averaging x over the grid box

and than applying F , i.e.,

F (x) 6= F (x̄);G(x) 6= G(x̄)

and such that combined e�ects of heterogeneity of x on F and y on G cannot be calculated

from the averaged e�ects of F (x) and G(y), i.e.,

F (x)G(y) 6= F (x) G(y) 6= F (x̄)G(ȳ).

Aggregation e�ects have been shown to a�ect latent and sensible heat �uxes as well as the

simulation of snow, soil moisture dynamics and runo� as all these processes exhibit a nonlin-

ear dependency on land surface characteristics and/or state variables at the surface and/or

the lower atmosphere. The use of averaged parameters and state variables can introduce sig-

ni�cant biases when simulating such processes. Aggregation e�ect models aim to reduce these

biases by calculating the contribution of subgrid-scale heterogeneity to the grid box average

of land-atmosphere exchange �uxes, water budgets and so on.

Dynamical e�ects are associated with micro- and mesoscale circulations induced by land sur-

face heterogeneity. These can in�uence the boundary layer structure and the vertical transport

of momentum, energy and water. Models of dynamical e�ects attempt to simulate the rele-

vant impacts of the land surface heterogeneity induced micro- and/or mesoscale circulations.

In coarser-scale models with a grid spacing in the order of 10-100 km both dynamical and

aggregation e�ects are not su�ciently resolved. In smaller-scale models, such as the COSMO-

DE (2.8 km grid spacing), dynamical e�ects are explicitly modeled to some degree. However,

the aggregation e�ects remain relevant also for grid spacings of few kilometers, as surface

heterogeneity is present down to very small scales.

Aggregation methods seek to parameterize aggregations e�ects and can be split into two

classes, the discrete methods and the PDF methods. The discrete methods (tile and mosaic
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approaches) divide each model grid box into a number of homogeneous subregions denoted

as tiles or patches. The surface calculations are carried out separately for each tile and after-

wards aggregated to the full model grid box by computing an area weighted average over all

tiles/patches. In the PDF methods the parameters and variables which are heterogeneous on

the subgrid scale are described by either analytically or empirically derived PDFs. Aggrega-

tion is then carried out in the phase space spanned by the parameter's PDFs.

Tile approaches (e.g., Avissar and Pielke, 1989; Koster and Suarez , 1992)1 divide the model

grid box into a number of homogeneous tiles that exchange �uxes with the atmosphere directly

and independent of each other. The subgrid-scale tiles can be de�ned based on vegetation

types (Koster and Suarez , 1992), topographic elevation (Leung and Ghan, 1995) or via a

combination of di�erent land surface characteristics such as vegetation, soil, slope orientation

and so on as in Avissar and Pielke (1989). Tile schemes do not keep track of exact location

of the tiles.

In the explicit subgrid approach by Seth et al. (1994) each model box is divided into N2

subgrid elements (cf. Fig. 3.3), i.e., a higher-resolution land surface scheme is nested into the

coarser-resolution atmospheric model. In the following the explicit subgrid scheme is also

referred to as mosaic scheme. In Seth et al. (1994) each subgrid cell is governed by a single

vegetation type (either the most frequent one or a type whose characteristics match the char-

acteristics averaged over all surface types) and bare soil. The main di�erence between tile

and mosaic approach is that in the mosaic approach each subgrid cell is assigned a speci�c

location. Thus, climatic forcing can be explicitly distributed over the subgrid cells. The basic

assumption motivating the discrete mosaic is that subgrid-scale climatic forcing experienced

by the land surface is important for the calculation of net exchange of heat, moisture, momen-

tum. Still, the subgrid-scale heterogeneity of the surface does not penetrate vertically above

the surface layer. The atmosphere only sees the e�ective �uxes and dynamical e�ects are not

accounted for.

3.2. Atmospheric Disaggregation

In most studies applying tile or mosaic approaches (e.g., Avissar and Pielke, 1989; Koster and

Suarez , 1992) grid box averaged atmospheric forcing is applied to each subgrid tile or grid cell,

i.e., no atmospheric disaggregation is carried out. However, the lower atmospheric boundary

layer is known to be highly heterogeneous especially above heterogeneous land surfaces even

down to small scales (below 1 km).

Pitman et al. (1993) have investigated the e�ects of the assumption of constant precipitation

over the subgrid-scale tiles in GCM simulations. The authors have compared simulations

with constant precipitation over each grid box with simulations where precipitation has been

disaggregated such that only a fraction of each grid box is governed by precipitation. The

intensity has been disaggregated as the grid box average precipitation divided by the pre-

cipitation fraction. It has shown that precipitation disaggregation can have a huge impact

1Tile approaches are sometimes also referred to as mosaic approaches. When we talk of mosaic approaches
in this study, we refer to the the explicit subgrid approach as formulated in Seth et al. (1994).
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on runo� simulation. The simulated water budget changed from evaporation dominated to

runo� dominated. Other studies showed less sensitivity to fractional precipitation disaggrega-

tion (Giorgi , 1997a,b), which might be due to di�erent runo� parameterizations. Hydrological

models often operate at even higher resolutions than land surface schemes. Several studies,

for instance by Singh (1997) and Segond et al. (2007), have con�rmed the importance of a

realistic distribution of precipitation for evaporation and runo� simulation.

Not only the subgrid-scale variability of precipitation a�ects the simulation of land surface and

subsurface processes, but also the subgrid-scale of near surface temperature, humidity, wind

speed and incoming radiation a�ects land and subsurface. Shao et al. (2001) have examined

the e�ects of both land surface heterogeneity and near surface atmospheric heterogeneity on

the simulation of the surface energy and momentum �uxes with a mesoscale model. A series

of numerical experiments has been carried out over a domain of 40× 40 km centered around

Cologne. In the simulations di�erent grid spacings (1 km, 2 km and 4 km) for atmosphere and

land surface have been used. It has shown that not only an increased grid resolution of the

land surface for a given atmospheric grid resolution improves the simulation of the �uxes, but

also an increased atmospheric grid resolution for a given land surface grid resolution leads to

an improved �ux estimation. While the former is widely agreed on, the latter contradicts the

often prevailing view that atmospheric subgrid variability especially on smaller scales (e.g., in

meso-γ scale weather prediction) only plays a minor role compared to the land surface het-

erogeneity itself. Subgrid atmospheric motions (and thus variability) might be an important

factor to be included in subgrid closure schemes of atmospheric models.

3.2.1. Early Approaches

The discrete (mosaic) scheme (Seth et al., 1994) allows the usage of explicitly distributed

atmospheric forcings. Seth et al. (1994) have applied a simple disaggregation for temperature,

humidity and convective clouds and precipitation. Temperature and humidity have been

either downscaled proportional to soil temperature or soil moisture anomalies or based on

topographic height anomalies. The simulations have been carried out with very coarse grid

spacing of approximately 30° (≈ 300 km) for the atmosphere and 5° (≈ 50 km) for the land

surface. For simulations over 20 years the atmospheric disaggregation has changed the heat

�uxes up to 15% and runo� up to 33%.

Giorgi et al. (2003) have adapted the approach of Seth et al. (1994) for simulations with a

regional climate model over the Alpine region with a 60 km grid spacing for the atmosphere

and a 10 to 15 km grid spacing for the land surface. Near-surface atmospheric temperature and

speci�c humidity have been downscaled based on topographic height. Convective precipitation

has been distributed over one randomly chosen third of the subgrid-scale pixels. The analysis

of an 11 months simulation has shown an improved near-surface temperature over the complex

Alpine terrain and a more realistic representation of snow patterns, which may lead to a better

simulation of the seasonal evolution of the surface hydrology.

Molod et al. (2003) have presented a technique called extended mosaic. In the extended mosaic

not only the land surface processes are simulated in the subgrid-scale tiles, but also turbulent

motion in the boundary layer. A comparison of GCM simulations with the standard land
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surface mosaic and the extended mosaic have shown large di�erences for various regions all

over the globe (Molod et al., 2004).

3.2.2. The Schomburg 3-Step Scheme

The downscaling scheme of Schomburg et al. (2010) has been developed for downscaling near-

surface atmospheric �elds from 2.8 km to 400 m scale and consists of three steps. The three

steps can be applied consecutively or individually for stand-alone o�ine simulations as well

as in a fully coupled model system, such as TerrSysMP (Shrestha et al., 2014). In the �rst

step, a biquadratic spline interpolation is used to interpolate the coarse-scale atmospheric

data to a higher resolution while conserving mean and horizontal gradients of the coarse �eld.

In the second step, deterministic downscaling rules are applied to the interpolated �eld. The

rules are based on relations between atmospheric variables and the high resolution surface

information. In the last step, autoregressive noise is added to the �eld to restore the high

resolution variance of the �elds (cf. Fig. 3.1).

Step 1: Spline interpolation

The biquadratic spline interpolation smooths the coarse �eld and can be written as

yij = y(i, j) = a1 + a2i+ a3j + a4i
2 + a5j

2, (3.1)

with y denoting an atmospheric variable, for instance temperature, (i, j) the grid point on the

�ne-scale, and a1, ...., a5 denoting the regression coe�cients. To estimate the regression coe�-

cients �ve constraints are introduced: The derivatives of Equation 3.1 at the four edges of the

coarse pixel are required to equal the gradient between the coarse pixel and the corresponding

neighboring pixel. Further, the coarse pixel mean is conserved.

Step 2: Deterministic downscaling rules

The deterministic downscaling rules are applied to estimate the high-resolution anomalies on

top of the interpolation. High-resolution surface information serves as predictors in a linear

regression. Some of the near-surface atmospheric variables can be downscaled exploiting

known physical relationships:

Figure 3.1.: The three steps of the downscaling scheme by Schomburg et al. (2010) applied to a 10 m
temperature �eld on May 12th 2008, a clear sky day, at 10 UTC (Figures by A. Schomburg).
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� Surface pressure anomaly ∆p is estimated using relief height ∆z as predictor in the

hydrostatic equation

∆p = −ρg∆z (3.2)

with the assumption of a constant air density of ρ = 1.19 kg/m3.

� For cloud free skies the di�use part of upwelling shortwave radiation Sdif ↑ is down-
scaled using surface albedo for direct αdir and di�use αdif radiation by

Sdif ↑= αdirSdir ↓ +αdifSdif ↓ (3.3)

with Sdir ↓ and Sdif ↓ denoting direct and di�use downwelling radiation.

For the remaining �ve variables (temperature, wind speed, speci�c humidity, longwave ra-

diation, precipitation) there are no known direct relationships to the surface characteristics.

Therefore, the training data set has been evaluated for possible correlations, which usually

depend on the prevailing weather conditions. An automatic rule detection system has been

set up to �nd the best predictors, indicators and thresholds. The system calculates the corre-

lations between the 5 predictands and 16 possible predictors given by the surface parameters

and �elds derived therefrom for di�erent subsets of the training data. The selection of the

data subsets is based on 24 di�erent indicators, e.g., vertical temperature gradients or wind

speed below certain thresholds. The system selects only rules achieving correlations above 0.7

and applicable to at least 10% of the data:

� For the near surface temperature several rules have been found. The best rule found

uses orographic height information for downscaling when the temperature gradient of

the lowest 105 m is smaller than 0.0057 Km−1.

� The longwave net radiation can be disaggregated using ground temperature as pre-

dictand when the cloud cover is below 43% or when the longwave net radiation is less

than -82.5 Wm−2. These two indicators are almost equivalent.

For other weather situations and the remaining variables (speci�c humidity, wind speed and

precipitation) no applicable rules could be found.

Step 3: Noise generation

As many processes at the surface are nonlinear, also the reproduction of variance can be im-

portant to reduce biases. Except for the near-surface pressure, steps 1 and 2 do not reproduce

all �ne-scale variability. Therefore, in step 3 autoregressive Gaussian noise is added to the

�elds resulting from step 1 and 2. For this a stepwise multiple linear regression has been

applied to predict the �ne-scale standard deviation from the coarse-scale standard deviation

(of the surrounding 3 × 3 coarse pixels) of the respective variable and other atmospheric

parameters. The autoregression coe�cients are obtained from several high-resolution model

runs. In the third step spatial correlations are ignored.

The coarse pixel mean is conserved by subtracting the di�erence between the coarse value and
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the mean of the downscaled values for each coarse grid cell. This is important to assure that

the conservation of energy and mass is not violated by the downscaling. In case the down-

scaling predicts unphysical values (e.g., negative wind speeds or negative values for shortwave

radiation) the respective values are set to zero or to the coarse pixel mean (for wind speed).

In such cases the conservation of the mean is ensured by multiplying the subgrid values by

the fraction of the coarse mean before and after correcting the unphysical values.

Precipitation is treated di�erently from all other variables since the assumption of Gaussian

noise does not model the distribution of the precipitation anomalies well. For precipitation

the Gaussian noise term is transformed via an exponential function to match the distribu-

tions estimated from two high-resolution model runs that have generated precipitation. The

transformed noise terms are multiplied by the coarse pixel mean precipitation.

3.2.3. TopoSCALE

Fiddes and Gruber (2014) have presented a physically based and computationally e�cient

downscaling scheme called TopoSCALE for gridded climate data in complex terrain. TopoSCALE

is foremost aimed at creating high-resolution forcing data for land surface models (≤ 100 m)

from general circulation model output (50-100 km) by using �ne-scale topography information

from a high-resolution digital elevation model.

� Temperature, wind speed and speci�c humidity are interpolated according to the

subgrid-scale topographic height and the vertical gradients of the respective variables,

the latter being obtained from the coarse-scale atmospheric model output. For wind

speed an additional topographic correction according to Liston and Sturm (1998) is

optionally applied.

� Shortwave radiation is downscaled using multiple steps. First, shortwave radiation

is partitioned into direct and di�use components. Direct shortwave radiation can then

be downscaled according to the di�erence of the optical path length determined from

the topographic heights at grid- and subgrid-scale. Topographic corrections are applied

to both di�use and direct radiation at subgrid-scale to account for shadowing e�ects

occurring especially within complex terrain.

� Longwave radiation is downscaled in multiple steps. First clear sky emissivity is deter-

mined at the grid and subgrid-scale using grid-scale and downscaled (i.e., subgrid-scale)

temperature and speci�c humidity. Next all-sky emissivity at grid scale is determined

from the grid-scale longwave radiation and temperature utilizing the Stefan-Boltzmann

equation. The di�erence between grid-scale clear sky and all sky emissivity provides the

correction factor for the subgrid-scale longwave radiation obtained from subgrid-scale

temperature according to the Stefan-Boltzmann equation. This approach assumes that

cloud emissivity at grid and subgrid elevations are the same, but accounts for the reduc-

tion of clear-sky emissivity with height. After the elevation correction, terrain e�ects

are accounted for by multiplication with the sky-view factor, i.e., the fraction of the sky

visible from subgrid-scale pixel.
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� Precipitation is downscaled assuming a simple nonlinear lapse and optionally utilizing

precipitation climatologies.

TopoSCALE has been tested and compared with unprocessed coarse GCM data and a set of

simple disaggregation methods (e.g., assuming a �xed lapse rate for temperature). A com-

parison for up to 210 local stations in the Swiss Alps has shown signi�cant improvements for

TopoSCALE for air temperature, relative humidity and incoming longwave radiation com-

pared to the reference methods.

3.2.4. VERTEX

Recent studies by de Vrese and Hagemann (2016) and de Vrese et al. (2016) suggest a con-

ceptually di�erent approach called VERtical Tile EXtension (VERTEX), which can be seen

as an advancement of Molod et al. (2003). VERTEX expands the concept of the tile approach

into the vertical. Horizontal homogeneity is thus explicitly considered not only at the land

surface, but also within the lower atmospheric model layers, where turbulent mixing is cal-

culated for the single tiles de�ned by the di�erent land surfaces. In addition to Molod et al.

(2003) also horizontal turbulent exchange between the subgrid-scale tiles is explicitly included

in the scheme.

In de Vrese et al. (2016) single-column simulations at the GCM scale incorporating the VER-

TEX scheme and employing a simple �ux-aggregation scheme have been carried out. It

has shown that the vertical turbulent transport can largely di�er between the subgrid tiles.

Further, the comparison of the simulations with and without VERTEX has shown that the

horizontal disaggregation of the turbulent mixing process considerably impacts the mean state

of the grid box. In the simulations the impact of the explicit subgrid-scale representation of

the lower ABL has been, roughly approximated, half as large as for the explicit representation

of land surface heterogeneity.

The VERTEX technique is still in an early stage of development, but �rst tests suggest that

it might o�er a promising approach to improve the representation of aggregation e�ects in

coupled land surface-atmospheric simulations. In the �rst application (without any compu-

tational optimization) a model set up using 14 tiles for both, land surface and atmosphere,

models with the VERTEX scheme take almost 40% longer than simulations with a standard

�ux-aggregation scheme. Thus, computational optimization will be a crucial to make the

VERTEX scheme applicable for long term GCM simulations. Studies with smaller grid spac-

ings (e.g., for RCMs or mesoscale NWP models) have, to our current knowledge, not yet been

carried out.

3.3. The Terrestrial Systems Modeling Platform TerrSysMP

The Terrestrial Systems Modeling Platform (TerrSysMP) by Shrestha et al. (2014), which has

been developed within the Transregional Collaborative Research Center 32, o�ers a highly

modular framework for simulations of the soil-vegetation-atmosphere system. TerrSysMP

consists of the atmospheric model COSMO, land surface model CLM and the groundwater
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Figure 3.2.: Schematic diagram of TerrSysMP from Shrestha et al. (2014). Atmospheric model
COSMO, land surface model CLM and subsurface model ParFlow are coupled via the external coupler
OASIS3, which manages the data exchange between the component models ©American Meteorolog-
ical Society (AMS).

model ParFlow. The three component models are coupled using the OASIS coupler, which

allows for a separation of model grid spacing, time stepping and coupling frequency between

the component models (cf. Fig. 3.2).

The lower boundary of atmospheric models is commonly represented by soil-vegetation-

atmosphere transfer (SVAT) schemes. From an atmospheric modelers perspective state-of-

the-art land surface and groundwater models can o�er an improved parameterization of the

lower atmospheric boundary and thereby improve the representation of the exchange �uxes

of energy, moisture and momentum. This is important as these �uxes largely a�ect the evolu-

tion of the atmospheric boundary layer. A better understanding and representation of surface

�uxes might ultimately lead to better atmospheric and hydrological predictions (e.g., Avissar

and Pielke, 1989; Betts et al., 1996; Walko et al., 2000; Ament and Simmer , 2006). Recent

studies further suggest that the surface �uxes can be strongly coupled to groundwater table

dynamics (e.g., Maxwell et al., 2007; Miguez-Macho et al., 2007; Anyah et al., 2008; Maxwell

and Kollet , 2008; Kollet and Maxwell , 2008; Rihani et al., 2010).

Increasing computational power allows for the use of integrated modeling approaches, such

as TerrSysMP, simulating interaction and feedback processes between soil, vegetation and

atmosphere. Idealized simulations with TerrSysMP (Shrestha et al., 2014) support previous

studies showing a strong linkage between groundwater dynamics, biogeophysical processes

and the atmospheric boundary layer. Simulations over the Rur catchment exhibit patterns

in root zone soil moisture, which impact turbulent exchange �uxes and thus boundary layer

evolution. Rahman et al. (2015) have found evidence that, especially under strong convective

conditions, groundwater table dynamics can a�ect atmospheric boundary layer height, con-

vective available potential energy, and potentially precipitation. Thus, it appears that not

only a su�cient representation of land surface processes is crucial to atmospheric modeling,

but also the representation of subsurface processes.
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As the land surface (topography, land cover) and the soil (soil type) are highly heterogeneous

at small scales and strongly a�ect the spatial variability of soil moisture and groundwater

table depth, land surface and subsurface/hydrological models are typically applied with a

relatively small grid spacing. Grid spacing of typical atmospheric mesoscale models is too

large to su�ciently represent small-scale variability of land surface and soil. Thus, a scale gap

between atmosphere and land surface occurs. In modular platforms, such as TerrSysMP, it is

common to apply land surface and subsurface models with a higher spatial resolution than the

atmospheric model (following the mosaic approach; cf. Fig. 3.3). Not only the use of averaged

state parameters at the land surface, but also for the lowermost atmosphere can introduce

biases in �ux estimation. Downscaling/disaggregation schemes seek to overcome this issue

aiming at a more realistic representation of surface �uxes and their spatial variability.

In the following the component models are brie�y introduced together with the OASIS cou-

pling interface which, for TerrSysMP, optionally incorporates the 3-step downscaling scheme

by Schomburg et al. (2010) (cf. Sec. 3.2.2). The COSMO model, which has been applied for

this thesis (cf. Chap. 6), is introduced in more detail in the Section 3.4.

COSMO

The COSMO model is a non-hydrostatic limited area model for atmospheric predictions. The

basic version of the model has been developed at the German Weather Service ("Deutscher

Wetterdienst", DWD). The Consortium of Small-Scale Modeling (short COSMO), which is

comprised of several mainly European weather services, coordinates improvements, mainte-

nance and applications. The TerrSysMP setup of Shrestha et al. (2014) contains the con-

vection permitting model con�guration COSMO-DE (Baldauf et al., 2011), which has in its

operational setup a grid spacing of 2.8 km.

CLM

The Community Land Model (CLM; Oleson et al., 2004, 2008) is the land surface scheme of

TerrSysMP. In the coupled setup, CLM serves as an interface between atmospheric and sub-

surface model and calculates the �uxes of energy, momentum, moisture and carbon between

soil, vegetation and atmosphere. The CLM is a complex land surface model comprised of

biogeophysical, biogeochemical, (dynamic) vegetation and simple hydrological components.

Biogeophysical processes modeled by CLM include absorption, re�ection and transmittance

of solar radiation; absorption and emission of longwave radiation; momentum, sensible and

latent heat transfer from canopy and soil surface; plant physiology and photosynthesis; and

canopy, snow and soil hydrology.

The CLM allows for the representation of subgrid-scale surface heterogeneity by a tiling ap-

proach with thee subgrid levels: Each CLM grid cell can be comprised of up to �ve di�erent

land cover types (glacier, lake, wetland, urban, vegetation). Each of those land units can have

multiple soil columns with distinct soil types. Each soil column can have up to 4 (out of 16

possible) plant functional types (PFTs) with each PFT having its own distinct set of plant

physiological parameters.
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Figure 3.3.: Illustration of the scale gap occurring between the atmospheric component model
(COSMO), and the land surface (CLM) and subsurface (ParFlow) component models of TerrSysMP.
The grid spacings of the single component models can be �exibly chosen by the user of TerrSysMP.
Using a smaller grid spacing for land and subsurface than for the atmosphere is often reasonable as
discussed in the text.

ParFlow

ParFlow is a variably saturated 3D Richardson equation based groundwater �ow model with

two dimensional overland �ow (Kollet and Maxwell , 2006). Recently a terrain following grid

transformation with a variable vertical discretization has been implemented (Maxwell , 2013),

which leads to signi�cant reductions in computational cost, especially for regions with distinct

topography, and thus allows the use of �ner grid resolutions near the surface and within the

root zone leading to an improved representation of land surface �uxes.

OASIS

The OASIS3 coupler (Valcke, 2013) serves as the coupling interface of TerrSysMP. OASIS

allows a highly modular usage of the modeling platform. The TerrSysMP user can not only

run the fully coupled system (i.e., COSMO-CLM-ParFlow), but also stand-alone versions of

the component models, COSMO only coupled with CLM or CLM coupled with ParFlow with

o�ine atmospheric forcing.

Model de�nition (model grid, input/output variables, ...) initialization and termination as

well as the data exchange between the component models are all organized via the OASIS

interface. Coupling frequency, names and spatial grid of the coupling �elds as well as potential

transformations of the coupling �elds are speci�ed in the OASIS con�guration �le. Time-

integration-averaging and spatial interpolation operators are available to transform the 2D

coupling �elds before transferring them between the component models. Time integration and

averaging is used when the coupling time step is larger than a component model time step. In

Shrestha et al. (2014) precipitation send from COSMO to CLM is integrated in time and the

remaining atmospheric variables are temporally averaged. Spatial interpolation is required
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when the coupling variables are de�ned on di�erent grids. COSMO for instance uses a rotated

geographical coordinate system, while CLM variables are de�ned on a regular geographical

grid. Thus, the coupling �elds exchanged between COSMO and CLM need to be interpolated

to the respective grids.

COSMO-CLM At the interface between the atmospheric model COSMO and the land surface

model CLM atmospheric forcing terms and surface �uxes are exchanged. The state variables

of the lowest COSMO layer at the current time step serve as forcing for CLM. The COSMO

model sends temperature T , horizontal wind speed wh, speci�c humidity q, (convective and

grid scale) precipitation P , pressure p, incoming direct and di�use shortwave SWRdir and

SWRdif and incoming longwave radiation LWRdif . CLM then calculates the surface �uxes

of latent and sensible heat LH and SH, momentum �uxes τ , albedo α and outgoing radiation

LW and sends them back to COSMO (cf. Fig. 3.2). The estimated �uxes are used to update

the (dimensionless) transfer coe�cients of heat and momentum at the surface in COSMO.

In TerrSysMP the existing tile approach for CLM is not used. Instead a mosaic approach is

employed where each atmospheric grid cell contains multiple land surface grid cells. In the

mosaic each CLM grid cell is homogeneous. That is, each grid cell is assigned one PFT, one

soil column and one land unit. The mosaic approach allows to combine the simulation of

subsurface hydrodynamics with overland �ow as done by ParFlow. Furthermore, the mosaic

allows the use of distributed atmospheric forcings. In the current version of TerrSysMP

atmospheric downscaling according to Schomburg et al. (2010) is available as an optional

component of the OASIS interface.

CLM-ParFlow In the coupled mode ParFlow, with its 3D variably saturated groundwater

representation and its free surface overland �ow boundary condition, computes surface runo�

and subsurface hydrodynamics, which allows for a �exible, potentially 3D, redistribution

of soil moisture and groundwater. The 1D column soil moisture representation of CLM is

replaced by ParFlow (in 3D or 1D formulation). The OASIS interface allows for dynamical

interactions between CLM and the 3D groundwater model. ParFlow sends relative saturation

Sw and pressure head Ψ of the upper 10 soil layers to CLM. CLM sends the source and sink

terms for soil moisture, top soil moisture �ux qrain and soil evapotranspiration qe, of the upper

10 layers to ParFlow (cf. Fig. 3.2).

3.4. The COSMO Model

The COSMO model is based on the primitive (nonhydrostatic) hydro-thermodynamic equa-

tions and is designed for both scienti�c applications and operational weather forecasts. The

operational forecast chain of the German Weather Service (DWD) consists of three models

(Fig. 3.4). The global model ICON has a grid spacing of 13 km and provides initial and bound-

ary conditions for ICON-EU. ICON-EU has a grid spacing of 6.5 km and provides initial and

boundary conditions for COSMO-DE, which has a grid spacing of 2.8 km and 50 vertical

layers. For the 400 m simulations in this thesis (cf. Sec. 6.1) COSMO-DE had to be adapted.
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COSMO-DE

ICON-EU

ICON

Figure 3.4.: The current operational model chain of the German Weather Service (© DWD).

A detailed description of the COSMO model is provided in the model documentation (Doms

and Baldauf 2015; Doms et al. 2011; Schaettler et al. 2015).

Coordinate System and Domain

In the horizontal the COSMO model uses rotated latitude/longitude (λ, ϕ) coordinates, which

are obtained from the geographical coordinates by tilting the north pole such that the equator

of the rotated grid lies in the center of the model domain. This way the model grid is

approximately regular. In the vertical generalized terrain following coordinates (ς) are used.

Unlike pressure-based vertical coordinates ς is �xed in time.

In COSMO-DE the north pole of the model grid is located at 40.0° N and 170° W. The model

domain covers whole Germany including parts of adjacent countries and spans an area of

approximately 1300 × 1200 km2.

Basic State and Model Equations

The basic equations are formulated using a time-independent base state given by a horizontally

homogeneous, hydrostatically balanced and resting atmosphere. For computational reasons,

the thermodynamic quantities pressure p, temperature T and density ρ are formulated as the

sum of the height-dependent base state (e.g., T0) and a location and time dependent deviation

(e.g., T ′)

T (x, y, z, t) = T0(z) + T ′(x, y, z, t).

The height-dependent base states p0(z), T0(z) and ρ0(z) are related via the hydrostatic equa-

tion ∂p0/∂z = −ρ0g and the equation of state p0 = ρ0RdT0, with Rd being the gas constant

for dry air and and g the gravitational acceleration. A constant rate β for the temperature

increase with the logarithm of pressure is used (∂T0/∂ ln p0 = −βg). The full base state can
then be de�ned by three values: β, which is set to 42 K, and the pressure and temperature at
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Figure 3.5.: Grid structure of the COSMO model: (a) shows the heights (in meters above see level)
of the lowest vertical layers of COSMO-DE over hilly terrain. The dashed line corresponds to the half
levels. The solid line indicates the lowermost half level, which corresponds to the topography. (b)
shows one model grid box of COSMO (∆V = ∆λ∆ϕ∆ς) with the Arakawa-C/Lorenz staggering of
the prognostic variables.

sea level height, which are set to pSL = p(z = 0) = 1000 hPa and TSL = T (z = 0) = 288.15 K,

respectively.

With the de�nition of the base state and the coordinate transformation described above, the

primitive hydro-thermodynamic equations are transformed into a set of prognostic equations

for the vector of wind speed ~v = (u, v, w), pressure deviation p′, temperature deviation T ′,

speci�c humidity qv, speci�c cloud water content, speci�c cloud ice content and the speci�c

water contents of rain, snow and graupel. E�ects of subgrid-scale processes on the prognostic

variables are determined from paramterization schemes.

Discretization and Integration

The model equations are solved numerically with using �nite di�erences. That means, the

prognostic variables are de�ned at grid points and the spatial di�erential operators are ap-

proximated by �nite di�erences. The temporal integration is also carried out in a discrete

form with a �xed time step ∆t.

For spatial discretization a regular latitude/longitude-grid with grid spacings ∆λ = ∆ϕ =

0.025° ≈ 2.8 km and a �xed terrain following vertical coordinate with a vertical level spacing

∆ς are used. The height of the lowest layers of COSMO-DE is shown in Fig. 3.5(a).

The grid point in the center of each model grid box is denoted by (i, j, k) where i relates to

the λ-direction, j relates to the ϕ-direction and k relates to the ς-direction. The prognostic

variables are staggered on an Arakawa-C grid (Fig. 3.5(b)). All prognostic variables, except

wind speed and turbulent kinetic energy, are de�ned at the grid box centers. The wind speed

components (u, v, w) and the turbulent kinetic energy TKE are de�ned at the boundaries of

the grid box.

The centers of the vertical model layers, denoted by k, are called main levels. The half levels,

denoted by k+/−1/2, are shifted up- or downwards by ∆ς/2. If the atmosphere is vertically
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discretized into nk layers, we have nk main levels and nk + 1 half levels. The lowest half level

corresponds to the lower model boundary given by the orography. The uppermost half level

corresponds to the upper model boundary.

The nonhydrostatic model equations describe a compressible atmosphere. Thus, fast propa-

gating sound waves are part of the solution. To decrease computational cost and still ensure

numerical stability the terms describing the propagation of the fast waves are treated sepa-

rately. The slow processes are integrated from time t to time t + ∆t, i.e., using the model

time step ∆t. The fast modes are integrated using a smaller time step ∆ts. In COSMO-DE,

i.e., for a grid resolution of 2.8 km, a time step of ∆t = 30 s is su�cient. The integration is

carried out using a Runge-Kutta scheme.

Physical Parameterizations

Physical processes that are not resolved by the grid spacing are parameterized. In the following

a short summary of the parameterization schemes used in COSMO-DE is given.

� The turbulence parameterization estimates the e�ect of subgrid-scale turbulent dif-

fusion. The subgrid-scale �ux of a variable is related to its gradient via a di�usion

coe�cient K. The di�usion coe�cients for heat and momentum, Kh and Km, are de-

termined in the parameterization scheme. The turbulence scheme distinguishes between

a transfer layer close to the surface, which ranges from the land surface to the lowest

main level, the planetary boundary layer and the free atmosphere.

In the planetary boundary layer and in the free atmosphere the calculation of the tur-

bulent exchange coe�cients is based on a prognostic equation for the turbulent kinetic

energy. The exchange coe�cients depend on atmospheric stability and vertical wind

sheer.

For the parameterization of the turbulent exchange �uxes at the surface, the transfer

layer is subdivided into a Prandtl layer, a roughness layer and a laminar layer just above

the surface. In the laminar layer the resistance is a linear function of height. In the

roughness layer the resistance is an exponential function of height and depends on the

roughness length and the leaf area index (LAI). Roughness length and (maximum) LAI

are prescribed by an external data set. Over water the roughness length is calculated

from the Charnock equation (Charnock , 1955). In the Prandtl layer the resistance is a

logarithmic function of height and dependens on stability.

� Soil Processes are parameterized by a soil module that predicts soil temperature and

water content. The temperature and humidity at the land surface serve as lower bound-

ary conditions for COSMO and are important to determine the exchange �uxes of heat,

moisture and momentum. The multi-layer soil module of COSMO (TERRA-ML) con-

tains 7 layers to describe the soil processes. The 8th and lowest layer in approximately

15 m depth is ascribed climatological temperatures. Within the upper 6 layers hydro-

logical processes are described by a di�usion equation for the water transport. In the

lower layers (below approximately 2.5 m depth) capillary transport is neglected and the

gravitational �ux acts as runo�/drainage. Most of the parameters required by the soil
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module such as heat capacity are dependent on the soil texture. All grid elements with

a fraction of land larger than 50% are considered land pixels. All other grid elements are

considered water pixels. The temperature for water pixels is obtained from an analysis

of the sea surface temperature and kept constant over the simulation period.

� Radiation is parameterized according to Ritter and Geleyn (1992). The paremeter-

ization is based on a δ-two-stream approximation of the radiative transfer equation

and considers three shortwave (solar) and �ve longwave (terrestrial) spectral intervals.

Clouds, aerosols, water vapor and other gaseous tracers a�ect radiative transfer by

emission, absorption and scattering. In COSMO-DE radiative transfer calculations are

carried out once in a time interval of 15 minutes, i.e., only every 36th model time step.

The calculated warming and cooling rates are kept constant until the parameterization

is called the next time. In the operational COSMO-DE setup the radiation calculations

are carried out on a coarser grid (by a factor of 2) than the actual model grid to reduce

computational cost.

� Grid-scale precipitation and clouds are parameterized by a Kessler-type bulk formula-

tion (Kessler , 1969) that categorizes atmospheric water particles into di�erent classes.

In COSMO-DE water vapour and �ve di�erent classes of hydrometeors are considered,

namely cloud water, cloud ice, rain, snow and graupel particles. The particles belong-

ing to the di�erent classes interact through various microphysical processes, which are

parameterized by transfer rates.

� In COSMO-DE only shallow convection is parameterized. Deep convection (thunder-

storms, ...) is resolved at a grid spacing of 2.8 km. Shallow convection is parameterized

according to Tiedtke (1989). The mass �ux is assumed to be proportional to the verti-

cally integrated moisture convergence between surface and cloud base. Shallow convec-

tion does not directly generate precipitation. There is no (parameterized) convective

precipitation in COSMO-DE.

� The parameterization schemes for grid-scale clouds and precipitation require satura-

tion equilibrium to determine the condensation rate. Thus, grid-scale clouds are only

generated in grid boxes with a relative humidity of 100%. For the radiative transfer

calculation and for many post-processing applications, also the representation of par-

tial cloudiness is important, i.e., the cloudiness in grid boxes with a saturation below

100%. Partial cloudiness is determined as an empirical function of relative humidity,

model layer height and potentially convection.

External, Initial and Boundary Data

The COSMO model requires the following external parameter �elds: Orographic height, frac-

tion of land, roughness length, soil type, root depth, plant cover and leaf area index. The

external parameter �elds are kept constant during a model run. In COSMO-DE the orogra-

phy is smoothed to ensure numerical stability.
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Initial conditions for experimental forecasts and simulations with COSMO-DE can be de-

rived from the COSMO-EU (predecessor of ICON-EU) analysis. The interpolation program

(INT2LM) interpolates the 7 km data to the �ner 2.8 km grid spacing to obtain an initial

state for the COSMO-DE. Because of the di�erent horizontal and vertical resolution of the

driving model the initial state is not well de�ned and COSMO-DE requires a spin-up period

of about 3-6 hours to adjust to the higher-resolution topography and develop clouds etc.

As a limited area model COSMO-DE requires boundary conditions. Typically these are also

obtained from COSMO-EU and mapped to the COSMO-DE boundaries using INT2LM. The

boundary conditions from COSMO-EU are available in time intervals of 1 hour. Between

the full hours the boundary information is derived by applying a linear interpolation in time

between two sets of boundary conditions.

30



4
Downscaling of General Circulation Model Simulations

Projections of future climate are generated using general circulation models (GCMs) (e.g.

Taylor et al., 2012). The usefulness of GCMs for impact studies is yet restricted by their

coarse spatial and temporal resolution:

1. Gridded GCM output represents area means rather than point values.

2. E�ects of subgrid-scale heterogeneity, e.g., local and regional topography, land sea dis-

tribution and land use, on regional climates can not be explicitly modeled but only

through parameterizations.

Downscaling aims to bridge the gap between GCM output and the requirements of impact

modelers by relating regional or local climate variables to the larger scale climate simulations.

The fundamental assumption behind all downscaling techniques is that relationships can be

established between atmospheric processes occurring at disparate spatial and temporal scales

local climate response = F(external, larger scale forcing). (4.1)

That is, the local climate is assumed to relate to the external and larger scale forcing via

some, stochastic or deterministic, function(s) F (von Storch et al., 2000). Regional climate

is not fully determined by the large-scale state, but may be treated as a random process

conditioned on the larger-scale climate. F can be modeled in two conceptually di�erent ways:

dynamically through regional climate models (RCMs) or empirically from observational or

modeled data sets as a deterministic or stochastic function.

This chapter provides an introduction to the downscaling of climate model output. The

chapter relies in large parts on the review articles by Wilby and Wigley (1997), Xu (1999),

von Storch et al. (2000), Fowler et al. (2007) and Maraun et al. (2010). Dynamical and

empirical-statistical are reviewed in Section 4.1 and 4.2. Advantages, disadvantages and open

challenges are discussed in Section 4.3. Also Genetic Programming ranks among the empirical-

statistical downscaling approaches. Studies employing GP for downscaling GCM output are

reviewed in Section 4.4.
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4.1. Dynamical Downscaling

In dynamical downscaling a regional climate model (RCM) is embedded within the GCM.

The RCM covers a subdomain of the globe and receives initial and boundary conditions from

the driving GCM. The smaller domain size allows to use a smaller grid spacing. RCMs can

be computationally as expensive as GCMs due to the higher spatial and temporal resolution.

In principle RCMs model atmospheric processes in a similar manner as GCMs, but the higher

grid resolution/smaller time step allows an improved treatment of physical and dynamical

processes. This aims at generating realistic mesoscale patterns not resolved by GCMs. For

instance, orographically induced precipitation can be much better captured with a higher

resolved land surface. Giorgi and Marinucci (1996) have found evidence that the skill of

RCMs concerning the simulation of spatial patterns and temporal characteristics may increase

with increasing grid resolution (see also Prein et al., 2015). With increasing computational

power several projects generating ensemble regional climate simulations have been initiated:

PRUDENCE (Christensen and Christensen, 2007) and ENSEMBLES (Van der Linden and

Mitchell , 2009) in Europe; NARCCAP (Mearns et al., 2013) in North America; and the Coor-

dinated Regional Downscaling Experiment (CORDEX) considering several regional domains

all over the globe (Giorgi et al., 2009).

RCMs provide spatially and temporally coherent data for multiple variables. RCM simula-

tions are typically consistent with the driving GCM, which implies that RCMs can inherit

biases from the driving GCM (e.g., Dosio and Paruolo, 2011). In climate change studies such

biases may largely cancel out when the di�erence between control runs (past) and projections

(future) is considered. However, model biases might change in a changing climate (Chris-

tensen et al., 2008). Moreover, the performance of a GCM strongly depends on domain size

and location (e.g., Miguez-Macho et al., 2004).

