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Chapter I - Introduction 

 

1. Pharmacogenomics and Personalized Medicine 

 

As long ago as 1959, the German pediatrician Friedrich Vogel suspected our genes being 

responsible for the individual effects of drugs and coined the term of pharmacogenetics 1. 

Previously, there was no logical explanation to the observation that some people benefit from a 

pharmacotherapy while others do not. Researchers advanced the field by extending our knowledge 

about pharmacological processes influencing individual drug effects: Between-patient differences 

in genes involved in pharmacodynamics (e.g. drug targets) or pharmacokinetics (e.g. drug 

metabolizing enzymes, drug transporters) might explain the observed individuality in drug efficacy 

and drug safety. With the deciphering of the human deoxyribonucleic acid (DNA) sequence and the 

development of genetic high-throughput methods, pharmacogenetics transformed more and more 

to pharmacogenomics where the interaction between single drugs and the whole genome is in the 

focus of attention. The results of the human genome project - which finished in 2001 - led to a rapid 

development of the new research area of pharmacogenomics 2. Since then, the most astonishing 

progress was done in the field of oncology where many new experimental results found their 

application in clinical routine (e.g. cobas® epidermal growth factor receptor (EGFR) mutation test 

kit 3). Recently, the therapy individualization of other indications like mental disorders became a 

greater focus of attention and it is widely assumed that personalized medicine - consisting of 

diagnosis and therapy based on individual environmental, phenotypic and genetic requirements - 

will be the future of psychiatric medical practice 4.  
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2. Depressive Disorders 

Depressive disorders are well-known since the times of the ancient Greeks - then named 

melancholia - and was attributed to an imbalance of the basic bodily fluids (blood, phlegm, yellow 

and black bile) 5. In modern times, according to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5), depression is defined by sad mood, loss of interest, appetite and concentration, 

sleep disturbances, fatigue, irritability, negative self-image and suicidal ideation 6. This group of 

diseases is characterized by a neurobiological pathology of the monoaminergic system, over-

reactivity of the hypothalamic-pituitary-adrenal (HPA) axis, dysfunction of amygdala and 

hippocampus and decreased levels of BDNF 7. Depressive disorders belong to the most prevalent 

mental illnesses in the world affecting over 350 million people with resulting deaths by suicide of 

approximately one million people per year 8. Furthermore, recent analyses predict that depressive 

disorders will account for the largest part of the economic burden within the next 20 years 9. The 

heritability for depression is reported at up to 40% and an early onset, presence of psychosis as well 

as a high degree of recurrence seem to be at least partially hereditable 10, 11. However, the mode of 

inheritance is complex with multiple gene sets being involved and it is further complicated by the 

impact of environmental factors 12, 13. The connection between candidate genes and depressions 

has been analyzed recently 14, but so far no genetic alterations that specifically lead to the 

development of depressions have been identified 15. 

 

2.1. Pathogenesis  

Even after decades of intensive research efforts the complex pathology of depressions still remains 

not completely understood. However, the previous investigations led to different theories that 

explain single aspects of the pathogenesis of depressions. The chemical hypothesis states there is 

an imbalance of mood-regulating neurotransmitters - especially serotonin, noradrenaline and 

dopamine - within the brain due to an increased clearance of these neurotransmitters from the 

synaptic cleft. The decreased activity of these neurotransmitters at the key sites in the brain is 

believed to be one of the leading causes of depressions. This was supported by the fact that the 

majority of antidepressant drugs are known to modify the neurotransmitter levels within the 

synaptic cleft (see chapter 2.3). Another hypothesis - the so called neurotrophic hypothesis - 

implies there are restructuring processes within the brain: Depressive patients show a volumetric 

decrease in mood-associated brain parts accompanied by a loss of activity 16. The most affected 

areas are the cortex (prefrontal and orbitofrontal), the amygdala and the hippocampus 17 amongst 

others such as the ventral striatum or the subgenual and anterior cingulate cortex 16. All these brain 
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parts obtain a role in depression-related functions like processing of emotions and feelings, reward 

system, mood control as well as anxiety, stress and fear reactions.  

Based on the fact that women are more affected than men 18, 19, the hormone-based hypothesis 

emerged as well. Changes in levels of corticotropin-releasing hormone (CRH), cortisol and estrogen 

were associated with a higher risk of depression 20 and symptomatic improvement due to 

antidepressants therapy is more effective after restoration of these hormones 21. At least partially, 

depressions seem to be caused by a chronic hyperactivity of the HPA axis leading to various neuro-

endocrine responses. Further investigations identified pro-inflammatory cytokines as potential 

mediators for depression (immunological hypothesis). Immune responses and neurodegeneration 

are tightly connected 22 and for instance higher concentrations of interleukin 6 and tumor necrosis 

factor (TNF) alpha were found in blood of depressed patients relative to healthy controls 23. 

Inflammation increasing factors such as obesity or smoking have been linked to depression as well 

24. Probably, cytokine effects in combination with a maladaptation to immune responses may lead 

to a chronification of symptoms of sickness behavior and therefore to depressions 25. Some of these 

hypotheses may partially overlap and still none of the mentioned hypotheses alone is able to fully 

cover the ontology of the complex disease of depression. 

 

2.2. Diagnosis and Prognosis 

In Germany, approximately twelve percent of the patients visiting a general practitioner suffer from 

depressive disorders and in approximately 25% of these cases no proper diagnosis is made 26. One 

reason for this is a variety of unspecific, co-occurring side symptoms (e.g. insomnia, weight 

changes, lack of concentration, libido disorder or pain). Furthermore, the differential diagnosis 

remains difficult and the method of choice to detect depressions is the usage of depression-specific 

questionnaires like Hamilton Depression Rating Scale (HDRS) or Beck Depression Inventory (BDI) 27, 

28. These questionnaires assign diagnosis based on symptoms of patient behavior (e.g. mood, 

feelings of guilt, suicide ideation, insomnia, etc.) interpreted by the physician or the patient itself. 

The disadvantages of the mentioned questionnaire based diagnostic systems are their inaccuracy 

and subjectivity. There are no objective, diagnostic biomarkers available to reliably predict the 

individual risk of the development of a depression. However, a serum based diagnostic laboratory 

test (MDDScore, Ridge Diagnostics) - based on activation of the HPA axis, metabolic, inflammatory 

and neurochemical pathways - was launched recently and is now commercially available but not yet 

well established and proven as a significant improvement in clinical practice 29. Although this is the 

first step to an objectification of diagnosis of depressive disorders, depression-specific 

questionnaires are still the methods of choice to detect depressions and to evaluate the progress of 

an antidepressant therapy.  
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Another promising and innovative approach is radiologic imaging of the brain because it has the 

potential to identify markers associated with underlying pathophysiologic processes in psychiatric 

disorders 30. According to recent research it could be able to support the differential diagnosis 

between Alzheimer's disease and depression in elderly people 31. Similar applications are 

conceivable to distinguish unipolar from bipolar depression or schizophrenia from depression and 

particular research efforts are done 32-34. Furthermore, individuals at high risk for depression and 

patients with chronic treatment-resistant depression have been reported with lower cortical 

thickness 35 and increased resting cerebral blood flow (CBF) in the medial prefrontal regions 36, 

respectively. Such parameters might become eventually useful as diagnostic or prognostic 

biomarkers in the future. In clinical practice depressive inpatients usually receive magnetic 

resonance imaging (MRI) measurements during the course of the disease 37. This is routinely 

performed to exclude cancerous, inflammatory, vascular or degenerative processes, but can be 

easily expanded to the mentioned applications. Such neuropsychological MRI measurements 

basically seem suitable as biomarkers for diagnosis of depression and however, will probably hardly 

replace the established rating scales, but might be useful as supplementary method to objectify and 

improve the diagnosis of depressions (see also chapter 4.2).  

 

2.3. Treatment  

The first two specific antidepressive drugs were the tricyclic antidepressant (TCA) imipramine and 

the monoamine oxidase (MAO) inhibitor iproniazid which were both discovered in the 1950s over 

the search of new antischizophrenic and antitubercolotic drugs, respectively 38. Pharmacodynamic 

studies revealed that TCAs reduce the presynaptic reuptake of neurotransmitters (e.g. serotonin, 

dopamine, acetylcholine, histamine, etc.) while MAO inhibitors (MAOI) reduce the degradation of 

monoamine neurotransmitters. During the following decades these groups were further developed 

which led to various similar antidepressants such as chlorpromazine or chlordiazepoxide and 

extended treatment opportunities. Only with the introduction of fluoxetine in 1987 the next crucial 

milestone of antidepressant drug development was achieved. Fluoxetine is the lead substance of 

the innovative drug family of selective neurotransmitter reuptake inhibitors that - in comparison to 

TCAs - excel by a superior side effect profile. Nowadays, these selectively acting drugs have largely 

replaced TCAs and MAOIs as the drug class of choice in the treatment of depressions due to a 

higher specificity, tolerability, safety and convenience 39. Selective serotonin reuptake inhibitors 

(SSRI) usually are considered the first-line drugs, although other selective neurotransmitter 

reuptake inhibitors such as serotonin-norepinephrine reuptake inhibitors (SNRIs) or noradrenergic 

and specific serotonergic antidepressants (NaSSAs) are available. An overview on the most 

important antidepressant drug classes including some representatives and their proposed 
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mechanism of action is given in Table 1. Typical side effects of antidepressants are weight changes, 

insomnia, increased suicidal risk, libido loss and erectile dysfunction. 

 

Table 1: Overview on antidepressant drug classes. 

class lead drugs proposed mechanism of action 

TCA 

Amitryptiline 

Imipramine 

Nortriptyline 

inhibition of transporters for serotonin and norepinephrine 

modulation of serotonergic, adrenergic, glutamatergic, cholinergic and 

histaminic receptors  

MAOI Selegiline inhibition of monoamine oxidase 

SSRI 
Citalopram 

Fluoxetine 
inhibition of serotonin reuptake transporters 

SNRI Venlafaxine inhibition serotonin and norepinephrine reuptake transporters 

NaSSA Mirtazapine modulation of adrenergic and serotonergic receptors 

NRIs Reboxetine inhibition of norepinephrine reuptake transporters 

TCA - tricyclic antidepressants, TeCAs - tetracyclic antidepressants, MAOI - monoamine oxidase inhibitors, SSRI - selective 
serotonin reuptake inhibitors, SNRI - Serotonin-norepinephrine reuptake inhibitors, NaSSA - noradrenergic and specific 
serotonergic antidepressant, NRIs - norepinephrine reuptake inhibitors 

 

 

Although there are several mechanisms of action, all antidepressive drugs are believed to modify 

neurotransmitter levels by one means or another. However, this does not explain the delay in 

clinical improvement which is observed three weeks at the earliest after beginning of an 

antidepressant therapy because the pharmacological modulation of neurotransmitter systems 

occurs rapidly within a few hours. Thus, this mechanism might be only an initial event of 

antidepressant effects followed by a series of intraneuronal events such as changes in neural gene 

expression, functional adaptation, neurotrophic processes and synaptogenesis. Effective 

antidepressant treatments seem to normalize the structural and functional abnormalities found in 

the brains of depressive patients 40, 41. For instance, chronic treatment with antidepressants leads to 

an increased proliferation in the hippocampus 42 and mood stabilizers such as valproate or lithium 

are thought to increase proliferation and survival of hippocampal neurons 43, 44. Interestingly, 

electroconvulsive therapy1 45, 46 also increases hippocampal neurogenesis 47. Thus, neural 

proliferation and neuroplasticity modulated by antidepressive therapy probably leading to a 

reversal of hippocampal atrophy 48, 49. Further, the treatment of patients with smaller hippocampi is 

                                                           
1
 Electroconvulsive therapy is an alternative approach for the last-line treatment of depressions where 

seizures are electrically applied to the brain. The efficacy is comparable to antidepressants but it requires 
comedication with anesthetics and muscle relaxants as well as expensive device, and may have adverse 
effects like confusion and memory loss. 
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prolonged over weeks 50. One of the key players in this proliferative action seems to be the brain-

derived neurotrophic factor (BDNF) whose gene expression is significantly upregulated in the 

hippocampi of animals treated with antidepressant drugs such as citalopram or imipramine 51, 52.  

 

2.3.1. Antidepressant Response Biomarkers 

The latest S3 guideline for unipolar depression lists ten drug classes with 27 antidepressants 

(including more than 3,000 licensed medications in varying dosage, administration ways, 

technological modifications, different producers etc.) that are recommended for the treatment of 

moderate and severe forms of depressions 53. Despite (or because of) the given variety of 

antidepressive drugs the individual therapy success is still in need of improvement due to low 

response rates. Up to 50% of patients show no adequate improvement in their clinical state after 

treatment with first-line antidepressant medication 54. An early symptomatic evaluation of 

individual therapy success is complicated by a delay in clinical improvement of several weeks up to 

months and the applicability of biomarkers in psychiatry is still in its infancy 55, 56. Approximately a 

third of the initial non-responders to antidepressant drugs will achieve remission over the following 

course of the treatment regimen (without switch of medication) 57. During this period of non-

response the compliance might decrease and the clinical conditions could decline which also may 

cause an increase in suicidal risk. To improve the treatment efficacy pre-therapeutic knowledge 

about the expected clinical success would be highly beneficial. However, so far it is impossible to 

predict the individual treatment outcome of depressive patients due to a lack of predictive 

biomarkers and convincing pharmacogenomical studies (e.g. reviewed by Narasimhan & Lohoff 58). 

The main reason for this lack might be the high heterogeneity of psychiatric diseases and the 

complexity of the CNS aggravating the study of the underlying mechanism of individual therapy 

effects as well as a lack of basic knowledge due to the absence of adequate animal models. On this 

account, both choice and dosage of antidepressant drugs is still dependent on trial and error 

prescription and are routinely administered by clinical knowledge of the particular physician 59.  

 

  



Chapter I - Introduction 

7 

3. Drug- and Disease-induced Depressions 

Depressions frequently occur as concomitant diseases in a variety of psychological and non-

psychological disorders. A higher prevalence of depression was observed in patients suffering from 

chronic inflammation like cardiovascular diseases, type 2 diabetes or rheumatoid arthritis 60, 61 and 

for instance, the prevalence of depression in patients with coronary heart disease is three times 

higher compared to the general population 62. In addition, levels of inflammatory blood markers 

such as cytokines, chemokines or acute phase proteins are increased in patients with severe 

depression inferring a relationship between inflammation (i.e. immune system activation) and 

depression 23, 63-65. According to Dantzer et al. inflammation might increase the risk to developing 

depression more than the traditional psychosocial factors (e.g. negative life events, chronic stress 

or lack of social contacts) 25.  

Depressions belong to the most important psychiatric comorbid conditions in neurological 

disorders like multiple sclerosis (MS) 66 which accompanies with a decrease in quality of life and an 

increase in disability 67. In comparison to other chronical, non-neurological diseases, depressions 

have a higher incidence in MS 68-70 and the highest rate beneath other neurological diseases like 

epilepsy or amyotrophic lateral sclerosis 71. Depressions occur in approximately 30% of patients 

with MS in an early phase of disease progression 72, 73 and the more severe the MS the higher the 

likelihood of depressiveness 74. Therefore it is recommended to screen MS patients for depression 

during follow-up visits 75, 76. MS and depressive disorders share elevated serum concentrations of 

cytokines and decreased hippocampal volumes 77, 78. Additionally, depressed MS patients show 

greater atrophy of anterior temporal regions and more hyperintense lesions in medial frontal 

regions 79. The diagnosis of depression in MS is challenging due to overlapping symptoms (e.g. 

fatigue, insomnia, altered appetite, cognitive dysfunction, memory and concentration impairment) 

80 and therefore, depression frequently remains undiagnosed and untreated 81. Based on the rate of 

depression in MS, numerous suicides are recorded in MS patients 82, 83, with a 7.5 higher risk 

compared to the healthy population 84. MS is the most common autoimmune disorder affecting the 

central nervous system (CNS) and the most common progressive disorder of young adulthood 85. It 

is characterized by chronic inflammations of the brain resulting in axon demyelination and 

breakdown of the blood-brain-barrier (BBB) causing the typical symptoms (e.g. ataxia, tremor, 

nystagmus etc.). Neurochemical, structural and immunological aberrations seem to have a 

fundamental impact on the pathogenesis of depression in MS, although the underlying mechanisms 

remain controversial and seem to be a multifactorial response to this chronic progressive disease 86. 

One hypothesis implies humoral responses to inflammation or stress being responsible for the 

development of sickness behavior which in turn might become chronic and therefore abets the 

pathogenesis of depression 25. Psychosocial reasons based on stress reactions to diagnosis, 
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uncertain prognosis, impending disability and missing social support are known to further worsen 

the depressive symptoms in MS 87. The most commonly used disease-modifying drugs are 

interferon beta, glatiramer acetate, mitoxantrone, natalizumab, fingolimod and dimethyl fumarate 

with a high variability in treatment response 88. Interferons are able to decelerate the progression 

of disability and to reduce the rate of MS relapses 89, 90 through immunomodulatory their properties 

91. Unfortunately, interferons are also reported to be able to induce depression and depression-like 

behavior: Treatment with interferon alpha leads to depression in approximately a third of patients 

92-95 while interferon beta is also thought to be causative for depressive side effects with varying 

occurence rates 96-99. These symptoms might be based on effects on serotonergic pathways because 

they can be prevented by pretreatment with SSRIs 100 and patients with genetic serotonin 

transporter (SERT) variants are more likely to develop a depression during interferon administration 

101, 102. However, drug-induced depression is not limited to a particular group of drugs, but has been 

associated with cardiovascular agents, anti-infectives, CNS drugs, dermatologic agents, hormonal 

treatments and chemotherapeutic drugs 103, 104. Some possible molecular mechanisms are 

postulated in the literature suggesting an impaired functionality of neurotransmitter systems - 

especially norepinephrine, dopamine, serotonin and gamma-aminobutyric acid - as a consequence 

of drug intake 105. For instance, a decrease of blood tryptophan (a serotonin precursor) levels was 

reported due to an immunotherapy-induced activation of the tryptophan metabolizing enzymes 

tryptophan 2,3-dioxygenase and indoleamine-pyrrole 2,3-dioxygenase 106, 107. Hence, depressions 

might also be induced by drugs targeting the immune system whereby patients with physiological 

(e.g. over-reactive HPA) 108 or psychological (e.g. higher depressiveness scores before initial therapy 

with drug-inducing agents) risk factors are more likely to develop severe depressions 109. 

Furthermore, isotretinoin - a drug used for the treatment of cystic and therapy resistant acne - is 

suspected to induce depressions 110, 111 as well as the anticonvulsant primidone 112 and in general, 

corticosteroids 113 and oral contraceptives 114. Summarizing, drug-induced depression is a frequently 

observed phenomenon - including a variety of different drug classes and indications - which has an 

extensive impact on therapy compliance, individual well-being and the economics of the health 

care system. A better understanding of the mechanism behind drug-induced depressions is 

required.  
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4. Personalized Medicine of Depressive Disorders - Novel Approaches 

 

4.1. Cell Based Approaches 

Recent research focuses on integrating latest neurobiological findings of depressions to help 

guiding individual treatment more efficiently and the search for genetic biomarkers predicting 

individual clinical response has become the main focus of biomedical research in the area of 

psychiatric diseases. Numerous studies have investigated genetic characteristics such as mutations 

or SNPs (single nucleotide polymorphisms) for associations with antidepressant drug response, but 

the majority of the outcomes missed replication or even showed opposite results in subsequent 

studies 58, 115. For that reason, other approaches away from simple DNA characteristics towards RNA 

or protein properties are needed to study the individual clinical response to antidepressants, i.e. 

focusing on the more complex inter-individual variability in gene expression 116. One promising 

approach is the usage of lymphoblastoid cell lines (LCLs) to study individual antidepressant drug 

effects on gene expression under well-controlled, laboratory conditions. This was recently 

employed by several working groups 117-119 and further, will be within the devoted attention of the 

present work. LCLs are B-lymphocytes immortalized by Epstein-Barr-virus (EBV) transformation and 

due to their broad availability and potency to reflect individual patient’s features they are 

promising models in biomarker research in psychiatry. More than 4,100 brain transcripts are 

expressed in blood cells and gene expression between B-lymphocytes and LCLs is strongly 

correlated within same individuals 120. This and the fact that LCLs express more than 50% of all 

human genes in general make them suitable models to study antidepressant-induced changes in 

gene expression.  

 

4.2. Neuroimaging Approaches 

As already stated in chapter 2.2, radiologic imaging of the brain has the potential to identify 

markers associated with underlying pathophysiologic processes in psychiatric disorders and MRI 

measurements probably will be useful tools to detect diagnostic or prognostic biomarkers in the 

future. MRI is a non-invasive imaging technique used for a wide range of medical applications like 

diagnosis of diseases or injuries (e.g. neurological cancers, joint diseases) as well as for medical 

research. In contrast to X-ray computed tomography, the main advantage of MRI is the absence of 

ionizing, mutagenic radiation. In the past, the primary aim of MRI in psychiatry was to measure 

neural correlates of mental disorders in order to identify changes in locations and magnitudes of 

neuronal structure and function under pathological conditions. Nowadays, neuroimaging focusses 

on the application of these parameters as biomarkers to support diagnosis, assess potential risk 
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factors and to predict the efficacy of psychotropic drugs 121. By improving our understanding of 

individual pathogenic mechanisms of neuronal diseases, MRI allows the development of new drug 

therapies and potentially provides high sensitive measurements of treatment response in 

genetically defined cohorts 122.  

We differ between two main types of MRI: structural imaging (sMRI) and functional imaging (fMRI). 

Structural and functional alterations in the brain are strongly connected in psychiatric disorders and 

hence, fMRI is a promising neuroimaging tool to analyze neural activity associated with 

psychotropic drug effects like attention, emotional processing or reward-related reactions 123, 124. 

Thus, fMRI provides additional neuroimaging phenotypes for pharmacogenomical research. The 

advantages of fMRI perfusion imaging are its quantifiable results and the high level of repeatability 

rendering it a powerful tool to visualize drug effects in clinical studies 125. Changes in CBF and 

therefore in neural activity during psychological tasks and processes can be visualized. 

Consequently, specific brain structures can be addressed depending on the chosen paradigm 126. To 

date, there are only a few neuroimaging studies available investigating the impact of the 

relationship between cerebral properties and genetics on psychiatric treatment. However, the 

impact of MRI to our knowledge acquisition regarding psychiatric diseases has been huge in the 

past decades and so it is not surprising that many of the described abnormalities of the depressed 

brain (see chapter 2.1) are based on findings from MRI studies. Further, manifold results support 

the applicability of MRI measurements in the context of personalized medicine of depressive 

disorders, especially in the field of diagnosis and monitoring depressions 127. The main challenge is 

to transfer the findings from clinical research into clinical practice. Therefore, it is required to better 

understand the individual variability of functional brain level connectivity underlying depressive 

disorders by MRI methods in order to improve the personalized medicine approach of depressive 

disorders.  
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Chapter II - Aims of the Project 

 

Since the mechanisms and molecular backgrounds of the high individual variability of depressive 

disorders and the particular treatment efficacy has not been sufficiently understood so far, we 

focus on the identification of potential biomarkers by application of different approaches - cell 

based (I) and neuroimaging based (II) - to further advance the field of personalized medicine of 

depressive disorders. 

 

(I) The current therapy success of depressive disorders remains in need of improvement due to low 

response rates and a delay in symptomatic improvement. Whereas depressions are associated with 

decreased hippocampal neurogenesis, antidepressant treatments seem to have the opposite 

action. They stimulate cell proliferation as well as the survival and maturation of neurons and 

therefore, modulate neuroplasticity. A link between hippocampal neurogenesis and the therapeutic 

action of antidepressants was suggested based on animal studies 128. It is hypothesized that 

irreconcilable hippocampal neurogenesis deficits cause non-response to antidepressant therapy 129. 

Thus, a connection between hippocampal neurogenesis (i.e. neuronal proliferation) and individual 

clinical effectiveness of antidepressants in patients suffering from depressive disorders is proposed 

130. Here, we want to study the effects of antidepressants on cellular proliferation rates by usage of 

human LCLs derived from depressed patients as model systems. The main focus of this project is to 

investigate the relationship between individual clinical response and the peripheral, 

antidepressant-modulated proliferation in patient-derived LCLs. Further, we are aiming at the 

identification of tentative neuroplasticity-associated gene expression biomarkers for the treatment 

individualization of depressive disorders. To this end a hypothesis-free approach using genome-

wide gene expression profiling helps us to further improve our understanding on the individuality 

of antidepressant effects on both a molecular and a genetic level as well as of the underlying 

mechanisms of action of antidepressants. 

(II) In a clinical study we focus on the affective side effects of the cytokine interferon beta which is a 

potent drug for the treatment of MS. Interferons are widely suspected to trigger depression-like 

behavior after long-term administration: Approximately one third of patients treated with 

interferon alpha develops symptoms of depressions 92. Similar effects of interferon beta were 

reported 131, but are not well researched until now. The neurobiological correlates and pathogenic 
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mechanisms of these affective symptoms remain unknown. One open issue concerns the 

mechanisms at system level through which interferon may produce psychological symptoms 

because it is unclear whether these symptoms arise from interferon beta treatment itself or as a 

side symptom from the progressing disease of MS. In the absence of clinical studies in healthy 

cohorts, the roles of interferon medication and those of the underlying diseases cannot be 

distinguished 132. Here, we want to identify evidence for the depression-inducing effect of the 

cytokine interferon beta by psychometric testing and by measuring changes of brain activation 

patterns in depression-related brain areas. To this end, we will investigate interferon beta mediated 

change in brief functional neuroimaging probes of emotional function such as amygdala reactivity 

on viewing emotionally arousing stimuli 133 or neural correlates of reward anticipation 134. These 

two aspects of information processing were chosen as representative of well-known, important 

features of depressive functioning: lack of sensitivity to reward (anhedonic symptoms) 135 and 

hyperreactivity to negative emotional stimuli 136. The functional imaging aims at assessing change in 

intermediate phenotypes related to interferon beta mediated psychotropic side effects and so this 

study will help to clarify if typical neural correlates of depressive mood are detectable in individuals 

receiving interferon beta treatment.  
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Chapter III - Material and Methods  

 

1. Cell-based Methods 

A register of the used lab equipment, disposables, chemicals, solutions, media and kits including 

the names of the manufacturers and their particular office is listed in the Supplement (pp. 139).  

 

1.1. Human Lymphoblastoid Cell Lines 
 

1.1.1. Origin and Patient’s Characteristics  

LCLs were derived from two different antidepressant studies: the Munich Antidepressant Response 

Signature (MARS) project and the Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D) study. The studies were approved by respective Ethical Committees. Participating 

patients gave verbal and written informed consent to provide biomaterial for the study of 

antidepressant response biomarkers also including transformation of blood lymphocytes into cell 

lines. An overview on the study population used in the presented work is given in Table 2. Complete 

patient’s characteristics and drug profiles are listed in the Supplement (pp. 142). 

 

Table 2: Characteristics of the MARS and STAR*D LCL study cohort. 

  MARS STAR*D 

  total NR R total NR R 

gender 
male 

female 

24 

26 

10 

15 

14 

11 

24 

26 

14 

11 

10 

15 

age years 49.9 ± 11.8 51.6 ± 11.4 48.3 ± 12.2 48.5 ± 11.8 48.8 ± 9.5 48.3 ± 13.9 

depression 

scale* 

initial 

final 

27.0 ± 7.4 

11.8 ± 8.7 

25.5 ± 8.2  
18.7 ± 5.1 

28.6 ± 6.3 

4.8 ± 5.0 

17.9 ± 3.2 

9.0 ± 7.2 

18.9 ± 3.1 

15.5 ± 3.9 

16.9 ± 3.0 

2.6 ± 1.9 

different 

antidepressants 
number 4.0 ± 1.6 2.3 ± 0.9 1.6 ± 0.6 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 

* MARS: Hamilton Depression Rating Scale; STAR*D: Quick Inventory of Depressive Symptomatology 
NR - non-responder, R - responder 

 

The MARS study was a naturalistic clinical study on antidepressant drug response designed for 

pharmacogenetics analyses of antidepressant drug response biomarkers 137-139. EBV transformed 

LCLs were generated in a subset of patients from the MARS project. LCLs were gained by EBV 

transformation from full EDTA-blood samples provided by the MARS patients that have been 
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admitted for depression treatment to the hospital of the Max Planck Institute of Psychiatry in 

Munich, Germany 137. MARS was an observational study of depressed patients being treated 

according to the attending physician’s choice. Depressive symptoms were rated by the 21-item 

HDRS at weeks 0, 5 and 8 after study inclusion 27. Response was defined as HDRS reduction of at 

least 50% (compared to initial values at study inclusion) and remission was achieved after a total 

reduction of HDRS to values smaller than eight 140. STAR*D was an open label, randomized, 

multicenter, controlled clinical study aiming on the definition of effective subsequent treatment 

strategies after a first unsuccessful antidepressant therapy 141. All patients were diagnosed with 

unipolar depression and were treated with a citalopram monotherapy at the initial phase of this 

study. A total of n=50 cell lines were obtained, derived from patients with Caucasian origin that 

have been treated with citalopram in defined doses. Depressive symptoms were rated by Quick 

Inventory of Depressive Symptomatology (QIDS) 142 over the course of up to 14 weeks. LCLs were 

purchased from the NIMH Center for Collaborative Genetic Studies. They were chosen to cover 

n=25 first-line therapy responders to citalopram (with more than 50% decline of depressive 

symptoms during the first month) and n=25 treatment resistant patients (with no response or 

remission during the whole treatment algorithm of the STAR*D study).  

 

1.1.2. Generation  

LCLs were generated from lymphocytes isolated from blood samples through EBV transformation 

143, 144. Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation 

using Ficoll. The cell pellet was resuspended in 800 µl EBV-supernatant from B95-8 cell line and 100 

µl each were seeded into eight wells of a 48-well cell culture plate. After addition of 200 µl RPMI 

(Roswell Park Memorial Institute) medium containing 20% fetal calf serum (FCS) per well, cells were 

incubated at 37°C in a humidified CO2 incubator (with 5% CO2). After five days, one volume of fresh 

RPMI medium (containing 20% FCS) and cyclosporine A (in ethanol) were added to a final 

concentration of 1 µg/ml. On day 23 to 26 after isolation, cells were further cultivated in T25 cell 

culture flasks with exchange of the medium (containing 15% FCS) every second day. To control the 

process of LCL generation (i.e. the accumulation of B lymphocytes and the non-accumulation of T 

lymphocytes), cell identity was tested regularly using the T- and B-cell specific antibodies CD3, CD19 

and CD45 (TritestTM Kit): 100 µl of cell suspension was incubated with 10 µl of TritestTM solution for 

30min at 4°C. After erythrocytes cell lysis using 5ml of FACS (fluorescence-activated cell sorting) 

lysis buffer and centrifugation (4000rpm, 2min, Pico centrifuge), the cell pellet was washed with 

1ml of NaCl solution (0.9% w/v), resuspended in 250 µl of NaCl solution (0.9% w/v) and transferred 

to a FACS tube. Subsequently, flow-cytometry measurements were carried out (Figure 1). 
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Figure 1: Cell identity before (day 0) and after (day 50) EBV transfection measured by cell specific antibody based flow 
cytometry. Over the time the cellular distribution shifts to B lymphocytes whereby T lymphocytes disappear from the 
culture constitution.  

 

1.1.3. Mycoplasma Testing 

Since mycoplasma infections are not detectable microscopically, enzyme-linked immunosorbent 

assays, i.e. MycoAlertTM Plus Mycoplasma Detection Kit, were used according to the manufacturer’s 

instruction. The presence of mycoplasmal enzymes is exploited by a selective biochemical test 

based on the conversion of ADP (adenosine diphosphate) to ATP (adenosine triphosphate). A cell 

suspension aliquot is transferred to a sterile microcentrifuge reaction tube and pelleted at 200 x g 

for 5 min. To 100 µl of the supernatant in a sterile 96-well plate, 100 µl of MycoAlertTM Plus Reagent 

is given to each sample. After an incubation time of 5 min, the luminescence was measured in a 

Safire² multi-functional plate reader. To each sample 100 µl of MycoAlertTM Plus Substrate was 

added and incubated for 10 min at room temperature. Subsequently, the luminescence was 

determined again and the ratio between the values obtained from the first and from the second 

read was calculated. If mycoplasmal enzymes are not present, this ratio equals to one.  

 

1.1.4. Cryopreservation 

After successful generation and negative tests for mycoplasma infections LCLs were stored as 

cryopreserved aliquots until needed for experiments. Cell density was determined and cells were 

transferred in a 15ml Falcon tube in the desired number (usually between 1x106 and 1x107 cells) 

and centrifuged at 300 x g. The pellet was washed with preheated PBS (phosphate buffered saline), 

resuspended in 1ml of a preheated mixture of FCS and DMSO (9:1). DMSO is a cryoprotective 

additive reducing the formation of ice crystals which would destroy the cell membranes during the 
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freezing process. After transfer of the cell suspension into a cryotube, they were put immediately 

into a Mr. Frosty™ Freezing Container filled with ice-cold isopropyl alcohol and stored in a -80°C 

freezer for one day. Subsequently, the cryotubes were transferred to a liquid nitrogen container for 

long-term storage. 

 

1.1.5. Cell Counting 

From the appropriate cell suspension, 10 µl were transferred to a 0.5ml reaction tube and mixed 

with 10 µl of trypan blue solution. Trypan blue is a diazo dye used to distinguish living cells from 

dead cells through permeability differences (dead cells are stained due to decreased cell membrane 

integrity). After careful mixing, cell counts were determined using TC20™ Automated Cell Counter. 

Growth curves were generated by cumulative population doubling level (CPDL) method according 

to the following formula 145: 

 

  . 

 

1.1.6. Cultivation 

All cell culture work was carried out under aseptic conditions using laminar flow. All applied media 

and solutions were preheated to 37°C bevor contact with cells. FCS was heat-inactivated (30min, 

56°C) and stored in aliquots at -20°C. LCLs were cultured in RPMI medium supplemented with 15% 

heat-inactivated FCS, antibiotics (100 µg/ml penicillin, 100 µg/ml streptomycin) and a final 

concentration of 4 mM L-glutamine for at least two weeks before experiments were carried out. 

Culture media were stored at 4°C. To re-culture cryopreserved cells, one aliquot was rapidly thawed 

at 37°C and transferred to 9 ml of preheated medium in a 15ml Falcon Tube and then centrifuged 

at 300 x g for 3 min. Medium exchanging was done three times a week. Cells were incubated at 

37°C in a humidified CO2 incubator (with 5% CO2) in cell culture flasks (either T25 or T75) in upright 

position and used within two months from thawing.  

 

1.1.7. Treatment with Antidepressants 

LCLs were treated with different concentrations of SSRI antidepressant drugs for up to three weeks 

in T25 cell culture flasks. Stock solutions containing fluoxetine or citalopram were prepared in 

Nf… final cell number 

𝐶𝑃𝐷𝐿 =  ∑
ln

 𝑁𝑓
𝑁𝑖

⁄

ln 2
 Ni… initial cell number 
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DMSO at a concentration of 0.25 mg/ml and were stored as 1.5ml aliquots in glass vials at -20°C. 

Prior to use, stock solutions were sterile filtered by using a DMSO safe 0.2 µm nylon membrane 

syringe filter, a 1.5 ml syringe and a cannula. Cell culture media containing antidepressants were 

always freshly prepared before adding to the cells. Cells were treated with antidepressants while 

MOCK treated control cultures were grown in parallel. Every second day cell density was 

determined and set to 3x105 cells per milliliter.  

