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Abstract

With computer-assisted geostatistics and data mining methods, digital soil mapping
(DSM) offers new possibilities for providing soil spatial information for data scarce
areas such as West Africa. Such information could also be essential for understanding
tropical soil organic carbon (SOC) sequestration potentials and dynamics. However,
the level of accuracy depends on the statistical model selected, the choice of which is
not clear from the first for such environments. Moreover, for datasets with imbalanced
soil orders; prediction of reference soil groups (RSG) using a DSM approach often
biased towards the majority soil order class. I hypothesized that (i) statistical models,
which are able to handle both linear and unlinear patterns in data, will provide higher
prediction accuracy than those geared towards linear patterns, (ii) pruning the major
soil group - the Plinthosols - will result in increased prediction accuracy of the minor
RSG, (iii) sites with savannah (SA) and related RSG will present larger SOC stocks
than cropland (CR), however, (iv), with land use change (LUC) also the Plinthosols
are prone to rapid SOC losses from bulk soil and primarily from coarse particle-size
fractions.

To test these hypotheses, I sampled sites within both CR and SA across different RSG
in the Dano catchment. For the DSM of soil properties (sand, silt, clay, CEC, SOC, N)
in the topsoil (0 - 30 cm), four statistical prediction models — multiple linear regression
(MLR), random forest regression (RF), support vector machine (SVM), stochastic
gradient boosting (SGB) — were used and compared. To reduce the risk that the spatial
prediction of the RSG was biased by the majority class — the Plinthosols — I used a
data pruning approach, accounting for 80 %, 90 % and standard deviation core range
of the Plinthosols data, respectively, while cutting off all data points belonging to the
outer range. Random Forest was used as a robust data mining method along with its
recursive feature elimination option to evaluate the performance of these different data
subsets. The final assessment of SOC stocks was conducted by considering its
variation in CR and SA and in various RSG at different depths. The spatial distribution
of SOC stocks as well as the main related factors were then again elucidated using
Random Forest. For understanding the temporal dynamics of SOC storage, I
investigated a false chronosequence of Plinthosols that had been converted from SA to
CR at a duration between 0 and 29 years.

For the DSM of soil properties, results showed from the performance statistics that the
machine learning techniques (RF, SVM, SGB) performed marginally better than the
MLR, with the RF providing in most cases the highest accuracy. The lower
performance of the MLR is attributed to its failure in accounting for non-linear
relationships between response and predictor variables. The satellite data acquired
during ploughing or early crop development stages (e.g. May, June) were found to be
the most important spectral predictors, while elevation, temperature and precipitation
came up as prominent terrain/climatic variables.

Upon the data pruning, the best predictions were observed when removing all PT
points lower than 5 % and higher than 95 % of the cumulative percentage of the most
important variable (wetness index). Modelling was then conducted solely with terrain



and spectral parameters (TSP) with optimal predictors resulting from RF recursive
feature elimination. The resulting prediction model provided a substantial agreement
to observation, with a kappa value of 0.57 along with a 35 % increase in prediction
accuracy for Cambisols, 16 % for Stagnosols and 7 % for Gleysols. The SAGA
wetness index (S.Wet.Ind) was the most important variable driving the RSG
suggesting that the humidity regime is a key discriminatory element among the RSG.

The SOC stock distribution in the topsoil revealed a slightly larger SOC stock in the
savannah sites (41.4 t C ha™) than in the cropland (39.1 t C ha™). Contrastingly, in the
subsoil, a significant difference (p < 0.05) was observed between the CR recording a
larger SOC stock of 40.2 t C ha'l, while the subsoil of the SA sites contained only 26.3
t C ha', on the average. Among the RSG, the Gleysols located at lower elevation
positions revealed the largest SOC stocks over 0 - 30 cm (44 t C ha™') and 100 cm
depth (86.6 t C ha™). Silt was the most abundant soil particle in the topsoil and was
identified by the RF model as the most important factor related to the spatial
distribution of the SOC stock, probably via its influence on soil moisture preservation
and SOC storage via aggregation. Precipitation was found as the major factor related
to subsoil SOC stock distribution. As the subsoils were also enriched in clay, the
vertical transport of SOC rich sediments under tropical heavy rains likely accompanied
major soil forming process in the landscape.

The LUC in the chronosequence Plinthosols triggered losses in SOC stock of 24 t C
ha from the upper 10 cm and 49 t C ha™' from the upper 30 cm. Thus, about 66 % (0 -
10 cm; p < 0.01) and 55 % (0 - 30 cm; p < 0.01) of the initial stock in the native
vegetation had been released after 29 years of cultivation. Also, subsoil was found to
be vulnerable to LUC, with SOC losses amounting on average to 0.7 to 19.5 t C ha™
from the 30 - 100 cm depth interval. Losses of SOC occurred from all particle-size
fractions with a mean residence time of SOC generally decreasing with increasing
equivalent diameter of the particle-size fraction. In this study, I could not confirm Fe
oxides as key factor influencing SOC stock stabilization, because only an average of
16 % of the total SOC stock were apparently bound to Fe.

In summary, DSM at local scale using RF with remote sensing data resulted in
reasonable prediction accuracy for a large array of soil properties and RSG within a
highly heterogeneous landscape. Data pruning proved to be efficient in a context
where a RSG belonging to a wide range of terrain parameters overlapped with those
related to only few RSG units. The SOC stocks as quantified in the present study
reinforce the view that the semi-arid ecosystems of West Africa still offer an
opportunity for carbon sequestration and these results represent a baseline for future
modelling of SOC dynamics in the region. LUC from natural savannah to permanent
cropland, however, affects both topsoil and subsoil SOC though the latter is scarcely
considered in the impact analysis of LUC in Africa.
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Kurzfassung

Mit Hilfe Computer-basierter Methoden der Geostatistik und Datenbankauswertung
bietet die digitale Bodenkartierung (digital soil mapping, DSM) neue Moglichkeiten
zur Bereitstellung rdumlicher Bodeninformationen fiir Regionen wie West Afrika, in
denen solche Informationen nicht oder nur teilweise vorhanden sind. Diese
Informationen konnen auch wichtig sein fiir die Abschitzung der Speicherkapazitit
und -dynamik von organischem Kohlenstoff (soil organic carbon, SOC) in tropischen
Boden. Allerdings hingt die Genauigkeit vom gewihlten statistischen Modell ab,
dessen richtige Wahl fiir solche Umweltbedingungen anfangs nicht klar ist. Dariiber
hinaus ist die Vorhersage von Bodentypen (reference soil groups, RSG) durch digitale
Bodenkartierung auf Grundlage von Datensédtzen mit ungleich verteilten Bodentypen
oft beeinflusst durch einen einzelnen dominanten Bodentyp. Meine Hypothesen sind,
dass (i) statistische Modelle, die mit linearen und nicht-linearen Mustern in
Datensitzen umgehen konnen, bessere Genauigkeiten bei der Vorhersage erreichen als
die Modelle, die auf lineare Muster ausgerichtet sind, (ii) das statistische Beschneiden
der Daten des dominanten Bodentyps (Plinthosol, PT) zu einer erhohten
Vorhersagegenauigkeit der anderen Bodentypen fiihrt, (iii) Bdden an Savanne-
Standorten (SA) durch groBere Bodenkohlenstoffvorrite charakterisiert sind als Boden
unter Ackerland (cropland, CR), und (iv) mit einer Landnutzungsinderung (land use
change, LUC) von Savanne zu Ackerland auch Plinthosole zu einem schnellen Verlust
an organischem Bodenkohlenstoff neigen, und zwar insbesondere in den groberen
Fraktionen der partikuldren organischen Substanz.

Um diese Hypothesen zu testen, habe ich im Dano-Einzugsgebiet Standorte mit den
Landnutzungen CR und SA und verschiedenen RSGs beprobt. Fiir die digitale
Bodenkartierung der Bodeneigenschaften (Sand, Schluff, Ton, CEC, SOC, N-gesamt)
im Oberboden (0 - 30 cm) wurden vier statistische Vorhersagemodelle genutzt und
verglichen: multiple linear regression (MLR), random forest regression (RF), support
vector machine (SVM), stochastic gradient boosting (SGB). Um das Risiko zu
reduzieren, dass die Vorhersage der RSGs von der dominanten Klasse (Plinthosols)
beeinflusst wird, wurde ein statistischer Ansatz zum Beschneiden der Daten genutzt.
Dabei wurden die unteren und oberen 5 % und 10 % sowie die Bereiche auflerhalb der
Standardabweichung der Plinthosol-Daten beschnitten, so dass nur die Daten innerhalb
der genannten Grenzen genutzt wurden. Random Forest wurde als robuste Methode
zur Datenauswertung genutzt. Die letztendliche Einschidtzung der Kohlenstoffvorrite
wurde unter Beriicksichtigung ihrer Variation in CR- und SA-Flichen und in
verschieden RSGs in unterschiedlicher Tiefe vorgenommen. Die rdumliche Verteilung
der Kohlenstoffvorrite und der damit zusammenhingenden Faktoren wurde dann
erneut durch Random Forest und MLR erklidrt. Um die zeitliche Dynamik von SOC-
Vorrdten zu verstehen, wurde eine falsche Chronosequenz von Plinthosolen
untersucht, deren Nutzung sich von SA zu CR iiber unterschiedliche Zeitraume (0 — 29
Jahre) gedndert hat.

In Bezug auf die digitale Bodenkartierung der Bodeneigenschaften zeigte sich, dass

die machine learning techniques (RF, SVM, SGB) geringfiigig besser abschneiden als
MLR, wobei RF in den meisten Fillen die hochste Genauigkeit erreichte. Das
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schlechtere Abschneiden von MLR liegt wahrscheinlich daran, dass es nicht-lineare
Beziehungen zwischen Ergebnisvariablen und Einflussvariablen nicht wiedergeben
kann. Die Satellitendaten, die wéhrend der Phase des Pfliigens oder der frithen
Pflanzentwicklung (z.B. Mai, Juni) aufgenommen wurden, stellten sich als wichtigste
spektrale Pridikatoren heraus, wihrend Geldndehohe, Temperatur und Niederschlag
wichtige Geldnde-/Klimavariablen bildeten.

Im Hinblick auf das Beschneiden der Daten wurden die besten Vorhersagen erreicht,
wenn alle PT-Punkte kleiner als 5 % und groBer als 95 % des kumulativen Anteils der
wichtigsten Variable (wetness index) entfernt wurden. Die Modellierung wurde dann
nur mit Gelindeparametern und spektralen Parametern (terrain and spectral parameter,
TSP) durchgefiihrt und zwar mit optimalen Préddiktoren aus der RF-Regression. Das
daraus resultierende Modell zeigte eine gute Ubereinstimmung von Vorhersage und
tatsdchlicher Beobachtung; der Kappa-Wert erreichte dabei 0.57 und die
Vorhersagegenauigkeit stieg an um 35 % fiir Cambisols, 16 % fiir Stagnosols und 7 %
fiir Gleysols. Der SAGA wetness indes (S.Wet.Ind) war fiir die Vorhersage der RSGs
die wichtigste erklidrende Variable. Das Feuchteregime kann also als diskriminierendes
Schliisselelement zwischen den RSGs angesehen werden.

Die SOC-Vorrite im Oberboden waren an Savanne-Standorten (41.4 t C ha™) leicht
hoher als an Ackerstandorten (39.1 t C ha'l). Im Gegensatz dazu waren im Unterboden
die SOC-Vorrite bei CR signifikant hoher (40.2 t C ha™) als bei SA (26.3 t C ha™).
Unter den RSGs zeigen Gleye, die in niedrigeren Geldndelagen zu finden sind, die
grofiten SOC-Vorrite in 0 - 30 cm (44 t C ha'l) und O - 100 cm Tiefe (86.6 t C ha'l).
Schluff war die am meisten verbreitete Korngrée im Oberboden und wurde vom RF-
Modell als wichtigster Faktor fiir die rdumliche Verbreitung der SOC-Vorrite
identifiziert; dieses ist wahrscheinlich zuriickzufiihren auf den positiven Einflu} dieser
KorngroBe auf die Wasserhaltefihigkeit und auf die Aggregierung organo-
mineralischer Partikel. Der Niederschlag bildete den wichtigsten Faktor fiir die
Verteilung der SOC-Vorrite im Unterboden. Da der Unterboden oft durch eine
Tonanreicherung gepridgt war, kann der vertikale Transport von kohlenstoffreichen
Sedimenten bei tropischem Starkregen hier als ebenfalls wichtiger bodenbildender
Prozess angesehen werden.

Der Landnutzungswandel hin zu Ackerland fiihrte bei den untersuchten Plinthosolen
zu SOC-Verlusten von 24 t C ha™ in den oberen 10 cm und 49 t C ha™ in den oberen
30 cm. So wurden ca. 66 % (0 - 10 cm; p < 0.01) und 55 % (0 - 30 cm; p < 0.01) des
anfinglichen Kohlenstoffs unter natiirlicher Vegetation durch 29 Jahre
landwirtschaftlicher Nutzung freigesetzt. Auch der Unterboden war anfillig fiir
Landnutzungsinderungen mit SOC-Verlusten von 0.7 bis 19.5 t C ha™ in 30 - 100 cm
Tiefe. Verluste an SOC wurden in allen Korngréenfraktionen des partikuliren Humus
beobachtet, wobei die mittlere Verweildauer bei den groberen Fraktionen abnahm. In
dieser Studie konnten die Fe-Oxide nicht als Schliissel zur Stabilisierung von
Kohlenstoffvorriten bestitigt werden, da nur 16 % der Vorrite an Fe-Oxide gebunden
waren.
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Zusammenfassend kann gesagt werden, dass die digitale Bodenkartierung mit Hilfe
von RF und Fernerkundungsdaten akzeptable Vorhersagegenauigkeiten fiir eine grof3e
Bandbreite an Bodeneigenschaften und RSGs innerhalb einer sehr heterogenen
Landschaft ermoglicht. Es stellte sich heraus, dass das Beschneiden der Daten dann
effizient ist, wenn eine RSG, die zu einer weiten Spannweite von Geldndeparametern
Beziehungen aufweist, sich mit solchen Parametern iiberschneidet, die nur mit
wenigen RSG-Einheiten zusammenhingen. Die hier quantifizierten SOC-Vorrite
unterstreichen, dass die semi-ariden Okosysteme West-Afrikas immer noch eine
Moglichkeit zur Speicherung von Kohlenstoff bieten und dass die Ergebnisse eine
Grundlage fiir die weitere Modellierung der SOC-Dynamik in der Region darstellen.
Der Landnutzungswandel von Savanne zu permanenter Ackernutzung beeinflusst
Kohlenstoff im Ober- und Unterboden, obwohl letzterer selten bei der Analyse von
Auswirkungen des Landnutzungswandels in Afrika beriicksichtigt wird.
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1. Rationale

Soils are vital resources for food production, water control and chemical recycling,
biodiversity and habitat, providing platform for human activities, supplying raw
materials as well as preserving cultural heritage (Blum, 2005). However, human
activities via agriculture, grazing, deforestation and other land use such as building of
roads or new facilities have affected soil ability to provide its ecosystem services.
About 83 % of the land surface is reported by Sanderson et al. (2002) to be affected by
human beings with 40 % transformed into agricultural land (Foley et al., 2005) and the
remainder used for settlements and other non-farming purpose (Ellis et al., 2010).
Estimation indicates that since 1850, about 6 million km? of tropical forest/woodland
and 4.7 million km® of savannas/grasses/steppes have been transformed into farming
land (Ramankutty and Foley, 1999). For example, FAO (2004) indicated that the
cropland area increased over a period of 40 years (1961 — 2000) in Africa in response
to population growth. As Africa population is expected to rise up to 4 billion by the

end of the century (UN, 2015), the pressure on soil resources will be rising.

In sub Saharan Africa the increasing human pressure on soil resources has resulted in
severe land degradation with issues related to soil erosion, salinity, reduction of
organic matter, increase in CO, and its feedback on climate change (Tully et al., 2015).
Recent evidences showed that the decline in soil fertility is prevalent in West African
croplands as a result of population pressure (Grinblat et al., 2015). Nevertheless, for
accurately addressing the degree of land degradation, spatial information on soils and
soil properties are required for land evaluation. Spatial soil information as represented
in soil maps is beneficial for farmers, scientists and policy maker in identifying
priority areas and for sound and objective decision making. However, for management
decisions at plot or small catchment level the available maps are too coarse and finer
resolution is required. Moreover, maps from traditional surveys are mostly qualitative,
labor intensive, time consuming and costly (Taghizadeh-Mehrjardi et al., 2015), and

thus in most cases also obsolete (Kilasara, 2010).

Recent advances in remote sensing and information systems have paved the way for

digital soil mapping (DSM), which couples soil point data with statistically correlated
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auxiliary data (McBratney et al., 2003). This approach overcomes the limitation of the
traditional mapping method by reducing tremendously both the workload involved as
well as the related costs (Giasson et al., 2015).The coupling of point and auxiliary data
is carried out by using (geo-) statistical classification or regression models. The
auxiliary data include the soil forming factors as described by Jenny (1941). In DSM,
these factors are mostly derived from digital elevation models (DEM) and existing
parent material, climate, land use or vegetation maps. Further advances are foreseen
with the availability of satellite data with high spatial resolution such as RapidEye to
improve mapping accuracy (Forkuor, 2014) at a given location in the landscape.
Particularly, the combination of the covariates derived from the DEM with optical and
radar imagery data has great potential for improving prediction accuracy for a targeted
soil property or soil class. This may be of special relevance for West Africa, where

there is only scarce soil information at a finer scale.

Soil organic carbon (SOC) is a key indicator for assessing land degradation or soil
improvement processes. The COP21 convention in Paris pointed out the relevancy of
the sequestration of SOC as an important strategy to mitigate climate change (Rhodes,
2016). SOC is essential for soil fertility and productivity, being involved in most soil
functions such as storage of nutrients and water, soil biological activity and structural
stability (Holmes et al., 2015). Maintaining SOC is thus necessary for a soil to fulfill
primary ecosystem services, especially in West Africa, where natural soil fertility and
fertilizer input are low (Doraiswamy et al., 2007). To assess SOC sequestration
potentials, however, we again need quantitative data on spatial and temporal carbon
stocks, both locally and at national scale. Usually, the SOC stocks vary across the
landscape and with related variations in climate (Albaladejo et al., 2013; Stergiadi et
al., 2016), land use and land cover change (Mufoz-Rojas et al., 2015; Xiong et al.,
2014), topography (Nadeu et al., 2015), texture (Burke et al., 1989), clay mineralogy
(Saidy et al., 2012), sesquioxides (Peng et al., 2015) and soil order (Bruun et al., 2013;
Wiesmeier et al., 2012). The influence of these factors on SOC dynamics has been
frequently investigated in temperate climates; however, the understanding of these

interactions for tropical low input agricultural systems is still limited.
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Though interest for SOC and controlling factors rose in the last decades, most of the
studies focused on the topsoil (30 cm). Subsoil carbon, although equaling atmospheric
carbon in amount, is typically neglected in models of soil fertility and carbon balances.
Batjes (1996) indicated that about 50 % of the SOC is located below 20 cm depth.
Fontaine et al. (2007) showed that subsoil carbon is readily decomposable upon
addition of a fresh C-source, suggesting that excluding subsoil carbon from our regard
might have been overhasty. Therefore, any small change in the subsoil carbon stock
will have a significant impact on the global C budget (Don et al., 2007). Since the
tropical subsoil carbon consists mainly of intermediate and passive soil organic matter
pools (Liitzow et al., 2008), it offers great potential as carbon sink. Consequently,
quantification of the SOC stock in the subsoil is vitally important for an accurate

evaluation of the sequestration ability of the highly weathered and deep tropical soils.

Monitoring changes in SOC stocks with time should likely include pools of different
SOC stability, since overall response rates may be too slow and thus ignored when this
monitoring is based on bulk SOC analyses only (e.g., Powlson et al., 1987; Skjemstad
et al., 2004). Classically, the identification of such pools involved the fractionation of
SOC according to particle size, density or a combination thereof. Particulate organic
matter (POM) has been considered as fairly labile pool of soil organic matter (SOM) in
many studies as it is more sensitive to land use change (LUC) than bulk SOC, due to
its rapid depletion after conversion of soils under natural vegetation to arable cropland
(Besnard et al., 1996; Chan, 2001). Monitoring POM should thus also help for scaling
changes in land degradation in the context of conversion from natural vegetation to

cropland.

2. State of the art

2.1. From digitized soil map to digital soil mapping
Soil mapping played major role in human history as already in 4000 years BP the book

Yugong reported on a different distribution of soils in nine provinces of China (Gong
et al., 2003). In that period, soils were mapped based on soil properties such as soil
fertility, soil color, soil texture, soil moisture and vegetation. The early scientific soil

maps in Germany, France, Austria, the Netherlands, and Belgium from the 1850s and
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1860s were constructed from concepts grounded in agrogeology (Hartemink et al.,
2013). The early soil information was used mostly for military ends or taxation and

land assessment purposes (Krupenikov and Tedrow, 1994).

Until the 19" century, only geologic and physiographic factors were considered for
soil map delineations. As V.V. Dokuchaev supplemented climate and vegetation to the
geologic and physiographic factors in the late 19" century, a full soil-landscape
paradigm was introduced (Brown, 2005). From then, soils were considered as a
function of parent material, climate, organisms, relief and time. This concept is

captured by the fundamental soil state-factor equation developed by Jenny (1941):

S=f(lo,rpt) (I-1)

where S stands for soil, cl for climate (cl), o for organisms, r for relief, p for parent
material and t for time. This equation offered the conceptual framework for
understanding the important parameters affecting soil variability at global and local

scale all over the world.

2.1.1. Conventional soil mapping and drawbacks

Most of the national soil maps in West Africa and in the world were established using
the traditional mapping approach. The traditional method for soil mapping mainly
involved the use of aerial photography, geology, topographic maps and field
observations (profile) for the prediction of areas having the same soil class (Malone,
2012). It has been reported that less than 0.001 % of the mapped area is actually
subject to direct observation (Burrough et al., 1971). The map establishment is based
on a conceptual understanding of the soil forming processing in a particular area by
one or many surveyors. Most of the existing conventional maps are class type and are
made up of polygons standing for the soil map units (Scull et al., 2003). Within each
unit, the distribution of the soils in the landscape is represented with its internal
variation but often lacking is the explicit description of its spatial pattern (Omuto et al.,
2013). The traditional approach has been criticized both in its method as well as in its

output represented by the resulting map.
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In conventional soil mapping, rules and models for the prediction of soil class or soil
properties are tacit knowledge of the soil surveyor mainly and are in most cases only
expressed in mapping legend. This results in the impossibility to produce map
uncertainties, which is critical for map users. Moreover, map polygons are assumed to
contain homogeneous soil properties or soil class and each polygon boundary suggest
a sharp transition in the distribution of these properties or soil class (Heuvelink, Gerard
B. M. and Huisman, 2000). However, this conventional approach labelled as the
double-crisp model by Burrough et al. (1997) failed to incorporate the continuous
spatial variability of both soil properties and soil-forming processes. Thus, soil maps
resulting from traditional approach are mostly produced at coarse scale (Towett, 2013)
and cannot be used for decision making at a finer scale. Additionally, traditional soil
mapping is often too costly and time demanding, especially in developing countries,
and it hardly works for remote places. Furthermore, the representation of map units in
polygons makes its integration in existing earth resources difficult, because these are
in a grid based format (DEM, satellite imagery) (Malone, 2012). To address all these
issues, a new paradigm in soil mapping emerged, which is called digital soil mapping

(DSM).

2.1.2. Digital soil mapping

The advancement in computer science and statistical methods led to the use of geo-
information technology such as remote sensing data and digital elevation model
(DEM) for the description of soil variability in a more continuous and quantitative
approach (Heuvelink and Webster, 2001). This new paradigm correlates soil class/soil
properties with selected environment covariates data; it is based on statistical models
in order to predict these soil class or soil properties at unknown locations. Building on
the soil state-factor equation developed by Jenny (1941), McBratney et al. (2003)

introduced the conceptual framework for DSM referred to as "scorpan.”

Se=f(scorpan) or §,=f(scorpan) (I-2)

where S, is soil class and S,, is a soil attribute or property, s: soils, other attributes of

the soil at a point, c : climate, 0 = organisms (vegetation, fauna, or human activity), r :
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relief (topography), p : parent material (lithology), a : age, n = spatial location, f :
function or soil spatial prediction function (SSPF) model.

The DSM implementation basically involves three steps (Omuto et al., 2013): (1) input
data provision, (2) classification and regression methods, (3) map production and its

validation.

2.1.2.1 Data input for digital soil mapping

The input for digital soil mapping represents the soil forming factors in the scorpan
equation. These data consist in soil sampling, soil legacy data and ancillary data
(McBratney et al., 2003). Soil surveys are generally carried out either in the traditional
way or based on statistical sampling and soil samples are collected and subsequently
laboratory analysis are made to assess target soil properties. This information is then
used as attribute in the scorpan equation to predict soil class or other soil properties.
When soil attributes cannot be accessed from direct soil survey, the required
information is to be derived from existing data bases such as soil legacy data, local soil
surveys, profile and auger description, or laboratory analysis carried out on samples
collected from the field. Particularly soil legacy data have been discussed extensively
in many studies, and remain the most important input for DSM especially in many

developing countries (Minasny et al., 2012; Sulaeman et al., 2013).

The ancillary data used as input for DSM models represent various soil forming
factors. They are environmental covariates data, which are mostly derived from DEM
(e.g. altitude, slope, curvature), remote sensing data (e.g. Landsat ETM surface
reflectance and imagery) as well as from geological maps standing for parent material
and climate (temperature, precipitation) (Malone et al., 2016; Stoorvogel et al., 2009).
Typically, the soil point data are overlaid over these environmental georeferenced data

layers to extract the values at each point of the landscape.

2.1.2.2 Classification and regression methods

Many function or soil spatial prediction function (SSPF) have been developed and

used for digital soil mapping with the advance in computer science and statistics.



1. General introduction

These functions enable the estimation of the unknown value of the targeted variable at
a certain location. Originally, before soil factors could become quantitatively
available, only geospatial models were used for mapping (McBratney et al., 2011).
These include trend surface (Grunwald, 2006), nearest neighbours (Mansuy et al.,
2014), inverse distance weighting (Robinson and Metternicht, 2006), and splines
(Burrough and McDonnell, 1998; Laslett et al., 1987).

Geostatistics with at its core the kriging method have been used for soil mapping for
decades with early application by Burgess and Webster (1980). Later on, many other
works focused on discussing theoretical and practical application of geostatistics for
soil science such as Oliver (1987), Goovaerts (1999) and Webster and Oliver (2007).
One of the most fundamental laws in geostatistics is the first law of geography stating
that objects that are closer are more similar than objects that are far apart. The spatial
variation is described using a semivariogramm, which is half the expected squared
difference between values of the targeted variable at two locations. The variogram,
which is the representation of the semivariogramm as a function of distance, measures
the spatial auto-correlation of soil properties in a certain landscape by the formula

(Webster and Oliver, 2007) :

y() = s B s 0n) = s+ WY (13) (13)

with y(h) is the average semi-variance of the soil property, m(h) is the number
of pairs of observation separated by the lag h, s is the value of the property S, x is the

coordinate of the point.

Based on that principle, many kriging methods have developed with mainly two
approaches: univariate kriging and mutltivariate kriging. The univariate (only one
variable used) interpolation embraces techniques such as simple kriging, ordinary
kriging, block kriging, factorial kriging, indicator kriging, disjunctive kriging (Li and
Heap, 2008). These techniques evolve to more complex ones where other variables co-

related to the one being predicted are also considered in the perspective of getting
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higher prediction accuracy. Among the multivariate interpolation techniques fall the
following: co-kriging, universal kriging, kriging with an external drift, principal
component kriging, multivariate factorial kriging, indicator kriging. These techniques
are well documented by Li and Heap (2008) and Li and Heap (2014). A major
advantage of these geostatistical models is the possibility to provide a quantitative
measure of uncertainty (Goovaerts, 1999), while the requirement for larger size dataset
for setting a reliable model is a constraint for area with low availability data (Burrough

etal., 1971).

Combinations of non-geostatistical and geostatistical methods are also used either for
classification or for regression purposes. Such combined methods as referred to by Li
and Heap (2014) in general build a primary model between the target variable and
selected Jenny’s soil forming factors as explanatory variable. Some kriging techniques
are then applied on the residuals to produce an uncertainty map, which is ultimately
added to the initial model fit map to generate the final output. Among these mixed
methods, the categories are regression kriging, linear mixed model, and trend surface
analysis combined with kriging, as well as soil classification combined with other

interpolation methods, just to name a few.

In DSM, many SSPFs following the scorpan models are used. These are prediction
functions which have been generally presented by McBratney et al. (2000) and
McBratney et al. (2003) and more extensively discussed by Hastie et al. (2011). They
broadly include either linear methods or machine learning algorithms. Mostly linear
models used for DSM are multiple linear regression (Meersmans et al., 2008; Selige et
al., 20006), partial least square regression (Amare et al., 2013), principal component
regression and partial least square (McBratney et al., 2003), linear discriminant
analysis (McBratney et al., 2003), as well as generalized linear models (McKenzie and
Ryan, 1999). The term machine learning refers to a broad variety of models meant for
pattern analysis in data, also known as data mining, and making data-driven
predictions (Witten and Frank, 2005). They became extremely popular as relationship
between soil attributes and the scorpan factors are complex, poorly understood and

most likely not linear (Povak et al., 2014). Examples of machine learning algorithms in
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soil science include support vector machines (Were et al., 2015), neural networks
(Behrens et al., 2005; Malone et al., 2009), generalized additive models (Poggio et al.,
2013) and decision trees (DT) (Quinlan, J. Ross, 1986).

DT use a hierarchical top-down approach by dividing the data recursively into branch-
like divisions, which individually captures a variability in the target variable
(McBratney et al., 2003). These divisions are structured as an inverted tree having a
root node, as well as a set of internal and terminal nodes (leaf node). The split at each
inner node is based on decision rules that affect instances uniquely to child node, with
each of the leaf node having a target (regression tree) or a class value (classification
tree). Advantages for using DT include their capacity to handle numerical and
categorical data without any assumption to probability distribution, computational
efficiency, as well as their robustness against nonlinearity and overfitting (Heung et

al., 2014).

