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Chapter 1: 

Cytoplasmic noncoding DNA: characteristics and utility in 

phylogenetics

Noncoding DNA represents a large fraction of genomes interspersed between 

(intergenic  spacers)  and  within  (introns)  coding DNA.  Their  function:  largely 

unknown.  Speculations  about  properties  of  noncoding  DNA  range  from 

nucleoskeletal  functions  (Cavalier-Smith,  1978),  gene  regulation  and  other 

essential functions  (Zuckerkandl, 1976), parasite or selfish DNA (Doolittle and 

Sapienza, 1980; Orgel and Crick, 1980; Östergren, 1945) to junk DNA (Ohno, 

1972). Each of these theories may reflect only an aspect of the true evolutionary 

function of noncoding DNA, which is still not thoroughly understood. However, 

considering noncoding DNA as junk might be exaggerated as it is often packed 

with  transcription  and  translation  factors,  such  as  promoters  or 

regulatory/stabilizing  elements  (Ludwig  2002;  Siepel  et  al.  2005;  Bird  et  al. 

2006; Drake et al. 2006). 

In  molecular  phylogenetics,  however, plastid  noncoding DNA,  i.e.  the  trnT-F 

region composed of two intergenic spacers (IGS) and a group I intron was soon 

established as a standard marker  for  phylogenetic  analyses  (Taberlet  et  al., 

1991). Since then, the reliability of fast evolving genomic regions markers, i.e.  

noncoding  regions  and  genes  with  high  levels  of  variability  has  been 

controversially discussed. 

During  the  last  decades  of  the  last  century,  scientists  avoided  using  fast 

evolving regions due to high levels of homoplasy and an assumed saturation 

effect  that  would  superimpose  the  phylogenetic  signal.  Moreover, 

microstructural evolution of DNA, i.e.  frequent insertion and deletion of DNA 

stretches  and  inversions  (compare  Quandt  et  al.  2003)  require  extensive 

alignment  work  and  even  exclusion  of  stretches  with  uncertain  homology, 

referred to as hotspots.  More generally, the conventional  wisdom on marker 

selection was that variability and substitution rates of a marker should match the 

level of phylogenetic profundity of relationship between the taxa contained in 

1



the study (Borsch et al., 2003; Müller et al., 2006; Olmstead and Palmer, 1994; 

Palmer, 1990; Palmer and Herbon, 1988). As a simple rule, marker with high 

substitution rates should be used to explore shallow level  relationships,  and 

deeper  taxonomic  relationships  should  be  inferred  preferably  by  highly 

conserved  regions.  Due  to  a  humble  fraction  of  parsimony  informative 

characters in those regions,  one would need lots  of  sequenced nucleotides, 

possibly at the expense of a favorable dense taxon sampling (Zwickl and Hillis, 

2002). 

In 1998,  Olmstead et al.  assumed that genes with higher evolutionary rates 

might still be useful in deeper level phylogenies, because the higher fraction of 

parsimony informative sites may be of superior impact as adequately limited 

substitution rates. Later, Källersjö et al. (1999) found that the homoplasy in third 

codon  positions  in  a  very  taxon  rich  rbcL data  set,  that  would  have  been 

excluded  or  weighted  at  a  minor  level  otherwise,  could  increase  the 

phylogenetic  structure  in  phylogenetic  reconstructions.  Finally,  Borsch  et  al. 

(2003) showed that a plastid noncoding region, the trnT-F region introduced by 

Taberlet et al. (1991) could be reliably aligned across angiosperms. In addition, 

Borsch et al. (2003) inferred a phylogeny that congruently reflected multigene 

reconstructions of basal  angiosperms  (Qiu et al.,  2005; Zanis et  al.,  2002) , 

although only one fifth of the sequence data per taxon was required. The theory 

of a more equitable distribution of phylogenetic information due to low selective 

constraints arose and was tested by Müller et al.  (2006) and  Barniske et al. 

(2012)  via evaluation of the phylogenetic structure in plastid slowly and fast 

evolving genes, group I and II introns and IGS. They came to the conclusion 

that  fast  evolving  genes  and  noncoding  regions  generally  outperform  well-

conserved  genes  in  terms  of  phylogenetic  structure  even  in  a  deep  level 

phylogenetic study. 

So  far,  only  plastid  markers  from angiosperms  have  been  tested,  thus  the 

general  validity of these findings remains to be tested in other lineages and 

genomes  as  well.  Relationships  within  angiosperms  today  are  extensively 

studied and comparably well understood (e.g. APG IV, Chase et al. (2016) , they 

date  back  to  the  late  Valanginian  (132  Mya)  (Brenner,  1996;  Magallón  and 
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Sanderson, 2001). Relationships among and within all other land plant lineages, 

which are still controversially discussed, are considerably older  (Hedges et al. 

2015,  www.timetree.org),  and  the  markers  used  to  elucidate  their  pedigree 

possibly need to have a higher level of conservation in order to provide the 

required low levels of homoplasy or saturation. Genes with higher conservation 

can  be  found  in  mitochondria,  but  the  frequent  recombination  and 

rearrangement of  the mitochondrial  genome, described in the next segment, 

prevented  the  establishment  of  efficient  phylogenetic  marker  in  land  plants, 

although some studies employing multiple mitochondrial marker revealed a land 

plant phylogeny largely congruent to a phylogeny inferred by plastid and nuclear 

marker  (Qiu et al.,  2010).  Within two early diverging land pant lineages, i.e. 

mosses  and  liverworts,  however,  genome  organization  and  configuration  of 

introns remains stable. Mosses date back to the lower Devonian (414 Mya  ± 

18.2, chapter 2; Laenen et al. (2014), and established phylogenetic marker from 

both organellar genomes are available. In this study, we do not employ marker 

from  genomic  approaches,  but  sanger  sequenced  data  from  established 

common markers to address questions whether

1. phylogenetic studies on relationships that are much older than those in 

angiosperms demand for marker with a higher degree of conservedness,

2. mitochondrial marker provide sufficient phylogenetic structure to resolve 

relationships that span 400 mya.

3. phylogenetic  signal  from  plastid  marker  and  mitochondrial  marker  is 

significantly congruent.

4. noncoding marker in this study outperform coding markers independent 

of the cytoplasmic origin. 

Characteristics of the three genomes in plant cells

As mentioned above, noncoding DNA represents a large fraction of genomes 

intermingled with coding parts. This is true for all three players of the overall  

plant genome, i.e. nuclear, plastid and mitochondrial DNA. However, due to the 

evolutionary  history,  inheritance  and  uncoupled  molecular  evolution  the 
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genomes of each compartment differ drastically in their molecular evolution with 

respect  to  large  scale  reorganization,  recombination,  gene  transfer, 

microstructural evolution and substitution rate.

Nuclear DNA

Plant nuclear marker provide high levels of variability and thus informative sites, 

but they also bear the risk of paralogue and pseudogene inclusion. Rates of 

silent substitutions in nucleotide genes were found to be roughly twice as high 

as  in  plastids,  which  in  turn  have a  threefold  substitution  rate  compared to 

mitochondrial genes (Wolfe et al. 1987). But although exhibiting more variability 

and much more characters than marker from organelles, nuclear marker have 

been used to a lesser extent due to intricate sequencing efforts, e.g. the need to 

clone polyploid species. Advances in next generation sequencing techniques 

however  are  thought  to  increase  the  usage  of  nuclear  DNA  (nDNA)  in 

phylogenetic studies in the future (Soltis et al. 2013; Zimmer and Wen 2015).  

Considering noncoding regions of the nDNA in plants, currently only the spacers 

of the cistronic nuclear ribosomal DNA (internal  transcribed spacer, ITS) are 

used  for  phylogenetics,  which  provide  a  valuable  source  for  phylogenetic 

reconstructions within land plant lineages (Álvarez and Wendel, 2003; Baldwin 

et al., 1995). The use of noncoding DNA in animal phylogenomics however has 

been discussed by Bird et al. (2006). Although the region is used on family and 

ordinal  level  among angiosperms or bryophytes  (Álvarez and Wendel,  2003; 

Samigullin et al., 1998), it is impossible to align this region across angiosperms 

or mosses, due to the high rate of substitutions and microstructural evolution.

In comparison to the linear nDNA, cytoplasmic or organellar DNA is normally 

uniparentally inherited and are generally represented as a circular structure, as 

they descend from bacterial ancestors  (Hagemann, 2004; Martin et al., 2012; 

Mereschkowsky,  1905).  Exceptions  to  that  rule  have  arisen  multiple  times 

during evolution  (Bock,  2007).  Although organelles depend on nuclear  gene 

products and control, both organelles differ significantly in evolutionary tempo 

and mode (Palmer, 1990).
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Plastid DNA

Plastid  DNA (cpDNA) is  a unique,  abundant  high-copy molecule with  ample 

substitution rates. Its size ranges between 100 and 200 genes (Y. Wang et al., 

2012) on a 100 to 160 kb long molecule (Bock, 2007; Sugiura, 1992; Wicke et 

al.,  2011).  Although  it  is  a  small  genome  compared  to  nDNA,  plastid  DNA 

makes up a significant proportion of total cellular DNA of up to 20% (Boffey and 

Leech, 1982). Unlike mtDNA, cpDNA is often associated with proteins, RNAs 

and other cpDNA molecules referred to as nucleoids, which are attached to the 

envelope membrane or the thylakoids (Sato et al., 2003). In most lineages the 

plastome maps to a circle with a large and a small single copy region (LSC, 

SSC), interrupted by two identical inverted repeat (IR) regions. In living cells,  

cpDNA exists in a circular, linear, branched or concatenated form of multiple 

plastomes  (Bendich,  2004;  Bock,  2007;  Lilly, 2001;  Oldenburg and Bendich, 

2004).

Except for some parasitic plants (Wicke et al., 2013; Wickett et al., 2008; Wolfe 

et al., 1992), plastomes exhibit a similar configuration of genes. Some genes 

are lost independently multiple times during the land plant evolution, other gene 

losses are apparently clade specific (Campagna and Downie, 1998). All mosses 

and hornworts lack e.g.  rps16, which is present in seed plants and liverworts 

except for gymnosperms (Tsudzuki et al., 1992). 

Isolation,  amplification  and  sequencing  of  plastid  marker  is  comparatively 

inexpensive.  Consequently,  most  phylogenetic  studies  on  plants  employ 

cpDNA, often several markers or combinations of cpDNA, nDNA and/or mtDNA 

(Chang  and  Graham,  2011;  Cox  et  al.,  2000;  Graham  and  Wilcox,  2000; 

Kelchner, 2000; Qiu et al., 2005; Soltis et al., 1997; Worberg et al., 2007). 

Plastid marker: In this study, six different plastid markers were used, one group 

I intron, one spacer, two group II introns and two genes. The tRNALys(UUU) 

intron (trnK, Hilu and Liang 1997) is a class IIA1 group II intron (Hausner et al., 

2006; Michel et al., 1989), its length in mosses averages in 2313 nucleotides 
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including the 3'exon sequence. Within the intron sequence resides the highly 

variable  matK-ORF with an average length of 1,548 nucleotides. Its encoded 

protein is a degenerate type of RT-Protein with reduced mobility function. The 

maturase activity and the conservation of this gene in all land plants suggest 

that  matK codes for a generalized and also essential  maturase enzyme that 

catalyzes splicing of all plastid group II introns  (Hausner et al., 2006; Mohr et 

al., 1993; Neuhaus and Link, 1987; Sugita et al., 1985).

The second marker containing an intron is rpl16 (Jordan et al., 1996), it is a IIB2 

group  II  intron.  Given  the  fact  that  most  sequences  lack  the  first  40-50 

nucleotides due to primer positioning at the 3' site, the average length of this 

intron could only be estimated to 760 nucleotides in this dataset. Its utility in 

seed plants has been proven frequently, e.g. in bamboos (Kelchner and Clark 
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Figure 1: Synteny of land plant plastid chromosomes. The plastid chromosomes are 
shown in linearized form illustrating relative gene synteny. Genes are depicted by boxes  
colored according to their relevant functional class (see legend). Genes encoded by the 
leading strand (strand) or by the lagging strand (- strand) are shown above or below 
the grey chromosome bar, respectively. Lines from selected genes/ gene-regions 
mentioned above the first chromosome bar roughly indicate genes clusters that have 
been reorganizated during land plant evolution.(from Wicke et al., 2011)



1997), and in bryophytes as well (Hedenäs and Eldenäs, 2007; Huttunen et al., 

2012a; Olsson et al., 2009; Stech et al., 2012).

The third intron containing marker trnL-F contains the sole plastid group I intron 

inserted in the anticodon site of tRNALEU(UAA) along with an intergenic spacer 

(IGS)  between tRNALEU(UAA)  and tRNAPHE(GAA)  (Gielly  and Taberlet  1994). 

Just as in angiosperms, this marker is extensively used in all three bryophyte 

lineages (Stech et al., 2003a; Quandt & Stech 2005).
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Figure 2: Graphical representation of the plastid genome of the moss Sanionia uncinata  
(Park et al. 2015, Accession KM111545, plotted with OGDRAW v1.1 (Lohse et al. 
2013)) Reading direction indicated by arrows, genes belonging to functional complexes 
are color coded and listed in the legend.



Finally, for a balanced comparison and owing to the availability of a large data 

pool, the  rbcL gene  (Chase et al., 1993; Hasebe et al., 1994), the  rps4 gene 

(Nadot et al., 1994) and the atpB – rbcL IGS (Chiang et al., 1998; Shaw et al., 

2005) have been included.

Mitochondrial DNA

Mitochondrial DNA as phylogenetic marker are extensively used in eukaryotic 

lineages without plastids, e.g. metazoa and fungi  (Avise et al., 1987; Moritz et 

al., 1987), and mtDNA is thought to have similar properties in these groups as 

cpDNA in plants.  In animals,  mtDNA is a small  molecule of less than 20kb, 

typically containing 37 genes, of which 22 code for tRNAs, 13 for proteins and 

only two for rRNAs (Boore, 1999). As rearrangements of the genes are found to 

be unique and rare events, they serve to infer deep level relationships. Introns 

in metazoan mitochondria are more exception than rule, they only appear in 

very basal metazoan lineages; group I introns in cnidaria, placozoa and porifera 

(Beagley et al., 1998; Burger et al., 2009; Rot et al., 2006), a group II intron is 

also reported from the bilaterian  Nephtys sp. (Vallès et al., 2008) in the CoxI 

gene, which is a mitochondrial marker used for DNA barcoding in animals. 

In contrast, plant mitochondrial DNA (mtDNA) molecules range in size between 

58 kb in Isoetes engelmannii A.Braun (Grewe et al., 2009) and up to 2.000 kb in 

Cucumis melo L.  (Ward et al., 1981) Due to horizontal gene transfer, the size 

can even increase further, e.g.  the  Amborella  trichopoda mt  genome, which 

acquired almost four entire genomes from three algae and one moss during its  

evolution reaches more than 3.900 kb  (Bergthorsson et al., 2003; Rice et al., 

2013;  Taylor  et  al.,  2015).  Thus,  the  size  disparity  between  the  lineages is 

caused by a growth of the spacer regions rather than the gain of functional 

genes or new introns. In fact, mtDNA seems to tend to decrease in number of 

coding genes, but increase in genome size (Groth-Malonek et al. 2007). For 

example, the liverwort genus  Marchantia possesses 94 possible genes on a 

184 kb molecule, 29 of these code for tRNAs, three rRNAs and 41 code for 
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proteins, the remaining 11 open reading frames are hypothetical proteins (Oda 

et al., 1992).

The angiosperm  Brassica napus L. has 54 mitochondrial genes on a 222 kb 

molecule, of which 34 are protein coding genes, three rRNAs, 17 tRNAs and 

one hypothetical protein (Handa, 2003).

In plants,  mtDNA has very low substitution rates on one hand,  but  frequent 

recombinations  and  rearrangements  on  the  other,  which  leads  to  notorious 

lability and complexity and heteroplasmy (Kubo and Mikami, 2007; Palmer and 

Herbon, 1988), a co-existence of multiple DNA arrangements in the same tissue 

and even within the same cell. Uptake of foreign DNA from plastids and the 

nucleus,  continuous  endosymbiotic  gene  transfer  (EGT),  RNA  editing  and 

disruption of genes that necessitates trans-splicing has been reported (compare 

Knoop 2012). A few chondromes have been shown to include foreign DNA from 

other  distantly  related  taxa,  acquired  via  horizontal  gene  transfer  (HGT) 

(Bergthorsson et al., 2003; Won and Renner, 2003). Recombination in mtDNA is 
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Figure 3: Gene order comparison among mitochondrial genomes of bryophytes 
compared to Chara vulgaris. Gene content and order is strongly conserved within 
mosses and liverworts, but not in other lineages. (from Liu et al., 2011)



the contributing factor to cytoplasmic male sterility (CMS), which is a valuable 

tool in plant breeding (Schnable, 1998). 

The mitochondria in the early diverging bryophytes, the liverworts and mosses ,  

however show different properties than in vascular plants. Within each lineage, 

liverworts and mosses, the mtDNA underwent almost no recombination during 

their radiation since the Devonian (Li et al., 2009; Liu et al., 2014b, 2011; Xue et 

al.,  2010)(see Figure 3).  The distribution of introns is a characteristic trait  of 

each of the three bryophyte lineages (liverworts, mosses, hornworts), each of 
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Figure 4: Graphical representation of the Mitochondrial genome of the moss Sanionia 
uncinata (Park et al. 2015, Accession KP984757, plotted with OGDRAW v1.1 (Lohse et  
al. 2013). Reading direction indicated by arrows, genes belonging to functional 
complexes are color coded and itemized in the legend.



which has an individual set of introns that are not shared between the lineages 

(Knoop,  2010).  In  fact,  the  monophyly  of  liverworts  as  sister  to  all  other 

embryophytes is strongly supported by the lack of three mitochondrial introns 

that consistently occur in other lineages (Palmer et al., 1998).

Mitochondrial  marker: Due  to  the  instable  and  complex  nature  of  the 

chondrome in flowering plants the use of mtDNA in plant systematics has been 

avoided (Kubo and Mikami, 2007). In mosses however, favorable characteristics 

of the chondrome1 like high conservation and stable localization of introns and 

spacer indicated mt marker as a promising tool for deep level phylogenies (Liu 

et  al.,  2014a;  Palmer  and Herbon,  1988),  e.g. cox3-complex  in  land plants 

(Hiesel et al., 1989; Malek et al., 1996) and mt 19S rRNA (Duff and Nickrent, 

1999; Kenrick, 2000). The nad5i753 group I intron (Beckert et al. 1999) that is 

unique for mosses soon became a valuable marker in moss phylogenetics as 

an alternative source for sequence data outside the plastome. This study on 

mosses  employs  noncoding  marker,  such  as  the  nad2i156  group  II  intron 

(Beckert  et  al.,  2001),  the  two  group  I  introns  nad5i753  (Beckert  et  al., 

1999) and cobi420  (Wahrmund et al., 2010), and the nad5-nad4 IGS  (Groth-

Malonek et al., 2007) as well as the flanking genes themselves (nad2, nad5, 

nad4, cobI, all partial).

Moss phylogeny and the peristome

The current view on the colonization of land by phototrophic organisms sees 

nonvascular plants, traditionally referred to as the ancestors of bryophytes, as 

the first extant group of embryophytes to successfully form vegetation on earth 

(Mishler and Churchill, 1985; Shaw and Renzaglia, 2004). The three bryophyte 

lineages, the Marchantiophytina, Bryophytina and Anthocerotophytina, form a 

paraphyletic group basal to the rest of all extant land plants, the tracheophytes 

1 Note, that the term “chondriome” has previously been used ambiguously to describe either the  
mitochondrial genome of a species or the entirety of the dynamic population of all mitochondria  
in  a  cell  (Logan 2010 )  .  This  issue  of  confusion  was recently  addressed,  suggesting  that 
“chondriome”  is  now  restricted  to  the  latter  sense  whereas  chondrome (without  i)  is  used 
equivalently to mitochondrial genome (Knoop et al. 2010 ) (from Bock and Knoop, 2012)
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(Qiu  et  al.  2006;  for  a  more  detailed  discussion  see  chapter  2;  Figure  23 

(appendix)).

The sporophyte and the spores themselves are among the most important key 

innovations  to  facilitate  land  colonization  (Gray  et  al.,  1985;  Shaw  and 

Renzaglia, 2004). While in vascular plants (tracheophytes) the sporophyte has 

evolved to become the dominant stage during life cycle with a progressively 

reduced gametophyte, in bryophytes, the dominant, long-lived and nutritionally 

independent  stage is still  the gametophyte.  Despite being dependent  on the 

gametophyte, the moss sporophyte has developed high levels of complexity, 

and even exhibits stomata and performs photosynthesis. In fact, the function of 

a sporophyte is to produce and disperse the diaspores effectively  (Vitt, 1981), 

and adaptations in the sporophyte and its organs are related primarily to this  

purpose. 

In non-vascular land plants, dispersal of the diaspores depends chiefly on air. 

Spores develop in a capsule, often at the tip of a stalk (seta). At maturity, this  

capsule  disintegrates,  splits  or  opens at  a  well-defined mouth,  usually  by  a 

desiccation-induced process, finally releasing the spores. While disintegration 

or splitting is common to liverworts, hornworts and a few basal mosses like the 

Andreaeidae, the capsule in the majority of mosses is more complex. Under dry 

conditions, the calyptra, a cap-like structure that originates from gametophytic 

tissue, drops off,  the operculum, a flap-like structure, is shed, the peristome 

teeth bend outwards and the spores are exposed to the environment.

These  peristomes  are  thus  parts  of  the  mechanism  regulating  the  rate  of 

dispersal and it is thought that they are under weak environmental constraint.  

They are remarkably well conserved and preferentially used in moss taxonomy 
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as an identifying characteristic at class or ordinal level (e.g. Brotherus 1924; Vitt 

1981; Vitt 1984).  

Extant aperistomate mosses represent  the first  four  out  of  five monogeneric 

classes (Sphagnopsida, Takakiopsida, Andreaeopsida and Andreaeobryopsida), 

and were early identified as the basal moss clades. The peristomate mosses 

(Bryopsida) include some clades that most likely lost the peristome again, like 

the Gigaspermidae, the Diphysciidae and the Buxbaumiidae. The relationships 

among  the  early  branching  peristomate  clades  are  delicate  to  delineate 

confidently (Cox et al., 2004; Newton et al., 2000; Wahrmund et al., 2010). The 

monophyly  of  the  two  nematodontous  clades,  whose  peristome  consists  of 

whole cells, the Tetraphidopsida and the Polytrichopsida, could only be inferred 

with weak confidence when employing the mitochondrial nad2 and nad5 genes 

(Beckert et al., 2001) Even when adding the mitochondrial  cobI locus and the 

nad5-nad4 IGS plus the plastid rbcL and rps4 genes (Wahrmund et al., 2010), 

the support for this node could not be raised to significance. When employing 

plastid  and/or  nuclear  marker,  the  nematodontous  mosses  appear  to  be 

paraphyletic (see chapter 2;  Magombo 2003; Cox et al. 2004). This question 

however  is  important  to  explain  the  evolution  of  the  peristome,  i.e.  a 

monophyletic relation of these two groups would imply an independent origin of 

the  nematodontous  and  the  arthrodontous  peristome,  whereas  a  paraphyly 

would  strongly  suggest  the  arthrodontous peristome being  derived form the 

nematodontous peristome. 
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Figure 6:  SEM picture and peristome diagram of Hypnum imponens, a diplolepideous-
alternating moss.



Within  the  arthrodontous  lineages,  the  Buxbaumiidae,  followed  by  the 

Diphysciidae, are established as the basal bryopsid clades (Cox et al., 2010). 

The relationships of the following classes are still not confidently solved. The 

Gigaspermales, Funariales and the Encalyptales are sometimes resolved as a 

monophyletic group with weak support, referred to as Funariidae  (Cox et al., 

2010;  Goffinet  and Cox,  2000).  The monophyly of  the Encalyptales and the 

Funariales is also strongly supported by a shared 71kb inversion in the SSC of  

the cpDNA (Goffinet et al., 2007). Additionally, both share a unique peristome 

type,  the  diplolepideous-opposite  peristome.  Other  analyses  employing 

predominantly mtDNA find the Gigaspermales as the sister clade of the Bryidae 

(Wahrmund et al., 2010). The Timmiales in turn are sometimes inferred as sister 

to  the  clade  uniting  Dicranidae  and  Bryidae  (Wahrmund  et  al.,  2010), 

sometimes as sister to the Funariidae (Cox et al., 2004). The peristome of the 

Timmiales  is  unique,  but  shares  crucial  developmental  features  with  the 

peristome of Funaria (Budke et al., 2007), which speaks for a higher probability 

of  a  closer  relationship  to  Funariidae  than  to  Bryidae  or  Dicranidae.  The 

Dicranidae again are resolved as a monophyletic group that posses the unique 

haplolepideous peristome with only one ring of teeth. The Bryidae finally are 

also found to be unambiguously monophyletic (e.g. Cox et al. 2010, Wahrmund 

et  al.  2010).  This  group  is  characterized  by  the  diplolepideous-alternate 

peristome.

Although there is budding recent progress in moss phylogeny, the difficulties in  

resolving the relationship between the subclasses of the Bryopsida remain, and 

they seem to be related to a quick and concurrent early radiation during the 

evolution  of  the  major  moss  lineages,  as  indicated  by  very  short  branches 

between unresolved nodes (Wahrmund et al., 2010) . As long as this question 

remains unanswered, no speculations about the ancestral architecture of the 

arthrodontous peristome type can be made (Crosby, 1980; Vitt, 1984). Because 

the peristome type is unique in clades that otherwise have very different levels 

of  species  diversity,  hypotheses  about  the  correlation  between  a  certain 

peristome type and species richness need to be tested, and an unambiguously 
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resolved phylogeny would be – together with developmental studies – a crucial  

step towards the understanding of the evolution of mosses.

