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ABSTRACT 

Changing climate and agricultural land-use dynamics seriously challenge the future of cropping in 
the West African Dry Savannah, and, in turn, the livelihoods and food security of rural populations. 
Current production systems, already vulnerable to soil fertility depletion, are increasingly exposed 
to rainfall variability and generally to climate change, which, reportedly is expected to increase. 
Although consent exist that under the “business-as-usual-scenarios” these challenges will 
exacerbate resource use efficiency and jeopardize the sustainability of the agro-ecosystems, little 
is predicted about the magnitude of the adverse effects of changing climate on crop responses and 
hence land use. This obviously hampers the essential development and implementation of both 
appropriate adaptation measures and policies to increase the resilience of production systems. This 
study therefore aimed at quantifying and assessing the impact of predicted climate change on 
growth, yields, and water- and nutrient- use efficiencies of maize-, sorghum-, and cotton-based 
production systems in the dry savannah of northern Benin. Through a series of farmer- and 
researcher-managed on-farm trials, data were collected on crop responses to an un-amended soil 
(no fertilizer application), an integrated soil-crop management practice (recommended fertilizer 
rates and crop residues retention), a low use of external inputs (i.e. farmers determined the mineral 
fertilizer rate), and a high rate of mineral fertilizer use. The datasets, collected in 2014 and 2015 at 
Ouri Yori village in northern Benin, were used to investigate productivity and nutrient use efficiency 
of three target crops, and to parameterize and evaluate the CERES-Maize, CERES-Sorghum, and 
CROPGRO-Cotton Cropping System Models. The three crop models were subsequently applied to 
assess the impact of climate change on responses of maize, sorghum, and cotton to the different 
soil fertility management practices tested, considering the historical climate (1986-2005) and the 
ensemble mean of bias-corrected projected climate (2080-2099) from three Global Climate Models 
for three Representative Concentration Pathways (RCPs 2.6, 4.5, and 8.5). Biomass and economic 
yields of all three crops responded to both the high use of mineral fertilizer and the integrated soil-
crop management practice, but the extent of this response was crop-specific. The highest 
agronomic efficiencies of nitrogen (N) and phosphorus (P), their apparent recovery as well as the 
positive partial N and P balances were recorded with the integrated soil-crop management practice, 
irrespective of the crops. The CERES-Maize model satisfactorily simulated in-season soil moisture 
and nitrate dynamics, N and P uptake, biomass accumulation, and grain yield. CERES-Maize 
predicted furthermore a more vigorous crop growth in the projected than in the historical runs, 
albeit only during the vegetative growth phase. Under the projected climate change, CERES-Maize 
predicted decreases in water- and N-use efficiencies, N and P uptake, and grain yield, irrespective 
of the soil fertility management strategies assumed. Similarly, CERES-Sorghum adequately 
simulated the observed soil water and N dynamics, biomass accumulation, N and P uptake, and the 
yield of sorghum. It predicted reductions in water- and N- use efficiencies, N and P uptake, and yield 
across all climate change scenarios and soil fertility management options. CROPGRO-Cotton 
simulated well soil water dynamics and N uptake during cotton growth, and seed cotton yield. 
Under the projected climate scenarios, CROPGRO-Cotton predicted increases in water- and N- use 
efficiencies and yield with the high use of mineral fertilizer or the integrated soil-crop management 
practice. Cotton responded more efficiently to N applied with integrated soil-crop management 
practice under future climate scenarios. The increases in productivity will occur, however, at the 
expense of soil fertility, unless targeted fertilizer management practices are introduced. The overall 
increase in understanding water- and nutrient- use efficiencies and yields of maize, sorghum, and 
cotton under both historical and future climate conditions can contribute to updating soil fertility 
management recommendations for reaching sustainable agricultural production in the Dry 
Savannah region of West Africa. 
  



DYNAMIQUE DE L'AZOTE ET DU PHOSPHORE SOUS L'IMPACT DU CHANGEMENT 

CLIMATIQUE ET DE L'UTILISATION DES TERRES AGRICOLES DANS LA SAVANE 

SOUDANIENNE DE L’AFRIQUE DE L’OUEST 

 

RESUME 

Le changement climatique et la dynamique de l'utilisation des terres agricoles remettent 
sérieusement en question l'avenir des cultures dans la Savane sèche de l'Afrique de l'Ouest et, en 
conséquence, les moyens de subsistance et la sécurité alimentaire des populations rurales. Les 
systèmes de production actuels, déjà vulnérables à l'appauvrissement de la fertilité des sols, sont 
de plus en plus exposés à la variabilité des pluies et, en général, au changement climatique qui 
devraient augmenter. Bien que le consensus existe que dans les «scénarios de statu quo», ces défis 
exacerberont l'efficacité de l'utilisation des ressources et mettront en péril la durabilité des 
agroécosystèmes, peu de projections sont faites sur l'ampleur des effets néfastes du changement 
climatique et de l’utilisation des terres agricoles sur les réponses des cultures. Ceci entrave 
évidemment le développement et la mise en œuvre de mesures et de politiques appropriées 
d'adaptation pour accroître la résilience des systèmes de production. Cette étude visait donc à 
quantifier et évaluer l'impact du changement climatique prévu sur la croissance, les rendements et 
l'efficacité de l'utilisation de l'eau et des nutriments des cultures de maïs, sorgho et coton dans la 
savane sèche au Nord du Bénin. Grâce à une série d'essais menés au champ par des chercheurs et 
agriculteurs, des données ont été collectées sur les réponses des cultures à un sol non amendé 
(aucune application d'engrais), une pratique de gestion intégrée du système sol-plante (doses 
recommandées d’engrais minéraux et recyclage des résidus de récolte), une pratique de faible 
utilisation d'intrants externes (c.-à-d. doses d'engrais minéraux utilisées par les agriculteurs) et un 
taux élevé d'utilisation d'engrais minéraux. Les données ont été collectées en 2014 et 2015 au 
village d’Ouri Yori au Nord du Bénin et ont été utilisées pour étudier la productivité et l'efficacité 
de l'utilisation des nutriments des trois cultures cibles, et pour paramétrer et évaluer les modèles 
de cultures, CERES-Maize, CERES-Sorghum et CROPGRO-Cotton. Ensuite, les trois modèles ont été 
appliqués pour évaluer l'impact du changement climatique sur les réponses du maïs, sorgho et 
coton sous différentes pratiques de gestion de la fertilité des sols, en considérant le climat 
historique de 1986-2005 et la moyenne des projections à biais corrigés du changement climatique 
(2080-2099) à partir de trois modèles climatiques pour trois profils représentatifs d’évolution de 
concentration (RCPs 2.6, 4.5 et 8.5). Les rendements économique et de la biomasse aérienne des 
trois cultures ont répondu à la fois au taux élevé d'utilisation d'engrais minéraux et à la pratique de 
gestion intégrée du système sol-plante, mais l'ampleur de la réponse a été spécifique à chaque 
culture. Les plus élevées efficacités agronomiques de l'azote (N) et du phosphore (P), leur taux de 
recouvrement ainsi que les bilans partiels positifs de N et P ont été enregistrés sous la pratique de 
gestion intégrée du système sol-plante, quelle que soit la culture. Le modèle CERES-Maize a simulé 
de manière satisfaisante la dynamique de l'humidité du sol et du nitrate au cours de la saison, 
l'exportation de N et P, la croissance de la biomasse et le rendement du maïs. CERES-Maize a en 
outre prédit une croissance plus vigoureuse de la biomasse aérienne sous le changement climatique 
que dans les conditions du climat historique, mais seulement pendant la phase de croissance 
végétative. Dans le cadre du changement climatique, CERES-Maize a prédit des réductions de 
l'efficacité de l'utilisation de l'eau et de N, de l'exportation de N et P, et du rendement du maïs 
indépendamment des stratégies de gestion de la fertilité des sols. De même, CERES-Sorghum a 
simulé de manière adéquate la dynamique de l’humidité du sol et du nitrate, la croissance de la 
biomasse, l'exportation de N et P, et le rendement du sorgho. Il a prédit des réductions des 



efficacités d'utilisation de l'eau et de N, de l'exportation de N et P, et du rendement du sorgho sous 
tous les scénarios du changement climatique et de gestion de la fertilité des sols. CROPGRO-Cotton 
a bien simulé la dynamique de l'humidité du sol et l'exportation de N pendant la croissance du coton 
et le rendement en coton graine. Avec le changement climatique, CROPGRO-Cotton a prédit une 
augmentation des efficacités d'utilisation de l'eau et de N ainsi qu’une amélioration du rendement 
en coton graine sous le régime du taux élevé d'utilisation d'engrais minéraux et de la pratique de 
gestion intégrée du système sol-plante. La réponse du coton a été plus efficace avec la fertilisation 
azotée sous la pratique de gestion intégrée du système sol-plante dans les scénarios du 
changement climatique. Ces augmentations de la productivité du coton se réaliseront toutefois au 
détriment de la fertilité du sol, à moins que des mesures adéquates d'utilisation des engrais ne 
soient introduites. En somme, l’amélioration de la compréhension de l'efficacité de l’utilisation de 
l'eau et des nutriments et des rendements du maïs, sorgho et coton dans les conditions du climat 
historique et futur peut contribuer à la mise à jour des recommandations de gestion de la fertilité 
des sols pour atteindre une production agricole durable dans la région de la Savane sèche de 
l’Afrique de l’Ouest.  
 
 



Einfluss von Klimawandel und Landnutzungsänderungen auf die Stickstoff 

und Phosphor Dynamik in Anbausystemen der westafrikanischen 

Trockensavanne 

 

KURZFASSUNG 

Klimawandel und Änderungen der Nutzungsdynamik in landwirtschaftlichen Systemen gefährden 
die Zukunft des Nutzpflanzenanbaus in der Westafrikanischen Trockensavanne. Dies beeinträchtigt 
den Lebensunterhalt und die Sicherheit der Nahrungsmittelversorgung der ländlichen Bevölkerung. 
Gerade die vulnerablen Produktionssysteme welche bereits durch den Rückgang der 
Bodenfruchtbarkeit beeinträchtigt sind- werden, Berichten zufolge, in Zukunft vermehrt 
Niederschlagsschwankungen und den Auswirkungen des Klimawandels ausgesetzt sein. Unter dem 
”business-as-usual“ Szenarien werden die Effizienz der Ressourcennutzung sowie die 
Nachhaltigkeit der Agrarökosysteme zunehmend beinträchtigen werden. Das künftige Ausmaß 
möglicher negative Effekte des Klimawandel auf den ertrag von Nutzpflanzen und die agrarische 
Landnutzung sind ungewiss. Dies hemmt die Entwicklung von notwendigen 
Anpassungsmaßnahmen und die Implementierung entsprechender politischer Entscheidungen um 
die Resilienz der Produktionssysteme zu erhöhen. Die vorliegende Studie hatte zum Ziel, den 
Einfluss des zu erwartenden Klimawandels auf das Wachstum, den Ertrag und die Wasser-
Nährstoff-Effizienz von Mais-, Sorghum- und Baumwoll-basierender Produktionssysteme in der 
Trockensavanne Nord-Benins zu quantifizieren und bewerten.  Mehrere Feldversuche wurden in 
Zusammenarbeit mit Landwirten zwischen 2014 und 2015 im Dorf Ouri Yori in Nord-Benin 
durchgeführt. Die Untersuchungen lieferten Daten zur Produktivität und der Nährstoffeffizienz von 
Mais, Sorghum und Baumwolle auf unbehandelten Anbauflächen (ohne Düngemitteleinsatz), auf 
integrierten Anbauflächen (empfohlene Menge an Düngemittel und Rückfuhr von 
Ernterückständen), auf Anbauflächen mit minimalem Einsatz externer Betriebsmittel (z.B. Landwirt 
bestimmte die Höhe der den mineralischen Düngung), sowie auf Anbauflächen mit hohen 
Applikationsraten mineralischer Dünger. Ferner dienten die Daten der Parametrisierung der 
wachstumsmodelle CERES-Maize-, CERES-Sorghum-, und CROPGRO-Cotton. Mit den kalibrierten  
Modelle wurde im Anschluss der Einfluss des Klimawandels auf das Verhalten von Mais, Sorghum 
und Baumwolle unter  verschiedenen Szenarien des Bodenfruchtbarkeitsmanagement abgeschätzt. 
Dies erfolgte auf der Basis historischer Klimadaten (1986-2005), sowie unter Einbeziehung von 
prognostizierten zukünftigen Klimaszenarien (2080-2099) und auf Basis des globalen Klimamodells 
für drei repräsentative Konzentratios-Entwicklungen - Representative Concentration Pathways 
(RCPs 2.6, 4.5, und 8.5). Der Biomasse- und Kornertrag wurde in allen untersuchten Nutzpflanzen 
durch Mineraldüngereinsatz gesteigert. Das Ausmaß der Ertragswirksamkeit war jedoch 
Nutzpflanzen-spezifisch. Die höchste Effizienz von Stickstoff (N) und Phosphor (P), und positive 
partielle N- und P-Bilanzen wurden im Fall des integrierten Managementansatzes unabhängig von 
der Nutzpflanze ermittelt. CERES-Maize war in der Lage, die Bodenfeuchtigkeit- und Stickstoff-
Dynamiken, N- und P-Aufnahmen, die Biomasseakkumulation und den Kornertrag 
zufriedenstellend zu simulieren. Verglichen mit historischen Daten, prognostiziert CERES-Maize ein 
verbessertes Wachtum, allerdings nur in der vegetativen Phase. Andererseits prognostiziert CERES-
Maize unter den zu erwartenden Bedingungen des Klimawandels und unabhängig vom 
Manaagment der Bodenfruchtbarkeit eine verminderte Wasser- und N-Nutzungseffizienz und 
Aufnahme sowie einen verminderten kornertrag. Mit CERES-Sorghum wurden ähnlich gute 
Schätzungen des Boden-Wassers- der N-Dynamik, der Biomasseakkumulation, der N- und P-
Aufnahme und des Kornertrags von Sorghum  erzielt. Demnach ist zukünftig und unabhängig vom 



Klimaszenario und dem Management der Bodenfruchtbarkeit mit einer geringeren der Wasser- und 
N-Nutzungseffizienz und N- und P-Aufnahme sowie eines abnehmenden Kornertrags zu rechnen. 
CROPGRO-Cotton erzielte gute Ergebnisse in Bezug auf Boden-Wasser-Dynamiken und die N-
Aufnahme. Im Gegensatz zu den beiden CERES Modellen prognostizierte CROPGRO-Cotton eine 
verbesserte Nutzungseffizienz von Wasser und N und steigende Baumwoll-Ertäge bei hohem 
Mineraldünger-Einsatz und unabhängig vom verwendeten Klimamodell. Während Baumwolle 
stärker auf N-Applikation reagiert als Mais und Sorghum, so muss allerdings mit einer Abnahme der 
Bodenfruchtbarkeit gerechnet werden, sofern keine geeigneten Düngungsmaßnahmen ergriffen 
werden. Die in der vorliegenden Studie gewonnenen Erkenntnisse können zur Entwicklung 
verbesserter Strategien des Düngungsmanagements von Mais, Sorghum und Baumwolle und somit 
zu einer Verbesserung der Nachhaltigkeit der künftigen Erzeugung in den Trockensavannen West 
Afrikas beitragen.  
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1 GENERAL INTRODUCTION 

 

1.1 Problem statement  

Sustainable agricultural practices are acknowledged means to ease food insecurity and 

support livelihoods in West Africa, where soil nutrient deficiencies widely prevail. 

Agriculture in the West African Dry Savannah agro-ecological zone, including northern 

Benin, is dominated by rainfed cropping systems (Wani et al. 2009) that include crop 

rotations, intercropping, mono-cropping, and mixed cropping (Callo-Concha et al. 2013). 

Extensive agricultural practices such as fallow rotations with slash-and-burn practices, 

have previously been common for restoring soil fertility and improving crop productivity 

(Grinblat et al. 2015; Jayne et al. 2014), albeit with partial success only (Bationo et al. 

2007). Also driven by rapid population growth and the corresponding increase in 

anthropic pressure on land resources, land is increasingly being converted to agricultural 

production to meet the growing demand (Forkuor 2014; Liniger et al. 2011). This land 

use change resulted in wide-spread consequences for landscapes and the provision of 

ecosystem services. Thus, forests, protected areas, and woodlands have largely 

disappeared with intense deforestation for agricultural production in Benin (Adomou 

2005; Ouorou Barre 2014). 

The conversion of forest areas into agricultural land was able to ease 

production deficits only temporarily. Currently, the agricultural croplands in West Africa 

are typified by low soil fertility, subject to overexploitation, and managed by 

unsustainable crop and soil fertility practices (Bationo et al. 2012; Christianson and Vlek 

1991; Vanlauwe et al. 2014). Various studies pinpointed the continuous macronutrient-

mining and consequent soil fertility depletion, not only in West Africa (e.g. Henao and 

Baanante 1999), but in fact throughout the entire continent (Stoorvogel and Smaling 

1990). West African countries such as Benin, Niger, and Togo lose between 30 and 60 kg 

ha-1 of NPK annually (Henao and Baanante 1999); in Burkina Faso, Gambia, Ghana, Ivory 

Coast, Mali, Nigeria, and Senegal such losses are estimated at more than 60 kg ha-1 

(Bationo et al. 2012). In addition, while fertilizer use worldwide reached on average 

about 122 kg ha-1 (Druilhe and Barreiro-Hurlé 2012), only a fraction of that, between 7 
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and 11 kg ha-1, is applied in Sub-Saharan Africa (Honfoga 2013). Other sources of 

nutrient inputs such atmospheric dust and wet depositions are hardly significant (Kugbe 

2013; Stoorvogel et al. 1997). The nutrient mining practiced over longer periods have 

thus reduced crop productivity and biological processes gradually, and hence the 

farming population in West Africa must embrace more sustainable cropping systems to 

maintain and even improve soil fertility, resource use efficiency, and crop productivity 

as the means to sustain food availability and their livelihoods.  

The threat of soil fertility depletion of the rainfed agricultural production 

systems in West Africa has been recognized since long (Christianson and Vlek 1991; 

Gemenet et al. 2015; Schlecht et al. 2007), but an additional threat to agriculture is the 

forecasted change in key climatic parameters that are reportedly to worsen the 

resources basis. For example, the predicted changes in rainfall (Cooper et al. 2008; 

Gbobaniyi et al. 2014; Sylla et al. 2013), increase in temperature (IPCC 2007 2013; Paeth 

et al. 2009; Riede et al. 2016), and enriched CO2 environments (IPCC 2013) may alter the 

soil nutrient pools (Delgado-Baquerizo et al. 2013). This in turn will jeopardize the 

sustainability of soil fertility management and crop productivity. Furthermore, each 

nutrient has a specific pathway in the soil-plant systems, however the cycling of carbon 

(C), nitrogen (N), and (P) in terrestrial ecosystems, including agricultural systems, are 

interlinked by primary production, respiration, and decomposition (Robertson and 

Rosswall 1986; Vitousek et al. 2010), although to unknown dimensions. The 

uncertainties about the magnitude of the effects of weather variability and climate 

change on nutrient and water use of crops render the development of sustainable 

measures challenging and hence hamper the implementation of highly needed 

adaptation measures. To this end, in particular sustainable intensification measures are 

heralded as potential strategies for the region to cope with the adverse impact of 

climate change and variability on crop productivity and resource use efficiency 

(Montpellier Panel 2013; Vanlauwe et al. 2014).  

Despite abundant research on the impact of climate change on crop yields and 

food security worldwide (Rosenzweig et al. 2014; Wheeler and von Braun 2013), 

research on climate change effects on the resource use efficiency of the main staple and 
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cash crops in West Africa, including the Dry Savannah region of northern Benin, is 

limited. The development of sustainable intensification practices in this region would 

benefit not only from long-term data, e.g. on soil-plant-climate systems, but also from 

increased knowledge and understanding about long-term responses of major staple 

(e.g. maize (Zea mays L.), sorghum (Sorghum bicolor L.)) or cash (e.g. cotton (Gossypium 

hirsutum L.)) crops to soil water and nutrient management practices. This would help 

defining options to increase the resilience to future climate change e.g. with regards to 

rainfall, temperature, and CO2 variability. The absence of key information not only 

hampers the development of appropriate adaptation measures, but also the elaboration 

of suitable policies to assist the farming and rural population. Essential for determining 

suitable site- and crop-specific adaptation options are both ex-post and ex-ante 

assessments of crop responses to known and recommended soil management practices 

while considering different climate change scenarios. To bridge such gaps for the 

complex soil-plant-climate systems prevailing in the region, empirical research can be 

complemented with cropping system modeling to support the projection of climate 

change impact on crop responses and thus aid decision-making.  

Although several Cropping System Models (CSM) exist, e.g. CSM of DSSAT 

(Hoogenboom et al. 2015; Jones et al. 2003), APSIM (Keating et al. 2003) or EPIC 

(Williams et al. 1989), such crop models need first to be parameterized and evaluated 

for the target region (Hoogenboom et al. 2012; Hunt and Boote 1998). Furthermore, 

when envisaging localized climate change impact assessment and in turn the 

development of adaptation or mitigation options, outputs of Global Circulation Models 

(GCM) must be bias-corrected (Gudmundsson et al. 2012; Hawkins et al. 2013) with 

station observations to significantly minimize systematic errors and improve crop 

models projections of climate change impact on crop responses (Challinor et al. 2017; 

Glotter et al. 2014).  

 

1.2 Research hypothesis and objectives  

In constantly changing agro-ecological environments typified by high intra- and inter-

annual variations such as those prevailing in the West African Dry Savannah, it is 
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hypothesized that CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton CSM, once 

parameterized and validated for the region with empirical research data, can (i) capture 

accurately crop growth, development, yields, and in-season soil moisture and nutrient 

uptake, and (ii) subsequently be used in exploring ex-post and ex-ante responses of crop 

resource use efficiency to known and recommended soil nutrient management 

practices, and thus improve decision-making for sustainable nutrient management. The 

overall objective, therefore, was to assess the impact of predicted climate change on 

growth, yields, and water- and nutrient- use efficiencies of maize-, sorghum-, and 

cotton-based production systems in the Dry Savannah agro-ecological zone of northern 

Benin. The specific working objectives were:  

(1) Determine the productivity and N- and P- use efficiencies of maize, 

sorghum, and cotton under different soil management strategies (Chapter 

3); 

(2) Evaluate the ability of the CERES-Maize and CERES-Sorghum models for 

predicting yields, N and P uptake, as well as in-season soil water and N 

dynamics during maize and sorghum growth, and use hence the models to 

assess the effects of different nutrient management strategies on soil C and 

N, and crop water- and N- use efficiencies, considering 30 years of historical 

weather variability (Chapter 4); 

(3) Assess the impact of predicted climate change for the study region on 

water- and N- use efficiencies, as well as on yields of maize and sorghum 

(Chapter 5); and 

(4) Parameterize the CROPGRO-Cotton model to simulate growth, yield, and 

in-season soil water dynamics and N uptake, and to apply the model to 

determine optimum planting dates and potential climate change impact on 

cotton growth, yields, and water- and N- productivity under different soil 

fertility management practices (Chapter 6).  
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1.3 Outline of the thesis   

This thesis is structured in seven chapters. The first chapter, the General Introduction, 

sets the problem, the research hypothesis and the objectives, and provides the outline 

of this thesis. In the second chapter, the general setting of the study region is briefly 

described with a focus on the geographical location, climate, vegetation, geology, soils, 

and dominating socio-economic activities generally relevant for all chapters of this 

thesis. The Material and Methods used (e.g. field experiments, crop management, and 

data collection) are described in detail in chapter 2 and subsequent chapters (e.g. 3, 4, 

5, and 6). In chapter 3, the current productivity and N- and P- use efficiencies of maize, 

sorghum, and cotton are highlighted, as a result of experimental trials. These findings 

formed the bases for estimating N and P partial balances and the dynamics of soil 

residual nitrate-nitrogen (NO3-N) and available P dynamics. Working-objective 2 was 

specifically addressed to show the suitability of CERES-Maize and CERES-Sorghum for 

modeling growth, N and P uptake, and soil moisture dynamics (Chapter 4). This allowed 

consequently for describing the effects of known and recommended soil fertility 

management options on soil organic C, inorganic N, and crop water- and N- use 

efficiencies and yields assuming 30 years of historical weather variability. The next 

chapter 5, entirely dedicated to dealing with specific objective 3, highlights the climate 

change impact on water- and N-use efficiencies, N and P uptake, and yields of maize and 

sorghum. Chapter 6, addressing working objective 4, provides a description of the 

evaluation of CROPGRO-Cotton and the impact of climate change on cotton responses. 

The thesis is completed by chapter 7 in which the overarching findings are discussed and 

the final conclusions are drawn. 
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2 GENERAL MATERIAL AND METHODS  

 

2.1 Study region  

2.1.1 Geographical location and demography 

Field experiments were conducted during the 2014 and 2015 cropping seasons in the 

village of Ouri Yori (10°49’16’’N, 1°4’7’’E) in the Dassari catchment (10°44'0.15''-

10°56'0.6'' N, 01°01'37''-01°11’33’’ E) (Fig. 2.1).  

 

 
Figure 2.1 Location of Ouri Yori, Dassari catchment in Atakora department of Benin, 

West Africa. 
 



General material and methods 

7 

 

The catchment belongs to the department of Atakora located in North-west of 

Benin. Benin is located between the latitudes 6°10’N and 12°25’N and longitudes 0°45’E 

and 3°55’E in West Africa. It has an area of 112,622 km2 and borders Niger to the North, 

Burkina Faso to the North-west, Nigeria to the East, Togo to the West, and the Gulf of 

Guinea to the South (Fig. 2.1). 

 

2.1.2 Climate 

The experimental site of Ouri Yori, representative of the West African Dry Savannah 

agro-ecological conditions, experiences wet and dry periods usually from May to 

October and November to April, respectively. West African Sudan Savannah (Dry 

Savannah) is a continuous belt from Senegal in the West to Nigeria in the East. It limits 

the Guinean Savannah in the South and the Sahel Savannah in the North (Fund and 

Hogan 2014; White 1983). The dry savannah climate is under regular influence of 

circulation of Inter-tropical convergence zone (ITCZ) and West African Monsoon systems 

(Nicholson 2006).  

In the study area, the total annual rainfall amounted to 1099.5±195.8 mm over 

1986-2015. The annual mean for minimum temperature, maximum temperature, and 

solar radiation was 21.4±0.6 °C, 33.7±0.7 °C, and 19.5±0.5 MJ m-2 d-1, respectively over 

the same period. However, the total annual rainfall amounted to 937 mm in 2014 and 

1096 mm in 2015 (Fig. 2.2).  

 

 
Figure 2.2 Daily and cumulative rainfall distribution during the 2014 and 2015 

cropping seasons at the Ouri Yori village in North Benin. 
 

  
 



General material and methods 

8 

 

Rainfall in 2014 peaked in September (347 mm), but in 2015 already in August 

(429 mm). The mean annual air temperature was 29.3 °C in 2014 and 28.9 °C in 2015. 

The hottest month in 2014 was March (38 °C), and April in 2015 (40 °C), whilst the 

coldest month was December in both 2014 (18 °C) and 2015 (16 °C). 

 

2.1.3 Geology and soils 

In the department of Atakora, the major soils laid out on geological formation of the 

Precambrian Volta basin. This basin is composed of the structural units of Atakora, Buem 

and Oti. The parent rocks of Atakora unit are micaschists and quartzites, while Buem 

and Oti units are formed with quarto-micaschists and schists, respectively (Faure and 

Volkoff 1998). Trials were established on the three dominant soil types of the study area, 

which are Plinthosols and Luvisols on the crests and upper slopes of the inland valleys 

and Alisols on lower slopes and valley bottom lands (IUSS Working Group WRB 2014; 

Steup 2016). The Alisols and Plinthosols have a loamy sand texture, whilst Luvisols have 

a sandy loam texture. The initial characteristics of the three soil types are presented in 

Table 2.1. 

 

Table 2.1  Initial soil physical and chemical properties at the experimental sites in 
2014. 

Parameters Unit 

Gleyic Alisols Dystric Plinthosols Ferric Luvisols 

Depths (cm) Depths (cm) Depths (cm) 

0-20  20-40  40-60 0-20 20-40  40-60  0-20 20-40 40-60 

pH H20 (1:2.5)   5.9 6.1 5.9 6.5 6.8 7.0 6.6 6.4 6.5 

Corg g kg-1 2.8 1.4 1.3 7.0 1.8 1.7 6.8 3.1 2.3 

Ntot  g kg-1 0.5 0.4 0.6 0.9 0.6 0.5 0.8 0.6 0.6 

Bray1-P (mg kg-1) 1.0 1.0 1.0 3.0 1.0 2.0 4.0 3.0 1.0 

CEC cmolc kg-1 6.2 7.8 5.8 6.4 8.6 7.2 8.5 4.6 8.7 

Sand % 82.4 82.1 79.4 75 77.2 63.9 68.7 63.1 27.9 

Silt % 15.2 12.8 10.7 19.9 19.4 26.4 21.1 29.3 32.9 

Clay % 2.5 5 10.9 4 4.5 10.8 4.8 9.3 31.2 

Bulk density (g cm-3) 1.4 1.4 1.4 1.5 1.5 1.4 1.5 1.5 1.5 

Source: Datasets from Steup (2016) 
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2.1.4 Vegetation 

The study area is covered by southern and northern Sudanian vegetation zones (Wezel 

et al. 1999). Major vegetation type of these zones encompasses woodlands, woody 

shrubs, grasses, and gallery forests (White 1983). The past and present zonation of 

vegetation indicate changes in the vegetation cover, e.g. former tree savannah into 

shrub or grass savannah, even bare landscapes (Adomou 2005).  

Rainfall patterns determine the vegetation gradient in the region (Scheiter and 

Higgins 2009). East-west and South-north decreasing patterns of rainfall have a 

correlation with the downwards shifting of the vegetation zones. Yet, the shift in 

vegetation zones moving from the North towards the South, is associated with micro- 

and meso-scale climatic changes, which may alter C, N, and P cycles on one, and primary 

productivity in the other hand. 

 

2.1.5 Demography and socio-economic activity  

The population of Benin reached 10 million inhabitants in 2013. The share of females 

was >51% of the total population, which increased at the rate of 3.5% between 2002 

and 2013. The department of the Atakora had a population of 772,000, with about 51% 

being female. The demographic growth rate was as high as 3.1% and the average 

household size comprised 7.2 members (INSAE 2015).  

The livelihoods of the population are based on the production of staple and 

cash crops in combination with livestock rearing, forestry, and few off-farm income-

generating activities (Callo-Concha et al. 2013; Heubach et al. 2011). Farmers in the case 

study region often migrate to southern and central Benin or Nigeria in search of fertile 

lands and casual labor to improve their livelihoods (Sow et al. 2014). 

 

2.2 Field experiments  

Three field experiments were conducted to assess the responses of an improved variety 

of maize (cv. EVDT-97 STR), cotton (cv. H-279-1), and a local variety of sorghum (cv. local) 

to four soil fertility management systems. The experimental factors and design as well 

as crop and soil management are summarized in Table 2.2.  



General material and methods 

10 

 

In experiment-1 (on-farm researcher-managed trial), maize, sorghum, and 

cotton were grown under a high use of mineral fertilizer (HMF). Existing fertilizer 

recommendation rates for the tested crops are 44 kg N ha-1, 15 kg P ha-1, and 17.5 kg K 

ha-1 (Igue et al. 2015; Saidou et al. 2012). In the high mineral fertilizer use treatment, 

the recommended fertilization rates were almost doubled to test crop responses under 

nutrient-stress-free and reduced water-stress conditions, and to assess the 

effectiveness of increased fertilizer use. To minimize water-stress, supplementary 

irrigation was applied (1.5-8 mm per event of watering) during dry spells. In total 7 and 

9 applications occurred over a period of 30 days after planting in 2014 and 38 days after 

planting in 2015. 