Most popular DT algorithms include C4.5/SEES (Adhikari et al., 2014), as well as
Classification and Regression Trees (CART), which build single trees (Breiman et al.,
1984). However, the latter are reported to build unstable decision trees, which could
bias prediction (Timofeev, 2004). To enhance the prediction accuracy in DSM using
DT, methods have been introduced that generate multiple models through iteration,
and which ultimately cumulate them to provide the final estimate. McBratney et al.
(2003) classified the DTs into two groups: bootstrap aggregating (or bagging) and
boosting. Bootstrap aggregating is an iterative process sampling into the training set
with replacement, which is the basis for the widely used Random Forest algorithm
(Grimm et al., 2008; Hengl et al., 2015; Reza Pahlavan Rad, Mohammad et al., 2014;
Wiesmeier et al., 2011).

Boosting functions make predictions by growing new trees based on the information of
previously grown trees in an attempt to reduce prediction errors (Yang et al., 2016).
Recently, a number of novel hybrid methods have been introduced for DSM consisting
in the combination of some machine learning with either Inverse Distance Weighting
(IDW) or ordinary kriging (OK). Key examples include the combination of (Li and
Heap, 2014): (i) support vector machine with OK or IDW, (ii) RF with IDW or OK

10
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(RFIDW, RFOK) (iii) general regression neural network with IDW or OK , (iv)
boosted decision tree (BDT) (Li et al., 2012) with Inverse Distance Weighing or
Ordinary Kriging. These methods function in a similar pattern to regression kriging
with the application of Inverse Distance Weighing or Ordinary Kriking on the
residuals of the model fit. The purpose is to capture any spatial autocorrelation of the

residuals for high prediction accuracy of the targeted variable.

2.1.2.3 Validation for map quality assessment

The output map generated by the SSPFs is not free of errors, and the quantification of
these errors is relevant for both soil properties and soil class predictions. For the
former, the Root Mean Square Error of prediction (RMSE) is mostly reported in
literature (Were et al., 2015). For soil class maps, the accuracy assessment is carried
out by determining user’s and producer’s accuracy but most importantly the Kappa
statistics (Lark, 1995). Malone (2012) reported three main approaches for validation in
DSM. These approaches consist in: (1) holding back a proportion of the dataset as an
independent set for testing the map accuracy; (2) cross validation with leave-one-out
procedures for eliminating one value for parameter estimation, or for multiple values
as n-fold-cross validation. With the leave-one-out scheme, one observation is left out
while the remaining are used to fit the model. The left out observation is later used to
evaluate the accuracy of the model. The same process is carried out again until all the
observations are taken into account. The n-fold-cross validation rather divides the
whole dataset in a n subset (fold), and the cross validation procedure is carried out on
these n subset. The last approach resort to additional sampling using either randomized
or probability sampling design. However, when dataset is large enough, validation

based on independent set is carried out especially for legacy soil data.

2.2. Instances and feature selection

The handling of large datasets for digital soil mapping can become complex when
there are many relevant predictors (features) and soil samples (instances). This issue is
commonly designated as high dimensional data evaluation with large amounts of
features and instances (Sutha and Tamilselvi, 2015). In such data, not all the features

and instances are relevant for the classification or regression operation, because they
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partly also contain redundant and noisy information. The latter reduce the learning
performance and prediction accuracy (Lagacherie and Holmes, 1997; Schmidt et al.,
2008). Avoiding this problem requires a pre-processing step; and two main branches in
statistical learning research then address this issue: instance selection (Liu and
Motoda, 2001) and feature selection (John et al., 1994). Feature selection consists in
singling out a feature subset as small as possible and in reducing multi-collinearity.
Instance selection deals with the reduction of the dataset by filtering out irrelevant

cases without losing useful information.

There are three main feature selection algorithms available for consideration: the
Filter, Wrapper and Hybrid Method (Sutha and Tamilselvi, 2015). The Filter method
selects a feature subset only by focusing on the characteristics of the predictors, which
is done independently of any mining algorithm. In contrast, the Wrapper method
requires the latter for the selection. The Hybrid method uses both inherent
characteristics and mining algorithm for determining the best feature or instance
subset. When working with large datasets, the Filter method is mostly preferred due to
high computation efficiency. The algorithms, which are used for feature selection, are
classified into Supervised Learning Algorithms (Le Song et al., 2012; Weston et al.,
2003), Unsupervised Learning Algorithms (Handl and Knowles, 2006) and Semi-
supervised Learning Algorithms (Doquire and Verleysen, 2011), which combined the

former two.

In supervised learning, features are selected based on their ability in separating data
into different classes, called class-based separation. Unsupervised feature selection
removes irrelevant features by identifying similarity or correlation measures between
the features. The latter approach was considered in the present study for removing
redundant features as affected by multicollinearity. Though decision trees are reported
to be robust to correlated features, the interpretation of the most important feature can
be biased when the variables involved are subject to multicollinearity (Kuhn, 2008).
Genuer et al. (2010) also reported that variable importance may be overestimated

when highly correlated variables are used.

12



I. General introduction

There are many instance selection methods available from other research fields
(reviewed by Olvera-Lopez et al., 2010). Their application in DSM is not all that
extensive. The first scientists that investigated instance selection in a DSM for soil
classification were Moran and Bui (2002). These authors compared two random
sampling methods over all soil classes for their training dataset. Schmidt et al. (2008)
instead carried out instance selection on single soil classes in order to evaluate the
output of the different sample distribution using proportional stratified random
sampling and disproportional stratified random sampling schemes. Proportional
stratified random sampling takes into account the frequency distribution of each soil
class in the entire dataset, while the disproportional approach used the same number of

instances for all classes.

Challenges may arise in the application of the disproportional approach when the size
of the smallest class is too low for decision trees to accurately learn from the inherent
pattern. Also, the number of instances of the smaller class in the available dataset, such
as soil legacy data, may affect the distribution of the remaining soil classes when
proportional stratified random sampling is performed. Qi (2004) introduced a different
approach for instance selection, which was based on fitted histograms of the features.
However, this approach is difficult to implement when dealing with many features,
which have to be distinctly considered (Schmidt et al., 2008) unless the feature space
is reduced (feature selection) and unless the most important feature is chosen for
instance selection. The latter scheme has been investigated for noise reduction in the

present study on an imbalanced dataset.

2.3. Soil organic carbon

Soils are the major terrestrial sink of carbon with great potential to counteract the
adverse effect of global warming (Singh and Lal, 2005). The soil carbon stock
amounts to 2157-2293 Gt C with about 67 % existing as SOC (Lal, 2004). About 50 %
of this SOC stock are stored in the topsoil (30 cm) making the subsoil also as relevant
sink for carbon (Batjes, 1996). The amount of SOC at a given site is the result of the
dynamic equilibrium of gain and loss processes directed by different factors (Lal,

2004). These factors vary from climate, topography, soil properties, microbial biomass
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and land use (Albaladejo et al., 2013; Jobbagy and Jackson; Jobbdgy and Jackson,
2000; Ladd et al., 2013), which are mainly the factors previously mentioned by Jenny
(1941). Land use change (LUC) affects SOC stocks and can result in either a
sequestration or a release of CO, with subsequent impacts on global warming
(Houghton, 2003). Carbon sequestration is, however, of crucial importance as SOC

affects many soil functions and ecosystem services.

2.3.1. Land use change impact on SOC

About two scenarios of LUC are reported in literature based on whether it leads to
SOC depletion or SOC accumulation. One scenario consists in LUC from pasture or
native savannah/forest to plantation or to cropland which adversely affects SOC levels
(McDonagh et al., 2001; Murty et al., 2002). The size and magnitude of the impact of
the anthropogenic influence through agricultural use on the SOC status in soils is
complex and determined by various variables, such as land use type, crop type, organic
and inorganic fertilizer use, cultivation intensity and history etc. Soil cultivation is
characterized by annual cropping with the necessary soil tillage, which disrupts soil
aggregate and accelerate the decomposition of organic materials (Wei et al., 2014b).
Consequently, SOC contents and stocks decline rapidly and then stabilize after a

certain period of time following a land-use change (Don et al., 2011).

The second scenario consists in reversing land degradation due to LUC with former
depletion of SOC level through conversion of cropland to grassland or forest (Guo and
Gifford, 2002a; Smith, 2008, 2008) as well as via change from conventional tillage to
no-tillage cultivation (Amado, Telmo Jorge Carneiro et al., 2006). The latter processes
mostly results in C accumulation, though usually not the level formerly found in native
ecosystems due to inefficient C accrual in the subsoil (Preger et al., 2010). While these
processes are being studied worldwide, little is known on C losses and C sequestration
rates in soils typical for Western Africa, such as Plinthosols. Moreover, very few
studies included the subsoil into the monitoring of C loss and sequestration rates
(Mobley et al., 2015; Olson et al., 2014; Steinmann et al., 2016). Part of the present
study focused on the former scenario of SOC losses related to LUC from initial

savannah to cropland and subsequent effect on SOC dynamics. These studies also
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included different SOC pools that are considered to be functionally homogeneous

(Besnard et al., 1996; Degryze et al., 2004).

2.3.2. Qualitative characterization of SOC

The SOC consists in of a variety of compounds of different chemical structure and
turnover rate. For SOC turnover modelling, in general, three pools ranging from labile
or active pool, intermediate pool and inert or resistant pool, are distinguished (Liitzow
et al., 2007). The labile or active pool is made up of microbial biomass, fresh plant and
root derived elements as well as some microbial residues with a faster (weeks to years)
turnover time (Schwendenmann et al., 2007). The intermediate pool refers to
refractory plant debris and mineral associated SOC with a longer turnover time
ranging from 10 to more than 100 years, while the inert or resistant pool is composed
of highly humified compounds if not of black carbon with turnover times in the order

of 10° years (Parton et al., 1987; Schwendenmann et al., 2007; Trumbore, 1997).

With advancing SOM decomposition, it may be generally assumed that SOC is
transferred gradually from the active pool into either CO, or more stable pools; various
stabilizing processes may account for this but often only a small fraction of fresh
organic material ends up in the more stable pools (Derrien and Amelung, 2011).
Because each pool has its own pattern of reaction in regard to LUC, considering the
changes in specific SOC pools is more effective for indicating early responses of SOM
to LUC than bulk SOC (Liitzow et al., 2007). Consequently, the functional SOC pools
are to be quantified and characterized for a thorough understanding in SOC change
patterns due to LUC. Mostly, physical soil fractionation is used for that purpose (e.g.,
Christensen, 1992; 1996) as shortly annotated below.

2.3.3. SOC fractionation and Chronosequence

SOC fractionation for qualitative analysis can be carried out by using either physical
(aggregation, density, size) and/or chemical (solubility, mineralogy) methods (Liitzow
et al., 2007; Stockmann et al., 2013). Aggregate fractionation uses dry or wet sieving,
slaking as well as (ultrasonic) dispersion to separate free SOC from protected SOC

that is incorporated within various secondary organomineral complexes. The free SOC
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is considered as the active pool and is occluded in the macroaggregate (> 250 mm)
while the protected pool is either incorporated in microaggregate (< 250 mm) or
termed as intermediate pool or in the clay microstructures (<20 mm) representing the
passive pool. The density fractionation differentiates between light fraction (active
pool) and heavy fraction (intermediate and passive pool). The light fraction relates to
SOC that is not firmly bound to soil minerals while the heavy fraction forms the
organomineral complexed compounds (Tisdall and Oades, 1982; Golchin et al., 1994;
Liitzow et al., 2007). Because the latter pool incorporates both intermediate and
passive pool it has been reported as being very heterogeneous by Liitzow et al. (2007).
Moreover, Six et al. (2000) pointed out microaggregate stabilization within
macroaggregate with different dynamics for the respective related SOC. Using wet
sieving, they distinguished coarse intra-aggregate particulate organic matter (iIPOM) in
macroaggreagte while fine i1POM was identified in microaggregate within
macroaggreagte. The former has a faster turnover rate compared to the former which is

more stable with longer residence time.

As aggregates are so-called secondary particles, separating them into apparent primary
particles describes the turnover of SOM at different bonding partners (Christensen,
1992).The particle size fractionation is based on the concept that the status of the SOC
dynamics is related to the particle sizes characterized by different decay rate (Moni et
al., 2012). Particulate organic material (POM), which is mainly made up of pieces of
plant residues, is considered as a labile pool with turnover rate ranging from months
to a few years (Besnard et al., 1996; Chan, 2001). POM is the first pool to be affected
by LUC and as such is a better indicator of the impact of land use and climate on soil
properties than bulk SOC (Ashagrie et al., 2005; Liang et al., 2012). POM is either free
or incorporated in aggregate (Cambardella and Elliott, 1993; Christensen, 1992).
Based on aggregate and particle size, POM measurement is carried out by considering
the coarse (250-2000 pm), medium (53-250 pum) and fine (<53 pm) fractions
(Amelung and Zech, 1999; Cambardella and Elliott, 1993; Chefetz et al., 2002). The
POM C content and turnover are different in these fractions and are affected by the silt
and clay particles level in the soil (Dalal and Mayer, 1986). These fractions are

suitable for evaluating the impact of LUC on POM over time.
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Evaluating the degree of soil degradation at a given site requires long term data as one
time measurement of soil properties such as SOC can be misleading. Measurements
are mostly attached to the time at which measures were taken. Farmers’ activities and
land use management, however, can vary among seasons and years causing
fluctuation and variabilities in soil properties (Zingore et al., 2007). Long-term data
thus focus on specific plots over years results in order to derive much more accurate
data related to alteration in soil properties over time (Tully et al., 2015). Alternatively,
the space-for-time approach, i.e., using land-use chronosequences, allows to analyze
temporal changes of chemical or physical soil attributes under real-farm practice
(Hartemink, 2006). As long-term experimental farms in Western Africa are largely
missing, | used this false chronosequence approach for evaluating SOC stock changes

after conversion of natural savannah to permanent cropland.

2.4. Objectives

Soil information translated in soil maps and knowledge on soil carbon dynamics
provide data to support both policy making and strategies for ensuring food security
and sustainable production. As the creation of soil maps by traditional soil surveys are
costly and time consuming, new approaches came into focus that speed up and
accelerate soil mapping such as DSM. For the implementation of DSM, research
priorities are among others: using appropriate model and covariates for a particular
landscape in the perspective of better prediction accuracy, solving high data dimension
problems, and dealing with soil legacy data subject to imbalance issues. The
advancement in statistical models and the availability of a large array of topographical
as well as spectral data offer the possibility to investigate ways to tackle some of these
issues. Such approaches are of particular importance for soil landscapes in Western
Africa, which are sometimes difficult to access, and where experienced field soil
scientists are not necessarily abundant. The overall goal of this study thus was to

investigate soil properties and soil reference groups mapping within an old, Plinthosol
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landscape, using state of the art methodology. To better understand the dynamics of

SOC within this region, I additionally sampled a cultivation chronosequence.

Specifically this study focused of the following research questions:

(i) To which degree are novel statistical methods suited for high resolution mapping

(i)

of soil properties in tropical environment using remote sensing data?

I hypothesize that statistical models which are able to handle both linear and
unlinear pattern in data will provide higher prediction accuracy than those
geared towards linear pattern. To verify this hypothesis, I compared the
performance of multiple linear regression (MLR) to three machine learning
methods such as random forest regression, support vector machine and
stochastic gradient boosting. I used high resolution optical imagery (RapidEye
and Landsat) along with topographical variables for predicting six soil
properties (sand, silt, clay, CEC, SOC and N). The model performances were
investigated using cross validation for internal assessment while independent

datasets were considered for external evaluation.

Does the application of instance selection using a data pruning approach
improve the prediction accuracy of reference soil groups with a dataset subject
to severe imbalance?

I hypothesize that pruning the major soil group - the Plinthosols — will result in
increased prediction accuracy of the minor reference soil groups. For this
purpose, I carry out a data pruning by considering different core range of the
Plinthosol data while cutting off all data points belonging to the outer range.
This resulted in different training subsets for predicting the reference soil
groups using a wide range of remote sensing variables. The evaluation of the
various set was carried out by using Random Forest (RF) along with a recursise
feature selection for optimal covariate identification. The specifical and mutual
contribution of spectral and topographical variables in predicting the reference

soil groups was also assessed.
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(iii) How does the topsoil (0 - 30 cm) and subsoil (30 - 100 cm) carbon stock
vary among different land use and reference soil groups and which main
factors affect their respective spatial distribution?

I hypothesize that natural vegetation and associated reference soil groups
will have higher carbon stock compared to cropland with the topographical
variables being the main factor affecting the spatial distribution of carbon
stock irrespective of the depth. For this question, I firstly determined the
amount of carbon stock in both topsoil and subsoil in cropland and savannah
as well as in five reference soil groups (Cambisols, Gleysols, Lixisols,
Plinthosols, Stagnosols). The identification of the driving factors for both
topsoil and subsoil SOC stock as well as their respective spatial distribution

were investigated using the RF and linear regression as statistical models.

(iv)  To which extent does the land use change from natural savannah to cropland
system affect the amount of total soil organic carbon and particulate organic
matter in Plinthosols? I consider that continuous cultivation in initial
savannah land will result in the reduction of both total soil organic carbon
and particulate organic matter in the Plinthosols. To verify this hypothesis, I
followed a chronosequence approach by sampling fields with known
cropping time in the past as well as undisturbed savannah lands which were
used as control. I carry out some physical soil fractionation resulting in
different size of particulate organic matter (POM). Additionally, the role of

iron oxide as a potential stabilizing agent was also investigated.

This PhD thesis was prepared within the framework of the Working Package 2.5 “Soil
carbon dynamics, soil fertility and soil degradation under climate and land use change”
as part of the West African Science Service Center on Climate Change and Adapted
Land Use (WASCAL) project which is funded by the German Research Foundation
(BMBF).
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1. Study area
The study took place in the Dano district (Lat. 11°8'56.57"N; Long. 3°3'36.45"W),
which is part of the Ioba province in the southwestern part of Burkina Faso.
Specifically, it mainly focused on the catchment delineated by WASCAL (West
African Science Service Center on Climate Change and Adapted Land Use).
WASCAL is a large-scale project aiming at enhancing the resilience of human
and environmental systems to climate change and increased variability in the West
African region. The WASCAL catchment in Dano covers a total area of 580 km®. An
intensive soil sampling was carried out in the sub-catchment which is about one-
quarter of the bigger watershed (Fig. II-1). The elevation ranges between 250 and 504
m above sea level (asl) with a mean average of 295 m asl. The relief is relatively flat

with an average slope of 0.2 %.

The climate consists in a mono-modal (single peak) rainy season with a mean annual
rainfall ranging between 900 and 1200 mm year . The mean annual temperature varies
between 20.1 and 38.4 °C. The lithology is characterized by the dominance of partly
volcanic formations from the middle precambrian period and consists in a great
proportion of andesic rocks with massive texture, basalt, diabase, gabbro and quartz-
rich andesites. The soils of the study area are mostly sandy to sandy loam in surface
while sandy clay, clay loam to clayey in the subsoil similarly to the vast majority of
the soils in the Ioba province (Hamidime, 2003). They are characterized by a high

stone content and low water holding capacity.

The vegetation of the area belongs to the Sudanian domain with woody, arboraceous
or scrubby savannah, abundant in perennial grasses (Schmengler, 2010). Hills and
higher slope areas are often covered with thick vegetation. However, a great
proportion of this vegetation has been converted into croplands with the practice of
short or long fallowing systems. Where long fallowing occurred, it was difficult to
distinguish it from natural savannah vegetation. Therefore as in the study carried out
by Yira et al. (2016) in the same area, long fallowing system and natural savannah are
categorized as savannah. Cultivation is mostly rain fed and farming takes place on a

small scale with low input (Callo-Concha et al., 2012b) especially regarding fertilizer.
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Fig. II-1: Map of the Dano catchment and locations of soil sampling

2. Soil sampling
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Soil sampling was carried out in the sub-catchment based on homogeneous units

derived from existing soil and land use maps as well as a 90 meter resolution digital

elevation model provided by the Shuttle Radar Topography Mission (SRTM). A total

of 70 soil profiles were excavated up to 1 m where possible along 16 transects from

August to October 2012. For each profile, four soil cores (100 cm’) were taken per
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horizon for the determination of the bulk density (BD). These samples were dried at
105 °C for 24 hours in the oven and corresponding weight were taken for the BD.
Each sample was then grounded and sieved for the measurement of the weight of stone
content (SC). Moreover, some composite soil samples were collected from each soil
horizon for further laboratory analysis resulting in a total of 195 samples with 71 and

124 samples respectively for the A and B horizon.

To account for spatial variability, an intensive auger grid sampling was carried out
from August to October 2012 and from August to October 2013 over the entire study
area. At each auger point, composite samples as well core samples (4 replicates for
BD) were taken but only from the topsoil (A horizon). About 1305 augering composite
samples were collected in total with 1203 samples within the subcatchment and 102
samples outside the subcatchment (Fig. II-1). Soil horizon description and soil
classification were based on the World Reference Base for soil resources (IUSS et al.,

2000).

Apart from Chapter III which focused on samples within and outside the
subcatchment, all the remaining chapters are related to the subcatchment. However,
the last chapter (Chapter VI) considered samples which were taken from some fields

still located in the Dano district but outside the catchment defined by WASCAL.

3. Soil analysis

The composite samples were dried at 40 °C in the oven and sieved to <2 mm. These
samples were analyzed for texture (sand, silt and clay content), pH, cation exchange
capacity (CEC), dithionite-extractable Fe oxide (Fepcg), SOC and N. These

parameters were determined following the procedure described by Reeuwijk (2006).

« Texture: The texture analysis was carried out based on a combined wet sieving

(sand fraction) and pipette method (silt and clay).

« pH: The pH was determined using a digital pH meter (Orion Star, Thermo

Fisher Scientific Inc., Waltham, USA) in suspension of soil in distilled water.
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« Cation exchange capacity (CEC): the CEC was obtained from an extraction

with chloride of potassium and subsequent micro distillation and titrimetry.

« Fepcp : the soil samples were treated with the dithionite-citrate-bicarbonate
(DCB) for the measurement of the dithionite-extractable Fe (Fepcg). The Fepcy
content was determined by inductively coupled plasma optical emission

spectrometer (ICP-OES).

o C and N: the dried and sieved samples were further milled for C and N analysis.
The C and N contents was determined by elemental analysis (ISO 10694, 1995;
ISO 13878, 1998) after dry combustion.

4. Determination of SOC stocks

The SOC stock (t C ha™") was determined by the product of C content, the thickness at
a particular depth and the bulk density in each depth along the soil profile. The bulk
density was computed by dividing the weight of the oven-dry soil by the volume of the
soil cores (Hartge and Horn, 1989). Each quantified bulk density was corrected for the
coarse particle content (> 2 mm) which was mainly made up of plinthites. No CaCO3
was found in the collected soil samples. Therefore, the SOC stocks were obtained

based on the following equation (II-1):

SOCseock = SOC; X BD; X T; x (1 — %) (I-1)

where SOCi is the organic carbon concentration (%) of the fine earth (<2 mm) at depth
1, BDi is the bulk density (g/cm3) of the fine earth at depth 1, Ti is the thickness (cm)
of each sample at depth i, and CPi is the coarse-particle content (volume percentage of

the fraction >2 mm) at depth i.

5. POM fractionation

The physical fractionation of SOM pools was conducted by two-step ultrasonic
dispersion and wet sieving as conducted by Christensen (1992), modified by Amelung
and Zech (1999). In brief, 30 g fine earth (< 2 mm) were gently sonicated (60 J ml'l)
so that microaggregates were preserved from disruption. The coarse sand fraction

(2000-250 pm, POM1) was separated by wet sieving and the filtered remainder was

25



II. Material and methods

sonicated a second time (440 J ml'l). The intermediate (250-53 um, POM2) and silt
sized fractions (53-20 um, POM3) were then separated by wet sieving. The obtained
particle-size fractions were dried at 40°C for 24 h before C measurement through
elemental analysis (vario MICRO cube, Elementar Analysesysteme GmbH, Hanau,
Germany), according to ISO 10694:1995. The concentration of mineral-bound SOM
(< 20 um) was calculated by subtracting the C concentrations of the POM fractions
from those of bulk SOC (nonPOM). Regarding potential C losses during fractionation

we consider them as minimal as tested by Lobe et al. (2001).

6. Procedure for spectroscopy measurement

The spectra measurement was carried out by inserting 20 mg of the profile samples
into microplates and compacted it with a plunger to get a level and plain surface in five
replicates. The Bruker Tensor 27 equipped with an automated high throughput device
(Bruker HTS-XT) was used to create the spectra. This extension is equipped with a
liquid N2-cooled mercury-cadmium telluride (MCT) detector. The spectra recording
were done using the OPUS/LAB software within the range of 8000 to 600 cm™ (1250-
16700 nm) with resolution of 4 cm™ for each run. This software provides the most
representative spectra upon applying the principal component analysis (PCA) and
about 50 % of the corresponding profile samples were chosen for laboratory analysis.
About 100 profile samples from the subcatchment were conventionally analysed to get
the ground truth data while the remaining samples were predicted for SOC, N, CEC

and sand, silt and clay fraction.

For each soil parameter, a cross validation method was conducted employing a leave—
one—out, full-cross validation as well as a test-set calibration for checking model
robustness as described by Bornemann et al. (2008) (Tab. II-1). The models were
optimized with the OPUS QUANT by considering several data processing methods
and spectral ranges combination. The data pre-processing consisted in the
Multiplicative Scatter Correction method (pH, CEC, silt fraction) and a combination of
First derivative and multiplicative Scatter Correction method (SOC, N, Sand and Clay

fraction).

The quality of the different models for each soil property was assessed based on their

predictive ability with the R’ ratio of performance to deviation (RPD) and the
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standard error of prediction (SEP). Only models exhibiting good predictive ability
(RPD>2) or close to that (RPD 1.7-2.0) (Albrecht et al., 2008) were used to make
predictions for the remaining samples (Tab. II-1). As seen in Tab. II-1, the MIRS cross
validation showed that SOC, followed by N presented the best prediction accuracy
based on the R? and the RPD. Additionally, the error metrics from the MIRS test-set
validation confirmed the robustness of the different calibration models for all soil
properties with R” >80 % and with RPD>2.

Tab. II-1: Statistical parameters of the mid infrared spectroscopy-partial least squares
regression prediction models (n = 100 samples)

Parameters Full cross-validation Test-set validation (V=10 %)
R*“ RMSECV RPD Slope R’(%) RMSEP RPD Slope
Sand (%) 70.5 6.8 1.8 0.7 80.9 5.7 25 0.7
Silt (%) 75.8 4.9 2 08 88.2 3.9 3 0.8
Clay (%) 77.6 6.2 2.1 0.8 80.6 5.5 24 0.8
CEC (cmolc kg) 75.6 3.6 2 038 90.5 3.2 36 0.8
SOC (%) 953 0.1 46 09 92.2 0.2 36 09
Nitrogen (%) 855 0 26 09 85.7 0 3 0.8

RMSECV: root mean square error of cross validation, RMSEP: root mean square error
of prediction, RPD: ratio of performance to deviation, V: validation set, SD: standard
deviation

7. Modelling using Random Forest

The random forest analysis for both regression and classification was conducted using
the “Random Forest” (RF) function as implemented in the RF package (Breiman,
2001) of the R software (R core Team). RF belongs to the family of ensemble
machine learning algorithms that predicts a response from a set of predictors (matrix
of training data) by creating multiple Decision Trees (DTs) and aggregating their
results. Each tree in the forest is independently constructed using a unique bootstrap
sample of the training data. Whereas other machine learning algorithms (e.g. bagging
and boostrapping (Schapire et al., 1998)) use the best split among all predictors for
node splitting, RF chooses the best split from a randomly selected subset of predictors.
The introduction of this additional randomness decreases the correlation between trees
in the forest, and consequently increases accuracy (Gislason et al., 2006). Additionally,

RF requires no assumption of the probability distribution of the target predictors as
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with linear regression, and is robust against nonlinearity and overfitting, although
overfitting may occur in instances where noisy data are being modelled (Statnikov et
al., 2008). For RF modelling, parameters requiring tuning such as the number of trees
to grow in the forest (ntree) and the number of randomly selected predictor variables at
each node (mtry) were set using the grid search method in the R “caret” package

(Kuhn, 2015) using tenfold cross validation with 5 repetitions.

RF optionally provides information on the relative importance of the predictors
(variable importance) used in the construction of the forest (Breiman, 2001). Two
importance measures - mean decrease in accuracy (MDA) and mean decrease in
impurity (MDI) are frequently computed. To calculate MDA (increase in mean
standard error), each tree is constructed with and without a predictor. Then, the
difference between the two cases is averaged over all trees and normalized by the
standard deviation of the differences. The second measure, the MDI represents the
total decrease in node impurity from splitting on a predictor in the tree construction
process, averaged over all trees. For regression, the node impurity is measured by the
residual sum of squares (Breiman, 2001). RF computes an internal accuracy measure
based on the samples that are omitted from the bootstrapped samples used in the tree
construction (i.e. out-of-bag, OOB). The accuracy of the model is given by the mean
square error (MSEpog) of the aggregated OOB predictions generated from the

bootstrap subset and is computed as follows (Breiman, 2001) :

MSEgpp = n" 1 X (z; — 2P9P)? (11-2)

i
Where “n” is the number of observations, z; is the average prediction of the ith
observation and 2795 is the average prediction for the ith observation from all trees for

which the observation was OOB.

The explained variance for regression analysis is expressed as follows:

MSEopoB
Varyesp

Var=1— (I1I-3)

where Var,,, is the total variance of the response variable computed with n as divisor

(rather than n — 1).
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III.

