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1. Chapter 1  

General introduction 

1.1 Nematoda 

Nematodes, unsegmented threadlike animals (Greek: nema = thread) belonging to 

the phylum Nematoda or Nemata, constitute one of the most diverse and abundant 

animal groups, inhabiting almost every ecological and parasitic niche. Some studies 

suggest that every four out of five animals on earth are nematodes [1]. Although the 

existence of animal and human pathogenic nematodes has been known for many 

centuries, plant-parasitic nematodes in particular long escaped discovery owing to 

their miniscule size 0.25 to 2 mm, which is impossible to detect without microscopic 

equipment. Indeed, when Turbevil Needham reported the first plant-parasitic 

nematode to the British Royal Society in 1743[2], he failed to gain the attention.  

In 1918, Nathan Augustus Cobb, a pioneer in the field coined the word “nematology” 

for this discipline [3], naming a new era for understanding the effects of nematodes 

on agricultural production. Yet nematodes were overlooked and underestimated for 

their impact for quite some time. In 1938, Hardrada Harold Hume, the dean of the 

School of Agriculture at the University of Florida, decried the limited awareness of 

nematodes and their influence on agriculture as follows: 

“If there would be no nematodes in the South [of United States] and they 

should suddenly appear in their present numbers, they would be seen as the 

pestilence they are. […] But the nematode problem arouses no particular 

interest. Nematodes are always working havoc, taking their toll on crops, 

sometimes causing complete destruction. We blind ourselves by accepting 

them as a matter of course. […] There must be a general awakening all along 

the line to the magnitude of this situation” [4]. 

Although around 25.000 species of nematodes have been described, the existence 

of as many as 1 million species has been speculated [5]. All nematode species 

exhibit a comparatively conserved morphology. They are structurally simple 

organisms possessing a filamentous, long and cylindrical body, which is round in 

cross section. The nematode’s muscles are attached longitudinally to its hypodermis, 
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allowing undulating movement on a dorsoventral plane [6]. Its internal digestive 

system is separated from the outer body wall by a pseudocoelomic cavity, filled with 

pressurized fluid that contains several tubular organs. This cavity maintains the body 

shape and allows movements. Habitus, size and mouthpart, as well as vulva and 

anus, display main diagnostic characteristics that aid classification of the major 

groups of nematodes into one of 12 clades within the phylum Nematoda [6]. 

Although nematodes occur in almost every habitat, they are essentially aquatic 

animals. Humidity in the environment, whatever its form, is essential for locomotion 

and active life, which indeed appears in diverse forms. Nematodes are either free-

living or parasitic on plants, insects or animals [7-9]. Depending on type of organism 

that a nematode infects, nematodes can be considered as either devastating or 

beneficial, sitting at the crux of divergent human health or economic interests. 

Already in the 1930s the potential of many entomopathogenic nematodes as 

alternatives to chemical insecticides had been recognised [10-12], and they remain in 

use today as biological control agents for insect pests worldwide [13, 14]. Invasive 

species of mole crickets, for example, can be successfully controlled using 

Steinernema scapterisci[15] and insecticidal toxins isolated from symbiotic bacteria of 

entomopathogenic nematodes (Photorhabdus and Xenorhabdus) have been shown 

to enhance plant´s resistance against insects [14] and nematodes [16]. However, 

other members of the phylum Nematoda should not be neglected. Animal- and plant-

parasitic nematodes cause substantial losses in food production that should spur 

some research into the interactions between the host immune system and nematode 

epidemic mechanism. 

1.1.1 Plant-parasitic nematodes 

Plant-parasitic nematodes (PPN) constitute a comparably small group of the phylum 

Nematoda. To date, around 4.000 species of PPNs have been described, 

representing 15% of the total number of nematode species known [6]. Nevertheless, 

their impact on agricultural food production is substantial; causing worldwide yield 

losses of an estimated $78 billion annually [1]. Parasitism of higher plants by 

nematodes is mainly confined to two classes of the phylum Nematoda: Adenophorea 

and Secernentea [17, 18].  All PPNs possess a characteristic stylet, a hollow axial 

spear that support them colonizing host plants. The stylet is used to puncture plant 
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cell walls, allowing the nematodes to withdraw nutrients. Moreover, stylet is also 

involved in secretion of proteins, hormones and metabolites that aid nematodes in 

parasitism. The presence of stylet distinguishes plant-parasitic from free-living 

nematodes such as Ceanorhabditis elegans[19, 20]. 

Parasitic members of the class Adenophorea are restricted to the two migratory 

ectoparasitic families Longidoridae and Trichodoridae within the order Dorylaimida. 

Migratory ectoparasites remain vermiform throughout their life cycle staying outside 

the root using their stylet to pierce and feed for short periods along the root system, 

hence their name (Greek: ecto = outer,para = with at), siteo (= feeding) [18, 21]. 

Those that feed on epidermal cells, such as Tylenchorhynchus dubius, possess 

comparably short stylets that cause only moderate damage to the infected cells. In 

contrast, those that feed on subsurface tissues use a very long needle-like stylet to 

reach nutrient-rich cells far below the epidermis. Longidoridae and Trichodoridae are 

the only families of plant-parasitic nematodes that are known to be a vector for virus. 

The economic damage caused by migratory ectoparasites thus comes indirectly for 

the most part, through vectoring viruses rather than direct feeding on the host [18, 

21]. 

However, the class Secernentea not only hosts just animal parasites (subclasses 

Rhabditia and Spiruria) but also include the vastly more populous plant-parasitic 

nematodes (subclass Diplogasteria) which are thought to be evolutionary derivatives 

of Adenophorea species [17]. Members of this class are grouped in the suborder 

Tylenchina within the order Tylenchida and emanate from ancestral fungus-feeding 

taxa [17]. Two superfamilies of Tylenchida, Criconematoidea and Tylenchoidea, 

represent two separate approaches to sedentary obligate root parasitism, the former 

focusing on ectoparasitic development, and the latter on endoparasitism (Greek: 

endon = inner,  para = with,  siteo = feeding). 

Sedentary ectoparasites, not surprisingly, garner less attention owing to their minor 

economic importance. The best-described species of this group is Criconemella 

xenoplax [22]. While migrating along the root surface this species pierces different 

cortical and epidermal cells with its stylet until it finds a suitable cell that is able to 

supply it with sufficient nutrients. Leaving its stylet inserted, the nematode becomes 

sedentary without invading the root, feeding for several days from a single cell [22, 
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23]. Because they do not enter the root, these nematodes cause only limited 

damage, restricted to necrosis of those cells actually penetrated by the stylet. 

Similar symptoms can be observed for different Tylenchid taxa that behave as semi-

endoparasites or facultative ecto-endoparasites, frequently members of family 

Hoplolaimidae. These nematodes remain vermiform throughout their life cycle and 

feed ectoparasitically on roots. However, they also partially invade the roots to feed 

on cortical or outer stellar cells. Some individuals may even reproduce inside the root 

[18, 21].  

More devastating than the ectoparasites already mentioned are endoparasitic 

nematodes that are subdivided, according to their parasitic behavior into migratory 

and sedentary endoparasites. The nematode families Pratylenchidae, Anguinidae 

and Aphelenchoididae are adapted to a migratory endoparasitism. Among them, only 

members of Pratylenchidae infect belowground plant parts. Out of Pratylenchidae, 

Radopholus spp., Hischmanniella spp. and Pratylenchus spp. (family Pratylenchidae) 

are of highest economic interest [18, 24]. Pratylenchus spp., or lesion nematode, has 

one of the broadest host ranges among plant-parasitic nematodes, being distributed 

worldwide[25]. Though most species are of only minor economic importance, others 

are responsible for substantial yield losses in agricultural and horticultural plants. 

Next to cyst and root-knot nematodes, Pratylenchus spp. can safely be called the 

most damaging genus within the phylum Nematoda [25]. Independent of their life 

stages, lesion nematodes can invade and leave the root at any time, parasitizing 

mainly cortical cells [24]. Nematodes in this group feed and reproduce while 

migrating in between or through plant cells inserting their stylet into a suitable cell 

sucking out its cytoplasm. 

In contrast to their sedentary superfamily, members of migratory endoparasites do 

not establish a permanent feeding cell. As soon as the infected plant cell ceases 

supplying nutrients, nematodes leave the lesion and move on to another plant cell. 

This tendency to move continuously in and out of roots generates new entry points 

for secondary invaders. Symptoms caused by migratory endoparasites are therefore 

diverse, ranging from enzymatic degradation of host tissue, via galling, irregular root 

swelling ("witch´s broom") and many other tissue distortions. These symptoms are 

mainly caused by hormonal imbalance associated to nematode-induced wounding 

[24]. 
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The nematodes most devastating to agricultural food production have a sedentary 

endoparasitic lifestyle. The larvae of these nematodes invade the root, migrating 

through different tissue layers to reach the vascular cylinder. At the vascular cylinder, 

they begin piercing individual cells with their stylet to find a suitable cell that supplies 

nutrients sufficient for the entire life cycle [26, 27]. Members of this group establish a 

highly complex relationship with their host since they are obligate biotrophic 

organisms and rely on living host tissue. Infection by sedentary endoparasitic 

nematodes can thus result in total yield losses. The most economically important 

nematodes in this group are the cyst (Heterodera spp. and Globodera spp.) and the 

root-knot nematodes (Meloidogyne spp.).   

1.1.2 Cyst nematodes 

Cyst nematodes constitute a major group of plant-parasitic nematodes that are of 

great economic interest throughout the world. Genera of this group can cause 

immense yield losses in important crop plants, including cereals, rice, potatoes, and 

soybeans. Eight genera, Heterodera (82 species), Globodera (12 species), 

Cactodera (13 species), Dolichodera (1 species), Paradolichodera (1 species), 

Betulodera (1 species), Punctodera (4 species) and Vittatidera (1 species), and 114 

species are currently form this group [28].   

Being sedentary endoparasites, all cyst nematodes feed inside the root system of 

their hosts. Members of this group are cryptobiotic, having the ability to enter a stage 

of suspended metabolic activity as a survival mechanism during unfavourable 

environmental conditions. While root-knot nematodes have a very broad host range 

that allows them to survive on alternate hosts during suboptimal conditions, cyst 

nematodes persist by producing a tanned brown cyst (hence the name), formed by 

the dead body of the female after fertilization [26].  

The cyst comprises of three different layers: the outer lipoprotein layer, derived from 

the vitelline layers of the fertilised oocyte, the middle layer consisting mostly of 

different amino acids, mainly proline, glycine, and alanine [29-31]. These amino acids 

are substrates for collagen, a structural protein found for example in bones, teeth, 

cartilages and skin [32]. After polymerisation those cuticular collagens provide the 

eggshell with its stable protective exoskeleton [33]. Polyphenolic compounds that are 

present in minor quantities in the cuticle give cyst their characteristic brown colour 
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[29]. The innermost layer, being the main permeability barrier, protects the eggs from 

toxic and harmful environmental components while allowing specific root exudates 

from a suitable host to pass. In this way, the couple of hundred embryonated eggs 

enclosed by the cyst can persist for many years in the soil in this dormant stage, 

magnifying the economic importance of this group of nematode in agriculture [26, 

31]. 

The life cycle of the cyst nematodes starts when juveniles in their second stage (J2s) 

hatch from the cyst leaving either via natural openings or through the neck where the 

female´s head has broken away [34]. As a survival strategy, not all juveniles hatch 

and leave the cyst at the same time. A proportion of J2s remain inside the cyst or in 

external egg masses [34] and those juveniles that were released into the soil begin 

migrating to the host, primarily following a chemical gradient produced by the host´s 

root system [31]. 

Among several cyst nematode species, hatching occurs in response to chemical 

stimuli such as exudates released by the host roots. In this way, nematodes are able 

to synchronise their life cycle with growth of the host plant. Several compounds that 

stimulate hatching are known today. Glycinoeclepin A, isolated from roots of kidney 

beans, was the first cyst nematode hatching factor to be characterized. This terpene 

induces hatching of H. glycines at very low concentrations [35]. Later, two other 

structurally related nortriterpenes were isolated and exhibited the same effect as 

glycinoeclepin A towards H. glycines [36]. Similarly, solanoeclepin A, released from 

tomato and potato roots, and structurally similar to the glycinoeclepins, was identified 

as a hatching factor for Globodera sp. [37]. Beyond chemical compounds, factors 

such as temperature, soil texture and humidity can influence the hatching process 

considerably in different cyst nematodes, contributing to the host range and 

distribution of cyst nematodes worldwide. The genus Heterodera provides an 

example for such diversity: Although H. cruciferae invades host plants during winter 

or early spring, H. zeaerequires a higher optimal temperature of 30°C and is 

therefore mainly distributed in tropical regions [38]. In comparison, the sugar beet 

cyst nematode H. schachtii is the most prevalent and economically most important 

nematode in temperate regions [39, 40]. 
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1.1.2.1 Heterodera schachtii 

The scientific research on H. schachtii began in Germany, in the mid-19
th century. In 

the beginning of 19th century as farmers experienced the economic potential of the 

Beta beet for its use in sugar production, the crop spread quickly across central 

Germany. Sugar beet has since been cultivated intensively, frequently in 

monocultures. Nevertheless, only a few years later, the yields were significantly 

declined in what was called, "beet weariness". In certain patches of the sugar beet 

field, the fruiting body grew significantly smaller than those of healthy plants, their 

leaves wilted and their lateral roots increased in numbers leading to the appearance 

of so called "root beard" [41, 42]. Searching for the factor causing a steady decline in 

yields, Prof. Hermann Schacht (1814-1864) in 1859 found “little white dots” on the 

root surface of symptomatic sugar beets of the tail-off in yields. After careful 

consideration, Schacht identified those dots as gravid females of a species within the 

phylum Nematoda [41]. 

Although Schacht intensively investigated the morphology and biology of this 

parasite, he did not himself name the newly discovered nematode. Only 11 years 

later, Adolf Schmidt (1871) corrected this oversight and named the new species 

Heterodera schachtii Schmidt in honor of its discoverer. The name was also given 

taken into the account the fact that the genus Heterodera describes the dimorphic 

cuticle texture of female and cyst (greek: hetero = different; dera =skin) [43, 44]. 

Because the original sugar beet Beta vulgaris L. spp. maritima is native to the 

Mediterranean area, H. schachtii is also suspected to originate from same area [44]. 

However, H. schachtii has been recently shown to cause substantial yield losses in 

sugar beet cultivation around the world [39, 40]. In addition to sugar beet, H. 

schachtii can parasitize several other plant species including the member of the 

families Amaranthaceae and Brassicaceae[45]. 

1.1.2.2 Life cycle 

After hatching from the cysts infective J2s migrate toward the host root, following a 

gradient of stimuli present around the host roots. Some of those stimuli, including 

gradients for CO2, amino acids, pH and sugars, act as nonspecific attractants 

prompting long-distance migration of nematodes [46]. However, detailed knowledge 

about the localized attraction of J2s to sites of root invasion is still missing. Once they 
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reached the host, J2s invade the roots, predominantly in the elongation zone and 

migrate intracellularly across the cortical tissue toward the pericycle. Using their 

protrusible stylet, they begin piercing cells until they select a suitable initial syncytial 

cell (ISC) [19, 31]. Because the ISC ensures a continuous supply of nutrients to the 

nematode, the parasitism must be performed nondisruptively. Accordingly, the 

juveniles carefully insert the stylet into the host cell, taking care not to destruct the 

plasmalemma, and then cease movement for 6-8 hours [19]. Afterwards, J2s begin 

establishing a feeding tube made of saliva produced by pharyngeal glands [31]. This 

feeding tube serves as a filter membrane controlling the uptake and release of 

specific molecules from and into the plant cell, regulated by the pharyngeal pump. 

After successful establishment of the feeding tube, the infected root cell is massively 

reprogrammed. Several neighbouring cells are incorporated through local cell wall 

dissolutions leading to the formation of a large, multinucleated and hypertrophied 

syncytium. During the formation of syncytium, a large central vacuole is replaced by 

several smaller ones, the nuclei are hypertrophied and the number of organelles 

including smooth ER increases significantly resulting in a metabolic highly active 

nutrient source[47]. 

 



 Chapter 1 – General introduction 
 

- 9 - 
 

Figure1: Life cycle of H. schachtii. Infectious juveniles invade the roots (1). After induction 

of syncytia and sex differentiation, males leave the root to fertilize the females (2), which 

develop into cysts filled with eggs (3). After hatching, infectious juveniles can start a new life 

cycle (4); modified after Jung et al. [48]. 

 

In contrast to H. schachtii, the root-knot nematode Meloidogyne incognita induces 

giant cells that are formed through repeated rounds of nuclear division and cell 

growth in absence of cytokinesis[27]. Despite their different ontogeny, these two 

types of feeding cells have similar physiological functions. During next two weeks, 

the asexual juveniles of H. schachtii develop either into males or females. As they 

approach the adult stage, juvenile developing to females moult three times, 

compared to two moultings undergone by males [19, 49]. While moulting into their 

juvenile´s stage, females develop their genital primordial and rectum. Male 

nematodes become vermiform again during the moult to J4 and leave the root to 

copulate with females after their last moult. 

The females, by contrast, remain sedentary, feeding continuously from the 

syncytium. The globular shape of females facilitates the rapid growth of their 

developing ovaries, allowing them to rupture the roots after their fourth moult, 

exposing the reproductive system to males–who are attracted to the females via 

sexual pheromones. After copulation, the embryonated eggs inside the female 

develop until the formation of next generation of J2s, at this point female dies and 

forms a robust protective cyst, as discussed earlier[31]. 

The factors that are involved in determining the sexual outcome of nematodes into 

either males or females are not yet fully known. However, Molz reported in 1920 that 

the epigenetic sexual development of H. schachtii is strongly influenced by the 

physiological condition of the host plant [50]. Later, Von Sengbusch figured out that 

females have a 3-times greater nutritional requirement than males, indicating that the 

amount of nutrients supplied by the syncytium influences to the sexual development 

of H. schachtii [51-53]. Under optimal conditions more than 90% of infective juveniles 

of H. schachtii may develop as females [54]. Accordingly, intraspecific competition 

due to high infection density results in adverse conditions in food supply and 

therefore less female formation [52]. 
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1.1.2.3 Management 

Because of cyst nematode´s ubiquitous appearance, soil-base life cycle and well-

protected eggs, their control presents a particular problem and many or all eggs 

remain dormant within the protective cyst wall for many years. The first management 

strategies for H. schachtii were established in the year of its discovery. In 1871, Kühn 

suggested a break in cultivation to reduce the population density of H. schachtii, 

though the duration of this cultivation break threatened to lower sugar beet 

production below an economically reasonable threshold[55]. In the following years 

opinions were divided over the ideal length of such cultivation break [56-58]. 

However, this strategy to reduce the yield loss caused by nematode infection was a 

landmark for nematode pest management in modern agriculture.  

As the word management implies, a combination of several measures is needed to 

reduce nematode densities to a non-injurious or sub-economic threshold, since an 

elimination of nematode pests is not possible [59]. Today, management of plant-

parasitic cyst nematodes combines cultural and biological strategies, to achieve the 

greatest possible reduction of pest populations [60].   

Compared to root-knot nematodes, cyst nematodes have a narrow host range, 

making crop rotation one of the main cultural control agents used in modern 

agriculture [31]. Crop rotation extends the interval between planting of hosts 

susceptible to the same nematodes [61, 62]. In the interim, trap cropping or 

cultivation of antagonistic catch crops can reduce the population density of 

nematodes to a non-damaging level [60].  

Trap cropping is a very effective, though equally costly measure for controlling 

sedentary endoparasitic nematodes [63]. Either highly susceptible or resistant 

cultivars are grown that allow nematode hatching and invasion but not completion of 

their life cycle. In the former case, growing of the plants induces fast and efficient 

hatching, but requires proper planting and precise timing, since susceptible plants 

need to be physically destroyed before nematodes reproduce [60]. Tolerant plants 

instead are not recommended for use in a trap cropping system [64], though they are 

defined as plants that are able to endure the same amount of pathogens as 

compared to susceptible plants without reducing yield and quality [65, 66]. However, 
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tolerant plants do not diminish reproduction of the pathogen and growing those plants 

therefore might also increase the nematode population within a few years [67, 68]. 

In sugar beet cultivation resistant trap crops like mustard or oil radishare commonly 

used in combination with resistant and tolerant sugar beet varieties in a wide crop 

rotation to control the population density of H. schachtii [60, 68].Although the risk of 

using tolerant plants is well known, the abandonment of those varieties is not yet 

conceivable, since resistant sugar beet cultivars gain less yield and lower inner 

quality at low infestation level compared to susceptible or tolerant varieties [64]. 

Antagonistic plants, on the other hand, release specific root exudates that are toxic 

for nematodes; marigold (Tagetes spp.) is one of the most thoroughly studied plants 

in this category [69]. This plant produces allelopathic compounds such as alpha-

terthienyl that are toxic to or that inhibit the development of nematodes [69, 70]. 

However, Tagetes spp. has only been shown to affect Meloidogyne spp. and 

Pratylenchus spp. [71]. 

