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Summary 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized 

by progressive motor, cognitive, and psychiatric symptoms. The mutant gene product contains an 

elongated stretch of CAG repeats that translates into an extended sequence of polyglutamines within 

the Huntingtin (HTT) protein. Many of the pathologic cellular mechanisms underlying HD are based 

on aberrant protein interactions of mutant HTT. Amongst others, affected processes include 

transcription, energy metabolism, axonal transport, synaptic transmission, and the proteostasis 

network. Additionally, mutant HTT RNA impacts cellular functions as well. A toxic gain-of-function 

of the mutant CAG repeat RNA can be explained by the sequestration of various RNA binding 

proteins, leading to deregulation of cellular mechanisms like RNA interference, alternative splicing, 

and gene expression. One specific example is the MID1 complex that enhances translation of mutant 

HTT exon 1 RNA, thereby increasing the production of toxic protein species.  

This study shows that MID1 specifically regulates the translation of structured RNAs, revealing a 

requirement for the mechanism of MID1-dependent translation. Furthermore, MID1’s close 

association with the translation initiation complex is confirmed. The identification of new and the 

verification of known binding partners locates MID1 within a large complex comprising eukaryotic 

initiation factors and ribosomal proteins. Together with the known CAG length-dependent binding of 

MID1 to HTT exon 1 RNA, this suggests that MID1 is an important factor directing the translational 

machinery to mutant CAG repeat RNAs, thereby possibly acting as a disease modifier. Moreover, in 

HD patients, MID1 expression is upregulated, corroborating this hypothesis.  

The comparison of MID1 protein interactions with HTT exon 1 binding partners shows substantial 

overlap. 25% of the identified proteins are shared binding partners. Interestingly, gene ontology 

analysis of the HTT exon 1 interactome shows that 43% of the proteins can be assigned to the process 

of splicing and 53% of these preferentially bind to mutant HTT exon 1 RNA. Therefore, the analysis of 

splicing changes in a cellular model of inducible mutant HTT exon 1 RNA expression was conducted. 

Specific splicing events were identified that can be attributed to HTT exon 1 protein binding partners 

and this was confirmed in HD patient brain samples. 

Together, this study extends the knowledge of MID1-dependent mechanisms of translation, 

characterizes the HTT RNA-protein network and identifies aberrant downstream effects that might 

contribute to HD pathogenesis.  
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1 Introduction 

1.1 Trinucleotide repeat disorders 

Trinucleotide repeat (TNR) disorders are a large group of both common and rare neurodegenerative 

and neuromuscular diseases that arise from microsatellite expansions of three base pairs. Generally, 

microsatellites denote di-, tri-, or tetra nucleotide tandem repeats in the genome and the repeat size is 

polymorphic within the alleles of an individual. Microsatellite repeats represent 3 % of the entire 

human genome 1, with TNRs being the most abundant ones. 

Table 1 | Molecular and clinical characteristics of trinucleotide repeat disorders. 

Disease Gene Repeat Normal/ expanded repeat location Main clinical features 

DM1 DMPK CTG 5 - 37/ 50 – 10,000 3’ UTR Myotonia, cardiac conduction 
defects, muscle weakness 

DRPLA ATN1 CAG 7 – 34/ 49 -88 coding Ataxia, seizures, choreoathetosis, 
dementia 

FRDA FXN GAA 6 – 32/ 200 -1,700 Intron Sensory ataxia, cardiomyopathy, 
diabetes 

FXS FMR1 CGG 6 – 60/ > 200 5’ UTR Mental retardation, facial 
dysmorphism, autism 

FXTAS FMR1 CGG 6 – 60/ 60 - 200 5’ UTR Ataxia, tremor, Parkinsonism, 
dementia 

HD HTT CAG 6 – 34/ 36 - 121 coding  Chorea, dystonia, cognitive 
decline, psychiatric problems 

SBMA AR CAG 9 – 36/ 38 - 62 coding Progressive motor weakness, 
gynecomastia, decreased fertility 

SCA1 ATXN1 CAG 6 – 44/ 39 - 82 coding Ataxia, dysarthria, spasticity, 
cognitive impairments 

SCA2 ATXN2 CAG 15 – 24/ 32 - 200 coding Ataxia, decreased reflexes, 
occasional parkinsonism 

SCA3 ATXN3 CAG 13 – 36/ 61 - 84 coding Ataxia, parkinsonism, spasticity 

SCA7 ATXN7 CAG 4 – 35/ 37 - 306 coding Ataxia, blindness, dysarthria 

SCA8 ATXN8/ 
ATXNOS80 

CTG/ 
CAG 16 – 34/ > 74 3’UTR/ 

coding Ataxia, dysarthria, nystagmus 

DM1, dystrophia myotonica; DRPLA, dentatorubral-pallidoluysian atrophy; FRDA, Friedreich ataxia; FXS, 
Fragile X syndrome; FXTAS, Fragile X tremor/ataxia syndrome; HD, Huntington disease; SBMA, spinal and 
bulbar muscular atrophy, SCA, spinocerebellar ataxia.  
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Repeat lengths within a physiologic range can be neutral or regulatory and will only become toxic 

above or below a specific threshold. Their frequent occurrence in coding regions is possible because 

variations in repeat lengths do not cause a frameshift within the encoded protein.  

In TNR disorders, the repeat length varies in respect to the genetic locus and whether it is located in 

the untranslated region (UTR), intronic sequence or the coding region of the respective gene. A 

selection of the most common TNR disorders is presented in Table 1. 

Since microsatellite expansions are dynamic, the length of the repeat is variable between individuals 

and the repeat transmission between generations is unstable 2,3. This offers an explanation for the 

variability of the disease phenotypes and the concept of genetic anticipation. First, the larger the 

expansion the more severe is the disease phenotype and progression. Second, the germline instability 

can lead to earlier age of onset or more severe phenotypes between generations because longer repeats 

are correlated with earlier age of onset and increased severity of disease 4–6. Additionally, in most TNR 

diseases a premutation range of repeat size can be defined where individuals rarely develop the disease 

but are likely to pass on a fully penetrating mutation to their offspring. An exception to this is the 

fragile x mental retardation 1 (FMR1) gene, where the length of the repeat expansion determines two 

distinct neurodegenerative diseases. The mutation is found in the 5’ UTR, a regulatory region that is 

aberrantly methylated if the repeat tract exceeds 200 CGG repeats 7. As a consequence, FMR1 

transcription is silenced and the gene product, Fragile X Mental Retardation Protein (FMRP), is not 

translated leading to Fragile X Syndrome (FXS). However, in case the repeat number lies between 60 to 

200 units, affected individuals develop Fragile X-associated tremor ataxia syndrome (FXTAS, 

described in chapter 1.3.1, 1.3.3, 1.3.5).  

 

1.2 Huntington’s disease 

Members of the largest group of TNR disorders share a CAG repeat expansion in the coding region of 

the respective gene. Because CAG translates into a glutamine amino acid, this subgroup is referred to 

as polyglutamine (polyQ) diseases. The most common polyQ disease is Huntington’s disease (HD), an 

autosomal dominant neurological disorder where the pathologic mutation is found in the huntingtin 

(HTT) gene on chromosome 4p16.3 8. In healthy individuals, the CAG repeat is polymorphic with 6 to 

35 units. In patients, as with other TNR disorders, the age of onset is inversely correlated to the 

number of CAG repeat units 9. Repeats between 36 to 39 units show a variable penetrance and later 

onset of disease compared to individuals carrying 40 repeat units or more. This effect is aggravated in 

the case of very long repeat tracts: CAG repeat mutations with 60 or more repeats result in the juvenile 

onset form of HD (younger than 20 years) 10. Interestingly, homozygous patients show a similar age of 

onset as heterozygotes, however the disease progression can be more severe 11.  
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Typically, the disease develops from a presymptomatic period without apparent clinical signs to a 

prodromal phase that is characterized by subtle changes in motor functions, behavior, and cognition. 

Eventually, patients enter the manifest stage at a mean age of 35 to 44 years with slow progression of 

symptoms. The appearance and sequence of motor, cognitive, and psychiatric symptoms is variable 

between individuals. However, the disease is invariably fatal with a median survival of 18 years from 

motor onset 12. Motor symptoms like chorea (involuntary movements) usually appear early during the 

disease course, while bradykinesia (slow execution of voluntary movement) and rigidity appear in late 

stage patients. Both cognitive and psychiatric changes manifest in early disease stages and worsen over 

time: patients often show cognitive slowing, decreased attention, signs of apathy, irritability, 

impulsivity, and depression. Apart from the clinical features that can be attributed to the 

neuropathology, HD patients also show skeletal muscle wasting, weight loss, cardiac failure, testicular 

atrophy, and osteoporosis 13. Activation of the immune system and an altered immune response is 

already evident during the premanifest stage of disease 14 including activated microglia in the brain 15.  

Eventually, the activation of microglia correlates with the severity of disease progression 16. Whether 

dysfunction of the immune system, and specifically neuroinflammation, is cause or consequence is still 

unclear. 

While the worldwide prevalence and incidence of HD is unclear, the disease is apparent in all 

populations but with large variations in frequency. This is best exemplified in British Columbia, 

Canada, where people of European descent show a prevalence of 17.2 cases per 100,000 in contrast to 

the remaining population with 2.1 cases per 100,000 17. Underlying this different susceptibility to HD 

are specific haplotypes characterized by longer CAG repeat lengths, that in turn lead to a higher 

chance for de novo mutations 18. 

1.2.1 Neuropathology 

The most prominent neuropathologic feature of HD includes a selective degeneration of neurons in 

the striatum. GABAergic medium-sized spiny neurons are affected in the early stages of disease 19. 

Other areas, like the globus pallidus, substantia nigra, and amygdala show variable degeneration and 

the loss of neurons is accompanied by an increase in astrocytes 20. Medium spiny neurons of the 

indirect pathway of movement control in the basal ganglia are affected, explaining the etiology of 

chorea 21. Massive striatal atrophy can be observed as early as 11 years prior to the clinical onset of 

HD 22. Apart from striatal atrophy, a severe loss of cerebral cortex and subcortical white matter occurs 

in HD 23, which may account for the cognitive and neuropsychiatric impairments that often precede 

the onset of chorea. 

Another feature of the disease is the presence of large intraneuronal inclusions containing huntingtin 

protein (HTT) 24,25. Astrocytes develop HTT inclusions as well, however the frequency of HTT 
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inclusion-positive cells compared to neurons is much lower 26. Not only full-length but also small N-

terminal fragments of HTT have been visualized in inclusions 27. The propensity of these fragments to 

aggregate depends on the length of the HTT fragments, the polyQ stretch, and their fibrillar or ribbon-

like morphology resembles scrapie prion rods and beta-amyloid fibrils in Alzheimer's disease 28. 

1.2.2 HTT structure and function 

The HTT gene product with a normal polyQ length of 23 glutamines is a large protein of 3,144 amino 

acids and a molecular weight of 348 kDa. The polyQ stretch lies between an N-terminal nuclear export 

signal (NES) 29 and a proline-rich domain (PRD). Like the polyQ stretch, the PRD is polymorphic and 

probably involved in protein-protein interactions. The secondary structure of this region has been 

resolved for 17 glutamines (Q): the NES forms an α-helical structure, the 17Q can adopt various 

conformations including an α-helix, random coil, and extended loop 30. The remaining parts of the 

protein are not as well characterized. Some structured domains could be identified as HEAT repeats 

(Huntingtin, elongation factor 3, protein phosphatase 2A and TOR1) that are important for protein-

protein interactions 31,32. HTT undergoes several posttranslational modifications like proteolysis, 

phosphorylation, acetylation, palmitoylation, ubiquitination, and sumoylation. Whether these 

modifications are relevant for the physiologic functions of HTT is largely unknown, but especially 

proteolysis plays an important role in the disease context of HD and will be discussed in chapter 1.2.3. 

While HTT is ubiquitously expressed throughout the body, levels are highest in the brain and in 

testes 33,34. Of note, HTT protein levels are relatively constant throughout different brain regions and 

thus cannot be correlated to neuronal susceptibility to cell death 35. HTT can be found in the nucleus 

and cytoplasm, and in neurons in the soma, dendrites, and synaptic terminals 36,37.  

A large body of work on HTT interaction partners has been compiled, ultimately identifying 

more than 350 HTT-interacting proteins 38–42. This list underlines the diverse functions HTT performs 

throughout the cell, implicating it in pathways like cellular dynamics, metabolism, protein turnover, 

gene expression, and signal transduction. While many aspects remain unclear, HTT for example 

traffics various organelles in axons and dendrites like vesicles containing brain-derived neurotrophic 

factor (BDNF) 43, endosomes, lysosomes 44, and autophagosomes 45. BDNF is a growth factor that 

supports the survival of existing neurons, assists the growth of new neurons and synapses, and is 

important in brain plasticity 46,47 

Concerning autophagy, HTT also facilitates recognition of ubiquitinylated proteins leading to 

cargo loading into autohagosomes 48. Interestingly, deleting the wild-type polyQ stretch enhances 

autophagy and longevity in mice 49 suggesting a regulative role for the variations in polyQ length. 

Another pathway wild-type HTT is involved in is endocytosis: HTT interacts with proteins involved in 

clathrin-mediated endocytosis 50 and possibly takes part in several steps including membrane coating, 
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invagination, and dynamin 1 activation 51. The association with several transcription factors (TF) 38,52,53 

and the fact that a polyQ motif has been identified in many TFs to play a regulatory role, implies wild-

type HTT in transcription. For instance, HTT inactivates the silencing activity of neuron-restrictive 

silencer element (NRSE), thereby stimulating the transcription of BDNF 54.  

HTT expression starts early during development and its vital importance is highlighted by 

studies showing that HTT knockout in mice is lethal on embryonic day 7.5 4,55,56. Knockdown of HTT 

expression leads to cortical and striatal malformations and mice die shortly after birth 57 while 

conditionally targeting HTT in the adult forebrain results in a progressive degenerative neuronal 

phenotype 58. Experiments investigating HTT function from the opposite angle show that 

overexpression has neuroprotective effects against excitotoxicity or ischemic injuries 59. Supporting 

this function is the discovery of a non-coding single nucleotide polymorphism (SNP) in the HTT 

promoter affecting HTT expression 60. Depending on the SNP variant, wild-type HTT is 

downregulated or mutant alleles are upregulated in HD patients associated with earlier or delayed age 

of onset, respectively 60. 

1.2.3 Cellular mechanisms of protein pathobiology 

Considering the multiple roles of wild-type HTT it is clear that a pathogenic mutation will affect 

various cellular pathways and indeed, all known biological functions HTT is involved in are disturbed 

by the polyQ expansion. The dominant inheritance of HD and HTT’s vital role during embryogenesis 

points at mechanisms based on a protein gain-of-function. However, certain parts of the pathobiology 

can be attributed to a loss-of-function of wild-type HTT both through diminished expression levels 

and dominant-negative effects of the mutant allele 43,61. 

The complexity of HTT itself in terms of structure and modifications, the existence of many different 

protein fragments and inclusions (which implies the existence of aggregated precursors) complicates 

the identification of toxic species. The formation of soluble N-terminal mutant HTT fragments is 

believed to be the main driver of protein pathology observed in HD (Figure 1). On the one hand, these 

toxic species arise from proteolysis of the full-length protein and result in differently sized protein 

fragments, depending on the protease 27. On the other hand, aberrant alternative splicing of HTT 

mRNA generates an exon 1-containing transcript that is translated into the shortest known HTT 

fragment 62.  Toxicity of soluble N-terminal mutant HTT fragments has been demonstrated in various 

contexts 63–65. Nuclear translocation of HTT fragments leads to cell death through transcriptional 

disruption 66. Moreover, mutant HTT associates with mitochondria and impairs their function by 

disturbing mitochondrial distribution and transport rate 65. Transport defects caused by mutant HTT 

can also be observed in axonal transport of GABA receptor- 67 and BDNF-containing 43 vesicles, 

resulting in synaptic dysfunction and neuronal death, respectively.  
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Figure 1 | Cellular mechanisms of protein pathology. 
(1) Initially, transcription of the mutant HTT gene produces a full-length transcript that is both normally 
processed but also aberrantly spliced generating a short 5’ UTR and exon 1 containing mRNA. (2) In the 
cytoplasm, mRNA is translated and the protein is differentially modified (compared to wild-type HTT). 
(3) Amongst other post-translational modification, full-length HTT is cleaved by proteases into various shorter 
fragments. These fragments have a high propensity to aggregate, form inclusions, and all species affect many 
cellular pathways. (4) Short fragments are also able to translocate back into the nucleus, disturbing transcription 
and again, forming aggregates and inclusions. 

 

Since the striatum does not produce BDNF, survival of striatal neurons depends on the delivery of 

BDNF through the cortico-striatal synapse 68. Therefore, the disruption of both BDNF transcription 69 

and axonal transport by mutant HTT offers an explanation for the differential loss of striatal neurons. 

Apart from cell autonomous pathologic mechanisms and inter-neuronal dependency, interactions 
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between neurons and glial cells also play an important role in HD pathobiology. Mutant HTT reduces 

the expression of glutamate transporters in astrocytes, resulting in diminished uptake, overstimulation 

of adjoining neurons, and ultimately leading to excitotoxicity 70.  

In addition to soluble HTT fragments, different species of aggregated mutant HTT have been shown to 

be cytotoxic 71. For example, HTT aggregates can obstruct the proteasome system 72 impairing its 

overall cellular activity. The contribution of intracellular inclusions to cytotoxicity is not as clear. On 

the one hand, mutant HTT inclusions are able to sequester wild-type HTT leading to a loss-of-

function of the normal protein 73. On the other hand, the formation of inclusions is predictive for 

survival in neuronal cultures expressing mutant HTT 74.   

The underlying cause of mutant HTT gain-of-function in respect to the formation of aggregates could 

be attributed to a change of protein conformation. Determining a mutation-dependent 

conformational change and its impact on HTT aggregation is difficult owing to the inherent flexibility 

of the protein structure and the lack of a direct assay identifying different conformations 75,76. Apart 

from a conformational change in the mutant protein that could be causative for the oligomerization, 

the observation that nucleation of HTT amyloid fibrils is enhanced with increasing polyQ lengths 77 

offers an explanation for the repeat length-dependent age-of-onset of the disease. 

 

1.3 RNA-mediated toxicity  

In addition to polyQ protein-mediated toxicity in HD, mutant CAG repeat RNA itself mediates 

pathologic mechanisms. The first indication for RNA being directly involved in a disease process came 

from the identification of the mutation causing another TNR disorder, myotonica dystrophy (DM1). 

The mutant CTG expansion lies in the 3’ UTR of the dystrophia myotonic protein kinase (DMPK) 

gene and thus, is not translated 78. Since the expression of DMPK is not affected, only mutant RNA 

remains as a possible toxic species 78. Supporting RNA toxicity as a valid concept in polyQ diseases, Li 

et al. observed neurodegeneration in a Drosophila spinocerebellar ataxia type 3 (SCA3) model 

expressing untranslated and translated repeats of elongated CAG repeats. Interestingly, the insertion 

of CAA interruptions into the translated CAG repeat (CAA also codes for glutamine) markedly 

mitigated cell toxicity while preserving the polyQ tract 79 . These experiments unambiguously identify 

RNA structure as the cause for RNA toxicity and neurodegeneration. Since RNA structure is 

fundamental to its toxicity, it is worthwhile discussing RNA structure in the context of TNR disorders. 

Inherent to the toxicity of mutant TNR RNA is a gain-of-function that can be attributed to a 

“gain-of-structure”. Just like in proteins, RNA structure can be described as a hierarchical organization 

starting at the primary sequence. The secondary structure arises from Watson-Crick base pairing of 

complementary nucleotides leading to antiparallel double-helical structures varying in length. Long-



Introduction    

 8 

range interactions of secondary RNA motifs, stacking of helical structures, and metal ion stabilization 

between different motifs lead to the complex tertiary structure of RNA, one famous example being 

tRNA. Various RNA structural motifs have been identified. Hairpins or stem-loops are the most 

common, and variations of one or more mismatches within a duplex structure have been described 

(Figure 2A). The stability of secondary structures primarily depends on the nature of the TNR bases 

but also on the flanking sequences, i.e. the genetic context they are found in 80. Apart from GAA, all 

isolated TNR RNAs associated with disease form hairpin structures with several possible alignments 81. 

Detailed analysis of RNAs from TNR disease-causing genes demonstrated that the flanking sequences 

can influence the hairpin structure and that mutant repeat lengths cause longer stem-loop 

structures 80,82–84. HTT RNA not only contains a CAG but also a polymorphic CCG repeat that 

translates into the PRD described above. RNA structure probing studies showed that the repeat 

stretches interact with each other, stabilizing a hairpin even in the healthy range of CAG repeats 84. 

 

 
Figure 2 | TNR RNA structure and mutation-dependent effects. 
(A) CNG repeats fold into hairpins that consist of a base region that can involve both the repeat region and the 
adjoining flanking regions. The stem can include different motifs and the terminal loop varies in size, both 
depending on the primary sequence. (B) DMPK and ATXN3 RNA are examples for slipped hairpin structures, 
i.e. the RNA can fold into similar variants that align differently. (C) RNAs with a long but interrupted TNR that 
causes a mismatch adopt branched secondary structures. A mutation leading to a pure repeat tract can cause 
diseases as seen in SCA1, SCA2, and FXTAS. (D) A short CAG repeat within HTT RNA interacts both with the 
5’ UTR and polymorphic CCG repeat, while the pathogenic expansion produces a new structural motif 85.  
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In this model, the disease-causing mutation does not alter overall structure but only the stem length of 

the hairpin. Analysis of the full-length sequence of HTT exon 1 including the adjacent 5’ UTR revealed 

more extensive interactions of the CAG repeat with flanking regions, resulting in structural differences 

for mutant CAG repeat lengths 85. A transcript with 17 CAG repeats lacks the hairpin completely, 

while mutant repeats form a protruding CAG hairpin (Figure 2D). Even though the repeat units, their 

length, and the affected genes differ, most TNR diseases share common mechanisms regarding the 

molecular and cellular pathology of RNA-mediated toxicity. The following paragraphs give an 

overview of the underlying principles with a focus on HD. 

1.3.1 Functional disruption of RNA-binding proteins 

One RNA gain-of-function mechanism common to several TNR disorders involves aberrant 

interactions with RNA-binding proteins (RBPs) responsible for alternative splicing, transport, 

localization, stability, and translation of RNAs effectively impeding their normal function. 

In DM1, the CUG repeat-containing 3’ UTR leads to the retention of DMPK mRNA in the nucleus 86 

and as a consequence sequesters the family of muscleblind-like (MBNL) proteins that are well known 

splicing factors. MBNL1 is recruited into stable DMPK RNA foci 87–89 and its retention leads to 

aberrant alternative splicing changes. The affected transcripts correlate with clinical phenotypes, e.g. 

the missplicing of chloride channel 1 can be linked to myotonia 90, sarcoplasmic/endoplasmic 

reticulum Ca2+ ATPase 1 to muscle wasting 91, and microtubule-associated protein tau (MAPT) to 

cognitive deficits 92. These effects are likely reinforced through DEAD-Box helicase 5 (DDX5): by 

unwinding RNA secondary structure, DDX5 supports aberrant MBNL1 binding 93. 

HD and FXTAS offer another example for this pathomechanism. Similar to mutant HTT mRNA, 

mutant FMR1 mRNA with 60 to 600 CGG repeats adopts a pathogenic secondary structure, serving as 

a platform for RNA-binding proteins. Intranuclear inclusions were found in FXTAS patients 94 and 

these inclusions contain FMR1 RNA and MBNL1 protein 95. In HD patient-derived fibroblasts HTT 

RNA sequesters MBNL into nuclear foci 84 and subcellular fractionation of murine brains shows the 

age-dependent accumulation of expanded HTT RNA in the nucleus of an HD mouse model 96. 

A direct link between neurodegeneration and mutant TNR RNA offers Nucleolin. Nucleolin is an 

important protein of the nucleolus, the location of ribosomal subunit assembly within the nucleus. 

Under physiologic conditions Nucleolin protects a control element of the rRNA promoter from CpG 

hypermethylation. Nucleolin dysfunction results in reduction of rRNA transcription, which in turn 

disturbs ribosome homeostasis. This leads to nucleolar stress that is linked to neurodegeneration and 

apoptosis 97–99. In HD and SCA3, Nucleolin is sequestered by mutant CAG repeat RNA activating these 

downstream mechanisms 100,101. In detail, free ribosomal proteins interact with the MDM3 E3 ubiquitin 

ligase resulting in downregulated p53 ubiquitination and increased accumulation. These events 
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activate mitochondrial cytochrome c release and the caspase cascade inducing apoptosis 102. In line, 

p53 is upregulated in cell and animal models of HD, as well as in human brain of HD patients, 

emphasizing the relevance of nucleolar stress in HD.  

Another protein linked to RNA toxicity is protein kinase R (PKR, also known as EIF2AK2). PKR has 

been shown to preferentially bind mutant HTT RNA and IHC staining of activated PKR is increased in 

brain tissue from HD patients 103. PKR is activated by short stem-loop RNAs 104, possibly explaining 

how mutant HTT RNA can activate PKR. Activated PKR phosphorylates the α subunit of eukaryotic 

initiation factor 2 (eIF2α), thereby negatively regulating translation 105. The eIF2α pathway is critically 

involved in local translation at synapses and memory formation 106 and is implicated in HD: the 

chemical inhibition of  (PKR)-like endoplasmic reticulum kinase (PERK) in neurons, another eIF2α 

kinase, reduces Htt toxicity 64,107.  

Finally, the RNA binding site of serine/arginine-rich splicing factor (SRSF6) is predicted to be a CAG 

or CAGCAA repeat motif and indeed, SRSF6 preferentially binds the 5’ UTR of mutant HTT mRNA 

in mice 62. Moreover, SRSF6 accumulates in inclusions in striatal tissue from HD patients and shows 

elevated expression levels 108. Through an unknown mechanism, these interactions cause the mis-

splicing of HTT exon 1 itself, MAP2 and MAPT, leading to an imbalance of tau isoforms 62,108,109.  

