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Abstract

Motivation

Mathematical models are in focus of modern systems biology and increasingly important to
understand and manipulate complex biological systems. At the same time, new and improved
techniques in metabolomics and proteomics enhance the ability to measure cellular states and
molecular concentrations. In consequence, this leads to important biological insights and novel
potential drug targets. Model development in systems biology can be described as an iterative
process of model refinement to match the observed properties. The resulting research cycle is
based on a well-defined initial model and requires careful model revision in each step.

Accomplishments and Results

As an initial step, a stoichiometry-based mathematical model of the muscarinic acetylcholine
receptor subtype 2 (M2 receptor)-induced signaling in Chinese hamster ovary (CHO) cells was
derived. To validate the obtained initial model based on spatially accessible, not necessarily
time-resolved data, the novel constrained flux sampling (CFS) is proposed in this work. The thus
verified static model was then translated into a dynamical system based on ordinary differential
equations (ODEs) by incorporating time-dependent experimental data.

To learn from the errors of systems biological models, the dynamic elastic-net (DEN), a
novel approach based on optimal control theory, is proposed in this thesis. Next, the Bayesian
dynamic elastic-net (BDEN), a systematic, fully algorithmic method based on the Markov chain
Monte Carlo method was derived, which allows to detect hidden influences as well as missed
reactions in ODE-based models. The BDEN allows for further validation of the developed M2

receptor-induced signaling pathway and thus provides evidence for the completeness of the
obtained dynamical system.

Conclusion

This thesis introduces the first comprehensive model of the M2 receptor-induced signaling in
CHO cells. Furthermore, this work presents several novel algorithms to validate and correct
static and dynamic models of biological systems in a semi-automatic manner. These novel
algorithms are expected to simplify the development of further mathematical models in systems
biology.
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CHAPTER 1

Introduction

Even now, about 350 years after R. Hooke discovered empty contained spaces in cork and termed
them cells, many biological phenomena on a micro- and molecular level remain unclear (Hooke,
1665). In contrast to the macroscopic properties of living systems, the view on molecular and
even microscopic events is still restricted (Noble, 2012; Azeloglu and Iyengar, 2015). Today,
there is no doubt that macroscopic biological properties, and many diseases, are ultimately
caused by molecular interactions (Noble, 2012; Bruggeman and Westerhoff, 2007; Zhao and
Iyengar, 2012). Although the continuous improvement of laboratory techniques has led to
important insights into biological processes, there are still many unresolved questions. The
improvement of laboratory techniques, however, has also sparked the emergence of various fields
under the umbrella of life sciences (Blankenburg et al., 2009; Robyt and White, 1987; Cravatt
et al., 2007). Starting with the form and structural features of organisms, the driving forces
of molecular interactions are now in the focus of research (Bruggeman and Westerhoff, 2007;
Noble, 2012; Palsson, 2006). Thus, the fields of metabolics, proteomics and, finally, genomics
have become more and more important, with the overall aim to understand the molecular and
thus non-observable mechanisms of life (Joyce and Palsson, 2006; Bruggeman and Westerhoff,
2007; Noble, 2012; Palsson, 2006; Sauer et al., 2007).

All these branches of modern life sciences focus on biological properties caused by mo-
lecular interactions, each at their own level of detail (Sauer et al., 2007; Noble, 2012; Aloy
and Russell, 2006). One may think, for instance, of the interaction between the heartbeat and
the respiratory rate or the influence of drugs on the cellular response caused by drug-receptor
interactions (Yasuma and Hayano, 2004; Zhao and Iyengar, 2012). In the final analysis, there
are interactions between several regions of deoxyribonucleic acid (DNA) as the carrier of the
individuals’ genetic information (Alberts et al., 2014). But this is only one part of the story.
There are multifarious interactions across all levels of an organism (Noble, 2012). When consid-
ering the enormous number of cells in the human body, more than 1013 cells with about 30,000
genes, it becomes very clear how complex these interactions must be (Alberts et al., 2014).
Furthermore, there are still a lot of yet unknown phenomena, which can often only be treated as
random events (Saarinen et al., 2008). All this serves to emphasize that our view on biological
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Chapter 1 Introduction

systems, especially the human body and its cells, is restricted and only a certain part of these
systems can be observed at the same time (Bruggeman and Westerhoff, 2007; Azeloglu and
Iyengar, 2015; Aloy and Russell, 2006).

Pharmacology investigates the impact of drugs on the cell and the human body as the basis of
pharmacy (Dale and Rang, 2011). Once the drug, a cocktail of specific molecules, enters the
human body, e.g., by oral application, at some point it may be distributed throughout the whole
body via the blood stream (Dale and Rang, 2011). The drug ultimately binds to structures, i.e.,
receptors, on the cell surface (Dale and Rang, 2011). This in turn initiates a flow of information
involving single cells or cellular compartments (Dale and Rang, 2011; Alberts et al., 2014).
Such signaling pathways consist of various proteins which interact in different ways (Aloy and
Russell, 2006; Meier-Schellersheim et al., 2009; Alberts et al., 2014). The involved interactions
and general protein structures are captured by the field of proteomics (Joyce and Palsson, 2006).
In contrast, the field of metabolics focuses on chemical processes leading to intermediates and
products of the metabolism (Joyce and Palsson, 2006). In turn, the distribution of proteins and
thus the cellular structure is mainly determined by the genome (Sauer et al., 2007; Joyce and
Palsson, 2006). Finally, genomics is the field of research dealing with the composition of the
genome and, in consequence, gene expression (Sauer et al., 2007; Joyce and Palsson, 2006;
Alberts et al., 2014).

This thesis deals with mathematical models of signaling pathways. A general signaling
cascade based on protein-protein interactions is illustrated in Figure 1.1. Protein-protein interac-
tions are a direct consequence of several mechanisms driven by chemical relations (Sauer et al.,
2007; Joyce and Palsson, 2006; Berg et al., 2013). With respect to the degree of detail, the inter-
actions between proteins and, in general, between proteins and other molecules are considered
from different angles (Sauer et al., 2007; Joyce and Palsson, 2006; Aloy and Russell, 2006).
Following this, protein-protein interactions affect the three-dimensional structure of the involved
proteins, e.g., the binding of several proteins often leads to larger protein complexes (Aloy and
Russell, 2006; Berg et al., 2013). Other protein-protein interactions may result in a change of
the protein’s chemical composition (Aloy and Russell, 2006; Berg et al., 2013). For instance,
protein phosphorylation causes the association of an additional phosphate-residue (Aloy and
Russell, 2006; Berg et al., 2013). Such slight modifications may significantly alter the behavior
of the proteins (Aloy and Russell, 2006; Berg et al., 2013). In the context of signaling pathways,
phosphorylation is the major kind of interaction (Aloy and Russell, 2006; Berg et al., 2013;
Heinrich et al., 2002). It generally results in an activation of the target protein (Aloy and Russell,
2006; Berg et al., 2013; Heinrich et al., 2002). As mentioned above, there are about 30,000
genes in a single cell (Alberts et al., 2014). Each gene contains the genetic blueprint for at least
one protein, leading to very complex protein networks (Alberts et al., 2014). Hence it becomes
clear that only certain parts of protein-protein interaction networks can be considered for a
detailed mathematical modeling of such systems (Bruggeman and Westerhoff, 2007; Noble,
2012; Azeloglu and Iyengar, 2015).

In the past, a lot of effort has been devoted to the characterization and description of proteins
and their functions (Sauer et al., 2007; Aloy and Russell, 2006; Kanehisa et al., 2016). But even
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Figure 1.1: Illustration of a generic signaling pathway stimulated by a single drug and intercellular
communication. Compounds (C), e.g., neurotransmitters or hormones, bind to specific receptors (R),
which leads to the modulation of subsequent intracellular proteins (P). These compounds are released
by other cells as a way of intercellular communication. As illustrated, the produced or modulated
messenger compounds are uptaken by vesicles and then transported to the cell membrane. Afterwards,
the compounds are released via exocytosis, i.e., the fusion of the vesicle with the cellular membrane. On
the other hand, drugs distributed through, for instance, the blood stream, bind to specific receptors to
induce signal cascades as one way to modulate intercellular communication. Once the signaling pathway
is stimulated, there are multiple ways of signal transduction. Here, the general principle is explained
using an arbitrary signaling pathway as an example. The blue arrows indicate the interactions or the
dependencies between the involved actors. These interactions can be phosphorylation, protein-binding,
catalytic or inhibitory events. Most proteins are further characterized, e.g., as kinases (K) or enzymes (E).
Kinases are able to phosphorylate specific subsequent proteins which in turn can then be dephosphorylated
by phosphatases. In contrast, enzymes can catalyze chemical reactions to produce or modulate other
intracellular compounds, i.e., metabolites. In addition, proteins or other molecules can enter the nucleus
to modulate DNA transcription. This is mediated via specific transcription factors (TF). In particular,
the DNA gets transcripted into messenger ribonucleic acid (mRNA) which can then leave the nucleus
and gets translated into the specific protein. The protein distribution is regulated individually in each
cell via this mechanism. Please note that this illustration serves as a principal schematic illustration of a
signaling pathway stimulated by a single drug and intercellular communication. There are many other
mechanisms of inter- and intracellular signaling which are not described at this point.
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if all proteins including their various functions were fully characterized, it would still not be
possible to observe these structures and their interactions in sufficient detail in real-time (Brugge-
man and Westerhoff, 2007; Noble, 2012; Azeloglu and Iyengar, 2015). However, today there
exist a lot of techniques to quantify the number of proteins and their composition at fixed time
points (Blankenburg et al., 2009; Robyt and White, 1987; Cravatt et al., 2007). More often
than not the quantification is not possible in real-time for a huge number of proteins and thus
the processes have to be stopped and conserved in order to proceed with the actual quantifica-
tion (Robyt and White, 1987; Schröder et al., 2010; Cravatt et al., 2007). Aggravated by the
fact that it is not possible to observe these interactions with the human eye, in contrast to other
phenomena which occur on a microscopic level, this is where computational biology in gen-
eral and systems biology in particular comes in (Meier-Schellersheim et al., 2009; Kitano, 2002).

Computational biology provides methods to capture otherwise unobservable compounds and
mechanisms of such biological properties (Machado et al., 2011; Bruggeman and Westerhoff,
2007; Kitano, 2002). It provides tools to analyze experimental data even if the underlying
cause is not observable or if the data is too complex for manual analysis (Bruggeman and
Westerhoff, 2007; Meier-Schellersheim et al., 2009; Kitano, 2002). Determined by the nature
of the accessible experimental data, the gained insights are often limited. When studying
protein-protein interactions, often only the amount of active and inactive proteins is meas-
urable (Bruggeman and Westerhoff, 2007; Meier-Schellersheim et al., 2009; Kitano, 2002).
Therefore, direct assumptions regarding the underlying mechanisms are not possible. Never-
theless, it is possible to make relative statements about correlations, e.g., whether an increase
in one protein concentration affects the concentration of another protein or not, even though
the cause remains unclear (Machado et al., 2011; Bruggeman and Westerhoff, 2007; Kitano,
2002). Here, computational biology provides multifunctional methods to further interpret these
relations (Bruggeman and Westerhoff, 2007; Meier-Schellersheim et al., 2009; Machado et al.,
2011; Kitano, 2002).

This thesis aims for a detailed mechanistic modeling of protein-protein interaction networks
to provide a physiological explanation for observed biological properties. In more detail a
mathematical model for the muscarinic acetylcholine receptor subtype 2 (M2 receptor)-induced
signaling cascade is developed. Recent in vitro studies outlined an amplification of the drug-
induced whole-cell response, as drafted in Figure 1.2 (Schrage et al., 2013). The variation of the
optical density of the cell caused by dynamic mass redistribution (DMR) is a common measure
for characterizing affinities and the efficiency of a given drug (Schrage et al., 2013; Schröder
et al., 2011). So far, there is no explanation of the observed amplification, although it may lead
to novel therapeutic approaches (Schrage et al., 2013; Schröder et al., 2011). The regulators of
G protein signaling (RGS) identified in this work are well known for their therapeutic potential
in the context of heart diseases (Kimple et al., 2011). Besides others, a lack of RGS4 results in
a decrease of the heart rate in mice, which underlines the therapeutic potential of this class of
RGS (Kimple et al., 2011).

In addition to the developed M2 receptor-induced signaling pathway, several methodolo-
gical innovations are presented that are of general interest for model development in systems
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Figure 1.2: Ligand-induced whole-cell response in CHO cells. The cells were stimulated with different
iperoxo concentrations. The blue line indicates the 50% receptor binding level (pKD). The curve clearly
suggests a concentration-based signal-amplification. In addition, a time-dependent amplification of the
ligand-induced DMR response was observed (Engelhardt et al., 2017; Schrage et al., 2013).

biology (Engelhardt et al., 2017; Kitano, 2002; Azeloglu and Iyengar, 2015). Once the first
sketch of the assumed protein-protein interaction network has been derived, an experimental
validation of the model is required (Engelhardt et al., 2017; Kitano, 2002; Azeloglu and Iyengar,
2015). Such data should ideally reflect all relevant components of the model in a time- and
space-resolved manner (Klipp and Liebermeister, 2006). In practice, this is often difficult to
achieve due to technical, financial and time restrictions. Hence, it is desirable to first check the
principal feasibility of the model to reproduce some expected key properties (Engelhardt et al.,
2017; Kitano, 2002; Azeloglu and Iyengar, 2015). This way, the driving and thus important
proteins of the network can be localized and preferably measured, especially in cases were
resources are scarce and only a small number of the proteins are experimentally accessible (En-
gelhardt et al., 2017; Kitano, 2002; Azeloglu and Iyengar, 2015). In order to address these
issues, I proposed a novel technique called constrained flux sampling (CFS) which allows for the
generation of a first hypothesis and the ranking of the involved structures and players regarding
their importance (Engelhardt et al., 2017). This allows for an improved experimental planning
with respect to the derived main actors (Engelhardt et al., 2017; Kitano, 2002; Azeloglu and
Iyengar, 2015).

The CFS analyzes the elementary flux modes (EFMs), the extreme pathways and the flux
sampling to reveal the principal behavior of the system (Engelhardt et al., 2017). In this work,
this allowed to identify biologically important subnetworks, which have been described in detail
in literature (Engelhardt et al., 2017). Moreover, CFS allowed to confirm that our developed
mathematical model can reproduce the experimentally observable increase in cyclic adenosine
monophosphate (cAMP) production after receptor stimulation, which affects the cytoskeleton
structure and, in consequence, changes the optical density of the cells (Engelhardt et al., 2017).
This demonstrates that mathematical tools developed for metabolic network analysis can also be
applied to mixed metabolic and signaling models (Engelhardt et al., 2017). This is very helpful
for performing a priori model analyses with little effort and for the generation of hypotheses for
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further research (Engelhardt et al., 2017; Kitano, 2002; Azeloglu and Iyengar, 2015).

For further validation and to achieve a better understanding of the temporal aspect of the
signaling process, a series of quantitative protein measurements were conducted. With the
help of the gathered data, it was possible to extend and reformulate the original model. The
refined mathematical model (formulated as a system of ordinary differential equations (ODEs))
reflected the observed temporal behavior of the M2 receptor-dependent signaling cascade.

In the context of ODE-based mathematical model development, a frequent concern is that,
on the one hand, all relevant molecules and processes are included and, on the other hand,
there are neither wrongly modeled nor missing molecular interactions. In order to address
this general problem within this thesis, a novel algorithm called dynamic elastic-net (DEN) is
proposed. The DEN uses both an initial ODE system and experimental measurements as input
and estimates which molecules in the ODE system are most likely influenced by factors that are
not captured in the model (Engelhardt et al., 2016). This allows to estimate hidden influences at
specific points in the system (Engelhardt et al., 2016). The methodology is based on optimal
control theory (OCT) and can be applied to any mathematical system of ODEs (Engelhardt et al.,
2016). Therefore, the proposed approach could be applied to other fields of natural science as
well (Engelhardt et al., 2016). As it is common for deterministic approaches, the DEN does
not include uncertainties of the estimates. To address this issue, a full Bayesian extension is
developed in this thesis. The Bayesian dynamic elastic-net (BDEN) takes the uncertainties of the
obtained estimates into account and leads to more reliable solutions (?). Moreover, the BDEN
is principally able to detect wrong and missing reactions in ODE-based biological models (?).

Altogether, a first comprehensive molecular ODE-based model of the M2 receptor-induced
DMR in CHO cells is presented and analyzed in this work (Engelhardt et al., 2017). For this
purpose, I developed a novel approach to investigate signal transduction based on static mod-
els (Engelhardt et al., 2017). Furthermore, a novel concept for detecting hidden influences as
well as missed and wrong interactions using measured dynamics of system internal variables is
presented (Engelhardt et al., 2016). Based on these ideas, a deterministic and Markov chain
Monte Carlo (MCMC)-based algorithm was developed, which predicts unknown inputs of
hidden as well as observed variables (?).

In Chapter 2, this thesis first provides a general overview of the field of systems biology and
related topics. Then, Chapter 3 introduces the motivating G protein (GP)-induced signaling and
the employed experimental techniques. Next, the fundamental methodology of the developed
techniques is explained in detail in Chapter 4. Starting with Chapter 5, the results and developed
methods are explained. In particular, Chapter 5 describes the developed CFS as a method to
analyze the static model of the GP-induced signaling in CHO cells. In addition, first conclusions
about the signal amplification mechanism in CHO cells are drawn. Chapter 6 details the DEN as
a novel approach to learn from the errors of dynamical biological systems. Following this, the
BDEN is discussed in Chapter 7 as a Bayesian extension of the DEN. In Chapter 8, the dynamic
model of the GP-induced signaling in CHO cells and the drawn conclusions are presented. The
final conclusions are then drawn in Chapter 9.
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CHAPTER 2

Modeling Biological Systems

Biological processes are the result of a complex interplay of various components on different
levels (Kestler et al., 2008; Bruggeman and Westerhoff, 2007; Noble, 2012). Consequently, a
systematic interdisciplinary strategy is necessary to provide a global view on biological pro-
cesses (Kestler et al., 2008; Bruggeman and Westerhoff, 2007; Noble, 2012). At the beginning,
biological phenomena were largely considered separately and investigated by independent
branches of bioscience (Bruggeman and Westerhoff, 2007). Molecular biosciences, for instance,
focused on the function of single molecules and did not consider the interplay between in-
dividual molecules in a broader context (Bruggeman and Westerhoff, 2007). But with new
and improved insights into biological systems, the involved processes were considered from a
more global perspective and thus the focus shifted towards holistic approaches (Bruggeman and
Westerhoff, 2007). This progress was facilitated by a dramatic improvement of measurement
techniques in metabolics, genomics and proteomics, such as mass spectrometry, quantitative
western blotting (WB), DNA-sequencing and other high-throughput technologies (Blankenburg
et al., 2009; Robyt and White, 1987; Cravatt et al., 2007). The new interdisciplinary and holistic
concept led to the development of the field of systems biology (Kestler et al., 2008; Bruggeman
and Westerhoff, 2007; Noble, 2012). Systems biology aims for a global view on biological
processes in well-defined systems (Kestler et al., 2008; Bruggeman and Westerhoff, 2007; Noble,
2012). Until 2004, when 99% of the euchromatic sequence of the human genome, including
about 2.85 billion nucleotides, were successfully uncovered, systems biology mainly dealt with
protein-protein interactions and the metabolism on different cellular levels (Lander et al., 2001;
Consortium, 2004; Hood and Galas, 2003). With the decoding of the human genome, gene regu-
lation and gene expression became important topics in systems biology as well (Lander et al.,
2001; Consortium, 2004; Eisenberg et al., 2000). The complexity and diversity of biological
systems requires an interdisciplinary and comprehensive approach (Aloy and Russell, 2006;
Sauer et al., 2007). Thus, many concepts from physics and mathematics have been adapted
and applied to connect and uncover cellular mechanisms (Kestler et al., 2008; Bruggeman and
Westerhoff, 2007; Noble, 2012; Sauer et al., 2007).

7



Chapter 2 Modeling Biological Systems

In contrast to bioinformatics and other branches of computational biology, system biology
attempts to uncover the mechanisms behind biological processes rather than to purely predict
the behavior of biological systems (Bruggeman and Westerhoff, 2007). Although bioinform-
atics is able to reveal the players in complex biological processes, e.g., in the form of gene
expression or protein concentrations, the detailed mechanisms remain largely unknown, which
means that we are able to observe the effect but not the cause (Aloy and Russell, 2006; Sauer
et al., 2007). Hence the fundamental challenge remains: to understand the underlying mech-
anisms and functions on a detailed and holistic level (Sauer et al., 2007). Therefore, the
development of novel tools to predict the mode of action of the observed structures is highly
desirable (Meier-Schellersheim et al., 2009; Hübner et al., 2011; Kahm et al., 2012). Com-
monly, systems biology translates biological processes into mathematical models to reflect
their driving mechanisms (Bruggeman and Westerhoff, 2007; Hübner et al., 2011). Models in
systems biology are usually composed of proteins, metabolites and genes which may interact
on different cellular levels (Noble, 2012). Figure 2.1 illustrates the systematic hierarchy of
biological systems (Noble, 2012). Although the questionable central dogma of molecular
biology still persists, the main reason why genes are located at the bottom of this hierarchy is
the fact that they represent the so-far smallest known unit (Noble, 2012; Crick, 1970). However,
the assumption that the genome solely controls or determines the whole system has been proven
obsolete (Noble, 2012; Crick, 1970; Alberts et al., 2014). Even though gene mutation may
change the behavior of an organism, these mechanisms are still triggered by epigenetic controls
or other factors on various levels of the organism (Noble, 2012; Crick, 1970; Alberts et al.,
2014). On these grounds, the valid question arises whether genetic variations are the cause of
biological phenomena or if they are the result of a change in the metabolism triggered by the
environment (Noble, 2012; Crick, 1970; Alberts et al., 2014). Much effort has been devoted
to the description of the mechanisms of these complex networks involving proteomics, meta-
bolics and genomics (Meier-Schellersheim et al., 2009; Hübner et al., 2011; Chuang et al., 2010).

In systems biology, the common distinction is between top-down and bottom-up strategies
(Bruggeman and Westerhoff, 2007). The latter starts with a comparatively huge amount of
data and knowledge and tries to distill the driving mechanisms through reducing the com-
plexity (Bruggeman and Westerhoff, 2007). In contrast, bottom-up strategies start with a
comparatively small model and detailed knowledge and extent this model until the biological
process in question is completely described by the model (Bruggeman and Westerhoff, 2007).
Besides the modeling strategy, the kind of behavior that is observed is crucial for choosing the
right approach (Kestler et al., 2008; Bruggeman and Westerhoff, 2007; Sauer et al., 2007). Even
if a complete biological model includes all spatio-temporal interactions for a given task, it is
often sufficient to model only the important part of the system (Bruggeman and Westerhoff,
2007; Sauer et al., 2007; Azeloglu and Iyengar, 2015). In many cases the model is restricted
to distinguished states of the system because the complexity of the model increases with its
dynamics (Bruggeman and Westerhoff, 2007; Sauer et al., 2007). Consequently, a clear distinc-
tion between static and dynamic biological processes is necessary (Bruggeman and Westerhoff,
2007; Sauer et al., 2007).
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Figure 2.1: General hierarchy in systems biology. Protein-RNA networks, regulated by genes, are grouped
in certain compartments or cell organelles which are the building blocks of cells. Interacting cells, such
as cardiomyocytes in the heart, build tissues, e.g., the cardiac muscle. Different types of tissues then
form certain organs such as the heart which is only a part of the entire organism. According to this
natural hierarchy, initially, systems biology considered genes to be the main unilateral regulatory entity of
living systems. Modern systems biology instead assumes that all components of the organism bilaterally
interact on all levels. However, for modeling purposes, it makes sense to start either at the top or at the
bottom of the illustrated hierarchy to successively reduce or increase the complexity of the system in a
meaningful manner (Noble, 2012; Alberts et al., 2014; Crick, 1970).

This work focuses on static and dynamic mechanistic models of chemical reaction networks
(CRNs), adopting a bottom-up approach. In contrast to, for instance, forecasting models,
mechanistic models are not only capable to predict the behavior of biological systems but
also to reveal their underlying mechanisms (Meier-Schellersheim et al., 2009; Hübner et al.,
2011; Chuang et al., 2010). Strictly speaking, solely predictive models are not systems biology
models because they only forecast the behavior of the system rather than reveal emergent
properties (Kestler et al., 2008; Bruggeman and Westerhoff, 2007). However, the conceptual
borders of systems biology are not clearly stated in literature (Aloy and Russell, 2006; Chuang
et al., 2010; Hübner et al., 2011). Therefore, the term systems biology has different meanings
in different communities (Aloy and Russell, 2006). Because of its origin, systems biology
seeks to understand the mechanisms of living organic systems based on explanatory models and
not to build forecasting models with large predictive power but without the ability to supply
detailed mechanistic insights (Bruggeman and Westerhoff, 2007; Sauer et al., 2007; Noble,
2012; Azeloglu and Iyengar, 2015).

2.1 Modeling Strategies

The sheer complexity of biological systems and their interaction requires a practical solution
strategy to uncover the underlying mechanisms (Azeloglu and Iyengar, 2015). A trade-off

between complexity and reliability is essential to avoid oversimplification on the one hand
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and overcomplication on the other (Azeloglu and Iyengar, 2015; Borkovich and Ebbole, 2010;
Bruggeman and Westerhoff, 2007). Oversimplified models can deviate substantially from
reality by ignoring important details or involving abstracted and thus unquantifiable paramet-
ers (Azeloglu and Iyengar, 2015). In contrast, the number of selectable variables in overcom-
plicated models is higher than the number of data points and thus they can insufficiently be
derived (Ashyraliyev et al., 2009). Both cases result in unrealistic and unreliable models (Azelo-
glu and Iyengar, 2015). This can be addressed, at its extreme, from two different angles, i.e., the
bottom-up and top-down perspective (Borkovich and Ebbole, 2010; Bruggeman and Westerhoff,
2007). As discussed, bottom-up approaches start with comprehensive models which then get
extended and, vice versa, top-down approaches start with large settings, often based on a huge
amount of data, which then get reduced (Borkovich and Ebbole, 2010; Bruggeman and West-
erhoff, 2007). However, gene-regulatory networks are influenced by processes occurring at a
proteomic level (Aloy and Russell, 2006). It is therefore important to have detailed knowledge
about the mechanisms at the proteomic level to understand large-scale genomics data (Aloy and
Russell, 2006). Mechanisms at the proteomic level are based on protein structures, and thus
detailed knowledge about the underlying three-dimensional structure of proteins is necessary to
fully understand biological processes (Aloy and Russell, 2006).

Although top-down approaches are commonly referred to as phenomenological models, the
concept of reduction until the underlying mechanisms become clear can be transferred to pure
mechanistic models based on proteomics (Bruggeman and Westerhoff, 2007). Here, a similar
question arises: whether to start with complete but complex or comprehensive but simplified
models (Hübner et al., 2011; Bruggeman and Westerhoff, 2007).

2.1.1 Top-down Strategies

Since the basis of top-down modeling is mostly phenomenological, the underlying mechan-
isms are unclear (Bruggeman and Westerhoff, 2007). The amount of prior knowledge is often
very restricted such that not even relationships between proteins are known (Borkovich and
Ebbole, 2010; Bruggeman and Westerhoff, 2007). However, large-scale mechanistic models or
correlation-based models can be a starting point for top-down modeling (Borkovich and Ebbole,
2010; Bruggeman and Westerhoff, 2007). The common principle of such modeling approaches
is the idea that similar changes of components indicate a functional relation (Borkovich and
Ebbole, 2010). Thereby, system properties distilled from, for instance, proteom or transcriptome
data, are mapped to a mechanistic model with a certain complexity (Borkovich and Ebbole,
2010; Bruggeman and Westerhoff, 2007). Top-down strategies take the entirety of large-scale
networks into account and thus are able to predict completely unknown interactions (Hein-
rich and Schuster, 1996; Choffnes et al., 2011; Bruggeman and Westerhoff, 2007). Yet the
basic mechanisms will remain hidden without further experimental observations (Heinrich and
Schuster, 1996; Choffnes et al., 2011; Bruggeman and Westerhoff, 2007). In situations where the
underlying causality is completely unclear or just too complex for detailed modeling, top-down
approaches are often the method of choice (Heinrich and Schuster, 1996; Choffnes et al., 2011;
Bruggeman and Westerhoff, 2007).
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Top-down approaches require a clear biological question to choose the right experimental
design in order to gain a large and information-rich data set (Borkovich and Ebbole, 2010).
No prior knowledge regarding detailed interactions and the involved processes is necessary
(Borkovich and Ebbole, 2010). The experimental data sets used for top-down approaches are
usually very large and thus efficient statistical tools must be used to discover behavioral patterns
and functional clusters (Bruggeman and Westerhoff, 2007). In consequence, the underlying
biological process can be uncovered with increasing level of detail (Bruggeman and Westerhoff,
2007). Starting with potentially complete, often genome-wide data, the biological process
can be successively revealed until the mechanistic details of the observed properties are fully
known (Bruggeman and Westerhoff, 2007).

Besides their benefits, top-down approaches also have serious disadvantages, not the least be-
cause causality of the data has to be assumed (Choffnes et al., 2011; Bruggeman and Westerhoff,
2007). Hence, mechanisms which are well-described by correlations are often far away from
reality (Bruggeman and Westerhoff, 2007). Thus, the findings have to be verified experimentally.
As recently demonstrated, it is very likely to arbitrarily find spurious structures in big data sets
as long as the data set is sufficiently large (Calude and Longo, 2016). In order to successfully
uncover the functional and biochemical mechanisms of a biological system, it is essential to
develop a detailed model of the phenomena under investigation (Meier-Schellersheim et al.,
2009; Azeloglu and Iyengar, 2015; Aloy and Russell, 2006).

2.1.2 Bottom-up Strategies

As an alternative to top-down strategies, bottom-up strategies start with restricted but detailed
mechanistic, mostly biochemical networks, with the intention to eventually obtain a complete
model of the system (Bruggeman and Westerhoff, 2007). This requires prior knowledge and
prior assumptions about the underlying mechanisms (Bruggeman and Westerhoff, 2007). Start-
ing from a part of the entire model, e.g., a well-known subsystem, the model is iteratively
extended through the incorporation of more and more details (Bruggeman and Westerhoff,
2007). In consequence, all components and mechanisms which are not or only partially known
are neglected in this approach (Borkovich and Ebbole, 2010). The question arises how to extend
the model at a certain level to avoid the inclusion of unnecessary details while at the same time
including all important mechanisms (Bruggeman and Westerhoff, 2007). This is in stark contrast
to top-down approaches, where the main challenge is to keep all important mechanisms while
removing unnecessary details (Borkovich and Ebbole, 2010; Bruggeman and Westerhoff, 2007).

In bottom-up approaches, the required information about the involved kinetics and physico-
chemical properties of the components are composed in detailed models (Heinrich and Schuster,
1996; Choffnes et al., 2011; Bruggeman and Westerhoff, 2007). Gathering meaningful data
reflecting the properties of the system and the involved mechanisms is crucial for such detailed
models (Hübner et al., 2011; Bruggeman and Westerhoff, 2007). Today, information about
specific mechanisms and interactions is stored in several databases which allows for the ad-
aption of concrete models to the observed properties (Kanehisa et al., 2016; Juty et al., 2015).
Information about the specific parameters is nevertheless rarely available because the conditions
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under which the data was collected may vary from the conditions under which the parameters
are estimated (Azeloglu and Iyengar, 2015). It is therefore important to reach a compromise
between complexity and observability while at the same time avoiding the neglection of funda-
mental biological mechanisms which might lead to wrong conclusions (Azeloglu and Iyengar,
2015). On the other hand, it is also vital to avoid overcomplication and therefore weak predic-
tions (Azeloglu and Iyengar, 2015). Parameter estimation is often the only way to determine the
parameters of such models (Bruggeman and Westerhoff, 2007; Azeloglu and Iyengar, 2015).
In consequence, bottom-up studies might show different levels of accuracy (Bruggeman and
Westerhoff, 2007; Azeloglu and Iyengar, 2015). In this context, it is questionable if biologically
exact kinetics, including thermodynamically feasible and accurate parameters, are essential for a
realistic model (Bruggeman and Westerhoff, 2007; Azeloglu and Iyengar, 2015). An abstraction
of the exact kinetics, including an approximation of the involved parameters, is often sufficient
to describe the properties of the biological system and to uncover new mechanisms (Ashyraliyev
et al., 2009; Azeloglu and Iyengar, 2015).

To balance the advantages and disadvantages of the discussed approaches, a combination of
both strategies has been proposed (Meier-Schellersheim et al., 2009). This involves combining
a large-scale network with both correlation-based interactions and a detailed mechanistic model
to end up with a holistic model of the whole organism (Meier-Schellersheim et al., 2009;
Noble, 2012). Both the entire network and the driving mechanisms are considered when
adopting this strategy (Meier-Schellersheim et al., 2009). As an extension of this concept,
multi-scale modeling unifies models of different levels and scales (Meier-Schellersheim et al.,
2009; Noble, 2012). For the human pathogen Mycoplasma genitalium, an organism with one of
the smallest genomes, a model including all components and interactions has been proposed
in 2012 (Karr et al., 2012). The complex model contains different levels, starting with the
genome, and is able to simulate the whole life cycle of Mycoplasma genitalium (Karr et al.,
2012). The idea behind the combination of both strategies is to combine different aspects
of an organism, such as genome information, protein interaction, inter-cellular signaling and
organelle mechanics, into one predictable detailed mechanistic model with maybe probabilistic
components (Meier-Schellersheim et al., 2009). Such models then allow for more realistic
in silico knock-out experiments and drug-target prediction (Meier-Schellersheim et al., 2009;
Kitano, 2002; Scheidel et al., 2016). In addition, an alternative promising strategy of increasing
popularity is the combined integration of various inherently different data sources, e.g., genomics,
metabolics, proteomics and literature-based knowledge (Sauer et al., 2007; Praveen and Fröhlich,
2013; Bruggeman and Westerhoff, 2007).

2.2 Research Cycle

Mathematical modeling can be interpreted as a continuous process of model revision ideally
starting with prior knowledge and data, as illustrated in Figure 2.2 (Azeloglu and Iyengar, 2015;
Kitano, 2002). Depending on the quality and quantity of the available data and knowledge,
a bottom-up or top-down strategy may be chosen (Meier-Schellersheim et al., 2009; Kitano,
2002). In any case, a prior model of the considered biological process is required to explain
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the given observations (Kitano, 2002). This can be a detailed biochemical reaction network,
which is often the case for bottom-up approaches, or a more general whole-cell model or patient
model which allows for the identification of the involved subnetworks and components (Kitano,
2002; Bruggeman and Westerhoff, 2007). The parameters of the model must then be adapted to
the given data in order to gain reliable model predictions (Azeloglu and Iyengar, 2015; Kitano,
2002; Bruggeman and Westerhoff, 2007). The obtained in silico predictions are afterwards
compared with further experimental observations for verification and falsification (Kitano, 2002;
Bruggeman and Westerhoff, 2007). In consequence, the inclusion and exclusion of components,
subnetworks or a certain level of detail leads to a refined model (Kitano, 2002; Bruggeman and
Westerhoff, 2007). The refined model has to be adapted again to the given data in order to gener-
ate new in silico predictions (Kitano, 2002; Bruggeman and Westerhoff, 2007). This leads to a
cycle of testing and model refinement which continues until the in silico model is in sufficient
agreement with the experimental observations (Kitano, 2002; Bruggeman and Westerhoff, 2007).

Several challenges have to be addressed during such a research cycle (Kitano, 2002; Brugge-
man and Westerhoff, 2007). Depending on the complexity of the model and the quality of the
underlying data, for a given model, based on prior knowledge and a set of observations, the un-
known parameters, e.g., the kinetic parameters or regression coefficients, of this model must be
estimated (Jaqaman and Danuser, 2006; Kitano, 2002; Bruggeman and Westerhoff, 2007). The
adoption of model parameters is a difficult task because the information regarding the involved
actors is often limited, especially in case of top-down approaches (Azeloglu and Iyengar, 2015;
Bruggeman and Westerhoff, 2007). Nevertheless, by comparing the model predictions with
empirical data, the quality of the model can be evaluated (Azeloglu and Iyengar, 2015; Kitano,
2002; Bruggeman and Westerhoff, 2007). The evaluation of the model may be difficult in cases
where the features or components of interest are not directly accessible (Azeloglu and Iyengar,
2015; Bruggeman and Westerhoff, 2007). In many situations, this requires the development of
novel experimental in vivo or in vitro techniques, an adjustment of the research question or an
adjustment of the experimental design (Azeloglu and Iyengar, 2015; Kitano, 2002; Borkovich
and Ebbole, 2010).

Figure 2.2 illustrates the research cycle for bottom-up models (Azeloglu and Iyengar, 2015;
Kitano, 2002). In contrast, for predictive modeling, large data-sets are used to train the algorithm,
which is then able to predict a certain behavior based on fresh but similar data, as illustrated in
Figure 2.2b (Bishop, 2007; Sauer et al., 2007; Gelman et al., 2013). Here, the initial data set
is split into a training and a validation data set (Bishop, 2007). The latter is used to validate
the predictive power of the model trained by the training data set (Bishop, 2007). Nowadays,
machine learning methods such as support vector machines are able to identify potential drug
targets and predict correlations between cellular processes (Bishop, 2007; Chuang et al., 2010;
Murphy, 2011). This fundamentally differs from the understanding of systems biology as
defined in this work (Bishop, 2007; Bruggeman and Westerhoff, 2007; Hübner et al., 2011).
Unfortunately, for bottom-up approaches, the model of the related protein-protein interaction
network, i.e., the biochemical reaction network, very frequently does not match the observations
at first glance (Azeloglu and Iyengar, 2015; Kitano, 2002). Even after adaptation of the involved
kinetic parameters, there sometimes remains a significant difference between observations and
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model predictions (Azeloglu and Iyengar, 2015). Consequently, the model must be improved
by incorporating additional knowledge or further assumptions (Azeloglu and Iyengar, 2015).
In these cases, the original model is replaced with a revised version and has to be evaluated
again (Azeloglu and Iyengar, 2015). This process is repeated until the model is able to reproduce
the given empirical data, as shown in Figure 2.2a (Azeloglu and Iyengar, 2015). A picture similar
to the one in Figure 2.2 can be drawn for top-down approaches, but here the model is refined by
reduction rather than extension (Azeloglu and Iyengar, 2015; Kitano, 2002; Bruggeman and
Westerhoff, 2007).

Figure 2.2: General principles of computational biology. (a) In systems biology, bottom-up modeling
starts with an initial model based on literature or expert-based prior knowledge. By incorporating data
obtained from wet lab experiments or extracted from databases, the model parameters can be estimated.
The model then allows for predictions and comparison with real observations. These observations are
not necessarily on the same level as the obtained data. An insufficient fit to the observed data indicates
a mistake in the model and thus the model needs to be revised and the parameters must be fitted again.
This process results in a predictive model with regard to the underlying mechanisms. (b) In contrast,
machine learning approaches focus on correlations within the given data set based on a restricted amount
of prior knowledge. The given data can be split into two individual and isolated data sets. One is used to
train the model and the other to validate the findings. The aim of this approach is to derive a predictive
model which allows to make accurate predictions and uncover the inherent features without knowledge
of the underlying mechanisms.
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2.3 Model Formalisms

As a holistic and interdisciplinary approach, modern systems biology utilizes mathematical
theories and experimental tools from different branches of modern life sciences (Machado
et al., 2011). Cellular components previously studied independently are nowadays analyzed in
an integrated manner (Machado et al., 2011). The characterization of miscellaneous aspects
of the methods used in systems biology can be done from different angles (Machado et al.,
2011; Kitano, 2002; Bruggeman and Westerhoff, 2007). From a conceptual point of view,
models in systems biology are divided into static and dynamic models, as illustrated in Fig-
ure 2.3 (Bruggeman and Westerhoff, 2007; Palsson, 2006). Both types of models are useful
to describe biological processes, which are classically defined as metabolic and signaling net-
works (Klipp and Liebermeister, 2006; Palsson, 2006). Some authors consider gene regulatory
networks as a special kind of biological model. However, because gene regulatory networks are
bilaterally interacting with metabolic and signaling pathways, they are rather a part of these types
than independent and autonomous (Machado et al., 2011; Noble, 2012). From a methodological
point of view, a distinction can be made between deterministic and probabilistic approaches,
while deterministic models still dominating current research in systems biology (Chuang et al.,
2010; Murphy, 2011; Hübner et al., 2011).

2.3.1 Static and Dynamic Models

Static models reflect the topology of a biological system at a certain steady state and thus
they can be considered as a special or simplified case of dynamic models (Palsson, 2006). A
prominent static and hence structure-based approach is the so-called constraint-based model-
ing (Bordbar et al., 2014; Jerby et al., 2010; Lewis et al., 2010). Most structural models impose
constraints on the biological system to predict the rate of turnover of metabolites in biological
processes (Bordbar et al., 2014). The essential physico-chemical constraints of static models
are often represented by stoichiometric matrices, composed of the stoichiometric coefficients
of the involved reactions (Lewis et al., 2012). In contrast to dynamic systems, no kinetic
information is required for structural modeling and thus predictions about the inherent dynamics
or time-dependent regulations are not possible (Lewis et al., 2012; Klipp and Liebermeister,
2006). Particularly with regard to signaling pathways, time-dependent behavior is of importance
because signal amplification is often caused by a change in enzyme activity (Klipp and Lieber-
meister, 2006; Heinrich et al., 2002). As stoichiometry-based models only deal with steady
states, these phenomena are difficult to capture with this approach (Lewis et al., 2012). Under
steady state conditions, all state variables are assumed to be constant (Palsson, 2006; Heinrich
et al., 2002). However, this holds true only before and after stimulation but not for the transition
between both states (Klipp and Liebermeister, 2006; Heinrich et al., 2002).

Studies of the detailed behavior of signaling processes or time-dependent metabolic phe-
nomena require dynamic models (Klipp and Liebermeister, 2006; Klamt et al., 2006; Heinrich
et al., 2002). Here, in contrast to top-down strategies, the comparatively small size of bottom-up
models allows for dynamic and hence kinetic models (Bruggeman and Westerhoff, 2007). Be-
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Figure 2.3: Process of model improvement with respect to the model’s complexity, from the initial
hypothesis to a complete model of the organism. Starting with a first hypothesis or biological question,
prior knowledge can be used to define the general topology. Next, stoichiometric coefficients are
incorporated to develop a network of biochemical reactions. The network of biochemical reactions can
be extended by adding additional regulatory mechanisms, for instance, gene-regulatory components.
Through incorporation of kinetics and an estimation of the involved parameters, the model is able to
reflect time-resolved processes or even life cycles of complete organisms (Karr et al., 2012; Hübner et al.,
2011; Bruggeman and Westerhoff, 2007).

sides the behavior of the system, in certain steady states, dynamic models reflect the dynamic
features of the involved components, such as dynamic protein concentrations or time-dependent
interactions (Bruggeman and Westerhoff, 2007). Time-resolved measurements are a prerequisite
for the development of detailed dynamic models (Bruggeman and Westerhoff, 2007; Klipp and
Liebermeister, 2006). As mentioned above, it is still impossible to directly observe chemical
reactions in detail on a molecular level in real-time (Noble, 2012; Bruggeman and Westerhoff,
2007). Despite all these challenges, dynamic models are the most realistic type of biological
models with the ability to reflect biological processes in real-time (Bruggeman and Westerhoff,
2007; Klipp and Liebermeister, 2006).
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2.3.2 Signaling and Metabolic Networks

In literature, biological models are mainly divided into metabolic and signaling networks based
on the fact that metabolic pathways are characterized by a flow of matter and signaling pathways
are characterized by a flow of information (Klipp and Liebermeister, 2006; Palsson, 2006).
Nevertheless, it is obvious that metabolic and signaling networks are connected (Klipp and
Liebermeister, 2006). Therefore, attempts have been made to combine both types of net-
works (Engelhardt et al., 2017; Klamt et al., 2006; Behre and Schuster, 2009). Ultimately,
both networks are based on the same fundamental mechanisms; only the point of view is
different (Klamt et al., 2006; Behre and Schuster, 2009).

Metabolic systems can be described as the interplay between anabolic and catabolic pro-
cesses within the cell and are mostly based on enzyme conversions of one chemical entity into
another (Dale and Rang, 2011; Berg et al., 2013). Today, metabolic systems biology mainly
focuses on the reconstruction of metabolic networks for a target organism on a genome-scale
level (Choffnes et al., 2011). In this context, enzyme-catalyzed protein cascades and constrained
steady state models are of high relevance (Lehninger et al., 2005; Palsson, 2006). To allow for
the reconstruction of the metabolic system, the underlying network has to fulfill a number of
assumptions, which were summarized by Bernhard Palsson (Choffnes et al., 2011). Following
this, all cellular functions can be explained through chemistry and the cell always behaves in
a context-specific manner (Choffnes et al., 2011). The sugar metabolism in Saccharomyces
cerevisiae under aerobic and aerobic conditions might serve as an example (Rodrigues et al.,
2006). It has been shown that Saccharomyces cerevisiae is able to switch its glucose catabolism
between respiration and fermentation depending on the availability of receptive oxygen in
the environment (Rodrigues et al., 2006). In addition, mass and energy must be conserved in
metabolic systems (Choffnes et al., 2011). This intrinsic physical law enables the mathematical
analysis of metabolic systems (Palsson, 2006).

Constraint-based modeling can be used to gain information on the turnover rates in metabolic
networks (Bordbar et al., 2014; Jerby et al., 2010; Lewis et al., 2010). Most of these techniques
impose constraints on the system and on the analysis method to predict the rate of turnover
of metabolites in a reaction (Bordbar et al., 2014). Constrained-based models assume the
metabolism as a system of biochemical reactions (Lewis et al., 2012). Therefore, substrates
and enzymes must be present in or produced by the system and the system is considered to
be approximately in-balance regarding to all transfers of matter and energy (Bordbar et al.,
2014). The overall mass of the system thus remains constant over time and the direction of the
involved reactions is under constraint of thermodynamic principles (Volkenshtein, 2009; Lewis
et al., 2012). Nowadays, most of the required prior knowledge can be obtained from metabolic
reconstruction databases (Lewis et al., 2012).

Signal transduction is often reduced to linear cascades involving protein-protein interactions
and the interaction with second messengers, e.g., cAMP or Ca2++ (Kestler et al., 2008). Although
linear systems are not able to reflect the real dynamics of signaling pathways, they are frequently
employed because meaningful readouts of the pathway activation are available when time-
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resolved measurements of the involved components are not accessible (Kestler et al., 2008;
Klipp and Liebermeister, 2006; Heinrich et al., 2002). An important improvement of linear
signaling cascade models was the inclusion of positive and negative feedback loops (Kestler et al.,
2008). It is well known that most signaling pathways contain several feedback loops to control
the amplitude of the transduced signal (Kestler et al., 2008). Here, signal amplification allows for
a fast adaptation to the environment (Kestler et al., 2008; Heinrich et al., 2002). The topology of
signaling pathways and linear approximations enable significant insights into signaling pathways,
for instance regarding the maximum amplitude or the stability of signals (Kestler et al., 2008;
Heinrich et al., 2002). But in order to reflect the detailed mechanisms of the signaling pathways
and their interaction, detailed models are required, including detailed knowledge of the kinetics
and turnover rates (Kestler et al., 2008; Klipp and Liebermeister, 2006; Heinrich et al., 2002).

