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Abstract 

Investment and land use decisions pre-determine the distribution of other 

farm resources and thus constitute core farm activities. Investments at the 

farm level often include sunk costs, risks, returns-to-scale, investment 

options of predefined sizes, and multiple stages of investment. Considering 

these factors is crucial for improving understanding of the economic 

incentives and disincentives to invest at the farm level and appropriate 

design of related policy. However, existing numerical methods of investment 

analysis fail to capture all the listed factors simultaneously due to explicit or 

implicit restrictions. 

This thesis narrows this methodological gap by developing a numerical 

method to analyze investment options at the farm level. The method is 

applied to decision making with regard to investing in a perennial energy 

crop production system—short-rotation coppice (SRC)—on a representative 

farm in Germany. The investment option implies all of the attributes listed 

above. Furthermore, empirical analysis of SRC adoption exclusively for 

biomass production is relevant in light of increasing renewable energy 

demand. SRC is characterized by multiple environmental benefits relative to 

other forms of agriculture and offers a more efficient energy generation 

option compared to annual bioenergy crops. For a farmer, SRC is 

advantageous due to low input requirements, potential natural hedging, and 

broad political support. In addition, timing of SRC biomass production is not 

predetermined and to some extent flexible, such that there is potential to 

adjust any decision based on how future conditions evolve. Yet, farmers in 

the European Union have been reluctant to adopt SRC and the literature 

provides no clear explanation. The empirical aim of this research is hence to 

quantify the economic incentives and disincentives for German farmers to 

adopt SRC under consideration of risk levels and preferences, and to provide 

relevant policy recommendations.  

To simulate SRC introduction at the farm level, I design a stochastic-

dynamic model and develop a novel solution approach that combines Monte 

Carlo simulation, scenario tree reduction, and stochastic programming. A 

scenario tree reduction technique uses draws obtained with Monte Carlo 

simulation and outputs a scenario tree, which is then combined with a farm-

level model. Restrictive assumptions commonly made in the literature are 

relaxed. In particular, a farmer can either decide to introduce SRC 

immediately or else postpone the decision; also, coppicing intervals and the 

total lifetime of SRC plantation are flexible. Potential adoption of SRC is 



 

 

 

formulated as an American compound option, where planting, each coppicing 

or biomass harvest, and final reconversion back to annual crop production 

are stages of the compound option. SRC competes for limited farm resources 

with annual crop production, while returns from both SRC and annual crops 

are stochastic. The outcome hence includes not only optimal timing, but also 

optimal scale of SRC introduction. Risk aversion is introduced using the 

concept of stochastic dominance. The method developed and demonstrated 

here is transparent, allows relaxing assumptions, and does not hamper 

computational capacity. It is a rather general instrument for the analysis of 

long-term investment options under conditions of uncertainty and risk 

preferences, and hence is of interest far beyond the specific context described 

in this case study. 

Empirical results demonstrate that SRC cannot compete with annual 

crop production under current market conditions and that individual farmers 

wait for a certain trigger or state-of-nature in order to adopt SRC. A risk-

averse farmer might decide to introduce SRC earlier, though at a smaller 

scale, in order to take advantage of the potential natural hedging effect. The 

results indicate that some level of risk is associated with increased SRC 

introduction due to the benefits associated with the managerial flexibility 

inherent to SRC cultivation. In particular, flexible timing with respect to 

establishment, coppicing, and final reconversion allows farmers to exploit 

positive risks and mitigate negative ones. In this regard, policy instruments 

intended to reduce or eliminate risk associated with SRC cultivation were 

found to be inefficient. In contrast, currently implemented policies that help 

reduce the sunk costs and opportunity costs of SRC introduction are more 

efficient at promoting adoption, although the results suggest that such 

instruments need to be modified in order to be more effective, because 

otherwise farmers are more likely to postpone making decisions about SRC 

introduction. The empirical results of the ex-ante analysis conducted here 

should serve as a basis for higher level analyses and related policy 

recommendations.  

Keywords:   Farm-level simulation modelling; technology adoption; real 

options; American compound option; stochastic 

programming; risk analysis; risk preferences; risk 

perception; perennial energy crop. 

 

  



 

 

 

Zusammenfassung 

Entscheidungen über Investitionen und Landnutzung beeinflussen die 

zukünftige Allokation von Betriebsressourcen und sind daher eine zentrale 

Aufgabe im landwirtschaftlichen Betrieb. Investitionen in der Landwirtschaft 

umfassen versunkene Kosten, Risiken, Skalenerträgen, nicht teilbare 

Investitionsmöglichkeiten und mehrstufige Investitionsentscheidungen. Für 

ein besseres Verständnis der Anreize für Investitionen sowie zur Ableitung 

geeigneter Politikmaßnahmen müssen diese Faktoren daher berücksichtigt 

werden, doch numerische Methoden der Investitionsanalyse scheitern 

aufgrund expliziter und impliziter Restriktionen, diese in Gänze zu erfassen. 

