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Abstract 

Drought is the most severe threat to world crop cultivation and production 

especially in water shortage areas. Wild barley diversity contains notable variation 

in phenotype that is essential for its adaptation to abiotic stress like drought. In the 

current study, we performed QTL mapping for shoot traits and proline content 

accumulation under control and drought conditions. A library of 73 (BC3S4:S10) 

S42ILs derived from German cultivar Scarlett and wild accession from Israel 

(ISR42-8) was used in this experimental study and genotyped for shoot traits with 

a 1,536-SNP Illumina BOPA1 set.  

Plants were analyzed and phenotypic data was collected for eight shoot traits and 

physiological trait i.e; proline content. All studied traits showed high significant 

differences between both treatments. Genetic mapping reveals total twenty QTLs 

for shoot traits and five QTLs for drought inducible proline accumulation all over 

the barley genome and had main effects on improving or reducing the traits under 

control and drought stress conditions. The most important QTL which have been 

obtained in the current study is for proline content on 1H chromosome. Further 

mapping and validation in a high resolution population revealed that Qpro.S42-1H 

underlie a previously unknown HvP5CS1 allele originated from wild barley. The 

functional mutations were found in the promoter motifs for DNA binding 

transcription factor i.e; ABRE-binding factors (ABF1, ABF2), where the number 

and arrangements of ABFs binding motifs in the wild P5CS1 allele in ISR42-8 

appeared to imply transcriptional up regulation and excessive proline accumulation 

under extreme drought conditions. Higher proline accumulation in QTL allele 

bearing ILs S42IL-143 and S42IL-141 conferred improved physiological activity 

and photosynthetic yield, thus confirming functionality of an exotic P5CS1 allele in 

the cultivated barley. The present findings brought up a first insight on the 

molecular and evolutionary regulation of an essential drought physiological traits in 

crop plant. These resources offer opportunity to understand adaptive biology of 

crop plants and can serve as direct target for trait improvement in barley and 

related species. 
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Abstract (in Deutsch) 

Die Kultivierung und der Ertrag von Feldfrüchten wird hauptsächlich durch 

Trockenheit insbesondere in Anbaugebieten mit zunehmender 

Wasserverknappung gefährdet. Die Wildformen unserer Kulturgerste bieten ein 

hohes Maß an Variation des Phänotyps und somit an Anpassungsmöglichkeiten 

an diverse abiotische Stressszenarien wie etwa Trockenheit. Für die vorliegende 

Arbeit wurde eine Kartierung quantitativer Merkmale für Sprossparameter, sowie 

des Gehalts von Prolin, einem Pflanzenhormon, unter Kontroll- und 

Stressbedingungen durchgeführt. Eine Population bestehend aus 73 (BC3S4:S10) 

S42-Introgressionslinien abstammend von der deutschen Kultursorte Scarlett und 

der exotischen Linie ISR42-8 aus Israel wurde im Hinblick auf Sprossmerkmale 

mithilfe eines Illumina BOPA1 Sets anhand von 1536 SNPs genotypisiert. Die 

Versuchspflanzen wurden im Hinblick auf acht phänotypische Sprossmerkmale, 

sowie physiologische Merkmale, wie z.B. Prolingehalt analysiert. Alle untersuchten 

Parameter wiesen hochsignifikante Unterschiede zwischen den beiden 

Behandlungen auf. Die genetische Kartierung ergab insgesamt 20 QTLs für 

Sprossmerkmale und fünf QTLs für trockeninduzierte Prolinanreicherung, verteilt 

auf das gesamte Gerstengenom und hatte wichtige Effekte in Bezug auf die 

Ausprägung der entsprechenden Merkmale unter Kontroll-bzw. 

Stressbedingungen. Für Prolingehalt konnte in der aktuellen Studie ein wichtiges 

QTL auf Chromosom 1H lokalisiert werden. Die weitere Kartierung und Validierung 

in einer höher auflösenden Population ergab, dass der Genort Qpro.S42-1H einem 

bislang unbekannten HvP5CS1 Allel aus Wildgerste entstammt. Funktionelle 

Mutationen wurden in der Promotorregion für DNA-bindende 

Transkriptionsfaktoren wie z.B. ABRE-Bindungsfaktoren (ABF1, ABF2) entdeckt, 

wobei deren Anzahl und Anordnung im exotischen P5CS1 Allel in ISR42-8 eine 

deutliche Prolinanreicherung unter extremen Trockenstressbedingungen reguliert. 

Die Introgressionslinien S42IL-143 und S42IL-14, welche das entsprechende QTL-

Allel für eine Prolinanhäufung tragen, zeigten eine verbesserte physiologische 

Aktivität und Photosyntheserate und bestätigten damit die Funktionalität des 

P5CS1-Allels in der Kulturgerste. Die vorliegenden Ergebnisse geben einen ersten 

Einblick in die Regulierung eines entscheidenden physiologischen Merkmals auf 

molekularer Ebene in Pflanzen. Dadurch werden Möglichkeiten zum Verständnis 

der Anpassung von Pflanzen an Trockenstress und die Nutzung dieser wertvollen 

Ressourcen als Quelle zur Leistungsverbesserung von Gerste und verwandten 

Spezies eröffnet. 
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1.INTRODUCTION 

 

1.1 Barley 

Barley (Hordeum vulgare L.) is one of the first and abundant cultivated cereal 

crops from grass family.  The genus Hordeum composed of 45 taxa and 32 

species that consist of diploid (2n = 2x = 14), tetraploid (2n = 4x = 28) and 

hexaploid (2n = 6x = 42). Most of the species belonging to Hordeum are 

perennials and are reproductively different from each other including the cultivated 

barley (H. vulgare ssp. vulgare L.) and its wild progenitor (H. vulgare ssp. 

spontaneum C. Koch.).  

Barley adapts well to a wide variety of climates and is grown as a summer crop in 

temperate areas and as a winter crop in tropical climates. It is considered to be an 

early maturing crop and germinates within one to three days after sowing. The 

world barley production in 2016/2017 (Figure 1) was approximately 145.2 million 

metric tons (MMT) produced in 54.13 million hectares (MH) of arable lands. 

Europe had the largest growing area of barley, producing 59.74 MMT, followed by 

Russia with 17.55 MMT in 2016/2017 (FAO; 2017). 

Barley use as food in the European Community was even less (0.3%) than in the 

United States. The largest use for barley as a food was in Morocco (61%), 

Ethiopia (79%), China (62%), and India (73%) (Kent and Evers 1994). It is also 

used as animal feed and has many health benefits and is largely used in malting. 

Barley is a rich source of nutrients like protein, B vitamins, dietary minerals, and 

dietary fiber. The grain is a particularly good source of manganese and 

phosphorus. Raw barley is 78% carbohydrate, 10% protein, 10% water, and 1% 

fat. Dehulled barley is used to prepare a number of food items like flour, flakes, 

grits, etc.  
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Figure 1: Major barley producing countries in 2016/2017. 

 
1.2 Drought stresses 

Plants are frequently subjected to adverse climatic conditions – abiotic stresses, 

playing key role in crop production along with the species to be exposed to a 

particular environment (Boyer, 1982, Chaves et al., 2003). Among the abiotic 

streses, drought is considered to be the most important factors limiting crop 

production by causing a significant reduction of crop growth and productivity 

(Bagci et al., 2007; Passioura, 2007). A recent study analyzed the data of studies 

published from 1980 to 2015 to report up to 21 and 40% yield reductions in wheat 

(Triticum aestivum L.) and maize (Zea mays L.), respectively due to drought on a 

global scale (Daryanto et al., 2016). Report has shown that about 25% of global 

agricultural land is affected by drought stress (Jajarmi, 2009). Drought is 

considered the single most devastating environmental stress, which decreases 

crop productivity more than any other environmental stress (Lambers et al., 2008). 

Drought stress significantly reduced cereal production by 10% on average 

between 1964 and 2007 and this percentage was found to increase annually due 
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to the rising drought severity (Lesk et al., 2016). Moreover, grain yield reduction of 

up to 85% due to drought stress has been observed in barley (Ouda et al., 2016). 

Consequently, increasing desertification and looming water shortages lead to 

more and longer drought periods, which affect the crop productivity especially in 

tropical, semi-arid and arid regions worldwide during grain-filling phase and results 

in yield losses dramatically (Samarah, 2005; Pennisi, 2008). Keeping in view all 

the environmental changes occurring, Figure 2 depicts that most of the global 

arable lands would be under drought condition by 2070(Source: Eurowasser 

study, University of Kassel). 

 

 

Figure 2: Depiction of areas under drought stress in 2070  

Drought is a major risk with its extensive impacts on economic losses to livelihood. 

Water deficit soil cause low water potential that is the major natural problem 

hindered the cultivation and end productivity of natural as well as agricultural 

ecosystems generates large economic losses in many regions of the world. 

Artificial irrigation has been a key for this problem, but due to high societal 

demands water supplies became at an increasingly high financial and 

environmental cost (Wu and Cosgrove, 2000). Thus, the cultivation of drought 

tolerant genotypes in drought prone agro-ecologies appears to be the best 

strategies to tackle the increasing aridity of the arable land. 
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1.3 Effect of drought stress on plants  

Drought stress reduces germination and seedling vigor (Harris et al., 2002, Kaya 

et al., 2006), resulting in poor plant growth and development. In pea, drought has 

been reported to cause drastic effect on seedling growth (Okcu et al., 2005). 

Similarly, in alfa alfa drought reduced germination, hypocotyls length, root and 

shoot fresh as well as dry weights (Zeid and Shedeed, 2006). Plant growth and 

development depends on cell division, cell enlargement and differentiation, 

morphological, physiological, genetic and ecological processes and their 

interactions (Figure 3). 

 

 

Figure 3: Description of possible mechanisms of growth reduction under drought stress. 

 

Water deficiency induced reduction in yield in crops, because water stress can 

shortened grain filling duration (Estrada-Campuzano et al., 2008. Samarah, 2005). 

The reduction is associated with the negative impact of drought stress on the yield 

related traits including number of tiller, number of spike, grain size, grain weight 

and number of grains per plant has been reported in barley. Reduction in grain 

yield due to water stress has been reported in many crop species (Cattivelli et al., 
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2008, Frederick et al., 2001, Pettigrew 2004, Ahmadi and Baker, 2001, Taiz and 

Zeiger, 2006). Water deficiency during reproduction period cause kernal abortion 

in maize and shortened grain size and kernal growth in wheat crop (Morgan, 1990; 

Ober et al., 1991). While, water scarcity during flowering caused different plant 

response and resulted into yield stagnation by 40-55% (Nam et al., 2001). On the 

other hand, water stress during the grain filling stage boosted up the mobilization 

of carbon reserves to grain thus increased the gain filling (Yang et al., 2001).  

Another major effect of drought is reduction in photosynthesis due to decline in 

leaf expansion. Drought stress not only altered photosynthesis process by 

changing photosynthetic pigments but also damaged photosynthetic apparatus 

that ultimately inhibits the growth (Anjum et al., 2003, Fu J. and Huang, 2001).  

1.4 Drought Tolerance 

Drought tolerance is defined as the ability to grow, flower and display economic 

yield under suboptimal water supply (Farooq et al. 2009). The plant reactions to 

drought stress are tissue and organ dependent (Kranner et al., 2010). Moreover, 

duration and level of stress, cause particular impact and make the responses more 

complex (Taiz et al., 1991, Larcher et al., 2003). Plants respond to drought stress 

by the induction of several such as morphological, biochemical and physiological 

mechanisms 

Morphological mechanism 

Drought escape and drought avoidance are most common morphological 

responses of plants under severe drought conditions. Drought escape is the ability 

to complete the life cycle during wet season before serious soil and plant water 

deficits develop. This form of adaptation needs an extremely short life cycle, where 

seeds are produced during short rainy seasons (Levitt, 1980). Early flowering is an 

important trait related to drought escape (Araus et al., 2002). Developing early 

flowering verities has been an effective strategy to avoid the period of drought 

stress and less yield loss (Kumar and Abbo 2001). 

Drought escape is only possible when phonological development occurs exactly 

when soil moisture is available. But, to maximize the water uptake during this 

particular period, plants need to produce more root biomass. The ability of a 

genotype to regulate its root growth according to prevailing circumstances is 
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termed as root plasticity (Kano et al., 2011). Drought stress has negative effect on 

plant root growth even in tolerant plants, but effect is more drastic on susceptible 

genotypes. More root biomass and root length in resistant genotypes resulted in 

more yield compared to genotypes with less root and short length (Jongrungklang 

et al., 2013). 

The ability of plants to maintain relatively high tissue water potential by reducing 

water loss from plants, due to stomatal control of transpiration loses is drought 

avoidance. The root characters such as biomass, length, density and depth are 

the main drought avoidance traits that contribute to final yield under terminal 

drought environments (Subbarao et al. 1995; Turner et al. 2001). Furthermore, an 

enhanced stomatal resistance, less small stomata, reduced leaf area and a 

change in leaf orientation are other important drought avoidance traits to minimize 

water loss due to transpiration under drought stress conditions (Aroca, 2012). 

 

Biochemical mechanism 

At molecular levels, plants affected by drought developed many adaptive 

processes to modulate water stress. The stream of molecular responses to 

drought starts from stress perception, through signal transduction to cytoplasm 

and nucleus, to gene expression and resulting to metabolic changes (Ahmad and 

Prasad, 2012). Plants perceive the external and internal signals upon stress, via 

different independent or interlinked pathways to regulate different responses for its 

better development (Ciarmiello et al., 2011).  Up-regulation of many genes as well 

as the accumulation of stress proteins has been reported to help the plant to 

withstand the stress conditions which leads to plant adaptation (Tuteja 2009, 

Kavar et al., 2008).  

Plant responses to stress are complex integrated circuits within which multiple 

pathways are involved. Transcription factors are among the category of genes 

which are induced early within minutes of stress. Transcriptional activation of 

some of these early genes has been well studied. In 2002, Chen and Murata 

identified a group of genes including transcription factors of drought-responsive 

element / C-repeat (DRE/CRT) binding factor family as well as MYB proteins, 

bZIP/HD-ZIPs and AP2/EREBP domain proteins which were up-regulated under 

drought stress. Stress related transcription factors like MYB, dehydration-

responsive element binding factor (DREB), WRKY and bZIP confer tolerance by 
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induction of genes by maintaining the osmotic equilibrium of the cell (Seki et al., 

2002) 

In addition to transcription factors, the expression of stress proteins like 

aquaporins increases the drought tolerance in plants. Aquaporins are integral 

membrane proteins which regulate the movement of water in and out of the cell, 

across plant vacuolar and plasma membranes; they are associated with plant 

tolerance to abiotic stresses (Li et al., 2015). Plant aquaporins can transport 

various physiological substrates in addition to water. With an increasing number of 

plant genome sequences available, aquaporin genes have now been fully 

described in several plants like Arabidopsis thaliana, maize, rice, soybean, tomato, 

and cotton (Reuscher et al., 2013, Park et al., 2010, Gupta et al., 2009, Chaumont 

et al., 2001, Johanson et al., 2001, Quigley et al., 2001, Sakurai et al., 2005) 

Several studies have shown that the over-expression of aquaporins increases the 

abiotic stress tolerance in plants (Ayadi et al., 2011; Hu et al., 2012; Liu et al., 

2013). 

 

Physiological mechanism 

Plant water conservation, plant growth regulator and over production of the 

compatible solutes are physiological mechanism which plant adopt during stress. 

For water conservation, the osmotic adjustment may confer tolerance against 

drought, by accumulation of organic and inorganic solutes under water deficiency 

stress to create a high water status (Turner et al., 2001). With increased 

accumulation of solutes, the water potential of the cell is lowered, which help the 

cell to maintain its turgor pressure (Serraj and Sinclair, 2002).  

Plant growth regulators like proline, auxins, gibberellins, cytokinins, ethylene and 

abscisic acid  (ABA) are substances which help plant in development and play vital 

roles in drought tolerance of plants (Morgan 1990). Abscisic acid (ABA) is known 

as an important regulator for plant growth and adaptation to drought. It has been 

proposed that he increased synthesis of ABA leads to many changes in 

development, physiology and growth. ABA production also alters the growth rate 

of various parts of plant like leaf development, shoot and root dry weight and 

deeper roots as well. So, it activates physiological short-term adaptations to 
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drought like stomata closure as well as long term adaptation like root growth 

(Verma et al., 2016). 

 

Role of proline under drought: 

Plants affected by drought developed much adaptive physiological adaptation to 

modulate water balance. One of the most common stress tolerance strategies in 

plants is the overproduction of different types of active compatible organic solutes 

(Serraj and Sinclair 2002). These are osmoregulators and are of low molecular 

weight and high soluble compounds. Osmoregulators are confined mainly to the 

cytosol, chloroplasts, and other cytoplasmic compartments and protect cellular 

components from dehydration injury during osmotic stress. They include amino 

acids such as proline, glycine betaine, mannitol, and sugars that confer stress 

tolerance. In higher plants, proline is a candidate biochemical solute, which is 

involved in protection of cells against stress damage (Hare and Cress 1997) 

Reports have shown that proline is a plant defence response to water-deficit 

stress, including signal transduction, osmoregulation and antioxidant systems 

(Hare and Cress, 1997; Kishor et al., 2005; Szabados and Savouré, 2009). 

Moreover, application of different osmoregulators such as proline had a significant 

role on plant growth promotion and seed yield under normal or stress conditions 

as observed in some crops e.g., maize (Yang and Lu, 2006; Kaya et al.,2013; 

Reddy et al.,2013),canola (Dawood and Sadak, 2014), rice (Mohammed and 

Tarpley, 2011), wheat (Raza et al., 2014), chickpea (Kaushal et al.,2011)and faba 

bean (Taie et al., 2013; Dawood et al., 2014). 

Proline accumulation is well known in plants during the adaptation to various types 

of environmental stress including drought (Öncel et al., 2000; Ruiz et al., 2002). 

Proline contents were increased under drought stress in pea cultivars (Alexieva et 

al. 2001). Drought-tolerant petunia (Petunia hybrida) varieties were reported to 

accumulate free proline under drought that acted as an osmoprotectant and 

induced drought tolerance (Yamada et al. 2005). The principal role of proline 

probably is not to reduce the osmotic potential, but to protect enzymes against 

dehydration (Thomas, 1991). Despite proline role under stress, many physiological 

roles have been assigned to free proline including a positive role of proline 

synthesis in flowering, stabilization of macromolecules,cell elongation, bolting and 
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many developmental process (Zhu 2002, Mattioli et al., 2008, 2009; Samach et al., 

2000). Thus, it is necessary to perform thorough investigation of the regulatory 

mechanism of proline metabolism in higher plants (Kishor et al., 2005). 

