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1 Introduction 

 

1.1  Diabetes mellitus & diabetic cardiomyopathy 

 

Diabetes mellitus (DM) is a metabolic disorder that is characterized by a chronic 

increase of blood glucose concentrations due to defects in insulin signaling. Details of 

insulin signaling defects are further described in chapter 1.8.1. DM can be classified into 

the following general categories: type 1 diabetes mellitus (T1DM) and type 2 diabetes 

mellitus (T2DM). T1DM occurs due to destruction of the insulin secreting β-cells, usually 

leading to an insulin deficiency. T2DM develops because of insulin resistance and a 

defect in compensatory insulin secretion (Craig et al., 2014, American Diabetes, 2015).  

In 2014 approx. 422 million adults worldwide have suffered from DM compared to 108 

million in 1980. During this period, the global prevalence of diabetes in age-

standardized adults raised from 4.7 to 8.5 % (WHO, 2016). The rising prevalence of DM 

is mainly attributed to the increase in T2DM and its main risk factors such as overweight 

and obesity (Chatzigeorgiou et al., 2009, Wang et al., 2014). DM can lead to clinical 

complications such as cardiovascular disease (CVD), stroke, nephropathy, leg 

amputation, retinopathy and neuropathy (WHO, 2016). For example, the risk for diabetic 

patients to suffer from heart failure (HF) is increased by the factor of two to five 

compared to non-diabetic patients (de Simone et al., 2010, Nichols et al., 2004, Kannel 

et al., 1974, Dandamudi et al., 2014). Approx. half of the mortality of diabetic patients is 

related to CVD (Authors/Task Force et al., 2013, Paneni, 2014, Park and Peters, 2014). 

In 1972, Rubler and colleagues published post-mortem data from diabetic patients with 

HF but lacking evidence for the most common causal factors hypertension, myocardial 

ischemia or congenital or vascular heart disease, respectively (Rubler et al., 1972). 

Nowadays this is described by the term “diabetic cardiomyopathy” (DCM) and 

characterized by any abnormality of myocardial diastolic and/or systolic function in 

diabetic subjects without hypertension or coronary artery disease (CAD). The 

prevalence of DCM is rising in parallel with the increasing incidence of obesity and 

T2DM (Jia et al., 2016). So far, the pathophysiology of DCM is not fully elucidated. 

Several molecular mechanisms are described that contribute to its development, e.g. 

altered insulin signaling, impaired calcium (Ca2+) handling, increased fatty acid (FA) 

utilization and oxidative stress (figure 1.1; Bugger and Bode, 2015, Yilmaz et al., 2015, 

Bugger and Abel, 2014). To date, intense research is focusing on the mechanisms of 

DCM to develop therapeutic strategies for the treatment of DCM. Diabetic mouse 
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models are important research tools to elucidate the mechanisms of DCM. One 

advantage is that diabetic mice do not manifest severe atherosclerosis, a main cause 

for CAD (Back and Hansson, 2015, Pjanic et al., 2016, Vikramadithyan et al., 2005). 

Thus, heart failure development is not “contaminated” by CAD. 

 

 

 
Figure 1.1 The pathophysiology of diabetic cardiomyopathy (DCM): several molecular mechanisms are 

described that contribute to the development of DCM, e.g. altered insulin signaling, impaired calcium (Ca
2+

) 

handling and oxidative stress (AGEs = advanced glycation endproducts, RAAS = renin–angiotensin–aldosterone 

system, FA = fatty acid, miRNAs = micro ribonucleic acids, ER = endoplasmatic reticulum; Bugger and Abel, 

2014). 

 

1.2  Principles of cardiac function - calcium & excitation-contraction 

coupling 

 

Intracellular Ca2+ is an essential signaling molecule that controls important cellular 

processes. It is important in regulating action potentials (APs), excitation-contraction 

coupling, mitochondrial energy production, Ca2+/calmodulin-dependent protein kinase II 

activity and nuclear gene expression (Winslow et al., 2016). Cardiac excitation-

contraction coupling is defined as the process of sarcolemmal depolarization leading to 

an increase of the cytosolic Ca2+ concentration that initiates contraction of the heart 

(Winslow et al., 2016). In detail, depolarization of the cardiac myocyte membrane 

activates L-type Ca2+ channels (LTCCs) that lead to an initial Ca2+ influx. As illustrated 

in figure 1.2, the Ca2+ influx induces the release of further Ca2+ from the sarcoplasmic 

reticulum (SR) via the ryanodine receptor (RyR), a process called calcium-induced 

calcium-release (CICR). This increase of intracellular Ca2+ enables muscle contraction 
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by binding of Ca2+ to the myofilament protein troponin C. For myocyte relaxation the 

intracellular Ca2+ concentration has to decline so that Ca2+ dissociates from troponin C 

(Bers, 2002). Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) and its 

endogenous inhibitor phospholamban (PLN) are important for mediating the SR Ca2+ 

uptake from the cytosol (Feijoo-Bandin et al., 2015). Lowering of intracellular Ca2+ can 

also be achieved via the sarcolemmal Ca2+-ATPase, the sarcolemmal               

Na+/Ca2+-exchanger or mitochondrial Ca2+
 uniport (Bers, 2002). Since Ca2+ plays such 

an important role in heart function, impaired Ca2+ handling is associated with various 

forms of cardiac diseases (Winslow et al., 2016). 

 

 

Figure 1.2 Calcium signaling in cardiomyocytes and excitation-contraction coupling.  Upon depolarization of 

the cardiomyocyte membrane L-type Ca
2+

 channels (LTCCs) generate a Ca
2+

 influx. The increasing Ca
2+

 

concentration induces the release of further Ca
2+

 from the sarcoplasmic reticulum (SR) via the ryanodine receptor 

(RyR) and finally induces muscle contraction. Myocyte relaxation is mediated via mechanisms that decline the Ca
2+

 

concentration, e.g. sarcoplasmic/endoplasmic reticulum calcium ATPase2 (SERCA2) activation and  

phospholamban (PLN) phosphorylation (modified from Feijoo-Bandin et al., 2015).  
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1.3  Voltage-dependent calcium channels  

  

Voltage-dependent calcium channels (VDCCs) are involved in several physiological 

processes such as muscle contraction, glandular secretion, neurotransmission and 

gene expression (Catterall et al., 2003). The molecular composition of VDCCs is 

characterized by a heteromeric polypeptide complex that consists of a transmembrane 

pore-forming α1-subunit and accessory ß- and α2-δ-subunits as well as an accessory γ-

subunit in several calcium channel subtypes (figure 1.3, Campiglio and Flucher, 2015). 

γ-subunits are unlikely to play a role as part of the cardiac VDCC complex, although 

they are able to modulate cardiac calcium channel functions in recombinant expression 

systems (Yang et al., 2011).  

 

 

Figure 1.3 Molecular subunit composition of VDCCs: the heteromeric proteins consist of a pore-forming           

α1-subunit, accessory ß- as well as α2-δ-subunits and possibly a γ-subunit (Buraei and Yang, 2010). 

 

Each type of VDCC subunit is encoded by several genes, reflecting the diversity of Ca2+
 

channel structure and function (Zamponi et al., 2015, Catterall, 2011). Based on 

structural relationships among the different α1-subunit isoforms, VDCCs are classified 

in three α1-subunit gene subfamilies, i.e. Cav1, Cav2 and Cav3. Each subfamily contains 

several isoforms, such as Cav1.1, Cav1.2, Cav1.3 and Cav1.4 in case of the CaV1 

subfamily. Cav1.2 is the predominant cardiac α1-subunit isoform (encoded by the 

cacna1c gene) and  mainly responsible for the Ca2+ influx during excitation-contraction 

coupling (Ertel et al., 2000, Zamponi et al., 2015).  

VDCCs can be further distinguished by their (electro-)physiological and pharmacological 

properties leading to a differentiation in L-, P/Q-, N-, R- and T-type Ca2+ currents 

(Catterall et al., 2005). L-Type Ca2+ currents are named according to their long-lasting 

currents if barium is the charge carrier and are mediated by L-Type calcium channels 
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(LTCCs). LTCCs show a slow voltage-dependent inactivation and a large single-

channel conductance. These channels start to activate at membrane potentials above   

-40 mV and therefore belong to the so-called high-voltage activated channels. LTCCs 

can be blocked by several ligands such as dihydropyridines, phenylalkylamines and 

benzothiazepines (Neumaier et al., 2015, Catterall, 2011).  

 
LTCCs exist in three different conformations: closed (C), open (O) and inactive (I) state, 

as demonstrated in figure 1.4. At the resting membrane potential of about -80 mV, 

LTCCs are in the closed conformation. Upon depolarization, voltage-gated LTCCs open 

(conducting state) and Ca2+ ions enter the cell. Subsequently, open channels change to 

either the closed or the inactivated (non-conducting) state. The inactivated conformation 

is provoked by time- or rather Ca2+-dependent inactivation (CDI) and/or by voltage-

dependent inactivation (VDI). Repolarization is necessary for recovery from inactivation 

after that channels can be activated again. If a depolarizing pulse arrives prior to 

complete recovery, less or even no Ca2+ ions enter the cell. Taken together, the Ca2+ 

entry is regulated by the membrane potential, the LTCC kinetics of opening, the kinetics 

of inactivation (CDI, VDI) and the kinetics of recovery from inactivation (Hering et al., 

2000). CDI and VDI are regulated by the interaction of the Cav1.2 α1-subunit with the 

Cavß-subunit and/or the calcium sensor calmodulin (CaM) (Neumaier et al., 2015, Van 

Petegem and Minor, 2006).  

 

 

Figure 1.4 LTCC conformations: LTCCs can exist in a closed (C), open (O) and inactive (I) state (Karmazinova 

and Lacinova, 2010). 

 

Since this study focused on cardiac LTCCs, their properties are explained in more detail 

here. 
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1.3.1 The pore-forming Cav1.2 α1-subunit 

 

The pore-forming Cav1.2 α1-subunit is responsible for ion trafficking and represents the 

largest LTCC subunit of approx. 210-240 kDa. Varying band sizes in Western Blots are 

mainly attributed to truncations of the proteins’ C-terminus due to the expression system 

or experimental conditions (De Jongh et al., 1996, Weiss et al., 2013, Shaw and 

Colecraft, 2013). As demonstrated in figure 1.5, the Cav1.2 subunit consists out of four 

homologous domains (I–IV). Each domain is composed of six membrane-spanning 

segments that include the voltage-sensing domain (VSD) and the pore domain (PD) 

with the Ca2+ selectivity filter. The Cav1.2 α1-subunit further contains the Cavβ-subunit 

binding site (referred to as α1-interaction domain/AID) as well as structural domains 

responsible  for CDI, VDI and ligand binding (Neely and Hidalgo, 2014, Hofmann et al., 

2014). 

 

Figure 1.5 Structure of the Cav1.2 α1-subunit: The pore-forming protein mediates most of the LTCC functions 

and consists of four homologous domains (I–IV). The subunit contains the β-subunit binding site (referred to as α1-

interaction domain/AID), the voltage-sensing domain (VSD), the pore domain (PD) including the selectivity filter 

and binding sites for ligands (modified from Neely and Hidalgo, 2014).  

 

1.3.2 The Cavß-subunit 

 

The auxiliary Cavβ-subunit (approx. 55 kDa) modulates LTCC gating properties and 

consists of a Src homology 3 domain (SH3) and a guanylate kinase (GK) domain. Both 

domains are linked by the so-called HOOK region and flanked by N- and C-termini (NT 

and CT), as shown in figure 1.6 (A) (Buraei and Yang, 2010). The GK domain contains 

the α1-binding pocket which interacts with the AID of the Cavα1-subunit (figure 1.5 (B); 

Chen et al., 2004, Almagor et al., 2012, Van Petegem et al., 2004).  

VSD

PD

AID

C-terminus

N-terminus
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Figure 1.6  Structure of the Cavß-subunit: figure (A) illustrates the domain organization and three-dimensional 

structure. The subunit consists of a core region flanked by N- and C-termini (NT and CT). The core region is built 

by the Src homology 3 (SH3) and the guanylate kinase (GK) domains connected via the so-called HOOK region. 

The GK domain interacts with the AID of the α1-subunit (B) (modified from Neely and Hidalgo, 2014). 

 
Up to now, four Cavß-subunit isoforms (Cavβ1-Cavβ4) have been identified. Cavβ1, 

Cavβ2 and Cavβ3 are expressed in the heart, while Cavβ4 was only found in young rat 

atrial myocytes, so far (Buraei and Yang, 2010, Chu et al., 2004).  

Cavß-subunits increase LTCC activity, regulate LTCC membrane expression and 

possess binding sites for several proteins such as RGK proteins. These characteristics 

are pronounced differentially among the several subtypes. E.g. Cavβ2, the predominant 

cardiac isoform, increases LTCC activity most (Colecraft et al., 2002, Hullin et al., 2003, 

Hullin et al., 2007, Buraei and Yang, 2013). 

 

1.3.1 The Cavα2-δ-subunit 

 

The auxiliary Cavα2-δ-subunit (approx. 170 kDa) consists of a large, extracellular α2-

subunit and a small transmembranic δ-subunit which has a short intracellular region. 

Both subunits are linked through a disulfide bridge. The Cavα2-δ-subunit is encoded by 

a single gene and post-translationally cleaved into the α2 and the δ polypeptides. So 

far, at least 4 mammalian isoforms (Cavα2-δ-1 - Cavα2-δ-4), encoded by different 

genes, have been identified (Bodi et al., 2005, Catterall, 2011). All isoforms were 

reported to be present in the cardiovascular system. However, functional differences on 

LTCC regulation are not known so far (Hofmann et al., 2014). Indeed, the functional role 

of the Cavα2-δ-subunit is poorly understood. In heterologous expression systems it 

increases the channel expression and enhances its function, but to a lesser extent and 

in a more channel-specific way compared to Cavß-subunits (Catterall, 2011). 

BA
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1.4  RGK proteins 

 

The RGK proteins belong to the RAS GTPase superfamily and are represented by four 

related proteins: Rad, Gem/Kir, Rem 1 and Rem 2. The monomeric G proteins have low 

molecular masses ranging from 20 to 40 kDa (Neely and Hidalgo, 2014). All RGK 

proteins share a common structure including (I) a variable N-terminal segment, (II) a   

G-domain, involved in guanine nucleotide binding, and (III) a C-terminal segment, that 

contains a CaM binding site and the poly-basic membrane targeting sequence (Sasson 

et al., 2011). Although RGK proteins are structurally related they show different tissue 

expressions (Flynn and Zamponi, 2010): 

 

 Rad and Rem 1 are mainly expressed in cardiac, skeletal and smooth muscle 

cells (Chang and Colecraft, 2015). 

 Rem 2 is abundantly expressed in the nervous system, in kidney and liver, but is 

barely detectable in heart (Finlin et al., 2000, Liput et al., 2016).  

 Gem/Kir is found in diverse tissues, including heart, thymus, spleen, kidney, lung 

(Maguire et al., 1994, Murata et al., 2004). 

 

1.4.1 RGK-VDCC interaction 

 

One main function of RGK proteins is the inhibition of VDCCs (Correll et al., 2008). Up 

to now, three different mechanisms of inhibition are suggested:  

 

1. RGK proteins inhibit the channel trafficking to the cell surface and decrease its 

surface expression (Yada et al., 2007, Jhun et al., 2012, Yang et al., 2010, 

Sasaki et al., 2005, Yang et al., 2012, Beguin et al., 2006, Beguin et al., 2001).  

2. RGK proteins suppress membrane-resident VDCCs via immobilization of the 

voltage sensor (Yang et al., 2010, Yang et al., 2012, Meza et al., 2013, 

Magyar et al., 2012). 

3. RGK proteins suppress membrane-resident VDCCs via reduction of the open 

probability (Yang et al., 2012, Xu et al., 2010, Yang et al., 2010).  
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As illustrated in figure 1.7, it has been suggested that the Cavß-subunit binds to the 

AID of the Cavα1-subunit and induces a conformational change (ß primes α1) (Fan et 

al., 2010). Then, VDCC inhibition can be induced by either RGK-Cavα1 binding (A), by a 

tripartite complex (B) or by RGK-Cavß binding (C) (Fan et al., 2010, Correll et al., 

2008, Béguin et al., 2007, Finlin et al., 2006, Yang et al., 2007, Buraei and Yang, 

2015).  

 

Figure 1.7 Mechanisms of VDCC inhibition by RGK proteins: the interaction of the Cavß-subunit with the AID 

of the Cavα1-subunit induces a conformational change in Cavα1 (ß primes α1). Then, VDCC inhibition can be 

induced by either RGK-Cavα1 binding (A), by a tripartite complex (B) or by RGK-Cavß binding (C) (modified from 

Buraei and Yang, 2015). 

 

1.5  LTCCs in heart failure 

 

Heart failure (HF) is a clinical syndrome that occurs due to structural and/or functional 

cardiac abnormalities which impair the ventricle to pump blood with normal efficiency. 

This leads to a reduced cardiac output and/or elevated intracardiac blood pressures 

(Ponikowski et al., 2016). Cardiac LTCCs are important for proper excitation-contraction 

coupling (Rougier and Abriel, 2016). Therefore, alterations in LTCC expression and 

function are of high interest to elucidate the pathophysiology of HF.  It was consistently 

found that LTCC whole-cell Ca2+ current density in cardiomyocytes from failing human 

ventricles or animal models of HF was (almost) unchanged compared with non-failing 



Introduction  

- 10 - 

ventricles (Mukherjee and Spinale, 1998, Richard et al., 1998). Interestingly, a 

significantly increased single-channel activity was shown in ventricular myocytes from 

human end-stage failing hearts (Schroeder et al., 1998). The finding of an increased 

single-channel activity might result from an enhanced ß-adrenergic stimulation, that is 

known to be increased in case of developing HF (Madamanchi, 2007). This is consistent 

with findings of a blunted response to β-adrenergic receptor agonists in human failing 

hearts (Chen et al., 2002). Another reason for the increased single-channel activity 

might be the cardiac upregulation of the Cavß2-subunits in human failing hearts (Hullin 

et al., 2007). In a mouse model of cardiac Cavß2-subunit overexpression observed 

LTCC properties were similar to LTCC function in chronic human HF (Beetz et al., 

2009). Hong and colleagues determined the total amount of transmembrane Cav1.2 

channels in failing human hearts; the amount of the protein expression was unchanged 

but the channels were less abundant in the T-tubuli (Hong et al., 2012). These findings 

fit earlier radioligand binding studies (Takahashi et al., 1992, Gruver et al., 1994). Taken 

together, a more active state of present channels accompanied by less surface 

channels was suggested to occur in failing ventricles (Schroeder et al., 1998). 

 

1.6  RGK-LTCC interaction in the context of DCM 

 

In human HF LTCC density was unchanged, while the activity of single LTCCs was 

increased (described in the previous chapter). Candidates that might be involved in 

modulation of expression and function of LTCCs are RGK proteins, such as Rad. Rad 

expression was found to be reduced in human HF (Chang et al., 2007) and in Rad-

knockout (k.o.) mice whole-cell Ca2+ current densities were increased (Manning et al., 

2013). The effect of Rad on LTCC function and expression in a diabetic context is still 

unclear. Rad was initially identified and named as “RAS-related protein associated with 

diabetes” because its expression was upregulated in skeletal muscle of humans with 

T2DM (Reynet and Kahn, 1993). Since insulin infusion induced a significant increase in 

the mRNA level in percutaneous biopsies of human vastus lateralis muscles (Laville et 

al., 1996), the Rad gene is suggested to be insulin-regulated. Therefore, Rad might be 

an important candidate for LTCC modulation in DCM. Studies to investigate this issue 

were initially conducted by our group, as outlined in figure 1.8 (Fabisch, 2010, 

unpublished data). Protein analysis of Rad and Cav1.2 α1-subunit expression 

(henceforward only referred to Cav1.2) in ventricular tissue of mice with diabetes-

associated metabolic disturbances were positively correlated suggesting a rather 
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compensatory role of Rad, e.g. to prevent Ca2+ overload. Of note, there have been 

differences in the extent and/or direction of altered Cav1.2 and Rad expression 

compared to wildtype (wt) littermates (figure 1.8; Fabisch, 2010, unpublished data). In a 

mouse model associated with DCM (the so-called db/db mice with leptin receptor 

deficiency) our group detected a reduced whole-cell Ca2+ current density with 

unchanged single-channel activity (Pereira, 2006). The reduced whole-cell Ca2+ current 

density was attributed to a reduced expression of the LTCC pore Cav1.2 (Pereira, 

2006). These results are in contrast to the findings in human HF. Therefore, putative 

differential effects of Rad on modulating LTCCs might exist depending on the diabetic or 

non-diabetic context. 

 

 

Figure 1.8 Rad and Cav1.2 protein expression in ventricular tissues of mice with diabetes-associated metabolic 

disturbances. The expression of Rad and Cav1.2 protein was found to be positively correlated (ob/ob mice = mice 

that are deficient for leptin, MIRKO mice = muscle-specific insulin receptor knockout mice, IRS-2
-/-

 = mice lacking 

the insulin receptor substrate 2, db/db mice = mice with leptin receptor deficiency; Fabisch, 2010, unpublished data). 

 

1.7  Animal models of DCM 

 

As mentioned in chapter 1.6, Rad and Cav1.2 protein expression seem to be positively 

correlated in ventricular tissues of mice with diabetes-associated metabolic 

disturbances. We chose two of the previously screened mouse models differing mainly 

by body weight and amount of blood glucose enhancement for further analysis, i.e. mice 

that are deficient for leptin (ob/ob) and mice lacking the insulin receptor substrate 2 (IRS 

2). Mice of different ages (16 and 28 weeks) were chosen for experiments to take time-

dependent onset of obesity and disease progression of T2DM into account. Age-
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matched wildtype (wt) mice were used as controls. So far, other studies solely focused 

on a complete (and thus artificial) k.o. of RGK proteins, while this study focused on a 

differential rather “secondary” change of RGK protein expression. Rad-k.o. mice served 

as internal control mice and should reveal the maximum effect of a loss of Rad protein 

on LTCC expression and function. Furthermore, ob/ob x Rad-k.o. mice were generated 

in order to check whether the role of Rad differs depending on the murine background. 

 

1.7.1 ob/ob mice 

 

Ob/ob mice are globally deficient for leptin due to a spontaneously occurred mutation in 

the gene Lepob of the mouse strain V/Le in The Jackson Laboratory, Bar Harbor, USA in 

1949 (Ingalls et al., 1950). After backcrossing for more than 45 generations mice have 

been available on a C57BL/6J background (Mouse Genome Database, 2017). The 

autosomal recessive, single gene mutation is located on chromosome six of leptin and 

based on the nonsense mutation in codon 105. In detail, a stop codon occurs because 

of an amino acid change and these mice release a truncated version of the adipocyte 

peptide hormone leptin. In ob/ob mice leptin mRNA levels are highly increased by the 

factor 20 compared to wt mice. However, this mRNA is mutated and resulting proteins 

are not functional (Zhang et al., 1994, Moon and Friedman, 1997, Wang et al., 2014). 

Leptin is known as a negative regulator of food intake; its lack results in an increased 

availability of the potent appetite-stimulant neuropeptide Y (Lee and Cox, 2011). 

Therefore, ob/ob mice possess an obese phenotype (Chatzigeorgiou et al., 2009), 

exhibit early-onset hyperglycemia, hyperinsulinemia and insulin resistance already four 

to six weeks after birth (Lindstrom, 2007, Mazumder et al., 2004, Haluzik et al., 2004, 

Buchanan et al., 2005).  

 

1.7.2 IRS 2-knockout mice 

 

Mice lacking the insulin receptor substrate 2 (IRS 2-k.o. mice) were first described in the 

late 20th century (Withers et al., 1998, Kubota et al., 2000). IRS 2-k.o. mice exhibit 

early-onset hyperglycemia, hyperinsulinemia and insulin resistance at an age of approx. 

six weeks. This mouse line shows no or only mild obesity (Sesti et al., 2001, Burks et 

al., 2000, Withers et al., 1998, Kubota et al., 2000). 

IRS 2 is an ubiquitously expressed cytoplasmic protein that regulates biological 
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processes such as glucose metabolism, protein synthesis and cell survival. It is an 

important molecule in insulin signaling (Oliveira et al., 2014, Mardilovich et al., 2009). To 

date, four closely related insulin receptor substrates (IRS 1- 4) have been identified that 

differ in tissue distribution, subcellular localization, developmental expression, binding to 

the insulin receptor and interaction with SH2 domain containing proteins (Sesti et al., 

2001). Both, IRS 1 and IRS 2 are the predominant family members expressed in the 

heart (Riehle and Abel, 2016). 

 

1.8  Leptin and insulin  

 

1.8.1 Insulin function and signaling pathway 

 

Insulin is a key metabolic peptide hormone involved in carbohydrate, lipid and protein 

metabolism (Newsholme and Dimitriadis, 2001). It is synthesized by β-cells of the 

pancreas and secreted in response to enhanced concentrations of blood glucose. 

Although insulin mainly acts in liver, adipose tissue and skeletal muscle, insulin 

receptors (IRs) are widely expressed in the mammalian body (Belfiore et al., 2009). 

Binding of insulin to the IR leads to an autophosphorylation and IR activation (figure 

1.9). Following IR activation two canonical signaling pathways are possible: 

 

1. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is responsible for metabolic 

effects. In the PI3K/Akt pathway the IR phosphorylates tyrosine residues of 

IRS1/IRS2, which act as docking platforms for the Src homology 2 domain of 

PI3K. This finally promotes an activation of protein kinase B (PKB) or Akt 

(Baumgard et al., 2016). In the heart signaling via PI3K/Akt mediates metabolic 

effects such as an increase in glucose uptake, coronary vasodilation, substrate 

flexibility and energy homeostasis (Jia et al., 2016). 

 

2. The Ras/mitogen-activated protein kinase pathway is accountable for effects on 

cell growth and proliferation (Jia et al., 2016). 
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Figure 1.9 Insulin signaling pathway: binding of insulin to the insulin receptor (IR) can activate two canonical 

signaling pathways: the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, responsible for metabolic effects, and 

the Ras/mitogen-activated protein kinase pathway, accountable for effects on cell growth and proliferation.  

 

The impairment of key insulin signaling molecules such as IRS, PI3K or Akt might be 

involved in the development of insulin resistance (Yang et al., 2016). Insulin resistance 

as a key feature of type 2 diabetes is caused by various factors, e.g. by obesity, 

hyperglycemia, hyperlipidemia, hyperinsulinemia and/or activation of the RAAS/the 

sympathetic nervous system. These factors are suggested to contribute to an increased 

activation of enzymes that phosphorylate IRS proteins. A serine phosphorylation of IRS 

proteins attenuates IRS tyrosine phosphorylation. Other molecular mechanisms leading 

to a diminished strength of the PI3K/Akt pathway are proteasomal degradation of IRS 

proteins and decreased activation of downstream signaling molecules such as Akt 

(Aroor et al., 2012, Ye, 2013, Kim et al., 2008). Therefore insulin resistant tissues 

exhibit an imbalance in the metabolic and growth effects of insulin signaling, with the 

actions of the Ras/mitogen-activated protein kinase pathway dominating (Jia et al., 

2016, Wang et al., 2004). In the prediabetic state insulin resistant individuals 

compensate the disturbed PI3K/Akt signaling by secreting more insulin (Hardie, 2012). 