Eins der Ziele der vorliegenden Dissertation ist es, diese methodische 

Lücke zu schließen. Dafür wird ein neuartiger numerischer Ansatz zur 

Investitionsanalyse entwickelt und für die Analyse einer 

Investitionsentscheidung eines landwirtschaftlichen Betriebs in Deutschland 

bezüglich mehrjähriger Energiepflanzen auf Kurzumtriebsplantagen (KUP) 

verwendet. KUP, welche alle zuvor genannten Charakteristika aufweisen, 

werden ausschließlich zur Gewinnung von Biomasse verwendet und sind 

daher angesichts des steigenden Energiebedarfs von besonderer Bedeutung. 

KUP bieten dabei in vielerlei Hinsicht Vorteile für die Umwelt und 

ermöglichen eine effizientere Energieerzeugung als einjährige 

Energiepflanzen. Für den Landwirt ist eine solche Investition aufgrund des 

geringen Faktoreinsatzes, als potenzieller natürlicher Risikoabsicherung und 

wegen ihrer politischen Unterstützung vorteilhaft. Des Weiteren erlaubt der 

Anbau mit KUP eine hohe zeitliche Flexibilität und ermöglicht dem Landwirt 

so eine Anpassung seiner Entscheidungen in Abhängigkeit der eingetretenen 

Umweltzustände. Dennoch wird die KUP bisher nur zurückhaltend in der EU 

eingesetzt, und die Fachliteratur zeigt kein eindeutiges Bild. Das empirische 

Ziel dieser Dissertation ist es daher, die ökonomischen Anreize deutscher 

Landwirte bezüglich des Einsatzes der KUP unter Beachtung von Risiko und 

Risikopräferenzen zu quantifizieren und politische Empfehlungen zu 

erarbeiten.  

Für die Simulation der Entscheidung eines Ackerbaubetriebs über die 

Investition in KUP entwerfe ich ein stochastisch-dynamisches Modell und 

entwickele einen neuartigen Lösungsansatz, der Monte-Carlo-

Simulationstechniken, Verkleinerung von Szenariobäumen und 

stochastischer Programmierung kombiniert. Die Monte-Carlo-Ziehungen 

dienen als Basis für einen Szenariobaum, der bis zu der gewünschten Anzahl 

den Blättern verkleinert und mit dem Modell auf der Ebene eines 



 

 

 

Landwirtschaftsbetriebs kombiniert wird. Dies erlaubt es, die dem Modell zu 

Grunde liegenden Annahmen zu reduzieren. So kann im Modell der Landwirt 

sofort in die KUP investieren, oder aber die Entscheidung verschieben; auch 

Ernterhythmus und Abschlusskahlschlag sind flexibel. Die potenzielle 

Nutzung der KUP ist als zusammengesetzte Amerikanische Option modelliert, 

wobei Anbau, jede Ernte und Abschlusskahlschlag jeweils eine Option 

darstellen. Die Betriebsressourcen werden zwischen den KUP und den 

vorhandenen Ackerkulturen aufgeteilt, dabei sind die Rendite der KUP und 

der vorhandenen Ackerkulturen stochastisch. Das Modell zielt daher nicht 

nur auf die optimale zeitliche Planung, sondern auch auf den optimalen 

Umfang der KUP-Einführung ab. Risikoaversion wird mittels stochastischer 

Dominanz abgebildet. Der zur Lösung dieses Modells neu entwickelte Ansatz 

ist transparent und erlaubt die Lockerung restriktiver Annahmen ohne 

zusätzlichen Rechenaufwand. Die vorgeschlagene Methode kann darüber 

hinaus vielseitig für die Analyse von langfristigen Investitionen unter 

Betrachtung von Risiko eingesetzt werden und ist daher über die Fallstudie 

hinaus von Interesse. 

Die empirischen Ergebnisse zeigen, dass KUP unter den aktuellen 

Marktbedingungen nicht konkurrenzfähig gegenüber konventionellen 

Ackerkulturen sind, und Landwirte auf einen Trigger-Umweltzustand warten 

bevor sie investieren. Des Weiteren wird gezeigt, dass ein risikoaverser 

Landwirt die KUP zwar früher, jedoch in kleinerem Umfang anbauen sollte, 

um die potenzielle natürliche Risikoabsicherung zu nutzen. Risiko stellte sich 

dabei als vorteilhaft heraus, weil die Flexibilität von Anbau, Ernte und 

Kahlschlag es erlauben, positive Risiken ausnutzen und negative Risiken zu 

lindern. Demzufolge sind Politikmaßnahmen zur Risikoreduktion ineffektiv. 