In experiment-2 (on-farm researcher-managed trial), treatments comprised an 

un-amended soil as control (CONT) and an integrated soil-crop management practice 

(ISC) combining the recommended mineral fertilizer use and return of crop residues. The 

integration of crop residues and inorganic fertilizer use is reportedly a potential option 

for sustainable soil fertility restoration in the region (Lal 2006; Schlecht et al. 2007). 

Experiment-3 (farmer-managed trial) comprised the three crops with a low use 

of external inputs (LEI), i.e. the farmers determined the mineral fertilizer rate. Three 

farmers intercropped maize with local cowpea (Vigna anguiculata L), three other 

farmers intercropped sorghum with local cowpea whilst three other also grown sole 

cotton. The cultivation practices were monitored throughout both cropping seasons. 

The three farmers for each cropping system were considered as replications. The 

objective of experiment-3 was to record in details farmers’ practices with respect to 

their crop and soil management and compare these to the practices under the 

researcher-managed fields. Farmers decided on all management practices while 

researchers documented them. The density of cowpea in the “intercropping” system 

amounted to less than 1 plant m-2, reflecting more a situation of a “pure” maize and 

sorghum stand than that of a purposely designed intercropping stand. Therefore, the 

“intercropping” systems were analyzed as sole production systems. 
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Table 2.2  Description of experimental treatments, design, and management 
practices in the three field experiments carried out during the 2014 and 
2015 cropping seasons. 

Designations Experiment-1  Experiment-2  Experiment-3 
      

Treatments 
 
 
 

High use of mineral 
fertilizer (HMF) 

 Un-amended soil as 
control (CONT), and 
integrated soil-crop (ISC)  
 

 Low external input (LEI)  
 
 
 

      

Exp. design Randomized complete 
block design (RCBD) 

 RCBD  RCBD 

      

Replications  3   3  3 farmers per cropping 
system  

      

Plots size  6 m X 5 m  7 m X 4.2 m  0.5-1.5 ha 
      

Test crops Maize, sorghum, cotton  Maize, sorghum, cotton  Maize, sorghum, cotton 
      

Soil type Gleyic Alisols  Gleyic Alisols  Alisols, Plinthosols, 
Luvisols 

      

Planting 
dates 

2014: July 19th  
2015: June 23th  

 2014: July 4th  
2015: June 25th 

 2014: July 18th -31st  
2015: June 23rd -July25th 

      

Planting 
scheme 

For maize and sorghum: 
- 80 cm x 40 cm 

For cotton: 
- 80 cm x 30 cm 

 For maize and sorghum: 
- 80 cm x 40 cm 

For cotton: 
- 80 cm x 30 cm 

 For each main crop 
70-80 cm x 40-50 cm 

 

      

Density at 
seeding 

For maize and sorghum: 
- 6 plants m-2 

For cotton: 
- 8 plants m-2  

 For maize and sorghum: 
6 plants m-2 

For cotton: 
8 plants m-2 

 5-7 plants m-2 

      

Fertilizer 
rates  

80 kg N ha-1 , 26 kg P ha-1 , 
and 30 kg K ha-1 

 CONT: no fertilizers; ISC: 
44 kg N ha-1 , 15 kg P ha-1 , 
and 17.5 kg K ha-1 + 
residues retention 

 Different rates according 
to farmers (Table 3)  

      

Weeding Regularly weeded 
manually 

 Regularly weeded 
manually 

 Weeded twice in each 
season  

      

Net plot 4 m X 2 m  4 m X 2 m  4 m X 2 m, 3 replications 
per plot 

Experiment-1: On-farm researcher-managed trial with high mineral fertilizer use (HMF) 
Experiment-2: On-farm researcher-managed trial with an un-amended soil as control (CONT) and 
integrated soil-crop management (ISC) 
Experiment-3: On-farm farmer-managed trial with low use of external inputs (LEI) 

 

2.3 Soil and crop management  

In both seasons before planting, all experimental plots were tilled to 15-cm depth using 

an animal-drawn plow. The previous crop residues were removed from the control 

(experiment-2) and high mineral fertilizer use (experiment-1) plots, but the remaining 
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surface residues were incorporated into the soil during the tillage. For the integrated 

soil-crop management treatment plots (experiment-2), all crop residues were 

incorporated into the soil. In the farmer-managed trial (experiment-3), plots were 

sprayed with glyphosate (300-600 g a.i. ha-1) following tillage to clear any remaining 

weeds.  

During both seasons, crops were planted at the first suitable occasions (Table 

2.2). Planting densities of all crops as well as fertilization timing in experiments-1 and 2 

(Table 2.2) followed local recommendations by the national agricultural extension 

services (Igue et al. 2015; Saidou et al. 2012). In experiment-3, farmers planted all crops 

according to their own scheme (Table 2.2). Thinning of seedlings was done during the 

first weeding (≈ 15 days after planting) leaving 2 plants per stand in experiments-1 and 

2. Farmers did not thin seedlings in experiment-3.  

In experiment-1 for maize and sorghum, N fertilizer (80 kg N ha-1) was split-

applied as urea (46%), 50% of the total amount at 20 days after planting, and the 

remaining 50% at 45 days after planting. During the first N application, P as triple 

superphosphate (46% P2O5) and K as potassium chloride (60% K2O) were applied at rates 

of 26 and 30 kg ha-1, respectively. For cotton, a compound fertilizer containing NPK as 

well as sulfur (S) and boron (B) was applied at the rates of 21, 15, 17.5, 7.5, and 0.25 kg 

ha-1, respectively. During this application, the quantity of N, P, and K was topped up with 

19, 11, and 12.5 kg ha-1 using urea, triple superphosphate, and potassium chloride, 

respectively. Nitrogen was top-dressed at a rate of 40 kg N ha-1 using urea bringing the 

total N applied to cotton to also 80 kg ha-1 (Table 2.2).  

In experiment-2, maize and sorghum received N, P, and K for the first 

fertilization (21 days after planting) at the rates of 21, 15, and 17.5 kg ha-1 as urea, triple 

superphosphate, and potassium chloride, respectively. The same amounts of N, P, and 

K were applied to cotton but using the compound fertilizer NPKSB thus applying 7.5 kg 

S ha-1 and 0.25 kg B ha-1. Each crop received 23 kg N ha-1 as urea for the second 

fertilization (40 days after planting in 2014 and 42 in 2015) bringing the total N applied 

to all crops to 44 kg ha-1 (Table 2.2).  
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In experiment-3, only maize and cotton were fertilized by the farmers with a 

combination of compound fertilizer and urea as is typically done, leading to different 

rates of application (Table 2.3). 

 

Table 2.3  Rates of N, P, and K applied by farmers (n=3) participating in experiment-
3 to maize and cotton in 2014 and 2015 cropping seasons. 

Seasons Nutrients  Units 
Maize/Cowpea intercropping* Sole cotton 

Farmer 1 Farmer 2 Farmer 3 Farmer 1 Farmer 2 Farmer 3 

2014 

N kg ha-1 35 47 28 18 50 27 

P kg ha-1 25 33 20 13 10 9 

K kg ha-1 29 39 23 15 12 11 

2015 

N kg ha-1 12 23 23 18 47 23 

P kg ha-1 8 4 6 3 10 6 

K kg ha-1 10 5 7 3 14 7 

* Although farmers included cowpea as an intercrop, the density was less than 1 plant m-2. Therefore, 
this crop arrangement was considered as a sole crop during further analyses 

 

Cotton was sprayed against pests in all experiments between first flowering 

(35-40 days after planting) and physiological maturity (≈120 days after planting). In the 

experiments-1 and 2, cotton was sprayed six times. The first and second sprays involved 

Emamectin benzoate (24 g a.i. ha-1) and Acetamiprid (32 g a.i. ha-1), the third and fourth 

Lambda-Cyhalothrin (7.5 g a.i. ha-1) and Profenofos (100 g a.i. ha-1), and the fifth and 

sixth Lambda-Cyhalothrin (20 g a.i. ha-1) and Acetamiprid (15 g a.i. ha-1). The farmers in 

experiment-3 conducted 4-6 phytosanitary sprays always with the same pesticides.  

 

2.4 Data collection  

2.4.1 Assessment of aboveground biomass and economic yields 

From 20 days after planting till harvest, aboveground biomass was assessed fortnightly 

in experiments-1 and 2 during the 2015 season, resulting in 7 measurements for maize 

and 9 for both sorghum and cotton. At each aboveground biomass assessment, whole 

plants were cut from three randomly selected plant stands in the outer bordered rows. 

The fresh aboveground biomass was chopped, mixed, and weighed with a portable scale 

and subsampled. The subsamples were weighed and oven-dried at 70°C till constant 
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weight. The oven-dried samples were weighed again and dry matter (DM) content 

extrapolated to kg DM ha-1. 

At final harvest in 2014 and 2015, economic yields (grain of maize and sorghum 

and seed + lint of cotton) and stover yields were determined by harvesting the net plots 

in each experiment (Table 2.2). The fresh weight of all harvested fractions was weighed 

with a portable scale in the field, subsampled, and oven-dried at 70°C till constant 

weight to determine the moisture content and dry matter (kg DM ha-1). The total 

aboveground biomass from the net plot was weighed fresh and subsamples were taken, 

and oven-dried to determine total aboveground biomass DM.  

 

2.4.2 Soil and plant sampling and analysis, and weather data recording 

In experiment-2, soils were sampled twice in 2014 (before planting and at final harvest) 

and 3 times in 2015 (3 weeks before planting, at planting, and at final harvest) for 

determination of NO3-N and available P. At each sampling event, the soil was sampled 

at 3 random spots in each plot over 3 soil depths (0-20, 20-40, and 40-60 cm). The 

samples from each depth were bulked per plot and thoroughly mixed. The composite 

subsamples were analyzed for NO3-N according to IITA (1982) and available P following 

the Bray1 procedure (Bray and Kurtz 1945). 

The dried subsamples of maize and sorghum grain and seed cotton as well as 

the stover of all crops from the net plot at final harvest were ground with a Wiley mill to 

pass a 2 mm sieve and subsampled. The subsamples were analyzed for N and P contents. 

A fraction of each ground sample (0.5 g) was digested in a mixture of sulfuric acid, 

selenium oxychloride, and salicylic acid by heating gradually until complete 

mineralization. Contents of N and P in each digest were determined with an auto-

analyzer (SKALAR) using Nessler’s reagent as indicator for N and ammonium molybdate 

solution as an indicator for P (Anderson and Ingram 1993). The N and P uptake in grain 

or seed cotton were estimated by multiplying the yields with the N and P concentrations. 

The N and P uptake of stover was calculated accordingly, albeit by using the stover yield 

and corresponding N and P contents. The total N and P uptake was extrapolated to kg 
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ha-1 by adding the results of the N and P uptake of all fractions (economic product and 

stover components). 

During the two growing seasons, daily rainfall (mm), minimum and maximum 

air temperatures (°C), and solar radiation (MJ m-2d-1) were measured at the 

experimental site with a Campbell Advanced Weather Station (CR1000). All the sites of 

the three experiments were located within a 0.5-2 km radius around the weather 

station.  
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3 PRODUCTIVITY AND NUTRIENT USE EFFICIENCY OF MAIZE, SORGHUM, AND 

COTTON 

 

3.1 Introduction 

Sustainable production systems are key for achieving food security in West Africa. 

However, widespread land degradation and soil fertility depletion in the region, often 

mirrored in macronutrient deficiencies (Bationo et al. 2012; Schlecht et al. 2007), are 

threatening crop growth and productivity. The prevailing agricultural land-use practices 

in rainfed cropping systems enhance soil fertility depletion in West Africa (Christianson 

and Vlek 1991) with negative effects on yields (Lal 2006), productivity (Wu and Ma 

2015), and nutrient use efficiency (Dobermann 2007; Murrell 2009). Faced with 

declining productivity and concurrent growing food demands, West Africa has become 

a net food importer (FAO 2012), exerting a massive strain on the foreign exchange 

expenditures. 

Agricultural land-use practices in the West African Dry Savannah agro-

ecological zone are characterized by diverse cropping systems including crop rotations, 

intercropping, mono-cropping, mixed cropping, and fallow rotations or combinations 

thereof (Callo-Concha et al. 2013). Current cropping systems, are predominantly based 

on the staple crops such as maize, sorghum, millet (Pennisetum glaucum L.), and yam 

(Dioscorea sp). The cropping systems also include the industrial cash crop cotton and 

legumes such as groundnut (Arachis hypogaea L.) and cowpea. Legumes are typically 

intercropped with the staple crops, however, their direct contribution to soil fertility 

enhancement is limited owing to low planting densities (Naab et al. 2008) and low rates 

of biological N2-fixation (Sanginga 2003). Furthermore, existing soil fertility management 

recommendations are insufficiently adjusted to soil, crop or even cropping system 

(Bationo et al. 2012), and are rarely financially viable (Lamers et al. 2015a, b).  

Given the ongoing increase in pressure on land resources, the predicted 

climate change and variability, and the diversity of crops and cropping environments, 

the existing “blanket” -type of fertilizer recommendations (Igue et al. 2015; Saidou et al. 

2012) are unsuitable to sustain food production now and in the future. To 
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counterbalance the existing nutrient deficiencies, they need to be revised by taking into 

account site- and system-specific requirements, whilst considering and assessing the 

feasibility of sustainable cropping strategies such as integrated soil fertility management 

(Bationo et al. 2007; Vanlauwe et al. 2010) or integrated nutrient management (Wu and 

Ma 2015). However, identifying sustainable soil fertility management practices 

necessitates knowledge and understanding of crop-specific response patterns, plant 

nutrient uptake and use efficiency, which have until today rarely been assessed for the 

Dry Savannah agro-ecological zone in West Africa, including northern Benin. To support 

a better-informed decision making on site- and crop-specific soil fertility management, 

the objective of this study was to determine the productivity and N- and P- use 

efficiencies of maize, sorghum, and cotton under different soil management strategies 

in the dry savannah of northern Benin.  

 

3.2 Material and methods 

3.2.1 Experimental site 

Field experiments were conducted in northern Benin dry savannah during the 2014 and 

2015 growing seasons. The experimental area is described in detail in section 2.1. 

 

3.2.2 Crop and soil management 

The three field experiments and the rationale of the soil fertility management 

treatments tested as well as crop and soil management practices are previously 

reported (Sections 2.2, 2.3).  

 

3.2.3 Data collection 

Datasets for aboveground biomass accumulation, economic yields, total N and P uptake 

of each crop, and times series soil NO3-N and available P were collected as described in 

section 2.4. 
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3.2.4 Evaluation of nutrient use efficiency  

N- and P- use efficiencies were evaluated using the agronomic efficiency (AE) as an 

indicator for the improvement of productivity per unit of nutrient applied and the 

apparent recovery efficiency (RE) as a proxy for assessing nutrient uptake by crops 

relative to the amount of nutrient applied (Dobermann 2007; Murrell 2009). The 

indicator ratios were computed as:  

(1) AE = (Y-Y0)/F and  

(2)  RE = (U-U0)/F 

where Y is the yield of the harvested portion of the respective crops (maize, 

sorghum, and cotton) with nutrients applied (kg ha-1); Y0 is the yield without nutrients 

applied (kg ha-1); F is the amount of nutrients (N and P) applied (kg ha-1); U is the total 

nutrient (N and P) uptake in aboveground biomass with nutrients applied (kg ha-1); and 

U0 is the nutrient uptake in aboveground biomass without nutrients applied (kg ha-1). 

 

3.2.5 Evaluation of N and P partial balances 

The N and P partial balances were estimated for the maize-, sorghum-, and cotton-based 

production systems during the 2014 and 2015 growing seasons. The N and P input 

pathways comprised the application of fertilizers and the crop residues retention. The 

output pathways included the removal of the harvested products and crop residues. All 

crop residues under the integrated soil-crop management practice were left as surface 

mulch and incorporated into the soil during land preparation. The residues were 

removed from the other three fertility management treatments (un-amended soil, low 

use of external inputs, and high use of mineral fertilizer). Additional N-input pathways 

such as through biological N2-fixation, wet and dry deposition, and sedimentation or N 

losses through, for example, erosion, leaching, denitrification, and ammonia 

volatilization, were not considered. Similarly, P input through atmospheric deposition or 

losses through, for example, leaching and erosion were not considered in the analyses. 

The partial balances for N and P were computed as the difference between the 

estimated inputs and outputs (Adamtey et al. 2016; Buerkert et al. 2005). 
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3.2.6 Statistical analysis 

The effects of the four soil fertility management systems on the economic yields (grain 

and seed cotton), aboveground biomass, N and P uptake, and N- and P-agronomic 

efficiency and apparent recovery of each crop were analyzed within seasons while 

comparing the inter-seasonal changes. A linear robust mixed effects model (Milliken and 

Johnson 2009; Mitchell 2015) was used under Stata 14.0 to account for repeated 

measurements, to correct for putative heteroscedasticity, and to analyze the margins 

with a pairwise comparison between and within factors. Hereby soil fertility 

management systems and seasons were considered as fixed effects and replications as 

a random factor. The least significant difference (LSD), multi-comparisons method was 

used to separate the mean values at 5% level. The effects of soil fertility management 

systems and monitoring time on aboveground biomass accumulation of each crop 

during the 2015 cropping season in the experiments-1 and 2 were analyzed also with 

the linear robust mixed effects model. The same method was used to analyze soil NO3-

N and available P in each production system of experiment-2. Hereby soil fertility 

management systems, soil depths, and monitoring time were considered fixed effects 

and replications as a random factor. The correlation between economic yield, 

aboveground biomass, and N and P uptake was assessed for each production system 

with Stata 14.0. The N and P partial balances were analyzed graphically using a bar chart. 

 

3.3 Results 

3.3.1 Aboveground biomass accumulation  

In experiments-1 and 2, there were no significant differences in maize aboveground 

biomass accumulation between the treatments (un-amended soil, integrated soil-crop 

management practice, and high use of mineral fertilizer) during the first 30 days after 

planting (Fig. 3.1a). Thereafter, aboveground biomass values were significantly higher 

with high use of mineral fertilizer and integrated soil-crop management practice 

compared to un-amended soil. Similarly, early-season sorghum aboveground biomass 

accumulation did not differ significantly between the three soil fertility management 

systems up to 60 days after planting (Fig. 3.1b). Between 60 days after planting and final 
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harvest (128 days after planting), differences became substantial: sorghum biomass 

growth was the highest with high use of mineral fertilizer and lowest with un-amended 

soil. No significant differences were observed in cotton aboveground biomass accrual in 

response to soil fertility management systems between 20 and 50 days after planting 

(Fig. 3.1c). Thereafter, cotton aboveground biomass increased faster with high use of 

mineral fertilizer and integrated soil-crop management practice relative to un-amended 

soil.  

 

Figure 3.1 Aboveground biomass response to un-amended soil (CONT), integrated 
soil-crop management practice (ISC), and high use of mineral fertilizer 
(HMF) of maize (a), sorghum (b), and cotton (c) during the 2015 cropping 
season in experiments 1 and 2.  
Source of variation: SMS (p˂ 0.001), time (P ˂ 0.001), and SMS x time (P ˂ 0.001), 

irrespective of the crop. 
 

3.3.2 Economic and biomass yields 

Maize grain and biomass yields were significantly impacted by soil fertility management 

systems and seasons (Table 3.1A). In 2014, maize grain yield with high use of mineral 

fertilizer was significantly higher than that of integrated soil-crop management practice 

(by 21%), low use of external inputs (by 53%), and un-amended soil (by 107%). In 2015, 

maize grain yields with high use of mineral fertilizer and integrated soil-crop 

management practice were similar, but significantly higher than that of un-amended soil 

(by 118%) and low use of external inputs (by 208%). Grain yield in 2015 was 21% higher 

with un-amended soil and about 29% higher with both high use of mineral fertilizer and 

integrated soil-crop management practice compared to 2014, but 37% lower with low 

use of external inputs.  
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Table 3.1  Economic yield and aboveground biomass, and nitrogen and phosphorus 
uptake (N-UPT, P-UPT) under four soil fertility management systems 
(SMS) in maize (A), sorghum (B), and cotton (C) production systems at the 
final harvest of 2014 and 2015.  

Seasons  SMS 
Economic yield 

(t ha-1) 
AGB 

(t ha-1) 
N- UPT  

(kg N ha-1) 
P- UPT 

 (kg N ha-1) 

(A) Maize-based production systems    

2014 

CONT              1.4c             4.9b           40.6b           15.2b 
ISC              2.4b             7.8a           79.6a           29.8a 
HMF              2.9a             9.1a           93.5a           35.2a 
LEI             1.9c              5.4b           48.9b           17.3b 

2015 

CONT              1.7b             3.5c           39.5c           13.7b 
ISC             3.1a             7.6b           80.1b           36.1a 
HMF                 3.7a             9.4a           97.9a           43.9a 
LEI             1.2b             2.9c           27.0c             9.0b 

P-values SMS            ˂ 0.001 ˂ 0.001   ˂ 0.001  ˂ 0.001 
P-values Seasons               0.024    0.029    0.162   0.326 
P-values SMS x Seasons            ˂ 0.001    0.059    0.015   ˂ 0.001 

(B) Sorghum-based production systems    

2014 

CONT             1.5b             6.1b            55.9b             18.9b 
ISC             1.7a             8.5a            82.5a             27.1a 
HMF             1.8a             8.3a           78.9a             26.4a 
LEI             0.7c             2.8c           33.3c             10.1c 

2015 

CONT             1.8b             7.5b           69.4b           19.7b 
ISC             2.6a           10.8a         109.6a           30.5a 
HMF             2.5a           11.6a         111.3a           32.1a 
LEI             0.8c             3.7c           42.5c          12.5c 

P-values SMS            ˂ 0.001 ˂ 0.001 ˂ 0.001 ˂ 0.001 
P-values Seasons            ˂ 0.001 ˂ 0.001 ˂ 0.001 0.049 
P-values SMS x Seasons               0.002 0.087 0.007 0.502 

(C) Cotton-based production systems    

2014 

CONT              1.2c               3.2b             35.3bc          11.2c 
ISC              1.8a              4.3a           55.8a          20.8a 
HMF              1.4b              3.4b           45.5b         16.8b 
LEI              0.9d             1.8c           28.2c           9.9c 

2015 

CONT             1.6b              4.2b            39.8b         13.8c 
ISC             2.2a 5.6ab           70.5a          23.6b 
HMF             2.4a              6.1a           79.2a          29.0a 
LEI             0.8c             2.5c           32.6b          11.2c 

P-values SMS            ˂ 0.001 ˂ 0.001 ˂ 0.001 ˂ 0.001 
P-values Seasons            ˂ 0.001 ˂ 0.001 ˂ 0.001 ˂ 0.001 
P-values SMS x Seasons             ˂ 0.001 ˂ 0.001 ˂ 0.001 ˂ 0.001 
Means in a column within a season and crop production system with similar letters are not significantly 
different at the 5% level according to the LSD test. CONT: un-amended soil as control, ISC: integrated 
soil-crop management practice, LEI: low use of external inputs, and HMF: high use of mineral fertilizer. 

 

Maize biomass yield under high use of mineral fertilizer was statistically as high 

as that of integrated soil-crop management practice in 2014, but was the highest in 2015 
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(Table 3.1A). The biomass yields were lowest with un-amended soil and low use of 

external inputs in both seasons. Relative to 2014, maize biomass yield in 2015 increased 

by 3% with high use of mineral fertilizer, but decreased by 3% with integrated soil-crop 

management practice, 29% with un-amended soil, and 46% with low use of external 

inputs.  

In the sorghum-based production systems, soil fertility management systems 

and seasons significantly impacted grain and biomass yields (Table 3.1B). Sorghum grain 

yields with high use of mineral fertilizer and integrated soil-crop management practice 

were similar, but significantly higher than with un-amended soil and low use of external 

inputs in both seasons. Grain yields under high use of mineral fertilizer and integrated 

soil-crop management practice were consistently higher than with un-amended soil 

(20% in 2014 and 39% in 2015) and low use of external inputs (157% in 2014 and 225% 

in 2015). The sorghum grain yields in 2015 increased by 14% with low use of external 

inputs, 20% with un-amended soil, 39% with high use of mineral fertilizer, and 59% with 

integrated soil-crop management practice relative to 2014. Sorghum biomass yields 

with high use of mineral fertilizer and integrated soil-crop management practice were 

similar in both seasons. The biomass yield was significantly higher with integrated soil-

crop management practice compared to un-amended soil (39% in 2014 and 44% in 2015) 

and low use of external inputs (204% in 2014 and 192% in 2015). The sorghum biomass 

yield significantly increased in 2015 compared to 2014 with un-amended soil by 23%, 

integrated soil-crop management practice by 27%, low use of external inputs by 32%, 

and high use of mineral fertilizer by 40%.  

The soil fertility management systems and seasons, as well as their interaction, 

significantly impacted both seed cotton and biomass yields (Table 3.1C). In 2014, seed 

cotton yield with integrated soil-crop management practice was significantly higher than 

that of high use of mineral fertilizer (by 29%), un-amended soil (by 50%), and low use of 

external inputs (by 100%). In 2015, seed cotton yield with integrated soil-crop 

management practice did not differ from high use of mineral fertilizer, but was higher 

than that of un-amended soil (by 50%) and low use of external inputs (by 175%). Seed 

cotton yield increased in 2015 compared to 2014 with integrated soil-crop management 
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practice (by 22%), un-amended soil (by 33%), and high use of mineral fertilizer (by 71%), 

but decreased with low use of external inputs (by 11%). In 2014, cotton biomass yield 

with integrated soil-crop management practice was higher than that of un-amended soil 

and high use of mineral fertilizer (both by 26%) and low use of external inputs (by 139%). 

In 2015, with high use of mineral fertilizer cotton biomass yield was the highest of all 

soil fertility management systems, albeit statistically similar to that of integrated soil-

crop management practice. Cotton biomass yield under high use of mineral fertilizer in 

2015 was 45% higher compared to un-amended soil and 144% higher than that of low 

use of external inputs in the same season. Cotton biomass yield increased in 2015 

compared to 2014 with all soil fertility management systems, i.e. by 24% with un-

amended soil, 30% with integrated soil-crop management practice, 39% with low use of 

external inputs, and 79% with high use of mineral fertilizer. 

 

3.3.3 Nitrogen and phosphorus uptake 

Maize N and P uptake (N-UPT, P-UPT) were significantly affected by soil fertility 

management systems although this effect differed between seasons (Table 3.1A). The 

highest N-UPT occurred with high use of mineral fertilizer in both seasons. In 2014, N-

UPT followed the order high use of mineral fertilizer > integrated soil-crop management 

practice (17%) > low use of external inputs (91%) > un-amended soil (130%), but in 2015 

the trend was high use of mineral fertilizer > integrated soil-crop management practice 

(22%) > un-amended soil (148%) > low use of external inputs (263%). Compared to 2014, 

the N-UPT of maize decreased in 2015 by 45% with low use of external inputs, but was 

similar for all other soil fertility management systems. Maize P-UPT with high use of 

mineral fertilizer and integrated soil-crop management practice were statistically similar 

in 2014 and 2015, but were significantly higher than that of un-amended soil by 132% in 

2014 and 220% in 2015. Compared to low use of external inputs, the P-UPT with high 

use of mineral fertilizer was 103% higher in 2014 and 388% in 2015. The P-UPT in 2015 

decreased by 48% with low use of external inputs and 10% with un-amended soil 

compared to 2014, but increased by 21% for integrated soil-crop management practice 

and 25% for high use of mineral fertilizer over the same period.  
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Sorghum N- and P-UPT were substantially affected by soil fertility management 

systems although this effect differed by seasons (Table 3.1B). The N- as well as P-UPT 

with high use of mineral fertilizer in both cropping seasons did not differ from integrated 

soil-crop management practice. In 2014, the N-UPT with un-amended soil was 48% and 

with low use of external inputs 148% lower compared to integrated soil-crop 

management practice. In 2015, the N-UPT with high use of mineral fertilizer was 60% 

higher than with un-amended soil and 162% greater compared to low use of external 

inputs. From 2014 to 2015, the N-UPT increased irrespective of the soil fertility 

management systems, i.e. with un-amended soil by 24%, low use of external inputs by 

28%, integrated soil-crop management practice by 33%, and high use of mineral 

fertilizer by 41%. The P-UPT with integrated soil-crop management practice in 2014 was 

43% higher than that of un-amended soil and even 168% greater than with low use of 

external inputs, whilst with high use of mineral fertilizer in 2015, it exceeded that of un-

amended soil by 63% and that of low use of external inputs by 157%. From 2014 to 2015, 

sorghum P-UPT increased by 4% with un-amended soil, 13% with integrated soil-crop 

management practice, 22% with high use of mineral fertilizer, and 24% with low use of 

external inputs.  

There were significant effects of soil fertility management systems and season 

and their interaction on cotton N- and P-UPT (Table 3.1C). In 2014, cotton N-UPT with 

integrated soil-crop management practice was significantly higher than that of high use 

of mineral fertilizer (by 23%), un-amended soil (by 58%) or with low use of external 

inputs (by 98%). In 2015, N-UPT by cotton with high use of mineral fertilizer and 

integrated soil-crop management practice were similar, but both were higher than that 

of un-amended soil (by 99%) and with low use of external inputs (by 143%). Cotton N-

UPT increased in 2015 compared to 2014 with all soil fertility management systems, i.e. 

with un-amended soil by 13%, low use of external inputs by 16%, integrated soil-crop 

management practice by 26%, and high use of mineral fertilizer by 74%. Clear 

differences emerged between the soil fertility management systems in cotton P-UPT in 

2014 and 2015. The P-UPT with integrated soil-crop management practice in 2014 

exceeded that of high use of mineral fertilizer, un-amended soil, and low use of external 
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inputs by 24%, 86%, and 110%, respectively. In 2015, cotton P-UPT with high use of 

mineral fertilizer was higher than that of integrated soil-crop management practice by 

23%, un-amended soil by 110%, and low use of external inputs by 159%. Cotton P-UPT 

over time increased by 23% with un-amended soil, 13% with integrated soil-crop 

management practice, 73% with high use of mineral fertilizer, and 13% with low use of 

external inputs.  

Irrespective of the three crops tested, strong relations existed between 

economic yield, biomass yield, and N and P uptake (Table 3.2A, B, C).  

 

Table 3.2  Relationship (Pearson’s correlation matrix) between economic yield 
(Econ. yield), and aboveground biomass yield (AGB), nitrogen (N-UPT) 
and phosphorus uptake (P-UPT) within the maize, sorghum, and cotton 
production systems in 2014 and 2015 cropping seasons. 