2.3.3 Probabilistic Approaches

Over the past decade, dynamic modeling has become a leading topic in systems biology (Chuang
et al., 2010; Hübner et al., 2011). The majority of modeling approaches in systems biology
applied to biochemistry are based on ODEs and partial differential equations followed by
stoichiometry-based approaches (Machado et al., 2011; Hübner et al., 2011). ODE-based mod-
els are most suitable to describe small and medium-scale networks but often fail on a whole-cell
level (Meier-Schellersheim et al., 2009; Hübner et al., 2011; Chuang et al., 2010). This is one of
the main reasons why probabilistic methods become more and more important, in addition to
deterministic, e.g., stoichiometry- and ODE-based methods (Chuang et al., 2010; Hübner et al.,
2011; Klipp and Liebermeister, 2006). Besides other Boolean networks, Bayesian networks
and Petri nets are also frequently used in systems biology (Machado et al., 2011; Chuang et al.,
2010; Hübner et al., 2011; Klipp and Liebermeister, 2006).

Although Boolean networks are mostly used to model the regulation of genes based on logic
rules, protein-protein interactions can be expressed via Boolean networks as well (Machado
et al., 2011; Hübner et al., 2011). The components of Boolean networks are encoded as Boolean
variables which can either be active or inactive (Machado et al., 2011). In that manner, at each
discrete time point, the state of each Boolean variable is given by a function composed of the
states of all related regulators, e.g., enzymes or transcription factors (Machado et al., 2011). The
state of all components changes synchronously (Machado et al., 2011). Thus, for large-scale
networks, the determination of all possible states is a cost-intensive process (Machado et al.,
2011). However, it can be used to find attracted steady states and to analyze the robustness of
the network (Machado et al., 2011). Probabilistic Boolean networks have been established to
incorporate uncertainties (Machado et al., 2011).

In contrast to Boolean networks, Bayesian networks allow for more detailed dependencies
and different states of the modeled components (Bishop, 2007; Machado et al., 2011). Bayesian
networks are probabilistic graphs whereby their components are represented by random discrete
or continuous variables with conditional dependencies, as mentioned in Section 4.3 (Bishop,
2007; Machado et al., 2011). This can be considered as a directed graph, and each component,
i.e., node, contains a probabilistic function which depends on the values of all related influencing
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nodes (Bishop, 2007; Machado et al., 2011). Many different methods have been developed
to infer the network structure and the corresponding probability parameters (Bishop, 2007;
Machado et al., 2011). Due to the probabilistic nature of Bayesian networks, they allow to
work with incomplete data sets and are frequently used for the modeling of gene-regulatory net-
works (Bishop, 2007; Machado et al., 2011; Chuang et al., 2010). Dynamic Bayesian networks
are a common extension to simulate time-dependent biological systems (Machado et al., 2011).

Whereas Boolean and Bayesian networks only allow for one type of node representing a
cluster of components or an individual component, Petri nets incorporate two different types
of nodes, i.e., places and transitions, and the dependencies between the nodes are represented
by directed and weighted arcs (Scheidel et al., 2016; Junker and Schreiber, 2008; Machado
et al., 2011). The passive parts, i.e., components or clusters, are captured by the places and
the chemical reactions are represented through transitions (Scheidel et al., 2016; Junker and
Schreiber, 2008; Machado et al., 2011). Commonly, places are represented as circles and
transitions as squares (Scheidel et al., 2016; Junker and Schreiber, 2008). Thereby the nodes
of the resulting graph-structure represent either molecules or chemical reactions, whereas the
directed edges represent the relation between components and reactions (Scheidel et al., 2016;
Junker and Schreiber, 2008; Machado et al., 2011). Usually the edges are weighted according to
their corresponding stoichiometric factor (Scheidel et al., 2016). This is in contrast to common
graphical representations of biochemical networks, where components are represented by nodes
and the corresponding reactions via directed edges (Scheidel et al., 2016; Palsson, 2006). The
places are associated with tokens which can stand for the amount or concentration of a chemical
substance or a fulfilled precondition of a reaction (Scheidel et al., 2016; Junker and Schreiber,
2008). Tokens are produced or consumed when the transitions fire (Machado et al., 2011). This
means that the transitions modulate the tokens in a similar way as biological processes would
change the state of the involved components (Scheidel et al., 2016; Junker and Schreiber, 2008;
Machado et al., 2011). The state of the system is given by the distribution of the tokens, which
thus describes the dynamics of the system (Junker and Schreiber, 2008; Machado et al., 2011).

2.3.4 Stoichiometric Matrices

Given sufficient prior information, each biological process based on protein-protein interactions
can be described through a set of biochemical reactions (Heinrich et al., 2002; Palsson, 2006).
These reaction processes are often an enzyme-catalyzed conversion of molecules or protein
binding events (Berg et al., 2013).
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Definition 1: Chemical Reaction Network

A chemical reaction network (CRN) is constituted by a set of M chemical net reactions
Rm, N species Xn and K reaction velocities rk ≥ 0 of each single reaction, with
m = 1, ...,M, n = 1, ...,N and k = 1, ...,K. Each reaction Rm is clearly associated with
a set of species and reaction velocities, e.g., Rm = {Xn, rk}. The species partaking in
a chemical reaction can be differentiated into educts and products. The educts are
transformed into products as the reaction proceeds with a defined but not necessarily
constant reaction velocity. The abundance of species Xn is denoted by xn.

Unidirectional net reactions are called irreversible and composed of one reaction velocity.
In contrast, bidirectional net reactions are called reversible and can be split into forward
and backward unidirectional single reactions. For a system with purely irreversible
reactions, the number of reactions M is equal to the number of single reactions and thus
reaction velocities K. For reversible reactions, the net reaction of the related forward
reaction velocity rk and backward reaction velocity r(k+1) is given by their difference
rk − r(k+1).

Stationary reaction velocities in assigned states, e.g., steady states, are called fluxes.

The numbers of molecules of each educt and product occurring in a reaction are called
stoichiometric coefficients sn,k. One stoichiometric coefficient can be clearly assigned to each
species and single reaction of the CRN. The coefficients corresponding to the reacting species
or educts are negative, whereas those corresponding to the produced species or products are
positive. The stoichiometric coefficient is zero for all other species not participating in the
particular reaction. According to Definition 1, a simple CRN with one unidirectional chemical
reaction:

2X1 + X2
r1
−−−→ X3 (2.1)

consist of one irreversible net reaction R1 with one reaction velocity r1, two educts X1 and X2,
and one product X3. The reaction is defined as R1 = {X1, X2, X3, r1} with corresponding species
concentrations x1, x2 and x3. In this CRN, the stoichiometric coefficients are s1,1 = −2, s2,1 = −1
and s3,1 = 1.

This allows to describe each biological process that is based on chemical reactions, e.g.,
protein-protein interactions (Palsson, 2006; Berg et al., 2013). Because there is no one-to-one
correspondence between genes associated with the metabolism and the chemical reactions that
occur, it is not trivial to incorporate related interactions (Palsson, 2006; Berg et al., 2013). Often
genes are associated with their encoding proteins, but this relation is not unique (Palsson, 2006;
Berg et al., 2013; Lewis et al., 2012). It has been demonstrated that genes are able to encode
different proteins and vice versa that genes can be regulated by different proteins (Palsson, 2006;
Berg et al., 2013).
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Definition 2: Stoichiometric Matrix

Let the vector u be the turnover rate of molecules through the system. Then, we can
clearly define a linear transformation S ∈ RN×K which transforms the flux vector u into
the derivative of a concentration vector x as follows:

dx
dt

= S u.

For a CRN with K single reactions and N species, the dimension of S is N × K. Each
element sn,k represents the stoichiometric coefficient corresponding to species n in reaction
k.

Every CRN can be split into external, exchange and internal reactions with respect to the
boundaries of the network. In most situations, both exchange and internal reactions are con-
sidered whereas external reactions are frequently neglected, but, depending on the context,
it may be useful to only consider internal reactions (Palsson, 2006). In general, the reaction
velocities rk are functions of the related species concentrations and a set of rate constants r̃k:

rk = fk (x, r̃k) , (2.2)

with a general continuous and time-dependent function fk. In general, the derivative of a
concentration vector x is depend on the related reaction velocities and the corresponding
stoichiometric coefficients, and the entities can be calculated through

dxn

dt
=

K∑
k=1

sn,k fk (x, r̃k), (2.3)

where sn,k is the stoichiometric coefficient of species n partaking in the single reaction k. At
fixed time points e.g., under steady state conditions, fk (x, r̃k) = vk is obtained and Equation (2.3)
yields

dxn

dt
=

K∑
k=1

sn,kvk. (2.4)

The number of elements of the flux vector u is equal to the number of single-reaction velocities
in the CRN. In most situations, the number of reactions in a CRNs is larger than the number of
species and therefore K > N, implying that S may not be of full rank (Palsson, 2006).

The stoichiometric matrix S is commonly considered as a connectivity matrix or a network
represented by a map (Palsson, 2006). The nodes in the map then correspond to the rows and the
links to the columns of S , respectively (Palsson, 2006). Thus, S represents the general topology
of the system and is typically used to investigate time-independent features of the CRN (Palsson,
2006).

These stoichiometry-based approaches have to rely on several assumptions (Palsson, 2006).
First, the reaction component of interest is assumed to be uniformly distributed in the sys-
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tem (Palsson, 2006). Second, the concentration is assumed to be sufficiently high to define a
real number (Palsson, 2006). In addition, the reaction velocities are considered to not explicitly
depend on time (Palsson, 2006).

2.3.5 Differential Equations

In contrast to time-independent stoichiometry-based approaches, ODEs allow to capture the
inherent dynamics of CRNs (Palsson, 2006; Azeloglu and Iyengar, 2015). Because the reaction
dynamics are a key aspect of signaling processes, ODE-based approaches are frequently used to
model this type of system (Hübner et al., 2011; Klipp and Liebermeister, 2006). ODEs are a
widely discussed common topic in mathematics and interdisciplinary research (Mattheij and
Molenaar, 2002).

Definition 3: Ordinary Differential Equation

Let F (t) be a real-valued function F : I×Ω→ Rwith Ω ⊂ Rd+1, I ⊂ R, x (t) a real-valued
function with x : I → R and x(d) (t) the derivative of x (t) to the order of d given by dd x(t)

ddt
with t ∈ R. Then, the implicit ordinary differential equation to the order of d is given by

F
(
t, x (t) , x(1) (t) , ..., x(d) (t)

)
= 0.

In contrast, the explicit ordinary differential equation f with f : I × Ω̃→ R with Ω̃ ⊂ Rd

is a special case of F and given by

x(d) (t) = f
(
t, x (t) , x(1) (t) , ..., x(d−1) (t)

)
.

The function Φ : Ĩ → R is named solution of the implicit ODE in the interval Ĩ ⊂ R if
Φ

(
t, x (t) , x(1) (t) , ..., x(d) (t)

)
= 0 and Φ is d times differentiable.

Accordingly, Φ̃ : Ĩ → R, d − 1 times differentiable, is named solution of the explicit ODE
in the interval Ĩ ⊂ R if Φ̃

(
t, x (t) , x(1) (t) , ..., x(d−1) (t)

)
= x(d).

For example, the first-order ODE

ẋ (t) = −2x (t) ⇐⇒ ẋ (t) + 2x (t) = 0, (2.5)

with ẋ (t) = x(1) (t) has the solution x (t) = c exp (−2t) with c ∈ R.

The above definition can be extended to a system of coupled ODEs incorporating several
dependent variables (Walter, 2000). For systems biology, first-order systems of explicit ODEs
are of interest.
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Definition 4: First-Order System of Ordinary Differential Equations

Given n explicit ordinary differential equations fn : I × Ω̃ → R with Ω̃ ⊂ (Rn)1, I ⊂ R,
x : I → Rn and t ∈ R the system

x(1) (t) = f (t, x (t))

is called system of ordinary differential equations of the order one. The system is said to
be autonomous if f is not directly dependent on t.

In general, due to the fact that ODE systems are basically solved via integration, they do not
necessarily have a unique solution, unless further constraints or initial conditions are given (Wal-
ter, 2000). For biological systems, however, the initial conditions are frequently known and
hence in many cases the arising initial value problem (IVP) has a unique solution (Palsson,
2006; Kremling, 2012; Walter, 2000).

Definition 5: Initial Value Problem

Given a vector-valued function f : I × Ω̃ → Rn with Ω̃ ⊂ (Rn)d, I ⊂ R, x : I → Rn and
t ∈ R, the system

x(d) (t) = f
(
t, x (t) , x(1) (t) , ..., x(d−1) (t)

)
x (0) = x0,

with a vector of initial conditions x0 ∈ R
n is called initial value problem.

The Picard-Lindelöf theorem guarantees a unique solution of the IVP given by Definition 5 for
Lipschitz-continuous functions (Teschl, 2012). Lipschitz continuity is a stricter form of continu-
ity ensuring that a given continuous function is limited in the rate of change over time (Teschl,
2012). For most high-dimensional IVPs, an analytical solution does not exist (Teschl, 2012;
Walter, 2000). Instead, the IVP can be solved numerically for discrete time points and restricted
due to its complexity (Hanke-Bourgeois, 2008).

Complex processes, e.g., those involving dynamics in time and space, have more than one
independent variable (Kholodenko, 2006). These phenomena are usually addressed via partial
differential equations (Kholodenko, 2006). Hybrid models in cancer research, where cell growth
is often described through growth-consumption dynamics and cell dynamics on a lattice, are
based on partial differential equations (Altrock et al., 2015). In contrast, some biological
processes are of random nature, such as the synaptic activity of neurotransmitters released from
synaptic vesicles (Saarinen et al., 2008). Here, stochastic differential equations incorporating
random processes are commonly used (Saarinen et al., 2008). Unlike ODEs or partial differential
equations, stochastic differential equations are defined via integrals (Bauer, 2002, 1992). This is
equivalent to the derivative-based formulation but circumvents the lack of differentiability of
stochastic processes, for instance, in case of Brownian motion (Bauer, 2002, 1992).
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2.4 Properties of Protein Interactions

Biological processes are based on biochemical reactions which themselves are driven by chem-
ical interactions (Berg et al., 2013; Choffnes et al., 2011). For general biological phenomena, it
is not possible to postulate special laws of nature as in physics (Berg et al., 2013). However,
all living organisms share a large number of biochemical features (Berg et al., 2013). Like all
chemical reactions, biological processes are driven by the laws of thermodynamics (Berg et al.,
2013). Besides the underlying chemical principles, the structure of the involved macromolecules
is also important (Alberts et al., 2014; Berg et al., 2013). This becomes particularly clear in
case of DNA, which stores all genetic information (Alberts et al., 2014; Berg et al., 2013).
In general, two DNA strands form a double helix via hydrogen bridge linkages between two
corresponding bases (Berg et al., 2013). In the DNA double helix, not the chemical interactions
but the sequence of base pairs encode the genetic information (Berg et al., 2013). This very
complex mechanism helps to ensure a stable storage of genetic information because even if
one DNA strand is damaged it can be rebuild by the corresponding strand (Berg et al., 2013).
As illustrated, both mechanisms are rather closely interlinked than independent (Berg et al.,
2013). The structure has a strong impact on the binding behavior of proteins which, in turn,
influences the binding capacity and therefore the structure itself (Berg et al., 2013; Palsson,
2006). However, the dominant driving force of protein-protein interactions are the laws of
thermodynamics (Berg et al., 2013; Palsson, 2006).

As stated in the first law of thermodynamics, energy can neither be consumed nor produced,
it can only be converted from one form into another (Kremling, 2012; Berg et al., 2013). For
spontaneous processes, the disorder of the system, called entropy, increases (Kremling, 2012;
Berg et al., 2013). The entropy denotes the ratio between the reversible heat and the system’s
absolute temperature (Kremling, 2012; Berg et al., 2013). The change in entropy can be directly
measured by the so-called Gibbs free energy ∆G (Berg et al., 2013). In addition, ∆G is a
measure for the work which can be performed by reversible chemical reactions under constant
conditions (Berg et al., 2013). Consequently, the Gibbs free energy is a measure for the driving
force of a reaction and thus enables a differentiation between exergonic spontaneous processes
and endergonic processes requiring an absorption of energy from the surroundings (Berg et al.,
2013). Biochemical reactions proceed spontaneous only if the entropy increases, i.e., if ∆G
is negative (Berg et al., 2013). In thermodynamic equilibrium, the Gibbs free energy is equal
to zero (Berg et al., 2013). ∆G is always negative for exergonic spontaneous processes and
always positive for endergonic processes (Berg et al., 2013). In other words, the overall entropy
increases in exergonic processes and decreases in endergonic processes (Berg et al., 2013). Only
reactions increasing the entropy with ∆G < 0 occur spontaneously and therefore the chemical
equilibrium is shifted towards this direction (Berg et al., 2013). The reaction which decreases
the entropy with ∆G > 0 proceeds more slowly and the reaction rate inclines towards zero (Berg
et al., 2013). Please note that ∆G alone provides no information regarding the reaction rate
of the involved reactions (Berg et al., 2013). In practice, reactions are often accelerated by
enzymes (Berg et al., 2013).
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Enzymes are macromolecules able to catalyze biochemical reactions (Alberts et al., 2014;
Berg et al., 2013). Enzymes do not change the chemical equilibrium but may dramatically
increase the reaction rate (Alberts et al., 2014; Berg et al., 2013). In such a case, the products of
reactions catalyzed by enzymes can be produced within seconds, whereas the same reaction
might require hundreds of years to produce the same amount of products without the presence
of the enzyme (Berg et al., 2013). At the same time, enzymes are highly specific and mostly
activated by other small cofactors, e.g., molecules or metal ions (Alberts et al., 2014; Berg et al.,
2013). After activation by a cofactor, the enzymes bind to the target substrate and thus build an
intermediate complex, thereby reducing the activation energy of the chemical reaction (Krem-
ling, 2012; Berg et al., 2013). Afterwards, the enzyme-substrate complex dissociates into the
enzyme and the modified target (Berg et al., 2013). Enzymes are often inhibited reversibly or
irreversibly by small molecules or ions in different ways (Alberts et al., 2014; Berg et al., 2013).
In case of an irreversible inhibition, the molecule binds to the enzyme so that a dissociation
process becomes very slow or almost impossible (Berg et al., 2013). In contrast, reversible
inhibitors allow for a faster dissociation from the enzyme (Berg et al., 2013).

As shown, the timing of biochemical reactions, i.e., the kinetics, is driven by the laws
of thermodynamics, but can also be manipulated by cellular mechanisms, for instance, via
enzymatic catalysis (Kremling, 2012; Berg et al., 2013). Biochemical reactions are based on
both elementary reactions which cannot be further taken apart and the law of mass action (Nic
et al., 2009; Berline and Bricker, 1969; Waage and Gulberg, 1986). Thus the rate of any
given chemical reaction is proportional to the product of the activities or concentrations of the
reactants (Berline and Bricker, 1969; Waage and Gulberg, 1986). In other words, the reaction
velocity is proportional to the probability of collision between the reactants (Berline and Bricker,
1969; Waage and Gulberg, 1986). For a CRN with K single reactions, N species Xn and the
corresponding stoichiometric coefficients sn,k with n = 1, ...,N and k = 1, ...,K, the reaction rate
rk for the law of mass action is given by

rk = r̃k

N∏
n=1

xsn,k
n , (2.6)

with the rate constant r̃k ∈ R (Palsson, 2006; Nic et al., 2009). Each CRN can be expressed
as a set of elementary reactions based on the law of mass action (Nic et al., 2009; Berg et al.,
2013). But the modeling of coupled reactions based on the law of mass action often results in a
large set of intermediate reactions with a huge amount of additional parameters, especially for
enzymatic reactions (Berg et al., 2013; Kremling, 2012).

Basic enzymatic reactions can help to describe the catalysis of substrate conversion by a
single enzyme (Berg et al., 2013; Kremling, 2012). For a given biochemical reaction describing
the conversion of a single substrate S into the single product P catalyzed by a single enzyme E,
this basic enzymatic reaction is given by elementary reactions involving intermediate complexes
E:S as follows:

E + S
r1
−−−→←−−−

r2

E:S
r3
−−−→←−−−

r4

P + E, (2.7)
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with a set of reaction rates {r1, r2, r3, r4} (Berg et al., 2013; Kremling, 2012).

According to Equation (2.7), the enzyme and the target protein first build an enzyme-substrate
complex (Berg et al., 2013; Kremling, 2012). Then, the substrate is converted into the product,
but is still bound to the enzyme (Berg et al., 2013; Kremling, 2012). This process is often
not quantifiable and thus neglected (Berg et al., 2013; Kremling, 2012). In the last step, the
enzyme-product complex dissociates (Berg et al., 2013). Because the substrate is modified
immediately after the enzyme and the substrate meet and the reverse reaction does not occur,
r4 ≈ 0 is assumed to simplify Equation (2.7) yielding

E + S
r1
−−−→←−−−

r2

E:S
r3
−−−→ P + E, (2.8)

with a set of reaction rates {r1, r2, r3} (Berg et al., 2013; Kremling, 2012). As discussed in Sec-
tion 2.3.4 an elementary-based CRN with K reaction velocities fk (x, r̃k) and the corresponding
stoichiometric matrix S can be expressed as

dxn

dt
=

K∑
k=1

sn,k fk (x, r̃k). (2.9)

For Michaelis-Menten kinetics, the elementary reactions of the network can be reformulated as

E + S
r1
−−−→←−−−

r2

E:S
r3
−−−→ P + E =⇒ S

fk(x,r̃k)
−−−−−→ P. (2.10)

The rate of formation of the enzyme-substrate complex and the corresponding dissociation rate
from Equation (2.8) are constituted by r1es and (r2 + r3) e:s, where the protein concentrations are
denoted as lower case letters (Berg et al., 2013; Kremling, 2012; Klonowski, 1983). It is known
that enzymes are able to adapt their activation to the substrate concentration and thus, after an
initial time period, e:s can be assumed as approximately constant (Berg et al., 2013; Kremling,
2012; Klonowski, 1983). Then, it is possible to determine the forward dissociation rate of the
enzyme-substrate complex in a suitable manner (Berg et al., 2013; Kremling, 2012; Klonowski,
1983). In this way, the Michaelis-Menten kinetic from Equation (2.8) can be expressed as a set
of coupled ODEs

de
dt

= (r2 + r3) e:s − r1es (2.11a)

ds
dt

= r2e:s − r1es (2.11b)

de:s
dt

= r1es − (r2 + r3) e:s (2.11c)

dp
dt

= r3e:s. (2.11d)
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From e:s ≈ const. follows de:s
dt ≈ 0 after an initial time period and hence

r1es = (r2 + r3) e:s⇔ e:s =
r1es

(r2 + r3)
. (2.12)

Now, supposed that e + e:s = ec = const.,

e:s =
r1 (ec − e:s) s

(r2 + r3)
. (2.13)

Combining Equations (2.11b), (2.11c) and (2.11d), and with de:s
dt = 0, it follows that

ds
dt

+
de:s
dt

+
dp
dt

= 0⇔
ds
dt

= −
dp
dt
. (2.14)

Hence
−

ds
dt

=
dp
dt

= r3
r1 (ec − e:s) s

(r2 + r3)
= Vmax

s
Km + s

, (2.15)

with Vmax = r3ec, and Km = r2+r3
r1

holds true. Finally, the reduced system can be derived:

ds
dt

= −Vmax
s

Km + s
(2.16a)

dp
dt

= Vmax
s

Km + s
. (2.16b)

The rate constant Vmax illustrated in Figure 2.4 reflects the maximum rate which occurs when all
binding sites of the enzyme are saturated (Berg et al., 2013). The Michaelis-Menten constant
Km is used to characterize enzyme substrate interactions (Berg et al., 2013).

Figure 2.4: Illustration of the Michaelis-Menten kinetics. (a) Relationship between the substance
concentration, the initial reaction rate V0 at time t ≈ 0 and the Michaelis-Menten constant Km for a single
substrate. The Michaelis-Menten constant Km is defined as the substrate concentration at which the
reaction rate is half of Vmax. (b) Related time-concentration curve for each of the involved species.
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In the past, the applicability of the quasi-steady-state approximation (QSSA)

de:s
dt
≈ 0 (2.17)

to biochemical networks has been controversially discussed (Klonowski, 1983; Turanyi et al.,
1993; Schauer and Heinrich, 1983). The QSSA always causes an error, and the overall error of
all QSSAs is crucial for the dynamics of the system (Turanyi et al., 1993). More importantly,
the QSSA does not necessarily imply that de:s

dt ≈ 0, and it can generally only be applied after
an initial time period (Turanyi et al., 1993). For biochemical reactions, the formation of the
enzyme-substrate complex is a very fast process compared to the product formation, which jus-
tifies the application of the QSSA to enzyme kinetics (Schauer and Heinrich, 1983; Klonowski,
1983). Hence, the QSSA can still be considered as a powerful tool to reduce the dimension of
biochemical reactions (Klonowski, 1983; Schauer and Heinrich, 1983; Keener and Sneyd, 2009).

Altogether, it is necessary that the total amount of the free substrate must be close to the total
substrate concentration in the system and thus that the enzyme association and dissociation
must happen much faster than the production of the reaction product (Slyke and Cullen, 1914;
Briggs and Haldane, 1925). If the amount of free substrate is not close to the total substrate
concentration in the system, a significant fraction is bound to the enzyme (Slyke and Cullen,
1914; Briggs and Haldane, 1925). In this case, the quadratic velocity equation for tight-binding
substrates can be used

dp
dt

= Vmax
(ec + sc + Km) −

√
(ec + sc + Km)2

− 4ecsc

2ec
, (2.18)

with the total substrate concentration given by sc = s + e:s (Morrison, 1969). Besides the
quadratic velocity equation for tight-binding substrates, there are many other kinetics that can be
used to simplify biochemical reactions (Marangoni, 2003). The Hill equation, which is related
to the logistic function, is an important kinetic model used to simplify enzymatic reactions with
many binding sites (Kremling, 2012).

In a broader sense, gene regulation can also be described with the help of kinetics (Chen
et al., 1999; Karlebach and Shamir, 2008). The dynamic of the messenger ribonucleic acid
(mRNA) concentration d[mRNA]

dt is described as the transcription f
([

protein
])

with respect to the
related proteins minus its degradation r1 [mRNA]. The dynamic of the proteins is given by the
translation r2 [mRNA] minus the degradation r3

[
protein

]
. Here, a unique relation between the

mRNA and the encoded protein is frequently assumed (Chen et al., 1999). Given the basic
model

d [mRNA]
dt

= f
([

protein
])
− r1 [mRNA] (2.19a)

d
[
protein

]
dt

= r2 [mRNA] − r3
[
protein

]
, (2.19b)
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the transcription function f
([

protein
])

can be modeled by a linear function

f
([

protein
])

=

N∑
n=1

r̃n
[
proteinn

]
(2.20)

describing a combined effect of activators and inhibitors (Chen et al., 1999). In more complex
situations, f

([
protein

])
can be derived via a first order Taylor approximation (Chen et al., 1999).

Overall, ODEs allow for detailed models of biological processes but require a huge amount of
prior knowledge regarding the general network topology, as well as high-quality experimental
data to estimate the involved species concentrations (Azeloglu and Iyengar, 2015; Sauer et al.,
2007).
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CHAPTER 3

M2 Receptor-induced Signaling

Mechanisms of drug action at various levels and from various points of view are of common
pharmacological interest (Dale and Rang, 2011). For more than 60 years, pharmacologists have
successfully discovered new drugs and therapies for many complex diseases, even though the
costs of drug development have increased dramatically (Zhao and Iyengar, 2012). Often the
use of correlations as starting points for drug discovery does not lead to desirable results (Zhao
and Iyengar, 2012). Correlation-based and also other black box models are often not able to
reflect the complex relation of interactions on a molecular level and their effects on an organ
level (Zhao and Iyengar, 2012). As a consequence, processes discovered in silico, in vitro or
even in model organisms differ significantly from the human metabolism (Zhao and Iyengar,
2012). Besides other pitfalls in drug development, the uncertainty of black box models is
reflected by the high fraction of drugs which nowadays fail testing on patients to appraise
their efficacy, effectiveness and safety (Wein, 2016; Zhao and Iyengar, 2012). This led to the
development of a new promising field of systems pharmacology (Zhao and Iyengar, 2012). Sys-
tems pharmacology investigates drug actions on a genome-wide level and combines networks
of different size and level (Zhao and Iyengar, 2012). In addition to genomics, well-defined
drug-induced signaling pathways are also of interest (Zhao and Iyengar, 2012). In this spirit, this
work aims to investigate the M2 receptor-mediated ligand-induced change of the cell’s optical
density.

Drugs such as ligands are substances with measurable biological effects which often target
receptors (Dale and Rang, 2011). Ligands are molecules forming complexes with specific targets
without getting converted (Dale and Rang, 2011). Reversible binding to a target, e.g., a receptor,
causes cellular responses mediated by signaling cascades (Dale and Rang, 2011). Due to their
effect on receptors, ligands are distinguished into antagonists and agonists (Dale and Rang,
2011). Agonists are able to stimulate receptors whereas antagonists have inhibitory effects (Dale
and Rang, 2011). Falsely, antagonists are often called inverse agonists (Dale and Rang, 2011).
However, inverse agonists are ligands which reduce the receptor activity of their targets and thus
induce a response opposite to the agonist (Dale and Rang, 2011). In case of the M2 receptor,
the ligand moves to the ligand-binding pocket of the receptor, which is deeply buried within the
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membrane, and engages in extensive hydrophobic contact with the receptor (Kruse et al., 2014).
An elicited change of the three-dimensional shape orientation of the receptor then induces a
signal transduction (Kruse et al., 2014).

3.1 Muscarinic Acetylcholine Receptors

Nowadays up to 50% of available drugs are related to G protein–coupled receptors (GPCRs),
one of the largest protein families encoded in the human genome, approximately containing
865 receptors (Fang et al., 2015; Bylund, 2007; Lander et al., 2001). Unsurprisingly, the GPCR
family has become one of the most important target classes of proteins for drug discovery
(Zheng, 2006; Fang et al., 2015; Dale and Rang, 2011). Most drugs for cardiovascular diseases
are targeting GPCRs, and nowadays GPCRs are also potent therapeutic targets for Alzheimer’s
disease (Salazar et al., 2007; Zhao et al., 2016). Due to its structure, GPCRs are also called
7-transmembrane receptors (Dale and Rang, 2011). This integral membrane proteins consist of
seven transmembrane helices connected through three intra- and three extracellular loops (Dale
and Rang, 2011). Interestingly enough, the five major families have only a few identical se-
quences in common (Katritch et al., 2013).

Members of the GPCR family vary widely in their function and distribution (Dale and Rang,
2011). The GPCR family includes receptors for many hormones and slow transmitters, such
as adrenergic receptors or chemokine receptors, which are involved in the pathogenesis of
many important diseases, e.g., Alzheimer’s disease, asthma, cancer and acquired immunode-
ficiency syndrome (Russo-Neustadt and Cotman, 1997; Vela et al., 2015; Sears and Lötvall,
2005). Adrenergic receptors are one of the longest known group of GPCRs (Strosberg, 1993).
They include nine subtypes and mediate (no-)adrenaline signaling (Strosberg, 1993). A prom-
inent member of this group is the β2-adrenergic receptor, which is the main drug target for
asthma (Sears and Lötvall, 2005). In addition, it is strongly related to chronic heart failures and
aging (Brodde et al., 2006; Dale and Rang, 2011).

As another important and widely studied class of GPCRs, muscarinic acetylcholine recept-
ors (mACHRs) are divided into five subtypes regarding to their distribution and physiological
function (see Table 3.1) (Dale and Rang, 2011; Bonner et al., 1987; Brodde and Michel,
1999). The M2 receptor, an important subtype of acetylcholine receptors, is among other
locations mainly expressed in presynaptic terminals of peripheral, central neurons and cardi-
omyocytes (Dale and Rang, 2011; Hernandez and Rathinavelu, 2006). Since the M2 receptor
influences the heart beat frequency, it is related to negative dromotropic and negative chro-
notropic events (Dale and Rang, 2011; Brodde and Michel, 1999). Its malfunctioning has
been associated with a number of diseases, such as cardiomyopathies (Brodde and Michel,
1999). Like all mACHRs, the M2 receptor has an allosteric and a classical orthosteric binding
site (Kruse et al., 2014). Ligands bound to the allosteric binding site are able to modulate
the receptor by changing its conformation (Kruse et al., 2014). Thereby either the activity
of the classical orthosteric binding site gets modified or the binding affinity of the receptor
is changed (Berg et al., 2013; Dale and Rang, 2011). A prominent allosteric modulator of
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3.1 Muscarinic Acetylcholine Receptors

Subtype Distribution Function

M1 • autonomic ganglia
• central nervous system

• gastric secretion
• excitation of the central nervous system

M2 • heart
• central nervous system
• smooth muscles

• central muscarinic effects
• cardiac inhibition
• neural inhibition

M3 • heart
• glands
• smooth muscles

• gastrointestinal smooth muscle contraction
• ocular accommodation
• salivary secretion

M4 • central nervous system • enhanced locomotion

M5 • central nervous system • vasodilation

Table 3.1: Classification of mACHR subtypes according to their distribution and function (Dale and Rang,
2011; Bonner et al., 1987; Brodde and Michel, 1999; Elhusseiny and Hamel, 2000).

the M2 receptor is THRX-160209, a bitropic muscarinic ligand (Kruse et al., 2014). Bitropic
ligands are rationally designed hybrid molecules combining the high binding affinity of orthos-
teric ligands with the receptor subtype selectivity of allosteric ligands by interacting with both
topographically distinct binding sides (Kruse et al., 2014). Besides the big advantage of a highly
affine and subtype-selective ligand, in contrast to orthosteric ligands, bitropic ligands have no
well defined structure-activity relationships and they are not as signaling-selective as allosteric
modulators (Kruse et al., 2014).

In contrast to the external ligand-based receptor modulations, there are also internal regulatory
strategies (Gurevich and Gurevich, 2008). After the receptors are delivered either as monomers
or oligomers, they bind to the membrane and can build dimers and higher oligomers or stay
as monomers (Gurevich and Gurevich, 2008). The kind and size of the receptor complex
might have an important effect on the cross-talk with other receptors and on general receptor
regulation (Katritch et al., 2013; Gurevich and Gurevich, 2008). But it is still not clear how
and why receptors build such complexes (Gurevich and Gurevich, 2008). Besides the ability

33



Chapter 3 M2 Receptor-induced Signaling

of the receptors to build complexes or clusters on the cell surface, there are second messenger-
mediated mechanisms that decrease the signaling via receptor phosphorylation, which are called
desensitization (Pierce et al., 2002). There are several proteins that are able to directly down-
regulate the receptor activity, such as protein kinase A (PKA) and protein kinase C (PKC) (Pierce
et al., 2002). Afterwards the phosphorylated receptor directly dissociates from the bound
GP (Pierce et al., 2002). A more agonist-specific regulation is mediated by G protein-coupled
receptor kinases (GRK) only targeting the agonist-occupied receptor conformation controlled
by several factors (Pierce et al., 2002). There are a lot of other mechanisms of receptor
desensitization, such as the receptor degradation or regulation of the gene transcription, which
consequentially all lead to a temporary decrease of the signal (Pierce et al., 2002). But there
are also mechanisms leading to a redistribution of the receptor via internalization (Pierce et al.,
2002). Receptor internalization can either lead to the degradation or the dephosphorylation of
the receptor (Pierce et al., 2002). Hence a positive or negative feedback might occur where the
receptor is internalized and transported to the endosome, e.g., via vesicles (Pierce et al., 2002).
The vesicle-based transport is mediated via β-arrestin (Pierce et al., 2002). After the ligand
has bound to the dephosphorylated receptor and hence the receptor got activated, the signal
is transduced by heterotrimeric GPs (Oldham and Hamm, 2008; Dale and Rang, 2011; Kruse
et al., 2014).

3.2 G Protein-mediated Signaling

Once activated, GPCRs bind to a small number of GPs (Oldham and Hamm, 2008; Dale and
Rang, 2011). GPs are composed of α, βand γ subunits which are bound in the inactive state of
the GP (Oldham and Hamm, 2008). There are 21 different α, 6 different β and 12 different γ
subunits, as shown in Table 3.2 (Oldham and Hamm, 2008). All α subunits feature a GTPase
binding side and a helical domain (Oldham and Hamm, 2008). GTPase represents a family of
enzymes which hydrolyze guanosine-5’-triphosphate (GTP) (Alberts et al., 2014). The GTPase
binding side is typical for all members of the GP superfamily allowing them to bind to the β\γ

complex and is part of the domain responsible for binding and hydrolyzing GTP (Oldham and
Hamm, 2008). The second domain of the α subunit is to regulate membrane localization and
interaction with other proteins involved in the signaling (Oldham and Hamm, 2008). In contrast,
the β and γ subunit build a functional complex which can only be dissociated under denaturing
conditions (Oldham and Hamm, 2008). The interaction of the α subunit with the β\γ complex
and the binding of the β subunit to the γ subunit is, in general, non-specific, but there is also
evidence for a direct interaction of the α subunit with the γ subunit (Oldham and Hamm, 2008).

The β\γ-bound α subunit is not able to interact with other molecules (Oldham and Hamm,
2008). Hence, in the bound state, neither the β\γ subunit nor the α subunit are able to transmit
any signal (Oldham and Hamm, 2008). As illustrated in Figure 3.1, in this inactive state,
guanosine-5’-diphosphate (GDP) is bound to the α subunit (Dale and Rang, 2011). This causes
a high binding affinity with the receptor (Oldham and Hamm, 2008). The binding of the ligand
to the receptor leads to a structural change within the α subunit (Oldham and Hamm, 2008).
This inter-domain movement then results in a release of GDP, and GTP can bind to the α
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3.2 G Protein-mediated Signaling

Subtypes Main Targets Distribution

αs • adenylyl cyclases
• calcium channels
• Src tyrosine kinases

• ubiquitous

αi\o • adenylyl cyclases
• ERK/MAP kinase
• calcium channels
• potassium channels
• Src tyrosine kinases

• neurons
• heart
• others

αq • Bruton’s tyrosine kinase
• phospholipase C
• potassium channels

• ubiquitous

β\γ • as other subtypes
• GPCR kinases
• protein kinase D

• ubiquitous

Table 3.2: Function and distribution of the main GP subunits (Dale and Rang, 2011; Milligan and Kostenis,
2006).
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subunit (Oldham and Hamm, 2008). Because the activation of GP is influenced by various
factors, kinetic data is difficult to obtain and difficult to compare (Oldham and Hamm, 2008).
The α-β\γ complex is mainly localized at the cellular membrane to decrease the spontaneous
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Effector Effector Effector Effector 

Effector Effector 
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Figure 3.1: Illustration of the basic G protein activation cycle. (a) The GDP-bound α subunit shows a high
affinity for binding with the β\γ subunit. The resulting α-β\γ complex is not able to interact with other
downstream proteins. (b) The inactive G protein complex consisting of the α subunit and β\γ subunits
spontaneously binds to the receptor with high affinity. (c) The ligand-induced structural change of the
receptor catalyzes the release of GDP and the subsequent binding of GTP. (d) After the GDP is replaced
with GTP, the GTP-bound α subunit and the β\γ dimer dissociate. In their free form, both are able to
independently interact with downstream targets. After activation of the target protein, the hydrolysis
of the bound GTP to GDP through elimination of a phosphate residue is initiated spontaneously or
via other mechanisms. The GDP-bound α subunits again show a high affinity for binding with the β\γ

subunit (Dale and Rang, 2011; Milligan and Kostenis, 2006; Kimple et al., 2011).

release of GDP and hence to reduce the basal activity of GPs (Kimple et al., 2011). The targets
of GP-signaling are active until the α subunit-bound GTP is hydrolyzed (Kimple et al., 2011).
This process is enhanced by several downstream proteins such as PLCβ1 and is necessary
for controlling the ligand-induced signal (Kimple et al., 2011). The velocity of the α sub-
unit deactivation via hydrolysis is drastically increased by RGS proteins, a large family of α
subunit-directed GTPase-accelerating proteins (Kimple et al., 2011; Oldham and Hamm, 2008;
Xie and Palmer, 2007). There are over 20 subtypes of mammalian RGS proteins which are
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able to regulate GPCRs and other proteins very specifically and selectively but with varying
effectiveness (Kimple et al., 2011; Xie and Palmer, 2007). Recent studies demonstrated that the
selectivity of RGS proteins can be explained by their co-expression with the target at the right
time and location (Xie and Palmer, 2007).

Once activated, GP subunits transduce the ligand-mediated signal to several downstream
proteins (Dale and Rang, 2011). One of the most important targets for GP-induced signal-
ing are various subtypes of adenylyl cyclase (AC) (Sunahara and Taussig, 2002; Pierce et al.,
2002). For mammals, nine membrane-bound and one soluble isoform are known (Sunahara and
Taussig, 2002; Pierce et al., 2002). The membrane-bound isoforms can be structured into two
transmembrane clusters and two cytoplasmic loops (Cooper, 2003; Hurley, 1999). With the
help of metal ions, AC catalyzes the conversion of adenosine triphosphate (ATP) to cAMP and
pyrophosphate (Sunahara and Taussig, 2002; Pierce et al., 2002; Hurley, 1999). The AC activity
is mainly regulated by α subunits, depending on the isoform and the GP subunit (Sunahara
and Taussig, 2002). In general, αs subunits have stimulatory and αi subunits have inhibitory
effects (Sunahara and Taussig, 2002). But there are also other regulators of the AC activity,
e.g., the β\γ subunits, PKA and Ca2+ ions (Sunahara and Taussig, 2002). Since GDP-bound α

subunits have a tenfold lower affinity for AC, the GP-mediated catalysis is timed by the hydro-
lysis of GTP, which terminates the GP-mediated signaling (Sunahara and Taussig, 2002). The
hydrolysis and therefore the termination of the signal is enhanced by RGS proteins (Sunahara
and Taussig, 2002). Besides the PKA-mediated inhibition of AC by phosphorylation, forskolin
is a very potent stimulator which is widely used for in vitro experiments (Sunahara and Taussig,
2002; Pierce et al., 2002; Hurley, 1999).

As a consequence of the production of cAMP catalyzed by AC, the concentration of the
second messenger cAMP within the cytoplasma increases (Sunahara and Taussig, 2002; Pierce
et al., 2002). It is known that cAMP is not uniformly distributed in the cytoplasm, i.e., the con-
centration of cAMP next to AC and PKA differs from the overall cytosol concentration, which
may lead to a compartmentalization of the cAMP concentration (Cooper, 2003; Kholodenko,
2006). The second messenger molecule cAMP directly activates the enzyme PKA (Sunahara
and Taussig, 2002; Pierce et al., 2002). In the inactive state, PKA builds a complex com-
prised of two catalytic subunits and one regulatory subunit dimer (Taylor et al., 2012). There
are four known isoforms of the regulatory subunit and three known isoforms of the catalytic
subunits (Taylor et al., 2012). PKA downstream signaling is the main pathway induced by
GPs (Taylor et al., 2012). The PKA activity is directly controlled by the cAMP level (Taylor
et al., 2012). In the inactive state, the regulatory dimer blocks the binding sites of the catalytic
subunits making a binding to other substrates impossible (Taylor et al., 2012). Hence the level of
PKA activity depends on the local cAMP concentration, and the hydrolysis of cAMP catalyzed
by 3’,5’-cyclonukleotid-phosphodiesterase (PDE) decreases the activity of PKA (Maurice et al.,
2014). There are eleven mammalian PDE families which widely differ in their function (Maurice
et al., 2014). Hence, when PDE gets activated by PKA, it directly regulates the downstream
cAMP-induced signaling and can be considered as a negative feedback loop (Omori and Kotera,
2007). PKA is then able to activate a large number of enzymes such as RGS proteins or
GRKs (Alberts et al., 2014).
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3.3 Experimental Tools

A wide range of techniques to measure responses mediated by external stimuli at cellular levels
is coupled to very specific cellular events (Dale and Rang, 2011). Most of them are invasive and
might cause significant changes in the cellular physiology (Fang et al., 2006). The second mes-
senger cAMP is a prominent target for this kind of readouts (Engelhardt et al., 2017). However,
measuring the concentration of cAMP only allows for conclusions about the receptor-mediated
downstream cascade from the receptor above the production of cAMP (Dale and Rang, 2011).
The limited transferability to native systems and the restricted conclusions are a drawback
for drug discovery and development (Fang et al., 2006). To ensure medical applicability, it is
important to understand the functions of cellular targets under native conditions (Fang et al.,
2006). Today, several types of optical biosensors allow to monitor cellular signaling processes
non-invasively in real time and thus lead to an improved understanding of cell biology and
physiology (Schröder et al., 2010; Schröder et al., 2011; Fang et al., 2006). Over the last
decades, the number and range of biosensors have drastically increased (Fang et al., 2006). In
the past, several optical principles were used to investigate ligand-induced receptor responses in
membrane homogenates (Fang et al., 2006). The resonant waveguide grating (RWG) technique
has lead to the development of novel mass redistribution cell assay technologies (Fang et al.,
2006). It allows to screen the DMR within the bottom portion of living cells (Schröder et al.,
2010; Schröder et al., 2011; Fang et al., 2006).

As illustrated in Figure 3.2, broadband light enters the waveguide resonant grating (Rosenblatt
et al., 1997; Fang et al., 2006). The intensity of the reflected light can be considered to be a
function of the resonant wavelength (Rosenblatt et al., 1997; Fang et al., 2006). The native
cell can be placed on the grating to measure the optical density. The waveguide resonant
grating basically consists of a substrate layer and a waveguide film with an embedded grating
structure (Rosenblatt et al., 1997; Fang et al., 2006). Because the height of the cells is mostly
beyond the wavelength of the incident light and larger than the penetration depth, the sensing
volume is restricted to the bottom of the cell not necessarily attached to the waveguide (Schröder
et al., 2010; Schröder et al., 2011; Fang et al., 2006). In contemporary devices, the broadband
light beam illuminates the whole waveguide, which allows for instantaneous measurements,
whereas previously the beam only illuminated the waveguide punctually, resulting in delayed
measurements (Fang et al., 2006). As demonstrated in several studies, the mass reorganization
within the sensing volume changes the incident angle of the incoupled light and hence leads to
a shift of the wavelength of the outcoupled light (Schröder et al., 2010; Schröder et al., 2011;
Fang et al., 2006).

