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Abstract 

 

With computer-assisted geostatistics and data mining methods, digital soil mapping 
(DSM) offers new possibilities for providing soil spatial information for data scarce 
areas such as West Africa. Such information could also be essential for understanding 
tropical soil organic carbon (SOC) sequestration potentials and dynamics. However, 
the level of accuracy depends on the statistical model selected, the choice of which is 
not clear from the first for such environments. Moreover, for datasets with imbalanced 
soil orders, prediction of reference soil groups (RSG) using a DSM approach often 
biased towards the majority soil order class. I hypothesized that (i) statistical models, 
which are able to handle both linear and unlinear patterns in data, will provide higher 
prediction accuracy than those geared towards linear patterns, (ii) pruning the major 
soil group - the Plinthosols - will result in increased prediction accuracy of the minor 
RSG, (iii) sites with savannah (SA) and related RSG will present larger SOC stocks 
than cropland (CR), however, (iv), with land use change (LUC) also the Plinthosols 
are prone to rapid SOC losses from bulk soil and primarily from coarse particle-size 
fractions. 
 
To test these hypotheses, I sampled sites within both CR and SA across different RSG 
in the Dano catchment. For the DSM of soil properties (sand, silt, clay, CEC, SOC, N) 
in the topsoil (0 - 30 cm), four statistical prediction models – multiple linear regression 
(MLR), random forest regression (RF), support vector machine (SVM), stochastic 
gradient boosting (SGB) – were used and compared. To reduce the risk that the spatial 
prediction of the RSG was biased by the majority class – the Plinthosols – I used a 
data pruning approach, accounting for 80 %, 90 % and standard deviation core range 
of the Plinthosols data, respectively, while cutting off all data points belonging to the 
outer range. Random Forest was used as a robust data mining method along with its 
recursive feature elimination option to evaluate the performance of these different data 
subsets. The final assessment of SOC stocks was conducted by considering its 
variation in CR and SA and in various RSG at different depths. The spatial distribution 
of SOC stocks as well as the main related factors were then again elucidated using 
Random Forest. For understanding the temporal dynamics of SOC storage, I 
investigated a false chronosequence of Plinthosols that had been converted from SA to 
CR at a duration between 0 and 29 years.  
 
For the DSM of soil properties, results showed from the performance statistics that the 
machine learning techniques (RF, SVM, SGB) performed marginally better than the 
MLR, with the RF providing in most cases the highest accuracy. The lower 
performance of the MLR is attributed to its failure in accounting for non-linear 
relationships between response and predictor variables. The satellite data acquired 
during ploughing or early crop development stages (e.g. May, June) were found to be 
the most important spectral predictors, while elevation, temperature and precipitation 
came up as prominent terrain/climatic variables. 
 
Upon the data pruning, the best predictions were observed when removing all PT 
points lower than 5 % and higher than 95  % of the cumulative percentage of the most 
important variable (wetness index). Modelling was then conducted solely with terrain 
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and spectral parameters (TSP) with optimal predictors resulting from RF recursive 
feature elimination. The resulting prediction model provided a substantial agreement 
to observation, with a kappa value of 0.57 along with a 35  % increase in prediction 
accuracy for Cambisols, 16 % for Stagnosols and 7  % for Gleysols. The SAGA 
wetness index (S.Wet.Ind) was the most important variable driving the RSG 
suggesting that the humidity regime is a key discriminatory element among the RSG.   
 
The SOC stock distribution in the topsoil revealed a slightly larger SOC stock in the 
savannah sites (41.4 t C ha-1) than in the cropland (39.1 t C ha-1). Contrastingly, in the 
subsoil, a significant difference (p < 0.05) was observed between the CR recording a 
larger SOC stock of 40.2 t C ha-1, while the subsoil of the SA sites contained only 26.3 
t C ha-1, on the average. Among the RSG, the Gleysols located at lower elevation 
positions revealed the largest SOC stocks over 0 - 30 cm (44 t C ha-1) and 100 cm 
depth (86.6 t C ha-1). Silt was the most abundant soil particle in the topsoil and was 
identified by the RF model as the most important factor related to the spatial 
distribution of the SOC stock, probably via its influence on soil moisture preservation 
and SOC storage via aggregation. Precipitation was found as the major factor related 
to subsoil SOC stock distribution. As the subsoils were also enriched in clay, the 
vertical transport of SOC rich sediments under tropical heavy rains likely accompanied 
major soil forming process in the landscape.  
 
The LUC in the chronosequence Plinthosols triggered losses in SOC stock of 24 t C 
ha-1 from the upper 10 cm and 49 t C ha-1 from the upper 30 cm. Thus, about 66 % (0 - 
10 cm; p < 0.01) and 55 % (0 - 30 cm; p < 0.01) of the initial stock in the native 
vegetation had been released after 29 years of cultivation. Also, subsoil was found to 
be vulnerable to LUC, with SOC losses amounting on average to 0.7 to 19.5 t C ha-1 

from the 30 - 100 cm depth interval. Losses of SOC occurred from all particle-size 
fractions with a mean residence time of SOC generally decreasing with increasing 
equivalent diameter of the particle-size fraction. In this study, I could not confirm Fe 
oxides as key factor influencing SOC stock stabilization, because only an average of 
16 % of the total SOC stock were apparently bound to Fe. 
 
In summary, DSM at local scale using RF with remote sensing data resulted in 
reasonable prediction accuracy for a large array of soil properties and RSG within a 
highly heterogeneous landscape. Data pruning proved to be efficient in a context 
where a RSG belonging to a wide range of terrain parameters overlapped with those 
related to only few RSG units. The SOC stocks as quantified in the present study 
reinforce the view that the semi-arid ecosystems of West Africa still offer an 
opportunity for carbon sequestration and these results represent a baseline for future 
modelling of SOC dynamics in the region. LUC from natural savannah to permanent 
cropland, however, affects both topsoil and subsoil SOC though the latter is scarcely 
considered in the impact analysis of LUC in Africa. 
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Kurzfassung 

 

Mit Hilfe Computer-basierter Methoden der Geostatistik und Datenbankauswertung 
bietet die digitale Bodenkartierung (digital soil mapping, DSM) neue Möglichkeiten 
zur Bereitstellung räumlicher Bodeninformationen für Regionen wie West Afrika, in 
denen solche Informationen nicht oder nur teilweise vorhanden sind. Diese 
Informationen können auch wichtig sein für die Abschätzung der Speicherkapazität 
und -dynamik von organischem Kohlenstoff (soil organic carbon, SOC) in tropischen 
Böden. Allerdings hängt die Genauigkeit vom gewählten statistischen Modell ab, 
dessen richtige Wahl für solche Umweltbedingungen anfangs nicht klar ist. Darüber 
hinaus ist die Vorhersage von Bodentypen (reference soil groups, RSG) durch digitale 
Bodenkartierung auf Grundlage von Datensätzen mit ungleich verteilten Bodentypen 
oft beeinflusst durch einen einzelnen dominanten Bodentyp. Meine Hypothesen sind, 
dass (i) statistische Modelle, die mit linearen und nicht-linearen Mustern in 
Datensätzen umgehen können, bessere Genauigkeiten bei der Vorhersage erreichen als 
die Modelle, die auf lineare Muster ausgerichtet sind, (ii) das statistische Beschneiden 
der Daten des dominanten Bodentyps (Plinthosol, PT) zu einer erhöhten 
Vorhersagegenauigkeit der anderen Bodentypen führt, (iii) Böden an Savanne-
Standorten (SA) durch größere Bodenkohlenstoffvorräte charakterisiert sind als Böden 
unter Ackerland (cropland, CR), und (iv) mit einer Landnutzungsänderung (land use 
change, LUC) von Savanne zu Ackerland auch Plinthosole zu einem schnellen Verlust 
an organischem Bodenkohlenstoff neigen, und zwar insbesondere in den gröberen 
Fraktionen der partikulären organischen Substanz. 
 
Um diese Hypothesen zu testen, habe ich im Dano-Einzugsgebiet Standorte mit den 
Landnutzungen CR und SA und verschiedenen RSGs beprobt. Für die digitale 
Bodenkartierung der Bodeneigenschaften (Sand, Schluff, Ton, CEC, SOC, N-gesamt) 
im Oberboden (0 - 30 cm) wurden vier statistische Vorhersagemodelle genutzt und 
verglichen: multiple linear regression (MLR), random forest regression (RF), support 
vector machine (SVM), stochastic gradient boosting (SGB). Um das Risiko zu 
reduzieren, dass die Vorhersage der RSGs von der dominanten Klasse (Plinthosols) 
beeinflusst wird, wurde ein statistischer Ansatz zum Beschneiden der Daten genutzt. 
Dabei wurden die unteren und oberen 5 % und 10 % sowie die Bereiche außerhalb der 
Standardabweichung der Plinthosol-Daten beschnitten, so dass nur die Daten innerhalb 
der genannten Grenzen genutzt wurden. Random Forest wurde als robuste Methode 
zur Datenauswertung genutzt. Die letztendliche Einschätzung der Kohlenstoffvorräte 
wurde unter Berücksichtigung ihrer Variation in CR- und SA-Flächen und in 
verschieden RSGs in unterschiedlicher Tiefe vorgenommen. Die räumliche Verteilung 
der Kohlenstoffvorräte und der damit zusammenhängenden Faktoren wurde dann 
erneut durch Random Forest und MLR erklärt. Um die zeitliche Dynamik von SOC-
Vorräten zu verstehen, wurde eine falsche Chronosequenz von Plinthosolen 
untersucht, deren Nutzung sich von SA zu CR über unterschiedliche Zeiträume (0 – 29 
Jahre) geändert hat. 
 
In Bezug auf die digitale Bodenkartierung der Bodeneigenschaften zeigte sich, dass 
die machine learning techniques (RF, SVM, SGB) geringfügig besser abschneiden als 
MLR, wobei RF in den meisten Fällen die höchste Genauigkeit erreichte. Das 
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schlechtere Abschneiden von MLR liegt wahrscheinlich daran, dass es nicht-lineare 
Beziehungen zwischen Ergebnisvariablen und Einflussvariablen nicht wiedergeben 
kann. Die Satellitendaten, die während der Phase des Pflügens oder der frühen 
Pflanzentwicklung (z.B. Mai, Juni) aufgenommen wurden, stellten sich als wichtigste 
spektrale Prädikatoren heraus, während Geländehöhe, Temperatur und Niederschlag 
wichtige Gelände-/Klimavariablen bildeten. 
 
Im Hinblick auf das Beschneiden der Daten wurden die besten Vorhersagen erreicht, 
wenn alle PT-Punkte kleiner als 5 % und größer als 95 % des kumulativen Anteils der 
wichtigsten Variable (wetness index) entfernt wurden. Die Modellierung wurde dann 
nur mit Geländeparametern und spektralen Parametern (terrain and spectral parameter, 
TSP) durchgeführt und zwar mit optimalen Prädiktoren aus der RF-Regression. Das 
daraus resultierende Modell zeigte eine gute Übereinstimmung von Vorhersage und 
tatsächlicher Beobachtung; der Kappa-Wert erreichte dabei 0.57 und die 
Vorhersagegenauigkeit stieg an um 35 % für Cambisols, 16 % für Stagnosols und 7 % 
für Gleysols. Der SAGA wetness indes (S.Wet.Ind) war für die Vorhersage der RSGs 
die wichtigste erklärende Variable. Das Feuchteregime kann also als diskriminierendes 
Schlüsselelement zwischen den RSGs angesehen werden.  
 
Die SOC-Vorräte im Oberboden waren an Savanne-Standorten (41.4 t C ha-1) leicht 
höher als an Ackerstandorten (39.1 t C ha-1). Im Gegensatz dazu waren im Unterboden 
die SOC-Vorräte bei CR signifikant höher (40.2 t C ha-1) als bei SA (26.3 t C ha-1). 
Unter den RSGs zeigen Gleye, die in niedrigeren Geländelagen zu finden sind, die 
größten SOC-Vorräte in 0 - 30 cm (44 t C ha-1) und 0  - 100 cm Tiefe (86.6 t C ha-1). 
Schluff war die am meisten verbreitete Korngröße im Oberboden und wurde vom RF-
Modell als wichtigster Faktor für die räumliche Verbreitung der SOC-Vorräte 
identifiziert; dieses ist wahrscheinlich zurückzuführen auf den positiven Einfluß dieser 
Korngröße auf die Wasserhaltefähigkeit und auf die Aggregierung organo-
mineralischer Partikel. Der Niederschlag bildete den wichtigsten Faktor für die 
Verteilung der SOC-Vorräte im Unterboden. Da der Unterboden oft durch eine 
Tonanreicherung geprägt war, kann der vertikale Transport von kohlenstoffreichen 
Sedimenten bei tropischem Starkregen hier als ebenfalls wichtiger bodenbildender 
Prozess angesehen werden. 
 
Der Landnutzungswandel hin zu Ackerland führte bei den untersuchten Plinthosolen 
zu SOC-Verlusten von 24 t C ha-1 in den oberen 10 cm und 49 t C ha-1 in den oberen 
30 cm. So wurden ca. 66 % (0 - 10 cm; p < 0.01) und 55 % (0 - 30 cm; p < 0.01) des 
anfänglichen Kohlenstoffs unter natürlicher Vegetation durch 29 Jahre 
landwirtschaftlicher Nutzung freigesetzt. Auch der Unterboden war anfällig für 
Landnutzungsänderungen mit SOC-Verlusten von 0.7 bis 19.5 t C ha-1 in 30 - 100 cm 
Tiefe. Verluste an SOC wurden in allen Korngrößenfraktionen des partikulären Humus 
beobachtet, wobei die mittlere Verweildauer bei den gröberen Fraktionen abnahm. In 
dieser Studie konnten die Fe-Oxide nicht als Schlüssel zur Stabilisierung von 
Kohlenstoffvorräten bestätigt werden, da nur 16 % der Vorräte an Fe-Oxide gebunden 
waren. 
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Zusammenfassend kann gesagt werden, dass die digitale Bodenkartierung mit Hilfe 
von RF und Fernerkundungsdaten akzeptable Vorhersagegenauigkeiten für eine große 
Bandbreite an Bodeneigenschaften und RSGs innerhalb einer sehr heterogenen 
Landschaft ermöglicht. Es stellte sich heraus, dass das Beschneiden der Daten dann 
effizient ist, wenn eine RSG, die zu einer weiten Spannweite von Geländeparametern 
Beziehungen aufweist, sich mit solchen Parametern überschneidet, die nur mit 
wenigen RSG-Einheiten zusammenhängen. Die hier quantifizierten SOC-Vorräte 
unterstreichen, dass die semi-ariden Ökosysteme West-Afrikas immer noch eine 
Möglichkeit zur Speicherung von Kohlenstoff bieten und dass die Ergebnisse eine 
Grundlage für die weitere Modellierung der SOC-Dynamik in der Region darstellen. 
Der Landnutzungswandel von Savanne zu permanenter Ackernutzung beeinflusst 
Kohlenstoff im Ober- und Unterboden, obwohl letzterer selten bei der Analyse von 
Auswirkungen des Landnutzungswandels in Afrika berücksichtigt wird. 
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1. Rationale 

Soils are vital resources for food production, water control and chemical recycling, 

biodiversity and habitat, providing platform for human activities, supplying raw 

materials as well as preserving cultural heritage (Blum, 2005). However, human 

activities via agriculture, grazing, deforestation and other land use such as building of 

roads or new facilities have affected soil ability to provide its ecosystem services. 

About 83 % of the land surface is reported by Sanderson et al. (2002) to be affected by 

human beings with 40 % transformed into agricultural land (Foley et al., 2005) and the 

remainder used for settlements and other non-farming purpose (Ellis et al., 2010). 

Estimation indicates that since 1850, about 6 million km2 of tropical forest/woodland 

and 4.7 million km2 of savannas/grasses/steppes have been transformed into farming 

land (Ramankutty and Foley, 1999). For example, FAO (2004) indicated that the 

cropland area increased over a period of 40 years (1961 – 2000) in Africa in response 

to population growth. As Africa population is expected to rise up to 4 billion by the 

end of the century (UN, 2015), the pressure on soil resources will be rising. 

In sub Saharan Africa the increasing human pressure on soil resources has resulted in 

severe land degradation with issues related to soil erosion, salinity, reduction of 

organic matter, increase in CO2 and its feedback on climate change (Tully et al., 2015). 

Recent evidences showed that the decline in soil fertility is prevalent in West African 

croplands as a result of population pressure (Grinblat et al., 2015). Nevertheless, for 

accurately addressing the degree of land degradation, spatial information on soils and 

soil properties are required for land evaluation. Spatial soil information as represented 

in soil maps is beneficial for farmers, scientists and policy maker in identifying 

priority areas and for sound and objective decision making. However, for management 

decisions at plot or small catchment level the available maps are too coarse and finer 

resolution is required. Moreover, maps from traditional surveys are mostly qualitative, 

labor intensive, time consuming and costly (Taghizadeh-Mehrjardi et al., 2015), and 

thus in most cases also obsolete (Kilasara, 2010).  

 

Recent advances in remote sensing and information systems have paved the way for 

digital soil mapping (DSM), which couples soil point data with statistically correlated 
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auxiliary data (McBratney et al., 2003). This approach overcomes the limitation of the 

traditional mapping method by reducing tremendously both the workload involved as 

well as the related costs (Giasson et al., 2015).The coupling of point and auxiliary data 

is carried out by using (geo-) statistical classification or regression models. The 

auxiliary data include the soil forming factors as described by Jenny (1941). In DSM, 

these factors are mostly derived from digital elevation models (DEM) and existing 

parent material, climate, land use or vegetation maps. Further advances are foreseen 

with the availability of satellite data with high spatial resolution such as RapidEye to 

improve mapping accuracy (Forkuor, 2014) at a given location in the landscape. 

Particularly, the combination of the covariates derived from the DEM with optical and 

radar imagery data has great potential for improving prediction accuracy for a targeted 

soil property or soil class. This may be of special relevance for West Africa, where 

there is only scarce soil information at a finer scale.  

 

Soil organic carbon (SOC) is a key indicator for assessing land degradation or soil 

improvement processes. The COP21 convention in Paris pointed out the relevancy of 

the sequestration of SOC as an important strategy to mitigate climate change (Rhodes, 

2016). SOC is essential for soil fertility and productivity, being involved in most soil 

functions such as storage of nutrients and water, soil biological activity and structural 

stability (Holmes et al., 2015). Maintaining SOC is thus necessary for a soil to fulfill 

primary ecosystem services, especially in West Africa, where natural soil fertility and 

fertilizer input are low (Doraiswamy et al., 2007). To assess SOC sequestration 

potentials, however, we again need quantitative data on spatial and temporal carbon 

stocks, both locally and at national scale. Usually, the SOC stocks vary across the 

landscape and with related variations in climate (Albaladejo et al., 2013; Stergiadi et 

al., 2016), land use and land cover change (Muñoz‐Rojas et al., 2015; Xiong et al., 

2014), topography (Nadeu et al., 2015), texture (Burke et al., 1989), clay mineralogy 

(Saidy et al., 2012), sesquioxides (Peng et al., 2015) and soil order (Bruun et al., 2013; 

Wiesmeier et al., 2012). The influence of these factors on SOC dynamics has been 

frequently investigated in temperate climates; however, the understanding of these 

interactions for tropical low input agricultural systems is still limited.  



I. General introduction 
 

4 

 

Though interest for SOC and controlling factors rose in the last decades, most of the 

studies focused on the topsoil (30 cm). Subsoil carbon, although equaling atmospheric 

carbon in amount, is typically neglected in models of soil fertility and carbon balances. 

Batjes (1996) indicated that about 50 % of the SOC is located below 20 cm depth. 

Fontaine et al. (2007) showed that subsoil carbon is readily decomposable upon 

addition of a fresh C-source, suggesting that excluding subsoil carbon from our regard 

might have been overhasty. Therefore, any small change in the subsoil carbon stock 

will have a significant impact on the global C budget (Don et al., 2007). Since the 

tropical subsoil carbon consists mainly of intermediate and passive soil organic matter 

pools (Lützow et al., 2008), it offers great potential as carbon sink. Consequently, 

quantification of the SOC stock in the subsoil is vitally important for an accurate 

evaluation of the sequestration ability of the highly weathered and deep tropical soils.  

Monitoring changes in SOC stocks with time should likely include pools of different 

SOC stability, since overall response rates may be too slow and thus ignored when this 

monitoring is based on bulk SOC analyses only (e.g., Powlson et al., 1987; Skjemstad 

et al., 2004). Classically, the identification of such pools involved the fractionation of 

SOC according to particle size, density or a combination thereof. Particulate organic 

matter (POM) has been considered as fairly labile pool of soil organic matter (SOM) in 

many studies as it is more sensitive to land use change (LUC) than bulk SOC, due to 

its rapid depletion after conversion of soils under natural vegetation to arable cropland 

(Besnard et al., 1996; Chan, 2001). Monitoring POM should thus also help for scaling 

changes in land degradation in the context of conversion from natural vegetation to 

cropland.  

2. State of the art  

2.1. From digitized soil map to digital soil mapping 

Soil mapping played major role in human history as already in 4000 years BP the book 

Yugong reported on a different distribution of soils in nine provinces of China (Gong 

et al., 2003). In that period, soils were mapped based on soil properties such as soil 

fertility, soil color, soil texture, soil moisture and vegetation. The early scientific soil 

maps in Germany, France, Austria, the Netherlands, and Belgium from the 1850s and 
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1860s were constructed from concepts grounded in agrogeology (Hartemink et al., 

2013). The early soil information was used mostly for military ends or taxation and 

land assessment purposes  (Krupenikov and Tedrow, 1994). 

 

Until the 19th century, only geologic and physiographic factors were considered for 

soil map delineations. As V.V. Dokuchaev supplemented climate and vegetation to the 

geologic and physiographic factors in the late 19th century, a full soil-landscape 

paradigm was introduced (Brown, 2005). From then, soils were considered as a 

function of parent material, climate, organisms, relief and time. This concept is 

captured by the fundamental soil state-factor equation developed by Jenny (1941):  

 

� = �(��, 	, 
, �, �)                                      (I-1) 

 

where S stands for soil, cl for climate (cl), o for organisms, r for relief, p for parent 

material and t for time. This equation offered the conceptual framework for 

understanding the important parameters affecting soil variability at global and local 

scale all over the world. 

2.1.1. Conventional soil mapping and drawbacks 

Most of the national soil maps in West Africa and in the world were established using 

the traditional mapping approach. The traditional method for soil mapping mainly 

involved the use of aerial photography, geology, topographic maps and field 

observations (profile) for the prediction of areas having the same soil class (Malone, 

2012). It has been reported that less than 0.001 % of the mapped area is actually 

subject to direct observation (Burrough et al., 1971). The map establishment is based 

on a conceptual understanding of the soil forming processing in a particular area by 

one or many surveyors. Most of the existing conventional maps are class type and are 

made up of polygons standing for the soil map units (Scull et al., 2003). Within each 

unit, the distribution of the soils in the landscape is represented with its internal 

variation but often lacking is the explicit description of its spatial pattern (Omuto et al., 

2013). The traditional approach has been criticized both in its method as well as in its 

output represented by the resulting map.  
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In conventional soil mapping, rules and models for the prediction of soil class or soil 

properties are tacit knowledge of the soil surveyor mainly and are in most cases only 

expressed in mapping legend. This results in the impossibility to produce map 

uncertainties, which is critical for map users. Moreover, map polygons are assumed to 

contain homogeneous soil properties or soil class and each polygon boundary suggest 

a sharp transition in the distribution of these properties or soil class (Heuvelink, Gerard 

B. M. and Huisman, 2000). However, this conventional approach labelled as the 

double-crisp model by Burrough et al. (1997) failed to incorporate the continuous 

spatial variability of both soil properties and soil-forming processes. Thus, soil maps 

resulting from traditional approach are mostly produced at coarse scale (Towett, 2013) 

and cannot be used for decision making at a finer scale. Additionally, traditional soil 

mapping is often too costly and time demanding, especially in developing countries, 

and it hardly works for remote places. Furthermore, the representation of map units in 

polygons makes its integration in existing earth resources difficult, because these are 

in a grid based format (DEM, satellite imagery) (Malone, 2012). To address all these 

issues, a new paradigm in soil mapping emerged, which is called digital soil mapping 

(DSM).   

2.1.2. Digital soil mapping 

The advancement in computer science and statistical methods led to the use of geo-

information technology such as remote sensing data and digital elevation model 

(DEM) for the description of soil variability in a more continuous and quantitative 

approach (Heuvelink and Webster, 2001). This new paradigm correlates soil class/soil 

properties with selected environment covariates data; it is based on statistical models 

in order to predict these soil class or soil properties at unknown locations. Building on 

the soil state-factor equation developed by Jenny (1941), McBratney et al. (2003) 

introduced the conceptual framework for DSM referred to as "scorpan." 

 

�� = �(�, �, 	, 
, �, �, �)    or     �� = �(�, �, 	, 
, �, �, �)                          (I-2)                                                   

 
where Sc is soil class and Sp is a soil attribute or property, s: soils, other attributes of 

the soil at a point, c : climate, o  = organisms (vegetation, fauna, or human activity), r : 



I. General introduction 
 

7 

 

relief (topography), p :  parent material (lithology), a : age,  n  = spatial location, f : 

function or soil spatial prediction function (SSPF) model. 

The DSM implementation basically involves three steps (Omuto et al., 2013): (1) input 

data provision, (2) classification and regression methods, (3) map production and its 

validation. 

 

2.1.2.1 Data input for digital soil mapping 

The input for digital soil mapping represents the soil forming factors in the scorpan 

equation. These data consist in soil sampling, soil legacy data and ancillary data 

(McBratney et al., 2003). Soil surveys are generally carried out either in the traditional 

way or based on statistical sampling and soil samples are collected and subsequently 

laboratory analysis are made to assess target soil properties. This information is then 

used as attribute in the scorpan equation to predict soil class or other soil properties. 

When soil attributes cannot be accessed from direct soil survey, the required 

information is to be derived from existing data bases such as soil legacy data, local soil 

surveys, profile and auger description, or laboratory analysis carried out on samples 

collected from the field. Particularly soil legacy data have been discussed extensively 

in many studies, and remain the most important input for DSM especially in many 

developing countries (Minasny et al., 2012; Sulaeman et al., 2013). 

 

The ancillary data used as input for DSM models represent various soil forming 

factors. They are environmental covariates data, which are mostly derived from DEM 

(e.g. altitude, slope, curvature), remote sensing data (e.g. Landsat ETM surface 

reflectance and imagery) as well as from geological maps standing for parent material 

and climate (temperature, precipitation) (Malone et al., 2016; Stoorvogel et al., 2009). 

Typically, the soil point data are overlaid over these environmental georeferenced data 

layers to extract the values at each point of the landscape.   

 

2.1.2.2 Classification and regression methods 

Many function or soil spatial prediction function (SSPF) have been developed and 

used for digital soil mapping with the advance in computer science and statistics. 
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These functions enable the estimation of the unknown value of the targeted variable at 

a certain location. Originally, before soil factors could become quantitatively 

available, only geospatial models were used for mapping (McBratney et al., 2011). 

These include trend surface (Grunwald, 2006), nearest neighbours (Mansuy et al., 

2014), inverse distance weighting (Robinson and Metternicht, 2006), and splines 

(Burrough and McDonnell, 1998; Laslett et al., 1987). 

Geostatistics with at its core the kriging method have been used for soil mapping for 

decades with early application by Burgess and Webster (1980). Later on, many other 

works focused on discussing theoretical and practical application of geostatistics for 

soil science such as Oliver (1987), Goovaerts (1999) and Webster and Oliver (2007). 

One of the most fundamental laws in geostatistics is the first law of geography stating 

that objects that are closer are more similar than objects that are far apart. The spatial 

variation is described using a semivariogramm, which is half the expected squared 

difference between values of the targeted variable at two locations. The variogram, 

which is the representation of the semivariogramm as a function of distance, measures 

the spatial auto-correlation of soil properties in a certain landscape by the formula 

(Webster and Oliver, 2007) : 

 

�(ℎ) =  �
��(�)  ∑ {�(��) − �(�� + ℎ)}��(�)

�!�  (I-3)                                                (I-3)                                                   

 
with �(ℎ)  is  the  average  semi-variance  of  the  soil  property,  m(h)  is  the  number  

of pairs of observation separated by the lag h, s is the value of the property S, x is the 

coordinate of the point.  

Based on that principle, many kriging methods have developed with mainly two 

approaches: univariate kriging and mutltivariate kriging. The univariate (only one 

variable used) interpolation embraces techniques such as simple kriging, ordinary 

kriging, block kriging, factorial kriging, indicator kriging, disjunctive kriging (Li and 

Heap, 2008). These techniques evolve to more complex ones where other variables co-

related to the one being predicted are also considered in the perspective of getting 
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higher prediction accuracy. Among the multivariate interpolation techniques fall the 

following: co-kriging, universal kriging, kriging with an external drift, principal 

component kriging, multivariate factorial kriging, indicator kriging. These techniques 

are well documented by Li and Heap (2008) and Li and Heap (2014). A major 

advantage of these geostatistical models is the possibility to provide a quantitative 

measure of uncertainty (Goovaerts, 1999), while the requirement for larger size dataset 

for setting a reliable model is a constraint for area with low availability data (Burrough 

et al., 1971).   

Combinations of non-geostatistical and geostatistical methods are also used either for 

classification or for regression purposes. Such combined methods as referred to by Li 

and Heap (2014) in general build a primary model between the target variable and 

selected Jenny´s soil forming factors as explanatory variable. Some kriging techniques 

are then applied on the residuals to produce an uncertainty map, which is ultimately 

added to the initial model fit map to generate the final output. Among these mixed 

methods, the categories are regression kriging, linear mixed model, and trend surface 

analysis combined with kriging, as well as soil classification combined with other 

interpolation methods, just to name a few.   

In DSM, many SSPFs following the scorpan models are used. These are prediction 

functions which have been generally presented by McBratney et al. (2000) and 

McBratney et al. (2003) and more extensively discussed by Hastie et al. (2011). They 

broadly include either linear methods or machine learning algorithms. Mostly linear 

models used for DSM are multiple linear regression (Meersmans et al., 2008; Selige et 

al., 2006), partial least square regression (Amare et al., 2013), principal component 

regression and partial least square (McBratney et al., 2003), linear discriminant 

analysis (McBratney et al., 2003), as well as generalized linear models (McKenzie and 

Ryan, 1999). The term machine learning refers to a broad variety of models meant for 

pattern analysis in data, also known as data mining, and making data-driven 

predictions (Witten and Frank, 2005). They became extremely popular as relationship 

between soil attributes and the scorpan factors are complex, poorly understood and 

most likely not linear (Povak et al., 2014). Examples of machine learning algorithms in 
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soil science include support vector machines (Were et al., 2015), neural networks 

(Behrens et al., 2005; Malone et al., 2009), generalized additive models (Poggio et al., 

2013) and decision trees (DT) (Quinlan, J. Ross, 1986). 

DT use a hierarchical top-down approach by dividing the data recursively into branch-

like divisions, which individually captures a variability in the target variable 

(McBratney et al., 2003).  These divisions are structured as an inverted tree having a 

root node, as well as a set of internal and terminal nodes (leaf node). The split at each 

inner node is based on decision rules that affect instances uniquely to child node, with 

each of the leaf node having a target (regression tree) or a class value (classification 

tree). Advantages for using DT include their capacity to handle numerical and 

categorical data without any assumption to probability distribution, computational 

efficiency, as well as their robustness against nonlinearity and overfitting (Heung et 

al., 2014).  

Most popular DT algorithms include C4.5/SEE5 (Adhikari et al., 2014), as well as 

Classification and Regression Trees (CART), which build single trees (Breiman et al., 

1984). However, the latter are reported to build unstable decision trees, which could 

bias prediction (Timofeev, 2004). To enhance the prediction accuracy in DSM using 

DT, methods have been introduced that generate multiple models through iteration, 

and which ultimately cumulate them to provide the final estimate. McBratney et al. 