Aktuelle Politikmaßnahmen, welche auf Kostensenkung abzielen und sowohl 

versunkene als auch Opportunitätskosten berücksichtigen, sind zwar deutlich 

effektiver, benötigen jedoch Korrekturen, da sonst ein späterer KUP-Anbau 

unterstützt wird. Die vorliegenden empirischen Ergebnisse können als Basis 

für Analysen auf oberen Ebenen und für Politikempfehlungen dienen. 

Schlagwörter:   Simulationsmodell auf einzelbetrieblicher Ebene; Einführung 

von Technologie; Realoptionsanalyse; Amerikanische 

zusammengesetzte Option; stochastische Programmierung; 

Risikoanalyse; Risikopräferenz; Risikowahrnehmung; 

mehrjährige Energiepflanzen. 
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Chapter 1 

Introduction and overview of the thesis 

1.1. Problem background 

Investments and land-use decisions pre-determine the distribution of other 

farm resources and thus constitute core farm activities. The classical net 

present value (NPV) approach to investment analysis has been criticized for 

placing decisions in a “now-or-never” context and ignoring investment 

irreversibility (Regan et al. 2015, p. 145). In this regard, the alternative real 

options approach (ROA) takes into account the possibility to postpone or 

subsequently adjust investments and is considered a more appropriate 

approach (ibid.). Despite the explanatory advantage of ROA over the classical 

NPV approach, characteristics of actual large-scale investment projects often 

fail to fit well with the explicitly or implicitly inherent restrictions of existing 

numerical real options valuation methods (Trigeorgis and Reuer 2017). 

Complexity is induced by sunk costs, risks, returns-to-scale, investment 

options of predefined sizes, and multiple stages of investing. A case study of 

the adoption of a perennial energy crop production system on an arable farm 

in Germany is featured as an illustrative example of a large-scale complex 

investment option. 

Worldwide, biomass energy is considered a crucial component of 

targeted renewable energy portfolios (IRENA 2017, pp. 64–67) due to its 
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dispatchability (i.e., the ability to produce and store energy when and where it 

is needed) (Thiffault et al. 2016, p. 174). Perennial energy crops, and in 

particular sustainable biomass energy production systems such as short-

rotation coppice (SRC) have gained interest since the oil crisis of the mid-

1970s (Guidi and Labrecque 2013, p. 424) and remain relevant in light of 

increasing energy demand, particularly increasing demand for renewable 

energy. Compared to annual energy crops, perennials are advantageous in 

multiple dimensions, including greenhouse gas (GHG) emission reduction 

(Lewandowski 2015, p.35), soil erosion reduction (Rokwood 2014, pp. 5–6; 

Adams and Lindegaard 2016, fig. 1), and increasing soil fertility (Tolbert et al. 

2002, p. 105). The estimated net energy ratio1 (NER) of SRC using willow 

species ranges between 9.900 (Keoleian and Volk 2005, p. 395) and 52.000 

(Heller et al. 2003, p. 160), compared to 2.100–2.600 for maize used for 

bioenergy production (Eder et al. 2009, p. 718) and 0.313–0.341 for coal 

(Keoleian and Volk 2005, p. 395). Moreover, SRC is suitable for soils of 

variable productivity and thus can be planted on marginal lands unsuitable for 

other crops (Bringezu et al. 2010, p. 76). Lindegaard et al. (2016, p. 5) provide 

a comprehensive overview of the advantages of SRC and its market in the 

European Union (EU). 

Due to positive environmental effects and efficient bioenergy generation 

from SRC systems, there have been a number of regional and national policies 

implemented to support SRC production. Lindegaard et al. (2016) provide an 

overview of the history of policy support of SRC in the EU. Current policy 

instruments intended to promote perennial energy crops can be classified as: 

(i) cross-sector instruments, including quotas and taxes on fossil energy 

sources (Mitchell 2000); (ii) investment in research (Witzel and Finger 2016; 

Bacovsky et al. 2016); and (iii) farm-level instruments. The latter category 

includes establishment subsidies (e.g., as currently practiced in Germany and 

Sweden, and in the past in Ireland, Poland, and the United Kingdom) 

(Lindegaard et al. 2016, p. 2); or qualifying land under SRC as suitable for 

                                                      

 

1 Net energy ratio is calculated as energy output divided by the amount of fossil energy 
required for production (Keoleian and Volk 2005, p. 386). Consequently, the higher the NER the 
more efficient energy generation is. 
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“Ecological Focus Area” (EFA)2 requirements (e.g., as in France, Germany, the 

Netherlands, Italy and other European countries) (Hart 2015, p. 5).   