Although the underlying details of the DMR are not yet known, it allows for dividing
the complex GPCR-mediated signal patterns into its separated subsequent GP downstream
pathways (Schröder et al., 2010; Schröder et al., 2011). Through inhibition of concurrent GP-
mediated downstream pathways with several inhibitors, a unique fingerprint of the concurrent
pathways was found (Schröder et al., 2010; Schröder et al., 2011). Common inhibitors for
GP signaling are pertussis toxin (PTX), YM-254890 (YM) and cholera toxin (CTX) (Schröder
et al., 2010; Schröder et al., 2011). It is important to note that PTX, YM and CTX induce
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Figure 3.2: Illustration of the resonant waveguide grating of living cells. The broad band light enters the
waveguide and penetrates the bottom area of the cells. Depending on spatial and temporal events related
to protein trafficking and cytoskeletal rearrangements, the wavelength of the reflected light is changed.
The difference in wavelength between the reflected light before and after the treatment is related to the
shift in the optical density of the cell (Schröder et al., 2010; Schröder et al., 2011).

no measurable response on their own (Schröder et al., 2010; Schröder et al., 2011). Rather,
the response varies with the cell and receptor subtype (Schröder et al., 2010; Schröder et al.,
2011). The GPCR-induced DMR signatures are a result of highly regulated complex spatial and
temporal events, such as protein trafficking and cytoskeletal rearrangements (Schröder et al.,
2010; Schröder et al., 2011; Fang et al., 2006). Protein trafficking, Golgi-derived transport
carriers and cytoskeletal rearrangements themselves are known to be closely related to the
actin microfilaments and microtubules (Etienne-Manneville, 2004; Schmidt and Hall, 1998;
Hammond et al., 2008; Egea et al., 2006).

Whereas DMR measurements reflect the overall cellular response, they provide no insight
into the causal biochemical mechanisms on the protein level (Schröder et al., 2010; Schröder
et al., 2011). In contrast, WB is a commonly used technique which allows to derive information
about the dynamic behavior of single proteins (Towbin et al., 1979; Renart et al., 1979). Prior to
the actual WB, i.e., the transfer of proteins from a gel to a membrane, the proteins within the
sample, for instance, prepared lysates, have to be separated according to their electrophoretic
mobility (Towbin et al., 1979; Smithies, 1955). Gel electrophoresis is a standard method used to
separate macromolecules because the motion of molecules through the gel from the cathode to
the anode varies in speed depending on the size and charge of the molecules (Schägger, 2006;

39



Chapter 3 M2 Receptor-induced Signaling

Robyt and White, 1987; Smithies, 1955). The gel used in sodium dodecyl sulfate polyacrylamide
electrophoresis has a filter structure leading to a slow motion of big molecules and a separation
of molecules relative to their size (Schägger, 2006; Robyt and White, 1987). The gel-trapped
molecules can be transferred to a membrane via WB (Robyt and White, 1987; Renart et al.,
1979). Therefore, a membrane is placed over the gel and, under application of an electric field,
the molecules move towards the anode from the gel to the membrane (Robyt and White, 1987;
Renart et al., 1979).

After transfer, the membrane-bound molecules are still separated and do not change their
location compared to their absolute position on the gel (Towbin et al., 1979; Renart et al., 1979).
Once the molecules, e.g., proteins, are transferred to the membrane, they can be marked and
thus highlighted via specific antibodies (Robyt and White, 1987). The marked proteins are now
ready for quantification with the help of a special camera systems (Robyt and White, 1987).
Because gel electrophoresis and WB are highly sensitive techniques, it is possible to determine
the protein concentration based on the intensity of the markers (Robyt and White, 1987). The
light intensity of the marker and the protein concentration are related because the light intensity
of the marker increases with the number of marked molecules (Robyt and White, 1987). The
underlying idea is to wash the membrane after adding the antibodies so that only marked
antibodies bound to the specific antigen, i.e., protein, will remain on the membrane (Robyt and
White, 1987).
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CHAPTER 4

Methodology

In order to reconstruct the M2 receptor-induced signaling in CHO cells and thus the inherent
signal amplification, well-known methods from metabolic pathway reconstruction are extended
to signaling cascades in this work. The stoichiometric matrix provides information about the
relevance of the involved species and subpathways (Engelhardt et al., 2017). As mentioned in
Chapter 2, signaling is encoded in the dynamic behavior of a system and hence, in addition to
steady state analyzes, a dynamic model is necessary for further investigations (Hübner et al.,
2011; Klipp and Liebermeister, 2006).

Stoichiometric analyses of biological systems mainly based on algebraic tools have been
employed for a long time (Wei and Prater, 1962; Palsson, 2006). As illustrated in Chapter 2, for
model development, it is reasonable to start with the analysis of the network topology and the
behavior of the system under steady state conditions based on elementary reactions (Wei and
Prater, 1962; Palsson, 2006). Afterwards, the model should be complemented with advanced
kinetics to incorporate the dynamic behavior (Azeloglu and Iyengar, 2015; Hübner et al., 2011).
Here this strategy, which is similar to the bottom-up approach discussed in Section 2.1, is
required because the amount of reliable knowledge and data is restricted (Bruggeman and
Westerhoff, 2007; Azeloglu and Iyengar, 2015; Engelhardt et al., 2017).

4.1 Stoichiometric Network Analysis

A reconstruction of biochemical networks involves both the network topology and the kinetic
rates (Azeloglu and Iyengar, 2015; Palsson, 2006). In case of small- or medium-sized networks,
ODE-based dynamical systems are often employed. However, topology-based approaches can
also yield valuable insights into the mechanisms and basic features of biochemical networks (Wei
and Prater, 1962; Heinrich et al., 2002). Especially metabolic networks are frequently analyzed
based on their stoichiometry (Palsson, 2006; Bordbar et al., 2014). Metabolic networks can be
sufficiently characterized by certain steady states (Palsson, 2006). This assumption is justified
by the high relaxation time of metabolic systems, which is typically in the order of minutes
or seconds (Palsson, 2006). In contrast, a transient behavior is often observable for signaling
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networks (Klamt et al., 2006). Hence, as a method, structural analysis is well-established
for metabolic, often genome-scale, networks but not for signaling networks (Klamt et al.,
2006). The topology of a CRN, including the stoichiometric coefficients, is encoded in the
stoichiometric matrix from Definition 2. A general definition of the stoichiometric matrix is
given in Section 2.3.4. As detailed in Figure 4.1, the stoichiometric matrix as a function maps

Figure 4.1: Illustration of the concept behind the stoichiometric analysis of chemical reaction networks.
The stoichiometric matrix S can be considered as a function mapping the flux space to the space of
concentration changes (here denoted as concentration space for reasons of simplicity). The kernel of this
linear function includes the fluxes under steady state conditions because they are mapped to zero. All
dynamic fluxes are described in the row space and hence they are mapped to the concentration space.
The image of the linear mapping is equivalent to the concentration space, which can be divided into
variable species and constant species relationships. The latter are represented by the left kernel, whereas
all variable species relationships are part of the column space (Palsson, 2006).

the flux space to the space of concentration changes. The flux space is composed of all constant
fluxes uss mapped to zero and all dynamic fluxes udyn which are not mapped to zero and thus
not in steady state. The column space of the stoichiometric matrix or the span of ẋ can be
decomposed into

∑K
k=1 skvk with u ∈ RK and the column vectors sk ∈ R

N of the stoichiometric
matrix S ∈ RN×K (Palsson, 2006). For every time point t with ẋ ≈ 0, each reaction velocity rk

of the CRN is represented by a constant integer value vk. Consequently, each entity vk of the
flux vector corresponds to the overall reaction rate of the corresponding reaction at an assigned
steady state (Palsson, 2006). More general, the flux vector u with ẋ = S u is composed of a
dynamic component udyn and a static component uss such that (Wei and Prater, 1962; Palsson,
2006)

dx
dt

= S udyn + S uss. (4.1)
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Due to the fast time-scale of metabolic systems, the right and left null space, and hence

dx
dt

= 0, (4.2)

are in focus of the analysis. In the steady state, i.e., ẋ = 0, the whole system is approximately in
balance, though there is a continuous flow of the component materials (Wei and Prater, 1962;
von Bertalanffy, 1950). Even if the whole system is not in a steady state, a subsystem with
S uss ≈ 0 may exist (Wei and Prater, 1962; Palsson, 2006). This work demonstrates that the
steady state analysis can also be extended to complex signaling networks (Engelhardt et al.,
2017).

4.1.1 Left and Right Null Space

Since every column of the stoichiometric matrix corresponds to a reaction and every row corres-
ponds to a species, investigating the left and right null space of the stoichiometric matrix allows
to gain insights into the reaction and species dependencies, as illustrated in Figure 4.1 (Wei and
Prater, 1962; Palsson, 2006).

Definition 6: Left and Right Null Space

Given a CRN with a stoichiometric matrix S ∈ RN×K , the right null space or kernel ker (S )
is given by

ker (S ) =
{
u ∈ RK |S u = 0

}
.

Accordingly, the left null space ker
(
S T

)
is given by

ker
(
S T

)
=

{
g ∈ RN

∣∣∣S Tg = 0
}
.

For a CRN with K single reactions and N species, using common definitions from linear
algebra, the number of reactions K is equal to dim (ker (S )) + dim (im (S )) (Palsson, 2006). In
addition, the image of the mapping S is defined as

im (S ) =
{
x ∈ RN

∣∣∣ẋ = S u u ∈ RK
}
. (4.3)

Therefore, the dimension of ker (S ) is equivalent to the number of independent fluxes and the
dimension of im (S ) is equivalent to the number of dependent fluxes (Palsson, 2006). In contrast,
the number of species N depends on dim

(
ker

(
S T

))
and dim

(
im

(
S T

))
. The column space of S

is orthogonal to the kernel of S T and hence the space of concentration changes can be partitioned
into the column space and the left null space (Palsson, 2006).

Right Null Space

The behavior of the system under steady state conditions is characterized by the right null
space (Palsson, 2006). It is always possible to find a set of basis vectors b ∈ RK for the right
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null space such that

u =

(K−dim(im(S )))∑
j=1

α jb j ∀u : S u = 0, (4.4)

with αi ∈ R (Llaneras and Picó, 2010). The basis vectors b j are not necessarily positive and
can therefore not be directly interpreted as fluxes in a biological manner (Wei and Prater, 1962;
Palsson, 2006). In contrast, a convex representation of the kernel can often be directly mapped
to pathways of the CRN (Llaneras and Picó, 2010). This is due to the fact that a flux, i.e., the
rate of turnover of molecules, through a biological system is unidirectional and thus always non-
negative (Llaneras and Picó, 2010). A set of non-negative basis vectors leads to concepts based
on convex analysis (Palsson, 2006; Clarke, 1980). All possible steady state fluxes are enclosed
by a polytope spanned by a set of conically independent generating vectors, where the number
of generating vectors in this set can exceed the dimension of the right null space (Palsson, 2006;
Clarke, 1980). In contrast to Equation (4.4), the space of feasible steady states is in general
given by

P =
{
u ∈ RK |S u = 0,Du ≥ 0

}
, (4.5)

with a diagonal matrix D ∈ RK×K , where Dii = 1 if the flux is irreversible and Dii = 0 oth-
erwise (Llaneras and Picó, 2010). This is important because often two opposed irreversible
reactions are combined to one reversible reaction in order to reduce the dimension of the stoi-
chiometric matrix. The composition of the related polytope is commonly addressed by extreme
currents or EFMs (Palsson, 2006; Clarke, 1980).

Left Null Space

Whereas ker (S ) and the row space help to explain the flux distribution, the left kernel ker
(
S T

)
helps to explain species dependencies (Wei and Prater, 1962; Palsson, 2006). The left kernel
adds all time derivatives up to zero (Wei and Prater, 1962; Palsson, 2006). Hence, for a convex
basis, the time-invariant quantities lead to conservation relationships (Wei and Prater, 1962;
Palsson, 2006). Conservation relationships are all those vectors g with

g ∈
{
y ∈ RN : S Ty = 0

}
. (4.6)

This implies

gT ẋ = gT S u =
(
S Tg

)T
u = 0 (4.7a)

⇒
d
dt

 N∑
n=1

gnxn

 = 0 (4.7b)

⇒ gT x =

N∑
n=1

gnxn = const. (4.7c)
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Each conservation relationship g represents a linear combination of constant species (Wei and
Prater, 1962; Palsson, 2006). They can be interpreted as a cycle of mass conservation, e.g., the
conservation of phosphate groups within a certain subpathway (Wei and Prater, 1962; Palsson,
2006). A convex representation of ker

(
S T

)
seems natural because the involved quantities are

related to species concentrations which are always greater or equal to zero (Wei and Prater,
1962; Palsson, 2006). The conservation relationships hold true for all network states and thus

gT x = gT xre f = const. (4.8)

or
gT

(
x − xre f

)
= 0. (4.9)

In contrast to the original affine hyperspace resulting from the inhomogeneous linear system
gT x = const., the introduced reference vector xre f transforms the concentration space into a
non-affine hyperspace. Consequently, the basis of this system is equivalent to ker

(
S T

)
(Palsson,

2006).

4.1.2 Constraint-based Modeling

In addition to the left kernel, the image of the linear mapping related to the stoichiometric
matrix is spanned by the column space of S . The decomposition ẋ =

∑K
k=1 skvk and the fact

that the fluxes vk are constrained by finite values α ≤ u ≤ β lead to a constrained equation
system (Palsson, 2006; Bordbar et al., 2014). The conservation relationships introduce additional
constraints, resulting in a linear equation system

dx
dt

= S u = b (4.10a)

α ≤ u ≤ β (4.10b)
dgT x

dt
= 0, (4.10c)

with real-valued vectors α ≤ β (Orth et al., 2010; Bordbar et al., 2014). The interval
[
α,β

]
is

often used to define core reactions which are forced to be active and hence 0 <
[
αi, βi

]
. For some

biological problems, this leads to an optimization task when including an objective function,
e.g., max

(
cTu

)
(Becker and Palsson, 2008). The objective function mostly describes the growth

rate or the ATP production, which are optimized in some biological settings (Nam et al., 2014).
For instance, in cancer cells, cell proliferation and ATP production are often assumed to be
maximized (Nam et al., 2014). An example from biotechnology is the regulation of the yeast
metabolism such that defined metabolites are optimized (Brochado et al., 2010; Vargas et al.,
2011). These phenomena are typically addressed via a flux balance analysis (FBA) (Orth et al.,
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2010). Here, the system given through Equation (4.10) is optimized through

max
(
cTu

)
(4.11a)

dx
dt

= 0 = S u (4.11b)

α ≤ u ≤ β, (4.11c)

with an objective cTu encoded by a real-valued vector c with ck , 0 for all fluxes which are
assumed to be maximized. Vice versa cTu can also be minimized if necessary.

The solution space of the system described through Equations (4.10) is large and of irregular
shape (Schellenberger and Palsson, 2009; Palsson, 2006). In consequence, it can have an infinite
number of solutions (Palsson, 2006; Fischer, 2013). A promising approach to address this issue
is to describe the constraints a system has to satisfy rather than computing an explicit solution
ẋ = b (Schellenberger and Palsson, 2009; Palsson, 2006). Therefore, the solution space is
reduced to feasible solutions (Schellenberger and Palsson, 2009; Palsson, 2006). As for the FBA,
an important case described through Equations (4.10) is given by ẋ = 0 (Palsson, 2006). The
steady state is of polyhedral shape and therefore not as irregular as the general solution space
for constraint-based models (Schellenberger and Palsson, 2009; Palsson, 2006). However, the
calculation of the solution space for ẋ = 0 and the left kernel are non-trivial tasks and commonly
addressed by MCMC algorithms (Schellenberger and Palsson, 2009; Megchelenbrink et al.,
2014). A brief description of the latter is provided in Section 4.3.2. MCMC methods allow to
determine the size and shape of the steady state solution space and provide information about
the probabilities of feasible solutions (Wiback et al., 2004). The aim of a steady state analysis is
to explore all possible and biologically relevant paths through the system in the steady state and
calculate their probabilities (Wiback et al., 2004; Schellenberger and Palsson, 2009; Palsson,
2006).

4.2 Optimal Control Theory

OCT is very well known in engineering and also frequently applied to biological systems,
especially to optimize bioprocesses in biotechnology and bioengineering (Paiewonsky, 1965;
Crassidis and Junkins, 2011; Banga et al., 2005). The main intention is to control the trajectories
of the variables in a dynamical system (Luenberger, 1979). In contrast to control theory, where
the dynamic behavior and the modification via feedback loops are in focus, OCT asks for an
optimal modification with respect to a certain objective (Sontag, 2005). Thus OCT is closely
related to optimization and the calculus of variations (Luenberger, 1979).

In more general terms, a dynamical system and a set of initial values is given according
to Definition 5. For the purpose of optimal control, it is necessary to explicitly distinguish
between the states, i.e., dynamic model variables x (t) and additional inputs u (t) (Luenberger,
1979; Martinelli, 2015). The desired objective functional J (x (t) ,u (t)), gives rise to a general
first-order optimal control problem (OCP), as described below (Luenberger, 1979).
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Definition 7: Optimal Control Problem

For a system of first-order differential equations, a vector-valued function
f (x (t) ,u (t)) : RN ×U → RN with a set of admissible controls U ⊂ RP, a time-
dependent state-vector x (t) ∈ RN , a set of initial values x (0) = x0, known inputs
u (t) ∈ U and an objective functional J (x (t) ,u (t)) : RN ×U → R and t = [0, F], the
optimal control problem is given by

dx
dt

= f (x (t) ,u (t))

x (0) = x0

J (x (t) ,u (t)) = φ (x (F)) +

F∫
0

l (x (t) ,u (t)) dt

max
u∈U

[J (x (t) ,u (t))] ,

with a terminal constraint φ (x (F)) ∈ R and a real-valued objective function
l (x (t) ,u (t)) : RN ×U → R.

For general biological systems with observations y (t) = h (x (t)) and y (t) ∈ RI , the objective
functional can be stated as

J (x (t) ,u (t)) = φ (h (x (F))) +

F∫
0

l (h (x (t)) ,u (t)) dt, (4.12)

and the corresponding OCP is
min
u∈U

[J (x (t) ,u (t))] . (4.13)

Thus, the objective functional depends on a combination h (x (t)) of the state variables x (t).
For biological systems, the observations and hence the function h (x (t)) often reflect a linear
dependency of the state variables.

4.2.1 Derivation

Although a positive change in J (x (t) ,u (t)) caused by a small shift of u (t) is a sufficient condi-
tion for optimization, it is difficult to derive a direct method to address this problem because even
an infinitely small change in u (t) may cause a change in x (t) (Luenberger, 1979). Vice versa, for
the OCP given in Definition 7, a negative change in J (x (t) ,u (t)) indicates distancing from the
optimal solution (Luenberger, 1979). To circumvent the direct determination of J (x (t) ,u (t)),
an auxiliary variable λ (t) ∈ RN is introduced (Luenberger, 1979).
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The auxiliary variable leads to the Hamiltonian function H (λ (t) , x (t) ,u (t)) : RN×RN×U → R
withU ⊂ RP given by (Luenberger, 1979)

H (λ (t) , x (t) ,u (t)) = λT (t) f (x (t) ,u (t)) + l (x (t) ,u (t)) . (4.14)

Applying Equation (4.14), the functional J (x (t) ,u (t)) can be reformulated by adding zero in
such a way that the modified functional

J̃ (x (t) ,u (t) , λ (t)) = φ (x (F)) +

F∫
0

[
H (λ (t) , x (t) ,u (t)) − λT (t)

dx (t)
dt

]
dt (4.15)

becomes equivalent to J (x (t) ,u (t)) for each trajectory, but the freedom in the choice of λ (t)
can be used to reduce the complexity of the OCP (Luenberger, 1979). For each trajectory, the
identity ẋ − f (x (t) ,u (t)) = 0 holds true and hence it directly follows that

J (x (t) ,u (t)) = J̃ (x (t) ,u (t) , λ (t)) ∀λ (t) ∈ RN . (4.16)

The obtained difference

∆J̃ = J̃ (x̃ (t) , ũ (t) , λ (t)) − J̃ (x (t) ,u (t) , λ (t)) , (4.17)

where ũ (t) = u (t) + ∆u (t) and x̃ (t) = x (t) + ∆x (t), serves as a measurement for the change in
the objective functional caused by ∆u (t). Trivially, ∆u (t) = 0 leads to ∆J̃ = 0. It is important
to see that a change in ũ (t) causes a change in the states of the system, but even a large change
of the input over a short interval of time may lead to a comparatively small change of the
states for each time point (Luenberger, 1979). This is caused by the direct dependency on the
integration of the objective function l (x (t) ,u (t)) (Luenberger, 1979). Please note that, when
introducing additional state or control constraints, the explained variation is no longer directly
solvable (Crassidis and Junkins, 2011; Luenberger, 1979).

In consequence, through Taylor approximation and considering the fact that the input has no
influence on the initial values, i.e., ∆x (0) = 0, ∆J̃ can be reformulated as

∆J̃ =

(
∂φ (x (F))

∂x
− λT (F)

)
∆x (F)

+

F∫
0

[
∂H (λ (t) , x (t) ,u (t))

∂x
+

dλT (t)
dt

]
∆x (t) dt

+

F∫
0

(H (λ (t) , x̃ (t) , ũ (t)) − H (λ (t) , x (t) ,u (t))) dt + o (∆x) ,

(4.18)

with the gradient ∂
∂x and an additional error of the order o (∆x), following the Bachmann–Landau

notation, caused by the Taylor approximation and the application of the first-order differential
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quotient (Luenberger, 1979; Hanke-Bourgeois, 2008). The reformulated Equation (4.18) is still
difficult to calculate because it depends on the final values of x (t) and λ (t) which change with
∆u (t). The fact that λ (t) can be chosen arbitrarily can be used to eliminate all terms except for
the last integral and thus to reduce the complexity of the system (Luenberger, 1979). Altogether,
this leads to the adjoint differential equation

−

[
dλ (t)

dt

]T

=
∂H (λ (t) , x (t) ,u (t))

∂x
(4.19a)[

dλ (F)
dt

]T

=
∂φ (x (F))

∂x
, (4.19b)

which reduces Equation (4.18) to

∆J̃ =

F∫
0

(H (λ (t) , x̃ (t) , ũ (t)) − H (λ (t) , x (t) ,u (t))) dt + o (∆x) . (4.20)

Equation (4.20) allows to establish a direct criterion for the improvement of ∆J̃ because for
any fixed u ∈ U for H (λ (t) , x̃ (t) , ũ (t)) ≥ H (λ (t) , x (t) ,u) the integral in Equation (4.20) is
greater than or equal to zero and hence ∆J̃

∣∣∣ũ(t) ≥ ∆J̃ |u due to the linearity of integrals and

H (λ (t) , x̃ (t) , ũ (t)) ≥ H (λ (t) , x (t) ,u (t)) ∀t ∈ [0, F] (4.21a)

⇒

F∫
0

H (λ (t) , x̃ (t) , ũ (t)) dt ≥

F∫
0

H (λ (t) , x (t) ,u) dt. (4.21b)

In consequence, ũ (t) is optimal with respect to any fixed u ∈ U (Luenberger, 1979). According
to this, the optimal control ũ (t) can be determined at each time point to satisfy ∆J̃

∣∣∣ũ(t) ≥ ∆J̃ |u
with respect to all admissible control functions (Crassidis and Junkins, 2011). This gives
rise to Pontryagin’s maximum (or minimum) principle which provides necessary optimality
conditions and thus is the basis of many numerical algorithms (Luenberger, 1979). Nevertheless,
optimizing ∆J̃ remains a difficult task. Several numerical methods have been developed to
provide a non-improvable solution by circumventing Pontryagin’s maximum principle (Banga
et al., 2005; Gong et al., 2008). However, the uniqueness of the solution with respect to all
possible trajectories is not always guaranteed (Banga et al., 2005; Gong et al., 2008).
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Box 1: Hidden Inputs

In general, for biological systems, the inputs u (t) can be di-
vided into known stimuli and unknown but influential stimuli.
With respect to control theory, inputs are equivalent to either
fixed or variable controls.
Here the known biological system (green) includes one stim-
uli. However, there may exist another unknown pathway (red)
which influences the system at certain nodes or other erroneous
interactions within the system. This hidden inputs can be con-
sidered as unmodeled control variables. Inspired by this, the
dynamic elastic-net was developed (Engelhardt et al., 2016).

4.2.2 Numerical Solutions

Since OCPs appear in many fields, a variety of solution strategies have been developed (Banga
et al., 2005; Gong et al., 2008; Ross and Karpenko, 2012). These methods are commonly
divided into dynamic programming, indirect and direct approaches (Banga et al., 2005). Besides
other methods, such as stochastic and hybrid techniques based on vector parametrization,
pseudospectral optimal control is a commonly used method (Banga et al., 2005). In this work,
a pseudospectral optimal control algorithm was chosen to solve the DEN problem detailed
in Chapter 6 (Engelhardt et al., 2016). Interestingly enough, both OCPs and pseudospectral
theory are based on Sobolev spaces (Banga et al., 2005). Sobolev spaces consist of p-times
integrable functions or equivalence classes with p-times integrable weak derivatives (Walter,
1994). Weak derivatives are generalized derivative functions which are not differentiable
but integrable (Walter, 1994). The fundamental property leading to pseudospectral optimal
control methods is given by the Stone-Weierstrass approximation, i.e., there exists a polynomial
sequence xi (t) in the Sobolev space for each state converging against x (t) for i→ ∞ (Ross and
Karpenko, 2012). Thus, the original problem becomes discretized under appropriate conditions
and can be solved when a sufficiently large set of points is used for calculation, for instance, on
a mesh based on Gaussian rules (Gong et al., 2008). In consequence, the complex problem can
be solved by solving a sequence of computationally feasible subproblems (Ross and Karpenko,
2012; Banga et al., 2005). In more detail, the exact solution is obtained by combining domain
transformation, interpolation, differentiation and integration to solve a sequence of inexact
solutions (Ross, 2005; Ross and Karpenko, 2012). In contrast to other methods, pseudospectral
optimal control methods try to approximate the solution rather than manipulate equations (Gong
et al., 2008).

4.2.3 Objective Functions

In addition to numerical issues, the solvability of OCPs strongly depends on the objective
function l (x (t) ,u (t)). For biological problems, the fit of the model to observations evaluated
through the least-square-error (LSE) is mainly of interest. The L2 (Ω) norm defined on the space
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of square-integrable functions in Ω ∈ R is given by

‖g (t)‖2 =


∫
Ω

|g (t)|2 dt


1
2

, (4.22)

where g (t) : Ω → R is a real-valued function with Ω ⊂ R. The model error of a dynamical
system is typically defined as the difference between the model predictions y (t) and observations
ỹ (t) (Kremling, 2012). For discrete time points tl = t1, ..., tF , with respect to the inaccuracy of
measurements σ2

tl , the LSE yields

LSE (y, ỹ) =

I∑
i=1

F∑
l=1

(yi (tl) − ỹi (tl))2

σ2
i,tl

. (4.23)

In complex cases, which are typical for biological processes, a unique solution or even a solution
at all is not ensured (Jarre and Stoer, 2004). In view of OCPs which include additional control
variables, a general criteria for uniqueness and solvability cannot be given (Luenberger, 1979).
In addition, as discussed earlier, even strong inputs may result in comparatively weak changes
in states and observations of the system. As shown in Figure 4.2, in some cases the order of
magnitude of the difference between states and the related input can reach any size (Engelhardt
et al., 2016). In consequence, it is not possible to draw direct conclusions from the states or
observations of a system to the control variables (Luenberger, 1979; Engelhardt et al., 2016).

Figure 4.2: Illustration of the effect of even high changes in the control variable. (a) Network graph with
observed states and one control variable. (b-d) State trajectories with respect to different admissible
controls u1 (t) (blue) and u2 (t) (red). (e,f) Observed dynamics y1 (t) and y2 (t) with respect to u1 (t) (blue)
and u2 (t) (red). (g) Time series of u1 (t) (blue) and u2 (t) (red). The change in the states and observations
is much smaller than the variation of the control variable.
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For some purposes, especially in cases where sparsity is required, the L1 (Ω) norm

‖g (t)‖1 =


∫
Ω

|g (t)| dt

 (4.24)

is used, but this leads to a non-smooth objective functional (Vossen and Maurer, 2006). In
many applications, also in other fields of research, e.g., robotics, the L1 norm is a more realistic
objective because it weighs all function values equally (Vossen and Maurer, 2006). It has been
shown that the L1 norm must be treated numerically different, in contrast to so-called smooth
OCPs based on LSEs (Vossen and Maurer, 2006). In practice, non-smooth OCPs with added
control variables are often solved via regularization and augmentation approaches (Vossen and
Maurer, 2006). Regularization approaches solve the problem for general Lp (Ω) norms defined
through

‖g (t)‖p =


∫
Ω

|g (t)|p dt


1
p

, (4.25)

with p ≥ 1. The OCP can then be solved by determining the limit

lim
ε→0



∫
Ω

I∑
i=1

|gi (t)|(p+ε)dt


1

p+ε

 (4.26)

for p = 1 (Vossen and Maurer, 2006). Alternatively, an augmentation approach has been
proposed where the control variable is split into its positive and negative fraction (Vossen
and Maurer, 2006). This approach doubles the number of involved control variables. In both
approaches, the control variables tend to behave like step functions taking only zero, the defined
maximum and the defined minimum as values (Vossen and Maurer, 2006).

4.2.4 Properties

In practice, it is important to know whether the system can be clearly reconstructed based
on the given data or if there are non-distinguishable parts. This is directly related to the
question of observability (Luenberger, 1979). In contrast to non-linear systems, observability is
well-investigated for linear dynamical systems given by

dx (t)
dt

= Ax (t) + Bu (t) (4.27a)

y (t) = Cx (t) (4.27b)
x (0) = x0, (4.27c)

where x0 ∈ R
N is the initial value (Luenberger, 1979; Adamy, 2014). The lack of observability

is imputable to the linear mapping C caused by the fact that usually only parts of the system and
combinations of species are experimentally accessible.
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Definition 8: Observability

Given the linear system with A ∈ RN×N , B ∈ RN×P,C ∈ RI×N , x (t) ∈ RN , y (t) ∈ RI and
u (t) ∈ U ⊂ RP, the system

dx (t)
dt

= Ax (t) + Bu (t)

y (t) = Cx (t)
x (0) = x0,

is called completely observable for t ≥ 0 within the finite interval [0, F] if the initial
values x (0) can be clearly determined through y (t) and u (t) for all u (t) continuously
differentiable.

Observability means that all states can be determined by observing the output structure (Lu-
enberger, 1979). If the optimum is given by a clear trajectory related to one unique control for a
given OCP, then the system is distinguishable in both states and control variables (Martinelli,
2015; Crassidis and Junkins, 2011; Luenberger, 1979). Thus observability is a necessary condi-
tion to achieve reliable models. In practice, one is often interested in particular mechanisms
of the system under investigation and thus it is sufficient that at least these mechanisms are
observable (Gao et al., 2014). In contrast to complex systems, for time-invariant linear systems
with ẋ = Ax (t), there exists a simple criterion to test observability (Luenberger, 1979; Hermann
and Krener, 1977). A time-invariant linear system is observable if and only if the rank of
M ∈ RIN×N is N with (Luenberger, 1979)

M =


C

CA
CA2

...
CAN−1


. (4.28)

The inverse of the observability matrix M in Equation (4.28) is used to transform a given system
into the canonical form which is always observable and hence M has to be invertible, i.e., the
column space of M has to be full (Hermann and Krener, 1977; Crassidis and Junkins, 2011).
This means that all states of the system clearly contribute to the output and that no state is
projected to the null space and thus vanishes in the output structure. Even though the concept of
observability can be easily extended to non-linear systems, there exists no simple condition to
prove observability for such systems (Martinelli, 2015).

A similar property of dynamical systems with additional input variables is called controllabil-
ity (Hermann and Krener, 1977). For time-invariant linear systems, controllability is dual to
observability and thus the theory and criteria are similar (Hermann and Krener, 1977; Adamy,
2014).
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Definition 9: Controllability

Given the linear system with A ∈ RN×N , B ∈ RN×P,C ∈ RI×N , x (t) ∈ RN , y (t) ∈ RI and
u (t) ∈ U ⊂ RP, the system

dx (t)
dt

= Ax (t) + Bu (t)

y (t) = Cx (t)
x (0) = x0,

is called controllable if there is a piecewise control variable u (t) for any given state xtl
such that x (tl) = xtl and x (0) = x0 for a finite time t with 0 ≤ t ≤ tl.

A linear system is controllable if and only if the rank of M ∈ RN×PN is N with (Luenberger,
1979)

M =
(
A, AB, A2B, ..., An−1B

)
. (4.29)

The similarity between Equation (4.28) and Equation (4.29) clarifies the close connection
between observability and controllability. For a CRN, it is usually not possible and mostly not
necessary to control the entire network (Gao et al., 2014). Also, methods to efficiently control
the dynamics of complex networks are rarely given (Gao et al., 2014). However, a recent study
focusing on the identification of patterns within complex systems provided a possibility to
identify the minimal set of necessary controls for a given objective (Gao et al., 2014). Besides
criteria based on Lie derivations, which allow to investigate the derivative of the vector field
generated by the state space corresponding to a constant control in direction to f (·,u (t)), a raw
approach to locally investigate non-linear systems is the first-order Taylor approximation around
a local point or the use of other linearization methods (Hermann and Krener, 1977; Adamy,
2014; Crassidis and Junkins, 2011). In any case, the error caused by linearization has to be taken
into account (Adamy, 2014; Crassidis and Junkins, 2011). Anyhow, this is useful to investigate
a system with well-investigated linear methods (Adamy, 2014; Crassidis and Junkins, 2011).

So far, the states of the considered dynamical system are only restricted by their initial
values x0 (Luenberger, 1979). In practice, also terminal constraints might be given, such as
final data points or known final states. Without a constrained terminal state x (F), the final
value of the state vector is completely arbitrary (Luenberger, 1979). OCPs therefore often
lead to boundary value problems which are harder to solve than IVPs (Ross and Karpenko,
2012). Thus the inclusion of terminal constraints may lead to situations where neither a feasible
control nor a feasible state trajectory can be found to satisfy both the initial and terminal
constraints (Luenberger, 1979). On the other hand, there could be only one feasible solution
which then leads to an unappreciation of the objective (Luenberger, 1979). It becomes clear
that the adjoint variable λ(F) at terminal constraints must not be specified in order to apply
Pontryagin’s maximum principle (Luenberger, 1979).
Thus it is only necessary to ensure that

λ (F) =
∂φ (x (F))

∂x
(4.30)
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for all components of x (F) with ∆xi (F) , 0 (Luenberger, 1979). Consequently, for biological
systems, it can be favorable to restrict the final state to a defined interval rather than setting
fixed terminal constraints or removing final data points and thus terminal constraints from the
system (Luenberger, 1979). This may help to satisfy the objective function in cases where it
is not possible to find feasible control variables and state trajectories with feasible initial and
terminal constraints (Luenberger, 1979). In contrast, in some experimental frameworks it might
make sense to consider the last time point as an additional variable leading to free terminal time
problems (Luenberger, 1979).

4.3 Bayesian Inference

In contrast to purely deterministic approaches, statistical methods allow for an intuitive handling
of measurement noise, estimates of uncertain quantities and the analysis of random phenomena
in general (Bishop, 2007; Gelman et al., 2013; Hoff, 2010). Such methods are often based on
the inherent correlations in data (Bishop, 2007; Gelman et al., 2013; Hoff, 2010). It is clear that
the necessity of introducing probabilities is caused by a lack of knowledge and that there are
different ways to look at probabilities (Tschirk, 2014). The classical frequentism point of view,
as the standard interpretation of probability, considers random variables as flexible values which
change by multiple conduction of assigned random experiments (Tschirk, 2014). Consequently,
probability is the relative frequency of an event (Tschirk, 2014). From the Bayesian point of
view, variables with unknown values are random, too, but the probability is considered as the
reasonable expectation of an event (Tschirk, 2014; Hoff, 2010).

Frequentism only allows knowledge described by relative frequencies whereas in Bayesian
statistics there is no general restriction to a certain type of knowledge (Tschirk, 2014; Hoff,
2010). This is why frequentism is often considered a special case of Bayesianism (Tschirk,
2014). Besides theoretical aspects, this has practical consequences for the use of probabilit-
ies (Tschirk, 2014). From the classical frequentist point of view, it is not clear if there is any
relation between the estimated parameter and the true parameter since the estimates are just
based on random samples (Tschirk, 2014). Anyhow, there are some measurement variables,
e.g., the efficiency, to characterize the relation between estimates and true values (Tschirk,
2014). In contrast, Bayesian statistics estimates parameter distributions by incorporating prior
knowledge (Tschirk, 2014; Hoff, 2010). If there is only little prior knowledge, the results will
be similar or equivalent to those obtained through frequentist approaches, with the deviation
increasing with the amount of prior knowledge (Tschirk, 2014).

Since Bayesian analysis uses prior knowledge to determine the probability of certain events,
its advantage over classical statistical methods increases with the amount of prior knowledge
frequently given in biological problems (Tschirk, 2014; Hoff, 2010). In particular, Bayesian
learning makes it possible to perform optimal updates of beliefs given new information (Hoff,
2010). Bayes’ law, as detailed in Box 2, is the fundamental concept of Bayesian statistics
and allows to deduce a posterior distribution based on the prior distribution and a sampling
model (Hoff, 2010).
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Box 2: Bayes’ Law

Let θ be a parameter in the parameter space Θ and y a sample in the sample space Ω.
Then the prior distribution for θ is given by p (θ) and the posterior distribution of the
parameter given the samples can be obtained through

p (θ |y ) =
p (y |θ ) p (θ)∫

Θ

p (y |θ′ ) p (θ′) dθ′
,

where p (y |θ ) denotes the probability of the sample given the parameter.

Bayes’ Law describes the distribution of the parameter based on a given sample through
rational beliefs obtained from biological knowledge (Hoff, 2010). These beliefs are represented
by prior knowledge about the parameter distribution and the sample distribution given this
parameter. The nominator

∫
Θ

p (y |θ′ ) p (θ′) dθ′ is equivalent to the usually unknown uncondi-
tioned sample distribution p (y) (Gelman et al., 2013). Based on Bayes’ Law, the basic idea
of Bayesian learning is to update the beliefs about parameter and sample distributions, where
p (y |θ ) is the belief of the sample if the parameter were known and p (θ |y ) is the probability of
the parameter based on the sample observations (Gelman et al., 2013). Bayes’ Law describes
how the beliefs change after gaining new information (Hoff, 2010).

From the Bayesian perspective, observations, e.g., protein concentrations, are nothing else
than realizations of a random variable with a certain known or unknown measurement er-
ror (Tschirk, 2014; Gelman et al., 2013). In case of unknown measurement errors, priors based
on assumptions or knowledge can be introduced (Gelman et al., 2013). If there is a lack of prior
knowledge, it is also possible to add non-informative priors (Gelman et al., 2013; Hoff, 2010).
In general, the more information is encoded in the data, the lower the influence of the prior on
the posterior (Gelman et al., 2013; Hoff, 2010). In turn, if the amount of information obtained
through the data or model is low, the prior dominates the posterior and, in consequence, the
results become uncertain (Gelman et al., 2013; Hoff, 2010).

This work adopts common terms of probability theory, which are given below (Hoff, 2010;
Gelman et al., 2013).
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Definition 10: Random Variable

Given a random experiment with sample space Ω, then a random variable X is a mapping
which assigns each ω ∈ Ω a real value X (ω) = x according to

X : Ω→ R

ω 7→ X (ω) = x,

where x is called realization of the random variable X.

The distribution function F (x) = P (X ≤ x) assigns a probability P (X ≤ x) to each
realization.

For continuous random variables and each interval [a, b], there exists a density f (x) ≥ 0
such that

P (a ≤ X ≤ b) =

b∫
a

f (x) dx,

with
∞∫
−∞

f (x) dx = 1 and F (x) =
x∫
−∞

f (t) dt.

The variance is defined as

σ2
f = Var f (X) =

∞∫
−∞

(
x − µ f

)2
f (x) dx,

with an expected value µ f = E f (X) =
∞∫
−∞

x f (x) dx. For simplicity of notation, in this

work σ2
f is denoted as σ2 and µ f as µ.

For dynamic protein-protein interaction networks, the time series of the protein concentrations
are often accessible (Azeloglu and Iyengar, 2015; Sauer et al., 2007). This means that several
protein concentrations are measured at several well-defined time points. Consequentially, this
work deals with multivariate random variables and therefore, for reasons of clarity, the following
simplifications are used in this thesis. Given a set of observations i = 1, ..., I at F discrete time
points tl = t1, ...tF , which is equivalent to l = 1, ..., F, a single observation i at time t is denoted
as yi,l. A set of observations is given by

y1:F =
(
y1,1:F , ..., yI,1:F

)T
=


y1,1 . . . y1,F
...

. . .
...

yI,1 . . . yI,F

 . (4.31)

In this chapter a general multivariate random variable is denoted as Y.
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Box 3: Strict definition of multivariate random variables

It is important to note that Definition 10, as a common simplified definition, is not
completely consistent from a mathematical point of view. For the sake of completeness,
a stricter definition for multivariate random variables or random vectors is given below.

Let (Ω,G) be a measure where G is a σ-algebra over the sample space Ω and (E,E) a
measure where E is a σ-algebra over E. Then a mapping X : Ω→ E with

X−1 (B) = {ω ∈ Ω : X (ω) ∈ B} ∈ G ∀B ∈ E

is called random variable on (Ω,G) with values in (E,E) and hence X : (Ω,G)→ (E,E)
is a measurable mapping. Then, for each probability P in (Ω,G), there exists a probability
measure Q in (E,E) with

Q (B) = P
(
X−1 (B)

)
B ∈ E,

where Q is called distribution of X with respect to P.

Let Q be a probability measure in
(
RN ,B

(
RN

))
with a Borel set B

(
RN

)
. Then Q is called

probability distribution withQ
(

N

×
n=1

(−∞, bN]
)

b = (b1, ..., bN) ∈ RNabitrary
=

b1∫
−∞

...

bN∫
−∞

f (X1 (x1) , ..., XN (xN)) dx1...dxN ,

and
∞∫

−∞

...

∞∫
−∞

f (X1 (x1) , ..., XN (xN)) dx1...dxN = 1.

The function f (X1 (x1) , ..., XN (xN)) is called density with respect to Q.

Please note that, from a mathematical point of view, the integrals written in Definition 10
are vaguely defined. Because random variables are mappings, the integration variables
are given by the realizations of those random variables and not by the random variables
themselves. However, due to the fact that the domain and codomain are real-valued and
for reasons of simplification the random variable is suppressed and thus

b1∫
−∞

...

bN∫
−∞

f (X1 (x1) , ..., XN (xN)) dx1...dxN ⇔

b1∫
−∞

...

bN∫
−∞

f (x1, ..., xN) dx1...dxN .

Although p (θ |Y ) is the probability density of θ conditioned on Y, it is often equated with
the probability of θ given Y since the probability function can in general be derived from its
distribution (Gelman et al., 2013; Hoff, 2010). In addition, discrete random variables are special
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cases of continuous random variables (Gelman et al., 2013; Hoff, 2010).

4.3.1 Markov Chain Monte Carlo Methods

The probability of the estimated parameter set given the sample is an important measure for its
reliability (Brooks, 1998; Gelman et al., 2013; Hoff, 2010). As a direct consequence of Bayes’
law (Box 2), the conditional posterior density of the parameter set can be approximated as

p (θ |Y ) ∝ p (Y |θ ) p (θ) , (4.32)

where the constant proportion is given by
∫

Θ
(Y |θ′ ) p (θ′) dθ′ (Hoff, 2010). In most cases this

integral is hard to solve and numerical integration or analytic approximation techniques must
be used (Gelman et al., 2013; Hoff, 2010). Thus, neither the full posterior density nor the
marginal posterior density are directly accessible (Hoff, 2010). MCMC methods allow for
sampling directly from the posterior while avoiding analytical integration (Hoff, 2010). This
way, sampling from the posterior based on prior knowledge about θ and the distribution of the
data Y given θ is possible (Hoff, 2010). Although the parameter distribution for the given data
is not available, information about θ and the data given θ can often be derived (Gelman et al.,
2013; Hoff, 2010).

The fundamental concept of MCMC methods is based on the fact that the posterior distribution
is known up to a certain multiplicative constant (Gelman et al., 2013; Hoff, 2010). Here, it is
often possible to generate a chain of samples which converge against random samples from the
posterior distribution (Brooks, 1998). More precisely, given a Markov chain

{
θ(s) : s = 1, ..., S

}
of realizations θ(s), then for any real-valued function g (θ) the state distribution of the Markov
chain converges against the posterior distribution with (Brooks, 1998)

P

 lim
S→∞

1
S

S∑
s=1

g
(
θ(s)

)
=

∞∫
−∞

g
(
θ′

)
f
(
θ′ |Y

)
dθ′

 = 1. (4.33)

Markov chains are sequences of random variables θ(s) with

P
(
θ(s+1)

∣∣∣θ(s), ..., θ(1)
)

= P
(
θ(s+1)

∣∣∣θ(s)
)
∀s. (4.34)

The most important properties of Markov chains for MCMC transitions are irreducibility, recur-
rency and aperiodicity (Brooks, 1998). Irreducibility means that there exists a certain probability
that a state can be transitioned into another state within one or more steps (Brooks, 1998;
Gelman et al., 2013; Hoff, 2010). Recurrency guarantees convergence in a finite time, whereas
aperiodicity means that a return to a certain state can occur at irregular times (Brooks, 1998;
Gelman et al., 2013; Hoff, 2010).

It can be shown that an irreducible and aperiodic Markov chain converges to a unique
stationary distribution (Brooks, 1998). This means that once the process behaves like a certain
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distribution, it will stay there and, in consequence, all samples are drawn from this unique
stationary distribution (Brooks, 1998). In fact, a transition kernel K can be generated for
Markov chains which describes the transition between two states (Brooks, 1998). Depending
on the situation and the given amount of data and knowledge, different kernels have been
developed in the past (Brooks, 1998). This thesis focuses on Metropolis-Hastings (MH) and
Gibbs sampling. However, there are also other MCMC methods, such as approximate Bayesian
computation (Toni et al., 2009).

Metropolis-Hastings Sampling

As discussed above, in situations where information about p (Y |θ ) and p (θ) is available but the
posterior p (θ |Y ) is impossible to calculate, it is not possible to directly draw samples from the
posterior and thus to characterize this distribution (Gelman et al., 2013). Consequently, by draw-
ing samples from the posterior, it would be possible to achieve the expected value using Equa-
tion (4.33) (Gelman et al., 2013). A very general approach is to collect a large number of samples
Θ =

{
θ(1), ..., θ(S )

}
whose distribution approximates the prior and satisfies Equation (4.33) by

drawing values from a sensitively chosen proposal distribution π
(
θ(∗)

∣∣∣θ(s)
)

(Brooks, 1998). At
first glance, a new sample θ(∗) of the collection already including s samples should ideally satisfy
p
(
θ(∗) |Y

)
≥ p

(
θ(s)
|Y

)
(Brooks, 1998). This means, because θ(s) is already in the collection, θ(∗)

has to be included as well (Hoff, 2010). This concept can be quantified through a ratio, which
yields

r̃
(
θ(s), θ(∗)

)
=

p
(
θ(∗) |Y

)
p
(
θ(s)
|Y

) . (4.35)

Now, two situations are possible: either r̃
(
θ(s), θ(∗)

)
< 1 or r̃

(
θ(s), θ(∗)

)
≥ 1 (Hoff, 2010). In

the latter case, p
(
θ(∗) |Y

)
≥ p

(
θ(s)
|Y

)
and thus the new sample has to be included in the

collection (Hoff, 2010). However, if r̃
(
θ(s), θ(∗)

)
< 1, there should be only a fraction of samples

θ(∗) with p
(
θ(∗) |Y

)
< p

(
θ(s̃)
|Y

)
for each member θ(s̃)

∈ Θ of the collection (Hoff, 2010). Let

r
(
θ(s), θ(∗)

)
= min

1, p
(
θ(∗) |Y

)
p
(
θ(∗)

)
p
(
θ(s)
|Y

)
p
(
θ(s)

) × p
(
θ(s)

∣∣∣θ(∗)
)

p
(
θ(∗)

∣∣∣θ(s)
) (4.36)

be the acceptance ratio, p
(
θ(s)
|Y

)
the posterior distribution with respect to θ(s) and p

(
θ(∗)

∣∣∣θ(s)
)

the density used for the generation of the candidate θ(∗) (Gelman et al., 2013).