High resolution mapping of soil properties using remote sensing variables in
south-western Burkina Faso: a comparison of machine learning and multiple

linear regression models

Modified on the basis of

Gerald Forkuor*, Ozias K.L. Hounkpatin*, Gerhard Welp, Michael Thiel. (2017).
PLoS ONE 12(1): e0170478. doi:10.1371/journal.pone.0170478

* Gerald Forkuor and Ozias K.L. Hounkpatin equally contributed to the data
collection, data analysis and interpretation as well as the writing of the manuscript of
this chapter. As this section was done in joint efforts, the results are part of the present
PhD thesis.
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1. Introduction

Sustainable land use and optimal soil management require accurate and detailed spatial
soil information. In West Africa, where land degradation and loss in soil fertility has
been reported by numerous studies (Bationo et al., 2007; Lahmar et al., 2012; Vagen et
al., 2005), such information is increasingly required by governments and development
partners to aid in improving land management (Sachs et al., 2010). High resolution
spatial information on soils can assist decision makers to better target areas for soil
fertility interventions and implement knowledge-based policies that aim at increasing
agricultural production and improving livelihoods of small scale farmers in the sub-
region. This is even crucial for the sustainable use of the soil resources particularly in

the context of climate change (Niang et al., 2014).

Digital soil mapping, which includes secondary (non-soil) data sources into the
mapping process, has been identified as a potential means of providing soil spatial
information (Arrouays et al., 2014; Mulder et al., 2011; Summers et al., 2011).
However, recent digital mapping initiatives on the continent (e.g. African Soil
Information Service - http://africasoils.net/) (Hengl et al., 2015) and at national scales
(e.g. (Akpa et al., 2014)) have used remote sensing and other environmental variables
in mapping soil units and properties. However, the spatial resolution of these studies is
still coarse (ca. 250 — 1000 m), and may be of limited use for local scale (e.g.
watershed) analysis. Moreover, the success of digital soil mapping is to a large extent
dependent on the availability, quality and timing of remote sensing data acquisitions
(Blasch et al., 2015). Land surface characteristics, especially on agricultural lands, are
subject to temporal changes and it is not always clear which periods of the year are

suitable for acquiring remote sensing data for accurate soil property prediction.

This study consists in a digital soil mapping effort that integrated high spatial
resolution multi-temporal RapidEye and Landsat imagery together with ASTER
Global DEM terrain derivatives to determine their suitability for improving the
availability and accuracy of spatial soil information in rural African landscapes. In that
regard, four statistical methods which have proved their suitability for digital soil

mapping in previous studies - multiple linear (MLR), random forest regression
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(RFR), support vector machine (SVM) and stochastic gradient boosting (SGB)
(Grimm et al., 2008; Lief3 et al., 2016; Stevens et al., 2012; Wiesmeier et al., 2011)
were explored to ascertain the most suitable method for high resolution remote sensing
data in the study region. The research questions that the study addresses are: (1) which
regression method offers the best accuracy for predicting soil properties? (2) What is

the optimal time of RS data acquisition for predicting soil properties?

2. Materials and methods

2.1. Study area (see section II. 1)

2.2. Soil sampling and analysis

A total of 1104 soil samples (1002 in sub-watershed and 102 outside) coming mainly
from the topsoil (0 - 30 cm), were considered in this study. For soil analysis for

texture, CEC, SOC and N see section II. 2 and section II. 3).

2.3. Spectroscopic measurement (See section II. 6)
2.4. Covariate data

2.4.1. Satellite spectral data

Multi-temporal data from two optical sensors, RapidEye and Landsat, were used in
this study. The images were acquired on 1st March, 1st April, 3rd May 2013
(RapidEye) and 13th June 2013 (Landsat). This period was selected to coincide with
the peak of the dry season and the ploughing/planting period during which there’s little
or no vegetation especially on croplands. RapidEye was obtained from the RapidEye
Science  Archive team of the German  Aerospace Center (DLR)
(https://resa.blackbridge.com/), while Landsat 8 was downloaded from the United
States Geological Survey's GLOVIS website (http://glovis.usgs.gov/). The RapidEye
data has five spectral channels (blue, green, red, rededge and near infrared (NIR)) and
a spatial resolution of 5 m (i.e. orthorectified, level 3A) (Tyc et al., 2005), while
Landsat has eleven spectral channels (Irons et al., 2012) and a spatial resolution of 30
m, which was later resampled to 5 m to ensure integration with the RapidEye data. Six
out of the eleven spectral channels of Landsat (Tab. III.1) were used in the analysis.

Images from both sensors were atmospherically corrected using the ENVI ATCOR
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software (Richter and Schlépfer, 2012). In addition to the original spectral bands, six
soil and vegetation indices were calculated for each image. In all, twenty-one spectral
bands and twenty-four spectral indices were derived (i.e. six indices for each of the
four images). Tab. III.1 provides further details of the spectral bands of RapidEye and
Landsat as well as formulae and definitions of the spectral indices calculated. These

spectral indices have been found to be useful in digital soil mapping (Ray et al., 2004).

Tab. III-1: Spectral bands of satellite images used and definitions of soil and
vegetation indices

No. of Band number, names and abbreviations

SemSOr ponds 1 2 3 4 5 6
RapidEy 5 Blue Green Red Red edge E?:;re d i
e (B) (&) (R) (RdE) (NIR)
Blue Green Red Near Shortwave Shortwave
Landsat 6% (B) G) (R) infrared infrared 1 infrared 2
(NIR) (SWIR 1) (SWIR 2)
Spectral indices
Name of Index Formula Index property Reference
Brightness Index ((R*+G*+B%)/3)" Average (Ray et al., 2004)
(BI) reflectance
magnitude
Saturation  Index (R-B)/(R+B) Spectral slope (Ray et al., 2004)
(SI)
Hue Index (HI) (2*R-G-B)/(G-B)  Primary colors (Ray et al., 2004)
Coloration Index (R-G)/(R+G) Soil color (Ray et al., 2004)
(CI)
Redness Index (RI) R*/(B*G”’) Hematite content (Ray et al., 2004)
Normalized (NIR — R)/(NIR + R) Health and amount (Huete et al., 2002)
Difference of vegetation

Vegetation Index

* Spectral bands used in this study

2.4.2. Terrain and climatic variables
Terrain variables (Tab. I1I-2) were extracted from the 30 m resolution ASTER GDEM

(http://asterweb.jpl.nasa.gov/GDEM.ASP). Although previous studies have shown that
the 90 m resolution SRTM DEM (Farr and Kobrick, 2000) has a superior absolute
accuracy than ASTER GDEM (Forkuor and Maathuis, 2012), the latter was selected
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for this study due to its superior spatial resolution. Although the 30 m SRTM data has
been made freely available, it came at a time that this manuscript was at an advanced
development stage. The data was pre-processed to generate a depressionless DEM
prior to the calculation of terrain variables. Climatic data (i.e. mean annual
precipitation and temperature over 50 years) at 1 km resolution were obtained from

worldclim (Hijmans et al., 2005a).

In order to ensure integration with the RapidEye data, the DEM and climatic variables
were resampled to 5 m resolution using the bilinear and bicubic interpolation methods,
respectively. Tab III-2 lists the 29 terrain and climatic variables that were used in this
study together with the relevant references. Most derivatives were calculated using the
System for Automated Geoscientific Analysis (SAGA) software, while few were

calculated with ArcGIS.
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Tab. III-2: Terrain and climatic variables considered in this studyTerrain and climatic
variables considered in this study

Parameters Definition Units
Slope* Inclination of the land surface from the Radians/ %
horizontal
Steepest slope Maximal rate of elevation change in radians
gravitational field
Curvature Curvature °m’
General curvature Combination of horizontal and vertical m’
curvature
Plan curvature* Horizontal (contour) curvature °m’
Maximum curvature Maximum Curvature °m’
Minimum curvature Minimum Curvature °m’
Total curvature Curvature of the surface itself °m’
Parallel curvature Parallel curvature °m’
Rectangle curvature Rectangle curvature °m’
Flow line curvature Flow line curvature °m’
Profile Curvature Vertical rate of change of slope °m’
Horizontal curvature ~ Measure of flow convergence and °m’
divergence
Flow direction* Path of water flow -
Aspect Direction the slope faces °
Cose Aspect Direction the slope faces: eastness °
Sine Aspect Direction the slope faces: northness ©
Elevation Vertical distance above sea level m
Protection index Extent at which a cell is protected by

relief based on the immediate
surrounding cell
Topographic  position Location higher or lower than the
index average of their surroundings
Saga Wetness Index Ratio of local catchment area to slope -
Flow accumulation* Ultimate flow path of every cell on the -

landscape grid
Channel network base Channel network base level elevation m
Level
Temperature (mean Temperature °C
annual)
Precipitation (mean Precipitation mm
annual)

The variables with (*) were calculated in SAGA as well as ArcGIS due to slight
differences in the computational algorithms used by the two software packages
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2.5. Models

2.5.1. Multiple Linear Regression (MLR)

Linear regression models aim at explaining the spatial distribution of a dependent
variable by means of a linear combination of predictors (independent variables). In the
case of this study, the various soil parameters are considered the dependent variables
while the spectral and terrain/climatic variables are the independent variables. Linear

regression models generally have the form:

y=a+Zbl.*x,‘|_'8i (III-1)

i=1
where “y” is the dependent variable (soil parameter), “x;* are the predictors, “n” is the
number of predictors, “a” is the intercept, “b;” are the partial regression coefficients
and “¢” is the standard error of estimate. The regression equation is used to predict the

spatial distribution of the parameter of interest based on the independent variables.

The “Im” function implemented in the R software (R core Team) was used for MLR
analysis. A matrix of predictors was developed by superimposing the training samples
on the spectral and terrain/climatic spatial layers and extracting the corresponding
values. One soil property was modelled at a time as the response (dependent) variable
with the developed matrix as the predictors. For each model, the adjusted R* and
residual standard error were recorded. In addition, the predictors that were significant

at 1 % significance level were noted.

A common limitation of regression models is the problem of multicollinearity, which
occurs when there is significant correlation between the predictors. Since the number
of predictors identified in this study are many (seventy-four), and there could be high
correlation between some of them, a stepwise regression analysis was first conducted
to produce uncorrelated predictors needed to model each soil parameter and thereby
minimize the problem of multicollinearity. Stepwise regression identifies a subset of
predictors based on the statistical significance of the predictors (using stepwise,
forward selection, or backward elimination) (Venables and Ripley, 2013). In this
study, the “stepAIC” function as implemented in the “MASS” package (Venables and
Ripley, 2013) of the R statistical package was used for the stepwise regression. For
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each soil parameter, a subset of uncorrelated predictors were identified for subsequent
analysis. Tab. III-3 presents the number of spectral and terrain/climatic predictors that
were eventually used in the MLR for each soil property. On average, less than 50 % of
the initial predictors were eventually selected for each soil property with the exception
of carbon, for which 53 % were selected. In order to ensure comparison with the
Random Forest Regression (RFR), the same set of predictors were maintained for the
RFR analysis, although it (RFR) does not greatly suffer from the multicollinearity
problem.

Tab. III-3: Number of spectral and terrain/climatic predictors used in modelling each
soil parameter

Data/Parameter Sand Silt Clay CEC SOC Nitrogen
Spectral 17 22 21 12 26 19
Terrain/climatic 9 10 5 13 12 12
Total 26 32 26 25 38 31

2.5.2. Random Forest Regression (RFR)

For background information on RFR see section II-7.

2.5.3. Support vector machines for regression (SVM)

Initially used for classification, the support vector machine (SVM) has been extended
for regression with the prediction of soil properties (Shrestha and Shukla, 2015;
Stevens et al., 2012). Relying on Kernel functions, input data are plotted into a new
hyperspace where separations are performed. The ultimate purpose is to get an optimal
hyperspace for data fitting and prediction using the e-insensitive loss function, which
tolerates errors smaller than the constant € set as a threshold. Detailed information
about SVM can be found in Hastie et al. (Hastie et al., 2011). The determination of the
best parameters (bandwidth cost parameter, insensitive loss function, ) for tuning the
model for each soil parameters was carried out using the grid search method in the R
“caret” package (Kuhn, 2015). For this purpose, ten random partitions of the training

data with five repetitions was carried for leave-one-group-out cross-validation of the
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model. Parameters resulting in the lowest root mean square error were considered for

modelling.

2.5.4. Stochastic gradient boosting (SGB)
Stochastic gradient boosting (SGB; (Friedman, 2001, 2002)) is a hybrid method

incorporating both boosting and bagging approaches. First, small classification or
regression trees are sequentially built from the residuals of the preceding tree (s).
Instead of focusing on the full training set, the SGB carries out a boosting by selecting
(without replacement) at each step a random sample of the data leading to a gradual
improvement of the model. More details related to the background and mathematical
functions behind the SGB can be found in Ridgeway (Ridgeway, 2008). The required
parameters for model fitting (interaction depth, shrinkage rate) were set by using the
tenfold cross validation with five repetitions also with the R “caret” package (Kuhn,
2015). For each soil property, parameters with the lowest error metric (root mean

square error) were used for the final model.

2.6. Accuracy assessment
The performance of the four models — MLR, RFR, SVM, SGB - in predicting the soil

properties was assessed by using 80 % of the detailed soil samples in the sub-
watershed (which was the focus of the sampling) (Fig. II-1) for cross validation. A 10-
fold cross-validation scheme with 5 repetitions was applied to ensure model stability
and reliability using the “caret” R Package (Kuhn, 2015) . The remaining 20 % served
as an independent validation dataset. In order to assess the predictive strength of the
models outside the sub-watershed (i.e. the core sampled area), all the soil samples
outside the sub-watershed (102 samples) (Fig. II-1) were reserved for the purposes of
accuracy assessment and used as a second independent validation dataset.

Though R’ is a valid statistic for assessing the prediction accuracy of a model, a high
R-squared model may not necessarily lead to accurate predictions. This is because the
model could systematically and significantly over- and/or under-predict the data at
different points along the regression line. An over-fitted model could also lead to poor
predictions (Mufoz and Felicisimo, 2004). It is, therefore, important to evaluate the

models with other performance statistics, preferably based on an independent set of
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observations, to provide additional information on the prediction accuracy of the

models.

For each soil parameter, two error statistics - root mean squared error (RMSE) and the
symmetric mean absolute percentage error (SMAPE) - were calculated (see equations
II-2-3). The two statistics served as the basis for comparing the performance of the
two models in predicting the spatial distribution of the different soil properties.
Although RMSE is a frequently used statistic in the literature to indicate the average
error of a model (Willmott and Matsuura, 2005), its dependence on scale makes it
difficult to calculate a model’s error in percentage terms. The sSsMAPE (Makridakis and
Hibon, 2000), on the other hand, provides a percentage-wise error and facilitates a
comparison of the accuracy with which each soil property is predicted. The sSMAPE
(as defined in this paper), however, can provide unreliable estimates if either observed

or forecasted value is negative (Hastie et al., 2011).

RMSE = {liu{.—a)z} (III-2)
ni-
smape =1y 10 A1 (I11-3)

ns (0,+P)/2
where “P” is the predicted value and “O” is the observed/true value.

3. Results and Discussion

3.1. Model performance

The performance of the four models investigated was assessed based on: (1) model

internally generated accuracy statistics and (2) independent validation samples.

3.1.1. Assessment based on internal accuracy statistics

This assessment was achieved by comparing the RMSE and the adjusted R®
(hereinafter referred to as R?) derived from the four models for the respective soil
parameters. Tab. ITI-4 presents results of the comparison. R* ranged between 21 and 53
% for MLR, 18 and 53 % for RFR, 20 and 51 % for SVM and 16 and 51 % for SGB.
Silt was the only soil parameter that achieved an R? of greater than 50 % for all

models. The other soil parameters recorded relatively lower Rz, with sand, clay, SOC
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and nitrogen consistently having R’ below 40 %. The generally low R’ obtained in this
study independently of the models can be attributed to a complex interplay and high
variability of environmental factors in the studied watershed and surrounding regions
(Malone et al., 2016; Wiesmeier et al., 2014). High variability in agricultural soil
management practices, nutrient application, vegetation cover and climatic factors
(temperature, precipitation) are believed to be among the factors that resulted in the
low correlations observed. Nonetheless, the range of R? values obtained in this study is
comparable to other studies that considered only terrain/climatic covariates (Grimm et
al., 2008; Wiesmeier et al., 2014) or only spectral data (Coleman et al., 1991; Ray et
al., 2004).

Tab. III-4: Internal model validation based on 80 % training data (all Spectral and
topographic/climate predictors)

Model Sand (%) Silt (%) Clay (%) CEC (cmolc kg'l) SOC (%)  Nitrogen (%)

RMSE R’ RMSE R? RMSE R’ RMSE R RMSE R?> RMSE R’

MLR 7.566 0.346 5940 0.537 6.946 0.212 4.786  0.357 0.546 0.348 0.038 0.352
RFR  7.586 0.342 5937 0.538 7.022 0.185  4.689  0.383 0.528 0.39 0.038 0.354
SVM  7.592 0.342 6.091 0.519 6.993 0.206 4.889  0.333 0.551 0.341 0.038 0.339
SGB 7.707 0.318 6.094 0.514 7.164 0.162 4767  0.360 0.539 0.367 0.038 0.339

Tab. III-4 shows that RFR performed marginally better than the other models in
generating a model for the soil parameters with relatively lower RMSE and higher R*.
The only exception was in the case of sand and clay, where MLR performed better
than the RFR recording better error metrics. Generally, the machine learning methods
(RF, SVM, SGB) were found to be more accurate than MLR using the RSME of cross
validation for assessing model performance (Bricklemyer et al., 2007; Zakaria and

Shabri, 2012).

3.1.2. Assessment based on independent validation samples

Tab. III-5 and Tab. III-6 present model performance statistics for the external
validation inside (20 % of the dataset) and outside the small catchment, respectively
(see Fig. II-1). Here, the symmetric mean absolute percentage error (sMAPE)

(equation III-3) was calculated and used as the basis for comparing the four models.
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Inside the small catchment, the RFR generally performed better than the other models,
achieving the highest prediction accuracy (i.e. 100-sMAPE) for four soil properties
(sand, silt, SOC, nitrogen) while SVM and SGB produced the best prediction for clay
and CEC, respectively. Prediction accuracies by the RFR model ranged from a low of
68 % for CEC to a high of 90 % for silt, with an average accuracy of 77 %. Compared
to the MLR, for example, RFR improved prediction accuracy by 0.9 % for sand, 0.4 %
for silt, 9.7 % for CEC, 2.4 % for SOC, and 1.7 % for N. Generally, SVM and SGB
also outperformed the MLR. In assessing the models’ performance outside the small
catchment, Tab. III-6 reveals that RFR achieved a better prediction accuracy for silt
(85 %) and clay (52 %), SVM for sand (81 %) and SOC (53 %), and SGB for CEC (60
%) and nitrogen (55 %) with prediction accuracies of 69 %, 85 %, and 52 %,
respectively. The RFR model achieved an average accuracy of 62 % for the validation

outside the small catchment.

Compared to MLR, the high performance of RFR and the other machine learning
models could be due to the existence of a non-linear relationship between soil
parameters and the predictors which MLR could not adequately resolve. Although
MLR is widely used in statistical predictions, its limitation in handling non-linear
relationships between response and predictor variables, especially in heterogeneous
landscapes, has been noted in literature (Muifioz and Felicisimo, 2004; Odeha et al.,
1994; Selige et al., 2006). Non-parametric models such as RFR, SVM and SGB have
been found superior to MLR due to their ability to handle non-linear relations and
multi-source data (Bricklemyer et al., 2007; Hahn and Gloaguen, 2008a; Walinder,
2014). In general, many studies reported RFR as providing better predictions
compared to SVM (Fassnacht et al., 2014; LieB et al., 2016; Ma et al., 2016;
Siegmann and Jarmer, 2015). However, Were et al. (Were et al., 2015) found SVM as
best predictor for the spatial distribution of SOC stock compared to RFR. Rossel and
Behrens (2010) reported RFR as having better prediction accuracy compared to SGB,
while Hitziger and LieB3 (2014) found the latter superior to the former in soil property
prediction. Similarly, SVM and SGB occasionally outperformed RFR in this study.

This, and previous results, suggest that no single machine learning algorithm might
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serve best for every landscape and that many models should be calibrated to identify

the most accurate model for prediction.

A comparison of Tab. III-5 and Tab. III-6 reveals a general reduction in the predictive
accuracy of the models outside the small catchment (which was the focus of
sampling), although the magnitude of reduction varies depending on the model and
soil property. Taking RFR, for example, the magnitude of reduction in prediction
accuracy (i.e. 100-sMAPE) equalled 13 % for sand, 4 % for silt, 24 % for clay, 10 %
for CEC, 21 % for SOC, and 18 % for nitrogen. In general, all models performed
relatively poorly in predicting clay, SOC and nitrogen outside the small catchment,
with average accuracy reductions of 28 %, 20 % and 19 %, respectively. On the other
hand, the models performed well in predicting silt and CEC outside the small
catchment, showing minimal accuracy reductions of 4 % and 7 %, respectively. These
results suggest that the accuracy of extrapolating soil predictions outside the sampled
area may differ depending on the soil property as well as on the non-comparability of

the small catchment with regard to surface, land use and other characteristics.

Despite these differences, the accuracies achieved in the external validation can be
assumed to be reasonably good considering the heterogeneity and size of the
watershed in this study. Barnes and Baker (Barnes and Baker, 2000) noted that the use
of multi-spectral data for predicting the spatial distribution of soil properties can
achieve optimal results when the study is conducted in an area with uniform soil
surface characteristics. Consequently, several of such studies have been conducted at
plot level or on relatively small watersheds (Odeha et al., 1994; Ray et al., 2004;
Thomasson et al., 2001), apparently to reduce the effect of varying surface

characteristics.

Based on their study within a 350 ha demonstration farm in Arizona, Barnes and Baker
(Barnes and Baker, 2000) found that variations in surface characteristics such as crop
residue, soil moisture and row orientation between fields limited the accuracy with
which soil properties were mapped. These differences in surface characteristics may
have influenced the results of this analysis, considering that the study area is an

agricultural watershed populated by smallholder farmers who use diverse farm
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management practices (Callo-Concha et al., 2012b; Forkuor, 2014). The mode and
time of land preparation (e.g. tractor, bullocks, manual) (Kamara et al., 2009), nutrient
application (e.g. fertility) (Bationo et al., 1998) and water management strategy
(Douxchamps et al., 2012) can differ to a high degree from field to field due to
availability of labour, crops to be cultivated or farm inputs utilized. Model calibrations
based on samples from such localized and highly variable conditions can limit its
predictive capacity outside the sampled areas (Rossel et al., 2006; Thomasson et al.,
2001).

Tab. III-5: External validation in small catchment based on 20 % testing data with
spectral data and terrain/climatic variables

Sand Silt Clay CEC SOC Nitrogen
Model (%) (%) (%) (cmolc k™) (%) (%)

RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE

MLR 8482 0.189 5900 0.107 6.708 0.239 4.787 0.415 0.541 0.285 0.043 0.290
RFR  7.764 0.180 5.708 0.103 6.590 0.242 4.593 0.318 0.512 0.261 0.041 0.273
SVM 8415 0.188 5.899 0.107 6.667 0.234 4.897 0.394 0.549 0.283 0.043 0.287
SGB 7954 0.189 5.819 0.107 6.791 0.242 4.562 0.314 0.526 0.272 0.041 0.286

Tab. I1I-6: External validation based on 102 samples outside the small catchment with
spectral data and terrain/climatic variables

Sand Silt Clay CEC SOC Nitrogen
Model (%) (%) (%) (cmolc kg™ (%) (%)

RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE

MLR 17.341 0.547 9350 0.157 11.804 0.548 5.597 0.469 0.847 0.505 0.059 0.496
RFR  14.115 0.314 8.713 0.146 10.623 0.478 4.891 0.415 0.765 0.472 0.053 0.457
SVM 20.257 0.193 9.106 0.153 14.738 0.566 5.669 0.448 0.750 0.471 0.057 0.488
SGB  15.184 0.341 8.846 0.148 10.875 0.497 4.960 0.398 0.759 0.476 0.051 0.454

Limited accuracy could also be related to potential error propagation from the MIRS
models to the maps. Digital soil mapping based on mid infrared spectroscopy - partial
least squares regression (MIRS-PLSR) prediction models might be affected by
uncertainties at varying level of the mapping process such as spectra collection, model
building and resulting prediction. Due to the heterogeneity of the landscape both in the
small catchment and even more in the bigger catchment all the spectral variability
might not have been covered resulting in possible feedback on the accuracy of MIRS-

PLSR prediction models. Based on the classification of MIRS models by Reeves and
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Smith (Reeves and Smith, 2009), the MIRS-PLSR calibration models in the present
study (Tab. II-1) range from models with very high predictive ability as for SOC (R* =
95 %, RPD = 4.6) to models with high (R2 = 85 %, RPD = 2.6) to medium predictive
ability (R>=70-77 %, RPD = 1.8 - 2.1) respectively for Nitrogen and the remaining
soil properties (CEC, sand, silt and clay).

In some other studies, MIRS provided better prediction models for SOC, N, CEC (R*
> (0.77) compared to clay, silt and sand (R2 = 0.22 - 73 %) (McCarty and Reeves,
2006; Terhoeven-Urselmans et al., 2010). Though uncertainty propagation analysis as
carried out by Brodsky et al. (Brodsky et al., 2013) was out of the scope of the present
study, the error metrics from the test set validation provided satisfactory evidence on
the predictive ability of the MIRS-PLSR models (R*> 80 %, RPD > 2). These results
indicated that the calibrations were consistent especially for SOC, CEC, N and silt (R2
> 85 %, RPD > 3). In their study, Brodsky et al. (Brodsky et al., 2013) found PLSR
(with visible and near infrared) to cause lower uncertainties in the final map compared
to uncertainty originating from ordinary kriging used as mapping model. Based on the
sMAPE, the RFR and remaining machine learning models displayed quite satisfactory
accuracy from the prediction of MIRS-PLSR models. This is obviously to their ability

to handle both linear and non-linear patterns in dataset.

3.2. Variable importance and temporal window for acquisition of RS data

The five top spectral and terrain/climatic variables which contributed most to the
accuracy of digital soil mapping in the studied watershed are discernible from Tab. I11I-
7. Though RFR generally provided better predictions, variable ranking from the MLR
model was included in the table for comparison purposes. The data in Tab. III-7 reveal
that both models include elevation in the list of the five most significant predictors for
SOC and N while the other soil parameters had only spectral predictors. The only
exception was for clay for which the RFR recorded also temperature among its driving

factors while the MLR also displayed precipitation as key factor following elevation.

Similar to the findings of this study, Hengl et al. (Hengl et al., 2015) also recorded
elevation as the most important variable influencing SOC contents of topsoil in Africa.

Wang et al. (Wang and Ge, 2012) found that elevation and slope, along with soil clay
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and water contents, were among the most significant factors affecting SOC and N
variability. Terrain/climatic variables are reported to have control on soil water status,
dynamics of plant litter mineralisation as well as erosion and deposition processes
(Hengl et al., 2015; Wang and Ge, 2012). The influence of elevation on predicting
SOC and N, for example, can be related to corresponding variations in soil
temperature as well as the intensity of cultivation which is higher in the lower areas as

compared to the higher areas because of accessibility.

Tab. III-7: First five predictors that were highly significant for RFR (based on
“IncNodePurity” importance measure) and MLR analysis

Model Rank Sand (%) Silt (%) Clay (%) CEC (cmolc kg'l) SOC (%) Nitrogen (%)
MLR 1 june_SWIR2 june_SWIR2 june_NIR june_SWIR2 Elevation Elevation
2 june_green June_RI June_RI May_RI prep March_NDVI
3 June_CI may_red may_blue may_RE march_NIR march_NIR
4 may_green june_red June_SI June_BI March_NDVI march_green
5 April_HI June_BI June_CI june_red june_ SWIR1  March_CI
RFR 1 june_SWIR2 June_ RI june_NIR june_SWIR2 june_red june_NIR
2 may_NIR May_SI June_RI june_blue june_NIR June_SI
3 june_green  june_SWIRI june_blue May_RI Elevation Elevation
4 May_SI june_SWIR2 june_SWIR1 March NDVI June_SI march_green
5 may_green May_CI temp june_red June_BI may_red

The names of the spectral predictors (see Tab. III-1) here are a concatenation of the month of satellite acquisition
and a spectral channel or indice. For example, “May_BI” represents the brightness index calculated from the
May RapidEye image. prep: precipitation, temp: temperature.

Tab. III-7 reveals that generally, satellite images acquired in June and May were the
most important in developing a model for predicting the soil properties under
consideration. Spectral bands of the June Landsat image consistently came up as
important predictors for the soil properties. The prominence of June and May images
can partly be explained by the coincidence with the ploughing period or early stages of
crop development when the soils of most agricultural plots are exposed. This allows
satellite sensors to directly measure soil reflectance; hence, a good correlation between
laboratory processed soil samples and satellite derived spectral reflectance is possible.
The March imagery was the most important spectral predictor for SOC and N in MLR
and was listed also for CEC and N in RFR (Tab. III-7). March and April are the hottest
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months in the studied watershed, thus the prominence of the March imagery could be

attributed to a higher loss of biomass with consequent higher mineralisation rate and

SOC input.

Tab. III-7 further reveals that the shortwave infrared (SWIR) and near-infrared (NIR)
channels of Landsat, as well as soil specific indices like brightness, redness and
saturation index were important spectral predictors in developing the respective
models. The importance of the SWIR and NIR channels in this analysis confirms the
findings of other studies. Liao et al. (Liao et al., 2013) used Landsat ETM bands as
covariates in modelling soil textural properties (sand, silt, clay) and found that NIR
(band 4) and SWIR (band 5, band 7) had a significant correlation with the analysed
soil properties and explained most of their variability. Soil specific spectral indices

were also found useful in digital soil mapping by other studies (Ray et al., 2004).

