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Zusammenfassung

Inkrementelle Kartenherstellung mit Markov-Zufallsfeldern und dessen
Evaluierung

Diese Arbeit präsentiert ein neues Verfahren zur Erstellung von gitterbasierten Belegtheitskarten,
das die Abhängigkeit benachbarter Gitterzellen berücksichtigt. Die Belegtheitskarten werden auf
Basis einer kompakten Umgebungsdarstellung berechnet, die aus Stereobildern gewonnen wird.

Aktuell ist autonomes Fahren ein grundlegender Arbeitsbereich für Forschungsteams weltweit.
Das Ziel dabei ist es, Fahrzeuge intelligenter zu machen, um mehr Sicherheits- und Komfortsys-
teme in naher Zukunft bereitzustellen. Basierend auf bordeigenen Sensoren müssen autonome
Fahrzeuge ihre Umgebung lernen und verstehen, um richtig reagieren zu können. Digitale Karten
sind für diese Systeme grundlegend, da diese für die Fahrplanung sowie für eine genaue Selbst-
lokalisierung des Fahrzeugs verwendet werden. Eine hochmoderne Darstellung von digitalen Karten
sind probabilistische Belegtheitskarten, bei denen die Umgebung durch ein regelmäßiges Gitternetz
diskretisiert wird. Jede Zelle besitzt eine Wahrscheinlichkeit, ob sie besetzt ist, was eine probabilis-
tische Beschreibung von statischen Hindernissen, Freiraum und unbekannten Bereichen erlaubt.
Viele dieser Kartierungsverfahren profitieren von der Annahme, dass die Zellen unabhängig sind.
Dies ermöglicht die Umsetzung von effizienten, direkten und inkrementellen Verfahren. Diese An-
nahme is probabilistisch betrachtet jedoch falsch und führt zu inkonsistenten Karten.

Der Hauptbeitrag dieser Arbeit ist die Entwicklung und Realisierung eines Kartierungsver-
fahrens, das die Abhängigkeiten benachbarter Zellen berücksichtigt und gleichzeitig ein inkre-
mentelles System mit Echtzeitanforderungen ermöglicht. Ziel ist es, genauere und zuverlässigere
Gitterkarten zu erstellen. Darüber hinaus wird auch die Positionsungenauigkeit des Fahrzeugs
betrachtet, was zum gleichzeitigen Lokalisierungs- und Kartierungsverfahrens (SLAM) führt.

Das neue Kartierungsverfahren ist als probabilistisches Optimierungsproblem formuliert, bei
dem die Karte als ungerichteter Graph interpretiert wird. Um die Abhängigkeiten, und um somit
die Korrelationen zwischen benachbarten Gitterzellen zu modellieren, werden Markov-Zufallsfelder
(MRFs) verwendet. Um ein effizientes und inkrementales Kartierungsschema zu ermöglichen, wer-
den für jede Zelle die Randwahrscheinlichkeiten geschätzt, welche durch einen schnellen Inferen-
zalgorithmus basierend auf dem Graph Cut Verfahren realisiert werden. Das SLAM-Problem wird
durch einen Rao-Blackwellized Partikelfilter gelöst, der die Kartierung vom Lokalisierungsprozess
trennt. Dies ermöglicht, das SLAM-Problem online zu realisieren.

Die Leistungsfähigkeit des neuen Verfahrens wird auf künstlichen und realen Daten ausgew-
ertet. Erkennungsraten sowie die geometrische Genauigkeit von Objekten sind die Grundlagen für
die Beurteilung der Qualität der gelernten Karten. Die Leistungsfähigkeit des neuen Ansatzes wird
mit den Ergebnissen eines Ansatzes verglichen, der die Abhängigkeiten von Zellen nicht mod-
elliert. Die Ergebnisse zeigen, dass das neue Verfahren eine bessere Leistung hinsichtlich der
Erkennungsraten aufweist. Besonders der Freiraum wird präziser, was quantitativ und qualita-
tiv dargestellt wird. Für die Validierung der Leistungsfähigkeit des entwickelten online SLAM-
Ansatzes wird die geschätzte Pose des Fahrzeugs berücksichtigt. Der Ansatz ist in der Lage,
präzise Positionen mit nur einer geringen Anzahl von Partikeln zu schätzen. Die Grenzen des
Kartierungsverfahrens und des SLAM-Ansatzes werden ebenfalls in dieser Arbeit diskutiert.
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Summary

Incremental Map Building with Markov Random Fields and its Evaluation

This thesis presents a novel occupancy grid mapping approach which takes the dependencies of
neighboring grid cells into account. The grid maps are estimated based on a compact environment
representation which is derived from stereo image sequences.

Today, autonomous driving is fundamental work of research teams around the globe. Their
aim is to make cars more intelligent in order to provide more safety and comfort systems in the
future. Based on on-board sensors autonomous cars must learn and understand their environment
to be able to react correctly. Digital maps are essential for such systems since these maps are
used for motion planning, and for precise self localization of the ego vehicle. A state-of-the art
representation of digital maps are probabilistic occupancy grid maps where the environment is
discretized in a regular grid. Each grid cell has a probability that the cell is occupied which allows
the description of static obstacles, free space, and unknown areas in a probabilistic way.

This assumption allows the realization of efficient and straight forward incremental occupancy
grid mapping approaches. Nevertheless, the assumption of independent grid cells is incorrect in a
probabilistic way and leads to inconsistent maps.

The main contribution of this thesis is the development and realization of an occupancy grid
mapping approach which keeps the dependencies of neighboring grid cells into account, and simulta-
neously allows an incremental framework with real time requirements. The aim is to produce more
accurate and reliable occupancy grid maps. Furthermore, the pose uncertainty of the ego vehicle
is also considered which leads to the simultaneous localization and mapping (SLAM) problem.

The novel mapping algorithm is formulated as a probabilistic optimization problem in which
the map is interpreted as an undirected graph. To model the dependencies, in other words the
correlation between neighboring grid cells, Markov random fields (MRFs) are applied. To allow an
efficient, and incremental mapping scheme, marginal probabilities for each grid cell are estimated,
which is realized by a fast inference algorithm based on graph cuts. The mentioned SLAM problem
is solved by a Rao-Blackwellized particle filter which separates the mapping step from the local-
ization process. This allows the realization of the SLAM problem in an on-line fashion. For the
mapping step the novel approach based on MRFs is chosen, the localization part is realized by a
sampling importance resampling (SIR) particle filter.

The performance of the occupancy grid mapping approach is evaluated on the basis of artificial
and real-world data. Detection rates as well as the geometrical accuracy of occupied areas are the
foundations of assessing the quality of the learned maps. The performance of the novel approach is
compared against the results of an approach which does not model the dependencies of grid cells.
The results show that the novel approach has a better performance with regard to the detection
rates. Especially free space areas are more precise which is shown in a quantitative and qualitative
way. For the validation of the performance of the developed on-line SLAM approach the estimated
pose of the ego vehicle is taken into account. It is shown that the approach is able to estimate
precise positions using only a small number of particles. The limits of the mapping algorithm, and
of the SLAM approach are also discussed in this thesis.
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Chapter 1

Introduction

1.1 Motivation

Autonomous driving has grown rapidly in the last couple of years and is a fundamental work
of research teams around the whole globe. Not only traditional car manufacturers like BMW,
Mercedes-Benz or Toyota are active in this field, but also software giants like Apple, Baidu, Google
or Uber have an immense interest in this market. The aim is to make vehicles step by step more
intelligent to take over reliably the driver’s tasks up to the time at which the vehicle has the full
responsibility about action and reaction.

On the one hand, safeness is one major advantage of intelligent cars. Safety systems like
emergency braking, automated distance control or lane keeping assistance are already available
in mid-size and luxury cars these days to support the driver in complex traffic situations and to
reduce the risk of accidents. On the other hand, comfort is also an advantage of intelligent cars. In
future, chauffeur-driven cars will allow the driver to be productive during commute time to legally
read newspapers, answer mails or just relax. Autopilot modes will drop off passengers at their
desired destinations like airports or rail stations and then the car will park on its own. It is to be
expected that these systems will be released into the market in the next 10 years. However, current
parking assistance systems which detect parking lots correctly and then maneuver fully automated
into them demonstrate how intelligent are our cars already today.

Cars with such systems must learn and understand their environment to be able to act or react
correctly in situations like the above mentioned parking scenario. The environment information can
be broken down into (1) dynamic objects like other road users or pedestrians, (2) static information
like contours of buildings or curbs, and (3) possible drivable free space. On board sensors like radar,
laser scanners or cameras are used to learn and detect these types of information on-line. Figure 1.1
gives an example how a typical urban traffic scenario is classified in these classes.

The learning of static environment information as well as the estimation of reliable free space
is also known as digital map building in mobile robotics in which sensor readings are integrated
into a specific map representation. These maps are essential for current safety and comfort systems
as well as for autonomous driving applications: they help during vehicle path planning and by
interacting with other traffic participants. They are also used to localize the vehicle relative to the
created map.

1
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Figure 1.1: The classification of an urban traffic scenario into dynamic objects (red), static infor-
mation (blue) and free space (green) which also includes the sidewalk. The detection of these three
types is mandatory for advanced driver assistance systems and autonomous driving applications
[Ziegler et al., 2014].

In this thesis, the key focus is on probabilistic on-line map building using a compact environment
representation as input data which is created from stereo camera image sequences. The generated
map is defined as a grid and represents static information as well as free space. The key aspect
is that we consider dependencies between neighboring grid cells in a probabilistic fashion. The
uncertainty of the vehicle’s pose is also taken into account in this thesis. We also concentrate on
the comprehensive evaluation of the new mapping technique.

1.2 Related Work

In this section we describe related work which motivated, inspired and influenced the current
thesis. First we focus on advanced driver assistance systems (ADAS) and autonomous driving
applications (Sec. 1.2.1 and Sec. 1.2.2). In Sec. 1.2.4 we describe map building approaches which
also includes a discussion of mapping with know poses (Sec. 1.2.5) as well as mapping with uncertain
poses (Sec. 1.2.6). At the end, we give a brief overview of scene understanding with stereo vision
(Sec. 1.2.7).

1.2.1 Driver Assistance Systems

In 2015, slightly over 26 000 people were killed by road accidents in the European Union (EU),
estimated by the statistical office of the EU (EUROSTAT). In spite of the large number of deaths,
the amount of killings is fewer than half as many as 20 years ago, which was also stated in the
study. Today’s standard safety systems like airbags, anti-lock braking systems (ABS) and electronic
stability program (ESP) have contributed considerably to the decrease of the number of killings
during this time period.
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The “next generation” of safety and comfort systems, also known as ADAS, conquer successfully
the automotive market in the last couple of years to reduce the risk of accidents even before they
occur. Since systems like ABS and ESP are based only on the vehicle dynamics, ADAS require
environment perception and the interaction with other participants which make them more complex
in terms of software and hardware requirements.

A good example is adaptive cruise control (ACC) which automatically regulates the distance
to leading vehicles using radio detection and ranging (RADAR), or light detection and ranging
(LIDAR) to reduce the number of rear-end collisions with high speed (BMW; Mercedes-Benz;
VOLKSWAGEN). These systems are mostly coupled with automated “pre-crash” braking systems.

In 2016, Mercedes-Benz presented its new E-class with steering pilot and active lane change
assists at the north America international auto show (NAIAS) which helps to keep the car au-
tonomously in the driving lane, and also helps the driver to make a safe semi-automatic lane
change. It already allows the driver to keep the hands off the steering wheel for a while. For these
complex systems, RADAR and stereo camera information is used. Similar systems are also available
from TOYOTA or BMW. Blind spot assists which supervise areas the driver cannot see, pedestrian
detection systems and self-parking assists are examples for ADAS which are also available in the
automobile mid-range segment.

Bengler et al. [2014] give a comprehensive overview of ADAS and how these systems evolved
over the last three decades: research fosters the development of already existing and future systems
and the way from prototypes to a final product in the automotive market takes years or even
decades. ADAS must pass strong quality and safety standards and need to be fully transparent.
As mentioned above and also stated in [Bengler et al., 2014], the difference between autonomous
driving applications and the functionality of current ADAS is vanishing in these days. Because of
this fact, we present an overview of autonomous driving applications in the following.

1.2.2 Autonomous Driving Applications

Fully autonomous driving means that a vehicle is able to manage all possible traffic scenarios
without any interaction with the driver. Research groups and car manufactures are working with
great enthusiasm and passion to realize this researcher’s dream of a self driving car. In the last two
decades autonomous driving has grown rapidly, from initial prototypes towards highly embedded
software systems, which will be the new generation of ADAS.

Between 1986 and 1995, European universities and car manufactures worked closely together in
the PROMETHEUS project (“program for an European traffic of highest efficiently and unprece-
dented safty”) to realize the first autonomous drives in Europe. Franke et al. [1994] contributed to
this project in a way that image processing was used the first time to control the lateral position
of the car relatively to the lane markings.

An important impact for autonomous driving were the DARPA (the defense advanced research
agency) challenges, held in 2004, 2005 and 2007. In 2005, the robot Stanley [Thrun et al., 2006]
won the challenge using machine learning and probabilistic reasoning. Stanley was equipped with
LIDARs, RADARs, cameras, inertial measurement units (IMUs) and global positioning system
(GPS). In 2007, the first urban DARPA challenge was held in Victorville, CA, where the cars had
to interact with other participants the first time. As an example, the team AnnieWay [Kammel
et al., 2008] had successfully entered the DARPA finals. The car was able to pass parked cars,
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performing u-turns, and merge into traffic again. For the environment perception, a roof mounted
360o laser scanner was used. The range measurements were mainly used to reconstruct the scene
geometry, whereas the reflectivity values of the laser helped to detect the lane markings on the
ground.

In 2010, Google achieved high publicity with their impressive autonomous vehicles which
recorded and logged over 140 000 miles at that time. The tech company employed software de-
velopers and researchers which participated in the DARPA challenges already. Google benefits
from their experiences even today. One of Google’s key success is their highly detailed digital
maps and their knowledge how to handle enormous amounts of data. In 2013, Alberto Broggi and
his team [VisLab, 2013] also presented impressive autonomous driving in urban scenarios around
Parma, Italy.

In 2014, the Mercedes-Benz S 500 Intelligent Drive [Ziegler et al., 2014] followed the historic
Bertha Benz Memorial Route fully autonomously. The total length of the route was 103 km long and
passed villages and major cities like Mannheim and Heidelberg. Compared to previous autonomous
driving projects, e.g. [Kammel et al., 2008; Google, 2010; VisLab, 2013], close to production
sensor hardware, like RADAR and stereo camera systems were used during this drive. Similar to
all previously mentioned autonomous driving applications, the Mercedes-Benz team also relied on
accurate and detailed digital maps. However, the maps were generated off-line in a semi-automated
way which is not scalable and far away from a commercial roll-out.

Aeberhard et al. [2015] presented their lessons learned of autonomous driving on highways since
2011. One of their major problems also deals with digital maps: similar to Ziegler et al. [2014] the
process of remapping must be improved to keep the maps up-to-date. Furthermore, the sensor range
and capability should also be improved to allow autonomous driving up to a speed of 150 km/h.
Therefore, Aeberhard et al. [2015] suggest the use of sensor redundancy, more stable sensors, and
also allow a possible car-to-X communication.

In December 2016, the Google self driving car project became WAYMO. At this time the
company reached the 2 000 000 autonomous miles border. A controversial discussion started after
the company stated that their final product will neither have a steering wheel or floor pedals.
However, it can be assumed that WAYMO will release their product in the next years and it seems
that the dream of a complete autonomous vehicle will become true.

1.2.3 Key Components for Autonomous Driving

Autonomous driving systems [Google, 2010; VisLab, 2013; Ziegler et al., 2014] rely in general on
six key components which are introduced shortly. Figure 1.2 also visualizes the named components
and shows the interaction between them.

Sensors. Sensors like RADAR, LIDAR, or cameras are essential to allow self driving cars to
“see”. Sensors like GPS and IMUs are also important for (broad) localization and to measure
vehicle dynamics. Sensors are also indispensable for map learning techniques.

Digital Maps. Detailed digital maps includes all important static information of the environ-
ment, like road and lane geometries, curbs, and traffic islands, to allow correct and precise motion
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planning. Digital maps can also include static information for precise localization and, in most
of the cases, potential free space. In this context, free space does not take dynamic objects into
account.

Environment Perception and Object Detection. Environment perception and object detec-
tion is essential to handle complex traffic scenarios. Based on the sensor readings, the self driving
car knows what it sees in its surroundings. This also includes the detection of dynamic objects
like vehicle detection, pedestrian detection. The detection of traffic lights and speed limits is also
desirable.

Localization. Precise localization answers the question where the car is in a given map with a
position accuracy of 20 cm or better and a heading accuracy of 0.2 deg or better. One possibility
to self localize the robot is to match sensor readings with the digital map. Deeply coupled filter
systems, like differential GPS in combination with IMUs, can also be used for this task.

Motion and Trajectory Planning. If the car knows where it is (self localization) and also knows
its dynamic and static environment (environment perception and object detection) the computation
of the desired future trajectory to a designated destination as a function of time is possible. The
trajectory planner produces the input for the vehicle control unit and how the car should move.

Vehicle Control and Reaction. The control unit smoothly guides the car along the planned
trajectory. A separation into a longitudinal and lateral control component is common practice.

Figure 1.2: Key components of autonomous driving applications and how they interact with each
other. The arrows indicate information flow. As one can see, digital maps play an important roll
for the localization and motion planning task.
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This thesis focuses on the creation of digital maps using stereo camera image sequences from
an earth bound moving platform. The created maps represent static environment information
as well as free space information which can be used for autonomous driving applications. In this
case, dynamic objects are excluded from free space. Grid based map approaches have proven
useful in the field of robotics and autonomous driving applications as stated above. Therefore,
we use the probabilistic occupancy grid map representation in this thesis.

1.2.4 Digital Maps

The most common representations of digital maps are feature based maps, topological/geometrical
maps and grid based maps. In all these cases maps are learned from the robot’s sensor readings.
The task of on-line map creation with the robot sensors is also known as mobile mapping.

Feature based Maps. Feature based maps contain features, also called landmarks, of the envi-
ronment which are extracted from sensor readings. In general, these features have a global position
with reference to the map’s coordinate system. Each feature can also carry semantic information
in order to make them more unique: features can be classified as objects, like trees, street lamps,
traffic signs or house corners. If cameras are used features can also be characterized by e.g. SIFT
[Lowe, 2004] or HoG [Dalal and Triggs, 2005] descriptors. Feature based maps are very suitable for
on-line localization as stated in [Ziegler et al., 2014; Lategahn and Stiller, 2014]. However, feature
based maps do not include dense information about free space and static information by default.
Furthermore, feature based maps which include abstract descriptors are suffering from the fact that
they are sensor type specific.

Geometrical Maps. Geometrical maps include entities like road markings, street boundaries
or shape of buildings and are more comprehensive than today’s navigation maps [Ziegler et al.,
2014]. Based on raw sensor readings, these geometrical entities can be extracted fully- or semi-
automatically [Ziegler et al., 2014]. They can also include topological information, like the connec-
tivity between road segments and provide information for path planning. Additional information
like speed limits or school zones are also often stored in these maps. Geometrical maps are partic-
ularly suitable for motion and path planning [Ziegler et al., 2014]. Furthermore, they can also be
used for localization purposes, as described in [Schreiber et al., 2013; Rabe et al., 2016].

Grid based Maps. By using grid based maps, the continuous environment is discretized in a
consistent grid structure. Each map element is called a grid cell which includes information about
its environment, for example if the cell is covered by an obstacle or not. Grid based maps are usually
in 2D using the planar ground plane assumption. Nevertheless, grid based maps can also be used
to represent the full 3D space. If this is this case, a single grid element is called a voxel. Grid
based maps are applicable in a variety of ways. For example, occupancy grid maps (see Sec. 2.5)
are predestined to represent free space, occupied areas as well as unknown regions in a probabilistic
way [Moravec and Elfes, 1985; Elfes, 1989; Thrun, 2003]. Another example are digital elevation
grid maps [Kweon and Kanade, 1992; Lacroix et al., 2002] which are used to model the height



1.2. RELATED WORK 7

information of the ground surface. Grid based maps benefit from the fact, that raw sensor readings
are integrated into the grids without any predefined object assumptions, like it is the case by the
generation of feature and geometrical maps. The sensor specific noise and sensor failure behavior
can be considered directly. Based on this fact, grid based approaches are especially suitable for low
level data fusion [Matthies and Elfes, 1988; Munz et al., 2010], because they do not rely on any
object extraction or specific feature definition.

As stated in Stachniss [2006, Chapter 2.2], grid based maps are important for robot exploration
purposes because they can represent unknown areas. Grid based maps are also suitable for motion
planning [Elfes, 1989; Torabi et al., 2007; Čikeš et al., 2011] and for self-localization purposes
[Levinson and Thrun, 2010; Roewekaemper et al., 2012; Rapp et al., 2016].

Besides these benefits, two major drawbacks occur if the environment is represented by grid
maps. First, their memory requirements are huge, especially for large scale environments which are
represented in the full three dimensional space. To handle this burden,e.g. [Hornung et al., 2013]
created an efficient level-of-detail data structure by using an octree map compression method, the
so-called OctoMap. The map only provides high spacial resolution if really needed which keeps the
overall memory low.

Because of the map’s finite grid resolution, the second notable drawback are discretization errors
which occur during the mapping of sensor readings into the discrete map structure. The resolution
of a single grid cell strongly depends on the desired application: the user has to answers questions
like how much memory is available, and is the map creation an on-line or off-line process.

1.2.5 Probabilistic Grid Mapping with Known Poses

Moravec and Elfes [1985] introduced occupancy grid maps at first using wide angle sonar sensors
under the assumption that the pose of the robot is known. Each grid cell has an occupancy
probability, which means how likely it is that the cell represents static obstacles or not. Free space
is also represented in these maps under the assumption, that sensor rays first pass free space area
before they hit an obstacle.

Areas which are not influenced by sensor readings are defined as unknown areas. Besides the
use of sonar sensors [Moravec and Elfes, 1985; Thrun, 2003], the occupancy grid mapping idea
works also well for LIDAR [Limketkai et al., 2002; Yguel et al., 2006; Schmid et al., 2010], RADAR
[Homm et al., 2010; Werber et al., 2013], and stereo vision [Moravec, 1996; Badino et al., 2007;
Perrollaz et al., 2010; Lategahn et al., 2011; Muffert et al., 2014].

The Paradigm of Independent Grid Cells Thrun et al. [2005] give a detailed description
of 2D occupancy grid mapping techniques. As stated in Thrun et al. [2005, Chapter 9.2], the
estimation of the full Bayesian map posterior is intractable, because of the enormous amount of
possible maps which can be defined over a grid. Therefore, the standard occupancy grid mapping
approach is based on a binary (the grid cell is occupied or not) Bayes filter with static state (Thrun
et al. [2005, Chapter 4.2]) which also assumes that all grid cells are independent. This allows a fast
and incremental estimation of maps which is necessarily for on-line mapping applications [Moravec
and Elfes, 1985; Grisetti et al., 2007; Yguel et al., 2006; Muffert et al., 2014].
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However, the decomposition into independent grid cells is a strong assumption which is incorrect
from a probabilistic point of view. All named approaches from above suffer from this assumption
and inconsistencies in the map can occur. There are only a few approaches who deal with this issue
and discuss this topic in detail [Thrun, 2003; Merali and Barfoot, 2012, 2013; Dhiman et al., 2014].

Thrun [2003] presented a maximum a posteriori (MAP) solution using the expectation maxi-
mization (EM) algorithm which maintain dependencies between neighboring grid cells. This results
in more consistent maps than using the standard occupancy grid mapping approach (Thrun et al.
[2005, Chapter 4.2]). However, the MAP solution needs all available sensor readings and is conse-
quently a batch approach. Furthermore, the MAP solution does not include the uncertainties of the
grid cells by default. Based on these facts, this batch approach is not suitable for on-line approaches.

Merali and Barfoot [2012] introduced the patch map which also takes into account that neighbor-
ing cells are dependent. The patch map algorithm solves the full Bayesian posterior map solution
only for a small area, the patch map, and then iterates over the possible patches.

A drawback of this approach is that it needs a MAP or ground truth (GT) solution of the
map to determine the first occupied cell and is not real time capable. Similar to [Thrun, 2003],
this approach is also a batch solution. The authors stated, that their approach lies between the
full Bayesian solution and the standard occupancy grid mapping approach and is suitable for
benchmarking. Based on their previous work, Merali and Barfoot [2013] introduced an occupancy
grid mapping approach with Markov chain Monte Carlo (MCMC) Gibbs sampling which allows to
sample from the full Bayesian posterior. This also allows to estimate occupancy probabilities for
the cells by drawing many samples. Compared to the patch map solution this method does not need
any MAP or ground truth solution for the initialization step. The authors stated that it is still open
which of these two algorithms performs better. Dhiman et al. [2014] propose an occupancy grid
mapping approach using higher order factor graphs to handle dependencies between neighboring
grid cells. Belief propagation is used for inference estimation. It turned out that their approach
results in more accurate maps than using standard occupancy grid mapping approaches. However,
it is still unclear how efficient the algorithm is in terms of computation time.

The research group around F. Ramos also model the dependencies between nearby locations
in grid maps [O’Callaghan and Ramos, 2012, 2014; Senanayake et al., 2016]. They use Gaussian
process occupancy grid mapping to overcome the disadvantages of the general occupancy grid
mapping approach, namely the discretization of the environment and the independence of grid
cells. Gaussian process occupancy grid mapping allows a continuous probabilistic representation.
Nevertheless, the use of Gaussian process in occupancy grid mapping is expensive and therefore no
real-time capable.

The Handling of Dynamic Obstacles. The standard occupancy grid mapping approach as-
sumes that all observed occupied areas are static environment which is not true for most applica-
tions. Therefore, many research work deals with the issue how to handle dynamic obstacles like
walking pedestrians or cars in occupancy grid maps. Biswas et al. [2002] did pioneer work in the
field of detecting dynamic obstacles in occupancy grid maps. They used map differences to detect
changes in the environment and also applied an EM algorithm to learn dynamic object models
and its location in the grid maps. In the same year, Hähnel et al. [2002] presented an approach
which detects and tracks multiple people in the environment. The results were incorporated into
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the map building process to reduce the number of dynamic objects in the resulting maps. Stachniss
and Burgard [2005] clustered local grid maps to detect spurious measurements which represents
dynamic objects. These clusters were also used to localize the robot in dynamic environments
using particle filters. Brechtel et al. [2010] used a particle filter like approach for grid based occu-
pancy tracking with LIDAR measurements. Because of using importance sampling the approach is
real-time capable. Nuss et al. [2015] presented a sequential Monte Carlo Bayesian occupancy filter
(SMC-BOF) to represent and track dynamic obstacles in grids. Their main contribution compared
to previous work (e.g. Brechtel et al. [2010]; Danescu et al. [2011]) is that they fuse LIDAR and
RADAR measurements together. The Doppler effect of the RADAR improves the estimation of
dynamic obstacles significantly.

Another possibility is to extract dynamic obstacles from the raw sensor data before measure-
ments are integrated into grid maps. As an example, Muffert et al. [2013] used stereo vision in
combination with semantic labeling to exclude dynamic obstacles before data is integrated into oc-
cupancy grid maps. This results in occupancy grid maps with only static environment information
which is more reliable for localization and motion planing purposes.

1.2.6 Probabilistic Mapping with Unknown Poses

In the previous section we presented approaches which assume that the pose of the moving platform
is given, and is consequently correct. For small environments, and for vehicle centered grid maps
(Nuss et al. [2015]; Muffert et al. [2014]) this assumption is acceptable as long as sensor based
ego motion estimation or the car’s odometry information is precise enough. But, nevertheless, to
map large scale environments and to create precise global occupancy grid maps, this assumption
is untenable. In robotics, this leads to the well-known simultaneous localization and mapping
(SLAM) issue where both, the pose of the vehicle and the map are estimated at the same time.
Since there exists an unbelievably large number of SLAM approaches in literature, we only focus
on work which motivated us to solve the SLAM issue during this thesis [Smith and Cheeseman,
1986; Durrant-Whyte and Bailey, 2006; Murphy, 1999; Montemerlo et al., 2002; Hähnel et al., 2003;
Thrun et al., 2005; Grisetti et al., 2007; Choi, 2014].

A good overview of fundamental SLAM techniques can be found in [Thrun et al., 2005, Chapter
10-13]. The authors state that the SLAM problem can be traced back to geodetic surveying tasks
and can be formulated as a nonlinear least squares (NLS) problem where all unknowns are estimated
en bloc. In SLAM, the unknowns are defined by the landmarks of the map and the poses of the
vehicle. The observations are the sensor readings and the control information of the vehicle. The
dependencies between observations and unknowns can be represented in a graph structure in an
intuitive way [Thrun et al., 2005, Chapter 11, p.338]. To solve the SLAM problem en bloc via NLS,
state-of-the-art methods like Gauss-Newton (GN) or Levenberg-Marquardt (LM) are used in the
research community. It is also known as the Graph SLAM or Full SLAM problem. Open source
libraries like the g2o framework [Kümmerle et al., 2011] or the ceres solver [Sameer Agarwal, 2016]
provide such solvers and have proven their worth in autonomous driving applications [Ziegler et al.,
2014; Kerl et al., 2013].

To solve the on-line SLAM problem extended Kalman filters (EKFs) are used successfully in
2D scenarios ([Smith and Cheeseman, 1986; Durrant-Whyte and Bailey, 2006; Thrun et al., 2005]).
Here, maps are represented as feature based maps and the algorithm works well, if the number of
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features is small and correspondences between map features and sensor readings are known [Thrun
et al., 2005, Chapter 10.2.1].

Next to EKFs, particle filters (PFs) are also very suitable to solve the 2D SLAM problem.
PFs are in general easy to implement, and are non-parametric which allows multi-modal solutions
compared to EKFs. However, the number of particles would explode if the SLAM problem would
be implemented without any conditional assumptions about the map and the pose of the vehicle.
Therefore, Murphy and Doucet et al. applied the well-known Rao-Blackwellized particle filters
(RBPFs) in the SLAM problem. Here, RBPFs separate the estimation of the pose from the
estimation of the map which reduce the number of particles enormously. The RBPF approach
works well with feature-based maps [Montemerlo et al., 2002] as well as with grid based maps
[Hähnel et al., 2003; Grisetti et al., 2007; Choi, 2014]. An insight of RBPFs is given in Sec. 2.7.2.

In the research field of photogrammetry and computer vision the SLAM problem also occur
during the 3D reconstruction of environments with image sequences [Frahm et al., 2010]. Here,
it is better known as bundle adjustment (BA), where the unknown state vector is defined by the
relative 3D motion and the intrinsic parameters of the camera(s), and the 3D object points of
the environment. The minimization of the re-projection error is formulated as a NLS problem.
Therefore, the frameworks of Kümmerle et al. [2011] and Sameer Agarwal [2016] are also very
suitable for bundle adjustment tasks. Comprehensive insights in the field of bundle adjustment are
given in [Hartley and Zisserman, 2004; McGlone et al., 2004; Förstner and Wrobel, 2016].

1.2.7 Scene Understanding with Stereo Vision

Next to LIDAR and RADAR approaches ([Yguel et al., 2006; Hermes et al., 2010; Homm et al.,
2010; Nuss et al., 2015]), vision has proven a powerful solution for urban traffic scene understanding
(Ess et al. [2009]; Hermes et al. [2010]; Badino et al. [2009]; Pfeiffer and Franke [2011]; Erbs et al.
[2012]; Scharwächter and Franke [2015]; Schneider et al. [2016]; Cordts et al. [2016]). Especially
in the last three years, caused by the emergence of convolutional neural networks (CNNS), single
frame image classification and scene understanding improved a lot. Fundamental work was done
by Shelhamer et al. [2016] where CNNs where used for semantic scene labeling the first time. As
stated in [Cordts et al., 2016], a fully-convolutional network [Shelhamer et al., 2016] reaches the
semantic labeling on the KITTI benchmark [Geiger et al., 2012] and on the CamVid database
[Brostow et al., 2009] easily. Many work rely on open source implementations [Girshick, 2015].
Before CNNs came up, state-of-the art image understanding was mainly driven by Markov random
fields/conditional random fields (MRFs/CRFs) [Lafferty et al., 2001; Kohli and Torr, 2007; Erbs
et al., 2012] or by random decision forest [Scharwächter and Franke, 2015]. The work of Chen et al.
[2014] and Schwing and Urtasun [2015] combine the strengths of CRFs and CNNs.

Another research branch in image based scene understanding is the estimation of 3D com-
pact scene representations based on dense disparity images. Here, we focus on the Stixel World
idea ([Badino et al., 2009; Pfeiffer and Franke, 2011; Benenson et al., 2012]) which is useful for
autonomous driving applications [Ziegler et al., 2014] or occupancy grid mapping [Muffert et al.,
2013, 2014]. It is also possible to estimate Stixels without computing disparity maps with very
high frequency [Benenson et al., 2012]. Schneider et al. [2016] present a neat way to combine
both pixel-level semantic labeling via CNNs and depth information to generate a detailed 3D scene
representation which is called the semantic Stixel World.
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1.3 Contribution of this Thesis

With the background of related work, our contribution is a novel 2D on-line feasible grid based
mapping approach to represent free space and static obstacles in a probabilistic way. Free space
means in this case areas where the vehicle can physically drive without causing major damages.
This can also include clear sidewalks. Static obstacles are structured environments which must be
avoided by the vehicle. Dynamic obstacles are excluded in our grid maps.

The main achievement of this thesis is, that we model the dependencies between neighboring
grid cells to achieve more accurate and more robust free space and static obstacles. From our
point of view and as stated in Sec. 1.2.5, this research topic is still underrepresented and should
get greater attention. As input data we rely on the use of the compact environment representation
Stixel World which is based on stereo vision. It allows us to distinguish between static and dynamic
obstacles in the current scene which will make our grid maps more accurate. Furthermore, the
used camera system is close to those used for current serial production. Next to the pure mapping
approach, we also address the research field “mapping under uncertain poses” which leads to the
well-known SLAM issue. In our case, we apply state-of-the-art particle filter techniques to solve
the SLAM problem on-line. To the best of our knowledge, we are the first who are using Markov
Random Fields to model cell dependencies in a grid based SLAM approach in combination with the
compact environment representation Stixel World as input data. The created maps are applicable
for ADAS and autonomous driving applications, especially for the subtasks of motion planning
and localization (see Sec. 1.2.3). Our new mapping approach is well suited for mid and large scale
environments like structured residential areas.

1.4 Organization of this Thesis

This thesis is structured as follows: In the first part we give a comprehensive overview of mathe-
matical techniques which are essential for the new mapping approach. This chapter is separated
into environment perception with stereo vision, probabilistic undirected graphical models, recur-
sive state estimation, probabilistic map learning, Rao-Blackwellized particle filters and evaluation
techniques. In Chapter 3 we present the concept of our new mapping approach which considers
dependencies between neighboring grid cells. We explain in detail preprocessing steps, the opti-
mization formulation of our approach, and the definition of the unary and binary terms. Chapter
3.6 presents how we solve the optimization problem with dynamic graph cuts. Afterwards, we solve
the SLAM problem by combining our new mapping technique with RBPFs (Chapter4). In Chapter
5, the new mapping approach is evaluated based on artificial and real world data, followed by the
evaluation of the new SLAM approach (Chapter 6). Finally, Chapter 7 gives an conclusion of this
thesis and discusses future work.
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Chapter 2

Technical Background

In this chapter, we present techniques which are the basis for the new mapping approach with
MRFs. The first section introduces common sensor types for robotic applications and presents
their characteristics in a brief overview (Sec. 2.1). Subsequently, we explain the depth estimation
from stereo image sequences (Sec. 2.2). This chapter also includes the description of the compact
environment representation Stixel World and its segmentation into static and dynamic obstacles.
Further, Chapter 2 outlines probabilistic graphical models (Sec. 2.3), recursive existence estimation
techniques (Sec. 2.4), occupancy grid mapping (Sec. 2.5), and the SLAM problem (Sec. 2.6). We
also discuss particle filter (Sec. 2.7.1) and graph based approaches (Sec. 2.8) to solve the SLAM
problem. Relevant evaluation criteria are presented at the end.