 

1.2. Determination of Proliferation Rates 

To determine individual proliferation rates, 5-ethynyl-2´-deoxyuridine (EdU) incorporation assays 

(Life technologies) were used. Experiments were carried out after continuous incubation with 

antidepressants for a maximum of three weeks. Cells were treated with a final concentration of 10 

µM EdU for two hours and detection of EdU incorporation was performed according to the 

manufacturer’s protocol using a FACS Calibur flow cytometer. EdU is a nucleoside analog to 

thymidine which is incorporated into newly synthesized DNA strands. Due to an artificial ethynyl 

moiety, a fluorescence dye (Alexa Fluor® 647) can be attached in a click reaction 146, 147, where the 

alkyne group of the EdU compound reacts in a copper catalyzed manner with the azide group of the 

fluorescence dye to a stable triazole (Figure 2, A). The fluorescence intensity of each cell can be 

determined by basic flow cytometry methods (Figure 2, B and C).  
 

 

Figure 2: Basic principle of the EdU proliferation assay. In a copper catalyzed reaction, a fluorescence dye is attached to 
newly synthesized DNA strands. Modified according to Invitrogen Handbook 

148
 (A). Fluorescence intensity is measured 

by flow cytometry (B). Discrimination of proliferating and non-proliferating cells by fluorescence analysis (C).  
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EdU-Workflow 

Sample preparation was done according to the manufacturer instructions in technical and biological 

duplicates. Cultured cells were transferred from cell culture flasks into cell culture multi-well plates 

and incubated with EdU solution at a final concentration of 10 µM for two hours (37°C, 5% CO2). 

Afterwards, cells were harvested by centrifugation (5 min, 7000 rpm) and the pellet was washed 

once with 750 µl of BSA (bovine serum albumin) solution (1% w/v in PBS). Cells were fixed by 25 µl 

of Click-iT® fixative containing paraformaldehyde for 15 min under light-free conditions followed by 

a further washing step with 900 µl of BSA solution (1% w/v in PBS). Before cell staining with 250 µl 

Click-iT® reaction cocktail (218.75 µl PBS, 5 µl CuSO4, 25 µl reaction buffer additive, 1.25 µl Alexa 

Fluor® 647 fluorescence dye azide) for 45 min under light-free conditions, they were permeabilized 

through 100 µl Click-iT® saponin-based permeabilization and wash reagent. After a final washing 

step, cell pellets were resuspended in 600 µl Click-iT® saponin-based permeabilization and wash 

reagent and analyzed by flow cytometry.  

  

Flow Cytometry Measurements 

Cellular fluorescence was measured by FACS Calibur flow cytometer. Gates were set to exclude 

both cell debris and cell aggregates. Measurements were performed until 10,000 events were 

reported. The detector parameters are shown in Table 3, primary threshold was channel FL2 with a 

value of 21. No secondary threshold or compensation was applied. Data analyses were performed 

using CellQuest Pro software. 

 

Table 3: Detector parameters of the FACS Calibur flow cytometer measurements of the EdU proliferation assays. 

parameter Voltage AmpGain Mode 

forward scatter E-1 3.52 Linear 

sideward scatter 300 1.10 Linear 

fluorescence channel FL1 670 1.00 Logarithmic 

fluorescence channel FL2 366 1.49 Linear 

   fluorescence channel FL2 - Amplitude - 1.00 Linear 

   fluorescence channel FL2 - Width - 1.00 Linear 

fluorescence channel FL3 650 1.00 Logarithmic 
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1.3. Gene Expression Analyses 
 

1.3.1. RNA extraction 

Cells were pelleted and resuspended in 350 µl lysis buffer (containing 1% v/v -mercaptoethanol). 

Prior to nucleic acid extraction, cell lysates were homogenized via QiaShredder to reduce viscosity 

and to remove insoluble material. RNA was extracted using the NucleoSpin® RNA Kit according to 

the manufacturer instructions. After addition of 350 µl of 70% ethanol to the lysate, the sample was 

transferred to an RNeasy Mini spin column and centrifuged for 15 s at 13,000 x g. RNA was washed 

once with 700 µl Buffer RW1, twice with Buffer RPE, dried through centrifugation (2min, 13,000 x g) 

and eluted in 30 µl RNase free water. Nucleic acid concentrations were quantified using a 

NanoDrop® Spectrophotometer.  

 

1.3.2. Synthesis of Complementary DNA  

From 1 µg of RNA, cDNA was prepared using Transcriptor First Strand cDNA Synthesis Kit in a 

thermal cycler over three steps (25°C for 10 min, 55°C for 30 min, 85°C for 5 min). RNA 

concentrations were adjusted to 100 ng/ml using RNase free water in a volume of 10 µl followed by 

addition of 30 µl of Mastermix (12 µl ddH2O, 8 µl transcriptase buffer, 4 µl random hexamer primer, 

4 µl dNTPs, 1 µl protector RNase inhibitor, 1 µl reverse transcriptase). PCRs (polymerase chain 

reactions) were carried out in a 0.2 ml collection tube and a total reaction volume of 40 µl. 

 

1.3.3. Primer Design and Validation 

Primers for desired nucleotide sequences were designed using the Primer-BLAST primer design tool 

(design parameters are shown in Table 4). Suggested primer pairs were checked for salt-adjusted 

melting temperature as well as potential formation of secondary structures and gene specificity 

using Oligonucleotide Properties Calculator 149 and UCSC Genome Bioinformatics BLAT alignment 

tool 150, respectively. Custom made, lyophilized primers were purchased from Eurofins Genomics 

(Ebersberg, Germany) and rehydrated in RNase free water to a concentration of 100 µM. Primers 

were validated by RT-PCR including evaluation of specificity through melting curve analysis (Figure 

3, A). Afterwards, PCR products (5 µl mixed with 1 µl of 6x loading dye) were separated by agarose 

gel (1%) electrophoresis for 45 min at 100 V (Figure 3, B). As a standard GeneRuler 50 bp DNA 

Ladder was used. Detection was performed after 30min incubation in ethidium bromide solution 

(200 ml TAE buffer with 2 µg/ml ethidium bromide) in a chemiluminescence detection system using 

Diana Software.  
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Table 4: Design parameters and specifications for custom made primers. 

Design parameter specification 

PCR product size 150nt -250nt 

primer melting temperature 58-60°C 

Maximum Tm difference 1°C 

intron inclusion yes 

intron length range 1,000nt - 1,000,000nt 

organism Homo sapiens 

Tm - melting temperature, nt - nucleotides 

 

 

 

Figure 3: Validation of custom-made primers was performed via melting curve analyse (A) and agarose gel 
electrophoresis (B). 

 

1.3.4. Quantitative Real-Time Polymerase Chain Reaction 

Real-time PCR experiments were conducted using QuantiTect SYBR Green PCR Kit. QuantiTect and 

primers were purchased from Qiagen (Hilden, Germany) (Table 5). 

Experiments were carried out using white 96-well plates in a LightCycler® 480 II system in technical 

and biological duplicates. After addition of 17 µl Mastermix (consisting of 55 µl ddH2O, 40 µl cDNA, 

125 µl SYBR green Mastermix) to each well, 3 µl of primer solution was given to each well. Cycle 

conditions are shown in Table 6. Data was analyzed using LightCycler® 480 Software Version 

1.5.1.62 SP2. Basal gene expression was indicated as CT values. Gene expression fold change (FC) 

was calculated by CT method using GAPDH as reference gene 151. 
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Table 5: Primers used for RT-PCR experiments. 

gene full gene name assay name or sequence 

ABCB1 
ATP-binding cassette sub-family B 
member 1 (P-glycoprotein) 

Hs_ABCB1_1_SG 

ABCG4 
ATP-binding cassette sub-family G 
member 4 

Fwd: CCTGGAGTTCAGGAACCAAC 
Rev: GTGAAGATGCCAGCATGGAG 

BTC betacellulin Hs_BTC_1_SG 

CACNA2D3 
calcium channel, voltage-dependent, 
alpha 2/delta subunit 3 

Hs_CACNA2D3_1_SG 

CYP3A43 cytochrome P450 3A43 HS_CYP3A43_1_SG 

EGFR epidermal growth factor receptor Hs_EGFR_vb.1_SG 

ERBB3 epidermal growth factor receptor 3 Hs_ERBB3_vb.1_SG 

FZD7 frizzled homolog 7 
Fwd: CCTTCCCCTTCTCATGCCC 
Rev: CAGCCCGACAGGAAGATGAT 

GAPDH 
Glyceraldehyde 3-phosphate 
dehydrogenase 

Hs_CACNA2D3_1_SG 

HBEGF heparin-binding EGF-like growth factor HS_HBEGF_1_SG 

KI67 Marker of proliferation Ki-67 
Fwd: AGGGAAAGGAGAAGCAGGAAATTCAGAC 
Rev: GAGGACATAGGCAAACAAACGACGACA 

MAPK9 mitogen-activated protein kinase 9 Hs_MAPK9_va.1_SG 

PIK3R5 
phosphoinositide-3-kinase, regulatory 
subunit 5 

HS_PIK3R5_1_SG 

SULT4A1 sulfotransferase family 4A, member 1 Hs_SULT4A1_1_SG 

TCF7 transcription factor 7 Hs_TCF7_va.1_SG 

TCF7L2 transcription factor 7-like 2 Hs_TCF7L2_1_SG 

WNT2B 
wingless-type MMTV integration site 
family, member 2B 

Hs_WNT2B_va.1_SG 

  fwd - forward, rev - reverse 

 

Table 6: RT-PCR cycle conditions. 

cycle numbers temperature duration 

1 95°C 10min 

60 

95°C 10s 

58°C 15s 

72°C 20s 

1 4°C - 

 

 

1.3.5. Determination of RNA quality  

Since degraded RNA affects down-stream experiments such as gene expression analysis, prior to 

microarray experiments the quality of RNA was evaluated using the Agilent 2100 Bioanalyzer 

system. This is a high sensitive standard method to assess RNA integrity and ribosomal ratios using 

electrophoretic separation of the samples and fluorescence based detection. With proceeding 

degradation of the RNA, the ratio between 18S and 28S ribosomal subunits band intensity 
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decreases. The Bioanalyzer software generates gel-like images and electropherograms (Figure 4) 

and calculates the RNA integrity number (RIN) - a standardized, user-independent scale reaching 

from values 1 (most degraded RNA) to 10 (most intact RNA) 152.  

 

 

Figure 4: Gel-like images (A) and electropherogram (B) of a successful Bioanalyzer run. The bands and peaks of the 
ribosomal 18S and 28S compounds are clearly visible. Impurities would generate additional signals. Only RNA samples 
with high purity were used for further experiments. 

 

Workflow 

First, the gel and gel-dye mix were prepared: After placing 550 µl of Agilent RNA 6000 Nano gel 

matrix in a spin filter, the filter was centrifuged for 10min at 1500 x g. To a 65 µl aliquot of filtered 

gel, 1 µl of RNA 6000 Nano dye concentrate was added and centrifuged for 10min at 13,000 x g. 

After transferring 9 µl of the gel-dye mix to the chip, 5 µl of markers as well as 1 µl of heat-

inactivated (70°C, 2 min) samples and RNA 6000 Nano ladder solution were pipetted into the 

particular wells. Measurement of the chips was done using the Agilent 2100 Bioanalyzer 

instrument. Data analysis was performed using Agilent 2100 Bioanalyzer Expert Software. Only RNA 

samples with RIN values larger than eight were used for subsequent down-stream experiments. 

 

1.3.6. Genome-wide Gene Expression Profiling 

A microarray-based gene expression analysis allows simultaneous quantification of gene products. 

Here, the SurePrint G3 Human Gene Expression 8x60K Microarray Kit (Agilent One Color Microarray 

Technology) containing more than 27,000 biological features was used. A feature consists of 

picomoles of immobilized probes which are gene specific DNA sequences. After fluorescence 

labeling of sample cRNA (complementary to probes) and probe-target-hybridization, fluorescence 

intensity as a measure of gene product amounts is determined, followed by gene chip quality 

control and data analysis.  
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Workflow 

After positive evaluation of RNA quality, microarray analyses were performed in ten cell lines 

(untreated and after 21 days of incubation with 0.5 µg/ml fluoxetine) according to the 

manufacturer’s instructions. A total of 100 ng mRNA extracted from LCL cell cultures was used for 

reverse transcription and labelling. The generation of cDNA was conducted with T7 promoter 

primers and AffinityScript reverse transcriptase in a total reaction volume of 10 µl incubating for 

two hours at 40°C followed by 15 min at 70°C. Fluorescence labelling was performed for two hours 

at 40°C after addition of NTP mix, T7 RNA polymerase and cyanin-3-cytidine triphosphate (CY3). 

After column-based purification of CY3-labelled cRNA, 600ng of CY3-labelled cRNA (specific activity 

>10.0 pmol Cy3/µg cRNA) was fragmented at 60°C for 30 minutes in a reaction volume of 25 µl 

containing 1x Agilent fragmentation buffer and 2x Agilent blocking agent. On completion of the 

fragmentation reaction, 25 µl of 2x Agilent hybridization buffer was added to the fragmentation 

mixture and hybridized to the microarrays slides for 17 hours at 65°C in a rotating hybridization 

oven. Subsequently, microarrays were washed 1 min at room temperature with GE Wash Buffer 1 

(Agilent) and 1 min with 37°C GE Wash buffer 2 (Agilent), then dried immediately by brief 

centrifugation. Fluorescence intensities were measured by SureScan Microarray Scanner after a 

final washing step to remove non-specific bound cRNA.  

 

Quality Control and Data Analysis 

Quality control was performed using Feature Extraction V 10 Software and included analysis of 

various physical quality parameters such as spike-in signals, outlier analysis, spot finding algorithms 

or spatial distribution of signals. Further, features with low-intensity or poor quality were removed. 

Data analysis was conducted using GeneSpring (Agilent) and data pre-processing includes 

normalization, flagging and filtering. After background subtraction and determination of raw spot 

intensities, normalization was performed using the multiaverage method which is necessary to 

adjust data sets for technical variations such as efficacy of dye incorporation, heat and light 

exposition, hybridization conditions and scanning conditions. Thus, relative abundance is reduced 

focusing exclusively on biologically relevant changes. To reduce artifacts, signal intensities below a 

defined cut-off point were removed from the dataset. The probeset was filtered on data files 

(control type 0) with the condition that at least 100% of the values in any one out of one condition 

are within the range.  

Pathway analyses identify specific gene networks affected by in vitro treatment relative to 

untreated controls. Single experiment pathway analysis was performed using the imported 

pathway database from GenMAPP Pathway Markup Language and 0.05 as an uncorrected p-value 

cut-off. Hierarchical cluster analysis is a technique grouping samples and genes with similar 
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expression patterns. Non-significant genes were removed by fold-change analysis. Differential gene 

expression was rated in pairs (treated vs. untreated) with a significance level of p<0.05 

(uncorrected) where value limits for under- and overexpressed genes were set to -2 and 2, 

respectively. To functionally characterize the remaining genes, gene ontology (GO) analyses and 

protein interaction analyses were carried out using the web-based STRING (Search Tool for the 

Retrieval of Interacting Genes/Proteins) database 153. A GO study extracts information about the 

biological function of a given gene set by identifying genes being involved in particular GO terms. 

Systematic search of CNS annotations were carried out using the gene names and one of the 

following terms: brain, neuron, neurogenesis, neural plasticity, proliferation, depression or 

antidepressant. 

 

1.4. Statistical Analyses 

Statistical analyses were carried out using IBM SPSS Statistics 21. All p-values are reported as 

nominal p-values and are unadjusted for multiples testing unless stated otherwise. In dependence 

of the nature of the data types either parametric (Student’s t-tests, Pearson correlation) or non-

parametric tests (Wilcoxon-Mann-Whitney rank-sum test, Spearman’s rank correlation) were used 

when analyzed with respect to the proliferation rates and gene expression data. To test for 

differences between antidepressant treated and untreated proliferation rates in the same cell lines 

the paired t-test was used. Between the groups of responders and non-responders the proliferation 

rates were compared with unpaired Student’s t-tests. To measure the strength of the relationship 

between the proliferation rates of different treated cells Pearson’s correlation coefficient () was 

calculated. Unpaired Student’s t-tests were used to analyze basal gene expression differences 

between non-proliferating and proliferating cell lines and to analyze basal gene expression 

differences between clinical subgroups (e.g. response after five and eight weeks and remission 

after five and eight weeks). Data of gene expression FCs was analyzed by Wilcoxon-Mann-Whitney 

rank-sum test. Associations between proliferation vs. age and proliferation vs. gender were 

calculated using Pearson’s correlation and Student’s t-test for equal variances (tested by Levene’s 

test), respectively. For all remaining applications, implemented statistic programs of the specific 

software (GeneSpring, STRING) were used. 
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2. Neuroimaging 

 

2.1. Clinical Study Design 
 

2.1.1. Overview 

This prospective, open label, non-randomized, single center, phase I trial was approved by the 

Federal Institute for Drugs and Medical Devices (BfArM) and the ethics commission of the Medical 

Faculty of the University Bonn. The full study’s title reads “Immune- and miRNA-response to 

recombinant interferon beta in healthy volunteers and patients with relapsing remitting multiple 

sclerosis” (trial short title: RESI) and is listed under EudraCT-number “2012-005475-13” in the EU 

Clinical Trials Register database. Before and after a nine-day standard therapy with recombinant 

interferon beta, psychometric testing as well as MRI measurements were conducted. A total 

number of 17 healthy volunteers were enrolled in this study. The trial was conducted at the 

dedicated phase I unit of the clinical study center of the university hospital Bonn in accordance with 

the ICH Guideline for Good Clinical Practice, the relevant national regulations and the Declaration 

of Helsinki.  

 

 

Figure 5: Overview of the study procedure. Before and after a nine-day standard therapy with interferon beta, 
psychometric testing as well as MRI measurements were performed.  

 

2.1.2. Participants 

Participants were healthy volunteers between 18 and 65 years who were recruited by the Clinical 

Study Center of the University Hospital in Bonn, Germany. Inclusion criteria were adequate function 

of liver (bilirubin, alanine transaminase, aspartate transaminase), kidney (creatinine), thyroid gland 

(thyroid-stimulating hormone), bone marrow (white blood cells, granulocytes, platelets, 

hemoglobin) and blood clotting (prothrombin time, partial thromboplastin time). Additionally, 

females needed to obtain a negative serum pregnancy test prior to treatment start and were 

instructed to use an approved contraceptive method (Pearl index < 1%) during and for 3 months 

after the trial. Exclusion criteria were abuse of alcohol, drugs or medication as well as a present co-
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medication with corticosteroids and a pronounced fear of blood drawings. Furthermore, potential 

subjects with a known allergy/hypersensitivity to interferon beta or any other ingredient of the 

injection solution, a history of malignant, cardiac, psychiatric disorders (including suicidal behavior) 

and particular infective diseases (e.g. acquired immunodeficiency syndrome, Hepatitis B or C) were 

excluded from this study. MRI-specific exclusion criteria were metal implants (e.g. pacemaker, 

inner-ear prosthesis, nerve stimulator, implanted defibrillator, infusion pump, artificial joints), 

magnetic or metallic objects that cannot be removed from the body (e.g. body piercing, dental 

prosthesis, implanted electrodes, contraceptive coil, acupuncture needle), claustrophobia, 

persistent tinnitus and tattoos or permanent makeup of a particular size (more than 10% of the 

body surface). Participants were not allowed to take part in other clinical trials with therapeutic 

intervention during this trial or within one month before enrolment. Mental health was evaluated 

by Mini-international neuropsychiatric interview (MINI). Inclusion was performed after the subjects 

gave written informed consents.  

 

2.1.3. Investigational Medicinal Product 

Interferon beta-1a received its marketing authorization in Germany in 1998. Prefilled syringes 

containing 44 µg of interferon beta-1a (Rebif®, Merck) were subcutaneously injected by trained 

personnel on days 1, 3, 5 and 8. Other ingredients are mannitol, poloxamer 188, L-methionine, 

benzyl alcohol, sodium acetate, acetic acid, sodium hydroxide and aqua ad injectabilia. No dose 

adjustments are intended by the trial protocol. In case of severe side effects (e.g. fever, head and 

body aches or chills) concomitant medication was allowed after consultation with the attending 

physician. 

 

2.1.4. Psychiatric Evaluation 

To assess change of psychiatric parameters after treatment with Interferon beta, depression and 

anxiety symptoms were examined with HDRS and STAI (State-Trait Anxiety Inventory) 

questionnaires, respectively. The interview-based HDRS was firstly developed by Max Hamilton in 

1966 and consists of multiple items aiming on depression-specific psychological parameters. 

Otherwise, the STAI bases on a self-report consisting of 40 questions with a four-pointed scale and 

measures the two main forms of anxiety (current and general anxiety). Higher scores are positively 

associated with more severe levels of depression or anxiety in both questionnaires. Paired t-tests 

by SPSS12 were used to statistically evaluate pre/post-changes in psychometric parameters.  
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2.2. Magnetic Resonance Imaging 

 

2.2.1. Functional Principle 

MRI scanners are able to use strong, uniform magnetic fields and radio waves to produce images of 

the human brain. Since the human body is largely composed of water molecules, tissue specific 

differences in the magnetic moment of the proton spin can be used to generate contrast pictures. 

Functional MRI allows determining brain activity while doing different tasks. The brain activity can 

be measured by detecting changes associated with blood flow because neuronal activation and CBF 

are tightly connected (hemodynamic response). An activation of a particular brain area leads to an 

increased metabolic activity and oxygen consumption. In consequence, oxygenated hemoglobin 

decreases and a disproportionate increase in perfusion emerges that stays at constant levels for the 

duration of the stimulation. The change in signal magnitude of the magnetic properties can be 

detected by MRI. The underlying mechanism is called blood-oxygen-level dependent (BOLD) 

contrast which describes the proportion of hemoglobin magnetization (oxygenated hemoglobin is 

diamagnetic and deoxygenated hemoglobin is paramagnetic) in the magnetic field 154. The higher 

the magnetic field strength, the higher the observed BOLD contrast and the signal-to-noise ratio 155. 

The localization of activated brain areas is possible through modelling differences in the BOLD 

signal following the contrast between task execution and resting-state (control condition). 

Statistical modelling allows the processing of test statistics of these contrast effects in each voxel 

which can be visualized as statistical parametric maps. 

 

2.2.2. Paradigms 

To measure specific brain activation patterns of depression-associated areas, all individuals had 

completed two tasks in functional brain imaging. Different paradigms were used to cover both the 

reward system and brain circuits of emotion. To probe sensitivity to reward cues in the ventral 

striatum and brain stem, a paradigm was employed - based on the work of Knutson et al. 156 - in 

which participants could collect money at different amounts (high and low), anticipated by 

appropriate cues 157. Participants were instructed to view the images and to press a button with 

their thumbs depending on the horizontal position of an appearing dot on the screen (see Figure 6). 

The total scan length of this paradigm was 8:07 minutes. Each correct response was rewarded by 

appropriate monetary amounts (0.01 € or 0.20 €) and money was paid off in cash after the scan, if 

the total amount was over 20.00 € - ensuring a high motivational status of the volunteers (maximal 

reward: 20.37 €). 
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Figure 6: Principle of the “reward” paradigm. Subjects are instructed press the left or right button of the keypad 
depending on the horizontal position of an appearing dot on the screen. Correct responses were rewarded according to 
the displayed monetary value. According to Viviani et al. 

157
. 

 

To target the amygdala and to evaluate reactivity to emotional stimuli, blocks of faces displaying 

the emotion of anger, sadness and disgust were displayed in a passive exposure paradigm 158, 159. In 

alternation, blocks of faces and geometric forms were presented (Figure 7) resulting in a total scan 

length of 3:17 minutes. Social images were taken from a set of standardized facial expressions 

provided by the Swedish Karolinska Institute 160. 
 

 

Figure 7: Principle of the faces paradigm. Subjects are instructed to focus on the alternating appearing blocks of images 
consisting of emotional faces (stimulus condition) and neutral geometric forms (control condition) 

160
. 
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2.2.3. Data Acquisition 

Data were acquired on a Skyra 3T MRI scanner (Siemens Healthcare, Erlangen, GER) by trained 

personnel. Scan sequences were controlled by manufacturer’s software. To ensure safety, metal 

detector analyses were conducted prior to entering the scan room. Subject wellbeing was 

continuously monitored by video camera, intercom and manual alarm system during the scan. To 

avoid subject’s hearing damages, foam earplugs were applied. Subject head movements were 

restrained with foam padding inside the 32 channel head coil. Paradigm pictures were presented on 

a monitor located behind the scanner and were displayed to the subjects via mirrors. Task 

responses were recorded by a button-box.  

To determine the exact brain position, overview scans (Head Scout Localizer) were conducted at 

the beginning of the scan procedure. Functional scans were acquired by echo planar imaging (T2-

weighted gradient-echo). An overview on measurement parameters is given in Table 7. 

 

Table 7: Overview on fMRI measurement parameters 

parameter functional imaging additional information 

AutoAlign Head>Brain  

Concatenations 1 slice distribution over multiple measurements 

Distance factor 20% 
gap between single slices expressed as percentage of 
slice thickness 

Echo time 30 ms 
time between the radiofrequency pulse and MR signal 
sampling 

Filter none corrections for non-uniform receiver coil profiles 

Flip angle 90°  

FoV read 192 mm size of the spatial encoding area of the image 

FoV phase 100%  

Matrix size 64x64  

PAT off  

Phase encoding direction A>>P direction of the pulsed magnetic field gradient 

Phase oversampling 0% 
artifact reduction technique for field-of-view 
exceeding objects 

Repetition time 2460 ms time between excitations pulses 

Slices  30 number of recorded planar regions 

Slice thickness 2.5 mm  

Voxel size 3.0x3.0x2.5 parameter for spatial resolution 
FoV - field of view, PAT - parallel acquisition technique 

 

The measurement window of fMRI was adjusted to achieve maximal coverage of the brain 

including the regions of interest such as the amygdala and the ventral striatum (Figure 8). The 

tilting angle of the measurement window was adjusted to the interface between the fourth 

ventricle and the brain stem (blue line) for each individual participant ensuring a constant coverage 

of all relevant brain areas over the course of this study. 
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Figure 8: Orientation of the measurement window. The tilting angle is adjusted to the interface between the fourth 
ventricle and the brain stem (blue line) to achieve maximal coverage.  

 

2.2.4. Data Analysis 

The imaging data were analyzed using SPM12 software which is a collection of specialized statistical 

techniques for the examination of brain activity differences in fMRI 161. Images for each subject 

were preprocessed including realignment to correct for head motion, normalization into a standard 

stereotactic space of an anatomical reference (by transformation of the images through translation, 

rotation, scaling and nonlinear warping) to allow comparisons between different subjects and 

smoothing with an 8 mm Gaussian kernel to increase signal-to-noise ratio. Regressors for faces 

paradigm were “pictures vs. control” (geometrical forms) and for foraging paradigm were “cue high 
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vs. cue low”. Contrasts were embedded into a design matrix that generates linear models with 

parameter estimates to compare fMRI data before and after interferon therapy. Statistical analyses 

were based on classical T-statistics and include calculations on peak level, cluster level and set level 

with FDR (false discovery rate) adjusted p-values by usage of height and spatial extent thresholds. 

Set level inferences are based on activated brain regions, i.e. the number of connected clusters 

above the threshold and are usually more powerful compared to cluster level analyses 162. Cluster 

level inferences consider the spatial extent (i.e. the volume or the number of activated and 

connected voxels that comprise the subset) and the peak height of the cluster when calculating 

significance. They are more sensitive than set level analyses but at the expense of localizing power 

162. The peak inference only takes the maxima height of single voxels into account and therefore is 

the less powerful method to detect brain activation differences. The repeated testing of the model 

in each voxel is accounted for by a correction for the multiple testing. Subsequently, the obtained 

p-values are visualized as statistical parametric maps using a p-value threshold of 0.001.  

 

 

3. Software 

 

Bioanalyzer 2100 Expert Software Agilent (Santa Clara, CA, USA) 

CellQuest Pro BD Bioscience (Franklin Lakes, NJ, USA) 

Feature Extraction V 10 Software Agilent (Santa Clara, CA, USA) 

GeneSpring X12 Agilent (Santa Clara, CA, USA) 

MATLAB The MathWorks (Natick, MA, USA) 

Microsoft Office 2010 Microsoft Corporation (Redmond, WA, USA) 

MRI console software Siemens Healthcare (Erlangen, GER) 

LightCycler® 480 Software  Roche (Basel, CH)  

DIANA raytest GmbH (Straubenhardt, GER) 

Presentation Neurobehavioral Systems Inc. (Berkeley, CA, USA) 

Primer-BLAST design tool  NCBI (Rockville Pike, MD, USA) 

BLAT alignment tool  UCSC Genome Bioinformatics (Santa Cruz, CA, USA) 

Oligonucleotide Properties Calculator Northwestern University (Chicago, IL, USA) 

SPSS Statistics 21 IBM (Armonk, NY, USA) 

Statistical Parametric Mapping Karl Friston (University College London, GB) 
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Chapter IV - Results 

 

1. Identification of Potential Gene Expression Biomarkers for 

Antidepressant Response 

 

1.1. Results from the MARS Cohort 

 

The MARS study is a naturalistic clinical study on antidepressant drug response designed for 

pharmacogenetics analyses of antidepressant drug response biomarkers. LCLs were generated in a 

subset of patients from the MARS project and were used as model systems to study individual 

proliferation and gene expression between fluoxetine-treated and untreated samples aiming on the 

identification of potential biomarkers for the pre-treatment prediction of individual antidepressant 

drug effects (experimental overview in Figure 9). Initially, screening experiments were carried out 

to identify a suitable experimental setup and as prove of concept verification. Subsequently, 

microarray experiments were carried out to find potential gene expression biomarkers. 

Proliferation phenotyping experiments of 50 MARS cell lines were conducted contemporaneously 

to study the differences of antidepressant-induced changes in proliferation behavior between non-

responder and responder derived cell lines. Finally, results of both arms were combined in an edge-

group approach as a further validation method to reduce the amount of potential biomarkers for 

remaining validation experiments.  

 

1.1.1. Screening Experiments 

To identify the most suitable experimental setup and method for measurement of individual 

proliferation rates, screening experiments were carried out using ten LCLs (derived from n=6 

responders and n=4 non-responders representing the average patient population with different 

medication profiles) from MARS study and fluoxetine as indicator drug. During the long-term 

incubation with different concentrations (0.0, 0.1, 0.5, 10.0 µg/ml) of fluoxetine, cell counts were 

recorded (three times a week) as well as EdU proliferation assays (weekly) and MKI67 gene 

expression (end point measurements after 21 days of in-vitro treatment with fluoxetine). On this 
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occasion, significant proliferative effects were measurable after three weeks of in-vitro treatment 

with therapeutical concentrations of fluoxetine using the EdU assay (Figure 10, A). Between treated 

and untreated samples no significant differences were detectable by cell counting (Figure 10, B). 

Very small significant effects were observable by KI67 gene expression analysis (Figure 10, C). 

 

 

Figure 9: Overview of the three phased project (screening, exploration and validation). After prove-of concept 
screening experiments which aimed on the identification of suitable experimental conditions, genome-wide gene 
expression and EdU phenotyping experiments were carried out to identify potential gene expression biomarkers and to 
explore the association between antidepressant induced LCL proliferation and donor’s clinical response status, 
respectively. Potential biomarkers were characterized in an edge-group approach followed by further RT-PCR 
validation experiments. 
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Figure 10: Result of the screening experiments using n=10 LCLs derived from the MARS study (values are indicated as means of these n=10 samples). Significant 
proliferative effects were observable by EdU proliferation assays after three weeks of incubation with fluoxetine but not after one or two weeks (A). No significant 
differences between treated and untreated samples were detectable via cell counting (B). Statistical but no biological significant effects (FC < 2) were reported through 
KI67 gene expression experiments (C). Statistical analyses included Student’s t tests with p-values: * < 0.05, ** < 0.01, *** < 0.001. 
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Detection of proliferation by EdU is the only method that directly measures proliferation and that 

allows a single cell evaluation. Individual differences between cell lines were detectable and most 

distinct proliferative effects occurred after three weeks of incubation with fluoxetine in 

therapeutical concentrations (0.1 µg/ml and 0.5 µg/ml) (Figure 11). Occasional proliferative effects 

were reported after one or two weeks of incubation with fluoxetine. Fluoxetine at a final 

concentration of 10.0 µg/ml show decreased proliferation rates in most of the cell lines. 

 

 

Figure 11: Heat-Map of EdU screening experiments. Ten cell lines were treated with different concentrations of 
fluoxetine over a time period of three weeks. After one, two and three weeks EdU proliferation assays were carried 
out. Different colors represent ranges of relative proliferation rates (ratio between fluoxetine treated and untreated 
controls of the same cell line): Reddish shades indicate a decreased proliferation and different green shades indicate an 
increase of relative proliferation rates; unchanged proliferation is indicated by black coloring. The occurrence 
frequency of each color (representing a defined range of relative proliferation) is shown in the bar graphs at the 
bottom of the figure. Strongest proliferative signals were detectable after three weeks of incubation with therapeutical 
concentrations of fluoxetine (0.1 µg/ml and 0.5 µg/ml). 

  

1.1.2. Proliferation Phenotyping 

To assess individual differences in cell proliferative effects of fluoxetine in LCLs from patients with 

documented clinical response status, we conducted long-term cell incubation with fluoxetine (21 

days) revealing a large variability in relative proliferation rates ranging from 54.7 to 155.2% in 

comparison to untreated cells from the same donor (Figure 12) indicating there are both pro- and 

anti-proliferative effects of fluoxetine in LCLs. Averaged over all 50 cell lines no significant overall 

effects were observable (100.00±0.0% control vs. 97.25±3.02; p=0.367). 
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Figure 12: EdU phenotyping of MARS cell lines. A total of n=50 cell lines (n=25 non-responder and n=25 responder derived cell lines) were treated for 21 days with therapeutical 
concentrations of fluoxetine (0.5 µg/ml). Proliferation rates were measured by EdU proliferation assay and are indicated as values relative to untreated control samples of the same 
cell lines (relative proliferation values of > 100% mean increased proliferation after fluoxetine treatment). Strong interindividual differences are detectable between the different cell 
lines ranging from 55% to 155% of relative proliferation rates.  
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Although there are inter-individual differences, when grouping the cell lines according to their 

clinical status no significant differences between the proliferation rates of the single groups (non-

responder vs. responder) were detectable (Figure 13, A). Basal proliferation, i.e. LCL proliferation 

without fluoxetine, is not associated with clinical response as well (Figure 13, B). 

 

 

Figure 13: Comparison of relative proliferation (after in-vitro treatment with fluoxetine relative to untreated samples 
from the same donor) between non-responder (n=25) and responder (n=25) derived LCLs (A) and between absolute, 
basal proliferation (untreated samples from the same donor) of non-responder (n=25) and responder (n=25) derived 
cell lines (B). Deviations are indicated as standard errors. No significant differences between responder and non-
responder derived cell lines are detectable. 
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Furthermore, we performed a trend analysis to identify a possible relation between individual 

response and individual LCL proliferation. No significant association was detected by Pearson’s 

correlation analysis (r=0.082, p=0.57) between proliferation rates and clinical response measured 

as percentage change in Hamilton-score compared between weeks 0 and 8 (Figure 14).  

 

 

Figure 14: Correlation plot between response factor and relative proliferation. The response factor is defined as 
percentage change in Hamilton scoring calculated for each participant between values at study inclusion (week 0) and 
at study end (week 8). Consequently, a cell line with a response factor > 50% is classified as responder. Individual 
relative LCL proliferation after three weeks of incubation with therapeutical concentrations of fluoxetine (0.5 µg/ml) is 
indicated as ratio to the untreated sample of the same cell line. By Pearson’s correlation analysis no association 
between response factor and relative proliferation is detectable (r=0.082 with p=0.57).  