While bryophytes were often considered as a group of model organisms that 

reveal “windows into the early evolution of land plants” (A. J. Shaw et al., 2011), 

this group itself has been considered rather an evolutionary dead end (Mishler, 

1988). Their haplobiontic life form and the fragmentary fossil record gives the 

impression of very limited progression and innovation in these basal land plants, 

which is explained by the haploid vegetative state that conditions mutations to 

be under permanent selective pressure  (Anderson, 1963; Mishler, 1988). But 

considering the  highly  uneven distribution of  the  approximately  12000 moss 

species among the divisions and subdivisions and their  divergence times,  it 

becomes clear that mosses just like many other plant and animal groups have 

had  several  diversification  bursts  (Bateman  et  al.,  1998;  Jablonski,  2005; 

Laenen et al., 2014; Schneider et al., 2004; Shaw and Renzaglia, 2004). These 

past diversification events are elucidated by novel Bayesian methods in chapter 

2. 

Phylogenetic structure measure

The term “phylogenetic structure”, sometimes also used for significance tests 

for departure from randomness (Archie, 1989; Hillis, 1991; Huelsenbeck, 1991), 

describes a quantitative measure of contribution to a phylogenetic hypothesis. 

One possible  way to  obtain  this  measure  is  to  sum all  jackknife  or  Bremer 

support values from resolved nodes (Källersjö et al., 1999, 1992). Based on this 

concept  of  phylogenetic  structure,  Müller  et  al.  (2006) developed  the 

phylogenetic structure R as a generalized sum of support values at resolved 

nodes by arbitrary reconstruction methods (e.g. parsimony, Bayesian inference, 

maximum likelihood). The key to quantify the phylogenetic structure of markers 

with  different  length  is  a  resampling  strategy,  that  evaluates  phylogenetic 

structure based on equal proportions of alignment positions (sensu Müller et al. 

2006) or total count of nucleotides in pairwise comparisons (RC, sensu Barniske 

et  al.  2012).  In  chapter  3,  this  concept  is  advanced  to  address  additional 

questions  concerning  the  phylogenetic  structure  on  a  constraint  topology 
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(phylogenetic RC,fix) and on distinct node partitions (RC,fix(S)), with the latter allow 

testing for a temporal gradient in phylogenetic structure as a discrimination to 

resolve a specific temporal level of nodes more than other levels.

The  downside  of  a  constraint  topology  is  the  possibility  of  introducing  a 

circularity problem, as the original definition of phylogenetic R by Müller et al.  

(2006) was independent from a topology as a prior assumption. The circularity 

problem accrues from the premise that a topology inferred by the complete data 

set is used as the criterion to prove the contribution from fractions of the data 

set  to  the  whole  topology.  On  the  upside,  provided  that  the  topology  is 

trustworthy, one can estimate the source of phylogenetic signal for a certain 

subgroup of nodes and quantify incongruence between trees from individual 

datasets and the constraint topology.

Insertions, Deletions, simple sequence repeats and inversions in 
organellar DNA

Knowledge about the course of microstructural evolution in a genomic region 

designated  as  phylogenetic  marker  is  crucial  in  for  planning a  phylogenetic 

analysis, even in times of ever-increasing availability of whole genomes in a 

broad selection of species in all major lineages of plants. To circumvent artifacts 

an  alignment  taking  into  account  mechanisms  of  molecular  evolution  is 

fundamental, therefore rules need to be applied that integrate our knowledge on 

microstructural evolution (compare Kelchner 2000, Borsch & Quandt 2009).

While protein coding regions only rarely show any length variations, spacer and 

introns often accumulate insertions and deletions, especially in stretches with 

low evolutionary constraint (e.g. loops of hairpin structures). Intron sequences 

need  to  fold  into  a  secondary  structure  in  order  to  excise  from  the  exon 

sequence (Cech, 1990, 1986; Kruger et al., 1982; Michel, 1995; Michel et al., 

1989).  This  secondary  structure  requires  areas  with  different  degrees  of 

constraints and thus a characteristic mosaic pattern of conserved or variable 

stretches. Like a scaffold, highly conserved (constrained) stretches guide the 

alignment of  noncoding sequences,  but  correctly aligning the highly  variable 

loop  regions  requires  a  deep  understanding  of  the  biology  microstructural 

changes  (Borsch and Quandt,  2009).  Especially indels and the derivation of 
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their homology are crucial in phylogenetic reconstructions using highly variable 

noncoding  marker.  Until  now,  no  automated  alignment  editor  is  capable  of 

generating alignments from marker of high variability satisfactorily, incorporating 

all available knowledge about microstructural evolution. Manual alignments are 

challenging  but  rewarding  considering  the  advantageous  proportions  of 

phylogenetic  structure  (sensu  Müller  et  al.  2006)  per  sequenced  nucleotide 

compared to most other genes (Barniske et al. 2012). 

Numerous authors have drafted rules of good alignment practice  (Borsch and 

Quandt,  2009;  Kelchner,  2000;  Löhne  and  Borsch,  2005;  Morrison,  2009; 

Ochoterena,  2009),  but  the  reliability  and  homoplasy  of  coded  indels  as 

phylogenetic  characters  have  been  questioned,  most  notably  in  simple 

sequence repeats (SSR) and inversions (Bruford and Wayne, 1993; Goldstein 

and Pollock, 1997). SSRs are generally explained by slipped strand mispairing, 

a processing defect during replication in specific regions of the genome that 

leads to considerably high numbers of copies of a short sequence  (Kelchner 

and  Clark,  1997;  Levinson  and  Gutman,  1987;  Tachida  and  Iizuka,  1992). 
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Figure 7: Frequency of inserted simple sequence repeat elements of the chloroplast 
genome across lineages and genomic regions. Black: trnL group I intron of the asterids 
(K. Solomon et al., unpublished data). Dark gray: petD group II intron of the asterids 
(K. Solomon et al., unpublished data). Light gray: introns and spacers of the 
chloroplast IR of early branching angiosperms (Graham et al. 2000). White: spacers 
and group I intron of the trnT–trnF region in Nymphaea (Borsch et al. 2007) (from 
Borsch and Quandt, 2009)



These  loci  are  referred  to  as  microsatellites,  and  their  mutation  rates  are 

considered high enough to be successfully employed inferring relationships in 

very closely related species and even in population genetics. SSRs occur in 

seemingly random sites and in low numbers of copies as well. In a review paper 

on  phylogenetic  utility  of  noncoding  marker,  Borsch  &  Quandt  (2009) 

summarized the frequency of SSRs in dependency of their repeat length across 

different  studies  employing  different  noncoding  plastid  marker  and  found  a 

surprisingly high fraction of pentanucleotide and hexanucleotide SSRs in the 

alignments  (Figure  7).  The overall  length  variability  is  generally  not  as  one 

would expect reckoned on a complete random process, the frequency of SSRs 

should rapidly drop with their repeat length. 

As this study employs a high fraction of noncoding regions, i.e. spacers and 

introns the acquired data provides a unique chance to evaluate the absolute 

frequency of independent origination events of simple sequence repeats at the 

same sites, the gain and loss of SSRs and inversions along a given phylogeny 

via ancestral  state reconstruction.  An ensuing evaluation of the phylogenetic 

structure  and  phylogenetic  signal  shall  elucidate  the  utility  of  SSRs  and 

inversions in a phylogenetic context (chapter 4).
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Chapter 2: 

Timing the branching order and radiation shifts of the major 

moss lineages

Resolving the backbone phylogeny of mosses: an organellar 
perspective

Abstract. Uncovering the branching order of major moss lineages is central to 

reconstruct the transformation of morphological traits during their evolution. This 

is particularly critical for understanding the order in which major peristome types 

arose.  Current  reconstructions  either  using  chondrome  data  and/or  coding 

regions from the plastome are inconclusive, as the short deep backbone nodes 

splitting the major clades receive inconsistent support. Here, a new hypothesis 

on the evolution of peristomate mosses is presented in a novel study based on 

a  combined  dataset  from  the  plastome  and  chondrome  spanning  15,922 

characters of noncoding (spacers, group I & II introns) as well as coding regions 

(plastome: 8,663 char.; chondrome 7,259 char.) plus 1,813 indels generated by 

simple indel coding.

Phylogenetic analyses (Bayes & RAxML) yielded a highly supported backbone 

phylogeny  of  mosses  that  revealed  the  nematodontous  lineages 

(Polytrichopsida  &  Tetraphidopsida)  as  a  grade  leading  towards  the 

arthrodontous mosses (Bryopsida). Among arthrodontous mosses the two first 

branching  lineages  contain  mosses  characterized  by  a  unique  endostome 

architecture (Buxbaumiidae & Diphysciidae) followed by the gymnostomous or 

cleistocarpous Gigaspermidae. Gigaspermidae are followed by the Funariidae 

indicating  the  diplolepideous-opposite  peristome  as  the  ancestral  peristome 

type  of  which  the  haplolepideous  (Dicranidae)  and  diplolepideous-alternate 

(Bryidae) peristome as well as the Timmia-type was derived.
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According to the BEAST analyses these major peristomes types were already 

established 300-350 MYA, indicating that the Carboniferous set the stage for 

the  split  of  the  major  moss  lineages  (subclass)  known  today.  Overall  four 

independent rate shifts were detected, of which two affect the two biggest moss 

lineages,  i.e.  the  haplolepideous  (~  4000  species)  and  the  pleurocarpous 

mosses (~ 5000 species), that experience rate shifts at different stages of earth 

history. Both lineages are not only characterized by different peristome types 

(haplolepideous  versus  diplolepideous-alternate)  but  also  by  their  different 

growth form (i.e. acrocarpy versus pleurocapy). The BEAST analyses based on 

an extended data set including a representative sampling of all other major land 

plant lineages indicate that the rate shift  at the pleurocarpous branch in the 

Cretaceous  can  be  associated  with  the  radiation  of  angiosperms,  i.e.  new 

habitats, especially epiphytic habitats.  Most likely the exploitation of the new 

habitats  was  aided  by  the  invention  of  pleurocarpy.  In  contrast,  the 

haplolepideous lineages represent a much older radiation experiencing a rate 

shift already in the middle/upper Jurassic that leads to a diversification in the 

Cretaceous. This finding goes in line with the increase in origination of spore 

bearing  plants  in  the  recovery  phase  of  the  late  Permian  mass  extinction. 

Whether  the  evolution  of  the haplolepideous peristome that  facilitates  spore 

distribution  enabled  a  higher  colonization  and  origination  rate  needs  to  be 

shown.

Keywords:  Bryophytina,  peristomial  evolution,  diversification  patterns, 

divergence times, Cretaceous, arthrodontous mosses 

1. Introduction

Mosses, together with liverworts and hornworts, i.e. bryophytes are accepted to 

be among the oldest extant lineages of green plants that successfully colonized 

terrestrial  niches  (Graham,  1993;  Mishler  and  Churchill,  1985).  While  the 

traditional  view  considers  bryophytes  monophyletic,  recent  phylogenetic 

analyses  revealed  that  liverworts  are  sister  to  all  other  extant  land  plant 
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lineages and hornworts sister to all vascular plants (Groth-Malonek et al., 2005; 

Palmer et al., 1998; Qiu et al., 2006), which conditions mosses to be sister to 

hornworts and vascular plants.  This view is supported by the appearance of 

stomata  at  the  branch  leading  to  mosses,  hornworts  and  tracheophytes 

(Kuhlbrodt, 1922; Porsch, 1905), and the pattern of intron gains and losses in 

the chondrome  (Groth-Malonek et  al.,  2005;  Knoop,  2010).  However, recent 

analyses using genomic data sets or transcriptome data (Wickett et al., 2014) 

also find support for alternative branching orders, even the traditional view of 

monophyletic bryophytes appears again,  albeit  being identified as an artifact 

(Cox et al., 2014; Liu et al., 2014a).

Bryophytes lack true vascular tissues with lignin and show a unique diplobiontic 

alternation  of  generations  with  a  dominant,  complex  and  perennial 

gametophyte,  either  thalloid  or  foliose,  and  a  dependent,  matrotrophic  and 

monosporangiate sporophyte (Graham and Wilcox, 2000; Niklas and Kutschera, 

2010). Beside asexual proliferation, sexual reproduction relies on motile male 

gametes that navigate to the female reproductive organs through water. Upon 

fertilization the nutritionally dependent sporophyte grows from the embryo. In 

the sporangium, it produces meiospores with sporopollenin-impregnated spore 

walls that are highly resistant against degradation and therefore often petrified, 

giving us the oldest reliable fossils to date the land plant tree (Rubinstein et al., 

2010).

A unique invention of the moss sporangium that is not found in other bryophyte 

lineages are teeth like structures (peristomes) that surround the stomium of a 

sporangium.  Depending  on  the  development  of  the  teeth,  peristomes  are 

divided into nematodont or arthrodont.  Nematodont peristomes are generally 

formed by layers of whole cells, arthrodont peristomes are remains of thickened 

cell  walls  (Edwards,  1984).  Nemathodontous  peristomes  are  typical  to 

Tetraphidopsida and Polytrichopsida, the former comprises four teeth from 16 

cells, the latter 16, 32 or 64 teeth, united by their tips to a circular membrane, 

the epiphragm closing the capsule.  Subtle changes in the epiphragm shape 

possibly  influence spore release that  escape through the gaps between the 

peristome  teeth  (Bell  and  Hyvönen,  2010).  In  arthrodontous  mosses  the 

scenario is completely different as the peristome teeth are generally composed 
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of  hygroscopic  tissue  offering  the  ability  to  perform  humidity  dependent 

movements in order to control spore dispersal (Edwards, 1984).

Arthrodontous  peristomes  are  remnants  of  three  innermost  amphitecial  cell 

layers; the outer, primary and inner peristomial (amphitecial) layer (OPL, PPL, 

IPL  respectively;  named  by  Blomquist  and  Robertson,  1941),  and  are 

characteristic to the vast majority of extant mosses. The peristome configuration 

is described by a formula introduced by (Edwards, 1979). Here, the ratios of cell 

quantity in an eighth of an amphitecium in each peristomial layer is given. The 

OPL generally  comprises  32 cells  and the  PPL 16 cells,  thus  most  formula 

begin with 4:2:x (OPL:PPL:IPL). The IPL is variable and shows a characteristic 

anticlinal cell division pattern depending on taxa, genera or families. At maturity, 

haplolepideous mosses comprise only one row of teeth that can be traced back 

to the cell walls of the PPL and IPL. Diplolepideous mosses have a peristome 

that consists of two rows of teeth, the inner endostome, formed by PPL and IPL 

and the outer exostome formed by cell wall fragments from OPL and PPL. 

The lack of knowledge on the moss life cycle and adequate optical equipment 

impeded  the  rise  of  a  reliable  classification  of  mosses  prior  to  the  first 

microscopic classifications of moss diversity by Johann Hedwig (1730-1799), 

who described 35 moss genera focusing on differences of  the  capsule and 

peristome  architecture  (Species  Muscorum,  Hedwig,  1801).  Other 

classifications,  e.g.  by  Bridel-Brideri  (Bryologica  Universa,  1826-1827) 

described 122 genera and included the position of the perichaetium as a major  

distinguishing  factor.  Two  major  types  were  distinguished:  i)  acrocarpous 

lineages where gametangia terminate the vegetative axis and ii) pleurocarpous 

taxa  with  gametangia  are  situated  on  the  tip  of  reduced  specialized  lateral 

branches. The importance of the sporophytic characters, either its position on 

the gametophore or the architecture of the peristome and overall capsule are 

also  reflected  in  the  dominant  classifications  by  Fleischer  (1904-1923) and 

subsequently  Brotherus  (Moose  in  Die  Natürlichen  Pflanzenfamilien,  1924-

1925).  In  principle  both  again  focus  on  the  peristomial  features  and  their 

development explored by Philibert (1884-1902)  (in Taylor, 1962). These traits 

are used to sort major bryophyte lineages ever since, as persitomial characters 
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were thought to be less effected by selection pressure, due to the fact that the 

moss sporophyte is nutritional depended on the gametophyte  (Browning and 

Gunning, 1979; Proctor, 1977; Renault et al., 1992; Uzawa and Higuchi, 2010), 

only  short-lived,  and  with  low  environmental  interactions  (Vitt,  1981).  Thus, 

modern classifications are based on sporophytic,  and specifically peristomial 

traits  like  count  and  formation  of  teeth  and  their  development  (Braithwaite, 

1887; Brotherus,  1924;  Crosby, 1980; Crum and Anderson, 1981; de Bridel-

Brideri,  1827;  Dixon,  1924;  Fleischer,  1908;  Grout,  1903;  Taylor,  1962;  Vitt, 

1981, 1984) and a few on gametophytic characteristics (Buck and Crum, 1990; 

Crundwell, 1979; Mitten, 1859; Saito, 1975; Schimper, 1855). 

Recent  molecular  studies  (Cox  et  al.,  2014,  2004;  Newton  et  al.,  2000; 

Wahrmund et al., 2010) found arthrodontous mosses to be monophyletic, thus 

being addressed as the class Bryopsida. Buxbaumiales and Diphysciales were 

resolved as the early branching taxa with high support, just like the species rich 

subclasses  Dicranidae  (all  haplolepideous  mosses)  and  Bryidae  (the 

diplolepideous-alternate mosses).  The phylogenetic position of the remaining 

subclasses on the other hand, have not been resolved satisfactorily, moreover 

the  position  of  these  groups  differ  respective  to  the  markers  used.  As  the 

branching order  is  of  outermost  importance to  interpret  the  evolution  of  the 

sporophyte in mosses, a novel approach was chosen based on a balanced set  

of markers from both organellar genomes. Thus, this study aims to resolve the 

branching order of the major moss clades with high confidence, which is, in 

conjunction with further studies on the peristome development, preliminary to 

derive a sound hypothesis on the peristome evolution. Furthermore, we fathom 

the divergence times and the speciation rates in the represented moss clades 

and identify evolutionary shifts in speciation rate over time in order to link the 

evolution of mosses with  the radiation patterns of  the remaining land plants 

through time.
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2. Materials and Methods

2.1 Taxon sampling and marker selection.

Backbone mosses dataset (BM): Initiated by an earlier study by Wahrmund et 

al.  (2010) we  composed  an  enlarged  taxonomic  and  molecular  data  set 

summarized in  Table 1 (appendix). On the one hand we included important 

lineages lacking such as the Oedipodiopsida, as well as the second genus of 

the  Tetraphidopsida  (Tetrodontium).  On  the  other  hand  some  genera  were 

added  to  cut  long  branches  such  as  Alophosia or  Atrichopsis.  In  addition, 

available  data  from  diplolepideous-alternate  mosses  such  as  Tetraplodon 

fuegianus,  Bryum  argenteum,  Orthotrichum  rogeri.  Nyholmiella  obtusifolia,  

Ptychomnion  cygnisetum,  Lopidium  concinnum,  Plagiothecium  laetum,  

Sanionia  uncinata,  Hypnum  cupressiforme  and Brachythecium  rivulare was 

added. The molecular markers were enriched by adding the trnK(matK) region 

(trnK(matK)) containing the complete  trnK group II intron and matK coding for 

the sole plastid maturase in land plants as well as the rpl16 group II intron and 

the  trnL group I intron (trnLg1).  Moreover, the  atpB – rbcL intergenic spacer 

(IGS) has been included, either downloaded from genbank or newly sequenced. 

Thus, in contrast to previous studies  (Cox et al.,  2010, 2004; Newton et al., 

2000; Wahrmund et al., 2010), this study predicates on a more balanced and 

character rich organellar dataset, i.e.  an almost equal amount of  plastid and 

mitochondrial data as well as lacking representatives from various groups.

Land plant outgroup data set (LP): Reconstructing the chronological evolution 

of  mosses  is  a  challenging  task,  since  fossils  with  reliable  assignments  for 

calibration are scarce. Four calibration points from the literature were applicable 

to our (moss) taxon sampling, one derived from cryptospores from the Himatian 

(Sporogonites spp.,  Halle, 1916; Kenrick and Crane, 1997; Rubinstein et al., 

2010,  and  three  from  fossilized  plant  organs  (Campimirinus  riopretensis, 

Christiano  De  Souza  et  al.,  2012;  Krassiloviella  limbelloides,  Shelton  et  al., 

2016;  Merceria  augustica,  Smoot  and Taylor, 1986).  To overcome this  poor 

fossil record, we rooted our dataset with a comprehensive outgroup containing 
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a  representative  sampling  of  all  streptophyte  lineages.  We  included  8 

streptophyte  algae,  15  liverwort,  69  moss  (~BM  dataset),  3  hornwort,  3 

lycophyte, 25 fern, 29 gymnosperm and 48 angiosperm species  (see Table 2, 

appendix). In addition to the six plastid and five chondrome markers in the BM 

dataset,  we added an outgroup set of  four additional plastid markers (psaA, 

psbB,  rrn23S, rrn16S) and completed three markers already used to provide 

overlap. The sequences were mostly harvested from whole plastid genomes 

deposited at GenBank, few were downloaded as single marker sequences. The 

whole concatenated set had an overall length of 28,464 aligned positions.

2.2. DNA Isolation, Amplification & Sequencing

DNA extraction from fresh or silica dried plant tissue was either done using the 

NucleoSpin®  plant  DNA  kit  (Macherey-Nagel,  Düren,  Germany).  DNA 

amplification  was  carried  out  by  PCR  using  published  primer  sets  and 

amplification  protocols.  Amplification  of  the  mitochondrial  regions  followed 

Wahrmund et al. (2010, 2009), for rpl16 Olsson et al. (2009), for trnLF Quandt 

and  Stech  (2004),  for  atpB–rbcL  Chiang  et  al.  (1998),  Stech  and  Wagner 

(2005),  for  rbcL  (Cox et  al.,  2000;  Hasebe et  al.,  1994) and for  trnK(matK) 

Wicke and Quandt (2009). In the case of trnK(matK) we substituted the reverse 

primer trnK-R4 with psbARbryo. Due to the length of trnK(matK)-psbA and the 

high  sequence  variation  of  the  region  lineage  specific  internal  sequencing 

primers  were  designed  (Table  03,  appendix).  Amplicons  were  separated  on 

1.2%  agarose  gels  and  subsequently  purified  with  Macherey-Nagel's 

NucleoSpin  Extract  II  kit.  Sequencing  was carried  out  at  MacroGen (Seoul, 

South Korea).

2.3 Contig Assembly, Sequence Alignment & Indel Coding

Sequences assembly and alignment was done in PhyDE (Müller et al., 2005), 

using  the  already  existing  scaffold  alignments  for  the  different  markers 

(Wahrmund et al., 2010) Manual alignment followed the motif alignment rules by 

Kelchner (2000). 
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Simple sequence repeats were isolated based on strict motif recognition, thus 

overlapping motifs that superficially contained identical motifs but deviated in 

length  were  considered  non-homologous  if  the  motifs  could  be  derived 

independently  from the adjacent  region (compare tab.  4 in  Quandt  & Stech 

2005; Kelchner 2000). Following the approach in (Quandt and Stech, 2003) and 

(Quandt and Stech, 2005, 2004), the data matrix was screened for inversions 

using secondary structure models calculated with RNAstructure 5.8.1  (Reuter 

and Mathews,  2010).  Detected inversions were positionally separated in the 

alignment.  As  discussed  in  (Quandt  and  Stech,  2004,  2003),  presence  or 

absence of detected inversions was not coded for the phylogenetic analyses. 

However,  in  order  to  gain  information  from  substitutions  within  detected 

inversions, a second alignment file for the phylogenetic analyses was generated 

with  the  inversions  included  as  reversed  and  complemented  sequences. 

Regions of ambiguous alignment (hotspots) were excluded from phylogenetic 

analyses. Hotspots  definitions  follow  Olsson  et  al.  (2009).  Alignments  are 

available from the authors on request. 

2.4 Phylogenetic Inference

In tentative analyses we compared the effect of different partitioning schemes 

and did not observe any significant difference in topology and support, thus we 

partitioned both datasets by marker in all analyses. 

A series of rapid bootstrap inferences with 10,000 replicates and subsequent  

ML  search  was  conducted  in  the  PThreads  version  of  RAxML-HPC  8.2.7 

(Stamatakis, 2014), compiled with the AVX extension on a 64bit linux server. 

The bootstrap inference used the GTRCAT approximation of rate heterogeneity 

with 25 distinct rate categories for nucleotide data and the accordant BINCAT 

model for binary data. In the final tree search, the tree scores and optimizations 

were  evaluated  under  the  GTRGAMMA  model  for  nucleotides  and  the 

BINGAMMA model for binary characters. Bayesian Inference was conducted in 

the MPI version of MrBayes 3.2.6 (Ronquist et al., 2012) using the GTR model 

with gamma distributed substitution sites and a proportion of invariant sites for 
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10 Mio. generations and 4 runs with 4 metropolis-coupled markov chains each. 

The heating parameter were set to a default value of 0.1, results from the cold 

chain  was  sampled  every  1000th state.  Convergence  of  all  four  runs  was 

checked  with  tracer  v1.6  (Rambaut  et  al.,  2014).  The  consensus  tree  was 

calculated discarding the first 25% as a burn-in fraction. 