Then the corresponding transition kernel K
(
θ(s),Θ

)
of the MH algorithm, ensuring that the next
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sample is an element of Θ given θ(s)
∈ Θ̃, yields:

K
(
θ(s),Θ

)
=

∫
Θ

p
(
θ′

∣∣∣θ(s)
)

r
(
θ(s), θ′

)
dθ′

+

1 −
∫
Θ̃

p
(
θ′

∣∣∣θ(s)
)

r
(
θ(s), θ′

)
dθ′

 1Θ

(
θ(s)

)
,

(4.37)

with the indicator function or point mass 1Θ

(
θ(s)

)
, which is one if θ(s) is already element of Θ

and zero otherwise (Brooks, 1998). The last term in Equation (4.36) corrects for θ(∗) because
if θ(∗) has a higher probability to be chosen than θ(s), it has to be considered in the acceptance
ratio, otherwise θ(∗) would be over-represented in the collection (Brooks, 1998).

As seen in Equation (4.37), the probabilityK
(
θ(s),Θ

)
of the next state to be in Θ is composed

of the marginal probability p
(
θ′

∣∣∣θ(s)
)

r
(
θ(s), θ′

) ∣∣∣θ′∈Θ of selecting a state which is accepted
and the possible non-zero probability of remaining in θ(s) given by the second term of Equa-
tion (4.37) (Brooks, 1998). The latter is one minus the probability that the new sample is
accepted given θ(s) is already element of Θ (Brooks, 1998). Consequentially, the MH algorithm
to update a vector-valued parameter θ can be stated (Brooks, 1998; Gelman et al., 2013; Hoff,
2010).

Box 4: Metropolis-Hastings Algorithm

Given a posterior density p (θ |Y ) with a vector-valued parameter θ = (θ1, ..., θP)T and
samples Y, a prior density p (θ), a uniformly distributed random variable u ∼ U (0, 1)
and a proposal distribution π

(
θ(∗)

∣∣∣θ(s)
)

with a corresponding density p
(
θ(∗)

∣∣∣θ(s)
)
, the

Metropolis-Hastings updates in step s + 1 are processed as follows:

a) Draw θ(∗) ∼ π
(
θ(∗)

∣∣∣θ(s)
)

b) Calculate r
(
θ(s), θ(∗)

)
c) Draw u ∼ U (0, 1). If u < r set θ(s+1) = θ(∗) and θ(s+1) = θ(s) otherwise,

with

r
(
θ(s), θ(∗)

)
= min

1, p
(
θ(∗) |Y

)
p
(
θ(∗)

)
p
(
θ(s)
|Y

)
p
(
θ(s)

) × p
(
θ(s)

∣∣∣θ(∗)
)

p
(
θ(∗)

∣∣∣θ(s)
) .

The only restriction on the proposal distribution in Box 4 is that it does not depend on any
other elements θp of the parameter vector θ previous to the most current values in order to retain
the Markov process (Gelman et al., 2013; Hoff, 2010). A special case of Box 4 is the Metropolis
algorithm, which is in fact the origin of the MH algorithm (Brooks, 1998). In contrast to the MH
algorithm, the proposal distribution of the original Metropolis algorithm is symmetric (Gelman
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et al., 2013; Hoff, 2010). This means that p
(
θ(∗)

∣∣∣θ(s)
)

= p
(
θ(s)

∣∣∣θ(∗)
)

and hence the correction
term in Equation (4.36) vanishes (Gelman et al., 2013). A commonly used and more special
case is the random walk Metropolis algorithm where the proposal density is generally given as
a symmetric arbitrary density f

(
θ(∗) − θ(s)

)
, i.e., a uniform or Gaussian distribution (Gelman

et al., 2013). Another commonly used option is the independent proposal distribution which
is independent of the current state θ(s) (Gelman et al., 2013; Hoff, 2010). This illustrates the
universality of the MH algorithm and highlights the importance of the proposal distribution.

In fact, the behavior of the Markov chain heavily depends on the proposal distribution and
thus an inadequate choice may result in a poor performance of the estimates (Andrieu and
Thoms, 2008). Major drawbacks of such methods are the correlation of nearby samples and
the fact that the initial samples have a different distribution than the target distribution (Gelman
et al., 2013; Hoff, 2010). The latter can be circumvented by introducing a burn-in phase, i.e., by
simply removing the first samples up to a certain number from the collection (Gelman et al.,
2013). A convenient and conservative amount of omitted samples is half of the samples (Gelman
et al., 2013). In contrast, the correlation of samples within the collection is much harder to avoid
since the correlation corresponds to the distance between two successive samples (Gelman et al.,
2013). An increase of the distance reduces the correlation but also increases the frequency of
sample rejection, which in turn reduces the efficiency (Gelman et al., 2013). On the other hand,
serial correlation is not necessarily an issue (Gelman et al., 2013). Hence, once convergence
is reached, the samples are identically distributed and drawn from the posterior distribution
anyway (Gelman et al., 2013). However, this still reduces the efficiency of the algorithm (Gel-
man et al., 2013). Here, thinning is a commonly used technique to reduce autocorrelation by
only keeping every j-th sample (Brooks et al., 2011; Gelman et al., 2013). For more difficult
tasks it is useful to monitor the convergence of samples and to estimate an effective sample size
especially to include a good stopping criteria (Gelman et al., 2013).

Since the performance of MCMC algorithms depends on the proposal distribution, a lot of
effort has been devoted towards the optimization of the step size of the proposal (Andrieu and
Thoms, 2008; Gelman et al., 2013). Clearly, the variance of the proposal directly influences
the estimations (Andrieu and Thoms, 2008). In addition, optimal estimations are supposed to
have a small variance (Andrieu and Thoms, 2008; Gelman et al., 2013). But proposal variances
that are too small or too large lead to inaccurate estimations (Andrieu and Thoms, 2008). Thus,
it is often important to design optimal proposal variances to achieve efficient and reliable
procedures (Andrieu and Thoms, 2008). Controlled MCMC methods address this issue with
sequential updates of the proposal variance (Andrieu and Thoms, 2008). A major drawback of
such algorithms is that they tend to loose the ability to pass from one state to another within
finite time which is a minimum requirement for consistent estimators (Andrieu and Thoms,
2008). Accordingly, it is necessary to ensure that the algorithm does not produce poor proposal
distributions and becomes unstable (Andrieu and Thoms, 2008). An automatic choice of the
proposal variance and thus the step size between two successive samples is therefore highly
desirable (Andrieu and Thoms, 2008). This leads to adaptive MCMC and MH procedures where
the proposal distribution is automatically adapted and chosen (Andrieu and Thoms, 2008). For
vector-valued parameters, these algorithms update and scale the parameters and the related
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proposal distributions either component-wise or globally (Andrieu and Thoms, 2008). However,
in practice, standard algorithms, such as random walk Metropolis or normal MH algorithms, are
often sufficient to explore the parameter space (Andrieu and Thoms, 2008; Gelman et al., 2013;
Hoff, 2010).

Gibbs Sampling

Gibbs sampling can be viewed as a special case of MH sampling which makes the estimation
more feasible and efficient especially for multidimensional problems (Casella, 2001; Brooks,
1998). In contrast to MH sampling, for Gibbs transitions, e.g., with two unknown parameters,
namely θ1 ∈ θ and θ2 ∈ θ, the proposal distributions p

(
θ(∗)

2

∣∣∣θ(s)
1 , θ

(s)
2

)
and p

(
θ(∗)

1

∣∣∣θ(s)
1 , θ

(s)
2

)
,

respectively, are set as the so-called full conditional distributions of θ1 given θ2 and vice
versa (Gelman et al., 2013; Hoff, 2010). This means that

p
(
θ(∗)

1

∣∣∣θ(s)
1 , θ

(s)
2

)
= p

(
θ(∗)

1

∣∣∣θ(s)
2 ,Y

)
(4.38)

and
p
(
θ(∗)

2

∣∣∣θ(s)
1 , θ

(s)
2

)
= p

(
θ(∗)

2

∣∣∣θ(s)
1 ,Y

)
. (4.39)

Gibbs samplers are often based on conjugate priors which ideally allow to deduce a closed form
of the posterior distribution (Casella, 2001; Hoff, 2010). As a consequence, it is possible to draw
samples directly from this closed form (Casella, 2001; Gelman et al., 2013). A prior distribution
is conjugate to the posterior distribution and hence in the same family P if

p (θ) ∈ P ⇒ p (θ |Y ) ∈ P (4.40)

holds true (Hoff, 2010). For Gibbs sampling-based algorithms, conditional conjugate prior
distributions are often sufficient (Hoff, 2010). Similar to Equation (4.40), the conditional con-
jugate prior p

(
θp

∣∣∣θ−p

)
with θ−p =

(
θ1, ..., θp−1, θp+1, ..., θP

)
is assumed to be conjugate to the

posterior p (θ |Y ) (Gelman et al., 2013). This allows to draw iteratively from a set of unknown
parameters (Gelman et al., 2013).

MH algorithms are also able to deal with models where more than one parameter has to be
updated iteratively (Gelman et al., 2013; Hoff, 2010; Brooks, 1998). But for Gibbs transitions
the acceptance ratio always becomes one (Gelman et al., 2013; Hoff, 2010). Accordingly, all
produced samples are accepted, which leads to an optimal efficiency of the algorithm (Brooks,
1998; Gelman et al., 2013; Hoff, 2010). The fact that the acceptance ratio for updating θp equals
one for each update follows from

p
(
θ(∗)

p , θ
(s)
−p

∣∣∣ Y)
p
(
θ(s)

p

∣∣∣θ(∗)
p , θ

(s)
−p

)
= p

(
θ(∗)

p , θ
(s)
−p

∣∣∣ Y)
p
(
θ(s)

p

∣∣∣θ(s)
−p,Y

)
(4.41a)

= p
(
θ(∗)

p

∣∣∣ θ(s)
−p,Y

)
p
(
θ(s)
−p |Y

)
p
(
θ(s)

p

∣∣∣θ(s)
−p,Y

)
, (4.41b)

with the identity p (x, y |z ) = p (x |y, z ) p (y |z ) used in Equation (4.41b) (Hoff, 2010). For Gibbs
sampling algorithms, it is again possible that the samples are located in the same region for many
iterations which means that, once θ(s) is in a local pattern, the probability of θ(s+1) being again
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in the same local pattern is high (Gelman et al., 2013; Hoff, 2010). This is supported by the
fact that Gibbs samplers tend to sample θ(s+1) nearby θ(s) and thus samples may remain in such
regions for a long time, which increases the number of samples required for a sufficient posterior
approximation (Hoff, 2010). Additionally, in many situations, it is not possible to derive a closed
form of the prior distribution due to a lack of conjugate priors (Casella, 2001; Gelman et al.,
2013; Hoff, 2010). In general, distributions belonging to the exponential family have natural
conjugate priors, whereas conjugate distributions are rarely given for other families (Gelman
et al., 2013).

Further Aspects

The superiority of Gibbs sampling becomes more clear for component-wise updates of parameter
vectors and hierarchical models (Gelman et al., 2013; Hoff, 2010). In contrast to MH-based
algorithms, Gibbs transitions guarantee acceptance in each draw and hence the components can
be drawn successively (Gelman et al., 2013; Hoff, 2010). It is not necessary that each component
is updated in each iteration; it is only important to update them periodically (Gelman et al.,
2013; Hoff, 2010). On the contrary, MH transitions do not guarantee acceptance for each draw
and thus it is not ensured that the whole parameter space can be covered within a reasonable
time (Gelman et al., 2013; Hoff, 2010).

If the conditional posterior depends on additional hyperparameters, often the subset of these
additional unknowns are estimated and their estimators are used to calculate the posterior based
on Gibbs transitions (Casella, 2001). But this is not an analysis in a Bayesian sense since the
posterior distribution still depends on all the estimated hyperparameters (Casella, 2001). In a full
Bayesian framework, this leads to hierarchical or multi-level models where the hyperparameters
are treated as additional random variables, as described in Definition 11 (Gelman et al., 2013;
Hoff, 2010). In contrast to parameters which are part of the underlying model, hyperparameters
are additional unknowns influencing the prior distribution. The distribution of a hyperparameter
is called hyperdistribution.
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Definition 11: Hierarchical Model

Let p (θ |Y ) be the posterior distribution with a vector-valued parameter θ with θ ∈ Θ, a
set of vector-valued hyperparameters φ = {φ1, ..., φP, } with φ ∈ Φ and a prior distribution
p (θ,φ). If the prior distribution is factorable in p (θ |φ1 ) , p (φ1 |φ2 ) , ..., p (φP−1 |φP ) and
its marginal distribution p

(
φp

)
with

p (θ) =

∫
Φ

p (θ |φ1 ) p (φ1 |φ2 ) · · · (φP−1 |φP ) p (φP) dφ,

then the model

Y |θ,φ ∼ P (Y |θ,φ )
θ |φ1, ..., φP ∼ P (θ |φ1, ..., θP )
φ1 |φ2, ..., φP ∼ P (φ1 |φ2, ..., φP )
φ2 |φ3, ..., φP ∼ P (φ2 |φ3, ..., φP )

...

φP ∼ P (φP)

is called a hierarchical model of order P + 2 with P hyperparameters.

As a subclass of graphical models, hierarchical models can be represented in an illustrative
way (Gelman et al., 2013; Bishop, 2007). Graphical models are a simple way to illustrate
even complex probabilistic models where each node represents a single random variable or a
set of random variables and each edge represents a probabilistic relationship (Bishop, 2007).
The general idea is to factorize the joint distribution into a product of factors which depend
only on a subset of random variables (Bishop, 2007). In consequence, samples can be drawn
iteratively (Bishop, 2007). Hierarchical models are in general more robust than non-hierarchical
Bayesian models and they reflect the hierarchical structure of multi-level observations (Gelman
et al., 2013; Hoff, 2010). Often only a part of the hyperparameters have conjugate prior dis-
tributions and hence a combination of Gibbs and MH transitions is necessary (Casella, 2001;
Gelman et al., 2013; Hoff, 2010). However, hierarchical models allow for an efficient sampling
and the incorporation of structural knowledge through a proper choice of the prior (Gelman
et al., 2013; Hoff, 2010).

Still, the choice of an adequate prior is crucial for Bayesian analysis (Gelman et al., 2013;
Hoff, 2010). Since models do not produce information, they are only able to extract the inform-
ation from both the sample and the prior (Gelman et al., 2013; Tschirk, 2014). In relation to
the information provided by the data, the prior contributes to the predictions and thus should
be chosen carefully (Gelman et al., 2013; Tschirk, 2014). If no knowledge is available, one
should select an uninformative prior where all parameter values have an identical plausibility
and thus p (θ) = 1 (Gelman et al., 2013; Tschirk, 2014). The resulting uniform distribution is
not transformation-invariant, which means that although the density is uniformly distributed for
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a certain parametrization, it may not be for another (Gelman et al., 2013; Tschirk, 2014). This
leads to the so-called Jeffrey’s prior which is in fact invariant against monotonous transforma-
tions (Gelman et al., 2013; Tschirk, 2014).

To gain some confidence regarding the convergence of the samples MCMC diagnostics are
necessary (Gelman et al., 2013; Hoff, 2010). Mostly, it is more easy to determine whether the
samples are not converging than to ensure convergence (Hoff, 2010; Brooks et al., 2011). Many
different MCMC diagnostic tools and view-points can be found in literature, however, there is
no perfect MCMC diagnostic tool due to the fact that the state space is usually poorly connec-
ted (Brooks et al., 2011). Poorly connected state spaces result in a huge number of iterations
until the samples jump from one region to another (Hoff, 2010; Brooks et al., 2011). In those
situations, the convergence is conditioned on the part where the chain was started (Hoff, 2010;
Brooks et al., 2011). Although this is related to multimodality, i.e., the posterior distribution has
multiple peaks, multimodality does not necessarily cause conditional convergence (Brooks et al.,
2011). This all gives rise to several questions including, e.g., the number of MCMC runs, the
sample size, the determination of the starting point or the introduction of additional variables to
increase convergence (Gelman et al., 2013; Brooks et al., 2011). It is important that the sample
size is large enough to avoid that the samples remain in a region with low probability and to
enable transitions between all regions with high probability (Gelman et al., 2013; Hoff, 2010).
The latter phenomena is called mixing, whereas the first is referred to as stationarity (Gelman
et al., 2013; Hoff, 2010). A perfect Markov chain does not stick and is able to jump between
different regions in one step (Hoff, 2010). A direct measurement for stickiness is autocorrelation,
which measures the correlation between samples depending on their distance (Gelman et al.,
2013; Hoff, 2010). In general, the higher the autocorrelation, the larger the sample size has to
be in order to achieve a good precision (Gelman et al., 2013; Hoff, 2010).

The Hamiltonian Monte Carlo algorithm is a further improvement of MCMC methods and al-
lows to explore the state space more quickly (Gelman et al., 2013). For high-dimensional
parameter spaces, even after re-parametrization and adjusted jump rules, Gibbs and MH
transition-based models retain their random walk behavior (Gelman et al., 2013). In contrast,
the Hamiltonian Monte Carlo algorithm combines MCMC methods with deterministic aspects
by introducing an additional variable (Gelman et al., 2013). This variable is correlated to the
proposal distribution and hence its trajectory allows for efficient parameter proposals (Gelman
et al., 2013). Even though the Hamiltonian Monte Carlo algorithm is very efficient, in practice,
it is often not applicable since the gradient of the log posterior density must be analytically
accessible (Gelman et al., 2013). A numerical approximation of the gradients is considered too
costly since it has at least as many components as the dimension of the related parameters (Gel-
man et al., 2013).

In addition to the discussed MCMC algorithms particle filters are often used as an alternat-
ive (Särkkä, 2013; Gelman et al., 2013). This class of Bayesian filters is useful in the case of
multimodal or partly discrete posterior distributions, where the commonly used Gaussian pro-
cesses are not applicable (Särkkä, 2013; Gelman et al., 2013). Several such algorithms have been
reported in literature, e.g., importance sampling or sequential importance re-sampling (Särkkä,
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2013). Basically, in these algorithms, parallel sequences are generated and evaluated at defined
points (Särkkä, 2013). The samples of each sequence form a Markov chain and can be drawn in
such a way that they form an approximation to the posterior distribution (Särkkä, 2013). Due to
the fact that the approximation is not exact, the samples must be weighted accordingly (Särkkä,
2013). This way, sequences with poor approximations tend to vanish and, to compensate, new
sequences are generated (Särkkä, 2013). After a sufficient number of iterations, the sequences
with a poor fit to the posterior distribution are completely removed and those providing a good
approximation are enriched (Särkkä, 2013). Because the sequences are initialized at different
areas of the parameter space, they are more likely to explore the whole state space than MCMC
algorithms (Särkkä, 2013; Gelman et al., 2013).

Once the parameter values are estimated, it is desirable to characterize the quality of the
estimates and to further describe the region of the parameter space which likely contains the
true parameter values (Gelman et al., 2013; Hoff, 2010). From a Bayesian point of view, for
instance, a 95% credible interval is the region which covers the true parameter with a probability
of 95% after the data is observed (Gelman et al., 2013; Hoff, 2010). Even though this concept
is very useful and commonly used to report confidences of parameter estimates, sometimes
credible intervals are less restrictive, which means that in certain situations values outside the
credible intervals have a higher probability than values inside the interval (Gelman et al., 2013;
Hoff, 2010). To address this issue more strict so-called highest posterior density interval are
used (Gelman et al., 2013; Hoff, 2010). This type of credible interval is preferable because, at
least for unimodal distributions, it ensures that all points in the interval are more likely than
values outside the interval (Gelman et al., 2013; Hoff, 2010).

4.3.2 Application: The Solution Space of Static CRNs

As discussed in Section 4.1.2 the determination of the solution space for static biological
systems is frequently addressed via MCMC algorithms (Schellenberger and Palsson, 2009;
Megchelenbrink et al., 2014). Especially for constrained-based models the feasibility of the
solution has to be guaranteed in each draw (Schellenberger and Palsson, 2009; Megchelenbrink
et al., 2014). An intuitive method to explore such solution spaces is to generate independent
uniform deviates in the unit sphere; but with the dimension of the system, the size of the solution
space growths exponentially (Megchelenbrink et al., 2014; Kaufman and Smith, 1998). The
method of choice is hit-and-run sampling (HRS), which is based on uniform sampling, where
steps in random length and directions are taken iteratively (Smith, 1996; Megchelenbrink et al.,
2014; Kaufman and Smith, 1998). The HRS method allows to move to each point of the entire
solution space in a single step (Smith, 1996). It initiates a starting point x(0) within the solution
space Ω and generates a direction d(s+1) (Smith, 1996). Then, a feasible point x(s+1) = x(s)+λd(s+1)

is generated, where the density fs (λ) of λ ∈ Λs =
{
λ ∈ R

∣∣∣x(s) + λd(s+1)
∈ Ω

}
of the target

distribution is given by (Smith, 1996)

fs (λ) =
f
(
x(s) + λd(s+1)

)
∫

Λs
f
(
x(s) + rd(s+1)

)
dr
. (4.42)
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For stoichiometric analyses as detailed in Section 4.1, acquiring a uniform target distribution
fs (λ) is sufficient (Megchelenbrink et al., 2014). Therefore, λ and d(s+1) can be chosen such that
they are uniformly distributed within the solution space (Smith, 1996; Megchelenbrink et al.,
2014). Consequently, the samples x(s) are also uniformly distributed and build a Markov chain
in Ω (Smith, 1996; Megchelenbrink et al., 2014). In practice, this leads to an accumulation
of sample points close to the boundaries of the solution space because the sampler tends to
draw successive samples which are close to each other (Smith, 1996; Megchelenbrink et al.,
2014). This drawback is addressed by the artificial centering hit-and-run (ACHR) method,
which basically normalizes the chosen direction with respect to an approximate center to the
previous iterates (Megchelenbrink et al., 2014; Kaufman and Smith, 1998). In most cases,
this leads to a faster convergence and makes larger steps possible (Megchelenbrink et al.,
2014). On the other hand, due to the normalization based on the approximate center, each
sample depends on prior iterations and directions (Megchelenbrink et al., 2014). Hence the
sampled sequence is no Markov chain and thus the convergence to the target distribution is not
guaranteed (Megchelenbrink et al., 2014). Nonetheless, as an heuristic approach, the ACHR is
commonly used to sample the solution space of CRNs due to its capability to explore the whole
solution space (Schellenberger and Palsson, 2009; Megchelenbrink et al., 2014; Kaufman and
Smith, 1998).

4.4 Parameter Estimation

As discussed in Chapter 2, developing ODE-based mathematical models in biology is an in-
teractive process with the overall aim to match the given experimental data (Azeloglu and
Iyengar, 2015; Jaqaman and Danuser, 2006; Ashyraliyev et al., 2009). The inverse problem is
the estimation of the model parameters (Jaqaman and Danuser, 2006; Ashyraliyev et al., 2009).
ODE-based models of biological systems are composed of reactions and thus kinetic rate laws.
Dependent on the complexity of the system and the number of involved reactions and kinetic rate
laws, the number of unknown or partially known parameters can be very large. Hence, estimat-
ing all parameters of a biological model is usually impossible due to the complexity of biological
processes (Azeloglu and Iyengar, 2015; Ashyraliyev et al., 2009). Even if error free data is
assumed, the structure of biological models may lead to non-identifiable parameters because
in order to estimate a certain number of unknowns at least the same number of data points is
required (Jaqaman and Danuser, 2006; Ashyraliyev et al., 2009). Such structural non-identifiable
models have multiple solutions and thus are not observable (cp. Section 4.2.4) (Ashyraliyev
et al., 2009). However, it is often possible to detect the non-identifiable parameters and subnet-
works of such models (Ashyraliyev et al., 2009; Raue et al., 2009). Consequently, methods for
model reduction can be used to reduce the fraction of non-identifiable parameters (Raue et al.,
2009).

Although all parameters are structurally identifiable, there may be parameters with low con-
fidence, i.e., parameters which are practically non-identifiable (Ashyraliyev et al., 2009; Raue
et al., 2009). In recent literature there exist different definitions of identifiability (Ashyraliyev
et al., 2009). Commonly, a parameter is called non-identifiable if its confidence interval is
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infinite (Raue et al., 2009). Roughly speaking, this means that there is an infinite number of
alternative parameter values which match the observations as well. A simple way to proof
structural identifiability of non-linear systems is based on Taylor approximations at measured
time points (Ashyraliyev et al., 2009). A unique solution of the resulting system in terms of
parameters implies structural identifiability and thus a distinguishable model structure (Ashyrali-
yev et al., 2009). Hence, structural identifiability is strongly related to the observability of
dynamical systems, which can also be assessed via local Taylor approximations, as explained in
Section 4.2.4.

Due to a lack of data and the non-identifiability of the parameters, models in systems biology
are frequently build from incomplete datasets with mainly unknown parameters, and the direct
determination of the parameters from experimental data is often not possible (Azeloglu and
Iyengar, 2015; Jaqaman and Danuser, 2006; Ashyraliyev et al., 2009). Although nowadays large
databases of measured parameters, e.g., kinetic constants, are accessible, in practice, they are
of little value for mathematical modeling (Azeloglu and Iyengar, 2015). One major drawback
of such databases and in general of combining data from different sources and systems is the
variety of conditions under which they were measured (Azeloglu and Iyengar, 2015). These
conditions, e.g., the pH-value or temperature, often disagree with the experimental data, which
the modeler wants to fit and are thus biased (Azeloglu and Iyengar, 2015). However, they are
useful starting points for parameter estimation (Azeloglu and Iyengar, 2015; Ashyraliyev et al.,
2009). Ideally, parameters are estimated based on absolute protein concentrations. But, in most
cases, only variations in the protein abundance and thus relative protein concentrations are
accessible (Azeloglu and Iyengar, 2015).

To address the above issues, different strategies for data-based parameter estimation on a
whole system-level have been developed (Jaqaman and Danuser, 2006; Ashyraliyev et al., 2009).
Basically, approaches for parameter estimation aim to optimize a well-defined objective function
which represents the discrepancy between experimental data and model predictions (Jaqaman
and Danuser, 2006; Ashyraliyev et al., 2009). To avoid getting stuck in local extrema, global
search algorithms, such as simulated annealing or evolutionary algorithms, are mainly prob-
abilistic methods with the theoretical ability to explore the whole parameter space (Jaqaman
and Danuser, 2006; Ashyraliyev et al., 2009). The genetic algorithm is a common evolutionary
algorithm used for parameter estimation which adapts the survival-of-the-fittest principle from
nature (Ashyraliyev et al., 2009; Raol et al., 2004). Similar to a population of individuals, a
set of randomly chosen parameter vectors is initialized to explore the parameter space (Raol
et al., 2004). As in evolutionary processes, individuals are then basically selected, recombined
and mutated based on their fitness or, in this context, feasibility (Ashyraliyev et al., 2009; Raol
et al., 2004). This means those individuals which are close to the optimal solutions pass through
this process and survive or are combined with other individuals close to the optimum, and
individuals far away from the optimum vanish (Ashyraliyev et al., 2009; Raol et al., 2004).
Although global search strategies are capable to explore the whole parameter space, convergence
is not guaranteed (Ashyraliyev et al., 2009; Raol et al., 2004).
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The second class of methods are local search algorithms (Ashyraliyev et al., 2009). Local
search algorithms guarantee solutions with a certain accuracy based on theoretical proofs of
convergence provided that the initial guess is sufficiently close to the optimum (Ashyraliyev
et al., 2009). Gradient-based methods, which require first derivatives or their approximations
with respect to the parameters, are frequently used in systems biology (Karr et al., 2015; van
Riel, 2006). Although derivative-based methods are very efficient for a couple of systems, they
are often trapped in local extrema (Ashyraliyev et al., 2009; Karr et al., 2015). In addition,
gradient-based methods are sensitive to measurement errors and starting points due to their
deterministic nature (Ashyraliyev et al., 2009; Karr et al., 2015).

Although global search algorithms are able to explore the whole parameter space, they
hardly converge towards the exact optimum of the objective (Ashyraliyev et al., 2009). On
the other hand, local search algorithms converge faster towards the optimum but tend to get
stuck in local extrema if they start far away from the optimum (Ashyraliyev et al., 2009).
Therefore, it makes sense to combine both approaches, i.e., to use the global exploration of
the parameter space and increase the convergence speed in areas close to the optimum via
local search algorithms (Ashyraliyev et al., 2009). Today, these hybrid methods are frequently
used (Ashyraliyev et al., 2009; Karr et al., 2015).

Bayesian inference, as discussed in Section 4.3, is another frequently used approach to estim-
ate parameters in biological systems (Jaqaman and Danuser, 2006; Coleman and Block, 2006).
Here, the quantity of interest such as credible intervals of parameters or expected parameter
values are estimated by the use of prior knowledge via MCMC methods (Jaqaman and Danuser,
2006; Coleman and Block, 2006). Bayesian methods provide reliability measurements such as
correlations and variances (Jaqaman and Danuser, 2006; Coleman and Block, 2006). According
to Section 4.3, the prior distribution p (θ) reflecting the prior knowledge about the parameters
together with the density of data given parameters p (Y |θ ) allows to draw samples from the
parameter distribution p (θ |Y ) based on Bayes’ Law (Jaqaman and Danuser, 2006; Coleman
and Block, 2006). The probability P (Y |θ ) reflects the discrepancy between predictions and
data with respect to the measurement noise σ2 and the linear combination of the observable
states h (x) of the given model. Hence, P (Y |θ ) is often given by P (Y |θ ) ∼ N

(
h (x) ,σ2

)
or

similar distributions (Jaqaman and Danuser, 2006; Hug et al., 2013; Coleman and Block, 2006).
Bayesian inference is especially suitable for high-dimensional systems where other methods
fail due to the underlying complex parameter space (Jaqaman and Danuser, 2006; Coleman and
Block, 2006).

A well-chosen objective function is highly important for parameter estimation (Ashyraliyev
et al., 2009; Karr et al., 2015; Kreutz et al., 2013). As discussed in Section 4.2.3, the LSE is
an intuitive measurement for discrepancies between data and model predictions given a set of
model parameters ỹi (tl)

∣∣∣θ (Ashyraliyev et al., 2009; Kreutz et al., 2013). Under the assumption
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of Gaussian-distributed measurement errors, the LSE estimator

θ̂ = arg min
θ

 I∑
i=1

F∑
l=1

(
yi (tl) − ỹi (tl)

∣∣∣θ )2

σ2
i,tl

 , (4.43)

is equivalent to the maximum likelihood estimator (MLE) (Kreutz et al., 2013). With the
probability of the observations y given a set of model parameters θ, the MLE

θ̂ = arg max
θ

 I∏
i=1

p
(
yi,1:F |θ

) (4.44)

maximizes the overall probability of the data given the estimated set of parameters (Kreutz
et al., 2013; Raue et al., 2009). One advantage of the MLE is the derivable profile likelihood
as a direct measure for the impact of each model parameter and thus the identifiability of
those parameters (Kreutz et al., 2013; Raue et al., 2009; Swameye et al., 2003). The profile
likelihood reflects the dependency of the probability of the data given the optimal parameter
set conditioned on a single parameter and allows for accurate confidence or credible intervals,
respectively (Kreutz et al., 2013; Raue et al., 2009).

Altogether, estimates based on a single set of experimental data do not imply reliable es-
timations (Ashyraliyev et al., 2009; Azeloglu and Iyengar, 2015). Identifiability checks, val-
idation based on perturbed data or other procedures can help to proof the credibility of the
model (Ashyraliyev et al., 2009; Azeloglu and Iyengar, 2015). Perturbed data and other val-
idation data are often hardly accessible, and thus a parameter identifiability analysis remains
the only option to gain confidence about the estimates (Ashyraliyev et al., 2009; Azeloglu
and Iyengar, 2015). On the other hand, one may argue that exact parameter estimates are not
required to draw meaningful biological conclusions (Azeloglu and Iyengar, 2015).
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CHAPTER 5

Analysis of the M2 Receptor-dependent
Signaling in CHO Cells

In this chapter, a time-independent model of the M2 receptor-dependent signaling in CHO cells
is developed and analyzed on the basis of the novel CFS. The thus obtained insights into the
amplification processes serve as a first attempt to describe the DMR-related signaling. To gain a
clearer picture about the involved time-dependent amplification processes the model proposed
in this chapter is further extended in Chapter 8 by including time-resolved kinetics. This work
is accepted in a peer-reviewed journal (cp. Appendix F).

5.1 Introduction

As discussed in Chapter 3, the M2 receptor (encoded by the CHRM2 gene) belongs to the
family of GPCRs and is related to negative dromotropic and negative chronotropic events.
Since GPCRs represent one of the most important target classes of proteins for drug discovery,
the development of specific agonists and antagonists for muscarinic receptors, including the
M2 receptor, is still of high interest (Zheng, 2006). Iperoxo is a highly affine and efficacious
muscarinic agonist that has recently served to elucidate the crystal structure of the active state of
the M2 receptor (Schrage et al., 2013, 2014; Kruse et al., 2013; Hu et al., 2010). In traditional
pharmacology the ligand-binding event, second messenger concentrations, ion channel function,
as well as tissue, organ or body responses are recorded. As discussed in Chapter 3, whole cell
techniques nowadays are used to dissect the signaling of intact cells into different components
(Schröder et al., 2011). In addition, iperoxo and its derivatives turned out to be valuable tools
for gaining deeper insight into structure-signal relationships (Bock et al., 2014; Antony et al.,
2009).

Recent experimental work explored the cellular response to iperoxo-induced M2 receptor
stimulation in CHO cells (Schrage et al., 2013; Kruse et al., 2013; Schrage et al., 2016). The
cellular response was measured by DMR (Schröder et al., 2011). Since the DMR response
can be assumed to be dependent on the M2 receptor-induced signaling our aim was to model
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and study the corresponding reaction system. The pathway consists of proteins as well as the
secondary messenger cAMP. The respective biochemical reactions are principally well known
(Pierce et al., 2002; Linderman, 2009; Sunahara and Taussig, 2002; Taylor et al., 2012), but
to the best of our knowledge no effort has been taken so far to derive a mathematical model,
especially for CHO cells, which are very important in pharmaceutical research and for the
industrial production of recombinant protein therapeutics (De Jesus and Wurm, 2011; Walsh,
2010).

In this work we developed a mass action based mathematical description of the M2 receptor-
dependent signaling network. Our developed model consists of 79 reactions, altogether involving
64 relevant proteins and secondary messenger molecules described in literature. In our joint
signaling and secondary messenger model, all binding and (de-)phosphorylation events are
explicitly taken into account in order to enable subsequent stoichiometric matrix and flux
distribution analysis (Wiback et al., 2004). Although this kind of analysis is usually only
employed for metabolic networks, as detailed in Section 4.1, our explicit modeling of binding
and phosphorylation events enables the adaption of these techniques to a mixed signaling
and secondary messenger system. The usefulness of applying stoichiometric matrix analysis
techniques to signaling pathways has for example been demonstrated by Behre and Schuster
(2009), who adapted EFM analysis to this situation. This work demonstrates, how the known flux
sampling technique can be extended to incorporate partially available experimental information
(here: cAMP production, PDE4 activation) (Smith, 1996). We tested our combined modeling
and data driven sampling method by predicting key signaling mechanisms known from literature,
but not explicitly encoded into the model. Our proposed CFS technique allows for qualitative
predictions of downstream stimulation effects on actin and tubulin levels, which here serve as
our markers for the mass redistribution effect. These qualitative predictions are in agreement
with the experimental observations, which suggests CFS as a technique for model checking.
This is further underlined by the possibility to combine CFS and EFM analysis yielding a
statistical ranking of EFMs according to their expected biological relevance.

5.2 Network Reconstruction

GPCR-induced signaling is well-known in common literature (Pierce et al., 2002; Linderman,
2009; Taylor et al., 2012; Sunahara and Taussig, 2002). Specifically the link to the cAMP-
induced signaling is in the focus of current pharmaceutical research (Milligan and Kostenis,
2006; Hu et al., 2010). Figure 5.1 depicts a schematic representation of the whole set of relevant
molecules and their interplay, which are considered in our model. In particular the process of
receptor-induced GP activation is well studied, where the ligand-bound receptor changes its
physical structure and the inactive associated GP interacts with the receptor and dissociates
into its subunits (Pierce et al., 2002). Thereby the αi, αs and β\γ subunits are activated and
are able to interact independently with other proteins like AC (Sunahara and Taussig, 2002;
Milligan and Kostenis, 2006). The GP subunit αo has no significant influence on AC but it
has an influence on the DMR (Milligan and Kostenis, 2006). AC is one of the most important
proteins within the GP-mediated pathway and responsible for the secondary messenger pro-
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duction. The large number of AC and GP subtypes causes a highly complex subnetwork with
many cross-reactions (Milligan and Kostenis, 2006; Sunahara and Taussig, 2002). Also the
receptor activation cycle itself is not trivial. This first step in the signaling cascade is highly
interesting for pharmaceutical research and led to well developed models for receptor activation
and inhibition (Woodroffe et al., 2009; Chen et al., 2003; Strange, 2008; Bornheimer et al., 2004).

Besides this completely membrane bound subnetwork the PKA-induced phosphorylation
cascade, and the feedback loop causing cAMP degradation, is well studied (Taylor et al., 2012).
cAMP binds to PKA and causes its activation. But an increase in PKA activity also leads
to an increase in PDE activity, which inactivates cAMP by degrading it to adenosine mono-
phosphate (AMP) (Boswell-Smith et al., 2006). Through this mechanism the cell prevents a
continuous overstimulation by excessive cAMP levels. Stimulation of the receptor population
via the muscarinic agonist iperoxo induced a cellular DMR response at concentrations that are
far lower than the corresponding concentration-binding relationships (Schrage et al., 2013).
The same authors reported this amplification phenomenon also for other ligands, including the
natural ligand ACh (Schrage et al., 2013). The exact nature of the amplification process is not un-
derstood so far, but may at least be partially attributed to intracellular signaling events (Schrage
et al., 2016). According to common literature we suppose RGSs and GRKs to be of relevance.
These proteins are closely related to the deactivation of the receptor and the GP subunits (Pierce
et al., 2002; De Vries et al., 2000; Hollinger et al., 2003). In this work, we chose RGS14, GRK6
and GRK2 as important representatives for each group.

The DMR, as an optical biosensor-based procedure, measures the shift in wavelength res-
ulting from intracellular mass movement caused by the rearrangement of cell organelles and
transportation processes (Strange, 2008). In this work we chose actin and tubulin as DMR
markers. Actin and tubulin are closely related to the cellular movement and we assume a strong
correlation between changes in both protein and secondary messenger concentrations and the
relative wavelength shifts measured by DMR (Hammond et al., 2008; Schmidt and Hall, 1998).
Therefore, we took all proteins directly linked to actin and tubulin into account and assumed
their activation to be correlated with the wavelength shift (cp. Figure 5.1). Maximal DMR
response induced by iperoxo occurs typically after approximately 10 minutes (Schrage et al.,
2013). According to the timescale and common literature we did not consider transcriptional
downstream responses (Mayr and Montminy, 2001; Shaywitz and Greenberg, 1999). Further
references are given in Appendix B.

5.3 Mathematical Modeling

All interactions shown in Figure 5.1 are explicitly formalized as mass action based elementary
reactions and all known proteins and their occurring complexes are included (Horn and Jackson,
1972). Hence biological information from the available biochemical knowledge is preserved.
Let x1, . . . , xN denote the concentrations of all molecules in the system. Then, according to
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Figure 5.1: Schematic illustration of the M2 receptor-dependent signaling and secondary messenger
network in CHO-hM2 cells based on the known literature. The receptor is activated by a ligand (e.g.
iperoxo) and induces the membrane-bound signaling cascade including G protein (here denoted as G)
activation and the production of cAMP by AC. Via cAMP the signal is transferred to the PKA-induced
phosphorylation cascade. The detailed reaction system can be found in Appendix B.
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Section 2.3.4, the change of the concentration of molecule n can be written as

dxn

dt
=

K∑
k=1

sn,krk, (5.1)

where sn,k is the stoichiometric coefficient of molecule n in reaction k and rk denotes the corres-
ponding reaction velocity. As an example, here the PKA activation by cAMP is shown (Corbin
et al., 1988):

PKA→ PKA (5.2a)

PKA + 2cAMP→ PKA. (5.2b)

Here, PKA denotes the inactive form of PKA. Let us denote the rate of both reactions by r1

and r2, respectively. The stoichiometric coefficients are s1,1 = s2,2 = −1, s1,2 = s2,1 = 1 and
s3,2 = −2. We then obtain

d[PKA]
dt

= s1,1r1 + s1,2r2 (5.3a)

d[PKA]
dt

= s2,1r1 + s2,2r2 (5.3b)

d[cAMP]
dt

= s3,2r2. (5.3c)

Altogether the modeled system contains 79 elementary reactions, which can be found in Ap-
pendix B. The full reaction system can be represented via a stoichiometric matrix S ∈ RN×K

with entries sn,k. In this matrix every molecule is represented by one row and every reaction is
represented by one column.

The modeled system consists of several biochemical reaction types, namely binding, stim-
ulation and inhibition. These biochemical events need to be represented appropriately in the
reaction system and the stoichiometric matrix, respectively. This was done as follows: The
protein activation via phosphorylation was modeled with the help of an intermediate molecule
which represents the complex of the substrate and the related kinase. The kinase binds reversibly
to the substrate and forms an intermediate complex which then dissociates irreversibly into the
kinase and the modified substrate. For instance, GRK2 is phosphorylated by PKA (Cong et al.,
2001). For this purpose we introduce the intermediate complex PKA : GRK2 and write the
reaction system as

PKA + GRK2
 PKA : GRK2 (5.4a)
PKA : GRK2→ GRK2 + PKA. (5.4b)

For every phosphorylation step we assumed a backward reaction P∗ → P, which dephos-
phorylates the phosphoprotein P∗ with the help of an unknown phosphatase. In this example
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GRK2 is dephosphorylated into GRK2

GRK2→ GRK2. (5.5)

Protein inhibition by kinases is modeled in a similar manner. A kinase binds reversibly to the
target protein and forms an intermediate complex which then dissociates irreversibly into the
kinase and the inactive protein. The inactive protein is now able to be activated again by another
kinase. This process is illustrated using the inhibition of the guanine nucleotide exchange
factor (GEF) by GRK2 (Eijkelkamp et al., 2010)

GRK2 + GEF 
 GRK2 : GEF (5.6a)

GRK2 : GEF → GRK2 + GEF. (5.6b)

As shown above, these reactions can be represented in the stoichiometric matrix S . The dimen-
sion of the stoichiometric matrix can be decreased by expressing the forward and backward
direction of the same reversible reaction by one row where reaction rates can be both positive
and negative. This is in contrast to strictly irreversible reactions where only positive reaction
rates are allowed.

We also used the stoichiometric model to derive a system of ODEs based on the assumption
of mass action kinetics, as shown in Appendix B.

5.4 Methods

5.4.1 Conservation Relationships

Since signaling events are relatively fast, we can assume that for each protein the overall total
amount of phosphorylated, bound and unphosphorylated proteins is approximately constant,
provided that the biological system is in steady state and the model was correct. Hence, checking
conservation relationships is a means to check the consistency of our model.

According to Palsson (2006), conservation relationships under steady state conditions are
mathematically identifiable from the null space of S T . As detailed in Section 4.1.1, conservation
relationships are all those vectors g for which

S T g = 0. (5.7)

Each entry in g corresponds to exactly one molecule. The analysis of the entries of vectors g
provides thus a means to verify whether the expected constant total concentration of each protein
is fulfilled in reality. Moreover, we can also obtain insights into possibly existing constant
protein concentrations within whole reaction cascades.
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5.4.2 Stimulation of the System

We are interested in qualitative changes upon receptor stimulation. For the unstimulated system
we assume a steady state characterized by constant concentrations of all molecules. Receptor
stimulation causes a perturbation of this steady state resulting in dynamic changes of molecular
concentrations. However, we assume that after some relaxation time the system will attain a –
supposingly different – steady state, which is characterized by the molecular concentrations in
the stimulated state. In reality, the stimulated state does not need to be a dynamic equilibrium
in the strict sense, but we believe it to be a useful approximation for a situation of maximum
response, where all concentrations are nearly constant over time. We believe that this working
hypothesis is useful to analyze qualitative changes between the unstimulated and stimulated
states, which is also supported by the fast – usually milliseconds – time scale of the signaling
events in comparison to the observable duration of responses to receptor stimulation.

The unstimulated and the stimulated state correspond to different solutions of system under
steady state conditions. i.e., S v = 0. Our strategy will be to constrain the solution space of this
system using experimental data. We will then use Monte Carlo sampling to compare possible
stationary reaction rates u in the simulated and unstimulated state.

For a qualitative comparison we suppose the DMR response to be given as the sum of all
fluxes with known influence on the wavelength shift

Response =

K̃∑
k̃=1

vk̃. (5.8)

Here vk̃ denotes the activating flux related to molecule n with influence on the wavelength shift.
The sum runs over all K̃ in-fluxes into tubulin and actin, which are considered as markers of the
DMR response (Hammond et al., 2008; Schmidt and Hall, 1998; Schröder et al., 2011).

5.4.3 Sampling the Flux Polytope

Since we are interested in the general behavior of the system without the incorporation of
additional rate parameters, steady state solutions of the system can in principle be found through
MCMC HRS, as discussed in Section 4.3.2 (Smith, 1996; Brooks, 1998; Price et al., 2004). A
single move in the HRS is performed by making a randomly chosen move within the unit sphere
from a given feasible solution. Afterwards the step size is adjusted such that the new solution is
also feasible (Smith, 1996; Megchelenbrink et al., 2014). A solution v∗ is called feasible, if it
satisfies

S v∗ = 0 (5.9a)
αk ≤ v

∗
k ≤ βk, ∀k = 1, . . . ,K (5.9b)

with bounds αk, βk. Note that, without further constraints, fluxes could take any real value,
but in reality fluxes are bounded. Hence, for all reversible reactions, we set αk = −1000 and
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βk = 1000 as loose bounds. For irreversible reactions, we set αk = 0. The flux bounds can
in principle be used to incorporate experimental data. We will modify the flux bounds to
qualitatively incorporate fold changes between stimulated and unstimulated cells, as explained
in the following section.