 

The covariates gender (Figure 15, A) and age (Figure 15, B) showed no significant impact on 

individual proliferation rates by unpaired Student’s t-test (pgender=0.513) and Pearson’s correlation 

analysis (rage=0.071 with page=0.622). The same applies for donor’s underlying diseases, i.e. bipolar 

disorder, single episode major depressive disorders and recurrent major depressive disorders 

where no significant differences were detectable (Figure 16).  
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Figure 15: Analyses of the covariates gender (A) and age (B) and their impact on relative proliferation rates (after 21 
days of continuous treatment of n=50 LCLs with therapeutical concentrations of fluoxetine compared to untreated 
controls from the same cell lines). No significant impact of gender or age on relative proliferation rates was observable 
by Student’s t-test (pgender=0.513) or Pearson’s correlation analysis (rage=0.071 with page=0.622). Deviations are 
indicated as standard errors.  

 

Figure 16: Box plot of relative proliferation and donor’s underlying diseases indicated as International Statistical 
Classification (ICD) codes: F31.x - bipolar disorder (n=7); F32.x - single episode major depressive disorders (n=10); F33.x 
- recurrent major depressive disorders (n=33). No significant differences were detectable (p=0.799; p=0.237; p=0.889). 
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1.1.3. Identification of Potential Gene Expression Markers 

The gene expression changes of n=10 LCLs (identical to those used in the screening experiments) 

was measured in a genome-wide approach to characterize gene expression changes by long-term 

fluoxetine and to identify potential gene expression biomarkers. Gene expression profiles were 

compared between untreated samples and samples treated for 21 days with 0.5 µg/ml of 

fluoxetine which is similar to the range in plasma concentrations in patients. Microarray data were 

deposited in NCBI’s Gene Expression Omnibus (GEO) database 163, 164 and are accessible through 

GEO Series accession number GSE83386. 

From 27,000 available genetic features, up to 15,241 were differentially regulated (FC > 2) in cell 

line 275U whereby only 3,501 genes were affected in cell line 278S indicating vast inter-individual 

differences in fluoxetine-induced gene expression profiles (Figure 17). Averaged over all ten cell 

lines they differentially expressed 7,715 ± 1,271 genes (FC > 2), 960 ± 164 genes (FC > 5) and 282 ± 

41 (FC > 10) genes. 

 

 

Figure 17: Quantities of differentially regulated genes (FC > 2, FC > 5 and FC > 10) in ten LCLs after three-week 
incubation with fluoxetine compared to untreated controls of the same samples and measuring gene expression 
profiles by Agilent microarray system with approximately 27,000 biological features. 

 

From this huge number of genes, potential genetic expression biomarkers, i.e. genes differentially 

regulated in non-responder and responder derived cell lines, need to be detected. To this end, 

various filtering techniques which are implemented in the microarray analysis software were 

applied (briefly summarized in Table 8 together with a short explanation of the techniques and the 

number of remaining genes after application of the appropriate filter) in order to successively 
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decrease the number of genes and therefore, to identify potential gene expression biomarkers. The 

results from each method will be described in detail in the following sections of this work. 

 

Table 8: Overview of different filtering methods for the identification of potential gene expression biomarkers out of 
the whole-genome gene expression data and their particular impact of remaining number of genes (n). 

filter technique Additional information n 

Cluster analysis 
Identification of cell lines clusters with different gene 
expression profiles (compared between untreated and 
fluoxetine-treated samples) 

3,501 - 15,241 

Pathway analysis 
Identification of pathways inversely regulated in NR and R 
derived indicator cell lines 

390 

Fold change analysis 
Filtering of genes obtained from pathway analysis according 
to their FCs after in-vitro treatment of the cell lines with 
fluoxetine 

127 

Gene ontology analysis Functional check point analysis 127 

NR/R-comparison 
Filtering of inversely regulated genes between NR and R 
derived cell lines 

15 

edge-group analysis 
Comparison of gene expression between cell lines with most 
distinct anti- and pro-proliferative effects from EdU 
phenotyping  

5 

NR - non-responder, R - responder 

 

The first method applied was a cluster analysis that aims on the identification of cell line clusters 

with different gene expression profiles compared between fluoxetine-treated and mock-treated 

samples of the same cell lines. Figure 18 shows the hierarchical clustering tree of the used cell lines 

that have been treated with fluoxetine for 21 days versus untreated control samples of the same 

cell lines. Except of cell lines 275U, 275J and 24DC, all samples of the same cell lines are located 

within the same cluster. This means these three cell lines showed great gene expression changes 

after in-vitro treatment with fluoxetine. The remaining cell lines (278S, 278D, 278H, 2411, 96, CY24 

and 1WXV) experienced no substantial differences in gene expression after fluoxetine incubation 

on gene cluster level. 
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Figure 18: Dendrogram of the hierarchical clustering analysis of the ten LCLs after three weeks of incubation with 
fluoxetine compared to untreated samples of the same cell lines. Up- and down-regulated genes are indicated by blue 
and red coloring, respectively. The most distinct changes in gene expression were recorded for the cell lines 275U, 275J 
and 24DC. 
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Secondly, a pathway analysis was carried out in three indicator cell lines (characterized by rectified 

clinical response status, experimental EdU proliferation status and hierarchical clustering status 

obtained from microarray experiments) to identify pathways that are involved in individual 

fluoxetine action and that possibly contain potential gene expression biomarkers. The pathway 

analysis revealed different amounts of significantly activated pathways by fluoxetine in the cell lines 

24DC (67 pathways), 275U (75 pathways) and 278H (42 pathways). Compared between responder 

and non-responder indicator cell lines (24DC and 275U vs. 278H), 14 inversely-regulated pathways 

were highlighted by Venn-analysis (Figure 19) that contain a total of 192 differentially expressed 

genes after incubation with fluoxetine (FC>2, p<0.05). The functions of this gene set were 

characterized by STRING-based GO analysis (Table 9). A total of 127 genes were reported to be 

involved in GO terms associated with brain remodeling processes such as neurogenesis (generation 

of neurons), axonogenesis (generation of axons), neuron differentiation (specialization of neural 

progenitor cells to neurons) or neuron projection (prolongation of nerve cells like axon or dendrite 

formation). 

 

Gene expression differences of these genes between non-responder and responder derived cell 

lines as measured by microarray experiments were evaluated. After consideration of individual cell 

line donor’s response status, 15 genes showed differences (FC difference > 2) in gene expression 

between responder (n=6) and non-responder (n=4) derived cell lines. The gene names, mean fold 

change differences as well as their annotated CNS functions are listed in Table 10. Gene expression 

differences between responder and non-responder fold changes by fluoxetine range from 40.3 for 

BTC to 2.0 for ERBB3 (epidermal growth factor receptor 3). All these genes can be assigned to 

either WNT signaling pathways (e.g. WNT2B, FZD7, TCF7L2) or EGF signaling pathways (e.g. BTC, 

EGFR, HBEGF) or to a group of pharmacokinetic genes (e.g. CYP3A43, SULT4A1, ABCB1, ABCG4). 

According to literature, most of these genes can be associated with brain-specific functions such as 

neuroplasticity, neural cell proliferation or stem cell regulation. Consequently, these genes were 

appointed as candidate gene expression biomarker genes and were used for further investigation. 
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Figure 19: Pathway analysis combined with Venn analysis revealed 14 pathways (yellow frame) differentially 
regulated between responder and non-responder indicator cell lines (24DC and 275U vs. 278H). Indicator cell lines 
are characterized by rectified LCL donor’s clinical response status, proliferation status and hierarchical clustering 
status. Due to different pathway versions with nearly identical pathways, only seven really different pathways 
remained (left column). P-values were calculated by GeneSpring X12 microarray software (Agilent) and are 
adjusted for multiple testing.  
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Table 9: Overview of the 30 most significant GO terms from the genes identified by Venn analysis. Brain and neuron 
specific GO terms are bold. P-values were calculated by STRING web-tool and indicated as uncorrected p-values and 
Benjamini-Hochberg corrected p-values (n is the number of identified genes being involved in particular GO terms).  

GO Term p-value corrected p-value n 

Neuron differentiation  
(GO:0030182) 

5.98e-27 7.54e-23 44 

Generation of neurons  
(GO:0048699) 

2.03e-25 8.22e-22 47 

Neuron projection development  
(GO:0031175) 

2.24e-25 8.22e-22 37 

Axon development 
(GO:0061564) 

3.00e-25 8.22e-22 34 

Response to chemicals  
(GO:0042221) 

3.26e-25 8.22e-22 76 

Cell development  
(GO:0048468) 

6.83e-25 1.43e-21 50 

Neuron projection morphogenesis  
(GO:0048812) 

1.08e-24 1.94e-21 34 

Cellular response to chemical stimulus 
(GO:0070887) 

1.47e-23 2.32e-20 57 

Axonogenesis  
(GO:0007409) 

1.91e-23 2.68e-20 32 

Positive regulation of signal transduction  
(GO:0009967) 

3.29e-23 4.14e-20 43 

Fc receptor signaling pathway  
(GO:0038093) 

6.87e-23 7.27e-20 27 

Neuron development  
(GO:0048666) 

6.92e-23 7.27e-20 37 

Cell projection morphogenesis  
(GO:0048858) 

8.93e-23 8.66e-20 35 

Canonical Wnt signaling pathway  
(GO:0060070) 

1.04e-22 9.41e-20 18 

Response to wounding  
(GO:0009611) 

1.51e-22 1.27e-19 42 

Positive regulation of signaling  
(GO:0023056) 

1.93e-22 1.52e-19 43 

Neurogenesis 
(GO:0022008) 

2.10e-22 1.53e-19 45 

Cell part morphogenesis  
(GO:0032990) 

2.18e-22 1.53e-19 35 

Cell morphogenesis  
(GO:0000902) 

1.27e-21 8.42e-19 37 

Regulation of signal transduction  
(GO:0009966) 

1.52e-21 9.079e-19 57 

Cell morphogenesis involved in neuron differentiation 
(GO:0048667) 

1.54e-21 9.079e-19 31 

Cell projection organization  
(GO:0030030) 

1.58e-21 9.079e-19 38 

Positive regulation of cell communication  
(GO:0010647) 

2.02e-21 1.11e-18 42 

Wound healing  
(GO:0042060) 

2.25e-21 1.18e-18 34 

Positive regulation of protein metabolic process  
(GO:0032270) 

2.45e-21 1.21e-18 41 

Cell morphogenesis involved in differentiation  
(GO:0000904) 

2.49e-21 1.21e-18 33 

Response to growth factor  
(GO:0070848) 

4.32e-21 2.02e-18 32 

Immune response-regulating cell surface receptors  
(GO:0002768) 

4.74e-21 2.12e-18 28 

Cellular response to organic substance  
(GO:0071310) 

4.88e-21 2.12e-18 49 

Regulation of signaling 
(GO:0023051) 

9.04e-21 3.80e-18 59 
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Table 10: Comparison of mean gene expression levels between responder and non-responder cell lines (n=10) and their 
annotated gene functions. Gene names are arranged by decreasing FC differences. CNS functions were systematically 
searched using the gene names and one of the following terms: brain, neuron, neurogenesis, neural plasticity, 
proliferation, depression or antidepressant. 

gene  
(Entrez ID) 

mean FC difference  
(Responder vs. Non-

Responder) 

CNS function 
 

BTC (685) 40.30 Stimulation of cell proliferation and neurogenesis 
165

 

WNT2B (7482) 26.20 Regulation of pro-neural genes 
166

 

EGFR (1956) 18.40 neural progenitor cells proliferation and migration 
167

 

CYP3A43 (64816) 6.90 antipsychotic metabolism 
168

 

PIK3R5 (23533) 6.70 risk factor for insomnia and suicides 
169-171

 

SULT4A1 (25830) 6.20 
brain-specific sulfate conjugation of drugs and 
neurotransmitters 

172
 

FZD7 (8324) 5.40 receptor for Wnt proteins in brain 
173

 

CACNA2D3 (55799) 5.30 possible role in long-term antidepressants action 
174

  

TCF7L2 (6934) 4.73 transcription factor in Wnt pathway 
173

 

ABCG4 (64137) 4.10 
regulation of lipid homeostasis in neurons and astrocytes 
175, 176

 

TCF7 (6932) 3.60 transcription factor in Wnt pathway 
173

 

HBEGF (1839) 3.50 Neurogenesis and astrocytes proliferation 
177

 

MAPK9 (5601) 2.50 mediates apoptosis in dopaminergic brain areas 
178

 

ABCB1 (5243) 2.45 export of neurotoxic agents in BBB 
179

 

ERBB3 (2065) 2.00 nervous system development 
180

 

 

 

 

To further characterize the candidate genes in an in-silico approach, possible interactions of these 

identified candidate genes were investigated: The prediction of protein interactions based on 

physical (direct) and functional (indirect) connections by STRING functional protein association’s 

network revealed some interactions between the 15 top-hit genes (Figure 20). As expected, the 

strongest interactions were observable for the proteins of the WNT and EGF pathways and 

interestingly, both of these pathways show interactions with each other as well (e.g. WNT2B with 

EGFR or TCF7L2 with ERBB3). No associations were detectable for SULT4A1, CYP3A43, ABCG4 and 

CACNA2D3.  
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Figure 20: STRING based protein interaction network of the 15 top-hit genes from microarray experiments after three 
weeks of incubation with therapeutical concentrations of fluoxetine. Network lines represent interactions between the 
proteins and the thicker the lines the stronger are the associations between the different gene products. The in-silico 
predictions of protein interactions such as physical or functional connections are based on scores from the STRING 
interaction database 

153
. 

  

To assess the potential of the identified candidate genes and their association with individual LCL 

proliferation after in-vitro treatment with fluoxetine, gene expression was analyzed in an edge-

group approach (in similarity to the work of Morag and colleagues 117). Both the basal gene 

expression and fluoxetine-induced changes in gene expression were compared between the two 

phenotypic edges of EdU phenotyping (five cell lines each) which is similar to those cell lines with 

the most distinct fluoxetine-induced anti-proliferative and pro-proliferative effects. Among the 15 

identified genes from the microarray experiments, the basal gene expression of four genes was 

significantly different from non-proliferator cell lines compared to proliferator cell lines: WNT2B 

(p=0.046), TCF7L2 (p=0.018), SULT4A1 (p=0.035) and ABCB1 (p=0.046) (Figure 21). After 

consideration of the clinical response status from the donors of these cell lines, no significant 

differences were detectable between LCL gene expression and donor’s clinical response and non-

response or between donor’s clinical remission and non-remission after five and eight weeks of 

antidepressant treatment during the MARS study (Figure 22). 
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Figure 21: Basal gene expression of the candidate genes in an edge-group analysis from EdU phenotyping experiments 

(proliferators vs. non-proliferators). Basal gene expression is indicated as CT values using GAPDH as reference gene. 
Significance was tested by unpaired Student’s t test.  

 

 

Additionally, fold change analyses were performed to characterize the effect of fluoxetine on the 

gene expression of the candidate gens. Results of the fold change analyses significantly correlated 

with in-vitro proliferation of genes WNT2B (p=0.032), TCF7L2 (p=0.008) and FZD7 (p=0.016) (Table 

11). The remaining genes showed no statistically significant effects of fluoxetine on gene expression 

levels between non-proliferator and proliferator cell lines. 
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Figure 22: Basal gene expression of the candidate genes in cell lines derived from donors with non-response or 
response after five (A) and eight weeks (B) and cell lines derived from donors with remission or non-remission after 
five (C) and eight weeks (D). Clinical improvement was rated after five and eight weeks by HDRS. No significant 
correlations between basal gene expressions of the candidate genes with clinical parameters of LCL donors were 
detectable. 
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Table 11: Fold change values of the candidate genes identified through microarray experiments after three weeks of in-vitro treatment with therapeutic concentrations of fluoxetine 
obtained in ten different LCLs in an edge-group approach after EdU phenotyping. Statistical analysis was carried out by Wilcoxon-Mann-Whitney rank-sum test and significant p-values 
are bold and underlined. 
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Further validation of the candidate genes was performed: Changes in candidate gene expression 

were assessed after 21 days incubation with fluoxetine in all LCLs from EdU phenotyping 

experiments (n=50) limited to the five remaining genes showing significant differences in the EdU 

phenotyping edge-group approach. The associations between LCL gene expression and both the LCL 

donor’s remission and response status were investigated (Table 12). Basal gene expression of 

SULT4A1 correlated with donor’s clinical response after five weeks (p=0.029). However, basal gene 

expression of SULT4A1 was low and only detectable in 10 out of 50 cell lines (n=4 non-responder 

derived cell lines vs. n=6 responder derived cells). Furthermore, the gene expression fold changes 

of WNT2B after treatment with fluoxetine correlated with clinical remission status after five weeks 

(p=0.025). The remaining genes TCF7L2, FZD7 and ABCB1 showed no significant correlations with 

clinical parameters of LCL donors. 

 

Table 12: Statistical overview of LCL donor’s clinical outcome and LCL gene expression of the candidate genes in all 
tested MARS LCLs (n=50). Significant p-values are bold and underlined. Significance was calculated Student’s t test 
(basal gene expression) and Wilcoxon rank sum test (gene expression fold changes). 

 
 

WNT2B SULT4A1 TCF7L2 FZD7 ABCB1 

basal gene expression 
Response n.s. 0.029 n.s. n.s. n.s. 

Remission n.s. n.s. n.s. n.s. n.s. 

fold changes after in-vitro 
treatment with fluoxetine 

Response n.s. n.s. n.s. n.s. n.s. 

Remission 0.025 n.s. n.s. n.s. n.s. 

  n.s. - not significant 
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1.2. Results from the STAR*D Cohort 

 

STAR*D was an open label, randomized, multicenter, controlled clinical study aiming on the 

definition of effective subsequent treatment strategies after a first unsuccessful antidepressant 

therapy. All patients were treated with a citalopram monotherapy at the initial phase of this study. 

A total of 50 cell lines were obtained and were chosen to cover n=25 first-line therapy responders 

to citalopram and n=25 treatment resistant patients. Similar to previous experiments using LCLs 

from the MARS cohort, proliferation phenotyping was carried out after three weeks of in-vitro 

treatment with therapeutical concentrations of fluoxetine and citalopram. Additionally, the 

potential candidate gene expression biomarkers identified by microarray experiments of the MARS 

LCLs were further characterized and validated within this STAR*D cohort. 

 

1.2.1. Proliferation Phenotyping 

Individual variability of cell proliferative effects by SSRIs between n=50 STAR*D LCLs from various 

donors treated with citalopram monotherapy over the course of the STAR*D trial was assessed by 

EdU proliferation assays. After incubation of LCLs with therapeutic concentrations of citalopram or 

fluoxetine for three weeks, EdU-based proliferation phenotyping experiments revealed strong 

inter-individual differences between single cell lines (Figure 23). Both anti- and pro-proliferative 

effects were reported with relative proliferation rates ranging from 0% to 428%.  
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Figure 23: EdU phenotyping of STAR*D cell lines. A total of n=50 cell lines (n=25 treatment resistant and n=25 responder derived cell lines) were treated for 21 days with therapeutical 
concentrations of fluoxetine (0.5 µg/ml) or citalopram (0.3 µg/ml). Proliferation rates were measured by EdU proliferation assay and are indicated as values relative to untreated 
control samples of the same cell lines (relative proliferation values of >100% mean increased proliferation after fluoxetine treatment). Strong interindividual differences are detectable 
between the different cell lines ranging from 0% to 428% of relative proliferation rates. 
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Averaged over all n=50 cell lines, significant overall proliferative effects were reported compared to 

MOCK treated controls (Figure 24). By definition control was set to 100% and fluoxetine and 

citalopram treated LCLs achieved mean relative proliferation rates of 130.34±10.45 (p=0.006) and 

127.59±12.04 (p=0.026), respectively. Furthermore, a significant correlation between the fluoxetine 

and citalopram (both SSRIs) mediated proliferation rates was detected (=0.875, p<0.001) (Figure 

25). Basal proliferation, i.e. LCL proliferation without antidepressants, is not associated with LCL 

donor’s clinical response status (non-responder 17.44±1.83 vs. responder 15.92±2.13; p=0.591). 

 

 

Figure 24: Overall proliferative effects of fluoxetine and citalopram after three weeks of in-vitro treatment in 
therapeutic concentrations (n=50). Significance was tested by paired Student’s t test (p-values: * < 0.05, ** < 0.01) and 
significantly increased relative proliferation rates were reported for both fluoxetine (p=0.006) and citalopram 
(p=0.026).  

 

 

Further, the association between relative LCL proliferation rates and LCL donor’s clinical response 

status was investigated (Figure 26). Responder derived cell lines showed significantly increased 

proliferation after in-vitro treatment with fluoxetine (p=0.001) and citalopram (p=0.001), whereas 

non-responder derived cell lines showed decreased proliferation with fluoxetine (p=0.374) and 

citalopram (p=0.028). The differences in proliferation rates between LCLs derived from first-line 

responder versus LCLs derived from treatment resistant patients were highly significant 

(pfluoxetine<0.001, pcitalopram<0.001). 
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Figure 25: Correlation plot of fluoxetine and citalopram induced relative proliferation after in-vitro treatment with the 
SSRI antidepressants in therapeutic concentrations for three weeks. A highly significant correlation was observable 
(=0.875, p<0.001) between fluoxetine induced LCL proliferation and citalopram induced LCL proliferation. 

 

 

Figure 26: Mean relative proliferation rates of non-responder and responder derived cell lines treated with fluoxetine 
or citalopram for 21 days. Proliferation rates were significantly increased in responder derived cell lines and decreased 
in non-responder derived cell lines treated with citalopram. Significant differences between responder and non-
responder derived cell lines were observable (deviations are indicated as standard error; p-values: * < 0.05, ** < 0.01, 
*** < 0.001). 
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The correlation between QIDS reduction (as degree of LCL donor’s clinical response) and the 

experimentally determined relative proliferation rates was analyzed by Pearson’s correlation 

analysis: A positive significant correlation between percentage QIDS reduction and proliferation 

was detected for both citalopram (=0.331, p=0.019) and fluoxetine (=0.387, p=0.006) treated cell 

lines (Figure 27). 

 

Figure 27: Correlation plots of QIDS reduction and fluoxetine (A) or citalopram (B) induced relative proliferation.  

 

The impact of covariates such as gender, age, citalopram dosage, menopausal status or anxiety 

status on relative proliferation rates was investigated. No significant associations were found for 

both gender (pFluoxetine=0.142, pCitalopram=0.052) and age (Fluoxetine=-0.802 with pFluoxetine=0,581; 

Citalopram=0.054 with pCitalopram=0.710) (Figure 28, A-D). The same applies for the menopausal status 

of participating female subjects (pFluoxetine=0.731, pCitalopram=0.416) (Figure 28, E) as well as the LCL 

donor’s occurrence of anxious or non-anxious types of depression during the STAR*D study 

(pFluoxetine=0.771, pCitalopram=0.330) (Figure 28, F). Further, the amount of citalopram, i.e. the 
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citalopram dosage the donors were treated with over the course of the STAR*D study showed no 

influence on relative proliferation rates (fluoxetine: p10mg=0.186, p20mg=0.180; citalopram: 

p10mg=0.061 , p20mg=0.165) (Figure 28, G). 

 

 

Figure 28: Covariates analysis. No significant associations were found for gender (A - fluoxetine, B - citalopram), age (C - 
fluoxetine, D - citalopram), menopausal status (E), anxiety status (F) or dosage (G) by particular statistical methods 
(Student’s t test and Pearson’s correlation analysis). 
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1.2.2. Gene Expression Analyses of Candidate Genes 

Within the same cohort of n=50 STAR*D LCLs the gene expression of the five candidate genes 

(ABCB1, FZD7, TCF7L2, SULT4A1 and WNT2B) was measured - including basal gene expression and 

gene expression after three weeks of in-vitro treatment with therapeutical concentrations of 

fluoxetine and citalopram. Subsequently, the relationship between LCL donor’s clinical response 

status and the LCL gene expression status was investigated. The basal gene expression levels of 

both WNT2B and ABCB1 are significantly elevated in non-responder derived cell lines relative to 

responder derived cell lines. Significant associations between LCL donor’s clinical response and LCL 

basal gene expression of WNT2B (p=0.0001) and ABCB1 (p=0.009) but not for FZD7 (p=0.643), 

TCF7L2 (p=0.355) or SULT4A1 (p=0.943) could be found (Figure 29, A). Basal gene expression of 

SULT4A1 was low and only detectable in 11 out of 50 cell lines (n=5 non-responder derived cell 

lines vs. n=6 responder derived cells).  

The relationship between gene expression fold changes (after three weeks of in-vitro treatment 

with fluoxetine and citalopram) and LCL donor’s clinical response status was explored as well 

(Figure 29, B and C). The fold changes of WNT2B (pFluoxetine=0.046, pCitalopram=0.003), FZD7 

(pFluoxetine=0.003, pCitalopram=0.002) and ABCB1 (pFluoxetine=0.009, pCitalopram=0.010) showed significant 

associations with LCL donor’s clinical response status. No significant associations of gene expression 

fold changes of TCF7L2 (pFluoxetine=0.140, pCitalopram=0.369) and SULT4A1 (pFluoxetine=0.548, 

pCitalopram=0.413) with the LCL donor’s clinical response status were found. A correlation matrix for 

the fluoxetine and citalopram induced fold changes in gene expression is shown in Table 13. Gene 

expression changes by fluoxetine or citalopram significantly correlate within genes WNT2B 

(=0.752), TCF7L2 (=0.477), FZD7 (=0.501) and ABCB1 (=0.413) but not for SULT4A1 (=0.367). 

 

Table 13: Correlation matrix of fold changes by fluoxetine and citalopram. Indicated are the correlation coefficients 
calculated by Spearman’s correlation and their appropriate significance (p-values: * < 0.05, ** < 0.01, *** < 0.001; n.s. 
not significant).  

  Fold changes by Citalopram 

  WNT2B SULT4A1 TCF7L2 FZD7 ABCB1 
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WNT2B 0.752*** - - - - 

SULT4A1 - 0.367n.s. - - - 

TCF7L2 - - 0.477*** - - 

FZD7 - - - 0.501*** - 

ABCB1 - - - - 0.413** 
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Figure 29: Results of gene expression experiments of the candidate genes. Basal gene expression indicated as 

difference of maximal cycle number of RT-PCR experiments and CP values of untreated samples (A). Gene expression 
fold changes after 21-day in-vitro treatment of LCLs with fluoxetine (B) or citalopram (C) (deviations are indicated as 
standard error; p-values: * < 0.05, ** < 0.01, *** < 0.001).  
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2. Neuroimaging of Interferon-induced Depressive-like Behavior  

 

The RESI study is a prospective, open-label clinical study whose participants received a nine-day 

standard therapy with recombinant interferon beta. Participants of the RESI study were screened 

for depressive symptoms by psychometric testing. MRI methods were applied in order to find some 

evidence for the depression inducing side-effects of interferon beta and to characterize the 

particular individual variability. A modified CONSORT (Consolidated Standards of Reporting Trials) 

flow diagram is shown in Figure 30. A total of 18 healthy volunteers received interferon beta 

therapy. One participant discontinued intervention due to intolerable side effects (high fever, heavy 

pain and chills). The remaining study cohort consisted of n=7 men and n=10 women with an 

average age of 26.5 ± 4.9 years. 

 

 

Figure 30: Overview of the course of the study by CONSORT flow diagram. From 38 volunteers, 18 were allocated to 
intervention with interferon beta. A total of 20 volunteers were excluded because they either did not met inclusion 
criteria (e.g. normal inflammation parameters, adequate liver, kidney and bone marrow function) or declined to 
further participate in the study. One participant receded from the study due to severe side effects like high fever, 
heavy pain and chills. 
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2.1. Psychometric Testing 

To ascertain the impact of interferon beta mediated changes of psychiatric parameters, anxiety and 

depression symptoms were examined by the widely-used questionnaires STAI and HDRS, 

respectively. The STAI measures the two main forms of anxiety, namely current and general 

anxiety. In both parts of this questionnaire no statistical significant differences were observable 

(pcurrent=0.793 and pgeneral=0.351) before (baseline) and after (steady-state) the nine-day treatment 

of 17 volunteers with interferon beta (Figure 31, A). However, individual variability was detectable 

with increases, decreases or constant levels in STAI scoring being observable depending on the 

individual participant (Figure 31, B).  

 

 

Figure 31: Box plots of the current (left) and general (right) STAI anxiety scores before (baseline) and after (stead-state) 
the nine-day standard therapy with interferon beta (A). The line graphs illustrates the individual variability of the 
current (left) and general (right) STAI anxiety scoring of each single participant over the course of the nine-day 
standard treatment with interferon beta (B). 

 

In contrast, depression scores using HDRS almost exclusively showed increases over the time 

(Figure 32, A) and consequently, highly significant changes were observed from baseline to steady-

state with a resulting p-value of 0.003 (Figure 32, B).  
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Figure 32: Progress of HDRS scores before (baseline) and after (steady-state) treatment with interferon beta. A strong 
increase of Hamilton-Scores was reported for individual participants (A) and the total cohort (B). Thicker lines 
represent more individuals with identical, overlapping HDRS values. 

 

When analyzing the single items of the HDRS, it becomes obvious from which parameters these 

effects were brought from (Figure 33): Strongest impairments were reported in the single items 

concerning “psychomotor retardation” (e.g. slowness of thought or difficulty in concentration), 

“work & activities” (characterized by feelings of incapacity, fatigue or weakness), “insomnia” (early, 

middle or late over the night span), “gastrointestinal symptoms” (e.g. loss of appetite or loss of 

weight) and “somatic symptoms” (e.g. indigestion, diarrhea, stomach cramps, heaviness in limbs, 

loss of energy). Weaker effects but still of note were found for the items “anxiety” (e.g. subjective 

tension or irritability, worrying about minor matters), “genital symptoms” (e.g. menstrual 

disturbance, loss of libido) and “hypochondriasis” (characterized by increased self-absorption). 

Unexpected but of interest is that a decrease in parameters “agitation” (e.g. fidgetiness) and 
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“feelings of guilt” (e.g. self-reproaches) was reported. However, only 2 out of 17 participants 

complained about depressed mood and fortunately, no signs of suicidal behavior or suicidal 

ideation - neither before nor after study participation - were detectable. Taken together depressive 

symptoms in the strict sense were barely detected, but other depression-related symptoms were 

frequently recorded by usage of HDRS. 

 

2.2. Functional Magnetic Resonance Imaging 

 

All participants (n=17) were instructed to complete two tasks (see chapter 2.2.2) during the fMRI 

session before and after interferon beta administration to measure the specific brain activation 

patterns of depression-related area in the money-rewarding foraging paradigm and the passive 

exposure faces paradigm. 

 

2.2.1. Foraging 

A paradigm was employed in which participants could collect money at different amounts (0.01€ vs. 

0.20€) to probe the impact of interferon beta on the sensitivity to reward cues. Table 14 gives an 

overview on the statistical analyses of this paradigm on set level, cluster level and peak level (for 

explanation see chapter 2.2.4).  

In fMRI the activity of the ventral striatum decreases after the treatment with interferon beta in 

(interaction cue high vs. low x treatment: x, y, z -14, 0, 2, t = 4.13, p = 0.06, FDR cluster-level 

corrected). Figure 34 shows the brain mapping of this paradigm before (“control”) and after 

interferon treatment (“treatment”) as well as the interaction mode. The interaction mode 

statistically compares the effects of two conditions (here: before and after interferon 

administration) and constitutes the main result of such fMRI measurements (Figure 34).  
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Figure 33: Single-item-analysis of results obtained from HDRS scoring before (baseline) and after (steady-state) a nine-day standard therapy with interferon beta. 
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Table 14: Statistical report of the foraging paradigm measurements before and after interferon beta administration 
including results on set, cluster and peak level with an uncorrected p value cut-off of 0.001. 

set level cluster level peak level coordinates (mm) brain areas 
size p size p T p x y z  
60 0.419 39 0.042 6.50 3.66E-06 -46.5 8 -16 Temporal pole superior left 

  
99 0.003 6.03 8.67E-06 7.5 30.5 27.5 Cingulum anterior right 

  
306 0.000 5.91 1.10E-05 28.5 32 41 Frontal middle right 

    
5.23 4.09E-05 24 44 38 Frontal superior right 

    
4.43 2.11E-04 27 27.5 33.5 Frontal middle right 

  
54 0.020 5.53 2.29E-05 -43.5 -37 15.5 Temporal pole superior left 

    
4.35 2.50E-04 -51 -32.5 12.5 Frontal inferior triangularis left 

  
27 0.084 5.33 3.40E-05 -27 3.5 -23.5 Amygdala left 

  
13 0.218 5.29 3.64E-05 -30 11 12.5 Insula left 

  
27 0.084 5.08 5.62E-05 -58.5 6.5 11 Rolandic operculum left 

  
195 0.000 4.89 8.21E-05 -25.5 45.5 29 Frontal middle left 

    
4.76 1.06E-04 -27 36.5 36.5 Frontal superior left 

  
10 0.278 4.80 9.91E-05 1.5 17 57.5 Supplementary motor area right 

  
1 0.759 4.77 1.04E-04 -67.5 -16 30.5 Postcentral left 

  
20 0.131 4.71 1.17E-04 31.5 24.5 0.5 Insula right 

  
7 0.365 4.54 1.67E-04 9 -20.5 8 Thalamus right 

  
32 0.062 4.50 1.81E-04 12 26 39.5 Cingulum middle right 

  
6 0.403 4.48 1.88E-04 6 6.5 62 Supplementary motor area right 

  
3 0.564 4.48 1.90E-04 9 -37 41 Cingulum middle right 

  
4 0.500 4.43 2.09E-04 1.5 11 60.5 Supplementary motor area right 

  
10 0.278 4.32 2.64E-04 7.5 -11.5 2 Thalamus right 

  
3 0.564 4.30 2.77E-04 -37.5 -7 -16 Hippocampus left 

  
3 0.564 4.27 2.90E-04 -9 30.5 30.5 Frontal superior medial left 

  
11 0.256 4.22 3.27E-04 -37.5 -32.5 41 Postcentral left 

  
1 0.759 4.21 3.30E-04 -13.5 6.5 53 Frontal superior left 

  
1 0.759 4.18 3.50E-04 7.5 -20.5 26 not allocated 

  
10 0.278 4.18 3.54E-04 18 -16 51.5 not allocated 

  
4 0.500 4.17 3.58E-04 -40.5 12.5 -23.5 Temporal pole superior left 

  
7 0.365 4.14 3.86E-04 -7.5 24.5 38 Cingulum middle right 

  
3 0.564 4.14 3.86E-04 -27 27.5 -4 Insula left 

  
5 0.447 4.11 4.06E-04 19.5 20 51.5 Frontal superior right 

  
3 0.564 4.11 4.11E-04 37.5 44 14 Frontal middle right 

  
1 0.759 4.06 4.57E-04 -25.5 26 0.5 not allocated 

  
2 0.646 4.05 4.60E-04 -31.5 9.5 6.5 Putamen left 

  
1 0.759 4.05 4.65E-04 6 -17.5 26 not allocated 

  
3 0.564 4.01 5.04E-04 -18 3.5 62 Frontal superior left 

  
1 0.759 4.00 5.15E-04 16.5 23 42.5 Frontal superior right 

  
1 0.759 3.98 5.42E-04 -55.5 11 17 Frontal inferior operculum left 

  
2 0.646 3.97 5.45E-04 -64.5 -17.5 26 Postcentral left 

  
1 0.759 3.97 5.45E-04 -31.5 8 0.5 Putamen left 

  
1 0.759 3.97 5.51E-04 -4.5 -25 24.5 not allocated 

  
1 0.759 3.95 5.76E-04 -16.5 3.5 59 Frontal superior left 

  
1 0.759 3.94 5.89E-04 33 44 11 Frontal middle right 

  
1 0.759 3.92 6.06E-04 30 -2.5 -23.5 Amygdala right 

  
2 0.646 3.92 6.12E-04 40.5 44 15.5 Frontal middle right 

  
1 0.759 3.90 6.37E-04 4.5 -8.5 -1 Thalamus right 

  
1 0.759 3.90 6.39E-04 4.5 -17.5 30.5 Cingulum middle right 

  
1 0.759 3.88 6.68E-04 -9 32 8 not allocated 

  
1 0.759 3.86 6.90E-04 9 -31 42.5 Cingulum middle right 

  
2 0.646 3.84 7.22E-04 13.5 -65.5 26 Precuneus right 

  
1 0.759 3.84 7.24E-04 -13.5 32 35 Frontal superior medial left 

  
1 0.759 3.82 7.51E-04 -67.5 -29.5 32 Supra marginal left 

  
1 0.759 3.79 8.04E-04 12 21.5 38 Cingulum middle right 

  
1 0.759 3.76 8.53E-04 30 27.5 -10 Frontal inferior orbital right 

  
1 0.759 3.75 8.66E-04 -19.5 -68.5 51.5 Parietal superior left 

  
3 0.564 3.75 8.80E-04 -40.5 8 -26.5 Temporal pole superior left 

  
1 0.759 3.73 9.06E-04 -43.5 41 20 Frontal middle left 

  
1 0.759 3.73 9.07E-04 -10.5 -46 57.5 Precuneus left 

  
1 0.759 3.72 9.23E-04 18 23 48.5 Frontal superior right 

  
1 0.759 3.71 9.41E-04 -58.5 -31 12.5 Temporal superior left 

  
1 0.759 3.71 9,48E-04 10,5 -62,5 24,5 Precuneus right 

  
1 0,759 3.70 9,71E-04 -4,5 32 20 Cingulum anterior left 

  
1 0,759 3.70 9,74E-04 -66 -31 30,5 Supra marginal left 

  
1 0,759 3.69 9,85E-04 -67,5 -26,5 29 Supra marginal left 
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Figure 34: Results of the foraging paradigm indicate a lowered activity of the ventral striatum (blue circle) after 
interferon beta administration. The brain mapping shows activation patterns of this money-rewarding paradigm before 
(“control”) and after interferon treatment (“treatment”) as well as the interaction mode - a statistical comparison of 
the effects at the both mentioned time points. The slices are shown at y=+5mm and the key indicates the level of 
activation (T-values). 
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2.2.2. Faces 

Blocks of emotional faces were displayed in a passive exposure paradigm to target the amygdala 

and to evaluate the reactivity to emotional stimuli before and after interferon administration. Table 

15 gives an overview on the statistical analyses of this paradigm on set level, cluster level and peak 

level with no relevant activation differences in the amygdala. In general the amygdala was active at 

both time points (“control” and “treatment”, see upper part of Figure 35) which indicates the faces 

paradigm was successful in eliciting its activation but no significant changes in amygdala activation 

before and after interferon treatment were detectable as can be seen in the interaction mode of 

the particular brain mapping (Figure 35).  