Table 2 presents an overview of validated direct TNR RNA-protein interactions with known 

downstream effects. 

 

Table 2 | Proteins directly interacting with expanded TNR RNAs. 

Repeat Disease Protein Effect Reference 
CUG DM1 MBNL1/ DDX5 Aberrant splicing 110,93 
 DM1 hnRNP H Impaired nuclear export 111 

 SCA8 MBNL1 Aberrant splicing 112 
CAG HD MID1 Enhanced translation 113 
 HD PKR PKR activation 103 
 HD Dicer Neurotoxicity 114,115 
 HD Nucleolin Nucleolar stress 101 

 SCA3 Nucleolin Nucleolar stress, apoptosis 100 
 SCA3 U2AF56, NXF1 Nuclear export 96 

 SCA2,3,7 MID1 Enhanced translation 116 
CGG FXTAS hnRNP A2/B1, Purα Neurodegeneration 117 

 FXTAS Sam68 Aberrant splicing 118 

 FXTAS DROSHA, DGCR8 Reduced processing of miRNAs 119 
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1.3.2 CAG Repeat-dependent translational regulation by MID1 

In HD, SCA2, SCA3, and SCA7 it has been shown that enhanced translation of the mutant CAG 

repeat RNA is involved in RNA-mediated toxicity and this process is mediated by the midline-1 

(MID1) complex 113,116. Since a large part of the work in this thesis focuses on MID1 and its 

involvement in repeat RNA translation, the following paragraph provides an introduction to the MID1 

protein and its known functions. 

MID1 belongs to the family of Really Interesting New Gene (RING) finger proteins 120 and 

contains six distinct domains: the N-terminal RING finger motif, two Bbox domains, a coiled-coil 

domain, a fibronectin type III, and a B30.2 domain. All domains are important for protein-protein 

interactions; for example, the C-terminal domain associates with microtubules 121 and the coiled-coil 

domain is responsible for homodimerization and heterodimerization with MID2, a close 

homologue 122. Both proteins bind alpha 4, a regulatory subunit of protein phosphatase 2A (PP2A) 

phosphatase, through their Bboxes 122,123. This interaction and dimerization are a prerequisite for 

association of MID1 and MID2 with microtubules 122. Additionally, MID1 is an E3 ubiquitin ligase 

targeting the catalytic subunit of PP2A (PP2Ac) through the interaction with alpha 4 124. This MID1-

dependent proteasomal degradation of PP2Ac downregulates mTOR complex 1 (mTORC1) signaling 

by disturbing the mechanistic target of rapamycin (mTOR)/Raptor complex 125.  

Apart from its interaction with alpha 4, MID1 has been shown to associate with proteins involved in 

mRNA transport and translation, for example elongation factor 1 alpha (EF-1α), receptor for activated 

protein C kinase 1 (RACK1), Annexin A2, Nucleophosmin, 40S ribosomal protein SA, S3, and S8 126. 

Moreover, the MID1 complex is associated with G- and U-rich RNAs as part of a ribonucleoprotein 

(RNP) complex which plays a role in translation regulation 126. 

In HD, MID1 binds HTT RNA in a length-dependent manner and induces translation by recruiting 

40S ribosomal S6 kinase (S6K) preferentially to mutant HTT RNA, and simultaneously inhibits its 

binding partner PP2A and induces mTOR 113,124,125. Since S6K is a target of PP2A and mTOR this leads 

to increased phosphorylation of S6K, which in turn activates S6K-dependent phosphorylation of its 

targets eukaryotic translation initiation factor 4B (eIF4B) and ribosomal protein S6. Subsequently, 

eIF4B promotes ribosome assembly and translation initiation. Interestingly, MID1-dependent 

translation is RNA structure-specific and particularly regulates repeat RNAs containing stem loops 116. 

Besides HTT RNA this was also shown for mutant ATXN2, ATXN3, and ATXN7 RNA 116. 
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1.3.3 Bi-directional Transcription 

Bi-directional transcription produces sense and antisense transcripts from the same genetic locus and 

often plays regulatory roles in the expression of the sense transcript 127–129. In the case of SCA8, this 

phenomenon results in the production of a sense transcript encoding the ataxin 8 protein harboring 

the mutant CAG repeat, while the antisense ATXN8 Opposite Strand (ATXN8OS) RNA contains a 

CUG repeat 130. The translated mutant polyQ tract within ataxin 8 induces polyQ protein-mediated 

toxicity, while mutant ATXN8OS RNA localizes into RNA foci and sequesters MBNL1 112. 

Similarly, the huntingtin antisense (HTTAS) transcript is transcribed from the HTT locus and contains 

the disease-causing repeat 114. Mutant CAG repeat lengths lead to downregulation of promoter activity 

in a reporter assay and the HTTAS transcript is downregulated in human HD frontal cortex 

supporting this analysis 114. Experiments in cellular models confirm HTTAS-dependent regulation of 

HTT transcript levels: overexpression of HTTAS reduces endogenous HTT RNA. Consistently, siRNA-

mediated knockdown of HTTAS increases HTT RNA levels and these effects are repeat length- and 

partially Dicer-dependent 114 (see next paragraph). Other diseases, where bi-directional transcription is 

implicated, include DM1 131,132 and FXTAS 133. 

1.3.4 Activation of siRNA-mediated Gene Silencing 

Dicer is a type III endonuclease that recognizes and cleaves long double-stranded RNAs and precursor 

miRNAs 134. The resulting products are 20 to 25 nucleotides long double-stranded short RNAs that 

enter the RNA interference pathway as micro (mi)RNAs or short interfering (si)RNAs, respectively. 

Binding of miRNAs by Argonaute proteins and the RNA-induced silencing complex (RISC) leads to 

the recognition of complementary mRNAs. The mRNAs are cleaved by RNases and consequently, 

mRNA translation is prevented. The elongated TNR stretch in mutant transcripts from DMPK, HTT 

and ATXN1 mRNA serve as a substrate for Dicer-dependent production of 21 nucleotide long 

siRNAs 135. The respective products and their downstream silencing effects could be detected in DM1, 

HD, and SCA1 patient-derived cells and post-mortem tissue 115,135. Transfecting small RNAs isolated 

from brains of HD patients or cellular models is neurotoxic. Importantly, this effect is mediated by 

small CAG-repeated RNAs (sCAGs) as shown by co-transfection of complementary 

oligonucleotides 115.  

The occurrence of bidirectional transcription generates another possible layer of regulation: antisense 

transcripts from disease-causing TNR mutations could act on additional targets through the RNA 

interference machinery. 
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1.3.5 RAN Translation 

The translation of TNR transcripts can start at an arbitrary codon within the repeat without the need 

of an ATG start signal producing proteins of all three reading frames. This process is termed repeat-

associated non-ATG (RAN) translation and was first described for SCA8. Investigating bi-directional 

transcription in SCA8, surprisingly, Zu et al. found homopolymeric proteins translated from an 

ATXN8 minigene in the absence of an ATG start codon 136. This type of translation depends on hairpin 

formation and the length of the repeat tract, it is independent of frameshifting, and even occurs when 

an ATG codon is present 136. Keeping bi-directional transcription in mind, six possibly toxic proteins 

are translated from a single genetic locus: the CAG sense transcript may produce polyglutamine, 

polyserine, and polyalanine. Conversely, from the CUG antisense transcript polyleucine, polycysteine, 

and polyalanine may be RAN translated. Importantly, RAN proteins from CAG repeats enhance 

apoptosis in cultured cells and cerebellar Purkinje cells from human SCA8 patients are stained positive 

with a peptide antibody recognizing a putative polyalanine RAN protein 136. Sense and anti-sense RAN 

proteins can be detected in human HD brains, these proteins are toxic to cells and their accumulation 

and aggregation is CAG length-dependent 137. Moreover, RAN proteins can be identified in DM1 

patient-derived cells 136, FXTAS patient brains and various FXTAS models 138. 

1.3.6 Trans-dominant effects 

Although many of the toxic downstream effects can be attributed to specific aberrant interactions of 

mutant TNR RNA with proteins, the case of CUG RNA-binding protein 1 (CUGBP1) is not as 

straightforward. CUGBP1 is part of the CELF protein family binding CUG repeat RNAs like DMPK 139 

and is involved in splicing regulation and translation. Unlike MBNL1, it is not recruited to inclusions 

observed in DM1 140,141, but protein levels are increased in various DM1 tissues 142,143 and a CUGBP1 

overexpressing transgenic mouse model develops a muscle phenotype and shows characteristic DM1 

splicing changes 144. The underlying mechanism is a protein kinase C (PKC)-dependent 

hyperphosphorylation and stabilization of CUGBP1 that is induced by expanded CUG repeat RNA 145. 

It is unclear how mutant DMPK RNA can trigger this signaling event. Nevertheless, downstream 

effects on RNA targets have been identified: mis-splicing of troponin T type 2 mRNA is linked to 

defective cardiac functions 146 and insulin receptor to insulin resistance 142. 
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1.4 RNA toxicity in HD: Aim of study 

As part of the polyQ diseases, HD is caused by a TNR mutation in the coding region of HTT and many 

aspects of protein pathology have been elucidated. Research investigating the contribution of RNA 

toxicity to the HD phenotype clearly shows the detrimental role of the expanded CAG repeat on the 

transcript level (Figure 3).  

 
Figure 3 | Mechanisms of RNA toxicity in HD. 
(1) Sense and antisense transcription produces two transcripts that both contain an elongated TNR repeat, 
possibly multiplying downstream mechanisms. (2) In the nucleus, mutant HTT RNA may disrupt RBPs through 
sequestration into stable RNA foci, impeding their physiologic functions. (3) In the cytoplasm, mutant CAG 
repeats induce RAN translation that leads to additional aberrant protein species. (4 and 5) Increased or abnormal 
interactions with RBPs upregulate mutant HTT RNA translation (MID1) and generate toxic sCAGs (Dicer), 
respectively. 
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The change in secondary structure leads to aberrant protein interactions, impeding their normal 

functions or even enhancing it, as in the case of MID1-dependent translational upregulation. 

Moreover, the repeat tract can induce RAN translation, producing more and possibly toxic protein 

species and is a substrate for Dicer-dependent gene silencing. These mechanisms underline the 

importance of the HTT RNA-protein interactome and specifically, how the mutation affects these 

interactions. 

To better understand mutant HTT RNA mediated processes, this work analyzes HTT RNA-protein 

interactions from two angles. On the one hand, the known binding partner MID1 is analyzed in terms 

of its complex composition, determinants of repeat translation, and its expression in the context of 

HD. On the other hand, this work aims to systematically map HTT RNA-protein interactions and to 

analyze the implications of the disease causing mutation on RNA binding proteins and the associated 

downstream effects. 
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2 Methods 

2.1 Chemicals 

All standard chemicals were obtained from Sigma-Aldrich and Carl Roth. 

2.2 Equipment 

12 Tube Magnetic Separation Rack, New England Biolabs 

7900 HT Fast Real-Time PCR System, Applied Biosystems 

Biological Safety Cabinet Class 2 - Mars, ScanLaf 

CASY® Cell Counter, Innovatis 

DNA Engine® Dyad Peltier Thermal Cycler, Bio-Rad 

FLUOstar® Omega Microplate Reader, BMG LABTECH 

HERAcell 240i CO2 Incubator, Thermo Scientific 

HERAEUS Fresco 21 Centrifuge, Thermo Scientific 

HERAEUS Multifuge X3R Centrifuge, Thermo Scientific 

Mini PROTEAN® Tetra Cell Electrophoresis System, Bio-Rad 

NanoDrop 2000c Spectrophotometer, Thermo Scientific 

PowerPac™ Basic and Universal Power Supply, Bio-Rad 

Precellys® 24 Homogeniser (Peqlab) 

Sonopuls HD 2070 Ultrasonic Homogenizer, Bandelin 

Stella 3200, Raytest 

Sub-Cell® GT Agarose Gel Electrophoresis System, Bio-Rad 

Thermomixer Comfort, Eppendorf 

Trans-Blot SD Semi-Dry Transfer Cell, Bio-Rad 

2.3 Standard Procedures 

2.3.1 Gel Electrophoresis & Immunoblotting 

Agarose gel electrophoresis of nucleic acids, SDS-PAGE of proteins, and immunoblotting were 

performed as described in Ausubel Current Protocols 147. To estimate DNA lengths, GeneRuler™ 

100 bp or 1 kb DNA Ladder (Thermo Fisher Scientific) was used; for RNA the RiboRuler™ High Range 

RNA Ladder (Thermo Fisher Scientific) was used. 4x SDS Buffer (62.5 mM Tris-HCl (pH 6.8), 20 % 
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glycerol, 2 % SDS, 5 % β-mercaptoethanol, 0.025 % (w/v H2O) bromophenol blue) was used for 

protein analysis.  

 

Table 3 | List of antibodies 
Name Catalogue number 
CPSF6 Abcam ab175237 
CREB1 CST #9197S 
eIF3A CST #3411 
eIF4A CST #2013 
eIF4B CST #3592 
eIF4G CST #2498 
FLAG-HRP Sigma A8592 
FMRP Abcam ab17722 
NUDT21 Abcam ab183660 
PABP1 CST #4992 
PRPF8 Abcam ab79237 
RACK1 BD Trans. 610177 
RALY Abcam ab170105 
RPL5 CST #51345 
RPLP0 Abcam ab192866 
RPS3 Abcam ab128995 
SF3B2 Abnova H00010992-M01 
SNRNP40 Abnova PAB21803 
SON Sigma HPA023535 
 

2.4 Cell Culture 

2.4.1 Cell lines and Cultivation 

The human neuroblastoma cell lines SHSY-5Y and SHSY-5Y-EGFP-HTTex1Q68 were kept in cell+ 

flasks (Sarstedt) in DMEM-GlutamaxTM (Invitrogen life technologies) supplemented with 15% filter-

sterilized fetal bovine serum (FBS, PAN-Biotech GmbH). Human embryonic kidney cells 293T (HEK-

T) cells were cultivated under the same conditions except for the amount of FBS added (10%).  

The SHSY-5Y-EGFP-HTTex1Q68 cell line was generated by Yvonne Dürnberger (Deutsches Zentrum 

für neurodegenerative Erkrankungen, Bonn) using the Lenti-X Tet-On 3G Inducible Expression 

System (Clontech Laboratories) and the following protocol. The huntingtin exon 1 coding sequence 

was cloned in the inducible expression vector pLVX TRE3G. To generate lentiviral particles encoding 

the gene of interest, HEK-T cells were transfected with the expression vector and Lenti-X Packaging 

single shots (VSV-G). For all steps cells were grown under tetracycline-free conditions. Lentiviral 

particles were collected 48 h and 72 h post transfection, pooled and concentrated using PEG 

precipitation. After precipitation lentiviral particles were carefully resuspended in phosphate buffered 

saline (PBS) and stored at -80 °C. For transduction SHSY-5Y cells were incubated with lentiviral 
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particles in DMEM culturing medium containing 5 % FBS and 8 µg/ml polybrene. The well plate 

containing the cells and viral particles was briefly centrifuged and afterwards incubated for 24 h. The 

following day the medium was exchanged with standard culturing medium (DMEM, 10 % FBS, 5 % 

Penicillin/ Streptomycin) and the cells expanded. Aliquots of the generated stable cell line were frozen 

in liquid nitrogen for future experiments. 

2.4.2 siRNA Transfection 

Oligofectamine 

Cells were seeded in a 24-well plate (105 cells per well in 500 µl growth medium) in DMEM Glutamax 

supplemented with 10 % FBS. On the following day, siRNA-mediated knockdown was performed. The 

respective siRNAs were combined equally to a final concentration of 20 μM and non-silencing siRNA 

served as control (sequences see Table 4). For each well, two mixes were prepared. Mix one contained 

2.5 μl siRNA cocktail in 40 μl OptiMEM (Gibco) and mix two 1.5 μl Oligofectamine (Thermo Fisher 

Scientific) in 7.5 μl OptiMEM. Mix two was incubated 5 min at room temperature, then added to mix 

one and incubated for another 20 min at room temperature. The growth medium was aspirated from 

the cells and 200 μl OptiMEM was added carefully to each well. 50 μl transfection mix was added to the 

cells. After 4 h at 37 °C, 125 μl DMEM Glutamax containing 30 % FBS was added to each well and the 

plates were returned to the incubator. 

Lipofectamine 2000 

The respective siRNAs were combined equally to a final concentration of 20 μM and non-silencing 

siRNA served as control (sequences seeTable 4). For each well, two mixes were prepared. Mix one 

contained 1 μl Lipofectamine 2000 in 50 μl OptiMEM and mix two 2.5 µl siRNA cocktail in 50 μl 

OptiMEM.  Mix two was added to mix one drop-wise and incubated for 5 min at room temperature. 

300 µl growth medium was aspirated from each well, 100 µl transfection mix was added, and cells were 

incubated for 48 hrs at 37 °C. 

 

Table 4 | siRNA sequences 
Name sequence target 
Non-silencing AATTCTCCGAACGTGTCACGT Non-silencing 
Hs-MID1-3 CACCGCAUCCUAGUAUCACACTT MID1 
Hs-MID1-4 CAGGAUUACAACUUUUAGGAATT MID1 
Hs-MID1-8 TTGAGTGAGCGCTATGACAAA MID1 
Hs-MID1-9 AAGGTGATGAGGCTTCGCAAA MID1 
Hs-MID1-10 TAGAACGTGATGAGTCATCAT MID1 
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2.4.3 Plasmid Transfection 

Plasmid preparation 

Bacterial transformation and culture were performed as described previously 147. For DNA isolation 

the JETSTAR Plasmid Purification Maxi Kit (Genomed GmbH) was used according to the 

manufacturer’s instructions. 

Lipofectamine 2000 

For each well, two mixes were prepared. Amounts listed are for cells grown in 24-well format in 400 µl 

medium. Mix one contained 50 ng plasmid DNA (s. appendix x) in 50 μl OptiMEM and mix two 

0.25 μl Lipofectamine 2000 (Thermo Fisher Scientific) in 50 μl. Mix one was added to mix two drop-

wise and was incubated for 20 min at room temperature. Then, 100 μl were added to each well and the 

cells were incubated for 24 h at 37 °C. 

PolyFect 

One day prior to transfection, 2 x 106 HEK-T cells were seeded in a 75 cm2 cell culture flask. To 500 µl 

OptiMEM 30 μl PolyFect (Qiagen) and 10 μg pCMV-MID1-Tag2A was added and incubated for 

10 min at room temperature. The transfection mix was added and cells were incubated for 48 h at 

37 °C. 

 

2.5 Gene Expression Analysis 

2.5.1 RNA preparation & Reverse Transcription 

Total mRNA was prepared using the RNeasy® Plus Mini Kit (Qiagen) with QIAshredder columns 

(Qiagen) for homogenization. cDNA synthesis reactions were prepared according to the 

manufacturers instructions (TaqMan Reverse Transcription Reagents, Roche Applied Biosystems) and 

the following temperature profile was used: 25 °C for 10 min, 48 °C for 1 h, 95 °C for 5 min, and 

cooling down to 4 °C. 

2.5.2 Realtime PCR 

cDNA was diluted five- to ten-fold including a standard series (five 1:2 dilutions starting at the same 

concentration as the samples). Per well, 9 µl SYBRGreen PCR Master Mix (Applied Biosystems, 

Nr. 4309155), 3 µl of a 2 µM primer pair mix (s. appendix Table 6), and 6 µl diluted cDNA were 

combined. Each sample was analyzed in quadruplets. 
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2.6 Luciferase Assays 

HEK-T cells were seeded in a 24-well plate (105 cells per well in 500 µl growth medium) and the 

siRNA-mediated knockdowns were performed the following day using Oligofectamine (protocol s. 

chapter 2.4.2). Plasmid DNA was transfected the next day using Lipofectamine 2000 for plasmid 

transfection (protocol s. chapter 2.4.3). On day four, cells were harvested for luciferase activity 

measurements and samples for western blot analysis and qPCR were taken to analyze knockdown 

efficiency. For luciferase measurements, cells were washed once with 200 μl PBS, 100 μl 1 x Passive 

Lysis Buffer (Dual-Luciferase Reporter Assay System, Promega) was added to each well and the cells 

were either frozen at -20 °C or directly lysed for 15 minutes at room temperature with gentle shaking. 

Then, 400 μl H2O was added and the lysate was homogenized by pipetting. Each plasmid DNA was 

transfected in triplicates with either MID1 or MID2 single knockdown, MID1 and MID2 double 

knockdown, or control siRNA. Firefly and Renilla luciferase activity was measured in individual wells 

of a 96-well white bottom plate. To this end, from each lysate ten microliters were transferred in 

triplicates for both measurements. 40 μl of Firefly or Renilla luciferase substrate buffer was added to 

the wells and the luciferase activity was measured. 

To check for knockdown efficiency on RNA level, two wells of HEK-T cells transfected with the 

different siRNAs and psiCHECK-2 control vector were pooled and RNA was prepared. cDNA 

synthesis and qPCR analysis were performed as described in chapter 2.5. For the standard series, RNA 

from cells transfected with control siRNA was used. 

 

2.7 Immunoprecipitation (IP) 

TKM Buffer: 20mM Tris pH 7.4, 100mM KCl, 5mM MgCl2, 0.5% NP40, 1mM DTT, protease inhibitor 

Buffer D: 20mM Tris, 100mM KCl, 0.2mM EDTA, 20% glycerol, 0.5mM DTT, protease inhibitor 

Unless indicated otherwise, agarose beads were washed with TKM buffer and pelleted for 1 min at 

1,000 x g. The amounts of agarose beads described denote 50% bead slurry.  

2.7.1 MID1 IP for Mass Spectrometry 

Agarose beads were prepared as follows: 200 µl FLAG-beads per sample were washed twice. For 

untransfected control lysate FLAG-beads were coated with 1 mg/ml FLAG peptide in TKM buffer 

rotating for 1 h at 4 °C and again, beads were washed twice. 

Two 75 cm2 flasks of either HEK-T cells transfected with pCMV-MID1-Tag2A (PolyFect transfection 

protocol, chapter 2.4.3) or untransfected cells were harvested using a cell scraper and centrifuged for 

10 min at 500 x g.  The cell pellets were resuspended in 1 ml TKM Buffer, lysed with Precellys 
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(program: 6,000 – 1 x 10 – 005), and centrifuged at 21,000 x g for 10 min at 4 °C. For pre-clearing, 200 

µl of IgG-agarose beads were added to the supernatants and incubated rotating for 30 min at 4 °C. The 

beads were pelleted for 5 min at 21,000 x g. Lysate from MID1-FLAG expressing HEK-T cells was 

added to 200 µl uncoated αFLAG beads and untransfected control lysate to 200 µl FLAG peptide-

coated αFLAG agarose beads. After overnight incubation rotating at 4 °C, the beads were washed 6 

times. Finally, the bead pellets were resuspended in 50 µl 1x SDS Buffer, boiled for 10 min at 95 °C and 

30 µl supernatant were sent to external Mass Spectrometry analysis (chapter 2.9). 

2.7.2 MID1 IP for Validation 

A 75 cm2 flask of pCMV-MID1-Tag2A transfected HEK-T cells was harvested with a cell scraper and 

the cell pellet was collected by centrifugation for 10 min at 500 x g. The cell pellet was resuspended in 

1 ml TKM Buffer, sonicated (10 sec duration, 50 % cycle, 50 % amplitude) and centrifuged at 21,000 x 

g for 10 min at 4 °C. 45 µl lysate was aliquoted and frozen with 15 µl 4x SDS buffer at -20 °C. For pre-

clearing, 100 µl mouse IgG-agarose beads were added to the supernatant, incubated for 30 min 

rotating at room temperature, and centrifuged for 5min at 21,000 x g. To prevent unspecific binding, 

50 µl FLAG-beads and 50 µl IgG beads were washed and blocked with 2 mg/ml BSA in TKM buffer for 

30 min at room temperature. Then, the lysate was divided in 500 µl aliquots and 50 µl αFLAG beads or 

50 µl IgG beads were added in a final volume of 1 ml buffer. After overnight incubation at 4 °C and 

rotating, the beads were washed 6 times for 10 min and finally dissolved in 60 - 100 μl 1x SDS Buffer. 

Immunoprecipitations were incubated for 10 min at 95 °C and analyzed by western blot. 

2.7.3 MID1 IP with Ribosome Disassembly 

Immunoprecipitation was performed as described in chapter 2.7.2. Additionally, a second IP and 

control reaction were prepared with TKM buffer containing 40 mM EDTA during precipitation and 

washing.  

 

2.8 RNA-protein pulldown 

2.8.1 Pulldown for Mass Spectrometry 

PCR 

The coding sequence of HTT exon 1 with varying CAG repeat lengths was amplified from plasmid 

DNA (constructs described in Krauß et al. 2013 113) using GoTaq® Green Master Mix (Promega). A 50 

µl reaction contained 1 µl of 10 µM forward and reverse primer mix (sequences see Table 6), 1 µl 

DMSO and 100 ng DNA template. The forward primer incorporates the T7 phage promotor sequence 
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upstream of HTT exon 1 to facilitate in vitro RNA synthesis by T7 RNA polymerase. The following 

temperature profile was used: 95 °C for 3 min, 25 cycles of 95 °C for 30 s, 58 °C for 30 s, and 72 °C for 3 

min. The final elongation was carried out at 72 °C for 10 min. Correct PCR product length was 

validated on a 1.5 % agarose gel, DNA was purified by phenol/chloroform extraction, and precipitated 

using ethanol. 

In vitro transcription of biotinylated RNA 

The T7 RiboMAX™ Express Large Scale RNA Production System (Promega) was used according to the 

manufacturer’s instructions supplemented with 0.5 mM biotin-UTP (Thermo Fisher Scientific, 

AM8450). DNA template was removed by DNase digestion; RNA was purified by phenol-chloroform 

extraction, and precipitated using ethanol. Correct RNA length was validated on a 1.5 % agarose gel.  