5.4.4 Constrained Flux Sampling

We incorporate partially available data of experimentally measured relative (steady state) molecu-
lar concentrations into the above described flux sampling scheme in order to make qualitative
predictions about flux changes upon stimulation. The approach thus does not require detailed
knowledge of the kinetic rate constants.

Let ṽk denote the steady state flux of the k-th reaction in the case of an unstimulated receptor.
According to the law of mass action (see Section 2.4) with rate parameters r̃k we have

ṽk = r̃k

N∏
n=1

x̃sn,k
n , (5.10)

where {x̃n} is the set of molecules taking part in the particular reaction and x̃n their concentrations.
Note that at this point we suppose the involved reversible reactions to be split into two irreversible
ones. The flux v̂k for the same reaction under stimulation can be defined accordingly now with
concentrations x̂n. Usually, in experiments, relative concentration changes (fold changes) fn = x̂n

x̃n

are determined. Obviously,

v̂k

ṽk
=

N∏
n=1

f sn,k
n (5.11)

which implies

v̂k = ṽk

N∏
n=1

f sn,k
n . (5.12)

Note that the stoichiometric coefficients sn,k in most cases are 1. The equation suggests a
principal two-step procedure:

1. Perform conventional flux sampling for the unstimulated situation. This yields a set {ṽk}.

2. Perform flux sampling for the stimulated situation by plugging the observed fold changes
into Equation (5.12) in order to constrain the sampled fluxes.

In reality it may be more appropriate to consider confidence intervals [ f Min
n , f Max

n ] for fn because
fold changes are subject to uncertainty. This can be addressed straightforwardly by replacing
Equation (5.12) by an inequality

ṽk

N∏
n=1

(
f Min
n

)sn,k
≤ v̂k ≤ ṽk

N∏
n=1

(
f Max
n

)sn,k
. (5.13)
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The quantity ṽk in practice needs to be estimated from the empirical flux distribution under
steady state conditions. A reasonable choice is to take the mean or median of the sample
distribution plus/minus the standard deviation for that purpose.

5.4.5 Elementary Flux Modes

According to Section 4.1.1, Schuster and Hilgetag (1994) introduced EFM analysis for charac-
terizing the geometry of the solution polytope of the equation system S v = 0 in a biologically
interpretable manner. All solution vectors occur as linear combinations of EFMs. This leads to
the polyhedral flux cone P(S )

P (S ) =

v ∈ RK

∣∣∣∣∣∣∣v =

Ke∑
k̃=1

wkek wk ≥ 0

 . (5.14)

EFMs are then defined as the extreme rays or edges of the flux cone P(S ) (Schuster and Hilgetag,
1994; Llaneras and Picó, 2010). A formal assumption made in this equation is that reversible
reactions are split into irreversible ones. Each EFM can be characterized as the minimal set of
reactions which are required for a subsystem to exist as a functional unit (Papin et al., 2004).
These subsystems either reflect fluxes through the whole reaction system or functional cycles
within the system. Thus, the analysis of EFMs allows to identify biologically functional and
interpretable “building blocks” of the biological reaction system. In case of signaling, this also
implies that, without stimulation, there exists no EFM representing the whole network and no
EFM describing the signaling flow through it.

In this work EFM analysis is combined with CFS: After having determined the flux distri-
butions of the overall system under stimulated and unstimulated conditions we map the fluxes
to each of the calculated EFMs. This is possible because each flux corresponds uniquely to
one reaction. We then compute the median of all fluxes related to a specific EFM. Since we
generated a large (here: 100, 000) sample of flux vectors we obtained an empirical distribution
of these medians for each EFM. The significance of the difference in these distributions between
stimulated and unstimulated conditions can be assessed via a Wilcoxon rank test, yielding a
p-value. Because we do not only compare one but several EFMs, multiple testing correction of
p-values is performed via control of the false discovery rate (FDR) (Benjamini and Hochberg,
1995). Moreover, we estimated the median fold change between stimulated and unstimulated
conditions.

5.5 Data

Parts of the experimental data (i.e., the dose-response relationships) were taken from Schrage
et al. (2013): In that paper, the DMR was measured at 13 different concentrations of the
M2 receptor-specific activator iperoxo, giving rise to dose-response curves (cp. Figure 5.2a).
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In addition to these data obtained by Schrage et al., the cAMP response to iperoxo treatment
was measured here (cp. Figure 5.2b). This was done after 30 minutes of iperoxo incubation
with a concentration of 0.1 µM = 10−7 M, which corresponds to a full DMR response (Schrage
et al., 2013). The induced cAMP fold change, calculated as the ratio between the cAMP level
related to the iperoxo concentration of 0.1 µM and the 95% confidence interval of the basal
cAMP level (see Figure 5.2b), is given by [2.22, 2.71].

In addition, we measured the activation of PDE4 after 30 minutes for the iperoxo concentration
of 0.1 µM. The 95% confidence interval of the active PDE4 level (see Figure 5.2d) is [3.21, 3.46].
Further information regarding the conducted experiments can be found in Appendix B.

Figure 5.2: Observed DMR, cAMP and PDE4 levels. (a) DMR concentration-response curve of iperoxo
modified from (Schrage et al., 2013). The affinity between iperoxo and the receptor (pKD) of the
iperoxo-induced ligand-binding curve for intact cells (obtained from (Schrage et al., 2014)) is marked
by the blue line. (b) Western blot for the total amount of PDE4 (Pan-PDE4) and active PDE4 (pUCR1)
under stimulation with 0.1 µM iperoxo normalized against GAPDH. (c) Concentration effect curve for
the measured iperoxo-induced G protein subtype αs mediated accumulation of cAMP with standard
deviations and estimated confidence intervals marked by the blue line. The inactivation of G protein
subtype αi was induced via a pretreatment with PTX. The inactivation of the cAMP-inhibiting G
protein subtype αi allows for matching the measurements with their corresponding G protein subtype αs
mediated network fluxes. The accumulation of cAMP in the absence of test compounds was set to 0%,
and maximum forskolin-induced binding was set to 100%. (d) Fold change for normalized pUCR1.
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5.6 Results

5.6.1 Resulting Conservation Relationships

We uncovered 14 conservation relationships within the modeled biological system under steady
state conditions. Figure 5.3 illustrates which sets of proteins have to maintain a constant total
concentration. As illustrated in Figure 5.3, we found at least one conservation relationship
for each protein which reflects the main endogenous signaling cycles. Thus our expectations
coming from the signaling character of our modeled system are verified.

5.6.2 Constraint Flux Sampling Correctly Predicts DMR Response
under Receptor Activation

We applied the CFS framework described above incorporating cAMP as well as PDE4 fold
changes into flux constraints. DMR response measurements were not taken into consideration
at this point, but left out for independent validation. Figure 5.4 depicts the distributions of
those selected fluxes, which according to our CFS analysis are predicted to show a statistically
significant shift under stimulation (FDR <1%, Wilcoxon signed rank test with Benjamini &
Hochberg’s FDR control of p-values for multiple testing (Hollander, 1999; Benjamini and
Hochberg, 1995)). The CFS predicts a significant change in RGS14. A slight decrease of the
receptor deactivation and increase of the GP subtype αi deactivation via RGS14 can be expected
under stimulation according to our simulation. The receptor deactivation is compensated by an
increasing receptor recycling. This phenomenon of signal regulation by RGS14 and GRK6 is
well described in literature where both proteins are known as important signal regulators (Pierce
et al., 2002; Dale and Rang, 2011; Berridge, 2012). The RGS family is involved in the extinction
of the GP-dependent signaling (Zhang and Mende, 2011), e.g., via receptor desensitization or
endocytosis (Reiter and Lefkowitz, 2006). This causes the downregulation of the GP subtype αi

downstream and together with cAMP forms a positive feedback loop. More specifically, the
inhibition of the cAMP inhibitor GP subtype αi leads to an increase of the cAMP production.
In addition, significant GP subtype αi deactivation causes a significant increase of the GRK6
activation.

The box plots clearly highlight that – besides cAMP – increasing levels of AMP production
and cAMP degradation are expected under stimulation, which is in agreement with current
literature (Berridge, 2012; Pierce et al., 2002; Sunahara and Taussig, 2002; Strange, 2008).
CFS is able to correctly predict a significant positive wavelength shift, i.e., DMR response,
under receptor stimulation which is in agreement with our experimental validation data (cp.
Figure 5.2a). Hence, CFS allows for a qualitative check of our pathway model.

5.6.3 Knock-out Simulations

To further check the hypothesized relevance of RGS14 for the observed DMR response we
conducted an in silico knock-out simulation. This means we restricted all fluxes going through
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Figure 5.3: Calculated conservation relationships: Each column represents one conservation relationship
and each row a protein. Red cells indicate proteins involved in a concentration relationship. The sum over
all marked protein concentrations per column is constant. The inactive form of each protein is indicated
by the subscript "in".
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Figure 5.4: Predicted fluxes without stimulation (green) and under stimulation (yellow). (a) Box plots
illustrating the distribution of selected fluxes under different conditions using cAMP measurements.
Green indicates the unstimulated and yellow the stimulated condition. Ligand-induced G protein
activation is shown for the αs subtype here. Box plots for all fluxes can be found in Appendix B. (b)
Overall response given as the sum of fluxes into tubulin and actin, cp. Equation (5.8). Related median
fold changes are shown in Table 5.1.

GRK6 RGS14 cAMP PKA cAMP Response
Regulation Regulation Production Activation Degradation

FC (median) 1.27 1.33 1.47 1.54 1.68 1.36

Table 5.1: Median fold changes (FC) related to Figure 5.4.

this molecule to zero while repeating our CFS. To investigate the effect of the different mo-
lecules on the DMR response, we performed knock-out simulations for all molecules except
for GP subtype αs, AMP, AC, cAMP, PKA, the receptor and the ligand. We then ranked
the molecules according to their statistical significance of the influence on the DMR-related
fluxes because no steady state solutions are possible when constraining the fluxes through these
important signaling molecules to zero. AMP, AC, cAMP, PKA, the receptor and the ligand are
not considered because these are characteristic molecules for signaling, and removing these
molecules is unphysiological. Table 5.2 shows the proteins with influence on the response under
stimulation.

Altogether our simulations underline our findings from Section 5.6.2. The highest impact was
found for RGS14 and GP subtype αo, followed by PDE4. Furthermore, GRK6 has a significant
influence.
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Rank FDR Median Fold Change Median Flux Difference Protein
(simulated) (simulated)

1 < 1E − 6 1.24 680 GP αo

2 < 1E − 6 1.24 675 RGS14
3 < 1E − 6 1.18 545 PDE4
4 < 1E − 6 1.17 535 GRK2
5 < 1E − 4 1.12 395 GP αi

6 < 1E − 4 1.12 394 GRK6

Table 5.2: Proteins ranked with respect to their predicted influence on the DMR response. The influence
on the response was estimated by the median fold change expected by a knock-out simulation of each
protein. The statistical significance of each simulated fold change is shown in terms of FDR. A high fold
change implies a strong influence of the particular protein.

5.6.4 Combining EFMs and CFS Reveals Important Subnetworks and
Regulatory Mechanisms

As a last step we applied EFM analysis to the system with ligand stimulation, resulting in 63
EFMs (see Appendix B). Notably, many of these EFMs represent similar biological mechanisms.
We ranked all EFMs with respect to their predicted change under stimulation by the method
described in Section 5.4.4. Table 5.3 shows all EFMs with an FDR lower than 0.001 and a
median fold change greater than 1. Interestingly enough, four of the most significant EFMs
describe the GP subtype α regulation via RGS14, and also the receptor regulation via GRK6
is among the most significant EFMs (Figures 5.5 and 5.6). This is in full agreement with our
previous findings and provides a possible explanation for the relevance of these molecules.
Further significant EFMs are related to PDE activation and cAMP/GEF production (in agreement
with our experimental data).

5.7 Conclusion

In this work we presented a comprehensive mathematical model of the M2 receptor-dependent
joint signaling and secondary messenger network. The motivation for this work comes from
the pharmacological relevance of the M2 receptor and the induced cellular responses. Whereas
in principle the individual parts of our studied system are well described in the biological
literature, to our knowledge there have been no attempts so far to combine these information
into a mathematical model.

A quite specific property of our model is the combination of pure signaling events on the
protein level with secondary messenger molecule production and degradation. Following Behre
and Schuster (2009), we here adapted methods from stoichiometric matrix analysis (EFM
analysis, conservation laws, flux sampling) that are usually known in the field of metabolic
network analysis and do not require information about kinetic rate constants. These methods
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Rank Fold Change Median Flux Median Flux Related to
(unstimulated) (stimulated)

1 NA 0 619 GRK6
2 NA 0 539 GRK6:R
3 NA 0 499 Receptor
4 2.00 250 501 GP αs

5 1.68 499 837 PDE
6 1.58 506 816 GEF
7 1.57 507 815 GEF
8 1.57 507 816 GEF
9 1.57 507 815 GEF
10 1.54 446 682 cAMP
11 1.54 446 682 cAMP
12 1.54 446 682 cAMP
13 1.54 446 682 GEF
14 1.53 513 789 GEF
15 1.52 513 789 GEF
16 1.52 514 788 GEF
17 1.52 514 788 cAMP
18 1.48 481 709 cAMP
19 1.48 481 709 cAMP
20 1.48 481 709 cAMP
21 1.48 481 709 cAMP
22 1.34 500 709 RGS14
23 1.34 500 709 RGS14
24 1.33 500 707 RGS14
25 1.33 500 707 RGS14
26 1.27 500 379 GRK6

Table 5.3: Significant EFMs (FDR < 1E − 6) ranked by their median predicted fold change induced by
stimulation. Note that the first three fold changes are not computable because without stimulation there
is no flux through these EFMs. The complete table can be found in Appendix B.

operate mainly on the level of a biochemical reaction network. We demonstrated that in this
way it is possible to draw biologically meaningful conclusions about the principle behavior of
our studied system, which are in agreement with the current knowledge. In that context our
proposed constrained flux sampling method allowed to include measured cAMP and PDE fold
changes in order to make qualitative predictions about receptor stimulation effects on network
level that were verifiable via experimental data (DMR measurement) not been used by CFS.
This work demonstrates that our CFS method can be used in the context of in silico knock-out
simulations in order to identify relevant features of our studied system. More specifically, we
found RGS14 of major relevance, which is in agreement with the current literature, but certainly
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Figure 5.5: Elementary flux mode for G protein (here denoted as G) regulation via RGS14. First the
inactive G protein complex consisting of the subunits αi and β\γ binds to the active receptor and the bound
GDP is replaced by GTP while the G protein dissociates from the receptor and splits into its subunits
β\γ and αi. Afterwards the activated α subunit is deactivated by replacing GTP with GDP mediated by
RGS14. In the last step, the deactivated GDP-bound subunit α again associates with the subunit β\γ and
forms the inactive G protein.

requires further experimental investigations of the biological system under consideration. The
combination of CFS and EFM suggests that this is specifically due to the regulation of the GP
subunit αi via RGS14. The dynamical system developed in Chapter 8 further underlines the
importance of RGS14 for the M2 receptor-dependent whole cell response.

Altogether this work demonstrates that CFS, as well as other established methods for stoi-
chiometric matrix analysis, could be valuable tools for model checking for mixed signaling and
non-signaling networks. Such a model checking procedure would also simplify and speed up
possible follow up model refinements driven by quantitative time series measurements.
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Figure 5.6: Elementary flux mode for the GRK-mediated receptor inactivation via phosphorylation.
The ligand-bound receptor gets phosphorylated by GRK. The phosphorylated and hence inactive
receptor is no longer able to mediate the G protein activation. After ligand-dissociation the receptor gets
dephosphorylated and is now again able to mediate the G protein activation.
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CHAPTER 6

The Dynamic Elastic-Net

Even though general ability of the derived M2 receptor-dependent signaling pathway to reflect
the observed properties has been demonstrated in Chapter 5, it is not fully ensured that all
driving mechanisms are included in a refined time-resolved system. As discussed in Chapter 2,
dynamical systems are more complex than static systems and thus a method to detect and correct
erroneous models is highly desirable. The DEN is a deterministic approach based on OCT to
address this issue, and a first attempt to towards automatic model correction (Engelhardt et al.,
2016). This is important in order to refine the developed model for the M2 receptor-dependent
signaling in CHO cells in a reliable manner. This work has been published in a peer-reviewed
journal (cp. Appendix F).

6.1 Introduction

Ideally, a good model covers the essential features of the system whilst still being simple enough
for interpretation and mechanistic understanding. Developing a good model is usually a labor-
intensive manual effort. As discussed in Chapter 2, in biology the system to be modeled is often
only partially known and the distinction of relevant and irrelevant features and variables can be
difficult (Swameye et al., 2003; Sunnåker et al., 2013; Kahm et al., 2012). But, even if the major
components of a biological system are well known, the sheer complexity of the system might
prevent the development of an accurate mathematical model, either because the quantitative data
necessary for modeling is not available or because the model is itself too complex to be useful.
Thus, researchers in systems biology are frequently confronted with a paradoxical situation: A
model is needed to better understand the system and to design informative experiments, but
the system is too large and complex for mathematical modeling given the limited amount of
knowledge, data and time.

One strategy, similar to bottom-up approaches (see Chapter 2), for modeling is to start with
a simple model, which incorporates the most interesting variables and interactions as well as
the known input stimuli to the system (Figure 6.1a). For example, to model a CRN, we might
incorporate the concentrations of a few interesting proteins as dynamic state variables and
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integrate the knowledge about the reactions into simplified assumptions about the interactions
between these states. Here, this simple draft model is referred to as the nominal system.

Figure 6.1: (a) The nominal model represents the current assumptions about the true system. The system
is specified by its dynamic state variables and their interactions, here represented as vertices and edges of
a graph. The system border defines the distinction between internal states and exogenous inputs. The
exogenous inputs u are assumed to be known. (b) In reality, the nominal model is embedded in a larger
network outside the nominal system border. The hidden dynamics of the exosystem interact with the
nominal system. In addition, some interactions between nominal state variables might be missing or
misspecified in the nominal model. These model errors can potentially lead to discrepancies between
model and experimental data. (c) Representation of model errors as hidden inputs to the nominal model.
The DEN approach infers the hidden inputs from data and thereby corrects for the bias in the nominal
state variables induced by model errors.

There are two reasons why the nominal model might not be in sufficient agreement with the
experimental data (Figure 6.1b): First, some interactions between the nominal state variables
could be missing or misspecified. For a reaction network, this would mean that there are missing
biochemical reactions, incorrect assumptions about the reaction kinetics or inaccurate parameter
estimates. Second, the nominal system is in fact – opposed to the typical situation in many
areas of physics – open and embedded into a larger dynamical system (von Bertalanffy, 1950).
Exogenous variables, which are not incorporated, but interact with the nominal model, might
act as hidden inputs and thereby alter the dynamics of the nominal system. It is the task of
the modeler to first identify the most relevant errors in the nominal model and then compare
different model versions in order to achieve a better fit to the available experimental data. This
process is labor-intensive, and in many cases a trial-and-error exercise, even with the help of
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innovative software and algorithms assisting modeling and model comparison (Sunnåker et al.,
2013; Rodriguez-Fernandez et al., 2013; Babtie et al., 2014).

We introduced a computational method for ODEs, which automatically estimates the model er-
ror from the data. As discussed, ODEs are frequently used in different areas of biology including
biochemical reaction networks, pharmacokinetics, pharmacodynamics and population dynamics.

The basic idea of the method is to represent errors in the nominal model as hidden inputs to
the state variables (Figure 6.1c) and to estimate these inputs from the experimental data (Mook
and Junkins, 1988; Kolodziej and Mook, 2005; Kahm et al., 2012). Since this is an inverse
problem with potentially many different solutions, we proposed a regularized method which
provides parsimonious error estimates. Due to its formal similarity to the elastic-net regression
approach (Zou and Hastie, 2005), we termed our algorithm the dynamic elastic-net (DEN).

The dynamic elastic-net provides important information about the variables in the nominal
model, which are targeted by model errors. In addition, the DEN removes the bias in the nominal
state variables induced by the model error. This is important for the frequent situation where
not all nominal states (e.g. protein concentrations) can directly be measured. The utility of the
DEN is demonstrated here for two established models of the erythropoietin receptor (EpoR)
and of the photomorphogenic ultraviolet B (UV-B) signaling network (Swameye et al., 2003;
Ouyang et al., 2014). Further examples, including a model for G protein signaling and models
for several network motifs as well as some technical details, are given in Appendix C.

6.2 Methods

6.2.1 The Nominal Model

We assume that a nominal ODE model

˙̃x(t) = f̃ (x̃(t),u(t)) (6.1a)
ỹ(t) = h(x̃(t)) (6.1b)
x̃(0) = x̃0 (6.1c)

has been proposed to describe the dynamics of the system under consideration. The state vector
x̃(t) = (x̃1(t), . . . , x̃N(t))T contains the N dynamic variables x̃n (t), and ˙̃x(t) is the derivative
with respect to time t. The initial value of the state vector is x̃0. For a biochemical reaction
network, x̃n is often the concentration or abundance of the n-th species. The function u(t) =

(u1(t), . . . , uP(t))T represents a known external input to the system. The dynamics of the state
variables is determined by the function f̃ = ( f̃1, . . . , f̃N)T and encodes the model assumptions
made in the nominal model. This can be represented as a graph, where each node corresponds
to one variable and a directed edge from n to j indicates that the time-derivative of x̃n depends
on x̃ j (Figure 6.1a) (Liu et al., 2013). A green zigzag arrow illustrates that ˙̃xn is directly
influenced by a known input. Typically, not all state variables x̃ can directly be measured. The
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variables ỹ(t) = (ỹ1(t), . . . , ỹI(t))T represent all outputs which are experimentally accessible.
In Equation (6.1b), we assume that the mapping h from the state x to the output y is known.
Tilde is used to highlight that f̃ and thus x̃(t) are usually not perfectly known due to limited or
uncertain knowledge about the true underlying dynamics.

6.2.2 Representation of the Model Error

The response of the real natural system to a known input stimulus u(t) is usually measured at
discrete time points t1 ≤ · · · ≤ tF and provides experimental observations for the output y(tl).
A part of these data is usually used to estimate the parameters of the model. We consider the
initial parameter estimates as part of the nominal model specification f̃ in Equation (6.1a).

The nominal model is deemed unsatisfactory, when its output ỹ(t1), . . . , ỹ(tF) is not in suffi-
cient agreement with the data y(t1), . . . , y(tF). One source of model error comes from hidden
inputs to the nominal system, which are caused by dynamical processes exogenous to the
nominal system (Figure 6.1b). In addition, there might be missing or erroneous interactions
between the state variables x̃ in the nominal model itself. Both types of model error can be
represented by hidden inputs w(t) = (w1(t), . . . , wN(t))T acting on the nodes of the nominal
model (Figure 6.1c). The "true" dynamics x(t) of the real system can be described by

ẋ(t) = f̃ (x(t),u(t)) + w(t) (6.2a)
y(t) = h (x(t)) (6.2b)
x(0) = x0. (6.2c)

Here, the state x(t) = (x1(t), . . . , xN(t))T represents the same variables as the nominal state x̃(t),
but tilde is suppressed to distinguish solutions of model (6.2) from that of the nominal model.
The model error is the difference w(t) = ẋ(t)− f̃ (x(t),u(t)) between the rate of change of the true
system ẋ(t) and the nominal system f̃ (x(t),u(t)), evaluated along the true state trajectory x(t).
Thus it incorporates any discrepancy between the true system and the nominal system. The
known input u and the output function h are assumed to be identical to the nominal model (6.1).
However, the impact of measurement noise is discussed below.

The typical approach to model improvement is to compensate for the model error w(t) by
explicit mathematical expressions, often additional differential equations. This increases the
number of variables and parameters in the model. Here, we proceed differently by estimating
the model error w from the data, which also enables us to correct for the bias x(t) − x̃(t) of the
state estimate incurred by the nominal model.

6.2.3 Estimating the Unmodeled Dynamics

To estimate the model error w(t), we use the observer system

˙̂x = f̃ (x̂(t),u(t)) + ŵ(t) (6.3a)
ŷ(t) = h(x̂(t)), (6.3b)
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which is a copy of Equations (6.2a) and (6.2b). The hat marks estimates of the state x̂(t), of the
output ŷ(t) and of the model error ŵ(t). The latter is obtained by minimizing the error functional

J (x̂ (t) , ŵ (t)) =

F∑
l=1

‖y(tl) − ŷ(tl)‖2Q(tl) + R[ŵ] . (6.4)

The first term in Equation (6.4) is the weighted mean square error between the measured outputs
y(tl) and the outputs ŷ(tl) of the observer system in Equations (6.3a) and (6.3b). The weighted
square norm

‖y(tl) − ŷ(tl)‖2Q(tl) = (y(tl) − ŷ(tl))T Q(tl) (y(tl) − ŷ(tl)) (6.5)

contains the symmetric weighting matrix Q(tl), which is often chosen to be diagonal and can
be used to transform outputs of very different magnitude to a common scale or to incorporate
precision estimates of the measurements at the different time points tl. The regularization term

R[ŵ] = α1‖ŵ‖1 +
α2

2
‖ŵ‖22 (6.6a)

‖ŵ‖1 =

∫ tF

t1

N∑
n=1

|ŵn(t)|dt (6.6b)

‖ŵ‖22 =

∫ tF

t1

N∑
n=1

|ŵn(t)|2 dt. (6.6c)

is necessary to avoid overfitting of the data y(tl) by overly complex estimates ŵ(t). The nonneg-
ative parameters α1 and α2 determine the relative contributions of the L1 norm in Equation (6.6b)
and of the L2 norm in Equation (6.6c). Minimization of Equation (6.4) under the constraints
in Equations (6.3a) and (6.3b) is an OCP, which needs to be solved numerically (see Ap-
pendix C) (Pontryagin et al., 1986; Fleming and Rishel, 1975; Gerdts, 2012). As detailed
in Section 4.2, in contrast to common OCPs, the controls are split into known and unknown
variables.

The combined L1 - L2 regularization in Equation (6.6a) is reminiscent of the elastic-net
penalty used in regression (Zou and Hastie, 2005). Therefore, we termed our approach the
dynamic elastic-net. In analogy to regression, the L1 term causes some components ŵn(t) of
the estimated model error to shrink to zero (cp. Appendix C). The amount of shrinkage is
determined by α1, which can be chosen to suppress small error signals or noise distributed over
many components of the estimate ŵ. The resulting sparse estimate is useful because it provides
information about the states of the system which are targeted by systematic model errors, as
represented by hidden inputs.

In contrast to regression, a pure L1 or least absolute shrinkage and selection operator (LASSO)
type regularization is not useful in the dynamic setting because the solution for α2 = 0 can result
in unbounded estimates of ŵ(t) (Tibshirani, 2011). Even when additional constraints on ŵ(t)
are imposed, the resulting solution is not smooth and either zero or at the boundaries of the
constraints (Vossen and Maurer, 2006). These insights about the OCP can be obtained from
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Pontryagin’s minimum principle, as detailed in Appendix C together with some strategies to
chose suitable regularization parameters α1 and α2 (Pontryagin et al., 1986; Fleming and Rishel,
1975). In addition to sparse but smooth estimates of the model error, the DEN automatically
provides a state estimate x̂(t). Often this is very interesting information, especially when not all
state variables are experimentally accessible.

The OCP in Equations (6.4) and (6.3) for ŵ(t) requires the specification of an initial con-
dition x̂(0) = x0, which is often not known or uncertain. Alternatively and according to
Section 4.2.4, one can add the additional constraint

‖y(t1) − ŷ(t1)‖Q(t1) ≤ ∆t1 (6.7)

to the OCP, where ∆t1 is a preset tolerance given for the fit of ŷ(t1) to y(t1) at time t1. Similarly,
a tolerance ∆1 can be prescribed to the fit at the last data point through

‖y(tF) − ŷ(tF)‖Q(tF ) ≤ ∆tF . (6.8)

The tolerance parameters ∆t1 and ∆tF of these optional constraints can often be obtained from
the error bars of the measurements.

6.3 Results

6.3.1 JAK-STAT Signaling

To illustrate the DEN estimator for a small and comprehensible model we used established
experimental data for the JAK-STAT signal transduction pathway (Swameye et al., 2003). The
four state variables of the system represent the unphosphorylated cytoplasmic signal transducer
and activator of transcription 5 (STAT5) (x1), the phosphorylated monomeric STAT5 (x2), the
phosphorylated dimeric STAT5 (x3) and the nuclear dimeric STAT5 (x4). The nominal model

˙̃x1
˙̃x2
˙̃x3
˙̃x4

 =


−θ1 x̃1u

θ1 x̃1u − 2θ2 x̃2
2

θ2 x̃2
2 − θ3 x̃3

θ3 x̃3

︸                ︷︷                ︸
f̃ (x̃,u)

(6.9a)

(
ỹ1

ỹ2

)
=

(
θ4(x̃2 + 2x̃3)

θ5(x̃1 + x̃2 + 2x̃3)

)
︸                     ︷︷                     ︸

h(x̃)

(6.9b)

describes the phosphorylation of cytoplasmic STAT5 upon activation of the EpoR (the known
input u), the dimerization of phosphorylated STAT5 and the export to the nucleus (Fig-
ure 6.2) (Swameye et al., 2003). Time course data for the amount of cytoplasmic phos-
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phorylated STAT5 (y1) and total cytoplasmic STAT5 (y2) were used to calibrate the parameters
θ1, . . . , θ5 (Swameye et al., 2003). However, the presence of a systematic model error is ap-
parent from the inalterable discrepancy between the experimental data and the nominal model
incorporating optimized parameter values (Figure 6.2b,c).

Figure 6.2: Estimating the model error for the JAK-STAT pathway. (a) The known input u(t) is given by
linearly interpolated phosphorylation measurements for the EpoR (Swameye et al., 2003). (b,c) Output
measurements (Swameye et al., 2003) (black) for phosphorylated STAT5 (y1) and total STAT5 (y2) in the
cytoplasm compared to the outputs of the nominal model (blue) and the fit of the DEN (red). (d) Graph
of the nominal model (blue) and of the observer system (red) with the state variables cytoplasmic STAT5
(x1), phosphorylated monomeric STAT5 (x2), phosphorylated dimeric STAT5 (x3) and nuclear STAT5
(x4). (e) DEN estimates ŵ(t) = (ŵ1(t), . . . , ŵ4(t))T of the model error and the AUC for the magnitude of
each component |ŵn(t)|. (f) State estimates x̃1, . . . , x̃4 obtained from the nominal model (blue) and the
DEN observer (see x̂1, . . . , x̂4 in red).

To estimate this model error w(t), we numerically fitted the DEN with the nominal model (6.9)
to the output measurements. To quantify the magnitude of the different components, we numer-
ically computed the area under the curve (AUC) of each |ŵn(t)|, i.e., AUCn =

∫ tF
t1
|ŵn(t)|dt. The

AUC and the estimated time course ŵ(t) = (ŵ1(t), . . . , ŵN(t))T of the model error indicate (Fig-
ure 6.2e) that the dominant contributions ŵ1(t) and ŵ4(t) of the model error target the states x1

and x4, representing the amount of unphosphorylated cytoplasmic STAT5 and nuclear STAT5,
respectively. The second component ŵ2(t) of the DEN estimate is identically zero for the whole
time interval (Figure 6.2e). Apart from the small signal ŵ3(t) initiated after approximately 40
minutes, this is consistent with the improved nucleocytoplasmic cycling model, which is based
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on the same data and incorporates the relocation of orthophosphate nuclear STAT molecules into
the cytoplasm (Swameye et al., 2003; Raue et al., 2009). Importantly, the DEN also provides
modified estimates for the four STAT5 state variables (Figure 6.2f), which are also in good
agreement with the nucleocytoplasmic cycling model (Appendix C).

An important problem with regularization approaches is the choice of the regularization
parameters α1 and α2. We used α1 = 10 and α2 = 0.2 in Figure 6.2, but we found empir-
ically that the AUC clearly indicate the target points of the model error for a wide range of
α1-values (Appendix C, Figure C.2). The L2 parameter α2 was chosen to balance the smoothness
of ŵ and the accuracy of the fit to the output measurements. In addition, the bias induced by the
double regularization can be compensated by a simple thresholding strategy (Zou and Hastie,
2005): Given an initial estimate ŵ(t) = (ŵ1(t), . . . , ŵN(t))T of the model error, we refit the DEN
by constraining all the components with a small AUC to zero. Thresholding is known in the
regression context and we found it to improve the state estimates as well as the time course
estimates of the remaining model errors (Appendix C, Figure C.3) (van de Geer et al., 2011).

To explore the robustness of the DEN against measurement noise, we added random perturba-
tions to the experimental data (Swameye et al., 2003). For a given noise level, we generated 500
perturbed data sets by adding Gaussian random numbers with mean zero and standard deviation
scaled by a multiple of the empirical standard deviation (see the error bars in Figure 6.2b,c) to
each experimental data point. Thus, the noise level is defined as a multiple of the empirical
standard deviation. The DEN was then fitted to each output sample, and the corresponding area
under the curve for each component of the estimated model error ŵ(t) was computed. The plots
for these AUC values curves versus the noise level are shown in Figure 6.3a. The median values
of the AUC for the components ŵ1, . . . , ŵ4 are largely independent of the noise level, but the
variability of the AUC estimates increases with the measurement noise. Nevertheless, the AUC
values for ŵ1 and ŵ4 are always much larger than zero, whereas the AUC of ŵ2 and ŵ3 is close
or even equal to zero for many samples with higher noise level. This increases the confidence
that the nodes x̃1 and x̃4 (Figure 6.2d) of the nominal JAK-STAT model are the main target
points of the model error.

The impact of parameter uncertainty on the nominal model was assessed in a similar way.
Parameter estimation algorithms applied to the nominal model using the experimental data
(Figure 6.2b,c) provide point estimates and confidence intervals for each component of the
parameter vector (Swameye et al., 2003; Raue et al., 2009; Balsa-Canto et al., 2010). These
confidence intervals were again scaled by the noise level, yielding an interval for each parameter
from which uniform random samples were drawn. Again, we generated 500 modified parameter
vectors per noise level. For each parameter sample, the system was taken as the nominal model
and the AUC of the resulting estimates ŵ1, . . . , ŵ4 was recorded (Figure 6.3b). Again, there is
no systematic trend for the AUC of the different components of the estimated error ŵ. However,
the variation of the AUC increases much faster than in Figure 6.3a. Apart from the different
sampling distributions used, this effect is related to the definition of the model error w, which is
always defined with respect to the nominal model (confer Equation 6.2a). Hence, the estimated
model error ŵ contains contributions from both structural and parameter misspecifications in
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the nominal model. Nevertheless, it is still possible to infer the dominant components ŵ1 and
ŵ4 with high confidence. Similar results were found for the sensitivity against the number of
measurement time points (Appendix C, Figure C.6).

Figure 6.3: Impact of simulated measurement noise and parameter uncertainty on the DEN estimate in
the JAK-STAT model. (a) Box plots visualizing the variation of the AUC of |ŵ1(t)|, . . . , |ŵ4(t)| for the
DEN estimates caused by measurement noise (see main text for details). For better visualization, the box
plots at a given noise level are slightly offset. (b) Variation of the AUC caused by parameter uncertainty.

6.3.2 Photomorphogenic UV-B Signaling

As a test case for a larger system, we used a recent model for the coordination of photomorpho-
genic UV-B signaling in plants (Ouyang et al., 2014). The model consists of 11 ODEs describing
the dynamics of protein concentrations x̃ = (x̃1, . . . , x̃11)T coupled by 10 chemical reactions (Fig-
ure 6.4). We considered this model as the nominal model in order to test the dynamic elastic-net
method for a situation where the ground truth is known. The model error was simulated by
adding the hidden inputs w3(t) = w9(t) = 1000 · [1 − 1/(1 + t)] to the nodes x̃3 and x̃9. The
output function h(x̃) is a linear combination of 7 different state variables (see Appendix C
for all equations). The synthetic data was sampled at discrete time points from the outputs
of the true model and Gaussian random perturbations were added to simulate measurement
noise (Figure 6.4b-f). The DEN with the nominal model was used to reconstruct the model
error w(t) and the true state x(t) from the simulated data. The absolute area under the curve
for each component of the model error estimate ŵ(t) clearly indicates that the states x̃3 and
x̃9 are targeted by hidden inputs (Figure 6.4g), whereas all other components are either very
small (|ŵ6|) or even zero. This illustrates the sparsity of the DEN estimate, which is a clear
advantage over pure L2 regularization The discrepancy w(t) − ŵ(t) between the model error
and the corresponding estimate relative to the amplitude A = maxtl∈(t1,...,tF ) w3,9(tl) of the true
model error is at most 10% (Figure 6.4h) and mainly caused by numerical inaccuracies. Most
importantly, the discrepancy x(t) − x̂(t) between the true and the estimated state trajectory is
almost zero (Figure 6.4i), indicating the excellent performance of the DEN as a state observer.
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Figure 6.4: Application of the DEN to the modeling of the photomorphogenic UV-B signaling. (a)
Graph (without self loops) of the model states (Ouyang et al., 2014). The target points of the simulated
model errors are indicated by the red arrows. (b-f) Simulated output y1, . . . , y5 with error bars (black),
output of the nominal model (blue) and output of the DEN (red). (g) AUC of the absolute model errors
|ŵ1(t)|, . . . , |ŵ11(t)|. (h) Components of w − ŵ relative to the amplitude A of the true model error. (i)
Discrepancy x(t) − x̃(t) between the true state and the nominal model state (blue) compared to the
discrepancy x(t) − x̂(t) of the DEN (red).

As for any inverse method, there are limitations to the dynamic elastic-net method. Some
model errors w(t) are unobservable because there exists a different hidden input function w†(t)
which generates an output y(t) identical to the output obtained for w(t), see Appendix C for a
simple example. Other model errors might be practically unobservable because the output for
another hidden input function might not be distinguishable within the measurement errors. A
special case are model errors which have no or almost no effect on the output at all. These will
not be noticed during modeling and the nominal model will be accepted.

To further test the ability of the DEN to infer the states targeted by the model error, i.e., the non-
zero components of the true model error w(t), we systematically simulated perturbations to differ-
ent nodes and node pairs. First, we simulated model errors wn(t) = 1000 · [1− 1/(1 + t)], w j(t) =

0 for j , n targeting a single node n in the same way as before. For the nodes n = 2, n = 10 and
n = 11, there was no effect on the output (cp. Figure 6.4b-f) and thus these nodes were omitted
from further analysis. In addition, we simulated hidden inputs for all remaining two-node
combinations. For each of these 36 simulated true models we tested the ability of the DEN to
recover the correct target nodes from the AUC of the estimated |ŵn(t)|. We considered a node or
a node pair to be correctly recovered if their AUC was at least 85% of the total AUC over all
nodes. Using this stringent criterion, we found that two single node errors targeting x̃1 or x̃4

were not correctly detected and another single node was predicted to be the target of the model
error (Figure 6.5a). This indicates that these model errors are unobservable and that the observed
output data can be explained by different inputs to different nodes. With two exceptions ((8, 3)
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and (7, 6)), the mistakes made by the algorithm for simulated pairwise model errors involve
these two state nodes 1 and 4. However, with exception of the combination (1, 4), at least one
node is correctly predicted.

Figure 6.5: Detection of the target nodes of the simulated model errors in the UV-B signaling network.
(a) All nodes and all pairs of nodes were perturbed by a simulated model error. Nodes x2, x10 and x11
are omitted, since the simulated error signal had no effect on the output. The rows and the columns
correspond to the true target nodes of the model error and the numbers in the cells are the nodes found by
the DEN (NA means that no second node was assigned). Gray cells indicate errors made by the DEN for
unobservable model errors. (b) An example for an unobservable model error. The true target nodes of
the model error are (9, 1), but the DEN predicts the target nodes (9, 3). (c) Refitting the DEN under the
constraint ŵ3 = 0 provides an alternative solution. The other two combinations ŵ9 = 0 and ŵ3 = ŵ9 = 0
of the nodes (9, 3) did not fit the output data.

These results demonstrate the inherent limitations of any attempt to recover the model error
from observed outputs. For an unobservable model error, the true model error w(t) might
correspond to a slightly larger value of the error functional given through Equation (6.4) than
the minimum ŵ(t) obtained through the DEN. A heuristic approach to explore some of these
slightly suboptimal solutions is to rerun the dynamic elastic-net method with some of the
estimated target nodes (from the first run) excluded and to check whether the output data can
satisfactorily be fitted with the same level of sparsity. This is illustrated in Figure 6.5b for the
node pair (9, 1), which was predicted to be (9, 3) by our criterion. Refitting the DEN under
the constraint ŵ3 = 0 identifies the correct nodes (9, 1), as illustrated in Figure 6.5c. The
two other combinations ŵ9 = 0 and ŵ3 = ŵ9 = 0 do not provide a satisfactory fit to the data
(Appendix C, Figure C.8 and Figure C.9). For the UV-B signaling network, we find that the
slightly suboptimal solutions identified by this heuristics always contain the correct target node
configuration. The combinatorial explosion of this strategy should typically not be a problem,
thanks to the sparsity of the DEN predictions. The decision, which of the predicted target node
sets, (9, 3) or (9, 1), is the correct one can in practice only be made when additional states are
measured. However, this example shows, how the DEN provides useful information to select
further states for experimental observation (Raue et al., 2010; Liu et al., 2013).
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6.4 Conclusion

Efficient computational methods to learn from incomplete model drafts and to direct model
improvement are urgently needed. The proposed dynamic elastic-net approach provides sug-
gestions for the location of these model errors in the network and estimates their dynamic time
courses from measured output data. The sparsity of the proposed target points for the model error
promotes model improvements in the most parsimonious way. Even for an incomplete nominal
model the algorithm can provide estimates for the system states which are not experimentally
accessible. This is in stark contrast to many other state estimators including the Kalman filter
for linear systems and its various extensions for nonlinear systems, which usually require a
correctly specified model (Kalman, 1960; Julier and Uhlmann, 1997; Crassidis and Junkins,
2011).

Not all model errors can uniquely be determined from the output. For such unobservable
model errors, our strategy to explore alternative, slightly suboptimal solutions might indicate
alternative explanations for observed discrepancies between the data and the nominal model.
In addition, this approach can also be informative for selecting additional nodes required for
observing the state from output measurements (Raue et al., 2010; Liu et al., 2013). Further
research is needed to establish the relationship between the network topology and the observab-
ility of a model error.

Model errors arising in kinetic reaction systems can originate from erroneous rate equations or
lacking reactions. The DEN can detect both types of errors as hidden inputs to the corresponding
nodes of the network, but it can not discriminate between these errors. However, knowing
the nodes affected by a model error might already be very informative for systematic model
improvement. This work raises fundamental questions regarding successful modeling strategies.
The approach to manually include more and more details into the model to compensate for
the initial model errors is often not practical or at least very time consuming. The dynamic
elastic-net hence paves the way towards a more principled and systematic way, in which models
could be adapted based on experimental data.
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The Bayesian Dynamic Elastic-Net

In Chapter 6 I proposed the DEN as a promising approach to make ODE-based biological models,
e.g., the developed model of the M2 receptor-induced signaling, complete and consistent. The
BDEN, as a Bayesian extension of the DEN, incorporates measurement uncertainties and allows
for automatic correction of the nominal model by adding or removing single interactions. This
results in more robust and reliable estimations of the involved hidden influences. This work is
under review in a peer-reviewed journal (cp. Appendix F).

7.1 Introduction

The proposed DEN aims for estimating the dynamics of exogenous hidden influences, i.e.,
exogenous hidden inputs, and misspecified molecular interactions, i.e., endogenous hidden
inputs to the nominal model via a penalized estimation procedure resembling elastic-net re-
gression (Zou and Hastie, 2005; Engelhardt et al., 2016). This is strongly required since in
most situations researchers have partial knowledge and preliminary hypotheses about their
system, which needs to be integrated into a restricted but still predictive and experimentally
validatable model (Swameye et al., 2003). Even, if the biological system is partially known and
the data is given for almost all molecular species it is not clear how to deal with insufficient
predictions (Azeloglu and Iyengar, 2015).

As discussed in Chapter 6, the DEN addresses these issues in a suitable manner. Although the
method was tested successfully on several applications, such as the EpoR-dependent signaling
network (Swameye et al., 2003), it has still several shortcomings, which are addressed in this
chapter. More specifically, the DEN is not a probabilistic approach and thus does not fully
address the unavoidable uncertainty about estimates. Moreover, the DEN does not answer the
question whether estimated hidden inputs could be attributed to missed or wrongly modeled
interactions among the known molecular species. Hence, here the Bayesian DEN (BDEN) is
introduced as a new and fully probabilistic approach, which deals with all these aspects.
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In contrast to the DEN, the BDEN method does not require prespecified hyperparameters.
The predictive power of the BDEN compared to the DEN is illustrated in several real biological
models and test cases. The BDEN thus provides a systematic Bayesian computational method
to identify target nodes and reconstruct the corresponding error signal including detection of
missing and wrong molecular interactions within the assumed model. The method works for
ODE-based systems even with uncertain knowledge and noisy data. In contrast to approaches
based on point estimates the Bayesian framework incorporates the given uncertainty and
circumvents numerical pitfalls which frequently arise from optimization methods (Betts, 2009;
Rao, 2010).

7.2 Methods

7.2.1 Motivation

The modeling process is assumed to start with an initial, potentially incomplete or partially
misspecified nominal model including all known but not necessarily observable molecules (Liu
et al., 2013). Figure 7.1 illustrates the general idea of automatic model correction. As discussed
in Chapter 6, in most situations the real system differs from the initially modeled nominal
system, which is reflected by an insufficient fit to the given data caused by (i) hidden influences
and (ii) erroneous molecular interactions. Exogenous hidden influences could, for example,
be stimulatory (e.g., phosphorylation) or inhibitory (e.g., dephosphorylation) events affecting
the modeled system from outside. In addition, there could exist stimulatory or inhibitory in-
fluences within the system, which are not included in the model due to lack of knowledge,
i.e., missing molecular interactions. Similarly, wrongly included molecular interactions could
exist. In biochemical systems molecular interactions are based on biochemical reactions, e.g.,
phosphorylation and binding events.

Due to the fact that biological systems are open the number of potential erroneous nodes (e.g.,
proteins or other molecules) within the nominal model is huge (Babtie et al., 2014). Without
further knowledge, independent error terms have to be assigned to each node. If the respective
node is in reality not directly targeted by a hidden influence, the hidden input takes the value
zero. Only nodes directly affected by hidden influences have non-zero errors. Wrongly modeled
or missing interactions between two nodes can be represented by two error terms, one for each
of the respective nodes, which will be correlated over time. This idea is exploited to detect
missing or erroneous interactions in a given ODE-based nominal model.