The compensatory mechanism also includes an increase in glucose oxidation, in fatty 

acid oxidation and in glycerolipid-free fatty acid cycling (Wortham and Sander, 2016). 

Such an adaption mechanism may predispose ß-cells to lipotoxicity. This term 

describes a process that results in down-regulation of insulin, ß-cell dysfunction and 

apoptosis (Fu et al., 2013). Upon exhaustion of ß-cells this failure in compensation 

mechanism may lead to T2DM (Hardie, 2012). Generalized insulin resistance is also 
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associated with HF (Velez et al., 2014) and insulin resistance of the heart might directly 

contribute to cardiac dysfunction (Aroor et al., 2012). 

 

1.8.2 Leptin function and signaling pathway 

 

Leptin is a known negative regulator of food intake and regulates a variety of other 

functions such as neuroendocrine functions, fertility, angiogenesis and long-term energy 

balance (Chan and Leung, 2015). Leptin is primarily produced in the adipose tissue 

(Fernandez-Formoso et al., 2015). The hormone is secreted into the bloodstream by 

adipocytes (Zhou and Rui, 2013) and mediates its effects through leptin receptors. 

Leptin receptors are widely expressed in the mammalian body, e.g. in liver, heart, 

kidneys, lungs, pancreas and adipose tissue (Margetic et al., 2002). Among the known 

six leptin receptor isoforms, the Lepr-b receptor, which is highly expressed in the 

hypothalamus, is known to mediate its main effects via the JAK (janus kinase)/STAT 

(signal transducer and activator of transcription) pathway, as outlined in figure 1.10 

(Fernandez-Formoso et al., 2015).  

 

Figure 1.10 Leptin signaling pathway: binding of leptin to the leptin receptor (Lepr-b) activates JAK2, which 

phosphorylates JAK2 itself and three tyrosine residues on Lepr-b. Each of these phosphorylation sites triggers a 

specific signaling pathway. A phosphorylated JAK2 leads to a phosphorylation of IRS molecules and activation of 

PI3K. 

 

In brief, leptin binding to Lepr-b activates JAK2 which phosphorylates itself and three 

tyrosine residues on Lepr-b. Each of these phosphorylation sites triggers a specific 

signaling pathway, as demonstrated in figure 1.10. A phosphorylated JAK2 leads to a 
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phosphorylation of IRS molecules and activation of PI3K, a pathway necessary for 

leptin’s effects on food intake and sympathetic nerve activity (Munzberg and Morrison, 

2015). Similar to the manifestation of insulin resistance and compensatory 

hyperinsulinemia, leptin resistance and hyperleptinemia can develop, especially in 

obese patients and rodents (Konner and Bruning, 2012).  

 

1.8.3 Link between insulin and leptin 

 

Insulin and leptin receptors are widely expressed in mammalian tissues. Co-expression 

in the same tissue might enable an interaction of both receptors. Insulin and leptin 

mediate some of their physiological effects via IRS signaling. An interaction between 

both pathways is possible via IRS 2, but also via other downstream elements such as 

PI3K or STAT (Szanto and Kahn, 2000, Carvalheira et al., 2003, Carvalheira et al., 

2001). Especially in obese mammals insulin and leptin signaling may be altered. Both 

hormones are of major importance for cardiac contractility, growth and metabolism 

(Westermeier et al., 2016, Feijoo-Bandin et al., 2015). Leptin and insulin signaling might 

be involved in the regulation of LTCCs (Ballou et al., 2015, Viard et al., 2004).  

 

1.9  Aim of the study 

 

Cardiovascular disease (CVD) is a leading cause of death for diabetic patients (Sowers 

and Lester, 1999, Balakumar et al., 2016). Diabetic cardiomyopathy (DCM) is 

characterized by an abnormality of myocardial diastolic and/or systolic function in 

diabetic subjects without the major heart failure risk factors hypertension and/or (overt) 

coronary artery disease (Jia et al., 2016). Since cardiac L-Type calcium channels 

(LTCCs) are known to be involved in proper excitation-contraction coupling, they are of 

high interest in the research of CVD, such as DCM and resulting heart failure (HF). In 

human (non-diabetic) HF whole-cell Ca2+ current density of ventricular LTCCs was 

unchanged compared to non-pathophysiological conditions, while single-channel activity 

was significantly increased (Mukherjee and Spinale, 1998, Schroeder et al., 1998). 

These findings suggest changes in both, expression and function of LTCCs. In contrast 

to humans, whole-cell Ca2+ current density was reduced in a mouse model associated 

with DCM (the so-called db/db mice with leptin receptor deficiency), while single-

channel activity was unchanged (Pereira, 2006).  
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It has been shown that RGK proteins, like the diabetes-associated Rad, might be 

involved in LTCC regulation, both regarding its function and expression. Rad expression 

is reduced in human heart failure (Chang et al., 2007) and whole-cell Ca2+ current 

densities are increased in cardiomyocytes of Rad-k.o. mice (Manning et al., 2013). So 

far, the effect of Rad on cardiac LTCCs even in a diabetic context is unclear. Previous 

data suggest that the ventricular expression levels of Rad and Cav1.2 proteins are 

positively correlated in several mouse models with diabetes-associated metabolic 

disturbances (Fabisch, 2010). Differences in the extent and/or direction of altered 

Cav1.2 and Rad protein expression might be due to a differential regulation depending 

on e.g. the genotype, age and/or the onset and severity of metabolic disturbances. For 

a more detailed analysis two diabetic mouse models were investigated in the present 

study: leptin-deficient obese ob/ob mice and mice lacking insulin receptor substrate 2 

(IRS 2), respectively. Though experiments with Rad-k.o. and Rem 1-k.o. mice suggest 

an impressive inhibitory effect of RGK proteins on native cardiac LTCCs (Magyar et al., 

2012, Manning et al., 2013), it remains unclear whether differential expression of RGK 

proteins might be compensatory, causative or both regarding LTCC regulation. Thus, 

the present study aims at the role of an in vivo regulation of Rad expression on 

ventricular LTCCs in two established diabetes mouse models (ob/ob and IRS 2-

knockout mice). Therefore, ventricular whole-cell L-type calcium current densities were 

obtained by patch-clamp recordings and compared to those of wildtype littermates in the 

context of ventricular expression levels of Rad and Cav1.2 mRNA and protein. In order 

to further evaluate the role of Rad in ob/ob mice, we generated and analyzed ob/ob 

mice lacking Rad. In summary, it should be elucidated whether there is an unifying 

effect of Rad on LTCCs in diabetic hearts that might suggest a mechanism underlying 

diabetic cardiomyopathy.    
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2 Materials and methods 

2.1  Materials 

2.1.1 Chemicals 

 

Description Order No. Supplier/manufacturer 

Acetic acid 3738.2 Roth 

Magnesium-adenosine 5′-
triphosphate (Mg-ATP) 

A9187-1G Sigma-Aldrich 

Agarose powder 2267.4 Roth 

Amberlite® K306.1 Roth 

Ammonium peroxodisulfate (APS) 9592.3 Roth 

Boric acid 3678542 Merck 

Bovine serum albumin (BSA) A6003-25G Sigma-Aldrich 

Bromphenol blue 8122 Merck 

Caesium chloride (CsCl) 8627.3 Roth 

Calcium chloride dihydrate 
(CaCl2*2H2O) 

T885.2 Roth 

Coomassie 3862.1 Roth 

Diethylpyrocarbonate (DEPC) K028.1 Roth 

DNA-ExitusPlusTMBC A7089,0500 AppliChem 

DNA Gel Loading Dye (10 x) R0611 Thermo Fisher Scientific 

Dulbecco’s Modified Eagle’s Medium 31966-021 Gibco Thermo Scientific 

Ethanol 2246.2500 Th.Geyer 

Ethidium bromide 2218.3 Roth 

Ethylenediaminetetraacetic acid 
(EDTA) 

8043 Roth 

Ethylene glycol-bis(2-
aminoethylether)-N,N,N′,N′-tetraacetic 
acid (EGTA) 

E-4378 Sigma-Aldrich 

Fetal calf serum (FCS) S0115 Biochrom 

D(+)-Glucose monohydrate X997.2 Roth 

Glycerol 3783.1 Roth 

Glycin G7126-1KG Sigma-Aldrich 

Glyoxal 50649-25ml Sigma-Aldrich 

Heparin H3393.100KU Sigma-Aldrich 

Iodoacetic acid sodium salt I2512 Sigma-Aldrich 
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Description Order No. Supplier/manufacturer 

Magnesium chloride hexahydrate 
(MgCl2*6H2O) 

1.05833.0250 Merck 

Magnesium sulfate heptahydrate 
(MgSO4*7H2O) 

1.05886 Merck 

2-mercaptoethanol M6250-100ml Sigma-Aldrich 

Methanol (MeOH) 4627.5 Roth 

Milk powder T145.1 Roth 

N,N-bis(2-hydroxyethyl)-2-
aminoethanesulfonic acid (BES) 

9134.3 Roth 

Nonidet®P40 BioChemica A16940250 Applichem 

Orange G 6x Loading Dye  845-ST-
4010003 

Analytik Jena AG 

Penicillin/Streptomycin (100 x) P11-010 PAA Laboratories 
GmbH 

Percoll 17-0891-01 GE Healthcare Life 
Sciences 

Phosphate-Buffered Saline (PBS) 14190-094 Gibco Thermo Scientific 

Pierce®Protein A/G Magnetic Beads 88802 /88803 Thermo Fisher Scientific 

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid 
(HEPES) 

H3375-500G Sigma-Aldrich 

Polysorbate 20 (Tween 20) A4974,0250 AppliChem 

Ponceau S P3504 Sigma-Aldrich 

Potassium chloride (KCl) 6781.1 Roth 

Rotiphorese®Gel 40 (19:1) 3030.1 Roth 

Saline 0.9 % 6340501 AlleMan Pharma GmbH 

Sodium dodecyl sulfate (SDS) 2326.1 Roth 

Sodium azide 8223350100 Merck 

Sodium chloride (NaCl) 3957.2 Merck 

Sodium dihydrogen phosphate 
monohydrate (NaH2PO4*1H2O) 

6346 Merck 

Sodium hydroxide (NaOH) C238798 Merck 

Sucrose S-0389 Sigma-Aldrich 

Tetramethylethylenediamine (TEMED) T9281-50ml Sigma-Aldrich 

Tris(hydroxymethyl)aminomethane 
(Tris) 

4855.2 Roth 

Triton®X-100 12298 Merck 

  

http://www.amazon.de/s/ref=bl_sr_drugstore?ie=UTF8&field-keywords=AlleMan+Pharma+GmbH&index=drugstore&search-type=ss
https://en.wikipedia.org/wiki/Tetramethylethylenediamine
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2.1.2 Enzymes / antibodies / plasmids / kits / ladder 

 

Description Order No. Supplier/manufacturer 

Anti-Calcium Channel C1603 Sigma-Aldrich 

Anti-HA High Affinity 11 867 423 001 Roche 

Anti-RRAD antibody produced in 
goat 

SAB2502049 Sigma-Aldrich 

Collagenase type 1, 41.6 U/ml - Worthington Biochemical 
Corporation 

Collagenase type 2, 47.4 U/ml - Worthington Biochemical 
Corporation 

Donkey anti-goat IgG-HRP sc-2020 SantaCruz 

Gene RulerTM 100 bp DNA ladder SM0241 Thermo Fisher Scientific 

HindIII 10 U/µl ER0501 Thermo Fisher Scientific 

KAPA Mouse Genotyping Hot Start 
Kit 

KK7302 PEQLAB Biotechnologie 
GmbH 

NucleoBond® Xtra Maxi Kit 740414.10 Macherey-Nagel 

Polyclonal Swine Anti-Rabbit 
Immunoglobulins/HRP 

P0399 Dako 

QuantiTect® Reverse Transcription 
Kit 

205311  Qiagen 

QuantiTect SYBR® Green PCR Kit 204243  Qiagen 

Rad cDNA clone (mouse, pCMv-6-
Entry vector, Rrad-Myc-DDK-tagged) 

MR204351 Origene Technologies Inc 

RNeasy® Fibrous Tissue Mini Kit 74704 Qiagen 

RNA ladder 0.5-10 kbp 15623-200 Life Technologies GmbH 

SigmaFASTTM Protease Inhibitor 
Cocktail Tablet, EDTA-Free 

S8830 Sigma-Aldrich 

Spectra Multicolor Broad Range 
Protein Ladder 

26634 Life Technologies GmbH 

Super Signal West Pico 
Chemiluminescent Substrate 

34087 Thermo Fisher Scientific 

Trypsin 25300-054 Gibco Thermo Scientific 

 
  

https://www.thermofisher.com/order/catalog/product/34087
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2.1.3 Consumables 

 

Description Supplier/manufacturer 

Accu-Chek® Aviva Test Strips Roche Diagnostics 
Deutschland GmbH 

BD DiscarditTM II syringes (2, 5, 10, 20, 50 ml; sterile)  Braun 

BD MicrolanceTM 3 injection needles (27G) Becton Dickinson 

BD PlastipakTM 1ml, sterile Becton Dickinson 

Biosphere® filter tips 10, 20, 100 µl Sarstedt 

Borosilicate glass capillaries (1.7 mm OD; 1.133 mm 
ID, 0.283 mm wall thickness) 

Hilgenberg 

BRANDplates®pureGradeTM, 96-well BRANDTECH 

Buffer solution pH 4, pH 7, pH 9 Roth 

Disposable transfer pipettes 3 ml  VWR 

Falcon® tissue culture dishes, polystyrene, sterile  
35 x 10 mm)  

Corning 

Falcon tubes (15 and 50 ml) Sarstedt  

GE Healthcare AmershamTM ProtranTM Premium NC  
200 mm x 4 m (0.45 µm) 

Ge Healthcare 
Biosciences 

Immun-Blot® PVDF-Membrane 20 x 20 cm (0.2 μm) Bio-Rad 

Microcentrifuge tubes, 1.7 ml VWR 

Perfusor®-Line Braun 

PCR tubes 0.2 ml VWR 

Roche Light Cycler ® capillaries Roche 

Scalpel No. 22 Pfm medical AG 

Serological pipettes (1, 2, 5, 10, 25, 50 ml; sterile)  Sarstedt 

Silver wire AG-15W Science Products GmbH 

Sterifix injection filter 0.2 µm Braun 

THOMAPOR®  mesh filter, polyamide 250 µm 
(948362) 

THOMAPOR 

Ultracentrifuge tubes, 1.5 ml BECKMAN 

WhatmanTM 3MM Chromatography Paper  
15 cm x 100 m 

Ge Healthcare 
Biosciences 
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2.1.4 Equipments 

 

Description Supplier/manufacturer 

Accu-Chek® Aviva Blood Glucose Meter System Roche Diagnostics 
Deutschland GmbH 

Axopatch 200B amplifier Axon Instruments 

BioTek™ Synergy™ 2 Multi-Mode Microplate 
Reader 

Thermo Fisher Scientific 

Centrifuge 5425 R Eppendorf AG 

CO2-incubator HERAcell 150i Thermo Fisher Scientific 

CV 203BU headstage (5285012) Axon Instruments 

Digidata 1440A AC/DA-converter Axon Instruments 

Eppendorf Mastercycler Eppendorf AG 

F423 heated circulating bath  Haake 

Faraday cage Self supplied 

Finn pipettes (2, 10, 20, 100, 200, 1000 µl)  Thermo Fisher Scientific  

Fluorescence microscope Nikon Eclipse Ti-U Nikon Instruments 

Halogen sold light source KL 1500 Schott 

Heating plate RET control IKAMAG  IKA 

Heating plate IKA RH basic 2 IKA 

Horizon®11-14 Horizontal Gel Electrophoresis 
System 

Thermo Fisher Scientific 

Hielscher UP50H Sonicator Hielscher Ultrasonics GmbH 

Langendorff column  Self supplied 

Light Cycler®2.0 System Roche Diagnostics 
Deutschland GmbH 

Light Cycler Carousel Centrifuge Roche Diagnostics 
Deutschland GmbH 

Microcentrifuge Galaxy MiniStar VWR 
International  

VWR 

Micromanipulator MHW-103  Narishige International 

Micropipette polisher: type MF-83  Narishige International 

Micropump Ismatec SA 

Mini-PROTEAN Tetra Cell (SDS gel casting 
components and chamber) 

Bio-Rad 

Mini Trans-Blot® Cell  Bio-Rad 

MultiImage®  II system Alpha Innotech 



 Materials and methods 

- 23 - 

Description Supplier/manufacturer 

Nano Drop 2000c Thermo Fisher Scientific 

OptimaTM TLX Ultracentrifuge; rotor: TLA 55 Beckman Coulter Deutschland 

Pipetboy acu  Integra Biosciences 

Pipette puller P-97  Sutter instruments 

Polymax 1040 Heidolph 

Potter S Sartorius 

PowerPacTM Universal Power Supply Bio-Rad 

Seven Easy pH-meter  Mettler Toledo 

Sterile bench HS 12/2 Heraeus Instruments 

Sterilizing oven Heraeus Instruments  

Thermomixer compact  Eppendorf AG 

Thermo Shaker and Block  HLC 

Tube Roller RS-TR05  Phoenix instruments 

Ultra Turrax ®  IKA 

Vibration-cushioned table  Self supplied 

Vortex Genie2TM Scientific Industries 

 

2.1.5 Computer software / programs 

 

Description Supplier/manufacturer 

AlphaDigiDoc®Pro Imaging System Alpha Innotech 

Clampfit10.2 Axon Instruments 

Gen5TM Data Analysis Software BIOTEK 

GraphPad Prism®6 GraphPad Software 

ImageJ National Institutes of Health 

Microsoft®Office2007 Microsoft 

pClamp10.2 Axon Instruments 

Net Primer PREMIER Biosoft Premier Biosoft 

NCBI / Basic Local Alignment Search Tool  NCBI 

Primer 3 Whitehead Institute for 
Biomedical Research 

REST-2009© Qiagen 

Roche Assay Design Center Roche Diagnostics  
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2.2  Animals 

 

2.2.1 Origin of animals 

 

First breeding animals of the ob/ob mice (leptin B6.Cg-Lep ob/J) were purchased from 

the Jackson Laboratory, Bar Harbor, USA. First breeding mice lacking the IRS 2 were 

kindly provided by Prof. Dr. J. Brüning, CECAD Coordinator, University Hospital of 

Cologne (former: Institute for Genetics, University of Cologne). First Rad-k.o. animals 

were kindly provided by D. A. Andres, Ph.D. Professor and Chair, Department of 

Molecular & Cellular Biochemistry, University of Kentucky, College of Medicine, 

Lexington, USA. This was in agreement with Prof. Dr. C. R. Kahn, Chief Academic 

Officer, Joslin Diabetes Center/Professor of Medicine, Harvard Medical School, Boston, 

USA. Furthermore a cross-breeding was established to raise ob/ob x Rad-k.o. mice. All 

mouse lines had a C57BL/6J background. Age-matched wt mice (homozygous 

C57BL/6J mice of all breedings) were used as controls. 

 

2.2.2 Breeding and maintenance  

 

Animals were raised and maintained in an in-house animal facility of the Center of 

Pharmacology, Institute II, University Hospital of Cologne. Rad-k.o. mice were also 

raised in the Center for Molecular Medicine Cologne (CMMC), University Hospital of 

Cologne. All mice were kept in ventilated cages with food and water ad libitum, 

maintained in a 12h/12h dark/light cycle. All animals were fed with ssniff® complete 

diets (mouse maintenance: V1534-703, mouse breeding: V1124-703, ssniff 

Spezialitäten GmbH, Soest, Germany). Heterozygous (hz) ob/+ animals were 

necessary to breed ob/ob mice, whereas IRS 2-k.o. and Rad-k.o. mice could also be 

generated using homozygous knockouts. Animal breeding, maintenance and 

experiments were approved by the responsible federal state authority (Landesamt fuer 

Natur-, Umwelt- und Verbraucherschutz North Rhine-Westphalia; reference:               

84-02.05.20.12.294/84-02.05.20.13.060). All animal experiments were in accordance 

with the guidelines from directive 2010/63/EU of the European Parliament on the 

protection of animals used for scientific purposes.  
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2.2.3 Determination of blood glucose, body weights and ventricle weights 

 

Body weights were determined immediately before killing the mice. Blood glucose 

concentration was measured shortly after cervical dislocation using a blood glucose 

meter (Accu-Check® Aviva, Roche Diagnostics Deutschland GmbH, Mannheim, 

Germany) with a drop of blood leaking from the excised tail (approx. 2 mm). For 

determination of ventricular heart weight hearts were excised immediately, atria and 

aorta were dissected and intraventricular blood removed. An increased ventricle-to-body 

weight ratio is a common indicator for cardiac hypertrophy.  

 

2.2.4 Sample preparation 

 

After cervical dislocation murine hearts were dissected in ice-cold PBS. For Western 

Blot and quantitative real-time PCR (qRT-PCR) ventricles were quick-frozen in liquid 

nitrogen and stored at -80°C until further processing. 

 

2.3  Genotyping 

 

For genotyping tail-tips (approx. 4 mm) from three week old mice were cut and stored at 

-20°C until further processing. Genotyping PCRs were kindly performed by                   

S. Kirchmann-Hecht at the Center of Pharmacology, Institute II, University Hospital of 

Cologne.  

 

2.3.1 Genomic deoxyribonucleic acid (gDNA) purification 

 

For gDNA purification KAPA Express Extract system, included in the KAPA Mouse 

Genotyping Hot Start Kit (PEQLAB Biotechnologie GmbH, Erlangen, Germany), was 

used according to the manufacturer’s protocol. gDNA extracts were stored at -20°C. 
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2.3.2 Polymerase chain reaction (PCR) 

 

Polymerase chain reaction allows amplification of DNA fragments of specific gDNA 

regions in order to analyze and identify these regions. gDNA was amplified with the 

KAPA2G Fast Hot Start Genotyping Mix with dye, the second KAPA Mouse Genotyping 

Hot Start Kit component. KAPA2G Fast Hot Start Genotyping Mix (2 x) is a ready-to-use 

master mix and contains a Hot Start DNA polymerase, a buffer, dNTPs (0.2 mM each at 

1 x), MgCl2 (1.5 mM at 1 x), stabilizers and two inert dyes, which allow a direct PCR 

analysis of reaction products without use of an additional loading solution. Only primers 

and templates had to be added. Reaction setup, cycling parameters and primers can be 

found in table 2.1 - 2.3. 

 

Table 2.1 DNA amplification protocol for genotyping: reaction setup 

Components IRS2-k.o. ob/ob Rad-k.o. 
Final 

concentration 

PCR grade H2O 7.75 µl 8 µl 9.5 µl  

KAPA2G Fast Hot 

Start Genotyping 

Mix 2 x 

12.5 µl 12.5 µl 12.5 µl 1 x 

Primer  
1.25 µl / 

 primer 

1.25 µl / 

 primer 

0.5 µl /  

primer 
0.5 µM  

Template gDNA 1 µl 2 µl 1 µl  

 

Table 2.2 DNA amplification protocol for genotyping: cycling parameters 

Cycling step 
Target temperature / incubation time No. of cycles 

IRS2-k.o. ob/ob Rad-k.o.  

Initial denaturation 95°C /  3 min 95°C /  3 min 94°C /  3 min 1 

Denaturation 95°C / 15 sec 95°C / 15 sec 94°C / 30 sec  

Annealing 61°C / 15 sec 60°C / 15 sec 57°C / 30 sec 35 

Elongation 72°C / 20 sec 72°C / 20 sec 72°C / 40 sec  

Final elongation 72°C /  5 min 72°C / 10 min 72°C /  5 min 1 
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Table 2.3 Primer pairs for genotyping (Sigma-Aldrich, St. Louis, MO, USA). Rad and IRS primers were described 

previously (Chang et al., 2007, Kido et al., 2000). Ob/ob primers were designed using the freeware Primer 3 

(Whitehead Institute for Biomedical Research, Cambridge, MA, USA).  

Primer name Sequence (5’-3’) 

IRS 2 forward (F) primer 10 µM GAA GAC AGT GCG TAC ATG CGA ATG 

IRS 2 reverse (R) primer 10 µM CCT CAT GGA GGA AAG CAC TGC TG 

IRS 2 neosense primer 10 µM TTC TAT CGC CTT CTT GAC GAG TTC 

Ob/ob F primer 10 µM TGT CCA AGA TGG ACC AGA CTC 

Ob/ob R primer 10 µM ATC CAG GCT CTC TGG DTT CT 

Rad F mutant primer 25 µM GAG CAC GTA CTC GGA TGG AAG C 

Rad R mutant primer 25 µM  GCG ATA GAA GGC GAT GCG CTG C 

Rad F wildtype primer 25 µM AGT CTG AAC AGG GGT CTA CGA GTG 

Rad R wildtype primer 25 µM TCT GGC CCT GTG TCC GAG TTC 

 

2.3.3 Restriction enzyme digestion / gel electrophoresis 

 

Ob/ob mice genotyping products were subjected to a restriction enzyme digestion with 

HindIII (10 U/µL, ER0501, Thermo Fisher Scientific) for 1 h at 37°C (table 2.4), followed 

by 20 min at 60°C, before loading on a 3% agarose gel placed into a gel electrophoresis 

chamber containing TBE buffer (table 2.5). 

 

Table 2.4 Restriction enzyme digestion of ob/ob PCR products 

Components Final volume 

PCR grade H2O 7 µl 

10 x BufferR (supplied with 

HindIII) 
2 µl 

HindIII (10 U/µL)  1 µl 

PCR product 10 µl 

Table 2.5 Electrophoresis buffer for PCR products 

TBE buffer Final concentration 

Tris  89 mM 

Boric acid 89 mM 

EDTA 2 mM 

pH 7.6  
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PCR products generated for genotyping of IRS 2-k.o. and Rad-k.o. mice were directly 

loaded on a 2% agarose gel. During electrophoresis for 1 h at 100 mA PCR products 

migrated towards the anode, small fragments showing slower migration rates than 

bigger fragments. To facilitate detection the double-stranded DNA intercalating dye 

ethidium bromide was added. For visualization AlphaDigiDoc®Pro Imaging System 

(Alpha Innotech, Santa Clara, CA, USA) and a 100 bp or 1 kbp DNA ladder (GeneRuler 

100 bp DNA Ladder, SM0241 / GeneRuler 1 kbp DNA Ladder, SM0311, Thermo Fisher 

Scientific) were used. Table 2.6 shows the expected band sizes of PCR products. 