Different species, varieties, and clones can be cultivated using SRC, 

including willow (Salix spp.), poplar (Populus spp.), black locust (Robinia 

pseudoacacia L.), and alder (Alnus spp.) (Dimitriou and Rutz 2015, pp. 21–28). 

Once planted with fast-growing trees, SRC systems can be coppiced several 

times without replanting. Planting of SRC systems might occur in either 

March/April or September/October; coppicing is performed in November-

March at intervals of at least two years (KTBL 2012). Planting and coppicing 

activities are usually outsourced (Musshoff 2012). There are several harvest 

methods with different costs that depend on the desired end product and 

harvest interval. The common end product in Germany—wood chips 

(Keutmann et al. 2016, p. 315)—typically involves a harvest interval of two to 

five years (KTBL 2012). The last harvest should take place at approximately 

20 years due to legal restrictions. For instance, in Germany, reconversion of 

land under SRC back to annual crop production is legally complicated if SRC 

has been cultivated for longer than 20 years (Federal Forests Act 1975). An 

extensive overview of SRC cultivation and management practices can be found 

in Nassi O Di Nasso et al. (2010), KTBL (2012), and Dimitriou and Rutz (2015). 

There are multiple uses for wood chips, including usage in small- and large-

scale heating systems and power plants, processing into pellets, and supplying 

material for biorefinery processes (Dimitriou and Rutz 2015, p. 62). 

To this end, SRC seems attractive for farmers due to low or zero labor 

input requirements and existing policy support. Although SRC binds land 

resources for a long term period, it also allows flexible time management, 

meaning that a farmer can exercise planting, coppicing, and final reconversion 

back to annual crops depending on future conditions. Nevertheless, farmers 

are often reluctant to adopt SRC. For instance, in Germany (von Wühlisch 

2016; Parra-López et al. 2017, p. 784); Scotland (Warren et al. 2016); Sweden 

(Dimitriou et al. 2011); and Spain (Parra-López et al. 2017, p. 786) SRC 

adoption rates are much lower than anticipated. In Sweden approximately 

                                                      

 

2 According to the latest Common Agricultural Policy (CAP) reform, large arable farms are 
required to manage 5% of their land as “Ecological Focus Areas” (EFA), which SRC partially 
qualifies as. 
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130–160 km2 of SRC are currently cultivated, representing the largest area 

among the EU countries (Mola-Yudego and González-Olabarria 2010). In the 

UK around 100 km2 are currently dedicated to energy crops, including SRC 

and Miscanthus spp. production systems, while estimated land capacity for 

biomass energy production is 9,300–36,300 km2 (DECC 2013, p. 28). The 

existing policy support indicates the social aim to encourage SRC adoption. 

This thesis does not analyze the validity or relevance of the social aim, but 

rather contributes to its achievement and seeks to quantify farm-level 

incentives and disincentives to adopt SRC under conditions of uncertainty. In 

particular, a simulation model based on ROA is designed and valuated. 

Restrictive assumptions typically made in the literature are relaxed, disabling 

existing real option valuation methods. Hence, a novel solution approach that 

combines Monte Carlo simulation, scenario tree reduction, and stochastic 

programming was developed. 

1.2. State of the art 

Farm-level decisions regarding SRC adoption are tempered by the fact that it 

represents a long-term investment option. Yet, the literature provides 

ambiguous conclusions with respect to the profitability of such investments. 

Out of 37 relevant studies, 43% report economic viability of SRC; 19% report 

economic disadvantages; and 38% mixed results (Hauk et al. 2014). The 

diversity of these conclusions can be explained not only by the different 

contexts and assumptions made among individual studies, but also by the 

different theoretical frameworks applied which are discussed below. In the 

following assessment, the focus is restricted to quantitative investment 

analysis. Most of the qualitative research efforts on SRC cultivation are based 

on farm surveys (Smith et al. 2011; Glithero et al. 2013). These have revealed 

that SRC adoption at the farm level is determined by individual characteristics 

of the farmer (e.g., attitudes, gender, and work status); farm characteristics 

(e.g., size of the farm, land use, soil quality, availability of required machinery); 

as well as characteristics of individual investment options (e.g., required costs 

and schedule of cash flows). Allen et al. (2014, p. iv) point out that the major 

factors influencing SRC adoption are economic ones. In particular, costs of 

planting and harvesting, being irreversible and accounting for about 66% of 

total costs (Lowthe-Thomas et al. 2010), have the greatest impact on farmer’s 

willingness to adopt SRC. Due to currently observed reluctance of farmers to 
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adopt SRC and hence lack of required data, the focus of the thesis is further 

restricted to simulation models, leaving empirical econometric models out. 