Root exudates of different cultivars can improve soil quality and plant health creating 

an environment that may favours nematode-antagonistic flora and fauna [70]. In 

addition to their nutritional benefits, the advantageous effects of the incorporation of 

organic amendments into the soil on nematode-antagonistic microorganisms were 

known early on [72, 73]. The regulation of pH, temperature, moisture, nutrients, and 

heavy metals was found to influence the distribution and occurrence of nematode-

antagonistic species [74-76]. Although many microorganisms have been shown to 

feed on nematodes such as predatory nematodes, mites, insects and other 

vertebrates, fungi and bacteria are the most studied natural enemies of nematodes 

[77]. However, little is known about their development in soil, apart from carbohydrate 

sources found, for example, in nematodes´ cuticle that they need to proliferate [60]. 

Similar to some toxin-producing fungi, bacteria such as Burkholderia spp., 

Pseudomonas spp., Bacillus spp. and Agrobacterium radiobacter interfere with 

nematodes indirectly by producing antibiotics, enzymes or toxins [78-82]. Many 

compounds antagonistic to nematodes are formed by those bacteria during 

decomposition of organic material, indicating the effectiveness of organic 

amendments in nematode control [72, 73]. Yet, little is known about the production 

and functionality of such compounds in the rhizosphere. So far, the most 
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economically promising bacteria known to parasitize nematodes are the endospore 

forming bacteria Pasteuria spp., whose endospores adhere to the nematode cuticle 

and germinate inside the host. In Meloidogyne spp., infected females have been 

seen to further develop but cannot reproduce, their reproductive system having been 

destroyed by as many as 2 million endospores [83]. After decomposition of both roots 

and nematodes, those spores are released into the soil environment, ready to infect 

new nematodes. Nevertheless, a narrow host range for a number of the bacterium 

isolates makes it difficult to produce sufficient number of endospores for large-scale 

trials, putting their application as biocontrol agents in agriculture out of reach. 

Due to their potential health and environmental risks, public sentiment and 

government policies have pressed for a reduced use of nematicides. Yet, alternatives 

are rare. A few organisms have been identified as potential practical control agents, 

but limitations on their mass production so far have prohibited their widespread use. 

Furthermore, research suggests that biological control agents alone are not sufficient 

to reduce nematode infection but must be combined with other control measures for 

successful use in sustainable agriculture [84, 85]. In addition to the described cultural 

control practices, genetic resistance is a primary control measure that can be 

combined with biological agents for sustainable control of nematodes. 

Resistance is defined as the ability of a plant to reduce pathogenic population density 

by blocking the completion of their life cycle after invasion [86].  Numerous individual 

plant resistance genes have been identified and are used in research programs to 

create effective and economically as well as environmentally reasonable alternative 

to chemical control agents. However, researchers face challenges in breeding new 

resistant crop plants, since nematodes are evolutionarily able to overcome the 

resistance after some time. Furthermore, resistant varieties often differ in yield or 

taste, making cultivation along these lines impractical. The key to breeding resistant 

plants that also meet the consumer´s requirements lies in knowing the details of the 

interaction between plant and pathogens. Accordingly, progress is still needed 

particularly in fundamental areas of research to find a sustainable and reliable 

strategy for nematode management. 
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1.2 Plant-nematode interaction 

Plants have evolved different strategies for water and nutrients uptake to aquire 

sufficient macro-and micronutrients from the soil. These strategies involve passive 

and active transporter systems as well as the release of specific chemical signals 

interacting with symbiotic organisms. All these mechanisms influence the 

biochemical composition of the rhizosphere. Iron, for example, is an essential 

macronutrient that - though highly abundant in soils - is only of limited availability for 

plants, since it tends to form insoluble complexes (Fe
3+) under aerobic and low pH 

conditions. Accordingly, plants use H+-ATPases and ferric chelate reductases to 

acidify the rhizosphere and reduce Fe3+ to the more soluble form Fe2+[87]. Further, 

for better nitrogen uptake, some legumes release flavonoids to attract nitrogen-fixing 

bacteria (rhizobia) that convert atmospheric nitrogen into ammonium, thus, avoiding 

nitrogen deficiency even when other nitrogen sources are not available in the soil 

[88].  Using these mechanisms, however, plants become conspicuous within their 

environment, unavoidably presenting themselves to antagonistic organisms as 

potential hosts. 

Plant-parasitic nematodes sense changes in their environment through internal and 

cuticular sense organs or sensilla. Compared to internal sensilla, which are 

mechanoreceptors or (less frequently) photoreceptors, cuticular sensilla detected a 

wider range of stimuli, including chemical, mechanical, temperature and osmotic 

pressure [89]. The highest concentration of cuticular sensilla is found on the head of 

the nematode, where different types of semiochemicals can be sensed [90]. 

Semiochemicals are defined as chemicals that induce an interaction between two 

organisms by transmitting chemical messages; they include allelochemicals and 

pheromones [91]. The former mediate interspecific responses such as the responses 

of nematodes to diffusates from host roots, whereas the latter mediate intraspecific 

responses regulating, for example, the attraction of males to female nematodes 

during fertilisation [92].  Detection of semiochemicals regulates nematode behaviour. 

Some plant attractants stimulate the hatching of juveniles, whereas others enable the 

nematode to migrate to the root area and invade the roots. Once, the nematode 

enters the host root system, the interaction between host and parasite moves to a 

direct level. Independent of different life cycles each plant-parasitic species must get 

in direct contact with the host plant and thus provokes plant cell responses during 
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infection. Sedentary endoparasitic nematodes are the most invasive nematode 

species and accordingly need to interact with the host plant in complex ways [27]. 

1.2.1 Morphological changes and molecular background of host cells during 

syncytium development 

Being endoparasitic organisms, cyst nematodes establish a highly complex long-term 

relationship with their hosts that require massive cytological modifications of the 

feeding cell. The juveniles enter the epidermis of the roots and migrate intracellularly 

through the cortex, piercing and rupturing surrounding cell walls with their stylet 

during this phase [47]. After the nematode reaches the vascular cylinder, it selects an 

initial syncytial cell (ISC) near the primary xylem elements and punctures carefully 

with the stylet without destroying the plasmalemma [93]. By forming a feeding plug, 

the nematode anchors the stylet at the point of insertion.  

The selected cell immediately undergoes striking morphological changes: After 

insertion of the stylet, the nematode remains motionless on the infection sites and 

electron-translucent cell wall material becomes visible [94]. Plasmodesmata between 

the pericycle gradually widen, forming the first connection from the ISC to 

neighbouring cells. The protoplasts of these adjacent cells amalgamate, and the 

granular cytoplasm becomes denser through hypertrophy, representing the syncytial 

structure; later, cell walls are dissolved through enzymatic digestion, and 

neighbouring cells are incorporated, expanding the syncytial structure along the 

vascular cylinder [47, 94]. In Arabidopsis roots, a single syncytium consists of up to 

200 individual cells [95]. Furthermore, the central vacuole is fragmented into several 

smaller ones [47], and the syncytium becomes metabolically highly active, as 

indicated by the presence of a large number of  mitochondria, and free ribosomes 

and the proliferated structure of the endoplasmatic reticulum (ER) [47, 96-98]. During 

nematode development from J2 to J4, ER structure changes from rough in the early 

stages to smooth with dilated cisternae in later developmental stages, apparently 

forming the small vacuoles previously described [47, 98]. Whereas the rough ER is 

studded with ribosomes responsible for protein biosynthesis, the smooth ER without 

any ribosomes serves mainly as a source of Ca
2+

-signalling molecules (reviewed 

in[99]) and is responsible for the production of lipids [100]. Consequently, the number 

of lipid bodies also increases in later syncytial elements. To cope with such high level 
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of metabolic activity, enlarged nuclei and nucleoli can be found in syncytial structures 

due to endoreduplication of DNA without mitosis [101, 102]. 

All morphological changes in the plant cell during a compatible interaction require a 

very ingenious parasitism strategy on the nematode´s part. Cyst nematodes are well 

equipped for plant parasitism: Using their strong hollow stylet, they mechanically 

disrupt the tough epidermal cell layer in the zone of elongation via repeated forceful 

and highly coordinated thrusts to enter and migrate intracellularly towards the 

vascular cylinder. They also use the stylet to introduce secretions into the plant tissue 

and to suck nutrients and other plant cell contents during feeding [27].  

These released secretions comprise a mixture of different enzymes with different 

functions. In 1998, Smant et al. found the first plant cell wall-degrading enzymes in 

nematodes [103], a finding confirmed by de Meutter et al. [104]. Endo-ß1-4-

glucanase has been shown to break the ß1-4 links within the cellulose 

polysaccharide chain, the most abundant polymer in the plant cell wall [103]. 

Subsequently, pectate lyases, xylanases, expansins, polygalacturonases, arabinases 

and arabinogalactan galactosidases have been identified in the secretions of different 

phylogenetic groups [105-110], all enzymes capable of breaking down specific plant 

cell wall components and thus facilitate nematode migration inside the roots. 

Complementary studies have since confirmed that endoglucanase isolated from cyst 

nematodes is expressed specifically during the migratory phase, including during the 

redeployment of expression within males, which retain mobility after their third 

juvenile stage [111, 112]. 

The discovery of the nematode endoglucanases by Smant et al. [103] was a 

landmark in understanding the process of host plant invasion by nematodes. 

Previously, plant cell wall-degrading enzymes have only been found in plants 

themselves or in plant-pathogenic bacteria or fungi [113-116], prompting the initial 

assumption that nematode cellulase originates from endosymbiotic bacteria. 

However, several convincing pieces of evidence have confirmed its endogenous 

origin. The leucine-rich hydrophobic core of the identified endoglucanase confirms its 

eukaryotic origin; furthermore, the expression of the gene could only be localized in 

the subventral glands, which do not contain symbiotic bacteria [103].  

Still, nematode cellulases show a close similarity to those of bacteria, provoking the 

question of whether nematodes have acquired their cellulases by horizontal gene 
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transfer from a prokaryote [103, 117, 118]. Horizontal gene transfer is defined as the 

asexual exchange of genetic material between different species [119]. After 

incorporation into the genome, the foreign DNA is expressed as functional proteins. 

Considering the differences in gene structure and organisation between eukaryotes 

and prokaryotes, the limited reports of horizontal gene transfer between bacteria and 

animals are understandable. However, Hotopp et al. [120] later supported the current 

proof of lateral gene transfer from prokaryotes to eukaryotes given by Smant et al. 

[103], by confirming bacterial Wolbachia pipientis genes inside the genomes of 

different insect and nematode species. Within the past decade, several reports of 

horizontal gene transfer between prokaryotes and eukaryotes, respectively, have 

emerged leading to the suggestion that it probably allows specialisation to evolve 

[119, 121-125]. Plant parasitism in nematodes is one case of specialisation that has 

been shown to have arisen at least three times independently during evolution [126, 

127]. 

1.2.2 The role of effector proteins in plant-nematode interaction 

Mechanical and enzymatic dissolution of cell walls during invasion results in 

recognition by plants and activation of plant-defence mechanisms. Secretions 

introduced by the nematode are thus of special relevance. In addition to plant cell-

wall-modifying proteins, enzymes manipulating the plant defence, growth and 

metabolism pathways have been found in nematodes [123, 124, 128-130]. Lambert 

et al. [131] and Jones et al. [132], for example, characterized a chorismate mutase in 

M. javanica and G. pallida, a regulatory enzyme in the shikimate pathway in plants 

and bacteria, which has not been described before in any animal. Chorismate 

mutase has been shown to catalyse the conversion of chorismate to prephenate, 

which is a precursor for a variety of compounds including salicylic acid, a key 

defence signalling molecule. Chorismate itself is a precursor of auxin, an important 

plant hormone essential for cell differentiation [133, 134]. So far, chorismate mutase 

has been found only in plant-parasitic nematodes, suggesting that nematodes do not 

need this enzyme for their own metabolic purposes but use it to function outside the 

nematode body in the host-parasite interaction. These virulence factors are called 

effector proteins [135]. 

Most effector proteins are secreted cysteine-rich proteins that suppress defence 

responses to enable parasitism. In bacteria, fungi and oomyces, the existence of 
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these avirulence genes has been well accepted for decades [136-139] and molecular 

understanding of these host-pathogen interactions has progressed far more than that 

of plant-nematode interactions. Although the infection process of plant-parasitic 

nematodes is only partially understood, the introduction of molecular methods to the 

field of nematology during the past decade has led to many successes in identifying 

and functionally characterizing several nematode effectors [140]. 

The nematode organs most important for producing secretions are three esophageal 

glands, the hypodermis and two amphids [140-142]. Although amphids help the 

nematode to localize the host through chemoreception [143], one dorsal and two 

subventral oesophageal glands are the main sources of most of the secreted effector 

proteins. Interestingly, dorsal and subventral glands show varied activities during 

different stages of the parasitic cycle. While the subventral glands are strongly active 

during nematode penetration and migration in roots, the activity gets higher in the 

dorsal gland during feeding cell formation and maintenance throughout the sedentary 

life stages of the nematode [118].  Another origin of effectors is the hypodermis, 

which synthesizes proteins that are present on the cuticle surface. Those proteins, as 

well as the secretions released by the amphids during recognition processes, are 

directly exposed to the environment and can thus be detected by the host. However, 

the ability to invade the host and induce a feeding structure without being detected or 

impeded by the host is a key moment in the life cycle of the nematode. Invader and 

host thus are continuously under strong selection pressure to maintain their 

respective benefits. 

According to the “Zig-Zag-Model” proposed by Jones and Dangl[137], plant-pathogen 

interaction could be described as a constantly recurring overcoming of immune 

responses through the release and reception of effector proteins on behalf of both 

interacting partners. Molecules on the exterior of the invading pathogen betray their 

presence to plants and initiate a basal or PAMP (Pathogen-associated molecular 

pattern)-triggered immunity (PTI) [137, 144]. PAMPs are mostly associated with 

molecules that are essential for the infectivity, reproduction or survival of different 

pathogens and thus are not easily changed or lost by mutations, being generally 

conserved across taxa [145]. PTI is thereby relatively durable and is often effective 

against a range of distantly related pathogens [146]. However, in case of successful 

infection, effectors produced by biotic pathogens suppress host´s PTI. Host 
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resistance proteins in turn detect these effectors and initiate an effector triggered 

immunity (ETI), often invoking a strong, localised cell death known as the 

hypersensitive response (HR) [147]. 

Within the past two decades several genes coding for putative nematode effector 

proteins have been identified, some of them are common in different nematode 

species, but others differing based on their specialized parasitism [148-150]. For 

example, cyst nematode´s 19C07 effector has no similarity to other nematode 

sequences. 19C07 interacts with an auxin influx transporter (LAX3) to promote 

syncytium development [151].  

Recently, the first effector targeting the plant peroxisome from G. pallida was 

reported. Peroxisome is a major contributor to metabolic processes producing auxin, 

jasmonic acid or hydrogen peroxide, indicating an involvement of effectors in the 

suppression of plant defences [152]. However, only a limited number of putative 

effectors have so far been functionally characterized, presenting a great challenge for 

future research. 

1.3 Cysteine proteases 

Proteases (also called peptidases or proteinases) are enzymes that can cleave 

proteins via the hydrolysis of peptide bonds [153]. So far, only a few of several 

hundred proteases encoded in plants have been characterized. The biological role of 

proteases is mostly unknown, but along with their ubiquitous appearance in plant 

cells these enzymes have been found to be involved in striking variety of biological 

processes, including development and local and systemic defence responses [153, 

154].  Based on their catalytic activity they are divided into five major classes: 

cysteine, serine, metallo, threonine, and aspartic proteases [154, 155]. According to 

the MEROPS protease database, these classes have been subdivided into families 

and clans based on evolutionary relationships (http://merops.sanger.ac.uk) [156]. 

More than 800 proteases are encoded in Arabidopsis, distributed over almost 60 

families and 30 different clans. 

Cysteine proteases are usually 21-30 kDa in size and present in all living organisms. 

The discovery of caspase-1 like proteolytic activity during programmed cell death of 

tobacco due to the infection induced by tobacco mosaic virus [157] led to intensive 

studies to find enzymes with those properties in plants. Although several reports 

http://merops.sanger.ac.uk/
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confirmed caspase-like activities in the meantime in plants during plant defence 

[158], sequencing of the whole genomes of Arabidopsis thaliana L. and rice 

Oryzasativa L. did not reveal any caspase orthologs. Accordingly, the existence of 

plant proteolytic enzymes that possess caspase-like activities without being ortholog 

of caspase was assumed. A vacuolar processing enzyme (VPE) was the first 

identified plant protease with caspase-1 like activity involved in programmed cell 

death [159, 160]. A VPE is a legumain-like cysteine protease categorized by the 

MEROPS peptidase database into the C13 family of clan CD. Collapse of the 

vacuole induced by a VPE is considered to be one of the key factors in programmed 

cell death in plants [159, 161].  

In total, four genes encoding for VPEs were found in the genome of Arabidopsis 

thaliana: αVPE, βVPE, γVPE and δVPE. Expression of αVPE and γVPE was found in 

vegetative organs of the plants, whereas βVPE is expressed in embryos andδVPE is 

expressed during seed coat formation [162, 163].Since then, metacaspases 

belonging to the same CD clan as VPEs have been identified in plants and have 

been shown to play essential roles during the induction of programmed cell death 

induced by different biotic and abiotic factors [164-167].   

1.3.1 Papain-like cysteine proteases (PLCPs) 

Papain-like cysteine proteases (PLCPs), the best-characterized family of cysteine 

proteases (C1 family of CA clan), show phylogenetic similarities to cathepsins from 

animals. Protease families belonging to this `CA-clan´ are structurally related to 

papain, the best characterized family of this class, denoted by a two-domain structure 

with inlying catalytic domain [168]. However, clan CA proteases show significant 

diversity at the protein sequence level. Proteases having significant sequence 

homology to papain have thus been grouped into family C1, which in turn has been 

subdivided into extracytoplasmic (C1A) and cytoplasmic (C1B) PLCPs. PLCPs 

contain an autoinhibitoryprodomain that needs to be proteolytically removed to 

activate the enzyme [169, 170]. Additionally, many PLCPs are secreted or localized 

in the endomembrane system due to an N-terminal signal peptide. PLCPs are 

relatively stable proteins that can resist proteolytically harsh cell environment, such 

as the apoplast, the vacuole and lysosomes [171]. They use a catalytic cysteine 

residue to cleave peptide bonds in their protein substrates and have been found to 

play a role for both parties during plant-parasite interaction [172]. 
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In plants, PLCPs have been shown to interact with specific pathogenic effectors and 

thus play substantial roles in parasitism. Recently it has been discovered, that  one of 

the most conserved effector proteins among all parasitic nematodes, the so-called 

venom-allergen like proteins (VAPs), interacts with host PLCPs during infection [173, 

174]. VAPs belong to the SCP/TAPS protein family within the cysteine-rich secretory 

protein superfamily (CRISP). A highly abundant example of the SCP/TRAPS family is 

the pathogenesis-related protein PR-1, which is frequently used as a marker protein 

for systemic resistance in plants. Although this protein like many other members of 

the SCP/TRAPS protein family appears to play an important role in immunity, the 

detailed mode of action remains largely elusive [175, 176]. Recently, Lozano-Torres 

et al. [174] were able to knock-down VAPs in the potato cyst nematode G. 

rostochiensis, showing significantly reduced infectivity of the nematode on potato 

plants. Furthermore, heterologous expression of Gr-VAP1 in Arabidopsis undermines 

the basal immunity as shown by higher susceptibility of A. thaliana to H. schachtii, 

supporting the assumption that VAPs are indeed required for parasitism. Similar to 

the effector protein Avr2 of Cladosporium fulvum, also Gr-VAP1 of G. rostochiensis 

inactivates, among others, the extracellular PLCP Rcr3pim of Solanum 

pimpinellifolium, which itself is recognized by the extracellular plant immune receptor 

protein Cf-2 [173].  

1.3.2 Cystatins 

The catalytic activity of proteases depends on the highly reactive thiol group of a 

cysteine residue at the catalytic site [177]. To ensure controlled degradation of 

peptides and proteins, regulation of the activity of cysteine proteases is essential for 

each living organism. This can be achieved by the synthesis and degradation of 

proteases at the transcriptional level and also by inhibitors known as cysteine 

protease inhibitors or cystatins that bind specifically and reversibly to the catalytic site 

of target proteases [178-180]. The first identified cystatin is an inhibitor of papain 

found in chicken egg white [181]. Beside animal cystatins (stefins, cystatins and 

kininogens), the superfamily of cystatins also includes plant cystatins, known as 

phytocystatins. The subdivision of the cystatin superfamily is based on its sequence 

homology, structure and molecular mass [177]. During the past two decades 

significant progresses in identifying phytocystatins in several monocots and dicots 
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has shown their potential in defence against pests and pathogens, as well as in 

response to various abiotic stresses [182, 183].  