  

Table 15: Statistical report of the faces paradigm measurements before and after interferon beta administration 
including results on set, cluster and peak level with an uncorrected p value cut-off of 0.001. 

set level cluster level peak level coordinates (mm) brain areals 
size p size p T p x y z  
32 0.200 91 0.003 5.36 3.219E-05 24 -30 32 not allocated 

  47 0.023 5.32 3.443E-05 38 6 20 Insula right 
    4.45 2.013E-04 32 14 26 not allocated 
    4.20 3.414E-04 36 6 28 Frontal inferior operculum right 
  20 0.117 4.90 8.043E-05 40 -52 -6 Temporal inferior right 
  19 0.126 4.68 1.264E-04 32 -24 -6 Hippocampus right 
    4.18 3.554E-04 38 -28 -10 Hippocampus right 
  8 0.312 4.62 1.410E-04 -26 -40 22 not allocated 
  10 0.259 4.50 1.808E-04 4 4 -28 not allocated 
  4 0.480 4.48 1.896E-04 26 -48 34 not allocated 
  7 0.345 4.47 1.946E-04 42 -44 20 not allocated 
  8 0.312 4.46 1.956E-04 34 -62 -4 not allocated 
  6 0.383 4.43 2.085E-04 20 26 32 Frontal superior right 
  4 0.480 4.32 2.641E-04 16 -10 20 Caudate right 
  1 0.748 4.29 2.806E-04 -20 -12 48 not allocated 
  1 0.748 4.22 3.256E-04 38 0 28 not allocated 
  2 0.630 4.20 3.388E-04 18 30 26 not allocated 
  1 0.748 4.10 4.217E-04 44 -34 2 Temporal middle right 
  1 0.748 4.09 4.252E-04 40 -28 -6 Hippocampus right 
  7 0.345 4.03 4.814E-04 -30 -60 10 not allocated 
  1 0.748 4.02 4.899E-04 18 22 32 not allocated 
  3 0.546 3.98 5.347E-04 -4 -26 68 Cingulum anterior left 
  2 0.630 3.96 5.635E-04 -40 -54 -4 Temporal middle left 
  1 0.748 3.95 5.767E-04 -14 8 36 not allocated 
  1 0.748 3.92 6.141E-04 34 20 20 not allocated 
  1 0.748 3.90 6.396E-04 44 0 22 not allocated 
  2 0.630 3.88 6.587E-04 -18 -14 46 not allocated 
  1 0.748 3.87 6.747E-04 0 28 -20 Frontal medial orbital right 
  1 0.748 3.85 7.077E-04 -46 -22 -16 Temporal middle left 
  2 0.630 3.84 7.164E-04 16 48 30 Frontal superior right 
  1 0.748 3.81 7.676E-04 34 -50 -6 Fusiform right 
  1 0.748 3.77 7.878E-04 -18 28 28 not allocated 
  1 0.748 3.77 8.440E-04 40 -42 4 not allocated 
  1 0.748 3.73 8.459E-04 18 26 36 Frontal superior right 
  1 0.748 3.73 9.019E-04 46 2 24 Precentral right 
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Figure 35: Results of the faces paradigm indicate no significant changes of the activity of the amygdala and the central 
nucleus region (blue arrows) after interferon beta administration. The slices are shown at y=-8mm and the key 
indicates the level of activation (T-values). 
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Chapter V - Discussion 

 

1. Previous Findings from MARS and STAR*D 

 

The cell lines utilized over the course of this work were derived from large clinical trials focusing on 

depressive disorders, namely the MARS and STAR*D studies. The MARS trial attempted to identify a 

biomarker portfolio for the prediction of the individual treatment guidance using transcriptomics, 

proteomics and metabolomics techniques as well as neuroendocrine testing and neuroimaging. 

More than 1,000 depressive patients took part in this naturalistic study showing response and 

remission rates of up to 80.8% and 57.9%, respectively 137. Polymorphisms within the FKBP5 (FK506 

Binding Protein 5; a glucocorticoid receptor involved in the regulation of the HPA axis) gene and an 

increased expression of FKBP5 significantly correlated with the relapse of depressive symptoms and 

with the remission 181. Furthermore, polymorphisms of other genes such as HTR2A (5-

hydroxytryptamine receptor 2A), ER22/23EK (glucocorticoid receptor), ABCB1 or GAD2 (glutamate 

decarboxylase 2) were identified as potential biomarkers for the treatment response and the 

susceptibility to develop depressions 182-189. Genetic variations of TPH2 (tryptophan dehydroxylase 

2) or NTRK2 (neurotrophic tyrosine kinase receptor type 2) were also linked to antidepressant’s side 

effects or suicidal behavior 190, 191. An increased cortical response was associated with the relapse of 

depressive symptoms after six months of remission renders it a potential biomarker to predict the 

clinical outcome 139, 140. In contrast a decreased reactivity to cortisol and adrenocorticotropin was 

associated with both suicidal ideation and suicide attempts 192. Behavioral testing was shown to be 

able to predict response to antidepressant treatment and the risk to relapse 193, 194. Furthermore, 

obese patients demonstrated minor neuroendocrinological changes accompanied by worse 

response relative to normal-weighted patients 195. 

The STAR*D trial was designed to ascertain which treatment strategy would be generalizable 

optimal by prospectively recording the therapy tolerability and outcome throughout up to four 

different defined treatment levels 196. A time period of over six years and more than 4,000 

depressive patients were making this study to one of the largest of its kind with total costs of $35 

million 197. In level one - where all patients were treated with citalopram for up to 14 weeks - an 

overall response rate of 47% and remission rates of approximately 30% were reported. Non-

remitters entered the subsequent levels until remission was achieved. Level two included seven 
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different treatment options in addition to citalopram (further antidepressants or psychotherapy) 

and level three consisted of a switch to another antidepressant (nortriptyline or mirtazapine with 

remission rates of 19.8% and 12.3%, respectively) or the addition of lithium as mood stabilizer. The 

fourth level included a combination therapy of mirtazapine and venlafaxine (average remission rate 

of 13%) or comedication with tranylcypromine 198, 199. The mean times to remission range from 5.4 

to 7.4 weeks between the different treatment levels 200 and the chances of remission were smaller 

with each failed treatment level pointing up to the importance of reliable predictive biomarkers 201. 

 

 

2. Lymphoblastoid Cell Lines in Pharmacogenomical Research 

 

Due to their wide availability from different individuals and their representation of individual 

donors properties, the applicability of LCLs in pharmacogenetics is emerging. They are suitable to 

cover various phenotypes like apoptosis, cell growth inhibition or gene expression 202, 203. In the past 

research with LCLs focused on pharmacogenetics of indications such as oncology 204, 205, cardiology 

206 or pulmonology 207. However, interest in research of psychological disorders using LCLs is rapidly 

growing. LCLs are generated through immortalization of easily obtainable PBMCs performed by EBV 

transfections 208, whereby these viruses specifically infect B-lymphocytes without integration of 

viral genes into the host genome but with maintenance as latent extrachromosomal episomes 209. 

EBV transformation modifies gene expression profiles as well as the methylation pattern of 

promotor regions in approximately 50% of all genes, but individual differences between cell lines 

remain intact 210. Additionally, LCLs seem to cover naturally occurring variations of the whole 

genome and epigenome 211. Because LCLs are long-living and can be stored as cryocultures and (re-

)cultivated under laboratory conditions, they basically are an infinite source of individual patient’s 

genetic material avoiding repeated resampling of blood samples which is an advantage for long-

termed studies aiming on personalized therapy 212. Consequently, as cell-based models they might 

help to support the identification of predictive biomarkers for various diseases. LCLs allow to cost-

effectively performing ex-vivo experiments under well-controlled conditions, i.e. without the 

impact of confounders such as concomitant medications, nutrition, smoking status, etc. 204. 

However, being derived from one single cell type and being only a cell-based model, LCLs do 

neither represent the complexity of the whole human organism nor completely reflect cellular 

proliferation or gene expression changes of multicellular tissues such as the brain. For instance, 

LCLs do barely express CYP (cytochrome P450) enzymes - relevant for the metabolism of various 

antidepressants, neurotransmitters and other neuroactive agents - making them unsuitable models 

for pharmacokinetic studies 205. One general concern is the transferability of results obtained from 
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LCLs into clinical practice which has so far for instance successfully been done in the indication of 

cancerous diseases 213-216 but not yet in psychiatry biomarker research. Although there is some 

evidence that LCLs do not faithfully represent pathological changes of psychiatric diseases 217, 

logically LCLs from patients should be given preference to LCLs from healthy donors when looking 

for disease-specific biomarkers - as done over the course of this work. Despite LCLs express more 

than 4,000 brain specific transcripts 120, it is unclear whether they are helpful to identify relevant 

gene expression changes of antidepressant response - especially due to the high heterogeneity of 

depressive disorders. Furthermore, the fact gene expression changes following drug exposure could 

be different in blood-derived cells in comparison to neural cells should find critical consideration as 

well as the circumstance that LCLs show different methylation signatures related to neurons which 

probably leads to epigenomic-mediated effects on transcription levels 218. Only a few studies so far 

employed LCLs as models for the investigation of individual antidepressant response. Here, LCLs 

were used to study individual proliferation and gene expression changes following antidepressant 

drug treatment. We found significant and large antidepressant-induced gene expression changes of 

neural and non-neural genes including high inter-individual differences as well as group differences 

between non-responder and responder derived LCLs. Several other observations support the 

potential role of LCLs as model for individual variability of drug effects in the CNS. In experiments 

from Morag and colleagues using LCLs from healthy donors, antidepressant induced growth 

inhibition was used as surrogate phenotype leading to the identification of neuronal genes such as 

CHL1 (close homologue of L1) through genome-wide gene expression profiling as top-hit gene with 

different basal expression levels between paroxetine sensitive and insensitive LCLs 117, 118. CHL1 

encodes for a neural cell adhesion protein involved in neurite outgrowth regulation, neural 

connectivity and thalamocortical circuity 219-223. Further, in addition to an implication in depression 

224, CHL1 plays a role in other neurological diseases such as schizophrenia and autism 225, 226. By 

usage of genome-wide gene expression profiling and genome-wide miRNA arrays after three weeks 

of in-vitro treatment with hyper-therapeutic concentrations of paroxetine, Oved et al. identified 

gene expression differences of ITGB3 (integrin beta-3) and miRNAs targeting ITGB3, respectively 227. 

They proposed that ITGB3 provides a missing link between CHL1 and SERT: ITGB3, as a known co-

activator for SERT, is necessary for the proper functioning of this transporter 228, whereby CHL1 

seems to reduce available ITGB3 molecules by high-affinity binding and therefore regulates SERT 

activity 227. SERT in turn, is the target of SSRI antidepressant drugs and increases the availability of 

serotonin within the synaptic cleft especially in pathways of the prefrontal cortex and the 

hypothalamus inducing the initial phase of remission from depression. The potential of CHL1 and 

ITGB3 as tentative gene expression biomarker was confirmed in subsequent studies using LCLs 

derived from depressed patients 119 and SNPs in neuronal cell adhesion genes involved in synaptic 



Chapter V - Discussion 
 

72 

plasticity were recently shown to affect treatment response in depressive disorders 229. Moreover, 

within a STAR*D cohort, CHL1 was nominated as a tentative SSRI sensitivity biomarkers implicated 

in adverse reactions of citalopram in combination therapy with buspirone 230. In the present work 

neither CHL1 nor ITGB3 were traceable as tentative gene expression biomarkers using genome-

wide gene expression profiling before and after the in-vitro treatment of patient-derived LCLs with 

SSRIs. In another study with LCLs, growth inhibition profiles were used to assign shared pathways 

following in-vitro treatment with different drug classes including antidepressants that can be used 

to categorize distinct pathways 231. In addition to these studies that focused on LCLs as tools for the 

identification of biomarkers for depressive disorders, a few studies explored the utility of LCLs in 

other psychological diseases such as bipolar disorders or autism 232-234. Consequently, all these 

findings point to the importance of LCLs in psychiatric pharmacogenomic research.  

 

 

3. Peripheral Proliferation as Surrogate Marker for Antidepressant 

Response 

 

In initial screening experiments using fluoxetine as indicator drug, several methods for the 

determination of individual prolferation as well as various drug concentrations and incubation 

times were compared in order to identify optimal experimental conditions. Fluoxetine was chosen 

as antidepressant drug because most of the MARS patients under antidepressant monotherapy 

received SSRI antidepressant drugs and the proliferative features of fluoxetine are well-studied 235-

241. Since antidepressants-mediated improvement of clinical symptoms usually appears with a delay 

of several weeks, LCLs were incubated with antidepressants for up to three weeks in different 

concentrations covering the therapeutical range of fluoxetine blood concentrations (0.1 µg/ml and 

0.5 µg/ml). Additionally, supra-therapeutical fluoxetine concentrations (10.0 µg/ml) were included 

as it was unclear in advance which amounts of fluoxetine will cause detectable proliferation effects 

(fluoxetine shares high protein binding properties and higher concentrations might be required in 

cell culture experiments) 242. However, no fluoxetine induced increases in cell proliferation were 

observable over the three week incubation period by cell counting and subsequent creation of 

growth curves. Chang et al. were able to detect significant effects after 15 days of incubation with 

fluoxetine - by application of the same experimental design (0.5 µg/ml fluoxetine dissolved in 

DMSO, change of culture medium every second day) and evaluation method as performed here 

(CPDL) - in adherently growing neural precursor cells derived from human embryonic stem cells 243. 

Gene expression analysis of MKI67 is a widely applied method for the quantification of proliferation 
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on a molecular level. MKI67 is a nuclear protein required for cell proliferation which is exclusively 

expressed in active phases of the cell cycle like G1, S and G2 244. Although interindividual 

differences were detectable as well as statistically significant increases in gene expression levels of 

MKI67 after chronic in vitro treatment with fluoxetine, no biological relevant effects were 

detectable. Biologically relevant in this context means an increase of fold changes to values larger 

than two 245. The EdU assay is the only method that directly measures proliferation allowing single 

cell evaluations. We reported significantly biological and statistical effects after three weeks of 

chronic exposure with concentrations of fluoxetine equal to therapeutic blood concentrations in 

fluoxetine-treated patients suffering from depression which is in accordance with the already 

described neurotrophic hypothesis of antidepressants action. Interestingly, higher concentrations 

of fluoxetine (10 µg/ml) already showed toxic or anti-proliferative effects. Toxic effects might be 

based on a genotoxic and mutagenic potential 246 and other studies reported fluoxetine-mediated 

cytotoxic effects 247-249. However, molecular mechanisms of fluoxetine-induced toxicity are unclear 

but might be based on the interruption of chromosal structures 250, the inhibition of metabolizing 

enzymes 251 or the interference with the energy metabolism 252. Since LCLs do not or barely express 

major phase one CYP enzymes relevant for antidepressant metabolism such as CYP2D6, CYP2C9, 

CYP2C19 or CYP3A5, observed effects assuredly are ascribable to fluoxetine and citalopram but not 

to their metabolites like norfluoxetine and demethylcitalopram, respectively 253, 254. 

Following the screening experiments and in search of tentative functional biomarkers for 

antidepressant response prediction, we tested fluoxetine effects on cell proliferation in LCLs from 

depressed patients participating in the MARS study. Individual effects on cell proliferation have 

been detected after 21 days of incubation with fluoxetine. Although the in vitro treatment of 

patient-derived LCLs with fluoxetine presents high inter-individual variability regarding the LCL 

proliferation behavior, this phenomenon has no association with the MARS patient’s clinical 

outcome. Both pro- and anti-proliferative effects were reported and averaged over all cell lines, no 

significant overall effects after in vitro treatment with fluoxetine were observable. Further, no 

significant associations between the individual basal proliferation rates, i.e. under control 

conditions without fluoxetine, were detectable. The relative proliferation after fluoxetine 

incubation relative to untreated controls from the same donors showed no significant association 

with LCL donor’s response or remission status as well. Additionally, the proliferation rates of 50 

LCLs derived from depressed patients participating in the STAR*D trial were determined after three 

weeks of incubation with therapeutical concentrations of the antidepressant drugs fluoxetine and 

citalopram. Here, we could show strong inter-individual differences between single cell lines as well 

as significant overall proliferative effects. The fluoxetine and citalopram (both SSRIs) mediated 

proliferation were highly correlated. Additionally, a direct association between peripheral in-vitro 
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proliferation rates of patient derived LCLs and clinical outcome in depression was shown: A 

significant correlation between percentage QIDS reduction, i.e. the improvement of clinical 

symptoms and LCLs proliferation rates was detected. Responder derived cell lines showed 

significantly increased proliferation after in vitro treatment with antidepressants compared to non-

responder derived cell lines.  

In cohorts from both antidepressant studies, no influence of general covariates like age or gender 

on proliferation rates was observable. These results are coherent with recent findings of Morag et 

al. who studied the influence of age and gender in antipsychotic drug sensitivities in human LCLs 255. 

The same applies for study specific covariates such as co-medication and individual’s underlying 

diseases (MARS) or citalopram dosage, menopausal or anxiety status (STAR*D). In contrast anxious 

depression was shown to be associated with decreased remission rates compared with outcomes 

from patients with non-anxious depression 256, 257. In general LCLs derived from the STAR*D study 

showed stronger antidepressant-mediated increases (up to 428%) of relative cellular proliferation 

rates compared to cell lines obtained from the MARS study (up to 155%) which might have several 

reasons. Firstly, extreme groups of clinical improvement from the STAR*D trial were used for 

proliferation phenotyping (cell lines from treatment resistant donors vs. cell lines from 

strongest/fastest responders). Secondly, LCL donors of STAR*D were treated with citalopram 

monotherapy whereas those from MARS were - due to the naturalistic study character - frequently 

treated with numerous different antidepressants at the same time accompanied by phase 

prophylactics and other co-medicated drugs (e.g. neuroleptics, benzodiazepines or sleeping 

medication). Consequently, the classification of the cell lines into responders and non-responders 

might be error-prone which could lead to impaired results. For instance it is not possible to 

distinguish between single drug effects of patients polymedicated with various antidepressants: A 

patient - like donor of cell line “734” - treated with an SSRI and a NaSSA at the same time might be 

classified as responder whereby the main effect of recovery could be based on the treatment with 

the NaSSA and would not be reproducible in laboratory conditions using fluoxetine as indicator 

drug. A similar problem occurs in patients who were treated with a given antidepressant for a too 

short period of time to evaluate its effectiveness (e.g. less than three weeks). Although the patient 

would have been a responder to the given antidepressant, such switches probably were performed 

due to harming severe side effects which do not occur in cell cultures. Last but not least, further 

impairments of the results probably might be based on the fact that patients with different 

underlying diseases such as bipolar disorders, single episode major depressive disorders or 

recurrent major depressive disorders were recruited for the MARS study. Due to the heterogeneity 

of the MARS cohort the significance of our results might be reduced. In contrast, in STAR*D only 

patients with defined, nonpsychotic major depressive disorders were enrolled. A further limitation 
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is that the in vitro proliferation in LCLs was determined after incubation only with fluoxetine or 

citalopram which does not reflect the real treatment regimens. Taken together, the LCL cohort 

from the STAR*D study seems to be the more suitable one for our experimental approach because 

it is a defined cohort with uniform disease background which received antidepressant monotherapy 

so that the LCL donor’s response status is unambiguous.  

The individual proliferative effects observed here after long-term incubation with antidepressant 

drugs do not correlate with in vivo proliferative effects. No signs of cell proliferation stimulus on 

blood cells or bone marrow have ever been described for antidepressant drug therapy, but such ex 

vivo effects in the cell lines of depressed patients might contribute to the puzzle of explaining the 

high variability in antidepressant efficacy observed in clinical routine. However, one has to keep in 

mind that individual patient’s clinical efficacy could be different from those observed in LCLs and 

that the applicability of peripheral proliferation after long-term incubation with antidepressants as 

response biomarker seems limited. Aggravating, it is assumed that cellular proliferation as well as 

neurogenesis could be influenced by factors such as age 258, alcohol 259 and exercise 260. Our 

hypothesis is based on the assumption that antidepressants induce the proliferation of neuronal 

cells and therefore modulate the neural plasticity 261. Depressed patients show a volume reduction 

of depression-associated brain parts 16 that might be reversed by antidepressant-induced 

proliferation 262. The induction of neural stem cell proliferation is directly linked to an enhanced 

neuroplasticity which in turn leads to a normalization of the depressed brain function 263. This 

explanation helps understanding the delay in symptomatic improvement (from weeks up to several 

months) because cerebral remodeling processes are complex and time-consuming. Such direct 

proliferative effects of antidepressants and the role of neurotrophic proteins were analyzed by 

Chang and colleagues in human neuronal precursor cells 243. Other research groups reported 

proliferative effects in rodents, e.g. in hippocampal granule cells of adult mice 264, 265 and non-

human primates 266. Chen et al. studied the effect of chronic treatment with antidepressants on the 

number of hippocampal neurons in a genetic rat model of depression and concluded that 

antidepressants are able to induce neurogenesis and synaptogenesis 267. The molecular 

mechanisms underlying these neuro-proliferative effects and the remission of depression remain 

poorly understood, although neurotrophic growth factors - like BDNF - may play an important role 

during remission processes 268. Antidepressant effects are restricted to type 2 but not type 1 

neuronal progenitor cells accelerating the maturation of neurons 269, 270. Fluoxetine probably 

conveys the integration of newborn neurons into the functional networks like the dentate gyrus 

network or the hippocampal pyramidal cells of the HPA axis which leads to an improved cellular 

survival 130. All those findings along with our results support the neurotrophic hypothesis of 

antidepressant’s action which suggests an antidepressant-mediated reversal of impaired 
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hippocampal structure and activity. However, the relationship between SSRI-mediated in vitro 

proliferation and clinical efficacy remains in need of further investigation. Studying of molecular 

backgrounds and the identification of potential gene expression biomarkers associated with 

peripheral or CNS proliferation might be advantageous as well.  

 

 

4. Microarray-based Identification of Tentative Gene Expression Biomarkers  

 

Analysis of whole genome gene expression in LCLs becomes more and more important for the 

identification of tentative gene expression candidate biomarkers. In general microarray based gene 

expression has manifold advantages such as the simultaneous determination of expression levels of 

nearly all known human genes in one single experiment. Due to the hypothesis-free nature of 

genome-wide expression studies, results are unbiased and do not necessarily require pre-

experimental knowledge about underlying mechanisms or involved pathways. However, care is 

called when it comes to the interpretation of such data because false-positive events occur 

frequently and so, data need independent confirmation. 

Phenotyping the proliferative response of LCLs to fluoxetine (0.5 µg/ml; 21 d) followed by 

comparative microarray-based genome-wide gene expression profiling revealed 15 candidate genes 

out of 390 identified by pathway analyses. These genes can be assigned to either WNT signaling 

(e.g. WNT2B, FZD7, TCF7L2) or EGF signaling (e.g. BTC, EGFR, HBEGF) or to a group of 

pharmacokinetic genes (e.g. CYP3A43, SULT4A1, ABCB1, ABCG4) and will be further addressed in 

the following subsections (chapters 4.1 to 4.4). The gene CACNA2D3 - which probably possesses a 

role in long-term antidepressants action 174- cannot be classified into these groups. CACNA2D3 is a 

member of the voltage-dependent calcium channel complex which is expressed in the cerebral 

cortex amongst other non-neuronal tissues. It was reported that the gene expression of CACNA2D3 

in mice is increased after 28 days of treatment with the antidepressant amitriptyline 174. A calcium 

or calmodulin-dependent role of CACNA2D3 in regulation of transcription factors of cortical neuron 

formation was postulated but needs further investigation. However, Malmersjö et al. found calcium 

ion activity important for cellular proliferation in mouse neural progenitor cells 271. Another work 

reported calcium being involved in neurodevelopment, apoptosis or differentiation within a 

network of purinergic receptors 272. 
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4.1. Role of EGF Signaling in Depression 

In the microarray experiments, by far the strongest gene expression differences compared between 

responder derived cell lines relative to non-responder derived cell lines were obtained for 

betacellulin (BTC). BTC belongs to the epidermal growth factor (EGF) protein family and has been 

reported to stimulate neurogenesis 165 as well as neural stem cell proliferation and differentiation 

into glial- and neuronal like cell types 273. BTC is endogenously produced in the brain, especially by 

blood vessels and the choroid plexus and directly affects neuroblast differentiation and neuronal 

stem cell regeneration by activation of EGFR and ERBB4 (epidermal growth factor receptor 4). It is 

considered a potential therapeutic agent for treating neurodegenerative diseases 165. Further genes 

from the EGF pathway being involved in individual fluoxetine drug response were identified by our 

microarray approach such as ERBB3, MAPK9, PIK3R5, HBEGF and EGFR. ERBB3 is a receptor for EGF 

and an important element of the nervous system development 180. Furthermore it is required for 

the development and differentiation of the neural crest and glial cells 180, 274. HBEGF and EGFR are 

crucial for proliferation of astrocytes and neurogenesis as well as neural progenitor proliferation 

and migration, respectively 167, 177. HBEGF is an 87-amino acid glycoprotein and a growth factor 

targeting the EGFR amongst others. It is widely distributed in neuroglia and cerebral neurons where 

it is required to stimulate neurogenesis 275. A stimulation of EGFR on the other hand - through for 

example EGF, TGF alpha, HBEGF, BTC and many more 276 - activates a signaling cascade ending in 

increased cell proliferation, adhesion and survival. A recent study presented a role of EGFR in 

neuronal protection from stress 277 and mutations within the EGFR gene have been associated with 

a decreased frequency of depressions and a lower depression severity in oncologic patients 278. 

MAPK9 is an enzyme involved in a wide variety of cellular processes like proliferation and 

transcription regulation. This kinase inhibits the degradation of cell cycle protein p53 and therefore, 

regulates apoptosis - mainly in dopaminergic brain areas 178. Mitogen activated protein kinases are 

generally required for neuronal plasticity, survival and differentiation. Additionally, it was recently 

shown that MAPK9 was downregulated in dermal cells derived from patients suffering from bipolar 

depressive disorders 279 suggesting a role in psychiatric dysfunction. PIK3R5 is a regulatory subunit 

for PI3Ks (phosphatidylinositide 3-kinases) that play important roles in cell growth and 

proliferation. Furthermore, PIK3R5 is a circadian gene involved in sleep-wake cycles and therefore, 

in insomnia 169 - one of the main side symptoms of depressive disorders. An impaired gene 

expression of PIK3R5 is a risk factor for suicidal behavior 170, 171. 

 

4.2. Role of WNT Signaling in Depression 

The transcription factor TCF7L2 and the receptor FZD7 belong to the canonical WNT signaling 

pathway which plays an important role for regulation of stem cell pluripotency and cell 
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differentiation by integrating signals from other pathways and their associated signal molecules 

such as fibroblast growth factor and bone morphogenic protein 280, 281. Both growth factors are 

involved in depression pathogenesis 282, 283 and - together with other downstream growth factors 

like BDNF, VEGF (vascular endothelial growth factor) and other signaling pathways - in the 

maintenance of adult hippocampal neurogenesis 284, 285. Further, WNT signaling regulates 

neurogenesis, synaptic plasticity and dendritic arborization 286. WNT2B is a highly conserved signal 

peptide and a ligand for members of the frizzled transmembrane receptor family. FZD7 - being a 

receptor for WNT proteins in the brain - belongs to this family of G protein-coupled receptors 173. 

WNT2B is involved in regulation of cell growth and differentiation 166. WNT glycoproteins usually 

are liberated from hippocampal astrocytes and show short-ranged action. They take effects 

through gene expression activation of NeuroD (neurogenic helix-loop-helix protein) and Dcx 

(neuronal migration protein doublecortin) 287, 288, a transcription factor involved in CNS 

development and a microtubule-associated protein almost exclusively expressed in actively dividing 

neuronal precursor cells, respectively 289, 290. An activated Wnt signaling pathway supports the 

differentiation of specific glial neuronal precursors 291, controls stem cell pluripotency and tissue 

regeneration 292 and regulates the expansion of CNS progenitor cells 293. Furthermore, WNT 

proteins are involved in immunological processes of microglia 294 - macrophage-like cells of the 

brain that are required for CNS homeostatic functions 295. Neurotoxic agents reduce WNT 

expression in developmental hippocampal neurons 296. Furthermore, Wnt signaling regulates adult 

hippocampal neurogenesis 297 and the expansion of CNS progenitor cells 298. Moreover, it is 

important for synaptic function as well as for the formation of hippocampal spines 299, 300. A 

malfunction of Wnt signaling in the hippocampus by targeted knockdown is associated with 

decreased neurogenesis, increased depression-like behavior and various neuropsychiatric disorders 

286, 301. It has been shown that Wnt signaling is responsive to various antidepressant drugs 302 while 

mice with constitutively activated Wnt signaling become irresponsive to antidepressant treatments 

303. Furthermore, a role of Wnt signaling via the fast acting antidepressant ketamine has been 

proposed 304.  

 

 

4.3. Role of Drug Metabolizing Enzymes in Depression 

Although the sequence of SULT4A1 is highly conserved between mammalians suggesting an 

important function 305, 306, little is known so far about the brain specific phase II metabolizing 

enzyme SULT4A1. It may be involved in the metabolism of antidepressant drugs and neuroactive 

substances. However, since expression of SULT4A1 was low in LCLs and only detectable in 21 out of 

100 cell lines, our results should be seen with caution and warrants further analysis of SULT4A1 
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expression in brain. SULT4A1 seems to conjugate drugs and neurotransmitters specifically within 

the brain 172, 307. An association of polymorphisms within the SULT4A1 gene and the susceptibility to 

neurological disorders like schizophrenia has been described 308. Its higher expression in females 309 

may be associated with the higher prevalence of depression in women. Interestingly, the gene 

expression of SULT4A1 is regulated by CREB (cAMP response element-binding protein) 310, a 

transcription factor that plays a major role in neurogenesis and synaptic plasticity 311. Furthermore, 

CREB is involved in pathological and pharmacological actions of depressions, since decreased levels 

of CREB in the prefrontal cortex of depressed patients were shown 312. Effects of SSRIs on CREB 

concentrations through the course of treatment were reported with lowered CREB levels in 

responders than in non-responders 313. 

The monooxygenase CYP3A43 shares a testosterone hydroxylase activity and seems to be involved 

in lipid and steroid synthesis as well as in antipsychotic drug metabolism 168, 314. It is a homologue to 

other drug metabolizing CYP enzymes, but it shows no proven cerebral expression and probably 

does not significantly contribute to the metabolism of xenobiotics or drugs 315. However, since 

CYP3A43 is involved in hormone metabolism, one might speculate about a role of CYP3A43 within 

the context of the hormone-based hypothesis of the pathogenesis of depression (see chapter 2.1). 

Levels of steroidal hormones such as cortisol or estrogen have been associated with a higher risk of 

depressions and with more effective antidepressant therapies 20, 21. 

 

4.4. Role of Drug Transporters in Depression 

ABCG4 belongs to the ATP binding cassette (ABC) superfamily and is involved in the regulation of 

cholesterol and lipid homeostasis in neurons and astrocytes 175, 176. It plays a role in fear processing 

in mice 316 and was suggested to be implicated in the development of neurodegenerative disorders 

such as the Alzheimer's disease 317. A known direct relation between ABCG4 activity and depressive 

disorders is missing. However, abnormality in lipid homeostasis may lead to increased production 

of reactive oxygen species which in turn, is connected to pathophysiological processes in 

depressions 318, 319.  

The plasma membrane transporter ABCB1 possesses a key role in cellular detoxification and 

transmembrane transport across the BBB back into the circulatory system. Furthermore, it 

contributes to the biliary and renal elimination of drugs 320, 321 and represents a major component 

of the intestinal barrier 322. ABCB1 is an efflux pump with a broad allocrite spectrum including a 

variety of drugs (e.g. antidepressants, glucocorticoids), xenobiotics as well as neurotoxic agents 179 

and thus, ABCB1 holds neuroprotective effects eventually resulting in an increased response to 

antidepressant mediated induction of neural proliferation and plasticity. Peripheral glucocorticoids 

are stress response factors in the HPA axis, normally have toxic effects on neurons and are 
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suspected to be causative for depressions 323. Furthermore, a dysfunction of glucocorticoid 

receptors modifies the functional integration of neurons in the hippocampus and therefore, leads 

to an impaired synaptic connectivity and fear-motivated behavior in animal experiments 324. Studies 

using ABCB1 knock-out mice or ATPase assays in human ABCB1 membranes have shown that most 

antidepressants such as amitriptyline, doxepin, paroxetine or citalopram are strong allocrites of this 

transporter 185, 325-328 and overexpression of ABCB1, i.e. increased removal of antidepressants from 

the brain, might explain non-responsiveness to various antidepressant drugs 329. Hence, numerous 

variations in the ABCB1 gene were reported influencing the plasma levels of antidepressants as well 

as the treatment efficacy 330-336. Fluoxetine, one of the antidepressants we employed for in vitro LCL 

phenotyping, is only a weak allocrite of ABCB1 337, 338. One may speculate that the absence of a 

correlation between fluoxetine induced ABCB1 expression and clinical response of the MARS cohort 

could reflect the low ABCB1 allocrite properties of this antidepressant drug. Carriers of defined 

haplotypes within the ABCB1 gene show decreased risk of developing depressions 339 and 

polymorphisms of the ABCB1 gene are thought to predict adverse antidepressant drug effects 340. 