7.2.2 Approach

The assumed dynamical model is given by

ẋ (t) = f (x (t) ,u (t)) + w (t) (7.1a)
y (t) = h (x (t)) + ε (t) (7.1b)
x (0) = η, (7.1c)
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Figure 7.1: Illustration of the Bayesian approach to estimate hidden influence variables in ODE-based
models. Here, a fictional interaction network is shown. (a) True system (black) with two inputs and
one fictive observable measurement as a combination of two nodes (box). (b) In reality, the available
knowledge represented by an a priori model (blue) does not necessarily cover the whole system but only
a part of the true system. Hence the nominal model leads to an unsatisfactory fit with the observable
measurement. This may be caused by exogenous influences or by misspecified molecular interactions
(i.e., missing or wrong edges in the interaction network). (c) Our approach aims for estimating these
hidden influences (red) and the directly involved molecular species. (d) Some of the estimated hidden
influences may correspond to missing or wrong molecular interactions within the system. Hence, in a
last step our method tries to further distinguish between intrinsic and exogenous hidden influences. We
therefore identify erroneous parts of the nominal ODE system and give detailed hints for their correction.

according to the proposed observer system described through Equations (6.3). As discussed
in Chapter 6.2.3, ẋ denotes the time derivative of the state vector x (t) = (x1 (t) , . . . , xN (t))T

with initial value η. The not necessarily linear function f represents the nominal model, which
describes the current assumptions about the dynamic interactions between the state variables and
in addition the effect of the known input function u (t). The additive dynamic hidden influence
w (t) subsumes missing or wrong interactions between the state variables as well as exogen-
ous influences caused by crosstalk with other biological processes (cp. Appendix D). This is
equivalent to the hidden input signals as defined in Chapter 6. Of course, w (t) is unknown and
intended to be estimated from the data (Engelhardt et al., 2016). Notably, the hidden influence
w (t) is not restricted to be constant or linear and thus can be any arbitrary function of time.

The map from the state to the measurable output y (t) = (y1 (t) , . . . , yI (t))T , with I not ne-
cessarily equal to N, is given by the measurement function h, which is assumed to be known
(Equation (7.1b)). In addition white Gaussian measurement noise ε (t) with expectation zero
and a noise covariance matrix Ξl ∈ R

I×I is assumed, see below. According to Section 4.3, in
practice the data is given as measurements y (tl) at discrete time points tl with l ∈ {1, . . . , F}.
The notation yi,l = yi (tl) is used for the measured output i ∈ {1, . . . , I} at measurement time
tl and the analogous notation for the other variables, i.e., xn(tl) = xn,l and hi (x (tl)) = hi (xl).
For sake of simplicity in the following the matrix of observed measurements is represented
by y1:F =

{
y1, . . . , yF

}
∈ RI×F and the corresponding state and hidden influence matrices by
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x1:F ∈ R
N×F and w1:F ∈ R

N×F with initial values x0 = η and w0 = 0.

From now on we are interested in hidden influences at discrete time points. Under this
assumption Equations (7.1) can be rewritten as:

xl = xl−1 +

∫ tl

tl−1

f (x
(
t̃
)
,u

(
t̃
)
) + ŵ

(
t̃
)

dt̃ (7.2a)

yl = N (h (xl) , Ξl) (7.2b)
x0 = η. (7.2c)

Consequently, we obtain a first order Markov process over the state variables x. The function
ŵ (t) is obtained by fitting a cubic smoothing spline through each of the N discrete time series
of hidden influence signals wF with an initial value w0 (Fritsch and Carlson, 1980). The
assumption of Gaussian measurement noise can, if necessary, approximately be fulfilled after
a variance-stabilizing transformation (Atkinson, 1987). In addition, Ξl = diag

(
ξ2

1,l, . . . , ξ
2
I,l

)
is

supposed.

7.2.3 Marginal Likelihood of the Data

The likelihood of the observed data

p
(
y1:F |x0:F ,w0:F ,Ξ1:F

)
=

F∏
l=1

I∏
i=1

p
(
yi,l

∣∣∣xl, ξ
2
i,l

)
× p (xl |xl−1,wl−1:l ) . (7.3)

can be factorized due to the independence of the measurement noise with respect to time and
observables. Note that p (xl |xl−1,wl−1:l ) is defined by Equation (7.2a). In addition xl−1:l and wl−1:l

are conditionally independent from Ξ1:F . Since typically the number of replicate measurements
per time point is small, the empirical variance is not a reliable estimator of the true measurement
noise. Therefore, we impose an inverse gamma prior on the variance of the measurement noise

ξ2
i,l ∼ IG (α, β) . (7.4)

The marginal likelihood of the data is obtained by marginalizing over the variance of the
measurement noise variable

p
(
y1:F |x0:F ,w0:F , α, β

)
∝

F∏
l=1

I∏
i=1

∫
p
(
yi,l

∣∣∣xl, ξ
2
i,l

)
× p

(
ξ2

i,l

∣∣∣α, β)dξ2
i,l × p (xl |xl−1,wl−1:l ) . (7.5)

This integral can analytically be calculated to yield (Zacher et al., 2012)

p
(
y1:F |x0:F ,w0:F , α, β

)
∝

F∏
l=1

I∏
i=1

Γ
(
α + 1

2

)
Γ (α) (2πβ)

1
2

1(
1 + 1

2β

(
yi,l − hi (xl)

)2
)α+ 1

2︸                                                  ︷︷                                                  ︸
p(yl |xl,α,β )×p(xl |xl−1,wl−1:l )

. (7.6)
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A detailed derivation of Equation (7.6) is provided in Appendix D.

According to Bayes’ theorem the posterior density over the hidden input signals w1:F is given
by:

p
(
w1:F

∣∣∣x0:F , y1:F ,Ξ1:F

)
∝ p

(
y1:F |x0:F ,w0:F ,Ξ1:F

)
× p (w1:F) . (7.7)

Using Equation (7.6) we can directly draw samples from the posterior density of the hidden
influence. For this purpose we propose a Bayesian elastic-net prior as detailed in the following
sections.

7.2.4 Smoothness and Sparsity via a Bayesian Elastic Net-Prior

The hidden input signals wl−1:l can be understood as the statistical residuals of the nominal
system, and every deviation of observations from the nominal system could thus be explained by
non-zero components in wl−1:l. However, we are only interested in hidden input signals, which
are far stronger than measurement noise. Therefore, we assume that the hidden input signal is
smooth and sparse. Sparsity corresponds to the a priori belief that only a small subset of state
variables is truly affected by unknown external or internal input signals. In addition we assume
the hidden input signal to be smooth over time. Smoothness and sparsity are encoded by a
prior distribution inspired by the Bayesian elastic-net, which is here combined with a first-order
Markov process over w1:F (Li and Lin, 2010; Friedman et al., 1998). Overall our proposed
approach is thus a hierarchical graphical model shown in Figure 7.2. Details can be found in
Appendix D.

Figure 7.2: Representation of the proposed Bayesian Dynamic Elastic-Net approach as a probabilistic
graphical model. The hidden influences wl form a Markov chain over all time points l = 1, . . . , F and
are directly dependent on the shared parameters λ1 and λ2. Since the outcome of one integration step
represents the initial value for the next integration step the system state variables x1, . . . , xF are also
successively dependent.
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Briefly, the Bayesian elastic-net defines a conditional Gaussian prior over each wn,l

∣∣∣wn,l−1

(n = 1, . . . ,N, l = 1, . . . , F). The scale of the variance of the Gaussian prior is a strongly
decaying and smooth distribution peaking at zero, which depends on parameters λ2, τ2 and
σ2. The parameter τ2 is itself given an by exponential distribution (one for each component of
vector wn) with parameters λ1. In consequence, sparsity is dependent on the parameter vector
λ1, whereas smoothness is mainly controlled by λ2 (Zou and Zhang, 2009; Li and Lin, 2010).
These parameters are drawn from hyperpriors, which can be set in a non-informative manner or
with respect to prior knowledge about the degree of shrinkage and smoothness of the hidden
influences (Kyung et al., 2010). Further details are given in Appendix D.

7.2.5 Estimating Hidden Influences from Data

To estimate the hidden input and the parameters in the hierarchical model, we devised a
Metropolis-Hastings algorithm with Gibbs updates of the Bayesian elastic-net hyperparameters.
The algorithm proceeds sequentially between the different time points 1, . . . , F by drawing
different samples at each supporting point. At sampling step s + 1 and time point l a random
component wn,l is selected of the hidden input vector (a node in the network) at the previous time
point, which is modified by a sample from a univariate Gaussian transition kernel π (Brooks,
1998). The resulting vector w∗l is accepted with probability

r
(
w(s)

l

∣∣∣w∗l ) = min

1,
p
(
yl |xl, α, β

)
p
(
yl |xl, α, β

) × p
(
xl

∣∣∣xl−1,w
∗
l ,wl−1

)
p
(
xl

∣∣∣xl−1,w
s
l ,wl−1

) × p
(
w∗l |θ

)
p
(
ws

l |θ
)
 , (7.8)

where p (wl |θ ) is the Bayesian elastic-net prior over the hidden influences conditioned by hyper-
parameters θ =

{
λ1, λ2, τ

2, σ2
}
. Because of the Gaussian measurement errors, the discrepancy

between data component yi,l and the corresponding model output hi(xl) in Equation (7.6) is
given by the quadratic error

(
yi,l − hi(xl)

)2. Note that xl is obtained by numerically integrating
the ODE system from time point tl−1 using xl−1 as initial value according to Equation (7.2a). The
code for the sampling algorithm and further details are provided in Appendix D.

7.2.6 Estimating Endogenous Hidden Influences

After having estimated the hidden influences on the state components in the nominal ODE
system, the question arises whether these hidden variables could in fact correspond to missing or
wrongly specified interactions within the nominal system. A simple strategy which we followed
here, is to rank all state variables in the nominal system by their temporal correlation with the
estimated hidden influences. The essential idea is that in case of a wrong or missing reaction
the estimated hidden time courses should "compensate" erroneous predictions by the nominal
system (Figure 7.3). In general, wrong or missing interactions can either have an increasing
("stimulatory") or decreasing ("inhibitory") influence on the target nodes. This results in a
negative hidden influence with wn,1:F < 0 in the case of inhibition and a positive hidden influence
with wn,1:F > 0 in the case of stimulatory events. In general, wrong or missing interactions can
either have an increasing ("stimulatory") or decreasing ("inhibitory") influences on the target
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nodes. This results in a negative hidden influence with wn,1:F < 0 in the case of inhibition and to
a positive hidden influence with wn,1:F > 0 in the case of stimulatory events. More specifically,
several cases are distinguished as listed in Table 7.1 and further illustrated in Figure 7.3. Briefly,
the idea is that an unmodeled stimulation between two state variables x1, x4 in the ODE system
yields two error signals w1 (influencing x1) and w4 (influencing x4), which are anticorrelated.
This is because w1 and w4 capture the unmodeled dynamics of the ODE system. Similarly, an
unmodeled inhibition yields w1,1:F , w4,1:F < 0 and a positive correlation of w1 and w4. A wrongly
modeled stimulation results in w1,1:F < 0 and w4,1:F > 0 which are anticorrelated. A wrongly
modeled inhibition yields w1,1:F , w4,1:F > 0 and a positive correlation.

Figure 7.3: Illustration of hidden exogenous and endogenous influences by an arbitrary example system.
(a) Hidden exogenous influence. No significant temporal correlation between x4 and w1 is expected. (b)
Hidden endogenous influence as a missing stimulatory interaction (arrow) from x4 to x1. Here, hidden
influences w4 and w1 are highly negatively correlated. This is caused by a missing stimulating effect of
x4 on x1. The decrease of x4 is correlated with an increase of w1. (c) Hidden endogenous influence as
a missing inhibitory interaction. Here, hidden influences w4 and w1 have a strong positive correlation
and compensate a missing inhibitory effect of x4 on x1. The increase of x4 is correlated with an decrease
of w1. (d) Hidden endogenous influence as an erroneous stimulation. Here, hidden influences w4 and
w1 have a strong negative correlation. The increase of x4 goes along with a decrease of w1. (e) Hidden
endogenous influence as an erroneous inhibition. The hidden influences w1 and w4 are concordant and
correlate strongly with the state component x4.

As exemplified in Figure 7.3, due to differences in the expected correlations the analysis
should also allow for distinguishing missing inhibitory versus stimulating effects of missing
interactions given monotonous interactions.
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Event Corr. HI Corr. State

stim. - +

inh. + -M
is

si
ng

stim. - -

inh. + +W
ro

ng

Table 7.1: Characterization of endogenous hidden influences. An endogenous hidden influence is expected
to yield different types of (cross-)correlations with other hidden influence (Corr. HI) and state variable
dynamics (Corr. State), depending on whether a molecular interaction is missing or wrongly specified in
the nominal system. Missing and wrong molecular interactions can be further distinguished depending on
whether the true molecular interaction is of stimulatory (stim.) or inhibitory (inh.) nature. Furthermore,
molecular interactions between two species can either be modeled in the nominal system (wrong) or
not (missing). Here the correlation of related hidden influence dynamics (Corr. HI) and the correlation
between the target hidden influence dynamics and the related estimated model variables (Corr. State) is
in focus. In case of endogenous hidden influences these correlations are expected to be either strongly
positive (+) or strongly negative (-) if they reflect true molecular interactions. Figure 7.3 illustrates all
four cases in detail.

Different measures exist to capture the strength of correlation between time courses. Apart
from the Pearson correlation, we here used the cross-correlation coefficient

RXY (τ) =

(F−τ−1)∑
(l=1)

X(l+τ)Yl (7.9)

to quantify temporal associations between two time series X and Y (Stoica and Moses, 2005).
The cross-correlation RXY(τ) depends on the time lag τ which was chosen as argmax

τ

[RXY (τ)].

7.3 Results

7.3.1 Tested Mathematical Models

The EpoR-induced JAK-STAT signaling pathway mediates a rapid signal transduction from the
receptor to the nucleus related to cell proliferation and differentiation (Swameye et al., 2003).
This pathway involves a rapid nucleocytoplasmic cycling of the STAT5 molecules which is not
directly measurable (Swameye et al., 2003).
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The GP cycling model quantitatively characterizes the heterotrimeric GP activation and
deactivation in yeast (Yi et al., 2003). This model serves as a fully observed but complex test
case where all states are measured.

In contrast, the model of the UV-B signaling in plants systematically links several signaling
events induced by UV-B light to a comprehensive informational signaling pathway (Ouyang
et al., 2014). Only combinations of small amounts of the involved molecules are accessible and
thus it serves as a complex and not fully observed test case.

Network motifs are thought to represent building blocks of larger biological systems (Milo,
2002). It is thus informative to test the BDEN with respect to these motifs to better understand
the possible dependency of the performance of our models on different basic network topologies.

The dynamic EpoR model reflects the information processing at the EpoR including turnover,
recycling and mobilization of the EpoR after stimulation with erythropoietin (Epo) at the cell
membrane (Becker et al., 2010). Consequently, it details the first part of the JAK-STAT sig-
naling pathway. Only combinations of Epo concentrations in the medium, on the surface and
in the cells are accessible and thus it represents a complex model with limited experimental
data (Becker et al., 2010).

In contrast, the thermal isomerization of α-Pinene (αP) in the liquid phase has the purpose to
investigate the applicability of the BDEN to small compound reaction networks (Fuguitt and
Hawkins, 1947). The model details the racemization of αP and its simultaneous isomerization
to dipentene (dP) and allo-ocimene (aO).

To further investigate the utility of the BDEN for complex systems we used a gene regulatory
network composed of 6 genes and related proteins obtained from the DREAM6 challenge (Meyer
et al., 2014).

Further details about the described models are given in Appendix D.

7.3.2 Simulation Study

First, the performances of the BDEN as well as the DEN approach to correctly predict the loca-
tion of single hidden influence for the JAK-STAT signaling model, the heterotrimeric GP cycling,
the UV-B signaling in plants and the aforementioned network motifs are compared (Swameye
et al., 2003; Yi et al., 2003; Ouyang et al., 2014; Milo, 2002). This was done on the basis of
simulated data for each system. Details about the simulations are given in Appendix D. For the
BDEN we computed for each wn (where wn denotes the posterior mean taken over the MCMC
samples) the area under the predicted hidden influence curve is computed by trapezoidal numer-
ical integration (Atkinson, 1989). For the DEN the same method based on the provided point
estimates of hidden influence curves is applied. The area under the predicted hidden influence
curve was compared against the simulated existence and non-existence of a hidden signal at that
node. Consequently, it is possible to compute an area under the ROC curve (AUROC) value
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and a corresponding Brier score (BS), i.e., the squared difference between the prediction score
and the Boolean indicator of a true hidden influence (Fawcett, 2006; Murphy, 1973). Table 7.2
and Table D.1 show a favorable overall performance of our new method for different levels of
measurement noise and simulated errors of kinetic parameter estimates.

Model Noise Level Method AUROC BS
JA

K
-S

TA
T

BDEN 0.90 (0.15) 0.11 (0.11)
2.5%

DEN 0.60 (0.40) 0.16 (0.06)

BDEN 0.83 (0.18) 0.21 (0.19)
7.5%

DEN 0.43 (0.29) 0.30 (0.14)

BDEN 0.75 (0.25) 0.26 (0.16)
12.5%

DEN 0.42 (0.31) 0.41 (0.12)

G
pr

ot
ei

n

BDEN 0.99 (0.02) 0.04 (0.03)
2.5%

DEN 1.00 (0.00) 0.09 (0.02)

BDEN 0.88 (0.13) 0.17 (0.09)
7.5%

DEN 0.80 (0.13) 0.16 (0.09)

BDEN 0.80 (0.16) 0.22 (0.10)
12.5%

DEN 0.71 (0.16) 0.20 (0.11)

U
V

-B

BDEN 0.91 (0.11) 0.19 (0.06)
2.5%

DEN 0.80 (0.19) 0.22 (0.08)

BDEN 0.88 (0.14) 0.19 (0.04)
7.5%

DEN 0.80 (0.19) 0.20 (0.06)

BDEN 0.81 (0.15) 0.19 (0.05)
12.5%

DEN 0.71 (0.15) 0.19 (0.05)

M
ot

if
s

BDEN 1.00 (0.00) 0.00 (0.00)
2.5%

DEN 0.90 (0.14) 0.11 (0.09)

BDEN 1.00 (0.00) 0.00 (0.00)
7.5%

DEN 0.81 (0.19) 0.19 (0.04)

BDEN 1.00 (0.00) 0.00 (0.00)
12.5%

DEN 0.80 (0.15) 0.19 (0.05)

Table 7.2: The performance of the BDEN and the DEN regarding the dependence on the measurement
noise (median). The median absolute deviation for the AUROC and Brier Scores (BS) are given in
brackets.

Next we investigated the performance of the BDEN to correctly detect more than one hidden
influence. The comparatively large GP cycle model is used for this purpose. The results can be
found in Table D.2. Notably, in this simulation, hidden influences for up to 50% of the nodes
are added randomly and still a good prediction performance can be observed.
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In a similar manner the performance of the BDEN to detect wrong and missing interactions
is investigated (Table 7.3). Therefore wrong model specifications of the heterotrimeric GP
cycling, the U-VB signaling in plants and the synthetic JAK-STAT signaling are simulated by
randomly removing and adding interactions. As described above, the quantitative predictions of
the BDEN are given in terms of (cross-)correlations. By comparing these correlation values
against the true existence and non-existence of a particular interaction, it is possible to compute
an AUROC value. Notably, missing and wrong interaction detection is only possible with
the BDEN approach. Again a very good performance for all systems under investigation is
archived. On average, 80% of the missing interactions are correctly detected by the BDEN.
Among the correctly identified missing interactions, on average 90% were correctly classified as
"stimulating" and "inhibiting", respectively (cp. Appendix D). Details regarding the dependency
on the measurement noise are given in Table 7.3 and results in dependency of deviance of the
parameter estimates are given in Tables D.4 and D.5.

Model Noise Level AUROC
2.5% 1.00 (0.00)
7.5% 0.83 (0.28)JS

12.5% 0.80 (0.32)

2.5% 0.81 (0.19)
7.5% 0.78 (0.22)G

P

12.5% 0.62 (0.47)

2.5% 1.00 (0.00)
7.5% 0.91 (0.11)M

is
si

ng
In

te
ra

ct
io

n

U
V

-B

12.5% 0.76 (0.16)

Model Noise Level AUROC
2.5% 1.00 (0.00)
7.5% 0.87 (0.32)JS

12.5% 0.80 (0.23)

2.5% 1.00 (0.00)
7.5% 0.81 (0.32)G

P

12.5% 0.73 (0.40)

2.5% 0.81 (0.20)
7.5% 0.70 (0.24)

W
ro

ng
In

te
ra

ct
io

n

U
V

-B

12.5% 0.68 (0.30)

Table 7.3: Performance of the BDEN to detect wrong and missing interactions depending on the measure-
ment noise (median) evaluated for the JAK-STAT (JS), G protein (GP) and UV-B network. The median
absolute deviation for the AUROC is given in brackets.

7.3.3 Illustrative Examples With Real Data

In the following we further illustrate the results obtained with the BDEN for the JAK-STAT
signaling model, the information processing at EpoR and the isomerization of αP using experi-
mental data.

JAK-STAT Signaling

The JAK-STAT signaling pathway model (cp. Section 6.3.1) consists of four molecular species:
Unbound STAT5 molecules become phosphorylated (STAT5p) catalyzed by the erythropoietin
receptor. Two STAT5p molecules can form a dimer (STAT5di) and thus are able to enter the
nucleus (STAT5n). Only the amount of phosphorylated STAT5 molecules, the total amount of
STAT5 and the erythropoietin receptor are directly accessible. Experimental measurements are
available at 16 time points (Swameye et al., 2003).
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Figure 7.4: Reconstructing the model error for the JAK-STAT signaling pathway (Swameye et al., 2003).
(a) Nominal model of the JAK-STAT signaling (blue) including its nucleocytoplasmic cycling (red). (b,c)
Measurements (black) for phosphorylated cytoplasmic STAT5 and total cytoplasmic STAT5 and posterior
BDEN predictions including the 95% credible intervals (red) based on the nominal system (blue). (d)
Estimated hidden inputs (posterior means) and 95% credible intervals. There is a clear input located at
STAT5 and STAT5 in the nucleolus. (e) Estimated time series posterior means for all modeled variables
including 95% credible intervals. (f) Estimated correlations (Corr) and cross-correlations (xCorr) of
the estimated hidden input wSTAT5 located at STAT5 with all estimated state variables. (g) Estimated
correlations and cross-correlations of wSTAT5 with all remaining hidden influences. Here wSTAT5 is clearly
correlated to the hidden input located at STAT5n and in addition it is correlated to the time series of
STAT5n. High cross-correlation is a necessary but not sufficient condition.

Figure 7.4 illustrates the application of our method when ignoring the back-translocation of
STAT5n into the cytoplasm, which was hypothesized by the authors (Swameye et al., 2003).
After parameter fitting the nominal system is not in sufficient agreement with the data. The
introduction of hidden influence terms wn leads to good agreement with the observations. The
BDEN clearly localized two hidden influences wSTAT5 and wSTAT5n at STAT5 and STAT5n. The
subsequent analysis shows a high positive (cross-)correlation of wSTAT5 with STAT5n and a
negative one with wSTAT5n . Exactly the opposite pattern can be observed for wSTAT5n . According
to the above explained procedure a stimulatory influence of wSTAT5n on STAT5 is predicted.
This is in agreement with the claimed nucleocytoplasmic cycling of the phosphorylated STAT5
dimer (Swameye et al., 2003; Raue et al., 2009).

EpoR Model

The complex core model of the EpoR regulation via receptor mobilization, turnover and recyc-
ling involves 6 species and 8 time points. Here the ligand Epo binds to EpoR on the surface and
builds a ligand-receptor complex (Epo-EpoR). In consequence, Epo-EpoR triggers the phos-
phorylation of the cytoplasmic EpoR and thus induces the JAK-STAT signaling pathway (Becker
et al., 2010). Several mechanisms affect the amount of active EpoR. This model covers the
ligand-induced receptor endocytosis and thus the internalization of the ligand-bound receptor
(Epo-EpoRi), receptor recycling and degradation of the internalized ligand-bound receptor.
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Location-dependent degradation results in degraded Epo in the cytoplasm (dEpoi) and in the
medium (dEpoe).

As a test case for our method we wrongly specified a receptor-induced feedback on the
amount of available Epo. In consequence, we expect to detect this wrong interaction. As shown
in Figure 7.5, the BDEN allows to correctly localize and characterize this erroneous interaction
in the nominal model.

Figure 7.5: Reconstructing the hidden influence in a model of the EpoR regulation (Becker et al., 2010).
(a) Reaction graph of the model (E=Epo, ER=EpoR, EER=Epo-EpoR, EERi=Epo-EpoRi, dEi=dEpoi,
dEe=dEpoe). The red arrow is a wrong reaction. (b,c,d) Output measurements (black) compared to
posterior BDEN predictions (red) including 95% credible intervals and the nominal model (blue). (e)
Estimates of the hidden influences (posterior mean) including 95% credible intervals. (f) Estimated
correlations (Corr) and cross-correlations (xCorr) of the hidden influence related to wE with all estimated
state variables. A clear correlation with EpoR is observable. (g) Estimated correlations (Corr) and
cross-correlations (xCorr) of the hidden influence related to wE with all estimated remaining hidden
influences. Again wE is clearly correlated with wER. In consequence, the direct interaction between ER
and E is correctly classified as wrong and has to be removed.

α-Pinene Isomerization

The model of the dynamic isomerization of αP is composed of 4 molecular species. Meas-
urements of αP, dP, aO and the dimer (Di) are available (Fuguitt and Hawkins, 1947). After
heating, αP reacts either to dP or builds a dimer by reacting with aO. Furthermore, Di can react
to aO.

To test the BDEN the dimerization step was wrongly replaced with a simple reaction involving
only aO. In consequence the interaction between αP and dP is completely independent from the
interaction between aO and Di. The erroneous nominal system can be corrected by using our
method as illustrated in Figure 7.6. The BDEN is able to correctly locate and add the falsely
removed reaction.
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Figure 7.6: Reconstructing the hidden influence in a model of the dynamic αP isomerization (Fuguitt
and Hawkins, 1947). (a) Reaction graph. The red arrow indicates a missing reaction. (b,c,d,e) Output
measurements (black) compared to the posterior BDEN predictions (red) including 95% credible intervals
and the nominal model (blue). (f) Estimates of the hidden influences (posterior mean) including 95%
credible intervals. (g) Estimated relative cross-correlations (xCorr) of the hidden influence of wDi to all
estimated remaining hidden influences and state variables. The BDEN is able to correctly detect the
missing reaction.

7.3.4 Further Examples With Simulated Data

In the following we further illustrate the results obtained with the BDEN for the GP cycle in
yeast, the UV-B signaling model and a generic gene regulatory network using simulated data
(2.5% noise level).

G protein Cycle in Yeast

The heterotrimeric GP cycle in yeast involves 6 species which are directly observable and
coupled by several types of kinetics (for details please see the Appendix D) (Yi et al., 2003).
Experimental data at 8 time points were simulated by adding Gaussian distributed noise to the
predicted values of the observable variables. A noise intensity of 2.5% relative to the mean
of the related time series for each observable variable is assumed. The nominal system was
generated by adding one additional "wrong" interaction (between the receptor-ligand complex
(LR) and the GPα-inactive (GPαi)). Figure 7.7 illustrates the ability of the BDEN to localize and
recover the wrong interaction within the nominal system.

UV-B Signaling

As a more complex example we simulated 7 data points of the photomorphogenic UV-B signaling
in plants (cp. Section 6.3.2) (Ouyang et al., 2014). The model of the photomorphogenic UV-B
signaling in the model plant Arabidopsis thaliana consists of 11 species coupled by several
different kinetic rate expressions and five observable variables as a combination of 7 different
species (for details please see Appendix D). As the nominal system the literature given model is
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Figure 7.7: Reconstructing the hidden influence of the heterotrimeric G protein cycle in yeast (Yi et al.,
2003). (a) The reaction graph. (b,c,d,e,f,g) Simulated output measurements (black) compared to the
posterior mean of the output variables (red) including 95% credible intervals and the nominal model
(blue). (h) Estimates of the hidden influences (posterior mean) including 95% credible intervals. (i)
Estimated correlations (Corr) and cross-correlations (xCorr) of the hidden influence related to GPα-
inactive with all estimated state variables. (j) Estimated correlations and cross-correlations of the wGPαi

related to GPα-inactive with all remaining hidden influences.

used and a missing link is included by adding one interaction which influences two different
species. Observed data were simulated by adding Gaussian distributed noise to the predicted
values of the observable variables. Further a noise intensity of 2.5% with respect to the mean
of the related time series is assumed for each observable variable. As shown in Figure 7.8
the BDEN is able to detect the missing molecular interaction and correctly identifies the
corresponding proteins.

DREAM6 Challenge Network

To investigate the applicability of the BDEN to gene regulatory networks we took a model
from the DREAM6 challenge (Meyer et al., 2014). The model consists of 6 genes and 6
proteins coupled by mass action and hill kinetics. In this model all proteins and one mRNA
species are assumed to be directly observable (for details please see Appendix D) (Meyer
et al., 2014). As the nominal system we used the provided model and included one inhibitory
mechanism. Observed data were simulated at 5 time points by adding Gaussian distributed noise
to the predicted values of the observable variables according to the original challenge (Meyer
et al., 2014). The BDEN is able to detect and correct the spurious interaction, as illustrated in
Figure 7.9.
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Figure 7.8: Reconstructing the model error for the photomorphogenic UV-B signaling (Ouyang et al.,
2014) in plants. (a) Reaction graph. (b,c,d,e) Synthetic measurements (black) compared to the predicted
(posterior mean) outputs including 95% credible intervals and the nominal model (blue). (f) Posterior
means of the hidden influences including 95% credible intervals. (g) Posterior means of the model
variables including 95% credible intervals. (h) Estimated cross-correlations of all involved hidden
influences with respect to w9. (i) Estimated cross-correlations of all state variables with respect to w9.

7.4 Conclusion

Mathematical modelers in systems biology are frequently confronted with incomplete know-
ledge and limited understanding of a complex biochemical system (Babtie et al., 2014; Barzel
et al., 2015; Gao et al., 2014). Consequently, there is a non-negligible chance that relevant
molecular species are missed or interactions are misspecified (von Bertalanffy, 1950; Babtie
et al., 2014). Commonly used statistical model selection and related methods require a strong
knowledge of the system and its alternatives which is rarely given in practice (Azeloglu and
Iyengar, 2015). Thus model selection can be very difficult, specifically if nothing is known
about missing variables and their possible mechanisms. The question is, how to detect so far
unknown molecules and their interactions in a more data-driven manner. This could guide
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Figure 7.9: Reconstructing the hidden influence of the gene regulatory network obtained from the
DREAM6 challenge (Meyer et al., 2014). (a) Interaction graph of the gene regulatory network including
six proteins (even numbers) and related mRNAs (odd numbers). (b,c) Synthetic measurements of the
protein concentrations (black) compared to the posterior mean of BDEN predictions (red) including 95%
credible intervals and the nominal model (blue). (d) Synthetic measurements of the mRNA level (black)
compared to the posterior mean of BDEN predictions (red) including 95% credible intervals and the
nominal model (blue). (e,f,g) Synthetic measurements of the protein concentrations (black) compared to
the posterior mean of BDEN predictions (red) including 95% credible intervals and the nominal model
(blue). (h) Estimates of the hidden influences (posterior mean) including 95% credible intervals. (i)
Estimated correlations (Corr) and cross-correlations (xCorr) of the hidden influence related to protein6
(w12) with all mRNAs (x1, x3, x5, x7, x9, x11) because in the gene regulatory network direct protein-protein
interactions are not considered (Meyer et al., 2014). The highest correlation was found between protein6
(x12) and mRNA3 (x5). Hence, the spurious inhibition of protein6 by mRNA3 is correctly detected.

the modeler towards points in the given model, where the model is likely erroneous. In a
second step the modeler can then try to link these erroneous points to known mechanisms. The
BDEN is not designed to learn ODE systems purely from data and should thus not be confused
with network reverse engineering methods (Sachs et al., 2005). Much more, the utility of the
proposed BDEN and DEN are to ease identification of sources of errors in mechanism-based
mathematical models.

The Bayesian dynamic elastic-net method addresses this issue by adopting a Bayesian frame-
work which allows for inferring hidden influence variables, as well as estimating missing and
wrong molecular interactions. It has been successfully validated in several real models as well
as common network motifs. This was done with simulated as well as experimental data. Due to
the fully Bayesian formulation all model parameters are sampled. Furthermore, the Bayesian
approach allows to assign confidence levels to predictions. Besides these general features of
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a fully probabilistic framework, the BDEN method seems to be more stable and more robust
because within the Bayesian framework over a large number of parameters is averaged and the
BDEN does not rely on stiff integration methods.

A unique feature of our new approach is the distinction between exogenous and endogenous
hidden influences in the biological system, allowing for the detection of missing and misspe-
cified equations in the ODE system. Altogether, the BDEN is a further step towards a better
automated and more objective revision of ODE-based models in systems biology. In view of
the rapid progress of technologies to monitor biological dynamics, our approach could have
implications for many fields including metabolic engineering, synthetic biology and pharma-
cokinetics/pharmacodynamics. As the DEN and the BDEN are designed for generic ODE
models, they can also be applied to challenging modeling tasks in engineering, robotics and in
the earth sciences (Engelhardt et al., 2016; Abarbanel, 2013).
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CHAPTER 8

Refined Model of the M2
Receptor-dependent Signaling

8.1 Introduction

As a further improvement, the structural model derived in Chapter 5 has been extended to
include dynamic rate laws. The thus obtained time-resolved system allows to gain further
insights into the behavior of the M2 receptor-dependent signaling in CHO cells. The modified
model now reflects the dynamic properties of the underlying signaling cascade. The involved
kinetic parameters were estimated based on quantitative measurements of the related protein
activities reflected by the amount of phosphorylated or associated protein structures. Therefore,
the amount of phosphorylated proteins and thus active proteins can be obtained by performing
repeated quantitative WB at defined time points. As discussed in Section 3.3, quantitative WBs
are a common technique to measure protein concentrations. For this purpose the concentration
of the phosphorylated form and the overall protein concentration are measured for each protein.
As a result, the obtained phosphorylated protein concentrations are normalized with respect to
the initial time point and the related amount of overall protein concentrations. This serves as a
measure for the relative protein activation and reduces the measurement error typically arising
from WBs.

8.2 Experimental Procedures

The protocols and techniques used in this study allow for an exact protein quantification, even
if the protein concentration is low. Further experimental details can be found in Appendix E.
The stable expression of the M2 receptor was cross-checked through exposure to hygromycin.
Successful and stable transfected CHO-Flip-In-hM2 cells include an additional gene which
makes them resistant to hygromycin and thus populations with low expression levels can be
sorted out. Furthermore, all antibodies were checked regarding their specificity and affinity to
CHO-Flip-In-hM2 cells to ensure the correct targeting of all proteins. In contrast to all other
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Protein Active Form Technique Time (min)
AKT1 yes WB 0, 2, 5, 10, 15, 20, 30
PKA yes WB 0, 2, 5, 10, 15, 20, 30
PDE yes WB 0, 2, 5, 10, 15, 20, 30

GRK2 yes WB 0, 2, 5, 10, 15, 20, 30
cAMP yes WB 0, 2, 5, 10, 15, 20, 30
GEF no WB 0, 2, 5, 10, 15, 20, 30
M2 no WB 0, 2, 5, 10, 15, 20, 30

RGS14 no WB 0, 2, 5, 10, 15, 20, 30
GRK6 no WB 0, 2, 5, 10, 15, 20, 30

Table 8.1: List of measured proteins and secondary messenger molecules.

measured proteins, the activity of PKA is not characterized by phosphorylation but by binding to
cAMP. Because cAMP is a secondary messenger molecule, it is not possible to directly measure
its binding to PKA based on WBs. The phosphorylation of several PKA specific motifs served
as a marker of the overall PKA activation. This was addressed by a phospho-PKA substrate
which detects peptides and proteins containing a phospho-Ser/Thr residue with arginine at the -3
and -2 positions. Apart from the involved GPs, the overall amount was measured for all modeled
proteins to exclude a change in the expression levels of those proteins. This was considered
evidence for the absence of gene-regulatory events within the observed time frame of 30 minutes.

The cAMP concentration was measured using a complete enzyme-linked immunosorbent
assay (ELISA) kit which allows for the detection of extremely low cAMP levels. As summarized
in Table 8.1, the concentrations of cAMP, 4 phosphoproteins, the related non-phosphoproteins
and 4 additional non-phosphoproteins were measured at seven well-defined time points under
stimulation with 1 µM iperoxo.

8.3 Methods

The reduced but comprehensive dynamic model was derived on the basis of the structural model
illustrated in Figure 5.1 . For this purpose, the number of reactions and the number of species of
the refined model were reduced by modeling the signaling cascades via the Michaelis-Menten
kinetics (cp. Section 2.4). For CHO-Flip-In-hM2 cells, only a fraction of proteins is targetable
through commercially available antibodies, and thus intermediate complexes were removed to
avoid overcomplication. Thus, the resulting model is both reliable and realistic. This strategy is
in contrast to Chapter 5, where a detailed model based on elementary reactions and detailed
binding events was necessary to investigate the general topological properties of the system.
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8.3 Methods

Figure 8.1 illustrates the included molecules and the involved kinetic laws. Due to a lack of
experimental techniques, the detailed kinetics of the GP activation are not available. Therefore,

Figure 8.1: Schematic illustration of the redefined M2 receptor-dependent signaling pathway including
the rate-laws that were used (GP = GP Activation, MA = Mass Action, MM = Michaelis-Menten). The
measured proteins are highlighted in green, modeled but not accessible proteins are colored in blue
and not explicitly modeled proteins are colored in gray. As discussed, the kinetics of the GPs were
approximated based on given data and were thus partially accessible. A detailed list of reactions can be
found in Appendix E.
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the irreversible GP activation had to be approximated by

GP (t) = GP
(
teq

) (
1 − exp (−kobs × t)

)
, (8.1)

with the relative amount of active GP at time t given by GP (t), GP
(
teq

)
being the relative

binding at equilibrium and kobs the association rate constant (Jakubík et al., 1998). Even though
Equation (8.1) was originally derived for GPs in liposomes, former studies have demonstrated
that the equation can also be used to describe CHO-Flip-In-hM2 cells (Klemt, 2005). The
rate constants for the iperoxo-induced GP activation in CHO-Flip-In-hM2 cells are based on
[35S]GTPγS assays and were taken from literature (Kebig, 2010; Strange, 2010). In agreement
with all other measures, the GP activation is also normalized with respect to the initial time point.

Since Equation (8.1) approximates the total amount of relative GP activation, the fraction
of αi and αs subunits was introduced as an additional parameter. Similarly, the amount of
GP-bound and thus active AC is not directly accessible. Hence the complex of AC subunits
is reduced to one comprehensive species. This does not affect the overall AC activation and
inhibition behavior because the secondary messenger cAMP, which is a direct product, was
measured. Notably, the GRK-induced receptor phosphorylation which leads to a deactivation of
the receptor is covered by Equation (8.1) and thus not modeled explicitly.

Here, similar to the model presented in Chapter 5, actin and tubulin are used as markers for
the DMR response. Especially the AKT1 phosphorylated at serine 473 serves as an indicator for
changes in the actin cytoskeleton (Schmidt and Hall, 1998). In literature, a PKA-induced AKT
dephosphorylation has been observed, which directly leads to changes in the cytoskeleton (Howe,
2004; Schmidt and Hall, 1998; Lou, 2002). As discussed in more extent in the following section,
the measured data is in agreement with these results, as shown in Figure 8.2. Due to a lack of
suitable antibodies, the activation of tubulin is not measurable in CHO cells. Therefore, GRK
is used instead in the presented model. The full ODE system of the refined model is given in
Appendix E.

8.4 Results

The data was normalized against the control value x (0) and the overall protein concentrations
to obtain the dimensionless fold changes as a reliable measure for the protein activity:

x̃ (t) =
xoverall (0)

xphospho (0)
xphospho (t)
xoverall (t)

∀t = {0, 2, 5, 10, 15, 20, 30} . (8.2)

After parameter estimation (cp. Section 4.4), a good fit of the predictions to the data was
archived (Kaschek et al., 2016). As shown in Figure 8.2, the predictions are within the measure-
ment tolerances. The peak at about 9 minutes is characteristic for cAMP dynamics and has been
observed elsewhere (Williamson et al., 2009). The observed deactivation of phosphorylated
AKT at serin 473 is a well-known characteristic of the Rap1b-mediated cAMP inhibition of
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AKT and has also been previously reported in literature (Lou, 2002; Howe, 2004).

Figure 8.2: Model output. (a) Predictions (lines) and measured values including measurement errors
(dots). All predictions are within the measurement tolerances. RGS was not measurable, and thus only
the predicted dynamics are shown. (b) Achieved sets of parameter estimates for different runs (index)
sorted by increasing objective values (y-axis). Low values indicate small errors and thus a good match
with the data. The fits with the lowest values clearly separate from the second plateau. The complete plot
including all modeled proteins can be found in Appendix E.

In addition, the clear increase of RGS is in agreement with the initial hypothesis stated in
Chapter 5. To further investigate the role of RGS as an important regulator of the M2 receptor-
dependent signaling dynamics, in silico knock-out experiments were performed, as shown
in Figure 8.3. For the experiments, the concentration of RGS and all RGS-related reactions
were set to be constant zero. This mimics the absence of RGS from the system and thus
allows to investigate the influence of RGS on the modeled signaling pathway. Accordingly, for
verification, the concentration of cAMP and all cAMP-related reactions were set to zero as well.
A clear decrease of the signaling strength was observed after RGS knock-out. In agreement with
recent literature, a clear change in AKT was observed (Zhang and Mende, 2011; Dale and Rang,
2011; Howe, 2004; Pierce et al., 2002). This underlines the importance of the RGS-related
feedback for the DMR response. The tubulin-related change of the DMR response also depends
on the RGS regulation. The completeness and consistency of the refined model was tested both
with the DEN and the BDEN. As shown in Figures 8.4 and 8.5, no clear model error was found.
This underlines that the model predictions and the experimental data are in good agreement.
Taken together, this provides evidence for the reliability of the obtained dynamic model.

8.5 Conclusion

A careful model revision and the incorporation of kinetics, e.g., Michaelis-Menten kinetics and
GP activation, allowed for a time-resolved model of the M2 receptor-dependent signaling in
CHO cells. As shown in Figure 8.2, the model is in full agreement with the measurement data
and common literature. It is also in agreement with the former derived static model described
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Figure 8.3: In silico knock-out studies. Model predictions without knock-out (black) compared with
predictions with in silico RGS knock-out (red) and in silico cAMP knock-out (blue). The cAMP knock-
out serves as control for the model reliability. As expected, after knock-out of cAMP, the downstream
signaling is discontinued. In addition, the dephosphorylation of AKT vanishes as well. After RGS
knock-out, again a clear shift in the cAMP-related downstream caused by an over-activity of GP αi can
be observed.

Figure 8.4: Model verification using the DEN. (a,b,c,d,e) Measurements (black) compared to the posterior
mean of the output variables (red) including 95% credible intervals and the nominal model (blue). (f)
Estimates of the hidden influences. (g) Absolute area under the hidden influence curves. Only adaption
to the measurement noise can be observed which provides further evidence for the completeness and
consistency of the obtained dynamic model.
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Figure 8.5: Model verification using the BDEN. (a,b,c,d,e) Measurements (black) compared to the
posterior mean of the output variables (red) including 95% credible intervals and the nominal model
(blue). (f) Estimates of the hidden influences (posterior mean) including 95% credible intervals. (g)
Absolute area under the hidden influence curves (median). Only adaption to the measurement noise
can be observed which provides further evidence for the completeness and consistency of the obtained
dynamic model.

in Chapter 5. The dynamic model underlines the role of RGS as an important regulator of the
M2 receptor-induced DMR response, as illustrated in Figure 8.3.

Although the model proposed in this work is in full agreement with the obtained data, it is still
restricted to the approximated GP activation and by the lack of available tubulin measurements.
However, the approximated GP activation is in agreement with accepted conventions and thus
is assumed to reflect the general behavior of the GP activation (Jakubík et al., 1998). It could
be shown that this approximation holds true in CHO-Flip-In-hM2, but further time-resolved
[35S]GTPγS assays are necessary to verify this assumption (Strange, 2010). In addition, the
PKA and AC activities are not directly measurable, which is covered by Equation (8.2). In
consequence, the derived model parameters are also dimensionless and thus not directly inter-
pretable. However, for the purpose of this work, i.e., uncovering the important players in the
considered signaling cascade, this is no limitation.

To verify the reliability of the obtained model the developed DEN and BDEN were used. As
shown in Figures 8.4 and 8.5 no further mechanisms were found. This provides evidence for
the reliability of the refined model. However, further perturbation experiments are desirable
to verify the role of RGS. Additional experimental evidence for the uncovered RGS-induced
signal amplification could be obtained through in vitro knockdown of the related mRNAs,
e.g. via RNA interference (Zhang and Mende, 2011). In recent literature, a RGS-independent
modulation of the GP αi subunits by PKA is described for yeast (Stefan et al., 2011). However,
a direct modulation via PKA has so far not been described for other tissues, e.g., CHO cells,
and the proposed findings give no evidence for a direct modulation via PKA. Again in vitro
knockdown of the RGS-related mRNAs could give further evidence for the absence of such an
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RGS-independent signal amplification.

Altogether, the derived model provides evidence for RGS as an important modulator of the
M2 receptor-induced DMR response. As illustrated in Figure 8.6, the RGS-dependent signal
amplification can be considered as a positive feedback loop. Here, the AC-induced activation
of PKA leads to an RGS-mediated inhibition of the αi subunit. Consequently, the inhibitory
effect of αi on AC decreases. The therapeutic potential of RGS in the context of heart diseases
based on RGS-induced signal amplification is well known for other systems and described in
literature (Kimple et al., 2011; Engelhardt et al., 2017). This underlines the importance of RGS
for the observed M2 receptor-induced signal amplification. Thus the proposed model serves as
a starting point for further in vitro investigations of the M2 receptor-induced signaling in CHO
cells.

Figure 8.6: Schematic illustration of the RGS-induced positive feedback in the M2 receptor-dependent
signaling pathway. A clear RGS-mediated feedback loop was uncovered in this work. Related proteins
are highlighted in green if measurable and blue if not. All unrelated proteins and interactions are
gray-colored.
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CHAPTER 9

Conclusions

This work demonstrates the importance of theoretical mathematical methods as a tool for solving
concrete biological research tasks. Although there is already a huge range of mathematical and
physical approaches in the field of life sciences, the present thesis underlines the significance
of individually tailored methods. It is motivated by the strong signal amplification of the
M2 receptor-induced whole-cell response in CHO cells (Schrage et al., 2013). To address this
phenomena in static models, the novel CFS is proposed in this work (Engelhardt et al., 2017).
As part of the model development process, in addition, a novel and promising approach to learn
from the errors of systems biological models was developed. This approach is not restricted to
biological systems but can be applied to any ODE-based erroneous model (Engelhardt et al.,
2016).