 

Table 2.6 Expected band sizes of PCR products 

Expected band size Wildtype Mutant 

IRS 2 300 bp 400 bp 

Ob/ob 180 bp 83 bp and 99 bp 

Rad 507 bp 347 bp 

 

2.4  Cardiac myocytes isolation assay  

 

The isolated perfused mammalian heart preparation, widely known as the Langendorff 

perfused heart, was established in the late 19th century by Oscar Langendorff. The 

method was developed on the basis of the isolated perfused frog heart and originally 

used for the study of heart physiology (Langendorff, 1895, Taegtmeyer, 1995, Zimmer, 

1998). The animal's heart is removed from its body and retrograde perfused via the 

aorta in order to keep it alive for several hours. This preparation method has been 

subjected to various modifications. For instance, the method has been modified in order 

to isolate cardiac myocytes. The aorta is cannulated as well, but retrograde perfused 

with an enzyme solution to digest the heart into individual cells.  

In this study single ventricular myocytes were isolated by using a modification of a 

method described previously (Heubach et al., 1999, Foerster et al., 2003). Isolated cells 

were subjected to patch-clamp analysis and cardiac myocytes purification assays. In 

detail, solution A (table 2.7) was prepared as stock solution in tenfold concentration and 

stored at 4°C until use. On each experimental day glucose was added freshly to   

solution A and diluted 1:10 with aqua destillata. The pH was adjusted to 7.4 with NaOH. 

To obtain solution B (table 2.7), 500 mg BSA was added to 500 ml of solution A. The 

perfusion column and organ bath (figure 2.1) were filled with solution B, preheated to 
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37°C using a water bath and perfused with oxygen 100%. The length of the column 

defined the perfusion pressure. Circa 30 minutes prior to cervical dislocation mice were 

treated with heparin (7.5 IU/g, intra peritoneal) to prevent post-mortem thrombus 

formation. Preparation and cannulation of the aorta followed immediately after cervical 

dislocation in ice-cold solution A. The aorta was placed over the tip of a blunt injection 

needle and tied with a binder yarn before being connected to the column (figure 2.1). 

Then the whole heart was perfused with solution B for 5 min in order to remove the 

blood from the coronary arteries. Afterwards the heart was perfused under constant 

pressure with an enzyme solution prepared in solution B (solution C, table 2.7). Duration 

of digestion depended on the amount of solution passing the coronary arteries 

estimated by the drop rate. After 5 min of digestion drop rate was determined first and 

subsequently in an one-minute distance. End point of digestion was reached when drop 

rate was doubled or after a maximum perfusion time of 15 min or when the outward 

appearance of the heart (e.g. paleness, slightly edematous tissue) indicated sufficient 

perfusion. To obtain numerous healthy cardiomyocytes the heart had to be light-colored, 

soft and flaccid when palpated after perfusion. The digested heart was taken quickly 

from the cannula, aorta and atria were removed and ventricles were cut into small 

pieces in solution B. The tissue pieces were gently triturated with a cut-off plastic 

transfer pipette for about 5 min to gain individual cells. Cells were filtered through a    

250 µm mesh cell collector into a falcon tube and left for 20 min at room temperature to 

settle. Ca2+ concentration was increased (from 0 µM to 100 µM to 200 µM to 400 µM) 

every 20 min to select Ca2+ tolerant cells which were rod-shaped and quiescent. Cells 

were maintained at room temperature and taken for patch-clamp analysis for up to 6 h. 
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Table 2.7 Solutions for cardiac myocytes isolation 

Solution A Final concentration 

NaCl 133 mM 

KCl 4 mM 

NaH2PO4 * 1 H2O 1.2 mM 

MgSO4 * 7 H2O 1.2 mM 

HEPES 10 mM 

Glucose 12.1 mM 

In H2O, pH 7.4 with NaOH  

 
 

Solution B Final concentration 

BSA 1 mg/ml 

In solution A  

  

Solution C Final concentration 

Collagenase type 1 41.6 U/ml 

Collagenase type 2 47.4 U/ml 

CaCl2-solution 0.1 M 25 µM 

In solution B  

 

 

Figure 2.1 Cardiac myocytes isolation system: (A) setup; (B) exemplary cannulated heart; (C) visualization of a 

proper cannulated heart (heart figures modified from Louch et al., 2011).  
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2.5  Cardiac myocytes purification assay / Percoll density gradient 

centrifugation 

 

Equilibrium density gradient centrifugation is used for purifying cell fractions (Lodish et 

al., 2007). In this study it was planned to separate the enzymatically isolated 

cardiomyocytes prior to perform quantitative real-time PCR (qRT-PCR) experiments.  

Percoll (GE Healthcare, Solingen, Germany) is a commercially available medium for 

that purpose. It is composed of colloidal silica coated with nondialyzable 

polyvinylpyrrolidone. The density range of Percoll medium/gradient encompasses all 

densities of the sample particles. Each particle sediments to its isopycnic position where 

its density is equal to the surrounding gradient density. Particle size is not relevant given 

that the density of the particles is always smaller than medium density. Thus sample 

particles are separated only on the basis of differences in density. The gentle 

centrifugation conditions allow separation of cells without loss of viability and 

morphological integrity.  

For Percoll density centrifugation a Percoll stock solution was prepared by adding    

40.5 ml of Percoll to 4.5 ml ADS buffer 10 x (table 2.8). Out of this stock solution two 

Percoll solutions with different densities were diluted in ADS buffer 1 x. In a 15 ml falcon 

tube a layer consisting of a 4 ml 40.5% Percoll solution was layered over a 3 ml 58.5% 

Percoll layer. For better visualization phenol red was added to the bottom layer. After 

Langendorff isolation of cardiac myocytes cell suspension obtained was centrifuged at 

330 g for 3 min. The pellet was resuspended in 2 ml ADS buffer 1 x. Subsequently, the 

cell suspension was added to the gradient and centrifuged at 1850 g for 30 min (room 

temperature). Four fractions of cells were obtained: cells on the top of 40.5% Percoll 

(fraction 1), cells within the 40.5% Percoll (fraction 2), a layer of cells at the interface of 

the two layers of Percoll (fraction 3) and cells within the 58.5% Percoll layer (fraction 4). 

Purified cardiac myocytes, which should concentrate at fraction 3, could be objected to 

further experiments, e.g. qRT-PCR. 
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Table 2.8 Solutions for Percoll density gravity centrifugation 

ADS buffer (10 x) Final concentration 

NaCl 129 mM 

HEPES 22 mM 

NaH2PO4 * 1 H2O 1 mM 

Glucose 6.2 mM 

KCl 6 mM 

MgSO4 * 7 H2O 0.45 mM 

In H2O, pH 7.4 with NaOH, sterile filtered  

 

2.6  Messenger ribonucleic acid (mRNA) analysis of murine ventricle 

samples 

 
For gene analysis on transcriptional level mRNA was isolated from murine ventricles, 

reverse transcribed into cDNA and quantified via qRT-PCR. In a qRT-PCR the 

amplification of cDNA via PCR and the detection of amplification products occur 

simultaneously.  

 

2.6.1 Primer design and efficiency tests 

 

Specific primer pairs for the Cavα1-subunit of the L-type calcium channel Cav1.2 (gene 

ID: Cacna1c), the auxiliary beta-subunits Cavß1, Cavß2, Cavß3 (gene ID: Cacnb1-

Cacnb3) and the housekeeping genes S 29 (ribosomal protein S 29, gene ID: Rps 29), 

HPRT (Hypoxanthine-guanine phosphoribosyltransferase) and GAPDH 

(Glyceraldehyde 3-phosphate dehydrogenase) were described previously in other 

publications or in the following dissertations of our own group: Böhnke, 2012; Dizayee, 

2011; Fabisch, 2010. Primers for the RGK proteins Rad (gene ID: Rrad), Gem, Rem 1, 

Rem 2 were designed using the software tool Roche Assay Design Center (Roche 

Diagnostics), the freeware Primer 3 (Whitehead Institute for Biomedical Research, 

Cambridge, MA, USA) or taken from earlier publications, as well (table 2.9). To avoid 

detecting genomic DNA, primers were designed intron-spanning or intron-flanking. 

Primers were validated for specificity, hairpins and dimers utilizing the freeware 

NCBI/Basic Local Alignment Search Tool (NCBI, Bethesda, Maryland, USA) and 

NetPrimer PREMIER Biosoft (PREMIER Biosoft, Palo Alto, California). 

Before starting the experiments, primers (Sigma-Aldrich, table 2.9) were tested for 
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amplification efficiencies, as well. Efficiencies of two genes were compared by preparing 

a dilution series for both genes from a murine ventricle cDNA sample. The threshold 

cycle (Ct) values obtained by qRT-PCR were blotted against the log template amount. 

Resulting slopes were taken to calculate PCR efficiency:  

 

Efficiency [%] = 10 (-1/slope) - 1 x 100 

 

If efficiencies are comparable, the blotted curves of both genes go in parallel (Bustin et 

al., 2009). The differences in Ct values of the target and the reference gene will be 

constant independent of template amount (figure 2.2). 

 

Table 2.9 qRT-PCR primers (100 µM). Primers were diluted 1:10 before pipetting to the master mix. Final 

concentration used: 0.75 µM. Forward and reverse primers are marked with F and R. 

Primer Sequence (5’-3’) Source 

S29  (F) ATG GGT CAC CAG CAG CTCT A 
(Böhnke, 2012, Fabisch, 2010) 

S29 (R) AGC CTA TGT CCT TCG CGT ACT 

HPRT (F) TGA CAC TGG CAA AAC AAT GCA 
(Fabisch, 2010) 

HPRT (R) GGT CCT TTT CAC CAG CAA GCT 

GAPDH (F) CAT GGC CTT CCG TGT TCC TA 
(Bai et al., 2013) 

GAPDH (R) CCT GCT TCA CCA CCT TCT TGA T 

Cav1.2  (F) TCC GAA CAT TAC AAC CAG CCT (Fabisch, 2010, Böhnke, 2012, 
Dizayee, 2011) Cav1.2 (R) GCT GTA CAT CTT CAG GAG CA 

Rad (F) AAG ACG GAC CTG AAG CAG AA 
Roche Assay design center  

Rad (R) CAT CCT GTT CCC AAA TGT CA 

Rem 1 (F) AAAC AAG ACC GAG ACC CTC A 
Roche Assay design center  

Rem 1 (R) CAC TGA CAG CGT TCT CTC GT 

Rem 2 (F) AGC ACT TTG TTC TTC CAG CA 
Primer 3  

Rem 2 (R) CAG TTT CTC TGG CTT CTG TTT C 

Gem (F) GAC AGC ATG GAC AGC GAC T 
Roche Assay design center  

Gem (R) ACG ACC AGG GTA CGC TCA TA 

Cavß1 (F) TGG ACA GCC TTC GTC TGC T 
(Dizayee, 2011) 

Cavß1 (R) TGG AAC TGG AGT TGT CAC CT 
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Primer Sequence (5’-3’) Source 

Cavß2 (F) GGG AGG CAG TAC GTA GAG AAG CT 
(Böhnke, 2012, Dizayee, 2011) 

Cavß2 (R) TGC AAA TGC AAC AGG TTT TGT C 

Cavß3 (F) TGG AGT CAA CTT TGA GGC CA 
(Dizayee, 2011, Böhnke, 2012) 

Cavß3 (R) TCC CGA TCC ACC AGT CAT TG 

 

 

 

Figure 2.2  Determination of primer efficiencies: if efficiencies of two genes are comparable, the blotted curves of 

both genes go in parallel and the differences in Ct values (ΔCt) will be constant independent of template amount 

(ΔCt1 = ΔCt2). Resulting slopes of the blotted dilution series are necessary to calculate PCR efficiencies. 

 

2.6.2 Isolation of mRNA 

 

Isolation of mRNA from murine ventricle was performed with the RNeasy® Fibrous 

Tissue Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol 

with the following modifications: approx. 30 mg of frozen cardiac apex was 

homogenized with an Ultra Turrax ® (IKA, Staufen, Germany) in 300 µl buffer RLT. On-

column DNase digestion was skipped due to the following gDNA elimination step during 

reverse transcription. Each step of the protocol was performed at room temperature. 

The RNA was eluted in a volume of 60 µl RNase-free water and stored at -80°C.  
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2.6.3 Determination of mRNA quality  

 

Quality and quantity of the purified mRNA were controlled using the Nano Drop 2000c 

UV-Vis Spectrophotometer (Thermo Fisher Scientific).  

An additional quality check followed via agarose gel electrophoresis. Ribosomal RNA 

(rRNA) was separated into 18 S rRNA (~ 1.9 kbp) and 28 S rRNA (~ 4.7 kbp). RNA 

quality was marked by two sharp bands of which the 28 S rRNA band was twice as 

intense as the 18 S rRNA band (Taylor et al., 2010).  

Check of RNA integrity was performed as described earlier (Gründemann and Koepsell, 

1994). For short, RNA samples and RNA ladder were mixed with three sample volumes 

of 4/3 DLG denaturating solution (table 2.10) and incubated for 1 h at 50°C. Main 

components of the 4/3 DLG are DMSO and deionized glyoxal. Glyoxal reacts with the 

base guanin and prevents base-pairing with cytosin. Consequently, the so-called 

glyoxilation of the single-stranded RNA avoids formation of secondary structures. After 

incubation 1 µl Orange G loading dye was added to 4 µl of denaturated sample solution 

and RNA ladder, respectively. Subsequently, samples were loaded on a 1% agarose 

gel (0.5 mM iodoacetic acid sodium salt included) in BES buffer, that was run at 90 mV. 

Iodoacetic acid sodium salt, an alkylating agent, was used to protect the RNA against 

RNases. BES buffer is a low-ionic strength buffer, which also prevents base pairing. 

After approx. five minutes the buffer was circulated constantly using a mini pump to 

avoid the development of a pH gradient. For visualization ethidium bromide staining and 

detection via AlphaDigiDoc®Pro Imaging System (Alpha Innotech) were used. Ethidium 

bromide staining of RNA was reported to react with glyoxal, resulting in a loss of 

fluorescence (Gründemann and Koepsell, 1994). Therefore the dye was always added 

freshly to the 4/3 DLG denaturating solution. 

 

Table 2.10 Solutions for RNA integrity check 

BES buffer (1 x) Final concentration 

BES 10 mM 

EDTA 0.1 mM 

pH 6.7; treated with DEPC-H2O  
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4/3 DLG  Final concentration 

DMSO 50 % (v/v) 

Deionized glyoxal (40 %) 1 M 

In BES buffer (1 x)  

 

4/3 DLG denaturating solution Final volume 

4/3 DLG 50 µl 

Ethidium bromide solution (0.25 %) 1 µl 

  

RNA ladder Final volume 

RNA ladder 1 µg/µl; 0.5-10 kb 10 µl 

DEPC-H2O 10 µl 

4/3 DLG denaturating solution 60 µl 

 

Orange G loading dye Final concentration 

Glycerol 50 % (v/v) 

DEPC-H2O 50 % (v/v) 

Orange G 2.5 mg/ml 

 

2.6.4 Reverse transcription into complementary DNA (cDNA)  

 

The reverse transcription step was carried out in duplicate with the QuantiTect® 

Reverse Transcription Kit (Qiagen), as outlined in the manufacturer’s protocol. In brief, 

400 ng total RNA was used in a final volume of 20 µl. Samples were prepared on ice. 

Reverse transcription was performed in a mastercycler (Eppendorf AG, Hamburg, 

Germany) using following conditions:  

 

5 min at 42°C for genomic DNA elimination 

19 min at 42°C for reverse transcription  

3 min at 95°C  to inactivate reverse transcriptase 

 

cDNA was stored at -20°C.  
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2.6.5 Quantitative real-time PCR (qRT-PCR) 

 

qRT-PCR was performed to quantify mRNA. This method possesses high sensibility for 

the detection of low target amounts (Bustin, 2000) and facilitates detection in the early 

exponential phase of PCR “in real time” during each PCR cycle. Real-time PCR 

reactions were carried out in a thermo cycler that permits fluorescence-based detection 

technologies. In this study the dye SYBR Green that fluoresces upon binding to double-

stranded DNA was used for quantifying.  

In qRT-PCR a starting amount of cDNA is amplified in a distinct number of cycles, 

consisting of denaturation, primer annealing and template elongation. Proportional to 

the amount of PCR product generated in each extension cycle, the fluorescence 

increases. In early cycles, there is no detectable fluorescence increase due to PCR 

products; this nonspecific signal is defined as background. The so-called threshold level 

is set above background and within the detectable log-linear phase of the reaction. 

Once there is a significant increase in fluorescence, so that the amplification plot 

crosses the threshold, the corresponding cycle is registered as the so-called threshold 

cycle (Ct) value. Respectively, the intensity of fluorescence generated at a given cycle 

is indicative of the template amount (figure 2.3).  

 

 

Figure 2.3 A typical qRT-PCR amplification plot: the increase in fluorescence is blotted versus the cycle number. 

A threshold level is set sufficiently above background within the exponential growth phase and the number of cycles 

required to reach threshold, Ct, is registered (modified from Kubista et al., 2006). 
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qRT-PCR was carried out in the Light Cycler®2.0 System (Roche Diagnostics 

Deutschland GmbH). Experiments were performed in triplicates using the QuantiTect 

SYBR® Green PCR Kit (Qiagen). Master mix solution (table 2.11) and primer pair 

dilutions (1:10 each) were prepared on ice. After pipetting the master mix into a Light 

Cycler® glass capillary, 1.5 µl per forward and reverse primer (0.75 µM final 

concentration per primer) were added. Before starting the thermo cycler (Light 

Cycler®2.0 System, Roche Diagnostics Deutschland GmbH), glass capillaries were 

spun down using the LightCycler® carousel centrifuge.  

After preincubation and 45 cycles of amplification (each consisting of denaturation, 

annealing and elongation), melting curve analysis was performed to check for product 

purity and to exclude primer dimers (table 2.12). Each experiment contained a control 

reaction in which no reverse transcriptase was added (detection of DNA contamination) 

and a further control with missing template (detection of general contamination). 

 

Table 2.11 Composition of reaction mix 

Master mix solution (per target / primer pair) Volume 

QuantiTect SYBR® Green PCR Master mix (2 x) 10 µl 

cDNA template 1 µl 

RNase-free water 6 µl 

 

Table 2.12 qRT-PCR protocol 

Cycling step 
Target 
temperature 

Incubation time 
Temperature 
transition rate 

No. of 
cycles 

Preincubation 95°C 15 min 20°C / sec 1 

Denaturation 94°C 15 sec 20°C / sec 

45 Annealing 58°C 25 sec 20°C / sec 

Elongation 72°C 10 sec 20°C / sec 

Melting curve 
analysis 

64°C 1 min 20°C / sec 1 

Inactivation of 
polymerase 

95°C   1 
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After qRT-PCR random samples were checked for correct cDNA amplification on a 

1.3% agarose gel (electrophoresis in TAE buffer 1 x at 100 V and detection via ethidium 

bromide; table 2.13). 

 

Table 2.13 Electrophoresis buffer for qRT-PCR products 

TAE buffer Final concentration 

Tris pH 7.6 40 mM 

Acetic acid 20 mM 

EDTA 1 mM 

 

2.6.6 qRT-PCR: data analysis 

 

At the beginning of data analysis the expression of S 29, HPRT and GAPDH was 

compared in order to find appropriate housekeeping genes. In general, housekeeping 

genes should be stably expressed. Their mRNA amounts should correlate with the total 

amounts of mRNA present in the samples (Bustin et al., 2009). 

 

The Pfaffl method (REST-2009©) 

 

For relative quantification of mRNA expression levels the Pfaffl method was used, 

available as the relative expression software tool REST-2009© (Qiagen, Hilden, 

Germany; see also Pfaffl et al., 2002). This method was chosen because it takes into 

account different primer efficiencies as well as several reference genes in order to 

correct the quantification ratio. In the present study data were normalized to S29, 

GAPDH and HPRT simultaneously (see also appendix, chapter 8.5.4). The software 

tool compares two groups (e.g. wildtype vs. mutant) with up to 16 data points per group 

and calculates the relative expression ratio between them. REST-2009© subsequently 

tests the group differences for significance. The statistical test used is based on the Pair 

Wise Fixed Reallocation Randomization Test©. A randomization test makes no 

assumptions about distributions and is only based on the fact that samples are 

randomly allocated. The randomization test repeatedly and randomly reallocates (2000 

times) the observed Ct values for the housekeeping and the target genes to the Ct 

values for control and mutant groups, and notes the apparent expression ratio each 

time. Because it is impractical to test for all possible allocations of data to the two 
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groups, only random samples are tested. If 2000 random reallocations are taken for 

analysis, the software tool gives a good estimate of the p-value < 0.05. REST-2009© 

analysis provides a 95% confidence interval for the expression levels as well as 

Whisker box plots for a visual representation of variation for each gene (Pfaffl et al., 

2002).  

 

In the current study data were also analyzed via 2–ΔΔCt analysis in order to provide a 

commonly accepted visual representation of variation for each gene via bar graphs 

(inclusive error bars).  

 

The 2–ΔΔCt or comparative method  

 

The 2–ΔΔCt or comparative method can be also used for relative quantification of a single 

transcription difference between two groups (Livak and Schmittgen, 2001). This method 

is based on two assumptions: first, the reaction is occurring with 100% efficiency and 

second, DNA amplification is constant among the samples (VanGuilder et al., 2008). 

The 2–ΔΔCt method only allows normalization against a single gene and primer efficiency 

cannot be included into analysis. In the present study S 29 was used as normalization 

gene (see also appendix, chapter 8.5.4).  

 
For relative quantification, the difference between the Ct values of the target gene and 

the housekeeping gene was calculated first:  

 
Δ Ct  = Ct (target gene) - Ct (housekeeping gene) 

 
Then, Δ Ct was used to compare gene expression in different samples, e.g. mutant vs. 

wildtype: 

 
ΔΔ Ct = Δ Ct (mutant) – Δ Ct (wildtype) 

 
An altered gene expression in mutant mice compared to wildtype mice was calculated 

as follows: 2–ΔΔCt .  

 
A 2–ΔΔCt value of 1 means no expression change, 2 stands for a twofold upregulation 

and 0.5 for a twofold downregulation of expression. In the present study significant 

expression changes of the 2–ΔΔCt analysis are supplemented in the appendix.   
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2.7  Protein analysis of murine ventricle samples 

2.7.1 Positive controls for Cav1.2 protein and Rad protein 

 

Cav1.2 protein  

A positive control for Cav1.2 protein was generated via a calcium phosphate based 

transfection method in tsa201 cells (human embryonal kidney cells; kindly provided by 

A. Koschak, LFU Innsbruck, Austria), followed by cell lysis and Co-immunoprecipitation 

(Co-IP).  

Calcium phosphate transfection: transfection was kindly performed by C. Fried at the 

Center of Pharmacology, Institute II, University Hospital of Cologne. Before being 

transfected the tsa201 cells were split in DMEM-high glucose medium (Gibco, Thermo 

Scientific), supplemented with 10% FCS (Biochrom, Berlin, Germany) and 

Penicillin/Streptomycin (50 U/ml / 50 µg/ml; PAA Laboratories GmbH, Cölbe, Germany). 

At the time of transfection attached cells were about 30-40% confluent. The desired 

plasmid DNA was first bound on the surface of a calcium phosphate precipitate. This 

precipitate was built up by mixing HBS buffer (table 2.14), containing phosphate ions, 

and a calcium chloride solution.  

In brief, the ice-cold transfection mix contained 950 µl HBS buffer and approx. 20 µg of 

the following plasmid DNA sequences in a subunit molar ratio of 1:1:1 (inserted in 

pcDNA3 expression vectors): CACNA1c (rat), CACNA2D1 (human) and CACNB3 

(human). The CACNA1c plasmid was kindly provided by E. Bourinet, Institute for 

Functional Genomics, Montpellier, France (GenBankTM accession number M67515; 

(Altier et al., 2002)). Into the extracellular S5-H5 loop of domain II of the Cav1.2 

construct a hemagglutinin epitope was inserted. The other plasmids were necessary to 

improve transfection efficiency. After preparation of the transfection mix 50 µl ice-cold 

CaCl2 solution (2.5 M) was added dropwise and vortexed briefly. Subsequently, the 

CaP-DNA complex was able to built up in about 30 min of incubation at room 

temperature. Thereafter, the suspension was transferred dropwise to the cells to be 

transfected. Given that an excess of Ca2+ may be toxic for the cells, they were washed 

twice in PBS (37°C) after 5 hours of incubation at 37 °C and fresh medium was added. 

The next morning medium was changed again (Penicillin/Streptomycin included), but 

instead of 10% only 2% FCS were added. After cells reached 60-70% confluence, they 

were incubated at 28°C for 72 h for protein expression.  
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Table 2.14 Composition of HBS buffer 

HBS buffer Final concentration 

HEPES 21 mM 

NaCl 137 mM 

KCl 49 mM 

Dextrose / glucose 5.5 mM 

Na2HPO4*7H2O 0.75 mM 

pH 6.95 - 7.1 with NaOH  

 

Cell lysis: transfected cell dishes were set back to 37°C incubation temperature for 

approx. 6 h in order to achieve a better cell attachment. 100% confluent cell dishes 

were put on ice for 15 min to prevent endocytosis and protein degradation. Following 

steps were performed on ice or at 4°C: cells were washed twice in 5 ml PBS. Afterwards 

medium was removed and 4 ml PBS added (including 10% SigmaFASTTM Protease 

Inhibitor Cocktail, EDTA-Free, Sigma-Aldrich). Cells were scraped off, transferred to 

microcentrifuge tubes and centrifuged at 3500 rpm for 3 min. Subsequently, the pellet 

was resuspended in 750 µl lysis buffer (table 2.15) and incubated at 700 rpm for 45 min. 

Samples were sonicated (60% pulse, 3 x 3 sec) in order to fragment DNA and to 

remove membrane components of the calcium channel, followed by another 30 min of 

incubation. To pellet non dissolved cell debris the tube was centrifuged at 13000 rpm for 

15 min. 

 

Table 2.15 Composition of cell lysis buffer 

Cell lysis buffer Final concentration 

Tris 50 mM 

NaCl 100 mM 

Triton®X-100 0.2 % (v/v) 

Nonidet®P40 BioChemica 0.2 % (v/v) 

EDTA 10 mM 

SigmaFASTTM Protease Inhibitor Cocktail, EDTA-Free 10 % (v/v) 

pH 7.5  
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CoIP: the supernatant obtained after cell lysis was objected to a CoIP in order to 

concentrate the antigen Cav1.2. In brief, 1.5 ml of the supernatant and 10 µl Anti-HA 

High Affinity antibody (Roche Diagnostics GmbH Deutschland) were incubated for 5 h at 

4°C to form an immune complex. Pierce®Protein A/G Magnetic Beads (Thermo Fisher 

Scientific) were washed twice in 1000 µl lysis buffer. The beads contained a 

recombinant Protein A/G that combined the IgG binding domains of Protein A and 

Protein G. The immune complex was then added to 25 µl of the washed beads and 

incubated over night (4°C). Thereby the complex was immobilized to the beads. The 

next day supernatant was discarded, beads were collected with a magnet and washed 

twice in 1 ml ice-cold PBS-Triton 0.2% for about 5 min. Finally, beads were incubated in 

40 µl 2 x Laemmli buffer (table 2.16) for 10 min at 50°C. After centrifugation at full 

speed for 1 min at 4°C eluted samples were shock frozen in liquid nitrogen and stored 

at -20°C. 5 µl of the solution were used for Western Blot. 