Phytocystatins include more than 80 members within a family of specific cysteine 

protease inhibitors found only in plants [180, 184]. The first identified and 

characterized phytocystatins were oryzacystatin I [185] and oryzacystatin II [186], 

which have been found to be involved in the regulation of storage proteins during 

development and germination of rice seeds. However, since then, many other 

phytocystatins have been isolated from different plants, such as potato [187], corn 

[188], soybean [189, 190] and wheat [191] and have also been associated with 

diverse physiological processes, including programmed cell death [192], fruit 

development [193], seed germination and development [185, 190, 194] and defence 

against biotic and abiotic stresses [195-199]. Additionally, transgenic plants 

overexpressing the cystatin-form Oc-IΔD86 (oryzacystatin I with a deletion of an 

aspartic acid residue at position 86), targeting intestinal proteases in nematodes, 

have been shown to reduce the growth and fecundity of cyst and root-knot 

nematodes [200, 201].    

Cystatins bind directly to the active-site cleft of the target protease resulting in a tight 

inhibition by the presence of a three-point interaction between the inhibitor and the 

protease [202]. Two contact points are achieved by five-stranded antiparallel β-

sheets forming hairpin loops. The first hairpin loop contains one out of three motifs 

found within all cystatins, including (i) the highly conserved QxVxG motif. The second 

binding loop, less conserved, may contain (ii) a tryptophan near the carboxy-terminal 

[203]. The third motif and contact point is represented by (iii) a conserved glycine 

residue, placed at the extremity of the N-terminal region [202, 203].  

1.4 Objectives 

Infection by Phytophthora infestans (which causes late blight) results in a different 

expression level of cysteine proteases in susceptible and resistant potato varieties, 

respectively [204], suggesting that the activity of these proteases modulates 

resistance. This has led to the assumption by Tian et al. [205], that P. infestans has 

evolved counter-defence protease inhibitors to target cysteine proteases. Doing motif 

searches they were able to isolate a novel family of putative protease inhibitors 

having cystatin-like domains (EPIC1 to EPIC4; "extracellular protease inhibitor with 
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cystatin-like domain") and in doing so confirmed the inhibition of a novel papain-like 

cysteine protease, termed PhytophthoraInhibited Protease 1 (PIP1).  

The discovery of this effector protein of P. infestans laid one of the foundations for 

present work, as we found similar cystatin motifs in a genomic sequence of H. 

schachtii. This work aims to show that nematodes modulate plant defence at a 

posttranslational level using effector proteins, supporting the statement that plants 

and plant pathogens have coevolved diverse defence strategies for survival.  

Accordingly, we showed in chapter 3 that the activity of different cysteine proteases 

Arabidopsis roots is downregulated upon infection by H. schachtii. In chapter 4 we 

characterized a novel effector protein from H. schachtii (HsCysL1) having cystatin-

like motifs, and further identify corresponding interacting proteins in plant.  
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a b s t r a c t

Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge
economic impact in agriculture. Successful parasitism involves morphological and physiological modi-
fications of the host cells which lead to the formation of specialised syncytial feeding structures in roots.
The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host
plant activities in a complex network of interactions through post-translational modifications. Tradi-
tional transcriptomic and proteomic approaches cannot display this functional proteomic information.
Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the
activity of the proteome through activity-based probes. To better understand the functional proteomics
of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in
Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regu-
lated in the syncytium compared to the control roots. Among those specifically activated in the syncy-
tium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two
unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically
suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out
mutants were used to further characterise the roles of the differentially regulated enzymes during plant
enematode interaction. In conclusion, our study will open the door to generate a comprehensive and
integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for
pathogens.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Biotrophic plant parasites have developed lifestyles that allow
them to penetrate and establish specific structures for nutrient
uptake within the host while avoiding the activation of defence
responses. The sugar beet cyst nematode Heterodera schachtii
Schmidt is a biotrophic endoparasite with a highly specialised
biology. This parasite induces modifications in the root system that
impede the nutrient and water supply of the host plant, leading to

substantial yield losses (Sasser and Freckman, 1986). Due to their
wide range of hosts, these nematodes are able to infect different
crops within the families Chenopodiaceae and Brassicaceae,
including the plant Arabidopsis thaliana, which has been estab-
lished as a model organism for analysing the molecular aspects of
the plantenematode interaction (Sijmons et al., 1991).

The infective stage juveniles (J2) of H. schachtii hatch from eggs
that are stored in the cyst, the modified dead body of the females.
The J2 worms invade the host roots near the tip and move intra-
cellularly towards the central cylinder. During penetration, the
nematodes pierce single cells with their stylets, resulting in the
spontaneous collapse of the cytoplasm of these cells; therefore, the
paths of the invading J2 are delineated by necrotic cells. Having
reached the vascular cylinder, they probe the individual cells by
gentle stylet stabbing. In cases of cell collapse, they continue
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moving until they succeed in inducing an initial syncytial cell (ISC)
(Sobczak et al., 1997; Wyss and Grundler, 1992). Within 24 h after
selection, the ISC fuses with adjacent cells by local dissolution of
cell walls, and the formed syncytium hypertrophies. Two days after
selection of the ISC, the cells incorporated into the syncytium are
enlarged and exhibit features of a typical syncytium. The cytoplasm
is condensed and enrichedwith ribosomes, endoplasmic reticulum,
mitochondria and plastids. Additionally, the nuclei are enlarged,
cytoskeleton is rearranged, and the central vacuole is replaced by
several smaller vacuoles in the syncytium (Golinowski et al., 1996;
Kyndt et al., 2013). Solutes are withdrawn by the nematode
throughout its parasitic life stages, and the syncytium induces a
strong sink for assimilates in the plant. The development of the
syncytium is accompanied by massive transcriptomic and meta-
bolic changes in the infected tissue, and these changes have been
studied in detail in our previous works (Hofmann et al., 2010;
Siddique et al., 2009; Szakasits et al., 2009; Wieczorek et al.,
2006). During the following two weeks, the nematodes continue
to draw nutrients from the roots and develop into males and fe-
males after moulting three times (J3, J4 and adult). A female-
associated syncytium is composed of approximately two hundred
cells and reaches its maximum size approximately 10 days after
infection. Syncytia of females remain functional for several weeks
until egg production is completed, the females die afterwards and
transform into typical brown cysts, which contain several hundred
eggs. Syncytia of males are much smaller and short living (Sobczak
et al., 1997). After the third developmental stage male juveniles
stop feeding, their syncytia degenerate, and the animals become
vermiform. Adult males hatch from the juvenile cuticle andmigrate
in search of adult females for copulation.

The whole process of penetration, migration and feeding site
establishment is aided by secretions, which act on the host plant as
effectors (reviewed by Mitchum et al., 2013). The identification of
these effectors has been significantly facilitated by the develop-
ment of new sequencing technologies in recent years. However, it
remains largely unknown how these nematode effectors induce
and orchestrate the massive physiological and structural changes in
the plants. Proteomic studies concerning the host side of the
plantenematode interaction are rare. In 1995, the protein compo-
sition of the feeding sites of H. schachtii in A. thaliana was studied
(Schmidt, 1995). There was a significant increase in the abundance
of the protein encoded by the myrosinase gene PYK10 around the
syncytia compared to the non-infected roots. Similarly, a root
proteomic study was performed by analysing nematode resistant
and susceptible cotton (Gossypium hirsutum L.) cultivars infected
with the root-knot nematodeMeloidogyne incognita (Callahan et al.,
1997). Several polypeptides were found to be regulated differen-
tially as a result of the infection; for example, a novel 14 kDa
polypeptide was expressed at higher levels in young galls of the
resistant isoline at 8 dpi. In a similar study, the roots of nematode-
resistant genotypes of cotton (Gossypium hirsutum L.) and coffee
(Coffea canephora) infected with M. incognita and Meloidogyne
paranaensis were compared to their corresponding non-infected
roots using two-dimensional gel electrophoresis, and this analysis
led to the identification of several differentially regulated proteins
(Franco et al., 2010).

Conventional transcriptomic and proteomic analyses do not
cover the complete cellular regulatory mechanism, which also in-
cludes posttranslational modifications. The activities and functions
of proteins are not only determined by phosphorylation, but also by
other post-translational modification, such as glycosylation, acet-
ylation, carbonylation, and certainly in the case of disease these
modifications are known to play an important role (Huber and
Hardin, 2004; Pastore and Piemonte, 2013). Therefore, the
amount of cellular mRNA does not necessarily result in a higher

level of corresponding functional protein. A recently developed
method, which has turned out to be highly useful for the identifi-
cation and annotation of enzyme activities, is “Activity-Based Pro-
tein Profiling” (ABPP). Pioneered by Cravatt, Bogyo and co-workers
(Cravatt et al., 2008; Kato et al., 2005; Verhelst and Bogyo, 2005), it
has evolved into an effective tool for the identification and func-
tional characterisation of proteins in extracts and living cells
(Edgington et al., 2009; Gu et al., 2010; Hang et al., 2006; Nodwell
and Sieber, 2012; Uttamchandani et al., 2008; van der Hoorn et al.,
2004; van der Hoorn and Kaiser, 2012; Weerapana et al., 2010,
2011). ABPP is based on the design of biotinylated or fluorescent
active-site-directed small molecules (probes) that irreversibly bind
to the active side residues of enzymes in complex proteomes; thus,
this method gathers information on the functional state of the
enzymes rather than on their abundance. Most activity-based
probes (ABPs) target a large, but manageable, fraction of the pro-
teome with shared catalytic features by achieving a desired level of
intraclass coverage and minimal extra-class cross-reactivity
(Cravatt et al., 2008). The labelling is covalent and irreversible,
facilitating the imaging of the labelled enzymes on protein gels by
fluorescent scanning and the identification of labelled proteins by
affinity capture and mass spectrometry (MS) (Gu et al., 2010;
Nodwell and Sieber, 2012; van der Hoorn et al., 2004; Kolodziejek
and van der Hoorn, 2010). Van der Hoorn et al. (van der Hoorn
et al., 2004) introduced DCG-04 to plant science, which is an
activity-based probe for papain-like cysteine proteases, and this
probe illustrated the potential of ABPP as it has been used to reveal
senescence-induced protease activities (Martinez et al., 2007),
defence-related protease activation (Gilroy et al., 2007) and various
pathogen-derived inhibitors that target tomato proteases (Rooney
et al., 2005; Song et al., 2009; Tian et al., 2007; van Esse et al., 2008).

In this study, we used two different probes to determine the
differential activities of vacuolar processing enzymes (VPEs) and
serine hydrolases (SHs) in root tissues upon infection with
H. schachtii. These enzyme families (VPEs and SHs) were chosen for
analyses because of their previously described role in
plantepathogen interactions and availability of reliable probes to
perform ABPP (Rojo et al., 2004; Misas-Villamil, 2010; Liu et al.,
1999). Furthermore, gene expression analysis was performed for
the differentially activated enzymes to generate an integrated view
of pre- and posttranslational regulation events in the syncytia. T-
DNA loss-of-function mutants were used to study the importance
of these differentially regulated enzymes during nematode and
syncytium development. In this way, wewere able to show that the
activity of the various enzymes was differentially regulated in
female-associated syncytia compared to the control roots.
Furthermore, our results revealed that the functional activity of
these enzymes did not necessarily correlate with their gene
expression.

2. Material and methods

2.1. Plant and nematode culture

Seeds of A. thaliana ecotype Columbiawere surface-sterilised for
5 min in 0.6% sodium hypochlorite, then incubated for 3 min in 70%
ethanol and subsequently rinsed four times with sterile water.
Knop medium was prepared as previously described (Siddique
et al., 2009). Five seeds for each treatment were transferred onto
an agar layer in 9 cm Petri dishes and grown at 25 �C with a
photoperiod of 16 h at 700 mE m2 s�1 for 12 days. The quadruple
mutant genotype qvpe (Gruis et al., 2002) that lacks all known VPEs
in A. thaliana (At2g25940, At1g62710, At4g32940 and At3g20210)
has been previously described.

H. schachtii was cultivated in vitro on mustard (Sinapsis alba cv.
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Albatros) roots growing in Knop medium supplemented with 2%
sucrose (Sijmons et al., 1991). Second-stage juveniles (J2) of
H. schachtii were hatched in a funnel containing 3 mM zinc chlo-
ride. After surface sterilisation with 0.05% HgCl2 and four washes
with sterile water, they were transferred in a water suspension to
the roots of the grown Arabidopsis plants. For optimal development
of the nematodes and a sufficient infection rate, each plant was
inoculated with 60e70 nematodes and was stored under the same
light conditions for more than 10 days. Sex and stage of the
developing nematodes was determined under a dissecting micro-
scope on a ground glass screen. Females usually were in the third
developmental stage when syncytia were sampled at 10 dpi.

Afterwards, the female-associated syncytia were cut under a
microscope considering that the females were carefully removed
from syncytia and were immediately frozen in liquid nitrogen.
Corresponding root sections of the non-infected Arabidopsis plants
served as a reference (Fig. 1). All experiments were replicated three
times.

2.2. Activity-based protein profiling

Proteins from the root samples were extracted by grinding the
roots in an Eppendorf tube and were quantitatively analysed by
photometric measurement using the RC DC™ Protein Assay
(Pharmacia LKB Ultraspec III Spetrophotometer) at 750 nm to
ensure equal amounts of proteins in each sample during subse-
quent steps.

The probes used for ABPP were provided by the van der Hoorn
lab at the Max-Planck-Institute for Plant Breeding Research (Co-
logne). Labelling was usually performed by incubating the extrac-
ted proteins in 50 ml containing 125 mM 2-amino-2-
(hydroxymethyl)-1,3-propanediol (TRIS) buffer (pH 7.5), 2 mM
dithiothreitol (DTT) and 2 mM of a rhodamine-tagged fluo-
rophosphonate probe (RhFP) for 1e2 h at room temperature in the
dark. The samples labelled with 2 mM AMS101 were incubated in
125mM sodium acetate (NaAc, pH 5.5) buffer containing 2mMDTT
and were labelled for 3 h under the same conditions as the RhFP
probes. In the case of competition labelling, the samples were pre-
incubated with the corresponding inhibitors at 50 mM for 30 min
prior to labelling with the probe. Phenylmethanesulfonylfluoride
(PMSF) prevents the subsequent labelling of RhFP, and TYR-VAL-
ALA-ASP-chloromethylketone (YVAD-cmk) competes for the same

targets as AMS101. The same volume of dimethyl sulfoxide (DMSO)
was used as a non-probe control.

After incubation, the labelled proteins were separated on 12%
sodium dodecyl sulfate (SDS) gels and visualised by in-gel fluo-
rescence scanning using a Typhoon FLA 9000 scanner. Fluorescence
intensity was measured using the ImageQuant TL software (GE
Healthcare Life Sciences, http://www.gelifesciences.com).

2.3. Quantitative real-time PCR

RNA was extracted from the syncytial and control root material
using a Nucleospin RNA Xs (MachereyeNagel, Germany) kit ac-
cording to themanufacturer's instructions and was transcribed into
cDNA using random primers and a High Capacity cDNA Reverse
Transcription Kit (Life-technologies catalogue number, 4368814).
18S rRNA (3 biological replicates) and Actin (1 biological replicate)
were used as an internal reference, as previously described
(Hofmann et al., 2010). The samples were analysed using quanti-
tative real-time PCR in 20 ml reactions containing 10 ml of Fast SYBR
GreenMaster Mix (Applied BioSystems), 2 mMMgCl2, 0.5 ml each of
forward and reverse primers (10 mM), 2 ml of complementary DNA
(cDNA), and water in 20 ml total reaction volume. For the internal
reference, the cDNA was diluted 1:100. qRT-PCR was carried out at
95 �C for 20 s, followed by 40 cycles each with 95 �C for 3 s and
60 �C for 30 s. Themelting curve analysis was conducted at 95 �C for
15 s, 60 �C for 1minwith increments of 0.3 �C every 15 s up to 95 �C.
The expression of 18S and Actin was used to analyse the changes in
transcript levels using the formula (1 þ E)�DDCt (Livak and
Schmittgen, 2001).

2.4. Nematode infection assay

Plants were grown and inoculated as described above. The
number of nematodes was counted at 14 dpi. The sizes of the fe-
males and their associated syncytium were measured using the
Leica Application Suite (4.3.0) software (LAS: Leica Microsystems,
http://www.leica-microsystems.com). All experiments were
repeated three times.

3. Results

We used ABPP to analyse the changes in the active proteome of

Fig. 1. Scheme of root sampling for ABPP analysis. (a) Syncytium samples were cut from the infected roots after carefully removing the nematodes. (b) Root sections from the
uninfected roots were used as control.
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roots after infection with H. schachtii. Root sections containing fe-
male- associated syncytiumwere collected at 10 days post infection
(dpi), as described in the methods section. Corresponding root
sections from uninfected plants were used as controls (Fig. 1). For
conduction of ABPP labelling a total of 100 mg of protein was
required.

3.1. Vacuolar processing enzymes (VPEs)

Vacuolar processing enzymes (VPEs) are cysteine proteases that
are classified in the legumain family C13 (clan CD). In Arabidopsis, a
total of four VPE-encoding genes (aVPE, bVPE, gVPE and dVPE) are
known and are subdivided into seed-type and vegetative-type VPEs
(Nakaune et al., 2005; Yamada et al., 2005). Seed-type bVPE is
responsible for the maturation of the seed storage proteins and the
activation of antimicrobial peptides, whereas the vegetative-type

aVPE and gVPE play pivotal roles during stress and senescence
conditions (Hara-Nishimura et al., 1998, 2005). dVPE is specifically
expressed in the seed coat and regulates cell death (Nakaune et al.,
2005).

The fluorescent activity-based probe AMS101 is potent and
highly specific for all four VPEs (Misas-Villamil et al., 2013). This
probe contains an aza-epoxide reactive group and a Bodipy fluo-
rescent tag. Labelling with AMS101 resulted in a strong signal at
43 kDa and two weak signals at 40 kDa and 38 kDa in control roots
(Fig. 2a). Compared to the control, the intensity of the signal at
43 kDa was weaker in the female-associated syncytia, while the
other two signals remained unchanged. Surprisingly, an additional
weak fluorescent band at 37 kDawas present only in the syncytium
samples (Fig. 2a). We further validated these observations by
quantifying the fluorescence intensity from the protein gels
(Fig. 2b).

Fig. 2. AMS101 labelling of the syncytium, root and leaf. (a) Comparative labelling of VPEs in leaf, syncytium and non-infected root material with AMS101. Experiment was repeated
in three biological replicates (exp1, exp2 and exp3) and blue colour gel shows staining of total protein with coomassie blue. NPC, non-probe control. (b) Fluorescence intensity of the
gel signals from Fig. 2a. Asteriks indicate significant difference to control (t-test; p < 0.05). (c) Competition labelling of VPEs with inhibitor YVAD-cmk. (d) Nematode infection assay
using the quadruple knockout mutant (qvpe), which shows the number and sizes of the nematodes and associated syncytia. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Caspase-1 or VPE-specific inhibitors bind to both intermediate
and mature forms of VPE (Hara-Nishimura et al., 2005; Hatsugai
et al., 2004). Therefore, we performed a competition labelling
with the covalent, irreversible chlorometylketone-based caspase-1,
4 and 5 inhibitor YVAD-cmk (Fig. 2c). The assay confirmed the
specificity and performance of the AMS101 labelling as pre-
incubation with the inhibitor prevented labelling with the probe.

Next, we investigated the changes at the transcript level for the
genes encoding all four VPEs in Arabidopsis after nematode infec-
tion. A recent transcriptome analysis by Szakasits et al. (Szakasits
et al., 2009) showed that aVPE and gVPE transcripts were signifi-
cantly reduced in the syncytia compared to the non-infected roots,
whereas bVPE transcripts were significantly upregulated. To
confirm the reliability of the microarray analysis, we performed
quantitative real-time-PCR (qPCR) with root sections that were cut
from infected roots at 10 dpi. The results obtained from the qPCR
analysis are in line with the gene chip analysis (Table 1).

We further characterised the role of VPEs in nematode and
syncytium development by performing infection assays with
H. schachtii using a quadruple knock-out mutant of VPE (qvpe)
(Gruis et al., 2002). The numbers of females and males were
counted at 14 dpi. Furthermore, the average sizes of the females
and corresponding syncytia were measured. We expected that the
roots of the A. thaliana knock-out mutants would exhibit a higher
infection rate compared to thewild-type plants. However, knocking
out the VPE-encoding genes did not result in significant changes in
the infection rate or nematode development (Fig. 2d).