Proline can be synthesized through two pathways; one from glutamate and the 

other one through ornithine. The glutamate pathway is normally located in the 

cytosol and chloroplasts (Armengaud et al., 2004). Glutamate-semialdehyde 

(GSA) by Δ1-pyrroline-5- carboxylate synthetase (P5CS) is produced in the result 

of glutamate reduction, and is converted to Δ1-pyrroline-5-carboxylate (P5C) and 

then P5C reduced to proline. In an alternative pathway, proline can be synthesised 

from ornithine, which occurs in mitochondria. Ornithine-δ-aminotransferase 

(δOAT) converts ornithine to GSA and P5C, which is then transported to the 

cytosol and converted to proline by P5CR. Proline is oxidised via the sequential 

action of proline dehydrogenase (PDH) producing P5C and Δ1-pyrroline-5-

carboxylate dehydrogenase (P5CDH), which converts P5C to glutamate (Lehmann 

et al., 2010; Szabados and Savouré, 2010). P5CS and PDH are regarded as key 

enzymes in proline synthesis and catabolism, respectively. Plant genomes usually 

contain two homologous genes encoding P5CS, as in A. thaliana (Funck et al., 

2010; Strizhov et al., 1997), N. tabacum (Ribarits et al., 2007) and M. truncatula 

(Armengaud et al., 2004). Early studies of proline metabolism established a 

“standard model” whereby increased synthesis and reduced degradation led to the 

accumulation of proline (Chaitanya et al., 2009; Miller et al., 2005, 2009; Parida et 

al., 2008; Ribarits et al., 2007; Sharma et al., 2011). Based on this model, genetic 

manipulation to progress plant stress tolerance by over expressing the P5CS gene 

has achieved initial success (Verbruggen and Hermans, 2008; Mizoi and 

Yamaguchi-Shinozaki, 2013). Through further investigations, researchers came to 

realise that the dynamic transport and turnover of proline between different 

organs, rather than static cell-autonomous accumulation, are fundamental to the 

protective role of proline (Sharma et al., 2011). At present, proline transporter 

(ProT), which belongs to the amino acid transporter family has been shown to be 

localized at the plasma membrane and is involved in the intercellular transport of 

proline (Rentsch et al., 2007). Isolation of P5CS genes and comprehensively 

analyses of their expression patterns under drought stress conditions would serve 

as a guide towards gaining an in-depth understanding of the key function on the 

mechanism of proline metabolism in barley.  
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1.5 QTL mapping 

Quantitative traits have been a major part of genetics study from almost a century. 

In order to begin with QTL mapping, two or more strains of organisms are needed 

that differ genetically with regard to particular trait of interest. Second, genetic 

markers are also required that distinguish between these parental lines. Several 

types of markers are used, including single nucleotide polymorphisms (SNPs), 

simple sequence repeats (SSRs, or microsatellites), restriction fragment length 

polymorphisms (RFLPs) and transposable element positions (Henry, 2006, Gupta 

& Rustgi, 2004; Vignal et al., 2002).  In all eukaryotes especially in crop plants, 

these markers provide a common feature of variation. Molecular markers are 

preferred for genotyping, as these markers are unlikely to affect the trait of 

interest. Afterwards, to carry out the QTL analysis, the parental strains are 

crossed, resulting in heterozygous (F1) individuals, and these individuals are then 

crossed using one of a number of different schemes (Darvasi, 1998). Finally, the 

phenotypes and genotypes of the derived (F2) population are scored. Markers that 

are genetically linked to a QTL influencing the trait of interest will segregate more 

frequently with trait values, whereas unlinked markers will not show significant 

association with phenotype. Sax in 1923 described the isolation of effect of single 

locus by the continuation of the crosses resulting in genetic background 

randomization regarding to all genes that are not linked to the genetic markers. 

Sax worked with bean and used morphological seed markers and found significant 

effect with some markers associated with seed weight. 

During 1930-80s, only few QTL was detected and some of them were repeated 

because of the deficit of available adequate polymorphic markers. During 1980s 

the advancement was made and the discovery of the easily visualized variability at 

DNA level was discovered that could be used as markers. However, most of the 

markers are in non-coding regions of the genome and not affecting the trait of 

interest but, a few of these markers might be linked to QTLs and directly influence 

the trait of interest. Thus, it is assumed that QTL and the marker locus will co-

segregate. Partitioning of the mapping population into genotypic classed and then 

application of correlation statistic is useful to understand whether a QTL is linked 

to a marker or not. Advancement in statistical packages also helped in analyzing 

the marker data. For last few decades, quantitative traits have been studied using 
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statistical tools based on means, variances and co-variances of relatives. These 

studies provide a base to understand the partitioning of the phenotypic variation 

into genetic and environmental variances in term of additive, dominance and 

epistatic effects. From this information, it became possible to estimate the 

heritability and ultimately the response of a specific trait to selection as well as 

number of genes that controlled that trait of special interest. However, little was 

known about what these genes were, where they are located, and how they 

controlled the trait. Apart from the fact,  for any given trait, there were significant 

genes distributed randomly in a mendelian fashion in any specific population, 

mostly with additive effect (Kearsey and Pooni, 1996) and were called ‘polygenes’ 

by Mather (1949). 

Normally QTL analysis is initiated in segregated mapping population like F2 

population, recombinant inbred lines (RILs), near isogenic lines (NILs), backcross 

population and doubled haploid lines (DHs) populations. In the present research, a 

library of barley introgression line was used which was developed by a cross 

between cultivated and wild accession and generated by back crossing, various 

round of selfing and finally with the help of marker assisted selection.  The lines 

were already been used for verification of QTLs for field experiments in order to 

highlight the applicability of the spring barley ILs. 

Zamir (2001) described the numerous advantages of ILs and explained precisely 

about the advantage of ILs. It is assumed that once the homozygous IL set is 

developed, each IL can be used for breeding, because it is reliable and more 

stable source (Obando et al., 2008, Eduardo et al., 2007, Fernandez-Trujillo et al., 

2007; Rousseaux et al., 2005). Many researchers used ILs under stress for 

drought stress (Zhang et al., 2006; Zhou et al., 2006; Siangliw et al., 2007) to 

detect putative QTLs respectively. IL sets for tomato (Finkers et al., 2007, Canady 

et al., 2005, Mon-forte and Tanksley 2000), A. thaliana (Keurentjes et al., 2007), 

rice wild species (Tan et al., 2007, Tian et al., 2006a, Li et al., 2005), as well as 

the D-genome of wheat (Pestsova et al., 2006), maize (Szalma et al., 2007), and 

melon (Eduardo et al., 2005) were developed in recent years for advanced study 

on different crops. 
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1.6 Research Hypothesis 

Taking into consideration the facts about barley and drought, sufficient literatures 

have discussed the genetic analysis of shoot traits under drought stress 

conditions. On other hand, the physiological characteristics are known to be 

important in improving drought tolerance in barley. In addition, there is limited 

knowledge on the inheritance of these traits like proline content, in particular 

studying the effect of QTLs by treatments I attempt to answer the following central 

research hypotheses: 

1. Wild barley contains genetic diversity for drought tolerance and adaptation 

mechanism for better use in breeding system. 

2. The introgression lines are useful source of QTL alleles of wild origin for 

improved shoot traits and proline content accumulation. 

3. Proline accumulation is induced by drought stress and is regulated by a 

stress inducible gene P5CS1 in Barley.  

 1.7 Objectives 

The main goal of this research was to identify and develop barley with improved 

adaptation to drought, and to find out markers in natural population for key traits 

linked with drought stress tolerance. The overall objectives of the proposed study 

were: 

1. To conduct a genome wide analyses of QTL associated to shoot and 

physiological trait traits using 73 S42ILs lines of a cross between cultivar 

Scarlett and wild barley accession ISR42-8 under control and drought 

conditions. 

2. To validate QTL effects of the exotic alleles in a set of ILs carrying ISR42-8 

introgressions in the Scarlett background. 

3. To assess variations in shoot traits and proline content of barley 

introgression library under control and drought stress conditions. 

4. To identify and characterize the QTLs for shoot traits and proline content to 

improve drought tolerance. 

 

 



 

1 
 

2. MATERIAL AND METHODS 

 

2.1 Plant material for shoot traits under drought 

A library of 73 barley introgression lines (ILs) was used for this research. This set 

of library was developed as a result of cross between Scarlett (Hordeum vulgare 

L.)  and ISR42-8 (H. vulgare ssp. spontaneous) which are German cultivar  and a 

wild accession from Israel respectively, Hence named as S42ILs after their 

parents.  Thereafter back crossing and ten round of selfing (BC3S4:S10) was 

carried out.  ISR42-8 being a wild parent was utilized as the donor, while the 

Scarlett which is a cultivar was used as the recurrent parent for subsequent 

advanced backcrossing. Schmalenbach et al., (2008) described the detail of the 

S42ILs development. 

The shoot traits including plant height (PH), number of leaves (NL), heading (HE), 

number of spikes (NS), shoot fresh weight (SFW), shoot dry weight (SDW), 

chlorophyll content (CC), wilting score (WS) were evaluated for the 73 S42ILs 

population across two years 2012 and 2013 under the plastic tunnels at the 

Institute of Crop Science and Resource Conservation, University of Bonn, 

Germany. List of evaluated traits and their methods of measurement is presented 

in Table 1. 

 

2.2 The experiment 

For the traits evaluation, the experiments were performed in plastic tunnels during 

the summer seasons of 2012 and 2013, at the Poppelsdorf experimental station, 

Faculty of Agriculture, Rheinische Friedrich-Wilhelms-University Bonn. The plants 

were sown in a split-plot design with two treatments drought and control. Each 

treatment had four replications of individual IL, where the S42ILs lines were 

assigned randomly. 

The plants were kept under control condition with continuous irrigation for 30 days 

and then the drought stress treatment was applied as suggested by Lancashire et 

al., 1991 at BBCH 29-31 that are plant development stages, by completely 
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carrying out the water supply. Each treatment had four replications. The drought 

stress was continued for 26 days until the Volumetric Moisture Content (VMC) was 

at the maximum drought stress threshold level (VMC near to 0%), but the control 

block was under the regular supply of irrigation. Environmental conditions during 

experimental period across 2012 and 2013 are presented in Table 2.  
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Table 1 List of investigated shoot traits and their methods of measurement in S42IL population.  

Abbreviation Trait Method of measurement Unit 

PH Plant height Plant height was measured from the stem base to the 

shoot tip of each individual plant with a ruler 

 

cm 

NL Number of leaves Before harvesting total number of leaves of the main tiller 
were counted for each plant 
 

Numbers 

HE Heading After sowing heading was measured by counting number 

of days from sowing to first heading of each plant 

 

Numbers 

of days 

NS Number of spikes Before harvesting total number of spikes were counted 
for each plant 
 

Numbers 

SFW Shoot fresh weight Plants were cut and weighed individually 
 

g 

SDW Shoot dry weight Plants  were dried in the oven at 50⁰ C for seven days 

and weighed 
 

g 

CC Chlorophyll content Chlorophyll content was measured using SPAD meter 
 

ug-cm2 

WS Wilting scores Measured using ‘Standard evaluation system’ (SES) for 

rice (IRRI, 1980). 

Score 1-9 
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Table 2 Average temperature and relative humidity across years 2012 and 2013 at 

Poppelsdorf field station Bonn, Germany. 

Months 
2012  2013 

Ta(oC) RHb(%)  T (oC) RH(%) 

April 14.4 50.1  11.4 52.9 

May 20.9 63.3  14. 60.9 

June 19.3 65.2  16.9 78.5 

Average 18.2 59.5  14.2 64.1 

a Temperature 
b Relative humidity 
 
The aim of water management in the control treatment was to hold the soil 

moisture near to field capacity (plant available water content AWC 100%). After 

21 days of stress treatment a gradual reduction of water supply was observed in 

the stress block. Volumetric moisture content (VMC) was measured by the DL2e 

Data Logger soil moisture sensor. 

Figure 4 showed and described the soil moisture content under control and 

drought stress condition during the days of stress period (A) the experimental 

design showing the clear difference between control and drought (A and B) 

position of plants in the pot and irrigation system supplied to make sure that all 

four plants get equal amount of water (C and D). 
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Figure 4: Soil moisture of the pots under control and drought conditions (A) The 

experiments were arranged in split plot design and conducted in plastic 

tunnels at INRES institute (B and C). Arrangement of plants in one plot and supply 

of water (D and E). 
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2.3 Growth conditions 

The size of pots used was 22 x 22 x 26 cm for four plants per pot, containing a 

mixture of top soil, sand, silica, peat dust and milled lava (Terrasoil®, Cordel & 

Sohn, Salm, Germany). A drip irrigation system was used for water supply 

according to Netafilm, Adelaide, Australia, by giving the water to plants three times 

a day. VMC was determined digitally with Echo2 sensors (Decagon Dev., Pullman 

WA, USA) with the frequency domain technique. Plants were given fertilizer with 

250 ml of NPK liquid fertilizer containing 7 % N, 6% K2O and 3% P2O5 three 

times per season. As per recommendation for barley cultivation the plants were 

sprayed against fungicides and insecticides. 

2.4 Phenotypic data measurements 

Seven shoot and physiological traits related to drought tolerance were investigated 

in this study. 

1) Heading (HE): Heading was documented in the number of days since initial 

planting to the first heading. 

2) Wilting Score (WS): Visual rating (from 0 up to 9), was enumerated at the 

end of the drought period, where 0 with no symptoms of stress effect and 9 with 

all plants most likely dried. (de Datta et al., 1988). 

3) Plant height (PH): was measured at maturity stage before harvesting the 

plants in centimeter from soil surface to the top of the spike excluding the awns. 

4) Numbers of leaves (NL): Numbers of leaves (NL) were counted and recorded 

the every visible leaf on each plant. 

5) Chlorophyll content (CC): Chlorophyll content (CC) of flag leaf of each plant 

was measured using SPAD 502 plus chlorophyll meter. 

6) Shoot fresh weight (SFW): Shoot fresh weight (SFW) was measured in 

grams (g) by removing the whole above ground whole plant material and then 

packed them in airy bags to let them dry. 
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7) Shoot dry weight (SDW): For shoot dry weight (SDW), after calculating fresh 

weight put airy bags in drying chambers at 70 c for 5 days and fully dried shoots 

were weighed in grams (g). 

 

2.5 Statistical Analysis 

Microsoft Excel 2003 (Microsoft Corp., Redmond, WA, USA) was used for data 

evaluation. Statistical analysis was performed using the software package SAS 

Enterprise 9.2 (SAS Institute, 2008). Significance of genotypic differences between 

S42ILs was calculated with Dunnett test using Scarlett as a recurrent parent. 

Genetic correlation coefficients (r) between traits were estimated using least 

square means (Lsmeans) of 72 S42ILs with CORR procedure in SAS. Lsmeans 

were calculated with GLM procedure considering all replications and years 

separately for both control and drought conditions.  

Some significant lines which carry overlapping introgressions in same 

chromosome and in same directions were identified as a putative QTL. The 

relative performance (RP) of a particular S42IL was calculated using the following 

formula:  

 

          
                                  

                 
     

 

Where, Lsmeans were calculated for each trait across all replications and 

treatments. 

 

2.6 Analysis of variance of phenotypic data 

The differences and variation among S42ILs population under both treatments 

over years were detected, performing ANOVA with the Statistical Analysis System 

SAS (SAS Institute, ver. 9.2 2008), PROC GLM procedure, as follow: 

 

Yijkl=μ+Gi+Tj+Yk+ Gi × Tj+Tj(Yk)+ Rl +εijkl 
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Where, 

 μ – the general mean 

Gi – the fixed effect of ith genotype 

Tj – the fixed effect of jth treatment 

Yk – the random effect of kth year 

Rl– the fixed effect of jth replication 

Gi × Tj – the fixed interaction effect of the ith genotype with jth treatment 

Tj(Yk) – treatment effect with the year k 

 

Each genotype was tested for significance with a post-hoc Dunnett (1955) test 

between S42ILs and Scarlett as recurrent parent. After a particular S42IL was 

tested which is significantly (P<0.05, P<0.01 and P<0.001) different from Scarlett 

for a particular trait across both treatments, then presence of a QTL was assumed. 

Significant lines which carry overlapping or flanking introgressions in same 

chromosome or chromosomal region for the same trait values were identified as 

putative lines for QTL of that particular trait. Variance components were estimated 

with VARCOMP in SAS program. 

 

Coefficients of broad sense heritability (h2) were performed for all studied traits 

across both treatments as: 

   
  

   
    

  
    

  
  

   

     

Where, 

 VG – variance components of genotype 

VG×T – variance components of genotype by treatment 

VG×Y – variance components of genotype by year 

VE – experimental error 

t – number of treatment 

y – number of years 

r – number of replication 

 

2.7 Phenotypic correlation of investigated traits 

The phenotypic correlations between trait performances were calculated using the 

correlation procedure (PROC CORR), 73 S42ILs lines across years and 

separately for each treatment were used for the evaluation of the Pearson 
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correlation coefficients (r). Whereas, the Lsmeans were calculated considering all 

replications and years separately for both control and drought conditions with GLM 

procedure. 

2.8 Genotypic data 

This population was genotyped using an Illumina 1,536 SNP-array and genotyping 

by sequencing approaches according to Schmalenbach et al., (2011) and 

Honsdorf et al., (2014). This SNP map was associated with phenotypic data to find 

QTL region controlling to drought inducible proline accumulation. For this, each 

individual IL was compared with recurrent parent Scarlett under control and 

drought stress conditions using Dunnett-test according to Dunnett (1955). Later, 

the chromosomal introgression were compared among the ILs according to Naz et 

al., (2014) showing significant difference of proline accumulation under drought 

stress conditions. 

2.9 QTLs detection 

For QTL detection, only QTLs for traits with heritability greater than 0 were 

considered. The post-hoc Dunnett test was performed for QTL discovery, to see 

the significant differences between the recurrent parent Scarlett and individual 

introgression of the S42IL lines either in control or drought stress treatment. If the 

particular IL was significantly different with Scarlett, it was assumed that this IL 

must have an introgression of wild parent, ISR42-8 carrying a putative QTL for 

particular trait.  By comparing the common overlapping of wild introgressions 

among the ILs showing significant differences with Scarlett, he putative QTL 

regions were refined. The quantification of QTL effects was calculated by the 

relative performance (RP) of particular S42IL introgression line bearing the QTL in 

comparison to recurrent parent Scarlett. 

2.10 Calculation of relative performance (RP [Hsp]) 

To evaluate the performance of the homozygous exotic genotype under drought 

conditions, the relative performance (RP) of a particular S42IL was calculated 

using the following formula:  
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Where, Lsmeans were calculated for each trait across all replications and 

treatments. 

 

According to the relative performance of the exotic genotype (ISR 42-8), if it helps 

to improve the trait under drought conditions as well as matching with the breeding 

goals of drought tolerance, it was characterized as favorable QTL. 