 

Table 2.16 Composition of Laemmli buffer  

Laemmli buffer (4 x) Final concentration 

Tris-HCl 200 mM 

SDS 8 % [w/v] 

Glycerol 40 % [v/v] 

Bromphenol blue 0.1 % [w/v] 

pH 6.8 
 

 

Rad protein  

In order to obtain enough transfectable plasmid DNA, a mouse cDNA clone (pCMv-6-

Entry vector, Rrad-Myc-DDK-tagged, MR204351, Origene Technologies Inc, Rockville, 

MD, USA) was purified by NucleoBond® Xtra Maxi Kit (Macherey Nagel, Dueren, 

Germany) according to the manufacturer’s protocol and the sequence was verified via 

sanger sequencing. 

Ca2+ phosphate transfection and cell lysis were performed as described above 

(transfection of Cav1.2) with following modifications: first, 20 µg of murine rRad (pCMv-6 

vector) were added to 950 µl ice-cold HBS buffer. Secondly, instead of 750 µl lysis 

buffer 150 µl were added to the cell pellet. Without sonification cells were lysed for 1 h 

at 4°C and centrifuged at full speed for 1 min at 4°C. The supernatant obtained after 

centrifugation could be directly used for Western Blot. CoIP was not necessary. 
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2.7.2 Cardiac cell membrane protein preparation assay 

 

The LTCC is an integral cell membrane protein complex (Hofmann et al., 2014). 

Therefore the transmembrane protein content was a particular research interest. 

Consequently, the protein preparation assay used was optimized to isolate mainly 

membrane proteins. The protocol was a modified protocol kindly provided by Prof. Dr. 

V. Flockerzi, Experimental and Clinical Pharmacology and Toxicology, Saarland 

University, Homburg, Germany (personal communication). 

For short, a frozen heart was disrupted with an Ultra Turrax® in 1 ml homogenization 

buffer (table 2.17) and then frozen at -80°C for at least 20 min. The formation of crystals 

during the freezing step should break up tight cell structures. Following steps were 

performed on ice or at 4°C: in order to dissolve the membrane proteins, the thawed 

suspension was homogenized with a Potter S homogenizer (Sartorius, Goettingen, 

Germany) and sheared twice through an injection needle (0.7 mm / 22 G). Fractioning 

procedure was conducted with differential centrifugation at increasingly higher speeds 

(Lodish et al., 2007). In general, large heavy dense particles sediment faster than small 

low dense particles. The dense, nonionic substance sucrose was optimal to achieve a 

good separation. Thus, 0.5 ml of a 0.63 mM sucrose solution (10% protease inhibitor 

cocktail included) were added and several centrifugation steps to eliminate the nuclei 

and the cell debris followed: 2 min at 500 rpm, 2 min at 1000 rpm and 10 min at 3000 

rpm. Subsequently, the supernatant, which contained the total protein fraction, was 

transferred to an ultracentrifuge tube  and centrifuged at 48000 rpm for 45 min 

(OptimaTM TLX Ultracentrifuge, Beckman Coulter Deutschland, Krefeld, Germany; rotor: 

TLA 55). This time the supernatant was discarded and the pellet resuspended in         

50-100 µl 0.25 mM sucrose buffer (table 2.17) using the potter homogenizer. Samples 

were frozen in liquid nitrogen and stored at -20°C or directly used for determination of 

protein content and Western Blot. 
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Table 2.17 Buffers for cardiac cell membrane preparation assay 

Homogenization buffer Final concentration 

Tris-HCl 40 mM 

MgCl2 0.2 mM 

SigmaFASTTM Protease Inhibitor Cocktail, EDTA-Free 10 % (v/v) 

pH 8, 4°C  

 

Sucrose buffer Final concentration 

Tris-HCl 10 mM 

Sucrose 0.25 mM 

SigmaFASTTM Protease Inhibitor Cocktail, EDTA-Free 10 % (v/v) 

pH 7.4, 4°C  

 

2.7.3 Determination of protein concentration  

 

Cardiac cell membrane protein content of purified heart samples was determined via a 

Bradford assay. This colorimetric assay is based on an absorbance shift of the dye 

Coomassie Brilliant Blue G-250. Under acidic conditions the cationic unbound form of 

the dye has an absorption spectrum maximum at 465 nm. When binding to proteins the 

dye converts from red to blue and the absorption spectrum maximum shifts to 595 nm. 

This increase of absorbance at 595 nm is proportional to the amount of protein bound to 

the dye (Bradford, 1976).  

The protein content of the samples was determined using a BSA standard curve. A 

dilution series of the standard protein bovine serum albumin (BSA) with the final 

concentrations 0, 25, 50, 75, 100, 125, 150, 175, 200 µg/ml was prepared in aqua dest. 

added with 0.1% sodium azide. Subsequently, 200 µl of Bradford reagent (table 2.18) 

was added to 20 µl of each BSA concentration. After incubation at 30°C for 2 min, 

extinction was measured at 595 nm with the high performance 

BioTek™Synergy™2Multi-Mode Microplate Reader (Biotek Germany, Bad 

Friedrichshall, Germany). Prior determination of the cardiac protein content, samples 

were diluted 1:50 in aqua dest. added with 0.1% sodium azide and treated same as the 

BSA dilution series. Experiments were performed in triplicates. 
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Table 2.18 Coomassie solution used for Bradford analysis 

Bradford reagent Composition 

Coomassie Brilliant Blue G-250 20 mg 

96 % ethanol 25 ml 

85 % o-phosphoric acid 50 ml 

Deionized H2O Ad 500 ml 

Filtered, stored dark & cold  

 

2.7.4 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis  

(SDS-PAGE) 

 

SDS-PAGE describes a method to separate proteins in an electric field. Protein 

samples are prepared in a buffer containing the anionic detergent SDS, which 

denatures and linearizes them and imparts a negative charge to them. This sample 

preparation allows separation of proteins according to their size instead of charge. ß-

mercaptoethanol is added to break disulfide bridges of the proteins. Prepared samples 

are subsequently transferred to an acryl amide gel and exposed to an electric field. 

In general, SDS-PAGE mini gels are ideally prepared with 7% acryl amide for Cav1.2 

protein separation and with 12.5% acryl amide for Rad protein separation. In the current 

study both proteins were separated in one gel by casting a 7% acryl amide gel on an 

already polymerized 10% acryl amide layer (table 2.19). By varying the acryl amide 

content the pore-size of the gel can be altered, thus the electrophoretic mobility. In 

general, smaller proteins migrate faster than larger proteins through the gel. Thus, small 

proteins have to be separated in a gel with high acryl amide content in order to obtain 

an adequate electrophoretic mobility, whereas large proteins migrate insufficient in such 

a gel. For polymerization of the gel TEMED as a catalyzer and APS as a radical initiator 

were necessary. The stacking gel  (table 2.19) was casted above the separating gel in 

order to concentrate samples. In another preparation step protein samples were diluted 

1:1 in Laemmli buffer (4x) containing 5% 2-mercaptoethanol, before being preheated at 

60°C for 6 min. Thereafter an equal amount of 40 or 60 µg per sample was loaded into 

the gel pockets. As a protein standard Spectra Multicolor Broad Range Protein Ladder 

(Life Technologies) was used. The gel was run at 200 V in SDS running buffer (1x) in 

the Mini-PROTEAN Tetra Cell chamber (Bio-Rad Laboratories GmbH, Munich, 

Germany). After SDS-PAGE stacking gel was completely removed and separating gel 

equilibrated in Western Blot transfer buffer for 20 min.  
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Table 2.19 Composition of SDS-PAGE gels and running buffer 

Separating gel Volume Final concentration 

Rotiphorese®Gel 40 
(37.5:1) 

1.75 / 2.5 / 3.125 ml  7 / 10 / 12.5 % 
 

Tris-HCl 3 M pH 8.8 2.5 ml   

SDS 20 % (w/v) 50 µl   

APS 10 % (w/v) 100 µl   

TEMED 10 µl   

H2O Ad 10 ml   

 

Stacking gel Volume 

Rotiphorese®Gel 40 
(37.5:1) 

670 µl 

Tris-HCl 0.5 M pH 6.8 1.25 ml 

SDS 20 % (w/v) 25 µl 

APS 10 % (w/v) 50 µl 

TEMED 5 µl 

H2O 3.075 ml 

 

SDS running buffer (1 x) Final concentration 

Glycin 192 mM 

Tris 25 mM 

SDS 0.1 % (w/v) 

 

  



Materials and methods 

- 48 - 

2.7.5 Western Blot / blocking procedure 

 

Western Blot is a method characterized by the transfer of proteins from a SDS gel onto 

a membrane, where they can be stained with antibodies specific to the target protein. 

Commonly the SDS gel is placed next to the membrane and an electric current is 

applied. Consequently, the proteins that are captured in the gel are forced to migrate 

towards the anode. At the time they reach the membrane, proteins are bound by 

hydrophobic interactions. The specific protein organization obtained after SDS-PAGE is 

maintained. 

Experiments were conducted in the tank blotting system Mini Trans-Blot® Cell (Bio-Rad 

Laboratories GmbH). For blotting of Cav1.2 protein a nitrocellulose (NC) membrane 

(AmershamTMProtranTM Premium NC, 0.45 µm, GE Healthcare) proved to be optimal. 

However, a polyvinylidene fluoride (PVDF) membrane (Immun-Blot® PVDF-Membrane, 

0.2 μm, Bio-Rad Laboratories GmbH) was preferred (mainly due to the smaller pore 

size) in order to blot solely Rad protein or  both proteins simultaneously. The PVDF 

membrane had to be activated by soaking it 1 min in 100% methanol. In addition, 

blotting papers (WhatmanTM 3MM Chromatography Paper, GE Healthcare Life 

Sciences) were necessary to guarantee an equal current and to avoid drying of the pre-

wetted membranes. To prepare the experiment, the NC or PVDF membranes as well as 

the blotting papers had to be equilibrated in transfer buffer (table 2.20). Thereafter the 

so-called blotting sandwich, which describes a distinct composition of SDS gel, 

membrane and blotting papers, was assembled as follows: 

 

 

Figure 2.4 Composition of the blotting sandwich (adapted from Bio-Rad Mini Trans-Blot® Cell Instruction 

Manual).  
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The SDS-PAGE gel was blotted over night at 100 mA, 4°C. Quality of transfer was 

checked with Ponceau S staining solution. Proteins which might be retained in the gel 

were visualized via a Coomassie staining (table 2.21). 

 

Table 2.20 Western Blot buffer composition 

Transfer buffer  Final concentration 

Boric acid 50 mM 

Methanol 10 % (v/v) 

pH 8.5, 4°C  

 

Table 2.21 Staining solutions 

Ponceau S staining solution Final concentration 

Ponceau S 0.1 % (w/v) 

Acetic acid 5 % (v/v) 

  

Coomassie staining solution Final concentration 

Coomassie Brilliant Blue G-250 0.25 % (w/v) 

Acetic acid 10 % (v/v) 

MeOH 50 % (v/v) 

H2O 40 % (v/v) 

 

After destaining of the membrane in tris buffered solution, containing 0.1% tween 20 

(TBS-T 0.1 %; table 2.22), it was blocked in 5% milk powder (MP) in TBS (1 h at room 

temperature). This blocking solution reduced unspecific binding of antibodies and thus 

background signals. 

 

Table 2.22 Composition of TBS and TBS-T 

TBS Final concentration 

Tris-HCl 50 mM 

NaCl 150 mM 

pH 7.5  
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TBS-T 0.1 % Final concentration 

TBS 99.9 % (v/v) 

Tween 0.1 % (v/v) 

pH 7.5  

 

2.7.6 Antibody incubation and protein detection 

 

Proteins transferred onto a membrane can be detected with antibodies specific to the 

target protein and linked assays, e.g. a chemiluminescence reaction assay.  

For short, the primary antibody (table 2.23) was applied to the blocked membrane and 

incubated over night at 4°C with constant agitating. Both proteins of interest  were 

incubated separately with the corresponding antibodies. For this, membrane was cut 

horizontally at the level of the 100 kDa band of the protein standard. Following the first 

incubation, membrane piece was washed in TBS-T 0.1% (3 x 5 min) and exposed to the 

secondary antibody. Unbound secondary antibody was also washed off after 1.5 hours 

of incubation at room temperature. Subsequently, protein detection was possible 

because of a chemiluminescence reaction between the horseradish peroxidase (HRP) 

coupled to the secondary antibody and the substrate luminol, included in the detection 

kit SuperSignal™ West Pico Chemiluminescent Substrate (Thermo Scientific). 

Chemiluminescence was captured with the MultiImage®  II system (Alpha Innotech) and 

manifested in visible bands with variable densities. Each membrane was detected in 

total, thus providing results for Cav1.2 and Rad in the same image recorded. 

 

Table 2.23 Antibodies for specific protein detection 

Antibody name 
Host 
species 

Clonality Application 

ANTI-RRAD  
(Sigma Aldrich; 
SAB2502049) 

Goat Polyclonal 
1:500 in 2.5 % MP in TBS-T  
0.05 % (+ 0.1 % sodium azide) 

Anti-Calcium Channel 
(Sigma Aldrich; C1603) 

Rabbit Polyclonal 
1:200 in 1 % MP in TBS-T 0.1 %  
(+ 0.1 % sodium azide) 

Swine Anti-Rabbit         
Ig-HRP (Dako; P0399) 

Donkey Polyclonal 1:5000 in 5 % MP in TBS 

Swine Anti-Rabbit          
Ig-HRP (Dako; P0399) 

Swine Polyclonal 1:2000 in 5 % MP in TBS 
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2.7.7 Western Blot: data analysis 

 

Bradford measurements were analyzed with Gen5TM Data Analysis Software (BIOTEK 

Deutschland, Berlin, Germany). Western Blot images were interpreted by quantitative 

comparing of the band densities using ImageJ software tool (National Institutes of 

Health, New York City, NY, USA).  

 

2.8  Electrophysiology  

 

2.8.1 Patch-clamp technique  

 

The patch-clamp technique was first described by Erwin Neher and Bert Sakmann in 

1976. They detected single-channel current activity in acetylcholine-activated channels 

of frog skeletal muscle membranes via the cell-attached method (Neher et al., 1978). A 

small part of the cell membrane is electrically isolated by attaching a glass electrode 

onto its surface via gentle suction, resulting in a high resistance gigaohm seal. Upon 

receipt of a gigaohm seal, several patch-clamp configurations are possible: cell-

attached, inside-out, outside-in or whole-cell (Hamill et al., 1981). This study was 

focused on the whole-cell voltage-clamp configuration, discovered by Kenneth Cole and 

H. J. Curtis and further developed by Alan Hodgkin and Andrew Huxley (Hodgkin et al., 

1952). The whole-cell voltage-clamp configuration enables detection of ion channel 

current density among the whole cell membrane (see also chapter 2.8.4).  

A simplified scheme of the voltage-clamp method is depicted in figure 2.5. With 

obtainment of a stable gigaohm seal, the cell-attached configuration is achieved.  Once 

the small part of the attached membrane is ruptured by further suction, the pipette 

contents equilibrate with the cell’s cytoplasm and impose an artificial ionic potential 

across the membrane. In this way, the voltage across the entire cell membrane is 

patched (whole-cell mode) and the current density of all the channels expressed at the 

membrane surface can be monitored. Using the voltage-clamp mode, the membrane 

potential of the cell (the pipette voltage, Vp) can be set to a user-specific value, the so-

called command potential (Vcom or Vclamp). The current (Icell) required to maintain the 

command voltage, is recorded through a voltage drop across the feedback resistor (RF) 

of the amplifier. The resulting output voltage (Vout) is linearly proportional to the 

measured current. Hence, the measured current is proportional to the compensating 
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current. Detected currents are in a range of pA, therefore amplifiers are used for a 

better resolution.  

 

Figure 2.5 Simplified schematic of a traditional patch-clamp amplifier in voltage-clamp mode;                          

Rmem = membrane resistance, Cmem = membrane capacity, Rp = pipette resistance, Cp = pipette capacity, Icell = 

measured current, Vp = pipette voltage, Vclamp = command potential, RF = feedback resistor, Vout = output voltage 

(modified from Harrison et al., 2015).  

  

2.8.2 Patch-clamp setup 

 

As outlined in figure 2.6 (A), electrophysiologic experiments are carried out in a faraday 

cage that insulates the setup from surrounding electrical fields. To reduce artefacts, the 

inverted microscope (Nikon Eclipse Ti-U, Nikon instruments, Japan) is placed on a 

vibration-cushioned table and all instruments are isolated and grounded. Furthermore, 

the setup possesses a hydraulic micromanipulator (MHW-103, Narishige International, 

Tokyo, Japan) to move the micropipette in the desired position. The headstage 

preamplifier (CV 203BU, Axon Instruments, Sunnyvale, CA, USA) has an integrated 

capacitor-feedback that is able to measure the current as the rate of voltage increase 

across the capacitor. The main amplifier (Axopatch 200B, Axon Instruments), the 

analog-digital converter (Digidata 1440A, Axon Instruments) and the computer are 

positioned outside the faraday cage (figure 2.6 (B)). The main amplifier fortifies the 

measured signals, enables ultra low-noise recordings and includes a control unit, that 

allows diverse regulation, e.g. cell capacitance compensation. The analog-digital 

converter receives the analog signals from the amplifier and transforms them into digital 

signals, that can be captured by pClamp10.2 software (Axon Instruments) installed on 

the computer. Recording electrode and bath electrode consist of silver wires coated with 
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AgCl (AG-15W, Science Products GmbH, Hofheim, Germany). Coating was performed 

by immersing the wire into a 3 M KCl solution; the applied voltage of 1 mA permits an 

oxidation reaction: Ag + Cl- ↔ AgCl + e-. 

 

Figure 2.6 Patch-clamp setup (A): (1) inverted fluorescence microscope (2) faraday cage (3) vibration-cushioned 

table (4) hydraulic micromanipulator (5) headstage preamplifier with pipette holder (B): (6) main amplifier (7) 

AC/DA-converter (8) computer containing acquisition and analysis software. 

 

2.8.3 Patch pipettes 

  

The chemical composition of the glass used for preparation of patch pipettes is 

important to reduce the background noise level. Moreover, its ability to form pipettes 

with appropriate tip size and taper is crucial to achieve a good seal resistance between 

pipette and cell membrane (Rae and Levis, 1992). At the day of experiment pipettes 

were prepared out of borosilicate glass capillaries (1.7 mm OD; 1.133 mm ID; 0.283 mm 

wall thickness; Hilgenberg, Malsfeld, Germany) using a horizontal pipette puller (P-97, 

Sutter instruments). Fire-polishing of the micropipette tips was performed using a 

microforge (MF-83, Narishige International). Smoothing of the glass tips was necessary 

to ensure stable seal formation. In case of whole-cell recordings the pipette resistance 

should be in the range of 1.7-3.0 MΩ; the resistance is a useful indicator for the pipette 

tip size, i.e. the lower the resistance the larger the tip size and vice versa.  

  

1
3

5

4

1
2

6

8

7

A B



Materials and methods 

- 54 - 

2.8.4 Whole-cell recordings: solutions and data acquisition 

 

Whole-cell patch-clamp experiments were performed to detect the calcium current 

density of enzymatically isolated cardiac myocytes. Furthermore, the whole-cell mode 

also allows the description of kinetic properties of the membrane ion channels.  

Bath and pipette solutions (table 2.24) were prepared freshly on each experimental day. 

Composition of bath solution was orientated on physiological extracellular ionic 

concentrations. Pipette solution contained cesium ions to block potassium channels, 

EGTA as a calcium chelator and ATP to prevent rapid calcium current rundown (Belles 

et al., 1988). Approx. 100 µl of cardiomyocyte cell suspension was transferred to a 

tissue culture dish (polystyrene, 35 x 10 mm) and covered with 3 ml of bath solution. 

Rod-shaped and quiescent myocytes were patched after having settled. Glass pipettes 

were filled with pipette solution in two steps (tip and back filling) and bubbles were 

completely removed via gentle tapping. Pipettes were connected to the pipette holder 

containing the recording electrode. To avoid clogging of the pipette tip, a small positive 

pressure was applied. 5 mV depolarization steps were repeatedly applied via the patch-

clamp amplifier and the pipette immersed in the bath solution (figure 2.7 (A)). The 

approach of the pipette tip to the cell membrane was controlled by the change in pipette 

resistance. The pipette resistance was described by a visible rectangle pulse; the higher 

the pulse the lower the resistance.  

To reach cell-attached configuration, the pipette was positioned over a cell and its 

pressure released shortly before contacting the cell membrane. Gigaohm seal formation 

was achieved either spontaneously or by gentle suction, indicated by a fast reduction 

and finally extinction of the rectangle pulse (figure 2.7 (B)). This cell-attached patch-

clamp configuration is essential for preventing leak currents and allows for tight voltage 

control of the cell membrane. After achieving a stable gigaohm seal, membrane 

potential was set to -80 mV and fast capacity transients, that are mainly associated with 

pipette capacitance, were compensated (figure 2.7 (C)). A further suction was required 

to rupture the membrane and merge into the whole-cell mode (figure 2.7 (D)); the 

pipette solution then was in contact with the cytoplasm and equilibrated. Whole-cell 

capacitance transients, reflecting the passive charging of the cell, were adjusted with 

the appropriate amplifier controls. Membrane capacitance was automatically determined 

by pClamp 10.2 software. The amplifier was set as follows:   V-Clamp mode, whole-cell 

configuration ß 1, output gain alpha 2, lowpass bessel filter 2 kHz.  
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Figure 2.7 Capacity transients observed going whole-cell: (A) a rectangular test pulse of 5 mV amplitude is 

applied to the patch-clamp input in order to monitor the capacity transients. Fast capacity transient currents in a cell-

attached configuration before (B) and after (C) compensation occur due to pipette resistance. (D) Whole-cell 

configuration is indicated by the appearance of large capacity transients at the leading and trailing edges of the pulse 

(adapted from Ogden and Stanfield, 1987). 

 

Table 2.24 Patch-clamp solutions for whole-cell measurements 

Bath solution Final concentration 

NaCl 137 mM 

CsCl 5.4 mM 

CaCl2 * 2 H2O 2 mM 

MgCl2 * 6 H2O 1 mM 

Glucose 10 mM 

HEPES 10 mM 

pH 7.4 with NaOH  

 
 

Pipette solution Final concentration 

CsCl 120 mM 

Mg-ATP 4 mM 

MgCl2 * 6 H2O 1 mM 

EGTA 10 mM 

HEPES 5 mM 

pH 7.2 with CsOH  

(A) 

 

 

 

(B) 

 

 

 

(C) 

 

 

 

(D) 
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2.8.5 Whole-cell recordings: pulse protocols 

 

I/V curve pulse protocol 

To evaluate the relation of current and voltage of Cav1.2 channels, a so-called current-

voltage curve pulse protocol (I/V protocol) was used (figure 2.8 and 2.9 (B)). The cell 

was held at -80 mV and depolarized for 45 ms to the first level of -40 mV in order to 

inactivate sodium channels. Subsequently, 150 ms test pulse voltages were applied, 

ranging from -40 mV to +50 mV with 10 mV increment. After each of these test pulses 

the cell was repolarized to the resting potential of -80 mV. Pulse intervals were 3 sec. 

Sampling rate per pulse was 5 kHz. Further amplifier parameters were set as follows: 

additional gain x 2, lowpass filter frequency 500 Hz.  

The peak current amplitudes were analyzed in order to obtain an I/V curve, to calculate 

the potential of half maximal (in-)activation V 0.5(in)act and to determine the slope factor. 

The time constant of the inactivation kinetics tau (τ) was analyzed, too.  

 

                               

Figure 2.8 I/V curve pulse protocol. The cell was held at -80 mV and depolarized for 45 ms to the first level of       

-40 mV. Subsequently, 150 ms test pulse voltages were applied, ranging from -40 mV to +50 mV with 10 mV 

increment. 

 

Figure 2.9 Exemplary original traces (A) recorded with the I/V curve pulse protocol (B). For analysis, the peak 

current amplitudes were determined. 
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A high-quality I/V relationship was prerequisite for further experiments, i.e. 

determination of recovery from inactivation and steady-state inactivation, respectively. 

These pulse protocols were run in order to determine kinetic properties, that are 

characteristic for LTCCs switching between open, closed and inactive state. 

 

Recovery from inactivation 

Recovery from inactivation was examined by a double-pulse step protocol with 15 

sweeps, as outlined in figure 2.10 and 2.11 (B). With a prepulse the holding potential of    

-45 mV was set to 0 mV for 100 ms to induce calcium currents close to maximum 

amplitude (current I1, figure 2.11 (A)). After this prepulse membrane potential was set 

back to -45 mV for varying time intervals ranging from 25 ms to 375 ms (with 25 ms 

increment per sweep). Subsequently, a second test pulse of 50 ms to 0 mV was applied 

(current I2, figure 2.11 (A)). Thereafter, cells were held at -45 mV until the sweep ends 

(sweep duration: 1024 ms). During the increasing time intervals channels recovered 

partially in a time-dependent manner, i.e. I2 and the ratio of I2 and I1 were enhanced 

with prolonging interval duration. Three sec time intervals between sweeps at -45 mV 

allowed complete recovery of all channels and thus (close to) maximum current 

response again. Sampling rate per sweep was 2 kHz. Further amplifier parameters were 

set as follows: additional gain x 2, lowpass filter frequency 500 Hz. The relative current 

after 375 ms of recovery, the time constant tau (τ) and the half-time were determined. 

 

    

Figure 2.10 Pulse protocol for recovery from inactivation. With a prepulse the holding potential of -45 mV was 

set to 0 mV for 100 ms. After this prepulse the membrane potential was set back to -45 mV for varying time 

intervals with 25 ms increment per sweep: sweep 1 starts with 25 ms time interval duration (A) and the last sweep 

ends with 375 ms time interval duration (B). Subsequently, a second test pulse of 50 ms to 0 mV was applied. 

Thereafter, cells were held at -45 mV until the sweep ends.  

 

-45 mV

0 mV

100

ms

50

ms

25 ms

sweep 1

A 0 mV

375 

ms

-45 mV
sweep 15

50

ms

100

ms

B



Materials and methods 

- 58 - 

 

Figure 2.11 Exemplary original traces (A) recorded with the recovery from inactivation protocol (B). For analysis, 

the peak current amplitudes I1 and I2 were determined. 

 

Steady-state inactivation 

Steady-state inactivation kinetics of the cell was determined using a step protocol 

consisting of 13 sweeps, as demonstrated in figure 2.12 and 2.13 (B). Corresponding to 

the I/V-protocol, the membrane potential was initially set to -80 mV (for 5 ms) and then 

depolarized to -40 mV (for 25 ms) for sodium current inactivation. Thereafter, maximum 

current density (I1, figure 2.13 (A)) of the calcium channels was induced via a 200 ms 

prepulse to 0 mV. Steady-state inactivation was induced by conditional test pulses 

ranging from -60 mV to +60 mV for 2000 ms (in 10 mV steps per sweep). Immediately 

after this the -80 mV / -40 mV / 0 mV protocol was repeated to quantify the still inducible 

currents (I2, figure 2.13 (A)). Sweep interval was 10 sec at -80 mV. Sampling rate per 

sweep was 2 kHz. Further amplifier parameters were set as follows: additional gain x 2, 

lowpass filter frequency 500 Hz. The voltage of half maximum inactivation V 0.5inact and 

the slope factor were calculated. 