 Econ. yield AGB N- UPT P-UPT 

(A) Maize production systems    
Econ. yield      1    
AGB Coefficients 0.86*      1   

P values  ˂ 0.001    
N- UPT Coefficients     0.92* 0.96*     1  

P values  ˂ 0.001   ˂ 0.001   
P-UPT Coefficients     0.89* 0.93* 0.94*     1 

P values  ˂ 0.001   ˂ 0.001  ˂ 0.001  

(A) Sorghum production systems    

Econ. yield          1    
AGB Coefficients 0.95*                1   

P values  ˂ 0.001    
N- UPT Coefficients 0.93* 0.93*               1  

P values  ˂ 0.001  ˂ 0.001   
P-UPT Coefficients 0.91*     0.96* 0.91*     1 

P values  ˂ 0.001  ˂ 0.001  ˂ 0.001  

(A) Cotton production systems    

Econ. yield          1    
AGB Coefficients 0.87*       1   

P values  ˂ 0.001    
N- UPT Coefficients     0.93* 0.85*               1  

P values  ˂ 0.001  ˂ 0.001   
P-UPT Coefficients     0.92* 0.81* 0.97*    1 

P values  ˂ 0.001  ˂ 0.001  ˂ 0.001  
* = significant at 0.05 level 
ns = non-significant at 5% level  
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3.3.4 Nitrogen and phosphorus use efficiencies 

In the maize-based production systems, N agronomic efficiency was significantly higher 

with integrated soil-crop management practice than with high use of mineral fertilizer 

(Table 3.3A). The N agronomic efficiency in 2015 increased by 37% with integrated soil-

crop management practice and 34% with high use of mineral fertilizer compared to 

2014. No significant differences existed between integrated soil-crop management 

practice and high use of mineral fertilizer in N apparent recovery of maize in both 

seasons (Table 3.3A). From 2014 to 2015, the N apparent recovery of maize increased 

by 5% with integrated soil-crop management practice and 11% with high use of mineral 

fertilizer. Similarly, no differences were found between integrated soil-crop 

management practice and high use of mineral fertilizer in P agronomic efficiency as well 

as P apparent recovery of maize within the seasons (Table 3.3A). The inter-seasonal 

changes in P agronomic efficiency were greater for high use of mineral fertilizer (34%) 

compared to integrated soil-crop management practice (20%), but the increases for P 

apparent recovery amounted to 53% with integrated soil-crop management practice 

and 51% with high use of mineral fertilizer.  

In the sorghum-based production systems, N agronomic efficiency with 

integrated soil-crop management practice was significantly higher than with high use of 

mineral fertilizer in all seasons (Table 3.3B). From 2014 to 2015, the N agronomic 

efficiency of sorghum increased by 128% with integrated soil-crop management practice 

and 20% with high use of mineral fertilizer. In contrast to maize, there were differences 

in sorghum N apparent recovery between integrated soil-crop management practice 

and high use of mineral fertilizer with the latter being significantly lower (Table 3.3B). 

Relative to 2014, N apparent recovery in 2015 increased by 98% with integrated soil-

crop management practice and by 134% with high use of mineral fertilizer. Sorghum P 

agronomic efficiency did not differ between integrated soil-crop management practice 

and high use of mineral fertilizer in the 2014 season, but was higher with integrated soil-

crop management practice than with high use of mineral fertilizer in the 2015 (Table 

3.3B). The inter-seasonal increases of P agronomic efficiency amounted to 128% with 

integrated soil-crop management practice and 21% with high use of mineral fertilizer. 
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No significant effect of soil fertility management systems was found for P apparent 

recovery within both seasons (Table 3.3B). However, inter-seasonal increases in P 

apparent recovery were observed for integrated soil-crop management practice (21%) 

and high use of mineral fertilizer (71%).  

 

Table 3.3  Nitrogen and phosphorus agronomic efficiency (AE) and apparent 
recovery (RE) of maize, sorghum, and cotton-based production systems 
under high use of mineral fertilizer (HMF) and integrated soil-crop 
management practice (ISC) in 2014 and 2015.  

Seasons SMS 
Nitrogen use efficiencies  

ratios 
Phosphorus use efficiencies 

ratios 

  AE RE AE RE 

(A) Maize-based production systems    

2014 
ISC                 24.7a 0.88a            62.1a 0.83a 
HMF                19.3b 0.66a            59.2a 0.77a 

2015 
ISC                33.8a 0.92a             74.6a 1.27a 
HMF                25.8b 0.73a            79.4a 1.16a 

P-values SMS                ˂  0.001 0.130  0.935    0.699 
P-values Seasons   0.003 0.482  0.182 ˂ 0.001 
P-values SMS x Seasons    0.636 0.811 0.751    0.702 

(B) Sorghum-based production systems    

2014 
ISC                    7.5a 0.60a           18.8a 0.47a 
HMF                   6.4b 0.29b           19.7a 0.28a 

2015 
ISC                 17.1a 1.19a           42.9a 0.62a 
HMF                   7.7b 0.68b           23.8b 0.48a 

P-values SMS   0.002 0.010  0.010 0.273 
P-values Seasons   0.004 ˂ 0.001   0.004 0.221 
P-values SMS x Seasons    0.073 0.238   0.013 0.882 

(C) Cotton-based production systems    

2014 
ISC                11.9a 0.47a            29.8a 0.49a 
HMF                  3.1b 0.16b               7.5b 0.21b 

2015 
ISC                14.4a 0.49a             36.1a 0.54a 
HMF                10.1a 0.45a            30.9a 0.59a 

P-values SMS    0.042   0.006   0.017 0.049 
P-values Seasons ˂ 0.001 0.007   0.002 ˂ 0.001 
P-values SMS x Seasons     0.032   0.024   0.073 ˂ 0.001 
Means in a column within a season and crop production system with similar letters are not significantly 
different at the 5% level according to the LSD test. SMS: Soil management systems 

 

In the cotton-based production systems, N and P agronomic efficiencies as well 

as their apparent recovery were higher with integrated soil-crop management practice 

than with high use of mineral fertilizer in the 2014 season. However, in 2015, no 

differences emerged between integrated soil-crop management practice and high use 
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of mineral fertilizer in all indicators (Table 3.3C). From 2014 to 2015, N agronomic 

efficiency increased by 21% with integrated soil-crop management practice and 226% 

with high use of mineral fertilizer. The inter-seasonal increases in N apparent recovery 

amounted to 4% with integrated soil-crop management practice and 181% with high use 

of mineral fertilizer. In 2015, the P agronomic efficiency was 21% higher for integrated 

soil-crop management practice compared to 2014, but 312% higher with high use of 

mineral fertilizer over the same period. From 2014 to 2015, a great increase occurred in 

P apparent recovery of cotton with high use of mineral fertilizer (181%) compared to 

integrated soil-crop management practice (10%). 

 

3.3.5 Nitrogen and phosphorus partial balances 

In the maize-based production systems, N and P partial balances were consistently 

negative for un-amended soil and high use of mineral fertilizer, but positive with 

integrated soil-crop management practice in both seasons. Whilst the N partial balance 

for low use of external inputs was negative with maize in both seasons, the P partial 

balance was positive in 2014 and closer to the equilibrium in 2015 (Fig. 3.2a, b). 

With sorghum in 2014, high use of mineral fertilizer resulted in almost 

balanced N and P input and output flows, but negative balances in 2015. The N and P 

partial balances for sorghum were largely negative with low use of external inputs and 

un-amended soil, but positive with integrated soil-crop management practice in both 

seasons (Fig. 3.2a, b). 

The N and P partial balances for cotton were positive with high use of mineral 

fertilizer in 2014, but in 2015 nearly zero for N and even negative for P. With low use of 

external inputs, the N partial balance was nearly zero in both seasons, while the P partial 

balance was near to zero in 2014 and negative in 2015. The N and P balances for cotton 

were positive with integrated soil-crop management practice, but negative under un-

amended soil in both 2014 and 2015 (Fig. 3.2a, b). 
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Figure 3.2 N and P balances for the un-amended soil (CONT), integrated soil-crop 
management practice (ISC), high use of mineral fertilizer (HMF), and low 
use of external inputs (LEI) under maize (A1, A2), sorghum (B1, B2), and 
cotton (C1, C2) during the 2014 and 2015 cropping seasons. 

 

3.3.6 Soil residual nitrogen and phosphorus dynamics  

The soil management systems and time of sampling significantly impacted NO3-N, 

irrespective of the crops. Soil layers impacted significantly NO3-N in both sorghum and 

cotton-based production systems, but not with maize (Table 3. 4; Fig 3.3A1, B1, C1).  

Prior to planting in 2014 (166 day of year (DOY)), no differences existed 

between soil layers and neither between the un-amended soil and integrated soil-crop 

management practice treatments in NO3-N for all crops (Fig 3.3A1, B1, C1). At final 

harvest of each crop, NO3-N with integrated soil-crop management practice was higher 

than with un-amended soil. Nitrate-N tended to be higher in the 0-20 cm layer than in 

deeper layers under sorghum and cotton cultivation. In the 2015 cropping season, no 
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differences were monitored in NO3-N between un-amended soil and integrated soil-crop 

management practice or between soil layers at the first sampling (153 DOY). However, 

around the planting period (176 DOY), NO3-N tended to be higher under maize and 

sorghum than under cotton. Under maize, NO3-N was significantly higher with 

integrated soil-crop management practice than with un-amended soil. Nitrate-N was 

more variable under sorghum. At final harvest of each crop, differences in NO3-N 

between un-amended soil and integrated soil-crop management practice had 

diminished. 

Available P varied substantially with soil layers and time of sampling, but was 

not significantly affected by soil fertility management systems for all crops (Table 3.4; 

Fig. 3.3A2, B2, C2). In the 2014 season, available P prior to planting (166 DOY) was 

significantly higher in the top 0-20 cm soil layer than that in deeper layers, irrespective 

of the soil fertility management systems. The pattern was similar at final harvest, being 

generally higher in the top than in the bottom layers. In the 2015 cropping season, 

available P was also higher in the 0-20 cm soil layer compared to the bottom layers at 

153 DOY and 176. However at final harvest, clear patterns between soil layers did not 

exist and neither between the un-amended soil and integrated soil-crop management 

practice treatments. 

 

Table 3.4  P-values of the analysis of the effects of soil management systems (SMS), 
soil layers, and monitoring time on soil nitrogen-nitrate and available 
phosphorus.  

Main source of variation 
P-values  

Soil nitrogen-nitrate Available phosphorus 

(A) Maize-based production systems  
SMS ˂ 0.001 0.085 
Soil layers   0.971 ˂ 0.001 
Time of sampling ˂ 0.001 ˂ 0.001 

(B) Sorghum-based production systems  
SMS   ˂ 0.001 0.092 
Soil layers   0.013 ˂ 0.001 
Time of sampling ˂ 0.001 ˂ 0.001 

(C) Cotton-based production systems  
SMS    ˂ 0.001   0.889 
Soil layers ˂ 0.001 ˂ 0.001 
Time of sampling ˂ 0.001 ˂ 0.001 
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Figure 3.3 Soil residual nitrate and available phosphorus dynamics in soil without 

any amendment (CONT) and with integrated soil-crop management 
practice (ISC) under maize (A1, A2), sorghum (B1, B2), and cotton (C1, C2) 
production systems in 2014 and 2015. 
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3.4 Discussion 

To support a better-informed decision making on site- and crop-specific soil fertility 

management practices in the Dry Savannah agro-ecological zone, productivity and N- 

and P- use efficiencies of maize, sorghum, and cotton under different soil fertility 

management systems were assessed in northern Benin. The findings gained with the 

four soil fertility management systems reinforced the urgency for updating the current 

soil fertility recommendations in the region for the three crops while considering crop-

specific responses and improvement of soil organic matter.  

 

3.4.1 Soil fertility management effects on biomass accrual and yields 

The monitored magnitude of the initial aboveground biomass growth is likely due to a 

favorable soil moisture induced by good rainfall and its distribution at the onset of the 

2015 season (Fig. 2.2), resulting in pulse of nitrate-N around planting period (Fig. 3.3). 

The release of soil nutrients, mainly N immediately after early-season rainfall (Lançon et 

al. 2007), counterbalanced the initial fertility differences caused by the different soil 

fertility management systems. The significant effects of N and P fertilization on biomass 

accumulation was previously reported (e.g. for maize, Dzotsi et al. 2010).  

The positive response of the economic and biomass yields of all three crops to 

fertilizers amendments, confirms previous findings for maize in the savannah region of 

Benin (Igue et al. 2015), sorghum in the semi-arid regions of Ghana (McCarthy et al. 

2010), and cotton in the savannah zone in Mali (Ripoche et al. 2015). The responses to 

the soil fertility management systems tested on economic yields and aboveground 

biomass were, however, crop-specific and caused by a crop-specific resources use (Table 

3.3). For instance, the lower level of seed cotton yield and aboveground biomass with 

high use of mineral fertilizer relative to integrated soil-crop management practice in 

2014 resulted probably from the delayed planting. Lançon et al. (1989) already reported 

the depressive effects of delayed planting on seed cotton yield and recommended 

planting dates before 30 June in the West African Dry Savannah, including northern 

Benin. In addition, the significantly lower seed cotton and biomass yields under low use 

of external inputs compared to those of un-amended soil were not only caused by the 
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soil fertility management systems and the resulting differences in soils properties but 

were also due to management practices (e.g. delayed planting, lower planting density, 

inappropriate fertilizer management, and weed competition). Similarly, the low 

productivity of sorghum under low use of external inputs in the farmer-managed trial 

was due to the lack of fertilizer applications during cultivation, since sorghum grain 

yields increased with integrated soil-crop management practice and high use of mineral 

fertilizer, which confirm previous findings (McCarthy et al. 2010). Furthermore, the 

effect of integrated soil-crop management practice on economic and biomass yields of 

all three crops suggests a further improved plant nutrition with integrated soil-crop 

management practice compared to high use of mineral fertilizer and probably even a 

luxury consumption when applying the high rates of mineral fertilizer. The current 

findings together with an archive of worldwide information (Kumar and Goh 1999), but 

more specifically for various regions in West Africa (Bationo et al. 2007; Lal 2006), 

demonstrate a significant contribution of crop residues to soil fertility enhancement and 

crop productivity (Buerkert and Hiernaux 1998; Schlecht et al. 2007), thus underlining 

the benefit of an approach that integrates inorganic and organic fertilizers (Vanlauwe et 

al. 2014; Wu and Ma 2015).  

Notable was that the inter-seasonal differences resulting in increased 

economic yields for all three crops in 2015 occurred also with the un-amended soil 

treatment. Given that all factors in 2014 and 2015 had been kept equal, the seasonal-

related differences are thus likely a result of rainfall, which in 2015 in terms of quantity 

and distribution was more advantageous compared to 2014 (Fig. 2.2). In contrast, the 

marked inter-seasonal decreases in final maize grain and seed cotton yields with low use 

of external inputs under the farmer-managed experiment is a result of the inaccessibility 

of fertilizers combined with inadequate soil management practices. The lack of 

consistency in fertilization rates on the farmer-managed fields (Table 2.3) implies also 

tradeoffs made by farmers as previously reported (Theriault and Tschirley 2014). For 

instance, since fertilizers are hardly affordable by farmers, fertilizers provided through 

the input-credit system established for cotton production are (partly) diverted to boost 

in particular maize production for reaching food security. It, therefore, has recurrently 



Productivity and nutrient use efficiency of maize, sorghum, and cotton 

34 

 

been underlined that improving access of smallholder farmers to affordable input 

markets is greatly needed and could boost sustainable production of all crops (Ripoche 

et al. 2015; Theriault and Tschirley 2014). 

 

3.4.2 Soil fertility management effects on N- and P- use efficiencies and balances 

The known extent of seasonal N- (35.3 - 69.4 kg N ha-1) and P- (11.2 - 19.7 kg P ha-1) 

uptake in un-amended soil under maize, sorghum, and cotton cultivation (Table 3.1) 

implies an alarming ongoing nutrient mining, which cannot be countered unless 

targeted amendments are ensured (Schlecht et al. 2007). Hence, the N and P uptake, 

which were highest with integrated soil-crop management practice and high use of 

mineral fertilizer, confirm previous postulations that fertilization can enhance and 

sustain plant nutrition not only in the region (Vanlauwe et al. 2014) but also worldwide 

(Godwin and Singh 1998). Despite the differences in applied amounts of chemical 

fertilizers (Table 2.2), the similar levels of N and P uptake under integrated soil-crop 

management practice and high use of mineral fertilizer are supported by the impact of 

crop residue recycling and its consequent nutrient release as substantiated by the 

agronomic efficiencies of N and P, and their apparent recovery. Units of N- and P- 

fertilizers applied as part of the integrated soil-crop management practice resulted in 

higher economic yields and lower nutrient losses compared to the use of chemical 

fertilizers alone (high rates of mineral fertilizer). Moreover, the current estimates of N 

apparent recovery under integrated soil-crop management practice were even within 

the range recognized in general as “best management options” (Fixen et al. 2015; Snyder 

and Bruulsema 2007).  

The lack of a targeted application of external input results in unbalanced N and 

P input and output flows. This is true not only when assuming the un-amended soil for 

all three crops, but also with regards to sorghum under the low use of external inputs in 

the farmer-managed trial. Hence, under such conditions crop production depends 

largely on the N and P supplied by the soils alone (Bowen and Baethgen 1998). However, 

the soils have been mined for decades at an alarming rate under the maize, sorghum, 

and cotton production practices common in Sub-Saharan Africa countries, including 
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Benin, and this process is still ongoing (Stoorvogel and Smaling 1990). These general 

trends contrasts thus with the positive N and P balances estimated for all three crops 

with the integrated soil-crop management practice, i.e. integrating inorganic fertilizers 

with crop residues recycling. The other trends of the N and P balances (i.e. negative or 

near to zero) were estimated under high use of mineral fertilizer and low use of external 

inputs (Fig. 3.2) that did not experience a targeted input of organic matter but only of 

chemical fertilizers (Table 2.2, 2.3). A comprehensive review on partial and full nutrient 

balances for several countries in Africa (e.g. Mali, Ethiopia, Kenya, Uganda) pointed at 

evident N losses, but less remarkable losses for P (Cobo et al. 2010). Recently in Kenya, 

Adamtey et al. (2016) estimated positive P partial balances under both low and high 

inputs compared to conventional and organic production systems. They underlined also 

the negative trends for N in conventional systems and positive trends for organic high 

input systems. Overall, it should be noted that the current N and P partial balances, 

however, did not account for all potential inputs and outputs of N and P and should 

therefore be treated with caution because, for instance, nutrient depletion by leaching 

and wind erosion (Schlecht et al. 2007), and gaseous losses (Godwin and Singh 1998) 

could be non-negligible.  

 

3.4.3 Effects of onset season rainfall and crop residues on nutrient pulse  

The levels of NO3-N and available P at the harvest with integrated soil-crop management 

practice relative to un-amended soil are driven mainly by the N and P fertilization, return 

of residues, and seasonal nutrient uptake. The increased accessibility of NO3-N at the 

onset of the rainy season 2015 (Fig. 3.3) is attributed to a mineralization of soil organic 

matter under un-amended soil or the mineralization of both organic matter and N-based 

fertilizers applied under integrated soil-crop management practice. This phenomenon, 

known as the N “Birch effect” (Unger et al. 2010) for N release mainly, eased in part the 

recurrently mentioned key biophysical constraints for crop growth and productivity in 

the Dry Savannah region (Lançon et al. 2007). However, crop residues with relatively 

high lignin contents (e.g. here cotton stems) could reduce the extent of soil-N peaks as 

observed between the cotton harvest in 2014 and the planting time of 2015 due to N 
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immobilization by soil microorganisms (Kumar and Goh 1999; Muhammad et al. 2011). 

The similarities noted for soil NO3-N and P between soil fertility management systems 

and soil layers at 166 DOY in 2014 and 153 DOY in 2015 could be explained by the drier 

conditions (Unger et al. 2010). 

Irrespective of the soil fertility management systems tested, all three crops had 

benefitted from the sudden flow of nutrients that occurred at the onset of the rainy 

season. However, to exploit these flows, a careful synchronization of peaks in N release 

and crop demands is compulsory, which in turn demands good management, e.g. timely 

planting. Whilst such a synchronization was previously handled and managed by the 

farmers, the growing increase in erratic rainfall at the onset of the season, as reported 

for the region (Cooper et al. 2008; Ouorou Barre 2014), renders an effective 

management more and more challenging. Options to counterbalance the growing 

insecurity and risks at the onset of the growing season include the application of 

supplementary water to cope, for instance, with in-season dry spells (Fox and Rockström 

2003; Reddy 2016). The synergetic effect of crop residues retention and fertilizer 

applications on crop production and nutrient use efficiency must be of interest not only 

to the farmers, but also to decision makers since the affordability of inorganic fertilizers 

and financial viability of fertilization strategies are still of major concern in the region 

(Lamers et al. 2015a, b). 

  

3.5 Conclusions 

Two out of the four tested soil fertility management options, i.e. the high use of mineral 

fertilizer and the integrated soil-crop management practice, improved growth and 

productivity of maize, sorghum, and cotton, albeit with differences depending on crop 

type. Only when using integrated soil-crop management practice were higher yield 

responses sustained as substantiated by the N- and P-use efficiencies and partial 

balances. The levels reached in the region are usually monitored with “best 

management and sustainable practices”, at least with reference to maize, sorghum, and 

cotton cultivation. The findings overall indicate that the current soil fertility 

recommendations for the three crops tested need to be updated while considering crop-
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specific responses and accounting for the different sources of external inputs. This is 

true in particular when considering the use and retention of crop residues, since this 

could lead to a further competition between the use of crop residues as soil amendment, 

livestock feed, and/or domestic fuel, which must be avoided. It furthermore becomes 

clear that the improved soil fertility management practices should be flanked with soil 

and water conservation options to cope successfully with the weather vagaries at the 

onset of the season such as dry spells, since crops will otherwise no longer be able to 

rely on the contribution of early-season organic matter mineralization. The integrated 

soil-crop management practice improved yields and nutrient use and balances most 

efficiently, and can thus sustain better the responses of the crop under the ongoing 

climate variability.  
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4 CERES-MAIZE AND CERES-SORGHUM FOR MODELING GROWTH, NITROGEN 

AND PHOSPHORUS UPTAKE, AND SOIL MOISTURE DYNAMICS 

 

4.1 Introduction 

Declining agricultural productivity, demographic growth, urbanization, and changing 

consumption habits are major drivers of the increase in the demand for food and feed 

in West Africa (Garrity et al. 2010; Schlecht et al. 2007; Wheeler and von Braun 2013). 

The trends for more demand are further challenged by dwindling resources as 

manifested by widespread soil fertility depletion and evidenced by low soil organic 

matter (Schlecht et al. 2007) and chronic N and P deficiencies (Bationo et al. 2012). 

Furthermore, consent exists that the predicted changes in climate and agricultural land 

use will adversely alter nutrient dynamics (Whitehead and Crossman 2012), and likely 

exacerbate the impact of soil fertility depletion on crop productivity and resource use 

efficiency (Wu and Ma 2015). This, in turn, threatens the diversity of the prevailing 

cropping systems (Callo-Concha et al. 2013), which usually are dominated by staple 

crops. Therefore, unless action is taken, agricultural land degradation and increasing 

climate variability will jeopardize food security in West Africa (Wheeler and von Braun 

2013), particularly the availability of maize and sorghum, which are major local staple 

crops (Garrity et al. 2010). Under the current conditions of food insecurity and limited 

access to and affordability of production factors (Wheeler and von Braun 2013), there is 

an urgent need to improve resource use efficiency and yields in smallholder production 

systems (Wu and Ma 2015). Hence, sustainable intensification practices are required in 

the region (Drechsel et al. 2015; Vanlauwe et al. 2014) to ensure production of sufficient, 

affordable, and nutritious food without compromising the environment.  

Field experimentation has been pivotal in assessing the effects of single or 

multiple factors on crop productivity. However, given the growing costs of conducting 

multi-level, multifactorial, and long-term field experiments to respond to the existing 

complexities in soil-plant-climate interactions, complementary approaches are needed. 

Process-based models are recognized to complement empirical data collection to 

support decision-making (Tsuji et al. 2013) concerning not only crop responses to soil 
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fertility management, but also the framing of alternative measures to increase the 

resilience of production systems. While a wide array of simulation models have been 

assessed for their use in West Africa (Akinseye et al. 2017; Webber et al. 2014), the 

Decision Support System for Agrotechnology Transfer (DSSAT) - Cropping System 

Models (Jones et al. 2003) appear promising to simulate soil-plant-climate interactions 

in this region. Reportedly, the CERES-Maize and CERES-Sorghum models of DSSAT can 

simulate growth, development, and yield in response to weather conditions and 

soil/crop management (Hoogenboom et al. 2015). They are also recognized to simulate 

soil water (Ritchie 1998) and N-balance (Godwin and Singh 1998) in cropping systems 

and the impact of climate change on crop production (White et al. 2011). Both CERES-

Maize and CERES-Sorghum have been extensively tested in terms of crop growth and 

yield predictions and N fertilizer management in India (Liu et al. 2013; Yang et al. 2011), 

Togo (Dzotsi et al. 2003), Ghana (Fosu et al. 2012; McCarthy et al. 2012), Mali (Akinseye 

et al. 2017), Nigeria (Adnan et al. 2017; Jagtap et al. 1993; Jibrin et al. 2012), and Benin 

(Igue et al. 2013). However, these models have hardly been screened in terms of soil 

water and nutrient dynamics under typical environment of the Dry Savannah region of 

West Africa. While it has been postulated that seasonal soil moisture dynamics 

potentially affect the soil supply of N and P (Bationo et al. 2012) and crop nutrient uptake 

(Buerkert and Hiernaux 1998), neither processes have been modeled by CERES-Maize 

and CERES-Sorghum and therefore do not yet support the framing of better soil-crop 

and water management options in this region.  

Recent improvements enable CERES-Maize and CERES-Sorghum to respond to 

conditions of low N and P (Dzotsi et al. 2010; Gijsman et al. 2002; Porter et al. 2009), 

which are typical for the production environment in the Dry Savannah zone of West 

Africa, including northern Benin. However, before exploiting the potential of these 

models to predict the consequences of climate change on crop growth, development, 

soil water dynamics, and nutrient balances, they must be parameterized and evaluated 

for these agro-ecological conditions and must prove to be sufficiently robust to respond 

to these typically N- and P-poor environments. The twofold objectives were: (i) Evaluate 

the ability of the CERES-Maize and CERES-Sorghum models for predicting yields, N and 
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P uptake, as well as in-season soil water and N dynamics during maize and sorghum 

growth, and (ii) use hence the models to assess the effects of different nutrient 

management strategies on soil C and N, and crop water- and N- use efficiencies, 

considering 30 years of historical weather variability in the dry savannah agro-ecological 

zone of northern Benin, West Africa. 

 

4.2 Material and methods 

4.2.1 Description of the CERES-Maize and CERES-Sorghum models 

Cropping System Models, CERES-Maize and CERES-Sorghum within the DSSAT Version 

4.6 (Hoogenboom et al. 2015) are process-level, comprehensive models to simulate crop 

growth, development, and final grain yield of maize and sorghum. The models simulate 

growth and development using a daily time-step routine from sowing to maturity or a 

specified harvest time based on physiological processes that describe crop responses to 

soil and weather conditions. Phenological development and growth are specified by 

cultivar-specific genetic coefficients depending on the photoperiod, thermal time, 

temperature response, and dry matter partitioning. Both models account for 

temperature effects on crop growth and grain filling rate based on cardinal 

temperatures, assuming trapezoidal responses and an optimum temperature of 34°C 

(Kumudini et al. 2014; White et al. 2015). Potential dry matter production is assumed to 

be proportional to the photosynthetically active solar radiation absorbed by a crop 

canopy. The actual dry matter production on a given day is constrained by suboptimal 

air temperature, soil water deficits, or N and P deficit factors for crops. The dry matter 

simulated is partitioned into different parts of the plant on the basis of temperature and 

phenological stage of the crop (Hoogenboom et al. 2010; Ritchie et al. 1998). Soil water, 

N, P, and organic C dynamics and their interactions with crop management are 

determined in subroutines that are shared by all crops in Cropping System Models. More 

detailed descriptions of the soil water, N, and C balance dynamics are found in Ritchie 

(1998) and Godwin and Singh ( 1998), but elements key to the present study are briefly 

described hereafter.  
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The soil-water balance component simulates the daily water balance 

processes, i.e. infiltration (rainfall and irrigation), surface runoff, drainage, evaporation 

from the soil surface, and water extraction by the plant. The downward flow of soil water 

to lower soil layers occurs according to a cascading approach based on the water content 

between saturation (SAT) and drained upper limit (field capacity, DUL); this flow is a 

determinant in computing the share of nitrate leaching (Ritchie 1998). The CERES-N 

balance routine for upland cropping systems simulates the turnover of soil organic 

matter and the decay of crop residues with the associated mineralization and/or 

immobilization of N, the major N loss processes (nitrification of ammonium and 

associated denitrification), and the contribution to the N balance made by 

mineralization. The model neither simulates losses by ammonium volatilization or 

ammonium exchange equilibria nor nitrogen dioxide (N2O) and dinitrogen (N2) 

emissions (Bowen and Baethgen 1998; Gijsman et al. 2002; Godwin and Singh 1998). 

Recent adaptation of CENTURY-based soil organic matter-residues module for DSSAT- 

Cropping System Models allows better understanding of soil organic nutrient processes 

(Gijsman et al. 2002; Parton et al. 1988; Porter et al. 2009).  

The routine simulates plant N uptake and distribution within crops, the 

remobilization during grain filling, and the effects of N deficiency on crop growth 

processes. The N-deficit demand is defined as the difference between a critical N 

concentration and an actual N concentration in the plant. The potential N uptake is the 

product of soil inorganic N concentrations, root length density, maximum N uptake per 

unit root length, and a soil water factor. The actual N uptake is determined as the lesser 

of either potential crop N demand or potential N uptake. The NFACT submodel 

calculates N-deficit factors in maize and sorghum.  

The soil-plant P-submodule integrates inorganic P pools (labile, active, and 

stable) and organic P pools (active and stable) with plant P uptake (Dzotsi et al. 2010). 

The P-submodule computes daily P transformation between the pools in the roots and 

non-roots zones of the soil. The P uptake is constrained by the minimum of plant 

demand and soil P supply capacity, and the minimum of daily N:P ratio (Dzotsi et al. 

2010). Since the rates of transformation of N and P are very much influenced by soil 
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water status, the simulation of N and P dynamics requires that the soil water content is 

well simulated.  

 

4.2.2 Field experiments and data 

Experiment-1: researcher-managed on-farm trial for calibrating and validating the 

models 

Experiment-1 was set up to collect essential data for calibrating and validating both 

models in reduced nutrient- and water- stress conditions (Table 2.2; Sections 2.2, 2.3). 

In addition to aboveground biomass accumulation and yields measurements (Section 

2.4), the number of days to 50% anthesis and physiological maturity were also recorded 

for 15 plants randomly selected from the inner rows of each plot. Biomass accumulation 

was assessed in 2014 and 2015. 

 

Experiment-2: researcher-managed on-farm trial for evaluating the models 

Experiment-2 was conducted in 2014-2015 (Table 2.2; Sections 2.2, 2.3) to collect 

independent datasets for evaluating the models. In 2014, the treatments comprised the 

two soil fertility management options, un-amended soil and integrated soil-crop 

management practice. In 2015, the experiment was re-designed as a factorial 

combination of the two soil fertility management options and two water management 

levels (rainfed and rainfed + supplementary irrigation). The objective of the 

supplementary irrigation practice was to examine the influence of moisture availability, 

notably at the onset of the rainy season, on N and P dynamics and the uptake of both 

minerals by crops. Supplementary irrigation occurred during dry spells only and through 

drip irrigation. The quantities of water applied per irrigation were 1.7, 2.0, 6.7, 3.3, 10.0, 

6.7, and 6.7 mm at 2, 4, 14, 20, 22, 23, 30, 35, and 36 days after planting, respectively.  

In 2014, no in-season biomass accumulation assessment occurred in 

experiment-2. In 2015, in-season biomass dynamics were monitored weekly from 13 to 

34 days after planting. Thereafter, the measurements were made bi-weekly until final 

harvest. The aboveground biomass accumulation at each event was determined as 

described previously (Section 2.4.1).  