3.3. Maps of the spatial distribution of the soil properties

In our study, the spatial distribution of soil properties does not display a clear pattern
of hot and cold spot areas for all soil properties, but rather a patchy distribution (Fig.
II-1). However, along the western border of the study area, medium to higher values
of clay, CEC, SOC and N are observed while the proportions of silt, on the contrary,
recorded their lowest values in these areas. These zones correspond to the most
elevated terrain where natural vegetation is prominent and accessibility is difficult for
farming activities. This suggests a higher net primary production providing the input
for nitrogen and carbon whose stability is reinforced by a higher clay content resulting
in a higher CEC. It is widely acknowledged that SOC input is higher where substantial
net primary productivity deposit occurs (Walinder, 2014; Siegmann and Jarmer, 2015).
The remaining areas of lower elevation are settlement zones and cultivated areas and
consequently displayed relatively medium (yellowish areas) and lower values

(greenish areas) for the soil properties with some spots of high values in certain places.
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Fig. III-1: Spatial distribution of sand, silt, clay, cation exchange capacity (CEC), soil
organic carbon (SOC) and total nitrogen (N) in the topsoil of the studied watershed
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4. Conclusion

Accurate and detailed spatial soil information is essential for environmental modelling,
risk assessment and decision making. This study explored the use of high spatial
resolution satellite (RapidEye and Landsat) and terrain/climatic data as well as
laboratory analysed soil samples to map the spatial distribution of six soil properties —
sand, silt, clay, CEC, SOC and N — in a 580 km” agricultural watershed in south-
western Burkina Faso. Four statistical prediction models — multiple linear regression
(MLR), random forest regression (RFR), support vector machine (SVM), stochastic
gradient boosting (SGB) — were tested and compared. Internal validation was
conducted by cross validation while the predictions were validated against an
independent set of soil samples considering the modelling area and an extrapolation

area.

Results indicate that the RFR performed marginally better than the remaining models
at modelling stage for most soil properties except for sand and clay for which MLR
offered a better predictive ability. However, the RFR achieved a higher performance
statistics for the external validations in the considered areas but not for all soil
properties in the extrapolated area. Beyond the modelling area, the SVM better
predicted SOC while SGB performed better for CEC and N.

The machine learning algorithms performed generally better than the MLR for the
prediction of soil properties at unsampled locations. Inability of MLR to handle non-
linear relationships between dependent and independent variables is believed to be the
source of this limitation. Prediction accuracies from the RFR model ranged from 68 %

for CEC to 89 % for silt.

These prediction accuracies can be deemed to be reasonable, considering the high
variability in farm management practices and environmental variables in the studied
watershed. Satellite data acquired during ploughing or early crop development stages
(e.g. May, June) were found to be the most important spectral predictors while
elevation, temperature and precipitation came up as prominent terrain/climatic

variables in predicting soil properties. The shortwave and near infrared channels of
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Landsat8 as well as soil specific indices of redness, coloration and saturation were

prominent spectral channels.

The accuracies obtained in this study are promising for future local scale digital soil
mapping efforts in data poor regions such as West Africa, considering the increasing
availability of free high resolution remote sensing data. The use of remote sensing data
can reduce soil sampling efforts and therefore reduce soil mapping costs. Further
research is, however, required on the effect of high variability in farm management

practices and environmental variables on the accuracy of digital soil maps.

48



IV. Predicting reference soil groups using legacy data: a data pruning and random forest approach

IV.

Predicting reference soil groups using legacy data: a data pruning and random

forest approach for tropical environment (Dano catchment, SW Burkina Faso)

Modified on the basis of

Ozias K. L. Hounkpatin, Karsten Schmidt, Felix Stumpf, Gerald Forkuor, Thorsten
Behrens, Thomas Scholten, Wulf Amelung, Gerhard Welp (2017). Scientific Reports.

Submitted manuscript

49



IV. Predicting reference soil groups using legacy data: a data pruning and random forest approach
1. Introduction

Soils are key asset for sustainable living conditions on earth as their functions are
related to food and biomass production, water control and chemical recycling,
platform provision for human activities, supply of raw materials and the offering of
habitat for soil biodiversity (Blum, 2005). Though soil importance is generally
acknowledged, farmers, decision makers as well as the scientific community often lack
adequate and timely spatial soil information to address land degradation issues.
Various initiatives such as the GlobalSoilMap.net project are currently working to
overcome the previous challenges in order to provide up-to-date and relevant soil
information in Africa using modern techniques (Sanchez et al., 2009). Being a time-
and cost-effective alternative to classical soil surveys, digital soil mapping (DSM;
McBratney et al., 2003) — also called soil-landscape modelling (Gessler et al., 1995)
and predictive soil mapping (Scull et al., 2003) — is a subset of pedometrical research
using geo-statistics and data mining methods to spatially predict soil classes or soil

properties based on existing soil and environmental covariate data.

When mapping soil taxonomy units, the quantitative relationship between a certain
class unit and the soil formative environmental factors is supposed to be unique as soil
classes are different from each other. However, in complex soil-landscapes, the
individual features of certain soil classes overlap in space, which is particularly
difficult for correct DSM with imbalanced datasets (Gopi et al., 2016). Ideally,
balanced datasets are required for decision trees algorithms to produce better
classification (Ertekin et al., 2007). However, DSM mostly focuses on soil legacy data
whose sampling design might not provide such ideal scheme for post hoc analysis
(Mayr et al., 2010), especially for data scarce countries like in tropical areas.
Generally, for datasets with uneven class size, the classification model, which is
generated from decision trees (DT) algorithm, biases towards the majority class

(Ertekin et al., 2007).

This section addresses a digital soil mapping approach to classify reference soil groups
in a tropical environment using a large dataset with Plinthosols (PT) as the dominant

group. I used Random Forest (RF) as robust data mining method (Schmidt et al., 2014)
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to evaluate the performance of different data subsets to deal with class imbalances (e.
g. Schmidt et al., 2008) and noise within the dataset. The various RF-models were
trained on a detailed covariate set including terrain and multispectral predictors.
Though the issue of class imbalance has been acknowledged in many studies dealing
with soil classification, to my knowledge, no such method has been applied for legacy
soil data from a tropical semi-arid environment. This approach being considered, I
hypothesized that: (1) instance selection on the majority soil group would improve the
performance of the RF models and result in a better classification of the minority soil
groups, (2) integrating spectral bands and indices along with environmental covariates
would have greater impacts on RF classification performance compared to their unique

contribution.

2. Materials and methods
2.1. Study area (see section II. 1)

2.2. Soil Sampling (see section II. 2)

2.3. Reference soil groups

Six soil classes were encountered in the Dano catchment and were described based on
the WRB as follows: Cambisols, Gleysols, Lixisol, Leptosols, Plinthosols and
Stagnosols. The Cambisols are young soils with incipient soil formation with
beginning horizon differentiation demonstrated by changes in colour, structure or
carbonate content. Gleysols refer to water influenced soils which are saturated with
groundwater for long enough periods to develop a characteristic “gleyic colour
pattern” made up of reddish, brownish or yellowish colours at ped surfaces and/or in
the upper soil layer(s), along with greyish/bluish colours inside the peds and/or deeper
in the soil. Stagnosols are also water influenced soils characterized by a perched water
table showing redox processes caused by surface water due to periodical wetting; they
are mottled in the topsoil and subsoil, with or without concretions and/or bleaching.
Lixisols consist of strongly weathered soils in which clay has been removed from an
eluvial horizon down to an argic subsurface horizon that has low activity clays and a
moderate to high base saturation level. Leptosols include very shallow soils over hard

rock or very calcareous material, but also deeper soils that are extremely gravelly
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and/or stony. Plinthosols point to soils that contain ‘plinthite’, i.e. an iron rich, humus-
poor mixture of kaolinitic clay with quartz and other materials that change irreversibly
to a hardpan or to irregular aggregates on exposure to repeated wetting and drying. For

more detailed description refer to IUSS et al. (2000).

2.4. Geospatial and spectral variables

To provide a wide range of different environmental covariates dealing with the state
factor equation, a set of predictors was delineated (95 variables, Tab. IV-1 & Tab. I1I-
1), which were compiled from different sources with ArcGIS 10.3.1 (Environmental
Systems Research Institute, ESRI Inc., Redlands, CA) and SAGA GIS (System
for Automated Geoscientific Analyses). About 45 of these variables are terrain
attributes (Tab. IV-1), 45 are spectral bands and indices (Tab. III-1) while the
remaining data (Tab. IV-2) relate to land use, parent material, geormorphology, and

climate (temperature and precipitation).

The terrain attributes were derived from a SRTM (Shuttle Radar Topography Mission)
DEM with a 90 m resolution (Jarvis et al., 2008). For land use data, the map generated
by Forkuor (2014) covering the study area was used. The parent material allocated to
each sampling location was extracted using a geological map (1/ 100 000) of Burkina
Faso made by Hottin and Ouedraogo (1992). A geormorphological map (1/ 100 000)
from the National Soil Office was considered (Bureau National des sols, 2000).
Climatic data include mean annual temperature (Temp) and annual precipitation (Prep)

at 1 km resolution from the worldclim datasets (Hijmans et al., 2005b) .

For the spectral data see section III. 2.4.1. Finally all datasets were resampled to a

spatial resolution of 90 m.
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Tab. IV-1:Terrain attributes used as predictors for soil mapping

Variables Abbreviation Unit
Distance to stream ArcGis Dist.stream m
Relief intensity ArcGis Ri m/m*
Potential drainage density ArcGis Pdd km/km?
Elevation ArcGis Elevation m
Slope ArcGis Slope.per %
Maximum Slope SAGA Slope.maxT °
Steepest slope SAGA steepest.slope °
Flow direction ArcGis/SAGA A.Flow.d/S.Flow.d* -
Flow accumulation ArcGis/SAGA A .Flow.A/S.Flow.A -
Profile curvature ArcGis A.Profile.cur/S.Profile.curv ° m™
Curvature ArcGis A.curv m’
Plan curvature ArcGis A.Plan.curv/S.Plan.curv °m’
General curvature SAGA S.Gen.curv °m’
Total curvature SAGA S.totalcuv °m’
Min curvature SAGA S.min.curv °m’
Max curvature SAGA S.max.cuv °m’
Horizontal curvature SAGA S.Hor.curv °m’
Cross curvature SAGA S.cross.curv °m’
Flow line curvature SAGA S.Flow.line.curv °m’!
Catchment Area Rectangle SAGA S.CA.Rec m’
Catchment Area Parallel SAGA  S.CA.Par m?
Catchment Area SAGA S.CA m’
Aspect ArcGis/SAGA A.Asp/S.Asp -
Eastness sine.Asp °
Northness cose.Asp °
Slope Length factor SAGA LS.Factor m
Topographic Wetness Index

ArcGis/SAGA A. TWI/S.TWI

Topographic Wetness Index

SAGA S.TWI -
SAGA Wetness Index SAGA S.Wet.Ind -
Vertical Flow Distance SAGA Verti.Flow.dist m
Vertical distance to a network Verti.dist Net m
Channel SAGA T

Terrain ruggedness SAGA Terr.Rugg

gzp)é)iraphlc position index Topo.Posi.Ind

Protection index SAGA Prot.Index -
Overland flow distance SAGA Overland.Flow.dist m
Mass Balance index SAGA Mass.Bal.ind -
Horizontal flow distance SAGA  S.HF.dist m

Convergence Index SAGA

S.convg.ind
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Channel base index SAGA S.Chanbase.ind -

Tab. IV-2: Land use, lithology, geomorphology units and descriptive statistics for
climate variables

Elements Area (km?) Area (%)
Cropland 58.18 34.54
Savannah 90.24 55.22
Land use units Water 0.46 0.30
Bare areas 4.43 2.86
Urban areas 1.24 0.80

Granodiorites and undifferentiated

tonalites 0.20 0.13
. .. Acid Metavolcanites and
Lithology units pyroclastites 14.49 9.35
Volcano sedimentary rocks 111.78 72.12
Neutral to alkaline Metavolcanites 28.53 18.41
Lateritic ridge 23.18 14.96
Rocky ridge 4.24 2.74
Plateau 15.71 10.14
Geomorpholog Upper slope glacis 12.05 7.78
y units Middle slope glacis 15.67 10.11
Alluvial levee 0.38 0.25
Inland valleys 17.09 11.03
Peripheral depression 66.65 43.00
Climate variable
Precipitation
Statistics Temperature (°C) (mm)
min 27.22 775.83
max 27.92 810.83
median 27.63 794.17
sd 0.13 8.53
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2.5. Modelling with Random Forest

(see section II. 7 for background information about Random Forest)

For the present study, 1000 trees were built and the number of features at each split
was defined based on the ten-fold cross-validation tuning procedure with the

Classification and Regression Training (Caret) package in R software (Kuhn, 2015).

Though REF is quite robust towards multicollinearity, the presence of highly correlated
covariates can lead to biased interpretation as they carry the same information (Kuhn,
2008). Moreover, Genuer et al. (2010) reported that the variable importance based on
the mean decrease in classification accuracy is overestimated for highly correlated
variables. For model prediction, the feature space was reduced in two ways. Firstly by
computing a correlation matrix for the terrain attribute predictors and identifying the
minimal set of predictors that can be removed using a specific threshold. This was
carried out using the classification and regression training (Caret) package (Kuhn,
2015) in R 3.1.2. A specific threshold of 0.70 was set and the predictor most involved

in the pairwise correlations was removed.

Secondly, recursive feature elimination (Kuhn and Johnson, 2013) function of the
classification and regression training (Caret) package (Kuhn, 2015) was used to select
among all the variables an optimal set of parameters for classification. Recursive
feature elimination works by establishing a classification model using all the available
predictors, then proceeds to rank these predictors by order of importance, and next
discards the predictors of the lowest importance. It replicates the same process till
either the reach of a specific threshold or when only one predictor is left (Brungard et
al., 2015). The RF modelling was then carried out using covariate predictors retained
based on the correlation matrix (RF) and also by using an optimal set of predictors

resulting from recursive feature elimination (RF_rfe).

To assess the influence of the different spectral and terrain variables on soil class
prediction, a different combination was carried out for running the models: (1) only the

spectral parameters (SP), (2) only the terrain parameters (TP) and (3) both terrain and
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spectral parameters (TSP). However, the Litho, Geo, LU and Prep attributes were used

along the terrain attributes.

2.6. Experimental design: data pruning

The field observation of this study revealed the Plinthosols as the dominant reference
soil group with about 73 % of the grand total percentage (Tab. IV-3). As general
assumption, the possibility of a potential overestimation of this particular soil class
was envisaged as is often the case for such kind of big datasets with imbalance related
issues. The first step in the present study was therefore to test this hypothesis by
running the model with the entire dataset. In a second step, data pruning was carried
out as a method to tackle the potential prominence of the majority class in the feature
space once the latter hypothesis revealed true. For this purpose, a set of data pruning

experiments was conducted by defining a set of data core ranges (CR).

The different pruning operations were carried out based on the RF variable importance
measurement expressed by the mean decrease in classification accuracy. The latter
follows the rationale that when values of a variable at a particular node are randomly
permuted, this variable is supposedly absent from the model. The difference in the
classification accuracy before and after the permutation of the values of the predictor
variable, i.e. after considering and excluding this predictor variable, is used as a
measure of variable importance (Strobl et al., 2008). These computations are
conducted tree by tree till the whole random forest is constructed (Liaw and Wiener,
2002). This results in the discrimination between essential and inessential variables.
The most important variable is the one with the highest contribution to model accuracy
and with the greatest impact in the feature space, driving the overall classification.
Consequently, the most important variable — the wetness index - was used to determine

the data core range for the pruning operation of the Plinthosols.

The data pruning experiments were carried out by defining a set of 80 % (80 % CR)
and 90 % (90%CR) core range of the Plinthosol data as well as a standard deviation
(o) based (SDCR) core range while cutting off all data points belonging to the outer
range. These core ranges were set by (i) calculating the density distribution of the

wetness index as revealed by the RF model, (ii) calculating the cumulative percentage
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by dividing the cumulative frequency by the total number of observations (n), then
multiplying it by 100 (the last value being equal to 100 %), (iii) cutting off all data
points belonging to the outer ranges of a chosen data core range, i.e. for defining, e.g.,
a 80 % core range (Fig. IV-2), all points lower than 10 % and higher than 90 % of the
cumulative percentage were cut off. Similarly, a core range based on the standard
deviation (o) of the values (about 68% core range) of the wetness index was defined
(Fig. IV-3). For that purpose, values lower than “p - ¢” (with p being the arithmetic
mean of the driving variable) as well as values higher than “p + ¢” were cut off. The
standard deviation based core range (SDCR) was then set by considering data values

within one standard deviation of the mean (mathematically, p + o).

100

10 % upper range (cut off)

L 80 % core range

20 40 60 80

Cumulative percentage

L 10 % lower range (cut off)
T T T T T -

6 7 8 9 10 11

Values of selected variable

Fig. IV-1: Core range definition of the Plinthosol dataset based on the cumulative
percentage of the density distribution of the driving variable (wetness index)
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Fig. IV-2: Core range definition of the Plinthosol dataset based on the standard
deviation of the values of the driving variable (wetness index)

Finally, a total of four different datasets were defined: (1) entire dataset with all the
Plinthosols (AIIPT), (2) a 90 % core range (90%CR) of the PT dataset, (3) a 80 % core
range (80%CR) of the PT dataset by cutting off all points lower than 10 % and higher
than 90 % of the cumulative percentage, (4) a SD core range (SDCR) of the PT
dataset by pruning values lower and higher than “p - 6”and “p + ¢” respectively. Each
dataset was used to train a RF model along with the different categories of predictors:

spectral parameters (SP), terrain parameters (TP), terrain plus spectral parameters
(TSP).
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Tab. IV-3: Count (n) and frequencies (%) of the reference soil groups in the Dano
catchment

Reference soil groups n Percentage of grand total (%)
Cambisols (CM) 86 6.68
Gleysols (GL) 141 10.95
Leptosols (LP) 22 1.71
Lixisols (LX) 59 4.58
Plinthosols (PT) 645 73.45
Stagnosols (ST) 34 2.64

2.7. Model validation and map comparison

The dataset was split with 80 % used for training and 20 % for validation. The
different pruning was carried out on the train set obtained from the split. These pruned
dataset (80%CR, 90%CR and SDCR) were evaluated over the same validation data
initially obtained from the split. The classification accuracy was based on the Kappa
index. The Kappa value (%) gives the level of accuracy for a particular classification
due to chance agreement (Congalton and Green, 2008). This is particularly important
when dealing with unbalanced class data as a class having larger distribution would
result in higher classification accuracy. A » value of 0 was considered as a random
classifier, 1 as perfect classification, 0.80 as strong agreement, between 0.4 and 0.8 as
substantial agreement and below 0.4 as poor agreement (Congalton and Green, 2008).

The kappa value was computed as follows:
n = (Pr(a) — Pr(e)) /(1 —Pr(e)) (IV-1)

with Pr(a) : relative observed agreement, Pr(e) : hypothetical probability of chance

agreement, and » : the kappa index value.

3. Results

3.1. Terrain attribute selection
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The minimal set of predictors finally retained for modelling after computing the
correlation matrix amounted to 50 variables. Selected predictors consisted of 19 DEM
attributes, 22 spectral data as well as lithology, geomorphology, land use, and
precipitation. Using the so-called scorpan function (McBrantney et al., 2003), the
analyses included the: (1) soil attributes (s) represented by the spectral band and
indices like redEdge, Hue Index (HI), Coloration Index (CI), Redness Index (RI),
Brightness Index (BI), Near-infrared (NIR), Shortwave-infrared (SWIR), Saturation
Index (SI); (2) precipitation as climatic (c) element, (3) indices for vegetation and
human activity (o) such as normalized difference vegetation index (NDVI), land use,
(4) terrain (r) variables and (5) lithology as proxy for parent material (p). The optimal
subset of covariate predictors resulting from the recursive feature elimination approach
returned eight variables, namely: wetness index, elevation, distance to stream to

network, protection index, precipitation, near infrared and shortwave infrared.

3.2. Model performances with different data treatments

The performance of the RF models was assessed for different data experiments
consisting of the entire dataset (AlIPT) and the pruned dataset (i.e., 80%CR, 90%CR
and SDCR) based on: (1) OOB errors of the different RF models, and (2) the
independent validation samples (prediction accuracy of the independent sample set and
Kappa values). The data pruning was carried out based on the SAGA wetness index,
since this parameter had been identified as contributing most to RF performance in

classification accuracy even with RF models based on recursive feature elimination

(Fig. IV-6).

3.2.1. Assessment based on the OOB errors

The OOB errors varied with the different combinations of dataset and category of
variable (Tab. IV-4). The highest OOB errors were recorded for the prediction based
on spectral parameters, ranging from 28.7 % to 32.7 %. The lowest OOB errors were
obtained with the terrain parameters (20.0 % to 22.4 %) and with the terrain plus
spectral parameters (20.1 % to 22.6 %). Increasing the level of pruning was generally
followed by increasing OOB errors for the spectral parameters for both RF and

RF_rfe. The OOB errors using the entire data (AlIPT) recorded mostly the highest
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OOB errors compared to those of the pruned dataset when terrain parameters only or
terrain plus spectral parameters were used as predictors. The lowest OBB error (19.6
%) was recorded for the 90%CR dataset associated with terrain plus spectral
parameters.

Tab. IV-4: Training set, percentage of Plinthosols (PT) samples removed from the total

set, and out of of the bag errors (OOB error) distribution of the different subsets of
data

OOB error (%)

) Terrain and
Spectral Terrain

Data treatment n PT removed (%) Spectral
Parameters Parameters
Parameters
RF AlIPT 792 - 28.7 22.4 22.4
90%CR 743 6.2 29.8 21.7 21.7
80%CR 694 12.4 32.3 21.3 21.2
SDCR 667 159 33.2 21.2 21.7
RF_rfe AlIPT 792 - 28.7 21.5 22.6
90%CR 743 6.2 29.6 21.9 19.6
80%CR 694 12.4 31.4 20.9 20.1
SDCR 667 159 32.7 20.0 20.8

PT: Plinthosols, OOB error: out of the bag error, AIIPT: entire dataset, SDPT: dataset
with PT pruned based on standard deviation, 15PT: dataset with 15 % of the PT
pruned, 25PT: dataset with 25 % of the PT pruned, 30PT: dataset with 30 % of the PT
pruned.

3.2.2. Assessment based on independent validation samples

The results of the performance of the RF models based on independent samples are
presented in Tab. IV-5 showing the confusion matrix between observed and predicted
reference soil groups for the entire dataset (AlITP). The RF and RF_rfe models for the
entire dataset displayed a high level of accuracy for the identification of the
Plinthosols (95-98 % for RF and 91-96 % for RF_rfe), irrespective of the category of
parameters used. Both RF and RF_rfe performed better for the Gleysols and Leptosols
when only terrain or terrain plus spectral parameters were considered, with the
prediction accuracy being 18-30 % and 50 % greater, respectively, than achieved with
the model that was based on spectral parameters only. Cambisols and Stagnosols,

however, were in most cases not well predicted (< 35 % prediction accuracy), no
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matter which model or category of parameters was chosen. Noteworthy, the
classification shows that most of the reference soil groups were misclassified as
Plinthosols, again irrespective of the category of model or parameters considered.

Tab. IV-5: Confusion matrix between observed and predicted reference soil groups for
the entire dataset

RF RF _rfe

Predicted (%) Predicted (%)
) Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
éﬁ CM 235 59 00 0.0 70.6 0.0 CM 235 59 00 00 706 0.0
g & GL 00 286 00 00 714 00 GL 00 393 00 00 607 0.0
=3z LP 00 00 250 00 750 00 LP 00 00 250 00 750 0.0
57 LX 00 00 00 455 545 0.0 LX 00 00 00 455 545 0.0
& PT 00 16 00 00 984 00 PT 00 31 00 08 961 0.0
ST 00 00 00 00 667 33.3 ST 00 00 00 00 667 333

a Predicted (%) Predicted (%)
& Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
< CM 235 00 00 00 765 0.0 CM 235 00 00 00 765 00
g GL 00 60.7 00 0.0 393 0.0 GL 00 571 0.0 00 429 00
g LP 00 00 750 0.0 250 0.0 LP 00 00 750 00 250 0.0
g LX 00 00 00 455 545 0.0 LX 00 91 00 455 455 0.0
g PT 0.0 47 00 00 953 0.0 PT 00 54 00 00 94.6 0.0
E ST 00 00 00 167 66.7 16.7 ST 00 00 00 167 667 167

Predicted (%) Predicted (%)
_ Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
%E CM 176 00 0.0 0.0 824 0.0 CM 235 59 00 59 647 0.0
%55 GL 00 571 00 0.0 429 00 GL 00 607 0.0 00 393 00
= LpP 00 00 750 0.0 250 0.0 LP 00 00 500 00 500 0.0
s 5 LX 00 91 00 455 455 00 LX 00 91 00 636 273 00
E g PT 00 54 00 00 938 08 PT 16 70 00 00 915 0.0
= & ST 00 00 00 00 667 333 ST 00 00 00 00 667 333

Models with (RF_rfe) and without (RF) recursive feature elimination; AIIPT: entire dataset, CM: Cambisols,
GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols.
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With increasing pruning level, gain in prediction accuracy was observed for most of
the different reference soil groups particularly when terrain or terrain plus spectral
parameters were used (Fig. IV-4). The RF models based on the recursive feature
elimination performed in most cases slightly better than those on a normal run of the
RF. For instance, improvement in classification for the Cambisols was observed with
the RF_rfe models when using the 80 % (80%CR) and 90 % (90%CR) core range,
dataset combined with terrain plus spectral parameters. These Cambisols gained 35 %
and 41 % respectively in prediction accuracy compared to the results with the model
based on the entire dataset (AlIPT). Likewise, with the RF_rfe models, the Gleysols
also recorded an increase of 7 % in prediction accuracy with both the 80 % (80%CR)
and 90 % (90%CR) core range dataset combined with terrain plus spectral parameters
while the standard deviation core range (SDCR) produced an increase of 10 % when
associated with the same category of predictors. The highest prediction accuracy for
the Lixisols was recorded with the normal RF with 80 % core range (80%CR) and
standard deviation core range dataset (SDCR) associated with terrain parameters with

an increase of 18 % compared to the results with the entire dataset (AlIPT).

The prediction of the Leptosols were greatly improved when both RF and RF_rfe
models were run with either terrain only or with terrain plus spectral parameters
resulting in an increase of 25 % in prediction accuracy. No other improvement
occurred for the Leptosols with the pruned dataset. For the Stagnosols, most of their
validation sample points were predicted with 33 % in prediction accuracy except for
the RF model based on the standard deviation core range dataset (SDCR) associated
with terrain plus spectral parameters. The latter recorded up to 50 % in prediction
accuracy. Compared to results from models based on the entire dataset (AlIPT), the
Plinthosol prediction accuracy dropped generally with increased pruning intensity
when using either the terrain parameters only or when the latter were used along the
spectral parameters. The RF_rfe model based on the 90%CR dataset associated with
the terrain plus spectral parameters recorded a drop of 4.7 % in prediction accuracy for

these Plinthosols compared to the results with the entire dataset (AlIPT).
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The highest kappa value for model based on the entire dataset (AlIPT) was found with
the RF model associated with the terrain parameters with %=0.51 (Fig. IV-5).
Considering the variation of the kappa values (») in relation to the data treatment, the
pruned datasets with models based on the recursive feature elimination (RF_rfe)
generally recorded higher Kappa values than the AIIPT reference when terrain plus
spectral parameters were used as predictors.The combination of the 90%CR and
80%CR dataset (90%CR) with terrain plus spectral parameters (90%CR-TSP)
recorded the highest kappa value with respectively %=0.57 and »=0.55. Models run
with spectral parameters recorded the lowest kappa values while those conducted with
the terrain parameters were improved by recursive feature elimination. However, Fig.
IV-5 also shows that the kappa values dropped for most of the models based on the
standard deviation core range dataset (SDCR). It is worthy to note that the model
based on the 90%CR associated with the terrain plus spectral parameters also recorded

the highest kappa value with the lowest OOB errors (19.6 %).
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Fig. IV-3: Accurately predicted reference soil groups for different sets of data and
covariates

Models with  (RF_rfe) and without (RF) recursive feature elimination. CM:
Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST:
Stagnosols, SP: spectral parameters; TP: topographic parameters, TSP: topographic
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and spectral parameters. AlIPT: entire dataset including all Plinthosols, AIIPT: entire
dataset, 90%CR: dataset with 5 % lower and upper range pruning, 80%CR: dataset
with 10 % lower and upper range pruning, SDCR: dataset with standard deviation
based pruning
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Fig. IV-4: Variation of Kappa values in relation to data treatment

AlIPT: entire dataset, 90%CR: dataset with 5 % lower and upper range pruning,
80%CR: dataset with 10 % lower and upper range pruning, SDCR: dataset with
standard deviation based pruning, SP rfe: spectral parameters (SP) with recursive
feature elimination, TP ,: terrain parameters (TP) with with recursive feature
elimination, TSP: terrain and spectral parameters (TSP) with recursive feature
elimination..

3.3. Prediction of the pruned Plinthosols

Since the models run with the spectral parameters recorded the lowest kappa values,
prediction of the pruned Plinthosols were only carried out with the RF and RF_rfe
models associated with either terrain parameters only or with terrain plus spectral
parameters (Tab. IV-6). Tab. IV-6 shows that none of the models could perfectly
predict the Plinthosols, though about half of the models attributed the highest
prediction to the Plinthosols. Most of the Plinthosols were predicted as Cambisols
(17.7-44.7 %) compared to the remaining RSG while very few were predicted as
Leptosols (0-8 %). The highest accurate prediction (> 30 %) varies from 38.8 %
(90%CR-TSP of the RF_rfe model) to 71.4 % for the Plinthosols (90%CR of the RF

model). All the predictions based on the terrain plus spectral parameters from the
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RF_rfe models resulted in higher predictions of the Plinthosols compared to the

Cambisols and remaining soil units.