2.11 Proline accumulation under drought stress condition  

Initial genetic mapping for proline accumulation under drought stress was carried 

out in a same barley introgression lines (ILs) population (BC3S4:S10) which was 

used for proline content (PC) in this research. For the phenotypic evaluation for 

proline content the S42IL population was planted in a split-plot design with four 

replicates of individual barley IL in a tunnel. The treatments (control and drought) 

were assigned to the sub-plots, within which the lines were assigned randomly as 

described above in the section 2.1.3 and 2.1.4. The first fully expanded leaf was 

harvested in liquid nitrogen for drought and control conditions and stored at -80°C 

before proline determination. Proline content was measured using a colorimetric 

procedure according to Bates et al., (1973). The proline accumulation was 

quantified in µg/g of the harvested fresh leaf material. 

 

2.12 Proline content (PC) measurement  

Solutions: All the solutions are stored at -20°C. 

Extract: 20 to 50 times diluted fresh weight (w/v), typically in a 70:30 

ethanol:water mixture (v/v) (Hummel et al., 2009).  

Standards: proline solutions ranging from 1 ppm (parts per million) to 20 ppm 

(parts per million), in the same medium as the one used for the extraction.  

Reaction mix: ninhydrin 1% (w/v) in acetic acid 60% (v/v), ethanol 20% (v/v). 

Protect from light.  
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Procedure: 

1. Weigh the plant material before storing at -70 °C or homogenized.  

2. Homogenized the frozen plant material in 3% aqueous sulphosalicylic acid 

(0.01g/ 0.5 ml) and the residue is removed by centrifugation at 12 000 g for 10 

min.  

3. Take 1 ml of the homogenized tissue reacts with 1 ml acid-ninhydrin and 1 ml of 

glacial acetic acid in a test tube for 1 hour at 100°C and the reaction is terminated 

in an ice bath. 

4. Acid-ninhydrin is prepared by warming 1.25 g of ninhydrin in 30 ml glacial acetic 

acid and 20 ml 6M phosphoric acid, with agitation, until dissolved. Kept cool 

(stored at 4°C), the reagent remains stable only for 24 hours.  

 

5. The reaction mixture is extracted with 2 ml toluene, mixed vigorously and left at 

room temperature for 30 min until separation of the two phases.  

6. The 1 ml upper phase containing toluene is measured at 520 nm using toluene 

as a blank.  

7. The proline concentration is determined from a standard curve using D Proline. 

       
  

       
  

         

          
 

The factor F is calculated F = 3 ml / a ml supernatant 

2.13 QTL validation in IL S42IL-143 and derived BC4S2 population 

To validate the QTL effect in IL S42IL-143 and to test the segregation of QTL 

alleles, we performed a pilot experiment in a derived population (BC4S2) from 

QTL bearing IL S42IL-143 in which S42IL-143 was used as control parent together 

with Scarlett. For this, seeds of HR S42IL-143 population and control genotypes 

were sown in climate chamber under control conditions. The pots were 

randomized after sowing single seed per pot (10 × 10 × 12 cm). Drought stress 

treatment was executed 10 days after germination by eliminating the water supply 
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completely. The treatment pots were kept under stress and first fully expanded leaf 

was harvested for each drought and control levels for proline measurement. Leaf 

material was harvested at same time from 09 to 10 hours under light inside the 

growth chamber and frozen in liquid nitrogen immediately. Proline content was 

measured nine days after drought treatment by colorimetric procedure according 

to Bates et al., (1973). The growth chamber was supplied 12 hours artificial light at 

day temperature 22°C and 18°C night temperature at 50% to 60% relative 

humidity. 

To see the segregation of QTL alleles with the low and high proline phenotypes 

under control and drought stress conditions, we developed a diagnostic 

polymorphic SSLP marker from a putative candidate gene from the QTL region. 

This marker was developed across the 3`UTR of the putative candidate gene 

P5cs1 that reveals 44 bp deletion in ISR42-8 allele as compared to Scarlett allele. 

Around 237 BC4S2 segregating progenies were genotyped using this diagnostic 

SSLP-marker and phenotyped for proline variation under drought stress 

conditions. The allelic polymorphism of Scarlett and ISR42-8 alleles was visualized 

on 2.5% standard agarose gel.  

 

2.14 Positional cloning of QTL QPro.S42-1H 

Positional cloning of major QTL on chromosome 1H were performed using a high 

resolution population derived from allele of QTL bearing IL S42IL-143 through 

backcrossing with recurrent parent Scarlett followed by two successive self-

pollination to reach the generation BC4S2. In the first step, we sow around 3300 

BC4S2 seeds along with control parental genotypes S42IL-143 and Scarlett and 

ISR42-8 in ten replications each. In the next step, DNA was extracted using the 

CTAB extraction method according to protocol by Virginia Tech Small Grains 

Breeding (Blacksburg, Virginia, USA) from fully expanded leaves from one week 

old seedlings. For genotyping we established two SNP derived KASP markers at 

the left (KASP-L) and right (KASP-R) border of the QTL region. KASP-L was 

1383233 bp away from QTL region while, KASP-R was 531024 bp away from QTL 

region. The position was confirmed on physical map with the help of ensembl 

genome browser. The KASP genotyping was outsource at TraitGenetics®, 
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Gatersleben, Germany. After KASP genotyping, informative recombinants were 

selected among the 3300 BC4S2 progenies that showed recombination between 

KASP-L and KASP-R markers. These informative recombinants were then 

subjected to drought stress for 9 days and proline accumulation was measured 

according to Bates et al., (1973) as mentioned earlier. Later, we incorporated two 

additional polymorphic markers, M1-L and M2-R to refine the QTL region. These 

markers enable us to refine the QTL region to single candidate gene of which a 

gene-specific marker was established to confirm the co-segregation of Scarlett 

and ISR42-8 alleles with low and high proline accumulation, respectively among 

the recombinants under drought stress conditions. A list of marker utilized in this 

analysis and their corresponding primers sequence information given in Appendix, 

Table S1. 

2.15 Promoter analysis 

Promoter analysis between Scarlett and ISR42-8 was performed using MAFFT 

alignment tools (Katoh et al., 2002). DNA binding motifs across the promoter were 

identified MULAN analysis according to (Ovcharenko et al., 2005). MULAN 

performs local multiple DNA sequence alignments of finished and draft-quality 

sequences. The draft approaches employs a combination of BLASTZ and refine 

programs (Schwartz et al. 2003b). Pair wise alignments between each secondary 

sequence and the reference sequence are done initially by BLASTZ. Effectively, 

this allows each reference sequence nucleotide to be covered by either one or no 

alignment block from one of the secondary sequence contigs in each set of pair 

wise alignments. Alignment post processing is carried out by the refine program, 

which collects all the pair wise alignments into a single FASTA-formatted gapped 

alignment file that is available for the user to download from the results Web page. 

It identifies transcription factor binding sites evolutionarily conserved across 

multiple species. All the sequences can have gene annotation and any of the 

sequences can be represented as a base sequence. Identification of transcription 

factor binding sites conserved across multiple species could be performed with the 

use of interconnected multi transcription factor tools. 

 

 

http://genome.cshlp.org/content/15/1/184.long#ref-36
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2.16 RNA Isolation and cDNA Synthesis 

RNA extraction, purification, and quantification were performed to assess the 

expression of proline-related genes using the TRIZOL RNA Isolation Protocol. The 

Thermo Fisher RT-PCR kit (Thermo Fisher, Rochester, USA) was used for cDNA 

synthesis following the manufacturer’s instructions.  

2.17 Expression analysis of P5cs1 mRNA 

To determine the expression of the P5cs1 gene in Scarlett and S42IL-143 plants, 

RNA extracted from the leaves was analyzed using semi-quantitative RT-PCR. 

Prior to the extraction, 10 days old seedling were exposed to drought stress for 3, 

6 and 9 days. Semi-quantitative PCR reactions were performed in 30 µl volumes 

containing 3 µl reverse transcription reaction products as templates. PCR products 

were analyzed by 1.5% (w/v) agarose gel electrophoresis. Three biological 

replicates were used for the analysis. Primer sequences used for expression 

analysis are shown in Appendix, TableS1. 

RT-qPCR was performed in 96-well plates using a 7500 fast Real-time PCR 

System and a SYBR Green-based PCR assay. Each reaction contained 3 μl 

diluted cDNA, 10 μl Maxima® SYBR Green/ROX qPCR Master Mix, and each 

primer at 0.4 μM to a final volume of 20 μl. The reaction mix was subjected to the 

following conditions: 95°C for 10 min, followed by 45 cycles of 95°C for 15 s and 

60°C for 30 s. Melting curves were then analyzed at 95°C for 15 s, 60°C for 15 s, 

and 95°C for 15 s. In addition, a reverse transcription negative control was 

included to assess potential genomic DNA contamination. The qRT-PCR 

experiments were performed with two independent sets of RNA samples. For each 

RNA sample, three technical replicates were used in a final volume of 20 μl, and 

the average was used for RT-qPCR analysis. Relative expression of the P5cs1 

gene was calculated according to the 2-ΔΔCt method (Livak and Schmittgen 

2001). Threshold cycle (CT) values for both the target and internal control genes 

were the means of triplicate independent PCR reactions. Primers used for real 

time PCR analysis are provided in Appendix, TableS1.  

2.18 Phenotyping S42IL-143 and Scarlett under drought condition for 

physiological parameters 
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Both genotypes were sown in climate chamber under control conditions. Three 

biological replicates were sown for various sensors were used in order to detect 

early drought stress response on the genotypes under investigation. For all 

measurements the fully expanded third leaf was analyzed non-destructively in 

order to detect the moisture content of plant tissue and parameters affecting 

photosynthetic activity. 

Photosynthetic parameters 

The infra-red gas analyzer, LI-6400 XT (LICOR Inc., Lincoln, NE, USA), was used 

to measure the photosynthetic parameters, namely stomatal conductance (Cond), 

transpiration rate (Trans), intercellular CO2 concentration (Ci) and photosynthesis 

rate (Photo). To take continuous measurements the center of the third leaf was 

positioned in a leaf chamber which was attached with the sensor. The 

environmental settings of the leaf chamber were following: Temperature = 20°C, 

reference CO2 stream = 500 μmol/mol, light intensity = 200 PAR 

(Photosynthetically active radiation). The air humidity was set to ‘full by pass’ to 

ensure measurements with the ambient air humidity set for the climate chamber 

(Biosciences 2008). Ten measurements were performed for each leaf without 

changing the position to calculate the mean (technical replicates). 

Photosynthetic activity 

The Photosynthesis yield analyzer Mini Pam II (Walz, Effeltrich, Germany) was 

used to measure the effective quantum yield of photosystem II (ΦII) which is a light 

adapted parameter that allows measurements of plants at steady-state of 

photosynthesis lightning conditions (Klughammer and Schreiber 2008). The ΦII 

parameter is calculated by Mini Pam II according Genty et al., (1989): 

Φ   
     

   
 

 

Where F is the fluorescence yield measured briefly before application of a 

Saturation Pulse, 

And Fm´ is maximal fluorescence yield of illuminated sample with all ΦII centers 

closed (Klughammer and Schreiber 2008). Reduction of effective quantum yield of 

photosystem II reflects the negative effect of drought stress on photochemical light 
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use efficiency of the tested plant. Five measurements were performed for different 

positions of each leaf to calculate the mean. 

Estimation of leaf water status 

A dual mode cavity microwave resonator (EMISENS GmbH, Juelich, Germany) as 

described by Dadshani et al., (2015), was used to estimate the water status of 

barley leaves non-destructively.  For the leaves being investigated, the signals of 

Mode 0 (150 MHz) were very small, therefore only Mode 1 (2.4 GHz) was used for 

the analysis.  During the assessment of a leaf, the change of the quality factor Q 

and the resonant frequency, fr with respect to the empty resonator were recorded. 

According to Dadshani et al., (2015) the microwave sensor parameters FRS and 

IQS, which are the negative relative frequency shift of fr and Q, respectively, highly 

correlate with the water content in tested plant material. Five measurements were 

performed for each leave without changing the position to calculate the mean 

(technical replicates). 

SPAD value 

Leaf chlorophyll concentration is an important parameter that is frequently 

measured as an indicator of chloroplast development, photosynthetic capacity, leaf 

nitrogen content or general plant health (Ling et al. 2011). The SPAD meter value 

is highly correlated with chlorophyll content in leaves and also is closely linked to 

drought stress (Markwell et al. 1995, Del Pozo et al. 2012). To measure the SPAD 

value we employed the Minolta SPAD-502 Chlorophyll Meter (Minolta Camera 

Co., Osaka, Japan) which is measuring leaf absorbance in red and near-infrared 

wavebands to estimate the amount of chlorophyll in the leaf.  
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3. RESULTS 

 

3.1 Detection of QTL for shoot traits under drought stress conditions 

A set of 54 and 73 introgression lines (S42ILs) was analyzed to categorize the 

QTLs for plant height (PH), number of leaves (NL), heading (HE), number of 

spikes (NS), shoot fresh weight (SFW), shoot dry weight (SDW), chlorophyll 

content (CC) and wilting score (WS). These phenotypic traits were genotyped with 

the 1536-SNP barley BOPA1 set (Close et al. 2009) based on the single 

nucleotide polymorphic markers in the years 2012 and 2013, respectively. 

3.2 Variance analyses 

Two-way analysis of variance (ANOVA) was employed to analyze trait variation 

among genotypes and across the replications and interaction between genotype 

and treatment across both years 2012 and 2013. The ANOVA described that 

genotypes showed significant (P < 0.05) variation for all traits except for CC, which 

is showing non-significant variation in the year of 2012. Whereas, replication 

showed non-significant (P > 0.05) variation for all studied traits in both years 

except for WS which showed significant variation even within replication in the 

year of 2012. Interaction between genotype and replication revealed non-

significant (P > 0.05) variation only for HE across both years. Table 3 and Table 4 

show the analysis of variance of the eight studied traits in both control and drought 

conditions across the years of 2012 and 2013, respectively. 

 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276139/#bib5
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Table 3: Variance analysis of eight investigated traits among 54 common S42ILs 

across years 2012 under control and drought conditions. Phenotypic traits 

evaluated are heading (HE), wilting score (WS), plant height (PH), number of 

leaves (NL), number of spikes (NS), chlorophyll content (CC), shoot fresh weight 

(SFW) and shoot dry weight (SDW).  

 

 

a The phenotypic traits are defined in Table 1 

b Source of variations 

c Degrees of freedom 

Trait
a
 SOV

b
 DF

c
 MS

d
 F value P value CV

e
 h

2f
 

HE 

Genotype 53 12.2 2.4 <.0001 

4.5 73.2 
Replication 2 0.4 0.0 0.91 

Treatment 1 1.7 1.0 0.31 

Genotype x Treatment 53 5.3 1.0 0.35 

WS 

Genotype 53 1.1 2.8 <.0001 

24.3 64.8 
Replication 2 5.4 13.1 <.0001 

Treatment 1 1280.7 9648.3 <.0001 

Genotype x Treatment 53 18.0 43.9 <.0001 

PH 

Genotype 53 332.2 10.4 <.0001 

7.5 61.6 
Replication 2 7.0 0.2 0.80 

Treatment 1 134878 89.6 <.0001 

Genotype x Treatment 53 1490.2 46.7 <.0001 

NL 

Genotype 53 0.6 4.7 <.0001 

7.7 68.7 
Replication 2 0.0 0.4 0.64 

Treatment 1 5.9 62.0 <.0001 

Genotype x Treatment 53 0.1 0.8 0.0016 

NS 

Genotype 53 19.2 12.3 <.0001 

18.6 52.4 
Replication 2 0.6 0.3 0.67 

Treatment 1 6556.4 51.8 <.0001 

Genotype x Treatment 53 35.7 23.0 <.0001 

CC 

Genotype 53 20.3 1.3 0.09 

9.4 79.8 
Replication 2 3.1 0.2 0.81 

Treatment 1 20497 667.2 <.0001 

Genotype x Treatment 53 222.8 14.3 <.0001 

SFW 

Genotype 53 222.4 2.1 <.0001 

24.4 95.7 
Replication 2 0.2 0.0 0.9973 

Treatment 1 87488 5429.6 <.0001 

Genotype x Treatment 53 2645.1 25.5 <.0001 

SDW 

Genotype 53 10.7 1.8 0.0012 

14.1 80.4 

Replication 2 0.8 0.1 0.80 

Treatment 1 1959.6 601.4 <.0001 

Genotype x Treatment 53 94.5 16.1 <.0001 
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d Mean sum of square 

e Coefficient of variation in % 

f Heritability in % 

 

 

Table 4: Variance analysis of eight investigated traits among 73 common S42ILs 

across years 2013 under control and drought conditions. Phenotypic traits 

evaluated are heading (HE), wilting score (WS), plant height (PH), number of 

leaves (NL), number of spikes (NS), chlorophyll content (CC), shoot fresh weight 

(SFW) and shoot dry weight (SDW) 

Trait
a
 SOV

b
 DF

c
 MS

d
 F value P value CV

e
 h

2f
 

HE 

Genotype 72 21.7 12.4 <.0001 

2.6 72.7 
Replication 3 0.1 0.0 0.90 

Treatment 1 0.8 0.1 0.86 

Genotype x Treatment 72 1.4 0.8 0.8570 

WS 

Genotype 72 0.6 5.0 <.0001 

14.8 58.5 

Replication 3 0.1 1.1 0.30 

Treatment 1 222.4 2.15 <.0001 

Genotype x Treatment 72 17.5 132.1 <.0001 

PH 

Genotype 72 464.0 9.3 <.0001 

11.4 56.2 
Replication 3 43.6 0.8 0.40 

Treatment 1 19.2 12.3 <.0001 

Genotype x Treatment 72 1565.1 31.4 <.0001 

NL 

Genotype 72 0.9 10.3 <.0001 

5.9 63.6 
Replication 3 0.0 0.2 0.80 

Treatment 1 0.6 4.7 <.0001 

Genotype x Treatment 72 0.1 1.7 0.0005 

NS 

Genotype 72 19.2 12.3 <.0001 

18.6 61.8 
Replication 3 0.61 0.2 0.77 

Treatment 1 332.2 10.4 <.0001 

Genotype x Treatment 72 35.7 23.0 <.0001 

CC 

Genotype 72 70.0 2.2 <.0001 

13.3 76.4 

Replication 3 18.9 0.6 0.60 

Treatment 1 12.2 2.4 <.0001 

Genotype x Treatment 72 336.4 10.9 <.0001 

SFW 

Genotype 72 70.9 4.4 <.0001 

13.3 99.2 
Replication 3 12.6 0.7 0.50 

Treatment 1 19.2 12.3 <.0001 

Genotype x Treatment 72 1202.1 74.6 <.0001 
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a The phenotypic traits are defined in Table 1 

b Source of variations 

c Degrees of freedom 

d Mean sum of square 

e Coefficient of variation in % 

f Heritability in % 

 

3.3 Phenotypic characterization 

Mean comparison of eight investigated traits among S42ILs, Scarlett and ISR42-8 

is presented in Table 5. S42ILs revealed a significant variation in PH ranged from 

73.0 to 120.0 cm in control conditions and mean was 90.3 cm, whereas the mean 

PH in Scarlett was 86.0 cm. Scarlett is erect type by nature, while wild barley 

ISR42-8 is bushy type, That’s why data is not collected for PH of ISR42-8. Under 

drought conditions, a moderate reduction of mean PH observed in S42ILs 

compared to control, where Scarlett revealed significant reduction of PH. ‘ISR42-8’ 

revealed remarkable mean NL (6.8) under control conditions producing 8 

maximum and 6.5 minimum NL where S42ILs and Scarlett produced 4.8 mean NL. 