Furthermore, other polymorphisms might predict the individual response and dose adjustment to 

the antidepressant escitalopram and are associated with depression severity 335, 341. All these 

findings point to a significant involvement of ABCB1 in depression. 

 

 

5. Validation of Tentative Gene Expression Biomarkers 

 

Five genes (WNT2B, TCF7L2, FZD7, SULT4A1 and ABCB1) were differently expressed in an edge-

group approach, i.e. in cell lines with the highest increase vs. highest decrease in cell proliferation 

following 21 d fluoxetine incubation. Analyzing extreme phenotypes is an emerging method in 

pharmacogenomical research since it time- and cost-effectively allows the discrimination of genes 

involved in processes of interest. The observed effect size is increased compared with results from 

cell lines with average phenotypes and consequently - as done over the course of this work - the 

findings need to be verified in the total population 342. Initially, this approach was developed in the 

field of oncology leading to the identification of various biomarkers to predict effects of anticancer 

drugs like cisplatin 343, cytosine arabinoside 344 or etoposide 345 but is now of growing interest in 

neuropsychiatric indications. For example, Morag et al. identified potential genetic biomarkers in 

edge-groups from paroxetine sensitivity phenotyping experiments 117. 

Further data analysis containing results from all available cell lines showed a correlation between 

LCL donor’s clinical responses with the LCL basal gene expression of SULT4A1. Furthermore, the 

gene expression fold changes of WNT2B by fluoxetine incubation correlated with clinical remission. 
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None of the remaining genes TCF7L2, FZD7 and ABCB1 showed significant correlation with clinical 

parameters of LCL donors from the MARS study. In contrast, associations between LCL donor’s 

clinical response and LCL basal gene expression of WNT2B and ABCB1 but not for FZD7, TCF7L2 or 

SULT4A1 could be found in the cohort derived from patients participating in the STAR*D study. 

Furthermore, the fold changes by fluoxetine and citalopram of WNT2B, FZD7 and ABCB1 showed 

correlations with LCL donor’s clinical response and remission status. In general remission - defined 

as the virtual absence of depressive symptoms - is assumed to be the more robust outcome 

parameter compared to response which is characterized by a 50% reduction of symptomatology 346. 

This, together with the fact that patients showing remission demonstrated decreased relapse and 

suicide 347, is why remission predicting biomarkers should be given the virtue. Since the results were 

more or less reproducible in the different cohorts (MARS and STAR*D), the genes can be assigned 

as putative gene expression biomarkers acting as potential temporal mediators (variables whose 

initial early change during treatment could be associated with future treatment outcome) or 

baseline gene expression predictors (variables associated with treatment efficacy before therapy 

start) that eventually advance the personalized treatment approach in depressions in the future. 

 

 

6. Interferon beta, Sickness Behavior and Depression 

 

In 17 healthy participants (7 males and 10 females with a mean age of 26.5±4.9 years), 

questionnaire based evaluations of interferon-induced mood changes (STAI and HDRS) were carried 

out. The STAI intends to measure general propensities to be anxious and current symptoms of 

anxiety through simple self-report algorithms. Since anxiety is one of the main symptoms of 

depressive disorders a correlation of STAI results with depressive states has been described 

frequently 348. Furthermore, high test-retest reliability coefficients as well as the ability to detect 

individual changes were reported in the literature 349. The HDRS was actually developed to provide 

indications of depressions and to evaluate recovery, but here it was used to assess interferon-

induced changes in behavior and mood. It is one of the most used depression rating scales 

characterized by high internal consistency, inter-rater reliability and test-retest reliability 350. The 

observations from behavioral testing showed significant increased depression scores (HDRS) but no 

significant changes in anxiety levels (STAI). Maybe a possible individual interferon-induced anxiety 

interferes with increased anxiety level of fearful participants during their first MRI scan session 

(questionnaires were conducted immediately before the MRI measurement) leading to impaired 

results. When analyzing the single items of the HDRS, depressive main symptoms (e.g. depressed 

mood or anhedonia) were barely detected, but other depression-related symptoms such as feelings 
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of fatigue or weakness, concentration problems, insomnia, etc. were frequently recorded. These 

results suggest an induction of sickness behavior by interferon beta but not of depression itself 

which is an interesting new aspect of the current pharmacological research. For that reason the 

following part summarizes the knowledge about the connection between immune system 

activation and the development of depressions considering molecular backgrounds, brain 

functioning in the key sites, treatment effects and the possible role in personalized medicine.  

In the early 1990s a role for cytokines in depression was proposed as a part of the macrophage 

theory of depressions 351. A few years later it was described that pro-inflammatory cytokines are 

able to cause some clinical aspects of depressive disorders such as the disturbance of the serotonin 

metabolism, the hyperactivity of the HPA axis and most of the neuro-vegetative symptoms (e.g. 

appetite disturbance, fatigue, concentration problems, etc.) 352. Depressions have been associated 

with a pathologic activation of the immune system characterized by increased levels of T cells and 

acute phase proteins 353, 354. In general symptoms of sickness behavior and depression are tightly 

connected and a common pathophysiology is suggested 355. For instance both phenomena are 

caused by or led to a decreased reactivity to reward, a withdrawal from social or physical 

environment as well as pain and malaise 25. The detailed mechanisms behind these behavioral 

changes remain unclear. The amygdala seems to be a neural key region that is involved in sickness 

induced social withdrawal in animals 356. In accordance to this, social avoidance tendencies are 

associated with elevated amygdala activities to negative social cues in humans 357-359. In animal 

models induced depression-like behavior was linked to an exaggerated inflammatory response in 

the brain with aged mice being more sensitive 360. Consistent with this the onset of depression was 

shown to be preceded by elevated biomarkers of inflammation in a cohort of elderly participants 

361. Furthermore, the symptoms of both sickness behavior and depression can be successfully 

treated by antidepressive drugs. Patients with exaggerated inflammatory blood markers are more 

likely to show treatment resistance to antidepressants 362. However, in this context depressive 

disorders seem to be caused by a dysfunction in neuronal circuits of cytokine-induced responses 

since an increased vulnerability to depressions was reported in persons with an overactive CRH 

system 363. In such vulnerable individuals, (chronic) inflammatory processes like systemic infections 

or autoimmune diseases are able to influence the brain functions and therefore, to guide from 

sickness behavior to depression 364. Several mechanisms to explain these effects of peripheral 

cytokines on the CNS are proposed, e.g. a role of post-infection activation of primary afferent 

neural tracts like the vagal nerve is discussed 365, 366. Furthermore, peripherally circulating cytokines 

are able to increase the production of centrally-acting pro-inflammatory cytokines by activation of 

macrophage-like cells from the circumventricular organ - a specialized organ of the brain ventricular 

system that is an integral part of the neuroendocrine function 367 - in a toll-like receptor mediated 
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manner as part of the humoral pathway response. Additionally, blood cytokines are able to enter 

the brain directly either by volume diffusion 368 or by active transport mediated by cytokine 

transporters of the BBB 369, 370. Cytokines are able to counteract and prevent antidepressant actions 

including effects on neurotransmitter function and synaptic plasticity 63. Cytokines can influence 

neurotransmitter synthesis, release and reuptake by various mechanisms. A cytokine-induced 

activation of the indoleamine-2,3-dioxygenase (IDO) that metabolizes tryptophan - the serotonin 

precursor - leads to a reduced availability of serotonin in the brain 25 and to the development of 

depression-like behavior in animal experiments 371, 372. The expression of neurotransmitter reuptake 

transporters is increased by inflammatory cytokines in a mitogen-activated protein kinase (MAPK) 

dependent manner 373-375. Interferons are glycosylated hormone proteins with immunomodulatory 

effects that probably act via receptor-associated tyrosine kinases followed by an activation of the 

JAK/STAT cascade resulting in an activation of immune cells (e.g. monocytes, leucocytes) as well as 

an increased expression of human leukocyte antigen molecules and other mediators of immune 

reactions like cytokines. This might be a possible mechanisms of action with respect to the 

mentioned immunologic effects. Pro-inflammatory cytokines such as interleukins or TNFs usually 

are responsible for acute-phase reactions (e.g. after an infection) and they are peripherally 

produced by accessory immune cells like dendritic cells or macrophages. Cytokine-induced sickness 

behavior is caused by pro-inflammatory events in the brain mediated mainly by the interleukins IL-

1a, IL-1b, IL-6, IFN-b and TNF-alpha. A stimulation of the sympathetic nervous system by stress is 

also able to activate inflammatory signaling pathways 376. Consequently, the option to treat 

depressions with anti-inflammatory drugs was hypothesized and some evidence for a positive 

therapeutic effect of TNF or COX inhibitors was identified recently, but further investigations 

concerning the pathophysiology of inflammation and depression-like behavior are necessary to 

advance this approach 377-381.The identification of subgroups of depressed patients being responsive 

to immunotherapies would be beneficial in the view of treatment personalization. Additionally, 

lower levels of TNF-alpha have been linked to response to the antidepressant amitriptyline 362. 

There is growing evidence that inflammatory processes might have a greater influence on the 

pathogenesis of depressions than the traditional psychosocial factors (e.g. negative life events, 

chronic stress or lack of social contacts). In animal experiments, an activation of the immune 

system led to a decrease of the preference for drinking and food intake 356 and the effect size was 

reduced after the pre-treatment with antidepressants 382. A higher sensitivity towards interleukin-

induced negative mood was reported in a genetic model of depression 383 and cytokines were 

shown to be able to increase the serotonin turnover in the brain 373, 384. Furthermore, both 

physiological and psychological risk factors play an important role in the vulnerability to 

immunotherapy-induced depression. For example an enhanced response of the HPA axis 385, 386 and 
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elevated depression scores before begin of the therapy have been associated with depression 

severity 109. The HPA axis can be activated by neuropeptides like vasopressin or corticotropin-

releasing factors which are known to account for depressive symptoms 387, 388.  

 

 

7. Functional Neuroimaging 

 

Functional neuroimaging is an important instrument to assess neurobiological correlates of drug 

effects in the brain due to its non-invasivity and wide applicability in the clinical setting. Several MRI 

studies have been successful in identifying the changes in specific brain structures induced by 

medication 389, 390. As the core symptoms of depressions are reflected by an impaired reward 

processing and emotion regulation 30, we focused on these neural circuits using particular fMRI 

paradigms (foraging and faces, respectively). One important concern was to evaluate the 

applicability to depict cytokine-induced sickness behavior or depressions via fMRI. However, a few 

limitation of our fMRI study have to be mentioned. First, no control group was enrolled so far (but 

is planned for the future) in this study leading to the fact that effects of repeated measurements 

remain unconsidered. Since the study was not double-blinded and randomized, the implementation 

of a well-matched control group is absolutely essential. The sample size of this study is small and 

therefore the results possess only low statistical power. Additionally, since the relationship 

between clinical characteristics and brain activity is very complex and not well understood so far, 

the transferability of our result’s use remains unknown. But the measurement of dysfunctions in 

above described neural circuits detected by fMRI will provide further information regarding this 

issue and may be helpful in individual guidance of diagnostics of depression and antidepressant 

treatment selection in the future. 

 

7.1. Responses to Emotional Faces after Interferon Administration 

The faces paradigm was assigned to evaluate reactivity to emotional stimuli like anger, sadness or 

disgust in a passive exposure paradigm whereby the region of interest was the amygdala. No 

significant differences in amygdala activation before and after interferon administration were 

detectable which might be based on different reasons (such as the unsuitability of the faces 

paradigm to depict processes of drug-induced depressions, i.e. other regions - that are not covered 

by the faces paradigm - might be more relevant to the pathogenesis of drug-induced depressions 

under consideration of emotional processes or the fact that the duration of drug intake was not 

sufficient to fully develop activation differences in the amygdala). However, the faces paradigm is a 
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robust standard method to measure amygdala activation 159, since the amygdala activation can be 

measured (also when the presentation of the faces is subliminal) and drug effects are depictable 391. 

Nevertheless, the latest literature regarding the phenomenon of facial emotion deficits in 

depressive disorders will be discussed in the following section since it is widely accepted that such 

processes play a key role in depression and there is huge evidence for abnormal emotion 

recognition in this disorder.  

Impaired facial emotion recognition is symptomatic for many psychological diseases including 

schizophrenia, alcoholism, autism, anxiety, bipolar disorder and depression 392-397. Since emotional 

perception is crucial to social interaction which is one important factor of individual well-being in 

depressions 398, 399, the role of emotion recognition in depression is of high relevance (reviewed by 

Bourke et al. 400). Emotional processes are usually regulated by the interaction of top-down control 

processes in the prefrontal cortex and bottom-up processes triggered by emotional stimuli 133. 

However, here we did not find any significant changes in amygdala activation after the short-term 

treatment with interferon beta indicating no specific role of the amygdala in the rapid action of 

interferon-induced sickness behavior or depression. In contrast, Whalen et al. reported a 

modulated reactivity in the limbic system after interferon beta treatment in depressive patients 401. 

Many studies have demonstrated a relationship between local inflammation, regional brain 

activation and emotional processing 402. Additionally, using fMRI techniques it was convincingly 

shown in numerous studies that the reactivity of the limbic and paralimbic systems to emotional 

stimuli (e.g. sad faces) is impaired in depressive patients. Recent meta-analyses identified moderate 

emotion recognition deficits in depressed patients 403, 404. Another meta-analysis reported uniquely 

preserved recognition of sadness while the recognition of the other basic emotions (anger, disgust, 

fear, happiness, surprise) is impaired 405. Frodl et al. reported an increased activity in the limbic 

system to emotional stimuli in depressed patients compared to healthy controls 406. Such 

abnormalities are associated with constructs in the negative valence system like acute and chronic 

anxiety or fear. Pharmacological treatments have been shown to normalize pathologically elevated 

activity in these circuits 407-412. Antidepressant drugs were shown to alter the recognition of 

emotion 413, 414 and to reduce the neural responses to negative facial expressions 415. Several genetic 

variants within neural genes were associated with impaired emotion processing and with poor 

response to antidepressants. For example a variant of neuropeptide Y (rs16147) - a 

neurotransmitter of the autonomic nervous system involved in stress and anxiety processing - has 

been linked to an exaggerated amygdala reactivity to emotional faces and to a decreased treatment 

outcome in patients with anxious depression 416. Another study reported a connection between 

reduced response of the striatum and the thalamus to happy faces, a decreased response to 

antidepressant drugs and a genetic variant of the cannabinoid receptor type 1 (rs1049353) - a 
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receptor of the endogenous cannabinoid system that is required for the development of the brain 

and for the response to stress and anxiety 417. Furthermore, an aberrant activity of the amygdala to 

sad facial emotions is specific to depressive states and therefore appointed as a potential 

biomarker for negative affective bias during depressive episodes 410. Consequently, the limbic 

reactivity to emotional faces measured by MRI techniques could be helpful in the future for early 

medication screening or to predict the individual treatment outcome in depression 410, 418. 

 

7.2. Responses to Monetary Reward after Interferon Administration 

The foraging paradigm was employed to probe the impact of interferon therapy on the sensitivity 

to reward cues. We measured a decreased activity of the dopaminergic ventral striatum following 

the treatment with interferon beta in this money-rewarding paradigm. Changes in dopamine 

function are correlated with behavioral changes such as depression or sickness symptoms. The 

dopamine-modulated cortical cortex including the ventral striatum possesses a key role in reward 

processing regulated by the orbitofrontal cortex 419, 420. Other brain structures like anterior 

cingulate cortices or the ventromedial prefrontal cortex were described being involved in reward 

expectancy or processing 421-423. Dysfunctional reward circuitries have frequently been associated 

with depression. For example, depressed patients showed increased activities of the anterior 

cingulate cortex to previously rewarding stimuli (but less activity of the ventral striatum), to 

expectancy of monetary reward or to reward learning 424-426. Other studies reported reduced 

ventral striatal activities during reward learning and to rewarding stimuli in depressed patients 

relative to healthy controls 425, 427-430. Dopamine and various pharmacological treatments (e.g. 

levodopa, duloxetine or dextroamphetamine) were shown to alter these processes by modulation 

of the activity of the ventral striatum 431-433. Furthermore, a normalization of functional 

abnormalities within the reward system was observed after psychotherapy 434. Interferons are 

known to target CNS structures like the basal ganglia of the ventral striatum amongst others which 

has been shown by positron emission tomography imaging or fMRI 364, 435. For example a decreased 

activation in the ventral striatal region was shown in a reward paradigm of patients suffering from 

hepatitis C being treated with interferon 436. Another study demonstrated that inflammation alters 

reward-related neural correlates of anhedonia - a key symptom of depression - to monetary reward 

cues by a reduction of the ventral striatum activity 437. Abnormalities in reward neural circuits are 

responsible for the depressive symptoms of apathy and anhedonia that in turn might be connected 

to constructs in the positive valence system 427, 438.  
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8. Outlook / Future Perspectives 

  

Since depressions already belong to the most prevalent mental illnesses affecting over 350 million 

people worldwide and the prediction that depressive disorders will account for the largest part of 

the economic burden within the next twenty years 9, the improvement of the individual 

antidepressant therapy of this serious mental illness will become inevitable. The total number of 

affected people will raise even more dramatically in the future because the world population is 

rapidly growing, diagnostical tools will find their way in the improving medical systems of today’s 

third world countries (where depression might be underdiagnosed nowadays 439) and 

environmental conditions as contributory causes (e.g. chronic stress and fear, progressing 

urbanization accompanied by increasing social isolation etc.) will worsen. Additionally, more 

significance will be given to heritability factors of depressions. The introduction of gene 

therapeutical approaches into clinical practice might be a solution. Another interesting approach to 

reduce depression rates could be vaccination 440, normalizing the imbalance between pro- and anti-

inflammatory cytokines frequently reported in depressive disorders (compare with chapter 2.1, 

immunological hypothesis). However, gene therapy and vaccination are experimental approaches 

that might become relevant in the distant future. Since genetic biomarkers are more objective 

parameters compared to behavioral scales they will be more efficacious in personalized therapies in 

the field of depressive disorders 441. For that reason treatment individualization using genetic 

biomarkers remains in the focus of research in the short to medium term. This turned out being a 

challenging aim due to high complexity and individuality of depressions and consequently, 

identifying single universal parameters to predict individual treatment responses seems impossible. 

Hence, biomarker signatures of validated parameters on DNA, RNA and protein level will be 

necessary and be the future of personalized medicine in depressive disorders. The development of 

fast and easy to use methods (like the cobas® EGFR mutation test kit used for therapy 

individualization of patients suffering from non-small cell lung cancer 3) covering such biomarker 

signatures would be the best solution to further advance the field. The candidate genes reported 

here could be a part of such biomarker signatures. They should be further examined for their 

molecular validity, pharmacogenetical variability and their role in remission from depression. The 

molecular validity of these genes could be verified by detection of their gene products on protein 

level for instance using immunological methods like ELISAs (enzyme linked immunosorbent assay) 

or Western Blots. The pharmacogenetical validity may be proven by knockdown or miRNA silencing 

experiments of the mentioned genes in LCLs, animal models for depression or human neuronal cell 

lines (e.g. neuroblastoma cell line SH-SY5Y or cortical neuron cell line HCN-2) with subsequent 

determination of effects on the SSRI-mediated proliferation induction. Another interesting 
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approach is the generation of neuronal cells from LCLs derived from depressive patients by 

reprogramming technology using retroviral or virus free (transcription factors and small molecules) 

methods 442, 443. Additionally, the role of the candidate genes in remission from depression could be 

evaluated using longitudinal blood samples from major depression patients participating in 

prospective, controlled clinical trials. After confirmation of their predictive potential the gene 

expression levels of ABCB1, FZD7, SULT4A1 and WNT2B might support the guidance of individual 

AD therapy choices in the future and therefore, such genetic biomarkers will further lead to the 

eradication of trial and error prescription.  

 

Away from this, another interesting and promising approach to pave the way for the entry of the 

individualized medicine into the important indication of depressive disorders is the usage of 

neuroimaging techniques. Here, we found evidence for individual variability in drug-induced 

depression as well as an impaired reward system functionality being highly involved in interferon-

beta induced sickness behavior. Transferring this knowledge to depression itself one might 

speculate about a more important role of a well-working reward system in depressions than 

previously thought. However, the short-term aim is to verify and validate the obtained results that 

so far lack evidence of no or insignificant impact of repeated measurements on individual brain 

activities targeted by our fMRI paradigms. Since the test-retest-reliability of fMRI paradigms is 

frequently underrated 444, 445, identical measurements in unmedicated, matched healthy volunteers 

should and will be added as a control cohort. Here, we only described two different paradigms 

targeting anxiety and reward behavior, but the actual MRI measurement battery consisted of more 

sequences such as other functional MRI paradigms targeting further depression-associated 

conditions (e.g. anhedonia, negative cognition) as well as perfusion and diffusion measurements. 

Since perfusion imaging is a hypotheses free approach to measure brain activity, it could shed light 

on further, unknown brain regions involved in interferon beta action and the development of 

depression-like behavior or depressions itself. Diffusion imaging is an innovative MRI-based 

technique that measures the degree and directionality of the diffusion of water molecules in the 

brain and that can be used to detect changes of the axonal organization (e.g. axon density, axon 

diameter, myelination) and neuroplasticity 446. These approaches will surely deliver further 

interesting results improving our understanding of individual effects of interferon beta. One - so far 

unfinished - aspect of this study was to correlate MRI data with transcriptomic data. The 

connection of these “big data” may be beneficial to accelerate psychiatric biomarker and treatment 

development and to improve our understanding of the molecular neurochemical and 

neurogenetical mechanisms behind drug-induced depressions and depressions in general 122, 447. 

This approach might help to identify genetic vulnerability markers of psychiatric diseases as well as 
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the effects of gene expression differences to structure and function of the brain. Furthermore, the 

prediction of affective interferon side effects could be helpful for the therapy guidance of MS 

patients and to reduce their suffering 88. It was frequently shown that individual variability in brain 

functions can be depicted by MRI measurements 448. In the future functional connectivity profiles 

may act as intrinsic fingerprints 449 which probably allow the accurate distinction of depressed from 

healthy subjects or from subjects with other neurological diseases (e.g. epilepsy or schizophrenia) 

within large cohorts. Another application could be the prediction of non-response or response to a 

given antidepressant drug. However, the identification of such fingerprints being clearly associated 

with depression will be one challenge of the future. In contrast, inflammatory biomarkers that 

reflect activation of relatively unique and specific pathophysiologic pathways might be helpful in 

the individual therapy because here we have shown that interferons are able to decrease the 

reactivity of the reward system which is probably based on inflammatory processes.   
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Chapter VI - Summary 

 

The understanding of the individual variability of depressive disorders is in urgent need of 

improvement which could be accelerated by identification of biomarkers for the diagnosis and 

treatment individualization of depressions. Here, we focused on the identification of potential 

biomarkers by application of cell based and neuroimaging based approaches to further advance the 

field of personalized medicine of depressive disorders. 

The therapy effectiveness of antidepressant treatments requires improvement due to low response 

rates, a delay in clinical improvement and the lack of predictive biomarkers. Since depressions seem 

to be associated with decreased hippocampal volumes and antidepressant treatments are able to 

stimulate neurogenesis, individual susceptibility to antidepressant induced proliferation may act as 

a surrogate marker for the prediction of expected individual responses to antidepressant drugs. 

Here, we measured proliferative effects by SSRI antidepressant drugs in human LCLs derived from 

depressed patients participating in large depression trials (MARS and STAR*D) with monitored 

response progresses. LCLs are emerging models in neuropsychiatric biomarker research as they are 

widely available from different populations, represent individual donor’s properties and show 

similar gene expression profiles with neuronal cells. Increased proliferation rates were detectable 

after three weeks of in-vitro treatment at the earliest with therapeutical concentrations of 

fluoxetine or citalopram which is in accordance with the observed delay in clinical improvement 

from several weeks up to a few months. A high variability in individual peripheral proliferation was 

reported in cohorts from both studies, but significant overall proliferative effects by 

antidepressants were restricted to the STAR*D cohort. Responder-derived LCLs showed 

significantly increased proliferation rates relative to non-responder derived cell lines and QIDS 

reduction was highly correlated with relative individual proliferation rates supporting the 

neurotrophic hypothesis of individual antidepressant efficacy. Because the underlying molecular 

backgrounds of individual antidepressant response remain poorly understand, we conducted 

transcriptome analyses in order to identify potential gene expression biomarkers associated with 

fluoxetine-induced peripheral or CNS proliferation. Comparative data analysis between non-

responder and responder derived LCLs revealed 15 candidate biomarker genes being involved in 

either EGF signaling or WNT signaling or metabolism and transmembrane transport. Significant 

correlations between clinical parameters of LCL donors and gene expression levels have been 
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detected for ABCB1, FZD7, SULT4A1 and WNT2B. The ABC transporter ABCB1 - better known as Pgp 

or MRP1 - holds a key role in neuroprotection by exporting neurotoxic agents back into the 

circulatory system, whereas the brain specific phase II metabolizing enzyme SULT4A1 is probably 

involved in the metabolism of neuroactive substances and antidepressant drugs. Both FZD7 and 

WNT2B are important parts of the canonical WNT pathway that is crucial for the regulation of stem 

cell differentiation, neurogenesis and synaptic plasticity. With this we identified potential baseline 

gene expression predictors and temporal mediators that might support the guidance of individual 

therapy regimes in depressed patients and help to advance the personalized treatment approach in 

depressions in the future. 

 

Another approach that might support the advancement of this field is the usage of neuroimaging 

techniques such as fMRI which has the potential to support the differential diagnosis of depression 

or to predict non-response or response to antidepressants. Here, we performed a clinical study to 

explore the individual variability of drug-induced depressions. Participants of this study were 

screened for depressive symptoms by psychometric testing and for changes in activation patterns 

of depression-related brain regions using fMRI techniques in order to find evidence for the 

depression inducing side-effects of interferon beta.  

Psychometric testing included anxiety and depression questionnaires and showed individual 

responses to the interferon administration. Highly significant changes where reported only for the 

HDRS and the particular single item analysis led us to the conclusion that interferon treatment 

initiates inflammatory processes resulting in sickness-behavior but not in depression in the strict 

sense. Indeed, pathologic immune system activations and depressive-like behavior were frequently 

shown to be tightly connected and it is proposed that inflammatory processes might have a greater 

influence on the pathogenesis of depressions than the traditional psychosocial factors. Sickness-

behavior and depressions share common pathophysiologic mechanism and are responsive to 

antidepressive therapies. During the fMRI sessions, conducted before and after interferon beta 

administration, the participants were instructed to complete two tasks that target specific 

depression-related brain functions (emotion processing and reward system). Although the role of 

emotion recognition in depression is usually of high relevance, we did not find any significant 

changes in amygdala activation after the short-term treatment with interferon using a passive 

exposure paradigm to emotional faces. In contrast, we measured a significantly decreased activity 

of the ventral striatum following the treatment with interferon beta in a money-rewarding 

paradigm. After exposure to interferon beta in healthy volunteers, we detected changes in the 

reward system functionality consistent with the existence of an anhedonia-like syndrome, while 

reactivity to salient negative stimuli was absent. This pattern was in accordance with the lack of 
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change in anxiety scores in behavioral testing (usually present in depression), outlining a specific 

syndrome accompanying the depression-inducing action or sickness behavior of interferon. After 

long-term therapy, this sickness behavior might turn into serious depression through cytokine 

actions in the brain because chronic inflammation seems to be a strong risk factor for the 

occurrence of depressive episodes. Based on our data one might speculate that interferon beta 

mainly affects dopaminergic circuits of reward and not serotonergic circuits of emotion recognition. 

We therefore propose that the depression-inducing effects of interferon beta after long-term 

therapy are at least partly based on an impaired reward system functionality.  
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BDNF  brain-derived neurotrophic factor 

BfArM Bundesinstitut für Arzneimittel und Medizinprodukte 

BOLD blood-oxygen-level dependent 

bp base pair 

BSA bovine serum albumin 

BTC betacellulin 

CACNA2D3 calcium channel, voltage-dependent, alpha 2/delta subunit 3 

cAMP cyclic adenosine monophosphate 

CBF cerebral blood flow 

CD cluster of differentiation 

cDNA  complementary DNA 

CHL1  close homolog to L1CAM 

CRH corticotropin-releasing hormone 

CNS central nervous system 

CO2 carbon dioxide 

CONSORT Consolidated Standards of Reporting Trials 

CP  crossing point 

CREB  cAMP response element binding protein 

cRNA complementary RNA 

CT threshold point 



Abbreviations 
 

94 

CY3 cyanin-3-cytidine triphosphate 

CYP cytochrome P450 
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et al. et alii (“and others”) 
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FDR false discovery rate 
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GAPDH  glyceraldehyde 3-phosphate dehydrogenase 

GenMAPP Gene Map Annotator and Pathway Profiler 

GEO gene expression omnibus 
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GO gene ontology 
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HBEGF heparin-binding EGF-like growth factor 

HPA hypothalamic-pituitary-adrenal 

HDRS  Hamilton Depression Rating Scale  

IDO indoleamine-2,3-dioxygenase 

i.e. id est (“that is to say“) 

ITGB3 integrin beta-3 

KI67 marker of proliferation KI-67 

L1CAM neural cell adhesion molecule L1  

LCLs  lymphoblastoid cell lines 

MAO monoamine oxidase 

MAOI monoamine oxidase inhibitors 

MAPK mitogen-activated protein kinase 

MARS Munich Antidepressant Response Signature 

MINI mini-international neuropsychiatric interview 

miRNA  micro RNA 

MRI magnetic resonance imaging 

mRNA  messenger RNA 

MS multiple sclerosis 

n number/quantity 

NaCl sodium chloride 

NaSSA  noradrenergic and specific serotonergic antidepressants 

NeuroD neurogenic helix-loop-helix protein 

NR non-responder 

NRI norepinephrine reuptake inhibitors 

nt nucleotide 

NTP nucleoside triphosphate 

NTRK2 neurotrophic tyrosine kinase receptor type 2 

P2RX7 purinergic receptor P2X 

PAT parallel acquisition technique 

PBMC  peripheral blood mononuclear cell 

PBS phosphate buffered saline 
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phMRI pharmacological MRI 
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PI3K phosphatidylinositide 3-kinases 

PIK3R5 phosphoinositide-3-kinase, regulatory subunit 5 

QIDS Quick Inventory of Depressive Symptomatology 

r Spearman’s correlation coefficient 

R responder 

RalA Ras-related protein Ral-A 

rev reverse 

RIN RNA integrity number 

RNA  ribonucleic acid 

RNase  ribonuclease 

rpm revolutions per minute 

RPMI Roswell Park Memorial Institute 

rs reference SNP number 

RT-PCR real-time PCR 

SERT serotonin transporter 

sMRI structural MRI 

SNRI  serotonin-norepinephrine reuptake inhibitors 

SNP single nucleotide polymorphism 

SSRI  selective serotonin reuptake inhibitor 

STAR*D Sequenced Treatment Alternatives to Relieve Depression 

STRING Search Tool for the Retrieval of Interacting Genes/Proteins 

SULT4A1 sulfotransferase family 4A, member 1 

TAE tris base/acetic acid/EDTA 

TCA  tricyclic antidepressants 

TCA tricarboxylic acid 

TCF7 transcription factor 7 

TCF7L2 transcription factor 7-like 2 

TeCA tetracyclic antidepressant 

Tm melting temperature 

TNF tumor necrosis factor 

TPH2 tryptophan dehydroxylase 2 

TRIS tris(hydroxymethyl)aminomethane 

VEGF vascular endothelial growth factor 
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 Pearson’s correlation coefficient 

 

 

  



List of Figures 
 

98 

 

 

List of Figures 

 

Figure 1: Cell identity before (day 0) and after (day 50) EBV transfection measured by cell specific antibody 

based flow cytometry. ............................................................................................................................... 15 
 

Figure 2: Basic principle of the EdU proliferation assay. .................................................................................... 17 
 

Figure 3: Validation of custom-made primers was performed via melting curve analyse (A) and agarose gel 

electrophoresis (B). .................................................................................................................................... 20 
 

Figure 4: Gel-like images (A) and electropherogram (B) of a successful Bioanalyzer run. ................................. 22 
 

Figure 5: Overview of the study procedure. ....................................................................................................... 25 
 

Figure 6: Principle of the “reward” paradigm. .................................................................................................... 28 
 

Figure 7: Principle of the faces paradigm. .......................................................................................................... 28 
 

Figure 8: Orientation of the measurement window. .......................................................................................... 30 
 

Figure 9: Overview of the three phased project (screening, exploration and validation). ................................. 33 
 

Figure 10: Result of the screening experiments using n=10 LCLs derived from the MARS study (values are 

indicated as means of these n=10 samples) .............................................................................................. 34 
 

Figure 11: Heat-Map of EdU screening experiments. ......................................................................................... 35 
 

Figure 12: EdU phenotyping of MARS cell lines.. ................................................................................................ 36 
 

Figure 13: Comparison of relative proliferation (after in-vitro treatment with fluoxetine relative to untreated 

samples from the same donor) between non-responder (n=25) and responder (n=25) derived LCLs (A) 

and between absolute, basal proliferation (untreated samples from the same donor) of non-responder 

(n=25) and responder (n=25) derived cell lines (B). ................................................................................... 37 
 

Figure 14: Correlation plot between response factor and relative proliferation ............................................... 38 
 

Figure 15: Analyses of the covariates gender (A) and age (B) and their impact on relative proliferation rates 

(after 21 days of continuous treatment of n=50 LCLs with therapeutical concentrations of fluoxetine 

compared to untreated controls from the same cell lines) ....................................................................... 39 
 

Figure 16: Box plot of relative proliferation and donor’s underlying diseases indicated as International 

Statistical Classification (ICD) codes ........................................................................................................... 39 
 

Figure 17: Quantities of differentially regulated genes (FC > 2, FC > 5 and FC > 10) in ten LCLs after three-week 

incubation with fluoxetine compared to untreated controls of the same samples and measuring gene 

expression profiles by Agilent microarray system with approximately 27,000 biological features. ......... 40 



List of Figures 

99 

Figure 18: Dendrogram of the hierarchical clustering analysis of the ten LCLs after three weeks of incubation 

with fluoxetine compared to untreated samples of the same cell lines.................................................... 42 
 

Figure 19: Pathway analysis combined with Venn analysis revealed 14 pathways (yellow frame) differentially 

regulated between responder and non-responder indicator cell lines (24DC and 275U vs. 278H).. ........ 44 
 

Figure 20: STRING based protein interaction network of the 15 top-hit genes from microarray experiments 

after three weeks of incubation with therapeutical concentrations of fluoxetine. .................................. 47 
 

Figure 21: Basal gene expression of the candidate genes in an edge-group analysis from EdU phenotyping 

experiments (proliferators vs. non-proliferators) ...................................................................................... 48 
 

Figure 22: Basal gene expression of the candidate genes in cell lines derived from donors with non-response 

or response after five (A) and eight weeks (B) and cell lines derived from donors with remission or non-

remission after five (C) and eight weeks (D). ............................................................................................. 49 
 

Figure 23: EdU phenotyping of STAR*D cell lines. .............................................................................................. 53 
 

Figure 24: Overall proliferative effects of fluoxetine and citalopram after three weeks of in-vitro treatment in 

therapeutic concentrations (n=50). ........................................................................................................... 54 
 

Figure 25: Correlation plot of fluoxetine and citalopram induced relative proliferation after in-vitro treatment 

with the SSRI antidepressants in therapeutic concentrations for three weeks. ........................................ 55 
 

Figure 26: Mean relative proliferation rates of non-responder and responder derived cell lines treated with 

fluoxetine or citalopram for 21 days.. ........................................................................................................ 55 
 

Figure 27: Correlation plots of QIDS reduction and fluoxetine (A) or citalopram (B) induced relative 

proliferation. .............................................................................................................................................. 56 
 

Figure 28: Covariates analysis. ............................................................................................................................ 57 
 

Figure 29: Results of gene expression experiments of the candidate genes. Basal gene expression indicated as 

difference of maximal cycle number of RT-PCR experiments and CP values of untreated samples (A). 