Tab. IV-6: Confusion matrix between observed and predicted reference soil groups for

the pruned Plinthosols

RF

RF_rfe

2PN Predicted (%) Predicted (%)
éég Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
et gg PT 41 122 82 20 714 2.0 PT 327 143 2.0 10.2 26.5 14.3

S

» Predicted (%) Predicted (%)
= % g Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
g §§ PT 357 12.2 1.0 10.2 224 184 PT 224 11.2 1.0 92 429 133
B a

2 Predicted (%) Predicted (%)
g ég Observed CM GL LP LX PT ST  Observed CM GL LP LX PT ST
E g@ PT 40.7 10.6 1.6 10.6 16.3 20.3 PT 28.5 9.8 0.8 9.8 34.1 17.1
= . Predicted (%) Predicted (%)
é - % g Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
g §_ §§ PT 447 154 00 73 154 17.1 PT 26.5 16.3 0.0 10.2 38.8 8.2
Haa
= . Predicted (%) Predicted (%)
EE %' g Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
g § §§ PT 357 20.4 1.0 13.3 214 8.2 PT 17.5 18.6 3.1 52 42.3 134
282
= . Predicted (%) Predicted (%)
g o o Obsened CM GL LP LX PT ST  Observed CM GL LP LX PT ST
'g § %é PT 447 154 00 73 154 17.1 PT 187 179 24 5.7 43.1 12.2
= a <z

Models with (RF_rfe) and without (RF) recursive feature elimination; CM: Cambisols, GL: Gleysols, LP:
Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset with 5% lower and upper range
pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR: dataset with standard deviation based

pruning

3.4. Variable importance

Though many models were considered in the present study with different dataset,
results for the variable importance focused only on those which recorded high Kappa

values for each category of predictors. Fig. IV-6 presents the variable importance from
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models based on (i) the entire dataset associated with terrain parameters (AlIPT-TP),
(i1) 90 % and 80 % core dataset (90%CR, 80%CR) associated with terrain plus spectral
parameters, (ii1) the standard deviation core range (SDCR) dataset associated with the

spectral parameters. Only the five top variables are presented in the figure

For models based on the entire dataset (AIIPT) and on the 90 % and 80 % core dataset
(90%CR, 80%CR), the SAGA wetness index (S.Wet.Ind) was ranked as the most
important variable driving the reference soil group classification no matter which
dataset was used. It was followed by the distance to stream network (Dist.stream) and
either by the protection index (degree of local surface convexity or concavity) or
elevation. Considering the different reference soil groups, the Gleysols mainly
discriminated significantly from the remaining reference soil groups by having the
highest moisture level beside the Stagnosols and Lixisols, which also displayed
relatively high moisture status (Tab. IV-7). However, the Gleysols differentiated from
the latter and from other reference soil groups with the lowest distance to stream

network and lowest position in the landscape.

Stagnosols were characterized by the highest moisture level after the Gleysols, and by
the highest distance to stream network with a lower protection index. The Lixisols
revealed one of the highest moisture level after the Stagnosols, in lower elevation and
protection index areas as the Gleysols, but with a higher distance to stream. The
moisture distribution along with the distance to stream and elevation also clearly
differentiated between the Cambisols and the remaining reference soil groups but
particularly it singled out the former from the Leptosols, to which no significant
difference was found regarding the protection index. The Leptosols were identified by
their lowest soil moisture level as well as by their location at higher elevation and
increased slope abundance (higher protection index) along with higher distance to the
stream network. The Plinthosols discriminated from all the remaining reference soil
groups by their moisture distribution along with the distance to stream for some

(Cambisols, Gleysols, Stagnosols) and elevation for others (Leptosols and Lixisols).

The terrain parameters took preeminence over the spectral data considering the 90 %

and 80 % core dataset (90%CR, 80%CR) associated with terrain plus spectral
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parameters. The shortwave infrared taken in June (June_SWIR2) was listed only at the
fifth position after the terrain attributes for the 80 % core range dataset (80%CR) while
no spectral data appeared in the five top parameters for the 90 % core range dataset
(90%CR). Overall, the contribution of the computed spectral indices was relatively
low with soil color (June_CI) coming the fifth position when only spectral parameters
were used with the standard deviation core range (SDCR), though the latter provided
the highest Kappa value for this particular category of predictor. The results further
revealed that the spectral data acquired in June were the most prominent ones for the

classification of reference soil groups in the Dano catchment.
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Fig. IV-5: Variable importance for the different data experiments (experiments
defined in Tab. IV-1)
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Models with (RF_rfe) and without (RF) recursive feature elimination; AIIPT-TP:
entire dataset including all Plinthosols & topographical parameters (TP), 90%CR-TSP:
dataset with 5 % lower and upper range pruning & topographic and spectral
parameters (TSP), 80%CR-TSP dataset with 10 % lower and upper range pruning &
topographic and spectral parameters (TSP), SDCR-SP: dataset with standard deviation
based pruning & spectral parameters, S.Wet.Index: Saga wetness index, Dist.stream:
distance to streams, Prot.Index: protection index, S.HF.dist: horizontal flow distance,
NIR: near infrared, SWIR: shortwave infrared, CI: coloration

Tab. IV-7: Kruskal-Wallis one-way analysis of variance of the main terrain
parameters for the different reference soil groups based on the 90%CR dataset and
topographic plus spectral (90%CR-TSP)

Wetness Distance to Elevation Protection

RSG (n) Index stream (m) (m) Index

mean sd mean sd mean sd mean sd
Cambisols a
(n=69) 7827 (20.68) 647* (¥512) 313" (¥21) 0.03* (x0.01)
Gleysols b
(n=113) 8727 (ROT1) 5 90 (£199) 287" (x14) 0.02° (x0.01)
Leptosols
(n=18) 6.03° (£1.29) 857° (*441) 372° (£35) 0.06° (+0.03)

Lixisols (n=48) 8.26° (20.97) 569" (£307) 293" (£24) 0.02" (20.01)
Plinthosols

(n=467) 8.03% (20.4) 747°% (£515) 309° (£20) 0.02°* (+0.01)
Stagnosols
(n=28) 8.46°" (+0.68) 947" (£482) 309*" (+22) 0.02°*" (+0.01)

RSG: reference soil group ; letters indicate whether the means are significantly
different or not at p=0.05. Same letters stand for no significant difference.

3.5. Spatial distribution of the reference soil groups

The maps (Fig. IV-7) of the RF model based on the entire dataset (AlIPT-TP) as well
as the RF_rfe model from the standard deviation pruned dataset with spectral
parameters (SDCR-SP) reveal an overestimation of the Plinthosols compared to field
observation. However, using only spectral data with the entire dataset resulted in many
small and isolated spots compared to the continuity and homogeneity of the remaining

reference soil groups observed in the map from the AIIPT associated with terrain

parameters. With the pruned dataset (90%CR, 80%CR from RF_rfe) combined with
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terrain and spectral parameters, the remaining soil groups came more into focus. This
holds particularly true for the Lixisols and Stagnosols with the maps based on the 90
% and 80 % core dataset (90%CR, 80%CR from RF_rfe) associated with terrain plus

spectral parameters.

The soils established on hard rock were classified as Leptosols by all models. Gleysols
were predicted in the inland valleys while soils predicted as Cambisols were in general
located in the Western part of the study area and mostly predicted in mid-slope
regions. Lixisols were mapped in the lower elevation area and spots of Stagnosols
were scattered all over the study area, especially in the southern and the eastern part.
Plinthosols as the dominant soil group covered most of the landscape but were

spatially restricted in the western area where Leptosols and Cambisols were more

abundant.
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Fig. IV-6: Spatial distribution of the reference soil groups

Models with (RF_rfe) and without (RF) recursive feature elimination; AIIPT-TP:
entire dataset including all Plinthosols & topographical parameters (TP), 90%CR-TSP:
dataset with 5 % lower and upper range pruning & topographic and spectral
parameters (TSP), 80%CR-TSP dataset with 10 % lower and upper range pruning &
topographic and spectral parameters (TSP), SDCR-SP: dataset with standard deviation
based pruning & spectral parameters.

4. Discussion

4.1. Model Performance
The RF and RF_rfe models that were based on the entire dataset (AlIPT) resulted in a

relatively high OOB error compared with other datasets, with low prediction accuracy
for the smaller reference soil groups and an overestimation of the abundance of
Plinthosols (Tab. IV-4, IV-5 and Fig. IV-4). As expected, the Plinthosols exercised a
stronger influence in the covariate space than other reference soil groups, which can be
explained by the higher number of observations of this soil order. As a result,
Plinthosols were overestimated while other soil classes were underestimated. When
using the pruned dataset, the RF and RF_rfe models were most accurate when using
either terrain parameters only, or a combination of the latter with spectral parameters
(Fig. IV-4). The OOB errors were lower but revealed similar trends as those reported
by Stum (2010) in western Utah, who found OOB errors of 58.9 % when using only
DEM variables and 69.1 % when using the Landsat data only, while the combination
of both DEM and Landsat data reduced OOB errors globally to 54.2 %. Brungard et
al. (2015) reported an OOB error of 52 % when using both DEM and spectral data for

reference soil group prediction. Differences in OOB values relative to our study are
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due to the fact that OOB solely depends on the training set, which is site and data

specific.

With increasing pruning intensity, improvement in prediction occurred for most
reference soil groups especially with the random forest based on recursive feature
elimination which performed slightly better than the normal run with all the predictors
(Fig. IV-4). With the RF_rfe associated with terrain plus spectral parameters, a
relatively higher prediction accuracy was observed for the smaller reference soil
groups while using the 90 % core dataset. The latter also recorded the lowest OOB
error along with the highest kappa value showing substantial agreement between
predicted and observed reference soil groups. Consequently, removing all Plinthosol
points lower than 5 % and higher than 95 % of the cumulative percentage of the most
important variable (wetness index) resulted in slightly better data quality. Actually, the
removed points were located in the low frequency range of the wetness index

distribution.

Considering the frequency distribution of many predictors, Qi (2004) pointed out that
samples from the modal range are more characteristic of a particular soil class than
those belonging to the lowest frequencies, which are referred to as potential source of
noise. As observed by Schmidt et al. (2008), such an approach is hardly applicable
when dealing with many soil covariates since each predictor should be singled out in
the analysis. However, focusing on the frequency distribution of the main driving
predictor in the present study has proven to be satisfactory with the improvement in
prediction accuracy observed with the pruned dataset in general and with the 90%CR
dataset in particular. This 90%CR dataset includes the modal range of the wetness
index with the outer range (5 %) being cut off. This suggests that the removal of
samples beyond the modal range of a major soil reference group could result in an
improvement in prediction accuracy, since they are rather a potential source of noise

and redundancy due to overlapping information with small soil units.

With increasing pruning intensity, the prediction accuracy for the Plinthosols dropped
suggesting that a loss of information for this particular reference soil group occurred

with the pruned samples. This remains the main challenge in downsampling as
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reported by Visa and Ralescu (2005) as well as by Yan et al. (2015), leaving out
samples might result in dropping along some useful instances. The core point is to get
a representative subset that is still large enough that losses are minimized but small
enough to allow learning algorithms to get the relevant information for prediction
(Schmidt et al., 2008). In the present study the results seem to be satisfactory with only
4.7 % drop in prediction accuracy for the Plinthosols by the 90%CR dataset with
highest kappa value.

The Kappa values dropped (Fig. IV-5) with most models with prediction based on the
standard deviation core range dataset (SDCR). This seems to suggest the SDCR as the
pruning limit for the particular dataset of the present study, while revealing pruning
between 5 %-10 % as the potential range for model improvement. In fact, pruning
beyond the SDCR did not result in further improvements (data not shown). Overall,
the kappa values recorded in the present study (0.42 — 0.57) with the terrain and terrain
plus spectral parameters are higher than those recorded by Brungard et al. (2015) (<
0.4) who compared eleven machine learning models for predicting soil taxonomic
classes in the semi-arid western US. However, as found out in the present study, the
authors also point out that models with covariate predictors selected via recursive

feature elimination result in higher prediction accuracy.

The different models did not provide a perfect prediction for the pruned Plinthosols
which were in some cases classified mainly as Cambisols compared to the remaining
smaller units (Tab. IV-6). This suggests that the performance of the different models
on unlearned dataset outside their respective core range is limited. Obviously,
discriminating the feature space among the reference soil groups for a high prediction
accuracy of the Plinthosols was faced with inherent inability to relate from previous
learning. Since the removed Plinthosols data were at the outer ends of the distribution
of the most important variable (wetness index) it was expected that their prediction
would result in high interferences in the feature space among the reference soil groups
especially with those having the same values within that range. Since the pattern in
these particular datasets was initially unlearned by the models for the Plinthosols, the

prediction with the terrain and spectral parameters from the RF_rfe models was
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considered as satisfactory. With about 71 % of the Plinthosols rightly predicted (Tab.
IV-6), the model based on the 90%CR associated with terrain parameters could have
been the best model if not for its low kappa (x=0.45) compared to the RF_rfe models
with the terrain and spectral parameters (e.g. 90%CR & 80%CR) recording higher
kappa values (x=0.55-0.57). Since the primary concern was the expression of smaller
units while minimizing loss of predictive information of the Plinthosols, the results as
obtained for the pruned core range dataset sample especially with the optimized
predictors via recursive feature elimination pointed out the potential of data pruning to
improve classification accuracy as shown by their kappa value. However, the point
remains that any prediction of the Plinthosols based on unlearned dataset outside the

core range will understandably come out with low to medium prediction accuracy.

Improving the model accuracy as recorded in the present study might require either
increasing the number of soil pedon observations for the small classes (Brungard et al.,
2015), or the assessment of additional soil features that ameliorate the discrimination
between the different reference soil groups. Since a large array of predictors including
spectral data were considered in the present study, any further improvement might
have to consider different multi- or hyperscale terrain information to account for
different spatial scales within one model (Behrens et al., 2010a; Behrens et al., 2010b;
Behrens et al., 2014). The present work suggests that already pruning can reduce the
overwhelming influence of some dominant reference soil groups, thus better allowing

for expressing soil classes of lower occurrence.

4.2. Variable importance and spatial distribution

The terrain attributes drove the classification of the reference soil groups in the Dano
catchment (Fig. IV-6). The feature selection algorithms always selected the SAGA
wetness index (S.Wet.Ind) followed by the distance to stream network (Dist.stream),
the protection index (degree of local surface convexity or concavity), and elevation
among the most important terrain attributes. These results are in line with findings of
Dobos et al. (2001), who reported an ascendency of terrain attributes such as slope,

curvature and potential drainage density over spectral data in temperate climates.
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Similarly, Stum (2010) ranked elevation and slope first followed by spectral data. The
preeminence of the SAGA wetness index as soil development factor in the Dano
catchment suggests that the humidity regime is a key discriminatory element among
the reference soil groups. The protection index, distance to stream and elevation may
be seen along this line as additional key regulatory parameters for soil moisture and

related spatial distribution of the different reference soil groups.

Soils located at lower position and closer to streams, such as Gleysols and Lixisols
(Fig. IV-6), had high moisture content than soils located at higher altitude and more far
away from the streams, such as Leptosols and Cambisols. As already pointed out by
Jenny (1994), soil moisture varies with local variations in topography: soils in
depressions (toe-slope) like Gleysols are more humid than upland soils and soils in
sloping areas. Also Adhikari et al. (2014) located Gleysols mainly in low slope
position or flat areas. Lixisols have been mainly found in lower elevation areas,
possibly as result of erosion processes. Gray et al. (2011) allocated Lixisols mainly in

near level land or at undulating terrain.

Stagnosols have also high moisture level like the Gleysols, since both originate from
water logging processes (IUSS et al., 2006). Stagnosols were generally allocated
further away from the streams in relatively flat areas, where water is allowed to
stagnate for some time in the year (IUSS et al., 2006). Stagnosols usually develop on a
large variety of unconsolidated materials, either on flat or gently sloping areas (IUSS

et al., 2006).

Leptosols were found at higher elevation and at larger distance to stream areas. These
soils were well predicted by most of the models, since they were established on hard
rock on the Ioba mountain , this fitting into the description of the WRB (IUSS et al.,
2006). The spatial distribution of these Leptosols was consistent with the finding of
Debella-Gilo et al. (2007), who found these soils mainly on hills and at the rocky part
of the landscape. The presence of the major part of Cambisols next to the Leptosols
might be attributed to erosion and deposition cycles, which are a key element for their
distribution in high elevation areas (IUSS et al., 2006). Vasques et al. (2015) also

found Cambisols in sloping areas, subject to a more dynamic water flow.
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Plinthosols have been found nearly at every position of the landscape, thus occupying
a major part of the land. These soils herein developed in level to gently sloping areas
with changing groundwater level or stagnating surface water (IUSS et al., 2006). This
corresponds to the feature of the study area characterized by a flat and undulating
landscape with altitude ranging between 259 and 465 m asl and an average slope
gradient of 3.6 % (Schmengler, 2010). Plinthosols are soils characterized by Fe
accumulation under hydromorphic conditions. The change in moisture content
(wetting and drying) results in the reallocation of dissolved Fe leading to the
constitution of Fe poor and Fe rich zones in the soil (Lucas et al., 1992). In the rainy
season, mobilization and translocation of Fe2+ ions occurs due to reducing conditions,
while the dry season gives place to the oxidation of Fe2+ and precipitation of Fe
oxides. As a result, Plinthosols are mainly hydromorphic soils (Franca et al., 2014),
with their formation being greatly affected by soil moisture regime, as also evidenced
by the Saga wetness index being the most important variable for the classification of

the reference soil groups in the Dano catchment.

The NIR and SWIR spectral data were most prominent when acquired in June (Fig.
IV-6) for the classification of reference soil groups in the Dano catchment. This
particular period corresponded to the ploughing time. At that time crops were absent or
at early stage of development, allowing satellite sensors to directly measure soil
reflectance. Nield et al. (2007) reported that Fe rich minerals, which characterize many
tropical soils such as Plinthosols, have a strong reflectance in the NIR and Lobell and
Asner (2002) pointed out that soil moisture highly affects the NIR and SWIR
reflectance. The preceding observations seem to imply that soil moisture and Fe oxide
content as captured by soil reflectance provided the main discriminatory elements to
differentiate between the different reference soil groups. Since the SWIR relates to soil
moisture content as also the case for the Saga Wetness Index, it is obvious that mainly
soil moisture controlled the distribution of reference soil groups over the Dano
catchment. As the best predictions were found when the pruned data were used in
combination with terrain and spectral parameters (TSP), these covariate predictors
were assumed to be complementary, i.e., spectral data may only be used for soil

taxonomy identification when combined with geomorphological information (see also
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Dobos et al.,, 2001; Stum, 2010). Predicting reference soil groups for digital soil

mapping thus heavily relies on concurrent soil-landscape characterization.

5. Conclusion

This study focused on reducing the negative influence of a predominant reference soil
group — the Plinthosols — on the spatial prediction of more seldom reference soil
groups in tropical environment, here the Dano catchment. For this purpose some
ranges of the Plinthosol dataset were cut at different levels of pruning, and re-predicted
the digital soil maps based on spectral indices, terrain, and terrain plus spectral
parameters using RF modelling with and without recursive feature elimination. When
using the entire dataset, lower prediction accuracy was obtained for most of the
reference soil groups predicted as Plinthosols. However, increasing pruning intensity
resulted in relatively lower OOB errors with subsequent improvement in classification

accuracy.

The best prediction was achieved when removing all Plinthosol points lower than 5 %
and higher than 95 % of the cumulative percentage of the most important variable
(wetness index) and RF modelling conducted solely with terrain and spectral
parameters (TSP) with optimal predictors resulting from the recursive feature
elimination. This improved classification accuracy by 3 % to 41 % relative to the
prediction based on the entire dataset as the pruned samples, potential source of noise
and redundant information, were removed. Though terrain parameters proved to be
most determinant in the characterization of the landscape for discriminating between
the different reference soil groups their combination with spectral bands and indices
resulted in better prediction. For this tropical environment, the moisture distribution
(SAGA wetness index) was finally identified as the main driving factor for the

reference soil group classification in the Dano catchment.

With the ongoing GlobalSoilMap.net initiative in Africa, soil mappings are being
carried out using legacy data with some subject to imbalance issues. The pruning as
demonstrated in this study can help to improve dataset quality and therewith
classification accuracy. This could thus particularly be chosen as suitable alternative

when new dense surveys are no viable option for creating soil maps.
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1. Introduction
Globally, soils contain the largest terrestrial carbon pool on earth. Though subject to
regular change, the global amount of carbon in soils is estimated at 2500 Gt, including
1550 Gt of soil organic carbon (SOC) and 950 Gt of soil inorganic carbon (Batjes and
Sombroek, 1997; Lal, 2008). As the SOC pool is 3.3 times the size of the atmospheric
pool (760 Gt) and 4.5 times the size of the biotic pool (560 Gt) (Lal, 2004), slight
changes in soil C cycling may significantly impact the global C cycle. Nevertheless,
little is known on the role of tropical soils for these changes, especially not for tropical

subsoils.

The ecosystems in West Africa are facing severe degradations due to change in land
use from perennial vegetation to cropping, increased cultivation in marginal lands,
soil erosion and nutrient mining (Bationo et al., 2007; UNEP, 2006), as well as climate
change (Brevik, 2013). Models predicted that as consequence of climate change, soils
will convert from carbon sinks to carbon sources (Cox et al., 2000), but prediction
uncertainty is large (Cox et al., 2000; Smith, 2008), mainly due to the lack of adequate
knowledge on SOC distribution across the landscape. Nowadays, different measures to
conserve existing SOC stocks and trap the atmospheric carbon in the soil are being
implemented in many areas in Africa and comprise afforestation of degraded lands,
agroforestry, application of best agricultural practices and policies (Batjes, 2008).
However, data are still lacking on SOC for different agrosystems (Anikwe, 2010) in
most African countries. Batjes (2008) even pointed out that an estimation of the
current carbon stock should be carried out prior to any focus on carbon change related

to land use and climate change.

The variability of carbon stocks in the landscape is associated with the combined
action of physical, chemical and biological processes as well as of human land use
patterns varying over space and time (Peukert et al., 2012). Generally, this spatial
variability is recorded by soil maps, which are key tools for effective land management
and modelling. Progress and new development in computer science and statistical

methods led to the use of geo-information technology such as remote sensing data and
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digital elevation model (DEM) for the digital soil mapping (DSM) of soil properties
(Heuvelink and Webster, 2001). The DSM correlates quantitatively environmental
covariates standing for soil forming factors and a target variable to be predicted. This
correlation is carried out using statistical methods, which build a model used for
prediction. The multiple linear regression has been widely used in many studies as a
predictive model for the prediction of SOC (Florinsky et al., 2002; Guo et al., 2015;
Meersmans et al., 2008). However, soil-landscape relationships are often subject to
nonlinear dynamics which might not be captured by MLR (Grimm et al., 2008).
Random Forest regression (RF), an ensemble machine learning approach, is reported
in literature as being able to overcome this limitation (Hengl et al., 2015; Rad et al.,
2014; Wiesmeier et al., 2011). The latter studies indicated the robustness of RF for

handling complex and non-linear soil-landscape relationships in DSM.

Potential factors which affect SOC stocks and are used as covariates for DSM,
comprise climatic and topographic elements (e.g., mean annual precipitation and
temperature, slope etc.), land use, physical soil characteristics (texture, parent material,
etc.), and microbial biomass (Albaladejo et al., 2013; Jobbagy and Jackson; Jobbigy
and Jackson, 2000; Ladd et al., 2013). Many of these factors have been investigated in
various publications across the globe (Albaladejo et al., 2013; Azlan et al., 2011;
Bationo et al., 2007; Burke et al., 1989; Chaplot et al., 2010; Jobbdgy and Jackson,
2000; Percival et al., 2000). However, these studies mostly focused on surface soil
horizons. Yet, more than 50 % of SOC is usually allocated below 20 cm depth (Batjes,
1996). Fontaine et al. (2007) showed that this subsoil carbon is readily decomposable
upon addition of a fresh C source, and Fierer et al. (2003) concluded that it is even
more sensitive to changes in temperature or nutrient availability than topsoil carbon.
But these latter studies have not been performed with tropical soils, which may have
specific SOC storage conditions, e.g., due to their special oxide assembly (Feller and

Beare, 1997; Kogel-Knabner and Amelung, 2014).

This study was performed in the Sudanian area of Burkina Faso dominated by
Plinthosols, i.e., soils with high Fe oxide accrual, particularly in the subsoil. We are
not aware that for such soils, nor then for the respective or comparative region, (i)

levels and distribution of SOC stocks along with the (ii) interactions between SOC
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stock and landscape properties have ever been investigated. Yet, these quantitative
data are crucial for the estimation of the local and regional carbon sequestration
potential and the participation of developing countries in the Clean Development
Mechanism (CDM), mentioned in the Kyoto Protocol as well as the “4 per thousand”
initiative launched during the COP21 (Rhodes, 2016). Therefore, this study aimed at
estimating the surface and subsoil organic carbon stocks in different land use systems
and across various soil orders, as well as assessing the spatial variability of topsoil

carbon stocks and underlying factors.

2. Materials and methods

2.1. Study area (see section II. 1)

2.2. Soil Sampling (see section II. 2)

2.3. Soil analysis and mid-infrared prediction (see section II. 3)

2.4. Determination of SOC stocks (see section II. 4)

2.5. Selected variables for explaining SOC stock variability

The variables (Tab. V-1) considered as covariates consist of: terrain attributes, land
use, temperature and precipitation, geomorphology and lithology. The terrain attributes
were derived from a 90 meter resolution digital elevation model provided by the
Shuttle Radar Topography Mission (SRTM). These parameters are clustered into
local, regional and combined terrain attributes as defined by Grimm et al. (2008). The
parent material (Geo) allocated to each sampling location was derived using a
geological map (1/1 000 0000) of Burkina Faso made by Hottin and Ouedraogo
(1992). Land use data were collected during the sampling at each location. Climatic
data include mean annual temperature (Temp) and annual precipitation (Prep) at 1 km
resolution from the worldclim datasets. The climatic data were submitted to bicubic

resampling before the extraction of the data.

Moreover, soil properties were also considered as covariates as mentioned in Kumar
and Lal (2011) and Were et al. (2015). Soil texture fractions (sand, silt, clay) were
considered in addition to the environmental variables. They were derived from

interpolated maps using the Ordinary Kriging method. The Ordinary Kriging has been
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used in many studies for predicting soil properties at unsampled locations (Zhang and

McGrath 2004; Mishra et al. 2009; Chaplot et al. 2010; Were et al. 2015).

The predictors were reduced for the subsoil carbon stock model due to the smaller size
of the dataset (n = 70). Feature selection was carried out using the RF recursive feature
elimination algorithm of R “caret” Package (Kuhn 2015). The following variables
were finally retained for the subsoil carbon stock prediction: elevation, distance to
stream, aspect, ruggedness, curvature, catchment area, sand, silt, clay, precipitation

and temperature.
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Tab. V-1: Selected variables for explaining SOC stocks variability

Group Parameters Definition Abbreviation Units
Local Slope Inclination of the land surface Slope.per %
from the horizontal
Slope Length Distance from origin of Slope.length m
overland flow to deposition
point
Curvature Combination of horizontal A.curv m’
and vertical curvature
Maximum Maximum Curvature S.max.cuv  °m’
Curvature
Minimum Minimum Curvature S.min.cuv °m’
Curvature
Plan Curvature Horizontal (contour) S.Plan.cur °m’!
curvature
Profile Curvature = Vertical rate of change of S.Profile.cur °m’”
slope
Aspect Direction the slope faces A.Asp °
Elevation Vertical distance above sea Elevation m
level
Regional Catchment Area Discharge contributing S.CA m’

upslope area
Distance to stream Distance to stream network  Dist.stream m

Combine Topographic Ratio of local catchment area A.TWI -
d Wetness Index to slope
Saga Wetness Ratio of local catchment area S.Wet.Ind -
Index to slope
Climatic ~ Temperature Temperature Temp °C
Precipitation Precipitation Prep mm
Soil Sand Sand Sand %
properties
Silt Silt Silt %
Clay Clay Clay %
Others Lithology Lithology Litho -
Geormorphology ~ Geormorphology Geo -
Land use Land use LU -
Reference soil Reference soil group sg -
group

2.6. Statistical analysis

Descriptive statistics (means and standard deviation of the mean) were used to

characterize the measured values of the variables. Normality of the carbon data was
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checked with the Shapiro-Wilk test. The student t test was used for comparison
between the SOC stocks of the different land use systems. The Bartlett test for
homogeneity of variance was performed due to the unequal size of the data for the soil
reference groups (Yu 2011). The significance of the difference in the mean SOC
stocks between the reference soil groups was examined by using the Welch ANOVA
test, while for multiple means comparisons, the Games-Howell test was performed as

carried out in Cornelissen et al. (2001).

2.7. Predictions models

In the present study, MLR and RFR were used as statistical models to predict the
spatial distribution of the topsoil SOC stock. MLR is a classical statistical approach to
predict the values of a dependent variable (here the SOC stocks) based on a set of
independent variables (here the covariates in Table 2). In this study, MLR and MLR
were implemented using the R “caret” package (Kuhn, 2015) using tenfold cross

validation with 5 repetitions.

For background information on RFR see section II-7.

2.8. Model training and mapping

The topsoil (n = 1239) dataset was split with 70 % of the samples to train the model
while 30 % were used as independent validation set. For the subsoil dataset, a split of
80 % was applied. The models derived from the RF for each depth were used to make
the respective prediction maps which were corroborated by different validation sets.
For the stability and robustness of the models, the different calibrations were carried
out based on a 5 time repeated 10-fold cross-validation using the “caret” R Package
(Kuhn 2015). The root mean square error (RMSE) of cross validation (RMSECV) as
well as RMSE from prediction based the validation set (RSMEPV) were used to assess
the model accuracies.

1
RMSE = (X3, (P, - 0,)?) 2 (V-1)

n

where “P” is the predicted value and “O” is the observed/measured value
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3. Results and discussion

3.1. Basic soil characteristics

The general soil properties of the different soil profiles for both topsoil (0 - 30 cm) and
subsoil (30 - 100 cm) are presented in Tab. V-2. Textural variations occurred among
the different soil groups: the Gleysols (GL) were silty and less sandy than the
Plinthosols (PT), which peaked in opposite direction. Possibly the latter was caused by
pseudo-sand like oxide concretions in the latter, which could not be destroyed
completely during conventional texture analyses. The bulk density increased with
depth with larger values recorded in the subsoil for both land use systems. Maximum
bulk densities were found for the Plinthosol subsoils, which indicated the presence of
petroplinthite in some of these profiles. The pH was slightly acidic and comparably
similar among land use and reference soil groups at all soil depths. This trend is in line
with values reported by Yoni et al. (2005) in Western Burkina Faso.