As for the GCMs, RCM grid box values represent area averages. The e�ective resolution of an

RCM (as for every atmospheric model) is larger than the grid resolution, meaning that RCMs

only provide meaningful information of precipitation extremes on a larger scale than the grid

spacing. Skamarock (2004) for instance have found the e�ective resolution to be about seven

times larger than the model grid spacing (in x- and y-direction) for the atmospheric model

WRF in a numerical weather prediction setup. For impact studies requiring station or site

speci�c information additional (empirical-statistical) downscaling might be needed.

4.2. Empirical-Statistical Downscaling

The most simple statistical approach is to provide some kind of mapping between the larger

scale predictors X and the expected value of predictand Y at the local scale. That is,

E(Y |X) = F(X,β) with the mapping function F and a set of unknown parameters β to

be estimated when calibrating a downscaling model.

Wilby and Wigley (1997) have categorized the empirical-statistical downscaling methods into

regression methods, weather type approaches and stochastic weather generators. Maraun et al.

(2010) have used a categorization into perfect prognosis (PP) approaches and model output
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statistics (MOS) based on the chosen predictors. PP methods exploit predictors that are well

simulated by the models assuming that the model o�ers a perfect prognosis of those variables.

MOS on the other hand explicitly aims at a statistical correction of model errors.

After a short note on predictands and predictors considered in empirical-statistical down-

scaling, the di�erent downscaling approaches are introduced in more detail. Many applied

downscaling methods combine di�erent approaches.

Predictors and Predictors

The list of predictands in literature ranges from actual values of climate model variables (e.g.,

precipitation, temperature, snow pack) to their monthly or yearly statistics (e.g., wind speed

distributions) and impact variables (e.g., frequency of land slides). Most relevant variables

for impact studies and therefore the most considered predictands are precipitation and tem-

perature with precipitation being much more di�cult to model due to its high spatial and

temporal variability and its, over a wide range of scales, non Gaussian distribution.

The choice of predictors signi�cantly in�uences the results of a downscaling method. Appro-

priate predictors need to

� be variables containing information on the predictands,

� have a stationary predictor - predictand relation (not changing in changing climate),

� fully capture the e�ect of climatic changes.

GCMs o�er a large number of 2D and 3D �elds of candidate predictors. Some are known to

be more reasonably simulated than others. While tropospheric quantities such as tempera-

ture and geopotential height are considered to be skillfully simulated by GCMs, quantities

like water vapor, clouds and precipitation are considered to be among the least accurately

simulated variables in GCMs, which makes precipitation downscaling even more challenging.

Instead of (only) taking grid box values or the high-dimensional �elds directly as 'raw' pre-

dictors, many downscaling methods derive (additional) physical meaningful predictors by

applying dimensionality reduction methods, such as principle component analysis (PCA), to

the GCM �elds (e.g., Simon et al., 2013). Other derived predictors are for instance air�ow

direction and strength instead of zonal and meridional wind components as returned by the

GCMs or physically motivated indices, such as the North Atlantic Oscillation (NAO) index

derived from the North Atlantic pressure �eld.

Regression Approaches/Transfer Functions

Regression techniques are among the earliest downscaling approaches. Regression establishes

a linear or nonlinear relationships between subgrid-scale (e.g., single site) predictands and

coarser-scale (e.g., GCM grid-scale) predictor variables.

For quantities that can be well approximated by a Gaussian distribution (e.g., temperature)

already a simple (multiple) linear regression (cf. Appendix B) can yield reasonable results

(cf. Section 7.3). Still, early methods purely applying (multiple) linear regression are known
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to underrepresent variance as standard regression estimates the conditional mean of the pre-

dictand given the predictors.

In Karl et al. (1990) missing variance is restored by multiplying the downscaled prediction

with a suitable factor. This technique is known as variance in�ation. A more sophisticated

but conceptually similar technique is the expanded downscaling proposed by Bürger (1996),

which links the covariance of local weather variables to the covariance of the global circula-

tion model output. However, von Storch (1999) suggests to rather add an explicit noise term,

because the variation of a predictand variable is in fact not fully explained by the predictors.

Precipitation downscaling is typically more di�cult than temperature downscaling. While

for annual precipitation totals the Gaussian assumption may be feasible, it is surely not on

shorter time scales. Daily precipitation is commonly modeled with a gamma distribution

(e.g., Katz , 1977). Regression for non-Gaussian quantities can be accomplished with gener-

alized linear models (GLMs). In a GLM the predictand might follow any distribution from

the exponential family. Like multiple linear regression a GLM models the conditional mean

of the chosen distribution (i.e., the expected value of the predictand given the predictors) by

a linear function of a set of predictors, but in contrast to a linear model (LM) the conditional

mean µ may be transformed by a (e.g., logarithmic) link function. (cf. Appendix B).

In a GLM (or LM) framework variance can be obtained by sampling from the modeled distri-

bution with the variability of the predictand represented by the scale parameter (or standard

deviation). Most applications of GLMs are in fact weather generators. GLMs can capture

the conditional mean of a wide range of distributions.

Nonlinear regression approaches used for downscaling include Arti�cial Neural Networks

(ANNs e.g., Schoof and Pryor , 2001; Coulibaly et al., 2005) and Genetic Programming (GP)

(e.g., Coulibaly , 2004; Hashmi et al., 2011). The main motivation behind this approaches is

to capture nonlinear and non additive predictor-predictand relationships. Further, no speci�c

distribution has to be assumed for the predictand variables. The state of the art in using GP

for GCM downscaling is reviewed in Section 4.4 in more detail.

Weather Pattern Approaches/ Weather Typing Schemes

Weather typing schemes relate a local variable, such as precipitation, to a set of weather classes

by means of a weather classi�cation scheme. The weather classes can be de�ned objectively

(e.g., based on principal component analysis) or subjectively (e.g., synoptic categories like the

"Europaeische Groÿwetterlagen"). Local weather variables such as precipitation are condi-

tioned on the weather classes. This approach is a special case of a (LM or GLM) regression

model with a discrete set of weather types used as predictor instead of continuous �elds, i.e.,

µ = µ(Xk) with k being the index of a weather type and µ(Xk) being the local mean of

the predictand variable for weather type k. Weather typing approaches can be extended in

a similar manner as LMs and GLMs. A weather type dependent noise term can be added

or one can sample from the conditional PDFs instead of taking the expected value for each

weather class as prediction. In fact weather typing schemes are most often applied to con-

dition stochastic weather generators (see below). Studies incorporating weather typing into

downscaling methodologies can be found for instance in Enke and Spekat (1997); Goodess and
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Palutikof (1998); Conway and Jones (1998); Boé et al. (2006) and Vrac et al. (2007).

Analog Method

The analog method is in principle a special case of a weather typing scheme. Though the

analog method has initially been developed for short term weather forecasting (Lorenz , 1969),

it is widely known and used in the downscaling community. The GCM (or RCM) predictions

are compared to the observational record to identify the most similar large scale pattern. This

is done by introducing a similarity metric on the global (or regional scale). The corresponding

observations Y serve as prediction at the local scale Yi = Y (analog(Xi)) (Zorita et al., 1995;

Zorita and von Storch, 1999).

Prerequisite for applying an analog technique is a large observational record of global and local

scale weather. The selection of the similarity metric is not straightforward. Both the type

of the metric (e.g., the Euclidian distance or some weighted form thereof) and the predictor

variables incorporated in the metric have to be selected. Known problems of the analog

method are systematic over- and underselection of certain observational periods which can

lead to an underestimation of temporal variance. For this reason some implementations of

the analog method chose randomly between the k most similar situations instead of always

picking the most similar one. Further, the standard analog method can not produce values

outside the range covered by the observations.

Stochastic Weather Generators

Stochastic weather generators (WGs) are random number generators yielding local scale

weather time series that resemble the statistical properties of the observed weather. The

core of a typical weather generator consists of a �rst (or multi-order) Markov process, i.e.,

for each day precipitation occurrence and possibly precipitation amount is governed by the

outcomes on the previous day(s). Precipitation amount is commonly modeled in a second step

often assuming a gamma distribution for daily precipitation amounts (e.g., Richardson and

Wright , 1984). Remaining required variables such as temperature can then be conditioned on

the estimated precipitation series.

Weather generators are in an unconditional form not ranked among the downscaling ap-

proaches. When WGs are applied for downscaling the WG parameters need to be adjusted

based on the GCM projections. This can be done by introducing multiplicative (for precipi-

tation) or additive (for temperature) change factors, which relate the change in climate at the

local scale to the larger scale climatic change as predicted by the GCMs (Kilsby et al., 2007).

In other WGs the parameters are conditioned on large scale weather (e.g., Wilks and Wilby ,

1999). The latter approach assumes that the climate change signal is su�ciently captured by

the change in the occurrence frequencies of the large scale weather patterns and thus allows

for a direct application under changing climate. WGs can reach high degrees of complexity

when multiple variables have to be generated (in a consistent way) and/or spatially consistent

data (gridded or at a set of local stations) is required. For more details on such approaches

see Maraun et al. (2010).
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Model Output Statistics

Model output statistics (MOS) is foremost applied to correct RCM errors. Most MOS ap-

proaches have initially been designed for numerical weather prediction (Klein and Glahn,

1974). With the increasing availability of RCM scenarios MOS has become more popular for

downscaling. MOS typically establishes relations between the RCM simulation of a variable

and the local scale observation of the same variable and thus corrects RCM errors. While the

potentially large deviation of modeled precipitation from the 'true' precipitation makes it a

questionable predictor in perfect prognosis approaches. However, the simulated precipitation

may still contain information about the real precipitation. This is used in MOS where the

simulated time series (or intensity distribution) serves as predictor for the local precipitation

time series (or properties of the local scale intensity distribution).

Let us consider precipitation as predictand variable. A widely used MOS method is the scaling

or direct method (e.g., Widmann et al., 2003; Lenderink et al., 2007). Here the local precip-

itation at time t (within the projection period) PDt is given as the simulated precipitation

P projectiont from the projection run corrected by the ratio between mean observed precipitation

and mean modeled precipitation over the control period,

PDt = P projectiont

P̄ obs

P̄ control
. (4.2)

The above method corrects mean and variance by the same factor, i.e., the ratio between

mean and variance (also known as coe�cient of variation) is not changed.

A more generalized approach to MOS is quantile mapping (e.g., Themeÿl et al., 2011). Quan-

tile mapping considers di�erent precipitation intensities separately. For the calibration period

a mapping is established which relates the observational CDF of the calibration period to the

respective simulated CDF. The mapping can be established using the empirical CDFs from

the calibration period or using theoretical distributions �tted to observational and modeled

CDFs. Similar to the analog method standard quantile mapping can not produce values be-

yond the observed range. If this is desired adjustments are necessary (e.g., Boé et al., 2007).

In the context of climate change MOS is mainly used to correct RCMs. However, when treated

with caution, it might be also useful in areas where no RCM data is available. Unlike PP

methods, MOS approaches have to be individually trained for each RCM (or GCM) as they

explicitly aim at correcting (model dependent) model errors.

4.3. Advantages, Disadvantages and Challenges

The most signi�cant advantages and disadvantages of dynamical and empirical-statistical

downscaling are listed in Table 4.1. Dynamical downscaling provides physically consistent 3D

�elds of multiple climate variables by explicitly modeling the underlying physical processes.

Forced by GCM data at the boundaries, the RCM simulations are generally consistent with

the driving GCMs. However, the RCM skill is highly dependent on the skill of the driving

model. RCMs may inherit biases from the driving GCMs. Dynamical downscaling is compu-

tationally expensive and still, if impact studies require local point data, e.g., at single stations,

36



4.3. Advantages, Disadvantages and Challenges

additional empirical-statistical downscaling is needed.

Empirical and statistical downscaling techniques can provide point-scale information right

away. Statistical approaches can be used for quantities not modeled in GCMs and are com-

putationally cheap. Like dynamical downscaling also the skill of statistical approaches can

depend on the skill of the GCM (or RCM) to which they are applied. Spatial and inter-

variable consistency is not guaranteed by many statistical approaches. Results may further

depend on the choice of predictor variables. To appropriately calibrate a statistical downscal-

ing model, a su�cient observational data is required. Finally, a crucial assumption behind

all empirical-statistical models is that the link established when calibrating the downscaling

method also holds for a changing climate.

Many studies have reported similar skill for dynamical and statistical downscaling methods

(e.g., Kidson and Thompson, 1998; Murphy , 1999; Mearns et al., 1999) under present climate

conditions. Schmidli et al. (2006, 2007) have compared di�erent RCMs against statistical

models incorporating regression approaches, weather typing methods, a weather generator,

and a bias correction and spatial dissaggregation approach. RCMs and statistical models

exhibit similar biases, but the low frequency (year to year) variability and the convection

in complex terrain during the summer months has been signi�cantly better captured by the

RCMs. It is however debatable if the high computational cost of dynamical downscaling com-

pared to empirical-statistical approaches is merited (von Storch et al., 2000).

Studies addressing the intercomparison of di�erent empirical and statistical downscaling meth-

ods have been carried out more and more frequently during the past two decades. A study

by Wilby et al. (1998) has compared the performance of two weather generators, two arti�-

cial neural nets and two vorticity/circulation based approaches for the downscaling of daily

precipitation. When considering daily statistics the WGs have performed superior compared

to the circulation based methods which in turn perform superior to the ANNs. However, the

WGs capture low frequency variability, here measured by the standard deviation of monthly

rainfall totals, rather badly. For evaluating monthly totals the above ranking of methods is

approximately opposite with the ANNs performing slightly superior to the vorticity based

methods which in turn perform superior to the WGs.

Table 4.1.: Advantages (+) and disadvantages (-) of dynamical and empirical-statistical downscaling
techniques (adapted from Wilby et al., 2002; Fowler et al., 2007).
Dynamical Downscaling Empirical-Statistical Downscaling

+ provides consistent 3D �elds + can provide point-scale information
+ consistent with GCM driving �elds + computationally cheap
+ accounts for physical processes at respective
scale

+ can be used for variables not modeled by
GCMs/RCMs

- skill depends on GCM - skill depends on GCM
- computationally expensive - skill depends on predictor choice
- skill may depend on domain location and
domain size

- require long, reliable, consistent historical
calibration data

- skill depends on grid spacing (possibly
additional statistical downscaling needed)

- potential non-stationarity of predictor-
predictand relation
- spatial, inter-variable, physical consistency
not ensured
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In Zorita and von Storch (1999) the performance of an analog method, a linear method based

on canonical correlations and an arti�cial neural network are compared. The study shows

that in case of normally distributed variables linear methods should be preferred as they

yield satisfactory results (right level of variability can be easily ensured by adding noise) and

provide a direct physical interpretation. For non-normally distributed variables the analog

method should be preferred. The concept behind the analog method is simple and it achieved

a comparable or even better performance than the more complicated ANNs. However, the

authors themselves point out that other studies report a more successful implementation of

ANNs for downscaling, e.g., monthly precipitation (Hewitson and Crane, 1992).

The results of the above studies illustrate some di�culties faced in intercomparisons. Dif-

ferent dowsncaling approaches typically have di�erent advantages and disadvantages. The

skill of a downscaling method depends on the downscaling problem (e.g., considered area,

spatial and temporal resolution to be obtained) and the implementation of the method (e.g.,

predictor choice, optimization techniques) (e.g., Goodess et al., 2007; Maurer and Hidalgo,

2008; Gutmann et al., 2012).

Nevertheless some drawbacks seem to be common. Downscaling approaches seldom capture

climate variability at all spatial and temporal scales. According to Maraun et al. (2010) espe-

cially the representation of precipitation on subdaily scales and high-resolution spatial scales

is not su�ciently studied. Further, the representation of extremes, especially extreme convec-

tive summer precipitation, is still challenging for both dynamical and statistical approaches

as convection is hard to predict and typically occurs locally.

Ongoing work in the framework of the COST action Validating and Integrating Downscaling

Methods for Climate Change Research (VALUE) aims at a comprehensive intercomparison

of downscaling methods and coordinates a series of statistical downscaling experiments with

di�erent prerequisites and focuses (www.cost-value.eu; Maraun et al., 2015).

Validation

A su�cient validation of a downscaling method needs to demonstrate the robustness of a

downscaling link under climate change. The predictor-predictand relation needs to hold under

changing climate and the predictors need to su�ciently represent the climate change signal.

The classical validation approach splits the observational record into a training period to

specify the method and an observational record ideally with di�erent characteristics. For

instance Wilks (1999) split the observation record into dry and wet season for training and

validation. Although such approaches can not fully determine if a downscaling method holds

under climate change, they provide indications if a method may do so.

Uncertainty

Quantifying uncertainties in regional/local climate projections is di�cult as several sources of

uncertainty are involved in the generation of the data. The �rst source of uncertainty is the

scenario of future emissions. Many climate projections consider di�erent kinds of emission

scenarios to quantify inherent uncertainties. Second, the models (GCMs and RCMs) are sub-
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ject to errors and uncertainties. Ensemble simulations with di�erent models, di�erent model

setups and/or perturbed initial (and boundary) conditions help to obtain uncertainty esti-

mates for the scenario simulations. Also the regionalization methods (dynamical downscaling

and/or statistical downscaling) are subject to errors and uncertainties. Finally, the natural

variability of the climate system adds further uncertainty (von Storch et al., 2000). Obtaining

reasonable uncertainty quanti�cations for downscaled climate projections is thus challenging.

4.4. Genetic Programming for GCM Downscaling

The �rst study (known to us) that applies Genetic Programming (GP) to the downscaling of

GCM output can be found in Coulibaly (2004). In this study GP is used to simulate local

daily maximum and minimum temperatures at the Chute-du-Diable weather station in north-

eastern Canada. The forty years of daily temperature records available at the station are split

into a training data set (�rst 30 years) and a validation data set (remaining 10 years). 14

large-scale variables from the NCEP reanalysis (Kalnay et al., 1996) from the grid box closest

to the station serve as potential predictors.

For comparison the Statistical Downscaling Model (SDSM) by Wilby et al. (2002) has been

applied to the same downscaling problem. The SDSM combines regression based methods,

weather typing and parts of a stochastic weather generator. Dependent on its setup the SDSM

�rst carries out a regression between large-scale circulation patterns and local-scale variables

and second uses stochastic approaches to arti�cially increase the variance of the downscaled

series to better match the variance of the observations.

For the described task GP has performed slightly better than the SDSM with an RMSE of

3.59°C (GP) compared to 4.07°C (SDSM) for downscaling daily maximum temperature and

an RMSE of 4.57°C (GP) compared to 5.15°C (SDSM) for daily minimum temperature. Fur-

thermore, the GP solutions contain only two of the 14 suggested predictor variables, namely

daily mean temperature and 500 hPa geopotential height to predict daily maximum temper-

ature, and daily mean temperature and vorticity at 500 hPa height to predict daily minimum

temperature. The SDSM requires six predictors for each predictand variable (cf. Table 4.2).

Hashmi et al. (2011) have applied Gene Expression Programming (GEP), a variant of GP,

for downscaling daily precipitation at the Clutha River watershed in the South Island of New

Zealand. As no signi�cant correlation between large scale predictors and precipitation at sin-

gle sites has been found, the areal average precipitation over 23 weather stations distributed

Table 4.2.: Results of the studies on GP based downscaling by Coulibaly (2004) and by Hashmi et al.

(2011).

Study Predictand
RMSE No. of Predictors

GP/GEP SDSM GP/GEP SDSM

Coulibaly (2004)
Tmax

training 3.54°C -
2 6

testing 3.59°C 4.07°C

Tmin
training 4.65°C -

2 6
testing 4.57°C 5.14°C

Hashmi et al. (2011) P
training 5.23 mm 5.61 mm

7 10
testing 5.35 mm 6.03 mm
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over the catchment is considered as predictand variable. As in Coulibaly (2004) the obser-

vational record is split into a 30 year training period and a 10 year validation period. 26

di�erent variables from the NCEP reanalysis taken at the gridbox closest to the catchment

serve as predictors.

The results of the GEP based downscaling have been again compared to the performance of

the SDSM. GEP has performed slightly better than the SDSM with an RMSE of 5.23 mm

(GEP) compared to 5.61 mm (SDSM) for the training period and an RMSE of 5.35 mm

(GEP) compared to 6.03 mm (SDSM) for the validation period. As in Coulibaly (2004) the

evolutionary approach has required less predictor variables than the SDSM (cf. Table 4.2).

Liu et al. (2008) employ evolutionary polynomial regression (based on GP), an arti�cial neu-

ral net and the SDSM to the downscaling of daily maximum and minimum temperature and

precipitation at the Chute-du-Diable catchment and come to similar conclusions as the above

studies. The evolutionary technique and the neural net have performed about equally well

and both have performed better than the SDSM.

Hassanzadeh et al. (2013) take a di�erent approach utilizing GP for the quantile-based down-

scaling of intensity-duration-frequency (IDF) curves for the city of Saskatoon in Canada. IDF

curves for precipitation are commonly used in engineering, planning and design to provide

information on the frequency, duration and intensity of extreme events. The authors have

concluded that Genetic Programming is a promising tool for extracting mathematical map-

pings between extreme rainfall quantiles at GCM scales and local scales.

Pour et al. (2014) have presented a �rst study on downscaling of extreme precipitation events

by means of GP. The authors have predicting days exceeding the 90% quantile as well as the

yearly maximum numbers of consecutive wet and dry days on the East Coast of Malaysia.

The performance of the GP models has been compared to an ANN and the SDSM with GP

yielding overall favorable results.

The application of multi-objective Genetic Programming (MOGP) to the downscaling of GCM

output (in our application ERA-Interim reanalysis data) is described and discussed in Chapter

6. We consider both temperature (daily maximum, minimum and mean) and daily accumu-

lated precipitation at 86 stations distributed over Europe. Considering multiple stations helps

to assess the generalizeability of the GP results as the skill of downscaling methods depends

on the considered stations. Further, we downscale local daily accumulated precipitation at

the weather stations without applying any spatial averaging. The results are assessed not

only on the basis of te RMSE, but also considering distribution-based measures, spatial and

temporal correlation and the representation of extremes.
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Methodology

We employ Multi-Objective Genetic Programming (MOGP) to the downscaling of atmo-

spheric data. MOGP serves as a statistical downscaling technique to establish statistical rela-

tions (in the following referred to as downscaling rules) between predictors and predictands.

The detection of downscaling rules is treated as a symbolic regression problem (cf. Sec. 2.3).

Using GP one does not need to prescribe the structure of the regression model. GP evolves

both model structure and model parameters and thereby allows to account for potential non-

linear and/or multivariate predictor-predictand relations.

By only minimizing the root mean square error (RMSE) downscaling rules would aim at pre-

dicting the expected value of the predictand given the predictors (when assuming the residuals

to be normally distributed). Such estimators are known to have a too small variance (e.g.,

Hastie et al., 2009). We seek downscaling rules returning realizations from the respective

(unknown) multivariate probability density function (PDF). Therefore we do not optimize

solely w.r.t. the RMSE, but also concerning other parameters such as spatial or temporal

variance and/or PDF. We thus deal with multiple objectives.

MOGP

terminal set
(predictor variables, 

numerical constants, ...)

function set
(arithmetic functions,

if-satement)

training data
(set of, e.g. observed, 

realizations of 
predictand 

and predictors )

termination
criterion

(maximum number 
of generations to run)

objectives
(RMSE, IQD, ...)

parameters
(maximum 

Pareto set size, 
genetic operator 
probabilities, ...)

set of 
(Pareto-optimal)

 downscaling rules

Figure 5.1.: Illustration of input and output to multi-objective Genetic Programming for the detec-
tion of downscaling rules.
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When we formulate the downscaling problem as a multi-objective optimization problem, we

face some di�culties. Scaling the objectives is di�cult since we usually not a priori know

the minimum achievable value for each objective. Thus, one would need to decide on the

relative importance of the di�erent objectives in advance. Further, adding multiple, con�icting

objectives very likely results in a �tness function with multiple local minima, which makes

optimization more di�cult.

To avoid these problems we have implemented the �tness calculation according to the Strength

Pareto Evolutionary Algorithm (SPEA) by Zitzler and Thiele (1999) instead of using a single

(weighted) �tness or cost function. Approaches for multi-objective optimization like SPEA

are widely used in evolutionary computation. In SPEA the �tness calculation during the

�tting procedure is based on an intercomparison and ranking of the di�erent models of a

generation rather than on values of the objectives alone. The result is a �nite set of so called

Pareto optimal models (downscaling rules) which allows the user to select a model based on

a trade-o� between the di�erent objectives in hindsight.

The input to be provided by the user to run MOGP for the discovery of downscaling rules is

illustrated in Fig. 5.1. The user provides:

� the function set - in the following the arithmetic functions and an if statement,

� the terminal set - in the following mostly the predictor variables and a set of numerical

constants,

� training data - in the following a set of realizations of predictand and predictor variables

from models or observations,

� a termination criterion - in the following reaching a number of generations de�ned in

advance,

� run parameters (genetic operators and their probabilities, population size, maximum

Pareto set size).

Detailed settings (predictors etc.) for the two di�erent MOGP applications following this

chapter are provided in the respective chapters. For the �rst application, the downscaling

of mesoscale near-surface atmospheric �elds, the MOGP setup is described in Section 6.2.

For the second application, the downscaling of climate reanalysis data to local stations, the

MOGP setup is described in Section 7.2.

The current chapter is structured as follows. After introducing the concept of Pareto Opti-

mality, the multi-objective Genetic Programming (MOGP) algorithm is described. Fitness

assignment and clustering procedure are explained and we walk through MOGP step by step.

The downscaling methodology is part of Zerenner et al. (2016). Our GP code is in large

parts based on the GPLAB (Silva and Almeida, 2003), a Genetic Programming toolbox for

MATLAB.
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Figure 5.2.: Example of a minimization problem with two objectives (s1 and s2). The squares
correspond to the Pareto optimal solutions; the circles to the non-optimal solutions. The dashed line
is the so-called Pareto front. The term Pareto front is often used synonymously for the set of Pareto
optimal solutions.

5.1. Pareto Optimality

The term Pareto optimality originates in economics. The state of an economic system is called

Pareto optimal when economic resources are distributed in such a way that it is impossible to

improve the situation of one person without deteriorating the situation of at least one other

person.

For optimization problems that involve multiple, sometimes con�icting objectives there is no

single optimal solution. Usually there exists a set of alternative solutions in which no solution

is optimal in the sense that it is superior to all other solutions for all objectives. The solutions

which are optimal in the sense that there exists no other solution which is better concerning

all objectives are called Pareto optimal.

Figure 5.2 shows an example of a minimization problem with two objectives s1 and s2. The

squares constitute the set of Pareto optimal solutions as for each square there is no solution

that is better with respect to both objectives (i.e., no solution with smaller s1 and s2). The

circles correspond to the non-optimal solutions. For each circle exists at least one solution

that is better with respect to both objectives.

The (multiple) objectives correspond to di�erent quality criteria of the desired solution. We

denote the objective space containing all objective functions as O and the solution space

containing all potential solutions as Q. An objective si ∈ O is calculated by comparing

prediction (downscaling) yD and reference yR. The prediction results from the solution

(downscaling rule) α ∈ Q applied to the predictors x. Thus, incorporating all dependencies,

we can write si(yD,yR) = si(α,x,y
R). For simplicity in the following we only include the

dependency on the solution α explicitly.

Be s(α) = (s1(α), s2(α), ..., sm(α))T the objective vector, i.e., the vector containing all m

objectives. Let us consider two solutions α, β ∈ Q. The solution α is said to dominate β
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(α � β) if and only if

∀i ∈ {1, 2, ...,m} : si(α) ≤ si(β)

∧ ∃j ∈ {1, 2, ...,m} : sj(α) < sj(β).
(5.1)

Or in words, α dominates β if α is at least as good as β with respect to all objectives and

there exists at least one objective for which α is better than β. The solutions that are not

dominated by any element in the solution space Q are Pareto optimal.

A solution α is said to cover β (α � β) if α � β or s(α) = s(β), i.e., either α dominates β or

they both perform equally well concerning all objectives.

5.2. MOGP Algorithm

The multi-objective �tness assignment according to SPEA requires two main changes com-

pared to traditional GP. Firstly, each generation is split into two sets called populations P
and P ′. The population P is evolving over time as in traditional GP, whereas the second

population P ′, the so-called Pareto set, contains all Pareto optimal solutions. Secondly, the

�tness calculation for individuals in both populations P and P ′ is based on a comparison

between the individuals (i.e., based on the number of individuals dominated by or dominating

a solution) rather than on the absolute performance.

Fitness Assignment

In SPEA the �tness assignment consists of two steps (cf. Fig 5.3):

(1) To each solution in the Pareto set α ∈ P ′ a real value called �tness f ′(α) ∈ [0, 1) is

assigned. The better the performance of a downscaling rule, the smaller the �tness. The

�tness f ′(α) is proportional to the number n of individuals β ∈ P that are covered by

α, i.e., α � β. Let N be the total number of individuals in P. Then f ′(α) is de�ned as

f ′(α) =
n(β|α � β, α ∈ P ′, β ∈ P)

N + 1
. (5.2)

To clearly separate between the �tness of individuals in P and P ′, the �tness of the

individuals in P ′ is also called strength, hence the name Strength Pareto Evolutionary

Algorithm (in the following also referred to as Strength Pareto Approach).

(2) The �tness f(β) of an individual in the population P (β ∈ P) is calculated as the sum

over the �tness of all individuals in the Pareto set α ∈ P ′ that cover β, i.e.,

f(β) = 1 +
∑

α,α�β
f ′(α), (5.3)

where f(β) ∈ [1, N) ⊂ R. One (1) is added to the sum to ensure that the individuals in

the Pareto set P ′ have better �tness than those in P.
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Figure 5.3.: Example of a minimization problem with two objectives (s1 and s2). The squares
correspond to the Pareto optimal solutions; the circles to the non-optimal solutions. The number
associated with each solution gives the �tness according to the Strength Pareto Approach. The
darker the area a non-optimal solution is located in, the more solutions from the Pareto set dominate
it, hence the worse it is ranked. The �gure is adapted from Zitzler and Thiele (1999).

Figure 5.3 illustrates one possible scenario of a minimization problem with two objectives s1
and s2. The lowest point in Fig. 5.3 shows an individual contained in the Pareto set P ′ that
dominates 3 out of the 7 individuals in P. Therefore its �tness f ′ equals 3/(7+1) = 3/8. The

next lowest point represents an individual from the population P which is dominated only by

one individual with a �tness f ′ of 3/8. Hence its �tness f calculates as 1 + 3/8 = 11/8.

Clustering Procedure

If no constraint is applied, the Pareto set can grow very large. In SPEA a clustering procedure

is applied when the size of the Pareto set exceeds a given limit. Clustering algorithms group

individuals into clusters according to their similarity. We use an agglomerative hierarchical

clustering (e.g., Hastie et al., 2009), where initially each individual represents its own cluster.

The individuals (or later clusters) which are closest according to some distance metric (we use

the Euclidian distance in the objectives space) are stepwise grouped together to form new,

larger clusters. The clustering procedure is stopped when the desired number of clusters, i.e.,

the maximum size of the Pareto set, is reached. From each cluster, the member closest to the

center of the respective cluster is to become part of the new, pruned Pareto set.

To assure that all objectives are considered equally the values are normalized before the

clustering is applied. Since our objectives si decrease with better �t, the objectives are scaled

via

ssci (α) =

si(α)− min
β∈P ′

(si(β))

max
γ∈P ′

(si(γ))
. (5.4)

That is, for each objective si we �rst subtract the minimum value occurring in the current

Pareto set from all values. And second, from the new values we take the maximum value of si
and divide all values by that maximum. The resulting ssci are then restricted to the interval

[0, 1]. Since �tness results from a greater than/smaller than comparison, scaling does not
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5. The Multi-Objective Genetic Programming Downscaling Methodology

e�ect the �tness. Note that scaling is only applied for the clustering. In contrast to randomly

drawing a number of individuals a clustering procedure helps to preserve the diversity of the

solutions while shrinking the Pareto set.

The Algorithm

Figure 5.4 shows a basic �owchart of the GP algorithm incorporating �tness assignment

according to SPEA, which is in the following explained step by step.

(1) An initial population P of individuals (downscaling rules) is generated. The initial pop-

ulation is created randomly using the Ramped Half-and-Half method1 as implemented

in the GPLAB.

(2) Each individual is applied to the training data set.

(3) From the result of (2) the objectives are calculated.

(4) The Pareto set P ′ is updated: All individuals in population P that are not dominated

within P are moved to the Pareto set P ′. The individuals in P ′ that are covered

by another member of P ′ are removed. In case the number of individuals stored in P ′
exceeds the allowed maximum, the number of individuals in P ′ is reduced by hierarchical
clustering (see Clustering Procedure).

(5) The �tness of each individual in P and P ′ is calculated by comparing the individual's

performances (see Fitness Assignment).

(6) If the stopping criterion is met, the �nal Pareto set is returned. If the stopping criterion

is not met, the algorithm continues with (7).

(7) The next generation is created by combining and mutating individuals from the current

P + P ′. The creation of the new generation consists of two steps. First, a sampling

procedure is applied to determine the parents. Second, genetic operators (crossover,

mutation) are applied to create new individuals.

(a) For sampling we use the lexicographic parsimony pressure (Luke et al., 2002) as it

is implemented in GPLAB. A number of individuals is randomly drawn from the

current P + P ′. The individual drawn with the best �tness is to become parent.

In case several individuals are equally �t the smallest one, i.e., the one consisting

of the least number of nodes, is chosen.

1In the Ramped Half-and-Half method an equal number of individuals are initialized for each depth between
two and the maximum allowed tree depth. For each depth, half of the individuals are initialized using the
Full method, the other half using the Grow method. The parse trees are generated iteratively starting
with the root note (i.e., the single node at the �rst level of a parse tree). In the Full method non terminal
nodes are added until the maximum tree depth is reached and only the last level contains terminal nodes.
In the Grow method each node, except for the root node, is randomly chosen between terminals and non-
terminals. The population resulting from the Ramped Half-and-Half initialization is thus very diverse in
size.
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5.2. MOGP Algorithm

(b) The genetic operators are applied as follows: Crossover recombines two parents.

The parent parse trees are cut at randomly chosen nodes and the separated subtrees

are exchanged. (Subtree)-mutation cuts a randomly chosen subtree from the parent

and replaces it by a new randomly created subtree. Parent selection and application

of genetic operators are repeated until the new generation is full, i.e., until the

population size de�ned in the settings is reached. For a detailed explanation see

Section 2.1.

Starting from (2) the succeeding steps are iteratively repeated until the stopping criterion is

met (see (6)).
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 solutions to 
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Figure 5.4.: Flowchart showing the essential steps of Genetic Programming with multi-objective
�tness assignment according to the Strength Pareto Evolutionary Algorithm by Zitzler and Thiele

(1999).
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6
Downscaling Mesoscale Near-Surface Fields using MOGP

This chapter describes the application of MOGP to the downscaling of atmospheric mesoscale

�elds near the land surface from 2.8 km to 400 m grid spacing. This is aimed at an improved

downscaling scheme for implementation in the TerrSysMP (Shrestha et al., 2014). Thus, we

aim to downscale all variables that are transferred from the coarse atmospheric component

model COSMO to the higher-resolution land surface and subsurface component models CLM

and ParFlow (cf. Sec. 3.3): pressure, temperature, speci�c humidity and horizontal wind speed

at the lowest COSMO model layer in ≈ 10 m height, incoming longwave radiation and direct

and di�use shortwave radiation at the land surface, and �nally instantaneous precipitation.

An atmospheric downscaling as described in this study can pursue di�erent goals. Ideally it

leads to an improved representation of mass and energy �uxes, but it can also enhance the

representation of threshold dependent processes, such as runo� and snow melt, within fully-

coupled simulations as well as in stand-alone land surface/subsurface simulations. Further,

the downscaled near-surface �elds might also o�er valuable input for agricultural models for

which for instance a good representation of night frost is important.

As in Schomburg et al. (2010) we �rst smoothen the coarse predictand �eld using a biquadratic

spline-interpolation (cf. Sec. 3.2.2). Second, the anomalies are predicted by MOGP derived

downscaling rules and added to the smooth predictand �eld to obtain the �nal downscaled

�eld (cf. Fig. 6.1). The downscaling rules in this chapter use the coarse atmospheric model

output and quasi-static high-resolution land surface information as predictors. That is, we

coarse 
predictand 

field

 interpolated 
(smoothed)

 predictand field

biquadratic
spline-interpolation

coarse-scale
 atmospheric

predictors

 anomaly field 
of predictand

fine-scale
 land surface

predictors

downscaling rule

 downscaled 
predictand field

Figure 6.1.: Sketch of the full downscaling concept.
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6. Downscaling Mesoscale Near-Surface Fields using MOGP

assume that the structure of the atmospheric boundary layer near the surface is signi�cantly

in�uenced by land surface heterogeneity.

Even with a �exible regression approach like MOGP the downscaling rules are much less com-

plex and computationally a lot cheaper than running the full atmospheric model in 3D at a

high resolution. Downscaling rules can never reproduce the exact high-resolution references;

due to turbulence for instance, there will always be a component of the �ne-scale �elds that

cannot be reconstructed.

To train the downscaling rules a training data set has been created from high-resolution

COSMO model simulations with a horizontal grid spacing of 400 m. Model setup and sim-

ulation periods are introduced in Section 6.1. The MOGP setup is described in Section 6.2.

Results are presented in Section 6.3 and discussed in Section 6.4.

6.1. Data

6.1.1. Setup of the 400 m COSMO Simulations

The downscaling algorithm by Schomburg et al. (2010) has been designed for downscaling from

2.8 km to 400 m grid spacing. In order to develop and validate the downscaling algorithm

Schomburg et al. (2010) have carried out high-resolution COSMO simulations with a grid

spacing of 400 m. In this work the same scales are considered, i.e., we aim at a downscaling

by a factor of 7. For the �rst tests of MOGP the data from the high-resolution simulations

from Schomburg et al. has been used (cf. Appendix A). These have later been replaced by

new high-resolution simulations with the most recent version of the COSMO model (COSMO

5.3).

A grid spacing of 400 m is considerably smaller than the highest operationally used grid spac-

ing of 2.8 km for COSMO-DE. Thus, for the high-resolution simulations a high-resolution

external parameter set for the land surface is required and some con�gurations in the model

setup need to be adapted. In the following the setup of the 400 m simulations is described

focusing on the di�erences compared to the operational COSMO-DE. The model setup cor-

responds largely to the setup of Schomburg et al. (2010)

Domain

The model domain covers an area of 168 × 168 km (i.e., 420 × 420 grid points at a 400 m

grid spacing) and covers the western part of North Rhine-Westphalia as well as parts of

Luxembourg, Belgium and the Netherlands (Fig. 6.2). The domain is centered over the

two small rivers Rur and Erft, which is the main investigation area of the Transregional

Collaborative Research Centre 32 (Simmer et al., 2015).

External, Initial and Boundary Data

For a grid spacing of 400 m the operationally used surface data from DWD is too coarse.

Schomburg et al. have created an external data set with 400 m grid spacing.
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Figure 6.2.: Location of the 168 × 168 km domain of the COSMO simulations with 400 m grid
spacing (white box) within the operational COSMO-DE domain.

� Topographic height information has been obtained from the Shuttle Radar Topogra-

phy Mission (Farr et al., 2007). The original data set has a grid resolution of 90 m and

has been averaged to 400 m. In a boundary area, 20 km around the edges, the orography

has been slightly smoothed to ensure a gradual transition to the coarser COSMO-DE

boundary forcing. The domain contains �at areas in the north and northwest as well as

mountainous regions in the south and the northeast (cf. Fig. 6.3(a)).