2.1 Sensors of Mobile Platforms

In the research field of autonomous driving different sensor types are used to capture information of
the environment of the mobile platform. In connection with this thesis, the term mobile platform
is equivalent to the term vehicle. A comprehensive overview of research sensor setups and their
main objectives can be found in [Thrun et al., 2006] and [Ziegler et al., 2014]. ADAS must be
able to rely on automotive sensor technology. Lindgren and Chen [2006] and Fleming [2008] give
a survey of possible serial production sensors. In this thesis sensors are applied which are close in
specification to those used for current serial production.

Stereo Vision. Stereo vision imitates human vision by capturing pairwise images using two
synchronized cameras. This system is applied for the 3D reconstruction of the environment which
is captured in the horizontal and vertical field of view of the camera. Since stereo vision is used
during the thesis, we describe the stereo camera configuration, the dense disparity estimation, the
computation of the Stixel World, and the object segmentation in Sec. 2.2 in detail.

LIDAR. LIDAR is the most widely used sensor technique in mobile mapping to reconstruct the
vehicle’s environment [Thrun et al., 2006; Geiger et al., 2012]. In contrast to stereo vision LIDAR
sensors are active sensors which scan the environment with the help of laser beams. As an example,
Geiger et al. [2012] use the laser scanner Velodyne HDL-64E S2 which has a full 360◦ horizontal,

13
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and a 26.8◦ vertical field of view, and a frame rate up to 15 Hz. Because of the high precision of
the Velodyne the data set of Geiger et al. [2012] is used as reference data in Sec. 5.2.

Other Sensors. IMUs record the dynamics of the ego vehicle. As an example, the company
iMAR employs accelerometers and gyroscopes in their IMUs for navigation and surveying tasks.
These sensors are characterized by a high relative precision and are used to estimate the ego motion
of the vehicle in a very accurate way. A drawback is the long-term drift behavior of accelerometers
and gyroscopes. The consequences of sensor drift to the mapping procedure are discussed in
Sec. 4.1.1. Next to IMUs, GPS is often applied to estimate the position of the ego vehicle, but with
reference to a global reference coordinate system. A precise overview of different GPS measuring
techniques, their advantages, and drawbacks can be found in Bauer [2011]. In practice, GPS
information and IMUs are often fused together to estimate a high accurate global ego position of
the vehicle [Geiger et al., 2012; Ziegler et al., 2014; iMAR, 2017]. RADAR sensors measure the
relative motion of other moving objects directly via Doppler shift frequency modulation. Because of
this active and precise velocity estimation technique RADARs are indispensable for modern ADAS
([Schmid et al., 2010; Homm et al., 2010; Continental, 2011]) and they have a high maturity level
in the automotive serial production.

2.2 Environment Perception with Stereo Vision

Stereoscopic vision allows for the relative 3D reconstruction of a scene with the help of image
sequences taken from two or more different viewpoints [Hartley and Zisserman, 2004; McGlone
et al., 2004; Förstner and Wrobel, 2016]. In contrast to LIDAR, cameras are passive sensors which
means depth information could not be measured directly. But if the exposure geometry as well as
the geometric relationship between different viewpoints is taken into account the 3D reconstruction
of the scene for nearly every image pixel is possible. In this section we describe the complete
pipeline from the modeling of stereo camera configuration (Sec. 2.2.1 and Sec. 2.2.2) to an efficient
and robust representation of dynamic scenes based on stereo vision. It also includes the description
of the Stixel World (Sec. 2.2.3).

2.2.1 Projective Camera Model

The projection from a 3D homogeneous scene point wX = [x, y, z, 1]T in reference to a right handed
world coordinate system Sw into the two dimensional sensor coordinate system Ss with a 2D image
point sx = [u, v, 1]T is defined by

sx = s
Kc

[
I 3 | 03

]︸ ︷︷ ︸
IO

c
Mw︸︷︷︸
EO

wX (2.1)

and corresponds to the projective camera model which is described in detail in [McGlone et al.,
2004, Chapter 3.2] and in [Hartley and Zisserman, 2004, Chapter 6.1]. In this context, we use the
pinhole camera model which means that all projection rays pass only through the projection center
XO which is the origin of the right handed system Sc. This camera model is also visualized in
Fig. 2.1. Equation (2.1) is partitioned into the interior (IO) and the exterior (EO) orientation. The
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matrix I 3 denotes the 3 × 3 unity matrix and the vector 03 represents a three dimensional zero
vector. The IO defines the orientation between the camera system Sc and the sensor coordinate
system Ss and is characterized by the calibration matrix

s
Kc =

f fs u0

0 (1 +m)f v0

0 0 1

 . (2.2)

The principal distance f describes the distance between the projection center XO and the im-
age plane I . The optical axis intersects the image plane in the principal point [u0, v0]T. The
scale difference m and the shear factor s of Ss complete the definition of the affine projection ma-
trix. Apart from the affine intrinsic parameters, we have to consider non-linear projection errors
caused by lens distortions or refraction effects. Again, we refer to [McGlone et al., 2004, Chapter
3.2] for more detailed information. The EO represents the transformation between the global world
coordinate system Sw and the camera coordinate system Sc and is defined by the homogeneous
matrix

c
Mw =

[
R −RXO

0T
3 1

]
(2.3)

with the 3D rotation matrix R. To estimate the intrinsic parameters we use the camera calibration
tool of Bouguet [2000] which is an implementation of the approach presented by Zhang [2000]. In
this context, images at different positions of a planar calibration rig with a checkerboard pattern are
captured as shown in Fig. 2.2. For the estimation of the EO correspondences between geometrical
entities in the camera system Sc and geometrical entities in the world coordinate system Sw are
needed which leads to registration techniques and is not discussed in detail at this point.

2.2.2 Stereo Vision

As mentioned in Sec. 2.1, stereo vision adapts human seeing with the help of a calibrated, synchro-
nized camera pair. A detailed overview of stereo vision concepts and the epipolar geometry can be
found in [McGlone et al., 2004, Chapter 3.2.2] and in [Hartley and Zisserman, 2004, Chapter 9]. In
the following, we give a brief overview of the ideal stereo configuration (Sec. 2.2.2.1), stereo vision
methods (Sec. 2.2.2.2) and the precision of stereo vision (Sec. 2.2.2.3).

2.2.2.1 Ideal Stereo Configuration

The ideal stereo configuration is shown in Fig. 2.3 and represents the normal case of the image
pair [McGlone et al., 2004, Chapter 3.2.2.5]. This means that the left image plane I l and the right
image plane I r are parallel. In addition, the transformation between both camera systems Slc and
Src is only defined by a translation, the baseline b, along the cxl-axis. Furthermore, the IO of both
cameras is identical and is only defined by the principal distance f l = f r = f and the principal
point [ul0, v

l
0]T = [ur0, v

r
0]T = [u0, v0]T. In order to achieve the normal case of the image pair, a

stereo calibration must be performed which can also be done by the tool of Bouguet [2000].
For the 3D reconstruction of the captured scene it is essential to estimate the displacement

between corresponding image points sxr and sxl, as can be shown in Fig. 2.3. Since we employ
the normal case of the image pair, the displacement is only defined by a scalar value, the disparity
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Figure 2.1: The utilized projective model for a single camera. A 3D point wX is projected into
the two dimensional discrete image plane I to the point sx in the sensor. The illustrated pinhole
camera model takes the assumption that all rays pass only through the projection center XO. The
transformation between the sensor system Ss and the camera system Sc is the interior orientation.
The transformation between world and camera system Sc → Sw is the exterior orientation.

Figure 2.2: Example images of a planar calibration rig. These images are used to estimate intrinsic
parameters for mono cameras (left image) as well as to calibrate stereo camera system (middle and
right image).

d = ul − ur. The disparity d represents the horizontal displacement of the corresponding image
points. If the disparity is known and a stereo system is calibrated, the 3D scene point in with
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respect to the left camera system is given by

cxl =
b

d

(
ul − u0

)
, (2.4)

cyl =
b

d

(
vl − v0

)
and (2.5)

czl =
f b

d
. (2.6)

To simplify the notation the upper right index of the point coordinates is neglected and we refer
all scene points to the left camera system, and define cX = [cx,c y,c z].
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Figure 2.3: The normal stereo case of an image pair. The left image plan I l and the right image
plane I r are parallel. The exterior transformation between both camera systems is only defined by
the baseline b. The intrinsic parameters of both cameras are identical and are defined by the prin-
cipal distance f and by the principal point [u0, v0]T. The displacement between the corresponding
image points sxr and sxl is the disparity d. If the disparity is known and the stereo system is
calibrated, the 3D scene point cX can be estimated with the help of (2.4)-(2.6).
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2.2.2.2 Stereo Vision Methods

The objective of dense stereo vision methods is the estimation of the disparities for each pixel. This
results in a 1D matching problem along image rows as long as the stereo system is calibrated (see
Sec. 2.2.2.1). Brown et al. [2003] and Nalpantidis et al. [2008] give a detailed review of stereo vision
methods and classify them in local stereo and global stereo approaches.

Today’s stereo approaches usually cast the matching problem as a global energy optimization
problem. These methods take into account not only local distance, but also smoothness and ordering
constraints defined over larger image regions [Nalpantidis et al., 2008]. In 2005, Hirschmüller [2005]
introduced the very efficient stereo matching method semi-global matching (SGM) which works in
a dynamic programming-like fashion [Bellman, 1954] and optimize only along a finite set of lines
which passing through the pixel of the reference image. This global optimization technique yields a
dense disparity image which is shown in Fig. 2.4. Since only a small set of lines is used, a significant
speed up in the computation time is achieved [Hirschmüller, 2008]. Consequently, this allows to use
SGM for real-time operations ([Gehrig et al., 2009; Haller and Nedevschi, 2010; Gehrig and Rabe,
2010]).

The approach of Gehrig et al. [2009] was the first real-time implementation of SGM which
estimates disparity images D of the size W (idth) × H(eight) ∈ N2 with a rate of 25 Hz up to a
maximum size of 1400 × 400 pel using a field-programmable gate array (FPGA). The disparity
values d are defined in the range of [0...127] pel. Due to its efficiency and performance [Scharstein
and Szeliski, 2002], this stereo matching approach is used during the thesis. We draw attention
to the fact that the SGM algorithm does not provide any kind of precision information for the
estimated disparity values.

Figure 2.4: Dense disparity image via semi-global matching (SGM). The color encodes the dis-
tance. Red stands for near, green for far away obstacles. For nearly each image point a disparity
information is computed (excluding stereo shadow). Equations (2.4)-(2.6) are used to estimate the
3D scene points.
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2.2.2.3 The Precision of Stereo Vision

Stereo Confidences. Following the idea of Pfeiffer et al. [2013], for all disparity values corre-
sponding stereo confidence cues c = [..., cij , ...] with i ∈ W and j ∈ H are applied during this
thesis. The estimation of the confidence cues is based on the metric described in [Wedel et al.,
2009]. Wedel et al. [2009] use the slope of the disparity cost function as a confidence of the disparity
measurements. The confidence value c is scaled to the interval [0...1] and is interpreted as follows:
if the slope of the cost function is high (c→ 1), the sub-pixel position of the disparity is expected
to be accurate which results in a precise disparity measurement. If the slope of the cost function is
low (c→ 0), the estimation of the disparity value is not accurate in the sense that another disparity
value could also be possible. An example of a stereo confidence image is shown in Fig. 2.5 where
the confidence cues are presented in a gray scale color encoding. Black stands for inaccurate (or
missing) disparity information and white for a very precise disparity measurement. Please take into
account that the described confidence measurements are not probabilistic entities. As highlighted
in [Pfeiffer et al., 2013], the confidence measurements are transformed into outlier probabilities.
These probabilities are used to optimize the Stixel World which is described in Sec. 2.2.3.

(a) Disparity image (b) Confidence image

Figure 2.5: Dense disparity image via SGM 2.6(a) and the confidence image 2.6(c). The brighter
a pixel is, the higher the confidence that the disparity measurement is correct. Image regions
with disturbances, e.g. strong reflections on the street surface, result in inaccurate disparities and
low confidence values. Good structured, vertical surfaces, like the rear of the right car, have high
confidence cues.

Theoretical Precision of Triangulated 3D Points. In the following we describe the estima-
tion of the precision of triangulated 3D points because it required in later sections (Sec. 6.2). With
the help of the triangulation equations (2.4)-(2.6) and error propagation, the theoretical precision
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of a 3D point cX is given by

σ2
cx =

( b
d

)2
σ2
u +

(b(ul − u0)

d2

)2
σ2
d , (2.7)

σ2
cy =

( b
d

)2
σ2
v +

(b(vl − v0)

d2

)2
σ2
d , and (2.8)

σ2
cz =

(−bf
d2

)2
σ2
d =

( cz2

fb

)2
σ2
d. (2.9)

We take the assumption that only the disparity d and the image detection point [ul, vl]T are
uncertain. The precision of an image point σ2

u and σ2
v is in the range of 0.10 pel < σv, σu < 0.25 pel.

The precision of a disparity value σ2
d is in the range of 0.25 pel < σd < 0.50 pel. This results from

empirical studies of the Daimler research group of image understanding1. Equation 2.9 shows, that
the standard deviation of the distance σcz is proportional to the square of the distance and inversely
proportional to the factor fb. This characteristic is typical for uncertain behavior in stereo vision.
Figure 2.6 shows uncertainty fields of triangulated points in a 2D bird’s eye view. As one can see,
the uncertainty increases quadratically with increasing depth. The larger the baseline b and the
focal length f , the better the precision of the 2D points.

(a) baseline b = 25 cm (b) baseline b = 40 cm (c) baseline b = 55 cm

Figure 2.6: Uncertainty Fields of triangulated points in the cx-cz-plane for different baselines and
a fixed focal length. The uncertainties are set to σ2

d = 0.5 pel and σ2
u = 0.25 pel. The uncertainty

in the distance increases quadratically with increasing depth which is typical for stereo vision.

1http://www.6d-vision.com/
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2.2.3 The Stixel World

In this section, we introduce the compact environment representation Stixel World [Pfeiffer and
Franke, 2011] which is used during this thesis as input data. We describe the main idea and the
generation of the Stixel World in the following.

Key Idea of the Stixel World. In spite of the fact that stereo approaches produce dense and
accurate 3D point clouds (see Sec. 2.2.2.2), the amount of data as output of this type of system is
enormous. Consequently, stereo based object recognition systems [Erbs et al., 2012; Muffert et al.,
2013] are required to process the large amount of data in real-time. As described in [Stein, 2012],
automotive object recognition systems are limited by the CPU- and GPU-power and need low
memory requirements. To handle this challenge and to produce a compact and robust scene rep-
resentation, medium-level representations like described in [Felzenszwalb and Huttenlocher, 2004;
Hornung et al., 2013; Veksler et al., 2010; Pfeiffer and Franke, 2011; Achanta et al., 2012] are used
for the named tasks above.

The Stixel World [Badino et al., 2009; Pfeiffer and Franke, 2011] segments the current dis-
parity image, and therefore the current 3D scene of the environment, into free space and object
information. By exploiting the fact that the most man-made environments have either vertical
or horizontal planar surfaces, objects are segmented into vertically oriented, adjacent rectangles
which is shown in Fig. 2.7. Each rectangle, called a Stixel2, has a fixed width in the image (e.g.
5 pel) and a variable height. The image region from the bottom of the image to the base point of a
Stixel is defined as free space (see Fig. 2.7(a)). The Stixel World allows for an enormous reduction
of the raw disparity input data. As an example, approximately 550 000 disparity measurements
from a 1400 × 400 pel stereo image pair are reduced to only a few hundred Stixels. This data
compression reduces the computational burden by a factor of roughly 1 000 without losing relevant
information about the current scene. In addition, the Stixel World is robust against single stereo
outliers. Subsequent driver assistance applications [Erbs et al., 2012; Enzweiler et al., 2012; Benen-
son et al., 2012; Muffert et al., 2013] benefit from this representation. In summary, the Stixel World
gives access to relevant information such as free space and obstacles in a dynamic scene, and thus
effectively bridges the gap between pixel-based and object-based vision.

Generation and the Parametrization of the Static Stixel World. The generation of the
Stixel World leads to a typical MAP estimation problem which is solved by the use of dynamic
programming [Bellman, 1954]. It results in the most likely segmentation of the disparity map D into
the classes CStixel ∈ {free space, obstacle} from the possible labeling set S. The segmentation is
regularized by a set of physically motivated world model priors which include gravity and ordering
constraints. Follow the notation of Pfeiffer and Franke [2011], the Stixel labeling is equivalent to
the most probable Stixel labeling S∗ with

S∗ = arg max
S∈S

p
(
S | D

)
. (2.10)

2The word creation Stixel combines stick and pixel
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(a) The Stixel World

(b) The Stixel World without confidence measurements (c) The Stixel World with confidence measurements

Figure 2.7: Examples of the Stixel World.

Because of reasons of efficiency, the segmentation step is decomposed into W column-wise labelings
Su where each column labeling at image position u is sub-classified into Nu layered segments smap

un :

S = {Su}, with 0 ≤ u < W

Su = {smap
un }, with 1 ≤ n ≤ Nu ≤ H.

Each segment smap
un is defined as a single Stixel with its width w. A Stixel has the composition

smap
un = [u, vbt

un, v
tp
un, w, dun, σ̃

2
dun , cun, p

out
un ], with 0 ≤ vbt

un ≤ vtp
un < H, cun ∈ CStixel. (2.11)

The row coordinates vbt
un and vtp

un represent the Stixel bottom and the Stixel top point, respectively.
The disparity of the Stixel dun is estimated by an arbitrary function f(dun) which takes all disparity
values dun = [..., dij , ...] with vbt

un ≤ i ≤ v
tp
un and u− 1

2w ≤ j ≤ u+ 1
2w of the current Stixel segment

into account. For obstacles with the same depth, a straight-forward definition of f(dun) is the
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mean estimation over all disparities. The precision of each Stixel is represented by the empirical
standard deviation

σ̃2
dun =

1

IJ − 1

I∑
i=1

J∑
j=1

(dij − dun)2. (2.12)

To achieve the best probable Stixel results, (2.10) is solved by the use of dynamic programming.
For further details we refer Pfeiffer [2011]. As described in Sec. 2.2.2.3, Pfeiffer et al. [2013] map
the stereo confidence cues c to Stixel outlier probabilities pout

un with cn → pout
un . These probabilities

are taken into account during the Stixel segmentation which reduces the number of Stixel outliers
significantly. Examples of the Stixel World with and without the use of pout

un is shown in Fig. 2.8.

Generation of the Dynamic Stixel World. Up to this point, the Stixel World only describes
the current, static world geometry. For the purpose of dynamic objects detection, the Stixel based
tracking scheme proposed in [Pfeiffer and Franke, 2010] is chosen. An example of tracked Stixels is
shown in Fig. 2.7(a). Besides the use of the disparity map, this scheme additionally requires optical
flow information [Tomasi and Kanade, 1991] as well as the vehicle’s motion which is computed by
visual odometry [Badino, 2004] or IMUs. To estimate the motion properties of the Stixels, the 6D-
vision principle suggested by Franke et al. [2005] is applied. Taking into account that all relevant
dynamic Stixels are expected to move earthbound, only the longitudinal and lateral velocity cż and
cẋ with reference to the camera system c are estimated. Therefore, we enrich the definition of a
single Stixel by these two velocity components:

sdyn
un = {smap

un ,c żun,
c ẋun}. (2.13)

Segmentation of the Dynamic Stixel World. The separation into moving and stationary
obstacles is achieved by a multi-class traffic scene segmentation introduced by Erbs et al. [2012].
The approach is based on the previously described dynamic Stixel World where each Stixel is
assigned to a specific motion class or to static background. The approach is formulated in a CRF
framework (see Sec. 2.3), is real-time capable, and yields highly accurate classification results in
urban traffic scenarios [Erbs et al., 2012; Muffert et al., 2013]. The goal of the Stixel segmentation
is to find the most probable labeling L∗t at time step t, defined as

L∗t = arg max
Lt∈L

p
(
Lt | Sdyn

t ,Lt−1

)
, (2.14)

where L is the complete label space. The dynamic Stixel World Sdyn
t represents the observa-

tions in the maximization step. Equation (2.14) is inferred by the multi-class graph cuts op-
timization scheme described in [Boykov et al., 2001]. We add the labeling class lun ∈ L with
L ∈ {movingObj, staticObj} into the data structure of the dynamic Stixel World which results in
the final Stixel definition:

slab
un = {sdyn

un , lun}. (2.15)

The Stixel set S lab is used as input data for our mapping approach. Figure 2.8 shows examples of
the Stixel segmentation into moving objects, and into static environment information.
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(a) 1st example of the dynamic Stixel World segmentation Erbs et al. [2012]. The vehicle on the left side is classified
as an oncoming object. The corresponding Stixels are red. The static environment is colored in dark grey.

(b) 2nd example of the dynamic Stixel World segmenta-
tion.

(c) 3rd example of the dynamic Stixel World segmenta-
tion.

Figure 2.8: Examples of object segmentation of the dynamic Stixel World [Erbs et al., 2012]. The
examples (b) and (c) clearly show that the algorithm distinguish between different motion models
which is represented by the different colors. In all cases, the static background information is
classified in a very precise way. The images of the 2 nd and 3 rd example were directly taken from
Erbs et al. [2012].

Alternative Super Pixel Representations. Next to the described Stixel World, there exists a
lot of other super pixel representation which segment gray scale or disparity images into meaningful
regions. Here, we give a small overview of three alternative techniques which are often cited in
literature. Felzenszwalb and Huttenlocher [2004] introduced a graph based super pixel approach.
The super pixels are created by minimizing cost functions which are defined by a graph structure
(see also Sec. 2.3). The algorithm works well at image boundaries but the shape and the size of the
super pixels is irregular. Veksler et al. [2010] also rely on a graph based algorithm. Super pixels
are estimated by producing overlapping patches and stitching them together in an optimal way.
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(a) Original gray scale image (b) Felzenswalb and Huttenlocher [Felzenszwalb and Hut-
tenlocher, 2004]

(c) Veksler et al. [Veksler et al., 2010] (d) SLIC [Achanta et al., 2012]

Figure 2.9: Alternative super pixel approaches.

The formulated energy function is solved by using graph cuts [Boykov et al., 2001]. The super pixel
representation SLIC [Achanta et al., 2012] stands for simple linear iterative clustering and is an
adaption of the well-known k-means clustering algorithm [Mackay, 2003, chapter 20.1]. In contrast
to the k-means clustering approach, the search space is limited by the maximum size of a super
pixel which reduces the computation time. Furthermore, the distance measurement combines both
color similarity and spatial proximity, where the size of the super pixel is controlled. The number
of desired super pixels is an important control parameter in this approach. Examples of the three
described super pixel approaches are illustrated in Fig. 2.9.

2.3 Probabilistic undirected Graphical Models

In this section we describe probabilistic graphical models which represent the conditional inde-
pendence properties of random variables in a schematic representation. At the beginning, Markov
random fields (MRFs) are introduced, followed by the description of the well-known inference es-
timation technique graph cuts (Sec. 2.3.2). In Sec. 2.3.3 we present a technique how to estimate
uncertainties in graph cuts solutions. This includes the estimation of min-marginal energies and
the use of a very efficient, iterative graph cuts scheme, also known as dynamic graph cuts.
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2.3.1 Markov Random Fields

Markov random fields (MRFs) are graphical models which describe the probability of a set of
correlated random variables x = [..., xi, ...] with i ∈ I in an undirected graph. The random
variables describe labels from the set X of all possible labellings. In the graph structure, the random
variables represent the nodes. The dependencies between the nodes are defined by undirected edges.
These edges represent the neighboring structure of the complete graph, which, in turn, reflects the
conditional independence properties of the random variables. The Markov assumption implies that
a random variable does not depends on all other variables, e.g. p(xk | x\xk) = p(xk | N(xk)). Here,
the expression x\xk means that we exclude xk from the complete random set x and N(xk) describes
the neighborhood region of xk. The Markov assumption allows us to make useful simplifications
with regard to dependencies between the nodes. As an example, in image segmentation approaches
the assumption is often made that not all pixels of an image are mutually dependent. With the
definition of the Markov assumption the joint probability p(x) could be factorized over cliques
(complete subgraphs) C ∈ C of the graph by following the fundamental Hammeresley-Clifford
theorem [Hammersley and Clifford, 1971; Clifford, 1990]

p(x) =
1

ζ

∏
C∈C

ΨC(xC) , (2.16)

where ΨC(xC) are the potential function over the cliques C ∈ C with the associated random
variables xC . The Denominator ζ describes the normalization constant and is also known as the
partition function:

ζ =
∑
x∈X

∏
C∈C

ΨC(xC) . (2.17)

An example of a MRF is illustrated in Fig. 2.10. It shows a grid of random variables and the depen-
dencies between them. Using the definition of maximal cliques, the joint probability is factorized
into p(x1, x2, x3, x4, x5, x6, x7) = 1

ζΨ1(x1, x2, x5, x6)Ψ1(x2, x3, x6)Ψ1(x3, x6, x7)
Ψ1(x3, x4) in this case.

x1 x2 x3 x4

x5 x6 x7

Figure 2.10: Example of a Markov random field (MRF). The black edges describe the dependencies
between the random, gray variables. The joint distribution p(x1, x2, x3, x4, x5, x6, x7) is decom-
posed into 1×4-clique Ψ1(x1, x2, x5, x6), 2×3-cliques Ψ1(x2, x3, x6), Ψ1(x3, x6, x7) and 1×2-clique
Ψ1(x3, x4).
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A subclass of MRFs are Conditional random fields (CRFs) which model dependencies between
the random variables x given the observations z. CRFs were introduced by Lafferty et al. [2001]
and are often used for scene segmentation approaches [Wojek and Schiele, 2008; Erbs et al., 2012;
Scharwächter et al., 2013], or for object recognition [Wedel et al., 2009; Barth et al., 2010]. The
overall conditional probability p(x | z) is defined by the product over the potential functions which
model the dependencies between the random variables xC given the observations z:

p(x | z) =
1

ζ

∏
C∈C

Ψ(xC | z) . (2.18)

If we have a grid with a 4-neighborhood structure N4 between the nodes, and consequently a
maximum clique of two, the global joint distribution p(x | z) can be decomposed into the product
of unary Ψ(xi | z) and binary terms Φ(xi, xj | z):

p(x | z) =
1

ζ

∏
C∈I

Ψ(xi | z)
∏

(i,j)∈N4

Φ(xi, xj | z) . (2.19)

The unary terms model the individual state (label) decision for each node xi individually given
the data z. The binary, or smoothness terms model the relation and the dependencies between
neighbored nodes. As also mentioned in [Hammersley and Clifford, 1971], the defined configuration
of the CRF of (2.19) is often expressed as an energy function:

E(x | z) = − log p(x | z) (2.20)

=
∑
C∈I

− log Ψ(xi | z)︸ ︷︷ ︸
:=Ei(xi|z)

+
∑

(i,j)∈N4

− log Φ(xi, xj | z)︸ ︷︷ ︸
Eij(xi,xj |z)

+ log(ζ)︸ ︷︷ ︸
:=const.

(2.21)

∝
∑
C∈I

Ei(xi | z) +
∑

(i,j)∈N4

Eij(xi, xj | z) . (2.22)

The two terms are called unary energies for Ei(xi | z), and binary energies for Eij(xi, xj | z). In
the following, we describe a common technique to determine the optimum class assignments of each
nodes in MRFs/CRFs. This task is also known as inference. Later on in Sec. 2.3.3, we also present
an approach to estimate uncertainties for the label results.

2.3.2 Inference Estimation via Graph Cuts

The inference estimation problem in MRFs or CRFs can be cast as a MAP problem to find the
optimum labellings or states x̂:

x̂ = argmax
x

p(x | z) . (2.23)
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This maximization step is also equivalent to minimizing the previous defined energy function (see
(2.20))

x̂ = argmin
x

E(x | z) . (2.24)

The minimization of (2.24) is in general NP3-hard [Blake and Zisserman, 1987; Boykov et al., 2001].
This means, that there is no known algorithm or approach to solve (2.24) in polynomial time.
Boykov et al. [2001] presented a technique to estimate the exact inference for undirected graphs
for binary classification problems under the assumption that the binary energies must follow the
sub-modularity condition [Kolmogorov and Zabih, 2004]: the labels or states must be xi ∈ {0, 1},
and the binary energies must satisfy the sub-modularity condition

Eij(0, 1) + Eij(1, 0) ≥ Eij(1, 1) + Eij(0, 0) . (2.25)

If both conditions are applied, then the energy minimization problem from (2.24) is equivalent to
finding the minimum cut of the constructed acyclic graph which is known by the term of graph cuts
[Boykov et al., 2001]. Following the theorem of L. R. Ford and Fulkerson [1962], the task of finding
the minimum cut in the acyclic graph is equivalent to compute the maximum possible flow from a
terminal source node s through the graph to the sink node t. Therefore, the graph cuts problem
is also known as the st-mincut/max-flow problem in literature. By adding the source node and
the sink node to the original graph, the new flow graph has N + 2 nodes, where N is the number
of nodes from the MRF/CRF. The edges from the nodes of the MRF/CRF to the s-node and to
the k-node are estimated from the unary energies Ei(xi = 1) and Ei(xi = 0). The edges between
the nodes of the MRF/CRF are calculated from the binary energies where the sub-modularity
constraint from (2.25) is taken into account. For further details of the (flow) graph construction
we refer to Kolmogorov and Zabih [2004]. The described idea of graph cuts is shown in Fig. 2.11
which illustrates an example of a binary segmentation for a 2× 2 graph.

In contrast to other inference algorithms, e.g. belief propagation [Mackay, 2003, chapter 26.2],
graph cuts do not provide any uncertainty values for the estimated states or label assignments.
However, Kohli and Torr [2008] introduced a procedure to estimate uncertainty measurements of
MAP-MRFs/CRFs estimation problems which is presented in the next section.

2.3.3 Uncertainties in Graph Cut Solutions

To the best of our knowledge, Kohli and Torr [2008] were the first who introduced a technique
to measure uncertainties in graph cuts solutions. In the following we describe how these marginal
probabilities can be estimated in an efficient way using the derivation and notation of Kohli and
Torr [2008].

Estimation of Marginal Probabilities. First, the max-marginal probability νi;j is defined
which represents the maximum probability over all possible configurations of the MRF/CRF in
which the latent variable xi is labeled to the class j. Mathematically, νi;j is defined as

νi;j = argmax
x∈X ,xi=j

p(x | z) . (2.26)

3Non-deterministic Polynomial-time
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To estimate the probabilities p(νi;j) for any latent variable, the max-marginal probabilities are
normalized with regard to the possible labellings:

p(νi;j) =
νi;j∑

k∈J
νi;k

. (2.27)

Since we only regard binary labeling problems during this thesis, (2.27) is simplified to:

p(νi;0) =
νi;0

νi;0 + νi;1
. (2.28)

Kohli and Torr [2008] show that the max-marginal probabilities νi;0 can be estimated from the
min-marginal energies φi;j which results from graph cuts solutions:

νi;j =
1

ζ
exp

(
− min
x∈X ,xi=j

E(x | z)︸ ︷︷ ︸
:=φi;j

)
. (2.29)

Combining (2.28) and (2.29) the probabilities p(νi;j=0,1) can be expressed by the min-marginal
energies:

p(νi;0) =

1
ζ exp

(
− φi;0

)
1
ζ exp

(
− φi;0

)
+ 1

ζ exp
(
− φi;1

) (2.30)

=
exp

(
− φi;0

)
exp

(
− φi;0

)
+ exp

(
− φi;1

) . (2.31)

The “trick” of the probability estimation is to minimize step-by-step over a modified energy function
where the value of the latent variable xi is fixed to label 0 and to label 1, respectively. This is solved
by setting the unary energy terms of xi;j in each case j = {0, 1} to a huge number. In Fig. 2.12
the uncertainty images for a typical foreground-background classification are shown by using graph
cuts and the previous described approach. The minimization of the modified energy function can
solved via graph cuts. However, there is a big disadvantage of using common graph cuts techniques
to estimate the probabilities p(νi;j=0,1). To estimate the uncertainty values of a MAP-MRF/CRF
solution, we have to compute for each single min-marginal energy φi;j a single graph cuts solution.
Assuming a binary segmentation problem for an 600× 500 pel image and a computational time for
a single graph cuts of 15 ms, we have to compute 600 × 500 × 2 = 600 000 min-marginal energies
which would results in an overall computational time of 2.5 hours. This computational burden is
unacceptable for real-time applications. Thus, we present in the following section a highly efficient
implementation of graph cuts, the dynamic graph cuts [Kohli and Torr, 2007].

Efficient Computation via Dynamic Graph Cuts. Kohli and Torr [2007] presented the
dynamic graph cuts scheme to solve the st-mincut/max-flow problem in dynamically changing
MRF models. Here, the new algorithm exploits only small changes between two graphs G1 and
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(a)

original image
structure

(b)
graph cuts scheme

t
sink node t

s
source node s

cut

(c)

segmentation
result

Figure 2.11: Concept of graph cuts for a 3 × 3 image. The left graph (a) represents the original
image with gray scale values. The general graph cuts concept with the st-mincut is shown in (b):
The random variables of the MRF structure are either assigned to the source node s or to the sink
node t. The resulting minimum cuts shown in green minimizes (2.24). The binary MAP result is
shown in (c). The illustration was inspired by Kolmogorov and Zabih [2004]

original image

graph cuts

foreground

segmentation (MAP)

uncertainty image (foreground)

uncertainty image (background)

0 1

0 1

Figure 2.12: Example of foreground segmentation via graph cuts and the resulting probability
images. The uncertainty images for both foreground (class label 0) and background (class label 1)
are estimated from the min-marginal energies φi;0 and φi;1 respectively (see (2.31)). The example
was taken from Kohli and Torr [2008] and shows a scene from the movie “run, Lola, run”.
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G2 which represent similar MRFs. During the st-mincut/max-flow computation of graph G1 the
algorithm stores the flow through the graph and restructure the original graph G1 into a residual
graph Gr1. The residual graph Gr1 is a re-parametrization of G1 and differs only in the capacity of
its edges. Under the assumption that G2 differs only a little bit from G1, and we know the changes
between both graphs, the previous estimated flow and the residual graph Gr1 can be efficiently
reused to estimate the st-mincut/max-flow of G2. For detailed insights how the residual graph is
estimated and how it is reused we refer to Kohli and Torr [2007].

In connection with the estimation of uncertainty values, the technique of dynamic graph cuts
is optimal since only one unary energy term is changed between consecutive graphs. Kohli and
Torr [2008] showed that the computational time for the estimation of uncertainty values is reduced
by an immense factor of approximately 2.5× 104 in a MFR with 105 nodes and a 4- neighborhood
structure. Thus, the estimation of uncertainty values is possible in real-time since the dynamic
graph cuts scheme is applied. An overall algorithm for the estimation of uncertainty values for
MAP-solutions with dynamic graph cuts is shown in Algorithm 1. The implementation of the
described approach is available as an open source C++ library 4.