2.5 Topology testing

Recent studies using different markers from other cellular compartments found 

different topologies with considerable support. The most striking incongruence 

occurred,  when  topologies  from  analyses  using  mitochondrial  markers  are 

compared to those inferred from plastid markers. Topology testing of alternative 

phylogenetic hypotheses were performed based on the per-site log likelihood 

scores  for  each  topology  with  model  parameters  re-estimated  for  each  tree 

obtained  in  RAxML.  To  indicate  the  significance  of  the  alternative  tree 

topologies at an α=0.05 level against the background of the whole concatenated 

nucleotide  matrix,  the  P-values  of  the  approximately  unbiased  test  (au-test, 

Shimodaira, 2002) and the Shimodeira-Hasegawa test (sh-test) were calculated 

in  CONSEL  v0.20  (Shimodaira  and  Hasegawa,  2001).  We  inferred  the 

significance  of  alternative  topologies  (tests  2-6)  and  for  comparison  the 

unaltered topology (test 1) from combined analyses in figure 10.

2.6 ILD, LRT: topology vs branch length congruence

Congruence of the plastid markers partition against the mitochondrial markers 

partition is tested via the incongruence-length difference test (ILD, Farris et al. 

1995) implemented in PAUP 4.0a152 (Swofford, 2003) and the likelihood-ratio 

test (LRT) based hierarchical clustering method implemented in Concaterpillar 

(Leigh et al., 2008). In both, the ILD and LRT test, the resulting p-values are an 

indicator, that we can reject the hypothesis of homogeneity at a given α=0.05.  

The  implementation  of  the  LRT  test  in  Concaterpillar  allows  testing  the 
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congruence of the topology and the compatibility of branch length in the tree 

separately. 

2.7 Tree editing and visualization

Phylogenetic trees were compiled and visualized in TreeGraph 2.3.0-425 beta. 

Nodes with less than 0.5 posterior probability resp. 50% bootstrap support are 

collapsed.  Chronograms  and  phylorate  plots  were  visualized  using  the  R-

packages phyloch (Heibl, 2013) and BAMMtools (Rabosky, 2014). A tanglegram 

comparing the topologies obtained by the mitochondrial or plastid data sets was 

plotted using the R package dendextend (Galili, 2015).

2.8 Divergence dating with r8s and BEAST

All markers in the LP dataset were concatenated to obtain a supermatrix that 

was  used  to  infer  a  topology  with  sufficient  node  support  in  RAxML  and 

MrBayes (Figure 25, appendix). The topology from ML - congruent with BI - was 

used  to  estimate  divergence  times  in  relaxed  clock  node  dating  in  r8s 

(Sanderson, 2003) and as a constraint topology in BEAST 1.8.3 (Drummond et 

al., 2012). To overcome convergence issues and to increase the compatibility of 

the data sets, all (highly) incompletely represented markers were excluded prior 

to starting the BEAST sampling runs. This resulted in a limited set of 4 markers 

– matK, rbcL, rps4 and trnL core – in total 5620 aligned positions.

In  both  Analyses,  we  used  the  same  set  of  calibration  points  spanning  43 

reliable  fossils  from all  included groups and one estimated calibration  point 

concerning the putative split of streptophyte and the chlorophyte algae, in this  

analysis this point defines the age of the root node (Hackett et al., 2007).

r8s: We used a relaxed clock approach implemented in r8s 1.80 (Sanderson, 

2003). The ML topology with substitution rates was used to infer absolute rates 

and ages of nodes using the semiparametric penalized likelihood method, the 

optimal values of the smoothing parameter was determined via cross-validation. 

To get substitution rates for the root node, the outgroup (streptophyte algae) 

was pruned. All fossil calibrations were implemented as a minimum constraint in 
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r8s,  only  the  age  of  the  angiosperm  crown  group  was  implemented  as  a 

maximum.

BEAST: As  in  MrBayes,  we  implemented  the  GTR  model  for  nucleotide 

substitution rates with a proportion of invariant sites and gamma distributed site 

rate variation with  four  distinct  gamma categories.  The clock model  was an 

uncorrelated relaxed clock with log-normal distribution of rate variation. The tree 

prior was a birth-death speciation model  (Gernhard, 2008) with a constrained 

topology.  Clock  model  and  tree  priors  were  linked  across  the  four  sites, 

parameters  of  the  substitution  model  were  estimated  for  each  marker 

separately. Node calibrations were modeled as lognormal distributed constraints 

with a standard deviation of 0.5 in most cases or 1 in case of the estimated age 

of the root. (Table 4 in appendix) 

2.9 Modelling speciation rate heterogeneity

To test the level of heterogeneity in diversification rates at class/ordinal level in 

the  tree,  a  speciation  analysis  was  performed  on  the  pruned  mosses 

chronogram from the BEAST analysis using BAMM 2.5.0 (Bayesian Analysis of 

Macroevolutinary Mixtures) and BAMMtools 2.1.4 (Rabosky, 2014). To account 

for incomplete taxon sampling, we compiled a summary of known species per 

clade  and  used  this  data  as  an  estimator  for  clade  specific  sampling 

probabilities.  (Table 5 appendix) The global sampling fraction was set to one 

assuming monophyly of the moss lineages and having approximately all taxa of 

extant  mosses  enlisted.  The  initial  priors  were  proposed  by  the  function 

“setBAMMpriors” in BAMMtools.

The aim is to find the best distinct rate shift configuration from a landscape of 

possible shift  configurations that differ in count and position of shifts. BAMM 

samples such sets of rate shift configurations with the help of a Markov chain in 

a Bayesian framework and computes the joint probability of a configuration of 

possible rate shifts. After the best rate shift configuration is found, we calculate 

the clade specific speciation rate and its corresponding background rate – that 

is  the  speciation  rate  of  the  tree  excluding  the  respective  clade –  for  each 

identified rate shift position. Additionally, the frequencies of shift counts for all  

29



samples in this run were summarized and their posterior probability calculated. 

Four independent runs with four Markov chains each were conducted for 10 

Mio.  generations  and  sampling  every  10.000th state.  After  checking  for 

convergence of the runs via the R-package “coda” (Plummer et al., 2006), we 

analyzed and plotted the results from the BAMM runs in BAMMtools. To check 

for  hypersensitivity  of  the  γ-prior  (expected  number  of  frame  shifts),  we 

conducted a series of runs with increasing γ values; 2, 5, 10, 100. We tested the 

significance of differences of the resulting posterior distribution via a one way 

analysis of variance (ANOVA).

3. Results

3.1.0 Alignments

BM: The final concatenated alignment comprises 69 Taxa and 15922 characters 

after  exclusion  of  hotspots  and  reverting  of  inversions,  42.5% of  which  are 

variable, 27% sites are parsimony informative (pi). Overall GC-content is 32.8%. 

The  mitochondrial  markers  partition  covers  7,259 characters,  with  a  mean 

sequence length of 5,926 nucleotides per taxon (SD 370.941). 39.9% of the 

aligned positions are variable, 22.9% are parsimonious informative. The GC-

content was 38.5%. The combined plastid markers alignment has a length of 

8,663 characters  and  a  mean  sequence  length  of  5,473  nucleotides  (SD 

126.25). 45.1% of the aligned positions are variable, 32.3% are parsimonious 

informative. The GC-content was 26.7%

LP:  The bigger dataset  included total  200 taxa from all  known Streptophyte 

plant  lineages.  The  supermatrix  comprised  28,760  character  positions,  the 

mean  sequence  length  11,898  (SD  2,705).  The  reduced  LP dataset  (rbcL,  

matK, rps4, trnL(core)) comprised 5677 character positions, a mean sequence 

length of 3,338 nucleotides (SD 453.63). 
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3.1.1 Backbone phylogeny of mosses

We obtained an unequivocally resolved and well-supported backbone tree, only 

a few nodes are not fully supported by more than 95%. The outgroup phylogeny 

obtained by LP data resolved all major land plant clades with sufficient support 

with liverworts being the first branching lineage, sister to all other land plants. 

Mosses branch next, followed by hornworts and vascular plants. Figure 8 shows 

the phylogeny with ML and BI support values plotted at each node, including 

indelcoding (above) or excluding indelcoding (below) each branch.
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Figure 8: Phylogeny of all extant moss lineages with BI (left values) and ML (right 
values) support. Values above the branch are inferred by the datasets with indel coding 
(Simmons and Ochoterena, 2009), those below the branch are inferred without indel 
coding.



LP-Data identified with confidence via BI and ML analyses that Sphagnum and 

Takakia constitute  the first  branching lineages,  sister  to  all  other  mosses.  A 

sister relationship between these two is only significantly supported by Bayesian 

inference. The next branching taxon is Andreaea, followed by Oedipodium and 

the  peristomate  mosses.  Among  peristomate  mosses,  the  Polytrichopsida 

branch first followed by Tetraphidopsida, which are sister to the arthrodontous 

mosses and render the nematodontous mosses paraphyletic. 

The arthrodontous mosses form a well-supported clade with the aperistomate 

Buxbaumiidae  and  Diphyscidae  as  the  first  branching  lineages.  The 

Gigaspermidae are sister to the diplolepideous-opposite Funariidae, which in 

turn  are  sister  to  the  Timmiidae.  The  Timmiidae  finally  are  sister  to  the 

haplolepideous Dicranidae and the diplolepideous-alternate Bryidae.

The position  of  the  Tetraphidopsida  in  relation  to  the  Polytrichopsida  varies 

depending  on  the  organellar  origin  of  the  data.  When  using  mitochondrial 

sequences  only,  Tetraphidopsida  together  with  the  Polytrichopsida  form  a 

significantly supported clade that is sister to the Bryopsida. When using plastid 

markers or a (balanced) combination of mitochondrial and plastid sequences, 

the Tetraphidopsida resolve as sister to the Bryopsida with high support in BI 

and medium support in ML analyses. 

While  in  analyses  based  on  the  plastid  or  the  combined  data  set,  the 

aperistomate Gigaspermidae form a clade sister to Funariidae, Timiidae and the 

remaining Bryopsida with maximum support, in mitochondrial analyses we find 

the  Timmiidae  sister  to  the  Gigaspermidae  which  in  turn  are  sister  to  the 

Bryidae. The latter topology has only insignificant support.

As expected, the first branching Taxa in the Bryopsida are the Buxbaumiidae 

followed by the Diphysciidae with high support in all analyses.
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3.1.2 Testing the congruence of plastid and mitochondrial data

In direct comparison, topologies obtained from each organellar compartment, 

i.e. plastid versus mitochondrial data are clearly incongruent in some important 

nodes. The most striking difference concerns the position of the Timmiidae, the 

Gigaspermidae and Tetraphidae (see Figure 9) . When testing the congruence 

of the plastid and mitochondrial data via ILD test, the calculated p-value was 

p=0.001,  indicating  that  at  α=0.05  level,  we  should  reject  the  congruence 

assumption. At the same time, the LRT test found a raw p-value of 0.58 and a 

Weibull-smoothed p-value of 0.592125 in the topological congruence test, but 

p=0.0000 in the branch length compatibility assessment.

3.1.3. Topology tests

Topology  testing  suggests  that  only  the  alternative  hypotheses  c) 

Gigaspermidae sister to Bryidae and d) Timiidae sister to Gigaspermidae and 

these  sister  to  Bryidae  can  be  rejected  at  the  confidence  level  of  α=0.05. 

Hypothesis  b)  however  Timmiidae  sister  to  Bryidae  is  favored  by  a  strong 

phylogenetic signal from the mitochondria and cannot be rejected.

Table : Topology tests comparing original and alternative topologies against the 
concatenated alignment

No. description of the topology AU SH

1 original Topology 0.695 0.936

2 Timmiidae sister to Bryidae 0.247 0.649

3 Gigaspermidae sister to Bryidae 0 0

4 Timmiidae sister to a Gigaspermidae and Bryidae 0 0

5 nemantodontous monophyly; 
i.e. Polytrichopsida sister to Tetraphidopsida, 

both sister to arthrodont mosses

0.499 0.778

6 Tetraphidopsida branching first, 
i.e. Tetraphidopsida sister to Polytrichopsida & Bryopsida 

0.051 0.565
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3.2 Divergence Dating 

Divergence times estimations are presented as a chronograms in figures 23 

(BEAST) and 24 (r8s), a pruned chronogram obtained from BEAST analyses 

that includes only the mosses, is a component of the phylorate plot in figure 11.

The crown node of the Bryophytina is dated at a mean age of 414 [395.8 – 

433.5 95% HPD] mya. Diversification of all Bryopsida classes happen within the 

Carboniferous  (358.9  –  298.9),  all  other  classes  originate  in  the  Devonian 

(358.9 – 419.2). The Pybus Harvey (Pybus & Harvey, 2008) gamma statistic 

calculated  from  this  chronogram  is  -0.99.  A  two  tailed  test  on  the  null 

hypothesis,  that  the tree exhibits  a  constant  rate of  diversification yielded a 

value  of  p=0.32,  clearly  rejecting  the  constant  rate  of  diversification  at  the 

α=0.05 (for one sided tests) and the α=0.10 (for two-sided tests). 
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each tree. Altered branches are indicated in red. Result



3.3 BAMM Analyses

All chains converged quickly within the first 10 mio. generations, so 25% were 

discarded as a burn-in,  effective sampling sizes exceeded 1000 for the log-

likelihood and number of shift events in each sample. 

The  95%  credible  set  of  rate  shift  configuration  contains  191  distinct 

configurations,  the  frequency  of  each  rate  shift  count  observed  during  the 

simulation posterior is shown in table 2.

Table 1: Posterior probability of each rate shift count observed during the runs.

No. of Shifts 2 3 4 5 6 7 8 9

Posterior probability 0.037 0.082 0.230 0.160 0.180 0.150 0.086 0.041

Table 3 shows the nine shift configurations with the highest posterior probability. 

The core shifts are distinguished by the marginal odd ratio from the non-core 

shifts. The marginal odds provide an estimated rate shift  density on a given 

branch rather than the marginal probability for one or more shift events on that  

branch.  In  this  analysis,  the  shift  configuration  with  the  highest  posterior 

probability  has 4  core  shifts.  The first  shift  occurred at  a  branch within  the 

Dicranidae  in  the  end  of  the  lower  Jurassic  (~174  mya).  The  second  shift 

occurred at the branch leading to the Hypnales after the split  Hookeriales – 

Hypnales during the late lower Cretaceous. The third shift occurred within the 

Polytrichales in the early upper Cretaceous, after the split of Alophosia and the 

rest of the Polytrichales. The last shift of this set lies on the branch leading to  

the  Orthotrichiales,  dating  back  to  the  late  upper  Cretaceous.  Figure  20 

(appendix) depicts the estimated speciation rate through time and the relative 

difference  in  speciation  rate  between  the  clade  specific  rates  and  the 

background rate, which is the speciation rate of the tree lacking the respective 

clade.
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Table 2: List of the nine shift configurations with the highest posterior probability. In 
Figure 19 (appendix) the corresponding 3x3 plot of these shift configurations on their 
respective phylorate plots are presented.

rank Probability Cumulative # core shifts

1 0.235435275 0.2354353 4

2 0.125983202 0.3614185 5

3 0.118917478 0.480336 5

4 0.095853886 0.5761898 4

5 0.066657779 0.6428476 4

6 0.047327023 0.6901746 4

7 0.041594454 0.7317691 3

8 0.035195307 0.7669644 3

9 0.024930009 0.7918944 3

Table 3: The mean speciation rate for all clades with an estimated core shift event and 
their background speciation rate. A corresponding graphical presentation is in figure 
20 (appendix)

Core shifts at 
clade

Clade 
specific 
diversificatio
n rate

5% 
quantile

95% 
quantile

Backgroun
d rate

5% 
quantile

95% 
quantile

Bryophytina 0.0511 0.0352 0.0730 - - -

Hypnales (core) 0.1901 0.0973 0.3458 0.0399 0.0265 0.0597

Dicranidae 0.1125 0.05711 0.19939 0.0423 0.0278 0.0644

Polytrichopsida 0.0764 0.0165 0.1646 0.0502 0.0342 0.0726

Orthotrichiales 0.0636 0.01760 0.1310 0.0507 0.03451 0.0731
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4. Discussion◄

The results from the two congruence tests seem to be contradictory at  first 

sight, but the failing ILD and branch length compatibility test on the one hand 

and the significant topological congruence in Leigh's LRT test on the other both 

strongly suggest a decoupled profile in changes of substitution rates in both 

organelles during the early evolution of mosses. The topological congruence 

however is evident. As figured out in simulations by Barker and Lutzoni 2002, 

the ILD test  can be – under  certain  biologically  realistic  conditions  such as 

heterotachy (disparate substitution rates in a site between taxa) – rejected as 

an unbiased measure of phylogenetic congruence (Darlu and Lecointre, 2002; 

Dolphin  et  al.,  2000;  Graham  et  al.,  1998;  Yoder  et  al.,  2001).  Especially 

heterogeneity in substitution rates among taxa and clades, such as those found 

in our BAMM analyses and the significant p-value of the Pybus gamma test, 

seem to be not detectable by ILD. Therefore, prediction of compatibility based 

on ILD tests alone may be inappropriate in this study, but may serve as an 

indicator of incongruent evolutionary dynamics in or inheritance of plastids and 

mitochondria during the evolution of mosses (compare Liu et al., 2011). 

At the deep level nodes, we find all the monogeneric classes that do not - and 

probably  never  did  –  posses  a  peristome,  hence  the  peristome  is  again 

identified  as  a  secondary  (derived)  characteristic  of  peristomate  mosses, 

achieved  in  one  event  before  the  split  of  the  Polytrichopsida  and  the 

Tetraphidopsida  during  the  upper  Devonian  approximately  358  to  382  mya. 

◄Figure 11: Pruned Chrongram of the bryophytina clade colored by the rate of 
speciation, estimated in BAMM. Legend of the speciation rates corresponding to the 
branch colors in the lower right. Error bars showing the 95% HPD interval drawn in 
red. Placement of rate shift configuration with the highest probability of 0.13: 4 core 
rate shifts, depicted by red circles. Bars on the right hand side show species richness in 
each clade, refer to table 15 for details. Takakio. = Takaiopsida, Sphagn. = 
Sphagnopsida,  Andrea. = Andreaeopsida, Oedipod. = Oedipodiopsida,   Polytrich. = 
Polytrichales, Tetraphid. = Tetraphidales, Buxbau. = Buxbaumiidae, Diphysc. = 
Diphysciidae, Gigasperm. = Gigaspermales, Catoscop. = Catoscopiales, Timiell. = 
Timiellales, Scouler. = Scouleriales, MADP = 
Mitteniales+Archidiales+Dicranales+Pottiales (nested in Dicranales), Splachn. = 
Splachnales, Hedwig. = Hedwigiales, HeBa. = Helicophyllales+Bartramiales, Bry. = 
Bryales, Ortho. = Orthotrichales, Orthod. = Orthodontiales, Aula. = Aulacomniales, 
Ptych. = Ptychomniales, Hooker. = Hookeria.
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Takakiopsida and  Sphagnopsida share little morphologic similarities, but most 

analyses from all three genomes (Cox et al., 2004; Newton et al., 2000; Qiu et 

al., 2006) are resolved as a sister relationship of these two classes, or are at 

least presented as such, when no outgroup is present  (Beckert et al., 2001). 

Our dating analysis is generously rooted by a representative phylogeny of all 

streptophyte groups and shows this clade as well with maximum support in BI 

but  low support  in  ML analyses,  which  may reflect  a  common phylogenetic 

artifact (Goffinet and Buck, 2004).

The  paraphyly  of  the  nematodontous  mosses,  the  Polytrichopsida  and  the 

Tetraphidopsida renders the nematodont peristome a paraphyletic feature which 

is likely to be the plesiomorphic state for all peristomate mosses (sensu Mishler 

and Churchill, 1985). However, the alternative assumption of monophyly among 

nematodontous mosses cannot be rejected via topology tests. Additionally, the 

support for the node placing the Tetraphidopsida sister to the Bryopsida is only 

significant in the BI analysis including indel coding.

Peristome  teeth  from  haplolepideous  mosses  are  homologous  to  the 

endostome  of  diplolepideous  mosses  (Magombo,  2003).  The  peristomes  in 

Buxbaumiidae and Diphysciidae are clearly arthrodontous, since they are cell  

wall remnants. But as their endostome is not divided into teeth, segments or 

cilia,  and  in  Buxbaumiidae,  the  peristome  (->exostome)  is  associated  to  a 

structure called pseudoannulus  (Grout,  1903) or parastome  (Edwards, 1984) 

lying exterior to the exostome, their homology to the diplolepideous peristome 

has been controversially discussed (Edwards, 1984; Magombo, 2003; Shaw et 

al., 1987; Taylor, 1962; Vitt, 1984). Additionally, the peristome in Diphysciidae is 

lacking a parastome and if present, the exostome is only rudimentary (Shaw et 

al., 1987). Diphysciidae and Buxbaumidae have been considered to be closely 

related (Brotherus, 1924; Crosby, 1980; Vitt, 1984), and developmental studies 

in  Diphyscium foliosum suggest a closer relationship to haplolepideous rather 

than nematodontous mosses (Shaw et al. 1987). In fact, it is now considered as 

an intermediate type between these two groups  (Shaw et al.,  2011; requires 

more studies) which is nicely reflected in the phylogenetic reconstructions. 
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All speciation shifts occurred during the Cretaceous except for the shift in the 

Dicranidae  which  occurred  considerably  earlier  in  the  upper  Jurassic.  The 

placement of the shifts at a certain time point om a branch should be carefully 

interpreted  due  to  uncertainties  arising  from  the  complexity  of  evolutionary 
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dynamics. However, we can not observe any correlation between the rise of a 

clade with a unique peristome type and the presence of speciation rate shift.

The most influential speciation rate shift is located on the branch leading to the 

so called core pleurocarpous mosses (Hypnales, Figure 11), the most species 

rich moss lineage that diversified quite late in the upper Cretaceous. In this 

lineage, the speciation rate trebled during the cretaceous, which supports the 

assumption of rapid radiation in pleurocarpous mosses also found in Shaw et al. 

(2003). 

Pleurocarpous mosses contain many species that grow epiphytically, e.g. as 

mats on branches and patches on tree trunks. The speciation rate over time plot 

of the core pleurocarps (Figure 11) shows an important shift in speciation rate at 

the boundary of the lower to the upper Cretaceous (100 Mya), while significantly 

lowering the background speciation rate without that clade (Figure 20). Earlier  

and weaker, the second core shift in the Dicranidae occurs in middle Jurassic 

(174 -164 Mya)  and has a  considerably  lower  influence on the  background 

speciation  rate.  The core  speciation  shift  in  the  hypnalean clade resembles 

findings from recent  studies by  Fiz-Palacios et  al.  (2011)  and Laenen et  al. 

(2014). Species richness in the core pleurocarpous mosses as a result of either 

increased speciation rate or decreased extinction rate (Silvestro et al., 2015) is 

found  to  be  dependent  on  the  diversification  of  the  angiosperms  in  the 

Cretaceous (Schneider et al., 2004). 

Rather than simply supersede other lineages that were previously dominating 

the  ecosystems  (sensu  “sequential  replacement  hypothesis”,  (Kenrick  and 

Crane, 1997; Laenen et al., 2014; Niklas et al., 1983), the Angiosperms, after 

evolving from specialists in wet and disturbed habitats to dominant arborescent 

species by the end of the Cretaceous (Feild et al., 2004), created new nutrition 

rich  ecosystems  by  changing  their  environment  and  the  local  climate  itself 

(Boyce et al., 2010, 2009). These new habitats in complex angiosperm woods 

were then colonized by certain moss species and polypod ferns (Schneider et 

al.,  2004;  Shaw et  al.,  2003).  This  hypothesis  is  referred  to  as  shadow of 

angiosperms  hypothesis  (Laenen  et  al.,  2014;  Schneider  et  al.,  2004; 

Schuettpelz and Pryer, 2009), which is a likely explanation in the case of the 
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pleurocarpous mosses and coincides with a shift in life form from terrestrial to 

epiphytic (compare Huttunen et al., 2012).

Considerably earlier, at the lower to Jurassic (201 – 174 Mya), the second core 

frame shift  occurred within the Dicranidae after the split  of  Drummondia and 

before the split of Grimmiales and the rest of the Dicranales. This might be an 

effect of increased radiation in the Triassic-Jurassic in the recovery phase of the 

late Triassic mass extinction event (Tr-J; ~200 mya) (Jablonski, 2005; Niklas et 

al., 1983; Raup and Sepkoski, 1982). Four of the five major extinction events 

have been reported to significantly influence plant species divergence during 

Paleozoic and Mesozoic (Jablonski, 2005). In a study on ancient vascular plant 

species diversity by Silvestro et al. (2005), based on mining fossil databases, 

rates of origination and extinction before and after such events were compared. 

It was found that the origination of gymnosperms decreased significantly, while 

spore bearing plants had a decent increase in origination. 

Diversification studies on plant fossil tend to suffer from uncertainties such as 

unclear  or  uncertain  species  identification,  fossil  record  from different  plant 

organs of the presumably same species or general effects that would bias such 

studies (Silvestro et al., 2015). There is also a known discrepancy between the 

record  of  macrofossils  and  sporomorph  fossils  during  the  Triassic-Jurassic 

mass extinction event that was explained by an extinction emphasis on plant 

species with specialized reproductive biology, e.g. insect pollinated plants. Mass 

extinction  events  with  negative  effect  on  the  pollinator  directly  affects  the 

diversity  of  the  pollinated  species,  but  may  have  a  positive  effect  on  the 

diversity  of  pollinator  independent  species  (Mander  et  al.,  2010).  However, 

since  mosses  have  a  quantitatively  negligible  fossil  record  that  was  not 

considered in that study, these conclusions are based solely on early vascular 

plants but should be alienable on mosses.