3.2. Serine hydrolases (SHs)

Serine hydrolases comprise a large collection of enzymes from
different structural classes and are known to be involved in
numerous physiological and pathological processes (Nodwell and
Sieber, 2012; van der Hoorn and Kaiser, 2012; Liu et al., 1999). To
study the role of serine hydrolases in the plantenematode inter-
action, we labelled total protein extracted from infected and un-
infected roots at 10 dpi using a fluorophosphonate (FP)-based
probe with a rhodamine (Rh) reporter tag (RhFP, (Liu et al., 1999)).
This probe was previously used to identify the activities of over 50
serine hydrolases in Arabidopsis leaf extracts (Kaschani et al.,
2009). After labelling and separating on a protein gel, nine fluo-
rescent signals were detected by scanning (Fig. 3a). Four fluores-
cent signals (s4, s6, s8 and s9) exhibited an increased protein activity
in the syncytia compared to the non-infected roots. Of these sig-
nals, s4 and s8 had not been previously described. However, s6 is a
putative S-formylglutathione hydrolase (SFGH), and s9 is a putative
methylesterase (Kaschani et al., 2009). Similarly, there were five
signals that remained unaffected (s1, s2, s3, s5 and s7) in the syn-
cytium. Of these five signals, s1, s2, s3 and s5 were previously
identified as tripeptidyl peptidase-II (TPP2), prolyl oligopeptidases-
like proteins (POPL), serine carboxypeptidase-like proteins (SCPL)
and carboxylesterase-like proteins (CXE), respectively. The identity
of s7 is currently unknown. The measurements of the fluorescence
intensity confirmed our observations. In particular, the methyl-
esterase (s9) showed a significant increase in activity (Fig. 3b).

Preincubation with Ser protease inhibitor PMSF suppresses RhFP
labelling of some of these proteins (Fig. 3c). This selective sup-
pression is consistent with the selectivity of PMSF and consistent
with previous findings (Kaschani et al., 2012).

To generate an integrated view of the SH activities in the syn-
cytium, we looked at the transcriptome data (Szakasits et al., 2009)
for the genes encoding the SHs detected in this experiment. Of the
signals that showed increased activity, SFGH (s6) is encoded by a
single gene in Arabidopsis (At2g41530), and this enzyme catalyses
the last step in the detoxification of formaldehyde by hydrolysing S-
formylglutathione to formic acid and glutathione (Kordic et al.,
2002). Transcriptome data revealed that there was also an upre-
gulation in the expression of SFGH mRNA in the syncytium
compared to the control roots (Supplementary Table ST1). Similarly,
Kaschani et al. (Kaschani et al., 2009) identified methylesterase (s9)
as a product of the MES2 (At2g23600) and MES3 (At2g23610)
genes. MES hydrolyses methylated phytohormones, such as indo-
leacetic acid, salicylic acid and jasmonic acid. Transcriptome anal-
ysis data revealed that, while MES3 is upregulated in the syncytium
compared to the control roots, probe sets for MES2 were not spe-
cific; therefore, these data were not included in the analysis
(Szakasits et al., 2009). In contrast, no significant differences were
observed in transcript activity between the syncytia and control
roots for TPP2 (At4g20850). For POPL (s2), SCPL (s3) and CXE (s5),
different isoforms have been simultaneously detected in previous
studies (Kaschani et al., 2009), which makes it difficult to identify
the gene/s encoding the detected SHs. Nonetheless, a look at the
expression of all the genes encoding the previously detected SCPL,
CXE, and POPL (Kaschani et al., 2009) did not reveal significant
changes at the transcript level (Supplementary Table ST1).

Further characterisation of the detected SHs using knockout
mutants was not performed in this study due to a lack of prior
identification, the unavailability of homozygous T-DNA mutants,
and the functional redundancy among the multigene SH families.

4. Discussion

The cyst nematode H. schachtii induces metabolically active
syncytial feeding sites in roots. These syncytia are the sole source of
nutrients for the nematodes throughout their lives. In this paper,
we studied the functional proteomics of the syncytium induced by
H. schachtii in Arabidopsis roots using Activity-based Protein
Profiling (ABPP).

4.1. Activities of vacuolar processing enzymes are reduced in the
syncytium

Vacuolar processing enzymes (VPEs) are cysteine proteases that
were originally found to be the processing enzymes responsible for
the maturation of seed storage proteins (Hara-Nishimura et al.,
1991). In Arabidopsis, four VPEs have been identified, and these
VPEs have been subdivided into seed-type (bVPE, At1g62710) and
vegetative-type VPEs (aVPE, At2g25940 and gVPE, At4g32940).
dVPE (At3g20210) was found in Arabidopsis (36) and belongs to
neither of these two groups. It is considered an uncharacterised-

Table 1
Gene expression of the VPEs in 5- and 15-dpi syncytia analysed by Szakasits et al. (2009) and confirmed by qRT-PCR. Statistically significant fold changes in syncytia compared
to non-infected control roots are indicated by stars (Fisher's t-test and Bonferroni correction, q < 5%). ∞ indicate that signal was below level of detection.

Affimetrix chip (Szakasits et al., 2009) qRT-PCR

Name Locus Gene symbol M value (log2) Fold change ddCt value Fold change

a At2g25940 VPE �2.4 �5.28* �1.95 �3.86
b At1g62710 VPE 2 4.00* 1.0 2.0
g At4g32940 VPE �1.3 �2.46* ∞ ∞
d At3g20210 VPE 0.1 0.93 �0.77 �1.7
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type VPE. Vegetative-type VPEs have been shown to be upregulated
in vegetative organs under stress conditions and during senescence
(Hara-Nishimura et al., 1998). The plant Hypersensitive response is
an efficient defence tool that leads to well-organised programmed
cell death (PCD). In animals, PCD is mediated by caspases, which are
cysteine proteases. VPE was the first described proteinase in plants
to exhibit caspase-like activity and has been shown to be involved
in vacuole-mediated hypersensitive cell death in TMV-infected
tobacco leaves (Nicotiana benthamiana) (Rojo et al., 2004;
Hatsugai et al., 2004). Similarly, it was recently shown that
colonisation-associated cell death in Arabidopsis roots caused by
the mutualistic fungus Piriformospora indica is mediated by VPEs
(Qiang et al., 2012).

Because plant-parasitic nematodes rely on living plant tissues

for parasitism, they need to avoid the activation of the plant cell
death machinery. Indeed, after labelling with AMS101, we observed
a significant decrease in the activity of the VPEs in the syncytia
compared to the control roots (Fig. 2a and b). These results sug-
gested that nematodemight be able to overcome the VPE-mediated
defence responses by injecting inhibitor proteins into the host cells.
Interestingly, knocking out the VPEs did not affect the susceptibility
of the plants to nematodes (Fig. 2d). At least two hypotheses could
account for this result. First was already made in previous study
(Gruis et al., 2002). Gruis et al. (Gruis et al., 2002) did not observe
any phenotype or accumulation of seed proteins after knocking out
b- and d-VPE probably due to functionally redundant proteolytic
enzymes other than VPE homologs. Although disputed in the
literature, support for these proteolytic enzymes has been shown in

Fig. 3. RhFP labelling of the syncytium, root and leaf. (a) Comparative labelling of the SHs in leaf, syncytium and non-infected root material with RhFP. Experiment was repeated in
three biological replicates (exp1, exp2 and exp3) and blue colour gel shows staining of total protein with coomassie blue. (b) Fluorescence intensity of the gel signals from 3a.
Asteriks indicate significant difference to control (t-test; p < 0.05). (c) Competition labelling with the inhibitor PMSF. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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soybean. Scott et al. isolated a protein from seeds capable of pro-
cessing legumin, whose molecular mass was distinctly different
than VPE (Scott et al., 1992). Second hypothesis might suggest that
the special and temporal suppression of VPEs by the nematodes is
essential and therefore close to complete, so that any further
decrease in activity does not result in any change in plant suscep-
tibility. For future work, however, it would be interesting to study
the effect of overexpression lines on the plantenematode
interaction.

4.2. Selective activation of serine hydrolases in the syncytium

The serine hydrolase (SH) family is one of the largest and most
diverse classes of enzymes found in nature, and these proteins are
involved in a wide range of physiological processes, including
metabolism, development, and immunity (Nodwell and Sieber,
2012; Liu et al., 1999; Kaschani et al., 2012). All SHs feature an
active site that contains an activated serine residue, which per-
forms nucleophilic attack on the substrate, resulting in a covalent
intermediate. The Arabidopsis genome encodes hundreds of SHs
that belong to a dozen of large multigene families, such as pro-
teases, lipases, transferases and esterases (Kaul et al., 2000). We
applied the fluorophosphonate probe (RhFP) to the syncytium
protein extracts to profile the activities of the SHs. After labelling,
we observed significant changes in the activities of four different
SHs: SFGH (s6), MES (s9), and two unidentified proteins (s4 and s8)
(Fig. 3a and c). Kaschani et al. (Kaschani et al., 2009) observed the
increased activity of SFGH in Arabidopsis leaves after infectionwith
the fungal pathogen Botrytis cinerea in pad3 mutants compared to
Col-0. pad3 plants are deficient in camalexin production and exhibit
enhanced susceptibility to B. cinerea. The increased activity of SFGH
in the syncytium, as well as in the leaves of infected pad3 mutants,
suggests that SFGH might play an important but as yet unknown
role in plantepathogen interactions. Similarly, the activity of a
methylesterase (s9) was increased in the female-associated syncy-
tium compared to the control roots. MES hydrolyses methylated
phytohormones, such as indoleacetic acid, salicylic acid and jas-
monic acid; therefore, it is possible that increased activity is
important for the maintenance of syncytial functions. Unfortu-
nately, loss of function homozygous mutants for SFGH and MES3
were not available and, therefore, could not be used in this study.

ABPP with FP-probes identified the differential activities of SHs
in the root and syncytium proteomes. These enzymes represent
diverse families of enzymes, as previously shown (Kaschani et al.,
2009). However, not all SHs were detected in our analysis. This
could be due to several reasons. First, many Arabidopsis genes are
not expressed in the tissues and conditions tested. Second, the
abundance of some enzymes may be under the detection limit and
third, some enzymes might not be active under the tested condi-
tions. For example, it has been shown that RhFP labelling is strongly
influenced by pH (Kaschani et al., 2009). Finally, RhFPmay not react
with every serine hydrolase. Nevertheless, the differential activities
of the detected enzymes suggest changes in a variety of biochem-
ical pathways in the syncytium. Unfortunately, the biological
functions and significance of a majority of the enzymes are un-
known. Accordingly, annotation of their biological and biochemical
functions would require functional characterisation using reverse
genetic approaches. This may not be an easy task, considering that
the majority of SHs belong to large gene families that may have
redundant members.

5. Conclusions

Sedentary parasitic nematodes manipulate plant functions to
induce and maintain a highly active nurse cell system in the roots.

This manipulation leads to changes in the abundance as well as
activity of several proteins, such as serine hydrolases and vacuolar
processing enzymes in the nematode feeding site that may not be
detected by traditional transcriptomic or proteomic approaches. In
this study, we have shown the proof-of-concept for the utility of
ABPP-method to display the differential activities of various en-
zymes upon nematode infection. Our results hinted towards the
existence of nematode effectors that may inhibit or activate
enzyme function at post-translational level. Futureworkwill aim to
characterize the identity and functions of the differentially acti-
vated host as well as nematode proteins, which may provide new
exciting insights into the plantenematode interactions. Consid-
ering that there is not much known about functions of nematode
effector proteins in host, application of ABPP in futurewill provide a
powerful tool to characterize functions of such effectors within the
host. This in turn will help generating an integrate picture of
changes during plantenematode interaction at pre- and post-
translational level. To start with, more probes should be used to
study interactions involving different hosts and nematodes species
at various time-points of infection process. For example, it will be
interesting to investigate and compare functional proteomics using
ABPP during a compatible and incompatible plant-interaction.
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3.1. Abstract 

Cyst nematodes are obligate biotrophs that cause substantial yield losses in agriculture. 

Having a complex biology, they spend the major time of their life cycle inside the host 

root where they establish a hypertrophic and hypermetabolic syncytial nurse cell system. 

To establish syncytium inside the root, they need to circumvent plant´s defence 

mechanisms. Papain-like cysteine proteases (PLCPs) and the proteasome are known to 

play important roles in plant defence and would need to be suppressed in case of 

successful parasitism. Using Activity-based protein profiling (ABPP), we were able to 

show in this study that the beet cyst nematode Heterodera schachtii is able to suppress 

the activity of PLCPs and proteasomal subunits at posttranslational level thus facilitating 

infection. We further show a differential regulation of the proteasomal activity between 

female- or male nematode-associated syncytium, whereas the activity of PLCPs is 

reduced in both samples.  

3.2. Introduction 

Plant-parasitic nematodes raise high economic importance in global agriculture and 

therefore gained increasing attention over the past decades. Among plant-parasitic 

nematodes, root-knot (Meloidogyne spp.) and cyst nematodes (Heterodera spp. and 

Globodera spp.) are economically most devastating species. The beet cyst nematode 

(BCN) Heterodera schachtii is a sedentary, biotrophic endoparasite with a wide host 

range within the Amaranthaceae and Brassicaceae, including Arabidopsis thaliana [1]. 

As an obligate parasite, H. schachtii possesses a complex biology allowing the 

nematode to remain the majority of its life cycle inside the root. The life cycle starts, 

when upon arrival of favourable conditions, the pre-infective juveniles of nematodes 

(J2s) hatch from the cyst, and invade the host root. They migrate intracellularly towards 

the vascular cylinder piercing host cells with their characteristic needle-like stylet until 

they find a suitable host cell inside the vascular cylinder to establish an initial syncytial 

cell (ISC) [2]. This ISC constitutes the origin of the nurse cell system of nematodes, the 

syncytium [3]. During nematode development, syncytium undergoes diverse 

ultrastructural, transcriptomic and metabolic changes, which have previously 
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documented [4-7]. The syncytium expands primarily through local dissolution of adjacent 

cell walls [8].  

There are only few studies done to investigate the changes in protein level in host plants 

after nematode infection [9, 10]. Infection of potato roots by cyst nematode Globodera 

rostochiensis carrying H1 resistance genes did not cause any change in protein level 

during nematode development as analysed by two-dimensional gel analysis [11]. Root 

proteomic studies were carried out in nematode-resistant coffee and cotton cultivars 

after infection with root-knot nematode, Meloidygyne incognita and M. paranaensis, 

which led to identification of some pathogen responsive proteins [12]. An analysis of 

syncytium developing on the oil radish roots revealed a change in pattern of free amino 

acid during the development of H. schachtii [13]. A biochemical analysis of syncytia was 

performed by Grundler et al. (1991) and Betka et al. (1991) revealing a strong increase 

in the protein content and profound changes in composition of free amino acids [4, 14]. 

A comparative protein analysis of Arabidopsis roots and syncytia led to the identification 

of the myrosinase gene pyk10, which was shown to be increasingly produced around 

syncytia [15]. Later the root specific promoter of this gene was cloned [9]. Strategies 

aiming at measuring plant responses to nematode infection at the proteomic level are 

still at their infancy. However, technical advancement in high-throughput protein 

separation and analytical mass spectrometry has facilitated the performance of 

proteomic analyses and should therefore be promoted also in the context of plant-

nematode interactions. 

It is generally believed that nematodes secrete a cocktail of proteinaceous and non-

proteinaceous effectors to manipulate the host plant activities through various post-

translational modifications e.g. inhibition and activation. The current knowledge on plant-

nematode interaction in general and development of syncytium in particular is mainly 

based on transcriptomic and genomic analysis of host plants. There are also few 

proteomic studies done as mentioned above. These approaches detect the changes in 

abundance of transcripts or proteins but not the protein activity. However, the function of 

a protein is dependent on its activity, which is regulated by pH, co-factors, and 

temperature etc. Therefore, an approach that takes into account the post-translational 

modifications at proteomic level is much desired.  
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Activity-based protein profiling (ABPP) is a method to investigate the enzyme activity in 

an extract or in living tissues [16]. ABPP is based on small molecular probes 

(biotinylated or fluorescent) that react with the active site of subsets of enzymes in 

complex proteomes in an activity-dependent manner [16]. The size of the enzyme class 

can range from a few to several hundred individual proteins. The labelling of probes is 

irreversible and covalent, which facilitates the detection of labelled proteins in a protein 

gel or by mass spectrometry. Since these probes react in a strictly activity-depended 

manner, all those proteins, which are inhibited, lack cofactors or are inactive for other 

reasons, are not labelled during ABPP. Therefore, labelling reflects the information on 

activity of proteins rather than their abundance.  

Application of ABPP is relatively new in plant science. Several proof-of-concept studies 

have been carried out with a number of probes, which illustrate the utility of ABPP to 

study plant enzymes [17-20]. ABPP in context of plant-pathogen interaction can reveal 

functional information at proteomic level, which is of vital importance to understand a 

particular interaction. For instance, ABPP of botrytis-infected Arabidopsis leaf extracts 

with fluorophosphonate (FP) identified several serine hydrolases, which contribute to 

pathogenicity [21]. Similarly, we recently showed a reduced activity of serine hydrolases 

and vacuolar processing enzymes (VPEs) in syncytia showing a suppression of plant 

defences during nematode infection [22]. ABPP with the probe DCG-04 led to the 

identification of several papain-like cysteine proteases (PLCPs) that have been shown to 

play crucial roles in plant-pathogen interaction in Arabidopsis, tomato, tobacco and 

wheat [23-26].  

PLCPs are produced as pro-proteases containing an auto activation domain, which is 

removed to release a 20-30 kDa mature protease peptide.  PLCPs act on non-self 

substrates and both host and their pathogens employ PLCPs on the molecular battlefield 

[27]. As described above, the role of PLCPs in plant defence against pathogen attack 

has been studied in detail in Arabidopsis, tomato, tobacco and wheat [23-26]. On the 

other hand, it has been shown that bacterial PLCPs manipulate host defence responses 

in the plant cytoplasm to cause infection [28-30]. Arabidopsis contains 30 genes 

encoding PLCPs and role of only few have been studied in detail. In context of plant 

nematode interaction, it has been shown that PLCPs are present in digestive system of 
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plant parasitic nematode [31-33]. Feeding of nematodes on roots of transgenic 

Arabidopsis plants overexpressing the PLCPs inhibitor “oryzacystatin’’ reduced the 

number and size of nematodes [31, 32]. However, role of plant PLCPs in plant-

nematode interaction remains obscure till to date. 

Being the main protein degradation machinery in plants, the 26S proteasome plays a 

very important role in plant-pathogen interactions. The 26S proteasome is a protease 

complex consisting of multiple components localized in the nucleus and cytosol. The 

structure of proteasome resembles to that of a cylindrical complex consisting of a 20S 

core protease (CP) and two 19S regulatory particles (RP) covering the CP. The RP 

unfold the substrates that are already ubiquitinated and feeds them into CP [34]. The 

20S CP consists of four rings that are stacked together [35]. Whereas the two outer 

rings of CP consist of seven different  subunits being mainly responsible for recognition 

of substrates, two inner rings consist of seven different  subunits. The proteolytic 

activity of the proteasome resides in three  subunits: 1, 2 and 5. These three 

subunits cleave the protein substrate into smaller peptides ranging from 3-20 amino 

acids, which are then released into nucleus and cytosol. Plant pathogens have been 

shown to manipulate the host proteasome machinery to degrade immunity-associated 

proteins and facilitate infection of plants [36, 37]. An increasing number of studies show 

that the proteasome mediated degradation pathway is essential for successful mount of 

plant defence [38, 39]. However, successful pathogens have been shown to possess 

virulence factors that cause direct or indirect inhibition of the proteasome [20, 35]. 

Activity-based probes (ABPs) based on vinyl sulfone (VS) reactive groups have been 

shown to label catalytic subunits of the Arabidopsis proteasome and several PLCPs [40, 

41].  In this paper, we used the VS-reactive ABP called ´Bodipy TMR-Ahx3L3VS´ 

(MV151) to analyze the activity of PLCPs and proteasome in syncytia. This probe 

contains a Bodipy fluorescent group to enable fluorescent imaging. 

3.3. Material and Methods 

Collection of syncytial and root material and for proteome analysis was performed as 

previously described [22]. Protein was extracted and ABPP was performed using 2 µM 

MV151 for 3-4 hours (MV151) as described previously [22]. In case of competition 



 Chapter 3 – PLCPs and Proteasome 

- 50 - 
 

labelling, samples were incubated with probe E64 (50 µM) for 30 min and followed by 

labelling with MV151. DMSO was used as a non-probe control. After labelling, the 

proteins were separated on SDS gels (12%) and fluorescence was visualised in-gel by 

using a fluorescent scanner (Typhoon FLA 9000). The intensity of fluorescent was 

measured using the ImageQuant TL software (GE Healthcare Life Sciences, 

www.gelifesciences.com).  

To confirm that the observed diverse signal intensities are due to the activity of the 

proteins rather than their abundance, both, Coomassi Brilliant Blue staining and Western 

Blot analysis was conducted.  For Western Blot a PVDF membrane was incubated in 

100% methanol for 30 seconds and washed with water for 2 minutes before it was 

assembled with the SDS gel and transferred for 1 hour at 200mA. Transfer buffer 

consisted of 25mM Tris (pH 8.0), 190 mM glycine and 20% methanol. Blocking of the 

membrane was achieved by 20 minutes incubation in 10ml 1X TBS + 3% BSA. 

Afterwards, 200µl Tween20 and 2µl αPBA-1 (1:5000) antibody was added and 

incubated ON at 4°C.  

After washing five times in 1X TBS + 3% BSA, the second antibody Anti-Mouse IgG 

Peroxidase (1:10.000) was added and incubated for 1 hour at 4°C. Finally, after washing 

with 1X TBS and 0.1% Tween20, the membrane was developed with SuperSignal® 

West Pico/Femto Chemilumincent Substrate (ThermoFisher, Prod# 34080) according to 

the instruction manual.  