Algorithm 1: Estimation of marginal probabilities with dynamic graph cuts

Input: Unary and binary energy terms of a two class segmentation problem
Output: MAP solution, uncertainty values (marginal probabilities)

1 Construct graph G with unary and binary energy terms.
2 Compute the st-mincut of G. It results in the MAP solution and in residual graph Gr.
3 Initialize uncertainty vector: c = ∅
4 for i = 1 to N (Nr. of nodes) do
5 for j = 0 to 1 (Nr. of classes) do
6 Perform following steps to compute min-marginal energies φij :
7 • obtain energy E′ where the value of the latent variable xi is fixed to label j
8 • construct graph G′

9 • re-parameterization between Gr and G′ to obtain G
′r using dynamic graph

10 cuts update scheme

11 • compute the st-mincut/max-flow of G
′r with dynamic graph cuts algorithm

12 Estimate uncertainty values (marginal probabilities):

13 p(νi;0) =
exp
(
−φi;0

)
exp
(
−φi;0

)
+exp

(
−φi;1

)
14 Save: c = c + [p(νi;0)] ;

15 Gr = G
′r ;

16 return c

4http://research.microsoft.com/en-us/um/people/pkohli/code.html, (2015-12-07)
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2.4 Probabilistic Recursive Existence Estimation

In this section we describe the estimation of states from sensor data in a time recursive way. Prob-
abilistic recursive state algorithms are applied which means that we estimate belief distributions
over possible states given a set of uncertain measurements [Thrun et al., 2005, chapter 2]. In com-
parison with undirected graphical models (see Sec. 2.3), recursive state algorithms can be expressed
as directed graphs which is shown in Fig. 2.13. The recursive existence estimation problem is pre-
sented in Sec. 2.4.1. The general case of the recursive existence estimation problem can be reduced
to the estimation of a discrete, binary state which is described in Sec. 2.4.2. Basic probabilistic
concepts and rules are descibed in detail in Thrun et al. [2005]. In addition, Bergmann [1999] and
Durrant-Whyte [2001] also derivated the recursive estimator in a probabilistic way.

2.4.1 Derivation of the General Time Recursive Bayesian Estimator

The key idea of the time recursive Bayesian estimator is to estimate the most likely state xt of a
process given a sorted list of accumulated, independent measurements with Z 0:t = (z0, z1, z2, ...,zt)
up to time step t. Take into account that the state xt is currently represented by a single, contin-
uous scalar value. Given the observations Z 0:t, the goal is to estimate the posterior distribution
p(xt | Z 0:t). Using Bayes rule the distribution is expressed as

p(xt | Z 0:t)

Bayes
rule
=

p(Z 0:t | xt) p(xt)
p(Z 0:t)

. (2.32)

Under the assumption that consecutive observations are conditionally independent p(Z 0:t | xt) =
p(zt,Z 0:t−1 | xt) = p(zt | xt) p(Z 0:t−1 | xt), and when applying Bayes rule again, we obtain

p(xt | Z 0:t) =
p(zt | xt) p(Z 0:t−1 | xt) p(xt)

p(Z 0:t)

=
p(zt | xt) p(xt | Z 0:t−1) p(Z 0:t−1) p(xt)

p(Z 0:t) p(xt)

=
p(zt | xt) p(xt | Z 0:t−1) p(Z 0:t−1)

p(Z 0:t)
.

Using the rule of conditional probability p(Z 0:t) = p(zt,Z 0:t−1) = p(zt | Z 0:t−1)p(Z 0:t−1), the
general recursive estimation equation is defined as

p(xt | Z 0:t) =
p(zt | xt) p(xt | Z 0:t−1)

p(zt | Z 0:t−1)
. (2.33)

Equation (2.33) describes the measurement update step of the time recursive estimation problem
and provides the basis for standard estimators such as the Kalman filter or the particle filter.
Following the notation of Thrun et al. [2005], the posterior is denoted as the belief of the state,
with bel(xt) = p(xt | Z 0:t). The term p(zt | xt) is called the likelihood function and represents the
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probability that zt is observed if the state xt is given. The term p(xt | Z 0:t−1) describes the prior
without incorporating any information about current observations at time step t. The denominator
η = p(zt | Z 0:t−1) is needed for normalization and is estimated using the law of total probability:

η = p(zt | Z 0:t−1) =

∫
p(zt | Z 0:t−1, xt)p(xt | Z 0:t−1)dxt . (2.34)

Since it is assumed that the current observation zt is independent of all previous measurements
Z 0:t−1 given the current state xt, the expression is simplified to

=

∫
p(zt | xt)p(xt | Z 0:t−1)dxt . (2.35)

This simplification makes sense, since the current state xt completely contains the information of
all previous observations. Finally, the prediction step, which is denoted as the belief bel(xt), has to
be determined by using the law of total probability again:

bel(xt) = p(xt | Z 0:t−1) =

∫
p(xt | xt−1)p(xt−1 | Z 0:t−1)dxt−1

=

∫
p(xt | xt−1)bel(xt−1)dxt−1. (2.36)

Equation (2.36) implies the prediction of the state xt according to the transition model p(xt | xt−1)
without knowledge of any current observation information. Since we use the previous belief bel(xt−1)
during the prediction, the recursive structure of the filter is achieved. With this definition (2.33)
is expressed by

bel(xt) = η p(zt | xt) bel(xt). (2.37)

If the likelihood function p(zt | xt), the state transition model p(xt | xt−1) and the global prior
p(x0 | z−1) = p(x0) are known, the described time recursive estimation model is uniquely defined.
The Basian network of the states and observations is shown in Fig. 2.13. In contrast to MRFs (see
Sec. 2.3.1), a Bayesian network is a directed graphical model.

2.4.2 Bayes Estimation of a Binary Hypothesis

A special case of the general time recursive estimation problem is the binary state estimator. The
state estimation is reduced to a discrete and binary hypothesis: the state xt exists or not. The
expression ∃t means that the state exists at time step t, while ∃̄t denotes the counter hypothesis.
With this simplification the prediction step in (2.36) is reduced to

P (∃t | Z 0:t−1) = P (∃t | ∃t−1)P (∃t−1 | Z 0:t−1) + P (∃t | ∃̄t−1)P (∃̄t−1 | Z 0:t−1) (2.38)

with P (∃̄t−1 | Z 0:t−1) =
[
1−P (∃t−1 | Z 0:t−1)

]
. Observe, the notation changes from lower to upper

case P since the state is discrete. The measurement update of (2.33) is defined by:

P (∃t | Z 0:t−1) =
P (zt | ∃t) P (∃t | Z 0:t−1)

P (zt | ∃t) P (∃t | Z 0:t−1) + P (zt | ∃̄t)
[
1− P (∃t | Z 0:t−1)

] . (2.39)
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xt−1 xt xt+1

zt−1 zt zt+1

Figure 2.13: Basian network with unknown states x and observations z. The unknown states are
light gray and the observations are dark gray. The dependencies between them are modeled with
directed edges. The assumption is made that the observations are independent of each other and
that the current state depends only of its preprocessor.

Both (2.38) and (2.39) represent the binary state estimator for each time step. These formulas can
also be found in [Altendorfer and Matzka, 2010; Scharwächter, 2013; Muffert et al., 2014]. Due
to the fact that the state is discrete, binary, and follows the Markov assumption [Thrun et al.,
2005, chapter 2.4.4], the transition probabilities P (∃t | ∃t−1) and P (∃t | ∃̄t−1) are modeled as a
two state Markov chain which is represented in Fig. 2.14. The transition probabilities P

(
∃t | ∃t−1

)
and P

(
∃̄t | ∃̄t−1

)
influence the inertia of the recursive time filter in an important way: the larger

the probability P
(
∃t | ∃t−1), the smaller the probability that the state is changing. To provide a

temporally stable state estimation, these probabilities are usually chosen to be large, e.g. 0.95. This
means that the transition probabilities from one state to the other, P

(
∃t | ∃̄t−1

)
and P

(
∃̄t | ∃t−1

)
,

should be small, e.g. 0.05.

P
(
∃t | ∃t−1

)
P
(
∃̄t | ∃̄t−1

)∃ ∃̄

P
(
∃t | ∃̄t−1

)

P
(
∃̄t | ∃t−1

)

Figure 2.14: The binary Markovian two-state transition model. It is used for the prediction step
during recursive existence estimation. For temporal stability the transition probabilities from one
state to the other are usually chosen much smaller than transition probabilities back into the same
state.
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2.5 Occupancy Grid Mapping

In this section the general idea of occupancy grid mapping is presented. Most of the definitions
used in this section can also be found in detail in Moravec and Elfes [1985] and Thrun et al. [2005,
Chapter 9]. An efficient and widespread representation when describing the continuous space is the
projection of the environment into a discrete, regular, 2D grid structure under the planar world
assumption. The single grid cells ami are listed in the final grid map aM = (...,ami, ...),with i ∈ I
which is in reference to an arbitrary coordinate system Sa. Due to the fact that the order of the
grid cells is unique, each element is assigned to coordinates of system Sa. The map elements ami

are frequently described by binary variables, namely if the cells represent free space (0) or occupied
areas (1). Following the notation of Thrun et al. [2005], an occupied grid cell is represented by its
probability p(mi = 1) ∈ [0, 1]. This map representation is called an occupancy grid map which was
introduced by Moravec and Elfes [1985] at the first time (see also Sec. 1.2.4). Depending on the
mapping assignment, the grid cell resolution and dimension have to be defined.

The occupancy grid map generation follows the idea of “mapping with known poses” which
means to estimate the map posterior p(aM |aX 0:t,

sZ 0:t) given the pose aX 0:t and the sensor readings
sZ 0:t up to time step t in reference to the sensor system Ss over the complete Map in a probabilistic
way. Thrun et al. [2005, chapter 9] give a detailed overview about probabilistic methods for 2D
occupancy grid mapping techniques. The advantage of this representation is that the complete
captured environment of a moving platform is represented in a probabilistic manner. Thus, a
classification into occupied, free, and unknown (p(mi) = 0.5) areas is possible.

To solve the mapping problem in an efficient way, Moravec and Elfes [1985] assume that all
grid cells are independent. Because of this assumption, the map posterior p(aM |aX 0:t,

sZ 0:t) is
approximated by the product of the marginals of each individual grid cell:

p(aM |aX 0:t,
sZ 0:t) =

I∏
i=1

p( ami|aX 0:t,
sZ 0:t) . (2.40)

This factorization allows the estimation of the occupancy probability p( ami|aX 0:t,
sZ 0:t) for each

grid cell ami individually over the total number of grid cells I in the map aM . There exist a lot
of approaches to model p( ami|aX 0:t,

sZ 0:t), but in the most cases an inverse sensor model [Thrun
et al., 2005, p. 288] is used which leads to a recursive binary Bayes filter similar to the described
approaches in Sec. 2.4. From now, we neglect the indices of the coordinate systems which is a
frequent practice in robotics and define the map posterior by p(M | X 0:t,Z 0:t).

2.6 The general SLAM Problem

The SLAM problem deals with the simultaneous estimation of a map M and the estimation of
the best trajectory of a mobile platform X 0:t given only the control information U 0:t−1 and sensor
readings Z 0:t. The trajectory is defined by the set X 0:t = {xt} where each vector xt represents a
pose in 2D or 3D. In general, the representation of the map M is arbitrary, but, in most cases,
landmark based or grid based maps (see Sec. 2.5) are used [Grisetti et al., 2007; Kaess et al.,
2008]. SLAM is one of the most fundamental problems in robotic applications [Thrun et al., 2005],
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since neither a consistent map is given to solve the localization problem nor a certain trajectory
is available to build correct and precise maps. Thus, the SLAM problem can be understood as a
“chicken and egg problem” because mutual dependencies between the map and the pose estimation
are given. As described in [Thrun et al., 2005, chapter 10], the SLAM problem can be divided
into two different forms, namely in the full SLAM problem and the on-line SLAM problem. The
full SLAM problem deals with the estimation of the joint posterior over all poses of the trajectory
p(X 0:t,M | Z 0:t,U 0:t−1). The on-line SLAM problem estimates the posterior only over the current
pose xt along with the map estimation p(xt,M | Z 0:t,U 0:t−1). Figure 2.15 shows the graphical
models of both the full and the on-line SLAM problem. In the following section we introduce the
Rao-Blackwellized particle filter (RBPF) which is used in this thesis to solve the on-line SLAM
problem for grid maps.

xt−1 xt xt+1

zt−1 zt zt+1

ut−1 ut ut+1

M

(a) The full SLAM problem

xt−1 xt xt+1

zt−1 zt zt+1

ut−1 ut ut+1

M

(b) The on-line SLAM problem

Figure 2.15: Graphical models of (a) the full SLAM problem and (b) the on-line SLAM problem,
referred to Thrun et al. [2005]. In case (a) the posterior over the complete path of the trajectory
is estimated. It is illustrated by the bright gray box around the pose nodes x. As well as the
pose nodes the map M is unknown, too. In case (b) only the posterior of the current pose node
is estimated. This decomposition leads to an incremental, on-line approach. In both cases, the full
and on-line SLAM problem, the sensor readings Z 0:t and the control elements U 0:t−1 of the robot
are given.

2.7 Grid based SLAM with Rao-Blackwellized Particle Filters

In this section we describe the Rao-Blackwellized particle filters (RBPFs) for grid based maps
to solve the SLAM problem. At the beginning, we introduce particle filters (see Sec. 2.7.1). In
Sec. 2.7.2 we introduce the RBPF which is a specific realization of the SIR particle filter (see
Sec. 2.7.1.2).
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2.7.1 Particle Filters

Particle filters approximate an arbitrary posterior distribution by a finite number of samples in a
recursive way. Particle filters allow us to represent multi modal distributions which is an advantage
to other filters like Kalman filters [Welch and Bishop, 1995]. We refer to [Stachniss, 2006, chapter
2.1] and [Thrun et al., 2005, chapter 4.3] for more detailed information.

2.7.1.1 Idea and General Description of Particle Filters

In particle filter approaches the posterior distribution of a dynamic state given a set of data infor-

mation is described by a finite set of possible state hypotheses called particles p(i)
t . The set Pt of

all I particles is denoted by

Pt := {p(i)
t }, with p(i)

t = (x
(i)
t , w

(i)
t ), 1 ≤ i ≤ I . (2.41)

Each particle p(i)
t represents a concrete realization x

(i)
t of the true state x̃t at the time step t with

its weight w
(i)
t . To bridge the gap between the definition of Sec. 2.4.1 and the current section, the

particle filter set should be proportional to the posterior distribution:

x
(i)
t ∼ p(xt|Z 0:t,U 0:t−1). (2.42)

In addition to (2.33) we introduce the control set U 0:t−1 = (u0,u1,u2, ...,ut−1) up to the previous
time step t − 1 to the posterior distribution. The controls represent e.g. the relative orientation
and speed of a moving platform or a robot (see Sec. 2.1). Along with the measurements Z 0:t, the
controls are assumed to be given.

Just like the described recursive Bayesian estimator (see Sec. 2.4.1), the particle filter generates
the current particle set Pt recursively from the previous set Pt−1. This approach is known as the
Sampling Importance Resampling (SIR) particle filter [Thrun et al., 2005, chapter 4.3] which is
described in the following. The general derivation of the particle filter algorithm is discussed in the
Appendix A. An implementation of the described SIR particle filter is listed in Algorithm 2.

2.7.1.2 The Sampling Importance Resampling (SIR) Particle Filter

Sampling. Sampling is the first step of the SIR particle filter which means that the next particle
set P̄t is generated from the previous set Pt−1 (see also Appendix A). This step corresponds to
the prediction step of the general Bayesian estimator which is discussed in Sec. 2.4.1: the new
generated particle set is the filter’s representation of the bel(xt) [Thrun et al., 2005, p. 99]. By
following the definitions of Appendix A, we use the proposal distribution π(.) for sampling which is
in this case defined by the prediction distribution. Thus, we get the next states by sampling from
this distribution:

x̄
(i)
t ∼ p(xt|x

(i)
0:t−1,Z 0:t−1,U 0:t−1). (2.43)

Observe, that, similar to (2.36), current observations are excluded in this step. In the initialization
step t = 0 we assume prior world assumptions of the state to generate the first particle set. For
instance, for the task of localization, particles can be drawn proportional to a uniform distribution
over the 2D or 3D space of a given map. But in this context, a coarse GPS position is used more
often.
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Importance Weighting. Importance weighting is the next step in which for each particle of P̄t
an importance weight w̄

(i)
t is computed. Let ℘(x

(i)
0:t|Z 0:t,U 0:t−1) be the desired distribution of all

states x
(i)
0:t over the complete time period. This distribution is called the target distribution and we

cannot sample from this function directly, since the target distribution can not be represented by
a parametric form (see Appendix A). Therefore, we draw samples from the proposal distribution

π(x
(i)
0:t|Z 0:t,U 0:t−1) and weight each particle individually to approximate the target distribution

℘(.). By following the definition of Stachniss [2006, p. 31 ff] and the derivation in Appendix A,

each weight w̄
(i)
t is estimated by

w̄
(i)
t = η

℘(x
(i)
0:t|Z 0:t,U 0:t−1)

π(x
(i)
0:t|Z 0:t,U 0:t−1)

. (2.44)

For the estimation of the weights it is indispensable that the target distribution can be analyzed
point-wise. Equation (2.44) is normalized by η to guarantee that the sum over all weights is 1.
Weight estimation incorporates current measurements in the particle filtering process. Figure 2.16
shows an example of the sampling and weighting step to approximate an arbitrary target distribu-
tion.

proposal distribution π(x)
target distribution ℘(x)

p
ro

b
ab

il
it

y
w

ei
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t

x

samples from
proposal distribution

weighted
samples

Figure 2.16: Approximation of a arbitrary target distribution ℘(x) (blue curve) by weighted sam-
ples. Samples are drawn from a proposal distribution π(x) (red dotted curve). The weighted
samples are represented by vertical lines at the bottom. The visualization of importance resam-
pling was taken from [Thrun et al., 2005, p. 447].

Resampling. Resampling is the final step of the SIR particle filter which transforms the tempo-
rary particle set P̄t into the new set Pt. The probability of drawing samples from P̄t is proportional

to the importance weights w̄
(i)
t . This means, that the distribution (but not the number) of particles

is changing by incorporating the weights. Analogous to the measurement update from Sec. 2.4.1,
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the resampling step represents, approximately, the posterior bel(xt). After the resampling step, the

weights correspond to the uniform distribution with w̄
(i)
t = 1/M .

In more general words and as mentioned in [Thrun et al., 2005, p. 100], the resampling step
is a probabilistic implementation of Darvin’s survival of the fittest. Particles with higher weights
have a high chance to “survive” and “breed”, whereas particles with lower weights are “in danger
of extinction”. This strategy is, in general, applicable since the filter prefer “good” particles which
represents “good” state hypotheses. On the other hand, it can be problematic to replace apparently
“bad” samples too early. In the literature [van der Merwe et al., 2000; Doucet et al., 2001; Grisetti
et al., 2007], this phenomenon is called the particle depletion or particle deprivation problem. Thrun
et al. [2005, chapter 4.3.4] give detailed information and strategies to reduce the risk of particle
depletion by applying low-variance resampling.

Algorithm 2: Algorithm of the SIR particle filter.

Input: The previous sample Set Pt−1 and the data information Z 0:t and U 0:t−1. In the
initialization step, prior world assumptions over the state are assumed.

Output: The next sample Set Pt.

1 Pt = P̄t = ∅ // Initialize the new particle set.

2 for i = 1 to M do
3 sample:

4 x̄
(i)
t ∼ p(xt|x

(i)
0:t−1,Z 0:t−1,U 0:t−1) // The sampling step:draw next gene-

// ration of particles(prediction).

5 weighting:

6 w̄
(i)
t = η

p(x
(i)
0:t|Z 0:t,U 0:t−1)

π(x
(i)
0:t|Z 0:t,U 0:t−1)

// Importance weighting:incorporating

// current measurements.

7 P̄t = P̄t + [x̄
(i)
t , w̄

(i)
t ]T // Update temporary particle fil-

// ter set.

8 for i = 1 to M do
9 resample:

10 draw x
(i)
t from P̄t with probability ∝ w̄

(i)
t // Resampling:change the particle

// distribution.

11 Pt = Pt + (x
(i)
t ,

1
M ) // Update final particle filter set.

12 return Pt
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2.7.2 The Rao-Blackwellized Particle Filter

Rao-Blackwellized particle filters (RBPFs) [Murphy, 1999; Doucet et al., 2000] are presented in
this section which are used to solve the on-line SLAM problem for grid maps in this thesis. The
“trick” of this approach is to separate the estimation of the trajectory from the estimation of the
map:

p(X 0:t,M |Z 0:t,U 0:t−1)

Product
rule.
= p(X 0:t|Z 0:t,U 0:t−1)︸ ︷︷ ︸

pose posterior

p(M |X 0:t,Z 0:t)︸ ︷︷ ︸
map posterior

. (2.45)

The splitting of the overall posterior into a pose posterior and a map posterior results in a sequential
estimation of the trajectory and the map. Here, take into account that in (2.45) the assumption
was made that the map is independent of the control information. The estimation of the map
posterior is computed in a closed form by using “mapping with known poses” strategies. Since the
map posterior can be estimated analytically, only the estimation of the pose posterior is solved by
a sample procedure. Otherwise, the sampling would be carried out over the whole possible map
space which would be intractable.

We follow the idea of Doucet et al. [2001] who used the recursive SIR particle filter approach
(see Sec. 2.7.1.2) to determine the best possible trajectory. This means that each particle has its
own trajectory, and, consequently, each particle has its own individual map. Each map is built
separately by using the particle’s individual trajectory and the observations which are the same for
all particles. In mathematical terms, the sample set for the RBPF is defined by:

Pt := {(x(i)
t ,M

(i)
t , w

(i)
t )}, with 1 ≤ i ≤ I. (2.46)

Sampling. Using RBPFs, it is common practice to draw the samples from the probabilistic

odometry motion model p(xt|x(i)
t−1,U 0:t−1). Compared to (2.43), no observations Z 0:t−1 are taken

into account which leads to:

x
(i)
t ∼ p(xt|x

(i)
t−1,U 0:t−1) . (2.47)

Importance Weighting. If one analyzes (2.44), the weight estimation would be very inefficient
since the complete trajectory is analyzed at each time step. To achieve a recursive weight estimation
and follow up the on-line SLAM idea, Doucet et al. [2001] derived the recursive weight estimation
which is used in many particle filter applications [Dellaert et al., 1999; Montemerlo et al., 2002;
Grisetti et al., 2007]. By following Doucet et al. [2001], it can be shown that the weight estimation

in (2.44) is proportional to the product of the observation model p(zt|M (i)
t−1,x

(i)
t ) with the previous

weights w̄
(i)
t−1 under the assumption, that the proposal distribution π(x

(i)
t | x(i)

1:t−1,Z 0:t,U 0:t−1)

is replaced by the probabilistic odometry motion model p(xt|x(i)
t−1,ut−1). Then, the weights are

estimated by:

w̄
(i)
t ∝ p(zt|M (i)

t−1,x
(i)
t ) w̄

(i)
t−1 . (2.48)
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The observation model p(zt|M (i)
t−1,x

(i)
t ) represents the posterior of the observations given the pre-

vious map M (i)
t−1 and the current pose x

(i)
t of the individual particles i. For the computation of

the observation model, e.g. beam sensor models [Thrun et al., 2005, chapter 6.3], map matching
models [Schröter et al., 2007] or iterative closest point (ICP) algorithms [Besl and McKay, 1992]
often are used.

The described recursive sampling and weighting procedure is equivalent to the Monte Carlo
localization (MCL) problem. In contrast to the MCL, where one map is already given, RBPFs
produce I different maps on-line. In connection with the described general SLAM problem (see
Sec. 2.6) it makes sense that the RBPF contains a localization procedure.

In conclusion, weight estimation answers the question, how well does the current observation
vector match to the individual global occupancy grid maps. The better the observations fit to the
map, the larger the weights. Figure 2.17 shows examples of different particles with their individual
maps and trajectories using RBPFs. These examples were taken from [Stachniss, 2006, p. 122 ].

Map of particle 1 Map of particle 2 Map of particle 3

��
��

three pose hypotheses

Figure 2.17: The idea of the RBPF for grid based maps. Each particle produces its own trajectory
and, consequently, its own map. The green point represents the current position of the robot for
three different particles. In contrast to the map of particle 1, the maps of the other two particles
include alignment errors. This effect should be reflected in the particle weights: from particle 1 to
particle 3, the weights decrease significantly. In the resampling step particle 3 can be replaced by
particle 1. The images were taken from [Stachniss, 2006, p. 122 ].

Resampling. As described in Sec. 2.7.1.2, the resampling is the last step of any particle filters to
transform the previous distribution of the particles into the new particle filter set by incorporating
the estimated weights ŵi. By following the basic idea of the SIR particle filter, this step is carried
out at each time step.
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However, this results in a very inefficient implementation and can lead to the previous mentioned
particle deprivation problem [van der Merwe et al., 2000; Doucet et al., 2001; Grisetti et al., 2007].
Thus, it is indispensable to find a criterion when a resampling step is carried out. Lui [1996]
introduced the effective sample size number Neff for particle filters which gives feedback about how
well the current particle distribution fits to the target distribution. With regard to RBPFs this
quantity is estimated by

Neff =

[
N∑
i=1

(
ŵi
)2]−1

, (2.49)

which allows us to control the resampling step. The following statements makes this clear. If Neff

is high (the maximum value is N), the particle distribution represents a good approximation of the
target (true) distribution and the weights are nearly uniformly distributed. A resampling step is
not necessary. If Neff is low (the minimum value is 1), the approximation of the target distribution
is bad. The variance of the importance weights is high. A resampling step is unavoidable. Thus,
the resampling step is carried out only if the effective sample size number drops below a threshold,
e.g. Neff < N/2.

Map Generation. On the basis of (2.45) the map posterior p(aM 0:t | aX 0:t,
sZ 0:t) is estimated

using ”mapping with known poses“ for grid maps. The background is previously described in
Sec. 2.5. A novel mapping approach is presented in Sec. 3.

2.8 Feature based SLAM with Graphs

Next to recursive, grid based SLAM approaches like RBPFs, en bloc SLAM approaches based
on graphs are very common in the field of robotics [Thrun and Montemerlo, 2006; Ziegler et al.,
2014; Lategahn and Stiller, 2014]. Graph SLAM approaches follow the idea of the full SLAM
problem (see Sec. 2.6) where the complete pose trajectory and the map, represented as a set of
landmarks, is estimated en bloc via one optimization step. These approaches revise estimates over
the entire history which results in general in more accurate and consistent solutions. Nevertheless,
the approach keeps by definition the whole observation and control history alive which results in
high processing time and computing power in large scale environments. Figure 2.18 shows the
idea of the graph SLAM approach which represents poses and observed landmarks as vertices and
constraints as edges. In the following, we define the optimization problem and utilize the notation
of [Thrun and Montemerlo, 2006].

Successive poses xt−1 and xt are connected via edges which represent the information constraint
between the unknowns. The information constraint is defined by a non-linear (probabilistic) motion
model g(ut−1,xt − 1) governed by the control vector ut−1 with its inverse covariance matrix Ωm

t−1

of the motion noise. Edges between poses xt and landmarks mt,i are defined by the observation
model h(xt,mt,i) with the inverse covariance matrix Ωo

t,i of the observation noise. We also have to

consider the anchoring constraint xT
0 Ω0x0 to anchor the first position x0 of the vehicle in a global

map.
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Over the whole graph G(X0:t,M ), the sum of all non-linear constraints can be formulated as a
non-linear least squares (NLS) problem

G(X0:t,M ) = xT
0 Ω0x0

+
T∑
t=1

[xt − g(ut−1,xt−1)]TΩm
t−1[xt − g(ut−1,xt−1)] (2.50)

+
T∑
t=1

I∑
i=1

[zt,i − h(xt,mt,i)]
TΩo

t,i[zt,i − h(xt,mt,i)] ,

to find the minimum

X ∗0:t,M ∗ =argmin
X ,M

G(X ,M ) , (2.51)

where X ∗0:t and M ∗ are the most likely trajectory and most likely map, respectively. NLS problems
like (2.50) are usually solved using Gauss-Newton (GN) or Levenberg-Marquardt (LM) solvers,
as already stated in Sec. 1.2.6. Frameworks like g2o [Kümmerle et al., 2011] exploits the sparse
connectivity structure of the graphs to solve (2.50) efficiently. In Sec. 6.2 the graph SLAM idea is
used to estimate reference data for evaluation purposes.

Figure 2.18: The SLAM problem as a graph representation [Thrun and Montemerlo, 2006]. The
blue triangles represent the different poses of the ego vehicle and the red-green circles represent
the observed landmarks. Both, landmarks and poses, represent the unknowns. The connections
between the poses represent the odometry constraints, the links between the pose and landmarks
are the observations. The namespace of the edges and nodes was taken from Kümmerle et al.
[2011].
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2.9 Evaluation Criteria

In this section evaluation criteria are described which are applied in Sec. 5 and Sec. 6 of this thesis.
We present the empirical accuracy which result from the comparison of estimated test samples and
ground truth (GT) data. The term classification accuracy is also defined which is often used in
machine learning or computer vision.

2.9.1 Empirical Accuracy

The term empirical accuracy means the comparison of estimated test samples and their precision
with ground truth or reference data. We distinguish between ground truth and reference data
since ground truth has a nearly infinitely high precision and reference data is “only” several orders
of magnitude more precise than the estimated results. In this context, precision means that the
covariance information of both the test samples and ground truth/reference data are available. We
assume that we have access to ground truth or reference data and define these values by the vector
sr with their covariance matrices Σsrsr . The samples st with their covariance matrices Σstst must
be consistent with sr. Under these conditions, the error vector e can estimated easily:

e = st − sr . (2.52)

These differences can be analyzed, e.g. by plotting a histogram or their max-min-values. The mean
absolute error (MAE)

MAE =
1

I

I∑
i=1

| ei | (2.53)

is a common measure to give an overall accuracy for the test set. In order to use the information
of ground truth and estimated test samples, the precision is partially taking into account. Based
on the variances σ2

sti
and σ2

sri
the weights

wi =
1

σ2
ei

(2.54)

are estimated with

σ2
ei = σ2

sti
+ σ2

sri
. (2.55)

The weights can be used in a second measure, the weighted mean absolute error (WMAE) which
is defined by:

WMAE =
1∑I
i=1wi

I∑
i=1

wi | ei | . (2.56)

Observe, the covariances are not taken into account in this measure, why the WMAE is also
suboptimal.
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2.9.2 Classification Accuracy

The performance of classification or segmentation results are often assessed on their detection rates
or labeling errors. Since we estimate these rates with ground truth (GT) or reference data, we also
address these detection rates as accuracies. The labeling errors are represented by the confusion
matrix. In this thesis, we are also interested in evaluating maps with the help of this accuracy
assessment. Therefore, we estimate the detection rates for both occupied areas (obstacles) and
free space areas with the help of generated ground truth maps. Tab. 2.1 shows the pattern of the
confusion matrix which is used during this thesis. The table contains the four elements of the 2×2
confusion matrices of three experiments as rows. In our case false negatives (FN) are defined as
areas which are falsely predicted as free space, but are GT obstacles. Therefore, the false positives
(FP) are areas which are falsely predicted as obstacles, but are actual free space areas. The true
negatives (TN) are areas where estimated free space and GT free space is aligned, and the true
positives (TP) are areas where estimated obstacles and GT obstacles are the same. Based on these
definitions we estimate the detection rates in percent. The formulas are also included in Tab. 2.1.

Table 2.1: Pattern of the used confusion matrix during this thesis. It represents the estimated
classification accuracies for estimated obstacles and free space (Est.) compared to ground truth
(GT) obstacles and ground truth free space for different configurations. Based on the true positives
(TP), false positives (FP), false negatives (FN), and true negatives (TN) rates in percent can be
estimated.

GT obstacles [%] GT free space [%]

Est. obstacles Est. free space Est. obstacles Est. free space

Configuration TP
TP+FN

FN
TP+FN

TN
TN+FP

FP
TN+FP
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Chapter 3

Concept of an Incremental Mapping
Approach with Markov Random
Fields using Known Poses

In this chapter we present a novel 2D incremental occupancy grid mapping approach which is
based on MRFs to model the dependencies between neighboring grid cells. We use the super pixel
representation Stixel World as input data. This representation is based on disparity images which
are captured from a stereo camera system mounted on a moving earth-bounded platform. The
following section gives an overview of the entire chapter which includes the overall system overview
of the approach, as well as the organization of this chapter.

3.1 Overview

In this section we give a brief overview of the complete concept. At a glance, we present the input
data, the objective of the mapping approach, the system overview, and the organization of this
chapter.

Input Data. As input data we rely on the super pixel representation Stixel World (see Sec. 2.2.3)
which is generated from dense disparity images recorded by our test vehicle. In combination with
optical flow information and tracking algorithms each Stixel is segmented into a static or dynamic
obstacle. We also use an IMU which delivers steering and velocity information to estimate the
global pose of the vehicle. In this chapter, we assume the vehicle odometry is certain.

Objective. The key objective of the new approach is to learn an occupancy grid map of the
captured environment in an incremental way, and also model the dependencies between neighboring
grid cells explicitly. To the best of our knowledge, this is the first time that MRFs are used in
combination with occupancy grid maps to model dependencies between neighboring grid cells. The
challenge is to develop an incremental mapping approach which handles these dependencies and to
estimate marginal probabilities for each different grid cell in an efficient way.
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Furthermore, the super pixel representation Stixel World is used as input data which is also
a key aspect of this thesis. Using Stixels for occupancy grid mapping approaches was applied in
Muffert et al. [2013] and Muffert et al. [2014] for the first time and allows us to neglect dynamic
objects during mapping. Both, the modeling of dependencies of neighboring grid cells and the use
of the Stixel World will result in more robust and more precise occupancy grid maps. In the context
of the next generation of driver assistance systems the novel approach must be real-time capable.
Figure 3.1 shows a sample map using the new mapping approach which is presented in the following
sections. We also assume that the pose of the vehicle is known at this point.

(a) Occupancy grid map example

(b) original gray scale image, t = 222

(c) original gray scale image, t = 270

Figure 3.1: Example of our novel occupancy grid mapping approach using MRFs (a). The images
(b) and (c) were taken to estimate the disparity images. They also help to understand the resulting
grid map. As one can see, parking cars, gates, buildings, and also poles are mapped precisely.

System Overview and Organization of the Chapter. The system overview of the novel
grid mapping approach is shown in Fig. 3.2. We describe the preprocessing steps in Sec. 3.2 which
includes the sensor setup, data acquisition (Sec. 3.2.1), the definition of the coordinate systems
(Sec. 3.2.2), and the definition of our input data (Sec. 3.2.3). Sec. 3.3 presents the optimization
formulation of our proposal in a probabilistic fashion. Sec. 3.4 deals with the definition of the unary
terms which includes the derivation of the time recursive structure (Sec. 3.4.1), the definition of the
measurement model (Sec. 3.4.2), as well as a detailed description of the prediction step (Sec. 3.4.3).
In Sec. 3.5 the binary terms are introduced which model the dependencies between neighboring
grid cells. The incremental map generation is presented in Sec. 3.6, including the definition of the
used graph structure (Sec. 3.6.1), as well as the estimation of marginal probabilities via dynamic
graph cuts (Sec. 3.6.2). At the end of this chapter, we present the pseudo code and the runtime
behavior of the overall mapping approach. We finalize the chapter by presenting first results.
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Figure 3.2: Overview of the realized mapping approach. The figure shows the main processing
steps in different colors. Based on data acquisition of the moving platform, rectified stereo image
sequences are estimated at each time step t. With the help of SGM, disparity images are generated
to be used for the estimation of the Stixel World. The Stixel World is segmented into static and
dynamic environment information. We define our measurement model based on the static Stixel
set. In the grid mapping optimization process the unary and binary terms are used to model the
graph structure of the MRF. After the estimation of the min-marginals, the global grid map update
is carried out using a corresponding vehicle model. It is assumed that the pose of the vehicle is
correct in this chapter.

3.2 Preprocessing Steps

In this section the preprocessing steps are described which include the sensor setup (Sec. 3.2.1), data
acquisition (Sec. 3.2.2), the Stixel World generation, and the formal definition of the observations
which are used in the mapping approach (Sec. 3.2.3).
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3.2.1 Sensor Setup and Data Acquisition

We assume that the environment in front of the moving platform is captured by stereo vision. From
now on, we define the moving platform as our vehicle. The stereo camera rig is mounted behind
the windshield and points to the forward driving direction shown in Fig. 3.3. We assume that the
stereo system fulfills the normal stereo case which is previously described in Sec. 2.2.2.1.