1.2.1. Risk-neutral farm-level investment analysis 

Classical investment theory has been most frequently used to analyze the 

economy of SRC cultivation (Lothner et al. 1986; Strauss et al. 1988; Gandorfer 

et al. 2011; Schweier and Becker 2013). These research efforts are mainly 

devoted to the North American countries (Lothner 1991; McKenney et al. 

2011) and Europe (Bergez et al. 1991; Ericsson et al. 2006; Gasol et al. 2010), 

including Germany (Kroeber et al. 2008; Schweier and Becker 2013). Since the 

approach doesn’t allow postponing the decision to adopt SRC (i.e., assuming 

that implementation of SRC is only possible on a “now-or-never” basis and 

hence overestimating conversion triggers) (Wolbert-Haverkamp and Musshoff 

2014, p. 164), its relevance for the analysis of SRC adoption is highly 

questionable.  

The ROA is often portrayed as taking into account the possibility of 

postponing investment decisions. More generally, it acknowledges flexibility 

in future management, depending on how the decision environment evolves, 

where waiting to adopt SRC is just one option. The ROA is favored over the 

classical deterministic analysis for investment projects in agriculture, 

especially in the presence of production and market risk, since farmers can 

adjust their management to future states-of-nature. Should, for instance, 

output prices increase or decrease, farmers might adjust their crop portfolio, 

herd sizes, planned investments or even terminate their operations. Moreover, 

in reality farmers consider the potential for future flexibility when making 

investment decisions. Hence, considering future flexibility not only 

contributes to a better understanding of farm-level decisions, but also 

typically leads to different and often more plausible economic indicators of 

interest, such as the expected NPV and its distribution, when investment 

projects are considered. There are different types of real options defined in 

the literature, yet, SRC adoption is usually modelled as a (compound) 

American option, meaning that the option (or each stage of the option if 
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compound) can be exercised at any time point prior to the expiration date3 or 

never exercised (Cetinkaya and Thiele 2014).  

Valuation of a (compound) American option is far from trivial. Closed-

form solutions to real option problems (Black and Scholes 1973; Geske and 

Johnson 1984) are elegant from a scholarly perspective, but often require 

assumptions (e.g., about stochastic processes) that are too restrictive for 

complex real-world examples. Moreover, large investment projects in 

agriculture typically lead to manifold changes in the way farms are managed. 

An extension of a farm operation not only requires physical capital, but also 

has effects on farm production and input use, which in turn require expansion 

of farm endowments or changes in management. Without considering these 

consequences, an accurate evaluation of the investment project is not feasible. 

In this regard, a numerical method is likely to yield better results (Fig 1.1). In 

what follows, the focus is on the methods of approximating stochastic 

processes, since methods approximating differential equations were initially 

designed and are well suited for the valuation of simple European options 

(Regan et al. 2015, p. 146). 

                                                      

 

3 Compare with a European option that can be exercised at the expiration date only or never 

exercised. 
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Figure 1.1. Classification of real options valuation methods 

Source: based on Cetinkaya and Thiele (2014, p. 12) 

Although there are numerous examples of valuating real options for 

different types of investment problems with methods for approximating 

stochastic processes (Sagastizábal 2012; Beraldi et al. 2013; Feng and Ryan 

2013; Alonso-Ayuso et al. 2014; Simoglou et al. 2014; Tee et al. 2014; van 

Ackooij and Sagastizábal 2014), its application for the analysis of farm-level 

adoption of a perennial energy crop or related production system is rather 

limited. Song et al. (2011) simulated switching from soy production to 

perennial switchgrass on a representative farm in the USA. The model is based 

on the real options approach and solved using stochastic programming. 

However, the analysis is performed on an area basis, meaning that farm-level 

constraints and requirements are not considered. The same restrictive 

assumption is made by Musshoff (2012) and Wolbert-Haverkamp and 

Musshoff (2014). Both studies analyzed introducing SRC poplar production on 

a representative farm in northern Germany. Option valuation is performed 

using Monte Carlo simulation. Both models are designed on an area basis and 

assume fixed coppicing intervals. In addition, Musshoff (2012) assumes a fixed 

plantation lifetime, hence converting a potential compound option into a 

simple American option. Such restrictive assumptions are also made beyond 

the analysis of investments in perennial energy crops and related production 

systems. In particular, a binomial (Guthrie 2009) or trinomial scenario tree is 

usually involved for the sake of simplicity (Flaten and Lien 2007; Alonso-

Ayuso et al. 2014). Since such scenario trees explode in values and the number 
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of leaves as time horizons increase, the number of time periods are restricted 

(e.g., by aggregating the time periods down to the desired number) (Bartolini 

and Viaggi 2012; Feng and Ryan 2013). To this end, in order to improve on 

previous economic assessments of SRC and capture on-farm interaction of SRC 

with other activities, this thesis seeks to develop a model based on real 

options and simultaneously relax common restrictive assumptions. 