RNA-protein pulldown protocol 

10x RNA Structure Buffer: 100mM Tris pH7, 1M KCl, 100mM MgCl2 

rNTP stock: 25mM rATP/ rCTP/ rGTP, 12.5mM rUTP (Promega), 12.5mM bUTPs  

TKM Buffer: 20mM Tris, 100mM KCl, 5mM MgCl2, 1mM DTT, 1% NP40, protease inhibitor, 1µl /1ml 

RNase inhibitor  

Biotinylated RNA was folded in RNA structure buffer by incubation at 72 °C for 10 min and 

subsequently cooling it down to room temperature slowly. For pulldowns, 40 µl Dynabeads® M-280 

Streptavidin (Thermo Fisher Scientific) per sample were washed twice with TKM buffer and then 

incubated with 40 pmol of folded biotinylated RNA for 30 min at room temperature using gentle 

rotation. As control, beads were coated with a mix of rNTPs and bUTPs. The coated beads were 

washed twice with TKM buffer and resuspendend in 40 µl TKM Buffer. 

For protein lysates, four 150 cm2 cell culture flasks with 90 % confluent SH-SY5Y were harvested using 

a cell scraper, pooled and centrifuged at 500 x g for 10 min. The cell pellet was lysed in 1 ml TKM 

Buffer, homogenized using Precellys, and centrifuged for 10 min at 12,000 x g and 4 °C. The protein 

concentration was measured with Qubit® Protein Assay Kit (Thermo Fisher Scientific) and 1 mg of 

protein lysate was added to the control and biotinylated RNA coated magnetic beads in a final volume 

of 400 µl TKM Buffer. The samples were incubated overnight at 4 °C with gentle rotation. The beads 

were washed 3 times at 4 °C, the supernatant was completely removed, and the beads were 

resuspended in 20 µl 1x SDS Buffer. After incubation at 95 °C for 10 min, the eluted proteins were sent 

to external Mass Spectrometry analysis (chapter 2.9).  

2.8.2 Pulldown for Validation 

PCR 

The synthesis of HTT exon 1 coding sequence was done essentially as described in chapter 2.8.1, 

however, a different forward primer was used for amplification (sequence see Table 6). This primer 
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incorporates additional bases that are complementary to a biotinylated DNA (bDNA) linker (Table 6), 

which can be used to coat the in vitro transcribed RNA onto beads.   

In vitro transcription of biotinylated RNA 

RNA was synthesized as described in chapter 2.8.1 without the addition of biotin-UTP. 

RNA-protein pulldown protocol 

10x Renaturation buffer: 100mM Tris (pH7.5), 1M KCl, 1mM EDTA 

5x Folding Buffer: 200mM Tris pH7, 250mM MgCl2, 100mM KCl, 2.5mM EDTA 

40 pmol in vitro transcribed RNA and 40 pmol bDNA linker were combined in 1x Renaturation 

Buffer, in a final volume of 50 µl. For denaturation, the nucleic acids were heated for 1 min at 85°C, 

and subsequently cooled down slowly to room temperature. Then, 20 µl of 5x Folding Buffer and 30 µl 

H2O were added and incubated for 1 hr at 37°C to facilitate re-folding and annealing. 20 μl Dynabeads® 

M-280 Streptavidin (Thermo Fisher Scientific) per sample were washed with 500 μl TKM Buffer and 

incubated with RNA / bDNA linker hybrids and only bDNA linker for 30min at room temperature, 

rotating. A confluent 75 cm2 flask of SHSY-5Y cells was harvested using a cell scraper, pelleted for 5 

min at 500 x g, and lysed in 1 ml TKM Buffer by sonication (10 sec duration, 50 % cycle, 50 % 

amplitude). The lysate was centrifuged for 10 min at 21,000 x g, 45 µl lysate were added to 15 µl 1x SDS 

loading buffer and frozen at -20 °C. The remaining lysate was pre-cleared on 80 μl Dynabeads in TKM 

Buffer for 5 hrs at 4 °C, rotating. The protein lysate was divided into equal aliquots and added to RNA 

coated magnetic beads and bDNA control beads in a final volume of 500 µl. The RNA-protein 

pulldown was incubated rotating at 4 °C overnight. Next, the beads were washed 3 times for 10 min 

with 500 μl TKM Buffer at room temperature and finally, 40 µl 1x SDS loading buffer was added to the 

beads, incubated at 95°C for 10 min and analyzed on western blot. 

 

2.9 Mass Spectrometry 

Protein samples were analyzed by Alina Dagane (Max Delbrück Center for Molecular Medicine, 

Berlin) as follows. The eluted proteins were concentrated into one band on an SDS-PAGE gel. The 

band was excised and the proteins contained were processed using an automated sample preparation 

setup 148. The generated peptides were purified on StageTips 149. The samples were measured on a Q-

Exactive mass spectrometer (Thermo-Fisher) coupled to a Proxeon nano-LC system (Thermo-Fisher) 

in data-dependent acquisition mode, selecting the top 10 peaks for HCD fragmentation. A 1-h 

gradient (solvent A: 5 % acetonitrile, 0.1 % formic acid; solvent B: 80 % acetonitrile, 0.1 % formic acid) 

was applied for the samples using an in-house prepared nano-LC column (0.075 mm × 150 mm, 3 μm 

Reprosil C18, Dr. Maisch GmbH). A volume of 2 μl sample was injected and the peptides eluted with 
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3 h gradients of 5 to 75 % solvent B at flow rates of 0.25 μl/min. MS acquisition was performed at a 

resolution of 70,000 in the scan range from 300 to 1700 m/z. The normalized collision energy was set 

to 26 eV. The mass window for precursor ion selection was set to 2.0 m/z. The recorded spectra were 

analyzed using the MaxQuant software package (Version 1.3.0.5) 150 by matching the data to the 

Uniprot yeast database (downloaded on 06.05.2012) with a false discovery rate (FDR) of 1%. 

 

2.10 Human Brain Tissue 

Human brain tissue was acquired from W.M.C. van Roon-Mom, department of Human Genetics, 

Leiden University Medical Center, Leiden, Netherlands. The tissue was obtained with the families’ full 

consent and with the approval of the Leiden University Medical Center Institutional Ethics 

Committee. Detailed description of the tissue processing can be found in Waldvogel et al. 2008 151. 

 

Table 5 | Clinical features of brain tissue donors.  
ID Sex Age CAG repeat Grade PMD Cause of death qPCR S/C IHC 
C1 M 42 -- -- 14 -- +  + 

C2 F 64 18 / 23 -- 6 --   + 
C3 F 59 15 / 17 -- 21 --   + 

C4 M 41 -- -- 16 -- +  + 
C5 M 64 17 / 18 -- 7 --   + 

C6 M 89 -- -- 19 -- +  + 
C7 M 48 -- -- -- myocard infarct + +/+  
C8 F 78 -- -- -- subdural hematoma + +/+  
C9 F 89 -- -- -- subdural hematoma + -/+  
HD1 M 41 19 / 39 1 11  +  + 
HD2 M 40 18 / 51 3 15  +  + 

HD3 F 67 15 / 42 1 9  +  + 
HD4 M 75 19 / 43 3 3  +  + 

HD5 F 53 21 / 47 -- 12  +  + 
HD6 M 57 17 / 43 -- --    + 

HD7 F 57 -- -- --  + +/+  
HD8 M 62 -- -- --  + +/+  
HD9 M 48 -- -- --  + +/+  
M, male; F, female; Grade: Vonsattel 152; PMD, post-mortal delay; S/C, striatal/cerebellar samples analyzed by 
qPCR. 
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2.11 Immunohistochemistry 

2.11.1 Coating slides 

Coating solution: 0.5 % gelatin, 0.05 % chromium potassium sulphate in H2O 

Slides were rinsed in 75 % alcohol with 1% hydrochloric acid and dried for 30 min at 60 oC. After, they 

were dipped in gelatine solution once and dried overnight at 60 oC. 

2.11.2 IHC procedure for tissue sections 

PBS-T: 0.2 % Triton X-100 in PBS 

Normal goat serum: 1 % normal goat serum, 0.04 % merthiolate in PBS-T 

Methanol solution: 0.1 % H2O2 in 50% methanol 

Sections were cut from fixed-frozen human tissue blocks and were used in a free floating 

immunohistochemical staining procedure 153,154. Blocks were frozen onto the cutting stage of a freezing 

microtome using OCT compound as an adhesive. The sections were cut at either 30 – 50 μm and 

collected in 1 % sodium azide in PBS. Next, sections were washed 3 times in PBS-T for 5 min on a 

shaker at room temperature. They were incubated for 20 min at room temperature in methanol 

solution and again washed 3 times. Incubation in the primary antibody (MID1, 1:100) in normal goat 

serum was done overnight at 4 °C on a shaker. Following 3 washing steps, the sections were incubated 

in secondary antibody (goat anti-rabbit biotin, Chemicon AP132B, 1:1,000) in normal goat serum for 3 

h at room temperature on a shaker. Again, the sections were washed 3 times, and then incubated in 

tertiary antibody (streptavidin-HRP, Southern Technology 7100-05, 1:1,000) in normal goat serum for 

3 h at room temperature on a shaker. After washing 3 times, the sections were incubated with DAB 

solution (Sigma FAST Tablets D4293) for up to 20 minutes at room temperature and were washed 3 

more times before they were mounted on a gelatine-coated glass slide and left for dehydration at room 

temperature overnight. 

2.11.3 Nissl Staining with Cresyl Violet 

Staining solution: 0.6 mM acetic acid, 2 % aqueous Cresyl Violet solution (filtered), 100 mM sodium 

acetate; combined in a ratio of 9:1:0.5 

Dried tissue sections mounted on a glass slide were washed thoroughly in dH2O and incubated in 

staining solution for 15 to 20 min. Then, slides were quickly washed in dH2O and dehydrated in 

increasing amounts of ethanol for 5 min each (75 %, 85 %, 95 %), 2 times in 100 % ethanol for 10 min 

and 2 times in xylene for 10 min. Slides were covered with PERTEX and a coverslip. 



Methods    

 26 

2.11.4 Quantitative Analysis of MID1 positive Cells 

For quantification of MID1 IHC staining in human cortical sections the Definiens Developer XD 2.3 

was used. The region of interest (white matter) was selected manually, the thresholds for signal 

detection were adjusted (0.35 for cresyl violet and 0.4 for DAB staining), and nucleus size was set to 

40 µm. 

 

2.12 Preparation of Mouse Brain Regions  

Female wild-type mice and transgenic mice of the Hdh(CAG)150 knock-in model of HD 155 were 

sacrificed by cervical dislocation, the whole brain was retrieved from the skull and placed on a -20 °C 

cold metal plate on ice. The brain regions were dissected as described in detail elsewhere 156, then 

placed in RNAlater® solution (Thermo Fisher Scientific) to preserve RNA integrity. For isolation of 

RNA, appropriate amounts of tissue were lysed in Buffer RLT using Precellys (program: 6,000 – 1 x 10 

– 005, twice) and processed as described in chapter 2.5.1. 

 

2.13 Transcriptome Profiling 

Samples of doxycycline-treated and untreated SHSY-5Y-EGFP-HTTex1Q68 cells were used for RNA 

purification in triplicates. cDNA labeling, data acquisition and statistical analysis were performed by 

Jennifer Winter (Institute of Human Genetics, Mainz) using the Clariom™ D Assay, human (Thermo 

Fisher Scientific), and the Expression Console and Transcriptome Analysis Console (Affymetrix).  

 

2.14 Online tools and Statistical Analysis 

For Gene Ontology Analysis ToppGene Suite was used 157. For pathway analysis data were analyzed 

through the use of IPA (Ingenuity® Systems, www.ingenuity.com). The RNAfold Server was used to 

predict RNA secondary structures 158. Intersections of different lists of genes was analyzed using the 

Venn diagrams tool (http://bioinformatics.psb.ugent.be/webtools/Venn/).  

Statistical analyses were conducted as appropriate and are detailed in the figure legends, with the help 

from the Image Data Analysis Facility, Deutsches Zentrum für Neurodegenerative Erkrankungen, 

Bonn. 
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3 Results 

A fundamental mechanism underlying RNA-mediated toxicity in TNR disorders is the disturbed 

interaction with RBPs. However, to date not many direct protein binding partners of mutant RNA 

have been identified. Here, I will focus on HD as a prominent example for TNR disorders with two 

major goals. First, the characterization of one particular RBP that has been shown to enhance mutant 

HTT RNA translation: the MID1 complex. Second, the identification of novel RBPs binding mutant 

HTT RNA and the analysis of downstream effects. 

 

3.1 The MID1 complex  

3.1.1 MID1 regulates translation of RNA containing a CAG repeat in the 3’ UTR  

Elongated CAG repeat RNA translation in the genetic context of HTT exon 1 has been shown to be 

MID1-dependent 113. Moreover, the MID1 complex is also involved in translational regulation of two 

other RNAs, namely androgen receptor (AR) 159 and beta-secretase 1 (BACE1) 160 and has been shown 

to bind AXTN2, ATXN3, and ATXN7 RNA 116. To investigate MID1-dependent translation outside of 

a genetic context, an isolated CAG repeat was used in an in vitro luciferase reporter system.  

First, the positional effect of the repeat was analyzed. HEK-T cells were transfected with a plasmid 

containing two luciferase coding sequences: a Renilla luciferase with a repeat of 50 CAG triplets either 

in its 5’ or 3’ UTR, and a Firefly luciferase as an internal transfection control used for normalization 

(Figure 4.A). Luciferase translation was quantified indirectly by measuring the catalytic activity: the 

oxidation of coelenterazine (Renilla luciferase) and luciferin (Firely luciferase), respectively, produces 

bioluminiscence that can be measured by a luminometer.  

Figure 4.B shows that only a CAG repeat in the 3’ UTR but not the 5’ UTR enhances Renilla luciferase 

translation. To test if this effect depends on MID1, Renilla-3’UTR-(CAG)50 activity was determined 

after siRNA-mediated knockdown. Since MID1 and MID2 show functional redundancy during avian 

embryogenesis 161, additionally, a MID2 and double knockdown was performed to determine if MID1 

and MID2 are functionally redundant in this context, too. MID1 but not MID2 affects Renilla-3’UTR-

(CAG)50 translation (Figure 4.D). The effect of the double knockdown on Renilla-3’UTR-(CAG)50 

translation was not as pronounced in comparison to the MID1 single knockdown. Since the 

knockdowns were performed with equimolar amounts of siRNAs, the double knockdown contained 

half the amount of MID1 and MID2 siRNAs compared to single knockdowns, offering an explanation 

for the aforementioned effect. MID1 knockdown was validated using western blot and quantitative 

polymerase chain reaction (qPCR); since no MID2 antibody is available, knockdown efficiency of 
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MID2 was analyzed by qPCR only (Figure 4.C and E). In conclusion, these in vitro reporter assays 

show that MID1, but not MID2, regulates translation of RNAs that contain a 3’ UTR-(CAG)50 repeat, 

i.e. translational regulation is not necessarily specific for a certain genetic context. 

 
Figure 4 | Translation of RNA carrying a CAG repeat in the 3’UTR is regulated by MID1. 
(A) Luciferase assay scheme illustrating transfection of the luciferase coding sequence-containing plasmids into 
HEK-T cells. Renilla luciferase contains the respective repeat tract, while Firefly luciferase was used for 
normalization of transfection efficiency. Experiments were repeated on separate days, for each condition cells 
were seeded in triplicates.  Bioluminescence was measured after lysis and addition of appropriate substrates, each 
lysate was measured in triplicates. (B) Luciferase measurement comparing Renilla luciferase with a (CAG)50 
repeat either in the 5’ or 3’ UTR. Columns represent mean values +/- SE of RLU normalized to control (Renilla 
luciferase vector without repeats), p-values are the result of an unpaired Student’s t-test (p****<0.0001), n = 3. 
(C) Western blot detecting MID1 or Actin to show knockdown efficiency, corresponding to Lucferase 
experiment in (D). (D) Luciferase measurement of Renilla-3’UTR-(CAG)50 after knockdown of MID1 and/ or 
MID2. Corresponding legend is depicted to the right. Columns represent mean values +/- SE of RLU normalized 
to control (Renilla luciferase vector without repeats), p-values are the result of an unpaired Student’s t-test 
(p***<0.0005, p****<0.0001), n = 4. (E) qPCR showing MID1 and MID2 knockdown efficiency on transcript 
level. p-values are the result of an unpaired Student’s t-test (p****<0.0001), n = 4. SE, standard error; RLU, 
relative light units (Renilla/ Firefly luciferase); n = number of experiments on separate days. 
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3.1.2 RNA secondary structure influences MID1-dependent translation 

To evaluate MID1 specificity for trinucleotide repeats and the contribution of RNA secondary 

structure, Renilla-3’UTR-(CAG)50 translation was compared to constructs containing a CAG repeat 

with regular CAA interruptions and a pure CAA repeat, respectively. Figure 5.B to D shows secondary 

structure predictions 158 of Renilla luciferase RNA with the different repeats in the 3’ UTR (the repeat 

sequence is indicated by an arrow). CAA interruptions prevent the formation of a hairpin structure 

compared to a pure CAG repeat, but still the RNA folds into a structured molecule with multiple short 

CAG hairpins. Expectedly, pure CAA repeats do not form stable secondary structures. Generally, the 

existence of a repeat sequence in the 3’ UTR enhanced translation in the reporter assay, however MID1 

affected translation of structured RNAs only (Figure 5.A) 116. 

  

 
Figure 5 | MID1-dependent translation of different TNR RNAs. 
(A) Luciferase measurements of Renilla luciferase fused to either (CAG)50, (CAG/A)50, or (CAA)50  repeats in its 
3’ UTR. Columns represent mean values +/- SE of RLU normalized to control (Renilla luciferase vector without 
repeats). p-values are the result of an unpaired Student’s t-test (p****<0.0001), n = 3. (B to D) Secondary 
structure predictions of Renilla luciferase RNA with indicated triplet repeats in its 3’ UTR corresponding to (A). 
Arrowheads indicate TNR sequences and the structures are colored by base-pairing probabilities. For paired 
regions the color denotes the probability of being paired, while for unpaired regions the color denotes the 
probability of being unpaired. SE, standard error; RLU, relative light units (Renilla/ Firefly luciferase); 
n = number of experiments on separate days. 
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3.1.3 MID1 is part of the translational machinery 

Since MID1 regulates translation of several RNAs in a genetic context but also generally structured 

RNAs with CAG repeats, the question remains how MID1 is directed to these specific RNAs. Other 

factors most likely play an important role in guiding MID1 and/ or vice versa. Therefore, 

understanding the MID1 complex and its protein interactions are fundamental to gain deeper insight 

into how MID1 regulates translation. To analyze the MID1 protein interactome quantitatively, FLAG-

tagged MID1 was over-expressed in HEK-T cells and immunoprecipitated from the lysate using FLAG 

antibody-bound agarose beads (Figure 6.A). Immobilized MID1 complex and interacting proteins 

were extensively washed and eluted. To discriminate unspecific binding of proteins to the FLAG 

antibody agarose beads, untransfected lysate from HEK-T cells was used in a separate preparation. To 

obtain replicates, cells were seeded and transfected, on different days, so that triplicates of both 

immunoprecipitation (IP) and control could be analyzed. Mass spectrometric and statistical analyses 

were performed by A. Dagane (MDC, Berlin). 

 
Figure 6 | MID1 binding partners are enriched in translation associated proteins. 
(A) Immunoprecipitation scheme of over-expressed FLAG-tagged MID1. (B) GO analysis of 302 proteins 
identified as MID1 interaction partners showing the top three GO terms in each category.  

302 MID1-specific interaction partners were identified ( 

Table 7). To put these proteins into context, a gene ontology analysis (GO) was conducted (Figure 

6.B). This bioinformatic tool annotates genes with defined terms describing the gene products known 

function. GO terms are grouped into three classes, namely molecular function, biological process, and 

cellular compartment. GO terms of molecular function classify molecular activities, biological process 

terms define an event with several separate steps, and a cellular component term describes distinct 

structures within or outside the cell. Using a GO database, it is possible to find significant terms shared 

among a list of genes and thereby infer biological meaning.  
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Several known MID1 binding partners were identified: RACK1 (also known as GNB2L1), 40S 

ribosomal protein A (RPSA), 40S ribosomal protein 3 (RPS3), and 40S ribosomal protein 8 (RPS8) 162. 

Two thirds of the MID1 interactome were RNA-binding proteins and more than 50 % of these 

proteins are involved in translation, supporting MID1’s known function in translational regulation. 

MID1 is part of an RNP complex and MID1-dependent translation has been shown to act through the 

modulation of the PP2A-mTOR axis of translational control. However, its location in the context of 

the translational machinery has not been resolved. Interestingly, 73 proteins binding MID1 were 

annotated as a structural constituent of the ribosome, possibly placing MID1 in close proximity to the 

ribosome. Ingenuity pathway analysis, a functional analysis tool, clearly strengthend the importance of 

MID1 in translational control. The top three pathways identified were eIF2 signaling, regulation of 

eIF4 and p70S6K signaling, and mTOR signaling.  

Of note, both cytosolic ribosomal proteins and proteins associated with the nucleolus were identified. 

Considering that MID1 is found in the cytoplasm and associates with microtubules 121,163, this 

observation is unexpected. However, all proteins are translated in the cytoplasm and since the IP was 

performed with crude cell lysate, the identification of nucleolar proteins could reflect unusual 

interactions with MID1. To take into account the cellular compartmentalization, the association with 

nucleolar proteins should be studied in detail in the intact cellular environment.  

3.1.4 MID1 is located close to the ribosome 

To validate the association of MID1 with the translational complex, the co-immunoprecipitation 

(coIP) of MID1 with different components was assessed by western blot. Figure 7 shows representative 

blots grouped according to distinct steps during translation. 

Cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and nudix hydrolase 21 (NUDT21) 

are polyA-binding proteins involved in processing of the 3’ polyA of pre-mRNAs (Figure 7.A). 

Poly(A) binding protein 1 (PABP1) binds the 3’ polyA tail and interacts with eukaryotic translation 

initiation factor 4 gamma 1 (eIF4G) to facilitate circularization of the mRNA, an important step 

during translation initiation. Besides eIF4G (Figure 7.B), other eukaryotic initiation factors (eIFs) were 

validated. eIF3A helps to assemble the 43S preinitiation complex and like eIF4A, eIF4B, and eIF4G 

recruits the preinitiation complex to the mRNA. 

Interestingly, FMRP co-immunoprecipitates with the MID1 complex (Figure 7.C). As described above, 

this is the protein product of FMR1, where a TNR mutation in the 5’ UTR leads to FXTAS or FXS, 

respectively. FMRP is involved in activity-dependent translation at the synapse 164,165 and directly binds 

to the ribosome 166. RACK1, a known interaction partner, was detected as a positive control and the 

ribosomal proteins of the large subunit 60S acidic ribosomal protein P0 (RPLP0) and 60S ribosomal 

protein L5 (RPL5), as well as a part of the small subunit, namely 40S ribosomal protein S3 (RPS3), 
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were validated. Worth mentioning is the obvious higher enrichment of this group of proteins 

compared to the proteins depicted in Figure 7.A and B. In HEK-T, FMRP, RACK1, RPLP0, RPL5, and 

RPS3 are expressed at much lower levels than the polyA-binding proteins and eIFs. More than double 

the amount of input lysate compared to polyA-binding proteins and eIFs had to be loaded on western 

blot to visualize the ribosomal and ribosome-associated protein.  

 
Figure 7 | Validation of MID1 IP Mass Spectrometry results. 
MID1-FLAG was expressed in HEK-T cells and purified by IP. The presence of MID1-interacting proteins in 
precipitates (IP) was analyzed by western blot using specific antibodies. As negative control, unspecific IgG 
agarose beads were used (IgG). (A) Detection of the polyA-binding proteins CPSF6, NUDT21, and PABP1. (B) 
Detection of eIFs 3A, 4A, 4B, and 4G. (C) Detection of FMRP, RACK1, RPLP0, RPL5, and RPS3. 

 

To analyze the MID1 function within this translation complex in more detail, coIPs were repeated in 

the presence of high concentrations of EDTA (40 mM). EDTA leads to the disassembly of the 

ribosomal subunits 167 thereby facilitating the differential mapping of MID1. Figure 8.A shows proteins 

that associate with MID1 depending on the integrity of the ribosome. To assure that EDTA treatment 

did not affect the efficiency of MID1 precipitation, the blots were incubated with FLAG antibody to 

detect MID1. In contrast to the polyA binding proteins and eIF3A, the binding of FMRP, RACK1, and 

RPLP0 to MID1 was stable even in the presence of EDTA (Figure 8.B). RPL5 and RPS3 binding was 

clearly reduced, arguing for an indirect interaction with MID1. 

 
Figure 8 | Effect of ribosome disassembly on the composition of the MID1 complex. 
MID1-FLAG was expressed in HEK-T cells and purified by IP either without EDTA or in the presence of high 
concentrations of EDTA. The presence of MID1-interacting proteins in precipitates (IP) was analyzed by 
western blot using specific antibodies. As negative control, unspecific IgG agarose beads were used (IgG). 
Detection of (A) CPSF6, eIF3A, NUDT21, PABP1, and (B) FMRP, RACK1, RPLP0, RPL5, and RPS3. 
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3.1.5 MID1 transcript and protein levels are upregulated in HD patient cortices  

Reducing mutant HTT protein levels, for example by antisense oligonucleotides directed against the 

HTT transcript, is one possibly beneficial treatment of HD 168. Doing so allele-specifically is difficult, 

however targeting the MID1 complex promises a solution to this problem 160 since it specifically 

modulates translation of the mutant transcript. Human data on MID1 expression exists but not in the 

context of HD. Therefore, human post mortem cortical sections from control subjects and HD 

patients were immunohistochemically (IHC) stained for the MID1 protein. MID1 positive cells were 

found throughout all cortical layers, however the intensity especially of the neuropil staining was much 

higher in HD patient samples compared to controls (Figure 9 and 10). Moreover the number of 

positively stained cells seems much lower in controls compared to HD patients.  

Taking a closer look at the morphology of the cells, MID1 seems to be expressed in different 

cell types. In the cortical layers cells with long apical and basal processes were positively stained, 

indicating neuronal cells (Figure 11). The cresyl violet counter stain coloring Nissl substance in 

neurons can easily identify pyramidal neurons. The cell nucleus is relatively small while the cell body 

has a conical shape with one apical dendrite that extends vertically from the soma. This characteristic 

cell type of layers three and five in the motor cortex was clearly stained in an HD patient (Figure 11.F), 

however in other samples it could not be found but rather staining of smaller neuron-like cells.  