It is required that the intrinsic calibration parameters and the orientation of the stereo camera
system in reference to the vehicle coordinate system are stable during data acquisition. The stereo
vision system shown in Fig. 3.3 produces synchronous image sequences with the resolution of
1024× 440 pel and runs with a constant frame rate of 25 Hz.

(a) Stereo camera rig (b) Test vehicle S 500 Intelligent Drive

Figure 3.3: Stereo camera rig (a) and test vehicle (b). Fig (a) shows the stereo camera system
behind the windshield. The cameras are running synchronously with a constant frame rate of 25 Hz.
Some of the image sequences used in this thesis were captured with the S 500 Intelligent Drive
[Franke et al., 2013].

3.2.2 Coordinate Systems and Control Information

Coordinate Systems. Figure 3.4 shows the relevant coordinate systems applied in this concept.
The 3D camera coordinate system Sc has its origin cO in the projection center of the left camera
as previous described in Sec. 2.2.2.1. In contrast to the projective camera model introduced in
Sec. 2.2.1, the positive cz-axis points in the direction of the image plane. Hence, it is a left handled
system. The origin rO of the vehicle coordinate system Sr is in the middle of the rear axle which
in turn defines the ry-axis. The positive rx-axis points in the driving direction, the positive rz-axis
is aligned to the sky. We use the index r since the test vehicle can also be defined as a robot.

In consideration of the fact that the desired occupancy grid map is represented in 2D space,
we have to take the projection from the 3D vehicle coordinate system into the 2D global map
coordinate system Sw into account. The definition of its origin and orientation is, in general,
arbitrary.

Control Information. In this chapter, the relative odometry information is derived from IMUs
(see Sec. 2.1). The odometry information describes the movement of the vehicle between consecutive
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Figure 3.4: Overview of the used coordinate systems. Sc is the 3D camera coordinate system, Sr
is the coordinate system of the test vehicle, and Sw is the 2D coordinate system of the global grid
map.

time steps t− 1 and t. Since a 2D mapping approach is developed we also define the motion of the
vehicle in 2D which is defined by the forward velocity v along the rx-axis and the yaw rate ϕ̇ around
the rz-axis measured at time step t− 1. The discrete time interval ∆t depends on the rate of the
IMU. This relative 2D odometry information is represented by the control vector u = [v, ϕ̇,∆t]T.
As already mentioned in Sec. 2.6, we concatenate all odometry information up to time t − 1 in
U 0:t−1 = {u0, ...,ut−1}. The relative homogeneous motion matrix r∆Mt

t−1(ut−1), in reference to
the vehicle frame Sr, is defined by:

r∆Mt
t−1(ut−1) =

r [
∆R(ϕ̇t−1,∆t) ∆T (vt−1, ϕ̇t−1,∆t)

0T3 1

]t
t−1

. (3.1)

The relative 2D rotation matrix ∆R(ϕ̇t−1,∆t) and the 2D translation vector ∆T (vt−1, ϕ̇t−1,∆t)
are estimated using a desired vehicle motion model. Here, we apply a motion model with constant
velocity and yaw rate which is described e.g. in [Barth, 2010] and [Badino et al., 2013] in detail.
The multiplication of all relative motion matrices of (3.1) up to time step t − 1 results in the
absolute motion matrix r

Mt(
rxt):

r
Mt(

rxt) = r∆M1
0(u0) r∆M2

1(u1) ... r∆Mt
t−1(ut−1) . (3.2)

Here, the vector rxt includes the absolute pose parameters with rxt = [rxt,
r yt,

r ϕt]
T. Thus, the

homogeneous matrix r
Mt(

rxt) is defined by the absolute 2D rotation R(rϕt) and the translation
vector [rxt,

r yt]
T:

r
Mt(

rxt) =
r [

R(rϕt) [rxt,
r yt]

T

0T3 1

]
t

. (3.3)
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Under the assumption that we know the transformation between the map coordinate system Sw
and the vehicle coordinate Sr at t = 0, defined by w

r M(wx0), the motion of the vehicle at t with
reference to Sw is estimated by:

w
Mt(

wxt) = w
r M(wx0) r

Mt(
rxt) . (3.4)

All pose vectors are concatenated to Xw 0:t = {wx0, ...,
w xt}. We neglect the index w for convenience

only, and write X 0:t = {x0, ...,xt} which was already introduced in Sec. 2.6.

3.2.3 An efficient Scene Representation as Input Data

This section defines the input data for the novel mapping approach based on stereo vision. In
contrast to general mapping techniques where raw sensor readings are used, e.g. raw LIDAR point
clouds, we post-process the original sensor data first. The work flow of these steps are shown in
Fig. 3.5.

From Disparities to Stixels. Based on the rectified image sequences of the stereo camera rig,
dense disparity images and its confidence maps are estimated via the SGM algorithm at each ac-
quisition time step. Details of these algorithms are described in Sec. 2.2.2. We use the Stixel World
(see Sec. 2.2.3) which represents the relevant information of the current scene in terms of free space
and obstacles with only a few hundred Stixels only. To achieve a dynamic scene representation, the
Stixels are tracked over consecutive time steps with the help of Kalman filters. This allows us to
segment the dynamic Stixel World into moving and stationary obstacles by means of a multi-class
traffic scene segmentation which is based on graph cuts. Details are further described in Sec. 2.2.3.

The Input Data. We use the static Stixel sets S lab = {S lab
u } with S lab

u = {slab
un } as our input

data. The Stixel sets are collected over time into the observation set S lab
0:t = {S lab

0 , ..., S lab
t }. A

detailed overview of the definition and notation of the Stixel sets is described in Sec. 2.2.3. The
label “lab” tells us, that we use the segmented Stixel World. To make the following equations and
derivation steps more readable, we neglect the label type of the Stixel sets and define S 0:t = S lab

0:t .

The main advantage of the Stixel segmentation is that we neglect dynamic obstacles during
the mapping step which improves the quality of our generated maps. Otherwise, we would need
to detect dynamic objects in the grid maps which is, in general, more difficult. Furthermore, the
Stixels gives us direct information about free space and obstacles which help during the definition
of the observation model later on. Following the definitions in Sec. 2.2.3 a single Stixel is defined
by

sun = [u, vbt
un, v

tp
un, w, dun, σ̃

2
dun , cun, p

out
un ,

c żun,
c ẋun, lun]. (3.5)
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rectified left image

rectified right image dense disparity image stereo confidence image

the Stixel World

the Static Stixel set St

object segmentation

Figure 3.5: Data preprocessing steps. Based on rectified image sequences, dense disparity images are
estimated via SGM. Red color stands for near by and green for far away objects. The Stixel World
is generated using the disparity images and stereo confidence values. The color encoding is the
same as for the SGM result. To distinguish between static and dynamic objects, the Stixels are
segmented via Graph Cuts; the oncoming car is classified and shown in purple. All other Stixels are
labeled as background. By using Stixels only with the class types cobject and lstatic we only consider
static environment information for the novel mapping approach. The Stixel set S is represented by
yellow marked Stixels and represents the input data. Because of the uncertain behavior of stereo
vision we only consider Stixels up to a distance of 40 m.

For the meaning of the parameters of a single Stixel see Tab. 3.1. We only consider Stixels up to
a distance of 40 m since the precision of stereo decreases quadratically with the measured distance
which is discussed in Sec. 2.2.2.3. Based on this fact we only use the first two Stixel segments
(n = 1, 2) per image column u. The following key points summarize the main benefits (+) and
downsides (−) of this representation and, therefore, complete this section.
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• The Stixel World classifies the disparity information into free space and obstacles (+) .

• The segmentation of the Stixel World allows us to neglect dynamic obstacles during the
mapping process (+) .

• The enormous data reduction (compared to the raw disparity images) allows an efficient use
in further real-time capable processing steps (+) .

• During the Stixel generation the assumption is made that all obstacles in the environment
are only represented by vertically structured rectangles (−).

• The abstraction of the environment into rectangles increases discretization errors (−).

Table 3.1: The parameters of a single Stixel element sun. Each Stixel includes information about
its geometry (image position, disparity value, width and velocity), its uncertainty (disparity uncer-
tainty and outlier probability), and its label (free space vs. obstacles, moving vs. static obstacles).

Stixel element Description

u column position

vbt
un row position (bottom)

vtp
un row position (top)

w width geometry

dun disparity value

cżun longitudinal velocity

cẋun lateral velocity

σ̃2
dun

emp. standard devia-

tion of the disparity uncertainty

pout
un outliers probability

cun class definition, with
c ∈ {free space, obstacle} labels

lun dyn. class definition, with
l ∈ {movingObj, staticObj}
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3.3 The Optimization Formulation

In this section we formulate the previously stated objective (see Sec. 3.1) as an optimization problem
in a probabilistic fashion. The goal is to estimate the global posterior distribution of a 2D grid
map Mt given the input data S 0:t and the pose information X 0:t up to time step t. The Map Mt

is represented as a regular, 2D occupancy grid map with its characteristics stated in Sec. 2.5. The
individual grid cells mi with i ∈ I are binary variables which reflect the occupancy probability.
Because of their generic structure, these maps are suitable for on-line applications, e.g. localization
or path planning approaches (see Sec. 1.2.4 and Sec. 1.2.5). The representation is also independent
of the used sensor type which makes the following optimization formulation generic with regard to
the input data. In a probabilistic way, we want to estimate the posterior of the map Mt

p(Mt|S 0:t,X 0:t) .

In our new concept we postulate that neighboring grid cells are dependent which is the main
contribution of this thesis. Therefore, we do not easily factorize over the single grid cells as stated
in Sec. 2.5, (2.40).

In contrast to most common mapping techniques, the modeling of dependent grid cells has
received little attention in literature as already observed in Sec. 1.2.5. This motivates us to formulate
the posterior of the map as a MRF which considers dependencies between neighboring grid cells.
The map is interpreted as a probabilistic undirected graph (see Sec. 2.3) where the nodes represent
the single grid cells and the dependencies between them are modeled as undirected edges. Similar to
Sec. 2.3.1, (2.19), the global joint distribution p(Mt|S 0:t,X 0:t) is factorized into potential functions
which model the dependencies between the Map Mt and the observations S 0:t and X 0:t. The
overall posterior p(Mt|S 0:t,X 0:t) is decomposed into the product of unary and binary terms with a
maximum clique size of two:

p(Mt|S 0:t,X 0:t) =
1

ζ

∏
C∈I

Ψ(mi,t|S 0:t,X 0:t)︸ ︷︷ ︸
unary terms

∏
(i,j)∈N4

Φ(mi,t,mj,t|S 0:t,X 0:t)︸ ︷︷ ︸
binary terms

. (3.6)

The unary terms Ψ(mi,t|S 0:t,X 0:t) specify how each individual grid cell is influenced by the ob-
servations and the pose, whereas the binary terms Φ(mi,t,mj,t|S 0:t,X 0:t) model the dependencies
between neighboring grid cells. We assume a 4-neighborhood rule which is stated by the symbol
N4 with the index tuples (i, j). For the normalization we have to consider the partition function ζ
which was also introduced in Sec. 2.3.1, (2.17). In the next sections we define the unary and binary
terms in detail.

3.4 Definition of the Unary Terms

We describe the definition of the unary terms which includes the derivation to a time recursive
structure (Sec. 3.4.1), the definition of our measurement model (Sec. 3.4.2) and how to formulate
the prediction terms (Sec. 3.4.3) in the following. This section also include parts which were already
published in [Muffert et al., 2014].
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3.4.1 Derivation of a Time Recursive Structure

To achieve an on-line capable mapping algorithm we derive a recursive estimator using the approach
equal to the one described in Sec. 2.4 and in Muffert et al. [2014]. The potentials of the unary
terms Ψ(mi,t | S 0:t,X 0:t) represent the influence of the Stixel set S 0:t and the pose set X 0:t on a
single grid cell. The unary potential terms are defined as the conditional distribution

p(mi,t | S 0:t,X 0:t) = Ψ(mi,t | S 0:t,X 0:t) . (3.7)

To obtain a recursive structure, the first assumption is that all observed Stixel sets between con-
secutive time steps S t and S t−1 are completely independent. In general, this statement is true
since Stixels are generated at each time step individually from disparity images. However, Stixel
tracking and Stixel segmentation (see Sec. 2.2.3) lead to a time dependency between the Stixel sets
S t and S t−1. Therefore, consecutive Stixel sets are highly correlated. This correlation is not taken
into account in this thesis to allow a time recursive structure.

By applying Bayes rule, we observe:

p(mi,t | S 0:t,X 0:t)

Bayes
rule
=

p(S 0:t | mi,t,X 0:t) p(mi,t|X 0:t)

p(S 0:t|X 0:t)
. (3.8)

Separating the Stixel set S t at time t from the whole history S 0:t−1 and take the independence of
consecutive Stixel sets into account, we obtain

=
p(S t, S 0:t−1 | mi,t,X 0:t) p(mi,t|X 0:t)

p(S 0:t|X 0:t)
(3.9)

=
p(S t | mi,t,X 0:t) p(S 0:t−1 | mi,t,X 0:t) p(mi,t|X 0:t)

p(S 0:t|X 0:t)
. (3.10)

By using the Bayes rule for the term p(S 0:t−1 | mi,t,X 0:t), we observe:

=
p(S t | mi,t,X 0:t) p(mi,t | S 0:t−1,X 0:t) p(S 0:t−1 | X 0:t) ���

���p(mi,t|X 0:t)

((((
(((p(mi,t | X 0:t) p(S 0:t|X 0:t)

=
p(S t | mi,t,X 0:t) p(mi,t | S 0:t−1,X 0:t) p(S 0:t−1 | X 0:t)

p(S 0:t|X 0:t)
. (3.11)

With the definition of conditional probability the denominator p(S 0:t|X 0:t) is expressed as:

p(S 0:t|X 0:t) = p(S t, S 0:t−1 | X 0:t) =
p(S t, S 0:t−1,X 0:t)

p(X 0:t)
(3.12)

=
p(S t, S 0:t−1,X 0:t)

p(S 0:t−1,X 0:t)

p(S 0:t−1,X 0:t)

p(X 0:t)
(3.13)

= p(S t | S 0:t−1,X 0:t) p(S 0:t−1 | X 0:t) . (3.14)



3.4. DEFINITION OF THE UNARY TERMS 57

Next, we substitute (3.14) in (3.11) and obtain:

p(mi,t | S 0:t,X 0:t) =
p(S t | mi,t,X 0:t) p(mi,t | S 0:t−1,X 0:t) ((((

((((p(S 0:t−1 | X 0:t)

p(S t|S 0:t−1,X 0:t)((((
(((p(S 0:t−1|X 0:t)

(3.15)

=
p(S t | mi,t,X 0:t) p(mi,t | S 0:t−1,X 0:t)

p(S t|S 0:t−1,X 0:t)
(3.16)

∝ p(S t | mi,t,X 0:t)︸ ︷︷ ︸
measurement model

p(mi,t | S 0:t−1,X 0:t)︸ ︷︷ ︸
prediction term

. (3.17)

The term p(S t | mi,t,X 0:t) represents our measurement model which describes the process of
modeling the environment based on uncertain sensor readings at time step t.. The second term
p(mi,t | S 0:t−1,X 0:t) is called the prediction term since the state of a grid cell is estimated without
the Stixel set S t. Equations (3.16) and (3.17), respectively, have the same form as the general
recursive filter estimator in Sec. 2.4.1, (2.33). The measurement model and the prediction term are
defined in the following sections.

3.4.2 The Measurement Model

The measurement model p(S t | mi,t,X 0:t) describes the conditional probability of the complete
Stixel set at time step t given a specific grid cell and the trajectory of the ego vehicle. To achieve
real-time capability and define the measurement model in an efficient way, we assume that all single
Stixels sun,t in the current Stixel S t set are conditionally independent. Independence between
observations is a common assumption in robotics which is also state in Thrun et al. [2005, p. 152].
Therefore, we factorize over the image columns u first:

p(S t | mi,t,X 0:t) =
∏
u

p(Su,t | mi,t,X 0:t) . (3.18)

Since multiple Stixels per column u exist and we also assume that these Stixels are independent,
we factorize over the number of segments per coloum n:

=
∏
u

∏
n

p(sun,t | mi,t,X 0:t) (3.19)

Because of the fact that the complete trajectory X 0:t is given w.r.t. the global map system Sw, we
consider only the current global pose information xw t in the measurement model:

=
∏
u

∏
n

p(sun,t | mi,t, xw t). (3.20)

Observe, that we add the index w again to explicitly state that the current pose is w.r.t. the map
system Sw.
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3.4.2.1 Definition of the Measurement Model in the Column-Disparity Space

In this subsection we define the measurement model in the column-disparity space. By exploring
the term p(sun,t | mi,t, xw t) in detail, one challenge arrives which was also stated in Muffert et al.
[2014]. Each single Stixel is originally computed in the local two dimensional column(u)-disparity(d)
space of the camera system whereas the grid cells and the pose information are given w.r.t. the
global Cartesian system Sw. Therefore, it is necessary to transform either the Stixel information
into the global Cartesian grid map space or to project the cell position into the local column-
disparity space. Due to the fact that the measurement model should describe the nature of sensor
behavior in a very precise way, and the fact that the Stixels are estimated from disparity images,
we define the measurement model p(sun,t | mi,t, xw t) in the column-disparity space. This requires
the transformation of mi,t into the column-disparity space.

Transformation in the Column-Disparity Space. Using the index function fi, the coordinate
components of each cell are given by fi : mi,t 7→ [wxmi,t ,

wymi,t ]
T. Using the inverse motion matrix

w
M
−1
t (wxt), the grid cell coordinates rxmi,t and rymi,t in the vehicle coordinate system Sr are

obtained by: rxmi,t
rymi,t

1

 = w∆M−1
t (wxt)

wxmi,t
wymi,t

1

 . (3.21)

Taking the focal length f , the basis b, and the column component of the principal point u0 of the
current stereo system into account (see also Sec. 2.2.2.1), the estimated disparity dmi,t and the
image column umi,t of the corresponding grid cell mi,t are defined by:

dmi,t =
f b

rxmi,t

(3.22)

and

umi,t = u0 −
f rymi,t

rxmi,t

. (3.23)

The Density Functions. Similar to the range finder model proposed in [Thrun et al., 2005,
Chapter 6.3], our measurement model is defined by a mixture distribution which handles noisy
depth measurements and outliers. We make a reasonable assumption that the Stixels are only
uncertain in the disparity dun,t. This allows us to model the measurement noise of the Stixel
with a 1D Gaussian distribution N

(
dmi,t , σ

2
dmi,t

)
with the mean dmi,t and variance σ2

dmi,t
. The

measurement probability is given by

pmeas

(
dun,t | dmi,t , σ

2
dmi,t

)
={

ηmeas N
(
dun,t; dmi,t , σ

2
dmi,t

)
, if: dmax > dun,t > dmin and u− 1

2w < umi,t < u+ 1
2w

0 , else .
(3.24)
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The expression N
(
dun,t; dmi,t , σ

2
dmi,t

)
is the normal distribution which is defined by the mean dmi,t

and standard deviation σdmi,t
, and evaluated at the Stixel’s disparity value dun,t. For practical

reasons, the function is only valid if dun,t is in the disparity interval [dmax; dmin] and the estimated
column index umi,t is equal to the Stixel’s column index u. The normalizer ηmeas is defined by the
integral over the disparity interval

ηmeas =
(∫ dmax

dmin

N
(
dun,t; dmi,t , σ

2
dmi,t

)
ddun,t

)−1
. (3.25)

To handle possible Stixel outliers, we model a uniform distribution over the valid disparity space:

pout
(
dun,t | dmi,t

)
=

{
1

(dmax−dmin) , if: dmax > dun,t > dmin and u− 1
2w < umi,t < u+ 1

2w

0 , else .
(3.26)

We formulate the overall density function for occupied grid cells by combining both distributions
in (3.24) and (3.26):

p(sun,t | mi,t, xw t) = α pmeas

(
dun,t | dmi,t , σ

2
dmi,t

)
+
(
1− α) pout(dun,t | dmi,t

)
. (3.27)

For the definition of the unary potential functions in the MRF (see Sec. 3.6.1), we also have to
define the density functions p(sun,t | ¬mi,t, xw t), since

p(sun,t | ¬mi,t, xw t) ��= 1− p(sun,t | mi,t, xw t) . (3.28)

Here, ¬mi,t represents a free grid cell. The density functions of free space are also realized by a
mixture distribution:

p(sun,t | ¬mi,t, xw t) = α pfree
(
dun,t | dmi,t , σ

2
dmi,t

)
+
(
1− α) pout(dun,t | dmi,t

)
. (3.29)

The probability pfree
(
dun,t | dmi,t , σ

2
dmi,t

)
represents valid free space and is given by:

pfree
(
dun,t | dmi,t , σ

2
dmi,t

)
={

ηfree

(
1−N

(
dun,t; dmi,t , σ

2
dmi,t

))
, if: dmax > dun,t > dmin and u = umi,t

0 , else .
(3.30)

The normalizer ηfree for free space is estimated similar to the normalizer in (3.25). Equations (3.29)
and (3.20) allow us to define the overall posterior

p(S t | ¬mi,t,X 0:t) =
∏
u

∏
n

p(sun,t | ¬mi,t, xw t). (3.31)

Two examples of the density functions are shown in Fig. 3.6. The variance σ2
dmi,t

and the weighting

factor α are the model parameters Θ = [σ2
dmi,t

, α] and have to be learned in general. This topic is

discussed in the following paragraph.
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Figure 3.6: Examples of density functions which are used for defining the measurement model. In
the left example the model parameters are set to σ2

dmi,t
= 1.0 and α = 0.5, in the example on the

right the parameters are σ2
dmi,t

= 3.0 and α = 0.5. In both cases, the disparity space is limited by

the continuous interval [128, 0]. Therefore, dmax is 128 and dmin is 0.

Estimation of the Model Parameters Θ. The determination of the model parameters Θ has
an important influence on the defined measurement model. Different possibilities exist to estimate
these parameters. As mentioned in [Thrun et al., 2005, Chapter 6.3.2] the model parameters can
be determined by using measurement data in combination with ground truth information. Based
on this idea, Pfeiffer et al. [2010] developed an approach to analyze the precision of the Stixels
using a high performance laser scanner as a reference sensor. This allows the use of statistical
analysis to estimate the variance σ2

dmi,t
and make assumptions about the outlier probability which

control the weighting factor α. Another possibility is to learn the complete parameter set in the
mapping process with actual measurement data. Here, we have to consider the model parameters
Θ in the measurement model and adjust the likelihood in (3.20) to p(S t | mi,t,X 0:t,Θ). This leads
to a maximum likelihood estimator which is used to iteratively estimate the parameters. Details
of this estimator are also discussed in [Thrun et al., 2005, Chapter 6.3.2].

In this thesis, the model parameters are not learned in the mapping approach. We instead rely
on Stixel information which also includes the precision information σ̃2

dun
and outlier probabilities

pout
un . Therefore, the precision of the Gaussian is set by the empirical standard deviation of each

Stixel σ2
dmi,t

= σ̃2
d and the weighting factor is defined by the outlier probability α = pout .
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3.4.2.2 Realization and Practical Considerations

In this section we discuss the realization and practical consideration in the implementation of the
measurement model. This includes the definition of the disparity intervals for different Stixel types,
the use of the discrete disparity space, and the inverse mapping into the Cartesian space.

The Disparity Intervals. As shown in Fig. 3.7, we define three major different Stixel scenarios.
The figure shows our world assumptions for (1) static Stixels in the first row (n = 1), (2) static
Stixels in the second row (n = 2), and, (3) Stixels which are labeled as dynamic obstacles (lun =
movingObj). As seen in (3.24) - (3.30), the density functions are only valid in defined disparity
ranges. Without a limitation of these disparity ranges for the three different scenarios we are
not able to fulfill the named world assumptions. Therefore, we do the following definitions by
limiting the disparity ranges for dmin and dmax. Please consider that the disparity values decrease
by increasing the distance.

• For the first, static Stixel in a column with n = 1, cun = obstacle, and lun = staticObj,
we assume that the space up to the foot point of the Stixel is free space. Around the foot
point of the Stixel we assume a static obstacle which occupies the surrounding grid cells. The
space behind the closest Stixel is, in general, unknown area. For this situation, the disparity
range is defined by dmax = 128 and dmin = dun,t − 2σ2

dmi,t
.

• Stixel obstacles with n = 2, cun = obstacle, and lun = staticObj give us information only
about the existence of that obstacle. Since we are working in a 2D grid, we project these
2 nd row Stixels into the plane of the grid map. The reasonable assumption is made that no
information about free space in front of and behind these Stixels is available. The maximum
value is changed and is defined by dmax = dun,t + 2σ2

dmi,t
. The minimum value is the same

than in the situation where n = 1.

• For Stixels labeled as dynamic obstacles with n = 1, cun = obstacle, and lun = movingObj,
we assume that the space between the vehicle and the other moving Stixel obstacle is modeled
as free space. Therefore, we set the disparity interval limits for these kind of Stixels to
dmax = 128 and dmin = dun,t + 2σ2

dmi,t
.

Using the Discrete Disparity Grid Space. Referring to (3.20), the major challenge is that
we have to iterate over all individual disparity values dmi,t for the grid cells of the complete map
which is not very efficient for on-line applications. To overcome this burden, we directly define a
local grid map in the column (u∗)-disparity(d∗)space. Since the stereo camera geometry is assumed
to be stable and the disparity space is limited in the range of [128, 0], the column-disparity space is
constant at any time step t. The column space is in the range of u∗ ∈ [0,W ] where W is the image
width. The disparity space has to be quantized in the range of d∗ ∈ [128, 0] with a defined sampling
interval fs = 1

ds
where ds is the disparity sampling rate. The bigger the disparity sampling rate,

the higher the resolution of the local disparity space. The parameter ds has to be defined and is
an important factor in our evaluation.
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Figure 3.7: Model assumptions with regard to the used Stixel types. In (a) the model assumptions
for static Stixels with cun = obstacle, and lun = staticObj are represented. Stixels with n = 1
include information about free space and occupied areas. Stixels with n > 1 give us information
only about occupied areas since we project each Stixel into the 2D space of the grid map. Thus,
we define that no obstacle or free space information between the two Stixel types is available. In
(b) we present the assumption for Stixels labeled as dynamic obstacles with cun = obstacle, and
lun = movingObj. We only model the free space area up to the foot point of these Stixel types.

Since a discrete disparity space is chosen, the continuous density functions in (3.27) and (3.29)
have to be replaced by the discrete functions P (sun,t | mi,t, xw t) and P (sun,t | ¬mi,t, xw t). Fur-
thermore, the normalizers ηmeas and ηfree are defined by the sum over the corresponding discrete
interval. The defined column-disparity (u∗-d∗) space is in the range of the complete Stixel set Su,t
which allows us to generate a dense column-disparity occupancy grid map. An example is shown
in Fig. 3.8 which represents our desired measurement model in the local column-disparity space at
time step t.

Inverse Mapping into the Cartesian Space. In this paragraph the transformation of the
dense disparity occupancy grid in the Cartesian space is explained. Equations (3.22) and (3.23) are
inverted to calculate the Cartesian grid cells which are influenced from the column (u∗)-disparity(d∗)
occupancy grid. Because of the characteristic of the disparity space the warping into the Cartesian
space leads to ambiguities which is also mentioned in [Badino et al., 2007; Perrollaz et al., 2010]
and shown in Fig. 3.9. We observe, that Cartesian grid cells near the origin are influenced by
several column-disparity cells and, vice versa, several Cartesian grid cells far away from the origin
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(a) The static Stixel set St limited up to 40 m.

(b) The resulting column (u∗)-disparity(d∗) occupancy grid map.

Figure 3.8: The static Stixel set St (a) and the resulting column (u∗)-disparity(d∗) occupancy grid
map (b). The grid map represents the implemented measurement model at time step t. Because
of the well-known uncertain behavior of stereo results only Stixels up to 40 m are considered in our
approach. Because of stereo shadows and calibration errors we also neglect Stixels at the left and
right border. Since we only want to map static obstacles, labeled dynamic obstacles are excluded
from the mapping approach, but, nevertheless, we exploit the free space area up to the foot point
of these obstacles.

are influenced by only one column-disparity cell. To solve these transformation issues, we rely on
a heuristic, but easy-to-implement and real time suitable solution similar to the work of Perrollaz
et al. [2010]. A combination of a maximum filter, which solves the first issue, and a bilinear
interpolation, which solves the second issue, is applied. The advantage of this combination is also
shown in Fig. 3.9, example (4). It can be assumed that the transformation between the column
(u∗)-disparity(d∗) space and the Cartesian space is stable for a specific stereo camera calibration.
This leads to the fact, that the warping procedure can be stored as a look up table.
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An example of the transformation of the local column-disparity grid map into the local Cartesian
grid is shown in Fig. 3.10. Figure 3.11 shows the comparison between the local 2D occupancy grid
map and the original triangulated 3D points which were estimated with the help of the disparity
image. The figure also includes the original Stixel World. The transformation of the local Cartesian
grid map into the global grid map is straight forward. We have to invert the transformation in
(3.21). This step is highly parallel and, therefore, we use the power of the GPU.

(a) A continuous signal in the disparity space (1) with its discretization (2). To avoid visualization issues,
the disparity sampling rate is 2 px.

(b) close-up (c) The transformation of the discrete disparity signal (2) into a non-equidistant Cartesian
space (3). Different transformations into the equidistant Cartesian grid structure are shown in
(4)-(7). Method (4) shows a combination of a bilinear interpolation (5) in combination with a
maximum filter (6). In method (7) a median filter is applied. Take into account that by using
only the bilinear interpolation (5) or the median filter (7) obstacles within 5 m of the origin
disappear which is clearly shown in the close-up in (b). The close-up in Fig. (b) also shows
which grid information from (3) is used to estimate the different filter results.

Figure 3.9: Transformation of a continuous disparity signal (a) into an equidistant, discrete Carte-
sian space (b-c). Figure (c) shows different strategies of transforming the signal (1) into an equidis-
tant Cartesian grid structure. Figure (b) shows the issue that occurs when several column-disparity
cells “fall” into one single grid cell.
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Figure 3.10: Comparison between the column (u∗)-disparity(d∗) occupancy grid map and the re-
sulting Cartesian grid map. The Cartesian grid map is calculated in reference to the local 2D
coordinate system of the ego vehicle. The dimension of the grid map is limited from −20 m to 20 m
for the ry-axis and from 0 m to 40 m for the rx-axis. The contour of the parked car on the right side
is mapped precisely. By using the presented measurement model, it is possible to map obstacles
behind other obstacles which can also be seen on the right side of the grid map. Moving obstacles
are not represented in the map which increases the quality of free space.

3.4.3 The Prediction Step

After we defined the measurement model for the recursive mapping approach, the prediction term
p(mi,t | S 0:t−1,X 0:t) is described which represents the conditional probability of a single grid cell
without taken current measurements S t into account.
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(a) Original 3D point cloud derived from dense disparity images and the resulting
Stixels. The color of the Stixels represents the distance to the vehicle. Red stands
for near by and green for far away obstacles. The perspective is about 3 m above
ground level and shows the driving direction up to 50 m.

(b) Top view of Fig. (a). (c) The resulting occupancy Carte-
sian grid map with reference to the
relative vehicle coordinate system.

Figure 3.11: Original 3D point cloud derived from dense disparity values (a), its 2D top view (b)
and the resulting occupancy Cartesian grid map (c).
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3.4.3.1 Derivation

For the derivation of the prediction term we follow the steps of Sec. 2.4.1. By introducing the
new variable mi,t−1, and the use of the law of total probability, we define the prediction term
p(mi,t | S 0:t−1,X 0:t) as:

p(mi,t | S 0:t−1,X 0:t) =

∫
p(mi,t | mi,t−1)p(mi,t−1 | S 0:t−1,X 0:t)dmi,t−1 (3.32)

=

∫
p(mi,t | mi,t−1)p(mi,t−1 | S 0:t−1, xw t,X 0:t−1)dmi,t−1 (3.33)

=

∫
p(mi,t | mi,t−1)p(mi,t−1 | S 0:t−1,X 0:t−1)dmi,t−1 . (3.34)

In (3.33) we separate the current position vector xw t from X 0:t and make the reasonable assump-
tion, that the position xw t tells us nothing about the previous state of the grid cell mi,t−1 (see
(3.34)). With the help of this assumption, the recursive structure of the estimator is derived since
p(mi,t−1 | S 0:t−1,X 0:t−1) represents the desired posterior distribution of (3.8) one time step earlier.
Since we defined a single grid cell as a binary, discrete variable, (3.34) becomes:

P (mi,t | S 0:t−1,X 0:t) = P (mi,t | mi,t−1) P (mi,t−1 | S 0:t−1,X 0:t−1) +

P (mi,t | ¬mi,t−1) P (¬mi,t−1 | S 0:t−1,X 0:t−1), (3.35)

with

P (¬mi,t−1 | S 0:t−1,X 0:t−1) =
(

1− P (mi,t−1 | S 0:t−1,X 0:t−1)
)

.

Equation (3.35) has the same form as (2.38) which describes the general structure of the binary
prediction model of Sec. 2.4.2. In the following, we discuss the transition model as well as the
desired conditional probability at time step t− 1.

3.4.3.2 The Transition Model

The terms p(mi,t | mi,t−1) and p(mi,t | ¬mi,t−1) represent the state transition probabilities. Because
of the fact that a grid cell state is discrete, binary, and follows the Markov assumption, these terms
represent a two state Markov chain. This definition is previously mentioned in Sec. 2.4.2. The
Markov chain is illustrated in Fig. 3.12. The transition probabilities describe the inertia of the
recursive time filter. If p(mi,t | mi,t−1) approaches to 1, the assumption is made that the state of
the grid cell does not change immediately and is temporally stable.

This statement has a direct impact on our mapping approach. If we detect static obstacles, we
postulate that the state of a grid cell is stable in a time recursive way. Therefore, the transition
probability p(mi,t | mi,t−1) should be large, e.g. 0.95. If we detect dynamic obstacles, the assump-
tion is made that the state of a grid cell is not stable over consecutive time steps. This means that
the transition probability should be small, e.g. p(mi,t | mi,t−1) = 0.05.
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Figure 3.12: The transition model for the mapping approach for occupied grid cells mi,t and free
grid cells ¬mi,t. For the map prediction step, we use exactly the same model as introduced in
Sec. 2.4.2 which describes the general Markovian two state model.
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Figure 3.13: Example results of the prediction step using different transition probabilities
p
(
mi,t | mi,t−1

)
. In these examples as well as in the mapping approach the transition probabil-

ities p
(
¬mi,t | mi,t−1

)
are defined by 1− p

(
mi,t | mi,t−1

)
.
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In this thesis, the focus is on the first statement since we neglect dynamic obstacles in general.
Different methods can be used to define the transition probabilities. In, e.g. Siegemund [2013],
transition probabilities between different class types are learned from reference data which was
synchronized with observations. In, e.g. Muffert et al. [2014], we evaluated different transition
probabilities p(mi,t | mi,t−1) to find the best performance of the presented Stixel mapping ap-
proach. Here, the focus was on a robust free space estimation and a reliable obstacle detection
even during difficult weather conditions. It turned out, that the best results were achieved by
p(mi,t | mi,t−1) = 0.99. Example results of the prediction step using different transition probabili-
ties are shown in Figure 3.13. The figure also shows the extreme cases. If a transition probability
of 1 is chosen, the prediciton step has no influence. On the contrary, a transition probability of 0.5
makes the influence of former observations obsolete.