 

 

Figure 2.12 Steady-state inactivation pulse protocol. Membrane potential was initially set to -80 mV and then 

depolarized to -40 mV for 25 ms. Thereafter, a 200 ms prepulse to 0 mV followed. Steady-state inactivation was 

induced by conditional test pulses ranging from -60 mV to +60 mV. After each conditional test pulse, the -80 mV /  

-40 mV / 0 mV protocol was repeated. 
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Figure 2.13 Exemplary original traces (A) recorded with the steady-state inactivation protocol (B). For analysis, 

the peak current amplitudes I1 and I2 were determined. 

 

2.8.6 Whole-cell recordings: data analysis 

 

For data analysis Clampfit 10.2 software (Axon Instruments) and GraphPad Prism®6  

(GraphPad Software, La Jolla, CA, USA) were used. 

 

To determine current-voltage dependency, the peak current amplitude of each test 

pulse was measured and corrected by the leak current of the corresponding potential. 

By dividing the leak-corrected peak current amplitude by the cell capacitance and thus 

normalizing to cell size, the I/V relationship was obtained. To determine the potential of 

half maximal activation V 0.5act and the slope factor, I/V curves were fitted to a combined 

Boltzmann and Ohm relation using the following equation: 

 
IV = Gmax (V-Vrev)/(1+exp[(V 0.5act-V)/k]) 

IV: current density at voltage V 
k: slope factor 
Gmax: maximal slope conductance 

 

Vrev: reversal potential
 

V 0.5act: half maximal activation voltage 

 

The time constant of the inactivation kinetics tau (τ) was calculated by a mono-

exponential fit of the slow inactivation phase of the raw calcium current traces according 

to following equation:  

 
It = I0 + (plateau-I0)*(1-exp(-k*t)) 

It: current density at time t 
I0: “starting” current density  
t: time 
k: slope factor 

  

I1 I2 

2.521.510.5

Time (s) Sweep:1 Visible:13 of 13

Im
_s

ca
le

d
(p

A
)

-2000

-1000

0

1000

2000

10
_V

m
(m

V
)

-100

0

100

-0.0040 s

5.5 pA

2

2.5650 s

-141.4 pA

3

0.0000 s

0.0 pA

4

2.5650 s

-141.4 pA

1

A

B



Materials and methods 

- 60 - 

The recovery from inactivation curve was determined by calculating the second peak 

current amplitude (I2) at 0 mV after varying test pulse time intervals and normalizing it to 

the respective first peak current amplitude (I1) measured during the prepulse. The 

relative currents after varying recovery intervals, the time constant tau (τ) and the half-

time were determined by a mono-exponential fit of the data. 

 

The steady-state inactivation curve was assessed by the peak current amplitude (I2) 

obtained at 0 mV after variable conditional test pulse potentials, normalized to the peak 

current amplitude (I1) measured at the beginning of each sweep. The voltage of half 

maximum inactivation V 0.5inact and the slope factor of steady-state inactivation were 

determined by fitting a Boltzmann function (k-sigmoidal) to the data: 

 

Iv=Imax/(1+exp[(V0.5inact-V)/-k]) 

IV: current density at voltage V 
V 0.5inact: half maximal inactivation voltage 
k: slope factor 
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3 Results 

 

The investigated mouse lines (ob/ob, Rad-k.o., ob/ob x Rad-k.o. and IRS 2-k.o. mice) 

were compared to age-matched wt animals (C57BL/6J). For each comparison the same 

wt cohort was used (at 16 and 28 weeks, respectively). 

All data are given as geometrical mean ± standard error of the mean (SEM). If not 

mentioned otherwise Student’s t-test was used for statistical analysis. P-values < 0.05 

were defined to indicate statistically significant differences. 

An overview of all results in more detail is given in the appendix (tables 8.1–8.10). 

Additional information about results of method validation can be found in the appendix, 

too. 

 

3.1  Offspring statistics 

 

Over a period of 3.5 years our own breedings were observed with respect to mean litter 

size and distribution of sexes and genotypes. In all breedings distribution of sexes was 

similar, as outlined in figure 3.1. 

 

                     

Figure 3.1 Distribution of sexes: sexes were similarly distributed in most breedings (hz = heterozygous,               

k.o. = knockout). 
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Averages of offspring per litter of the different breeding schemes did not differ as well (in 

one-way ANOVA; Bonferroni’s Post Test; figure 3.2). 

 

                        

Figure 3.2 Mean litter sizes: averages of offspring per litter of the different breeding schemes did not differ           

(n = 6–55 litter; in one-way ANOVA; Bonferroni’s Post Test). 

 

Mendelian inheritance stands for heredity transmission of genes from one generation to 

the next following the laws proposed by Gregor Johann Mendel. According to Mendel 

genotypes of descendants are expected to split in distinct ratios. For example, 

genotypes of descendants should be distributed 1:1 in breedings consisting of a 

heterozygous (hz) and a k.o. mouse. The predicted Mendelian ratio in breedings with 

only hz animals is 1:2:1, with hz offspring dominating. As demonstrated in table 3.1, all 

genotypes were distributed as expectable according to these ratios. 
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Table 3.1 Genotype distributions: all genotypes were distributed as expectable according to the Mendelian Law. 

Breeding scheme  
Number of  

genotyped mice 

 Genotype distribution  

 wt : hz : k.o. 

IRS 2-hz x IRS 2-k.o.    64         1.0 : 0.6 

IRS 2-hz x IRS 2-hz   32 1.0 : 2.1 : 0.9 

Ob/+ x ob/+ 210 1.0 : 2.2 : 1.3 

Rad-hz x Rad-k.o.   51         1.0 : 0.5 

Rad-hz x Rad-hz 125 1.0 : 1.4 : 0.8 

Ob/+ x Rad-k.o. 129 1.0 : 1.6 : 1.0 

 

3.2  Phenotype characterization 

 

Regarding the behavior of IRS 2-k.o. and Rad-k.o. mice there was no obvious 

difference compared to C57BL/6J control animals. Ob/ob and ob/ob x Rad-k.o. mice 

showed a different feeding behavior. These animals appeared to be mainly focused on 

food uptake and thus gained an intense weight with progressing age (figure 3.3; chapter 

3.3.1 and 3.5.1). Moreover, increased urination was noticeable.  

 

 

Figure 3.3 Phenotype of ob/ob mice: ob/ob mice gained remarkably weight because of feeding behavior. 
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3.3  Ob/ob mice  

 

3.3.1 Blood glucose, body weight, ventricle weight and ventricle-to-body 

weight ratio 

 

As illustrated in figure 3.4 (A), 16 week old ob/ob mice’ (non-fasting) blood glucose 

values were significantly elevated compared to age-matched wt animals (ob/ob:        

270 ± 29 mg/dl, N = 20 vs. wt: 158 ± 5 mg/dl, N = 58). At 28 weeks of age blood glucose 

of ob/ob mice dropped significantly compared to younger mice of the same genotype, 

but still exceeded that of age-matched wt (ob/ob: 203 ± 18 mg/dl, N = 33 vs. wt: 168 ± 6 

mg/dl, N = 41; p = 0.05). Already at an age of 16 weeks body weight of ob/ob mice was 

nearly twice than that of age-matched wt littermates (ob/ob: 46.6 ± 2.0 g, N = 20 vs. wt: 

24.4 ± 0.5 g, N = 62). At an age of 28 weeks body weight was even more than doubled 

compared to wt (ob/ob: 60.3 ± 1.5 g, N = 33 vs. wt: 27.6 ± 0.6 g, N = 42; figure 3.4 (B)). 

Ventricle weights of ob/ob and age-matched wt mice were not significantly different at 

both ages (figure 3.4 (C)). Ventricle-to-body weight ratios were determined in order to 

detect a putative cardiac hypertrophy (figure 3.4 (D)). As expected, ob/ob mice showed 

significantly decreased ratios (2.8 ± 0.2 mg/g at 16 and 28 weeks, N = 13 and 16) in 

comparison to wt animals (5.4 ± 0.2 mg/g, N = 36 at 16 weeks and 5.2 ± 0.2 mg/g,        

N = 21 at 28 weeks), but there was no difference between young and old ob/ob mice. 
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Figure 3.4 Blood glucose, body weight, ventricle weight and ventricle-to-body weight ratio of ob/ob mice: 

young ob/ob mice had significantly higher blood glucose values compared to wt (A). Body weights of ob/ob mice 

were (nearly) twice than that of wt (B). Ventricle weights of ob/ob and wt mice were similar (C). As expected, ob/ob 

mice showed significantly decreased ventricle-to-body weight ratios in comparison to wt animals (D) (N = 20-62 for 

(A, B); N = 13-36 for (C, D); * = p < 0.05 vs. age-matched wt). 

 

3.3.2 Functional properties of cardiac whole-cell LTCC currents 

 

To investigate the functional properties of the isolated cardiomyocytes patch-clamp 

experiments were performed with rod-shaped and mainly quiescent cells. Patched cells 

isolated from ob/ob and wt mice had similar mean cell capacitances at both ages 

investigated (appendix, chapter 8.3.1). Therefore, experiments were comparable and 

there was no hint towards cellular hypertrophy. Only recordings of stable-patched cells 

were analyzed. Measurements reflecting strong leak currents were discarded. The I/V 

relationship always was the first protocol of a cell measured according to the pulse 

protocol in figure 2.8. Representative I/V recordings for ob/ob and wt mice are depicted 

in figure 3.5.   



Results 

- 66 - 

        

        

 

Figure 3.5 Example of representative and good quality I/V recordings for wt (A, B) and ob/ob (C, D) mice at 

16 and 28 weeks of age, respectively. 

 
As demonstrated in figure 3.6, at all applied test potentials the maximum whole-cell 

Ca2+ current densities were similar in ob/ob and age-matched wt mice at both ages 

(ob/ob: -10.75 ± 0.65 pA/pF, n = 10 vs. wt: -10.92 ± 0.90 pA/pF, n =17 at 16 weeks of 

age and ob/ob: -8.44 ± 0.43 pA/pF, n = 11 vs. wt: -8.91 ± 0.54 pA/pF, n = 13 at 28 

weeks of age). The potential of half maximal activation (V0.5act) was slightly altered in 

both age groups. In 16 week old ob/ob mice V0.5act was significantly shifted to the left    

(ob/ob: -11.72 ± 0.60 mV vs. wt: 8.69 ± 1.06 mV), while in older mice V0.5act was 

significantly shifted to the right (ob/ob: -4.86 ± 0.67 mV vs. wt: -7.51 ± 0.96 mV). 
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Figure 3.6 Current density-voltage relationships of ob/ob mice: the I/V curves revealed that the maximum whole-

cell Ca
2+

 current densities were similar in ob/ob and wt mice. In young ob/ob mice V0.5act was significantly shifted to 

the left (A), while in older animals V0.5act was significantly shifted to the right (B) (n = number of patched cells; 

number of mice: N = 5-10 for wt, N = 4-5 for ob/ob). 

 

Ventricular whole-cell LTCCs of 16 week old ob/ob mice showed a significantly faster 

time-dependent inactivation at -10 mV as well as a significantly slower inactivation at  

10 mV (figure 3.7 (A)). At 28 weeks of age time-dependent inactivation was significantly 

slowed at -10 mV and significantly faster in the range of 10 to 40 mV (figure 3.7 (B)). 

 

        

Figure 3.7 Time-dependent inactivation properties of ob/ob mice: the time constant of the inactivation kinetics 

tau was slightly changed in ventricular whole-cell LTCCs of 16 week old ob/ob mice (A). Whole-cell LTCCs 

inactivated significantly faster in the range of 10 mV to 40 mV in cells of 28 week old ob/ob mice (B) (n = number 

of patched cells; number of mice: N = 5-10 for wt, N = 4-5 for ob/ob; * = p < 0.05 vs. age-matched wt). 
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Voltage-dependent inactivation/steady-state inactivation properties of ventricular whole-

cell LTCCs of ob/ob and wt mice were comparable at both ages investigated (figure 

3.8). 

 

        

Figure 3.8 Steady-state inactivation properties of ob/ob mice: steady-state inactivation properties of ventricular 

whole-cell LTCCs of ob/ob and wt mice were comparable at both age groups (n = number of patched cells; number 

of mice: N = 4 for wt, N = 2-3 for ob/ob). 

 

At both age groups recovery from inactivation was similar in ob/ob and wt mice. The 

relative current after 375 ms of recovery reached mean values in the range of 0.76-0.84 

(figure 3.9). 

 

        

Figure 3.9 Recovery from inactivation properties of ob/ob mice: recovery from inactivation revealed no 

significant differences between ob/ob and wt mice at both age groups (n = number of patched cells; number of mice: 

N =  5-8 for wt, N =  4-5 for ob/ob). 
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3.3.3 Cardiac mRNA expression levels  

 

Compared to age-matched wt mice RGK mRNA expression was not significantly altered 

in ventricles of ob/ob mice, though there was a numerical increase of Rad mRNA 

expression (1.55 ± 0.27, p = 0.19 at 16 weeks of age and 1.50 ± 0.23, p = 0.09 at         

28 weeks of age in 2–ΔΔCt  analysis; N = 5-6; figure 3.10). 

 

        

 

Figure 3.10 Ventricular expression of RGK mRNA in ob/ob mice: RGK mRNA was not significantly altered in 

ventricles of ob/ob and wt mice at both ages (N = 5-6 mice per group). 
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As outlined in figure 3.11, ventricular expression of Cav1.2 mRNA was significantly 

reduced in ventricles of 28 week old ob/ob mice (0.76 ± 0.65-0.93 in REST-2009© 

analysis; N = 5-6). 

 

 

Figure 3.11 Ventricular expression of Cav1.2 mRNA in ob/ob mice: in 28 week old ob/ob mice ventricular 

expression of Cav1.2 mRNA was significantly reduced (N = 5-6 animals per group; * =  p < 0.05 vs. age-matched wt 

in REST-2009© analysis). 

 

Since Cavß-subunits (Cavß1, Cavß2, Cavß3) are involved in LTCC expression and 

function their expression levels were investigated, too. qRT-PCR analysis revealed a 

significant downregulation of Cavß1- and Cavß2- but not Cavß3-subunit mRNA in 

ventricles of 16 week old ob/ob mice (Cavß1 = 0.57 ± 0.30-0.82, Cavß2 = 0.47 ± 0.32-

0.74 in REST-2009© analysis; N = 5-6). At 28 weeks of age all Cavß-subunits were 

significantly downregulated compared to age-matched wt (Cavß1 = 0.54 ± 0.35-0.90, 

Cavß2 = 0.68 ± 0.52-0.86, Cavß3 = 0.63 ± 0.38-0.90 in REST-2009© analysis; N = 5-6; 

figure 3.12). 
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Figure 3.12 Ventricular expression of the Cavß-subunits mRNA in ob/ob mice: qRT-PCR analysis detected a 

significant downregulation of Cavß1- and Cavß2- but not Cavß3-subunits in ventricles of 16 week old ob/ob mice. At 

28 weeks of age all Cavß-subunits were significantly downregulated compared to age-matched wt (N = 5-6 animals 

per group; * =  p < 0.05 vs. age-matched wt in REST-2009© analysis).   

 

3.4  Rad-k.o. mice 

 

3.4.1 Blood glucose value, body weight, ventricle weight and ventricle-to-

body weight ratio 

 

Rad-k.o. mice’ (non-fasting) blood glucose was significantly lower compared to wt 

animals (Rad-k.o.: 140 ± 4 mg/dl at 16 weeks, N = 27 and 151 ± 5 mg/dl, N = 49 at 28 

weeks vs. wt: 158 ± 5 mg/dl, N = 58 at 16 weeks and 168 ± 6 mg/dl, N = 41 at 28 

weeks; figure 3.13 (A)). Young Rad-k.o. mice weighed significantly more than age-

matched wt animals (Rad-k.o.: 26.9 ± 0.7 g, N = 27 vs. wt: 24.4 ± 0.5 g, N = 62; figure 

3.13 (B)). As demonstrated in figure 3.13 (C), 28 week old Rad-k.o. mice had 

significantly lower ventricle weights compared to age-matched wt littermates (Rad-k.o.: 

120.9 ± 8.3 mg, N = 21 vs. wt: 142.7 ± 6.4 mg, N = 21). Rad-k.o. mice’ ventricle-to-body 
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weight ratios thus were significantly decreased compared to wt animals at both ages 

(Rad-k.o.: 4.6 ± 0.1 mg/g at 16 and 28 weeks, N = 21 each vs. wt: 5.4 ± 0.2 mg/g,         

N = 36 at 16 weeks and 5.2 ± 0.2 mg/g, N = 21 at 28 weeks, figure 3.13 (D)).  

        

        

Figure 3.13 Blood glucose, body weight, ventricle weight and ventricle-to-body weight ratio of Rad-k.o. mice: 

Rad-k.o. mice had significantly lower blood glucose values compared to wt (A). Young Rad-k.o. mice weighed 

significantly more than age-matched wt (B). Ventricle weights of older Rad-k.o. mice were significantly lower in 

comparison to wt (C). Ventricle-to-body weight ratios were significantly decreased in Rad-k.o. mice at both ages 

investigated (D) (N = 27-62 for (A, B); N = 21-36 for (C, D); * = p < 0.05 vs. age-matched wt in REST-2009© 

analysis). 

 

3.4.2 Functional properties of cardiac whole-cell LTCC currents 

 

At both ages investigated mean cell capacitances of cardiomyocytes from Rad-k.o. and 

wt mice were similar (appendix, chapter 8.3.1). Therefore, experiments appeared to be 

comparable and cellular hypertrophy was excluded. Only recordings of stable-patched 

cells were analyzed. Representative I/V recordings for Rad-k.o. mice are illustrated in 

figure 3.14.  
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Figure 3.14 Example of representative and good quality I/V recordings for Rad-k.o. mice at 16 (A) and 28 (B) 

weeks of age.  

 

As depicted in figure 3.15, the knockout of Rad protein caused the expected increase in 

whole-cell Ca2+ current density compared to wt mice (Rad-k.o.: -20.12 ± 1.49 pA/pF,     

n = 5 vs. wt: -10.92 ± 0.90 pA/pF, n = 17 at 16 weeks of age and Rad-k.o.:                        

-21.58 ± 5.05 pA/pF, n = 2 vs. wt: -8.91 ± 0.54 pA/pF, n = 13 at 28 weeks of age). At 

both ages V0.5act was significantly shifted to the left and the slope factor was significantly 

decreased (V0.5act at 16 weeks: -14.74 ± 1.33 mV for Rad-k.o. mice vs. -8.69 ± 1.06 mV 

for wt mice; V0.5act at 28 weeks: -16.13 ± 0.08 mV for Rad-k.o. mice vs. -7.51 ± 0.96 mV 

for wt mice; slope factor at 16 weeks: 3.97 ± 0.22 for Rad-k.o. mice vs. 5.05 ± 1.02 for 

wt mice; slope factor at 28 weeks: 3.37 ± 0.53 for Rad-k.o. mice vs. 5.01 ± 0.5 for wt 

mice). 

 

          

Figure 3.15 Current density-voltage relationships of Rad-k.o. mice: the knockout of Rad protein caused the 

expected increase in whole-cell Ca
2+

 current density at both ages (n = number of patched cells; number of mice:      

N = 5-10 for wt, N = 2-3 for Rad-k.o., * = p < 0.05 vs. age-matched wt). 
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Whole-cell LTCCs of 16 week old Rad-k.o. mice showed a significantly faster          

time-dependent inactivation at -10 mV, but significantly slower kinetics at 40 mV (figure 

3.16 (A)). Time-dependent inactivation was significantly faster at 0 mV in cells of 28 

week old Rad-k.o. mice (figure 3.16 (B)). 

        

Figure 3.16 Time-dependent inactivation properties of Rad-k.o. mice: whole-cell LTCCs of 16 week old Rad-

k.o. mice showed a significantly slowed time-dependent inactivation at -10 mV and significantly faster kinetics at   

40 mV (A). Time-dependent inactivation was significantly faster at 0 mV in cells of 28 week old Rad-k.o. mice (B) 

(n = number of patched cells; number of mice: N = 5-10 for wt, N = 2-3 for Rad-k.o.; * = p < 0.05 vs. age-matched 

wt). 

 

Voltage-dependent inactivation (slope factor) of whole-cell LTCCs differed significantly 

in 28 week old Rad-k.o. mice compared to age-matched wt animals (Rad-k.o.:              

3.76 ± 0.28, n = 3 vs. wt: 4.70 ± 0.20, n = 9; figure 3.17 (B)).  

          

Figure 3.17 Steady-state inactivation properties of Rad-k.o. mice: 16 week old Rad-k.o. mice showed no 

significant change in steady-state inactivation compared to wt (A). In older mice voltage-dependent inactivation 

differed significantly compared to age-matched wt (B) (n = number of patched cells; number of mice: N = 4 for wt, 

N = 3 for Rad-k.o.; * = p < 0.05 vs. age-matched wt). 
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As illustrated in figure 3.18 (A), recovery from inactivation was altered in Rad-k.o. mice 

at 16 weeks of age. Tau as well as the half-time values were significantly augmented 

compared to age-matched wt (tau: 206.20 ± 27.75 and half-time: 142.89 ± 19.24 for 

Rad-k.o. mice vs. tau: 150.28 ± 8.87 and half-time: 104.17 ± 6.15 for wt mice). The 

relative current after 375 ms of recovery (I2/I1) was significantly decreased (Rad-k.o.: 

0.70 ± 0.06 vs. wt: 0.81 ± 0.02). At 28 weeks of age recovery from inactivation was not 

significantly altered (figure 3.18 (B)). 

 

          

Figure 3.18 Recovery from inactivation properties of Rad-k.o. mice: the recovery from inactivation was 

significantly altered in young Rad-k.o. mice (A). At 28 weeks of age recovery from inactivation was not significantly 

altered (B). (n = number of patched cells; number of mice: N = 5-8 for wt, N = 2-3 for Rad-k.o.; * = p < 0.05 vs. age-

matched wt). 

 

3.4.3 Cardiac mRNA expression levels 

 

As expected Rad mRNA was not detectable in ventricles of Rad-k.o. mice (see also 

appendix). Gem was upregulated about twofold at both ages (1.92 ± 1.29-2.82 at            

16 weeks of age and 2.13 ± 1.74-2.67 at 28 weeks of age in REST-2009©  analysis;         

N = 6; figure 3.19 (A)). Analysis of Rem 1 detected an increased expression in 

ventricles of 28 week old Rad-k.o. mice (1.28 ± 1.05-1.67 in REST-2009© analysis;      

N = 6; figure 3.19 (B)). 
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Figure 3.19 Ventricular expression of RGK mRNA in Rad-k.o. mice: in Rad-k.o. mice Gem was upregulated 

about twofold at both ages (A). Analysis of Rem 1 detected an increased expression in ventricles of 28 week old 

Rad-k.o. mice (B) (N = 6 animals per group; * =  p < 0.05 vs. age matched wt in REST-2009© analysis).   

 

Cav1.2 mRNA expression was significantly reduced by nearly 50% in hearts of Rad-k.o. 

mice at the age of 28 weeks (0.50 ± 0.35-0.68, p < 0.05 in REST-2009©; N = 6; figure 

3.20). 

 

 

Figure 3.20 Ventricular expression of Cav1.2 mRNA in Rad-k.o. mice: Cav1.2 mRNA was significantly reduced 

by nearly 50% in hearts of Rad-k.o. mice at the age of 28 weeks (N = 6 animals per group; * =  p < 0.05 vs. age 

matched in REST-2009© analysis). 

 

At both ages Cavß2-subunit mRNA was significantly reduced in Rad-k.o. mice ventricles 

compared to wt animals (0.69 ± 0.49-1.03 at 16 weeks of age and 0.40 ± 0.29-0.56 at 

28 weeks of age in REST-2009© analysis; N = 6; figure 3.21 (B)). The expression of the 

other Cavß-subunits was not significantly altered (figure 3.21 (A,C)). 
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Figure 3.21 Ventricular expression of the Cavß-subunits mRNA in Rad-k.o. mice: at both ages the Cavß2-

subunit mRNA was significantly reduced in Rad-k.o. mice ventricles compared to wt animals (B). The expression of 

the other Cavß-subunits was not significantly altered (A, C). (N = 6 animals per group; * =  p < 0.05 vs. age matched 

in REST-2009© analysis).   

 

3.5  Ob/ob x Rad-k.o. mice  

3.5.1 Blood glucose value, body weight, ventricle weight and ventricle-to-

body weight ratio 

 

As demonstrated in figure 3.22 (A), ob/ob x Rad-k.o. mice had significantly increased 

(non-fasting) blood glucose levels compared to wt animals at both ages investigated 

(ob/ob x Rad-k.o.: 291 ± 26 mg/dl, N = 25 at 16 weeks and 276 ± 43 mg/dl, N = 9 at 28 

weeks vs. wt: 158 ± 5 mg/dl, N = 58 at 16 weeks and 168 ± 6 mg/dl, N = 41 at 28 

weeks). In both age groups ob/ob x Rad-k.o. mice‘ body weight was at least doubled 

compared to wt mice (ob/ob x Rad-k.o.: 51.1 ± 0.9 g, N = 25 at 16 weeks and                 

59.7 ± 1.6 g, N = 9 at 28 weeks vs. wt: 24.4 ± 0.5 g, N = 62 at 16 weeks and              

27.6 ± 0.6 g, N = 42 at 28 weeks, figure 3.22 (B)). Young ob/ob x Rad-k.o. mice 
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weighed significantly less than older mice of the same genotype. Ventricle weights of 28 

week old ob/ob x Rad-k.o. mice (170.8 ± 7.9 mg, N = 8) were significantly increased 

compared to age-matched wt (142.7 ± 6.4 mg, N = 21) and to younger animals of the 

same genotype (136.8 ± 4.7 mg, N = 16), as depicted in figure 3.22 (C). Similar to ob/ob 

mice, ob/ob x Rad-k.o. mice had significantly decreased ventricle-to-body weight ratios 

compared to wt, but were similar in this regard when comparing young and old         

ob/ob x Rad-k.o. mice (figure 3.22 (D)). The decreased ratios were attributable to the 

increased body weight. 

 

          

          
Figure 3.22 Blood glucose, body weight, ventricle weight and ventricle-to-body weight ratio of ob/ob x Rad-

k.o. mice: ob/ob x Rad-k.o. mice had significantly higher blood glucose values compared to wt (A). Body weights 

of ob/ob x Rad-k.o. mice were (nearly) twice than that of wt (B). Ventricle weights of old ob/ob x Rad-k.o. were 

significantly elevated compared to wt (C). Ventricle-to-body weight ratios were significantly decreased in          

ob/ob x Rad-k.o. mice. This was most likely due to the increased body weight (D) (N = 9-62 for (A, B); N = 8-36 

for (C, D); * = p < 0.05 vs. age-matched wt). 
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3.5.2 Functional properties of cardiac whole-cell LTCC currents in young 

mice 

 

Cardiomyocytes isolated from 16 week old ob/ob x Rad-k.o. and wt mice had similar 

mean cell capacitances at both ages investigated (appendix, chapter 8.3.1). Therefore, 

experiments were comparable and cellular hypertrophy was excluded. Only recordings 

of stable-patched cells were analyzed. An I/V recording representative for ob/ob x Rad-

k.o. mice can be seen in figure 3.23.  