(2003) classified the DTs into two groups: bootstrap aggregating (or bagging) and 

boosting. Bootstrap aggregating is an iterative process sampling into the training set 

with replacement, which is the basis for the widely used Random Forest algorithm 

(Grimm et al., 2008; Hengl et al., 2015; Reza Pahlavan Rad, Mohammad et al., 2014; 

Wiesmeier et al., 2011). 

Boosting functions make predictions by growing new trees based on the information of 

previously grown trees in an attempt to reduce prediction errors (Yang et al., 2016). 

Recently, a number of novel hybrid methods have been introduced for DSM consisting 

in the combination of some machine learning with either Inverse Distance Weighting 

(IDW) or ordinary kriging (OK). Key examples include the combination of (Li and 

Heap, 2014): (i) support vector machine with  OK or IDW, (ii) RF with IDW or OK 
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(RFIDW, RFOK) (iii) general regression neural network with IDW or OK , (iv) 

boosted decision tree (BDT) (Li et al., 2012) with Inverse Distance Weighing or 

Ordinary Kriging. These methods function in a similar pattern to regression kriging 

with the application of Inverse Distance Weighing or Ordinary Kriking on the 

residuals of the model fit. The purpose is to capture any spatial autocorrelation of the 

residuals for high prediction accuracy of the targeted variable.  

2.1.2.3 Validation for map quality assessment 

The output map generated by the SSPFs is not free of errors, and the quantification of 

these errors is relevant for both soil properties and soil class predictions. For the 

former, the Root Mean Square Error of prediction (RMSE) is mostly reported in 

literature (Were et al., 2015). For soil class maps, the accuracy assessment is carried 

out by determining user´s and producer´s accuracy but most importantly the Kappa 

statistics (Lark, 1995). Malone (2012) reported three main approaches for validation in 

DSM. These approaches consist in: (1) holding back a proportion of the dataset as an 

independent set for testing the map accuracy; (2) cross validation with leave-one-out 

procedures for eliminating one value for parameter estimation, or for multiple values 

as n-fold-cross validation. With the leave-one-out scheme, one observation is left out 

while the remaining are used to fit the model. The left out observation is later used to 

evaluate the accuracy of the model. The same process is carried out again until all the 

observations are taken into account. The n-fold-cross validation rather divides the 

whole dataset in a n subset (fold), and the cross validation procedure is carried out on 

these n subset. The last approach resort to additional sampling using either randomized 

or probability sampling design. However, when dataset is large enough, validation 

based on independent set is carried out especially for legacy soil data.  

2.2. Instances and feature selection 

The handling of large datasets for digital soil mapping can become complex when 

there are many relevant predictors (features) and soil samples (instances). This issue is 

commonly designated as high dimensional data evaluation with large amounts of 

features and instances (Sutha and Tamilselvi, 2015).  In such data, not all the features 

and instances are relevant for the classification or regression operation, because they 
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partly also contain redundant and noisy information. The latter reduce the learning 

performance and prediction accuracy (Lagacherie and Holmes, 1997; Schmidt et al., 

2008). Avoiding this problem requires a pre-processing step; and two main branches in 

statistical learning research then address this issue: instance selection (Liu and 

Motoda, 2001) and feature selection (John et al., 1994). Feature selection consists in 

singling out a feature subset as small as possible and in reducing multi-collinearity. 

Instance selection deals with the reduction of the dataset by filtering out irrelevant 

cases without losing useful information.  

 

There are three main feature selection algorithms available for consideration: the 

Filter, Wrapper and Hybrid Method (Sutha and Tamilselvi, 2015). The Filter method 

selects a feature subset only by focusing on the characteristics of the predictors, which 

is done independently of any mining algorithm. In contrast, the Wrapper method 

requires the latter for the selection. The Hybrid method uses both inherent 

characteristics and mining algorithm for determining the best feature or instance 

subset. When working with large datasets, the Filter method is mostly preferred due to 

high computation efficiency. The algorithms, which are used for feature selection, are 

classified into Supervised  Learning  Algorithms (Le Song et al., 2012; Weston et al., 

2003),  Unsupervised  Learning  Algorithms (Handl and Knowles, 2006) and Semi-

supervised Learning Algorithms (Doquire and Verleysen, 2011), which combined the 

former two. 

 

In supervised learning, features are selected based on their ability in separating data 

into different classes, called class-based separation. Unsupervised feature selection 

removes irrelevant features by identifying similarity or correlation measures between 

the features. The latter approach was considered in the present study for removing 

redundant features as affected by multicollinearity. Though decision trees are reported 

to be robust to correlated features, the interpretation of the most important feature can 

be biased when the variables involved are subject to multicollinearity (Kuhn, 2008).  

Genuer et al. (2010) also reported that variable importance may be overestimated 

when highly correlated variables are used.  
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There are many instance selection methods available from other research fields 

(reviewed by Olvera-López et al., 2010). Their application in DSM is not all that 

extensive. The first scientists that investigated instance selection in a DSM for soil 

classification were Moran and Bui (2002). These authors compared two random 

sampling methods over all soil classes for their training dataset. Schmidt et al. (2008) 

instead carried out instance selection on single soil classes in order to evaluate the 

output of the different sample distribution using proportional stratified random 

sampling and disproportional stratified random sampling schemes. Proportional 

stratified random sampling takes into account the frequency distribution of each soil 

class in the entire dataset, while the disproportional approach used the same number of 

instances for all classes.  
 

Challenges may arise in the application of the disproportional approach when the size 

of the smallest class is too low for decision trees to accurately learn from the inherent 

pattern. Also, the number of instances of the smaller class in the available dataset, such 

as soil legacy data, may affect the distribution of the remaining soil classes when 

proportional stratified random sampling is performed. Qi (2004) introduced a different 

approach for instance selection, which was based on fitted histograms of the features. 

However, this approach is difficult to implement when dealing with many features, 

which have to be distinctly considered (Schmidt et al., 2008) unless the feature space 

is reduced (feature selection) and unless the most important feature is chosen for 

instance selection. The latter scheme has been investigated for noise reduction in the 

present study on an imbalanced dataset. 

2.3. Soil organic carbon  

Soils are the major terrestrial sink of carbon with great potential to counteract the 

adverse effect of global warming (Singh and Lal, 2005). The soil carbon stock 

amounts to 2157-2293 Gt C with about 67 % existing as SOC (Lal, 2004). About 50 % 

of this SOC stock are stored in the topsoil (30 cm) making the subsoil also as relevant 

sink for carbon (Batjes, 1996). The amount of SOC at a given site is the result of the 

dynamic equilibrium of gain and loss processes directed by different factors (Lal, 

2004). These factors vary from climate, topography, soil properties, microbial biomass 
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and land use  (Albaladejo et al., 2013; Jobbágy and Jackson; Jobbágy and Jackson, 

2000; Ladd et al., 2013), which are mainly the factors previously mentioned by Jenny 

(1941).  Land use change (LUC) affects SOC stocks and can result in either a 

sequestration or a release of CO2 with subsequent impacts on global warming 

(Houghton, 2003). Carbon sequestration is, however, of crucial importance as SOC 

affects many soil functions and ecosystem services.  

2.3.1. Land use change impact on SOC 

About two scenarios of LUC are reported in literature based on whether it leads to 

SOC depletion or SOC accumulation. One scenario consists in LUC from pasture or 

native savannah/forest to plantation or to cropland which adversely affects SOC levels 

(McDonagh et al., 2001; Murty et al., 2002). The size and magnitude of the impact of 

the anthropogenic influence through agricultural use on the SOC status in soils is 

complex and determined by various variables, such as land use type, crop type, organic 

and inorganic fertilizer use, cultivation intensity and history etc. Soil cultivation is 

characterized by annual cropping with the necessary soil tillage, which disrupts soil 

aggregate and accelerate the decomposition of organic materials (Wei et al., 2014b). 

Consequently, SOC contents and stocks decline rapidly and then stabilize after a 

certain period of time following a land-use change (Don et al., 2011).  

The second scenario consists in reversing land degradation due to LUC with former 

depletion of SOC level through conversion of cropland to grassland or forest (Guo and 

Gifford, 2002a; Smith, 2008, 2008) as well as via change from conventional tillage to 

no-tillage cultivation (Amado, Telmo Jorge Carneiro et al., 2006). The latter processes 

mostly results in C accumulation, though usually not the level formerly found in native 

ecosystems due to inefficient C accrual in the subsoil (Preger et al., 2010). While these 

processes are being studied worldwide, little is known on C losses and C sequestration 

rates in soils typical for Western Africa, such as Plinthosols. Moreover, very few 

studies included the subsoil into the monitoring of C loss and sequestration rates 

(Mobley et al., 2015; Olson et al., 2014; Steinmann et al., 2016). Part of the present 

study focused on the former scenario of SOC losses related to LUC from initial 

savannah to cropland and subsequent effect on SOC dynamics. These studies also 
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included different SOC pools that are considered to be functionally homogeneous 

(Besnard et al., 1996; Degryze et al., 2004).  

2.3.2. Qualitative characterization of SOC 

The SOC consists in of a variety of compounds of different chemical structure and 

turnover rate. For SOC turnover modelling, in general, three pools ranging from labile 

or active pool, intermediate pool and inert or resistant pool, are distinguished (Lützow 

et al., 2007). The labile or active pool is made up of microbial biomass, fresh plant and 

root derived elements as well as some microbial residues with a faster (weeks to years) 

turnover time (Schwendenmann et al., 2007). The intermediate pool refers to 

refractory plant debris and mineral associated SOC  with a longer turnover time 

ranging from 10 to more than 100 years, while the inert or resistant pool is composed 

of highly humified compounds if not of black carbon with turnover times in the order 

of 103 years  (Parton et al., 1987; Schwendenmann et al., 2007; Trumbore, 1997).  

 

With advancing SOM decomposition, it may be generally assumed that SOC is 

transferred gradually from the active pool into either CO2 or more stable pools; various 

stabilizing processes may account for this but often only a small fraction of fresh 

organic material ends up in the more stable pools (Derrien and Amelung, 2011). 

Because each pool has its own pattern of reaction in regard to LUC, considering the 

changes in specific SOC pools is more effective for indicating early responses of SOM 

to LUC than bulk SOC (Lützow et al., 2007). Consequently, the functional SOC pools 

are to be quantified and characterized for a thorough understanding in SOC change 

patterns due to LUC. Mostly, physical soil fractionation is used for that purpose (e.g., 

Christensen, 1992; 1996) as shortly annotated below. 

2.3.3. SOC fractionation and Chronosequence 

SOC fractionation for qualitative analysis can be carried out by using either physical 

(aggregation,  density, size) and/or chemical (solubility, mineralogy) methods (Lützow 

et al., 2007; Stockmann et al., 2013). Aggregate fractionation uses dry or wet sieving, 

slaking as well as (ultrasonic) dispersion to separate free SOC from protected SOC 

that is incorporated within various secondary organomineral complexes. The free SOC 
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is considered as the active pool and is occluded in the macroaggregate (> 250 mm) 

while the protected pool is either incorporated in microaggregate (< 250 mm) or 

termed as intermediate pool or in the clay microstructures (<20 mm) representing the 

passive pool. The density fractionation differentiates between light fraction (active 

pool) and heavy fraction (intermediate and passive pool). The light fraction relates to 

SOC that is not firmly bound to soil minerals while the heavy fraction forms the 

organomineral complexed compounds (Tisdall and Oades, 1982; Golchin et al., 1994; 

Lützow et al., 2007). Because the latter pool incorporates both intermediate and 

passive pool it has been reported as being very heterogeneous by Lützow et al. (2007). 

Moreover, Six et al. (2000) pointed out microaggregate stabilization within 

macroaggregate with different dynamics for the respective related SOC. Using wet 

sieving, they distinguished coarse intra-aggregate particulate organic matter (iPOM) in 

macroaggreagte while fine iPOM was identified in microaggregate within 

macroaggreagte. The former has a faster turnover rate compared to the former which is 

more stable with longer residence time.  

As aggregates are so-called secondary particles, separating them into apparent primary 

particles describes the turnover of SOM at different bonding partners (Christensen, 

1992).The particle size fractionation is based on the concept that the status of the SOC 

dynamics is related to the particle sizes characterized by different decay rate (Moni et 

al., 2012). Particulate organic material (POM), which is mainly made up of pieces of 

plant residues, is considered  as a labile pool with turnover rate ranging from months 

to a few years (Besnard et al., 1996; Chan, 2001). POM is the first pool to be affected 

by LUC and as such is a better indicator of the impact of land use and climate on soil 

properties than bulk SOC (Ashagrie et al., 2005; Liang et al., 2012). POM is either free 

or incorporated in aggregate (Cambardella and Elliott, 1993; Christensen, 1992). 

Based on aggregate and particle size, POM measurement is carried out by considering 

the coarse (250–2000 µm), medium (53–250 µm) and fine (<53 µm) fractions  

(Amelung and Zech, 1999; Cambardella and Elliott, 1993; Chefetz et al., 2002). The 

POM C content and turnover are different in these fractions and are affected by the silt 

and clay particles level in the soil (Dalal and Mayer, 1986). These fractions are 

suitable for evaluating the impact of LUC on POM over time.  
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Evaluating the degree of soil degradation at a given site requires long term data as one 

time measurement of soil properties such as SOC can be misleading. Measurements 

are mostly attached to the time at which measures were taken. Farmers’ activities and 

land use management, however,  can vary among seasons and years causing 

fluctuation and variabilities in soil properties (Zingore et al., 2007). Long-term data 

thus  focus on specific plots over years results in order to derive much more accurate 

data related to alteration in soil properties over time (Tully et al., 2015). Alternatively, 

the space-for-time approach, i.e., using land-use chronosequences, allows to analyze 

temporal changes of chemical or physical soil attributes under real-farm practice 

(Hartemink, 2006). As long-term experimental farms in Western Africa are largely 

missing, I used this false chronosequence approach for evaluating SOC stock changes 

after conversion of natural savannah to permanent cropland.  

 

2.4. Objectives  

 

Soil information translated in soil maps and knowledge on soil carbon dynamics 

provide data to support both policy making and strategies for ensuring food security 

and sustainable production. As the creation of soil maps by traditional soil surveys are 

costly and time consuming, new approaches came into focus that speed up and 

accelerate soil mapping such as DSM. For the implementation of DSM, research 

priorities are among others: using appropriate model and covariates for a particular 

landscape in the perspective of better prediction accuracy, solving high data dimension 

problems, and dealing with soil legacy data subject to imbalance issues. The 

advancement in statistical models and the availability of a large array of topographical 

as well as spectral data offer the possibility to investigate ways to tackle some of these 

issues. Such approaches are of particular importance for soil landscapes in Western 

Africa, which are sometimes difficult to access, and where experienced field soil 

scientists are not necessarily abundant. The overall goal of this study thus was to 

investigate soil properties and soil reference groups mapping within an old, Plinthosol 
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landscape, using state of the art methodology. To better understand the dynamics of 

SOC within this region, I additionally sampled a cultivation chronosequence.   

 

Specifically this study focused of the following research questions: 

 

(i)  To which degree are novel statistical methods suited for high resolution mapping 

of soil properties in tropical environment using remote sensing data?  

I hypothesize that statistical models which are able to handle both linear and 

unlinear pattern in data will provide higher prediction accuracy than those 

geared towards linear pattern. To verify this hypothesis, I compared the 

performance of multiple linear regression (MLR) to three machine learning 

methods such as random forest regression, support vector machine and 

stochastic gradient boosting. I used high resolution optical imagery (RapidEye 

and Landsat) along with topographical variables for predicting six soil 

properties (sand, silt, clay, CEC, SOC and N). The model performances were 

investigated using cross validation for internal assessment while independent 

datasets were considered for external evaluation.  

 

(ii) Does the application of instance selection using a data pruning approach 

improve the prediction accuracy of reference soil groups with a dataset subject 

to severe imbalance?  

I hypothesize that pruning the major soil group - the Plinthosols – will result in 

increased prediction accuracy of the minor reference soil groups. For this 

purpose, I carry out a data pruning by considering different core range of the 

Plinthosol data while cutting off all data points belonging to the outer range. 

This resulted in different training subsets for predicting the reference soil 

groups using a wide range of remote sensing variables. The evaluation of the 

various set was carried out by using Random Forest (RF) along with a recursise 

feature selection for optimal covariate identification. The specifical and mutual 

contribution of spectral and topographical variables in predicting the reference 

soil groups was also assessed. 
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(iii) How does the topsoil (0 - 30 cm) and subsoil (30 - 100 cm) carbon stock 

vary among different land use and reference soil groups and which main 

factors affect their respective spatial distribution?   

I hypothesize that natural vegetation and associated reference soil groups 

will have higher carbon stock compared to cropland with the topographical 

variables being the main factor affecting the spatial distribution of carbon 

stock irrespective of the depth. For this question, I firstly determined the 

amount of carbon stock in both topsoil and subsoil in cropland and savannah 

as well as in five reference soil groups (Cambisols, Gleysols, Lixisols, 

Plinthosols, Stagnosols). The identification of the driving factors for both 

topsoil and subsoil SOC stock as well as their respective spatial distribution 

were investigated using the RF and linear regression as statistical models.   

 

(iv) To which extent does the land use change from natural savannah to cropland 

system affect the amount of total soil organic carbon and particulate organic 

matter in Plinthosols? I consider that continuous cultivation in initial 

savannah land will result in the reduction of both total soil organic carbon 

and particulate organic matter in the Plinthosols. To verify this hypothesis, I 

followed a chronosequence approach by sampling fields with known 

cropping time in the past as well as undisturbed savannah lands which were 

used as control. I carry out some physical soil fractionation resulting in 

different size of particulate organic matter (POM). Additionally, the role of 

iron oxide as a potential stabilizing agent was also investigated.  

 

This PhD thesis was prepared within the framework of the Working Package 2.5 “Soil 

carbon dynamics, soil fertility and soil degradation under climate and land use change” 

as part of the West African Science Service Center on Climate Change and Adapted 

Land Use (WASCAL) project which is funded by the German Research Foundation 

(BMBF). 
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1. Study area 

The study took place in the Dano district (Lat. 11°8'56.57"N; Long. 3°3'36.45"W), 

which is part of the Ioba province in the southwestern part of Burkina Faso.  

Specifically, it mainly focused on the catchment delineated by WASCAL (West 

African Science Service Center on Climate Change and Adapted Land Use). 

WASCAL  is  a  large-scale project aiming at  enhancing  the  resilience  of  human  

and  environmental systems  to  climate  change  and  increased  variability in the West 

African region. The WASCAL catchment in Dano covers a total area of 580 km2. An 

intensive soil sampling was carried out in the sub-catchment which is about one-

quarter of the bigger watershed (Fig. II-1). The elevation ranges between 250 and 504 

m above sea level (asl) with a mean average of 295 m asl. The relief is relatively flat 

with an average slope of 0.2 %.  

The climate consists in a mono-modal (single peak) rainy season with a mean annual 

rainfall ranging between 900 and 1200 mm year-1. The mean annual temperature varies 

between 20.1 and 38.4 °C. The lithology is characterized by the dominance of partly 

volcanic formations from the middle precambrian period and consists in a great 

proportion of andesic rocks with massive texture, basalt, diabase, gabbro and quartz-

rich andesites. The soils of the study area are mostly sandy to sandy loam in surface 

while sandy clay, clay loam to clayey in the subsoil similarly to the vast majority of 

the soils in the Ioba province (Hamidime, 2003). They are characterized by a high 

stone content and low water holding capacity.  

The vegetation of the area belongs to the Sudanian domain with woody, arboraceous 

or scrubby savannah, abundant in perennial grasses (Schmengler, 2010). Hills and 

higher slope areas are often covered with thick vegetation. However, a great 

proportion of this vegetation has been converted into croplands with the practice of 

short or long fallowing systems. Where long fallowing occurred, it was difficult to 

distinguish it from natural savannah vegetation. Therefore as in the study carried out 

by Yira et al. (2016) in the same area, long fallowing system and natural savannah are 

categorized as savannah. Cultivation is mostly rain fed and farming takes place on a 

small scale with low input (Callo-Concha et al., 2012b) especially regarding fertilizer.   
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Fig.   II-1: Map of the Dano catchment and locations of soil sampling 

2. Soil sampling 

Soil sampling was carried out in the sub-catchment based on homogeneous units 

derived from existing soil and land use maps as well as a 90 meter resolution digital 

elevation model provided by the Shuttle Radar Topography Mission (SRTM).  A total 

of 70 soil profiles were excavated up to 1 m where possible along 16 transects from 

August to October 2012. For each profile, four soil cores (100 cm3) were taken per 
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horizon for the determination of the bulk density (BD). These samples were dried at 

105 °C for 24 hours in the oven and corresponding weight were taken for the BD. 

Each sample was then grounded and sieved for the measurement of the weight of stone 

content (SC).  Moreover, some composite soil samples were collected from each soil 

horizon for further laboratory analysis resulting in a total of 195 samples with 71 and 

124 samples respectively for the A and B horizon.  

To account for spatial variability, an intensive auger grid sampling was carried out 

from August to October 2012 and from August to October 2013 over the entire study 

area. At each auger point, composite samples as well core samples (4 replicates for 

BD) were taken but only from the topsoil (A horizon). About 1305 augering composite 

samples were collected in total with 1203 samples within the subcatchment and 102 

samples outside the subcatchment (Fig. II-1). Soil horizon description and soil 

classification were based on the World Reference Base for soil resources (IUSS et al., 

2006).  

Apart from Chapter III which focused on samples within and outside the 

subcatchment, all the remaining chapters are related to the subcatchment. However, 

the last chapter (Chapter VI) considered samples which were taken from some fields 

still located in the Dano district but outside the catchment defined by WASCAL. 

3. Soil analysis 

The composite samples were dried at 40 °C in the oven and sieved to ≤ 2 mm.  These 

samples were analyzed for texture (sand, silt and clay content), pH, cation exchange 

capacity (CEC), dithionite-extractable Fe oxide (FeDCB), SOC and N. These  

parameters  were determined following the procedure described by Reeuwijk (2006).  

• Texture: The texture analysis was carried out based on a combined wet sieving 

(sand fraction) and pipette method (silt and clay).  

 

• pH: The pH was determined using a digital pH meter (Orion Star, Thermo 

Fisher Scientific Inc., Waltham, USA) in suspension of soil in distilled water.   
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• Cation exchange capacity (CEC): the CEC was obtained from an extraction 

with chloride of potassium and subsequent micro distillation and titrimetry.   

 

• FeDCB : the soil samples were treated with the dithionite-citrate-bicarbonate 

(DCB) for the measurement of the dithionite-extractable Fe (FeDCB). The FeDCB 

content was determined by inductively coupled plasma optical emission 

spectrometer (ICP-OES). 

 

• C and N: the dried and sieved samples were further milled for C and N analysis. 

The C and N contents was determined by elemental analysis (ISO 10694, 1995; 

ISO 13878, 1998) after dry combustion.  

4. Determination of SOC stocks 

The SOC stock (t C ha-1) was determined by the product of C content, the thickness at 

a particular depth and the bulk density in each depth along the soil profile. The bulk 

density was computed by dividing the weight of the oven-dry soil by the volume of the 

soil cores (Hartge and Horn, 1989).  Each quantified bulk density was corrected for the 

coarse particle content (> 2 mm) which was mainly made up of plinthites. No CaCO3 

was found in the collected soil samples. Therefore, the SOC stocks were obtained 

based on the following equation (II-1): 

SOC%&'�( = �)*� × BD� × T� × /1 − 123
�445																																																				(II-1) 

where SOCi is the organic carbon concentration (%) of the fine earth (<2 mm) at depth 

i, BDi is the bulk density (g/cm3) of the fine earth at depth i, Ti  is the thickness (cm) 

of each sample at depth i, and CPi is the coarse-particle content (volume percentage of 

the fraction >2 mm) at depth i. 

5. POM fractionation 

The physical fractionation of SOM pools was conducted by two-step ultrasonic 

dispersion and wet sieving as conducted by Christensen (1992), modified by Amelung 

and Zech (1999). In brief, 30 g fine earth (< 2 mm) were gently sonicated (60 J ml-1) 

so that microaggregates were preserved from disruption. The coarse sand fraction 

(2000–250 µm, POM1) was separated by wet sieving and the filtered remainder was 
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sonicated a second time (440 J ml-1). The intermediate (250–53 µm, POM2) and silt 

sized fractions (53-20 µm, POM3) were then separated by wet sieving. The obtained 

particle-size fractions were dried at 40°C for 24 h before C measurement through 

elemental analysis (vario MICRO cube, Elementar Analysesysteme GmbH, Hanau, 

Germany), according to ISO 10694:1995. The concentration of mineral-bound SOM 

(< 20 µm) was calculated by subtracting the C concentrations of the POM fractions 

from those of bulk SOC (nonPOM). Regarding potential C losses during fractionation 

we consider them as minimal as tested by Lobe et al. (2001).    

6. Procedure for spectroscopy measurement 

The spectra measurement was carried out by inserting 20 mg of the profile samples 

into microplates and compacted it with a plunger to get a level and plain surface in five 

replicates. The Bruker Tensor 27 equipped with an automated high throughput device 

(Bruker HTS-XT) was used to create the spectra. This extension is equipped with a 

liquid N2-cooled mercury-cadmium telluride (MCT) detector. The spectra recording 

were done using the OPUS/LAB software within the range of 8000 to 600 cm-1 (1250-

16700 nm) with resolution of 4 cm-1 for each run. This software provides the most 

representative spectra upon applying the principal component analysis (PCA) and 

about 50 % of the corresponding profile samples were chosen for laboratory analysis. 

About 100 profile samples from the subcatchment were conventionally analysed to get 

the ground truth data while the remaining samples were predicted for SOC, N, CEC 

and sand, silt and clay fraction. 

For each soil parameter, a cross validation method was conducted employing a leave–

one–out, full–cross validation as well as a test-set calibration for checking model 

robustness as described by Bornemann et al. (2008) (Tab. II-1). The models were 

optimized with the OPUS QUANT by considering several data processing methods 

and spectral ranges combination. The data pre-processing consisted in the 

Multiplicative Scatter Correction method (pH, CEC, silt fraction) and a combination of 

First derivative and multiplicative Scatter Correction method (SOC, N, Sand and Clay 

fraction).  

The quality of the different models for each soil property was assessed based on their 

predictive ability with the R2, ratio of performance to deviation (RPD) and the 
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standard error of prediction (SEP). Only models exhibiting good predictive ability 

(RPD>2) or close to that (RPD 1.7-2.0) (Albrecht et al., 2008) were used to make 

predictions for the remaining samples (Tab. II-1). As seen in Tab. II-1, the MIRS cross 

validation showed that SOC, followed by N presented the best prediction accuracy 

based on the R2 and the RPD. Additionally, the error metrics from the MIRS test-set 

validation confirmed the robustness of the different calibration models for all soil 

properties with R2 ≥ 80 % and with RPD>2.  

Tab.  II-1: Statistical parameters of the mid infrared spectroscopy-partial least squares 
regression prediction models (n = 100 samples) 
 

Parameters 
Full cross-validation   Test-set validation (V=10 %)   
R2 (%)   RMSECV RPD Slope 

 
R2 (%) RMSEP RPD Slope 

 
Sand (%) 70.5 6.8 1.8 0.7 

 
80.9 5.7 2.5 0.7 

 
Silt (%) 75.8 4.9 2 0.8 

 
88.2 3.9 3 0.8 

 
Clay (%) 77.6 6.2 2.1 0.8 

 
80.6 5.5 2.4 0.8 

 
CEC (cmolc kg-1) 75.6 3.6 2 0.8 

 
90.5 3.2 3.6 0.8 

 
SOC (%)  95.3 0.1 4.6 0.9 

 
92.2 0.2 3.6 0.9 

 
Nitrogen  (%)  85.5 0 2.6 0.9   85.7 0 3 0.8   
RMSECV: root mean square error of cross validation, RMSEP: root mean square error 
of prediction, RPD: ratio of performance to deviation, V: validation set, SD: standard 
deviation 
 

7. Modelling using Random Forest 

The random forest analysis for both regression and classification was conducted using 

the “Random Forest” (RF) function as implemented in the RF package (Breiman, 

2001) of the R software (R core Team). RF  belongs to the family of ensemble 

machine learning algorithms that predicts a response from a set of predictors (matrix 

of training data) by creating multiple Decision Trees (DTs) and aggregating their 

results. Each tree in the forest is independently constructed using a unique bootstrap 

sample of the training data. Whereas other machine learning algorithms (e.g. bagging 

and boostrapping (Schapire et al., 1998)) use the best split among all predictors for 

node splitting, RF chooses the best split from a randomly selected subset of predictors. 

The introduction of this additional randomness decreases the correlation between trees 

in the forest, and consequently increases accuracy (Gislason et al., 2006). Additionally, 

RF requires no assumption of the probability distribution of the target predictors as 
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with linear regression, and is robust against nonlinearity and overfitting, although 

overfitting may occur in instances where noisy data are being modelled (Statnikov et 

al., 2008). For RF modelling, parameters requiring tuning such as the number of trees 

to grow in the forest (ntree) and the number of randomly selected predictor variables at 

each node (mtry) were set using the grid search method in the R “caret” package 

(Kuhn, 2015) using tenfold cross validation with 5 repetitions.  

RF optionally provides information on the relative importance of the predictors 

(variable importance) used in the construction of the forest (Breiman, 2001). Two 

importance measures - mean decrease in accuracy (MDA) and mean decrease in 

impurity (MDI) are frequently computed. To calculate MDA (increase in mean 

standard error), each tree is constructed with and without a predictor. Then, the 

difference between the two cases is averaged over all trees and normalized by the 

standard deviation of the differences. The second measure, the MDI represents the 

total decrease in node impurity from splitting on a predictor in the tree construction 

process, averaged over all trees. For regression, the node impurity is measured by the 

residual sum of squares (Breiman, 2001). RF computes an internal accuracy measure 

based on the samples that are omitted from the bootstrapped samples used in the tree 

construction (i.e. out-of-bag, OOB). The accuracy of the model is given by the mean 

square error (MSEOOB) of the aggregated OOB predictions generated from the 

bootstrap subset and is computed as follows (Breiman, 2001)  :  

MSE889 = �:�∑ (;� − ;̂�889)�=
�!�                       (II-2) 

Where “n” is the number of observations, zi is the average prediction of the ith 

observation and ;̂�889 is the average prediction for the ith observation from all trees for 

which the observation was OOB. 

The explained variance for regression analysis is expressed as follows: 

								Var = 1 −	ABCDDEFGHIJKL
.              (II-3) 

where  Varresp  is the total variance of the response variable computed with n as divisor 

(rather than n − 1).     
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1. Introduction 

Sustainable land use and optimal soil management require accurate and detailed spatial 

soil information. In West Africa, where land degradation and loss in soil fertility has 

been reported by numerous studies (Bationo et al., 2007; Lahmar et al., 2012; Vågen et 

al., 2005), such information is increasingly required by governments and development 

partners to aid in improving land management (Sachs et al., 2010). High resolution 

spatial information on soils can assist decision makers to better target areas for soil 

fertility interventions and implement knowledge-based policies that aim at increasing 

agricultural production and improving livelihoods of small scale farmers in the sub-

region. This is even crucial for the sustainable use of the soil resources particularly in 

the context of climate change (Niang et al., 2014).  

Digital soil mapping, which includes secondary (non-soil) data sources into the 

mapping process, has been identified as a potential means of providing soil spatial 

information (Arrouays et al., 2014; Mulder et al., 2011; Summers et al., 2011). 

However, recent digital mapping initiatives on the continent (e.g. African Soil 

Information Service - http://africasoils.net/) (Hengl et al., 2015) and at national scales 

(e.g. (Akpa et al., 2014)) have used remote sensing and other environmental variables 

in mapping soil units and properties. However, the spatial resolution of these studies is 

still coarse (ca. 250 – 1000 m), and may be of limited use for local scale (e.g. 

watershed) analysis. Moreover, the success of digital soil mapping is to a large extent 

dependent on the availability, quality and timing of remote sensing data acquisitions 

(Blasch et al., 2015). Land surface characteristics, especially on agricultural lands, are 

subject to temporal changes and it is not always clear which periods of the year are 

suitable for acquiring remote sensing data for accurate soil property prediction.   