CERES-Maize and CERES-Sorghum for modeling growth, nitrogen and phosphorus 
uptake, and soil moisture dynamics 

43 

 

In-season soil water content was measured from the 0-20, 20-40, and 40-60 

cm depths of each plot from 20 days after planting until harvest in synchronization with 

biomass accrual measurements. Soil water was measured with a HH2 moisture meter 

connected to a PR2/6 profile probe (Delta-T Devices Ltd) that was calibrated for the 

experimental site. For the calibration, one access tube of the profile Probe device was 

installed nearby the site of experiment-2 in 110 cm depth. The probe reading 

(permittivity in volt) were regularly recorded (11 measurements) over the soil layers 0-

10, 10-20, 20-30, 30-40, 40-60, and 60-100 cm during two weeks. In synchrony with the 

permittivity readings, the soil was sampled around the access tube over the same layers 

for gravimetric water content measurement. In addition, one meter soil profile was dug 

at 10 m away from the access tube where three intact cores (100 cm3) were sampled 

from each layer. The fresh cores samples were weighed and oven-dried at 100°C for 24 

hours to determine the bulk density for each layer. Next, the gravimetric water 

measurements and bulk density were used to calculate volumetric moisture contents 

(m3m-3) for each soil layer. The calibration process of the Profile Probe PR 2/6 was based 

on the variable intercept approach. The permittivity readings (V) were converted into 

dielectric property (√ε) using the approximate linear relationship (√ε = 0.37 + 43.43 V) 

(Delta-T Devices Ltd 2015). Furthermore, the dielectric property was regressed against 

volumetric water content and fitted by trend-line to determine the slope and intercept 

for each profile layer. Therefore, the coefficients of the profile probe were updated over 

the layers 10, 20, 30, and 40. The gravimetric soil moisture content showed less 

variability over the layers 60 and 100 cm. Therefore, the default values were kept for 

these two layers. After calibration, one access tube was installed in each plot to a depth 

of 1.10 m. Probe reading was taken at 10 cm depth intervals down to 40 cm depth and 

thereafter at 20 cm intervals to 1.10 m.  

Soil samples were taken from the 0-20, 20-40, and 40-60 cm depths at the 

same time as biomass measurements. Composite subsamples from each depth were 

analyzed colorimetrically for soil NO3-N concentrations (IITA 1982).  

The in-season aboveground biomass samples were ground using a Wiley mill 

and sent to laboratory for chemical analyses. Total N and P concentrations were 
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determined colorimetrically in an auto-analyzer as reported by Anderson and Ingram 

(1993). The resulting concentrations allowed for estimating total N and P in the 

aboveground biomass. Data for grain and biomass yields, and plant N and P uptake at 

harvest were measured as previously described (Section 2.4.2). 

 

Experiment-3: farmer-managed on-farm trial for evaluating the models 

Experiment-3 was conducted on different farmers’ fields selected to cover all three 

dominant soil types (Table 2.2). This allowed for an evaluation of the robustness of the 

CERES-Maize and CERES-Sorghum models while assuming farmers’ circumstances. In 

each field of the farmers, researchers delineated three rectangular plots (8.0 m2) at the 

beginning of the cropping season to monitor phenological stages and assessing yield at 

harvest. Additional observations and measurements on each field were kept to a 

minimum but sufficient to quantify all input parameters/variables as demanded by both 

Cropping System Models. The monitoring of the output variables permitted the 

evaluation of model predictions. All management practices including dates of planting, 

weeding, and fertilizer applications were recorded as well as the type and amount of 

fertilizer used. Plant population at emergence and final harvest were also recorded. 

Environmental characteristics such as soils data (Table 2.1) and weather data (Section 

2.4.2) were recorded as well.  

 

4.2.3 Model calibration  

Calibration of genetic coefficients 

The 2014 dataset of experiment-1, involving high rates of mineral fertilizer and 

supplementary irrigation to minimize nutrient and water-stress, was used for the model 

calibration. The genetic coefficients of each crop cultivar were manually adjusted to 

reach an accurate goodness of fit between simulated and measured dataset. The 

calibration for maize was based on an existing maize cultivar included in DSSAT, namely 

AB-11-TG. The default coefficients for the thermal time from emergence to the end of 

juvenile phase (P1) was reduced to match the observed anthesis of the maize cv. EVDT-

97 STR used. The thermal time from silking to physiological maturity (P5) was decreased 
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to match the observed physiological maturity, while the maximum number of kernels 

(G2) and kernel filling rate (G3) were adjusted to match the observed grain yield and 

biomass (Table 4.1). 

 

Table 4.1  Genetic coefficients of maize cv. EVDT-97 STR after calibration and used 
during validation of CERES-Maize.  

Codes Definition 
Default 
values                                      

AB-11-TG 

Calibrated         
EVDT-97 

STR 

P1 Thermal time from seedling emergence to the end of 
the juvenile phase (> 8°C in degree days)  

          250  210 

P2 Extent to which development (expressed as days) is 
delayed for each hour increase in photoperiod above 
12.5 hours 

0.1  0.10 

P5 Thermal time from silking to physiological maturity 
(degree days) 

         620  580 

G2 Maximum possible number of kernels per plant          920  900 
G3 Kernel filling rate during the linear grain filling stage 

and under optimum conditions (mg/day) 
8.5    9.23 

PHINT Phylochron interval; the interval in thermal time 
(degree days) between successive leaf tip appearances. 

          55    55 

 

Likewise, for sorghum, the default coefficients of an existing sorghum cultivar 

in DSSAT, cv. W. African, were used as starting points to calibrate the local sorghum 

cultivar. The thermal time from seedling emergence to the end of the juvenile phase 

(P1), the critical photoperiod (P2O), and extent of delay in phasic development leading 

to panicle initiation (P2R) were adjusted to match the observed anthesis of the local 

sorghum cultivar. Next, the thermal time from grain filling to physiological maturity (P5) 

was decreased and finally the scaler for the relative leaf size (G1) and for the partitioning 

of assimilates to the panicle (G2) were calibrated for grain yield and final biomass (Table 

4.2).  

After the adjustment for anthesis and physiological maturity, the soil fertility 

factor for photosynthesis (SLPF) was calibrated so that the simulated top weight 

matched the initial slope of the observed AGB. The SLPF value needed to be set to 0.98, 

which is slightly less than the default value of 1. The calibrated models were validated 

against the 2015 dataset of experiment-1 without a re-calibration of the cultivar specific 

coefficients.  
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Table 4.2  Genetic coefficients of sorghum cv. local after calibration and used during 
validation of CERES-Sorghum. 

Codes Definitions 
Default values                                      

W. African 
Calibrated                        

local 

P1 Thermal time from seedling emergence to the end of 
the juvenile phase  

            413    650 

P2 Thermal time from the end of the juvenile stage to 
tassel initiation  under short days (degree days 
above TBASE) 

           102    102 

P2O Critical photoperiod or the longest day length (in 
hours) at 
which development occurs at a maximum rate 

13.6      13 

P2R Extent to which phasic development leading to 
panicle initiation (expressed in degree days) is 
delayed for each hour increase in photoperiod above 
P2O 

             40    100 

PANTH Thermal time from the end of tassel initiation to 
anthesis (degree days above TBASE) 

617.5 617.5 

P3  Thermal time from to end of flag leaf expansion to 
anthesis (degree days above TBASE) 

152.5 152.5 

P4 Thermal time from anthesis to onset of grain filling 
(degree days above TBASE) 

81.5 81.5 

P5 Thermal time from beginning of grain filling to 
physiological 
maturity (degree days above TBASE) 

            640     500 

PHINT Phylochron interval; the interval in thermal time 
between successive leaf tip appearances (degree 
days) 

               49        49 

G1 Scaler for relative leaf size                  3          2 
G2 Scaler for partitioning of assimilates to the panicle 

(head) 
6.5          5 

 

To account for differences in soil fertility between sites for experiment-1 (used 

for model calibration) and experiments-2 and 3 (used for model evaluation), one 

treatment was selected on the different soil types. Here the default SLPF was manually 

adjusted such that simulated final grain yields were close to measured values in the two 

seasons. Therefore, the SLPF value for experiment-2 was reduced from 1 (default value) 

to 0.75 while for experiment-3 the SLPF were reduced to 0.65 on Gleyic Alisols, 0.55 on 

Dystric Plinthosols, and 0.50 on Ferric Luvisols. The calibrated SLPF values were used to 

run the models for all treatments on each site without further modification.  
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Soil water-holding characteristics 

The default soil water-holding characteristics required by the models (e.g. DUL, lower 

limit (LL), SAT, saturated hydraulic conductivity (SWCN), root weighting factor (WR), 

runoff curve number (CN2), and drainage coefficient (SWCON)) were initially calculated 

by inputting soil texture, bulk density, soil organic carbon, and other information (Table 

2.1) into the DSSAT soil creation utility program. These estimated soil water-holding 

characteristics were next modified to make them more specific for the site of 

experiment-2. The default values of SAT were first optimized for each layer by using total 

porosity values obtained during bulk density measurements for the calibration of the 

soil moisture probe for the site. Measured soil water content under rainfed conditions 

without fertilization enabled to estimate the LL and DUL by adjusting the default values 

to match the lowest water content during drying cycles or when the soil water content 

remained constant for 2-3 days after a rainfall event for each soil layer. Finally, SWCN, 

SWCON, CN2, and WR were defined by adjusting the default values to match the 

measured soil water contents. Table 4.3 shows the calibrated soil water-holding 

characteristics used during the runs of the CERES-Maize and CERES-Sorghum under all 

scenarios: rainfed, supplementary irrigation, with and without fertilizers and 

combinations thereof. 

 

Table 4.3  Soil hydraulic properties after calibration and used during models 
simulations in experiment-2. 

Hydraulic properties 
Starting points per soil depth 

Optimized values per soil 
depth 

20 cm 40 cm 60 cm 20 cm 40 cm 60 cm 

LL (cm3 cm-3) 0.046 0.055 0.084 0.050 0.085 0.090 

DUL (cm3 cm-3) 0.116 0.118 0.147 0.205 0.254 0.292 

SAT (cm3 cm-3) 0.435 0.461 0.433 0.280 0.310 0.390 

SWCN (cm h-1) 6.110 6.110 2.590 5.500 3.650 2.230 

WR  1.000 0.549 0.368 1.000 0.749 0.468 

Other inputs  
Default 
values 

Adjusted 
values     

Soil surface albedo (SLAB)         0.13            0.13     

First stage evaporation (U)     6       6     

CN2  73     70     

SWCON           0.6           0.3     
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4.2.4 Model input data  

The soil input files were created by inputting measured soil properties data, such as soil 

texture (percent silt, clay, and sand), soil bulk density, pH, organic carbon, total N, 

available phosphorus, and CEC for each researcher- and farmer-managed fields (Table 

2.1) into the soil file creation utility program (SBuild) of the DSSAT software.  

Weather files for 2014 and 2015 were created using daily minimum and 

maximum air temperatures, rainfall, and solar radiation recorded at the experimental 

site with the Weatherman utility program in DSSAT. Additionally, a weather file was 

created for 30 years (1986-2015) of observed daily minimum and maximum 

temperature, solar radiation (collected by the nearest synoptic weather station in 

Natitingou, 63 km from the research site), and rainfall (collected from a nearby rain 

gauge station in Tanguieta (27 km)). All the data on crop management, growth, and 

yields collected for the two seasons were used to create the standard DSSAT file formats 

(*.MZX, *.SGX, *.MZA, *.SGA, *.MZT, and *.SGT) for each experiment, needed to run the 

CERES-Maize and CERES-Sorghum models.  

 

4.2.5 Assessment of models performance 

The performance of CERES-Maize and CERES-Sorghum were evaluated graphically by 

comparing the time series of aboveground biomass, soil water and NO3-N dynamics, N 

and P uptake, and final grain and biomass yields from the experiments with predicted 

values. Statistical assessments to judge the accuracy of model outputs included the root 

mean square error (RMSE) (Willmott 1981), normalized-RMSE (nRMSE), and Index of 

agreements (d) (Yang et al. 2014). These indicators were computed as:  

 

(1)      RMSE = [∑
(𝑌𝑖 − 𝑋𝑖)2

𝑁

𝑁

𝑖=1

]

1/2

 

 

(2)    nRMSE =
RMSE

�̅�
∗ 100 
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(3)              d = 1 −
∑ (𝑌𝑖 − 𝑋𝑖)2𝑁

𝑖=1

∑ (|(𝑌𝑖 − �̅�)| + |𝑋𝑖 − �̅�|)2𝑁
𝑖=1

 

 

where N is number of observations, Yi is the predicted value for the ith 

measurement, Xi is the observed value for the ith measurement, �̅� is the mean of the 

predicted values, and �̅� is the mean of the observed values. When predicted values 

exactly fitted the observed values, RMSE and nRMSE are 0 and the corresponding d-

value is 1. The criteria of agreement between observed and predicted values were set 

according to Yang et al. (2014): the predictions of the models were considered accurate 

when evidenced by the lowest RMSE and nRMSE and with d ≥ 0.75 for the outputs of 

the yield components. The minimum criterion d ≥ 0.60 was set as threshold for the 

acceptance of the accuracy of predictions in soil-plant N and P and water dynamics.  

 

4.2.6 Simulations of effects of different soil fertility management strategies  

The validated CERES-Maize and CERES-Sorghum models were finally used to assess the 

effects of three soil fertility management strategies on soil C and N, water- and N- use 

efficiencies, and grain yields of maize and sorghum on the Alisols, assuming 30 years of 

weather variability (1986-2015). The three tested options during simulations were (i) the 

un-amended soil as control, (ii) integrated soil-crop management practice, and (iii) high 

use of mineral fertilizer (Table 2.2; Section 2.2).  

The simulations were conducted using the seasonal analysis option in DSSAT 

for rainfed conditions. The outputs of the models were evaluated graphically with the 

cumulative probability function. The outputs for water use efficiency, N-partial 

productivity, and N-internal utilization efficiency were expressed as grain yield per unit 

of evapotranspiration [kg grain (mm ET)-1], grain yield per N fertilizer applied [kg grain 

(kg N fertilizer)-1], and grain yield per N uptake [kg grain (kg N uptake)-1], respectively.  

 

 



CERES-Maize and CERES-Sorghum for modeling growth, nitrogen and phosphorus 
uptake, and soil moisture dynamics 

50 

 

4.3 Results 

4.3.1 Weather during the crop growing cycle 

From planting to harvest, rainfall was about 619 mm in 2014 during the growing cycle 

of maize and sorghum, but in 2015 it amounted to 912 mm for maize and 948 mm for 

sorghum. The mean annual minimum temperature was 23.4 °C in 2014 and 22.7 °C in 

2015. However, the average minimum temperature over the growing cycle of both crops 

was approximately 24.0 °C in 2014 and 23.0 °C in 2015. The mean annual maximum 

temperature was 35.1 °C in 2014 and 2015. The average maximum temperature from 

planting to harvest of maize was 32.4 °C while it was 33.0 °C for sorghum in 2014. In 

2015, the average maximum temperature was 31.3°C during the growth cycle of both 

crops. The average solar radiation was about 18.6 (MJ m-2 d-1) over the growing cycle of 

both crops in both growing seasons. 

  

4.3.2 Calibration of models: phenology, biomass, and grain yields  

Phenology  

CERES-Maize and CERES-Sorghum predicted accurately phenology of maize and 

sorghum as monitored in experiment-1 during the 2014 season. CERES-Maize predicted 

observed anthesis (52±4 days after planting) and physiological maturity (80±5 days after 

planting) with RMSE (nRMSE) of 0 day (0%). In 2015, CERES-Maize satisfactorily 

predicted observed anthesis of maize (53±3 days after planting) with RMSE of 1 day and 

nRMSE of 2%, and physiological maturity (86±4 days after planting) with RMSE of 1 day 

and nRMSE of 1%.  

In the 2014 season, CERES-Sorghum simulated the observed anthesis (78±8 

days after planting) with RMSE (nRMSE) of 2 days (3%), and physiological maturity 

(103±6 days after planting) with RMSE (nRMSE) of 0 day (0%). In 2015, CERES-Sorghum 

predicted fairly well the observed anthesis of sorghum (92±7 days after planting) with 

RMSE (nRMSE) of 14 days (15%), and physiological maturity (123± 5 days after planting) 

with RMSE (nRMSE) of 14 days (11%) also. 
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Biomass accumulation  

In the 2014 season, the models predicted accurately the observed aboveground biomass 

accumulation of both maize and sorghum (Fig. 4.1A1, B1). CERES-Maize simulated the 

changes in aboveground biomass over time with nRMSE of 13% and d-value of 0.99 (Fig. 

4.1A1).  

Likewise, CERES-Sorghum showed a satisfactory fit between predicted and 

observed aboveground biomass accumulation, as evidenced by nRMSE of 14% and d-

value of 0.99 (Fig. 4.1B1). Both parameterized models simulated fairly well the changes 

in aboveground biomass during the 2015 season (Figure 4.1A2, B2).  

 

 

Figure 4.1 Observed (symbols) and simulated (lines) aboveground biomass changes 
with time of maize (A1, 2) and sorghum (B1, 2) in experiment-1 during the 
2014 (A1, B1) and 2015 (A2, B2) cropping seasons. 
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Yields at final harvest 

In experiment-1, CERES-Maize predicted the measured biomass (9110±578 kg ha-1) and 

grain yields (2889±159 kg ha-1) at harvest in 2014 with RMSE (nRMSE) of 621 kg ha-1 (7%) 

and 47 kg ha-1 (2%), respectively. In 2015, CERES-Maize predicted maize biomass yield 

(9416±567 kg ha-1) with RMSE of 253 kg ha-1 and nRMSE of 3%, and maize grain yield 

(3718±363 kg ha-1) with RMSE of 252 kg ha-1 and nRMSE of 7%.  

At final harvest in 2014, sorghum biomass and grain yields were 8265±705 kg 

ha-1 and 1778±157 kg ha-1, respectively. The RMSE (nRMSE) between observed and 

simulated values with CERES-Sorghum was 15 kg ha-1 (0.2%) for biomass and 44 kg ha-1 

(2%) for grain yields. In the 2015 season, CERES-Sorghum simulated observed biomass 

yield (11623±1780 kg ha-1) with RMSE of 1342 kg ha-1 and nRMSE of 25%, and grain yield 

(2456±168 kg ha-1) with RMSE of 510 kg ha-1 and nRMSE of 21%. 

 

4.3.3 Evaluation of models  

In-season soil water content dynamics 

Measured and simulated soil water contents in various layers of the soil profile are 

shown for experiment-2 in the 2015 season (Fig. 4.2 and 4.3). Under rainfed and 

supplementary irrigation conditions with fertilizer application, CERES-Maize predicted 

accurately in-season soil water dynamics in all layers (Fig. 4.2).  

CERES-Sorghum predicted reasonably well changes in soil water content in the 

top 0-20 and 20-40-cm of the soil profile under rainfed conditions, but tended to under-

predict soil water from 70 days after planting onwards in the 40-60-cm layer under 

rainfed conditions and in all layers with supplementary irrigation (Fig. 4.3). 
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Figure 4.2 Measured (symbols) and simulated (lines) soil water content under maize 

rainfed with fertilization (a, b, c) and supplementary irrigation with 
fertilization (d, e, f) in the 0-20 cm, 20-40 cm, and 40-60 cm soil depths in 
experiment-2 during the 2015 cropping season. 

 

 
Figure 4.3 Measured (symbols) and simulated (lines) soil water content under 

sorghum rainfed with fertilization (a, b, c) and supplementary irrigation 
with fertilization (d, e, f) in the 0-20 cm, 20-40 cm, and 40-60 cm soil 
depths in experiment-2 during the 2015 cropping season. 
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In-season soil nitrate-nitrogen dynamics  

Both CERES-Maize and CERES-Sorghum captured fairly well the pattern of soil NO3-N 

dynamics under rainfed and supplementary irrigation conditions with fertilization in 

experiment-2 (Fig. 4.4 and 4.5), but both models differed in accuracy. CERES-Maize 

predicted early season dynamics (up to 30 days after planting) fairly well, but tended to 

under-predict the dynamics from mid-to the end of the season (Fig. 4.4). CERES-Maize 

mimicked in-season NO3-N dynamics under rainfed with fertilization conditions with 

nRMSE of 56 to 59% and d-values between 0.61 and 0.69 (Fig. 4.4a, b, c). CERES-Maize 

predictions were slightly better with supplementary irrigation as shown by lower nRMSE 

and (d values) ranging from 46 and 56% (0.74 and 0.76) (Fig. 4.4d, e, f). 

Under rainfed conditions, CERES-Sorghum predicted in-season NO3-N 

dynamics with nRMSE of 44-56% and d-values of 0.62-0.76 (Fig. 4.5a, b, c). Predictions 

of CERES-Sorghum were relatively better under supplementary irrigation conditions 

(nRMSE = 35-49%; d = 0.76-0.82) (Fig. 4.5d, e, f). 

 

 
Figure 4.4 Measured (symbols) and simulated (lines) soil nitrate-nitrogen under 

maize rainfed with fertilization (a, b, c) and supplementary irrigation with 
fertilization (d, e, f) in the 0-20 cm, 20-40 cm, and 40-60 cm soil depths in 
experiment-2 during the 2015 cropping season. 
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Figure 4.5 Measured (symbols) and simulated (lines) soil nitrate-nitrogen under 

sorghum rainfed with fertilization (a, b, c) and supplementary irrigation 
with fertilization (d, e, f) in the 0-20 cm, 20-40 cm, and 40-60 cm soil 
depths in experiment-2 during the 2015 cropping season. 

 

Nitrogen and phosphorus uptake 

Under rainfed conditions without fertilization, CERES-Maize over-predicted early-season 

N uptake, but under-predicted N uptake later in the season (Fig. 4.6A1). With 

fertilization, CERES-Maize accurately predicted the end of season N uptake (Fig. 4.6A2). 

Under supplementary irrigation, the model simulated the observed N uptake 

satisfactorily for the treatments both with and without fertilization (Fig. 4.6A3, A4). 

Without fertilization, CERES-Sorghum over-predicted early-season, but under-predicted 

late-season, N uptake under rainfed (Fig. 4.6B1) and supplementary irrigation conditions 

(Fig. 6B3). With fertilization, CERES-Sorghum predicted N uptake over time much more 

accurately under rainfed (Fig. 4.6B2) and supplementary irrigation (Fig. 4.6B4).  

Under rainfed conditions without fertilization, CERES-Maize over-predicted P 

uptake early in the season, and under-predicted P uptake later in the season (Fig. 4.7A1).  
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Figure 4.6 Observed (symbols) and simulated (lines) nitrogen (N) uptake over time 

by maize (A1, A2, A3, A4) and sorghum (B1, B2, B3, B4) under rainfed 
without fertilization (RF-F), rainfed with fertilization (RF+F), 
supplementary irrigation without fertilization (SI-F), and supplementary 
irrigation with fertilization (SI+F) in experiment-2 during the 2015 
cropping season. 
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Figure 4.7 Observed (symbols) and simulated (lines) phosphorus (P) uptake over 

time by maize (A1, A2, A3, A4) and sorghum (B1, B2, B3, B4) under rainfed 
without fertilization (RF-F), rainfed with fertilization (RF+F), 
supplementary irrigation without fertilization (SI-F), and supplementary 
irrigation with fertilization (SI+F) in experiment-2 during the 2015 
cropping season. 
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With fertilizer application, CERES-Maize predicted P uptake accurately under 

rainfed conditions (Fig. 4.7A2). Under supplementary irrigation, with and without 

fertilization, P uptake was simulated by CERES-Maize satisfactorily (Fig. 4.7A3, 4). CERES-

Sorghum captured P uptake patterns well early in the season, but under-predicted this 

later in the season under both rainfed and supplementary irrigated sorghum with and 

without fertilization (Fig. 4.7B1, B2, B3, B4).  

 

Aboveground biomass accumulation 

Under rainfed and supplementary irrigation conditions in experiment-2, with and 

without fertilization, CERES-Maize predicted aboveground biomass accumulation with 

nRMSE of 10 to 22% and d-values ranging from 0.96 to 0.99 (Fig. 4.8A1, A2, A3, A4).  

CERES-Sorghum predicted accurately aboveground biomass growth with 

nRMSE ranging from 13 to 29% and d-values from 0.97 to 0.99 (Fig. 4.8B1, B2, B3, B4). 
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Figure 4.8 Observed (symbols) and simulated (lines) changes in aboveground 
biomass of maize (A1, A2, A3, A4) and sorghum (B1, B2, B3, B4) under 
rainfed without (RF-F) and with fertilization (RF+F), and supplementary 
irrigation without (SI-F) and with fertilization (SI+F) in experiment-2 
during the 2015 cropping season. 

 

   

  

  

  

 

RF-F  : Rain-fed without fertilizer 
RF+F : Rainfed with fertilizer (N44P15K17.5 + residues retention) 
SI-F   : Supplementary irrigated without fertilizer 
SI+F  : Supplementary irrigated with fertilizer (N44P15K17.5 + residues retention). 
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Yields at final harvest 

In experiment-2, CERES-Maize predicted the final biomass very well given the nRMSE of 

16% and d-value of 0.94 (Fig. 4.9a). CERES-Sorghum simulated the final biomass well 

with nRMSE of 14% and d-value of 0.87 (Fig. 4.9b). 

On farmers’ fields (experiment-3), CERES-Maize predicted the observed final 

biomass satisfactorily (Fig. 4.10a) with nRMSE of 17% and d-value of 0.92. CERES-

Sorghum showed only a moderate goodness of fit of biomass yield at final harvest (Fig. 

4.10b) with nRMSE of 45% and d-value of 0.55 (Fig. 4.10b).  

Under the researcher-managed conditions of experiment-2, maize grain yield 

was predicted with RMSE of 413.6 kg ha-1 (nRMSE = 19% and d = 0.93) (Fig. 4.11a), while 

sorghum grain yield was predicted with RMSE of 341.2 kg ha-1 (nRMSE = 16% and d = 

0.91) (Fig. 4.11b), and hence both predictions were sufficiently accurate.  

In the farmer-managed trial (experiment-3), both models predicted grain yield 

with greater accuracy than biomass (Fig. 4.12). CERES-Maize predicted maize grain yield 

more accurately with RMSE of 243 kg ha-1, nRMSE of 15%, and d-value of 0.89 (Fig. 

4.12a). Similarly, CERES-Sorghum predicted sorghum grain yield reasonably well with 

RMSE of 117 kg ha-1, nRMSE of 15%, and d-value 0.80 (Fig. 4.12b). 

 

 

Figure 4.9 Observed and simulated aboveground biomass at final harvest for maize 
(a) and sorghum (b) under rainfed and supplementary irrigation without 
(open symbols) and with fertilization (solid symbols) in experiment-2 for 
the 2014 and 2015 cropping seasons. 
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Figure 4.10 Observed and simulated aboveground biomass at final harvest for maize 
(a) and sorghum (b) under farmer field conditions (experiment-3) during 
the 2014 (open symbols) and 2015 (solid symbols) cropping seasons. 

 

 

Figure 4.11 Observed and simulated final grain yields for maize (a) and sorghum (b) 
under rainfed and supplementary irrigation without (open symbols) and 
with fertilization (solid symbols) in experiment-2 for the 2014 and 2015 
cropping seasons. 
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Figure 4.12 Observed and simulated grain yield at final harvest for maize (a) and 
sorghum (b) under farmer conditions (experiment-3) during the 2014 
(open symbols) and 2015 (solid symbols) cropping seasons. 

 

4.3.4 Application of models 

Effects of soil fertility management on soil C and inorganic N 

The cumulative probability function (Fig. 4.13A1) shows the highest soil total organic C 

with integrated soil-crop management practice and the lowest under un-amended soil 

and high use of mineral fertilizer in maize production systems. Weather variability hardly 

altered the total organic C under un-amended soil and high use of mineral fertilizer, but 

resulted in noticeable changes with integrated soil-crop management practice, 

particularly after 0.90 cumulative probability. In sorghum production systems, the 

simulated total organic C was different between the three soil fertility management 

strategies. Total soil organic C was highest with integrated soil-crop management 

practice and lowest with high use of mineral fertilizer (Fig. 4.13B1).  

Soil inorganic N in maize production systems was affected by soil fertility 

management strategies and weather variability (Fig. 4.13A2). Higher soil inorganic N was 

predicted with integrated soil-crop management practice compared to un-amended soil 

and high use of mineral fertilizer. The simulated inorganic N showed similar patterns 

under un-amended soil and high use of mineral fertilizer up to 0.90 cumulative 

probability while considerable variability appeared with integrated soil-crop 

management practice from approximately 0.50 cumulative probability onwards. The 
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cumulative probability function of the simulated inorganic N under sorghum production 

systems indicates no substantial difference between the treatments till 0.40 (Fig. 

4.13B2). Thereafter, predicted inorganic N with integrated soil-crop management 

practice became higher than with un-amended soil or high use of mineral fertilizer.  

 

 

Figure 4.13 Cumulative probability function of simulated total soil organic carbon 
(A1, B1) and soil inorganic nitrogen (A2, B2) under maize (A1, A2) and 
sorghum (B1, B2) production systems, assuming an un-amended soil 
(CONT), integrated soil-crop management practice (ISC), and a high use 
of mineral fertilizer (HMF) for the historic weather variability (from 1986 
to 2015). 

 

Options for improving water use efficiency  

The cumulative probability function (Fig. 4.14A1, B1) demonstrates that simulated water 

use efficiency of maize (Fig. 4.14A1) and sorghum (Fig. 4.14B1) were higher under 

integrated soil-crop management practice and high use of mineral fertilizer, and lower 
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with un-amended soil. The effects of weather variability were substantial within soil 

fertility management strategies as evidenced by maize water use efficiency fluctuations 

ranging from 1.8-6.3 kg grain (mm ET)-1 with un-amended soil, 7.3-11.1 kg grain (mm 

ET)-1 under integrated soil-crop management practice, and 4.4 - 11.6 kg grain (mm ET)-1 

in high use of mineral fertilizer. For sorghum, the variability in water use efficiency 

between years was within the range of 1.7-5.0 kg grain (mm ET)-1, 5.4-8.7 kg grain (mm 

ET)-1, and 5.0-7.9 kg grain (mm ET)-1 under un-amended soil, integrated soil-crop 

management practice, and high use of mineral fertilizer, respectively.  

 

Options for improving N use efficiency 

Simulated grain yield of maize or sorghum gained per unit of N fertilizer applied (N-

partial factor productivity) with integrated soil-crop management practice was 

significantly higher than that in high use of mineral fertilizer (Fig. 4.14A2, B2). Maize 

grain yield per N uptake (N-internal utilization efficiency) was hardly different due to soil 

management strategies up to approximately 0.50 cumulative probability. Thereafter, 

predicted N-internal utilization efficiency of maize became greater under both un-

amended soil and high use of mineral fertilizer compared to integrated soil-crop 

management practice. However, from 0.80 to 1.0 cumulative probability, N-internal 

utilization efficiency of maize under un-amended soil was the highest (Fig. 4.14A3). 

Simulated N-internal utilization efficiency of sorghum for un-amended soil was as high 

as with high use of mineral fertilizer, but greater than that with integrated soil-crop 

management practice. Substantial effects of weather variability were simulated by 

CERES-Maize and CERES-Sorghum on N-partial factor productivity and internal 

utilization efficiency between years (Fig. 4.14A2, A3 and B2, B3). 
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Figure 4.14 Cumulative probability function of simulated water use efficiency (WUE, 
A1, B1), N-partial factor productivity (N- PFP, A2, B2), N- internal 
utilization efficiency (N- IE, A3, B3), and grain yields (A2, B2) of maize (A1, 
A2, A3, A4) and sorghum (B1, B2, B3, B4) under un-amended soil (CONT), 
integrated soil-crop management practice (ISC), and high use of mineral 
fertilizer (HMF) assuming the historic weather variability (from 1986 to 
2015). 
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4.4 Discussion 

Crop simulation models are essential tools to support the design of resilient production 

systems not only under on-going weather variability, but also when assuming future 

climate and agricultural land use change. Many features of crop production in the West 

African Dry Savannah challenge available crop models including the handling of nutrient 

deficiencies and biotic stresses. Any confidence in model predictions must be based on 

their ability to successfully predict performance as monitored in practice especially 

under the strongly contrasting environmental conditions observed in the tropics in 

general and in West Africa in particular.  