Additionally, cells with numerous highly branched fine processes can be identified in the cortical 

layers suggesting a glial cell type, reminiscent of astrocytes. MID1 staining in the white matter showed 

even greater differences between HD patients and controls: while in controls only few cells stained 

positive, the white matter of HD patients was densely populated. These cells have fewer processes 

compared to the glial cells in the cortical layers. 

 

 

 
Figure 9 and 10. 
IHC staining from C2 and HD4. Sections from the middle temporal gyrus were immunostained for MID1 and 
cresyl violet was used for Nissl substance staining. The overview image on the left shows all cortical layers from 
the meninges down to the white matter. Locations of the magnified images on the right are indicated with white 
boxes. Scale bar, 20 µm. 
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Figure 9 | MID1 IHC staining of human cortical layers and white matter of a control subject. 
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Figure 10 | MID1 IHC stainings of cortical layers and white matter of an HD patient. 
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Figure 11 | Examples of MID1 IHC stainings in human cortical layers. 
MID1 stainings of (A-C) controls subjects (C6, C3, and C2) and (D-F) HD patients (HD3, HD4, HD6). Scale bar, 
20 µm.  

 
Figure 12 | Examples of MID1 IHC stainings in human cortical white matter. 
MID1 stainings of (A-C) controls subjects (C2, C1, and C3) and (D-F) HD patients (HD4, HD5, HD1). Scale bar, 
20 µm.  
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Since the neuropil staining of the cortical layers was very intense, quantification of positive cells was 

only possible in the white matter. Automated identification of positive cells showed significantly more 

MID1 positive cells in HD patients’ brains compared to controls (Figure 13.A). To assess whether this 

upregulation of MID1 is also seen on transcript level, qPCR analysis of unfixed post mortem material 

from HD patients and controls was conducted. Figure 13.B shows MID1 mRNA levels normalized to 

the housekeeping gene ribosomal protein L22 (RPL22). MID1 expression is significantly higher (p < 

0.001) in the cortex of HD patients (n = 8) compared to control tissue (n = 6). Moreover, striatal and 

cerebellar tissue was analyzed for MID1 expression. The cerebellum showed a similar trend as the 

cortex, while MID1 expression in the striatum seems to be weaker in HD patients. It was refrained 

from doing statistical analysis because sample size was too small (striatum control n = 2, other tissues 

n = 3). Overall, these studies show that (i) MID1 is expressed in different cell types in the cortex, (ii) 

the number of positive cells in the cortical white matter is significantly upregulated in HD patient 

tissue, and (iii) also MID1 mRNA levels are significantly upregulated in the cortex of HD patients. 

 

 
Figure 13 | Quantification of MID1 expression in brain regions of HD patients and controls. 
(A) Quantification of MID1 positive cells in cortical white matter of HD patients and controls. n = 6, p<0.005, 
result of an unpaired t-test. (B-D) qPCR analysis of MID1 expression normalized to RPL22 in indicated brain 
areas of HD patients and controls. (B) ncontrol = 6, nHD = 8, p***<0.001, (C and D) ncontrol = 2, nHD = 3. Columns 
represent mean values +/- SE, p-values are the result of a factorial ANOVA determining the genotype effect and 
correcting for RPL22 expression and a confounding effect of the qPCR experiments. SE, standard error. 

 

3.1.6 MID1 is expressed in the murine brain age- and genotype-dependently 

Apart from the spatial component of gene expression, mouse models of HD permit the temporal 

analysis of MID1 expression. Therefore, we used the Hdh(CAG)150 (Q150) mouse model 155 to study 

Mid1 expression in different brain areas and at a different age. This transgenic mouse model carries a 

CAG repeat of 150 units in the endogenous Htt gene.  

Mice were sacrificed at either two months of age (“young”) or between 11 to 14 months (“old”), the 

brain was dissected and the cortex, hippocampus, striatum, and cerebellum were analyzed by qPCR 

(Figure 14). Mid1 expression depends on both age and genotype, but to different degrees in the 
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respective areas. In the young cortex (p-value < 0.05), striatum, and cerebellum (p-values < 0.01) Mid1 

expression was significantly upregulated in transgenic mice compared to wild-type mice. In all 

transgenic brain tissues a downregulation of Mid1 expression with age could be observed, with highest 

significance in the striatum (p-value < 0.001). In the wild-type mice, an age-dependent effect of Mid1 

expression could only be seen in striatal tissue (p-value < 0.01). Mid1 expression in the hippocampus 

showed a similar trend but did not reach statistical significance. In contrast to the results from human 

tissue, there was no genotype-dependent effect in old animals. Overall, this shows that in young mice 

Mid1 expression is higher in the Q150 animals, while a clear age-dependent effect is only seen in the 

HD mouse model. 

 

 
Figure 14 | Mid1 expression analysis in the HD Q150 mouse model. 
Mid1 qPCR analysis of indicated tissues from wild-type (wt) and Q150 transgenic animals. MID1 levels are 
normalized to GAPDH. Young animals were two months old (nwt=10, ntg=9) and old animals 11 to 14 months 
(nwt=7, ntg= 6). Columns represent mean values +/- SE, p-values are the result of a one-way ANOVA with 
multiple comparisons. SE, standard error. 
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3.2 HTT RNA binding partners 

In HD, the MID1 protein is one example for a protein binding partner of mutant HTT RNA that leads 

to abnormal processes. Other such proteins exist but mostly have been studied in the context of RNA 

foci 84. The second part of this work aims to map mutant HTT RNA interactions in an unbiased 

approach. 

3.2.1 Mutant HTT exon 1 RNA-binding proteins are enriched in splicing factors 

To investigate a possible gain-of-function of mutant HTT exon 1 RNA with respect to its protein 

binding partners, an RNA pulldown using in vitro-transcribed RNA followed by quantitative mass 

spectrometry was performed (Figure 15.A). HTT exon 1 RNA containing 18, 40, or 70 CAG repeats, 

respectively, was amplified from vectors using primers incorporating a T7 sequence upstream of the 

open reading frame (ORF) and a linker sequence that allowed annealing of the RNA to a biotinylated 

DNA oligonucleotide. Via this binding the RNA was captured on streptavidin-coated magnetic beads. 

These RNA-coated magnetic beads were incubated with lysate from a human neuroblastoma cell line 

(SHSY-5Y), immobilized proteins were extensively washed to remove unbound proteins and finally, 

RNA-bound proteins were eluted. Five replicates with different passages of cells were prepared and 

each replicate consisted of four experiments: one control pulldown and three RNA pulldowns with 

HTT exon 1 and different CAG repeat lengths. Mass spectrometric and statistical analyses were 

performed by A. Dagane (MDC, Berlin). 

Altogether, 1050 proteins were identified. For statistical analysis only proteins that (i) were identified 

in at least two out of five RNA pulldown replicates but not in controls and (ii) proteins bound to RNA 

with a mean intensity at least twice as high compared to controls were included. The intensity denotes 

all peak intensities from an eXtracted Ion Current (XIC) chromatogram of all isotopic clusters 

associated with the identified amino acid sequence. In this manner, 308 proteins were found to 

specifically bind HTT exon 1 RNA. Five published proteins that target HTT RNA, namely Dicer, 

SRSF6, Nucleolin, PKR and FMRP, were identified by mass spectrometry, underlining the strength of 

our approach 108,135,169. Furthermore, FMRP, pre-mRNA-processing-splicing factor 8 (PRPF8), splicing 

factor 3B subunit 2 (SF3B2), U5 small nuclear ribonucleoprotein 40 kDa protein (SNRNP40), RPLP0, 

and protein SON (SON) were validated as HTT exon 1 protein binding partners on western blot 

(Figure 15.B). Interestingly, Paraspeckle component 1 (PSPC1), a nucleolar protein that can be found 

in paraspeckles (structures close to splicing speckles that are involved in gene expression) was also 

validated on western blot. 
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Figure 15 | Splicing factors bind HTT RNA CAG repeat length-dependently. 
(A) RNA pulldown scheme depicting the experimental workflow. After in vitro transcription, HTT RNA was 
immobilized on magnetic beads through the interaction with a biotinylated DNA linker. A representative 
agarose gel picture of HTT RNA with different CAG repeat lengths is shown in the upper right corner. Next, 
RNA was incubated with SHSY-5Y cell lysate, and RNA bound proteins were analyzed by mass spectrometry and 
validated on western blot using specific antibodies. (B) Western blot validation of selected proteins in an RNA 
pulldown assay. (C) GO analysis of the 308 proteins binding to HTT exon 1 RNA. Black boxes indicate the 
number of proteins within this GO term that bind CAG length-dependently.  

 

To identify proteins that bind in a CAG repeat-length dependent manner, an additional statistical 

analysis was conducted by I. Atanassov (Max Planck Institute for Biology of Aging, Cologne). Briefly, 

only proteins that were identified in at least four replicates in at least one experiment were used for 

analysis and missing values were added by Perseus imputation. Next, the RNA pulldown experiments 

were compared to the control: proteins with a positive log2 fold change (sample/ control) and a p-

value < 0.01 were defined to specifically binding HTT exon 1. By doing a pairwise comparison, 

proteins that bind in a CAG length-dependent manner could be identified. This analysis identified 36 

proteins that preferentially bind HTT exon 1 RNA with an expanded CAG repeat tract 

(HTTex1(CAG)ex, Table 8). To analyze the network of these proteins and infer biological meaning, a 
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GO term analysis was conducted. Not unexpectedly, many ribosomal proteins bound to the RNA and 

are involved in RNA processing (Figure 15.C). Interestingly, the majority of proteins specifically 

binding HTTex1(CAG)ex can be mapped to GO terms connected to splicing in contrast to ribosome-

associated terms (Figure 15.C, black boxes). This CAG length-dependent interaction was also seen on 

western blot. Altogether, these experiments validate published HTT RNA binding partners and 

identify new proteins specifically recruited to HTTex1(CAG)ex RNA, implicating them as possible 

disease modifiers. 

3.2.2 Conditional expression of HTT exon 1-(CAG)68 leads to retention of 

introns with weak 5’ splice sites 

Considering the evidence for mis-splicing in HD 170,171 and the aberrant binding of splicing factors to 

mutant HTT exon 1 RNA, the analysis of splicing changes in an HD model is rational. Therefore, an 

inducible model of SHSY-5Y cells expressing HTT exon 1 C-terminally tagged with enhanced green 

fluorescent protein (EGFP, provided by Y. Dürnberger, DZNE Bonn) was used for transcriptome 

profiling. Tetracycline-controlled transcriptional activation, termed TetON, is a method to reversibly 

induce transcription of a gene of interest by the addition of the antibiotic tetracycline or a derivative, 

for example doxycycline. HTT exon 1 is under the control of the tetracycline responsive element 

(TRE) promoter, which in turn is activated by tetracycline transactivator protein (tTA). However, tTA 

is only active in the presence of tetracycline (or doxycycline), linking addition of the antibiotic to the 

cell culture medium to transcriptional induction of HTT exon 1. Transcriptome profiling uses DNA 

microarray technology with probe sets covering the entire transcribed genome. This effectively 

measures the expression levels of all known coding and non-coding splice variants, because probes are 

designed to capture exonic sequences as well as sequences at intron-exon junctions. 

RNA from induced SHSY-5Y cells expressing HTT exon 1 and non-induced cells as control was used 

to generate labeled cDNA for microarray hybridization (performed by J. Winter, Institute of Human 

Genetics, Mainz). Subsequent bioinformatic analysis identified 103 alternative splicing events upon 

HTT exon 1 expression events that could be mapped to defined splicing categories (Figure 16.B), with 

the highest average splicing score reached by retained introns. Since a GO analysis of this short list was 

inconclusive, a simple literature search was performed to put these genes into perspective. cAMP 

response element-binding protein (CREB1) has an integral role in memory formation and neuronal 

plasticity and is implicated in the pathology of HD 172,173. Thus, the CREB1 intron retention event was 

chosen for further validation experiments. To this end, primers lying within the adjoining exons were 

designed to detect the successful splicing event and an alternative reverse primer complementary to 

the intron sequence to amplify from transcripts containing the retained intron. 
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Figure 16 | Splicing events detected by transcriptome profiling and target validation. 
 (A) Experimental set-up and schematic depiction of splicing events. RNA from SHSY-5Y-HTTQ68-EGFP cells 
was used to detect alternative splicing events upon HTTQ68 expression. Microarray with complete 
transcriptome probes were used. (B) Results of the bioinformatic analysis quantifying splicing events. Amounts 
of different splicing events are plotted against their splicing event score. (C) qPCR validation of the CREB1 
intron retention event in SHSY-5Y-Q58-EGFP cells. Columns represent mean values +/- SE, p*<0.05, n = 7 
replicate experiments using different passages of cells. p-value is the result of a factorial ANOVA determining the 
effect of HTTQ68 expression and correcting for CREB1 exon expression and a confounding effect of the qPCR 
experiments. SE, standard error. 

 

CREB1 intron retention upon HTT exon 1 expression in SHSY-5Y-HTTQ68-GFP cells is significantly 

upregulated detected by qPCR (p < 0.05, Figure 16.C). 

Considering the identification of a specific splicing event and association of various splicing factors 

with HTT exon 1 RNA, it is feasible to examine the role of the validated splicing factors within the 

complex process of splicing. This in turn revealed that PRPF8, an integral part of the U5 small nuclear 

ribonucleoprotein complexes (snRNPs), interacts with the 5’ splice site 174 and specifically mediates the 

splicing of weak 5’ splice sites 175. To investigate whether this is also true for transcripts differentially 

spliced depending on HTT exon 1 expression, bioinformatic analysis using the MaxEntScan algorithm 

was performed by J. Winter. Indeed, the 5’ splice sites in retained introns were significantly weaker 

compared to non-retained introns (Figure 17.A) and a prediction of 5’ splice site sequence motifs was 

in line with reported motif enrichments (Figure 17.B and C) 175. 
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Figure 17 | 5' splice site characterization of intron retention events in an HD cell model. 
(A) 5’ splice site strength of retained introns is significantly weaker compared to non-retained introns. (B and C) 
Motif predictions of 5’ splice sites for indicated introns. 

 

3.2.3 CREB1 intron retention is PRPF8-dependent in a cellular model of HD and 

upregulated in human HD cortex 

To analyze if the CREB1 intron retention event is mediated by PRPF8, a siRNA-mediated knockdown 

of PRPF8 in non-induced SHSY-5Y-HTTQ58-GFP was performed. The intron retention event was 

measured by qPCR as described above. Figure 18.A shows that, indeed, this splicing event depends on 

PRPF8 since the amount of unprocessed transcript increased upon PRPF8 knockdown. Knockdown 

efficiency was validated on protein level (Figure 18.B). Next, CREB1 expression and the intron 

retention event were analyzed in human cortical tissue of HD patients and control subjects. Both 

expression of normally processed CREB1 transcript as well as the intron retained transcript was 

upregulated in HD patient material (Figure 18.C and D). 

 

 
Figure 18 | CREB1 intron retention is PRPF8 dependent and upregulated in HD patient cortex. 
(A) CREB1 intron retention event measured by qPCR after PRPF8 knockdown in uninduced SHSY-5Y-
HTTQ68-EGFP cells, p*<0.05, n = 4 replicate experiments using different passages of cells. (B) Western blot of 
cell lysates from (A) verifying PRPF8 protein knockdown. qPCR analysis of (C) CREB1 expression in cortical 
tissue of control subjects and HD patients and (D) CREB1 intron retention event in cortical tissue of control 
subjects and HD patients, p***<0.001. Columns represent mean values +/- SE, p-values are the result of a 
factorial ANOVA determining the knockdown or genotype effect and correcting for CREB1 exon or RPL22 
expression and a confounding effect of the qPCR experiments, ncontrol = 6, nHD = 8. SE, standard error. 
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4 Discussion 

HD is caused by a CAG repeat expansion mutation translating into a neurotoxic polyQ protein. In 

addition to polyQ-mediated pathogenesis, the mutant CAG repeat RNA elicits toxic mechanisms as 

well. One such mechanism underlying the toxic gain-of-function of mutant HTT RNA is the aberrant 

recruitment of proteins. The aim of this thesis was to identify and characterize these RNA-protein 

interactions. First, a previously identified protein, MID1, that binds to and regulates HTT RNA in a 

CAG length-dependent manner, was investigated. The results show a MID1-dependency on RNA 

secondary structure and a, so far unknown, binding of MID1 to the ribosome. Second, an unbiased 

approach to systematically map mutant HTT exon 1 RNA interactions with proteins demonstrates that 

deregulated splicing is a major mechanism underlying RNA-mediated toxicity in HD. 

 

4.1 Mechanism of MID1-dependent translation 

The MID1 protein is part of an RNP complex that regulates translation of specific RNAs. In the 

context of HD, MID1 binds HTT mRNA in a CAG repeat length-dependent manner, up-regulating 

translation of the mutant allele. This implicates MID1 as a modifier of HD pathology. Specifically, 

MID1 indirectly modulates translation by targeting PP2Ac for proteasomal degradation 124. PP2A 

negatively affects the assembly of mTORC1, placing MID1 upstream of mTOR signaling and 

identifying it as a positive regulator of mTORC1 125. PP2A and its target S6K also localize to 

HTTex1(CAG)ex RNA, however, how MID1 exactly encounters its substrates is unclear. Therefore, we 

characterized the MID1 complex by quantitative mass spectrometry to identify protein interaction 

partners that could be crucial in this process. The identified protein interactome of MID1 supports its 

involvement in mTOR signaling and additionally suggests eIF2 signaling and regulation of eIF4 and 

p70S6K signaling. Here, I concentrate on mTOR signaling since these pathways converge on the same 

effector molecules. 

 

mTORC1 is a kinase complex comprising mTOR, raptor and LST8 that is directly involved in the 

control of translation initiation. Translational initiation is a rate-limiting step in protein synthesis and 

therefore has the potential for control. During cap-dependent translation initiation, the assembly of 

the elongation-competent 80S ribosome depends on two processes: on the one hand, the formation of 

the 43S preinitiation complex (PIC), and on the other hand mRNA activation 176. The 43S PIC consists 

of the eIF2 ternary complex, the 40S ribosome, eIF3, and eIF5. mRNA activation includes the 

sequential assembly of several eIFs on the 5’ cap structure of mRNA. In detail, eIF4E binds the 5’ cap, 
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the two DEAD-box RNA helicases eIF4A and eIF4G start unwinding the mRNA’s 5’ secondary 

structure and serve as a scaffold for eIF4B, eIF3, and polyA-binding protein (PABP). eIF4B promotes 

eIF4A’s helicase activity, while PABP facilitates mRNA circularization by interacting with eIF4G. This 

specific tertiary structure of mRNA and interacting proteins is thought to improve translation 

efficiency by facilitating the recycling of 40S ribosomes. Finally, eIF3 recruits the 43S PIC, 5’ to 3’ 

scanning begins, eventually leading to initiation codon recognition and binding of the 60S ribosomal 

subunit. In this context, eIF3 is a dynamic scaffold for the interaction of mTOR/raptor with its targets 

S6K and 4E-binding protein (4E-BP) 177. Activated mTOR/raptor is recruited to eIF3 that is bound by 

inactivated S6K 177. Upon mTOR-mediated phosphorylation, S6K dissociates and phosphorylates 

eIF4B and S6. Phosphorylated eIF4B now enhances eIF4A helicase activity 177, promoting translation 

initiation. The mTOR/eIF3 complex is now in close proximity to the 5’ cap complex, which is bound 

by hypophosphorylated 4E-BP that prevents the interaction of eIF4G and eIF4A to eIF4E, thereby 

inhibiting translation 178. mTOR-mediated phosphorylation of 4E-BP leads to its dissociation, 

permitting translation initiation to continue.  

In this study, all 13 subunits of the eIF3 complex were identified by mass spectrometry as binding 

partners of MID1. Their involvement places MID1 close to the 43S PIC. In line with this, RACK1, a 

known binding partner of MID1 and a scaffolding protein that can be mapped close to eIF3 and the 

40S ribosomal subunit in the 43S PIC 179, was found to be part of the MID1 complex. Considering the 

above-mentioned dynamic model of mTOR translation initiation control, MID1 actively promotes the 

assembly of mTORC1 and its subsequent recruitment to the eIF3 complex by targeting its opposing 

phosphatase PP2A for degradation (Figure 19). The fact that PP2A was not identified in this study 

underlines the dynamic nature of the interaction with MID1. To elucidate the exact steps of translation 

initiation that MID1 is crucial for, it is feasible to map MID1 in polysome gradients under conditions 

that affect different steps of this dynamic process. 

Considering MID1’s role in HTTex1(CAG)ex RNA translation, the effects on S6K phosphorylation are 

likely to be crucial for TNR RNA translation. Phospho-S6K targets eIF4B that in turn increases the 

helicase activity of eIF4A, which is especially important for the unwinding of structured RNAs. Here 

we show that both eIF4B and eIF4A are part of the MID1 complex. Usually, RNA structures 

controlling translation initiation are located in the 5’ UTR und significantly suppress their translation 

efficiency. Interestingly, this study shows that a pure (CAG)50 repeat in the 5’ UTR is not capable of 

inhibiting the translation of a reporter, however if it is located in the 3’ UTR, translation is increased.  
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Figure 19 | Model mechanism of MID1-dependent translation. 
(1) MID1 and RACK1 (and probably additional binding partners) define the repeat RNA-specific RNP that 
excessively binds to structured RNAs. (2) RACK1 serves as a scaffold for eIF3 and the 40S ribosomal subunit and 
possibly other factors of the 43S PIC. MID1 signaling leads to increased activation and thereby recruitment of 
mTOR. (3) Activated mTOR binds to eIF3 and phosphorylates S6K that dissociates from eIF3. Now mTOR is in 
close proximity to its other target 4E-BP and phosphorylates it. This leads to the dissociation of 4E-BP, canceling 
its inhibitory effect on eIF4G and eIF4A binding to eIF3E. (4) Activated S6K phosphorylates eIF4B, enhancing its 
helicase activity that unwinds the structured RNA. (5) eIF4G is recruited to eIF4E and, together with PABP, 
facilitates circularization of the transcript. 

 

This phenomenon is dependent on MID1, similarly to the induction of HTTex1(CAG)ex RNA 

translation. This, together with experiments employing differently structured and unstructured TNR 

repeats in the 3’ UTR, shows that MID1 influences the translation of RNAs with structured 3’ UTRs.  

To see if this effect really depends on eIF4A activity, the effect of a MID1 knockdown on the eIF4A 

phosphorylation status should give some insight. 

To test the dependency of MID1-protein interactions on ribosome integrity, the MID1 IPs were 

repeated with high EDTA concentrations. Of note, the disassembly of the ribosome during MID1 IP 

had a negative effect on eIF3A and PABP1 binding, while RACK1 interaction was preserved. This 

argues for a direct binding to MID1 although additional experiments are necessary to prove this. 

Several approaches are possible. First, a yeast two-hybrid assay is a protein-fragment complementation 
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assay that identifies direct protein-protein interaction. Second, IPs could be repeated including UV 

cross-linking of proteins and increasing the stringency of the washing steps. This has several 

advantages. Only proteins that interact directly are covalently cross-linked if photo-reactive amino 

acid analogs are taken up by cells and incorporated into nascent proteins 180. Moreover, this can be 

performed in living cells and the modified proteins can be detected by western blot. This helps to 

resolve protein-protein interactions in the cellular space and time. 

RACK1 and FMRP binding to MID1 were maintained independently of ribosome disassembly. 

Interestingly, RACK1 controls internal ribosomal entry site (IRES)-mediated translation of viruses 181, 

i.e. RACK1 seems to be involved in translation of mRNAs with specific structures. Similarly, FMRP is 

known to preferentially bind its targets throughout their ORF as well as along the 3’ UTR of a subset of 

target mRNAs 182. Whether MID1 directly binds mRNA is unknown. Alternatively, the interaction 

with specific mRNAs may be mediated by interacting proteins like RACK1 and FMRP. In this model, 

MID1 directly interacts with RACK1, FMRP, and RPLP0, while the association with eIF3 and S6K1 is 

RNA-dependent. Through the increased binding to structured RNAs, this complex excessively recruits 

mTORC1. High-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation 

(HITS-CLIP) identified HTT mRNA as a FMRP target 183 and indeed, we also show that FMRP binds 

HTTex1(CAG)ex RNA in a repeat length-dependent manner. However, FMRP is mainly known to 

repress translation of its mRNA targets and this process is modulated by phosphorylation. FMRP’s 

function and how this could play a role in MID1-dependent translation will be further discussed in 

chapter 4.6.  

 

4.2 MID1 expression in HD 

Initially, MID1 was identified in the context of Opitz syndrome, a monogenic disorder that is 

characterized by body axis patterning and midline formation defects 120. Therefore, MID1 expression 

patterns have been widely studied during embryogenesis and development, showing that in human 

fetal organs MID1 expression is highest in the kidney, followed by brain and lung 120. In the adult 

brain, heart, and placenta MID1 is expressed most abundantly. In mice, MID1 is expressed throughout 

the whole body starting at embryonic day 10.5, with the exception of the heart 120. Several large-scale 

projects have mapped gene expression on RNA as well as protein level in a variety of human tissues, 

cell types, and in model organisms. Figure 20 summarizes the results from three projects regarding 

MID1 expression in human brain tissues and cell types: the human protein atlas (HPA) 184 , 

FANTOM5 185, and GTEx 186. In line with the RNAseq data on cerebellar expression (Figure 20.A), our 

results show highest MID1 transcript levels in the human cerebellum.  
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Figure 20 | Published MID1 expression patterns in human brain tissues. 
(A) RNAseq data. Expression levels from human protein atlas, HPA and FANTOM5 are reported in TPM, 
transcripts per million; data from GTEx in RPKM, reads per kilobase million. (B) Protein expression data from 
HPA determined by IHC staining. Grey denotes no available data. Data was obtained from 
http://www.proteinatlas.org/ENSG00000101871-MID1/tissue 184.  

