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Summary 

Iron-sulfur clusters (ISCs) are essential cofactors that are composed of iron and inorganic sulfur. 

A complex assembly pathway conveys their initial synthesis and subsequent binding to the 

respective apoproteins. With the exception of plastids, that are equipped to synthesise ISCs for 

their own set of FeS-proteins, all other cellular FeS-proteins depend on the mitochondrial ISC 

machinery and the ATP-binding cassette transporter ATM3 in the inner membrane of 

mitochondria that transports a yet unidentified sulfur-component from the mitochondrial matrix 

into the cytosol. FeS-protein maturation can be divided into three steps: the assembly of the 

ISC on a scaffold protein, the transfer of the nascent ISC via carrier proteins and the insertion 

of the ISC into specific apoproteins.  

This work focusses on the role of the monothiol glutaredoxin S15 (GRXS15) as a carrier protein 

as well as the impact of the glutathione pool on maturation of mitochondrial and cytosolic FeS-

proteins. Here, the identification of previously unrecognised embryonic lethal Arabidopsis 

mutants deficient in mitochondrial GRXS15 is shown. Recombinant GRXS15 coordinates an 

ISC in the presence of reduced glutathione as a cofactor. Genetic interference with ISC 

coordination through targeted mutagenesis diminished the ability of the protein to complement 

a yeast mutant lacking the homologous mitochondrial Grx5p. Similarly, the mutated GRXS15 

variant K83/A was not able to fully complement the lethal Arabidopsis mutants. Partial 

complementation results in a dwarf phenotype and severely diminished aconitase activity. 

Furthermore, the complemented mutants displayed disturbances in metabolic pathways that are 

connected with lipoylated proteins. Taken together, genetic evidence and metabolic 

characterisation uncovered the role of mitochondrial GRXS15 in FeS-protein maturation, 

particularly that of aconitase and lipoic acid synthase. Lack of “classical” oxidoreductase 

activity in vitro additionally supports the function of GRXS15 as an ISC carrier protein. 

Unexpectedly, the K83/A variant showed an enhanced GSSG-dependent oxidation of redox-

sensitive GFP (roGFP2). This increased catalytic activity, however, is not based on an improved 

interaction with roGFP2 but rather points to an essential role of the amino acid substitution on 

GRX function itself.  

Furthermore, it is shown that neither a reduced glutathione amount nor an increase in 

mitochondrial matrix GSSG influences the maturation of mitochondrial as well as cytosolic 

FeS-proteins. GSH-depletion does not affect the downstream targets of GRXS15. Still, ISC 

coordination of GRXS15 is stabilised by GSH addition in vitro, while the GRXS15 holoprotein 

is just slightly destabilised by GSSG. The negligible impact of GSSG on GRXS15 function was 

also confirmed in vivo using an atm3-4gr2epc2 double mutant. Although high mitochondrial 
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GSSG aggravates the atm3 phenotype the atm3-4gr2epc2 shows no decreased activity of 

cytosolic FeS-proteins.  
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Zusammenfassung 

Eisen-Schwefel (FeS) Cluster sind lebenswichtige Cofaktoren, die aus Eisen und 

anorganischem Schwefel bestehen. Eine komplexe Assemblierungsmaschinerie ist die 

Grundlage für die Synthese des Clusters und dessen Einbau in entsprechende Zielproteine. 

Während Plastiden ein eigenes System für die Biogenese von plastidären FeS-Proteinen 

besitzen, sind alle anderen zellulären FeS-Proteine von der mitochondrialen 

Assemblierungsmaschinerie sowie dem ABC-Transporter ATM3 der inneren mitochondrialen 

Membran abhängig, welcher eine noch unbekannte, schwefelhaltige Verbindung in das Zytosol 

exportiert. Die Biogenese der FeS-Proteine kann in drei Schritte unterteilt werden: der Cluster 

wird auf einem Gerüstprotein zusammengesetzt, anschließend durch ein Trägerprotein abgelöst 

und schließlich in das entsprechende Zielprotein eingebaut.  

Der Fokus dieser Arbeit richtet sich auf das Monothiol-Glutaredoxin S15 als Trägerprotein und 

auf den Einfluss des Glutathionpools auf die Biogenese mitochondrialer und zytosolischer FeS-

Proteine. In dieser Arbeit wurde gezeigt, dass die Deletion des GRXS15 zu einem embryo-

letalen Phänotyp führt. Des Weiteren kann rekombinantes GRXS15 mit Hilfe von reduziertem 

Glutathion als Cofaktor einen FeS-Cluster koordinieren. Beeinträchtigung dieser 

Koordinierung durch gezielte Mutagenese führt zu einer verminderten Komplementation einer 

Hefemutante, welcher das entsprechend homologe mitochondriale Grx5p fehlt. 

Dementsprechend konnte eine mutierte K83/A Variante des GRXS15 auch nicht vollständig die 

Arabidopsis Null-Mutante komplementieren. Die unvollständige Komplementierung führt zu 

einem Zwergenwachstum der Pflanzen sowie einer stark verringerten Aconitaseaktivität. 

Außerdem zeigt die Mutante Störungen in Stoffwechselwegen, welche in Verbindung mit 

lipoylierten Proteinen stehen. Basierend auf genetischen Nachweisen als auch metabolischer 

Charakterisierung wurde die Rolle des GRXS15 in der Biogenese von FeS-Proteinen, 

insbesondere Aconitase und Liponsäure-Synthase, gezeigt. Weitere Unterstützung findet diese 

Aussage dadurch, dass GRXS15 in vitro nicht die Oxidoreduktaseaktivität eines „klassischen“ 

Glutaredoxins besitzt. Interessanterweise weist die K83/A Variante eine erhöhte Aktivität in der 

Oxidation von roGFP2 auf. Diese ist allerdings nicht auf eine verbesserte Interaktion mit 

roGFP2 zurückzuführen, sondern deutet auf eine andere wichtige Rolle der 

Amniosäurensubsitution für die Funktion von Glutaredoxinen hin.  

Zusätzlich wird in dieser Arbeit gezeigt, dass weder eine geringere Quantität an Glutathion 

noch ein Anstieg an GSSG Einfluss auf die Biogenese mitochondrialer und zytosolischer FeS-

Proteine hat. Arabidopsismutanten mit einer geringeren Menge an Glutathion zeigen nicht den 

gleichen Phänotyp wie grxs15 Mutanten. Nichtsdestotrotz stabilisiert die Zugabe von GSH das 



                                                                                                                         Zusammenfassung 

 

4 

 

GRXS15 Holoprotein in vitro. Allerdings führt die Addition von GSSG nur zu einer sehr 

leichten Destabilisierung des Komplexes. Der geringe Einfluss an übermäßigem GSSG konnte 

auch in einer atm3-4gr2epc2 Doppelmutante gezeigt werden. Auch wenn der erhöhte Gehalt 

an GSSG den atm3 Phänotyp verstärkt, konnte keine verminderte Aktivität an zytosolischen 

FeS-Proteinen nachgewiesen werden. 
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1. Introduction 

1.1 Reactive oxygen species and S-glutathionylation 

The Great Oxidation Event 2.4 billion years ago has profoundly shaped the history of life. 

Although it took another 1.8 billion years until atmospheric concentrations of molecular oxygen 

(O2) rose to modern levels (Lyons et al., 2014), anaerobic organisms were required to adapt to 

the rise of O2 relatively quickly at evolutionary timescales leading probably to the first major 

mass extinction of most species. This is because from a biochemical point of view, oxygen and 

its derivatives were anything but beneficial: they were highly reactive and toxic as a result. 

Nevertheless, cells evolved strategies not just how to deal with oxygen but also how to benefit 

from its reactivity by harnessing aerobic respiration. The reduction of O2 provides the largest 

free energy release per electron transfer, with the exception of fluorine. Unlike fluorine, O2 has 

a greater stability and can consequently accumulate in Earth's atmosphere (Thannickal, 2009). 

An unavoidable consequence of aerobic metabolism is the production of reactive oxygen 

species (ROS), mainly produced by oxygen-dependent reactions in energy transduction at the 

inner mitochondrial membrane and thylakoid membrane of plastids (Huang et al., 2016; Mittler 

et al., 2004). ROS commonly occurring in biological systems are the superoxide anion (O2•
-) 

and hydrogen peroxide (H2O2). Furthermore, H2O2 is able, in combination with ferrous iron, to 

form O2•
- and a hydroxyl radical (•OH) in the so-called Fenton reaction (Fenton, 1894). 

Hydroxyl radicals can cause severe cell damage through uncontrolled oxidation of various 

cellular macromolecules such as proteins, unsaturated fatty acids or nucleic acids (Møller et al., 

2007). In modern organisms ROS are, however, not just by-products of “breathing oxygen” but 

additionally have specific roles in signal transduction through selective oxidation of target 

molecules (Huang et al., 2016). Here, each ROS has its individual effects due to differences in 

their chemistry, determining diffusion range, half-life, membrane permeability or reactivity 

(Schwarzländer and Finkemeier, 2013).  

The proteinogenic amino acid cysteine is particularly susceptible to ROS-mediated 

modifications but is at the same time important for protein folding, enzyme activity and metal 

coordination. The cysteine thiol group (-SH) can be found in several oxidation states such as 

disulfide bond (-S-S-), sulfenic (-SOH), sulfinic (-SO2H) or sulfonic acid (-SO3H) (Giles et al., 

2003). Alterations in the oxidation state can influence protein activity as well as metal-binding 

properties and especially in proteins where a reduced thiol is an absolute requirement for 

activity, spontaneous changes in the oxidation state must be avoided (Gupta and Luan, 2003; 

Meinhard and Grill, 2001). Cells have developed mechanisms to strictly control ROS 

production or removal and to maintain the appropriate redox state of cellular compounds which 
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is essential for life (Møller, 2001). A temporary posttranslational modification to prevent the 

irreversible oxidation of a thiol (e.g., sulfinic and sulfonic acid formation) or to regulate the 

activity of a catalytic residue is the formation of a mixed disulfide between the protein thiol and 

the tripeptide glutathione (GSH) called S-glutathionylation.  

Because of their sessile lifestyle plants are particularly interesting in terms of redox regulation 

as they are facing light-dark cycles as well as irregular environmental conditions. Furthermore, 

plants possess two organelles with an electron transport chain, plastids and mitochondria that 

are potential sources of ROS. Additionally, plants are very oxygen-rich due to endogenous O2 

production as during photosynthesis or detoxification of H2O2 (Schwarzländer and Finkemeier, 

2013). Glutathione is the most abundant low-molecular-weight thiol (γ-L-glutamyl-L-

cysteinyl-glycine) in most prokaryotes and eukaryotes and is commonly synthesised in two 

sequential reactions catalysed by glutamate-cysteine ligase (GSH1) and glutathione synthase 

(GSH2). In Arabidopsis, disruption of one of these genes and thus, loss of total glutathione 

leads to embryo or early seedling lethal phenotypes demonstrating the importance of 

glutathione for plant growth and development (Cairns et al., 2006; Pasternak et al., 2008). 

Significant depletion of total glutathione based on point mutations in GSH1 already results in 

severely diminished growth in zir1 (ZINCTOLERANCE INDUCED BY IRON 1) or even 

growth arrest in rml11 (ROOT MERISTEMLESS 1) Arabidopsis mutants (Shanmugam et al., 

2012; Vernoux et al., 2000). Glutathione exists in a reduced (GSH) or oxidised form (GSSG) 

where two glutathione molecules are linked by a disulfide bond. GSSG is converted back to 

GSH at the expense of NADPH by glutathione reductases (GR). In bacteria, yeasts, and animals, 

one GR gene is found; whereas in Arabidopsis, two GR genes are encoded. GR1 is present in 

the cytosol and the peroxisomes, whereas GR2 is dual-targeted to plastids and mitochondria 

(Chew et al., 2003a; Kataya and Reumann, 2010; Marty et al., 2009). Similar to the loss of 

glutathione, insufficient reduction of the GSSG pool in Arabidopsis leads to embryo lethality. 

Interestingly, the embryo lethality of the gr2 mutant is due to inactivation of the chloroplastic 

isoform of GR2, because plants complemented with just mitochondrial targeted GR2 are not 

viable in contrast to plants with only plastid-targeted GR2. Cytosolic GR1 is unable to 

compensate for the absence of organellar glutathione reduction (Marty et al, unpublished).  

The cellular significance of glutathione is not restricted to glutathionylation of proteins. In 

plants, it additionally participates in the glutathione/ascorbate cycle. Here, GSH acts as an 

                                                 
1 The nomenclature rules applied in this thesis generally follows the Arabidopsis convention when dealing with 

plant abbreviations. Later on yeast proteins are referred to by the relevant gene symbol, initial letter uppercase and 

with the suffix ‘p’ , Alleles created by recombinant DNA technology are named by use of a symbol indicating 

deletion (Δ) and the symbol for the gene that is altered 
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electron donor allowing the regeneration of reduced ascorbate, another major antioxidant in the 

plant cell (Noctor and Foyer, 1998). Furthermore, GSH can also provide electrons to several 

enzymes contributing to the redox-regulation of thiols like glutaredoxins (GRXs) which are 

involved in the catalysis of glutathionylation, de-glutathionylation as well as reduction of 

disulfide bridges. Furthermore, GSH is required in several reactions as cofactor as in 

detoxification of methylglyoxal or nitric oxide forming S-nitrosoglutathione (GSNO) (Noctor 

et al., 2011). 

 

 

1.1.1 The glutaredoxin system 

Glutaredoxin was originally discovered in a mutant of Escherichia coli lacking thioredoxin 

(TRX) and described as a GSH-dependent hydrogen donor for ribonucleotide reductase 

(Holmgren, 1976; Holmgren, 1979). Furthermore, the GRX was able to reduce low molecular 

weight substrates such as S-sulfocysteine and bis(2-hydroxyethyl)disulfide (HED) (Bushweller 

et al., 1992; Holmgren, 1989). In the following years more and more GRXs were characterised 

from yeast (Gan et al., 1990), mammals (Hopper et al., 1989; Padilla et al., 1995), and plants 

(Sha et al., 1997) resulting in a generalisation of GRXs as ubiquitously expressed small 

oxidoreductases present in most prokaryotes and eukaryotes. 

As members of the TRX superfamily, all GRXs share a similar three-dimensional structure, the 

so-called TRX fold. This consists of a central four-stranded β-sheet with three flanking 

α-helices and the active site motif. The active site contains either a CxxC2 or CxxS motif, 

classifying the GRX family roughly in dithiol and monothiol GRXs (Eklund et al., 1992; Xia 

et al., 1992). Proteins evolved on the TRX fold are often involved in detoxification or redox 

reactions mediating dithiol-disulfide exchange reactions. In contrast to TRXs, which are 

reduced by NAD(P)H-dependent TRX reductases (NTRs) or ferredoxin-dependent TRX 

reductases (FTRs), GRXs are generally reduced by GSH although some exceptions have been 

proposed (Fernandes et al., 2005; Tamarit et al., 2003) (Figure 1A). Subsequently, the generated 

GSSG is reduced by the NTR-related FAD-dependent GRs. Similar to NTRs, GRs obtain their 

reducing power from the pool of NADPH (Meyer et al., 2012) and thus connect the cell’s energy 

metabolism with the maintenance of its redox balance or thiol/disulfide-metabolism (Giles et 

al., 2003). 

                                                 
2 abbreviations for amino acids are listed in Supplementary Table 2 
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GRX-catalysed reactions are divided into two distinct classes depending on the involved 

cysteines of the active site motif: the dithiol and monothiol mechanism. The dithiol reaction 

mechanism (Figure 1B) is used to reduce intra- or intermolecular disulfide bridges between two 

cysteines present in peptides. Here, the reduction process starts with the N-terminal active site 

cysteine of the GRX in its deprotonated thiolate form. This thiol, which is called the catalytic 

cysteine, has a low pKa value allowing the initiation of a nucleophilic attack on the target 

disulfide and the formation of a transient covalently bound mixed disulfide between the 

catalytic cysteine of the GRX and a cysteine of the target peptide. In the second step, the second 

cysteine (resolving cysteine) of the GRX reduces the mixed disulfide, yielding the reduced 

target and an oxidised GRX (Hanschmann et al., 2013; Meyer et al., 2012). For example, an E. 

coli GRX mutant with a C14/S mutation of the resolving cysteine is not able to reduce 

ribonucleotide reductase (Bushweller et al., 1992).  

In contrast, the monothiol reaction mechanism (Figure 1C) requires just the catalytic cysteine 

and is used in deglutathionylation reactions. The catalytic thiol of the GRX attacks the disulfide 

of the glutathionylated peptide, releases the reduced peptide, and becomes glutathionylated. 

Subsequently, another molecule of GSH reduces the glutathionylated thiol of GRX resulting in 

GSSG and the reduced GRX. Generally, all of the above-mentioned reactions are reversible. It 

was thus proposed that GRXs can also specifically oxidise thiols; however, experimental data 

are sparse (Bender et al., 2015; Deponte and Lillig, 2015).  
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Figure 1: Glutaredoxin reduction mechanism of oxidised target proteins (modified after Meyer et 

al., 2012).  

A: GSH-dependent reduction pathway. NADPH is the major electron source and provides electrons to 

the glutathione reductase (GR). GR reduces oxidised glutathione (GSSG) yielding two molecules of 

reduced glutathione (GSH), which serves as a reducing agent for GRXs. Subsequently, the GRXs are 

able to reduce different types of oxidised cysteines. Red and blue indicate if the substrate is oxidised or 

reduced, respectively. 

B: The dithiol mechanism is used to reduce disulfide bridges of two peptidyl cysteines. The N-terminal 

active site cysteine of the GRX forms a covalently bound mixed disulfide intermediate with the target 

protein, which is reduced by the C-terminal active site cysteine, releasing the reduced protein. The 

oxidised GRX is then reduced by two molecules of GSH.  

C: De-/glutathionylation is based on the monothiol mechanism. Here, the N-terminal active site cysteine 

of the GRX attacks the disulfide of the glutathionylated peptide, releases the reduced peptide, and 

becomes glutathionylated. Another molecule of GSH reduces the glutathionylated cysteine of the GRX 

yielding the reduced GRX and GSSG.  

 

 

To proof the presence and properties of enzymatically active GRXs, a number of biochemical 

assays have been established. The most prominent assays are using HED, dehydroascorbate 

(DHA), or insulin as substrates. These monitor GRX activity in a coupled fashion, 

spectroscopically following NADPH consumption upon GSSG reduction through GR (Begas 

et al., 2015). Although easily performable with robust outcome, they exclusively report GRX 

activity that relies on GSH and thus, just the reductive half-reaction. To overcome this, a green 

fluorescent protein has been engineered with two proximate surface cysteines to yield roGFP2, 

a redox-sensitive sensor (Dooley et al., 2004; Gutscher et al., 2008; Hanson et al., 2004). 
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Oxidation or reduction of the engineered disulfide bond triggers small structural changes that 

affect the protonation of the chromophore resulting in changed spectroscopic properties of 

roGFP2 (Hanson et al., 2004). Thus, the activity of GRXs can be analysed via the redox 

equilibration between glutathione and roGFP2 with regard to the oxidative and reductive half-

reaction (Meyer et al., 2007). However, based on such standard assays as described above, 

different GRXs are referred to as "enzymatically active or inactive" for the sake of simplicity 

without excluding the possibility that inactive GRXs might actually catalyse other reactions 

with specialised substrates in vivo (Begas et al., 2017). Indeed, GRXs have a broad range of 

functions and distinct substrate specificities that are not just based on the active site motif and 

the respective redox potential. The specificity is mainly determined by short- and long-range 

electrostatic interactions as well as a geometric complement of the immediate contact area of 

the proteins (Berndt et al., 2015). Most notably, at the time when with rising oxygen 

concentrations the complexity of organisms increased also the occurrence of cysteines 

increased (Miseta and Csutora, 2000). Concomitant with this, especially in photosynthetic 

organisms, redox regulatory pathways expanded. Thus, it is not surprising that land plants like 

Populus trichocarpa contain up to 38 GRXs as well as several GRX-like proteins (GRXL) in 

contrast to baker’s yeast Saccharomyces cerevisiae that encode just 8 GRXs in their genome 

indicating a specialisation of the GRXs in their in vivo function and physiologically relevant 

roles (Couturier et al., 2009; Mesecke et al., 2008; Navrot et al., 2006). However, it has to be 

considered that during the evolution of flowering plants the Type III GRXs (syn. ROXYs) 

increased massively. For these, however, it is still under debate whether they are really acting 

as oxidoreductases (Xing et al., 2006). 

 

 

1.1.2 Glutaredoxins in Arabidopsis 

The analysis of the Arabidopsis genome revealed 31 GRXs which are all nuclear-encoded but 

localised to different subcellular compartments (Rouhier et al., 2004). Arabidopsis GRXs have 

been found in the cytosol, nucleus, mitochondria, plastids and the secretory pathway (Figure 

2). Their subcellular distribution, however, is often still based on bioinformatical prediction 

(Heazlewood et al., 2007) and the number of isoforms whose localisation has been proven 

experimentally is limited (Bandyopadhyay et al., 2008; Cheng et al., 2006; Couturier et al., 

2011; Knüsting et al., 2015) (Figure 2).  
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Figure 2: Phylogeny and subcellular localisation of glutaredoxins in Arabidopsis.  

The localisation of the respective GRXs indicated by the colour code is based on predictions from 

SUBA3 (The SUBcellular localisation database for Arabidopsis proteins) or literature when indicated. 

Bootstrap value: 5,000, Scale bar = 0.2 amino acid substitution per site. Modified after Moseler et al. 

(2015); accession numbers and synonyms are listed in section 2.8. 

 

 

The initial classification of GRXs was based on the active site motif defining two types with 

either a dithiol or monothiol active site motif (Rodríguez-Manzaneque et al., 1999). These 

“classical” findings were mostly based on bacterial, yeast or mammalian GRXs, which have a 

limited number of 4, 8 or 4 GRX family members (Hanschmann et al., 2013; Mesecke et al., 

2008; Ströher and Millar, 2012). Once much larger numbers of GRXs were discovered in higher 

plants, a new classification was introduced (Couturier et al., 2009; Rouhier et al., 2004). The 

first class comprises 5 GRXs termed GRXC1-5 plus a close isoform of GRXC5, GRXS12. 

GRXC1-4 share a conserved CP/GYC active site motif, whereas GRXC5 and S12 are 

characterised by a CSYC/S sequence. The nomenclature of the respective GRX (C or S) is 
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based on the presence of a cysteine or a serine in the fourth position of the active site (CxxC or 

CxxS) (Rouhier et al., 2006). This GRX class is homologous to the “classical” dithiol GRXs 

such as E. coli Grx1 and Grx3, yeast Grx1p and Grx2p as well as mammalian GLRX1 and 

GLRX2 (Ströher and Millar, 2012). All class I GRXs tested so far are able to reduce artificial 

disulfides like HED (Couturier et al., 2013; Couturier et al., 2011; Li et al., 2010; Lundberg et 

al., 2001). Also Arabidopsis GRXC1 and GRXC2 were able to reduce HED as well as the 

cytosolic peroxiredoxin-2B (Riondet et al., 2012). Furthermore, Riondet (2012) and colleagues 

showed that GRXC1 forms a homodimer by coordinating an iron-sulfur cluster (ISC). 

Coordination of the ISC led to inactivation of the protein similar to findings with the human 

GLRX2 (Berndt et al., 2007; Lillig et al., 2005). For GLRX2, it was demonstrated that GSH is 

part of the holo-complex and the cluster is coordinated by the two N-terminal cysteines of the 

GLRX2 monomers as well as two molecules of GSH bound non-covalently to each of the 

monomers (Berndt et al., 2007; Johansson et al., 2007) (Figure 3).  

 

 

 

Figure 3: Cluster coordination and glutathione binding of GLRX2 (Johansson et al., 2007). 

Monomers A and B of GLRX2 (PDB: 2ht9) are coloured cyan and dark blue, respectively. The 

glutathione (GSH) and cysteines are represented as sticks. The GRX dimer is bridged by a 

[2Fe2S] cluster depicted as spheres with grey lines showing the coordination.  

 

 

Additionally, they showed that the GSH is in constant equilibrium with the pool of free GSH 

and stability of the ISC depends on the redox environment, because oxidants like GSSG 

promote disassembly of the holo-complex (Lillig et al., 2005). Thus, it is assumed that under 

oxidising conditions the dimer would separate into ISC-free active monomers, providing a 

structural explanation for GRX activation under oxidative stress (Berndt et al., 2007; Johansson 

et al., 2007). Exchange of the second amino acid in the active site in GRXC1 (CGYC) and 

GLRX2 (CSYC) into a proline resulted in a loss of the ISC (Berndt et al., 2007; Riondet et al., 
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2012). Indeed, Arabidopsis GRXC2, the closest homolog of GRXC1, contains a CPYC active 

site motif and is not able to coordinate an ISC. Nevertheless, although grxc1 and grxc2 mutants 

have no obvious phenotype, a grxc1grxc2 double mutant could not be isolated which has been 

claimed to indicate a functional redundancy of both GRXCs (Riondet et al., 2012). However, 

the developmental stage of lethality was not shown by Riondet and colleagues although it is 

mentioned that the grxc1/grxc1 GRXC2/grxc2 plants showed a high proportion of siliques 

lacking several seeds. As both genes are coupled to each other on chromosome V, isolation of 

double null mutants is expected to be rare as it would require chromosomal crossover to link 

the mutant alleles. Hence, it may well be possible that the number of genotyped seedlings (58) 

was too low to find a double homozygous mutant. 

Another well-studied GRX of class I is the plastidic GRXC5. Similar to GRXC1, it is able to 

reduce the artificial disulfide substrate HED or the small molecule DHA. Furthermore, it can 

also reduce putative physiological target proteins like methionine sulfoxide reductase B1 

(MsrB1) or peroxiredoxin-2E. Additionally, the protein is able to coordinate an ISC with a 

similar ligation as GRXC1 resulting in enzymatic inactivation (Couturier et al., 2011). 

However, the precise function of the class I GRXs in vivo has to be analysed.  

The second GRX class contains the monothiol GRXS14, S15, S16 and S17 with a conserved 

CGFS active site motif. They belong to the PICOT-HD (protein kinase C interacting cousin of 

Trx-homology domain) containing proteins and are homologous to E. coli Grx4 as well as yeast 

Grx3p, 4 and 5 or human GLRX5 (Isakov et al., 2000; Lemaire, 2004). In contrast to class I 

GRXs or other monothiol GRXs containing a C(P/S)YS active site motif, the CGFS GRXs have 

a negligible oxidoreductase activity in standard assays assuming essential functions of this class 

other than acting as a reductase. As GRXS15 is the central point of this study, class II will be 

described in more detail in section 1.1.3.  

The third and most comprehensive class (21 members in Arabidopsis) is class III comprising 

all GRXs with CCxx active site motif and are also named ROXYs (Gutsche et al., 2015; Li et 

al., 2009b). This class of GRXs is land plant-specific and interacts with members of the 

bZIP-type TGA transcription factor family (Zander et al., 2012). Here, ROXY1 and ROXY2 

have been intensively studied revealing a function in the regulation of organ primordia 

initiation, control of organ identity gene expression and progression into meiosis in the male 

germ line (Li et al., 2009b; Xing et al., 2005; Xing and Zachgo, 2008). Also for maize it was 

shown that the GRX male sterile converted anther 1 (msca1) plays a role in archesporial cell 

formation (Kelliher and Walbot, 2012). Beside the role in floral development, other CC-type 

GRXs play a role in stress response and plant defence (La Camera et al., 2011; Ndamukong et 
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al., 2007; Zander et al., 2012). Nevertheless, the exact function and the question why there are 

so many of the CC-type GRXs have still to be resolved. Furthermore, there is an additional 

GRX class (class IV) in eukaryotes consisting of proteins with three domains, an N-terminal 

GRX module followed by two domains of unknown function (Couturier et al., 2009). 

 

 

1.1.3 The role of CGFS glutaredoxins 

Although monothiol class II GRXs share the signature CGFS as their active site motif, members 

of the family are structurally and functionally versatile. Arabidopsis GRXS14 and GRXS15 are 

very small proteins with a single GRX domain preceded by an N-terminal signal peptide for 

plastidic or mitochondrial targeting, respectively (Figure 4). Arabidopsis GRXS16 has an N-

terminal extension in addition to a plastid targeting sequence. It has been shown in vitro that a 

putative GIY–YIG endonuclease fold in the N-terminal extension can act as an endonuclease 

and that the two domains are negatively regulated through the formation of an intramolecular 

disulfide bond indicating a regulatory mechanism for both nuclease and GRX activity (Liu et 

al., 2013). The physiological function of GRXS16 nevertheless remains unknown. The last 

GRX of class II is the multidomain GRXS17 that is characterised by an N-terminal TRX 

domain followed by three GRX domains (Figure 4).  