Under drought conditions, increase of NL observed for all genotypes than control. 

‘ISR42-8’ produced the highest mean NL (6.9) whereas Scarlett and S42ILs 

produced 3.1 and 5.2 NL, respectively. For HE, ‘ISR42-8’ showed the maximum 

delay in heading with an average of 58.0 days under control and 56.8 under 

drought stress condition. S42ILs showed wide range (40-60 days) in HE under 

drought stress conditions with the mean value of 49.1 days. Where, Scarlett 

showed no significant difference between control and drought treatment. A 

significant variation in NS was observed for S42ILs under control conditions which 

ranged from 5.2 to 21.0 spikes per plant where Scarlett and ISR42-8 ranged from 

6.5 to 10.0 and 12.5 to 18.0 NS, respectively. Similarly, S42ILs revealed a wide 

range of NS under drought conditions with a mean of 11.3 where ‘ISR42-8’ 

showed mean NS 18.5 and Scarlett had lowest mean NS (6.9). Likewise shoot 

traits, ‘ISR42-8’ produced the highest SFW under control conditions with the mean 

SDW 

Genotype 72 83.1 25.5 <.0001 

12.4 79.5 

Replication 3 2.2 0.6 0.50 

Treatment 1 1.1 2.8 <.0001 

Genotype x Treatment 72 35.2 10.8 <.0001 
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value of 56.7 g. S42IL exhibited a wide range of SFW ranging from 36.0 to 106.0 g 

with a mean of 62.8 g in control conditions where Scarlett produced lowest mean 

SFW in both control (44.3 g) and drought (14.2 g) conditions. A clear reduction 

was observed in SDW under drought stress condition. For SDW, again S42IL 

exhibited a wide range in both treatment conditions where Scarlett is not 

significantly different under control and drought conditions. S42ILs revealed a 

range of SDW giving a mean 20.8 g in control and 12.0 g in drought conditions. 

CC revealed a wide difference in S42ILs under control and drought treatment. 

Where, Scarlett showed the minimum CC in both treatments with an average 

value of 47.3 ug-cm2 in control and 22.4 ug-cm2 in drought stress condition. 

ISR42-8 revealed minimum score for WS with the mean value of 0.8 and Scarlett 

showed maximum WS (3) under control (3.5) condition. A significant variation in 

WS was observed for S42ILs under control conditions which ranged from 0.25 to 

5.0 and drought condition which ranged from 5.0 to 8.0 with the mean of 6.5 for 

WS. 
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Table 5: Mean comparison of shoot traits among 73 S42ILs lines, Scarlett and ISR42-8 under control and drought conditions. Phenotypic traits evaluated are 

plant height (PH), number of leaves (NL), heading (HE), number of spikes (NS), shoot fresh weight (SFW), shoot dry weight (SDW), chlorophyll content (CC) and 
wilting score (WS). 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 
The phenotypic traits are defined in Table 5, 

b 
The Lsmeans of 73 S42ILs, ISR42-8 and Scarlett were calculated as an average of the phenotypic data for each trait across 2012 and 2013 for each 

treatment separately, 
c
 Standard error     * Data not taken 

Trait
a
 Genotype Mean

b
   SE

c
 

 
Control  

 
Drought 

Control Drought 
 

Minimum Maximum 
 

Minimum Maximum 

PH 

S42IL 90.3       58.1   0.5 
 

73.0 120.0 
 

37.0 80.0 

ISR42-8* 
 

  
 

  
 

 
Scarlett 86.0   2.7 44.1   3.1 

 
80.0 89.0 

 
39.8 53.4 

NL 

S42IL 4.8  0.0 5.2  0.0 
 

4.0 7.0 
 

4.0 7.75 

ISR42-8 6.8       6.9  2.2 
 

6.5 8.0 
 

6.0 6.0 

Scarlett 4.8       3.1  1.3 
 

4.0 4.5 
 

4.5 5.0 

HE 

S42IL 49.0  0.2 49.1  0.1 
 

41.0 59.0 
 

40 60 

ISR42-8 58.0       56.8   2.2 
 

57.0 59.0 
 

50 60 

Scarlett 51.3       49.5  0.2 
 

53.0 50.0 
 

49 50.0 

NS 

S42IL 8.3   0.1 11.3   0.8 
 

5.2 21.0 
 

8.5 14.0 

ISR42-8 15.4   1.7 18.5   0.7 
 

12.5 18.0 
 

12.0 8.3 

Scarlett 8.4   1.2 6.8   0.1 
 

6.5 10.0 
 

6.2 7.7 

SFW 

S42IL 62.8   1.2 18.0   0.2  36.0 106.0  5.0 5.0 

ISR42-8 56.7   1.3 16.6   0.6  47.5 67.2  18.0 21.0 

Scarlett 44.3   0.2 12.3   1.2  42.5 46.9  10.0 16.0 

SDW 

S42IL 20.8   0.2 12.0   0.1  14.6 41.0  10.0 24.0 

ISR42-8 20.9   0.7 16.0   0.0  17.5 23.2  15.0 18.0 

Scarlett 14.2   1.5 11.0   0.0  14.5 15.2  12.0 10.0 

CC 

S42IL 51.7   0.2 45.7   0.4  35.2 66.9  30.0 61.6 

ISR42-8 58.3   0.2 42.4   0.9  58.5 59.2  41.0 44.0 

Scarlett 47.3   1.2 22.4   2.5  45.0 48.3  20.0 25.0 

WS 

S42IL 2.6   0.0 6.5   0.0  0.25 5.0  5.0 8.0 

ISR42-8 0.8   0.2 3.3   0.1  0.5 1.0  3.0 3.5 

Scarlett 3   0.3 4.7   0.1  2.5 3.5  4.7 5.0 
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3.4 Comparison of the S42ILs with the parents 

The population S42ILs which consists of 73 ILs lines was tested for tolerance to 

drought. Analysis of variance revealed high significant variation among S42ILs 

lines and genotype*treatments interaction in most of investigated traits across the 

year 2012 and 2013. For detailed description, results ANOVA of the investigated 

traits in S42 population are shown in (Table 6 and 7) and discussed separately for 

each trait. Table 6 and 7 show the summary statistics of all the studied traits across 

both control and drought conditions in the years 2012 and 2013. 

 

Table 6:.Means and simple statistics in 54 S42ILs lines across control and drought 

conditions in 2012. Phenotypic traits evaluated are plant height (PH), number of 

leaves (NL), heading (HE), number of spikes (NS), shoot fresh weight (SFW), 

shoot dry weight (SDW), chlorophyll content (CC) and wilting score (WS). 

 

 Traits Mean SD Minimum Median Maximum 

 PH 90.35 8.347 73.10 88.9 120.2 

 NL 4.762 0.391 4.000 4.75 6.00 

 HE 48.90 2.6 41.00 49.0 55.0 

Control NS 8.798 1.405 5.250 8.50 12.5 

 SFW 62.33 15.05 36.85 56.5 106.2 

 SDW 20.98 3.381 15.35 20.1 41.20 

 CC 47.51 3.103 35.55 47.2 56.9 

 WS 0.915 0.563 0.250 1.00 5.00 

 PH 59.3 9.96 39.6 57.6 91.7 

 NL 4.85 0.41 3.50 5.00 6.00 

 HE 48.6 2.40 40.0 49.0 53 

Drought NS 4.07 1.24 2.250 3.75 9.00 

 SFW 21.1 5.10 15.5 19.8 51.0 

 SDW 13.3 1.50 8.69 13.3 20.5 

 CC 35.6 4.83 20.1 35.9 46.7 

 WS 4.36 0.90 2.00 4.00 6.50 
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Table 7:  Means and simple statistics in 73 S42ILs lines across control and drought 

conditions in 2013. Phenotypic traits evaluated are plant height (PH), number of 

leaves (NL), heading (HE), number of spikes (NS), shoot fresh weight (SFW), 

shoot dry weight (SDW), chlorophyll content (CC) and wilting score (WS). 

 

 Traits  Mean SD Minimum Median Maximum 

 PH 75.4 10.8 54.0 74.7 104.7 

 NL 5.06 0.42 3.75 5.00 7.00 

 HE 49.1 2.00 42.0 49.0 55.0 

Control NS 8.16 2.50 4.00 7.50 21.0 

 SFW 42.2 5.90 25.7 42.6 58.8 

 SDW 16.3 4.21 11.9 15.4 38.3 

 CC 47.6 3.60 31.5 47.9 58.4 

 WS 0.97 0.26 0.25 1.00 2.00 

 PH 48.4 9.10 23.5 48.0 73.2 

 NL 5.25 0.38 4.00 5.25 6.75 

 HE 48.9 2.10 40.0 49.0 54.0 

Drought NS 8.21 2.70 4.25 7.50 25.7 

 SFW 18.1 3.32 13.5 17.3 34.6 

 SDW 12.7 3.04 10.5 12.1 44.7 

 CC 35.8 7.98 8.70 37.0 51.6 

 WS 3.86 0.68 1.25 4.00 6.00 
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3.5 Genetic correlation among investigated traits 

Mutual correlation of selected shoot traits for 54 S42ILs in the year 2012 and 73 

S42ILs in the year 2013 have been presented in Table 8, which were computed 

using the LS-mean of a trait for all accessions across tested years 2012 and 2013 

separately.  

Strong positive correlations were found between PH with, SFW, SDW and CC in 

the both years 2012 with r values 0.81, 0.80 and 0.72 respectively and in 2013 with 

r values 0.81, 0.70 and 0.72 respectively. PH had strong positive correlation with 

NS as well but only in the first year of research with correlation coefficients value of 

0.80. For the correlation between PH and NL and WS a strong negative correlation 

found in the years 2012 and 2013, where the r values were -0.55 and -0.45 for NL 

and -0.83 and -0.78 for WS across the both years. For correlation between NL with 

SFW and SDW, a positive and strong correlation was found only in the year 2012 

with r values 0.55 and 0.53 respectively. Strong, positive and highly significant 

correlations were detected for NS with SFW, SDW and CC with the r values 0.92, 

0.90 and 0.73 in the year 2012 and 0.54, 0.67and 0.80 across the year 2013 

respectively. While NS was found negatively correlated with WS, where the 

correlation coefficients were -0.79 and -0.54 in 2012 and 2013, respectively. For 

the correlation of SFW with SDW and CC, a significant strong positive correlation 

was found, while it had negative significant correlation with WS. Where the 

correlation coefficients values are 0.96, 0.74 and -0.80 in the year 2012 and 0.63, 

0.64 and -0.89 in the year 2013 for SDW, CC and WS respectively. SDW was also 

found positively correlated with CC (0.69) in the year 2012 and negatively 

correlated with WS (-0.75 and -0.50) across the both years. For the correlation 

among CC and WS a significant negative correlation was found in the year 2012 (-

0.79) and 2013 (-0.68). 
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Table 8: Pearson correlation coefficients (r) calculated by averaging the Lsmeans 

of a trait performance for each trait separately, under control and under drought 

stress conditions in the years 2012 and 2013. Blue color indicates positive 

correlation while pink color indicates negative correlation among the traits. Darker 

shade indicates strong significant value.  Phenotypic traits evaluated are plant 

height (PH), number of leaves (NL), heading (HE), number of spikes (NS), shoot 

fresh weight (SFW), shoot dry weight (SDW), chlorophyll content (CC) and wilting 

score (WS). 

 

 

Plant height (PH) 

 

ANOVA of S42ILs population for plant height revealed highly significant differences 

among genotypes and interaction between genotypes and treatments across both 

the years. S42ILs population showed the variation among plant height ranging from 

61.25-101.75 cm under control and 25.75-69.81 cm under drought stress 

conditions. Figure 5 is showing variation for plant height in S42ILs population under 

control and drought stress conditions.  

The population has influenced by drought stress condition, the plants were shorter 

under drought treatment compared to control (Figure 6 (A) and (B)). Comparing PH 

of S42ILs lines to the parents under control and drought conditions, 67 lines were 

shorter, equal or non-significantly longer than the elite parent Scarlett while there 
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were six ILs which showed significantly higher plant height than Scarlett (Figure 

6C). S42IL-140 showed highest plant height (101.76 cm) under control condition 

followed by S42IL-137 (101.39 cm). While, under drought stress condition S42IL-

137 showed highest plant height (69.81 cm) followed by S42IL-148 (68.5 cm), 

whereas S42IL-140 was 63.62 cm high under drought stress conditions. Whereas, 

S42IL154 and S42IL-155 also showed significantly higher plant height than Scarlett 

with the value 78.5 and 100.56 cm under control and 51.18 and 63.37 cm under 

drought stress condition. 
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Figure 5: Variation for plant height in S42ILs population under control and drought conditions. Plant height was measured in cm. Blue and 

orange colors indicate plants under control and drought stress conditions, respectively. 

 

Figure 6: Frequency distribution of plant height in S42ILs population under control and drought conditions with compared to the parents over 

the year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ significantly from 

recurrent parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for the particular ILs in 

(C).

0 

20 

40 

60 

80 

100 

120 
IS

R
4

2
-8

 

S4
2

IL
-1

0
1 

S4
2

IL
-1

0
2 

S4
2

IL
-1

0
3 

S4
2

IL
-1

0
4 

S4
2

IL
-1

0
5 

S4
2

IL
-1

0
6 

S4
2

IL
-1

0
7 

S4
2

IL
-1

0
8 

S4
2

IL
-1

0
9 

S4
2

IL
-1

1
0 

S4
2

IL
-1

1
1 

S4
2

IL
-1

1
2 

S4
2

IL
-1

1
3 

S4
2

IL
-1

1
4 

S4
2

IL
-1

1
5 

S4
2

IL
-1

1
6 

S4
2

IL
-1

1
7 

S4
2

IL
-1

1
8 

S4
2

IL
-1

1
9 

S4
2

IL
-1

2
0 

S4
2

IL
-1

2
1 

S4
2

IL
-1

2
2 

S4
2

IL
-1

2
3 

S4
2

IL
-1

2
4 

S4
2

IL
-1

2
5 

S4
2

IL
-1

2
6 

S4
2

IL
-1

2
7 

S4
2

IL
-1

2
8 

S4
2

IL
-1

2
9 

S4
2

IL
-1

3
0 

S4
2

IL
-1

3
1 

S4
2

IL
-1

3
2 

S4
2

IL
-1

3
3 

S4
2

IL
-1

3
4 

S4
2

IL
-1

3
5 

S4
2

IL
-1

3
6 

S4
2

IL
-1

3
7 

S4
2

IL
-1

3
8 

S4
2

IL
-1

3
9 

S4
2

IL
-1

4
0 

S4
2

IL
-1

4
1 

S4
2

IL
-1

4
2 

S4
2

IL
-1

4
3 

S4
2

IL
-1

4
4 

S4
2

IL
-1

4
5 

S4
2

IL
-1

4
6 

S4
2

IL
-1

4
7 

S4
2

IL
-1

4
8 

S4
2

IL
-1

4
9 

S4
2

IL
-1

5
0 

S4
2

IL
-1

5
1 

S4
2

IL
-1

5
2 

S4
2

IL
-1

5
3 

S4
2

IL
-1

5
4 

S4
2

IL
-1

5
5 

S4
2

IL
-1

5
6 

S4
2

IL
-1

5
7 

S4
2

IL
-1

5
8 

S4
2

IL
-1

5
9 

S4
2

IL
-1

6
0 

S4
2

IL
-1

6
1 

S4
2

IL
-1

6
2 

S4
2

IL
-1

6
4 

S4
2

IL
-1

6
6 

S4
2

IL
-1

6
7 

S4
2

IL
-1

6
8 

S4
2

IL
-1

6
9 

S4
2

IL
-1

7
0 

S4
2

IL
-1

7
1 

S4
2

IL
-1

7
3 

S4
2

IL
-1

7
5 

S4
2

IL
-1

7
6 

Sc
ar

le
tt

 

P
H

 (
cm

) 

Plant Height (PH)  Control  

Drought 



 

29 
 

Number of Leaves (NL) 

 

Highly significant differences were observed among genotypes in both studied 

years and a significant difference was detected among genotypes * treatments 

interaction. S42ILs population was influenced by drought and gave more number 

of leaves under drought stress conditions. The number of leaves per main tiller 

ranged from 4 to 6.9 under control and from 4.12 to 7.2 under drought stress 

conditions (Figure 7). 

Frequency distribution of S42ILs under control and drought condition is shown in 

(Figure 8 (A) and (B)). S42IL-176 gave maximum number of leave under control 

(6.9) and drought (7.25) stress conditions. S42Il-133 and S42IL-143 produced 

more number of leaves than Scarlett with the value of 6.25 and 6.18 under control 

and 6.3 and 6.0 under drought stress conditions. These two S42ILs gave more 

number of leaves in both years with an average of 5.5 and 6.25 leaves/main tiller 

more than the parent Scarlett under drought stress conditions (Figure 8C). 
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Figure 7: Variation for number of leaves in S42ILs population under control and drought conditions. Number of leaves was measured from 

main tiller of each plant. Blue and orange colors indicate plants under control and drought stress conditions, respectively. 

 

Figure 8: Frequency distribution of number of leaves in S42ILs population under control and drought conditions with compared to the parents 

over the year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ significantly from 

recurrent parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for the particular ILs in 

(C).
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Heading (HE) 

 

Days to heading (HE) was highly significantly different among genotypes but non-

significant among replication and genotypes * treatments interaction (Table 3 and 

4). Drought treatment has no significant influence on S42ILs population ranged 

from 42 to 58 days under control and from 41 to 56 days after sowing under 

drought stress condition (Figure 9). 

S42ILs population distribution for heading date over years is presented in Figure 

10 (A) and (B). Under drought conditions, as an average over years, two S42ILs 

lines gave heading earlier as compare to the parent Scarlett under control as well 

as under drought stress conditions (Figure 10C). S42IL-107 and S42IL-108 gave 

earliest heading under control (42 and 44 days after sowing) and drought (41 and 

42 days after sowing), respectively.  
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Figure 9: Variation for heading in S42ILs population under control and drought conditions. Heading was counted in number of days from 

sowing date. Blue and orange colors indicate plants under control and drought stress conditions, respectively. 

 

Figure 10: Frequency distribution of heading in S42ILs population under control and drought conditions with compared to the parents over the 

year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ significantly from recurrent 

parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for the particular ILs in (C). 
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Number of spikes (NS) 

 

For population S42, the ILs lines were evaluated for number of spikes and 

revealed highly significant differences among the genotypes and treatments over 

years. Number of spikes per plant ranged from 4.9 to 17.19 under control and from 

5.19 to 22.63 under drought stress condition as shown in Figure 11. Population 

was effected more by drought stress in the year 2012 and produced less number 

of spikes under drought stress condition.  