� Soil type information has been obtained by merging data sets from North Rhine-

Westphalia (IS BK50) and Rhineland-Palatinate (BÜK200). The soil type classes have

been mapped onto soil type categories used in the COSMO model. For the western

part of the domain, which covers parts of the Netherlands, Luxembourg and Belgium,

no high-resolution soil information was available. Thus here the information from the

coarser operationally used external data set of the DWD has been used. The dominant

soil type for the domain is loam followed by sand and sandy loam (cf. Fig. 6.3(b)).

� Land use characteristics are obtained from the CORINE data set (EEA, 2000).The

original data has a grid spacing of 100 m and distinguishes 44 di�erent land use classes.

The data has been upscaled to 400 m grid spacing according to the dominant land cover

class and contains 29% forests, 22% irrigated arable land, 14% pastures, 13% urban

fabric areas, and 11% complex cultivation patterns (cf. Fig. 6.3(c))

The remaining external parameter �elds fraction of land, plant cover, leaf area index,

roughness length, root depth and the soil texture parameters for TERRA have been

determined from topography, soil type and land use information mainly via look-up tables

(for details see Schomburg (2011)).

Initial and lateral boundary data for the simulations are taken from the COSMO-DE analy-

ses of the DWD. Analyses runs use data assimilation schemes, which nudge the model state
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Figure 6.3.: The domain of the 400 m simulations in detail. The full domain covers 168 × 168 km
(i.e., 420 × 420 grid points). To exclude boundary e�ects only the inner 280 × 280 grid points are used
for training and validating the downscaling rules. The excluded area is indicated by the transparent
margin areas in the �gures. (a) shows the topography and the location of DWD and TERENO stations
(cf. Figs. 6.5). (b) shows the high-resolution soil type information (from IS BK50 and BÜK200) and
(c) shows the high-resolution land cover information (from CORINE).
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towards the measurements. At a grid resolution of 400 m broad rivers such as the Rhine are

resolved as connected water pixels. Water pixels require the attribution of a water tempera-

ture. In COSMO water temperature is typically estimated from the sea surface temperature.

As the domain of the 400 m simulations does not contain ocean, the river temperatures are

assigned according to the mean annual cycle of the water temperature as measured near

Karlsruhe.

Model Configuration

For the 400 m simulations some settings have do be altered compared to the operational

COSMO-DE setup(Table 6.1). The time stepping is adjusted from 25 sec to 4 sec to obey the

Courant-Friederich-Levy (CFL) stability criterion. The increase of the grid resolution leads

to a major increase of computation time. The vertical grid spacing has not been altered (i.e.,

51 vertical layers as in COSMO-DE).

Turbulence Turbulence parameterizations are typically developed for certain scales and are

not readily applicable to other scales. Usually the horizontal grid spacing is large compared to

the vertical grid spacing and it is thus assumed, that the turbulent exchange is much larger in

the vertical than in the horizontal. Horizontal exchange coe�cients are often neglected. With

a grid spacing of a few hundred meters in the horizontal it is questionably if the assumption

of negligible horizontal turbulent exchange is still valid.

In COSMO di�erent turbulence schemes can be used. The default is a prognostic TKE scheme

which neglects the horizontal turbulent exchange coe�cients. An alternative scheme has been

developed for very high-resolution simulations (≈ 100 m grid spacing) with the Litfass Local

Model (LLM), a variant of the Local Model (LM - the predecessor of the COSMO model). The

LLM model has been set up in the framework of the LITFASS project of DWD (Beyrich et al.,

2002). The LLM turbulence scheme estimates the horizontal exchange coe�cients from the

vertical coe�cients by scaling them according to the horizontal grid spacing. Thus, the LLM

scheme automatically adapts to the model resolution while the default TKE-scheme has tuning

parameters, such as the maximum turbulent length scale, and is thus not straightforwardly

adaptable to higher resolutions. For these reasons Schomburg (2011) used the LLM-scheme

for the 400 m COSMO simulations.

In the latest COSMO versions (COSMO 5.1 and beyond) the TKE-scheme has been improved

Table 6.1.: Summary of adjustments made to set up the high-resolution COSMO simulations (com-
pared to the operational COSMO-DE setup).

Setting (Namelist Parameter) COSMO-DE COSMO-400m

grid spacing 2.8 km 400 m
model time step 25 s 4 s
spatial averaging for rad. calc. (lrad_avg) yes (TRUE) no (FALSE)
turbulence parametrization (itype_turb) TKE-scheme (3) LLM-scheme (7)
3 dimensional turbulence (l3dturb) no (FALSE) yes (TRUE)
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Figure 6.4.: Simulated 10 m temperature �elds on July 18th 2014 at 3:00 UTC with (a) the standard
TKE-scheme and (b) the LLM-scheme for turbulence. (c) shows the di�erence between both.

and can now be used as a 3D scheme, which improves model results mainly at horizontal

resolutions below 1 km grid spacing. In order to �nd the suitable turbulence scheme for our

simulations, we have simulated two test cases with the new 3D TKE-scheme and the 3D

LLM-scheme. Though both schemes consider three dimensional turbulence, the simulations

di�er especially for the near surface temperature during clear sky nights (Fig. 6.4). The

LLM-scheme simulates generally lower nighttime temperatures than the TKE-scheme while

the spatial patterns of the temperature �elds are similar; both �elds show channel structures

formed by cold air draining into the valleys due to the stable atmospheric layering, which is

typical of nights with strong radiative cooling. However, the simulation with the LLM-scheme

gives up to 5 K lower temperatures in the valleys of the Eifel than the simulations with the

TKE-scheme.

We have compared the simulated temperatures against measurements from 10 DWD and 3

TERENO stations located within the model domain (for station locations see Fig. 6.3). The

time series at four selected stations are shown in Fig. 6.5. "Noervenich Flugplatz" is located

in �at terrain. "Kall-Sistig" is located at a hillside. "Schneifelforsthaus" is located near the

peak of a mountain and "Wuppertal Buchenhofen" is located in a valley (between two low

mountain ranges).

The di�erences in the 2 m temperature between TKE- and LLM-scheme are rather small

compared to the di�erences to the observations. The range of the diurnal cycle of the 2 m

temperature is generally underestimated by the simulations compared to the observations.

The di�erence is most pronounced at the stations in the lower altitudes (cf. Fig. 6.5(a) and

(d)). For the stations at higher altitudes the simulations match the observations more closely

(cf. Fig. 6.5(b) and (c)). For all four stations the simulated daily maximum temperature

is to small compared to the observations. Daily observed minimum temperatures are bet-

ter captured by the simulations. However, for the stations at low altitudes the minimum

temperatures tend to be overestimated compared to the observations. For the minimum tem-

perature the LLM-scheme is in general closer to the observations than the TKE-scheme. For

the daytime temperature the TKE-scheme appears to be closer to the observations though

only marginally.

Based on these comparisons and the reasoning in Schomburg (2011) we use the LLM-scheme.

The more reasonable representation of near-surface temperatures during clear sky nights is
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Figure 6.5.: 2 m temperature from July 17th 2014 18:00 UTC to July 19th 2014 0:00 UTC. The
red line shows station measurements. The blue lines show the simulation results at the grid point
closest to the respective station either with the TKE-scheme (light blue) or with the LLM-scheme
(dark blue). The location of the stations is shown in Fig. 6.3.

potentially important for training the downscaling scheme as the resulting channel struc-

tures lead to very pronounced �ne-scale variability and thus comparatively large temperature

anomalies.

Radiation In COSMO-DE radiation calculations are carried out every 15 min. Since clouds

can cross several 400 m grid boxes in few minutes the radiation calculations are carried out

every 3 minutes in the 400 m simulations. Moreover, radiation calculations are carried out for

every single grid box and not averaged over grid-boxes as in COSMO-DE. As the radiation

parameterization is computationally expensive also these changes contribute signi�cantly to

the increase of computing time. In the 400 m simulations a model time step calling the

radiation scheme takes approximately three times as long as a model time step not calling the

radiation scheme.

6.1.2. Simulation Periods

In total 30 two-day periods have been simulated, half for training the downscaling rules, half

for validation. Instead of using the (hourly) output for the complete 48 hour simulations,

single time steps have been extracted for training and validation to reduce computational

cost (cf. Table 6.2).
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Table 6.2.: Dates and prevailing weather conditions of the 400 m COSMO simulations. The full data set contains 30 simulation periods of two days each.
The data has been split into two parts of 15 simulations each. The �rst part is used for training, the second for the validation of the downscaling rules. The
three right hand columns list the time steps extracted from the data to reduce computational cost. For pressure p, temperature T , speci�c humidity q and
wind speed wh at 10 m height, as well as incoming longwave radiation at the surface LWR the same time steps have been extracted. For incoming direct and
di�use shortwave radiation SWRdir, SWRdif and precipitation P only time steps where the respective variable is unequal zero for at least one grid box are
selected.

(a) Training
Date Weather p, T, q, wh, LWR SWRdir, SWRdif P

11/12 Mar 2013 snow 12-02:00, 12-15:00 11-16:00, 12-15:00 11-08:00, 11-10:00, 12-12:00, 12-12:00
26/27 Jan 2014 clouds, precipitation 27-02:00, 27-14:00 26-08:00, 27-14:00 26-21:00, 26-23:00, 27-02:00, 27-03:00
01/02 May 2014 wind, clouds, heavy local precipitation 01-13:00, 02-22:00 01-13:00, 02-18:00 01-18:00, 01-19:00, 01-22:00
11/12 May 2014 strong winds, convective precipitation 11-12:00, 12-21:00 11-12:00, 12-19:00 11-09:00, 12-11:00, 12-21:00
28/29 Sept 2014 fair weather conditions 28-05:00, 29-10:00 28-07:00, 29-10:00 -
18/19 Oct 2014 fair weather conditions 18-20:00, 19-01:00 18-15:00, 19-09:00 -
03/04 Nov 2014 stratiform precipitation 03-18:00, 04-08:00 03-15:00, 04-08:00 04-07:00, 04-08:00, 04-20:00
01/02 Jan 2015 wind, clouds and precipitation 02-03:00, 02-16:00 02-10:00, 02-15:00 01-22:00, 02-03:00, 02-04:00
30/31 Jan 2015 wind, clouds and precipitation 30-23:00, 31-07:00 30-12:00, 31-13:00 30-23:00, 31-00:00, 31-07:00, 31-09:00
12/13 Feb 2015 mostly clear sky 12-11:00, 13-19:00 12-11:00, 13-16:00 -
08/09 Mar 2015 �rst clear sky, later clouds, weak precip. 08-09:00, 09-04:00 08-09:00, 09-07:00 -
01/02 July 2015 clear sky, hot 02-03:00, 02-15:00 02-09:00, 02-15:00 -
10/11 July 2015 clear sky, hot 10-06:00, 11-00:00 10-06:00, 11-18:00 -
25/26 July 2015 stratiform precipitation, strong winds 25-09:00, 26-17:00 25-09:00, 26-17:00 25-09:00, 26-15:00, 26-17:00
04/05 Aug 2015 stratiform precipitation 04-17:00, 05-07:00 04-17:00, 05-07:00 04-10:00, 04-12:00, 04-14:00
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(b) Validation
Date Weather p, T, q, wh, LWR SWRdir, SWRdif P

06/07 May 2014 stratiform precipitation 06-18:00, 07-08:00 06-15:00, 07-08:00 06-22:00, 07-03:00, 07-04:00
17/18 Sept 2014 fair weather conditions 17-10:00, 18-01:00 17-15:00, 18-09:00 02-02:00, 02-07:00, 02-08:00
22/23 May 2015 partly cloudy, weak wind 22-09:00, 23-04:00 22-09:00, 23-07:00 -
04/05 June 2015 fair weather conditions 04-06:00, 05-00:00 04-06:00, 05-18:00 -
12/13 June 2015 convective clouds and precipitation 12-12:00, 13-21:00 12-12:00, 13-19:00 12-12:00, 12-15:00, 12-17:00, 12-19:00
12/13 July 2015 stratiform (later convective) precip. 13-03:00, 13-06:00 13-10:00, 13-12:00 12-23:00, 13-00:00, 13-07:00
17/18 July 2015 clear sky 18-03:00, 18-15:00 18-09:00, 18-15:00 -
01/02 Aug 2015 weak winds, some clouds later clear sky 01-17:00, 02-07:00 01-17:00, 02-07:00 -
01/02 Jan 2014 moderate winds, clouds, precipitation 01-13:00, 02-22:00 01-13:00, 02-11:00 01-18:00, 01-19:00, 01-22:00, 01-23:00
18/19 Dec 2014 clouds and precipitation 19-02:00, 19-14:00 18-08:00, 19-14:00 18-21:00, 18-23:00, 19-03:00
09/10 Jan 2015 cloudy, weak winds, strong precipitation 10-02:00, 10-15:00 09-14:00, 10-15:00 09-08:00, 09-10:00, 10-12:00, 10-14:00
19/20 Feb 2015 �rst clear sky, later cloudy 19-05:00, 20-10:00 19-07:00, 20-10:00 -
01/02 Mar 2015 front crossing 01-23:00, 02-07:00 01-12:00, 02-13:00 01-17:00, 01-22:00, 02-02:00
29/30 Mar 2015 moderate winds, stratiform precipitation 29-09:00, 30-17:00 29-09:00, 30-17:00 29-12:00, 29-18:00, 30-00:00
09/10 Apr 2015 fair weather conditions 09-11:00, 10-19:00 09-11:00, 10-16:00 -
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6. Downscaling Mesoscale Near-Surface Fields using MOGP

6.2. MOGP Setup

MOGP has been applied to all variables required by the CLM model as atmospheric input.

For each variable (except for p) MOGP is run at least twice. In the �rst run (MOGPfull) a

large set of predictor variables is considered. The atmospheric and surface variables included

in the full training data sets are selected based on our understanding of physical processes

potentially a�ecting a predictand variable. In the second MOGP run (MOGPsub) the terminal

set comprises only a subset of the predictors from the �rst run, namely those that have been

used in at least 10% of the Pareto optimal downscaling rules returned by the �rst MOGP

run (cf. Tables 6.4, 6.5). For some predictand variables, additional MOGP runs are carried

out. MOGPsoil incorporates variables (soil temperature, soil water content) from the soil

model TERRA as predictors at high resolution, as those quantities might a�ect temperature

and humidity in the lower atmosphere. MOGPnoise contains a simple noise generator in the

terminal set as it is expected that the subgrid-scale variability of the atmospheric variables is

only in parts determined by the land surface heterogeneity.

Note, that the downscaling rules predict anomalies, i.e., the di�erences between the spline-

interpolated �elds and the high-resolution reference (cf. Fig. 6.1). To avoid biases we conserve

the coarse pixel mean by subtracting the mean anomaly predicted over a coarse pixel from

the predicted anomalies at every pixel on the �ne scale,

yDtij = ỹDtij −
1

7× 7

∑

ij∈X(p,q)

ỹDtij , (6.1)

with ỹDtij being the original anomaly at time step t and grid point (i, j) predicted by a downscal-

ing rule and X(p, q) being a coarse pixel containing 7×7 pixels at the �ne scale (cf. Fig. 6.6).

6.2.1. Objectives

MOGP optimizes a trade-o� between several objectives de�ned by the user. The �rst three

objectives chosen - the root mean square error, the error of the subgrid scale standard devi-

ation, and the mean integrated quadratic distance - quantify the quality of the downscaling

rules. The complexity of a downscaling rule serves as fourth objective. In our case, each ob-

jective is negatively oriented in the sense that it decreases the better the �t. The motivation

and de�nition of the four objectives are given in the following.

Root Mean Square Error The root mean square error (RMSE) between downscaled yD

and reference anomalies yR is given by

RMSE =

√
1

ntninj

∑

i,j,t

(yRtij − yDtkl)2, (6.2)

where ni and nj denote the number of pixels in x- and y-direction and nt the number of

training data �elds (cf. Fig. 6.6).
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Figure 6.6.: Sketch of the scales at which the di�erent objectives are de�ned. The root mean square
error RMSE is de�ned on the �ne pixel scale. The standard deviation considered by the mean error
of the standard deviation ME(STD) is de�ned on the coarse pixel scale. The integrated quadratic
distance considered in the mean integrated quadratic distance MIQD is de�ned on the full �elds.

Mean Error of Standard Deviation The mean error of the subgrid-scale standard deviation

ME(STD) is aimed at the reconstruction of the subgrid-scale spatial variability and de�ned

as follows. Let X(p, q) denote the pixels on the coarse scale containing 7× 7 �ne-scale pixels

(cf. Fig. 6.6). The coarse pixel standard deviation σ(yRtpq) of the reference �eld t reads

σ(yRtpq) =

√√√√ 1

7× 7− 1

∑

i,j∈X(p,q)

(yRtij − ȳRtpq)2 =

√√√√ 1

7× 7− 1

∑

i,j∈X(p,q)

(yRtij)
2, (6.3)

with ȳRtpq denoting the coarse pixel mean. Again y represents the anomalies. As the spline-

interpolation conserves the coarse pixel mean, the coarse pixel mean anomaly (high-resolution

minus spline-interpolated �eld) equals zero, ȳRtpq = ȳDtpq = 0. Thus, the second objective can

be de�ned as

ME(STD) =
7× 7

npnqnt

∑

t,p,q

∣∣∣σ(yRtpq)− σ(yDtpq)
∣∣∣. (6.4)

Mean Integrated Quadratic Distance The mean integrated quadratic distance MIQD aims

at the minimization of the di�erences between the empirical cumulative distribution functions

(CDFs) of the downscaled and the reference �eld. The integrated quadratic distance IQD

between two CDFs F1 and F2 is de�ned as (Thorarinsdottir et al., 2013):

IQD =

∫ ∞

−∞
(F1(x)− F2(x))2dx. (6.5)

Let us denote the empirical CDF of a downscaled �eld at time t with FDt (y) and the CDF of

the reference �eld with FRt (y) respectively. From the CDFs we calculate the IQD for each �eld
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6. Downscaling Mesoscale Near-Surface Fields using MOGP

(time step) separately (cf. Fig. 6.6) and take the mean over all time steps (i.e., the complete

training data set) as objective

MIQD = 1/nt
∑

t

∫ ∞

−∞
(FRt (y)− FDt (y))2dy. (6.6)

Solution Size The fourth objective is the size of the solutions, i.e., the number of nodes of

a parse tree/downscaling rule. Smaller solutions can be checked for physical consistency more

easily, are computationally less expensive and less prone to over�tting. Incorporating the size

as an objective further provides information on the dependency between the quality and the

complexity of the downscaling rules.

6.2.2. Parameters

The MOGP setup is summarized in Table 6.3. The function set contains the four arithmetic

functions and an if statement (if A>B do C else do D). The terminal set contains constants,

numbers randomly drawn from the interval [0, 1] and some decimal powers, and variables.

The set of predictor variables comprises coarse-scale atmospheric information (cf. Table 6.4)

and high-resolution land surface information (cf. Table 6.5). The predictors are not further

preprocessed (i.e., no scaling etc. is applied).

Each MOGP run evolves 200 generations with 100 individuals each and a maximum Pareto

set size of 50. The genetic operators for (subtree-)mutation and crossover are applied with a

probability of 50% each. To keep the downscaling rules readable we set the maximum tree

depth to 5 levels. With the above settings a single MOGP run (for one predictand) takes

approximately 5 days on a normal PC.

Table 6.3.: Summary of the GP parameters. (Protected division means that division by zero returns
the dividend not an error.)

Parameter Value

function set + , - , × , protected /, if

terminal set
random numbers [0,1], 10, 102, 103, predictor variables
(Tables 6.4, 6.5); random �elds for MOGPnoise only

generations 200
population size 100
max. Pareto set size 50
genetic operators (subtree-)mutation, crossover
max. tree levels 5

Atmospheric Predictors

The atmospheric predictors are described in Table 6.4. Some of the parameters have been

derived from the COSMO model output, such as the vertical gradients (gr) and the coarse-

scale 3 × 3 pixel standard deviation (sd3×3). The pressure gradient between the two lowest
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6.2. MOGP Setup

2 main levels at approximately 10 m and 35 m height is for instance given by

pgr25 =
p(2)− p(1)

h(2)− h(1)
=
p35 − p10
35− 10

. (6.7)

At each �ne-scale pixel the coarse-scale 3 × 3 standard deviation is the standard deviation

within the 3 × 3 coarse pixels surrounding the respective �ne-scale pixel. This is aimed at

reproducing spatial variability assuming that coarse and �ne-scale variability are related.

The speci�c humidity of an air parcel is the ratio between the water vapor mass mw and the

air parcels total (dry + moist) mass mt, i.e, q = mw/mt. The solar zenit angle Ω is the angle

between the zenit and the sun center. The total precipitable water TPW is the amount of

all water in an atmospheric column and typically given in millimeters of liquid water. The

total precipitable water can be imagined as the height of water in an atmospheric column if

all water in the vertical column were precipitated as rain.

The last two predictors are the convective available potential energy of a mean surface layer

parcel CAPEml and of the most unstable parcel CAPEmu. If an air parcel is lifted it can,

depending on the atmospheric stability, reach a level of free convection where it experiences

buoyancy such that it accelerates further until it reaches equilibrium with its surroundings.

CAPE is calculated by vertically integrating the local buoyancy of a parcel from the level of

free convection zf to the equilibrium level zn,

CAPE = g

∫ zn

zf

Tv,par − Tv,env
Tv,env

dz (6.8)

with g = 9.81 m/s being the gravitational acceleration and Tv the virtual temperature of the

considered air parcel (par) and its environment (env). The virtual temperature of a moist air

parcel is the temperature of the corresponding dry parcel with same pressure and density. A

high CAPE suggests potential for strong convection and is thus an indicator for potentially

severe weather.

Surface Predictors

The surface predictors are listed in Table 6.5. The anomalies are de�ned with respect to the

corresponding spline-interpolated �elds 1. The four tp predictands describe the topography at

each grid point with respect to its direct four neighbours. tp1 is the mean height di�erence to

neighboring grid points, tp∗1 is the anomaly of tp1 again with respect to the spine-interpolated

�eld. tp2 and tp3 are the local slopes in the direction of lowest and highest neighbouring grid

point.

The topographic index TI and the contributing area CA are parameters widely used in

hydrological models and studies. The contributing area of a pixel is the catchment area from

which water drains to the pixel. The topographic index (or topographic wetness index) is

1The anomaly is determined in two steps. First, the high-resolution �eld is coarsened to a 2.8 km grid
by spatial averaging. Second, the coarse �eld is interpolated back to the high resolution. The di�erence
between original high-resolution and interpolated �eld gives the anomaly.
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Table 6.4.: Atmospheric predictors at coarse (2.8 km) grid resolution incorporated in the terminal sets for the di�erent predictand variables. The predictors
are further described in the text. The crosses indicate whether a certain predictor (row) is contained in the MOGP terminal set for a certain downscaling
predictand (column). The di�erent colors, black and red, relate to the two-step procedure of the MOGP runs. In a �rst MOGP run (MOGPfull) the full set
of predictors (red crosses and black bullets) is used. In the second run (MOGPsub) only predictors (red crosses) are incorporated in the terminal set that are
used in at least 10% of the Pareto optimal downscaling rules returned by MOGPfull.

PREDICTANDS
PREDICTORS p∗ T ∗ w∗

h q∗ LWRdif
∗ SWR∗

dir SWR∗
dif P ∗

p10 pressure at lowest model layer (≈ 10 m) X
pgr25 vert. p gradient of lowest 2 layers (≈ 25 m) X
pgr60 vert. p gradient of lowest 3 layers (≈ 60 m) X
pgr110 vert. p gradient of lowest 4 layers (≈ 110 m) X
psd3×3 standard deviation of p10 in 3× 3 coarse pixels X

T10 temperature at lowest model layer (≈ 10 m) X �
Tgr25 vert. T gradient of lowest 2 layers (≈ 25 m) � � � �
Tgr60 vert. T gradient of lowest 3 layers (≈ 60 m) X � � X
Tgr110 vert. T gradient of lowest 4 layers (≈ 110 m) � � X �
Tsd3×3 standard deviation of T10 in 3× 3 coarse pixels X

q10 speci�c humidity at lowest model layer (≈ 10 m) X
qgr25 vert. q gradient of lowest 2 layers (≈ 25 m) X
qgr60 vert. q gradient of lowest 3 layers (≈ 60 m) X
qgr110 vert. q gradient of lowest 4 layers (≈ 110 m) X
qm1660 sum of q over lowest 15 layers � � � X �
q10,div horizontal divergence of the q10 �ux � �
qm1660,div horizontal divergence of the qm1660 �ux �
qsd3×3 standard deviation of q10 in 3× 3 coarse pixels � � � � �

wv,20 vertical wind speed (≈ 20 m) � � � � � � �
wh,10 horizontal wind speed at lowest model layer (≈ 10 m) � X � � X � �
wh,gr25 vert. wind sheer of lowest 2 layers (≈ 25 m) �
wh,gr60 vert. wind sheer of lowest 3 layers (≈ 60 m) �
wh,gr110 vert. wind sheer of lowest 4 layers (≈ 110 m) �
wh,sd3×3 standard deviation of wh,10 in 3× 3 coarse pixels X
TKE20 turbulent kinetic energy (≈ 20 m) � X � � � � �
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PREDICTANDS
PREDICTORS p∗ T ∗ w∗

h q∗ LWRdif
∗ SWR∗

dir SWR∗
dif P ∗

Rnet,s net radiation at the surface � � � � X �
SWRnet,t net downward shortwave radiation at the TOA � � X
LWRnet,t net downward longwave radiation at the TOA � � �
SWRdir,s direct incoming SWR at the surface X � �
SWRdif,s di�use incoming SWR at the surface X � �
LWRdif,s incoming LWR at the surface X � �
Ω cosine of solar zenit angle � � � X �
LWRdif,s,sd3×3 standard deviation of LWRdif,s in 3× 3 coarse pixels �
SWRdir,s,sd3×3 standard deviation of SWRdir,s in 3× 3 coarse pixels �
SWRdif,s,sd3×3 standard deviation of SWRdifs in 3× 3 coarse pixels �

CAPEml CAPE of mean surf. layer parcel � � � �
CAPEmu CAPE of most unstable parcel � X � �

CLCt total cloud cover � � X � X �
CLCl cloud cover of low clouds (surface to 800 hPa) � � � X � �
CLCm cloud cover of medium high clouds (800 hPa to 400 hPa) � � X � �
CLCh cloud cover of high clouds (400 hPa to TOA) � � � � X
TCW vertical integrated cloud water � � � X X
TCI vertical integrated cloud ice � � � � X
CLCt,sd3×3 standard deviation of CLCt in 3× 3 coarse pixels � � �
CLCl,sd3×3 standard deviation of CLCl in 3× 3 coarse pixels � X X

P instantaneous precipitation � � � � � X
TPW precipitable water � � � � X
TP vertically integrated water content of P � � � � X
Psd3×3 standard deviation of P in 3× 3 coarse pixels X
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Table 6.5.: Same as in Table 6.4, but for the surface predictors at the �ne (400 m) grid resolution incorporated in the terminal sets for the di�erent predictand
variables. The green crosses in brackets indicate additional predictors for MOGPsoil.

PREDICTANDS

PREDICTORS p∗ T ∗ w∗h q∗ LWR∗dif SWR∗dir SWR∗dif P ∗

h topographic height X X X X X X X X
h∗ topographic height anomaly X X X � X X � �

tp1 mean height di�erence to neighboring grid points X X � � X X �

tp∗1 anomaly of tp1 X X � � X X �

tp2 slope to lowest neighboring grid point X X X � X � �

tp3 slope to highest neighboring grid point X X � � � � �

TP topographic index � � � X � � �

TP ∗ anomaly of topographic index X � X X X � �

CA contributing area � � X � � �

CA∗ anomaly of contributing area � � � � � � �

PLC plant cover � X X X � X X
PLC∗ anomaly of plant cover X X � � � � X
z0 roughness length X X � X
z∗0 anomaly of roughness length X X � X
α albedo � � X � X
α∗ anomaly of albedo � X X X X
LAI leaf area index X X X
LAI∗ anomaly of leaf area index X � �

ST soil type X X
FRland fraction of land X X X X � X

hgr,w,c gradient of h in wind direction (of coarse pixel) X � �

z0,gr,w,c gradient of z0 in wind direction (of coarse pixel) X X
hgr,w,f gradient of h in wind direction (of �ne-scale pixel) X X �

z0,gr,w,f gradient of z0 in wind direction (of �ne-scale pixel) � �

Tso soil temperature of uppermost soil layer (≈ 5 cm depth) (X) (X)
T ∗so anomaly of Tso (X) (X)
Wso soil water content of uppermost soil layer (≈ 5 cm depth) (X) (X)
W ∗so anomaly of Wso (X) (X)
Wso,7 water content of soil column between surf. and ≈ 7 m depth (X) (X)
W ∗so,7 anomaly of Wso,7 (X) (X)
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de�ned as

TI = ln
CA

tan(b)
, (6.9)

with b the local slope. The topographic index gives an estimate how likely water gathers at

a pixel.

The plant cover PLC is the percentage of a surface pixel covered by plants. The roughness

length z0 quanti�es the friction of the air �ow close to the land surface. The albedo α is the

ratio between re�ected and incoming radiation at the respective surface. The leaf area index

LAI is given by the (one-sided) area of all leaf surfaces above a land surface pixel divided

by the area of the respective pixel and is an important parameter for transpiration and CO2

budget. The fraction of land FRland indicates the percentage of a surface pixel covered by

land (and not water).

The parameters hgr,w,c and z0,gr,w,c are the horizontal gradients of the coarse topographic

height and roughness length �elds in the near-surface wind direction (at coarse scale). hgr,w,f
and z0,gr,w,f are the horizontal gradients of the �ne-scale topographic height and roughness

length �elds in the near surface wind direction (at coarse scale).

6.3. Results

We have applied MOGP to the detection of downscaling rules for pressure p, temperature T ,

speci�c humidity q and horizontal wind speed wh at 10 m height, incoming di�use longwave

radiation LWRdif , incoming direct shortwave radiation SWRdir and incoming di�use short-

wave radiation SWRdif at the land surface and precipitation P from 2.8 km to 400 m grid

spacing. For all variables except pressure and precipitation several MOGP runs have been

carried out with slightly di�erent setups:

� MOGPfull uses the full set of predictors (cf. Tables 6.4, 6.5)

� MOGPsub uses only the 10-16 predictors most frequently used by MOGPfull (cf. Ta-

bles 6.4, 6.5)

� MOGPsoil uses predictors from MOGPsub together with some additional �ne-scale pre-

dictors from the land-surface/subsurface scheme like soil temperature and soil water

content (cf. Tables 6.4, 6.5).

� MOGPnoise uses the predictors from MOGPsub and additionally incorporates a random

number generator (in the terminal set) which randomly draws numbers form a uniform

distribution in the interval [0,1]. The random number generator is applied for each grid

point of each �eld each time a parse tree is evaluated. (The random constants included

in the terminal set for all MOGP setups are the same for each grid point and �eld and

are drawn only once.) The random number generator provides a possibility for GP to

generate variability that is not directly related to the land surface predictors.

The evaluation of the downscaling performance relies for the most part on the objective

functions RMSE, ME(STD) and MIQD de�ned in Section 6.2.1. All objectives are formulated
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as penalties, i.e., the smaller the objective the better. Thus, we de�ne the relative reduction

of an objective si by a downscaling rule α as

s̃i(α) = 1− si(α)/si(0), (6.10)

where si(0) is the value of an objective when predicting zero anomalies, which corresponds to

the spline-interpolated �eld. Note that s̃i(α) ∈ (−∞, 1].

The relative reduction is analogue to a skill score, with the objective for a perfect solution

si(α) equal to zero. A positive s̃i(α) indicates that the downscaled �eld is better than the

spline-interpolated �eld concerning objective si; for a perfect downscaling s̃i(α) = 1; for a

downscaling that performs as good as the interpolated �eld s̃i(α) = 0; for a downscaling worse

than the interpolated �eld s̃i(α) < 0.

The importance of the predictors for downscaling a certain variable is quanti�ed by the fre-

quency with which the predictor xi is contained in the Pareto set returned by MOGP,

h(xi) =
n(α ∈ P ′|xi ∈ α)

n(α ∈ P ′) , (6.11)

or in words, the frequency h(xi) is given by the number n of rules α in Pareto set P ′ containing
predictor xi at least once divided by the total number of rules in the Pareto set.

6.3.1. Pressure

Overview

Figure 6.7 gives an overview of the performance of MOGP for downscaling pressure at 10 m

height. Only few rules reduce the RMSE, but one downscaling rule that reduces the RMSE by
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Figure 6.7.: Overview of the MOGP performance for downscaling 10 m pressure. (a) relative reduc-
tion of RMSE, ME(STD) and MIQD for the 50 rules from the Pareto set applied to the validation (val)
data set; (b) di�erence in relative reduction between training (tr) and validation data set. The hori-
zontal line within the boxes is the median. The upper and lower boundaries of the boxes correspond
to the 75%- and 25%-quantiles. The whiskers indicate the range spanned by maximum and minimum.
The length of the whiskers is restricted to 1.5 times the interquartile range (i.e., range between 25%-
and 75%-quantile). Values outside this range are considered outliers and shown as circles.
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Figure 6.8.: Usage frequency h(xi) of the predictors (cf. Tables 6.4, 6.5) for downscaling 10 m
pressure.

more than 90% sticks out. The ME(STD) and MIQD are reduced by up 99%. No over�tting

tendencies occur (Fig. 6.7(b)).

Surface height h and surface height anomaly h∗ are the most frequently used predictors fol-

lowed by hgr,w,f , near-surface pressure p and near-surface vertical pressure gradients (Fig. 6.8).

Physics suggest a strong relation between height z and pressure p given by the hydrostatic

equation,
∂p

∂z
= −ρg, (6.12)

where ρ is the air density and g = 9, 81 m s−2 the gravitational acceleration.

Selected Downscaling Rules

The rule returned by MOGP that yields the best reduction of RMSE (97%) and a reduction

of 97% to 99% for ME(STD) and IQD (cf. Table 6.6) is shown in Fig. 6.9. Translating the

parse tree into an equation the rule reads

p∗ = hgr,w,f + h∗ pgr25 ≈ h∗ pgr25 (MOGP).

That is, the pressure anomaly p∗ w.r.t. the spline-interpolated �eld is given by the surface

height anomaly h∗ times the pressure gradient of the lowest 25 m pgr25 added to the horizontal

gradient of the (�ne-scale) surface height in the (coarse-scale) wind direction hgr,w,f . The �rst

timesh
gr,w,f

p
gr25

 plus

h*

Figure 6.9.: One downscaling rule returned by MOGP for downscaling 10 m pressure.
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Figure 6.10.: 10 m pressure �eld on May 7th 2014 8:00 UTC. (a) shows the spline-interpolated �eld;
(b) shows the downscaled �eld resulting from the downscaling rule from Schomburg et al. (2010); (c)
shows the downscaled �eld resulting from the MOGP downscaling rule (cf. Fig. 6.9); (d) shows the
reference �eld from the high-resolution model run.

term hgr,w,f is, however, much smaller than h∗pgr25 and can be neglected without signi�cantly

a�ecting the results.

The downscaling rule for pressure from Schomburg et al. (2010) is based on the hydrostatic

equation and assumes a constant air density of ρ = 1.19 kg m−3, i.e.,

p∗ = −11.67 h∗ (Schomburg et al.).

Also the downscaling rule from Schomburg et al. (2010) performs well (cf. Table 6.6), but

the MOGP rule performs slightly better with a relative reduction that is about 1% larger for

the three objectives. Figure 6.10 shows the downscaled pressure �eld at 10 m height on May

7th 2014 8:00 UTC. The strong dependency of the 10 m pressure on surface height is obvious

(cf. Fig. 6.3 (a)). By eye one can not distinguish between the high-resolution reference and

the downscaled pressure �elds. The di�erence in performance between the two rules is small

and both are simple and physically reasonable, but for 29 out of 30 near-surface pressure

�elds contained in the validation data set the MOGP rule performs better then the rule from

Schomburg et al. (2010). Thus, the use of the MOGP rule is suggested.

Table 6.6.: Relative reduction of the objectives by the MOGP downscaling rule for 10 m pressure
(Fig. 6.9) and by the downscaling rule from Schomburg et al. (2010) (see text) applied to the validation
data set.

R̃MSE ˜ME(STD) M̃IQD

MOGP 0.97 0.97 0.99
Schomburg et al. 0.96 0.97 0.98
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6.3.2. Temperature

Figure 6.11 summarizes the performance of MOGP for downscaling 10 m temperature. ME(STD)

and MIQD are reduced by up to about 70% and 85%, respectively, by all four MOGP setups

(full, sub, soil, noise). The RMSE is reduced only by some rules. On average the RMSE

is slightly increased. No systematic over�tting occurs, but the RMSE is occasionally better

reduced for the training data set (by up to 15%) for MOGPfull and MOGPsoil (Fig. 6.11(b)).

The performance of the di�erent MOGP setups di�ers only slighly. As MOGP is non-

deterministic and only one run has been carried out with each setup, any interpretation

of the di�erences should be treated with caution. Still, for temperature downscaling it seems

not to be bene�cial to reduce the predictor set from the full set to a subset. The use of the

soil predictors (soil temperature and soil water content) leads to a slight improvement. Using

a basic noise generator does not a�ect the overall performance of MOGP much.

Figure 6.12 shows scatter plots for the Pareto sets from all four MOGP setups and incorpo-

rates all four objectives. Except for some outliers for the RMSE, MOGPfull and MOGPsoil
yield the best trade-o� between the di�erent objectives. The performance concerning RMSE,

ME(STD) and MIQD is only slightly dependent on the solution SIZE, but the very small

solutions with ≤ 5 nodes cannot compete with the more complex ones. The solutions with

about 10 nodes perform as well as more complex solutions with 20 nodes or more.

The overall most used predictors are topographic height anomaly h∗, the parameters derived

from the topography �eld tp1, tp∗1, tp2 ,tp3, the vertical temperature gradient of the lowest 60

m Tgr60 and the 3×3 coarse pixel standard deviation of 10 m temperature Tsd3×3 (Fig. 6.13).

From the six soil predictors the anomaly of the soil water content in the uppermost soil layer

W ∗so is by far the most frequently used. The use of the topographic height anomaly and a

vertical temperature gradient is physically reasonable. The downscaling rule from Schomburg

et al. (2010) uses very similar predictors, namely the temperature gradient of the lowest 105 m

Tgr105 and the topographic height anomaly h∗,
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Figure 6.11.: Overview of the MOGP performance for downscaling 10 m temperature. (a) relative
reduction of RMSE, ME(STD) and MIQD for the 50 rules from the Pareto set rules applied to the
validation (val) data set; (b) di�erence in relative reduction between training (tr) and validation data
set.
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Figure 6.12.: Scatter plots of the relative reduction of RMSE, ME(STD) and IQD for the Pareto sets
for downscaling 10 m temperature when applied to the validation data. The bottom row additionally
considers the solution SIZE (i.e., number of nodes) as fourth objective.
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Figure 6.13.: Usage frequency h(xi) of the predictors (cf. Tables 6.4, 6.5) for downscaling 10 m
temperature. The soil predictors are from left to right: Tso, T ∗

so, Wso, W ∗
so, Wso,7 and Wso,7.

IF Tgr105 < 0.0058 Km−1 (Schomburg et al.)

T ∗ = −0.0084 Km−1 h∗

ELSE

T ∗ = 0.

That is, for unstable conditions in the lower boundary layer, indicated by the temperature

gradient of the lowest 105 m being lower than 0.0058 Km−1, the temperature anomaly is

approximately proportional to the topographic height anomaly h∗. For stable conditions this

relation is not valid. Here the rule returns zero anomalies.

Also the coarse scale standard deviation of 10 m temperature Tsd3x3 is used in the downscaling
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scheme by Schomburg et al. (2010). It serves as a predictor to estimate the amplitude of the

noise added in the third and �nal step of the scheme. The frequent use of this parameter

also by MOGP implies that spatial variability at coarse (2.8 km) and �ne (400 m) scale are

related for the considered model domain. The tp predictors are foremost used by MOGPnoise.