 

4.4.1 Suitability of the models for growth and development, yields, and in-season 

water and nutrient dynamics  

This study provides evidence on the capability of CERES-Maize and CERES-Sorghum to 

simulate growth, yields, dynamics of soil water, as well as N and P uptake in response to 

seasonal soil moisture availability and soil-crop management systems under the dry 

savannah agro-ecological conditions. The results confirm earlier findings on the 

suitability of CERES-Maize and CERES-sorghum to simulate growth, development, and 

yield of maize (Dzotsi et al. 2003; Igue et al. 2013; Jagtap et al. 1993; McCarthy et al. 

2012), and sorghum (McCarthy et al. 2010; Singh et al. 2014) in West Africa. Both CERES 

models predicted grain yields reasonably well also under farmer management practices 

common in northern Benin that resemble continuous soil mining production systems. 

Hence, the findings confirm the capability of both models in DSSAT-CSM v4.6 to predict 

growth and yield of sorghum and maize in N and P-deficient environments compared to 

previous versions as reported earlier (Dzotsi et al. 2010; Porter et al. 2009). 

Both CERES-Maize and CERES-Sorghum models have been extensively tested 

in West Africa in terms of crop growth and yield under both fertilized and unfertilized 

conditions (Adnan et al. 2017; Fosu et al. 2012; Soler et al. 2011), but less so in terms of 

soil water and nutrient dynamics. This study showed that CERES-Maize accurately 

simulated the changes in soil water in the various layers of the soil profile. Similar good 

simulations of the soil water balance by CERES-Maize was reported by de Vos and 
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Mallett (1987), Gabrielle et al. (1995), Anothai et al. (2013), and Liu et al. (2013). In 

contrast, CERES-Sorghum was less accurate for the lower layers due to water extraction 

presumably by roots at lower soil depths. These results indicate that the calibration of 

the models for various soil hydraulic parameters resulted in a satisfactory simulation of 

the soil water balance of CERES-Maize, but the root weighting parameter may not have 

been appropriate for the CERES-Sorghum model. 

Although it has been postulated that early-seasonal soil moisture dynamics in 

particular trigger N and P supply and their uptake by crops (Bationo et al. 2012; Buerkert 

and Hiernaux 1998; Schlecht et al. 2007), few studies if any, have modeled these 

processes in DSSAT CERES models. Both CERES-Maize and CERES-Sorghum models 

captured the observed early-season flush of NO3-N, but consistently under-predicted 

soil NO3-N in all layers as the season progressed. The under-prediction of NO3-N may 

have been caused by the influence of soil water availability on mineralization and 

leaching losses. The nRMSE values ranged from 46-59% for CERES-Maize and 35-56% for 

CERES-Sorghum indicating large uncertainties associated with the simulation of the soil 

mineral N content, which is not surprising given the complexity of soil N dynamics. 

Similar uncertainties in simulating soil NO3-N were observed by Liu et al. (2011) and Yang 

et al. (2014). Both CERES-Maize and CERES-Sorghum predicted well the cumulative N 

and P uptake in the conditions of northern Benin. Differences or similarities in the 

uptake patterns under both rainfed and supplementary irrigations conditions could be 

explained by nutrient concentrations (Fig. 4.4, 4.5), soil water availability (Fig. 4.2,4.3), 

and root activity (Godwin and Singh 1998). Liu et al. (2012) predicted with satisfaction 

maize growth and its N uptake in northeastern China after optimizing both for the maize 

cultivar coefficients and N stress coefficients. McCarthy et al. (2010) also reported good 

performance of CERES-Sorghum for N uptake, but concurrently highlighted the inability 

of the previous version of CERES-Sorghum to simulate P-dynamics. 

The good performance of both models provided a basis for modeling the long-

term (30 years of weather variability) impact of different nutrient management options 

on soil organic C, inorganic N, water- and N- use efficiencies in the maize and sorghum-

based production systems in the region. 
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4.4.2 Effects of soil fertility management and weather variability on soil organic 

carbon and inorganic nitrogen  

CERES-Maize and CERES-Sorghum simulated increased soil organic C and inorganic N 

with integrated soil-crop management practice compared to un-amended soil and high 

use of mineral fertilizer as a result from the return of crop residues under integrated 

soil-crop management practice contrary to un-amended soil and high use of mineral 

fertilizer. Soler et al. (2011) simulated in Burkina Faso a decline in soil organic C under 

continuous crop rotation (e.g. sorghum) without fertilization and with the removal of 

aboveground biomass at harvest. The predicted higher soil inorganic N with integrated 

soil-crop management practice compared to un-amended soil and high use of mineral 

fertilizer, indicated more N release and availability under integrated soil-crop 

management practice practices due to mineralization of the incorporated crop residues 

and soil organic matter (Porter et al. 2009). The models predicted in addition higher 

year-to-year changes for soil inorganic N compared to organic C changes irrespective of 

the soil fertility management options tested. This indicates the dominating influence of 

weather variability, rainfall in particular, and corresponding soil moisture on N release 

(Unger et al. 2010). The accumulation of soil inorganic N at final harvest under 

integrated soil-crop management practice suggests that this integrated nutrient 

management strategy must boost N supply especially at the onset of succeeding season 

and is thus one option to ease N-stress on crop growth and production.  

 

4.4.3 Effects of soil fertility management and weather variability on yields, and 

water- and nitrogen- use efficiencies  

Soil fertility management options such as integrated soil-crop management practice and 

high use of mineral fertilizer increased water use efficiency of both crops. The higher 

water use efficiency with integrated soil-crop management practice and high use of 

mineral fertilizer compared to the un-amended soil can be explained by the increases in 

grain yields with integrated soil-crop management practice and high use of mineral 

fertilizer with the same amount of water. The present results together with previous 
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findings (McCarthy et al. 2010, 2017; Ritchie and Basso 2008) confirms that, with a fixed 

water supply, soil fertility management options that increase yields improve water use 

efficiency concurrently. 

The CERES-Maize and CERES-Sorghum models both simulated greater N-partial 

factor productivity for integrated soil-crop management practice than with high use of 

mineral fertilizer. The more efficient N use with integrated soil-crop management 

practice is explained by the combination of similar grain yields under integrated soil-

crop management practice as high use of mineral fertilizer with lower amount of N 

fertilizer applied (almost 50% less of N applied with integrated soil-crop management 

practice compared to high use of mineral fertilizer). This is in much agreement with 

earlier findings by McCarthy et al. (2017) who reported higher N-partial factor 

productivity for maize with a combination of inorganic N fertilizer and manure. The 

predicted N-internal utilization efficiency by both models fell on the one hand within the 

ranges recognized for cereals (Dobermann 2007). On the other hand, the higher N-

internal utilization efficiency predicted when assuming un-amended soil points at the 

increased capability of crops to transform the N previously taken up into grain yield in 

case of low-N environments (Dobermann 2007; Wang et al. 2014). 

The CERES-Maize predicted no difference in grain yield patterns between 

integrated soil-crop management practice and high use of mineral fertilizer, while 

CERES-Sorghum simulated the highest sorghum grain yields with integrated soil-crop 

management practice. The trends of grain yields obviously are driven by the increased 

water use efficiency and N-partial factor productivity of both crops with favorable soil 

fertility management strategies such as integrated soil-crop management practice and 

high use of mineral fertilizer. Furthermore, the similar, or even greater grain yields 

simulated under integrated soil-crop management practice compared to high use of 

mineral fertilizer, highlights once more the importance of crop residue retention in the 

semi-arid and arid regions of West Africa for a balanced and improved soil fertility and 

plant nutrition (Buerkert et al. 1996; Lal 2006). The year-to-year variability in grain yields 

under the same soil fertility management strategy was caused mainly by changes in key 

weather parameters such as intra-annual rainfall. This became crucial because the 
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maximum temperatures during the growing cycle remained below the optimum 

temperature (34°C) of both crops (Kumudini et al. 2014; White et al. 2015) thus 

excluding heat-stress effects. The model findings reinforce thus the potential of 

increasing food security in West Africa by sustainable agriculture management. These 

findings should support decision making for defining future nutrient markets in West 

Africa and provide research-based evidence on the level of resilience and sustainability 

of production systems, which may be of interest to decision makers and farmers alike.  

  

4.5 Conclusions 

The CERES-Maize and CERES-Sorghum models predicted with satisfaction yield 

components and the underlying soil water and plant N and P demands under current 

weather, and also increased soil C and N, water- and N- use efficiencies, and grain yields 

with integrated soil-crop management practice when assuming long-term weather 

scenario. Since the models realistically predicted seasonal soil water and nitrate-

nitrogen dynamics in both maize- and sorghum-based productions systems in northern 

Benin, it can be concluded that both models perform well in water- and nutrient-stress-

free as well as nutrient-deficient crop production environments. This evidences the 

robustness of both CERES-Maize and CERES-Sorghum to perform under Dry Savannah 

agro-ecological conditions as prevail in various parts of West Africa. Consequently, both 

models are appropriate tools for exploring potential impact of predicted climate change 

on soil water- and nutrient- use efficiencies. Such findings should support the 

identification of sustainable production and intensification options for the maize- and 

sorghum-based production systems of West Africa that would be more resilient under 

future climate variability and thus support better-informed decision-making. 
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5 IMPACT OF CLIMATE CHANGE ON WATER- AND NITROGEN- USE EFFICIENCIES 

AND YIELDS OF MAIZE AND SORGHUM 

 

5.1 Introduction 

Sustainable intensification is often recommended as a strategy for farmers to cope with 

adverse impact of climate change, sustain food security, and improve livelihoods 

without compromising the environment. Especially in West Africa, increasing 

temperatures (IPCC 2013), recurrent dry spells (Paeth et al. 2009), ongoing land 

degradation and soil fertility depletion (Bationo et al. 2012) threaten sustainable crop 

production. The predicted climate change and variability for this region will exacerbate 

the impact of land degradation and soil fertility depletion on crop responses even more 

and consequently worsen food insecurity and poverty (Wheeler and von Braun 2013).  

Historically, West Africa has already experienced erratic rainfall regimes as 

evidenced by wet periods (e.g. 1930-1960), followed by regular dry spells (e.g. 1970-

1980) and again wet years (e.g. 1990, 2000), albeit with increased spatial and temporal 

variability (Hulme et al. 2001; Paeth et al. 2009). Furthermore, temperatures in the 

region are expected to gradually increase possibly by as much as 6°C by 2100 (Riede et 

al. 2016). Consensus exists that the climate-driven changes in soil water and nutrient 

use will seriously test the resilience of the major production systems (Whitehead and 

Crossman 2012). The projected variability in climate and weather parameters will 

critically affect the Dry Savannah zones such as those of Benin, but the magnitude of the 

impact remains uncertain. This hampers the development and implementation of 

appropriate adaptation measures and policies to assist farmers and decision-makers. 

Several studies have addressed climate change impact on crop yields and food 

security worldwide (e.g. Wheeler and von Braun 2013). Localized studies on crop yield 

responses to soil fertility under future climate conditions are coming on stream (Guan 

et al. 2017; Webber et al. 2014). Yet, little is known about the impact of climate change 

on water- and nutrient-use efficiencies of major cereals like maize and sorghum in the 

West African Dry Savannah agro-ecological zones, which presently have low to very low 

resource use efficiency (Christianson and Vlek 1991). Understanding the magnitude of 
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resource use efficiency under climate change and variability is, however, crucial for the 

development of site- and crop-specific adaptation techniques.  

Improving resource use efficiency requires understanding of the often complex 

genetic-environment-management interactions. Crop simulation models that integrate 

the soil-plant-atmosphere complex can be useful tools to predict the consequences of 

climate change and variability on resource use efficiency of crop, and help to design 

sustainable cropping systems. Among the many crop models, the DSSAT- Cropping 

System Models (Jones et al. 2003) permit the quantification of crop growth and yields, 

the evaluation of alternative production systems, and the ex-ante development and 

assessment of sustainable intensification options (Hoogenboom et al. 2015). It considers 

soil-water (Ritchie 1998) and nutrient-related (Godwin and Singh 1998; Godwin and Vlek 

1985) as well as environmental and plant physiological processes. The DSSAT CERES-

Maize and CERES-Sorghum models are therefore appropriate tools to explore potential 

impact of the predicted climate change on water- and nutrient-use efficiencies of these 

crops and to assess sustainable intensification measures for the smallholders in West 

Africa. The objective of this study was to assess the impact of predicted climate change 

on water- and N- use efficiencies, as well as on yields of maize and sorghum in the dry 

savannah areas of northern Benin. 

 

5.2 Material and methods 

5.2.1 Study area 

A localized climate change impact assessment was conducted only on Alisols, which 

represent the major agriculturally used soil type (IUSS Working Group WRB 2014) at 

Ouri-Yori (10°49’16’’N, 1°4’7’’E) in the dry savannah of North-west Benin, West Africa. 

The characteristics of the case study region have been presented in chapter 2 (Section 

2.1). 

 

5.2.2 Climate change scenarios 

Historical data on observed daily rainfall, minimum and maximum temperatures and 

solar radiation for the period 1986-2005 represents the climate baseline. Future (2080-
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2099) bias-corrected ensemble mean predictions of climate parameters were estimated 

with the use of three Global Circulation Models (GCM: BNU-ESM, CanESM2, and MPI-

ESM-MR) from the Coupled Model Inter-comparison Project Phase 5- (CMIP5) for three 

Representative Concentration Pathways (RCPs) of the International Panel on Climate 

Change (IPCC) (Gudmundsson et al. 2012; Hawkins et al. 2013). The three RCPs (2.6, 4.5, 

and 8.5 (IPCC 2013)) differ from each other in the assumptions of population, economic 

growth, energy consumption and sources, and land use (van Vuuren et al. 2011). The 

RCP 2.6 is a low level (peak and decline) Greenhouse Gases (GHG) forcing scenario, 

aiming to limit the increase in global mean temperature to 2°C (van Vuuren et al. 2011). 

The RCP 4.5 is a medium pathway to stabilize the radiative forcing at 4.5 W m-2 by 2100 

without overshoot (Thomson et al. 2011), while RCP 8.5 assumes a rising GHG pathway 

in absence of climate change policy (Riahi et al. 2011). 

The daily bias-corrected rainfall, solar radiation, minimum and maximum 

temperature outputs of about 21 GCM for the baseline and future periods were 

obtained from the data portal of the CGIAR- Research Program on Climate Change 

Agriculture and Food Security (CCAFS 2017). We selected three climate models among 

the 21 GCM available, i.e. BNU-ESM of the College of Global Change and Earth System 

Science, Beijing Normal University (Ji et al. 2014), CanESM2 of the Canadian Center for 

Climate Modeling and Analysis (Chylek et al. 2011), and MPI-ESM-MR of the Max Plank 

Institute for Meteorology (Jungclaus et al. 2010). Selection was based on the high 

correlation between historical projections and observations (Fig. 5.1), as well as on a 

realistic representation of the seasonal rainfall cycle with the lowest deviations in 

rainfall, temperatures, and solar radiation. Daily outputs of these models were 

calibrated using the historical (1986-2005) station observations (Fig. 5.1) and bias 

corrected using the “delta” (change factor), “nudging” (bias correction), and quantile 

mapping approaches (Gudmundsson et al. 2012; Hawkins et al. 2013). The ensemble 

mean (Guan et al. 2017) of the three climate models was considered for the future 

weather parameters (2080-2099).  
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Figure 5.1 Historical observations (1986-2005) and GCM-(BNU-ESM, CanESM2, and 
MPI-ESM-MR)-based projections of rainfall (mm), maximum and 
minimum temperatures (°C), and solar radiation (MJ m-2 d-1) before (A1, 
B1, C1, D1) and after calibration (A2, B2, C2, D2) of the models outputs 
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The default atmospheric carbon dioxide (CO2) concentration of Mauna Loa 

(Hoogenboom et al. 2015) was used for the baseline period, while predicted CO2 

concentrations (Table 5.1) reported for RCP 2.6, 4.5, and 8.5 scenarios towards 2100 

were used for the future period (Meinshausen et al. 2011). 

 

Table 5.1  Climate change scenarios used in the weather input files and the 
environmental modifications 

Scenario GCM Variables Atmospheric CO2 (ppm) 

Baseline Observation Rainfall 
Min. and max. 
temperatures, 
and solar radiation 

347-380 

RCP 2.6 BNU-ESM 
CanESM2  
MPI-ESM-MR 

421  
RCP 4.5 538 
RCP 8.5 936 

 

5.2.3 Soil fertility management scenarios 

Crop responses under the historical and future climate were assessed based on the 

three soil fertility management strategies, namely the (1) un-amended soil as control, 

(2) integrated soil-crop management practice, and (3) high use of mineral fertilizer 

(Table 2.2, Sections 2.2). The combination of climate change scenarios and soil fertility 

management strategies was run with each crop model in a seasonal mode to simulate 

various parameters as a proxy for crop responses including aboveground biomass 

accumulation, N and P uptake, water- and N-use efficiencies as well as yields.  

  

5.2.4 Crop simulation models 

The CERES-Maize and CERES-Sorghum models, which are part of the DSSAT V4.6 

(Hoogenboom et al. 2015; Jones et al. 2003), were used to assess the impact of selected 

climate change factors on water- and N-use efficiencies and yields of maize and 

sorghum. The models have been described in chapter 4 (Section 4.2.1). Both models 

account for temperature effects on crop growth and grain filling rate (Section 4.2.1). 

Atmospheric CO2 effect on potential biomass production is incorporated into both 

models through a PCO2 factor that modifies radiation use efficiency (RUE), with PCO2 

values being increased following an increment of the CO2 concentration (White et al. 

2015). Soil fertility effect (other than N) on daily biomass growth rate is integrated 

through a generic soil fertility factor (SLPF) (Hoogenboom et al. 2010; White et al. 2015). 
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These crop models have not only been widely tested in Sub-Saharan Africa (e.g. Adnan 

et al. 2017; McCarthy et al. 2010) but have also been used for assessing climate change 

impact (Jones and Thornton 2003; Singh et al. 2014). Both models have been 

successfully calibrated and validated for maize (cv. EVDT-97 STR) and sorghum (cv. local) 

varieties typical for the study region (Chapter 4). They are suitable tools for exploring 

water- and N-use efficiencies and yields of maize and sorghum as affected by the current 

and improved soil fertility management regimes in the face of predicted climate change 

and variability in the region. 

The historical and future climate datasets served as inputs to run the models 

for investigating the responses of both crops to the soil fertility management options 

under the three climate change scenarios (RCPs 2.6, 4.5, and 8.5). Climate change impact 

on grain yields, N and P uptake, and water- and N-use efficiencies were evaluated by 

comparing predicted responses of maize and sorghum to each of the three soil fertility 

management options under historical climate (1986-2005) with responses to the same 

options assuming the same initial soil conditions under a future climate (2080-2099) for 

the RCPs 2.6, 4.5, and 8.5. The models outputs for water use efficiency, N-partial 

productivity, and N-internal utilization efficiency were expressed as described in chapter 

4 (Section 4.2.6). 

 

5.3 Results 

5.3.1 Predicted changes in key climatic parameters  

Based on the averages across the climate models BNU-ESM, CanESM2, and MPI-ESM-

MR, the predicted seasonal rainfall change (%) reached -2±6 (RCP 2.6), -4±8 (RCP 4.5), 

and +1±9 (RCP 8.5) (Fig. 5.2A1, A2). Temperatures (°C) are predicted to increase, i.e. 

minimum temperatures (Fig. 5.2B1, B2) by +1.0±0.2, +2.0±0.2 and +4.7±0.4, and 

maximum temperatures (Fig. 5.2C1, C2) by +1.1±0.2, +2.0±0.3 and +4.6 ±0.5, for RCPs 

2.6, 4.5 and 8.5, respectively. Solar radiation (MJ m-2d-1) is predicted to decrease by -

0.4±0.6 for RCP 2.6, -0.3 ±0.6 for RCP 4.5, and -0.5±0.4 for RCP 8.5 (Fig. 5.2D1, D2). 
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Figure 5.2 Changes in seasonal cycles (A1, B1, C1, D1) and inter-annual trends (A2, 

B2, C2, D2) based on averages of bias-corrected predictions of BNU-ESM, 
CanESM2, and MPI-ESM-MR models (2080-2099) for rainfall (A1, A2), 
minimum temperature (B1, B2), maximum temperature (C1, C2), and 
solar radiation (D1, D2). Changes are relative to baseline mean (1986-
2005) under three Representative Concentration Pathways (RCPs) of the 
International Panel on Climate Change (IPCC): RCP 2.6, 4.5, and 8.5. 
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5.3.2 Changes in cumulative aboveground biomass 

Under the projected climate, both CERES-Maize and CERES-Sorghum predicted more 

vigorous aboveground biomass accrual in the 2080-2099 run than in the historical run, 

albeit only during the vegetative growth (Fig. 5.3).  

 

 
Figure 5.3 Changes in cumulative aboveground biomass responses of maize (A1, A2, 

A3) and sorghum (B1, B2, B3) under future climate (2080-2099) relative 
to historical means (1986-2005) assuming an un-amended soil as control 
(A1, B1), integrated soil-crop management practice (A2, B2), and high use 
of mineral fertilizer (A3, B3) and three Representative Concentration 
Pathways (RCPs) of the International Panel on Climate Change (IPCC): RCP 
2.6, 4.5, and 8.5. 

 

The predicted enhanced initial aboveground biomass growth was crop specific 

and in general greater for RCP 8.5 and RCP 4.5 and lower for RCP 2.6. With integrated 

soil-crop management practice or high use of mineral fertilizer, the vegetative growth 

enhancement was greater than for the un-amended soil conditions. According to CERES-

Maize, biomass accrual in the 2080-2099 run is less than in the historical run from ≈ 60 

days after planting (Fig. 5.3A1) under all three climate scenarios in the un-amended 

treatment, whereas this would occur from approximately 70 days after planting with 

integrated soil-crop management practice or high use of mineral fertilizer (Fig. 5.3A2, 
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3). Regardless of the soil fertility management strategy, the comparative loss in growth 

in the future scenario modeled by CERES-Maize increased from RCPs 2.6 to 4.5 and to 

RCP 8.5 (Fig. 5.3A1, 2, 3). CERES-Sorghum predicted an extended period of enhanced 

biomass accumulation for 2080-2099 with RCP 8.5 (up to ≈ 80 days after planting) 

compared to RCP 2.6 and 4.5 (˂ 60 days after planting). CERES-Sorghum simulated also 

a smaller difference in biomass accrual after those periods with RCPs 2.6 and 4.5, except 

for the un-amended conditions (Fig. 5.3B1, 2, 3). 

 

5.3.3 Impacts on water- and N- use efficiencies 

Water-use efficiencies are consistently lower in all future scenarios than between 1986 

and 2005 and more so for the more drastic climate change scenarios. The impact is 

greater for maize than for sorghum, and both methods of soil fertility management (sole 

mineral and combined mineral and organic amendment) enhanced water-use efficiency 

significantly as compared to the control (Fig. 5.4A1 and B1). CERES-Maize predicted a 

decrease in water-use efficiency of 17-53% and CERES-Sorghum of 23-51%. The 

response of water-use efficiency to soil fertility management systems was, however, 

higher for maize than for sorghum.  

Compared to the period 1986-2005, the partial factor productivity of applied 

N was significantly reduced in 2080-2099, and more so with greater climate change. The 

N-partial factor productivity for the integrated soil-crop management treatment was 

much higher than for the high use of mineral fertilizers alone. The projected decreases 

in the N-partial factor productivity varied from 10 to 47% with CERES-Maize and 22 to 

49% with CERES-Sorghum.  

The simulated N-internal utilization efficiency showed a declining trend 

between the baseline and the RCP 2.6 and 4.5 scenarios, regardless of soil fertility 

management (Fig. 5.4A2, B2). However, under RCP 8.5 the predicted changes in N-

internal utilization efficiency dropped by about 33% with CERES-Maize and by 47% with 

CRES-Sorghum. Hence, the climate assumptions under RCP 8.5 would considerably 

reduce water- and N-use efficiencies of both maize and sorghum. 
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Figure 5.4 Simulated water-use efficiency (WUE), nitrogen-internal use efficiency 
(N-IE) and partial factor productivity (N-PFP) of maize (A1, A2) and 
sorghum (B1, B2) under an un-amended soil as control (CONT), integrated 
soil-crop management practice (ISC), and high use of mineral fertilizer 
(HMF) considering the historical climate (Baseline: Bas.,1986-2005) and 
future climate (2080-2099) and according to three Representative 
Concentration Pathways (RCPs) of the International Panel on Climate 
Change (IPCC): RCP 2.6, 4.5, and 8.5. 

 

5.3.4 Impact on seasonal N and P uptake 

The CERES-Maize model predicted general decreases in N- (Fig. 5.5A1) and P- (Fig. 5.5A2) 

uptake by maize under future climate conditions, but the extent of the reductions 

depended on soil fertility management options and RCPs. The decreases in N and P 

uptake by maize were predicted to be higher with RCP 8.5, irrespective of the soil fertility 

management scenarios. CERES-Sorghum also predicted declines in N and P uptake (Fig. 

5.5B1, B2). 
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Figure 5.5 Confidence intervals (CI, 95%) for changes in seasonal N (A1, B1) and P 
(A2, B2) uptake by maize (A1, A2) and sorghum (B1, B2) relative to 
historical means (1986-2005) assuming three soil fertility management 
levels un-amended soil as control (CONT), integrated soil-crop 
management practice (ISC), and high use of mineral fertilizer (HMF) under 
future climate (2080-2099) under three Representative Concentration 
Pathways (RCPs) of the International Panel on Climate Change (IPCC): RCP 
2.6, 4.5, and 8.5. 

 

5.3.5 Yield comparisons at harvest 

Overall, the predicted climate change resulted in decreased biomass and grain yields for 

both crops (Fig. 5.6). The CERES-Maize simulated a decrease in harvested maize biomass 

of 11-15%, 13-15% and 25-26%, and in grain yield of 10-17%, 17-19% and 44-46% for 

RCP 2.6, 4.5, and 8.5, respectively.  
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The decreases in the predicted total sorghum biomass at harvest reached 21-

35% for RCP 2.6, 30-47% for RCP 4.5, and 38-45% for RCP 8.5. CERES-Sorghum predicted 

decline in grain yields by 22-38%, 31-49%, and 44-51%, for RCPs 2.6, 4.5 and 8.5, 

respectively. The largest reductions in grain yield and biomass were estimated assuming 

RCP 8.5, irrespective of crops and soil fertility management options (Fig. 5.6). While 

increasing future grain yields above the non-amended soil, integrated soil-crop 

management practice or high use of mineral fertilizer application will not be sufficient 

to maintain current yield levels.  

 

 

Figure 5.6 Predicted aboveground biomass (A1, B1) and grain yield (A2, B2) of maize 
(A1, A2) and sorghum (B1, B2) as impacted by an un-amended soil as 
control (CONT), integrated soil-crop management practice (ISC), and high 
use of mineral fertilizer (HMF) assuming a historical climate (Baseline: 
Bas., 1986-2005) and future climate (2080-2099) and considering three 
Representative Concentration Pathways (RCPs) of the International Panel 
on Climate Change (IPCC): RCP 2.6, 4.5, and 8.5. 
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5.4 Discussion 

Future trends of rainfall, temperatures, and solar radiation under the low (RCP 2.6), 

medium (RCP 4.5), or high (RCP 8.5) level of GHG-forcing scenarios for the dry savannah 

region of northern Benin were used for the first time to quantify the impact of projected 

climate change on water- and N-use efficiency, N and P uptake as well as on biomass 

and grain yields of maize and sorghum considering three soil fertility management 

strategies.  

5.4.1 Future climate trends 

The predicted changes in temperatures for the study region are in line with existing 

estimates of warming trends (Dike et al. 2015; Riede et al. 2016). For instance, the Benin 

Second National Communication on Climate Change predicts temperature increases 

varying from 2.6°C in South-west to 3.3°C in northern Benin (MEHU 2011). In contrast, 

large discrepancies in seasonal rainfall cycles were previously reported (Sylla et al. 2013) 

for the whole of West Africa, including the study region. The MEHU (2011) reported an 

increase in mean annual rainfall by 13% in the North-west and by 15% in the North-east 

of Benin. The bias-corrected predictions, as estimated here with the ensemble mean of 

BNU-ESM, CanESM2, and MPI-ESM-MR models (Fig. 5.2), matched these previous 

estimates quite well and thus served as input for the crop models simulations reported 

here. 

 

5.4.2 Climate effects on biomass accrual and resource use efficiency 

Key climate projections for the dry savannah region of Benin generally depict a warming 

trend regardless of the assumptions under RCP 2.6, 4.5, or 8.5. Of particular interest in 

this context, therefore, is the impact of an enrichment of atmospheric CO2 that occurs 

under all three scenarios, since increased biomass accumulation is commonly reported 

in CO2-enriched environments particularly for C4-plants such as maize and sorghum 

(Leakey 2009; Poorter 1993). CERES-Maize and CERES-Sorghum are capable of handling 

such effects of CO2-fertilization, hence potential biomass production can be simulated 

while assuming an enhanced radiation use efficiency in response to CO2-enriched 

environments (Hoogenboom et al. 2010; White et al. 2015). In addition, the recent 
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improvements of CERES-Maize and CERES-Sorghum permit concurrently accounting for 

effects of soil fertility (other than N) on biomass production through a soil fertility factor 

(SLPF) (Hoogenboom et al. 2010). The findings we report here are in line with the 

expected growth enhancement due to increased CO2 levels for both maize and sorghum, 

albeit only for the vegetative stages of both crops, and more so if soil fertility was 

improved. The higher temperatures and elevated CO2 levels appear to stimulate early 

crop development at the expense of soil water, which is then not available for grain 

filling.  

This is reflected in reduced water-use efficiency and harvest index, a 

phenomena known as haying-off (van Herwaarden et al. 1998). Integrated soil-crop 

management practice or high use of mineral fertilizer both enhanced overall biomass 

production and grain yield, but again only during the vegetative growth stages, and the 

yield index dropped even further. Using a controlled environment experiment, Prasad 

et al. (2006) showed that at high temperatures, elevated CO2 increased vegetative 

growth of sorghum but not grain yield, thus leading to a decreased harvest index. 

The combination of the predicted warming and shift in rainfall for the dry 

savannah region of Benin will impact water- and N-use efficiencies in the maize and 

sorghum-based production systems under elevated CO2 environment scenarios. Positive 

responses of water-use efficiency to elevated atmospheric CO2 was simulated for rainfed 

sorghum in Manhattan, Kansas, USA (White et al. 2015), and maize in China (Guo et al. 

2010). However, given the dry climate conditions, increases in temperature and early 

drought as predicted for northern Benin could both more than offset the early boost in 

photosynthesis caused by elevated CO2 levels (Allen et al. 2003). This is reflected in the 

decline in water-use efficiency simulated for the study region. The projected warming 

will also threaten nutrient uptake and use efficiency because impact on crop water use 

by climate change also alter nutrient assimilation (Brouder and Volenec 2008).  