 

Detailed analysis of protein expression in cellular subtypes reveals equal MID1 levels in neurons and 

glial cells according to HPA (Figure 20.B). The HPA project also uses morphology for cell type 

identification and cerebral cortex stainings are in agreement with our data. IHC stainings on cortical 

sections, specifically the middle temporal gyrus, show that MID1 protein seems to be expressed cell 

type-specific in neurons and glia. 

Considering MID1’s potential in the treatment of HD, knowledge about its expression pattern, 

especially in the human brain and in the context of HD is important, but was missing. Here, we show 

that both in mice and humans, MID1 mRNA expression is genotype-dependent, with higher 

expression in young Q150 mice and HD patients compared to controls. However, Mid1 mRNA levels 

show no difference between genotypes in old mice, which contradicts the human data. Possibly, this 

particular mouse model of HD does not reproduce the MID1 expression changes seen in humans. The 

mutant CAG repeat is much longer compared to human HD cases and is actually in the range of 

juvenile HD. A longer CAG repeat might lead to earlier upregulation of MID1 expression in humans 

as well though this is difficult to test owing to the rarity of juvenile HD cases 187. 

The analysis of MID1 protein expression determined by IHC staining and automated quantitative 

analysis reveals that MID1 protein levels are consistent with transcript levels: the amounts of positively 

stained cells in the white matter is significantly higher in HD patients. 

The cortical layers representing grey matter and the underlying white matter differ 

considerably in regard to their cell type composition. Grey matter mainly consists of cell bodies and 

neuropil, i.e. areas of unmyelinated axons, dendrites, and glial processes. In contrast, the white matter 

mostly contains myelinated sheaths of neuronal axons. Neuronal cell types in the grey matter are 

distributed in discrete layers, encompassing structurally and functionally diverse neurons like 

pyramidal and stellate neurons, and many subtypes 188,189,190. Clearly, MID1 is differentially expressed in 
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various cell types and unambiguously identifying these especially in the context of HD could help to 

understand MID1-dependent pathomechanims. Fluorescent double staining with antibodies directed 

against neuronal cell-type markers like neuronal nuclei (NeuN), microtubule-associated protein 2 

(MAP2), neurofilament proteins, or postsynaptic density protein 95 (PSD95) should give some insight 

into the intercellular and intracellular distribution of MID1.  

 

4.3 MID1 and the immune system 

The most striking difference between HD patients and controls was seen in the number of MID1 

positively stained cells in the white matter. These cells show glial morphology, however, distinguishing 

astrocytes and microglia unequivocally without cellular markers is challenging. Interestingly, changes 

in both astrocytes and microglia accompany HD 20, underlining the involvement of the immune 

system. These non-neuronal cells of the central nervous system (CNS) have specific roles in supporting 

neurons and controlling the microenvironment of the brain. 

Astrocytes are heterogeneous, for example their morphology differs considerable depending on their 

location: in white matter mainly fibrous astrocytes can be found. They are smaller and less branched 

than the protoplasmic astrocytes of the grey matter. Astrogliosis, the activation of astrocytes upon 

various insults, is neuroprotective under normal conditions. In HD, multiple lines of evidence suggest 

a detrimental role and point at astrocytic dysfunction caused by mutant HTT 191,192. Mutant HTT 

accumulates in glial nuclei in HD brains, of note in mouse brains Htt aggregates are more frequent in 

neurons compared to glia 70. Expressing mutant Htt selectively in astrocytes in a transgenic mouse 

model causes age-dependent neurological phenotypes, even though it is expressed at lower levels than 

endogenous wild-type Htt 191. Furthermore, mutant Htt in astrocytes decreases the expression of 

glutamate transporter offering an explanation for the observed excitotoxicity in HD 191,193. 

In the brains of HD patients, the morphological changes of astrocytes that accompany astrogliosis 

increase with severity of disease 192. Like astrocytes, microglia can exert both positive and negative 

effects, and are the primary mediators of neuroinflammation. Under physiological conditions they 

contain branched cytoplasmic processes and function as the macrophages of the central nervous 

system playing an important phagocytic role. In HD, the severity of disease progression is 

accompanied by microglial activation and can be detected even before onset of symptoms 15,16.  

The TNF-related apoptosis inducing ligand (TRAIL) possibly bridges the gap between the 

immune system and the observed up-regulation of MID1 in neuroglia. TRAIL has central functions in 

the regulation of the immune system and is implicated in many diseases, notably, in 

neurodegenerative disorders like Alzheimer’s disease and multiple sclerosis 194–196. Interestingly, in 

Eosinophilic esophagitis (an inflammatory disorder of the esophagus) TRAIL upregulates MID1 
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expression. MID1-dependent downregulation of PP2A increases nuclear factor κB (NFκB) activation 

and thereby promotes inflammation 197. In HD, the TRAIL-dependent activation of MID1 expression 

would additionally lead to increased mutant HTT translation, further promoting neurodegeneration. 

To test this hypothesis, several experiments are rational. First, analyzing the co-expression of MID1 

and Iba1 (marker for microglia), or GFAP (marker for astrocytes), respectively in double immune 

staining gives insight into the exact immune cell type MID1 is expressed in. Furthermore, the status of 

the cells, i.e. whether they are resting, activated, or reactive is important to assess possible effects on 

HD pathomechanisms. Second, modulating TRAIL activity in HD models and analyzing the effect on 

HTT expression could elucidate TRAIL’s role in HD and possibly provide a druggable target to treat 

HD. Finally, one should test if MID1 silencing in the respective cell types inhibits NFκB signaling. 

 

4.4 HTTex1(CAG)ex RNA gain-of-function: aberrant protein 

interactions 

RBPs are endowed with a central role in cellular processes owing to their ability to bind RNA, the 

mediator of genetic information. Depending on their various functions, RBPs orchestrate splicing, 

transport, localization, stability, and/ or translation and consequently, their disruption impacts disease 

processes. In TNR disorders it is accepted that the aberrant binding of RBPs to mutant RNA plays an 

integral role in the pathobiology 198. The downstream effects are widespread and depend on the 

physiologic RBP function and in several disorders they can explain the particular phenotype 199,200. 

Since the aberrant interaction lies upstream of the observed toxicity, understanding mutant RNA-

protein interactions could help to discover new targets for the treatment of TNR disorders. 

This study reports an unbiased in vitro approach that identifies novel protein interaction partners of 

HTTex1 RNA. Moreover, we can confirm the binding of several known HTTex1 RNA binding 

partners, namely Dicer, SRSF6, Nucleolin, PKR and FMRP, emphasizing the validity of our approach. 

These proteins are known to contribute to RNA toxicity: Dicer activates the RNA interference pathway 

by producing sCAGs 115, SRSF6 promotes the mis-splicing of HTT itself, MAPT and MAP2 isoforms in 

HD 108, aberrant interactions with Nucleolin elicit nucleolar stress 100, while PKR modulates eIF2 

signaling and is disturbed in HD 103. FMRP will be discussed in more detail below.  

Additionally, proteins that are annotated binding partners of other mutant TNR RNAs were found. 

HTTex1 RNA binds DDX5 that previously has been shown to bind DMPK RNA93. The TNR tracts 

within these transcripts resemble each other structurally and functionally 135,201, indicating that shared 

binding partners could account for similar symptoms between these diseases. In DM1, DDX5 mediates 

the unwinding of RNA secondary structure, thereby supporting aberrant MBNL1 binding 93. Given 
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that we identified nine additional RNA helicases that specifically bind HTTex1 RNA, three of them in 

a CAG repeat length-dependent manner (DDX46, DHX15, and DHX36), it seems likely that a similar 

mechanism is involved in HD. Performing specific knockdowns in HD models could give some insight 

into their role as modifiers of HTTex1(CAG)ex RNA toxicity.  

From the quantitative identification of protein interactions with specific CAG repeat lengths we can 

draw conclusions regarding the specific interactions of HTTex1(CAG)ex RNA. This analysis highlights 

the importance of splicing factors in the protein network of mutant HTT RNA. Out of 36 proteins that 

bind CAG repeat-dependently, 30 are annotated with the GO term ‘RNA splicing’. Two such proteins 

are PRPF8 and SNRNP40, both integral components of the spliceosome 202. The splicing of precursor 

mRNA (pre-mRNA) involves more than 300 proteins that assemble into small nuclear 

ribonucleoprotein complexes (snRNPs). Distinct snRNPs consist of specific noncoding small nuclear 

RNAs (snRNAs) and core proteins. They can be divided into U1, U2, U4, U5, and U6 snRNPs. The 

major spliceosomal pathway is characterized by the step-wise assembly of snRNPs that mediate 

distinct functions (Figure 21). The U1 and U2 snRNPs recognize the 5’ splice site and the branch 

point, respectively, on the pre-mRNA. The U4/U6.U5 tri-snRNP then associates with the pre-mRNA, 

effectively rearranging the bound snRNPs. This ultimately leads to catalytic activation of the 

spliceosomal complex, which removes the intronic sequence and joins the 5’ and 3’ exons. PRPF8 and 

SNRNP40 are core components of the U5 snRNP. PRPF8 directly contacts the 5’ splice site, the branch 

point and 3’ splice site, and engages the U5 and U6 snRNAs 174,203,204.  

 

PRPF8 depletion causes widespread mis-splicing preferentially of transcripts that contain weak (non-

consensus) 5’ splice sites 175. This study shows that PRPF8 and SNRNP40 bind HTT exon 1 RNA CAG 

repeat length-dependently. Moreover, the conditional expression of HTTex1(CAG)ex RNA induces 

retention of introns with weak 5’ splice sites and this effect is mediated by PRPF8. Together these 

results suggest that in HD, PRPF8 is sequestered by mutant RNA leading to suboptimal spliceosome 

assembly and activation, resulting in the usage of strong 5’ splice sites. Strikingly, the mis-splicing of 

one identified transcript, CREB1, is significantly increased in cortical tissue of HD patients, 

emphasizing the biological relevance of our results. 

The question how PRPF8 may loose its function in HD remains. One possibility is the sequestration 

into RNA foci. However, MBNL1, a well-defined protein that is captured by stable RNA foci in 

multiple TNR disorders 84,87,112, was absent in the list of HTT exon 1 protein binding partners. This 

suggests that aberrant binding of proteins to HTTex1(CAG)ex RNA and the sequestration into stable 

 



Discussion    

 52 

 
Figure 21 | The splicing cycle. 
The pre-mRNA consists of consensus sites (invariant nucleotides at these sites are indicated) in the 5’ splice site, 
branch point, and 3’ splice site. The steps of spliceosome assembly are shown advancing counter-clockwise. The 
A complex comprises U1 and U2 snRNPs: U1 recognizes the 5’ splice site and U2 the branch site. The tri-snRNP 
(U4/U6.U5 snRNPs) joins to form the B complex. The subsequent remodeling leads to the dissociation of U1 
and U4 snRNPs, and the formation of the activated B* complex. B* is competent to perform the first catalytic 
reaction that results in the formation of a lariat structure in the intron. The second reaction is performed by the 
C complex leading to the removal of the intronic sequence and joining of the 5’ and 3’ exons. PRPF8, depicted in 
red, is a component of the U5 snRNP. 

 

RNA foci are distinct mechanisms. Whether PRPF8 localization to RNA foci remains to be established. 

RNA foci of TNR RNAs can be visualized in fixed cells and tissues by RNA fluorescence in situ 

hybridization (FISH) 205. This has guided the study of aberrant RNA foci interactions and 

sequestration of RBPs, however temporal resolution is not possible with this method. Considering that 

aberrant protein interactions of soluble mutant RNA can be detrimental, the study of RNA dynamics 

in living cells is feasible. Visualizing a pure CGG repeat of 60 units has been achieved using a 

genetically encoded system: the RNA of interest is tagged with an apatamer that binds a small molecule 

mimic of the GFP fluorophore 206. Using this technology several open questions concerning HTTex1 

RNA could be addressed. First, one could study the effect of mutant CAG repeat length on HTTex1 
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RNA dynamics. Second, using appropriately tagged fluorescent proteins, the interactions with 

HTTex1(CAG)ex RNA could be examined, providing information on dynamic processes such as 

nuclear export, translation, and transport. Lastly, small molecules targeting HTTex1(CAG)ex RNA can 

be tested for their ability to disassemble RNA foci or disrupt detrimental RNA-protein interactions.   

    

4.5 CREB1 in HD 

Our discovery of increased transcription and subsequent mis-splicing of CREB1 in the cortex of HD 

patients support its role in HD. CREB1 is a widely studied transcription factor of the bZIP superfamily 

that binds to a cAMP-responsive element (CRE) located upstream from the transcriptional initiation 

site 207 and influences transcription together with other members of its family, namely cAMP response 

element modulator (CREM) and the acting transcription factor 1 (ATF-1) 208. Its transcriptional 

activity is regulated by multiple stimuli like synaptic activity and the resulting Ca2+ influx, 

neurotransmitters, and growth factors 209,210. The phosphorylation status of CREB1 is important for the 

transcription of multiple genes 211 and can be mediated by several kinases 212. Distinct splicing isoforms 

of CREB1 activate or repress transcription, adding another layer of regulation 213. CREB1 signaling 

seems to be neuroprotective: overexpression of constitutively active CREB1 prevents cell death, while 

expression of a dominant negative form of CREB1 leads to apoptosis in both sympathetic neurons and 

cerebellar granule cells 214,215. CREB1 is also implicated in HD: in a cell model 172 and in the striatum of 

transgenic mice expressing HTT-Q111 173 CRE-mediated transcription is downregulated. Moreover, 

CREB1 loss-of-function in an HD mouse model accelerates motor dysfunction 216.  

Of note, the above-mentioned studies investigating CREB1 function in neuronal survival and HD were 

performed in cellular cultures and animal models, not necessarily reflecting the pathogenic changes in 

HD patients. Supporting our finding that CREB1 transcripts are upregulated in cortical tissues of HD 

patients, adipose tissue from HD patients shows elevated levels of CREB1 expression 217. Interestingly, 

BDNF transcription during neuronal activity mostly depends on CREB1 218 and cAMP levels are 

reduced in the cortex of HD patients 173. Thus, reduced BDNF delivery at the cortico-striatal synapse 

that promotes vulnerability of striatal neurons in HD 68 could also be mediated by CREB1-dependent 

gene expression. Evaluating the effects of the intron retention event on protein levels gives more 

insight. Three CREB1 protein isoforms are annotated that are produced by alternative splicing 219. The 

intron retention event affects intron 2-3 and incorporates a stop codon nine bases downstream of exon 

two. Translation would produce a truncated protein and the intron retention effectively disturbs all 

protein isoforms since the physiologic alternative splicing events are downstream of intron 2-3. Our 

observed up-regulation of CREB1 could be a compensatory effect to increase levels of correctly spliced 

CREB1 mRNA.  
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4.6 The MID1 complex and HTT exon 1 RNA share many protein 

binding partners 

To understand the specific mechanisms of HTTex1(CAG)ex RNA translation mediated by the MID1 

complex, comparing the MID1 and HTT exon 1 RNA protein interactome provides some insight. The 

overlap is quite substantial: more than one third of each mass spectrometry set binds to both MID1 

protein and HTTex1(CAG)ex RNA. One shared binding partner is FMRP. Just like MID1, FMRP is an 

RBP, regulating both translation and transport of specific RNAs, many of which are involved in 

neuronal plasticity 183,220–222. Interestingly, it regulates local translation at the synapse activity-

dependently 223 and directly associates with the ribosome 166. Substantial effort has been directed 

towards the identification of FMRP consensus binding motifs, identifying both sequence-dependent 

and structural motifs as FMRP binding determinants 169,182,220,221,224. One such study by Darnell and 

colleagues used high-throughput sequencing of RNAs isolated by HITS-CLIP to identify FMRP 

interactions with mouse brain polyribosomal mRNA 183. Given that FMRP function might be 

disturbed in HD, we compared this data set with a large study analyzing proteomic changes in HD 

mouse models 225. Langfelder et al. analyzed tissue samples from the striatum, cortex, and cerebellum 

of 2-, 6-, and 10-month-old knock-in mice with polyQ lengths of 20, 50, 80, 92, 111, 140, 175 as well as 

littermate control wild-type animals. FMRP target RNAs show 13 % overlap with misregulated 

proteins in the HD models, suggesting that translational misregulation of these specific transcripts in 

HD might be mediated by FMRP. HTT transcript and protein can be found in this overlapping list of 

FMRP RNA targets and misregulated proteins in HD. Indeed, we identified FMRP in two replicates in 

our study binding to HTT exon 1 RNA with 40 CAG repeats. Even though it is not included in the list 

of proteins preferentially binding HTTex1(CAG)ex RNA, we could show on western blot that FMRP 

binding to HTTex1(CAG)ex increases with longer CAG repeats. Moreover, several known FMRP 

interaction partners were identified in both mass spectrometry analyses: RPLP0, RPL5, RPL8, PABP1, 

Staufen (STAU1), Nucleolin, CAPRIN1, DDX5, GEMIN4, and YBX1, strengthening the hypothesis 

that MID1 together with FMRP, at least of HTTex1(CAG)ex RNA, regulates translation. The results of 

MID1-dependent TNR repeat translation underline the theory of specific RNP complexes: a CAG 

repeat in the 3’ UTR increases translation. While this is MID1-dependent, the MID1 knockdown did 

not completely reverse the effect, showing that other RBPs must be involved. 

These results have several implications. MID1 together with FMRP might regulate a certain subset of 

RNAs in terms of localization and translation. Interestingly, mutations in the MID1 and FMR1 genes 

leading to protein loss-of-function both lead to mental retardation 120,226 potentially reflecting the 

effects from shared RNA targets. The FMRP phosphorylation status controls its usually inhibitory 

effect on translation 227 and this modification depends on several factors, for example synaptic 
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activity 223 and ubiquitination 228. However, the exact determinants of FMRP phosphorylation are 

under debate, some studies identifying the mTOR pathway, PP2A, and S6K 223,229,230, while others 

suggest different kinases 231,232. Still, it is conceivable that MID1 may play a role in FMRP 

phosphorylation regulation through acting on kinases targeting FMRP. Alternatively, considering that 

MID1 is an E3 ubiquitin ligase, MID1 might be targeting FMRP for proteasomal degradation. These 

hypotheses could be tested by siRNA-mediated knockdown of MID1 and subsequent phospho-FMRP 

detection by western blot and in vitro ubiquitination assays, respectively. 

 

Taken together, this study provides new evidence for MID1’s contribution to HD pathogenesis. MID1 

induces translation of a subset of RNAs with specific secondary structures. Moreover, MID1 

expression is upregulated in cortical tissue from HD patients, most likely exacerbating this detrimental 

process. Apart from MID1, mutant HTT RNA interacts with multiple proteins disturbing their 

function. Mapping this RNA-protein interactome shows that the interaction of mutant HTT RNA with 

PRPF8 changes the alternative splicing pattern of CREB1 in cell models as well as cortical tissue from 

HD patients. These data support the crucial role of RNA toxicity in HD and suggest several strategies 

for therapeutic interventions. First, targeting the MID1 protein is promising considering that it 

specifically upregulates translation of the mutant HTT allele. Second, affecting other RBPs, for 

example splice factors, could help to alleviate associated phenotypes. Lastly, directly targeting the 

mutant HTT RNA could help to suppress RNA-mediated toxicity. 
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Table 6 | List of primers 
f, forward; r, reverse; h, human; m, mouse. 

Name Sequence 
hCREB exon_r TTCGCTTTTGGGAATCAGTT 
hCREB intron_r GTTCTCTCCAAATCTAGGACC 
hCREB_f CAATGGGCAGACAGTTCAAG 
hGAPDH_f CCACCCATGGCAAATTCC 
hGAPDH_r TGGGATTTCCATTGATGACAAG 
hMID1_f CTGCCAGGTCTGGTGTCATG 
hMID1_r AATCAGGCTTAGGGCCCTTCT 
hMID2_f GGGAAAGGACTTACAGGCCC 
hMID2_r GTTTCTTGTTGGGGTGCGTG 
hRPL22_f  TGACATCCGAGGTGCCTTTC 
hRPL22_r  GTTAGCAACTACGCGCAACC 
mGAPDH_f GCACAGTCAAGGCCGAGAAT 
mGAPDH_r GCCTTCTCCATGGTGGTGAA 
mMID1_f CAAAGTGGCACCAAGTATATCTTCA 
mMID1_r TCCGGGCTCGCTGCTA 
T7 HTTex1_f CCAAGCTTCTAATACGACTCACTATAGGGAGAATGGCGACCCTGGAAAAGCT 
Linker T7 Httex1_f GAATTAATACGACTCACTATAGGGAGAATAGATAGTATGGCGACCCTGGAAAAGCT 
HTTex1_r GGTCGGTGCAGCGGCTCCTCAGC 
Biotin DNA Linker ACTATCTATTCTCCC (BtnTg) 
 

Table 7 | Statistical analysis of proteins identified in MID1 immunoprecipitation. 
Log2 ratio and p-values were calculated using measured protein intensities, i.e. eXtracted Ion Current (XIC) of all 
isotopic clusters associated with the identified amino acid sequence. Log2 ratio was calculated from the intensity sum of 
samples/ controls. p-values are the result of a two-sided t-test, samples versus control. In cases where intensities had 
been measured in 2 (out of 3) replicates, the third intensity value was added through imputation. If no intensity could 
be measured in all 3 replicates, the intensities were set from 0 to 1 in order to still be able to calculate a ratio (same 
applies to cases where only 1 intensity could be measured). Statistical analysis was performed by A. Dagane (MDC 
Berlin). 