This study consists in a digital soil mapping effort that integrated high spatial 

resolution multi-temporal RapidEye and Landsat imagery together with ASTER 

Global DEM terrain derivatives to determine their suitability for improving the 

availability and accuracy of spatial soil information in rural African landscapes. In that 

regard, four statistical methods which have proved their suitability for digital soil 

mapping in previous studies - multiple linear (MLR),   random forest regression 
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(RFR), support vector machine (SVM) and stochastic gradient boosting (SGB) 

(Grimm et al., 2008; Ließ et al., 2016; Stevens et al., 2012; Wiesmeier et al., 2011) 

were explored to ascertain the most suitable method for high resolution remote sensing 

data in the study region.  The research questions that the study addresses are: (1) which 

regression method offers the best accuracy for predicting soil properties?  (2) What is 

the optimal time of RS data acquisition for predicting soil properties? 

2. Materials and methods 

2.1. Study area (see section II. 1) 

 

2.2. Soil sampling and analysis  

A total of 1104 soil samples (1002 in sub-watershed and 102 outside) coming mainly 

from the topsoil (0 - 30 cm), were considered in this study. For soil analysis for 

texture, CEC, SOC and N see section II. 2 and section II. 3).  

2.3. Spectroscopic measurement (See section II. 6) 

2.4. Covariate data 

2.4.1. Satellite spectral data 

Multi-temporal data from two optical sensors, RapidEye and Landsat, were used in 

this study. The images were acquired on 1st March, 1st April, 3rd May 2013 

(RapidEye) and 13th June 2013 (Landsat). This period was selected to coincide with 

the peak of the dry season and the ploughing/planting period during which there’s little 

or no vegetation especially on croplands. RapidEye was obtained from the RapidEye 

Science Archive team of the German Aerospace Center (DLR) 

(https://resa.blackbridge.com/), while Landsat 8 was downloaded from the United 

States Geological Survey's GLOVIS website (http://glovis.usgs.gov/). The RapidEye 

data has five spectral channels (blue, green, red, rededge and near infrared (NIR)) and 

a spatial resolution of 5 m (i.e. orthorectified, level 3A) (Tyc et al., 2005), while 

Landsat has eleven spectral channels (Irons et al., 2012) and a spatial resolution of 30 

m, which was later resampled to 5 m to ensure integration with the RapidEye data. Six 

out of the eleven spectral channels of Landsat (Tab. III.1) were used in the analysis. 

Images from both sensors were atmospherically corrected using the ENVI ATCOR 
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software (Richter and Schläpfer, 2012). In addition to the original spectral bands, six 

soil and vegetation indices were calculated for each image. In all, twenty-one spectral 

bands and twenty-four spectral indices were derived (i.e. six indices for each of the 

four images). Tab. III.1 provides further details of the spectral bands of RapidEye and 

Landsat as well as formulae and definitions of the spectral indices calculated. These 

spectral indices have been found to be useful in digital soil mapping (Ray et al., 2004).  

 

Tab.  III-1: Spectral bands of satellite images used and definitions of soil and 
vegetation indices 
 

Sensor 
No. of 
Bands 

Band number, names and abbreviations 
1 2 3 4 5 6 

RapidEy
e 

5 
Blue 
(B) 

Green 
(G) 

Red 
(R) 

Red edge 
(RdE) 

Near  
infrared 
(NIR) 

- 

Landsat 6* 
Blue 
(B) 

Green 
(G) 

Red 
(R) 

Near  
infrared 
(NIR) 

Shortwave 
infrared 1 
(SWIR 1) 

Shortwave 
infrared 2 
(SWIR 2) 

Spectral indices 
Name of Index Formula Index property Reference 
Brightness Index 
(BI) 

5.0222 )3/)(( BGR ++  Average 
reflectance 
magnitude 

(Ray et al., 2004) 

Saturation Index 
(SI) 

)/()( BRBR +−  Spectral slope (Ray et al., 2004) 

Hue Index (HI) )/()*2( BGBGR −−−  Primary colors (Ray et al., 2004) 
Coloration Index 
(CI) 

)/()( GRGR +−  Soil color (Ray et al., 2004) 

Redness Index (RI) )*/( 32
GBR  Hematite content (Ray et al., 2004) 

Normalized 
Difference 
Vegetation Index 

)/()( RNIRRNIR +−  Health and amount 
of vegetation 

(Huete et al., 2002) 

* Spectral bands used in this study 

2.4.2.  Terrain and climatic variables 

Terrain variables (Tab. III-2) were extracted from the 30 m resolution ASTER GDEM 

(http://asterweb.jpl.nasa.gov/GDEM.ASP). Although previous studies have shown that 

the 90 m resolution SRTM DEM (Farr and Kobrick, 2000) has a superior absolute 

accuracy than ASTER GDEM (Forkuor and Maathuis, 2012), the latter was selected 
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for this study due to its superior spatial resolution. Although the 30 m SRTM data has 

been made freely available, it came at a time that this manuscript was at an advanced 

development stage. The data was pre-processed to generate a depressionless DEM 

prior to the calculation of terrain variables. Climatic data (i.e. mean annual 

precipitation and temperature over 50 years) at 1 km resolution were obtained from 

worldclim (Hijmans et al., 2005a). 

In order to ensure integration with the RapidEye data, the DEM and climatic variables 

were resampled to 5 m resolution using the bilinear and bicubic interpolation methods, 

respectively. Tab III-2 lists the 29 terrain and climatic variables that were used in this 

study together with the relevant references. Most derivatives were calculated using the 

System for Automated Geoscientific Analysis (SAGA) software, while few were 

calculated with ArcGIS. 
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Tab.  III-2: Terrain and climatic variables considered in this studyTerrain and climatic 
variables considered in this study 
 

Parameters Definition Units 
Slope* Inclination of the land surface from the 

horizontal 
Radians/ % 

Steepest slope Maximal rate of elevation change in 
gravitational field 

radians 

Curvature Curvature ° m-1 

General curvature   Combination of horizontal and vertical 
curvature 

 m-1 

Plan curvature* Horizontal (contour) curvature ° m-1 

Maximum curvature   Maximum Curvature   ° m-1 
Minimum curvature   Minimum Curvature   ° m-1 
Total curvature Curvature of the surface itself ° m-1 
Parallel curvature Parallel curvature ° m-1 
Rectangle curvature Rectangle curvature ° m-1 
Flow line curvature Flow line curvature ° m-1 
Profile Curvature   Vertical rate of change of slope ° m-1 
Horizontal curvature   Measure of flow convergence and 

divergence 
° m-1 

Flow direction* Path of water flow - 

Aspect Direction the slope faces ° 
Cose Aspect Direction the slope faces: eastness ° 
Sine Aspect Direction the slope faces: northness ° 
Elevation Vertical distance above sea level m 
Protection index Extent at which a cell is protected by 

relief based on the immediate 
surrounding cell 

 

Topographic position 
index 

Location higher or lower than the 
average of their surroundings 

 

Saga Wetness Index  Ratio of local catchment area to slope - 
Flow accumulation*  Ultimate flow path of every cell on the 

landscape grid 
- 

Channel network base 
Level 

Channel network base level elevation m 

Temperature (mean 
annual)  

Temperature °C 

Precipitation (mean 
annual)  

Precipitation mm 

The variables with (*) were calculated in SAGA as well as ArcGIS due to slight 
differences in the computational algorithms used by the two software packages 

 

 



III. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso 

35 

 

2.5. Models 

2.5.1. Multiple Linear Regression (MLR) 

Linear regression models aim at explaining the spatial distribution of a dependent 

variable by means of a linear combination of predictors (independent variables). In the 

case of this study, the various soil parameters are considered the dependent variables 

while the spectral and terrain/climatic variables are the independent variables. Linear 

regression models generally have the form: 

i

n

i

ii xbay ε±+= ∑
=1

*          (III-1) 

where “y” is the dependent variable (soil parameter), “xi“ are the predictors, “n” is the 

number of predictors, “a” is the intercept, “bi” are the partial regression coefficients 

and “ε” is the standard error of estimate. The regression equation is used to predict the 

spatial distribution of the parameter of interest based on the independent variables.  

The “lm” function implemented in the R software (R core Team) was used for MLR 

analysis. A matrix of predictors was developed by superimposing the training samples 

on the spectral and terrain/climatic spatial layers and extracting the corresponding 

values. One soil property was modelled at a time as the response (dependent) variable 

with the developed matrix as the predictors. For each model, the adjusted R2 and 

residual standard error were recorded. In addition, the predictors that were significant 

at 1 % significance level were noted. 

A common limitation of regression models is the problem of multicollinearity, which 

occurs when there is significant correlation between the predictors. Since the number 

of predictors identified in this study are many (seventy-four), and there could be high 

correlation between some of them, a stepwise regression analysis was first conducted 

to produce uncorrelated predictors needed to model each soil parameter and thereby 

minimize the problem of multicollinearity. Stepwise regression identifies a subset of 

predictors based on the statistical significance of the predictors (using stepwise, 

forward selection, or backward elimination) (Venables and Ripley, 2013). In this 

study, the “stepAIC” function as implemented in the “MASS” package (Venables and 

Ripley, 2013) of the R statistical package was used for the stepwise regression. For 
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each soil parameter, a subset of uncorrelated predictors were identified for subsequent 

analysis. Tab. III-3  presents the number of spectral and terrain/climatic predictors that 

were eventually used in the MLR for each soil property. On average, less than 50 % of 

the initial predictors were eventually selected for each soil property with the exception 

of carbon, for which 53 % were selected. In order to ensure comparison with the 

Random Forest Regression (RFR), the same set of predictors were maintained for the 

RFR analysis, although it (RFR) does not greatly suffer from the multicollinearity 

problem. 

Tab.  III-3: Number of spectral and terrain/climatic predictors used in modelling each 
soil parameter 
 

Data/Parameter Sand Silt Clay CEC SOC Nitrogen 

Spectral 17 22 21 12 26 19 
Terrain/climatic 9 10 5 13 12 12 
Total 26 32 26 25 38 31 
 

2.5.2. Random Forest Regression (RFR) 

For background information on RFR see section II-7. 

 

2.5.3. Support vector machines for regression (SVM) 

Initially used for classification, the support  vector machine (SVM) has been extended 

for regression with the prediction of soil properties  (Shrestha and Shukla, 2015; 

Stevens et al., 2012). Relying on Kernel functions, input data are plotted into a new 

hyperspace where separations are performed. The ultimate purpose is to get an optimal 

hyperspace for data fitting and prediction using the ε-insensitive loss function, which 

tolerates errors smaller than the constant ε set as a threshold. Detailed information 

about SVM can be found in Hastie et al. (Hastie et al., 2011). The determination of the 

best parameters (bandwidth cost parameter, insensitive loss function, ) for tuning the 

model for each soil parameters was carried out using the grid search method in the R 

“caret” package (Kuhn, 2015). For this purpose, ten random partitions of the training 

data with five repetitions was carried for leave-one-group-out cross-validation of the 
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model. Parameters resulting in the lowest root mean square error were considered for 

modelling.  

2.5.4. Stochastic gradient boosting (SGB) 

Stochastic gradient boosting (SGB; (Friedman, 2001, 2002)) is a hybrid method 

incorporating both boosting and bagging approaches. First, small classification or 

regression trees are sequentially built from the residuals of the preceding tree (s). 

Instead of focusing on the full training set, the SGB carries out a boosting by selecting 

(without replacement) at each step a random sample of the data leading to a gradual 

improvement of the model. More details related to the background and mathematical 

functions behind the SGB can be found in Ridgeway (Ridgeway, 2008). The required 

parameters for model fitting (interaction depth, shrinkage rate) were set by using the 

tenfold cross validation with five repetitions also with the R “caret” package (Kuhn, 

2015). For each soil property, parameters with the lowest error metric (root mean 

square error) were used for the final model.  

2.6. Accuracy assessment 

The performance of the four models – MLR, RFR, SVM, SGB – in predicting the soil 

properties was assessed by using 80 % of the detailed soil samples in the sub-

watershed (which was the focus of the sampling) (Fig. II-1) for cross validation. A 10-

fold cross-validation scheme with 5 repetitions was applied to ensure model stability 

and reliability using the “caret” R Package (Kuhn, 2015) . The remaining 20 % served 

as an independent validation dataset. In order to assess the predictive strength of the 

models outside the sub-watershed (i.e. the core sampled area), all the soil samples 

outside the sub-watershed (102 samples) (Fig. II-1) were reserved for the purposes of 

accuracy assessment and used as a second independent validation dataset.  

Though R2 is a valid statistic for assessing the prediction accuracy of a model, a high 

R-squared model may not necessarily lead to accurate predictions. This is because the 

model could systematically and significantly over- and/or under-predict the data at 

different points along the regression line. An over-fitted model could also lead to poor 

predictions (Muñoz and Felicísimo, 2004). It is, therefore, important to evaluate the 

models with other performance statistics, preferably based on an independent set of 
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observations, to provide additional information on the prediction accuracy of the 

models.    

For each soil parameter, two error statistics - root mean squared error (RMSE) and the 

symmetric mean absolute percentage error (sMAPE) - were calculated (see equations 

III-2-3). The two statistics served as the basis for comparing the performance of the 

two models in predicting the spatial distribution of the different soil properties. 

Although RMSE is a frequently used statistic in the literature to indicate the average 

error of a model (Willmott and Matsuura, 2005), its dependence on scale makes it 

difficult to calculate a model’s error in percentage terms. The sMAPE (Makridakis and 

Hibon, 2000), on the other hand, provides a percentage-wise error and facilitates a 

comparison of the accuracy with which each soil property is predicted. The sMAPE 

(as defined in this paper), however, can provide unreliable estimates if either observed 

or forecasted value is negative (Hastie et al., 2011).   

2/1
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where “P” is the predicted value and “O” is the observed/true value. 

3. Results and Discussion 

3.1. Model performance 

The performance of the four models investigated was assessed based on: (1) model 

internally generated accuracy statistics and (2) independent validation samples. 

3.1.1. Assessment based on internal accuracy statistics 

This assessment was achieved by comparing the RMSE and the adjusted R2 

(hereinafter referred to as R2) derived from the four models for the respective soil 

parameters. Tab. III-4 presents results of the comparison. R2 ranged between 21 and 53 

% for MLR, 18 and 53 % for RFR, 20 and 51 % for SVM and 16 and 51 % for SGB. 

Silt was the only soil parameter that achieved an R2 of greater than 50 % for all 

models. The other soil parameters recorded relatively lower R2, with sand, clay, SOC 
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and nitrogen consistently having R2 below 40 %. The generally low R2 obtained in this 

study independently of the models can be attributed to a complex interplay and high 

variability of environmental factors in the studied watershed and surrounding regions 

(Malone et al., 2016; Wiesmeier et al., 2014). High variability in agricultural soil 

management practices, nutrient application, vegetation cover and climatic factors 

(temperature, precipitation) are believed to be among the factors that resulted in the 

low correlations observed. Nonetheless, the range of R2 values obtained in this study is 

comparable to other studies that considered only terrain/climatic covariates  (Grimm et 

al., 2008; Wiesmeier et al., 2014) or only spectral data (Coleman et al., 1991; Ray et 

al., 2004). 

Tab.  III-4: Internal model validation based on 80 % training data (all Spectral and 
topographic/climate predictors) 
 

Model 
Sand (%) Silt (%) Clay (%) CEC (cmolc kg-1) SOC (%) Nitrogen (%) 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 
MLR 7.566 0.346 5.940 0.537 6.946 0.212 4.786 0.357 0.546 0.348 0.038 0.352 
RFR 7.586 0.342 5.937 0.538 7.022 0.185 4.689 0.383 0.528 0.39 0.038 0.354 
SVM 7.592 0.342 6.091 0.519 6.993 0.206 4.889 0.333 0.551 0.341 0.038 0.339 
SGB 7.707 0.318 6.094 0.514 7.164 0.162 4.767 0.360 0.539 0.367 0.038 0.339 
 

Tab. III-4 shows that RFR performed marginally better than the other models in 

generating a model for the soil parameters with relatively lower RMSE and higher R2. 

The only exception was in the case of sand and clay, where MLR performed better 

than the RFR recording better error metrics.  Generally, the machine learning methods 

(RF, SVM, SGB) were found to be more accurate than MLR using the RSME of cross 

validation for assessing model performance (Bricklemyer et al., 2007; Zakaria and 

Shabri, 2012).  

3.1.2. Assessment based on independent validation samples 

Tab. III-5 and Tab. III-6 present model performance statistics for the external 

validation inside (20 % of the dataset) and outside the small catchment, respectively 

(see Fig. II-1). Here, the symmetric mean absolute percentage error (sMAPE) 

(equation III-3) was calculated and used as the basis for comparing the four models. 
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Inside the small catchment, the RFR generally performed better than the other models, 

achieving the highest prediction accuracy (i.e. 100-sMAPE) for four soil properties 

(sand, silt, SOC, nitrogen) while SVM and SGB produced the best prediction for clay 

and CEC, respectively. Prediction accuracies by the RFR model ranged from a low of 

68 % for CEC to a high of 90 % for silt, with an average accuracy of 77 %. Compared 

to the MLR, for example, RFR improved prediction accuracy by 0.9 % for sand, 0.4 % 

for silt, 9.7 % for CEC, 2.4 % for SOC, and 1.7 % for N. Generally, SVM and SGB 

also outperformed the MLR. In assessing the models’ performance outside the small 

catchment, Tab. III-6 reveals that RFR achieved a better prediction accuracy for silt 

(85 %) and clay (52 %), SVM for sand (81 %) and SOC (53 %), and SGB for CEC (60 

%) and nitrogen (55 %) with prediction accuracies of 69 %, 85 %, and 52 %, 

respectively. The RFR model achieved an average accuracy of 62 % for the validation 

outside the small catchment.  

Compared to MLR, the high performance of RFR and the other machine learning 

models could be due to the existence of a non-linear relationship between soil 

parameters and the predictors which MLR could not adequately resolve. Although 

MLR is widely used in statistical predictions, its limitation in handling non-linear 

relationships between response and predictor variables, especially in heterogeneous 

landscapes, has been noted in literature (Muñoz and Felicísimo, 2004; Odeha et al., 

1994; Selige et al., 2006). Non-parametric models such as RFR, SVM and SGB have 

been found superior to MLR due to their ability to handle non-linear relations and 

multi-source data (Bricklemyer et al., 2007; Hahn and Gloaguen, 2008a; Wålinder, 

2014). In general, many studies reported RFR as providing better predictions 

compared to SVM  (Fassnacht et al., 2014; Ließ et al., 2016; Ma et al., 2016; 

Siegmann and Jarmer, 2015). However, Were et al. (Were et al., 2015) found SVM as 

best predictor for the spatial distribution of SOC stock compared to RFR. Rossel and 

Behrens (2010) reported RFR as having better prediction accuracy compared to SGB, 

while Hitziger and Ließ (2014) found the latter superior to the former in soil property 

prediction. Similarly, SVM and SGB occasionally outperformed RFR in this study. 

This, and previous results, suggest that no single machine learning algorithm might 
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serve best for every landscape and that many models should be calibrated to identify 

the most accurate model for prediction.  

A comparison of Tab. III-5 and Tab. III-6 reveals a general reduction in the predictive 

accuracy of the models outside the small catchment (which was the focus of 

sampling), although the magnitude of reduction varies depending on the model and 

soil property. Taking RFR, for example, the magnitude of reduction in prediction 

accuracy (i.e. 100-sMAPE) equalled 13 % for sand, 4 % for silt, 24 % for clay, 10 % 

for CEC, 21 % for SOC, and 18 % for nitrogen. In general, all models performed 

relatively poorly in predicting clay, SOC and nitrogen outside the small catchment, 

with average accuracy reductions of 28 %, 20 % and 19 %, respectively. On the other 

hand, the models performed well in predicting silt and CEC outside the small 

catchment, showing minimal accuracy reductions of 4 % and 7 %, respectively. These 

results suggest that the accuracy of extrapolating soil predictions outside the sampled 

area may differ depending on the soil property as well as on the non-comparability of 

the small catchment with regard to surface, land use and other characteristics. 

Despite these differences, the accuracies achieved in the external validation can be 

assumed to be reasonably good considering the heterogeneity and size of the 

watershed in this study. Barnes and Baker (Barnes and Baker, 2000) noted that the use 

of multi-spectral data for predicting the spatial distribution of soil properties can 

achieve optimal results when the study is conducted in an area with uniform soil 

surface characteristics. Consequently, several of such studies have been conducted at 

plot level or on relatively small watersheds (Odeha et al., 1994; Ray et al., 2004; 

Thomasson et al., 2001), apparently to reduce the effect of varying surface 

characteristics.  

Based on their study within a 350 ha demonstration farm in Arizona, Barnes and Baker 

(Barnes and Baker, 2000) found that variations in surface characteristics such as crop 

residue, soil moisture and row orientation between fields limited the accuracy with 

which soil properties were mapped. These differences in surface characteristics may 

have influenced the results of this analysis, considering that the study area is an 

agricultural watershed populated by smallholder farmers who use diverse farm 
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management practices (Callo-Concha et al., 2012b; Forkuor, 2014). The mode and 

time of land preparation (e.g. tractor, bullocks, manual) (Kamara et al., 2009), nutrient 

application (e.g. fertility) (Bationo et al., 1998) and water management strategy 

(Douxchamps et al., 2012) can differ to a high degree from field to field due to 

availability of labour, crops to be cultivated or farm inputs utilized. Model calibrations 

based on samples from such localized and highly variable conditions can limit its 

predictive capacity outside the sampled areas (Rossel et al., 2006; Thomasson et al., 

2001).  

Tab.  III-5: External validation in small catchment based on 20 % testing data with 
spectral data and terrain/climatic variables 
 

Model 
Sand 
 (%) 

Silt 
 (%) 

Clay  
(%) 

CEC 
 (cmolc kg-1) 

SOC 
 (%) 

Nitrogen  
(%) 

RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE 

MLR 8.482 0.189 5.900 0.107 6.708 0.239 4.787 0.415 0.541 0.285 0.043 0.290 
RFR 7.764 0.180 5.708 0.103 6.590 0.242 4.593 0.318 0.512 0.261 0.041 0.273 
SVM 8.415 0.188 5.899 0.107 6.667 0.234 4.897 0.394 0.549 0.283 0.043 0.287 
SGB 7.954 0.189 5.819 0.107 6.791 0.242 4.562 0.314 0.526 0.272 0.041 0.286 
 
Tab.  III-6: External validation based on 102 samples outside the small catchment with 
spectral data and terrain/climatic variables 
 

Model 
Sand 
 (%) 

Silt  
(%) 

Clay 
 (%) 

CEC 
 (cmolc kg-1) 

SOC  
(%) 

Nitrogen  
(%) 

RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE 

MLR 17.341 0.547 9.350 0.157 11.804 0.548 5.597 0.469 0.847 0.505 0.059 0.496 
RFR 14.115 0.314 8.713 0.146 10.623 0.478 4.891 0.415 0.765 0.472 0.053 0.457 
SVM 20.257 0.193 9.106 0.153 14.738 0.566 5.669 0.448 0.750 0.471 0.057 0.488 
SGB 15.184 0.341 8.846 0.148 10.875 0.497 4.960 0.398 0.759 0.476 0.051 0.454 
 

Limited accuracy could also be related to potential error propagation from the MIRS 

models to the maps. Digital soil mapping based on mid infrared spectroscopy - partial 

least squares regression (MIRS-PLSR) prediction models might be affected by 

uncertainties at varying level of the mapping process such as spectra collection, model 

building and resulting prediction. Due to the heterogeneity of the landscape both in the 

small catchment and even more in the bigger catchment all the spectral variability 

might not have been covered resulting in possible feedback on the accuracy of MIRS-

PLSR prediction models. Based on the classification of MIRS models by Reeves and 
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Smith (Reeves and Smith, 2009), the MIRS-PLSR calibration models in the present 

study (Tab. II-1) range from models with very high predictive ability as for SOC (R2 = 

95 %, RPD = 4.6) to models with high (R2 = 85 %, RPD = 2.6) to medium predictive 

ability (R2= 70 – 77 %, RPD = 1.8 – 2.1) respectively for Nitrogen and the remaining 

soil properties (CEC, sand, silt and clay). 

 In some other studies, MIRS provided better prediction models for SOC, N, CEC (R2 

> 0.77) compared to clay, silt and sand (R2 = 0.22 - 73 %) (McCarty and Reeves, 

2006; Terhoeven-Urselmans et al., 2010). Though uncertainty propagation analysis as 

carried out by Brodský et al. (Brodský et al., 2013) was out of the scope of the present 

study, the error metrics  from the test set validation provided satisfactory evidence on 

the predictive ability of the MIRS-PLSR models (R2 > 80 %, RPD ≥ 2). These results 

indicated that the calibrations were consistent especially for SOC, CEC, N and silt (R2 

> 85 %, RPD ≥ 3). In their study, Brodský et al. (Brodský et al., 2013) found PLSR 

(with visible and near infrared) to cause lower uncertainties in the final map compared 

to uncertainty originating from ordinary kriging used as mapping model. Based on the 

sMAPE, the RFR and remaining machine learning models displayed quite satisfactory 

accuracy from the prediction of MIRS-PLSR models. This is obviously to their ability 

to handle both linear and non-linear patterns in dataset. 

3.2. Variable importance and temporal window for acquisition of RS data 

The five top spectral and terrain/climatic variables which contributed most to the 

accuracy of digital soil mapping in the studied watershed are discernible from Tab. III-

7. Though RFR generally provided better predictions, variable ranking from the MLR 

model was included in the table for comparison purposes. The data in Tab. III-7 reveal 

that both models include elevation in the list of the five most significant predictors for 

SOC and N while the other soil parameters had only spectral predictors. The only 

exception was for clay for which the RFR recorded also temperature among its driving 

factors while the MLR also displayed precipitation as key factor following elevation. 

Similar to the findings of this study, Hengl et al. (Hengl et al., 2015) also recorded 

elevation as the most important variable influencing SOC contents of topsoil in Africa.  

Wang et al. (Wang and Ge, 2012) found that elevation and slope, along with soil clay 
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and water contents, were among the most significant factors affecting SOC and N 

variability. Terrain/climatic variables are reported to have control on soil water status, 

dynamics of plant litter mineralisation as well as erosion and deposition processes 

(Hengl et al., 2015; Wang and Ge, 2012). The influence of elevation on predicting 

SOC and N, for example, can be related to corresponding variations in soil 

temperature as well as the intensity of cultivation which is higher in the lower areas as 

compared to the higher areas because of accessibility. 

 

Tab.  III-7: First five predictors that were highly significant for RFR (based on 
“IncNodePurity” importance measure) and MLR analysis 
 

Model Rank Sand (%) Silt (%) Clay (%) CEC (cmolc kg-1) SOC (%) Nitrogen (%) 

MLR 1 june_SWIR2 june_SWIR2 june_NIR june_SWIR2 Elevation Elevation 

2 june_green June_RI June_RI May_RI prep March_NDVI 

3 June_CI may_red may_blue may_RE march_NIR march_NIR 

4 may_green june_red June_SI June_BI March_NDVI march_green 

5 April_HI June_BI June_CI june_red june_SWIR1 March_CI 

        
RFR 1 june_SWIR2 June_RI june_NIR june_SWIR2 june_red june_NIR 

2 may_NIR May_SI June_RI june_blue june_NIR June_SI 

3 june_green june_SWIR1 june_blue May_RI Elevation Elevation 

4 May_SI june_SWIR2 june_SWIR1 March_NDVI June_SI march_green 

5 may_green May_CI temp june_red June_BI may_red 

The names of the spectral predictors (see Tab. III-1) here are a concatenation of the month of satellite acquisition 
and a spectral channel or indice. For example, “May_BI” represents the brightness index calculated from the 
May RapidEye image. prep: precipitation, temp: temperature.  

 
Tab. III-7 reveals that generally, satellite images acquired in June and May were the 

most important in developing a model for predicting the soil properties under 

consideration. Spectral bands of the June Landsat image consistently came up as 

important predictors for the soil properties. The prominence of June and May images 

can partly be explained by the coincidence with the ploughing period or early stages of 

crop development when the soils of most agricultural plots are exposed. This allows 

satellite sensors to directly measure soil reflectance; hence, a good correlation between 

laboratory processed soil samples and satellite derived spectral reflectance is possible. 

The March imagery was the most important spectral predictor for SOC and N in MLR 

and was listed also for CEC and N in RFR (Tab. III-7). March and April are the hottest 
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months in the studied watershed, thus the prominence of the March imagery could be 

attributed to a higher loss of biomass with consequent higher mineralisation rate and 

SOC input.  

Tab. III-7 further reveals that the shortwave infrared (SWIR) and near-infrared (NIR) 

channels of Landsat, as well as soil specific indices like brightness, redness and 

saturation index were important spectral predictors in developing the respective 

models. The importance of the SWIR and NIR channels in this analysis confirms the 

findings of other studies. Liao et al. (Liao et al., 2013) used Landsat ETM bands as 

covariates in modelling soil textural properties (sand, silt, clay) and found that NIR 

(band 4) and SWIR (band 5, band 7) had a significant correlation with the analysed 

soil properties and explained most of their variability. Soil specific spectral indices 

were also found useful in digital soil mapping by other studies (Ray et al., 2004). 

3.3. Maps of the spatial distribution of the soil properties  

 In our study, the spatial distribution of soil properties does not display a clear pattern 

of hot and cold spot areas for all soil properties, but rather a patchy distribution (Fig. 

III-1). However, along the western border of the study area, medium to higher values 

of clay, CEC, SOC and N are observed while the proportions of silt, on the contrary, 

recorded their lowest values in these areas. These zones correspond to the most 

elevated terrain where natural vegetation is prominent and accessibility is difficult for 

farming activities.  This suggests a higher net primary production providing the input 

for nitrogen and carbon whose stability is reinforced by a higher clay content resulting 

in a higher CEC. It is widely acknowledged that SOC input is higher where substantial 

net primary productivity deposit occurs (Wålinder, 2014; Siegmann and Jarmer, 2015). 

The remaining areas of lower elevation are settlement zones and cultivated areas and 

consequently displayed relatively medium (yellowish areas) and lower values 

(greenish areas) for the soil properties with some spots of high values in certain places. 



III. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso 

46 

 

 

Fig.   III-1: Spatial distribution of sand, silt, clay, cation exchange capacity (CEC), soil 
organic carbon (SOC) and total nitrogen (N) in the topsoil of the studied watershed 
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4. Conclusion 

Accurate and detailed spatial soil information is essential for environmental modelling, 

risk assessment and decision making. This study explored the use of high spatial 

resolution satellite (RapidEye and Landsat) and terrain/climatic data as well as 

laboratory analysed soil samples to map the spatial distribution of six soil properties – 

sand, silt, clay, CEC, SOC and N – in a 580 km2 agricultural watershed in south-

western Burkina Faso. Four statistical prediction models – multiple linear regression 

(MLR), random forest regression (RFR), support vector machine (SVM), stochastic 

gradient boosting (SGB) – were tested and compared. Internal validation was 

conducted by cross validation while the predictions were validated against an 

independent set of soil samples considering the modelling area and an extrapolation 

area.  

Results indicate that the RFR performed marginally better than the remaining models 

at modelling stage for most soil properties except for sand and clay for which MLR 

offered a better predictive ability. However, the RFR achieved a higher performance 

statistics for the external validations in the considered areas but not for all soil 

properties in the extrapolated area. Beyond the modelling area, the SVM better 

predicted SOC while SGB performed better for CEC and N.  

The machine learning algorithms performed generally better than the MLR for the 

prediction of soil properties at unsampled locations. Inability of MLR to handle non-

linear relationships between dependent and independent variables is believed to be the 

source of this limitation. Prediction accuracies from the RFR model ranged from 68 % 

for CEC to 89 % for silt.  

These prediction accuracies can be deemed to be reasonable, considering the high 

variability in farm management practices and environmental variables in the studied 

watershed. Satellite data acquired during ploughing or early crop development stages 

(e.g. May, June) were found to be the most important spectral predictors while 

elevation, temperature and precipitation came up as prominent terrain/climatic 

variables in predicting soil properties. The shortwave and near infrared channels of 



III. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso 

48 

 

Landsat8 as well as soil specific indices of redness, coloration and saturation were 

prominent spectral channels. 