 

 

 

Figure 4: Domain structure of CGFS monothiol GRXs.  

The TRX domain (blue) and GRX domains (orange) are shown as boxes, whereas the conserved 

cysteines in the active sites of the TRX and GRX domains are numbered. Predicted or known plastidic 

or mitochondrial targeting signals are shown as green or grey boxes, respectively. 
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Although CGFS GRXs lack the classical oxidoreductase activity in vitro (Fernandes et al., 

2005; Tamarit et al., 2003), they might be involved in maintaining cellular redox homeostasis 

in vivo. For example, grxs14 plants have a higher level of protein carbonylation in chloroplasts 

and seedlings are more sensitive to external oxidants like H2O2 (Cheng et al., 2006). Likewise, 

GRXS15 has been proposed to be involved in the responses to oxidative stress (Cheng, 2008). 

Tomato plants silenced for the expression of GRXS16 display increased sensitivity to osmotic 

stress (Guo et al., 2010). Regarding GRXS17, Arabidopsis null mutants showed some degree 

of hypersensitivity to DNA damage and when growing at 28 °C exhibited impaired primary 

root growth, impaired flowering as well as altered sensitivity to auxin (Cheng et al., 2011; Inigo 

et al., 2016; Knüsting et al., 2015). Consistently, ectopic expression of Arabidopsis GRXS17 

in tomato plants resulted in enhanced thermotolerance (Wu et al., 2012). Additionally, grxs17 

seedlings are sensitive to oxidative stress and increase ROS production under iron deficiency 

stress (Yu et al., 2017). 

Concerning the subcellular localisation, experimental evidence exists for all isoforms. 

GFP-tagged GRXS14 and GRXS16 have been localised in plastids (Bandyopadhyay et al., 

2008; Cheng et al., 2006; Liu et al., 2013) and GRXS17 in cytosol and nucleus (Knüsting et al., 

2015; Wu et al., 2012). The precise localisation for GRXS15 is controversial. Independent 

targeting experiments have reported GFP-tagged poplar GRXS15 in mitochondria and 

Arabidopsis GRXS15 in the plastid stroma or dual-targeted plastidic-mitochondrial in 

bifunctional fluorescence complementation (BiFC) experiments with BolA4 (Bandyopadhyay 

et al., 2008; Cheng, 2008; Couturier et al., 2014). In proteomic studies, GRXS15 has been 

repeatedly found in the mitochondria of Arabidopsis and potato, but also in the chloroplast 

proteome of maize (Huang et al., 2013; Klodmann et al., 2011; Salvato et al., 2014).  

The same considerable ambiguity remains for the ability to complement a yeast Δgrx5 mutant. 

Yeast Grx5p is a mitochondrial monothiol GRX involved in the maturation of FeS-proteins and 

displaying distinct growth defects (Rodríguez-Manzaneque et al., 2002). Among poplar 

monothiol GRXs, GRXS15 is the only isoform failing to rescue most phenotypes of the yeast 

Δgrx5 mutant (Bandyopadhyay et al., 2008). In contrast, all Arabidopsis CGFS GRXs are able 

to fully complement the Δgrx5 mutant (Cheng et al., 2006; Cheng, 2008; Knüsting et al., 2015; 

Liu et al., 2013). Based on the ability to complement the yeast mutant, plant CGFS GRXs have 

been considered to participate in the maturation of FeS-proteins. Indeed, similar to class I 

GRXs, monothiol class II GRXs are able to coordinate an ISC (Bandyopadhyay et al., 2008; 

Haunhorst et al., 2010; Picciocchi et al., 2007). Interestingly, multidomain GRXs like GRXS17 

are able to incorporate an ISC in each GRX domain (Knüsting et al., 2015). The first crystal 



                                                                                                                                   Introduction 

 

16 

 

structure of a CGFS GRX was published for E. coli Grx4, confirming that two GRX molecules 

form a homodimer and that two GSH molecules are linked to the cluster, but held in place by 

non-covalent interactions with the GSH binding pocket of each Grx4 monomer (Iwema et al., 

2009). A crystal structure for human GLRX5 reveals a similar coordination environment for 

the [2Fe-2S] cluster; however, in this structure, two [2Fe-2S]-bridged homodimers interact to 

form a tetramer (Johansson et al., 2011). Dithiol GRXs, in contrast, are not able to complement 

the yeast Δgrx5 mutant indicating a separate role of ISC coordination in the function of GRXs 

(Bandyopadhyay et al., 2008). The ISC coordination of dithiol GRXs is, indeed, assumed to be 

a redox sensor since the ISC coordination under oxidative conditions is lost leading to 

enzymatic active GRXs, whereas CGFS GRXs are implicated in intracellular iron trafficking 

or sensing via their ISC as well as maturation of FeS-proteins (Lillig et al., 2005; Mühlenhoff 

et al., 2010; Rodríguez-Manzaneque et al., 2002). A more detailed overview of ISC assembly 

and FeS-protein biogenesis will be given in the following paragraph.  
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1.2 Iron-sulfur cluster  

Iron is the fourth most abundant element in the Earth’s crust and an essential nutrient for 

virtually all organisms (Beinert, 2000). Especially the electron transfer property of this 

transition metal makes it fundamental for vital metabolic processes like photosynthesis, 

respiration or nitrogen fixation. In photosynthetic organisms, the most prominent role of iron is 

the participation in ISCs acting as a cofactors for several indispensable enzymes (Balk and 

Schaedler, 2014). The presence of ISCs in both aerobic and anaerobic archaea, bacteria, and 

eukaryotes and their fundamental requirement for normal metabolism indicates that these 

clusters were likely integrated into central metabolic pathways early in the evolution of life 

(Boyd et al., 2014). Indeed, it has been suggested that, prior to the widespread oxidation of 

Earth’s atmosphere, the oxidative formation of pyrite (FeS2) from hydrogen sulfide (H2S or 

HS-) and Fe2+ or iron sulfide (FeS) is the most geochemically plausible source of reducing 

power for a “chemo-auto-origin” and for the early evolution of life in an “Fe-S World” 

(Wächtershäuser, 1992). Therefore, ISC can be thought of as “mineral relics” from emerging 

life bound to rocks that was later incorporated into proteins.  

The inorganic cluster consists of iron cations (Fe2+/Fe3+) and sulfide anions (S2-) and can vary 

in structure and stereochemistry. The simplest clusters are the rhombic [2Fe-2S] and cubic [4Fe-

4S] cluster (Figure 5), with the [4Fe-4S] cluster being the most frequent one (Beinert, 2000). 

More complicated forms, however, have been characterised that can also harbour other metal 

ions like molybdenum in the Molybdenum cofactor (Moco) or up to 7 Fe atoms as in 

nitrogenase (Beinert, 2000; Beinert et al., 1997). Interestingly, it has been shown at least in 

vitro, that under elevated oxygen levels, the [4Fe-4S] cluster of E. coli fumarate and nitrate 

reduction (FNR) regulatory protein undergoes a rapid conversion to a [2Fe-2S] cluster, whereas 

under anaerobic incubation with DTT and Fe2+ ion the [4Fe-4S] can be regenerated (Zhang et 

al., 2012). 

ISCs are usually integrated into proteins through coordination of the Fe ions by sulfhydryl 

groups of cysteine side chains (Figure 5), yet alternative ligands like histidine are known. 

Substitution of the Cys ligand by other amino acids leads to destabilisation and hence, impairs 

the cluster assembly (Moulis et al., 1996).  
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Figure 5: Structures of iron-sulfur clusters. 

Iron is shown in red and sulfur in yellow. Depicted are the [2Fe-2S] (left) and the [4Fe-4S] (right) cluster 

coordinated by 4 Cys ligands. Two [2Fe-2S] clusters can be converted into an [4Fe-4S] cluster by 

reductive coupling.  

 

 

ISCs can be spontaneously assembled from the required components under anaerobic 

conditions (Hagen et al., 1981). However, the spontaneous formation would most likely not 

happen efficiently in vivo. Especially iron has to be treated with caution by the organism. On 

the one hand, excess iron is a potent source of ROS due to its ability to catalyse the Fenton 

reaction. On the other hand, although iron is the fourth abundant element, the bioavailability 

has varied substantially over time and is nowadays marginal. Prior to the Great Oxidation Event, 

Fe2+ was bioavailable because of an absence or very low concentration of O2 and the solubility 

of Fe2+ being higher than of Fe3+. The increasing O2 concentration led to spontaneous oxidation 

of Fe2+ to Fe3+ which made iron insoluble and nearly inaccessible at physiological pH (Boyd et 

al., 2014). Thus, based on the dual nature of iron and given that ISCs where introduced early in 

evolution (i.e. under reducing atmosphere) they now need to be protected and tightly controlled 

under oxygenic conditions. Therefore, increasing O2 concentration of the atmosphere also 

provided the driving force that led to the evolution of sophisticated machineries mediating and 

controlling the assembly and the transfer of ISCs to acceptor proteins.  

 

 

1.2.1 Biogenesis of iron-sulfur cluster  

Although around one hundred proteins with myriad functions require iron-containing cofactors 

for activity (Waldron et al., 2009), the machinery responsible for distributing these cofactors 

remains relatively obscure in parts. Three distinct systems, which are required for the formation 

and insertion of ISCs into the polypeptide chain, have been initially identified in bacteria and 

are encoded by the nif, isc and suf operons (Johnson et al., 2005). Hubs of ISC assembly in 

bacteria are proteins of the isc operon, whereas suf operon encoded proteins are induced under 

conditions of oxidative stress or iron limitation (Nachin et al., 2003; Outten et al., 2004). Nif-
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specific proteins found in Azotobacter vinelandii are involved in the assembly of ISCs for 

nitrogenase (Jacobson et al., 1989; Robinson et al., 1987). The central function of the assembly 

machinery is to mobilise Fe and S atoms, to assemble them into an ISC form and to transfer the 

ISCs to their respective apoproteins. In plants, autonomous pathways for this multistep process 

are present in plastids and mitochondria whereas the cytosolic machinery relies on the export 

of bound sulfide from mitochondria (Figure 6).  

 

 

 

Figure 6: Iron-sulfur cluster assembly machineries in eukaryotes.  

Mitochondria contain the ISC assembly machinery and are also essential for the cluster assembly in the 

cytosol in association with the CIA machinery. A hitherto undefined sulfur-containing compound in a 

glutathione-dependent fashion (termed X-S) is exported from the mitochondrial ISC machinery to the 

cytosolic CIA machinery as a sulfur donor for ISC assembly because of the absence of a cytosolic 

cysteine desulfurase. Plastids harbour the SUF machinery which operates independently. 

 

 

Because homologs of some bacterial SUF proteins have been discovered in plastids of algae 

and higher plants, the plastidic assembly pathway is called SUF (sulfur mobilisation) assembly 

machinery (Takahashi and Tokumoto, 2002; Xu et al., 2005). This machinery is essential for 

the maturation of plastidic FeS-proteins. In contrast, homologs to the bacterial isc genes have 

been found in yeast, mammals, and plants (Supplementary Table 1). Here, the mitochondrion 

harbours the respective nuclear-encoded proteins as the machinery was likely inherited from α-

proteobacteria, the evolutionary ancestor of the organelle (Lill and Kispal, 2000). The system 

is named ISC (iron-sulfur cluster) assembly machinery and is essential for the maturation of 

mitochondrial FeS-proteins. The machinery is, additionally, indispensable for the cytosolic 
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iron-sulfur protein assembly (CIA) machinery as cysteine desulfurases that generate sulfur for 

ISCs, are strictly localised in the plastids and mitochondria, respectively. It has been suggested 

that a mitochondrial ABC transporter of the inner membrane, named ATM3 in Arabidopsis or 

Atm1p in yeast, is able to export glutathione polysulfide to supply the CIA machinery with a 

sulfur donor for cytosolic-nuclear FeS-protein maturation (Bernard et al., 2009; Schaedler et 

al., 2014). This substrate, however, is questionable and both the actual molecule as well as 

export mechanism remain puzzling (Lill et al., 2014). At least in yeast, the crystal structure of 

the respective ABC transporter Atm1p has been resolved displaying a putative substrate binding 

pocket for GSH or derivatives (Srinivasan et al., 2014). In addition, yeast lacking Gsh1p, the 

enzyme that catalyses the first step of glutathione biosynthesis, show decreased activity of 

cytosolic but not mitochondrial FeS-proteins (Sipos et al., 2002). This indicates that the sulfur-

containing compound is exported from the mitochondrial ISC machinery in a glutathione-

dependent fashion.  

Despite the chemical simplicity of ISCs, the biosynthesis is rather complex. Intensive studies 

of the assembly process in bacteria and yeast have clarified key steps in the biogenesis of FeS-

proteins (Blanc et al., 2015; Lill et al., 2012). Nevertheless, the detailed molecular mechanism 

of each step has yet to be identified more precisely. In the first step, a [2Fe-2S] cluster is 

assembled de novo on the scaffold protein ISU1 (Leon et al., 2005). Sulfur is delivered by the 

cysteine desulfurase complex NFS1-ISD11 that catalyses the removal of S0 from L-cysteine. 

The sulfur is bound as persulfide (-SSH) on NFS1 and next transferred to ISU1 (Turowski et 

al., 2012; Zheng et al., 1993). In this step, S0 is reduced to S2-. Here, it is suggested that electrons 

are provided by ferredoxin together with the ferredoxin reductase and NADPH (Webert et al., 

2014). How and when Fe is inserted remains elusive. Metal delivery, however, is assisted by 

Frataxin (FH) that binds to the ISC-assembly complex consisting of ISU1 and NFS1-ISD11 

and thus leads to a tetrameric complex (Cook et al., 2010; Gerber et al., 2003), whereas binding 

of FH can regulate the activity of NFS1 (Turowski et al., 2012).  

In the second step, the cluster has to be released from the scaffold protein and transferred to the 

respective apoprotein. In yeast, the dissociation is facilitated by a chaperone system comprising 

the ATP-dependent Hsp70 chaperone Ssq1p, its co-chaperone Jac1p as well as the nucleotide 

exchange factor Mge1p (Mühlenhoff et al., 2003; Xu et al., 2009). The released ISC might be 

transferred to the monothiol Grx5p via specific association of the GRX with Ssq1p (Uzarska et 

al., 2013). It has been suggested that Grx5p acts as a carrier protein transferring a cluster from 

the core ISC machinery to recipient apoproteins or to other late acting components of the ISC 

machinery that are essential for the maturation of [4Fe-4S] containing proteins. As the 
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respective acceptor proteins are extremely diverse in terms of their structure, their surface 

properties and the type of cluster they require, it is assumed that the remaining ISC components 

are acting more specific. For example, the proteins Isa1p and Isa2p are interacting with Grx5p 

as well as specifically with Iba57p. The Isa/Iba57 complex is dedicated to the maturation of 

[4Fe-4S] proteins like aconitase or biotin and lipoyl synthase (Gelling et al., 2008; Mühlenhoff 

et al., 2011; Waller et al., 2012). Another late-acting component of the ISC machinery is IND11 

that is essential for the maturation of complex I (Bych et al., 2008; Wydro et al., 2013). 

Furthermore, NFU1 is needed for maturation of specific targets such as lipoyl synthase and 

succinate dehydrogenase (Leon et al., 2003; Navarro-Sastre et al., 2011). How the ISC is 

inserted in the respective polypeptide chain and how the carrier proteins are interacting with 

the target proteins remains ambiguous. Given the essential functions of FeS-proteins, it is not 

surprising that disruption of most genes involved in ISC assembly results in lethality (Busi et 

al., 2006; Frazzon et al., 2007; Waller et al., 2012). To further explore the essential roles of 

ISCs, FeS-proteins whose maturation depend on the mitochondrial ISC machinery will be 

described in the following.  

 

 

1.2.2 Iron-sulfur proteins in Arabidopsis 

Based on the ability of iron to switch between Fe2+ and Fe3+, the most obvious function of the 

ISC is the participation in electron transfer reactions, where just a glance at the mitochondrial 

respiration chain highlights the pivotal role of several ISCs. The NADH:ubiquinone 

oxidoreductase3 (Complex I), succinate dehydrogenase (Complex II) as well as cytochrome c 

reductase (Complex III) contain ISCs comprising [2Fe-2S], [3Fe-4S] as well as [4Fe-4S] cluster 

(Balk and Lobreaux, 2005; Imsande, 1999). Lack of functional ISCs in these proteins frequently 

causes lethality, e.g. NDUFS1 (At5G37510) that is an ISC binding subunit of complex I is 

assumed to be embryo defective (Heazlewood et al. (2003); www.seedgenes.org).  

However, non-electron transfer functions of the ISC are also essential for life. ISCs can also act 

as an active site of enzymes like in aconitase (ACO), where one of the irons of the [4Fe-4S] 

cluster serves as a Lewis acid (Kennedy et al., 1983) catalysing the isomerisation of citrate to 

isocitrate via cis-aconitate in the tricarboxylic acid (TCA) cycle. In Arabidopsis, ACO is 

encoded by three genes ACO1, ACO2 and ACO34, with ACO1 located in the cytosol, ACO2 in 

the mitochondria and ACO3 being dual targeted to cytosol and mitochondria (Hooks et al., 

                                                 
3 respective EC numbers of enzymes are listed in Supplementary Table 3 
4 ACO1 (At4g35830), ACO2 (At4g26970), ACO3 (At2g05710) 
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2014; Peyret et al., 1995). When grown under controlled conditions single mutants displayed 

no macroscopic phenotype but an aco1aco3 double mutant was found to be lethal resulting in 

aborted seeds (Arnaud et al., 2007). Other [4Fe-4S] cluster containing proteins are the radical 

S-adenosyl-L-methionine (SAM) enzymes biotin synthase and lipoyl synthase (Ollagnier-De 

Choudens et al., 2000). The enzymes are required for the C-S bond formation at non-activated 

carbon in the biosynthesis of biotin and lipoic acid, respectively. The precise role of the ISCs 

is not yet fully understood, but it is assumed that they serve as a sulfur donor (Booker et al., 

2007; Tse Sum Bui et al., 1998). However, null mutants of biotin synthase are embryo lethal 

underlining the importance of this protein in planta (Arnal et al., 2006). Another SAM enzyme 

containing an [4Fe-4S] cluster is CNX2 (Cofactor of Nitrate reductase and Xanthine 

dehydrogenase 2). This protein, along with CNX3, catalyses the conversion of GTP into cyclic 

pyranopterin monophosphate (cPMP) in the first step of Moco biosynthesis (Bittner, 2014; 

Hänzelmann et al., 2004). Moco-dependent enzymes function in nitrogen assimilation (nitrate 

reductase; NR), abscisic acid synthesis (abscisic aldehyde oxidase 3; AAO3), purine catabolism 

(xanthine dehydrogenase; XDH1) and sulfite detoxification (sulfite oxidase; SO). Interestingly, 

cPMP is exported from mitochondria to the cytosol via ATM3, which is also involved in the 

synthesis of cytosolic ISCs (Bernard et al., 2009; Teschner et al., 2010). Furthermore, AAO3 

and XDH1 contain both, in addition to Moco, an ISC whose assembly depends on the CIA 

machinery (Figure 7) (Bittner, 2014).  

A third general function of the ISC is the stabilisation of proteins. This structural role is assumed 

for several enzymes involved in DNA recombination and repair like DNA helicases or 

glycosylases5 (Hinks et al., 2002; White, 2009). 

 

 

                                                 
5 DNA helicases RAD3 (UVH6); At1g03190, (RAD-like proteins: At1g20720, At1g20750, At1g79950);  

  DNA glycosylases DME; At5g04560, DML1-3; At2g36490, At3g10010, At4g34060) 
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Figure 7: Subcellular localisation of FeS-protein in Arabidopsis. 

In plants, FeS-proteins are localised in mitochondria, plastids, cytosol and nucleus. Numerous 

FeS-proteins are known, but in many cases the precise role of the ISC is still not determined. The ISC 

can serve in electron transfer, as active site of catalytic enzymes, structural component or sensor for 

intracellular iron as well as oxidative and nitrosative stress. 

 

 

Additionally, ISCs are exploited in sensing and signalling reactions. Because ISCs are 

extremely vulnerable, cluster destruction can trigger complex responses regulating thereby 

enzyme activity itself as described previously for dithiol GRXs or gene expression (Crack et 

al., 2014). The best example of post-transcriptional regulation of gene expression is the 

mammalian cytosolic iron-regulatory protein 1 (IRP1). When iron is abundant, the protein 

contains a [4Fe-4S] cluster and acts as aconitase metabolising citrate to isocitrate. In contrast, 

when the protein loses its cluster under iron deprivation it can bind to stem-loop structures 

(termed iron-responsive elements (IREs)) in certain messenger RNAs coding for proteins 

involved in iron uptake, storage as well as distribution in the cell and thus, can regulate the 

synthesis of the respective proteins (Rouault, 2006; Walden et al., 2006). However, such 

regulatory function has not yet been described for the respective FeS-proteins in Arabidopsis 

(Arnaud et al., 2007). Interestingly, in baker’s yeast, two monothiol GRXs function in iron 

regulation, namely Grx3p and Grx4p (Li et al., 2009a). Here, the expression of iron uptake and 

storage genes, collectively known as the iron regulon in yeast, is primarily controlled by the 

iron-responsive transcription factor Aft1p and its paralog Aft2p (Yamaguchi-Iwai et al., 1996). 

Under iron-replete conditions, Aft1p resides in the cytosol, whereas under iron-deficient 
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conditions the protein accumulates in the nucleus and activates the iron regulon. Grx3/4p are 

able to interact with Aft1p and thereby negatively regulate the transcriptional function of Aft1p 

(Ojeda et al., 2006). Indeed, in Δgrx3Δgrx4 double null mutants the iron regulon was activated 

constitutively resulting in an over-accumulation of iron (Pujol-Carrion et al., 2006). Although 

iron accumulates in the cytosol, the double mutant exhibits a decreased mitochondrial iron pool 

as well as a decreased enzyme activity of iron-dependent enzymes like FeS-proteins indicating 

an essential role of Grx3/4p in iron trafficking (Mühlenhoff et al., 2010). Intriguingly, Grx3/4p 

can bind an ISC and mutations that affect the cluster binding result in a similar phenotype as 

the double knock-out indicating that the ISC is essential for proper iron sensing (Mühlenhoff et 

al., 2010; Ojeda et al., 2006). Thus, it is assumed that the GRX-bound ISC functions as a sensor 

for the iron-responsive transcription factor Aft1p signalling the status of the cytosolic iron pool 

(Chen et al., 2004; Lill et al., 2012; Rutherford et al., 2005).  

 

 

1.2.3 Role of glutaredoxins in the iron-sulfur cluster assembly machineries 

In contrast to yeast, Arabidopsis has only one monothiol GRX, GRXS17, in the cytosol. 

GRXS17 is so far the best-characterised monothiol GRX in Arabidopsis. GRXS17 is 

ubiquitously but strongly expressed in very different cell types localised in meristematic areas 

or in reproductive and vascular organs (Knüsting et al., 2015). Moreover, consistent with the 

previously mentioned thermo-sensitivity of the grxs17 line (Cheng et al., 2011), Knüsting and 

colleagues showed that GRXS17 is central for the plant response to environmental changes 

such as length of photoperiod and temperature. Upon heat stress, GRXS17 migrates from the 

cytosol to the nucleus (Wu et al., 2012) where it supposedly interacts with the transcriptional 

regulator NF-YC11/NC2α. As a mutant deficient in NF-YC11/NC2α phenocopied the grxs17 

null mutant depending on the photoperiod, it was proposed that GRXS17 together with 

NF-YC11/NC2α relay a redox signal generated by the photoperiod to maintain meristem 

function (Knüsting et al., 2015).  

Although GRXS17 has, similar to yeast Grx3/4p, an additional TRX domain and can bind ISCs, 

GRXS17 plays only a minor role in iron trafficking and the ISC machinery, as the activities of 

cytosolic FeS-proteins like aconitase or aldehyde oxidase were not substantially altered in 

grxs17 null mutants (Knüsting et al., 2015). Nevertheless, Inigo and colleagues showed that 

GRXS17 can interact with cytosolic FeS-proteins like XDH1 or Cytsolic Thiouridylase Subunit 

1 (CTU1) and CTU2, which are essential for the thiolation of tRNAs (Inigo et al., 2016). 

However, the authors also showed that the enzymatic activity of XDH1 or tRNA thiolation was 
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not markedly reduced in the grxs17 mutant, albeit metabolic profiling of the grxs17 mutant 

reflected a perturbed flux through the purine salvage pathway. In addition, the grxs17 mutant 

phenocopied mutants in the elongator subunit ELO3, essential for effective thiolation of tRNAs 

(Inigo et al., 2016). These findings as well as the ability of GRXS17 to complement the yeast 

Grx5p mutant points to a contribution of GRXS17 in the maturation of cytosolic FeS-proteins 

even though it apparently plays no essential role. Astonishingly, the yeast Grx3p and Grx4p 

were not able to fully complement the growth defect of the Δgrx5 mutant (Rodríguez-

Manzaneque et al., 2002).  

As mentioned previously, yeast Grx5p is located in the mitochondrial matrix and the Δgrx5 

mutant reveals a distinct growth phenotype. Initially, it was assumed that Grx5p is involved in 

regulating protein glutathionylation since the Δgrx5 mutant displays an increased protein 

carbonyl content as well as a dramatic increase in sensitivity to oxidants although no 

transcriptional changes of Grx5p were observed during stress conditions (Rodríguez-

Manzaneque et al., 1999). Furthermore, this role was underlined with the suggestion that Grx5p 

is involved in the efficient de-thiolation of the Tdh3 GAPDH isoenzyme (Shenton et al., 2002). 

Additionally, Grx5p is able to reduce glutathionylated rat carbonic anhydrase III (Tamarit et 

al., 2003) and indeed, the active-site cysteine residue is necessary for Grx5p as its substitution 

results in the same phenotype as that seen for the null mutant (Belli et al., 2002). However, the 

rate of Grx5p to be reduced by GSH was at least 20 times slower than observed for the reduction 

of the dithiol Grx1 from E. coli (Tamarit et al., 2003). Moreover, a closer look on the Δgrx5 

mutant displayed an iron accumulation in the cell, a condition which in turn could promote 

oxidative damage. In addition, the lack of Grx5p negatively influenced the activity of several 

FeS-proteins like aconitase or succinate dehydrogenase (Rodríguez-Manzaneque et al., 2002). 

The ability of Grx5p to coordinate an ISC as well as the ISC accumulation on the scaffold 

protein Isu1p in Grx5p-depleted cells led to the conclusion that Grx5p functions as a late-acting 

component of the mitochondrial core ISC machinery linking the ISC synthesis reaction on Isu1p 

with late assembly steps involving ISC targeting to dedicated apoproteins (Mühlenhoff et al., 

2003; Uzarska et al., 2013). Furthermore, the activity of cytosolic FeS-proteins is also 

diminished in Grx5p-depleted cells indicating that Grx5p is somehow involved in the 

generation or export of the sulfur-containing compound X-S (Figure 7) (Uzarska et al., 2013). 

Interestingly, deletion of Grx5p is not lethal unlike that of most other core ISC assembly genes 

(Lill et al., 2012; Rodríguez-Manzaneque et al., 1999). In multicellular organisms like zebrafish 

or humans, however, mutations in GLRX5 are lethal (Wingert et al., 2005) or lead to severe 

diseases like sideroblastic anemia (Camaschella et al., 2007; Ye et al., 2010). Functional 
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analysis of human GLRX5 mutants revealed that different amino acid mutations led to distinct 

effects on downstream target proteins like aconitase, succinate dehydrogenase or lipoyl 

synthase, which was measured indirectly by activity of lipoylated proteins namely of pyruvate 

dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase complex (OGDHC) (Liu et 

al., 2016). A phenotype with similar defects in lipoic acid-containing proteins was reported for 

individuals with a mutation in the gene BOLA3, encoding a mitochondrial protein of the BolA 

protein family (Cameron et al., 2011). Little is known about the function, but BolA family 

members have been postulated to act as reductases, interacting with the monothiol GRX family 

via heterodimerisation (Huynen et al., 2005; Roret et al., 2014). In Arabidopsis, four proteins 

containing a BolA domain are present. BOLA1, BOLA2 and BOLA4 as well as a fusion protein 

between an N-terminal SufE domain and a C-terminal BolA domain named SUFE16 (Couturier 

et al., 2014). BOLA4 and SUFE1 are both dual targeted to chloroplasts and mitochondria 

(Couturier et al., 2014; Xu and Møller, 2006). SUFE1 interacts with and activates the cysteine 

desulfurases, SUFS in plastids and NFS1 in mitochondria, and both activations are vital during 

embryogenesis (Xu and Møller, 2006; Ye et al., 2006). In a yeast two-hybrid approach, 

GRXS15 is able to interact with both BOLA4 and the BolA domain of SUFE1 (Couturier et al., 

2014). This result, however, could not be confirmed in planta using bimolecular fluorescence 

complementation (BiFC). Whereas for BOLA4 and GRXS15 a BiFC signal was present in 

mitochondria, no fluorescence reconstitution for SUFE1 and GRXS15 was obtained (Couturier 

et al., 2014).  