Speciation rate shifts seem to be independent from the occurrence of the major 

peristome types. The evolution of a new peristome type could not be identified 

as  a  key  innovation  that  would  significantly  increase  the  speciation  of  the 

descendants. In fact, all peristome types evolved in a narrow time scale, but the 

relevance of their benefits if any, e.g. in regulation of spore dispersal, should 
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turn out to be important much later. We found evidence for four speciation rate 

shifts, but in a temporal context, these shifts do not correlate with the rise of the 

peristomial  types,  which  indicates  the  importance  of  peristomes  as  an 

environmentally somehow unaffected character for phylogenetic classifications. 

More influential than the peristome is the occurrence of pleurocarpy that might 

be  a  beneficial  trait  in  the  evolution  of  the  Hypnales  which  contain  a  high 

percentage of epiphytic species, especially in the tropical cloud forests. 

This  study  yields  an  outstandingly  supported  tree  hypothesis  resolving  the 

backbone phylogeny of all extant moss lineages with significance. Divergence 

time dating indicates an early evolution of all extant peristome types during the 

Carboniferous.  Shifts  in  diversification  however  occurred  much  later  in  the 

Jurassic and Cretaceous.

Combining  nucleotide  data  from  different  organelles  or  the  nucleus  may 

sometimes bear the risk of combining incongruent data. Reasons for incongruity 

can be horizontal gene transfer, incomplete lineage sorting or early hybridization 

events  during  the  radiation  of  early  moss  clades  in  the  Devonian  and 

Carboniferous (419.2 to 298.9 mya). Preceding studies already revealed very 

short  branches  especially  in  the  earliest  divergences  within  the  bryopsida 

(Volkmar  and  Knoop,  2010;  Wahrmund  et  al.,  2010).  In  this  study,  the 

congruence of topology is tested via the LRT (Leigh et al., 2008) and it is found 

significant at the α=0.05 level. The ILD test and the branch length assessment 

via  the  LRT,  however,  revealed  significant  incongruence  between  both 

partitions. Rather than a true incongruence resulting from different history of 

plastids and mitochondria, this points to a high level of disparity in plastid and 

mitochondrial substitution rates in the early evolution of mosses. This can be 

observed by eye when looking at the ratograms of the mt and the cp trees 

(Figures 21 & 22, APPENDIX).  Here, we do not only observe overall  higher 

substitution rates in the cp tree, but also proportionally longer branches at basal  

splits within the Bryopsida in the cp tree that have almost no branch length in 

the mt tree and scarce support as well.
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Note on the controversy upon BAMM

The author(s) are aware of the debate on the reliability of BAMM (Moore et al., 

2016), that came up shortly after completion of this paper. Two issues were 

addressed by Moore et al., firstly concerning the negligence of the possibility of 

diversification rate shifts in extinct lineages and thereby an incorrect likelihood 

calculation and secondly the extreme sensibility to arbitrary prior assumption of 

the  cpp  prior  model.  In  a  response  to  these  objections,  Rabosky  et  al. 

(2017) clarified these points  as either  irrelevant for  empirical  studies,  or the 

result of using undocumented functions of the program. On submission of this 

paper, no alternative method with approximately the same functionality like the 

ability to account for the number of species per clade that are not sampled. This 

feature enables inference of speciation and extinction rates on data sets like the 

one used in this study at all. As we do not have alternative methods to compare 

the results, we consider this method as useful and carefully interpret the output 

as tendencies with an associated probability.

To test for the disproportionate influence of the expectedNumberOfRates prior, 

we repeated the analyses with a range of different priors [1,2,5,10,100]. The 

most influential frame shifts were always recovered, furthermore the same three 

highest ranking rate shift configurations were always recovered (see table 16, 

appendix). So far, we assume that results from our dataset are correct.
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Chapter 3: Phylogenetic structure (RC, RC,fix, RC,fix(S)) of 

organellar markers

Abstract. A quantitative measure for effective phylogenetic signal is crucial for 

selecting the right set of markers for phylogenetic reconstructions. Even in times 

of  ever-increasing  availability  of  whole  genome  data  from  flourishing  next 

generation  sequencing  on  a  few  representative  taxa,  knowledge  about  the 

performance  of  each  marker  employed  in  a  phylogenetic  study  in  a 

comprehensive  rich  taxon  sampling  remains  important.  Constitutive  on  a 

method  proposed  by  Müller  et  al.  2006,  which  allows  to  directly  compare 

phylogenetic structure between markers by a re-sampling strategy, we expand 

the concept of phylogenetic structure R to address additional questions about 

the distribution and congruency of phylogenetic structure in a marker or partition 

and a given tree. If the input tree is a chronogram we can also test for temporal  

gradients in phylogenetic structure of a marker as a trend to resolve preferably 

either  deep  level  or  shallow  level  relationships.  This  widened  concept  was 

applied  in  a  study  that  directly  contrasts  the  performance  of  mitochondrial 

markers against plastid markers from 69 representative species from all classes 

of extant moss species.

Keywords: Phylogenetic structure; phylogenetic gradient analysis; 

Introduction

The increasing availability of genomic data derived by continuously improving 

sequencing techniques offers enthralling insights into the evolution of genomes 

and their organization  (Eisen, 1998). More than just a spin-off, phylogenetics 

can now use genome wide surveys to resolve species trees, spawning the new 

area of phylogenomics. The benefits from genome wide data assemblies are at 

46



hand,  as  statistical  precision  in  multi  locus  studies  should  increase  with 

accumulated data, although increasing precision through sample size does not 

inevitably increase accuracy  (e.g.  Rannala and Yang 2008).  Nevertheless,  a 

glut  of  whole  genomes  derived  via  diverse  next  generation  sequencing 

technologies and faster computers, lead scientist to compile phylogenomic data 

sets with dozens or hundreds of easy to align genes  (Betancur et al.,  2014; 

Blaimer et al., 2015; Philippe et al., 2011; Zhong et al., 2015). What is usually 

left out in these approaches are the noncoding and fast evolving regions of the 

genomes, as scientists avoid them due to theoretically high levels of homoplasy, 

an assumed saturation effect that would superimpose the phylogenetic signal 

and the rather time-consuming homology assessment (alignment)  caused by 

extensive microstructural evolution of noncoding DNA (Bird et al., 2006; Blaimer 

et al., 2015). In line with this background the conventional wisdom on marker 

selection in the early days of phylogenetics was that variability and substitution 

rates  of  a  marker  should  match  the  level  of  phylogenetic  profundity  of 

relationship between the taxa contained in the study. As a simple rule, marker 

with high substitution rates should be used to explore shallow level relationships 

only,  and  deeper  taxonomic  relationships  should  only  be  inferred  by  highly 

conserved  regions.  Due  to  a  humble  fraction  of  parsimony  informative 

characters in those regions,  one would need lots  of  sequenced nucleotides, 

possibly at the expense of a favorable dense taxon sampling (Zwickl and Hillis, 

2002). 

In  1998, Olmstead et al.  assumed that genes with higher evolutionary rates 

might still be useful in deeper level phylogenies, because the higher fraction of 

parsimony informative sites may be of superior impact as adequately limited 

substitution rates. Later, Källersjö et al. (1999) found that the homoplasy in third 

codon  positions  in  a  very  taxon  rich  rbcL data  set,  that  would  have  been 

excluded  or  weighted  at  a  minor  level  otherwise,  could  increase  the 

phylogenetic  structure  in  phylogenetic  reconstructions.  Finally,  Borsch  et  al. 

(2003) showed that a plastid noncoding region, i.e.  trnT-F composed of two 

intergenic spacers (IGS) and a group I intron could be reliably aligned across 

angiosperms.  In  addition,  Borsch  et  al.  (2003) inferred  a  phylogeny  that 

congruently reflected multigene reconstructions of basal angiosperms (Graham 
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et al., 2000; Qiu et al., 2005), although only fifth of the sequence data per taxon 

was  required.  The  theory  of  a  more  equitable  distribution  of  phylogenetic 

information due to low selective constraints arose and was tested by Müller et 

al. (2006) and Barniske et al. (2012). In the quantitative comparative study on 

the backbone phylogeny of Eudicots,  Barniske et al. (2012), showed that the 

plastid phylogenetic markers used in their study differed significantly in quality 

and amount  of  phylogenetic  structure.  While  markers  with  conserved genes 

performed  rather  poorly  even  at  deep  levels  of  phylogenetic  relationship, 

markers including noncoding DNA like group I introns (GI) / group II introns (GII) 

and inter genetic spacer (IGS) yielded significantly more phylogenetic structure. 

In this study, we aim to investigate the portability of these findings to

a) the second organellar genome of plants: the chondrome and 

b) a different and considerably older land plant lineage.

Phylogenies  from  mitochondrial  marker  in  higher  plant  groups  are  rather 

uncommon,  as  an  increasing  degree  of  recombination  precludes  the 

establishment  of  universal  phylogenetic  markers  from  orthologs  across  all 

lineages  (Grewe et al.,  2009; Guo et al.,  2016). In contrast to the plastome, 

where recombination among angiosperms is rather rare (compare Wicke et al. 

2011) the  chondrome might  even  display  a  highly  divergent  linear  structure 

among closely related angiosperm lineages (compare Wang et al., 2012). Since 

noncoding regions from the chondrome are not  stably present,  they are not 

targeted at in land plant phylogenetics. And only few studies include mt coding 

regions, such as a study by (Qiu et al., 2010) on angiosperms that employed 4 

mitochondrial  genes.  Within  early  land  plant  lineages,  however,  such  as 

liverworts and mosses, recombination of the chondrome is less frequent, and so 

far published genomes are congruent (compare Liu et al. 2011). Another unique 

feature  of  mosses  (just  like  in  hornworts)  is  the  availability  of  established 

mitochondrial phylogenetic markers with positionally stable introns and spacer 

(Knoop, 2010; Stech and Quandt, 2010), offering the chance to directly evaluate 

the phylogenetic structure of selected coding and noncoding markers from both 

organellar  compartments  at  the  same  time  in  one  of  the  oldest  land  plant 
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lineages,  i.e.  mosses.  This  would  extend  the  power  of  phylogenetic 

reconstructions using noncoding DNA to almost 450 MY. 

Additionally, we calculate the phylogenetic structure in each marker or partition 

against a given topology to test the agreement of the marker and the inferred 

species tree. Finally, we test for a temporal gradient of phylogenetic structure on 

a chronogram as a correlation between node support and divergence times.

Material and Methods

Dataset: In this study, the dataset from chapter 2 was used comprising a multi-

marker  alignment  containing 4  mitochondrial  and 5 plastid  markers from 69 

moss taxa representing all major lineages of the Bryophyta. The mitochondrial 

markers contained one group I intron (nad2i156), two group II introns (nad5i753 

and  cobi420) and one intergenic spacer (nad5-nad4 IGS), all along with their 

flanking genes. The plastid dataset contained the sole group I intron residing in 

trnL,  two group II  introns (rpl16  and trnK),  one spacer  (atpB-rbcL IGS),  the 

genes rps4, rbcL and matK).

The estimated divergence times from chapter 1, were also used to integrate the 

age of the nodes of the constraint phylogeny into the analysis. The ranges of 

the markers are defined in a partition file, from which individual exclusion files 

are obtained during re-sampling of the compared markers.

Phylogenetic structure RC and RC,fix: Phylogenetic structure of a marker is 

identified based on the definition given in Müller et al. (2006). Here, the term 

refers  to  the  sum  of  support  across  resolved  nodes  in  a  tree.  The  most 

characteristic property of this measure is that it is 1 in a completely resolved 

and maximally supported tree and 0 on a tree with no support higher than 50% 

bootstrap or 0.5 posterior probability, respectively. 

The perl pipeline used in this study is an extension of the pipeline used in Müller 

et al. 2006 (MBH). Calculation of the statistic phylogenetic structure RC is based 

entirely on the definition outlined in MBH, the only exception is the dimension 

criterion  to  which  the  sizes  of  the  partitions  are  compared.  While  MBH 
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compares  the  number  of  aligned  positions  in  each  marker  alignment  and 

inferred phylogenetic structure per aligned site, we compare the total count of 

nucleotides  per  marker  or  partition  obtaining  the  phylogenetic  structure  per 

sequenced nucleotide (Barniske et al., 2012)

To compare the phylogenetic structure per sequenced nucleotide (RC) in each 

partition, the data from each partition has to be normalized via a re-sampling 

process. To achieve this, the total  amount of nucleotides in each partition is 

calculated first. Then, replicates that match the nucleotide count of the shorter 

set are randomly generated from the longer partition in each comparison. The 

difference of  the  mean phylogenetic  structure  across  the  replicates  and the 

phylogenetic structure in the smaller partition is then calculated and presented 

for  each  marker  pair,  which  finally  allows  to  compare  the  amount  of 

phylogenetic structure.

Re-sampling and calculations are processed in a perl pipeline that iteratively 

calls RaxML-v8  (Stamatakis, 2014) to compute the bootstrap samples and to 

calculate the bipartition frequencies on either the replicate's best-scoring ML 

tree to obtain the measure RC or the constraint topology, thus obtaining RC,fix. 

Calculations  of  these  two  different  variants  of  the  phylogenetic  structure 

measure are carried out simultaneously:

RC: Node frequencies from bootstrap samples are computed on the  

tree  with  the  highest  likelihood derived  from each  replicate,  thus  not  

requiring a priori knowledge about the topology,

RC,fix Node frequencies  from bootstrap  sample  are  plotted  against  a  

user provided tree (constraint tree. Additional analyses on the relation  

between node ages and phylogenetic structure can be carried out, if the  

tree is a time calibrated ultrametric chronogram.

Phylogenetic gradient G: When the phylogenetic structure RC, fix is calculated 

separately for subsets of nodes, divided by their node age, we can test for a 

difference of node support in dependency to the node age. We define:

RC,fix(S) phylogenetic  structure  on  a  fixed  topology  within  a  

subgroup S of nodes inferred by each data partition
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Statistic RC,fix(S) is calculated as follows:

RC , fix ( S )=X S
− 1 ∑

N∈S ;U ( N )>50

U ( N )

with 

S = subgroup of nodes,

XS= number of nodes in that subgroup

U(N) = support value of node N. 

The property of this statistic is such that it  approaches 1 in a fully resolved 

subgroup and 0, when this subgroup does not contain nodes with more than 

50% bootstrap support. 

The  gradient  G  is  the  difference  between  RC,fix(S2)  and  RC,fix(S1)  with  S2 = 

subgroup of nodes younger than the median node and S1 = all  other nodes 

including the median node itself.

A flowchart in Figure 13 shows a simple representation of steps involved in the 

calculation of the three statistics. The user input to this analysis is the complete 

concatenated  multi  gene  alignment  in  the  phylip  format,  the  chronogram 

obtained by divergence dating in  Beast  1.8  (Drummond et  al.,  2012) and a 

command file with  specifications for  the analysis (see appendix,  p.  1 for  an 

example).  In  this  command file,  options and parameters  like  the  number  of 

resampled  replicates  drawn  from  the  respective  larger  partition  in  each 

comparison and the number of  bootstrap replicates in  each RAxML run are 

given.

The  Pybus  Harvey  gamma  (Pybus  and  Harvey,  2000) based  on  this 

chronogram was calculated and a lineage though time plot is presented in figure 

26 (appendix). Nodes in the input chronogram were split into subgroups by their 

respective divergence time. Although the tree is rooted, the root node itself is 

always  excluded  from  calculations.  In  a  first  test  for  a  simple  gradient  of 

phylogenetic structure, we divided the nodes into two bins (regimes) of equal 
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proportions, from the root node to the median node and from the median node 

to all shallow nodes.

Since the  study in  chapter  1  revealed an early  divergence of  critical  nodes 

defining the divergences of all  major moss lineages within the Carboniferous 

(see figures 11 & 25), we also divided all nodes into three bins; from root to the 

end of the Devonian, all nodes that have a mean divergence time within the 

Carboniferous and all younger nodes. 

Test procedure: To characterize each type of markers from each compartment 

and the difference between plastid and mitochondrial markers in general, we 

conducted three analyses:  we compared the  phylogenetic  structure  and the 

corresponding support gradient between

 plastid and mitochondrial DNA (1 comparison),
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Figure 13: Flow diagram of the analysis steps involved in the calculation of 
phylogenetic structure and its variants. 



 noncoding and coding regions from plastids and mitochondria and plastid 

matK (10 comparisons),

 group I introns (G1), group II introns (G2) and intergenic spacer (IGS) 

from plastids and mitochondria. (15 comparisons).

Trees from each shorter marker were inferred using 1000 bootstrap replicates, 

each larger marker was re-sampled to 100 samples and trees were inferred with 

25 bootstrap replicates from each sample.  Trees with  bipartition frequencies 

from each sample  were  used to  calculate  RC and Rc,fix.  The assessment  of 

significance  is  based  on  the  95%  confidence  intervals  calculated  from  the 

standard deviation of RC and Rc,fix within the samples.

To calculate the phylogenetic gradient G, only the samples from the comparison 

to the shortest partition in each analysis was used. Here, the node frequencies 

of  each  bipartition  tree  from  each  sample  were  computed  based  on  the 

constraint  topology.  For  each  node,  the  divergence  date  and  the  node 

frequency along with the 95% confidence interval based on the deviation of the 

mean  per  node  support  is  then  written  to  a  spreadsheet  file  for  further 

evaluation.

Results

The lineage through time plot (ltt plot, figure 26) includes the chronogram and 

the boundaries of the Carboniferous. The calculated Pybus-Harvey gamma is 

-0.99, indicating an early radiation of the lineages. 

Phylogenetic structure comparisons are given in tables 5, 6 and 8 along with the 

number of character positions per partition, the percentage of distinct alignment 

patterns, the number of nucleotides and the ratio of nucleotides and character 

positions as a measure of the alignment's gappiness. Each column comprises 

the name of the marker with a significantly higher phylogenetic structure and the 

upper and lower bounds of the 95% confidence interval. The upper row shows 

per marker comparisons of RC, the lower left part shows comparisons under the 

fixed topology RC,fix.
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Contrasting cp and mt markers

Although the alignment partition of plastid sequences contain 47% of the total 

number of  nucleotides in the alignment,  it  has more character positions and 

more distinct alignment patterns (see Table 5). Thus, the plastid markers used 

in  this  study  exhibit  much  higher  variability  and  length  variation  than  the 

mitochondrial  markers.  The  phylogenetic  structure  in  plastids  is  significantly 

higher in the partition of plastid markers. The difference between phylogenetic 

structure RC and RC,fix is also significant.

The phylogenetic gradient G appears to be insignificantly low in both partitions,  

but  the  distribution  of  phylogenetic  structure  in  the  tripartite  analysis  is 

apparently uneven distributed; the mean bootstrap support in cp data for nodes 

diverging in  the Carboniferous is  maximally  supported,  while  in  mt data  the 

mean support in this period is 60%.

Table 4: Differences in phylogenetic structure between all plastid and all mitochondrial 
markers

Rc cp mt

RC,fix

No. char 8662 7260

% patterns 49.08% [4251] 43.43% [3155]

No. nucleotides 380127 423656

ratio nuc/charpos 43.88 58.35

cp better in
Rc,fix

95% CI[+-]

cp
0.1011
0.0987
0.1035 

mt cp
0.1544
0.1524
0.1564

Contrasting noncoding and coding data from plastids and mitochondria 
and matK

The  smallest  partition  in  this  comparison  is  matK,  it  also  has  the  highest 

phylogenetic  structure  followed  by  plastid  noncoding  markers,  then 

mitochondrial noncoding markers, plastid genes and finally mitochondrial genes 
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(Table 6). Except for the direct comparison between plastid and mitochondrial 

genes, all other comparisons differ significantly. 

Table 5: Difference in phylogenetic structure between matK and coding, noncoding 
plastid or mitochondrial partitions. 

RC matK noncoding mt noncoding cp CDS mt CDS

RC,fix

No. char 1685 5115 4382 1863 2877

% patterns 73% [1230] 44.9% [2296] 54.24%[2377] 45.84%[854] 29.51%[849]

No. nucleotides 106801 146187 225075 127207 198513

ratio 
nuc/charpos

63.4 28.6 51.4 68.3 69 (= #taxa)

matK better in
Rc,fix

95% CI[+-]

matK
0.0524
0.0492
0.0557

matK
0.0524
0.0492
0.0557

matK
0.1982
0.1951
0.2014

matK
0.2378
0.2315
0.2440 

cp noncoding matK
0.0586
0.0553
0.0619

cp noncoding
0.0239
0.0200
0.0279

cp noncoding
−0.1243
−0.127
−0.1216 

cp noncoding
0.0514
0.0464
0.0563

mt noncoding matK
0.1422
0.1377
0.1467

cp noncoding
0.0712
0.0673
0.0750

cp noncoding
−0.1243
−0.1270
−0.1216

mt noncoding
−0.1250
−0.1281
−0.1219

cp CDS matK
0.2443
0.0017
0.2475 

cp noncoding
−0.2193
−0.2216
−0.2170

mt noncoding
−0.1371
−0.1414
−0.1328

cp CDS
0.0819
0.0759
0.0879

mt CDS matK
0.2904
0.2844
0.2964

cp noncoding
0.1910
0.1869
0.1952

mt noncoding
−0.1270
−0.1302
−0.1237

Insignificant
0.002
−0.0032
0.0073

Cells contain (from top to bottom) the partition with the higher structure, the difference in R 
statistic, the lower and upper bound of the 95% confidence interval. Values on the right-hand 
side show R differences under a unconstrained topology. The left-hand values show R 
differences under a fixed tree topology. The extent of differences in phylogenetic structure in 
both cases is matK > cp noncoding > mt noncoding > cp CDS > mt CDS. All differences are 
significant except RC,fix for the comparison between mt CDS and cp CDS.

The difference between RC and RC,fix is not significant in noncoding data from 

plastids, but significant in all other comparisons (figure 14). The gradient G in 

phylogenetic structure between the shallow and deep level nodes is negative 
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only in the plastid noncoding markers partition (figure 14). All other gradients 

are positive with mitochondrial coding DNA comprising the highest differences. 

Table 6: Gradient G = RC,fix(S2) – RC,fix(S1) in coding and noncoding markers from 
plastid and mitochondria and matK

cp 
noncoding

mt 
noncoding

cp CDS mt CDS matK

statistic Gdiff -6.41 2.42 1.34 6.51 1.82

95% CI root-median 1.55 1.53 0.80 2.41 -

95% CI median-present 1.26 2.32 0.44 1.88 -

significance no yes yes yes

When  parting  up  into  three  temporal  bins,  we  see  a  significantly  uneven 

distribution  of  Rc,fix(S)  in  all  plastid  partitions  and  in  mitochondrial  coding 

regions. Especially matK and plastid noncoding marker contain high amounts of 

phylogenetic  structure for  nodes diverging in  the Carboniferous (360 to  300 

mya) while coding markers from mitochondria exhibit noticeable less structure 

in  this  period  compared to  the  other  time frames.  Differences in  noncoding 

mitochondrial marker are insignificant.

Contrasting all three types of noncoding data from plastids and 
mitochondria: 

In this data set, the highest amount of phylogenetic structure is detected in the 

plastid spacer region, followed by the plastid group II introns, the plastid group I 

intron, the mitochondrial group I intron, the mitochondrial spacer and finally the 

two group II introns from mitochondria on the low end. The differences between 

RC and RC,fix are significant in all comparisons except for the group I introns from 

both  organelles.  The  difference  between  RC and  RC,fix is  notably  high  in 

mitochondrial spacer. It is even positive in comparisons between plastid spacer 

and plastid group II introns. 

For the computation of RC, RC,fix, RC,fix(S), all partitions were re-sampled to the 

size of the plastid group I intron. In the bipartite test, none of the noncoding 

partitions  exhibit  a  negative  gradient.  In  the  tripartite  test,  nodes  with  a 

divergence time in the Carboniferous were preferentially supported by group I 
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and group II introns. At the same time, support for the oldest nodes is lowest in 

plastid  group  I  introns,  mitochondrial  group  II  introns  lack  support  for 

“Carboniferous nodes”.

Table 7: Difference in phylogenetic structure between noncoding plastid and 
mitochondrial partitions: group I introns, group II introns and spacer.