These predictors contain information on the local topography heterogeneity.

Selected Downscaling Rules

A comparison of the downscaling rule from Schomburg et al. (2010) and an MOGP based

downscaling rule (Zerenner et al., 2016) revealed a slightly favorable performance for the rule

from Schomburg et al. for unstable atmospheres. For stable conditions, especially during clear

sky nights, the MOGP based downscaling recovers large parts of the subgrid-scale variability

(with only little increase in RMSE) while the rule from Schomburg et al. is not applicable,

i.e., returns zero anomalies.

In the following two well performing MOGP downscaling rules are selected and analyzed in

more detail. To select these two downscaling rules the sum of the relative reduction of RMSE,

ME(STD) and MIQD is calculated. The rules which give the largest overall reduction are

selected (Fig. 6.14). Rule 1 is from MOGPsoil. Rule 2 stems from MOGPfull.

Both rules show only minor di�erence in performance between training and validation data
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Figure 6.14.: Two downscaling rules returned by MOGP for downscaling 10 m temperature. Rule 1
is from the Pareto set returned by MOGPfull. Rule 2 is from the Pareto set returned by MOGPsoil.
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Figure 6.15.: 10 m temperature �eld on May 22nd 2015 9:00 UTC. (a) shows the spline-interpolated
�eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2 (cf. Fig. 6.14); (d) shows the
reference �eld from the high-resolution model run.
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Figure 6.16.: 10 m temperature �eld on September 18th 2014 1:00 UTC. (a) shows the spline-
interpolated �eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2 (cf. Fig. 6.14);
(d) shows the reference �eld from the high-resolution model run.

set (Table 6.7). The CDF and the subgrid-scale standard deviation of the high-resolution

reference �elds are well reproduced by both downscaling rules. For the ME(STD) the relative

reduction amounts to 0.66. For the MIQD a relative reduction of ≥ 0.82 is achieved. Rule 1

slightly increases the RMSE. Rule 2 yields a minor reduction of 1%.

Rule 1 from Fig. 6.14 can be simpli�ed. Adding or subtracting coarse-scale predictors and/or

numerical constants does not have any e�ect on the �nal downscaled �eld as the coarse pixel

mean is conserved. This means that terms such as −Tsd3x3 can be neglected. After removing

those terms and summarizing the coe�cients rule 2 reads:

IF T ∗so > tp3 (rule 1)

T ∗ = 0.61 h∗ Tgr60 + 1.16 h∗ T 2
gr60 − tp∗1
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ELSE

T ∗ = 0.61 h∗ Tgr60 + 1.16 h∗ T 2
gr60.

The most important term, a multiplication of topographic height anomaly and the vertical

temperature gradient in the lowest three atmospheric layers h∗Tgr60, is physically intuitive.

As O(Tgr60) ≈ 10−2 K/m, the term that is quadratic in Tgr60 is typically at least one order of

magnitude smaller than the one linear in Tgr60. In cases where the soil temperature anomaly

of the uppermost soil layer is larger than tp3, tp∗1 is subtracted. This is for most situations and

most �ne-scale pixels the case. The topographic parameter tp∗1 ranges between -0.42 and 0.34

for the considered domain, with the largest (positive or negative values) in the mountainous

areas. For valley pixels tp∗1 is large positive, for mountain tops large negative. That means

subtracting tp∗1 tends to increase the predicted anomalies for calm, clear sky nights, where

negative anomalies occur in the valleys and positive anomalies in higher altitudes. During day

time situations with a well mixed boundary layer the e�ect is inverse, i.e, the magnitude of

the temperature anomalies is reduced by the term. This is reasonable as the most pronounced

subgrid-scale variability in the near surface temperature �elds is observed during calm, clear

sky nights.

Translating the parse trees from Fig. 6.14 into an equation, rule 2 reads:

IF h∗ Tgr60 > −z∗0 (rule 2)

T ∗ = 0.66 h∗ Tgr60
ELSE

T ∗ = 0.24 z∗0 + 0.66 h∗ Tgr60.

As in rule 1, also in rule 2 a multiplication between topographic height anomaly h∗ and

vertical temperature gradient in the lowest three atmospheric layers Tgr60 constitutes the

most important term.

In cases where the roughness length anomaly z∗0 is large compared to h∗ Tgr60, the term

0.24 z∗0 is added. This is less intuitive. A large roughness length implies stronger turbulence

and smaller horizontal wind speeds. According to the rule large positive roughness length

anomalies are accompanied by positive temperature anomalies, negative roughness length

Table 6.7.: Relative reduction of the di�erent objectives by the MOGP downscaling rules for 10 m
temperature from Fig. 6.14 applied to training and validation data sets. The values for the training
data set are given in brackets. The bottom two rows provide the relative reduction for the two �elds
in Figs. 6.15 (May 22nd 2015 9:00 UTC) and 6.16 (September 18th 2014 1:00 UTC).
(a) rule 1 (b) rule 2

R̃MSE ˜ME(STD) M̃IQD
��
�- R̃MSE ˜ME(STD) M̃IQD

-0.02
(-0.05)

0.67
(0.66)

0.84
(0.84)

0.01
(0.08)

0.67
(0.66)

0.82
(0.83)

2015/05/22 9:00 0.28 0.75 0.97 2015/05/22 9:00 0.22 0.72 0.90

2014/09/18 1:00 -0.15 0.67 0.94 2014/09/18 1:00 -0.03 0.67 0.96
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Figure 6.17.: Detailed evaluation of the MOGP performance for downscaling the 10 m temperature
�eld on September 18th 2014 1:00 UTC (cf. Fig. 6.16): (a) illustrates the performance concerning the
RMSE and provides the temperature anomalies T ∗ for downscaled (dsc) and reference �eld (ref) and
the respective di�erence plot; (b) illustrates the performance concerning the ME(STD) and provides
the �ne-scale standard deviation of downscaled and reference temperature �elds T together with the
respective error; (c) shows the CDFs of downscaled and reference temperature (and anomaly) �elds
and the di�erence in CDFs.

anomaly by negative temperature anomalies.

Figures 6.15 and 6.16 illustrate the performance of the two rules for two 10 m temperature

�elds from the validation data set. Figure 6.15 shows the 10 m temperature �eld on May

22nd 2015 9:00 UTC, a calm day with few clouds and low wind speeds. The overall �ne-

scale structure of the temperature �eld is well captured by both rules. As already shown by

Schomburg et al. (2010) in unstable atmospheres the near-surface temperature anomalies are

closely related to the topographic height anomaly. The RMSE is reduced by 28% and 22%

by rule 1 and rule 2, respectively (Table 6.7). The two objectives quanti�ying the �ne-scale

spatial variability are reduced by at least 70%.

Figure 6.16 shows the near-surface temperature �eld on September 18th 2014 1:00 UTC, a

mostly clear sky night following a warm, clear sky day. In clear sky nights temperature

anomalies can grow very large in regions with strong topography due to strong radiative cool-

ing leading to a stable or even inverse layered atmosphere. Cold air accumulates in the valleys
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Figure 6.18.: Left column: RMSE and ME(STD) of spline-interpolated 10 m temperature �elds
compared to high-resolution reference �elds versus the spatially averaged temperature gradient in the
lowest three COSMO layers Tgr60. Each cross corresponds to one �eld from training and validation
data set. Right column: Relative reduction of RMSE and ME(STD) for rule 1 and 2. Each point
corresponds to one downscaled �eld. The lines indicate a standard linear regression �t with r2 denoting
the coe�cient of determination. For the right column only �elds with Tgr60 < 0.0058 K/m are
considered by the regression. Values within the shaded area are neglected.

and creates pronounced channel structures in the near-surface temperature �eld. The channel

structures in the temperature �eld are well reproduced by both downscaling rules. However,

the downscaled �eld is slightly smoother than the reference from the high-resolution model

run.

For the nighttime �eld the objectives are less well reduced than for the daytime �eld (Ta-

ble 6.7). This is not surprising as clear sky nighttime conditions create a more complex and

temporally more variable �ne-scale pattern compared to the approximately linear relation

between topography and near-surface temperature for unstable atmospheres. ME(STD) and

MIQD are reduced by ≥ 67% for the nighttime situation. The RMSE is slightly increased by

both downscaling rules, which is, however, barely visible (Fig. 6.16). Rule 2 performs slightly

favorable for the nighttime temperature �eld especially concerning the RMSE (Table 6.7).

Figure 6.17 gives a more detailed look at the performance concerning di�erent objectives

by downscaling rule 1 for September 18th 2014 1:00 UTC. Figure 6.17 (a) shows that the

overall pattern of temperature anomalies estimated by the downscaling rule 1 matches the

reference pattern. However, the anomalies of the downscaled �eld are too smooth and/or

slightly displaced compared to the reference. Hence, no reduction in RMSE is achieved. The

subgrid-scale standard deviation is well reproduced (Fig. 6.17 (b)). The largest errors occur

at Hambach (a brown coal surface mine) and at the outer mountain ranges of the Eifel region.
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Here the downscaled �eld shows a larger subgrid-scale standard deviation than the reference.

In the �at areas the downscaled �eld tends to show a smaller subgrid-scale standard deviation

than the reference. Fig. 6.17 (c) illustrates the performance concerning the IQD. The di�er-

ence plot on the right shows that the interpolated �eld has too few pixels with temperatures

less than about 288 K as the cold air channels are not resolved. This di�erence in the CDFs

is well reduced by the downscaling.

The downscaling performance depends on the atmospheric stability of the lower boundary

layer (Fig. 6.18). As expected RMSE and ME(STD) between interpolated and high-resolution

10 m temperature are larger the larger the vertical temperature gradient. For the considered

data set the relation is well approximated by a linear �t. For Tgr60 < 0.0058 K/m we

�nd a strong relation between average vertical temperature gradient Tgr60 and the relative

reduction of the RMSE with a coe�cient of determination2 of r2 = 0.82. The smaller the

temperature gradient the larger the relative reduction of the RMSE. For larger positive tem-

perature gradients, i.e., strong temperature inversions, the relative reduction of the RMSE

stays approximately constant. For rule 1 some outliers occur. For the relative reduction of

the ME(STD) similar tendencies as for the RMSE are observed, but the dependency between

relative reduction of ME(STD) and temperature gradient is less strong. Both downscaling

rules recover on average about 70% of the spatial variability for 10 m temperature.

The downscaling rule from Schomburg et al. (2010) has shown to perform well for unstable

atmospheres (see also Zerenner et al., 2016). We thus suggest the following combination of

the Schomburg downscaling rule and rule 2 detected by MOGP:

IF Tgr105 < 0.0058 Km−1

T ∗ = −0.0084h∗

ELSE

IF h∗ Tgr60 > −z∗0
T ∗ = 0.66 h∗ Tgr60

ELSE

T ∗ = 0.24 z∗0 + 0.66 h∗ Tgr60.

6.3.3. Specific Humidity

Overview

For downscaling 10 m speci�c humidity the relative reduction of the objectives is smaller

than for temperature and pressure downscaling (Fig. 6.19(a)). The RMSE is on average

increased by about 20% and only few downscaling rules achieve any reduction of the RMSE.

The ME(STD) is on average reduced by about 25%. The MIQD is on average reduced by

30% to 50%, but some rules even increase the MIQD. For the RMSE the Pareto set tends to

perform better for the training data set than for the validation data set (Fig. 6.19(b)). For

the other objectives no systematic di�erence in performance is obvious.

2The coe�cient of determination r2 is the portion of the variation of the dependent variable that is explained
by a �tted linear model. In a univariate linear regression, r2 equals the squared Pearson correlation
coe�cient. For details on linear regression see Appendix B.1.
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Figure 6.19.: Overview of the MOGP performance for downscaling 10 m speci�c humidity. (a)
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Figure 6.20.: Scatter plots of the relative reduction of RMSE, ME(STD) and MIQD for the Pareto
sets for downscaling 10 m speci�c humidity when applied to the validation data. The bottom row
additionally considers the solution SIZE (i.e., number of nodes) as fourth objective.

The di�erence between the results of the di�erent MOGP setups is small (Fig. 6.19). Also

when considering a trade-o� between RMSE, ME(STD) and MIQD, none of the four MOGP

setups is favorable (Fig. 6.20). MOGPfull and MOGPsub perform slightly favorable for

ME(STD) and MIQD, but at the cost of a larger RMSE. No distinct relation between the

reduction of RMSE, ME(STD) and MIQD and the solution SIZE is found. The overall largest

and thereby most complex downscaling rules are generated by MOGPfull.

The overall most used predictors are the vertical humidity gradients qgr, the vertical temper-
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Figure 6.21.: Usage frequency h(xi) of the predictors (cf. Tables 6.4, 6.5) for downscaling 10 m
speci�c humidity. The soil predictors are from left to right: Tso, Wso, W ∗

so, T
∗
so, Wso,7 and Wso,7.

ature gradient over the lowest 4 layers Tgr110 as an indicator for the near-surface stability and

the leaf area index LAI (Fig. 6.21). Especially the use of variables like leaf area index, plant

cover and soil type is reasonable as evaporation from the soil and transpiration from plants

a�ects the humidity near the surface.

From all soil predictors only Tso and W ∗so are used, but only by about 10% of the downscaling

rules from MOGPsoil. As already suggested by Fig. 6.19 and 6.20 the soil predictors appear

not to provide valuable additional information on the near-surface �ne-scale speci�c humidity.

Selected Downscaling Rules

The parse trees of two downscaling rules selected based on their overall performance are shown

in Fig. 6.22. Rule 1 is from MOGPsub. Rule 2 is from MOGPsoil. For both rules the relative

reduction of the objectives di�ers only slightly between training and validation (Table 6.8).

Only for the RMSE we �nd a noticeable di�erence for rule 1 with a relative reduction of

-0.09 for the training data set and -0.15 for the validation data set. Rule 2 shows a relative

reduction between 0.02 and 0.04 for the RMSE. ME(STD) and IQD are reduced by 19% to

58% with rule 1 yielding a stronger reduction than rule 2.

Translating the parse tree of rule 1 (Fig. 6.22) into an equation we get:

q∗ = qgr110/CA (rule 1).

As the vertical temperature gradient Tgr110 is constant over each coarse pixel, adding Tgr110
has no e�ect on the predicted speci�c humidity anomaly. Thus, rule 1 is the fraction of the

vertical speci�c humidity gradient in the lowest four atmospheric layers qgr110 and the con-

tributing area CA.

Rule 2 is slightly more complex than rule 1. Translated into an equation rule 2 (Fig. 6.22)

reads:

q∗ = Tso qgr25 + 10 FRland qgr60 T
∗
so (rule 2).

Here the vertical humidity gradients of the lowest 25 and 60 m, qgr25 and qgr60, the frac-

78



6.3. Results

q
gr110

 plus

divide

CA

(a) rule 1

(b) rule 2
 plus

times

q
gr25

times

plus times FR
land

T
so

*T
so

0.47

T
gr110

times

10q
gr60

Figure 6.22.: Two downscaling rules returned by MOGP for downscaling 10 m speci�c humidity.
Rule 1 is from the Pareto set returned by MOGPsub. Rule 2 is from the Pareto set returned by
MOGPsoil.

Table 6.8.: Relative reduction of the di�erent objectives by the MOGP downscaling rules for 10 m
speci�c humidity (Fig. 6.22) applied to training and validation data sets. The values for the training
data set are given in brackets. The bottom two rows provide the relative reduction for the two �elds
in Figs. 6.23 (August 2nd 2015 07:00 UTC) and 6.24 (July 18th 2015 03:00 UTC).
(a) rule 1 (b) rule 2

R̃MSE ˜ME(STD) M̃IQD
��
�- R̃MSE ˜ME(STD) M̃IQD

-0.15
(-0.09)

0.32
(0.31)

0.58
(0.56)

0.02
(0.04)

0.22
(0.19)

0.35
(0.33)

2015/08/02 7:00 -0.16 0.53 0.65 2015/08/02 7:00 0.04 0.28 0.33

2015/07/18 3:00 -0.02 0.19 0.36 2015/07/18 3:00 0.01 0.06 0.17

tion of land FRland, and soil temperature its anomaly, Tso and T ∗so, are used as predictors.

Both downscaling rules are di�cult to interpret. However, larger (positive or negative) verti-

cal humidity gradients are accompanied by larger (positive or negative) humidity anomalies,

which suggests that vertical and horizontal humidity variability are related. Still the e�ect

of the available predictors on the near-surface speci�c humidity (anomalies) is only minor as

indicated by the rather weak performance of the downscaling rules compared to near-surface

temperature and pressure.

Figures 6.23 and 6.24 show the performance of the selected downscaling rules for two 10 m

speci�c humidity �elds extracted from the validation data set. Figure 6.23 shows the speci�c
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Figure 6.23.: 10 m speci�c humidity �eld on August 2nd 2015 07:00 UTC. (a) shows the spline-
interpolated �eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2 (cf. Fig. 6.22);
(d) shows the reference �eld from the high-resolution model run.
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Figure 6.24.: 10 m speci�c humidity �eld on July 18th 2015 03:00 UTC. (a) shows the spline-
interpolated �eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2 (cf. Fig. 6.22);
(d) shows the reference �eld from the high-resolution model run.

humidity in 10 m height on August 2nd 2015 07:00 UTC, an overall calm day with weak winds

and little cloud cover. Note that, like for the other variables, red color indicates high values,

i.e., high speci�c humidity, and blue colors indicate low values, i.e., little speci�c humidity.

In the �at areas of the domain relatively high humidity is observed on August 2nd 2015 07:00

UTC. Over the mountainous Eifel the speci�c humidity is lower. We see that both downscaling

rules recover some subgrid-scale variability especially over the Eifel where the overall �ne-scale

variability is highest. It is, however, also obvious that both downscaling rules underestimate

the subgrid-scale variability. For rule 1 the relative reduction of ME(STD) and IQD equals

0.53 and 0.65, respectively (Table 6.8). For rule 2 the relative reduction is even smaller. The

stronger reduction of ME(STD) and MIQD by rule 1 comes with a 16% increase of the RMSE,

while rule 2 slightly reduces the RMSE by about 4%.

Figure 6.24 shows the 10 m speci�c humidity on July 18th 2015 03:00 UTC, an overall clear
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Figure 6.25.: Detailed evaluation of the MOGP performance for downscaling the 10 m speci�c
humidity �eld on August 2nd 2015 07:00 UTC (cf. Fig. 6.23): (a) illustrates the performance concerning
the RMSE and provides the speci�c humidity anomalies q∗ for downscaled (dsc) and reference �eld
(ref) and the respective di�erence plot; (b) illustrates the performance concerning the ME(STD) and
provides the �ne-scale standard deviation of downscaled and reference humidity �elds q together with
the respective error; (c) shows the CDFs of downscaled and reference humidity (and anomaly) �elds
and the di�erence in CDFs.

sky day. The wavelike structure in the reference �eld shows how gravity waves in�uence

the humidity �eld by vertical and horizontal transport of air masses. Such wave structures,

though potentially generated by topography, can not be directly (locally and instantaneously)

predicted from the surface heterogeneity. Here both downscaling rules generate only little

subgrid-scale variability with a relative reduction of ME(STD) of only 0.19 and 0.06 for rule 1

and rule 2, respectively (Table 6.8).

Figure 6.25 provides a more detailed look at performance concerning the di�erent objectives

by downscaling rule 1 for the example �eld from Fig. 6.23. Large anomalies in reference

and downscaled �elds occur in the same areas, preferably areas with pronounced topography

(Fig. 6.25 (a)). The magnitude of the anomalies and thereby the subgrid-scale standard

deviation are, however, strongly underestimated by the downscaling (Fig. 6.25 (b)). The

e�ect of the downsclaling on the CDFs is hardly visible (Fig. 6.25 (c)).

Looking at the di�erent �elds of the validation data set has shown that larger 10 m wind
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speeds typically go along with less subgrid-scale variability in the 10 m relative humidity

�eld, i.e., a smaller RMSE and ME(STD) when comparing high-resolution reference and

spline-interpolated humidity �elds. The performance of the downscaling rules shows only a

small dependency on near-surface wind speed, but the relative reduction of the ME(STD) is

by tendency larger for calm wind conditions, i.e., for �elds with stronger �ne-scale variability.

Comparing rules 1 and 2 strong outliers concerning the relative reduction of the RMSE are

found for rule 1 (up to -0.5) while for rule 2 the relative reduction of the RMSE ranges between

-0.1 and 0.1. For the majority of �elds from the validation data set rule 2 reduces the RMSE.

Thus, the usage of rule 2 is suggested. rule 2 on average recovers only 20% to 30% of the

subgrid-scale variability, but on average without any increase in RMSE.

6.3.4. Wind Speed

Overview

For wind speed the ME(STD) and the MIQD are reduced by up to 65% and 85%, respec-

tively (Fig. 6.26). Only few downscaling rules reduce the RMSE. The best rules for the RMSE

achieve a reduction of about 10%. For MOGPsub and MOGPsoil the performance concern-

ing ME(STD) and MIQD is found to be slightly favorable over MOGPfull. For wind speed

downscaling using the smaller predictor set appears to be bene�cial. The inclusion of a basic

noise generator has no visible e�ect on the performance. For MOGPfull a few rules perform

better for the training data set than for the validation data set. However, none of the three

MOGP setups shows any systematic over�tting.

MOGPsub and MOGPnoise yield a better trade-o� between the di�erent objectives than

MOGPfull (Fig. 6.27). The performance concerning RMSE, ME(STD) and MIQD is only

slightly dependent on the solution SIZE. Solutions with about 10 nodes perform as well as

more complex solutions containing more nodes. The most complex rules are generated by

MOGPnoise.

●

●
●

●●

●
●

●● ●
●
●●●●

●

●

●

●●

● ●

(a)

s~
va

l

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

full sub noise

●

●
●

●●

●
●

●● ●
●
●●●●

●

●

●

●●

● ● ●●●●
●●
●●●

●●●●●●
●
●

●
●
●●

●●●

●
●
●

●●
●
●

(b)

s~
tr
 −

 s~
va

l

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

full sub noise

●●●●
●●
●●●

●●●●●●
●
●

●
●
●●

●●●

●
●
●

●●
●
●

RMSE
ME(STD)
MIQD
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Figure 6.27.: Scatter plots of the relative reduction of RMSE, ME(STD) and MIQD of the Pareto
sets for downscaling 10 m horizontal wind speed applied to the validation data. The bottom row
additionally considers the solution SIZE (i.e., number of nodes) as fourth objective.
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Figure 6.28.: Usage frequency h(xi) of the predictors (cf. Tables 6.4, 6.5) for downscaling 10 m
horizontal wind speed.

The most frequently used predictors are the coarse-scale standard deviation of the 10 m hor-

izontal wind speed wh,sd3×3, the roughness length z0 and the roughness length anomaly z∗0
(Fig. 6.13). This is physically reasonable. Over rough surfaces (e.g., woods, cities) the near-

surface wind speed is smaller than over more even surfaces (e.g., low grassland, sea). The

frequent usage of the coarse scale standard deviation implies that there is a relation between

the spatial variability on the coarse and on the �ne scale as already assumed and used by

Schomburg et al. (2010). Further frequently used predictors are topographic height anomaly

h∗ and the various predictors derived from topography, which is reasonable as also the loca-

tion of a pixel within the terrain (e.g., luv or lee, mountain top or valley) e�ects the local

wind speed near the surface.
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6. Downscaling Mesoscale Near-Surface Fields using MOGP

Table 6.9.: Relative reduction of the di�erent objectives achieved by the MOGP downscaling rules
for 10 m horizontal wind speed from Fig. 6.29 applied training and validation data sets. The values
for the training data set are given in brackets. The bottom two rows provide the relative reduction
for the two �elds in Figs. 6.30 (January 10th 2015 0:00 UTC) and 6.31 (June 5th 2015 15:00 UTC).
(a) rule 1 (b) rule 2

R̃MSE ˜ME(STD) M̃IQD
��
�- R̃MSE ˜ME(STD) M̃IQD

-0.08
(-0.07)

0.62
(0.61)

0.81
(0.78)

-0.05
(-0.07)

0.64
(0.64)

0.84
(0.84)

2015/01/10 15:00 -0.02 0.60 0.85 2015/01/10 15:00 0.03 0.61 0.72

2015/06/05 0:00 -0.18 0.61 0.77 2015/06/05 0:00 -0.15 0.66 0.88

Selected Downscaling Rules

In the following the two downscaling rules are selected and analyzed that yield the highest

sum of the relative reduction of RMSE, ME(STD) and MIQD (Fig. 6.29). Rule 1 is from

MOGPfull. Rule 2 from MOGPsub. Both downscaling rules perform about equally well for

training and validation data sets (Table 6.9). The ME(STD) is reduced by ≥ 0.61%. The

relative reduction of the MIQD ranges between 0.78 and 0.84. The RMSE is with a relative

reduction between -0.05 and -0.08 on average slightly increased.
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Figure 6.29.: Two downscaling rules returned by MOGP for downscaling 10 m horizontal wind
speed. Rule 1 is from the Pareto set returned by MOGPfull. Rule 2 is from the Pareto set returned
by MOGPsub.
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Translating the parse tree of rule 1 (Fig. 6.29) into equations gives:

IF wh,sd3×3 > z∗0 AND z0 > h (rule 1)

w∗h = (−0.75 TKE20 − 1) z0

ELSE IF wh,sd3×3 > z∗0 AND z0 ≤ h
w∗h = −0.75 z0 TKE20 − z∗0

ELSE IF wh,sd3×3 ≤ z∗0 AND z0 > h

w∗h = (0.25 TKE20 − 1) z0 − TKE20 z0∗
ELSE

w∗h = 0.25 TKE20 z0 − (1 + TKE20) z
∗
0 .

With two intricate if-statements the full downscaling rule appears quite complex at �rst.

Still the predictors used, the roughness length z0, roughness length anomaly z∗0 and the near-

surface turbulent kinetic energy TKE20, appear reasonable. The conditional statements fur-

ther incorporate the coarse-scale standard deviation of the near-surface wind speed wh,sd3×3
and the topographic height h.

The �rst or third equation is used when the roughness length is larger than the topographic

height (z0 > h) which is rarely the case (exception being the brown coal surface mine Ham-

bach, cf. Fig. 6.3). For the most part of the domain the second or fourth equation is used

depending on the coarse-scale standard deviation of the horizontal wind speed wh,sd3×3. For

wh,sd3×3 > z∗0 the second equation is used, where large positive roughness lengths z0 and

roughness length anomalies z∗0 lead to large negative wind speed anomalies, which is physi-

cally reasonable. A small roughness length z0 and a large negative z∗0 lead to positive wind

speed anomalies. For wh,sd3×3 ≤ z∗0 , i.e., for situations and areas with little spatial variabil-

ity of the near-surface wind on the coarse scale, the fourth equation is used. Again positive

roughness length anomalies z∗0 lead to negative wind speed anomalies. The relation in z0 is

not intuitive at �rst glance. Here large z0 appears to be accompanied by positive wind speed

anomalies. However, given that the coarse pixel mean of the wind speed is conserved during

the downscaling, this term should be rather interpreted as reducing the anomalies resulting

from the previously discussed term incorporating z∗0 . For situations with little variance on

the coarse scale less �ne-scale variability is generated, which again appears reasonable.

After simpli�cation rule 2 (Fig. 6.29) reads:

IF z0 > 0.74 h∗ AND tp3 > z0∗ (rule 2)

w∗h = tp∗1 − z0
ELSE IF z0 > 0.74 h∗ AND tp3 ≤ z0∗

w∗h = tp∗1
ELSE IF z0 ≤ 0.74 h∗ AND tp3 > z0∗

w∗h = −z0
ELSE

w∗h = 0.

85



6. Downscaling Mesoscale Near-Surface Fields using MOGP
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Figure 6.30.: Horizontal wind speed in 10 m height on January 10th 2015 15:00 UTC. (a) shows
the spline-interpolated �eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2
(cf. Fig. 6.29); (d) shows the reference �eld from the high-resolution model run.
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Figure 6.31.: Horizontal wind speed in 10 m height on June 5th 2015 0:00 UTC. (a) shows the spline-
interpolated �eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2 (cf. Fig. 6.29);
(d) shows the reference �eld from the high-resolution model run.

While the if-statements incorporating topography predictors tp and roughness length zo are

di�cult to interpret, the di�erent downscaling equations are simple. A positive tp∗1 (pixels

which are higher than the average direct neighboring pixel) leads to a positive wind speed

anomaly. A negative tp∗1 leads to a negative wind speed anomaly. This is physically reason-

able. The near surface wind speed in a valley, for instance, is typically lower than for the

surrounding pixels. Further, the larger the roughness length z0 the larger the negative wind

speed anomaly.

Figures 6.31 and 6.30 show the performance of the selected downscaling rules for 10 m wind

�elds extracted from the validation data set. Figure 6.30 shows the 10 m wind speed on

January 10th 2015 15:00 UTC, a cloudy and windy day with strong precipitation. The gravity

waves, which generate the major part of the spatial variability of the horizontal wind speed, are

well resolved in the reference �eld, but not captured by the downscaling. This is not surprising.
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Figure 6.32.: Detailed evaluation of the MOGP performance for downscaling the 10 m horizontal
wind speed on June 5th 2015 0:00 UTC (cf. Fig. 6.31): (a) illustrates the performance concerning the
RMSE and provides the wind speed anomalies w∗

h for downscaled (dsc) and reference �eld (ref) and the
respective di�erence plot; (b) illustrates the performance concerning the ME(STD) and provides the
�ne-scale standard deviation of downscaled and reference wind speed wh together with the respective
error; (c) shows the CDFs of downscaled and reference wind speed (and wind speed anomalies) and
the di�erence in CDFs.

Gravity waves can be generated by surface heterogeneity, but propagate in space and time.

Thus, no steady relation between instantaneous wind �elds and land surface properties can be

established. The anomalies predicted by the downscaling rules appear nevertheless physically

meaningful as a signi�cant part of the �ne-scale variability (relative reduction of ME(STD)

and MIQD ≥ 0.6) is reproduced without increasing the RMSE (Table 6.9).

Figure 6.31 shows the 10 m wind speed on June 5th 2015 0:00 UTC, a rather warm, calm

and mostly clear sky day. In the �atter areas of the model domain the wind speed is mostly

< 4 m/s. Only in the mountainous regions slightly larger wind speeds are observed. Both

downscaling rules generate some subgrid-scale variability. The �ne-scale pattern, however,

visibly di�ers from the reference. The RMSE is increased by 18% and 15% by rule 1 and

rule 2, respectively. Concerning the two objectives quantifying the spatial variability of the

10 m wind a relative reduction ≥ 0.6 is observed (Table 6.9).

Figure 6.32 illustrates the downscaling performance of rule 2 concerning the di�erent objec-
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Figure 6.33.: Left column: RMSE and ME(STD) of the spline-interpolated wind �elds compared
to the high-resolution reference �elds versus the spatially averaged wind speed wh. Each cross corre-
sponds to one �eld from training or validation data set. Right column: Relative reduction of RMSE
and ME(STD) for rule 1 and 2. Each point corresponds to one downscaled �eld. The lines indicate a
standard linear regression �t with r2 denoting the coe�cient of determination.

tives for the wind �elds from Fig. 6.31. Large anomalies are present in the same areas in down-

scaled and reference �eld (Fig. 6.32(a)). However, as already seen in Fig. 6.31 the �ne-scale

patterns clearly di�er. In the mountainous regions rule 2 underestimates the subgrid-scale

standard deviation (Fig. 6.32(b)). The largest errors occur at the outer mountain ranges of

the Eifel region. A clear reduction of the MIQD is obvious from the di�erence plot between

the CDFs (Fig. 6.32(c) right).

The downscaling performance depends on the overall wind conditions (Fig. 6.33). As expected

RMSE and ME(STD) between interpolated and high-resolution wind speed �elds are larger,

the larger the average wind speed (Fig. 6.33(a),(c)). For the considered data the relation is

found to be approximately linear with r2 = 0.68 and r2 = 0.69, respectively. The relative re-

duction of the RMSE depends on the average wind speed (Fig. 6.33(b)). For both downscaling

rules the larger the wind speed, the more likely the RMSE is reduced. The relative reduction

of the ME(STD) is largely independent of the average wind speed. Both downscaling rules

predict a portion of ≈ 60% of the spatial variability for all �elds considered (Fig. 6.33(d)).

Based on Fig. 6.33 rule 1 appears to be all in all slightly favorable as it shows less strong

outliers. However, for lower wind speeds wh < 4 m/s an increase in RMSE by about 10% to

20% has to be accepted. For higher wind speeds the RMSE is kept constant by the downscal-

ing or even reduced by up to 10%. For applications the downscaling rule 1 can be simpli�ed to
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6.3. Results

IF wh,sd3×3 > z∗0
w∗h = −0.75 z0 TKE20 − z∗0

ELSE

w∗h = 0.25 TKE20 z0 − (1 + TKE20) z
∗
0 .

with only marginal impact on the performance as discussed in detail above.

6.3.5. Radiation

Overview

The incoming radiation at the land surface is the result of the complex process of radiative

transport in the atmosphere. The δ-two stream approximation used in COSMO and many

other atmospheric models only considers the vertical propagation of radiation. Potential hor-

izontal components are neglected. The radiative transfer parameterization calculates to the

propagation of radiation through an atmospheric column from the model top to the land-

surface. Direct e�ects of topographic shadowing or topographic slope and aspect on incoming

radiation are neglected in the operational COSMO setup and, to stay consistent, also in the

400 m COSMO simulations. The relation between surface heterogeneity and incoming radia-

tion at the surface is thus expected to be small.

Figure 6.34 provides an overview of the MOGP performance for downscaling incoming long-

wave radiation LWR, incoming direct shortwave radiation SWRdir and incoming di�use radi-

ation at the surface SWRdif . For incoming longwave radiation the MIQD is reduced by up to

55% and the ME(STD) by up to 35%. The RMSE is on average increased. No downscaling

rules achieves any visible reduction in RMSE. Also for the shortwave radiation no down-

scaling rule visibly reduced the RMSE. For the shortwave radiation the relative reduction of
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Figure 6.34.: Overview of the validation of the Pareto sets returned by MOGP for downscaling
incoming longwave radiation SWRdif , incoming direct shortwave radiation SWRdir and incoming
di�use radiation at the surface SWRdif : (a) relative improvement of RMSE, ME(STD) and MIQD
for the Pareto set rules applied to the validation (val) data set; (b) di�erence in relative improvement
between training (tr) and validation data set.
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ME(STD) and MIQD is overall smaller than for the longwave radiation. The di�erences in

performance between training and validation data set are for radiation larger than for most

other variables considered so far (Fig. 6.34(b)). Still, with the exception of MOGPfull for

downscaling incoming direct short wave radiation, no systematic over�tting tendencies are

found.

For downscaling incoming di�use longwave radiation the most frequently used predictors are

soil type ST and leaf area index LAI, followed by topographic index anomaly TI∗, topo-

graphic height anomaly h∗ and plant cover PLC. For incoming direct shortwave radiation

the most frequently used predictors are the coarse-scale incoming direct shortwave radiation

at the surface SWRdir,s and the cloud cover of medium high clouds CLCm followed by to-

pography related predictors tp2, tp∗1, topographic height h, topographic height anomaly h∗

and albedo anomaly α∗. For incoming di�use shortwave radiation the most frequently used

predictors are the coarse-scale incoming di�use shortwave radiation at the surface SWRdif,s,

the net radiation at the surface Rnet, topography parameter tp∗1, the total cloud cover CLCt
and the albedo anomaly α∗. Especially the usage of surface albedo α, i.e., the portion of

incoming solar radiation re�ected by the surface, and the use of the cloud cover predictors

CLC appear reasonable as those variables physically a�ect the radiation partitioning in an

atmospheric column.

Selected Downscaling Rules

In the following we take a closer look at the downscaling rules with the largest sum of relative

reduction of RMSE, ME(STD) and MIQD for incoming di�use longwave radiation, direct

shortwave radiation and di�use shortwave radiation at the land surface. The parse trees of

these downscaling rules are shown in Figs. 6.35 and 6.38. The values of the relative reduction

of the objectives are listed in Tables 6.10 and 6.11.

Longwave Radiation For incoming longwave radiation two downscaling rules were selected.

Both downscaling rules cause an increase in RMSE by 7% and 3%, respectively. Concerning

ME(STD) and IQD the relative reduction ranges between 0.26 and 0.44. The di�erence in

performance between training and validation data set is overall small.

After removing all unnecessary terms and evaluating the constants, rule 1 (Fig. 6.35) reads:

LWR∗ = (110− 0.62 CAPEmu − 2 h∗))/α (rule 1)

This implies that large positive topographic height anomalies h∗ lead to large negative long-

wave radiation anomalies LWR∗. Further, a small (shortwave) albedo α is accompanied by

larger, positive or negative, LWR∗.

After simpli�cation rule 2 (Fig. 6.35) reads:

LWR∗ = (CLCt,sd3×3 − h∗)/α+ ST − 100/TI (rule 2)

The �rst term is similar to rule 1. Instead of CAPE here the coarse-scale variability of
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Figure 6.35.: Two downscaling rules returned by MOGP for downscaling incoming longwave radiation
at the land surface. Both rules are from MOGPfull.

the total cloud cover CLCt,sd3×3 is used with a large cloud cover variability being associated

with large positive longwave radiation anomalies LWR∗. The third term −100/TI implies

that a small topographic index TI is accompanied by a large negative longwave radiation

anomalies.

Figures 6.36 and 6.37 show the performance of the selected downscaling rules for two long-

wave radiation �elds extracted from the validation data set. Figure 6.36 shows the incoming

longwave radiation on August 2nd 2015 07:00 UTC, a calm day with few clouds and weak

winds. The incoming longwave radiation ranges between 300 and 420 W/m2. The largest

variability is present in the areas with spatially variable cloud cover. Especially in the north

eastern part of the domain and also in the south eastern part the cloud structures are clearly

Table 6.10.: Relative reduction of the objectives by the MOGP downscaling rules for incoming
longwave radiation (Fig. 6.14) applied to training and validation data sets. The values for the training
data set are given in brackets. The bottom two rows provide the relative reduction of the objectives
for the two �elds in Figs. 6.36 (August 2nd 2015 07:00 UTC) and 6.37 (June 13th 2015 21:00 UTC).
(a) rule 1 (b) rule 2

R̃MSE ˜ME(STD) M̃IQD
��
�- R̃MSE ˜ME(STD) M̃IQD

-0.07
(-0.06)

0.26
(0.27)

0.44
(0.48)

-0.03
(-0.03)

0.30
(0.30)

0.40
(0.41)

2015/08/02 7:00 -0.12 0.51 0.63 2015/08/02 7:00 -0.02 0.47 0.48

2015/06/13 12:00 -0.70 -0.14 -0.17 2015/06/13 21:00 -0.03 0.23 0.30
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Figure 6.36.: Incoming longwave radiation at the surface on August 2nd 2015 07:00 UTC. (a) shows
the spline-interpolated �eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2
(cf. Fig. 6.35); (d) shows the reference �eld from the high-resolution model run.
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Figure 6.37.: Incoming longwave radiation at the surface on June 13th 2015 21:00 UTC. (a) shows
the spline-interpolated �eld; (b) and (c) show the downscaled �elds resulting from rules 1 and 2
(cf. Fig. 6.35); (d) shows the reference �eld from the high-resolution model run.

visible looking at incoming longwave radiation �eld. Both downscaling rules recover a portion

of the subgrid-scale variability. ME(STD) and IQD are reduced by about 50% (Table 6.10).

The RMSE is increased by 12% for rule 1 and by 2% for rule 2. The �ne-scale pattern of

the downscaled �eld, however, does not resemble the patterns induced by the variable cloud

cover.

Figure 6.37 shows the incoming longwave radiation on June 13th 2015 21:00 UTC, a day

with convective clouds and precipitation. The incoming longwave radiation ranges between

260 and 340 W/m2. The high-resolution reference �eld shows little �ne-scale variability.