The proposed methods are inspired by modern systems biology. Thus the intention was to
develop a mechanistic model of the underlying biological properties. However, this is just one
possible approach to deal with such tasks in the field of mathematical biology and bioinformat-
ics (Machado et al., 2011; Kitano, 2002). Hence, besides the algorithms developed in this work,
there are also other possible routes (Machado et al., 2011; Kitano, 2002). For instance, a fully
probabilistic strategy based on machine learning could help to uncover correlations between the
modeled molecules and structures (Machado et al., 2011; Kitano, 2002; Bishop, 2007). In a
further step, a predictive model of the M2 receptor-induced whole-cell response could be estab-
lished. This approach is preferable if the underlying detailed mechanisms are not completely
understood. In contrast, in the present case, the aim was to derive a detailed explanation of the
underlying mechanisms in the light of comparably rich and detailed mechanistic insights from
literature. This is of essential interest because the whole signaling pathway has yet to be fully
investigated, even though the M2 receptor-dependent signaling in CHO cells is of high relevance
for pharmacological research (Engelhardt et al., 2016; Schröder et al., 2011; Schrage et al.,
2013). More precisely, the system investigated in this work could serve as a pharmacological
model for the evaluation of drug affinities and effectiveness (Engelhardt et al., 2016; Schröder
et al., 2011; Schrage et al., 2013). Other methods designed for the analysis of signaling cascades
more strongly focus on signal duration and signal strength (Klipp and Liebermeister, 2006;
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Heinrich et al., 2002). Therefore, this work provides the foundation for future investigations of
the system (Engelhardt et al., 2017).

Starting with a static model of the M2 receptor-dependent signaling cascade, this work serves
as an example for integrating methods from different areas. In literature, metabolic models
and signaling cascades are clearly separated (Palsson, 2006; Klamt et al., 2006). Often this
distinction holds true because the points of view are quite different. Whereas network analysis
is mainly interested in the turnover of well-defined molecules and the subsequent optimization
of these processes (e.g., in biotechnology), the analysis of signaling cascades deals with the
temporal and quantitative aspects of protein pathways. However, apart from the velocity of
metabolic processes (extremely fast) vs. signaling (slower), the underling biological mechan-
isms are equivalent and the biological properties are identical (Klipp and Liebermeister, 2006).
Thus it seems obvious to combine both areas to develop more comprehensive approaches. The
proposed CFS adopts and extends methods known from metabolic network analysis to address
the amplification mechanism in signaling cascades (Engelhardt et al., 2017). CFS provides first
insights into the behavior of static systems and allows for an initial verification of the model
structure (Engelhardt et al., 2017). This may help to speed up the research cycle (cp. Sec-
tion 2.2) and allows for ranking the modeled molecules and functional subnetworks with respect
to their importance for signaling (Engelhardt et al., 2017). In addition, this method can be op-
tionally enhanced through the incorporation of (partially) available data (Engelhardt et al., 2017).

RGS was localized as the main driver of the investigated signaling cascade in CHO cells (En-
gelhardt et al., 2017). If signaling is considered as a directed flow of information from the
stimulus downstream to the whole-cell response, RGS together with GP constitute a feedback
loop. Such positive feedback loops are known to function as signal amplifiers (Alon, 2007). As
discussed in Chapter 8, further mRNA knockdown experiments would be needed to provide full
experimental evidence for the hypotheses presented in this work. Despite the gained insights,
CFS is still restricted to topology-based phenomena. As demonstrated, this is a good starting
point, especially for bottom-up strategies, but in general biological phenomena are also time-
dependent. Thus a realistic dynamic model of the observed biological system was established
and time-resolved protein measurements via WBs were conducted. Based on the obtained data,
the fully dynamic model was fitted and validated.

The data was normalized to reduce measurement uncertainties and thus served as a measure of
the relative protein activities. For the given task, this is a sufficient way of modeling. However,
one drawback is the non-interpretability of the parameter estimates. This issue can be addressed
by more detailed measurements of the involved parameters. For instance, mass spectrometry
or specific assays could be used for more precise measurements. On the other hand, such
experiments are very costly and time-intensive in cases where the experimental pipeline has to
be established with respect to the underlying system, e.g., the CHO cell.

Fitting models to data is still a challenging issue because parameter estimation remains
an ill-conditioned inverse problem. In consequence, even after parameter estimation hidden
confounders may cause significant model errors (Engelhardt et al., 2016). The novel DEN and
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BDEN approaches address this issue through the estimation of hidden variables as well as miss-
ing and wrong molecular interactions in ODE-based systems biology models. At first glance, the
underlying hidden influence detection problem described in Chapters 6 and 7 could be solved
a priori by adding minimal error terms to each node, e.g., protein, of the model. This would
lead to a perfect match with the data. However, this is neither a meaningful nor realistic solu-
tion (Azeloglu and Iyengar, 2015; Engelhardt et al., 2016). In the past, regularization techniques
such as LASSO have been invented to shrink the solution space in order to obtain more robust
model fits (Tibshirani, 1996). In addition, suitable regularization techniques can be used to force
biological meaningful results. In contrast, unrestricted systems tend to have diverse solutions due
to their inverse nature. A priori, it is not clear which solution to choose. In the spirit of LASSO,
the developed DEN is based on an elastic-net regularization – a method similar to LASSO – in
order to obtain biological meaningful estimates (Engelhardt et al., 2016). This is done by forcing
the estimated hidden input signals towards a sparse and smooth solution. In consequence, the
most important errors are located and thus unphysiological solutions are avoided (Azeloglu and
Iyengar, 2015; Engelhardt et al., 2016). As a consequent extension of the DEN, the uncertainties
of the estimated hidden input signals were taken into account. This resulted in the development
of the BDEN. The BDEN is a fully Bayesian method as an alternative to the deterministic
DEN. In contrast to the DEN, the BDEN has a higher robustness regarding the dependency on
the measurement noise and rate parameter estimates and allows for the detection of missing
and wrong reactions. On the other hand, due to the fact that the heart of the BDEN is based
on MH sampling, the computational effort is much higher compared to the DEN (cp. Figure 9.1).

Figure 9.1: Runtime of the BDEN (left) in comparison with the DEN (right) for the JAK-STAT, UV-B
and G protein network in seconds on a logarithmic scale (log10). Runtimes of the are on average 1 minute
(DEN) and 254 minutes (BDEN) evaluated on a dual core laptop (Intel® Core™ I5-4200M CPU with
4x2.50 GHz and 16 GB RAM).

The DEN and the BDEN are in contrast to existing model selection approaches which need
strong knowledge about the system and its alternatives (Azeloglu and Iyengar, 2015). However,
model misspecifications are frequent at this point and will yield a lack of fit to the experimental
data. Similar to existing approaches which are dealing with optimal experimental design, the
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proposed methods guide towards points in the given model, where the model is likely erroneous.
These erroneous points can then be linked to known mechanisms and thus lead to follow-up
experiments. Taking into account information about the accessibility of the involved molecules
and their combinations, the proposed methods could be extended towards a full automatic
ranking algorithm for optimal follow-up experiments.

As demonstrated in Chapters 6 and 7, both the DEN and the BDEN have limitations. These are
due to structurally and practical unidentifiable structures in dynamical systems, as discussed in
Sections 4.2 and 4.4. Linearization techniques or model reduction are a common starting point to
address these issues with the final goal to determine the targetable hidden influences in the given
biological system (Gao et al., 2014). Due to the fact that linear controllability and observability
is a prerequisite of nonlinear control and observability, linearization of dynamical systems is
commonly used for this purpose (Gao et al., 2014). Furthermore, the controllability of nonlinear
systems is often structurally similar to linearized systems (Gao et al., 2014). As a deterministic
approach, the DEN may also suffer from multiple solutions caused by non-identifiable hidden
input signals. The BDEN addresses this issue by estimating distributions rather than point estim-
ates. In case of the DEN, this can be addressed by the adaption of multiple shooting approaches.
In terms of optimization, the proposed objective function may lead to several minima which are
almost equivalent and thus the DEN may get stuck in one of those extrema. In consequence, it
is not clear whether the solution represents a unique global minimum. In addition, the DEN
is sensitive to the regularization parameters for smoothness and sparsity. In contrast, due to
its full Bayesian nature, the BDEN also optimizes the involved regularization parameters. In
general, a statement about the convexity of the problem cannot be given. However, convexity
would imply the existence of a global minimum. To circumvent these issues, similar to multiple
shooting approaches, the DEN could be initialized with different starting values. Here, several
minima would lead to different solutions. In the final analysis, this could serve as an indicator
for multiple solutions and in consequence to rank possible hidden influences with respect to op-
timality. Here the fit to the data, i.e., the LSE, can be used as an adequate measure for optimality.

Ultimately, an holistic approach of parameter estimation with respect to model correction in
the flavor of respectful modeling is desirable. In contrast to existing state-of-the-art methods,
overcomplicated models and thus excessive parameter fitting could be circumvented in that way.
Although the BDEN, as well as the DEN, are robust against a certain level of errors of kinetic
parameter estimates, parameters and the estimated hidden input signals are strongly dependent.
Together with the task of avoiding structurally unidentifiable parameters, this is a non-trivial
and mathematically complex issue and thus further research is required. In that context it is
important to emphasize again that BDEN is not designed to learn ODE systems purely from
data and should thus not be confused with network reverse engineering methods. However,
one possible approach could be a combination of the BDEN and parameter re-estimation. But
a priori it is not clear how to choose a regularization term in order to prefer either additional
hidden influences or parameter re-estimation.

In Chapters 6 and 7, further applications of the DEN and the BDEN to other fields of research
are already discussed. In addition, the proposed DEN, as well as the BDEN, are highly related
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to data assimilation approaches (Leeuwen et al., 2015). Data assimilation is commonly used
in meteorology to archive reliable weather forecasts (Abarbanel, 2013). It aims for making
forecasts based on given observations and mostly ODE-based model structures (Leeuwen et al.,
2015). To obtain the current state of the system, a given model with several uncertainties has to
be integrated (Leeuwen et al., 2015). Similar to the methods presented in this work, this yields an
inverse problem because typically only a fraction of the current states are observable (Leeuwen
et al., 2015). In consequence, the system is divided into known and unknown parts (Leeuwen
et al., 2015). This could be a further promising application of the presented methods. Basically,
one would try to determine the dynamics of the unknown part of these models to finally model
them explicitly. The explicit modeling of the unknown system dynamics allows for a more
effective integration of the system as a first step towards a holistic investigation of the involved
black box models.

Altogether, this work represents a further step towards the knowledge- and data-driven
modeling of realistic biological systems. CFS serves as a method for dealing with static models
in cases were data is only partially available. In contrast, both the DEN and the BDEN are
promising mathematical approaches with strong theoretical background to support the data-
driven reliable modeling of dynamical systems. The intention of this work was to present
supporting methods for practical research rather than pure in silico modeling tools. Especially
the aspect of learning from the errors of models of biological systems is an alternative to existing
approaches for model development and correction across a wide range of scientific areas.
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APPENDIX A

List of Acronyms

AC adenylyl cyclase

ACHR artificial centering hit-and-run

AMP adenosine monophosphate

aO allo-ocimene

αP α-Pinene

ATP adenosine triphosphate

AUC area under the curve

AUROC area under the ROC curve

BDEN Bayesian dynamic elastic-net

cAMP cyclic adenosine monophosphate

CFS constrained flux sampling

CHO Chinese hamster ovary

CRN chemical reaction network

CTX cholera toxin

DEN dynamic elastic-net

DMR dynamic mass redistribution

DNA deoxyribonucleic acid

dP dipentene
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Appendix A List of Acronyms

EFM elementary flux mode

ELISA enzyme-linked immunosorbent assay

EpoR erythropoietin receptor

FBA flux balance analysis

FDR false discovery rate

GAPDH glycerinaldehyd-3-phosphat-dehydrogenase

GDP guanosine-5’-diphosphate

GEF guanine nucleotide exchange factor

GP G protein

GPCR G protein–coupled receptor

GRK G protein-coupled receptor kinases

GTP guanosine-5’-triphosphate

HRS hit-and-run sampling

IVP initial value problem

LASSO least absolute shrinkage and selection operator

LSE least-square-error

mACHR muscarinic acetylcholine receptor

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

MLE maximum likelihood estimator

mRNA messenger ribonucleic acid

M2 receptor muscarinic acetylcholine receptor subtype 2

OCP optimal control problem

OCT optimal control theory

ODE ordinary differential equation

PDE 3’,5’-cyclonukleotid-phosphodiesterase
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PKA protein kinase A

PKC protein kinase C

PTX pertussis toxin

pUCR1 phosphorylated upstream conserved region 1

QSSA quasi-steady-state approximation

RGS regulators of G protein signaling

RWG resonant waveguide grating

STAT5 signal transducer and activator of transcription 5

UV-B ultraviolet B

WB western blotting

YM YM-254890
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APPENDIX B

M2 Receptor-dependent Signaling in
CHO Cells

Material and Methods

Cell Culture

Flp-In™-CHO cells stably expressing the hM2 receptor (CHO-hM2 cells) were cultured as
described previously in Ham’s nutrient mixture F-12 (Ham’s F-12) supplemented with 10%
(v/v) fetal calf serum (FCS), 100 U mL-1 penicillin, 100 mg mL-1 streptomycin and 2 mM
l-glutamine (Sigma Aldrich, UK) (Schrage et al., 2013) . The cells were grown in a humidified
incubator at 37 °C and 5% CO2, and passaged by trypsinization at nearly confluence.

cAMP Assay

The quantification of the agonist-induced rise of the intracellular cAMP was performed using
CHO-hM2 cells pretreated with 50 ng/ml-1 PTX for 16-22 h as described previously using the
HTRF-cAMP dynamic kit (Cisbio, Bagnols-sur-Cèze, France) according to the manufacturer’s
introductions (Schröder et al., 2009). The cells were incubated for 30 minutes with iperoxo. The
fluorescence was quantified on a Mithras LB 940 reader (Berthold Technologies, Bad Wildbad,
Germany).

Western Blots

Cells were seeded into 6 well plates and stimulated with 0.1 µM iperoxo for 2, 5, 10, 15, 20,
30 minutes. After specified treatments, cellular lysates were prepared in lysis buffer [25 mM
Hepes, 2.5 mM EDTA, 50 mM NaCl, 50 mM NaF, 30 mM sodium pyrophosphate, 10% (v/v)
glycerol, 1% (v/v) Triton X-100, pH 7.5, containing Complete™ EDTA-free protease inhibitor
cocktail tablets (Roche)].
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Proteins were separated by SDS/PAGE (4–12% Bis-Tris gels) and transferred onto nitrocellu-
lose membranes for western blotting using the NUPAGE system (Invitrogen). The membranes
were blocked in 5% phosphoblocker. The blots were probed with phospho-UCR1 and pan-PDE4
(Millipore) diluted to 1/5000 in 1% phosphoblocker diluted in TBS-T (150 mM NaCl, 20 mM
Tris–HCl, pH 7.6, 0.1% Tween-20). The bands were visualized using the appropriate secondary
antibody and visualized using an Odyssey scanner (Licor Biosciences) and the band intensity
was quantified using Image Studio (Licor Biosciences, v. 5.2).

Detailed Reaction Graph

A detailed reaction graph is illustrated in Figure B.1 and detailed information on each step
can be obtained from Table B.1. For the full elementary network please refer to the Full
List of Elementary Reactions. All proteins linked to tubulin and actin are considered in the
response function (namely the GP subunit αo production, PKA production, GRK2 production,
cAMP-GEF1 production and AMP production). The elementary reactions mapped to Figure 5.4
(including the fold changes) are as follows:

Ligand-dependent GP activation (fold change: N A): L : R : Gi → L : R + i + β

GRK2-mediated regulation (fold change: 1.27): L : R : GRK6→ L : R + GRK6
RGS14-mediated regulation (fold change: 1.34): i : RGS 14→ i + RGS 14 CI:
cAMP-conversion (fold change: 1, 47): AC5s : AT P→ AC5s + cAMP
PKA activation (fold change: 1.54): PKA + 2cAMP→ PKA
cAMP degradation (fold change: 1.68): PDE4 : cAMP→ PDE4 + AMP
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Reaction Graph

System

CHO cell

Tubulin, Actin
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G-Protein alpha-s
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Adenylate cyclase subtypes II/IV/VII

cAMP-GEF1

GRK 2

GRK 6

G-Protein alpha-i

RGS 14

AMP

Adenylate cyclase subtypes V/VI

Iperoxo

G-Protein alpha-o

1 2
3

4

5
6

7
8

9
9

10

11
11

12
13

1415
15

16

17

1824

23

19

20

21

22

25 26

Figure B.1: Illustrated overall reaction network. Stimulation events are represented as green lines and
inhibitory events represented as red lines accordingly. Details regarding specific reactions are given in
Table B.1. A complete list of all elementary reactions is given in the Full List of Elementary Reactions.
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Table B.1: Basic reactions in the modeled biological system: Species shown in the column “From” are
biochemically converted into those shown in the column “To”. The underlying biological mechanism
and its effect on the species in column “To” are shown in the fourth and fifth columns, respectively. We
distinguish between binding, phosporylation, transformation, catalysis and unspecific chemical reactions.
The effect of unspecific chemical reactions is denoted as “technical” because they are neither activating
nor inhibiting. The derived elementary reactions can be found in the Full List of Elementary Reactions.

Nr. From To Mechanism Effect Lead Author, Year, Journal[Impact]

1 ACM2 G-Protein beta/gamma binding activation Wettschurek N, 2005, Physiol Rev.[30.2]
2 ACM2 G-Protein alpha-s transformation activation Cao J, 2003, Bioinformatics.[5.3]
3 ACM2 G-Protein alpha-i family transformation activation Wettschurek N, 2005, Physiol Rev.[30.2]
4 ACM2 G-Protein alpha-o transformation activation Azpiazu I, 2004, J Biol Chem.[4.56]
5 PKA-cat (cAMP-dependent) GRK6 phosphorylation inhibition Rapacciulolo A, 2003, J Biol Chem.[4.56]
6 PKA-cat (cAMP-dependent) RGS14 phosphorylation activation Riddle EL, 2005, Circ Res.[11.86]
7 RGS14 G-Protein alpha-i family transformation inhibition Kimple RJ, 2002, Nature.[38.58]
8 RGS14 G-Protein alpha-o transformation inhibition Rual JF, 2005, Nature.[38.58]
9 G-Protein alpha-s Adenylate cyclase binding activation Pourquie O, 2005, Nature[38.58]
10 G-Protein alpha-i Adenylate cyclase subtype 5 binding inhibition Taussig R, 1993, Science.[31.03]
10 G-Protein alpha-i Adenylate cyclase subtype 6 binding inhibition Taussig R, 1993, Science.[31,03]
11 G-Protein beta/gamma Adenylate cyclase subtype 2 binding activation Sunahara RK, 2002, Mol Interv[6.48]
11 G-Protein beta/gamma Adenylate cyclase subtype 4 binding activation Sunahara RK, 2002, Mol Interv[6.48]
11 G-Protein beta/gamma Adenylate cyclase subtype 5 binding inhibition Sunahara RK, 2002, Mol Interv[6.48]
11 G-Protein beta/gamma Adenylate cyclase subtype 6 binding inhibition Sunahara RK, 2002, Mol Interv[6.48]
11 G-Protein beta/gamma Adenylate cyclase subtype 7 binding activation Sunahara RK, 2002, Mol Interv[6.48]
12 GRK2 cAMP-GEFI binding inhibition Eijkelkamp N, 2010, J Neurosci.[7.3]
13 PKA-cat (cAMP-dependent) GRK2 phosphorylation activation Cong M, 2001, J Biol Chem.[4.65]
14 cAMP-GEFI RAP-2A transformation activation Ohba Y, 2000, Mol Cell Biol.[5.37]
14 RAP-2A RGS14 binding activation Bandyopadhyay S, 2010, Nat Methods.[23.57]
15 Adenylate cyclase ATP = cyclic AMP + Pyrophosphate catalysis activation Wong ST, 2000, Neuron.[15.77]
16 PKA-cat (cAMP-dependent) PDE4B phosphorylation activation Ghigo A, 2012, Circulation.[15.20]
16 PDE4B cyclic AMP + H(,2)O = AMP catalysis activation Huston E, 1997, Biochem J.[5.37]
17 cyclic AMP intracellular cAMP-GEFI binding activation Do Rooij Z, 1998, Nature.[38.58]
18 ATP in cytoplasm ATP = cyclic AMP + Pyrophosphate reaction technical
18 ATP = cyclic AMP + Pyrophosphate cyclic AMP intracellular reaction technical
18 cyclic AMP intracellular cyclic AMP + H(,2)O = AMP reaction technical
18 cyclic AMP + H(,2)O = AMP AMP in cytoplasm reaction technical
19 G-Protein alpha-o Tubulin (in microtubules) transformation inhibition Roychowdhury S, 1999, J Biol Chem.[4.65]
20 AMP Tubulin (in microtubules) transformation inhibition Lee JH, 2007, Nat. [41.46]
21 GRK2 Tubulin (in microtubules) phosphorylation activation Storti B, 2012, J Biol Chem.[4.65]
22 PKA-cat (cAMP-dependent) Actin cytoskeletal phosphorylation inhibition Howe AK, 2004 Biochim Biophys Acta.[5.54]
23 GRK6 ACM2 phosphorylation inhibition Loudon RP, 1994, J Biol Chem.[4.65]
24 cyclic AMP intracellular PKA-reg (cAMP-dependent) binding activation Lin JY, 2007, Nat.[38.58]
24 PKA-reg (cAMP-dependent) PKA-cat (cAMP-dependent) binding activation Ghigo A, 2012, Circulation.[15.20]
25 PKA-cat (cAMP-dependent) Adenylate cyclase subtype 5 phosphorylation inhibition Iwami G, 1995, J Biol Chem.[4.65]
25 PKA-cat (cAMP-dependent) Adenylate cyclase subtype 6 phosphorylation inhibition Defer N, 2000, Am J Physiol Renal Physiol.[9.73]
26 cAMP-GEFI AKT1 binding activation Misra UK, 2005, J Biol Chem.[4.65]

A ACM2 ACM2 several regulation Pierce KL, 2002, Nat Rev Mol Cell Biol.[37.16]
B ACM2 G protein spontaneous activation Trzaskowski B, 2012, Curr Med Chem.[3.85]
.
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Full List of Elementary Reactions

The first number (red) counts the reaction, the second number is linked to Table B.1. Fluxes
involved in the cellular response as defined in Section 5.4.2 are marked by “*“.

L + R
 L : R (1|A)

R→ R (2|A)

L : R→ L : R (3|A)

R + GRK6
 GRK6 : R (4|23)

GRK6 : R→ R + GRK6 (5|23)

L : R + GRK6
 L : R : GRK6 (6|23)

L : R : GRK6→ L : R + GRK6 (7|23)

L : R
 R + L (8|A)

R + Gs 
 R : Gs (9|1; 2; B)

R : Gs → R + s + β/γ (10|1; 2; B)

R + Gi 
 R : Gi (11|1; 3; B)

R : Gi → R + i + β/γ (12|1; 3; B)

R + Go 
 R : Go (13|1; 4; B)

R : Go → R + o + β/γ * (14|1; 4; B)

L : R + Gs 
 L : R : Gs (15|1; 2)

L : R : Gs → L : R + s + β/γ (16|1; 2)

s→ s (17|2)

L : R + Gi 
 LR : Gi (18|1; 3)

L : R : Gi → L : R + i + β/γ (19|1; 3)

i + RGS 14
 i : RGS 14 (20|7)

i : RGS 14→ i + RGS 14 (21|7)

β/γ + i
 Gi (22|1; 3)

β/γ + s
 Gs (23|2; 3)

L : R + Go 
 L : R : Go (24|1; 4)

L : R : Go → L : R + o + β/γ * (25|1; 4)

β/γ + o
 Go (26|1; 4)

o + RGS 14
 o : RGS 14 (27|8)

o : RGS 14→ o + RGS 14 (28|8)

β/γ + AC4 
 AC4β (29|11)

s + AC4 
 AC4s (30|9)

s + AC4β 
 AC4β/γs (31|9; 11)

β/γ + AC4s 
 AC4β/γs (32|9; 11)

i + AC5 
 AC5i (33|10)

s + AC5 
 AC5s (34|9)

β/γ + AC5 
 AC5β/γ (35|11)

β/γ + AC5s 
 AC5β/γs (36|9)

s + AC5β/γ 
 AC5β/γs (37|9; 11)

i + AC5s 
 AC5si (38|9; 10)

s + AC5i 
 AC5si (39|9; 10)

AC4s 
 AC4s : AT P (40|15)

AC4s : AT P→ AC4s + cAMP (41|15)

AC4βs 
 AC4β/γs : AT P (42|15)

AC4β/γs : AT P→ AC4β/γs + cAMP (43|15)

β/γ + s + AC4 
 AC4β/γs (44|9; 11)

AC5 + i + s
 AC5is (45|10; 11)

AC5 + β/γ + s
 AC5β/γs (46|9; 11)

AC5s 
 AC5s : AT P (47|15)

AC5s : AT P→ AC5s + cAMP (48|15)

ACp
5 + s
 ACp

5s (49|9)

ACp
5s 
 ACp

5s : AT P (50|15)

ACp
5s : AT P→ ACp

5s + cAMP (51|15)

AC5 + PKA
 AC5 : PKA (52|25)

AC5 : PKA→ ACp
5 + PKA (53|25)

ACp
5 → AC5 (54|25)

AC5s + PKA
 AC5s : PKA (55|25)

AC5s : PKA→ ACp
5s + PKA (56|25)

PKA→ PKA (57|24)

PKA + 2cAMP→ PKA * (58|24)

PKA + RGS 14
 PKA : RGS 14 (59|6)

PKA : RGS 14→ RGS 14 + PKA (60|6)

RGS 14→ RGS 14 (61|6)

PKA + GRK2
 PKA : GRK2 (62|13)

PKA : GRK2→ GRK2 + PKA * (63|13)

GRK2→ GRK2 (64|13)

PKA + GRK6
 PKA : GRK6 (65|5)

PKA : GRK6→ GRK6 + PKA (66|5)

GRK6→ GRK6 (67|5)

PKA + PDE4
 PKA : PDE4 (68|16)

PKA : PDE4→ PDE4 + PKA (69|16)

PDE4→ PDE4 (70|16)

PDE4 + cAMP
 PDE4 : cAMP (71|16)

PDE4 : cAMP→ PDE4 + AMP (72|16)

AMP→ ∅ (73|18)

GEF + RGS 14
 GEF : RGS 14 (74|14)

GEF : RGS 14→ RGS 14 + GEF (75|14)

GRK2 + GEF 
 GRK2 : GEF (76|12)

GRK2 : GEF → GRK2 + GEF (77|12)

GEF → GEF (78|17, 12)

cAMP + GEF 
 GEF * (79|17)

X : Y = Complex of X and Y

X = Inactive form of protein X

Xp = Phosphorylated protein
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Ranked EFMs

Results

Table B.2: EFMs ranked by their median fold change value.

Rank FDR Fold Change Related to Rank FDR Fold Change Related to
1 < 1E − 6 Na GRK6/LR 33 > 0.10 1.00 GP αs
2 < 1E − 6 Na GRK6/R 34 > 0.10 1.00 GRK6
3 < 1E − 6 Na Receptor 35 > 0.10 1.00 GRK2
4 < 1E − 6 2.00 GP αs 36 > 0.10 1.00 AC5
5 < 1E − 6 1.68 PDE 37 > 0.10 1.00 AC5
6 < 1E − 6 1.58 GEF/cAMP/GRK2 38 > 0.10 1.01 AC5
7 < 1E − 6 1.57 GEF/cAMP/GRK2 39 > 0.10 1.01 AC5
8 < 1E − 6 1.57 GEF/cAMP/GRK2 40 > 0.10 1.01 AC5
9 < 1E − 6 1.57 GEF/cAMP/GRK2 41 > 0.10 1.01 AC5

10 < 1E − 6 1.54 cAMP/PKA 42 > 0.10 1.01 AC5
11 < 1E − 6 1.54 cAMP/PKA 43 > 0.10 1.01 AC5
12 < 1E − 6 1.54 cAMP/PKA 44 > 0.10 1.01 AC5
13 < 1E − 6 1.54 GEF/cAMP 45 > 0.10 1.01 AC5
14 < 1E − 6 1.53 GEF/cAMP 46 > 0.10 1.01 AC5
15 < 1E − 6 1.52 GEF/cAMP 47 > 0.10 1.01 AC5
16 < 1E − 6 1.52 GEF/cAMP 48 > 0.10 1.01 AC5
17 < 1E − 6 1.52 cAMP 49 > 0.10 1.01 AC5
18 < 1E − 6 1.48 cAMP 50 > 0.10 1.0 AC5
19 < 1E − 6 1.48 cAMP 51 > 0.10 1.01 AC5
20 < 1E − 6 1.48 cAMP 52 > 0.10 1.01 AC5
21 < 1E − 6 1.48 cAMP 53 > 0.10 1.01 AC5
22 < 1E − 6 1.34 RGS14/GP αi 54 > 0.10 1.01 AC4
23 < 1E − 6 1.34 RGS14/GP αi 55 > 0.10 1.00 AC4
24 < 1E − 6 1.33 RGS14/GP αo 56 > 0.10 1.00 AC5
25 < 1E − 6 1.33 RGS14 /GP αo 57 > 0.10 1.00 AC5
26 < 1E − 6 1.27 GRK6/R 58 > 0.10 1.00 AC4
27 < 1E − 6 1.01 AC5 59 > 0.10 1.00 AC4
28 0.01 1.01 AC5 60 > 0.10 1.00 AC5
29 0.01 1.01 AC5 61 > 0.10 1.00 AC5
30 0.01 1.01 AC5 62 > 0.10 1.00 AC5
31 0.02 1.01 AC5 63 > 0.10 1.00 AC5
32 > 0.10 1.00 RGS14
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Figure B.2: Median differences of the EFMs ranked by their fold change value.

Top 26 EFMs
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Flux Sampling Results

Unstimulated

Figure B.3: System without stimulation sorted by reaction number. For detailed information regarding
the corresponding reaction please refer to the Full List of Elementary Reactions.

171



Appendix B M2 Receptor-dependent Signaling in CHO Cells

Stimulated

Figure B.4: System with stimulation under steady state conditions with additional data sorted by reaction
number. For detailed information regarding the corresponding reaction please refer to the Full List of
Elementary Reactions.
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APPENDIX C

The Dynamic Elastic-Net

Software

The simulations were performed in MATLAB (R2014a, The MathWorks, Inc.) using TOMLAB
v8.0 with SQOPT 7.2-5 QP and SNOPT 7.2-5 NLP (Tomlab Optimization AB) for solving
the optimal control problems. The computing time for a single run of the DEN on a laptop
(Intel® CoreTM i5-4200M CPU with 4× 2.50GHz and 16 GB RAM) was on average 1 min.

Analysis of the Dynamic Elastic-Net Optimal Control
Problem

To gain a deeper understanding of the DEN we assume that the output y(t) of the underlying
true system

ẋ(t) = f̃ (x(t),u(t)) + w(t) (C.1a)
y(t) = h(x(t)) (C.1b)

with initial conditions x(0) = x0 can be measured for all time points t in the interval [0, F].
Accordingly, the error functional (Equation (6.4)) is replaced by the continuous time error
functional

J (x̂ (t) , ŵ (t)) =

∫ F

0
‖y(t) − ŷ(t)‖2Q(t) + α1‖ŵ(t)‖1 +

α2

2
‖ŵ(t)‖22dt (C.2a)

=

∫ F

0

I∑
i=1

I∑
j=1

[
qi j(t) (yi(t) − ŷi(t))

(
y j(t) − ŷ j(t)

)]
+

N∑
n=1

[
α1|ŵn(t)| +

α2

2
ŵ2

n(t)
]

dt (C.2b)
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with the symmetric weighting matrix Q(t) = (qi j(t)). The continuous time version will make the
subsequent analysis more transparent without altering the main conclusions.

The DEN for continuous time measurements is then given by

min
ŵ(t)

[J (x̂ (t) , ŵ (t))] subject to (C.2c)

˙̂x = f̃ (x̂(t),u(t)) + ŵ(t) (C.2d)
ŷ(t) = h(x̂(t)). (C.2e)

For most practical cases, this OCP can only be solved numerically (Gerdts, 2012; Pontryagin
et al., 1986; Fleming and Rishel, 1975). However, the analysis of the necessary optimality
conditions provides interesting insights. These conditions are formulated in terms of the
Hamiltonian

H (λ (t) , x̂ (t) , ŵ (t)) =λT (t)
(

f̂ (x̂(t),u(t)) + ŵ(t)
)

+ ‖y(t) − h (x̂(t))‖2Q + α1‖ŵ(t)‖1 +
α2

2
‖ŵ(t)‖22.

(C.3)

According to Section 4.2, the new dynamic variable λ : [0, F] 7→ RN is called the co-state or
the adjoint state. It fulfills the adjoint differential equation (Fleming and Rishel, 1975; Gerdts,
2012)

λ̇(t) = −

[
∂H (λ (t) , x̂ (t) , ŵ (t))

∂x̂

]T

(C.4a)

= −

[
∂ f (x̂(t))
∂x̂

]T

λ(t) − 2
[
∂h (x̂(t))
∂x̂

]T

Q(t) (y(t) − h(x̂(t))) . (C.4b)

Without further conditions, the final co-state λ(F) equals zero. Alternatively, one can impose
the condition that the fit of the DEN output ŷ(F) at final time F is not too far from the observed
output y(F) by

(y(F)) − ŷ(F))T Q(F) (y(F)) − ŷ(F)) − ∆F < 0, (C.5)

where ∆F is a given tolerance. For this terminal constraint, we obtain the boundary condition
for the co-state

λ(F) = µT ∂

∂x̂
(y(F)) − ŷ(F))T Q(F) (y(F)) − ŷ(F)) (C.6a)

= 2µT

[
∂h (x̂(F))

∂x̂

]T

Q(T ) (y(F) − h(x̂(F))) , (C.6b)

which involves additional Lagrange-parameters µ to be determined. If the initial condition x0 is
uncertain, then one can add a condition analogous to Equation (C.5).

Insights regarding the effect of the elastic-net regularization stem from Pontryagin’s minimum
principle (Pontryagin et al., 1986; Fleming and Rishel, 1975; Gerdts, 2012), which requires a
minimization of the Hamiltonian (C.3) with respect to ŵ. To this end, we rewrite the Hamiltonian
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as

H (λ (t) , x̂ (t) , ŵ (t)) = λT f̂ (x̂(t),u(t)) + ‖y(t) − h (x̂)‖2Q(t) +

N∑
n=1

hn(λn, wn) (C.7a)

hn(λn, wn) = λnŵn + α1|ŵn| +
α2

2
ŵ2

n. (C.7b)

Minimization of the Hamiltonian requires hn to be either zero or negative. From the derivative

∂hn
∂ŵn

= λn + α1 sign(ŵn) + α2ŵ (C.8)

we find that the Hamiltonian H (λ (t) , x̂ (t) , ŵ (t)) is minimized for

ŵ∗n =


−
λn−α1
α2

if λn > α1

0 if λn ∈ [−α1, α1]
−
λn+α1
α2

if λn < −α1 .

(C.9)

In Figure C.1 we compare the function hn and the location of the minimum w∗n for the DEN to
pure L1 or L2 regularization. It can be seen that a pure LASSO-type estimate (α2 = 0) is not
useful because the minimum will either be located at zero or at plus or minus infinity. Even
when additional box constraints of a ≤ ŵn ≤ b are imposed, the minimum can only jump
between zero and the upper bound or zero and the lower bound (Vossen and Maurer, 2006).

Example for an Unidentifiable Model Error

As an example of an unidentifiable model error, we consider the following pair of linear systems

ẋ1 = −αx1 + x2 + w1(t)
ẋ2 = −βx2

y = x1

(C.10)

and

ẋ1 = −αx1 + x2

ẋ2 = −βx2 + w2(t)
y = x1

(C.11)

with the target points x1 and x2, respectively. Both systems are observable, as can be tested by
the Kalman-condition. However, for any given input w2(t) and for

w1(t) =

∫ t

0
eβτw2(τ) dτ (C.12)

the output y(t) = x1(t) of both systems is identical. Thus, the model error is not observable.
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ŵ

h

λ = 0.1

−15 −5 5 15

−
6

−
2

0
2

ŵ
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Figure C.1: The function h(ŵ) = λŵ+α1|ŵ|+
α2
2 ŵ

2 (red) for different values of λ and (α1, α2) = (0.2, 0.05).
For comparison, the case of pure L1 regularization (α2 = 0, blue) and pure L2 regularization (α1 = 0,
black) is shown. The dashed lines indicate the location of the minimum for the DEN (red) and for pure
L2 regularization. The minimum of the pure L1-case is always at zero or plus/minus infinity, if no further
bounds are imposed on ŵ.

Tuning the Regularization Parameters

An important problem for regularized estimates is the choice of the tuning parameters, here
α1 and α2 for L1 and L2 regularization. In regression, these parameters are often chosen by
cross validation or bootstrap (Zou and Hastie, 2005). The idea is to estimate the prediction error
and to minimize this over a grid of α1, α2 values. This could in principle also be done for the
DEN. However, the number of replicates of the time course measurements in systems biology is
typically too small for resampling from the original data.

Another approach is given by the discrepancy method (Honerkamp and Schelter, 2014). If the
DEN output would not incur any bias, then the expectation E(yi(t) − ŷi(t))2 could be estimated
by the variance σ2

i of the measurements. For a diagonal weighting matrix Q = diag(q1, . . . , qI),
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we obtain

E

 I∑
i=1

qi(yi(t) − ŷi(t))2

 ≈ I∑
i=1

qiσ
2
i = d (C.13)

for the variance of the square error term in Equation (C.2a) provided that the residual measure-
ment errors of the different output components are statistically independent and independent of
time. Note, that for qi = σ−2

i we have d = I. Thus, the right hand side d provides a first rough
criterion to tune the regularization parameters: Adjust α1 and α2 in such a way that the squared
error term under the integral equals d. This can easily be extended to time dependent errors.

The sparsity of the DEN solution is controlled by α1. We found empirically that a good
approach is to monitor the solution ŵ = (ŵ1, . . . , ŵn)T or the area under the hidden influence
curves as a function of α1. Typically, as α1 is increased from zero, a sparse solution appears,
which contains only a few dominant components. Further increasing α1 does not change these
components for a wide range of values, until the regularization dominates the whole error
functional (Figure C.2). We thus chose α1 large enough to obtain a sparse solution and then
tuned the L2-parameter α2 to obtain a good data fit using the discrepancy (C.13).

Figure C.2: Influence of the regulation parameters for the JAK-STAT system. (a) The box plots show
the variation of the AUC of |ŵ1(t)|, . . . , |ŵ4(t)| for the DEN estimates caused by different values of the
regularization parameter α1 for α2 = 0.2. To ease visualization, the box plots for a given parameter value
are slightly offset. (b) Influence of α2 for α1 = 10.

The regularization parameters α1 and α2 as well as the weighting matrix Q used for the figures
of the main text and for the additional examples below are collected in Table C.1.
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System α1 α2 Q × F Figure

JAK-STAT 10 0.2 1
i diag

(
(σ−2

1 (tl), σ−2
2 (tl)

)
6.2, 6.3, C.4, C.5

JAK-STAT 1 0.2 1
i diag

(
σ−2

1 (tl), σ−2
2 (tl)

)
C.3

UV-B 0.1 0.0002 In 6.4, 6.5, C.7, C.8, C.9
G protein 0.1 0.002 In C.10
Feed-Forward Loop 0.01 0.002 In C.11
Diamond 0.1 0.002 In C.12
Bi-Fan 0.01 0.002 In C.13

Table C.1: Regularization parameters used in the main text. The standard deviation for output yi(tl) at
time point tl is denoted as σi(tl). The number of measurement time points is F, the number of output
components is I and In is a unit matrix.

Parameter Values for the JAK-STAT Model

The estimated parameters and their confidence intervals for the JAK-STAT system were
obtained from http://webber.physik.uni-freiburg.de/~jeti/PNAS_Swameye_Data
and are shown in Table C.2 (Swameye et al., 2003) . Because of the structural non-identifiability

Value CI

θ1 +0.31 [14; 48]
θ2 -1.00 [−33; 31]
θ3 -0.49 [−1.14; 0.15]
θ4 +0.42 [0.28; 0.56]
θ5 -0.21 [−32; 31]
θ6 -0.34 [−32; 31]
x1 (0) +31 [−32; 31]

Table C.2: Parameter values and confidence intervals used for the JAK-STAT model (logarithmic scale).

of the parameters (Raue et al., 2009), the confidence interval of θ2 was set to the range [−3; 1].
For the same reason, the confidence intervals of θ5, θ6 and x1 (0) were not taken into account.
Mass conservation was accounted for by the constraint 2x4(t) + 2x3(t) + x1(t) + x2(t) = const.
for all t (Swameye et al., 2003; Raue et al., 2009).
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Additional Analysis of the JAK-STAT Model

Comparison to the Model proposed by Raue et al. and to the
Thresholded Dynamic Elastic-Net Estimator

In addition to the analysis in the main text, we compared the DEN to the following model
published in (Raue et al., 2009):

ẋ1 = − θ1x1u + 2θ4xτ4
ẋ2 =θ1x1u − 2θ2x2

2

ẋ3 =θ2x2
2 − θ3x3

ẋ4 =θ3x3 − θ4xτ4

y1 =θ4(x2 + 2x3)
y2 =θ5(x1 + x2 + 2x3).

(C.14)

This model incorporates cytoplasmic cycling by using the delay term xτ4 = x4 (t − τ̃) with τ̃ ≈ 5.

The estimates ŵ(t) described in the main text are dominated by ŵ1 and ŵ4. Thus, we fitted
another DEN estimate enforcing ŵ2 = ŵ3 = 0. This thresholding procedure can be used to
decrease the bias caused by regularized least squares estimation (van de Geer et al., 2011) .
The delay term xτ4 in model (C.14) is well represented by the scaled model error K

θ4
ŵ4(t) of the

thresholded estimate (Figure C.3a). The scaling factor K =
1400µm3

450µm3 accounts for the volume ratio
of the cytoplasmic and nuclear compartments.

Taking the Delay Model as Ground Truth

In another test, we used the model (C.14) as ground truth and simulated data using the values of
the standard deviation reported in (Swameye et al., 2003). We used the same nominal model
as in the main text, which corresponds to a zero delay term xτ4 = 0. The DEN based on this
nominal model correctly identifies the target points x1 and x4 (Figure C.4) and reconstructs the
delay term xτ4(t) (Figure C.4g).

These results are also robust against measurement noise and parameter uncertainties (Fig-
ure C.5). The robustness simulations were performed as in the main text, but now we used the
data simulated from the delay model (C.14) as observations.

Sensitivity Against the Number of Measurements

To investigate the sensitivity of the DEN against the number of measurement time points we
randomly chose subsets of the original data sets and run the optimization using less input data.
As can be seen from Figure C.6, the area under the hidden input curves diagrams indicating the
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Figure C.3: Comparison of the thresholded DEN estimates (red) and the delay model (C.14) from (Raue
et al., 2009) (green) with the real data (black). (a) The delay term xτ4 representing the cytoplasmic cycling
compared to the model error component ŵ4(t) of the thresholded DEN. The scaling factor K accounts
for the volume ratio of the cytoplasmic and nuclear compartments. The output of the delay model and
the thresholded DEN were compared to the measurements of total STAT5 (b) and total STAT5p (c). (d)
Comparison of the state estimates.

nodes targeted by the model error are quite insensitive against a reduction of the number of data
points, as long as the main dynamic features of the time courses are still covered by the data.
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ŵ2

ŵ3
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Figure C.4: Reconstructing the model error for data simulated from the delay model (C.14) for the JAK-
STAT pathway (Raue et al., 2009). (a) As before, the known input u(t) is given by linearly interpolated
phosphorylation measurements for the erythropoietin receptor (Swameye et al., 2003). (b,c) Simulated
output measurements (black) for phosphorylated cytoplasmic STAT5 (y1) and total cytoplasmic STAT5
(y2) compared to the outputs of the nominal model (blue) and the fit of the DEN (red). (d) Graph of
the nominal model (blue) and of the observer system (red) with the state variables cytoplasmic STAT5
(x1), phosphorylated monomeric STAT5 (x2), phosphorylated dimeric STAT5 (x3) and nuclear STAT5
(x4). (e) DEN estimates of the model error. The AUC indicating the target points of the model error
estimates ŵ1(t), . . . , ŵ4(t). (f) State estimates x̃1, . . . , x̃4 obtained from the nominal model (blue) and the
DEN observer (x̂1, . . . , x̂4 in red) compared to the true state (black). (g) Comparison of the delay term
(C.14) and the reconstruction by the DEN as already shown in (e).
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Figure C.5: Robustness against measurement noise and parameter uncertainty using data simulated from
the delay model (C.14). (a) Box plots visualizing the variation of the AUC of the DEN estimates caused
by measurement noise. To ease visualization, the box plots at a given noise level are slightly offset. (b)
Variation of the AUC caused caused by parameter uncertainty.
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Figure C.6: Sensitivity against the number and location of the measurement time points for the JAK-STAT
model (Swameye et al., 2003; Raue et al., 2009). Four different subsets of data were used to fit the DEN
(columns I to V). (a) The known input u(t) is given by linearly interpolated phosphorylation measurements
for the erythropoietin receptor (Swameye et al., 2003; Raue et al., 2009). (b,c) The simulated output
measurements (black) for the phosphorylated cytoplasmic STAT5 (y1) and total cytoplasmic STAT5
(y2) compared to the outputs of the nominal model (blue) and the fit of the DEN (red). (d) The AUC
indicating the target points of the model error estimates ŵ1(t), . . . , ŵ4(t).
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The Photomorphogenic UV-B Signaling Network

The model equations for the UV-B signaling network (Ouyang et al., 2014) were obtained from
the BioModels Database (Li et al., 2010), see BIOMD0000000545. The measurement noise of
the simulated data in the main text was drawn from a Gaussian distribution with zero mean and
standard deviation equal to 5% of the maximum value of the respective output signal.

Suboptimal Solutions for the UV-B Signaling Network

Figures C.7,C.9 and C.8 complement Figure 6.5 in the main text to show that, in cases where
the model error is not observable, a perfect fit of the output data can be obtained for different
sets of target nodes.

Figure C.7: DEN estimates for the photomorphogenic UV-B signaling network with model error targeting
x1 and x9.

Figure C.8: The corresponding estimate when ŵ3 is constrained to zero.
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Figure C.9: The corresponding estimate when ŵ3 and ŵ9 are constrained to zero. The output data can not
be fitted with this combination.

Additional Examples

G protein Signaling

A model for the heterotrimeric G protein cycle in yeast was downloaded from the BioModels
Database (BIOMD0000000072) (Yi et al., 2003; Li et al., 2010). The model has six state
variables: The amount of receptor R, the ligand-bound receptor LR the inactive associated G
protein GP and its active subunits GPα and GPβ\γ and the inactive subunit GPα. We used this
model as a nominal model; the equations and parameters can be found in Appendix C.

The true model is assumed to have an additional input to x4 representing GPα, which mimics
a stronger regulation of GPα. Synthetic measurement noise was added and the DEN was applied
to reconstruct this model error (Figure C.10). All model states were assumed to be directly
measurable.