3.4. Results 

3.4.1. Activity of papain-like cysteine proteases (PLCPs) is suppressed in female 

and male associated syncytium 

PLCPs have been shown to protect plants against pests and pathogen attacks [42-44]. 

Arabidopsis contains 30 genes encoding PLCPs and role of only few have been studied 

in detail. We used an activity-based probe based on vinyl-sulfone (VS) reactive groups 

called ´Bodipy TMR-Ahx3L3VS´ (MV151) to analyze the activity of PLCPs in syncytia. 

The profiling was performed with syncytia associated with females. As shown in Figure 

1a and 1d labelling of female-associated syncytial samples resulted in comparatively 

weaker signals at 40 kDa and 30 kDa (s1 and s2), which reflect reduced PLCP activity in 

http://www.gelifesciences.com/
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syncytia compared to control roots. Competition labelling with E64 confirmed that PLCPs 

are causing the signals at 30 (s2) and 40 (s1) kDa in the MV151 labeling profile, as pre-

incubation with this inhibitor prevented subsequent labelling with MV151 (Figure 1c). 

Previous studies with MVA178, an acid-labelled version of MV151, suggested that the 

signal around 40 kDa signal represents an intermediate isoform of desiccation-induced 

RD21 (iRD21). RD21 is a cysteine protease that is abundantly present in Arabidopsis 

leaf extracts [17], whereas the 30 kDa signal represents a mixture of PLCPs, including 

the mature isoform of RD21 (mRD21), xylem specific XCP2 and cathepsin B-like 

proteases [17, 45]. Next, we analysed the PLCP activity in syncytia-associated with 

males. The data analysis indicated that similar to that of female-associated activity of 

PLCPs is suppressed strongly as compared with control root (Figure 2). 

Microarray performed by Szakasits et al. [6] and our qPCR analyses did not show 

dramatic changes in transcription profiles of PLCPs except for three encoding cathepsin 

B (CathB1, CathB2, CathB3), which showed a slight downregulation (Supplementary 

Table ST1 and Table 1). To further confirm change in activity of CathB, we performed 

another labelling with FH11, which was recently designed by Lu et al. [46] to display the 

activity of bacterial type III effector protease AvrPphB. It contains an 

acyloxymethylketone (AOMK)-reactive group and a rhodamine reporter tag for 

fluorescent detection. The profiling of syncytia associated with females showed less 

activity of cathepsin (CathB) compared to non-infected roots (Figure 3a and 3c). Pre-

incubation of the samples with E64 inhibited the binding of FH11 to the active sides of 

enzymes, showing the specificity of this probe (Figure 3b). 

3.4.2. Activity of proteasomal subunits is suppressed in female associated 

syncytium but not in male associated syncytium 

As one of the main protein degradation machinery in cells, the proteasome plays an 

essential role in plant defence and development [41]. In addition to PLCPs, ABPs based 

on VS-reactive groups were also shown to label the catalytic subunits of the mammalian 

proteasome [40, 47].  Therefore, we used the probe MV151 to analyse the activity of the 

three catalytic subunits β1 (PBA1, At4g31300), β2 (PBB1, At3g27430; PBB2, 

At5g40580) and β5 (PBE1, At1g13060) of the proteasome. After labelling of infected and 
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non-infected Arabidopsis root material several differences could be observed. As shown 

in Figure 1a, labelling of samples from female associated syncytia resulted in three 

fluorescent signals around 25 kDa (s3-5), which are weaker in syncytia compared to 

uninfected roots (s3 6.6 to 19.2, s4 12.8 to 34.5 and s5 6.3 to 13.4 fluorescence intensity) 

(Figure 1d). According to mass spectrometry (MS) studies of Arabidopsis leaf extracts 

s3 represents the β2 (PBB1) catalytic subunit of the proteasome, s4 subunit β5 (PBE1) 

and s5 subunit β1 (PBA1) [41]. These changes were not observed in male-associated 

syncytium (Figure 2). In contrast to our data, transcriptome analysis showed a 

significant increase in amount of transcripts of not only 5 genes encoding these three 

subunits but also other proteasome genes in infected root material (Supplementary 

Table ST2; [6]). Western Blot analyses using α-PBA1 antibody confirmed that there was 

no significant change in total protein content (Figure 1b).  

3.5. Discussion 

3.5.1. Papain-like cysteine proteases are inactivated in syncytium 

PLCPs use a catalytic cysteine residue to cleave peptide bonds in protein substrates 

[27] and are therefore thought to play a role in plant pathogen interaction. Interestingly, 

pathogens as well as their hosts use proteases as well as protease inhibitors to 

overcome each other [48]. Plants express PLCPs to defend themselves not only against 

pathogens attack but also during water stress and senescence like RD21 (At1g47128). 

On the other hand, pathogens need to circumvent this cellular defence to establish 

infection within their hosts. It has recently been demonstrated for the biotrophic fungus 

Cladosporium fulvum (syn. Passalora fulva) that it uses secretory proteins (effectors) to 

inhibit the extracellular PLCP, Rcr3 (required for Cladosporium resistance 3; [49]), which 

is essential for the function of the resistance gene Cf-2 in tomato. Similar effector 

proteins with protease inhibitory activity have also been identified from Phytophthora 

infestans in tomato plants [50-52], for example the Cys protease inhibitor EPIC2, which 

targets the Rcr3-like Cys protease Pip1 (Phytophthora-inhibited protease 1; [52]). Based 

on these findings we assumed that also nematodes could use protease inhibitors, such 

as C. fulvum Avr2 and P. infestans EPIC2, to inactivate the basal plant defence.  
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In fact, the activity of PLCPs was reduced in syncytia produced by females as well as in 

those produced by males. The profile of MV151 showed lower activity of proteins at 30 

kDa and 40 kDa. In reference to Gu et al. [41, 53] and after implementation of a 

competition labelling with the well-known protease inhibitor E64, we identified these 

signals as RD21 (40 kDa) and a mixture of other PLCPs (30 kDa). This mixture contains 

among others the mature isoform of RD21 (mRD21), xylem specific (XCP2) and 

Cathepsin B-like (CathB) proteases. In animals, i.e. Cathepsin B is known to be involved 

in many different processes, including programmed cell deaths (PCD) [54], which led 

Gilroy et al. [23] to study the function of Cathepsin B in plant disease resistance. They 

were able to show that this enzyme plays a role in both host and non-host resistance of 

plants, as transcription and enzymatic activity is induced during the HR [23]. Based on 

this information and to itemize the PLCP mixture at 30 kDa another labelling with the 

activity-based probe FH11 was conducted. Thereby, the assumption was confirmed that 

CathB was less active in syncytia compared to non-infected roots. Obviously, CathB and 

other PLCPs constitute a plant defence mechanism that needs to be down-regulated by 

nematode to establish functional feeding cells. This hypothesis is supported by a recent 

study showing that loss-of-function mutants for PLCPs are hypersusceptible to cyst 

nematode infection [55]. 

3.5.2. Inhibition of proteasome in syncytium 

The plant 26S proteasome is a large, multicomponent protease complex residing in 

nucleus and cytosol. The inner cavity of this complex contains three catalytic subunits 

(β1, β2 and β5) that are responsible for the proteolytic activity of proteasome [41]. The 

role of proteasomes in many cellular processes including activation of defence against 

pathogens has been well characterized [41, 44, 56, 57]. Therefore, pathogens such as 

P. syringae inhibit host proteasome activity by releasing effectors into host cells to 

facilitate infection [35-37]. More recently, it has been shown that Xanthomonas 

campestris Type III effector XopJ targets the host cell proteasome to suppress salicylic 

acid mediated defence responses [58]. In context of plant-nematode interaction, it was 

recently shown that an ubiquitin carboxy extension protein secreted by potato cyst 

nematode Globodera rostochiensis promotes formation of syncytium by interfering in 

host proteasome function [59].  Our results after ABPP with the vinyl sulfone probe 
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MV151 are mainly compatible with these findings. This probe was used to label the three 

catalytic subunits (β1, β2 and β5) of plant proteasome in syncytia associated with 

females and males. Interestingly, we observed different activity regulation in both types 

of syncytia. Female associated syncytia showed a strong reduction in the activity of 

these three subunits as compared to control root. In comparison to activity of proteins, 

expression of 5 genes encoding these and other components of proteasome is 

upregulated as compared to control roots [6]. In contrast to females, male associated 

syncytium did not show any change in activity of proteasome subunits. In H. schachtii, 

sex is thought to be determined epigenetically: poor environmental conditions e.g. 

resistant plants or active plant defence mechanisms lead to development of majority 

males. Our results suggest that suppression of proteasome activity by nematodes might 

be a pre-requisite for development. However, more work will be needed to understand 

the role of proteasome in development of females.  

3.6. Conclusion 

Summarizing this work we used an activity-based profiling analysis to visualize the 

altered activity of specific proteins in plants after nematode infection. According to our 

results the nematodes are able to modify essential plant defence-related enzymes, such 

as PLCPs and proteasomal subunits, at the post-transcriptional level to enable 

successful parasitism. We also showed for the first time that the activity of the 

proteasomal subunits is differentially regulated in the male and female associated 

syncytium. Considering the prevalence of male nematodes in resistant plants this 

observation is of major interest. Although evidences are still missing the existence of 

nematode effector proteins inhibiting those plant-defence related proteins to establish 

and maintain nurse-cell systems is obvious and provides exciting paths to study the 

complex interaction between nematode and host plant in more detail. Further analysis 

should be conducted using protein-protein interaction tools to allow a deeper 

understanding of the circumvention of plant defence mechanisms and the successful 

parasitism of nematodes to enable thereby the development of new control measures.  
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Figure 1: Comparative (a) and competitive (c) labelling of proteasome and PLCPs in female 

associated syncytia and non-infected root material with MV151 and inhibitor E64. (b) Western 

Blot with α-PBA1 antibody of syncytia and non-infected root material. (d) Fluorescence intensity 

of gel signals.  
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Figure 2: (a) Comparative labelling of male associated syncytium and non-infected root material 

with MV151. (b) Fluorescence intensity of gel signals. 

 

 

 

 

Figure 3: Comparative (a) and competitive (b) labelling of female associated syncytium and 

non-infected root material with FH11. (c) Fluorescence intensity of gel signals. 
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Table 1: Quantitative RT-PCR of CathB transcription in 5dpi and 10dpi syncytia. 

Name Locus Gene symbol ddCT value Fold change 

Cathepsin B At1g02300 CathB1 -1.01 -2.01 

 At1g02305 CathB2 -0.54 -1.45 

 At4g01610 CathB3 -1.23 -2.35 

 

 

Supplementary Table ST1: Affimetrix chip analysis data: PLCP transcription in syncytia (5 and 

15 dpi) [6] 

Name Locus 
Gene 

symbol 

M value 

(log
2
) 

Fold change 

Cathepsin B At1g02300 CathB1 -0.6 -1.52 

  At1g02305 CathB2 -0.6 -1.52 

  At4g01610 CathB3 -0.5 -1.41 

XCP At4g35350 XCP1 -4.9 -29.86* 

  At1g20850 XCP2 -5.3 -39.40* 

RD21 At1g47128 RD21A -2.6 -6.06* 

  At5g43060 RD21B 0.6 1.52 

  At1g09850 RD21D 0,6 1.52 

 

Supplementary Table ST2: Affimetrix chip analysis data: Proteasome transcription in syncytia 

(5 and 15 dpi) [6] 

Name Locus Gene symbol M value (log
2
) Foldchange 

α1 At5g35590 PAA1 0.9 1.87* 

 
At2g05840 PAA2 0.9 1.87* 

α2 At1g16470 PAB1 1.6 3.03 

 
At1g79210 PAB2 1.6 3.03* 
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α3 At3g22110 PAC1 1.9 3.73* 

  At4g15160 PAC2 0.6 1.52 

α4  At3g51260 PAD1 3 8.00* 

 
At5g66140 PAD2 2.1 4.29* 

α5 At1g53850 PAE1 1.3 2.46* 

α6 At3g14290 PAE2 1.4 2.64* 

  At5g42790 PAF1 2.1 4.29* 

α7 At1g47250 PAF2 3.3 9.85* 

 
At2g27020 PAG1 2.9 7.46* 

β1 At4g31300 PBA1 1.8 3.48* 

β2 At3g27430 PBB1 2.8 6.96* 

 
At5g40580 PBB2 2.1 4.29 

β3 At1g21720 PBC1 3.9 14.93* 

 
At1g77440 PBC2 2.3 4.92 

β4 At3g22630 PBD1 3.1 8.57* 

 
At4g14800 PBD2 2.4 5.28* 

β5 At1g13060 PBE1 1.7 3.25* 

β6 At3g26340 PBF1 1.7 3.25* 

  At3g60820 PBF1 2.1 4.29* 

β7 At1g56450 PBG1 2.8 6.96* 
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4.1 Abstract 

Plant-parasitic nematodes constitute an important parasitic group causing substantial 

yield losses in global agriculture. Most devastating species within this class are cyst 

and root-knot nematodes. As sedentary endoparasites, these nematodes induce 

nurse cell systems in host´s roots from which they feed for their entire life cycle. To 

establish and maintain these metabolically highly active feeding cells, they secrete 

effector proteins inside the host´s root to suppress plant defence mechanisms and to 

modify cellular processes for their own benefit. In this study, we identified and 

functional characterized the secreted effector protein HsCysL1 from the beet cyst 

nematode Heterodera schachtii that contains cystatin-like domains. Contrary to our 

assumption, HsCysL1 may not only inhibit papain-like cysteine proteases (PLCPs), 

but more likely has a dual function due to diverse cellular localizations.  

4.2 Introduction 

Although plant-parasitic nematodes make up a comparably small part of the 

described nematode species (around 15%), they infect a broad range of crops and 

cause substantial yield losses in global agriculture. Most devastating is a small group 

of sedentary cyst (Globodera spp. and Heterodera spp.) and root-knot (Meloidogyne 

spp.) nematodes. The sugar beet cyst nematode Heterodera schachtii is a sedentary 

biotrophic endoparasite that spends the majority of its life within the root. With a wide 

range of hosts this nematode can infect crops within the Amaranthaceae and 

Brassicaceae and cause severe agricultural problems in temperate regions [1-3]. H. 

schachtii can also infect the model plant Arabidopsis thaliana, and this pathosystem 

has been used intensively to study the molecular aspects of plant-nematode 

interactions [4, 5]. 

As with all cyst nematodes, H. schachtii possesses a highly specialized biology. 

Upon the arrival of suitable environmental conditions, second stage juveniles of these 

nematodes hatch from the cyst and invade the roots guided by root exudates. After 

entering the roots, nematodes migrate intracellularly through different tissue layers to 

reach the vascular cylinder, where they probe individual cells with the help of their 

characteristic stylet until they find a suitable initial syncytial cell (ISC) for feeding [5, 

6]. The factors involved in selecting a particular cell to be an ISC are still unknown. 

The ISC expands through local dissolution of cell walls with neighbouring cells, thus 
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leading to the formation of a multinucleate and hypertrophied syncytium. Upon ISC 

selection, H. schachtii becomes sedentary and syncytium serves as the only nutrient 

source through the entire life cycle of the nematode [1, 7-9]. The development of 

syncytium is accompanied by massive cytological and histological changes, which 

have been studied in detail [10-13]. The central vacuole is replaced by several 

smaller ones, and a highly pronounced smooth endoplasmatic reticulum is present 

inside syncytium. Moreover, nuclei are hypertrophied, and the number of organelles 

increases significantly [6], resulting in a metabolic highly active nutrient source. Once 

the sexually dimorphic nematode becomes sedentary, the nematode undergoes 

three developmental stages (J2, J3, J4), interrupted by three moults, before females 

take on a lemon-shaped body [6]. Meanwhile, males become vermiform and leave 

the roots to copulate with the females. After fertilization, the females die and form a 

robust cyst that protects the up to 300 eggs within from environmental factors for 

many years [14, 15]. 

As a sedentary biotrophic endoparasite, H. schachtii depends on living host cells and 

establishes a highly complex relationship with its host. During nematode invasion and 

selection of the ISC, host tissue gets damaged, which, in turn, may activate basal 

defence mechanisms of the plant through the recognition of pathogen-associated 

molecular patterns (PAMPs) by pattern recognition receptors (PRRs) located on the 

cell surface. Although the existence of PAMPs on behalf of the nematode has not 

been proven so far, the similarity of highly-specific resistance genes found in 

nematode resistant plants to those induced by other pathogens, suggests a similar 

mechanism [16, 17].  

One of the main defence strategies by plants is the release of apoplastic proteases 

upon infection. These proteases can detect secreted proteins from pathogens 

(effectors), leading to the activation of a strong defence response, that may culminate 

in a form of programmed cell death (PCD) known as hypersensitive response (HR) 

[18-21]. One well-known example of such apoplastic proteases is RCR3 (Required 

for Cladosporium Resistance 3), a small secreted extracellular cysteine protease 

from tomato (Lycopersicon esculentum). RCR3 is transcriptionally upregulated upon 

infection by leaf mold causing fungus Cladosporium fulvum (Cf) and has been 

previously shown to play a role in host defence against infection. Interestingly, 

inhibition of RCR3 by Avr2, a cysteine-rich protein secreted by C. fulvum results in 
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activation of HR that is mediated by plasma membrane-localized R-gene Cf-2 [22]. 

Cf-2 encodes a transmembrane protein with extracellular leucine-rich repeats (LRRs) 

and short (23 to 36 amino acids) cytoplasmic domains. However, the exact 

mechanism of by which Cf-2 detects AVR2-RCR3 interaction is not fully known.  

Papain-like cysteine proteases (PLCPs) are proteolytic enzymes involved in 

development, immunity and senescence [23]. They use a catalytic cysteine residue to 

cleave peptide bonds in protein substrates and have been found to be used by both 

parties in plant-parasite interactions [24]. In Arabidopsis, around 30 genes encode for 

PLCPs, but only a few have been studied in detail so far [23-26]. To successfully 

invade a host, biotrophic pathogens need a strategy to inhibit PLCPs. Indeed, it has 

been shown that PLCPs are targeted by effectors of several pathogens [27-31]. For 

instance, RD21 (Responsive to Desiccation 21; At1g47128) is involved in defence 

mechanism of A. thaliana against the necrotrophic fungus Botrytis cinerea [32]. 

Furthermore, effector proteins secreted by H. schachtii and Meloidogyne chitwoodi 

have been identified that target RD21 [26], supporting the role of PLCPs in plant-

nematode interaction. The yellow potato cyst nematode Globodera rostochiensis also 

secretes an effector (Gr-VAP1) that targets the PLCP Rcr3pim in Solanum 

pimpinellifolium, triggering a Cf-2 mediated resistance response [33]. 

All these effector proteins act as cysteine-protease inhibitors and show common 

phytocystatin-like characteristics. Phytocystatins are reversible inhibitors of papain-

like cysteine proteases possessing consensus amino acid residues that are 

indispensable for their inhibitory activity: (1) QxVxG located at the active site; (2) a G 

near the N-terminus; (3) a conserved W in the second half of the protein [34, 35]. 

Two apoplastic, cystatin-like effector proteins, EPIC1 and EPIC2B, have been 

identified in P. infestans targeting the PLCPs PIP1 (Phytophthora Inhibited Protease 

1), RCR3 and C14 in tomato [22, 36-38]. Supported by our recent findings indicating 

a reduced activity and thus reduced functionality of PLCPs in Arabidopsis roots after 

infection with H. schachtii [c.f. chapter 3], we assumed that the nematode secretes 

effector proteins that function similarly to EPIC1 and EPIC2B of P. infestans. Using 

bioinformatic approaches we found a sequence within the genome of H. schachtii 

termed HsCysL1 (Heterodera schachtii Cystatin-Like-1) that obtains cystatin-like 

motifs, indicating an inhibitory function. To investigate the role of HsCysL1 during 
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plant-nematode interaction, we performed a detailed characterization of this putative 

effector in this manuscript.  

4.3 Material and Methods 

All primers used in these experiments are given numbered in supplementary table 

ST1. 

4.3.1 Bioinformatic approaches 

Transcriptome assembly using RNA of H. schachtii juveniles (J2) enabled the 

identification of an ORF (396bp) containing a signal peptide on its N-terminal 

determined by SignalP server [39] and cystatin domains [40] predicted by Pfam. This 

transcript was sequenced by next generation sequencing (illumina) and encodes for 

a 132aa protein, designated as HsCysL1 that was later analysed by TMHMM server 

to predict transmembrane domains of this protein [41].  

Available sequences of other nematode species were tested by tBLASTn to identify 

HsCysL1 homologues. Included species covered plant-parasitic, free-living and 

animal-parasitic nematodes. Considered characteristics during this test included the 

presence of a putative signal peptide, pfam domains as well as predicted 

transmembrane domains. Only homologues pointing up these features were taken 

into account of further analyses. Isoforms within the same species were minimized to 

a single representing HsCysL1-like sequence per species. The final homologues 

were aligned to each other (CLC genomics workbench Version 8.5). All aligned 

sequences were used to build up a phylogenetic tree using the maximum likelihood 

phylogeny 1.2 algorithm (construction method = Neighbour Joining, Nucleotide 

substitution modes = Jukes Cantor, Protein substitution model = WAG, and a 100 

bootstrap) (Figure 1).   