  

                                                 
6 SUFE1-BolA (At4g26500) 
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1.3 Aims of the study 

Monothiol glutaredoxins have been considered as core components of the iron-sulfur protein 

assembly machinery. In plants, experimental evidence for monothiol GRXs providing similar 

functions is lacking due to the lack of suitable mutants and partial functional redundancy 

between GRXs. The key aim of this work was to understand the precise function of GRXS15 

with respect to the ISC machinery as well as putative alternative functions in metabolic 

pathways. To experimentally address these functions, a combination of genetic, physiological, 

and biochemical approaches was used.  

In the first part, the function of GRXS15 in the ISC assembly machinery and maturation of FeS-

proteins will be described. First, ambiguities concerning the subcellular localisation as well as 

the ability of GRXS15 to complement the yeast Δgrx5 mutant were to be clarified. Moreover, 

the ability of GRXS15 to bind an ISC was investigated and the respective results are 

complemented with data from GRXS15 variants that carry amino acid exchanges at the putative 

ISC and GSH coordination site in vivo and in vitro. To elucidate the general function of 

GRXS15 in Arabidopsis, mutants have been generated and characterised. Given that T-DNA 

insertion mutants have been described as viable in homozygous form with a weak oxidation-

sensitive phenotype (Cheng, 2008), additional T-DNA mutants were to be isolated and analysed 

with regards to the activity of FeS-proteins and respective downstream effects. Additionally, 

mutants expressing GRXS15 variants were analysed for FeS-protein activities. 

In the second part, the influence of glutathione on GRXS15 function and maturation of 

FeS-proteins will be reported. Glutathione might act as a co-factor of GRXS15 to coordinate 

an ISC and a phenotypic comparison between glutathione-depleted and grxs15 mutants were 

used to judge how important that is for GRXS15 function. Additionally, glutathione is required 

for export of an undefined sulfur-containing compound X-S that links the mitochondrial and 

cytosolic iron-sulfur cluster machineries. A knock-down mutant of the mitochondrial ATM3 

was to be crossed with a specific mutant of glutathione reductase that has a more oxidised 

mitochondrial glutathione pool. The double mutant was then to be used to investigate if an 

increased amount of GSSG influences the maturation of cytosolic FeS-proteins.  

In the last part, GRXS15 was to be analysed regarding its oxidoreductase activity. It was 

investigated whether recombinant GRXS15 has an oxidoreductase function by testing the 

impact on the redox state of HED and redox-sensitive GFP2 in vitro. Here, it was examined, if 

GRXS15 can mediate the reversible electron flow between glutathione and reduced or oxidised 

roGFP2. For comparison, both assays were performed with the dithiol GRXC1 as positive 
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control. In addition, it was questioned whether roGFP2 can be optimised regarding the kinetic 

properties of the GRX-roGFP2 interaction. 
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2. Material and Methods 

2.1 Laboratory equipment and materials 

2.1.1 Consumables and Chemicals 

General chemicals were purchased from Sigma-Aldrich (www.sigmaaldrich.com/germany), 

Duchefa Biochemie (www.duchefa-biochemie.nl), Merck (www.merckmillipore.de), Roth 

(www.carlroth.com) or AppliChem (www.applichem.com). General plastic ware was 

purchased from Sarstedt (www.sarstedt.com/php/main.php) and VWR (de.vwr.com/store). 

 

2.1.2 Kits and enzymes 

NucleoSpin® Plasmid       Macherey-Nagel7 

NucleoSpin® Gel and PCR Clean-up     Macherey-Nagel 

NucleoSpin® RNA       Macherey-Nagel 

Q5® Site-Directed Mutagenesis     New England BioLabs8 

Gateway®BP clonase II enzyme mix     Thermo Scientific9 

Gateway® LR clonase II enzyme mix    Thermo Scientific 

M-MLV Reverse Transcriptase (200 U µL-1)   Thermo Scientific 

Phusion High-Fidelity DNA Polymerase (2 U μL-1)   Thermo Scientific 

Taq DNA Polymerase (5 U μL-1)    New England BioLabs 

FastDigest ApoI      Thermo Scientific 

FastDigest NheI      Thermo Scientific 

 

2.1.3 Working concentrations of antibiotics and herbicides  

Ampicillin        100 μg mL-1 

Gentamycin        100 μg mL-1 

Kanamycin        50 μg mL-1 

Rifampicin        100 μg mL-1 

Spectinomycin       100 μg mL-1 

Sulfadiazine sodium salt      5.25 mg L-1 

Basta®         240 mg L-1 

Hygromycin B       20 µg mL-1 

 

                                                 
7 www.mn-net.com 
8 www.neb-online.de 
9 www.thermofisher.com 
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2.1.4 Oligonucleotides 

Oligonucleotides (Supplementary Table 4) were synthesised by MWG 

(www.eurofinsgenomics.eu). Salt-adjusted oligonucleotide melting temperatures were 

calculated at http://biotools.nubic.northwestern.edu/OligoCalc.html. Lyophilised 

oligonucleotides were resuspended in dH2O to working concentrations of 10 pmol μL-1. Primer 

stocks and working solutions were stored at -20 °C. 

 

 

2.2 Plant methods 

2.2.1 Plant material 

Seeds of grxs15-1 (SALK_112767C) and grxs15-3 (GK-837C05) T-DNA insertion alleles were 

obtained from the Nottingham Arabidopsis Stock Centre. Seeds of the grxs15-2 allele 

(SAIL_431_H03) were kindly provided by Ninghui Cheng, Baylor College of Medicine, 

Houston. Furthermore, the mutant lines atm3-4 (Bernard et al., 2009), atm3-1 (Teschner et al., 

2010), zir1 (Shanmugam et al., 2012) and rml1 (Vernoux et al., 2000) were used in this study.  

To phenotypically compare the complemented grxs15-3 mutant, segregated wild-type ecotype 

Col-0 from the T-DNA line grxs15-3 was used. Other lines were compared with wild-type 

ecotype Col-0 (Lehle seeds (2014) WT-02-46.01) was used. 

 

2.2.2 Growth conditions 

Where not indicated otherwise, surface-sterilised seeds were grown on vertical culture plates 

containing nutrient medium (Somerville and Ogren, 1982) with 0.1 % (w/v) sucrose and 0.8 % 

(w/v) agar under long-day conditions with a diurnal cycle of 16 h light at 22 °C and 8 h dark at 

18 °C. The light intensity and relative air humidity were 75 μE m−2 s−1 and 50 %, respectively. 

Arabidopsis plants were grown on a soil:sand:vermiculite mixture in the ratio 10:1:1. The soil 

was obtained from Floragard, Oldenburg (Floradur® Anzuchtssubstrat). Plants were kept in 

controlled growth chambers under long-day conditions with a diurnal cycle of 16 h light at 

19 °C and 8 h dark at 17 °C. The light intensity and relative air humidity were 100-120 μE m-2 

s-1 and 50 %, respectively. 

 

2.2.3 Stable transformation of Arabidopsis 

For floral dip transformation, the method of Clough and Bent (1998) was used. A liquid culture 

of A. tumefaciens containing the respective construct was inoculated from a 5 mL overnight-

culture and grown to an OD600 of ~1.0. The cells were harvested by centrifugation with 3,000 g 
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for 10 min at 4 °C and resuspended in floral-dip medium containing 5 % (w/v) sucrose and 

0.02 % (v/v) Silwet L-77 (Vac-In-Stuff, Lehle Seeds). The medium was added to a beaker and 

plants were dipped into this suspension for 5–10 s. Plants were left at high humidity in a closed 

chamber in the dark overnight and returned to the growth chamber the next day. The dipping 

procedure was repeated after 7 d to increase the transformation rate. 

 

2.2.4 Screening for transformed Arabidopsis 

Plants transformed with constructs containing the BAR gene as selection marker were grown 

on soil under long-day conditions. After two weeks of growth, the plants were sprayed with a 

240 mg L-1 glufosinate ammonium solution (Basta®). The treatment was repeated one week 

later. 

Plants transformed with constructs containing the NPT, SUL or HPT gene were screened in 

vitro following the protocol of Harrison et al, 2006. Seeds were therefore surface sterilised with 

70 % (v/v) EtOH and grown on plates with Arabidopsis medium supplemented with 0.8 % 

(w/v) agar and 50 μg mL-1 kanamycin, 5.25 mg L-1 sulfadiazine sodium salt or 20 μg mL-1 

hygromycin B, respectively.  

Fluorescent plants were detected on a stereomicroscope (Leica M165 FC) equipped with a GFP 

filter of 470 ± 40 nm excitation and emission at 525 ± 50 nm or DsRed filter of 545 ± 30 nm 

excitation and emission at 620 ± 30 nm and documented with an attached camera 

(Leica DFC425 C). 

 

2.2.5 Analysis of germination rate and root length 

Germination rate was determined on vertical culture plates using a stereomicroscope (Leica 

M165 FC).  

Root growth was documented photographically on vertical culture plates containing 0.8 % 

(w/v) phytagel and 0.1 % (w/v) sucrose. 5 and 8 d after stratification, root length was 

documented and measured using Adobe Illustrator CS5.1. 

Influence of the nitrogen source on root length was analysed on plates containing 5 mM KNO3 

or 2.5 mM (NH4)2SO4, 2.5 mM KH2PO4, 2 mM MgSO4, 2 mM CaCl2, 50 μM Fe-EDTA, 70 µM 

H3BO4, 14 µM MnCl2, 0.5 µM CuSO4, 1 µM ZnSO4, 0.2 µM NaMoO4, 10 µM NaCl, 0.01 µM 

CoCl2, 0.8 % (w/v) Phytagel and 0.1 % (w/v) sucrose, pH 5.8.  
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2.2.6 Detection of reactive oxygen species  

For detection of increased H2O2 production, leaves were stained with DAB (3, 3-

diaminobenzidine) (Thordal-Christensen et al., 1997). Leaves were vacuum-infiltrated in a 

solution containing 0.1 mg mL-1 DAB, 50 mM potassium phosphate buffer pH 7.6 and 0.1 % 

(v/v) Silwet L-77. After infiltration, the leaves were incubated for 20-24 h in the dark and 

destained by lactic acid:glycerol:EtOH (1:1:3) for 30 min at 70 °C.  

For histochemical staining of superoxide, NBT (nitro blue tetrazolium) was used (Hoffmann et 

al., 2013). Leaves were vacuum-infiltrated in a solution containing 0.1 mg mL-1 NBT, 50 mM 

potassium phosphate buffer pH 7.6 and 0.1 % (v/v) Silwet L-77. After infiltration the leaves 

were incubated for 30 min in the dark and destained by lactic acid:glycerol:EtOH (1:1:3) for 30 

min at 70 °C.  

 

2.2.7 Isolation of Mitochondria and Chloroplasts 

Arabidopsis mitochondria were purified from 2-week-old seedlings as described before 

(Escobar et al., 2006) with slight modifications. All steps were performed on ice or at 4°C. 

Seedlings were homogenised using mortar and pestle and the homogenate was filtered 

(Miracloth; Merck Millipore) before cellular debris was pelleted by centrifugation for 5 min at 

1,200 g. The supernatant was centrifuged for 20 min at 18,000 g, and the pellet of crude 

mitochondria was gently resuspended in wash buffer (0.3 M sucrose, 0.1 % (w/v) BSA and 

10 mM TES, pH 7.5) and centrifuged for 5 min at 1,200 g. The supernatant was transferred into 

a new tube and centrifuged for 20 min at 18,000 g. The pellet was gently resuspended in final 

wash buffer (0.3 M sucrose, 10 mM TES, pH 7.5), loaded directly on a 0–6 % Percoll gradient 

and centrifuged for 40 min at 40,000 g. For isolation of plastids, the same extraction buffer was 

used. After homogenisation of the seedlings, the homogenate was filtered (Miracloth; 

MerckMillipore) and cellular debris was pelleted by centrifugation for 5 min at 1,100 g. The 

pellet was resuspended in wash buffer (0.33 M sorbitol, 20 mM tricine, 2.5 mM EDTA, 5 mM 

MgCl2, pH 7.6). After centrifugation for 1 min at 2,500 g, the plastid fraction was loaded on a 

step gradient of 50 % and 80 % Percoll and centrifuged for 10 min at 2,500 g. Chloroplasts 

were transferred into a new tube and washed once with wash buffer. 

 

2.2.8 Respiration analysis of roots and mitochondria 

Oxygen consumption of intact Arabidopsis roots and isolated mitochondria was measured in 

Oxytherm Clark-type electrodes (Hansatech; www.hansatech-instruments.com) as described 

before (Wagner et al., 2015). Whole roots from seedlings vertically grown on agar plates were 
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cut below the hypocotyl-root junction and assayed in a volume of 1.2 mL containing 5 mM 

KCl, 10 mM MES, and 10 mM CaCl2, pH 5.8, and after addition of 4 mM KCN and 0.2 mM 

pGal.  

O2 consumption of isolated mitochondria (2.2.7) was measured in a volume of 1 mL containing 

0.3 M mannitol, 10 mM TES-KOH pH 7.5, 5 mM KH2PO4, 10 mM NaCl, 2 mM MgSO4 and 

0.1 % (w/v) bovine serum albumin. O2 consumption rate was measured before (blank) addition 

of mitochondria and after addition of mitochondria (mito) or respective substrate (state II; 

succinate (10 mM succinate, 0.25 mM ATP) or pyruvate/malate (10 mM pyruvate, 10 mM 

malate, 0.3 mM NAD and 0.1 mM thiamine pyrophosphate), state III; ADP (50 μM ADP). 

Additionally, O2 consumption rate was analysed after ADP consumption (state IV) and after 

addition of 10 μM carbonyl cyanide m-chlorophenylhydrazone (CCCP). 

 

2.2.9 Determination of metabolite levels via HPLC 

Aliquots (45-55 mg) of freshly ground plant tissue were used for absolute quantification of 

amino acid, α-ketoacid and organic acid content each. 

Free amino acids and α-ketoacids were extracted with 0.5 mL ice-cold 0.1 M HCl in an 

ultrasonic ice-bath for 10 min. Cell debris and insoluble material were removed by 

centrifugation for 10 min at 25,000 g. For the determination of α-ketoacids, 150 µL of the 

resulting supernatant were mixed with an equal volume of 25 mM OPD (o-phenylendiamine) 

solution and derivatised by incubation at 50 °C for 30 min. After centrifugation for 10 min, the 

derivatised ketoacids were separated by reversed phase chromatography on an Acquity HSS T3 

column (100 mm x 2.1 mm, 1.7 µm, Waters) connected to an Acquity H-class UPLC system. 

Prior separation, the column was heated to 40 °C and equilibrated with 5 column volumes of 

solvent A (0.1 % (v/v) formic acid in 10 % (v/v) acetonitrile) at a flow rate of 0.55 mL min-1. 

Separation of ketoacid derivates was achieved by increasing the concentration of solvent B 

(acetonitrile) in solvent A (2 min 2 % B, 5 min 18 % B, 5.2 min 22 % B, 9 min 40 % B, 9.1 min 

80 % B and hold for 2 min, and return to 2 % B in 2 min). The separated derivates were detected 

by fluorescence (Acquity FLR detector, Waters, excitation: 350 nm, emission: 410 nm) and 

quantified using ultrapure standards (Sigma). Data acquisition and processing were performed 

with the Empower3 software suite (Waters). Derivatisation and separation of amino acids was 

performed as described by Yang et al. (2015). 

Total organic acids were extracted with 0.5 mL ultra-pure water for 20 min at 95 °C. Organic 

acids were separated using an IonPac AS11-HC (2 mm, ThermoScientific) column connected 

to an ICS-5000 system (ThermoScientific) and quantified by conductivity detection after cation 
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suppression (ASRS-300 2mm, suppressor current 95-120 mA). Prior separation, the column 

was heated to 30 °C and equilibrated with 5 column volumes of solvent A (ultra-pure water) at 

a flow rate of 0.38 mL min-1. Separation of anions and organic acids was achieved by increasing 

the concentration of solvent B (100 mM NaOH) in buffer A (8 min 4 % B, 18 min 18 % B, 

25 min 19 % B, 43 min 30 % B, 53 min 62 % B, 53.1 min 80 % B for 6 min, and return to 

4 % B in 11 min). Soluble sugars were separated on a CarboPac PA1 column 

(ThermoScientific) connected to the ICS-5000 system and quantified by pulsed amperometric 

detection (HPAEC-PAD). Column temperature was kept constant at 25 °C and equilibrated 

with five column volumes of solvent A (ultra-pure water) at a flow rate of 1 mL min-1. Baseline 

separation of carbohydrates was achieved by increasing the concentration of solvent B 

(300 mM NaOH) in solvent A (from 0 to 25 min 7.4 % B, followed by a gradient to 100 % B 

within 12 min, hold for 8 min at 100 % B, return to 7.4 % B and equilibration of the column for 

12 min). Data acquisition and quantification was performed with Chromeleon 7 

(ThermoScientific). 

 

2.2.10 Fatty acid methyl ester measurement 

Fatty acid methyl ester (FAME) analysis was performed as described before (Browse et al., 

1986). 1 mL 1 N HCl in MeOH was added to 5 seeds or ~50 mg homogenised seedlings as well 

as 5 µg pentadecanoic acid as internal standard. Samples were incubated at 80 °C for 2 h (seeds) 

or 30 min (seedlings). After cooling down, 1 mL 0.9 % (w/v) NaCl and 1 mL hexane were 

added. Samples were mixed vigorously and centrifuged with 1,000 g for 3 min. Hexane phase 

was transferred to a GC vial. GC-MS data were analysed by Regina Wehler and Peter Dörmann. 

 

 

2.3 Molecular biological techniques 

2.3.1 DNA extraction from Arabidopsis tissue 

DNA was extracted as described by Edwards et al. (1991). Plant tissue was homogenised in 

400 μL buffer containing 200 mM Tris-HCl (pH 7.5), 250 mM NaCl, 25 mM EDTA and 0.5 % 

(w/v) SDS. After centrifugation (at 20,000 g for 10 min), the supernatant was transferred into 

a new tube, 400 μL isopropanol was added and the samples were centrifuged as before. The 

supernatant was discarded and the DNA was washed with 70 % (v/v) EtOH. The air-dried DNA 

was resuspended in 50 μL dH2O, heated for 5 min at 95 °C, spun down and stored at -20 °C. 

DNA was quantified with the spectrophotometer NanoDrop 2000 (Thermo Scientific). 
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2.3.2 Polymerase chain reaction 

For polymerase chain reactions (PCR), two different protocols were used. For cloning, the 

reaction was performed in a total volume of 50 μL containing 1x Phusion buffer, 200 μM 

dNTPs, 0.5 μM oligonucleotide A, 0.5 μM oligonucleotide B, 0.02 U μL-1 Phusion® high 

fidelity DNA polymerase and 0.5 μL template DNA. The thermocycling conditions, described 

below, were applied with the C1000™ thermal cycler from BIO-RAD (www.bio-rad.com). 

 

step temperature time 

initial denaturation 98 °C 180 s 

denaturation 98 °C 30 s 

annealing 52-60 °C 30 s 

elongation 72 °C 60 s per kbp 

final extension 72 °C 300 s 

hold 12 °C ∞ 

 

For genotyping and RT-PCR the reaction was executed in a total volume of 20 μL with 

0.025 U µL-1 Taq DNA polymerase (New England BioLabs), 1x Standard Taq Reaction Buffer, 

200 μM dNTPs, 0.2 μM oligonucleotide A, 0.2 μM oligonucleotide B and 2 μL template DNA. 

The following PCR-program was used: 

 

step temperature time 

initial denaturation 95 °C 120 s 

denaturation 95 °C 30 s 

annealing 52-60 °C 30 s 

elongation 72 °C 60 s per kbp 

final extension 72 °C 420 s 

hold 12 °C ∞ 

 

 

2.3.3 Genotyping of Arabidopsis mutants 

For genotyping, genomic DNA was isolated (2.3.1) and PCR performed (2.3.2) as described 

previously. The oligonucleotides were designed with the T-DNA Primer Designer from 

SignalSalk (http://signal.salk.edu/tdnaprimers.2.html) and are listed with the respective 

sequence in Supplementary Table 4. Wild-type and T-DNA insertion alleles were identified 

with left and right genomic oligonucleotides or with the T-DNA oligonucleotide combined with 

a genomic oligonucleotide specified in Table 1. To identify mutants with deletion or mutation, 

the respective PCR products were digested as described below (2.3.4). 

20/30x 

34x 
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Table 1: Oligonucleotides used for genotyping of Arabidopsis mutants.  

mutant name combination for wild-type allele combination for T-DNA insertion 

grxs15-1 #2710; #2711 #2711; #1401 

grxs15-2 #2747; #2748 #2748; #321 

grxs15-3 #2708; #2709 #2709; #432 

gr2 #328; #329 #328; #1401 

rml1 #641; #642: digestion with ApoI 

atm3-4 #3523; #3524; digestion with NheI 

 

 

2.3.4 Digestion of DNA with restriction endonucleases 

For DNA cleavage restriction enzymes cutting double-stranded DNA from Fermentas or New 

England BioLabs were used. Digestion was performed in 30 μL final volume with 1-2 U of enzyme 

pro 1 μg DNA. Reaction conditions (buffer, incubation time and temperature) were applied 

according to manufacturer’s manual. 

 

2.3.5 Isolation of RNA from Arabidopsis tissue 

RNA was isolated with the NucleoSpin® RNA isolation kit (Macherey-Nagel) following the 

manufacturer’s protocol. RNA was eluted in 50 μL dH2O and quantified with the 

spectrophotometer NanoDrop 2000.  

 

2.3.6 cDNA synthesis and semiquantitative RT-PCR 

For reverse transcription of mRNA to cDNA, M-MLV Reverse Transcriptase Transcriptase 

(Thermo Scientific) was used following the manufacturer’s protocol. 1 μg total RNA (see 2.3.5) 

was mixed with 2 μL of 50 mM oligo(dT) and filled up with dH2O to achieve a volume of 12 

μL. The samples were spun down briefly and incubated at 70 °C for 3 min. The tubes were 

placed back onto ice and 2 μL 10x First Strand Synthesis buffer, 4 μL dNTP mix (2.5 mM 

each), 1 μL dH2O and 1 μL M-MLV Reverse Transcriptase were added. The samples were 

mixed gently and spun briefly. After incubation for 1 h at 42 °C the samples were incubated for 

10 min at 92 °C to inactivate the M-MLV Reverse Transcriptase. The cDNA was subsequently 

amplified by a semi‐quantitative PCR reaction to analyse the gene expression of GRXS15 using 

gene-specific oligonucleotides #3218 and #3219 (2.1.4). SAND family protein (At2g28390) 

transcript was amplified with the oligonucleotides #2455 and #2456 as a constitutively 

expressed reference gene. 
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2.3.7 DNA Gel electrophoresis 

Agarose gel-electrophoresis was employed to separate PCR products. Depending on the size of 

the expected PCR product 0.6-2 % (w/v) agarose was melted in 0.5x TBE-buffer (90 mM Tris-

HCl pH 8, 90 mM boric acid, 0.5 mM EDTA) and ethidium bromide was added to a final 

concentration of 0.5 μg mL-1. Before loading, DNA was mixed with loading buffer (0.025 % 

(w/v) bromophenol blue, 0.025 % (w/v) xylene cyanole and 4 % (v/v) glycerol). DNA was 

separated by applying a current of 120 V in 0.5x TBE running buffer. The gel was documented 

using MF-ChemiBIS 2.0 (DNR Bio-Imaging Systems). 

 

2.3.8 PCR product purification from agarose gel 

DNA fragments of interest were excised from agarose gels (2.3.7) and purified with the 

NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel) according to the manufacturer’s 

recommendations. DNA was eluted in 20 μL dH2O. 

 

2.3.9 Mutagenesis of GRXS15 

Substitutions of specific amino acids were defined with a codon usage database 

(www.kazusa.or.jp/codon). The mutations were introduced by overlapping PCR using the 

oligonucleotides described in Table 2 in combination with the oligonucleotide #2594 or reverse 

#2592, respectively. The fragments were fused by a subsequent PCR using the oligonucleotide 

combination #2594 + #2592 and cloned into the respective entry clones. 

 

Table 2: Oligonucleotides with base substitutions to introduce amino acid exchanges in GRXS15 

through overlapping PCR reactions.  

mutation oligonucleotide combination10  nucleotide substitution 

GRXS15 C91S  #2753; #2754  TGT → TCT 

GRXS15 K83/A #2841; #2842 AAA → GCT 

GRXS15 K83/E #2839; #2840 AAA → GAA 

GRXS15 K120/A #2849; #2850 AAA → GCT 

GRXS15 K120/E #2847; #2848 AAA → GAA 

GRXS15 K124/A #2853; #2854 AAA → GCT 

GRXS15 K124/E #2851; #2852 AAA → GAA 

GRXS15 D146/A #2845; #2846 GAC → GCT 

GRXS15 D146/R #2843; #2844 GAC → AGA 

                                                 
10 Detailed primer sequences are provided in Supplementary Table 4 
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Another procedure to substitute specific amino acids was performed by using the Q5® Site-

Directed Mutagenesis Kit (BioLabs) following the manufacturer’s instruction. Mutagenic 

oligonucleotides were designed using the NEBaseChanger™ and are listed in Table 3.  

 

Table 3: Oligonucleotides with base substitutions to introduce amino acid exchanges in GRXS15 

through site-directed mutagenesis on plasmid DNA.  

mutation oligonucleotide11 nucleotide substitution 

GRXS15 K83/A C91/S #3654; #3655 AAA → GCT 

 

 

2.3.10 Gateway® cloning 

For Gateway® cloning, the sequence of interest was amplified with attB-flanking sites and 

cloned into an entry vector using the Gateway® BP clonase II enzyme mix following the 

manufacturer’s instruction. After transformation into E. coli DH5α (2.4.3), colonies were 

double checked by PCR for the presence of the respective gene construct and purified plasmids 

(2.4.4) were sequenced for validation (2.3.11). 

 

 

Table 4: Vectors used for Gateway® cloning. 

 

vector 

selectable markers  

description bacteria plants yeast 

pDONR201 Kan - - entry clone for further Gateway® cloning 

pDONR207 Gen - - entry clone for further Gateway® cloning 

pSS01 Kan Kan - Fusion of roGFP2 to the protein’s C-terminus (Brach et 

al., 2009) 

pSS02 Kan Hygr - derivative of pMDC3 (Curtis and Grossniklaus, 2003) 

pB7GW2.0 Kan BASTA - over-expression of gene of interest (Karimi et al., 2002) 

pETG-10A Amp - - over-expression of gene of interest; EMBL Heidelberg 

pAG415 Amp - Leu over-expression of gene of interest; Susan Lindquist 

(Addgene plasmid # 14146) 

pAG415-HA Amp - Leu over-expression of gene of interest; Susan Lindquist 

(Addgene plasmid # 14242) 

 

 

                                                 
11 Detailed primer sequences are provided in Supplementary Table 4 
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The gene of interest was subcloned into a destination vector by the LR-reaction using the 

Gateway® LR clonase II enzyme mix. E. coli DH5α were transformed with the recombined 

vector and subsequently the plasmid was purified and used for transformation of the respective 

acceptor organism (Table 5). 

To clone the TPGRXS15:roGFP2 or GRXS15:roGFP2 construct into the respective entry vector, 

the oligonucleotides #2592 and #2659 were used. For GRXS15 and its variants the 

oligonucleotides #2592 and #2593 or #2594 were used dependent on a required stop-codon. 

Regarding GRXS1538-169, #2626 was used to truncate the target peptide.  