The accuracies obtained in this study are promising for future local scale digital soil 

mapping efforts in data poor regions such as West Africa, considering the increasing 

availability of free high resolution remote sensing data. The use of remote sensing data 

can reduce soil sampling efforts and therefore reduce soil mapping costs. Further 

research is, however, required on the effect of high variability in farm management 

practices and environmental variables on the accuracy of digital soil maps. 
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1. Introduction 

Soils are key asset for sustainable living conditions on earth as their functions are 

related to food and biomass production, water control and chemical recycling, 

platform provision for human activities, supply of raw materials and the offering of 

habitat for soil biodiversity (Blum, 2005). Though soil importance is generally 

acknowledged, farmers, decision makers as well as the scientific community often lack 

adequate and timely spatial soil information to address land degradation issues. 

Various initiatives such as the GlobalSoilMap.net project are currently working to 

overcome the previous challenges in order to provide up-to-date and relevant soil 

information in Africa using modern techniques (Sanchez et al., 2009). Being a time- 

and cost-effective alternative to classical soil surveys, digital soil mapping (DSM; 

McBratney et al., 2003) – also called soil-landscape modelling (Gessler et al., 1995) 

and predictive soil mapping (Scull et al., 2003) – is a subset of pedometrical research 

using geo-statistics and data mining methods to spatially predict soil classes or soil 

properties based on existing soil and environmental covariate data.  

When mapping soil taxonomy units, the quantitative relationship between a certain 

class unit and the soil formative environmental factors is supposed to be unique as soil 

classes are different from each other. However, in complex soil-landscapes, the 

individual features of certain soil classes overlap in space, which is particularly 

difficult for correct DSM with imbalanced datasets (Gopi et al., 2016). Ideally, 

balanced datasets are required for decision trees algorithms to produce better 

classification (Ertekin et al., 2007). However, DSM mostly focuses on soil legacy data 

whose sampling design might not provide such ideal scheme for post hoc analysis 

(Mayr et al., 2010), especially for data scarce countries like in tropical areas. 

Generally, for datasets with uneven class size, the classification model, which is 

generated from decision trees (DT) algorithm, biases towards the majority class 

(Ertekin et al., 2007).  

This section addresses a digital soil mapping approach to classify reference soil groups 

in a tropical environment using a large dataset with Plinthosols (PT) as the dominant 

group. I used Random Forest (RF) as robust data mining method (Schmidt et al., 2014) 
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to evaluate the performance of different data subsets to deal with class imbalances  (e. 

g. Schmidt et al., 2008) and noise within the dataset. The various RF-models were 

trained on a detailed covariate set including terrain and multispectral predictors. 

Though the issue of class imbalance has been acknowledged in many studies dealing 

with soil classification, to my knowledge, no such method has been applied for legacy 

soil data from a tropical semi-arid environment. This approach being considered, I 

hypothesized that: (1) instance selection on the majority soil group would improve the 

performance of the RF models and result in a better classification of the minority soil 

groups, (2) integrating spectral bands and indices along with environmental covariates 

would have greater impacts on RF classification performance compared to their unique 

contribution.  

2. Materials and methods  

2.1. Study area (see section II. 1) 

2.2. Soil Sampling  (see section II. 2) 

2.3. Reference soil groups  

Six soil classes were encountered in the Dano catchment and were described based on 

the WRB as follows: Cambisols, Gleysols, Lixisol, Leptosols, Plinthosols and 

Stagnosols. The Cambisols are young soils with incipient soil formation with 

beginning horizon differentiation demonstrated by changes in colour, structure or 

carbonate content. Gleysols refer to water influenced soils which are saturated with 

groundwater for long enough periods to develop a characteristic “gleyic colour 

pattern” made up of reddish, brownish or yellowish colours at ped surfaces and/or in 

the upper soil layer(s), along with greyish/bluish colours inside the peds and/or deeper 

in the soil. Stagnosols are also water influenced soils characterized by a perched water 

table showing redox processes caused by surface water due to periodical wetting; they 

are mottled in the topsoil and subsoil, with or without concretions and/or bleaching. 

Lixisols consist of strongly weathered soils in which clay has been removed from an 

eluvial horizon down to an argic subsurface horizon that has low activity clays and a 

moderate to high base saturation level. Leptosols include very shallow soils over hard 

rock or very calcareous material, but also deeper soils that are extremely gravelly 
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and/or stony. Plinthosols point to soils that contain ‘plinthite’, i.e. an iron rich, humus-

poor mixture of kaolinitic clay with quartz and other materials that change irreversibly 

to a hardpan or to irregular aggregates on exposure to repeated wetting and drying. For 

more detailed description refer to IUSS et al. (2006). 

2.4. Geospatial and spectral variables 

To provide a wide range of different environmental covariates dealing with the state 

factor equation, a set of predictors was delineated (95 variables, Tab. IV-1 & Tab. III-

1), which were compiled from different sources with ArcGIS 10.3.1 (Environmental 

Systems Research Institute, ESRI Inc., Redlands, CA) and SAGA GIS (System 

for Automated Geoscientific Analyses). About 45 of these variables are terrain 

attributes (Tab. IV-1), 45 are spectral bands and indices (Tab. III-1) while the 

remaining data (Tab. IV-2) relate to land use, parent material, geormorphology, and 

climate (temperature and precipitation).  

The terrain attributes were derived from a SRTM (Shuttle Radar Topography Mission) 

DEM with a 90 m resolution (Jarvis et al., 2008).  For land use data, the map generated 

by Forkuor (2014) covering the study area was used. The parent material allocated to 

each sampling location was extracted using a geological map (1/ 100 000) of Burkina 

Faso made by Hottin and Ouedraogo (1992). A geormorphological map (1/ 100 000) 

from the National Soil Office was considered (Bureau National des sols, 2000). 

Climatic data include mean annual temperature (Temp) and annual precipitation (Prep) 

at 1 km resolution from the worldclim datasets (Hijmans et al., 2005b) .  

For the spectral data see section III. 2.4.1. Finally all datasets were resampled to a 

spatial resolution of 90 m.  
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Tab.  IV-1:Terrain attributes used as predictors for soil mapping 
 

Variables Abbreviation Unit 
Distance to stream  ArcGis Dist.stream m 
Relief intensity  ArcGis Ri m/m2 
Potential drainage density  ArcGis Pdd km/km2 
Elevation  ArcGis Elevation m 
Slope  ArcGis Slope.per  % 
Maximum Slope SAGA Slope.maxT ° 
Steepest slope SAGA steepest.slope ° 
Flow direction ArcGis/SAGA  A.Flow.d/S.Flow.d* - 
Flow accumulation ArcGis/SAGA  A.Flow.A/S.Flow.A - 
Profile curvature ArcGis A.Profile.cur/S.Profile.curv ° m-1 
Curvature ArcGis A.curv   m-1 
Plan curvature ArcGis A.Plan.curv/S.Plan.curv ° m-1 
General  curvature SAGA S.Gen.curv ° m-1 
Total curvature SAGA S.totalcuv ° m-1 
Min curvature SAGA S.min.curv ° m-1 
Max curvature SAGA S.max.cuv ° m-1 
Horizontal curvature SAGA S.Hor.curv ° m-1 
Cross curvature SAGA S.cross.curv ° m-1 
Flow line curvature SAGA S.Flow.line.curv ° m-1 
Catchment Area Rectangle SAGA S.CA.Rec m2 
Catchment Area Parallel SAGA S.CA.Par m2 
Catchment Area  SAGA S.CA m2 
Aspect ArcGis/SAGA A.Asp/S.Asp - 
Eastness sine.Asp ° 
Northness cose.Asp ° 
Slope Length factor SAGA LS.Factor m 
Topographic Wetness Index 
ArcGis/SAGA  

A.TWI/S.TWI - 

Topographic Wetness Index 
SAGA 

S.TWI - 

SAGA Wetness Index SAGA S.Wet.Ind - 
Vertical Flow Distance SAGA Verti.Flow.dist m 
Vertical distance to a network 
Channel SAGA 

Verti.dist.Net m 

Terrain ruggedness SAGA Terr.Rugg 
 

Topographic position index 
SAGA 

Topo.Posi.Ind 
 

Protection index SAGA Prot.Index - 
Overland flow distance SAGA Overland.Flow.dist m 
Mass Balance index SAGA Mass.Bal.ind - 
Horizontal flow distance SAGA S.HF.dist m 
Convergence Index SAGA S.convg.ind - 
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Channel base index SAGA S.Chanbase.ind - 
 
Tab.  IV-2: Land use, lithology, geomorphology units and descriptive statistics for 
climate variables 
 

  Elements Area (km2) Area (%) 

Land use units 

Cropland  58.18 34.54 
Savannah  90.24 55.22 
Water  0.46 0.30 
Bare areas 4.43 2.86 
Urban areas  1.24 0.80 

 

Lithology units 

Granodiorites and undifferentiated 
tonalites   0.20 0.13 
Acid Metavolcanites and 
pyroclastites  14.49 

9.35 

Volcano sedimentary rocks   111.78 72.12 
Neutral to alkaline Metavolcanites   28.53 18.41 

  
 

Geomorpholog
y units 

Lateritic ridge   23.18 14.96 
Rocky  ridge   4.24 2.74 
Plateau   15.71 10.14 
Upper slope glacis   12.05 7.78 
Middle slope glacis   15.67 10.11 
Alluvial levee   0.38 0.25 
Inland valleys   17.09 11.03 
Peripheral depression   66.65 43.00 

  
Climate variable 

Statistics Temperature (°C) 
 Precipitation 

(mm) 
min 27.22  775.83 
max 27.92  810.83 
median 27.63  794.17 
sd   0.13      8.53 
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2.5. Modelling with Random Forest  

(see section II. 7 for background information about Random Forest) 

For the present study, 1000 trees were built and the number of features at each split 

was defined based on the ten-fold cross-validation tuning procedure with the 

Classification and Regression Training (Caret) package in R software (Kuhn, 2015).  

Though RF is quite robust towards multicollinearity, the presence of highly correlated 

covariates can lead to biased interpretation as they carry the same information (Kuhn, 

2008). Moreover, Genuer et al. (2010) reported that the variable importance based on 

the mean decrease in classification accuracy is overestimated for highly correlated 

variables. For model prediction, the feature space was reduced in two ways. Firstly by 

computing a correlation matrix for the terrain attribute predictors and identifying the 

minimal set of predictors that can be removed using a specific threshold. This was 

carried out using the classification and regression training (Caret) package (Kuhn, 

2015) in R 3.1.2. A specific threshold of 0.70 was set and the predictor most involved 

in the pairwise correlations was removed.  

Secondly, recursive feature elimination (Kuhn and Johnson, 2013) function of the 

classification and regression training (Caret) package (Kuhn, 2015) was used to select 

among all the variables an optimal set of parameters for classification. Recursive 

feature elimination works by establishing a classification model using all the available 

predictors, then proceeds to rank these predictors by order of importance, and next 

discards the predictors of the lowest importance. It replicates the same process till 

either the reach of a specific threshold or when only one predictor is left (Brungard et 

al., 2015). The RF modelling was then carried out using covariate predictors retained 

based on the correlation matrix (RF) and also by using an optimal set of predictors 

resulting from recursive feature elimination (RF_rfe).  

To assess the influence of the different spectral and terrain variables on soil class 

prediction, a different combination was carried out for running the models: (1) only the 

spectral parameters (SP), (2) only the terrain parameters (TP) and (3) both terrain and 
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spectral parameters (TSP). However, the Litho, Geo, LU and Prep attributes were used 

along the terrain attributes. 

2.6. Experimental design: data pruning 

The field observation of this study revealed the Plinthosols as the dominant reference 

soil group with about 73  % of the grand total percentage (Tab. IV-3). As general 

assumption, the possibility of a potential overestimation of this particular soil class 

was envisaged as is often the case for such kind of big datasets with imbalance related 

issues. The first step in the present study was therefore to test this hypothesis by 

running the model with the entire dataset. In a second step, data pruning was carried 

out as a method to tackle the potential prominence of the majority class in the feature 

space once the latter hypothesis revealed true. For this purpose, a set of data pruning 

experiments was conducted by defining a set of data core ranges (CR).  

The different pruning operations were carried out based on the RF variable importance 

measurement expressed by the mean decrease in classification accuracy. The latter 

follows the rationale that when values of a variable at a particular node are randomly 

permuted, this variable is supposedly absent from the model. The difference in the 

classification accuracy before and after the permutation of the values of the predictor 

variable, i.e. after considering and excluding this predictor variable, is used as a 

measure of variable importance (Strobl et al., 2008). These computations are 

conducted tree by tree till the whole random forest is constructed (Liaw and Wiener, 

2002). This results in the discrimination between essential and inessential variables. 

The most important variable is the one with the highest contribution to model accuracy 

and with the greatest impact in the feature space, driving the overall classification. 

Consequently, the most important variable – the wetness index - was used to determine 

the data core range for the pruning operation of the Plinthosols.  

The data pruning experiments were carried out  by defining a set of  80 % (80 % CR) 

and 90 % (90%CR) core range of the Plinthosol data as well as a standard deviation 

(σ) based (SDCR) core range while cutting off all data points belonging to the outer 

range. These core ranges were set by (i) calculating the density distribution of the 

wetness index  as revealed by the RF model, (ii) calculating the cumulative percentage 
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by dividing the cumulative frequency by the total number of observations (n), then 

multiplying it by 100 (the last value being equal to 100 %), (iii) cutting off all data 

points belonging to the outer ranges of a chosen data core range, i.e. for defining, e.g., 

a 80 % core range (Fig. IV-2), all points lower than 10 % and higher than 90 %  of the 

cumulative percentage were cut off. Similarly, a core range based on the standard 

deviation (σ) of the values (about 68% core range) of the wetness index was defined 

(Fig. IV-3). For that purpose, values lower than “µ - σ” (with µ being the arithmetic 

mean of the driving variable) as well as values higher than “µ + σ” were cut off. The 

standard deviation based core range (SDCR) was then set by considering data values 

within one standard deviation of the mean (mathematically, µ ± σ). 

 

Fig.   IV-1: Core range definition of the Plinthosol dataset based on the cumulative 
percentage of the density distribution of the driving variable (wetness index) 
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Fig.   IV-2: Core range definition of the Plinthosol dataset based on the standard 
deviation of the values of the driving variable (wetness index) 
 

Finally, a total of four different datasets were defined: (1) entire dataset with all the 

Plinthosols (AllPT), (2) a 90 % core range (90%CR) of the PT dataset, (3) a 80 % core 

range (80%CR) of the PT dataset by cutting off all points lower than 10 % and higher 

than 90  % of the cumulative percentage,  (4) a SD core range (SDCR) of the PT 

dataset by pruning values lower and higher than “µ - σ”and “µ + σ” respectively. Each 

dataset was used to train a RF model along with the different categories of predictors: 

spectral parameters (SP), terrain parameters (TP), terrain plus spectral parameters 

(TSP). 
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Tab.  IV-3: Count (n) and frequencies (%) of the reference soil groups in the Dano 
catchment 
 

Reference soil groups n Percentage of grand total (%) 

Cambisols (CM) 86 6.68 

Gleysols (GL) 141 10.95 

Leptosols (LP) 22 1.71 

Lixisols (LX) 59 4.58 

Plinthosols (PT) 645 73.45 

Stagnosols (ST) 34 2.64 

 

2.7. Model validation and map comparison 

The dataset was split with 80 % used for training and 20 % for validation. The 

different pruning was carried out on the train set obtained from the split. These pruned 

dataset (80%CR, 90%CR and SDCR) were evaluated over the same validation data 

initially obtained from the split. The classification accuracy was based on the Kappa 

index. The Kappa value (ϰ) gives the level of accuracy for a particular classification 

due to chance agreement (Congalton and Green, 2008). This is particularly important 

when dealing with unbalanced class data as a class having larger distribution would 

result in higher classification accuracy. A ϰ value of 0 was considered as a random 

classifier, 1 as perfect classification, 0.80 as strong agreement, between 0.4 and 0.8 as 

substantial agreement and below 0.4 as poor agreement (Congalton and Green, 2008). 

The kappa value was computed as follows: 

																								ϰ	 = 	 (N
(�) 	− 	N
(O))	/	(1 − N
(O))                                                       

with Pr(a) : relative observed agreement, Pr(e) : hypothetical probability of chance 

agreement, and ϰ  : the  kappa index value.  

3. Results 

3.1. Terrain attribute selection 

(IV-1) 
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The minimal set of predictors finally retained for modelling after computing the 

correlation matrix amounted to 50 variables. Selected predictors consisted of 19 DEM 

attributes, 22 spectral data as well as lithology, geomorphology, land use, and 

precipitation. Using the so-called scorpan function (McBrantney et al., 2003), the 

analyses included the:  (1) soil attributes (s) represented by the  spectral band and 

indices like redEdge, Hue Index (HI), Coloration Index (CI), Redness Index (RI), 

Brightness Index (BI), Near-infrared (NIR), Shortwave-infrared (SWIR), Saturation 

Index (SI); (2)  precipitation as climatic (c) element, (3) indices for vegetation and 

human activity (o) such as normalized difference vegetation index (NDVI), land use, 

(4) terrain (r) variables  and (5) lithology as proxy for parent material (p). The optimal 

subset of covariate predictors resulting from the recursive feature elimination approach 

returned eight variables, namely: wetness index, elevation, distance to stream to 

network, protection index, precipitation, near infrared and shortwave infrared. 

3.2. Model performances with different data treatments 

The performance of the RF models was assessed for different data experiments 

consisting of the entire dataset (AllPT) and the pruned dataset (i.e., 80%CR, 90%CR 

and SDCR) based on: (1) OOB errors of the different RF models, and (2) the 

independent validation samples (prediction accuracy of the independent sample set and 

Kappa values). The data pruning was carried out based on the SAGA wetness index, 

since this parameter had been identified as contributing most to RF performance in 

classification accuracy even with RF models based on recursive feature elimination 

(Fig. IV-6).  

3.2.1. Assessment based on the OOB errors 

The OOB errors varied with the different combinations of dataset and category of 

variable (Tab. IV-4). The highest OOB errors were recorded for the prediction based 

on spectral parameters, ranging from 28.7 % to 32.7 %. The lowest OOB errors were 

obtained with the terrain parameters (20.0 % to 22.4 %) and with the terrain plus 

spectral parameters (20.1 % to 22.6 %). Increasing the level of pruning was generally 

followed by increasing OOB errors for the spectral parameters for both RF and 

RF_rfe. The OOB errors using the entire data (AllPT) recorded mostly the highest 
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OOB errors compared to those of the pruned dataset when terrain parameters only or 

terrain plus spectral parameters were used as predictors. The lowest OBB error (19.6 

%) was recorded for the 90%CR dataset associated with terrain plus spectral 

parameters. 

Tab.  IV-4: Training set, percentage of Plinthosols (PT) samples removed from the total 
set, and out of of the bag errors (OOB error) distribution of the different subsets of 
data 
 

OOB error (%) 

  
Data treatment n PT removed (%) 

Spectral 
Parameters 

Terrain 
Parameters 

Terrain and 
Spectral 

Parameters 
RF AllPT 792 - 28.7 22.4 22.4 

90%CR 743 6.2 29.8 21.7 21.7 
80%CR 694 12.4 32.3 21.3 21.2 
SDCR 667 15.9 33.2 21.2 21.7 

RF_rfe AllPT 792 - 28.7 21.5 22.6 
90%CR 743 6.2 29.6 21.9 19.6 
80%CR 694 12.4 31.4 20.9 20.1 
SDCR 667 15.9 32.7 20.0 20.8 

PT: Plinthosols, OOB error: out of the bag error, AllPT: entire dataset, SDPT: dataset 
with PT pruned based on standard deviation, 15PT: dataset with 15 % of the PT 
pruned, 25PT: dataset with 25 % of the PT pruned, 30PT: dataset with 30 % of the PT 
pruned. 
 
 

3.2.2. Assessment based on independent validation samples 

The results of the performance of the RF models based on independent samples are 

presented in Tab. IV-5 showing the confusion matrix between observed and predicted 

reference soil groups for the entire dataset (AllTP). The RF and RF_rfe models for the 

entire dataset displayed a high level of accuracy for the identification of the 

Plinthosols (95-98  % for RF and 91-96 % for RF_rfe), irrespective of the category of 

parameters used. Both RF and RF_rfe performed better for the Gleysols and Leptosols 

when only terrain or terrain plus spectral parameters were considered, with the 

prediction accuracy being 18-30 % and 50 % greater, respectively, than achieved with 

the model that was based on spectral parameters only. Cambisols and Stagnosols, 

however, were in most cases not well predicted (< 35 % prediction accuracy), no 
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matter which model or category of parameters was chosen. Noteworthy, the 

classification shows that most of the reference soil groups were misclassified as 

Plinthosols, again irrespective of the category of model or parameters considered. 

Tab.  IV-5: Confusion matrix between observed and predicted reference soil groups for 
the entire dataset  

 
 RF RF_rfe 

 

Sp
ec

tr
al

 p
ar

am
et

er
s 

(A
llP

T
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 Predicted  (%) 

Observed CM GL LP LX PT ST 

CM 23.5 5.9 0.0 0.0 70.6 0.0 
GL 0.0 28.6 0.0 0.0 71.4 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 0.0 0.0 45.5 54.5 0.0 
PT 0.0 1.6 0.0 0.0 98.4 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

Predicted  (%) 

Observed CM GL LP LX PT ST 

CM 23.5 5.9 0.0 0.0 70.6 0.0 
GL 0.0 39.3 0.0 0.0 60.7 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 0.0 0.0 45.5 54.5 0.0 
PT 0.0 3.1 0.0 0.8 96.1 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 
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er
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in

 p
ar
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s 

(A
llP

T
) 

 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 23.5 0.0 0.0 0.0 76.5 0.0 
GL 0.0 60.7 0.0 0.0 39.3 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 0.0 0.0 45.5 54.5 0.0 
PT 0.0 4.7 0.0 0.0 95.3 0.0 
ST 0.0 0.0 0.0 16.7 66.7 16.7 

 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 23.5 0.0 0.0 0.0 76.5 0.0 
GL 0.0 57.1 0.0 0.0 42.9 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 9.1 0.0 45.5 45.5 0.0 
PT 0.0 5.4 0.0 0.0 94.6 0.0 
ST 0.0 0.0 0.0 16.7 66.7 16.7 
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nd

 S
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l 
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 (

A
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T
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Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 17.6 0.0 0.0 0.0 82.4 0.0 
GL 0.0 57.1 0.0 0.0 42.9 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 9.1 0.0 45.5 45.5 0.0 
PT 0.0 5.4 0.0 0.0 93.8 0.8 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 23.5 5.9 0.0 5.9 64.7 0.0 
GL 0.0 60.7 0.0 0.0 39.3 0.0 
LP 0.0 0.0 50.0 0.0 50.0 0.0 
LX 0.0 9.1 0.0 63.6 27.3 0.0 
PT 1.6 7.0 0.0 0.0 91.5 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

Models with (RF_rfe) and without (RF) recursive feature elimination; AllPT: entire dataset, CM: Cambisols, 
GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols. 
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With increasing pruning level, gain in prediction accuracy was observed for most of 

the different reference soil groups particularly when terrain or terrain plus spectral 

parameters were used (Fig. IV-4). The RF models based on the recursive feature 

elimination performed in most cases slightly better than those on a normal run of the 

RF. For instance, improvement in classification for the Cambisols was observed with 

the RF_rfe models when using the 80 % (80%CR) and 90 % (90%CR) core range, 

dataset combined with terrain plus spectral parameters. These Cambisols gained 35 % 

and 41 % respectively in prediction accuracy compared to the results with the model 

based on the entire dataset (AllPT). Likewise, with the RF_rfe models, the Gleysols 

also recorded an increase of 7 % in prediction accuracy with both the 80 % (80%CR) 

and 90 % (90%CR) core range dataset combined with terrain plus spectral parameters 

while the standard deviation core range (SDCR) produced an increase of 10 % when 

associated with the same category of predictors. The highest prediction accuracy for 

the Lixisols was recorded with the normal RF with 80 % core range (80%CR) and 

standard deviation core range dataset (SDCR) associated with terrain parameters with 

an increase of 18 % compared to the results with the entire dataset (AllPT).  

The prediction of the Leptosols were greatly improved when both RF and RF_rfe 

models were run with either terrain only or with terrain plus spectral parameters 

resulting in an increase of 25 % in prediction accuracy. No other improvement 

occurred for the Leptosols with the pruned dataset. For the Stagnosols, most of their 

validation sample points were predicted with 33 % in prediction accuracy except for 

the RF model based on the standard deviation core range dataset (SDCR) associated 

with terrain plus spectral parameters. The latter recorded up to 50 % in prediction 

accuracy. Compared to results from models based on the entire dataset (AllPT), the 

Plinthosol prediction accuracy dropped generally with increased pruning intensity 

when using either the terrain parameters only or when the latter were used along the 

spectral parameters. The RF_rfe model based on the 90%CR dataset associated with 

the terrain plus spectral parameters recorded a drop of 4.7 % in prediction accuracy for 

these Plinthosols compared to the results with the entire dataset (AllPT).  
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The highest kappa value for model based on the entire dataset (AllPT) was found with 

the RF model associated with the terrain parameters with ϰ=0.51 (Fig. IV-5). 

Considering the variation of the kappa values (ϰ) in relation to the data treatment, the 

pruned datasets with models based on the recursive feature elimination (RF_rfe) 

generally recorded higher Kappa values than the AllPT reference when terrain plus 

spectral parameters were used as predictors.The combination of the 90%CR and 

80%CR dataset (90%CR) with terrain plus spectral parameters (90%CR-TSP) 

recorded the highest kappa value with respectively ϰ=0.57 and ϰ=0.55. Models run 

with spectral parameters recorded the lowest kappa values while those conducted with 

the terrain parameters were improved by recursive feature elimination. However, Fig. 

IV-5 also shows that the kappa values dropped for most of the models based on the 

standard deviation core range dataset (SDCR). It is worthy to note that the model 

based on the 90%CR associated with the terrain plus spectral parameters also recorded 

the highest kappa value with the lowest OOB errors (19.6 %). 
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Fig.   IV-3: Accurately predicted reference soil groups for different sets of data and 
covariates 
Models with  (RF_rfe) and without (RF) recursive feature elimination. CM: 
Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: 
Stagnosols, SP: spectral parameters; TP: topographic parameters, TSP: topographic 
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and spectral parameters. AllPT: entire dataset including all Plinthosols, AllPT: entire 
dataset, 90%CR: dataset with 5 % lower and upper range pruning, 80%CR: dataset 
with 10 % lower and upper range pruning, SDCR: dataset with standard deviation 
based pruning 
 

Treatment

AllPT 90%CR 80%CR SDCR
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Fig.   IV-4: Variation of Kappa values in relation to data treatment 
AllPT: entire dataset, 90%CR: dataset with 5 % lower and upper range pruning, 
80%CR: dataset with 10 % lower and upper range pruning, SDCR: dataset with 
standard deviation based pruning, SP_rfe: spectral parameters (SP) with recursive 
feature elimination, TP_rfe: terrain parameters (TP) with with recursive feature 
elimination, TSP: terrain and  spectral parameters (TSP) with recursive feature 
elimination.. 

 

3.3. Prediction of the pruned Plinthosols 

Since the models run with the spectral parameters recorded the lowest kappa values, 

prediction of the pruned Plinthosols were only carried out with the RF and RF_rfe 

models associated with either terrain parameters only or with terrain plus spectral 

parameters (Tab. IV-6). Tab. IV-6 shows that none of the models could perfectly 

predict the Plinthosols, though about half of the models attributed the highest 

prediction to the Plinthosols. Most of the Plinthosols were predicted as Cambisols 

(17.7-44.7 %) compared to the remaining RSG while very few were predicted as 

Leptosols (0-8 %). The highest accurate prediction (> 30 %) varies from 38.8 % 

(90%CR-TSP of the RF_rfe model) to 71.4 % for the Plinthosols (90%CR of the RF 

model). All the predictions based on the terrain plus spectral parameters from the 
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RF_rfe models resulted in higher predictions of the Plinthosols compared to the 

Cambisols and remaining soil units.  

Tab.  IV-6: Confusion matrix between observed and predicted reference soil groups for 
the pruned Plinthosols 

 RF RF_rfe 
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0%
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R
)  Predicted  (%) 

Observed CM GL LP LX PT ST 

PT 4.1 12.2 8.2 2.0 71.4 2.0 
 

Predicted  (%) 

Observed CM GL LP LX PT ST 

PT 32.7 14.3 2.0 10.2 26.5 14.3 
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Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 35.7 12.2 1.0 10.2 22.4 18.4 
 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 22.4 11.2 1.0 9.2 42.9 13.3 
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Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 40.7 10.6 1.6 10.6 16.3 20.3 
 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 28.5 9.8 0.8 9.8 34.1 17.1 
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Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 44.7 15.4 0.0 7.3 15.4 17.1 
 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 26.5 16.3 0.0 10.2 38.8 8.2 
 

   

T
er

ra
in

 a
nd

 
sp

ec
tr

al
 

pa
ra

m
et

er
s 

 
(8

0%
C

R
)  

Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 35.7 20.4 1.0 13.3 21.4 8.2 
 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 17.5 18.6 3.1 5.2 42.3 13.4 
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Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 44.7 15.4 0.0 7.3 15.4 17.1 
 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

PT 18.7 17.9 2.4 5.7 43.1 12.2 
 

Models with (RF_rfe) and without (RF) recursive feature elimination; CM: Cambisols, GL: Gleysols, LP: 
Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset with 5% lower and upper range 
pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR: dataset with standard deviation based 
pruning 

 

3.4. Variable importance 

Though many models were considered in the present study with different dataset, 

results for the variable importance focused only on those which recorded high Kappa 

values for each category of predictors. Fig. IV-6 presents the variable importance from 
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models based on (i) the entire dataset associated with terrain parameters (AllPT-TP), 

(ii) 90 % and 80 % core dataset (90%CR, 80%CR) associated with terrain plus spectral 

parameters, (iii) the standard deviation core range (SDCR) dataset associated with the 

spectral parameters. Only the five top variables are presented in the figure 

For models based on the entire dataset (AllPT) and on  the 90 % and 80 % core dataset 

(90%CR, 80%CR), the SAGA wetness index (S.Wet.Ind) was ranked as the most 

important variable driving the reference soil group classification no matter which 

dataset was used. It was followed by the distance to stream network (Dist.stream) and 

either by the protection index (degree of local surface convexity or concavity) or 

elevation. Considering the different reference soil groups, the Gleysols mainly 

discriminated significantly from the remaining reference soil groups by having the 

highest moisture level beside the Stagnosols and Lixisols, which also displayed 

relatively high moisture status (Tab. IV-7). However, the Gleysols differentiated from 

the latter and from other reference soil groups with the lowest distance to stream 

network and lowest position in the landscape.  

Stagnosols were characterized by the highest moisture level after the Gleysols, and by 

the highest distance to stream network with a lower protection index. The Lixisols 

revealed one of the highest moisture level after the Stagnosols, in lower elevation and 

protection index areas as the Gleysols, but with a higher distance to stream. The 

moisture distribution along with the distance to stream and elevation also clearly 

differentiated between the Cambisols and the remaining reference soil groups but 

particularly it singled out the former from the Leptosols, to which no significant 

difference was found regarding the protection index. The Leptosols were identified by 

their lowest soil moisture level as well as by their location at higher elevation and 

increased slope abundance (higher protection index) along with higher distance to the 

stream network. The Plinthosols discriminated from all the remaining reference soil 

groups by their moisture distribution along with the distance to stream for some 

(Cambisols, Gleysols, Stagnosols) and elevation for others (Leptosols and Lixisols). 

The terrain parameters took preeminence over the spectral data considering the 90 % 

and 80 % core dataset (90%CR, 80%CR) associated with terrain plus spectral 
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parameters. The shortwave infrared taken in June (June_SWIR2) was listed only at the 

fifth position after the terrain attributes for the 80 % core range dataset (80%CR) while 

no spectral data appeared in the five top parameters for the 90 % core range dataset 

(90%CR).  Overall, the contribution of the computed spectral indices was relatively 

low with soil color (June_CI) coming the fifth position when only spectral parameters 

were used with the standard deviation core range (SDCR), though the latter provided 

the highest Kappa value for this particular category of predictor. The results further 

revealed that the spectral data acquired in June were the most prominent ones for the 

classification of reference soil groups in the Dano catchment.   