RC cp IGS cpG2 cp G1 mtG1 mt IGS mt G2

RC,fix

No. char 1221 3345 549 2495 772 1115

% patterns 52.25%[638
]

45.53%[1523
]

56.83%[312
]

56.59%[1412
]

64.90%[501
]

54.44%[607
]

No. 
nucleotides

33425 94226 18536 119662 40965 64448

ratio 
nuc/charpo
s

27.38 28.17 33.76 47.96 53.06 57.8

cp IGS better in
RC/RCfix

95% CI[+-]

cp IGS
0,0263
0,0197
0,0329

cp IGS
0,0365
0,0301
0,0429

cp IGS
0,0495
0,0434
0,0556

cp IGS
0,0586
0,0543
0,0628

cp IGS
0,1301
0,124
0,1362

cpG2 cp IGS
0,0153
0,0093
0,0213

cp G2
0,0184
0,0117
0,0252

cp G2
0,054
0,05
0,058

cp G2
0,0248
0,0198
0,0298

cp G2
0,1077
0,1035
0,1118

cp G1 cp IGS
−0,038
−0,044
−0,0319

cp G2
−0,0411
−0,0468
−0,0354

cp G1
0,0116
0,0036
0,0196

cp G1
0,0156
0,0088
0,0225

cp G1
0,1014
0,0942
0,1087

mt G1 cp IGS
0,0550
0,0488
0,0612

cp G2
0,0806
0,0769
0,0842

insignificant
−0,0038
−0,0113
0,0038 

insignificant
−0,002
−0,0079
0,0039

mt G1
−0,0885
−0,0931
−0,0839

mt IGS cp IGS
0,1178
0,1140
0,1216

cp G2
−0,0938
−0,0991
−0,0885

cp G1
0,0449
0,0397
0,0502

mt G1
−0,057
−0,063
−0,0509

mt IGS
0,0745
0,0681
0,0808

mt G2 cp IGS
0,1418
0,1369
0,1466

cp G2
−0,1454
−0,1496
−0,1413

cp G1
0,0773
0,0711
0,0834

mt G1
−0,1024
−0,1077
−0,0972

mt IGS
0,0391
0,0346
0,0437

Cell contents similar to table 2. The extent of differences in phylogenetic structure in both 
cases is cp IGS > cp G2 > cp G1 > mt G1 > mt spacer > mt G2. All differences are significant 
except the direct comparison between mt G1 versus cp G1 and mt G1 versus mt IGS. cp = 
plastid, mt = mitochondrial, IGS intergenic spacer, G1/G2: group I/II intron.
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Discussion

Methods. In this study we present a method to quantitatively compare marker 

performance  in  a  phylogenetic  context,  expressed  in  the  parameter 

phylogenetic structure RC. As an extension to a framework introduced by Müller 

et  al.  (2006),  a  check  for  congruency  of  phylogenetic  structure  (difference 

between RC and RC,fix) and a check for a gradient G based on the phylogenetic 

structure within a subgroup of nodes RC,fix(S). Coarsely, one can infer from sign 

and amount of the statistic G and the distribution of RC,fix(S) in general, if the 

phylogenetic signal is evenly distributed or if  a phylogenetic marker tends to 

perform better at a specific node level. If the subgroups are defined accordingly 

and the levels of overlap are low, one might find evidence for the source of 

specific phylogenetic signal.

This study relies on a number of preconditions, may be disputed in general. But 

as this study aims to post process results from a preceding study (chapter 2), 

we need to accept these assumptions and discuss them as a possible source of 

error. Firstly, we need to  trust  in  the  inferred  topology and divergence time 

estimation as the single true reconstructed phylogeny. As discussed in chapter 

2,  the  used  markers  from  mitochondria  and  plastids  favor  slightly  different 

topologies especially in deeper levels of the phylogeny  (Volkmar and Knoop, 

2010; Wahrmund et al., 2010). As a consequence, this lowers the phylogenetic 

structure in this subgroup, as a conflict in topology leads a to lack of support on 

a  fixed  topology.  Nevertheless,  we  assume  a  common  history  (through 

concerted  evolution)  of  plastid  and  mitochondrial  DNA,  documented  by  a 

hierarchical likelihood ratio test in chapter 2 and the current view of a constantly 

coherent  history  of  both  compartments  since  the  emergence  of  land  plants 

(Cavalier-Smith, 1992; Gray, 1989). 

Phylogenetic structure RC, RC,fix and phylogenetic gradient G

The  dilution  of  phylogenetic  signal  through  homoplasy  and  site  specific 

substitution rates in highly variable markers like  matK and noncoding regions, 

as discussed in Barniske et al. 2012, cannot be found in this data set as well.  

The best source of phylogenetic structure especially at deep level relationships 

are the noncoding markers from plastids and matK, a gene that evolves close to 
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neutrality, similar  to noncoding regions. Furthermore, noncoding markers are 

the  only  partition  that  show  a  negative  gradient  G,  indicating  more  power 

towards  resolving  deep  level  relationships  than  higher  levels.  The  tripartite 

analysis (Fig. 14) shows that plastid noncoding markers tend to support nodes 

diverging not later than in the Carboniferous, and matK supports this subset of 

nodes on a similarly high level. On the other end of the spectrum, conserved 

genes from mitochondria exhibit the least support for this subgroup of nodes. 

The by  far  highest  phylogenetic  structure  for  the  deepest  level  subgroup of 

nodes can also be found in plastid noncoding markers. 

When dividing the dataset into even smaller partitions, we will certainly hit the 

lower end of resolution power, as the absolute levels of phylogenetic structure 

decrease. As we compared the three different types of phylogenetic structure, 

group I/II introns and IGS from plastids and mitochondria against each other, all 

markers were re-sampled to the size of  trnL-intron, which comprises a mean 

length  of  about  300  nucleotides  and  an  alignment  length  of  549  character 

positions only (after exclusion of hotspots). Results from these comparisons do 

not exhibit  the characteristic strength in the deeper level subgroup of nodes 

found in the results from the whole plastid noncoding partition in the bipartite 

test. In the tripartite test however, we observe strong phylogenetic structure in 

the Carboniferous subset of nodes in the plastid group II introns and even more 

in plastid group I introns. The comparisons in phylogenetic structure however 

reveal  a  top  ranking  plastid  IGS partition,  followed (in  decreasing  order)  by 

plastid group II and group I introns, mitochondrial group I introns, IGS and group 

II  introns.  Differences  between  RC and  RC,fix are  comparatively  small,  but 

significant  except  for  both group I  introns.  One remarkable exception is  the 

mitochondrial IGS with a strong deviation between RC and RC,fix, possibly caused 

by severe incongruence of phylogenetic structure in the mt IGS and the fixed 

topology.

Phylogenetic marker with high variability became widely accepted, and many 

studies on aspects of deep level relationships successfully integrated noncoding 

marker  (compare  Barniske  et  al.,  2012;  Borsch  et  al.,  2003).  Why  is  the 

controversy on that topic still ongoing? During the last decade, next generation 
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sequencing (NGS) methods found their way into molecular phylogenetics. The 

increasing  availability  of  genomic  data  derived  by  continuously  improving 

techniques offers enthralling insight  into  the  evolution of  genomes and their 

organization (e.g. Eisen, 1998). More than just a spin-off, taxonomists can now 

use genome wide surveys to resolve species trees, spawning the new area of 

phylogenomics. Genome wide data assemblies are expected to revolutionize 

molecular phylogenetics, as statistical  precision in multi  locus studies should 

increase  with  accumulated  data.  These  studies  however  typically  use 

conserved orthologous genes, which may have a cryptic history with changing 

functions and thus changing constraints. Especially when using transcriptomic 

methods, noncoding DNA is never used, although . This has the advantage that 

laborious alignments can be omitted, but recent studies show that high levels of 

incongruence between gene trees from different loci may lead to a decrease of 

accuracy in phylogenetic studies  (Betancur et al., 2014; Philippe et al., 2011). 

Three different  studies on the early branching metazoa that sampled similar 

taxa  but  used  different  marker  from phylogenomic  data  sets,  inferred  three 

different  trees  with  significance  (Dunn  et  al.,  2008;  Philippe  et  al.,  2009; 

Schierwater  et  al.,  2009).  Philippe  et  al.  (2011)  discussed  the  differences 

between these three studies  and concluded that phylogenomics is sensitive to 

“non-phylogenetic  signal”,  which  stems in  the  incorrect  inference of  multiple 

substitutions. The best method to overcome these artifacts is the selection of 

orthologous genes with low amounts of non-phylogenetic signal and improved 

bioinformatic tools that can handle such large data sets. 

noncoding marker are still a valuable source of phylogenetic information, and 

studies  that  quantify  the  supremacy  of  phylogenomic  methods  over 

phylogenetic practice, are still pending.

Conclusions: 

 In-line with  a number of  studies that  address deep level  phylogenetic 

questions, this study again confirms the modern notion on highly variable 

markers;  noncoding  DNA and  variable  genes  perform  eminently  well 
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when  properly  aligned,  a  suspected  saturation  effect  remains 

unconfirmed.

 High  functional  constraints  correlates  with  low  phylogenetic  structure. 

Thus  noncoding  DNA from  plastids  and  mitochondria  generally  yield 

more phylogenetic structure than slow-evolving organellar genes with the 

exception of the unique fast evolving matK. 

 Homoplasy resulting from high substitution rates does not  necessarily 

lead  to  weak  phylogenetic  power.  In  this  study,  the  six  plastid 

phylogenetic markers generally yielded more phylogenetic structure on a 

per nucleotide basis compared to the four mitochondrial markers.

 Differences  in  phylogenetic  structure  under  a  constrained  topology 

(RC,fix),  -  which is inferred by the concatenated data set -  and without 

such a constraint  (RC)  correlate with the total  amount of  phylogenetic 

structure. In this data set, the dominant source of phylogenetic structure 

is matK and plastid noncoding markers. 

 The  gradient  in  phylogenetic  structure  G  =RC,fix(S2)  -  RC,fix(S1)  often 

appears low, but  tripartite  analyses show more intricacies in structure 

distribution among partitions. Small  gradients in phylogenetic structure 

are  not  necessarily  a  sign  of  a  uniform  distribution;  in  the  tripartite 

analyses, we often find significant differences.

 Tendencies in a marker or partition to either resolve older or younger 

nodes,  do  not  reflect  common  notions  on  marker  performance;  in 

mosses,  noncoding markers from plastids show a significant  negative 

gradient distribution, while mitochondrial coding and noncoding marker 

provide better information in younger nodes.

 Unsurprisingly, re-sampling of the data into very small replicates lowers 

the amount of deduced phylogenetic structure, but still allows significant 

differences in each comparison to be detected.
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Chapter 4: Microstructural evolution of organellar markers

Abstract. In the reconstruction of the plant tree of life, sequence data from the 

plastid  genome is  currently  favored  as  it  contains  a  mixture  of  coding  and 

noncoding regions, spanning different patterns of substitution rates and thus 

serving  various  scientific  approaches,  from  large-scale  phylogenies  to 

population  genetics,  Insertions  and  deletions  (indels)  of  plastid  noncoding 

regions can lead to clear genetic differentiation of closely related taxa, and are 

even used as microsatellites for population genetics. In contrast mitochondrial 

noncoding  regions  are  scarsly  used  either  e.g.  due  to  the  high  level  of 

chondrome reorganization even among closely related vascular plant species 

(Grewe et al.,  2009; Guo et al.,  2016; Kubo and Mikami,  2007; Palmer and 

Herbon, 1988) or due to the lack of noncoding areas, i.e. condensed genomes 

among animals (Gray, 1989; Gray et al., 1999; Lang et al., 1999). An exception 

are  mosses  where  both  organellar  genomes  are  structurally  conserved,  of 

similar size and with a balanced distrubition of introns and spacers that allow a 

direct  comparision  of  microstructural  evolution  patterns  (see  Knoop  2012). 

Based on a balanced data set from both organellar genomes spanning spacers, 

introns and genes, this study aims to quantify and compare the phylogenetic 

structure, phylogenetic signal along with other indexes of homoplasy in binary 

coded occurrences of indels, SSRs and inversions from coding and noncoding 

plastome and chondrome regions. 

In both compartments similar trends of microstructural evolution are observed, 

though at a lower frequency in the chondrome. We conclude that insertions that 

are simple sequence repeats (SSR) offer less phylogenetic signal than indels 

that  emanate  from  other  processes  when  coded  as  binary  characters. 

Homoplasy  index,  and  other  measures  of  homoplasy  offer  better  values  in 

SSRs and more phylogenetic structure, though. Moreover, there seems to be a 

trend of shorter repeats providing more phylogenetic signal than longer ones, 

although  shorter  and  especially  trinucleotide  SSRs are  lost  more  frequently 

compared to longer SSRs during the evolution of mosses.
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Finally,  indels  are  thought  to  be  the  results  of  one  or  more  hypothetic 

mechanisms like slipped strand mispairing leading to motif gains or losses. The 

observed  diversity  of  indel  length  and  motif,  however,  is  suggestive  of  an 

alternative or  second mechanism leading to  SSRs,  as the  frequency of  tri-, 

tetra- and pentanucleotide SSRs is much higher than expected when assuming 

an indel to be matching the flanking region just by chance, which is required for 

slipped  strand  mispairing.  Besides,  hairpin  initiated  intramolecular 

recombination may also lead to a second type of microstructural mutation in the 

chondrome, inversions that are known to change on population level. 

Keywords: simple sequence repeat (SSR), hairpin associated inversion (HAI), 

insertion/deletion (indels), Fritz’s D, Blomberg’s K.

Introduction.

The condition  to  successfully  apply  binary  coding  (indel  coding,  e.g.  Müller 

2006) is a correct alignment. Therefore, insertions and deletions (indels) and 

inversions in DNA samples require a great deal of attention during alignment 

processes.  As  different  types  of  indels  can  be  distinguished  based  on  the 

putative mechanism that can explain the inheritance of an indel, the question 

arises,  if  these  differences  lead  to  different  phylogenetic  properties  and  if 

different indel types have a different impact on phylogenetic reconstructions. 

Most notably in noncoding genetic markers like introns and intergenic spacer 

and few genes like matK (Hilu et al., 2003; Neuhaus and Link, 1987) and ycf1 

(Drescher et al., 2000; Neubig et al., 2009), length variability and inversions of 

course can only be detected in comparison to homologous sequences in related 

taxa. The underlying mechanisms leading to length variability can be manifold 

(Li,  1997),  in  plastid  DNA  (cpDNA)  only  a  few  types  of  mutations  are 

responsible for the majority of insertions and deletions found in alignments of 

noncoding sequences  (Graham et  al.,  2000;  Müller  et  al.,  2006).  The most 

commonly proposed mechanism that leads to these repetitive length mutations 

is slipped strand mispairing (Levinson and Gutman, 1987; Tachida and Iizuka, 
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1992) that leads to simple sequence repeats (SSR). These are a phenomenon 

common to all nuclear and organellar/bacterial genomes (Greaves and Patient, 

1985; Hamada et al., 1982; Tautz, 1989; Tautz and Schlötterer, 1994). SSRs 

typically occur in sites of DNA that are highly susceptible to mutations  (Kashi 

and  King,  2006).  These  regions  are  usually  referred  to  as  micro-  or 

minisatellites, with the first ones consisting of repeated motifs of usually less 

than five to six nucleotides and the latter simply longer than that, usually 10-60 

nucleotides (Borsch and Quandt, 2009).

Like other noncoding sequence stretches, SSRs are often considered as junk 

DNA,  but  their  role  in  a  number  of  inherited  diseases  and effects  on  gene 

expression  by  phase  variation  (Gymrek  et  al. 2015)  and  utility  in  forensics 

(Jeffreys et al. 1985), evolutionary studies and population genetics have been 

well  documented  since  their  discovery  in  the  early  80s  (Chambers  and 

MacAvoy, 2000; Jarne and Lagoda, 1996). The high variability render SSRs as 

powerful Mendelian markers (Jarne and Lagoda, 1996) in mammalian and plant 

systems for genetic analyses at the species or population level (Dib et al., 1996; 

Dietrich et al., 1996; Morgante and Olivieri, 1993; Sverdlov et al., 1998).

SSRs can be dispersed in all  areas of the genome, especially in noncoding 

stretches, but some loci accumulate hundreds of SSRs with very high rates of 

insertion or deletion, which are then called micro- or minisatellites and are used 

as standard markers in  population studies.  In  phylogenetic  studies on more 

distant related taxa, however, the utility especially of very short and monomeric 

microsatellites  is  thought  to  be  limited  due to  high  mutation  rates  and  size 

homoplasy or allele length constraints (Bruford and Wayne, 1993; Goldstein and 

Pollock, 1997). These effects, however, may only appear, when the quantity of 

tandem repeats in a typical SSR locus with hundreds of repeats is used as a 

discrete character but may be irrelevant when used as a properly aligned and 

binary coded indel event. Rules for alignment of noncoding sequences have 

been discussed in numerous studies (Borsch et al., 2003; Giribet and Wheeler, 

1999; Graham et al., 2000; Kelchner, 2000; Löhne and Borsch, 2005; Morrison, 

2009; Ochoterena, 2009), which agree in the necessity to take knowledge about 

microstructural mutation patterns and mechanisms into account. 
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The phylogenetic utility of noncoding marker, reviewed in Borsch and Quandt 

(2009), summarized the frequency of SSRs in dependency of their repeat length 

across different studies on various plant lineages employing different noncoding 

plastid  marker. They  found  a  surprisingly  high  fraction  of  tetra-,  penta-  and 

hexanucleotide  SSRs  in  the  alignment.  Another  study  on  Nymphaeales  by 

Borsch  (2007) employing the  trnT-F region, counted the gains and losses of 

SSRs via  ancestral  reconstruction and found only  3  losses compared to  68 

gains. This indicates a strong tendency to retain SSRs after their occurrence, 

which should be a good precondition of a reliable phylogenetic character.

But is the distribution of indel length and motif intrinsic and common to both 

organellar compartments? Thus are both compartments evolving in a similar 

fashion in terms of substitution rate and microstructural evolution which leads to 

a  comparable  phylogenetic  structure?  As  the  structural  integrity  of  the 

chondrome is abandoned early in tracheophyte evolution  (Grewe et al., 2009; 

Guo et al., 2016; Kubo and Mikami, 2007; Palmer and Herbon, 1988) a direct 

comparison is only feasible in one of the bryophyte lineages which at the same 

time extends the deep level phylogenetic to 500 MYA (chapter 2). Therefore, a 

balanced data set of plastome and chondrome data spanning spacers, introns 

and genes was compiled for a representative set of mosses, with the aim to 

evaluate the phylogenetic utility of SSRs compared to other indel events in the 

context  of  indel  coding.  We  examine  dispersed  SSRs  across  organellar 

molecular  phylogenetic  marker,  from  plastids  and  mitochondria,  containing 

coding and noncoding sequences rather than typical microsatellite marker. On 

the one hand, indels make alignments of noncoding regions challenging, and 

today, there is still no alignment algorithm that can align indels – and especially 

SSRs – satisfactorily. On the other hand, after a proper time-consuming manual 

alignment,  indels might  be a valuable source of  information when coded as 

binary characters, e.g. via indel coding. The contribution of indels that can be 

attributed to different mechanisms of nascency may also have very different 

characteristics in phylogeny reconstructions. Simple sequence repeats are easy 

to  detect  and  to  align,  while  other  indels  do  not  reveal  their  derivation  or 

homology. This leads to the following questions:

66



Do  SSRs  have  acceptable  levels  of  phylogenetic  structure  and 

homoplasy compared to other indels? And if  these characteristics are 

significantly worse in SSRs, can we still  justify the usage of SSRs as 

binary coded traits in the same way as other indels? Is the frequency of  

gain and loss of an SSR so high, that the occurrence of SSRs resembles 

a random distribution rather than a derived trait? 

Insertions and deletions can only be identified in comparison to homologous 

sequences from related taxa. Due to the diffuse definitions of repeat mutations 

leading to length variability like insertions, deletions (indels) and different kinds 

of repeats, we stick to the outlining in Borsch and Quandt (2009). Here, SSRs 

are, together with inversions, inverted repeats and indels, described under the 

general term “microstructural mutations”. We do not differentiate between micro- 

or  minisatellites,  nor  do  we include homo-nucleotide  repeats,  as  we cannot 

determine the length of the repeat unit, we also cannot distinguish them from 

sequencing  errors.  We  confine  to  comparing  indels  containing  a  simple 

sequence repeat (SSRs) to indels that cannot be identified as a repeat of the 

flanking sequence. The latter are thus assumed to have a different history than 

SSRs. Instead of a simple summary of SSRs observed among sequences in an 

alignment  (Borsch and Quandt,  2009),  we reconstructed the gain or  loss of 

SSRs in the phylogenetic context via ancestral state reconstruction.

Short inversions are periodically found in loops at noncoding DNA. The single 

stranded  DNA  at  the  locus  or  the  transcribed  RNA  would  form  a  hairpin 

structure due to dyad symmetry around these inversion-prone sites  (compare 

Kelchner  &  Wendel  1996;  Borsch  &  Quandt  2009),  therefore  called  hairpin 

associated inversion (HAI).

The scope of  this  study is  the  quantification of  indel  length  distribution  and 

phylogenetic  structure  sensu  Müller  et  al.  2006  and  chapter  3  in  all  SSR 

positions  compared  indels  other  than  SSR.  Additionally,  we  compare  the 

phylogenetic signal based on two per site statistics among SSRs of different 

lengths  and  among  inversions  at  six  sites  within  the  data  set.  Finally,  we 

estimate  the  phylogenetic  signal  and  homoplasy  in  non-autapomorphic 

inversion sites.
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Material and Methods

Unambiguously  identifiable  simple  sequence  repeats  and  inversions  were 

annotated during the manual alignment process of the sequences in the data 

set from chapter 2 by PhyDE labels  (Müller, 2005). We carefully followed the 

rules  outlined  in  Kelchner  2000 to  increase  accuracy  of  the  alignment  by 

considering  knowledge on microstructural  evolution.  Indels  other  than SSRs 

were automatically coded following the simple indel coding approach (Simmons 

and Ochoterena, 2000) implemented in SeqState 1.4 (Müller 2005).

Information about position, occurrence and length of SSRs were extracted via a 

perl script that prepares a nexus file with a binary matrix coding the presence or 

absence of a SSRs. Along with this matrix, a paup block with the appropriate 

commands  to  infer  ancestral  states  of  each  binary  character  on  a  given 

topology was included and executed in PAUP 4.0a152  (Swofford, 2002). The 

reconstructed  gain  or  loss  of  a  SSRs  at  each  site  is  then  evaluated  and 

summarized for  each length.  The topology that  was used to  infer  ancestral  

states is the ML topology taken from chapter 2. Also, based upon this topology, 

we  calculate  the  rescaled  consistency  index,  the  retention  index  and  the 

homoplasy index (RC, RI, HI)  (Farris, 1989; Kluge and Farris, 1969) for each 

indel partition.

The  phylogenetic  structure  RC and  RC,fix  (chapter  2)  is  then  calculated  for 

pairwise  comparisons  between  the  partitions  containing  only  SSRs  and  the 

partition of all remaining indels and the partition including both types of indels as 

well. 

The phylogenetic signal statistics Blomberg's  K (Blomberg et al., 2003) and D 

(Fritz and Purvis, 2010) were calculated for each position and averaged across 

each  respective  partition  (all  indels,  SSRs  and  other  indels),  then  for  each 

length-class of SSRs (ranging from 2 to 9, 10≥∩≤14, and  ≥15) and finally for 

each individual inversion. Both measures check for phylogenetic signal in binary 

traits  that  test  the  non-randomness  of  a  trait  distribution  against  a  given 

topology. Here we use the maximum likelihood (ML) topology (congruent with 

the Bayesian inference (BI topology) from chapter 2. 
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Blomberg's  K is  a  scaled  variance  ratio  of  the  variance  of  phylogenetically 

independent contrasts among species relative to randomization via tip shuffling. 

K is proportional to the signal strength in a trait and assesses the significance in 

difference  of  the  signal  of  a  trait  against  a  simulated  distribution  assuming 

Brownian motion character  evolution. Values of  K approaching zero indicate 

similarity  to  a  random distribution,  those approaching 1 point  to a Brownian 

distribution. Higher values indicate an increasingly stronger relation between the 

trait's  evolution  and  the  given  phylogeny.  The  quantile  of  the  observed 

phylogenetically independent  contrast  variance (PIC) serves as a 1-tailed p-

Value to test for better phylogenetic signal than expected by Brownian motion or 

random trait evolution (p(PIC)).

While K can also be applied to continuous-valued data, phylogenetic D is better 

fitted to binary data, as it compares the number of changes in reconstructed 

states  of  a  binary  trait  at  each  node  and  to  the  mean  sum of  changes  in 

character  evolution  simulations.  These  simulations  employ  two  models  of 

character evolution, phylogenetic randomness and Brownian threshold model. 

Values of phylogenetic signal D lower than zero indicate better signal strength in 

the data than expected from a Brownian distribution, and those higher than one 

indicate a random distribution of the trait. Since we compare classes of traits (in 

the test for phylogenetic signal in all indels, SSRs and indels without SSRs, as  

well  as  the  per  SSR  length  class  tests),  we  compare  the  mean K  and D 

statistics per class. 

We estimated the correlation between both phylogenetic signal statistics and HI 

by calculating the Pearson correlation coefficient of each pair.

Finally,  the  phylogenetic  Signal  D and  K  is  calculated  for  each  non-

autapomorphic inversion site that contains at least two homologous inversions. 

The  significance  of  D departing  from  0  (significantly  different  to  Brownian 

expectation) and 1 (random expectation) is calculated independently based on 

both types of simulations. In this study, inversion were always associated with a 

hairpin structure, therefore called hairpin initiated inversion (HAI). 
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Results

The  indel  coding  binary  matrix  from  the  plastid  and  mitochondrial  markers 

contains 1753 character positions, 410 (23.4%) of these are identified as simple 

sequence  repeat  (SSRs).  From  these  410  positions,  35.4%  are  distinct 

alignment  patterns  informative  to  maximum  likelihood  and  26.1%  were 

parsimony uninformative (Table 9, characters/patterns/PI sites). 

The stacked bar plot in figure 15 shows the count of reconstructed gain and loss 

of SSRs in mitochondria and plastids, subdivided by repeat unit length. Gains of  

SSR have a peak in tri- and tetranucleotide SSRs in both genomes. By far the 

most losses happen in trinucleotid SSRs, we counted 37 reconstructed losses 

in  trinucleotide  SSR,  while  only  15  losses  in  dinucleotid  SSR,  11  in 

tetranucleotid SSRs and only 9 in pentanucelotid SSRs can be found. Losses of 

SSRs with longer repeat units appear to be rather scarce, and SSRs longer 

than six nucleotides are found predominantly in plastids. 