 

 

Table 5: Donor and expression vectors generated in this study. 

entry clone expression clone usage finale organism 

pDONR201 pB7GW2 TPGRXS15:roGFP2 localisation A. thaliana wild-type 

pDONR207  pSS01 GRXS15 localisation A. thaliana wild-type 

pDONR207 pSS02 GRXS15 Overexpression/ 

Complementation 

A. thaliana wild-type, 

grxs15-2, grxs15-3 

pDONR201 pAG415 TPGRXS15:roGFP2 localisation yeast wild-type 

pDONR207 pAG415 GRXS15:roGFP2 localisation yeast wild-type 

pDONR201 pAG415 GRXS15 complementation yeast Δgrx5 

pDONR201 pETG-10A GRXS1538-169 protein purification E.coli Lemo21(DE3) 

pDONR201 pETG-10A GRXS1538-169 K83/A protein purification E.coli Lemo21(DE3) 

pDONR201 pETG-10A GRXS1538-169 C91/S protein purification E.coli Lemo21(DE3) 

pDONR201 pAG415-HA GRXS15 C91/S complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 K83/A complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 K83/E complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 K120/A complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 K120/E complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 K124/E complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 K124/A complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 D146/A complementation yeast Δgrx5 

pDONR201 pAG415-HA GRXS15 D146/R complementation yeast Δgrx5 

pDONR207 pSS02 GRXS15 K83/A complementation grxs15-3 

pDONR207 pSS02 GRXS15 K120/E complementation grxs15-3 
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2.3.11 DNA sequencing 

Donor vectors (Table 5) recombined with gene of interest were verified by sequencing using 

the oligonucleotides #689 and #690. DNA sequencing was done by GATC Biotech® (Köln; 

www.gatc-biotech.com). 

 

 

2.4 Microbiological methods 

2.4.1 Bacterial and yeast strains 

 

Table 6: Bacterial and yeast strains.  

strain genotype 

E. coli DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 

(rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

E. coli DB3.1 F– gyrA462 endA1 Δ(sr1-recA) mcrB mrr hsdS20(rB–, mB–) 

supE44 ara-14 galK2 lacY1 proA2 rpsL20(SmR) xyl-5 λ– leu 

mtl1 

E. coli Origami (DE3) Δ(ara-leu)7697 Δ lacX74 Δ phoA PvuII phoR ara Δ 139 ahpC 

galE 

galK rpsLF′[lac+ lacIq pro] (DE3)gor522::Tn10 trxB (KanR, 

StrR,TetR  

E. coli Lemo21(DE3) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS/ pLemo(CamR) 

 λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) 

i21 ∆nin5 pLemo = pACYC184-PrhaBAD-lysY 

A. tumefaciens C58C1 C58 background; Ti-plasmid cured (RifR, AmpR; Deblaere et al., 

1985) 

S. cerevisiae BY4742 MATα ; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0   

Wild-type, S288C derivative strain, EUROSCARF 

S. cerevisiae YPL059w MATa; grx5 :: kanMX4 

Deletion of Grx5 in BY4742; EUROSCARF 

S. cerevisiae CML235 MATa ura3-52 leu2Δ1 his3Δ200 

Wild-type (Rodríguez-Manzaneque et al., 1999); spore from 

FY1679 (S288C derivative strain) 

S. cerevisiae MML1500 MATa grx5 :: kanMX4 

Deletion of Grx5 in CML235 

S. cerevisiae W303.1A MATa ura3-1 ade2-1 leu2-3,112 trp1-1 his3-11,15 

Wild-type (Rodríguez-Manzaneque et al., 2002), W303 

derivative strain 

S. cerevisiae MML100 MATa grx5 :: kanMX4 

Deletion of Grx5 in W303-1A (Rodríguez-Manzaneque et al., 

2002) 
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2.4.2 Growth conditions for bacteria 

Bacteria strains were cultured in LB-Medium (1 % (w/v) tryptone, 0.5 % (w/v) yeast extract, 

1 % (w/v) NaCl, pH 7 with NaOH) at 37 °C (E. coli) or 28 °C (A. tumefaciens). For solid plates, 

media was supplemented with 1 % (w/v) agar before autoclaving. Antibiotics were sterile-

filtrated and added after autoclaving (see 2.1.3 for concentrations). For an overnight-culture, a 

single colony was inoculated in 5 mL LB-medium. 

 

2.4.3 Heat shock transformation of E. coli 

100 μL chemically competent E. coli were incubated together with 1 μL of the respective 

plasmid or 5 µL of the BP/LR reaction for 50 s at 42 °C. Afterwards, 500 μL LB-medium was 

added and the culture was incubated for at least 30 min at 37 °C. Finally, the culture was plated 

on LB-agar plates containing the appropriate antibiotics and incubated overnight at 37 °C. 

 

2.4.4 Isolation of plasmid DNA from E. coli 

For plasmid extraction, 5 mL LB medium containing the appropriate antibiotics was inoculated 

with bacteria and placed in a 37 °C shaking incubator overnight. The plasmids were isolated 

with the NucleoSpin® Plasmid kit (Macherey-Nagel) following the manufacturer’s protocol. 

The DNA was eluted in 50 μL dH2O and quantified with the spectrophotometer NanoDrop 

2000. 

 

2.4.5 Electropulse transformation of A. tumefaciens 

40 μL of electrically competent A. tumefaciens were mixed with 1 μL of the respective plasmid 

and transferred to the electroporation cuvette. Cells were pulsed with 2,500 V for approximately 

5 ms. Subsequently, 500 μL LB-medium was added and the bacteria were incubated for at least 

2-3 h at 28 °C. Afterwards, 50-100 μL of the culture was plated on agar plates containing the 

selective antibiotics and incubated for 2 d at 28 °C. 

 

2.4.6 Growth conditions for S. cerevisiae 

A single colony of the yeast strain was inoculated in YPD-medium (1 % (w/v) Bacto yeast 

extract, 2 % (w/v) peptone from casein and 2 % (w/v) glucose). For selection of positive yeast 

transformation, synthetic complete drop-out (SC) medium (0.67 % (w/v) yeast nitrogen base 

(YNB) without amino acids, 0.136 % (w/v) yeast synthetic drop-put medium and 2 % (w/v) 

glucose) was used lacking the specific amino acid depending on the used plasmid. For plates, 

2 % (w/v) Bacto Agar was added. The cells were grown 2-3 d at 30 °C. Sensitivity to oxidants 
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was determined onto SC plates containing the indicated concentration of the agent, by spotting 

1:5 serial dilutions of exponential cultures and recording growth after 2 d of incubation at 30 °C 

with a stereomicroscope (Leica M165 FC) equipped with a camera (DFC 425 C). Growth rates 

were measured in a volume of 260 μL at 28 °C on a plate reader (POLARstar Omega) 

monitoring the increase in absorbance at 600 nm. 

 

2.4.7 Transformation of S. cerevisiae 

The yeast transformation was performed using the lithium acetate/single-stranded carrier 

DNA/PEG method following the protocol from Gietz and Schiestl (2007) with slight 

modifications. A single colony of the yeast strain was inoculated into 10 mL liquid YPD 

medium and incubated overnight on a rotary shaker at 190 rpm and 30 °C. On the next day the 

culture was diluted to an OD600 of 0.1 and grown to an OD600 of 0.4-0.6. The cells were 

harvested with a volume for 1 OD by centrifugation at 3,000 g for 1 min. The pellet was 

resuspended in 1 mL sterile water and centrifuged again as before. The pellet was resuspended 

in 360 μL of transformation mix (0.1 M LiAc, 33 % (v/v) PEG4000, 2 mg mL-1 single-stranded 

carrier DNA and 34 μL plasmid DNA plus sterile water). The samples were incubated for 20-

30 min at 42 °C. Thereafter, the tubes were centrifuged at 13,000 g for 1 min. The supernatant 

was discarded and the pellet was resuspended in 100 μL sterile water. The cell suspension was 

plated onto the appropriate SC selection medium and incubated for 3-4 d at 30 °C. 

 

 

2.5 Protein methods and enzyme assays 

2.5.1 Modelling of GRXS15 based on GLRX5 

A homology model of Arabidopsis GRXS15 was built by using Phyre2 (Kelley et al., 2015) 

and human mitochondrial monothiol GLRX5 (PDB ID code: 2WUL) as a template. The 

coordinates of GSH and ISC were copied into the GRXS15 model after superimposition with 

GLRX5. Candidate side chains stabilising GSH within GRXS15 and their existence/biological 

relevance in other GRXs were compared with AtGRXS14 (3IPZ), PtGRXS14 (2LKU), 

HsGLRX3 (3ZYW), HsGLRX5 (2WUL), ScGrx5p (3GX8), TbGrx1 (2LTK), EcGrx4 (1YKA), 

AtGRXC5 (3RHB), PtGRXC1 (1Z7P), PtGRXS12 (3FZA), HsGLRX2 (2HT9), ScGrx1 

(3C1R), ScGrx2 (3CTF), ScGrx6 (3L4N), and EcGrx3 (3GRX). 
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2.5.2 Affinity-based purification of recombinant proteins 

All recombinant proteins were expressed in E. coli and purified via affinity chromatography 

using an N-terminal His6-tag. Cells were grown at 37 °C to an OD600 of ~0.8 in selective 

LB-medium and high level of protein expression was achieved by addition of IPTG to a final 

concentration of 1 mM. The cultures were harvested after 18-24 h at 20 °C. Cells were pelleted 

by centrifugation at 13,000 g for 10 min and resuspended in binding buffer (50 mM Tris-HCl, 

pH 8, 250 mM NaCl, 20 mM imidazole supplemented with 0.5 mM PMSF). After sonication 

the cell debris was pelleted by centrifugation and the supernatant filtered through a 0.45 µm 

sterile filter. Soluble proteins were loaded on a 1 mL Ni2+ loaded HisTrap™ HP affinity column 

(GE Healthcare) by cycling over the column for at least 30 min with a constant flow rate of 1 

mL min-1. The loaded column was washed several times with wash buffer (50 mM Tris-HCl, 

pH 8, 250 mM NaCl containing increasing concentrations of imidazole from 20 to 80 mM). 

Finally, the protein was eluted with buffer containing 250 mM imidazole. 

 

2.5.3 SDS- PAGE 

To separate individual proteins by molecular weight, the discontinuous gel system of Laemmli 

was used (Laemmli, 1970). For most purposes a 4 % stacking gel and 10 to 16 % resolving gel 

was prepared. Before gel loading, samples were heated for 5 min at 95 °C in 1x Laemmli 

sample buffer (2 % (w/v) SDS, 20 mM Tris HCl pH 6.8, 0.02 % (w/v) bromophenol blue, 0.4 

M DTT and 10 % (v/v) glycerol). Sample and size standard (PageRuler Unstained Protein 

Ladder; Thermo Scientific) were loaded and the gel was run in running buffer (25 mM Tris-

HCl pH 8.3, 192 mM Glycine, 0.1 % (v/v) SDS) at 110 V. 

 

2.5.4 Staining of protein gels 

Protein gels were stained with Coomassie (SERVA blue R, SERVA Electrophoresis). After 

electrophoretic separation, the gels were incubated at least for 1 h in staining solution 

(0.1 % (w/v) Coomassie, 10 % (v/v) acetic acid and 45 % (v/v) MeOH) on a shaker. The gels 

were discoloured with destaining solution containing 10 % (v/v) acetic acid and 30 % (v/v) 

EtOH or in water overnight. 

 

2.5.5 Determination of protein content 

The protein content was quantified by the Bradford assay (Bradford, 1976) with bovine serum 

albumin (BSA) as standard. 10 μL of protein solution was mixed with 260 μL Bradford reagent 

in 96-well plates (Sarstedt, flat base, transparent) and incubated for 5 min at RT. Optical density 
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(OD595) of the samples was measured with a plate reader (POLARstar Omega; BMG) and the 

amount of protein was determined from the standard curve. 

 

2.5.6 Protein gel blot and antibodies 

For protein gel blot analysis, total cell extract or purified organelles were heated for 5 min and 

separated on standard SDS-PAGE gels. Proteins were transferred to a membrane (BioTrace 

PVDF Transfer Membrane; Pall Corporation) and labelled with antibodies (1:2,500 dilution 

GRXS15; 1:8,000 dilution ACO; 1:1000 dilution AOX1/2 (AS04054 Agrisera); 1:20,000 

dilution Streptavidin HRP (ab7403 Abcam)). Immunolabelling was detected by 

chemiluminescence using secondary horseradish peroxidase-conjugated antibodies (1:20,000) 

and Pierce ECL Western Blotting Substrate. The GRXS15 antibody was a kind gift of Nicolas 

Rouhier (Nancy) and the ACO antibody the kind gift of Janneke Balk (Norwich).  

Post-staining of membrane was performed by incubating the membrane for 5 min in amido 

black staining solution (0.1 % (w/v) amido black, 45 % (v/v) EtOH, 10 % (v/v) acetic acid) and 

washing it with water until background was white again. 

 

2.5.7 HED assay 

Reduction of HED was measured as the change in A340 in the following mixture: 0.1 M 

potassium phosphate buffer pH 7.8 containing 0.5 mM HED, 0.1 U GR, 500 μM NADPH, and 

3 μM GRX. GSH (in 0.1 M phosphate buffer, pH 7.0) was automatically injected to a final 

concentration of 0.5 mM by using the built-in injector of the plate reader (POLARstar Omega; 

BMG, www.bmglabtech.com). 

 

2.5.8 roGFP2 interaction assay 

Interaction of GRX with roGFP2 was analysed as described previously (Aller et al., 2013) in 

vitro by ratiometric time-course measurements on a fluorescence plate reader (POLARstar 

Omega®; BMG) with filter-based excitation at 390 ± 10 nm and 480 ± 10 nm and detection of 

emitted light at 520 nm with a bandwidth of 10 nm. 0.1 M potassium phosphate buffer pH 7.8 

containing 1 μM roGFP2 and 3 μM of the respective GRX was pipetted into the wells of a 

96-well plate with flat bottom (Sarstedt). Ratiometric time-course measurements were carried 

out with initially oxidised or reduced roGFP2, respectively. For the latter, the protein was 

reduced with 10 mM DTT for 20 min. The remaining DTT was removed by desalting spin 

columns according to the manufacturer’s manual (Zeba™ Spin Desalting Columns, Thermo 

Scientific). For interaction analysis with oxidised roGFP2, GSH (in 0.1 M potassium phosphate 
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buffer, pH 7.0) was automatically injected after 10 cycles to a final concentration of 2 mM 

using the built-in injectors. When working with oxidised roGFP2, a highly negative redox state 

of the glutathione buffer was maintained by addition of 1 U GR and 100 μM NADPH. For 

oxidation of roGFP2 40 μM GSSG was injected into the wells. Furthermore, H2O2 and DTT 

were used at a final concentration of 10 mM to preset roGFP2 to the fully oxidised and fully 

reduced state, respectively, and determine maximum and minimum fluorescence ratios of 

roGFP2 as reference values. A basal background fluorescence of buffer or buffer containing 

100 μM NADPH was subtracted from fluorescence reads for all samples. The reduction and 

oxidation kinetics of roGFP2 in the presence of GRXC1 served as a positive control. 

 

2.5.9 Aconitase and malate dehydrogenase assay 

Arabidopsis seedlings were homogenised in extraction buffer (50 mM Tris-HCl pH 8.0, 50 mM 

KCl, 0.2 % (v/v) Triton X-100, 2 mM sodium citrate, 1 mM DTT) and centrifuged for 10 min 

at 4 °C. Extracts from yeast cells growing exponentially in SD medium were prepared in 0.1 M 

HEPES, pH 7.8, 0.1 % (w/v) ascorbate, 0.05 % (v/v) β-mercaptoethanol, 10 mM EDTA and 

0.01 % (v/v) Triton X-100 by using glass beads to break the cells.  

Aconitase activity was analysed in a coupled assay measuring NADPH formation by 

monitoring the increase in absorbance at 340 nm using a plate reader (CLARIOstar®; BMG). 

The reaction mixture contained 50 mM HEPES pH 7.8, 2.5 mM NADP+, 5 mM MnCl2, 

0.1 % (v/v) Triton X-100 and 0.05 U isocitrate dehydrogenase. The mixture was allowed to 

come to equilibrium after addition of protein extract. The reaction was started by adding 8 mM 

cis-aconitic acid.  

For measuring the malate dehydrogenase activity, the rate of change in A340 was monitored in 

the following mixture: 0.1 M HEPES pH 7.8, 0.5 mM NADH, 5 mM MgCl2, 0.65 % (v/v) 

Triton X-100. The reaction was started by the addition of 750 μM oxaloacetic acid.  

 

2.5.10 Nitrate reductase assay 

Nitrate reductase (NR) assay was performed as described previously (Scheible et al., 1997) with 

slight modifications. Leaves were homogenised in extraction buffer (50 mM MOPS, pH 7.0, 

50 mM KCl, 5 mM Mg-acetate, 1 mM CaCl, 2 mM Na-citrate and 1 mM DTT) and centrifuged 

for 10 min at 20,000 g and 4 °C. NR activity was measured in a reaction mixture containing 

50 mM MOPS, pH 7.0, 50 mM KCl, 5 mM Mg-acetate, 1 mM CaCl, 10 mM KNO3 and 0.4 mM 

NADH. At various time points, 150 µL aliquots were removed from the mixture and the 

reaction was stopped by adding 54 mM zinc acetate and 37.5 µM phenazine methosulfate. 
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Thereafter, 0.475 % (v/v) sulphanilamide in 1 N HCl and 0.005 % (v/v) N-(1-naphthyl)-

ethylendiamine was added. Samples were allowed to stand for 15 min at RT in the dark and the 

absorbance of the produced azo-dye was measured at 540 nm.  

 

2.5.11 Aldehyde oxidase and xanthine dehydrogenase assay 

Aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) assays were performed similar as 

described previously by Koshiba et al. (1996) and Hesberg et al. (2004). For determination of 

AO and XDH activities Arabidopsis seedlings were homogenised in extraction buffer (0.1 M 

potassium phosphate buffer pH 7.5, 2.5 mM EDTA and 5 mM DTT) and centrifuged for 10 min 

at 4 °C. Enzyme activities of AO and XDH in the resulting supernatant were detected after 

native PAGE by activity staining. Activity of AO was developed in a reaction mixture 

containing 0.1 M potassium phosphate buffer pH 7.5, 1 mM 1-naphthaldehyde, 1 mM indole-

3-carboxaldehyde, 0.1 mM phenazine methosulfate (PMS), and 0.4 mM MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) at RT. Activity of XDH was 

analysed with a staining solution of 1 mM hypoxanthine, 1 mM MTT and 0.1 mM PMS in 

250 mM Tris-HCl, pH 8.5. 

 

2.5.12 Pyruvate dehydrogenase complex assay 

To estimate the activity of pyruvate dehydrogenase complex, mitochondria were isolated as 

described previously (2.2.7) and reduction of NAD+ was measured at 340 nm in a reaction 

mixture containing ~10 µg mitochondria in 100 mM MOPS pH 7.4, 1 mM CaCl2, 1 mM MgCl2, 

4 mM cysteine, 0.45 mM thiamine pyrophosphate, 0.18 mM Coenzyme A, 3 mM NAD+ and 

0.1 % (v/v) Triton X-100. The reaction was started with 7.5 mM pyruvate. 

 

2.5.13 Reconstitution assay 

The reconstitution assay was performed similar to the protocol described in Berndt et al. (2007). 

0.1 M potassium phosphate buffer, pH 7.4 containing 200 mM NaCl, 0.01 molar equivalents of 

E. coli IscS, 2 equivalents of Fe(NH4)2(SO4)2, 2.5 equivalents of cysteine, 1 mM GSH, 5 mM 

dithiotreitol (DTT), 10 μM pyridoxal phosphate and 50 µM GRX was incubated under argon 

atmosphere at RT. After 2 h the mixture was desalted using Zeba™ Spin Desalting Columns 

(Thermo Scientific) according to the manufacturer’s manual. UV-VIS spectra of the 

reconstitution was recorded on a plate reader (CLARIOstar® BMG) monitoring the absorbance 

at 250-750 nm. 
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2.6 Microscopic methods 

2.6.1 GSH visualisation in vivo 

The in vivo GSH content was determined as previously reported by Cairns et al. (2006). Plants 

were germinated for 4 d on 0.5 MS plates containing 2 mM BSO (L-buthionine-

[S, R] sulfoximine) before being transferred for 24 h to 0.5 MS plates without BSO to initiate 

GSH recovery. Seedlings were stained with 100 µM monochlorobimane and 50 µM propidium 

iodide for 30 min before performing confocal laser scanning microscopy analysis.  

 

2.6.2 Silique imaging 

Defective seed development was noted by dissecting siliques of self-pollinated plants and 

counting the number of normal and aborted seeds present in each silique. To determine the 

phenotypes of embryos, whole siliques were destained with Hoyer’s solution (7.5 g gum arabic, 

100 g chloral hydrate, 5 mL glycerol and 60 mL dH2O) overnight. Siliques were analysed with 

a stereomicroscope (Leica M165 FC) equipped with a camera (DFC 425 C) by using the 

software LAS V3.8 (Leica Application Suite). 

 

2.6.3 GUS staining 

Histochemical staining of pollen was performed for the confirmation of T-DNA mutants 

(SAIL-431-H03) containing the T-DNA pCSA110 with a Lat52 promoter-β-glucuronidase 

fusion. Pollen were placed in a solution containing 10 μM X-Gluc (Duchefa Biochemie), 

50 mM potassium ferricyanide and 50 mM potassium ferrocyanide in 0.1 M sodium phosphate 

buffer pH 7.0 and incubated in the dark at 37 °C overnight. After 24 h, pollen were analysed by 

bright field microscopy (Axio Observer.Z1, Carl Zeiss Microscopy) equipped with a 20x lens 

(LD Plan-Neofluar® 20x/0.4 Korr, Carl Zeiss Microscopy) and with a camera (Zeiss AxioCam 

MRc) using the software Palm Robo V4.5. 

 

2.6.4 Subcellular localisation and fluorescence microscopy 

Fluorescent plants and yeast colonies were detected on a stereomicroscope (Leica M165 FC) 

equipped with a GFP or DsRed filter and documented with an attached camera (Leica DFC425 

C). For co-localisation in mitochondria, samples were incubated with 0.5 μM MitoTracker 

Orange CM-H2TMRos for at least 15 min. Yeast cells were transferred to a slide and 

immobilised with 0.1 % (w/v) agarose. A confocal laser scanning microscope (Zeiss LSM 780, 

attached to an Axio Observer.Z1; Carl Zeiss Microscopy) was used for confocal imaging. 

Images were collected with a 40× (C-Apochromat 40×/1.2 W Korr) or a 63× lens (Plan-
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Apochromat 63×/1.40 Oil DIC). For localisation studies, GFP was excited at 488 nm and 

MitoTracker at 543 nm. roGFP2 fluorescence was collected with a 505-530 nm bandpass filter 

and MitoTracker fluorescence with a bandpass filter of 560-620 nm. Chlorophyll 

autofluorescence was excited at 488 nm and detected with a bandpass filter of 647-745 nm. 

For ratiometric analyses of mitochondrial localised roGFP2:hGRX1 or roGFP2:Orp1, roGFP2 

was excited at 405 and 488 nm. For both excitation wavelengths, roGFP2 fluorescence was 

collected with a bandpass filter of 505-530 nm.  

The cytosolic ATeam was excited at 458 nm and emission of FRET-pair proteins CFP 

(mseCFP) and YFP (cp173-mVenus) was collected at 499-544 nm and 579-615 nm, 

respectively. 

Cytosolic NADH/NAD+ redox state was assessed with the Peredox-mCherry sensor, exciting 

tSapphire and mCherry at 405 and 543 nm, respectively and collecting the emission at 499-544 

nm and 579-615 nm. 

 

 

2.7 Phylogenetic analysis 

An alignment of GRX full-length amino acid sequences, which were retrieved from TAIR 

(Lamesch et al., 2012), was generated with MUSCLE (Edgar, 2004). The evolutionary history 

was inferred by using the maximum likelihood method based on the JTT matrix-based model. 

The tree with the highest log likelihood (−3940.9281) is shown. The percentage of trees in 

which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the 

heuristic search were obtained automatically by applying neighbour-join and BioNJ algorithms 

to a matrix of pairwise distances estimated by using a JTT model, and then selecting the 

topology with superior log likelihood value. A discrete gamma distribution was used to model 

evolutionary rate differences among sites [five categories (+G, parameter = 4.3811)]. The rate 

variation model allowed for some sites to be evolutionarily invariable ([+I], 2.7321 % sites). 

The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. 

The analysis involved 32 amino acid sequences. All positions with less than 95 % site coverage 

were eliminated. Thus, less than 5 % alignment gaps, missing data, and ambiguous bases were 

allowed at any position. In total, 92 positions remained in the final dataset. Evolutionary 

analyses were conducted in MEGA6 (Tamura et al., 2013). Bootstrap value: 5,000.  
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2.8 Synonyms and AGI locus code of used Arabidopsis genes 

GRXC1 (At5g63030), GRXC2 (At5g40370), GRXC3 (At1g77370), GRXC4 (At5g20500), 

GRXC5 (At4g28730), GRXC6 (ROXY21; At4g33040), GRXC7 (ROXY1; At3g02000), 

GRXC8 (ROXY2; At5g14070), GRXC9 (ROXY19; At1g28480), GRXC10 (ROXY20; 

At5g11930), GRXC11 (ROXY4; At3g62950), GRXC12 (ROXY5; At2g47870), GRXC13 

(ROXY9; At2g47880), GRXC14 (ROXY8; At3g62960), GRXS1 (ROXY16; At1g03020), 

GRXS2 (ROXY10; At5g18600), GRXS3 (ROXY11; At4g15700), GRXS4 (ROXY13; 

At4g15680), GRXS5 (ROXY12; At4g15690), GRXS6 (ROXY17; At3g62930), GRXS7 

(ROXY14; At4g15670), GRXS8 (ROXY15; At4g15660), GRXS9 (ROXY7; At2g30540), 

GRXS10 (ROXY3; At3g21460), GRXS11 (ROXY6; At1g06830), GRXS12 (At2g20270), 

GRXS13 (ROXY18; At1g03850), GRXS14 (GRXcp, CXIP1, At3g54900), GRXS15 (GRX4, 

At3g15660), GRXS16 (GRX2, CXIP2, At2g38270), GRXS17 (At4g04950), ScGrx5p 

(NP_015266), MFDX1 (At4g05450). 
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3. Results 

3.1 Functional characterisation of GRXS15 

3.1.1 Subcellular localisation of GRXS15 in mitochondria 

During the last decade, the subcellular distribution of several GRXs has been proven 

experimentally (Figure 2), but still the compartmentation of most GRXs is based on predictions 

derived from bioinformatic algorithms. Regarding Arabidopsis GRXS15 the subcellular 

localisation is ambiguous as discussed above. Because the site of action is a prerequisite for an 

understanding of protein function, we investigated the localisation of GRXS15 more precisely. 

Sequence analysis with TargetP 1.1 (Emanuelsson et al., 2000) predicted that GRXS15 contains 

a N-terminal mitochondrial target peptide with a length of 37 amino acids. To resolve the 

controversial uncertainty of the subcellular localisation, the predicted 37-aa target peptide 

(TPGRXS15) and the full-length sequence of GRXS15 were cloned in frame with GFP under 

control of the 35S promoter and stably expressed in Arabidopsis. In both cases, the GFP signal 

was exclusively localised in mitochondria as visualised through co-localisation of GFP with the 

mitochondrial marker MitoTracker (Figure 8A). 

 

 

 

Figure 8: Subcellular localisation of GRXS15 in Arabidopsis.  

A: Expression of 35Spro:TPGRXS15:GFP and 35Spro:GRXS15:GFP in leaf epidermal cells. GFP, green; 

MitoTracker, red; chlorophyll autofluorescence, magenta. Scale bars = 1 μm. 

B: Protein gel blot analysis with antiserum raised against Arabidopsis GRXS15. 15 µg of protein 

isolated from whole leaves of a GRXS15 overexpression plant (OE) and a wild-type plant (Wt) as well 

as proteins of isolated wild-type chloroplasts (C) and wild-type mitochondria (M) were loaded along 

with 0.5 μg of recombinant protein (RP). Immunoreactivity of the large subunit of RuBisCO (RbcL) 

served as control for purity of the mitochondrial preparation. 
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This result was further corroborated through protein gel blot analysis in which GRXS15 was 

only detectable in isolated mitochondria but not in chloroplasts (Figure 8B). In whole-leaf 

extracts of wild-type plants, no GRXS15 was detectable consistent with decreased relative 

abundance of mitochondrial proteins. 