Protein name Gene ID log2 ratio p-value  
ATP-binding cassette sub-family D member 3 ABCD3 2.75E+01 2.04E-03 
ATP-binding cassette sub-family F member 2 ABCF2 2.88E+01 5.96E-04 
Apoptotic chromatin condensation inducer in the nucleus ACIN1 2.72E+01 1.39E-02 
Aldehyde dehydrogenase X, mitochondrial ALDH1B1 2.62E+01 3.61E-04 
Mitochondrial 10-formyltetrahydrofolate dehydrogenase ALDH1L2 2.66E+01 1.97E-02 
THO complex subunit 4 ALYREF 2.99E+01 7.55E-04 
Serine/threonine-protein phosphatase 6 reg. ankyrin repeat subunit A ANKRD28 2.63E+01 1.85E-02 
Coatomer subunit delta ARCN1 2.65E+01 2.36E-02 
Activating signal cointegrator 1 complex subunit 3 ASCC3 2.59E+01 7.96E-03 
ATPase family AAA domain-containing protein 3A ATAD3A 1.77E+00 3.98E-02 
Sodium/potassium-transporting ATPase subunit alpha-1 ATP1A1 2.72E+01 4.39E-04 
Ribosome biogenesis protein BMS1 homolog BMS1 2.90E+01 8.92E-03 
Ribosome biogenesis protein BRX1 homolog BRIX1 2.68E+01 1.41E-02 
Caprin-1 CAPRIN1 2.80E+01 5.88E-03 
Coiled-coil domain-containing protein 124 CCDC124 2.94E+01 1.91E-04 
T-complex protein 1 subunit gamma CCT3 2.63E+01 4.86E-02 
T-complex protein 1 subunit epsilon CCT5 2.64E+01 1.42E-03 
Cell division cycle 5-like protein CDC5L 3.04E+01 3.51E-03 
Centrosomal protein of 170 kDa CEP170 2.71E+01 2.53E-03 
Chromatin target of PRMT1 protein CHTOP 2.81E+01 3.45E-02 
CLIP-associating protein 2 CLASP2 2.74E+01 4.83E-03 
Methylosome subunit pICln CLNS1A 2.97E+01 2.16E-03 
Coatomer subunit gamma-2 COPG2 2.59E+01 2.98E-04 
Coronin-1C CORO1C 3.03E+01 2.00E-02 
Cleavage and polyadenylation specificity factor subunit 6 CPSF6 2.93E+01 4.13E-03 
Cleavage and polyadenylation specificity factor subunit 7 CPSF7 2.73E+01 2.20E-03 
Probable ATP-dependent RNA helicase DDX17 DDX17 3.22E+01 1.28E-02 
Probable ATP-dependent RNA helicase DDX20 DDX20 2.73E+01 2.81E-02 
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Nucleolar RNA helicase 2 DDX21 3.01E+01 8.42E-03 
Probable ATP-dependent RNA helicase DDX23 DDX23 2.93E+01 4.58E-03 
ATP-dependent RNA helicase DDX3X DDX3X 2.66E+01 5.42E-04 
Probable ATP-dependent RNA helicase DDX41 DDX41 2.73E+01 4.88E-03 
Probable ATP-dependent RNA helicase DDX5 DDX5 2.97E+01 1.38E-02 
ATP-dependent RNA helicase DDX50 DDX50 2.65E+01 5.75E-03 
Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 DHX15 2.76E+01 6.67E-03 
Putative ATP-dependent RNA helicase DHX30 DHX30 2.99E+01 1.03E-02 
ATP-dependent RNA helicase A DHX9 7.63E+00 4.50E-03 
Elongation factor 2 EEF2 4.68E+00 8.14E-03 
116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 3.04E+01 6.54E-03 
Eukaryotic translation initiation factor 3 subunit A EIF3A 3.34E+01 2.89E-04 
Eukaryotic translation initiation factor 3 subunit B EIF3B 3.19E+01 6.22E-03 
Eukaryotic translation initiation factor 3 subunit C EIF3C 3.23E+01 1.43E-03 
Eukaryotic translation initiation factor 3 subunit D EIF3D 3.01E+01 1.72E-03 
Eukaryotic translation initiation factor 3 subunit E EIF3E 3.15E+01 2.60E-03 
Eukaryotic translation initiation factor 3 subunit F EIF3F 3.08E+01 9.00E-03 
Eukaryotic translation initiation factor 3 subunit G EIF3G 2.99E+01 1.64E-04 
Eukaryotic translation initiation factor 3 subunit I EIF3I 3.07E+01 4.95E-03 
Eukaryotic translation initiation factor 3 subunit J EIF3J 2.75E+01 2.97E-04 
Eukaryotic translation initiation factor 3 subunit K EIF3K 2.75E+01 4.35E-02 
Eukaryotic translation initiation factor 3 subunit L EIF3L 3.20E+01 1.62E-03 
Eukaryotic translation initiation factor 3 subunit M EIF3M 3.06E+01 2.52E-02 
Eukaryotic translation initiation factor 3 subunit H EIF3S3 2.98E+01 4.34E-03 
Eukaryotic initiation factor 4A-I EIF4A1 2.82E+01 1.28E-02 
Eukaryotic initiation factor 4A-III EIF4A3 2.66E+01 2.37E-02 
Eukaryotic translation initiation factor 4B EIF4B 3.07E+01 1.05E-02 
Eukaryotic translation initiation factor 6 EIF6 2.71E+01 1.74E-02 
Emerin EMD 2.73E+01 1.99E-02 
Erlin-2 ERLIN2 2.81E+01 7.54E-03 
Exosome component 10 EXOSC10 2.76E+01 3.45E-03 
Exosome complex component RRP45 EXOSC9 2.59E+01 2.53E-02 
Constitutive coactivator of PPAR-gamma-like protein 1 FAM120A 2.74E+01 1.36E-02 
Phenylalanine--tRNA ligase alpha subunit FARSA 2.78E+01 7.54E-03 
Phenylalanine--tRNA ligase beta subunit FARSB 2.78E+01 1.17E-02 
40S ribosomal protein S30 FAU 2.85E+01 2.31E-03 
Protein furry homolog-like FRYL 3.02E+01 2.54E-02 
Gem-associated protein 4 GEMIN4 2.71E+01 2.53E-03 
Guanine nucleotide-binding protein subunit beta-2-like 1 GNB2L1 3.25E+01 3.47E-04 
Nucleolar GTP-binding protein 2 GNL2 2.75E+01 7.11E-03 
Guanine nucleotide-binding protein-like 3 GNL3 2.69E+01 4.03E-04 
Golgin subfamily A member 3 GOLGA3 2.93E+01 3.96E-03 
General transcription factor 3C polypeptide 2 GTF3C2 2.75E+01 3.97E-03 
General transcription factor 3C polypeptide 3 GTF3C3 2.57E+01 3.56E-02 
General transcription factor 3C polypeptide 4 GTF3C4 2.70E+01 2.46E-03 
Nucleolar GTP-binding protein 1 GTPBP4 2.87E+01 1.26E-02 
Histone H2B HIST1H2BN 2.99E+01 1.62E-02 
Heterogeneous nuclear ribonucleoproteins C1/C2 HNRNPC 3.08E+01 3.22E-04 
Heterogeneous nuclear ribonucleoprotein D0 HNRNPD 2.60E+01 2.60E-02 
Heterogeneous nuclear ribonucleoprotein F HNRNPF 2.74E+01 4.67E-03 
Heterogeneous nuclear ribonucleoprotein K HNRNPK 2.96E+01 9.43E-04 
Heterogeneous nuclear ribonucleoprotein M HNRNPM 6.56E+00 1.98E-02 
Heterogeneous nuclear ribonucleoprotein R HNRNPR 2.99E+01 4.29E-03 
Heterogeneous nuclear ribonucleoprotein U HNRNPU 3.23E+01 2.34E-03 
Isoleucine--tRNA ligase, cytoplasmic IARS 2.72E+01 3.12E-03 
Insulin-like growth factor 2 mRNA-binding protein 1 IGF2BP1 3.18E+01 1.09E-03 
Insulin-like growth factor 2 mRNA-binding protein 3 IGF2BP3 2.81E+01 1.22E-02 
Interleukin enhancer-binding factor 2 ILF2 3.10E+01 1.08E-02 
Interleukin enhancer-binding factor 3 ILF3 3.27E+01 2.99E-03 
Importin-8 IPO8 2.74E+01 1.30E-02 
Insulin receptor substrate 4 IRS4 1.33E+00 3.38E-03 
Influenza virus NS1A-binding protein IVNS1ABP 3.33E+01 3.05E-03 
Tyrosine-protein kinase JAK1 JAK1 2.88E+01 4.64E-03 
BTB/POZ domain-containing protein KCTD17 KCTD17 2.96E+01 1.23E-02 
BTB/POZ domain-containing protein KCTD5 KCTD5 2.96E+01 3.67E-04 
Kinesin-like protein KIF11 KIF11 1.48E+00 1.25E-03 
La-related protein 1 LARP1 3.17E+01 9.37E-04 
La-related protein 4 LARP4 2.86E+01 7.22E-03 
La-related protein 4B LARP4B 2.65E+01 8.21E-03 
LIM domain and actin-binding protein 1 LIMA1 2.98E+01 7.34E-03 
Leucine-rich PPR motif-containing protein, mitochondrial LRPPRC 2.63E+01 8.82E-03 
Putative RNA-binding protein Luc7-like 2 LUC7L2 3.00E+01 3.39E-03 
Luc7-like protein 3 LUC7L3 2.81E+01 5.20E-03 
Microtubule-associated protein 1B MAP1B 3.01E+01 3.76E-03 
Serine/threonine-protein kinase MARK2 MARK2 2.60E+01 3.76E-03 
Methionine--tRNA ligase, cytoplasmic MARS 2.62E+01 1.62E-03 
Matrin-3 MATR3 2.87E+01 1.32E-03 
DNA replication licensing factor MCM7 MCM7 2.83E+01 8.19E-03 
E3 ubiquitin-protein ligase Midline-1 MID1 3.76E+01 3.26E-04 
Putative helicase MOV-10 MOV10 2.77E+01 2.49E-02 
28S ribosomal protein S17, mitochondrial MRPS17 2.91E+01 6.96E-03 
28S ribosomal protein S22, mitochondrial MRPS22 2.74E+01 4.69E-03 
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28S ribosomal protein S25, mitochondrial MRPS25 2.71E+01 1.14E-02 
28S ribosomal protein S27, mitochondrial MRPS27 2.64E+01 3.48E-02 
Protein LYRIC MTDH 2.72E+01 1.03E-02 
Myb-binding protein 1A MYBBP1A 2.90E+01 1.44E-04 
Myosin-10 MYH10 1.13E+00 2.28E-02 
Myosin-9 MYH9 2.92E+01 4.78E-03 
Unconventional myosin-Ib MYO1B 2.71E+01 2.88E-02 
Nicotinamide phosphoribosyltransferase NAMPT 2.75E+01 8.55E-03 
Nucleosome assembly protein 1-like 1 NAP1L1 2.57E+01 7.18E-03 
Nuclear cap-binding protein subunit 1 NCBP1 2.81E+01 4.89E-04 
Nucleolin NCL 2.86E+01 6.74E-03 
Nucleolar complex protein 4 homolog NOC4L 2.80E+01 8.27E-03 
Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase NOP2 2.62E+01 5.08E-03 
Cleavage and polyadenylation specificity factor subunit 5 NUDT21 2.96E+01 6.21E-04 
OTU domain-containing protein 4 OTUD4 2.74E+01 1.45E-03 
Prolyl 4-hydroxylase subunit alpha-1 P4HA1 2.79E+01 4.44E-03 
Proliferation-associated protein 2G4 PA2G4 3.08E+01 7.55E-03 
Polyadenylate-binding protein 1 PABPC1 3.23E+01 2.17E-03 
Polyadenylate-binding protein 4 PABPC4 3.22E+01 2.78E-03 
Programmed cell death protein 4 PDCD4 2.94E+01 8.37E-03 
Proline-, glutamic acid- and leucine-rich protein 1 PELP1 2.66E+01 9.09E-03 
Serine/threonine-protein phosphatase PGAM5, mitochondrial PGAM5 2.86E+01 3.52E-03 
Protein arginine N-methyltransferase 5 PRMT5 3.54E+01 6.16E-04 
Pre-mRNA-processing factor 19 PRPF19 3.02E+01 3.67E-03 
U4/U6 small nuclear ribonucleoprotein Prp3 PRPF3 2.70E+01 1.69E-02 
U4/U6 small nuclear ribonucleoprotein Prp31 PRPF31 2.97E+01 8.19E-04 
U4/U6 small nuclear ribonucleoprotein Prp4 PRPF4 2.64E+01 3.83E-03 
Pre-mRNA-processing factor 6 PRPF6 2.98E+01 6.12E-03 
Pre-mRNA-processing-splicing factor 8 PRPF8 3.11E+01 3.06E-03 
Ribose-phosphate pyrophosphokinase 1 PRPS1 5.58E+00 3.60E-03 
Ribose-phosphate pyrophosphokinase 2 PRPS2 2.93E+01 1.56E-02 
Phosphoribosyl pyrophosphate synthase-associated protein 1 PRPSAP1 3.05E+01 8.50E-03 
Phosphoribosyl pyrophosphate synthase-associated protein 2 PRPSAP2 3.25E+01 2.15E-04 
Protein PRRC2A PRRC2A 2.85E+01 8.43E-03 
Protein PRRC2C PRRC2C 2.97E+01 2.05E-02 
26S protease regulatory subunit 4 PSMC1 2.97E+01 5.78E-03 
26S protease regulatory subunit 7 PSMC2 3.07E+01 8.06E-04 
26S protease regulatory subunit 6A PSMC3 2.89E+01 5.50E-03 
26S protease regulatory subunit 6B PSMC4 1.19E+00 1.54E-02 
26S protease regulatory subunit 8 PSMC5 4.55E+00 3.71E-04 
26S protease regulatory subunit 10B PSMC6 2.84E+01 1.52E-03 
26S proteasome non-ATPase regulatory subunit 1 PSMD1 2.97E+01 2.12E-03 
26S proteasome non-ATPase regulatory subunit 10 PSMD10 2.85E+01 2.02E-02 
26S proteasome non-ATPase regulatory subunit 11 PSMD11 3.02E+01 1.94E-02 
26S proteasome non-ATPase regulatory subunit 12 PSMD12 2.90E+01 4.18E-03 
26S proteasome non-ATPase regulatory subunit 13 PSMD13 2.95E+01 3.11E-03 
26S proteasome non-ATPase regulatory subunit 14 PSMD14 2.80E+01 1.85E-03 
26S proteasome non-ATPase regulatory subunit 2 PSMD2 2.15E+00 4.38E-03 
26S proteasome non-ATPase regulatory subunit 3 PSMD3 3.04E+01 1.48E-04 
26S proteasome non-ATPase regulatory subunit 4 PSMD4 2.79E+01 1.70E-04 
26S proteasome non-ATPase regulatory subunit 6 PSMD6 2.96E+01 9.65E-03 
26S proteasome non-ATPase regulatory subunit 7 PSMD7 3.75E+00 1.13E-02 
26S proteasome non-ATPase regulatory subunit 8 PSMD8 2.75E+01 1.56E-03 
Poly(U)-binding-splicing factor PUF60 PUF60 2.75E+01 9.95E-04 
Pyrroline-5-carboxylate reductase PYCR1 2.55E+01 3.49E-03 
RNA-binding protein 10 RBM10 3.30E+01 4.88E-04 
RNA-binding protein 14 RBM14 2.94E+01 6.57E-03 
RNA-binding protein 25 RBM25 2.75E+01 7.71E-03 
RNA-binding protein 26 RBM26 2.63E+01 3.79E-02 
RNA-binding protein 27 RBM27 2.70E+01 1.20E-02 
RNA-binding protein 28 RBM28 2.63E+01 5.02E-03 
RNA-binding motif protein, X chromosome RBMX 3.01E+01 8.90E-03 
RNA 3-terminal phosphate cyclase-like protein RCL1 2.65E+01 1.64E-03 
Reticulocalbin-2 RCN2 2.73E+01 2.67E-03 
Replication factor C subunit 3 RFC3 2.62E+01 2.34E-02 
Telomere-associated protein RIF1 RIF1 3.04E+01 9.16E-03 
Serine/threonine-protein kinase RIO1 RIOK1 3.02E+01 3.05E-03 
RING finger protein 219 RNF219 2.94E+01 2.50E-03 
RNA-binding protein 39 RNPC2 2.86E+01 8.92E-03 
60S ribosomal protein L10 RPL10 3.26E+01 7.84E-03 
60S ribosomal protein L10a RPL10A 3.22E+01 2.24E-02 
60S ribosomal protein L11 RPL11 3.19E+01 1.04E-03 
60S ribosomal protein L12 RPL12 3.18E+01 6.43E-03 
60S ribosomal protein L13 RPL13 3.30E+01 4.30E-04 
60S ribosomal protein L13a RPL13A 3.17E+01 2.25E-03 
60S ribosomal protein L14 RPL14 3.07E+01 7.88E-04 
60S ribosomal protein L15 RPL15 5.67E+00 8.90E-03 
60S ribosomal protein L17 RPL17 3.16E+01 4.69E-04 
60S ribosomal protein L18 RPL18 3.28E+01 1.68E-03 
60S ribosomal protein L18a RPL18A 3.24E+01 2.10E-03 
Ribosomal protein L19 RPL19 3.26E+01 4.36E-03 
60S ribosomal protein L21 RPL21 3.11E+01 1.99E-03 
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60S ribosomal protein L22 RPL22 3.05E+01 1.47E-03 
60S ribosomal protein L22-like 1 RPL22L1 2.70E+01 6.60E-03 
60S ribosomal protein L23 RPL23 3.09E+01 4.70E-03 
60S ribosomal protein L23a RPL23A 3.24E+01 1.26E-03 
60S ribosomal protein L24 RPL24 3.03E+01 1.24E-03 
60S ribosomal protein L26 RPL26 3.24E+01 1.20E-03 
60S ribosomal protein L27 RPL27 3.18E+01 3.06E-03 
60S ribosomal protein L27a RPL27A 3.06E+01 5.33E-04 
60S ribosomal protein L28 RPL28 3.22E+01 6.23E-04 
60S ribosomal protein L29 RPL29 3.19E+01 3.76E-04 
60S ribosomal protein L3 RPL3 7.15E+00 6.72E-03 
60S ribosomal protein L30 RPL30 3.04E+01 2.06E-03 
60S ribosomal protein L31 RPL31 3.15E+01 3.12E-04 
60S ribosomal protein L32 RPL32 3.18E+01 3.51E-04 
60S ribosomal protein L34 RPL34 2.90E+01 4.73E-03 
60S ribosomal protein L35 RPL35 3.13E+01 1.43E-02 
60S ribosomal protein L35a RPL35A 3.14E+01 2.01E-02 
60S ribosomal protein L36 RPL36 3.02E+01 1.49E-02 
60S ribosomal protein L36a RPL36A 2.97E+01 5.51E-04 
60S ribosomal protein L37a RPL37A 3.07E+01 1.05E-04 
60S ribosomal protein L38 RPL38 2.90E+01 3.49E-02 
60S ribosomal protein L4 RPL4 3.36E+01 1.82E-03 
60S ribosomal protein L5 RPL5 3.26E+01 6.62E-03 
60S ribosomal protein L6 RPL6 6.39E+00 9.35E-03 
60S ribosomal protein L7 RPL7 3.33E+01 2.21E-03 
60S ribosomal protein L7a RPL7A 8.22E+00 1.74E-03 
60S ribosomal protein L8 RPL8 3.33E+01 9.73E-04 
60S ribosomal protein L9 RPL9 3.06E+01 1.10E-04 
60S acidic ribosomal protein P0 RPLP0 3.23E+01 2.18E-03 
60S acidic ribosomal protein P2 RPLP2 2.87E+01 4.32E-03 
40S ribosomal protein S10 RPS10 3.21E+01 1.86E-03 
40S ribosomal protein S11 RPS11 3.24E+01 1.88E-03 
40S ribosomal protein S12 RPS12 3.14E+01 4.05E-04 
40S ribosomal protein S13 RPS13 3.22E+01 1.60E-03 
40S ribosomal protein S14 RPS14 3.15E+01 4.92E-04 
40S ribosomal protein S15 RPS15 3.15E+01 3.33E-02 
40S ribosomal protein S15a RPS15A 3.19E+01 1.70E-03 
40S ribosomal protein S16 RPS16 3.24E+01 1.08E-03 
40S ribosomal protein S17 RPS17 3.19E+01 1.78E-03 
40S ribosomal protein S18 RPS18 8.03E+00 7.90E-09 
40S ribosomal protein S19 RPS19 3.22E+01 1.65E-03 
40S ribosomal protein S2 RPS2 3.28E+01 1.71E-03 
40S ribosomal protein S20 RPS20 3.21E+01 4.89E-04 
40S ribosomal protein S21 RPS21 2.88E+01 2.47E-03 
40S ribosomal protein S23 RPS23 3.25E+01 1.31E-03 
40S ribosomal protein S24 RPS24 3.00E+01 1.10E-04 
40S ribosomal protein S25 RPS25 3.14E+01 5.19E-03 
40S ribosomal protein S26 RPS26 3.08E+01 2.54E-02 
40S ribosomal protein S27 RPS27 3.00E+01 3.65E-03 
40S ribosomal protein S3 RPS3 3.28E+01 3.26E-03 
40S ribosomal protein S3a RPS3A 3.30E+01 4.75E-04 
40S ribosomal protein S4, X isoform RPS4X 6.65E+00 2.28E-03 
40S ribosomal protein S6 RPS6 3.18E+01 2.28E-03 
40S ribosomal protein S7 RPS7 3.28E+01 1.99E-02 
40S ribosomal protein S8 RPS8 3.24E+01 3.63E-03 
40S ribosomal protein S9 RPS9 3.31E+01 3.94E-03 
40S ribosomal protein SA RPSA 3.32E+01 1.29E-03 
Ribosome-binding protein 1 RRBP1 2.84E+01 3.20E-02 
RRP12-like protein RRP12 2.58E+01 1.13E-02 
Ribosomal L1 domain-containing protein 1 RSL1D1 2.69E+01 1.56E-02 
U4/U6.U5 tri-snRNP-associated protein 1 SART1 2.91E+01 1.18E-04 
Splicing factor, arginine/serine-rich 15 SCAF4 2.74E+01 1.68E-02 
Protein SDA1 homolog SDAD1 2.64E+01 1.69E-02 
Plasminogen activator inhibitor 1 RNA-binding protein SERBP1 3.28E+01 2.19E-02 
Splicing factor 3B subunit 1 SF3B1 2.81E+01 8.87E-03 
Splicing factor 3B subunit 3 SF3B3 2.72E+01 1.14E-02 
Superkiller viralicidic activity 2-like 2 SKIV2L2 2.75E+01 8.05E-03 
U5 small nuclear ribonucleoprotein 200 kDa helicase SNRNP200 3.06E+01 5.98E-03 
U5 small nuclear ribonucleoprotein 40 kDa protein SNRNP40 2.72E+01 1.41E-02 
Small nuclear ribonucleoprotein Sm D1 SNRPD1 3.02E+01 1.48E-03 
Small nuclear ribonucleoprotein Sm D2 SNRPD2 2.92E+01 2.94E-04 
Small nuclear ribonucleoprotein Sm D3 SNRPD3 2.95E+01 1.93E-02 
Small nuclear ribonucleoprotein-associated proteins B and B SNRPN 3.06E+01 4.62E-04 
Spectrin alpha chain, non-erythrocytic 1 SPTAN1 3.41E+01 9.63E-04 
Spectrin beta chain, non-erythrocytic 1 SPTBN1 3.41E+01 9.41E-05 
SRSF protein kinase 1 SRPK1 2.94E+01 5.81E-03 
SRSF protein kinase 2 SRPK2 2.60E+01 2.88E-02 
Serine/arginine repetitive matrix protein 1 SRRM1 2.85E+01 1.46E-02 
Serrate RNA effector molecule homolog SRRT 2.57E+01 2.04E-03 
Serine/arginine-rich splicing factor 1 SRSF1 2.74E+01 1.86E-04 
Serine/arginine-rich splicing factor 2 SRSF2 2.69E+01 4.59E-02 
Serine/arginine-rich splicing factor 3 SRSF3 2.87E+01 1.42E-03 
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Double-stranded RNA-binding protein Staufen homolog 1 STAU1 2.88E+01 1.18E-02 
Serine/threonine-protein kinase 38 STK38 2.78E+01 2.59E-02 
SUN domain-containing protein 2 SUN2 2.97E+01 6.35E-04 
Heterogeneous nuclear ribonucleoprotein Q SYNCRIP 2.82E+01 1.08E-02 
Very-long-chain enoyl-CoA reductase TECR 2.70E+01 4.59E-03 
Testis-expressed sequence 10 protein TEX10 2.64E+01 1.64E-03 
THO complex subunit 2 THOC2 2.53E+01 1.37E-02 
Tight junction protein ZO-2 TJP2 2.65E+01 6.69E-03 
Transmembrane protein 33 TMEM33 2.74E+01 1.11E-02 
Tropomodulin-3 TMOD3 2.63E+01 4.62E-03 
TRMT1-like protein TRMT1L 2.82E+01 9.34E-03 
Tubulin beta-3 chain TUBB3 2.57E+01 5.04E-04 
Tubulin beta-4A chain TUBB4A 2.61E+01 2.90E-02 
Splicing factor U2AF 35 kDa subunit U2AF1 2.90E+01 7.02E-03 
Splicing factor U2AF 65 kDa subunit U2AF2 2.98E+01 4.30E-03 
U2 snRNP-associated SURP motif-containing protein U2SURP 2.78E+01 1.78E-05 
E3 ubiquitin-protein ligase UBR5 UBR5 2.78E+01 2.75E-02 
U4/U6.U5 tri-snRNP-associated protein 2 USP39 2.88E+01 2.14E-02 
Transitional endoplasmic reticulum ATPase VCP 2.80E+01 7.61E-05 
Vimentin VIM 1.35E+00 2.08E-02 
Methylosome protein 50 WDR77 3.30E+01 2.27E-02 
Exportin-T XPOT 2.64E+01 7.27E-03 
Nuclease-sensitive element-binding protein 1 YBX1 3.07E+01 3.00E-03 
YTH domain-containing protein 1 YTHDC1 2.78E+01 8.82E-03 
YTH domain-containing family protein 2 YTHDF2 1.60E+00 3.42E-02 
Zinc finger CCCH domain-containing protein 18 ZC3H18 2.79E+01 1.14E-02 
Zinc finger CCCH-type antiviral protein 1 ZC3HAV1 2.79E+01 1.27E-02 
Zinc finger protein 622 ZNF622 2.75E+01 1.14E-02 

 

Table 8 | Statistical analysis of proteins indentified in HTT RNA pulldown. 
Log2 ratio and p-values were calculated using measured protein intensities, i.e. eXtracted Ion Current (XIC) of all 
isotopic clusters associated with the identified amino acid sequence. Log2 ratio was calculated from the intensity sum of 
samples/ controls. p-values were calculated using the programming language ‘R’. Log2 ratio is the mean ratio of RNA 
pulldown/ control. If the protein was absent in the control, the intensity was set from 0 to 1 to be able to calculate a 
ratio. Statistical analysis was performed by A. Dagane (MDC Berlin). The first column indicates proteins specifically 
binding mutant HTT exon 1 RNA based on the statistical analysis conducted by I. Atanassov (MPI, Cologne). 