Phylogenetic  structure  RC and RC,fix  together  with  their  corresponding 95% 

confidence interval are presented in table 9. Higher per nucleotide phylogenetic 

structure RC and RC,fix are found in SSRs, the homoplasy indices are also a bit 

lower in SSRs, while the consistency index (CI) and the rescaled consistency 

(RC)  index  is  accordingly  higher  in  this  partition.  Both  measures  for 

phylogenetic  signal  however,  Blomberg's  K and  especially  phylogenetic  D 

indicate significantly more phylogenetic signal in non-SSR indels. 

The Pearson correlation coefficient r between K and HI is r = 0.45, between D 

and HI r = -0.30 and between D and K r = -0.38. These values reveal only weak 

to moderate correlations between these measures.

Per SSR length class measures of phylogenetic signal  D and K are shown in 

table 17 (appendix) and figure 16.  The linear regression in the upper graph 

(mean(K statistic)) shows an descending slope while the linear regression in the 

middle graph (mean(D statistic))  shows an ascending slope,  both indicate a 

moderate decline in phylogenetic signal in sites with longer SSRs. The size of 

the circles in the upper graph is proportional to the fraction of p(PIC) lower than 
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0.05. The associated confidence intervals are calculated based on the variance 

of the K and D between each element of each length class.

The lower Graph shows the fraction of positions that have either a better mean 

phylogenetic  signal  D than  expected  based  on  a  Brownian  motion  model 

(black), a better signal than expected on a random model (white) or worse than 

that (grey). Table 3 also lists details about the number of coded SSRs and the 

fraction of parsimony informative sites (PI), together with the homoplasy index 

(HI, after excluding non-PI sites).►

► Figure 16 (next page): Mean Phylogenetic signal D and K of SSRs in 
relation to length. Dashed lines show the linear regression, circles in the 
upper graph are proportional to the fraction of p(PIC)<0.05, thus showing 
the fraction of positions resembling a random distribution. Vertcal bars in 
the upper and middle show the 95% confidence interval. The lower graph 
shows a stacked barplot of the fractions of positions exhibiting worse 
(black) or better (white) phylogenetic signal than random or better than 
simulated Brownian characters (grey).
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Table 8: Phylogenetic structure and signal in simple indel coding (sic), simple sequence repeats (SSRs), and sic excluding SSRs. Measure RC (upper 
right) and RC,fix (mid left) depict the amount of phylogenetic structure per sequenced nucleotide, the latter against the background of a given topology. 
Additional statistics (RI/RC/HI) depict the level of homoplasy in the data, phylogenetic signal D and Blomberg's K quantify phylogenetic signal across 
indel partitions. Calculation of RI,RC, HI, D and K are based on the ML topology from chapter 1.

simple indel coding SSRs sic without SSRs

phylogenetic structure RC

simple indel coding

p
h

y
lo

g
e

n
e

ti
c

 s
tr

u
c

tu
re

 R
C

fi
x

better in
RC/Rcfix
CI95% lower bound
CI95% upper bound

SSRs
0,0535
0,0467
0,0604

SSRs
0,0469
0,0413
0,0524 

SSRs

SSRs
0,0663
0,0437
0,0888 

insignificant
−0,0021
−0,0092
0,005 

sic without SSRs

insignificant
0,0204
−0,0074
0,0483 

SSRs
0,0336
0,0173
0,0498 

retention index (RI) 0.709 0.805 0.680

rescaled consistency index (RC) 0.471 0.630 0.551

homoplasy index (HI (=1-CI)) 0.337 0.218 0.300

characters/distinct alignment patterns/PI sites 1753/1334/558 410/145/107 1343/1189/451

mean(K Statistic (95% CI))
mean(p(PIC variance) < 0.05)

1.25192 (0.05181)
0.3287

1.0349 (0.1276)
0.2910

1.3643 (0.0821)
0.3494

mean(phylogenetic D (95% CI))
fraction of E(D) better than Brownian 
fraction of E(D) better than random

-0.84242 (0.38391)
0.69231
0.81818

-0.3313 (0.2408)
0.5907
0.6912

-1.0221 (0.5345)
0.7260
0.8356



The assessment of phylogenetic signal  D and  K in inversion sites revealed significant 

values in inversions as well. Out of the 11 observed inversions sites, 5 were parsimony 

informative.  Except  for  one position,  values for  phylogenetic  signal  D indicate  more 

phylogenetic  signal  than expected from a Brownian distribution  simulation.  K values 

indicate departure from randomness in the first 4 tests, with the first two sites being 

close to a Brownian distribution. The last site comprised even more signal than expected 

from  the  Brownian  simulation.  Despite  having  significant  phylogenetic  signal,  the 

homoplasy index from the first and the last site is extremely high. 

For comparison, a two-dimensional plot of the secondary structure representation of 

both HAI states at each site, together with their estimated Gibbs energy ΔG, is given in 

figure 17. We also plot the occurrence of these traits on the tree topology from chapter 

1, which is also used to calculate the phylogenetic signal, phylogenetic structure RC,fix 

and the reconstructed gain and loss of SSRs in this study (Figure 18).

74/145



Table 9: Blomberg's K statistic and phylogenetic Signal D in non-autapomorphic inversion sites. Values of D < 0 indicate evidence for a conserved 
phylogenetic signal, D ≈ 0, when the trait distribution resembles a Brownian process and D ≈ 1 or D > 1, when random. 

symbol position Description of 
the position

motif:
50% consensus
strict consensus

freqency 
in taxa

# gain # loss RI RC HI K Statistic p(PIC 
variance)

phyloge
netic D

p(E(D)) 
random

p(E(D)) 
brownian 

■ 569-574
A loop in P9 in 
cobI gI_intron

TCC ↔ GGA
TRR ↔ YYA

20 5 4 0.579 0.064 0.889 0.91 0.0010 -0.53 0 0.93

 2342-
2349

D2 loop in 
Nad2 
gII_intron

TAAT ↔ ATTA
TAAT ↔ ATRB

4 2 0 0.667 0.333 0.5 0.91 0.0020 -1.4 0 0.91

✚ 11487-
11496

P6 loop in trnL 
gI_intron

ATTTA ↔ TAAAT 2 2 0 0 0 0.5 0.25 0.3745 +1.3 0.63 0.16

✘ 18163-
18178

atpB-rbcL IGS
ATTTTT ↔ AAAAAT
AHTTTT ↔ AYAAAV

5 2 0 0.750 0.375 0.5 0.70 0.0020 -0.73 0 0.84

▲ 18262-
18273

atpB-rbcL IGS
GTTTTA ↔ TAAGAC/T
GTRTTA ↔ MYAYWV

39 4 1 0.793 0.113 0.857 1.21 0.0010 -0.53 0 0
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▲ Sanionia uncinata
▲ Hygrohypnum ochraceum
▲ Scorpidium scorpioides
▲ Tomentypnum nitens
▲ Thamnobryum alopecurum
▲ Pterogonium gracile
▲ Hypnum jutlandicum
▲ Brachythecium rivulare
▲ Plagiothecium laetum
▲ Herzogiella seligeri
▲ Fontinalis antipyretica
▲  Lopidium struthiopteris✘
▲ Ptychomnion cygnisetum
▲ Aulacomnium androgynum
▲ Orthodontium lineare
Nyholmiella obtusifolia
▲ Orthotrichum rogeri
▲ Ulota crispa
▲ Pohlia nutans
▲  Mnium hornum✚
▲ Bryum argenteum
▲ Hedwigia ciliata
▲  Rhacocarpus purpurascens✚
▲ Plagiopus oederi
▲ Bartramia halleriana
▲ Tetraplodon fuegianus
Splachnum ampullaceum

■ Pottia truncata✘
■ Tortula latifolia✘
■ Cinclidotus riparius✘
■ Ceratodon purpureus✘

▲■ Ditrichum cylindricum
■ Schistostega pennata
▲■ Orthodicranum montanum
▲Fissidens cristatus
 Leucobryum glaucum

▲■ Coscinodon cribrosus
▲■ Grimmia donniana
▲■ Racomitrium lanuginosum
▲■ Blindia acuta
▲ Drummondia prorepens
▲ Timmiella spec
▲■ Catoscopium nigritum
▲ Timmia austriaca
▲ Timmia norvegica
▲ Timmia bavarica
■ Physcomitrella patens
■ Physcomitrium pyriforme

▲ ■ Funaria hygrometrica
■ Encalypta streptocarpa
■ Bryobrittonia longipes
Discelium nudum
Oedipodiella australis
Chamaebryum pottioides
Gigaspermum repens
Diphyscium sessile
Buxbaumia aphylla
■ Tetrodontium brownianum
Tetraphis pellucida
Pogonatum urnigerum
Oligotrichum hercynicum
Atrichum undulatum
■ Atrichopsis compressus
■ Dawsonia spec
Alophosia spec
Oedipodium griffithianum
Andreaea nivalis
Takakia lepidozioides
Sphagnum capillifolium

0.050.0100.0150.0200.0250.0300.0350.0400.0

Figure 18: Distribution of inversion states plotted on a chronogram from chapter 2, 
symbols correspond to table 10 and Figure 18.



Discussion

The  high  accumulation  of  tetra-,  penta-  and  hexanucleotide  SSRs  that  is 

reported by Graham et al. 2000 and Borsch & Quandt 2009 cannot be observed 

here to the extent in their dataset. Still, the observed diversity of indel length 

and motif is suggestive of an alternative or second mechanism leading to SSRs, 

as the frequency of tri-, tetra- and pentanucleotide SSRs is much higher than 

expected when assuming an indel to be matching the flanking region just by 

chance, which is required for slipped strand mispairing. The reconstructed gains 

in di-, tri-, tetra- and pentanucleotides are at least twice as frequent as in longer 

SSRs.  Trinucleotid  SSRs  are  unexpectedly  more  frequent  than  dinucleotid 

SSRs. Losses in trinucleotide SSRs are exceptionally more frequent than in all 

other  classes.  This  leads  to  a  higher  fraction  of  positions  with  trinucleotide 

SSRs having a phylogenetic signal that is similar to a random distribution. Here,  

42.3% of the positions had a p(PIC) variance of less than 0.05, the average in 

all motif length classes is 27.0%. Nevertheless, the mean phylogenetic Signal K 

and the level of homoplasy HI are highest in trinucleotide SSRs, which again 

indicates a possible inverted relationship of these two measures. This cannot be 

stretched as a general  rule  in  all  motif  lengths,  since we find only  weak to 

moderate correlations between HI and K as well as HI and D.

Since only 6 parsimony informative inversion sites with an inversion could be 

found  in  this  data  set,  conclusions  on  their  impact  on  the  phylogenetic 

reconstruction  against  the  background  of  a  comprehensive  15922  character 

position alignment plus 1813 indel positions (via simple indel coding, Simmons 

& Ochoterena 2000) may be limited. But we could investigate their properties in 

detail. Except for one position, there is no evidence for randomness based on 

the two statistics of phylogenetic signal K and D, but only one position exhibits 

more phylogenetic structure than expected on a Brownian simulation. 

How  can  measure  for  phylogenetic  structure,  the  homoplasy,  rescaled 

consistency and retention index (RC, Rc,fix, HI, RC and RI) be better in SSRs 

than in other indels, while these positions at the same time show less mean 

phylogenetic signal K and D? The aim of this study is to check whether SSRs 
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and  inversions,  both  emerging  from  unique  processes,  have  phylogenetic 

characteristics that would justify their use as a source of information or if these 

should  be  excluded  prior  to  phylogenetic  reconstructions.  The  statistical 

measures chosen for  the analyses should resemble more or  less the same 

picture; phylogenetic structure should arise from positions with high levels of 

phylogenetic  signal.  Homoplasy  would  otherwise  decrease  the  amount  of 

phylogenetic signal and thereby lower phylogenetic structure (sensu Chapter 2, 

Müller  et  al.  2006).  Källersjö  et  al.  (1999) found  that  homoplasy  could 

substantially increase “phylogenetic structure”, which in this case was based on 

counts of groups that are supported by jackknife scores. This may also hold true 

for indels that are not deducible from SSRs or inversions, their higher level of 

homoplasy may still bear more phylogenetic signal. The study in Källersjöh et  

al. (1999) employed a large set of 2538 rbcL sequences from all plant lineages, 

proving that homoplasy does not necessarily condition saturation  (Swofford et 

al., 1996).

Indels that are not SSRs or inversions would emerge from multiple unknown 

mechanisms that have individual rates and also individual effects that obscure 

the true phylogenetic signal (Gatesy et al., 1999; Gatesy and Baker, 2005). This 

might  be one explanation for  the higher  homoplasy in  those indels.  In  their  

theory of hidden support, these individual biases in combination may be nullified 

by contrast while common phylogenetic signal may accrue (Barrett et al., 1991; 

Gatesy and Baker, 2005).

On the one hand, the two measures for phylogenetic signal, D and K, compare 

the distribution of a trait on a given topology – here the presence or absence of 

the indel of its class – to simulated Brownian or random distributions and infer 

their  departure  from  these.  On  the  other  hand,  phylogenetic  structure  is  a 

measure of the effective performance of markers normalized to the nucleotide 

content (compare chapter 3). Those two measure are not synonymous, they 

rather span a minimum and a maximum level of contribution of data to solve a 

phylogenetic problem.

SSRs and Inversions contain significant levels of phylogenetic signal, both excel 

randomness  and  Brownian  motion  character  evolution  simulations  in  most 
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cases. The initial  question if  SSRs and inversions have enough reliability as 

phylogenetic characters to justify their use in phylogenetic studies should be 

answered based on their phylogenetic signal. The results show that homoplasy 

does  not  correlate  with  phylogenetic  signal,  so  excluding  or  weighting 

characters differently based on their homoplasy index alone may bear the risk 

of unwarranted elimination of data. To minimize this risk, randomness of the 

occurrence  of  a  trait  must  be  proven  satisfactorily  prior  to  exclusion, 

phylogenetic structure is a subordinated problem. In this study, we cannot reject 

the hypothesis, that SSRs and inversions both have phylogenetic signal close to 

or better than the expectation based on Brownian motion character evolution, 

hence exclusion of these classes of indels is not justified. 

Since only 6 parsimony informative inversion sites with an inversion could be 

found  in  this  data  set,  conclusions  on  their  impact  on  the  phylogenetic 

reconstruction  against  the  background  of  a  comprehensive  15922  character 

position alignment plus 1813 indel positions (via simple indel coding, Simmons 

& Ochoterena 2000) may be limited. But we could investigate their properties in 

detail. Except for one position, there is no evidence for randomness based on 

the two statistics of phylogenetic signal K and D, but only one position exhibits 

more phylogenetic structure than expected on a Brownian simulation. 

The initial question, whether we find significantly worse levels of phylogenetic 

signal in SSRs than in other indels cannot be answered easily, as in SSRs, we 

find  lower  levels  of  homoplasy  and  more  phylogenetic  structure  but  less 

phylogenetic signal at the same time. These results seem to be contradictory, 

but  this  might  indicate  a  minor  influence  of  homoplasy  on  phylogenetic 

structure, which in turn might be a more robust measure for quantity and quality 

in phylogenetic markers than phylogenetic signal.
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Summary

In the reconstruction of the plant tree of life, sequence data from the plastid 

genome is currently favored as it contains a mixture of coding and noncoding 

regions,  spanning  different  patterns  of  substitution  rates  and  thus  serving 

various  scientific  approaches,  from  large-scale  phylogenies  to  population 

genomics.  Most  interestingly,  the  fast  evolving  noncoding  regions  of  plastid 

origin have been shown to be a powerful phylogenetic tool not only in in shallow 

levels of  angiosperm phylogenetics,  but also at deep levels  (Barniske et al., 

2012; Borsch and Quandt, 2009), as a result of a more equitable distribution of 

phylogenetic information due to low selective constraints (Barniske et al., 2012; 

Müller  et  al.,  2006).  But  is  intrinsic  and  common  to  both  organellar 

compartments? Thus are both compartments evolving in a similar fashion in 

terms  of  substitution  rate  and  microstructural  evolution  which  leads  to  a 

comparable phylogenetic structure? As the structural integrity of the chondrome 

is abandoned early in tracheophyte evolution  (e.g. Palmer and Herbon 1988; 

Kubo and Mikami 2007; Grewe et al. 2009) a direct comparision is only feasible 

in one of the bryopyhe lineages which at the same time extends the deep level  

phylogenetic  to  500  MYA.  Therefore,  a  balanced  data  set  of  plastom  and 

chondrome  data  spanning  spacers,  introns  and  genes  was  compiled  for  a 

representative set of mosses, a dataset that also roots in with previous studies 

that aimed to resolve the difficult backbone phylogeny of mosses. 

Most importantly, the data now allows resolving crucial nodes with significance, 

that  were  not  confidently  resolved  in  other  studies.  At  the  same  time  the 

evolutionary history of peristomes as a crucial distinguishing feature in moss 

systematics  could  be  traced  in  a  geological  time  line,  including  shifts  in 

speciation  rates  of  these  lineages.  Furthermore,it  allows  quantifying  and 

comparing  the  phylogenetic  structure  in  different  phylogenetic  markers  from 

mitochondrial and plastid DNA. Finally, a survey on the phylogenetic properties 

of different types of insertion and deletions (indels), namely simple sequence 

repeats,  hairpin  associated  inversions  and  all  other  indels  evaluates  the 

peculiarities in each type and their phylogenetic impact.
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Chapter 1: Cytoplasmic noncoding DNA: characteristics and utility in 
phylogenetics

• The  phylogenetic  utility  of  noncoding  DNA  faces  displacement  by 

apparent superior phylogenomic studies that employ huge amounts of 

coding genes. An increase of genes may lead to more precision, but an 

increase in accuracy still needs to be tested.

• Mitochondrial DNA in mosses and liverworts is – in contrast to other plant 

lineages – consistent in gene content and order. Within each lineage, 

spacer and introns are largely positionally conserved. This conditions a 

successful  establishment  of  phylogenetic  marker  with  assumedly 

adequate levels of variability.

• Mosses are  often  seen as  a  primeval  group with  limited  evolutionary 

capacity and no economic value that at best can be studied as a model  

of early plant evolution and the link between algae and vascular plants. 

Reconstructed late diversification bursts however suggest a multilateral 

coevolution between angiosperms and peristomate mosses. 

Chapter 2: Resolving the backbone phylogeny of mosses: an organellar 
perspective

• The reconstructed land plant phylogeny recovers the branching order 

also found in Qiu et al. (2007), with liverworts branching first, followed by 

mosses and hornworts. 

• Reconstructed divergence times of the crown group of mosses dates 

back to the lower Devonian, 414 mya [95%HPD: 395.8 – 433.5]. Very 

soon after that, the origination of classes within the Bryophytina (≈ all 

arthrodontous mosses) took place within the Carboniferous (358.9 – 

298.9).

• Tetraphidopsida are reconstructed as sister to arthrodontous mosses 

with considerable support in simple indel coding analyses (1.0 BI, 91 ML) 

but only moderate support without indel coding (0.9 BI, 79 ML), the 
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nematodontous peristome therewith characterizes a paraphyletic group 

and is most likely the ancestral state of the arthrodontous peristome. 

Clarification via developmental studies is still pending.

• The basal most Bryopsida are the Buxbaumiidae, followed by the 

Diphysciidae.

• The aperistomate Gigaspermidae retain a sister relationship to 

Funariidae and the rest of the arthrodontous mosses. 

• The diplolepideous Funariidae are resolved sister to the Timmiidae, 

which in turn are sister to the Dicranidae and Bryidae. According to this 

branching order, their respective peristome types, the Timmia-type 

(4:2:8), the haplolepideous and the diplolepideous-alternating peristomes 

are assumedly derived from the diplolepideous-opposite peristome type 

(Funaria type, 4:2:4).

• Difficulties in the reconstructions of basal bryophyte relationships may be 

related to very short branches between basal nodes and heterogeneous 

substitution rates in pplastomes and chondromes, which point to 

incongruent evolutionary dynamics between the two organellar genomes 

during moss evolution

• Four positive shifts in speciation rate were detected, three of which are 

estimated to occur during mid to upper Cretaceous, indicating a 

correlation with the concurrent evolution of angiosperm woody habitats. 

One rate shift occurs earlier in the upper Jurassic, possibly related to the 

recovery phase after the Triassic mass extinction event.

• Emergence of peristome types took place in the Carboniferous, 

significant shifts in speciation rate were reconstructed two geological 

eras later in Jurassic and Carboniferous, which indicates no correlation 

between these two events..
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Chapter 3: Phylogenetic structure (RC, RC,fix, RC,fix(S)) of organellar 
markers

 The new method yields three measures for phylogenetic structure; 

 RC is the phylogenetic structure in each marker, without a priori 

knowledge about the topology.

 RC,fix is the phylogenetic structure in a marker against the background of 

a constraint topology. Differences between RC and RC,fix can be 

interpreted as nonrandom incongruence.

 RC,fix(S) is the phylogenetic structure RC,fix, limited to a subset of nodes. 

This measure allows checking for temporal gradients in phylogenetic 

structure.

 Contrary to prevailing assumptions that conserved regions are a better 

source of phylogenetic structure to resolve deep level nodes, we found 

that noncoding regions from plastids yield significantly more phylogenetic 

structure especially in deeper nodes.

 High functional constraints generally lead to low phylogenetic structure. 

Thus noncoding DNA from plastids and mitochondria generally yields 

more phylogenetic structure than slow evolving genes except for the 

unique fast evolving matK. 

 Phylogenetic marker from plastids generally yield more phylogenetic 

structure on a per nucleotide basis compared to mitochondrial marker.

 Differences in phylogenetic structure under a constrained topology (Rcfix) 

and without such a constraint (RC) correlate with the total amount of 

phylogenetic structure. In mosses, the dominant sources of phylogenetic 

structure are matK and noncoding plastid marker. 
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 The gradient in phylogenetic structure G =RC,fix(S2) - RC,fix(S1) often 

appears low, but tripartite analyses show more intricacies in structure 

distribution among partitions.

 Small gradients in phylogenetic structure are not necessarily a sign of a 

uniform distribution; when comparing these results to the tripartite 

analyses, we often find significant differences.

 Tendencies in a marker or partition to either resolve old or young nodes, 

deduced from the gradient G, do not reflect common prospects on 

marker performance; in mosses, noncoding marker from plastids show a 

significant negative gradient distribution, while mitochondrial coding and 

noncoding marker provide better information in younger nodes.

 Re-sampling of the data into very small replicates lowers the amount of 

deduced phylogenetic structure, but still allows significant differences in 

each comparison.

Chapter 4: Microstructural evolution of organellar markers

 The observed  diversity  of  indel  length  and  motif  is  suggestive  of  an 

alternative or second mechanism leading to SSRs, as the frequency of 

tri-, tetra- and pentanucleotide SSRs is much higher than expected when 

assuming an indel  to be matching the flanking region just by chance, 

which is required for slipped strand mispairing.

 Proportionate  to  their  variability,  both  cytoplasmic  genomes  exhibit  a 

similar  pattern  of  indel  length  and  frequency,  therefore  a  common 

mechanism can be assumed.

 SSRs exhibit more phylogenetic structure than indels other than SSRs. 

indices for homoplasy (HI, RI, RC) also exhibit better values in SSRs.

 Measures for phylogenetic signal (Fritz's D and Blomberg's K) reveal 

lower signal in SSRs, but still near to or better than the expectation 

based on a Brownian simulation.
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 As a minimum, no justification to omit a particular kind of indel can be 

made based on phylogenetic signal, phylogenetic structure or the 

homoplasy index, retention index or consistency index.

 Phylogenetic structure RC appears to be a better measure of 

phylogenetic quality compared to phylogenetic signal, as it reveals the 

effective level of contribution of data to resolve difficult topological 

questions.

 Four out of five inversions investigated in this study exhibit phylogenetic 

signal on a higher level than randomness, but only one position exhibits 

more signal than expected on Brownian character evolution simulation. 