1.2.2. Introducing risk preferences and considering 
subjective risk perception 

An option value to wait also exists under risk neutrality, since postponing a 

decision might increase overall returns regardless of risk preferences (Dixit 

and Pindyck 1994, p. 153); risk neutrality is therefore a common assumption 

in existing real options applications (Wossink and Gardebroek 2006; Wang 

and Tang 2010; Song et al. 2011). Yet, many empirical studies found that 

farmers in Europe are risk-averse (e.g., Menapace et al. 2013; Meraner and 

Finger 2017).  

The literature provides examples of different methods of introducing 

risk preferences into stochastic programming that vary according to the 

underlying assumptions about risk and risk preferences. Musshoff (2012) and 

Wolbert-Haverkamp and Musshoff (2014) introduce risk preferences using a 

risk-adjusted discount rate. This is a rather straightforward method; however 

for a proper evaluation the discount rate should be re-adjusted each time 

period, as risk decreases when approaching the leaves of the scenario tree. In 

addition, different risk-adjusted discount rates should be applied to farm 

activities of variable risk (Brandão and Dyer 2005; Finger 2016). The expected 

utility approach, based on the von Neumann-Morgestern utility function, is 

another option. An analytical solution is provided by Henderson and Hobson 

(2002) and Hugonnier and Morellec (2007); application to farm optimization 

can be found in Hardaker et al. (1988). Yet, the approach requires very strong 

assumptions, such as formulating a risk utility function or estimating a risk 

aversion coefficient. Another approach is the concept of stochastic dominance, 

which is also based on maximization of expected utility without requiring its 

explicit formulation. In particular, first-order stochastic dominance (FSD) only 

requires that the underlying von Neumann-Morgestern utility function be 

monotonic; second-order stochastic dominance (SSD) additionally requires it 

to be concave (i.e., that a decision maker is risk-averse). Pure FSD and SSD 
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methods might substantially undermine computational efficiency, since they 

require introducing a number of additional binary variables into the model 

(Gollmer et al. 2007; 2008). In order to overcome these technical issues, some 

approaches that imply relaxed stochastic dominance were proposed 

(Dentcheva and Ruszczynski 2003; 2006). Mean-variance analysis4, initiated 

by Markowitz (1952), minimizes risk (i.e., variance) for a given expected 

outcome, or maximizes the expected outcome for a given variance. The 

approach requires the underlying utility function to be quadratic (Tauer 1983, 

p. 606) and is consistent with SSD if the risk measure (e.g., returns) is 

normally distributed (Krokhmal et al. 2011, p. 52). Non-linearity might quickly 

lead to a computationally challenging model. In order to gain a computational 

advantage, a linear version—minimization of total absolute deviations 

(MOTAD)—has been proposed by Hazell (1971), which is consistent with 

mean-variance analysis and hence with SSD, if the risk measure is normally 

distributed. Robison and Brake (1979) examine the application of the mean-

variance approach in a farm context.  

Finally, another class of approaches differentiates between positive and 

negative risks. These include safety first (Roy 1952; Telser 1955), the minimax 

approach (Dupačová 1966), lower partial moments (Fleten et al. 2002), and 

conditional Value-at-Risk—one of the most popular approaches in the 

literature (Kaya et al. 2011; Lim et al. 2011; Beraldi et al. 2013; Homem-de-

Mello and Pagnoncelli 2016). Those models relax the continuity assumption of 

the underlying utility function. For instance, conditional Value-at-Risk is 

defined as the expected value of losses below a threshold (Rockafellar and 

Uryasev 2000). The main challenge, however, is to choose an appropriate 

threshold (i.e., setting up criteria to distinguish downside risk).  

In contrast to risk preferences, the significance of subjective risk level of 

an investment option has barely been studied (Meijer et al. 2015) and the few 

existing findings are ambiguous (Jain et al. 2015; Trujillo-Barrera et al. 2016; 

van Winsen et al. 2016). The literature on the joint effect of risk preferences 

and subjective risk perception is even more limited. Yet, subjective risk 

perception often differs from objective risk levels of the investment project 

                                                      

 

4 Also known as the modern portfolio theory. 



 

10 

 

 

 

derived ex-post (Liu 2013; Menapace et al. 2013; Bocquého et al. 2014), 

especially for a novel investment option, like SRC, whose risk might be hard to 

determine due to a lack of experience and related knowledge (Bougherara et 

al. 2017, p. 803). A decision maker, however, behaves according to her 

subjective beliefs (Savage 1972; Marra et al. 2003; Karni 2006).  