 

Figure 3.23 Example of a representative and good quality I/V recording for ob/ob x Rad-k.o. mice at 16 weeks 

of age. 

 

Compared to age-matched wt animals ob/ob mice lacking Rad showed a significant 

increase in whole-cell Ca2+ current density (ob/ob x Rad-k.o.: -21.48 ± 1.10 pA/pF, n = 5 

vs. wt: -10.92 ± 0.90 pA/pF, n =17; figure 3.24). This increase was similar to age-

matched Rad-k.o. mice with a wt background (Rad-k.o.: -20.12 ± 1.49 pA/pF, n = 5). In 

young ob/ob x Rad-k.o. mice V0.5act was significantly shifted to the left and the slope 

factor was significantly decreased compared to age-matched wt (V0.5act:                           

-17.06 ± 1.71 mV for ob/ob x Rad-k.o. mice vs. -8.69 ± 1.06 mV for wt mice; slope 

factor: 3.65 ± 0.30 for ob/ob x Rad-k.o. mice vs. 5.05 ± 1.02 for wt mice). 
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Figure 3.24 Current density-voltage relationship of ob/ob x Rad-k.o. mice: ob/ob x Rad-k-o. mice showed the 

expected significant increase in whole-cell Ca
2+ 

current density (n = number of patched cells; number of mice:        

N = 5-10 for wt, N = 3 for ob/ob x Rad-k.o.; * = p < 0.05 vs. age-matched wt). 

 

Time-dependent inactivation was similar in ventricular myocytes of ob/ob x Rad-k.o. and 

wt mice (figure 3.25). 

 

 

Figure 3.25 Time-dependent inactivation properties of ob/ob x Rad-k.o. mice: time-dependent inactivation was 

comparable in ventricular myocytes of ob/ob x Rad-k.o. and wt mice (n = number of patched cells; number of mice: 

N = 5-10 for wt, N = 3 for ob/ob x Rad-k.o.). 
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Voltage-dependent inactivation of 16 week old ob/ob x Rad-k.o. mice was similar to 

age-matched wt animals (figure 3.26). 

 

Figure 3.26 Steady-state inactivation properties of ob/ob x Rad-k.o. mice: voltage-dependent inactivation was 

comparable in ob/ob x Rad-k.o. and wt mice (n = number of patched cells; number of mice: N = 4 for wt, N = 3 for 

ob/ob x Rad-k.o.). 

 

Recovery from inactivation was altered in 16 week old ob/ob x Rad-k.o. mice. Tau as 

well as the half-time value were significantly augmented compared to age-matched wt 

(tau: 224.45 ± 13.70 and half-time: 155.58 ± 9.84 for ob/ob x Rad-k.o. mice vs. tau: 

150.28 ± 8.87 and half-time: 104.17 ± 6.15 for wt mice). The relative current after      

375 ms of recovery (I2/I1) was significantly decreased (ob/ob x Rad-k.o.: 0.70 ± 0.03 vs. 

wt: 0.81 ± 0.02; figure 3.27). 

 

 

Figure 3.27 Recovery from inactivation properties of ob/ob x Rad-k.o. mice: the recovery from inactivation was 

significantly altered in young ob/ob x Rad-k.o. mice. (n = number of patched cells; number of mice: N = 5-8 for wt, 

N = 2 for ob/ob x Rad-k.o.). 
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3.6  IRS 2-k.o. mice  

 

3.6.1 Blood glucose value, body weight, ventricle weight and ventricle-to-

body weight ratio 

 

As illustrated in figure 3.28 (A), IRS 2-k.o. mice showed significantly higher (non-fasting) 

blood glucose values compared to wt animals at both ages investigated (IRS 2-k.o.:   

207 ± 10 mg/dl, n = 62 at 16 weeks and 239 ± 22 mg/dl at 28 weeks, N = 30 vs. wt:    

158 ± 5 mg/dl, N = 58 at 16 weeks and 168 ± 6 mg/dl, N = 41 at 28 weeks). Body 

weight, ventricle weight as well as ventricle-to-body weight ratio of IRS 2-k.o. and wt 

mice were similar (figure 3.28 (B-D)).  

 

        

                 

Figure 3.28 Blood glucose, body weight, ventricle weight and ventricle-to-body weight ratio of IRS 2-k.o. mice: 

IRS 2-k.o. mice had significantly higher blood glucose values compared to wt animals (A). Body weights, ventricle 

weights and ventricle-to-body weight ratios were similar in IRS 2-k.o. and wt mice (B-D) (N = 30-62 for (A, B);     

N = 21-36 for (C, D); * = p < 0.05 vs. age-matched wt). 
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3.6.2 Functional properties of cardiac whole-cell LTCC currents 

 

Cardiomyocytes isolated from IRS 2-k.o. and wt mice had similar mean cell 

capacitances at both ages investigated (appendix, chapter 8.3.1). Therefore, 

experiments were comparable and there was no hint towards cellular hypertrophy. Only 

recordings of stable-patched cells were analyzed. Representative I/V recordings for IRS 

2-k.o. mice are demonstrated in figure 3.29. 

 

        

Figure 3.29 Example of representative and good quality I/V recordings for IRS 2-k.o. mice at 16 (A) and 28 (B) 

weeks of age. 

 

The analysis of current density-voltage relationship revealed that the maximum whole-

cell Ca2+ current density was significantly reduced in IRS 2-k.o. mice at the age of 16 

weeks compared to age-matched wt animals (IRS 2-k.o.: -7.79 ± 0.79 pA/pF, n = 11 vs. 

wt: -10.92 ± 0.90 pA/pF, n =17; figure 3.30 (A)). Compared to younger IRS 2-k.o. mice 

whole-cell Ca2+ current density was increased at an age of 28 weeks and no longer 

significantly different to age-matched control (IRS 2-k.o.: -11.22 ± 1.27 pA/pF, n = 11 vs. 

wt: -8.91 ± 0.54 pA/pF, n = 13; figure 3.30 (B)). Moreover, V0.5act was significantly shifted 

to the left in recordings of 28 week old mice (IRS 2-k.o.: -10.88 ± 0.89 mV vs. wt:           

-7.51 ± 0.96 mV). 
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Figure 3.30 Current density-voltage relationships of IRS 2-k.o. mice: maximum whole-cell Ca
2+ 

current density 

of 16 week old IRS 2-k.o. mice was significantly decreased compared to wt (A). At 28 weeks of age Ca
2+

 current 

density was no longer different to wt and V0.5act was significantly shifted to the left (B) (n = number of patched cells; 

number of mice: N = 5-10 for wt, N = 4-7 for IRS 2-k.o.; * = p < 0.05 vs. age-matched wt). 

 

As illustrated in figure 3.31 (A), time-dependent inactivation was similar in 16 week old 

IRS 2-k.o. and wt mice. At 28 weeks of age IRS 2-k.o. mice revealed significantly faster 

inactivation kinetics in the range of 10 mV to 40 mV (figure 3.31 (B)).  

 

        

Figure 3.31 Time-dependent inactivation properties of IRS 2-k.o. mice: at 16 weeks of age no significant 

changes could be detected between IRS 2-k.o. and wt mice (A). At 28 weeks of age whole-cell LTCCs of IRS 2-k.o. 

mice revealed significantly faster inactivation kinetics in the range of 10 mV to 40 mV (B) (n = number of patched 

cells; number of mice: N = 5-10 for wt, N = 4-7 for IRS 2-k.o.; * = p < 0.05 vs. age-matched wt). 
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Voltage-dependent inactivation was comparable in 16 week old IRS 2-k.o. and wt mice 

(figure 3.32 (A)). In 28 week old IRS 2-k.o. mice V0.5inact was significantly shifted to more 

negative potentials (IRS 2-k.o.: -29.23 ± 1.06 mV, n = 4 vs. wt: -25.31 ± 0.84 mV, n = 9; 

figure 3.32 (B)). 

        

Figure 3.32 Steady-state inactivation properties of IRS 2-k.o. mice: at 16 weeks of age no significant changes 

could be detected between IRS 2-k.o. and wt mice (A). V0.5inact of 28 week old IRS 2-k.o. animals was significantly 

shifted to more negative potentials (B) (n = number of patched cells; number of mice: N = 4 for wt, N = 3 for IRS 2-

k.o.). 

 

At both ages, investigated recovery from inactivation revealed no significant differences 

between IRS 2-k.o. and wt mice. The relative current after 375 ms of recovery reached 

mean values in the range of 0.75-0.87 (figure 3.33).  

        

Figure 3.33 Recovery from inactivation properties of IRS 2-k.o. mice: recovery from inactivation revealed no 

significant differences between IRS 2-k.o. and wt mice at both ages (n = number of patched cells; number of mice: 

N =  5-8 for wt, N =  5-6 for IRS 2-k.o.). 
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3.6.3 Cardiac mRNA expression levels  

 

Rad mRNA was significantly upregulated about twofold in ventricles of 16 week old    

IRS 2-k.o. mice compared to age-matched wt (2.01 ± 1.24-3.37 in REST-2009© 

analysis; N = 5-6; figure 3.34 (A)), while its expression was unchanged at an age of 28 

weeks. At both ages, the mRNA expression of Gem and Rem 1 was not significantly 

altered compared to age-matched wt (figure 3.34 (B, C)). 

 

          

 

Figure 3.34 Ventricular expression of RGK mRNA in IRS 2-k.o. mice: Rad mRNA was significantly upregulated 

about twofold in ventricles of 16 week old IRS-k.o. mice (A). Gem and Rem 1 mRNA expression was not 

significantly changed compared to wt (B,C) (N = 5-6 animals per group; * =  p < 0.05 vs. age-matched wt in REST-

2009© analysis).   

 

At both ages investigated the ventricular expression of Cav1.2 mRNA was similar in  

IRS 2-k.o. and wt mice (figure 3.35). 
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Figure 3.35 Ventricular expression of Cav1.2 mRNA in IRS 2-k.o. mice: Cav1.2 mRNA expression in IRS 2-k.o. 

mice and wt was comparable (N = 5-6 animals per group). 

 

Furthermore, no significant changes in Cavß-subunits expression could be detected 

(figure 3.36). 

         

 

Figure 3.36 Ventricular expression of the Cavß-subunits mRNA in IRS 2-k.o. mice: mRNA expression of LTCC 

ß-subunits in IRS 2-k.o. mice and wt was comparable at both ages (N = 5-6 animals per group). 
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3.6.4 Cardiac protein expression levels  

 

Of note, Western Blot analysis was performed without detection of a housekeeping 

protein due to technical reasons. As a kind of normalization thus, the ratio of intensities 

of Cav1.2 and Rad bands detected in one and the same lane was calculated. Note that 

levels of relative expression in ventricles of IRS 2-k.o. mice always refer to wt probes 

used in the same blot. 

In ventricles of 16 week old IRS 2-k.o. mice the Cav1.2/Rad protein ratio was similar to 

age-matched wt animals (IRS 2-k.o.: 2.54 ± 0.43 vs. wt: 2.40 ± 0.48; N = 4 ventricles 

per genotype; n = 4-7 blots per ventricle). Of note, at 28 weeks of age the Cav1.2/Rad 

ratio was significantly decreased in wt mice compared to younger mice of the same 

genotype (wt: 0.96 ± 0.11 at 28 weeks vs. 2.40 ± 0.48 at 16 weeks; N = 4-5; n = 4-7). 

This putative age-related decrease of the Cav1.2/Rad ratio was not seen in 28 week old 

IRS 2-k.o. mice (IRS 2-k.o.: 2.61 ± 0.41 at 28 weeks vs. 2.54 ± 0.43 at 16 weeks;         

N = 4-5; n = 4-7; figure 3.37, (C)). While Cav1.2 protein expression was unaltered 

compared to age-matched wt mice (figure 3.37 (B)), Rad protein expression was 

significantly reduced in ventricles of 28 week old IRS 2-k.o. mice compared to age-

matched wt (IRS 2-k.o.: 59.62 ± 3.17 vs. wt: 100.00 ± 5.49; N = 5; n = 4-5; figure 3.37 

(A)), thus putatively masking the age-dependent effect on the Cav1.2/Rad ratio seen in 

wt mice. 
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Figure 3.37 Ventricular expression of Rad and Cav1.2 protein in IRS 2-k.o. mice: Rad protein expression was 

reduced in ventricles of 28 week old IRS 2-k.o. mice (A), while Cav1.2 protein expression was unaltered (B). An 

age-related decrease of the Cav1.2/Rad ratio, as it was observed in wt mice, was absent in 28 week old IRS 2-k.o. 

mice (C). (N = 4-5 ventricles per genotype; n = 4-7 blots per ventricle). 
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4 Discussion 

 

4.1  LTCC regulation by RGK proteins in the context of T2DM and/or DCM 

 

Cardiovascular disease (CVD) is a leading cause of death for diabetic patients 

(Authors/Task Force et al., 2013, Paneni, 2014, Park and Peters, 2014). Since cardiac 

L-Type Ca2+ channels (LTCCs) are known to be involved in proper excitation-

contraction coupling they are of high interest in the research of CVD. RGK proteins are 

known to regulate LTCCs (Buraei et al., 2015), but so far a diabetic context was 

neglected. This study was designed to shed some light on a putative association of an 

in vivo regulation of RGK protein expression (in particular of Rad) on ventricular LTCC 

expression and function in the context of type 2 diabetes mellitus (T2DM) and/or 

diabetic cardiomyopathy (DCM) in mice. A former study of our group revealed a 

consistent positive correlation between ventricular Rad and Cav1.2 protein expression in 

several mouse models associated with diabetes. E.g. in db/db mice a downregulation of 

both, Rad and Cav1.2 protein was found (Fabisch, 2010). An earlier study in db/db mice 

detected a reduced ventricular whole-cell Ca2+ current density with unchanged single-

channel activity (Pereira, 2006). Since reduction of whole-cell currents was obviously 

due to a significantly decrease of Cav1.2 protein expression, it is tempting to speculate 

that the Rad protein downregulation was an attempt to compensate for the decreased 

current density. 

In human failing hearts a reduced expression of Rad protein was detected, too (Chang 

et al., 2007). In contrast to data from diabetic db/db mice whole-cell Ca2+ current density 

in human heart failure (HF) was only slightly if at all decreased (Mukherjee and Spinale, 

1998). Both, a decrease of plasmalemmal expression of Cav1.2 as well as an increased 

activity of single LTCCs was described ex vivo (Schroeder et al., 1998, Hong et al., 

2012, Takahashi et al., 1992, Gruver et al., 1994) Of note, in both cases a reduced Rad 

expression would be in line with a counterregulation avoiding a reduced Ca2+ influx into 

cardiomyocytes.  

In his thesis work C. Fabisch furthermore described an unchanged Rad and Cav1.2 

protein expression in ventricles of 16 week old ob/ob mice (Fabisch, 2010), which fits 

the corresponding mRNA data determined in the current study. Given the above 

mentioned in vitro data, an unaltered expression should be suggestive of a “normal” 

LTCC function and expression. In fact, we found an unaltered maximum whole-cell 

current density and preliminary single-channel recordings at +10 mV (not shown; data 
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obtained by Jan Matthes, Center of Pharmacology, University Hospital of Cologne) 

suggested unchanged activity, too. However, the leftward-shift of the potential of half-

maximum activation (V0.5act) indicated functional alterations that could not be explained 

further. In older ob/ob mice both, Rad and Cav1.2 expression was significantly 

increased at the protein level (Fabisch, 2010). Assuming the “Cav1.2-antagonistic” 

function of Rad, L-type Ca2+ currents would thus be expected to be not or only slightly 

affected. Indeed, whole-cell recordings revealed an unchanged maximum Ca2+ current 

density compared to age-matched wt myocytes. However, we cannot say whether Rad 

upregulation induced the increase of Cav1.2 or vice versa. The fact that in cells from 

older ob/ob mice whole-cell LTCCs opened at more positive potentials and time- or 

rather calcium-dependent channel inactivation (CDI) was faster in the range of 10 mV to 

40 mV might be explained by the observed increase in Rad protein since similar 

functional changes were described for rat cardiomyocytes overexpressing the human 

Rad protein after adenoviral infection (Wang et al., 2010). The slowed inactivation at -10 

mV might be explained by an interaction with Ca2+/calmodulin (CaM). Pang and 

colleagues suggested RGK proteins to compete with CaM, thus causing a slowed CDI 

(Pang et al., 2010). Since preliminary single-channel data indicated an unchanged 

LTCC activity (not shown; data obtained by Jan Matthes, Center of Pharmacology, 

University Hospital of Cologne), it is suggested that either Rad inhibited Cav1.2 channel 

trafficking to the surface membrane or completely “silenced” a certain fraction of already 

inserted Cav1.2 pores. Of note, whole-cell recordings detect the sum of currents carried 

by virtually all channels expressed in the plasmalemma. In mammalian cardiomyocytes 

the whole-cell LTCC Ca2+ current density is carried by channels located on the surface 

and in the depth of the T-tubuli, with the latter predominating under normal conditions 

(Horiuchi-Hirose et al., 2011). Single-channel recordings obtained in the conventional 

cell-attached configuration do only detect channels expressed in the surface membrane, 

i.e. channels expressed in the depth of the T-tubuli are neglected. Thus we cannot 

exclude that the activity of T-tubular but not surface channels was actually decreased. 

In fact, very recent data showed a differential regulation of surface and T-tubular single 

LTCCs in ventricular myocytes from human and rat (non-diabetic) hearts (Sanchez-

Alonso et al., 2016). In the current study we find that in ventricles of 28 week old ob/ob 

mice Rad mRNA expression was unchanged and Cav1.2 mRNA was significantly 

decreased, while both appeared to be increased at the protein level (Fabisch, 2010). 

Many studies showed an apparently poor correlation between mRNA and protein 

expression levels (Koussounadis et al., 2015, Su et al., 2015). Discrepancies were 
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attributed to post-transcriptional modifications of mRNA, different half-lives of proteins 

as the result of varied protein synthesis and degradation and inaccuracies in 

experiments (Greenbaum et al., 2003). The present study also revealed that the mRNA 

amount of the accessory LTCC subunits Cavß1 and Cavß2 was nearly halved in 

ventricles of ob/ob mice at both ages investigated. If mRNA and protein expression data 

would correlate in this case, these findings would suggest a reduced surface expression 

of LTCCs and/or a decreased stimulation, i.e. a reduced channel open probability, a 

rightward shift of V0.5act or altered channel gating kinetics (Buraei and Yang, 2013). It 

might also be speculated that the Cavß-subunit regulated the Rad inhibitory effect since 

Cavß is required for an inhibition (Buraei and Yang, 2015). Since Rad and Cav1.2 

expression changed with age (and/or duration of diabetes) in ob/ob mice while Cavß 

(mRNA) expression remained unaltered a relationship between these findings seems to 

be rather unlikely. 

Whole-cell recordings of Rad-k.o. myocytes indicate the extent of an inhibitory effect of 

Rad on LTCCs. Manning et al. showed a significantly increased current density and a 

shift of steady-state activation to more negative potentials (Manning et al., 2013). Data 

obtained in the current study confirm these earlier findings. Compared to age-matched 

wt mice the mean peak current density of 16 week old mice was increased by about 

84%. The mean peak current density of older mice was even augmented by 142% 

compared to age-matched wt. The leftward shift of V0.5act observed by Manning et al. 

and us strengthens our hypothesis of a connection between the rightward shift of V0.5act 

and (relative) Rad overexpression observed in 28 week old ob/ob mice. This is 

supported by findings of Wang et al. who showed that adenoviral induction of Rad 

(over-) expression caused a rightward shift of steady-state activation in cultured rat 

cardiomyocytes (Wang et al., 2010). While Manning et al. did not state the age of the 

mice they investigated our data suggest an age-related effect (or “decompensation”) of 

Rad deficiency in ventricular myocytes. An age-dependent effect is furthermore 

suggested by the observation that recovery from inactivation was decelerated only in 

Rad-k.o. mice at an age of 16 weeks. We for the first time analyzed mRNA levels of 

RGK proteins and LTCC Cavß-subunits in Rad-k.o. mice, which could give a hint 

towards further mechanisms in LTCC regulation and RGK interplay. At 16 weeks of age 

Gem mRNA was upregulated about twofold and Cavß2 mRNA was downregulated. This 

could be a first response to protect the heart against an increased LTCC function. In 

older mice Rem 1 mRNA expression was increased, too. In addition to reduced Cavß2 

mRNA Cav1.2 mRNA was downregulated at 28 weeks of age. Of note, Manning et al. 
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(2015) observed a reduction of Cav1.2 protein expression. But again Manning et al. did 

not state the age of the mice they investigated. Taken together, the increased current 

density rather seems to be due to an increased activity of single LTCCs. Further studies 

have to test for this hypothesis. At this point it has to be mentioned that the extent of 

inhibition and the kind of interaction with Cav1.2 may vary depending on the particular 

RGK protein. In Rem 1-k.o. mice the increase in current density appeared weaker 

compared to our study (approx. +20%) and V0.5act was shifted to more positive potentials 

(Magyar et al., 2012).  

In 16 week old ob/ob x Rad-k.o. mice whole-cell patch-clamp data were similar to age-

matched Rad-k.o. mice: compared to age-matched wt mice the mean peak current 

density was increased by about 97%, V0.5act was shifted to more negative potentials and 

the recovery from inactivation was slowed, too. These findings suggest that the role of 

Rad (and thus the effects of lacking Rad) is similar on a wildtype and an ob/ob 

background - at least at an age of 16 weeks. Given the increased Rad (and Cav1.2) 

expression in older ob/ob mice it would be of particular interest to test for a putative 

additive effect of Rad deficiency and Cav1.2 increase. 

In 16 week old IRS 2-k.o. mice whole-cell Ca2+ current density was significantly 

decreased compared to age-matched control, although Rad and Cav1.2 protein 

expression appeared to be unchanged. Thus, another mechanism underlying the 

decreased current density has to be assumed. mRNA analysis of accessory Cavß-

subunits and of the other RGK proteins also did not reveal a hint towards the origin of 

current density reduction in young IRS 2-k.o. mice. In comparison to young IRS 2-k.o. 

mice 28 week old mice of the same genotype showed a significantly increased Ca2+ 

current density, that was no longer different compared to age-matched controls. Of 

interest, the putative age-related decrease of the Cav1.2/Rad ratio, which was observed 

in wt mice, was not seen in 28 week old IRS 2-k.o. mice. The finding that at an age of 

28 weeks Cav1.2 protein expression was unaltered compared to age-matched wt mice, 

while Rad protein expression was significantly reduced indicates an (age-dependent) 

loss of LTCC inhibition by Rad in IRS 2-k.o. mice. This interpretation is supported by our 

finding that V0.5act was significantly shifted to more negative potentials similar to data 

obtained from Rad-k.o. mice. The increase in whole-cell Ca2+ current density compared 

to younger mice thus indicates a compensatory mechanism based upon regulation of 

Rad expression. Note, that in human heart failure unchanged current density and 

decreased expression of Rad suggest a similar mechanism (Chang et al., 2007, 

Mukherjee and Spinale, 1998). Further studies should investigate putative changes of 
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single ventricular LTCC activity in IRS 2-k.o. and/or Rad-k.o. mice. Again it is important 

to consider that Western Blot data represent the expression of the total cardiac 

membrane protein fraction, including T-tubular and sarcolemmal membrane proteins. 

We were not able to discriminate whether the decrease in Rad protein affected single-

channel activity or Cav1.2 channel trafficking to the surface membrane or both, 

respectively. Experiments in order to differentially investigate the T-tubular and 

sarcolemmal expression of LTCCs would thus be helpful as well as single-channel 

measurements. Besides, Western Blot studies were limited because Coomassie 

staining of the already blotted SDS gels sometimes revealed an incomplete transfer of 

protein to the blotting membrane. But given that PVDF membrane protein binding 

capacity was not exhausted and that measurements were performed within the linearity 

of the detection system (figure 8.16, appendix), it is assumed that proteins were 

transferred equally within one blot. In contrast to our data C. Fabisch observed an 

unchanged protein expression ratio in ventricles of 28 week old IRS 2-k.o. mice (C. 

Fabisch; unpublished data). However, it should be noted that in the current study the 

Cav1.2-to-Rad ratio was calculated by detecting the intensities of Cav1.2 and Rad bands 

in one and the same lane, while C. Fabisch detected the proteins separately. The 

protein levels we obtained correlate poorly with the respective mRNA levels. While in 

young IRS 2-k.o. mice Rad mRNA was upregulated about twofold, Rad protein 

remained unchanged. In older mice Rad mRNA expression was no longer altered 

compared to age-matched wt, but Rad protein was decreased. It might be speculated 

that Rad mRNA was subject to post-transcriptional modifications or that protein 

degradation was enhanced. Of note, the current study was limited because of the use of 

whole-ventricle homogenates for expression analyses via qRT-PCR. Purification 

experiments in order to separate cardiomyocytes from other cell types failed. Thus we 

cannot exclude that the change in Rad mRNA expression was (partly) attributed to 

“non-cardiomyocytes”.  

Taking together, the increase of both, Rad and Cav1.2 protein in old ob/ob mice while 

unchanged maximum Ca2+ current density suggests a functional role of Rad in LTCC 

regulation. However, we cannot say whether Rad upregulation induced the increase of 

Cav1.2 or vice versa. Our data obtained from Rad-k.o. mice confirm the inhibitory 

function of Rad and furthermore indicate an age-related effect. Whole-cell recordings of 

ob/ob x Rad-k.o. myocytes further suggest that the role of Rad or rather the effect of a 

Rad deficiency is similar on a wildtype and an ob/ob background. Our data received 

from 28 week old IRS 2-k.o. mice are suggestive of a compensatory effect of Rad 
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protein on LTCC function, i.e. an attempt to compensate for a reduced calcium current 

density independent of the Cav1.2 expression. The reduced Rad protein expression 

appeared to provoke effects similar to that observed in the total Rad deficiency in Rad-

k.o. mice. Although the current study suggests LTCC regulation by Rad in two different 

diabetic mouse models, not all results could be explained only by assuming the “Cav1.2-

antagonistic” or compensatory function of Rad. Our data suggest that there is no 

uniform, diabetes-associated mechanism of Rad-Cav1.2 interaction. Putative influencing 

factors that might also be involved in LTCC regulation are discussed in the following 

section. 

 

4.2  Further molecular mechanisms that might be involved in LTCC 

regulation 

 

Cardiac electrophysiological properties are amongst others regulated by the 

sympathetic nervous system (Yu et al., 2011). As a compensatory reaction to the 

reduced cardiac output in heart failure (HF) the renin-angiotensin-aldosterone system 

(RAAS) and the sympathetic nervous system are activated (King et al., 2012). An 

activation of the sympathetic nervous system increases the levels of catecholamines, 

endogenous agonists of adrenoceptors (α1, α2, ß1, ß2 and ß3). The β1-adrenergic 

receptor is predominantly expressed in the heart (Madamanchi, 2007). In general, 

stimulation of ß-adrenergic receptors leads to an activation of protein kinase A (PKA). 