4.3.2 Expression of HsCysL1 in H. schachtii 

To analyze the expression of HsCysL1 at different juvenile stages, RNA was 

extracted from juveniles (J2) and nematodes at different days after infection (5dpi 

and 10dpi). Quality of RNA was checked by Bioanalyzer and cDNA was produced 

using reverse transcriptase and random primers (Applied Biosystems, prod.nr. 

4368814). qRT-PCR was conducted using the primers given in ST1 (number 1) and 

protocol previously described [42].  
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4.3.3 Localization of HsCysL1 

To localize the HsCysL1 transcripts in nematode organs in situ hybridization was 

conducted on pre-parasitic J2s. Digoxigenin (DIG)-labelled probes were amplified 

from the cloned HsCysL1 in the pGEM-T vector (Promega, Madison, WI, USA). The 

probes were generated by PCR using specific primers (ST1, number 2) in the 

presence of DIG-labelled deoxynucleotide triphosphates (dNTPs) (Roche). The RW-

primer probe was used for the localization while the FW-primer probe served as a 

negative control. Thehybridization was performed according to the protocol of de 

Boer et al. [43] using a hybridization temperature of 47 °C. Afterwards, the hybridized 

nematodes were examined using a Leica DMI2000 compound microscope. 

Localization of HsCysL1 in plants was investigated in Nicotiana benthamiana and 

leek cells independently. The signal peptide (SP) attached to HsCysL1 has a 

nematode origin and is usually removed as soon as the protein leaves the 

oesophageal gland cells. However, to investigate whether the signal peptide is 

processed during secretion and also functional in the plant´s translocation pathway, 

we conducted all localisation experiments with both constructs (HsCysL1 with and 

without SP). Full-length genes were amplified from a H. schachtii DNA library and 

modified by PCR according to the Gateway cloning system (Invitrogen) (ST1, number 

3 (+SP) and 4 (-SP)). The fragments were cloned into the donor vector pDONR207 

through a BP-reaction and then transferred into 35S::GFP::pmdc83 through a LR-

reaction, resulting in binary vectors GFP-HsCysL1+SP and GFP-HsCysL1-SP, 

respectively. The sequences were confirmed by sequencing. Both binary vectors 

were transformed into Agrobacterium tumefaciens strain GV3101 pMP90 [44]. For 

this purpose competent cells of A. tumefaciens were thawed on ice, mixed with 

100ng DNA and incubated on ice for 30 minutes. After deep freezing in liquid 

nitrogen for 10 seconds the cells were heat shocked at 37°C for 5 minutes and 

cooled again on ice for 3 minutes. Finally, 950 µl liquid LB-medium was added and 

the cells were incubated for 2-3 hours at 26°C, continuously shaking at 200rpm. 

Selection for the construct was achieved using LB-agar plates containing kanamycin 

[50µg/ml], gentamycin [10µg/ml] and rifampicin [50µg/ml]. Plates were incubated at 

26°C for 40 hours.  

Transient overexpression of GFP-tagged HsCysL1+SP and HsCysL1-SP was attained 

by co-infiltrating cultures of Agrobacterium strains carrying the constructs with 
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cultures that contained the silencing inhibitor p19 from the tomato bushy stunt virus 

[45] in fully expanded leaves of six-weeks-old tobacco plants (N. benthamiana) 

according to the previously described protocol [46]. Leaves were harvested 3 days 

after infection and analysed using confocal microscopy.  

Expression of HsCysL1+SP and HsCysL1-SP in leek cells was achieved by particle 

bombardment [47]. Gold particles were washed in 100% ethanol and vortexed for 2 

minutes. Afterwards, suspension was sonicated on ice for 1 minute and centrifuged 

at 10.000 rpm for 1 minute. Supernatant was discarded and pellet got resuspended 

in 50% glycerol. 1µg DNA was mixed with 12.5 µl gold, 5 µl spermidin [1M] and 12.5 

µl CaCl2 [2.5M] and vortexed for 3 minutes. After pelleting the DNA-binded gold 

particles by centrifuging for 30 seconds, particles got washed with 100µl absolute 

ethanol and vortexed for 3 minutes. Then particles were pelleted again and 

resuspended in 37.5 µl absolute ethanol. Macro carriers were washed in 100% 

ethanol and dried on sterile tissue paper before transferring the DNA-carrying gold 

particles onto the macro carrier. Fresh leek cells were bombarded at 1350 psi and 

stored in the dark for 12 hours before being exposed to a 488 nm wavelength on 

confocal microscopy.  

4.3.4 Y2H 

To functionally characterise HsCysL1, a Yeast-2-Hybrid (Y2H) screening was 

performed as described in the BD Matchmaker Library Construction and Screening 

Kits (Clontech, Matchmaker® Gold, Cat. Nos. 630466, 630498 & 630499). The 

complete coding region of HsCysL1-SP was fused to the GAL4 DNA binding domain 

(BD) of pGBKT7 to generate pGBKT7-HsCysL1-SP and then transformed into 

Saccharomyces cerevisiae strain Y187 to form the bait strain. An Arabidopsis DNA 

library from the roots of ecotype Col-0 before and 10 days after infection with H. 

schachtii was generated in S. cerevisiae strain Y2H-Gold (AH109) and fused to the 

GAL4 activation domain (AD) of pGADT7-Rec2 vector. Screening for interacting 

proteins and subsequent analyses were performed according to the Clontech 

protocols.  

4.3.5 BiFC 

In order to confirm the interaction of HsCysL1-SP with the candidate proteins yielded 

from Y2H screening, DNA sequences of HsCysL1-SP, HsCysL1+SP, UBC19 and 
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PTPLA were amplified with modified primers to conduct cloning into split-YFP vectors 

pSAT4-nEYFP-C1 and pSAT4-cEYFP-C1(B), respectively. Including HsCysL1+SP 

should confirm the specificity of the protein interaction between HsCysL1-SP and the 

target genes. HindIII restriction site including additionally random basepairs was 

attached to the 5´end of both HsCysL1 constructs, and BamHI to the 3´end (ST1, 

number 5 (+SP) and 6 (-SP)). Appropriate enzymes were used to digest the gel-

purified and modified DNA fragments as well as pSAT4-nEYFP-C1 and ligated via T4 

ligase. The same procedure was carried out with DNA of UBC19 and PTPLA, as well 

as pSAT4-cEYFP-C1(B), using SalI and XmaI restriction sites (ST1, number 7 and 

8). Afterwards, plasmid constructs were co-bombarded at leek cells according to the 

aforementioned protocol. Particle bombardment of each individual plasmid separately 

served as the negative control. Meanwhile, plasmids were transformed into A. 

tumefaciens strain GV3101 and infiltrated into N. benthamiana using the same 

method previously mentioned. In case of positive protein interaction, signals were 

observed using confocal microscopy 5 days after infection.  

4.3.6 Functional characterization of target genes 

To estimate the importance of the identified interacting protein PTPLA during 

nematode infection, an Arabidopsis knock-out mutant of this gene was infected with 

H. schachtii J2s and the number of females and the sizes of the associated 

syncytium were both determined. The procedure of this infection assay was 

conducted using the same method as described in Hütten et al. [39]. Genotyping and 

expression analysis was conducted by PCR using genomic and cDNA, respectively 

(ST1, number 9 and 10) to confirm that the genome of the described knock-out 

mutant of PTPLA contains a T-DNA insertion and therefore no expression of the 

gene on the proteomic level. However, for the second identified interacting protein 

UBC19, however, no mutant was available.  

4.4 Results 

4.4.1 Sugar beet cyst nematodes encode a cystatin-like protein 

We have recently performed Activity Based Protein Profiling (ABPP) and found that 

activity of several PLCPs is reduced in syncytium as compared to non-infected roots 

[c.f. chapter 3]. Based on these data and previous literature [22, 36-38], we assumed 

a putative cystatin-like effector in H. schachtii with supposed functions similar to 
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those described of P. infestans (EPIC1 and EPIC2B). Bioinformatic approaches 

identified a cystatin-like transcript (396bp) in the transcriptome of H. schachtii that 

encodes for a protein of 132 amino acids, hereafter referred to as HsCysL1 

(Heterodera schachtii Cystatin-Like-1). Next, we performed sequence alignment 

through a phylogenetic tree comparing HsCysL1 from plant-parasitic, free-living and 

animal-parasitic nematodes for their homology. This analysis indicates that HsCysL1-

like protein forms a separate cluster with other plant-parasitic nematodes (PPN-

specific cluster) (Figure 1A). Interestingly, within the PPN-specific cluster, HsCysL1-

like proteins from cyst nematodes (H. schachtii, H. glycines, G. pallidae and G. 

rostochiensis) were the closest to each other, forming a cyst nematode specific 

subcluster (CN-specific cluster), whereas Heterodera spp. and Globodera spp. 

subclustered independently. The nearest likelihood to the CN-specific cluster was 

found in Pratylenchus coffeae followed by Nacobbus aberrans. Although a 

homologue of HsCysL1 was also found in Meloidogyne hapla 

(MhA1_Contig41.frz3.gene10), we did not include this gene in our data analysis due 

to the lack of a signal peptide. Transcriptomes of M. incognita and H. avenae did not 

reveal any HsCysL1-like homologues. Animal Parasitic Nematodes (APNs) and Free 

Living Nematodes (FLNs) were clustered separately from PPNs and showed 

relatively low similarity to HsCysL1. 

HsCysL1 contains a signal peptide at the N-terminus, but no transmembrane domain, 

which supports the hypothesis that it is secreted into the host to facilitate parasitism. 

Similar to the homologues EPIC1 and EPIC2B from P. infestans, conserved amino 

acid residues being characteristic for the inhibitory activity of phytocystatins can also 

be found within the CN-specific cluster including H. schachtii and H. glycines: glycine 

(G) is located near the N-terminus (114 bp) and an active site QxVxG motif is present 

within the sequence (Figure 1B). Interestingly, only HsCysL1 lacks a conserved 

tryptophan (W) in the second half of the protein. However, we assumed this protein 

as a promising candidate for the inhibition of PLCPs.  

4.4.2 HsCysL1 is secreted into the host tissues 

One of the hallmark characteristics of parasitism genes is their spatial and temporal 

expression in the secretory oesophageal gland cells of the nematode. We used in-

situ hybridization to localize the spatial expression of HsCysL1 transcript in pre-

infective J2 nematodes. The antisense riboprobe of HsCysL1 labelled with 
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digoxigenin hybridized particularly strongly within the oesophageal gland cells 

(Figure 2A) supporting the idea of HsCysL1 being a secreted protein. However, a 

signal specifying the expression either in the dorsal or the subventral gland cells 

could not be observed. Based on the presence of cystatin-like motifs, we expected 

HsCysL1 to be involved in inhibition of PLCPs, and therefore to be specifically 

expressed during migratory stages of the nematode to supress early plant defence 

responses. Although quantitative RT-PCR revealed an expression of HsCysL1 during 

all developmental stages analysed in this study (J2, 5dpi and 10dpi), a particularly 

high expression was observed at 5dpi (Figure 2B). At 5dpi, syncytium is already 

established and nematode has started feeding. Therefore, a particular high 

expression at this time point hints to an additional role for HsCysL1 in parasitism 

other than PLCPs suppression. The effectors that are directly or indirectly involved in 

maintaining nurse cell systems are thought to be injected into the cytoplasm of 

syncytium via stylet [48, 49]. PLCPs instead are known to function within the apoplast 

[24, 31, 50]. Accordingly, we performed in planta localization to get insights into the 

destination and putative function of HsCysL1.  

4.4.3 HsCysL1 shows diverse localization in plant 

We generated constructs fusing HsCysL1 gene with or without signal peptide to GFP 

(green fluorescent protein) under the control of the CaMV 35S promoter 

(35S::HsCysL1+SP_GFP; 35S::HsCysL1-SP_GFP). Although it is expected that the 

signal peptide of HsCysL1 gets cleaved off in the endoplasmatic reticulum of the 

dorsal gland cell prior to secretion from the nematode stylet, inclusion of the signal 

peptide expressing a pre-protein was expected to be helpful to analyse the 

functionality of the signal peptide and the translocation through the plant´s secretory 

pathway. These constructs were then infiltrated into epidermal cells of Nicotiana 

benthamiana to detect their sub-cellular localization. Due to the signal peptide we 

expected an apoplastic localization of 35S::HsCysL1+SP_GFP. Indeed, co-

transformation of 35S::HsCysL1+SP_GFP with mCherry-apoplastic marker showed a 

clear co-localisation of the signal in the outer periphery of the cells (Figure 3A), 

confirming that the nematode´s origin signal peptide can be processed through 

plant´s secretory pathway. In contrast, GFP-HsCysL1 without signal peptide 

(35S::HsCysL1-SP_GFP) was localized in cytoplasm as well as in nucleus (Figure 

3B). The presence of a strong signal inside the nucleus for 35S::HsCysL1-SP_GFP 
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raises the question whether this protein in localized into nucleus due to passive 

diffusion of by using plant trafficking machinery or due to the presence of a nuclear-

localization-sequence (NLS) found at C-terminal region of HsCysL1 (Figure 3C). To 

confirm the utility of this NLS, we generated a fusion protein lacking NLS 

(35S::HsCysL1-SP-NLS_GFP). Nevertheless, our microscopic analyses found that 

nuclear signal could still be detected for HsCysL1 (Figure 3D). This result indicates 

that the nuclear signal observed in 35S::HsCysL1-SP_GFP may arise from passive 

diffusion of the tagged GFP, as the predicted protein size (38 kDa) does not cross the 

nuclear exclusion size of 60 kDa [51]. These observations were further confirmed by 

bombarding GFP-tagged 35S::HsCysL1+SP and 35S::HsCysL1-SP on leek cells 

(Figure 3E and 3F). Based on our data indicating dual localization of HsCysL1 during 

different staged of parasitism, we speculated that HsCysL1 might have obtained 

diverse roles during plant-nematode interaction. 

4.4.4 HsCysL1 interacts with PTPLA and UBC19 

To investigate the potential interacting partners of HsCysL1-SP inside the host cell, we 

performed a Yeast-2-Hybrid (Y2H) analysis. Around 14 million colonies of an 

Arabidopsis cDNA library which was generated from non-infected roots and syncytia 

(10 days after H. schachtii infection) were screened using HsCysL1-SP as bait.  

After selection on high-stringency medium and exclusion of false positive proteins 

interacting with the empty prey vector we identified five target proteins (Table 1) 

interacting with HsCysL1-SP in yeast. Considering that interaction between proteins 

can just take place once they are in the same cell compartment, we excluded ER-

ANT1 and PGL5, which are localized in the ER and chloroplast, respectively. These 

interactions of the remaining three target genes were further confirmed by yeast co-

transformation analysis (Figure 4A-C), showing a strong interaction of OTU2 with the 

empty prey vector (Figure 4C). This way, we ended up with two target genes 

interacting with HsCysL1-SP, PTPLA and UBC19.   

To further confirm the identified target genes as true positives interacting with 

HsCysL1-SP, Bimolecular Fluorescence Complementation (BiFC) was performed. 

BiFC is based on the reconstitution of a split yellow fluorescence protein (split-YFP) 

independently attached to two proteins. In case these proteins interact with each 

other the YFP gets recombined and a fluorescent signal can be detected (Figure 
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5A). HsCysL1+SP was included in this experiment to underscore the specificity of 

protein interactions. Both constructs, HsCysL1+SP and HsCysL1-SP, were 

independently fused to the C-terminal half of yellow fluorescent protein (YFP), 

whereas PTPLA and UBC19 were fused to the N-terminal half, respectively. Via co-

bombardment of one C-terminal construct and one N-terminal construct, the activity 

of YFP was reconstituted in leek cells and confirmed the interaction between  

HsCysL-SP and PTPLA as well as UBC19 through cytoplasmic expression (Figure 

5B). However, no interaction was observed between HsCysL1+SP and both target 

genes (Figure 5C). Furthermore, no YFP signal was obtained when the YFP 

fragment constructs harbouring HsCysL1+/-SP or PTPLA/UBC19 alone (Figure 5D 

and 5E).  

Additionally, all BiFC vector constructs were transformed into A. tumefaciens and co-

expressed in N. benthamiana. YFP signals were observed in cytoplasm when 

HsCysL1-SP was co-infiltrated with PTPLA and UBC19 (Figure 5F). In case of 

HsCysL1+SP no interaction between our gene of interest (GOI) and target genes could 

be obtained (Figure 5G), not either in YFP fragment constructs harbouring one of the 

genes alone (Figure 5H and 5I). 

4.4.5 Knock-out of PTPLA does not affect nematode development 

To functionally characterize the identified target genes with regard to their importance 

in plant-nematode interaction, we conducted a nematode infection assay using 

Arabidopsis single-knockout mutants and infective J2s of H. schachtii. However, a 

knockout line was only available for PTPLA. The T-DNA insertion is located in the 

intron region (Figure 6A) and homozygosity was confirmed by PCR (Figure 6B). 

Additionally, no expression could be detected (Figure 6C). The number of females 

and males as well as sizes of females and associated syncytium should give 

information about changed susceptibility of the transgenic lines compared to wildtype 

plants. As indicated in Figure 6D and 6E, no significant change could be observed in 

the infection rate or nematode development. 

4.5 Discussion 

Papain-like cysteine proteases (PLCPs) have been shown to play diverse roles in 

plants. Beside protein remobilization during seed germination and organ senescence, 

they are also essentially involved in plant-pathogen interactions [18, 24, 25]. In 
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contrast to other proteolytic enzymes, PLCPs possess the peculiar characteristic of 

being reversibly inhibited by natural peptides like cystatins [52]. Previously, Tian et al. 

[37] described the protein EPIC2B of P. infestans, which possesses all signature 

sequences of cystatin-like protease inhibitors, as an inhibitor of PIP1 and other 

apoplastic cysteine proteases in tomato. In this study we biochemically and 

functionally characterized a putative effector protein of H. schachtii, termed HsCysL1, 

which was identified based on bioinformatic approaches. HsCysL1 does contain a 

signal peptide but no predicted transmembrane domain, allowing the protein to be 

translocated through the nematode´s secretory pathway into host cells. Furthermore, 

the cystatin motifs present in the sequence of HsCysL1 suggested that HsCysL1 

inhibits cysteine proteases and therefore plays a role in inhibiting plant defences. The 

phylogenetic tree (Figure 1A) reveals that HsCysL1-like homologues are uniquely 

found in plant-parasitic nematodes, whereas the closed likelihood is shown within 

cyst nematodes. Interestingly, the homologues of Heterodera spp. and Globodera 

spp. subclustered separately, hinting at an essential functional specialization for 

parasitism strategy of cyst nematodes.  

The presence of a signal peptide and lack of transmembrane domain characterizes 

HsCysL1 as a putative effector protein. In-situ hybridization further validated the 

secretion of HsCysL1 as the hybridization signal was localized in the secretory 

oesophageal gland cells of pre-infective J2s. Because PLCPs have been shown to 

constitute one of the main plant defence proteins in the apoplast, we assumed 

HsCysL1 to be pre-dominantly expressed during the migratory stage of infection 

process. Contrary to our expectations, HsCysL1 is expressed during all 

developmental stages that were tested in this study (J2, 5 dpi, 10 dpi), showing 

highest transcriptional expression at 5dpi. This time point represents the syncytium 

expansion stage [53], which is characterized by massive restructuring of the host 

cells. These results suggest that although HsCysL1 has cystatin motifs, it may 

perform an additional function other than inhibiting PLCPs.  

We propose that HyCysL1 may perform diverse roles during the different phases of 

infections. At the migratory stage of infection, nematode invasion and movement 

inside the root causes damage and activates PLCPs. HsCysL1 is secreted into the 

apoplast and inhibits the activity of PLCPs, thereby suppressing the activation of 

plant defence responses. To confirm this role of HsCysL1, we attempted to express 
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and purify HsCysL1 heterologously in bacteria as well as in planta. The purified 

HsCysL1 could then have been tested to confirm the protease inhibitory activity in 

vitro. However, we were unable to purify sufficient amount of HyCysL1 for such 

assays. Alternatively, ABPP, using the proteome of Arabidopsis plants 

overexpressing HsCysL1, could also provide information about a putative inhibitory 

effect of HsCysL1. These experiments are currently underway. 

In the second phase of nematode infection during syncytium establishment and 

expansion, HsCysL1 is assumed to be secreted into the cytoplasm [48, 49], and play 

a role in syncytium formation and maintenance. To validate this hypothesis, first of all 

we conducted localization of HsCysL1 with or without signal peptide in planta. 

Interestingly, including the signal peptide resulted in a translocation of HsCysL1+SP 

into the apoplast, whereas the construct without signal peptide led to localization of 

HsCysL1 in the cytoplasm and nucleus. The nuclear expression was expected to 

result from a nuclear-localisation-sequence (NLS) uniquely identified in HsCysL1. 