 

 

3.1.2 Disruption of GRXS15 causes early embryo abortion 

To gain insight into the physiological role of GRXS15 in Arabidopsis, three transfer DNA 

insertion lines for the gene locus At3g15660 were isolated. These mutants included two lines 

with insertions in the 5′-UTR, denominated as grxs15-1 and grxs15-3 as well as a line with an 

insertion in the first intron of the gene sequence (grxs15-2; Figure 9A). Left border flanking 

sequences of the T-DNA insertions in grxs15-1, grxs15-3 and grxs15-2 were sequenced and the 

insertion sites were mapped to positions −141, −173, and +322 bp relative to the start codon, 

respectively. Homozygous grxs15-1 plants were phenotypically indistinguishable from wild-

type under normal growth conditions (Figure 9C and Supplemental Figure 1). Whereas in wild-

type plants the gene is transcribed into two different transcripts annotated as At3g15660.1 and 

At3g15660.2 (Lamesch et al., 2012), grxs15-1 contains only one transcript with a truncated 

5′-UTR without obvious changes in transcript abundance (Supplemental Figure 1). Because this 

result implies that grxs15-1 is not a null mutant, it was excluded from further analysis.  

The only phenotype of grxs15 null mutants described thus far is sensitivity toward H2O2, which 

led to the suggestion that GRXS15 may be involved in the maintenance of growth and 

development under oxidative stress conditions. Interestingly, no homozygous grxs15-2 and 

grxs15-3 mutants were found, although the grxs15-2 line was described as viable in 

homozygous form before (Cheng, 2008). In both cases, selfed heterozygous plants segregated 

in a 1:2 (susceptible:resistant) pattern (Figure 9B). Furthermore, the mutant grxs15-2 was 

generated with a T-DNA containing a GUS gene driven by a pollen-specific promoter in the 

quartet (qrt) background that prevents separation of pollen after meiosis. Here, heterozygous 

plants always produced pollen tetrads with two GUS-positive pollen, which strongly suggests 

the absence of a second unlinked T-DNA insertion (Figure 9D). Analysis of developing seeds 

from selfed grxs15-2 and grxs15-3 plants revealed frequent abortion (Figure 9B, C). Whereas 

23 % of aborted grxs15-2 seeds were still supporting the hypothesis of a 3:1 (viable:aborted) 

segregation excluding an effect of gametogenesis, abortion in grxs15-3 was slightly less 

frequent with approximately 20 % (Figure 9B). Interestingly, abortion in grxs15-2 occurred at 

an early stage after fertilisation, whereas the presumed homozygous seeds in grxs15-3 
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progressed significantly further in development and even initiated endosperm formation. The 

seeds nevertheless stayed transparent because embryo development was arrested at globular 

stage (Figure 9E).  

 

 

 

Figure 9: Isolation and characterisation of grxs15 mutants.  

A: Physical map of the GRXS15 gene according to the gene model At3g15660.2. Introns are represented 

by lines and exons as boxes. Both UTRs are depicted in gray. The primers used for genotyping are 

indicated by numbered arrows. The T-DNA insertions of the mutant lines grxs15-1, grxs15-2 and 

grxs15-3 are shown as inverted triangles with the identified insertion site relative to the start codon 

indicated. Blank arrows depict the left border (LB) primers used for genotyping and indicate the 

orientation of the T-DNA.  

B: Segregation pattern and seed development of grxs15 T-DNA insertion mutants. Χ2 values for the 

progeny genotype are calculated on an expected ratio of 1:2 and for seed development on an expected 

ratio of 3:1. The degree of freedom in both cases is 2. 

C: Opened siliques from wild-type, grxs15-1, grxs15-2 and grxs15-3 plants.  

D: GUS labelling of qrt pollen tetrads from a segregated plant homozygous for the wild-type allele 

GRXS15 (Left) or from a heterozygous grxs15-2 plant (Right).  

E: Differential interference contrast image of normal (Left) and transparent (Right) seed from the same 

silique of a grxs15-3 plant. Scale bar = 150 μm. 

 

 

To further confirm that the observed early embryo arrest was caused specifically by disruption 

of GRXS15, both null mutants were complemented with wild-type GRXS15 driven by the 

UBQ10 promoter, while complementation driven by the 35S promotor failed. All 

complemented plants were phenotypically normal, demonstrating the importance of GRXS15 

for plant growth and development (Figure 10A, B).  
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Figure 10: Complementation of grxs15 null mutants.  

A: Isolation of homozygous T-DNA mutants complemented with GRXS15 by genotyping. Plants were 

screened with primer combination for the wild-type allele (1), T-DNA insertion (2) and 

complementation construct (3) using a forward primer binding in the UBQ10pro and an exon-exon 

spanning reverse primer annealing to exon 2 and exon 3 in the coding region of GRXS15. 

B: Homozygous grxs15 UBQ10pro:GRXS15 T2 plants and the respective wild-type were grown for 

4 weeks on soil, revealing no obvious differences under these growth conditions.  

C: PCR analysis of T2 progeny from three independent homozygous grxs15-2 UBQ10pro:GRXS15 

plants. Using a forward primer binding in the UBQ10pro and an exon-exon spanning reverse primer 

annealing to exon 2 and exon 3 in the coding region of GRXS15 consistently results in the anticipated 

PCR product of 591 bp. 

 

 

The viable T2 progeny of complemented grxs15-2 plants all contain the GRXS15 transgene 

(Figure 10C) indicating that a loss of the complementation construct due to segregation causes 

lethality. These complementation data validate the conclusion that the embryo lethality is due 

to GRXS15 deficiency.  
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3.1.3 ISC binding of GRXS15 

As shown above, GRXS15 is an indispensable mitochondrial protein in Arabidopsis and the 

unknown link between embryo lethality and lack of GRXS15 raises questions concerning its 

function.  Monothiol GRXs have been considered as components of the FeS-protein assembly 

machinery. However, the involvement of GRXS15 in the maturation of FeS-proteins in 

mitochondria remains elusive in plants because, among all poplar monothiol CGFS GRXs, it is 

the only isoform failing to rescue most phenotypes of the yeast Δgrx5 mutant (Bandyopadhyay 

et al., 2008). Here again, conflicting results were published with the Arabidopsis GRXS15, 

showing a full complementation of the yeast Δgrx5 mutant (Cheng et al, 2008). Thus, distinct 

growth defects displayed by the yeast Δgrx5 strain were exploited for functional 

complementation studies. The original GRXS15 target peptide of 37-aa is sufficient for 

targeting GFP or a GRXS15:GFP fusion to mitochondria in yeast (Figure 11A), as in plants.  

 

 

 

Figure 11: Complementation of the yeast Δgrx5 mutant by Arabidopsis GRXS15. 

A: Subcellular localisation of TPGRXS15:GFP or GRXS15:GFP in Saccharomyces cerevisiae cells. 

Cultures were grown in liquid drop-out medium before incubation with the mitochondrial marker 

MitoTracker. GFP, green; MitoTracker, red. Scale bars = 2 μm.  

B: Yeast growth on drop-out medium. Serial fivefold dilutions of wild-type (BY4742) and the respective 

Δgrx5 mutant (YPL059w), transformed with an empty vector, and the Δgrx5 mutant transformed with 

GPDpro:GRXS15 were spotted on plates containing glucose (Left) or glucose with 1.25 mM diamide 

(Right) and grown at 30 °C. No growth was observed on drop-out medium containing glycerol instead 

of glucose to enforce respiratory growth (Center). One representative experiment from three 

independently performed experiments is shown.  

 

 

To test for yeast complementation we thus used the full-length sequence of GRXS15 for 

detailed complementation studies. Indeed, the complementation resulted in partial rescue of 

Δgrx5. Moreover, expression of GRXS15 also diminished the sensitivity of Δgrx5 to the 
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oxidative agent diamide but not the respiratory growth defect on glycerol (Figure 11B). These 

observations strongly point at a partial functional conservation between yeast Grx5p and 

Arabidopsis GRXS15. 

To support the hypothesis that GRXS15 is involved in supplying ISC to mitochondrial proteins, 

the capacity of recombinant GRXS15 for binding an ISC was analysed. Escherichia coli cells 

expressing GRXS15 did not display the strong characteristic brownish colour associated with 

the presence of an ISC in overexpressed proteins. However, when the recombinant protein was 

purified in the presence of 4 mM GSH, the UV-visible spectrum showed a pronounced shoulder 

at 420 nm, indicating that ISC coordination by GRXS15 occurred in E. coli and is stabilised by 

GSH. Because GRXS15 ISC incorporation was likely far from completion, an in vitro 

reconstitution assays was performed under anaerobic conditions by using the purified 

apoprotein. In this case, the visible part of the absorption spectrum of the reconstituted protein 

presented a prominent absorbance peak at approximately 420 nm compared with the apoprotein 

(Figure 12A), which is characteristic for the presence of an [2Fe-2S]2+ cluster or a mixture of 

[2Fe-2S]2+ and linear [3Fe-4S]+ clusters.  

Based on the ability of GRXS15 to coordinate an ISC in vitro, a homology model was built 

with human GLRX5 as template (Figure 12B) and GRXS15 candidate residues were compared 

for noncovalent binding of GSH as a prerequisite for ISC coordination to other GRX structures 

(Figure 12C). Whereas position K83 is fully conserved in all analysed GRX structures, position 

K120 is more variable but usually retains residues that may participate in GSH binding through 

hydrogen bonding. However, especially K83 that resides near the catalytic cysteine might 

influence via ionic interactions of the positively charged residues the stability of the cysteine 

thiolate of C91 and thus lowering the ability to coordinate an ISC (Deponte, 2013). Based on the 

modelled structure, several substitutions were carried out to manipulate the direct environment 

of the putative ISC binding in a targeted manner. The mutations included charge inversions to 

gain drastic effects and substitutions by alanine that were anticipated to be less severe. Indeed, 

a K83/A mutant variant was still able to coordinate an ISC, albeit less efficient than the wild-

type but better than the C91/S mutant (Figure 12A).  
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Figure 12: Coordination of an ISC by GRXS15. 

A: Reconstitution of an ISC in GRXS15. UV-visible spectra of apo- (dashed line) and holo-GRXS15 

(straight black line), the K83/A (red), and the C91/S substituted protein (yellow) 2 h after reconstitution 

or directly after purification from E. coli in the presence of 4 mM GSH (grey). The spectra were 

normalised to the absorbance at 278 nm.  

B: Amino acid alignment of GRXS15 and other ISC binding GRXs core region. The sequence alignment 

was performed with MUSCLE. Enumeration of the amino acids is based on GRXS15. 

C: Structure modelling of GRXS15. A homology model was built by using Phyre2 with human 

mitochondrial GLRX5 as template. Highlighted are the amino acids K83 and K120 that may form 

hydrogen bonds with the carboxyl group of GSH as well as C91 that directly interacts with the ISC.  

 

 

3.1.4 Diminished ISC coordination by GRXS15 limits the ability to complement  

To explore the functional impact of GRXS15 on cellular ISC homeostasis and maintenance of 

FeS-proteins, Δgrx5 yeast strains expressing the mutant GRXS15 variants were analysed for 

complementation of growth defects and the activity of ISC-containing aconitase. Mutants 

lacking the active site cysteine (C91) or carrying a K83/E substitution were no longer able to 

complement the Δgrx5 mutant, indicating the essential role of both amino acids (Figure 13A). 

Substitution K83/A turned out to be less severe and still allowed for residual complementation, 

whereas mutations of K120 generally had only diminutive effects on the ability of GRXS15 to 
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complement Δgrx5. In contrast, mutations of K124 or D146 had no effect resulting in a similar 

complementation as the native GRXS15 (Supplemental Figure 2). 

Furthermore, ACO activity strongly depended on the mutations, while malate dehydrogenase 

(MDH), a mitochondrial non-ISC enzyme used as control, showed similar activity in all 

complemented lines and wild-type. Less severe mutations led to a minor proportional decrease 

in ACO/MDH activity ratio, while mutant variants that did not rescue Δgrx5 growth showed 

only low ACO activity (Figure 13B). 

 

 

 

Figure 13: Rescue of the yeast Δgrx5 mutant defects by mutated GRXS15. 

A: Growth of the yeast Δgrx5 mutant, complemented with different versions of GRXS15. The 

absorbance at 600 nm was followed over time. One representative experiment from three independently 

performed experiments is shown.  

B: Normalised ratio of aconitase (ACO)/malate dehydrogenase (MDH) activity. Enzyme activity was 

measured in total yeast cell extract of complemented Δgrx5 mutant. (n = 3 ± SEM), Asterisks indicate 

statistically significant differences (Student’s t test: *P ≤ 0.1; **P ≤ 0.05) compared with wild-type or 

GRXS15-complemented Δgrx5 mutant. 

 

 

To analyse whether the diminished function of GRXS15 has also an influence on the maturation 

of FeS-proteins in the plant context, we complemented the Arabidopsis grxs15-3 null mutant 

with the mutated GRXS15 variants K120/E and K83/A based on the observation that both 

mutations lead to different degrees of partial complementation of the yeast Δgrx5 mutant. In 

both cases homozygous plants for the grxs15-3 null allele were obtained. The grxs15-3 

UBQ10pro:GRXS15 K120/E plants showed no obvious differences in phenotype, whereas the 

grxs15-3 UBQ10pro:GRXS15 K83/A complemented lines showed severely reduced growth. 

Analysis of root length in the grxs15 mutant lines showed also a reduction of primary root 

length compared to wild-type (Figure 14A, B). As line #3 seems to grow best and line #4 worse 

these two lines were chosen for further analysis. To further test whether the reduced root length 

of GRXS15 K83/A complemented null mutants was a true growth retardation or only a 
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phenotype caused by a delay of development, we determined the germination rate in the two 

complemented lines #3 and #4. The absence of any difference between wild-type and mutant 

suggests that the growth phenotype indeed reflects a bona fide growth retardation (Figure 14C). 

 

 

 

Figure 14: Rescue of the grxs15-3 mutant by GRXS15 K83/A. 

A: 8-d-old wild-type (Wt) seedlings compared with grxs15-3 UBQ10:GRXS15 K83/A mutants grown on 

vertical agar plates under long-day conditions. 

B: Primary root length of 8-d-old grxs15-3 UBQ10:GRXS15 K83/A mutants compared to wild-type 

(n = 35 ± SD). Student’s t-Test analysis showed significant differences between wild-type and all mutant 

lines *** = P<0.001. 

C: Germination rate of grxs15-3 UBQ10:GRXS15 K83/A line #3 and #4 compared to the wild-type after 

1 d stratification (n = 6 with 20-25 seeds each ± SD). 

 

 

3.1.5 GRXS15 K83/A does not affect biotin-dependent enzymes 

We were wondering if the dwarfed phenotype is based on an inefficient ISC transfer to specific 

mitochondrial FeS-proteins. One putative candidate is the biotin synthase (BIO2, At2g43360) 

catalysing the final step in the biotin biosynthetic pathway. Biotin is an essential cofactor for 

several enzymes and bio2 null mutants were previously described as embryo lethal arresting 

mostly at the globular or heart stage (Arnal et al., 2006; Patton et al., 1998). Biotin-dependent 

methylcrotonoyl-CoA carboxylase (MCCase) is involved in leucine degradation in 

mitochondria which might be affected in mutants with diminished GRXS15 activity. However, 

there was just a slight decrease in protein abundance of the biotinylated MCCase subunit 

MCCA (Figure 15A). Biotin is also exported to the cytosol and chloroplasts where it is required 

for synthesis and elongation of fatty acids by hetero- and homomeric acetyl-CoA carboxylase 

(ACCase). Here, also just a slight decrease of protein amount was observed, which had no 

influence on fatty acid amount or ratio of specific fatty acids in seeds or young seedlings in the 

worst growing mutant line #4 (Figure 15B-D, Supplemental Figure 3A-C). 
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Figure 15: GRXS15 K83/A mutation has no impact on the biotin pathway. 

A: Immunoblot analysis of biotinylated MCCA in mitochondria of GRXS15 K83/A mutants compared 

with wild-type. In the upper panel, biotinylated MCCA was detected by streptavidin HRP (ab7403 

Abcam) in isolated mitochondria (9 μg protein was loaded). In the lower panel, amido black staining of 

the membrane is shown as a control for protein loading. 

B: Protein expression of biotinylated proteins in total proteins of GRXS15 K83/A mutants line #4 and 

#5, a knock-down line (GRXS15amiR), the T-DNA insertion line grxs15-1, and the grxs15-1 mutant 

complemented with GRXS15 (GRXS15comp) compared with wild-type and atm3 mutants. In the upper 

panel, biotinylated proteins were detected by streptavidin HRP in total proteins. In the lower panel, 

expression of actin is shown as a control for protein loading. Data were provided by Inga Kruse and 

Janneke Balk. 

C, D: Fatty acid profiles (FAMEs) quantified by GC-MS of seeds and 8-d-old seedlings of GRXS15 

K83/A line #4 compared with wild-type. FAMEs were measured by GC-FID using pentadecanoic acid 

as internal standard. (n = 3-4 ± SD). 

 

 

Furthermore, it has been shown that bio1 as well as bio2 mutants can be rescued by the addition 

of biotin to arrested embryos cultured in vitro and to mutant plants grown on soil (Patton et al., 

1998; Schneider et al., 1989). However, growing the grxs15 mutants on biotin-containing 

medium did not rescue the growth defect, indicating that a defect in the biotin synthesis is not 

the cause of the phenotype of grxs15 mutants (Supplemental Figure 3D). 
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3.1.6 Moco-dependent enzymes are not affected in the K83/A mutant 

Another mitochondrial FeS-protein is CNX2 (At2g31955) that catalyses the first step of Moco 

biosynthesis in which GTP is converted to cPMP (Bittner, 2014; Hänzelmann et al., 2004). The 

most abundant Moco-dependent enzymes include nitrate reductase (NR; At1g37130), aldehyde 

oxidase (AAO3; At2g27150), xanthine dehydrogenase (XDH1; At4g34890) and sulfite oxidase 

(SO; At3g01910). Interestingly, we found that the growth retardation of the K83/A mutant roots 

is more pronounced on nitrate (KNO3), than on ammonium ((NH4)2SO4) as only nitrogen source 

(Figure 16A-C). Similar results were obtained when seedlings were grown on NH4Cl instead 

of (NH4)2SO4 to exclude possible impacts of the respective counter anions on the growth 

behaviour (Supplemental Figure 4B, C).  

 

 

 

Figure 16: The nitrogen source influences growth of GRXS15 K83/A mutants. 

A: Representative 4-week-old wild-type plant compared with GRXS15 K83/A line #3 and #4 as well as 

atm3-1 grown on soil under long-day conditions. 

B: Primary root length of GRXS15 K83/A line #3 and #4 as well as atm3-1 seedlings compared to wild-

type (Wt) grown on vertical agar plates for 8 d under long-day conditions containing 5 mM KNO3 or 

2.5 mM (NH4)2SO4 as N-source (n = 30 ± SD). Student’s t-Test analysis showed significant differences 

between the growth on the different N-sources in all lines *** = P<0.001. 

C: Growth rate calculations from root length measurements at day 5 and day 8 under long-day conditions 

(n = 30 ± SD) from seedlings depicted in B. Student’s t-Test analysis showed significant differences 

between the growth on the different N-sources in all lines *** = P<0.001. 

D: Nitrate reductase activity in wild-type, line #3 and #4 mutants as well as in the atm3-1 line. Activity 

was analysed in 4-week-old plants grown on soil by measuring the presence of nitrite via the Griess 

reaction (n = 4 ± SD). 
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This could be indicative of a severe NR deficiency, because nia1nia2 double mutants grow 

poorly on media containing nitrate as the only nitrogen source characterised by very small, 

yellowish plants (Wilkinson and Crawford, 1993). Therefore, we compared the growth of 

grxs15 roots with atm3-1, which has a decreased NR activity and a similar macroscopic 

phenotype as nia1nia2 (Teschner et al., 2010) as well as a decreased activity of other 

Moco-dependent enzymes (Bernard et al., 2009). The grxs15 mutants do not phenocopy the 

atm3 mutants and surprisingly, in contrast to grxs15 mutants, root growth of atm3-1 was still 

better on nitrate than on ammonium (Figure 16B, C). The result suggests that the residual NR 

activity in grxs15 mutants is sufficient to use nitrate as the sole nitrogen source. Nevertheless, 

the grxs15 mutant grew slightly better under short-day conditions similar to mutants which have 

a diminished nitrate storage capacity (Krebs et al., 2010) (Supplemental Figure 4A) suggesting 

that the grxs15 mutants struggle with nitrate as nitrogen source in some other way. 

The severe growth retardation on medium with nitrate as the sole N-source prompted us to 

measure the NR activity and the amount of nitrate and nitrite in the grxs15 mutants 

complemented with GRXS15 K83/A. As expected, we found a severe decrease in NR activity 

in atm3-1, but interestingly not in the mutant lines #3 and #4 (Figure 16D). Similarly, other 

Moco-dependent enzymes like the AAO or XDH showed no decrease in activity in the grxs15 

mutants compared to wild-type (Supplemental Figure 4D). Consistently, no increase in nitrate 

content could be found. The nitrate content in the grxs15 mutants was rather slightly decreased 

compared to wild-type (Figure 17A). Nitrite and other anions like chloride, sulfate or phosphate 

were not altered between the complementation lines and wild-type (Figure 17B). 

 

 

 

Figure 17: Anion content of grxs15 mutant lines compared to wild-type.  

A: Nitrate and nitrite content of 8-d-old Arabidopsis wild-type and line #3 and #4 seedlings grown on 

agar plates (n = 4 ± SEM). 

B: Amount of sulfate, phosphate and chloride in Arabidopsis wild-type and line #3 and #4 seedlings 

(n = 4 ± SEM). The statistical analysis (two way ANOVA with post hoc Holm-Sidak comparisons for 

wild-type vs. grxs15 mutant) indicated no significant (P ≤0.05) change, except in one case; 

***P ≤ 0.001.  
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3.1.7 K83/A mutants have less root respiration and an altered metabolism 

The results strongly suggest that the bottleneck limiting growth of GRXS15 K83/A plants is not 

the NR activity but rather a shortage in either metabolites or energy provision required for 

nitrate assimilation which is known to require huge amounts of reducing equivalents. Hence, 

we were wondering whether the grxs15 mutants are affected in respiration or in the TCA cycle. 

Because mitochondrial respiration is the fundamental energy-conserving process, generating 

ATP needed for cell maintenance and growth, and furthermore, because respiration is based on 

several enzyme complexes containing ISCs, we measured the respiration of isolated roots. 

Indeed, roots of the mutant line #3 had a decreased respiration of 1.31 ± 0.35 nmol O2 min-1 mg 

DW-1 compared with the wild-type respiring 2.92 ± 0.62 nmol O2 min-1 mg DW-1 (Figure 18A). 

Interestingly, protein amount of AOX1/2 was slightly higher in the mutants in contrast to the 

wild-type (Figure 18B). To investigate if the decreased root respiration is based on an inefficient 

respiratory machinery, we purified mitochondria from whole seedlings and energised them with 

succinate or pyruvate/malate. Succinate provides electrons to the ubiquinone pool of the 

electron transport chain via complex II whereas pyruvate/malate predominantly via NAD(P)H 

generated by malate dehydrogenase and the pyruvate dehydrogenase complex, and, in turn, 

complex I. However, no differences in the respiration of isolated mitochondria were found and 

thus, differences in respiration were not based on decreased complex I and complex II capacity 

(Figure 18C, D). Hence, we assume that the dwarf phenotype is not caused by an improper ISC 

transfer of GRXS15 to the complexes in the electron transport chain.  
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Figure 18: Respiration and AOX expression in complemented grxs15 mutants. 

A: Root respiration rate of grxs15-3 UBQ10:GRXS15 K83/A line #3 (4.5-week-old) and the respective 

wild-type (2-week-old) after addition of KCN (4 mM) and KCN (4 mM) + pGal (propylgallate; 

0.2 mM). (n = 4 ± SD). The statistical analysis (two way ANOVA with post hoc Holm-Sidak 

comparisons for wild-type vs. grxs15 mutant) indicated one significant change; ***P ≤ 0.001. 

B: Immunoblot analysis of alternative oxidase 1 and 2 in mitochondria of GRXS15 K83/A mutants 

compared with wild-type. In upper AOX expression in isolated mitochondria of wild-type and grxs15-3 

UBQ10:GRXS15 K83/A lines was detected by a specific AOX antibody (AS04054 Agrisera). 10 µg 

isolated mitochondria were loaded. In lower the membrane was stained with amido black as a control 

for protein loading. 

C, D: Oxygen consumption rates for purified mitochondria from wild-type and grxs15-3 

UBQ10:GRXS15 K83/A line #3 energised with succinate or pyruvate/malate. O2 consumption rate was 

measured before (blank) and after addition of mitochondria (mito), the respective substrate (state II; 

succinate (10 mM succinate, 0.25 mM ATP) or pyruvate/malate (10 mM pyruvate, 10 mM malate, 

0.3 mM NAD and 0.1 mM thiamine pyrophosphate), ADP (state III; 50 μM ADP), after ADP 

consumption (state IV) and after addition of CCCP (10 μM carbonyl cyanide 

m-chlorophenylhydrazone). (n = 3 ± SEM) 

 

 

Nevertheless, the availability of a high capacity for electron flow does not mean that the electron 

transport chain is working at normal speed in planta and hence, we were wondering if the 

decreased respiration had any impact on the ATP level. During respiration energy is released 

and transiently stored in ATP, which is used by cellular reactions for maintenance and 

development. For analyses of the ATP level wild-type as well as the grxs15 mutant 

complemented with GRXS15 K83/A were transformed with a fluorescence resonance energy 
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transfer (FRET)-based sensor named ATeam (Adenosine 5’-Triphosphate indicator based on 

epsilon subunit for analytical measurements; Imamura et al. (2009)) targeted to the cytosol. 

Targeting of the sensor to the mitochondrial matrix led to a strong stunted phenotype (De Col 

et al., 2017). As cytosolic ATP is mainly provided by the mitochondria (Igamberdiev et al., 

2001), we assumed that a disturbance in the mitochondrial ATP synthesis is displayed by 

changed ATP levels in the cytosol. For the ATeam sensor, variants of CFP and YFP are 

connected by the ε subunit of Bacillus subtilis FoF1-ATP synthase. In the ATP-free form, the 

two fluorescent proteins are separated, resulting in low FRET efficiency. In the ATP-bound 

form, the subunit retracts to draw the two fluorescent proteins close to each other, which 

increases FRET efficiency. However, although FRET across the seedlings revealed differences 

between cotyledons and roots as shown previously (De Col et al., 2017), the YFP/CFP emission 

ratio did not differ between wild-type and mutants indicating a similar ATP level in mutants 

and wild-type in the cytosol (Figure 19).  

 

 

 

Figure 19: In vivo monitoring of ATP levels in the cytosol of grxs15 mutants. 

ATeam was stably expressed under a 35S promoter in the cytosol of wild-type and grxs15-3 

UBQ10:GRXS15 K83/A line #3 and #4 and analysed in cotyledons (A) and roots (B). Scale bar = 100 

µm. Fluorescence of YFP (magenta) and CFP (green) was recorded and the ratio was calculated (C) 

from fluorescent images of cotyledons and root tips of 7-d-old seedlings from two independent lines 

(n = 10 ± SD). Autofluorescence was subtracted from both channels. 

 

 

Because of the functional respiratory chain in the grxs15 mutants, we were wondering if the 

TCA cycle is somehow affected in grxs15 mutants leading to a lack of reducing agent like 

NADH. Thus, to further investigate the impact of altered GRXS15 function on major 
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mitochondrial FeS-proteins, we analysed the activity of aconitase, of which the two isoforms 

ACO2 and ACO3 are affiliated with the TCA cycle and mitochondrial energy metabolism. 

Despite similar amounts of ACO protein detectable in isolated mitochondria, ACO activity was 

decreased to a similar degree of approximately 35 % residual activity in total protein extracts 

of complemented mutant plants (Figure 20), but just to ~60 % in isolated mitochondria. In 

contrast, activity of malate dehydrogenase was the same. 

 

 

 

Figure 20: Aconitase activity in total and purified mitochondria. 

A: Aconitase (ACO) activity in total protein extracts of 7-d-old seedlings (white bars) and in purified 

mitochondria (grey bars) of 14-d-old wild-type and grxs15-3 UBQ10:GRXS15 K83/A line #3 and #4 (n = 

3 ± SEM).  

B: Malate dehydrogenase (MDH) activity in total protein extracts of 7-d-old seedlings and in purified 

mitochondria of 14-d-old wild-type and grxs15-3 UBQ10:GRXS15 K83/A line #3 and #4 (n = 3 ± SEM).  