Tab. V-2: Basic soil characteristics under different land use (mean values with
standard deviation (sd))

N Sand (%) Silt (%) Clay (%) BD (g cm™) pH
0-30cm
LU CR 36 28.1%9.1)  43.2%=x7.1) 28.5%=x10.1) 1.4%=0.1)  6.4%=0.5)
SA 34 29.9%+12.3) 44.8%(+10.5) 25.9%%9.5)  1.5%=0.1)  6%=0.4)
RSG CM 8 25.5%(%11.3) 42.2%(+6.7) 32.2%=13.6) 1.3*°x0.1) 7%=20.4)
GL 12 19.1%(%11.3) 50.3°%+9.7) 31.7%=11) 1.4%x0.1)  6.1°%(20.3)
LX 2 22.6%(+3.5) 55.3%(8.6) 20.5%(+2.9)  1.4*(x0.001) 6.2*°(+0.4)
PT 44 32.8°(%8.9) 42°(+8.2)  25.2%*8.4)  1.5°20.1)  6.1x0.4)
ST 4 29°+10.7) 43.9°(8.9) 27.3%(29.8)  1.4°(x0.1)  6.5(20.4)
30 - 100 cm
LU CR 36 21.6%+6.9) 40.7°(+4.8) 37.2%%7.9)  2%x0.7) 6.3%(0.5)
SA 34 22.8%+5.3) 41.8%6.2) 34.9%x4.5) 2.1%=x0.7)  6.1%20.4)
RSG CM 8 26.4%%9.1) 39.5%*2.7) 33.749.9)  1.7%20.6)  6.9%(=0.7)
GL 12 19.7%27.5) 45.3%=7.9) 34.5%*5.8)  1.6%=x0.1)  6.1°(0.3)
LX 2 17.9%6.1) 46%%6.7)  34.4%=*2.3)  1.5%=0.1)  6.1°(x0.2)
PT 44 22.2%%4.6) 40.2%*4.3) 37.1%6.3)  2.3%20.7)  6.150.3)
ST 4 22.9%+8.5) 41.3%8.3) 35.1%=x4.1)  1.8%=0.8)  6.7%(20.7)

LU: land use, CR: cropland, SA: savannah, RSG: Reference soil groups, CM:
Cambisols, GL: Gleysols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols, n: number of
samples, BD: bulk density. Means followed by the same letters are not significantly
different (p < 0.05).
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3.2. SOC stock in relation to land use and reference soil group

The distribution of the SOC stocks in the different land use systems as well as in the
RSG of each specific land use is presented in Tab. V-3. About 73.5 t C ha' was
recorded as the total average of SOC stock in an entire profile (O - 100 cm) in the Dano
catchment with 39 t C ha found for the topsoil (0 - 30 cm) and 33.9 t C ha™ for the
subsoil (30 - 100 cm), amounting respectively to 53 % and 47 % of the total stock.
These results coincide with the findings reported by other authors with Batjes (1996)
recording 39 - 70 % of the SOC stock in the first 30 cm while Doetterl et al. (2015)
reported about 52 % of SOC stock at the same depth. The total average of SOC stock
over 100 cm recorded in the present study is higher than the range estimations of 42 —
45 t C ha™ for West Africa and 64 - 67 t C ha™ reported for Africa (Batjes, 2001); on
the other hand, our average value is lower compared to the 82 t C ha found by Hien

et al. (2003) for the southern Burkina Faso.

In the topsoil, the SOC stock was similar for both land-use systems. The average SOC
stocks of the non-cropped sites only slightly exceeded that of the croplands (2.3 t C ha
' not significant). The lacking significance was due to the Cambisols, which showed
significantly larger SOC stocks in the surface soils of the croplands, likely due to
former land-degradation or just site preference of the farmers for the better Cambisols.
The larger SOC stocks in the surface soils for the other sites under natural vegetation
is in line with other studies (Bruun et al., 2013; Singh et al., 2011). A study in Ghana
by Boakye-Danquah et al. (2014) reported 22.9 t C ha for the topsoil of cultivated
area and 49.4 t C ha™' for natural vegetation while Hien et al. (2006) in Burkina Faso
recorded between 16 t C ha™' and 25 t C ha™' for cropland soil and 61 t C ha™ for
savanna soils. Though the results for the topsoil are in the range of the previous studies
carried out in the same region, the margin between the values reported for the two LU

systems is quite narrow.

The small difference of SOC stocks between these two land use systems in the Dano
catchment suggest a high level of degradation of the sites under savannah, which is
subject to overgrazing due to the absence of sufficient grazing areas and the

inexistence of straw and silage production (Callo-Concha et al., 2012b). The pressure
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on these non-cropped fields is worsened by the presence of migratory herding that add
to the local livestock (Gonin and Tallet, 2012). Moreover, the production of a local
beer (“dolo”) results in the use of about 6400 t of fire wood per year from the native
savannah sites; this constitutes also a major source for the degradation of natural
resources (Blin and Sidibe, 2012). The sites under savannah may also include old
fallow soils, which because of current herding pressure, failed to re-build their carbon
stock. Once degraded, it may take decades until SOC stocks in such savannah soils

restore (Preger et al., 2010).

One additional peculiarity was the presence of stone lines (Appendix B Fig. X-1) in
the croplands, which may have also reduced soil erosion as observed by Schmengler
(2010) in the same area. Zougmoré et al. (2004) reported a reduction of runoff by 45 %
with the use of stone lines as conservation practice. Therefore, the presence of these
stone lines might have contributed to the slowing down of the SOC loss from the

cropland.

Intriguingly, significant different C stocks were found for the subsoils that contained
more SOC in the cropland than in the savannah sites (Table 4). This SOC storage
overcompensated SOC gains in the surface soils, so that significance disappeared on a
whole soil profile basis. In part, the larger SOC stocks under cropland may be
attributed to the presence of petroplinthite in the subsoil of the savanna soils that were
not thus not used for cropping nowadays. In addition, intensive translocation processes
in the croplands may have been induced at elevated precipitation events under tropical
climate, as formerly reported for the leaching of basic cations into the subsoil (Eze et
al., 2014) along with clay and SOC, especially for low acidity soils that also prevailed
in our study (Lorenz and Lal, 2005).
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Tab. V-3: Soil organic carbon stock in different land use systems and reference soil
groups at different depth

LU RSG 0-30cm 30-100cm 0-100 cm
mean sd mean Sd mean sd
CR & SA 70 39 *16.7 339 +£23.8 73.5 £30.7
CR (tCha’l) 37 39.1* +16.5 40.2* +27.9 77.1% £34.9
SA (tCha'l) 33 41.4% +17.4 26.3° +15.9 67.7" £27.3
CR (tCha'l) CM 6 40.2* +12.6 48.7* 30.7 88.9" +40.5
SA (t Cha 2 16.6° +8.3 20.6" 16.0 37.2° +7.6
CR (tCha’l) GL 5 39.9* +12.2 52.7% +32 94.4* +35.4
SA (tCha'l) 7 46.6" +18.9 35.6" +15.1 82.5" +31.2
CR (tCha'l) LX 1 27.6 . 26.0 . 53.6 .
SA (tCha’l) 1 37.6 . 219 . 59.5 .
CR (tCha'l) PT 22 39.8* +15 33.7* £24.5 73.2% +£32.4
SA (tCha'l) 22 42.4* +16.9 24.6" £16.3 67.0° +25.9
CR (tC ha'l) ST 3 9.0" 5 54.6" +42.7 63.6 +46.8
SA (tCha'l) 1 36.7° . 17.2% . 54.0 .
CR (tCha'l) CM 6 40.2* +12.6 48.7* +30.7 88.9" +40.5
GL 5 40.0* +12.2 52.7% £32 92.7* +38.3
PT 22 39.8* +15 33.7* £24.5 73.2% 4324
ST 3 9.0° 45 54.6* +42.7 63.6" +46.8
SA (tCha'l) CM 2 16.6* +8.3 20.6* +£16.5 36.6" +8.1
GL 7 46.6" +18.9 35.6" +15.1 82.2% 4314

PT 22 42.3" £16.9 24.6" +£16.3 67.0° +25.9

LU: land use, RSG: reference soil group, CR: cropland, SA: savannah, n: number of
samples. Means followed by the same letters are not significantly different (p < 0.05).

Considering the different reference soil groups in the topsoil, the Plinthosols (41.1 t C
ha™) contained more or less as much SOC as the Gleysols (43.8 t C ha™). The latter
also recorded the largest carbon stock over 100 cm depth (86.6 t C ha™) followed by
the Cambisols (75.8 t C ha'l) and the Plinthosols (70.1 t C ha'l) (Appendix B Fig. X-
2). The prevalence of SOC in Gleysols might not solely due to limited SOC
decomposition under groundwater influence, but could mainly be related to the

occurrence of local erosion processes, leading to the transport of SOC rich sediments
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from upslope to the lower slope, and thus from other soils into the Gleysols under the
combined effect of slope, elevation and heavy tropical rain. Doetterl et al. (2013)
reported a significant difference in SOC stocks between erosional and depositional
areas due to soil relocation processes and local topographical features. However, with
similar SOC stocks in the topsoil between Gleysols, Plinthosols, and Cambisols
depositional areas might not correspond only to Gleysols due to the variability of
topographic feature across the landscape. On the other hand, the periodic saturation

by groundwater reduces oxidation processes in the subsoil.

The Stagnosols of the cropland exhibited the lowest SOC stocks (9 t C ha™, Tab. V-3).
As temporary saturation with water in the stagnosols should normally promote SOC
storage rather than distorting it, we attribute this finding firstly to their position at a
relatively high position in the landscape favouring vulnerability to soil erosion and
secondly to stagnic conditions occurring at a relatively deeper depth regarding the high
carbon stock in the subsoil (t C ha™). Moreover, exposition to a longer cultivation
duration with very low input (Bationo and Buerkert, 2001) could also be responsible
for the low carbon level of the topsoil but investigation into the land use history is
necessary before any sound conclusion. The Stagnosols, exhibiting larger SOC stocks
in the subsoil of the croplands, could be taken as additional evidence that for mapping

soil C storage the consideration of whole soil profiles is needed.

3.3. Factors affecting the spatial variability of SOC stock

The analysis of variable importance characterizes the influences that different
explanatory variables (see Tab. V-1) have on the response variable (here SOC stock).
The analysis revealed different preeminent parameters controlling SOC stocks of

topsoil (Fig. V-2). Only the top 5 variables are considered in the figure.

The most prominent redictor for the topsoil SOC stock was the silt and sand content
followed by the wetness index, elevation and climate variables. Soil texture in general
and especially its fine particles (silt and clay) are extensively discussed in literature as
important agents accounting for the variance of SOC through adsorption of organic

matter (Bationo et al., 2007; Chaplot et al., 2010; Mao et al., 2015; Saiz et al., 2012;
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Zhang and Shao, 2014). As recorded in Table 2, the high content of silt in the topsoil
makes it the most abundant soil particle involved in potential adsorption. The
correlation of wetness index (indicator of soil moisture) and SOC content has been
indicated by Kumar (2009) and Zadorova et al. (2014). As hydrological factor, the
wetness index affects SOC dynamics at depositional and flat areas where humidity is
high resulting in slower decomposition rate (Doetterl et al., 2013). The record of
elevation among the prominent variables is in line with findings of Hengl et al. (2015)

who also reported it as a major factor affecting SOC stocks in Africa.

Climate variables are widely acknowleged as influential variable for SOC stocks
(Doetterl et al., 2013; Manning et al., 2015; Oueslati et al., 2013). Temperature and
precipitation distribution affect the production of plant materials and soil fauna
activity. Warmer temperatures and wetter conditions would most likely result in higher
biomass production and microbial activity. Conversely, a lower heat transfer coupled
with lower humidity could result in reduced C decomposition. The dry season of the
study area is characterized by higher temperatures with very scarce rainfall which
might result in a decrease of bioamass while the rainy season comes with intense and
heavy rainfall with subsequent vegetation growth and production of plant material.
Though the individual impact of these factors could be explained isolately, it is most
likely that due to soil landscape interaction, the amount of carbon stock at a given
location is a resultant of their interaction. Precipitation and temperature affect the soil
moisture (wetness index) distribution which is in turn infuenced by elevation and soil
texture. For example, a higher SOC stock was observed in the topsoil of the Gleysols
which were characterized by high moisture and silt content (Tab. V-2) and were

located at lower elevation areas.
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RFR MLR
Mean decrease accuracy (%) Mean decrease accuracy (%)
0 20 40 60 80 100 0 20 40 60 80
Silt Sand
Sand Silt
S_Wet_Ind Clay
Elevation rsgGL
Temp Prep

Fig. V-1: Top five variables from the RFR and MLR models for the topsoil (0 — 30
cm)

Wet_ind: wetness index, rsgGL: Gleysols, Temp: Temperature, Prep: Precipitation,
RFR: random forest regression, MLR: multiple linear regression

3.4. The spatial distribution of the SOC stock
The spatial distribution pattern of SOC stock in the topsoil (Fig. V-3 A) based on the

prediction of RFR and MLR model presents an irregular pattern. There were
innumerable patches of small and large SOC stocks across the study area, pointing to a
pronounced variability of the SOC stock over small distances though less pronounced
on the MR map. On large scales, elevated SOC stocks in topsoil were observed in the
western and south-eastern areas. These areas correspond to the high elevation part of
the watershed (Figure 1), with SOC stocks varying between 55 - 65 t C ha'. The
remaining areas displayed low (28 — 40 t C ha'l) to medium (40 — 55t C ha'l) SOC
stocks. Though land use did not come up as key variable for SOC stocks in topsoil, it
had an indirect link with elevation, being one of the major influencing factor (Figure
1). In our study area, the density of settlements and adjacent intensively cultivated
fields was higher in the lower elevation areas due to the proximity of streams, which
provide water for domestic purposes and for the irrigation of crops. Consequently,

larger SOC stocks were found in the surface soils that belonged to areas in more
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remote and elevated parts of the watershed, which thus exhibited less cultivation

intensity and larger areas covered by natural vegetation.
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Fig. V-2: Distribution of SOC stock across in the topsoil (O — 30 cm) based on the
RFR and MLR Models. RFR: random forest regression, MLR: multiple linear

regression.

3.5. Performance of the RF models
In general, the accuracy of the RFR and MLR prediction models were low (Tab. V-4),

though the former performed marginally better than the latter with higher R* (13 %)
and lower root mean square errors for both cross validation (14.0 t C ha™) and
independent validation (14.2 t C ha™). This can be attributed to nonlinear pattern in the
SOC stock dataset which could not be accounted for by the MLLR. Other studies also
point out the limitation of MLR to handle nonlinear pattern in dataset hence its lower
performance compared to machine learning models such as Random Forest (Hengl et
al., 2015; Zhang et al., 2017) . The explained variance as found in the present study
could not be improved even when some RSG were removed from the dataset and
modelling carried out with the remaining (Appendix B Tab. X-1) though the removal

of Plinthosols led to an explained variance of 17 % with both models.

The results of this study regarding the model explained variances are consistent with

some existing findings in literature. Grimm et al. (2008) found only 6 % as explained
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variance for topsoil and 8 - 25 % for subsoil SOC content after using the Random
Forest approach in a tropical island in Panama. Henderson et al. (2005) used a decision
tree approach and reported an explained variance of 41 % for topsoil SOC and 24 %
for the subsoil. Wiesmeier et al. (2014) analyzed the spatial distribution of SOC stocks
and found 52 % of explained variance for the carbon stock based on climate, land use
and environmental variables. Schulp and Verburg (2009) and Schulp et al. (2013)
reported 21 % to 43 % variance explained for SOC contents and stocks though a wide
range of data from soil properties to terrain attributes were used. These authors pointed
out that low explained variance for SOC prediction was recorded due to an intrinsic
large spatial variability of SOC with the interplay of a large range of factors at local

and regional level.

The low explained variance observed in the present study could be attributed to the
existence of other environmental and soil parameters affecting SOC stock variability,
which have not have been investigated in this study. Such parameters may account for
specific soil properties, such as soil structural stability, clay mineralogy, sesquioxide
composition, as well as other factors beyond the scope of our design, such as socio-
ecological impacts in soil resilience (e.g. Linstddter et al. (2016)). In addition, the root
mean square errors obtained in this study is a reflection of errors related to field
sampling, laboratory measurement, and statistics as well as random errors. Since all of
the soil properties used in the present study were interpolated by ordinary kriging it is
evident that related errors translated into the estimation of SOC stock. However,
preliminary modelling without these soil properties revealed much lower variances
(data not shown) proving them as key variables to be taken into account. Auxiliary
data coming from different sources and different scales infer variability in data quality
as also pointed out by Were et al. (2015). For example, the resampled lithology file
was originally produced at a scale of one-million and as result its distribution on the
study area might have been too coarse. Further model improvement would require
additional explanatory variables at finer scale with the consideration of multi- or
hyper-scale data in order to account for the possibility of SOC stock being subject to
factors operating at different levels of scale (Behrens et al., 2010a; Behrens et al.,

2010b).
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The statistics of the prediction (Tab. V-4) that was based on the validation set showed
that the root mean square error of cross validation as well as the root mean square error
of prediction (from validation set) for the topsoil from both models were all slightly
lower than the standard deviation of the measured values. This points out that the
predictions of the models especially from the RFR were as accurate as the training set
in spite of the low explained variance. A similar trend had been also recorded by Were

et al. (2015).

Tab. V-4: Performance statistics of the RFR and MLR models and general statistics for
measured data and SOC stocks of the maps

R* RMSECV RMSEPV

Statistics for model and validation dataset

RFR (tCha™) 13.0 14.0 14.2
MLR (tCha™) 11.0 14.2 14.8
General statistics for predicted map and measured data

Min Max Mean (+sd)
RFR predicted data (tC ha™) 27.4 65.1 45.4 (£4.6)
MLR predicted data (tC ha™) 3.0 08.8 44.7 (£6.7)
Measured data (t C ha'l) 11.3 79.2 45.5 (£14.9)

RF: random forest, Var.,,: explained variance, ME: mean error, RMSECV: root mean
square error of cross validation, RMSEP: root mean square error of prediction based
on validation set, *explained variance in %.

The general statistics for the measured and predicted SOC stocks for the topsoil maps
(Tab. V-4) revealed that the predicted minimum value for the RFR map was larger
than the measured one, while the predicted maximum value was lower. The opposite
was observed with the MLR whose predictions were larger than the initial range of the
measured data. For the RFR, this may be attributed to the fact that the model
considered the lowest and highest values of the training data as outliers as also
observed by Were et al. (2015). However, the mean SOC stocks measured for the
topsoils (45.4 t C ha') were very near to the mean SOC stocks predicted from the map
(45.7tCha™).
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4. Conclusion

This study provided insight into the quantitative status of topsoil (0 - 30 cm) and
subsoil (30 - 100 cm) SOC stocks in the Dano catchment in different land use system
and across different soil reference groups. Additionally, the driving factors and spatial
distribution of the topsoil SOC stock was investigated. RFR and MLR modelling were
used as a statistical method for identifying these factors and for mapping the spatial

distribution of SOC stocks for the topsoil carbon stock.

The results indicated only a marginal difference between the surface SOC stocks in the
savannah and cropland with most of the reference soil groups related to the former
recording a slightly larger carbon stock. We attributed these findings to both site
preferences by farmers for the better sites selected for cropping, as well as advanced

land-use degradation of the savannah land with increasing human grazing pressure.

The topsoil SOC stock variability was primarily affected by soil properties (e.g., silt
content) followed by the soil moisture distribution with the wetness index. Sites at
higher elevation exhibited elevated SOC stocks in the surface soil. This
disentanglement was due to landscape controls on population density and cropping
intensity, which both concentrated in the lowlands. RFR performed slightly better than
the MLR in predicting the spatial distribution of the topsoil SOC stock, as the latter

could not account for the nonlinear association within the data.

Our findings reinforce the view that the semi-arid ecosystems of West Africa still offer
a significant opportunity for carbon sequestration to offset ongoing C losses, with the
spatial distribution of the topsoil SOC stock driven not only by soil and climate, but

also by landscape-specific human pressure on ecosystems.
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1. Introduction
The increase of carbon dioxide in the atmosphere is causing concerns worldwide;
hence, recent focus is set on soil carbon sequestration for its mitigation. In fact, it is
estimated that soils contain about 2500 gigatons (Gt) of carbon, of which 1550 Gt are
SOC (Batjes, 1996; Jobbédgy and Jackson, 2000). Tropical soils contain about 26 % of
this global SOC inventory and are thus considered as important sources and sinks for
carbon dioxide and methane (Batjes, 1996; Batjes, 2004). However, only very few
studies acknowledged that the influx of SOC is larger than its efflux particularly in the
West African savannah (Ciais et al., 2011). The savannah ecosystems cover about 60
% of tropical Africa (Callo-Concha et al., 2012a). They are characterized by
structurally degraded and nutrient depleted soils with poor natural fertility and low
fertilizer input (Doraiswamy et al., 2007). Maintaining SOC stocks in these
ecosystems is thus mandatory for sustaining essential soil functions such as nutrient

and water storage, soil biological activity, and structural stability.

For the African savannah ecosystem, especially in West Africa, several studies
revealed a decline in SOC stocks by 20 - 50 % when sites under natural vegetation
were converted into cropland (McDonagh et al., 2001; Murty et al., 2002). Most of
such SOC losses are reported to occur within the first 20 years (Birch-Thomsen et al.,
2007). To understand the underlying mechanisms, however, the monitoring of changes
in SOC should include pools of different SOC stability, since overall response rates
may be slow and thus ignored when based on bulk SOC analyses only (Powlson et al.,
1987; Skjemstad et al., 2004a). A common approach for assessing such pools of
different stability has been to fractionate soil into classes of different equivalent
particle-size diameter (Christensen, 1992). When done, usually SOC decomposition
rates are faster for the sand sized SOM fractions than for the remaining soil (e.g.,
Balesdent et al., 1988) . Liitzow et al. (2008) reported about 50 - 75 % of total organic
carbon (TOC) to be associated with the clay fraction, 20 - 40 % with the silt fraction
and < 10 % with the sand fraction. The SOC of the latter fraction is frequently named
as particulate organic matter (POM), due to its chemical properties matching those of

more or less recent plant residues, and because this pool usually responds fast to land-
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use change (Besnard et al., 1996; Chan, 2001). Balesdent et al. (1998) reported a 82 %
POM-C loss after 35 years of cultivation with 76 % lost in the silt fraction and 53 % in
the clay fraction. While most of these studies have been carried out in temperate areas,
data on the SOC dynamics after this conversion into low-input agriculture in the West

African savannah soil are still sparse (Bruun et al., 2013).

The stability of soil organic matter (SOM) is a major factor that characterizes its
mineralization rates, being dependent on various physical, chemical and biological
processes. The physicochemical interactions in tropical soils are largely affected by
their significant portions in low activity clays (LACs; Barthes et al., 2008) . In contrast
to the high activity clay soils (HACs) in temperate climates, LACs have a smaller
cation exchange capacity (CEC < 24 cmol(*) kg clay) due to elevated portions of
kaolinite, Fe and Al oxides, and hydrous oxides (Juo and Adams, 1984; Powers and
Schlesinger, 2002). These oxidic mineral phases, however, may exhibit strong affinity
to SOM. While Bationo et al. (2007) pointed to low correlations between the contents
of SOC and kaolinite, Feller and Beare (1997) reported that SOC content did not differ
significantly between the LACs and HAC:s. In their study on different tropical soils of
Ghana, Brunn et al. (2010) finally refuted the general concept of smectite (i.e., HACs)
having higher SOC stabilizing power over kaolinite (i.e., LACs), whose sorption

properties are similar to that of oxides (Denef and Six, 2005).

Influences of sesquioxides for stabilization of SOC via organomineral complexes have
been discussed in detail by Liitzow et al. (2006) and Kdogel-Knabner et al. (2008).
Beside Al oxides, particularly Fe oxides exhibit a large sorption capacity for SOC
compared to other metal oxides (Chorover and Amistadi, 2001; Kaiser and
Guggenberger, 2007). And both, Al oxides (e.g., Miltner and Zech, 1998 ; Amelung et
al., 2001) as well as the presence of Fe oxides might delay the decomposition rate of
SOM (Baldock and Skjemstad, 2000; Kalbitz et al., 2005). Lalonde et al. (2012) and
Wagai and Mayer (2007) extracted Fe oxides by a dithionite treatment and concluded
that Fe-bound SOM may contribute up to 22 % and 40 % to total SOC content,

respectively. Similar estimates for tropical soils are lacking. Such estimates, however,
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may be particularly needed for tropical semiarid climates, where beside Ferralsols
particularly Plinthosols dominate the soil orders with Fe enrichment, especially on the

African continent (Jones et al., 2013).

This study focused on Plinthosols, which are rich in LACs and Fe oxides, and which
are the dominating reference soil group in some Sudanian areas of Burkina Faso. Also
Lobe et al. (2001) investigated the impact of cultivation duration on SOC pools in the
Plinthosols, characterized by soft plinthites. Lobe et al. (2001) focused on the upper 20
cm without specifically addressing the role of Fe oxides on SOC stability. Moreover,
their study was carried out in subtropical South Africa with lower rainfall (616 — 663
mm) and temperature (13 - 16°C) compared to the present study. To widen our
knowledge on the vulnerability of such widespread soils to arable management, this
study focused again on Plinthosols, though with hard plinthite, specifically addressing
the role of subsoil and Fe oxides for SOC turnover. Our study thus aimed at (1)
investigating at different soil depths, how fast and to what degree Plinthosols with hard
plinthites in West Africa are prone to SOC losses when converting native savannah to
cropland, (2) assigning these SOC loss rates to different SOC pools (SOC in particle-
size fractions), and (3) evaluating the contribution of Fe oxides to SOC stabilization

and loss rates.

2. Materials and methods

2.1. Study Area
This study was conducted in the south western part of the Dano district (Dano (11°09”

45.4°°N, 03°04734.2°"W) located in the Ioba province, southwest of Burkina Faso (Fig.

1). Refer to section II. 1 for information related to climate, lithology and vegetation.

2.2. Soil Sampling

Soil samples were collected from fields that had been converted from savannah to
cropland. Fields with 1, 7, 11, 13, 17, 21, 25, 28, and 29 (Y1 to Y29) years (yr) after
cultivation were considered for the present study. About 15 soil profiles were

excavated up to 1 m where possible and four soil cores (100 cm3) were collected per
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horizon to determine the bulk density (BD). In addition, two profiles were dug and
described where cultivation never occurred (0 yr) for control. All the core samples
were dried at 105 °C for 24 hours before assessment of the weight of stone content
(SC). About 42 soil samples were collected from the A and B horizons for laboratory
analysis. However, weighted average of soil properties were considered in the present

study for the O - 10 cm, O - 30 cm and 30 - 100 cm depth.

BURKINA FASO
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Google image of the study area, image © Digital image

Fig. VI-1: Dano district and profile sampling

2.3. Soil analysis, particle size SOM fractionation

The samples were dried at 40 °C and sieved to 2 mm. For texture analysis and
extraction of dithionite-citrate-bicarbonate extractable Fe (Fepcg) the procedures
described by van Reeuwijk (1993) were followed. Total C was determined in ball-

milled subsamples after dry combustion with an elemental analyser (Fisons NA 2000).
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In 15 topsoil samples (0 - 10 cm) the amount of SOC bound to Fe oxides was
estimated by measuring C before and after treating the sample with dithionate-citrate-
bicarbonate as described above. The SOC loss was computed considering the initial

and the remaining SOC after the DCB treatment.

For the physical fractionation of SOM pools, refer to section II. 5.

2.4. Determination of SOC stocks (see section II. 4)

2.5. Decay model and statistics

The non-linear regression models used by Lobe et al. (2001) and Blécourt et al. (2013)
assume that SOC stocks reach a new steady-state equilibrium after converting
savannah into cropland. Here, regression fits were tested for both monoexponential
and biexponential models. The former assumes a single soil carbon pool (equation VI-

1) while the latter considers both a labile and a stable SOC pools (equation VI-2).

X, = X, + (X, — X,) exp(—k t) (VI-1)

where X;is the SOC content / stock at age t, X, is the SOC content / stock at
equilibrium, X, is the initial SOC content / stock in the savannah soil (t = 0), and k is

a the decay rate constant.

X = X, exp(—k, t) + X, exp(—k, t) (VI-2)

where X; is the SOC content / stock at age t, X, is SOC content / stock at equilibrium,
X, is the SOC content / stock of the labile pool, X, = X, — X; is the SOC content /
stock of the stable pool, k; is the decay rate constant per year of the labile pool, k, is
the decay rate constant per year of the stable pool.

The parameters for the monoexponential model (equation IV-1) and the biexponential
model (equation IV-2) were generated by using Regression tool in SigmaPlot 13.0 for
Windows (automatic determination of initial parameters, 200 iterations, step size 1,

and a tolerance of 1.E-10). The evolution of SOC decay within the different fractions
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(POM1, POM2, POM3, nonPOM) were assessed using the same equations. The
monoexponential and biexponential models were assessed by carrying out an F-test
(Pansu et al., 2004). The mean residence time (MRT) was also computed as the

inverse of the exponential constant ( and Amelung, 2011) as follows:
MRT = 1/k (VI-3)

Based on the biexponential model, the point of kinetic change (tj.) which marks the
timing required for the stable pool to dominate the overall losses of SOC (Lobe et al.,
2001) was computed. For this purpose,

the first derivative of X; exp(—k; t) was equal to that of X, exp(—k,t) and ¢,

(years) was defined as follows:

i Ink,X, — Ink,X; (VI-4)
kc — kz _ k1

A t-tests were carried out to assess the significance between virgin (0 yr) and each
cultivated fields for carbon and other soil properties (BD, SC, sand, silt, and clay,

FeDCB).