3.4.3.3 The Desired Posterior Distribution at Time Step t− 1

The term p(mi,t−1 | S 0:t−1,X 0:t−1) describes the posterior distribution of a single grid cell given all
observations and poses at time step t− 1. Hereby, the recursive structure of the mapping approach
is achieved which implies two major aspects we have to consider: First, the term p(mi,0 | S 0,X 0) =
p(mi,0) at the initialization time step t = 0 has to be defined which represents the global prior of
the grid map. This term is easy to define and is p(mi,0) = 0.5 in general. The much more complex
point is that it is necessary to estimate marginal probabilities for each single grid cell to achieve
a meaningful recursive structure. This means that we cannot regard our overall optimization of
(3.6) as a MAP problem because the terms p(mi,t−1 | S t−1,X 0:t−1) and p(¬mi,t−1 | S t−1,X 0:t−1)
would be equal to 1 or 0. Because of this fact, we introduced in Sec. 2.3.3 a general technique
to estimate marginal probabilities for MRF/CRF MAP approaches. With the definition of the
measurement model in (3.20) and definition of the prediction term (3.35), we define the unary
energies Ei(mi,t | S 0:t,X 0:t) by following the definition in (2.22):

Ei(mi,t | S 0:t,X 0:t) = − log
(

Ψ(mi,t | S 0:t,X 0:t)
)

(3.36)

= − log
(
p(mi,t | S 0:t,X 0:t)

)
(3.37)

∝ − log
(
p(S t | mi,t,X 0:t)

)
− log

(
p(mi,t | S 0:t−1,X 0:t)

)
. (3.38)

The unary energies for non-existing grid cells Ei(¬mi,t | S t,X 0:t) are defined by:

Ei(¬mi,t | S 0:t,X 0:t) ∝ − log
(
p(S t | ¬mi,t,X 0:t)

)
− log

(
1− p(mi,t | S 0:t−1,X 0:t)

)
. (3.39)

3.5 Definition of the Binary Terms

We describe the definition of the binary terms Φ(mi,t,mj,t|S 0:t,X 0:t) of the overall optimization
problem in (3.6) in the following. The binary terms contain prior knowledge of the relationship
between neighbored grid cells under the condition of given data. However, we formulate the binary
terms as a generalized data independent Potts model ([Potts, 1952]) which has proven in many
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computer vision applications [Kohli and Torr, 2007; Erbs et al., 2012]. Therefore, the general
formulation of the binary terms can be simplified to

Φ(mi,t,mj,t) ≈ Φ(mi,t,mj,t|S 0:t,X 0:t). (3.40)

We postulate, that neighboring grid cells belong to the same class type. Therefore, we punish
inhomogeneous regions with mi,t 6= mj,t in the 4-neighborhood region N4 with the index tuples
(i, j) and support homogeneous regions with mi,t = mj,t. The punishing term for inhomogeneous
regions is defined by the expression −λb log(1 − kij) with kij < 1. The parameters kij and λb
control the binary term which are tuned manually in this thesis. For homogeneous regions we
define the punishing term as −λb log(kij). Finally, the binary terms are defined by the following
energies:

Ei,j(mi,t,mj,t) = −λb log
(

Φ(mi,t,mj,t)
)

=

{
−λb log(kij), if: mi,t = mj,t ,

−λb log(1− kij) , if: mi,t 6= mj,t .
(3.41)

To figure out if the statement mi,t 6= mj,t or mi,t = mj,t is valid, we take the probabilities of
the grid cells of time step t − 1 into account. If p(mi,t−1) > 0.5, we assume that the current grid
cell is occupied which means mi,t = 1. If p(mi,t−1) < 0.5, we assume mi,t = 0.

3.6 Incremental Map Generation via dynamic Graph Cuts and
Marginal Probability Estimation

In this section we describe the incremental map generation based on dynamic graph cuts and min-
marginal estimation to solve the optimization formulation of (3.6). The unary and binary energy
terms Ei(mi,t | S t,X 0:t) and Ei,j(mi,t,mj,t) are used in this context which were previously described
in Sec. 3.4 and Sec. 3.5. In general, common inference techniques like graph cuts (see Sec. 2.3.2)
are used to solve our optimization problem in (3.3). Nevertheless, two major challenges occur when
we want to fulfill our defined conditions in Sec. 3.1.

• Real-time capability must be guaranteed. Solving the optimization problem via dy-
namic graph cuts means that we have to create an undirected graph in which the nodes repre-
sent the grid cells. This implies that the size of the map defines the size of the graph. Building
a graph over the complete map would be inefficient and, therefore, not real-time applicable.
This topic is later discussed in Sec. 3.6.1.

• An incremental mapping process must be maintained. As mentioned above, general
inference algorithms only provide MAP estimation solutions. In regard to our mapping ap-
proach, this would result in a binary classification, namely if a grid cell is occupied or free. To
achieve an incremental mapping process we need marginals p(mi,t−1 | S 0:t−1,X 0:t−1) during
the prediction and update step (see Sec. 3.4.3). The estimation of marginal probabilities
is solved by estimating uncertainties in graph cut solutions and is presented in Sec. 3.6.2.
The basic idea of marginal probability estimation in graph cuts solutions is also described in
Sec. 2.3.3.
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Figure 3.14: Graph structure of the active map area M ac
t . The active map area M ac

t is represented
by nine dark bold grid cells. The energies Ei(mi,t = 1 | ., .) respectively Ei(mi,t = 0 | ., .) represent
the unary terms. The energy Ei,j(mi,t,mj,t) stands for the smoothness or binary term between the
two grid cells mi,t and mj,t.

3.6.1 Definition of the Graph Structure and its Size

Synchronously to Sec. 2.3, the conditional properties of our unknown grid cell states are de-
scribed with probabilistic graphical models. Since the state of each grid cell is binary and the
sub-modularity constraint is fulfilled, graph cuts are used to estimate the exact MAP solutions for
our optimization problem.

Although we are not interested in the MAP solution in general, we still have to set up an
undirected graph structure since we require this structure for the upcoming min marginal estimation
(see Sec. 3.6.2). The nodes of the undirected graph are the single grid cells mi,. The source node
s and the sink node t represent the binary state behavior which describes whether a grid cell is
occupied or free. The unary terms define the edges which connect the nodes to source or sink. To
set up the graph, the unary energies defined in (3.38) and (3.39) are used. The links between the
grid cells describe the mutual grid dependency and are represented by the defined binary terms of
(3.41). Figure 3.14 shows the structure of the resulting graph.

Since real-time capability is an important factor, we have to consider the dimension of the
previous defined graph. From our point of view, it is inefficient and unnecessary to represent the
whole grid map Mt in a graph, since the whole size of the grid map is unknown during on-line
mapping and, second, major map areas are unaffected by current measurements. This includes
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covered map areas which are no longer influenced by observations as well as unknown areas which
were never observed by the robot. Because of this, the graph size is based on the map area which
is influenced by the current observations S t in the surroundings of our robot’s position.

From now, this map area is designated as the active map area M ac
t ⊆ Mt. As an example,

M ac
t can cover an area of 40 m × 40 m around the current robot position which would result in a

400× 400 grid structure based on a grid cell resolution of 0.1 m. In regard to image segmentation
algorithms (e.g. [Kohli and Torr, 2007; Erbs et al., 2012]), handling optimization problems with
this graph size is real-time feasible. The corresponding graph for M ac

t is defined by GMac
t

.

3.6.2 Marginal Probability Estimation in the Graph Structure

The general estimation of marginal probabilities is described in Sec. 2.3.3. As a short reminder,
the computation of marginal probabilities is essential for the prediction step described in Sec. 3.4.3
and, consequentially, essential for the time recursive map estimation. We follow (2.26)-(2.31) and
Algorithm 1 in Sec. 2.3.3 for marginal probabilities estimation. This leads to a meaningful prediction
step and, consequentially, to correct occupancy grid map results.

In the first step, we compute the st-mincut/max-flow of GMac
t

which results in the residual

graph GrMac
t

and the most probable assignment of all active grid cells in M̂ ac
t :

M̂ ac
t = argmax

M ac
t

p(M ac
t |S 0:t,X 0:t) . (3.42)

After achieving the MAP solution, we estimate for each grid cell mac
i,t;j with labels j ∈ {1, 0} the

min-marginal energies

φaci,t;j = argmin
M ac

t ,mac
i,t=j

E(M ac
t |S 0:t,X 0:t) , (3.43)

and the max-marginal probabilities

νaci,t;j =
1

ζ
exp

(
− φaci,t;j

)
. (3.44)

Here, ζ is the partition function. For the estimation of the min-marginal energies/max-marginal
probabilities, we modify step-by-step the energy function E(M ac

t |S 0:t,X 0:t). Each active grid cell
mac
i,t is fixed to the label j = 1 and respectively to j = 0 by setting the unary energy terms of

mac
i,t = j to large values (close to infinity). This step is computationally expensive since we have to

estimate a single st-mincut/max-flow solution for each active grid cell mac
i,t and each labeling j.

To overcome this computational burden, we use dynamic graph cuts which was introduced by
Kohli and Torr [2007]. Sec. 2.3.3 also contains in-depth information on this specific approach.
Instead of creating a new graph for each single min-marginal energy estimation from scratch,
dynamic graph cuts recycle the solution from the previous step. For initialization, the algorithm
uses the residual graph GrMac

t
.This type of “recursion” allows for a real-time computation of the

max-marginal probabilities which was stated in [Kohli and Torr, 2007].
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Finally, we are interested in the marginal probabilities p(νaci,t;1) which result from the normal-
ization of the max-marginal probabilities in regard to a specific labeling:

p(νaci,t;1) =

1
ζ exp

(
− φaci,t;1

)
1
ζ exp

(
− φaci,t;0

)
+ 1

ζ exp
(
− φaci,t;1

) (3.45)

=
exp

(
− φaci,t;1

)
exp

(
− φaci,t;0

)
+ exp

(
− φaci,t;1

) . (3.46)

In this case, the labeling j = 1 means we estimate the marginal probabilities for occupied grid
cells. The estimation of marginal probabilities solves our previously mentioned challenge, namely
the estimation of ”true” probabilities for p(mac

i,t | S 0:t,X 0:t). Therefore, we define in the final step:

p(mi,t | S 0:t,X 0:t) := p(νaci,t;1) . (3.47)

Based on this definition it is possible to achieve correct results during the update and the prediction
steps while we model the dependencies between grid cells explicitly. The estimation of marginal
probabilities allows the realization of an incremental mapping approach based on probabilistic
graphical models (MRFs) which is the core topic of this thesis. An example of these marginal
probabilities p(νaci,t;1) is shown in Figure 3.15. The figure also illustrates the measurement model
p(S t | mac

i,t,X 0:t), and the results of the prediction step p(mac
i,t | S 0:t−1,X 0:t) which define the unary

terms for the optimization step.
As discussed in Sec. 3.5, the binary terms are controlled by the parameters kij and λb. Fig-

ure 3.16 shows the results of the marginal estimation using different values of λb where the kij is
fixed to 0.08. In this figure, we also compare the results of the marginal probability estimation

with the MAP solution M̂ ac
t . If we chose a λb = 0, the binary terms have no influence. The larger

the value λb, the larger is the influence of the smoothing effect.
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(a) Measurement model p(S t | mac
i,t,X 0:t). (b) Prediction p(mac

i,t | S 0:t−1,X 0:t).

(c) Marginal probabilities p(νaci,t;1).

Figure 3.15: The results of the measurement model p(S t | mac
i,t,X 0:t) (a), the prediction step

p(mac
i,t | S 0:t−1,X 0:t) (b), and the resulting marginal probabilities p(νaci,t;1) (c) which are used to

define the terms p(mac
i,t | S 0:t,X 0:t).
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(a) λb = 0. (b) λb = 1. (c) λb = 5.

(d) kij = 0.08, λb = 2. (e) M̂ ac
t .

Figure 3.16: Results of marginal probability estimation with different control parameters λb and a

fixed value for kij = 0.08 (sub-figures (a)-(d)) in comparison to the MAP solution M̂ ac
t (sub-figure

(e)). If we chose a λb = 0, the binary terms have no influence. The larger the value λb, the larger
is the influence of the smoothing effect.
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3.7 Implementation Details of the Overall Mapping Algorithm

Hardware and Software Details. The novel occupancy grid mapping approach is fully imple-
mented in C++ and embedded in the software framework of the image understanding group of the
Daimler Benz AG in Sindelfingen, Germany. The algorithm has only one major external depen-
dency, namely the C++ library1 of Kohli and Torr [2007]. This library includes the realization of
dynamic graph cuts.

The presented approach is running in the test vehicle using the GPU (NVIDIA GeForce GTX
480) and CPU (Intel Core i7-980X 3.33Ghz). We also use 2 FPGA platforms for the estimation of
dense disparity images via SGM and for the estimation of the Stixel World. The overall incremental
mapping approach based on MRFs is presented in Algorithm 3. The global map Mt−1 at time step
t − 1, the Stixel set S labt , and the pose xw t is defined as input. The output is the new, updated
map Mt.

In the first steps we estimate the likelihoods of the measurement model pmeas
u∗,d∗ and pfree

u∗,d∗ in
the column (u∗)-disparity (d∗) space. These values are transformed into a local Cartesian Grid
map. Afterwards, M ac

t−1 is needed for the estimation of the prediction terms. The map part M ac
t−1

is estimated using Mt−1 and the inverse motion defined by xw t. Based on the previous two steps,
the unary and binary energy terms are computed to construct the undirected graph structure of
the MRF. With the help of dynamic graph cuts we are allowed to estimate marginal probabilities
p(νaci,t;1) in an efficient way. This results in the map M ac

t . Finally, we take the motion matrix
w∆Mt(

wxt) into account to update the map Mt.

Runtime Behavior. The runtime behavior of the image preprocessing steps of Sec. 3.2 looks
like the following: the SGM estimation as well as the Stixel World computation is performed
on a FPGA platform at 40 ms. The Stixel tracking requires 35 ms and the Stixel segmentation
63 ms. The global map Mt is allocated on the GPU. The download and upload of M ac

t between
the CPU and GPU requires 6 ms each. The realization of the measurement model in the column
(u∗)-disparity (d∗) space needs 14 ms using one CPU kernel. The transformation into the local
Cartesian map is solved via look-up tables and needs less than 3 ms. The prediction step and the
estimation of the energy terms requires nearly the same amount of time. The computation of the
marginal probabilities using dynamic graph cuts takes 153 ms. In total, the runtime of the novel
mapping approach is ≈180 ms using only one kernel of the CPU and the GPU for global grid map
updates. The named runtime excludes the runtime of the preprocessing steps.

First Results. We want to finalize this chapter by showing example results of the new mapping
approach. Figure 3.17 shows how the global grid map is updated over consecutive time steps. We
present six different states of the global occupancy grid map for a time period of 95 image frames.
For a better understanding of the scene, we also show the original gray scale images overlapped with
the used Stixel sets. The Stixel segmentation needs some frames to detect dynamic obstacles (see
Figure 3.17(c)) which leads to artifacts in the map. This effect is clearly shown in Figure 3.17(b),
(d) and (e). However, the final example map in Figure 3.17(h) does not include these artifacts
because of the used free space model for dynamic obstacles and the incremental map filtering idea.

1http://research.microsoft.com/en-us/um/people/pkohli/code.html, (2015-12-07)
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Furthermore, the uncertainty of the Stixels can also be recognized from the figure. Far away
static obstacles are mapped quite coarsely and “fuzzy” at first. When the ego vehicle approaches
these obstacles, the contour becomes crisp and sharp. The reason is that the pose precision of
the Stixels is getting better. These effects are clearly shown for the parked cars on the right side
of the road. The described behavior corresponds to the uncertain behavior of stereo vision and
the Stixel World, respectively. In Chapter 5 we show more qualitative results and point out the
advantage of using the novel mapping model based on MRFs.

Algorithm 3: The Overall incremental mapping approach.

Input: New observations defined by the Stixel set S labt , the global ego vehicle pose xw t,
previous map result Mt−1.

Output: New map Mt.

1 Estimation of the likelihoods in the column (u∗)-disparity (d∗) space:
2 for u∗ = 0 to U (Nr. of columns ) do
3 for d∗ = 0 to D (Nr. of disparity values) do
4 pmeas

u∗,d∗ = 1 ; pfree
u∗,d∗ = 1 ;

5 for k = 0 to K (Nr. of all Stixels in S labt ) do
6 Estimate likelihoods ((3.27) and (3.29)) in consideration of defined disparity

intervals:

pmeas
u∗,d∗ = pmeas

u∗,d∗ ·
[
α pmeas

(
dlabun,t | d∗, σ2

dmi,t

)
+
(
1− α) pout(d

lab
un,t | d∗

)]
;

pfree
u∗,d∗ = pfree

u∗,d∗ ·
[
α pfree

(
dlabun,t | d∗, σ2

dmi,t

)
+
(
1− α) pout(d

lab
un,t | d∗

)]
;

7 Mapping of pmeas
u∗,d∗ and pfree

u∗,d∗ into a local Cartesian Grid by following Sec. 3.4.2.2; This

results in p(S labt | mac
i,t, Xw 0:t) and p(S labt | ¬mac

i,t, Xw 0:t);

8 Estimation of the prediction terms p(mac
i,t | S lab0:t−1, Xw 0:t) using M ac

t−1 by following (3.35);

9 Estimation of the unary energies Ei(m
ac
i,t | S lab0:t , Xw 0:t) using (3.38) and (3.39);

10 Estimation of the binary energies Ei,j(m
ac
i,t,m

ac
j,t) by following (3.41);

11 Compute probabilities p(νaci,t;1) by using dynamic graph cuts presented in Algorithm 1:

12 Initialize confidence vector: c = ∅
13 for i = 1 to I (Nr. of grid cells of M ac

t ) do
14 for j = 0 to 1 do
15 compute min-marginal energies φij (see (3.43));

16 Estimate marginal probabilities p(νaci,t;1) (see (3.46));

17 Set: p(mi,t | S lab0:t , Xw 0:t) := p(νaci,t;1);

18 Save: c = c + [p(mi,t | S lab0:t , Xw 0:t)] ;

19 Transform c into Mt using index function fi in Sec. 3.4.2.1 and the motion w
Mt(

wxt).
20 return updated map Mt.
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(a) Global map Mt=0. (b) Global map Mt=25. (c) Original and used Stixel, S lab
t=25.

(d) Global map Mt=35. (e) Global map Mt=45. (f) Original and used Stixel, S lab
t=45.

(g) Global map Mt=65. (h) Global map Mt=95. (i) Original and used Stixel, S lab
t=95.

Figure 3.17: Example of the novel incremental mapping approach with MRFs for 95 time steps.
The figure shows six different states of the global map M. We also present the gray scale images
and the original Stixel World and the used Stixel sets S lab for a better understanding of the scene.
Dynamic obstacles are recognized and filtered out correctly which results in reasonable free space
areas. Parked cars on the right side are very “fuzzy” at first. As the ego vehicle approaches these
obstacles, their contours sharpen. This is due to the natural uncertain behavior of the Stixels and
the effect of the incremental map update scheme.



Chapter 4

Incremental Mapping using Uncertain
Poses

In this Chapter we present our realization of incremental occupancy grid mapping under the as-
sumption that the pose is uncertain. This leads to the well known SLAM problem. At the beginning,
we describe our motivation (Sec. 4.1.1), and the requirements of the SLAM approach (Sec. 4.1.2).
In Sec. 4.2 the realization of the Rao-Blackwellized particle filter (RBPF) is presented which is fi-
nally used to solve the SLAM problem in this context. We also present the definition of the motion
model (Sec. 4.3), the definition of the observation model (Sec. 4.4), and the adaptive resampling
scheme (Sec. 4.5).

4.1 Introduction

In this section we discuss our motivation first, and present the requirements of the SLAM approach
afterwards. We also state which SLAM approach is used in this chapter.

4.1.1 Motivation

In the previous chapter we optimized the posterior distribution p(Mt | S 0:t,X 0:t) with MRFs under
the assumption that the pose information X 0:t is given. This results in a pure mapping scheme
without any pose optimization. As proposed in e.g. [Muffert et al., 2014; Nuss et al., 2015], this
assumption is acceptable for small environments and for ego vehicle centered grid maps as long as
sensor based ego motion estimation [Badino et al., 2013], or the odometry information is precise.

To map large scale environments with potentially loop closures this assumption is untenable
and leads to inconsistent global maps. At this point loop closing means that the vehicle is able
to correctly postulate that it returns to a previously seen scene. To create consistent maps, it is
necessary to optimize both the desired map and the vehicle’s pose which leads to SLAM problems.
The SLAM problem was already mentioned and discussed in the Secs. 2.6-2.8. For clarification,
we present results of global occupancy grid maps with and without pose optimization in Fig. 4.1.
Figure 4.1(a) shows an occupancy grid map under the assumption that the pose is correct. Because
of odometry drift behavior, inconsistencies occur during entering the same area at multiple times.

79
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On the other hand, Fig. 4.1(b) shows the result of the subsequent approach which optimize
both, the map and the poses. This results in a consistent map without any ambiguities. Consistent
maps are strong requirements for following applications like localization or for path planning.
Figure 4.1(c) also shows the original environment overlayed with the optimized driven path as well
as the start and end point of the vehicle (red circle).

4.1.2 Requirements of the SLAM Approach

To solve the SLAM problem, specific requirements should be fulfilled to be consistent with the
overall concept of this thesis. These requirements are listed as follows.

• Probabilistic formulation. Since the previous mentioned mapping approach is formulated
in a probabilistic fashion, the SLAM approach should also be modeled in this way.

• Online capable. We prefer a SLAM technique which is potentially on-line capable in order
to run in our test vehicles.

• Reusing the Mapping approach. The desired SLAM approach should be based on grid
maps which means that we are able to use the previous mentioned mapping approach of
Chapter3.

Next we formulate the optimization function and also choose the SLAM technique which fits best
to the defined requirements.

4.1.3 Probabilistic Formulation and Selection of the SLAM Technique

The Optimization of both, the map Mt and the pose X 0:t, given the observations S 0:t and the
control information U 0:t−1 leads to the estimation of the posterior p(Mt,X 0:t|S 0:t,U 0:t−1). Rao-
Blackwellized particle filters (RBPFs), which were already presented in Sec. 2.7.2, are well suited
to fulfill the above mentioned requirements. The optimization task is formulated in a probabilistic
way, particle filters are on-line feasible, and the new grid mapping technique can be used. Therefore,
we decide to apply grid-based RBPFs in this thesis to solve the on-line SLAM problem. RBPFs
separate the estimation of the trajectory from the estimation of the map by following the Rao-
Blackwellized idea (Sec. 2.7.2). Using (2.45), the posterior p(Mt,X 0:t|S 0:t,U 0:t−1) is decoupled
in

p(Mt,X 0:t|S 0:t,U 0:t−1) = p(X 0:t|S 0:t,U 0:t−1)︸ ︷︷ ︸
pose posterior

p(Mt|S 0:t,X 0:t)︸ ︷︷ ︸
map posterior

. (4.1)

The map posterior is solved in a closed form using the occupancy grid mapping approach explained
in Chapter3. From now, the focus is on solving the pose posterior p(X 0:t|S 0:t,U 0:t−1) with the
help of particle filters. Details of particle filters are presented in Sec. 2.7.1. Recent parts of the
following work were published in Dömötör [2014] which was supervised by the author of this thesis.
In contrast to work of Dömötör [2014], we use the previously described grid mapping approach
with MRFs in the realization of the RBPFs.
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(a) Occupancy grid map without pose optimization. (b) Occupancy grid map with pose optimization.

(c) Google earth image of the mapped environment and
the optimized driven path (blue) with its start and end
point (red).

Figure 4.1: Comparison between occupancy grid maps without (4.1(a)) and with pose optimization
(4.1(b)). In Figure 4.1(b) a consistent map is shown whereas ambiguities are clearly visible in
Figure 4.1(a), e.g. at the middle-left border or in the upper left area of the map. The satellite
image in Figure 4.1(c) was taken from Google Maps and shows the residential area in Böblingen,
Germany. In total, we drove 1.9 km with our test vehicle S 500 Intelligent Drive (see Sec. 3.2.1).
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t ∝ p(S t |M
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Figure 4.2: The overview of the realization of the grid based SLAM particle filter. In contrast to the
novel mapping approach described in Chapter 3 we model the motion model with uncertainties. In

detail, sampling with the uncertain motion model is carried out with x
(i)
t ∼ p(xt|x

(i)
t−1,ut−1). The

weight estimation of the different particles is based on the observation model p(S t | M (i)
t−1,x

(i)
t ).

For each particle a map update is done which results in different global maps with different weights
(represented by the brightness of the maps). Based on the map and the distribution of the weights
an adaptive resampling scheme is used during this thesis.
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4.2 Realization of the Rao-Blackwellized Particle Filter

Figure 4.2 shows the overall process of the realization of the RBPF. RBPFs follow the idea of
SIR particle filters which major steps are sampling, importance weighting and resampling (see
Sec. 2.7.1.2). Therefore, we extend the overview shown in Fig. 3.2 by an uncertain motion model
(sampling), an observation model (weighting) and a resampling procedure.

Following the idea of grid-based RBPFs, the particle filter set Pt is defined by the individual

poses x
(i)
t , the individual maps M (i)

t , and the weights w
(i)
t at time t

Pt := {(x(i)
t ,M

(i)
t , w

(i)
t )}, with1 ≤ i ≤ I , (4.2)

which was already stated in (2.46). Because of the definition in (4.2), Fig. 4.2 also shows I different
global grid maps where each map i is updated with the same measurements but with different pose
information. The observation model “compares” the current measurements with the maps i which
results in the different weights. Depending on the distribution of the weights, resampling is carried
out. In the following we discuss the steps of the SIR particle filter in detail.

4.3 Sampling via Odometry Motion Model

As discussed in previous work [Bosse et al., 2003; Grisetti et al., 2007], sampling via the odometry
motion model led to poor results since the control information of their robots were not reliable (see
Fig. 4.3). Therefore, Grisetti et al. [2007] proposed a method which also incorporates the map as
well as precise LIDAR sensor readings into the proposal distribution.

However, the statement with regard to the odometry motion model is not applicable in our
thesis due to the following reasons. First, the odometry measurements and the motion behavior
of our current test vehicle are much more precise than the motion behavior of robots used by e.g.
[Bosse et al., 2003]. This is clearly shown in Fig. 4.3. Take into consideration that in our test
vehicle only the serial production odometry information is used and not a high precision IMU-GPS
measurement system.

Second, the precision of our sensor readings has not the same quality than LIDAR sensor
readings. This is caused by the limited field of view and the distance dependent accuracy behavior

of stereo vision (see Sec. 2.2.2.3). Therefore, we use the odometry motion model p(xt|x(i)
t−1,ut−1)

to sample the next possible poses:

x
(i)
t ∼ p(xt|x

(i)
t−1,ut−1) . (4.3)

We apply the motion model which was defined in Chapter 3, Sec. 3.2.2. It is governed by the
control vector ut = [v, ϕ̇,∆t]T. In contrast to the previous chapter, we now model the uncertain
behavior of the forward velocity v and the yaw rate ϕ̇.

In Dömötör [2014] empirical studies were carried out to estimate empirically the variance of the
yaw rate σ2

ϕ̇t
. For this purpose, a long term measurement of the yaw rate was done during the test

vehicle stood still. It turned out that the noise behavior of the yaw rate follows nearly a biased
Gaussian distribution.
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(a) Driven path at MIT-Campus (“Infinite Corridor”)
Bosse et al. [2003].

(b) Reconstructed path based on raw odometry data
Bosse et al. [2003].

(c) Driven path of our test vehicle S 500 Intelligent Drive
in a residential area in Böblingen, Germany.

(d) Reconstructed path of our test vehicle S 500 Intelli-
gent Drive based on raw odometry data.

Figure 4.3: Comparison of the motion behavior of a standard B21 mobile robot Bosse et al. [2003]
and our test vehicle presented in Sec. 3.2.2. In Fig. 4.3(a) the original driven path of the B21
robot is shown. Figure 4.3(b) shows the reconstructed path based on its odometry information.
Figure 4.3(c) and Fig. 4.3(d) show an example of the odometry behavior of our test vehicle. It is
clearly shown that the control information of our test vehicle is much more precise than the one of
the B21.
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(a) Distribution of the yaw rate ϕ̇t without offset correction.

(b) Distribution of the yaw rate ϕ̇t with offset correction.

Figure 4.4: Distribution of the measured yaw rate while the test vehicle stood still. In (a), mea-
surements without an offset correction are shown. After the estimation of the systematic offset of
−1.3e−3 rad

s the behavior of the yaw rate is approximately mean free. In both cases, the data in (a)
and (b) represents nearly a Gaussian distribution which is represented by the red line fit.

Figure 4.4 shows the distribution of the yaw rate with and without offset correction. The noise
behavior of the velocity is also be assumed to be Gaussian although no empirical studies were

carried out. Here, σ2
vt is tuned by hand. In summary, we define that the individual velocities v

(i)
t

and yaw rates ϕ̇
(i)
t can be sampled by

v
(i)
t ∼ N (vt, σ

2
vt) and (4.4)

ϕ̇
(i)
t ∼ N (ϕ̇t, σ

2
ϕ̇t

) . (4.5)

Based on (4.4) and (4.5), the motion description of Sec. 3.2.2, and the sampling idea described in
Thrun et al. [2005, chapter 5.3.2], sampling new pose hypothesis is straight forward.
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4.4 Importance Weighting via Observation Model

Following the idea of RBPFs (see Sec. 2.7.2, (2.48)), the individual weights w
(i)
t are recursively

estimated by

w
(i)
t ∝ p(S t|M

(i)
t−1,x

(i)
t ) w

(i)
t−1 . (4.6)

Here, the posterior p(S t|M
(i)
t−1,x

(i)
t ) defines the observation model which is realized by a grid based

map matching technique in this thesis. Following the definitions of the previous presented mapping
approach we use the current observations S t to estimate the Cartesian occupancy grid map M ac

t .

Afterwards, M ac
t is matched to all global maps M (i)

t−1 to estimate the individual weights.
Next to correlation based approaches [Konolige and Chou, 1999], score based techniques [Schröter

et al., 2007] are often used to estimate how good grid maps fit to each other. Here, we choose the
latter technique which was successfully used in the work of Dömötör [2014]. How good static
environment information of both maps is aligned to each other is defined by the matching score

ρ
(i)

M ac
t ,M (i)

t−1

. The better M ac
t aligns with M (i)

t−1, the better should be the score value. We only

increment the score value, if both grid cells mac
k,t and m

(i)
k,t−1 are occupied. The index k stands for

the k-th element of all grid cells K of M ac
t and M (i)

t−1, respectively. If a difference in both grid cell
arguments exists, we decrease the score to punish misalignments. Free space area is not considered

during the score estimation. Mathematically, the score value ρ
(i)

M ac
t ,M (i)

t−1

is defined by

ρ
(i)

M ac
t ,M (i)

t−1

=
K∑
k=1


1 if

(
p(m

(i)
k ) > 0.5

)
∧
(
p(mac

k,t) > 0.5
)

−1 if
(
p(m

(i)
k ) < 0.5

)
∧
(
p(mac

k,t) > 0.5
)

−1 if
(
p(m

(i)
k ) > 0.5

)
∧
(
p(mac

k,t) < 0.5
)

0 else .

(4.7)

Here, p(m
(i)
k ) is the probability of the single grid cell mk taken from the individual global maps

M (i)
t−1. The probability p(mac

k,t) is taken from the observation map M ac
t .

The score value in (4.7) is a large positive integer, if the global and the observation map are very
similar. Therefore, the weight of this particle should also be high. On the other hand, the score
value is a large negative integer, if the global and the observation map are misaligned. According
to this fact, the weight of the current particle should be small. Based on these facts, the desired
observation model is approximated by an exponential function with

p(S t|M
(i)
t−1,x

(i)
t ) ≈ exp(α ρ

(i)

M ac
t ,M (i)

t−1

), (4.8)

where α is a tuning parameter which has to be defined empirically. As stated in [Schröter et al.,
2007], the parameter α influences the spread in the particle weights and, consequently, influences
the convergence behavior of the particle filter. The score value finds its maximum if the observation

map M ac
t fits nearly perfectly to one of the maps M (i)

t−1 of the particle set. Especially by re-entering
previous mapped regions (loop closures) this should be the case.
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Even though the score based map matching technique is reliable, challenges occur which were
already mentioned in [Dömötör, 2014]. Due to the limited field of view of the stereo camera system,
we only match a small and limited map area in front of the ego vehicle during the estimation of
the score values. This is a major drawback compared to approaches which use 360 deg LIDAR
scans. Furthermore, the accuracy behavior of stereo vision (see Sec. 2.2.2.3) leads to the fact that
the resulting observation grid maps M ac

t are only very precise and crisp near by the ego vehicle’s
position. This was already presented in Sec. 3.7 and Fig. 3.17.

To overcome the mentioned burden the weight estimation runs with a lower frequency than the
sampling of the poses. During the suspension of the weight estimation, the Stixel sets are integrated

into i different smaller, local grid maps using the different particle poses x
(i)
t . This allows us to

create a larger field of view of the local environment around the ego vehicle. Furthermore, the
precision of the local maps increases, as already shown and discussed in Fig. 3.17. For the score,
and consequently for the weight estimation these local grid maps are matched against the global

maps M (i)
t−1. Simply put, we use the environment information near by or even behind the ego

vehicle for the weight estimation. Therefore, also the global map update for each particle runs with
the same frequency than the weight estimation step. The definition of the parameters is discussed
during evaluation in Sec. 6.1.

4.5 The Adaptive Resampling Scheme

As described in Sec. 2.7.2 we use adaptive resampling in this thesis. This means we only apply
resampling if it is really needed. This helps to avoid the particle deprivation problem [van der
Merwe et al., 2000; Doucet et al., 2001; Grisetti et al., 2007]. As defined in (2.49), the effective
number of particles Neff is estimated by

Neff =

[
N∑
i=1

(
wi
)2]−1

. (4.9)

Only when this quantity falls under a threshold, resampling is carried out. The resampling scheme
produces the particle set Pt based on the previous set Pt−1 and their individual weights wit. Two
common resampling schemes are the multinomial, and the systematic resampling [Blanco, 2009].

For a better understanding how both algorithms work, we use an analogy to the roulette wheel
which is shown in Fig. 4.5. In this scenario, each particle represents a specific position along
the arc of the wheel, where the size of the circular segment corresponds to the weight of each
particle. Using multinomial resampling we draw N -times independent random numbers between 0
and 360. These numbers are matched to the corresponding circular segment which results in the
new particle set. Because of the independence of the drawings it can be possible that particle with
higher weights gets eliminated whereas particle with lower weights survive. This is very unlikely,
but it can happen.

Therefore, we prefer the systematic resampling where a random number is drawn only once.
Based on this number all other particles are drawn in an equidistant way. This means that the
distribution of the particles represents the target distribution more systematically. If all particles
have the same weight ŵit = 1/N , the particle distribution is exactly reproduced using this technique.
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(a) Multinomial resampling: drawing N -times inde-
pendent random numbers between 0 and 360 leads
to the new distribution of the particles.

(b) Systematic resampling: a random number is
drawn only once. Based on a systematic segmen-
tation of the circumference the new particle set is
defined.

Figure 4.5: Two major resampling schemes. The multinomial resampling technique is shown in
4.5(a) and the systematic resampling in 4.5(b). The images were taken from [Blanco, 2009]. With
the analogy to the roulette wheel the process of the resampling step is intuitive.



Chapter 5

Evaluation with Known Poses

In this chapter we evaluate the novel grid based mapping approach of Chapter 3 under the assump-
tion that the pose of the vehicle is known. These experiments are divided into two parts. In the
first part (Sec. 5.1) we evaluate the mapping approach based on artificial stereo image sequences.
This helps us to evaluate different configurations of our mapping approach under optimum con-
ditions. In Sec. 5.2 the performance of our approach is evaluated based on real-world data. To
create reference maps, we rely on a benchmark data set which includes optimized pose information,
stereo image sequences, as well as high precision laser scans. The used evaluation techniques were
presented in Sec. 2.9 before.

5.1 Evaluation with an Artificial Ground Truth Data Set

In this section we evaluate the novel mapping approach with the help of artificial image sequences.
The major idea is to test different parameter settings under optimum conditions. At the beginning
(Sec. 5.1.1), we describe how we generate the reference occupancy grid map which is defined as
ground truth (GT) from now. Sec. 5.1.2 and Sec. 5.1.3 deal with the estimation of detection rates
and geometrical accuracies. Finally, we give a summary in Sec. 5.1.4.