Rule 1 strongly overestimates the spatial variability increasing the RMSE by about 70%, the

ME(STD) by 14% and the IQD by 17%. This is most obvious in the Eifel region. In the

�atter areas of the model domain the downscaled �eld from rule 2 well resembles the refer-

ence. Rule 2 reduces the ME(STD) and MIQD by 23 and 30%, respectively, and increases
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the RMSE only slightly by about 3% (Table 6.10).

The performance of rule 2 is overall favorable compared to rule 1. However, looking closely

at the di�erent training and validation data �elds, we �nd the spatial variance for situations

with very little �ne-scale variability in the reference �eld to be systematically overestimated.

For some �elds (3 out of 30 in the validation data set) ME(STD) and MIQD are increased by

the downscaling. The applicability of the downscaling rule for incoming longwave radiation

needs to be carefully tested to see if positive or negative e�ects dominate.

Shortwave Radiation Already in the overview in Fig. 6.34 only a small reduction of the

objectives has been found for both di�use and direct components of the incoming shortwave

radiation at the surface. It is, however, not surprising that the incoming shortwave radiation

can hardly be related to surface properties. We will anyhow take a brief look at two example

downscaling rules returned by MOGP for direct and di�use incoming shortwave radiation.

The rule for direct shortwave radiation SWRdir (Fig. 6.38) increases the RMSE by 30% for

the validation data set (Table 6.11). ME(STD) and MIQD are reduced by 17% and 37%,

respectively. For all three objectives there is a strong di�erence between the performance for

training and validation data set, with the performance being clearly worse for the validation

data.

The rule for downscaling di�use shortwave radiation SWRdif (Fig. 6.38) shows a slightly bet-

ter performance. The RMSE is increased by 14% (Table 6.11). ME(STD) and MIQD are

reduced by 26% and 52%, respectively. For the downscaling rule for the di�use shortwave
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Figure 6.38.: Downscaling rules returned by MOGP for downscaling incoming direct and di�use
shortwave radiation at the land surface. Both rules are from MOGPfull.
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Table 6.11.: Relative reduction of the objectives by the MOGP downscaling rules for incoming direct
and di�use shortwave radiation (Fig. 6.38) applied to training and validation data sets. The values
for the training data set are given in brackets. The bottom row provide the relative improvements for
the �elds in Figs. 6.39 (May 22nd 2015 9:00 UTC) and 6.40 (May 7th 2014 08:00 UTC), respectively.
(a) SWRdir (b) SWRdif

R̃MSE ˜ME(STD) M̃IQD
��
�- R̃MSE ˜ME(STD) M̃IQD

-0.30
(-0.19)

0.17
(0.36)

0.37
(0.52)

-0.14
(-0.15)

0.26
(0.29)

0.52
(0.50)

2015/05/22 9:00 -0.19 0.44 0.61 2014/05/07 8:00 -0.12 0.39 0.53

radiation no systematic di�erence in performance between training and validation data set is

observed.

After simpli�cation the rule for downscaling direct shortwave radiation (Fig. 6.38) reads:

IF tp∗1 > α∗

SWR∗dir = Ω tp∗1 CLCl
ELSE

SWR∗dir = 0.

That is, the �ne-scale pattern of the direct incoming shortwave radiation is related to the

topography parameter tp1∗. Meaning for valleys negative anomalies are predicted; for moun-

tain pixels, positive anomalies are predicted. One might argue that a longer path through

the atmosphere might go along with a smaller direct incoming radiation. This e�ect is, how-

ever, small for neighboring pixels. The composition of the atmospheric column (clouds, water

vapor, aerosols) has a much stronger impact.

The downscaling rule for di�use shortwave radiation (Fig. 6.38) reads:

IF α > CLCt,sd3×3 (CLCt,sd3×3 − 100)/h∗

SWR∗dif = α∗
ELSE

SWR∗dif = −SWRnet,t tp3.

The �ne-scale pattern of the incoming di�use shortwave radiation is related to the albedo

anomaly α∗ and the topography parameter tp3. Using the albedo anomaly appears reason-

able as a large albedo means that a great portion of the incoming solar radiation is re�ected by

the land surface rather than absorbed. This re�ected solar radiation propagates upwards, is

potentially scattered at cloud droplets and thereby potentially increases the downward prop-

agating component of the di�use shortwave radiation.

Figure 6.39 shows the direct incoming shortwave radiation on May 22nd 2015 9:00 UTC, a

partially cloudy day with weak winds. Figure 6.40 shows the di�use incoming shortwave radi-

ation on May 7th 2014 08:00 UTC a cloudy day with light to moderate precipitation. For both

�elds the respective downscaling rules generate some subgrid-scale variability. However, the
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Figure 6.39.: Incoming direct shortwave radiation at the surface on May 22nd 2015 9:00 UTC. (a)
shows the spline-interpolated �eld; (b) shows the downscaled �eld resulting from the downscaling rule
in Fig. 6.38 (a); (c) shows the reference �eld from the high-resolution model run.
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Figure 6.40.: Incoming di�use shortwave radiation at the surface on May 7th 2014 08:00 UTC. (a)
shows the spline-interpolated �eld; (b) shows the downscaled �eld resulting from the downscaling rule
in Fig. 6.38 (a); (c) shows the reference �eld from the high-resolution model run.

actual �ne-scale pattern, which is mostly generated by the cloud cover, is missed. For about

one third of the validation �elds not only the RMSE, but also the ME(STD) and MIQD are

increased by the above downscaling rules. The usage of the downscaling rules for direct and

di�use shortwave radiation is therefore not suggested.

6.3.6. Precipitation

In its current setup MOGP is not able to evolve downscaling rules that reconstruct the subgrid-

scale variability of instantaneous precipitation �elds (Fig. 6.41). This is, however, expected. It

would be surprising if a relation between surface heterogeneity and instantaneous precipitation

amounts could be established. For longer term precipitation statistics and/or larger time
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Figure 6.41.: Overview of the validation of the Pareto sets returned by MOGP for downscaling
instantaneous precipitation (a) relative improvement of RMSE, ME(STD) and MIQD for the Pareto
set rules applied to the validation (val) data set; (b) di�erence in relative improvement between
training (tr) and validation data set.

scales the situation might be di�erent. For the scales considered in this thesis we suggest

to stick with the approach of Schomburg (2011), which restores subgrid-scale variability of

precipitation adding autogregressive noise such that the PDF and the autocorrelation function

of precipitation (from a set of high-resolution reference model runs) are reproduced as closely

as possible.

6.3.7. Summary

In the following the downscaling rules suggested for future tests (see also Sec. 6.4) are sum-

marized.

Pressure 10 m pressure can be downscaled as

p∗ = h∗ pgr25,

i.e, the pressure anomaly p∗ with respect to the spline-interpolated pressure �eld is given

by the topographic height anomaly times the vertical pressure gradient in the lowest 2 layers

of the COSMO model (≈ 25 m). RMSE, ME(STD) and MIQD are reduced by ≥ 97% by

such downscaling.

Temperature For 10 m temperature the following combination of the downscaling rule from

Schomburg et al. (2010) and MOGP is suggested:

IF Tgr105 < 0.0058 Km−1

T ∗ = −0.0084 h∗

ELSE

IF h∗ Tgr60 > −z∗0
T ∗ = 0.66 h∗ Tgr60
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ELSE

T ∗ = 0.24 z∗0 + 0.66 h∗ Tgr60

That is, depending on the atmospheric stability the temperature anomaly T ∗ with respect to

the spline-interpolated �eld is related to the topographic height anomaly h∗, the temperature

gradient of the lowest three layers Tgr60 and the roughness length anomaly z∗0 . For unstable

atmospheres the downscaling rule from Schomburg et al. (2010) has shown to work well. For

stable situation (mostly clear sky nights) the MOGP rule recovers about 70% of the subgrid-

scale variability with no or only marginal increase in RMSE.

Specific Humidity 10 m speci�c humidity can be downscaled as

q∗ = Tso qgr25 + 10 FRland qgr60 T
∗
so,

i.e., the speci�c humidity anomaly gradient is related to the vertical humidity gradients of

the lowest 25 and 60 m, qgr25 and qgr60, the fraction of land FRland, and the soil temperature

its anomaly, Tso and T ∗so. The presented downscaling rule only recovers about 20-30% of the

subgrid-scale variability, but without any increase in RMSE.

Wind speed The horizontal wind speed in 10 m height can be downscaled as

IF wh,sd3×3 > z∗0
w∗h = −0.75 z0 TKE20 − z∗0

ELSE

w∗h = 0.25 TKE20 z0 − (1 + TKE20) z
∗
0 ,

i.e., the wind speed anomaly w∗h with respect to the spline-interpolated �eld is related to

roughness length z0, roughness length anomaly z∗0 and 20 m turbulent kinetic energy TKE20

dependent on the coarse-scale horizontal wind speed variability wh,sd3×3. About 60% of the

subgrid-scale variability is restored by this rule. For low wind speeds (≤ 5 m/s) an increase

in RMSE of 10-20% has to be accepted. For larger wind speeds (> 5 m/s) the RMSE is kept

constant or even reduced by up to 10%.

Radiation The best rule found for downscaling incoming longwave radiation at the surface

is:

LWR∗ = (CLCt,sd3×3 − h∗)/α+ ST − 100/TI.

That is, the longwave radiation anomaly LWR∗ with respect to the spline-interpolated �eld

is related to the coarse-scale cloud cover variability CLCt,sd3×3, topographic height anomaly

h∗, albedo α, soil type ST and topographic index TI. About 30% of the subgrid-scale vari-
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ability is restored by the rule with an increase in RMSE of 3% on average. However, the

rule tends to strongly overestimate subgrid-scale variability in some case, namely when the

�ne-scale variability on the high-resolution reference �eld is very small. The application of

the downscaling rule for longwave radiation should therefore be treated with caution.

For incoming direct and di�use shortwave radiation no applicable rules have been detected.

Precipitation Also for precipitation no satisfactory downscaling rules have been detected.

6.4. Discussion and Outlook

Comparison to the Schomburg Downscaling Approach

Compared to the downscaling rules from Schomburg et al. (2010) the MOGP based down-

scaling rules cover more variables (e.g., wind speed) and for some variables a larger variety

of atmospheric conditions (e.g., temperature in stable atmospheres). This is, however, most

likely only partly due to using Genetic Programming, but also due to the multi-objective

approach. MOGP does not solely aim at a pixelwise reconstruction of the high-resolution

reference �elds, which is for most variables (except for 10 m pressure and temperature in a

well mixed boundary layer) rarely possible, but also values the reconstruction of subgrid-scale

variability and PDF. In Schomburg et al. (2010) subgrid-scale variability not recovered by the

downscaling rules in step 2 is optionally added as noise in step 3, but always at the cost of a

larger RMSE.

Benefits and Limitations of MOGP

To detect downscaling rules in the described setup existing relations between surface proper-

ties (topography, roughness length, etc.) and atmospheric variables at the high resolution are

required. From physics it is expected that such relations are much stronger for certain atmo-

spheric variables than for others. The 10 m pressure for instance is approximately related to

the topographic height by the hydrostatic equation. The 10 m temperature anomalies are also

related to the high-resolution topography, but the relation depends on atmospheric stability.

In an unstable or well mixed boundary layer adiabatic temperature pro�les are expected, while

under stable conditions cold air accumulates in the valleys. Also near-surface wind speed is

a�ected by topography (luv or lee, mountain or valley) and the roughness length of the land

surface. Temperature and pressure anomalies associated with topography as well as wind

speed anomalies associated with roughness length or topography are well reconstructed by

the MOGP downscaling rules with the largest e�ect of the downscaling rules being observed

in the mountainous parts of the model domain.

Subgrid-scale variability generated by gravity waves, turbulence or subgrid-scale variability

of the cloud cover is not or only barely recovered by the MOGP downscaling rules. Although

gravity waves are initiated by surface heterogeneity, they propagate in space and time. Thus,

no direct link can be established between land surface properties and subgrid-scale variability

induced by gravity waves. Also the e�ect of turbulence is not predictable on the subgrid
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scale. Radiation and potentially precipitation downscaling could bene�t from subgrid-scale

information about the cloud cover. Such information might become available with subgrid-

scale cloud schemes. A terrain correction for incoming radiation at the surface may be applied

to account for shadowing e�ects and topographic slope and aspect. At the grid scale such an

algorithm is already available in COSMO. An adaptation of this scheme to the subgrid scale

is straightforward given high-resolution information on topography. For precipitation we do

not expect any noticeable relation with surface properties at the considered space and time

scales. Here, a purely stochastic approach might be the only option to restore subgrid-scale

variability.

Improving the Performance of MOGP

A known di�culty in Genetic Programming is the evolution of numerical constants. In an

early stage of this study we have included an additional step either varying or optimizing all

numerical constants after the creation of each new generation. The downscaling rules evolved

with or without the variation/optimization step have not shown any signi�cant di�erences

in performance. Incorporating the optimization step GP converges faster when counting the

number of generations evolved, but not when considering run time. In the future more ad-

vanced approaches such as a numeric mutation operator (Evett and Fernandez , 1998) could

be employed3 to improve the representation of numerical constants in our GP algorithm.

Also the representation of noise might be reconsidered. The random number generator tested

so far has not visibly improved the results. Advanced algorithms to generate spatially and/or

temporally correlated noise might be more appropriate to restore �ne-scale variability caused

by turbulence, subgrid-scale cloud cover variability etc.

The occurrence of bloat, i.e., the tendency of the downscaling rules to contain unnecessary

terms, is a known problem in GP. In our GP algorithm bloat is reduced by the size constraints

applied to the parse trees and by incorporating the solution size in the objectives, but many

of the generated downscaling rules still contain unnecessary terms, which have been removed

manually. More advanced techniques to control bloat exist and should be tested (e.g., Luke

and Panait , 2006). Further, the simpli�cation of the downscaling rules (scale analysis etc.)

may be automated.

The e�ciency of the MOGP algorithm can be improved by adjusting run dimensions (popu-

lation size, Pareto set size, total number of generations), function and terminal sets, objective

functions, genetic operator probabilities, and the maximum tree size. Also the rule selection

from the Pareto set could be reconsidered. For now, the downscaling rules that perform best

when considering the sum of the relative reduction of RMSE, ME(STD) and MIQD have

been selected, but also other selection criteria assigning more weight to selected objectives

are possible.

The performance of MOGP for downscaling is like any other method limited by the infor-

mation contained in the available predictors. No statistical method will exactly reconstruct

3Numeric mutation is a genetic operator (like mutation or crossover), which replaces all numeric constants of
an individual with new numeric constants chosen at random from a uniform distribution within a certain
range speci�ed as the current value of the constant plus or minus a so-called temperature factor.
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the high-resolution reference �elds generated by a complex 3D atmospheric model at high

resolution.

Effect of Downscaling on Surface Fluxes

The main goal of our downscaling e�ort is to o�er more realistic atmospheric input to land-

and subsurface models employed at higher resolution than the driving or coupled atmospheric

model. The derived downscaling rules, however, do not necessarily improve the resulting

surface exchange �uxes, because our objectives do not account for covariances between at-

mospheric and surface state variables. Especially for temperature this can be problematic as

the turbulent exchange coe�cients are nonlinear functions of the near-surface atmospheric

stability, which is determined by the di�erence between the atmospheric temperature in the

lowest model layer and the temperature at the land surface.

A �rst investigation of the e�ect of the MOGP based temperature downscaling on the turbu-

lent exchange of latent and sensible heat �uxes during a clear sky day and night is presented

in Zerenner et al. (2016). For daytime situations the downscaling moved the �uxes closer to

the reference. For nighttime situations, where the RMSE is slightly increased by our down-

scaling, the resulting �uxes di�er more strongly from the reference. Small shifts between

the �ne-scale �elds of 10 m temperature and ground surface temperature are probably the

main reason. In reality like in coupled simulations the ground surface temperature reacts to

the atmospheric near-surface temperature. A large temperature di�erence leads to stronger

�uxes which then reduce the di�erence. Indeed, we see that in the described test the �uxes

are by tendency overestimated in their absolute value when the downscaling is applied. When

driving a land-surface model and the ground surface temperature reacts to the downscaled

atmospheric forcing, we expect the overestimation tendencies to be reduced or to disappear.

In tests employing the COSMO model with a 2.8 km grid spacing and the land-surface scheme

TERRA with a 400 m grid spacing Schomburg (2011) have found only little e�ect of their

downscaling on latent and sensible heat �uxes compared to the mosaic approach. One rea-

son for this is the error correlation between near-surface atmosphere and surface parameters

observed for instance for temperature. Schomburg (2011) have found that in the standard

mosaic with coarse-scale atmospheric forcing an overestimation in atmospheric temperature

(w.r.t. to observations) is accompanied by a similar overestimation in surface temperature.

Thus, when estimating the �uxes the errors tend to largely cancel out. Therefore, the e�ect of

the downscaling on the turbulent exchange �uxes is comparably small although a downscaling

provides more realistic input to the land-surface scheme. Similar e�ects will most likely occur

when applying and testing the MOGP based downscaling rules.

Scale and Model Dependency

The e�ect of atmospheric downscaling is scale dependent.Giorgi et al. (2003) for instance have

carried out simulation at much larger scales (grid spacing of 50-100 km, longer simulation

periods of several months) and report positive e�ects of atmospheric downscaling, such as a

better representation of the hydrological cycle through a better representation of snow cover
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in mountainous areas.

The MOGP rules are trained for downscaling from 2.8 km to 400 m grid spacing. The rules

may be valid for larger scale ranges, but they are likely not directly transferable to scales of

50 km and larger, except for pressure and temperature (at least for unstable atmospheres).

Downscaling at larger scales will require rerunning MOGP with an appropriate training and

validation data set.

Despite the potential scale dependency of the downscaling rules also a model dependency is

likely. Already changing the turbulence parameterization in COSMO signi�cantly a�ects for

instance the simulated 10 m temperature �eld (cf. Fig. 6.4). Thus, using another model setup

or a completely di�erent atmospheric model likely requires di�erent downscaling rules at least

if the user aims to stay consistent with the model used.

Suggestions for Future Work

The most important next step is the testing of the MOGP based downscaling scheme. In a

�rst test land and/or subsurface models will be driven by the downscaled atmospheric �elds.

A comparison to land and subsurface model runs driven by coarse-scale atmospheric data as

well as atmospheric data from high-resolution COSMO model runs allows for a direct assess-

ment of the e�ect of the atmospheric downscaling on land and subsurface simulations and the

estimated turbulent �uxes.

The validation of the atmospheric downscaling within fully coupled subsurface-land surface-

atmosphere simulations is more di�cult. Running an atmospheric model with di�erent grid

spacing leads to a relatively fast divergence between the di�erent model runs which makes

it unfeasible to directly compare a simulation incorporating atmospheric downscaling with

a simulation where the atmospheric model is applied at high-resolution (Schomburg et al.,

2012).

The MOGP performance may be improved by optimizing the MOGP setup for reproduc-

ing the turbulent exchange �uxes. To this goal the temperature di�erence between surface

and lowest atmospheric layer can be introduced as an additional objective. Also other inter-

variable relationships can be considered by the objectives, such as the correlation between

topographic height and temperature anomaly.

Finally, multi-objective GP generates a set of Pareto optimal solutions and not just one down-

scaling rule. The Pareto set may be used to generate a downscaling ensemble, which may be

realized either by using di�erent rules for each ensemble member or by randomly switching

between downscaling rules. Such an ensemble approach may help to estimate the sources of

uncertainty induced by the downscaling procedure.

Also conceptionally di�erent approaches to assess the scale gap between atmospheric and

land surface/subsurface models are conceivable. The horizontal homogeneity of atmospheric

parameters typically increases with height. This suggests running the atmospheric boundary

layer, i.e., the part of the atmosphere that is most signi�cantly in�uenced by the land surface,

at a higher resolution than the higher atmospheric layers. Such an approach is, however,

not straightforward and would require major adjustments in the model code and signi�cantly

increase the run time. Still, variable grid approaches are already used in geoscienti�c models
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6. Downscaling Mesoscale Near-Surface Fields using MOGP

(e.g., Burstedde et al., 2010, 2013) and with increasing computational power such an approach

may become a feasible compromise between running the full atmospheric model at coarse or

at high resolution. For pressure, temperature, speci�c humidity and wind speed such an ap-

proach would be a way to obtain high-resolution �elds near the surface that are consistent

with the overall model used.

Summary

� The MOGP derived downscaling rules cover more variables (e.g., wind speed) and for

some variables a larger variety of atmospheric conditions (e.g., temperature in stable

atmospheres) than the rules from Schomburg et al. (2010).

� The next step will be the application and evaluation of the MOGP based downscal-

ing rules for driving land/subsurface simulations and within the fully coupled (soil-

vegetation-atmosphere) TerrSysMP.

� The representation of subgrid-scale variability induced by gravity waves, cloud cover

etc. may be improved by incorporating spatially and temporally correlated noise into

MOGP.

� Transforming the Pareto sets into a downscaling ensemble might allow for an estimation

of the uncertainty induced by the downscaling procedure.

� With increasing computational power a variable grid approach using a smaller grid

spacing for the atmospheric boundary layer might become computationally feasible.
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7
Downscaling Climate Reanalysis Data to Stations using

MOGP

The downscaling of GCM output to local stations (or a higher resolution grid) is a frequent

task for empirical/statistical downscaling methods and investigated in a large number of

studies (cf. Chapter 4). Temperature and precipitation are the variables most commonly

considered as they constitute important quantities for climate change impact studies. While

for temperature linear methods often yield satisfactory results, precipitation downscaling is

challenging and still subject of ongoing research.

The European Cooperation in Science and Technology (COST) action on Validating and Inte-

grating Downscaling Methods for Climate Change Research (VALUE) de�nes and coordinates

an intercomparison of statistical downscaling methods. The experiments are open not only

to members of COST-VALUE, but also to external contributors. The data and experiment

description is provided by COST-VALUE (www.value-cost.eu; Maraun et al. (2015)). Con-

tributors can download the data from the web page, apply their downscaling methods and

upload the results onto a validation portal, which is used for the centralized validation and

intercomparison.

We have applied the multi-objective Genetic Programming downscaling method to the �rst

two experiments set up by COST-VALUE. After introducing experiment design and data in

Section 7.1, Section 7.2 describes the MOGP setup for the downscaling experiments in detail.

Finally, results are presented in Section 7.3 and discussed in Section 7.4.

7.1. Experiment Design and Data

Experiment 1(a) - Perfect Prognosis, Station Data

Experiment 1(a) has been designed to test how well a downscaling method is able to represent

point data (Maraun et al., 2015) and considers the downscaling of global reanalysis data to

a set of weather stations distributed over Europe. The predictors are taken from the ERA-

Interim reanalysis (Dee et al., 2011) of the European Centre for Medium-Range Weather

Forecasts (ECMWF). The data is available with a grid spacing of approximately 80 km in

the horizontal and 60 levels in the vertical ranging from the surface up to 0.1 hPa. The
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Figure 7.1.: Location and IDs of the 86 weather stations that have been selected for downscaling
experiment 1(a) of COST-VALUE. A detailed experiment description can be found in the text. The
box in the upper left corner shows a zoom into the northern Alpine region where the station density
is comparably high. The white boxes indicate the PRUDENCE regions after Christensen and Chris-

tensen (2007): British Isles (BI), Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia
(SC), Alps (AL), Mediterranean (MD) and Eastern Europe (EA). The regions are not relevant for the
experiment design and setup, but are used to categorize the stations for the analysis of the results.

ERA-Interim reanalysis starts in the year 1979 and is until now continuously updated.

Atmospheric reanalyses, such as ERA-Interim, aim to provide the best possible, spatially

and temporally consistent, estimate of the state of atmosphere in the past. Global reanalyses

typically rely on general circulation models (GCMs) which - in the reanalysis setup - assimilate

large observational data sets. Accordingly, reanalysis data is subject to uncertainties and

errors, resulting from model errors, errors in the data assimilation schemes or a lack of usable

observational data for speci�c regions and/or time spans.

In downscaling experiment 1(a) the predictors to o�er a perfect prognosis (short perfect

prog. or PP). This means the reanalysis data is assumed to o�er a perfect estimate of the

atmospheric state on the coarse scale. It is thus not distinguished between errors of reanalysis

data set and the representativeness problem, i.e., the discrepancy between observations and

reanalysis originating from the scale gap between a single grid point and a reanalysis grid

box.

The predictand data is taken from ECA&D, the European Climate Assessment and Data

set (Klein Tank et al., 2002). 86 weather stations have been selected to form a data set

representative for the di�erent climates and local characteristics present in Europe. Figure 7.1
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Table 7.1.: List of the 86 weather stations selected for downscaling experiment 1(a) of COST-VALUE:
Country where the station is located, station ID according to ECA&D, lat/lon-coordinates, altitude
(alt.) and Koeppen-Geiger climate classi�cation (Köppen, 1884, 1918). The abbreviation for the
climate classes are: Arid - Steppe - cold (BSk); Temperate - without dry season - hot summer (Cfa);
Temperate - without dry season - warm summer (Cfb); Temperate - dry summer - hot summer (Csa);
Cold/Continental - without dry season - warm summer (Dfb); Cold/Continental - without dry season
- cold summer (Dfc); Polar - Tundra (ET).
Country ID Name Lon [°] Lat[°] Alt. Climate
Austria 12 Graz 15.45 47.08 366 Cfb

13 Innsbruck 11.40 47.27 577 Cfb
14 Salzburg 13.00 47.80 437 Cfb
15 Sonnblick 12.95 47.05 3106 ET
16 Wien 16.35 48.23 198 Cfb

Belgium 17 Uccle 4.36 50.80 100 Cfb
Croatia 21 Zagreb-Gric 15.98 45.82 156 Cfa

217 Arad 21.35 46.13 116 Cfb
1684 Gospic 15.37 44.55 564 Cfb
1686 Hvar 16.45 43.17 20 Csa
1687 Zavizan 14.98 44,82 1594 Dfc

Denmark 107 Vestervig 8.32 56.77 18 Cfb
113 Tranebjerg 10.60 55.85 11 Cfb

Finland 28 Helsinki-Kaisaniemi 24.95 60.18 4 Dfb
29 Jyvaskyla-Lentoasema 25.68 62.40 139 Dfc
30 Sodankyla-Lapin-Ilmatiet 26.63 67.36 179 Dfc
708 Jokioinen-Jokioisten 23.50 60.81 104 Dfb
7682 Sikajoviki-Revonlahti 25.09 64.68 48 Dfc

France 32 Bourges 2.37 47.07 161 Cfb
38 Paris-14E 2.34 48.82 75 Cfb
39 Marseille-Marignane 5.23 43.44 5 Csa
322 Rennes -1.73 48.07 36 Cfb
355 Mont-Aigoual 3.58 44.12 1567 Cfb
800 Toulouse-Blagnac 1.38 43.62 151 Cfa

Germany 42 Bremen 8.80 53.04 4 Cfb
48 Hohenpreissenberg 11.01 47.80 977 Cfb
54 Potsdam 13.06 52.38 81 Cfb
58 Zugspitze 10.99 47.42 2964 ET
468 Helgoland 7.89 54.18 4 Cfb
483 Dresden-Klotzsche 13.76 51.13 227 Cfb
2006 Brocken 10.62 51.80 1142 Dfc
2762 Rheinstetten 8.33 48.73 116 Cfb
3991 Giessen-Wettenberg 8.65 50.60 203 Cfb
3994 Arkona 13.44 54.68 42 Cfb
4002 Oberstdorf 10.28 47.40 806 Cfb
4004 Regensburg 12.10 49.04 365 Cfb

Greece 59 Corfu 19.92 39.62 11 Csa
62 Larissa 22.45 39.65 72 BSk
63 Methoni 21.70 36.83 51 Csa

Italy 173 Milan 9.19 45.47 150 Cfa
175 Cagliari 9.05 39.23 21 Csa
176 Roma-Ciampino 12.58 41.78 105 Csa
177 Verona-Villafranca 10.87 45.38 68 Cfa

Lithuania 200 Kaunas 23.83 54.88 77 Dfb
201 Klaipeda 21.07 55.73 6 Cfb
1009 Birzai 24.77 56,20 60 Dfb
1020 Lazdijai 23.52 54.23 133 Dfb
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Country ID Name Lon [°] Lat[°] Alt. Climate
Norway 190 Karasjok 25.50 69.47 129 Dfc

191 Kjoermsgrende 9.05 62.10 626 Dfc
192 Faerder 10.53 59.03 6 Cfb
194 Utsira-Fyr 4.88 59.31 55 Cfb
195 Vardoe 31.08 70.37 14 ET
330 Fokstua 9.28 62.12 952 Dfc
1051 Tafjord 7.42 62.23 15 Csb

Poland 332 Lebs 17.53 54.75 2 Dfb
333 Siedlce 22.25 52.25 152 Dfb

Portugal 212 Braganca -6,73 41.80 690 Csb
214 Lisboa-Geo�sica -9.15 38.72 77 Csa

Romania 219 Bucaresti-Banasa 26.08 44,52 90 Cfa
450 Sibiu 24.15 45.80 444 Cfb
951 Iasi 27.63 47,17 102 Cfa
2062 Contanta 28.63 44.22 13 Cfa

Spain 229 Badajoz/Talavera-La-Real -6.83 38.88 185 Csa
231 Malaga -4.49 36.67 7 Csa
232 Navacerrada -4,01 40.78 1894 Csb
234 San-Sebastian-Igueldo -2,04 43.31 251 Cfb
236 Tortosa-Obervation-del-Ebro 0.49 40.82 44 Csa
1394 Santiago de Compostela -8.41 42.89 370 Cfb
3919 Palma-de-Mallorca 2.74 39.56 8 BSk
3946 Madrid-Barajas -3.56 40.47 609 BSk

Sweden 339 Haparanda 24.14 65.83 5 Dfc
462 Goteborg 11.99 57.72 5 Cfb
465 Visby 18.33 57.67 42 Cfb
1427 Jackvik 17.00 66.38 430 Dfc
5585 Salen 13.26 61.17 360 Dfc

Switzerland 239 Basel-Binnigen 7.58 47.55 316 Cfb
242 Lugano 8.97 46.00 300 Cfa
243 Saentis 9.35 47.25 2502 ET
244 Zuerich 8.57 47.38 556 Cfb
1662 Sion-2 7.35 46.22 482 Cfb

United Kingdom 272 Eskdlamuir -3.20 55.32 242 Cfb
274 Oxford -1.27 51.77 63 Cfb
349 Stornoway -6.32 58.33 9 Cfb
350 Valley -4.53 53.25 11 Cfb
351 Waddington 0.52 53.17 68 Cfb
275 Wick -3.08 58.45 36 Cfb

shows the location and IDs of the stations. The stations are distributed over Europe with a

comparably high station density in the Alpine region. This region is of special interest due

to the distinct topography. Here, large di�erences between reanalysis and station data can

be expected due to the impact of topography which is not resolved in the reanalysis. Also

the di�erences between the stations, though close, are comparably large due to their di�erent

heights and location within the terrain. Daily maximum, minimum and mean temperature

as well as daily accumulated precipitation amounts are considered as predictand variables

in experiment 1(a). Detected outliers for maximum and minimum temperatures as well as

inconsistent data with Tmin > Tmax have been removed from the data set.

The experiment is set up as a cross-validation. The entire time span of the experiment ranges

from January 1st 1979 to December 31st 2008. To perform a 5-fold cross-validation the time

106



7.2. MOGP Setup

span has been split into 5 subperiods of 6 years each (i.e., 1979 - 1984; 1985 - 1990; 1991 -

1996; 1997 - 2002; 2003 - 2008). For the cross-validation the calibration/validation process

of the downscaling method has to be repeated �ve times. Each of the 5 subperiods is (in

succession) considered as the test/validation data set and the remaining 4 subperiods are

used for calibration/training of the downscaling model.

Experiment 1(b) - Perfect Prognosis, Gridded Data

Experiment 1(b) is identical to experiment 1(a) except for the predictand data set which

comes from E-OBS (Haylock et al., 2008). E-OBS is a gridded data set with a grid spacing

of 0.22° based on the ECA&D observational data. For experiment 1(b) the data from the

gridboxes closest to the 86 locations used in experiment 1(a) is chosen. When considering

observational data that have been regridded to the predictor grid size, the representativeness

problem does not occur. Hence, the downscaling performance w.r.t. model errors, such as

those inherent in parameterization schemes or resulting from the omission of subgrid-scale

topography etc, can be directly assessed.

7.2. MOGP Setup

We apply MOGP to detect downscaling rules for each of the 86 stations separately. As

already mentioned, the experiments are set up as a cross-validation with 5 successive validation

periods. All 4 predictand variables suggested by VALUE are downscaled, i.e., daily maximum,

minimum and mean temperature and daily accumulated precipitation. Thus, in total 86×5×4

MOGP runs have been carried out.

The downscaling rules are trained to predict anomalies with respect to ERA-Interim. For

precipitation the rules predict the anomaly w.r.t. the closest ERA-Interim grid point. For

temperature the anomaly w.r.t. to the linearly interpolated maximum, minimum and mean

temperature in 2 m height is predicted. The objectives are calculated from the absolute

values, i.e., by comparing the sum of the ERA-Interim predictions and downscaled anomalies

to the station observations.

The set up of the MOGP is very similar to the setup in Section 6.2. The main di�erence lies in

the de�nition of the objectives. While in Section 6.2 the objectives have been foremost aimed

at reproducing spatial variability and do not explicitly consider temporal variability, the focus

is now placed on the temporal variability of the time series at each particular station. The

spatial variability between stations is not explicitly considered.

For temperature downscaling MOGP can be readily applied. For precipitation is has to be

ensured that no negative values are returned by the downscaling. This is achieved by setting

all negative values predicted by a downscaling rule to zero before applying the objective

functions to the downscaled series.
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7.2.1. Objectives

All objectives are formulated as penalties, i.e., the smaller the better. The root mean square

error is the only objective which compares downscaled and reference time series pointwise.

All other objectives evaluate statistics calculated from the whole training time series.

Root Mean Square Error The root mean square error between predicted (downscaled D)

yD and observed (reference R) time series yR

RMSE =

√
1

n

∑

t

(yRt − yDt )2, (7.1)

where n is the number of observations at a station. As discussed before, solely minimizing the

RMSE leads to a prediction of the expected value given the predictors. Restoring variability

requires further objectives.

Absolute Error of Standard Deviation The absolute error of the standard deviation is the

second objective and de�ned as

AE(STD) = |σ(yR)− σ(yD)| =
√

1

n− 1

∣∣∣∣∣∣

√∑

t

(yRt − ȳRt )2 −
√∑

t

(yDt − ȳDt )2

∣∣∣∣∣∣
. (7.2)

That is, �rst the standard deviations σ of downscaled and reference time series are calculated

and the absolute value of the di�erence in standard deviation serves as objective.

Mean Error of Quantiles The mean error of a set of selected quantiles serves as third objec-

tive. This objective aims to restore the probability densities of temperature and precipitation

at the respective station and is de�ned as

ME(Q) =
1

nq

∑

Qi∈Q
|QRi −QDi | (7.3)

with Q being the set of selected quantiles for temperature T and precipitation P ,

QT = {Q0.001, Q0.01, Q0.05, Q0.25, Q0.5, Q0.75, Q0.95, Q0.99, Q0.999}

QP = {Q0.5, Q0.6, Q0.7, Q0.8, Q0.9, Q0.95, Q0.99, Q0.999},

and nq the number of elements in Q. For precipitation, the low quantiles are expected to ap-

proach zero and are thus neglected as the frequency of precipitation occurrence is accounted

for by the absolute error of the precipitation frequency AE(F) (see below). For precipita-

tion, we choose to consider foremost high quantiles in order to obtain a good representation

of extremes. For temperature, moderate as well as very high and very low quantiles are

considered.
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Absolute Bias One central goal of empirical-statistical downscaling of GCM output is to

reduce biases, i.e., over- or underestimation of a quantity by a GCM. Therefore the bias

serves as fourth objective. To formulate the bias as a penalty, we take the absolute value of

the di�erence in mean ȳ between reference and downscaled time series as objective, i.e.,

AB = |ȳR − ȳD| =
∣∣∣∣∣
1

n

∑

t

yRt −
1

n

∑

t

yDt

∣∣∣∣∣ =
1

n

∣∣∣∣∣
∑

t

(yRt − yDt )

∣∣∣∣∣ . (7.4)

A bias in a downscaled time series also shows in the RMSE. However, a large RMSE does not

necessarily result from a large bias. Thus, it appeared reasonable to introduce the bias as an

additional objective.

Absolute Error of Occurrence Frequency (precipitation only) Daily precipitation series

contain large number of zero values. Thus, for precipitation downscaling an additional ob-

jective is introduced in order to quantify the ability of a downscaling rule to capture the

frequency of precipitation occurrence. We determine the absolute error of the precipitation

occurrence frequency as

AE(F ) =
1

n
|n(yR > 0)− n(yD > 0)|, (7.5)

where n(y > 0) is the number of values larger than 0. This de�nition compares the total

number of precipitation days in reference and downscaled time series. The timing of the

precipitation events is not considered by AE(F).

Solution Size The size of the solutions, i.e., the number of nodes a downscaling rule consists

of, is our last objective. This aims at obtaining a reasonable trade-o� between the quality

and complexity of the downscaling rules.

7.2.2. Parameters

The settings for GP parameters are speci�ed in Table 7.2. The function set contains the four

arithmetic functions and an if statement (if A>B do C else do D). The terminal set contains

random constants drawn from the interval [0, 1], some decimal powers and the predictor

variables.

We use the standard predictor variables suggested by COST-VALUE as listed in Table 7.3.

The list contains surface variables as well as a set of variables at selected pressure levels. All

predictors except for precipitation are bilinearly interpolated from the ERA-Interim grid to

the location of the respective station. Precipitation is taken from the nearest neighboring

ERA-Interim grid point. The predictors are not further pre-processed, i.e., no removal of

seasonal cycle, scaling etc. is applied.

MOGP is run for 200 generations (for each cross-validation period and each station) with 100

individuals each generation and a maximum Pareto set size of 100. The genetic operators for

(subtree-)mutation and crossover are applied with a probability of 50% each. To keep the

downscaling rules readable the maximum tree depth is set to 6 levels. With the above setting,
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Table 7.2.: Summary of the GP parameters. Protected division means that division by zero returns
the dividend not an error.

Parameter Value
function set + , - , ×, protected /, if
terminal set random numbers [0,1], 10, 102, 103, predictor variables (Table 7.3)
generations 200
population size 100
max. Pareto set size 100
genetic operators (subtree-)mutation, crossover
max. tree levels 6

Table 7.3.: List of commonly used ERA-Interim predictors for experiment 1(a) and (b) according to
www.value-cost.eu.
Predictor Levels [hPa] Units Aggregation
u zonal wind component 250 500 700 850 1000 m/s daily mean
v meridional wind component 250 500 700 850 1000 m/s daily mean
z geopotential height 250 500 700 850 1000 m2/s−2 daily mean
psl sea level pressure - Pa daily mean
T temperature 250 500 700 850 1000 K daily mean
Tmean mean temperature (2 m) - K daily mean
Tmin minimum temperature (2 m) - K daily minimum value
Tmax maximum temperature (2 m) - K daily maximum value
q speci�c humidity 250 500 700 850 1000 kg/kg daily mean
P precipitation - m daily accumulated value

a single MOGP run takes approximately 10 min on a normal PC (using one node), i.e., the

entire runs for one experiment (4 predictands at 86 stations with 5 di�erent training periods)

take approximately 12 days (when carried out sequentially). Due to the comparably small

memory requirements 4 runs can easily be performed simultaneously without any noticeable

deceleration.

7.3. Results

In the following the MOGP results for downscaling daily maximum, minimum and mean

temperature and daily accumulated precipitation are described in detail. The results for both

experiments were submitted to COST-VALUE. In the present thesis we restrict ourselves to

the results of experiment 1(a).

The MOGP results are compared against the raw data from the ERA-Interim reanalysis.

Standard downscaling approaches (in the following also referred to as reference methods)

based on linear regression (for temperature) and generalized linear models (for precipitation)

serve as further reference to evaluate the performance of MOGP.