Network Motifs

Network motifs are often considered to be building blocks of different biological networks (Milo,
2002). Their dynamics will of course be influenced by inputs from their exogenous networks.
We used three well studied network motifs (the feed-forward loop, the diamond and the bi-fan)
to test whether the DEN can reconstruct these hidden inputs from simulated data. We also
investigated a phosphorylation cascade receptively feedback loop. Here, we assume that all
state variables of the motifs are directly accessible to measurements. The model equations are
given in Appendix C. For all networks, we used the unit step function

u (t) = 1 −
1

1 + t

as known input stimulus and the initial condition x(0) = 0 for the state variables.
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Figure C.10: The heterotrimeric G protein cycle. (a) Graph of the nominal model with known inputs
(green) and the additional hidden influence (red) (b-g) Simulated data for species xi with its standard
errors (black) compared to the nominal model (blue) and to the fit of the DEN (red). (h) Discrepancy
between the true model error and the DEN estimate, scaled by the maximum value of the true model
error. (i) AUC bars for the estimates of the model errors (in percent of total AUC).
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Figure C.11: The feed-forward loop. (a) Graph of the nominal model with known inputs (green) and
additional hidden influences (red) (b-d) Simulated data for variables xi (black) compared to the nominal
model (blue) and to the fit of the DEN (red). (e) Discrepancy between the DEN estimate ŵ and the true
model error caused by hidden inputs from the environment, scaled by the maximum value of the true
hidden input. (f) AUC for the DEN estimates.

185



Appendix C The Dynamic Elastic-Net

0

0.2

0.4

0.6

0.8

1

2 10 20 30 40 50

-0.1

0

0.1

0 20 40 60

2

4

0 20 40 60

1

2

0 20 40 60

0.5

1

0 20 40 60

1

2

time (a.u.) time (a.u.)

time (a.u.)time (a.u.)time (a.u.)

x1 (a.u.) x2 (a.u.)

x3 (a.u.) x4 (a.u.) (w-ŵ)/A

x2 x3

x4

x1

AUC

w1
^ w2

^ w3
^ w4

^

a b c

d e f

g

Figure C.12: The diamond motif. (a) Graph of the nominal model with known inputs (green) and
additional hidden inputs (red). (b-e) Simulated data for the variables xi (black) compared to the nominal
model (blue) and to the fit of the DEN (red). (f) Discrepancy between the true error signal and the DEN
estimate ŵ , scaled by the maximum value of the true hidden input. (g) AUC for the DEN estimates.
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Figure C.13: The bi-fan motif. (a) Graph of the nominal model with known inputs (green) and additional
hidden influences (red) (b-e) Simulated data for the variables xi (black) compared to the nominal model
(blue) and the fit of the DEN (red). (f) Discrepancy between the true error signal and the DEN estimate ŵ
, scaled by the maximum value of the true hidden input. (g) AUC for the DEN estimates.
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Figure C.14: The feedback loop with exogenous error. (a) Graph of the nominal model with known inputs
(green) and additional hidden influences (red) (b-e) Simulated data for variables xi (black) compared
to the nominal model (blue) and the fit of the DEN (red). (f) Discrepancy between the true error signal
and the DEN estimate ŵ , scaled by the maximum value of the true hidden input. (g) AUC for the DEN
estimates.
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Figure C.15: The feedback loop with endogenous error. (a) Graph of the nominal model with known
inputs (green) and missing feedback (red) (b-e) Simulated data for the variables xi (black) compared to
the nominal model (blue) and the fit of the DEN (red). (f) Discrepancy between the true error signal
and the DEN estimate ŵ , scaled by the maximum value of the true hidden input. (g) AUC for the DEN
estimates.
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Further Model Equations

Feed-forward Loop

True System

ẋ1 (t) = u (t) − x1 (t) +

(
1 −

1
1 + t

)
ẋ2 (t) = x1 (t) − x2 (t)

ẋ3 (t) = x2 (t) + x1 (t) − x3 (t) +

(
1 −

1
1 + t

)
Nominal System

˙̃x1 (t) = u (t) − x̃1 (t)
˙̃x2 (t) = x̃1 (t) − x̃2 (t)
˙̃x3 (t) = x̃2 (t) + x̃1 (t) − x̃3 (t)

Diamond

True System
ẋ1 (t) = u (t) − x1 (t)

ẋ2 (t) = x1 (t) − x2 (t) +

(
1 −

1
1 + t

)
ẋ3 (t) = x1 (t) − x3 (t) +

(
1 −

1
1 + t

)
ẋ4 (t) = x2 (t) + x3 (t) − x4 (t)

Nominal System
˙̃x1 (t) = u (t) − x̃1 (t)
˙̃x2 (t) = x̃1 (t) − x̃2 (t)
˙̃x3 (t) = x̃1 (t) − x̃3 (t)
˙̃x4 (t) = x̃2 (t) + x̃3 (t) − x̃4 (t)

Bi-fan

True System
ẋ1 (t) = u (t) − x1 (t)

ẋ2 (t) = u (t) − x2 (t) +

(
1 −

1
1 + t

)
ẋ3 (t) = x̃2 (t) + x1 (t) − x3 (t) −

(
1 −

1
1 + t

)
ẋ4 (t) = x̃2 (t) + x1 (t) − x4 (t)
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Nominal System
˙̃x1 (t) = u (t) − x̃1 (t)
˙̃x2 (t) = u (t) − x̃2 (t)
˙̃x3 (t) = x̃2 (t) + x̃1 (t) − x̃3 (t)
˙̃x4 (t) = x̃2 (t) + x̃1 (t) − x̃4 (t)

Feedback Loop 1

True System
˙̃x1 (t) = u (t) − x1 (t)

˙̃x2 (t) =
x1 (t)

1 + x4
− x2 (t)

˙̃x3 (t) = x2 (t) − x3 (t) +

(
1 −

1
1 + t

)
˙̃x4 (t) = x3 (t) − x4 (t)

Nominal System
˙̃x1 (t) = u (t) − x̃1 (t)

˙̃x2 (t) =
x̃1 (t)

1 + x̃4
− x̃2 (t)

˙̃x3 (t) = x̃2 (t) − x̃3 (t)
˙̃x4 (t) = x̃3 (t) − x̃4 (t)

Feedback Loop 2

True System
ẋ1 (t) = u (t) − x1 (t)
ẋ2 (t) = x1 − x2 (t)
ẋ3 (t) = x2 (t) − x3 (t)
˙̃x4 (t) = x3 (t) − x4 (t)

Nominal System
˙̃x1 (t) = u (t) − x̃1 (t)

˙̃x2 (t) =
x̃1 (t)

1 + x̃4
− x̃2 (t)

˙̃x3 (t) = x̃2 (t) − x̃3 (t)
˙̃x4 (t) = x̃3 (t) − x̃4 (t)

G protein Signaling Model

The model for the heterotrimeric G protein cycle in yeast was downloaded from the BioModels
Database (BIOMD0000000072) (Yi et al., 2003; Li et al., 2010). This model was used as a
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Appendix C The Dynamic Elastic-Net

nominal model in Appendix C, but the tilde is suppressed for simplicity of notation.

d([R])
dt = −

(
3.32e−18

)
[L]const. [R] + 0.01 [LR] − 4 − 0.0004 [R]

d([LR])
dt =

(
3.32e−18

)
[L]const. [R] − 0.01 [LR] − 0.004 [LR]

d
([

GP
])

dt =
[
GPα

] [
GPβ\γ

]
−

(
1e−05

)
[LR]

[
GP

]
d([GPβ\γ])

dt = −
[
GPα

] [
GPβ\γ

]
+

(
1e−05

)
[LR]

[
GP

]
d([GPα])

dt =
(
1e−05

)
[LR]

[
GP

]
− 0.11 [GPα]

d
([

GPα
])

dt = −
[
GPα

] [
GPβ\γ

]
+ 0.11 [GPα]

These interactions are depicted in Figure C.10a. The initial conditions and the names of the
state variables are given by

[R] = x1

[
GPβ\γ

]
= x4

[LR] = x2 [GPα] = x5[
GP

]
= x3

[
GPα

]
= x6

[R]0 = 100 item\l
[
GPα

]
0

= 30 item\l[
GP

]
0

= 70 item\l [GPα]0 = 0 item\l[
GPβ\γ

]
0

= 30 item\l [LR]0 = 0 item\l

[L]const. = 0.02 item\l
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UV-B Network Model

The model equations for the UV-B signaling network were obtained from the BioModels
Database (Li et al., 2010; Ouyang et al., 2014), see BIOMD0000000545. Although this model
was used as a nominal model in the main text, the tilde is suppressed for simplicity of notation.

d [CS]
dt

= − 2 · ka1 · [CS]2
· [UVR8M]2 + 2kd1 · [UCS]

+ ks1 · (1 + UV · n3 · ([HY5] + FHY3))
− kdr1 · (1 + (n1 · UV)) · [CS] − kd2 · [CDCS]

− 2 · ka2 · [CS]2
· [CD]

d [CD]
dt

= − ka2 · [CS]2
· [CD] + kd2 · [CDCS]

+ ka4 · [CD] · [DWD] + kd4 · [CDW]
d [CDCS]

dt
= − kd2 · [CDCS] + ka2 · [CS]2

· [CD]

d [UVR8M]
dt

= − 2 · k1 · [UVR8M]2 + 2 · k2 · [UVR8D]

− 2 · ka1 · [CS]2
· [UVR8M]2 + 2 · kd1 · [UCS]

− ka3 · [UVR8M] · [RUP]
d [UCS]

dt
= − kd1 · [UCS] + ka1 · [CS]2

· [UVR8M]2

d [UVR8D]
dt

= − k2 · [UVR8D] + k1 · [UVR8M]2 + kd3 · [UR]2

d [RUP]
dt

= − ka3 · [UVR8M] · [RUP] + ks2 · (1 + UV · [UCS])

− kdr2 · [RUP] + (2) · kd3 · [UR]2

d [UR]
dt

= − 2 · kd3 · [UR]2 + ka3 · [UVR8M] · [RUP]

d [HY5]
dt

= − kdr3 ·
(

[CDCS]
kdr3a + [CDCS]

+
[CDW]

kdr3b + [CDW]

)
· [HY5]

+ ks3p · (1 + n2 · UV) − kdr3 ·
(

[UCS]
ksr + [UCS]

)
· [HY5]

d [DWD]
dt

= − ka4 · [CD] · [DWD] + kd4 · [CDW]

d [CDW]
dt

= − kd4 · [CDW] + ka4 · [CD] · [DWD]
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UMTotal = 2 · [UCS] + [UVR8M] + [UR]
COP1Total = 2 · [UCS] + 2 · [CDCS] + [CS]

UVR8Dobs. = [UVR8D]
HY5obs. = [HY5]

UVR8Mobs = [UVR8M]

[CS] = x1 [UVR8M] = x4 [RUP] = x7 [DWD] = x10

[CD] = x2 [UCS] = x5 [UR] = x8 [CDW] = x11

[CDCS] = x3 [UVR8D] = x6 [HY5] = x9

ks1 = 0.23 ks2 = 4.0526 k1 = 0.0043
kdr1 = 0.1 kdr2 = 0.2118 k2 = 161.62
ka1 = 0.0372 ka2 = 0.0611 ka3 = 4.7207
kd2 = 50.6973 kd3 = 0.5508 kd1 = 94.3524
ks3 = 0.4397 kdr3 = 1.246 UV = 1
kd4 = 1.1999 n1 = 3 ka4 = 10.1285
n2 = 2 n3 = 3.5 kdr3a = 0.9735

ksr = 0.7537 FHY3 = 5 kdr3b = 0.406

[CS]0 = 0.2 mol [RUP]0 = 0 mol
[CD]0 = 10 mol [UR]0 = 0 mol

[CDCS]0 = 2 mol [HY5]0 = 0.25 mol
[UVR8M]0 = 0 mol [DWD]0 = 20 mol

[UCS]0 = 0 mol [CDW]0 = 0 mol
[UVR8D]0 = 20 mol
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APPENDIX D

The Bayesian Dynamic Elastic-Net

Further results

Model Error Level Method AUROC BS

JA
K

-S
TA

T

0%
BDEN 0.90 (0.15) 0.11 (0.11)

DEN 0.60 (0.40) 0.16 (0.06)

2.5%
BDEN 0.67 (0.15) 0.16 (0.10)

DEN 0.51 (0.32) 0.32 (0.12)

7.5%
BDEN 0.61 (0.18) 0.19(0.15)

DEN 0.50 (0.33) 0.33 (0.13)

12.5%
BDEN 0.59 (0.08) 0.26(0.16)

DEN 0.43 (0.33) 0.33 (0.13)

G
pr

ot
ei

n

0%
BDEN 1.00 (0.00) 0.04 (0.03)

DEN 1.00 (0.00) 0.09 (0.02)

2.5%
BDEN 1.00 (0.00) 0.05 (0.03)

DEN 1.00 (0.00) 0.01 (0.01)

7.5%
BDEN 0.96 (0.06) 0.12 (0.06)

DEN 0.76 (0.20) 0.42 (0.05)

12.5%
BDEN 0.95 (0.07) 0.15 (0.09)

DEN 0.63 (0.23) 0.46 (0.05)

U
V

-B

0%
BDEN 0.91 (0.11) 0.19 (0.06)

DEN 0.80 (0.19) 0.22 (0.08)

2.5%
BDEN 0.78 (0.11) 0.14 (0.06)

DEN 0.75 (0.14) 0.20 (0.06)

7.5%
BDEN 0.76 (0.10) 0.15 (0.04)

DEN 0.72 (0.15) 0.20 (0.06)

12.5%
BDEN 0.73 (0.11) 0.16 (0.05)

DEN 0.70 (0.19) 0.22 (0.07)

M
ot

if
s

0%
BDEN 1.00 (0.00) 0.01 (0.00)

DEN 0.90 (0.14) 0.11 (0.09)

2.5%
BDEN 1.00 (< 0.01) 0.01 (0.01)

DEN 0.93 (0.11) 0.06 (0.08)

7.5%
BDEN 1.00 (< 0.01) (< 0.01) (< 0.01)

DEN 0.93 (0.11) 0.06 (0.08)

12.5%
BDEN 0.99 (0.03) 0.01 (0.02)

DEN 0.94 (0.10) 0.06 (0.08)

Table D.1: Performance of the BDEN and the DEN in dependence on the error of kinetic parameter
estimates (median) for fixed measurement noise of 2.5%. The median absolute deviation for the AUROC
and Brier Scores are given in brackets.
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Percentage Hidden influences AUROC BS

17% 1.00 (< 0.01) 0.02 (0.02)

33% 0.96 (0.06) 0.11 (0.09)

50% 0.86 (0.12) 0.22 (0.17)

Table D.2: Performance of the BDEN in dependence on an increasing number of hidden influences for
the G protein cycle in yeast relative to the number of nodes in the nominal model (median) for a fixed
measurement noise of 2.5%. The median absolute deviations of the AUROC and Brier Scores are given
in brackets.

Model Noise Class. Overall

M
is

si
ng

In
te

ra
ct

io
n

JA
K

-S
TA

T 2.5% 1.00 (0.01) 0.80 (0.24)

7.5% 1.00 (0.03) 0.70 (0.30)

12.5% 0.91 (0.10) 0.70 (0.31)

G
pr

ot
ei

n 2.5% 1.00 (0.05) 0.71 (0.27)

7.5% 0.93 (0.09) 0.58 (0.25)

12.5% 0.85 (0.16) 0.54 (0.33)

U
V

-B

2.5% 0.93 (0.09) 0.53 (0.15)

7.5% 0.87 (0.15) 0.53 (0.09)

12.5% 0.80 (0.23) 0.50 (0.14)

Model Noise Class. Overall

W
ro

ng
In

te
ra

ct
io

n

JA
K

-S
TA

T 2.5% 1.00 (0.02) 0.87 (0.19)

7.5% 0.91 (0.06) 0.85 (0.19)

12.5% 0.89 (0.12) 0.85 (0.29)

G
pr

ot
ei

n 2.5% 1.00 (0.01) 0.67 (0.19)

7.5% 0.92 (0.14) 0.64 (0.10)

12.5% 0.83 (0.25) 0.64 (0.18)

U
V

-B

2.5% 0.91 (0.08) 0.68 (0.20)

7.5% 0.87 (0.07) 0.61 (0.28)

12.5% 0.83 (0.13) 0.50 (0.25)

Table D.3: Performance of of the BDEN correctly detect and classify interactions in dependence on
the level of relative measurement noise (median AUROC). The column "Class." reflects the accuracy
for calling a correctly detected hidden influence as "missing/wrong stimulation" and "missing/wrong
inhibition", respectively. In contrast, the column "Overall" reflects the accuracy for correctly detecting
a hidden influence AND correctly classifying it as missing/wrong interaction AND calling it correctly
"simulation" and "inhibition", respectively.
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Model Error Level AUROC

M
is

si
ng

In
te

ra
ct

io
n

JA
K

-S
TA

T 0% 1.00 (0.00)

2.5% 1.00 (0.00)

7.5% 0.83 (0.28)

12.5% 0.67 (0.44)

G
pr

ot
ei

n 0% 0.81 (0.19)

2.5% 0.85 (0.21)

7.5% 0.72 (0.40)

12.5% 0.68 (0.43)

U
V

-B

0% 1.00 (0.00)

2.5% 1.00 (0.00)

7.5% 0.75 (0.38)

12.5% 0.65 (0.42)

Model Error Level AUROC

W
ro

ng
In

te
ra

ct
io

n

JA
K

-S
TA

T 0% 1.00 (0.00)

2.5% 0.93 (0.13)

7.5% 0.92 (0.14)

12.5% 0.83 (0.28)

G
pr

ot
ei

n 0% 1.00 (0.00)

2.5% 0.94 (0.10)

7.5% 0.89 (0.20)

12.5% 0.76 (0.34)

U
V

-B
0% 0.81 (0.20)

2.5% 0.84 (0.22)

7.5% 0.83 (0.18)

12.5% 0.74 (0.32)

Table D.4: Performance of the BDEN to detect wrong and missing interactions in dependence on the
error of the kinetic parameter estimates (median) for measurement noise of 2.5%.
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Model Error Class. Overall
M

is
si

ng
In

te
ra

ct
io

n

JA
K

-S
TA

T 0% 1.00 (0.01) 0.80 (0.24)

2.5% 1.00 (0.08) 0.63 (0.19)

7.5% 0.94 (0.10) 0.58 (0.23)

12.5% 0.88 (0.12) 0.57 (0.26)

G
pr

ot
ei

n 0% 1.00 (0.05) 0.71 (0.27)

2.5% 1.00 (0.03) 0.68 (0.32)

7.5% 0.95 (0.11) 0.67 (0.27)

12.5% 0.84 (0.13) 0.68 (0.25)

U
V

-B

0% 0.93 (0.08) 0.53 (0.15)

2.5% 0.93 (0.08) 0.52 (0.08)

7.5% 0.85 (0.11) 0.52 (0.11)

12.5% 0.78 (0.09) 0.52 (0.12)

Model Error Class. Overall

W
ro

ng
In

te
ra

ct
io

n

JA
K

-S
TA

T 0% 1.00 (0.02) 0.87 (0.19)

7.5% 0.99 (0.06) 0.82 (0.27)

12.5% 0.91 (0.11) 0.77 (0.31)

G
pr

ot
ei

n 0% 1.00 (0.01) 0.67 (0.19)

2.5% 1.00 (0.05) 0.62 (0.27)

7.5% 0.93 (0.10) 0.52 (0.34)

12.5% 0.81 (0.12) 0.48 (0.32)

U
V

-B

0% 0.91 (0.08) 0.68 (0.20)

2.5% 0.89 (0.09) 0.64 (0.18)

7.5% 0.83 (0.12) 0.61 (0.22)

12.5% 0.76 (0.16) 0.53 (0.32)

Table D.5: Performance of the BDEN to correctly detect and classify interactions in dependence on the
error of the kinetic parameter estimates (median AUROC) for a fixed measurement noise of 2.5%. The
column "Class." reflects the accuracy for calling a correctly detected hidden influence as "missing/wrong
stimulation" and "missing/wrong inhibition", respectively. In contrast, the column "Overall" reflects the
accuracy for correctly detecting a hidden influence AND correctly classifying it as wrong interaction
AND calling it correctly "simulation" and "inhibition", respectively.

Details on the Simulation Studies

Simulation of synthetic data was done as follows: First, a published ODE-based state-observation
model with respective initial conditions was employed to generate noise-free observations at 6
time points, depending on the respective model (JAK-STAT, UV-B signaling, G protein cycling,
network motifs). Subsequently Gaussian noise with fixed variance was added. Notably an
(unrealistic) noise variance of zero is resulting into numerical problems for the BDEN and was
thus not considered.

Hidden influences were simulated by adding one (Tables 7.2, D.1) or up to three randomly
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picked (Table D.2) state variables on the right hand side of the ODE system, yielding a wrong
nominal ODE system. Likewise, wrong interactions were simulated by randomly adding one
interaction on the right hand side of the ODE system (Tables 7.3, D.3, D.4, D.5). Missing
interactions were simulated by randomly removing one of the existing interactions (Tables 7.3,
D.3, D.4, D.5).

Due to the randomness of the process described above we repeated all simulations a number
of times (Table D.6). The exact number of repeats varies slightly to take into account the
different number of combination possibilities. ODE systems with more state variables or allow
for a larger number of possible combinations of hidden influence signals.

Table Repeats

7.2 450
7.3 400
D.1 450
D.2 400
D.3 350
D.4 400
D.5 350

Table D.6: Number of independent simulation repeats for each of the presented results.

Additive Hidden Inputs and Model Error

The assumption of a hidden input signal incorporates many different types of model errors
including parameter errors, hidden or misspecified interactions as well as inputs from exosystems.
This can be seen as follows. Assume that the true system generating the data has the form(

ẋ (t)
ż (t)

)
=

(
φ (x (t) , z (t) ,u (t))
ψ (x (t) , z (t) ,u (t))

)
(D.1a)

y (t) = h (x (t)) . (D.1b)

Here, x (t) = (x1 (t) , . . . , xN (t))T
∈ RN is the state vector also included in the nominal model

ẋ (t) = f (x (t) ,u (t)) (D.2a)
y (t) = h (x (t)) , (D.2b)

which represents our current knowledge or assumptions about the true system. The output
map h is assumed to be exactly known and depends only on x, so (D.2b) and (D.1b) have the
same form. The exostate z (t) = (z1 (t) , . . . , zP (t)) T in the true system (D.1) represents dynamic
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variables ignored in the nominal model. Let us denote the solution of the true system (D.1a) as

ν(t) =

(
x(t)
z(t)

)
with initial condition ν(t0) =

(
x(t0)
z(t0)

)
. (D.3)

Now the functions φ and f are compared along the true state trajectory (D.3) and define

w(t = ẋ(t) − f (x(t),u(t)) = φ (x(t), z(t),u(t)) − f (x(t),u(t)) . (D.4)

Thus,
ẋ(t) = f (x(t),u(t)) + w(t). (D.5)

represents the true dynamics x(t) through the nominal system f and the hidden input w(t). Note
that the dependence on parameters is suppressed in the notation. However, this can be seen as
part of the systems specification, i.e., as defining the properties of f , φ and ψ, respectively.
Thus, model errors can be represented by hidden (unknown) inputs.

Full Derivation of Equation (7.6)

According to (Zacher et al., 2012), Equation (7.6) can be derived as follows:
Given yi,l

∣∣∣xl, ξ
2
i,l ∼ N

(
yi,l

∣∣∣xl, 1/τi,l

)
with unknown τ = 1

ξ2
i,l

and τ ∼ G (α, β), we obtain

p
(
yi,l |xl, α, β

)
∝

∫
p
(
yi,l

∣∣∣xl, ξ
2
i,l

)
× p

(
ξ2

i,l

∣∣∣α, β)dξ2
i,l

=

∫
N

(
yi,l

∣∣∣xl, τi,l

)
×G

(
τi,l

∣∣∣α, β)dτi,l

=

∫
βα

Γ (α)
τα−1 exp (−τβ)

(
τ

2π

) 1
2

exp
(
−
τ

2
(
yi,l − hi (xl)

)2
)
dτi,l

=
βα

Γ (α)
1
√

2π

∫
τα+ 1

2−1 exp

−τ
(
2β +

(
yi,l − hi (xl)

)2
)

2

dτi,l

=
βα

Γ (α)
1
√

2π

Γ
(
α + 1

2

)
(
β + 1

2

(
yi,l − hi (xl)

)2
)α+ 1

2

=
Γ
(
α + 1

2

)
Γ (α)

1

(2πβ)
1
2

1(
1 + 1

2β

(
yi,l − hi (xl)

)2
)α+ 1

2

.
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Methodology

The full hierarchical model of the Bayesian elastic-net is given by (Zou and Hastie, 2005; Kyung
et al., 2010)

wn,l

∣∣∣σ2, τ2, λ2, wn,l−1 ∼ N
(
wn,l−1,

σ2τ2
n

λ2τ2
n + 1

)
τ2

∣∣∣λ2
1 ∼

N∏
n=1

λ2
1,n

2
exp

−λ2
1,nτ

2
n

2

, τ2
1, . . . , τ

2
N > 0

λ2
1 ∼

N∏
n=1

 δ
r1,n
1,n

Γ
(
r1,n

) (
λ2

1,n

)r1,n−1
exp

(
−δ1,nλ

2
1,n

)
λ2 ∼

δr2
2

Γ (r2)
λr2−1

2 exp (−δ2λ2)

σ2 ∼ p
(
σ2

)
, σ2 > 0.

For σ2 we chose a standard non-informative, improper and scale-invariant prior p
(
σ2

)
∝

σ−2 (Park and Casella, 2008; Kyung et al., 2010). In contrast to the variance of the measurement
noise ξl, σ

2 represents the variance of the hidden influences. The parameters λ1 and λ2 control
the sparsity and smoothness of the resulting hidden influence dynamics, respectively. Please
note that the parameter λ1 in contrast to λ2 is controlled by an additional hyperparameter τ2.
For l = 1 the full Bayesian elastic net prior corresponds to a product of a Gaussian and Laplace
distribution (Zou and Hastie, 2005; Kyung et al., 2010).
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Sampling Algorithm

Algorithm 1 : Pseudo Code
for l← 1 to T do

for s← 1 to S do

1. i← random species
w∗n,tl ← wn,l−1 + N (0, J)
Accept w∗n,l with probability r

(
w(s)

l

∣∣∣w∗l ), otherwise set w(s+1)
n,l ← w(s)

n,l

2. Draw σ2 ∼ inverseGamma

 n
2 ,

ζ+
∑N

n=1

(
w(s+1)

n,l −wn,l−1
)2 λ2τ

2
n+1

τ2
n

2


3. Draw τ−2

n ∼ inverseGaussian
(√

λ2
1,nσ

2

w(s+1)
n,l −wn,l−1

, λ2

)
for n = 1, . . . ,N

4. Draw λ2
1,n ∼ Gamma

(
r1,n + 1, τ

2
n

2 + δ1,n

)
for n = 1, . . . ,N

5. Draw λ2 ∼ Gamma
(
r2 + n

2 ,
1

2σ2

∥∥∥w(s+1)
l − wl−1

∥∥∥2

2
+ δ2

)

wl = 1
S

S∑
s=1
ws

l ;

xl =
∫ tl

tl−1
f
(
x
(
t′l
)

u
(
t′l
))

+ w
(
t′l
)

dt′
∣∣∣xl−1 , x0 = η

r
(
w(s)

l

∣∣∣w∗l ) = min

1,
p
(
yl |xl, α, β

)
p
(
yl |xl, α, β

) × p
(
xl

∣∣∣xl−1,w
∗
l ,wl−1

)
p
(
xl

∣∣∣xl−1,w
s
l ,wl−1

) × p
(
w∗l |θ

)
p
(
ws

l |θ
)


= min

1,
I∏

i=1

2β +
(
yi,l − hi(xl)

)2

2β +
(
yi,l − hi(xl)

)2

α+ 1
2

×
p
(
w∗l

∣∣∣σ2, τ2, λ2,wl−1

)
p
(
ws

l

∣∣∣σ2, τ2, λ2,wl−1

)


Step 1 is given by a Metropolis-Hastings move (Algorithm 2) with respect to J (Brooks,
1998). Avoiding autocorrelation, the mean for wl is adapted via thinning (Gelman et al., 2013).
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Algorithm 2 : Independent MH
for s′ ← 1 to S ′ do

Draw ñ ∼ U {1,N}

Draw w∗i=ñ,l ∼ N
(
wn=ñ,l−1, J

)
w∗n,ñ,l = w(s′)

n,ñ,l

if r
(
w(s)

l

∣∣∣w∗l ) ≥ α then ws′+1
n,l = w∗n,l;

else ws′+1
n,l = w(s′)

n,l ;

wl = 1
S ′

S ′∑
s′=1

ws′
l

Hyperparameter Settings

Following an empirical Bayesian approach, α and β in the variance prior are estimated by fitting
the inverse sample variance distribution via maximum likelihood. An initial value for σ2 can be
approximated by the maximal distance between two subsequent w (tl) in the time series

max
n,l>1

(|wn (tl)| − |wn (tl−1)|) ∝ max
i,l>1

(∣∣∣∣∣d (yi (tl) − hi (x (tl)))
dtl

∣∣∣∣∣ − ∣∣∣∣∣d (yi (tl−1) − hi (x (tl−1)))
dtl−1

∣∣∣∣∣) . (D.6)

We advise to include a parameter ζ to omit values next to zero for σ2, which would lead to
numerical issues. Here a good conservative choice is also given by Equation (D.6).

The parameter J of the candidate distribution π ∼ N (0, J) can be defined as the maximum of
the mean largest value of the approximated hidden influence with respect to the least square
error. To increase performance we suggest a burn-in phase of about 33% of the total number
of iterations, which was set to 1500 × N as a compromise between computational time and
sampling quality. The number of MH moves was set to be ten times larger than the number of
Gibbs steps.

Due to the low number of measurement points and their variance we introduce the additional
parameter γ ≤ 1 which means that the measurement noise is reduced by γ and ξi,l is re-
parametrized as

ξ2
i,l ∼ IG

(
α,
β

γ

)
. (D.7)

Since the re-parametrized variance estimator yields a sharper prior distribution, it is more
conservative.

The parameters λ1 and λ2 themselves depend on hyperparameters, which can be set in a
non-informative manner or with respect to prior knowledge about the degree of shrinkage and
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smoothness of the hidden influences (Kyung et al., 2010).

Model Details

Motifs

Figure D.1: Graphical representation of the investigated bi-fan motif (BF), diamond motif (Dia), feed-
forward loop (FF) and the protein cascade (PC) (Milo, 2002).

For all motifs (see (Milo, 2002)) we used the monotonic function

u (t) =

(
1 −

1
1 + t

)
as known input stimulus and the initial condition x(0) = 0 for all state variables with t = [0, 1].
The system is assumed to be fully observable.

Bi-fan

ẋ1 (t) = u (t) − x1 (t)
ẋ2 (t) = u (t) − x2 (t)
ẋ3 (t) = x2 (t) + x1 (t) − x3 (t)
ẋ4 (t) = x2 (t) + x1 (t) − x4 (t)

Diamond

ẋ1 (t) = u (t) − x1 (t)
ẋ2 (t) = x1 (t) − x2 (t)
ẋ3 (t) = x1 (t) − x3 (t)
ẋ4 (t) = x2 (t) + x3 (t) − x4 (t)
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Feed-forward Loop

ẋ1 (t) = u (t) − x1 (t)
ẋ2 (t) = x1 (t) − x2 (t)
ẋ3 (t) = x2 (t) + x1 (t) − x3 (t)

Protein Cascade

ẋ1 (t) = u (t) − x1 (t)

ẋ2 (t) =
x1 (t)

1 + x4
− x2 (t)

ẋ3 (t) = x2 (t) − x3 (t)
ẋ4 (t) = x3 (t) − x4 (t)

G protein Signaling Model

The model for the heterotrimeric G protein cycle in yeast was downloaded from the BioModels
Database (Li et al., 2010; Yi et al., 2003) (BIOMD0000000072). The system is assumed to be
fully observable.

d([R])
dt = −

(
3.32e−18

)
[L]const. [R] + 0.01 [RL] − 4 − 0.0004 [R]

d([GPi])
dt = [GPαi]

[
GPβ

]
−

(
1e−05

)
[RL] [GPi]

d([GPβ])
dt = − [GPαi]

[
GPβ

]
+

(
1e−05

)
[RL] [GPi]

d([GPαi])
dt = − [GPαi]

[
GPβ

]
+ 0.11 [GPα]

d([GPα])
dt =

(
1e−05

)
[RL] [GPi] − 0.11 [GPα]

d([RL])
dt =

(
3.32e−18

)
[L]const. [R] − 0.01 [RL] − 0.004 [RL]

The initial conditions are given by

[R]0 = 100 item\l
[
GPα

]
0

= 30 item\l[
GP

]
0

= 70 item\l [GPα]0 = 0 item\l[
GPβ\γ

]
0

= 30 item\l [LR]0 = 0 item\l

[L]const. = 0.02 item\l

and t = [0, 25]
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Appendix D The Bayesian Dynamic Elastic-Net

UV-B Network Model

The model equations for the UV-B signaling network were obtained from the BioModels
Database (Li et al., 2010; Ouyang et al., 2014), see BIOMD0000000545.

d [CS]
dt

= − 2 · ka1 · [CS]2 · [UVR8M]2 + 2kd1 · [UCS]

+ ks1 · (1 + UV · n3 · ([HY5] + FHY3))

− kdr1 · (1 + (n1 · UV)) · [CS] − kd2 · [CDCS]

− 2 · ka2 · [CS]2 · [CD]
d [CD]

dt
= − ka2 · [CS]2 · [CD] + kd2 · [CDCS]

+ ka4 · [CD] · [DWD] + kd4 · [CDW]
d [CDCS]

dt
= − kd2 · [CDCS] + ka2 · [CS]2 · [CD]

d [UVR8M]
dt

= − 2 · k1 · [UVR8M]2 + 2 · k2 · [UVR8D]

− 2 · ka1 · [CS]2 · [UVR8M]2 + 2 · kd1 · [UCS]

− ka3 · [UVR8M] · [RUP]
d [UCS]

dt
= − kd1 · [UCS] + ka1 · [CS]2 · [UVR8M]2

d [UVR8D]
dt

= − k2 · [UVR8D] + k1 · [UVR8M]2 + kd3 · [UR]2

d [RUP]
dt

= − ka3 · [UVR8M] · [RUP] + ks2 · (1 + UV · [UCS])

− kdr2 · [RUP] + (2) · kd3 · [UR]2

d [UR]
dt

= − 2 · kd3 · [UR]2 + ka3 · [UVR8M] · [RUP]

d [HY5]
dt

= − kdr3 ·
(

[CDCS]
kdr3a + [CDCS]

+
[CDW]

kdr3b + [CDW]

)
· [HY5]

+ ks3p · (1 + n2 · UV) − kdr3 ·
(

[UCS]
ksr + [UCS]

)
· [HY5]

d [DWD]
dt

= − ka4 · [CD] · [DWD] + kd4 · [CDW]

d [CDW]
dt

= − kd4 · [CDW] + ka4 · [CD] · [DWD]

UMTotal = 2 · [UCS] + [UVR8M] + [UR]

COP1Total = 2 · [UCS] + 2 · [CDCS] + [CS]

UVR8Dobs. = [UVR8D]

HY5obs. = [HY5]

UVR8Mobs = [UVR8M]
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[CS] = x1; [UVR8M] = x4; [RUP] = x7; [DWD] = x10;

[CD] = x2; [UCS] = x5; [UR] = x8; [CDW] = x11;

[CDCS] = x3; [UVR8D] = x6; [HY5] = x9

The initial conditions are given by

[CS]0 = 0.2 mol [RUP]0 = 0 mol

[CD]0 = 10 mol [UR]0 = 0 mol

[CDCS]0 = 2 mol [HY5]0 = 0.25 mol

[UVR8M]0 = 0 mol [DWD]0 = 20 mol

[UCS]0 = 0 mol [CDW]0 = 0 mol

[UVR8D]0 = 20 mol

and t = [0, 6].

JAK-STAT Model

The measurements for the JAK-STAT system were obtained from http://webber.physik.uni-
freiburg.de/ ~jeti/PNAS_Swameye_Data. Mass conservation was accounted for by the con-
straint 2x4(t) + 2x3(t) + x1(t) + x2(t) = const. for all t (Swameye et al., 2003; Raue et al., 2009).
The nominal model is given by (Swameye et al., 2003):

ẋ1 = −ψ1x1u
ẋ2 = ψ1x1u − 2ψ2x2

2

ẋ3 = ψ2x2
2 − ψ3x3

ẋ4 = ψ3x3

y2 = ψ5 (x1 + x2 + 2x3)
y1 = ψ4 (x2 + 2x3) .

u = Erythropoietin Receptor
x1 = STAT5
x2 = STAT5p

x3 = STAT5di

x4 = STAT5n

y1 = total STAT5
y2 = total STAT5p

and t = [0, 60].
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Appendix D The Bayesian Dynamic Elastic-Net

Model of Information Processing at EpoR

The Model of the information processing at EpoR was obtained from (Becker et al., 2010). Data
was obtained from dMod.

ẋ1 =kt · Bmax − kt · x1 − kon · x1 · x2 + ko f f · x3 + kex · x4

ẋ2 = − kon · x1 · x2 + ko f f · x3 + kex · x4

ẋ3 =kon · x1 · x2 − ko f f · x3 − ke · x3

ẋ4 =ke · x3 − kex · x4 − kdi · x4 − kde · x4

ẋ5 =kdi · x4

ẋ6 =kde · x4

y2 =ψ1 (x2 + 2x6)
y1 =ψ2 (x3)
y3 =ψ3 (x4 + x5)

x1 = EpoR
x2 = Epo
x3 = Epo-EpoR
x4 = Epo-EpoRi

x5 = dEpoi

x6 = dEpoe

y1 = Epo concentration in the medium
y2 = Epo concentration on the surface
y3 = Epo concentration in the cells,

and t = [0, 300].
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Model of α-Pinene Isomerization

The model of the thermal isomerization of αP in the liquid phase was obtained from (Fuguitt
and Hawkins, 1947).

ẋ1 = − (p1 + p2) · x1

ẋ2 =p1 · x1

ẋ3 =p2 · x1 − (p3 + p4) · x3 + p5 · x4

ẋ4 =p4 · x3 − p5 · x4

x1 = α-Pinene
x2 = Dipentene
x3 = Dimer
x4 = allo-ocimene,

and t = [0, 25].
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Appendix D The Bayesian Dynamic Elastic-Net

Gene Regulatory Network

The gene regulatory network was obtained from DREAM6 Challenge (Meyer et al., 2014). For
further information about this challenge we refer the reader to the DREAM6 Challenge.

ẋ1 =pro1strength − mrna1degradation−rate · x1

ẋ2 =rbs1strength · x1 − pdegradation−rate · x2

ẋ3 =pro2strength ·

(
x1
v2Kd

)v2h

1 +
(

x2
v2Kd

)v2h
·

1

1 +
(

x6
v5Kd

)v5h
− mrna2degradation−rate · x3

ẋ4 =rbs2strength · x3 − pdegradation−rate · x4

ẋ5 =pro3strength ·

(
x1
v3Kd

)v3h

1 +
(

x2
v3Kd

)v3h
·

1

1 +
(

x2
v4Kd

)v4h
− mrna3degradation−rate · x5

ẋ6 =rbs3strength · x5 − pdegradation−rate · x6

ẋ7 =pro4strength ·

(
x1
v1Kd

)v1h

1 +
(

x2
v1Kd

)v1h
·

1

1 +
(

x5
v8Kd

)v8h
− mrna4degradation−rate · x7

ẋ8 =rbs4strength · x7 − pdegradation−rate · x8

ẋ9 =pro5strength ·
1

1 +
(

x4
v6Kd

)v6h
− mrna5degradation−rate · x9

ẋ10 =rbs5strength · x9 − pdegradation−rate · x10

ẋ11 =pro6strength ·
1

1 +
(

x4
v7Kd

)v7h
− mrna6degradation−rate ∗ x11

ẋ12 =rbs6strength · x11 − pdegradation−rate · x12

y1 = pp1mrna

y2 = p1
y3 = p2
y4 = p3
y5 = p4
y6 = p5
y7 = p6
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x1 = pp1mrna

x2 = p1
x3 = pp2mrna

x4 = p2
x5 = pp3mrna

x6 = p3
x7 = pp4mrna

x8 = p4
x9 = pp5mrna

x10 = p5
x11 = pp6mrna

x12 = p6

The initial conditions for the proteins p1 to p6 were set to 1 and, for all mRNA species,
pp1mrna to pp6mrna were set to 0. The observation period is given by t = [0, 20].
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APPENDIX E

Refined Model of the M2
Receptor-dependent Signaling

Material and Methods

Cell Culture

Flp-In™-CHO cells stably expressing the hM2 receptor (CHO-hM2 cells) were cultured as
described previously in Ham’s nutrient mixture F-12 (Ham’s F-12) supplemented with 10%
(v/v) fetal calf serum (FCS), 100 U mL-1 penicillin, 100 mg mL-1 streptomycin and 2 mM
l-glutamine (Sigma Aldrich, UK) (Schrage et al., 2013). The cells were grown in a humidified
incubator at 37 °C and 5% CO2, and passaged by trypsinization at nearly confluence.

cAMP Assay

Quantification of the agonist-induced rise of the intracellular cAMP was performed using cAMP
Complete ELISA kit (ADI-900-163, Enzo Life Sciences, Inc) according to the manufacturer’s
introductions. Cells were incubated for 30 minutes with iperoxo.

Western Blots

Cells were seeded into 6 well plates and stimulated with 0.1 µM iperoxo for 2, 5, 10, 15, 20,
30 minutes. After specified treatments, cellular lysates were prepared in lysis buffer [25 mM
Hepes, 2.5 mM EDTA, 50 mM NaCl, 50 mM NaF, 30 mM sodium pyrophosphate, 10% (v/v)
glycerol, 1% (v/v) Triton X-100, pH 7.5, containing Complete™ EDTA-free protease inhibitor
cocktail tablets (Roche)].

Proteins were separated by SDS/PAGE (4–12% Bis-Tris gels) and transferred onto nitrocellu-
lose membranes for western blotting using the NUPAGE system (Invitrogen). The membranes
were blocked in 5% phosphoblocker. The blots were probed with the related antibodies (see

211



Appendix E Refined Model of the M2 Receptor-dependent Signaling

Antibody Manufacturer Code
PKA C-α Cell Signaling Technology 4782

Epac (A-5) Santa Cruz Biotechnology sc-28366
Anti-AKT1 (phospho S473) abcam ab81283

Anti-GRK6 abcam ab109302
Anti-M2 abcam ab109226

Anti-GRK2 (phospho S29) abcam ab58520
Anti-RGS14 abcam ab137893

Phospho-PKA Substrate Cell Signaling Technology 9624
Akt1 (2H10) Cell Signaling Technology 2967

phospho-UCR1 non-purchasable -
pan-PDE4 Millipore ABS181

Table E.1: List of used antibodies. The used Anti-GRK6 antibody detects GRK2 as well.

Table E.1 diluted in the range from 1/500 to 1/5000 in 1% phosphoblocker diluted in TBS-T
(150 mM NaCl, 20 mM Tris–HCl, pH 7.6, 0.1% Tween-20). The bands were visualized using
the appropriate secondary antibody and visualized using an Odyssey scanner (Licor Biosciences)
and the band intensity was quantified using Image Studio (Licor Biosciences, v. 5.2).
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Revised Model

Figure E.1: Complete model fitting results for the revised model.
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Appendix E Refined Model of the M2 Receptor-dependent Signaling

List of Reactions

The first number (red) counts the reactions, the second number is linked to Table B.1.

GP→ GP (1|1; 2; 3; 4; 11)

GP→ αs\o (2|1; 2; 3; 4; 11)

GP→ αi (3|1; 2; 3; 4; 11)

αs\o→ ∅ (4|2; 11)

αi → ∅ (5|7; 11)

AC + αs 
 ACαs (6|9; 11)

ACαs + αi 
 ACαsαi (7|9; 10; 11)

AT P→ cAMP (8|15; 18; 25)

cAMP→ AMP (9|16)

2PKA + 4cAMP
 2PKA (10|24)

PDE 
 PDE (11|16)

RGS 
 RGS (12|6; 14)

GRK 
 GRK (13|13)

GEF + cAMP
 GEF (14|17)

GEF 
 GEFP (15|12)

AKT 
 AKT (16|12)

X : Y = Complex of X and Y

X = Inactive form of protein X

XP = Phosporylated form of protein X
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List of Rate Laws

Detailed list of rate laws including the parameter estimates. Numbers count the reactions linked
to the List of Reactions.

Rate-Law
Nr. Forward Backward Parameter Estimates

(1) keq
(
1 − exp

(
−kobs × t

))
keq = 50.5 kobs = 0.076

(2) (1 − Frac) ×
V1×[GP]

Km1+[GP] Frac = 0.881 V1 = 14.994 Km1 = 0.247

(3) Frac ×
V1[GP]

Km1+[GP] Frac = 0.881 V1 = 14.994 Km1 = 0.247

(4) V2 × [αs\o] V2 = 0.245

(5)
V3×[RGS ]×[αi]

Km3+[αi] V3 = 2.790 Km3 = 0.066

(6) k1 × [AC] × [αs\o] k2 × [ACs] k1 = 2.240 k2 = 0.318

(7) k3 × [ACs] × [αi] k4 ×
[
ACsi

]
k3 = 1.521 k4 = 0.176

(8) V4×[ACs ](
Km4+[ACs ]

)(
1+

[PKA]
Ki4

) V4 = 47.223 Km4 = 0.658 Ki4 = 12.880

(9)
V5×[cAMP]×[PDE]

Km5+[cAMP] V5 = 6.953 Km5 = 0.167

(10) k5 ×
[
PKA

]
× [cAMP]4 k6 × [PKA]2 k5 = 8e − 05 k6 = 4e − 04

(11)
V6×[PKA]×

[
PDE

]
Km6+

[
PDE

] V7 × [PDE] V6 = 0.018 Km6 = 0.516 V7 = 0.010

(12)
V8×[PKA]×

[
RGS

]
Km8+

[
RGS

] +
V12×[GEF]×

[
RGS

]
Km12+

[
RGS

] V9 × [RGS ] V8 = 0.382 Km8 = 0.201 V12 = 0.312 Km12 = 0.354 V9 = 0.166

(13)
V10×[PKA]×

[
GRK

]
Km10+

[
GRK

] V11 × [GRK] V10 = 0.575 Km10 = 0.057 V11 = 0.961

(14) k7 ×
[
GEF

]
× [cAMP] k8 × [GEF] k7 = 0.369 k8 = 0.363

(15)
V13×[GEF]×[GRK]

Km13+[GEF] k9 ×
[
GEFp

]
V13 = 0.423 Km13 = 0.351 k9 = 0.317

(16)
V14×

[
AKT

]
Km14+

[
AKT

] V15×[PKA]×[AKT ]
Km15+[AKT ]) V14 = 55.452 Km14 = 5.054 V15 = 19.580 Km15 = 18.4603
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