1.3. Research questions 

Based on the literature review, the following gaps have been identified. First, 

the existing empirical results of investment analysis of SRC are controversial 

and do not explain the observed reluctance of German farmers towards SRC 

adoption. Second, although real options is favored over the classical 

deterministic analysis in terms of explanatory power, existing models 

simulating SRC adoption at the farm level based on real options are limited 

due to implicit or explicit restrictions. At the same time, relaxing the 

commonly made restrictive assumptions hampers the existing real options 

valuation methods. Finally, introducing risk aversion into a real option model 

is in line with the empirical results of farmers’ risk preferences in Europe, but 

often either requires further assumptions or leads to a computationally 

challenging model. 

The research aim is thus twofold. The empirical research aim is to assess 

SRC as a farm-level investment option and provide policy recommendation for 

SRC promotion. In particular, it includes analysis of farm-level decisions 

regarding SRC cultivation, coppicing, and reconversion to annual crops, 

including consideration of risk preferences; and quantification of required 

market interventions in order to promote SRC cultivation. The methodological 

aim is to develop a numerical method to analyze such complex investment 

options at the farm level. To this end, the following research questions and 

sub-questions are addressed: 

Q1: Can SRC compete with other crops and production systems under 

consideration of risks and farm constraints? 

Q1.1. How to capture competition between SRC and other crops and 

production systems for limited on-farm resources, including 

environmental requirements, in a stochastic environment? 
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Q1.2. How to capture potential economies of scale implied by SRC 

cultivation? 

Q1.3. How to solve compound American real options, considering the total 

number of stages (i.e., the number of intermediate coppicing and 

overall time horizon or lifetime of SRC plantations), as decision 

variables? 

Q1.4. How do observed stochastic variable values influence optimal 

decisions regarding the timing and scale of SRC adoption? 

Q2: What policy instruments are most effective in promoting SRC adoption at 

the farm level? 

Q2.1. What is the capacity of a policy instrument in terms of additional SRC 

bioenergy production? 

Q2.2. How much governmental cost does a policy instrument require 

relative to additional bioenergy production? 

Q2.3. What benefits or losses to individual farmers does a policy 

instrument imply? 

Q2.4. How does a policy instrument affect optimal timing of SRC adoption? 

Q3: How consideration of (subjective) risk levels and risk preferences 

influence farm-level decisions regarding SRC adoption? 

Q3.1. How can risk preferences be accounted for in stochastic 

programming making limited behavioral assumptions? 

Q3.2. How do risk preferences affect optimal scale of SRC adoption? 

Q3.3. How do risk preferences affect optimal timing of SRC adoption? 

Q3.4. How does (subjective) risk perception affect the optimal scale of SRC 

adoption? 

Q3.5. How does (subjective) risk perception affect optimal timing of SRC 

adoption? 
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1.4. Contribution 

The research questions listed above are answered using a farm-level model 

based on real options and solved with a combination of Monte Carlo 

simulation and stochastic programming. The model allows introduction of 

multiple risks and risk preferences, as well as considering economy of scale, 

farm-level resource endowments, and other restrictions. It solves for optimal 

timing and scale of SRC adoption and quantifies interactions between SRC and 

other farm activities. The complete model and all related documentation are 

available in Spiegel et al. (2017) (also see Annex 1). A description and 

development of the model, as well as different analyses are described in 

Chapters 2–4 and Conclusions are drawn in Chapter 5. 

First, the focus is on solving a compound American option employing a 

combined stochastic programming, Monte Carlo simulation, and scenario tree 

reduction technique (Chapter 2). The proposed approach can be summarized 

into four main steps. First, the decision variables of the problem are defined. 

Second, the relations among these decision variables are established and 

combined into a deterministic programming model. Third, based on an 

appropriate distribution for stochastic parameter(s), Monte Carlo simulation 

scenarios are run, and a reduced scenario tree is constructed by employing a 

scenario tree reduction technique. A scenario tree reduction technique5 picks 

representative nodes and assigns probabilities to them, approximately 

capturing the distribution in the original tree6. Graphically, one could imagine 

the algorithm as lumping together neighboring nodes and branches in the tree 

to bigger ones, where the thickness represents probability mass. At the final 

step, stochastic programming is employed for the real options valuation 

outputting both optimal timing and the depth of exercising options (Q1.1, 

Q1.3). Farmer decisions regarding SRC adoption are formulated as a 

compound American option, where planting, intermediate harvests, and final 

                                                      

 

5 There exist different methods of generating a scenario tree; all of them can be summarized as 

aggregating nodes and stages, and trimming or refining trees.  