MOGP Variants

As explained in Chapter 5 MOGP returns a set of Pareto optimal downscaling rules. To

condense the results, for each station and each cross-validation period three Pareto optimal

rules are selected according to di�erent selection criteria.
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MOGPRMSE From each Pareto set (for the 86 stations and 5 cross-validation periods) we

pick the downscaling rule yielding the smallest RMSE (for the training data). These down-

scaling rules are in the following referred to as MOGPRMSE .

MOGPQ From each Pareto set the downscaling rule with the smallest ME(Q) (for the train-

ing data) is selected. These downscaling rules are in the following referred to as MOGPQ.

MOGP From each Pareto set one downscaling rule is selected that yields a trade-o� between

all objectives. So far the selection is carried out subjectively as no de�nite selection criterion

for this rules has yet been de�ned (see Sec. 7.4).

As explained in Chapter 5 the idea behind the multi-objective approach is to �t a trade-

o� between di�erent, potentially con�icting objectives. That is for judging the performance

of MOGP only the third variant which is �tting a trade-o� between the objectives should be

considered. The results for MOGPRMSE and MOGPQ are given to estimate the advantages of

the multi-objective setup compared to using GP to minimize foremost the RMSE or foremost

aimed at matching the observed PDF.

Performance Measures

To evaluate the performance of MOGP and reference methods we consider some of the ob-

jectives introduced in Section 7.2.1 (some objectives have been slightly adjusted) and some

additional performance measures. Precisely, the following quantities have been calculated to

assess the downscaling performance.

Bias B The bias is the di�erence in mean ȳ between predicted (downscaled D) yD and

observed (reference R) yR, i.e.,

B = ȳD − ȳR =
1

n

∑

t

(yDt − yRt ), (7.6)

where n is the number of observations (i.e., the length of the series neglecting any missing

data). A positive bias indicates an overestimation of temperature or precipitation on average.

A negative bias indicates an underestimation.

Root Mean Square Error RMSE The RMSE compares predicted and observed time series

pointwise and is given by

RMSE =

√
1

n

∑

t

(yDt − yRt )2. (7.7)
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Pearson Correlation Coefficient ρ The Pearson correlation coe�cient serves as a measure

for the linear relation between predicted and observed series. It is de�ned as

ρ = ρ(yD, yR) =
cov(yD, yR)

σ(yD)σ(yR)
=

∑
t

(yDt − ȳDt )(yRt − ȳRt )

√∑
t

(yDt − ȳDt )2
∑
t

(yRt − ȳRt )2
. (7.8)

Error of the Standard Deviation E(STD) The error of the standard deviation is given by

the di�erence between the standard deviation of the observed series σ(yR) and the predicted

series σ(yD), i.e.,

E(STD) = σ(yD)− σ(yR) =

√
1

n− 1



√∑

t

(yDt − ȳDt )2 −
√∑

t

(yRt − ȳRt )2


 . (7.9)

A positive E(STD) indicates an overestimation of the standard deviation (i.e., a higher vari-

ance for the downscaled series compared to the observations). A negative E(STD) indicates

an underestimation.

Integrated Quadratic Distance IQD The integrated quadratic distance measures the dif-

ference between the empirical cumulative distribution functions G of the downscaled and the

reference series,

IQD =

∫ ∞

−∞
(GD(y)−GR(y))2dy. (7.10)

The empirical CDF for the reference series GR calculates as

GR(y) =
n(yR ≤ y)

n
. (7.11)

That is, the empirical CDF at each value of y is given by the fraction of the numbers of

observations less or equal to y divided by the total number of observations. The de�nition of

the downscaled CDF GD is analogous to the de�nition of GR .

Error of Quantiles E(Qi) For selected quantiles the respective error is determined as

E(Qi) = QDi −QRi . (7.12)

If E(Qi) is positive, this means Qi is overestimated by the respective downscaling method. A

negative E(Qi) means Qi is underestimated.

Error of Precipitation Frequency E(F) The error of the rain day frequency calculates as

E(F ) =
1

n

(
n(yD > 0)− n(yR > 0)

)
, (7.13)

where n(y > 0) is the total number of values larger than 0. A positive E(F) means the

respective downscaling method gives too many days with precipitation. A negative E(F)
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indicates that the respective method gives too little precipitation days.

Error of lag-i Autocorrelation E(ACi) The error of autocorrelation at lag-i is calculated as

E(ACi) = ρ(yDt , y
D
t+i)− ρ(yRt , y

R
t+i) (7.14)

with ρ denoting the Pearson correlation coe�cient (cf. Eq. 7.8). A positive E(ACi) indicates

an overestimation of the autocorrelation at the respective lag. A negative E(ACi) indicates

an underestimation.

RMSE and Bias of the Spatial Correlation RMSE(SC), B(SC) The RMSE of the spatial

or inter-station correlation between two stations i, j calculates as

RMSE(SC) =

√
2

n2s − ns
∑

i,j<i

(ρ(yDi , y
D
j )− ρ(yRi , y

R
j ))2. (7.15)

with ns denoting the number of stations. The bias of the spatial correlation is de�ned as

B(SC) = ρ(yDi , y
D
j )− ρ(yRi , y

R
j ) (7.16)

with the bar denoting the mean over all stations, i.e., ρ(yRi , y
R
j ) = 2

n2
s−ns

∑
i,j<i ρ(yRi , y

R
j ).

ρ(yRi , y
R
j ) is de�ned analogous.

For quantities which can take positive and negative values (i.e., B, E(STD), E(Qi), E(F),

B(SC), E(ACi)) also the absolute values are used if this appears reasonable. These are de-

noted by AB, AE(STD), AE(Qi), AE(F), AE(ACi) and AB(SC), respectively.

7.3.1. Temperature

Reference Methods

Two standard methods for temperature downscaling (e.g., Huth, 2002) serve as reference to

evaluate the performance of MOGP. First reference is a multiple linear regression or linear

model (LM). The predictors used are the same as o�ered to MOGP (cf. Table 7.3), but

standardized to zero mean and unit variance. No predictor selection is performed, i.e., all

predictors are incorporated in the linear model. A more detailed description of multiple

linear regression is given in Appendix B. The second reference method is a simple weather

generator (WG). Instead of taking the series of expected values predicted by the linear model,

we sample from the underlying Gaussian distribution to account for the variance not explained

by the predictors. Or in other words, Gaussian noise with zero mean and constant variance

is added to the prediction of the LM to recover the variance of the observed series.
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Table 7.4.: Objective functions and related measures for ERA-Interim and downscaled Tmax: Bias B,
root mean square error RMSE, error of standard deviation E(STD), Pearson correlation coe�cient ρ,
integrated quadratic distance IQD, error of selected quantiles E(Qi). The bar denotes the mean over
all stations. max and min refer to the maximum and minimum over all stations. Values discussed in
the text are highlighted in bold font.

ERA LM WG MOGPRMSE MOGPQ MOGP

AB [K] 2.03 0.01 0.02 0.11 0.09 0.06

B -0.158 -0.001 0.000 0.030 0.017 0.006
Bmin -6.08 -0.05 -0.06 -0.36 -1.21 -0.19
Bmax 16.02 0.04 0.04 0.57 0.34 0.23

RMSE [K] 3.02 1.41 1.97 1.74 3.10 2.13
RMSEmax 16.45 2.32 3.24 3.24 25.93 4.15

AE(STD) [K] 0.65 0.13 0.01 0.36 0.49 0.10

E(STD) -0.42 -0.13 0.00 -0.28 0.36 -0.06
ME(STD)min -1.97 -0.45 -0.05 -1.43 -0.28 -0.78
ME(STD)max 1.54 -0.03 0.03 0.53 19.89 0.53

ρ [1] 0.97 0.98 0.97 0.97 0.92 0.96
ρmin 0.88 0.92 0.85 0.89 0.24 0.82

IQD [K2] 0.0400 0.0001 0.0001 0.0006 0.0003 0.0002
IQDmax 0.629 0.001 0.009 0.005 0.002 0.0001

AE(Q0.01) [K] 2.19 0.50 0.43 1.12 0.29 0.52

E(Q0.01) 0.98 0.41 -0.00 0.87 0.07 0.25
E(Q0.01)min -7.84 -0.60 -0.90 -1.80 -0.84 -1.24
E(Q0.01)max 16.50 2.80 2.40 7.70 1.60 3.16

AE(Q0.25) [K] 1.72 0.14 0.15 0.34 0.28 0.21

E(Q0.25) 0.08 0.07 0.02 0.18 0.07 0.03
E(Q0.25)min -5.70 -0.60 -1.10 -1.50 -1.80 -1.40
E(Q0.25)max 13.50 0.50 0.40 1.20 1.00 0.70

AE(Q0.5) [K] 2.08 0.09 0.11 0.19 0.19 0.17

E(Q0.5) -0.19 -0.03 -0.01 -0.03 0.06 -0.00
E(Q0.5)min -6.30 -0.40 -0.50 -1.10 -1.20 -1.00
E(Q0.5)max 16.10 0.40 0.30 0.50 0.60 0.60

AE(Q0.75) [K] 2.46 0.10 0.11 0.31 0.26 0.20

E(Q0.75) -0.39 -0.07 -0.06 -0.14 -0.03 -0.04
E(Q0.75)min -7.50 -0.30 -0.30 -1.10 -0.80 -0.60
E(Q0.75)max 18.10 0.40 0.30 1.02 1.10 0.80

AE(Q0.99) [K] 3.25 0.49 0.47 0.84 0.23 0.35

E(Q0.99) -1.25 -0.32 0.15 -0.66 -0.01 -0.08
E(Q0.99)min -10.00 -3.10 -1.90 -4.30 -1.30 -2.66
E(Q0.99)max 18.70 0.70 1.10 1.39 0.94 1.14
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Overview

Figure 7.2 shows an overview of the performance of the di�erent downscaling approaches for

downscaling daily maximum temperature Tmax. Table 7.4 provides the mean, maximum and

minimum values (over all 86 stations) of the measures from Fig. 7.2.

The bias is well reduced by all downscaling techniques, but linear model (LM) and weather

generator (WG) yield an on average smaller (absolute) bias than MOGP (0.01 to 0.02 K for

LM and WG compared to 0.06 K for MOGP). MOGPRMSE and MOGPQ show an even larger

bias which is not surprising as the performance concerning the bias is not considered when

selecting the downscaling rules of these two variants.

Also concerning the RMSE, the reference methods perform on average better than MOGP.

The LM well reduces the RMSE from on average 3.02 K for ERA to 1.41 K. For WG the

RMSE is with 1.97 K slightly larger as recovering variance increases the RMSE. MOGPRMSE

ranks between the two reference methods. MOGP and MOGPQ both exhibit a larger RMSE

than WG, and MOGPQ shows some strong outliers which are caused by MOGPQ predict-

ing unphysically large temperatures for single days. With MOGP being able to �t nonlinear

downscaling rules there is a risk of such e�ects, when the range of predictors and predictand
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Figure 7.2.: Boxplots of objective functions and related quantities for ERA-Interim and downscaled
daily maximum temperature Tmax: Bias B, root mean square error RMSE, error of standard deviation
E(STD), Pearson correlation coe�cient ρ, integrated quadratic distance IQD, error of selected quan-
tiles E(Qi). Each boxplot corresponds to 86 values (for the 86 stations considered) and is obtained
from the full downscaled time series (1979-2008). The horizontal line within the boxes is the median,
the upper and lower boundaries of the boxes correspond to the 75%- and 25%-quantiles. The whiskers
indicate the range spanned by maximum and minimum. The length of the whiskers is restricted to
1.5 times the interquartile range (i.e., the range between 25%- and 75%-quantile). Values outside this
range are considered outliers and shown as circles.
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Figure 7.3.: Scatterplots between selected quantities from Fig. 7.2 and absolute ERA-Interim bias
for daily maximum temperature Tmax. Each point corresponds to one station and is obtained from
the full downscaled time series (1979-2008). To better distinguish between the point clouds, regression
lines (standard linear regression) have been �tted.

covered by the training data is not su�cient. For MOGP and MOGPRMSE we do not observe

such problems. Largely neglecting the RMSE during the �tting, as done by MOGPQ, appears

to be critical. Unphysical outliers, as long as they are rare, are not punished severely by

AE(Q).

Concerning the error of the standard deviation the performance of MOGP ranks on average

between LM and WG. The WG reproduces the observed variance best with an AE(STD) of

only 0.01 K. MOGP yields an AE(STD) of 0.1 K. As expected MOGPRMSE underestimates

temporal variance by tendency. MOGPQ overestimates the variance on average, mostly due

the outliers.

The IQD is well reduced by all methods, which is in large parts due to the reduction in bias

discussed above. To get a better idea how well the downscaling methods recover the observed

PDFs, we take a look at the representation of selected quantiles. 25%-, 50%- and 75%-quantile

are well reproduced by all methods, again with LM and WG yielding slightly smaller errors

than MOGP (on average ≈ 0.1 K compared to ≈ 0.2 K). For the tails of the PDF, here rep-

resented by the 1%- and 99%-quantiles, we �nd larger errors. Despite few outliers, MOGPQ
and MOGP perform comparable to and in some cases even better than the reference meth-

ods. According to Table 7.4 for most of the considered quantiles MOGP performs better than

MOGPQ. This seems surprising as in MOGPQ the predictors are used to closely resemble the

observed PDF for the training period. However, when neglecting the RMSE, the respective

downscaling rule appears not to work as well for the validation period. Still for the 1%- and
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99%-quantiles MOGPQ performs on average best of all methods. A low RMSE and a good

representation of the distribution tails are hard to achieve with a single downscaling rule.

This overview suggests the reference methods as overall favorable compared to MOGP for

downscaling daily maximum temperature. Evaluating daily minimum and daily mean tem-

perature substantially leads to the same conclusion.

Scatter plots between the performance measures and the absolute bias of ERA-Interim w.r.t.

the observations at each station (cf. Fig. 7.3) reveal that absolute bias and RMSE for MOGP

are by tendency larger, the larger the ERA bias. For the RMSE a linear �t gives a coe�cient

of determination1 of 0.35. For LM and WG no relation between ERA bias and downscaling

performance is visible.

Selected Stations

We take a closer look at the performance of the di�erent downscaling approaches for the sta-

tions Salzburg and Saentis. Salzburg is located at approximately 450 m.a.s.l and surrounded

1The coe�cient of determination r2 is the portion of the predictand variation that is explained by a �tted
linear model. In a univariate linear regression, r2 equals the squared Pearson correlation coe�cient of
predictand and predictor variable.

Table 7.5.: Objective functions and related measures for daily maximum temperature Tmax predicted
by the di�erent downscaling methods at Salzburg (station 14) and Saentis (station 243). The quantiles
of the observed CDF are Q0.01 = −4.6 K, Q0.25 = 7.0 K, Q0.5 = 15.0 K, Q0.75 = 21.9 K and
Q0.99 = 31.8 K at Salzburg and Q0.01 = −14.3 K, Q0.25 = −3.0 K, Q0.5 = 1.4 K, Q0.75 = 6.5 K and
Q0.99 = 15.5 K at Saentis.

(a) Salzburg
ERA LM WG MOGPRMSE MOGPQ MOGP

B [K] -2.02 0.01 0.02 0.01 -0.12 -0.08
RMSE [K] 2.74 1.69 2.36 1.88 3.13 2.14
ρ [1] 0.98 0.98 0.97 0.98 0.94 0.97
E(STD) [K] -0.62 -0.15 -0.01 -0.50 -0.16 -0.06
IQD [K2] 0.015 0.0001 0.0001 0.0007 0.0003 0.0001
E(Q0.01) [K] 0.10 0.40 0.00 1.80 0.20 0.50
E(Q0.25) [K] -1.80 0.00 0.00 0.20 0.20 0.00
E(Q0.5) [K] -2.35 -0.10 -0.10 -0.30 -0.50 -0.30
E(Q0.75) [K] -2.50 -0.10 -0.10 -0.50 -0.40 -0.20
E(Q0.99) [K] -2.50 0.26 0.56 -0.34 0.16 0.26

(b) Saentis
ERA LM WG MOGPRMSE MOGPQ MOGP

B [K] 10.48 0.00 0.02 0.32 -0.22 -0.12
RMSE [K] 11.13 1.43 1.98 3.23 3.89 4.08
ρ [1] 0.88 0.98 0.96 0.90 0.85 0.82
E(STD) [K] 1.21 -0.14 -0.001 0.52 0.43 0.09
IQD [K2] 0.34 0.00003 0.00003 0.002 0.0005 0.0003
E(Q0.01) [K] 10.70 0.94 0.54 1.84 1.54 2.04
E(Q0.25) [K] 8.50 0.00 -0.20 -1.00 -1.50 -1.10
E(Q0.5) [K] 10.70 0.10 0.20 0.50 0.20 0.30
E(Q0.75) [K] 12.03 -0.07 0.03 1.03 0.62 0.43
E(Q0.99) [K] 11.90 -0.50 -0.10 1.20 -0.30 -0.76
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Figure 7.4.: Time series of daily maximum and minimum temperature (Tmax and Tmin) as observed,
from ERA-Interim and from the di�erent downscaling techniques at Salzburg (station 14) in the
year 2000. The dashed red lines show the observations. The solid lines show the temperatures from
ERA-Interim and from the di�erent downscaling approaches.
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Figure 7.6.: Quantile-quantile plots for daily maximum temperature Tmax at Salzburg (station 14)
and Saentis (station 243) from ERA-Interim and estimated by the di�erent downscaling techniques.
The x-axis corresponds to the observed quantiles; the y-axis corresponds to the estimated quantiles.

by mountains leading to relatively dry conditions and moderate temperatures (cf. Figs. 7.4,

7.13). For Salzburg the bias of ERA-Interim compared to the observation equals -2.02 K

for daily maximum temperature. Saenits is a mountain station in Switzerland located ap-

proximately 2500 m.a.s.l and shows large precipitation amounts throughout the year and

comparably low temperatures (cf. Figs. 7.5, 7.14). Saentis has the largest ERA-Interim bias

(10.48 K) of all stations considered.

Table 7.5 lists the objective functions and related measures for downscaled daily maximum

temperature at Salzburg und Saentis. For Salzburg the performance of MOGP is similar to

the performance of LM and WG. For Salzburg one can hardly tell any di�erences between the

downscaling approaches (cf. Fig. 7.4). For Saentis LM and WG achieve a closer match of the

observations than MOGP (cf. Fig. 7.5).

Quantile-quantile plots (Fig. 7.6) con�rm these �ndings. For Salzburg the PDF of the daily

maximum temperature of ERA-Interim deviates only slightly from the observations. All down-

scaling approaches restore the observed PDF well. Only MOGPRMSE shows some drawbacks

120



7.3. Results

minus

minustimes

0.1 minusdivide

10 0.1 

0.01 

0.75

q
850

timestimes

minus

z
g250

T
500

minus

T
mean

T
700

v
1000

divide

(a) T
max

(b) T
min

minus

times if 0.91 

timesv
1000

T
max

T
min

0.91 

v
1000

T
max

T
min

if

timesv
1000

T
max

times q
250

q
250

T
max

P T
max

0.34

Figure 7.7.: Two downscaling rules as returned by MOGP for daily maximum and minimum tem-
perature (Tmax and Tmin) at Saentis (station 243).

and overestimates the low quantiles. All other methods (LM, WG, MOGPQ and MOGP)

yield an IQD of ≤ 0.0003 K2. For Saentis the situation is di�erent. ERA-Interim strongly

overestimates the daily maximum temperature. LM and WG achieve a good �t of the ob-

served PDF with an IQD of 0.00003 K2. Though the MOGP methods well reduce the bias,

they yield less satisfactory results concerning the PDF. It appears that MOGP is in this case

not capable of capturing the shape of the PDF properly. The PDF appears to be essentially

only shifted.

Figure 7.7 shows two example downscaling rules for maximum and minimum temperature

at Saentis. The two rules are extracted from the Pareto set returned for the fourth cross-

validation period (validated for 1997-2002) and yield the lowest RMSE of all Pareto optimal

rules (MOGPRMSE). The rule for the maximum temperature is rather simple and amounts

to an almost linear regression with only two predictors. After evaluating the coe�cients and

some simpli�cation it reads:

TDmax = TERAmax + 0.1 v1000 − 0.01
q850
− 13.23.

A large regression constant of -13.23 accounts for the large bias between the ERA-Interim

reanalysis and observations at Saentis. According to the downscaling rule dry air conditions,

here represented by low speci�c humidity q in 850 hPa, are accompanied by a larger di�er-
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ence between ERA-Interim and observed maximum temperature. Near-surface wind from

the south (i.e., positive v1000) reduces the di�erence; near-surface wind from the north (i.e.,

negative v1000) further increases the di�erence.

The rule for the daily minimum temperature is much more complex, involving if statements

and including 10 di�erent predictors. It reads

IF v1000 > Tmax

TDmin = TERAmin + Tmax Tmin P (T500 − zg250)− 0.91 (Tmean − T700)
ELSE

TDmin = TERAmin + 0.34 Tmax q
2
250 (T500 − zg250)− 0.91 (Tmean − T700).

Since v1000 (in m/s) is never larger than Tmax (in Kelvin), in fact only the second equa-

tion is used. The phenomenon of unnecessary terms occurring in equations or program code

generated by GP is called bloat (e.g., Poli et al., 2008). There are many approaches to reduce

bloat. In our simple GP system we have used the tree size as an additional objective and

have applied a limitation to the maximum number of tree levels to reduce bloat. There are

numerous more advanced approaches, but how to fully prevent bloat is a topic of ongoing

research.

The downscaling equation consists, despite of TERAmin , of two terms. A scale analysis based on

the training/calibration data set shows that the �rst term 0.34 Tmax q
2
250 (T500− zg250) is one

to two orders of magnitude smaller than the second term −0.91 (Tmean−T700). While the �rst

term is di�cult to understand, the second term has a simple physical meaning. Tmean − T700
gives the daily average vertical temperature gradient between 2 m height and 700 hPa height.

In most situations temperature decreases with height, i.e., the whole term including the factor

of -0.91 is for most cases negative. Thus (according to the downscaling rule) ERA-Interim

overestimates Tmin the stronger, the larger the average decrease of temperature with height

which is physically reasonable as Saentis is located in approximately 2500 m.a.s.l.

Spatial and Temporal Correlation

Spatial and temporal correlation are not directly considered by the MOGP objectives and

also by none of the reference methods. For ERA-Interim the autocorrelations are, except

for a few stations, smaller than for the observations (cf. Fig 7.8). This is for the most part

due to ERA-Interim representing area averages which tend to have a smaller variance in

space and time compared to point observations. The larger the considered lag, the larger

this e�ect appears to be. The LM reduces the autocorrelation error (most obvious for the

outlier stations), but not su�ciently which is largely due to the LM underestimating temporal

Table 7.6.: Bias B and root mean square error RMSE of the Pearson correlation coe�cients of daily
maximum temperature Tmax between all 86 station.

ERA LM WG MOGPRMSE MOGPQ MOGP
B(SC) [1] 0.045 0.021 -0.007 0.032 -0.055 0.009
RMSE(SC) [1] 0.061 0.024 0.012 0.039 0.136 0.038
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variance. Accounting for variability, as done by the WG, reduces the autocorrelation. For

some stations the autocorrelation of the obervations is well reproduced, for the majority of

stations, however, the WG underestimates the autocorrelation. MOGPRMSE shows a similar

behavior as the LM with similar errors at lag-1 and slightly larger errors at lag-2 and 3.

MOGPQ shows the largest errors and a clear tendency to underestimate the autocorrelation.

For MOGP no general tendency to either under- or overestimate autocorrelation is found.

The magnitude of the error is, however, similar to LM and WG for lag-1 and increases for the

larger lags.

Spatial correlation can be demonstrated by (Pearson) correlation matrices calculated from the

temperature time series at the di�erent stations. To keep the correlation matrix at reasonable

dimensions, Fig. 7.9 shows the correlation matrix for a subset of stations located in the

Alpine region. Table 7.6 provides bias and RMSE of the spatial correlation for the full 86×86

matrices. The correlation matrix of the observed series shows a distinct pattern, which is

largely related to the distance between the respective stations and their altitude. The ERA-

Interim series are in general too strongly correlated which is mainly caused by ERA-Interim

representing area means. LM and WG well restore the spatial correlation pattern and reduce

the RMSE from 0.061 for ERA-Interim to 0.024 for the LM and 0.012 for the WG. As for the

temporal correlation, LM overestimates and WG underestimates spatial correlations slightly

with a bias of 0.021 and -0.07, respectively. For MOGP the bias is with 0.009 comparable to

LM and WG. However, the reference methods obtain a smaller RMSE. For the Alpine stations

MOGP clearly overestimates the spatial correlation (Fig. 7.9). For Mid-Europe, for instance,

the performance of MOGP is much closer to the reference methods. The comparably bad

performance for the Alpine region is largely related to the bad performance of MOGP for

stations with a large ERA-Interim bias compared to the observations.

Predictor Statistics

To investigate the importance of the di�erent predictors for downscaling daily maximum tem-

perature we analyze how the di�erent predictors are used by LM and MOGP (Fig. 7.10). For

the LM the regression coe�cients βi (cf. Appendix B.1) serve as indicator for the importance

of each predictor xi for downscaling daily maximum temperature. For MOGP the importance

of the di�erent predictors is estimated by the frequency hi with which the di�erent predictors

xi occur in the �nal Pareto sets, i.e.,

hi =
n(α ∈ P ′|xi ∈ α)

n(α ∈ P ′) , (7.17)

or in words hi is given by the number n of downscaling rules α in Pareto set P ′ containing
predictor xi at least once divided by the total number of rules in the Pareto set. The βi and

hi shown in Fig. 7.10 are given by the hi and βi averaged over the 5 Pareto sets for the 5

cross-validation periods. The quantities βi and hi thus have a di�erent meaning and should

not be compared quantitatively, but only qualitatively. Though, MOGP may potentially in-

clude nonlinear predictor-predictand relations one would in general expect the predictors with

a large regression coe�cient (in the LM) to be frequently used by MOGP.
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Figure 7.8.: Error of the lag-1 (a), lag-2 (b) and lag-3 (c) (Pearson) autocorrelation of the daily
maximum temperature Tmax series predicted by the di�erent downscaling techniques. The observed
autocorrelation averaged over all stations at di�erent lags is AC1 = 0.94, AC2 = 0.88 and AC3 = 0.85.
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(b) ERA
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Figure 7.9.: Pearson correlation matrix of daily maxium temperature Tmax for all stations within
the Alpine (AL) PRUDENCE region - cf. Fig. 7.1.

For the LM the geopotential and pressure predictors are most important followed by temper-

ature predictors and, with a larger gap, humidity, wind speed and �nally precipitation. It is

expected that the temperature from ERA-Interim contains information about the local station

temperatures. The geopotential is an indicator for high/low pressure systems describing the

overall weather conditions. For MOGP the ranking of the predictors is approximately inversed

with wind speed, speci�c humidity and precipitation being used much more frequently than

temperature and geopotantial height. Wind speed and humidity may of course contain some

124



7.3. Results

LM (βi)

M
O

G
P

 (
h i

)

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

q700

q850

T250 T500 T700 T850
T1000

TmaxTss

z250
z500 z700 z850

z1000

u850

v850

u1000

v1000

P q1000

Tmin Tmean

psl

q250

q500

q700

v250

u500

v500

u700

v700

u

u250

0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.15

0.16

0.17

0.18

0.19

0.20

0.21

Figure 7.10.: Usage of the di�erent predictors by multi-objective Genetic Programming (MOGP)
and multiple linear regression (LM) for downscaling daily maximum temperature Tmax at 86 stations.
For the LM the regression coe�cients βi for each station averaged over all 5 cross-validation periods
are given. For MOGP the frequency hi with which the predictors xi occur in the Pareto sets is
given, again for each of the 86 stations averaged over all cross-validation periods. Details on the
calculation are provided in the text. The points indicate the mean values over all stations. The bars
indicate the 10%-and 90%-quantiles. The colors emphasize the di�erent types of predictors considered.
Temperature predictors T are shown in red; geopotential height z or pressure p based predictors are
orange; wind speed predictors u, v are grey; speci�c humidity q is shown in light blue and precipitation
P in darker blue. For z700, z850, z1000 and psl the 90%-quantile of βi lies outside the plotted range,
Q90(z700) = 26.6, Q90(z850) = 44.2, Q90(z1000) = 55.1, Q90(psl) = 45.6. The smaller �gure top right
is a zoom into the main �gure; the area is indicated by the axes.
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information on the deviation between coarse-scale ERA-Interim temperatures and observed

temperatures. Still it is surprising that geopotential and temperature predictors are only little

used by MOGP2. The predictor ranking for MOGP becomes better understandable by looking

at the typical scales of the di�erent predictors:

O(z) ≈ 102 − 105 m,

O(T ) ≈ 102 K,

O(u) ≈ O(v) ≈ 100 − 101 m/s,

O(q) ≈ 10−3 − 10−2 kg/kg,

O(P ) ≈ 100 − 101 (rarely 102) mm.

O denotes the order of magnitude. MOGP tends to use predictors with a smaller order of

magnitude, i.e., wind speed, humidity and precipitation, more frequently. In comparison

geopotential and also temperature predictors are rarely used, though these quantities may

contain important information as they constitute important predictors for the LM. For both

approaches the importance of the di�erent predictors strongly depends on the considered sta-

tion as indicated by the bars which correspond to the 10%-and 90%-quantiles of βi and hi,

respectively. The larger βi or hi, the larger the range of the bars tends to be. For the LM

this tendency is more pronounced than for MOGP.

We suppose that the predictor selection in MOGP is largely driven by the order of magnitude

of the predictors due to potential problems with the evolution of numerical constants. The

evolution of exact numerical constants is di�cult to achieve with GP and related techniques

(e.g., Evett and Fernandez , 1998). This issue is further discussed in Section 7.4. Despite the

discussed di�erences the predictor usage of LM and MOGP also shows some similarities. For

both methods the variables at lower levels appear to be more important than at higher lev-

els. This holds for all types of variables, i.e., wind speed, speci�c humidity, temperature and

geopotential height. As we are downscaling the daily maximum temperature in 2 m height

this is physically reasonable for both approaches.

Looking at the considered predictors potential reasons for LM and WG outperforming MOGP

(cf. Figs. 7.2-7.8) may be that MOGP is not able to su�ciently make use of the information

contained in the coarse-scale temperature and geopotential height. Further, each predictor is

on average contained in at maximum 25% of the MOGP based downscaling rules, while the

LM exploits the full predictor set. A more fair comparison between methods would restrict

both methods to the same numbers of predictors. This issue is further discussed in Section

7.4.

2In the current setup MOGP predicts the temperature anomalies, i.e., the ERA-Interim daily maximum
temperature is actually used by the �nal downscaling model.
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Summary

� For temperature downscaling standard linear regression based methods achieve a good

match of the observations.

� MOGPRMSE is throughout outperformed by LM. MOGPQ is (except for the repre-

sentation of extremes) outperformed by WG. For the most part also MOGP is outper-

formed by LM and WG, but not concerning the representation of extremes and (for

the majority of stations) the representation of autocorrelation.

� The di�erence between the performance of MOGP and the reference methods tends

to be larger for stations with a large bias between ERA-Interim and observation. For

stations with a small ERA bias the performance of MOGP and reference methods is

comparable.

� The frequency with which the di�erent predictors are used by MOGP appears to be

strongly dependent on their magnitude which is presumably caused by di�culties when

evolving numerical constants for scaling the predictors.

7.3.2. Precipitation

Reference Methods

Precipitation downscaling is known to be more di�cult than temperature downscaling, due

to its non-Gaussian distribution. Three methods based on generalized linear models (GLMs;

cf. Appendix B.2), a Poisson GLM, a Gamma GLM and a simplistic gamma distribution

based weather generator (WG), are used as reference to evaluate the performance of MOGP

for downscaling daily accumulated precipitation. All three reference methods employ a two

step procedure modeling precipitation occurrence and precipitation amounts separately. For

the reference method the predictors are the same as o�ered to MOGP (cf. Table 7.3), but

standardized to zero mean and unit variance

In the �rst step precipitation occurrence is modeled using logistic regression. Logistic re-

gression estimates the probability of precipitation occurrence on each day. The series of

probabilities is transformed into a Boolean series (i.e., yes/no or 1/0) such that predicted

precipitation probability of 70%, is transformed into a 1 with a 70% chance and into a zero

with a probability of 30%. The resulting Boolean series is thus one possible realization.

In the second step precipitation amounts are estimated. The Poisson distribution based gen-

eralized linear model (PGLM), as for instance employed in Schoof and Pryor (2001), assumes

daily precipitation amounts to follow a Poisson distribution. The predictors enter the Poisson
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GLM via a logarithmic link function.

The gamma generalized linear model (GGLM) assumes daily precipitation amounts to follow

a gamma distribution, which is frequently done in literature, for instance in Coe and Stern

(1982); Stern and Coe (1984); Chandler and Wheater (2002) and Fealy and Sweeney (2007).

The shape parameter of the gamma distribution is assumed to be temporally constant, i.e.,

for each station and cross-validation period the daily precipitation values are assumed to have

a constant coe�cient of variation (e.g., Chandler and Wheater , 2002). The predictors enter

the Gamma GLM via a logarithmic link function.

Also for the weather generator (WG) a gamma distribution with a constant coe�cient of

variation is assumed, but instead of taking the expected value predicted by the gamma GLM,

the WG prediction is obtained by drawing from the estimated Gamma distributions. That

is, for each day the predicted precipitation amount is drawn from the respective distribution,

i.e., a Gamma distribution with the expected value for the respective day and a temporally

constant coe�cient of variation. The autocorrelation of the precipitation series is not explic-

itly modeled by either of the reference approaches as it is has not been incorporated in the

MOGP objectives.

For the four stations Vestervig (107), Fokstua (51), Mont-Aigoual (355) and Birzai (1009) at

least one of the reference methods has occasionally generated unphysical values when applied

to the validation data set. This is most likely caused by predictor values in the validation

period being beyond the training data range. A careful predictor selection might improve

the results of the reference methods for the mentioned stations. However, as the GLM based

methods shall only provide a very �rst reference to assess the MOGP performance, we de-

cided to neglect those stations to keep the reference methods simple and consistent in their

setup. Further, we faced some problems with data (re)acquisition when setting up the ref-

erence methods causing us to further neglect the two stations Karasjok (190) and Vardoe

(195). This leaves us with a set of 80 stations for evaluating precipitation downscaling. (Note

that MOGP has been applied to all 86 stations and the respective results were submitted to

COST-VALUE.)

Overview

Figure 7.11 provides an overview of the performance of the di�erent downscaling approaches

for daily accumulated precipitation P . Table 7.7 provides the mean, maximum and minimum

values of the performance measures from Fig. 7.11.

The mean absolute error of the precipitation frequency is reduced from 0.30 (ERA-Interim) to

0.01 for the three reference methods. MOGP, MOGPRMSE and MOGPQ show larger errors

of 0.19 and 0.10, respectively. However, MOGP estimates both precipitation occurrence and

precipitation intensity with one downscaling rule while the reference methods implement a

two step procedure.

The PGLM best reduces the mean absolute bias from 0.68 mm to 0.03 mm, followed by

MOGP, with a mean absolute bias of 0.09, and then GGLM, WG and the other two MOGP

variants. At most stations MOGPQ shows a clear tendency to overestimate average precipita-

tion. GGLM and WG show a similar tendency, but less pronounced except for a few outliers.
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Table 7.7.: Objective functions and related measures for ERA-Interim and downscaled precipitation
P : Error of precipitation occurrence frequency E(F), bias B, root mean square error RMSE, error
of standard deviation E(STD), Pearson correlation coe�cient ρ, integrated quadratic distance IQD,
error of selected quantiles E(Qi). The bar denotes the mean over all stations. max and min refer
to the maximum and minimum over all stations. Values discussed in the text are highlighted in bold
font.

ERA PGLM GGLM WG MOGPRMSE MOGPQ MOGP

AE(F) [1] 0.30 0.01 0.01 0.01 0.19 0.10 0.04

E(F) 0.30 -0.01 -0.01 -0.01 0.16 0.03 -0.01
E(F)min 0.04 -0.05 -0.04 -0.06 -0.15 -0.26 -0.13
E(F)max 0.49 0.01 0.01 0.01 0.74 0.47 0.11

AB [mm] 0.68 0.03 0.19 0.18 0.39 5.11 0.09
B -0.03 -0.01 0.18 0.16 -0.35 5.04 0.02
Bmin -3.94 -0.61 -0.41 -0.41 -1.96 -0.51 -0.54
Bmax 1.88 0.29 1.29 1.13 0.46 249.93 0.34

RMSE [mm] 4.83 4.96 8.96 10.76 5.10 411.55 5.80
RMSEmax 12.51 11.91 72.79 60.28 11.22 18971.81 13.40

AE(STD) [mm] 1.85 1.63 4.51 4.96 1.86 405.24 0.30

E(STD) -1.79 -1.55 3.22 4.94 -1.86 405.12 -0.28
ME(STD)min -9.22 -3.31 -2.87 -0.31 -6.13 -0.84 -1.19
ME(STD)max 1.06 3.04 66.51 54.11 0.02 18966.83 0.29

ρ [1] 0.57 0.49 0.40 0.29 0.45 0.21 0.43
ρmin 0.24 0.30 0.07 0.03 0.06 -0.01 0.16

IQD [mm2] 0.0118 0.0069 0.0055 0.0003 0.0070 0.0022 0.0004
IQDmax 0.0473 0.0220 0.0220 0.0031 0.0440 0.0154 0.0019

AE(Q0.5) [mm] 0.71 0.42 0.39 0.03 0.42 0.18 0.08

E(Q0.5) 0.67 0.41 0.38 0.00 0.41 0.09 0.05
E(Q0.5)min -0.90 -0.10 -0.10 -0.20 -0.10 -1.50 -0.30
E(Q0.5)max 2.30 4.10 4.20 0.30 1.90 2.10 1.00

AE(Q0.75) [mm] 1.55 1.50 1.35 0.21 0.77 0.76 0.35

E(Q0.75) 0.96 1.49 1.33 -0.05 0.27 0.40 0.26
E(Q0.75)min -4.10 -0.30 -0.40 -1.60 -2.20 -2.00 -1.30
E(Q0.75)max 4.10 4.90 4.50 0.60 4.00 3.80 1.80

AE(Q0.95) [mm] 3.29 3.40 2.87 0.73 3.65 0.86 0.78

E(Q0.95) -2.81 -3.33 -2.81 -0.66 -3.58 0.32 -0.28
E(Q0.95)min -23.40 -10.40 -9.10 -3.38 -15.90 -2.48 -2.80
E(Q0.95)max 4.21 1.28 1.10 1.49 1.20 3.40 3.88

AE(Q0.99) [mm] 8.97 10.16 6.93 3.74 9.01 1.38 1.82

E(Q0.99) -8.81 -10.11 -6.62 3.37 -9.01 -0.96 -1.62
E(Q0.99)min -42.86 -20.26 -17.57 -2.44 -28.86 -7.64 -6.74
E(Q0.99)max 3.76 2.34 10.30 24.52 0.09 5.12 2.01

AE(Q0.995) [mm] 12.00 13.16 8.25 9.20 11.56 2.27 2.52

E(Q0.995) -11.78 -12.82 -6.49 8.71 -11.55 -1.73 -2.22
E(Q0.995)min -47.95 -23.00 -19.72 -4.24 -31.71 -11.53 -8.74
E(Q0.995)max 4.54 13.36 33.66 66.24 0.31 7.77 2.60
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Figure 7.11.: Boxplots of objective functions and related quantities for ERA-Interim and downscaled
accumulated daily precipitation P : Error of precipitation occurrence frequency E(F), bias B, root mean
square error RMSE, error of standard deviation E(STD), Pearson correlation coe�cient ρ, integrated
quadratic distance IQD, error of selected quantiles E(Qi). Each boxplot corresponds to 80 values (for
the 80 stations considered) and is obtained from the full downscaled time series (1979-2008). For
Concerning E(STD) and RMSE MOGPQ produces some strong outliers beyond the range covered by
sub�gures (c) and (d)3. For a general explanation of a boxplot see Fig. 7.2.