Gene expression fold changes after 21-day in-vitro treatment of LCLs with fluoxetine (B) or citalopram 

(C). .............................................................................................................................................................. 59 
 

Figure 30: Overview of the course of the study by CONSORT flow diagram. ..................................................... 60 
 

Figure 31: Box plots of the current (left) and general (right) STAI anxiety scores before (baseline) and after 

(stead-state) the nine-day standard therapy with interferon beta. .......................................................... 61 
 

Figure 32: Progress of HDRS scores before (baseline) and after (steady-state) treatment with interferon beta

 ................................................................................................................................................................... 62 
 

Figure 33: Single-item-analysis of results obtained from HDRS scoring before (baseline) and after (steady-

state) a nine-day standard therapy with interferon beta. ......................................................................... 64 
 

Figure 34: Results of the foraging paradigm indicate a lowered activity of the ventral striatum (blue circle) 

after interferon beta administration.. ....................................................................................................... 66 
 

Figure 35: Results of the faces paradigm indicate no significant changes of the activity of the amygdala and 

the central nucleus region (blue arrows) after interferon beta administration.. ...................................... 68 

  



List of Tables 
 

100 

 

 

List of Tables 

 

Table 1: Overview on antidepressant drug classes. .............................................................................................. 5 
 

Table 2: Characteristics of the MARS and STAR*D LCL study cohort. ................................................................ 13 
 

Table 3: Detector parameters of the FACS Calibur flow cytometer of the EdU proliferation assays. ................ 18 
 

Table 4: Design parameters and specifications for custom made primers. ....................................................... 20 
 

Table 5: Primers used for RT-PCR experiments. ................................................................................................. 21 
 

Table 6: RT-PCR cycle conditions. ....................................................................................................................... 21 
 

Table 7: Overview on fMRI measurement parameters ...................................................................................... 29 
 

Table 8: Overview of different filtering methods for the identification of potential gene expression biomarkers 

out of the whole-genome gene expression data and their particular impact of remaining number of 

genes (n). ................................................................................................................................................... 41 
 

Table 9: Overview of the 30 most significant GO terms from the genes identified by Venn analysis. ............... 45 
 

Table 10: Comparison of mean gene expression levels between responder and non-responder cell lines (n=10) 

and their annotated gene functions. ......................................................................................................... 46 
 

Table 11: Fold change values of the candidate genes identified through microarray experiments after three 

weeks of in-vitro treatment with therapeutic concentrations of fluoxetine obtained in ten different LCLs 

in an edge-group approach after EdU phenotyping. ................................................................................. 50 
 

Table 12: Statistical overview of LCL donor’s clinical outcome and LCL gene expression of the candidate genes 

in all tested MARS LCLs (n=50) ................................................................................................................... 51 
 

Table 13: Correlation matrix of fold changes by fluoxetine and citalopram ...................................................... 58 
 

Table 14: Statistical report of the foraging paradigm measurements before/after interferon beta 

administration including results on set, cluster and peak level with an uncorrected p value cut-off of 

0.001. ......................................................................................................................................................... 65 
 

Table 15: Statistical report of the faces paradigm measurements before and after interferon beta 

administration including results on set, cluster and peak level with an uncorrected p value cut-off of 

0.001. ......................................................................................................................................................... 67 

  



References 

101 

 

 

References 

 

1. Meyer UA. Pharmacogenetics–five decades of therapeutic lessons from genetic diversity. 
Nature Reviews Genetics 2004; 5(9): 669-676. 

 
2. Collins FS, McKusick VA. Implications of the Human Genome Project for medical science. 

Jama 2001; 285(5): 540-544. 

 
3. Roche Molecular Systems I. cobas® KRAS Mutation Test. 2011; 1.0. 

 
4. Willard HF. Organization, variation and expression of the human genome as a foundation of 

genomic and personalized medicine. Elsevier Inc 2009; 154(6): 277-287. 

 
5. Radden J. Is This Dame Melancholy?: Equating today's depression and past melancholia. 

Philosophy, Psychiatry, & Psychology 2003; 10(1): 37-52. 

 
6. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric 

Association, 2013. 

 
7. Palazidou E. The neurobiology of depression. British medical bulletin 2012; 101(1): 127-145. 

 
8. Mental Health Atlas World Health Organization, 2005. 

 
9. Bloom DE, Cafiero E, Jané-Llopis E, Abrahams-Gessel S, Bloom LR, Fathima S, et al. The 

global economic burden of noncommunicable diseases. Program on the Global 
Demography of Aging 2012. 

 
10. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and 

meta-analysis. American Journal of Psychiatry 2000. 

 
11. Fernandez-Pujals AM, Adams MJ, Thomson P, McKechanie AG, Blackwood DH, Smith BH, et 

al. Epidemiology and Heritability of Major Depressive Disorder, Stratified by Age of Onset, 
Sex, and Illness Course in Generation Scotland: Scottish Family Health Study (GS: SFHS). 
PloS one 2015; 10(11): e0142197. 

 



References 
 

102 

12. Lohoff FW. Overview of the genetics of major depressive disorder. Current psychiatry 
reports 2010; 12(6): 539-546. 

 
13. Byrne E, Carrillo-Roa T, Henders A, Bowdler L, McRae A, Heath A, et al. Monozygotic twins 

affected with major depressive disorder have greater variance in methylation than their 
unaffected co-twin. Translational psychiatry 2013; 3(6): e269. 

 
14. Flint J, Kendler KS. The genetics of major depression. Neuron 2014; 81(3): 484-503. 

 
15. Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, et al. A mega-analysis 

of genome-wide association studies for major depressive disorder. Molecular psychiatry 
2013; 18(4): 497-511. 

 
16. aan het Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive 

disorder. Canadian Medical Association Journal 2009; 180(3): 305-313. 

 
17. Konarski JZ, McIntyre RS, Kennedy SH, Rafi‐Tari S, Soczynska JK, Ketter TA. Volumetric 

neuroimaging investigations in mood disorders: bipolar disorder versus major depressive 
disorder. Bipolar disorders 2008; 10(1): 1-37. 

 
18. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence 

and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey 
Replication. Archives of general psychiatry 2005; 62(6): 593-602. 

 
19. Kuehner C. Gender differences in unipolar depression: an update of epidemiological 

findings and possible explanations. Acta Psychiatrica Scandinavica 2003; 108(3): 163-174. 

 
20. Cutter W, Norbury R, Murphy D. Oestrogen, brain function, and neuropsychiatric disorders. 

Journal of Neurology, Neurosurgery & Psychiatry 2003; 74(7): 837-840. 

 
21. Lasiuk G, Hegadoren K. The effects of estradiol on central serotonergic systems and its 

relationship to mood in women. Biological research for nursing 2007; 9(2): 147-160. 

 
22. Czirr E, Wyss-Coray T. The immunology of neurodegeneration. The Journal of clinical 

investigation 2012; 122(4): 1156-1163. 

 
23. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of 

cytokines in major depression. Biological psychiatry 2010; 67(5): 446-457. 

 
24. Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S, et al. So depression is an 

inflammatory disease, but where does the inflammation come from? BMC medicine 2013; 
11(1): 1. 

 



References 

103 

25. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness 
and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 
9(1): 46-56. 

 
26. Rudolf S, Bermejo I, Schweiger U, Hohagen F, Härter M. Zertifizierte medizinische 

Fortbildung: Diagnostik depressiver Störungen. Dtsch Arztebl International 2006; 103(25): 
1754. 

 
27. Hamilton M. A rating scale for depression. Journal of Neurology, Neurosurgery, and 

Psychiatry 1960; 23(1): 56-62. 

 
28. Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: 

Twenty-five years of evaluation. Clinical psychology review 1988; 8(1): 77-100. 

 
29. Papakostas G, Shelton R, Kinrys G, Henry M, Bakow B, Lipkin S, et al. Assessment of a multi-

assay, serum-based biological diagnostic test for major depressive disorder: a pilot and 
replication study. Molecular psychiatry 2013; 18(3): 332-339. 

 
30. Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: 

toward a new conceptualization of underlying neural circuitry and a road map for future 
research. American Journal of Psychiatry 2014. 

 
31. Schröder J, Pantel J, Schönknecht P, Essig M. Die Magnetresonanztomographie in der 

klinischen Demenzdiagnostik. Der Radiologe 2003; 43(7): 513-520. 

 
32. Arnone D, Cavanagh J, Gerber D, Lawrie S, Ebmeier K, McIntosh A. Magnetic resonance 

imaging studies in bipolar disorder and schizophrenia: meta-analysis. The British Journal of 
Psychiatry 2009; 195(3): 194-201. 

 
33. Arnone D, McIntosh A, Chandra P, Ebmeier K. Meta‐analysis of magnetic resonance imaging 

studies of the corpus callosum in bipolar disorder. Acta Psychiatrica Scandinavica 2008; 
118(5): 357-362. 

 
34. Arnone D, McIntosh A, Tan G, Ebmeier K. Meta-analysis of magnetic resonance imaging 

studies of the corpus callosum in schizophrenia. Schizophrenia research 2008; 101(1): 124-
132. 

 
35. Peterson BS, Warner V, Bansal R, Zhu H, Hao X, Liu J, et al. Cortical thinning in persons at 

increased familial risk for major depression. Proceedings of the National Academy of 
Sciences 2009; 106(15): 6273-6278. 

 
36. Duhameau B, Ferré J-C, Jannin P, Gauvrit J-Y, Vérin M, Millet B, et al. Chronic and 

treatment-resistant depression: a study using arterial spin labeling perfusion MRI at 3Tesla. 
Psychiatry Research: Neuroimaging 2010; 182(2): 111-116. 



References 
 

104 

 
37. Sämann PG, Höhn D, Czisch M. Magnetresonanztomographie (MRT) in der 

Depressionsforschung. GIT-Labor – Portal für Anwender in Wissenschaft und Industrie 2012. 

 
38. Lopez-Munoz F, Alamo C. Monoaminergic Neurotransmission: The History of the Discovery 

of Antidepressants from 1950s Until Today. Current pharmaceutical design 2009; 15(14): 
1563-1586. 

 
39. Peretti S, Judge R, Hindmarch I. Safety and tolerability considerations: tricyclic 

antidepressants vs. selective serotonin reuptake inhibitors. Acta Psychiatrica Scandinavica 
2000; 101(S403): 17-25. 

 
40. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant 

drug treatment assessed using PET measures of regional glucose metabolism. European 
Neuropsychopharmacology 2002; 12(6): 527-544. 

 
41. Chen C-H, Suckling J, Ooi C, Fu CH, Williams SC, Walsh ND, et al. Functional coupling of the 

amygdala in depressed patients treated with antidepressant medication. 
Neuropsychopharmacology 2008; 33(8): 1909-1918. 

 
42. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases 

neurogenesis in adult rat hippocampus. The Journal of Neuroscience 2000; 20(24): 9104-
9110. 

 
43. Chen G, Rajkowska G, Du F, Seraji‐Bozorgzad N, Manji HK. Enhancement of hippocampal 

neurogenesis by lithium. Journal of neurochemistry 2000; 75(4): 1729-1734. 

 
44. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, et al. Mood stabilizer valproate promotes ERK 

pathway-dependent cortical neuronal growth and neurogenesis. The Journal of 
neuroscience 2004; 24(29): 6590-6599. 

 
45. Dierckx B, Heijnen WT, van den Broek WW, Birkenhäger TK. Efficacy of electroconvulsive 

therapy in bipolar versus unipolar major depression: a meta‐analysis. Bipolar disorders 
2012; 14(2): 146-150. 

 
46. Jelovac A, Kolshus E, McLoughlin DM. Relapse following successful electroconvulsive 

therapy for major depression: a meta-analysis. Neuropsychopharmacology 2013; 38(12): 
2467-2474. 

 
47. Revesz D, Tjernstrom M, Ben-Menachem E, Thorlin T. Effects of vagus nerve stimulation on 

rat hippocampal progenitor proliferation. Experimental neurology 2008; 214(2): 259-265. 

 
48. Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, et al. Hippocampal 

Angiogenesis and Progenitor Cell Proliferation Are Increased with Antidepressant Use in 
Major Depression. Biological Psychiatry 2012; 72(7): 562-571. 



References 

105 

 
49. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, Mann JJ, et al. Antidepressants 

increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 
2009; 34(11): 2376-2389. 

 
50. Sämann PG, Höhn D, Chechko N, Kloiber S, Lucae S, Ising M, et al. Prediction of 

antidepressant treatment response from gray matter volume across diagnostic categories. 
European Neuropsychopharmacology 2013; 23(11): 1503-1515. 

 
51. Russo-Neustadt AA, Alejandre H, Garcia C, Ivy AS, Chen MJ. Hippocampal brain-derived 

neurotrophic factor expression following treatment with reboxetine, citalopram, and 
physical exercise. Neuropsychopharmacology 2004; 29(12). 

 
52. Rogoz Z, Skuza G, Legutko B. Repeated co-treatment with imipramine and amantadine 

induces hippocampal brain-derived neurotrophic factor gene expression in rats. Journal of 
Physiology and Pharmacology 2007; 58(2): 219. 

 
53. S3-Leitlinie/Nationale Versorgungsleitlinie Unipolare Depression. DGPPN, BÄK, KBV 2009; 1. 

 
54. Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, et al. Pharmacogenetics of 

antidepressants. Frontiers in Pharmacology 2011; 2. 

 
55. Boksa P. A way forward for research on biomarkers for psychiatric disorders. J Psychiatry 

Neurosci 2013; 38(2): 75-77. 

 
56. Martins-de-Souza D. Biomarkers for psychiatric disorders: where are we standing. Dis 

Markers 2013; 35(1): 1-2. 

 
57. Quitkin FM, Petkova E, McGrath PJ, Taylor B, Beasley C, Stewart J, et al. When should a trial 

of fluoxetine for major depression be declared failed? American Journal of Psychiatry 2003; 
160(4): 734-740. 

 
58. Narasimhan S, Lohoff FW. Pharmacogenetics of antidepressant drugs: current clinical 

practice and future directions. Pharmacogenomics 2012; 13(4): 441-464. 

 
59. Thomas KL, Ellingrod VL. Pharmacogenetics of selective serotonin reuptake inhibitors and 

associated adverse drug reactions. Pharmacotherapy: The Journal of Human Pharmacology 
and Drug Therapy 2009; 29(7): 822-831. 

 
60. Leonard BE. Depression and physical illness. Human Psychopharmacology: Clinical and 

Experimental 2007; 22(4): 253-254. 

 
61. Couzin-Frankel J. Inflammation bares a dark side. Science 2010; 330(6011): 1621-1621. 



References 
 

106 

 
62. Frasure-Smith N, Lespérance F. Depression and coronary artery disease. Herz 2006; 31: 64-

68. 

 
63. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in 

the pathophysiology of major depression. Biological psychiatry 2009; 65(9): 732-741. 

 
64. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, 

and IL-6: a meta-analysis. Psychosomatic medicine 2009; 71(2): 171-186. 

 
65. Hiles SA, Baker AL, de Malmanche T, Attia J. A meta-analysis of differences in IL-6 and IL-10 

between people with and without depression: exploring the causes of heterogeneity. Brain, 
behavior, and immunity 2012; 26(7): 1180-1188. 

 
66. Kalkut EJ, Grote CL. Neuropsychological Aspects of Depression: Their Relevance in 

Depression in Neurologic Disorders. Depression in Neurologic Disorders: Diagnosis and 
Management 2012; 6(4): 64-76. 

 
67. Siegert R, Abernethy D. Depression in multiple sclerosis: a review. Journal of Neurology, 

Neurosurgery & Psychiatry 2005; 76(4): 469-475. 

 
68. Kessler RC, Gruber M, Hettema JM, Hwang I, Sampson N, Yonkers KA. Co-morbid major 

depression and generalized anxiety disorders in the National Comorbidity Survey follow-up. 
Psychological medicine 2008; 38(03): 365-374. 

 
69. Patten S, Beck C, Williams J, Barbui C, Metz L. Major depression in multiple sclerosis A 

population-based perspective. Neurology 2003; 61(11): 1524-1527. 

 
70. Egede LE. Major depression in individuals with chronic medical disorders: prevalence, 

correlates and association with health resource utilization, lost productivity and functional 
disability. General hospital psychiatry 2007; 29(5): 409-416. 

 
71. Schiffer RB, Babigian HM. Behavioral disorders in multiple sclerosis, temporal lobe epilepsy, 

and amyotrophic lateral sclerosis: an epidemiologic study. Archives of Neurology 1984; 
41(10): 1067-1069. 

 
72. Di Legge S, Piattella M, Pozzilli C, Pantano P, Caramia F, Pestalozza I, et al. Longitudinal 

evaluation of depression and anxiety in patients with clinically isolated syndrome at high 
risk of developing early multiple sclerosis. Multiple sclerosis 2003; 9(3): 302-306. 

 
73. Glanz BI, Holland CM, Gauthier SA, Amunwa EL, Liptak Z, Houtchens MK, et al. Cognitive 

dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple 
sclerosis. Multiple Sclerosis 2007; 13(8): 1004-1010. 

 



References 

107 

74. Chwastiak L, Ehde DM, Gibbons LE, Sullivan M, Bowen JD, Kraft GH. Depressive symptoms 
and severity of illness in multiple sclerosis: epidemiologic study of a large community 
sample. American Journal of Psychiatry 2014; 159(11): 1862-1868. 

 
75. Mohr D, Hart S, Julian L, Tasch E. Screening for depression among patients with multiple 

sclerosis: two questions may be enough. Multiple Sclerosis 2007; 13(2): 215-219. 

 
76. Charvet LE, Kluzer B, Krupp LB. Invisible symptoms of MS: Fatigue, Depression, and 

Cognition. Multiple Sclerosis and CNS Inflammatory Disorders 2014; 171(3): 114-121. 

 
77. Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M. Increased serum tumor necrosis 

factor alpha concentrations in major depression and multiple sclerosis. European 
Neuropsychopharmacology 2001; 11(3): 203-208. 

 
78. Kiy G, Lehmann P, Hahn HK, Eling P, Kastrup A, Hildebrandt H. Decreased hippocampal 

volume, indirectly measured, is associated with depressive symptoms and consolidation 
deficits in multiple sclerosis. Multiple Sclerosis Journal 2011; 17(9): 1088-1097. 

 
79. Feinstein A, Roy P, Lobaugh N, Feinstein K, O’Connor P, Black S. Structural brain 

abnormalities in multiple sclerosis patients with major depression. Neurology 2004; 62(4): 
586-590. 

 
80. Patten S. Diagnosing Depression in MS in the Face of Overlapping Symptoms. The 

international MS journal 2010; 17(1): 3-5. 

 
81. Sollom A, Kneebone I. Treatment of depression in people who have multiple sclerosis. 

Multiple Sclerosis 2007; 13(5): 632-635. 

 
82. Rintell DJ. Depression and other psychosocial issues in multiple sclerosis. Multiple sclerosis: 

Diagnosis and therapy 2012; 3(2): 263-282. 

 
83. Feinstein A. An examination of suicidal intent in patients with multiple sclerosis. Neurology 

2002; 59(5): 674-678. 

 
84. Sadovnick A, Eisen K, Ebers GC, Paty DW. Cause of death in patients attending multiple 

sclerosis clinics. Neurology 1991; 41(8): 1193-1193. 

 
85. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS 

letters 2014; 588(22): 4207-4213. 

 
86. Serafin DJ, Weisbrot DM, Ettinger AB. Depression and multiple sclerosis. Depression in 

Neurologic Disorders: Diagnosis and Management 2012; 16(1): 157-176. 

 



References 
 

108 

87. Siracusano A, Niolu C, Sacchetti L, Ribolsi M. Depression and anxiety. Neuropsychiatric 
Dysfunction in Multiple Sclerosis 2012; 16(1): 85-97. 

 
88. Tedeschi G, Gallo A. Multiple sclerosis patients and immunomodulation therapies: the 

potential role of new MRI techniques to assess responders versus non-responders. 
Neurological Sciences 2005; 26(4): 209-212. 

 
89. Murdoch D, Lyseng-Williamson KA. Spotlight on Subcutaneous Recombinant Interferon-β-

1a (Rebif®) in Relapsing-Remitting Multiple Sclerosis. BioDrugs 2005; 19(5): 323-325. 

 
90. Murdoch D, Lyseng-Williamson KA. Subcutaneous Recombinant Interferon-β-1a (Rebif®). 

Drugs 2005; 65(9): 1295-1312. 

 
91. McColl BW, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute 

phase and CXC chemokine responses to experimental stroke and exacerbates brain damage 
via interleukin-1-and neutrophil-dependent mechanisms. The Journal of neuroscience 2007; 
27(16): 4403-4412. 

 
92. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the 

pathogenesis of depression. Trends in Immunology 2006; 27(1): 24-31. 

 
93. Malaguarnera M, Laurino A, Di Fazio I, Pistone G, Castorina M, Guccione N, et al. 

Neuropsychiatric effects and type of IFN-α in chronic hepatitis C. Journal of Interferon & 
Cytokine Research 2001; 21(5): 273-278. 

 
94. Castéra L, Zigante F, Bastie A, Buffet C, Dhumeaux D, Hardy P. Incidence of interferon alfa–

induced depression in patients with chronic hepatitis C. Hepatology 2002; 35(4): 978-979. 

 
95. Lotrich FE, Rabinovitz M, Gironda P, Pollock BG. Depression following pegylated interferon-

alpha: characteristics and vulnerability. Journal of psychosomatic research 2007; 63(2): 131-
135. 

 
96. Pozzilli C, Schweikert B, Ecari U, Oentrich W, Bugge J-P. Quality of life and depression in 

multiple sclerosis patients: longitudinal results of the BetaPlus study. Journal of neurology 
2012; 259(11): 2319-2328. 

 
97. Feinstein A, O'Connor P, Feinstein K. Multiple Sclerosis, interferon beta-1b and depression. 

Journal of neurology 2002; 249(7): 815-820. 

 
98. Arnett PA, Randolph JJ. Longitudinal course of depression symptoms in multiple sclerosis. 

Journal of Neurology, Neurosurgery & Psychiatry 2006; 77(5): 606-610. 

 



References 

109 

99. Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, et al. 
Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in 
multiple sclerosis. New England Journal of Medicine 2000; 343(13): 898-904. 

 
100. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS, et al. 

Paroxetine for the prevention of depression induced by high-dose interferon alfa. New 
England Journal of Medicine 2001; 344(13): 961-966. 

 
101. Lotrich FE, Ferrell RE, Rabinovitz M, Pollock BG. Risk for depression during interferon-alpha 

treatment is affected by the serotonin transporter polymorphism. Biological psychiatry 
2009; 65(4): 344-348. 

 
102. Bull S, Huezo-Diaz P, Binder E, Cubells J, Ranjith G, Maddock C, et al. Functional 

polymorphisms in the interleukin-6 and serotonin transporter genes, and depression and 
fatigue induced by interferon-α and ribavirin treatment. Molecular psychiatry 2009; 14(12): 
1095-1104. 

 
103. Thomas KH, Martin RM, Potokar J, Pirmohamed M, Gunnell D. Reporting of drug induced 

depression and fatal and non-fatal suicidal behaviour in the UK from 1998 to 2011. BMC 
pharmacology and toxicology 2014; 15(1): 54. 

 
104. Patten SB, Love E. Can drugs cause depression? a review of the evidence. Journal of 

Psychiatry and Neuroscience 1993; 18(3): 92. 

 
105. Tisdale JE, Miller DA. Drug-induced diseases: prevention, detection, and management. 

ASHP, 2010. 

 
106. Capuron L, Ravaud A, Neveu P, Miller A, Maes M, Dantzer R. Association between 

decreased serum tryptophan concentrations and depressive symptoms in cancer patients 
undergoing cytokine therapy. Molecular psychiatry 2002; 7(5): 468-473. 

 
107. Wirleitner B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D. Interferon-γ-induced 

conversion of tryptophan: immunologic and neuropsychiatric aspects. Current medicinal 
chemistry 2003; 10(16): 1581-1591. 

 
108. Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH. Association of 

exaggerated HPA axis response to the initial injection of interferon-alpha with development 
of depression during interferon-alpha therapy. American Journal of Psychiatry 2003; 160(7): 
1342-1345. 

 
109. Capuron L, Ravaud A. Prediction of the depressive effects of interferon alfa therapy by the 

patient's initial affective state. New England Journal of Medicine 1999; 340(17): 1370-1370. 

 
110. Azoulay L, Blais L, Koren G, LeLorier J, Berard A. Does Isotretinoin Increase the Risk of 

Depression? J Clin Psychiatry 2008; 69(4): 526-532. 



References 
 

110 

 
111. Wysowski DK, Pitts M, Beitz J. An analysis of reports of depression and suicide in patients 

treated with isotretinoin. Journal of the American Academy of Dermatology 2001; 45(4): 
515-519. 

 
112. Lopez-Gomez M, Ramirez-Bermudez J, Campillo C, Sosa A, Espinola M, Ruiz I. Primidone is 

associated with interictal depression in patients with epilepsy. Epilepsy & Behavior 2005; 
6(3): 413-416. 

 
113. Patten SB, Williams JV, Love EJ. Self-reported depressive symptoms following treatment 

with corticosteroids and sedative-hypnotics. The International Journal of Psychiatry in 
Medicine 1996; 26(1): 15-24. 

 
114. Oinonen KA, Mazmanian D. To what extent do oral contraceptives influence mood and 

affect? Journal of affective disorders 2002; 70(3): 229-240. 

 
115. Porcelli S, Drago A, Fabbri C, Gibiino S, Calati R, Serretti A. Pharmacogenetics of 

antidepressant response. Journal of Psychiatry & Neuroscience 2010; 36(2): 87-113. 

 
116. Labermaier C, Masana M, Müller MB. Biomarkers predicting antidepressant treatment 

response: how can we advance the field? Disease markers 2013; 35(1): 23-31. 

 
117. Morag A, Pasmanik-Chor M, Oron-Karni V, Rehavi M, Stingl JC, Gurwitz D. Genome-wide 

expression profiling of human lymphoblastoid cell lines identifies CHL1 as a putative SSRI 
antidepressant response biomarker. Pharmacogenomics 2011; 12(2): 171-184. 

 
118. Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Rehavi M, et al. Genome-

wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative 
SSRI antidepressant response biomarkers. Pharmacogenomics 2012; 13(10): 1129-1139. 

 
119. Probst-Schendzielorz K, Scholl C, Efimkina O, Ersfeld E, Viviani R, Serretti A, et al. CHL1, 

ITGB3 and SLC6A4 gene expression and antidepressant drug response: results from the 
Munich Antidepressant Response Signature (MARS) study. Pharmacogenomics 2015; 16(7): 
689-701. 

 
120. Rollins B, Martin MV, Morgan L, Vawter MP. Analysis of whole genome biomarker 

expression in blood and brain. American Journal of Medical Genetics Part B: 
Neuropsychiatric Genetics 2010; 153(4): 919-936. 

 
121. Brammer M. The role of neuroimaging in diagnosis and personalized medicine-current 

position and likely future directions. Dialogues in Clinical Neuroscience 2009; 11(4): 389-
396. 

 



References 

111 

122. Falcone M, Smith RM, Chenoweth MJ, Kumar Bhattacharjee A, Kelsoe JR, Tyndale RF, et al. 
Neuroimaging in Psychiatric Pharmacogenetics Research: The Promise and Pitfalls. 
Neuropsychopharmacology 2013; 38(12): 2327-2337. 

 
123. Michael AM, King MD, Ehrlich S, Pearlson G, White T, Holt DJ, et al. A data-driven 

investigation of gray matter–function correlations in schizophrenia during a working 
memory task. Frontiers in human neuroscience 2011; 5(1): 71. 

 
124. de Kwaasteniet B, Ruhe E, Caan M, Rive M, Olabarriaga S, Groefsema M, et al. Relation 

between structural and functional connectivity in major depressive disorder. Biological 
psychiatry 2013; 74(1): 40-47. 

 
125. Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA. Arterial spin labeling perfusion fMRI 

with very low task frequency. Magnetic Resonance in Medicine 2003; 49(5): 796-802. 

 
126. Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends in 

Cognitive Sciences 2006; 10(2): 59-63. 

 
127. Dunlop BW, Mayberg HS. Neuroimaging-based biomarkers for treatment selection in major 

depressive disorder. Dialogues in clinical neuroscience 2014; 16(4): 479. 

 
128. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of 

Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science 2003; 
301(5634): 805-809. 

 
129. Dunkin JJ, Leuchter AF, Cook IA, Kasl-Godley JE, Abrams M, Rosenberg-Thompson S. 

Executive dysfunction predicts nonresponse to fluoxetine in major depression. Journal of 
affective disorders 2000; 60(1): 13-23. 

 
130. Tanti A, Belzung C. Hippocampal neurogenesis: a biomarker for depression or 

antidepressant effects? Methodological considerations and perspectives for future 
research. Cell Tissue Res 2013; 354(1): 203-219. 

 
131. Klapper J. Interferon beta treatment of multiple sclerosis. Neurology 1994; 44(1): 188-188-

a. 

 
132. Vattakatuchery JJ, Rickards H, Cavanna AE. Pathogenic Mechanisms of Depression in 

Multiple Sclerosis. The Journal of Neuropsychiatry and Clinical Neurosciences 2011; 23(3): 
261-276. 

 
133. Viviani R. Emotion regulation, attention to emotion, and the ventral attentional network. 

Frontiers in Human Neuroscience 2013; 7(1): 746. 

 



References 
 

112 

134. Rohe T, Weber B, Fliessbach K. Dissociation of BOLD responses to reward prediction errors 
and reward receipt by a model comparison. European Journal of Neuroscience 2012; 36(3): 
2376-2382. 

 
135. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational 

neuroscience. Neuroscience & Biobehavioral Reviews 2011; 35(3): 537-555. 

 
136. Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS. Can’t shake that feeling: event-

related fMRI assessment of sustained amygdala activity in response to emotional 
information in depressed individuals. Biological psychiatry 2002; 51(9): 693-707. 

 
137. Hennings JM, Owashi T, Binder EB, Horstmann S, Menke A, Kloiber S, et al. Clinical 

characteristics and treatment outcome in a representative sample of depressed inpatients 
– Findings from the Munich Antidepressant Response Signature (MARS) project. Journal of 
Psychiatric Research 2009; 43(3): 215-229. 

 
138. Ising M, Lucae S, Binder EBa, et al. A genomewide association study points to multiple loci 

that predict antidepressant drug treatment outcome in depression. Archives of General 
Psychiatry 2009; 66(9): 966-975. 

 
139. Ising M, Horstmann S, Kloiber S, Lucae S, Binder EB, Kern N, et al. Combined 

dexamethasone/corticotropin releasing hormone test predicts treatment response in major 
depression–a potential biomarker? Biological psychiatry 2007; 62(1): 47-54. 

 
140. Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M. Cortisol response in the 

combined dexamethasone/CRH test as predictor of relapse in patients with remitted 
depression: a prospective study. Journal of Psychiatric Research 2001; 35(2): 83-94. 

 
141. Rush AJ, Fava M, Wisniewski SR, Lavori PW, Trivedi MH, Sackeim HA, et al. Sequenced 

treatment alternatives to relieve depression (STAR*D): rationale and design. Controlled 
Clinical Trials 2004; 25(1): 119-142. 

 
142. Rush AJ, Trivedi MH, Ibrahim HM, Carmody TJ, Arnow B, Klein DN, et al. The 16-Item quick 

inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report 
(QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biological 
Psychiatry 2003; 54(5): 573-583. 

 
143. Anderson MA, Gusella JF. Use of cyclosporin A in establishing Epstein-Barr virus-

transformed human lymphoblastoid cell lines. In vitro 1984; 20(11): 856-858. 

 
144. Tosato G, Cohen JI. Generation of Epstein‐Barr Virus (EBV)–Immortalized B Cell Lines. 

Current protocols in immunology 2007; 7(7): 22 21-22 24. 

 



References 

113 

145. Lin T-M, Tsai J-L, Lin S-D, Lai C-S, Chang C-C. Accelerated growth and prolonged lifespan of 
adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium 
and antioxidants. Stem cells and development 2005; 14(1): 92-102. 

 
146. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis 

in vivo. Proceedings of the National Academy of Sciences 2008; 105(7): 2415-2420. 

 
147. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few 

Good Reactions. Angewandte Chemie International Edition 2001; 40(11): 2004-2021. 

 
148. Molecular Probes I. Handbook EdU (5-ethynyl-2’-deoxyuridine) Assay. Invitrogen 2010; 1(1): 

1-7. 

 
149. Kibbe WA. OligoCalc: an online oligonucleotide properties calculator. Nucleic acids research 

2007; 35(2): 43-46. 

 
150. Kent WJ. BLAT—the BLAST-like alignment tool. Genome research 2002; 12(4): 656-664. 

 
151. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time 

Quantitative PCR and the 2−ΔΔCT Method. Methods 2001; 25(4): 402-408. 

 
152. Mueller O, Lightfoot S, Schroeder A. RNA integrity number (RIN)–standardization of RNA 

quality control. Agilent application note, publication 2004: 1-8. 

 
153. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING 

v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids 
Research 2015; 43(1): 447-452. 

 
154. Ogawa S, Lee T-M, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast 

dependent on blood oxygenation. Proceedings of the National Academy of Sciences 1990; 
87(24): 9868-9872. 

 
155. Turner R, Jezzard P, Wen H, Kwong K, Le Bihan D, Zeffiro T, et al. Functional mapping of the 

human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magnetic 
resonance in medicine 1993; 29(2): 277-279. 

 
156. Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a 

monetary incentive delay task. Neuroimage 2000; 12(1): 20-27. 

 
157. Viviani R, Dommes L, Steffens M, Breitfeld J, Paul AM, Kaumanns K, et al. Dissociation of 

neural substrates of temporal difference and mean reward rates in a foraging task. Human 
Brain Mapping 2016; 22: 3403  

 



References 
 

114 

158. Repeiski J, Smith M, Sansom I, Repetski J. A differential neural response in the human 
amygdala to fearful and happy facial expressions. Nature 1996; 383: 31. 

 
159. Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion 

face perception: evidence from functional neuroimaging. Neuropsychologia 2007; 45(1): 
174-194. 

 
160. Lundqvist D, Flykt A, Öhman A (1998). The Karolinska Directed Emotional Faces-KDEF. CD-

ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 
Stockholm, Sweden. ISBN 91-630-7164-9. 

 
161. Friston KJ, Holmes AP, Worsley KJ, Poline J, Frith CD, Frackowiak RS. Statistical parametric 

maps in functional imaging: a general linear approach. Human brain mapping 1994; 2(4): 
189-210. 

 
162. Ulmer S, Jansen O. fMRI. Springer, 2010. 

 
163. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and 

hybridization array data repository. Nucleic acids research 2002; 30(1): 207-210. 

 
164. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: 

archive for functional genomics data sets—update. Nucleic acids research 2013; 41(D1): 
D991-D995. 

 
165. Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, et al. Betacellulin 

promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. 
Proceedings of the National Academy of Sciences 2012; 109(4): 1317-1322. 