Figure 12 (A) and (B) is showing distribution of S42ILs population over the year 

2012 and 2013 respectively. An introgression line S42Il-124 gave maximum 

number of spikes under control (17.19) and drought (22.63) condition with general 

average of 20 spikes per plant as compared to all S42ILs and both parents under 

control and drought stress conditions (Figure 12C). 
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Figure 11: Variation for number of spikes in S42ILs population under control and drought conditions. Before harvesting total number of spikes 

were counted for each plant. Blue and orange colors indicate plants under control and drought stress conditions, respectively. 

 

Figure 12: Frequency distribution of number of spikes in S42ILs population under control and drought conditions with compared to the parents 

over the year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ significantly from 

recurrent parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for the particular ILs in 

(C).
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Shoot fresh weight (SFW) 

 

Highly significant differences were detected for shoot fresh weight in relation to 

genotypes and interaction between genotype and treatments under control and 

drought stress conditions across both the year 2012 and 2013 (Table 3 and 4). 

The minimum shoot fresh weight under control was 24.23 g/plant and decreased 

to 15.05 g/plant under drought stress condition. Similarly, the maximum shoot 

fresh weight under control was 56.69 g/plant that decreased to 37.02 g/plant under 

drought stress condition. The differences of shoot fresh weight among ILs as well 

as treatments is shown in Figure 13. 

Drought stress condition influenced S42 population significantly and decrease the 

shoot fresh weight under drought condition (Figure 14 (A) and (B)). A total of six 

ILs lines yielded more SFW than the elite parent Scarlett (Figure 14C). S42IL-133 

produced highest shoot fresh weight under control stress condition with the value 

of 56.69 g/plant followed by S42IL 124 (56.0 g/plant), S42IL-155 (52.48 g/plant), 

S42IL-154 (52.13 g/plant), S42IL-143 (50.39 g/plant) and S42IL-110 (46.48 

g/plant). While, the maximum shoot fresh under drought stress condition was 

shown by S42IL-124 (37.0 g/plant). The shoot fresh weight in S42IL-143, S42IL-

154, S42IL-155, S42IL-133 and S424IL110 was 29.13 g/plant, 28.8 g/plant, 28.5 

g/plant, 27.4 g/plant and 26.9 g/plant respectively, under drought stress conditions. 
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Figure 13: Variation for shoot fresh weight in S42ILs population under control and drought conditions. Shoot fresh weight of each plant was 

measured in grams. Blue and orange colors indicate plants under control and drought stress conditions, respectively. 

 

Figure 14: Frequency distribution of shoot fresh weight in S42ILs population under control and drought conditions with compared to the 

parents over the year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ 

significantly from recurrent parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for 

the particular ILs in (C). 
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Shoot dry weight (SDW) 

 

For the population, the same trend of shoot dry weight has been observed as for 

shoot fresh weight because of the strong correlation between them. Shoot dry 

weight was less under drought stress condition as compare to control condition. 

The minimum shoot dry weight under control condition was 13.98 g/plant that 

reduced to 11.54 g/plant under drought stress condition. Figure 15 is showing the 

differences among S42Ils population over the treatment and as well as within the 

population. 

The differences of SDW among accessions as well as treatments over the years 

2012 and 2013 were shown in Figure 16 (A) and (B). Same six S42ILs lines gave 

more SDW than the elite parent Scarlett and the exotic parent ISR 42-8 (Figure 

16C). S42IL-155 produced highest shoot dry weight under control stress condition 

with the value of 35.15 g/plant followed by S42IL 124 (34.98 g/plant), S42IL-154 

(33.96 g/plant), S42IL-133 (32.21 g/plant), S42IL-143 (30.37 g/plant) and S42IL-

110 (25.94 g/plant). While, the maximum shoot dry under drought stress 

conditions was shown by S42IL-155 (22.75 g/plant). The shoot dry weight in 

S42IL-154, S42IL-133, S42IL-124, S42IL-143 and S424IL110 was 22.28 g/plant, 

21.68 g/plant, 21.51 g/plant, 21.39 g/plant and 20.04 g/plant respectively, under 

drought stress condition. 



 

38 
 

 

Figure 15: Variation for shoot dry weight in S42ILs population under control and drought conditions. Plants were dried in the oven at 500 C 

and then shoot dry weight of each plant was measured in grams. Blue and orange colors indicate plants under control and drought stress 

conditions, respectively. 

 

Figure 16: Frequency distribution of shoot dry weight  in S42ILs population under control and drought conditions with compared to the parents 

over the year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ significantly from 

recurrent parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for the particular ILs in 

(C). 
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Chlorophyll content (CC) 

 

The S42ILs population showed wide range for chlorophyll content under drought 

and control stress conditions across the years (Figure 17). A drastic effect of 

drought stress is observed for chlorophyll content ranged from 29.36 ug-cm2 to 

56.51 ug-cm2 under control and from 24.88 ug-cm2 to 45.35 ug-cm2 under drought 

stress conditions.  

Distribution of S42ILs population under control and drought stress condition across 

both the years 2012 and 2013 is shown in Figure 18 (A) and (B). A total of four 

S42ILs lines showed more chlorophyll content than the recurrent parent Scarlett 

and exotic donor ISR42-8 under control and drought conditions (Figure 18C). The 

highest chlorophyll content was 56.51 ug-cm2 in S42IL-107 followed by 55.16 ug-

cm2 in S42Il-108, 53.31 ug-cm2 in S42IL143 and 52.44 ug-cm2 in S42IL-141 under 

control conditions. 
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Figure 17: Variation for chlorophyll content in S42ILs population under control and drought conditions. Chlorophyll content was measured 

using SPAD meter. Blue and orange colors indicate plants under control and drought stress conditions, respectively. 

 

Figure 18: Frequency distribution of chlorophyll content in S42ILs population under control and drought conditions with compared to the 

parents over the year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ 

significantly from recurrent parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for 

the particular ILs in (C). 
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Wilting Score (WS) 

 

The population S42ILs showed a significant variation in leaf wilting under control 

and drought conditions (Figure 19). Drought stress influenced the plants and wilted 

more as compared to control condition. The score for wilting score ranged from 0.3 

to 1.63 and from 1.18 to 4.68 under drought stress condition. 

Figure 20(A) and (B) is showing frequency distribution of S42ILs population under 

both treatments in 2012 and 2013, respectively. Treatment made a clear 

significant effect for wilting score on parents as well as S42ILs population. Eight 

S42ILs lines presented wilting scores ranged between 1 and 1.5 as resistant lines 

to drought (Figure 20C). S42IL-107 showed lowest wilting while under drought 

stress with the value of 1.18, followed by s42IL-108, S42IL-143, S42IL-141, S42IL 

176, S42IL 154 and S42Il-155 with the value of 1.25, 1.68, 1.8, 2.3, 3.4 and 3.6 

respectively. 
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Figure 19: Variation for wilting score in S42ILs population under control and drought conditions. wilting score was measured using `standard 

evaluation system’ (SES) for rice (IRRI, 1980). Blue and orange colors indicate plants under control and drought stress conditions, 

respectively. 

 

Figure 20: Frequency distribution of wilting score in S42ILs population under control and drought conditions with compared to the parents over 

the year 2012 (A) and 2013 (B) which indicate the differences among the treatment and population. S42ILs lines differ significantly from 

recurrent parent Scarlett is showing in (C). Blue dots represent the mean value for overall population in (A) and (B) and for the particular ILs in 

(C). 
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3.6 QTL detection 

The present study reports on the genetic dissection of shoot-related traits of 72 

S42ILs from a cross between barley wild accession ISR42-8 and cultivar Scarlett. 

The aim of the study was to validate the use of non-destructive high-throughput 

phenotyping to measure drought response in barley and to identify QTL derived 

from wild barley that control physiological traits related to drought stress. The QTL 

map was drawn according to Schmalenbach et al., 2011, high-throughput marker 

defined SNP locations. The ILs considered as a valuable genetic resource of 

complex QTL, fine mapping and positional cloning of underlying genes (Eshed et 

al., 1994, Szalma ,. 2007 and Schmalenbach et al., 2011). With respect to 

heritabilities, the phenotypic and genptypic data has been subjected to QTL 

analysis. Considering the position and corresponding target introgressions, all 

together 15 QTL were detected for five traits. 

 

QTL for plant height 

Six significant line treatment interactions were observed for PH with Scarlett which 

was summarized to 2 QTL located on chromosome 3H and 1H (Table 9 and 

Figure 21). Higher PH was recorded under control conditions than drought for 

selected ILs. The Hsp introgression increased PH from 33.3 to 43.2% (Table 9).  

Considering the Lsmeans of line treatment associations, S42IL-148 revealed 

maximum PH which possesses an introgression on 3H chromosome reaching 

from 198.32 cM at QPH.S42.3H. These QTL effects are localized to two 

chromosomal regions across all chromosomes (Figure 22). 

 

QTL for number of leaves 

For NL, two significant line treatment associations were summarized to one QTL 

located on chromosome 5H (Figure 21). The S42IL-143 and S42Il-133 revealed 

maximum NL score 6.4 and 6.2 respectively and exhibited Hsp introgression on 

chromosome 5H (QNL.S42IL.5H). The Hsp introgression increased NL from 31.9 

to 36.1% (Table 9). The QTL for NL is localized to one chromosomal regions 

across all chromosomes (Figure 22).  
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QTL for Heading 

The QTL analysis revealed one strong QTL for HE located on chromosome 2H. A 

total of two lines were found significant line by treatment associations with Scarlett 

Figure 21 for HE. According to the Table 9, the exotic introgression increased the 

trait value from -16.1 to -18.1%. The QTL for HE is localized to one chromosomal 

regions across all chromosomes (Figure 22). The highest HE differences between 

an IL and control were exhibited at QHE.S42IL.2H.a for S42IL-108, containing Hsp 

introgression in 47.4 to 58.5 cM of 2H chromosome which decreased number of 

days to HE by 18.1 % (Table 9).  

 

QTL for number of spikes 

Single significant line treatment interactions were observed for NS with Scarlett 

which were summarized to one QTL located on chromosomes 4H (Figure 21). 

More NS observed under drought conditions than control for selected ILs (Figure 

21). The Hsp introgression increased NS 95.4 % (Table 9). Figure 22 shows the 

QTL for NS localized to one chromosomal region on 4H across all chromosomes. 

 

QTL for shoot fresh and dry weight 

Altogether six S42ILs showed significant associations for SFW and SDW. Due to 

overlapping of introgressions these associations were summed to putative three 

QTL which were located on chromosomes 1H, 2H and 5H. All the genotypes 

showed higher SFW and SDW in control than drought conditions in Figure 21. 

According to the Table 9, the exotic introgression increased the trait value from 

19.1 to 95.4% for SFW and 12.7 to 97.8% for SDW. At QSFW.S42IL.5H, 

overlapping introgressions was observed by two ILs where S42IL-133 exhibited 

moderate SFW (60.9%) in positions 4.2 cM of 5H. However, S42IL-110 exhibited 

minimum SDW (12.7%) on 2H in the position 155.9cM. The highest SDW 

differences between an IL and control were exhibited at QSDW.S42IL.4H for 

S42IL-124, containing Hsp introgression in 176.5 to183.5 cM of 4H chromosome 

which increased SDW by 97.8 % (Table 9). Figure 22 shows the QTLs for SFW 

and SDW localized to four chromosomal regions on 1H, 2H, 4H and 5H across all 

chromosomes. 
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QTL for chlorophyll content 

Four significant line treatment interactions were observed for CC with Scarlett 

which were summarized to two QTL located on chromosomes 1H and 2H (Figure 

21). More CC observed under control conditions than drought for selected ILs 

(Figure 21). The Hsp introgression increased CC from 63.6 to 72.4 % (Table 9). 

The QTL for CC is localized to two chromosomal regions on 1H and 2H across all 

chromosomes (Figure 22). 

 

QTL for wilting score 

A total of five lines were significant lines by treatment associations with Scarlett 

(Figure 20 C) for WS. The effects were summarized to 5 putative QTL located on 

chromosome 1H, 2H, 4H and 5H. According to Figure 21, all the genotype 

exhibited improved WS values under control and drought as compared to 

recurrent parent Scarlett. The highest WS differences between an IL and control 

were exhibited at QWS.S42IL.2H.a for S42IL-107, containing Hsp introgression in 

47.8 to 58.5 cM of 2H chromosome which decreased WS by -63.6 %, While 

S42IL-143 showed the minimal difference in WS by -27.3 % (Table 9). The QTL 

for WS is localized to five chromosomal regions across all chromosomes (Figure 

22). 
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Phenotypic traits evaluated are plant height (PH), number of leaves (NL), heading (HE), number of spikes (NS), shoot fresh weight (SFW), shoot dry weight (SDW), 
chlorophyll content (CC) and wilting score (WS). 
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Figure 21: Comparison of selected 

introgression lines (ILs) for eight 

shoot traits with the recurrent parent 

Scarlett under control and drought 

stress conditions across the years 

2012 and 2013. Each bar shows the 

mean value of three replicates. 
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Figure 22: Chromosomal map of the selected introgression lines showing the validation of exotic QTL alleles. The red regions showed 
the location of wild introgressions according to Schmalenbach et al., (2011). The QTL regions are narrowed by comparing the common 
overlapping introgression across the S42IL population as well as by comparing QTL bearing wild introgression with the chromosomal 
regions having no QTL. 
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Table 9: List of significant QTL effects for eight studied traits detected among S42IL 
population. Phenotypic traits evaluated are plant height (PH), number of leaves (NL), 
heading (HE), number of spikes (NS), shoot fresh weight (SFW), shoot dry weight (SDW), 
chlorophyll content (CC) and wilting score (WS). 

 

a The phenotypic traits are defined in Table2 
b Chromosome number 
c Least square means of the S42IL and Scarlett, respectively 
d Relative trait performance of the S42IL compared to Scarlett, calculated as    
RP(S42IL)= [Lsmeans(S42IL) – Lsmeans(Scarlett)]/ Lsmeans(Scarlett) 

Trait
a
 QTL name Chr.

b
 

Introgression 
S42ILs 

Lsmeans 
S42ILs

c
 

Lsmeans 
Scarlett

c
 

RP(IL)
d
 

(cM) (%) 

PH 
 

QPH.S42IL.1H 
 

1H 
 

104.39-106.46 
 

S42IL-154 82.5 59.5 38.6 

S42IL-155 76.4 59.5 28.4 

QPH.S42IL.3H 
 

3H 
 

185.1-190.8 
 

S42IL-137 84.5 59.5 41.7 

S42IL-121 79.6 59.5 33.7 

S42IL-148 81.9 59.5 37.6 

S42IL-140 85.6 59.5 43.8 

NL 
QNL.S42IL.5H 
 

5H 
 

4.2 
 

S42IL-133 6.2 4.7 31.9 

S42IL-143 6.4 4.7 36.1 

HE 
QHE.S42IL.2H 
 

2H 
 

47.4-58.5 
 

S42IL-107 42 51.3 -18.1 

S42IL-108 43 51.3 -16.1 

NS QNS.S42IL.4H 4H 176.5-183.5 S42IL-124 12.9 6.6 95.4 

SFW 

QSFW .S42IL.1H 
 

1H 
 

102.3-127.7 
 

S42IL-154 40.8 26.1 56.3 

S42IL-155 40.5 26.1 55.1 

QSFW.S42IL.2H 2H 155.9 S42IL-110 31.1 26.1 19.1 

QSFW .S42IL.4H 4H 176.5-183.5 S42IL-124 46.5 26.1 78.1 

QSFW .S42IL.5H 
 

5H 
 

4.21 
 

S42IL-133 42.0 26.1 60.9 

S42IL-143 39.7 26.1 52.1 

SDW 

QSDW .S42IL.1H 
 

1H 
 

102.3-127.7 
 

S42IL-154 27.2 14.1 92.0 

S42IL-155 27.7 14.1 96.4 

QSDW.S42IL.2H 2H 155.9 S42IL-110 15.9 14.1 12.7 

QSDW .S42IL.4H 4H 176.5-183.5 S42IL-124 27.9 14.1 97.8 

 
QSDW .S42IL.5H 
 

 
5H 

 

 
4.2 

 

S42IL-133 26.9 14.1 90.7 

S42IL-143 25.8 14.1 82.9 

CC 

QCC.S42IL.1H 
 

1H 
 

82.51-84.14 
 

S42IL-141 47.8 28.3 68.9 

S42IL-143 48.8 28.3 72.4 

QCC.S42IL.2H 
 

2H 
 

47.4-58.5 
 

S42IL-107 47.4 28.3 67.4 

S42IL-108 46.3 28.3 63.6 

WS 

QWS.S42IL.1H 
 

1H 
 

102.3-127.7 
 

S42IL-154 1.4 3.3 -30.3 

S42IL-155 1.7 3.3 -30.3 

QWS.S42IL.2H 
 

2H 
 

47.4-58.5 
 

S42IL-107 1.2 3.3 -63.6 

S42IL-108 1.3 3.3 -60.6 

QWS.S42IL.4H 4H 99.5-110.2 S42IL-123 1.5 3.3 -54.5 

QWS.S42IL.5H 
 

5H 
 

4.2 
 

S42IL-133 1.6 3.3 -36.4 

S42IL-143 1.1 3.3 -27.3 

QWS.S42IL.5H 5H 203.8-231.7 S42IL-176 1.9 3.3 -42.4 
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3.7 Positional cloning of a major QTL for proline that modulates drought 

stress tolerance in cultivated barley 

A set of 73 wild barley introgression lines was genotyped with high resolution 

using the Illumina Golden Gate assay. Out of 1536 BOPA1 SNPs, 1148 markers 

gave useful genotype information in the S42IL set. Of these, a total of 636 SNPs 

(55.4%) were polymorphic between Scarlett and ISR42-8 and were finally used for 

characterizing the S42ILs.  

To determine the relationship between drought tolerance for proline content in H. 

vulgare, we first examined whether drought stress would enhance the proline 

levels in contrasting parents i.e.; german spring barley cultivar Scarlett (H. vulgare 

ssp. vulgare) and a wild barley accession ISR42-8 (H. vulgare ssp. spontaneum). 

The parents, Scarlett and ISR42-8 showed significant variation for proline content 

(PC) under control and drought stress conditions. ISR42-8 revealed a remarkable 

increase of proline content from 30.6 μg/g under control condition to 879.3 μg/g 

under drought stress within 9 hours, whereas Scarlett showed a modest increase 

in PC in drought block as compared to control. On average, ISR42-8 accumulated 

around 762.2 μg/g more proline content than Scarlett under drought stress 

conditions in 9 hours (Figure 23). 