 

 

  
 
Fig.   IV-5: Variable importance for the different data experiments (experiments 
defined in Tab. IV-1) 
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Models with (RF_rfe) and without (RF) recursive feature elimination; AllPT-TP: 
entire dataset including all Plinthosols & topographical parameters (TP), 90%CR-TSP: 
dataset with 5 % lower and upper range pruning & topographic and spectral 
parameters (TSP), 80%CR-TSP dataset with 10 % lower and upper range pruning & 
topographic and spectral parameters (TSP), SDCR-SP: dataset with standard deviation 
based pruning & spectral parameters, S.Wet.Index: Saga wetness index, Dist.stream: 
distance to streams, Prot.Index: protection index, S.HF.dist: horizontal flow distance, 
NIR: near infrared, SWIR: shortwave infrared, CI: coloration 

 
Tab.  IV-7: Kruskal–Wallis one-way analysis of variance of the main terrain 
parameters for the different reference soil groups based on the 90%CR dataset and 
topographic plus spectral (90%CR-TSP)  
 

         

RSG (n) 
Wetness  

Index 
    Distance to  
    stream (m) 

    Elevation 
       (m) 

   Protection  
      Index 

mean  sd mean   sd mean sd mean sd 
Cambisols 
(n=69) 

7.82a (±0.68) 
647a (±512) 313a (±21) 0.03a (±0.01) 

Gleysols 
(n=113) 

8.72b (±0.71) 
242b (±199) 287b (±14) 0.02b (±0.01) 

Leptosols 
(n=18) 6.03c (±1.29) 857c (±441) 372c (±35) 0.06ac (±0.03) 
Lixisols  (n=48) 8.26d (±0.97) 569ad (±307) 293bd (±24) 0.02bd (±0.01) 
Plinthosols 
(n=467) 8.03ae (±0.4) 747cde (±515) 309e (±20) 0.02bde (±0.01) 
Stagnosols 
(n=28) 8.46bdf (±0.68) 947cf (±482) 309aef (±22) 0.02bdef (±0.01) 
RSG: reference soil group ; letters indicate whether the means are significantly 
different or not at p=0.05. Same letters stand for no significant difference.  

3.5. Spatial distribution of the reference soil groups 

 

The maps (Fig. IV-7) of the RF model based on the entire dataset (AllPT-TP) as well 

as the RF_rfe model from the standard deviation pruned dataset with spectral 

parameters (SDCR-SP) reveal an overestimation of the Plinthosols compared to field 

observation. However, using only spectral data with the entire dataset resulted in many 

small and isolated spots compared to the continuity and homogeneity of the remaining 

reference soil groups observed in the map from the AllPT associated with terrain 

parameters. With the pruned dataset (90%CR, 80%CR from RF_rfe) combined with 
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terrain and spectral parameters, the remaining soil groups came more into focus. This 

holds particularly true for the Lixisols and Stagnosols with the maps based on the 90 

% and 80 % core dataset (90%CR, 80%CR from RF_rfe) associated with terrain plus 

spectral parameters.  

The soils established on hard rock were classified as Leptosols by all models. Gleysols 

were predicted in the inland valleys while soils predicted as Cambisols were in general 

located in the Western part of the study area and mostly predicted in mid-slope 

regions. Lixisols were mapped in the lower elevation area and spots of Stagnosols 

were scattered all over the study area, especially in the southern and the eastern part. 

Plinthosols as the dominant soil group covered most of the landscape but were 

spatially restricted in the western area where Leptosols and Cambisols were more 

abundant. 
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Fig.   IV-6: Spatial distribution of the reference soil groups 
Models with (RF_rfe) and without (RF) recursive feature elimination; AllPT-TP: 
entire dataset including all Plinthosols & topographical parameters (TP), 90%CR-TSP: 
dataset with 5 % lower and upper range pruning & topographic and spectral 
parameters (TSP), 80%CR-TSP dataset with 10 % lower and upper range pruning & 
topographic and spectral parameters (TSP), SDCR-SP: dataset with standard deviation 
based pruning & spectral parameters. 
 

 

 

 

 

 

4. Discussion 

 

4.1. Model Performance 

The RF and RF_rfe models that were based on the entire dataset (AllPT) resulted in a 

relatively high OOB error compared with other datasets, with low prediction accuracy 

for the smaller reference soil groups and an overestimation of the abundance of 

Plinthosols (Tab. IV-4, IV-5 and Fig. IV-4). As expected, the Plinthosols exercised a 

stronger influence in the covariate space than other reference soil groups, which can be 

explained by the higher number of observations of this soil order. As a result, 

Plinthosols were overestimated while other soil classes were underestimated. When 

using the pruned dataset, the RF and RF_rfe models were most accurate when using 

either terrain parameters only, or a combination of the latter with spectral parameters 

(Fig. IV-4). The OOB errors were lower but revealed similar trends as those reported 

by Stum (2010) in western Utah, who found OOB errors of 58.9 % when using only 

DEM variables and 69.1 % when using the Landsat data only, while the combination 

of both DEM and Landsat data reduced OOB errors globally to 54.2  %. Brungard et 

al. (2015) reported an OOB error of  52 % when using both DEM and spectral data for 

reference soil group prediction. Differences in OOB values relative to our study are 
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due to the fact that OOB solely depends on the training set, which is site and data 

specific.  

With increasing pruning intensity, improvement in prediction occurred for most 

reference soil groups especially with the random forest based on recursive feature 

elimination which performed slightly better than the normal run with all the predictors 

(Fig. IV-4). With the RF_rfe associated with terrain plus spectral parameters, a 

relatively higher prediction accuracy was observed for the smaller reference soil 

groups while using the 90 % core dataset. The latter also recorded the lowest OOB 

error along with the highest kappa value showing substantial agreement between 

predicted and observed reference soil groups. Consequently, removing all Plinthosol 

points lower than 5 % and higher than 95  % of the cumulative percentage of the most 

important variable (wetness index) resulted in slightly better data quality. Actually, the 

removed points were located in the low frequency range of the wetness index 

distribution.  

Considering the frequency distribution of many predictors, Qi (2004) pointed out that 

samples from the modal range are more characteristic of a particular soil class than 

those belonging to the lowest frequencies, which are referred to as potential source of 

noise. As observed by Schmidt et al. (2008), such an approach is hardly applicable 

when dealing with many soil covariates since each predictor should be singled out in 

the analysis. However, focusing on the frequency distribution of the main driving 

predictor in the present study has proven to be satisfactory with the improvement in 

prediction accuracy observed with the pruned dataset in general and with the 90%CR 

dataset in particular. This 90%CR dataset includes the modal range of the wetness 

index with the outer range (5 %) being cut off. This suggests that the removal of 

samples beyond the modal range of a major soil reference group could result in an 

improvement in prediction accuracy, since they are rather a potential source of noise 

and redundancy due to overlapping information with small soil units.  

With increasing pruning intensity, the prediction accuracy for the Plinthosols dropped 

suggesting that a loss of information for this particular reference soil group occurred 

with the pruned samples. This remains the main challenge in downsampling as 
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reported by Visa and Ralescu (2005) as well as by Yan et al. (2015), leaving out 

samples might result in dropping along some useful instances. The core point is to get 

a representative subset that is still large enough that losses are minimized but small 

enough to allow learning algorithms to get the relevant information for prediction 

(Schmidt et al., 2008). In the present study the results seem to be satisfactory with only 

4.7  % drop in prediction accuracy for the Plinthosols by the 90%CR dataset with 

highest kappa value.  

The Kappa values dropped (Fig. IV-5) with most models with prediction based on the 

standard deviation core range dataset (SDCR). This seems to suggest the SDCR as the 

pruning limit for the particular dataset of the present study, while revealing pruning 

between 5 %-10 % as the potential range for model improvement. In fact, pruning 

beyond the SDCR did not result in further improvements (data not shown). Overall, 

the kappa values recorded in the present study (0.42 – 0.57) with the terrain and terrain 

plus spectral parameters are higher than those recorded by Brungard et al. (2015) (< 

0.4) who compared eleven machine learning models for predicting soil taxonomic 

classes in the semi-arid western US. However, as found out in the present study, the 

authors also point out that models with covariate predictors selected via recursive 

feature elimination result in higher prediction accuracy.  

The different models did not provide a perfect prediction for the pruned Plinthosols 

which were in some cases classified mainly as Cambisols compared to the remaining 

smaller units (Tab. IV-6). This suggests that the performance of the different models 

on unlearned dataset outside their respective core range is limited. Obviously, 

discriminating the feature space among the reference soil groups for a high prediction 

accuracy of the Plinthosols was faced with inherent inability to relate from previous 

learning. Since the removed Plinthosols data were at the outer ends of the distribution 

of the most important variable (wetness index) it was expected that their prediction 

would result in high interferences in the feature space among the reference soil groups 

especially with those having the same values within that range. Since the pattern in 

these particular datasets was initially unlearned by the models for the Plinthosols, the 

prediction with the terrain and spectral parameters from the RF_rfe models was 
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considered as satisfactory.  With about 71 % of the Plinthosols rightly predicted (Tab. 

IV-6), the model based on the 90%CR associated with terrain parameters could have 

been the best model if not for its low kappa (ϰ=0.45) compared to the RF_rfe models 

with the terrain and spectral parameters (e.g. 90%CR & 80%CR) recording higher 

kappa values (ϰ=0.55-0.57). Since the primary concern was the expression of smaller 

units while minimizing loss of predictive information of the Plinthosols, the results as 

obtained for the pruned core range dataset sample especially with the optimized 

predictors via recursive feature elimination pointed out the potential of data pruning to 

improve classification accuracy as shown by their kappa value. However, the point 

remains that any prediction of the Plinthosols based on unlearned dataset outside the 

core range will understandably come out with low to medium prediction accuracy. 

Improving the model accuracy as recorded in the present study might require either 

increasing the number of soil pedon observations for the small classes (Brungard et al., 

2015), or the assessment of additional soil features that  ameliorate the discrimination 

between the different reference soil groups. Since a large array of predictors including 

spectral data were considered in the present study, any further improvement might 

have to consider different multi- or hyperscale terrain information to account for 

different spatial scales within one model (Behrens et al., 2010a; Behrens et al., 2010b; 

Behrens et al., 2014). The present work suggests that already pruning can reduce the 

overwhelming influence of some dominant reference soil groups, thus better allowing 

for expressing soil classes of lower occurrence. 

 

4.2. Variable importance and spatial distribution 

The terrain attributes drove the classification of the reference soil groups in the Dano 

catchment (Fig. IV-6). The feature selection algorithms always selected the SAGA 

wetness index (S.Wet.Ind) followed by the distance to stream network (Dist.stream), 

the protection index (degree of local surface convexity or concavity), and elevation 

among the most important terrain attributes. These results are in line with findings of 

Dobos et al. (2001), who reported an ascendency of terrain attributes such as slope, 

curvature and potential drainage density over spectral data in temperate climates. 
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Similarly, Stum (2010) ranked elevation and slope first followed by spectral data. The 

preeminence of the SAGA wetness index as soil development factor in the Dano 

catchment suggests that the humidity regime is a key discriminatory element among 

the reference soil groups. The protection index, distance to stream and elevation may 

be seen along this line as additional key regulatory parameters for soil moisture and 

related spatial distribution of the different reference soil groups.  

Soils located at lower position and closer to streams, such as Gleysols and Lixisols 

(Fig. IV-6), had high moisture content than soils located at higher altitude and more far 

away from the streams, such as Leptosols and Cambisols. As already pointed out by 

Jenny (1994), soil moisture varies with local variations in topography: soils in 

depressions (toe-slope) like Gleysols are more humid than upland soils and soils in 

sloping areas. Also Adhikari et al. (2014) located Gleysols mainly in low slope 

position or flat areas. Lixisols have been mainly found in lower elevation areas, 

possibly as result of erosion processes. Gray et al. (2011) allocated Lixisols mainly in 

near level land or at undulating terrain.  

Stagnosols have also high moisture level like the Gleysols, since both originate from 

water logging processes (IUSS et al., 2006). Stagnosols were generally allocated 

further away from the streams in relatively flat areas, where water is allowed to 

stagnate for some time in the year (IUSS et al., 2006). Stagnosols usually develop on a 

large variety of unconsolidated materials, either on flat or gently sloping areas (IUSS 

et al., 2006).  

Leptosols were found at higher elevation and at larger distance to stream areas. These 

soils were well predicted by most of the models, since they were established on hard 

rock on the Ioba mountain , this fitting into the description of the WRB (IUSS et al., 

2006). The spatial distribution of these Leptosols was consistent with the finding of 

Debella-Gilo et al. (2007), who found these soils mainly on hills and  at the rocky part 

of the landscape. The presence of the major part of Cambisols next to the Leptosols 

might be attributed to erosion and deposition cycles, which are a key element for their 

distribution in high elevation areas (IUSS et al., 2006). Vasques et al. (2015) also 

found Cambisols in sloping areas, subject to a more dynamic water flow.  



IV. Predicting reference soil groups using legacy data: a data pruning and random forest approach  

77 

 

Plinthosols have been found nearly at every position of the landscape, thus occupying 

a major part of the land. These soils herein developed in level to gently sloping areas 

with changing groundwater level or stagnating surface water (IUSS et al., 2006). This 

corresponds to the feature of the study area characterized by a flat and undulating 

landscape with altitude ranging between 259 and 465 m asl and an average slope 

gradient of 3.6 % (Schmengler, 2010). Plinthosols are soils characterized by Fe 

accumulation under hydromorphic conditions. The change in moisture content 

(wetting and drying) results in the reallocation of dissolved Fe leading to the 

constitution of Fe poor and Fe rich zones in the soil (Lucas et al., 1992). In the rainy 

season, mobilization and translocation of Fe2+ ions occurs due to reducing conditions, 

while the dry season gives place to the oxidation of Fe2+ and precipitation of Fe 

oxides. As a result, Plinthosols are mainly hydromorphic soils (França et al., 2014), 

with their formation being greatly affected by soil moisture regime, as also evidenced 

by the Saga wetness index being the most important variable for the classification of  

the reference soil groups in the Dano catchment.  

The NIR and SWIR spectral data were most prominent when acquired in June (Fig. 

IV-6) for the classification of reference soil groups in the Dano catchment. This 

particular period corresponded to the ploughing time. At that time crops were absent or 

at early stage of development, allowing satellite sensors to directly measure soil 

reflectance. Nield et al. (2007) reported that Fe rich minerals, which characterize many 

tropical soils such as Plinthosols, have a strong reflectance in the NIR and Lobell and 

Asner (2002) pointed out that soil moisture highly affects the NIR and SWIR 

reflectance. The preceding observations seem to imply that soil moisture and Fe oxide 

content as captured by soil reflectance provided the main discriminatory elements to 

differentiate between the different reference soil groups. Since the SWIR relates to soil 

moisture content as also the case for the Saga Wetness Index, it is obvious that mainly 

soil moisture controlled the distribution of reference soil groups over the Dano 

catchment. As the best predictions were found when the pruned data were used in 

combination with terrain and spectral parameters (TSP), these covariate predictors 

were assumed to be complementary, i.e., spectral data may only be used for soil 

taxonomy identification when combined with geomorphological information (see also 
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Dobos et al., 2001; Stum, 2010). Predicting reference soil groups for digital soil 

mapping thus heavily relies on concurrent soil-landscape characterization. 

5. Conclusion 

This study focused on reducing the negative influence of a predominant reference soil 

group – the Plinthosols – on the spatial prediction of more seldom reference soil 

groups in tropical environment, here the Dano catchment. For this purpose some 

ranges of the Plinthosol dataset were cut at different levels of pruning, and re-predicted 

the digital soil maps based on spectral indices, terrain, and terrain plus spectral 

parameters using RF modelling with and without recursive feature elimination. When 

using the entire dataset, lower prediction accuracy was obtained for most of the 

reference soil groups predicted as Plinthosols. However, increasing pruning intensity 

resulted in relatively lower OOB errors with subsequent improvement in classification 

accuracy.  

The best prediction was achieved when removing all Plinthosol points lower than 5 % 

and higher than 95 % of the cumulative percentage of the most important variable 

(wetness index) and RF modelling conducted solely with terrain and spectral 

parameters (TSP) with optimal predictors resulting from the recursive feature 

elimination. This improved classification accuracy by 3 % to 41 % relative to the 

prediction based on the entire dataset as the pruned samples, potential source of noise 

and redundant information, were removed. Though terrain parameters proved to be 

most determinant in the characterization of the landscape for discriminating between 

the different reference soil groups their combination with spectral bands and indices 

resulted in better prediction. For this tropical environment, the moisture distribution 

(SAGA wetness index) was finally identified as the main driving factor for the 

reference soil group classification in the Dano catchment.  

With the ongoing GlobalSoilMap.net initiative in Africa, soil mappings are being 

carried out using legacy data with some subject to imbalance issues. The pruning as 

demonstrated in this study can help to improve dataset quality and therewith 

classification accuracy. This could thus particularly be chosen as suitable alternative 

when new dense surveys are no viable option for creating soil maps. 
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1. Introduction 

Globally, soils contain the largest terrestrial carbon pool on earth. Though subject to 

regular change, the global amount of carbon in soils is estimated at 2500 Gt, including 

1550 Gt of soil organic carbon (SOC) and 950 Gt of soil inorganic carbon (Batjes and 

Sombroek, 1997; Lal, 2008).  As the SOC pool is 3.3 times the size of the atmospheric 

pool (760 Gt) and 4.5 times the size of the biotic pool (560 Gt) (Lal, 2004), slight 

changes in soil C cycling may significantly impact the global C cycle. Nevertheless, 

little is known on the role of tropical soils for these changes, especially not for tropical 

subsoils. 

 

The ecosystems in West Africa are facing severe degradations due to change in land 

use from perennial vegetation to cropping, increased  cultivation  in  marginal lands, 

soil erosion and nutrient mining (Bationo et al., 2007; UNEP, 2006), as well as climate 

change (Brevik, 2013). Models predicted that as consequence of climate change, soils 

will convert from carbon sinks to carbon sources (Cox et al., 2000), but prediction 

uncertainty is large (Cox et al., 2000; Smith, 2008), mainly due to the lack of adequate 

knowledge on SOC distribution across the landscape. Nowadays, different measures to 

conserve existing SOC stocks and trap the atmospheric carbon in the soil are being 

implemented in many areas in Africa and comprise afforestation of degraded lands, 

agroforestry, application of best agricultural practices and policies (Batjes, 2008).  

However, data are still lacking on SOC for different agrosystems (Anikwe, 2010) in 

most African countries. Batjes (2008) even pointed out that an estimation of the 

current carbon stock should be carried out prior to any focus on carbon change related 

to land use and climate change. 

 

The variability of carbon stocks in the landscape is associated with the combined 

action of physical, chemical and biological processes as well as of human land use 

patterns varying over space and time (Peukert et al., 2012). Generally, this spatial 

variability is recorded by soil maps, which are key tools for effective land management 

and modelling. Progress and new development in computer science and statistical 

methods led to the use of geo-information technology such as remote sensing data and 
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digital elevation model (DEM) for the digital soil mapping (DSM) of soil properties  

(Heuvelink and Webster, 2001). The DSM correlates quantitatively environmental 

covariates standing for soil forming factors and a target variable to be predicted. This 

correlation is carried out using statistical methods, which build a model used for 

prediction. The multiple linear regression has been widely used in many studies as a 

predictive model for the prediction of SOC (Florinsky et al., 2002; Guo et al., 2015; 

Meersmans et al., 2008). However, soil-landscape relationships are often subject to 

nonlinear dynamics which might not be captured by MLR (Grimm et al., 2008). 

Random Forest regression  (RF), an ensemble machine learning approach,  is reported 

in literature as being able to overcome this limitation (Hengl et al., 2015; Rad et al., 

2014; Wiesmeier et al., 2011). The latter studies indicated the robustness of RF for 

handling complex and non-linear soil-landscape relationships in DSM. 

Potential factors which affect SOC stocks and are used as covariates for DSM, 

comprise climatic and topographic elements (e.g., mean annual precipitation and 

temperature, slope etc.), land use, physical soil characteristics (texture, parent material, 

etc.), and microbial biomass (Albaladejo et al., 2013; Jobbágy and Jackson; Jobbágy 

and Jackson, 2000; Ladd et al., 2013). Many of these factors have been investigated in 

various publications across the globe (Albaladejo et al., 2013; Azlan et al., 2011; 

Bationo et al., 2007; Burke et al., 1989; Chaplot et al., 2010; Jobbágy and Jackson, 

2000; Percival et al., 2000). However, these studies mostly focused on surface soil 

horizons. Yet, more than 50 % of SOC is usually allocated below 20 cm depth (Batjes, 

1996). Fontaine et al. (2007) showed that this subsoil carbon is readily decomposable 

upon addition of a fresh C source, and  Fierer et al. (2003) concluded that it is even 

more sensitive to changes in temperature or nutrient availability than topsoil carbon. 

But these latter studies have not been performed with tropical soils, which may have 

specific SOC storage conditions, e.g., due to their special oxide assembly (Feller and 

Beare, 1997; Kögel-Knabner and Amelung, 2014). 

This study was performed in the Sudanian area of Burkina Faso dominated by 

Plinthosols, i.e., soils with high Fe oxide accrual, particularly in the subsoil. We are 

not aware that for such soils, nor then for the respective or comparative region, (i) 

levels and distribution of SOC stocks along with the (ii) interactions between SOC 
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stock and landscape properties have ever been investigated. Yet, these quantitative 

data are crucial for the estimation of the local and regional carbon sequestration 

potential and the participation of developing countries in the Clean Development 

Mechanism (CDM), mentioned in the Kyoto Protocol as well as the “4 per thousand” 

initiative launched during the COP21 (Rhodes, 2016). Therefore, this study aimed at 

estimating the surface and subsoil organic carbon stocks in different land use systems 

and across various soil orders, as well as assessing the spatial variability of topsoil 

carbon stocks and underlying factors. 

2. Materials and methods  

2.1. Study area  (see section II. 1) 

2.2. Soil Sampling (see section II. 2) 

2.3. Soil analysis and mid-infrared prediction (see section II. 3) 

2.4. Determination of SOC stocks (see section II. 4) 

2.5. Selected variables for explaining SOC stock variability 

The variables (Tab. V-1) considered as covariates consist of: terrain attributes, land 

use, temperature and precipitation, geomorphology and lithology. The terrain attributes 

were derived from a 90 meter resolution digital elevation model provided by the 

Shuttle Radar Topography Mission (SRTM).  These parameters are clustered into 

local, regional and combined terrain attributes as defined by Grimm et al. (2008). The 

parent material (Geo) allocated to each sampling location was derived using a 

geological map (1/1 000 0000) of Burkina Faso made by Hottin and Ouedraogo 

(1992). Land use data were collected during the sampling at each location. Climatic 

data include mean annual temperature (Temp) and annual precipitation (Prep) at 1 km 

resolution from the worldclim datasets. The climatic data were submitted to bicubic 

resampling before the extraction of the data. 

Moreover, soil properties were also considered as covariates as mentioned in Kumar 

and Lal (2011) and Were et al. (2015). Soil texture fractions (sand, silt, clay) were 

considered in addition to the environmental variables. They were derived from 

interpolated maps using the Ordinary Kriging method. The Ordinary Kriging has been 
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used in many studies for predicting soil properties at unsampled locations (Zhang and 

McGrath 2004; Mishra et al. 2009; Chaplot et al. 2010; Were et al. 2015).  

The predictors were reduced for the subsoil carbon stock model due to the smaller size 

of the dataset (n = 70). Feature selection was carried out using the RF recursive feature 

elimination algorithm of R “caret” Package (Kuhn 2015). The following variables 

were finally retained for the subsoil carbon stock prediction: elevation, distance to 

stream, aspect, ruggedness, curvature, catchment area, sand, silt, clay, precipitation 

and temperature. 
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Tab.  V-1: Selected variables for explaining SOC stocks variability 
 

Group Parameters Definition Abbreviation Units 
Local Slope Inclination of the land surface 

from the horizontal 
Slope.per  % 

 Slope Length  Distance from origin of 
overland flow to deposition 
point 

Slope.length m 

 Curvature   Combination of horizontal 
and vertical curvature 

A.curv  m-1 

 Maximum 
Curvature   

Maximum Curvature   S.max.cuv ° m-1 

 Minimum 
Curvature   

Minimum Curvature   S.min.cuv ° m-1 

 Plan Curvature   Horizontal (contour) 
curvature 

S.Plan.cur ° m-1 

 Profile Curvature   Vertical rate of change of 
slope 

S.Profile.cur ° m-1 

 Aspect  Direction the slope faces A.Asp ° 
 Elevation Vertical distance above sea 

level 
Elevation m 

Regional Catchment Area  Discharge contributing 
upslope area  

S.CA m2 

 Distance to stream   Distance to stream  network Dist.stream m 
Combine
d 

Topographic 
Wetness Index 

Ratio of local catchment area 
to slope 

A.TWI - 

  Saga Wetness 
Index  

Ratio of local catchment area 
to slope 

S.Wet.Ind - 

Climatic Temperature Temperature Temp °C 
 Precipitation Precipitation Prep mm 
Soil 
properties 

Sand Sand Sand  % 

 Silt Silt Silt  % 
 Clay Clay Clay  % 
Others Lithology Lithology Litho - 
 Geormorphology Geormorphology Geo - 
 Land use Land use LU - 
 Reference soil 

group 
Reference soil group rsg - 

 

2.6. Statistical analysis 

Descriptive statistics (means and standard deviation of the mean) were used to 

characterize the measured values of the variables. Normality of the carbon data was 
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checked with the Shapiro-Wilk test. The student t test was used for comparison 

between the SOC stocks of the different land use systems. The Bartlett test for 

homogeneity of variance was performed due to the unequal size of the data for the soil 

reference groups (Yu 2011). The significance of the difference in the mean SOC 

stocks between the reference soil groups was examined by using the Welch ANOVA 

test, while for multiple means comparisons, the Games-Howell test was performed as 

carried out in Cornelissen et al. (2001).   

2.7. Predictions models  

In the present study, MLR and RFR were used as statistical models to predict the 

spatial distribution of the topsoil SOC stock. MLR is a classical statistical approach to 

predict the values of a dependent variable (here the SOC stocks) based on a set of 

independent variables (here the covariates in Table 2). In this study, MLR and MLR 

were implemented using the R “caret” package (Kuhn, 2015) using tenfold cross 

validation with 5 repetitions.  

For background information on RFR see section II-7. 

2.8. Model training and mapping 

The topsoil (n = 1239) dataset was split with 70 % of the samples to train the model 

while 30 % were used as independent validation set. For the subsoil dataset, a split of 

80 % was applied. The models derived from the RF for each depth were used to make 

the respective prediction maps which were corroborated by different validation sets. 

For the stability and robustness of the models, the different calibrations were carried 

out based on a 5 time repeated 10-fold cross-validation using the “caret” R Package 

(Kuhn 2015). The root mean square error (RMSE) of cross validation (RMSECV) as 

well as RMSE from prediction based the validation set (RSMEPV) were used to assess 

the model accuracies. 

QR�S = 	 /�=∑ (N� − )�)�=
�!� 5

� �T
                                    (V-1) 

            where “P” is the predicted value and “O” is the observed/measured value  
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3. Results and discussion 

3.1.  Basic soil characteristics  

The general soil properties of the different soil profiles for both topsoil (0 - 30 cm) and 

subsoil (30 - 100 cm) are presented in Tab. V-2. Textural variations occurred among 

the different soil groups: the Gleysols (GL) were silty and less sandy than the 

Plinthosols (PT), which peaked in opposite direction. Possibly the latter was caused by 

pseudo-sand like oxide concretions in the latter, which could not be destroyed 

completely during conventional texture analyses. The bulk density increased with 

depth with larger values recorded in the subsoil for both land use systems. Maximum 

bulk densities were found for the Plinthosol subsoils, which indicated the presence of 

petroplinthite in some of these profiles. The pH was slightly acidic and comparably 

similar among land use and reference soil groups at all soil depths. This trend is in line 

with values reported by Yoni et al. (2005) in Western Burkina Faso. 

Tab.  V-2: Basic soil characteristics under different land use (mean values with 
standard deviation (sd)) 
 

 
   N Sand  (%) Silt (%) Clay (%) BD (g cm-3) pH 

 0 - 30 cm 
LU  CR 36 28.1a(±9.1) 43.2a(±7.1) 28.5a(±10.1) 1.4a(±0.1) 6.4a(±0.5) 

 
 SA 34 29.9a(±12.3) 44.8a(±10.5) 25.9a(±9.5) 1.5a(±0.1) 6a(±0.4) 

RSG  CM 8 25.5ac(±11.3) 42.2 ac(±6.7) 32.2a(±13.6) 1.3ab(±0.1) 7a(±0.4) 

 
 GL 12 19.1ba(±11.3) 50.3ba(±9.7) 31.7a(±11) 1.4ac(±0.1) 6.1bc(±0.3) 

 
 LX 2 22.6ac(±3.5) 55.3ac(±8.6) 20.5a(±2.9) 1.4ac(±0.001) 6.2abc(±0.4) 

 
 PT 44 32.8c(±8.9) 42c(±8.2) 25.2a(±8.4) 1.5c(±0.1) 6.1c(±0.4) 

 
 ST 4 29ac(±10.7) 43.9ac(±8.9) 27.3a(±9.8) 1.4ac(±0.1) 6.5abc(±0.4) 

 30 - 100 cm 

LU  CR 36 21.6a(±6.9) 40.7a(±4.8) 37.2a(±7.9) 2a(±0.7) 6.3a(±0.5) 

 
 SA 34 22.8a(±5.3) 41.8a(±6.2) 34.9a(±4.5) 2.1a(±0.7) 6.1a(±0.4) 

RSG  CM 8 26.4a(±9.1) 39.5a(±2.7) 33.7a(±9.9) 1.7a(±0.6) 6.9a(±0.7) 

 
 GL 12 19.7a(±7.5) 45.3a(±7.9) 34.5a(±5.8) 1.6a(±0.1) 6.1bc(±0.3) 

 
 LX 2 17.9a(±6.1) 46a(±6.7) 34.4a(±2.3) 1.5a(±0.1) 6.1abc(±0.2) 

 
 PT 44 22.2a(±4.6) 40.2a(±4.3) 37.1a(±6.3) 2.3a(±0.7) 6.1c(±0.3) 

   ST 4 22.9a(±8.5) 41.3a(±8.3) 35.1a(±4.1) 1.8a(±0.8) 6.7abc(±0.7) 
LU: land use, CR: cropland, SA: savannah, RSG: Reference soil groups, CM: 
Cambisols, GL: Gleysols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols,  n: number of 
samples, BD: bulk density. Means followed by the same letters are not significantly 
different (p < 0.05). 
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3.2. SOC stock in relation to land use and reference soil group  

The distribution of the SOC stocks in the different land use systems as well as in the 

RSG of each specific land use is presented in Tab. V-3. About 73.5 t C ha-1 was 

recorded as the total average of SOC stock in an entire profile (0 - 100 cm) in the Dano 

catchment with 39 t C ha-1 found for the topsoil (0 - 30 cm) and 33.9 t C ha-1 for the 

subsoil (30 - 100 cm), amounting respectively to 53 % and 47 % of the total stock. 

These results coincide with the findings reported by other authors with Batjes (1996) 

recording 39 - 70 % of the SOC stock in the first 30 cm while Doetterl et al. (2015) 

reported about 52 % of SOC stock at the same depth. The total average of SOC stock 

over 100 cm recorded in the present study is higher than the range estimations of 42 – 

45 t C ha-1 for West Africa and 64 - 67 t C ha-1 reported for Africa (Batjes, 2001); on 

the other hand, our average value is lower compared to the 82 t C ha-1 found by Hien 

et al. (2003) for the southern Burkina Faso. 
 