C: Protein gel blot analysis with antiserum raised against Arabidopsis aconitase. 9 µg of protein isolated 

from mitochondria of a wild-type plant as well as grxs15-3 UBQ10:GRXS15 K83/A line #1-5 were 

loaded.  

 

 

However, aconitase is highly sensitive against oxidative stress (Navarre et al., 2000; Verniquet 

et al., 1991) and there might be iron-mediated ROS formation because of an improper ISC 

transfer of the GRXS15 K83/A variant similar to the yeast Δgrx5 mutant. To address this 

problem, leaves were stained with DAB and NBT to analyse a potential global increase of H2O2 

or superoxide production, respectively, in the grxs15 mutants as another plausible cause for 

aconitase inhibition. However, no differences could be detected in leaves between wild-type 

and grxs15 mutants neither by the DAB nor NBT staining (Figure 21A). 

In addition, to analyse mitochondria-specific changes in H2O2 concentration or glutathione 

redox potential (EGSH), the genetically encoded sensors roGFP2:Orp1 and roGFP2:hGRX1 

were expressed in the mitochondrial matrix of both wild-type and mutant plants. CLSM analysis 

of the T2 generation showed exclusive targeting of both constructs to mitochondria 

(Supplemental Figure 5). 
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Figure 21: Analysis of the oxidation state of the grxs15 mutants. 

A: DAB (upper) and NBT (lower) staining for detection of increased ROS production in leaves. Wild-

type and mutants were grown for 4 weeks under long-day growth conditions. Scale bar = 0.5 cm.  

B: Measuring changes in mitochondrial H2O2 concentration using the biosensor roGFP2:Orp1. 

Ratiometric analysis was performed with 7-d-old seedlings of wild-type and grxs15-3 UBQ10:GRXS15 

K83/A line #3 and #4 expressing mitochondrial roGFP2:Orp1 by CLSM. As control wild-type seedlings 

were incubated in 10 mM DTT (grey squared) or 10 mM H2O2 (white squared) and fluorescence of 

roGFP2 in the hypocotyl was analysed.  

C: Measurement of the mitochondrial EGSH using roGFP2:hGRX1. Ratiometric analysis was performed 

with 7-d-old seedlings of wild-type and grxs15-3 UBQ10: GRXS15 K83/A line #3 and #4 expressing 

mitochondrial roGFP2:hGRX1 by CLSM. As control wild-type seedlings were incubated in 10 mM 

DTT (grey squared) or 10 mM H2O2 (white squared) and fluorescence of roGFP2 in the root tips was 

analysed. 

 

 

Regarding roGFP2:Orp1, a peroxidase (Orp1), which is fused to roGFP2, reacts with H2O2 and 

is getting oxidised. The proximity between both proteins allows that the oxidation is passed 

efficiently from Orp1 to roGFP2 and thus, increased H2O2 concentration are expected to lead 

to more oxidised roGFP2. By comparing the 405/488 nm fluorescence ratio of roGFP2, 

however, no differences between wild-type and grxs15 mutants were observed neither in 

cotyledons nor in roots indicating the absence of increased mitochondrial H2O2 levels (Figure 

21B). As control, the minimal and maximal fluorescence ratio was measured after incubation 

with DTT or H2O2, respectively. It should be noted though that the lack of pronounced changes 

in fluorescence may also be caused by a dominating reduction system which might masks a 

putative increase in H2O2. Furthermore, redox-dependent fluorescence of roGFP2 fused to 

hGRX1 was analysed. The fused hGRX1 mediates the redox equilibration of roGFP2 with the 
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glutathione redox buffer and thus, mitochondrial EGSH can be compared of wild-type and grxs15 

mutants. Here, similar to the wild-type, roGFP2 was highly reduced indicating no oxidation of 

the mitochondrial glutathione pool (Figure 21C).  

To further investigate whether the decreased activity of aconitase had consequences on the rate 

of TCA cycle organic acid production and thus, NADH production, we analysed the amount of 

organic acids in the grxs15 mutants. Interestingly, we found virtually all analysed organic acids 

in the complemented grxs15 mutants #3 and #4 to be increased which may reflect a perturbed 

flux. Especially pyruvate accumulated to high levels. While 31.5 ± 2.4 pmol mg FW-1 pyruvate 

was present in the wild-type, the pyruvate amount increased more than 4-fold up to 131.76 ± 

3.8 pmol mg FW-1 in mutant line #3 and 153.97 ± 16.5 pmol mg FW-1 in line #4 (Figure 22). 

In contrast, the accumulation of citrate was just about significant in the grxs15-3 UBQ10: 

GRXS15 K83/A line #4 but not in line #3. Similarly, also isocitrate accumulated in the mutant 

line #4. 

 

 

 

Figure 22: Organic acids of the TCA cycle accumulate in the GRXS15 mutant.  

Organic acids were analysed in 8-d-old seedlings of wild-type compared to grxs15-3 UBQ10:GRXS15 

K83/A line #3 and #4 (n = 4-5 ± SEM). The statistical analysis (one way ANOVA with post hoc Holm-

Sidak comparisons for wild-type vs. grxs15 mutant) indicated significant changes; *P ≤ 0.05; 

***P ≤ 0.001. 
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In the TCA cycle the stepwise oxidation of pyruvate mobilises the major amount of reducing 

power in form of NADH and FADH2. To investigate if the perturbed flux had any influence on 

the NADH metabolism, we expressed the fluorescence biosensor Peredox-mCherry for 

monitoring the free NADH/NAD+ ratio (Hung et al., 2011) in the cytosol of wild-type and the 

grxs15 mutants. The cytosolic NADH/NAD+ is highly connected with the mitochondrial via a 

malate/OAA shuttle as well as a malate/aspartate shuttle (Journet et al., 1981; Krömer and 

Heldt, 1991). As the malate/OAA shuttle is regulated in a way that avoids a depletion of NADH 

in the matrix (Krömer, 1995), disturbance of the mitochondrial NADH/NAD+ pool should also 

be reflected in the cytosol. However, no changes in cytosolic NADH/NAD+ redox states were 

observed neither in the cotyledons nor in the roots of the mutants compared to the wild-type 

(Figure 23). 

 

 

 

Figure 23: Imaging the cytosolic NADH/NAD+ redox state in grxs15 mutants.  

Peredox-mCherry was stably expressed under a UBQ10 promoter in the cytosol of wild-type and grxs15-

3 UBQ10:GRXS15 K83/A line #3 and #4 and analysed in cotyledons (A) and roots (B). Scale bar = 200 

µm. Fluorescence of tSapphire and mCherry was recorded and the ratio was calculated (C) from 

fluorescent images of cotyledons and root tips of 7-d-old seedlings from two independent lines (n = 10 

± SD).  

 

 

However, the amount of free NADH is low in mitochondria and most is bound to proteins. 

Therefore, the unchanged ratio of free NADH/NAD+ might be because free NADH in the 

mitochondrial matrix is maintained at a relatively constant level irrespective of respiratory state 

(Kasimova et al., 2006). Thus, probably differences in the mitochondrial NADH/NAD+ ratio 

between wild-type and grxs15 mutants are too little and also do not affect the level of the 

cytosolic NADH/NAD+ ratio.   
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3.1.8 The GRXS15 K83/A mutation influences lipoic acid-dependent enzymes 

The pronounced pyruvate accumulation may be caused by a diminished activity of pyruvate 

dehydrogenase complex (PDC) which catalyses the irreversible reaction of pyruvate into acetyl-

CoA. Interestingly, the E2 subunit of this multienzyme complex needs lipoic acid as a cofactor. 

Lipoic acid (LA) is synthesised in mitochondria by the FeS-protein lipoyl synthase and an 

essential cofactor for other proteins in the mitochondrial matrix: α-ketoglutarate 

dehydrogenase, branched-chain α-ketoacid dehydrogenase complex (BCKDC) or glycine 

decarboxylase complex (GDC) (Figure 24A) (Taylor et al., 2004). Indeed, the amount of lipoyl 

proteins of GDC was decreased in the GRXS15 K83/A mutant (Figure 24B). GDC is a 

multimeric complex comprising three individual enzymes, P-, T-, and L-protein, that interact 

with a fourth subunit, the lipoylated H-protein (Heineke et al., 2001). Immuno-detection of 

proteins with an antibody against LA showed a clear decrease in H-protein isoforms H1, H2 

and H3, whereas immuno-labelling of H protein showed that the protein levels are only very 

slightly decreased if at all. For H2 no LA was detectable, while there was still some left for H1 

+ H3. This might be to differences in the total protein amount as you can also not differ between 

the H1 and H3 isoforms. No difference in the total protein amount of LIP1 was detectable 

between grxs15 mutants and wild-type. Since during this study a publication was published 

where a GRXS15 knock-down (GRXS15amiR) showed an effect of lipoylated enzymes (Ströher 

et al., 2016), the knock-down mutant was used as positive control.  

To further test whether the accumulation of pyruvate was because of a less active mtPDC, we 

measured the activity of the mtPDC in isolated mitochondria. Interestingly, there was just a 

slight reduction of activity, but not significant (p = 0.077). While the wild-type displayed a 

mtPDC activity of 92.7 ± 16.1 nmol NADH mg-1 min-1 that is in a similar range as described 

before for Arabidopsis mtPDC (Lee et al., 2010) the grxs15 mutant line #3 had just a activity 

of 72.40 ± 15.6 nmol NADH mg-1 min-1 (Figure 24C). 
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Figure 24: Lipoic acid dependent enzymes are affected in the mutant lines. 

A: Lipoyl synthase catalyses the lipoylation of the octanoylated apoprotein by using SAM and sulfur. 

Lipoylated proteins of the mitochondrial matrix are PDC = Pyruvate dehydrogenase complex; OGDHC 

= α-ketoglutarate dehydrogenase, BCKDC = branched-chain α-ketoacid dehydrogenase complex and 

GDC = glycine decarboxylase complex. 

B: Immunoblot analysis using antibodies against H-protein (H1-3), lipoic acid (LA) and LIP1 as well 

as TOM40 and GRXS15. Data were provided by Inga Kruse and Janneke Balk. 

C: Pyruvatedehydrogenase complex activity in isolated mitochondria. Reduction of NAD+ was 

measured in isolated mitochondria of 14-d-old wild-type seedlings and grxs15-3 UBQ10:GRXS15 K83/A 

line #3 (n = 5 ± SD).  

 

 

Similar to an Arabidopsis mutant with a mutation in the E2 subunit of the pyruvate 

dehydrogenase complex containing only 30 % of the wild-type mtPDC activity (Yu et al., 2012) 

the grxs15 mutants showed a dwarf phenotype (Figure 14) as well as an accumulation of TCA 

intermediates (Figure 22). Furthermore, the mutant in E2 subunit of the mtPDC showed an 

accumulation of nearly all amino acids, while null mutants of the BCKDC subunit E1 showed 

a specific accumulation of the branched chain amino acids (BCAA) (Peng et al., 2015). The 

BCAAs are leucine, isoleucine and valine and are classified by their small branched 

hydrocarbon residues. BCKDC catalyses the second step of BCAA degradation in the 

mitochondrial matrix and hence leads to conversion of branched-chain ketoacids into acyl-CoA 

esters (Figure 25) (Peng et al., 2015; Taylor et al., 2004).  
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Figure 25: Catabolism of branched chain amino acids.  

First, the branched chain amino acids leucine, isoleucine and valine are deaminated by the BCAT 

(Branched-chain aminotransferase), which uses largely α-KG (α-ketoglutarate) forming the branched 

chain keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV) and α-ketoisovaleric 

acid (KIV) as well as glutamate. The ketoacids are further degraded by BCKDC (branched-chain 

ketoacid dehydrogenase), which catalyses the oxidative decarboxylation producing thereby acyl-CoA 

and NADH. IVD (isovaleryl-CoA dehydrogenase) catalyses the third step providing electrons to the 

ETC (electron transport chain) via ETF (electron transfer flavoprotein)/ETFQO (electron transfer 

flavoprotein ubiquinone oxidoreductase) (modified after Peng et al. (2015)).  

 

 

Analysis of the amino acids in the GRXS15 K83/A mutant showed an increase of nearly all 

amino acids (Figure 26A). Interestingly, however, the BCAAs leucine, isoleucine and valine as 

well as the small amino acids glycine, alanine and serine accumulated to high levels 

(Supplementary Table 5). This accumulation correlates also with the growth phenotype of the 

mutant line; the worst growing line #4 accumulates slightly more amino acids in contrast to the 

better growing line #3. At the first glance, the 2-fold glycine accumulation in the grxs15 mutants 

would suggest a perturbation in photorespiration as GDC is part of the photorespiratory cycle 

catalysing the catabolism of glycine. Potato plants with a reduction of the P-protein of GDC 

also show high glycine accumulation (Heineke et al., 2001) and the amount of the lipoylated 

subunit is decreased in the grxs15 mutant (Figure 24). Nevertheless, the Gly/Ser ratio was not 

changed remarkably. For line #3 the ratio was 0.41 and for the line #4 0.35 compared to the 

wild-type with a ratio of 0.33. 

For leucine, the respective amount increased in the mutant lines up to 2-fold. Valine and 

isoleucine accumulated 1.5-2 times. Furthermore, the ketoacids KIC, KMV and KIV derived 

from the branched chain amino acids accumulated highly in the grxs15 mutant (Figure 26B). 

Here, KIC accumulated in the grxs15 mutants up to 14 times leading to a total amount of 3.5 ± 

0.11 pmol mg FW-1 in line #3 and 3.8 ± 0.6 pmol mg FW-1 in line #4 compared to the wild-type 

with 0.25 ± 0.032 pmol mg FW-1. While the amount of KIV and KMV increased up to 6-7 fold 
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in the grxs15 mutants. This result inevitably supports the hypothesis of a decreased activity of 

BCKDC in this mutant. The higher accumulation of KIC might be because BCKDC has a slight 

preference for the Val derivative (Taylor et al., 2004) and thus, KIV is faster metabolised and 

accumulate less.  

 

 

 

Figure 26: GRXS15 K83/A mutants accumulate BCAA and their derivatives. 

A: Amino acids were analysed in 8-d-old seedlings of wild-type compared grxs15-3 UBQ10:GRXS15 

K83/A line #3 and #4. Wild-type was set to 100 % (n = 4-5 ± SEM). 

B: Analysis α-ketoisocaproic acid (KIC), α-ketoisovaleric acid (KIV), α-keto-β-methylvaleric acid 

(KMV) and phenylpyruvate (PhePyr) in seedlings of wild-type compared to grxs15-3 UBQ10:GRXS15 

K83/A line #3 and #4. Wild-type was set to 100 % (n = 4-5 ± SEM). The statistical analysis (two way 

ANOVA with post hoc Holm-Sidak comparisons for wild-type vs. grxs15 mutant) indicated significant 

changes; **P. ≤ 0.01; ***P ≤ 0.001. 

 

 

Since cysteine was not included in the amino acid measurement, we aimed at measuring the 

cysteine availability in a different way. Because cysteine is a limiting factor in GSH synthesis, 

we monitored the recovery of GSH after initial depletion of the GSH pool. For this, Arabidopsis 

seedlings were grown on 2 mM BSO for 4 days and subsequently transferred to BSO-free 

medium for 24 h. At the end of this recovery phase GSH was stained in the roots of wild-type 

as well as grxs15 seedlings by conjugation with monochlorobimane and GSH levels were 

monitored by confocal laser scanning microscopy. There was a similar replenishment of the 

glutathione pool by de novo biosynthesis in the root tips of wild-type and grxs15 mutants 

(Figure 27) indicating that at least no decrease in the cysteine amount occurs in the mutants. 

 

 



                                                                                                                                           Results 

 

73 

 

 

Figure 27: GSH content of BSO treated and recovered grxs15 mutants. 

A: In vivo determination of GSH pool recovery in root tips of wild-type (Wt) and grxs15-3 

UBQ10:GRXS15 K83/A line #3 and #4 after transfer from BSO-containing (2 mM) to BSO-free plates 

for 24 h. Control plants were kept on BSO to show the specificity of the GSH labelling (B). Roots were 

stained with 100 µM monochlorobimane (green) and 50 µM propidium iodide (red) for 30 min before 

imaging. Scale bar = 50 µm. 
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3.2 The effect of the GSH pool on GRXS15 function and FeS-protein maturation 

3.2.1 GSH-depleted mutants do not show an accumulation of BCAAs and their 

derivatives 

Glutathione is present in low millimolar concentrations in most eukaryotic cells performing 

numerous tasks (Rouhier et al., 2008). One important role of GSH is the function as a cofactor 

of GRXs in the coordination of an ISC. As shown previously, GRXS15 coordinates an ISC in 

the presence of GSH. Indeed, although GSH is only synthesised in plastids and the cytosol, 

immunocytochemical staining suggested that mitochondria contain particularly high 

glutathione concentrations (Zechmann et al., 2008). Furthermore, the mitochondrial glutathione 

pool is kept highly reduced by GR2. To determine if the availability of GSH has any influence 

on the GRXS15 function, the phenotypes of the GSH-depleted mutants rml1 and zir1 were 

compared with the complemented grxs15-3 mutants. rml1 and zir1 have both a decreased 

amount of total glutathione with less than >5 % GSH in rml1 and ~15 % in zir1 compared to 

the wild-type based on mutations in GSH1, which catalyses the first step of GSH biosynthesis 

(Shanmugam et al., 2012; Vernoux et al., 2000). The allele with the lowest glutathione level, 

rml1, exhibited the most severe developmental defects (Vernoux et al., 2000). Since the 

accumulation of branched chain amino acids and the respective ketoacids are characteristic for 

the restricted activity of GRXS15 K83/A, we analysed the composition of amino acids in the 

GSH mutants. Here, zir1 showed absolutely no accumulated amino acids, rather, there was a 

significant decrease of Asp. In contrast, rml1 displayed an accumulation of nearly all amino 

acids except glutamine when compared to the wild-type (Figure 28A). Here, serine accumulated 

sparsely 1.7 fold, while the total amount of lysine increased mostly up to 2.4 fold. The BCAAs 

accumulated all approximately two times. To further investigate if at least the accumulation of 

the branched chain amino acids also leads to an increase of KIC, KIV and, KMV, the respective 

ketoacids were analysed in rml1 compared to wild-type and grxs15-3 UBQ10:GRXS15 K83/A 

line #4. Here, no accumulation of the ketoacids were detected in the rml1 seedlings (Figure 

28B) indicating that a depletion of the GSH pool in the rml1 mutant has no influence on the 

BCKDC in contrast to the GRXS15 K83/A variant. 
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Figure 28: rml1 accumulates amino acids but not the respective derivatives. 

A: Amount of amino acids of zir1 and rml1. Wild-type was set to 100 % (n = 5 ± SD).  

B: Analysis α-ketoisocaproic acid (KIC), α-ketoisovaleric acid (KIV), α-keto-β-methylvaleric acid 

(KMV) and phenylpyruvate (PhePyr) in seedlings of wild-type compared to rml1 and grxs15-3 

UBQ10:GRXS15 K83/A line #4. Wild-type was set to 100 % (n = 1-5 ± SEM). 

 

 

Interestingly, rml1 does not just contain a reduced amount of total glutathione, but, regarding 

mitochondria, also has an increased oxidised glutathione pool (Sajid Bangash, personal 

communication). Therefore, we were wondering if an altered GSH:GSSG ratio has any 

influence on the ISC coordination of GRXS15 as addition of GSSG can destroy ISC 

coordination of human GLRX2 in vitro (Berndt et al., 2007). Reconstituted GRXS15 gradually 

lost the ISC under aerobic conditions resulting in a decrease of absorbance of ~50 % after 3 h, 

whereas addition of GSH led to a stabilisation of the holoprotein resulting in a decrease of just 

~20 %. In contrast, addition of oxidised glutathione enhanced the decrease in absorbance to 

50 % already after 2 h (Figure 29). Thus, GSSG just led to slight destabilisation of the ISC. 

 

 

 

Figure 29: The GRXS15 holoprotein is slightly destabilised by GSSG. 

Absorbance of reconstituted GRXS15 at six different time points (1 = 0 min; 2 = 10 min; 3 = 30 min; 

4 = 60 min; 5 = 120 min; 6 = 180 min) in the absence or presence of 5 mM GSSG and GSH (n = 4 ± SD). 

Time point 0 was set to 100 %.  
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3.2.2 High mitochondrial GSSG aggravates the atm3 phenotype 

Since GSSG has no or just a slight effect on GRXS15 and its function, we were wondering if a 

more oxidised glutathione pool has an influence on FeS-protein maturation in the cytosol. As 

the mitochondrial ABC-transporter ATM3 is involved in the export of a sulfur-compound for 

cytosolic ISC maturation in a glutathione dependent fashion, the severely compromised but still 

viable mutant atm3-4 (Bernard et al., 2009) was crossed with the mutant gr2epc2 which lacks 

endogenous GR2 in mitochondria and plastids but has been complemented with plastids-

targeted GR2 to ensure viability. The lack of GR2 in mitochondria has been shown to cause a 

local increase in GSSG in the matrix (L. Marty and A.J. Meyer, unpublished results). Here it is 

hypothesised that the increase in matrix GSSG can compete as a putative substrate of ATM3 

with the export of the unknown sulfur-compound X-S from the matrix (Schaedler et al., 2014). 

It is further assumed that such a competition may have more severe consequences in ATM3 

that is genetically compromised. The cross of these mutants led to a viable double mutant. 

Intriguingly, several seeds of the single mutant gr2epc2 display a brighter testa compared to the 

seeds from plants grown side-by-side of wild-type or atm3-4, whereas all seeds of the double 

mutant atm3-4gr2epc2 were brighter (Figure 30A).  

 

 

  

Figure 30: Deletion of mitochondrial GR2 does not augment the delayed germination of atm3-4. 

A: Seeds of the double mutant compared to wild-type and single mutants. Scale bar = 0.5 mm.  

B: Germination rate of the mutants compared to wild-type. Plants were grown on 0.5 MS medium 

containing 0.5 % (w/v) sucrose and 0.8 % (w/v) phytagel under long-day conditions after 1 d 

stratification (shown is the mean ± SD of four experiments with 20-30 seeds each). Germination was 

assessed with the emergence of the radicle.  
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Moreover, the atm3-4 single mutant showed a delayed germination compared to the wild-type, 

but atm3-4gr2epc2 behaved similar to atm3-4 (Figure 30B). After 36 h around 25 % of wild-

type and gr2epc2 seeds germinated, while just ~11 % of the seeds of atm3-4 and atm3-4gr2epc2 

germinated. The delay in germination was even more obvious after 48 h when already more 

than 80 % of wild-type and gr2epc2 seeds germinated but less than 50 % of the atm3-4 and 

atm3-4gr2epc2 seeds. 

Further macroscopic analysis of mutant seedlings revealed a pronounced root growth 

phenotype. While the single mutants gr2epc2 and atm3-4 developed primary roots that were 

only 80 % of the length of wild-type control seedlings after 5 days of germination or 60 % after 

8 days of germination the atm3-4gr2epc2 double mutant displayed a pronounced additive effect 

(Figure 31A, B). Five days after germination the average root length of the double mutant was 

almost 40 % less than in wild-type seedlings. Eight days after germination the length roots of 

the double mutant was only 30 % compared to the length of wild-type roots. In addition, the 

chlorotic phenotype of atm3-4 that has been described before by Bernard and colleagues was 

aggravated in atm3-4gr2epc2 (Figure 31C) (Bernard et al., 2009). Concomitant with this, 

photosynthetic activity, measured via maximum quantum efficiency of PSII (Fv/Fm), was 

significantly decreased in atm3-4 and even more in the double mutant (Figure 31D). The wild-

type displayed a Fv/Fm value of 0.78 ± 0.012 that is similar to what has been reported in the 

literature for unstressed leaves with values of ~0.83, and correlates to the maximum quantum 

yield of photosynthesis (Björkman and Demmig, 1987). The value of Fv/Fm for atm3-4 was 

reduced to 0.749 ± 0.031 and even more to 0.718 ± 0.027 in the atm3-4gr2epc2 double mutant, 

while no significant changes were observed between gr2epc2 and wild-type.  
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Figure 31: atm3-4gr2epc2 double mutants show an enhanced dwarfed and chlorotic phenotype. 

A: 8-d-old seedlings of the atm3-4gr2epc2 double mutant compared to wild-type (Wt) and single 

mutants. Scale bar = 0.5 cm. 

B: Root length of the mutants compared to wild-type. Plants were grown on 0.5 MS medium containing 

0.5 % (w/v) sucrose and 0.8 % (w/v) phytagel for 5-8 d under long-day conditions after 2 d stratification 

(n = 5-12 ± SD).  

C: Phenotype of individual mutants and the atm3-4gr2epc2 double mutant of soil grown plants at rosette 

stage. Plants were grown under long-day conditions for 4 weeks. 

D: Pulse-amplitude modulated (PAM) fluorimetry was performed with 4-week-old plants grown on soil 

under long-day conditions using the JUNIOR-PAM (WALZ) (n = 7 ± SD). The statistical analysis (one 

way ANOVA with post hoc Holm-Sidak comparisons for wild-type vs. mutant) indicated significant 

changes; *P ≤ 0.05; ***P ≤ 0.001. 

 

 

To further support the hypothesis that the increase in matrix GSSG does not affect the activity 

of GRXS15 but can compete as a putative substrate of ATM3 with the export of the unknown 

sulfur-compound X-S, root growth of the partially GSH-depleted mutants rml1 and zir1 as well 

as the atm3-4gr2epc2 mutant was analysed using medium with different nitrogen sources. In 

contrast to the grxs15 mutant, whose growth retardation of the roots is more pronounced on 
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nitrate than on ammonium (Figure 16), the other mutants react similar to the wild-type and 

develop shorter roots when grown on ammonium (Figure 32). An exception in this case is rml1, 

which does not react at all due to a general block in post-germination development. This of 

course is not surprising as the root generally does not grow at all. Nevertheless, the relative 

growth retardation on ammonium was similar for all other mutant lines when compared to the 

respective wild-type.  

 

 

 

Figure 32: GSH-deficiency and a block in GSSG export do not affect the use of different nitrogen 

sources. 

A: Root length of wild-type and GSH mutants zir1 and rml1. Seedlings were grown for 7 d on medium 

containing 5 mM KNO3 or 2.5 mM (NH4)2SO4, 0.1 % (w/v) sucrose and 0.8 % (w/v) phytagel under 

long-day conditions after 2 d stratification (Wt, zir1: n = 44-49 ± SD; rml1: n = 8-12 ± SD). 

B: Root length of gr2epc2 and atm3-4 as well as the double mutant atm3-4gr2epc2 compared to the 

wild-type. Seedlings were grown for 11 d on medium containing 5 mM KNO3 or 2.5 mM (NH4)2SO4, 

0.5 % (w/v) sucrose and 0.8 % (w/v) phytagel under long-day conditions after 2 d stratification (n = 25-

33 ± SD). 

 

 

Continuing the analysis whether the mitochondrial glutathione redox state has any impact on 

the maturation of cytosolic FeS-proteins, the XDH activity of gr2epc2 and atm3-4 as well as 

the double mutant atm3 4gr2epc2 and the wild-type was analysed. Here, no differences were 

revealed via the semiquantitative in-gel method. The decrease in XDH activity of the double 

mutant atm3-4gr2epc2 was comparable to the atm3-4 mutant (Figure 33). No difference was 

observed between the gr2epc2 mutant and wild-type. Thus, the underlying biochemical causes 

of the observed aggravated atm3-4gr2epc2 phenotype is not based on impaired maturation of 

cytosolic FeS-proteins and has still to be figured out.  
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Figure 33: The atm3-4gr2epc2 double mutant shows no enhanced malfunction in cytosolic 

FeS-protein maturation. In-gel XDH activity of gr2epc2 and atm mutants as well as the double mutant 

atm3-4gr2epc2 compared to the wild-type. Equal amounts of total protein (70 µg) extracted from 11-d-

old seedlings were separated on a native gel and stained for XDH activity using hypoxanthine as 

substrate. 
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3.3 The oxidoreductase activity of GRXS15 

3.3.1 GRXS15 shows a negligible oxidoreductase activity 

In eukaryotic cells the redox state of protein thiols is controlled by GRXs or TRXs, respectively. 

Since GRXS15 is most likely the only Arabidopsis GRX located in mitochondria, we wondered 

whether GRXS15 can also act as an oxidoreductase. Particularly, because Hoffmann and 

colleagues showed that mitochondrial GDC is activated by a GRX in vitro. This GRX, however, 

was not GRXS15 (Hoffmann et al., 2013).  