PKA then phosphorylates several targets like troponin I, LTCCs or PLN, resulting in 

enhanced cardiac contractility (Madamanchi, 2007). Phosphorylation of LTCCs by PKA 

has been subject to various studies, indicating that either the Cavα1-subunit or the 

Cavß-subunits can mediate the ß-adrenergic stimulation (Hofmann et al., 2014). In HF 

the heart appears to be protected against chronic adrenergic (over-) stimulation via an 

impaired ß-adrenergic signaling and decreased PKA activity (Najafi et al., 2016). Rad-

k.o. mice display a rather improved cardiac function. Nevertheless ß-adrenergic 

response is impaired (Manning et al., 2013), similar to findings from human HF 

(Schroeder et al., 1998, Chen et al., 2002). Since Rad is phosphorylated by Ca2+/CaM-

dependent protein kinase II, PKA and protein kinase C (Moyers et al., 1998), this RGK 

protein might be also involved in the adrenergic regulation of cardiac LTCCs. PKD1, a 

protein kinase downstream of α(1)-adrenergic signaling, was shown to phosphorylate 

Rem 1 upon α(1)-adrenergic stimulation with the release of the inhibitory effect of     

Rem 1 as a consequence (Jhun et al., 2012). Of note, Withers et al. showed that                  
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α-adrenergic activation stimulated phosphorylation of Rem 1 but not of Rad. However, 

Rad was phosphorylated upon β-adrenergic receptor stimulation, a process that could 

be blocked by PKA inhibition. Indeed, CoIPs indicated that Rad phosphorylation 

weakened LTCC association (Withers et al., 2015). In 10 week old ob/ob mice             

ß-adrenergic responsiveness was impaired and PKA activity was significantly 

depressed (Minhas et al., 2005). Thus, Rad protein might have been less 

phosphorylated and LTCC inhibition weakened. Of note, our preliminary single-channel 

data from ob/ob mice do not hint at an altered adrenergic LTCC regulation. Garcia-

Barrado and colleagues investigated ß-cell function and lipolysis in IRS 2-k.o. mice and 

demonstrated an impaired adrenergic signaling in combination with altered 

adrenoceptor expression levels (Garcia-Barrado et al., 2011). Such experiments with 

ventricular tissue of IRS 2-k.o. mice have not been performed so far. However, insulin-

induced phosphorylation of ß-adrenergic receptors was shown to be dependent on     

IRS 2 with lack of IRS 2 leading to an attenuated cAMP/PKA activity in cardiomyocytes 

(Fu et al., 2014). To sum it up, altered adrenergic signaling can affect cardiac LTCC 

expression and function. RGK proteins might be involved since they are a well-known 

targets of PKA. However, so far our data do not indicate altered adrenergic regulation of 

LTCCs in the investigated mouse models. 

 

In several studies it was suggested that PI3K/Akt signaling positively regulates LTCCs 

in ventricular myocytes (Ballou et al., 2015). In this context Viard et al. showed that an 

increase of PIK3 and Akt/PKB triggered Cav1.2 channel trafficking to the plasma 

membrane and that the Cavß2-subunit was required to support this regulation by PI3K 

in particular (Viard et al., 2004). Catalucci et al. suggested that an Akt-dependent 

phosphorylation of the Cavß2-subunit protects Cav1.2 from degradation and thus 

increases whole-cell current density (Catalucci et al., 2009). Recently Rusconi et al. 

published that the Cav1.2 amount and the Akt-dependent phosphorylation status of 

Cavβ2 were correlated and that Cavß2 underwent conformational changes upon 

phosphorylation which induced an increased current density (Rusconi et al., 2016). Two 

diabetic mouse models exhibited alterations in LTCC current density probably caused 

by a decrease in insulin/PI3K/Akt signaling: in type 1 diabetic Ins2Akita mice LTCC 

current density was reduced, including shifts in the voltage dependence of (in)activation 

to more positive potentials. Intracellular delivery of PI(3,4,5)P3 normalized these 

parameters to control levels and further experiments led to the hypothesis that Cav1.2 

surface expression was reduced, whereas the total amount of protein was unaltered (Lu 
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et al., 2007). In db/db mice a defect in insulin signaling was suggested to be partly 

responsible for a depressed current density because infusion with PI(3,4,5)P3, Akt1 or 

Akt2 increased the current density (Lu et al., 2011). Similar to human T2DM patients an 

excessive myocardial insulin signaling activity (IRS1-PI3K-activity) was shown in ob/ob 

mice. This went in parallel with an activation of the insulin receptor. Total Akt levels 

were unchanged, but basal Akt phosphorylation was increased and insulin-stimulated 

Akt phoshorylation was blunted (Cook et al., 2010). Given this interplay between insulin-

signaling, Akt and Cavß2-subunits it would be desirable to check for the downregulation 

of Cavß2-subunits we observed at the mRNA level at the protein level or even to look at 

the phosphorylation of auxiliary LTCC subunits. Studies performed with IRS 2-k.o. mice 

demonstrated an insulin-dependent decrease in PI3K activity in liver and skeletal 

muscle (Withers et al., 1998). Cardiac PI3K activity has not been evaluated in IRS 2-k.o. 

mice yet. But a cardiac-specific k.o. of IRS 2 (CIRS 2 mice) revealed a lower cardiac 

PI3K activation (Riehle et al., 2014). In IRS 2-k.o. mice compensation for insulin 

resistance appeared to be impaired because hyperinsulinemia was accompanied by a 

ß-cell decrease of 42% compared to wt (Kubota et al., 2000, Withers et al., 1998). The 

decrease of cardiac whole-cell current density we observed in young IRS 2-k.o. mice 

might thus be attributed to an altered insulin signaling. Of note, a transgenic mouse 

overexpressing Rad in skeletal muscle and maintained on a high-fat diet developed 

more severe glucose intolerance and insulin resistance than control mice (Ilany et al., 

2006). It is thus tempting to speculate that the reduced Rad expression observed in 

hearts of older IRS 2-k.o. mice was to reverse the decrease of ventricular Ca2+ currents 

by re-establishing insulin signaling. Taken together, several studies indicated an 

influence of PI3K/Akt signaling on LTCC regulation in ventricular myocytes. It was 

shown that an Akt-dependent phosphorylation of the Cavß2-subunit protects Cav1.2 

from degradation. Since our whole-cell patch-clamp data obtained from young IRS 2-

k.o. mice could not be explained only by assuming the “Cav1.2-antagonistic” function of 

Rad, here insulin signaling might be relevant for LTCC regulation, too. Of interest, in 

IRS 2-k.o. mice compensation for insulin resistance appeared to be impaired. 

 

In ob/ob hearts strong evidence for oxidative stress was detected which worsened 

cardiac efficiency (Boudina et al., 2005, Li et al., 2006, Gharib et al., 2016). Increased 

mitochondrial oxidative stress was also observed in atrial tissue of T2DM patients 

(Anderson et al., 2009, Anderson et al., 2011). Moreover, in human muscle biopsies of 

patients with sporadic amyotrophic lateral sclerosis oxidative stress triggered Rad 
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upregulation (Halter et al., 2010). Thus, oxidative stress might be a contributing factor to 

the upregulation of Rad protein observed in ventricles of 28 week old ob/ob mice.  

 

4.3  Reliability of investigated mouse models – relevance and metabolic 

determinants for human T2DM & DCM 

 

In T2DM patients hyperglycemia develops slowly and worsens over time as a response 

to insulin resistance and compensatory hyperinsulinemia (Wang et al., 2014). Insulin 

resistance is associated with metabolic, structural and functional changes in the heart 

that may lead to DCM and HF (Abel et al., 2012). In humans, overweight/obesity is 

known to be a main risk factor for developing T2DM (Chatzigeorgiou et al., 2009, Wang 

et al., 2014). But it is disputable to what extent leptin and its signaling pathways 

contribute to the development of the disease. To date, eleven pathogenic mutations 

have been reported in the human leptin gene (Wasim et al., 2016). Interestingly, obese 

T2DM patients often reveal elevated leptin levels compared to non-diabetic obese 

humans (Wang et al., 2014). Amongst other reasons hyperleptinemia may be evoked by 

insulin resistance and may lead to leptin resistance (Ren, 2004). The specific cardiac 

effects of leptin are not fully elucidated and many studies reveal controversial results. 

But it is sure that leptin can have beneficial as well as detrimental effects on cardiac 

function (Feijoo-Bandin et al., 2015, Hall et al., 2015, Martinez-Martinez et al., 2014, 

Martin et al., 2008). In the ob/ob mouse model leptin deficiency appears to be a relevant 

factor for T2DM and DCM since replacement of leptin corrects many diabetic 

manifestations and improves left ventricle remodeling (Lindstrom, 2007, Barouch et al., 

2003). Ob/ob mice develop obesity which then appears to predispose them to the 

development of diabetes-associated disturbances. These animals already exhibit mild 

hyperglycemia by four weeks of age and become severe hyperglycemic not later than at 

15 weeks of age (Buchanan et al., 2005). Of note, in the current study the elevation of 

blood glucose of 28 week old ob/ob mice was less pronounced compared to younger 

ob/ob animals. According to The Jackson Laboratory hyperglycemia may be transient in 

ob/ob mice, but individual variability exists (Leiter, 1992). On the other hand, another 

study did not find an attenuation of hyperglycemia with progressing age (Van den Bergh 

et al., 2008). In addition, it has to be taken into account that, similar to human T2DM 

patients, the phenotype of a mouse model may vary due to differences in the genetic 

background, gender and age (Cefalu, 2006). For example, the severity of diabetes in 

ob/ob mice obviously varies depending on the genetic background (Coleman, 1978, 
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Haluzik et al., 2004). Although ob/ob mice develop T2DM associated changes earlier in 

life compared to humans they are accepted as an appropriate model for studying T2DM 

as well as DCM since as human patients ob/ob mice are hyperinsulinemic and develop 

severe insulin resistance (Lindstrom, 2007, Buchanan et al., 2005). In contrast to 

humans the pancreatic ß-cell morphology and amount differ. The insulin release 

capacity remains high throughout life (Bock et al., 2003, Kim et al., 2009, Lindstrom, 

2007, Del Guerra et al., 2005). Interestingly, long-term microvascular complications 

observed in diabetic humans such as nephropathy, neuropathy and retinopathy and/or 

macrovascular complications due to atherosclerosis are absent in ob/ob mice (Wang et 

al., 2014). Therefore ob/ob mice might rather reflect the “prediabetic” phenotype, e.g. as 

common for the metabolic syndrome. However, similar to human diabetic patients 

hearts of ob/ob mice exhibit metabolic, structural and functional changes (Gharib et al., 

2016, Sloan et al., 2011, Fukui et al., 2013, Buchanan et al., 2005, Christoffersen et al., 

2003, Mazumder et al., 2004, Boudina et al., 2005, Li et al., 2006, Fauconnier et al., 

2005, Minhas et al., 2005, Ren et al., 2010, Barouch et al., 2006). Both T2DM patients 

and ob/ob mice exhibit an excessive myocardial insulin signaling activity (Cook et al., 

2010). Studies in mice and humans reveal an important role of myocardial insulin 

signaling in the context of cardiac hypertrophy and heart failure (Riehle and Abel, 2016). 

Based on our current findings though we cannot exclude that the increase of heart 

weight observed in older ob/ob mice is physiologic due to the vast increase of body 

weight. Other studies revealed a hypertrophy in this mouse model (Ren et al., 2010, 

Barouch et al., 2003). Since furthermore a major definition criteria, the absence of 

hypertension, is fulfilled ob/ob mice, this mouse model can be taken as a model of DCM 

(Mark et al., 1999, Fukui et al., 2013, Barouch et al., 2003).  

Concerning the IRS 2 gene data in literature are inconsistent and rare in identifying 

human polymorphisms that might be associated with T2DM (Jiang et al., 2015). But it is 

known that the protein expression may be altered in diabetic humans (Hirashima et al., 

2003). According to diabetic patients IRS 2-k.o. mice are hyperglycemic, 

hyperinsulinemic, insulin resistant as well as hyperleptinemic (Sesti et al., 2001, Burks 

et al., 2000, Withers et al., 1998, Kubota et al., 2000). Most likely depending on the 

genetic background several studies showed conflicting findings regarding body weight 

of IRS 2-k.o. mice (Garcia-Barrado et al., 2011, Masaki et al., 2004, Burks et al., 2000, 

Kubota et al., 2000, Withers et al., 1998). In the current study body weight of IRS 2-k.o. 

mice was similar to wt. There was no evidence for cardiac hypertrophy since ventricle 

weights as well as ventricle-to-body weight ratios were similar to wt, too. To our 
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knowledge no further data on cardiac morphology or function on the background of a 

global IRS 2-k.o. has been published, but premature death was observed (Withers et 

al., 1998). Of note, mice with a cardiac-specific k.o. of IRS 2 exhibit cardiac hypertrophy 

(Riehle et al., 2014). Several mouse models associated with disturbances of the IRS 

signaling have pathophysiological disturbances within the heart: for the cardiac-specific 

IRS 2-k.o. mouse model a reduced cardiac efficiency was shown (Riehle et al., 2014). 

Mice with a cardiac-specific k.o. of both, IRS 1 and IRS 2 die within 11 weeks. These 

mice have an impaired mitochondrial function, increased autophagy and apoptosis, 

myocyte loss and heart failure (Riehle et al., 2013, Qi et al., 2013). Mice with a global 

k.o. of both proteins appear to be not viable since no born animals rendered this 

genotype (Withers et al., 1999). The current study observed a significantly reduced 

whole-cell Ca2+ current density in young IRS 2-k.o. mice. This may suggest a 

disturbance in the contractile machinery, too. Indeed, genetically engineered mice 

expressing a lower level of cardiac L-type calcium channels develop hypertrophy and 

heart failure (Goonasekera et al., 2012). The observed normalization of calcium current 

density to wt levels in IRS 2-k.o. at 28 weeks of age might then be interpreted as anti-

hypertrophic. However, in mice where cardiac calcium current density is reduced due to 

the knockout of an auxiliary beta-subunit the expression of the Cav1.2 channel pore was 

unchanged and these animals did not develop ventricular hypertrophy (Meissner et al., 

2011). 

To sum it up, ob/ob as well as IRS 2-k.o. mice are valuable mouse models in studying 

T2DM (King, 2012, Chatzigeorgiou et al., 2009, Lee and Cox, 2011). Both mouse 

models provide useful knowledge about different phenotypes and the underlying 

pathomechanisms that are prevalent in humans. Ob/ob mice also share many traits with 

the hearts of humans with DCM. So far it has not been evaluated whether the IRS 2-k.o. 

mouse model also represents a suitable model for DCM. One has to keep in mind that 

the transfer of murine data to humans should be done very carefully, though mouse 

models are helpful to understand the role of insulin signaling and other 

pathways/molecules in the regulation of cardiac function.  
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4.4  Limitations of the study 

 
In the current study we wanted to consider the putative influence of a time-dependent 

onset of T2DM disease progression and following complications by using two different 

age groups. However, the ages 16 and 28 weeks were chosen arbitrarily. In the 

development of human DCM not only age but also gender appears to be an influencing 

factor. Of note, female T2DM patients seem to be more affected (Jia et al., 2016). But 

so far there is no evidence that sex difference is relevant for DCM in mice. E.g. in db/db 

mice no hints were found (Pereira, 2006). The present study was not designed to take a 

closer, separate look on gender and thus did not have the respective statistical power. 

However, in IRS 2-k.o. mice there is a gender difference regarding blood glucose 

(Withers et al., 1998). Given the discussed putative cardiac effects of insulin a gender-

specific analysis should be considered. It should also be noted that the comparability of 

protein expression data obtained in the current study and in C. Fabisch’s thesis work is 

limited due to differences in the used protocols (Fabisch, 2010). Furthermore, in the 

current project the completion of protein and mRNA data was not possible due to time 

constraints (protein data for Rad-k.o mice; mRNA and protein data for ob/ob x Rad-k.o. 

mice). 
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5 Conclusion & outlook 

 

The current study indicates an interaction between Rad and LTCCs in two different 

diabetic mouse models. The obtained findings mostly correspond with a “Cav1.2-

antagonistic” or compensatory function of Rad on LTCC expression and/or function. 

However, in young IRS 2-k.o. mice another mechanism underlying the decreased 

current density has to be assumed. Thus, our data suggest that there is no uniform, 

diabetes-associated mechanism of Rad-Cav1.2 interaction. Differences between the 

investigated mouse models might be attributed to differences in the underlying 

pathomechanisms. Further work is required for clarification e.g. of the 

pathophysiological importance of the disrupted insulin and leptin signaling pathways. 

Changes at the level of receptors or ligands might be compensated by the other 

signaling pathway while impairment downstream at the level of IRS 2 might severely 

affect insulin signaling here. It would be important to determine different phosphorylation 

states of the receptors and downstream signaling molecules such as IRS, Akt, PI3K or 

STAT in the heart, in particular for IRS 2-k.o. mice. It is probably more an interplay of 

parameters and not a single parameter that is crucial for LTCC regulation in DCM. 

Besides, the effect of an altered Rad protein expression on LTCC (expression and/or) 

function has not been conclusively clarified in the current study yet - further studies 

should investigate putative changes of single ventricular LTCC activities in 

cardiomyocytes of ob/ob and IRS 2-k.o. mice. It would also be reasonable to investigate 

other rodent mouse models associated with T2DM. Taken together, further research is 

necessary to evaluate the role of a Rad-Cav1.2 interaction in a diabetic context. 

Anyway, RGK proteins, e.g. Rad, might be promising targets to develop therapeutic 

strategies for the treatment of cardiac diseases.  
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6 Summary 

 

Cardiovascular disease (CVD) is a leading cause of death for diabetic patients. Diabetic 

cardiomyopathy (DCM) is characterized by an abnormality of myocardial diastolic or 

systolic function in diabetic subjects without the major heart failure risk factors 

hypertension and/or (overt) coronary artery disease. The pathophysiology of DCM 

remains largely unclear and needs to be further elucidated in order to develop targeted 

therapeutic strategies. Since cardiac L-Type calcium channels (LTCCs) are known to be 

involved in proper excitation-contraction coupling, they are of high interest in the 

research of CVD, such as DCM and resulting heart failure (HF). 

In human (non-diabetic) HF whole-cell Ca2+ current density of ventricular LTCCs was 

unchanged. Both, a decrease of plasmalemmal expression of Cav1.2 as well as an 

increased activity of single LTCCs was described ex vivo. These findings suggest 

changes in both expression and function of LTCCs. In contrast, in a mouse model 

associated with DCM (the so-called db/db mice with leptin receptor deficiency) whole-

cell Ca2+ current density was reduced, while single-channel activity was unchanged. It 

has been shown that RGK proteins, like the diabetes-associated Rad, might be involved 

in LTCC regulation, both regarding its function and expression. Rad expression is 

reduced in human HF and whole-cell calcium current densities are increased in 

cardiomyocytes of Rad-k.o. mice. Though previous data suggest that the ventricular 

expression levels of Rad and Cav1.2 proteins are positively correlated in several mouse 

models with diabetes-associated metabolic disturbances, the effect of Rad on cardiac 

LTCCs in a diabetic context remains unclear.  

To address Rad-LTCC interaction in a diabetic context two of the previously screened 

mouse models were investigated in the present study: leptin-deficient obese ob/ob mice 

and mice lacking IRS 2, respectively. Though experiments with Rad-k.o. and Rem 1-k.o. 

mice suggest an impressive inhibitory effect of RGK proteins on native cardiac LTCCs, 

it remains unclear whether differential expression of RGK proteins might be 

compensatory, causative or both regarding LTCC regulation. Thus, the present study 

aims at the role of in vivo regulation of Rad expression on ventricular LTCC expression 

and function. For this, ventricular L-type calcium current densities were obtained by 

patch-clamp recordings and compared to those of wildtype littermates in the context of 

ventricular expression levels of Rad and Cav1.2 mRNA and protein. In order to further 

evaluate the role of Rad in ob/ob mice, we generated and analyzed ob/ob mice lacking 

Rad. In summary, it should be elucidated whether there is a unifying effect of Rad on 
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LTCCs in diabetic hearts that might suggest a mechanism underlying diabetic 

cardiomyopathy.  

Mice of different ages (16 and 28 weeks) were chosen for experiments to take time-

dependent onset of obesity and disease progression of T2DM into account. Since the 

expression of the other RGK proteins and LTCC ß-subunits (Cavß1- Cavß3) might have 

contributed to an altered LTCC regulation, their expression levels were checked as well.  

In old ob/ob mice both, Rad and Cav1.2 expression was significantly upregulated at the 

protein level, while whole-cell Ca2+ current density was unaltered compared to age-

matched control. Since preliminary single-channel data indicated an unchanged LTCC 

activity, it is suggested that either Rad inhibited Cav1.2 channel trafficking to the surface 

membrane or completely “silenced” a certain fraction of already inserted Cav1.2 pores. 

However, we cannot say whether Rad upregulation induced the increase of Cav1.2 or 

vice versa. Our data obtained from Rad-k.o. mice confirm the inhibitory function of Rad 

protein on LTCCs and furthermore indicate an age-dependent effect. Whole-cell 

recordings of ob/ob x Rad-k.o. myocytes further suggest that the role of Rad is similar 

on a wildtype and an ob/ob background.  

In young IRS 2-k.o. mice whole-cell Ca2+ current density was significantly decreased 

compared to age-matched control. Since Rad and Cav1.2 protein expression appeared 

to be unchanged another mechanism underlying the decreased current density has to 

be assumed, e.g. altered insulin signaling. In comparison to young IRS 2-k.o. mice older 

mice of the same genotype showed a significantly increased Ca2+ current density, that 

was no longer different compared to age-matched control. Of interest, the putative age-

related decrease of the Cav1.2/Rad ratio, which was observed in wt mice, was not seen 

in 28 week old IRS 2-k.o. mice. The finding that at an age of 28 weeks Cav1.2 protein 

expression was unaltered compared to age-matched wt mice, while Rad protein 

expression was significantly reduced indicates an (age-dependent) loss of LTCC 

inhibition by Rad in IRS 2-k.o. mice. It is tempting to speculate that this is an attempt to 

compensate for a reduced calcium current density independent of the Cav1.2 

expression. Of note, in human heart failure unchanged current density and decreased 

expression of Rad suggest a similar mechanism. 

To sum it up, the current study indicates interaction between Rad and LTCCs in two 

different diabetic mouse models. The obtained findings mostly correspond with a 

“Cav1.2-antagonistic” or compensatory function of Rad on LTCC expression and/or 

function, but our data suggest that there is no uniform, diabetes-associated mechanism 

of Rad-Cav1.2 interaction. Differences between the investigated mouse models might 
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be attributed to differences in the underlying pathomechanisms. Further work is required 

for clarification e.g. of the pathophysiological importance of the disrupted insulin and 

leptin signaling pathways. Changes at the level of receptors or ligands might be 

compensated by the other signaling pathway while impairment downstream at the level 

of IRS 2 might severely affect insulin signaling here. It is probably more an interplay of 

parameters and not a single parameter that is crucial for LTCC regulation in DCM. 

Anyway, RGK proteins, e.g. Rad, might be promising targets to develop therapeutic 

strategies for the treatment of cardiac diseases. 
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8 Appendix 

 

8.1  Exemplary genotyping results 

 

All mice included in this study were genotyped unambiguously. Figures 8.1-8.3 show 

exemplary genotyping results. 

 

Figure 8.1 Exemplary genotyping results for IRS 2-k.o. mice: DNA fragments were visualized at 300 bp for 

the wildtype band and at 400 bp for the mutant band (hz = heterozygous, wt = wildtype, k.o. = knockout, bp = 

base pairs). 

 

Figure 8.2 Exemplary genotyping results for ob/ob mice: bands were detected at 83 bp and 99 bp for mutant 

and at 180 bp for wildtype (hz = heterozygous, wt = wildtype, k.o. = knockout, bp = base pairs). 

 

 

Figure 8.3 Exemplary genotyping results for Rad-k.o. mice: wildtype was identified via a band at 507 bp and 

mutant via a band at 347 bp (hz = heterozygous, wt = wildtype, k.o. = knockout, bp = base pairs). 
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8.2  Overview: blood glucose values, body weights, ventricle weights and 

ventricle-to-body weight ratios  

 

Table 8.1 Overview of blood glucose levels, body weights, ventricle weights and ventricle-to-body weight 

ratios of the investigated mouse lines (* = p < 0.05 mutant vs. age-matched wt in Student’s t-test; # = p < 0.05 

vs. 28 week old mice of the same genotype in Student’s t-test; values = mean ± SEM; N = number of mice). 

Genotype, age 

Blood 

glucose 

level [mg/dl]  

Body 

weight [g]  

Ventricle 

weight [mg]  

Ventricle-to-body 

weight ratio [mg/g]  
 

Wildtype,  

16 weeks 

158 ± 5 

(N = 58) 

24.4 ± 0.5
#
 

(N = 62) 

127.9 ± 5.3 

(N = 36) 

5.4 ± 0.2 

(N = 36) 
 

IRS 2-k.o.,  

16 weeks 

207 ± 10* 

(N = 62) 

25.7 ± 0.5
#
 

(N = 63) 

128.3 ± 3.4 

(N = 34) 

5.0 ± 0.1 

(N = 34) 
 

Ob/ob,  

16 weeks 

270 ± 29*
,#
 

(N = 20) 

46.6 ± 2.0*
,#
 

(N = 20) 

124.4 ± 3.9
#
 

(N = 13) 

2.8 ± 0.2* 

(N = 13) 

 

Rad-k.o.,  

16 weeks 

140 ± 4* 

(N = 27) 

26.9 ± 0.7* 

(N = 27) 

121.4 ± 4.1 

(N = 21) 

4.6 ± 0.1* 

(N = 21) 

 

Ob/ob x Rad-

k.o., 16 weeks 

291 ± 26* 

(N = 25) 

51.1 ± 0.9*
,#
 

(N = 25) 

136.8 ± 4.7
#
 

(N = 16) 

2.7 ± 0.1* 

(N = 16) 

 

Wildtype,  

28 weeks 

168 ± 6 

(N = 41) 

27.6 ± 0.6 

(N = 42) 

142.7 ± 6.4 

(N = 21) 

5.2 ± 0.2 

(N = 21) 
 

IRS 2-k.o.,  

28 weeks 

239 ± 22* 

(N = 30) 

27.6 ± 0.9 

(N = 30) 

126.3 ± 5.6 

(N = 23) 

4.8 ± 0.2 

(N = 23) 
 

Ob/ob,  

28 weeks 

203 ± 18 

(N = 33) 

60.3 ± 1.5* 

(N = 33) 

157.7 ± 4.6 

(N = 16) 

2.8 ± 0.2* 

(N = 16) 
 

Rad-k.o.,  

28 weeks 

151 ± 5* 

(N = 49) 

27.9 ± 0.5 

(N = 49) 

120.9 ± 8.3* 

(N = 21) 

4.6 ± 0.1* 

(N = 21) 

 

Ob/ob x Rad-

k.o., 28 weeks 

276 ± 43* 

(N = 9) 

59.7 ± 1.6* 

(N = 9) 

170.8 ± 7.9* 

(N = 8) 

2.8 ± 0.1* 

(N = 8) 
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8.3  Whole-cell patch-clamp experiments 

8.3.1 Mean cell capacitances of patched cells 

 

Patched cells had a mean cell capacitance (Cm) of 157 ± 6 pF (n = 85; number of 

patched cells). In one-way ANOVA (Bonferroni’s Post Test) membrane capacities of 

patched cells did not differ significantly independent of mouse genotype and age 

from that cells were isolated (figure 8.4). Therefore experiments were technically 

comparable and there was no evidence of cellular hypertrophy. 