In the topsoil, the SOC stock was similar for both land-use systems. The average SOC 

stocks of the non-cropped sites only slightly exceeded that of the croplands (2.3 t C ha-

1; not significant). The lacking significance was due to the Cambisols, which showed 

significantly larger SOC stocks in the surface soils of the croplands, likely due to 

former land-degradation or just site preference of the farmers for the better Cambisols. 

The larger SOC stocks in the surface soils for the other sites under natural vegetation 

is in line with other studies (Bruun et al., 2013; Singh et al., 2011). A study in Ghana 

by Boakye-Danquah et al. (2014) reported 22.9 t C ha-1 for the topsoil of cultivated 

area and 49.4 t C ha-1 for natural vegetation while Hien et al. (2006) in Burkina Faso 

recorded between 16 t C ha−1 and 25 t C ha−1 for cropland soil and 61 t C ha-1 for 

savanna soils. Though the results for the topsoil are in the range of the previous studies 

carried out in the same region, the margin between the values reported for the two LU 

systems is quite narrow.  
 

The small difference of SOC stocks between these two land use systems in the Dano 

catchment suggest a high level of degradation of the sites under savannah, which is 

subject to overgrazing due to the absence of sufficient grazing areas and the 

inexistence of straw and silage production (Callo-Concha et al., 2012b). The pressure 
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on these non-cropped fields is worsened by the presence of migratory herding that add 

to the local livestock (Gonin and Tallet, 2012). Moreover, the production of a local 

beer (“dolo”) results in the use of about 6400 t of fire wood per year from the native 

savannah sites; this constitutes also a major source for the degradation of natural 

resources (Blin and Sidibe, 2012). The sites under savannah may also include old 

fallow soils, which because of current herding pressure, failed to re-build their carbon 

stock. Once degraded, it may take decades until SOC stocks in such savannah soils 

restore (Preger et al., 2010). 

One additional peculiarity was the presence of stone lines (Appendix B Fig. X-1) in 

the croplands, which may have also reduced soil erosion as observed by Schmengler 

(2010) in the same area. Zougmoré et al. (2004) reported a reduction of runoff by 45 % 

with the use of  stone lines as conservation practice. Therefore, the presence of these 

stone lines might have contributed to the slowing down of the SOC loss from the 

cropland. 

Intriguingly, significant different C stocks were found for the subsoils that contained 

more SOC in the cropland than in the savannah sites (Table 4). This SOC storage 

overcompensated SOC gains in the surface soils, so that significance disappeared on a 

whole soil profile basis. In part, the larger SOC stocks under cropland may be 

attributed to the presence of petroplinthite in the subsoil of the savanna soils that were 

not thus not used for cropping nowadays. In addition, intensive translocation processes 

in the croplands may have been induced at elevated precipitation events under tropical 

climate, as formerly reported for the leaching of basic cations into the subsoil (Eze et 

al., 2014) along with clay and SOC, especially for low acidity soils that also prevailed 

in our study (Lorenz and Lal, 2005).  
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Tab.  V-3: Soil organic carbon stock in different land use systems and reference soil 
groups at different depth  
 

LU RSG n 
  0 - 30 cm   30 - 100 cm   0 - 100 cm 
 mean sd  mean Sd  mean sd 

CR & SA   70  39 ±16.7  33.9 ±23.8  73.5  ±30.7 
            
CR (t C ha-1)  37  39.1a ±16.5  40.2a ±27.9  77.1a ±34.9 
SA (t C ha-1)  33  41.4a ±17.4  26.3b ±15.9  67.7a ±27.3 
            
CR (t C ha-1) CM 6  40.2a ±12.6  48.7a 30.7  88.9a ±40.5 
SA (t C ha-1) 2  16.6b ±8.3  20.6a 16.0  37.2b ±7.6 
            
CR (t C ha-1) GL 5  39.9a ±12.2  52.7a ±32  94.4a ±35.4 
SA (t C ha-1) 7  46.6a ±18.9  35.6a ±15.1  82.5a ±31.2 
            
CR (t C ha-1) LX 1  27.6 .  26.0 .  53.6 . 
SA (t C ha-1) 1  37.6 .  21.9 .  59.5 . 
            
CR (t C ha-1) PT 22  39.8a ±15  33.7a ±24.5  73.2a ±32.4 
SA (t C ha-1) 22  42.4a ±16.9  24.6a ±16.3  67.0b ±25.9 
            
CR (t C ha-1) ST 3  9 .0a ±5  54.6a ±42.7  63.6 ±46.8 
SA (t C ha-1) 1  36.7b .  17.2a .  54.0 . 
            
CR (t C ha-1) CM 6  40.2a ±12.6  48.7a ±30.7  88.9a ±40.5 

GL 5  40.0a ±12.2  52.7a ±32  92.7a ±38.3 
PT 22  39.8a ±15  33.7a ±24.5  73.2a ±32.4 
ST 3  9.0b ±5  54.6a ±42.7  63.6a ±46.8 

            
SA (t C ha-1) CM 2  16.6a ±8.3  20.6a ±16.5  36.6a ±8.1 

GL 7  46.6a ±18.9  35.6a ±15.1  82.2a ±31.4 
PT 22   42.3a ±16.9   24.6a ±16.3   67.0a ±25.9 

LU: land use, RSG: reference soil group, CR: cropland, SA: savannah, n: number of 
samples. Means followed by the same letters are not significantly different (p < 0.05). 
 

Considering the different reference soil groups in the topsoil, the Plinthosols (41.1 t C 

ha-1) contained more or less as much SOC as the Gleysols (43.8 t C ha-1). The latter 

also recorded the largest carbon stock over 100 cm depth (86.6 t C ha-1) followed by 

the Cambisols (75.8 t C ha-1) and the Plinthosols (70.1 t C ha-1) (Appendix B Fig. X-

2). The prevalence of SOC in Gleysols might not solely due to limited SOC 

decomposition under groundwater influence, but could mainly be related to the 

occurrence of local erosion processes, leading to the transport of SOC rich sediments 
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from upslope to the lower slope, and thus from other soils into the Gleysols under the 

combined effect of slope, elevation and heavy tropical rain. Doetterl et al. (2013) 

reported a significant difference in SOC stocks between erosional and depositional 

areas due to soil relocation processes and local topographical features. However, with 

similar SOC stocks in the topsoil between Gleysols, Plinthosols, and Cambisols 

depositional areas might not correspond only to Gleysols due to the variability of 

topographic feature across the landscape. On the other hand, the periodic saturation 

by groundwater reduces oxidation processes in the subsoil. 

The Stagnosols of the cropland exhibited the lowest SOC stocks (9 t C ha-1, Tab. V-3). 

As temporary saturation with water in the stagnosols should normally promote SOC 

storage rather than distorting it, we attribute this finding firstly to their position at a 

relatively high position in the landscape favouring vulnerability to soil erosion and 

secondly to stagnic conditions occurring at a relatively deeper depth regarding the high 

carbon stock in the subsoil (t C ha-1). Moreover, exposition to a longer cultivation 

duration with very low input (Bationo and Buerkert, 2001) could also be responsible 

for the low carbon level of the topsoil but investigation into the land use history is 

necessary before any sound conclusion. The Stagnosols, exhibiting larger SOC stocks 

in the subsoil of the croplands, could be taken as additional evidence that for mapping 

soil C storage the consideration of whole soil profiles is needed. 

 

3.3. Factors affecting the spatial variability of SOC stock  

The analysis of variable importance characterizes the influences that different 

explanatory variables (see Tab. V-1) have on the response variable (here SOC stock). 

The analysis revealed different preeminent parameters controlling SOC stocks of 

topsoil (Fig. V-2). Only the top 5 variables are considered in the figure. 

The most prominent redictor for the topsoil SOC stock was the silt and sand content 

followed by the wetness index, elevation and climate variables. Soil texture in general 

and especially its fine particles (silt and clay) are extensively discussed in literature as 

important agents accounting for the variance of SOC through  adsorption of  organic 

matter  (Bationo et al., 2007; Chaplot et al., 2010; Mao et al., 2015; Saiz et al., 2012; 
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Zhang and Shao, 2014). As recorded in Table 2, the high content of silt in the topsoil 

makes it the most abundant soil particle involved in potential adsorption. The 

correlation of wetness index (indicator of soil moisture) and SOC content has been 

indicated by Kumar (2009) and  Zadorova et al. (2014). As hydrological factor, the 

wetness index affects SOC dynamics at depositional and flat areas where humidity is 

high resulting in slower decomposition rate (Doetterl et al., 2013). The record of 

elevation among the prominent variables is in line with findings of Hengl et al. (2015) 

who also reported it as  a major factor affecting SOC stocks in Africa.  

Climate variables are widely acknowleged as influential variable for SOC stocks 

(Doetterl et al., 2013; Manning et al., 2015; Oueslati et al., 2013). Temperature and 

precipitation distribution affect the production of plant materials and soil fauna 

activity. Warmer temperatures and wetter conditions would most likely result in higher 

biomass production and microbial activity. Conversely, a lower heat transfer coupled 

with lower humidity could result in reduced C decomposition. The dry season of the 

study area is characterized by higher temperatures with very scarce rainfall which 

might result in a decrease of bioamass while the rainy season comes with intense and 

heavy rainfall with subsequent vegetation growth and production of plant material. 

Though the individual impact of these factors could be explained isolately, it is most 

likely that due to soil landscape interaction, the amount of carbon stock at a given 

location is a resultant of their interaction. Precipitation and temperature affect the soil 

moisture (wetness index) distribution which is in turn infuenced by elevation and soil 

texture. For example, a higher SOC stock was observed in the topsoil of the Gleysols 

which were characterized by high moisture and silt content (Tab. V-2) and were 

located at lower elevation areas. 
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Fig.   V-1: Top five variables from the RFR and MLR models for the topsoil (0 – 30 
cm) 
Wet_ind: wetness index, rsgGL: Gleysols, Temp: Temperature, Prep: Precipitation,  
RFR: random forest regression, MLR: multiple linear regression 

 

3.4. The spatial distribution of the SOC stock  

The spatial distribution pattern of SOC stock in the topsoil (Fig. V-3 A) based on the 

prediction of RFR and MLR model presents an irregular pattern. There were 

innumerable patches of small and large SOC stocks across the study area, pointing to a 

pronounced variability of the SOC stock over small distances though less pronounced 

on the MLR map. On large scales, elevated SOC stocks in topsoil were observed in the 

western and south-eastern areas. These areas correspond to the high elevation part of 

the watershed (Figure 1), with SOC stocks varying between 55 - 65 t C ha-1. The 

remaining areas displayed low (28 – 40 t C ha-1) to medium (40 – 55 t C ha-1) SOC 

stocks. Though land use did not come up as key variable for SOC stocks in topsoil, it 

had an indirect link with elevation, being one of the major influencing factor (Figure 

1). In our study area, the density of settlements and adjacent intensively cultivated 

fields was higher in the lower elevation areas due to the proximity of streams, which 

provide water for domestic purposes and for the irrigation of crops. Consequently, 

larger SOC stocks were found in the surface soils that belonged to areas in more 
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remote and elevated parts of the watershed, which thus exhibited less cultivation 

intensity and larger areas covered by natural vegetation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.   V-2: Distribution of SOC stock across in the topsoil (0 – 30 cm) based on the 
RFR and MLR Models. RFR: random forest regression, MLR: multiple linear 
regression. 
 

3.5. Performance of the RF models 

In general, the accuracy of the RFR and MLR prediction models were low (Tab. V-4), 

though the former performed marginally better than the latter with higher R2 (13  %) 

and lower root mean square errors for both cross validation (14.0 t C ha-1) and 

independent validation (14.2 t C ha-1). This can be attributed to nonlinear pattern in the 

SOC stock dataset which could not be accounted for by the MLR.  Other studies also 

point out the limitation of MLR to handle nonlinear pattern in dataset hence its lower 

performance compared to machine learning models such as Random Forest (Hengl et 

al., 2015; Zhang et al., 2017) . The explained variance as found in the present study 

could not be improved even when some RSG were removed from the dataset and 

modelling carried out with the remaining (Appendix B Tab. X-1) though the removal 

of Plinthosols led to an explained variance of 17  % with both models. 

The results of this study regarding the model explained variances are consistent with 

some existing findings in literature. Grimm et al. (2008) found only 6 % as explained 
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variance for topsoil and 8 - 25 % for subsoil SOC content after using the Random 

Forest approach in a tropical island in Panama. Henderson et al. (2005) used a decision 

tree approach and reported an explained variance of 41 % for topsoil SOC and 24 % 

for the subsoil. Wiesmeier et al. (2014) analyzed the spatial distribution of SOC stocks 

and found 52 % of explained variance for the carbon stock based on climate, land use 

and environmental variables. Schulp and Verburg (2009) and Schulp et al. (2013) 

reported 21 % to 43 % variance explained for SOC contents and stocks though a wide 

range of data from soil properties to terrain attributes were used. These authors pointed 

out that low explained variance for SOC prediction was recorded due to an intrinsic 

large spatial variability of SOC with the interplay of a large range of factors at local 

and regional level.  

The low explained variance observed in the present study could be attributed to the 

existence of other environmental and soil parameters affecting SOC stock variability, 

which have not have been investigated in this study. Such parameters may account for 

specific soil properties, such as soil structural stability, clay mineralogy, sesquioxide 

composition, as well as other factors beyond the scope of our design, such as socio-

ecological impacts in soil resilience (e.g. Linstädter et al. (2016)). In addition, the root 

mean square errors obtained in this study is a reflection of errors related to field 

sampling, laboratory measurement, and statistics as well as random errors. Since all of 

the soil properties used in the present study were interpolated by ordinary kriging it is 

evident that related errors translated into the estimation of SOC stock. However, 

preliminary modelling without these soil properties revealed much lower variances 

(data not shown) proving them as key variables to be taken into account. Auxiliary 

data coming from different sources and different scales infer variability in data quality 

as also pointed out by Were et al. (2015). For example, the resampled lithology file 

was originally produced at a scale of one-million and as result its distribution on the 

study area might have been too coarse.  Further model improvement would require 

additional explanatory variables at finer scale with the consideration of multi- or 

hyper-scale data in order to account for the possibility of SOC stock being subject  to 

factors operating at different levels of scale (Behrens et al., 2010a; Behrens et al., 

2010b).  
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The statistics of the prediction (Tab. V-4) that was based on the validation set showed 

that the root mean square error of cross validation as well as the root mean square error 

of prediction (from validation set) for the topsoil from both models were all slightly 

lower than the standard deviation of the measured values. This points out that the 

predictions of the models especially from the RFR were as accurate as the training set 

in spite of the low explained variance. A similar trend had been also recorded by Were 

et al. (2015).   

Tab.  V-4: Performance statistics of the RFR and MLR models and general statistics for 
measured data and SOC stocks of the maps 
 

  R2* RMSECV RMSEPV 
Statistics for model and validation dataset 
RFR  (t C ha-1) 13.0 14.0 14.2 
MLR  (t C ha-1) 11.0 14.2 14.8 
 
General statistics for predicted map and measured data 

Min Max Mean (±sd) 
RFR predicted  data   (t C ha-1) 27.4 65.1 45.4 (±4.6) 
MLR predicted  data  (t C ha-1) 3.0 98.8 44.7 (±6.7) 
Measured data  (t C ha-1) 11.3 79.2 45.5 (±14.9) 
RF: random forest, Varexp: explained variance, ME: mean error, RMSECV: root mean 
square error of cross validation, RMSEP: root mean square error of prediction based 
on validation set, *explained variance in  %. 

 

The general statistics for the measured and predicted SOC stocks for the topsoil maps 

(Tab. V-4) revealed that the predicted minimum value for the RFR map was larger 

than the measured one, while the predicted maximum value was lower. The opposite 

was observed with the MLR whose predictions were larger than the initial range of the 

measured data. For the RFR, this may be attributed to the fact that the model 

considered the lowest and highest values of the training data as outliers as also 

observed by Were et al. (2015). However, the mean SOC stocks measured for the 

topsoils (45.4 t C ha-1) were very near to the mean SOC stocks predicted from the map 

(45.7 t C ha-1).  
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4. Conclusion 

This study provided insight into the quantitative status of topsoil (0 - 30 cm) and 

subsoil (30 - 100 cm) SOC stocks in the Dano catchment in different land use system 

and across different soil reference groups. Additionally, the driving factors and spatial 

distribution of the topsoil SOC stock was investigated. RFR and MLR modelling were 

used as a statistical method for identifying these factors and for mapping the spatial 

distribution of SOC stocks for the topsoil carbon stock. 

The results indicated only a marginal difference between the surface SOC stocks in the 

savannah and cropland with most of the reference soil groups related to the former 

recording a slightly larger carbon stock. We attributed these findings to both site 

preferences by farmers for the better sites selected for cropping, as well as advanced 

land-use degradation of the savannah land with increasing human grazing pressure.  

The topsoil SOC stock variability was primarily affected by soil properties (e.g., silt 

content) followed by the soil moisture distribution with the wetness index. Sites at 

higher elevation exhibited elevated SOC stocks in the surface soil. This 

disentanglement was due to landscape controls on population density and cropping 

intensity, which both concentrated in the lowlands. RFR performed slightly better than 

the MLR in predicting the spatial distribution of the topsoil SOC stock, as the latter 

could not account for the nonlinear association within the data. 

Our findings reinforce the view that the semi-arid ecosystems of West Africa still offer 

a significant opportunity for carbon sequestration to offset ongoing C losses, with the 

spatial distribution of the topsoil SOC stock driven not only by soil and climate, but 

also by landscape-specific human pressure on ecosystems.
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1. Introduction 

The increase of carbon dioxide in the atmosphere is causing concerns worldwide; 

hence, recent focus is set on soil carbon sequestration for its mitigation. In fact, it is 

estimated that soils contain about 2500 gigatons (Gt) of carbon, of which 1550 Gt are 

SOC (Batjes, 1996; Jobbágy and Jackson, 2000). Tropical soils contain about 26 % of 

this global SOC inventory and are thus considered as important sources and sinks for 

carbon dioxide and methane (Batjes, 1996; Batjes, 2004). However, only very few 

studies acknowledged that the influx of SOC is larger than its efflux particularly in the 

West African savannah (Ciais et al., 2011). The savannah ecosystems cover about 60 

% of tropical Africa (Callo-Concha et al., 2012a). They are characterized by 

structurally degraded and nutrient depleted soils with poor natural fertility and low 

fertilizer input (Doraiswamy et al., 2007). Maintaining SOC stocks in these 

ecosystems is thus mandatory for sustaining essential soil functions such as nutrient 

and water storage, soil biological activity, and structural stability. 

 

For the African savannah ecosystem, especially in West Africa, several studies 

revealed a decline in SOC stocks by 20 - 50 % when sites under natural vegetation 

were converted into cropland (McDonagh et al., 2001; Murty et al., 2002). Most of 

such SOC losses are reported to occur within the first 20 years (Birch-Thomsen et al., 

2007). To understand the underlying mechanisms, however, the monitoring of changes 

in SOC should include pools of different SOC stability, since overall response rates 

may be slow and thus ignored when based on bulk SOC analyses only (Powlson et al., 

1987; Skjemstad et al., 2004a). A common approach for assessing such pools of 

different stability has been to fractionate soil into classes of different equivalent 

particle-size diameter (Christensen, 1992). When done, usually SOC decomposition 

rates are faster for the sand sized SOM fractions than for the remaining soil (e.g., 

Balesdent et al., 1988) . Lützow et al. (2008) reported about 50 - 75 % of total organic 

carbon (TOC) to be associated with the clay fraction, 20 - 40 % with the silt fraction 

and < 10 % with the sand fraction. The SOC of the latter fraction is frequently named 

as particulate organic matter (POM), due to its chemical properties matching those of 

more or less recent plant residues, and because this pool usually responds fast to land-
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use change (Besnard et al., 1996; Chan, 2001).  Balesdent et al. (1998) reported a 82 % 

POM-C loss after 35 years of cultivation with 76 % lost in the silt fraction and 53 % in 

the clay fraction. While most of these studies have been carried out in temperate areas, 

data on the SOC dynamics after this conversion into low-input agriculture in the West 

African savannah soil are still sparse (Bruun et al., 2013).  

 

The stability of soil organic matter (SOM) is a major factor that characterizes its 

mineralization rates, being dependent on various physical, chemical and biological 

processes. The physicochemical interactions in tropical soils are largely affected by 

their significant portions in low activity clays (LACs; Barthès et al., 2008) . In contrast 

to the high activity clay soils (HACs) in temperate climates, LACs have a smaller 

cation exchange capacity (CEC < 24 cmol(+) kg-1 clay) due to elevated portions of 

kaolinite, Fe and Al oxides, and hydrous oxides (Juo and Adams, 1984; Powers and 

Schlesinger, 2002). These oxidic mineral phases, however, may exhibit strong affinity 

to SOM. While Bationo et al. (2007) pointed to low correlations between the contents 

of SOC and kaolinite, Feller and Beare (1997) reported that SOC content did not differ 

significantly between the LACs and HACs. In their study on different tropical soils of 

Ghana, Brunn et al. (2010) finally refuted the general concept of smectite (i.e., HACs) 

having higher SOC stabilizing power over kaolinite (i.e., LACs), whose sorption 

properties are similar to that of  oxides  (Denef and Six, 2005). 

 

Influences of sesquioxides for stabilization of SOC via organomineral complexes have 

been discussed in detail by Lützow et al. (2006) and Kögel‐Knabner et al. (2008). 

Beside Al oxides, particularly Fe oxides exhibit a large sorption capacity for SOC 

compared to other metal oxides (Chorover and Amistadi, 2001; Kaiser and 

Guggenberger, 2007). And both, Al oxides (e.g., Miltner and Zech, 1998 ; Amelung et 

al., 2001) as well as the presence of Fe oxides might delay the decomposition rate of 

SOM (Baldock and Skjemstad, 2000; Kalbitz et al., 2005). Lalonde et al. (2012) and 

Wagai and Mayer (2007) extracted Fe oxides by a dithionite treatment and concluded 

that Fe-bound SOM may contribute up to 22 %  and 40 % to total SOC content, 

respectively. Similar estimates for tropical soils are lacking. Such estimates, however, 
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may be particularly needed for tropical semiarid climates, where beside Ferralsols 

particularly Plinthosols dominate the soil orders with Fe enrichment, especially on the 

African continent (Jones et al., 2013).  

 

This study focused on Plinthosols, which are rich in LACs and Fe oxides, and which 

are the dominating reference soil group in some Sudanian areas of Burkina Faso. Also 

Lobe et al. (2001) investigated the impact of cultivation duration on SOC pools in the 

Plinthosols, characterized by soft plinthites. Lobe et al. (2001) focused on the upper 20 

cm without specifically addressing the role of Fe oxides on SOC stability. Moreover, 

their study was carried out in subtropical South Africa with lower rainfall (616 – 663 

mm) and temperature (13 - 16°C) compared to the present study. To widen our 

knowledge on the vulnerability of such widespread soils to arable management, this 

study focused again on Plinthosols, though with hard plinthite, specifically addressing 

the role of subsoil and Fe oxides for SOC turnover. Our study thus aimed at (1) 

investigating at different soil depths, how fast and to what degree Plinthosols with hard 

plinthites in West Africa are prone to SOC losses when converting native savannah to 

cropland, (2) assigning these SOC loss rates to different SOC pools (SOC in particle-

size fractions), and (3) evaluating the contribution of Fe oxides to SOC stabilization 

and loss rates.  

2. Materials and methods 

2.1. Study Area  

This study was conducted in the south western part of the Dano district (Dano (11°09´ 

45.4´´N, 03°04´34.2´´W) located in the Ioba province, southwest of Burkina Faso (Fig. 

1). Refer to section II. 1  for information related to climate, lithology and vegetation. 

 

2.2. Soil Sampling  

Soil samples were collected from fields that had been converted from savannah to 

cropland.  Fields with 1, 7, 11, 13, 17, 21, 25, 28, and 29 (Y1 to Y29) years (yr) after 

cultivation were considered for the present study. About 15 soil profiles were 

excavated up to 1 m where possible and four soil cores (100 cm3) were collected per 
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horizon to determine the bulk density (BD). In addition, two profiles were dug and 

described where cultivation never occurred (0 yr) for control. All the core samples 

were dried at 105 °C for 24 hours before assessment of the weight of stone content 

(SC). About 42 soil samples were collected from the A and B horizons for laboratory 

analysis. However, weighted average of soil properties were considered in the present 

study for the 0 - 10 cm, 0 - 30 cm and 30 - 100 cm depth. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig.   VI-1: Dano district and profile sampling 
 

2.3. Soil analysis, particle size SOM fractionation 

The samples were dried at 40 °C and sieved to 2 mm. For texture analysis and 

extraction of dithionite-citrate-bicarbonate extractable Fe (FeDCB) the procedures 

described by van Reeuwijk (1993) were followed. Total C was determined in ball-

milled subsamples after dry combustion with an elemental analyser (Fisons NA 2000). 
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In 15 topsoil samples (0 - 10 cm) the amount of SOC bound to Fe oxides was 

estimated by measuring C before and after treating the sample with dithionate-citrate-

bicarbonate as described above. The SOC loss was computed considering the initial 

and the remaining SOC after the DCB treatment. 

 

For the physical fractionation of SOM pools, refer to section II. 5. 

2.4. Determination of SOC stocks (see section II. 4) 

2.5.    Decay model and statistics 

The non-linear regression models used by Lobe et al. (2001) and Blécourt et al. (2013) 

assume that SOC stocks reach a new steady-state equilibrium after converting 

savannah into cropland. Here, regression fits were tested for both monoexponential 

and biexponential models. The former assumes a single soil carbon pool (equation VI-

1) while the latter considers both a labile and a stable SOC pools (equation VI-2). 

 

								U&	 =	UV	 + (U4 − UV) exp(−Z	�)                                            (VI-1)    

        

where U&	is the SOC content / stock  at age t, UV	 is the SOC content / stock  at 

equilibrium, U4 is the initial SOC content / stock  in the savannah soil (t = 0), and	Z is 

a the decay rate constant.  

 

								U&	 =	U�	 exp(−Z�	�) + 	U�	 exp(−Z�	�)                                         (VI-2) 

 

where U&	is the SOC content / stock  at age t, UV	 is SOC content / stock  at equilibrium, 

U� is the SOC content / stock  of the labile pool, U� = U4 	−	 U� is the SOC content / 

stock  of the stable pool, Z�  is the decay rate constant per year of the labile pool,  Z� is 

the decay rate constant per year of the stable pool. 

The parameters for the monoexponential model (equation IV-1) and the biexponential 

model (equation IV-2) were generated by using Regression tool in SigmaPlot 13.0 for 

Windows (automatic determination of initial parameters, 200 iterations, step size 1, 

and a tolerance of 1.E-10). The evolution of SOC decay within the different fractions 
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(POM1, POM2, POM3, nonPOM) were assessed using the same equations. The 

monoexponential and biexponential models were assessed by carrying out an F-test 

(Pansu et al., 2004). The mean residence time (MRT) was also computed as the 

inverse of the exponential constant ( and Amelung, 2011) as follows: 

 

     RQ[	 = 	1/Z                                                         (VI-3) 

 

Based on the biexponential model, the point of kinetic change (�(�) which marks the 

timing required for the stable pool to dominate the overall losses of SOC (Lobe et al., 

2001) was computed. For this purpose,  

the first derivative of U�	 exp(−Z�	�) was equal to that of  U� exp(−Z�	�)  and  �(�  
(years) was defined as follows: 

 

																		�(� = 	
��Z�U�	 − ��Z�U�		

Z�	 − Z�	
 

 

A t-tests were carried out to assess the significance between virgin (0 yr) and each 

cultivated fields for carbon and other soil properties (BD, SC, sand, silt, and clay, 

FeDCB). 

 

3. Results and discussion 

3.1. Physical and chemical soil characteristics  

Similar trends were observed for the soil properties in 0 - 10 and 0 - 30 cm (Table 1). 

For topsoil and subsoil, BD varied from 1.6 g cm-3 to 1.7 g cm-3 and from 1.5 g cm-3 to 

2 g cm-3, respectively. Large proportions of petroplinthites in the subsoil of the profiles 

described in the field Y1, Y7 and Y13 explained the high bulk density of 2 g cm-1. The 

BD values are similar to those reported by Hien et al. (2006) for the southwestern part 

of Burkina Faso. In all investigated fields, we found large stone contents (SC > 60 %), 

mainly consisting of plinthites in both top- and subsoil. 

(VI-4) 
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On average, the texture of the topsoil was dominated by the sand fraction (35 %), 

followed by the silt fraction (33 %) and the clay fraction (31 %). A similar trend was 

observed in the subsoil with on average 36 %, 35 % and 26 %, respectively, for the 

sand, silt and clay fraction. The FeDCB contents ranged from 23.2 g kg-1 to 105.5 g kg-1 

in the topsoil and from 3.6 g kg-1 to 77.7 g kg-1 in the subsoil. Relatively similar FeDCB 

values were recorded by Da Motta and Kämpf (1992) and Osodeke et al. (2005)  for 

the topsoil and subsoil for various soil orders in Brazil and Nigeria respectively. The 

variability of FeDCB in relation to the years of cultivation did not follow any clear 

particular pattern for both topsoil and subsoil.  

The topsoil SOC content varied from 9.9 g kg-1 to 23.9 g kg-1 and mostly decreased 

with cultivation duration (Table 1). These values are within the range reported by 

Agbenin and Adeniyi (2005) in Nigeria, Hien et al. (2006) in Burkina Faso, Assize et 

al. (2013) in Senegal, and Zingore et al. (2005) in Zimbabwe. Lower SOC content in 

cropland soils compared to natural vegetation is generally admitted in many other 

studies (Wiesmeier et al., 2013; Yang et al., 2010). The subsoil SOC content was 

smaller than that of the topsoil in all fields, due to larger direct biomass input into the 

topsoil as also recorded in other studies (Wang et al., 2014; Zhong and Qiguo, 2001). 
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Tab.  VI-1: Soil physical characteristics, dithionite-citrate-bicarbonate -extractable Fe 
and SOC content of the chronosequence fields  
 

Year n 

BD  

(g cm-3) 

SC  

(%) 

Sand 

 (%) 

Silt 

 (%) 

Clay 

 (%) 

FeDCB  

(g kg-1) 

SOC 

(g kg-1) 

0 - 30 cm 

0 2 1.6 (±0.0) 73.2 (±6.9) 35.0 (±1.3) 37.2 (±3.1) 25.4 (±3.8) 72.1 (±21.2) 23.9 (±0.6) 

1 2 1.6 (±0.0) 76.4 (±5.3) 37.9 (±10.3) 32.3 (±6.1) 28.2 (±17.7) 92.5 (±1.0) 18.7 (±6.7) 

7 2 1.6 (0.0) 76.3 (±1.3) 36.2 (±1.1) 33.4 (±0.2) 28.1 (±1.2) 105 (±13.9) 17.0 (±5.8) 

11 1 1.6 - 65.2 - 27.9 - 33.6 - 36.3 - 57.8 - 12.7 . 

13 1 1.6 - 78.3 - 50.8 - 26.5 - 22.3 - 23.2 - 13.7 . 

17 2 1.6 (±0.0) 69.4 (±8.2) 41.8 (±2.3) 33.5 (±10.2) 22.9 (±11.2) 41.2 (±1.2) 10.9 (±1.2) 

21 1 1.6 - 71.3 - 33.4 - 41.3 - 23.5 - 63.0 - 12.3 . 

25 1 1.6 - 62.0 - 27.6 - 36.6 - 35.6 - 52.8 - 10.1 . 

28 2 1.6 (±0.0) 65.0 (±11.2) 25.3 (±13.8) 29.5 (±0.0) 43.7 (±14.1) 35.8 (±1.5) 10.4 (±0.2) 

29 1 1.7 - 70.6 - 31.8 - 23.9 - 43.1 - 39.9 - 9.9 . 

30 - 100 cm 

0 2 1.5 (±0.1) 62.0 (±30.6) 38.7 (±15.4) 31.1 (±0.7) 27.8 (±14.6) 39.3 (±29.2) 4.0 (±0.0) 

1 2 2.0* (±0.0) 91.2 (±1.5) - - - - - - 9.7 (±5.1) 2.4 (±0.1) 

7 2 2.0* (±0.0) 93.7 (±1.4) - - - - - - 3.6 (±2.8) 1.0 (±0.1) 

11 1 1.5 - 65.2 - 37.1 - 41.9 

 

18.7 - 69.7 - 4.2 . 