      18CAG   40CAG   70CAG   
HTT Protein name Gene. names log2 ratio  p-value log2 ratio  p-value log2 ratio  p-value 
+ Bcl-2-associated transcription factor 1 BCLAF1 #N/A #N/A 2.76E+01 1.05E-02 2.92E+01 5.32E-03 
+ Probable ATP-dependent RNA helicase DDX46 DDX46 #N/A #N/A 2.77E+01 6.08E-02 2.95E+01 4.36E-02 
+ Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 DHX15 4.27E-01 4.40E-02 1.49E+00 3.16E-03 2.26E+00 9.26E-04 
+ Probable ATP-dependent RNA helicase DHX36 DHX36 #N/A #N/A 2.68E+01 2.58E-03 2.64E+01 9.41E-04 
+ 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 1.64E+01 8.46E-01 1.80E+01 6.60E-03 1.90E+01 3.53E-03 
+ Eukaryotic initiation factor 4A-III EIF4A3 7.73E-01 5.04E-02 1.29E+00 5.26E-03 2.09E+00 1.26E-02 
+ Heterogeneous nuclear ribonucleoproteins C1/C2 HNRNPC 8.22E-01 2.01E-02 1.63E+00 2.03E-03 2.24E+00 9.75E-04 
+ Heterogeneous nuclear ribonucleoprotein U-like protein 1 HNRNPUL1 1.01E+01 4.76E-02 1.03E+01 4.06E-03 1.00E+01 1.35E-01 
+ Pinin PNN #N/A #N/A 2.78E+01 8.02E-02 2.91E+01 9.62E-03 
+ Pre-mRNA-processing factor 19 PRPF19 2.28E+01 5.60E-01 2.33E+01 1.50E-03 2.40E+01 6.02E-05 
+ U4/U6 small nuclear ribonucleoprotein Prp31 PRPF31 #N/A #N/A 2.59E+01 1.65E-02 2.60E+01 2.38E-05 
+ Pre-mRNA-processing factor 40 homolog A PRPF40A #N/A #N/A 2.85E+01 3.58E-04 2.97E+01 2.08E-04 
+ Pre-mRNA-processing-splicing factor 8 PRPF8 3.63E-01 2.11E-01 2.53E+00 1.87E-04 3.92E+00 7.91E-03 
+ Poly(U)-binding-splicing factor PUF60 PUF60 #N/A #N/A 2.63E+01 1.06E-04 2.69E+01 2.34E-03 
+ RNA-binding protein Raly RALY #N/A #N/A 2.80E+01 1.50E-02 2.86E+01 7.49E-03 
+ RNA-binding protein 25 RBM25 #N/A #N/A 2.80E+01 6.80E-04 2.86E+01 2.19E-04 
+ RNA-binding protein 39 RBM39 2.67E+01 1.58E-03 2.79E+01 2.61E-03 2.98E+01 3.12E-03 
+ 40S ribosomal protein S27 RPS27 #N/A #N/A 2.76E+01 3.74E-03 2.74E+01 1.50E-04 
+ Splicing factor 3A subunit 1 SF3A1 #N/A #N/A 2.73E+01 1.25E-04 2.83E+01 2.47E-04 
+ Splicing factor 3A subunit 3 SF3A3 #N/A #N/A 2.58E+01 3.75E-04 2.69E+01 9.21E-04 
+ Splicing factor 3B subunit 1 SF3B1 2.81E+01 8.02E-02 2.90E+01 8.00E-04 3.00E+01 1.69E-03 
+ Splicing factor 3B subunit 2 SF3B2 #N/A #N/A 2.80E+01 6.73E-03 2.87E+01 3.61E-03 
+ Splicing factor 3B subunit 3 SF3B3 2.28E+01 3.93E-02 2.40E+01 1.13E-03 2.49E+01 2.43E-04 
+ Splicing factor 3B subunit 4 SF3B4 #N/A #N/A #N/A #N/A 2.70E+01 7.80E-04 
+ U5 small nuclear ribonucleoprotein 200 kDa helicase SNRNP200 4.06E-01 1.14E-01 1.64E+00 2.48E-03 2.52E+00 8.24E-04 
+ U5 small nuclear ribonucleoprotein 40 kDa protein SNRNP40 #N/A #N/A #N/A #N/A 2.77E+01 4.19E-04 
+ Small nuclear ribonucleoprotein Sm D1 SNRPD1 #N/A #N/A 2.81E+01 7.23E-02 2.87E+01 2.92E-04 
+ Protein SON SON #N/A #N/A 2.90E+01 1.21E-02 3.10E+01 7.88E-03 
+ Serine/arginine repetitive matrix protein 2 SRRM2 #N/A #N/A 2.85E+01 4.95E-02 3.02E+01 1.75E-02 
+ Serine/arginine-rich splicing factor 1 SRSF1 2.87E+01 4.73E-02 2.90E+01 4.86E-03 3.06E+01 1.01E-03 
+ Serine/arginine-rich splicing factor 3 SRSF3 #N/A #N/A 2.92E+01 1.76E-03 3.01E+01 3.95E-04 
+ Serine/arginine-rich splicing factor 6 SRSF6 #N/A #N/A 2.99E+01 3.74E-01 3.07E+01 2.16E-03 
+ Transformer-2 protein homolog beta TRA2B 1.10E+01 3.75E-01 1.17E+01 5.44E-03 1.26E+01 1.29E-04 
+ Splicing factor U2AF 65 kDa subunit U2AF2 1.01E+00 2.69E-02 1.86E+00 1.10E-02 2.37E+00 1.43E-02 
+ U2 snRNP-associated SURP motif-containing protein U2SURP #N/A #N/A 2.59E+01 1.11E-03 2.64E+01 1.13E-03 
+ Zinc finger CCCH-type antiviral protein 1 ZC3HAV1 #N/A #N/A 2.71E+01 3.94E-04 2.71E+01 8.88E-02 

	
   ATP-binding cassette sub-family F member 2 ABCF2 #N/A #N/A #N/A #N/A 2.59E+01 1.78E-01 

	
   Apoptotic chromatin condensation inducer in the nucleus ACIN1 #N/A #N/A 2.84E+01 2.04E-01 2.89E+01 1.35E-04 
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   Cytosolic acyl coenzyme A thioester hydrolase ACOT7 2.59E+01 1.85E-02 2.57E+01 5.60E-04 2.58E+01 1.80E-04 

	
   Double-stranded RNA-specific adenosine deaminase ADAR 2.15E+01 2.26E-02 2.14E+01 1.84E-02 2.12E+01 6.79E-03 

	
   Activator of 90 kDa heat shock protein ATPase homolog 1 AHSA1 2.98E+01 1.06E-01 2.98E+01 1.96E-01 2.96E+01 1.78E-01 

	
   A-kinase anchor protein 8 AKAP8 #N/A #N/A #N/A #N/A 2.32E+01 8.70E-02 

	
   Delta-1-pyrroline-5-carboxylate synthase ALDH18A1 #N/A #N/A 2.57E+01 2.01E-01 #N/A #N/A 

	
   THO complex subunit 4 ALYREF 1.71E+01 4.58E-02 1.71E+01 4.35E-02 1.66E+01 2.10E-01 

	
   AP-2 complex subunit alpha-1 AP2A1 #N/A #N/A 2.44E+01 6.93E-06 #N/A #N/A 

	
   AP-3 complex subunit delta-1 AP3D1 #N/A #N/A #N/A #N/A 2.64E+01 2.24E-02 

	
   Intron-binding protein aquarius AQR #N/A #N/A #N/A #N/A 2.59E+01 1.67E-02 

	
   ADP-ribosylation factor 5 ARF3 #N/A #N/A #N/A #N/A 2.57E+01 1.89E-01 

	
   ATPase family AAA domain-containing protein 3A ATAD3A #N/A #N/A 2.76E+01 1.78E-01 #N/A #N/A 

	
   ATP synthase subunit b, mitochondrial ATP5F1 #N/A #N/A 2.31E+01 2.84E-02 #N/A #N/A 

	
   Pre-mRNA-splicing factor SPF27 BCAS2 #N/A #N/A #N/A #N/A 2.52E+01 7.12E-02 

	
   UPF0568 protein C14orf166 C14orf166 #N/A #N/A 2.53E+01 7.59E-02 #N/A #N/A 

	
   UPF0468 protein C16orf80 C16orf80 #N/A #N/A 2.60E+01 1.05E-02 2.59E+01 7.00E-04 

	
   Complement component 1 Q subcomponent-binding protein, mitochondrial C1QBP #N/A #N/A #N/A #N/A 2.57E+01 7.65E-02 

	
   tRNA-splicing ligase RtcB homolog C22orf28 2.24E+01 1.10E-03 2.25E+01 1.48E-03 2.23E+01 2.04E-03 

	
   Caprin-1 CAPRIN1 2.71E-01 4.71E-01 1.14E+00 6.98E-02 2.64E-01 5.40E-01 

	
   Cell division cycle 5-like protein CDC5L 2.12E+01 1.30E-01 2.21E+01 1.33E-03 2.24E+01 1.80E-03 

	
   Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial CHCHD3 2.13E+01 5.69E-02 #N/A 3.74E-01 2.12E+01 5.50E-01 

	
   Chromodomain-helicase-DNA-binding protein 4 CHD4 2.48E+01 9.91E-02 #N/A #N/A #N/A #N/A 

	
   Cytoskeleton-associated protein 4 CKAP4 5.91E+00 9.62E-02 5.70E+00 2.61E-01 5.75E+00 2.70E-01 

	
   Ciliary neurotrophic factor receptor subunit alpha CNTFR #N/A #N/A #N/A #N/A 2.59E+01 2.14E-01 

	
   Cleavage and polyadenylation specificity factor subunit 1 CPSF1 #N/A #N/A 2.56E+01 2.42E-03 #N/A #N/A 

	
   Cleavage and polyadenylation specificity factor subunit 6 CPSF6 #N/A 2.70E-03 8.98E-01 3.23E-01 1.18E+00 1.94E-01 

	
   Cleavage and polyadenylation specificity factor subunit 7 CPSF7 2.37E+01 7.89E-02 2.38E+01 7.10E-02 2.37E+01 2.45E-03 

	
   Cellular retinoic acid-binding protein 1 CRABP1 #N/A #N/A #N/A #N/A 2.59E+01 2.67E-02 

	
   Crooked neck-like protein 1 CRNKL1 #N/A #N/A #N/A #N/A 2.62E+01 4.91E-03 

	
   Pre-mRNA-splicing factor CWC22 homolog CWC22 #N/A #N/A #N/A #N/A 2.43E+01 2.32E-04 

	
   Death-associated protein kinase 3 DAPK3 2.78E+01 9.76E-04 #N/A #N/A 2.76E+01 2.14E-03 

	
   Aspartate--tRNA ligase, cytoplasmic DARS #N/A #N/A 2.57E+01 2.58E-02 #N/A #N/A 

	
   Dopamine beta-hydroxylase DBH 2.64E+01 7.29E-02 #N/A #N/A 2.64E+01 1.80E-01 

	
   ATP-dependent RNA helicase DDX1 DDX1 8.24E-01 3.45E-01 1.23E+00 5.23E-05 9.21E-01 2.89E-04 

	
   Probable ATP-dependent RNA helicase DDX17 DDX17 2.07E+00 1.85E-03 2.50E+00 5.71E-04 2.56E+00 5.24E-06 

	
   ATP-dependent RNA helicase DDX18 DDX18 2.51E+01 3.74E-01 #N/A #N/A 2.56E+01 7.18E-02 

	
   Probable ATP-dependent RNA helicase DDX20 DDX20 1.04E+01 3.43E-01 #N/A #N/A 1.08E+01 2.74E-02 

	
   Nucleolar RNA helicase 2 DDX21 8.21E-01 7.07E-03 1.05E+00 8.38E-03 4.78E-01 7.02E-02 

	
   ATP-dependent RNA helicase DDX24 DDX24 #N/A #N/A #N/A #N/A 2.40E+01 1.78E-01 

	
   ATP-dependent RNA helicase DDX3X DDX3X 1.22E+00 6.73E-03 1.52E+00 2.21E-03 1.12E+00 1.48E-02 

	
   Probable ATP-dependent RNA helicase DDX47 DDX47 1.96E+01 1.27E-01 1.98E+01 1.55E-02 1.98E+01 2.10E-02 

	
   Probable ATP-dependent RNA helicase DDX5 DDX5 1.05E+00 1.65E-02 1.32E+00 7.76E-04 1.16E+00 7.64E-03 

	
   ATP-dependent RNA helicase DDX50 DDX50 2.47E+01 1.55E-01 2.55E+01 7.16E-02 2.54E+01 2.28E-03 

	
   Putative ATP-dependent RNA helicase DHX30 DHX30 2.17E+00 9.42E-03 2.95E+00 6.63E-03 2.47E+00 5.79E-03 

	
   Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 DHX38 #N/A #N/A 2.37E+01 3.74E-01 2.41E+01 1.79E-01 

	
   ATP-dependent RNA helicase DHX8 DHX8 #N/A #N/A #N/A #N/A 2.62E+01 2.41E-03 

	
   ATP-dependent RNA helicase A DHX9 3.93E+00 1.95E-02 3.97E+00 4.96E-03 3.49E+00 2.94E-02 

	
   Endoribonuclease Dicer DICER1 2.96E+01 8.10E-03 2.96E+01 6.79E-03 2.98E+01 9.79E-03 

	
   DnaJ homolog subfamily A member 3, mitochondrial DNAJA3 #N/A #N/A 2.51E+01 1.62E-02 #N/A #N/A 

	
   Dihydropyrimidinase-related protein 3 DPYSL3 2.69E+01 8.07E-03 #N/A #N/A #N/A #N/A 

	
   E3 ubiquitin-protein ligase DZIP3 DZIP3 #N/A #N/A 2.61E+01 1.79E-01 2.59E+01 7.37E-02 

	
   Enhancer of mRNA-decapping protein 4 EDC4 2.82E+01 1.00E-01 2.76E+01 1.51E-01 2.70E+01 1.51E-01 

	
   Interferon-induced, double-stranded RNA-activated protein kinase EIF2AK2 6.69E+00 5.03E-02 6.71E+00 8.72E-03 6.23E+00 3.74E-03 

	
   Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 #N/A #N/A 2.54E+01 2.63E-05 #N/A #N/A 

	
   RNA-binding protein EWS EWSR1 1.19E+01 4.32E-02 1.20E+01 1.94E-02 1.18E+01 4.27E-02 

	
   FAS-associated factor 2 FAF2 #N/A #N/A 2.52E+01 1.79E-01 #N/A #N/A 

	
   Constitutive coactivator of PPAR-gamma-like protein 1 FAM120A 1.61E+01 1.78E-02 1.65E+01 3.01E-03 1.62E+01 1.13E-02 

	
   Protein FAM91A1 FAM91A1 2.55E+01 7.69E-02 #N/A #N/A #N/A #N/A 

	
   Protein FAM98B FAM98B #N/A #N/A 2.37E+01 7.90E-02 #N/A #N/A 

	
   Fermitin family homolog 2 FERMT2 #N/A #N/A #N/A #N/A 2.45E+01 2.05E-01 

	
   FH1/FH2 domain-containing protein 1 FHOD1 2.47E+01 2.76E-02 2.48E+01 4.73E-05 #N/A #N/A 

	
   Protein flightless-1 homolog FLII #N/A #N/A #N/A #N/A 2.69E+01 7.07E-02 

	
   Fragile X mental retardation protein 1 FMR1 #N/A #N/A 2.52E+01 1.83E-01 #N/A #N/A 

	
   RNA-binding protein FUS FUS 8.95E-01 4.30E-02 1.23E+00 5.98E-03 6.16E-01 6.83E-02 

	
   Ras GTPase-activating protein-binding protein 1 G3BP1 2.66E+01 9.77E-02 2.70E+01 9.84E-03 2.66E+01 1.20E-03 

	
   Ras GTPase-activating protein-binding protein 2 G3BP2 2.76E+01 3.80E-02 2.86E+01 2.77E-02 #N/A #N/A 

	
   Glyceraldehyde-3-phosphate dehydrogenase GAPDH #N/A #N/A 2.63E+01 6.56E-02 2.63E+01 1.29E-01 

	
   Trifunctional purine biosynthetic protein adenosine-3 GART #N/A #N/A #N/A #N/A 2.54E+01 1.98E-01 

	
   GTP cyclohydrolase 1 GCH1 #N/A #N/A 2.44E+01 9.14E-02 #N/A #N/A 

	
   Gem-associated protein 4 GEMIN4 2.94E+01 2.16E-02 2.97E+01 3.74E-01 3.01E+01 2.65E-03 

	
   Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 GNB2 5.95E+00 9.05E-01 6.25E+00 3.81E-02 5.61E+00 3.91E-01 

	
   Guanine nucleotide-binding protein subunit beta-2-like 1 GNB2L1 8.07E-01 4.86E-04 9.49E-01 1.93E-02 5.06E-01 5.69E-03 

	
   Guanine nucleotide-binding protein-like 3 GNL3 #N/A #N/A 2.60E+01 1.71E-02 #N/A #N/A 

	
   G-rich sequence factor 1 GRSF1 #N/A #N/A #N/A #N/A 2.48E+01 1.78E-01 

	
   Histone H1x H1FX #N/A #N/A 2.74E+01 1.78E-01 #N/A #N/A 

	
   Core histone macro-H2A.1 H2AFY #N/A #N/A 2.63E+01 7.76E-02 2.62E+01 1.79E-01 

	
   Trifunctional enzyme subunit beta, mitochondrial HADHB #N/A #N/A #N/A #N/A 2.61E+01 8.19E-02 

	
   Histone deacetylase HDAC2 #N/A #N/A 2.59E+01 3.74E-01 2.60E+01 1.78E-01 

	
   Histone H1.2 HIST1H1C #N/A #N/A 2.76E+01 1.92E-01 #N/A #N/A 

	
   Helicase-like transcription factor HLTF 2.51E+01 1.87E-01 2.47E+01 2.66E-02 2.47E+01 7.51E-02 

	
   Heterogeneous nuclear ribonucleoprotein A0 HNRNPA0 6.11E+00 7.01E-02 6.65E+00 3.33E-03 6.69E+00 2.49E-02 

	
   Heterogeneous nuclear ribonucleoprotein A1 HNRNPA1 5.92E+00 1.21E-01 6.59E+00 1.95E-02 6.57E+00 1.14E-02 

	
   Heterogeneous nuclear ribonucleoproteins A2/B1 HNRNPA2B1 5.65E-01 1.01E-01 1.21E+00 3.70E-02 1.46E+00 6.95E-03 
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   Heterogeneous nuclear ribonucleoprotein A3 HNRNPA3 9.09E-01 4.40E-02 1.24E+00 7.03E-04 1.46E+00 2.85E-03 

	
   Heterogeneous nuclear ribonucleoprotein F HNRNPF 2.37E+01 4.97E-04 2.37E+01 3.94E-04 2.38E+01 7.70E-04 

	
   Heterogeneous nuclear ribonucleoprotein H HNRNPH1 9.73E-01 9.50E-02 7.37E-01 2.40E-02 7.80E-01 4.60E-02 

	
   Heterogeneous nuclear ribonucleoprotein H3 HNRNPH3 #N/A #N/A #N/A #N/A 2.66E+01 2.00E-02 

	
   Heterogeneous nuclear ribonucleoprotein K HNRNPK 1.16E+00 3.01E-02 1.31E+00 1.80E-04 1.31E+00 5.15E-03 

	
   Heterogeneous nuclear ribonucleoprotein M HNRNPM 6.91E-01 1.21E-01 7.01E-01 5.66E-03 1.05E+00 1.12E-02 

	
   Heterogeneous nuclear ribonucleoprotein R HNRNPR 1.62E+00 4.62E-03 2.45E+00 3.26E-03 2.05E+00 1.61E-04 

	
   Heterogeneous nuclear ribonucleoprotein U HNRNPU 8.19E-01 6.39E-03 1.24E+00 4.45E-04 1.12E+00 2.56E-03 

	
   Heterogeneous nuclear ribonucleoprotein U-like protein 2 HNRNPUL2 #N/A #N/A 2.70E+01 1.54E-05 2.70E+01 2.32E-04 

	
   Heterogeneous nuclear ribonucleoprotein D-like HNRPDL 5.88E-01 6.01E-01 8.71E-01 4.07E-03 1.02E+00 2.61E-02 

	
   Estradiol 17-beta-dehydrogenase 11 HSD17B11 #N/A #N/A 2.52E+01 1.87E-01 2.52E+01 1.79E-01 

	
   Peroxisomal multifunctional enzyme type 2 HSD17B4 #N/A #N/A 2.62E+01 1.73E-02 2.60E+01 8.18E-02 

	
   Heat shock protein HSP 90-alpha HSP90AA1 #N/A #N/A #N/A #N/A 2.76E+01 1.87E-01 

	
   Endoplasmin HSP90B1 #N/A #N/A #N/A #N/A 2.65E+01 2.51E-01 

	
   Heat shock 70 kDa protein 1A/1B HSPA1A 2.57E+01 8.09E-04 #N/A #N/A #N/A #N/A 

	
   Insulin-like growth factor 2 mRNA-binding protein 3 IGF2BP3 1.88E+00 2.17E-03 2.40E+00 5.54E-03 2.06E+00 1.26E-02 

	
   Interleukin enhancer-binding factor 2 ILF2 2.50E+00 1.66E-04 2.75E+00 1.35E-03 2.40E+00 2.66E-03 

	
   Interleukin enhancer-binding factor 3 ILF3 3.62E+00 1.30E-02 3.72E+00 5.68E-03 3.32E+00 6.59E-03 

	
   Importin-4 IPO4 #N/A #N/A #N/A #N/A 2.34E+01 1.52E-01 

	
   Importin-7 IPO7 #N/A #N/A #N/A #N/A 2.52E+01 8.39E-02 

	
   Junction plakoglobin JUP #N/A #N/A #N/A #N/A 2.39E+01 3.39E-02 

	
   KH domain-containing, RNA-binding, signal transduction-associated protein 1 KHDRBS1 1.15E+00 5.62E-02 1.39E+00 3.97E-06 1.06E+00 4.42E-03 

	
   Protein virilizer homolog KIAA1429 #N/A #N/A 2.27E+01 7.46E-02 2.27E+01 1.70E-02 

	
   DBIRD complex subunit KIAA1967 KIAA1967 #N/A #N/A #N/A #N/A 2.57E+01 1.90E-01 

	
   Kinesin light chain 1 KLC1 #N/A #N/A 2.45E+01 1.81E-01 2.48E+01 7.33E-02 

	
   Importin subunit alpha-4 KPNA4 #N/A #N/A 2.18E+01 1.86E-01 #N/A #N/A 

	
   La-related protein 1 LARP1 2.56E+01 1.82E-01 2.60E+01 7.59E-02 #N/A #N/A 

	
   L-lactate dehydrogenase A chain LDHA #N/A #N/A #N/A #N/A 2.56E+01 1.70E-01 

	
   LEM domain-containing protein 2 LEMD2 #N/A #N/A 2.62E+01 7.73E-02 #N/A #N/A 

	
   Luc7-like protein 3 LUC7L3 #N/A #N/A #N/A #N/A 2.66E+01 2.04E-03 

	
   Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 MACF1 #N/A #N/A #N/A #N/A 2.59E+01 1.91E-02 

	
   Protein mago nashi homolog MAGOHB #N/A #N/A #N/A #N/A 2.77E+01 3.23E-04 

	
   Microtubule-associated protein 4 MAP4 #N/A #N/A 2.67E+01 1.70E-02 2.67E+01 1.86E-02 

	
   MAP7 domain-containing protein 1 MAP7D1 2.49E+01 3.74E-01 2.50E+01 2.40E-04 #N/A #N/A 

	
   Matrin-3 MATR3 -5.47E-02 7.86E-01 1.23E+00 9.63E-03 1.31E+00 1.88E-03 

	
   MMS19 nucleotide excision repair protein homolog MMS19 #N/A #N/A #N/A #N/A 2.34E+01 8.81E-02 

	
   Mannosyl-oligosaccharide glucosidase MOGS #N/A #N/A #N/A #N/A 2.52E+01 8.47E-02 

	
   RNA-binding protein Musashi homolog 1 MSI1 #N/A #N/A #N/A #N/A 2.47E+01 7.41E-02 

	
   C-1-tetrahydrofolate synthase, cytoplasmicsynthetase MTHFD1 #N/A #N/A 2.55E+01 6.44E-03 2.55E+01 1.38E-03 

	
   Myb-binding protein 1A MYBBP1A 1.10E+01 9.26E-02 1.09E+01 1.60E-01 1.09E+01 1.60E-01 

	
   Myelin expression factor 2 MYEF2 #N/A #N/A #N/A #N/A 2.60E+01 8.64E-05 

	
   Myosin light chain 1/3, skeletal muscle isoform MYL1 2.87E+01 7.72E-03 2.87E+01 3.39E-02 2.90E+01 2.46E-02 

	
   Myosin light chain kinase, smooth muscle MYLK #N/A #N/A #N/A #N/A 2.41E+01 1.78E-01 

	
   Asparagine--tRNA ligase, cytoplasmic NARS #N/A #N/A 2.57E+01 2.12E-02 2.56E+01 1.42E-03 

	
   Nucleolin NCL 8.27E-01 7.49E-02 1.68E+00 1.17E-03 7.51E-01 1.39E-01 

	
   NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial NDUFS3 #N/A #N/A #N/A #N/A 2.55E+01 1.80E-01 

	
   Non-POU domain-containing octamer-binding protein NONO 9.79E-01 3.99E-02 1.48E+00 5.16E-02 1.86E-01 6.36E-01 

	
   Nuclear pore complex protein Nup133 NUP133 2.47E+01 3.74E-01 #N/A #N/A 2.41E+01 1.71E-02 

	
   Nuclear pore membrane glycoprotein 210 NUP210 2.45E+01 7.39E-02 #N/A #N/A #N/A #N/A 

	
   Polyadenylate-binding protein 1 PABPC1 6.86E-01 5.55E-02 1.36E+00 2.47E-04 9.94E-01 1.11E-04 

	
   Polyadenylate-binding protein 4 PABPC4 5.69E-01 2.21E-01 1.06E+00 6.54E-02 8.17E-01 7.76E-02 

	
   Poly(rC)-binding protein 1 PCBP1 5.94E+00 1.67E-01 6.00E+00 3.47E-02 6.11E+00 1.87E-02 

	
   Proliferating cell nuclear antigen PCNA #N/A #N/A 2.61E+01 1.22E-01 #N/A #N/A 

	
   Polymerase delta-interacting protein 3 PDIP46 #N/A #N/A 2.58E+01 6.77E-05 #N/A #N/A 

	
   6-phosphofructokinase, muscle type PFKM 2.10E+01 7.74E-02 2.08E+01 4.36E-02 2.11E+01 6.67E-02 

	
   Prohibitin-2 PHB2 #N/A #N/A #N/A #N/A 2.52E+01 1.36E-01 

	
   D-3-phosphoglycerate dehydrogenase PHGDH #N/A #N/A 2.55E+01 3.44E-02 #N/A #N/A 

	
   Peptidyl-prolyl cis-trans isomerase PPIA #N/A #N/A #N/A #N/A 2.61E+01 2.00E-01 

	
   Serine/threonine-protein phosphatase 2A 65 kDa reg. subunit A alpha PPP2R1A 2.44E+01 1.95E-02 #N/A #N/A 2.47E+01 2.43E-01 

	
   Protein regulator of cytokinesis 1 PRC1 #N/A #N/A 2.55E+01 1.85E-01 #N/A #N/A 

	
   Peroxiredoxin-1 PRDX1 2.74E+01 1.83E-01 #N/A #N/A #N/A #N/A 

	
   Peroxiredoxin-6 PRDX6 #N/A #N/A #N/A #N/A 2.42E+01 2.75E-01 

	
   Interferon-inducible double stranded RNA-dependent protein kinase activator A PRKRA 2.76E+01 5.50E-02 2.77E+01 1.06E-02 2.77E+01 2.95E-04 

	
   Protein arginine N-methyltransferase 1 PRMT1 2.48E+01 8.22E-02 #N/A #N/A 2.55E+01 5.28E-03 

	
   Pre-mRNA-processing factor 6 PRPF6 #N/A #N/A #N/A #N/A 2.68E+01 3.15E-03 

	
   Protein PRRC2A PRRC2A #N/A #N/A 2.64E+01 4.59E-04 #N/A #N/A 

	
   26S protease regulatory subunit 6A PSMC3 #N/A #N/A 2.48E+01 2.21E-02 #N/A #N/A 

	
   26S protease regulatory subunit 8 PSMC5 #N/A #N/A #N/A #N/A 2.60E+01 1.95E-01 

	
   Paraspeckle component 1 PSPC1 2.65E+01 7.49E-02 2.71E+01 2.58E-02 2.67E+01 1.78E-01 

	
   Polypyrimidine tract-binding protein 1 PTBP1 2.59E-01 5.05E-01 1.34E+00 1.40E-02 1.18E+00 1.04E-02 

	
   Peroxidasin homolog PXDN #N/A #N/A #N/A #N/A 2.59E+01 8.74E-02 

	
   Glutamine--tRNA ligase QARS 2.41E+01 1.78E-01 #N/A #N/A #N/A #N/A 

	
   Rac GTPase-activating protein 1 RACGAP1 #N/A 1.78E-01 #N/A 1.78E-01 1.58E+01 4.02E-02 