GRXs are routinely assayed as catalysts of reactions in which GSH reduces a disulfide, usually 

HED. In this assay, GRX activity is monitored spectrophotometrically as the oxidation of 

NADPH in a coupled system with GSH and GR. In order to study the oxidoreductase activity 

of GRXS15, the sequence without target peptide was cloned into an expression vector and 

expressed in E. coli to produce the recombinant protein without its native targeting peptide 

(GRXS1538-169). Furthermore, the dithiol glutaredoxin GRXC1 was used as a positive control 

as recent studies have shown that GRXC1 shows enzyme activity in the HED assay (Riondet et 

al., 2012). 

 

 

 

Figure 34: Catalytic activity of GRXS15 in standard assays is negligible. 

A: A: NADPH consumption (ΔA340 min−1) of GRXS15 mutants and GRXC1 using HED as substrate. 

GRXs were used at a final concentration of 3 μM. Basal background activities in the absence of GRX 

were subtracted. (n = 4 ± SD).  

B, C: roGFP2-interaction assay with GRXC1 (Δ) and GRXS15 (◊). Oxidised roGFP2 was mixed with 

or without 3 μM GRXC1 and GRXS15. Negative controls contained roGFP2 without glutaredoxin. 

2 mM reduced glutathione (GSH) together with 1 U GR and 100 μM NADPH was used for reduction 

of the oxidised sensor (B). In contrast, the pre-reduced sensor was oxidised by addition of glutathione 

disulfide (GSSG) to a final concentration of 40 μM (C). Furthermore, H2O2 and DTT were used at a 

final concentration of 10 mM to define maximum reduction (◊) and oxidation (◊) of roGFP2. 

Fluorescence was excited at 390 and 480 nm and continuously detected at 520 nm. The fluorescence 

ratios measured for fully oxidised roGFP2 in the presence of 10 mM H2O2 was set to 1 and all data 

normalised accordingly. The presented curves are means of three technical replicates. 

 



                                                                                                                                           Results 

 

82 

 

In the HED assay reductive activities of GRXS15 as well as its mutant variants C91/S and K83/A 

were only just above background and less than 3 % of the activity observed for GRXC1 (Figure 

34A). In a second approach GRXS15 was analysed regarding the ability to reduce or oxidise 

roGFP2. To define maximum oxidation and reduction of roGFP2, the protein was incubated 

with 10 mM H2O2 or DTT, respectively. For GRXC1 a direct reduction of roGFP2 was 

observed after addition of GSH. In contrast, GRXS15 was not able to reduce roGFP2 in the 

presence of GSH as reducing agent (Figure 34B). Interestingly, GRXS15 was able to oxidise 

the reduced sensor, nevertheless, approximately 30 times slower than GRXC1 (Figure 34C). 

 

 

3.3.2 The GRXS15 K83/A mutant shows an enhanced oxidation of roGFP2 

As shown above, GRXS15 just has a slow oxidoreductase activity in vitro using roGFP2 as 

substrate. The reactivity of catalytic cysteines is also influenced by neighbouring residues 

generating a specific microenvironment. For example, lowering the pKa of the thiol group with 

the help of basic amino acids or via ionic interactions with positively charged residues will 

affect the nucleophilicity of the cysteine (e.g. thiolates are stronger nucleophiles than thiols). 

As K83 is highly conserved among all GRXs and positioned near C91 (Figure 12) we were 

wondering whether the K83/A mutation has any influence on the ability of GRXS15 to catalyse 

reduction or oxidation roGFP2. Interestingly, no GSH-dependent reduction of roGFP2 by 

GRXS15 K83/A was observed similar to the native GRXS15 (Figure 35A). However, the K83/A 

variant showed a strongly enhanced GSSG-dependent oxidation of roGFP2 compared to the 

native GRXS15. Still, the oxidation of roGFP2 by the K83/A mutant was with less speed 

compared to GRXC1 (Figure 35B).  
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Figure 35: roGFP2 interaction of GRXS15 K83/A.  

A: GSH-dependent reduction of roGFP2. Oxidised roGFP2 was mixed with or without 3 μM GRXS15 

K83/A. GRXC1 and GRXS15 served as controls.  

B: GSSG-dependent oxidation of roGFP2. Reduced roGFP2 was mixed with or without 3 μM GRXS15 

K83/A. GRXC1 and GRXS15 served as controls. 

 

 

 

3.3.3 roGFP2 R168/A – an optimised redox sensor? 

The surface of GRXS15 near the catalytic C91 is extremely positive because of several lysyl 

residues (K83, K120 and K124). Because correct reaction geometries, together with 

complementary surfaces for the respective protein and interacting partners, are crucial 

parameters for the specificity, it was questioned if roGFP2 could be optimised for the analysis 

of the oxidoreductase activity of GRXs. Therefore, the structure and electrostatic surface of 

roGFP2 was confronted with a homology model of GRXS15 based on the human GLRX5 as 

well as poplar GRXC1, a homolog of Arabidopsis GRXC1 but with available crystal structure 

(Figure 36). On the surface of roGFP2, the residue R168 in close proximity to the catalytic 

C147/C204 disulfide engineered into the GFP barrel provides a positive charge that may interfere 

with the positive charges on the surface of GRXS15 (Figure 36A). The attempt to modify 

roGFP2 was triggered by the loss of the positive charge and the presence of a positive charge 

near the disulfide of roGFP2. (Figure 36B). Similar to GRXS15, GRXC1 has a positive 

electrostatic surface potential. However, two small neutral surface patches near the catalytic 

C31 due to the two tyrosine residues Y30 and Y33 distinguish between GRXC1 and GRXS15 

(Figure 36C).  
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Figure 36: Structure and electrostatic surface of roGFP2, GRXS15 and PtGRXC1. 

Upper: Solvent-accessible surfaces of roGFP2 (PDB: 1JC1) (A), the homology model of GRXS15 (B) 

and PtGRXC1 (PDB: 1Z7P) (C). All positively charged side chains are depicted in blue, all negatively 

charged side chains in red, redox-active cysteines in yellow. Lower: Solvent-accessible surface potential 

of the respective proteins calculated with the APBS tool at pH 7 and 25 °C and displayed between -3 

and +3 kT/e (Boltzmann constant, k; temperature, T and energy, e). The arrows in C depict two neutral 

surface patches of GRXC1 near the catalytic cysteine due to the two tyrosine residues Y30 and Y33. 

 

 

Thus, assuming that the roGFP2-GRX interaction includes many backbone–backbone 

interactions, we were wondering if roGFP2 can be optimised for the interaction with GRXs by 

deleting the positive surface patch near the two surface cysteines of roGFP2 and preventing the 

repulsion of the two proteins because of the similar charge. Therefore, we substituted the R168 

residue to alanine (roGFP2 R168/A) and compared first the general spectral properties of the 

recombinant protein in vitro. IPTG-induction of E. coli cultures transformed with roGFP2 

R168/A already resulted in green cultures suggesting that the introduced mutations did not 

abolish fluorescence. Furthermore, comparison of absorption and excitation spectra of roGFP2 

and the roGFP2 R168/A variant did not show pronounced differences in spectral properties nor 

in the dual excitation behaviour of the sensor (Figure 37). Oxidation of both proteins using 

H2O2 caused an increase of fluorescence when excited at ~390 nm and a corresponding decrease 
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when excited at ~480 nm. Conversely, full reduction with DTT led do a decrease in excitation 

at 390 nm and an increase in excitation at 480 nm. However, the excitation peak at 480 nm of 

roGFP2 R168/A was in all cases not quite as high as in the native roGFP2.  

 

 

 

Figure 37: Spectral properties of roGFP2 R168/A.  

A: Absorption spectrum of roGFP2 and roGFP2 R168/A in fully oxidised (red) and fully reduced (blue) 

state. 50 µM protein was incubated in 10 mM DTT or 10 mM H2O2 for 20 min.  

B: Excitation spectrum of roGFP2 and roGFP2 R168/A in fully oxidised (red) and fully reduced (blue) 

state. 5 µM protein was incubated in 10 mM DTT or 10 mM H2O2 for 20 min. Emission was monitored 

at 520 nm.  

 

 

Further equilibration of both sensors in buffers with different pH revealed that the roGFP2 

variant is insensitive in the physiological range of pH 7 - 7.8 similar to roGFP2 (Figure 38). 

However, the fluorescence ratio of the fully oxidised state of roGFP2 R168/A was more sensitive 

to changes in the direction of a more alkaline pH resulting in a strong decrease of the dynamic 

range (δ). While roGFP2 R168/A at a pH of 7 had a δ390/480 of 11.7 the δ390/480 at pH 5.8 was 

found to be 7.6. 
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Figure 38: pH-dependence of roGFP2 R168/A fluorescence.  

A, B: Recombinant roGFP2 R168/A was incubated in 0.1 M potassium phosphate buffer at different pH 

values. The changes in roGFP2 R168/A fluorescence intensity of the 390 nm (grey) and 480 nm channel 

(white) in buffers of different pH values under full oxidation with 10 mM H2O2 (A) and full reduction 

by 10 mM DTT (B) are shown. 

C: The excitation ratios (390/480 nm) in 10 mM H2O2 and in 10 mM DTT of roGFP2 (▲ or Δ) and 

roGFP2 R168/A (● or ○) are plotted against the respective pH solution. (n = 3 technical replicates). 

D: Dynamic range of roGFP2 (white) and roGFP2 R168/A (grey) calculated from the respective max and 

min values as depicted in C. 

 

 

To further test whether the amino acid substitution R168/A has any influence on the formation 

and stability of the disulfide bridge the standard redox potential (E°’) was determined through 

titration with DTT. For roGFP2, Dooley and colleagues suggested a consensus midpoint 

potentials of -280 mV (Dooley et al., 2004). Plotting the degree of oxidation of the sensor and 

its variant against the redox potential of the ambient DTTred/DTTox buffer revealed an E°’ 

of -289.4 ± 3.5 mV for roGFP2 and a slightly more negative redox potential of -293 ± 1.7 mV 

for roGFP2 R168/A (Figure 39).  
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Figure 39: Determination of the redox potential of roGFP2 and roGFP2 R168/A. 

For determination of the midpoint potentials E°’ of roGFP2 (A) and roGFP2 R168/A (B) OxDroGFP2 was 

plotted against the calculated redox potentials of the respective DTT redox buffers and all data points 

were fitted to a sigmoidal dose-response curve using GraphPadPrism7. The titration of each protein was 

carried out 3 times with 3 technical replicates (E°’DTT = -323 mV, Shaked et al. (1980)).  

 

 

As the deletion of basic amino acids next to cysteines may lead to destabilisation of the thiolate, 

we were wondering if the roGFP2 R168/A variant shows any changes in the kinetic properties 

determined through interaction with GRXs. On the one hand, there would be the possibility of 

an enhancement of the reactivity with GRXs due to the decreased positive electrostatic surface 

but on the other hand, there might be a decreased reactivity due to destabilisation of the thiolate. 

Analysis of the ability of GRXC1 to reduce or oxidise roGFP2 or the R168/A variant revealed 

no enhanced activity in the GSH-dependent reduction of mutant variant. In contrast, GSSG-

dependent oxidation of roGFP2 R168/A was even slightly slower compared to roGFP2 (Figure 

40). 
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Figure 40: GRXC1 catalysed redox reactions of roGFP2 and roGFP2 R168/A.  

A: GSSG-dependent oxidation kinetics of 1 μM reduced roGFP2 in the presence of 0.1 µM (upper), 0.5 

µM (middle) and 1 µM (lower) GRXC1.  

B: GSH-dependent reduction kinetics of 1 μM oxidised roGFP2 in the presence presence of 0.1 µM 

(upper), 0.5 µM (middle) and 1 µM (lower) GRXC1. Negative controls contained roGFP2 without 

GRXC1. Samples with 10 mM DTT or H2O2 were used to fully oxidise or reduce roGFP2. Maximal 

oxidised roGFP2 by 10 mM H2O2 was set to 1 for each measured time point. Shown are the means of 

three technical replicates. 
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4. Discussion 

4.1 Localisation of GRXS15 is fundamental for its function 

Mitochondria are the cellular site of respiration, where energy is released from the sugar 

metabolism and used for the synthesis of ATP. Notably, these organelles are not just creating 

vital energy but are also involved in several other essential processes as hormone signalling, 

Ca2+ regulation or assembly of iron-sulfur cluster. An unavoidable consequence, however, of 

the respiration is the production of mitochondrial reactive oxygen species. In plant 

mitochondria, the redox balance is primarily maintained by ascorbate and glutathione acting 

together in the ascorbate–glutathione cycle (Chew et al., 2003b). Although GSH is synthesised 

in plastids and in the cytosol, immunocytochemical staining suggested that mitochondria 

contain particularly high GSH concentrations (Zechmann et al., 2008). GRXs are generally 

considered to mediate reactions involving GSH for de-glutathionylation of target proteins or as 

a cofactor for ISC coordination. In yeast and humans, two GRXs are located in mitochondria 

and in both organisms one has been described to perform oxidoreductase reactions (Lillig et al., 

2005; Pedrajas et al., 2002), whereas the other is involved in the maturation of FeS-proteins 

(Johansson et al., 2011; Picciocchi et al., 2007; Rodríguez-Manzaneque et al., 2002). 

Surprisingly, for Arabidopsis just GRXS15 is predicted by bioinformatical algorithms to be a 

mitochondrial protein. In contrast to the claims by Cheng (2008), who presented a chloroplast 

localisation in tobacco leaves, we found GRXS15 exclusively localised in mitochondria 

confirming the results reported elsewhere using mass spectrometry (Klodmann et al., 2011; 

Salvato et al., 2014). Furthermore, in a report published during this study by Ströher and 

colleagues (2016), dual-targeting of GRXS15 to the mitochondria and the chloroplasts as well 

as the presence of other GRXs in Arabidopsis mitochondria was excluded (Ströher et al., 2016). 

Thus, these results leave Arabidopsis with just only GRXS15 in mitochondria that has, indeed, 

a vital role as previously unrecognised Arabidopsis null mutants are embryonic lethal. TRXs 

and GRXs are generally described as the master regulators of the redox state of the thiol groups 

of the proteome (Berndt et al., 2015). Still, our experiments from different GRX assays, suggest 

that GRXS15 has no reducing activity and, if at all, only a minor oxidation activity. This effect, 

however, was approximately 30 times lower than catalysis by GRXC1. The negligible reducing 

activity was further supported by Ströher et al. (2016), who showed a reducing activity of 

GRXS15 in the HED and dehydroascorbate assay more than 360 times lower than human 

GLRX2. The reduced activity is comparable to the mitochondrial monothiol GLRX5, where 

the relative catalytic activity was approximately 500-fold times lower than GLRX2 (Johansson 

et al., 2011). Similar, a 20-fold lower activity observed for yeast Grx5p compared with dithiol 
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Grx1 from E. coli with GSH as electron donor has been explained by inefficient reduction of 

monothiol GRXs by GSH (Tamarit et al., 2003). This result is in line with independent 

observations showing low or even negligible levels of thiol-disulfide oxidoreductase activity of 

several other monothiol GRXs (Cheng et al., 2006; Fernandes et al., 2005), suggesting that this 

function became secondary during evolution. Thus, it remains an open question which enzymes 

mediate protein deglutathionylation effectively in plant mitochondria. 

 

 

4.2 GRXS15 is as an essential component of the mitochondrial ISC machinery 

Monothiol GRXs are proposed to be involved in the last step of FeS-protein maturation, 

transferring the ISC to apoproteins or being involved in the protection of FeS-proteins. Indeed, 

at least one monothiol GRX is located in each subcellular compartment possessing an ISC 

assembly machinery (Figure 41).  

 

 

 

Figure 41: Overview of plant class I & II GRXs and their putative subcellular localisation in plant 

cells. For the sake of simplicity just the subcellular compartments where GRXs are located are depicted. 

ER = Endoplasmic reticulum 

 

 

The assembly and transfer of ISCs, however, is a complex process that has not been completely 

characterised on a molecular level. Still, the fundamental role of ISCs for building the 



                                                                                                                                     Discussion 

 

91 

 

machineries that are at the centre of maintaining life is emphasised by the fact that mutants 

affecting genes of the mitochondrial ISC assembly pathway like frataxin or IBA57 are 

frequently embryo-lethal (Busi et al., 2006; Waller et al., 2012). Loss of GRXS15 in 

Arabidopsis causes also embryonic lethality in contrast to Δgrx5 yeast cells which are still 

viable. Viability of Δgrx5 seems to be maintained by the mitochondrial dithiol Grx2p as a 

backup, as Δgrx2Δgrx5 mutants are synthetic lethal (Rodríguez-Manzaneque et al., 1999). 

Surprisingly, overexpression of the dithiol Grx2p and human GLRX2 did not rescue Grx5p 

deletion phenotype or lethality of Δgrx2Δgrx5 mutants indicating no overlapping functions of 

the two classes of GRXs (Molina et al., 2004; Uzarska, 2013). Similar to Arabidopsis, 

deficiency of Grx5 in zebrafish is lethal between 7 and 10 d after fertilisation (Wingert et al., 

2005). These results indicate that the monothiol GRXs are less critical during fertilisation but 

essential for vegetative growth or development, respectively. Regarding Arabidopsis, this 

phenomenon may be explained by residual ISC assembled before meiosis or by the fact that 

energy metabolism in pollen tubes can undergo fast rearrangements shifting from aerobic 

respiration to ethanol fermentation (Obermeyer et al., 2013). Pollen tube growth has been 

shown to continue even under anaerobic conditions or on inhibitors of the respiratory electron 

transport or ATP synthase albeit at lower speed (Obermeyer et al., 2013; Rounds et al., 2010). 

This effect may explain the slight deviations from Mendelian segregation observed for selfed 

grxs15-3 mutants. So far for plants, the involvement of a monothiol GRX in the ISC pathway, 

such as GRXS15, has only been speculated, mainly as the presence of an ISC could not be 

shown for poplar GRXS15 (Bandyopadhyay et al., 2008). The data presented here reveals that 

recombinant GRXS15 in the presence of GSH indeed coordinates an ISC and, moreover, 

supports the presence of a [2Fe-2S] type cluster or a mixture of [2Fe-2S]2+ and linear [3Fe-4S]+ 

clusters similar to other class II GRXs. Reconstitution assays confirmed the incorporation of an 

ISC and the resulting A420/A280 ratio of 0.36 was in a similar range as for other monothiol GRXs 

coordinating ISCs [GRXS14: 0.31 ± 0.04 (Bandyopadhyay et al., 2008) and GRXS17: 0.29 

(Knüsting et al., 2015)]. The ability for GRXS15 to coordinate ISCs was also shown by Ströher 

and colleagues. Furthermore, the capability to transfer the ISC to the mitochondrial ferredoxin 

MFDX1 in vitro (Moseler et al., 2015) as well as the interaction with the transfer protein ISCA 

(Consortium, 2011) points to a role of GRXS15 in ISC transfer similar to yeast Grx5p. 

Surprisingly, in contrast to the other CGFS GRXs of Arabidopsis, GRXS15 is the only one that 

is not able to fully complement the yeast Δgrx5 phenotype. The reason for only partial 

complementation is unknown, but one can speculate about differences between yeast and 

Arabidopsis proteins leading to less stable ISC coordination or partially impaired protein–
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protein interactions as a result of the coevolution between the interacting proteins within a given 

organism. For instance, compared with yeast Grx5p, plant GRXS15 isoforms have a clear N-

terminal extension containing many conserved Asp residues, whereas they have a slightly 

shorter C-terminal part missing charged residues found in Grx5p. Nevertheless, it is still 

remarkable that the two plastidic GRXS14 and GRXS16 or the cytosolic GRXS17 are able to 

fully complement the yeast mutant (Cheng et al., 2006; Knüsting et al., 2015; Liu et al., 2013). 

Considering that the C-terminal part of monothiol GRXs was shown to be responsible for 

protein–protein interaction (Roret et al., 2014), variations in this protein region might be crucial. 

Indeed, another important difference is that yeast Grx5p as well as GRXS14, GRXS16 and 

GRXS17 contain an additional cysteine residue implicated in intramolecular disulfide exchange 

reactions (Figure 42) (Tamarit et al., 2003).  

 

 

 

Figure 42: Amino acid alignment of yeast GRX5p and Arabidopsis GRXS14, GRXS15, GRXS16 

and GRXS17. An alignment of full length amino acid sequences, which were retrieved from TAIR, was 

generated with ClustalW and additionally the other two GRX domains of GRXS17 (d2 and d3) were 

aligned by hand. Shown is a section of the GRX domains and the three GRX domain of GRXS17, 

respectively. Highly conserved amino acid residues are indicated by grey background. Totally and 

partially conserved cysteines are indicated by a yellow background. The active site motif CGFS is 

boxed. 

 

 

Whereas genetic analyses indicated that this cysteine does not seem essential for ISC biogenesis 

(Belli et al., 2002), Zhang et al. showed in mutational studies that this cysteine is required for 

the assembly of Fe4S4 cluster and that the Fe4S4 cluster-bound form of Grx5p is competent for 

restoring the activity of recombinant ACO in vitro (Zhang et al., 2013). However, supported by 

the fact that mutations in GRXS15 interfering with the ISC coordination impair the ability to 
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complement the Δgrx5 yeast mutant, we can summarise that GRXS15 is as an essential 

component of the mitochondrial ISC machinery in Arabidopsis. 

 

 

4.3 The role of GRXS15 in ISC transfer 

How is GRXS15 involved in ISC transfer to apoproteins? As the function of GRXS15 in 

mitochondria is pivotal, the question raises whether GRXS15 plays a central role in the ISC 

machinery or belongs to a maturation pathway specific for particular target proteins. In this 

study we showed that complete absence of GRXS15 is embryonic lethal. Nevertheless 5 % of 

the wild-type protein level is enough for survival, albeit with a smaller growth phenotype, while 

20 % of the GRXS15 amount allows wild-type-like growth under normal growth conditions 

(Ströher et al., 2016). This is probably linked to degrees of efficiency in ISC transfer to specific 

target proteins and indicates that a certain threshold of GRXS15 is critical. Concomitant with 

this, the function of GRXS15 is not redundant and cannot be compensated by another 

component of the ISC pathway. Complementation of the Arabidopsis null mutant with the 

GRXS15 K83/A variant and the concomitant partial depletion of GRXS15 activity in 

mitochondria slowed down whole plant development and particularly root growth. Indeed, 

GRXS15 is especially strongly expressed in roots and in particular, in the maturation and 

meristematic zone (Belin et al., 2015). In addition to the impaired root growth, root respiration 

was decreased in comparison to the wild-type. However, the reduced respiration was not present 

in the knock-down mutant containing ~20 % of the wild-type GRXS15 level indicating that the 

reduction of GRXS15 has to reach a certain threshold to have a negative effect on mitochondrial 

respiration (Ströher et al., 2016). In humans, it was observed that a GLRX5-deficient patient 

has a decrease of complex I activity and also diminished quantities (Ye et al., 2010), whereas 

in yeast, Δgrx5 mutants displayed a decreased complex II activity, but contained the same 

protein amount (Rodríguez-Manzaneque et al., 2002). Interestingly, in the complemented K83/A 

mutant as well as in the more severe knock-down line the abundance and activity of complex I 

and II of the respiratory chain were not altered compared to the wild-type.  

In both cases, however, GRXS15 was shown to be especially important for lipoic acid-

dependent enzymes in mitochondria, highlighting a putative role in the transfer of ISCs in this 

process (see Figure 24 and Ströher et al. (2016)). Although the activity of the mitochondrial 

pyruvate dehydrogenase complex (mtPDC) was not significantly decreased in isolated 

mitochondria of the K83/A mutant line, the amount of lipoylated proteins of GDC H-proteins 

was immensely reduced. Additionally, pyruvate accumulates highly in the Arabidopsis mutant 
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pointing to a limited activity of mtPDC in vivo. Since mtPDC serves as an entry point for carbon 

into the TCA cycle it is an important site for metabolic regulation. Moreover, it seems that the 

TCA cycle flux is somehow perturbed as also the other metabolites like citrate or isocitrate 

accumulate slightly. Thus, this might lead to an energy-limited condition for the plant resulting 

in decreased respiration and less production of ATP. Nevertheless, analysing the cytosolic ATP 

level did not reveal any differences between the K83/A mutant and wild-type. As this experiment 

was performed under illumination, it might be that the cytosolic ATP pool is fed by the plastids 

due to photosynthetic ATP generation. Amino acid profiling of the grxs15 mutant reveals an 

accumulation of nearly all amino acids indicating the use of amino acids as alternative 

respiratory substrates during carbohydrate starvation. The pyruvate as well as the amino acid 

accumulation was also shown for mutants of the mtPDC (Yu et al., 2012). In addition, 

especially the branched chain amino acids (BCAA) accumulate in the grxs15 mutant. BCAA 

degradation generates alternative sources of energy in plants under energy-limited conditions 

(Araujo et al., 2010; Peng et al., 2015). Therefore, it was unexpected that mainly these amino 

acids accumulate. However, focussing at the degradation pathway of BCAAs, another enzyme 

that contains lipoic acid as cofactor is required: the branched-chain α-ketoacid dehydrogenase 

complex (BCKDC). Similar to plants growing under carbohydrate starvation (Binder, 2010; 

Fujiki et al., 2001), the BCKDC was highly expressed in GRXS15 knock-down mutants 

(Ströher et al., 2016). As other mutants like rml1 that contain also an increased amino acid 

amount do not specifically accumulate the BCAAs we could assume that in the grxs15 mutant 

the BCKDC is less functional because of limited lipoic acid as cofactor. Furthermore, in the 

grxs15 mutant but not in rml1, the ketoacids of the BCAAs α-ketoisocaproic acid (KIC), α-

keto-β-methylvaleric acid (KMV) and α-ketoisovaleric acid (KIV) accumulated highly. Since 

these ketoacids are the direct substrate of the BCKDC (Figure 25) we can suppose that in the 

degradation pathway of the BCAAs the turnover of the BCKDC the limiting factor is. In 

addition, immunoblot analyses showed that the lipoylated amount of H protein of GDC is 

strongly decreased reflecting limited lipoic acid synthesis, which depends on the ISC containing 

protein lipoyl synthase. Interestingly, the mitochondrial proteome of the GRXS15 knock-down 

line showed a greater abundance of mtPDC and BCKDC protein subunits that contain normally 

lipoic acid as cofactor (Ströher et al., 2016). In this case, however, the lipoic acid is missing 

indicating that the plant is somehow trying to compensate the lack of lipoic acid by 

overexpression of the respective subunit. Similar to the Arabidopsis mutants also humans 

containing mutations in the mitochondrial GLRX5 are deficient in lipoylation of mitochondrial 

proteins (Baker et al., 2014). Interestingly, the patients also contained other mutations in the 
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genes of lipoyl synthase as well as BOLA3. Regarding BOLA3, it has been suggested 

previously to interact with GLRX5 in the maturation of lipoate-containing 2-oxoacid 

dehydrogenases (Cameron et al., 2011). Similar, also in yeast mitochondrial Bol1p and Bol3p 

are required for the lipoylation of proteins by forming dimeric complexes with both Grx5p and 

Nfu1p (Uzarska et al., 2016). Work in human cells revealed also the role of a cytosolic GLRX3-

BOLA2 complex as [2Fe-2S] cluster chaperone (Frey et al., 2016). Beside this role, it is also 

suggested that the GLRX3-BOLA2 complex acts as a reservoir of cytosolic [2Fe-2S] clusters, 

as the complex increased 6-8-fold in response to increasing iron (Frey et al., 2016).  

Indeed, a strong genome co-occurrence exists for these two genes. With a few exceptions all 

organisms having CGFS GRXs also possess a BolA member and the opposite is true, all 

organisms lacking CGFS GRX do not possess a BolA member (Couturier et al., 2009; Huynen 

et al., 2005). Concerning GRXS15, interaction of GRXS15 with the dual-targeted BOLA4 was 

found in Y2H and BiFC assays in both mitochondria and chloroplasts (Couturier et al., 2014). 

In this case, the plastidic interaction might be due to the overexpression of GRXS15, which is 

routed to chloroplasts via the BOLA4 interaction. Summarised, we can assume that GRXS15 

is in association with BOLA4 essential for the maturation of mitochondrial lipoyl synthase and 

related to this lipoylated proteins. This might also explain the high sensitivity of GRXS15 

knock-down mutants to arsenite (Ströher et al., 2016) as arsenite inhibits the PDH complex by 

binding to the lipoic acid moiety (Shen et al., 2013). Since other applications of exogenous 

stress did not enhance the root phenotype of the GRXS15 knock-down mutants, the addition of 

arsenite might be the drop in the bucket for the already less amount of lipoylated proteins.  