3. Results and discussion

3.1. Physical and chemical soil characteristics

Similar trends were observed for the soil properties in O - 10 and O - 30 cm (Table 1).
For topsoil and subsoil, BD varied from 1.6 g cm” to 1.7 g cm” and from 1.5 g cm” to
2g cm”, respectively. Large proportions of petroplinthites in the subsoil of the profiles
described in the field Y1, Y7 and Y13 explained the high bulk density of 2 g cm™. The
BD values are similar to those reported by Hien et al. (2006) for the southwestern part
of Burkina Faso. In all investigated fields, we found large stone contents (SC > 60 %),

mainly consisting of plinthites in both top- and subsoil.
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On average, the texture of the topsoil was dominated by the sand fraction (35 %),
followed by the silt fraction (33 %) and the clay fraction (31 %). A similar trend was
observed in the subsoil with on average 36 %, 35 % and 26 %, respectively, for the
sand, silt and clay fraction. The Fepcy contents ranged from 23.2 g kg™ to 105.5 g kg™
in the topsoil and from 3.6 g kg™ to 77.7 g kg™ in the subsoil. Relatively similar Fepcp
values were recorded by Da Motta and Kampf (1992) and Osodeke et al. (2005) for
the topsoil and subsoil for various soil orders in Brazil and Nigeria respectively. The
variability of Fepcp in relation to the years of cultivation did not follow any clear

particular pattern for both topsoil and subsoil.

The topsoil SOC content varied from 9.9 g kg to 23.9 g kg™ and mostly decreased
with cultivation duration (Table 1). These values are within the range reported by
Agbenin and Adeniyi (2005) in Nigeria, Hien et al. (2006) in Burkina Faso, Assize et
al. (2013) in Senegal, and Zingore et al. (2005) in Zimbabwe. Lower SOC content in
cropland soils compared to natural vegetation is generally admitted in many other
studies (Wiesmeier et al., 2013; Yang et al., 2010). The subsoil SOC content was
smaller than that of the topsoil in all fields, due to larger direct biomass input into the

topsoil as also recorded in other studies (Wang et al., 2014; Zhong and Qiguo, 2001).
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Tab. VI-1: Soil physical characteristics, dithionite-citrate-bicarbonate -extractable Fe
and SOC content of the chronosequence fields

BD SC Sand Silt Clay Fepcp SOC
Year n  (gem™) (%) (%) (%) (%) (gkgh  (gkg?h
0-30cm
0 2 1.6 (x0.0) 73.2 (x6.9) 35.0 (x1.3) 37.2 (£3.1) 254 (£3.8) 72.1 (£21.2) 23.9 (x0.6)
1 2 1.6 (x0.0) 76.4 (£5.3) 379 (x10.3) 32.3 (x6.1) 28.2 (x17.7) 92.5 (*1.0) 18.7 (x6.7)
7 2 1.6 (0.0) 763 (x1.3) 36.2 (x1.1) 334 (x0.2) 28.1 (£1.2) 105 (%£13.9) 17.0 (£5.8)

11 1 1.6 - 65.2 - 279 - 33.6 - 363 - 57.8 - 12.7 .

13 116 - 78.3 - 50.8 - 26.5 - 223 - 232 - 13.7 .

17 2 1.6 (x0.0) 694 (£8.2) 41.8 (£2.3) 335 (£10.2) 229 (£11.2) 41.2 (¥1.2) 109 (¢1.2)
21 1 1.6 - 71.3 - 334 - 413 - 235 - 63.0 - 12.3 .

25 1 1.6 - 62.0 - 27.6 - 36.6 - 356 - 52.8 - 10.1 .

28 2 1.6 (£0.0) 65.0 (£11.2) 253 (x13.8) 29.5 (x0.0) 43.7 (£14.1) 35.8 (x1.5) 104 (x0.2)
29 117 - 70.6 - 31.8 - 239 - 43.1 - 399 - 99 .
30- 100 cm

0 2 1.5 (£0.1) 62.0 (+30.6) 38.7 (¢15.4) 31.1 (x0.7) 27.8 (*14.6) 39.3 (£29.2) 4.0 (0.0
1 2 2.0% (£0.0) 91.2 (£1.5) - - - - - - 9.7 (¥5.1) 24 (£0.1)
7 2 2.0% (£0.0) 93.7 (£14) - - - - - - 3.6 (¥2.8) 1.0 (x0.1)
11 115 - 65.2 - 37.1 - 41.9 18.7 - 69.7 - 42 .

13 120 - 89.0 - 36.7 - 42.2 192 - 120 - 26 .

17 2 1.6 (0.1) 784 (£3.4) 37.1 (£9.2) 358 (£12.3) 250 (#44) 295 (£29) 3.9 (x0.1)
21 115 - 69.1 - 30.1 - 25.2 - 43.0 - 77.7 - 3.8 .

25 1 15 - 67.6 - 46.1 - 32.8 - 18.7 - 61.1 - 4.8 .

28 2 1.5 (£0.1) 71.4 (£7.1) 33.8 (#9.8) 33.6 (¥2.6) 30.7 (£8.6) 253 (x16.8) 59 (0.1)
29 115 - 70.0 - 324 - 37.0 - 29.0 - 58.8 - 26 .

n: number of samples, BD: bulk density, SC: stone content, *petroplinthite, - for n=1

3.2. SOC content in the different POM fractions of the topsoil
The topsoil SOC content in the top 10 cm followed the same trend as for the first 30

cm with a general decrease with cultivation duration (Tab. VI-2). The SOC content in
the different POM fractions followed the pattern: nonPOM > POM1 > POM3 > POM2
C, irrespective of the duration of cultivation. This trend was consistent with other
studies where POM C content was reported to be larger in finer fractions but diluted in
coarser ones (Amelung et al., 1998; Christensen, 1996). The nonPOM pool usually
contains microbial products as well as decay products from coarser fractions

(Amelung et al., 2002; Guggenberger et al., 1994; Lobe et al., 2002). Thus, the
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dominance of the nonPOM fraction suggests a high level of microbe-derived, organo-

mineral associations in all the Plinthosols.

Tab. VI-2: SOC content in different particle-size fractions of the topsoil (0 - 10 cm;
standard deviation in parentheses)

Age n_ POMI-C POM2-C POM3-C  nonPOM-C SOC
250-2000um 50-250um  20-50um <20 um

(years) (gkg") gkgh)  (gkg?) (gkg™") (gkg™")

0 2 51 (x12) LI (#0.1) 2.7 (#0.5) 27.1 (20.4) 36.73 (¥2.58)
1 2 23 (x14) 1.0 (20.6) 1.3 (#09) 16.1 (£5.2) 21.90 (¥8.49)
7 2 34 (#04) 09 (202) 1.1 (x04) 156 (+4.0) 19.98 (£6.97)
nm 1 17 - 05 - L1 - 125 - 1540

3 1 25 - 05 - 14 - 119 - 1565

17 2 25 (1.9 05 (0.3) 0.7 (#03) 112 (24.3) 1435 (26.15)
200 1 19 - 06 15 - 120 - 1610

25 1 15 - 04 09 - 88 - 1130

28 2 1.0 (#0.1) 04 (x0.1) 0.7 (20.2) 99 (x0.7) 1175 (£2.19)
29 1 08 - 02 - 05 - 77 - 985 (¥2.58)
- for n=1

3.3. Dynamics of SOC stock in bulk soil at different depths in relation to land use

duration

The SOC stock expressed relative to the stock in the savannah land are presented in

Fig. VI-2 for the topsoil and the entire soil profile respectively. Because the stocks of

SOC revealed a similar temporal trend like those of the SOC contents, only the former

are presented here to avoid redundancies. The SOC stock relative to the stock in the

savannah land declined with increasing land use duration for the considered depth

intervals. Yet, the decline was stronger in the topsoil compared to the entire soil

profile. This decline was also faster during the first decade of cultivation but slowed

down in the remaining years, suggesting a faster SOC stock loss in the initial years of

cultivation as also recorded by Lobe et al. (2001), Solomon et al. (2007) and Don et al.

(2011).
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In Fig. VI-2, the decline of SOC stocks was additionally fitted with exponential
equations (see chapter 3.5 for more details). Based on these equations, the SOC stocks
were reduced by 66 % (p < 0.01) in O - 10 cm and by 55 % (p < 0.01) in O - 30 cm
after 29 years of cultivation. This corresponded to a total SOC loss of 24 t C ha™ and
49 t C ha within 29 years. A loss of SOC from topsoils after the conversion of native
natural vegetation into cropland is a common phenomenon (Coutinho et al., 2014;
Paustian et al., 1997). A much stronger loss was recorded by Pardo et al. (2012) in
Tanzania with about 50 % loss of SOC stocks after 10 years of cultivation for the
upper 0 - 10 cm depth while in the present study about 38 % was recorded for the same
cropping duration. Guo and Gifford (2002b) reported 42 % of SOC stock loss after
more than 10 years of cultivation for the top 30 cm depth. A smaller decrease in SOC
stocks was found by Don et al. (2011) who recorded 25 % loss of SOC stocks after
forest conversion into cropland at an average of 36 cm depth and a time since
conversion of 22 years. The present findings are larger than the average of SOC stock
loss mentioned in the review of Davidson and Ackerman (1993) who reported 30 %
loss in average for the top layer (0 - 30 cm) of some tropical soils with land use change

from native vegetation into cropland varying between 0.6 and 90 years.

Very few studies extended the monitoring of SOC losses into the subsoil. In the
present study, the soils were sampled down to 100 cm, and found that between 13 to
50 % of the average SOC over 0 - 100 cm was stored in the 30 - 100 cm depth interval.
With increasing cropping duration, no clear trends were found for subsoil SOC
contents (Tab. VI-1), because large contents of rock fragments likely concentrated
SOC in the remaining fine earth (Bornemann et al., 2011). For calculation of subsoil
SOC stocks, these amounts of rock fragments are accounted for. The final results then
showed that SOC losses extended into the subsoil of some of the fields, and, on the
average, 0.7 to 19.5 t C ha™ was lost from the 30 - 100 cm depth interval (Appendix C
Fig. XI-1). When considering the whole soil profile over 100 cm depth, the SOC stock
was reduced by 52 % (p < 0.01) after 29 years of cultivation. This is slightly less than
reported by Chandran et al. (2009), who found that up to 63 % of SOC was lost over

100 cm after 40 years of cultivation in semiarid soils in India, while a lower value of
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24 % of SOC stock loss was reported by Elberling et al. (2003) in semi-arid Senegal

for a similar land use duration and soil depth.

Intriguingly, the results further revealed that no steady-state equilibrium was
reached after 29 years of cropping, neither for the topsoil, nor for the entire soil
profile. Possibly the cropping time in our study must still be considered as being short.
It was repeatedly reported that SOC reached a new steady-state equilibrium after 30
to 50 years of land use duration (Arrouays et al., 1995; Balesdent et al., 1988). Lobe et
al. (2001) recorded an equilibrium after 34 years of cropping for the SOC content in
South African soils (also Plinthosols, though with soft plinthite). For two regions in
Kenya, it took 21 and 37 years after steady-state equilibrium was reached (Solomon et
al. (2007). In any case, the present data suggest that SOC losss from the Plinthosols

will be ongoing.
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Fig. VI-2: SOC stocks of cropland in relation to SOC stock of savannah soils (in %)
for different years of cultivation in the topsoil and entire soil profile

3.4. Dynamics of SOC stock in POM fractions in relation to land use duration for
the topsoil

A further insight into the dynamics of the SOC stock loss can be obtained by
investigating the pattern of the residual SOC stock ratio in the particle-size fractions. A
decline in SOC stock was observed not only in the POM fractions but also in the
nonPOM fraction (Fig. VI-3) of the topsoil (0 - 10 cm). Since the equations for SOC
losses in POM1 and POM3 were not significant, we further present the variation of

SOC stock with land use duration for POM2+POM3 (250 — 20 um) and all POM -
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POM1+POM2+POM3- (2000 ym — 20 pm). Compared to the bulk soil, the SOC
losses in the POM fractions followed the same trend with most decline occurring
within the first 10 years especially for POM1-C and POM3-C. After 29 years of
cultivation, the SOC stock was reduced by 72 % (p < 0.05) for POM2-C, 74 % (p <
0.05) for POM2+POM3-C and 77 % (p < 0.05) for all POM-C. The data are in line
with earlier findings that SOC losses mostly originate from the POM fraction.
Balesdent et al. (1998), for instance, reported that 82% of SOC in POM was lost after
35 years of cultivation. Losses from the silt fraction were 76%, those from the clay
fraction 53%. Besnard et al. (1996) found 43% and 92% POM-C losses, respectively,
after 7 years and 35 years of cultivation.

The POM1-C pool contributed relatively more to the SOC losses observed in the bulk
soil at 0-10 cm depth compared to POM3-C and POM2-C (Appendix C Fig. XI-2).
The POM1 (> 250 pm) which is the coarse sand fraction is considered to be more
sensitive to cultivation (Yamashita et al., 2006). We also recorded a large SOC losses
for the nonPOM fraction, which amounted to 63% (p < 0.05) after 29 years of
cultivation. However, the magnitude of the finding for the latter was contradictory in
view of literature data (Christensen, 1992; Guimaraes et al., 2014) where it is generally
reported that SOC exhibits a higher stability with time for the nonPOM fraction.
Moreover, when calculating the absolute decline in SOC, it was even larger for the
nonPOM following the fact that this fraction initially contained the largest amount of
SOC (Tab. VI-2, Fig. XI-2). Also Steinmann et al. (2016) recorded losses of SOC in
this fraction as a result of past land uses changes and management in Germany. We
thus suggest that nonPOM-C of the studied Plinthosols was more vulnerable to decay
than formerly reported, possibly due to a facilitated breaking of soil aggregates that

overcame physical stabilization processes (Six et al., 2002).
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3.5. Kinetics of SOC in bulk soil and particle-size fractions

The topsoil SOC stock content and stock as well as the SOC stock of the entire soil
profile were fitted with both monoexponential and biexponential models (Tab. VI-3).
Only significant models are here reported. Generally, the decline of SOC contents and
stocks in the bulk soil was best fitted with a biexponential model, with significant
differences to the monoexponential for the SOC content at 0 - 10 cm depth (p < 0.01)
and for SOC stock at 0 - 30 cm depth (p < 0.05).

The mean residence time (MRT) as revealed by the monoexponential models varied
with depth for the SOC content and stock. A relative small MRT of 0.93 yr was found
for the SOC content at 0 - 10 cm depth while a MRT of 10 yr was recorded for the O -
30 cm depth interval. This might indicate that ploughing did not always reach the 30
cm depth but was by incident shallower. If ploughing, for instance, referred to the top
20 cm only, there is only slow turnover of SOM at the 20-30 cm depth interval, thus
overall prolonging the MRT at O - 30 cm soil depth. The same principle applies to all
other ploughing depths below 30 cm.

Intriguingly, a longer MRT was obtained for the top 0 - 10 cm of soil when
calculations were performed with SOC stocks instead of SOC contents (Table 3). This
finding could be attributed to some compaction in the upper 10 cm of the soil that went
along with even larger variability in stone contents (Appendix C Fig. XI-3, XI-4).
When the soil is compacted, sampling by volume includes more subsoil, thus diluting
SOC concentrations but not stocks. Similarly, rising stone contents may increase
carbon saturation (Bornemann et al., 2011) and thus vulnerability of SOC against
decay, while not necessarily affecting SOC stocks. Yet, such differences should not be
overinterpreted, because fit quality was overall worse than for the bi-exponential

model. If using the latter, the MRTs were as short as for the SOC contents.

For the SOC content, the MRT recorded for the monoexponential model for the upper
10 cm was slightly lower than the values reported by Solomon et al. (2007) in Kenya,

who, however, assessed SOC loss rates after deforestation and not after converting
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savannah to cropland. In contrast, the result for the upper 30cm revealed a MRT that
was larger than that recorded by Lobe et al. (2001) in South Africa, who, however,
sampled the top 20 cm of soil only (Tab. VI-3). Overall, the MRTs were thus in the
range of MRTs reported for other tropical soils, i.e., no specific indication was found
that the presence of hard plinthite between O - 30 cm soil depth delayed SOC losses at
significant scale. In contrast, the MRTs of the topsoil SOC stocks were at least two
times lower (i.e., SOC turnover was at least 2 times faster) than that reported for
temperate areas by Gregorich et al. (1995) and Wei et al. (2014a), probably due to the
warmer climate and more sandy texture favoring faster decomposition. A much lower
MRT (< 1) was even recorded by Dalal and Mayer (1986) in the warmer climate area

(Riverview, Australia) for a kaolinite dominated sandy loam soil.

The points of kinetic change from the biexponential models revealed that the decline
rate for the topsoil SOC content was dominated by the stable pool in less than 1 yr for
the upper 10 cm and in less than 2 yr for the upper 30 cm. The same trend was
observed for the topsoil SOC stock with the decline rate being dominated by the stable
pool within 2 yr. These results suggest that the ability of the soil to release nutrients to

plants dropped after two years making the use of fertilizers crucial for subsequent
cropping.

The investigation of SOC dynamics in the particle-size fractions confirmed that loss
rates were better described with biexponential models, with significant differences to
the monoexponential for POMI1-C (p < 0.05), nonPOM-C (p < 0.01) and nonPOM-C
stock (p <0.01).

Considering the monoexponential models, the decay rate of SOC related to the various
particle-size fractions generally increased from the non POM to the POM1 fraction, as
also found in other studies (Balesdent et al., 1988; Balesdent et al., 1998; Lobe et al.,
2001). However, contrary to the previous studies the POM2 (250 — 53 um) fraction
recorded the slowest decay rate and longest MRT for both its SOC content and stock.
On the one hand, POM2 C represents the intermediate sand fraction (250 — 53 um) and
contains materials at an advanced stage of degradation that could already be occluded

in soil aggregates where they might be better protected from decay (Six et al., 2000).
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This may explain the lower MRT compared with POM1, but not compared with
POM3. It seems thus reasonable to speculate that other factors contributed to the
relative long MRT of the POM2-pool. On the one hand this fraction may contain
significant amounts of black carbon (the remains from burning events) with low
turnover time (Brodowski et al., 2007), on the other hand, also very stable Fe
concretions could end in the size range, so that not all SOC in the 250-53 um fraction
is truly POM. The specific role of Fe oxides is thus discussed in the subsequent

section.

For the biexponential model, the labile (k;) pool decreased from the fine fractions
to the coarse fractions for the SOC content. These results are contrary to the finding of
Lobe et al. (2001) who recorded an increase from clay to the coarse sand fraction. Yet,
the sampling depth in both studies is not comparable, in addition, the point of kinetic
change t;. was already reached in < 1 year for the upper 10 cm (Table 3). Hence, there
are not enough data to truly interpret differences in k values from the labile pool, and
it is therefore concluded from the finding that two pools existed with the first one

being relevant only for initial SOC losses upon cropping.
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Tab. VI-3: Kinetic parameters for the average decline rates of SOC in bulk soil and

particle-size fractions as affected by land use duration at different soil depths (results

of this study plus literature data)

Exponential model

Biexponential model

Site & soil layer k_l R? t MRT
(yr ™) (yr) (yr)
Dano Burkina (this study): SOC content (g kg'l)
Bulk soil, 0 - 10 cm 1.07 0.86%%** 29 0.9
Bulk soil, 0 - 30 cm 0.1 0.92%%* 29 10
POMI (> 230 pm). - 0-10 212 063 29 0.5
ngz (250-53 pm), 0- 10 0.07 0.88% 29 14
POM3 (53-20um),0- 10
om 1.74 0.75%% 29 0.6
‘C‘I(;“ POM (<20 pm), 0 - 10 117 0.85% 29 0.8
Dano Burkina (this study): SOC stock (t C ha™")
Bulk soil : 0- 10 cm 0.07 0.89%** 29 14
Bulk soil : 0 - 30 cm 0.1 0.93%%** 29 9.3
POM2 (250 - 53 um) 0.03 .83 29 33.3
non POM (< 20 pm) 0.06 0.91%*** 29 16.7
Free State Province, South Africa (Lobe et al., 2001) : SOC content (g kg‘l)
Bulk soil, 0 - 20 cm 0.15 0.97 90 6.6
Coarse sand, 0 - 20 cm 0.4 0.89 90 2.5
Fine sand, 0 - 20 cm 0.1 0.85 90 10
Silt, 0 - 20 cm 0.09 0.97 90 11.1
Clay, 0 - 20 cm 0.09 0.97 90 11.1
Nandi Kenya (Solomon et al., 2007): SOC content (g kg'l)
Bulk soil, 0 - 10 cm 0.16 - 100 6.2

Kakamega Kenya (Solomon et al., 2007): SOC content (g kg-1)

Bulk soil, 0 - 10 cm 0.29 - 103 34
Pyrenean Piedmont France (Balesdent et al., 1998): SOC content (mg C g'l)
Coarse sand, 0 - 26 cm 0.25 - 40 4
Fine sand, 0 - 26 cm 0.18 - 40 5.5
Coarse silt, 0 - 26 cm 0.15 - 40 6.7
Fine silt, 0 - 26 cm 0.12 - 40 8.3
Clay, 0 - 26 cm 0.03 - 40 33.33
Ontario, Canada (Gregorich et al., 1995) : SOC stock (t C hal)

Bulk soil, 0 - 30 cm 0.03 - 25 333
Shaanxi China (Wei et al., 2014a): SOC stock (t C ha™)

Bulk soil, 0 - 10 cm 0.03 - 100 30.3
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Bulk soil, 0 - 10 cm 0.01 - 100 76.9

Riverview, Australia (Dalal & Mayer, 1986) : SOC stock (t C ha)
Bulk soil, 0 - 10 cm 1.2 0.87 20 0.8

-:no data, *: p<0.05;**: p< 0.01;***: p< 0.001

3.6. Role of Fe oxides for SOC dynamics

To capture the role of Fe oxides for the stabilization of soil organic matter, SOC stocks
were analyzed before and after reductive dissolution and subsequent extraction of Fe
oxides with DCB. Here, focus was set on the surface Fe enriched (0 - 30 cm) soils
(Tab. VI-1). Several studies pointed out that Fe oxides can impede SOC
decomposition and reduce SOC losses (Baldock and Skjemstad, 2000; Kalbitz et al.,
2005; Poulson et al., 2016). Since Plinthosols are low activity (kaolinitic) clay soils
rich in Fe oxides (IUSS et al., 2006), a significant contribution of the latter to SOC
stabilization was expected. However, the scatter plot of the SOC stock loss over 29
years against the SOC stock loss due to the DCB treatment (Fig. VI-4) did not yield a
significant correlation (R*= 0.0083, p > 0.05).

In our study, about 0.2 % to 48 % with an average of 16 % (x 15 %) of SOC stock
were lost after treating the topsoil samples with DCB (Fig. VI-4). Overall, this is
consistent with results published by Adhikari and Yang (2015) and Wagai and Mayer
(2007) who found about 5 - 44 % and 4 - 37 % ( 0 - 28 cm depth) of Fe associated
SOC respectively. However, for the results from Wagai and Mayer (2007) only one
soil order recorded the highest amount of Fe associated SOC (37 %) while less than 25
% of Fe-SOC complexation was observed with the remaining. Out of the 58 to 80 % of
the organic matter subject to organomineral complexation, only 2 to 7 % was observed
by Basile-Doelsch et al. (2009) to be associated with Fe in some Oxisols at 0 - 20 cm
depth in Madagascar. However, Poulson et al. (2016) found an average of 37 % for Fe
bound SOC in some US forest soils at 0 — 20 cm depth, which is two times higher than
the averaged reported in the present study. The difference might be related to higher

initial Fe oxide of the forest soils compared to the cropland of the present study.
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Since in our study most of SOC stock was found as nonPOM, intimate association
with clay and silt particles was suggested as the main mechanism for SOC stability in
the studied Plinthosols rather than specific occlusions into oxides. Though specific
measurements of occluded SOC had not been carried out, it was believed that pure Fe
concretions would not point at any elevated SOC content if detectable at all. The fast
loss of SOC content and stock in the topsoil suggests, however, that the binding of
SOC to clay or silt plus clay in the nonPOM fraction is not as stable as in other soils

and remains still accessible to decomposition upon continuous cultivation.
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Fig. VI-4: Relation between real SOC stock loss in topsoil (0 - 30 cm) over a period
of up to 29 years and SOC stock loss after DCB treatment

4. Conclusion

In the Plinthosols studied here, the conversion of natural vegetation to continuous
cultivation resulted in a decline of SOC contents and stocks. Continuous cultivation
reduced the SOC stock by 34 %, 45 % and 48 % after 29 years of cultivation in the
upper 10 cm, 30 cm and 100 cm, respectively. SOC losses extended also into the
subsoil, and, on the average, 0.7 to 19.5t C ha was lost from the 30 - 100 cm depth
interval. For the upper 10 cm, the losses occurred from all POM fractions as well as
from the nonPOM fraction. However, the SOC loss occurred faster in the coarse sand-

sized fraction, which thus exhibited the lowest mean residence time of the studied
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fractions. The point of kinetic change, which marks the timing required for the stable
pool to dominate the overall losses of SOC, indicated for both topsoil and the
dominance of the decline rate by the stable pool in less than 3 years, suggesting that
provision of fertilizers would be necessary to raise the productivity of the soils. Our
results also suggest that Fe oxides only played a minor role as stabilizing agent for
SOC. This points to the formation of silt and clay sized organomineral complexes as
well as to the binding of Al oxides as main protection mechanism, i.e., the hypothesis
that Fe exerts a major control on SOC losses in these plinthitic soils is refuted. Though
the nonPOM fraction is usually associated with a higher stability, the cultivation
induced SOC losses from this fraction indicate that it remains vulnerable to
decomposition processes when savannah is broken for continuous cropping in these

major reference soil groups.
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1. Introduction
Land degradation is a major issue nowadays in Sub-Saharan Africa especially in the
semi-arid regions where climate conditions (Sivakumar and Stefanski, 2007) and land
use pressure (Meshesha et al., 2012) affect soil productivity and livelihood.
Addressing land degradation requires having the necessary soil spatial information
which is crucial in any land evaluation. As pointed out by Henry et al. (2009), soil
preservation or recommended conservation practices cannot be carried out without
maps of soil properties and soil groups. One of the major reasons maps are required is
the highly spatial variability of soil properties as dissimilarities in values are often

recorded within small distances of meters or even decimeters (Wiesmeier et al., 2014).

In addition, management decision at small scales such as plots or small catchment
require finer scales maps which are not available as traditional maps are mostly built at
a coarse scale. Recent advances in remote sensing and information systems resulted in
a new paradigm in soil mapping called “digital soil mapping” (DSM) which couples
soil legacy data with some statistically correlated auxiliary data (McBratney et al.,
2003). With the increased availability of free high resolution remote sensing data,
DSM offered an unique opportunity for map data provision especially in West Africa
where dearth of baseline data prevent accurate decision making towards sustainable
management practices. For implementing DSM, using adequate models to carry out
such correlation and conducting data treatments to remove redundancies and noise due
to imbalance data are key determinants for improvement in prediction accuracy

(Schmidt et al., 2008).

Generally land degradation adversely affects the soil organic carbon (SOC) which is
the key indicator of soil health owing to its major role in most soil functions such as
the storage of nutrients and water, soil biological activity and structural stability. Much
attention has been given to SOC pools in soils because of its determinant role in the
global carbon cycle and its potential for mitigating or aggravating the amount of the
greenhouse gases in the atmosphere (Davidson and Janssens, 2006; Liu et al., 2011).
In West Africa where natural soil fertility and fertilizer input are low, preserving SOC

is of the utmost importance for soil to fulfill key ecosystem services (Doraiswamy et
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al., 2007). Though some carbon budget estimates have become available, there is still
a lot of uncertainties whether Africa is a carbon source or sink (Valentini et al., 2014)
due to data scarcity. A step forwards in reducing these uncertainties require more data
in SOC estimation over different soil and land use type in Africa in general and in

West Africa in particular.

The SOC content and stock vary at different point of the landscape resulting from the
interplay of various factors that determine its amount in time and space. Thus, various
studies have been carried out on SOC and its determining factors such as climate
(Albaladejo et al., 2013; Stergiadi et al., 2016), land use/cover change (Muifioz-Rojas
et al., 2015; Xiong et al., 2014), topography (Nadeu et al., 2015), sesquioxides (Peng
et al., 2015) and soil type (Bruun et al., 2013; Wiesmeier et al., 2012). With the
interplay of these factors, SOC reaches equilibrium values depending on the type of
systems and locations. However, the equilibrium is adversely affected when natural
areas are cleared and converted into cropping land (McDonagh et al., 2001; Murty et
al., 2002). Such conversion is reported to be followed by a decline in SOC and
analysis include pools of different SOC stability, since overall response rates may be
slow and thus ignored when based on bulk SOC analyses only (Skjemstad et al.,
2004b). Moreover, most studies only focused on surface soil horizons while more
than 50 % of SOC stock is usually allocated below 20 cm depth (Batjes, 1996).
Achieving the Kyoto protocol requires the assessment of stocks of SOC in different
land use and soil type at different depth which is an essential step towards evaluating
the sequestration potential of a land. Additionally, a good understanding of factors
affecting carbon dynamics is necessary for the development of adequate management

strategies.

Land degradation assessment and accurate conservation decision by farmers, scientists
and policy makers require spatial and temporal distribution of both soil properties and
soil groups which can be made available with new statistical techniques related to
digital soil mapping. Key information of soil health indicator such as SOC and its
dynamics with land use change are also crucial for sound management practices and

for the computation of future climate scenarios as well as the identification of the
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potential for C sequestration or emission. My objectives were therefore to : (i) assess
the use of finer spatial and temporal resolution optical imagery along with
topographical variables to improve the prediction accuracy in DSM of some soil
properties, (ii) to evaluate the impact of different data pruning methods as a mean for
improving data quality in the prediction accuracy of some reference soil groups (iii)
determine the amount, distribution and driving factors of SOC stock in different soil
groups and land use, (iv) to investigate the impact of land use change on soil SOC

content and stock along a cultivation chronosequence.
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2. Summary of the results

(i) High resolution mapping of soil properties using remote sensing variables in

south-western

Burkina faso: a comparison of machine learning and multiple linear regression

models

Spatial soil information is crucial for environmental modelling, risk assessment and
decision making. The availability and use of Remote Sensing data as secondary
sources of information in digital soil mapping has been found to be cost effective and
less time consuming compared to traditional soil mapping approaches. But the ability
of Remote Sensing data in improving knowledge of local scale soil information in
West Africa have not been fully explored. This study was conducted to assess the use
of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data
and laboratory analyzed soil samples to map the spatial distribution of six soil
properties — silt, sand, clay, cation exchange capacity (CEC), soil organic carbon
(SOC) and nitrogen — in a 580 km?® agricultural watershed in south-western Burkina
Faso. Four statistical prediction models — multiple linear regression (MLR), random
forest regression (RFR), support vector machine (SVM), stochastic gradient boosting
(SGB) — were used and compared. A cross validation was carried out for internal
validation while the predictions were validated against an independent set of soil

samples considering the modelling and an extrapolation area.