MOGPRMSE underestimates average precipitation for most stations.

None of the considered downscaling methods achieves a reduction of the RMSE for the ma-

jority of stations which illustrates the di�culty of downscaling precipitation compared to

temperature. PGLM and MOGPRMSE keep the RMSE almost constant. MOGP slightly

increases the RMSE. GGLM, WG and, most pronounced, MOGPQ increase the RMSE con-

siderably.

The variance is for most stations only slightly underestimated by ERA-Interim. For few sta-

tions the di�erence in variability is, however, large exceeding 5 mm and for the most extreme
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Figure 7.12.: Scatterplots between selected quantities from Fig. 7.11 and average daily precipitation
P̄ at the 80 stations. Each point corresponds to one station and is obtained from the full downscaled
time series (1979-2008). To better distinguish between the point clouds, regression lines (from a
standard linear regression) have been �tted and added to the �gures.

stations even 9 mm. MOGP best matches the observed variance with a mean absolute error

of standard deviation of 0.30 mm. All other approaches are less satisfying. While the PGLM

clearly reduces the error for the outlier stations, it achieves only a small reduction of error

when considering the average over all stations. Further, the PGLM slightly underestimates

the temporal variance on average, as does MOGPRMSE . GGLM, WG and especially MOGPQ
strongly overestimate the temporal variance for a few stations.

The integrated quadratic distance is reduced by all techniques. WG and MOGP obtain

the closest match between downscaled and observed PDF reducing the IQD from 0.0118 (for

ERA-Interim) to 0.0003 and 0.0004, respectively; MOGPRMSE achieves only a marginal re-

duction. PGLM and GGLM yield a stronger reduction, but are clearly outperformed by WG,

MOGPQ and MOGP.

To investigate the downscaled PDFs further, the representation of selected quantiles are com-

pared. The 50%-quantile is well reproduced by all methods. Already for the 75%-quantile

di�erences become apparent. WG and MOGP achieve the closest match. Also MOGPRMSE

and MOGPQ give overall good results, but with a few outliers. PGLM and GGLM slightly

overestimate the 75%-quantile on average. The higher the quantile, the larger the errors and

the larger the di�erences between the downscaling techniques. Solely MOGP and MOGPQ

3In Fig. 7.11 (c) and (d) the stations Paris (38), Kjoeremsgrende (191), Klaipeda (201), Basel-Bininngen
(239), Dresden-Klotzsche (483), Hvar (1686), Giessen-Wettenberg (3991) are not shown for MOGPQ. For
these stations the RMSE ranges up to O(RMSE) = 105 for MOGPQ and the E(STD) up to O(E(STD)) =
104.

131



7. Downscaling Climate Reanalysis Data to Stations using MOGP

achieve satisfactory results up to the 99.5%-quantile and provide potentially useful informa-

tion on frequency and intensity of extreme events.

Figure 7.12 reveals the relation between the downscaling performance and average station

precipitation. For PGLM and MOGP a strong linear relation between RMSE and average

station precipitation is found (r2 > 0.7). The larger the average station precipitation, the

larger the RMSE tends to be. It is not surprising that for stations with stronger precipitation

by tendency larger errors occur. At �rst glance the linear regression �t indicates a similar

tendency also for GGLM and WG, but with a coe�cient of determination of r2 ≤ 0.1. For

GGLM and WG few stations with low to moderate average precipitation show strong outliers

w.r.t. the RMSE. Also for the IQD some relation between average station precipitation and

the performance of the downscaling methods is obvious. For PGLM and GGLM, the larger the

average station precipitation, the larger the IQD (r2 ≥ 0.69). For the WG similar tendencies

exist, but much less pronounced. Only for MOGP, the IQD appears to be largely independent

of the average station precipitation. Also concerning the 99.5%-quantiles MOGP performs

well largely independent of the average station precipitation while PGLM and GGLM un-

derestimate the high quantiles for most stations and the WG tends to overestimate extremes

the stronger, the larger the average station precipitation (r2 = 0.55). This is, however, not

necessarily due to the average precipitation amount at a station, but rather due to the shape

of the PDF.

Selected Stations

The results for the stations Salzburg and Saentis are examined in more detail. Saenits, a

mountain station, shows large precipitation amounts throughout the year. Salzburg, located

in lower altitudes and surrounded by mountainous areas, is comparably dry.

Table 7.8 lists objective functions and related measures for Salzburg and Saentis. For Salzburg

the di�erences between the methods are comparably small. Concerning precipitation fre-

quency, bias and RMSE PGLM, GGLM and WG perform slightly better than MOGP. Con-

cerning standard deviation and extreme quantiles MOGP yields lower errors than the reference

methods. For Santis MOGP performs best when considering all objectives. Only concerning

the precipitation frequency the reference methods perform slightly better. Concerning RMSE

and correlation the PGLM performs slightly better than MOGP. However, the PGLM under-

estimates temporal variance and extremes. GGLM and WG strongly overestimate temporal

variance and extremes. This is in accordance to Fig. 7.12 where we already found the per-

formance of MOGP in general favorable compared to the reference methods for stations with

large precipitation amounts. While for Salzburg all downscaled precipitation series appear

physically reasonable at �rst glance (cf. Fig. 7.13), for Saentis the overestimation of extremes

by GGLM and WG is immediately obvious (cf. Fig. 7.14). For Saentis the assumption of a

gamma distribution appears not to be valid especially for the distribution tails.

The quantile-quantile plots shown in Figs. 7.15 and 7.16 con�rm the above �ndings. Fig-

ure 7.15 shows the 1%- to 99%-quantiles. For Salzburg already the ERA-Interim precipita-

tion matches the observed distribution quite closely. PGLM and GGLM overestimate the low

quantiles by up to 5 mm and strongly underestimate the higher quantiles by up to 15 mm.
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Figure 7.13.: Time series of daily accumulated precipitation P as observed, from ERA-Interim and
from the di�erent downscaling techniques at Salzburg (station 14) in the year 2000. The dashed red
lines show the observations. The solid lines show the precipitation from ERA-Interim and from the
di�erent downscaling approaches.
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from the di�erent downscaling techniques at Saentis (station 243) in the year 2002. The dashed red
lines show the observations. The solid lines show the precipitation from ERA-Interim and from the
di�erent downscaling approaches.
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Table 7.8.: Objective functions and related measures for daily accumulated precipitation P pre-
dicted by the di�erent downscaling methods at Salzburg (station 14) and Saentis (station 243): Error
of precipitation occurrence frequency E(F), Bias B, root mean square error RMSE, error of standard
deviation E(STD), Pearson correlation coe�cient ρ, integrated quadratic distance IQD, error of se-
lected quantiles E(Qi). The quantiles of the observed CDF are Q0.5 = 0.1 mm, Q0.75 = 3.5 mm,
Q0.95 = 16.8 mm, Q0.99 = 31.9 mm and Q0.995 = 37.5 mm at Salzburg and Q0.5 = 0.5 mm,
Q0.75 = 8.5 mm, Q0.95 = 35.5 mm, Q0.99 = 64.0 mm and Q0.995 = 73.0 mm at Saentis.

(a) Salzburg
ERA PGLM GGLM WG MOGPRMSE MOGPQ MOGP

E(F) [1] 0.15 -0.02 -0.00 -0.02 -0.07 -0.01 -0.08
B [mm] -0.37 -0.02 0.07 0.05 -1.94 -0.25 0.10
RMSE [mm] 7.84 6.66 6.78 8.97 7.30 9.35 8.89
ρ [1] 0.24 0.35 0.33 0.20 0.19 0.20 0.16
E(STD) [mm] -1.08 -2.72 -2.59 0.43 -3.42 0.98 0.03
IQD [mm2] 0.001 0.013 0.014 0.0001 0.017 0.0004 0.0004
E(Q0.5) [mm] 0.40 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
E(Q0.75) [mm] -0.30 2.60 2.60 0.10 -2.20 -0.40 0.60
E(Q0.95) [mm] -2.59 -5.90 -5.59 -0.90 -9.70 -1.00 0.70
E(Q0.99) [mm] -2.90 -16.50 -15.76 2.44 -14.86 -1.11 0.70
E(Q0.995) [mm] -4.20 -20.22 -19.14 6.90 -14.76 -1.38 2.30

(b) Saentis
ERA PGLM GGLM WG MOGPRMSE MOGPQ MOGP

E(F) [1] 0.27 -0.01 -0.01 -0.01 0.27 -0.18 0.03
B [mm] -3.94 0.19 0.95 0.82 -1.96 -0.31 0.14
RMSE [mm] 12.51 11.91 20.06 31.15 11.22 43.27 12.68
ρ [1] 0.55 0.59 0.47 0.32 0.60 0.10 0.55
E(STD) [mm] -9.22 -1.50 8.72 18.87 -6.13 28.68 -0.64
IQD [mm2] 0.046 0.021 0.015 0.002 0.022 0.003 0.001
E(Q0.5) [mm] 1.10 4.00 3.45 0.10 1.70 -0.50 0.50
E(Q0.75) [mm] -3.90 2.40 1.70 -1.60 -1.10 -0.40 1.30
E(Q0.95) [mm] -23.40 -10.40 -7.80 -1.40 -15.90 -2.49 -2.40
E(Q0.99) [mm] -42.86 -13.70 10.30 24.52 -28.86 -4.41 -2.90
E(Q0.995) [mm] -47.95 -6.44 33.66 66.24 -31.03 -2.59 -0.02

The distribution estimated by MOGP resembles the observed distribution well, as do MOGPQ
andWG. MOGPRMSE strongly underestimates the higher quantiles. Concerning the extremes

indicated by the quantile-quantile plots for 99%- to 99.99%-quantiles (cf. Fig. 7.16) larger dif-

ferences between the methods are apparent. The higher the considered quantile the stronger

the underestimation for PGLM and GGLM. The WG achieves a better �t, but throughout

overestimates the high quantiles by up to about 10 mm. The best match is achieved by

MOGPQ and MOGP. Up to the 99.6%-quantile the MOGP predicted distributions closely

match the observations. More extreme quantiles are underestimated. However, estimating

such high quantiles from limited time series is highly uncertain anyhow.

For Saentis the di�erence between observed and modeled distributions is much larger. ERA-

Interim generally underestimates the observed precipitation. PGLM and GGLM correct

this mismatch in large parts, but again both GLMs overestimate low and underestimate

the higher quantiles (cf. Fig. 7.15). The WG achieves a good match up to the 98%-quantile.

MOGPRMSE throughout underestimates the quantiles. As for Salzburg, MOGPQ and MOGP
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Figure 7.15.: Quantile-quantile plots of 1%- to 99%-quantiles for daily accumulated precipitation P
at Salzburg (station 14) and Saentis (station 243) from ERA-Interim and estimated by the di�erent
downscaling techniques. The x-axis corresponds to the observed quantiles; the y-axis corresponds to
the estimated quantiles. Shown are the 1%- to 99%-quantiles.

yield the best results also concerning the extremes (cf. Fig. 7.16). Also the PGLM performs

reasonably well for 99%- to 99.99%-quantiles compared to ERA-Interim. GGLM and WG

largely overestimate the extremes.

The downscaling rule for Saentis shown in Figure 7.17 reads:

IF v1000/u700 > 0.71 and u500 > 0.48

PD = PERA − q850 v250 (u500 + 0.01) + v1000 + 0.1

ELSE

PD = 2 PERA − q850 v250 (u500 + 0.01) + 0.1.

Depending on wind conditions (u500, u700, v1000) MOGP uses slightly di�erent equations

to calculate the downscaled precipitation. Depending on the wind direction an air mass

reaching Saentis has already traveled across the Alps potentially raining out. Particularly

for winds from south-south-west in the lower atmosphere (i.e., u700 > 0 and v1000 > 0 and

v1000 > 0.7 u700), the �rst equation is chosen. The equations di�er only concerning two terms:
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Figure 7.16.: Quantile-quantile plots of 99%- to 99.99%-quantiles for daily accumulated precipitation
at Salzburg (station 14) and Saentis (station 243) from ERA-Interim and estimated by the di�erent
downscaling techniques. The x-axis corresponds to the observed quantiles; the y-axis corresponds to
the estimated quantiles.
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Figure 7.17.: An example downscaling rule as returned by MOGP for daily accumulated precipitation
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In the �rst equation v1000 is added. In the second equation there is a factor of 2 applied to

the ERA-Interim precipitation, which has a strong impact on the downscaled precipitation

especially for days with strong precipitation in ERA-Interim. Such a factor is not surprising

as the precipitation amounts observed at Saentis are on average much larger than for the

respective ERA grid box.

The term −q850 v250 (u500 + 0.01) occurs in both equations. Speci�c humidity is multiplied

with the meridional and zonal wind components at 250 hPa and 500 hPa geopotential height,

respectively. For winds from the north-west or south-east the full term becomes positive

otherwise it is negative. The higher the speci�c humidity the larger are both positive and

negative e�ects. An exact and complete explanation of the downscaling rule is di�cult. Any

interpretation should be treated with care. With large-scale predictors such as EOF coe�-

cients or weather classes one might obtain more easily interpretable rules than with grid box

predictors only.

Spatial and Temporal Correlation

The autocorrelation of daily accumulated precipitation at lags of one to three days is shown

in Figure 7.18. As observed for temperature, also the autocorrelation of the precipitation

series from ERA-Interim are for the majority of stations larger than for the observations.

This is foremost caused by ERA-Interim representing area means with by tendency smaller

temporal variance compared to the observations. Precipitation series typically have a much

smaller autocorrelation than temperature series. The average lag-1 autocorrelation of the

observed precipitation equals 0.22. Thus, the autocorrelation error of up to 0.2 as found for

all considered downscaling methods are large. PGLM, MOGPRMSE and MOGP overestimate

autocorrelation for most stations. GGLM and MOGPQ show large errors in both positive and

negative directions. The WG underestimates autocorrelation for most stations. At lag-1 the

errors are largest for all methods. For the larger lags the over- and underestimation tendencies

persist, but the magnitude of the errors decreases for all methods. However, also the observed
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accumulated precipitation P series predicted by the di�erent downscaling techniques. The observed
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Figure 7.19.: Bias, integrated quadratic distance IQD and error of selected quantiles E(Qi) for the
probability density functions of dry and wet period duration in days [d]. The mean quantiles of the
obervations are Q0.5 = 3.2 d, Q0.75 = 6.8 d, Q0.95 = 18.0 d, Q0.99 = 31.6 d and Q0.995 = 37.6 d for
the length of periods and Q0.5 = 1.4 d, Q0.75 = 2.5 d, Q0.95 = 5.0 d, Q0.99 = 8.0 d and Q0.995 = 9.2 d
for the length of wet periods.

autocorrelation decreases with larger lags.

Note that no method explicitly models autocorrelation. The performance of the WG con-

cerning temporal correlation might be improved by accounting for temporal correlation when

sampling by conditioning each value on the preceding value(s). The performance of MOGP

might be improved by adding an objective quantifying autocorrelation and by adding a pos-

sibility to incorporate noise in the downscaling rules (cf. Sec. 7.4).

The length of wet and dry periods is closely linked to the autocorrelation of precipitation

series. From the full precipitation series at each station, we have calculated the empirical

CDFs of the length of wet and dry periods, i.e., the number of consecutive wet or dry days, at

the respective station. The bias, the integrated quadratic distance and the error of selected

quantiles for the length of wet and dry periods are shown in Figure 7.19.

ERA-Interim has too many days with small precipitation amounts compared to the point

observations leading to an underestimation of the dry period lengths and an overestimation of

the wet period lengths for most stations. This is expected due to ERA-Interim representing

area averages. PGLM, GGLM, WG and MOGP clearly reduce the bias. PGLM and GGLM

systematically underestimate dry period lengths and overestimate wet period lengths. The

WG further reduces the bias, but underestimates both average dry and wet period lengths

slightly. The absolute bias for MOGP and WG is similar, but MOGP shows less systematic
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7. Downscaling Climate Reanalysis Data to Stations using MOGP
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(a) Observation
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(b) ERA
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(c) MOGP
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(d) PGLM
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(e) GGLM
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(f) WG
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(g) MOGPRMSE
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(h) MOGPQ
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(i) MOGP*
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Figure 7.20.: Pearson correlation matrix of daily accumulated precipitation P for all stations within
the Alpine (AL) PRUDENCE region (cf. Fig. 7.1).

under-/overestimation tendencies, especially for the dry periods.

WG and MOGP best reduce the IQD. MOGP performs slightly better for the dry period

lengths. The WG performs slightly better for the wet period lengths. For the high quantiles

(Q0.99 and above) the WG shows a slight tendency to underestimate the respective quantiles.

That is, the longest dry and wet periods for WG are too short compared to the observations.

For MOGP the absolute errors of the high quantiles are comparable to the WG, but MOGP

shows no systematic over-/or underestimation for the dry period lengths. For the wet period

length MOGP overestimates the high quantiles on average, i.e., the longest wet periods pre-

dicted by MOGP are too long compared to the observations. Especially the very long dry and

wet spells are not adequately represented. As argued above incorporating the representation

of autocorrelation or the CDF of wet and dry period lengths into the MOGP objectives might

improve its performance.

Spatial correlation is investigated by calculating Pearson correlations between the 80 stations.

The bias and RMSE of the spatial correlation for all stations and for selected regions is pro-

vided in Table 7.9. The correlation matrices for the selected regions are shown in Figs. 7.20 to
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7.3. Results
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(a) Observation
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(b) ERA
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(c) MOGP
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(d) PGLM
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(e) GGLM
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Figure 7.21.: Pearson correlation matrix of daily accumulated precipitation P for all stations within
the Mid-Europe (ME) PRUDENCE region (cf. Fig. 7.1).
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(b) ERA
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(c) MOGP
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(d) PGLM
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(e) GGLM
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(f) WG
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Figure 7.22.: Pearson correlation matrix of daily accumulated precipitation P for all stations within
the Iberian Peninsular (IP) PRUDENCE region (cf. Fig. 7.1).
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7. Downscaling Climate Reanalysis Data to Stations using MOGP

Table 7.9.: Bias B and root mean square error RMSE of the Pearson correlation coe�cients for daily
accumulated precipitation P between all 80 station considered and for three station subsets according
to the PRUDENCE regions (cf. Fig. 7.1).

ERA PGLM GGLM WG MOGPRMSE MOGPQ MOGP
B(SC) 0.039 0.038 0.005 -0.021 0.009 -0.025 0.003
RMSE(SC) 0.117 0.074 0.075 0.077 0.079 0.095 0.059

Alps (AL)
B(SC) 0.274 0.008 -0.098 -0.223 -0.030 -0.145 0.057
RMSE(SC) 0.359 0.109 0.222 0.289 0.219 0.278 0.195

Mid-Europe (ME)
B(SC) 0.196 0.084 -0.119 -0.169 -0.020 -0.210 -0.033
RMSE(SC) 0.227 0.105 0.188 0.207 0.125 0.243 0.010

Iberian Peninsula (IP)
B(SC) 0.230 0.096 0.007 -0.083 0.074 -0.146 0.037
RMSE(SC) 0.244 0.123 0.109 0.125 0.135 0.206 0.094

7.22. Note that the inter-station correlation has not been taken into account when evolving

the MOGP downscaling rules and neither when extracting single rules from the Pareto sets.

Keeping this in mind, the correlation between the stations is satisfactorily reproduced with

a marginal bias of 0.003 and an RMSE of 0.059, which is clearly smaller than the respective

values for the reference methods and the MOGP variants (cf. Table 7.9). The error values

vary when considering only selected regions.

The correlation matrix for the Alpine (AL) stations (cf. Fig. 7.20) of the observed series

shows a distinct pattern, which is largely related to the distance between the stations and

their location within the terrain. For the Alpine region spatial correlation is, with an RMSE

of 0.109, best modeled by the PGLM. MOGP tends to overestimate the correlations for

stations with low observed correlations leading to a positive bias of 0.057. With a slightly

di�erent selection of rules from the Pareto set (MOGP*) the observed correlation pattern can

be better reproduced (cf. Fig. 7.20(h)). Still, for the weakly correlated station pairs some

overestimation tendency remains. As our MOGP system currently does not contain noise,

this is not surprising. The Alpine stations are located within a small area and all (temporal)

variance at the single stations is modeled using the coarse-scale predictors, which may be too

strongly correlated to obtain low enough correlations between some station pairs.

For the Mid-European stations (cf. Fig. 7.21) the PGLM overestimates spatial correlation on

average, while GGLM andWG again systematically underestimate spatial correlation. MOGP

reproduces the observed correlation pattern in large parts. Only the correlation between the

station 2006 (Brocken) and the remaining stations is clearly underestimated.

For the Iberian Peninsula the observed correlation pattern is comparatively well resembled

by all of the methods (cf. Fig. 7.22). However, again the PGLM overestimates while the

WG underestimates the spatial correlation. GGLM and MOGP closely match the observed

correlation pattern.
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7.3. Results

Predictor Statistics

Figure 7.23 shows how the di�erent predictors are used by GGLM and MOGP for downscaling

daily accumulated precipitation. For the GGLM the importance of each downscaling predic-

tor is indicated by the respective regression coe�cient β̄i averaged over all 5 cross-validation

periods. For MOGP the importance of the di�erent predictors is quanti�ed by the average

frequency hi with which the di�erent predictors occur in the �nal Pareto sets (cf. Eq. 7.17).

Similar to temperature downscaling (cf. Fig. 7.10) the importance of the di�erent predictors

strongly depends on the station under consideration. The larger the βi and hi averaged over

all stations (indicated by the squares), the wider the respective bars denoting the range of

10%- and 90%-quantiles. For the GGLM this tendency is much more pronounced than for

MOGP. The ranking of the di�erent predictor quantities is approximately the same as for

downscaling daily maximum temperature. The clustering of the predictor variables (di�erent

colors) is even more pronounced for precipitation downscaling. The largest βi are found for

the geopotential predictors followed by temperature, speci�c humidity, wind speed and �nally

precipitation. The largest hi are found for precipitation followed by wind speed, humidity,

temperature and �nally geopotential height (with the exception of z1000). Quantities taken

at lower levels are on average of higher importance for both methods than the respective

quantities taken at higher levels. This is most apparent for the 1000 hPa geopotential height,

which is a very important predictor for both methods. The frequent usage of P and z1000

as predictors for MOGP is physically reasonable, but might be largely due to their order of

magnitude and not purely due to their physical meaning.

Compared to temperature, the MOGP rules for precipitation contain slightly more predictors

on average. Still even the most frequently used predictors, P and z1000, are on average con-

tained in less than 35% of the Pareto optimal rules while the GGLM exploits the full predictor

set. This hints at di�culties with the evolution of numerical constants and shows room for

improvements. This is revisited in some more detail in Section 7.4.

Summary

� The reference methods (two GLMs and a simple weather generator WG) well predict

the number of precipitation days and reduce the ERA-Interim bias. Also, the IQD is

reduced well, especially by the WG.

� MOGP outperforms the reference methods concerning standard deviation and most

signi�cantly concerning the representation of extremes (frequency and intensity).

� No downscaling approach yields any signi�cant reduction in RMSE. The smallest in-

crease in RMSE observed for PGLM, MOGPRMSE and MOGP.
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7. Downscaling Climate Reanalysis Data to Stations using MOGP
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Figure 7.23.: Usage of the di�erent predictors by multi-objective Genetic Programming (MOGP)
and gamma generalized linear model (GGLM) for downscaling daily accumulated precipitation P at
80 stations. For the GGLM the regression coe�cients βi for each station averaged over all 5 cross-
validation periods are given. For MOGP the frequency hi with which the predictors xi occur in the
Pareto sets is given for all 80 stations and again averaged over all cross-validation periods. Details
on the calculation are provided in the text. The squares indicate the mean values over all stations.
The bars indicate the 10%-and 90%-quantiles. The colors emphasizse the di�erent types of predictors
considered. Temperature predictors T are shown in red; geopotential height z and pressure p based
predictors are orange; wind speed predictors u, v are grey; speci�c humidity q is shown in light blue
and precipitation P in darker blue. For z1000 and psl the 90%-quantile lies outside the plotted range
(Q90(z1000) = 24.7, Q90(psl) = 16.7). The smaller �gure top right is a zoom into the main �gure; the
area is indicated by the axes.
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7.4. Discussion and Outlook

� The di�erences between MOGP and the reference methods are larger for stations with

high average daily precipitation. Especially for stations with high average daily pre-

cipitation MOGP outperforms the GLM based methods.

� The length of dry and wet periods are best captured by MOGP and WG. The repre-

sentation of long wet and dry spells is not satisfying.

� Considering all 80 stations MOGP best reproduces spatial/inter-station correlation.

� As already observed for temperature downscaling, the frequency of predictor usage

in MOGP appears to be strongly dependent on their order of magnitude presumably

caused by di�culties when evolving numerical constants.

7.4. Discussion and Outlook

Temperature

In the current setup MOGP is outperformed by multiple linear regression for temperature

downscaling. There are several reasons for this. The �rst reason is the size restriction applied

to the MOGP parse trees. In our setup the parse trees are restricted to 6 levels, which (when

no if statement is contained in the tree) amounts to a maximum of 32 terminal nodes. In case

a parse tree represents a multiple linear regression equation (i.e., each predictor is assigned

a numerical coe�cient) the size restriction corresponds to a maximum of 16 predictors. This

means the MOGP rules are restricted w.r.t their size and thus also the number of predictors

while the multiple linear regression (in the current setup without any predictor selection)

exploits the full predictor set.

Second, evolving appropriate numerical constants for the terminal nodes is a known weakness

of Genetic Programming. Genetic operators such as numeric mutation4 have shown some

ability to improve GP in this respect (Evett and Fernandez , 1998). Such techniques have not

been used in this thesis.

Finally, the number of individuals per generation as well as the total number of generations

created and evaluated during an MOGP run might limit its performance. Additional longer

runs with a total number of 1000 generations, a population size of 300 and a maximum Pareto

set size of 200 individuals have been carried out for the stations Salzburg and Saentis for all

5 cross-validation periods. To allow for more complex solutions potentially containing larger

numbers of predictors the maximum tree size is set to 20 levels for the longer runs. The

minimum values for the mean error of standard deviation and the error of quantiles occurring

in the Pareto sets can be signi�cantly reduced by the longer runs/more complex solutions.

For Salzburg no RMSE reduction has been achieved. For Saentis the best rules clearly reduce

4Numeric mutation is a genetic operator (like mutation or crossover), which replaces all numeric constants
of an individual. The new numeric constants are chosen at random from a uniform distribution within a
certain range speci�ed as the old value of that constant plus or minus a so-called temperature factor.
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7. Downscaling Climate Reanalysis Data to Stations using MOGP

RMSE [mm]
ERA LM WG MOGPRMSE MOGPQ MOGP MOGP'RMSE

11.13 1.42 1.98 3.23 3.89 4.08 1.76

Table 7.10.: Root mean square error (RMSE) for ERA-Interim and downscaled series of daily max-
imum temperature at Saentis. All values except for MOGP'RMSE refer to the whole time series
(1979-2008) and have resulted from the MOGP setup as described in Sec. 7.2. MOGP'RMSE gives
the minimum value of RMSE achieved by a downscaling rule of the Pareto set for one of the cross-
validation periods as returned by one of the longer MOGP runs. The detailed setup of these runs is
given in the text.

the RMSE by about 40-50% for 3 of the 5 cross-validation periods. For the other two runs

no reduction in RMSE has been observed. This is most likely not caused by the di�erent

training data sets, but rather an e�ect of the nondeterministic nature of GP. Changes in the

MOGP setup can, thus, improve the MOGP results (cf. Table 7.10). However, the longer

the MOGP runs and the more complex the downscaling rules, the more prone MOGP is to

over�tting. Which run dimensions (number of individuals evaluated and maximum tree size

allowed) provide a reasonable setup, should be carefully assessed especially when carrying out

very large MOGP runs.

Overall a linear predictor-predictand relation appears reasonable for daily temperature. MOGP

cannot evolve better solution structures than provided by multiple linear regression. The

MOGP performance might be improved by optimizing run dimensions and incorporating nu-

meric mutation or similar operators. Considering the complexity and higher computational

e�ort of MOGP a standard multiple linear regression is the favorable approach for the tem-

perature downscaling problem described.

Precipitation

For precipitation the MOGP based downscaling is promising as MOGP outperforms the ref-

erence methods for most performance measures considered, most dominantly for the represen-

tation of precipitation extremes (w.r.t. event intensity and return frequency) and the spatial

correlations between the stations. The reference methods outperform MOGP only for the fre-

quency of precipitation days. However, the reference methods model precipitation occurrence

and precipitation amount separately while MOGP models both with the same equation with

negative values predicted being set to zero (representing dry days). In the future one might

introduce a two step procedure also for MOGP. Or, as the logistic regression seems to work

well for modeling precipitation occurrence, one might combine logistic regression and MOGP.

As for temperature, the MOGP downscaling rules use less predictors than the generalizd lin-

ear models which exploit the full predictor set. In case of precipitation this appears not to

be disadvantageous for MOGP. Precipitation downscaling is considered more di�cult than

temperature downscaling due to its non-Gaussian distribution. For daily precipitation often

a gamma distribution is assumed like in two of the reference methods considered. Especially

for many stations with large observed precipitation amounts, the assumption of a gamma

distribution is questionable leading - in our setup - to a strong overestimation of extremes.

The reference methods should not be regarded as state-of-the-art, but especially the gamma
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7.4. Discussion and Outlook

distribution based methods constitute well known and widely applied approaches. For pre-

cipitation MOGP succeeds to evolve model structures better suited for precipitation than

standard generalized linear models. As for temperature the MOGP performance might be

improved by incorporating numeric mutation or similar operators, by running larger number

of generations containing higher numbers of individuals each or by relaxing the size con-

straints of the solutions. Due to the promising performance for precipitation, the e�ect the

MOGP setup (tree size constraints, Pareto set size etc.) on the performance should be further

investigated.

What is new?

The presented application adds to earlier studies on downscaling reanalysis data by means

of Genetic Programming (cf. Sec. 4.4) in two ways: (1) The Genetic Programming based

downscaling is applied to a set of 86 stations rather than one (or an average over multiple

stations). (2) A multi-objective approach is introduced to more closely reproduce the tempo-

ral variability of the station time series.

We have seen that the performance of MOGP evaluated in comparison to standard reference

methods di�ers for from station to station for both temperature and precipitation. For tem-

perature the current MOGP setup performs best (relative to the reference methods) when the

temperature bias of ERA-Interim for a station is small. For precipitation MOGP performs

best (relative to the reference methods) when there are large precipitation amounts observed

at a station. This underlines the importance of considering multiple stations with di�erent

regions and climates when evaluating downscaling techniques.

The described multi-objective optimization approach, which is popular among researchers in

evolutionary computation, has to our knowledge not been utilized for downscaling problems

before. The MOGP downscaling rules represent a trade-o� between minimizing RMSE and

reproducing variability. As illustrated by the comparison with the two variants MOGPRMSE

(foremost minimizing the RMSE) and MOGPQ (foremost optimizing the representation of

temporal variability), the value of the multi-objective optimization (especially for precipita-

tion downscaling) lies in the concept of �tting a trade-o� between several, pointwise (RMSE)

and distribution based (E(Q), IQD, E(STD)), objectives. The two variants perform clearly

worse than MOGP when considering all objectives. For precipitation only a slight increase in

RMSE can be traded for a strong decrease of the IQD (compare MOGPRMSE and MOGP).

A simple approach to add noise by sampling from a gamma distribution (compare MOGP

and WG) leads to strong increase of RMSE for almost all stations considered.

Appropriate Representation of Variance

The problem of how to meaningfully reproduce variance with downscaling approaches has

been addressed in several studies. Most approaches �rst apply a downscaling technique that

minimzes the RMSE and afterwards add variability to match the variance of the observations

more closely. In in�ation (Karl et al., 1990) and similar approaches (e.g., Bürger , 1996) all

variance is deterministically related to the predictor variables. In the simplest case this is
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7. Downscaling Climate Reanalysis Data to Stations using MOGP

done by multiplication with a (constant) factor. Also in the current MOGP setup all variance

is deterministically related to the predictors meaning each time a downscaling rule is applied

to a certain data set it will return exactly the same downscaled series.

According to von Storch (1999) (see also Maraun (2013) for discussion) fully determinis-

tic approaches are physically unreasonable for two reasons. First, because the large scale

weather does not fully determine local weather. Second, because variance in�ation increases

the RMSE. Especially the �rst point also applies to MOGP. The increase of RMSE is, however,

minor. In von Storch (1999) a randomized downscaling approach combining a deterministic

and a stochastic term is suggested, i.e.,

y = ŷ + y∗, (7.18)

where the downscaled series y is given by the sum of ŷ, which deterministically depends on the

predictors, and a noise term y∗. The noise does not need to be white in time (or space). The

variance and the autocorrelation of the noise may depend on the predictor variables. Such an

approach can also be used in MOGP. The full parse tree (downscaling rule) can be decomposed

into two or three smaller trees as illustrated by Fig. 7.24. Tree 1 provides the deterministic

estimate and variability not modeled by tree 1 can be added using additive or multiplicative

noise. In the simplest case the noise is randomly drawn from a given probability distribution

and (only) the variance or shape parameter is de�ned by tree 2. One can easily o�er several

di�erent PDFs to generate noise to MOGP. Further, one can introduce an autocorrelation

parameter, for instance simply the lag-1 autocorrelation, in a third tree. When doing so it

would be necessary to include the autocorrelation also in the objective functions. Adding

noise is not only physically reasonable, but might also improve the representation of spatial

correlation.

The subtrees in Fig. 7.24 can be evolved in two conceptually di�erent ways. They can be

evolved simultaneously using a multi-objective GP setup such that MOGP 'decides' which

portion of the full variability is deterministically related to the predictors (tree 1) and which

portion is generated using the noise function (tree 2). Another way would be to set up a

two-step procedure. That is, to evolve tree 1 and tree 2 in separate and consecutive steps. In

the �rst step a (single-objective) GP algorithm can be used to minimze the RMSE (tree 1)

plus / times

noise
function

tree 2

tree 1

tree 3

variance / shape 
parameter

(lag-1) 
autocorrelation

Figure 7.24.: Possible prescribed structure of a parse tree incorporating a noise generation function.
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7.4. Discussion and Outlook

and in the second step GP is used to specify the noise. A useful objective for the second step

(tree 2) might be the IQD, but also a multi-objective setup incorporating additional objectives

quantifying the representation of extremes might be useful. The autocorrelation parameter

might be optimized by using the autocorrelation, for instance simply at lag-1, as objective.

Suggestions for Future Work

The application of MOGP described in the present chapter should be regarded as an ex-

tensive �rst test. At the current stage the algorithm shall not be blindly applied to map

climate projections to the local scale. However, the results for precipitation downscaling

appear promising. Extremes are well represented and also spatial correlation is reasonably

reproduced considering this is not explicitly contained in the objectives. Both representation

of extremes and spatial correlation are knowingly di�cult tasks in downscaling. We thus

suggest further tests and adaptations for MOGP for precipitation downscaling.

The presented MOGP rules incorporate a large set of grid point predictors, i.e., atmospheric

variables taken from the ERA-Interim grid box closest to the respective station. Several re-

sults (the comparatively bad performance for temperature downscaling and the statistics of

downscaling predictors selected by MOGP) hint at known problems with an e�cient evolution

of numerical constants. In future MOGP applications predictors may be normalized before

o�ered to the algorithm. It appears reasonable to repeat the MOGP runs for the presented

downscaling experiment with a normalized predictor set and with predictor subsets selected

by the user in advance. Such tests will help to �nd the most e�cient way to set up MOGP.

The multi-objective approach might be also applicable for model output statistics (MOS),

which commonly uses solely GCM (or RCM) precipitation as predictor. Further, spatial pre-

dictors, for instance derived from principal component analysis, can provide a better physical

basis for MOGP as predictors derived from the full 3D model output to capture the large-scale

atmospheric weather patterns, which are neglected when using grid point predictors only.

However, not only the predictor set might be adapted, but also the function set o�ered to

MOGP. Runs including logarithmic or exponential functions can be carried out. Further, the

run dimensions (i.e., number of generations, population size and Pareto set size) and the size

limitations applied to the downscaling rules can be optimized. Finally, the objective functions

can be adapted. For instance the error of standard deviation might not be necessary when

incorporating the integrated quadratic distance.

Downscaling methods are developed to map climate projections to smaller, regional or lo-

cal, scales in order to estimate regional or local climate change and its impact. Whether

a statistical downscaling link derived from a reanalysis and past observations holds under

changing climate can not be fully determined. Future climate conditions may lie outside the

range covered by the observational period. To get a �rst hint if there is any potential for a

downscaling approach to hold under future conditions it is common to spit the observational

record into periods with di�erent characteristics (i.e., wet/dry years, hot/cold years) rather

than coherent time periods (e.g., Gutiérrez et al., 2013). If such a test gives satisfactory re-
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7. Downscaling Climate Reanalysis Data to Stations using MOGP

sults, one might consider additional predictand variables like daily maximum wind speed, for

instance.

In order to e�ciently evaluate the large set of MOGP runs with di�ering set ups, the se-

lection of downscaling rule(s) from the full Pareto set should be automated. A �rst idea

how to obtain a subset of applicable Pareto optimal rules P̃ ′ from the full Pareto set P ′ is by
neglecting rules that only yield a reasonable performance concerning a subset of the objectives

P̃ ′ = {α ∈ P ′ | ∀i, si(α) ≤ (1 + δ) min
β∈P ′

(si(β))}. (7.19)

In words, all downscaling rules that do not deviate more than δ concerning their performance

w.r.t. the objectives si from the best values present in the Pareto set become part of P̃ ′. The
tree size should probably be neglected here. All other objectives can potentially be included.

In this way one may use the last rule remaining in P̃ ′ when increasing δ as an optimum trade-

o� between the objectives. It is further possible to assign more weight to certain objectives

by assigning each objective si its own δi.

Up to now we have selected and evaluated single downscaling rules from the Pareto set re-

turned by MOGP. In the future the Pareto optimal set of downscaling rules might be used

to generate a downscaling ensemble. An ensemble approach may provide a possibility to as-

sign uncertainty estimates to the downscaling results. In the current MOGP setup not all

downscaling rules contained in the Pareto set are potentially physically reasonable. Thus not

all rules constitute potential ensemble members. Some downscaling rules show an intolera-

ble large RMSE (while yielding very good results for ME(Q) and/or ME(STD)); some show

intolerably bad performance concerning several objectives (while being very small and thus

performing very well concerning the solution size). Hence, we do not expect the Pareto set

returned by MOGP to directly provide a reasonable ensemble. Similar to the idea for rule

selection described above, the δ in Eq. 7.19 can be de�ned such that P̃ ′ contains the desired
number of ensemble members. To obtain a su�cient set of reasonable rules the Pareto set size

might have to be increased. Another option would be to adapt the clustering procedure within

the MOGP algorithm such that the rules representing a trade-o� between the objectives are

more likely to remain in the Pareto set than those optimizing single objectives. However, this

would be more complicated than the approach suggested above and may further hinder the

evolutionary process.

In atmospheric sciences ensemble approaches are a common way to assess the uncertainty

of weather and climate model predictions. In an ideal setup an ensemble would provide a

random sample of the underlying PDF. When such an ensemble has a small spread (meaning

all ensemble members are close to each other) this indicates a low forecast uncertainty. A

large spread in return indicates a high uncertainty (e.g., Wilks, 2011). In reality, however,

it is often impossible to ensure a truly random sample. Dynamical models contain errors

from various sources. When aiming to generate a Pareto optimal downscaling ensemble from

the MOGP predictions one faces a conceptually similar problem. It is nowhere ensured that

all ensemble members are equally probable realizations. Thus, the estimation of the desired
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underlying PDF has to be treated with caution. The most pragmatic approach for generating

a Pareto optimal downscaling ensemble would be to select the ensemble members such that

the resulting ensemble is well calibrated. If this is practical or would require too large and

computationally demanding Pareto set sizes needs to be tested.