This NLS could not be found in any homologues of other nematode species, hinting 

at a high specificity of this effector. However, removal of the NLS from HsCysL1-SP 

did not result in elimination of nuclear expression. These data suggested that the 

nuclear signal might have arisen from passive diffusion of the fused GFP-protein, as 

the predicted size of the fusion protein (38 kDa) was smaller than the nuclear 

exclusion size (60 kDa) [51]. Another possibility is that HsCysL1-SP forms a protein 

complex with an interacting partner that leads to its transport into the nucleus.  

Functional data presented here show that HsCysL1-SP interacts with two proteins in 

cytoplasm, PTPLA (Protein tyrosine phosphatase-like A) and UBC19 (Ubiquitin-

conjugating enzyme 19). Both proteins are known to play significant roles in various 

signalling and regulatory processes through dephosphorylation and ubiquitination of 

proteins, respectively [54]. Phosphorylation and ubiquitination have been identified as 

fundamental posttranslational modification processes controlling immune signalling 

pathways [55-58], which underscores the importance of these targets to be 

modulated by pathogens´ effectors for successful parasitism.  

In line with localization studies of HsCysL1-SP, the interaction between HsCysL1-SP 

and PTPLA could only be confirmed in cytoplasm, although PTPLA is assumed to be 

located in both, cytoplasm and nucleus, based on a SV40-like NLS [59, 60]. It is 

possible that HsCysL1 interacts with PTPLAs to promote their translocation into the 
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host´s nucleus: recently, it has been reported that dual specificity phosphatases [54, 

61], as well as Ser/Thr phosphatases, can dephosphorylate and inactivate stress-

activated mitogen-activated protein kinases (MAPKs) in plants [62, 63]. Even though, 

to date, only a single tyrosine-specific protein phosphatase (AtPTP1) 

dephosphorylating AtMPK4 has been characterized in plants [64, 65], the role of this 

phosphatase family should not be underestimated, especially since the role of dual-

specificity PTPs and PTPs in the inactivation of MAPKs has been widely reported in 

mammals [66, 67]. In Arabidopsis, MPK3 and MPK6 are positive regulators of plant 

defence responses and essential for resistance against several pathogens like 

Botrytis cinerea [68, 69] or H. schachtii [70] by inducing cell signalling cascades. 

Interestingly, during nematode migration inside the host plant and selection of the 

ISC, the host MAPK phosphatase AP2C1 is induced and plants lacking the gene of 

AP2C1 significantly reduced the susceptibility of A. thaliana towards H. schachtii [70], 

indicating that nematodes may enhance host phosphatase expression during the 

infection process to minimize MAPK activities, and therefore, signalling cascades 

within the plant. Interaction of MAPKs and AP2C3 has been shown to take place in 

the nucleus of host cells [62]. It could therefore be guessed, that HsCysL1 promotes 

the translocation of PTPLA into the host´s nucleus to affect MAPK-like proteins and 

thereby inactivate host´s signalling cascades. Indeed, detailed information about the 

molecular function of PTPLA in plants so far remains unknown. Regardless of 

biological function of HsCysL1-PTPLA interaction, depletion of PTPLA in Arabidopsis 

did not affect the susceptibility of the plant against H. schachtii, which is likely due to 

functional redundancy in PTPLA gene family in Arabidopsis. This would imply that 

there are other PTPLs present in Arabidopsis, which are not analysed so far, which 

are also able to interact with HsCysL1 and are therefore able to compensate for the 

function of PTPLA. Regarding this complex interaction, it would be worthwhile to 

analyse the susceptibility of the plant against H. schachtii after silencing HsCysL1. 

Based on the assumption that HsCysL1 could be involved in suppression of 

signalling cascades, lack of this putative effector would be expected to result in lower 

nematode infection. However, soaking nematodes in dsRNA of HsCysL1 did not 

result in reduced gene expression. Other specific silencing methods like small 

interfering RNA (siRNA) should still be used in future, to enable a better estimation of 

the function of HsCysL1. 
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UBC19 is known to act as an ubiquitin conjugating enzyme (E2-C), which seems to 

be specifically involved in cyclin B degradation, a regulatory protein playing an 

essential role during the mitotic cell cycle [71-73]. Cyclin B forms complexes with 

specific cyclin-dependent kinases (CDKs) and is known to be expressed during late 

G2-to-M transition, initiating the mitosis process. At the same time, destruction of 

cyclin B is essential to the progress of the cell to leave mitosis by affecting 

chromosome decondensation, nuclear envelope reformation and cytokinesis [74, 75]. 

Previously, studies showed that sister chromatid separation, rather than the 

inactivation of cyclinB/CDK complex, induces the transition between metaphase and 

anaphase [76, 77]. However, it was deduced that the same machinery being 

responsible for cyclin B destruction also destroys the linkage of sister chromatids 

[76], suggesting that both processes, cyclin B degradation and sister chromatid 

separation, are required for the exit from mitosis into G1 of the next cell cycle [78]. 

Inhibition of the ubiquitination machinery responsible for the degradation of cyclin B 

would arrest the cell in mitosis, resulting in DNA duplication without cytokinesis 

(endoreduplication). A human homolog of E2-C, termed UbcH10, has been shown to 

block cyclin ubiquitination and cause the destruction of one or more proteins 

responsible for sister chromatin separation, which causes endoreduplication in cells 

[71]. UBC19 is highly expressed in dividing cells and substitutes the function of 

UbcP4 in yeast [73], which is known to regulate both a G2/M and a 

metaphase/anaphase cell cycle progress [79, 80], accentuating the importance of 

UBC19 during the cell cycle and explaining the unavailability of knockout-lines in 

Arabidopsis.  

Endoreduplication is a well-accepted phenomenon in giant cells and syncytia, 

generating numbers of enlarged nuclei to sustain the enhanced metabolic activity in 

feeding cells [81, 82]. Increased expression of CDK-inhibitory Kip-related proteins 

(KRPs) [84] or the upregulation of anaphase-promoting complex (APC) components 

like CCS52A [84], which degrades cyclin B before entry into the M-phase, have been 

identified as key regulators switching the mitotic to the endoreduplication cycle. 

Based on the present data, we hypothesise that HsCysL1 may inhibit UBC19 in 

syncytium, resulting in an accumulation of cyclin B and arresting of the cells in 

mitosis until late G2 without onset of anaphase. This hypothesis is supported by 

previous studies showing an accumulation of cyclin B, as well as an enhanced DNA 

synthesis and enlarged nuclei in syncytium [85, 86]. Furthermore, an increased cell 
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division activity could also be observed in neighbouring cells of syncytia [87, 88], 

whereas no mitosis was observed in syncytia themselves [89]. Interestingly, an 

enhanced expression of cyclin B shifts from the initial syncytial cell during early 

stages to the cells surrounding the syncytium at later stages of syncytium 

development [90]. Maybe in addition to our previous hypothesis we therefore assume 

that an inhibition of UBC19 by HsCysL1 could also induce a higher mitotic activity in 

surrounding cells that are supposed to be incorporated during syncytium 

development.  

4.6 Conclusion 

Concluding our data we were able to identify a putative effector protein from H. 

schachtii, termed HsCysL1 that is uniquely found in plant-parasitic nematodes and 

has closest homology within cyst nematodes, highlighting the putative specificity of 

this effector in nematode parasitism. HsCysL1 is expressed in the secretory 

oesophageal gland cells and shows inhibitory involvement in plant defence and 

signalling. Expressed at different time points during syncytium establishment, 

HsCysL1 might influence signalling pathways and induces metabolic activity in 

syncytia and surrounding cells by interacting with PTPLA and UBC19, respectively. 

The presence of NLS and the depletion of the cystatin-motif tryptophan in the second 

half of the protein uniquely found in H. schachtii might significantly influence the 

multifunctionality of this effector protein and enable host-specific infection. However, 

evidences are missing so far and further analyses need to be conducted regarding 

the activation or inactivation of the target proteins in host cells and the detailed 

molecular function of these modifications by characterizing Arabidopsis plants 

overexpressing HsCysL1. Furthermore, putative inhibition of PLCPs in apoplast 

during the migratory stage should be examined through ABPP of Arabidopsis plants 

overexpressing HsCysL1+SP, which would hint to a dual function of HsCysL1.  
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Figure 1: (A) Phylogenetic tree showing HsCysL1-like homologues in different nematode 

species. The tree was generated as described in “Material and Methods”. The scale bar 

indicates 40% weighted sequence divergence. Pc (Pratylenchus coffeae); Hg (Heterodera 

glycines); Hs (Heterodera schachtii); Gr (Globodera rostochiensis); Gp (Globodera pallida); 

Na_Nab (Nacobbus aberrans); Ov (Onchocerca volvulus); Wb (Wuchereria bancrofti); Ll 

(Loa loa); Tt (Trichuris trichiura); Tp (Trichinella patagoniensis); Bm (Burgia malayi); Ls 

(Litomosoides sigmodontis); As (Ascaris suum); Tc (Toxocara canis); Ce (Caenorhabditis 

elegans); Na_XP (Necator americanus); Od (Oesophagostomum dentatum); Ad 

(Ancylostoma duodenale); Dv (Dictyocaulus viviparus); (B) Sequence alignment of HsCysL1 

with homologue sequence of H. glycines as well as P. infestans EPIC2B and EPIC1. Amino 

acid residues that are characteristic for cystatins are marked with asterisks.  
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Figure 2: (A) In situ hybridization showing localization of HsCysL1 in J2 of H. schachtii. (B) 

Quantitative RT-PCR revealing the expression of HsCysL1 during different developmental 

stages of H. schachtii. Asterisk indicates statistically significance when using P-value<0.05 

as threshold (Student´s t-test). Bars represent relative fold change with standard error of 

mean.  
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Figure 3: Confocal pictures showing (A) the A.  tumefaciens mediated transient expression 

of 35S::HsCysL1+SP_GFP that revealed apoplastic expression overlapping with mCherry-

apoplastic marker in N. benthamiana leaves and (B) the A. tumefaciens mediated transient 

expression of 35S::HsCysL1-SP_GFP that reveals cytoplasmic and nuclear expression in N. 

benthamiana leaves. (C) Amino acid sequence of HsCysL1+SP indicating the presence of a 

predicted NLS; signal peptide is underlined, the predicted NLS is highlighted in red and by 

asterisks. (D) Removal of NLS from HsCysL1-SP still resulted in cytoplasmic and nuclear 

expression of 35S::HsCysL1-SP_NLS_GFP in tobacco leaves. (E-F) Confocal pictures 

confirming the apoplastic localization of 35S::HsCysL1+SP_GFP (E) and 35S::HsCysL1-

SP_GFP (F) in leek. Bars=10µm. 
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Figure 4: Interaction of HsCysL1 with three target genes of Arabidopsis thaliana 

(HsCysL1/PTPLA (A), HsCysL1/UBC19 (B) and HsCysL1/OTU2 (C)) in yeast identified by 

Yeast-2-Hybrid screening. Murine p53 fused to binding domain (BD) interacts with T-antigen 

fused to activation domain (AD) and served as positive control (-53/-T). Lamin and T-antigen 

were used for negative control (-Lam/-T). Both, negative and positive control, are shown in 

each set (A-C). HsCysL1 as well as all three target genes were co-transformed with the 

empty vector of the corresponding interacting partner (HsCysL1/-AD (A-C); PTPLA/-BD (A); 

UBC19/-BD (B); OTU2/-BD (C)). Growth on low stringency medium (DDO) selects for 

expression of AD and BD constructs. In case of positive protein interaction α-galactosidase is 

encoded resulting in blue colonies in presence of X-α-Gal (DDO/X). Growth of all strains on 

high stringency medium including X-α-Gal and Aureobasidin (QDO/X/A) indicates interaction 

of the co-expressed proteins through blue coloured colonies that are able to grow because of 

induced encoding of aureobasidin resistance.  
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Figure 5: (A) Schematic illustration of the BiFC principle. (B-E) Confocal pictures showing 

BiFC results of HsCysL1-SP(B) and HsCysL1+SP(C) with both interacting partners, PTPLA 

(upper panel) and UBC19 (lower panel) in leek cells. SplitYFP-constructs of HsCysL1-SP (D, 

upper panel), HsCysL1+SP (D, lower panel), PTPLA (E, upper panel) and UBC19 (E, lower 

panel) were used to exclude autofluorescence. Same constructs were used to conduct BiFC 

in N. benthamiana leaves (F-I). Bars = 10µm. 

 

 

 

Figure 6: (A) Schematic illustration of PTPLA single-knockout line of A. thaliana 

(Salk_077395.41.15.x). Orange triangle indicates the location of T-DNA insertion. (B-C) 

Genotypic characterization of PTPLA single-knockout line N577395 (B) and expression 

analysis (C) of transgenic (PTPLA) compared to wildtype (WT) plants of A. thaliana Col-0. 

(D-E) Infection assay of PTPLA single-knockout line compared to wildtype (WT) indicating 

the average number of females and males per plant (D) as well as the average sizes of 

females and associated syncytia (E). Bars are shown with standard error of mean.  
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Table 1: Putative interacting targets of HsCysL1 identified through Yeast-2-Hybrid screening. 

 

 

 

 

ST1: Primer sequences used during experiments conducted in presented work.  
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5. Chapter 5  

General discussion 

As sedentary endoparasites, cyst nematodes remain inside the host root and feed 

from specifically induced feeding sites. Initiating this feeding site, while avoiding 

activation of host defence reactions, requires a dynamic process involving an active 

communication between the nematodes and their host plants. This communication 

between nematodes and their hosts is facilitated through the secretion of effector 

proteins synthesised in nematodes´ oesophageal glands. During the last decades, 

much effort has been investigated into studying the mechanism involved in induction 

of feeding cells by cyst nematodes. A number of effector proteins have been shown 

to be involved in reprogramming of the host cell on ultrastructural [1],transciptomic  

[2-4], metabolomic [5] and proteomic [6, 7] levels. Nevertheless, due to lack of 

technology, posttranslational modification, a process that substantially regulates the 

activity and therefore functionality of all cellular changes, could not be considered 

previously. Posttranslational modifications occur during or after the protein 

biosynthesis and include processes such as changes in pH or dephosphorylation, 

glycolisation and lipidation.  

Activity-based protein profiling (ABPP) analysis is a technology that identifies 

changes in activity of enzyme classes within a complex proteome, thus revealing 

functional information, which is difficult to find from traditional transcriptomic or 

proteomic data. ABPP uses small reactive probes, that are biotinylated or fluorescent 

tagged and react irreversibly with active site residues of proteins in an activity-

dependent manner. This way, only active proteins can be visualized as independent 

from their transcriptomic abundance [8]. Invented by Cravatt and Bogyo and co-

workers [9, 10] and comprehensively used in medical science [9-15], ABPP was 

introduced into plant science few years ago [16] and has already provided a wealth of 

information regarding plant-pathogen interaction. For example, this technology made 

it possible to demonstrate that the fungal AVR2 effector promotes susceptibility, not 

only for the biotrophic leaf mold fungus Cladosporium fulvum, but also for other 

pathogens like Botrytis cinerea and Verticillium dahliae, through the inhibition of 

several cysteine proteases required for plant basal defence [17]. Beside cysteine 

proteases, also other enzymes like serine hydrolases, vacuolar processing enzymes 

or proteasome subunits, being essential for the plant immunity system have been 
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shown to be affected by different virulent and avirulent factors [18-23]. However, 

changes of the active proteome during plant-nematode interaction remain yet 

unexplored. In this work, the impact of nematode infection on the activity of several 

host defence related proteins is displayed for the first time using ABPP. Furthermore, 

we described a putative effector protein found in H. schachtii that may not only alter 

protein activity observed during ABPP, but seem to play a surprisingly dual function 

in regulation of cell metabolism and suppressing signalling cascades. 

5.1. Activity of vacuolar processing enzymes (VPEs) is reduced upon 

nematode infection 

One of the main defence strategies employed of host plants is the induction of 

programmed cell death (PCD). Caspase activities are major mechanisms regulating 

the PCD. For example, in tomato, chemical-induced apoptosis induces caspase 

activity [24]; same effect was observed during bacterial infection in tobacco [25]. A 

vacuolar processing enzyme (VPE) was the first cysteine protease described in 

plants that exhibit caspase-1 activity and has been shown to be transiently activated 

in resistant tobacco leaves during tobacco mosaic virus (TMV) infection to induce cell 

death and confine the virus to a limited area [26]. Interestingly, silencing of VPE in 

these plants resulted in the suppression of the hypersensitive cell death leading to 

successful virus-infection. As obligate biotrophic organisms, plant-parasitic 

nematodes relay on living plant tissue and need to avoid the activation of the plant´s 

cell death machinery. The significant decrease of VPE activity in syncytia compared 

to non-infected roots, which we observed during ABPP, is therefore in line with 

previous findings [26-28], underscoring the importance of VPEs in plant basal 

immunity. 

5.2. Serine hydrolases (SHs) are involved in metabolic processes during 

nematode infection  

Changes of protein activity due to nematode infection were also observed within the 

serine hydrolase (SH) family in syncytium compared to non-infected roots. Serine 

hydrolases constitute one of the largest and most diverse enzyme families found in 

nature and are involved in many different physiological processes, including 

metabolism, development, and immunity [29-31]. Arabidopsis encodes hundreds of 

serine hydrolases that belong to dozens of large multigene families [32]. Although not 
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all SHs could be detected in our studies for technical reasons, we were able to 

highlight an increased activity in some interesting enzymes that may play essential 

roles during parasitism. S-formylglutathione hydrolase (SFGH) is an enzyme with a 

putative role in formaldehyde detoxification, a by-product of cellular metabolism of 

one-carbon compounds´ metabolism [33, 34]. Detoxification is therefore an essential 

mechanism to prevent cytotoxicity and maintain the vital function of host cells. During 

syncytium induction, metabolic activity in invaded cells is significantly altered as 

shown in different studies [1, 5, 35]. Through secretion of chorismate mutase for 

example, the invading nematode is able to regulate the synthesis of cellular aromatic 

amino acids and several secondary metabolites by influencing the shikimate pathway 

[35, 36]. Although the detailed function of SFGH in plants is not completely known, 

results given from bacteria and yeast [37, 38] indicate a similar detoxifying function of 

this protein in plants. Accordingly, an increased activity of SFGH in syncytium might 

play an essential role in the regulation of host´s metabolism for successful parasitism. 

Increased SFGH activity was also observed by Kaschani et al. [39] after infection of 

pad3 mutant of Arabidopsis with Botrytis cinerea. pad3 plants are deficient in 

camalexin production, a cytotoxin that usually protects the plants against the fungus. 

Even though B. cinerea is a necrotrophic fungus and does therefore not rely on living 

host tissue, infection by this fungus induces several metabolic changes in host 

tissues [40-42], which indeed supports the assumption of SFGH being involved in 

metabolic processes.  

In addition to SFGH also methylesterases (MES) showed an increased activity in 

syncytia compared to non-infected roots after ABP profiling. MES are thought to play 

a regulatory role in plant signalling cascades since they hydrolase methylated 

phytohormones like indoleactic acid (IAA), salicylic acid (SA), jasmonic acid (JA) or 

ethylene (ET) [43, 44]. Interestingly, during interaction with other pathogens the 

activity of MES in susceptible plants was downregulated, indicating that 

phytohormone signalling within the host should be avoided during infection [39, 45]. 

Recently, Kammerhofer et al. [46] observed an increased biosynthesis of JA-related 

genes during nematode migration within the roots but no altered SA-expression 

during early nematode infection. Indeed, at later time points the expression of SA 

marker genes PR-1, PR-2, and PR-5 was up-regulated in infected roots, suggesting a 

role for SA during nutrition acquisition stages of infection [46, 47]. These 

observations are also in line with previous findings indicating that SA is a key 
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component in the defence against biotrophic pathogens [48], whereas the JA/ET 

pathway is mainly activated during necrotrophic parasitism or cell destruction [48, 

49]. In addition to JA and SA, several studies have also shown a positive involvement 

of phytohormones, in particular IAA and ET, in attracting nematodes and establishing 

feeding sites [50-55]. Similar positive role for other growth promoting phytohormones 

like gibberellin (GA) or cytokinin (CK) in syncytium formation is also being suggested 

[56-58]. Taken together, phytohormones play diverse roles during plant-nematode 

interaction that have not yet been clarified to full extent. Based on our data and 

previous literature, we propose that increased MES activity is required to meet the 

increased demand of phytohormones, particularly those involved in growth promotion 

such as IAA during syncytium formation. However, a detailed functional analysis 

using loss-of-function and overexpression lines is required to shed light on the utility 

of MES´ exceptional increased activity in nematode-induced feeding cells. 