	
   Arginine--tRNA ligase, cytoplasmic RARS #N/A #N/A #N/A #N/A 2.46E+01 8.60E-02 

 RNA-binding protein 14 RBM14 8.56E-01 3.96E-02 9.23E-01 1.52E-03 5.36E-01 8.04E-02 

	
   RNA-binding protein 6 RBM6 #N/A #N/A 2.45E+01 8.81E-02 #N/A #N/A 

	
   RNA-binding protein 8A RBM8A #N/A #N/A #N/A #N/A 2.68E+01 1.92E-01 

	
   RNA-binding motif protein, X chromosome RBMX 1.45E+00 3.14E-02 1.54E+00 4.70E-04 1.31E+00 2.29E-02 

	
   Protein RCC2 RCC2 #N/A #N/A #N/A #N/A 2.55E+01 7.30E-02 

	
   Replication factor C subunit 1 RFC1 2.05E+01 7.91E-02 2.07E+01 4.95E-03 #N/A 3.74E-01 

	
   Replication factor C subunit 2 RFC2 #N/A #N/A #N/A #N/A 2.53E+01 1.78E-01 

	
   Ribonuclease inhibitor RNH1 3.05E+01 4.55E-02 2.99E+01 4.57E-02 3.08E+01 8.87E-02 
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   RNA-binding protein with serine-rich domain 1 RNPS1 #N/A #N/A 2.57E+01 8.87E-02 2.66E+01 7.23E-02 

	
   60S ribosomal protein L10 RPL10 7.91E-01 4.98E-03 1.14E+00 1.71E-02 2.34E-01 1.98E-01 

	
   60S ribosomal protein L10a RPL10A 1.79E+01 5.05E-03 1.76E+01 2.51E-02 1.75E+01 2.50E-02 

	
   60S ribosomal protein L11 RPL11 1.09E+00 1.14E-01 8.79E-01 2.12E-02 2.69E-01 4.41E-01 

	
   60S ribosomal protein L12 RPL12 9.22E-01 8.28E-03 1.02E+00 3.09E-02 5.63E-01 9.80E-02 

	
   60S ribosomal protein L13 RPL13 7.95E-01 2.18E-02 1.12E+00 7.31E-03 5.42E-01 7.91E-02 

	
   60S ribosomal protein L13a RPL13A 1.26E+01 3.22E-02 1.25E+01 9.70E-03 1.19E+01 8.99E-03 

	
   60S ribosomal protein L14 RPL14 2.89E+01 3.46E-02 2.92E+01 1.12E-02 2.82E+01 1.19E-01 

	
   60S ribosomal protein L15 RPL15 1.28E+01 6.64E-02 1.30E+01 5.80E-02 1.27E+01 2.71E-02 

	
   60S ribosomal protein L17 RPL17 1.16E+01 2.38E-01 1.20E+01 5.06E-02 1.18E+01 1.90E-02 

	
   60S ribosomal protein L18 RPL18 1.59E+00 1.09E-01 1.90E+00 5.37E-02 1.55E+00 4.45E-02 

	
   60S ribosomal protein L18a RPL18A 1.23E+01 2.57E-03 1.24E+01 1.46E-03 1.19E+01 1.06E-02 

	
   Ribosomal protein L19 RPL19 3.10E+01 7.03E-02 3.12E+01 3.45E-02 3.16E+01 1.67E-03 

	
   60S ribosomal protein L21 RPL21 9.63E-01 1.85E-02 1.40E+00 3.32E-03 1.07E+00 3.78E-03 

	
   60S ribosomal protein L23a RPL23A 1.18E+01 8.93E-01 1.24E+01 2.23E-03 1.21E+01 9.92E-02 

	
   60S ribosomal protein L26 RPL26 2.91E+01 2.27E-02 2.91E+01 2.94E-02 2.87E+01 3.74E-01 

	
   60S ribosomal protein L27 RPL27 1.12E+00 3.41E-03 1.28E+00 5.28E-03 8.19E-01 1.78E-02 

	
   60S ribosomal protein L28 RPL28 6.62E+00 1.13E-02 6.68E+00 1.90E-02 6.52E+00 1.52E-01 

	
   60S ribosomal protein L3 RPL3 1.05E+00 7.69E-02 9.20E-01 9.76E-03 5.22E-01 9.59E-02 

	
   60S ribosomal protein L31 RPL31 2.34E+01 2.32E-03 2.39E+01 9.81E-07 2.32E+01 3.75E-05 

	
   60S ribosomal protein L34 RPL34 #N/A #N/A 2.90E+01 8.04E-02 #N/A #N/A 

	
   60S ribosomal protein L35 RPL35 2.82E+01 1.01E-01 2.81E+01 6.39E-03 2.83E+01 3.74E-01 

	
   60S ribosomal protein L35a RPL35A 1.27E+00 3.70E-02 1.29E+00 1.92E-02 6.83E-01 8.45E-01 

	
   60S ribosomal protein L36 RPL36 2.77E+01 7.39E-02 1.02E+01 1.58E-01 2.68E+01 3.74E-01 

	
   60S ribosomal protein L4 RPL4 1.13E+00 5.32E-02 1.76E+00 1.22E-03 1.27E+00 2.96E-03 

	
   60S ribosomal protein L5 RPL5 6.56E-01 1.55E-01 1.33E+00 5.33E-02 1.02E+00 1.04E-02 

	
   60S ribosomal protein L6 RPL6 1.15E+00 3.10E-01 2.18E+00 7.55E-02 1.87E+00 5.97E-02 

	
   60S ribosomal protein L7 RPL7 9.68E-01 1.02E-02 9.05E-01 8.38E-03 4.91E-01 2.89E-02 

	
   60S ribosomal protein L7a RPL7A 1.15E+00 1.79E-02 1.47E+00 4.34E-03 1.01E+00 1.85E-04 

	
   60S ribosomal protein L8 RPL8 3.00E+01 2.16E-03 3.03E+01 4.95E-04 2.93E+01 4.77E-03 

	
   60S ribosomal protein L9 RPL9 6.38E-01 7.69E-03 9.60E-01 1.74E-02 5.14E-01 1.28E-02 

	
   60S acidic ribosomal protein P0 RPLP0 5.28E-01 3.04E-02 1.03E+00 2.46E-02 4.54E-01 2.59E-02 

	
   60S acidic ribosomal protein P1 RPLP1 #N/A #N/A 2.69E+01 1.91E-01 #N/A #N/A 

	
   Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2 RPN2 #N/A #N/A #N/A #N/A 2.53E+01 1.84E-01 

	
   40S ribosomal protein S10 RPS10 1.15E+00 7.79E-03 1.53E+00 1.31E-02 8.36E-01 5.58E-02 

	
   40S ribosomal protein S11 RPS11 1.04E+00 5.16E-03 1.04E+00 9.28E-05 8.12E-01 2.26E-02 

	
   40S ribosomal protein S13 RPS13 5.69E-01 1.19E-01 1.41E+00 1.63E-02 8.61E-01 3.16E-03 

	
   40S ribosomal protein S14 RPS14 1.26E+01 6.79E-02 1.21E+01 9.16E-03 1.19E+01 3.05E-02 

	
   40S ribosomal protein S15 RPS15 2.57E+01 7.29E-02 2.62E+01 4.54E-02 2.58E+01 1.33E-04 

	
   40S ribosomal protein S15a RPS15A 1.71E+01 4.02E-02 1.74E+01 1.83E-02 1.70E+01 6.03E-02 

	
   40S ribosomal protein S16 RPS16 2.90E+01 1.15E-05 2.92E+01 1.86E-03 2.87E+01 2.92E-02 

	
   40S ribosomal protein S17-like RPS17L 2.66E+01 2.12E-02 2.68E+01 3.46E-03 2.64E+01 1.81E-02 

	
   40S ribosomal protein S18 RPS18 9.72E-01 5.13E-03 9.25E-01 1.44E-02 4.71E-01 6.32E-02 

	
   40S ribosomal protein S19 RPS19 2.66E+01 4.98E-02 2.71E+01 1.40E-03 #N/A #N/A 

	
   40S ribosomal protein S2 RPS2 7.88E-01 8.47E-02 1.41E+00 3.73E-02 1.03E+00 2.34E-03 

	
   40S ribosomal protein S20 RPS20 7.07E-01 5.10E-02 1.05E+00 3.76E-02 5.78E-01 7.05E-02 

	
   40S ribosomal protein S23 RPS23 3.01E+01 1.06E-02 3.00E+01 1.32E-03 2.96E+01 4.90E-04 

	
   40S ribosomal protein S24 RPS24 3.93E-01 2.44E-01 1.11E+00 2.62E-02 8.00E-01 8.41E-03 

	
   40S ribosomal protein S25 RPS25 6.59E+00 1.65E-03 6.68E+00 1.96E-03 5.83E+00 1.25E-01 

	
   40S ribosomal protein S3 RPS3 7.77E-01 4.04E-03 8.81E-01 8.94E-03 4.75E-01 1.57E-04 

	
   40S ribosomal protein S4, X isoform RPS4X 7.86E-01 7.53E-03 9.45E-01 4.77E-03 6.71E-01 4.48E-02 

	
   40S ribosomal protein S5 RPS5 #N/A 1.78E-01 1.66E+01 3.65E-01 1.65E+01 2.38E-02 

	
   40S ribosomal protein S6 RPS6 1.26E+01 4.02E-03 1.28E+01 1.56E-03 1.23E+01 1.47E-02 

	
   40S ribosomal protein S8 RPS8 8.62E-01 1.73E-02 1.26E+00 8.72E-03 7.32E-01 1.71E-03 

	
   40S ribosomal protein S9 RPS9 1.67E+00 2.60E-02 1.58E+00 2.12E-03 1.06E+00 6.28E-03 

	
   Sacsin SACS #N/A #N/A 2.14E+01 1.86E-01 2.13E+01 7.71E-02 

	
   Histone deacetylase complex subunit SAP18 SAP18 #N/A #N/A #N/A #N/A 2.85E+01 9.09E-02 

	
   Splicing factor 1 SF1 #N/A #N/A #N/A #N/A 2.33E+01 2.25E-01 

	
   Splicing factor, proline- and glutamine-rich SFPQ 6.88E-01 1.00E-01 1.49E+00 4.83E-02 2.30E-01 5.69E-01 

	
   Sphingosine-1-phosphate lyase 1 SGPL1 2.47E+01 1.79E-01 #N/A #N/A #N/A #N/A 

	
   Superkiller viralicidic activity 2-like 2 SKIV2L2 #N/A 2.33E-02 5.36E+00 3.30E-02 5.53E+00 1.48E-02 

	
   Mitochondrial dicarboxylate carrier SLC25A10 2.55E+01 3.73E-02 #N/A #N/A 2.57E+01 1.84E-01 

	
   Structural maintenance of chromosomes protein 1A SMC1A #N/A #N/A #N/A #N/A 2.45E+01 7.85E-02 

	
   Structural maintenance of chromosomes protein 3 SMC3 2.60E+01 1.79E-01 #N/A #N/A #N/A #N/A 

	
   WD40 repeat-containing protein SMU1 SMU1 #N/A #N/A #N/A #N/A 2.66E+01 7.27E-02 

	
   Staphylococcal nuclease domain-containing protein 1 SND1 #N/A 1.87E-02 5.58E+00 5.09E-02 5.23E+00 7.91E-01 

	
   U2 small nuclear ribonucleoprotein B SNRPB2 #N/A #N/A #N/A #N/A 2.73E+01 7.47E-05 

	
   Small nuclear ribonucleoprotein Sm D2 SNRPD2 #N/A #N/A #N/A #N/A 2.73E+01 1.88E-02 

	
   Small nuclear ribonucleoprotein Sm D3 SNRPD3 2.70E+01 1.37E-04 2.74E+01 1.67E-02 2.77E+01 7.09E-02 

	
   Small nuclear ribonucleoprotein-associated protein N SNRPN #N/A #N/A #N/A #N/A 2.75E+01 1.95E-01 

	
   Spermatogenesis-associated protein 5 SPATA5 2.34E+01 2.26E-01 2.34E+01 1.03E-01 #N/A #N/A 

	
   Serine/arginine repetitive matrix protein 1 SRRM1 #N/A #N/A #N/A #N/A 2.60E+01 1.29E-01 

	
   Serrate RNA effector molecule homolog SRRT #N/A #N/A 2.60E+01 4.01E-02 #N/A #N/A 

	
   Serine/arginine-rich splicing factor 10 SRSF10 #N/A #N/A #N/A #N/A 2.74E+01 7.30E-02 

	
   Serine/arginine-rich splicing factor 2 SRSF2 #N/A #N/A #N/A #N/A 2.81E+01 1.63E-02 

	
   Serine/arginine-rich splicing factor 4 SRSF4 #N/A #N/A #N/A #N/A 2.58E+01 1.10E-01 

	
   Serine/arginine-rich splicing factor 7 SRSF7 1.14E+01 9.90E-02 1.29E+01 1.74E-02 1.36E+01 5.78E-03 

	
   Lupus La protein SSB 2.58E+01 1.07E-01 2.66E+01 3.71E-02 2.60E+01 3.84E-02 

	
   FACT complex subunit SSRP1 SSRP1 2.52E+01 2.00E-01 #N/A #N/A #N/A #N/A 

	
   Double-stranded RNA-binding protein Staufen homolog 1 STAU1 3.22E+01 1.43E-02 3.16E+01 5.58E-03 3.15E+01 1.27E-02 

	
   Double-stranded RNA-binding protein Staufen homolog 2 STAU2 2.79E+01 3.90E-03 2.75E+01 3.75E-03 2.77E+01 7.24E-02 

	
   Stomatin-like protein 2, mitochondrial STOML2 #N/A #N/A 2.54E+01 6.26E-05 2.55E+01 2.76E-02 
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   Pre-mRNA-splicing factor SYF2 SYF2 #N/A #N/A #N/A #N/A 2.38E+01 1.83E-01 

	
   Heterogeneous nuclear ribonucleoprotein Q SYNCRIP 2.27E+01 3.09E-03 2.38E+01 1.52E-03 2.36E+01 1.07E-03 

	
   TATA-binding protein-associated factor 2N TAF15 #N/A #N/A 2.72E+01 9.00E-02 #N/A #N/A 

	
   RISC-loading complex subunit TARBP2 TARBP2 #N/A #N/A #N/A #N/A 2.77E+01 1.89E-01 

	
   Transducin beta-like protein 2 TBL2 #N/A #N/A 2.59E+01 1.78E-01 #N/A #N/A 

	
   THO complex subunit 2 THOC2 #N/A #N/A #N/A #N/A 2.64E+01 2.01E-01 

	
   Thyroid hormone receptor-associated protein 3 THRAP3 #N/A #N/A 2.74E+01 1.83E-01 2.81E+01 3.83E-03 

	
   Transportin-3 TNPO3 #N/A #N/A #N/A #N/A 2.33E+01 1.91E-01 

	
   Target of Myb protein 1 TOM1 2.42E+01 3.74E-01 #N/A #N/A 2.41E+01 1.28E-01 

	
   Nucleoprotein TPR TPR #N/A #N/A 2.33E+01 5.46E-03 #N/A #N/A 

	
   TNF receptor-associated factor 2 TRAF2 2.47E+01 1.78E-01 #N/A #N/A #N/A #N/A 

	
   TRMT1-like protein TRMT1L #N/A #N/A #N/A #N/A 2.39E+01 2.09E-01 

	
   Splicing factor U2AF 35 kDa subunit U2AF1 1.20E+00 1.90E-01 1.52E+00 6.68E-04 2.46E+00 1.32E-03 

	
   Ubiquitin-like modifier-activating enzyme 1 UBA1 #N/A #N/A #N/A #N/A 2.55E+01 3.21E-01 

	
   Regulator of nonsense transcripts 1 UPF1 2.72E+01 4.78E-04 2.76E+01 2.95E-05 2.69E+01 3.74E-01 

	
   Cytochrome b-c1 complex subunit 2, mitochondrial UQCRC2 #N/A #N/A 2.59E+01 8.58E-06 #N/A #N/A 

	
   Ubiquitin carboxyl-terminal hydrolase 10 USP10 #N/A #N/A 2.54E+01 3.74E-01 2.46E+01 1.99E-02 

	
   U4/U6.U5 tri-snRNP-associated protein 2 USP39 #N/A #N/A 2.45E+01 7.66E-02 #N/A #N/A 

	
   Vacuolar protein sorting-associated protein 35 VPS35 2.47E+01 3.74E-01 #N/A #N/A 2.50E+01 3.74E-01 

	
   5-3 exoribonuclease 2 XRN2 2.67E+01 3.77E-03 2.68E+01 5.04E-03 2.68E+01 4.87E-02 

	
   Nuclease-sensitive element-binding protein 1 YBX1 3.14E+01 6.90E-02 3.11E+01 6.79E-03 3.05E+01 2.95E-03 

	
   YLP motif-containing protein 1 YLPM1 2.71E+01 1.75E-02 2.76E+01 5.41E-04 2.69E+01 2.41E-05 

	
   Zinc finger RNA-binding protein ZFR 2.75E+01 2.41E-03 2.76E+01 3.23E-03 2.73E+01 5.61E-04 

	
   Zinc finger protein 318 ZNF318 2.52E+01 1.78E-01 #N/A #N/A #N/A #N/A 

 

 
Table 9 | Affymetrix splicing array 
Protein name Gene ID Splicing Event Estimate  Splicing Event Score 
mitochondrial translational initiation factor 2 MTIF2 Alternative 3' Acceptor Site 0.27 
Dmx-like 1 DMXL1 Alternative 3' Acceptor Site 0.27 
phosphatidylserine decarboxylase; microRNA 7109 PISD; MIR7109 Alternative 3' Acceptor Site 0.25 
NonCoding  Alternative 3' Acceptor Site 0.23 
NonCoding  Alternative 3' Acceptor Site 0.16 
ZNRD1 antisense RNA 1 ZNRD1-AS1 Alternative 3' Acceptor Site 0.21 
putative homeodomain transcription factor 1 PHTF1 Alternative 3' Acceptor Site 0.2 
NonCoding  Alternative 3' Acceptor Site 0.19 
phosphatidylinositol glycan anchor biosynthesis class N PIGN Alternative 3' Acceptor Site 0.19 
acylphosphatase 2, muscle type ACYP2 Alternative 3' Acceptor Site 0.06 
Ca++-dependent secretion activator CADPS Alternative 3' Acceptor Site 0.18 
Transcript Identified by AceView pleefarbo Alternative 3' Acceptor Site 0.17 
NonCoding  Alternative 3' Acceptor Site 0.17 
kinesin family member 16B KIF16B Alternative 3' Acceptor Site 0.17 
bromodomain and WD repeat domain containing 1 BRWD1 Alternative 3' Acceptor Site 0.09 
signal peptidase complex subunit 2 SPCS2 Alternative 3' Acceptor Site 0.14 
discoidin domain receptor tyrosine kinase 1; microRNA 4640 DDR1; MIR4640 Alternative 3' Acceptor Site 0.13 
acyl-CoA synthetase short-chain family member 2 ACSS2 Alternative 3' Acceptor Site 0.12 
DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 DDX11L5 Alternative 3' Acceptor Site 0.11 
novel transcript RP5-1085F17.3 Alternative 3' Acceptor Site 0.11 
novel transcript RP5-1085F17.3 Alternative 3' Acceptor Site 0.11 
aspartic peptidase, retroviral-like 1; PCBP1 antisense RNA 1 ASPRV1; PCBP1-AS1 Alternative 3' Acceptor Site 0.09 
NonCoding  Alternative 5' Donor Site 0.32 
DPY19L2 pseudogene 3 DPY19L2P3 Alternative 5' Donor Site 0.27 
CCCTC-binding factor (zinc finger protein) CTCF Alternative 5' Donor Site 0.27 
mitochondrial translational release factor 1-like MTRF1L Alternative 5' Donor Site 0.22 
tripartite motif containing 2 TRIM2 Alternative 5' Donor Site 0.2 
nuclear RNA export factor 1 NXF1 Alternative 5' Donor Site 0.2 
cell division cycle associated 2 CDCA2 Alternative 5' Donor Site 0.19 
aldo-keto reductase family 1, member C2 AKR1C2 Alternative 5' Donor Site 0.19 
T-cell leukemia translocation altered TCTA Alternative 5' Donor Site 0.18 
eukaryotic translation initiation factor 4E nuclear import factor 1 EIF4ENIF1 Alternative 5' Donor Site 0.18 
transmembrane protein 135 TMEM135 Alternative 5' Donor Site 0.17 
rotatin RTTN Alternative 5' Donor Site 0.17 
bromodomain and WD repeat domain containing 1 BRWD1 Alternative 5' Donor Site 0.16 
transmembrane protein 67 TMEM67 Alternative 5' Donor Site 0.15 
family with sequence similarity 83, member A FAM83A Alternative 5' Donor Site 0.15 
zinc fingers and homeoboxes 3 ZHX3 Alternative 5' Donor Site 0.13 
NonCoding  Alternative 5' Donor Site 0.1 
adaptor-related protein complex 4, sigma 1 subunit AP4S1 Alternative 5' Donor Site 0.1 
PIF1 5-to-3 DNA helicase PIF1 Alternative 5' Donor Site 0.09 
pogo transposable element with ZNF domain POGZ Cassette Exon 0.23 
zinc finger protein 519 ZNF519 Cassette Exon 0.21 
chemokine (C-X-C motif) ligand 17 CXCL17 Cassette Exon 0.21 
EF-hand calcium binding domain 7; deleted in lymphocytic leukemia 2-like EFCAB7; DLEU2L Cassette Exon 0.19 
NonCoding  Cassette Exon 0.19 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa NDUFA1 Cassette Exon 0.19 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa NDUFA1 Cassette Exon 0.19 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa NDUFA1 Cassette Exon 0.16 
acylphosphatase 2, muscle type ACYP2 Cassette Exon 0.18 
acylphosphatase 2, muscle type ACYP2 Cassette Exon 0.16 
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acylphosphatase 2, muscle type ACYP2 Cassette Exon 0.15 
polymerase (DNA-directed), delta 4, accessory subunit POLD4 Cassette Exon 0.18 
long intergenic non-protein coding RNA 1533 LINC01533 Cassette Exon 0.16 
transmembrane protein 67 TMEM67 Cassette Exon 0.15 
Transcript Identified by AceView fyweyby Cassette Exon 0.15 
zinc finger protein 789 ZNF789 Cassette Exon 0.14 
pregnancy up-regulated nonubiquitous CaM kinase PNCK Cassette Exon 0.14 
pregnancy up-regulated nonubiquitous CaM kinase PNCK Cassette Exon 0.14 
NonCoding  Cassette Exon 0.14 
aldehyde dehydrogenase 3 family, member B2 ALDH3B2 Cassette Exon 0.14 
notch 2 N-terminal like NOTCH2NL Cassette Exon 0.13 
chromosome 19 open reading frame 12 C19orf12 Cassette Exon 0.13 
dual serine/threonine and tyrosine protein kinase DSTYK Cassette Exon 0.12 
mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase MGAT1 Cassette Exon 0.12 
NonCoding  Cassette Exon 0.12 
chromosome 22 open reading frame 15 C22orf15 Cassette Exon 0.12 
S100 calcium binding protein A13 S100A13 Cassette Exon 0.11 
microphthalmia-associated transcription factor MITF Cassette Exon 0.11 
NonCoding RP11-1396O13.13 Cassette Exon 0.11 
Transcript Identified by AceView rerame Cassette Exon 0.11 
solute carrier family 7 (amino acid transporter light chain, y+L system), member 6 SLC7A6 Cassette Exon 0.11 
NonCoding  Cassette Exon 0.11 
NonCoding RP11-451O13.1 Cassette Exon 0.1 
novel putative transcript AC093627.12 Cassette Exon 0.1 
cytochrome c oxidase assembly factor 1 homolog COA1 Cassette Exon 0.1 
N-terminal EF-hand calcium binding protein 1 NECAB1 Cassette Exon 0.1 
coiled-coil domain containing 171 CCDC171 Cassette Exon 0.1 
ankyrin repeat and SOCS box containing 8 ASB8 Cassette Exon 0.1 
NonCoding  Cassette Exon 0.1 
zinc finger protein 20 ZNF20 Cassette Exon 0.1 
ZRANB2 antisense RNA 2 (head to head) ZRANB2-AS2 Cassette Exon 0.06 
IZUMO family member 4 IZUMO4 Cassette Exon 0.04 
polymerase (DNA directed) iota POLI Intron Retention 0.52 
tubulin tyrosine ligase-like family member 5 TTLL5 Intron Retention 0.32 
microtubule crosslinking factor 1 MTCL1 Intron Retention 0.29 
cAMP responsive element binding protein 1 CREB1 Intron Retention 0.28 
mucin 5AC, oligomeric mucus/gel-forming MUC5AC Intron Retention 0.28 
tyrosyl-DNA phosphodiesterase 1 TDP1 Intron Retention 0.28 
scaffold attachment factor B2 SAFB2 Intron Retention 0.28 
long intergenic non-protein coding RNA 116 LINC00116 Intron Retention 0.27 
major facilitator superfamily domain containing 8 MFSD8 Intron Retention 0.27 
coiled-coil domain containing 13 CCDC13 Intron Retention 0.26 
growth factor receptor bound protein 10 GRB10 Intron Retention 0.26 
aryl hydrocarbon receptor nuclear translocator-like 2 ARNTL2 Intron Retention 0.26 
ubiquitin specific peptidase 37 USP37 Intron Retention 0.22 
speedy/RINGO cell cycle regulator family member E3 SPDYE3 Intron Retention 0.21 
cyclin-dependent kinase-like 1 (CDC2-related kinase) CDKL1 Intron Retention 0.19 
acylphosphatase 2, muscle type ACYP2 Intron Retention 0.07 
RALY heterogeneous nuclear ribonucleoprotein RALY Intron Retention 0.18 
pre-mRNA processing factor 4B PRPF4B Intron Retention 0.15 
Transcript Identified by AceView blosleybu; yukamu Intron Retention 0.12 
suppression of tumorigenicity 5 ST5 Intron Retention 0.09 