5.1.1 Setup of Artificial Ground Truth Data and Preprocessing Steps

5.1.1.1 Generation of an Artificial Ground Truth Data Set

To generate the artificial GT data we rely on a 3D simulation environment that renders artificial
stereo image sequences. Here, we use the open source library POV-Ray1 which is a high quality soft-
ware environment to create three dimensional scenes and images based on ray-tracing techniques.
First, we define the trajectory of the vehicle using a realistic physics engine which is controlled by
steering angle and acceleration. The driven path has a length of nearly 1 700 m. We also include a
stereo camera model into the vehicle which has nearly the same stereo configuration then the stereo
system in the test vehicle described in Sec. 2.2.1 and Sec. 3.2.1. The gray-scale 12 bit images have
a size of W ×H = 1024× 440 pel, and the baseline is 0.23 m. The sequence is rendered with 25 Hz.

1http://www.povray.org/
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In the second step, a 3D city model is created along the trajectory of the vehicle. The city model
includes no dynamic obstacles like driving cars or pedestrians since we are interested to create
optimum conditions. Figure 5.1 shows example images of the simulated city model. Because of the
fact that all object points of the 3D city model are exactly known we produce a GT occupancy
grid map MGT by projecting all rendered 3D points into the planar ground plane. Based on the
ray-tracing and the driven path it is also possible to generate the GT free space area. Figure 5.2
shows the resulting GT grid map MGT. The grid map has a dimension of 8000 × 8000 grid cells
using a grid cell resolution of 10 cm. The library POV-Ray is also used to render artificial stereo
images. The image sequence has length of 7475 frames.

Figure 5.1: Example images of the self generated 3D city model. The open source library POV-
Ray is used to create the virtual environment. A realistic engine model is applied to define the
GT vehicle path. Each single 3D point of the city model is known which allows us to generate the
GT occupancy grid map MGT. We also utilized the 3D city model to render artificial stereo image
sequences which are the basis for our mapping approach (see Fig. 5.3).
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Figure 5.2: The GT occupancy grid map MGT. Close-ups of the GT map are also shown to visualize
details of the map and its precision. The map size is 8000× 8000 grid cells which results in an area
of 800× 800 m2. The driven path of the vehicle is 1, 697 m long. The stereo image sequence has a
length of 7475 frames.

5.1.1.2 Preprocessing of Input Data

Figure 5.3 shows the preprocessing steps based on the rendered stereo images. As stated in previous
sections, we use SGM to estimate dense disparity images. Because of optimum disparity images
we also obtain best possible Stixel World results. The quantization error only depends on the
Stixel width which is also shown in Fig. 5.3. Since no dynamic obstacles are modeled, tracking and
segmentation of the Stixel World is not required in this evaluation. Figure 5.3 also shows the result
of the local column-disparity map as well as the local Cartesian grid map.
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Figure 5.3: Process chain of the generation of input data with rendered sequences. Because of the 3D
simulation environment, perfect stereo image sequences are rendered via ray tracing. This results in
optimum disparity images and a perfect 3D point cloud for the current image pair. Consequently,
the Stixel result is also perfect which is observed from the projection of the Stixels into the 3D point
cloud. We only observe a quantization error which highly depends on the Stixel width. The figure
also shows the column-disparity occupancy grid map as well as the local occupancy Cartesian grid
map. A Stixel width of sw = 7 pel and a disparity sampling rate of ds = 8 are chosen.
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Figure 5.4: The occupancy grid map MGC based on the novel mapping approach with dynamic
graph cuts for the rendered sequence. The parameter setup described in Sec. 5.1.1.3 is used. A
Stixel width of sw = 3 pel and a sampling rate of ds = 8 is selected. The map is based on the
rendered image sequence with a length of 7475 frames. Close-ups of the map are shown in Fig. 5.5.
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5.1.1.3 Parameter Settings

The novel occupancy mapping approach of Chapter 3 includes a list of parameters which have to
be defined. In the following, we define important parameters for image processing, for the map
creation, and for the grid map optimization.

Image Processing Settings. For the image processing we use the following parameters. The
rendered images have a size of W ×H = 1024× 440 pel. The general disparity range is defined by
dmin = 0 pel and dmax = 128 pel. We evaluate the influence of the Stixel width sw in this section.
Therefore, we vary this parameter and set sw = 1, 3, 5, 7, 9 pel. The number of Stixel segments for
each column u is limited by the first two Stixel obstacles which means Nu = 2. The empirical
standard deviation of the Stixels σ̃2

dun
and the outliers probability pout

un are estimated during the
Stixel generation process. They are not set manually.

Map Settings. The map settings are defined as follows. The local column-disparity (u∗, d∗)
space is defined by u∗ ∈ [0,W ] and d∗ ∈ [128, 0]. The disparity sampling rate ds of the disparity
space is a key parameter which is defined manually. Because of that, we validate different intervals
with ds = 2, 4, 8, 16. The resolution of the a Cartesian grid cell is 0.1 m. The size of the local
Cartesian grid map has a size of 40× 40 m2.

Optimization Settings. The transition probabilities in the prediction step are defined by p(mi,t |
mi,t−1) = 0.95 and p(¬mi,t | mi,t−1) = 0.05 (see also Sec. 3.4.3). The control parameter for the
binary terms are defined by kij = 0.08 and λb = 2 (see also Sec. 3.5).

Figure 5.4 shows the final grid map MGC using the novel mapping approach based on MRFs
and dynamic graph cuts. We use a setup of sw = 3 pel and ds = 8. For clarification, the index GC
stands for the dynamic graph cut solution. Figure 5.5 shows six different close-ups which compare
the map MGC with the GT map MGT. Further results with different configurations are shown in
Appendix B.

5.1.2 Classification Accuracy

In this section we validate how good the occupancy grid maps MGC fits to the GT map MGT in a
quantitative way. Here, classification techniques are used which were presented in Sec. 2.9.2.

5.1.2.1 Description of the Experiment

To achieve classification accuracies we overlay the GT map MGT with the estimated map MGC

and count grid cells which are correctly classified as obstacles or free space. For this purpose, all
grid cells with a probability higher than 0.5 are classified as obstacles, and cells with a probability
lower than 0.5 are classified as free space area. Unknown areas are excluded in this experiment. We
achieve detection rates of obstacles and detection rates of free space in percent [%] by normalizing.

Figure 5.6 shows an example of the overlay of these grid maps for a specific scenario. The overlay
is illustrated on the right of this figure. Here, the red areas describe an “over-segmentation”. This



5.1. EVALUATION WITH AN ARTIFICIAL GROUND TRUTH DATA SET 95

means in this case that we falsely estimate more occupied grid cells than exist in the GT map. Blue
areas describe “under-segmentation” which means in this case that we missed obstacles during map
estimation. In this example, the Stixel width is set by sw = 1 pel and the disparity sampling rate is
set by ds = 16. The detection rate of obstacles is 89.5 %, and the detection rate of free space is
97.16 %. In the following, we vary the Stixel width sw and the disparity sampling rate ds to get
insights which configuration performs best. We are also interested how good the novel mapping
approach performs against occupancy grid mapping approaches which neglect the dependencies of
neighboring grid cells. Therefore, we also estimate occupancy grid maps following the approach
of Muffert et al. [2014]. This approach is also based on existence estimation (see Sec. 2.4.2 and
Sec. 3.4.1), but does not model the dependencies between neighboring grid cells. These maps are
called MEX.

5.1.2.2 Results of Detection Rates

Tab. 5.1 shows classification accuracies for different parameter setups. The table includes five major
blocks where each block is for a specific Stixel width sw. Each block itself includes classification
results for different disparity sampling rates ds. In total, 20 different setups are evaluated. For each
setup the table includes the detection rates of obstacles and detection rates of free space of the
mapping approach MGC. The table also includes the results of the mapping approach MEX. For a
better interpretation of the data, the classification results are also shown as a diagram in Fig. 5.7.
In this figure, the detection rate of free space is plotted against the detection rate of obstacles. The
best performance is in the upper right corner, where both detection rates become 100.0 %. The
different Stixel widths are represented by different colors. Here, red for sw = 1, dark red for sw = 3,
green for sw = 5, dark green for sw = 7, and blue for sw = 9. The different sampling rates are
visualized with different symbols. We use rectangles for ds = 2, circles for ds = 4, stars for ds = 8,
and triangles for ds = 16. The results for the novel mapping approach MGC are represented with
dashed lines, and the results for method MEX with solid lines. In addition, Appendix B.1 shows
the overlay of the complete occupancy grid map with MGT.

5.1.2.3 Discussion

Based on the results of Tab. 5.1, we observe that the novel mapping approach achieves the best
detection rate of obstacles of 99.11 % with a Stixel width of sw = 1 and a disparity sampling rate of
ds = 2. The lowest detection rate of obstacles is 98.01 % with a setup of sw = 9 and ds = 16. In
comparison, the approach MEX performs best by a setup of sw = 3 and ds = 2 with a detection
rate of 98.70 %. The approach shows its lowest performs using a setup of sw = 1 and ds = 16.

With regard to free space, MGC has the best performance with 97.16 % and the approach MEX

with 97.20 %. In both cases, the setup is defined by sw = 1 and ds = 16. The lowest performance
of free space detection is 93.06 % for MGC and 93.08 % for MEX using the setup sw = 9 and ds = 2.
The novel mapping method MGC outperforms the method MEX with regard to the detection rate
of obstacles. Our assumption for this reason is, that the influence of the binary terms lead to a
wider representation of obstacles. Based on the smoothness effect of the binary terms, more cells
become occupied. The method MEX performs slightly better in the detection of free space using
artificial data.
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(a) Nr. 1240 (b) Nr. 1910

(c) Nr. 2290 (d) Nr. 3700

(e) Nr. 5140 (f) Nr. 5650

Figure 5.5: Comparison between close-ups of the GT map MGT and the estimated map MGC.
To generate MGC, a Stixel width of sw = 3 pel and a disparity sampling rate ds = 8s is used.
Obstacles as well as free space are estimated correctly. The discretization of the column-disparity
space and the transformation in the Cartesian grid map afterwards leads to the fact, that in some
cases obstacles are more spread out than GT provides. This is clearly shown in 5.5(c), 5.5(d) and
5.5(f).

In Fig. 5.4 and Fig. 5.5 we also observe that the mapping results are close to a binary solution.
This statement is especially valid for obstacles. The reason for this is that the precision of the Stixels
is very high because GT disparity maps without any noise are used (see Fig. 5.3). Consequently,
the Stixel depth has a very high precision σ̃2

dun
. Since the disparity images are nearly perfect, we

also observe low outlier probabilities pout
un . Both settings produce a very sharp Gaussian function

for the measurement model with regard to the disparity space.
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Figure 5.6: The overlay of the GT map close-up with the estimated map close-up for frame number
3354. The upper left image represents the GT map MGT. The lower left image shows the result of
the estimated map MGC. The settings are sw = 1 pel and ds = 16. On the right side the overlay
of both maps is shown. Red areas describe an “over-segmentation”, and blue areas describe an
“under-segmentation”. For this setup, the detection rate for obstacles is 89.5 % and for free space
97.16 %. An “under-segmentation” is almost not observed in this scenario.

Nevertheless, the transformation into the Cartesian space produces a smearing effect (see
Sec. 3.4.2). This effect strongly depends on the distance to the vehicle which is simulated in
Fig. 5.8. The figure shows a high peaked, continuous signal in the disparity space, its discrete
projection in the Cartesian space, and the transformation into an equidistant Cartesian 1D grid
space. It illustrates that obstacles in smaller distances are perfectly transformed into the regular
Cartesian grid space. Obstacles which are far away produce a smearing effect because of the chosen
interpolation techniques described in Sec. 3.4.2.

Figure 5.7 also allows additional insights with regard to the overall performance of both meth-
ods. Taking both detection rates into account, the novel approach performs better than MEX,
especially for the disparity sampling rate ds = 8 in combination with the Stixel widths sw = 1, 3, 5.
Therefore, we suggest to use one of these setups for the following evaluation steps. We also rec-
ognize that the overall performance behavior of the detection rates is mainly influenced by the
disparity sampling rate ds. For both mapping methods and for all Stixel widths, the following
statements are true. The highest detection rates of free space are achieved with ds = 16, but we
also get the lowest detection rates of obstacles with this disparity sampling rate.



98 CHAPTER 5. EVALUATION WITH KNOWN POSES

Table 5.1: Classification accuracies for different parameter setups. The map MGT (see Fig. 5.2)
is used as GT data. We vary the Stixel width sw and the disparity sampling rate ds. In total, 20
different parameter setups are tested. Next to the validation of the novel approach MGC, we also
validate the approach of Muffert et al. [2014] which results are defined as MEX. We highlight the
lowest detection rates in red and the highest detection rates in blue. In total, 92.21 % of the grid
cells of the GT grid map are free, 7, 79 % are occupied cells. Grid cells with an unknown state are
not considered in this ratio.

detection rate of obstacles [%] detection rate of free space [%]

MEX MGC MEX MGC

stixel width sw = 1

ds = 16 97.38 98.50 97.20 97.16
ds = 08 98.25 98.82 96.68 96.63
ds = 04 97.68 98.60 96.18 96.15
ds = 02 98.68 99.11 93.49 93.48

stixel width sw = 3

ds = 16 98.15 98.67 96.96 96.92
ds = 08 98.51 98.88 96.48 96.42
ds = 04 98.45 98.91 95.97 95.92
ds = 02 98.70 99.03 93.36 93.35

stixel width sw = 5

ds = 16 98.02 98.48 96.79 96.74
ds = 08 98.52 98.79 96.32 96.26
ds = 04 98.65 98.89 95.79 95.72
ds = 02 98.67 98.92 93.28 93.27

stixel width sw = 7

ds = 16 97.78 98.24 96.52 96.47
ds = 08 98.23 98.49 96.10 96.03
ds = 04 98.54 98.71 95.40 95.30
ds = 02 98.51 98.72 93.15 93.14

stixel width sw = 9

ds = 16 97.51 98.01 96.30 96.25
ds = 08 98.05 98.34 95.91 95.83
ds = 04 98.36 98.61 95.21 95.08
ds = 02 98.45 98.64 93.08 93.06
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Figure 5.7: Detection rates of free space and detection rates of obstacles for 20 different config-
urations. The different colors present different Stixel widths. The symbols represent different
disparity sampling rates . The solid lines are used for method MEX, the dashed lines are used for
method MGC. It is clearly shown, that the approach based on MRFs outperforms the method
MEX.

On the other hand, the highest detection rates of obstacles are obtained by ds = 2, whereas this
configuration shows the lowest performance for free space detection. This contradictory behavior
is explained as follows: The lower the disparity space is sampled, the higher is the quantization
error. A high quantization error leads to a strong over-segmentation of obstacles and, consequently
to good obstacle detection rates but a poor free space quality. On the other hand, a finely sampled
disparity space leads to under-segmentation of obstacles. This results in the fact, that we miss static
obstacles, but also increase the quality of free space. Both methods tend to an over-segmentation.
This means that the resulting maps have more occupied areas than really exist. This topic is
discussed in Sec. 5.1.4 again. Based on the insights of this section, we propose to use a Stixel width
of sw = 3 in combination with a disparity sampling rate of ds = 16 or ds = 8.
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Figure 5.8: A high peaked measurement model in the disparity space (top), its discrete projection
in the Cartesian space (middle), and its transformation into an equidistant Cartesian 1D grid space
(bottom). The interpolation method described in Sec. 3.4.2 was chosen.

5.1.3 Geometrical Accuracy

In this section we evaluate the geometrical accuracies of the novel occupancy grid maps based
on GT data. The goal is to estimate how accurate static obstacles are represented in the map
with regard to the vehicle’s point of view. Therefore, we describe the idea of the derivation of
geometrical entities from grid maps first, followed by the description of correspondences and their
weight estimation. Based on these results, we are able to estimate (weighted) absolute mean errors
(W)MAEs which were already defined in Sec. 2.9.1. These measures allow us to make quantitative
statements with regard to the geometrical accuracy of the generated maps.

5.1.3.1 Description of the Experiment

To achieve geometrical accuracy assessments, the following situation is regarded. The generated
map should be used for localization or path planning purposes. For this task the best geometrical
accuracy of static obstacles is needed. In an optimum case, the geometry of static obstacles, like
walls and buildings, fits best to the GT map. In our experiment we assume that we drive again
along the given pose and scan the environment with a laser scanner pointed in driving direction.
Here the “trick” is, that the environment is represented by the created maps MGC, MEX, and
MGT. The laser scanner reports us distances to static obstacles for each emitted ray. This results
in distance measurements with regard to the vehicle coordinate system.

For a better understanding, this experiment is illustrated in Fig. 5.9. It shows the ray casting,
as well as the derived 2D hit points of obstacles for a GT map sample and for an estimated map
sample. The scan procedure is applied for all map types MGC, MEX and MGT. The scan step
involves, that more static obstacles close by the vehicle are hit than obstacles which are far way
(see also Figs. 5.9(a)-5.9(d)). This results in the fact, that obstacles close to the vehicle are more
considered during evaluation than obstacles which are far away. This fact is reasonable since it is
necessary that especially the environment close to the vehicle is mapped correctly, e.g. during path
planning. To avoid correlations between the scans, the scanning is carried out every 10 th frame.
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5.1.3.2 Definition of Geometrical Map Errors

To estimate geometrical map errors we have to align the detected points from the estimated map
and the GT map. To solve this correspondence problem, the nearest neighbor search is used for
each scan run. The maximum search radius is 1.0 m. Points outside this search window are defined
as outliers and are neglected in the following evaluation steps. We only allow 1 : 1 correspondences
which means that only one GT point is associated with only one measurement point. An example
is shown in Figs. 5.9(c)-5.9(f). Following the definition in Sec. 2.9.1 we define the geometrical
accuracy of an estimated map by the distance errors of static obstacles. Therefore, we estimate the
distances for all three map types diGC, diEX, and diGT based on the detected points. We define the
geometrical error ∆gim by

∆gim := diGT − dim with m = {GC,EX}. (5.1)

5.1.3.3 Weight Estimation

Following the definition in Sec. 2.9.1, we want to exploit the full information of GT data and
estimated data which means to also take the precision of the geometrical errors into account.
Unfortunately, occupancy grid maps do not provide accuracy information of static obstacles by
default. They are made to represent the occupancy probabilities.

However, in order to estimate precision or weight values for the estimated geometrical errors,
we make use of the ray casting technique again. We collect all probability values along the ray
until a static obstacle is hit. A sigmoid function is fit into these probability values with regard to
the traveled (ray) distance. This step is visualized in Fig. 5.10. In general, the sigmoid function
fsig(x, λ, τmin, τmax) is controlled by the min/max range values τmin and τmax, the slope factor λ
and the turning point x. The sigmoid function is defined by

fsig(x, λ, τmin, τmax) =
(τmax − τmin)

(1 + e(−x/λ))
+ τmin. (5.2)

In our case the turning point x is defined by the probability occupancy value of a hit point and
its corresponding traveled distance along a ray. The range interval is defined in the surrounding
of the turning point with τmin = x− 0.3 m and τmax = x+ 0.3 m. For our purpose, the important
factor is the slope value λ. If the value is close to zero, the sigmoid function is nearly a binary step
function. As one can seen in Fig. 5.10, this is the case for the points taken from MGT.

This is consistent with the idea of GT data, since MGT is binary. In contrast, the estimated
maps MGC and MEX show a different behavior. Here, the slope factor differs considerably from
the slope values of MGT. This is reasonable because of the uncertain behavior of the grid maps.

We take these insights into account for the estimation of precision values and weights, respec-
tively. For each distance dim the corresponding slope value λdim is estimated. The decision is made,

that the slope represents the precision of the distance dim. Based on this statement the weights for
the geometrical errors are defined by

wi∆gm =
1

λ2
dim

+ λ2
diGT

. (5.3)
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The distribution of estimated slopes λdiGC
of configuration sw = 3 and ds = 08 is shown in Fig. 5.11.

The figure also includes the slopes values λdiGT
of the GT map MGT. As assumed, the slopes λdiGT

are considerably smaller than the slopes λdiGC
. We also observe outliers at positions 0.05, 0.09, and

0.18. These outliers can be explained by errors during the sigmoid fitting process. Compared to the
GT data, the slopes for MGC λdiGC

are more spread out. The average value for the slope is about
0.05. For visualization purposes, we clip the histograms at 0.4 at the x-axis and clip at 55 000 at
the y-axis. About 300 000 slope values are estimated for each method.

(a) Ray casting of MGT for a specific
frame i

(b) Scanned points of MGT (c) Correspondences and geometrical
errors ∆gim

(d) Ray casting of MGC for a specific
frame i

(e) Scanned obstacle points of MGC (f) Correspondences and geometrical
errors ∆gim (zoom)

Figure 5.9: Derivation of geometrical errors for occupancy grid maps. The estimated map, as
well as the GT map are scanned with a simulated laser scanner to derive geometrical errors ∆gim
(Figs. 5.9(a)-5.9(d)). This results in point clouds and correspondences (Figs. 5.9(b)-5.9(e)), and in
the distance errors ∆gim (Figs. 5.9(c)-5.9(f)).
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Figure 5.10: Concept of the precision estimation in occupancy grid maps. A sigmoid function is fit
into the probability values along the ray distance. For GT, the probability behavior follows a very
sharp 1D sigmoid function with the slope λdiGT

. For the estimated map MGC the sigmoid is wider
which results in a larger slope value. The slope values are used to estimate precision values for the
hit points.

5.1.3.4 Results of Geometrical Map Errors

Following Sec. 2.9.1, we decide to use the mean absolute error (MAE) and the weighted mean
absolute error (WMAE) as measures for geometrical accuracy assessments. Using (5.1) and (5.3)
the MAEm is defined by

MAEm =
1

N

I∑
i=1

| ∆gim | , (5.4)

and the WMAEm is computed by

WMAEm =
1∑I

i=1w
i
∆gm

I∑
i=1

wi∆gm | ∆g
i
m | . (5.5)

As in Sec. 5.1.2, the 20 configurations of different Stixel widths and disparity sampling rates are
tested. The results for the MAEm and WMAEm are shown in Tab. 5.2. For each configuration,
we use about 300 000 distances for the estimation of the measures. Similar to the previous section,
we also visualize the different WMAEm in a diagram It allows a better interpretation of the data
and is illustrated in Fig. 5.13. The distributions for the slope values λdiGC

and λdiEX
are shown in

Fig. 5.12. As in Fig. 5.11, we clip the histograms at 0.4 at the x-axis and clip at 55 000 at the
y-axis.
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Figure 5.11: Distributions of the slope values for λdiGC
of configuration sw = 3 and ds = 08 (red),

and for the GT slope values λdiGT
(blue). The slopes λdiGC

are more spread out. The average is
about 0.051. The values λdiGT

are close to zero. Some outliers occur which is caused by fitting
issues.

5.1.3.5 Discussion

Taken the MAEs in Tab. 5.2 into account, method MGC performs best using the Stixel width sw = 3
and the disparity sampling rate ds = 16. A MAEGC of 0.083 m is achieved. Method MEX performs
best using the Stixel width sw = 1 and the disparity sampling rate ds = 16. Here, the MAEEX is
0.077 m. Method MGC, as well as method MEX show their lowest performance using a Stixel width
of sw = 5 and a disparity sampling rate of ds = 02. Here, the MAEs are 0.173 m (GC) and 0.171 m
(EX) respectively. As seen in Tab. 5.2 and Fig. 5.13, the geometrical accuracy increases the greater
the disparity sampling rates are. This is independent from the chosen mapping method and Stixel
width. It is also coherent with the results of Sec. 5.1.2. If we chose high disparity sampling rates,
the influence of over-segmentation is low and, consequently obstacles fit better to GT. This results
in lower geometrical errors.

Without doubt, a benefit of the new method MGC compared to MEX is not observed as long as
the MAE is taken into account. This is also visualized in the four histograms of Fig. 5.14 where the
error distributions for the absolute geometrical errors | ∆gim | are shown. Here, the distributions of
the absolute errors are nearly the same for both methods. As one can see, the error distributions are
spreading out with decreasing the disparity sampling rates which results in larger MAEm. Using
the lowest disparity interval, about 3% of the geometrical errors are larger than 0.6 m (see Fig. 5.14,
bottom left). For all other configurations, the rate is lower than 1%.
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Figure 5.12: Distributions of the slope values for λdiGC
and λdiEX

of configuration sw = 3 and

ds = 08. The average slope value for method MGC is 0.0509 and for method MEX is 0.0522.
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Figure 5.13: Weighted mean absolute errors (WMAEm) for all 20 configurations. The x-axis
represents the disparity sampling rates. The y-axis the WMAEm. The different colors present
different Stixel widths. The solid lines represent method MEX, and the dashed lines method MGC.
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Table 5.2: Mean absolute errors (MAEms) and weighted mean absolute errors (WMAEms) of
method MGC and MEX for 20 different configurations. The table has the same structure than
Tab. 5.1. The estimation is based on geometrical errors ∆gim where m represents the used mapping
method MGC and MEX, respectively. For the weight estimation, we use the method in Sec. 5.1.3.3.
We highlight the highest errors in red and the lowest errors in blue. For each setup, about 300 000
measurement values are taken into account.

MAEm [in meter] WMAEm [in meter]

m = GC m = EX m = GC m = EX

stixel width sw = 1

ds = 16 0.089 0.077 0.070 0.070
ds = 08 0.097 0.095 0.066 0.088
ds = 04 0.108 0.106 0.083 0.116
ds = 02 0.170 0.168 0.127 0.245

stixel width sw = 3

ds = 16 0.083 0.081 0.067 0.095
ds = 08 0.100 0.098 0.089 0.090
ds = 04 0.111 0.109 0.099 0.122
ds = 02 0.172 0.170 0.174 0.242

stixel width sw = 5

ds = 16 0.086 0.083 0.116 0.104
ds = 08 0.102 0.100 0.077 0.116
ds = 04 0.113 0.111 0.103 0.105
ds = 02 0.173 0.171 0.143 0.176

stixel width sw = 7

ds = 16 0.090 0.087 0.075 0.079
ds = 08 0.105 0.103 0.090 0.128
ds = 04 0.120 0.116 0.088 0.123
ds = 02 0.171 0.169 0.126 0.189

stixel width sw = 9

ds = 16 0.093 0.090 0.083 0.084
ds = 08 0.109 0.105 0.102 0.103
ds = 04 0.124 0.119 0.095 0.096
ds = 02 0.170 0.168 0.121 0.180
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Figure 5.14: Histograms of absolute geometrical errors | ∆gim | for a Stixel width sw = 3 and the
disparity sampling rates ds = 16, ds = 08, ds = 04, and ds = 02 for both methods MGC and MEX.
The histograms also include the mean absolute errors (MAEm). The histograms are clipped by
1 m.

Although no improvements are observed using the MAE as measure, we are still able to achieve
geometrical accuracies in the range of a grid cell resolution. It is able to create occupancy grid
maps with geometrical accuracies under 10 cm as long as at least a disparity sampling rate of
ds = 08 is chosen. We state this achievement as a success in this thesis. Here, the influence
of the Stixel width is not the important factor which was already mentioned in Sec. 5.1.2.3. The
disparity sampling rate is the key parameter in this case.
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The MAE does not exploit all information since the weight information, and consequently the
relative importance of each geometrical error, is neglected. Therefore, the WMAEs are also pre-
sented and discussed in this section. Taking the weights into account, the novel mapping approach
performs in average better than method MEX which can be observed in Tab. 5.2.Method MGC

performs best with a WMAEGC of 0.066 m using sw = 1 and the disparity sampling rate ds = 08.
Method MEX has its best performance with a setup of sw = 1 and ds = 16. Here the WMAEEX is
0.070 m.

The largest WMAEs are 0.245 m for method MEX using the setup of sw = 1 and ds = 02,
and 0.174 m for MGC using the setup of sw = 3 and ds = 02. With regard to the WMAEs,
the benefit of method MGC is also shown in Fig. 5.13. Here, especially the configuration for the
disparity sampling rates ds = 02 and ds = 08 in combination with a Stixel size of sw = 5 should be
mentioned. The WMAEGC is 0.143 m and the WMAEEX is 0.176 m for a disparity sampling rate of
ds = 02. For ds = 08 the WMAEGC is 0.077 m and therefore almost 4 cm better than the WMAE
for method MEX. It surprises, that the method MEX performs slightly better than MGC with a
setup of sw = 5 and ds = 16. No benefits are visible using the Stixel width sw = 9, except by using
the disparity sampling rate ds = 02.

Taking the distribution of the estimated slopes in Fig. 5.12 into account, the reason for a better
performance of the novel mapping approach becomes visible. The amount of slopes values which
are equal or smaller than 0.004 is by a factor of about 1.50 higher for method MGC than for method
MEX. This means that for method MGC more steeper sigmoid functions exists, and consequently
more sharper obstacles in the occupancy grid maps are available. We also observe that the total
number of slope values equal or larger than 0.4 is considerably smaller for the novel mapping
approach than for method MEX. The mean slope value for MGC is 0.051 and 0.052 for method
MEX. Because of these insights, we state that we are able to generate more precise static obstacles
with the novel approach, as long as a meaningful parameter setting is chosen (like sw = 3 and
ds = 16).

5.1.4 Summary and Final Discussion Using Artificial Ground Truth Data

5.1.4.1 Summary

In this section we presented quantitative evaluation results based on artificial data and optimum
conditions. Results of detection rates, as well as geometrical errors of obstacles were presented.
We validated the novel occupancy grid map approach against a method which does not take the
dependency of neighboring grid cells into account. The results show that static obstacles, as well
as free space is generated in a precise and reliable way. This statement is confirmed by obstacle
detection rates and free space detection rates larger than 95 % using a disparity sampling rate of
at least ds = 08. We observed that a Stixel width of 3, 5, or 7 should be chosen. It was shown
that the novel mapping approach performs better with regard to obstacle detection rates. Here,
an enhancement of 0.42 % compared to method MEX was observed. The geometrical error analysis
pointed out, that it is important to take weight information into account. The WMAEs are in the
range of 10 cm or less if a disparity sampling rate of at least ds = 08 is chosen.
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(a) sw = 5 pel, ds = 16 (b) sw = 5 pel, ds = 4 (c) sw = 5 pel, ds = 2

Figure 5.15: The influence of the quantization error and the wedge effect based on the disparity
interval steps ds = 16, 04, 02. The smaller the disparity steps ds, the bigger is the wedge effect which
is clearly shown for horizontally orientated walls. Appendix B.2 presents all 20 configurations.

Figure 5.16: Explanation of the wedge effect during four incremental map update steps. The light
blue rectangles describe the limited field of view of the stereo camera. The dotted line represents
the driven path of the vehicle. When the vehicle approaches the L-shaped obstacle on the right,
only areas, which are in the field of view of the camera, are updated. Because of the incremental
map update and a finer disparity grid resolution, the contour of the obstacles becomes more precise
during approaching. This results in a horizontal orientated wall which has the form of a wedge.
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5.1.4.2 Final Discussion

The Secs. 5.1.2-5.1.3 show that over-segmentation as well as geometrical errors grow systematically
with regard to the lateral distance between obstacles and vehicle. These insights are not proven in
a quantitative way, but they become apparent taking the example maps shown in Fig. 5.5, Fig. 5.6,
and Fig. 5.9 into account. On the one hand GT and the estimated maps are aligned perfectly in
many regions, especially for vertically orientated walls close to the vehicle’s position.

On the other hand, horizontally orientated walls which are far away from the vehicle are consid-
erably wider and more spread out than GT provides. The variation of the dimension of obstacles
is caused by the quantization of the disparity space and the transformation in the Cartesian grid
map afterwards. If Stixels are observed in the outer bound of the field of view of the stereo camera,
one cell in the column-disparity space influences several Cartesian grid cells which can be seen in
Fig. 5.8. The smaller the value ds, the more Cartesian grid cells are effected which results in a
larger expansion of objects. This is clearly visible in Fig. 5.15.

Only if the vehicle approaches the object and the object is still in the field of view of the
camera, the previous mentioned effect is decreasing until several column-disparity cells fall into one
Cartesian grid cell. Because of the incremental map update, the contour of these obstacle parts
which are repeatedly observed becomes more precise during approaching. As seen in e.g. Fig. 5.9,
this results into static obstacles which have the form of a wedge. We define this phenomena as the
wedge effect which is also illustrated in Fig. 5.16 and Fig. 5.15. The choice of a large ds helps to
reduce the influence of the wedge effect and produce more precise maps.

One of the core achievements of this evaluation section is to find a meaningful configuration
with regard to the disparity sampling rate and Stixel width. Based on the presented results, we
come to the decision that a Stixel width of 3 and a disparity sampling rate of ds = 16 should be
chosen for the novel mapping approach. Obviously we can create more precise occupancy maps
using the novel mapping approach compared to occupancy grid mapping techniques which do not
take the dependency of neighboring grid cells into account.

The influence of the parameters during prediction as well as the parameters for the binary terms
were not discussed in this section. This evaluation should be considered in future evaluation steps.
We did not add artificial noise to the GT disparity images to measure the influence of outliers.
This should also be done in future.
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5.2 Evaluation with Real-World Data

In this section we evaluate the novel mapping approach with the help of real-world data. At
the beginning, the used data set is introduced, and how reference occupancy grid maps MRE are
generated. In Sec. 5.2.2 we explain how we apply our novel mapping approach based on this data.
We also present first qualitative results in this section. Similar to the previous evaluation section,
classification and geometrical accuracies are presented in Sec. 5.2.3 and Sec. 5.2.4 respectively. At
the end, we give a conclusion of the evaluation with real-world data.

5.2.1 Description of the Data Set

This section describes the data set which is used for real-world evaluation. The KITTI vision bench-
mark suite (Sec. 5.2.1.1), and the process of reference occupancy grid map estimation (Sec. 5.2.1.2)
is introduced in the following subsections.

5.2.1.1 The KITTI Vision Benchmark Suite

For the evaluation of the novel mapping approach we use the raw data sets of the real-world KITTI
vision benchmark suite [Geiger et al., 2012, 2013]. Based on the autonomous driving platform
Annieway [Kammel et al., 2008], the team around Geiger et al. [2012] created these data sets which
include

• rectified 8 bit gray-scale stereo image sequences with a resolution of 1242× 375 pel, recorded
with a frequency of 10 Hz,

• 3D Velodyne point clouds [Velodyne, 2010] with 100 000 points per frame, recorded with a
frequency of 10 Hz,

• and data of a high precision IMU/GPS system which provides position, speed and acceleration
data, recorded with a frame rate of 100 Hz.

The different data types are synchronized to each other, and internal as well as external calibration
parameters of the sensors are available. The master camera is triggered when the laser scanner is
facing in forward direction. In addition, an open source development kit in Matlab and C++ is
provided which allows an easier handling of the data. The test vehicle and the alignment of the
sensors are presented in Fig. 5.17. Example images of the data set are shown in Fig. 5.18. The
research team captured sequences in urban, residential, and highway situations around the city of
Karlsruhe in Germany.

The described data set fits perfectly to our interests which is explained in more detail below.
The precise position information based on the IMU/GPS system allows us to apply “mapping with
known poses” also for real-world data. The rectified stereo image sequences with their provided
calibration parameters are converted into our internal framework which allows us to apply the image
processing steps of SGM estimation, Stixel estimation, and Stixel segmentation (see Sec. 3.2.3).
Based on these preprocessing steps, the novel grid mapping approach is carried out. The point
clouds of the Velodyne laser scanner are used to create reference occupancy grid maps which is
presented in the section below (see Sec. 5.2.1.2).
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(a) The test vehicle

(b) The alignment of the sensors

Figure 5.17: The used test vehicle and the sensor alignment of the KITTI vision benchmark suite
[Geiger et al., 2012]. The test vehicle is a Volkswagen Passat B6. The multi sensor system is
equipped with stereo cameras (colored and gray-scaled), a Velodyne HDL-64E and the deeply cou-
pled IMU/GPS navigation system OXTS RT 3003 (see Fig. 5.17(a)). As one can see in Fig. 5.17(b),
a full description of the external calibration parameters is given. This makes the data set transpar-
ent and also unique. Detailed information and access to the raw data sets can be found in [Geiger
et al., 2012, 2013]. The images were taken from Geiger et al. [2012].