This may not justify its exclusion from phylogenetic analyses, but a gain 

of significant insight into phylogenetic questions should not be expected 

either.
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Table 10: List of 69 Taxa in the backbone mosses (BM) dataset. Accessions for each marker are given if available. If substituted by a closely related 
taxon,the name is stated below the accession number.
Taxonomy

Subdivision

Class

Subclass

  Superorder

    Order

      Family

Species Lab code cobi420
nad2 with 
nad2i156

nad5 with 
nad5i753

nad5-nad4 IGS rbcL rps4 trnK/matK atpB-rbcL IGS trnL G1 rpl16 G2

Sphagnopsida Sphagnum fallax EC42
FJ870693
S. 
capillifolium

AJ299524 AJ001225 DQ098673 AB013673
AY309730
S. 
squarrosum

LN828293 AY864303 AY327835
AF194900

S. fallax

Takakiopsida Takakia lepidozioides
EC70

B881
FJ870694 AJ299525 AJ291553 EU095268 AF244565 AF306950 LN828294 AY864296 AB304383 LN828228

Andreaeopsida Andreaea nivalis B882 FJ870695 AJ299526 AJ299526 DQ098672
AF478198
A. nitida

AJ617675
A. rupestris

LN828295
AY864297

A. rupestris

AY050278

A.rupestris
LN828229

Oedipodiopsida Oedipodium griffithianum
UConn3528 
(B1388)

LN828227 LN828285 AY312880 LN828284 HQ413006 AF306968 LN828296 LN828210 AF478314 LN828230

Polytrichopsida Alophosia azorica UConn UConn UConn UConn UConn UConn UConn UConn UConn UConn UConn

Atrichopsis compressus UConn UConn UConn UConn UConn UConn UConn UConn UConn UConn UConn

Atrichum undulatum

B379

B356

B319

FJ870696 AJ299527 AJ001229 EU095269 AY118236 AY137681 LN828297 EU124445 AF545002 LN828231

Dawsonia spec. B883 FJ870697 EU095309
AY908804
D. superba

EU095270
AF208410
D. papuana

AF208419
D. papuana

LN828298
EU124424

D. superba

AF246704

D. papuana
LN828232

Oligotrichum hercynicum
B872

B973
FJ870698 EU095310

AY908805
O. parallelum

EU095271

AY118242
O. 
austroaligeru
m

AY137688 LN828299
AY864302

O. canaliculatum
AF545014 LN828233

Pogonatum urnigerum B884 FJ870699 AJ299528 AJ291554 EU095272
AF478206
P. 
perichaetiale

AF478258
P. 
perichaetale

 LN828300
EU124442

P. subulatum
GU569719 LN828234

Tetraphidopsida Tetraphis pellucida
B873

B967
FJ870700 AJ299529 AJ224855 EU095273 AF478203 AF306954 LN828301 LN828211 AF231908. LN828235

Tetrodontium brownianum GBoL1541 UConn UConn AY908809 UConn JN162295 AY908022 LN828302 LN828212 LN828225 LN828236

Bryopsida

Buxbaumiidae
Buxbaumia aphylla

B928

B972
FJ870701 AJ299531 AJ291555 EU095274 AF478212 AF231897 LN828303 AY86429 AF478299 LN828237

Diphysciidae Diphyscium sessile B885 FJ870702 AJ299530 Z98972 EU095275
AF478219
D. 
fasciculatum

AF478270
D. 
fasciculatum

LN828304
DQ397161

D. foliosum

AF478308

D. fasciculatum
LN828238

Timmiidae

  Timmiales Timmia austriaca B886 FJ870703 FJ870755 FJ870748 FJ870748 AJ275185 AF223035 LN828305 DQ397132 DQ397165 LN828239

Timmia megapolitana B866 FJ870704 AJ299532 AJ622820 EU095276 DQ778619 AF222902 LN828306 DQ397147 AF435351 LN828240

Timmia norvegica B887 FJ870705 FJ870756 FJ870749 FJ870749
AJ275166 
T. sibirica

AF023775 
T. sibirica

LN828307 JF342799 DQ397184 LN828241

Gigaspermidae

  Gigaspermales Chamaebryum pottioides
B1390

UConn 3630
FJ870706 FJ870757 AY908983 FJ870750 FJ870761 AF223051 LN828308 JN089201 AF229908 LN828242

Gigaspermum repens
B1389

UConn3583
FJ870707 FJ870758 AY908974 FJ870751 FJ870762 AF231064 LN828309 JN089220 AF229906 LN828243

Oedipodiella australis
UConn 2681

B1417
FJ870708 FJ870759 FJ870754 FJ870752 FJ870763 FJ870765 LN828310 JN089225 JN088955 LN828244



Taxonomy

Subdivision

Class

Subclass

  Superorder

    Order

      Family

Species Lab code cobi420
nad2 with 
nad2i156

nad5 with 
nad5i753

nad5-nad4 IGS rbcL rps4 trnK/matK atpB-rbcL IGS trnL G1 rpl16 G2

Funariidae

  Encalyptales Bryobrittonia longipes B135 FJ870709 EU095311 AY908790 EU095277 AJ275168 AF023778 LN828311 JN089200 AF023718 LN828245

Encalypta streptocarpa B862 FJ870710 AJ299533 AJ291556 EU095278 AF478239 AF478282 LN828312 EU186582 AF478325 LN828246

  Funariales Funaria hygrometrica B096 FJ870711 AJ299534 Z98959 EU095279 AF005513 AF023776 LN828313 EU186579 EU186538 LN828247

Physcomitrella patens B889 NC_007945 AJ299535 Z98960 DQ098674 AP005672 NC_005087 LN828314 JN089227 EU186539 NC005087 

Physcomitrium pyriforme
B868

B1044
FJ870712 EU095312

AY908933
P. lorentzii

EU095280 EU095319 AF223045 LN828315 JN089233 AF229902 LN828248

   Disceliaceae Discelium nudum B890 FJ870713 EU095313 AY908956 EU095281 EU095320 AF223063 LN828316 JN089203 AF229920 LN828249

Dicranidae

   Catoscopiales Catoscopium nigritum B606 FJ870735 FJ870760 AY908927 FJ870753 FJ870764 AF307001 LN828338 EU186592 EU186545 LN828271

   Scouleriales

    Drummondiaceae
Drummondia prorepens B137 FJ870714 LN828286

AY908926
D. obtusifolia

EU095282
AF232697
D. obtusifolia

AF306977 LN828317 LN828213
AF229895

D. obtusifolia
LN828250

   Grimmiales
Grimmia cribrosa B974 FJ870715 EU095314

AY908918
C. calyptratus 

EU095283 AB125575 AJ553978 LN828318 LN828214 DQ399642 LN828251

Grimmia donniana Madrid 2E102 FJ870716 EU095315
AY908919
G. plagiopodia

EU095284
AF231305
G. pulvinata

AF222900
G. pulvinata

LN828319
LN828215 
G. plagiopodia

AJ879718 LN828252

Racomitrium lanuginosum
JL 45D

Raco 73B
FJ870717 AJ299542 AJ291561 EU095285

AB125582
R. japonicum

AJ553982 LN828320
EU186589

R. microsarpum

EU246926

R. elongatum
LN828253

     Seligeriaceae Blindia acuta B964 FJ870718 EU095316 AY908928 EU095286
AF478232
B. 
magellanica

AF478278
B. 
magellanica

LN828321 LN828216 AF023721 LN828254

   Dicranales Orthodicranum montanum B891 FJ870719 AJ299537 AJ291558 EU095287
AF231311
O. fulvum

AF231288
O. fulvum

LN828322 LN828217 AF129589 LN828255

     Fissidentaceae Fissidens cristatus B892 FJ870720 AJ299541 Z98954 DQ098675
DQ463104
F. taxifolius

DQ463123
F. taxifolius

LN828323
AY159893

F. taxifolius
AF135104 LN828256

     Ditrichaceae Ceratodon purpureus B893 FJ870721 AJ299538 Z98955 EU095288 EU095321 AJ554004 LN828324 EU053086 AB848718 LN828257

Ditrichum cylindricum B894 FJ870722 AJ299539 AJ291559 EU095289
AF231302 
D. pallidum

AF231279
 D. pallidum

LN828325
DQ397160

D. flexicaule

AF231248

D. pallidum
LN828258

    Schistostegaceae Schistostega pennata B895 FJ870723 AJ299546 AJ224856 EU095290 AY631206 AF265359 LN828326 LN828218 LN828226 LN828259

    Leucobryaceae Leucobryum glaucum
B966

(B869)
FJ870724 AJ299540 AJ291560 EU095291 AB124788 AJ554003 LN828327

AY159900

L. javense
AF135083 LN828260

   Pottiales Pottia truncata
B896

N159
FJ870725 AJ299543 Z98957 EU095292

AB125592
P. intermedia

AF480987
P. pallida

LN828328 LN828219 AF135112 LN828261

Timmiella spec. B968 FJ870726 EU095317
AY908958
T. anomala

EU095293
AF478236
T. 
crassinervis

AY908163
T. anomala

LN828329
LN828220

T. barbuloides

AF231173

T. crassinervis

LN828262 

T. barbuloides

Syntrichia latifolia B870 FJ870727 AJ299544 AJ291562 EU095294
AF226823
S. 
obtusissima

AF481041
S. muralis

LN828330
AY159892

S. muralis

AF135108

S. muralis
LN828263

     Cinclidotaceae Cinclidotus riparius B898 FJ870728 AJ299545 AJ291563 EU095295
AF231079
C. 
mucronatus

AF480975
C. 
fontinaloides

LN828331
EU186587

C. nigricans

EU186544

C. nigricans
LN828264

Bryidae

  Bryanae   

   Splachnales
Splachnum ampullaceum B899 FJ870729 EU095318 EU095308 EU095296 AF231071 AJ251308 LN828332

EU186613

S. luteum
AF215899 LN828265

Tetraplodon fuegianus Uconn NC028191 NC028191 NC028191 NC028191 NC028191 KU095851 KU095851 KU095851 KU095851 KU095851



Taxonomy

Subdivision

Class

Subclass

  Superorder

    Order

      Family

Species Lab code cobi420
nad2 with 
nad2i156

nad5 with 
nad5i753

nad5-nad4 IGS rbcL rps4 trnK/matK atpB-rbcL IGS trnL G1 rpl16 G2

   Orthotrichales Ulota crispa
B863

B965
FJ870730 AJ299553 AJ291568 EU095297 AY631208

AY618370
U. hutchinsiae

LN828333 EU186617 EU186557 LN828266

Orthotrichum rogeri KM873610 KM873610 KM873610 KM873610 NC026212 NC026212 NC026212 NC026212 NC026212 NC026212

Nyholmiella obtusifolia KX702279 KX702279 KX702279 KX702279 KP765733 KP765733 KP765733 KP765733 KP765733 KP765733

    Hedwigiales Hedwigia ciliata B461 FJ870731 AJ299554 Z98966 EU095298 AF005517 AF478289 LN828334 LN828221 AF478336 LN828267

    Rhacocarpaceae Rhacocarpus purpurascens B871 FJ870732 AJ299555 Z98967 EU095299 AJ275171 AF023815 LN828335 EU186598 HF536608 LN828268

   Bartramiales Bartramia halleriana Bh 114 FJ870733 AJ299547 Z98961 EU095300 AF231090 AF265358
LN828336

B. hampeana

EU186599

B. stricta
AY532395 LN828269

Plagiopus oederi B47/B320 FJ870734 AJ299548 Z98962 EU095301 DQ481540 AF023833 LN828337 AF413559 AF023757 LN828270

   Bryales
Bryum argenteum (from WGS 
GPZP01 & Genbank)

KC663059 - KC663059 KC662861 KC662788 GPZP01 KC493910 GPZP01 GPZP01 GPZP01 AF546777

Mnium hornum B900 FJ870736 AJ299552 AJ291567 EU095302 AF226820 AF023796 LN828339 AF546857 AF231177 LN828272

Pohlia nutans B901 FJ870737 AJ299550 AJ291565 EU095303
AJ275175
P. cruda

AF023795
P.cruda

LN828340
AF546859

P. cruda
DQ108957 LN828273

   Rhizogoniales   

     Aulacomniaceae
Aulacomnium androgynum B865 FJ870738 AJ299549 AJ291564 EU095304

AJ275180
A. turgidum

AF023809
A. turgidum

LN828341 AF413529 AF023729 LN828274

     Orthodontiaceae Orthodontium lineare B902 FJ870739 AJ299551 AJ291566 EU095305 AJ275174 AF023800 LN828342 EU186619 EU186558 LN828275

Ptychomniales Ptychomnion cygnisetum N131 KC784949 KC784949 KC784949 KC784949 DQ196095 AY306984
N131
P. aciculare

EU186632
P. ptychocarpon

AJ862681 JN162156

  Hypnanae; Hookeriales Lopidium concinnum
UCONN
L. 
struthiopteris

UCONN
L. struthiopteris

AY631221
UCONN
L. struthiopteris

AY631190 AY631153
B512
L. penniforme

AY864295 AY306780
N92

L. concinnum

Hypnales
    Plagiotheciaceae

Herzogiella seligeri B903 FJ870740 AJ299561 AJ291573 DQ098681 EU095322
AF469815
H. striatella

LN828343 LN828222 AF472453 LN828276

    Plagiothecium laetum UCONN UCONN UCONN UCONN KF882034 KF882359 KF882134 KF882284 KF882184 KF882334

    Hypnanceae Hypnum jutlandicum GBoL481 GBoL481 GBoL481 GBoL481 GBoL481 GBoL481 GBoL481 GBoL481 GBoL481 GBoL481 GBoL481

    Fontinalaceae Fontinalis antipyretica B904 FJ870741 AJ299558 AJ291570 EU095306 AB050949 AF023817 LN828344 EU186638 AF023771 LN828277

    Amblystegiaceae Hygrohypnum ochraceum B905 FJ870742 AJ299562 AJ291574 DQ098679 EU095323
AY908620
H. smithii

LN828345 AY857584 AY012571 LN828278

Sanionia uncinata - KP984757 KP984757 KP984757 KP984757 KM111545 KM111545 KM111545 KM111545 KM111545 KM111545

Scorpidium scorpioides B906 FJ870743 AJ299563 AJ291575 DQ098680 EU095324 AY908584 LN828346 AY625977 AY626014 LN828279

   Brachytheciaceae Tomentypnum nitens B907 FJ870744 AJ299560 AJ291572 DQ098677 AB024676
AY908567
T. falcifolium

LN828347 LN828223 AY009854 LN828280

Brachythecium rivulare KR732319 KR732319 KR732319 KR732319 AB024674 AM990348 SH131 EF530950 AM990348 FM160950

     Leucodontaceae Pterogonium gracile B864 FJ870745 AJ299556 Z98968 EU095307 AY631194 AY907970 LN828348 HQ268443 HE717062 LN828281

     Neckeraceae Thamnobryum alopecurum B475 FJ870747 AJ299559 AJ291571 DQ098678 AY532392 AF023834 LN828350
EU186642

T. pandum
AY010287 LN828283



Table 11: NCBI Accessions from LP data set. Taxa substituted by a close relative of the same family is indicated by the epitheton (in brackets).

atpB rbcL psaA psbB matK rps4 trnL G1 core rrn23 (Cp-LSU) rrn16 Cp-SSU

Streptophyta

  Mesostigma viride NC002186 NC002186 NC002186 NC002186 - NC002186 NC002186 NC002186 NC002186

  Chlorokybus atmophyticus DQ422812 DQ422812 DQ422812 DQ422812 - DQ422812 DQ422812 DQ422812 DQ422812

  Klebsormidium flaccidum KJ461680 KJ461680 KJ461680 KJ461680 KJ461680 KJ461680 -

  Interfilum terricola KM462881 KM462881 KM462881 KM462881 KM462881 KM462881 KM462881 KM462881 KM462881

  Chara vulgaris DQ229107 DQ229107 DQ229107 DQ229107 DQ229107 DQ229107 DQ229107 DQ229107 DQ229107

  Chaetosphaeridium globosum NC004115 NC004115 NC004115 NC004115 NC004115 NC004115 NC004115 NC004115 NC004115

  Zygnema circumcarinatum NC008117 NC008117 NC008117 NC008117 NC008117 NC008117 NC008117 NC008117 NC008117

  Roya anglica KJ461681 KJ461681 KJ461681 KJ461681 KJ461681 KJ461681 KJ461681 KJ461681 KJ461681

Marchantiophytina

  Haplomitrium gibbsiae KF852066 AY608030 AB013675 (mnioides) HQ413015 (hookeri) KF851438 AY007641

  Treubia lacunosa HQ412995 AY507428 HQ413014 AY507468 KP324847

  Blasia pusilla DQ646047 DQ645982 AY507436 AY007619

  Marchantia polymorpha X04465 X04465 X04465 X04465 X04465 X04465 X04465 X04465 X04465

  Conocephalum conicum DQ646015 AB056154 AF264664 AY688791 AF071834

  Pellia endivifolia JX827163 JX827163 JX827163 JX827163 JX827163 JX827163 JX827163 JX827163 JX827163

  Fossombronia angulosa AY507353 AY507398 HF585107 HF585119 HF585128 AY507440 AY507527

  Aneura mirabilis NC010359 NC010359 NC010359 NC010359 NC010359 NC010359 NC010359 NC010359 NC010359

  Frullania DQ646041 (dilatata) AM384881(dilatata) KC918782 (tamarisci)

  Porella platyphylla DQ646040 (pinnata) EF547189 - - AY168655 AY462387 AY007637

  Ptilidium pulcherrimum HM222519 HM222519 HM222519 HM222519 HM222519 HM222519 HM222519 HM222519 HM222519

  Herbertus stramineus AY607903 (H. sakurai) KC250516 JN113493 KF851457 DQ293985

  Plagiochila asplenoides
DQ646035 
(porelloides) AY149839 B266 JX308605 AY149858

  Jungermannia exsertifolia
KF942425 KF943592 KF943503

AY453774 (J. 
exsertifolia)

  Scapania undulata DQ646032 (nemorea) AY149840 GU295889 (bolanderi) AY462392 AY453783

Anthocerotophytina

  Leiosporoceros dussii GQ497601 AY619652 NA HQ413019 KF482228 KP238712

  Anthoceros formosae NC004543 NC004543 NC004543 NC004543 NC004543 NC004543 NC004543 NC004543 NC004543

  Nothoceros aenigmaticus NC020259 NC020259 NC020259 NC020259 NC020259 NC020259 NC020259 NC020259 NC020259

Lycopodiophyta

  Huperzia lucidula AY660566 AY660566 AY660566 AY660566 AY660566 AY660566 AY660566 AY660566 AY660566

  Isoëtes flaccida GU191333 GU191333 GU191333 GU191333 GU191333 GU191333 GU191333 GU191333 GU191333

  Selaginella moellendorffii FJ755183 FJ755183 FJ755183 FJ755183 FJ755183 FJ755183 FJ755183 FJ755183 FJ755183

Monilophytina

  Psilotum nudum KC117179 KC117179 KC117179 KC117179 KC117179 KC117179 KC117179 KC117179 KC117179

  Ophioglossum californicum KC117178 KC117178 KC117178 KC117178 KC117178 KC117178 KC117178 KC117178 KC117178

  Angiopteris evecta DQ821119 DQ821119 DQ821119 DQ821119 DQ821119 DQ821119 DQ821119 DQ821119 DQ821119

  Equisetum arvense GU191334 GU191334 GU191334 GU191334 GU191334 GU191334 GU191334 GU191334 GU191334

  Equisetum hyemale KC117177 KC117177 KC117177 KC117177 KC117177 KC117177 KC117177 KC117177 KC117177

  Osmundastrum 
cinnamomeum KF225592 KF225592 KF225592 KF225592 KF225592 KF225592 KF225592 KF225592 KF225592

  Lygodium japonicum KC536645 KC536645 KC536645 KC536645 KC536645 KC536645 KC536645 KC536645 KC536645

  Gleichenia japonica AF313550 U05624 - - HM021798 AF313599 (dicarpa) AY651838 (dicarpa)

  Diplopterygium glaucum NC_024158 NC_024158 NC_024158 NC_024158 NC_024158 NC_024158 NC_024158 NC_024158 NC_024158

  Hymenophyllum tunbrigense EF463469 AB496576 EU552822 (hirsutum) JF303898 AY775420 (javanicum) KF113295 (javanicum)



atpB rbcL psaA psbB matK rps4 trnL G1 core rrn23 (Cp-LSU) rrn16 Cp-SSU

(polyanthos)

  Marsilea crenata KC536646 KC536646 KC536646 KC536646 KC536646 KC536646 KC536646 KC536646 KC536646

  Alsophila spinulosa NC012818 NC012818 NC012818 NC012818 NC012818 NC012818 NC012818 NC012818 NC012818

Lophosoria quadripinnata ABA325 ABA325 ABA325 ABA325 ABA325 ABA325 ABA325 ABA325 ABA325 

  Cyathea atahuallpa ABA128 ABA128 ABA128 ABA128 ABA128 ABA128 ABA128 ABA128 ABA128

  Cyathea obnoxia ABA135 ABA135 ABA135 ABA135 ABA135 ABA135 ABA135 ABA135 ABA135

  Plagiogyria glauca KP136831 KP136831 KP136831 KP136831 JF303911 (euphlebia) KP136831 KP136831 KP136831 KP136831

  Pteridium aquilinum HM535629 HM535629 HM535629 HM535629 HM535629 HM535629 HM535629 HM535629 HM535629

  Cheilanthes lindheimeri HM778032 HM778032 HM778032 HM778032 HM778032 HM778032 HM778032 HM778032 HM778032

  Adiantum capillus-veneris AY178864 AY178864 AY178864 AY178864 AY178864 AY178864 AY178864 AY178864 AY178864

  Ceratopteris richardii KM052729 KM052729 KM052729 KM052729 KM052729 KM052729 KM052729 KM052729 KM052729

  Dipteris conjugata KP136829 KP136829 KP136829 EU552820 - KP136829 KP136829 KP136829 KP136829

  Cystopteris protrusa KP136830 KP136830 KP136830 KP136830 KP136830 KP136830 KP136830 KP136830 KP136830

  Asplenium nidus EF463336 AB013238 AJ347885 KP835367 DQ629313

  Dicksonia antarctica U93829 HM021802 EU552818 HM021802 AF313596 AM410355 KJ569698 KJ569698

  Mankyua chejuensis JF343520 JF343520 JF343520 JF343520 JF343520 JF343520 JF343520 JF343520 JF343520

Gymnosperms

  Wollemia nobilis KP259800 KP259800 KP259800 KP259800 KP259800 KP259800 KP259800 KP259800 KP259800

  Welwitschia mirabilis NC010654 NC010654 NC010654 NC010654 NC010654 NC010654 NC010654 NC010654 NC010654

  Ephedra equisetina NC011954 NC011954 NC011954 NC011954 NC011954 NC011954 NC011954 NC011954 NC011954

  Gnetum montanum NC021438 NC021438 NC021438 NC021438 NC021438 NC021438 NC021438 NC021438 NC021438

  Gnetum gnemon KP099649 KP099649 KP099649 KP099649 KP099649 KP099649 KP099649 KP099649 KP099649

  Cycas taitungensis AP009339 AP009339 AP009339 AP009339 AP009339 AP009339 AP009339 AP009339 AP009339

  Cycas revoluta JN867588 JN867588 JN867588 JN867588 JN867588 JN867588 JN867588 JN867588 JN867588

  Encephalartos lehmannii LC049336 LC049336 LC049336 LC049336 LC049336 LC049336 LC049336 LC049336 LC049336

  Lepidozamia peroffskyana LC049207 LC049207 LC049207 LC049207 LC049207 LC049207 LC049207 LC049207 LC049207

  Zamia furfuracea JX416857 JX416857 JX416857 JX416857 JX416857 JX416857 JX416857 JX416857 JX416857

  Dioon spinulosum LC049070 LC049070 LC049070 LC049070 LC049070 LC049070 LC049070 LC049070 LC049070

  Ginkgo biloba AB684440 AB684440 AB684440 AB684440 AB684440 AB684440 AB684440 AB684440 AB684440

  Abies koreana KP742350 KP742350 KP742350 KP742350 KP742350 KP742350 KP742350 KP742350 KP742350

  Cedrus deodara AB480043 AB480043 AB480043 AB480043 AB480043 AB480043 AB480043 AB480043 AB480043

  Picea abies HF937082 HF937082 HF937082 HF937082 HF937082 HF937082 HF937082 HF937082 HF937082

  Pinus thunbergii D17510 D17510 D17510 D17510 D17510 D17510 D17510 D17510 D17510

  Larix decidua AB501189 AB501189 AB501189 AB501189 AB501189 AB501189 AB501189 AB501189 AB501189

  Araucaria muelleri KM678419 KM678419 KM678419 KM678419 KM678419 KM678419 AY145322 (araucana) KM678419 KM678419

  Phyllocladus trichomanoides
AJ621931 AB027315 AJ344293 AJ347877 AF456376

AY188258 
(aspleniifolius)

AY083117 
(aspleniifolius)

  Podocarpus lambertii KJ010812 KJ010812 KJ010812 KJ010812 KJ010812 KJ010812 KJ010812 KJ010812 KJ010812

  Taxus mairei KJ123824 KJ123824 KJ123824 KJ123824 KJ123824 KJ123824 KJ123824 KJ123824 KJ123824

  Torreya californica AJ621934 AB027317 (nucifera) AF180025 AF222706 AB030137 (nucifera) DQ478804 KJ589069 DQ478782 (nucifera)

  Cryptomeria japonica AP010967 AP010967 AP010967 AP010967 AP010967 AP010967 AP010967 AP010967 AP010967

  Cupressus sempervirens KP099643 KP099643 KP099643 KP099643 KP099643 KP099643 KP099643 KP099643 KP099643

  Hesperocyparis arizonica AJ621925 L12571 AJ344291 AJ347875 AF152188 HM024371 HM024539 KP099644 KP099644

  Juniperus bermudiana KF866297 KF866297 KF866297 KF866297 KF866297 KF866297 KF866297 KF866297 KF866297

  Metasequoia glyptostroboides KR061358 KR061358 KR061358 KR061358 KR061358 KR061358 KR061358 KR061358 KR061358

  Sequoia sempervirens AJ621927 L25755 AF180012 AJ347882 AF152209 AY188266 AB030051 EU161555

  Taiwania flousiana KC427274 KC427274 KC427274 KC427274 KC427274 KC427274 KC427274 KC427274 KC427274

Angiosperms

  Amborella trichopoda AJ506156 AJ506156 AJ506156 AJ506156 AJ506156 AJ506156 AJ506156 AJ506156 AJ506156

  Brasenia schreberi AJ235418 M77031 GU902260 AY779187 JF268431 AY145329

  Nuphar advena DQ354691 DQ354691 DQ354691 DQ354691 DQ354691 DQ354691 DQ354691 DQ354691 DQ354691



atpB rbcL psaA psbB matK rps4 trnL G1 core rrn23 (Cp-LSU) rrn16 Cp-SSU

  Nymphaea alba AJ627251 AJ627251 AJ627251 AJ627251 AJ627251 AJ627251 AJ627251 AJ627251 AJ627251