Summary

� For temperature downscaling MOGP does not provide obvious advancements compared

to standard linear regression based downscaling approaches.

� For precipitation downscaling MOGP shows a strong potential to evolve reasonable

trade-o�s between minimizing (pointwise) RMSE and distribution based measures.

Especially the representation of extremes is promising. Still some aspects need to be

carefully investigated when aiming to make MOGP applicable for downscaling climate

projections:

� Optimize MOGP setup: run dimensions (population size, Pareto set size, total

number of generations), function and terminal sets, objective functions, genetic

operator probabilities, etc.

� Carry out physically based predictor (pre-)selction; derive spatial predictors (e.g.,

from PCA analysis); predictor scaling.

� Implement the ability to add noise to account for variability that is not determin-

istically related to the predictors.

� Test the potential of MOGP based downscaling rules to hold under changing

climate.

� In the long run MOGP might serve as an automatic and globally applicable downscal-

ing algorithm for precipitation (and potentially also other non-Gaussian distributed

atmospheric variables).

� The Pareto set returned by MOGP may be converted into a Pareto optimal ensemble in

order to to obtain estimates of the uncertainties induced by the downscaling procedure.
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8
Conclusion

This thesis introduces multi-objective Genetic Programming (MOGP) for the downscaling

of atmospheric data. Genetic Programming (GP), an evolutionary computation technique,

generates models (equations or program code) by analogy with evolution in nature (Koza,

1992). A population of candidate models is initialized and evolves over several generations

following the principle of survival of the �ttest. GP carries out a symbolic regression, i.e., a

type of regression where both model structure and model parameters are a priori unknown.

GP generates model structure and model parameters simultaneously to account for potential

nonlinear and multivariate relations between predictand and predictor variables. The gener-

ated models, downscaling rules in our application, are coded as parse trees. They are therefore

easily readable in contrast to arti�cial neural networks, which are currently the dominant ap-

proach for nonlinear regression problems.

The derived multi-objective approach following Zitzler and Thiele (1999) allows for the si-

multaneous optimization of root mean square error (RMSE), objectives quantifying spatial

and/or temporal variability, and the complexity of the downscaling rules. To our knowledge,

a multi-objective approach as described in this thesis and in Zerenner et al. (2016) has pre-

viously not been used for downscaling.

For the application of MOGP to the downscaling of spatial �elds (Chapter 6) the objectives

comprise the RMSE between downscaled and reference �elds, the mean error of the subgrid-

scale standard deviation, the integrated quadratic distance between the cumulative densities

of downscaled and reference �elds, and the size of the parse trees as an indicator for the

complexity of the downscaling rules. For the application to the downscaling of global reanal-

ysis data to temperature and precipitation series at local stations (Chapter 7) the objectives

comprise, besides the RMSE, the bias between downscaled and reference time series, the error

of the temporal standard deviation, the di�erence between the cumulative densities of down-

scaled and reference series, the error of selected quantilies (with a focus on extreme quantiles),

the size of the parse trees, and for precipitation the error of the frequency of precipitation

days. In the multi-objective setup MOGP returns not one downscaling model, but a set of

Pareto optimal models. At the current stage one or two of these downscaling rules have been

selected by hand and analyzed in more detail.

153



8. Conclusion

The application of MOGP to discover rules for downscaling near-surface atmospheric �elds

from 2.8 km to 400 m grid spacing is described in Chapter 6. This application aims at a

scale-consistent two-way coupling between land surface models and atmospheric models as

the latter are often applied with a larger grid spacing mainly for computational reasons.

The subgrid-scale variability of the atmospheric �elds is estimated from high-resolution in-

formation on land surface properties. For some atmospheric variables pixelwise relations

between the atmospheric �elds and the surface are found: near-surface pressure, near-surface

temperature for unstable atmospheres, near-surface wind speed for large wind speeds and

near-surface speci�c humidity. For these variables and conditions the downscaling approach

reduces the RMSE and recovers between 30% (for speci�c humidity) and 97% (for pressure) of

the subgrid-scale standard deviation. Also for stable atmospheres the subgrid-scale variabil-

ity of temperature is well restored by the downscaling, but at the cost of a slightly increased

RMSE. The same is observed for wind speed downscaling under calm conditions. For pre-

cipitation and incoming radiation no suitable downscaling rules were detected. However, for

incoming radiation the terrain correction accounting for terrain slope, aspect and shadowing

e�ects that is available within the COSMO model could be adapted to the subgrid scale. For

precipitation downscaling a statistical approach, such as in Schomburg et al. (2010), can be

used to recover subgrid-scale variability. The e�ect of the downscaling rules on the simulated

exchange �uxes of mass, energy and momentum is the central aspect of future work. A more

detailed discussion is provided in Section 6.4.

The application of MOGP to the downscaling of reanalysis data to the locations 86 stations

in Europe is described in Chapter 7. Temperature (daily maximum, minimum, mean) and

daily accumulated precipitation were downscaled using MOGP and several linear methods for

comparison. For temperature a multiple-linear regression works well and outperforms MOGP.

For precipitation MOGP outperforms all three linear methods considered (a Poisson distri-

bution based generalized linear model, a gamma distribution based generalized linear model

and a basic gamma distribution based weather generator) for the majority of the performance

measures. Especially the representation of extreme events by MOGP is promising. A more

detailed discussion is given in Section 7.4.

The high �exibility of MOGP also entails some disadvantages. Finding optimal run dimen-

sions (population size, Pareto set size etc.) is not straightforward and may require tests for

new applications and data sets. Another negative feature is the occurrence of bloat, i.e., the

tendency of the downscaling rules to contain unnecessary terms, which is a common problem

in GP. Bloat is reduced by applying size constraints to the parse trees and by incorporating

the solution size in the objectives, but the generated rules occasionally still contain unneces-

sary terms. Such terms can be removed manually, for instance via a scale analysis. Moreover,

the detection of numerical constants is a know di�culty in GP which is most likely a major

reason for multiple-linear regression outperforming MOGP for estimating local temperature

time series from reanalysis data.

The MOGP algorithm used in this thesis, which is based on the GPLAB, a Genetic Program-

ming toolbox for Matlab (Silva and Almeida, 2003), may be optimized with respect to the
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detection of numerical constants and bloat reduction in the future. The theory of Genetic

Programming is a scienti�c �eld of it own constantly leading to new developments and ad-

vancements.

Despite these technical aspects three major points are suggested for further developments

of multi-objective Genetic Programming for atmospheric downscaling:

1. Representation of Noise

In the current setup the spatial and/or temporal variance of the predictand is (with the

exception of few MOGP runs testing a basic noise generator) deterministically linked to

the predictors. This is problematic as in reality the variability of the predictand is not

fully determined by the predictors (von Storch, 1999; Maraun, 2013). Especially the

simulation of processes such as turbulence or convection is subject to large uncertain-

ties. Thus, variability generated by such processes is more appropriately represented by

stochastic techniques. We thus suggest to split the parse tree into a deterministic and a

stochastic subtree. The latter may link the amplitude of the noise and potentially also

its spatial and temporal correlation to the predictands (cf. Sec. 6.4, 7.4).

2. MOGP as an Automated Downscaling System

For climate impact studies, which require local climate information, automated down-

scaling algorithms are important. MOGP can be expanded to a fully automated down-

scaling system which requires the user to only to provide a su�cient set of training and

testing data and, optionally, the objectives to be optimized (RMSE, spatial/temporal

variance, extremes, autocorrelation, etc.). This requires two main steps. First, the se-

lection of the downscaling rule(s) from the Pareto set needs to be automated. Second,

the selected downscaling rules should be simpli�ed (unnecessary terms removed), and

tested automatically to make sure no unphysical values are generated. Such a fully au-

tomated algorithm would allow the user to easily apply the MOGP based downscaling

algorithm to new data sets and for a large number of stations.

3. Downscaling Ensemble

The set of Pareto optimal downscaling rules may be used to generate a downscaling

ensemble. In atmospheric sciences ensemble approaches are a common way to assess the

uncertainty of weather predictions and climate projections. An ensemble approach may

provide an uncertainty estimate for the downscaling procedure. However, the Pareto

set returned by MOGP is not expected to directly provide a reasonable ensemble. Thus

an appropriate algorithm for selecting the ensemble from the full Pareto set needs to be

de�ned (cf. Sec. 7.4). The generated ensemble may further require calibration. A similar

approach is conceivable to estimate the sources of uncertainty that is induced by the

downscaling procedure in a fully coupled atmosphere-land surface-subsurface simulation

(cf. Sec. 6.4).

It can never be fully ensured that a statistical downscaling model trained using reanalysis

data and observations holds under changing climate. As downscaling aims at deriving local
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8. Conclusion

information from projections of future climate conditions, this is problematic for any statistcal

downscaling technique and can strongly depend not only on the downscaling approach, but

also on the considered predictors. Some careful testing with respect to this question should

be carried out (cf. Sec. 7.4).

One may further argue that with increasing computational power and grid resolutions the

need for downscaling techniques decreases. This is, however, a slow process as the compu-

tational cost quickly increases for smaller grid spacings. Moreover, whenever point data is

required statistical downscaling is inevitable. MOGP and other statistical techniques are

computationally much less demanding than high-resolution atmospheric modeling. Not every

researcher has access to state-of-the-art computer clusters required for running atmospheric

models at a high resolution.

Also for integrated subsurface-land surface-atmosphere simulations domain sizes will increase,

grid spacing decrease with increasing computational power. Thus, the downscaling scheme

may need to be retrained for smaller scales. However, as heterogeneities in soil, land surface

and lower boundary layer are present up to very small scales, subgrid-scale variability and

thereby a need for downscaling remains. Finally, MOGP can not only be used for downscaling,

but for all kinds of regression problems where capturing the variability of the predictand is of

high importance and the predictor-predictand relations are complex (i.e., not well captured

by standard regression techniques) or unknown.
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A
Preliminary MOGP Runs

This section describes two tests we have carried out with MOGP before applying the method-

ology to the di�erent atmospheric state variables (see Chapter 6). For the tests, near-surface

temperature serves as predictand as it can exhibit very complex �ne-scale patterns depending

on atmospheric stability and thus o�ers a problem of su�cient complexity for testing the

method. The �rst test (Test I) is aimed at �nding a reasonable number of generations for the

MOGP runs. As a second test (Test II) a cross-validation (i.e., leave-one-out) experiment has

been carried out to test for over�tting. The results of the cross-validation experiment are in

more detail described in Zerenner et al. (2016).

A.1. MOGP Setup

Like in Chapter 6 we estimate anomalies, i.e., the di�erences between spline-interpolated �elds

and high-resolution reference. Further, the coarse pixel mean is conserved by subtracting the

mean anomaly over a coarse pixel that is predicted by a downscaling rule.

A.1.1. Objectives

Some objectives have been calculated slightly di�erent for the preliminary MOGP runs com-

pared to Chapter 6.

In the preliminary runs we have tested a neighborhood based root mean square error (RMSE)

aiming not to punish small displacements between predicted yD and observed anomalies yR.

The neighborhood based RMSE calculates as

RMSE =

√
1

ntninj

∑

i,j,t

min
k,l∈U(i,j)

(yRtij − yDtkl)2 (A.1)

where neighborhood U(i, j) = {(i, j), (i, j + 1), (i, j − 1), (i+ 1, j), (i− 1, j)} contains the the
grid point (i, j) and its four direct neighbors and ni and nj denote the total number of pixels

in x- and y-direction and nt the number of training �elds.

The mean error of standard deviation ME(STD) has been calculated analogue to Chapter 6.

The mean integrated quadratic distance MIQD for the preliminary runs is calculated similar
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A. Preliminary MOGP Runs

to Chapter 6, but from the CDFs of discretized temperature distribution with a bin width of

0.25 K. The fourth objective, the SIZE of the solutions, is analogue to Chapter 6.

A.1.2. Parameters

For both tests we use the high-resolution COSMO model simulations by Schomburg et al.

(2010) for training and validation. For computational reasons, single time steps have been

extracted from the 8 simulation periods to create training and validation data sets (cf. Ta-

ble A.1). For test I, one MOGP run has been carried out incorporating all days except for

October 14th 2007 in the training data set. The remaining day can then potentially be used

for a preliminary validation. For test II, eight MOGP runs have been carried out each omit-

ting a di�erent day in the training step (i.e., leave-one-out). Except for the total number of

Table A.1.: Dates and prevailing weather conditions of the high-resolution COSMO simulations by
Schomburg et al. (2010) used to create the training (and validation data sets) for the MOGP tests.
The original data set contains simulation periods of 1-2 days. To weight all simulation periods equally,
we only include one day of each simulation period in the GP training data sets. The right column
lists the time steps we have extracted for our training data set to reduce computational cost.

Date Weather Time Steps
27 Aug. 2007 varying cloud cover, no precipitation 03:00-04:00, 15:00-16:00
14 Oct. 2007 clear sky 11:00-12:00, 23:00-24:00
10 Mar. 2008 strong winds, variable clouds and precipitation 10:00-11:00, 22:00-23:00
2 May 2008 clouds and precipitation 00:00-01:00, 12:00-13:00
10 May 2008 clear sky 01:00-02:00, 13:00-14:00
7 June 2008 convective clouds and precipitation 05:00-06:00, 17:00-18:00
21 July 2008 synoptically driven stratiform rainfall 09:00-10:00, 21:00-22:00
28 Aug. 2008 cloudy, some rain 07:00-08:00, 19:00-20:00

Table A.2.: Predictors contained in the terminal set for downscaling near-surface temperature (Tests
I and II). The �elds of the atmospheric state variables are given at coarse resolution (i.e., 2.8 km), the
quasi-static surface property �elds are given at high resolution (i.e., 400 m). tp∗1 has been calculated
in two steps: (1) averaging tp1 to the coarse scale; (2) calculating the di�erence between the original
tp1 and the coarsened �eld.

Atmospheric Information (coarse)
T10 temperature at the lowest model layer (10 m)
Tgr25 vert. temp. gradient of lowest 2 layers (≈ 25 m)
Tgr60 vert. temp. gradient of lowest 3 layers (≈ 60 m)
Tgr110 vert. temp. gradient of lowest 4 layers (≈ 110 m)
wv vertical wind speed at ≈ 20 m
wh horizontal wind speed at ≈ 10 m
Rnet,s net radiation at the surface
Surface Information (high-resolution)
h topographic height
h∗ topographic height anomaly
tp1 mean height di�erence to neighboring grid points
tp∗1 anomaly of tp1
tp2 slope to lowest neighboring grid point
tp3 slope to highest neighboring grid point
tp4 number of direct neighbors lower than grid point
PLC plant cover
z0 roughness length
α albedo
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A.2. Results

Table A.3.: Summary of the MOGP settings for tests I (II). (Protected division means that division
by zero returns the dividend not an error.)

Parameter Value
objectives RMSE (neighborhood based), ME(STD), MIQD, SIZE
function set +, -, ×, protected /, if
terminal set random numbers [0,1], variables (Table A.2)
generations 500 (200)
population size 100
max. Pareto set size 50
genetic operators (subtree-)mutation, crossover
max. tree levels 5

generations created and evaluated the MOGP setup of tests I and II is basically the same

(Table A.3). The potential predictors are selected based on our understanding of atmospheric

processes, which in�uence near-surface temperature (Table A.2). The number of individuals

per generation is set to 100. We run 500 (Test I) or 200 (Test II) generations, i.e., each run

evaluates 50000 (Test I) or 20000 (Test II) potential downscaling rules. The maximum Pareto

set size is set to 50, which provides a su�cient coverage of the Pareto front while not requiring

too much memory space. For computational reasons and to keep the solutions readable, we

furthermore limit the tree size to 5 levels. Besides the predictors described above, the ter-

minal set contains random numbers drawn from the interval [0,1]. The function set contains

the arithmetic functions with two input arguments each and an if statement with four input

arguments (i.e., if a > b do c else do d).

A.2. Results

A.2.1. Test I

Figure A.1 shows the performance of the Pareto set for each generation and the Pareto set

size. Concerning the RMSE the Pareto set mean decreases only little with time. The Pareto

set minimum, however, visibly decreases during the �rst approximately 60 generations. Con-

cerning ME(STD) and MIQD a similar behavior is found. For the �rst 70 generations the

Pareto set mean of ME(STD) and MIQD decreases rapidly. During the later generations the

mean is barely reduced further. The SIZE of the downscaling rules increases with the number

of generations evolved. The Pareto set size increases quickly up to the allowed maximum of

50 rules and after some oscillation stays constant during the later generations. The drops at

approximately 40 and 60 generations are caused by one or more newly discovered downscaling

rules outperforming several (here ≈ 20 to 30) rules of the Pareto set from the previous gener-

ation. The dominated rules are removed from the Pareto set and the Pareto set size shrinks.

Summing up, a maximum number of generations of about 100 appears su�cient. For the fol-

lowing MOGP runs the maximum Pareto set size is, however, set to 200. Firstly, because of

the decrease of the Pareto set minimum of ME(STD) after generation 100. Secondly, to make

sure that the run dimensions are su�cient also for other MOGP setups (other predictands,

more predictors, larger training data sets).
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Figure A.1.: Performance of the Pareto sets from test I concerning root mean square error (RMSE),
mean error of subgrid-scale standard deviation (ME(STD)) and mean integrated quadratic distance
(MIQD) and solution SIZE as well as the Pareto set size during the MOGP run. Each blue point
corresponds to one individual from the Pareto set of a generation. The lines indicate the mean over
the Pareto set and selected quantiles.
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A.2. Results

A.2.2. Test II

Figure A.2 shows the di�erence of the relative reduction of the di�erent objectives between

training and validation data set (s̃tr − s̃val). If a box is located above the zero line, this

indicates that the relative reduction is in general larger for the training data than for the

validation data, i.e., potentially over�tting occurs. For the majority of cases the median is

close to zero. With the exception of May 10th 2008, the medians are spread about equally

into positive and negative directions, which indicates that no systematic over�tting takes

place. The run excluding and validated on May 10th 2008 sticks out in Fig. A.2. The

extraordinary clear sky conditions on this day led to very pronounced �ne-scale structures

in the near-surface temperature �eld. Thus, the exclusion from the training data set causes

the bad performance. In this case the training data set excluding May 10th is not su�cient.

Accordingly the downscaling rules need to extrapolate leading to the bad results for this case.

For most of the 8 cases there are a few outliers (≈ 2 to 6 out of 50) for which the performance

on the validation data set is clearly worse compared to the training data set. These outliers

are most apparent for the RMSE. The corresponding solutions are very small (sometimes

consisting of only one node). They are part of the Pareto set due to their good performance

concerning the 4th objective, the solution SIZE.
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Figure A.2.: Di�erence in relative reduction of root mean square error (RMSE), mean error of
subgrid-scale standard deviation (ME(STD)) and mean integrated quadratic distance (here IQD)
between training and validation data set (s̃tr − s̃val) for all 8 runs. Each box results from 50 values,
one for each solution from the Pareto set. The horizontal line within the boxes is the median, the
upper and lower boundaries of the boxes correspond to the 75%- and 25%-quantiles. The whiskers
indicate the range spanned by maximum and minimum. The length of the whiskers is restricted to
1.5 times the box size. Values outside this range are considered outliers and shown as circles. Figure
is taken from Zerenner et al. (2016).

163



ME(STD)

−0.2

0.0

0.2

0.4

0.6

 R
M

SE

−1.5

−1.0

−0.5

0.0

IQ
D

−1.0

−0.5

0.0

0.5

1.0

(a) Aug 27th 2007 − partly cloudy
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(b) Oct 14th 2007 − clear sky
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(c) Mar 10th 2008 − strong winds, clouds and precip.
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(d) May 2nd 2008 − clouds and precip.
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(e) May 10th 2008 − clear sky
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(f) June 7th 2008 − convective clouds and precip.

●
● ●●●●● ●● ●●●●● ●●●●●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●●●

●● ●●
●●

● ●
●

●
●
●

●

●

●

●

●●
●

●

●

●●●

●●●●●

●

●

●●
●●

●●

●
●
●

●

●

●
●
●●

●

●●
●●

●

●

●

●
●●
●

●

●●
●●
●
●●●

●●●

●●●

●●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●●●
●● ●●

●●

●

●

●

●

●●●
●
●●

●●
●●

●

●●●
●

●●

●

●●

●

●●

●

●

●

●
●
●

●●
●
●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●
●●

●●

●
●
●

●

●

●
●
●●

●

●●
●●

●

●

●

●
●●
●

●

●●
●●
●
●●●

●●●

●●●

●●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●●●
●● ●●

●●

●

●

●

●

●●●
●
●●

●●
●●

●

●●●
●

●●

●

●●

●

●●

●

●

●

●
●
●

●●
●
●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●
●●

●●

●
●
●

●

●

●
●
●●

●

●●
●●

●

●

●

●
●●
●

●

●●
●●
●
●●●

●●●

●●●

●●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●●●
●● ●●

●●

●

●

●

●

●●●
●
●●

●●
●●

●

●●●
●

●●

●

●●

●

●●

●

●

●

●
●
●

●●
●
●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●
●

●

●

●

●
●
●●

●

●

●●
●●

●

●

●

●

●

●
●●
●

●

●

●●
●●
●
●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ME(STD)

−0.2

0.0

0.2

0.4

0.6

 R
M

SE

−1.5

−1.0

−0.5

0.0

IQ
D

−1.0

−0.5

0.0

0.5

1.0

(g) July 21st 2008 − stratiform precip.
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(h) Aug 28th 2008 − cloudy and some precip.
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Figure A.3.: Relative reduction of root mean square error (RMSE), mean error of subgrid-scale
standard deviation (ME(STD)) and mean integrated quadratic distance (here IQD) for the 8 Pareto
sets. The larger the value for the relative reduction, the better the performance concerning the
respective objective. The 8 sub�gures show the Pareto sets returned by the 8 GP runs (each omitting
a di�erent day in the training). The blue circles indicate the performance for the training data; the
red crosses indicate the performance for the validation data (i.e., the day omitted in the training): (a)
shows the results of the GP run where August 27th 2007 was omitted for training and so on. Figure
is taken from Zerenner et al. (2016).
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A.2. Results

Figure A.3 shows the relative reduction of RMSE, ME(STD), and MIQD for the solutions

from the 8 Pareto sets. For the three objectives very di�erent reductions are achieved. Both

MIQD and ME(STD) are improved by the GP solutions compared to the spline-interpolation

(i.e., positive relative reduction). The relative reduction of the MIQD amounts on average to

50− 60% with a maximum of about 90%. The relative reduction of the ME(STD) is slightly

lower with an average of about to 40− 50% with a maximum of about 70%. In contrast, the

RMSE is on average increased by about 10% compared to the spline-interpolation. At �rst

glance it is disappointing that the RMSE is not decreased by most of the downscaling rules.

Also with the nonlinear regression a pixelwise reproduction of the the high-resolution �elds

appears to be impossible. Nevertheless, it is possible recover of the spatial variability on the

subgrid-scale as ME(STD) and MIQD are clearly reduced by almost all of the downscaling

rules. Most of outliers discussed above already show a less satisfying performance on the

training data sets (e.g., Fig. A.3(a)).
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B
Regression Techniques

Regression analysis can be used to model a (univariate) response variable y (also called de-

pendent variable or predictand) given a vector of covariates (also called explanatory variables,

dependent variables, predictors). A regression model is typically derived from a set of samples,

which consists of n observations of predictand variable yi and predictors xi = (xi1, .., xip)
T .

Many quantities (such as temperature) are quasi-normally distributed and can be mod-

eled su�ciently using a simple linear model (LM) obtained from multiple linear regression

(MLR) (Section B.1). Many quantities not following a normal distribution (such as pre-

cipitation amounts) can be treated more appropriately by generalized linear models (GLM)

(Section B.2). Both LM and GLM are based on the assumption that the yi are conditionally

independent given xi. Further, both approaches require certain residual distributions and, as

the name implies, rely to some extent on linear relations between predictors and predictand

variable (GLMs allow for tranformations of the linear predictor, see below).

B.1. Multiple Linear Regression

Multiple linear regression models the relationship between the conditional mean of the re-

sponse variable and two or more explanatory variables by �tting a linear equation to a given

set of samples,

y =




y1

y2
...

yn




=




1 x11 · · · x1p

1 x21 · · · x2p
...

...
. . .

...

1 xn1 · · · xnp







β0

β1

β2
...

βp




+




ε1

ε2
...

εn




= Xβ + ε. (B.1)

with β denoting the (unknown) regression coe�cients and ε denoting the residuals, which

are assumed to be statistically independent and normally distributed with constant variance.

The matrix X is called design matrix. In the most straightforward case the �rst column of X

is given by the vector (1, · · · , 1)T such that β0 de�nes the intercept of the regression model

and the remaining columns are �lled with the vectors of predictors such that each βj is the

regression coe�cient for the j-th predictor. A design matrix can also contain quite complex
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B. Regression Techniques

predictor transformations. (We have not made use of the option. Therefore, we denote both,

predictors (or samples thereof) and the entries of the design matrix by the letter x as these

are equivalent when de�ning the design matrix as described.).

Given a set of samples the vector of regression coe�cients β can be estimated using an

(ordinary) least squares estimator, i.e., by minimizing the sum of the squared residuals ε.

Expressing the residual sum of squares S as a function of β we get

S(β) = (y −Xβ)T (y −Xβ). (B.2)

The global minimum of S(β) can be obtained by di�erentiating with respect to β

dS

dβT
(β̂) =

d

dβT

(
yTy−βTXTy−yTXβ+βTXTXβ

)∣∣∣∣
β=β̂

= −2XTy+2XTXβ̂ = 0. (B.3)

Solving for β̂ we get

β̂ = (XTX)−1XTy. (B.4)

B.2. Generalized Linear Models

Generalized linear models (GLMs) provide a �exible generalization of classical linear regres-

sion. This section on GLM relies in large parts on the textbook Multivariate Statistical

Modelling based on Generalized Linear Models by Fahrmeir and Tutz (2001). GLMs have

been formulated by Nelder and Wedderburn (1972) to establish a uni�ed framework for var-

ious statistical models, including linear regression, logistic regression and Poisson regression.

The �rst generalization in GLMs relates to the underlying probability density function. In the

GLM framework the residuals do not need to follow a Gaussian distribution, but any proba-

bility distribution belonging to the exponential family. For univariate GLMs the probability

density functions of the predictands yi can be written as

f(yi|θi, φ) = exp
{yiθi − b(θi)

φ
+ c(yi, φ)

}
(B.5)

with θi called natural parameter and φ called scale or dispersion parameter. The functions

b and c are speci�ed by the type of the exponential family. Important members of the

exponential family are the normal, binomial, Poisson and gamma distribution. Expectation

µi = E(yi) and variance Var(yi) are related to b as

E(yi) =
∂b(θi)

∂θi
, Var(yi) = φ

∂2b(θi)

∂θ2i
. (B.6)

The second generalization of GLMs compared to linear regression is the usage of a so called

link function. In a GLM the linear predictor ηi = xiβ = β0 + β1xi1 + ...+ βpxip is related to

the expectation of the response variable µi via a link function g, such that

ηi = g(µi), µi = h(ηi) (B.7)
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B.2. Generalized Linear Models

with the response function h being the inverse of the link function, i.e., h = g−1.

Each probability distribution has a canonical (or natural) link function. The natural link

function relates the natural parameter θi directly to the linear predictor ηi such that with

g being the natural link function g(µi) = θ(µi) = ηi. However, for certain applications also

non-natural link functions can be appropriate. A speci�c GLM is hence fully characterized

by the type of the exponential family, the response (or link) function and the design matrix.

Normal Distribution For the normal distribution the canonical link function is given by the

identity. With

θ(µi) = µi, φ = σ2, b(θi) =
1

2
θ2i , c(yi, φ) = −1

2

(y2i
φ

+ ln(2πφ)
)

(B.8)

Eq. B.5 translates into the normal distribution

fnorm(yi|µi, σ) =
1

σ
√

2π
exp

(
− 1

2

(yi − µi
σ

)2)
. (B.9)

with expectation µi and variance σ2

E(yi) = µi, Var(yi) = σ2. (B.10)

With the natural link function g(µi) = µi = ηi = Xβ the GLM transitions into the standard

linear model.

Gamma Distribution The gamma distribution is useful for regression of non negative vari-

ables such as precipitation amounts. The natural link function of the gamma distribution is

given by the reciprocal. With

θi(µi) = − 1

µi
, φ =

1

ν
, b(θi) = −log(−θi), c(yi, φ) = −log(Γ(ν)) + (ν − 1)log(yi) + νlog(ν)

(B.11)

Eq. B.5 translates into the gamma distribution, i.e.,

fgamma(yi|ν, µi) =
1

Γ(ν)

( ν
µi

)ν
yν−1i exp

(
− ν

µi
yi

)
, yi ≥ 0 (B.12)

with expectation and variance given by

E(yi) = − 1

θi
= µi, Var(yi) =

µ2i
ν
. (B.13)

That is, µi > 0 denotes the mean. The parameter ν > 0 is referred to as shape parameter.

Further important link functions for gamma distribution based GLMs are the identity and

the logarithmic function.

Poisson Distribution The Poisson distribution is used for regression of discrete non-negative

quantities. In the following paragraph y denotes a discrete non-negative quantity. The natural
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B. Regression Techniques

link function of the Poisson distribution is the logarithm. With

θi(µi) = logλi, φ = 1, b(θi) = exp(θi), c(yi, φ) = −log(yi!), (B.14)

where λi > 0, Eq. B.5 gives the Poisson distribution. That is,

fpoisson(yi|λi) =
λyie−λi

yi!
(B.15)

with the positive real number λi being equal to mean and variance of the respective distribu-

tion

E(yi) = Var(yi) = λi. (B.16)

Logistic Regression (Bernoulli Distribution) Logistic regression is an approach for mod-

eling discrete (often dichotomous1) predictands. In the following we consider logistic regres-

sion that assumes a Bernoulli distribution (Eq. B.18). If the predictand series is coded as 0

and 1, the prediction of logistic regression can be interpreted as the probability of the pre-

dictand taking the value 1, i.e., µi = pi(yi = 1). To make sure the logistic regression predicts

only values in the interval (0, 1) the dependent variable is transformed using the natural link

function of the Bernoulli distribution given by the logit function. With

θi(pi) = log

(
pi

1− pi

)
, φ = 1, b(θi) = log(1 + exp(θi)), c(yi, φi) = 0 (B.17)

Eq. B.5 translates into the Bernoulli distribution

fbernoulli(yi|pi) = pyii (1− pi)1−yi (B.18)

with

E(yi) = pi, Var(yi) = pi(1− pi). (B.19)

Inserting into the response function h = g−1 gives,

h(ηi) =
exp(ηi)

1 + exp(ηi)
=

exp(β0 + β1xi1 + ...+ βpxip)

1 + exp(β0 + β1xi1 + ...+ βpxip)
= p(yi = 1|xi). (B.20)

Thus, the linear predictor which can take values ηi ∈ (−∞,∞) translates into p(yi = 1) ∈
(0, 1).

Maximum Likelihood Estimation Generalized linear models are typically inferred from

data using maximum likelihood estimation. Given a set of n samples (and a design matrix)

the maximum likelihood estimator (MLE) of the unknown parameter vector β of the model

E(yi|xi) = µi = h(xiβ) is obtained by maximizing its logarithmic likelihood. The contri-

1A dichotomous partitioning of a set into two groups (A and B) su�ces the following two conditions: (1)
All elements can be grouped either into A or B; (2) No element can be grouped into both groups. A
precipitation series can be transformed to a dichotomous quantity for instance by a transformation into a
binary series with 0 denoting no precipitation and 1 denoting precipitation occurrence.
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bution of a single observation yi to the log-likelihood calculates (up to an additive constant)

as

li(θi) = log(f(yi|θi, φ)) =
yiθi − b(θi)

φ
. (B.21)

After inserting θi = θ(µi) and µi = h(ηi) = h(xiβ) the log-likelihood of the full sample can

be written as

l(β) =
∑

i

li(β). (B.22)

Instead of directly searching for a global maximum of the above function the MLE is typically

derived by minimizing the score function s(β) which is given by the derivative of the likelihood

with respect to β

s(β) =
∂l

∂β
. (B.23)

That is, one searches for a parameter vector β̂ such that s(β̂) = 0. The actual estimation

of β̂ is typically carried out by an iterative approach, such as the iteratively reweighted least

squares method (e.g., Holland and Welsch, 1977) which is also the default method for MLE

estimation of GLM provided by R (R Development Core Team, 2013).
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List of Abbreviations

ABL Atmospheric Boundary Layer

ANN Arti�cial Neural Network

a.s.l. above sea level

CAPE Convective Available Potential Energy

CCA Canonical Correlation Analysis

CDF Cumulative Density Function

CLM Community Land Model

CO2 Carbon Dioxide

CORDEX Coordinated Regional Climate Downscaling Experiment

COSMO Consortium of Small-Scale Modeling

COSMO-DE COSMO-model Deutschland (Germany)

COSMO-EU COSMO-model Europe

COST European Cooperation in Science and Technology

CRM Cloud/Convection Resolving Model

DWD German Meteorological Service (Deutscher Wetterdienst)

EA Evolutionary Algorithm

ECA&D European Climate Assessment & Dataset

ECMWF European Center for Medium-Range Weather Forecast

ENSO El Niño Southern Oscillation

E-OBS ENSEMBLES Observations Gridded Dataset

EOF Empirical Orthogonal Function

ERA ECMWF Reanalysis

GA Genetic Algorithm

GCM General Circulation Model

GEP Gene Expression Programming

GGLM Gamma Generalized Linear Model

GLM Generalized Liner Model

GP Genetic Programming

ICON Icosahedral Non-Hydrostatic Model

ICON-EU ICON Europe
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LAI Leaf Area Index

LAM Limited Area Model

LES Large Eddy Simulation

LLM Litfass Local Model

LM Linear Model

MLE Maximum Likelihood Estimator

MOGP Multi-Objective Genetic Programming

MOS Model Output Statistics

NAO North Atlantic Oscillation

NARCCAP North American Regional Climate Change Assessment Program

NWP Numerical Weather Prediction

OASIS Ocean Atmosphere Sea Ice Soil

ParFlow Parallel Watershed Flow Model

PCA Principal Component Analysis

PDF Probability Density Function

PFT Plant Functional Type

PGLM Poisson Generalized Linear Model

PP Perfect Prognosis

RMSE Root-Mean-Square Error

RCM Regional Climate Model

SDSM Statistical Downscaling Model (Wilby et al., 2002)

SPEA Strength Pareto Evolutionary Algorithm

STD Standard Deviation

SVAT Soil-Vegetation-Atmosphere Transfer

TerrSysMP Terrestrial Systems Modeling Platform

TERENO Terrestrial Environmental Observatories

TKE Turbulent Kinetic Energy

TOA Top of the Atmosphere

UTC Universal Time Coordinated

VERTEX Vertical Tile Extension

WG Weather Generator

WRF Weather Research and Forecasting (Model)
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List of Symbols

In the following the frequently used symbols and variables are listed.

Chapter 5 - Multi-objective Genetic Programming Downscaling Method

α individual (downscaling rule)

β individual (downscaling rule)

γ individual (downscaling rule)

f �tness of individual (downscaling rule) in P
f ′ �tness of individual (downscaling rule) in P ′
i index

j index

N number of individuals (downscaling rules) in P
P population

P ′ Pareto set

s vector of objectives

si objective (function)

ssci scaled objective

m number of objectives

O objective space

Q solution space

x predictors

yD downscaled (D) predictand vector

yR reference (R) predictand vector

yDtij downscaled (D) predictand anomaly at grid point (i, j) and time t

yRtij high-resolution reference (R) predictand anomaly at (i, j) and time t

Chapter 6 - Downscaling Mesoscale Near-Surface Fields using MOGP

A list of all predictors used in Chapter 6 is given in Tables 6.4 and 6.5.

F cumulative density function

hi frequency of predictor xi in the Pareto set
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i index of �ne-scale grid point

IQD integrated quadratic distance

j index of �ne-scale grid point

LWR incoming (di�use) longwave radiation and the land surface

ME (STD) mean error of standard deviation
˜ME (STD) relative reduction of the ME(STD)

MIQD mean integrated quadratic distance

M̃IQD relative reduction of the MIQD

nt number of time steps

ni number of (�ne-scale) grid points in x-direction

nj number of (�ne-scale) grid points in y-direction

p pressure and, as a subscript, index of coarse-scale grid point

P instantaneous precipitation

q speci�c humidity and, as subscript, index of coarse-scale grid point

r2 coe�cient of determination

RMSE root mean square error

R̃MSE relative reduction of the RMSE

σ standard deviation

SWRdif incoming di�use shortwave radiation at the land surface

SWRdir incoming direct shortwave radiation at the land surface

t time index

T temperature

wh horizontal wind speed

xi predictor

X(p, q) coarse scale pixel

yDtij downscaled (D) predictand anomaly at grid point (i, j) and time t

yRtij high-resolution reference (R) predictand anomaly at (i, j) and time t

Chapter 7 - Downscaling Climate Reanalysis Data to Stations using MOGP

A list of all predictors used in Chapter 7 is given in Table 7.3.

α downscaling rule

AB absolute bias

AE (F ) absolute error of precipitation frequency

AE (STD) absolute error of standard deviation

βi regression coe�cient for predictor i

B bias

B(SC ) bias of spatial (i.e., station) correlation

E (F ) error of precipitation frequency

E (STD) error of standard deviation

E (Qi) error of quantile Qi
G cumulative density function
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hi frequency of predictor xi in the Pareto set

IQD integrated quadratic distance

ME (Q) mean error of quantiles

n number of time steps (length of time series)

ns number of stations

P daily accumulated precipitation

P ′ Pareto set

Qi i%-quantile

ρ Pearson correlation coe�cient

r2 coe�cient of determination

RMSE root mean square error

RMSE (SC) root mean square error of spatial (i.e., station) correlation

σ standard deviation

t time index

Tmax daily maximum temperature

Tmean daily mean temperature

Tmax daily minimum temperature

yDt downscaled (D) predictand anomaly at time t

yRt high-resolution reference (R) predictand anomaly at time t

Appendix A - Preliminary MOGP Runs

A list of all predictors used in Appendix A is given in Table A.2.

i index of �ne-scale grid point

j index of �ne-scale grid point

k index of �ne-scale grid point

l index of �ne-scale grid point

ME (STD) mean error of standard deviation

MIQD mean integrated quadratic distance

nt number of time steps

ni number of (�ne-scale) grid points in x-direction

nj number of (�ne-scale) grid points in y-direction

RMSE root mean square error

s̃tr relative reduction objective s for the training data set

s̃val relative reduction objective s for the validation data set

t time index

U(i, j) (�ne-scale) grid point (i, j) and its four direct neighbors

yDtij downscaled (D) predictand anomaly at grid point (i, j) and time t

yRtij high-resolution reference (R) predictand anomaly at (i, j) and time t
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Appendix B - Regression Techniques

β vector of (unknown) regression coe�cients

β̂ estimated vector of regression coe�cients

βj regression coe�cient for the j-th predictor

b(θi) function de�ning the type of the exponential family

Γ gamma function

c(yi, φ) function de�ning the type of the exponential family

ε vector of residuals

E(yi) expected value of yi
f probability density function

fbernoulli Bernoulli distribution

fgamma gamma distribution

fnorm normal distribution

fpoisson Poisson distribution

g(µi) link function

ηi linear predictor

h(ηi) response function (inverse of the link function g)

λ mean and variance parameter of the Poisson distribution

l log-likelihood function

µi expected value (parameter of normal and gamma distribution)

ν shape parameter of gamma distribution

n number of observations (realizations)

φ scale or dispersion parameter

p number of predictors

pi probability (parameter of the Bernoulli distribution)

p(yi = 1|xi) probability that yi = 1 given xi
s score function

S residual sum of squares

θi natural parameter

Var(yi) variance of yi
X design matrix

xi vector of the i-th realization of the p predictors

xij i-th realization of j-th predictor (entries of X)

y vector of predictand realizations

yi i-th realization of the predictand
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