 

 

 

Figure 43: Maturation of the FeS-protein lipoyl synthase.  

A [2Fe-2S] cluster is assembled on the scaffold protein ISU. Since the GRXS15-bound, GSH-

coordinated bridging [2Fe-2S] cluster is bound in a labile fashion, GRXS15 is potentially a transfer 

protein that is able to easily donate its cluster to target proteins. BOLA4 possibly functions by interacting 

with GRXS15 but the identity of the fourth iron ligand is unknown. ISCA and IBA57 as well as NFU 

are required for the maturation of the radical SAM enzymes like lipoyl synthase (LIP1). 
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As the biosynthetic pathway for lipoic acid is present in plastids and mitochondria in 

Arabidopsis (Yasuno and Wada, 2002), the plastidic PDC seems not being effected in the K83/A 

mutant. Plastidic PDC plays a dominant role in providing acetyl-CoA for fatty acid synthesis. 

No changes in the total amount as well as composition of fatty acids were observed in the K83/A 

mutant compared to the wild-type emphasising the independency of the plastidic SUF and 

mitochondrial ISC machinery. Another conclusion that can be made from the similar fatty acid 

pattern is that the mitochondrial FeS-protein biotin synthase is not effected by the less 

functional K83/A variant. Biotin is exported from mitochondria to the cytosol and chloroplasts 

where it is required for synthesis and elongation of fatty acids by hetero- and homomeric acetyl-

CoA carboxylase. Thus, there seems no lack of biotin inhibiting full activity of biotin dependent 

enzymes.  

A FeS-protein that is affected in the K83/A mutant is aconitase. Although the protein amount 

did not differ, a significant decrease in activity was observed in the grxs15 mutants. 

Surprisingly, no reduced activity of aconitase was observed in GRXS15 knock-down mutants. 

Nevertheless, the reduced aconitase activity as well as the unchanged protein amount also 

occurs in yeast Δgrx5 mutants and furthermore, in GLRX5-deficient humans (Rodríguez-

Manzaneque et al., 2002; Ye et al., 2010). Thus, it might be that 5 % of GRXS15 is still 

sufficient for proper ISC transfer and that the mutated protein variant K83/A results in a 

dysfunction in the ISC transfer to aconitase. Indeed, Liu et al. (2016) demonstrated that 

mutations of highly conserved amino acid residues in GLRX5 can have different effects on 

downstream FeS-proteins. Here, a significant reduction of aconitase activity in a GLRX5 K59/E 

mutant that is the equivalent of K83 in Arabidopsis was observed in contrast to an K51/E mutant 

(Liu et al., 2016). Thus, these data point to a role of GRXS15 in the maturation of aconitase in 

Arabidopsis.  

 

 

4.4 The glutathione pool does not affect the function of GRXS15 

So far, in this work several key observations were made that allow a better definition of the 

function of GRXS15 in the mitochondrial ISC assembly pathway although GRXS15 is not able 

to fully rescue the phenotype of yeast Δgrx5 mutants. Another broad difference between 

Arabidopsis and yeast is that no oxidative stress occurs in the mitochondria of grxs15 mutants 

excluding that the oxidative stress leads to damages of FeS-proteins like aconitase. In yeast, the 

release of the ISC from the scaffold protein Isu1p is mediated by the dedicated chaperone 

system comprising Ssq1p, Jac1p, and Mge1p as well as Grx5p. Depletion of the ISC 
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components Ssq1p, Jac1p and Grx5p leads to an accumulation of iron probably because of the 

accumulation of ISCs on Isu1p (Mühlenhoff et al., 2003; Uzarska et al., 2013). Hence, the 

oxidative stress phenotype of Δgrx5 cells might be a secondary effect of the impaired ISC 

machinery. Indeed, in Δgrx5 cells or other mutants like Δssq1 an impairment of the 

mitochondrial superoxide dismutase Sod1p activity was observed (Yang et al., 2006). 

Additionally, activity of aconitase could be partially restored under anaerobic conditions but 

still, also under anaerobic conditions there was an ISC accumulation on Isu1p (Uzarska, 2013). 

Although the decreased activity of mitochondrial FeS-proteins is specific for Grx5p disruption 

and the consequent impairment in the ISC machinery, the question is if it is also specific for the 

decreased activity of cytosolic FeS-proteins. Mitochondria contain the highly conserved ABC 

transporter ATM in the inner membrane that exports an unknown sulfur component in a 

glutathione-dependent fashion which is essential for the maturation of cytosolic FeS-proteins. 

In yeast, it is assumed that Grx5p is somehow involved in the transfer of this unknown molecule 

to the ABC transporter. In contrast, in this study no decreased activity of cytosolic FeS-proteins 

like AAO or XDH was observed in the complemented grxs15 mutants nor in the knock-down 

lines. Thus, on the one hand you can argue that the export mechanism of the unknown sulfur 

compound differs between yeast and Arabidopsis and that GRXS15 is not involved in the 

export. On the other hand, regarding yeast Grx5p, however, the mitochondria show an 

oxidative-stress phenotype that might influence the mitochondrial glutathione pool. The GSH 

requirement for viability could theoretically be linked to either its thiol-redox function or role 

in maturation of FeS-proteins, as both these processes are essential. Although it has been shown 

that depletion of the mitochondrial GSH pool in yeast does not affect the activity of 

mitochondrial FeS-proteins (Sipos et al., 2002), it strongly influences the maturation of 

cytosolic FeS-proteins (Ozer et al., 2015). In this study, we could show that the glutathione-

depleted Arabidopsis mutants rml1 and zir1 do not phenocopied the grxs15 mutants indicating 

that in Arabidopsis a GSH-depletion does not affect the downstream targets of GRXS15. 

Additionally, we showed that a more oxidised mitochondrial glutathione pool is not influencing 

the maturation of cytosolic FeS-proteins as the XDH activity was the same in the gr2epc2 

mutant compared to the wild-type. Furthermore, no stronger reduction of the XDH activity was 

observed in the atm3-4gr2epc2 double mutant compared to the atm3-4 single mutant. This 

indicates that the increased matrix GSSG cannot compete as a putative substrate of ATM3 with 

the export of the unknown sulfur-compound X-S from the matrix. ATM3 transports multiple 

substrates, including the pterin precursor of Moco (Teschner et al., 2010). In yeast, Δatm1 

mutant show a mitochondrial iron accumulation as well as increased levels of GSSG (Kispal et 
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al., 1997). Although Arabidopsis atm3 mutants do not show a mitochondrial iron accumulation, 

it might be that ATM3 is involved in the export of oxidised GSSG. To test if the aggravated 

phenotype of atm3-4gr2epc2 is based on the accumulation of matrix GSSG, the double mutant 

as well as single mutants were transformed with mitochondrial targeted roGFP2:hGRX1. As 

the fused hGRX1 mediates the redox equilibration of roGFP2 with the glutathione redox buffer 

the mitochondrial EGSH of the single mutants atm3-4 and gr2epc2 can be compared to the double 

mutant. Still, it might be possible that there is an alternative reduction of GSSG by TRX in 

mitochondrial gr2 null mutants similar to the observed functional redundancy of the cytosolic 

NTR/TRX system with GR1 (Marty et al., 2009). This might be leading to a slight but not 

effective accumulation of matrix GSSG.  
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4.5 The influence of a highly conserved lysine on GRX oxidoreductase activity 

The EGSH in living cells varies depending on the subcellular compartment and on environmental 

conditions imposing stress situations for the plant. In Arabidopsis, the ER maintains EGSH 

values less negative than -240 mV, while cytosol, peroxisomes, mitochondria and plastids 

contain a highly reduced glutathione buffer with redox potentials of less than -310 mV (Meyer 

et al., 2007; Schwarzländer et al., 2008). As mentioned above, one tool to sense the local EGSH 

is the genetically encoded roGFP2:hGRX1 fusion protein (Meyer et al., 2007). In contrast to 

GRXS15, hGRX1 is able to reduce and oxidise roGFP2 efficiently in a glutathione-dependent 

way. GRXS15, however, shows only a negligible activity in the GSSG-dependent oxidation of 

roGFP2. This difference might be because of the requirement of two distinct glutathione 

interaction sites for efficient redox catalysis. Begas and colleagues showed that GRXs have one 

site that interacts with the glutathionylated disulfide substrate whereas the other site interacts 

with GSH (Begas et al., 2017). Furthermore, they argued that the inefficient reduction of 

numerous GRXs by GSH results in a decoupling from the GSH pool, which allows the 

formation of stable complexes, e.g. with ISCs. Thus, probably the ability of CGFS GRXs to 

reduce target proteins got lost during evolution while the ability to oxidise proteins is still 

present although not as primary function. Surprisingly, the K83/A variant of GRXS15 was able 

to oxidise roGFP2 more efficiently than the native GRXS15, but in the absence of any effects 

on the reduction of roGFP2. Because of the loss of the positive charge in the K83/A variant and 

the presence of a positive charge near the disulfide of roGFP2, it was questioned if roGFP2 

could be optimised for the analysis of the oxidoreductase activity of GRXs. For a faster “real-

time” monitoring of acute and rapid stress-induced oxidative events a R168/A substitution was 

introduced in roGFP2. Similar to roGFP1 variants that correspond with more positive charges 

near the disulfide to more oxidising midpoint potential (Cannon and Remington, 2006), the 

roGFP2 R168/A variant showed a slightly more reducing midpoint potential. Additionally, 

spectroscopic properties were similar to roGFP2. Thus, the sensor is still suitable for analysis 

of EGSH , e.g. in mitochondria. In contrast to our initial hypothesis, the amino acid substitution 

R168/A did not enhance the GSH-dependent reduction of roGFP2 with GRXC1 and even 

reduced the rate of GSSG-dependent oxidation. This is also consistent with roGFP1 variants, 

in which increasing basic charges near the disulfide leads to increasing rates of disulfide 

formation (Cannon and Remington, 2006). Thus, the enhanced oxidation of roGFP2 via 

GRXS15 K83/A is not based on an improvement of the complementary surfaces for the 

respective protein and interacting partner.  
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Interestingly, enzymatically active and inactive GRXs, mainly CGFS GRXs, cluster in two 

clades (Figure 44 and Figure 12C). The K83 of GRXS15 is highly conserved in all GRXs or 

replaced by other positively charged amino acids as in case of E. coli Grx1. This lysine, 

however, in inactive isoforms is separated from the catalytic cysteine residue (C91 in case of 

GRXS15) in the primary sequence by five amino acids forming an additional loop (Figure 44). 

 

 

 

Figure 44: A phylogenetic tree of crystallised GRXs and GRXS15. The tree was calculated at 

phylogeny.fr (Dereeper et al., 2008). Enumeration of the amino acids is based on GRXS15.  

 

 

This additional loop in CGFS GRXs might stabilise the incorporation of GSH as cofactor and 

the coordination of the ISC. In the absence of the cluster, the CGFS GRXs can still be 

glutathionylated and might slowly transfer the glutathione moiety to the reduced cysteine 

residue of roGFP2. Concerning the conserved lysine, it is assumed that in enzymatically active 

GRXs the positively charged lysine residue stabilises the thiolate of the catalytic cysteine 

resulting in the low pKa. Lysine mutants of human GLRX1 or yeast Grx7p showed indeed 

reduced catalytic rates (Begas et al., 2017; Jao et al., 2006). Moreover, yeast Grx8p, which is 

also lacking the additional loop but has an alanine residue at the lysine position, was shown to 

have a very low activity in standard assays (Eckers et al., 2009; Tang et al., 2014). In contrast, 

in E. coli Grx3 mutants truncation of the functional group resulted in a more efficient enzyme 

suggesting an important role of the lysine residue as a gatekeeper to modify the reactivity 

(Shekhter et al., 2009). Future studies will reveal the necessity of the additional loop and the 
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conserved lysine, for example, to activate enzymatically inactive GRXs via loop deletion or 

vice versa insertion of the loop in enzymatically active GRXs for inactivation. 
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Supplementary Tables 

 

Supplementary Table 1: Components of the mitochondrial ISC assembly machinery in 

Arabidopsis and their homologues in yeast and bacteria (modified after Balk and Pilon (2011)). 

protein name locus yeast12  bacteria 

ISU1/2/3 At4g22220 

At3g01020 

At4g04080 

ISU1/ISU2 (YPL135W/ 

YOR226C) 

IscU 

NFS1 At5g65720 NFS1 (YCL017C) IscS 

ISD11 At5g61220 ISD11 (YER048W-A)  

FH At4g03240 YFH1 (YDL120W) Cyay 

ADX/mFDX At4g21090 

At4g05450 

YAH1 (YPL252C) Fdx 

ADXR/mFDR At4g32360 ARH1 (YDR376W) FNR 

HSCA1/2 At4g37910 

At5g09590 

SSQ1 (YLR369W) HscA 

HSCB At5g06410 JAC1 (YGL018C) HscB 

MGE1 At5g55200 

At4g26780 

MGE1 (YOR232W) - 

GRXS15 At3g15660 GRX5 (YPL059W) Grx4 

ISCA At2g16710 

At2g36260 

At5g03905 

ISA1/ISA2 (YLL027W/ 

YPR067W) 

IscA 

IBA57 At4g12130 IBA57 (YJR122W) YgfZ 

NFU4/5 At3g20970 

At1g51390 

NFU1 (YKL040C) NfuA 

INDL At4g19540 IND1 (absent in S. cerevisiae) Mrp 

ATM3 At5g58270 ATM1 (YMR301C) - 

 

 

 

 

 

 

 

 

                                                 
12 yeast systematic names based on “Saccharomyces genome database” (www.yeastgenome.org) 
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Supplementary Table 2: Table of standard amino acid abbreviations. 

amino acid 3-letter code  1-letter code  

alanine  Ala  A  

arginine  Arg  R  

asparagine  Asn  N  

aspartic acid  Asp  D  

cysteine  Cys  C  

glutamic acid  Glu  E  

glutamine  Gln  Q  

glycine  Gly  G  

histidine  His  H  

isoleucine  Ile  I  

leucine  Leu  L  

lysine  Lys  K  

methionine  Met  M  

phenylalanine  Phe  F  

proline  Pro  P  

serine  Ser  S  

threonine  Thr  T  

tryptophan  Trp  W  

tyrosine  Tyr  Y  

valine  Val  V  

 

Supplementary Table 3: Enzymes referred to in this study and respective EC numbers.  

name EC number13 

NADH:ubiquinone oxidoreductase (Complex I) 1.6.5.3 

succinate dehydrogenase (Complex II) 1.3.5.1 

cytochrome c reductase (Complex III) 1.10.2.2 

biotin synthase (BIO2) 2.8.1.6 

methylcrotonoyl-CoA carboxylase (MCCase) 6.4.1.4 

acetyl-CoA carboxylase (ACCase) 6.4.1.2 

aconitase (ACO) 4.2.1.3 

cofactor of nitrate reductase and xanthine dehydrogenase 2 (CNX2) 4.1.99.18 

nitrate reductase (NR) 1.7.1.1 

abscisic aldehyde oxidase (AAO) 1.2.3.14 

xanthine dehydrogenase (XDH) 1.17.1.4 

sulfite oxidase (SO) 1.8.3.1 

lipoyl synthase (LIP1) 2.8.1.8 

pyruvate dehydrogenase complex (PDC)  1.2.4.1 

α-ketoglutarate dehydrogenase (OGDHC) 1.2.4.2 

glycine decarboxylase complex (GDC) 1.4.4.2 

branched-chain ketoacid dehydrogenase (BCKDC) 1.2.4.4 

branched-chain aminotransferase (BCAT) 2.6.1.42 

isovaleryl-CoA dehydrogenase (IVD) 1.3.8.4 

                                                 
13 EC numbers are based on BRENDA (www.brenda-enzymes.org) 
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Supplementary Table 4: Oligonucleotides used in this study. 

# 5’ → 3’ 

oligonucleotides used for sequencing 

689 TCGCGTTAACGCTAGCATGGATCTC 

690 GTAACATCAGAGATTTTGAGACAC 

oligonucleotides used for RT-PCR 

2455 CCATATTGCAAGAAGTTTGCGCGTCTG 

2456 GCAAGTCATCGGGATGGAGAGACG 

3218 TGGCGGCTTCTTTATCGAGC 

3219 TCCTTCACATCATTCTCAACGATA 

oligonucleotides used for genotyping 

328 GCTACCCTTTCAGGACTTCCAGACC 

329 CACAATGTTCTCCTGCAAACATGC 

641 GCCAATGCTCTCACCCTAAA 

642 GGCAATGGTTAGTCAAAATCG 

321 TAGCATCTGAATTTCATAACCAATCTCGATACAC 

432 CCCATTTGGACGTGAATGTAGACAC 

1401 ATTTTGCCGATTTCGGAAC 

2708 TGAAGCATACTTTTGGGATGG 

2709 ATTCAAAACCATACGCTCACG 

2710 GGAGATTCAGGGACACCTTTC 

2711 ATGGTCCACTTCGTATGTTGG 

2747 CACAGAGCCTAACGCCAATAG 

2748 CGGACGTATACTTTGGTGACC 

3523 ATTGCTACACTTGCGGGAGATGC 

3524 GATGGTGAGTTATCTGAGAGG 

oligonucleotides used for mutagenesis 

2753 GCTAAACCCAGACTGAGGAGA 

2754 TCTCCTCAGTCTGGGTTTAGC 

2839 ATCTACATGGAAGGTGTCCCT 

2840 AGGGACACCTTCCATGTAGAT 

2841 ATCTACATGGCTGGTGTCCCT 

2842 AGGGACACCAGCCATGTAGAT 

2843 GGCGGCTCAAGAATCATCCTT 

2844 AAGGATGATTCTTGAGCCGCC 

2845 GGCGGCTCAGCTATCATCCTT 

2846 AAGGATGATAGCTGAGCCGCC 

2847 CAAGAGTTGGAAAACGCTGTG 

2848 CACAGCGTTTTCCAACTCTTG 

2849 CAAGAGTTGGCTAACGCTGTG 

2850 CACAGCGTTAGCCAACTCTTG 

2851 AACGCTGTGGAATCCTTCAGC 

2852 GCTGAAGGATTCCACAGCGTT 

2853 AACGCTGTGGCTTCCTTCAGC 

2854 GCTGAAGGAAGCCACAGCGTT 

3650 TAGAAACATTGCTGAAGACCAAGAGTTGAAAAACG 
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3651 GAACTGATAGGAACATTATATTG 

3652 TAGAAACATTGATGAAGACCAAGAGTTGAAAAAC 

3653 TAGAAACATTTTTGAAGACCAAGAGTTG 

3654 GATCTACATGGCTGGTGTCCCTGAATC 

3655 ATAACAGGATTATCCTTCACATC 

oligonucleotides used for Gateway® Cloning14 

2592 GGGGACAAGTTTGTACAAAAAAGCAGGCTTTATGGCGGCTTCTTTATCGAGC 

2593 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAATCTTGGTTTCCGGAGAC 

2594 GGGGACCACTTTGTACAAGAAAGCTGGGTCATCTTGGTTTCCGGAGACGTC 

2626 GGGGACAAGTTTGTACAAAAAAGCAGGCTTTTCAACAGTGCCAAGTGATTCAG 

2659 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACTTGTACAGCTCGTCCATG 

 

 

Supplementary Table 5: amino acid content of wild-type and grxs15-3 UBQ10:GRXS15 K83/A line 

#3 and #4 ordered after most increased amino acid accumulation in line #4.  

amino acid 
amount of amino acid (pmol mg-1 FW-1); mean ± SEM  

Wt #3 #4 

Ala 96,66 ± 6,2  206,49 ± 15,25  237,99 ± 21,35 

Leu 6,48 ± 0,53  13,32 ± 1,36 15,55 ± 1,3 

Gly 36,79 ± 4,84 67,70 ± 12,19  82,26 ± 2,38 

Ser 111,74 ± 9,6 163,90 ± 9,11  234,56 ± 50,21 

Val 16,48 ± 0,72 25,45 ± 2,63  33,03 ± 1,64 

Ile 5,45 ± 0,29 7,89 ± 1,1 10,70 ± 0,7 

Arg 9,96 ± 1,07  12,22 ± 2,56  17,94 ± 1,72 

Asn 76,35 ± 9,27 72,38 ± 5,36  125,24 ± 33,73 

Lys 6,61 ± 0,65  8,85 ± 0,36  10,49 ± 0,9 

Gln 213,64 ± 17,12 262,03 ± 13,91 317,91 ± 52,1 

Phe 6,32 ± 0,18 7,49 ± 0,8  9,26 ± 0,36 

Tyr 1,50 ± 0,09 1,87 ± 0,08  2,09 ± 0,14 

Pro 31,51 ± 3,24 33,73 ± 1,87  42,39 ± 5,11 

Thr 58,94 ± 3,66 68,05 ± 4,03  77,90 ± 9,11 

Glu 652,08 ± 32,85 730,33 ± 22,23  805,71 ± 90,0 

Asp 199,61 ± 15,02 200,89 ± 1,35  243,28 ± 37,33 

Met 1,48 ± 0,07 1,44 ± 0,12 1,72 ± 0,12 

His 13,46 ± 2,15 12,67 ± 1,24 13,32 ± 0,91 

 

 

                                                 
14 Gateway®sites in italic 
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Supplementary Figures 

 

 

Supplemental Figure 1: 

Characterisation of grxs15-1.  

A: Analysis of the T-DNA insertion in 

grxs15-1. The T-DNA is inserted 141 bp 

upstream of the start codon and localised in 

an intron of the 5′ UTR of At3g15660.2. 

Numbered arrows depict the primers used 

for RT-PCR in D.  

B: Sequence alignment of the 5′ UTR of the 

transcripts At3g15660.1 and At3g15660.2. 

The start codon is indicated by a red ATG. 

Forward primers used for PCR are 

underlined. The sequence alignment was 

performed with MUSCLE.  

C: Analysis of the 5′ UTR of both isoforms 

in wild-type and grxs15-1. cDNA of wild-

type and grxs15-1 was used as a template 

for a PCR with the primers shown in B and 

an exon-exon spanning reverse primer (R2) 

annealing to exon two and exon three in the 

coding region of GRXS15 depicted in A. 

Using primer R3 annealing upstream of the 

intron leads to the amplification of two 

fragments (395 bp and 318 bp) in wild-type 

(lane 1), but not in grxs15-1 (lane 4), 

whereas primer R4 and R5 annealing 

downstream of the T-DNA insertion in 

both cases generates a PCR fragment of 

279 or 356 bp irrespective of whether the 

primer anneals in the second exon (lanes 

2+5) or the intron (lanes 3+6) of the 5′ 

UTR.  

D: Semiquantitative analysis of GRXS15 expression in grxs15-1. For RT-PCR, a forward primer (R1) 

annealing to the start of the coding region and exon-exon spanning reverse primer (R2) annealing to 

exon two and exon three in the coding region of GRXS15 were used. PCR was carried out over 34 cycles 

on cDNA of 3-week-old wild-type and homozygous grxs15-1 plants with GRXS15 and SAND 

(At2g28390) specific primers.  

E + F: Phenotypic comparison of 4-week-old plants (D) and 7-week-old plants (E) grown on soil under 

long-day conditions.  
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Supplemental Figure 2: Substitutions in GRXS15 and rescue of the yeast Δgrx5 mutant defects by 

mutated GRXS15.  

A: Performed substitutions in GRXS15 to influence the ability of coordinating the ISC or to bind GSH 

by hydrogen bonds.  

B: Growth of the yeast Δgrx5 mutant complemented with different versions of mutated GRXS15. 

Exponentially grown cultures were spotted onto solid drop-out medium containing glucose in fivefold 

serial dilutions. Colonies were visualized after incubating plates for 2 d at 30 °C. One representative 

experiment from three independently performed experiments is shown. 

C: Growth of the yeast Δgrx5 mutant complemented with GRXS15 substituted in K124 or D146 in liquid 

drop-out medium at 28 °C. The absorbance at 600 nm was followed over time.  
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Supplemental Figure 3: The GRXS15 K83/A phenotype is not based on biotin deficiency.  

A: Seeds of of GRXS15 K83/A line #4 compared with wild-type and the respective total amount of fatty 

acids in seeds and 8-d-old seedlings. (n = 3-4 ± SD). 

B+C: Fatty acid composition of seeds and 8-d-old seedlings of GRXS15 K83/A line #4 compared with 

wild-type. Results are expressed in mol % of a given fatty acid compared with the sum of total fatty 

acids. (n = 3-4 ± SD). 

D: GRXS15 K83/A line #4, a knockdown line (amiR) and wild-type plants were grown on agar plates 

containing no (control) or 1 µM biotin or 1 µM desthiobiotin. Data were provided by Inga Kruse and 

Janneke Balk. 
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Supplemental Figure 4: Influence of light period and nitrogen source on root growth 

A: Growth rate calculations from root length measurements at day 5 and day 8 under short-day (8 h 

light/16 h dark) and long-day (16 h light/8 h dark) conditions (n = 20-30 ± SD). Student’s t-Test analysis 

showed one significant difference between long-day and short-day treatment (*P ≤0.05). 

B: Primary root length of GRXS15 K83/A line #3 and #4 as well as atm3-1 mutant seedlings compared 

to wild-type (Wt) grown on vertical agar plates for 9 d under long-day conditions containing 5 mM 

KNO3 or 5 mM NH4Cl as N-source (n = 35 ± SD). Student’s t-Test analysis showed significant 

differences between nitrate and ammonium treatment (***P ≤0.001). 

C: Relative root length compared to the wild-type of GRXS15 K83/A mutants and atm3-1 as depicted in 

B. Wild-type was set to 100 % in both growing conditions. 

D: In-gel activities of AAO in wild-type (Wt) and atm3-1 as well as grxs15 mutants. Equal amounts of 

protein were separated on nondenaturing PA gels and stained for AAO activity using synthetic aldehydes 

(1-naphthaldehyde and indole-3-carboxyaldehyde) as substrates. As a protein-loading control the gel 

was stained afterwards with Coomassie. Data were provided by Inga Kruse and Janneke Balk. 

E: In-gel activity of XDH in wild-type (Wt) and atm3 as well as grxs15 mutants. Equal amounts of 

protein (35 µg) extracted from 8-d-old seedlings were separated on nondenaturing PA gel and stained 

for XDH activity using hypoxanthine as substrate. 
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Supplemental Figure 5: Subcellular localisation of roGFP2-sensors. 

Genetically encoded sensors roGFP2:Orp1 (A) and roGFP2:hGRX1 (B) were expressed in the 

mitochondrial matrix of both wild-type and mutant plants. Scale bar = 40 µm.  

 

 

 

 

Supplemental Figure 6: Addition of sucrose has no effect on root growth of grxs15 mutants. 

A: Relative root growth of grxs15-3 UBQ10:GRXS15 K83/A line #3 and #4 compared to wild-type 

seedlings. Seedlings were grown on vertical agar plates containing Arabidopsis medium with different 

sucrose concentrations for 8 d (n = 50-55 ± SD).  
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List of Abbreviations  

ACO     Aconitase   

APS     Ammonium persulfate 

BSA     Bovine serum albumin 

BSO     L-buthionine-(S, R)-sulfoximine 

CLSM     Confocal laser scanning microscopy 

DAB     3, 3-diaminobenzidine 

δ     dynamic range  

dNTP     Deoxynucleotide solution mix 

DTT     1,4-dithiothreitol 

EtOH     Ethanol  

GR     Glutathione reductase 

GRX     Glutaredoxin 

GSH     reduced glutathione 

GSSG     oxidised glutathione, glutathione disulfide 

IPTG     Isopropyl-D-1-thiogalactopyranoside 

ISC     Iron-sulfur cluster 

KCN     Potassium cyanide 

MDH      Malatedehydrogenase 

MeOH     Methanol 

MOPS     3-(N-morpholino)propanesulfonic acid 

NADH     β-nicotinamide adenine dinucleotide, reduced  

NADPH    β-nicotinamide adenine dinucleotide phosphate, reduced 

NBT     Nitro blue tetrazolium 

NR     Nitrate reductase 

OD     Optical density 

PCR      Polymerase chain reaction 

pGal     Propyl gallate 

roGFP     Redox-sensitive green fluorescent protein 

ROS     Reactive oxygen species 

T-DNA    Transfer deoxyribonucleic acid 

TP     Target peptide 

Tris-HCl    Tris(hydroxymethyl)aminomethane hydrochloride 

TRX     Thioredoxin 

UTR     Untranslated region 

v/v     volume per volume 

w/v     weight per volume 
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