Results showed from the performance statistics that the machine learning techniques
performed marginally better than the MLR, with the RFR providing in most cases the
highest accuracy. Satellite data acquired during ploughing or early crop development
stages (e.g. May, June) were found to be the most important spectral predictors while
elevation, temperature and precipitation came up as prominent terrain/climatic
variables in predicting soil properties. The results further showed that shortwave
infrared and near infrared channels of Landsat8 as well as soil specific indices of
redness, coloration and saturation were prominent predictors in digital soil mapping. In
view of the increased availability of freely available Remote Sensing data (e.g.

Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor
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regions such as West Africa can be improved with relatively little financial and human

resources.

(ii) Predicting reference soil groups in the Dano catchment (Southwest Burkina

Faso) using legacy
data: data pruning and random forest approach

Digital soil mapping uses quantitative correlations between a set of covariates and a
target variable to be predicted. However, predicting taxonomic classes could be
challenging when a major soil class belonging to a wide range of covariates overlaps
with those related to smaller class units. The extent to which different data pruning
methods which result in different subsets of the majority class could lead to an
increase in prediction accuracy by using Random Forest (RF) was investigated. The
Random Forest modelling was conducted either with (RF_rfe) or without (RF)
recursive feature elimination. The methods were applied for digital mapping of some
reference soil groups in the Dano catchment (Burkina, West Africa), using a large soil
dataset in which the Plinthosols were the major soil class. In total, four datasets were
used including the entire dataset (AlIPT) and the pruned dataset consisting respectively
of 80 %, 90 % and standard deviation core range of the Plinthosols data while cutting
off all data points belonging to the outer range. The Plinthosol samples which were
removed by pruning were latter predicted using the models developed for the
respective train dataset. For the entire dataset (AIIPT) as well as for each data subset,
three groups of covariates consisting in (i) terrain parameters (TP), (ii) spectral
parameters (SP) and (iii) terrain and spectral parameters (TSP) were considered for the

prediction of the reference soil group (RSG).

No matter the Random Forest models, the predictions based on AlIPT revealed an
overestimation of the Plinthosols, which reduced the prediction accuracy of the
remaining reference soil groups. This overestimation was independent of the group of
covariates considered. However, about 3 to 41 % improvement in prediction accuracy
was recorded when using different pruned datasets for the identification of reference

soil groups. The best prediction was attained when removing all Plinthosol points
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lower than 5 % and higher than 95 % of the cumulative percentage of the most
important variable (wetness index) and modelling conducted solely with terrain and
spectral parameters (TSP) with optimal predictors resulting from the RF_rfe. The
resulting prediction model provided a substantial agreement to observation, with a
kappa value of 0.57 along with a 35 % increase in prediction accuracy for Cambisols,
7 % for Gleysols and 16 % for Stagnosols. The pruned Plinthosol samples recorded a
prediction accuracy varying between 15 % and 71 %. When combined, the terrain
parameters took preeminence over the spectral bands and indices with the SAGA
wetness index, a proxy for soil moisture distribution, being the most important variable
contributing to the quality of the RF model. This study thus points to the potential of
using data pruning to reduce the influence of a predominant reference soil group on the

spatial prediction of smaller soil units in tropical environment.

(iii) Spatial controls of soil organic carbon stocks in the Sudanian savannah zone

of Burkina Faso, West Africa

The ability to project and to mitigate the impacts of climate change is closely related to
the evaluation of soil organic carbon (SOC) stocks across different types of land use
and soil groups. Therefore, this study aimed at estimating the surface (0 - 30 cm) and
subsoil (30 — 100 cm) organic carbon stocks in different land use systems and across
various soil groups. A further aim was to assess the spatial variability of SOC stocks
and factors affecting its distribution. About 70 soil profiles were considered along with
additional auger (1205 samples) sampling to account for spatial variation in both
cropland (CR) and savannah (SA). Mid-infrared spectroscopy and partial least-squares
analysis were used as a fast and low-cost technique to handle the large amount of
samples for the SOC content estimation. The machine learning technique Random
Forest Regression (RFR) and multiple linear regression (MLR) were used for
modelling the surface SOC stocks topsoil (0 - 30 cm). The covariates considered
include topographic, texture along with climatic data used as surrogate for soil forming
factors for model calibration. The prediction maps produced by the calibrated models

were validated by an independent dataset.
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Overall, about 53 % of the carbon stock over 1 m depth was held in the upper 30 cm
and is proned to release upon non-sustainable management practices Only a marginal
difference was recorded between the topsoil SOC stock in SA soils (41.4 t C ha'l) and
cropland soils (39.1 t C ha'l). For the subsoil, a significant difference (p < 0.05) was
observed for the SOC stock between the CR recording about 40.2 t C ha™ and the SA
with 26.3 t C ha™. Over 0 - 30 cm and 100 cm depth, Gleysols (44 t C ha” and 86.64 t
C ha™' respectively) located at lower elevation position stored the highest amount of
SOC stock. The topsoil SOC stock variability was primarily affected by the silt content
followed by the wetness index. Both RFR and MLR estimated mean top- SOC stocks
of the catchment fairly well, with RFR being superior to MLR in terms of lower
statistical error metrics. These findings reinforce the view that the semi-arid
ecosystems of West Africa still offers a significant opportunity for carbon
sequestration and these results represent a baseline for future carbon dynamics

modelling in the region.

(iv) Carbon losses from prolonged arable cropping of Plinthosols in Southwest

Burkina Faso

The conversion of natural ecosystems into agricultural land affects the atmospheric
CO, concentration whose increase contributes to global warming. This study aimed at
assessing these effects in Plinthosols, which are characterized by large contents of Fe
oxides that are usually known to protect SOC from rapid decay. For that purpose,
Plinthosols were sampled down to one meter (if feasible) that had been converted from
native savannah into cropland O to 29 years ago in the Dano district (Southwest
Burkina Faso). Beside the assessment of SOC stocks, the proportion of SOC remaining
after Fe oxide removal was determined as well as its distribution among the following
particle-size classes: 2000 - 250 um (coarse sand-sized SOC; POM1), 250 um — 53
pum (fine-sand-sized SOC; POM2), 53 ym — 20 um (very fine sand-sized SOC;
POM3), and < 20 um (nonPOM).

The extent of change in SOC stock was found to vary with depth and the age of the
cropland. A decrease in SOC stock of 24 t C ha™ and 49 t C ha”' were recorded for
the upper 10 cm and 30 cm indicating that about 66 % (p < 0.01) and 55 % (p < 0.01)
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of the initial stock in the native vegetation had been released respectively after 29
years of cultivation. SOC losses extended also into the subsoil, and, on the average,
0.7 to 19.5 t C ha™' was lost from the 30 - 100 cm depth interval. About 52 % (p <
0.01) of SOC stock loss was recorded for the upper 100 cm after 29 years. Losses of
SOC occurred in all soil fractions with mean residence time generally increasing with
particle size. The Fe oxide was found to play a minor role as stabilizing agent as only
16 % (+ 15 %) in average of the SOC stock was lost after treating the samples with
dithionite-citrate-bicarbonate (DCB). Though most carbon was found as nonPOM,
indicating that organo-mineral associations are a key parameter for carbon
stabilization, its depletion with increasing cultivation duration suggests that the
destruction of aggregates in these fields increased the vulnerability of this pool to
microbial degradation. The loss rates of SOC were thus similar to those reported for
other soil types, i.e., plinthite formation played only a minor role in stabilizing the

remaining SOC from decomposition.

3. Synthesis

This study was motivated by the need to evaluate the impact of different category of
covariates and statistical methods for DSM at catchment level as well as to investigate
the SOC dynamics along a false chronosequence. The results of Chapter III, IV and V
pointed out the potential of the application of DSM in predicting soil properties and
reference soil groups. The resulting maps revealed the spatial variability of soil
properties and reference soil groups while the models also provided insight into the
key variables affecting their respective distribution. The question whether soils in the
Dano catchment have potential or would function as a source or sink for carbon was

elucidated in Session V and VI.

Sustainable land use and management require high resolution spatial information on
soil properties for accurate decision and knowledge-based policies. The combination
of high spatial resolution satellite (RapidEye and Landsat) along with terrain/climatic
data resulted in better prediction accuracy of soil properties by the RF models. In
assessing the models’ performance inside and outside the the small catchment

(modelling area), the performance statistics revealed that the machine learning
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techniques provided marginal improvement in the different prediction. The lower
performance of the MLR is attributed to its failure in accounting for non-linear
relationships between response and predictor variables. The size and heterogeneity of
the landscapes with varying surface characteristics due to various farm management
practices and terrain attributes introduces complex relationships in the environmental
variables which cannot be captured fully by linear models (Selige et al., 2006; Smith et
al., 2013). Consequently, recommendation goes for non-parametric models such as
RFR, support vector machines (SVM) and neural networks which were found superior
to MLR for heterogeneous landscape (Hahn and Gloaguen, 2008b; Walinder, 2014).
However, for more homogeneous areas MLR is likely to provide good prediction

accuracy.

For the high resolution mapping of the soil properties, the spectral data especially
those acquired during ploughing or early crop development stages (e.g. May, June)
were found to be the most important predictors in contrary to the trend observed for
the RSG prediction. These findings indicate the strong impact of optimal timing for RS
data acquisition for predicting soil properties. A timely acquired RS data along with
terrain/climatic variables would therefore contribute in better prediction accuracy

when models able to handle non-linear relationships are considered.

Predicting reference soil groups with a dataset subject to imbalance issues led to an
overestimation of the dominant soil groups represented by the Plinthosols. The
observed noises were due to the Plinthosols belonging to a wide range of predictors
also shared by the smaller soil units. Only the pruned dataset with RF models
including at least the terrain attributes resulted in a better expression of the smaller soil
units in the corresponding maps. Consequently, pruning the majority class - the
Plinthosols - by different methods while using Random Forest (RF) to evaluate the
various datasets proved to be an efficient way for improving the prediction accuracy.
This indicates that for areas where alternatives such as increasing the soil pedons with
soil groups having lower observations (Brungard et al., 2015) would be costly and

time consuming, pruning could be considered as a possible option.
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Considering the variables used as surrogates for soil forming factors, only the
combination of both terrain attributes and spectral data resulted in better prediction of
the RSG along with the pruned dataset. However, the terrain attributes took
preeminence over the spectral variables for the distribution of the RSG. Though the
latter contradict the results of Scull et al. (2005), it confirms the finding of Dobos et al.
(2001) and Stum (2010) who also recorded terrain attribute as playing the major role
for discriminating soil units. The SAGA wetness index was the most prominent along
with distance to stream, protection index and elevation for the top four variables. As
outlined in section I, the SAGA wetness index coming as top variables suggests soil
moisture distribution as the key factor discriminating among the RSG while the
remaining top variables are playing a regulatory role. The RFR models then classifyied
wet soil in low elevation and distance to stream area (Gleysols) and the dry soil
(Leptosols) on high elevation and distance to stream areas while the remaining soil
groups occupy intermediate position between these two groups. This spatial
distribution of the different RSG is in agreement with expected soil-landscape
relationships as described in the TUSS et al. (2006) and also confirmed by other studies
assessing decision tree model ability for predicting soil classes (Brungard et al., 2015;
Taghizadeh-Mehrjardi et al., 2012). In summary, the majority class data pruning
resulted in an increase of prediction accuracies of the smaller soil units while using

Random Forest (RF) as robust method to evaluate the various sets.

The quantification of soil organic carbon (SOC) stocks is of global concern as soils
constitute the major C pool and could turn out as substantial sinks or sources for
atmospheric CO,. The results presented in Chapter V established that the SOC stocks
are primarily (53 %) located in the topsoil (0 — 30 cm) which is within the range
reported by Batjes (1996). The lower SOC stock in the topsoil of the CR confirmed the
adverse effect of cultivation along with the removal of biomass which is not available
for the built-up of organic matter in the soil. The significantly higher SOC stock in the
subsoil of the CR was quite surprising but might be attributed to the relocation of SOC
content and clay from the topsoil to lower layers under the heavy rains of the tropics.
With the bare soil surface of the CR, the intensity of the impact of rainfall is expected

to be higher compared to SA with higher amount of material being relocated.
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The distribution of the SOC stock in the different RSG revealing Gleysols located at
lower elevation area as having the highest amount suggest the impact of erosion
processes with transport of sediment from higher location to lower areas. The silt
content followed by sand, wetness index, elevation and temperature were found to be
the five top variables. Since topography affects soil properties, the elevation
determines the spatial distribution of silt and wetness index which as mentioned earlier
is an indicator of soil moisture. SOC is related to silt via the physical and chemical
protection it provides (Feller and Beare, 1997; Jones, 1973; McGrath and Zhang,
2003) while soil moisture distribution which depends on precipitation affects

decomposition processes along with soil temperature (Parton et al., 1993).

In general, the accuracy of the prediction models were low though the RFR performed
marginally better than the MLR with higher R* (13 %) and lower error metrics. The
low explained variances are due to intrinsic high spatial variability of SOC with the
interplay of complex and large range of factors at local and regional level which might
not have been fully captured in the present study. For example, elements such as clay
mineralogy and sesquioxides were not considered in the models. Moreover, errors
related to field sampling, laboratory measurement, statistics as well as random errors
could also play a role. However, other studies also recorded lower accuracies varying
from 6 % to 43 % (Grimm et al., 2008; Henderson et al., 2005; Schulp et al., 2013;
Schulp and Verburg, 2009) resulting mainly from the high spatial variability of the
SOC. It is obvious that more investigation are required to improve the accuracy of

DSM in highly heterogeneous landscape located in semi-arid tropical area.

The assessment of the impacts of LUC on SOC content and stock in the Plinthosols
revealed a general decline with increasing land use duration (Chapter VI) for both
topsoil (0 — 30 cm) and subsoil (30 — 100 cm). The study highlights that SOC in
subsoil can also be disrupted as a result of LUC contrary to the general trend
considering it as inert and insensitive. The topsoil labile fraction (POM) is more
vulnerable to LUC as also recorded in previous studies (Liang et al., 2012; Yang et al.,
2009). However, the fine sand fraction POM2 recording a smaller turnover rate with
subsequent higher MRT is contrary to previous studies suggesting the existence of

either chemically resistant material or of some organic coating protecting from
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degradation (Christensen, 1992). The consideration of the functional group
composition of these fractions could help shed further light for such pattern in SOC

dynamics.

Many studies have pointed out the role of sesquioxides as key element affecting the
stability of SOC (Barthes et al., 2008; Dalal and Bridge, 1996; Guggenberger and
Haider, 2002). However, the results of this study (Chapter VI) could not establish Fe
containing sesquioxides as major stabilizing agent of the carbon stock for the topsoil
(0 — 30 cm). No correlation could be established between the SOC stock loss after
DCB treatment with Fe oxide content. The high SOC stock observed in the nonPOM
fraction (fine silt plus clay), showed that organo-mineral associations are the key
parameter for carbon stabilization. However, ternary OC-Fe oxides-Silt plus Clay
association could also be involved (Wagai and Mayer, 2007) alongside the metal
oxides and clay (Silt plus Clay) individual contribution but this requires further

investigation.

4. Outlook

Though the results of the present study offer indications that DSM of soil properties
and reference soil groups has great potential in providing soil information at local level
in data poor regions such as West Africa, the prediction accuracy of the different
models still have to be improved. High inherent spatial variability in soil properties
and the heterogeneity of the landscape are major reasons advanced for such
performances of the models. However, prediction accuracy of the models could be
increased by: (1) carrying out land surface segmentation (Dragut and Dornik, 2016)
for the creation of homogeneous strata based on the identified most important
variables — elevation, wetness index, distance to stream —spectral data of June- using
Random Forest as model for prediction, and (2) by considering multi- or hyperscale
terrain information to account for different spatial scales within one model (Behrens et

al., 2010b; Behrens et al., 2010a; Behrens et al., 2014).

The present study only evaluated the impact of LUC on topsoil POM fractions while
there is more and more evidence that subsoil POM C could also be affected (Sheng et

al., 2015) but little is still known about the magnitude of the response of subsoil POM

132



VIIL Synthesis and perspectives

for LAC soils in the tropical semi-arid regions. Further study could therefore quantify
the extent of the impact of LUC for such deeper soil layers. While results from the
present study also revealed high SOC in the nonPOM fraction (fine silt plus clay), the
role of Fe containing sesquioxides in SOC stabilization was found to be poor. A
further step would be to specifically assess possible stabilization processes including a
direct assessment of the amount of SOC associated with Fe oxide and Al oxide and the
amount held by ternary OC-Fe oxides- Clay plus Silt association along with clay
occluded SOC. The purpose would be to find out whether the stability of SOC is more
related to physical protection within stable aggregates or sorption to clay particles or to
ternary OC-Fe oxides-Silt plus Clay association or whether multiple protective

mechanisms are involved.

The results of this study can also be considered as a baseline work for modelling
activities regarding SOC prediction coupled with climate change scenarios in the Dano
catchment. Using false chronosequence approach with the remaining soil groups apart
from the Plinthosols, the SOC pattern for the next 50 to 100 years under different

climatic scenarios of the West Africa semi-arid regions can be further explored.
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Tab. IX-1: Selected variables for Random Forest modelling

N° Environmental variables
Variable Abbreviation
1 Aspect ArcGis A.Asp
2 Flow accumulation ArcGis A.Flow.A /
S.Flow.A
3 Flow direction ArcGis A.Flow.d / S.Flow.d
4 Plan curvature ArcGis A.Plan.curv /
S.Plan.curv
5  Topographic Wetness Index A.TWI/S.TWI
ArcGis/SAGA

6  Northness cose.Asp

7  Distance to stream ArcGis Dist.stream

8 Elevation ArcGis Elevation

9  Protection index SAGA Prot.Index

10 Catchment Area Parallel SAGA S.CA.Par

11 Flow line curvature SAGA S.Flow .line.curv
12 Horizontal flow distance SAGA S.HF.dist

13 SAGA Wetness Index SAGA S.Wet.Ind

14  Total curvature SAGA Sa_totalcuv

15 Terrain ruggedness SAGA Terr.Rugg

16 Geomorphology Geo

17 Lithology Litho

18 Land use LU

19 Precipitation Prep

Spectral variables and indices
Variable Acquisition period

20 RI, SI, HI, NDVI, redEdge March

21 RI, SI, BI, CI, HI, NIR April

22 RI, SI, BI, CI, HI, NIR May

23 Blue, CI, HI, NIR, SWIR1 June

HI: Hue Index, CI: Coloration Index, RI: Redness Index, BI: Brightness Index, NIR:
Near infra red, SWIR: Shortwave infra red, SI: Saturation Index, NDVI : Normalized

Difference Vegetation Index
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Tab. IX-2: Confusion matrix between observed and predicted reference soil groups for
the core range dataset with (RF_rfe) and without (RF) recursive feature elimination
using the spectral parameters

RF RF _rfe

Predicted (%) Predicted (%)
. Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
‘éﬁ CM 294 59 00 59 588 00 CM 235 59 00 00 706 0.0
£ 8 GL 00 393 00 00 607 00 GL 00 429 00 00 571 00
§§° LP 00 00 250 00 750 0.0 LP 00 00 250 00 750 0.0
§V LX 00 00 0.0 455 545 0.0 LX 00 00 0.0 545 455 0.0
& PT 0.0 47 0.0 08 946 00 PT 00 62 00 08 930 0.0
ST 00 00 0.0 0.0 66.7 33.3 ST 00 00 00 00 667 33.3

Predicted (%) Predicted (%)
. Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
% CM 204 59 00 59 588 00 CM 235 59 00 59 647 0.0
§§ GL 00 393 00 3.6 57.1 00 GL 0.0 393 0.0 00 60.7 0.0
;:g LP 00 00 250 00 750 0.0 LP 00 00 250 00 750 0.0
gv LX 00 9.1 00 455 455 0.0 LX 00 00 0.0 455 545 0.0
& PT 0.0 47 08 16 93.0 00 PT 00 31 00 08 961 0.0
ST 00 00 0.0 16.7 50.0 33.3 ST 00 00 00 00 667 33.3

Predicted (%) Predicted (%)
» Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
‘éﬁ CM 235 59 00 59 647 00 CM 235 59 00 59 647 0.0
S GL 00 357 00 00 643 00 GL 00 429 00 00 571 00
C—C: @ Lp 0.0 00 250 00 750 0.0 Lp 0.0 00 250 00 750 0.0
§ LX 0.0 00 0.0 455 545 00 LX 0.0 9.1 0.0 45.5 455 0.0
2 PT 00 39 00 23 938 00 PT 00 39 00 00 961 0.0
ST 00 00 00 0.0 667 33.3 ST 00 00 00 00 667 33.3

CM: Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset
with 5% lower and upper range pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR:
dataset with standard deviation based pruning.
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Tab. IX-3: Confusion matrix between observed and predicted reference soil groups for
the core range dataset with (RF_rfe) and without (RF) recursive feature elimination
using the terrain parameters

RF RF_rfe
Predicted (%) Predicted (%)
. Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
%A CM 294 0.0 00 00 70.6 0.0 CM 59 00 00 00 47.1 00
éé‘é GL 00 571 00 00 429 0.0 GL 00 607 00 00 393 00
g; LP 00 00 750 0.0 250 0.0 LP 00 00 750 00 250 0.0
g LX 00 00 00 364 63.6 00 LX 00 91 00 545 273 9.1
= PT 08 7.0 00 0.8 91.5 0.0 PT 31 85 00 08 853 23
ST 0.0 0.0 0.0 16.7 66.7 16.7 ST 00 00 00 167 667 16.7
Predicted (%) Predicted (%)
" Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
% CM 529 00 00 00 47.1 0.0 CM 588 00 00 00 412 00
§§ GL 00 643 00 7.1 286 0.0 GL 00 607 00 3.6 357 00
g%ﬁ LP 00 00 750 0.0 250 00 LP. 00 00 750 00 250 00
'gv LX 0.0 00 0.0 63.6 27.3 9.1 LX 00 00 00 636 273 9.1
= PT 62 93 00 16 783 47 PT 47 78 00 1.6 814 47
ST 16.7 0.0 0.0 333 16.7 33.3 ST 00 00 0.0 333 500 167
Predicted (%) Predicted (%)
2 Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
‘EA CM 529 00 00 00 47.1 0.0 CM 529 00 59 00 412 00
g5 GL 00 607 00 7.1 321 00 GL 00 607 0.0 36 357 00
.2@ LP 00 00 750 0.0 250 0.0 LP 00 00 750 00 250 00
g LX 0.0 00 0.0 636 27.3 9.1 LX 00 91 00 636 182 9.1
= PT 109 93 00 16 721 62 PT 85 93 00 16 744 62
ST 16.7 0.0 0.0 333 16.7 33.3 ST 00 00 0.0 333 333 333

CM: Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset
with 5% lower and upper range pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR:
dataset with standard deviation based pruning.
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Tab. IX-4: Confusion matrix between observed and predicted reference soil groups for
the core range dataset with (RF_rfe) and without (RF) recursive feature elimination
using the terrain and spectral parameters

RF RF_rfe
Predicted (%) Predicted (%)
=& Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
'§§ CM 412 00 00 0.0 588 0.0 CM 529 59 00 59 353 00
5 & GL 00 536 00 00 464 0.0 GL 00 679 00 36 286 00
§§ LP 00 00 750 0.0 250 0.0 LP 00 00 750 0.0 250 0.0
£ £ LX 0.0 182 0.0 54.5 18.2 9.1 LX 00 9.1 00 63.6 273 0.0
-] PT 23 78 08 00 868 23 PT 31 70 00 16 868 1.6
ST 0.0 0.0 0.0 0.0 66.7 33.3 ST 00 00 00 00 667 33.3
Predicted (%) Predicted (%)
=2 Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
‘§§ CM 529 0.0 00 0.0 47.1 0.0 CM 588 59 00 59 294 00
g’*% GL 00 571 00 00 429 0.0 GL 00 679 00 3.6 286 00
%ﬁ LP 00 00 750 00 250 0.0 LP 00 00 750 00 250 0.0
§§ LX 0.0 9.1 0.0 545 273 9.1 LX 00 9.1 00 545 273 9.1
& g PT 7.0 85 0.0 00 79.8 47 PT 39 78 00 16 8.9 39
ST 167 0.0 0.0 16.7 33.3 33.3 ST 00 00 00 00 667 333
Predicted (%) Predicted (%)
E’ 2 Observed CM GL LP LX PT ST Observed CM GL LP LX PT ST
gé) CM 529 0.0 00 0.0 47.1 0.0 CM 588 59 00 59 294 00
o GL 00 679 00 00 321 00 GL 00 714 00 3.6 250 00
§§ LP 00 00 750 0.0 250 0.0 LP 250 00 250 250 250 0.0
g § LX 00 9.1 00 545 273 9.1 LX 00 00 00 545 273 182
=&  PT 124 109 00 00 721 47 PT 70 109 00 23 752 47
ST 167 0.0 0.0 16.7 16.7 50.0 ST 00 00 00 00 333 667

CM: Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset
with 5% lower and upper range pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR:
dataset with standard deviation based pruning.
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Fig. X-1: Stone line in a field of the Dano catchment
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Fig. X-2: SOC stock in different RSG and depths. (CM: Cambisols, GL: Gleysols,
LX: Lixisols, PT: Plinthosols, ST: Stagnosols). Lines within the boxes give the
median, red circle within the boxes the mean, boxes the 25th and 75th percentile,
whiskers the lowest and highest values.

Tab. X-1: Random Forest and multiple linear regression model performance and
statistics of toposoil reference soil groups
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Random Forest

Linear Regression

Dataset > 2
R RMSECV RMSEPV R® RMSECV RMSEPV
Entire dataset 13.0 14.0 14.2 11.0 14.2 14.8
Dataset without PT 17.5 13.6 15.8 17.8 14.5 20.8
Dataset without GL&ST 10.2 14.1 13.8 12.6 14.1 28.6
Dataset without CM 13.2 13.9 13.8 9.4 14.4 16.5

PT: Plinthosols, GL: Gleysols, Stagnosols, CM: Cambisols, RMSECV: root mean
square error of cross validation, RMSEPV: root mean square error of prediction based
on validation set, *explained variance in %.

Tab. X-2: General characteristics of some representative soil profiles

pH N C C CEC BD SC Sand Silt Clay
Reference soil group Horizon Depth Color
(H,0) (%) (%) (tha-l) (cmolekg™) (gem™ (%) (%) (%) (%)
Cambisol Ahp 024 72 01 09 285 36.32 1.6 585 148 383 469 10YR3/6
Bwl 2438 70 01 10 18.0 35.6 1.6 580 16.6 335 500 25Y4/6
Bw2 38-100 80 00 05 478 29.6 1.6 207 179 36.0 46.1 25Y4/6
Gleysol Ah 0-31 62 01 20 694 20.8 1.1 00 37 648 316 10YR3/4
Bl1 31-50 6.1 00 08 21.8 10.3 1.5 00 98 660 243 75YR4/4
BI2 50-100 62 00 0.6 464 10.9 1.6 00 99 616 285 75YRS/6
Lixisol Ah 0-17 60 01 09 184 53 1.4 400 32.1 470 182 7.5YRA4/3
Btl 17-37 58 00 05 133 6.5 1.5 320 169 519 279 S5YRS/8
Bt2 37-74 6.0 00 03 18.0 6.1 1.8 68.7 133 50.8 332 S5YRS/
Bt3  74-100 59 0.0 02 6.8 5.6 1.2 106 129 505 334 7.5YRG6/6
Plinthosol Ahv 0-18 66 01 19 412 8.5 1.5 546 392 467 11.6 7.5YR4/6
Btvl 18-56 59 0.1 0.6 260 6.8 1.6 720 295 421 227 25YR4/6
Btv2  56-102 56 00 02 125 6.8 1.5 479 274 360 345 25YRS5/AR
Plinthosol Ahv 0-12 59 01 19 321 9.1 1.7 487 409 438 135 7.5YR4/3
Bv  Dez40 62 0.1 09 349 9.0 1.7 484 298 444 291 75YRS/AK
Plinthosol Ahp 0-21 68 01 12 293 9.7 14 37.8 289 51.6 268 7.5YRS5/3
Bvl 2141 66 0.1 09 176 10.5 14 734 17.6 475 398 7.5YRO6/4
Bv2  41-69 65 0.1 08 254 10.9 1.6 745 179 447 444 10YR6/4
Stagnosol Ah 024 65 01 03 75 18.7 1.5 570 439 362 21.0 7.5YR4/4
Bgl 2470 74 01 12 580 26.3 1.2 16.1 16.7 50.7 332 7.5YRS5/3
Bg2 70-100 73 0.1 1.6 515 28.1 12 302 45 502 405 10YR2/3
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Fig. XI-1: SOC stocks of cropland in relation to SOC stock of savannah soils (in %)
for different years of cultivation in the subsoil (30 — 100 cm)
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Fig. XI-2: Percentage of residual SOC stock of cropland (in relation to SOC stock of
savannah soils) in soil fractions relative to the residual SOC stock in bulk soil (in
relation to SOC stock of savannah soils) of the cropland for different years of
cultivation in the topsoil (0 — 10 cm)
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Fig. XI-3: Stone content at different depths in relation to the duration of cultivation
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Fig. XI-4: Bulk density at different depths in relation to the duration of cultivation
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XII.

Appendix D

The data that form the basis of this dissertation thesis are available in electronic format

from the office of INRES-soil science or from myself.

Contact details :

INRES-Bodenwissenschaften
NuBallee 13

D-53115 Bonn
bobo@uni-bonn.de

Kpadé Ozias Laurentin Hounkpatin
INRES-Bodenkunde
NuBallee 13 D-53115 Bonn

hozias @uni.bonn.de

168