 

                     

 

Figure 23. Effect of drought stress on proline accumulation in leaves of Scarlett 

and ISR42-8 within 3, 6 and 9 hours. Blue color shows the leaves under control 
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condition, while red color shows the leaves of plants under drought stress 

condition. 

 

15 days old H.vulgare plantlets were treated with water stress for 3, 6 and 9 hours, 

respectively. All treatments had three biological replicates. Proline contents were 

measured by ninhydrin assay at A520 nm. Values represent means value of three 

independent experiments. 

To extract the proline from samples, a standard curve was made using the series 

of proline standers i.e.; 1ppm, 2ppm, 5ppm, 10ppm and 20ppm showing in Figure 

24 A, to calibrate the spectrophotometer which came up with a standard curve, 

linear regression with proline concentration on the x-axis and the measured 

absorbance at 520 nm on the Y-axis Figure 24 B. 

 

          

 

 

Figure 24.  Proline standards ranging from 1ppm to 20ppm in the same medium 

i.e.; toluene as the one used for the extraction from samples (A). Calibration curve 

obtained with the spectrophotometer procedure with the cuvette (B).  

 

3.8 Major QTL for proline accumulation  

Genetic mapping of proline accumulation was performed using a library of 

introgression lines having chromosomal segments of wild barley accession ISR42-

8 in the Scarlett background. Drought treatment has significant influence on 

S42ILs population for proline content. S42ILs population was sown in tunnel and 

fully expanded flag leaf was taken for proline measurement. The population 

S42ILs showed a wide range of proline content values with a mean of 0.3-822.0 
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μg/g under control and 7.8-4466.3 μg/g under drought stress conditions comparing 

with the elite parent Scarlett and the exotic parent ISR42-8 (Figure 25). Most of the 

S42ILs behave differently for proline under control and drought stress conditions. 

Among S42ILs population, S42IL-143 showed the highest accumulation for proline 

content under drought stress condition followed by S42IL-108 while S42IL-167 and 

S42IL-159 showed the minimal value for proline content while comparing with the 

elite parent Scarlett and the exotic parent ISR42-8.  
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Figure 25. Variation of proline accumulation in 73 S42ILs population under drought stress and control conditions; proline content was 

measured in µg/g from fresh leaf material. Grey and black colors indicate plants under control and drought stress conditions, 

respectively. 
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For mapping, a comparison of individual IL with the recurrent parent Scarlett for 

variation in proline content was made using the Dunnett-test. A total of thirteen lines 

were revealed significant line by treatment associations with Scarlett for proline 

content. The effects were summarized to five putative QTL located on chromosome 

1H, 2H, 3H, 4H and 5H that exhibited significant association with increased proline 

accumulation and were regarded as QTL based on their variation among the S42ILs 

population (Figure 26).  
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Figure 26: Quantification of five QTLs alleles for proline content on chromosome 1H 

(A), 2H (B), 3H (C), 4H (D) and 5H (E). proline content is measured in ug/g. Blue and 

orange colors indicate plants under control and drought stress conditions, 

respectively. 

A total of five QTLs were distributed for proline content on chromosomes 1H, 2H, 3H, 

4H and 5H. Three ILs, S42IL-176, S42IL-107 and S42IL-108 shared the common 

introgression on chromosome 2H and revealed a QTL between 47.45 - 55.52 cM 

according to SNP map by Schmalenbach et al., (2011) and Honsdorf et al., (2014). 

Similarly S42IL-112, S42IL-154 and S42IL-155 shared common introgression on 

chromosome 3H between 104.39-135.80 cM and summarized to single QTL at this 

locus. S42IL-116 and S42IL-117 also summed to a QTL for proline on 4H by sharing 

an introgression between 27.52-47.80 cM. Altogether three S42ILs, S42IL-103, 

S42IL-127 and S42IL-176 revealed significant association for proline on chromosome 

5H. Due to overlapping of single common introgression these lines were summed to 

a single putative QTL between 139.93-140.07 cM. But the strongest QTL was found 

on chromosome 1H on S42IL-143 and S42IL-141 between 82.51- 84.14cM which is 

quite unique among large introgression in these two independent ILs and resulted in 

a remarkable increase in proline accumulation under drought stress conditions.  

These ILs revealed drought inducible proline accumulation up to 4,500 μg/g. The 

recurrent parent Scarlett and the ILs carrying Scarlett alleles at this locus exhibited a 

minor increase in proline accumulation under drought stress conditions. Five QTLs 

for proline content on different chromosomes in a circus plot are shown in Figure 27. 
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Figure 27: Circus plot showing five major QTLs in the S42ILs population. Five major 

QTLs for PC are shown in chromosome 1H, 2H, 3H, 4H and 5H. Blue color indicates 

the Scarlett genome. The red regions is showing the location of wild introgressions 

according to Schmalenbach et al., (2011). 

Considering that high proline accumulation becomes visible as it exhibits a red color 

after reaction with ninhydrine. Proline content accumulation under control and 

drought stress condition is shown in Figure 28. A darker color indicated more proline 

in the major QTL allele-bearing ILs S42IL-143 and S42IL-141 on chromosome 1H.  
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Figure 28: Free proline accumulation becomes visible after reacting with ninhydrine. 

Figure shows a clear difference of proline content accumulation under stress and 

control condition in Scarlett, S42IL-143 and S42IL-141. S42IL-143 and S42IL-141 are 

showing more proline content under stress condition as compared to recurrent parent 

Scarlett. A darker color indicates more proline. 

Taking the information about SNP and their sequence maker allele at the position of 

part of introgression which was overlapping in both S42ILs provided by 

Schmalenbach et al., (2011) and Honsdorf et al., (2014), position was confirmed on 

physical map with the help of ensembl genome browser. The physical map revealed 

nineteen more genes between these SNPs; one of them was MLOC_57545, which is 

responsible for delta 1-pyrroline-5-carboxylate synthase1 enzyme. 

List of all nineteen genes is given in table 10. (The MLOC numbers and their physical 

position are according to Ensembl Genomes: Extending Ensembl across the 

taxonomic space, which was last visited at 21.08.2017). 
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Table 10: Candidate genes in the P5cs1 locus in barley on chromosome 1H.

 
 
 
 

Genes Position (bp) 
Gene ontology terms  

(molecular functions/ biological process)  

1 MLOC_58251 402,450,680-402,458,484 hypothetical protein 

2 MLOC_72250 402,475,895-402,478,271 60S ribosomal protein L36 

3 MLOC_22683 402,570,395-402,573,145 kinase interacting family protein 

4 MLOC_65624 402,576,749-402,579,517 uncharacterized protein 

5 MLOC_69899 402,744,784-402,747,323 

laccase 17 for Lignin Polymerization during Vascular Development in 
Arabidopsis 

6 MLOC_10200 402,748,178-402,753,742 uncharacterized protein 

7 MLOC_63739 403,374,395-403,383,767 respiratory burst oxidase 

8 MLOC_10769 403,409,297-403,411,094 uncharacterized protein 

9 MLOC_77700 403,506,189-403,509,989 putative F-box/FBD/LRR-repeat protein 

10 MLOC_50459 403,510,136-403,512,832 ATP-dependent peptidase/ ATPase 

11 MLOC_77143 403,514,940-403,516,631 domain of unknown function DUF1618  

12 MLOC_24040 403,529,842-403,530,644 uncharacterized protein 

13 MLOC_57545 403,769,721-403,773,264 delta 1-pyrroline-5-carboxylate synthase1 

14 MLOC_60455 404,064,748-404,067,341 bHLH transcription factor, putative 

15 MLOC_16792 404,069,059-404,072,279 uracil phosphoribosyltransferase 

16 MLOC_16794 404,073,093-404,074,443 

prenylated rab acceptor family protein (it plays a role in vesicular trafficking, 
lipid transport and cell migration) 

17 MLOC_58017 404,203,623-404,207,667 copper-binding family protein 

18 MLOC_50701 404,212,049-404,217,276 putative MYB family transcription factor 

19 MLOC_6058 404,274,992-404,277,967 

GINS complex subunit 1-like protein (GINS complex is essential for the 
initiation of DNA replication in yeast) 

http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_58251;mr=1:402734761-402833859;r=1:402453173-402453293;t=MLOC_58251.3;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_72250;r=1:402475895-402478271;t=MLOC_72250.1;tl=LaFu0sPx3UxfCy1s-9486269-175576372
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_22683;mr=1:402734761-402833859;r=1:402571041-402571175;t=MLOC_22683.1;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_65624;r=1:402576749-402579517;t=MLOC_65624.1;tl=LaFu0sPx3UxfCy1s-9486269-175576372
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_69899;mr=1:402734761-402833859;r=1:402745215-402745343;t=MLOC_69899.1;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_10200;r=1:402748178-402753742;t=MLOC_10200.1;tl=LaFu0sPx3UxfCy1s-9486269-175576372
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_63739;mr=1:404057126-404139281;r=1:403378847-403378945;t=MLOC_63739.2;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_10769;mr=1:403370640-403441960;r=1:403409628-403409738;t=MLOC_10769.1;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_77700;mr=1:404057126-404139281;r=1:403507976-403508068;t=MLOC_77700.1;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_50459;r=1:403510136-403512832;t=MLOC_50459.1;tl=LaFu0sPx3UxfCy1s-9486269-175576372
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_77143;r=1:403514940-403516631;t=MLOC_77143.1;tl=LaFu0sPx3UxfCy1s-9486269-175576372
http://www.ebi.ac.uk/interpro/entry/IPR011676
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_24040;r=1:403529842-403530644;t=MLOC_24040.1;tl=LaFu0sPx3UxfCy1s-9486269-175576372
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_57545;mr=1:404057126-404139281;r=1:403769988-403770078;t=MLOC_57545.1;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_60455;mr=1:404057126-404139281;r=1:404065039-404065117;t=MLOC_60455.1;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_16792;mr=1:404057126-404139281;r=1:404070340-404070414;t=MLOC_16792.3;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_16794;mr=1:404057126-404139281;r=1:404073874-404073962;t=MLOC_16794.1;tl=9fcIgYIVNk29anqV-7813867-147762229
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_58017;mr=1:403501109-403555338;r=1:404205697-404205795;t=MLOC_58017.1;tl=fDmgvXpPkdwKuqI8-7813840-147753620
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_50701;mr=1:403501109-403555338;r=1:404213541-404213641;t=MLOC_50701.1;tl=fDmgvXpPkdwKuqI8-7813840-147753620
http://plants.ensembl.org/Hordeum_vulgare/Location/View?db=core;g=MLOC_6058;mr=1:403501109-403555338;r=1:404275956-404276058;t=MLOC_6058.1;tl=fDmgvXpPkdwKuqI8-7813840-147753620
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The nucleotide sequence and the deduced amino acid sequence were analyzed 

using the BLAST software online (http://www.ncbi.nlm.gov/blast). Blast analysis and 

multiple sequence alignments revealed that this MLOC_57545 gene had high 

homology with known genes in GenBank involved in proline metabolism in different 

species. The deduced amino acid sequence of MLOC_57545 was more than 90% 

identical to Hordeum vulgare homologues in GenBank and shared the highest 

identity of 95% as shown in Figure 29. We named that Hordeum vulgare homologues 

as HvP5cs1 gene. AK249154 is the accession number for homologues in Hordeum 

vulgare and was used as a candidate for proline content in Hordeum vulgare for 

further study. 

 

                       

 

http://www.ncbi.nlm.gov/blast
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Figure 29: Alignment of MLOC_57545, responsible for delta 1-pyrroline-5-carboxylate 

synthase1 with candidate gene HvP5cs1 (AK249154) showing its similarity with each 

other.  

 

Then the HvP5cs1gene was sequenced in Scarlett and ISR42-8 to identify the putative 

mutation associated with the variation in proline accumulation among the parents. 

Here, substitution mutations were found between Scarlett and ISR42-8 in exons 7, 9 

and 13, of which only the C/T mutation in exon 13 resulted in an amino acid 

substitution from histidine (ISR42-8) to arginine (Scarlett) (Figure 30). 

 

      

 

 

Figure 30: HvP5cs1 gene structure showing critical mutations between cultivar 

Scarlett and wild barley ISR42-8 within the gene. 

 

The full-length barley HvP5cs1 gene comprised 20 exons and had a protein length of 

716 aa. A phylogenetic tree was generated based on the ClustalW Protein alignment 

analysis using a Neighbor-Joining method in the MEGA 4 program. The following 

sequences with corresponding accession numbers were used for bioinformatics 

analysis: AtP5CS1 (NP_181510.1), AtP5CS2 (NP_191120.2); OsP5CS1 

(NP_001055723.1), OsP5CS2 (NP_001044802.1); BdP5CS1 (XP_003568327.1), 

BdP5CS2 (XP_003564608.1); HvP5CS1 (Ak249154.1), HvP5CS2 (MLOC_37763.1). 

The phylogenetic analysis demonstrated conservation of the HvP5CS1 protein among 

monocots is shown in Figures 31.  
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Figure 31: The phylogenetic analysis of P5cs1 and P5cs2 gene of four plant species 

(At – Arabidopsis thaliana, Bd – Brachypodium distachyon, Hv – Hordeum vulgare, Os 

– Oryza sativa). Nucleotide sequences were used for the construction of the 

phylogenetic tree. 

 

The Protein sequences of target genes from NCBI were used for sequence alignment 

analysis by the ClustalW method in the MegAlign program (DNASTAR, Inc., Madison, 

WI). Aminoacids alignment of HvP5CS1 with other species was also made showed the 

conservation within the gene (Figure 32).  

Taken together, this recombinant analysis suggested that wild barley ISR42-8 carried 

a novel P5cs1a allele that mediates a major drought-inducible QTL effect on proline 

accumulation in the cultivated barley background. 
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Figure 32: HvP5cs1 aminoacid alignment with Brachypodium distachyon (BdP5CS1), 

Triticum aestivum (TaP5CS1), Oryza sativa OsP5CS1, Zea mays (ZmP5CS1), 

Sorghum bicolor (SbP5CS1), Arabidopsis thaliana  AtP5CS1 and Solanum 

lycopersicum SlP5CS1 showing high conservation within the gene. 

In addition to these critical mutations8 in exons 7, 9 and 13, a 44-bp insertion was 

identified in Scarlett at the 3´UTR region compared with ISR42-8 (Figure 33). This 44 

bp insertion was used as a diagnostic SSLP-marker to genotype ILs population in 

further study. 
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Figure 33: Nucleotides sequence comparison of Scarlett 3´UTR with ISR42-8. The 

alignment was performed using CLUSTAL W showing 44 bp insertion only in German 

cultivar Scarlett. 

To verify again if S42IL-143 and S42IL-141 carried a common wild barley 

introgression, a test was made to genotype a diagnostic SSLP-marker which 

confirmed that both ILs harbor wild barley chromosomal segment at the QTL region 

(Figure 34).  

 

 

Figure 34: Confirmation of common wild barley introgression in ILs S42IL-143 and 

S42IL-141 using a SSLP-marker from the QTL region on chromosome 1H.  Fragment 

460 bp and 504 bp represents the ISR42-8 and Scarlett alleles, respectively. 

In addition, a validation of this QTL effect in both ILs was carried out and evaluated 

QTL segregation in a BC4S2 population derived from the QTL bearing IL S42IL-143 

using the same SSLP-marker. This population revealed a clear segregation of Scarlett 

and ISR42-8 allele, which were associated to low and high proline accumulation under 

drought stress conditions, respectively (Figure 35).  
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Figure 35: Segregation of QTL alleles in BC4S2 population derived from in QTL 

bearing IL S42IL-143 (Left). Validation of QTL effect for proline accumulation using 

BC4S2 population derived from QTL bearing IL S42IL-143 (Right).Hsp/Hsp (H. vulgare 

ssp. spontaneum, Hv/Hsp (heterozygous) and Hv/Hv (H. vulgare)  

 

To refine the QTL for proline on chromosome 1H  (QPro.S42-1H) at gene resolution, 

positional cloning approach using a segregating high-resolution mapping population 

comprising around 3300 BC4S2 progenies derived from the QTL bearing IL S42IL-143 

was followed. Initial mapping among the S42IL population helped us to refine the 

targeted interval to 1.6 cM from SNP: TP59951 to SNP: TP3687 according to SNP 

map by Schmalenbach et al., (2011) and Honsdorf et al., (2014). From these SNPs, 

left and right KASP markers were established for high-throughput genotyping to select 

informative recombinants among the 3300 BC4S2 progenies. Detailed information of 

these KASP is presented in Table 11. 
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Table 11: KASP marker development to identify informative recombinants for fine 

mapping 

KASP1 

SNP 
SNP name Chr. Position (bp) 

Sequence marker allele 

 

(A/G) 

 

TP59951 

 

1H 

 

402386488-402386551 

(KASP-L) 

Allele 1. 

TGCAGTTGTCGTCCGCGT

CCTCATTTTAAATTATGAG

ATGAGATGAGATGAGATG

CGTTTACTT  

Allele 2. 

TGCAGTTGTCGTCCGCGT

CCTCATTTTAAATTATGAG

ATGGGATGAGATGAGATG

CGTTTACTT 

KASP2 

 

 

(G/A) 

 

 

TP3687 

 

 

1H 

 

 

404304288-404304351 

(KASP-R) 

Allele 1. 

TGCAGACGTAACACAAAC

GCAAATGTTCAGGAAAGA

AAAGCTTCAGGTGGTAGG

CGCAACAAGA 

Allele 2. 

TGCAGACATAACACAAAC

GCAAATGTTCAGGAAAGA

AAAGCTTCAGGTGGTAGG

CGCAACAAGA 

 

 

Chromosomal map of introgression lines S42IL-141 and S42IL-143 overlapping for the 

QTL locus controlling drought inducible proline accumulation, fine mapping of QTL and 

position of KASP makers according to physical map is presented in Figure 36. 

 

http://plants.ensembl.org/Hordeum_vulgare/Location/View?r=1:402386484-402386554;tl=RsyRtaD4RU4Jqsqi-11585607-203139162
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Figure 36: Chromosomal map of introgression line S42IL-143 for the QTL Locus 

controlling drought inducible proline accumulation and fine mapping of QTL region 

using high resolution BC4S2 population segregating for the QTL region in barley. Blue 

color indicates the Scarlett genome. The red regions is showing the location of wild 

introgressions according to Schmalenbach et al., (2011). 

 

 

The KASP genotyping was outsourcing at TraitGenetics®, Gatersleben, Germany, 

which helped us to refine 3300 BC4S2 population into 97 informative recombinants. 

Later, only these informative recombinants were quantified for proline accumulation 

under drought stress conditions. Then, two additional markers in the targeted region 

were developed at left (M1-L) and right (M2-R) (Table 12) border of the most 

promising candidate gene HvP5cs1. The genotyping of left and right border markers 

and their comparison with the phenotypic data revealed eight and five recombinants 

indicating that the casual mutation controlling proline accumulation may lie in the 

HvP5cs1 gene, which encodes a pyrroline-5-carboxylate synthetase enzyme protein. 