13 1 2.0 - 89.0 - 36.7 - 42.2 19.2 - 12.0 - 2.6 . 

17 2 1.6 (0.1) 78.4 (±3.4) 37.1 (±9.2) 35.8 (±12.3) 25.0 (±4.4) 29.5 (±2.9) 3.9 (±0.1) 

21 1 1.5 - 69.1 - 30.1 - 25.2 - 43.0 - 77.7 - 3.8 . 

25 1 1.5 - 67.6 - 46.1 - 32.8 - 18.7 - 61.1 - 4.8 . 

28 2 1.5 (±0.1) 71.4 (±7.1) 33.8 (±9.8) 33.6 (±2.6) 30.7 (±8.6) 25.3 (±16.8) 5.9 (±0.1) 

29 1 1.5 - 70.0 - 32.4 - 37.0 - 29.0 - 58.8 - 2.6 . 

n: number of samples, BD: bulk density, SC: stone content, *petroplinthite, - for n=1 

3.2. SOC content in the different POM fractions of the topsoil 

The topsoil SOC content in the top 10 cm followed the same trend as for the first 30 

cm with a general decrease with cultivation duration (Tab. VI-2). The SOC content in 

the different POM fractions followed the pattern: nonPOM > POM1 > POM3 > POM2 

C, irrespective of the duration of cultivation. This trend was consistent with other 

studies where POM C content was reported to be larger in finer fractions but diluted in 

coarser ones (Amelung et al., 1998; Christensen, 1996). The nonPOM pool usually 

contains microbial products as well as decay products from coarser fractions 

(Amelung et al., 2002; Guggenberger et al., 1994; Lobe et al., 2002). Thus, the 
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dominance of the nonPOM fraction suggests a high level of microbe-derived, organo-

mineral associations in all the Plinthosols.   

Tab.  VI-2: SOC content in different particle-size fractions of the topsoil (0 - 10 cm; 
standard deviation in parentheses) 
 

Age n POM1-C POM2-C POM3-C nonPOM-C  SOC  

(years)  

250-2000µm 

(g kg-1) 

50-250µm 

(g kg-1) 

20-50µm 

(g kg-1) 

<20 µm 

(g kg-1) 

 

(g kg-1) 

0 2 5.1 (±1.2) 1.1 (±0.1) 2.7 (±0.5) 27.1 (±0.4) 36.73 (±2.58) 

1 2 2.3 (±1.4) 1.0 (±0.6) 1.3 (±0.9) 16.1 (±5.2) 21.90 (±8.49) 

7 2 3.4 (±0.4) 0.9 (±0.2) 1.1 (±0.4) 15.6 (±4.0) 19.98 (±6.97) 

11 1 1.7 - 0.5 - 1.1 - 12.5 - 15.40  

13 1 2.5 - 0.5 - 1.4 - 11.9 - 15.65  

17 2 2.5 (±1.9) 0.5 (±0.3) 0.7 (±0.3) 11.2 (±4.3) 14.35 (±6.15) 

21 1 1.9 - 0.6 
 

1.5 - 12.0 - 16.10  

25 1 1.5 - 0.4 
 

0.9 - 8.8 - 11.30  

28 2 1.0 (±0.1) 0.4 (±0.1) 0.7 (±0.2) 9.9 (±0.7) 11.75 (±2.19) 

29 1 0.8 -  0.2  - 0.5  - 7.7  - 9.85 (±2.58) 

- for n=1 

3.3. Dynamics of SOC stock in bulk soil at different depths in relation to land use 
duration  

The SOC stock expressed relative to the stock in the savannah land are presented in 

Fig. VI-2 for the topsoil and the entire soil profile respectively. Because the stocks of 

SOC revealed a similar temporal trend like those of the SOC contents, only the former 

are presented here to avoid redundancies. The SOC stock relative to the stock in the 

savannah land declined with increasing land use duration for the considered depth 

intervals. Yet, the decline was stronger in the topsoil compared to the entire soil 

profile. This decline was also faster during the first decade of cultivation but slowed 

down in the remaining years, suggesting a faster SOC stock loss in the initial years of 

cultivation as also recorded by Lobe et al. (2001), Solomon et al. (2007) and Don et al. 

(2011).  
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In Fig. VI-2, the decline of SOC stocks was additionally fitted with exponential 

equations (see chapter 3.5 for more details). Based on these equations, the SOC stocks 

were reduced by 66 % (p < 0.01) in 0 - 10 cm and by 55 % (p < 0.01) in 0 - 30 cm 

after 29 years of cultivation. This corresponded to a total SOC loss of 24 t C ha-1 and 

49 t C ha-1 within 29 years.  A loss of SOC from topsoils after the conversion of native 

natural vegetation into cropland is a common phenomenon (Coutinho et al., 2014; 

Paustian et al., 1997). A much stronger loss was recorded by Pardo et al. (2012) in 

Tanzania with about 50 % loss of SOC stocks after 10 years of cultivation for the 

upper 0 - 10 cm depth while in the present study about 38 % was recorded for the same 

cropping duration. Guo and Gifford (2002b) reported 42 % of SOC stock loss after 

more than 10 years of cultivation for the top 30 cm depth. A smaller decrease in SOC 

stocks was found by Don et al. (2011) who recorded  25 % loss of SOC stocks after 

forest conversion into  cropland at an average of 36 cm depth and a time since 

conversion of 22 years. The present findings are larger than the average of SOC stock 

loss mentioned in the review of Davidson and Ackerman (1993) who reported 30 % 

loss in average for the top layer (0 - 30 cm) of some tropical soils with land use change 

from native vegetation into cropland  varying between 0.6 and 90 years.  

Very few studies extended the monitoring of SOC losses into the subsoil. In the 

present study, the soils were sampled down to 100 cm, and found that between 13 to 

50 % of the average SOC over 0 - 100 cm was stored in the 30 - 100 cm depth interval. 

With increasing cropping duration, no clear trends were found for subsoil SOC 

contents (Tab. VI-1), because large contents of rock fragments likely concentrated 

SOC in the remaining fine earth (Bornemann et al., 2011). For calculation of subsoil 

SOC stocks, these amounts of rock fragments are accounted for. The final results then 

showed that SOC losses extended into the subsoil of some of the fields, and, on the 

average, 0.7 to 19.5 t C ha-1 was lost from the 30 - 100 cm depth interval (Appendix C 

Fig. XI-1). When considering the whole soil profile over 100 cm depth, the SOC stock 

was reduced by 52 % (p < 0.01) after 29 years of cultivation. This is slightly less than 

reported by Chandran et al. (2009), who found that up to 63 % of SOC was lost over 

100 cm after 40 years of cultivation in semiarid soils in India, while a lower value of 
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24 % of SOC stock loss was reported by Elberling et al. (2003) in semi-arid Senegal 

for a similar land use duration and soil depth.  

 

Intriguingly, the results further revealed that no steady-state equilibrium was 

reached after 29 years of cropping, neither for the topsoil, nor for the entire soil 

profile. Possibly the cropping time in our study must still be considered as being short. 

It was  repeatedly reported that SOC  reached a new steady-state equilibrium after 30 

to 50 years of land use duration (Arrouays et al., 1995; Balesdent et al., 1988). Lobe et 

al. (2001) recorded an equilibrium after 34 years of cropping for the SOC content in 

South African soils (also Plinthosols, though with soft plinthite). For two regions in 

Kenya, it took 21 and 37 years after steady-state equilibrium was reached (Solomon et 

al. (2007). In any case, the present data suggest that SOC losss from the Plinthosols 

will be ongoing.  
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Fig.   VI-2: SOC stocks of cropland in relation to SOC stock of savannah soils (in  %) 
for different years of cultivation in  the topsoil and entire soil profile 
 

3.4. Dynamics of SOC stock in POM fractions in relation to land use duration for 

the topsoil  

A further insight into the dynamics of the SOC stock loss can be obtained by 

investigating the pattern of the residual SOC stock ratio in the particle-size fractions. A 

decline in SOC stock was observed not only in the POM fractions but also in the 

nonPOM fraction (Fig. VI-3) of the topsoil (0 - 10 cm). Since the equations for SOC 

losses in POM1 and POM3 were not significant, we further present the variation of 

SOC stock with land use duration for POM2+POM3 (250 – 20 µm) and all POM - 
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POM1+POM2+POM3- (2000 µm – 20 µm). Compared to the bulk soil, the SOC 

losses in the POM fractions followed the same trend with most decline occurring 

within the first 10 years especially for POM1-C and POM3-C. After 29 years of 

cultivation, the SOC stock was reduced by 72 % (p < 0.05) for POM2-C, 74 % (p < 

0.05) for POM2+POM3-C and 77 % (p < 0.05) for all POM-C. The data are in line 

with earlier findings that SOC losses mostly originate from the POM fraction. 

Balesdent et al. (1998), for instance, reported that 82% of SOC in POM was lost after 

35 years of cultivation. Losses from the silt fraction were 76%, those from the clay 

fraction 53%.  Besnard et al. (1996) found  43% and 92% POM-C losses, respectively, 

after 7 years and 35 years of cultivation. 

The POM1-C pool contributed relatively more to the SOC losses observed in the bulk 

soil at 0-10 cm depth compared to POM3-C and POM2-C (Appendix C Fig. XI-2). 

The POM1 (> 250 µm) which is the coarse sand fraction is considered to be more 

sensitive to cultivation (Yamashita et al., 2006). We also recorded a large SOC losses 

for the nonPOM fraction, which amounted to 63% (p < 0.05) after 29 years of 

cultivation.  However, the magnitude of the finding for the latter was contradictory in 

view of literature data (Christensen, 1992; Guimarães et al., 2014) where it is generally 

reported that SOC exhibits a higher stability with time for the nonPOM fraction. 

Moreover, when calculating the absolute decline in SOC, it was even larger for the 

nonPOM following the fact that this fraction initially contained the largest amount of 

SOC (Tab. VI-2, Fig. XI-2). Also Steinmann et al. (2016) recorded losses of SOC in 

this fraction as a result of past land uses changes and management in Germany. We 

thus suggest that nonPOM-C of the studied Plinthosols was more vulnerable to decay 

than formerly reported, possibly due to a facilitated breaking of soil aggregates that 

overcame physical stabilization processes (Six et al., 2002). 
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Fig.   VI-3: SOC stocks of cropland in relation to SOC stock of savannah in different 
particulate organic matter (POM) fractions (in  %) for different years of cultivation in 
the topsoil (0 – 10 cm) 
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3.5. Kinetics of SOC in bulk soil and particle-size fractions 

The topsoil SOC stock content and stock as well as the SOC stock of the entire soil 

profile were fitted with both monoexponential and biexponential models (Tab. VI-3). 

Only significant models are here reported. Generally, the decline of SOC contents and 

stocks in the bulk soil was best fitted with a biexponential model, with significant 

differences to the monoexponential for the SOC content at 0 - 10 cm depth (p < 0.01) 

and for SOC stock at 0 - 30 cm depth (p < 0.05). 

The mean residence time (MRT) as revealed by the monoexponential models varied 

with depth for the SOC content and stock. A relative small MRT of 0.93 yr was found 

for the SOC content at 0 - 10 cm depth while a MRT of 10 yr was recorded for the 0 - 

30 cm depth interval. This might indicate that ploughing did not always reach the 30 

cm depth but was by incident shallower. If ploughing, for instance, referred to the top 

20 cm only, there is only slow turnover of SOM at the 20-30 cm depth interval, thus 

overall prolonging the MRT at 0 - 30 cm soil depth. The same principle applies to all 

other ploughing depths below 30 cm.  

 

Intriguingly, a longer MRT was obtained for the top 0 - 10 cm of soil when 

calculations were performed with SOC stocks instead of SOC contents (Table 3). This 

finding could be attributed to some compaction in the upper 10 cm of the soil that went 

along with even larger variability in stone contents (Appendix C Fig. XI-3, XI-4). 

When the soil is compacted, sampling by volume includes more subsoil, thus diluting 

SOC concentrations but not stocks. Similarly, rising stone contents may increase 

carbon saturation (Bornemann et al., 2011) and thus vulnerability of SOC against 

decay, while not necessarily affecting SOC stocks. Yet, such differences should not be 

overinterpreted, because fit quality was overall worse than for the bi-exponential 

model. If using the latter, the MRTs were as short as for the SOC contents.   

 

For the SOC content, the MRT recorded for the monoexponential model for the upper 

10 cm was slightly lower than the values reported by Solomon et al. (2007) in Kenya, 

who, however, assessed SOC loss rates after deforestation and not after converting 
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savannah to cropland. In contrast, the result for the upper 30cm revealed a MRT that 

was larger than that recorded by Lobe et al. (2001) in South Africa, who, however, 

sampled the top 20 cm of soil only  (Tab. VI-3). Overall, the MRTs were thus in the 

range of MRTs reported for other tropical soils, i.e., no specific indication was found 

that the presence of hard plinthite between 0 - 30 cm soil depth delayed SOC losses at 

significant scale. In contrast, the MRTs of the topsoil SOC stocks were at least two 

times lower (i.e., SOC turnover was at least 2 times faster) than that reported for 

temperate areas by Gregorich et al. (1995) and Wei et al. (2014a), probably due to the 

warmer climate and more sandy texture favoring faster decomposition. A much lower 

MRT (< 1) was even recorded by Dalal and Mayer (1986) in the warmer climate area 

(Riverview, Australia) for a kaolinite dominated sandy loam soil. 

The points of kinetic change from the biexponential models revealed that the decline 

rate for the topsoil SOC content was dominated by the stable pool in less than 1 yr for 

the upper 10 cm and in less than 2 yr for the upper 30 cm. The same trend was 

observed for the topsoil SOC stock with the decline rate being dominated by the stable 

pool within 2 yr. These results suggest that the ability of the soil to release nutrients to 

plants dropped after two years making the use of fertilizers crucial for subsequent 

cropping.  

The investigation of SOC dynamics in the particle-size fractions confirmed that loss 

rates were better described with biexponential models, with significant differences to 

the monoexponential for  POM1-C (p < 0.05), nonPOM-C (p < 0.01) and nonPOM-C 

stock  (p < 0.01). 

Considering the monoexponential models, the decay rate of SOC related to the various 

particle-size fractions generally increased from the non POM to the POM1 fraction, as 

also found in other studies (Balesdent et al., 1988; Balesdent et al., 1998; Lobe et al., 

2001). However, contrary to the previous studies the POM2 (250 – 53 µm) fraction 

recorded the slowest decay rate and longest MRT for both its SOC content and stock. 

On the one hand, POM2 C represents the intermediate sand fraction (250 – 53 µm) and 

contains materials at an advanced stage of degradation that could already be occluded 

in soil aggregates where they might be better protected from decay (Six et al., 2000). 
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This may explain the lower MRT compared with POM1, but not compared with 

POM3. It seems thus reasonable to speculate that other factors contributed to the 

relative long MRT of the POM2-pool. On the one hand this fraction may contain 

significant amounts of black carbon (the remains from burning events) with low 

turnover time (Brodowski et al., 2007), on the other hand, also very stable Fe 

concretions could end in the size range, so that not all SOC in the 250-53  µm fraction 

is truly POM. The specific role of Fe oxides is thus discussed in the subsequent 

section. 

 

For the biexponential model, the labile (Z�) pool decreased from the fine fractions 

to the coarse fractions for the SOC content. These results are contrary to the finding of 

Lobe et al. (2001) who recorded an increase from clay to the coarse sand fraction. Yet, 

the sampling depth in both studies is not comparable, in addition, the point of kinetic 

change �(� was already reached in < 1 year for the upper 10 cm (Table 3). Hence, there 

are not enough data to truly interpret differences in Z values from the labile pool, and 

it is therefore concluded from the finding that two pools existed with the first one 

being relevant only for initial SOC losses upon cropping. 
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Tab.  VI-3: Kinetic parameters for the average decline rates of SOC in bulk soil and 
particle-size fractions as affected by land use duration at different soil depths (results 
of this study plus literature data) 
 

  
Site & soil layer 

  Exponential model 
 

  Biexponential model 

 Z 
 (yr -1) 

R2 � 
 (yr) 

MRT 
 (yr) 

 Z�  

(yr -1) 
MRT1  

(yr) 

Z�  
(yr -

1) 

MR
T2  
(yr) 

R2 �(� 
(yr) 

Dano Burkina (this study): SOC content (g kg-1) 

Bulk soil, 0 - 10 cm 
 

1.07 0.86*** 29 0.9 
 

6.43 0.2 0.02 50 
0.97**
* 

0.80 

Bulk soil, 0 - 30 cm 
 

0.1 0.92*** 29 10 
 

1.72 0.6 0.02 50 
0.95**
* 

1.90 

POM1 (> 250 µm),    0 - 10 
cm  

2.12     0.63* 29 0.5 
 

33.92 0.0 0.03 33 0.82* 0.20 

POM2 (250 - 53 µm), 0 - 10 
cm  

0.07 0.88*** 29 14 
 

0.23 4.3 0.03 33 0.89* 4.26 

POM3 (53 - 20 µm ), 0 - 10 
cm  

1.74 
    
0.75** 

29 0.6 
 

166 0.0 0.02 50 0.82* 0.05 

non POM (< 20 µm ), 0 - 10 
cm  

1.17 0.85** 29 0.8 
 

15633 0.0 0.02 50 
0.97**
* 

0 

Dano Burkina (this study): SOC stock (t C ha-1) 

Bulk soil : 0 - 10 cm 
 

0.07 0.89*** 29 14 
 

2.6 0.4 0.03 33 
0.94**
* 

1.28 

Bulk soil : 0 - 30 cm 
 

0.1 0.93*** 29 9.3 
 

1.64 0.6 0.01 100 
0.97**
* 

2.12 

POM2 (250 - 53 µm) 
 

0.03 0.83*** 29 33.3 
 

0.04 25 0.04 25 0.83* 
30.3
7 

non POM (< 20 µm ) 
 

0.06 0.91*** 29 16.7 
 

49.21 0.0 0.02 50 
0.96**
* 

0.13 

Free State Province, South Africa (Lobe et al., 2001) : SOC content (g kg-1) 

Bulk soil, 0 - 20 cm 
 

0.15      0.97 90 6.6 
 

0.23 4.3 0.00 217 0.99 17.1 

Coarse sand, 0 - 20 cm 
 

0.4      0.89 90 2.5 
 

0.6 1.7 0.01 100 0.92 8.1 

Fine sand, 0 - 20 cm 
 

0.1      0.85 90 10 
 

0.11 9.1 0.00 1429 0.85 46.7 

Silt, 0 - 20 cm 
 

0.09      0.97 90 11.1 
 

0.11 9.1 0.00 435 0.98 34 

Clay, 0 - 20 cm 
 

0.09      0.97 90 11.1 
 

0.11 9.1 0.00 435 0.97 33.5 

Nandi Kenya (Solomon et al., 2007): SOC content (g kg-1) 

Bulk soil, 0 - 10 cm 
 

0.16 - 100 6.2 
 

- 
 

- 
 

- - 

Kakamega Kenya (Solomon et al., 2007):  SOC content (g kg-1) 

Bulk soil, 0 - 10 cm 
 

0.29 - 103 3.4 
 

- 
 

- 
 

- - 

Pyrenean Piedmont France  (Balesdent et al., 1998): SOC content (mg C g-1) 

Coarse sand, 0 - 26 cm 
 

0.25 - 40 4 
 

- 
 

- 
 

- - 

Fine sand, 0 - 26 cm 
 

0.18 - 40 5.5 
 

- 
 

- 
 

- - 

Coarse silt, 0 - 26 cm 
 

0.15 - 40 6.7 
 

- 
 

- 
 

- - 

Fine silt, 0 - 26 cm 
 

0.12 - 40 8.3 
 

- 
 

- 
 

- - 

Clay, 0 - 26 cm 
 

0.03 - 40 33.33 
 

- 
 

- 
 

- - 

Ontario, Canada (Gregorich et al., 1995) : SOC stock (t C ha-1) 

Bulk soil, 0 - 30 cm 
 

0.03 - 25 33.3 
 

- 
 

- 
 

- - 

Shaanxi China  (Wei et al., 2014a): SOC stock (t C ha-1) 

Bulk soil, 0 - 10 cm 
 

0.03 - 100 30.3 
 

- 
 

- 
 

- - 
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Bulk soil, 0 - 10 cm 
 

0.01 - 100 76.9 
 

- 
 

- 
 

- 
- 
 

Riverview, Australia (Dalal & Mayer, 1986) : SOC stock (t C ha-1) 
Bulk soil, 0 - 10 cm   1.2 0.87 20 0.8        

-: no data, *:  p≤ 0.05;**: p≤ 0.01;***: p≤ 0.001 

 

 

3.6. Role of Fe oxides for SOC dynamics 

To capture the role of Fe oxides for the stabilization of soil organic matter, SOC stocks 

were analyzed before and after reductive dissolution and subsequent extraction of Fe 

oxides with DCB. Here, focus was set on the surface Fe enriched (0 - 30 cm) soils 

(Tab. VI-1). Several studies pointed out that Fe oxides can impede SOC 

decomposition and reduce SOC losses (Baldock and Skjemstad, 2000; Kalbitz et al., 

2005; Poulson et al., 2016). Since Plinthosols are low activity (kaolinitic) clay soils 

rich in Fe oxides (IUSS et al., 2006), a significant contribution of the latter  to SOC 

stabilization was expected. However, the scatter plot of the SOC stock loss over 29 

years against the SOC stock loss due to the DCB treatment (Fig. VI-4) did not yield a 

significant correlation (R2 = 0.0083, p > 0.05).  

In our study, about 0.2 % to 48 % with an average of 16 % (± 15 %) of SOC stock 

were lost after treating the topsoil samples with DCB (Fig. VI-4). Overall, this is 

consistent with results published by Adhikari and Yang (2015) and Wagai and Mayer 

(2007) who found about 5 - 44 % and 4 - 37 % ( 0 - 28 cm depth) of Fe associated 

SOC respectively. However, for the results from Wagai and Mayer (2007) only one 

soil order recorded the highest amount of Fe associated SOC (37 %) while less than 25 

% of Fe-SOC complexation was observed with the remaining. Out of the 58 to 80 % of 

the organic matter subject to organomineral complexation, only 2 to 7 % was observed 

by Basile-Doelsch et al. (2009) to be associated with Fe in some Oxisols at 0 - 20 cm 

depth  in Madagascar. However, Poulson et al. (2016) found an average of 37 % for Fe 

bound SOC in some US forest soils at 0 – 20 cm depth, which is two times higher than 

the averaged reported in the present study. The difference might be related to higher 

initial Fe oxide of the forest soils compared to the cropland of the present study.  

 



VI. Carbon losses from prolonged cropping of Plinthosols in the Dano district (Southwest Burkina-Faso) 

118 

 

Since in our study most of SOC stock was found as nonPOM, intimate association 

with clay and silt particles was suggested as the main mechanism for SOC stability in 

the studied Plinthosols rather than specific occlusions into oxides. Though specific 

measurements of occluded SOC had not been carried out, it was believed that pure Fe 

concretions would not point at any elevated SOC content if detectable at all. The fast 

loss of SOC content and stock in the topsoil suggests, however, that the binding of 

SOC to clay or silt plus clay in the nonPOM fraction is not as stable as in other soils 

and remains still accessible to decomposition upon continuous cultivation.   
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Fig.   VI-4: Relation between real SOC stock loss in topsoil (0 - 30 cm) over a period 
of up to 29 years and SOC stock loss after DCB treatment 
 

4. Conclusion 

In the Plinthosols studied here, the conversion of natural vegetation to continuous 

cultivation resulted in a decline of SOC contents and stocks. Continuous cultivation 

reduced the SOC stock by 34 %, 45 % and 48 % after 29 years of cultivation in the 

upper 10 cm, 30 cm and 100 cm, respectively. SOC losses extended also into the 

subsoil, and, on the average, 0.7 to 19.5 t C ha-1 was lost from the 30 - 100 cm depth 

interval. For the upper 10 cm, the losses occurred from all POM fractions as well as 

from the nonPOM fraction. However, the SOC loss occurred faster in the coarse sand-

sized fraction, which thus exhibited the lowest mean residence time of the studied 
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fractions. The point of kinetic change, which marks the timing required for the stable 

pool to dominate the overall losses of SOC, indicated for both topsoil and the 

dominance of the decline rate by the stable pool in less than 3 years, suggesting that 

provision of fertilizers would be necessary to raise the productivity of the soils. Our 

results also suggest that Fe oxides only played a minor role as stabilizing agent for 

SOC. This points to the formation of silt and clay sized organomineral complexes as 

well as to the binding of Al oxides as main protection mechanism, i.e., the hypothesis 

that Fe exerts a major control on SOC losses in these plinthitic soils is refuted. Though 

the nonPOM fraction is usually associated with a higher stability, the cultivation 

induced SOC losses from this fraction indicate that it remains vulnerable to 

decomposition processes when savannah is broken for continuous cropping in these 

major reference soil groups. 
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1. Introduction  

Land degradation is a major issue nowadays in Sub-Saharan Africa especially in the 

semi-arid regions where climate conditions (Sivakumar and Stefanski, 2007) and land 

use pressure (Meshesha et al., 2012) affect soil productivity and livelihood. 

Addressing land degradation requires having the necessary soil spatial information 

which is crucial in any land evaluation. As pointed out by Henry et al. (2009), soil 

preservation or recommended conservation practices cannot be carried out without 

maps of soil properties and soil groups. One of the major reasons maps are required is 

the highly spatial variability of soil properties as dissimilarities in values are often 

recorded within small distances of meters or even decimeters (Wiesmeier et al., 2014).  

In addition, management decision at small scales such as plots or small catchment 

require finer scales maps which are not available as traditional maps are mostly built at 

a coarse scale. Recent advances in remote sensing and information systems resulted in 

a new paradigm in soil mapping called “digital soil mapping” (DSM) which couples 

soil legacy data with some statistically correlated auxiliary data (McBratney et al., 

2003). With the increased availability of free high resolution remote sensing data, 

DSM offered an unique opportunity for map data provision especially in West Africa 

where dearth of baseline data prevent accurate decision making towards sustainable 

management practices. For implementing DSM, using adequate models to carry out 

such correlation and conducting data treatments to remove redundancies and noise due 

to imbalance data are key determinants for improvement in prediction accuracy 

(Schmidt et al., 2008).  

Generally land degradation adversely affects the soil organic carbon (SOC) which is 

the key indicator of soil health owing to its major role in most soil functions such as 

the storage of nutrients and water, soil biological activity and structural stability. Much 

attention has been given to SOC pools in soils because of its determinant role in the 

global carbon cycle and its potential for mitigating or aggravating the amount of the 

greenhouse gases in the atmosphere (Davidson and Janssens, 2006; Liu et al., 2011). 

In West Africa where natural soil fertility and fertilizer input are low, preserving SOC 

is of the utmost importance for soil to fulfill key ecosystem services (Doraiswamy et 
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al., 2007). Though some carbon budget estimates have become available, there is still 

a lot of uncertainties whether Africa is a carbon source or sink (Valentini et al., 2014) 

due to data scarcity. A step forwards in reducing these uncertainties require more data 

in SOC estimation over different soil and land use type in Africa in general and in 

West Africa in particular.  

The SOC content and stock vary at different point of the landscape resulting from the 

interplay of various factors that determine its amount in time and space. Thus, various 

studies have been carried out on SOC and its determining factors such as climate 

(Albaladejo et al., 2013; Stergiadi et al., 2016), land use/cover change (Muñoz‐Rojas 

et al., 2015; Xiong et al., 2014), topography (Nadeu et al., 2015), sesquioxides (Peng 

et al., 2015) and soil type (Bruun et al., 2013; Wiesmeier et al., 2012). With the 

interplay of these factors, SOC reaches equilibrium values depending on the type of 

systems and locations. However, the equilibrium is adversely affected when natural 

areas are cleared and converted into cropping land (McDonagh et al., 2001; Murty et 

al., 2002). Such conversion is reported to be followed by a decline in SOC and 

analysis include pools of different SOC stability, since overall response rates may be 

slow and thus ignored when based on bulk SOC analyses only (Skjemstad et al., 

2004b). Moreover, most studies only focused  on surface soil horizons while more 

than 50 % of SOC stock is usually allocated below 20 cm depth (Batjes, 1996). 

Achieving the Kyoto protocol requires the assessment of stocks of SOC in different 

land use and soil type at different depth which is an essential step towards evaluating 

the sequestration potential of a land. Additionally, a good understanding of factors 

affecting carbon dynamics is necessary for the development of adequate management 

strategies.  

Land degradation assessment and accurate conservation decision by farmers, scientists 

and policy makers require spatial and temporal distribution of both soil properties and 

soil groups which can be made available with new statistical techniques related to 

digital soil mapping.  Key information of soil health indicator such as SOC and its 

dynamics with land use change are also crucial for sound management practices and 

for the computation of future climate scenarios as well as the identification of the 
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potential for C sequestration or emission. My objectives were therefore to : (i) assess 

the use of  finer  spatial  and  temporal  resolution  optical  imagery along with 

topographical variables to improve the prediction accuracy in DSM of some soil 

properties,  (ii) to evaluate the impact of different data pruning methods as a mean for 

improving data quality in the prediction accuracy of some reference soil groups (iii) 

determine the amount, distribution and driving factors of SOC stock in different soil 

groups and land use, (iv) to investigate the impact of land use change on soil SOC 

content and stock along a cultivation chronosequence. 
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2.   Summary of the results 

 

(i) High resolution mapping of soil properties using remote sensing variables in 

south-western  

Burkina faso:  a comparison of machine learning and multiple linear regression 

models 

Spatial soil information is crucial for environmental modelling, risk assessment and 

decision making. The availability and use of Remote Sensing data as secondary 

sources of information in digital soil mapping has been found to be cost effective and 

less time consuming compared to traditional soil mapping approaches. But the ability 

of Remote Sensing data in improving knowledge of local scale soil information in 

West Africa have not been fully explored. This study was conducted to assess the use 

of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data 

and laboratory analyzed soil samples to map the spatial distribution of six soil 

properties – silt, sand, clay, cation exchange capacity (CEC), soil organic carbon 

(SOC) and nitrogen – in a 580 km2 agricultural watershed in south-western Burkina 

Faso. Four statistical prediction models – multiple linear regression (MLR), random 

forest regression (RFR), support vector machine (SVM), stochastic gradient boosting 

(SGB) – were used and compared. A cross validation was carried out for internal 

validation while the predictions were validated against an independent set of soil 

samples considering the modelling and an extrapolation area.  

Results showed from the performance statistics that the machine learning techniques 

performed marginally better than the MLR, with the RFR providing in most cases the 

highest accuracy. Satellite data acquired during ploughing or early crop development 

stages (e.g. May, June) were found to be the most important spectral predictors while 

elevation, temperature and precipitation came up as prominent terrain/climatic 

variables in predicting soil properties. The results further showed that shortwave 

infrared and near infrared channels of Landsat8 as well as soil specific indices of 

redness, coloration and saturation were prominent predictors in digital soil mapping. In 

view of the increased availability of freely available Remote Sensing data (e.g. 

Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor 
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regions such as West Africa can be improved with relatively little financial and human 

resources.  

(ii) Predicting reference soil groups in the Dano catchment (Southwest Burkina 

Faso) using legacy  

      data: data pruning and random forest approach 

Digital soil mapping uses quantitative correlations between a set of covariates and a 

target variable to be predicted. However, predicting taxonomic classes could be 

challenging when a major soil class belonging to a wide range of covariates overlaps 

with those related to smaller class units. The extent to which  different data pruning 

methods which result in different subsets of the majority class could lead to an 

increase in prediction accuracy by using Random Forest (RF) was investigated. The 

Random Forest modelling was conducted either with (RF_rfe) or without (RF) 

recursive feature elimination. The methods were applied for digital mapping of some 

reference soil groups in the Dano catchment (Burkina, West Africa), using a large soil 

dataset in which the Plinthosols were the major soil class. In total, four datasets were 

used including the entire dataset (AllPT) and the pruned dataset consisting respectively 

of 80 %, 90 % and standard deviation core range of the Plinthosols data while cutting 

off all data points belonging to the outer range. The Plinthosol samples which were 

removed by pruning were latter predicted using the models developed for the 

respective train dataset.  For the entire dataset (AllPT) as well as for each data subset, 

three groups of covariates consisting in (i) terrain parameters (TP), (ii) spectral 

parameters (SP) and (iii) terrain and spectral parameters (TSP) were considered for the 

prediction of the reference soil group (RSG).  