 
166. Kubo F, Takeichi M, Nakagawa S. Wnt2b inhibits differentiation of retinal progenitor cells in 

the absence of Notch activity by downregulating the expression of proneural genes. 
Development 2005; 132(12): 2759-2770. 

 
167. Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem 

cell number and self-renewal. Nature 2010; 467(7313): 323-327. 

 
168. Brandl E, Chowdhury N, Tiwari A, Lett TP, Meltzer H, Kennedy J, et al. Genetic variation in 

CYP3A43 is associated with response to antipsychotic medication. J Neural Transm 2015; 
122(1): 29-34. 

 
169. Le-Niculescu H, Levey D, Ayalew M, Palmer L, Gavrin L, Jain N, et al. Discovery and 

validation of blood biomarkers for suicidality. Molecular psychiatry 2013; 18(12): 1249-
1264. 

 



References 

115 

170. Sequeira A, Morgan L, Walsh DM, Cartagena PM, Choudary P, Li J, et al. Gene expression 
changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood 
disorders subjects that committed suicide. PLoS One 2012; 7(4): e35367. 

 
171. McCall WV, Batson N, Webster M, Case LD, Joshi I, Derreberry T, et al. Nightmares and 

dysfunctional beliefs about sleep mediate the effect of insomnia symptoms on suicidal 
ideation. J Clin Sleep Med 2013; 9(2): 135-140. 

 
172. Allali-Hassani A, Pan PW, Dombrovski L, Najmanovich R, Tempel W, Dong A, et al. Structural 

and Chemical Profiling of the Human Cytosolic Sulfotransferases. PLoS Biol 2007; 5(5): e97. 

 
173. Wu Melody V, Hen R. The Young and the Restless: Regulation of Adult Neurogenesis by Wnt 

Signaling. Cell Stem Cell 2013; 12(2): 139-140. 

 
174. Boehm C, Newrzella D, Herberger S, Schramm N, Eisenhardt G, Schenk V, et al. Effects of 

antidepressant treatment on gene expression profile in mouse brain: cell type-specific 
transcription profiling using laser microdissection and microarray analysis. Journal of 
Neurochemistry 2006; 97: 44-49. 

 
175. Hayashi H. Lipid Metabolism and Glial Lipoproteins in the Central Nervous System. 

Biological and Pharmaceutical Bulletin 2011; 34(4): 453-461. 

 
176. Tarr PT, Edwards PA. ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the 

CNS and regulate cholesterol homeostasis through SREBP-2. Journal of Lipid Research 2008; 
49(1): 169-182. 

 
177. Puschmann TB, Zandén C, Lebkuechner I, Philippot C, de Pablo Y, Liu J, et al. HB-EGF affects 

astrocyte morphology, proliferation, differentiation, and the expression of intermediate 
filament proteins. Journal of Neurochemistry 2014; 128(6): 878-889. 

 
178. Ries V, Silva RM, Oo TF, Cheng H-C, Rzhetskaya M, Kholodilov N, et al. JNK2 and JNK3 

combined are essential for apoptosis in dopamine neurons of the substantia nigra, but are 
not required for axon degeneration. Journal of Neurochemistry 2008; 107(6): 1578-1588. 

 
179. Schinkel AH. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Advanced Drug 

Delivery Reviews 1999; 36(2–3): 179-194. 

 
180. Britsch S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C, et al. The ErbB2 and 

ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the 
sympathetic nervous system. Genes Dev 1998; 12(12): 1825-1836. 

 
181. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Pütz B, et al. Polymorphisms in 

FKBP5 are associated with increased recurrence of depressive episodes and rapid response 
to antidepressant treatment. Nature genetics 2004; 36(12): 1319-1325. 



References 
 

116 

 
182. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, et al. Polymorphisms of 

the glucocorticoid receptor gene and major depression. Biological psychiatry 2006; 59(8): 
681-688. 

 
183. Lucae S, Salyakina D, Barden N, Harvey M, Gagné B, Labbé M, et al. P2RX7, a gene coding 

for a purinergic ligand-gated ion channel, is associated with major depressive disorder. 
Human molecular genetics 2006; 15(16): 2438-2445. 

 
184. Baghai T, Binder E, Schule C, Salyakina D, Eser D, Lucae S, et al. Polymorphisms in the 

angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity 
and hypercortisolism. Molecular psychiatry 2006; 11(11): 1003-1015. 

 
185. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, et al. Polymorphisms in the drug 

transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 
2008; 57(2): 203-209. 

 
186. Unschuld PG, Ising M, Specht M, Erhardt A, Ripke S, Heck A, et al. Polymorphisms in the 

GAD2 gene‐region are associated with susceptibility for unipolar depression and with a risk 
factor for anxiety disorders. American Journal of Medical Genetics Part B: Neuropsychiatric 
Genetics 2009; 150(8): 1100-1109. 

 
187. Lucae S, Ising M, Horstmann S, Baune BT, Arolt V, Müller-Myhsok B, et al. HTR2A gene 

variation is involved in antidepressant treatment response. European 
Neuropsychopharmacology 2010; 20(1): 65-68. 

 
188. Horstmann S, Lucae S, Menke A, Hennings JM, Ising M, Roeske D, et al. Polymorphisms in 

GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant 
treatment. Neuropsychopharmacology 2010; 35(3): 727-740. 

 
189. Kohli MA, Lucae S, Saemann PG, Schmidt MV, Demirkan A, Hek K, et al. The neuronal 

transporter gene SLC6A15 confers risk to major depression. Neuron 2011; 70(2): 252-265. 

 
190. Kloiber S, Kohli M, Brueckl T, Ripke S, Ising M, Uhr M, et al. Variations in tryptophan 

hydroxylase 2 linked to decreased serotonergic activity are associated with elevated risk for 
metabolic syndrome in depression. Molecular psychiatry 2010; 15(7): 736-747. 

 
191. Kohli MA, Salyakina D, Pfennig A, Lucae S, Horstmann S, Menke A, et al. Association of 

Genetic Variants in the Neurotrophic Receptor–Encoding Gene NTRK2 and a Lifetime 
History of Suicide Attempts in Depressed Patients. Archives of general psychiatry 2010; 
67(4): 348-359. 

 
192. Pfennig A, Kunzel HE, Kern N, Ising M, Majer M, Fuchs B, et al. Hypothalamus-pituitary-

adrenal system regulation and suicidal behavior in depression. Biological psychiatry 2005; 
57(4): 336-342. 



References 

117 

 
193. Majer M, Ising M, Künzel H, Binder E, Holsboer F, Modell S, et al. Impaired divided attention 

predicts delayed response and risk to relapse in subjects with depressive disorders. 
Psychological medicine 2004; 34(08): 1453-1463. 

 
194. Reppermund S, Zihl J, Lucae S, Horstmann S, Kloiber S, Holsboer F, et al. Persistent cognitive 

impairment in depression: the role of psychopathology and altered hypothalamic-pituitary-
adrenocortical (HPA) system regulation. Biological psychiatry 2007; 62(5): 400-406. 

 
195. Kloiber S, Ising M, Reppermund S, Horstmann S, Dose T, Majer M, et al. Overweight and 

obesity affect treatment response in major depression. Biological psychiatry 2007; 62(4): 
321-326. 

 
196. Howland R. Sequenced Treatment Alternatives to Relieve Depression (STAR* D). Part 1: 

study design. Journal of psychosocial nursing and mental health services 2008; 46(9): 21-24. 

 
197. Sinyor M. The sequenced treatment alternatives to relieve depression (STAR* D) trial: a 

review. Canadian Journal of Psychiatry 2010; 55(3): 126. 

 
198. Nierenberg AA, Fava M, Trivedi MH, Wisniewski SR, Thase ME, McGrath PJ, et al. A 

comparison of lithium and T 3 augmentation following two failed medication treatments 
for depression: a STAR* D report. American journal of Psychiatry 2006; 163(9): 1519-1530. 

 
199. Fava M, A John Rush M, Wisniewski SR, Nierenberg AA, Alpert JE, McGrath PJ, et al. A 

comparison of mirtazapine and nortriptyline following two consecutive failed medication 
treatments for depressed outpatients: a STAR* D report. American Journal of Psychiatry 
2006. 

 
200. Rush AJ. STAR* D: what have we learned? Am J Psychiatry 2007; 164(2): 201. 

 
201. Warden D, Rush AJ, Trivedi MH, Fava M, Wisniewski SR. The STAR* D Project results: a 

comprehensive review of findings. Current psychiatry reports 2007; 9(6): 449-459. 

 
202. Stark AL, Dolan ME. Lymphoblastoid cell lines in pharmacogenomics: how applicable are 

they to clinical outcomes? Pharmacogenomics 2013; 14(5): 447-450. 

 
203. Zhang W, Dolan ME. Use of cell lines in the investigation of pharmacogenetic loci. Current 

pharmaceutical design 2009; 15(32): 3782. 

 
204. Welsh M, Mangravite L, Medina MW, Tantisira K, Zhang W, Huang RS, et al. 

Pharmacogenomic Discovery Using Cell-Based Models. Pharmacological Reviews 2009; 
61(4): 413-429. 

 



References 
 

118 

205. Wheeler HE, Dolan ME. Lymphoblastoid cell lines in pharmacogenomic discovery and 
clinical translation. Pharmacogenomics 2012; 13(1): 55-70. 

 
206. Mangravite LM, Medina MW, Cui J, Pressman S, Smith JD, Rieder MJ, et al. Combined 

influence of LDLR and HMGCR sequence variation on lipid-lowering response to 
simvastatin. Arteriosclerosis, thrombosis, and vascular biology 2010; 30(7): 1485-1492. 

 
207. Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, et al. Genomewide 

Association between GLCCI1 and Response to Glucocorticoid Therapy in Asthma. New 
England Journal of Medicine 2011; 365(13): 1173-1183. 

 
208. Ling PD, Huls HM. Isolation and immortalization of lymphocytes. Current Protocols in 

Molecular Biology 2005: 28.22. 21-28.22. 25. 

 
209. Shirley MD, Baugher JD, Stevens EL, Tang Z, Gerry N, Beiswanger CM, et al. Chromosomal 

variation in lymphoblastoid cell lines. Human mutation 2012; 33(7): 1075-1086. 

 
210. Çalışkan M, Cusanovich DA, Ober C, Gilad Y. The effects of EBV transformation on gene 

expression levels and methylation profiles. Human molecular genetics 2011; 20(8): 1643-
4652. 

 
211. Sie L, Loong S, Tan E. Utility of lymphoblastoid cell lines. Journal of neuroscience research 

2009; 87(9): 1953-1959. 

 
212. Sie L, Loong S, Tan EK. Utility of lymphoblastoid cell lines. Journal of Neuroscience Research 

2009; 87(9): 1953-1959. 

 
213. Mitra A, Crews K, Pounds S, Cao X, Downing J, Raimondi S, et al. Impact of genetic variation 

in FKBP5 on clinical response in pediatric acute myeloid leukemia patients: a pilot study. 
Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK 
2011; 25(8): 1354. 

 
214. Ziliak D, O'donnell PH, Im HK, Gamazon ER, Chen P, Delaney S, et al. Germline 

polymorphisms discovered via a cell-based, genome-wide approach predict platinum 
response in head and neck cancers. Translational Research 2011; 157(5): 265-272. 

 
215. Huang RS, Johnatty SE, Gamazon ER, Im HK, Ziliak D, Duan S, et al. Platinum Sensitivity–

Related Germline Polymorphism Discovered via a Cell-Based Approach and Analysis of Its 
Association with Outcome in Ovarian Cancer Patients. Clinical Cancer Research 2011; 
17(16): 5490-5500. 

 
216. Brown CC, Havener TM, Medina MW, Auman JT, Mangravite LM, Krauss RM, et al. A 

genome-wide association analysis of temozolomide response using lymphoblastoid cell 
lines reveals a clinically relevant association with MGMT. Pharmacogenetics and genomics 
2012; 22(11): 796. 



References 

119 

 
217. Matigian NA, McCurdy RD, Féron F, Perry C, Smith H, Filippich C, et al. Fibroblast and 

lymphoblast gene expression profiles in schizophrenia: are non-neural cells informative? 
PLoS One 2008; 3(6): 2412. 

 
218. Horike S-i, Cai S, Miyano M, Cheng J-F, Kohwi-Shigematsu T. Loss of silent-chromatin 

looping and impaired imprinting of DLX5 in Rett syndrome. Nature genetics 2005; 37(1): 31-
40. 

 
219. Montag-Sallaz M, Schachner M, Montag D. Misguided axonal projections, neural cell 

adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the 
close homolog of L1. Molecular and Cellular Biology 2002; 22(22): 7967-7981. 

 
220. Morellini F, Lepsveridze E, Kähler B, Dityatev A, Schachner M. Reduced reactivity to novelty, 

impaired social behavior, and enhanced basal synaptic excitatory activity in perforant path 
projections to the dentate gyrus in young adult mice deficient in the neural cell adhesion 
molecule CHL1. Molecular and Cellular Neuroscience 2007; 34(2): 121-136. 

 
221. Demyanenko GP, Siesser PF, Wright AG, Brennaman LH, Bartsch U, Schachner M, et al. L1 

and CHL1 cooperate in thalamocortical axon targeting. Cerebral Cortex 2011; 21(2): 401-
412. 

 
222. Demyanenko GP, Halberstadt AI, Rao RS, Maness PF. CHL1 cooperates with PAK1–3 to 

regulate morphological differentiation of embryonic cortical neurons. Neuroscience 2010; 
165(1): 107-115. 

 
223. Huang X, Zhu L-l, Zhao T, Wu L-y, Wu K-w, Schachner M, et al. CHL1 negatively regulates the 

proliferation and neuronal differentiation of neural progenitor cells through activation of 
the ERK1/2 MAPK pathway. Molecular and Cellular Neuroscience 2011; 46(1): 296-307. 

 
224. Laifenfeld D, Karry R, Klein E, Ben-Shachar D. Alterations in cell adhesion molecule L1 and 

functionally related genes in major depression: a postmortem study. Biological psychiatry 
2005; 57(7): 716-725. 

 
225. Sakurai K, Migita O, Toru M, Arinami T. An association between a missense polymorphism 

in the close homologue of L1 (CHL1, CALL) gene and schizophrenia. Molecular psychiatry 
2002; 7(4): 412-415. 

 
226. Chen Q-Y, Chen Q, Feng G-Y, Lindpaintner K, Chen Y, Sun X, et al. Case-control association 

study of the close homologue of L1 (CHL1) gene and schizophrenia in the Chinese 
population. Schizophrenia research 2005; 73(2): 269-274. 

 
227. Oved K, Morag A, Pasmanik-Chor M, Rehavi M, Shomron N, Gurwitz D. Genome-wide 

expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the 
mode of action of antidepressants. Translational Psychiatry 2013; 3(10): 171-184. 



References 
 

120 

 
228. Carneiro AMD, Cook EH, Murphy DL, Blakely RD. Interactions between integrin αIIbβ3 and 

the serotonin transporter regulate serotonin transport and platelet aggregation in mice and 
humans. The Journal of clinical investigation 2008; 118(4): 1544-1552. 

 
229. Fabbri C, Crisafulli C, Gurwitz D, Stingl J, Calati R, Albani D, et al. Neuronal cell adhesion 

genes and antidepressant response in three independent samples. The pharmacogenomics 
journal 2015. 

 
230. Clark S, Adkins D, Aberg K, Hettema J, McClay J, Souza R, et al. Pharmacogenomic study of 

side-effects for antidepressant treatment options in STAR* D. Psychological medicine 2012; 
42(06): 1151-1162. 

 
231. Morag A, Kirchheiner J, Rehavi M, Gurwitz D. Human lymphoblastoid cell line panels: novel 

tools for assessing shared drug pathways. Pharmacogenomics 2010; 11(3): 327-340. 

 
232. Squassina A, Costa M, Congiu D, Manchia M, Angius A, Deiana V, et al. Insulin-like growth 

factor 1 (IGF-1) expression is up-regulated in lymphoblastoid cell lines of lithium responsive 
bipolar disorder patients. Pharmacological Research 2013; 73(0): 1-7. 

 
233. Chen H, Wang N, Burmeister M, McInnis MG. MicroRNA expression changes in 

lymphoblastoid cell lines in response to lithium treatment. International Journal of 
Neuropsychopharmacology 2009; 12(7): 975-981. 

 
234. Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J. Gene expression profiling of 

lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals 
differential regulation of neurologically relevant genes. BMC genomics 2006; 7(1): 1. 

 
235. Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases 

cell proliferation in hippocampus and prefrontal cortex of adult rat. Biological Psychiatry 
2004; 56(8): 570-580. 

 
236. Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable 

stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003; 28(9): 1562-
1571. 

 
237. Zusso M, Debetto P, Guidolin D, Barbierato M, Manev H, Giusti P. Fluoxetine-induced 

proliferation and differentiation of neural progenitor cells isolated from rat postnatal 
cerebellum. Biochemical pharmacology 2008; 76(3): 391-403. 

 
238. Czéh B, Müller-Keuker JI, Rygula R, Abumaria N, Hiemke C, Domenici E, et al. Chronic social 

stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric 
asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 2007; 32(7): 
1490-1503. 

 



References 

121 

239. Lee H, Kim J, Yim S, Kim M, Kim S, Kim Y, et al. Fluoxetine enhances cell proliferation and 
prevents apoptosis in dentate gyrus of maternally separated rats. Molecular psychiatry 
2001; 6(6): 725-728. 

 
240. Sairanen M, Lucas G, Ernfors P, Castrén M, Castrén E. Brain-derived neurotrophic factor and 

antidepressant drugs have different but coordinated effects on neuronal turnover, 
proliferation, and survival in the adult dentate gyrus. The Journal of Neuroscience 2005; 
25(5): 1089-1094. 

 
241. Sachs BD, Caron MG. Chronic fluoxetine increases extra-hippocampal neurogenesis in adult 

mice. International Journal of Neuropsychopharmacology 2015; 18(4): 1-12. 

 
242. Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and 

guidance for study designs. Drug discovery today 2012; 17(9): 475-485. 

 
243. Chang E-A, Beyhan Z, Yoo M-S, Siripattarapravat K, Ko T, Lookingland KJ, et al. Increased 

cellular turnover in response to fluoxetine in neuronal precursors derived from human 
embryonic stem cells The International Journal of Developmental Biology 2010; 54: 707-
715. 

 
244. Scholzen T, Gerdes J. The Ki‐67 protein: from the known and the unknown. Journal of 

cellular physiology 2000; 182(3): 311-322. 

 
245. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing 

radiation response. PNAS 2001; 98(9): 5116-5121. 

 
246. Kusakawa S, Yamauchi J, Miyamoto Y, Sanbe A, Tanoue A. Estimation of embryotoxic effect 

of fluoxetine using embryonic stem cell differentiation system. Life sciences 2008; 83(25): 
871-877. 

 
247. Thibaut R, Porte C. Effects of fibrates, anti-inflammatory drugs and antidepressants in the 

fish hepatoma cell line PLHC-1: cytotoxicity and interactions with cytochrome P450 1A. 
Toxicology in Vitro 2008; 22(5): 1128-1135. 

 
248. Laville N, Aıt-Aıssa S, Gomez E, Casellas C, Porcher J. Effects of human pharmaceuticals on 

cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 2004; 
196(1): 41-55. 

 
249. Caminada D, Escher C, Fent K. Cytotoxicity of pharmaceuticals found in aquatic systems: 

comparison of PLHC-1 and RTG-2 fish cell lines. Aquatic Toxicology 2006; 79(2): 114-123. 

 
250. Düsman E, Almeida I, Mariucci R, Mantovani M, Vicentini V. Cytotoxicity and mutagenicity 

of fluoxetine hydrochloride (Prozac), with or without vitamins A and C, in plant and animal 
model systems. Genetics and Molecular Research 2014; 13(1): 578-589. 



References 
 

122 

 
251. Smith EM, Iftikar FI, Higgins S, Irshad A, Jandoc R, Lee M, et al. In vitro inhibition of 

cytochrome P450-mediated reactions by gemfibrozil, erythromycin, ciprofloxacin and 
fluoxetine in fish liver microsomes. Aquatic toxicology 2012; 109: 259-266. 

 
252. Souza MEJ, Polizello ACM, Uyemura SA, Castro-Silva O, Curti C. Effect of fluoxetine on rat 

liver mitochondria. Biochemical pharmacology 1994; 48(3): 535-541. 

 
253. Whirl-Carrillo M, McDonagh E, Hebert J, Gong L, Sangkuhl K, Thorn C, et al. 

Pharmacogenomics knowledge for personalized medicine. Clinical pharmacology and 
therapeutics 2012; 92(4): 414. 

 
254. Sangkuhl K, Klein TE, Altman RB. PharmGKB summary: citalopram pharmacokinetics 

pathway. Pharmacogenetics and genomics 2011; 21(11): 769. 

 
255. Morag A, Oved K, Gurwitz D. Sex Differences in Human Lymphoblastoid Cells Sensitivities to 

Antipsychotic Drugs. J Mol Neurosci 2013; 49(3): 554-558. 

 
256. Fava M, A John Rush M, Alpert JE, Balasubramani G, Wisniewski SR, Carmin CN, et al. 

Difference in treatment outcome in outpatients with anxious versus nonanxious 
depression: a STAR* D report. American Journal of Psychiatry 2008; 165(3): 342-351. 

 
257. Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, Ripke S, et al. A genomewide association 

study points to multiple loci that predict antidepressant drug treatment outcome in 
depression. Archives of general psychiatry 2009; 66(9): 966-975. 

 
258. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: 

age-related decrease of neuronal progenitor proliferation. The Journal of neuroscience 
1996; 16(6): 2027-2033. 

 
259. Nixon K, Crews FT. Binge ethanol exposure decreases neurogenesis in adult rat 

hippocampus. Journal of neurochemistry 2002; 83(5): 1087-1093. 

 
260. Van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, 

and long-term potentiation in mice. Proceedings of the National Academy of Sciences 1999; 
96(23): 13427-13431. 

 
261. Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends in Neurosciences 

2013; 36(5): 259-267. 

 
262. Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable 

stress: reversal by fluoxetine treatment. Neuropsychopharmacology : official publication of 
the American College of Neuropsychopharmacology 2003; 28(9): 1562-1571. 

 



References 

123 

263. Pilar-Cuellar F, Vidal R, Diaz A, Castro E, dos Anjos S, Pascual-Brazo J, et al. Neural Plasticity 
and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication. 
Neural Plasticity 2013; 2013: 537265-537265. 

 
264. Wang J-W, David DJ, Monckton JE, Battaglia F, Hen R. Chronic Fluoxetine Stimulates 

Maturation and Synaptic Plasticity of Adult-Born Hippocampal Granule Cells. The Journal of 
Neuroscience 2008; 28(6): 1374-1384. 

 
265. Khemissi W, Farooq RK, Le Guisquet A-M, Sakly M, Belzung C. Dysregulation of the 

hypothalamus-pituitary-adrenal axis predicts some aspects of the behavioral response to 
chronic fluoxetine: association with hippocampal cell proliferation. Frontiers in Behavioral 
Neuroscience 2014; 8: 340. 

 
266. Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, et al. Antidepressant-Induced 

Neurogenesis in the Hippocampus of Adult Nonhuman Primates. The Journal of 
Neuroscience 2007; 27(18): 4894-4901. 

 
267. Chen F, Madsen TM, Wegener G, Nyengaard JR. Imipramine treatment increases the 

number of hippocampal synapses and neurons in a genetic animal model of depression. 
Hippocampus 2010; 20(12): 1376-1384. 

 
268. Yu H, Chen Z-y. The role of BDNF in depression on the basis of its location in the neural 

circuitry. Acta Pharmacologica Sinica 2011; 32(1): 3-11. 

 
269. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the 

adult brain. Proceedings of the National Academy of Sciences 2006; 103(21): 8233-8238. 

 
270. David DJ, Wang J, Samuels BA, Rainer Q, David I, Gardier AM, et al. Implications of the 

functional integration of adult-born hippocampal neurons in anxiety-depression disorders. 
The Neuroscientist 2010; 16(5): 578-591. 

 
271. Malmersjö S, Rebellato P, Smedler E, Planert H, Kanatani S, Liste I, et al. Neural progenitors 

organize in small-world networks to promote cell proliferation. Proceedings of the National 
Academy of Sciences 2013; 110(16): E1524-E1532. 

 
272. Glaser T, Resende RR, Ulrich H. Implications of purinergic receptor-mediated intracellular 

calcium transients in neural differentiation. Cell Communication and Signaling 2013; 11(1): 
1. 

 
273. McKiernan E, O'Driscoll L, Kasper M, Barron N, O'Sullivan F, Clynes M. Directed 

differentiation of mouse embryonic stem cells into pancreatic-like or neuronal-and glial-like 
phenotypes. Tissue engineering 2007; 13(10): 2419-2430. 

 
274. Davies AM. Neuronal survival: early dependence on Schwann cells. Current biology 1998; 

8(1): R15-R18. 



References 
 

124 

 
275. Jin K, Mao XO, Sun Y, Xie L, Jin L, Nishi E, et al. Heparin-binding epidermal growth factor-like 

growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in 
vitro and in vivo. The Journal of neuroscience 2002; 22(13): 5365-5373. 

 
276. Linggi B, Carpenter G. ErbB receptors: new insights on mechanisms and biology. Trends in 

cell biology 2006; 16(12): 649-656. 

 
277. Lemarchand E, Maubert E, Haelewyn B, Ali C, Rubio M, Vivien D. Stressed neurons protect 

themselves by a tissue-type plasminogen activator-mediated EGFR-dependent mechanism. 
Cell Death & Differentiation 2016; 23(1): 123-131. 

 
278. Pirl WF, Traeger L, Greer JA, Bemis H, Gallagher E, Lennes I, et al. Tumor Epidermal Growth 

Factor Receptor Genotype and Depression in Stage IV Non-Small Cell Lung Cancer. The 
Oncologist 2011; 16(9): 1299-1306. 

 
279. Logotheti M, Papadodima O, Chatziioannou A, Venizelos N, Kolisis F. Gene Expression 

Analysis of Fibroblasts from Patients with Bipolar Disorder. J Neuropsychopharmacol 
Mental Health 2015; 1(103): 2. 

 
280. Israsena N, Hu M, Fu W, Kan L, Kessler JA. The presence of FGF2 signaling determines 

whether β-catenin exerts effects on proliferation or neuronal differentiation of neural stem 
cells. Developmental Biology 2004; 268(1): 220-231. 

 
281. Kléber M, Lee H-Y, Wurdak H, Buchstaller J, Riccomagno MM, Ittner LM, et al. Neural crest 

stem cell maintenance by combinatorial Wnt and BMP signaling. The Journal of Cell Biology 
2005; 169(2): 309-320. 

 
282. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, et al. Dysregulation of the 

fibroblast growth factor system in major depression. Proceedings of the National Academy 
of Sciences of the United States of America 2004; 101(43): 15506-15511. 

 
283. Ordway GA, Szebeni A, Chandley MJ, Stockmeier CA, Xiang L, Newton SS, et al. Low gene 

expression of bone morphogenetic protein 7 in brainstem astrocytes in major depression. 
International Journal of Neuropsychopharmacology 2012; 15(7): 855-868. 

 
284. Fuentealba Luis C, Obernier K, Alvarez-Buylla A. Adult Neural Stem Cells Bridge Their Niche. 

Cell Stem Cell 2012; 10(6): 698-708. 

 
285. Quesseveur G, David D, Gaillard M, Pla P, Wu M, Nguyen H, et al. BDNF overexpression in 

mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like 
activities. Translational psychiatry 2013; 3(4): e253. 

 
286. Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nature 

Reviews Neuroscience 2010; 11(2): 77-86. 



References 

125 

 
287. Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, et al. Wnt-mediated activation 

of NeuroD1 and retro-elements during adult neurogenesis. Nature neuroscience 2009; 
12(9): 1097-1105. 

 
288. Vanderhaeghen P. Wnts blow on NeuroD1 to promote adult neuron production and 

diversity. Nature neuroscience 2009; 12(9): 1079-1081. 

 
289. Bayatti N, Sarma S, Shaw C, Eyre JA, Vouyiouklis DA, Lindsay S, et al. Progressive loss of 

PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to 
the cortical plate during human cortical development. European Journal of Neuroscience 
2008; 28(8): 1449-1456. 

 
290. Couillard‐Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. 

Doublecortin expression levels in adult brain reflect neurogenesis. European Journal of 
Neuroscience 2005; 21(1): 1-14. 

 
291. Duncan RN, Xie Y, McPherson AD, Taibi AV, Bonkowsky JL, Douglass AD, et al. Hypothalamic 

radial glia function as self-renewing neural progenitors in the absence of Wnt/β-catenin 
signaling. Development 2016; 143(1): 45-53. 

 
292. Clevers H, Loh KM, Nusse R. An integral program for tissue renewal and regeneration: Wnt 

signaling and stem cell control. Science 2014; 346(6205): 1-7. 

 
293. Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural 

stem/progenitor cells. Cell Mol Life Sci 2015; 72(21): 4157-4172. 

 
294. Halleskog C, Mulder J, Dahlström J, Mackie K, Hortobágyi T, Tanila H, et al. WNT signaling in 

activated microglia is proinflammatory. Glia 2011; 59(1): 119-131. 

 
295. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to 

neuropsychiatric disease. Nature Reviews Neuroscience 2014; 15(5): 300-312. 

 
296. Coullery RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are altered by 

glyphosate through a WNT non-canonical signaling pathway. NeuroToxicology 2016; 52: 
150-161. 

 
297. Lie D-C, Colamarino SA, Song H-J, Desire L, Mira H, Consiglio A, et al. Wnt signalling 

regulates adult hippocampal neurogenesis. Nature 2005; 437(7063): 1370-1375. 

 
298. Ikeya M, Lee SMK, Johnson JE, McMahon AP, Takada S. Wnt signalling required for 

expansion of neural crest and CNS progenitors. Nature 1997; 389(6654): 966-970. 

 



References 
 

126 

299. Sahores M, Gibb A, Salinas PC. Frizzled-5, a receptor for the synaptic organizer Wnt7a, 
regulates activity-mediated synaptogenesis. Development 2010; 137(13): 2215-2225. 

 
300. Varela-Nallar L, Grabowski CP, Alfaro IE, Alvarez AR, Inestrosa NC. Role of the Wnt receptor 

Frizzled-1 in presynaptic differentiation and function. Neural Dev 2009; 4(1): 41. 

 
301. Jessberger S, Clark RE, Broadbent NJ, Clemenson GD, Consiglio A, Lie DC, et al. Dentate 

gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition 
memory in adult rats. Learning & Memory 2009; 16(2): 147-154. 

 
302. Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, et al. Wnt2 expression and 

signaling is increased by different classes of antidepressant treatments. Biological 
psychiatry 2010; 68(6): 521-527. 

 
303. Eom T-Y, Jope RS. Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-

3α/β impairs in vivo neural precursor cell proliferation. Biological psychiatry 2009; 66(5): 
494-502. 

 
304. Machado-Vieira R, Salvadore G, DiazGranados N, Zarate CA. Ketamine and the next 

generation of antidepressants with a rapid onset of action. Pharmacology & therapeutics 
2009; 123(2): 143-150. 

 
305. Sidharthan NP, Butcher NJ, Mitchell DJ, Minchin RF. Expression of the orphan cytosolic 

sulfotransferase SULT4A1 and its major splice variant in human tissues and cells: 
dimerization, degradation and polyubiquitination. PloS one 2014; 9(7): e101520. 

 
306. Minchin RF, Lewis A, Mitchell D, Kadlubar FF, McManus ME. Sulfotransferase 4A1. The 

international journal of biochemistry & cell biology 2008; 40(12): 2686-2691. 

 
307. Alnouti Y, Klaassen CD. Tissue distribution and ontogeny of sulfotransferase enzymes in 

mice. Toxicological Sciences 2006; 93(2): 242-255. 

 
308. Meltzer HY, Brennan MD, Woodward ND, Jayathilake K. Association of Sult4A1 SNPs with 

psychopathology and cognition in patients with schizophrenia or schizoaffective disorder. 
Schizophrenia research 2008; 106(2): 258-264. 

 
309. Alnouti Y, Klaassen CD. Mechanisms of gender-specific regulation of mouse 

sulfotransferases (Sults). Xenobiotica 2011; 41(3): 187-197. 

 
310. Butcher NJ, Mitchell DJ, Burow R, Minchin RF. Regulation of mouse brain-selective 

sulfotransferase sult4a1 by cAMP response element-binding protein and activating 
transcription factor-2. Molecular pharmacology 2010; 78(3): 503-510. 

 
311. Gass P, Riva MA. CREB, neurogenesis and depression. Bioessays 2007; 29(10): 957-961. 



References 

127 

 
312. Pandey GN, Dwivedi Y, Ren X, Rizavi HS, Roberts RC, Conley RR. Cyclic AMP response 

element-binding protein in post-mortem brain of teenage suicide victims: specific decrease 
in the prefrontal cortex but not the hippocampus. The International Journal of 
Neuropsychopharmacology 2007; 10(05): 621-629. 

 
313. Lim S-W, Kim S, Carroll BJ, Kim DK. T-lymphocyte CREB as a potential biomarker of response 

to antidepressant drugs. The International Journal of Neuropsychopharmacology 2013; 
16(05): 967-974. 

 
314. Zeigler-Johnson C, Friebel T, Walker AH, Wang Y, Spangler E, Panossian S, et al. CYP3A4, 

CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate 
cancer. Cancer research 2004; 64(22): 8461-8467. 

 
315. Westlind A, Malmebo S, Johansson I, Otter C, Andersson TB, Ingelman-Sundberg M, et al. 

Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, 
CYP3A43. Biochemical and biophysical research communications 2001; 281(5): 1349-1355. 

 
316. Bojanic DD, Tarr PT, Gale GD, Smith DJ, Bok D, Chen B, et al. Differential expression and 

function of ABCG1 and ABCG4 during development and aging. Journal of lipid research 
2010; 51(1): 169-181. 

 
317. Uehara Y, Yamada T, Baba Y, Miura S-i, Abe S, Kitajima K, et al. ATP-binding cassette 

transporter G4 is highly expressed in microglia in Alzheimer's brain. Brain research 2008; 
1217: 239-246. 

 
318. Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O. Antioxidative enzyme 

activities and lipid peroxidation in major depression: alterations by antidepressant 
treatments. Journal of affective disorders 2001; 64(1): 43-51. 

 
319. Maes M, Smith R, Christophe A, Cosyns P, Desnyder R, Meltzer H. Fatty acid composition in 

major depression: decreased ω3 fractions in cholesteryl esters and increased C20: 4ω6C20: 
5ω3 ratio in cholesteryl esters and phospholipids. Journal of affective disorders 1996; 38(1): 
35-46. 

 
320. Kusuhara H, Suzuki H, Sugiyama Y. The role of P‐Glycoprotein and canalicular multispecific 

organic anion transporter in the hepatobiliary excretion of drugs. Journal of pharmaceutical 
sciences 1998; 87(9): 1025-1040. 

 
321. Chiou WL, Chung SM, Wu TC. Potential role of P-glycoprotein in affecting hepatic 

metabolism of drugs. Pharmaceutical research 2000; 17(8): 903-905. 

 
322. van Asperen J, van Tellingen OH, Beijnen JH. The pharmacological role of P-glycoprotein in 

the intestinal epithelium. Pharmacological research 1998; 37(6): 429-435. 

 



References 
 

128 

323. Herman J, McKlveen J, Solomon M, Carvalho-Netto E, Myers B. Neural regulation of the 
stress response: glucocorticoid feedback mechanisms. Brazilian journal of medical and 
biological research 2012; 45(4): 292-298. 