5.3. The plant proteasome constitutes a defence mechanism that is 

circumvented by H. schachtii 

As one of the main proteolytic degradation machineries of the plant, the 26S 

proteasome is involved in almost every cellular process, including the activation of 

defence response against pathogens [59]. The proteasome consists of a 20S core 

protease (CP) and a 19S regulatory particle (RP) and is located in the cytosol and 

nucleus [60]. Proteins that need to be degraded by the plant become ubiquitinated 

and accepted by the RP. The RP unfolds the proteins and transfers them into the CP, 

where three catalytic subunits (β1, β2, and β5) are responsible for the degradation of 

the polypeptide chains into small peptide substrates of 3-20 amino acids [22, 61]. 

This ubiquitin/proteasome pathway appears to be involved in different steps of the 

phytohormone signalling cascades [62-65], but has also been shown to obtain 

catalytic RNAse activity [66, 67] implicating the proteasome in plant antiviral defence. 

Several virus movement proteins such as from Tobacco mosaic virus (TMV) [68], 

Turnip yellow mosaic virus (TYMV) [69] and Potato leafroll virus (PLRV) [70] have 

been shown to be degraded by the 26S proteasome pathway. Other pathogens 

would also initiate the proteasome activity due to host´s defence response and need 

to suppress it to promote infection. Strains of Pseudomonas syringae pv. syringae 

secrete syringolin A, which irreversibly inhibits all three catalytic subunits of the 

host´s proteasome [23, 71]. Contrary to viral and bacterial infection, information about 
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the proteasome activity during plant-nematode interaction is limited. A ubiquitin 

carboxyl extension protein from the potato cyst nematode Globodera rostochiensis 

(GrUBCEP12) is processed into free ubiquitin and a CEP12 peptide in planta [72]. 

Changes in the cellular ubiquitin level induce altered proteasome composition [73] 

and the suppression of RPN2a, a gene encoding a subunit of the 26S proteasome, in 

GrUBCEP12 overexpression lines also hints to a direct involvement of this effector 

protein in suppressing plant immunity by manipulating the functionality of the host 

26S proteasome [72]. In resistant plants infected by H. glycines the expression of 

RPN2a is upregulated [74], leading to similar conclusions. According to our results 

from ABPP, also H. schachtii is able to suppress the proteasomal activity during 

syncytium establishment. While genes encoding for proteasomal subunits were 

shown to be upregulated in syncytium [2], the activity of β1, β2, and β5 was reduced in 

syncytium shown by the vinyl sulfone (VS)-based probe MV151. Similar observations 

were made during exogenous application of a proteasome inhibitor in Arabidopsis 

leaves, which led to the accumulation of the proteasome subunit genes [75]. 

However, detailed functional knowledge about the involvement of proteasome in 

plant-nematode interaction as including involvement of effector proteins in the 

inactivation remains missing. Considering the diverse cellular processes in which the 

plant proteasome is involved, it is difficult to create mutations affecting one of the 

central players of the proteasome functions. 

5.4. Heterodera schachtii suppresses several papain-like cysteine proteases 

(PLCPs) to enable infection 

In addition to the proteasome, the probe MV151 is also able to target papain-like 

cysteine proteases (PLCPs) and therefore to provide information about their activity 

during different biological events. PLCPs constitute a big class of proteolytic enzymes 

in plants associated with different cellular processes such as development, 

senescence and immunity, whereas only a comparably small number of PLCPs has 

been described in detail [76]. Because of their stable structure, which consists of an 

alpha-helix and a beta sheet domain, these proteins can resist proteolytically harsh 

environments and are therefore mainly found in the apoplast, the vacuole and 

lysosomes [77, 78]. Considering that the plant apoplastis invaded by many 

pathogens, this compartment of the cell is like a molecular battlefield that contributes 

to deciding successful parasitism or plant resistance. Therefore, it is not surprising 
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that PLCPs have garnered more attention in several studies regarding plant-

pathogen interaction. PLCPs are shown to use catalytic cysteine residues to cleave 

peptide bonds in proteins and might play essential roles in defence, but also act 

during signalling cascades. For example, the plant PLCP cathepsin B is required for 

the development of the hypersensitive response in Nicotiana benthamiana, and the 

secreted protease CDR1 probably releases systemic signalling molecules that initiate 

defence responses in Arabidopsis thaliana. The suppression of PLCPs is 

correspondingly imperative for pathogens to induce infection. Our findings regarding 

the inhibition of several PLCPs, namely, the mature and intermediate form of RD21 

(mRD21 and iRD21), XCP2 and a cathepsin B-like protease, in syncytia induced by 

H. schachtii are in line with this assumption. Further support is given by Lozano-

Torres et al. [79] who exhibited an increased infection of PLCP knockout lines of 

Arabiopsis plants through H. schachtii.  

RD21 (Responsive to Desiccation 21) is a PLCPs that was found to be expressed 

during senescence [16, 80]. RD21 is located in ER-bodies that fuse with the vacuole 

upon stress [81]. During hypersensitive response the vacuolar content is released 

[82] and RD21 is therefore thought to be involved in this process, although the exact 

function of this PLCP remains unknown. Lack of RD21 in Arabidopsis did not affect 

the susceptibility of the plant against the biotrophic oomyete Hyaloperonospora 

arabidopsidis or against hemitrophic bacteria P. syringae. However, the necrotrophic 

fungus Botrytis cinerea showed increased infectivity in the absence of RD21, 

indicating that this cysteine protease might play a role in the defending against 

necrotrophic pathogens [83]. Interestingly, the genome of B. cinerea does not seem 

to encode obvious inhibitors of PLCPs [84, 85], which may be due to the fact that this 

fungus infects a wide unspecialized host range and rather post-harvest fruits than 

healthy leaves [86]. This is in contrast to the biotrophic pathogens, which have been 

shown to be armed with tools to suppress cysteine proteases. The biotrophic fungus 

Cladosporium fulvum secretes an effector protein Avr2 that inhibits, among others, 

the extracellular PLCP Rcr3pim of Solanum pimpinellifolium, which itself is essential 

for the function of the tomato resistance gene Cf-2 [87, 88]. Phytophthorainfestans 

was also found to secrete PLCP inhibitors during tomato infection to suppress the 

activity of Rcr3 and PIP1, two closely related PR proteins [89, 90]. These effectors, 

EPIC1 and EPIC2B, obtain cystatin motifs, which are known to inhibit cysteine 

proteases.    
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5.5. Cystatins inhibit PLCPs 

The investigation into biological function of cystatins keeps researchers busy for 

many years. The first identified and characterized phytocystatins were oryzocystatin I 

[91] and II [92]. Those plant deriving cystatins are involved in the regulation of 

storage proteins during development and germination and is also involved in other 

physiological plant processes, including programmed cell death [93], fruit 

development [94], and defence responses [95-97]. Three motifs found in all cystatins 

enable a three-point interaction with their target protein and are therefore 

characteristic for their inhibitory function: (i) the highly conserved QxVxG motif, (ii) a 

tryptophan near the carboxy-terminal, and (iii) a conserved glycine residue [98, 99]. 

Interestingly, both host and invader use proteins with a cystatin-like structure to 

combat each other. Previous reports describe the inhibition of digestive proteins by 

cystatins during insect infestation [100, 101], whereas pathogens have also been 

shown to use host cystatins for their own benefit as compatibility of susceptibility 

factor. The Arabidopsis cystatin, AtCYS1, for example, is induced by wounding or 

from avirulent pathogen attack and suppresses hypersensitive cell death [93]. Also, 

the biotrophic maize smut pathogen Ustilago maydis benefits from the maize gene 

Cystatin 9 (Corn Cystatin-9 [CC9]), as this host compatibility factor inhibits apoplastic 

cysteine proteases and therefore suppresses maize immunity to U. maydis [102]. 

However, pathogens also obtain effector proteins with cystatin-like structure, as 

indicated by EPIC1 and EPIC2B of P. infestans. Accordingly, we assume that H. 

schachtii might also elicit cystatin-like effector proteins as the activity of several 

PLCPs was reduced in syncytia compared to non-infected roots.  

5.6. A putative effector found in H. schachtii obtains cystatin characteristics 

Using bioinformatics approaches we found a gene transcript in the genome of H. 

schachtii (HsCysL1) that contains cystatin motifs and a secretory signal peptide but 

no transmembrane domain, indicating that this putative effector protein is 

translocated through the nematode´s secretory pathway. Sequence alignment 

studies revealed homologues in other cyst nematodes such as H. glycines, G. 

pallida, and G. rostochiensis, but interestingly two main features were only present in 

the genome of H. schachtii: First, the characteristic cystatin motif of a tryptophan 

(Trp) near the carboxy-terminal is missing in HsCysL1 but present in the homologues 

of all other species. Bacterial studies have shown that the positions of Trp within a 
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three-dimensional structure of proteins are highly conserved and take active parts in 

the translocation of proteins through the membrane [103, 104]. Due to a hydrophobic 

benzene ring and a spatially separated aromatic indole side chain, Trp obtains two 

contrary characters that can take place independently [105, 106]. By its lipophilic 

nature, Trp is assumed to facilitate the translocation of the periplasmic portion of a 

protein and thereby determine the orientation of the protein in the membrane. 

Afterwards, the aromatic chain likely helps anchor the protein through hydrogen 

bonding [106]. The addition or depletion of Trp residue could strongly affect the 

structure and orientation of a protein and therefore also its function. The missing Trp 

in the genome of H. schachtii could substantially contribute to the secretion and 

localization of HsCysL1 apart from cell membranes. Furthermore conserved Trp 

residue in Domain IV of a gain-of function mutant of iaa (Osiaa23) has recently 

shown to be responsible for the protein-protein interaction between AUX/IAA and 

ARF and therefore for the suppression of auxin synthesis [107]. Accordingly, the 

depletion of Trp in HsCysL1 could also be considered as a strategy to circumvent the 

formation of protein complexes either to promote protein expression, or to avoid 

being recognized by the host and induce host´s immune response. In addition to the 

depleted Trp the sequence of HsCysL1 is the only homologue among all tested 

species that contains a nuclear localization sequence (NLS). Considering the lack of 

a lipophilic Trp, both features could go hand in hand to enable HsCysL1´s 

translocation to the nucleus of the host tissues. The fact that those two sequence 

characteristics are uniquely found in H. schachtii supports its potential to play key 

role in specialized parasitism. 

5.7. HsCysL1 may have a surprisingly dual function during syncytium 

establishment 

The conserved cystatin motifs present in HsCysL1 suggest that HsCysL1 might have 

a cystatin-like function and is secreted to suppress plant immunity via inhibiting 

PLCPs. Our results show that HsCysL1 is expressed in the oesophageal gland cells 

of the nematode supporting the hypothesis that it is a putative effector protein. 

Oesophageal gland cells have previously shown to be active at different times during 

infection. Whereas the two subventral gland cells are mainly active in the preparasitic 

juveniles, which corresponds to the migratory phase and the initiation of the feeding 

cell, the activity of the dorsal gland cell dramatically increases at the onset of the 
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parasitic life stages [108, 109]. Although, we were not able to determine the define 

gland cell in which HsCysL1 is expressed, the qRT-PCR results showed that 

HsCysL1 is expressed throughout all tested developmental stages (J2, 5dpi, 10dpi) 

with highest expression at 5dpi. Furthermore, we observed different localization of 

HsCysL1 in the host cell when the signal peptide was removed. The HsCysL1 

construct containing the signal peptide (HsCysL1+SP) got transferred into the 

apoplast, whereas HsCysL1-SP showed a cytoplasmic and nuclear localization, 

indicating that the nematode origin signal peptide is also functional in plant secretory 

pathway. Similar results were also found by Jaouannet et al. [110], who also 

identified apoplastic and cytoplasmic distribution, respectively, depending on the 

signal peptide of the secreted calreticulin effector of M. incognita (Mi-CRT).  Based 

on these results, HsCysL1 appears to have a dual function. Being expressed during 

the migratory phase and secreted into the apoplast, we assume that HsCysL1 

interacts with PLCPs, which are highly expressed in the apoplast, to suppress host 

defence responses. However the expression of HsCysL1 reaches its maximum at 5 

dpi when syncytium is established and needs to be expanded. This increased 

expression at 5 dpi suggests that HsCysL1 may play a role in syncytium formation 

other than inhibition of PLCPs. 

5.8. Target genes of HsCysL1 reveal an involvement in signalling and 

regulatory processes 

Indeed, we were able to identify two proteins located in the cytoplasm, PTPLA and 

UBC19, as interacting targets of HsCysL1. Both proteins are known to be key factors 

during various signalling and regulatory processes through dephosphorylation and 

ubiquitination of proteins [111-115]. PTPLA is assumed to be localized in both cell 

compartments - cytoplasm and nucleus - due to a SV40-like NLS [116, 117]. 

Combined with previous findings concerning the inhibitory effect of PTPs on stress-

activated MAP-kinases, this attribute hints to a second suggestion: being targeted by 

HsCysL1, PTPLA could be activated and/or guided to the nucleus to fulfil its function 

of inhibiting MAPK induced signalling cascades. Considering the nuclear expression 

of the GFP tagged HsCysL1-SP after removing NLS and the exclusively cytoplasmic 

interaction between PTPLA and HsCysL1, this latter hypothesis seems to be the 

more likely one. PTPLA is the only protein tyrosine phosphatase in which the active 

motif HCxxGxxP contains an arginine-to-proline replacement [117], suggesting a high 
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protein interaction specificity. However, the absence of PTPLA in Arabidopsis did not 

affect the susceptibility of the plant against H. schachtii, which may be explained by 

redundant function of PTPLA by other PTPLs present in Arabidopsis. Even though 

evidences for detailed molecular function of PTPLA are missing, the interaction 

between HsCysL1 and PTPLA seems to be an important mechanism to initiate 

syncytium formation. 

UBC19 seems to be substantially involved in the endoreduplication, a well-accepted 

phenomenon observed in giant cells and syncytia, which describes the process of 

cell division, including DNA duplication, but without cytokinesis [118, 119]. Studies 

regarding the molecular function of UBC19 are rare. However, UBC19 is expected to 

act as an ubiquitin conjugating enzyme (E2-C) degrading cyclin B, a regulatory 

protein playing an essential role during the mitotic cell cycle [120-122]. Destruction of 

cyclin B progresses the cell to leave the mitotic phase and to initiate the entry into G1 

of the new cell cycle [123, 124]. The accumulation of cyclin B and an enhanced 

progress of mitosis until late G2 in nematode feeding sites [125, 126] indicate the 

inhibition of UBC19 through nematode effector proteins. Consequently, the cell would 

be arrested in mitosis, resulting in a multinuclear cell with enhanced metabolic 

activity. Also neighbouring cells seem to be affected by a cyclin B accumulation in 

syncytium, as the cyclin B expression increases substantially in syncytium 

surrounding cells [50]. Furthermore, previous findings described an increased cell 

division activity in neighbouring cells [1, 127] correlated with increased expression of 

UBC19 in dividing cells [128], which in total promotes high metabolic activity in cells 

that are going to be incorporated into the syncytial structure. Accordingly, the 

accumulation of cyclin B and associated with the inhibition of UBC19 seems to be the 

most likely function of HsCysL1-SP regarding the interaction with UBC19. 

Nevertheless, a more detailed functional characterization would be needed to know 

the precise role of UBC19 during plant-nematode interaction. In this context, 

characterization of a knockout mutant would have been very useful. However, no 

loss-of-function mutant is available for UBC19. Therefore, it will be important in the 

future to generate and characterize lines overexpressing UBC19.  

Regarding this work it would be worthwhile to invest more effort in analysing the 

molecular function of HsCysL1. Arabidopsis plants overexpressing this effector, 

which are currently in progress, constitute an encouraging fundament for future 
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research. ABPP using the proteome of these plants could provide exciting insights 

into the posttranslational modification of PLCPs and other proteins and may support 

our hypothesis of HsCysL1 having a multiple function during infection. Furthermore, 

infection assays comparing HsCysL1 overexpression lines with Arabidopsis wildtype 

plants could reveal knowledge about the importance of this effector protein in terms 

of successful parasitism.  

Conclusively, one should consider that successful parasitism is the result of a highly 

complex interaction between pathogen-derived effectors and host-derived defence 

proteins. Evolutionary induced both interacting partners have developed an 

enormous diversity of proteins that combat each other. Displaying the altered protein 

activity of various enzymes in syncytium as well as the identification and 

characterization of a single effector protein of H. schachtii does not even 

rudimentarily complete the molecular understanding of nematode infection, but it 

enables the contribution to an exciting chapter of host-parasite interaction.  
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6. Summary 

Sedentary cyst nematodes are of high economic interest as they can cause 

substantial yield losses in important crop plants. Due to their complex soil-based life 

cycle and severe restrictions on the application of nematicides management 

strategies are rare. To date, resistant plants are the most effective and economically 

as well as environmentally reasonable alternative to chemical control agents. 

However, nematodes are evolutionarily able to overcome the resistance after some 

time, facing researchers with the challenge to breed new resistant lines. Therefore, 

knowing the details of the interaction between plant and pathogens is fundamentally.  

Cyst nematodes establish a highly complex long-term relationship with their hosts 

that requires massive cytological modifications of the host cell to form a syncytial 

feeding structure. Therefore, plant defence mechanisms need to be circumvented by 

the nematode. Using their stylet, cyst nematodes introduce a mixture of different 

effector proteins into the host cells that manipulate the activity of host derived 

proteins. Since enzymes are only functional in their active form, one objective of 

presented work was to visualize spezific proteins of the active proteome of syncytium 

induced by Heterodera schachtii in Arabidopsis roots. Using Activity-based Protein 

Profiling (ABPP) it could be shown that the activity of serine hydrolases are differently 

regulated, whereas the activity of vacuolar processing enzymes (VPEs) is supressed 

in syncytium. Furthermore Papain-like cysteine proteases (PLCPs) and all catalytic 

proteasomal subunits, both known to be involved in plant defence, are suppressed in 

case of successful parasitism.  

PLCPs are inhibited by cystatins, which guided to the second main objective of 

presented work: the identification and functional characterization of a putative 

cystatin-like effector protein in H. schachtii (HsCysL1). HsCysL1 shows involvement 

in plant defence and signalling by interacting with PTPLA (Protein tyrosine 

phosphatase-like A) and UBC19 (Ubiquitin-conjugating enzyme 19). Both proteins 

are known to play significant roles in various signalling and regulatory processes. 

Although these findings do not rudimentarily complete the understanding of the 

complex plant-nematode interaction, they definitely open an exciting chapter for 

researchers to find new management strategies against cyst nematodes.  
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7. Zusammenfassung 

Sedentäre Zystnematoden sind von großer Bedeutung, da sie erhebliche 

Ertragsausfälle in landwirtschaftlichen Kulturen verursachen können. Aufgrund ihres 

komplexen, bodenbürtigen Lebenszyklusses und strengen Auflagen bei der 

Anwendung von Nematiziden sind Bekämpfungsstrategien rar. Resistente Pflanzen 

stellen die effizienteste und ökonomisch wie auch ökologisch vertretbarste Alternative 

zur chemischen Bekämpfung dar, allerdings sind Nematoden nach einiger Zeit in der 

Lage, Resistenzen zu durchbrechen. Dadurch stehen Forscher kontinuierlich vor der 

Herausforderung, neue resistente Pflanzen zu züchten. Detailliertes Wissen über die 

Interaktion zwischen Pflanze und Pathogenen ist daher essentiell. 

Zystnematoden entwickeln hochkomplexe Langzeitbeziehungen mit ihren Wirten, 

was die Bildung eines Nährzellensystems durch massive Veränderungen der 

Wirtszellen voraussetzt. Dazu muss die pflanzliche Abwehr vom Nematoden 

umgangen werden. Mittels ihres Mundstachels geben sie verschiedene 

Effektorproteine in die Wirtszelle ab, die die Aktivität von Proteinen beeinflussen. Da 

Enzyme nur in aktive Form funktionieren, war ein Ziel der vorgestellten Arbeit, das 

aktive Proteom eines Syncytiums darzustellen. Durch Activity-based Protein Profiling 

(ABPP) konnte gezeigt werden, dass die Aktivität von Serinhydrolasen 

unterschiedlich reguliert wird, während die von vakuolar verarbeitenden Enzymen 

(VPEs) im Syncytium runterreguliert ist. Des Weiteren sind Papain-ähnliche 

Cysteinproteasen (PLCPs) sowie alle katalytischen Untereinheiten des Proteasoms 

runterreguliert; beide Enzymgruppen sind wichtig für die pflanzliche Abwehr.    

PLCPs werden durch Cystatine gehemmt, was zum zweiten Hauptpunkt der 

vorliegenden Arbeit führte: die Identifizierung und funktionelle Charakterisierung 

eines cystatin-ähnlichen Effektorproteins in H. schachtii (HsCysL1). HsCysL1 zeigt 

eine Beteiligung an der pflanzlichen Abwehr und Signalwegen durch die Interaktion 

mit PTPLA (Protein-Tyrosinphosphatase-ähnlich A) und UBC19 (ubiquitin-

konjugierendes Enzym 19).   

Auch wenn diese Erkenntnisse nicht annähernd einen Gesamtüberblich über die 

komplexe Interaktion zwischen Nematoden und Pflanzen geben können, eröffnen sie 

dennoch spannende Möglichkeiten für Forscher, neue Bekämpfungsstrategien gegen 

Zystnematoden zu entwickeln.  
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