 

No matter the Random Forest models, the predictions based on AllPT revealed an 

overestimation of the Plinthosols, which reduced the prediction accuracy of the 

remaining reference soil groups. This overestimation was independent of the group of 

covariates considered. However, about 3 to 41 % improvement in prediction accuracy 

was recorded when using different pruned datasets for the identification of reference 

soil groups. The best prediction was attained when removing all Plinthosol points 
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lower than 5 % and higher than 95 % of the cumulative percentage of the most 

important variable (wetness index) and modelling conducted solely with terrain and 

spectral parameters (TSP) with optimal predictors resulting from the RF_rfe. The 

resulting prediction model provided a substantial agreement to observation, with a 

kappa value of 0.57 along with a 35 % increase in prediction accuracy for Cambisols, 

7 % for Gleysols and 16 % for Stagnosols. The pruned Plinthosol samples recorded a 

prediction accuracy varying between 15 % and 71 %. When combined, the terrain 

parameters took preeminence over the spectral bands and indices with the SAGA 

wetness index, a proxy for soil moisture distribution, being the most important variable 

contributing to the quality of the RF model. This study thus points to the potential of 

using data pruning to reduce the influence of a predominant reference soil group on the 

spatial prediction of smaller soil units in tropical environment. 

 

(iii) Spatial controls of soil organic carbon stocks in the Sudanian savannah zone 

of Burkina Faso, West Africa 

The ability to project and to mitigate the impacts of climate change is closely related to 

the evaluation of soil organic carbon (SOC) stocks across different types of land use 

and soil groups. Therefore, this study aimed at estimating the surface (0 - 30 cm) and 

subsoil (30 – 100 cm) organic carbon stocks in different land use systems and across 

various soil groups. A further aim was to assess the spatial variability of SOC stocks 

and factors affecting its distribution. About 70 soil profiles were considered along with 

additional auger (1205 samples) sampling to account for spatial variation in both 

cropland (CR) and savannah (SA). Mid-infrared spectroscopy and partial least-squares 

analysis were used as a fast and low-cost technique to handle the large amount of 

samples for the SOC content estimation. The machine learning technique Random 

Forest Regression (RFR) and multiple linear regression (MLR)  were used for 

modelling the surface SOC stocks topsoil (0 - 30 cm).  The covariates considered 

include topographic, texture along with climatic data used as surrogate for soil forming 

factors for model calibration. The prediction maps produced by the calibrated models 

were validated by an independent dataset.  
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Overall, about 53 % of the carbon stock over 1 m depth was held in the upper 30 cm 

and is proned to release upon non-sustainable management practices Only a marginal 

difference was recorded between the topsoil SOC stock in SA soils (41.4 t C ha-1) and 

cropland soils (39.1 t C ha-1). For the subsoil, a significant difference (p < 0.05) was 

observed for the SOC stock between the CR recording about 40.2 t C ha-1 and the SA 

with 26.3 t C ha-1. Over 0 - 30 cm and 100 cm depth, Gleysols (44 t C ha-1  and  86.64 t 

C ha-1 respectively) located at lower elevation position stored the highest amount  of 

SOC stock. The topsoil SOC stock variability was primarily affected by the silt content 

followed by the wetness index. Both RFR and MLR estimated mean top- SOC stocks 

of the catchment fairly well, with RFR being superior to MLR in terms of lower 

statistical error metrics. These findings reinforce the view that the semi-arid 

ecosystems of West Africa still offers a significant opportunity for carbon 

sequestration and these results represent a baseline for future carbon dynamics 

modelling in the region. 

(iv) Carbon losses from prolonged arable cropping of Plinthosols in Southwest 

Burkina Faso 

The conversion of natural ecosystems into agricultural land affects the atmospheric 

CO2 concentration whose increase contributes to global warming. This study aimed at 

assessing these effects in Plinthosols, which are characterized by large contents of Fe 

oxides that are usually known to protect SOC from rapid decay. For that purpose, 

Plinthosols were sampled down to one meter (if feasible) that had been converted from 

native savannah into cropland 0 to 29 years ago in the Dano district (Southwest 

Burkina Faso). Beside the assessment of SOC stocks, the proportion of SOC remaining 

after Fe oxide removal was determined as well as its distribution among the following 

particle-size classes: 2000 - 250 µm (coarse sand-sized SOC; POM1), 250 µm – 53 

µm (fine-sand-sized SOC; POM2), 53 µm – 20 µm (very fine sand-sized SOC; 

POM3), and < 20 µm (nonPOM). 

The extent of change in SOC stock was found to vary with depth and the age of the 

cropland. A decrease in SOC stock of 24 t C ha-1 and 49 t C ha-1  were  recorded for 

the upper 10 cm and 30 cm indicating that about 66 % (p < 0.01) and 55 % (p < 0.01) 



VII. Synthesis and perspectives 

128 

 

of the initial stock in the native vegetation had been released respectively after 29 

years of cultivation. SOC losses extended also into the subsoil, and, on the average, 

0.7 to 19.5 t C ha-1 was lost from the 30 - 100 cm depth interval. About 52 % (p < 

0.01) of SOC stock loss was recorded for the upper 100 cm after 29 years. Losses of 

SOC occurred in all soil fractions with mean residence time generally increasing with 

particle size. The Fe oxide was found to play a minor role as stabilizing agent as only 

16 % (± 15 %) in average of the SOC stock was lost after treating the samples with 

dithionite-citrate-bicarbonate (DCB). Though most carbon was found as nonPOM, 

indicating that organo-mineral associations are a key parameter for carbon 

stabilization, its depletion with increasing cultivation duration suggests that the 

destruction of aggregates in these fields increased the vulnerability of this pool to 

microbial degradation. The loss rates of SOC were thus similar to those reported for 

other soil types, i.e., plinthite formation played only a minor role in stabilizing the 

remaining SOC from decomposition. 

3.  Synthesis 

This study was motivated by the need to evaluate the impact of different category of 

covariates and statistical methods for DSM at catchment level as well as to investigate 

the SOC dynamics along a false chronosequence. The results of Chapter III, IV and V 

pointed out the potential of the application of DSM in predicting soil properties and 

reference soil groups. The resulting maps revealed the spatial variability of soil 

properties and reference soil groups while the models also provided insight into the 

key variables affecting their respective distribution. The question whether soils in the 

Dano catchment have potential or would function as a source or sink for carbon was 

elucidated in Session V and VI.  

Sustainable land use and management require high resolution spatial information on 

soil properties for accurate decision and knowledge-based policies. The combination 

of high spatial resolution satellite (RapidEye and Landsat) along with terrain/climatic 

data resulted in better prediction accuracy of soil properties by the RF models. In 

assessing the models’ performance inside and outside the the small catchment 

(modelling area), the performance statistics revealed that the machine learning 
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techniques provided marginal improvement in the different prediction. The lower 

performance of the MLR is attributed to its failure in accounting for non-linear 

relationships between response and predictor variables. The size and heterogeneity of 

the landscapes with varying surface characteristics due to various farm management 

practices and terrain attributes introduces complex relationships in the environmental 

variables which cannot be captured fully by linear models (Selige et al., 2006; Smith et 

al., 2013). Consequently, recommendation goes for non-parametric models such as 

RFR, support vector machines (SVM) and neural networks which were found superior 

to MLR for heterogeneous landscape (Hahn and Gloaguen, 2008b; Wålinder, 2014). 

However, for more homogeneous areas MLR is likely to provide good prediction 

accuracy.  

For the high resolution mapping of the soil properties, the spectral data especially 

those acquired during ploughing or early crop development stages (e.g. May, June) 

were found to be the most important predictors in contrary to the trend observed for 

the RSG prediction. These findings indicate the strong impact of optimal timing for RS 

data acquisition for predicting soil properties. A timely acquired RS data along with 

terrain/climatic variables would therefore contribute in better prediction accuracy 

when models able to handle non-linear relationships are considered.  

Predicting reference soil groups with a dataset subject to imbalance issues led to an 

overestimation of the dominant soil groups represented by the Plinthosols. The 

observed noises were due to the Plinthosols belonging to a wide range of predictors 

also shared by the smaller soil units. Only the pruned dataset with RF models 

including at least the terrain attributes resulted in a better expression of the smaller soil 

units in the corresponding maps. Consequently, pruning the majority class - the 

Plinthosols - by different methods while using Random Forest (RF) to evaluate the 

various datasets proved to be an efficient way for improving the prediction accuracy. 

This indicates that for areas where alternatives such as increasing the soil pedons with 

soil groups having lower observations (Brungard et al., 2015) would be costly and 

time consuming, pruning could be considered as a possible option. 
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Considering the variables used as surrogates for soil forming factors, only the 

combination of both terrain attributes and spectral data resulted in better prediction of 

the RSG along with the pruned dataset. However, the terrain attributes took 

preeminence over the spectral variables for the distribution of the RSG. Though the 

latter contradict the results of Scull et al. (2005), it confirms the finding of Dobos et al. 

(2001)  and Stum (2010) who also recorded terrain attribute as playing the major role 

for discriminating soil units. The SAGA wetness index was the most prominent along 

with distance to stream, protection index and elevation for the top four variables. As 

outlined in section I, the SAGA wetness index coming as top variables suggests soil 

moisture distribution as the key factor discriminating among the RSG while the 

remaining top variables are playing a regulatory role. The RFR models then classifyied 

wet soil in low elevation and distance to stream area (Gleysols) and the dry soil 

(Leptosols) on high elevation and distance to stream areas while the remaining soil 

groups occupy intermediate position between these two groups. This spatial 

distribution of the different RSG is in agreement with  expected soil–landscape 

relationships as described in the IUSS et al. (2006) and also confirmed by other studies 

assessing decision tree model ability for predicting soil classes (Brungard et al., 2015; 

Taghizadeh-Mehrjardi et al., 2012). In summary, the majority class data pruning 

resulted in an increase of prediction accuracies of the smaller soil units while using 

Random Forest (RF) as robust method to evaluate the various sets. 

The quantification of soil organic carbon (SOC) stocks is of global concern as soils 

constitute the major C pool and could turn out as substantial sinks or sources for 

atmospheric CO2. The results presented in Chapter V established that the SOC stocks 

are primarily (53 %) located in the topsoil (0 – 30 cm) which is within the range 

reported by Batjes (1996). The lower SOC stock in the topsoil of the CR confirmed the 

adverse effect of cultivation along with the removal of biomass which is not available 

for the built-up of organic matter in the soil. The significantly higher SOC stock in the 

subsoil of the CR was quite surprising but might be attributed to the relocation of SOC 

content and clay from the topsoil to lower layers under the heavy rains of the tropics. 

With the bare soil surface of the CR, the intensity of the impact of rainfall is expected 

to be higher compared to SA with higher amount of material being relocated.  
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The distribution of the SOC stock in the different RSG revealing Gleysols located at 

lower elevation area as having the highest amount suggest the impact of erosion 

processes with transport of sediment from higher location to lower areas. The silt 

content followed by sand, wetness index, elevation and temperature were found to be 

the five top variables. Since topography affects soil properties, the elevation 

determines the spatial distribution of silt and wetness index which as mentioned earlier 

is an indicator of soil moisture. SOC is related to silt via the physical and chemical 

protection it provides (Feller and Beare, 1997; Jones, 1973; McGrath and Zhang, 

2003) while soil moisture distribution which depends on precipitation affects 

decomposition processes along with soil temperature (Parton et al., 1993).  

In general, the accuracy of the prediction models were low though the RFR performed 

marginally better than the MLR with higher R2 (13  %) and lower error metrics. The 

low explained variances are due to intrinsic high spatial variability of SOC with the 

interplay of complex and large range of factors at local and regional level which might 

not have been fully captured in the present study. For example, elements such as clay 

mineralogy and sesquioxides were not considered in the models. Moreover, errors 

related to field sampling, laboratory measurement, statistics as well as random errors 

could also play a role. However, other studies also recorded lower accuracies varying 

from 6 % to 43 % (Grimm et al., 2008; Henderson et al., 2005; Schulp et al., 2013; 

Schulp and Verburg, 2009) resulting mainly from the high spatial variability of the 

SOC. It is obvious that more investigation are required to improve the accuracy of 

DSM in highly heterogeneous landscape located in semi-arid tropical area. 

The assessment of the impacts of LUC on SOC content and stock in the Plinthosols 

revealed a general decline with increasing land use duration (Chapter VI) for both 

topsoil (0 – 30 cm) and subsoil (30 – 100 cm). The study highlights that SOC in 

subsoil can also be disrupted as a result of LUC contrary to the general trend 

considering it as inert and insensitive. The topsoil labile fraction (POM) is more 

vulnerable to LUC as also recorded in previous studies (Liang et al., 2012; Yang et al., 

2009). However, the fine sand fraction POM2 recording a smaller turnover rate with 

subsequent higher MRT is contrary to previous studies suggesting the existence of 

either chemically resistant material or of some organic coating protecting from 



VII. Synthesis and perspectives 

132 

 

degradation (Christensen, 1992). The consideration of the functional group 

composition of these fractions could help shed further light for such pattern in SOC 

dynamics.  

Many studies have pointed out the role of sesquioxides as key element affecting the 

stability of SOC (Barthès et al., 2008; Dalal and Bridge, 1996; Guggenberger and 

Haider, 2002). However, the results of this study (Chapter VI) could not establish Fe 

containing sesquioxides as major stabilizing agent of the carbon stock for the topsoil 

(0 – 30 cm). No correlation could be established between the SOC stock loss after 

DCB treatment with Fe oxide content. The high SOC stock observed in the nonPOM 

fraction (fine silt plus clay), showed that organo-mineral associations are the key 

parameter for carbon stabilization. However, ternary OC-Fe oxides-Silt plus Clay 

association could also be involved (Wagai and Mayer, 2007) alongside the metal 

oxides and clay (Silt plus Clay) individual contribution but this requires further 

investigation.  

4.  Outlook 

Though the results of the present study offer indications that DSM of soil properties 

and reference soil groups has great potential in providing soil information at local level 

in data poor regions such as West Africa, the prediction accuracy of the different 

models still have to be improved. High inherent spatial variability in soil properties 

and the heterogeneity of the landscape are major reasons advanced for such 

performances of the models. However, prediction accuracy of the models could be 

increased by: (1) carrying out land surface segmentation (Drăguţ and Dornik, 2016) 

for the creation of homogeneous strata based on the identified most important 

variables – elevation, wetness index, distance to stream –spectral data of June- using 

Random Forest as model for prediction, and (2) by considering multi- or hyperscale 

terrain information to account for different spatial scales within one model (Behrens et 

al., 2010b; Behrens et al., 2010a; Behrens et al., 2014). 

The present study only evaluated the impact of LUC on topsoil POM fractions while 

there is more and more evidence that subsoil POM C could also be affected (Sheng et 

al., 2015) but little is still known about the magnitude of the response of subsoil POM 
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for LAC soils in the tropical semi-arid regions. Further study could therefore quantify 

the extent of the impact of LUC for such deeper soil layers. While results from the 

present study also revealed high SOC in the nonPOM fraction (fine silt plus clay), the 

role of Fe containing sesquioxides in SOC stabilization was found to be poor. A 

further step would be to specifically assess possible stabilization processes including a 

direct assessment of the amount of SOC associated with Fe oxide and Al oxide and the 

amount held by ternary OC-Fe oxides- Clay plus Silt association along with clay 

occluded SOC. The purpose would be to find out whether the stability of SOC is more 

related to physical protection within stable aggregates or sorption to clay particles or to 

ternary OC-Fe oxides-Silt plus Clay association or whether multiple protective 

mechanisms are involved. 

The results of this study can also be considered as a baseline work for modelling 

activities regarding SOC prediction coupled with climate change scenarios in the Dano 

catchment. Using false chronosequence approach with the remaining soil groups apart 

from the Plinthosols, the SOC pattern for the next 50 to 100 years under different 

climatic scenarios of the West Africa semi-arid regions can be further explored. 
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Tab.  IX-1: Selected variables for Random Forest modelling 
 

 
N° Environmental variables 

Variable Abbreviation 
1 Aspect ArcGis A.Asp 
2 Flow accumulation ArcGis A.Flow.A / 

S.Flow.A 
3 Flow direction ArcGis A.Flow.d / S.Flow.d 
4 Plan curvature ArcGis A.Plan.curv / 

S.Plan.curv 
5 Topographic Wetness Index 

ArcGis/SAGA 
A.TWI / S.TWI  

6 Northness cose.Asp 
7 Distance to stream  ArcGis Dist.stream 
8 Elevation  ArcGis Elevation 
9 Protection index SAGA Prot.Index 
10 Catchment Area Parallel SAGA S.CA.Par 
11 Flow line curvature SAGA S.Flow.line.curv 
12 Horizontal flow distance SAGA S.HF.dist 
13 SAGA Wetness Index SAGA S.Wet.Ind 
14 Total curvature SAGA Sa_totalcuv 
15 Terrain ruggedness SAGA Terr.Rugg 
16 Geomorphology Geo 
17 Lithology Litho 
18 Land use LU 
19 Precipitation Prep 

Spectral variables and indices 
 Variable Acquisition period 

20 RI, SI, HI, NDVI, redEdge March 
21 RI, SI, BI, CI, HI, NIR April 
22 RI, SI, BI, CI, HI, NIR May 
23 Blue, CI, HI, NIR, SWIR1 June 

HI: Hue Index, CI: Coloration Index, RI: Redness Index, BI: Brightness Index, NIR: 
Near infra red, SWIR:  Shortwave infra red,  SI: Saturation Index, NDVI : Normalized 
Difference Vegetation Index 
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Tab.  IX-2: Confusion matrix between observed and predicted reference soil groups for 
the core range dataset with (RF_rfe) and without (RF) recursive feature elimination 
using the spectral parameters 
 

 RF RF_rfe 

 

S
pe

ct
ra

l p
ar

am
et

er
s 

(9
0%

C
R

) 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 29.4 5.9 0.0 5.9 58.8 0.0 
GL 0.0 39.3 0.0 0.0 60.7 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 0.0 0.0 45.5 54.5 0.0 
PT 0.0 4.7 0.0 0.8 94.6 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 23.5 5.9 0.0 0.0 70.6 0.0 
GL 0.0 42.9 0.0 0.0 57.1 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 0.0 0.0 54.5 45.5 0.0 
PT 0.0 6.2 0.0 0.8 93.0 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

   

Sp
ec

tr
al

 p
ar

am
et

er
s 

(8
0%

C
R

) 

Predicted  (%) 
Observed  CM GL LP LX PT ST 

CM 29.4 5.9 0.0 5.9 58.8 0.0 
GL 0.0 39.3 0.0 3.6 57.1 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 9.1 0.0 45.5 45.5 0.0 
PT 0.0 4.7 0.8 1.6 93.0 0.0 
ST 0.0 0.0 0.0 16.7 50.0 33.3 

 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 23.5 5.9 0.0 5.9 64.7 0.0 
GL 0.0 39.3 0.0 0.0 60.7 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 0.0 0.0 45.5 54.5 0.0 
PT 0.0 3.1 0.0 0.8 96.1 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

   

Sp
ec

tr
al

 p
ar

am
et

er
s 

(S
D

C
R

) 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 23.5 5.9 0.0 5.9 64.7 0.0 
GL 0.0 35.7 0.0 0.0 64.3 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 0.0 0.0 45.5 54.5 0.0 
PT 0.0 3.9 0.0 2.3 93.8 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 23.5 5.9 0.0 5.9 64.7 0.0 
GL 0.0 42.9 0.0 0.0 57.1 0.0 
LP 0.0 0.0 25.0 0.0 75.0 0.0 
LX 0.0 9.1 0.0 45.5 45.5 0.0 
PT 0.0 3.9 0.0 0.0 96.1 0.0 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

CM: Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset 
with 5% lower and upper range pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR: 
dataset with standard deviation based pruning. 
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Tab.  IX-3: Confusion matrix between observed and predicted reference soil groups for 
the core range dataset with (RF_rfe) and without (RF) recursive feature elimination 
using the terrain parameters 
 

 RF RF_rfe 

 

T
er

ra
in

 p
ar

am
et

er
s 

 (
90

%
C

R
) 

Predicted  (%) 
Observed  CM GL LP LX PT ST 

CM 29.4 0.0 0.0 0.0 70.6 0.0 
GL 0.0 57.1 0.0 0.0 42.9 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 0.0 0.0 36.4 63.6 0.0 
PT 0.8 7.0 0.0 0.8 91.5 0.0 
ST 0.0 0.0 0.0 16.7 66.7 16.7 

 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 52.9 0.0 0.0 0.0 47.1 0.0 

GL 0.0 60.7 0.0 0.0 39.3 0.0 

LP 0.0 0.0 75.0 0.0 25.0 0.0 

LX 0.0 9.1 0.0 54.5 27.3 9.1 

PT 3.1 8.5 0.0 0.8 85.3 2.3 

ST 0.0 0.0 0.0 16.7 66.7 16.7 
 

   

T
er

ra
in

 p
ar

am
et

er
s 

(8
0%

C
R

) 

Predicted  (%) 
Observed  CM GL LP LX PT ST 

CM 52.9 0.0 0.0 0.0 47.1 0.0 
GL 0.0 64.3 0.0 7.1 28.6 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 0.0 0.0 63.6 27.3 9.1 
PT 6.2 9.3 0.0 1.6 78.3 4.7 
ST 16.7 0.0 0.0 33.3 16.7 33.3 

 

Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 58.8 0.0 0.0 0.0 41.2 0.0 

GL 0.0 60.7 0.0 3.6 35.7 0.0 

LP 0.0 0.0 75.0 0.0 25.0 0.0 

LX 0.0 0.0 0.0 63.6 27.3 9.1 

PT 4.7 7.8 0.0 1.6 81.4 4.7 

ST 0.0 0.0 0.0 33.3 50.0 16.7 
 

   

T
er

ra
in

 p
ar

am
et

er
s 

 
(S

D
C

R
) 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 52.9 0.0 0.0 0.0 47.1 0.0 
GL 0.0 60.7 0.0 7.1 32.1 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 0.0 0.0 63.6 27.3 9.1 
PT 10.9 9.3 0.0 1.6 72.1 6.2 
ST 16.7 0.0 0.0 33.3 16.7 33.3 

 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 52.9 0.0 5.9 0.0 41.2 0.0 

GL 0.0 60.7 0.0 3.6 35.7 0.0 

LP 0.0 0.0 75.0 0.0 25.0 0.0 

LX 0.0 9.1 0.0 63.6 18.2 9.1 

PT 8.5 9.3 0.0 1.6 74.4 6.2 

ST 0.0 0.0 0.0 33.3 33.3 33.3 
 

CM: Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset 
with 5% lower and upper range pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR: 
dataset with standard deviation based pruning. 
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Tab.  IX-4: Confusion matrix between observed and predicted reference soil groups for 
the core range dataset with (RF_rfe) and without (RF) recursive feature elimination 
using the terrain and spectral parameters 
 

 RF RF_rfe 

 

T
er

ra
in

 a
nd

 s
pe

ct
ra

l 
pa

ra
m

et
er

s 
(9

0%
C

R
)  

Predicted  (%) 
Observed  CM GL LP LX PT ST 

CM 41.2 0.0 0.0 0.0 58.8 0.0 
GL 0.0 53.6 0.0 0.0 46.4 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 18.2 0.0 54.5 18.2 9.1 
PT 2.3 7.8 0.8 0.0 86.8 2.3 
ST 0.0 0.0 0.0 0.0 66.7 33.3 

 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 52.9 5.9 0.0 5.9 35.3 0.0 

GL 0.0 67.9 0.0 3.6 28.6 0.0 

LP 0.0 0.0 75.0 0.0 25.0 0.0 

LX 0.0 9.1 0.0 63.6 27.3 0.0 

PT 3.1 7.0 0.0 1.6 86.8 1.6 

ST 0.0 0.0 0.0 0.0 66.7 33.3 
 

   

T
er

ra
in

 a
nd

 s
pe

ct
ra

l 
pa

ra
m

et
er

s 
(8

0%
C

R
)  

Predicted  (%) 
Observed  CM GL LP LX PT ST 

CM 52.9 0.0 0.0 0.0 47.1 0.0 
GL 0.0 57.1 0.0 0.0 42.9 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 9.1 0.0 54.5 27.3 9.1 
PT 7.0 8.5 0.0 0.0 79.8 4.7 
ST 16.7 0.0 0.0 16.7 33.3 33.3 

 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 58.8 5.9 0.0 5.9 29.4 0.0 

GL 0.0 67.9 0.0 3.6 28.6 0.0 

LP 0.0 0.0 75.0 0.0 25.0 0.0 

LX 0.0 9.1 0.0 54.5 27.3 9.1 

PT 3.9 7.8 0.0 1.6 82.9 3.9 

ST 0.0 0.0 0.0 0.0 66.7 33.3 
 

   

T
er

ra
in

 a
nd

 s
pe

ct
ra

l 
pa

ra
m

et
er

s 
(S

D
C

R
) 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 52.9 0.0 0.0 0.0 47.1 0.0 
GL 0.0 67.9 0.0 0.0 32.1 0.0 
LP 0.0 0.0 75.0 0.0 25.0 0.0 
LX 0.0 9.1 0.0 54.5 27.3 9.1 
PT 12.4 10.9 0.0 0.0 72.1 4.7 
ST 16.7 0.0 0.0 16.7 16.7 50.0 

 

 
Predicted  (%) 

Observed  CM GL LP LX PT ST 

CM 58.8 5.9 0.0 5.9 29.4 0.0 

GL 0.0 71.4 0.0 3.6 25.0 0.0 

LP 25.0 0.0 25.0 25.0 25.0 0.0 

LX 0.0 0.0 0.0 54.5 27.3 18.2 

PT 7.0 10.9 0.0 2.3 75.2 4.7 

ST 0.0 0.0 0.0 0.0 33.3 66.7 
 

CM: Cambisols, GL: Gleysols, LP: Leptosols, LX: Lixisols, PT: Plinthosols, ST: Stagnosols; 90%CR: dataset 
with 5% lower and upper range pruning, 80%CR: dataset with 10% lower and upper range pruning, SDCR: 
dataset with standard deviation based pruning. 
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Fig.   X-1:  Stone line in a field of the Dano catchment 
 

 

 
Fig.   X-2: SOC stock in different RSG and depths. (CM: Cambisols, GL: Gleysols, 
LX: Lixisols, PT: Plinthosols, ST: Stagnosols). Lines within the boxes give the 
median, red circle within the boxes the mean, boxes the 25th and 75th percentile, 
whiskers the lowest and highest values. 
 

 
Tab.  X-1: Random Forest and multiple linear regression model performance and 
statistics of toposoil reference soil groups 
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Dataset 
Random Forest   Linear Regression 

R2* RMSECV RMSEPV R2 RMSECV RMSEPV 
Entire dataset 13.0 14.0 14.2 11.0 14.2 14.8 
Dataset without PT 17.5 13.6 15.8 17.8 14.5 20.8 
Dataset without GL&ST 10.2 14.1 13.8 12.6 14.1 28.6 
Dataset without CM 13.2 13.9 13.8   9.4 14.4 16.5 
PT: Plinthosols, GL: Gleysols, Stagnosols, CM: Cambisols, RMSECV: root mean 
square error of cross validation, RMSEPV: root mean square error of prediction based 
on validation set, *explained variance in  %. 
 
 
Tab.  X-2: General characteristics of some representative soil profiles 
 

Reference soil group Horizon Depth 
pH N C C CEC BD SC Sand Silt Clay 

Color 
(H20) (%) (%) (t ha-1) (cmolc kg-1) (g cm-3) (%) (%) (%) (%) 

Cambisol Ahp 0-24 7.2 0.1 0.9 28.5 36.32  1.6 58.5 14.8 38.3 46.9 10 YR 3/6 

Bw1 24-38 7.0 0.1 1.0 18.0 35.6 1.6 58.0 16.6 33.5 50.0 2.5 Y 4/6 

Bw2 38-100 8.0 0.0 0.5 47.8 29.6 1.6 20.7 17.9 36.0 46.1 2.5 Y 4/6 

Gleysol Ah 0-31 6.2 0.1 2.0 69.4 20.8 1.1 0.0 3.7 64.8 31.6 10 YR 3/4 

Bl1 31-50 6.1 0.0 0.8 21.8 10.3 1.5 0.0 9.8 66.0 24.3 7.5 YR 4/4 

 

Bl2 50-100 6.2 0.0 0.6 46.4 10.9 1.6 0.0 9.9 61.6 28.5 7.5 YR 5/6 

Lixisol Ah 0-17 6.0 0.1 0.9 18.4 5.3 1.4 40.0 32.1 47.0 18.2 7.5 YR 4/3 

Bt1 17-37 5.8 0.0 0.5 13.3 6.5 1.5 32.0 16.9 51.9 27.9 5 YR 5/8 

Bt2 37-74 6.0 0.0 0.3 18.0 6.1 1.8 68.7 13.3 50.8 33.2 5 YR 5/8 

 

Bt3 74-100 5.9 0.0 0.2 6.8 5.6 1.2 10.6 12.9 50.5 33.4 7.5 YR 6/6 

Plinthosol Ahv 0-18 6.6 0.1 1.9 41.2 8.5 1.5 54.6 39.2 46.7 11.6 7.5 YR 4/6 

Btv1 18-56 5.9 0.1 0.6 26.0 6.8 1.6 72.0 29.5 42.1 22.7 2.5 YR 4/6 

Btv2 56-102 5.6 0.0 0.2 12.5 6.8 1.5 47.9 27.4 36.0 34.5 2.5 YR 5/8 

Plinthosol Ahv 0-12 5.9 0.1 1.9 32.1 9.1 1.7 48.7 40.9 43.8 13.5 7.5 YR 4/3 

Bv Dez 40 6.2 0.1 0.9 34.9 9.0 1.7 48.4 29.8 44.4 29.1 7.5 YR 5/8 

Plinthosol Ahp 0-21 6.8 0.1 1.2 29.3 9.7 1.4 37.8 28.9 51.6 26.8 7.5 YR 5/3 

Bv1 21-41 6.6 0.1 0.9 17.6 10.5 1.4 73.4 17.6 47.5 39.8 7.5 YR 6/4 

Bv2 41-69 6.5 0.1 0.8 25.4 10.9 1.6 74.5 17.9 44.7 44.4 10 YR 6/4 

Stagnosol Ah 0-24 6.5 0.1 0.3 7.5 18.7 1.5 57.0 43.9 36.2 21.0 7.5 YR 4/4 

Bg1 24-70 7.4 0.1 1.2 58.0 26.3 1.2 16.1 16.7 50.7 33.2 7.5 YR 5/3 

  Bg2 70-100 7.3 0.1 1.6 51.5 28.1 1.2 30.2 4.5 50.2 40.5 10 YR 2/3 
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Fig.   XI-1: SOC stocks of cropland in relation to SOC stock of savannah soils (in  %) 
for different years of cultivation in the subsoil (30 – 100 cm) 
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Fig.   XI-2: Percentage of residual SOC stock of cropland (in relation to SOC stock of 
savannah soils) in soil fractions relative to the residual SOC stock in bulk soil (in 
relation to SOC stock of savannah soils) of the cropland for different years of 
cultivation in the topsoil (0 – 10 cm) 
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Fig.   XI-3: Stone content at different depths in relation to the duration of cultivation 
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Fig.   XI-4: Bulk density at different depths in relation to the duration of cultivation 
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Appendix D 

 

The data that form the basis of this dissertation thesis are available in electronic format 

from the office of INRES-soil science or from myself. 

 

Contact details : 

 

INRES-Bodenwissenschaften 

Nußallee 13  

D-53115 Bonn  

bobo@uni-bonn.de 

 

Kpadé Ozias Laurentin Hounkpatin  

INRES-Bodenkunde  
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hozias@uni.bonn.de 

 

 