 

5.4.3 Climate effects on grain yields 

The simulations reveal an overall future decrease in biomass but also in grain yields of 

both crops with the latter decrease being relatively greater. This is in line with findings 
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in other regions although the simulated impact of climate change shows strong spatial 

variability. Using CERES-Maize and CERES-Sorghum, Chipanshi et al. (2003) reported that 

climate change in the arid zones of Botswana would decrease maize grain yields by 36% 

and sorghum grain yields by 31%, at least when grown on sandy soil. But these 

predictions were made without the latest improvements in DSSAT-Cropping System 

Models (Hoogenboom et al. 2010; White et al. 2015). Based on CERES-maize 

simulations, Rosenzweig et al. (2014) reported severe negative impact of climate change 

on maize grain yield in tropical zones compared to mid- and high-latitude regions across 

the world, including West Africa. Thornton et al. (2011) estimated a decrease of 23% for 

maize grain yield in West Africa due to climate change, whilst climate change predictions 

with CERES-Sorghum indicated grain yield losses of 6% in Akola and 18% in Indore, India, 

and 12% in Samako and 30% in Cinzana, Mali (Singh et al. 2014). A decrease in sorghum 

grain yield of up to 20% was predicted for the semi-arid region of Ghana using APSIM 

(McCarthy and Vlek 2012), and by more than 40% for the Sudan Savannah zone of Togo 

and Benin, and Sahelian region of Senegal, Mali, and Burkina Faso with the SARRAH 

model (Sultan et al. 2013). In contrast, for the Guinean zone of Ghana, Srivastava et al. 

(2017), using the LINTUL5 crop model, predicted an increase in maize grain by 57% and 

biomass yield by 59% due to climate change. The high variation among these results is 

mainly due to differences in the type of climate models and scenarios assumed, 

reference and future time horizons considered, robustness of the crop models applied, 

crop cultivars and management practices used, and agro-ecological boundary selected 

(Rosenzweig et al. 2014; Roudier et al. 2011). Yet the present results combined with 

those of a comprehensive review of climate change impact on crop yields in West Africa 

(Roudier et al. 2011) indicate that negative impact is most likely to prevail in the Dry 

Savannah agro-ecological zone. 

The simulated decreases in maize and sorghum grain yields are claimed to be 

caused in particular by the depressive effects owing to increasing temperatures and 

corresponding heat stress, particularly during key phenological stages such as anthesis 

and grain filling (Deryng et al. 2014; Gabaldón-Leal et al. 2016). Both maize and sorghum 

respond to heat stress by regulating water and gas exchange (Sultan et al. 2013) and 
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thus reducing photosynthesis (Sunoj et al. 2017), particularly during the reproductive 

stages. In contrast, high atmospheric CO2 concentrations could result in a reduction of 

the stomata opening and thus a decrease in transpiration, but an increase in 

photosynthesis and in turn improved yields (Rosenzweig and Iglesias 1998). Increased 

yields due to increased atmospheric CO2 concentrations cannot be expected unless 

temperatures approximate the optimum for crop growth and water remains available 

for grain filling. Reportedly, high-temperature episodes or heat stress close to anthesis 

will be more detrimental for crop yields than the effects of the increases in mean 

seasonal temperature (Tesfaye et al. 2016). When air temperatures are near the upper 

limit, growth and yield reductions are predicted irrespective of the CO2 concentrations 

(Polley 2002). Testing effects of maximum and minimum temperature regimes of 32/22, 

36/26, 40/30, and 44/34°C at ambient and elevated CO2 on reproductive processes and 

yields of sorghum, Prasad et al. (2006) reported that elevated CO2 increased grain yield 

at 32/22°C, but decreased it at 36/26°C.  

The findings reported here suggest an increase in the average maximum and 

minimum temperatures during the growing cycle of maize and sorghum from currently 

30/21°C up to 35/25°C for the RCP 8.5 scenario. Therefore, the grain yield depressions 

predicted with CERES-Maize and CERES-Sorghum under RCP 8.5 for northern Benin are 

most plausible due to the predicted warming, but those with RCPs 2.6 and 4.5 

underscored again haying-off. The high-temperature effects on seed set and growth can 

be captured by CERES-Maize and CERES-Sorghum through the cardinal temperatures, 

assuming 34°C as the optimum temperature (Hoogenboom et al. 2010; White et al. 

2015). Reportedly, heat stress leads to a tremendous reduction in pollen germination 

(Prasad et al. 2006; Sunoj et al. 2017) that in turn decreases seed numbers and hence 

yields (Deryng et al. 2014; Sultan et al. 2013). Therefore, irrespective of the initial 

growth-enhancing effects due to CO2-fertilization, the most likely, overall trend under 

the climate change predicted for the dry savannah region of Benin in West Africa with 

high GHG forcing is a decline in maize and sorghum yields. 
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5.4.4 Mitigating future climate effects 

To ease the climate change and variability implications for maize and sorghum supply in 

the region, climate-smart actions are thus urgent. It recently has been postulated that 

for many regions in Sub-Saharan Africa, such actions include the use of inorganic and 

organic fertilizers (Montpellier Panel 2013; Vanlauwe et al. 2014) as strategies to enable 

a sustainable intensification of smallholder maize- and sorghum-based production 

systems. On the one hand, the simulations in this study show that both an integrated 

soil-crop management practice and high use of mineral fertilizer is likely to sustain 

higher water-use efficiency and grain yields compared to a non-amended soil, even 

when assuming different future climate conditions. Furthermore, the current 

projections reveal that an integrated soil-crop management practice would result in 

higher N-partial factor productivity compared to a high use of mineral fertilizer. Since 

integrated soil fertility management aims at enhancing both productivity and resource 

use efficiency, it is acknowledged as an important strategy for sustainable intensification 

of smallholder agriculture in Sub-Saharan Africa, including Benin (Vanlauwe et al. 2014). 

The estimates, however, indicate that these increases will still not be able to offset the 

decreasing effects due to late-season heat stress and dry conditions.  

 

5.5 Conclusions 

Irrespective of the predicted biomass production-enhancing effects due to CO2-

fertilization during the vegetative growth stages of sorghum and maize, the projected 

climate change for the dry savannah in northern Benin will depress water- and N-use 

efficiencies and grain yields of both crops. This is likely to occur irrespective of presently 

known and recommended soil fertility management strategies for the region. The 

magnitude of the predicted impact of climate change on the productivity of both crops 

will likely increase food insecurity in the region especially given the expected population 

growth and ongoing urbanization, which will increase future food demand even more. 

This could exacerbate hunger and poverty in the region unless robust mitigation and 

adaptation measures are taken and effectively implemented by key stakeholders, 

including farmers and policy makers.  
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6 EVALUATION AND APPLICATION OF CROPGRO-COTTON MODEL FOR 

DETERMINING OPTIMUM PLANTING DATES AND CLIMATE CHANGE IMPACT 

ON YIELD, WATER- AND N- USE EFFICIENCIES 

 

6.1 Introduction 

Cotton plays an important role in the social and economic development globally and 

especially of West African countries. To this end, its sustainable production may support 

livelihoods of the farming population and help ease wide-spread poverty. Cotton 

production in West and central African countries (e.g. Benin, Burkina Faso, Mali, Ivory 

Coast, Togo, Chad) accounts for 5% of world production (Hussein et al. 2006), 

representing 2-10% of the Gross Domestic Product (GDP) and 30-56% of total exports of 

these countries (Hussein et al. 2006; Vitale et al. 2011).  

Cotton production systems are typical examples of crop intensification, 

however, with considerable investments in soil fertility restoration and agricultural land 

expansion and resulting in seed cotton productivity improvement (Pieri 1992; Vitale et 

al. 2011). Subsequent staple crops like maize, sorghum, or millet often benefit from the 

inputs on cotton (Ripoche et al. 2015; Vitale et al. 2009). The intensification of cotton 

production has undeniably increased cotton yields in the past decades in West Africa 

(Pieri 1992; Theriault and Tschirley 2014), but lately progress has stagnated or even 

declined, due to increased costs of inputs without compensation in the seed cotton 

prices (Baquedano et al. 2010) as well as biotic and abiotic-stresses (Sultan et al. 2010). 

In fact, the performance of the current cotton production systems is constrained by 

rainfall variability and drought (Sultan et al. 2010), declining soil fertility (Bationo et al. 

2012; Pieri 1992; Vitale et al. 2011), and inadequate soil-crop management such as late 

planting (Lançon et al. 1989, 2007). Sustainable cotton-production systems are needed 

if this commodity has to maintain its role in the overall national and regional economy 

and to secure the livelihoods of farmers in West Africa. Measures to be introduced must 

aim at enhancing productivity and increasing the resilience of the farming systems.  

Changes in the biogeochemical cycle of carbon through atmospheric carbon 

dioxide enrichments (IPCC 2013) and climate change, especially changes in rainfall 
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(Gbobaniyi et al. 2014; Sylla et al. 2013) and increase in temperatures (Dike et al. 2015; 

Riede et al. 2016), are expected to alter cotton production in the future (Gérardeaux et 

al. 2013; Reddy et al. 2002). The role of N-fertilization is reportedly affected by these 

changes, particularly by CO2 enrichment (Prior et al. 1998; Singh et al. 2013). However, 

little is known about the extent to which cotton will respond to soil fertility management 

options under future climate change in the West African Dry Savannah environments. 

Crop simulation models are valuable tools to quantify responses in cotton 

yields and resource use efficiency to different soil fertility management strategies. 

Previous studies investigated cotton productivity with cotton-specific models such as 

GOSSYM (Baker et al. 1983), Cotton2K (Marani 2004), COTCO2 (Wall et al. 1994), OZCOT 

(Hearn 1994), and CROPGRO-Cotton (Hoogenboom et al. 2015; Jones et al. 2003). 

Likewise, generic crop models like EPIC, WOFOST, SUCROS, GRAMI, Cropsysts, and 

Aquacrop have been used to simulate cotton production (Thorp et al. 2014a). CROPGRO-

Cotton has been widely applied for assessing soil fertility and water management 

options (Garcia y Garcia et al. 2010; Modola et al. 2015; Paz et al. 2012; Wajid et al. 

2014) and the impact of climate change on cotton production (Adhikari et al. 2016; 

Gérardeaux et al. 2013; Thorp et al. 2014b). Little has been reported about the 

evaluation and application of CROPGRO-Cotton for assessing climate change impact on 

resource use efficiency in West Africa. The objectives therefore were: (i) Parameterize 

the CROPGRO-Cotton model to simulate growth, yield, and in-season soil water 

dynamics and N uptake, and (ii) apply the model to determine optimum planting dates 

and potential climate change impact on cotton growth, yields, and water- and N- 

productivity under different soil fertility management practices in northern Benin, West 

Africa. 

 

6.2 Material and methods 

6.2.1 Description of the CROPGRO-Cotton model 

CROPGRO-Cotton is a process-based model developed from CROPGRO (Jones et al., 

2003), which is a generic crop model based on the SOYGRO, PNUTGRO, and BEANGRO 

models (Boote et al. 1998). CROPGRO-Cotton simulates growth, development, and 
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yields of cotton in response to soil, weather, and management conditions and 

combinations thereof (Hoogenboom et al. 2015; Thorp et al. 2014b). The model 

computes biophysical processes on a daily time step routine (Jones et al. 2003). The 

growth stages are based on photo-thermal time, carbon assimilation, and the 

partitioning of biomass into roots, stems, leaves, and bolls (Thorp et al. 2014a). The 

canopy photosynthesis is computed using leaf-level photosynthesis parameters and the 

hedgerow light interception (Boote et al. 1998) while yield components are derived from 

boll mass, seed cotton mass, seed number, and unit seed weight (Thorp et al. 2014a). 

CROPGRO-Cotton can hence account for stress effects from soil water and nitrogen 

deficits (Thorp et al. 2014b), and air temperature (Thorp et al. 2014a) on cotton growth 

and development. CROPGRO-Cotton integrates effects of atmospheric carbon dioxide 

(CO2) on photosynthesis and transpiration (Thorp et al. 2014a) and computes 

evapotranspiration (Boote et al. 1998), and simulates soil C, N (Gijsman et al. 2002; 

Godwin and Singh 1998), and water balances (Ritchie 1998). 

 

6.2.2 Field experiments and data 

The datasets needed for the calibration and evaluation of CROPGRO-Cotton were 

collected from the three field experiments (Table 2.2, Sections 2.2, 2.3) conducted on 

Alisols, Plinthosols, and Luvisols (IUSS Working Group WRB 2014; Steup 2016) in 2014 

and 2015 at Ouri-Yori village (10°49’16’’N, 1°4’7’’E) located in North Benin, West Africa. 

The experimental sites, design, and factors, as well as crop and soil management were 

previously described in detail for each experiment (Table 2.2, Sections 2.2, 2.3). Each 

experiment used maize, sorghum, and cotton as test crops, but only data for the cotton-

based treatments are considered here. The experiments-2 and 3 were rainfed in both 

years, however, experiment-2 was re-designed in 2015 to include supplementary 

irrigation as an additional factor (Chapter 4, Section 4.2.2).  

Cotton phenology (e.g. days to 50% anthesis and physiological maturity), 

biomass accrual, and biomass and seed cotton yields were collected in experiment-1. In 

experiment-2, in-season biomass growth, soil water, and N uptake as well as final 

biomass and seed cotton yields were measured. Biomass and seed cotton yields were 
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collected in experiment-3 also. Additional details on the methods, measurements, and 

processing of soil and plant samples were previously reported (Chapter 2, Chapter 4).  

 

6.2.3 Model calibration and evaluation 

CROPGRO-Cotton was calibrated using empirical data on growth, development, and 

yields from experiment-1 in 2014. The independent measurements in 2015 from the 

same experiment were used to validate the parameterized model.  

The locally improved cotton variety H-279-1 was parameterized by adjusting 

manually various genetic coefficients to get an accurate goodness of fit between 

simulated and measured values in the absence of water and N deficits. Cotton, cv. 

Delapine 555 in DSSAT-CSM, was used as the starting cultivar for calibration. The 

phenological traits such as critical short day length (CSDL) and photo-thermal days from 

emergence to flower appearance (EM-FL) were adjusted to match the observed anthesis 

date. The default photo-thermal days from first seed to physiological maturity (SD-PM) 

were modified to match simulated with observed physiological maturity date. Next, the 

maximum leaf photosynthesis rate (LFMAX), photo-thermal days for seed filling duration 

for pod cohort (SFDUR), maximum fraction of daily growth partitioned to seed + shell 

(XFRT), and maximum size of full leaf (SIZLF), maximum weight per seed (WTRSD), and 

threshing percentage (THRSH) were optimized for final seed cotton and biomass yields 

(Table 6.1). The soil fertility factor (SLPF) was optimized during the calibration of 

aboveground biomass and seed cotton yield (Section 4.2.3).  

The validated CROPGRO model was evaluated using the empirical data from 

experiments-2 and 3, without a modification of the genetic coefficients, but using the 

SLPF values and soil water-holding characteristics as previously reported for the 

different sites (Section 4.2.3).  
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Table 6.1  Defaults genetic coefficients of cotton cv. Delapine used during 
calibration and the adjusted coefficients for cotton cv. H-279-1 used 
during model validation  

Codes Definitions 
Default values                                                           
Delapine 555 

Calibrated                        
H-279-1 

CSDL Critical Short Day Length below which 
reproductive development progresses with no 
day length effect (hour) 

             23          12.5 

PPSEN Slope of the relative response of development to 
photoperiod with time (1/hour) 

                0.1             0.1 

EM-FL Photo-thermal days between plant emergence 
and flower appearance 

             38          39 

FL-SH Photo-thermal days between first flower and first 
pod 

             11          11 

FL-SD Photo-thermal days between first flower and first 
seed 

             16          16 

SD-PM Photo-thermal days between first seed and 
physiological maturity 

             43          48 

FL-LF Photo-thermal days between first flower and end 
of leaf expansion 

             65          65 

LFMAX Maximum leaf photosynthesis rate at 30 °C, 350 
vpm CO2, and high light(mg CO2/m2/s) 

                1.1             3.0 

SLAVR Specific leaf area of cultivar under standard 
growth conditions (cm2/g) 

           170        170 

SIZLF Maximum size of full leaf (cm2)            300        350 
XFRT Maximum fraction of daily growth that is 

partitioned to seed + shell 
                0.76             0.72 

WTPSD Maximum weight per seed (g)               0.18             0.10 
SFDUR Photo-thermal days for seed filling duration for 

pod cohort 
               35           30 

SDPDV Average seed per pod (n./pod)                27          27 
PODUR Photo-thermal days required to reach final pod 

load 
               12          12 

THRSH Threshing percentage                70           85 
SDPRO Fraction protein in seeds 0.153 0.153 
SDLIP Fraction oil in seeds 0.120 0.120 

 

6.2.4 Model input data  

Initial soil profile data for the three different soils (Table 2.1) and weather data of the 

2014 and 2015 growing seasons were obtained from Steup (2016). CROPGRO-Cotton 

inputs files were prepared using the appropriate tools in DSSAT-CSM v.4.6, SBuild utility 

program for initial soil input, Weatherman for weather data, XBuild with cotton 

management data, and AT Create for system performance datasets.  
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6.2.5 Assessment of models performance 

The performance of the CROPGRO-Cotton model was assessed with the root mean 

square error (RMSE), normalized-RMSE (nRMSE), and Index of agreements (d). The 

formulas of these statistics were reported in section 4.2.6.  

 

6.2.6 Simulation of cotton seed yield responses to planting dates 

To capture effects of an increasingly erratic onset of the growing season in the region 

(Fig. 2.2; Ouorou Barre 2014) on cotton, seed cotton yield response to different planting 

dates in the case study region were simulated assuming the three soil fertility 

management options (Table 2.2, Section 2.2) under Alisols for 20 years weather 

variability (1986-2005). Four planting dates (June 10th, June 25th, July 10th, and July 25th) 

were simulated using the seasonal analysis option in DSSAT V.4.6. With the tested cotton 

cultivar (H-279-1), “early” planting refers to planting between mid to late June and “late 

or delayed“ planting to late July (Lançon et al. 1989; Sekloka et al. 2008). 

 

6.2.7 Simulation of climate change impact on growth, water- and N- use 

efficiencies 

Climate change impact was simulated using the historical and projected weather 

parameters (Sections 5.2.2, 5.2.3) as inputs to run the CROPGRO-Cotton model in a 

seasonal mode with the three soil fertility management options (Table 2.2, Section 2.2) 

while considering the planting date of June 25th (176 DOY) on Alisols. The impact on 

cotton were evaluated using the CROPGRO-Cotton model outputs for water-use 

efficiency, N-partial factor productivity, and N-internal utilization efficiency as indicators 

(Section 4.2.6) by comparing predicted responses of cotton to each of the three soil 

fertility management options under historical climate (1986-2005) to the performance 

of the same options under future climate (2080-2099) for the RCPs 2.6, 4.5, and 8.5. 
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6.3 Results 

6.3.1 Calibration and validation of CROPGRO-Cotton 

In experiment-1 (2014), CROPGRO-Cotton simulated both observed anthesis (50±5 days 

after planting) and physiological maturity (121±8 days after planting) with RMSE 

(nRMSE) of 0 day (0%). In the validation period, the calibrated CROPGRO-Cotton 

predicted anthesis of cotton (51±4 days after planting) with RMSE of 2 days and nRMSE 

of 4%, and physiological maturity (126±6 days after planting) with RMSE of 4 days and 

nRMSE of 3%. 

During the 2014 season, aboveground biomass accumulation of cotton was 

predicted satisfactorily with nRMSE of 32% and d-value of 0.94. In 2015, GROPGRO-

Cotton showed good accuracy in predicting time series of aboveground biomass accrual 

with nRMSE of 33% and d-value of 0.92.  

At final harvest in 2014, RMSE and nRMSE between measured biomass yield 

(3408±880 kg ha-1) and the simulated yield by CROPGRO-Cotton were 128 kg ha-1 and 

4%, respectively. The calibrated model predicted biomass yield (6144±508 kg ha-1) 

satisfactorily in 2015 (RMSE of 626 kg ha-1 and nRMSE of 10%). Likewise, CROPGRO-

Cotton simulated satisfactorily the observed seed-cotton yield (1426±350 kg ha-1) well 

with RMSE of 254 kg ha-1 and nRMSE of 18%. Harvested seed-cotton in experiment-1 

amounted to 2373±135 kg ha-1 in 2015 and was well predicted also by CROPGRO-Cotton 

(RMSE of 418 kg ha-1 and nRMSE of 18%). 

 

6.3.2 Evaluation of model  

In-season soil water content dynamics 

Based on the empirical data from experiment-2 in 2015, CROPGRO-Cotton reasonably 

simulated in-season soil moisture dynamics under rainfed (Fig. 6.1a, b, c) and 

supplementary irrigated (Fig. 6.1d, e) conditions. However, the model under-predicted 

soil moisture at 40-60 cm soil depth for the rainfed treatment up to approximately 90 

days after planting and predicted accurately thereafter until harvest (Fig. 6.1c). In the 

supplementary irrigated conditions, the model adequately simulated the observed soil 
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moisture dynamics at 40-60 cm soil depth from 20 to 70 days after planting and under-

predicted thereafter (Fig. 6.1f).  

 

 

Figure 6.1 Measured (symbols) and simulated (lines) soil water content in the 0-20, 
20-40, and 40-60 cm soil depths under cotton rainfed + fertilization (RF+F, 
a, b, c) and supplementary irrigation + fertilization (SI+F, d, e, f) conditions 
during the 2015 cropping season of experiment-2. 

 

Nitrogen uptake 

CROPGRO-Cotton predicted N uptake by cotton early in the season fairly well under both 

the rainfed and supplementary irrigation environments with and without fertilization in 

experiment-2 (Fig. 6.2). Without fertilizer, the model predicted N uptake accurately up 

to 50 days after planting, but under-predicted thereafter until harvest under rainfed and 

supplementary irrigated conditions (Fig. 6.2A1, A3). For rainfed with fertilizer 

application (Fig. 6.2 A2), the CROPGRO-Cotton model predicted N uptake accurately up 

to 80 days after planting and over-predicted thereafter. With fertilizer and 

supplementary irrigation (Fig. 6.2A4), the N-uptake was predicted accurately up to 50 

days after planting and over-predicted thereafter.  
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Figure 6.2 Observed (symbols) and simulated (lines) nitrogen uptake of cotton 
under rainfed conditions without (RF-F, A1) and with fertilization (RF+F, 
A2), and supplementary irrigation without (SI-F, A3) and with fertilization 
(SI+F, A4) in experiment-2 during the 2015 cropping season. 

 

Aboveground biomass accumulation 

CROPGRO-Cotton predicted early biomass accurately (up to 50 days after planting) 

under rainfed and supplementary irrigation conditions with and without fertilization. 

Thereafter, the model under-predicted the biomass accrual. The predictions of the 

model were more accurate for the treatments with fertilization (Fig. 6.3). 

Under rainfed and supplementary irrigated conditions (experiment-2) during 

2014 and 2015, the model predicted with good accuracy biomass yield at final harvest 

as substantiated by nRMSE of 21% and d-value of 0.83 (Fig. 6.4a). Under farmer-

management practices (experiment-3), the predictions of the model reached an 

accuracy of 17% and 0.87 for nRMSE and d-value, respectively (Fig. 6.4b).  

 



Evaluation and application of CROPGRO-Cotton model for determining optimum 
planting dates and climate change impact on yield, water- and N- use efficiencies 

97 

 

 

Figure 6.3 Observed (symbols) and simulated (lines) changes in aboveground 
biomass of cotton under rainfed without (RF-F, A1) and with fertilization 
(RF+F, A2), and supplementary irrigation without (SI-F, A3) and with 
fertilization (SI+F, A4) in the researcher-managed experiment-2 during 
the 2015 cropping season. 

 

 

Figure 6.4 Observed and simulated aboveground biomass at final harvest for cotton 
under researcher-managed (experiment-2, a) and farmer-managed 
(experiment-3, b) conditions during the 2014 (open symbols) and 2015 
(solid symbols) cropping seasons. 
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Yields at final harvest 

CROPGRO-Cotton predicted reasonably well the measured seed-cotton yield at harvest 

in experiment-2 with nRMSE (d-value) of 24% (0.82) (Fig 6.5a). The accuracy of 

CROPGRO-cotton in predicting seed-cotton yield under the farmer-managed conditions 

(experiment-3) was 39% for nRMSE and 0.81 for d-value (Fig 6.5b).  

 

 

Figure 6.5 Observed and simulated seed cotton yield at final harvest of cotton under 
researcher-managed (a) and farmer-managed (b) conditions during the 
2014 (open symbols) and 2015 (solid symbols) cropping seasons. 

 

6.3.3 Long term simulation of seed cotton yield responses to planting dates and 

soil fertility management 

CROPGRO-Cotton model simulations showed that, varying planting dates and soil 

fertility management options resulted in significant effects on seed cotton yields. The 

model also simulated well the year-to-year variability of seed cotton yields for each 

planting date across the soil fertility management options (Fig. 6.6). The highest yields 

were simulated with planting date 161 DOY followed by the planting date 176 DOY, 

irrespective of the soil fertility management options. However, seed cotton yield was 

highest with high use of mineral fertilizer (Fig. 6.6c) and integrated soil-crop 

management practice (Fig. 6.6b) and lowest with un-amended soil (Fig. 6.6a). The 

planting of cotton from 191 DOY onwards decreased seed cotton yields substantially.  
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Figure 6.6 Simulated seed cotton yield responses at 161 DOY (Day of the Year, 
D_161), 176 DOY (D_176), 191 DOY (D_191), and 206 DOY (D_206) under 
un-amended soil (CONT), integrated soil-crop management practice (ISC), 
and high use of mineral fertilizer (HMF) assuming the historical weather 
variability from 1986 to 2005. 

 

6.3.4 Climate change impact on cotton 

Changes in biomass accrual 

CROPGRO-Cotton predicted increases in biomass accrual of cotton under the projected 

climate change (2080-2099) relative to the historical means (1986-2005), irrespective of 

soil fertility management options across the climate scenarios (Fig. 6.7a, b, c), with the 

exception of RCP 2.6 under un-amended soil (Fig. 6.7a). In the latter case, the model 

predicted a decrease starting from approximately 70 days after planting (Fig. 6.7a). The 

predicted increases in biomass growth of cotton peaked towards the beginning of 

reproductive growth (≈ 45 days after planting) before declining sharply until harvest.  

 

 

Figure 6.7 Changes in cumulative aboveground biomass responses of cotton under 
future climate (2080-2099) relative to their historical means (1986-2005) 
assuming an unamended soil as control (a), integrated soil-crop 
management practice (b), and high use of mineral fertilizer (c) and while 
assuming three Representative Concentration Pathways of IPCC (RCPs 
2.6, 4.5, and 8.5). 
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Changes in water- and nitrogen- use efficiencies 

For un-amended soil, CROPGRO-Cotton predicted an increase of 15% in cotton water-

use efficiency under RCP 8.5, but decreases of 1% for RCP4.5 and 20% with RCP 2.6 

relative to the baseline (1986-2005). With integrated soil-crop management practice, 

changes in water-use efficiency were -4% for RCP 2.6, +9% with RCP 4.5, and +7% under 

RCP 8.5. Assuming high mineral fertilizer use, the average increase in the predicted WUE 

with RCP2.6, 4.5, and 8.5 was 2%, 17%, and 13% over the historical runs respectively 

(Fig. 6.8a).  

 

 

Figure 6.8 Simulated changes in water- use efficiency (WUE, a), partial factor 
productivity (N-PFP, b), and nitrogen- internal use efficiency (N-IE, c) of 
cotton under an unamended soil as control (CONT), integrated soil-crop 
management practice (ISC), and high use of mineral fertilizer (HMF), while 
considering historical climate (Bas., 1986-2005) and future climate (2080-
2099) and according to RCPs 2.6, 4.5, and 8.5. 

 

Under projected climate change, CROPGRO-Cotton predicted 7%, 22%, and 

24% increases in N-partial factor productivity with integrated soil-crop management 

practice and 14%, 30%, and 31% increases with high use of mineral fertilizer for RCPs 

2.6, 4.5, and 8.5, respectively (Fig. 8b). With un-amended conditions, CROPGRO-Cotton 

predicted changes in N-internal utilization efficiency by -1% (RCP2.6), +0.2% (RCP 4.5), 

and -4% (RCP 8.5). With integrated soil-crop management practice, CROPGRO-Cotton 

predicted an increase in N-internal utilization efficiency by 2% for RCP 2.6 and 5% for 

RCP 4.5, but a decrease of 7% under RCP8.5. N-internal utilization efficiency was 

projected to change by +8% with RCP 2.6, +11% for RCP 4.5, and -2% under RCP 8.5 

assuming high use of mineral fertilizer (Fig. 6.8c). 
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Changes in seasonal N uptake 

Under all future climate scenarios assumed, CROPGRO-Cotton predicted the largest 

increases in seasonal N uptake under RCP8.5 (Fig. 6.9). Under integrated soil-crop 

management option and high use of mineral fertilizer, the predicted increases in N 

uptake were about 6, 17, and 33% under RCPs 2.6, 4.5, and 8.5, respectively. In soil 

without any amendment, N uptake is expected to improve by 46% under RCP 8.5 and by 

14% under RCP 4.5, but decrease by 7% under RCP 2.6 (Fig 6.9). 

 

 

Figure 6.9 Confidence intervals (CI, 95%) for changes in seasonal nitrogen uptake by 
cotton relative to historical uptake means (1986-2005) assuming three 
fertility management levels (an unamended control (CONT), integrated 
soil-crop management practice (ISC), and high use of mineral fertilizer 
(HMF) under future climate (2080-2099) for RCPs, 2.6, 4.5, and 8.5. 

 

Variation in biomass and seed cotton yields 

The CROPGRO-Cotton simulations showed significant variability in biomass and seed 

cotton yields between years under historic and projected climate (Fig. 6.10).  
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Figure 6.10 Predicted aboveground cotton biomass (A) and seed cotton yields (B) as 
impacted by an un-amended soil control (CONT), integrated soil-crop 
management practice (ISC), and high use of mineral fertilizer (HMF) under 
a historic climate (Bas., 1986-2005) and future climate (2080-2099) and 
while considering RCPs 2.6, 4.5, and 8.5. 

 

Under the assumed future climate scenarios of RCP 4.5 and 8.5, the cumulative 

probability function shows a consistent enhancement of biomass (Fig. 6.10A1, 2, 3) and 

seed-cotton yields (Fig. 6.10B1, 2, 3) relative to the simulated historical baseline 

conditions, irrespective of the soil fertility options. CROPGRO-Cotton predicted 
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decreases in biomass (-9%) as well as of seed-cotton yields (-7%) under RCP 2.6 as 

compared to the historical runs in an un-amended soil (Fig. 6.10A1, B1). However, 

substantial increases in biomass and seed-cotton yields were predicted without 

fertilization with the magnitude reaching 14% and 15% under RCP 4.5 and 44% and 41% 

with RCP 8.5, respectively. When assuming integrated soil-crop management practice 

or high use of mineral fertilizer, the predicted enhancements were within 8-28% for 

biomass yield and 7-31% for seed-cotton yield across RCPs 2.6, 4.5, and 8.5.  

 

6.4 Discussion 

Adequate soil fertility management practices are still needed to ensure efficient and 

sustainable responses of cotton, which is an important cash crop in West Africa, under 

projected climate change. The CROPGRO-Cotton model was parameterized and 

evaluated for modeling growth, yields, soil moisture dynamics, and N uptake in cotton 

production systems under current weather conditions in the dry savannah of northern 

Benin. The evaluated model was applied for the first time, to determine optimum 

planting dates of cotton and to assess responses of the crop to different fertility 

management strategies under historical and future climate conditions. 