Notably, three recombinants found which were heterozygous at the 3´ UTR of 

HvP5cs1 gene but proved to carry ISR42-8 homozygous 5´ promoter of P5cs1 gene. 

These recombinants exhibited higher proline accumulation similar to ISR42-8 under 

drought stress condition. Therefore, a hypothesis was made that the causal mutation 

may lie in the promoter of HvP5cs1 gene. Hence, an additional marker M-P5cs1 was 

developed (Table 12) at the putative promoter region of the HvP5cs1 gene which 
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revealed 100% co-segregation of wild allele of ISR42-8 and cultivated allele of Scarlett 

with high and low proline phenotypes, respectively. The heterozygous recombinants at 

this marker, exhibited a marginal increase in proline accumulation under drought 

stress conditions (Figure 37). 

 

Figure 37: Recombination analysis by comparing the genotyping and phenotyping 

data of the informative recombinants segregating for the targeted QTL region which 

underlie P5cs1 gene. Number `3` is genetic score for homozygous ISR42-8, `2` is 

representing heterozygous and `1` is genetic score for homozygous Scarlett allele. 

Similarly, the red color shows homozygous ISR42-8 allele. Green is indication of 

heterozygous, while blue color is depicting homozygous Scarlett allele. 
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Table 12: Marker development to identify informative recombinants for fine mapping. 

M-P5cs1 marker was restricted with the help of Accl enzyme resulting in single 

fragment in Scarlett, two in ISR42-8 and three in heterozygous plants. 

 

Furthermore, this allelic polymorphism of cultivated and wild barley alleles at the 

marker M-P5cs1 was confirmed through restriction fragments and DNA sequencing 

among the selected informative recombinants which is shown in Figure 38. 

All these results suggested that critical mutations may lie on promoter of P5cs1 gene 

of Scarlett and ISR42-8, which make difference in the expression of proline among 

these two contrasting parents. 

Marker Gene Region Primers 
Primer sequence 

(5` to 3`) 

Product size (bp) 

Scarlett ISR42-8 

M1-L MLOC_60455 4-5 exons 
M1-L-F 

CCGTGATGTGT
TCATACTTCG 502 

 
640 
 

M1-L-R 
TGTGTGGGTTC
TGTTGCAGT 

M2-R MLOC_57545 3´ UTR 
M2-R-F 

AAAGGGCAAAT
TGTGAATGG 

504 460 

M2-R-R 
TGTGGTTTTGCT
TGCTCTTG 

M-P5cs1 MLOC_57545 5´ UTR 
M-P5cs1-F 

AGTGACCCCGG
TTGGAAACT 

959 598,361 

M-P5cs1-R 
GTGTGATGACG
CATTCCTCT 
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Figure 38: (A) Genotyping of informative recombinants using left border SSLP marker 

M1-L, (B) right border SSLP marker M2-R and (C) gene specific M-P5cs1 marker 

analysis through cleaved amplified polymorphic sequence using AccI restriction 

enzyme. Restriction fragment analysis revealed 420 bp and 580 bp in homozygous 

Scarlett allele. Hsp/Hsp (H. vulgare ssp. spontaneum, Hv/Hsp (heterozygous) and 

Hv/Hv (H. vulgare).  

3.9 P5CS1 gene carries allele variation in promoter  

Based on the recombinant analysis and as the wild barley QTL allele was associated 

with an incremental increase of proline accumulation under drought, a hypothesis 

made that a functional mutation may lie in the promoter. Hence, approximately 2 kb 

upstream of ATG analyzed to scan and estimate the putative promoter of the HvP5cs1 

gene. Then, approximately 1.5 kb of the putative promoter region sequenced in ISR42-

8 and Scarlett. Sequence analysis between ISR42-8 and Scarlett revealed critical 

mutations at essential DNA binding motifs (ABRE cis-elements) for the transcription 

factors ABF1 and ABF2 (Figure 39).  
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Figure 39: Promoter polymorphism among cultivated Scarlett and wild barley ISR42-8 

showing polymorphism at ABF1 and ABF2 (ABRE-binding factors) binding sites.  

 

Considering that transcription factor binding sites may be involved in drought-inducible 

proline accumulation, the promoter sequence was analyzed further using MULAN 

analysis (Ovcharenko et al., 2005). This analysis has been designed to effectively 

perform multiple comparisons of genomic sequences necessary to identify local 

sequence conservation and to detect evolutionarily conserved transcription factor 

binding sites (TFBS) shared by all analyzed species located at the same position as 

defined by the alignment. Interestingly, the SNP mutation across the promoter resulted 
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in the loss of two essential TFBS for ABF1 and ABF2 in the spring barley cultivar 

Scarlett, whereas these sites were predicted to harbor active ABRE sites in ISR42-8 

(Figure 40). Here, it was believed that the number and arrangement of TFBS across 

the HvP5cs1 promoter is associated with drought-inducible proline accumulation in 

ISR42-8. 

 

Figure 40: Depiction of DNA binding motifs by MULAN analysis across the promoters 

of cultivated Scarlett and wild barley ISR42-8. Green and blue color indicates ABRE-

binding factors (ABF1 and ABF2), respectively.  

 

Next, the 44-bp insertion mutation was genotyped as a diagnostic marker for the 

drought-inducible P5cs1a allele among a global diversity set of cultivars, landraces 

and wild barley (Reinert et al., 2017),  accessions for allele mining (Figure 41). This 

genotyping revealed that all 179 different genotypes that were collected in 38 countries 

across the globe contain a 44-bp insertion, similar to the cultivar Scarlett, suggesting 

that ISR42-8 inherited a unique P5cs1 haplotype among the barley genetic resources. 

 

Figure 41: Allele mining for P5cs1 haplotypes among global barley population 

containing 179 different genotypes, collected from 38 countries. HvP5cs1 gene 

showed 44 bp insertion in all genotypes except in wild barley ISR42-8 allele. 
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3.10 Proline accumulation is proportional to up-regulation of the P5cs1 gene 

The expression analyses of P5CS1 mRNA in Scarlett and S42IL-143 was perforemed 

to investigate its association with proline accumulation under varying water stresses. 

Expression analysis was carried out in barley leaf samples in three biological 

replicates. Initially, semi-quantitative (sq) RT-PCR was performed to test P5CS1 

mRNA expression variation during three drought stress regimes: 3 days after stress 

(DAS), 6 DAS and 9 DAS. SqRT-PCR analysis revealed that both Scarlett and S42IL-

143 minimally induced P5CS1 under control conditions. A modest increase in P5CS1 

expression was noted in Scarlett after 6 DAS and 9 DAS. By contrast, a clear up-

regulation of P5CS1 mRNA was observed in S42IL-143 at 3 DAS, 6 DAS and 9 DAS 

(Figure 42).  

 

        

 

 

Figure 42: Semi-quantitative RT-PCR analysis of the P5cs1 mRNA under different 

time frames of control and drought stress conditions. Experiment was conducted using 

three biological replicates of each genotype in each block. 

 

To investigate these expression differences quantitatively, qRT-PCR carried out using 

the same samples in three biological replicates. This analysis confirmed a modest 

induction of P5CS1 transcripts in Scarlett at 6 DAS and 9 DAS. However, S42IL-143 

showed a significant drought-inducible up-regulation, exhibiting an approximately 36-

fold increase in P5CS1 transcripts at 9 DAS compared with control conditions. This 

transcript level in S42IL-143 was 8-fold greater than that of Scarlett at 9 DAS (Figure 

43).  
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Figure 43: Quantification of relative mRNA levels in leaves of Scarlett and S42IL-143 

via qRT-PCR (Arrows are showing minimal values). Experiment was conducted using 

three biological replicates of each genotype. Bars represent standard error. 

 

Taken together, both experiments revealed a clear drought-inducible up-regulation of 

P5CS1 mRNA in S42IL-143. To test whether the up-regulation of P5CS1 mRNA was 

proportional to proline accumulation, the proline content of the same leaf samples 

quantified that were utilized for the sqRT-PCR and qRT-PCR analyses. It was notable 

that increased P5CS1 mRNA expression was in direct proportion to excessive proline 

accumulation among the leaf samples of Scarlett and S42IL-143 (Figure 44). These 

data indicate that drought-inducible proline accumulation is under the control of an 

incremental up-regulation of P5cs1 mRNA in different drought stress regimes. 
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Figure 44: Proline accumulation in leaves of Scarlett and S42IL-143 under control and 

drought stress conditions. Experiment was conducted using three biological replicates 

of each genotype. Bars represent standard error. 

In vitro grown 10 days seedling of Scarlett was subjected to immediate drought stress 

by exposing them on dry paper towels. The control block was kept on continuous 

supply of water. Leaf and root tissues were harvested from the control and drought 

blocks after 2 and 3 hours. The experiment was carried out in two replications via 

semi-quantitative RT-PCR analysis.  

 

3.11 Higher proline accumulation maintains the water status in leaves 

To test whether higher proline accumulation has a role in water conservation in 

Scarlett and S42IL-143, the dynamics of the water status assessed in leaves under 

control and 3 DAS, 6 DAS and 9 DAS using an EMISENS dual mode cavity microwave 

resonator. According to Dadshani et al., (2015), the microwave parameters inverse 

quality factor shift (IQS) and resonant frequency shift (FRS) strongly correlate with the 

amount of water stored in plant tissues. For the experimental duration, the gap 

between the FRS values of Scarlett plants under well-watered conditions and stress 

conditions increased gradually from 6.7% (3 DAS) to 40.4% at 9 DAS (Figure 45-A). In 

contrast to Scarlett, the FRS values of S42IL-143 did not exhibit significant differences 

between the control and drought stress treatments during the entire experimental 

period (Figure 45-B). Similar to the FRS values, the IQS values of Scarlett plants 

under stress conditions were reduced from 17.2% (3 DAS) to 40.4% (9 DAS) 

compared with control conditions (Figure 45-C). In contrast to Scarlett, S42IL-143 

plants exhibited no significant difference between control and stress treatments 

regarding the IQS values supported by the microwave resonator, indicating the ability 

of S42IL-143 to maintain leaf water levels (Figure 45-D). 
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Figure 45: FRS values in Scarlett (A) and S42IL-143 (B) and IQS values in Scarlett 

(C) and S42IL-143 (D) under control and drought stress condition. Solid line control; 

dashed line stress condition; Significance level * p=0.05, ** p=0.01, *** p=0.001, while 

FRS indicates resonant frequency shift and IQS indicates inverse quality factor shift.  

 

3.12 Higher proline expression mediates the photosynthetic rate and effective 

quantum yield of photosystem II under extreme drought stress conditions 

Plants affected by drought stress undergo changes in physiological processes 

involved in photosynthesis, such as stomatal conductance, transpiration rate, and 

intercellular CO2 concentration. These parameters can be quantified using a LICOR 

6400XT infrared gas exchange analyzer. These analyses revealed that in response to 

drought stress, Scarlett reduces the stomatal conductance (gs) to inhibit loss of water 

by transpiration. Compared with well-watered plants the stomatal conductance of 

Scarlett under drought stress declined gradually by 20% (3 DAS) to 83% (9 DAS) 

(Figure 46-A). However, S42IL-143 plants exposed to drought stress maintained their 

stomatal conductance at 3 DAS and 6 DAS, but a significant reduction of gs was 
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detectable after 9 DAS in S42IL-143 (Figure 46-B). The measured transpiration rates 

(E) support the data obtained from measurements of stomatal conductance. Under 

drought stress conditions, the transpiration rate of Scarlett was reduced from 11.6% (3 

DAS) to 77.1% (9 DAS) (Figure 46-C) compared with control conditions. Analogous to 

stomatal conductance, no significant difference in E was detectable between S42IL-

143 plants under controlled and stressed conditions between 0 and 6 DAS, whereas 

the transpiration rate of S42IL-143 plants was 46% lower than S42IL-143 plants under 

control conditions at 9 DAS (Figure 46-D). The influx of CO2, which is essential for 

carbon assimilation and photosynthetic activity, is directly affected by stomatal 

conductance. We found that the internal CO2 concentration of the mesophyll (Ci) 

remained constant for both genotypes under control conditions and between 0 and 6 

DAS. However, the slope of Ci in Scarlett was 40% less than that of S42IL-143, which 

was reduced by 22.4% at 9 DAS (Figure 46-E and F). Consequently, the 

photosynthetic rate (A) was measured to assess photosynthetic activity using the 

difference in CO2 and H2O between the reference and the sample streams, 

respectively, according to (Long et al., 1996). The photosynthetic rate decreased by 

9.9% in Scarlett at 3 DAS and was gradually reduced by 69% at 9 DAS (Figure 46-G). 

Interestingly, no significant difference in the net photosynthetic rate was observed in 

S42IL-143 at 3 DAS and 6 DAS, but a slight reduction in A was observed at 9 DAS. 

Overall, the photosynthetic rate of S42IL-143 was 3-fold higher in extreme drought 

conditions at 9 DAS (Figure 46-H). 
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Figure 46: Gas exchange parameters of Scarlett and S42IL-143 under control and 

drought conditions. Stomatal conductance of Scarlett and S42IL-143 (A and B) 

Transpiration rate in Scarlett and S42IL-143 (C and D) Intercellular CO2 concentration 

in Scarlett and S42IL-143 (E and F) Photosynthetic rate in Scarlett and S42IL-143 (G 

and H). Solid line control; dashed line stress condition; Significance level * p= 0.05, ** 

p=0.01 

 

In addition, the effective quantum yield of photosystem II (Y(II))  measured at steady-

state photosynthesis under light using a MINI-PAM-II to confirm the photosynthetic 

activity. Notably, the effective quantum yield of photosystem II in Scarlett was 

significantly reduced at 9 DAS, whereas no significant difference was observed in 

S42IL-143 (Figure 47-A and B), thus suggesting increased photosynthetic activity 

putatively due to excessive proline accumulation under drought stress conditions in 

P5cs1a allele bearing near isogenic line. 

 

 

 

Figure 47: Chlorophyll fluorescence measurement of Scarlett and S42IL-143 under 

control and drought stress condition. Solid line control; dashed line stress condition; 

Significance level ** p=0.01 
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3.13 Higher proline accumulation effect on SPAD value 

The SPAD value, which is estimating the amount of chlorophyll in green leaves, 

increased until 3 DAS for both genotypes under controlled condition reaming constant 

until 9 DAS. Scarlett plants exposed to drought stress had a reduced SPAD value at 6 

DAS by 5.2% (p<0.05) relative to controlled condition and 16% (p<0.01) 9 DAS. 

Different to Scarlett the SPAD value of ISR-143 increased under drought stress 6 DAS 

by 6.5% (p<0.05) relative to controlled condition and 10% (p<0.05) 9 DAS. (Figure 48)  

 

 

 

 

Figure 48: SPAD value of Scarlett and S42IL-143 under control and drought stress 

condition. Solid line control; dashed line stress condition; Significance level ** p=0.01 
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4. DISCUSSION 

 
Drought is a major abiotic stress that restricts growth and productivity of many crops. 

Given that an increased barley production is required to meet the demand of the growing 

population in the mist of increasing climatic change, there is the need to improve barley 

adaptation to drought stress. Gaining morphological (agronomic), physiological and 

molecular insights into how Barley deals and response to drought stress will facilitate 

efforts toward improving its drought stress adaptation in the breeding programs. Thus, the 

objectives of this study were to (i) assess the morphological and physiological 

responses of barley plants at the vegetative stage under controlled and severe drought 

conditions and, (ii) test the expression of drought-responsive genes over time course 

period under drought treatment. Moreover, the present study reports the genetic 

variations of the shoot related traits and proline accumulation due to drought stress 

among 73 S42ILs from a cross between barley wild accession ISR42-8 and cultivar 

Scarlett. It was expected that the exotic parental allele make a contribution to barley 

improvement in general. The S42ILs carrying introgression can be directly used for the 

development of new elite cultivars. A similar population has already been conducted in 

barley by Md Arifuzzaman et al., (2014a, 2014b) under same tunnel condition for 

drought and control conditions to detect QTLs for root and shoot phenotypic traits. 

Honsdorf et al., (2014) investigated QTLs in same S42ILs for morphological traits 

under drought and well watered treatments in greenhouse and found exotic parental 

allele has positive contribution to barley improvement. High-Resolution (HR) 

population is valuable source for map-based cloning of genes. Currently, it was used 

to clone the thresh-1 locus detected in S42IL-HR (Schmalenbach et al., 2011). 

Specific S42IL-HR population was used to clone proline content gene and proved as a 

valuable source for fine mapping of QTL towards map based cloning of genes. 

4.1 QTL identification 

Different QTLs have been identified for the shoot and physiological traits, and located 

on the whole barley genome. The number of markers associated with the traits and the 

QTLs for each trait will discuss as follow 
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Plant height  

In our study, two QTLs were detected for PH and mapped on chromosome 3H from 

185.1 cM to 190.8 cM and 1H from 104.39 cM to 106.46 cM. QTLs exhibited very 

strong effects on traits, that why it seems to be very important to analysis of genetic 

determination of the observed traits. Our results showed that the significant QTL for 

plant height was positioned in 3H. Malosetti et al., (2011), worked on barley inbred 

lines (RILs) derived from three way cross of barley genotypes (Candela, 915006, and 

Plaisant) and found two major QTLs for plant height, i.e. one on 3H and second on 5H. 

QTL found on 3H was localized at the same region and linked to SNP 6716–823 in the 

3H.1 linkage group (105.75 cM). Honsdorf et.al., (2014), worked with same S42IL 

library and detected QTLs associated with PH on all chromosomes except 5H. QTL on 

3H was already detected in previous field study with the S42 population by von Korff 

et.al., (2006). 

Plant height is regulated by several genes in barley (Araus et al., 2008 ; Kuczyńska et 

al., 2013). The Hv20ox2 gene was identified by Jia et al., (2011) and noticed a 

reduced expression of this gene in semi dwarf plants. 

Association between different trait like plant height and other traits, including grain 

yield, was studied by several researcher and found that the results are not consistent. 

Yin et al., (1999) and Jia et al., (2011) observed increased yield, whereas Thomas et 

al., (1991) and Hellewell et al., (2000) observed decreased yield of semi-dwarf plants. 

They concluded that with decreased expression of the Hv20ox2 gene lowers 

gibberellins, apical meristem growth and produce more tillers per plant.  

 

Number of leaves 

For NL, only one strong QTL was detected on chromosome 5H. The growth, 

development and yield could be co-regulated through the control of leaf number as the 

photosynthetic capacity of the plant depends on the leaf numbers. Hoffmann et al., 

(2012) worked on the same plant material and observed significant difference between 

S42ILs and Scarlett for NL and summed up with four different QTLs for NL on 2H, 4H, 

6H and 7H. QTL for NL on 2H was also discovered by Cuesta-Marcos et al., (2010) 



 

81 
 

who worked with 102 barley accessions to estimated the number of leaves until 

heading and found a significant QTL effect near by the earliness per se locusEam6 as 

stated by Franckowiak and Konishi (2002). 