                   

Figure 8.4 Mean cell capacities (Cm):  in one-way ANOVA (Bonferroni’s Post Test) membrane capacities of 

patched cells did not differ significantly independent of mouse genotype and age from that cells were isolated. 

Therefore experiments were technically comparable and there was no evidence of cellular hypertrophy              

(n = 2-17 per group). 
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8.3.2 Overview: whole-cell patch-clamp results 

 

Table 8.2 Maximum current density (mean Imax) and potential of mean Imax determined out of raw data 

points of the I/V curve (* = p < 0.05 mutant vs. age-matched wildtype in Student’s t-test;                              

values = mean ± SEM; n = number of patched cells). 

Genotype, age Mean Imax [pA/pF] V [mV] at mean Imax  

Wildtype, 16 weeks (n = 17) -10.92 ± 0.90 2.94 ± 1.43  

IRS 2-k.o., 16 weeks (n = 11) -7.79 ± 0.79
*
 0.91 ± 1.63  

Ob/ob, 16 weeks (n = 10 ) -10.75 ± 0.65 0.00 ± 0.00  

Rad-k.o., 16 weeks (n = 5) -20.12 ± 1.49
*
 -4.00 ± 2.45

*
  

Ob/ob x Rad-k.o., 16 weeks (n = 5) -21.48 ± 1.10
* 

-8.00 ± 2.00
*
  

Wildtype, 28 weeks (n = 13) -8.91 ± 0.54 4.62 ± 1.44  

IRS 2-k.o., 28 weeks (n = 11) -11.22 ± 1.27 1.82 ± 1.22  

Ob/ob, 28 weeks (n = 11) -8.44 ± 0.43 10.00 ± 1.91
*
  

Rad-k.o., 28 weeks (n = 2) -21.58 ± 5.05
*
 -5.00 ± 5.00

*
  

 

Table 8.3 Potential of half maximal activation V0.5act, slope factor, maximum current density (mean Imax) 

and potential of mean Imax determined out of fitted I/V curve (* = p < 0.05 mutant vs. age-matched wildtype 

in Student’s t-test; values = mean ± SEM; n = number of patched cells). 

Genotype, age 

Potential of 

half maximal 

activation 

V0.5act [mV] 

Slope 

factor  

Mean Imax 

[pA/pF] 

  

V [mV] at 

mean Imax 

 

 

Wildtype, 16 weeks (n = 17) -8.69 ± 1.06 5.05 ± 0.25 -11.13 ± 0.91 1.86 ± 1.12  

IRS 2-k.o., 16 weeks  

(n = 11) 
-8.71 ± 1.26 5.60 ± 0.60 -7.89 ± 0.81

*
 1.69 ± 1.24  

Ob/ob, 16 weeks (n = 10 ) -11.72 ± 0.59
*
 4.17 ± 0.18

*
 -11.04 ± 0.69 -1.67 ± 0.67

*
  

Rad-k.o., 16 weeks (n = 5) -14.74 ± 1.33
*
 3.97 ± 0.10

*
 -20.72 ± 1.62

*
 -4.49 ± 1.30

*
  

Ob/ob x Rad-k.o., 16 weeks 

(n = 5) 
-17.06 ± 1.71

*
 3.65 ± 0.13

*
 -21.71 ± 1.53

*
 -5.31 ± 1.84

*
  

Wildtype, 28 weeks (n = 13) -7.51 ± 0.96 5.01 ± 0.14 -9.12 ± 0.55 3.12 ± 0.88  

IRS 2-k.o., 28 weeks  

(n = 11) 
-10.88 ± 0.89

*
 5.11 ± 0.21 -11.51 ± 1.30 0.53 ± 1.06  

Ob/ob, 28 weeks (n = 11) -4.86 ± 0 .67
*
 5.32 ± 0.18 -8.71 ± 0.44 5.67 ± 0.60

*
  

Rad-k.o., 28 weeks (n = 2) -16.13 ± 0.08
*
 3.37 ± 0.37

*
 -22.24 ± 5.36

* 
-6.60 ± 0.83

*
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Table 8.4 Time-dependent inactivation: Tau (determined out of fitted raw calcium current traces; * = p < 0.05 

mutant vs. age-matched wildtype in Student’s t-test; values = mean ± SEM; n = number of patched cells). 

Genotype, 

age 

Tau (τ) 

-10 mV 0 mV 10 mV 20 mV 30 mV 40 mV  

Wildtype,  

16 weeks 

(n = 17) 

 37.44 

± 2.82  

31.67 

± 1.54 

40.14 

± 1.37 

49.28  

± 1.45 

55.08 

± 1.50 

54.53 

± 1.46 
 

IRS 2-k.o.,  

16 weeks 

(n = 11) 

34.90 

± 3.31 

32.22 

± 1.19 

42.04  

± 1.68 

51.74 

± 1.61 

57.21 

± 1.48 

55.45 

± 1.98 
 

Ob/ob,  

16 weeks 

(n = 10 ) 

25.10 

± 1.41
*
 

33.09 

± 1.32 

44.78 

± 1.58
*
 

53.92 

± 1.58 

57.80 

± 1.25 

56.00 

± 0.94 
 

Rad-k.o.,  

16 weeks  

(n = 5) 

24.49 

± 2.71
*
 

27.67 

± 1.01 

36.62 

± 1.35 

46.63 

± 1.22 

55.87 

± 1.00 

61.76 

± 2.34
*
 

 

Ob/ob x Rad-

k.o., 16 

weeks  

(n = 5) 

28.12 

± 6.08 

34.12 

± 4.35 

43.27 

± 3.30 

48.59 

± 3.10 

55.23 

± 4.26 

61.08 

± 4.77 
 

Wildtype, 

 28 weeks  

(n = 13) 

36.16 

± 3.27 

35.58 

± 1.01 

46.56 

± 1.21 

57.29 

± 1.80 

62.65 

± 1.82 

60.57 

± 1.92 
 

IRS 2-k.o.,  

28 weeks  

(n = 11) 

32.34 

± 2.61 

33.11 

± 1.12 

40.88 

± 1.14
*
 

49.68 

± 1.65
*
 

54.45 

± 1.92
*
 

53.75 

± 2.03
*
 

 

Ob/ob,  

28 weeks  

(n = 11) 

54.48 

± 5.48
*
 

34.09 

± 1.28 

40.12 

± 1.09
*
 

47.27 

± 1.17
*
 

51.87 

± 1.20
*
 

51.97 

± 1.32
*
 

 

Rad-k.o.,  

28 weeks  

(n = 2) 

22.27 

± 5.84
 

28.66 

± 1.64
* 

40.13 

± 3.46
 

52.47 

± 3.90
 

61.33 

± 2.70
 

67.50 

± 0.95
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Table 8.5 Potential of half maximal inactivation V0.5inact and slope factor determined out of fitted SSI curve 

(* = p < 0.05 mutant vs. age-matched wildtype in Student’s t-test; values = mean ± SEM; n = number of patched 

cells). 

Genotype, age 

Potential of half 

maximal inactivation 

V0.5inact [mV] 

Slope 

factor  
 

Wildtype, 16 weeks (n= 7) -25.20 ± 1.01  4.65 ± 0.38  

IRS 2-k.o., 16 weeks (n = 4) -24.94 ± 1.33 4.05 ± 0.53  

Ob/ob, 16 weeks (n = 4) -26.27 ± 0.67 5.05 ± 0.38  

Rad-k.o., 16 weeks (n = 4) -28.17 ± 2.18 3.85 ± 0.21  

Ob/ob x Rad-k.o., 16 weeks (n = 4) -28.73 ± 1.21 4.20 ± 0.47  

Wildtype, 28 weeks (n = 9) -25.31 ± 0.84 4.70 ± 0.20  

IRS 2-k.o., 28 weeks (n = 4) -29.23 ± 1.06* 5.52 ± 0.38  

Ob/ob, 28 weeks (n = 12) -24.77 ± 0.71 4.53 ± 0.28  

Rad-k.o., 28 weeks (n = 3) -23.95 ± 1.56 3.76 ± 0.28*  

 

Table 8.6 Plateau, tau, half-time (determined out of fitted recovery curve) and the relative current after 

375 ms of recovery time (I2/I1) (* = p < 0.05 mutant vs. age-matched wildtype in Student’s t-test; values = 

mean ± SEM; n = number of patched cells). 

Genotype, age Plateau tau Half-time 
I2/I1 after 

375 ms 
 

Wildtype, 16 weeks (n = 22) 0.87 ± 0.02 150.28 ± 8.87 104.17 ± 6.15 0.81 ± 0.02  

IRS 2-k.o., 16 weeks (n = 7) 0.87 ± 0.03 155.17 ± 10.89 107.58 ± 7.55 0.81 ± 0.03  

Ob/ob, 16 weeks (n = 10) 0.82 ± 0.02 151.22 ± 8.28 104.82 ± 5.74 0.78 ± 0.02  

Rad-k.o., 16 weeks (n = 4) 0.82 ± 0.04 206.20 ± 27.75* 142.89 ± 19.24* 0.70 ± 0.06*  

Ob/ob x Rad-k.o.,  

16 weeks (n = 4) 
0.85 ± 0.03 224.45 ± 13.70* 155.58 ± 9.48* 0.70 ± 0.03*  

Wildtype, 28 weeks (n = 12) 0.81 ± 0.03 159.91 ± 6.31 110.84 ± 4.37 0.76 ± 0.02  

IRS 2-k.o., 28 weeks (n = 9) 0.81 ± 0.04 155.74 ± 9.01 107.95 ± 6.24 0.75 ± 0.04  

Ob/ob, 28 weeks (n = 12) 0.84 ± 0.02 173.26 ± 7.70 120.08 ± 5.34 0.76 ± 0.02  

Rad-k.o., 28 weeks (n = 2) 0.87 ± 0.00 156.70 ± 27.30 108.61 ± 18.89
 

0.79 ± 0.04  
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8.4  Cardiac myocytes purification assay  

 

Equilibrium density gradient centrifugation with Percoll medium is generally used in 

order to purify cell fractions. In this study it was planned to purify the enzymatically 

isolated adult murine ventricular myocytes. 

After Percoll density gravity centrifugation, four fractions of cells were obtained, as 

described in chapter 2.5. All layers were analyzed visually under a microscope. Dead 

cells were apparent in the interface between fraction 1 and fraction 2, but 

concentrated at the bottom of the tube. Despite several variations of centrifugation 

time and/or Percoll density experiments failed: cardiac myocytes, which should 

concentrate in fraction 3, were also visible in equal parts in fraction 2. Besides, other 

living cell types were also observable in the middle fractions, though representing a 

minor part (figure 8.5). Any change of the protocol worsened the outcome of the 

assay, i.e. resulted in diffuse cell distributions or no more living cardiomyocytes. Due 

to failure of purification of adult murine ventricular myocytes, for further expression 

analyses whole-ventricle homogenates were used. 

 

 

Figure 8.5 Fractions obtained after Percoll density gravity centrifugation: cardiac myocytes, which should 

concentrate in fraction 3, were also visible in equal parts in fraction 2. Other cell types were visible in these 

fractions as well. 
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8.5  qRT-PCR experiments 

 

The ventricular mRNA expression of the RGK proteins, Cav1.2 and the Cavß-subunits 

was detected via qRT-PCR. As expected Rem 2, which has been described to be 

highly expressed in brain and kidney (Liput et al., 2016, Finlin et al., 2000), was not 

detectable in ventricular tissue and thus was only measured the first experiments to 

detect a putative unexpected expression under diseased conditions. As control 

mRNA a murine brain cDNA sample was used. 

Data were obtained from N = 5–6 animals per group, 2-3 mice per sex assumed. To 

improve validity of the results maximal one mice per litter was used. 

 

8.5.1 Primer efficiency tests 

 

For primer efficiency tests three different cDNA dilution series were used (consisting 

of four or five dilutions, respectively). For each dilution series cDNA was reverse 

transcribed from a different adult murine ventricle sample. Per dilution series and 

primer pair one or two efficiency tests were conducted. 

Efficiencies of two genes were compared by blotting the Ct values obtained via qRT-

PCR against the log template amount of the cDNA dilution series used. The obtained 

standard curves almost went in parallel (figure 8.6). Therefore efficiencies were 

considered as comparable (Bustin et al., 2009). Calculated mean primer efficiencies 

were within a range of 86% and 99% (figure 8.7). 

                                   

Figure 8.6 Primer efficiency I: the tested primers showed comparable efficiencies with almost parallel standard 

curves. 
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Figure 8.7 Primer efficiency II: calculated primer efficiencies were within a range of 86% and 99%. 

 

8.5.2 Quality of isolated mRNA 

 

The quality of isolated mRNA is essential for obtainment of reliable qRT-PCR data. 

Each mRNA sample was checked via UV-Vis spectrophotometer. Only mRNA with a 

260 nm/280 nm ratio between 1.8 and 2.0 was used for further experiments. A ratio 

of 2.1–2.2 was also accepted if separation into 18 S rRNA (~ 1.9 kbp) and 28 S rRNA 

(~ 4.7 kbp) in agarose gel electrophoresis proved to be of good quality. Solely RNA, 

which showed two sharp bands with 28 S rRNA band intensity doubled compared to 

18 S rRNA, was taken for reverse transcription into cDNA. This additional check was 

not applied to all samples, only randoms were picked out. The results demonstrate 

that the method used to isolate mRNA was suitable to obtain intact mRNA without 

contaminations (figure 8.8). 

 

                          

Figure 8.8 Qualitative RNA analysis of murine ventricle samples: in intact total RNA 18 S and 28 S RNA 

bands are clearly visible in a ratio of 1:2 (kbp = kilo base pairs). 
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8.5.3 Quality of cDNA / qRT-PCR results 

 

After completion of a qRT-PCR cycling protocol a melting curve analysis of all 

samples was attached to check for product purity and to exclude primer dimers 

(chapter 2.6.5). Each qRT-PCR conducted showed clear melting curves specific for 

the particular target (figure 8.9). A random sample of cDNA probes was picked out 

and applied on an agarose gel to check for correct product size. cDNA products 

detected were within the expected range of 60–160 bp band size (figure 8.10). 

 

                 

Figure 8.9 Detection of melting curve analysis, exemplary for Rad, Rem 1 und S 29: melting curves were 

specific for the particular target, e. g. the curves for Rad always appeared at 82°C, for Rem 1 at 84°C and for      

S 29 at 88°C. 

 

                                               

Figure 8.10 Detection of cDNA bands: cDNA was detected via agarose gel electrophoresis in order to check for 

correct product size. E. g. the addition of Rad primer pairs to the reaction setup resulted in cDNA with 105 bp 

amplicon length (bp = base pairs).  

marker Rad  HPRT S29   Cav1.2 

100 bp

200 bp
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8.5.4 Stability of housekeeping gene expression  
 

At the beginning of data analysis the expression of S 29, HPRT and GAPDH was 

compared in order to find an appropriate housekeeping gene. Although GAPDH is 

one of the most commonly used housekeeping genes, its stable expression in 

diabetic heart tissue is questionable. GAPDH is an enzyme that is necessary in the 

glycolytic pathway (Barber et al., 2005). In diabetic tissues the expression can be 

altered, e.g. GAPDH was downregulated in the heart of type 1 diabetic dogs. 

(Barroso et al., 1999, Alexander et al., 1988). However, in the investigated samples 

GAPDH expression was stable. As illustrated in figure 8.11, S 29, HPRT and GAPDH 

were expressed stably throughout all genotypes and ages. Therefore data of the 

present study were normalized to S29, GAPDH and HPRT simultaneously (REST-

2009© analysis). The mean Ct value of S 29 (mixed genotypes and ages, n = 59) 

showed the smallest coefficient of variation, thus demonstrating S 29 as the most 

stable expressed reference gene (S29: 2.57%, HPRT: 3.08%, GAPDH : 3.34%, n = 

57-59). Hence S 29 was used as normalization gene for 2–ΔΔCt analysis. 

 

                           
Figure 8.11 Stability of housekeeping gene expression: S 29, HPRT and GAPDH were expressed stably 

throughout all genotypes and ages (HPRT/S29/GAPDH: n = 5-8 per genotype and age group).  
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8.5.5 Overview: qRT-PCR results  

Table 8.7 Overview of relative mRNA expression levels of Rad, Gem and Rem 1 compared to age-matched 

wildtype (* = p < 0.05 in hypothesis test of REST-2009© software tool [S29, HPRT and GAPDH as reference 

genes]; # = p < 0.05  in Student’s t-test of delta Ct values [S29 as reference gene]; values = mean ± SEM;  

N = 5-6 ventricles per genotype and age group; nd = not detectable).  

Genotype, 

age 

Rad mRNA 

expression 

Gem mRNA 

expression 

Rem 1 mRNA 

expression 

REST-

2009© 
2 
–ΔΔCt 

 
REST- 

2009© 
2 
–ΔΔCt

 
REST- 

2009© 
2 
–ΔΔCt

  

IRS 2-k.o.,  

16 weeks 

2.01*  

± 1.24 – 3.37  

2.06# 

± 0.17  

1.46  

± 1.02– 2.20 

1.44  

±  0.09 

1.46 

± 0.95 – 2.45 

1.45 

± 0.13 

 

Ob/ob, 

16 weeks 

1.42 

± 0.89 – 2.41 

1.55 

± 0.27 

1.22 

± 0.78–1.91 

1.36 

± 0.26 

0.87 

± 0.59–1.48 

0.96  

± 0.17 
 

Rad-k.o.,  

16 weeks 
nd nd 

1.92* 

± 1.29–2.82  
2.07# 

± 0.23  

1.17  

± 0.74–1.77 

1.19  

± 0.08 
 

IRS 2-k.o.,  

28 weeks 

1.22  

± 1.02–1.58 

1.24 

± 0.11 

1.15 

± 0.96–1.46 

1.15 

± 0.11 

1.24  

± 0.97–1.65 

1.24 

± 0.13 
 

Ob/ob,  

28 weeks 

1.24 

± 0.95–1.77 

1.50  

± 0.23 

0.91 

± 0.63–1.20 

1.04 

± 0.12 

0.96 

± 0.77–1.19 

1.08 

± 0.08 
 

Rad-k.o.,  

28 weeks 
nd nd 

2.13*  

± 1.74–2.67  

2.58# 

± 0.28 

1.28* 

± 1.05–1.67 

1.46  

± 0.16 
 

 

Table 8.8 Overview of relative mRNA expression levels of Cav1.2 compared to age-matched wildtype (* = p 

< 0.05 in hypothesis test of REST-2009© software tool [S29, HPRT and GAPDH as reference genes];                

# = p < 0.05  in Student’s t-test of delta Ct values [S29 as reference gene]; values = mean ± SEM; N = 5-6 

ventricles per genotype and age group).  

Genotype, age 

Cav1.2 mRNA expression 

REST-2009© 2 
–ΔΔCt 

  

IRS 2-k.o., 16 weeks 1.23 ±  0.86-1.88 1.20 ± 0.09  

Ob/ob, 16 weeks 0.84 ± 0.52-1.45 0.97 
± 0.19  

Rad-k.o., 16 weeks 1.01 ± 0.70-1.55 1.03 ± 0.07  

IRS 2-k.o., 28 weeks 1.03 ± 0.76-1.46 1.05 ± 0.14  

Ob/ob, 28 weeks 0.76* ± 0.65 – 0.93 0.86 ± 0.12  

Rad-k.o., 28 weeks 0.50* ± 0.35-0.68 0.57#
 ± 0.10  
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Table 8.9 Overview of relative mRNA expression levels of the Cavß-subunits compared to age-matched 

wildtype (* = p < 0.05 in hypothesis test of REST-2009© software tool [S29, HPRT and GAPDH as reference 

genes]; # = p < 0.05  in Student’s t-test of delta Ct values [S29 as reference gene]; values = mean ± SEM; N = 5-6 

ventricles per genotype and age group).  

Genotype, 

age 

Cavß1 subunit 

mRNA expression 

Cavß2 subunit 

mRNA expression 

Cavß3 subunit 

mRNA expression 

REST-

2009© 
2 
–ΔΔCt 

 
REST- 

2009© 
2 
–ΔΔCt

 
REST- 

2009© 
2 
–ΔΔCt

  

IRS 2-k.o.,  

16 weeks 

1.21 

± 0.75–1.77 

1.23 

± 0.17 

0.74 

± 0.45–1.33 

0.77 

± 0.14 

1.12 

± 0.60–2.31 

1.11 

± 0.16 
 

Ob/ob, 

16 weeks 

0.57* 

± 0.30–0.82 

0.64 

± 0.12 

0.47* 

± 0.32–0.74 

0.50# 

± 0.10 

0.84 

± 0.47–1.63 

0.87 

±0.13 
 

Rad-k.o.,  

16 weeks 

1.22 

± 0.76–1.90 

1.26 

± 0.14 

0.69* 

± 0.49–1.03 

0.70# 

± 0.05 

1.38 

± 0.82–2.52 

1.43 

± 0.11 
 

IRS 2-k.o.,  

28 weeks 

0.88 

± 0.66–1.20 

0.86 

±0.08 

0.63 

± 0.20–1.20 

0.72 

± 0.16 

0.98 

± 0.68–1.38 

0.99 

± 0.12 
 

Ob/ob,  

28 weeks 

0.54* 

± 0.35–0.90 

0.66# 

± 0.15 

0.68* 

± 0.52–0.86 

0.77 

± 0.08 

0.63* 

± 0.38–0.90 

0.75 

± 0.16 
 

Rad-k.o.,  

28 weeks 

0.94 

± 0.49–1.69 

1.19 

± 0.27 

0.40* 

± 0.29–0.56 

0.45# 

± 0.07 

1.01 

± 0,62–1.51 

1.25 

± 0.25 
 

 

Table 8.10 mRNA expression levels of 40 week old IRS 2-k.o. mice (* = p < 0.05 in hypothesis test of REST-

2009© software tool [S29, HPRT and GAPDH as reference genes]; # = p < 0.05  in Student’s t-test of delta Ct 

values [S29 as reference gene]; values = mean ± SEM; N = 5-6 ventricles per genotype and age group).  

Gene 

mRNA expression 

REST-2009© 2 
–ΔΔCt 

  

Rad 0.56 ± 0.35–0.88 0.71 ± 0.16  

Gem 0.72 ± 0.62–0.82 0.92 ± 0.10  

Rem 1 0.53* ± 0.38–0.74 0.69 ± 0.08  

Cav1.2 0.70 ± 0.45–1.10 0.88 ± 0.18  

Cavß1 0.65* ± 0.43–0.86 0.80 ± 0.15  

Cavß2 0.59 ± 0.42–0.96 0.62 ± 0.16  

Cavß3 0.53* ± 0.33–0.88 0.68 ± 0.16  
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8.6  Western Blot experiments 

8.6.1 Positive / negative controls for Rad and Cav1.2 protein 

 

For reliable Western Blot experiments appropriate positive and negative controls are 

necessary. Via a calcium phosphate based transfection method in tsa201 cells and 

subsequent cell lysis, it was possible to obtain clear controls for Rad and Cav1.2 

antibodies. As depicted in figure 8.12, antibodies specific for Rad protein yielded in a 

band at approx. 38 kDa. In murine ventricle samples unspecific bands at approx.     

34 kDa and 49 kDa could be detected in some samples (figure 8.12, lane 2 and 3).  

 

 

Figure 8.12 Rad protein positive control: Rad protein positive control yielded in a band at approx. 38 kDa 

(lane 1). Lane 2 and 3 show bands of murine samples: the Rad protein band appeared at approx. 38 kDa, too. 

 
As expected, a band for Rad protein could not be detected in Rad-k.o. mice (figure 

8.13, lane 3).   

 

 

Figure 8.13 Detection of Rad in murine ventricle samples: in Rad-k.o. mice the antibody against Rad protein 

was not able to bind. No band at approx. 38 kDa could be observed (lane 3). In contrast, different wt mice 

samples showed a band at approx. 38 kDa (lane 1, 2). In each lane equal amounts of template were loaded. The 

upper bands illustrate the Cav1.2 protein expression. 

  

lane 1          lane 2      lane 3

40 kDa

50 kDa

35 kDa

25 kDa

40 kDa

35 kDa

260 kDa

140 kDa
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A specific positive control for Cav1.2 protein could also be produced and showed a 

band at approx. 260 kDa, as outlined in figure 8.14. 

 

 

Figure 8.14 Cav1.2 protein positive control:  Cav1.2 protein positive control yielded in a band at approx.        

260 kDa (lane 1).  

 

8.6.2 Quality of Bradford analysis 

 

Bradford analysis was conducted to ensure that equal protein amounts could be 

loaded into the pockets of SDS-PAGE gel. Therefore it was important to have a 

reliable Bradford assay. To exclude any influence of the product buffer (0.25 mM 

sucrose solution) measurements of a dilution series of the standard protein BSA in 

the same buffer were compared to measurements in which BSA was solved in H2O. 

Analysis of results revealed that sucrose had no influence on protein determination 

(figure 8.15). 

 

Figure 8.15 Quality of Bradford analysis: for Bradford analysis a dilution series of the standard protein BSA in 

H2O was measured (dilution series 4, 5, 6). To ensure a correct measurement of the samples, that were solved in 

0.25 mM sucrose solution, several dilution series (1-3) of BSA in 0.25 mM sucrose solution were measured, too. 

The measurements revealed that sucrose had no influence on protein measurement.  
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8.6.3 Linearity of the detection system 

 

For relative quantification of Western Blots a linearity within the detection system has 

to be assumed for each gene analyzed. As outlined in figure 8.16, linearity was given 

for both proteins of interest, Cav1.2 and Rad. Lane 2 in figure 8.16 (A) shows optimal 

protein amounts, where bands are clearly visible without being saturated. Moreover, 

both proteins could be determined within one blot. Optimal protein concentrations 

proved to be between 40 and 60 µg, which corresponds to lane 1 to 3. 

 

 

Figure 8.16 Linearity of the detection system. (A) Both proteins of interest, Cav1.2 and Rad, could be detected 

within the linearity of the detection system. Lane 2 shows optimal protein concentrations where bands are clearly 

visible without being saturated. Sample amount per lane (from left to right): 2, 4, 6, 8, 10 µl. (B) Band densities 

of the image (A) were determined via ImageJ software tool and blotted against the template amount. Linear 

regression revealed that linearity was given for the protein amounts used. 
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