 

6.4.1 Suitability of CROPGRO-cotton for growth, yields, and in-season water and 

nitrogen dynamics 

The evaluation of the CROPGRO-Cotton model for the dry savannah conditions in Benin 

shows that the model performs reasonably well in simulating final biomass accrual 

although in-season biomass is generally underestimated by the model. In-season soil 

water dynamics, N uptake and seed cotton yields generally fit observed values. Similarly 

satisfactory CROPGRO-Cotton performance was reported for phenology and yields in 

Burkina Faso (Soler et al. 2011) and Cameroon (Gérardeaux et al. 2013). Even though 

the evaluation of CROPGRO-Cotton for predicting in-season soil moisture dynamics and 

N uptake needs to be extended still, a satisfactory agreement between measured and 

predicted soil water content was reported by Gérardeaux et al. (2013) for the periods of 

0-30 and 30-60 days after planting cotton. The deviations between simulated and 
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measured soil water contents in deeper layers (Fig. 6.1), particularly under rainfed 

conditions may have been caused by inadequate modeling of root activity by CROPGRO-

Cotton. The under-predicted patterns of aboveground biomass accrual late in season 

might be explained by failure to adequately simulate defoliation in these semi-arid 

conditions (Thorp et al. 2014b). 

 

6.4.2 Optimum planting date of cotton 

The results of the simulations by CROPGRO-Cotton under varying planting dates is 

typical for the cultivar (H-279-1) with better performance of this cultivar under early 

planting conditions as it is late flowering (Sekloka et al. 2008). The model predicted yield 

losses as much as 94 to 278 kg ha-1 per week of delay, confirming the range of 150 to 

200 kg ha-1 per week of delay reported by Lançon et al. (1989, 2007) for the region when 

planting cotton later (between mid to late July). The CROPGRO-Cotton model 

predictions show that planting of cotton in June is optimal as it gives the highest seed 

cotton yield especially with high use of mineral fertilizer or integrated soil-crop 

management practice.  

 

6.4.3 Increased responses of cotton to predicted climate change  

The CROPGRO-Cotton model predicted increases in biomass accrual of cotton under the 

projected climate change. This increase is likely caused by the combined effects of 

increased CO2 levels and air temperatures on biomass productivity as previously 

reported for cotton varieties in controlled field experiments (Kimball and Mauney 1993; 

Mauney et al. 1994; Reddy et al. 1995). The predicted sharp decline in biomass accrual 

after the vegetative growth stage was reportedly attributed to the impact of high 

temperatures on boll set and growth under elevated CO2 (Reddy et al. 1999). The 

positive effects of elevated CO2 concentrations on cotton biomass accrual have been 

explained by a reduction in canopy transpiration, increased photosynthesis, and water-

use efficiency (Hatfield et al. 2011; Mauney et al. 1994; Reddy et al. 1995). CROPGRO-

Cotton seems able to benefit from these underlying processes as reflected in enhanced 

water use efficiency, predominantly for RCP4.5 and 8.5. However, the decrease in 
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biomass and water use efficiency in an un-amended soil with RCP2.6 suggests that soil 

N deficits constrain the response of cotton to changing CO2 levels (Rogers et al. 1993).  

According to the model simulations, the projected climate change will increase 

the efficiency of the applied N-fertilizer. Such change in the applied N-use efficiency was 

reported also by Prior et al. (1998) in controlled experiments. The downward trend of 

N-internal utilization efficiencies under RCP 8.5 results from the enhanced biomass 

accrual with a concomitant decrease in plant N concentration. This is known as the 

“dilution effect” (Loladze 2002; Yuan and Chen 2015) in response to elevated CO2 

regardless of the overall enhanced seasonal N uptake (Prior et al. 1998; Singh et al. 

2013).  

Similar to the findings reported here, positive effects of climate change was 

predicted for cotton yields owing to CO2 enrichment in northern Cameroon with an 

increase of seed cotton by 1.3 kg ha-1 year-1 (Gérardeaux et al. 2013). Adhikari et al. 

(2016) simulated an enhancement of seed-cotton yield by 14-29% in the Texas high 

plains (USA), under a climate change scenario with elevated CO2 concentrations. In 

contrast, Reddy et al. (2002) using the GOSSYM crop model simulated a decrease of 9% 

in cotton yield in the Mississippi Delta, USA, when considering all projected climatic 

variables. Likewise, Hatfield et al. (2011) reviewed free atmospheric CO2 enrichment 

experiments and reported an increase of 36% for biomass and 44% for seed cotton in 

response to doubling CO2 concentration.  

The significant enhancement of cotton yields even for amended soil owing to 

climatic changes occurred however at the expense of soil nutrient depletion and thus 

soil mining (Stoorvogel and Smaling 1990; Stoorvogel et al. 1993). This is evidenced by 

the larger increases in N uptake across the soil fertility management options tested 

when assuming the medium and high GHG forcing scenarios. As fertilization usually is 

an integrated part of cotton cultivation in West Africa, the projected climate change for 

the region will likely improve cotton productivity in the Dry Savannah region when the 

application of fertilizers is increased. This is in contrast with the severe decreases 

predicted for cereals, particularly maize and sorghum (Chapter 5). Consequently, a high 

use of mineral fertilizers is indispensable to sustain higher cotton yields in the future. 
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On the other hand, cotton would, under such conditions, respond more efficiently to N 

fertilization when applied under an integrated soil-crop management practice (Fig. 6.8).  

 

6.5 Conclusions 

CROPGRO-Cotton is capable of predicting accurately growth and development, in-

season soil water dynamics and N uptake, and final yields of cotton. Planting of cotton 

in June optimizes cotton yield in northern Benin, but beyond this month the yield 

decreases. Climate change will likely increase water- and N- use efficiencies and yields 

of cotton at least when assuming a high use of mineral fertilizers or an integrated soil-

crop management practice. Given that the tested fertilizers levels are almost double the 

current recommendations for cotton, it appears necessary to update the current soil 

fertilization recommendation for cotton while ensuring adequate soil organic pools to 

sustain improved N-use efficiency and reduce environmental concerns in the Dry 

Savannah region of Benin. This is needed to benefit effectively from the positive effects 

of the projected climate change and thus keep pace with the highly needed 

sustainability of cotton production systems. 
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7 GENERAL DISCUSSION AND CONCLUSIONS 

 

7.1 Introductory remarks 

Adaptation to climate change is compulsory for the farming population in West Africa 

to sustain or even enhance agricultural productivity growth. Yet, site-specific evidence 

is needed for producers and decision-makers alike to facilitate e.g. policy-making. This 

study therefore analyzed the impact of predicted climate change on growth, yields, and 

water- and nutrient- use efficiencies of maize-, sorghum-, and cotton-based production 

systems in the dry savannah region of northern Benin, West Africa. Own field trials were 

conducted, to generate essential empirical data to aliment process-based crop models 

that increased insight into crop responses to the changing environments. The increased 

knowledge and understanding of maize, sorghum, and cotton growth, their yields and 

nutrient use efficiencies (here N and P), as well as partial balances of N and P will help 

framing sustainable production practices in the region that is considered most 

vulnerable to the anticipated climate change. Based on the findings of targeted field 

research, conducted in the case study region during the 2014 and 2015 cropping 

seasons, three Cropping System Models of DSSAT v 4.6, namely CERES-Maize, CERES-

Sorghum, and CROPGRO-Cotton were successfully parameterized and evaluated for 

modeling growth, development, yields, and in-season soil water and nutrient uptake 

according to the characteristics of the region. The evaluated models turned out to be 

credible decision-support tools, which permitted to explore soil fertility management 

options to enhance water- and nutrient-use efficiencies, and yields in the prevailing 

maize-, sorghum-, and cotton-based production systems under both historical and 

future climates in the study region. 

 

7.2 Integrated soil-crop management is most efficient to sustain nutrient 

demands and high yields 

A high use of mineral fertilizer as well as an integrated soil-crop management option 

improved yields of maize, sorghum, and cotton, but only the integrated soil-crop 

management practice submerged as the most efficient practice of nutrient use over the 
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entire growing season (Chapters 3, 4). Together with previous findings (e.g. Chen et al. 

2011; Zhang et al. 2011), the current results thus underlined that an integration of 

nutrient applications stemming from various sources (e.g. soil, fertilizers, crops residues, 

manures, etc.) has the highest potential to result in significant increases in crop yields 

compared to the use of one practice alone. In addition, the improved nutrient use 

efficiency consequently resulted in reduced environmental risks. Such soil fertility 

management options, recurrently referred to as “Integrated Soil Fertility Management 

Strategies” (ISFM) aiming at enhancing both productivity and resource use efficiency, 

are acknowledged practices for sustainable agriculture practices (Carsky et al. 1999; 

Sanginga and Woomer 2009; Vanlauwe et al. 2014). These options are thus highly 

needed for the dry savannah agro-ecological zone of Benin to ensure sustainable 

resource use and crop productivity.  

When assuming the projected climate for the region, the findings showed 

furthermore that the use of inorganic and organic fertilization, or combinations thereof, 

were likely to increase maize and sorghum yields compared to un-amended conditions 

irrespective of the RCP scenarios. These increases are however insufficient to offset 

completely the yield decreasing effects owing to haying-off or predicted heat-stress 

during reproductive growth (Chapter 5). The resulting overall decline in yields predicted 

for both staples will thus increase food stress or food import dependency in the region 

and certainly when considering the expected population growth and ongoing 

urbanization as also previously suggested for other regions in Africa (van Ittersum et al. 

2016; Wheeler and von Braun 2013). Given that, with the exception of Senegal and 

Ghana, the current hunger index for various West Africa countries vary already between 

“alarming” to “serious” (von Grebmer et al. 2017), reaching food security and 

consequent poverty alleviation thus is seriously endangered because climate change will 

very likely exacerbate food availability in the region as was postulated for other regions 

in Africa (Chapter 5; Wheeler and von Braun 2013). Based on the projected climate, 

achieving the zero hunger and no poverty targets set for the region are thus unlikely to 

be met unless more efficient and resilient production systems, including integrated soil-
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crop management and water conservation options, are taken and effectively 

implemented.  

The current findings confirmed on the one hand the importance of improved 

soil fertility management as a highly needed strategy for the future. Yet, a more resilient 

productivity and resource use efficiency per se is unlikely reached by such measures 

alone (Chapter 5). These therefore should be complemented by other means such as 

both drought and heat tolerant crops as optional coping strategies to climate change 

(Singh et al. 2014; Tesfaye et al. 2016). Also, supplementary irrigation can offset, at least 

to some extent, the effects of dry spells at critical plant growth stages (Fox and 

Rockström 2003; Reddy 2016). These, and others, may thus serve as (complementing) 

coping strategies next to soil fertility innovative practices under the foretold climate 

change and variability in the region. 

The impact of climate change on cotton responses are, compared to the fate 

of the two staple crops examined, less grim. However, the significant increases predicted 

for N uptake by cotton under the projected climate suggest that the latent increases will 

occur at the expense of soil fertility and thus subject to further soil mining (Chapter 6), 

unless the increased demand for nutrients is met. However, further and more attention 

is needed also since N-stress moderates CO2 fertilization effects (Boote et al., 2011). 

Without arresting the current, continuous soil nutrient mining during cotton production 

(Chapters 3, 6), significant yield depressions may occur in the future even with cotton. 

Also these aspects need to be considered when designing soil fertility management 

options to counterbalance the alarming soil fertility depletion in future cotton 

production systems. 

 

7.3 CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton complement field 

research and support localized application 

The calibrated and validated CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton 

models are now sufficiently robust to become functional in the case study region. Each 

of the three models gave sufficient evidence to predict accurately soil water, and N-

related processes during crop growth. Whilst in-season N and P uptake were assessed 
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with CERES-Maize and CERES-Sorghum under both historical and future climate 

conditions (Chapters 4, 5), only N uptake was assessed for cotton (chapter 6) because 

CROPGRO-Cotton is not responsive to P yet (Hoogenboom et al. 2015). CROPGRO-

Cotton therefore needs to be adapted for soil and plant P dynamics, which is for the 

region highly relevant since P remains one of the most limiting factors for agricultural 

production growth (Bationo et al. 2012; Buerkert et al. 1996). The improvement of 

CROPGRO-Cotton is important also because the stimulatory effects of elevated 

atmospheric CO2 is highly reduced under P-stress environments (Singh et al. 2013).  

Each of the three tested crop models was sensitive to the variability of, and 

changes in temperatures, as can be learned from the comparison of simulation results 

under historical and future climate conditions (Chapters 5, 6). However, all three models 

do not currently consider (yet) effects of canopy temperatures, which used to be 

“cooler” than air temperatures (Adhikari et al. 2016; McKenney and Rosenberg 1993). 

Accounting for canopy temperatures, instead of air temperatures as presently is the 

case with the CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton models, will 

obviously increase the accuracy for transpiration influences experienced by crops that 

in particular are temperature driven (Webber et al. 2016, 2017).  

The physiological effects of elevated CO2-levels were predicted to be larger 

with the C3-plant cotton than for maize and sorghum, which are both C4-plants. The 

differential response of crops to enriched CO2-environments was largely reported, but 

predominantly under controlled environments (Kimball and Mauney 1993; Leakey 2009; 

Mauney et al. 1994; Poorter 1993; Reddy et al. 1995). Yet, these effects can be captured 

by the current version of CROPGRO-Cotton and CERES-Maize and CERES-Sorghum 

(Boote et al. 2011; Hoogenboom et al. 2010, 2015; White et al. 2015), which allowed 

conducting future climate analyses for the region. All three crop models were responsive 

to rainfall variability, as evidenced by the year-to-year significant changes in the 

predictions with either past, current, and future weather parameters (Chapters 4, 5, 6). 

Irrespective of the crops, elevated atmospheric CO2-levels, increasing temperatures, 

and rainfall variability interactively will drive the impact of climate change in the dry 

savannah agro-ecological zone (Chapters 5, 6) and possibly beyond. Therefore, it is 
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important that crop models are continuously upgraded with the aim of reducing the 

uncertainties in weather parameters (e.g. temperature) response functions and in turn 

increasing the accuracy of crop productivity projections (Wang et al. 2017) to the benefit 

of decision-makers and planners and support ensuring local, national, regional, and 

global food security under predicted climate change. 

 

7.4 Conclusions and outlook 

Soil fertility management practices must embrace a combination of inorganic fertilizer 

and organic matter from various sources to sustain soil quality, high yields, and 

enhanced N- and P- use efficiencies of maize, sorghum, and cotton in the dry savannah 

of northern Benin, West Africa. Under projected climate, CO2-fertilization will enhance 

maize and sorghum biomass production early in the season only. Overall, it is most likely 

that water- and N- use efficiencies, and N and P uptake of maize and sorghum decrease 

as well as grain yields that in turn will considerably enhance food stress in the region. 

The impact of climate change are likely to be positive for cotton and it is inferred that 

future increases in water and N productivity of cotton will be driven by CO2-fertilization, 

increases in temperatures as well as rainfall variability.  

The findings overall increase the understanding of water- and nutrient- use 

efficiencies of major crops in the dry savannah of northern Benin. This can contribute to 

updating soil fertility management recommendations for sustainable agricultural 

practices in this region. The evaluated and applied CERES-Maize, CERES-Sorghum, and 

CROPGRO-Cotton models have now turned into appropriate tools for framing 

sustainable site- and crop-specific management options in the dry savannah region of 

Benin, West Africa. Yet, despite the satisfactory results obtained with the present 

versions, efforts should be directed also to continuously improve the models, reduce 

still existing uncertainties and increase the accuracy of crop productivity estimates. This 

will ease the tasks of decision-makers, planners, and farmers alike to increase resilience 

of the production systems and reach food security under predicted climate change. 

 

 



References 

112 

 

8 REFERENCES 

 
Adamtey N, Musyoka MW, Zundel C, Cobo JG, Karanja E, Fiaboe KKM, Muriuki A, 

Mucheru-Muna M, Vanlauwe B, Berset E, et al. (2016) Productivity, profitability 
and partial nutrient balance in maize-based conventional and organic farming 
systems in Kenya. Agric. Ecosyst. Environ. 235, 61–79. 

Adhikari P, Ale S, Bordovsky JP, Thorp KR, Modala NR, Rajan N, Barnes EM (2016) 
Simulating future climate change impacts on seed cotton yield in the Texas High 
Plains using the CSM-CROPGRO-Cotton model. Agric. Water Manag. 164, Part 
2, 317–330. 

Adnan AA, Jibrin JM, Kamara AY, Abdulrahman BL, Shaibu AS (2017) Using CERES-Maize 
model to determine the nitrogen fertilization requirements of early maturing 
maize in the Sudan Savanna of Nigeria. J. Plant Nutr. 40, 1066–1082. 

Adomou AC (2005) Vegetation patterns and environmental gradients in Benin: 
Implicatations for biogeography and conservation. Dissertation, University of 
Wageningen, The Netherlands. 

Akinseye FM, Adam M, Agele SO, Hoffmann MP, Traore PCS, Whitbread AM (2017) 
Assessing crop model improvements through comparison of sorghum 
(Sorghum bicolor L. moench) simulation models: A case study of West African 
varieties. Field Crops Res. 201, 19–31. 

Allen LH, Pan D, Boote KJ, Pickering NB, Jones JW (2003) Carbon dioxide and 
temperature effects on evapotranspiration and water use efficiency of 
soybean. Agron. J. 95, 1071–1081. 

Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of 
methods. C.A.B. International, Wallingford, UK. 

Anothai J, Soler CMT, Green A, Trout TJ, Hoogenboom G (2013) Evaluation of two 
evapotranspiration approaches simulated with the CSM–CERES–Maize model 
under different irrigation strategies and the impact on maize growth, 
development and soil moisture content for semi-arid conditions. Agric. For. 
Meteorol. 176, 64–76. 

Baker DN, Lambert JR, McKinion J (1983) GOSSYM: A simulator of cotton crop growth 
and yield. South Carolina Agric. S. C. Agric. Tech. Bull. 1086, 134. 

Baquedano FG, Sanders JH, Vitale J (2010) Increasing incomes of Malian cotton 
farmers: Is elimination of US subsidies the only solution? Agric. Syst. 103, 418–
432. 



References 

113 

 

Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J (2007) Soil organic carbon 
dynamics, functions and management in West African agro-ecosystems. Agric. 
Syst. 94, 13–25. 

Bationo A, Kihara J, Adesina A (2012) Beyond biophysical recommendations: Towards 
a new paradigm. In: Kihara J, Fatondji D, Jones JW, Hoogenboom G, Tabo R, 
Bationo A (eds) Improving soil fertility recommendations in Africa using the 
Decision Support System for Agrotechnology Transfer (DSSAT).Springer, 
Dordrecht, The Netherlands, pp. 169–184. 

Boote KJ, Jones JW, Hoogenboom G, Pickering NB (1998) The CROPGRO model for grain 
legumes. In:  Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding 
options for agricultural production. Springer, Dordrecht, The Netherlands, pp. 
99–128. 

Boote KJ, Allen Jr LH, Prasad PV, Jones JW (2011) Testing effects of climate change in 
crop models. In: Handbook of Climate Change and Agroecosystems. Imperial 
College Press, London, pp. 109–129. 

Bowen WT, Baethgen WE (1998) Simulation as a tool for improving nitrogen 
management. In:  Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding 
options for agricultural production. Springer, Dordrecht, The Netherlands, pp. 
189–204. 

Brouder SM, Volenec JJ (2008) Impact of climate change on crop nutrient and water 
use efficiencies. Physiol. Plant. 133, 705–724. 

Buerkert A, Hiernaux P (1998) Nutrients in the West African Sudano-Sahelian zone: 
Losses, transfers and role of external inputs. Z. Für Pflanzenernähr. Bodenkd. 
161, 365–383. 

Buerkert A, Michels K, Lamers JPA, Marschner H, Bationo A (1996) Anti-erosive, soil 
physical, and nutritional effects of crop residues. In: Buerkert B, Allison BE, von 
Oppen M (eds) Wind erosion in Niger: Implications and control measures in a 
millet-based farming system. Kluwers Academic Publishers, Dordrecht, The 
Netherlands, pp. 123–138. 

Buerkert A, Nagieb M, Siebert S, Khan I, Al-Maskri A (2005) Nutrient cycling and field-
based partial nutrient balances in two mountain oases of Oman. Field Crops 
Res. 94, 149–164. 

Callo-Concha D, Gaiser T, Webber H, Tischbein B, Müller M, Ewert F (2013) Farming in 
the West African Sudan Savanna: Insights in the context of climate change. Afr. 
J. Agric. Res. 8, 4693–4705. 



References 

114 

 

Carsky RJ, Oyewol B, Tian G (1999) Integrated soil management for savana zone of 
West Africa: Legume rotation and fertilizer N. Nutr. Cycl. Agroecosystems 55, 
95–105. 

CCAFS (2017). Data bias correction - CCAFS Climate. [WWW Document]. URL 
http://ccafs-climate.org/data_bias_correction/ (accessed 5.15.17). 

Challinor AJ, Müller C, Asseng S, Deva C, Nicklin KJ, Wallach D, Vanuytrecht E, Whitfield 
S, Ramirez-Villegas J, Koehler AK (2017) Improving the use of crop models for 
risk assessment and climate change adaptation. Agric. Syst. DOI: 
10.1016/j.agsy.2017.07.010 

Chen XP, Cui ZL, Vitousek PM, Cassman KG, Matson PA, Bai JS, Meng QF, Hou P, Yue 
SC, Römheld V, et al. (2011). Integrated soil–crop system management for food 
security. Proc. Natl. Acad. Sci. 108, 6399–6404. 

Chipanshi AC, Chanda R, Totolo O (2003) Vulnerability assessment of the maize and 
sorghum crops to climate change in Botswana. Clim. Change 61, 339–360. 

Christianson CB, Vlek PLG (1991) Alleviating soil fertility constraints to food production 
in West Africa: Efficiency of nitrogen fertilizer applied to food crops. In: 
Alleviating Soil Fertility Constraints to Increased Crop Production in West Africa. 
Kluwer Academic Publ., Boston, pp. 45–57. 

Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th 
century Arctic temperature variability: Canadian Earth System Model CanESM2. 
Atmospheric Chem. Phys. Discuss. 11, 22893–22907. 

Cobo JG, Dercon G, Cadisch G (2010) Nutrient balances in African land use systems 
across different spatial scales: A review of approaches, challenges and progress. 
Agric. Ecosyst. Environ. 136, 1–15. 

Cooper PJM, Dimes J, Rao KPC, Shapiro B, Shiferaw B, Twomlow S (2008) Coping better 
with current climatic variability in the rainfed farming systems of sub-Saharan 
Africa: An essential first step in adapting to future climate change? Agric. 
Ecosyst. Environ. 126, 24–35. 

Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, 
Ochoa V, Gozalo B, García-Gómez M, Soliveres S, et al. (2013) Decoupling of soil 
nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676. 

Delta-T Devices Ltd (2015) User Manual for the Profile Probe PR2. Delta-T Devices Ltd, 
Cambridge, UK. 

Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield 
response to extreme heat stress under multiple climate change futures. 
Environ. Res. Lett. 9, 034011. 



References 

115 

 

Dike VN, Shimizu MH, Diallo M, Lin Z, Nwofor OK, Chineke TC (2015) Modelling present 
and future African climate using CMIP5 scenarios in HadGEM2-ES. Int. J. 
Climatol. 35, 1784–1799. 

Dobermann A (2007) Nutrient use efficiency-measurement and management. In: 
Fertilizer best management practices: General principles, strategy for their 
adoption and voluntary initiatives vs regulations. IFA, Paris, France, pp. 1–28. 

Drechsel P, Heffer P, Magen H, Mikkelsen R, Wichelns D (2015) Managing water and 
fertilizer for sustainable agricultural intensification. IFA, IWMI, IPNI, and IPI, 
Paris, France. 

Druilhe Z, Barreiro-Hurlé J (2012) Fertilizer subsidies in sub-Saharan Africa. ESA 
Working paper N° 12-04, FAO, Rome. 

Dzotsi K, Agboh-Noameshie A, Struif Bontkes TE, Singh U, Dejean P, Wopereis MCS 
(2003) Using DSSAT to derive optimum combinations of cultivar and sowing 
date for maize in Southern Togo. In: Struif Bontkes TE, Wopereis MCS (eds) 
Decision support tools for smallholder agriculture in Sub-Saharan Africa: A 
practical guide. IFDC Int. Cent. Soil Fertil. Agric. Dev., Alabama, USA, pp. 100–
113. 

Dzotsi KA, Jones JW, Adiku SGK, Naab JB, Singh U, Porter CH, Gijsman AJ (2010) 
Modeling soil and plant phosphorus within DSSAT. Ecol. Model. 221, 2839–
2849. 

FAO (2012) Why has Africa become a net food importer? Explaining Africa agricultural 
and food trade deficits. FAO, Rome. 

Faure P, Volkoff B (1998) Some factors affecting regional differentiation of the soils in 
the Republic of Benin (West Africa). Catena 32, 281–306. 

Fixen P, Brentrup F, Bruulsema T, Garcia F, Norton R, Zingore S (2015) 
Nutrient/fertilizer use efficiency: measurement, current situation and trends. 
In: Managing Water and Fertilizer for Sustainable Agricultural Intensification. 
IFA, IWMI, IPNI, and IPI, Paris, France, pp. 8–38. 

Forkuor G (2014) Agricultural land use mapping in West Africa using multi-sensor 
satellite imagery. Dissertation, University of Würzburg, Germany. 

Fosu M, Buah SS, Kanton RAL, Agyare WA (2012) Modeling maize response to mineral 
fertilizer on silty clay loam in the northern savanna zone of Ghana using DSSAT 
model. In:  Kihara J, Fatondji D, Jones JW, Hoogenboom G, Tabo R, Bationo A 
(eds) Improving soil fertility recommendations in Africa using the Decision 
Support System for Agrotechnology Transfer (DSSAT). Springer, Dordrecht, The 
Netherlands, pp. 157–168. 



References 

116 

 

Fox P, Rockström J (2003) Supplemental irrigation for dry-spell mitigation of rainfed 
agriculture in the Sahel. Agric. Water Manag. 61, 29–50. 

Fund W, Hogan C (2014) West Sudanian savanna. [WWW Document]. URL 
http://www.eoearth.org/view/article/157050 (accessed 4.20.16). 

Gabaldón-Leal C, Webber H, Otegui ME, Slafer GA, Ordóñez RA, Gaiser T, Lorite IJ, Ruiz-
Ramos M, Ewert F (2016) Modelling the impact of heat stress on maize yield 
formation. Field Crops Res. 198, 226–237. 

Gabrielle B, Menasseri S, Houot S (1995) Analysis and field evaluation of the CERES 
models water balance component. Soil Sci. Soc. Am. J. 59, 1403–1412. 

Garcia y Garcia A, Persson T, Paz JO, Fraisse C, Hoogenboom G (2010) ENSO-based 
climate variability affects water use efficiency of rainfed cotton grown in the 
southeastern USA. Agric. Ecosyst. Environ. 139, 629–635. 

Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, 
Larwanou M, Bayala J (2010) Evergreen Agriculture: a robust approach to 
sustainable food security in Africa. Food Secur. 2, 197–214. 

Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C, Dosio A, Dhiédiou A, Kamga A, Klutse, 
NAB, Hewitson B, et al. (2014) Climatology, annual cycle and interannual 
variability of precipitation and temperature in CORDEX simulations over West 
Africa. Int. J. Climatol. 34. 

Gemenet DC, Hash CT, Sanogo MD, Sy O, Zangre RG, Leiser WL, Haussmann BIG (2015) 
Phosphorus uptake and utilization efficiency in West African pearl millet inbred 
lines. Field Crops Res. 171, 54–66. 

Gérardeaux E, Sultan B, Palaï O, Guiziou C, Oettli P, Naudin K (2013) Positive effect of 
climate change on cotton in 2050 by CO2 enrichment and conservation 
agriculture in Cameroon. Agron. Sustain. Dev. 33, 485–495. 

Gijsman AJ, Hoogenboom G, Parton WJ, Kerridge PC (2002) Modifying DSSAT crop 
models for low-input agricultural systems using a soil organic matter–residue 
module from CENTURY. Agron. J. 94, 462–474. 

Glotter M, Elliott J, McInerney D, Best N, Foster I, Moyer EJ (2014) Evaluating the utility 
of dynamical downscaling in agricultural impacts projections. Proc. Natl. Acad. 
Sci. 111, 8776–8781. 

Godwin DC, Singh U (1998) Nitrogen balance and crop response to nitrogen in upland 
and lowland cropping systems. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) 
Understanding options for agricultural production. Springer, Dordrecht, The 
Netherlands, pp. 55–77. 



References 

117 

 

Godwin DC, Vlek PLG (1985) Simulation of nitrogen dynamics in wheat cropping 
systems. In: Wheat growth and modelling. Springer, Boston, MA, USA, pp. 311–
332. 

von Grebmer K, Bernstein J, Nabarro D, Prasai N, Amin S, Yohannes Y, Sonntag A, 
Patterson F, Towey O, Thompson J (2017) 2016 global hunger index: Africa 
edition. Intl Food Policy Res Inst, Washington, DC, USA. 

Grinblat Y, Kidron GJ, Karnieli A, Benenson I (2015) Simulating land-use degradation in 
West Africa with the ALADYN model. J. Arid Environ. 112, 52–63. 

Guan K, Sultan B, Biasutti M, Baron C, Lobell D (2017) Assessing climate adaptation 
options and uncertainties for cereal systems in West Africa. Agric. For. 
Meteorol. 232, 291–305. 

Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note: 
Downscaling RCM precipitation to the station scale using statistical 
transformations- a comparison of methods. Hydrol Earth Syst Sci 16, 3383–
3390. 

Guo R, Lin Z, Mo X, Yang C (2010) Responses of crop yield and water use efficiency to 
climate change in the North China Plain. Agric. Water Manag. 97, 1185–1194. 

Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D 
(2011) Climate impacts on agriculture: implications for crop production. Agron. 
J. 103, 351–370. 

Hawkins E, Osborne TM, Ho CK, Challinor AJ (2013) Calibration and bias correction of 
climate projections for crop modelling: An idealised case study over Europe. 
Agric. For. Meteorol. 170, 19–31. 

Hearn AB (1994) OZCOT: A simulation model for cotton crop management. Agric. Syst. 
44, 257–299. 

Henao J, Baanante C (1999) Nutrient depletion in the agricultural soils of Africa. IFPRI 
2020Vision BRIEF 62, 2. 

van Herwaarden AF, Richards RA, Farquhar GD, Angus JF (1998) ’Haying-off’, the 
negative grain yield response of dryland wheat to nitrogen fertiliser III. The 
influence of water deficit and heat shock. Aust. J. Agric. Res. 49, 1095–1110. 

Heubach K, Wittig R, Nuppenau EA, Hahn K (2011) The economic importance of non-
timber forest products (NTFPs) for livelihood maintenance of rural west African 
communities: A case study from northern Benin. Ecol. Econ. 70, 1991–2001. 

Honfoga G (2013) Cotton institutions and perverse incentives for fertilizer traders in 
Benin. J. Dev. Agric. Econ. 5, 19–34. 



References 

118 

 

Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Boote KJ, Hunt LA, Singh U, Lizaso 
JL, White JW, Uryasev O, et al. (2010) Decision Support System for 
Agrotechnology Transfer (DSSAT) Version 4.5. 

Hoogenboom G, Jones JW, Traore PCS, Boote KJ (2012) Experiments and data for 
model evaluation and application. In: Kihara J, Fatondji D, Jones JW, 
Hoogenboom G, Tabo R, Bationo A (eds) Improving soil fertility 
recommendations in Africa using the Decision Support System for 
Agrotechnology Transfer (DSSAT). Springer, Dordrecht, The Netherlands, pp. 9–
18. 

Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Boote KJ, Hunt LA, Singh U, Lizaso 
JL, White JW, Uryasev O, et al. (2015) Decision Support System for 
agrotechnology Transfer (DSSAT) Version 4.6. Prosser, Washington, USA: DSSAT 
Foundation. 

Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900-
2100. Clim. Res. 17, 145–168. 

Hunt LA, Boote KJ (1998) Data for model operation, calibration, and evaluation. In: Tsuji 
GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural 
production. Springer, Dordrecht, The Netherlands, pp. 9–39. 

Hussein K, Perret C, Hitimana L (2006) Cotton in West Africa: the economic and social 
stakes. OECD Publishing, Paris, France. 

Igue AM, Adjanohoun A, Saidou A, Ezui G, Attiogbe P, Kpagbin G, Gotoechan-Hodonou 
H, Youl S, Pare T, Balogoun I, et al. (2013) Application et adaptation de 
l’approche intégrée DSSAT-SIG à la formulation des doses d’engrais pour la 
culture du maïs au Sud et au Centre du Bénin. Bull. Rech. Agron. Bénin BRAB. 

Igue AM, Oga AC, Saidou A, Balogoun I, Anago F, Ezui G, Youl S, Mando A, Sogbedji, JM 
(2015) Updating fertilizer formulation for maize cultivation (Zea mays L.) on 
Ferric Luvisols and Gleysols in the municipality of Tanguiéta, North-West Benin. 
Glob. Adv. Res. J. Agric. Sci. Vol. 4, 858–863. 

IITA (1982) Automated and semi-automated methods for soil and plant analysis. IITA, 
Ibadan, Nigeria. 

INSAE (2015) RGPH4 : Que retenir de l’effectif des populations en 2013? INSAE, 
Cotonou, Benin. 

IPCC (2007) Climate change 2007. Impacts, adaptation and vulnerability. Contribution 
of working group II to the fourth assessment report of the Intergovernmental 
Panel on Climate Change. Cambridge University Press, Cambridge, UK. 



References 

119 

 

IPCC (2013) Summary for policymakers: Climate change 2013: The physical science 
basis. Contribution of working group I to the fifth assessment report of the 
Intergovernmental Panel on Climate Change. Cambridge University Press, 
Cambridge, UK. 

van Ittersum MK, van Bussel LGJ, Wolf J, Grassini P, van Wart J, Guilpart N, Claessens 
L, de Groot H, Wiebe K, Mason-D’Croz D, et al. (2016) Can sub-Saharan Africa 
feed itself? Proc. Natl. Acad. Sci. 113, 14964–14969. 

IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. 
International soil classification system for naming soils and creating legends for 
soil maps. FAO, Rome. 

Jagtap SS, Mornu M, Kang BT (1993) Simulation of growth, development and yield of 
maize in the transition zone of Nigeria. Agric. Syst. 41, 215–229. 

Jayne TS, Chamberlin J, Headey DD (2014) Land pressures, the evolution of farming 
systems, and development strategies in Africa: A synthesis. Food Policy 48, 1–
17. 

Ji D, Wang L, Feng J, Wu Q, Cheng H, Zhang Q, Yang J, Dong W, Dai Y, Gong D, et al. 
(2014) Description and basic evaluation of Beijing Normal University Earth 
System Model (BNU-ESM) version 1. Geosci Model Dev 7, 2039–2064. 

Jibrin JM, Kamara AY, Ekeleme F (2012) Simulating planting date and cultivar effects 
on dryland  maize production using CERES-Maize model. Afr. J. Agric. Res. 7(40), 
5530–5536. 

Jones PG, Thornton PK (2003). The potential impacts of climate change on maize 
production in Africa and Latin America in 2055. Glob. Environ. Change 13, 51–
59. 

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, 
Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur. 
J. Agron. 18, 235–265. 

Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, 
Giorgetta MA, Crowley TJ, Pongratz J, et al. (2010) Climate and carbon-cycle 
variability over the last millennium. Clim Past 6, 723–737. 

Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth 
NI, Hargreaves JNG, Meinke H, Hochman Z, et al. (2003) An overview of APSIM, 
a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288. 

Kimball BA, Mauney JR (1993) Response of cotton to varying CO2, irrigation, and 
nitrogen: Yield and growth. Agron. J. 85, 706–712. 



References 

120 

 

Kugbe JX (2013) Spatio‐temporal dynamics of bush fire nutrient losses and 
atmospheric depositional gains across the northern savanna region of Ghana. 
Dissertation, University of Bonn, Germany. 

Kumar K, Goh KM (1999) Crop residues and management practices: Effects on soil 
quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. In: Sparks DL 
(eds) Advances in Agronomy Vol. 68, pp. 197–319. 

Kumudini S, Andrade FH, Boote KJ, Brown GA, Dzotsi KA, Edmeades GO, Gocken T, 
Goodwin M, Halter AL, Hammer GL, et al. (2014) Predicting maize phenology: 
Intercomparison of functions for developmental response to temperature. 
Agron. J. 106, 2087–2097. 

Lal R (2006) Enhancing crop yields in the developing countries through restoration of 
the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 17, 197–
209. 

Lal R (2015) Shifting cultivation versus sustainable intensification. In: Reference 
Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam, 
The Netherlands. 

Lamers JPA, Bruentrup M, Buerkert A (2015a). Financial performance of fertilisation 
strategies for sustainable soil fertility management in Sudano-Sahelian West 
Africa 1: profitability of annual fertilisation strategies. Nutr. Cycl. 
Agroecosystems 102, 137–148. 

Lamers JPA, Bruentrup M, Buerkert A (2015b) Financial performance of fertilization 
strategies for sustainable soil fertility management in Sudano–Sahelian West 
Africa. 2: Profitability of long-term capital investments in rockphosphate. Nutr. 
Cycl. Agroecosystems 102, 149–165. 

Lançon J, Klassou C, Chanselme J (1989) Influence de la date de semis sur certaines 
caractéristiques technologiques de la fibre et de la graine de coton (Gossypium 
hirsutum L.) au Nord-Cameroun. In: Berger M, Frydrych D (eds) Actes de la 
première conférence de la recherche cotonnière africaine, Lomé, Togo, 31 
janvier-2 février 1989: Tome I. CTA, Wageningen, The Netherlands, pp.241-251. 

Lançon J, Wery J, Rapidel B, Angokaye M, Gérardeaux E, Gaborel C, Ballo D, Fadegnon 
B (2007) An improved methodology for integrated crop management systems. 
Agron. Sustain. Dev. 27, 101–110. 

Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of 
C4 crops for food and fuel. Proc. R. Soc. Lond. B Biol. Sci. 276, 2333–2343. 

Liniger HP, Mekdaschi Studer R, Hauert C, Gurtner M (2011) Sustainable land 
management in practice – guidelines and best practices for Sub-Saharan Africa. 
TerrAfrica, World Overview of Conservation Approaches and Technologies 



References 

121 

 

(WOCAT) and Food and Agriculture Organization of the United Nations (FAO, 
Rome, Italy). 

Liu HL, Yang JY, Drury CF, Reynolds WD, Tan CS, Bai YL, He P, Jin J, Hoogenboom G 
(2011) Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen 
cycling in fields under long-term continuous maize production. Nutr. Cycl. 
Agroecosystems 89, 313–328. 

Liu HL, Yang J, He P, Bai Y, Jin J, Drury CF, Zhu Y, Yang X, Li W, Xie J, et al. (2012) 
Optimizing parameters of CSM-CERES-Maize model to improve simulation 
performance of maize growth and nitrogen uptake in Northeast China. J. Integr. 
Agric. 11, 1898–1913. 

Liu S, Yang JY, Zhang XY, Drury CF, Reynolds WD, Hoogenboom G (2013) Modelling crop 
yield, soil water content and soil temperature for a soybean-maize rotation 
under conventional and conservation tillage systems in Northeast China. Agric. 
Water Manag. 123, 32–44. 

Loladze I (2002) Rising atmospheric CO2 and human nutrition: toward globally 
imbalanced plant stoichiometry? Trends Ecol. Evol. 17, 457–461. 

Marani A (2004) Cotton2K Model version 4.0. [WWW Document]. URL 
http://departments.agri.huji.ac.il/plantscience/cotton/ (accessed 4.4.17) 

Mauney JR, Kimball BA, Pinter PJ, LaMorte RL, Lewin KF, Nagy J, Hendrey GR (1994) 
Growth and yield of cotton in response to a free-air carbon dioxide enrichment 
(FACE) environment. Agric. For. Meteorol. 70, 49–67. 

McCarthy DS, Vlek PLG (2012) Climate change impact on sorghum under different 
nutrient and crop residue management in semi-arid region of Ghana: a 
modeling perspective. Afr. Crop Sci. J. 20, 243–259. 

McCarthy DS, Vlek PLG, Bationo A, Tabo R, Fosu M (2010) Modeling nutrient and water 
productivity of sorghum in smallholder farming systems in a semi-arid region of 
Ghana. Field Crops Res. 118, 251–258. 

McCarthy DS, Vlek PLG, Fosu-Mensah BY (2012) The response of maize to N fertilization 
in a sub-humid region of Ghana: Understanding the processes using a crop 
simulation model. In: Kihara J, Fatondji D, Jones JW, Hoogenboom G, Tabo R, 
Bationo A (eds) Improving soil fertility recommendations in Africa using the 
Decision Support System for Agrotechnology Transfer (DSSAT). Springer, 
Dordrecht, The Netherlands, pp. 61–75. 

McCarthy DS, Adiku SGK, Freduah BS, Gbefo F, Kamara AY (2017) Using CERES-Maize 
and ENSO as decision support tools to evaluate climate-sensitive farm 
management practices for maize production in the northern regions of Ghana. 
Front. Plant Sci. 8. 



References 

122 

 

McKenney MS, Rosenberg NJ (1993). Sensitivity of some potential evapotranspiration 
estimation methods to climate change. Agric. For. Meteorol. 64, 81–110. 

MEHU (2011) Deuxième communication nationale de la République du Bénin sur les 
changements climatiques. Ministère de l’Environnement, de l’Habitat et de 
l’Urbanisme, Cotonou, Benin. 

Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto 
K, Montzka SA, Raper SCB, Riahi K, et al. (2011) The RCP greenhouse gas 
concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213. 

Milliken GA, Johnson DE (2009) Analysis of messy data volume 1: Designed 
experiments. Chapman and Hall/CRC Press, New York, USA. 

Mitchell MN (2015) Stata for the Behavioral Sciences. Coll. Stn. TX Stat Press, USA. 

Modola NR, Ale S, Rajan N, Munster CL, DeLaune PB, Thorp KR, Nair SS, Barnes EM 
(2015) Evaluation of the CSM-CROPGRO-Cotton model for the Texas rolling 
plains region and simulation of deficit irrigation strategies for increasing water 
use efficiency. Trans. ASABE 685–696. 

Montpellier Panel (2013) Sustainable intensification: a new paradigm for African 
agriculture. Imperial College, London, UK. 

Muhammad W, Vaughan SM, Dalal RC, Menzies NW (2011) Crop residues and fertilizer 
nitrogen influence residue decomposition and nitrous oxide emission from a 
Vertisol. Biol. Fertil. Soils 47, 15–23. 

Murrell TS (2009) Principles of nutrient use efficiency of phosphorus and potassium. 
In: Espinosa J, Garcia F (eds) Proceedings of the symposium “nutrient use 
efficiency” presented by the International Plant Nutrition Institute (IPNI) at the 
XVIII Latin American Congress of Soil Science. IPNI, Georgia, USA, pp. 18–23. 

Naab JB, Chimphango SMB, Dakora FD (2008) N2 fixation in cowpea plants grown in 
farmers’ fields in the Upper West Region of Ghana, measured using 15N natural 
abundance. Symbiosis 48, 37–46. 

Nicholson SE (2006) The seasonal cycle in the lower troposphere over West Africa from 
sounding observations. Q. J. R. Meteorol. Soc. 132, 2559–2582. 

Ouorou Barre IF (2014) Contraintes climatiques et pédologiques et production agricole 
dans l’Atakora (Nord-Ouest du Bénin). Thèse, Université d’Abomey - Calavi, 
Bénin. 

Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical 
and northern Africa due to Greenhouse forcing and land use changes. J. Clim. 
22, 114–132. 



References 

123 

 

Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a 
model. Biogeochemistry 5, 109–131. 

Paz JO, Woli P, Garcia y Garcia A, Hoogenboom G (2012) Cotton yields as influenced by 
ENSO at different planting dates and spatial aggregation levels. Agric. Syst. 111, 
45–52. 

Pieri CJMG (1992) Fertility of soils: A future for farming in the West African Savannah. 
Springer, Verlag, Berlin Heidelberg. 

Polley HW (2002) Implications of atmospheric and climatic change for crop yield and 
water use efficiency. Crop Sci. 42, 131–140. 

Poorter H (1993) Inter-specific variation in the growth response of plants to an 
elevated ambient CO2 concentration. Vegetatio 104–105, 77–97. 

Porter CH, Jones JW, Adiku S, Gijsman AJ, Gargiulo O, Naab JB (2009) Modeling organic 
carbon and carbon-mediated soil processes in DSSAT v4.5. Oper. Res. 10, 247–
278. 

Prasad PVV, Boote KJ, Allen LH (2006) Adverse high temperature effects on pollen 
viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum 
bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher 
tissue temperatures. Agric. For. Meteorol. 139, 237–251. 

Prior SA, Torbert HA, Runion GB, Mullins GL, Rogers HH, Mauney JR (1998) Effects of 
carbon dioxide enrichment on cotton nutrient dynamics. J. Plant Nutr. 21, 
1407–1426. 

Reddy PP (2016) Supplemental irrigation. In: Sustainable intensification of crop 
production. Springer, Singapore, pp. 253–265. 

Reddy K, Doma P, Mearns L, Boone M, Hodges H, Richardson A, Kakani V (2002) 
Simulating the impacts of climate change on cotton production in the 
Mississippi Delta. Clim. Res. 22, 271–281. 

Reddy KR, Davidonis GH, Johnson AS, Vinyard BT (1999) Temperature regime and 
carbon dioxide enrichment alter cotton boll development and fiber properties. 
Agron. J. 91, 851–858. 

Reddy VR, Reddy KR, Hodges HF (1995) Carbon dioxide enrichment and temperature 
effects on cotton canopy photosynthesis, transpiration, and water-use 
efficiency. Field Crops Res. 41, 13–23. 

Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj, 
P (2011) RCP 8.5 -A scenario of comparatively high greenhouse gas emissions. 
Clim. Change 109, 33. 



References 

124 

 

Riede JO, Posada R, Fink AH, Kaspar F (2016) What’s on the 5th IPCC report for West 
Africa? In: Yaro JA, Hesselberg J (eds) Adaptation to Climate Change and 
Variability in Rural West Africa. Springer International Publishing AG, 
Switzerland, pp. 7–23. 

Ripoche A, Crétenet M, Corbeels M, Affholder F, Naudin K, Sissoko F, Douzet JM, 
Tittonell P (2015) Cotton as an entry point for soil fertility maintenance and 
food crop productivity in savannah agroecosystems–Evidence from a long-term 
experiment in southern Mali. Field Crops Res. 177, 37–48. 

Ritchie JT (1998) Soil water balance and plant water stress. In: Tsuji GY, Hoogenboom 
G, Thornton PK (eds) Understanding Options for Agricultural Production. 
Springer, Dordrecht, The Netherlands, pp. 41–54. 

Ritchie JT, Basso B (2008) Water use efficiency is not constant when crop water supply 
is adequate or fixed: The role of agronomic management. Eur. J. Agron. 28, 
273–281. 

Ritchie JT, Singh U, Godwin DC, Bowen WT (1998) Cereal growth, development and 
yield. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding Options 
for Agricultural Production. Springer, Dordrecht, The Netherlands, pp. 79–98. 

Robertson GP, Rosswall T (1986) Nitrogen in West Africa: The regional cycle. Ecol. 
Monogr. 56(1), 43–72. 

Rogers GS, Payne L, Milham P, Conroy J (1993) Nitrogen and phosphorus requirements 
of cotton and wheat under changing atmospheric CO2 concentrations. Plant Soil 
155–156, 231–234. 

Rosenzweig C, Iglesias A (1998) The use of crop models for international climate 
change impact assessment. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) 
Understanding Options for Agricultural Production. Springer, Dordrecht, The 
Netherlands, pp. 267–292. 

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, 
Glotter M, Khabarov N, et al. (2014) Assessing agricultural risks of climate 
change in the 21st century in a global gridded crop model intercomparison. 
PNAS 111, 1–6. 

Roudier P, Sultan B, Quirion P, Berg A (2011) The impact of future climate change on 
West African crop yields: What does the recent literature say? Glob. Environ. 
Change 21, 1073–1083. 

Saidou A, Kossou D, Acakpo C, Richards P, Kuyper TW (2012) Effects of farmers’ 
practices of fertilizer application and land use types on subsequent maize yield 
and nutrient uptake in central Benin. Int. J. Biol. Chem. Sci. 6. 



References 

125 

 

Sanginga N (2003) Role of biological nitrogen fixation in legume based cropping 
systems; a case study of West Africa farming systems. Plant Soil 252, 25–39. 

Sanginga N, Woomer PL (2009) Integrated soil fertility management in Africa: 
Principles, practices, and developmental process. CIAT, Nairobi, Kenya. 

Scheiter S, Higgins SI (2009) Impacts of climate change on the vegetation of Africa: an 
adaptive dynamic vegetation modelling approach. Glob. Change Biol. 15, 2224–
2246. 

Schlecht E, Buerkert A, Tielkes E, Bationo A (2007) A critical analysis of challenges and 
opportunities for soil fertility restoration in Sudano-Sahelian West Africa. In: 
Bationo A, Waswa B, Kihara J, Kimetu J (eds) Advances in integrated soil fertility 
management in Sub-Saharan Africa: Challenges and opportunities. Springer, 
Dordrecht, The Netherlands, pp. 1–28. 

Sekloka E, Lançon J, Goze E, Hau B, Lewicki-Dhainaut S, Thomas G (2008) Breeding new 
cotton varieties to fit the diversity of cropping conditions in Africa: Effect of 
plant architecture, earliness and effective flowering time on late-planted 
Cotton productivity. Exp. Agric. 44, 197–207. 

Singh P, Nedumaran S, Traore PCS, Boote KJ, Rattunde HFW, Prasad PVV, Singh NP, 
Srinivas K, Bantilan MCS (2014) Quantifying potential benefits of drought and 
heat tolerance in rainy season sorghum for adapting to climate change. Agric. 
For. Meteorol. 185, 37–48. 

Singh SK, Badgujar GB, Reddy VR, Fleisher DH, Timlin DJ (2013) Effect of phosphorus 
nutrition on growth and physiology of cotton under ambient and elevated 
carbon dioxide. J. Agron. Crop Sci. 199, 436–448. 

Snyder CS, Bruulsema TW (2007) Nutrient use efficiency and effectiveness in North 
America: Indices of agronomic and environmental Benefit. Publ. Int. Plant Nutr. 
Inst., Georgia, USA. 

Soler CMT, Bado VB, Traore K, Bostick WM, Jones JW, Hoogenboom G (2011) Soil 
organic carbon dynamics and crop yield for different crop rotations in a 
degraded ferruginous tropical soil in a semi-arid region: a simulation approach. 
J. Agric. Sci. 149, 579–593. 

Sow P, Adaawen SA, Scheffran J (2014) Migration social demands and environmental 
change amongst the Frafra of northern Ghana and the Biali in northern Benin. 
Sustainability 6, 375–398. 

Srivastava AK, Mboh CM, Zhao G, Gaiser T, Ewert F (2017) Climate change impact under 
alternate realizations of climate scenarios on maize yield and biomass in Ghana. 
Agric. Syst. DOI: 10.1016/j.agsy.2017.03.011. 



References 

126 

 

Steup, G. (2016) Climate and soil data Ouri-Yori-1/Benin, 2013-15. [WWW Document]. 
WASCAL Geoportal. URL https://wascal-dataportal.org (accessed 7.25.17). 

Stoorvogel JJ, Smaling EMA (1990) Assessment of soil nutrient depletion in Sub-
Saharan Africa: 1983-2000. Winand Staring Centre Wageningen, The 
Netherlands. 

Stoorvogel JJ, Smaling EMA, Janssen BH (1993) Calculating soil nutrient balances in 
Africa at different scales. Fertil. Res. 35, 227–235. 

Stoorvogel JJ, Breemen NV, Jassen BH (1997) The nutrient input by Harmattan dust to 
a forest ecosystem in Côte d’Ivoire, Africa. Biogeochemistry 37, 145–157. 

Sultan B, Bella-Medjo M, Berg A, Quirion P, Janicot S (2010) Multi-scales and multi-sites 
analyses of the role of rainfall in cotton yields in West Africa. Int. J. Climatol. 30, 
58–71. 

Sultan B, Roudier P, Quirion P, Alhassane A, Muller B, Dingkuhn M, Ciais P, 
Guimberteau M, Traore S, Baron C (2013) Assessing climate change impacts on 
sorghum and millet yields in the Sudanian and Sahelian savannas of West 
Africa. Environ. Res. Lett. 8, 014040. 

Sunoj VSJ, Somayanda IM, Chiluwal A, Perumal R, Prasad PVV, Jagadish SVK (2017). 
Resilience of pollen and post-flowering response in diverse sorghum genotypes 
exposed to heat stress under field conditions. Crop Sci. 0. 

Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in daily rainfall over 
Africa: assessment of gridded observation products and evaluation of a regional 
climate model simulation. Int. J. Climatol. 33, 1805–1817. 

Tesfaye K, Zaidi PH, Gbegbelegbe S, Boeber C, Rahut DB, Getaneh F, Seetharam K, 
Erenstein O, Stirling C (2016) Climate change impacts and potential benefits of 
heat-tolerant maize in South Asia. Theor. Appl. Climatol. 1–12. 

Theriault V, Serra R (2014) Institutional environment and technical efficiency: A 
stochastic frontier analysis of cotton producers in West Africa. J. Agric. Econ. 
65, 383–405. 

Theriault V, Tschirley DL (2014) How institutions mediate the impact of cash cropping 
on food crop intensification: An application to cotton in Sub-Saharan Africa. 
World Dev. 64, 298–310. 

Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-
Lamberty B, Wise MA, Clarke LE, et al. (2011). RCP4.5: A pathway for 
stabilization of radiative forcing by 2100. Clim. Change 109, 77. 



References 

127 

 

Thornton PK, Jones PG, Ericksen PJ, Challinor AJ (2011) Agriculture and food systems 
in sub-Saharan Africa in a 4°C+ world. Philos. Trans. R. Soc. Lond. Math. Phys. 
Eng. Sci. 369, 117–136. 

Thorp KR, Ale S, Bange MP, Barnes EM, Hoogenboom G, Lascano RJ, McCarthy AC, Nair 
S, Paz JO, Rajan N, et al. (2014a) Development and application of process-based 
simulation Models for cotton production: A review of past, present, and future 
directions. J. Cotton Sci. 18, 10–47. 

Thorp KR, Barnes EM, Hunsaker DJ, Kimball BA, White JW, Nazareth VJ, Hoogenboom 
G (2014b) Evaluation of CSM-CROPGRO-Cotton for simulating effects of 
management and climate change on cotton growth and evapotranspiration in 
an arid environment. Trans. ASABE 1627–1642. 

Tsuji GY, Hoogenboom G, and Thornton PK (2013) Understanding options for 
agricultural production. Springer Science & Business Media, Dordrecht, The 
Netherlands. 

Unger S, Máguas C, Pereira JS, David TS, Werner C (2010) The influence of precipitation 
pulses on soil respiration - Assessing the “Birch effect” by stable carbon 
isotopes. Soil Biol. Biochem. 42, 1800–1810. 

Vanlauwe B, Bationo A, Chianu J, Giller KE, Merckx R, Mokwunye U, Ohiokpehai O, 
Pypers P, Tabo R, Shepherd KD, et al. (2010) Integrated soil fertility 
management: operational definition and consequences for implementation 
and dissemination. Outlook Agric. 39, 17–24. 

Vanlauwe B, Coyne D, Gockowski J, Hauser S, Huising J, Masso C, Nziguheba G, Schut 
M, Van Asten P (2014) Sustainable intensification and the African smallholder 
farmer. Curr. Opin. Environ. Sustain. 8, 15–22. 

Vitale J, Ouattarra M, and Vognan G (2011) Enhancing sustainability of cotton 
production systems in West Africa: A summary of empirical evidence from 
Burkina Faso. Sustainability 3, 1136–1169. 

Vitale JD, Djourra H, Sidibé A (2009) Estimating the supply response of cotton and 
cereal crops in smallholder production systems: recent evidence from Mali. 
Agric. Econ. 40, 519–533. 

Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus 
limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. 
Ecol. Appl. 20, 5–15. 

de Vos RN, Mallett JB (1987) Preliminary evaluation of two maize (Zea mays L.) growth-
simulation models. South Afr. J. Plant Soil 4, 131–136. 



References 

128 

 

van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, 
Goldewijk KK, Hof A, Beltran AM et al. (2011)  (2011) RCP2.6: Exploring the 
possibility to keep global mean temperature increase below 2°C. Clim. Change 
109, 95. 

Wajid A, Ahmad A, Hussain M, Rahman MH, Khaliq T, Mubeen M, Rasul F, Bashir U, 
Awais M, Iqbal J, et al. (2014) Modeling growth, development and seed-cotton 
yield for varying nitrogen increments and planting dates using DSSAT. J. Agric. 
Sci. 513641-649 51, 641–649. 

Wall GW, Amthor JS, Kimball BA (1994) COTCO2: A cotton growth simulation model for 
global change. Agric. For. Meteorol. 70, 289–342. 

Wang E, Martre P, Zhao Z, Ewert F, Maiorano A, Rötter RP, Kimball BA, Ottman MJ, 
Wall GW, White JW, et al. (2017) The uncertainty of crop yield projections is 
reduced by improved temperature response functions. Nat. Plants 3, 17102. 

Wang Z, Gao J, Ma BL (2014) Concurrent improvement in maize yield and nitrogen use 
efficiency with integrated agronomic management strategies. Agron. J. 106, 
1243–1250. 

Wani SP, Rockström J, Ramakrishna YS (2009) Rainfed agriculture-past trends and 
future prospects. In: Rainfed agriculture unlocking the potential. CABI, 
Wallingford, UK, pp. 1–35. 

Webber H, Gaiser T, Ewert F (2014) What role can crop models play in supporting 
climate change adaptation decisions to enhance food security in Sub-Saharan 
Africa? Agric. Syst. 127, 161–177. 

Webber H, Ewert F, Kimball BA, Siebert S, White JW, Wall GW, Ottman MJ, Trawally 
DNA, Gaiser T (2016) Simulating canopy temperature for modelling heat stress 
in cereals. Environ. Model. Softw. 77, 143–155. 

Webber H, Martre P, Asseng S, Kimball B, White J, Ottman M, Wall GW, De Sanctis G, 
Doltra J, Grant R, et al. (2017). Canopy temperature for simulation of heat stress 
in irrigated wheat in a semi-arid environment: A multi-model comparison. Field 
Crops Res. 202, 21–35. 

Wezel A, Bohlinger B, Böcker R (1999) Vegetation zones in Niger and Benin – present 
and past zonation. In: Herrmann L, Vennemann K, Stahr K, von Oppen M (eds) 
Atlas of natural and agronomic resources of Niger and Benin. University of 
Hohenheim, Germany. 

Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 
341, 508–513. 



References 

129 

 

White F (1983) The vegetation of Africa, a descriptive memoir to accompany the 
UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO, Natural Resour. 
Res., Paris, France. 

White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating 
impacts of climate change on crop production. Field Crops Res. 124, 357–368. 

White JW, Alagarswamy G, Ottman MJ, Porter CH, Singh U, Hoogenboom G (2015) An 
overview of CERES–Sorghum as implemented in the cropping system model 
Version 4.5. Agron. J. 107, 1987–2002. 

Whitehead PG, Crossman J (2012) Macronutrient cycles and climate change: Key 
science areas and an international perspective. Sci. Total Environ. 434, 13–17. 

Williams JR, Jones CA, Kiniry JR, Spanel DA (1989) EPIC crop growth model. Trans ASAE 
32, 497–511. 

Willmott CJ (1981) On the validation of models. Phys. Geogr. 2, 184–194. 

Wu W, Ma B (2015) Integrated nutrient management (INM) for sustaining crop 
productivity and reducing environmental impact: A review. Sci. Total Environ. 
512–513, 415–427. 

Yang JM, Dou S, Yang JY, Hoogenboom G, Jiang X, Zhang ZQ, Jiang HW, Jia LH (2011) 
Crop-soil nitrogen cycling and soil organic carbon balance in black soil zone of 
Jilin province based on DSSAT model. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 
22, 2075–2083. 

Yang JM, Yang JY, Liu S, Hoogenboom G (2014) An evaluation of the statistical methods 
for testing the performance of crop models with observed data. Agric. Syst. 127, 
81–89. 

Yuan ZY, Chen, HYH (2015) Decoupling of nitrogen and phosphorus in terrestrial plants 
associated with global changes. Nat. Clim. Change 5, 465–469. 

Zhang F, Cui Z, Fan M, Zhang W, Chen X, Jiang R (2011) Integrated soil–crop system 
management: Reducing environmental risk while increasing crop productivity 
and improving nutrient use efficiency in China. J. Environ. Qual. 40, 1051–1057. 

 
 

 

 



 

 

ACKNOWLEDGEMENT 

 

This work was supported by the German Federal Ministry of Education and Research (BMBF), 

University of Bonn, Center for Development Research (ZEF), and West African Science Service 

Center on Climate Change and Adapted Land Use (WASCAL). I express my gratitude to CGIAR 

Research Program on Climate Change, Agriculture, and Food Security (CCAFS) for providing 

climate change datasets. 

I would like to thank Prof. Dr. Mathias Becker, my first supervisor, for his guidance, 

advice for academic procedure, and constructive comments. I am also grateful to Prof. Dr. 

Christian Borgemeister, my second supervisor, whose inspiring leadership as head of the 

department of Ecology and Natural Resource Management was an important source of 

motivation through this academic journey. I am thankful to him for his constructive criticisms. I 

express my sincere thanks to Prof. Dr. Bernd Diekkrüger, who agreed to be external evaluator 

of my thesis, for his valuable contributions. I would like to express my gratitude to Prof. Dr. Karl-

Heinz Südekum, who accepted to be chair of my exam committee, for his useful comments. I 

specially acknowledge Prof. Dr. Paul L. G. Vlek, who initiated this research in the WASCAL 

framework jointly with my tutors, for his precious inputs owing to his experience. I would like to 

thank Prof. Dr. Asia Khamzina for her support and advice. To my main tutor, Dr. John Lamers, I 

hereby acknowledge his thorough mentorship. I am thankful to Dr. Jesse Naab, my second tutor, 

for his incredible support through this exciting journey. I am grateful to Prof. Jean Sogbedji and 

Dr. Guillaume Ezui for their inspirational guidance.  

I thank so much Dr. Manske Günther, Mrs. Maike Retat-Amin, and all the staff of ZEF 

Doctoral Studies Program. I am grateful to Dr. Nadine Worou, Dr. Aymar Bossa, and Mr. Adolphe 

Avocanh of WASCAL-Competence Center for their advice and support during my field work. I 

would like to express my sincere thanks to the local extension service of Tanguieta, Materi, and 

Malanville (Benin), the farmers who participated in this study, and my field Assistants. I am 

grateful to my colleagues ZEF Junior Researchers from Africa, Asia, Europe, and Latine America 

for their support and splendid moments we have shared. 

I am thankful to my wife, Eugenie Necker, for her prayers, love, and patience. I express 

my sincere gratitude to my family for the unconditional support. 

 
 