 

Heading 

The QTL analysis revealed one strong QTL for HE located on chromosome 2H. 

According to the Table 9, the exotic introgression increased the trait value from 16.0 to 

42.0%.  

Sayed et al., (2017) worked with same population and twelve putative QTLs for HE 

were mapped on chromosomes 1H, 2H, 3H, 6H and 7H. Pillen et al., (2003), and von 

Korff et al., (2006) also worked with same plant material and detected the marker 

locus EBmac415 on 2H where the exotic allele decreased time to heading and 

coincided with the major flowering QTL on chromosome arm 2HS, which supported 

our finding as well. While Beales et al., (2007) worked with chinese spring wheat and 

identified the contig sequence of IWB54033 located in the 2A QTL corresponded to 

the Ppd-1A sequence, confirming previous results on the relationship between 

photoperiod response and heading in barley. Marcotuli et al., (2017) revealed a single 

region on chromosome 2A in wheat associated with HE that was consistent in both 

environments i.e.; control and drought with a high LOD score of 25.5. The largest-

effect association identified was the Ppd-H1 locus on chromosome 2H, which was also 

shown to be influential throughout barley development (Maurer et al., 2015, 2016). 

 

Number of spikes 

Single significant line treatment interactions were observed for NS with Scarlett which 

were summarized to one QTL located on chromosomes 4H. 

Spikes number is one of the most important grain yield-related traits in cereal crops. 

Shamasbi et al., 2017 found eight putative QTLs on different chromosomes while 

working with DH barley population derived from a cross between the Australian cultivar 

2-rowed Clipper and Algerian 6-rowed Sahara 3771. One of the major QTL 

(ANIONT1A-TACMD) was on chromosome 4H that affects spike length and number of 

http://loop.frontiersin.org/people/369517/overview
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spike. Sayed et al., (2017) worked with same S42ILs population and summarized six 

QTLs for NS but on different chromosomes (2H, 6H and 7H). 

Saal et al., (2010) also worked on same spring barley BC2DH population S42 and 

found 3 QTLs for NS on chromosomes 1H, 6H and 7H. While Wang et al., (2016) 

mapped a total of 18 QTLs for NS for five consecutive years in 122 doubled haploid 

(DH) lines derived from a cross between the six-rowed dwarfing barley cultivar Huaai 

11 and the two-rowed barley cultivar Huadamai 6. He found one reliable QTL qSP5-1 

located on chromosome 5H for NS in year 2011, 2012 and 2013, with increasing spike 

number per plant. Several QTLs were previously reported on the 1H, 2H, 5H, 6H and 

7H (Chutimanitsakun  et al., 2011, Li et al., 2006, Peighambari et al., 2005). While, 

Ibrahim et al., (2010) detected five QTLs in wheat but found one with increased NS by 

10.8% and 16.3% under well-watered and drought stress, respectively. 

 

Shoot fresh and dry weight 

 Five S42ILs showed significant associations for shoot fresh weight (SFW) and shoot 

dry weight (SDW). Due to overlapping of introgressions, these associations were 

summed to three putative QTL which were located on chromosomes 1H, 2H and 5H. 

In our studies, a significant effect of the treatments and genotypes and also significant 

interactions of genotypes and treatments were detected. Therefore, a high correlation 

was detected between SFW and SDW for the control and drought treatment across 

both the years. Drought stress on barley genotypes were estimated primarily as the 

reduction in SFW and SDW (Wehner et al., 2015). Reduced biomass production under 

drought was reported in barley during different developmental stages of barley 

(Jamieson et al., 1995), even in field experiments (Varshney et al., 2011), greenhouse 

experiments (Honsdorf et al., 2014, Wehner et al., 2015) and hydroponics (Zhao et al., 

2010).  

Pillen et al.,(2003 and 2004) also worked with same S42ILs population and found two 

QTLs for SDW on on different chromosomes (4H and 7H).Whereas, Chloupek and 

Forster (2006) worked with 12 diverse barley genotypes and found one similar QTL for 

SFW on 5H in addition to QTLs on 3H and 7H. Teulat (1997) worked with 187 barley 
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(H. vulgare L.) recombinant inbred lines from a cross between two Mediterranean 

varieties, Tadmor and Er/Apm and found QTLs for SFW on chromosomes 1H and 6H.  

Bálint et al., (2008) also detected 3 QTLs on 1H, 5H and 7H, respectively under 

Osmotic stress and two QTLs on chromosomes 2H and 7H, under control and under 

osmotic stress together for shoot dry weight in 94 double haploid lines of Oregon-

Wolfe Barley (OWB). 

With regard to candidate genes, Vinod et al., (2006) identified a candidate gene 

(EXP13) on chromosome 1 controlling shoot dry weight in rice under well-watered 

conditions, which can be a good candidate for barley as well. While, Ibrahim (2007) 

mapped eighteen QTLs in two wheat populations (D84 and T84) for dry weight of 

biomass on chromosomes 2A, 4A, 2B, 6B, 7B, 3D and 6D, and five QTLs again in 

2010 for biomass, out of which one was linked with exotic allele QBm.D84-3D on 3D 

chromosome, which were found to increase dry weight of biomass under drought 

stress condition and well water condition. 

 

Chlorophyll content 

Four significant line treatment interactions were observed for CC with Scarlett which 

were summarized to two QTL located on chromosomes 1H and 2H. 

Sayed et al., 2017 mapped four QTLs associated significantly with CC, located on 

chromosomes 4H, 5H and 6H, while working on the same population. Mousavi et al., 

2016 detected two QTLs for chlorophyll content, one on chromosome 2H and other on 

7H in 72 F1 derived doubled haploid lines (DH) from the cross between Steptoe and 

Murex. Eshghi et al., (2013) found 5 QTL associated with CC in BC3 population of six 

rowed spring barley (Azhul) with wild barley (H.vulgare subsp. spontaneum). Guo et 

al., (2008) also identified five QTLs associated with CC on chromosomes 2H and 4H 

using 194 line of RILs population. Xue et al., (2008) also worked with different barley 

genotypes and detected four putative QTLs for CC on 2H, 3H and 6H. 
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Wilting score 

A total of eight lines were significant lines by treatment associations with Scarlett 

(Figure 20 C) for WS. The effects were summarized to 5 putative QTL located on 

chromosome 1H, 2H, 5H. Sayed et al., (2012) performed an advanced backcross 

quantitative trait locus (AB-QTL) analysis in same S42ILs population to clarify genetic 

mechanisms controlling proline content (PC) and leaf wilting (WS) in barley under 

drought stress conditions and detected several QTL for WS on chromosome 1H, 2H, 

3H, and 4H. Out of which, QWS.S42.1H and QWS.S42.4H were associated to 

decrease in WS due to the introgression of exotic alleles.  

Von Korff et al., (2008) also worked with the same population of barely and found a 

QTL for wilting score at position (195.7- 206.5 cM) on 1H. Whereas, In rice 5 QTL on 

chromosomes 5 (at 57.5 and 85.2 cM), 9 (at 65.6 cM) and 11 (at 46.3 and 103.9 cM) 

for leaf rolling and four QTLs for leaf drying, distributed on chromosomes 1 (at 76.7 

cM), 3 (at 14.1 and 91.4 cM) and 11 (at 29.5 cM) were isolated by Gomez et al., 

(2006).   

Yue et al., (2006) also mapped six QTLs in rice for leaf drying score (LDS) on 

chromosomes 1, 2, 3 (two QTLs), 8 and 9. Champoux et al., (1995) conducted an 

early QTL study and found twelve of the 14 QTL associated with leaf rolling in rice. 

 

4.2 Proline accumulation under drought stress condition 

Over 40 years of intensive research on proline metabolism has revealed its roles in 

plant development in general and drought adaptation in particular. In the process of 

drought tolerance, it acts as a compatible solute that serves as a key osmotic regulator 

and protects against cell-membrane ruptures, contributes to the maintenance of redox 

balance and cell homeostasis and acts as a signaling molecule during severe drought. 

In addition, proline is involved in post drought stress recovery as a radial source of 

energy (Bartels and Sunkar 2005, Szabados and Savoure 2010). Although 

considerable information has been reported on its metabolism in plants, thus far, its 

broader regulation and utility have not been realized in crop plants. In the present 

study, we explored the unique genetic resources of barley adapted to dry climates to 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4921488/#B43
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screen its adaptive intelligence, which had evolved over time, and tested their utility in 

the cultivated gene pool. We employed a forward quantitative genetics approach to 

identify, validate and introgress natural variant of proline determination using a library 

of wild barley introgression lines. We believe that early domestication and post-

Mendelian intensive breeding and selection caused fundamental losses to vital alleles 

for drought adaptive traits such as proline accumulation. It therefore seems inevitable 

to explore the natural genetic resources of crop plants and employ vital genetic 

resources to meet the present and future challenges of water scarcity. 

The present genetic mapping identified five QTL for proline accumulation under 

drought stress conditions. In the present study, we focused on QTL QPro.S42-1H as it 

accounted the strongest drought-inducible effect on proline accumulation. Secondly, 

two independent ILs, S42IL-143 and S42IL-141 complemented this QTL effect due to 

the introgression of wild P5cs1a allele in the Scarlett background. Generally, the 

confirmation of gene function by introgressing wild allele in the cultivated background 

via classical crossings is direct and reliable than gene transfer via transgenic 

approaches, but there exists a considerable criticism on the genetic background of the 

allele bearing near isogenic lines. Therefore, it is notable to focus on the fact that ILs, 

S42IL-143 and S42IL-141 carried a less likely but a special arrangement of wild 

introgressions that run antiparallel but shared a small common segment at the P5cs1 

gene. Hence, this arrangement was highly advantageous to exclude the background 

effects of additional genes as the extent of QTL QPro.S42-1H was almost similar in 

both ILs. Additionally, high resolution recombination analysis provides an unequivocal 

evidence of functional confirmation of wild barley P5cs1a allele for drought inducible 

proline accumulation among the independent BC4S2 progenies in the Scarlett 

background. Previous studies of proline metabolism in the model plant Arabidopsis 

and related higher plants suggest a vital role an enzyme-encoding genes, P5CS1 

under drought stress conditions (Liang et al., 2013). 

In the next step, we investigated vital sequence polymorphisms underlying the genetic 

and molecular regulation of the drought-inducible P5cs1a allele of ISR42-8. As no 

significant polymorphisms were identified in the coding region, and allele bearing IL 

S42IL-143 and recombinant analysis exhibited incremental up-regulation of P5cs1 
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mRNA, we hypothesize that this QTL allele may imply regulation at the level of 

transcription. Promoter analysis revealed critical mutations across the transcription 

binding motifs of the ABF1 and ABF2 transcription factors, which resulted in the 

establishment of two additional ABF (abscisic acid-responsive element binding protein) 

binding sites in the drought-inducible P5cs1a allele of wild barley. These motifs were 

missing along with an insertion mutation at the motif adjoining sequences which 

created the change of number and arrangement of essential DNA binding motifs in 

Scarlett. Different reports have suggested that ABFs are major transcription factors 

that bind to ABREs and regulate ABA-responsive gene expression (Choi et al., 2000, 

Uno et al., 2000). ABREs (ABA-responsive elements) are 8-bp long conserved 

sequences (PyACGTGG/TC) with a core sequence of ACGT (Nakashima et al., 2009, 

Fujita et al., 2011). The ABF gene family is expressed in vegetative tissues in 

response to ABA and osmotic stress in Arabidopsis, suggesting its fundamental role in 

ABA-mediated drought stress tolerance (Fujita et al., 2011). All ABF transcription 

factors carry four conserved domains in addition to the bZIP domain (Fujita et al., 

2011, Fujita et al., 2013). Transcription factors having a bZIP domain target DNA 

duplex sites as homodimers or heterodimers and bind to related but distinct 

palindromic sequences (Ellenberger 1994, Hurst 1995). Shen et al., (1996) shed 

interesting insight on the ABRE cis-elements; they found that these elements require 

other copies of ABREs or the combination of an ABRE with one of several coupling 

elements across the promoter region. These researchers also claimed that a single 

copy of an ABRE element was insufficient to activate ABA-responsive genes (Riley et 

al., 2008). The role of multiple TFBs is well documented in other systems, e.g., G-box 

factors, in substantiating transcriptional up-regulation in plants (Schulze-Lefert et al., 

1989, Toniatti et al., 1990), which suggests that the active role of multiple TFBs in 

gene up-regulation depends primarily on the targeting TF itself, the inter-TFB distance 

and the adjoining sequence of the TFBs. Recently, Wang et al., (2016) discovered a 

promoter mutation across MYB cis-elements associated to drought-inducible 

expression of ZmVPP1 gene, which confers drought stress tolerance in maize 

genotypes. 
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In the light of these findings, we believe that the number and an arrangement of ABFs 

binding sites seems a unique evolutionary signature in wild barley accession ISR42-8 

that modulate incremental up-regulation of P5cs1 gene expression and the 

subsequent proline accumulation under extreme drought stress conditions. 

Finally, we tested whether drought-inducible proline accumulation has a role in 

mediating drought stress tolerance in S42IL-143. Previously, several physiological 

measurements, such as leaf water status (Bolanos and Edmeades 1996, Fischer et 

al., 1998, Jones 2007), stomatal conductance (Fischer et al., 1998, Medrano et al., 

2002), photosynthetic parameters (Pei et al., 1998, Li et al., 2006, Pinheiro and 

Chaves 2011) and efficiency of photochemistry (Epron et al., 1992, Souza et al., 

2004), have been widely used as markers for evaluating drought stress tolerance in 

various plant species (Chaves et al., 2009, Liu et al., 2015). Hence, we measured 

these parameters in S42IL-143 and Scarlett under varying water stress conditions. 

Water status measured through the non-destructive microwave parameters FRS and 

IQS demonstrated that S42IL-143 was able to maintain water status compared with 

Scarlett under drought conditions. Using non-destructive measurement, Dadshani et 

al., (2015) found that the microwave parameters FRS and IQS were highly correlated 

with water status in leaves in barley. Triggered by the drought signaling cascade 

activity of the stomatal aperture, the gas exchange and photosynthetic rates are 

considered important parameters in the determination of drought stress tolerance for 

rain-fed agriculture. It is perhaps logical that reduced stomatal conductance may result 

in the reduction of the photosynthetic rate in plants (Lawlor and Tezara 2009, Brestic 

and Zivcak 2013, Hossain et al., 2015). However, several reports confirm that drought-

tolerant genotypes maintain open stomata and active photosynthesis, even under 

dehydration conditions, while drought-sensitive genotypes immediately reduce the 

stomata aperture under drought conditions (Benešová et al., 2012, Hossain et al., 

2015). In the present study, we observed that S42IL-143 exhibited increased stomatal 

conductance but still showed an increased photosynthetic rate under drought stress 

compared with Scarlett based on active gas exchange parameters and chlorophyll 

fluorescence yield measurements, which are direct and ideal indicators to characterize 

the efficiency of photochemistry under varying environmental conditions (Rascher et 
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al., 2000, Fracheboud et al., 2004). According Yuan et al., (2016), plants that maintain 

their effective quantum yield of PSII photochemistry under drought stress are 

recognized as stress-tolerant. The assessment of the effective quantum yield of 

photosystem II (Y(II)) in this analysis also confirmed that the photosynthetic activity of 

S42IL-143 is not reduced by drought stress as dramatically as in the sensitive cultivar 

Scarlett. These data suggest that increased proline accumulation modulates 

physiological parameters and drought stress tolerance in S42IL-143 due to the 

introgression of a novel P5cs1a allele from wild barley accession ISR42-8. This unique 

accession seems to carry special adaptive mechanisms against drought because of its 

natural adaptation to semi-dessert condition of the Middle-East. 

Taken together, the present study successfully demonstrated the isolation of a new 

P5cs1a allele of wild origin that implies transcriptional up-regulation for excessive 

proline accumulation and subsequent drought stress tolerance. We believe the 

discovery of a unique P5cs1a allele among the diversity of natural barley is a 

promising step toward determining the molecular basis of drought physiology in an 

important agriculture crop. Future research will help to clarify molecular and 

evolutionary diversification of the ABA cascade in mediating drought tolerance from 

the cell to whole plant level in term of yield advantage under drought stress conditions. 

Additionally, this favorable P5cs1a allele has been introgressed in an isogenic 

background of cultivated barley, which provides an opportunity for straightforward 

transfer in developing drought-resilient barley cultivars and extending its utility among 

the related crop species through cis-genesis or transgenic approaches. 
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Appendix 

Table S1. List of primers used to walk through positional cloning of major proline QTL 

in cultivated barley. 

 

 

 

 

 

Primers Primer sequence (5’ to 3’) Purpose 
Product 
size (bp) 

HvP5CS1_GF AAAGGGCAAATTGTGAATGG Genotyping S42IL-143HR population 504 

HvP5CS1_GR  TGTGGTTTTGCTTGCTCTTG Genotyping S42IL-143HR population 504 

HvP5CS1: P-F TGAAGACTCCAGAACTTGATGACA sqRT-PCR and RT analysis 411 

HvP5CS1: P-R CTTGACTACGCGATGGCTCT sqRT-PCR and RT analysis 411 

MLOC-40-F CCGTGATGTGTTCATACTTCG Positional cloning 502 

MLOC-40-R TGTGTGGGTTCTGTTGCAGT Positional cloning 502 

MLOC-45-F AAAGGGCAAATTGTGAATGG Positional cloning 504 

MLOC-45-R TGTGGTTTTGCTTGCTCTTG Positional cloning 504 

PC-F AGTGACCCCGGTTGGAAACT Positional cloning 1001 

PC-R GTGTGATGACGCATTCCTCT Positional cloning 1001 

HvP5CS1-F1 TCCTCTCTCTCTGACCTCCC cDNA sequencing 909 

HvP5CS1-R1 TGTGCATCTCAGAGCCTTGT cDNA sequencing 909 

HvP5CS1-F2 GGAGACAAGTCCCGTGTTG cDNA sequencing 900 

HvP5CS1-R2 CAGCAGACATGGATATGGCA cDNA sequencing 900 

HvP5CS1-F3 ATTCCTGTTCTTGGCCATGC cDNA sequencing 952 

HvP5CS1-R3 GTGCAGTGTAACGGTTGCTT cDNA sequencing 952 

Promoter_F GATGCCGTAATGGATGTTCG Promoter sequencing 956 

Promoter_R GACGGGATAATCGGTCAAAC Promoter sequencing 956 

Promoter_F1 AGTGACCCCGGTTGGAAACT Promoter sequencing 1001 

Promoter_R1 GTGTGATGACGCATTCCTCT Promoter sequencing 1001 

b-tubulin-F ATGTTCAGGCGCAAGGCTT Equalizing control 101 

b-tubulin-R TCTGCAACCGGGTCATTCAT Equalizing control 101 

Ef1-alpha-F CGAGGAGGACAAGAAAGCAG Equalizing control 375 

Ef1-alpha-R ACCTGTTGCTGCTGGATTCT Equalizing control 375 