  Austrobaileya scandens AF092107 L12632 AJ344264 AJ347849 DQ185523 AF313613 AY145326

  Illicium oligandrum EF380354 EF380354 EF380354 EF380354 EF380354 EF380354 EF380354 EF380354 EF380354

  Schisandra chinensis AF239790 AF238061 GU902262 AY007470 AF543750 (rubiflora) JF268462 (glabra) DQ342262

  Chloranthus spicatus EF380352 EF380352 EF380352 EF380352 EF380352 EF380352 EF380352 EF380352 EF380352

  Eupomatia bennettii AJ235473 L12644 AJ344271(laurina) AJ347855 (laurina) DQ401341 JF268442 KF586705

  Liriodendron tulipifera DQ899947 DQ899947 DQ899947 DQ899947 DQ899947 DQ899947 DQ899947 DQ899947 DQ899947

  Magnolia tripetala KJ408574 KJ408574 KJ408574 KJ408574 KJ408574 KJ408574 KJ408574 KJ408574 KJ408574

  Calycanthus floridus NC_004993 NC_004993 NC_004993 NC_004993 NC_004993 NC_004993 NC_004993 NC_004993 NC_004993

  Persea americana AJ621920 X54347 AJ344282 AJ347866 AJ247179 - KF586695

  Hedycarya arborea
AJ235490 L12648

AJ344273 
(angustifolia)

AJ347857 
(angustifolia) AM396509 JF268446 AM397149

  Canella winterana AJ235424 AY572265 GU902264 C. sp.GU902270 AF543731 AY145348

  Drimys granadensis DQ887676 DQ887676 DQ887676 DQ887676 DQ887676 DQ887676 DQ887676 DQ887676 DQ887676

  Asarum canadense
U86383 L14290 AJ344263 (caudatum) AJ347848 (caudatum)

DQ532034 
(caudatum) KJ888603

  Piper kadsura KT223569 KT223569 KT223569 KT223569 KT223569 KT223569 KT223569 KT223569 KT223569

  Piper cenocladum DQ887677 DQ887677 DQ887677 DQ887677 DQ887677 DQ887677 DQ887677 DQ887677 DQ887677

  Saururus cernuus AF093398 L14294 AJ344284 AJ347868 L AF543749 JF268461 AY145343 HQ664635 HQ664635

  Acorus calamus AJ879453 AJ879453 AJ879453 AJ879453 AJ879453 AJ879453 AJ879453 AJ879453 AJ879453

  Spathiphyllum wallisii AJ235606 AJ235807 AJ344286 (sp.) AJ347870 (sp.) AM920559 - AY054738

  Lilium longiflorum KC968977 KC968977 KC968977 KC968977 KC968977 KC968977 KC968977 KC968977 KC968977

  Serenoa repens AJ621817 AJ621936 AJ344285 AJ347869 AM114585 - AB522076

  Oryza sativa X15901 X15901 X15901 X15901 X15901 X15901 X15901 X15901 X15901

  Zea mays X86563 X86563 X86563 X86563 X86563 X86563 X86563 X86563 X86563

  Ceratophyllum demersum EF614270 EF614270 EF614270 EF614270 EF614270 EF614270 EF614270 EF614270 EF614270

  Dicentra eximia  KM364722 (formosa) L37917 HF585114 HF585124 DQ182345 - AY145361

  Cocculus trilobus AF197614 L12642 AJ344268 (laurifolius) AJ347852 (laurifolius) AF542588 (laurifolius) - EF143892

  Ranunculus macranthus NC008796 NC008796 NC008796 NC008796 NC008796 NC008796 NC008796 NC008796 NC008796

  Nelumbo nucifera KM655836 KM655836 KM655836 KM655836 KM655836 KM655836 KM655836 KM655836 KM655836

  Nelumbo lutea JQ336992 JQ336992 JQ336992 JQ336992 JQ336992 JQ336992 JQ336992 JQ336992 JQ336992

  Platanus occidentalis DQ923116 DQ923116 DQ923116 DQ923116 DQ923116 DQ923116 DQ923116 DQ923116 DQ923116

  Grevillea banksii AF060434 (baileyana) AF193973 (robusta) HF585115 HF585125 AF542583 - FJ626569 (robusta)

  Pachysandra procumbens AF092111 AF093718 AJ344281 (terminalis) AJ347865 (terminalis) AF542581 (terminalis) AY188234 AM397167(terminalis)

  Gunnera hamiltonii
AF093374 AF093724 - GU902272 AM396506 (tinctoria) EU002325

AB248588 
(magellanica) HQ664604 (manicata) HQ664604 (manicata)

  Myrothamnus moschatus
AF093386 
(flabellifolius)

AF060707 
(flabellifolius) - HF585126 AF542591 - AY651845 HQ664624 HQ664624

  Liquidambar styraciflua AF092104 AF061997 AJ344276 AJ347860 AF015652 EF207545 EF138659

  Vitis vinifera AB856291 AB856291 AB856291 AB856291 AB856291 AB856291 AB856291 AB856291 AB856291

  Erodium chrysanthum KJ701602 KJ701602 KJ701602 KJ701602 KJ701602 KJ701602 KJ701602 KJ701602 KJ701602

  Acer buergerianum KF753631 KF753631 KF753631 KF753631 KF753631 KF753631 KF753631 KF753631 KF753631

  Tarenaya hassleriana AF209565 M95755 AJ344274 (arborea) AJ347858 (arborea) AY491649 - - - -

  Arabidopsis thaliana AP000423 AP000423 AP000423 AP000423 AP000423 AP000423 AP000423 AP000423 AP000423

  Pisum sativum KJ806203 KJ806203 KJ806203 KJ806203 KJ806203 KJ806203 KJ806203 KJ806203 KJ806203

  Fagus grandifolia AJ621919 AY263936 AJ344272 AJ347856 AB046505 (japonica) - AB066497

  Carya glabra AF209555 L12637 AJ344266 (mexicana) AJ347851 (mexicana) KF201327 - AY147074 (ovata)

  Enkianthus chinensis
AJ621818

L12616 
(campanulatus) AJ344270 AJ347854 JF953672 FJ357294

  Nicotiana tabacum Z00044 Z00044 Z00044 Z00044 Z00044 Z00044 Z00044 Z00044 Z00044



Table 12: Plastid primers used in this study

trnK/matK

trnK-Fbryo1 GGGTTGCTAACTCAATGGTAGAG trnK land plants Wicke & Quandt 2009

psbARbryo CGCTTTCGCGTCTTTCTAAAG psbA land plants Quandt

trnK_450F TTAAGTCAGRAGAGCAAT trnK bryophytes
excl. Sphagum

Quandt
this study

matK_1307R AAGCTAATGTTTTAGCRCAAGAA matK bryophytes Quandt
this study

matK_1321R CTTTTATGTTTRCAAGCTAATG matK bryophytes Quandt
this study

matK_1400R TTTGAABAATATCAAGATACCA matK bryophytes Quandt
this study

rpl16

F71 GCTATGCTTAGTGTGTGACTCGTT rpl16
Exon1

bryophytes Jordan et al. 1996

rpl16R GTAATCCAAGCTGGTTCAAGTGC rpl16 Exon 2 bryophytes Quandt/ Olsson

trnLF

trnL_15 AWTGGTAGACGCTRCGGACT trnL 5’
exon

land plants Wicke & Quandt 2009

trnF_39 TTTGAACTGGTGACACRAGGA trnF land plants Wicke & Quandt 2009

atpB-rbcL

atpB1 ACATCKARTACKGGACCAATAA atpB-rbcL bryophytes Chiang_et_al_1998

rbcL1 AACACCAGCTTTRAATCCAA atpB-rbcL bryophytes Chiang_et_al_1998

rbcl

rbcL_34F GGTGTTGGATTTAAAGCTGGTGTT rbcL bryophytes Cox__et_al_2000

rbcL_1390R CTTTCCAAACTTCACAAGCAGCAG rbcL bryophytes Cox__et_al_2000

rbcL_745R CTTCACAWGTACCTGCRGTAG rbcL bryophytes Cox__et_al_2000



Table 13: Fossil calibration points for divergence dating.

Code Node (MRCA) from to type Fossil Reference Stratigraphy
Age (Myr)

lower upper

ROOT
Coleochaetales + 
Emryophytes

Chara Fagus - Estimation Hackett etal 2007 Estimation 970 870

Embryophytes

EMB07 Emryophyta stem Halpomitrium Fagus fix
Cryptospores with 
sporopollenin

Rubinstein etal 2010
upper Ordovician 
(Hirnantian)

485 443,8

MTZ Metzgeriales stem Pellia Plagiochila min Metzgeriothallus sharonae
VanAller, Hernick, et 
al. 2008

middle devonian 
(Givetian)

387,7 382,7

MOS
Mosses + Vascular 
Plants 

Sphagnum Fagus min
Sporogonites spp. 
(sporangium with central 
sterile region)

Halle 1916/1936; 
Kenrick and Crane, 
1997; Goffinet etal 
2000

lower devonian 419,2 393,3

BRY Bryidae Tetraplodon Sanionia min Merceria augustica Smoot & Taylor, 1986
upper permian 
(lopingian)

259,8 252,2

HYP pleurocarpous stem Ptychomnion Sanionia min Capimirinus riopretensis de Souza et al 2012 permian (guadalupian) 272,3 259,8

HYP2 Hypnanae crown Lopidium Sanionia max Krassiloviella limbelloides Shelton et al. 2016
Early cretaceous 
(Valanginian)

139,8 132,9

Tracheophytes

LYC Tracheophyta crown Huperzia Fagus min Baragwanathia longifolia

Garrat and Rickards, 
1987; Hueber, 1992; 
Kenrick and Crane, 
1997

Upper Silurian (Ludlow) 427,4 423

ISS
Isoetaceae + 
Selaginallaceae

Isoetes Selaginella min Leclercquia complexa
Fairon-Demaret 1974, 
Kenrick & Crane 1997

Middle Devonian 
(Givetian)

393,3 382,7

IBY Equisetales stem Equisetum Asplenium min Ibyka amphikoma Skog & Banks, 1973
Middle Devonian 
(Givetian)

393,3 382,7

OSM Osmundaceae stem Osmunda Asplenium min
Thamnopteris 
schlechtendalii

Miller 1971, Taylor &al. 
2009

Upper Permian 259,8 252,2

GLE Gleichenia stem Diplopterygium Gleichenia min Gleichenia chaloneri
Herendeen & Skog 
1998

(Early) Albian 113,5 100,5



Code Node (MRCA) from to type Fossil Reference Stratigraphy
Age (Myr)

lower upper

SCZ
Schizaeaceae crown 
(sister to Lygodium)

Lygodium Asplenium min Stachypteris spicans

Harris 1961; van 
Konijnenburg-
vanCittert 1991; 
Wikström & Kenrick 
2002

Middle Juassic 
(Bajocian)

170,3 168,3

MAR Marsileaceae stem Marsilea Asplenium min Regnellites nagashimae Yamada & Kato, 2002
Upper Jurassic 
(Berriasian)

163,5 145

CYA Cyatheaceae stem Dicksonia Cyathea min
Cyathocalulis 
naktongensis and C. yabei

Ogura, 1927; Nishida 
1982; Lantz et al. 1999 
(Schuettpelz & Pryer 
2009; Korall & Pryer, 
2014)

Upper Jurassic 163,5 145

PTE Pteridaceae stem Ceratopteris Asplenium min Pteris sp.
Krassilov & Bacchia, 
2000

mid-Cenomanian 100,5 93,9

EUP
Spermatophyta stem = 
Euphyllophyta crown

Psilotum Fagus min
Pertica quadrifaria, Pertica 
varia

Gensel & Andrews 
1994; Banks 1975; 
Kenrick & Crane 1997

Lower Devonian 
(Emsian)

407,6 393,3

Gymnosperms

CGS Conifers + Ginkgo stem Cycas Juniperus min Swillingtonia denticulata
Trivett 1992
Scott 1974; Scott & 
Chaloner 1983

Middle Pennsylvanian 315,2 307

CYC Cycads crown Cycas
Encephalart
os

min Crossozamia spp.
Gao & Thomas 1989; 
Hermsen et al. 2006

Lower Permian 298,9 272,3

PIN Pinaceae stem Cedrus Juniperus min Eathiestrobus mackenziei Rothwell et al. 2012 Upper Triassic 237 201,3

PPS Pinus-Picea split Pinus Picea min
Picea burtonii, Pinus 
mundayi

Klymiuk & Stockey, 
2012; Falcon-Lang et 
al. 2016

Valanginian 139,8 132,9

GNE Gnetophytes stem Ephedra Juniperus min
Dechellyia gormanii, 
Masculostrobus clatratus 

Ash 1972; Crane 1996 Upper Triassic 237 201,3

EPH
Ephedra stem = 
Gnetales crown

Ephedra Gnetum min
Liaoxia chenii, Ephedra 
archaeorhytidosperma

Rydin et al. 2006; 
Yang et al. 2005

Early Cretaceous 
(Barremian)

129,4 125



Code Node (MRCA) from to type Fossil Reference Stratigraphy
Age (Myr)

lower upper

ARAU Araucariaceae stem Phyllocladus Araucaria min
Brachyphyllum mamillare 
and Araucarites phillipsii

Harris, 1979
Middle Jurassic 
(Aalenian)

174,1 170,3

TAX Taxaceae stem Taxus Juniperus min Palaeotaxus rediviva Florin 1951
Lower Jurassic 
(Hettangian)

201,3 199,3

Angiosperms

ANG Angiosperms crown Amborella Fagus max
Pollen with infratectal 
columellae and perforate to 
reticulate tectum

Hughes & McDougall 
1987; Hughes et al. 
1991; Brenner 1996; 
Doyle 2005, 2009, 
2012

Valanginian-
Hauterivian; Lower 
Cretaceous

151,8 132,9

NYM Nymphaeaceae stem Brasenia Nuphar min Monetianthus mirus Friis et al. 2001, 2009
late Aptian to early 
Albian

113 100,5

SCS Schisandraceae stem Austrobaileya Illicium min Anacostia marylandensis
Friis et al., 1997; Doyle 
et al., 2008

late Aptian to early 
Albian

113 100,5

CHL Chloranthaceae crown Chloranthus Hedycarya min Asteropollis plant
Friis et al., 1994, 1997, 
1999; Eklund et al., 
2004

late Barremian-early 
Aptian

125 113

MAG Magnoliales crown Eupomatia Magnolia min Endressinia brasiliana

Mohr and Bernardes-
de-Oliveira, 2004; 
Doyle and Endress, 
2010

late Aptian to early 
Albian

113 100,5

LAU Lauraceae stem Persea Hedycarya min Potomacanthus lobatus
von Balthazar et al. 
2007

early-middle Albian; 
Lower Cretaceous

113 100,5

WIN
Winteraceae stem 
=Canellales crown

Canella Drimys min Walkeripollis gabonensis
Doyle et al. 1990a, 
1990b, Doyle & 
Endress 2010; 

late Barremian; Lower 
Cretaceous

129,4 125

ARAC Araceae crown Spathiphyllum Oryza min Mayoa portugallica Friis et al. 2004
late Barremian-early 
Aptian

129,4 125

ARE Arecaceae stem Serenoa Oryza min
Leaves, stems and pollen 
grains assigned to Araceae

Christopher 1979; 
Daghlian 1981

Santonian, Upper 
Cretaceous

86,3 83,6



Code Node (MRCA) from to type Fossil Reference Stratigraphy
Age (Myr)

lower upper

EUD Eudicotyledoneae stem Ceratophyllum Fagus min
Tricolpate pollen grains, 
Hyrcantha decussata

Doyle & Hotton 
1991,Dilcher et al. 
2007; Friis et al. 2011; 
Leng & Friis 2003, 
2006

Barremian-Aptian; 
Lower Cretaceous 
Radiometric date: 125 
Ma

129,4 125

RAN Ranunculales crown Dicentra Ranunculus min Teixeiraea lusitanica
von Balthazar et al. 
2005

late Aptian, Lower 
Cretaceous

125 113

MEN Menispermaceae stem Cocculus Ranunculus min
Prototinomiscium 
testudinarum, P. 
vangerowii

Knobloch & Mai 1986
Maastrichtian; Upper 
Cretaceous

72,3 66

PLA Platanaceae stem Platanuss Grevillea min Sapindopsis plant Crane et al. 1993
early-middle Albian; 
Lower Cretaceous

113 100,5

BUX Buxales stem Pachysandra Fagus min Spanomera marylandensis Drinnan et al. 1991
late Albian (Lower 
Cretaceous)

113 100,5

PEN Pentapetalae crown Nicotiana Fagus min Rose Creek flower
Basinger and Dilcher, 
1984

latest Albian (Lower 
Cretaceous)

113 100,5

ERI Ericales crown Enkianthus Nicotiana min
Paleoenkianthus 
sayrevillensis

Nixon & Crepet 1993
Turonian (Upper 
Cretaceous)

93,9 89,8

BRA Brassicales stem Acer Tarenaya min Dressiantha bicarpelata Gandolfo et al., 1998
Turonian (Upper 
Cretaceous)

93,9 89,8

FAG Fagales crown Carya Fagus min Normapolles pollen
Pacltová 1966; Friis et 
al. 1983

middle Cenomanian; 
Upper Cretaceous

100,5 93,9



Table 14: Species richness in extant mosses. Samplingfraction is the number of taxa  that represent 
a clade divided by the total number of know taxa belonging to the clade. 

species name cladename samplingfraction #tax #species in clade

Sphagnum capillifolium Sphagnopsida 0,0033 1 301

Takakia lepidozioides Takakiopsida 0,5000 1 2

Andreaea nivalis Andreaeopsida 0,0110 1 91

Alophosia spec Polytrichopsida 0,0261 6 230

Atrichopsis compressus Polytrichopsida 0,0261 6 230

Atrichum undulatum Polytrichopsida 0,0261 6 230

Dawsonia spec Polytrichopsida 0,0261 6 230

Pogonatum urnigerum Polytrichopsida 0,0261 6 230

Oligotrichum hercynicum Polytrichopsida 0,0261 6 230

Oedipodium griffithianum Oedipodiopsida 1,0000 1 1

Tetraphis pellucida Tetraphidopsida 0,4000 2 5

Tetrodontium brownianum Tetraphidopsida 0,4000 2 5

Buxbaumia aphylla Buxbaumiidae 0,0833 1 12

Diphyscium sessile Diphysciidae 0,0714 1 14

Gigaspermum repens Gigaspermidae 0,5000 3 6

Chamaebryum pottioides Gigaspermidae 0,5000 3 6

Oedipodiella australis Gigaspermidae 0,5000 3 6

Encalypta streptocarpa Funariidae 0,0526 2 38

Bryobrittonia longipes Funariidae 0,0526 2 38

Discelium nudum Funariidae 0,0139 4 288

Funaria hygrometrica Funariidae 0,0139 4 288

Physcomitrella patens Funariidae 0,0139 4 288

Physcomitrium pyriforme Funariidae 0,0139 4 288

Timmia bavarica Timmiidae 0,5000 3 6

Timmia norvegica Timmiidae 0,5000 3 6

Timmia austriaca Timmiidae 0,5000 3 6

Catoscopium nigritum Catoscopiales 1,0000 1 1

Timmiella spec Timmiellales 0,0769 1 13

Drummondia prorepens Scouleriales 0,1000 1 10

Blindia acuta Grimmiales 0,0091 4 440

Racomitrium lanuginosum Grimmiales 0,0091 4 440

Coscinodon cribrosus Grimmiales 0,0091 4 440

Grimmia donniana Grimmiales 0,0091 4 440

Leucobryum glaucum MADP 0,0025 9 3566

Orthodicranum montanum MADP 0,0025 9 3566

Fissidens cristatus MADP 0,0025 9 3566

Schistostega pennata MADP 0,0025 9 3566

Ditrichum cylindricum MADP 0,0025 9 3566

Ceratodon purpureus MADP 0,0025 9 3566



species name cladename samplingfraction #tax #species in clade

Cinclidotus riparius MADP 0,0025 9 3566

Tortula latifolia MADP 0,0025 9 3566

Pottia truncata MADP 0,0025 9 3566

Hedwigia ciliata Hedwigiales 0,0513 2 39

Rhacocarpus purpurascens Hedwigiales 0,0513 2 39

Bartramia halleriana Helicophyllales + 
Bartramiales 

0,0053 2 376

Plagiopus oederi Helicophyllales + 
Bartramiales 

0,0053 2 376

Tetraplodon fuegianus Splachnales 0,0235 2 85

Splachnum ampullaceum Splachnales 0,0235 2 85

Bryum argenteum Bryales 0,0029 3 1043

Pohlia nutans Bryales 0,0029 3 1043

Mnium hornum Bryales 0,0029 3 1043

Ulota crispa Orthotrichales 0,0036 3 840

Orthotrichum rogeri Orthotrichales 0,0036 3 840

Nyholmiella obtusifolia Orthotrichales 0,0036 3 840

Orthodontium lineare Orthodontiales 0,0455 1 22

Aulacomnium androgynum Aulacomniales 0,0833 1 12

Ptychomnion cygnisetum Ptychomniales 0,0227 1 44

Lopidium struthiopteris Hookeriales 0,0014 1 699

Fontinalis antipyretica Hypnales 0,0028 12 4245

Sanionia uncinata Hypnales 0,0028 12 4245

Brachythecium rivulare Hypnales 0,0028 12 4245

Plagiothecium laetum Hypnales 0,0028 12 4245

Herzogiella seligeri Hypnales 0,0028 12 4245

Scorpidium scorpioides Hypnales 0,0028 12 4245

Hygrohypnum ochraceum Hypnales 0,0028 12 4245

Hypnum jutlandicum Hypnales 0,0028 12 4245

Tomentypnum nitens Hypnales 0,0028 12 4245

Pterogonium gracile Hypnales 0,0028 12 4245

Thamnobryum alopecurum Hypnales 0,0028 12 4245
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Figure 21: Ratogram inferred by the concatenated plastid dataset. Branch length correspond to substitution rates inferred by RAxML 8.2, values above  
branches depict support values with indel coding, below without indel coding. Left values are posteriour probabilities from BI, right values are 
bootstraps from ML.
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Figure 22:  Ratogram inferred by the concatenated mitochondrial dataset. Branch length 
correspond to substitution rates inferred by RAxML 8.2, values above branches depict support 
values with indel coding, below without indel coding. Left values are posteriour probabilities from 
BI, right values are bootstraps from ML. The branch lengths in this tree have the same scale as in 
Figure 15.





Table 15: Testing the sensitivity of the rate shift prior “expectedNumberOfRates”. While an 
influence cannot be denied, the first three core shifts are always recovered.

prior 2 5 10 100

rank prob core shifts prob core shifts prob core shifts prob core shifts

1 0,13658 5 0,17055 5 0,19931 5 0,23544 5

2 0,12458 4 0,1006 4 0,10612 4 0,12598 4

3 0,06862 5 0,08661 5 0,09039 5 0,11892 5

4 0,06262 3 0,0493 6 0,05333 5 0,09585 4

5 0,04197 4 0,04397 5 0,04959 6 0,06666 4

6 0,04064 4 0,04330 4 0,04186 3 0,04733 4

7 0,03664 5 0,03997 4 0,03999 4 0,04159 3

8 0,02798 6 0,03464 4 0,03626 4 0,03520 3

9 0,02598 2 0,03331 3 0,03346 4 0,02493 3







Table 16: Per motif length homoplasy measures and statistics for phylogenetic signal K and D, number of coded SSR sites and number of reconstructed  
events.

motif 
length 
(SSRs)

number 
of coded 
SSRs

# 
reconstru
cted 
events

PI sites
%

RI RC HI
(excl. 
uniformative 
Char.)

mean(K 
statistic)

95%CI (K) fraction of failed
p(PIC variance)

mean D 
statistic

95% CI 
(D)

fraction D 
better 
than 
Brownian

fraction D 
better 
than 
random

2 50 65 34 0.5319 0.3694 0.5641 0.8927 0.2347 0.2857 -1.1601 0.5976 0.8000 0.8400

3 79 107 35.4 0.7979 0.4601 0.6744 1.5418 0.4310 0.4231 -0.5751 0.5710 0.6623 0.7662

4 77 79 16.9 0.7714 0.6387 0.5517 0.9572 0.2158 0.2763 -0.1902 0.6371 0.5584 0.6494

5 56 61 28.6 0.8421 0.7255 0.3600 1.0166 0.3837 0.3091 -0.1402 0.5947 0.5714 0.6250

6 27 24 18.5 0.8889 0.8571 0.1667 0.7830 0.3442 0.2308 0.0616 0.8033 0.5185 0.7037

7 24 25 16.7 0.8824 0.8145 0.3330 1.2046 0.7145 0.2609 -0.3158 1.2827 0.5000 0.6250

8 13 14 15.4 1 1 0 0.7932 0.4935 0.2500 -0.4920 1.3784 0.4615 0.6923

9 18 16 33.3 1 1 0 1.0405 0.7737 0.2941 -0.3094 1.2334 0.5556 0.5556

10-14 44 43 27.3 0.8919 0.8176 0.2500 0.8361 0.3400 0.2326 -0.4393 0.6456 0.5455 0.7045

>15 22 24 18.2 0.8571 0.7857 0.3330 0.5466 0.2758 0.1429 0.3308 1.2835 0.4545 0.5455

Σ 410 45.8 24.43 0.85 0.75 0.32 0.96 0.42 0.27 -0.32 0.9 0.56 0.67
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