 
324. Fitzsimons C, Van Hooijdonk L, Schouten M, Zalachoras I, Brinks V, Zheng T, et al. 

Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons 
in the adult hippocampus and impairs fear-motivated behavior. Molecular psychiatry 2013; 
18(9): 993-1005. 

 
325. Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration 

into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biological 
psychiatry 2003; 54(8): 840-846. 

 
326. Wang J-S, Zhu H-J, Gibson BB, Markowitz JS, Donovan JL, DeVane CL. Sertraline and its 

metabolite desmethylsertraline, but not bupropion or its three major metabolites, have 
high affinity for P-glycoprotein. Biological & pharmaceutical bulletin 2008; 31(2): 231. 

 
327. Ejsing TB, Hasselstrøm J, Linnet K. The influence of P-glycoprotein on cerebral and hepatic 

concentrations of nortriptyline and its metabolites. Drug metabolism and drug interactions 
2006; 21(3-4): 139-162. 

 
328. Karlsson L, Carlsson B, Hiemke C, Ahlner J, Bengtsson F, Schmitt U, et al. Altered brain 

concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute 
and chronic treatment. European Neuropsychopharmacology 2013; 23(11): 1636-1644. 

 
329. Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux 

transporters. Nature Reviews Neuroscience 2005; 6(8): 591-602. 

 
330. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry J-M, Bondolfi G, et al. CYP2D6 and 

ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. 
Therapeutic drug monitoring 2008; 30(4): 474-482. 

 
331. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y, et al. ABCB1 (MDR1) gene 

polymorphisms are associated with the clinical response to paroxetine in patients with 
major depressive disorder. Progress in Neuro-Psychopharmacology and Biological 
Psychiatry 2008; 32(2): 398-404. 

 
332. Nikisch G, Eap CB, Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of 

ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacological 
research 2008; 58(5): 344-347. 

 
333. Fukui N, Suzuki Y, Sawamura K, Sugai T, Watanabe J, Inoue Y, et al. Dose-dependent effects 

of the 3435 C> T genotype of ABCB1 gene on the steady-state plasma concentration of 
fluvoxamine in psychiatric patients. Therapeutic drug monitoring 2007; 29(2): 185-189. 

 



References 

129 

334. Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy Jr GM. ABCB1 
(MDR1) polymorphisms and antidepressant response in geriatric depression. 
Pharmacogenetics and genomics 2010; 20(8): 467-475. 

 
335. Lin K-M, Chiu Y-F, Tsai I-J, Chen C-H, Shen WW, Liu SC, et al. ABCB1 gene polymorphisms 

are associated with the severity of major depressive disorder and its response to 
escitalopram treatment. Pharmacogenetics and Genomics 2011; 21(4): 163-170. 

 
336. Singh A, Bousman C, Ng C, Byron K, Berk M. ABCB1 polymorphism predicts escitalopram 

dose needed for remission in major depression. Translational psychiatry 2012; 2(11): e198. 

 
337. Uhr M, Steckler T, Yassouridis A, Holsboer F. Penetration of amitriptyline, but not of 

fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdr1a 
P-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22(4): 380-387. 

 
338. Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, et al. The impact of P-

glycoprotein on the disposition of drugs targeted for indications of the central nervous 
system: evaluation using the MDR1A/1B knockout mouse model. Drug Metabolism and 
Disposition 2005; 33(1): 165-174. 

 
339. Xie W-W, Zhang L, Wu R-R, Yu Y, Zhao J-P, Li L-H. Case-control association study of ABCB1 

gene and major depressive disorder in a local Chinese Han population. Neuropsychiatric 
Disease and Treatment 2015; 11: 1967-1971. 

 
340. De Klerk O, Nolte I, Bet P, Bosker F, Snieder H, den Boer J, et al. ABCB1 gene variants 

influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch 
cases with major depressive disorder. The pharmacogenomics journal 2013; 13(4): 349-353. 

 
341. Singh AB, Bousman CA, Ng CH, Byron K, Berk M. ABCB1 polymorphism predicts 

escitalopram dose needed for remission in major depression. Transl Psychiatry 2012; 2: 
e198. 

 
342. Guey LT, Kravic J, Melander O, Burtt NP, Laramie JM, Lyssenko V, et al. Power in the 

phenotypic extremes: a simulation study of power in discovery and replication of rare 
variants. Genetic epidemiology 2011; 35(4): 236-246. 

 
343. Dolan ME, Newbold KG, Nagasubramanian R, Wu X, Ratain MJ, Cook EH, et al. Heritability 

and linkage analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer research 2004; 
64(12): 4353-4356. 

 
344. Hartford CM, Duan S, Delaney SM, Mi S, Kistner EO, Lamba JK, et al. Population-specific 

genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood 
2009; 113(10): 2145-2153. 

 



References 
 

130 

345. Bleibel WK, Duan S, Huang RS, Kistner EO, Shukla SJ, Wu X, et al. Identification of genomic 
regions contributing to etoposide-induced cytotoxicity. Human genetics 2009; 125(2): 173-
180. 

 
346. Thase ME. Evaluating antidepressant therapies: remission as the optimal outcome. J Clin 

Psychiatry 2003; 64(13): 1,478-425. 

 
347. Judd LL. Major depressive disorder: longitudinal symptomatic structure, relapse and 

recovery. Acta Psychiatrica Scandinavica 2001; 104(2): 81-83. 

 
348. Kennedy BL, Schwab JJ, Morris RL, Beldia G. Assessment of state and trait anxiety in 

subjects with anxiety and depressive disorders. Psychiatric Quarterly 2001; 72(3): 263-276. 

 
349. Julian LJ. Measures of anxiety: State‐Trait Anxiety Inventory (STAI), Beck Anxiety Inventory 

(BAI), and Hospital Anxiety and Depression Scale‐Anxiety (HADS‐A). Arthritis care & 
research 2011; 63(S11): S467-S472. 

 
350. Trajković G, Starčević V, Latas M, Leštarević M, Ille T, Bukumirić Z, et al. Reliability of the 

Hamilton Rating Scale for Depression: A meta-analysis over a period of 49years. Psychiatry 
research 2011; 189(1): 1-9. 

 
351. Smith R. The macrophage theory of depression. Medical hypotheses 1991; 35(4): 298-306. 

 
352. Maes M, Smith R, Simon S. The monocyte-T-lymphocyte hypothesis of major depression. 

Psychoneuroendocrinology 1995; 20(2): 111-116. 

 
353. Owen B, Eccleston D, Ferrier I, Young H. Raised levels of plasma interleukin‐1β in major and 

postviral depression. Acta Psychiatrica Scandinavica 2001; 103(3): 226-228. 

 
354. Penninx BW, Kritchevsky SB, Yaffe K, Newman AB, Simonsick EM, Rubin S, et al. 

Inflammatory markers and depressed mood in older persons: results from the Health, Aging 
and Body Composition study. Biological psychiatry 2003; 54(5): 566-572. 

 
355. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes 

mood changes through alterations in subgenual cingulate activity and mesolimbic 
connectivity. Biological psychiatry 2009; 66(5): 407-414. 

 
356. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, et al. Lipopolysaccharide 

induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, 
hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. 
Psychoneuroendocrinology 2007; 32(5): 516-531. 

 



References 

131 

357. Blackford JU, Avery SN, Cowan RL, Shelton RC, Zald DH. Sustained amygdala response to 
both novel and newly familiar faces characterizes inhibited temperament. Social Cognitive 
and Affective Neuroscience 2010; 6(5): 621-629. 

 
358. Inagaki TK, Muscatell KA, Irwin MR, Cole SW, Eisenberger NI. Inflammation selectively 

enhances amygdala activity to socially threatening images. Neuroimage 2012; 59(4): 3222-
3226. 

 
359. Blair K, Shaywitz J, Smith BW, Rhodes R, Geraci M, Jones M, et al. Response to emotional 

expressions in generalized social phobia and generalized anxiety disorder: evidence for 
separate disorders. American Journal of Psychiatry 2008; 165(9): 1193-1202. 

 
360. Godbout JP, Moreau M, Lestage J, Chen J, Sparkman NL, O'Connor J, et al. Aging 

exacerbates depressive-like behavior in mice in response to activation of the peripheral 
innate immune system. Neuropsychopharmacology 2008; 33(10): 2341-2351. 

 
361. van den Biggelaar AH, Gussekloo J, de Craen AJ, Frölich M, Stek ML, van der Mast RC, et al. 

Inflammation and interleukin-1 signaling network contribute to depressive symptoms but 
not cognitive decline in old age. Experimental gerontology 2007; 42(7): 693-701. 

 
362. Lanquillon S, Krieg J, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment 

response in major depressive disorder. Neuropsychopharmacology 2000; 22(4): 370-379. 

 
363. Nemeroff CB, Vale WW. The neurobiology of depression: inroads to treatment and new 

drug discovery. Journal of Clinical Psychiatry 2005; 66: 5. 

 
364. Miller A. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. The 

FASEB Journal 2014; 28(1): 844. 

 
365. Bluthé R-M, Walter V, Parnet P, Layé S, Lestage J, Verrier D, et al. Lipopolysaccharide 

induces sickness behaviour in rats by a vagal mediated mechanism. Comptes rendus de 
l'Academie des sciences Serie III, Sciences de la vie 1994; 317(6): 499-503. 

 
366. Luheshi GN, Bluthé R-M, Rushforth D, Mulcahy N, Konsman J-P, Goldbach M, et al. 

Vagotomy attenuates the behavioural but not the pyrogenic effects of interleukin-1 in rats. 
Autonomic Neuroscience 2000; 85(1): 127-132. 

 
367. Cottrell GT, Ferguson AV. Sensory circumventricular organs: central roles in integrated 

autonomic regulation. Regulatory peptides 2004; 117(1): 11-23. 

 
368. Vitkovic L, Konsman J, Bockaert J, Dantzer R, Homburger V, Jacque C. Cytokine signals 

propagate through the brain. Molecular psychiatry 2000; 5(6): 604-615. 

 



References 
 

132 

369. Banks WA. The blood–brain barrier in psychoneuroimmunology. Immunology and allergy 
clinics of North America 2009; 29(2): 223-228. 

 
370. Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. 

Current pharmaceutical design 2005; 11(8): 973-984. 

 
371. O'connor J, Lawson M, Andre C, Moreau M, Lestage J, Castanon N, et al. 

Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2, 3-
dioxygenase activation in mice. Molecular psychiatry 2009; 14(5): 511-522. 

 
372. O'Connor JC, Lawson MA, André C, Briley EM, Szegedi SS, Lestage J, et al. Induction of IDO 

by bacille Calmette-Guerin is responsible for development of murine depressive-like 
behavior. The Journal of Immunology 2009; 182(5): 3202-3212. 

 
373. Zhu C-B, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and 

tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 
2006; 31(10): 2121-2131. 

 
374. Zhu C-B, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD. p38 MAPK activation 

elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-
dependent process. Journal of Biological Chemistry 2005; 280(16): 15649-15658. 

 
375. Morón JA, Zakharova I, Ferrer JV, Merrill GA, Hope B, Lafer EM, et al. Mitogen-activated 

protein kinase regulates dopamine transporter surface expression and dopamine transport 
capacity. The Journal of neuroscience 2003; 23(24): 8480-8488. 

 
376. Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, et al. A mechanism 

converting psychosocial stress into mononuclear cell activation. Proceedings of the National 
Academy of Sciences 2003; 100(4): 1920-1925. 

 
377. Müller N, Schwarz M, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, et al. The 

cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of 
a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. 
Molecular psychiatry 2006; 11(7): 680-684. 

 
378. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical 

outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled 
randomised phase III trial. The Lancet 2006; 367(9504): 29-35. 

 
379. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized 

controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant 
depression: the role of baseline inflammatory biomarkers. JAMA psychiatry 2013; 70(1): 31-
41. 

 



References 

133 

380. Brunello N, Alboni S, Capone G, Benatti C, Blom JM, Tascedda F, et al. Acetylsalicylic acid 
accelerates the antidepressant effect of fluoxetine in the chronic escape deficit model of 
depression. International clinical psychopharmacology 2006; 21(4): 219-225. 

 
381. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action 

of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot 
open-label study. International clinical psychopharmacology 2006; 21(4): 227-231. 

 
382. Merali Z, Brennan K, Brau P, Anisman H. Dissociating anorexia and anhedonia elicited by 

interleukin-1β: antidepressant and gender effects on responding for" free chow" and" 
earned" sucrose intake. Psychopharmacology 2003; 165(4): 413-418. 

 
383. Simmons DA, Broderick PA. Cytokines, stressors, and clinical depression: augmented 

adaptation responses underlie depression pathogenesis. Progress in Neuro-
Psychopharmacology and Biological Psychiatry 2005; 29(5): 793-807. 

 
384. Dunn AJ, Swiergiel AH, de Beaurepaire R. Cytokines as mediators of depression: what can 

we learn from animal studies? Neuroscience & Biobehavioral Reviews 2005; 29(4): 891-909. 

 
385. Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH. Association of 

exaggerated HPA axis response to the initial injection of interferon-alpha with development 
of depression during interferon-alpha therapy. American Journal of Psychiatry 2003. 

 
386. Pariante CM. Depression, stress and the adrenal axis. Journal of neuroendocrinology 2003; 

15(8): 811-812. 

 
387. Swaab DF, Bao A-M, Lucassen PJ. The stress system in the human brain in depression and 

neurodegeneration. Ageing research reviews 2005; 4(2): 141-194. 

 
388. Holsboer F. Corticotropin-releasing hormone modulators and depression. Current opinion in 

investigational drugs 2003; 4(1): 46-50. 

 
389. Abler B, Seeringer A, Hartmann A, Grön G, Metzger C, Walter M, et al. Neural correlates of 

antidepressant-related sexual dysfunction: a placebo-controlled fMRI study on healthy 
males under subchronic paroxetine and bupropion. Neuropsychopharmacology 2011; 
36(9): 1837-1847. 

 
390. Wang DJ, Chen Y, Fernández-Seara MA, Detre JA. Potentials and challenges for arterial spin 

labeling in pharmacological magnetic resonance imaging. Journal of Pharmacology and 
Experimental Therapeutics 2011; 337(2): 359-366. 

 
391. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala 

response to masked emotional faces in depressed subjects resolves with antidepressant 
treatment: an fMRI study. Biological psychiatry 2001; 50(9): 651-658. 



References 
 

134 

 
392. Addington J, Saeedi H, Addington D. Facial affect recognition: a mediator between cognitive 

and social functioning in psychosis? Schizophrenia research 2006; 85(1): 142-150. 

 
393. Philippot P, Kornreich C, Blairy S, Baert I, Dulk AD, Bon OL, et al. Alcoholics’ deficits in the 

decoding of emotional facial expression. Alcoholism: Clinical and Experimental Research 
1999; 23(6): 1031-1038. 

 
394. Celani G, Battacchi MW, Arcidiacono L. The understanding of the emotional meaning of 

facial expressions in people with autism. Journal of autism and developmental disorders 
1999; 29(1): 57-66. 

 
395. Button K, Lewis G, Penton-Voak I, Munafò M. Social anxiety is associated with general but 

not specific biases in emotion recognition. Psychiatry research 2013; 210(1): 199-207. 

 
396. Derntl B, Seidel EM, Kryspin‐Exner I, Hasmann A, Dobmeier M. Facial emotion recognition 

in patients with bipolar I and bipolar II disorder. British Journal of Clinical Psychology 2009; 
48(4): 363-375. 

 
397. Rubinow DR, Post RM. Impaired recognition of affect in facial expression in depressed 

patients. Biological psychiatry 1992; 31(9): 947-953. 

 
398. Carton JS, Kessler EA, Pape CL. Nonverbal decoding skills and relationship well-being in 

adults. Journal of Nonverbal Behavior 1999; 23(1): 91-100. 

 
399. Platt B, Kadosh KC, Lau JY. The role of peer rejection in adolescent depression. Depression 

and anxiety 2013; 30(9): 809-821. 

 
400. Bourke C, Douglas K, Porter R. Processing of facial emotion expression in major depression: 

a review. Australian and New Zealand Journal of Psychiatry 2010; 44(8): 681-696. 

 
401. Whalen PJ, Shin LM, Somerville LH, McLean AA, Kim H. Functional neuroimaging studies of 

the amygdala in depression. Seminars in clinical neuropsychiatry 2002; 7(4): 234-242. 

 
402. O'Connor M-F, Irwin MR, Wellisch DK. When grief heats up: pro-inflammatory cytokines 

predict regional brain activation. Neuroimage 2009; 47(3): 891-896. 

 
403. Demenescu LR, Kortekaas R, den Boer JA, Aleman A. Impaired attribution of emotion to 

facial expressions in anxiety and major depression. PLoS One 2010; 5(12): e15058. 

 
404. Kohler CG, Hoffman LJ, Eastman LB, Healey K, Moberg PJ. Facial emotion perception in 

depression and bipolar disorder: a quantitative review. Psychiatry research 2011; 188(3): 
303-309. 



References 

135 

 
405. Dalili M, Penton-Voak I, Harmer C, Munafò M. Meta-analysis of emotion recognition deficits 

in major depressive disorder. Psychological medicine 2015; 45(06): 1135-1144. 

 
406. Frodl T, Scheuerecker J, Albrecht J, Kleemann AM, Müller-Schunk S, Koutsouleris N, et al. 

Neuronal correlates of emotional processing in patients with major depression. The World 
Journal of Biological Psychiatry 2009; 10(3): 202-208. 

 
407. Murphy SE, Norbury R, O'Sullivan U, Cowen PJ, Harmer CJ. Effect of a single dose of 

citalopram on amygdala response to emotional faces. The British Journal of Psychiatry 
2009; 194(6): 535-540. 

 
408. Anand A, Li Y, Wang Y, Gardner K, Lowe MJ. Reciprocal effects of antidepressant treatment 

on activity and connectivity of the mood regulating circuit: an FMRI study. The Journal of 
neuropsychiatry and clinical neurosciences 2007; 19(3): 274-282. 

 
409. Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, et al. Attenuation of the 

neural response to sad faces in major depressionby antidepressant treatment: a 
prospective, event-related functional magnetic resonance imagingstudy. Archives of 
general psychiatry 2004; 61(9): 877-889. 

 
410. Arnone D, McKie S, Elliott R, Thomas EJ, Downey D, Juhasz G, et al. Increased amygdala 

responses to sad but not fearful faces in major depression: relation to mood state and 
pharmacological treatment. American Journal of Psychiatry 2012; 169(8): 841-850. 

 
411. Tao R, Calley CS, Hart J, Mayes TL, Nakonezny PA, Lu H, et al. Brain activity in adolescent 

major depressive disorder before and after fluoxetine treatment. American Journal of 
Psychiatry 2012; 169(4): 381-388. 

 
412. Godlewska B, Norbury R, Selvaraj S, Cowen P, Harmer C. Short-term SSRI treatment 

normalises amygdala hyperactivity in depressed patients. Psychological medicine 2012; 
42(12): 2609-2617. 

 
413. Harmer CJ, de Bodinat C, Dawson GR, Dourish CT, Waldenmaier L, Adams S, et al. 

Agomelatine facilitates positive versus negative affective processing in healthy volunteer 
models. Journal of Psychopharmacology 2011; 25(9): 1159-1167. 

 
414. Harmer CJ, Dawson GR, Dourish CT, Favaron E, Parsons E, Fiore M, et al. Combined NK1 

antagonism and serotonin reuptake inhibition: effects on emotional processing in humans. 
Journal of Psychopharmacology 2013; 27(5): 435-443. 

 
415. Pringle A, McCabe C, Cowen P, Harmer C. Antidepressant treatment and emotional 

processing: can we dissociate the roles of serotonin and noradrenaline? Journal of 
Psychopharmacology 2013; 27(8): 719-731. 

 



References 
 

136 

416. Domschke K, Dannlowski U, Hohoff C, Ohrmann P, Bauer J, Kugel H, et al. Neuropeptide Y 
(NPY) gene: impact on emotional processing and treatment response in anxious depression. 
European Neuropsychopharmacology 2010; 20(5): 301-309. 

 
417. Domschke K, Dannlowski U, Ohrmann P, Lawford B, Bauer J, Kugel H, et al. Cannabinoid 

receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion 
processing in major depression. European Neuropsychopharmacology 2008; 18(10): 751-
759. 

 
418. Rosenblau G, Sterzer P, Stoy M, Park S, Friedel E, Heinz A, et al. Functional neuroanatomy 

of emotion processing in major depressive disorder is altered after successful 
antidepressant therapy. Journal of Psychopharmacology 2012; 26(11): 1424-1433. 

 
419. Dayan P, Balleine BW. Reward, motivation, and reinforcement learning. Neuron 2002; 

36(2): 285-298. 

 
420. Takahashi YK, Roesch MR, Wilson RC, Toreson K, O'Donnell P, Niv Y, et al. Expectancy-

related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nature 
neuroscience 2011; 14(12): 1590-1597. 

 
421. Pedroni A, Koeneke S, Velickaite A, Jäncke L. Differential magnitude coding of gains and 

omitted rewards in the ventral striatum. Brain research 2011; 1411: 76-86. 

 
422. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. 

Neuropsychopharmacology 2010; 35(1): 4-26. 

 
423. Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends 

in cognitive sciences 2011; 15(2): 56-67. 

 
424. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. A double dissociation of 

ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and 
healthy individuals. Biological psychiatry 2005; 58(6): 495-503. 

 
425. Kumar P, Waiter G, Ahearn T, Milders M, Reid I, Steele J. Abnormal temporal difference 

reward-learning signals in major depression. Brain 2008; 131(8): 2084-2093. 

 
426. Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH. Neural responses to monetary 

incentives in major depression. Biological psychiatry 2008; 63(7): 686-692. 

 
427. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Ryan Bogdan A, et al. Reduced 

caudate and nucleus accumbens response to rewards in unmedicated individuals with 
major depressive disorder. American Journal of Psychiatry 2009; 166(6): 702-710. 

 



References 

137 

428. Gradin VB, Kumar P, Waiter G, Ahearn T, Stickle C, Milders M, et al. Expected value and 
prediction error abnormalities in depression and schizophrenia. Brain 2011; 134(6): 1751-
1764. 

 
429. Surguladze S, Brammer MJ, Keedwell P, Giampietro V, Young AW, Travis MJ, et al. A 

differential pattern of neural response toward sad versus happy facial expressions in major 
depressive disorder. Biological psychiatry 2005; 57(3): 201-209. 

 
430. Robinson OJ, Cools R, Carlisi CO, Sahakian BJ, Drevets WC. Ventral striatum response during 

reward and punishment reversal learning in unmedicated major depressive disorder. 
American Journal of Psychiatry 2012; 169(2): 152-159. 

 
431. Tremblay LK, Naranjo CA, Graham SJ, Herrmann N, Mayberg HS, Hevenor S, et al. 

Functional neuroanatomical substrates of altered reward processing in major depressive 
disorder revealed by a dopaminergic probe. Archives of general psychiatry 2005; 62(11): 
1228-1236. 

 
432. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction 

errors underpin reward-seeking behaviour in humans. Nature 2006; 442(7106): 1042-1045. 

 
433. Ossewaarde L, Verkes RJ, Hermans EJ, Kooijman SC, Urner M, Tendolkar I, et al. Two-week 

administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine 
augments functioning of mesolimbic incentive processing circuits. Biological psychiatry 
2011; 70(6): 568-574. 

 
434. Dichter GS, Felder JN, Petty C, Bizzell J, Ernst M, Smoski MJ. The effects of psychotherapy 

on neural responses to rewards in major depression. Biological psychiatry 2009; 66(9): 886-
897. 

 
435. Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, et al. Basal 

ganglia hypermetabolism and symptoms of fatigue during interferon-α therapy. 
Neuropsychopharmacology 2007; 32(11): 2384-2392. 

 
436. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, et al. Dopaminergic 

mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa 
administration. Archives of general psychiatry 2012; 69(10): 1044-1053. 

 
437. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-

induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biological 
psychiatry 2010; 68(8): 748-754. 

 
438. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. The neural correlates of 

anhedonia in major depressive disorder. Biological psychiatry 2005; 58(11): 843-853. 

 



References 
 

138 

439. Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS, et al. Grand challenges in global 
mental health. Nature 2011; 475(7354): 27-30. 

 
440. Rook GA, Raison CL, Lowry CA. Can we vaccinate against depression? Drug discovery today 

2012; 17(9): 451-458. 

 
441. McMahon FJ, Insel TR. Pharmacogenomics and personalized medicine in neuropsychiatry. 

Neuron 2012; 74(5): 773-776. 

 
442. Choi SM, Liu H, Chaudhari P, Kim Y, Cheng L, Feng J, et al. Reprogramming of EBV-

immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood 2011; 
118(7): 1801-1805. 

 
443. Rajesh D, Dickerson SJ, Yu J, Brown ME, Thomson JA, Seay NJ. Human lymphoblastoid B-cell 

lines reprogrammed to EBV-free induced pluripotent stem cells. Blood 2011; 118(7): 1797-
1800. 

 
444. Bennett CM, Miller MB. How reliable are the results from functional magnetic resonance 

imaging? Annals of the New York Academy of Sciences 2010; 1191(1): 133-155. 

 
445. Plichta MM, Schwarz AJ, Grimm O, Morgen K, Mier D, Haddad L, et al. Test–retest reliability 

of evoked BOLD signals from a cognitive–emotive fMRI test battery. Neuroimage 2012; 
60(3): 1746-1758. 

 
446. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic 

neuroscience research. Neuron 2006; 51(5): 527-539. 

 
447. Tost H, Bilek E, Meyer-Lindenberg A. Brain connectivity in psychiatric imaging genetics. 

Neuroimage 2012; 62(4): 2250-2260. 

 
448. Vogt N. Neuroscience: fMRI goes individual. Nature Methods 2015; 12(12): 1112-1113. 

 
449. Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. Functional 

connectome fingerprinting: identifying individuals using patterns of brain connectivity. 
Nature neuroscience 2015; 18(11): 1664-1671. 

 

 

 

  



Appendix 

139 

 

 

Appendix 

Lab Equipment 

Centrifuge 5415 D  Eppendorf, Germany 

Centrifuge 5415 R  Eppendorf, Germany 

Centrifuge 5702  Eppendorf, Germany 

Centrifuge 5804  Eppendorf, Germany 

Centrifuge 5810 R Eppendorf, Germany 

CO2 incubator  Binder, Germany 

FACSCalibur BD Biosciences, Germany 

Hybridization oven  Agilent Technologies, USA 

Inverse light microscope Axiovert 40C  Zeiss, Germany 

Laminar flow cabinet HERAsafe  Heraeus, Germany 

LightCycler® 480  Roche, Germany 

LightCycler® 480 II Roche, Germany 

Mastercycler gradient  Eppendorf, Germany 

Micropipettes  Eppendorf, Germany 

MixMate plate stirrer  Eppendorf, Germany 

MS3 Basic shaker IKA®, Germany 

Multipette® plus  Eppendorf, Germany 

NanoDrop 1000 spectrophotometer  Thermo Scientific 

Pipetboy  Integra, Switzerland 

Safire² microplate reader Tecan, Switzerland 

SureScan Microarray Scanner Agilent Technologies, USA 

TC20™ cell counter  BIO RAD, USA 

Water bath  GFL, Germany 
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Lab disposables / Labware 

Pipette tips, sterile with filter  Sarstedt, Germany 

Flat-bottom 96-well sterile plates  Becton Dickinson, USA 

Cell culture flasks T25, T75  Sarstedt, Germany 

Combitips plus  Eppendorf, Germany 

Cryo Tube vials  Nunc, Denmark 

DMSO safe Acrodisc syringe filters  PALL, Germany 

FACS tubes VWR, Germany 

Glass vials, brown  Agilent Technologies, Germany 

LightCycler 480 multiwell plate 96, white  Roche, Germany 

Microtubes 1.5 ml  Thermo Scientific, USA 

Microtubes 0.2 ml  Thermo Scientific, USA 

Mr. Frosty™ Freezing Container Thermo Scientific, USA 

Pipettes (5-50 ml), sterile  Sarstedt, Germany 

Polystyrene round-bottom tube (5 ml) Becton Dickinson Falcon, Germany 

Syringes Omnifix 3 ml  B. Braun, Melsungen, Germany 

Tissue culture flasks T25  TPP, Switzerland 

Tissue culture flasks T75  TPP, Switzerland 

Tissue culture test plates 12 wells TPP, Switzerland 

 

Chemicals, drugs, solutions and media  

Agarose standard  Roth, Germany 

2-Mercaptoethanol  Sigma Aldrich, USA   

Biocoll Separating Solution Biochrom, Germany 

Citalopram hydrobromide Sigma Aldrich, USA  

Cyclosporine A  Sigma Aldrich, USA 

DMSO Sigma-Aldrich, USA 

DNA loading dye (6 x) Thermo Scientific, Germany 
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Dulbecco’s PBS (1x) PAA, Germany 

Ethanol 96% Merck, Germany   

Ethidium bromide Sigma Aldrich, USA 

FACS Flow BD Bioscience, Germany 

FACS Clean BD Bioscience, Germany 

FACS Rinse BD Bioscience, Germany 

Fetal Bovine Serum  Biochrom, Germany 

Fluoxetine hydrochloride Sigma Aldrich, USA   

Gene Ruler 50 bp DNA Ladder Thermo Scientific, USA 

Imipramine hydrochloride Sigma Aldrich, USA  

Interferon beta 1a (Rebif®) Merck, Germany 

L-glutamine  Biowest, France   

Penicillin/Streptomycin  Biowest, France   

RPMI 1640 Biowest, France 

Sodium chloride Carl Roth GmbH, Germany 

 

Kits 

AllPrep RNA/DNA Mini Kit  Qiagen, Germany 

Click-iT® EdU Alexa Fluor® 647 Flow Cytometry Assay Kit Life technologies, USA 

MycoAlertTM Plus Mycoplasma Detection Kit  Lonza, USA  

QiaShredder  Qiagen, Germany  

QuantiTect SYBR® Green PCR Kit  Qiagen, Germany 

SurePrint G3 Human Gene Expression 8x60K Microarray Kit Agilent Technologies, USA 

Transcriptor First Strand cDNA Synthesis Kit Roche, Germany 

TritestTM Kit Becton Dickinson, Germany 
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cell sex age

line week 0 week 5 week 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

96 f 45 23 17 15                                                                 
718 m 40 32 12 1                                                                               
719 f 51 23 17 12                                                                    
720 f 50 15 0 0                                                       
721 m 52 32 20 19                                                                         
722 f 68 31 13 4                                                     
725 m 66 21 0 0                                                   
728 m 38 40 9 15                                                                    
729 f 52 17 16 6                                                                          
730 f 53 39 0 0                                              
731 f 73 33 19 19                                                         
732 m 30 24 7 0                                                                             
734 m 43 27 5 0                                                     
735 m 23 30 4 2                                                                  
738 m 58 35 6 4                                                               
739 m 54 29 14 13                                                                    
740 m 41 36 28 22                                                                 
741 m 56 26 0 0                                                     
744 m 56 21 17 13                                                                     
751 f 45 31 16 10                                                                        
756 m 57 31 4 0                                                 
757 f 51 27 14 10                                                                                
792 m 62 30 23 21                                                                      
805 f 75 29 21 26                                                            
807 f 54 24 18 21                                                                   
881 m 48 29 23 19                                                                                 
882 m 49 31 17 16                                         
886 m 51 27 21 19                                                                                 

1069 m 32 28 6 5                                                              
1072 f 52 19 15 11                                                                 
1075 f 50 22 12 14                                                               
2123 f 53 14 16 15                                                                                  
2161 m 44 12 17 22                                                                
2411 f 70 23 21 23                                                                       
2741 f 63 25 17 17                                                                                           
2757 m 52 35 19 17                                                                    
1WXV f 60 31 18 8                                                                                
20XP f 22 31 28 27                                                                  
217x f 58 24 11 13                                                   
24CY f 55 5 12 11                                                           
24DC m 25 22 9 7                                                                                           
24DL f 41 36 32 24                                                                                
24E4 m 54 26 0 0                                                       
275J f 48 30 14 16                                                            
275U f 48 24 8 10                                                                                       
278D f 61 27 9 6                                                   
278H f 55 20 12 14                                              
278S m 40 34 11 2                                                                
278Y f 37 11 12 14                                                               

2EMM f 62 37 2 0                                              
2EN5 f 44 33 23 10                                                                  
2EOV f 42 28 26 19                                                                      
VO24 m 48 31 28 31                                                                

sleep medicationmood stabilizers benzodiazepinesSSRE Others neurolepticsHamilton TCA SSRI SNRI NASSA NARI

Abbreviations: f (female), m (male), TCA (tricyclic antidepressants), SSRI (selective serotonin reuptake inhibitors), SNRI (serotonin-norepinephrine reuptake inhibitors), 
NaSSA (noradrenergic and specific serotonergic antidepressant), NARI (noradrenalin-reuptake-inhibitor), SSRE (selective serotonin reuptake enhancer)  
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STAR*D cell lines 
 

 

 

 

cell line anxious sex age citalopram 

depression dose [mg] week 0 week 2 week 4 week 6 week 9 week 12 week 14

396613 Yes         f      47 10 21 13 13 16

482572 Yes m 43 20 24 23 22 10 18

14951 Yes m 53 20 19 15 19 10 14

15100 No          m        38 10 17 15 14 10 10

14754 No          f      49 20 23 11 13 13 5 8

15920 Yes         m        61 20 22 19 21 18 19 18

566271 No          f      38 20 16 13 15 11 13

18132 No          m        32 20 15 17 17 17

232816 Yes m 63 10 17 16 14 18 19 21

407004 Yes         m        56 20 14 13 15 15

279249 No          m        52 20 19 15 18 15 17

17326 Yes         m        43 20 21 11 11 8

14605 No m 52 20 19 20 20 16 20

402264 Yes         f      24 20 22 17 19

521742 Yes         f      42 20 18 18 6 16 10 9

368252 No          f      55 40 15 6 21

301611 No          f      52 20 14 18 17 12

592780 Yes         m        55 20 16 13 14 14 16

613529 Yes         f      52 20 19 19 19 19 19

635406 Yes         m        56 20 21 19 7 14

478406 No          f      55 10 18 12 15 17

437434 No          m        42 20 16 17 15 18

572045 Yes         m        57 20 20 13 15 8 13

578879 Yes         f      60 20 22 14 13 14 14

684462 Yes         f      43 20 24 20

367664 Yes         f      27 20 19 17 13 6 0 0

375024 Yes m 53 10 15 14 17 9 7 4

14132 No          m        28 20 16 3 6 2 1 2

755591 Yes         f      54 20 21 19 14 2 2 15 1

443508 Yes         m        42 20 23 22 12 6 5 2

311634 No m 70 20 15 8 5 2

15269 Yes         f      66 20 16 3 10 4 3 4 5

14267 Yes         f      53 20 16 13 9 1 2 0

17853 Yes m 32 20 20 9 6 9 7 2

362372 No          f      42 5 17 6 10 11 1

17827 Yes         m        55 20 13 8 4 6

234078 Yes         f      48 10 17 12 6 3 3

16718 Yes         f      38 20 20 12 9 6 4 2

14451 Yes         f      26 10 12 11 8 6 2 1

466830 No          f      68 10 16 9 7 5 2 1

330833 No          m        44 20 15 16 3 3 4 0

352423 No          f      48 20 17 8 3 3 1

409700 No          f      65 10 12 8 5 5 2 1

323701 No          m        28 20 16 8 9 7 4 4

510496 Yes         f      60 20 18 19 9 8 4

400643 No          f      35 20 15 12 10 4 3 4

411724 Yes m 69 10 19 13 6 7 4 5

17563 No          m        53 20 13 11 13 13 10 7

546797 Yes         f      49 20 18 14 9 11 8 3

550878 Yes         f      54 20 23 21 16 7 5 3
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