5.2. EVALUATION WITH REAL-WORLD DATA 113

Figure 5.18: Sample images of the KITTI vision benchmark suite. The team around Geiger et al.
[2012] captured the sequences in urban, residential, and highway scenarios around the city of
Karlsruhe, Germany. In these samples, only images are shown which were used in the evaluation.
Here, our focus is on residential and urban scenarios.
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For the evaluation eight different sequences are chosen whose characteristics are listed in
Tab. 5.3. Here, we focus mainly on residential areas. With regard to the captured environment
and their effects on the mapping results, the sequences vary in their level of difficulty. The se-
quences 0022, 0023, 0039, 0064 and 0095 include residential areas with narrow streets, less traffic
and well structured environment. In sequence 0087, a small trail with unstructured environment,
lots of vegetation, and trees was recorded. Sequence 0091 represents an inner city scenario with lots
of pedestrians, sitting people, and street furniture. Sequence 0033 is the longest sequence which
includes mainly residential areas, but also parts of open space and rural roads.

Table 5.3: List of the used KITTI image sequences, the map sizes, and their properties.

Name Map size [pel] Properties

26.09.11 height width frames/min scene description

0022 2600 2200 800/1:20 residential area, narrow streets,

well structured environment

0023 4600 700 474/0:48 residential area, narrow streets,

well structured environment

0039 3100 700 395/0:40 residential area, narrow streets,

well structured environment

0064 1600 4500 570/0:57 residential area, narrow streets,

well structured environment

0087 3200 1300 728/1:13 small trail, bushes/vegetation

0091 2400 1000 339/0:34 inner city,42 pedestrians,

sitting people, street furniture

0095 2900 700 268/0:27 residential area, narrow streets,

well structured environment

30.09.11

0033 6400 5600 1594/2:40 residential area,

open space, rural roads

in total: 5168/8:39

5.2.1.2 Reference Occupancy Grid Map Estimation

Under the assumption that the pose information of the IMU/GPS unit is correct, the Velodyne
laser point clouds are used to generate reference occupancy grid maps MRE. We take the reason-
able assumption that the precision of the Velodyne points is much more precise than the Stixel
depth information computed from disparity images. This statement is valid especially for far away
measured obstacles. The generation of the reference map is a semi-automated procedure. The main
processing steps are also visualized in Fig. 5.19. At the beginning, ground plane points are esti-
mated using a RANSAC plane fitting technique. These points are removed afterwards. This results
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in reduced point clouds which represent potentially obstacle information. To allow a meaningful
comparison between reference and estimated data, only Velodyne points are considered which are
in the field of view of the stereo camera. This is realized by projecting the reduced 3D points into
the image plan using the given internal and external calibration files (see also Fig. 5.17(b)). Since
we provide 2D maps, the reduced Velodyne points are projected into the ground plane. All these
points potentially represent static obstacles which should also be observed by the stereo camera.
For free space estimation, points are sampled along the rays between the current position and the
static points. Afterwards, these sampled points are classified as free space points. The static object
points as well as the free space points are integrated over time with the use of the given pose
information into a global, earth fixed Cartesian grid map with a cell resolution of 10 cm. Here, we
do not use any uncertainty model and count hits per cell only. At the end, we use thresholds to
define, when a grid cell is free and occupied, respectively. This results in a coarse reference grid
map which is also shown in Fig. 5.19. In the last step, the coarse reference maps are inspected by
hand to remove dynamic obstacles, smooth the free space area, and remove outliers and clutter.
The final reference occupancy grid maps MRE are shown in Fig. 5.20, Fig. 5.22, and Appendix C.1.

Figure 5.19: Process chain of reference occupancy grid map generation with the help of raw data
sets of the real-world KITTI vision benchmark suite [Geiger et al., 2012, 2013]. The original
Velodyne point clouds are used as input (top left). The preprocessed object points (top middle)
are integrated over time using IMU/GPS position information (top right). The coarse reference
occupancy grid map (bottom right) is generated by counting hits per cell and thresholding. In the
final step, dynamic obstacles, outliers, and clutter are removed by hand. The free space is also
adjusted (bottom left).
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(a) Reference occupancy grid map for sequence 0033, 640× 560 m

(b) Reference occupancy grid map for sequence 0064, 450× 160 m

Figure 5.20: Reference occupancy grid maps for sequences 0033 (5.20(a)) and 0064 (5.20(b)) based
on raw Velodyne point clouds and IMU/GPS data of the KITTI vision benchmark suite [Geiger
et al., 2012, 2013]. The images are scaled to fit best on page.
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(a) Estimated occupancy grid map for sequence 0033, 640× 560 m

(b) Estimated occupancy grid map for sequence 0064, 450× 160 m

Figure 5.21: Estimated occupancy grid maps using the novel approach for sequences 0033 (5.21(a))
and 0064 (5.21(b)). As input stereo image sequences and IMU/GPS data of the KITTI benchmark
suite are used. The images are scaled to fit best on page.
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(a) Reference occupancy grid map for sequence 0022, 260× 220 m (b) Reference occupancy grid map for
sequence 0091, 100× 240 m

(c) Reference occupancy grid map for sequence 0095, 290× 70 m

Figure 5.22: Reference occupancy grid maps for sequence 0022 (5.22(a)), 0091 (5.22(b)), and 0095
(5.22(c))). The images are scaled to fit best on page.
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(a) Estimated occupancy grid map for sequence 0022, 260× 220 m (b) Estimated occupancy grid map
for sequence 0091, 100× 240 m

(c) Estimated occupancy grid map for sequence 0095, 290× 70 m

Figure 5.23: Estimated occupancy grid maps using the novel approach for sequences 0022 (5.23(a)),
0091 (5.23(b)), and 0095 (5.23(c))). The images are scaled to fit best on page.
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Figure 5.24: Close-ups of MGC and MRE for sequence 0033. The results for a sharp right turn in
a residential are shown in the second example. As one can see, vertically orientated structures like
walls (green marker) and house facades (red marker) are constructed correctly. Even objects with
small extension like poles are mapped correctly (blue marker). In the example given below, hedges
(purple and green marker), house facades (blue marker) and a trash bin (red) are highlighted. The
situation marked by the green circle shows that a small bush is missing in the reference data.
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Figure 5.25: Close-ups of MGC and MRE for sequence 0022, 0039, and 0095. All close-ups show
map results of residential areas. Although parked cars are not long-term static obstacles, they
are still mapped precisely (see sequence 0022, red marker). Man-made obstacles like garages are
mapped nicely, but tree rows and huge bushes produce a lot of clutter in the grid maps. The other
close-ups illustrate how accurate small fences (0039, red marker), garden accessories (0039, green
marker), and single trees/bushes close to buildings (0095, green and red marker) are mapped.
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Figure 5.26: Close-ups of MGC and MRE for sequence 0087, and 0091. These two sequences are
the most difficult ones. Unstructured, chaotic environment with lots of vegetation and trees was
recorded in 0087. In sequence 0091, a busy inner city scenario with lots of pedestrians and street
furniture was captured. Street furniture on the right is represented correctly in the occupancy grid
map and have a high overlap with the reference data. On the other hand, tables, parasols and
sitting people on the left side produce a lot of clutter and noise in the resulting grid map.
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5.2.2 Qualitative Results

In this section qualitative results are presented to allow first insights how good the novel mapping
approach performs against real-world reference data. In Sec. 5.2.2.1, the parameter settings and
the conditions during the map building process are described. Afterwards, occupancy grid map
results are shown and discussed in a qualitative way (see Sec. 5.2.2.2).

5.2.2.1 Parameter Settings

As already mentioned in Sec. 5.2.1.1, the provided rectified stereo image sequences and the IMU/GPS
data of the chosen KITTI sequences (see Tab. 5.3) are used as input data for our novel mapping
approach. For the occupancy grid building process we use nearly the same parameter settings than
described in Sec. 5.1.1.3. Here, the major differences exist in the input data. The images have a
size of 1242(W) × 375(H) pel and are recorded with 10 Hz. The baseline b is 0.53 m and the focal
length is 721.53 pel. The horizontal field of view is 81 deg. The height of the camera is 1.65 m above
ground. Based on the evaluation with artificial sequences (see Sec. 5.1.4) we chose a Stixel width
of sw = 3 pel and a disparity resolution of ds = 16. Tab. 5.3 includes the different map sizes which
are used to preallocate memory for the occupancy grid maps on the GPU. The grid cell resolution
is 10 cm.

5.2.2.2 Map Results

Figure 5.21 presents the final results of the novel occupancy grid mapping approach for the sequences
0033 and 0064. The results for sequences 0022, 0091, and 0095 are shown in Fig. 5.23. The
occupancy grid maps for 0039, 0023, and 0087 are illustrated in Appendix C.1. As defined in
Sec. 5.1, the novel occupancy map results are named by MGC. To allow a better qualitative
comparison between reference and estimated maps we present close-ups of both maps in Figs. 5.24-
5.26. These figures also include real-world images for a better interpretation. Important regions in
the maps are also highlighted with colored circles. In Appendix C.1, Fig. C.4 additional close-ups
are shown. A sample of the comparison between results of the novel mapping approach with results
of the method MEX is illustrated in Fig. 5.27.

5.2.2.3 Discussion

The generated occupancy grid maps represent a huge variety of environment information since
the chosen sequences include a lot of different situations and scenarios. This allows us to make
qualitative assessments where the novel mapping algorithm performs well and where the algorithm
reaches its limits. The close-ups in Figs. 5.24-5.26 give us first insights without any quantitative
evaluation steps.

As one can see in all examples, man-made structures with vertically orientated surfaces like
walls, house facades, small garden fences, or garages are constructed precisely. Although parked
cars are not long-term static obstacles, they are still mapped correctly. They are represented in
the occupancy grid maps as typical L-shaped forms. Even static obstacles with small extension,
like poles, trash bins and garden accessories, are represented in the maps as static obstacles (see
Fig. 5.24).
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With regard to spatial dimension and quality of static obstacles, especially the representation
of vegetation differs a lot. On the one hand, single trees, small bushes and hedges close to the
vehicle are mapped correctly. These insights are shown in Fig. 5.25, sequence 0039 and 0095. On
the other hand, unstructured environment like tree rows produces a lot of clutter in the grid maps.
This is observed in parts of sequence 0022 (see Fig. 5.25), parts of sequence 0033 (see Fig. 5.24),
and in sequence 0087. As already mentioned in Sec. 5.2.1.1, sequence 0087 includes challenging
situations with unstructured, chaotic environment.

It seems that the algorithm reaches its limit in situations like these. Another difficult scenario
is shown in sequence 0091, where a busy inner city scenario with lots of pedestrians and street
furniture was captured. As seen in Fig. 5.26, street furniture close to the right side of the vehicle
is represented correctly and has a high overlap with the reference data. On the other hand, tables,
parasols and sitting people on the left side produce a lot of clutter and noise in the occupancy grid
map. Here, the algorithm also reaches its limit. As already stated in Sec. 5.1.4, we observe that
the quality of occupied areas strongly depends on the distances of obstacles with regard to the
vehicle, and how often the corresponding map area was updated during the incremental mapping
approach. Using real-world data, we also have to cope with difficult weather and light conditions,
like e.g. reflections, over-, or underexpose, and image saturation, during stereo estimation which
influence the Stixel precision, and consequently the map quality.

A brief qualitative comparison between the novel mapping approach MGC with the approach
MEX results in the following statements. Taking the close-ups in Fig. 5.27 into account, both
methods show similar results with regard to occupied areas, free space and unknown areas. But
taking a closer look to the results, important differences occur.

It seems that the transition between free space and occupied areas is sharper and more precise
using the novel mapping approach. Based on visual inspection, occupied areas are estimated more
reliable than using the method MEX in some regions. Furthermore, the whole free space estimation
looks more confident and smoother. Please take into account that these statements are based on
eye balling. In the following Secs. 5.2.3-5.2.4, we make assessments with regard to classification and
geometrical accuracies, and taking into considerations all statements and insights of the current
and previous sections.

5.2.3 Classification Accuracies

Classification accuracies based on real-world data are presented in this section. This experiment
follows exactly the same procedure described in Sec. 5.1.2.1. To estimate the detection rates for
free space and obstacles, we use the threshold 0.6 to define occupied areas, and the threshold 0.3
to classify free space areas. Since we generated reference maps and not ground truth data, we
state that MRE is very precise, but not perfect. This is caused by remaining errors in calibration,
synchronization, and the uncertain behavior of the Velodyne laser scanner. Because of this fact, we
define a confidence interval of 2× 2 grid cells. As in Sec. 5.1, we also compare the novel mapping
approach MGC with the approach without MRFs MEX.
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(a) MGC (0095) (b) MEX (0095) (c) MGC (0039) (d) MEX (0039)

Figure 5.27: Qualitative comparison between results of the novel mapping approach MGC with
results of the method MEX for two close-ups of sequences 0095 and 0039.

5.2.3.1 Results of Detection Rates

In Tab. 5.4 we present the classification accuracies for the eight different KITTI sequences. The
table also shows the results for method MEX. In each case, we mark the best results in blue and
the lowest results in red. In the last column the weighted mean for the detection of free space and
obstacles is also shown. Each weight is based on the length of each sequence.

Similar to Fig. 5.7, the classification results are illustrated in a diagram where we plot the
detection rates of free space and occupied areas against each other (see Fig. 5.28). This allows an
easier interpretation of the results. In Fig. 5.28, each sequence is encoded by a different symbol.
The mapping method MGC is visualized in bright red, and method MEX in gray. Similar to Fig. 5.6,
the overlay of reference and estimated map data is presented in Figs. 5.29-5.31. The figures show
close-ups of the grid maps and areas with “over-segmentation” (red) and “under-segmentation”
(blue). The figures also show real-world images of the scenes to allow a better interpretation of the
grid map data.

5.2.3.2 Discussion

Free Space Discussion. As one can clearly see in Tab. 5.4 and Fig. 5.28, our novel mapping
approach performs considerably better than MEX with regard to free space detection. Taking the
weighted mean into account, 87.05 % are correctly detected as free space using our novel approach.
In comparison, the method MEX has a weighted mean detection rate of 84.32 %. The novel method
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MGC achieves the best detection rate of free space in sequence 0087 (90.71 %), and the lowest in
sequence 0091 (76.30 %). For method MEX, the best free space detection rate exists in sequence
0033 (88.77 %), and the lowest also in sequence 0091 (72.38 %).

Based on these results we establish that the modeling of neighboring cell dependencies, which
are represented by the binary terms Ei,j(mi,t,mj,t), has strong influence with regard to a better
free space estimation. The use of MRFs during occupancy grid mapping allows the estimation of
a smoother and cleaner free space. This reduce the number of outliers and clutter and, therefore,
increase the detection rates of free space compared to methods which do not take the dependencies
of grid cells into account. The effect of a smoother and cleaner free space was already observed in
Sec. 5.2.2.2, Fig. 5.27. At this point, we also have a quantitative proof.

Compared to the results based on artificial sequences (see Sec. 5.1.2, Tab. 5.1), the absolute
detection rates for free space are considerably lower using real-world data (96.92 % vs. 87.05 %).
Without doubt, one reason is the free space correction and annotation by hand during the creation
of reference data which was mentioned in Sec. 5.2.1.2. In difficult situations, it is challenging to
define exactly the correct class type occupied area and free space, respectively.

Another reason is that the segmentation process into dynamic and static Stixels (see Sec. 3.2.3)
faces problems with very slow-moving objects. This can be seen in the right example of Fig. 5.30
and in the left close-up of Fig. 5.31: slow moving cars or even trucks which let pass the vehicle,
are classified as static obstacles. This results in false positives (FP) with regard to free space
annotation.

Because of the high precision of the LIDAR scanner and the high horizontal angular resolution
of 0.08 deg [Velodyne, 2010], even gaps between finely structured obstacles in complex environment
situations can be detected. These gaps are defined as free space, in general. Because we define a
Stixel width of sw = 3, only a horizontal angular resolution of 81 deg

1242 pel×3 pel ≈ 0.195 deg is reached
with the current camera and Stixel setup. Since this resolution is by a factor of about 2.4 larger
with regard to the reference sensor, our algorithm is not able to detect these mentioned gaps. This
is another reason for lower free space detection rates.

If we take the differences of the detection rates between both methods MGC and MEX into
account, we see a strong benefit using the novel approach: during evaluation of artificial sequences
we were not able to see a benefit using the novel mapping approach. Here, the detection rates for
free space are MGC= 96.92 % and MEX= 96.96 %. However, using real-world data a considerable
difference in the over all detection rate of free space is observable, namely MGC= 87.05 % vs. MEX=
84.32 %. This shows us, that the power of the novel approach becomes visible using real-world data
which includes challenging situations, outliers, and difficult lightning conditions.

Occupancy Discussion. Taking the mean detection rates of occupied areas into account, the
novel approach also performs better than method MEX with 75.88 %, compared to 74.96 %. The
best detection rates are achieved in sequence 0039 (MGC = 85.15 % vs. MEX = 84.95 %), and
the lowest detection rates in sequence 0091 (MGC = 64.89 % vs. MEX = 63.35 %). In seven
sequences the detection rates of obstacles are higher if we apply the novel mapping approach.
Only in sequence 0087 the method MEX performs slightly better. In Sec. 5.2.1 and Sec. 5.2.2 we
observed that sequence 0091 is difficult since a busy inner city scenario is captured. This statement
is coherent with the results above: for both methods the detection rates are the lowest ones.
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Table 5.4: Classification accuracies for the eight selected KITTI sequences for method MGC and
method MEX. The highest (blue) and lowest rates (red) are also marked. Weighted means are also
estimated.

detection rate of obstacles [%] detection rate of free space [%]

MEX MGC MEX MGC

26.09.2011

0022 73.52 74.68 83.39 87.85
0023 65.99 68.34 77.55 79.99
0039 84.94 85.15 84.30 86.44
0064 74.66 75.43 85.08 86.87
0087 72.17 71.95 87.49 90.71
0091 63.35 64.89 72.38 76.30
0095 81.90 82.28 77.76 81.54
30.09.2011

0033 78.59 79.66 88.77 90.52

weighted mean 74.96 75.88 84.32 87.05
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Figure 5.28: Classification accuracies for eight selected KITTI sequences for MGC (bright red), and
MEX (gray). Different symbols represent different sequences.
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Figure 5.29: The overlay of reference data with MGC for parts of sequence 95. Three samples
are illustrated which visualize over-segmentation (red areas) and under-segmentation (blue areas).
Interesting regions are marked with green circles. In most of the areas a strong overlap is visible
and even small objects like poles are matched correctly (left sample). The figure also shows strong
over-segmentation in some regions.
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Figure 5.30: The overlay of reference data with MGC for parts of sequence 39. Facades parallel
to driving direction of the vehicle are aligned well. Even small walls and singe bushes close to the
vehicle are well aligned. Difficulties arrive if homogeneous, unstructured images are recorded (left
example). This leads to a strong uncertainty and over-segmentation. Artifacts in free space occur
if dynamic obstacles are not classified (right example).
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Figure 5.31: The overlay of reference data with map data of MGC for parts of sequence 33. In
most of the cases a good alignment between reference data and grid maps based on MRFs are
visible. Over-segmentation is caused by poor image conditions as well as by the uncertain behavior
of stereo vision with regard to increasing distances.

The algorithm reaches its limits in situations like these, because the Stixel definition itself is
no longer valid. In contrast to this scenario, sequence 0039 includes well-structured environment
in residential areas which fits better to the Stixel World definition. Consequently, both mapping
algorithms perform considerably better in these environments.

in Figs. 5.29-5.31, we observe much variation in the classification results for static obstacles:
on the one hand, results of the novel approach are well aligned with the reference data. Especially
parked cars, house facades parallel to driving direction, and poles produce a high overlap. On the
other hand, moderate to strong over-segmentation is truly visible in the examples. In contrast to
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the results in Sec. 5.1.2.2, we have to deal with noisy and partly bad conditioned input data. Thus,
the precision of Stixels is less accurate and the outlier probabilities are higher, in general. This
behavior influences in turn the definition of the measurement model which finally results in more
extended occupied areas. Reasons for noisy and partly bad conditioned data are e.g. difficult light
conditions, homogeneous and unstructured areas, and observed objects far away with regard to the
ego position. We already mentioned these facts in Sec. 5.2.2.3. We also observe that Stixels of the
second row are more inaccurate than Stixels of the first row. These Stixels produce more clutter
in the occupancy grid maps. The only meaningful reason is, that these Stixels mostly represent
obstacles far away or vegetation, like bushes or trees. Huge under-segmentation is also determined.
This means that the algorithm is not able to observe obstacles at all, or the measured distances
of the Stixels are not accurate enough with regard to the reference data. An example of under-
segmentation is presented in the left example of Fig. 5.30, where the algorithm is not able to map
the bushes in front of houses. In Fig. 5.29 we can clearly see that house facades across the driving
direction are more far away than reference data provides. We postulate that uncertain behavior of
stereo-vision and bad image conditions are responsible for these situations. The non-detection of
static obstacles as well as the misalignment leads to the fact, that the absolute detection rates of
obstacles are considerably lower than the detection rates in Sec. 5.1.2.2.

5.2.4 Geometrical Accuracies

The geometrical accuracy of the estimated grid maps based on real-world data is evaluated in this
section. Here, we apply the experimental setup which was already introduced in Sec. 5.1.3.

5.2.4.1 Results of Geometrical Map Errors

The estimation of geometrical errors was already described in Sec. 5.1.3.1. We simulate a laser
scanner which scans the maps MRE, MGC, and MEX along the driven path. This procedure results
in distances diGC, diEX, and diGT for each single detected point i. Based on (5.1) we estimate the
geometrical errors ∆gim, where m ∈ {GC,EX} represents the chosen method. All geometrical
errors are concatenated into the error vector ∆gm (see Sec. 5.1.3.2). In Sec. 5.2.3 we observed
that the noise level of the estimated grid maps are higher than in the evaluation section with
artificial sequences. Therefore, we increase the maximum radius for the correspondence search to
1.2 m. The Figs. 5.32-5.33 show the detected points and the correspondences for six sample scans
of sequence 0033. These figures also include the mean distance errors (MDEs) for the specific
frame as well as outlier rates. To estimate the weights wi∆gm we follow the procedure described in
Sec. 5.1.3.3. The results of the sigmoid slopes λdim which are needed for the weight estimation, are
presented in Fig. 5.34. Similar to Sec. 5.1.3.4, the MAEs and WMAEs are estimated for the chosen
KITTI sequences and for both methods MGC and MEX. The results are presented in Tab. 5.5.
In comparison to Tab. 5.2, Tab. 5.5 also includes the outlier rates. We also mark the lowest and
highest (W)MAEs in this table. The distributions of the absolute errors | ∆gim | are shown in
Fig. 5.35 for six KITTI sequences. Take into account that the number of bins and their widths
vary, since the sequences have different length. In Fig. 5.36 we present the distribution over all
absolute errors.
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(a) sequence 0033, frame 0365.

(b) sequence 0033, frame 1175.

(c) sequence 0033, frame 1415.

Figure 5.32: Detected points for MRE and MGC and their correspondences for frames 0365, 1175,
and 1415 of sequence 0033. The first column includes the detected points of MRE, the second
column the detected points of MGC, and the resulting correspondences are visualized in the last
column. The visualization of the correspondences also includes the mean distance error (MDE),
and the outlier rate for this specific frame number.
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(a) sequence 0033, frame 0525.

(b) sequence 0033, frame 1095.

(c) sequence 0033, frame 1590.

Figure 5.33: Detected points for MRE and MGC and their correspondences for frames 0525, 1095,
and 1590 of sequence 0033. The first column includes the detected point of MRE, the second column
the detected points of MGC, and the resulting correspondences are visualized in the last column.
The visualization of the correspondences also includes the distance error (MDE), and the outlier
rate for this specific frame number.
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Figure 5.34: Distributions of the slope values λdiGC
and λdiEX

for both methods MGC (bright red)

and MEX (gray). In this geometrical evaluation, almost 400 000 data points are used.

Table 5.5: The MAEm and the WMAEm of both methods MGC and MEX for the selected KITTI
sequences. The table has the same structure than Tab. 5.2. The outlier rates are also presented.

WMAEm [meter]/(outlier rate [%]) MAEm [meter]/(outlier rate [%])

m = GC m = EX m = GC m = EX

26.09.2011

0022 0.37/(0.37) 0.38/(0.35) 0.37/(0.37) 0.38/(0.35)

0023 0.40/(0.32) 0.38/(0.31) 0.32/(0.32) 0.31/(0.31)

0039 0.37/(0.24) 0.31/(0.23) 0.28/(0.24) 0.27/(0.23)

0064 0.40/(0.29) 0.39/(0.28) 0.40/(0.29) 0.40/(0.28)

0087 0.43/(0.36) 0.43/(0.34) 0.46/(0.36) 0.44/(0.34)

0091 0.42/(0.35) 0.39/(0.34) 0.41/(0.35) 0.40/(0.34)

0095 0.30/(0.26) 0.29/(0.25) 0.30/(0.26) 0.29/(0.25)

30.09.2011

0033 0.36/(0.31) 0.37/(0.31) 0.35/(0.31) 0.36/(0.31)

over all 0.38/(0.31) 0.37/(0.30) 0.36/(0.31) 0.36/(0.30)
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Figure 5.35: Histograms of the absolute geometrical errors ∆gim for the KITTI sequences 0023,
0033, 0039, 0064, 0087, and 0091. The distributions of method MGC are visualized in bright red,
and the distributions of MEX are visualized in bright gray. The histograms also include the mean
absolute errors (MAEm).
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(bright red) and MEX (gray). Almost 400 000 measurements are used.

5.2.4.2 Discussion

Taken the results of Tab. 5.5 into account we observe that the novel mapping approach as well as
the approach MEX have the same geometrical map accuracy with a MAE of 0.36 m. Consequently,
and similar to the results in Sec. 5.1.3.5, we cannot observe a benefit of the novel mapping approach
as long as we take the MAE into account. The histograms in the Figs. 5.35-5.36 substantiate this
statement: we cannot observe considerable differences between the distributions of the absolute
errors for both methods.

Tab. 5.5 also reveals that the MAE differs strongly between the different sequences. In sequence
0039 both methods perform best with MAEGC = 0.28 m and MAEEX = 0.27 m. In comparison,
sequence 0087 has a MAEs of 0.46 m (MGC) and 0.44 m (MEX). The differences between both
sequences are over 15 cm. As already figured out in Sec. 5.2.3, the accuracy of the occupancy grid
maps strongly depends on the captured environment and its distance with regard to the ego vehicle.
In sequence 0087 mainly unstructured environment like bushes and vegetation were captured. The
highest errors occur in this sequence. In comparison, residential areas with narrow streets and well
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structured environment were recorded in sequence 0039 and 0095 instead. These sequences have
the lowest errors. We also have to deal with outlier rates up to 37 % which is observed in sequence
0022. The lowest outlier rate occurs in sequence 0039 with 23 %. These rates are understandable
since we observed in Sec. 5.2.3 that in some estimated map regions obstacles are not aligned with
the reference data or that they are even missing in the estimated maps. This results in high outlier
rates since no correspondences can be estimated in these regions.

The estimation of the WMAEs takes the weights wi∆gm of the errors | ∆gim | into account. As
one can see in Tab. 5.5, the WMAEs also vary strongly between the sequences. The highest error
occurs in sequence 0087, the lowest WMAE is observed in sequence 0095. Taking the WMAEs
over all sequences into account, the method MEX performs slightly better than the novel approach
MGC. The errors are WMAEGC = 0.38 m and WMAEEX = 0.37 m. In Fig. 5.34 we observe that
the distribution of estimated slopes λdim for both methods MGC and MEX are very similar. This
means, the precision of the detected points is also nearly the same. This insight conflicts with
the qualitative statements in Sec. 5.2.2.3 where we postulate that occupied areas are sharper and
more precise when we use the novel mapping approach. Taking the presented results into account,
this statement is no longer valid. We observe that the presented geometrical errors do not differ
considerably between both mapping methods. This also means, that occupied areas have closely
the same precision. We regret that we are not able to prove with the used experiments that the
novel mapping approach achieves improvements with regard to geometrical accuracies in real word
situations.

5.2.5 Summary and Final Discussion Using Real-World Data

5.2.5.1 Summary

In this section we evaluated the novel mapping approach based on real-world data using the raw
data sets of the KITTI vision benchmark suite [Geiger et al., 2012, 2013]. Based on precise pose
information of a IMU/GPS unit and Velodyne point clouds reference occupancy grid maps MRE

were generated in a semi-automated way. The provided stereo image sequences were used to feed
the novel mapping approach. Qualitative results were presented to allow first insights how good
the novel mapping approach performs against reference data. Furthermore, we compare the novel
approach against the mapping technique of Muffert et al. [2014] which does not take the dependency
of neighboring grid cells into account .

We presented classification accuracies and the geometrical map errors in Sec. 5.2.3 and Sec. 5.2.4.
Here, we used the experimental setups of Sec. 5.1.2 and Sec. 5.1.3. We observed that the novel
mapping approach has strong overlaps with the reference data as long as obstacles are close to
the ego vehicle and well structured environment was captured in the recordings. We also figured
out that the algorithm reaches its limits in chaotic and unstructured environments. Especially
vegetation which is observed in the outer areas of the field of view of the stereo camera produces
a lot of clutter in the final grid maps.

Detection rates up to 90 % for free space, and detection rates in the range of 85 % for obstacles
were achieved using the novel mapping approach. The results of the classification accuracies show
that the use of MRFs during occupancy grid mapping produces a smoother and cleaner free space
as well as slightly better detection rates of obstacles. We state that these insights are one of the
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core achievements of this thesis. Unfortunately we were not able to show in a quantitative way,
that occupancy grid maps based the novel mapping approach achieve higher geometrical accuracies
than approaches which do not take the dependencies of neighboring grid cells into account. For
both methods, the MAE was 0.36 m.

5.2.5.2 Final Discussion

At the end of this chapter we have a final discussion about the obtained insights from the imple-
mented experiments based on real-world image sequences.

Influences of the defined Measurement Model. The results of the occupancy grid maps
strongly depends on the quality of the input data and how their uncertain behavior is modeled
in the measurement model p(S t | mi,t, Xw 0:t). In our case the measurement model is primary
controlled by the Stixel uncertainty σ̃2

dun
, the outlier probability pout

un , the disparity interval ds, and
the Stixel width sw. It depends on the captured situation and environment if the combination of
these factors together results in a well conditioned measurement model or not.

In our evaluation steps we figured out that the measurement model is well conditioned when
we observe well structured environments which fits to the assumptions made during the Stixel
estimation. Here, the major assumption is that the captured surroundings are mainly controlled
by man-made environment with either vertical or horizontal planar surfaces (see Sec. 2.2.3). As
a result of this, house facades, well-aligned walls, parked cars and even small poles are precisely
represented by the Stixels. Consequently, the measurement model is good conditioned which results
in a precise global occupancy grid map and a high overlap with reference data at the end. On the
other hand, the Stixel algorithm has its difficulties by representing non man-made environments.
This results in a bad conditioned measurement model, and consequently in a global grid map with
noise and clutter. This was observed in Sec. 5.2.3. As long as we use the Stixels as input for our
measurement model we have to cope with these situations.

Since we define the measurement model in the disparity space we have to handle the projection
into the regular Cartesian grid space (see Sec. 3.4.2.2). There, the most important factor is the
disparity interval step ds which defines the granularity of the discretization of the disparity space.
The larger the value ds, the smaller is the influence of projection and discretization errors. This was
already observed and discussed in Sec. 5.1.4 in detail. The definition of the measurement model in
the disparity space and taking the disparity uncertainties of Stixels σ̃2

dun
into account leads to the

fact that the farther away obstacles are observed, the more Cartesian grid cells are influenced and
occupied. Only if the distance to these obstacles is reduced over time, the contours get precise and
crisper. This uncertain behavior is typical for stereo vision and was observed in both evaluation
sections. Nevertheless, we do not have a quantitative proof that the geometrical error of obstacles
depends on the observed distance. This should be done in future.

These three essential characteristics of the measurement model can also be observed in Fig. 5.37.
The figure shows the original scene, the used Stixels, and the resulting measurement model p(S t |
mi,t, Xw 0:t). Walls close to the ego vehicle are precisely mapped, whereas trees and bushes produce
cluttered areas. One can also see that the farther away obstacles are observed, the more uncertain
they become.
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As stated in Sec. 5.2.3, the horizontal angular resolution influences the free space detection. To
achieve a better horizontal angular resolution we suggest to increase the ratio of pixels per degree.
A reduction of the Stixel width with sw < 3 pel makes little sense for us.

As long as the current Stixel approach is used, we reach limits by the representation of obstacles
with small heights. Especially curbs should be mentioned here which are neglected in the current
mapping approach. The consideration of these obstacles is one of the most important steps we
should carry out in future. Another important step of improvement would be the differentiation
of temporary static and long-term static obstacles. A good example are parked cars which are not
excluded at this time. To improve the quality of maps, they should exclude in future.

(a) Original image.

(b) The used Stixels.

(c) The results of the measurement model.

Figure 5.37: Example result of the measurement model for a complex scene (KITTI sequence 0033,
image number 954). The essential characteristics of the measurement model can be observed.
Details are described in the text above.

Influence of the Prediction Step. The prediction term p(mi,t | S lab0:t−1, Xw 0:t) represents the
conditional probability of a single grid cell without taken current measurements S labt into account.
It is controlled by the transition probabilities p(mi,t | mi,t−1) and p(¬mi,t | mi,t−1) which were
defined by 0.95 and 0.05, respectively. The influence of these parameters was not evaluated in this
thesis and should be done in future.
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Influence of the Use of MRFs during Occupancy Grid Mapping. The evaluation based on
real-world data shows that the use of MRFs during occupancy grid mapping increases especially the
detection rate of free space and slightly the detection rate of obstacles. With the above described
experiments we were not able to prove in a qualitative way, that the novel approach also achieve
better geometrical accuracies with regard to static obstacles. This statement is contradictory to
the qualitative validation of the two map methods and their comparison (see Sec. 5.2.2.3). Based
on visual inspection we stated that the maps of the novel approach have sharper and more precise
occupied areas than the results of using method MEX. In future we should improve our experiments
to prove these insights based on pure eye balling.

The use of MRFs includes the use of the binary terms Φ(mi,t,mj,t) which was defined in Sec. 3.5.
The binary terms are controlled by two parameters which were defined with kij = 0.08 and λb = 2
in Sec. 5.1.1.3. The influence of these tuning factors was not evaluated yet and should be done in
future. The binary terms are realized by a data independent Potts model. In future we should also
incorporate observations into this term to allow additional smoothness constraints.

Influence of the Quality of Stereo Vision. The quality of stereo vision influences the Stixel
results. Using real-world data, stereo estimation has to handle difficult weather and light conditions
which can result in e.g. in the images. These effects were neglected in the evaluation with rendered
image sequences (see Sec. 5.1.1) to provide best conditioned scenarios. Reflections or overexpose
can lead to less accurate disparity images, and consequently to Stixels with low precision and higher
outlier rates. An example of a less accurate disparity image is shown in Fig. 5.38. It shows a strong
overexposure in the upper right part of the image which results in bad or no stereo information
and low stereo confidence values. Images with a relatively low image bit depth are more sensitive
to these effects. In this evaluation the KITTI images have a bit depth of 8.

(a) Disparity image. (b) Confidence image.

Figure 5.38: Example of overexposure and the resulting disparity image (left image) with its stereo
confidences (right image). Strong overexposure is visible in the upper right part of the left image
which results in bad or no stereo information and low stereo confidence values. The color encoding
is described in Sec. 2.2.2.

Influence of Errors in the Reference Map. The generation of the reference occupancy grid
maps rely on a semi-automated technique where an inspection by hand is carried out in the final
step. This inspection includes smoothing free space areas as well as removing dynamic obstacles,
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and occupied areas which are defined as clutter by the user. This inspection by hand can lead to
really minor errors in the reference maps which is shown in Fig. 5.39. As long as these errors are
really rare, they influence the detection rates and geometrical errors only in a very moderate way,
but they should be avoided in future.

Figure 5.39: Detected error in the reference map. The green circles show that a small bush is missing
in the reference data (left), but is clearly mapped using our new mapping approach (middle).

Runtime Behavior. The current implementation of the novel mapping approach needs about
180 ms per image cycle using only one kernel of the CPU. Here, the image preprocessing steps were
excluded. 85 % of the runtime are used for the computation of the marginal probabilities using
dynamic graph cuts. Since we use a foreign, open source implementation for this task, we consider
a runtime optimization as challenging for this part. The use of the GPU for the global grid map
update is effective if not to many downloads/uploads between GPU and CPU are carried out within
one cycle. The realization of the measurement model can be parallelized using OpenMP2 in future.
In conclusion, we consider it as difficult to improve the current implementation in a manner that
the approach runs in a range of 10 Hz or even faster.

2http://www.openmp.org/
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Chapter 6

Evaluation with Uncertain Poses

In this chapter the introduced SLAM approach is evaluated based on real-world data. In Sec. 6.1
the used data set, as well as the parameter settings of the SLAM approach based on RBPFs is
presented. Afterwards, it is explained how we generate reference data, and how the experiments
look like (see Sec. 6.2). In Sec. 6.3 and Sec. 6.4 the results are presented and discussed. We finalize
this chapter with a brief summary and a conclusion.

6.1 Data Acquisition and Parameter Definition

This section includes the description of data acquisition (Sec. 6.1.1), and the definition of the
parameters which are used during the RBPF approach (Sec. 6.1.2). We also explain the experiments
in Sec. 6.2.3.

6.1.1 Data Acquisition

In this evaluation we use real-world image sequences which were recorded with the test vehicle S
500 Intelligent Drive [Ziegler et al., 2014]. An image of the research car was already presented in
Fig. 3.3(b) of Sec. 3.2.1. The used stereo camera rig is shown in Fig. 3.3(a). The stereo system has
a baseline of 0.23 m and a horizontal field of view of ≈ 44 deg. The cameras are mounted 1.25 m
above ground behind the windshield of the test vehicle. The 12 bit grayscale images have a size of
1024(W) × 440(H) pel, and the system runs with a frame rate of 25 Hz. Just like in Sec. 5.2.2.1,
we chose a Stixel width of sw = 3 pel and a disparity resolution of ds = 16. With this setup a
horizontal angular resolution of 0.13 deg per Stixel is achieved. Compared to the raw data provided
by the KITTI Vision Benchmark Suite [Geiger et al., 2012, 2013], the presented stereo setup of
the research vehicle provides a higher angular resolution and a better image quality which results
in an improvement of the disparity and Stixel quality. This is our major reason why we use the
data of the research vehicle. Furthermore, a comprehensive evaluation of the motion behavior of
the research car was already realized in [Dömötör, 2014]. We discussed these results already in
Sec. 4.3 and we want to benefit from these insights. Thus, it allows us to model the noise of the
motion model precisely. The drawback of using the recorded image sequences of the Mercedes-Benz
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research car is, that no GT or reference data is directly available since the system does not include
a deeply couple IMU/GPS system to provide these data.

However, we describe in Sec. 6.2 how we can generate reference data only based on the recorded
image sequences. As test scenario we chose a residential area in Böblingen, Germany. The area was
already shown in Sec. 4.1.1, Fig. 4.1(c). We recorded a sequence with a length of 11 400 images.
The total driven path is 1 900 m long and the area covers a region of 200 m × 200 m. In order to
detect loop closures later on, we attached importance to record regions multiple times.

6.1.2 Parameter Definition

In this section we define the parameters for the RBPF. For the mapping procedure in the particle
filter approach we use the settings which were already defined in Sec. 5.1.1.3. As in Sec. 5.2.2.1, we
chose a Stixel width of sw = 3 pel and a disparity resolution of ds = 16. The grid cell resolution is
0.1 m. In the following, we define all important parameters for the particle filter which were already
introduced and described in Sec. 4.2. Since each particle i includes its own global grid map M (i)

and consequently produces much memory requirements, we want to keep the number of particles
as low as possible. Since we allocate the global maps on the GPU, we are limited by the memory
of the used NVIDIA GeForce GTX 480 unit which provides 1.5 GB RAM in total. Therefore, the
number of particles is limited by I = 60. The estimation of the model parameter σ2

ϕ̇t
for the yaw

rate ϕ̇t of the motion model was already mentioned in Sec. 4.3. Figure 4.4 shown the distribution
of the observed yaw rate with and without offset correction. The studies result in a systematic yaw
rate offset of 1.3× 10−3 rad

s and an estimated yaw rate precision of σϕ̇t = 0.008 rad
s . The standard

deviation of the velocity v is tuned by hand and is defined by σvt = 0.15 m
s . The sampling rate is

running with 25 Hz and 0.04 sec respectively. As mentioned in Sec. 4.4, the weight estimation runs
with a lower frequency then the pose sampling. Here, we choose a frequency of 1.6 Hz which allows
an intermediate map integration of 15 observation steps. This provides a larger field of view of the
local environment around the ego vehicle for the grid matching process. The tuning parameter α

of the observation model p(S t|M
(i)
t−1,x

(i)
t ) during grid matching is set by 1.5× 10−4. For adaptive

resampling scheme, we use the effective number of particles Neff. Only if Neff < 0.5, we carry out
the resampling procedure.

6.2 Generation of Reference Data and Experiment Description

As mentioned in the previous section the research vehicle does not include a deeply coupled
IMU/GPS system to provide precise GT or reference data. Therefore, we generate the reference
data in a semi-automated way based on the recorded image sequence data and the vehicle odometry
information. The key idea is to use a full SLAM technique, which was introduced in Sec. 2.6, to
generate the reference trajectory X0:t for the recorded image sequence. The reason why we use these
results as reference is explained in the following: as stated in Sec. 2.6, full SLAM approaches take
the whole history into account which results in more stable and consistent solutions. To estimate
the best probable solution for X0:t, we rely on a graph based solution with feature maps. In this
context, we solve the challenging task of loop close detection and outlier reduction by hand. Next,
we describe the construction of the graph G(X0:t,M ).
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6.2.1 Construction of the Graph

The construction of the graph is illustrated in Fig. 6.1. Following (2.50), we have to define the
constraints between consecutive poses using the motion model g(., .) with its noise behavior Ωm

t−1,
and the constraints between poses and landmarks using the observation model h(., .) with its noise
behavior Ωo

t,i. Just like in Sec. 4.3, odometry information of the ego vehicle with the recorded
velocities v1:t and the yaw rates ϕ̇1:t is used to feed the motion model g(., .). The same uncertain
behavior as described in Sec. 6.1 is applied to model Ωm

t−1.

To define the constraints between poses and map features we rely on the Stixel World and use
static Stixels as map features. Since Stixels are tracked over time (see Sec. 2.2.3), these Stixel
tracklets are used for the definition of global map features (see Fig. 6.1). Only static Stixels which
are tracked over a period of more than 50 frames are considered in the graph. The noise behavior
of a single feature constraint is defined by the theoretical precision of the triangulated Cartesian
2D point of each Stixel using (2.4)-(2.6) of Sec. 2.2.2.3. Since the precision of a triangulated 2D
point is decreasing quadratically with regard to the distance (see also Fig. 2.6), we only consider
static Stixels up to a distance of 40 m. These Stixel tracklets and their theoretical precision define
the observation model h(., .) with their noise behavior Ωo

t,i. How Stixel tracklets and their precision
look like is also visualized in Fig. 6.1, top.

The challenging part of automated loop close detection is carried out by hand. Temporary
different static Stixel tracklets which represent the same static feature, are fused together and get
the same feature ID. An example is shown in Fig. 6.1, bottom right. As anchoring constraint, the
first position of the ego vehicle is chosen to x0 = [0 0 0]T.

6.2.2 Graph Optimization

After the construction of the graph G(X0:t,M ) we want to optimize in a way that we get the best
probable results for the pose X ∗0:t and the map M ∗, respectively. As already described in Sec. 2.8,
the graph G(X0:t,M ) represents a sum of non-linear constraints which are formulated as a NLS
problem. Here, we exploit the power of the open source library g2o [Kümmerle et al., 2011] to
solve the NLS problem. We rely on the Levenberg-Marquardt (LM) procedure which is used in
the g2o software. 64 iteration steps were carried out to find the optimum solution for X ∗0:t and
M ∗, respectively. Figure 6.2 shows the initialized, none optimized graph G(X0:t,M )(top) and the
optimized graph G(X ∗0:t,M ∗) (bottom). For evaluation we define the reference trajectory with
X0:t,RE = X ∗0:t and the reference map with MRE = M ∗.

6.2.3 Experiment Description

The implementation of the RBPF of Sec. 4.2 results in the maps M (i)
GC, the trajectories X (i)

0:t,GC,

and the weights W (i)
0:t,GC for each particle i. Here, GC symbolizes that we use the novel mapping

approach based on MRFs and dynamic graph cuts during the RBPF. From now, we defined this
method as RBPF GC. Based on the single trajectories and their corresponding weights we decided
to estimate the weighted trajectory over all particles X̂0:t,GC which we finally evaluate against MRE.

The trajectory X̂0:t,GC is also used to (re)estimate the final map M̂GC using “mapping with known
poses”.
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Figure 6.1: The Construction of the Graph G(X0:t,M ) for the recorded image sequences. The
Stixel tracking is used to define Stixel tracklets which define static map features. Based on these
tracklets and Covariance/Information estimation, the observation constraints are defined in the
graph structure (top). The odometry information of the ego vehicle is applied to define the motion
constraints. With both constraint definitions the global graph G(X0:t,M ) is constructed (bottom).
An example of loop close detection is shown in a close-up bottom right. The blue colored map
features as well as the red colored map features represent the same obstacles. These features
represent the same obstacle and, therefore, they get the same IDs.
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Figure 6.2: The initialized graph G(X0:t,M )(top) and the result G(X ∗0:t,M ∗) (bottom) after op-
timization. Two close-ups show how well aligned the trajectory as well as features are after the
optimization step.



148 CHAPTER 6. EVALUATION WITH UNCERTAIN POSES

We also run the implementation of the RBPF with the mapping method described in [Muffert

et al., 2014] to make a comparison between both mapping techniques. Therefore, the results X̂0:t,EX

and M̂EX are also estimated. This method is defined as RBPF EX. We focus on the evaluation
of the trajectories X̂0:t,GC and X̂0:t,EX against the reference trajectory MRE. We neglect the full
evaluation of the maps since comprehensive evaluation assessments with regard to map quality were
already carried out in Sec. 5.1 and Sec. 5.2. Nevertheless, we present the map results in Sec. 6.3.
Here, we briefly discuss the results in a qualitative way. Since the trajectories are synchronized to
each other, we are able to estimate the pose error ∆xm,t for each time step t and both methods
m ∈ {GC,EX} directly using the inverse compositional operator 	 [Geiger et al., 2012]:

∆xm,t = x̂m,t 	 xRE,t . (6.1)

The pose error includes the components of the lateral ∆xm,t, the longitudinal ∆ym,t, and the
heading error ∆φm,t with regard to the ego vehicle coordinate system:

∆xm,t = [∆xm,t, ∆ym,t, ∆φm,t]
T. (6.2)

We also estimate the translation error ∆tm,t =
√

∆x2
m,t + ∆y2

m,t. The results of the pose errors are

presented and discussed in Sec. 6.4.

6.3 Qualitative Evaluation of the Map Results

As stated in Sec. 6.2.3, we only present a brief qualitative evaluation of map results in this section.
Figure 6.3 shows four different occupancy maps, namely the reference map MRE (Fig. 6.3(a)),

the map based on pure odometry (Fig. 6.3(b)), the map M̂GC (Fig. 6.3(c)), and the map M̂EX

(Fig. 6.3(d)). All maps were generated based on their corresponding trajectories X0:t,RE, X̂0:t,GC,

X̂0:t,EX, and pure odometry information respectively. In Sec. 4.1.1 we already motivated that the
lack of precise pose information results in ambiguities and inconsistencies in the map. This is
clearly seen in Fig. 6.3(b), where only odometry information is used. We observe that the maps

MRE, M̂GC, and M̂EX do not have these misalignments. No considerable differences between the

reference map MRE and the map M̂GC are observable by pure eyeballing. The comparison between

M̂GC and M̂EX shows that the free space in M̂GC is much cleaner and smoother. This insight is
coherent to the quantitative results of Sec. 5.1 and Sec. 5.2. In the following section the accuracy
of the estimated pose is discussed in detail.

6.4 Evaluation of the Pose Accuracy

6.4.1 Results of Pose Errors

The pose errors are estimated using (6.1) of Sec. 6.2.3. In Fig. 6.4 the translation errors ∆tm,t
and the absolute heading errors | ∆φm,t | are presented with regard to their global positions x̂m,t.
The pose errors are color encoded where red symbolizes large errors, and green stands for small
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errors. Figure 6.4 includes the results of both methods RBPF GC and RBPF EX. Next to these
heat maps, the distributions of the absolute lateral errors | ∆xm,t |, the absolute longitudinal errors
| ∆ym,t |, and the absolute heading errors | ∆φm,t | are presented in Fig. 6.5. These histograms
also include the MAEs for RBPF GC as well as for RBPF EX.

6.4.2 Discussion

As clearly shown in Fig. 6.4(a), the translation error ∆tGC,t is under 0.5 m for most situations. The
method RBPF GC also reaches translation errors under 0.1 m which we state as very precise in
terms for on-line SLAM approaches. The translation error is not increasing over time which means
that we are able to compensate the drift behavior of the ego vehicle’s odometry information with
the concept of RBPFs in a correct way. Take into account, that the method RBPF GC only runs
with 60 particles. Errors larger than 0.7 m are not visible. This shows us that the implemented
version of the RBPF is robust against huge drifts or outliers.

By comparing the Fig. 6.4(b) with Fig. 6.4(a), we observe, that method RBPF GC has a better
performance than method RBPF EX. This is especially visible in the upper part of the driven path.
The distributions of the lateral and longitudinal errors ∆xm,t and ∆ym,t, respectively, also confirm
this statement (see Fig. 6.5). As an example, the amount of absolute lateral errors larger than
0.4 m is much higher for method RBPF EX than for method RBPF GC. Consequently, the MAEs
show also a better performance for method RBPF GC: for the lateral component, the MAEGC

is 0.21 m and the MAEEX is 0.24 m. The MAEGC for the longitudinal component is 0.20 m and
the MAEEX is 0.23 m. The MAEs of the lateral component do not differ much from the MAEs
of the longitudinal component. This means, that the implemented RBPF shows no weaknesses in
the estimation one of these components. Based on these facts, we observe that the novel mapping
approach improves the performance of RBPFs in terms of the translation accuracy. Since the
sampling procedure of the RBPF is independent from the observations, and therefore independent
from the chosen mapping method, the reason for a better performance can only be a more accurate
weight estimation. This statement is reasonable, since the weight estimation is based on map
matching in which more accurate maps are used, as long as the novel approach is chosen. That the
novel mapping approach is able to generate more accurate maps was already shown in Sec. 5.2.3.

The performance of the heading errors must be regarded as more critical than the translation
errors. The comparison of the heading errors, visualized in Fig. 6.4(c) and Fig. 6.4(d), shows
that method RBPF EX has a slightly better performance than the novel method RBPF GC. This
also becomes clear by taking the histograms and the MAEs in Fig. 6.5 into account: the MAEGC

is 0.54 deg, and the MAEEX performs slightly better with 0.51 deg. The reason, why the novel
approach RBPF GC shows no benefits with regard to the heading error, is unclear at this point. In
most situations, the heading errors are under 0.5 degree, but we also observe errors up to 2 deg for
both methods. Furthermore, we observe that the heading errors increase especially in narrow turns
(see Fig. 6.4(c)-6.4(d)). We state, that heading errors within the range of 0.5 deg and higher are
critical for autonomous driving applications. Therefore, improvements have to be done to increase
the heading accuracy. It should be noted that the achieved evaluation assessments relate to a
comparison with the results of a full SLAM approach.



150 CHAPTER 6. EVALUATION WITH UNCERTAIN POSES

(a) MRE (b) Pure odometry

(c) M̂GC (d) M̂EX

Figure 6.3: Map results using reference pose data (Fig. 6.3(a)), pure odometry information
(Fig. 6.3(b)), and the results of RBPFs (Figs. 6.3(c)-6.3(d)). The maps were estimated based

on their corresponding trajectories X0:t,RE, X̂0:t,GC, X̂0:t,EX, and pure odometry information re-
spectively. Ambiguities and inconsistencies in the map are clearly seen by using only odometry

information. A considerable difference between MRE and M̂GC is not observable by eye balling.

The free space estimation of M̂GC is cleaner and smoother compared to M̂EX which is coherent
with the insights of Sec. 5.1 and Sec. 5.2.
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(a) Translation error ∆tGC,t. (b) Translation error ∆tEX,t.

(c) Absolute heading errors | ∆φGC,t |. (d) Absolute heading errors | ∆φEX,t |.

Figure 6.4: Translation and absolute heading error with regard to the position of the vehicle.
Figure 6.4(a) and Fig. 6.4(b) show the translation error for the methods MGC and MEX, respectively.
Figure 6.4(c) and Fig. 6.4(d) show the absolute heading error for the two methods. The comparison
between Fig. 6.4(b) and Fig. 6.4(a) shows, that the RBPF based on method MGC has a better
performance than using MEX.



152 CHAPTER 6. EVALUATION WITH UNCERTAIN POSES

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.5k

1k

MAE = 0.21 m
MAE = 0.24 m

m

co
u

n
t

Abs. lateral error | ∆xm,t |

MGC

MEX

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.5k

1k

MAE = 0.20 m
MAE = 0.23 m

m

co
u

n
t

Abs. longitudinal error | ∆ym,t |

MGC

MEX

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5k

1k

MAE = 0.54 deg
MAE = 0.51 deg

deg

co
u

n
t

Abs. heading error | ∆φm,t |

MGC

MEX

Figure 6.5: Histograms of absolute lateral errors | ∆xm,t | (top), absolute longitudinal errors
| ∆ym,t | (middle), and absolute heading errors | ∆φm,t | (bottom). The MAEGC for the lateral
component is 0.21 m and MAEEX is 0.24 m (top). The MAEGC for the longitudinal component is
0.20 m and MAEEX is 0.23 m (middle). The MAEGC for the heading component is 0.54 deg and
MAEEX is 0.51 deg (bottom).
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6.5 Summary and Conclusion

6.5.1 Summary

In this chapter we evaluated the realization of the RBPF based on real-world data which were
recorded with a Mercedes-Benz research vehicle. A full SLAM approach (see Sec. 2.6, and Sec. 2.8)
was applied to generate reference poses and reference occupancy grid map data in a semi-automated
way. Our focus was on the evaluation of the lateral, the longitudinal, and the heading component
of pose errors between the reference poses and the estimated poses. With regard to the lateral
and longitudinal component, we observed that method RBPF GC outperforms method RBPF EX
which does not take the dependencies of neighboring grid cells into consideration. The MAEGC was
about 20 cm for the longitudinal and lateral component. In comparison, the MAEEX was about
24 cm for both components. In contrast to these insights, it surprised us that no improvements for
heading accuracies were achieved using the novel mapping approach during the RBPF. Here, the
MAEGC was 0.54 deg.

6.5.2 Conclusion

The current implementation of the RBPFs using the novel grid mapping technique is able to correct
the odometry drift of the ego vehicle’s motion behavior in a correct way although the number of 60
particles is quite small. To enhance the pose accuracy in the future, one possibility is to increase the
number of particles. Here, one solution would be to improve the hardware settings of our system.
For example, current state-of-the-art graphic cards like the NVIDIA GeForce GTX TITAN Z which
provides 12 GB RAM would allow a immense performance boost. It would allow us to raise the
number of particles by almost a factor of 10 which would result in a finer sampling of the state
space. Based on this fact, we assume a better estimation of the poses, especially for the heading
component. We would also be able to represent larger map areas, if we improve the hardware
settings.

Another possibility is the change of the definition of the proposal distribution which is governed
by the motion model in our current situation. As mentioned in [Grisetti et al., 2007], incorporating
recent sensor observations into the proposal distribution can massively improve the performance of
the filter as long as the observation model performs considerable better than the motion model.

The improvement of the estimation of our control parameters should also happen in future work.
At this point, the velocity noise behavior σvt in the motion model as well as the scaling factor α
in the observation model are tuned by hand. Like the estimation of the yaw rate noise behavior,
empirical studies should be carried out to give us more insights with regard to the noise behavior of
the velocity. Similar to the evaluation steps in Sec. 5.1, where we evaluated different configuration
settings against GT, we should validate a set of different scaling factors to find the best solution for
α. Another possibility would be to estimate the internal model parameters on-line using schemes
like the EM algorithm as described in [Thrun et al., 2005, chapter 6.3.2]. We should also validate
the influence of the frequency of the weight estimation step which is not done yet. Furthermore,
we should compare the results of other observation models during the weight estimation step with
our current performance in the future. One example could be to use correlation based approaches
instead of score based approaches. This idea was also mentioned in Dömötör [2014].
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In this evaluation chapter, we did not take the precision of the reference data as well as the
precision of the RBPFs into account. Since both methods theoretically provide this information
we should take these precisions into account for further evaluation steps.

At this point, we did not use GT data in this evaluation chapter. If we were able to improve
our hardware settings and our RAM memory management in a way that larger maps and/or more
particles can be realized, we could use raw data sets from the KITTI vision benchmark suite [Geiger
et al., 2012, 2013]. These GT data sets contain recordings of large scale environments and loop
closures. If this would be the case, an ego motion estimator based on stereo vision [Badino, 2004]
would be used for the motion model instead of using the pure odometry information of the car.
Furthermore, we would also be able to evaluate the mentioned full SLAM approach described in
Sec. 6.2 against GT data.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis, a novel, incremental occupancy grid mapping approach is presented and evaluated
which takes the dependencies of neighboring grid cells into account. The generated occupancy grid
maps represent static obstacles as well as free space area in a probabilistic way. Here, we address
the field of autonomous driving and advanced driving assistance systems where such occupancy grid
maps are utilized for planning or localization purposes. As input data, we rely on the Stixel World,
a highly compact environment representation which is generated based on dense disparity images.
The Stixel World describes obstacles as vertically oriented, adjacent rectangles which are defined
by its distance, width and height. The current free space is also represented in this super pixel
representation. However, the concept of the novel mapping approach can also deal with other
sensor data which provides spatial environment information.

The novelty of the presented system lies in the fact that we model explicitly dependencies
between neighboring grid cells which is not a common practice in occupancy grid mapping ap-
proaches. It is well known that neighboring grid cells influence each other which shows that they
are dependent from each other. This fact is often neglected in order to allow efficient and straight
forward on-line occupancy grid mapping. Here the major challenge is to realize a system which
keeps the dependencies of neighboring grid cells into account and simultaneously allows an incre-
mental framework with real time requirements. In this thesis we have specifically focused on the
realization of such system which allows to run on-line in autonomous research vehicles.

The novel mapping approach is formulated as an optimization problem in a probabilistic fashion.
We have exploited the power of MRFs which allows us to interpret the occupancy grid map as an
undirected graph where each node represents a grid cell and the dependencies between them are
modeled as undirected edges. Under the assumption that the observations and the vehicle’s pose
is given, the posterior of the map is described as a product of unary and binary terms. The unary
terms include the measurement model in which we define the uncertain behavior of the current
observations in the column-disparity space. The unary terms also involve the prediction step,
where the occupancy grid mapping results of the previous time step are taken into account. Based
on this, the incremental map update formula is realized. The binary constraints are modeled as a
data independent Potts model.
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To allow an incremental mapping scheme, it is necessary that marginal probabilities are esti-
mated which are used during the prediction step. This is realized with the help of dynamic graph
cuts, an efficient inference scheme, to solve dynamically gradually changing MRFs. Only with the
help of dynamic graph cuts we are able to estimate marginal probabilities in a feasible computation
time.

In this thesis we have also taken into account the uncertainty of the pose of the vehicle which
leads to the well-known SLAM problem. To solve the on-line SLAM problem we applied state-of-
the-art Rao-blackwellized particle filters (RBPF) which separates the estimation of the trajectory
from the estimation of the map. For the estimation of the map we used our novel mapping approach.
The estimation of the trajectory is solved via a particle filter, where we used a precise motion model
for the sampling step and a score based map matching technique for the weight estimation.

To evaluate the novel occupancy grid mapping approach artificial image sequences as well as
real-world data were taken into account. Detection rates and geometrical errors of obstacles were
presented in this thesis. We also compared the novel approach against a grid mapping method
which does not take the dependency of neighboring grid cells into account. It was shown that the
approach based on MRFs has a better performance with regard to detection rates for artificial and
real-world data. We have proven that the occupancy grid mapping approach with the use of MRFs
produces a much cleaner and smoother free space. Under real-world conditions, detection rates
up to 90 % for free space were achieved using the novel mapping approach. Detection rates for
obstacles are in the range of 85 %.

Under optimal conditions, the geometrical accuracy of obstacles are in the range of 10 cm or
less if a disparity sampling rate of at least 8 is chosen. For real-world data, the mean geometrical
accuracy of static obstacles is 0.36 m. We figured out that the quality of obstacles in the occupancy
maps depends on the distance relatively to the car and how often map regions were updated. Static
obstacles, which are close to the vehicle and appear over a long time period, are precisely mapped
and have sharp contours.

The developed on-line SLAM approach based on RBPFs was evaluated against a full SLAM
approach. We were able to correct the uncertainty behavior of the odometry information of the
vehicle using only 60 particles. For the longitudinal and lateral pose component, we observed that
the RBPF with the novel mapping approach performs better compared to RBPFs which do not
take the dependencies of neighboring grid cells into account. A mean absolute pose error of 20 cm
was achieved.

The grid mapping system reaches its limits in unstructured environments where the Stixel
definition is no longer valid. Based on the current Stixel definition, we are not able to model
obstacles with low height like traffic islands and curbs. Using the chosen evaluation measures, it
was not possible to show, that the novel mapping approach achieves higher geometrical accuracies
for obstacles than approaches which do not model the dependencies of neighboring grid cells. In
the evaluation of the SLAM approach it was surprising that no improvements for the heading
estimation were achieved. A mean absolute heading error of 0.5 deg was obtained.
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7.2 Outlook

Improvements of the Evaluation Techniques. We evaluated the occupancy grid mapping
approach based on MRFs with artificial and real-world data in a comprehensive way. Nevertheless,
we were not to able to show for real-world data, that the mapping technique based on MRFs pro-
duces grid maps with higher geometrical accuracies than grid map approaches without MRFs. We
are optimistic that further experiments and evaluation measures can prove the stated assumption.

Moreover, the validation of the influence of additional control parameters should also be consid-
ered in future. Especially the impact of the change of the transition probabilities in the prediction
step, as well as changing the control parameters of the binary terms should be evaluated in detail.

In our evaluation we observed that the quality of obstacles is dependent on the distance relatively
to the car. This observation is based on qualitative results and therefore, it should also be proven
in a quantitative way.

We validated the developed on-line SLAM approach against a reference off-line SLAM algo-
rithm. It is necessary that we also make accuracy assessments based on GT data. Here, the KITTI
Vision Benchmark Suite [Geiger et al., 2012, 2013] can also be used for the SLAM evaluation.

Improving the SLAM Approaches. The results of the evaluation of the on-line SLAM ap-
proach showed, that it reaches its limits in the estimation of high accurate heading angles. One
major reason is that a relatively small number of particles were used. Therefore, we should op-
timize the hardware settings in the future to allow larger numbers of particles. Furthermore, an
optimization of the RAM memory management should be carried out.

At this time we assume that the odometry motion behavior of the vehicle has a small drift
behavior. To be more independent of the odometry motion model, we should incorporate recent
sensor observations during the sampling procedure of the RBPF as suggested by Grisetti et al.
[2007]. This would lead to be more independent against the motion model of the vehicle.

We applied a graph-based off-line SLAM approach as reference in which the loop closure problem
was solved by hand. We should also be able to manage the loop close issue automatically in order
to improve the maturity of this approach.

Incorporating Height Information. The current system is modeled in the 2D space and ne-
glects the height of the environment. Height information is provided by many sensor data and
should be considered in future versions. One possibility is to model the full 3D space which would
result in a voxel grid map scheme. This step would be very expensive with regard to the compu-
tation time, especially in the estimation of the marginal probabilities. It would be more efficient
to include an additional height attribute for each grid cell. It would result in an additional height
map layer and a 2.5D representation. The consideration of the height information in the current,
probabilistic framework is also a topic for future work.

Consideration of additional Semantic Information. In the current mapping approach we
used the segmented Stixel World to exclude dynamic obstacles which increased the quality of
our maps. Nevertheless, obstacles which are not long-term static, like parked cars, still standing
pedestrians or trash bins, should also be excluded from the occupancy grid maps. Additional
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semantic information of the environment would help to detect and excluded these types. One
possibility would be the use of the semantic Stixel World [Schneider et al., 2016] which provides
precise semantic information of the environment. Semantic information would also help us to weight
long-term static obstacles in the measurement model. As an example, class types like buildings
and poles should have higher importance than classes like vegetation or terrain. An example of an
overlay of semantics with static environment information is shown in Fig. 7.1.

Figure 7.1: Example of an overlay of static information with semantic labels. Here, LIDAR data is
used for the generation of the occupancy grid map. Grid cells are labeled as road (purple), sidewalks
(pink), vehicles (blue), vegetation/terrain (green), and buildings (bright gray). Additional semantic
information, like the work of Schneider et al. [2016], would help us to label static environment
information in a precise way. This information can be considered in the measurement update
scheme of incremental mapping techniques.

Life-Long Occupancy Grid Mapping Our approach is focused on precise incremental oc-
cupancy grid mapping to represent current free space and obstacles. However, changes in the
long-term static environment should also be considered in future to maintain and increase the map
quality over a long time period. Life-long (occupancy grid) mapping handles this issue, where the
environment is learned over time periods based on chronological data recordings and by adding
explicitly a temporal dimension to the map learning process. As an example, the work of Santos
et al. [2016] deals with this issue. In future, our current approach should be extended by the idea
of life-long map learning.

Altogether, the thesis demonstrated the potential of using MRFs in combination with incre-
mental occupancy grid mapping approaches. We are able to produce highly accurate digital maps
which can be used for autonomous driving applications in future.
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Appendix A

Derivation of the Particle Filter

During this thesis particle filters are used to solve the well-known SLAM problem. Here, we
describe the general derivation of the particle filter approach, particularly the importance sampling
step. This derivation is the basis of the SIR particle filter which is described in Sec. 2.7.1. We also
refer to [Thrun et al., 2005, chapter 4.3.2] for more detailed information.

Target and Proposal Distribution The particle filter approach deals with the challenge to
compute the expectation Ep(δ(x ∈ A)) of an arbitrary target density function p(x) over the state
x ∈ A. Here, δ() is the Diract function which returns 1 if its argument is true and otherwise 0; A
is an arbitrary region. The expectation can be expressed by

Ep
(
δ(x ∈ A)

)
=

∫
p(x) δ(x ∈ A)dx (A.1)

=

∫
p(x)

π(x)︸ ︷︷ ︸
=:w(x)

π(x) δ(x ∈ A)dx (A.2)

= Eπ
(
w(x)δ(x ∈ A)

)
. (A.3)

We introduce the proposal distribution π(x) and we define that p(x) > 0 −→ π(x) > 0. The weight
w(x) represents the “offset” between the target p(x) and the proposal distribution π(x).

Introducing Samples By following the ideology of the particle filter, we would like to sample
from the target distribution p(x), which is, unfortunately, impossible. Because of this fact, we draw
from the proposal distribution π(x) to achieve a particle filter set, which represents the distribution
of π(x). Now, the integral of π(x) over the region A can approximately described by the sum over
all particles: ∫

A
π(x) dx ≈ 1

M

M∑
i=1

δ(x(i) ∈ A). (A.4)
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Here, x(i) represents an individual particle i of the total number of M samples. We now introduce
the individual importance weights for each sample

w(i) =
p(x(i))

π(x(i))
, (A.5)

which corresponds to the importance weighting step of Sec. 2.7.1. With the definition of the weights
the integral of p(x) over A could be expressed as:∫

A
p(x) dx ≈ η

M∑
i=1

w(i) δ(x(i) ∈ A) (A.6)

= lim
M→∞

η

M∑
i=1

w(i) δ(x(i) ∈ A) , with η =

[
M∑
i=1

w(i)

]−1

. (A.7)

This derivation implies the following statements:

• The density of the target distribution p(x) could be approximately described by a weighted
particle filter set which is drawn from the proposal distribution π(x).

• The more samples are used, the better is the approximation of the target distribution.



Appendix B

Additional Results for the Evaluation
with an Artificial Ground Truth Data
Set

B.1 Occupancy Grid Maps for different Configurations

In Sec. 5.1.1.3 the global grid map MGC was shown using a configuration of sw = 3 pel and ds = 08.
Here, we present two additional grid map results with (1) a setup of sw = 9 pel and ds = 02
(Fig. B.1(a)) and (2) with a setup of sw = 1 pel and ds = 16 (Fig. B.1(c)). The comparison shows
how much influence the disparity intervals ds have with regard to occupied areas. The Fig. B.1(b)
and Fig. B.1(d) show the overlay with the GT map data MGT.

B.2 Close-ups for all Configurations

In Fig. 5.15 three different map samples with different configurations were shown to visualize how
the disparity interval influences the wedge effect. As regards the completeness, we also present all
samples in Fig. B.2.
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(a) Setup of sw = 1 pel and ds = 16 (b) Overlay with MGT

(c) Setup of sw = 9 pel and ds = 02 (d) Overlay with MGT

Figure B.1: The global occupancy grid map for two additional setups. In B.1(a) a setup of sw = 9 pel
and ds = 02 was chosen. In B.1(c) a setup of sw = 1 pel and ds = 16 was applied. This figure helps
to make the huge influence of the disparity interval clear. The figures B.1(b) and B.1(d) show the
overlay with GT map data MGT.
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(a) sw = 1 pel, ds = 16 (b) sw = 1 pel, ds = 08 (c) sw = 1 pel, ds = 04 (d) sw = 1 pel, ds = 02

(e) sw = 3 pel, ds = 16 (f) sw = 3 pel, ds = 08 (g) sw = 3 pel, ds = 04 (h) sw = 3 pel, ds = 02

(i) sw = 5 pel, ds = 16 (j) sw = 5 pel, ds = 08 (k) sw = 5 pel, ds = 04 (l) sw = 5 pel, ds = 02

(m) sw = 7 pel, ds = 16 (n) sw = 7 pel, ds = 08 (o) sw = 7 pel, ds = 04 (p) sw = 7 pel, ds = 02

(q) sw = 9 pel, ds = 16 (r) sw = 9 pel, ds = 08 (s) sw = 9 pel, ds = 04 (t) sw = 9 pel, ds = 02

Figure B.2: Sample maps for all configurations
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Appendix C

Additional Results for the Evaluation
with Real World Data

C.1 Further Results of Reference Grid Maps MRE and Estimated
Grid Maps MGC

In Sec. 5.2.1.2 the results for the reference occupancy grid maps and of MGC were shown. Here,
we show additional results of the remaining three sequences 0039, 0023, and 0087 in Fig. C.2 and
Fig. C.3.

Additional close-ups of reference and estimated maps are shown in Fig. C.4. This figure also
includes real world images where interesting areas are highlighted with colored circles.

(a) MRE

(b) MGC

Figure C.1: Estimated occupancy grid maps for sequence 0039, 310× 70m.
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(a) MRE, part I (b) MGC, part I (c) MRE, part II (d) MGC, part II

Figure C.2: Estimated occupancy grid maps for sequence 0023, 460× 70m.
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(a) MRE (b) MGC

Figure C.3: Estimated occupancy grid maps for sequence 0087,320× 130m.
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Figure C.4: Close-ups of MGC and MRE for sequence 0064.
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