6 In the model designed the thesis, the original scenario tree is the one constructed with the Monte 

Carlo simulation. 
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reconversion are the option stages, such that the total number of stages and 

the total time horizon are decision variables (Q1.3). Other decision variables 

include optimal timing and scale of SRC systems and harvests. An individual 

farmer is assumed to maximize expected NPV under two types of constraints: 

resources endowments and environmental requirements. Limited resources—

land and labor—are distributed between SRC, two types of annual crops, and 

set-aside land; the latter being introduced in order to fulfill EFA requirements 

(Q1.1). Economy of scale related to SRC is captured by a harvest cost function 

that differentiates between fixed (per farm), quasi-fixed (per hectare 

harvested), and variable (per tonne of harvested biomass) costs (Q1.2). For 

the sake of simplicity, risk neutrality and one stochastic process (i.e., SRC 

biomass price) are assumed, while other parameters are deterministic. A 

sensitivity analysis is conducted with respect to the observed price of SRC 

biomass (Q1.4). The results show that SRC cannot compete with annual crops 

under current market conditions (Q1). A risk-neutral farmer neither rejects 

this option, nor invests immediately, but rather postpones a decision and 

behaves in response to evolving conditions subject to stochastic variables.  

The model is further elaborated and a comprehensive policy analysis is 

performed (Chapter 3). In particular, annual crops are characterized with 

assumptions about stochastic gross margins that are correlated with 

stochastic SRC biomass prices. As a result, the model captures multiple risks, 

and any farmer decisions imply stochastic returns. Four farm-level policy 

instruments of different intensities intended to support SRC introduction are 

selected for analysis. Two of the policy instruments—a planting subsidy for 

SRC and a higher EFA coefficient for land under SRC management—are 

selected because they have been recently implemented in the study region 

(MLU-MV 2015; Lindegaard et al. 2016). A planting subsidy reduces sunk 

costs related to SRC adoption; while a higher EFA coefficient reduces 

competition for land between SRC and other farm activities, since less land 

under SRC is required to fulfill the environmental requirements. The other 

two policy instruments—a guaranteed price and a price floor for SRC 

biomass—are selected because they address risk, which is argued to be one of 

the major factors limiting SRC adoption among farmers (Hauk et al. 2014; 

Wolbert-Haverkamp and Musshoff 2014). A guaranteed price completely 

eliminates risk associated with SRC cultivation, such that the government 

assumes risk from market price fluctuations. In contrast, a price floor only 

cuts the downside price risk and is applied if market price falls below the price 

floor level. The policy instruments are assessed based on four metrics: effect 
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on bioenergy production (Q2.1), governmental costs required (Q2.2), effects 

on farmer income (Q2.3), and efficiency of transformation of governmental 

costs into additional farm income. In general, the results show that SRC 

bioenergy requires much less governmental support than other renewable 

energy sources, and hence is economically viable. The results also indicate 

that recently implemented policy instruments—a planting subsidy for SRC 

and a higher EFA coefficient for land under SRC management—seem most 

promising, although neither eliminates incentives to postpone SRC adoption 

and thus should be modified in order to stimulate earlier SRC introduction 

(Q2, Q2.4). In contrast, a guaranteed price and a price floor perform much 

worse and might even have negative effects on SRC adoption, since removing 

risk eliminates or significantly reduces the benefit of managerial flexibility. 

The two policy instruments hence encourage earlier or even immediate SRC 

introduction (Q2.4), but at a lower scale. To this end, risk is found to be 

beneficial for the expected scales of SRC adoption, and further analysis targets 

risk, the level of risk, and risk preferences. 

Risk preferences are captured by inverse second-order stochastic 

dominance (ISSD) introduced as an additional constraint (Chapter 4). The 

stochastic dominance approach is inviting because it requires minimal 

behavioral assumptions, in particular it requires a farmer to be risk-averse 

(Q3.1). The final distribution of NPVs before and after SRC introduction is 

taken as a risk measure. The observed farm portfolio (i.e., before SRC 

introduction), is assumed to imply tolerable risk and a new portfolio with SRC 

must dominate the observed benchmark in order to be adopted. The model 

allows comparisons between a risk-neutral decision and a risk-averse one, 

and hence quantifies the effect of the latter. Also, a sensitivity analysis is 

conducted with respect to parameters of the stochastic process for SRC 

biomass price in order to observe the effect of (subjective) risk levels 

perceived by farmers, which is especially important for new farm activities 

due to lack of data and experience (Bougherara et al. 2017, p. 803). For the 

employed case study, risk aversion is found to negatively affect scale (Q3.2) 

and positively affect timing (Q3.3) of SRC adoption. In contrast, increasing risk 

level has a positive effect on scale (Q3.4) and a negative effect at low levels 

and positive effect at higher levels on timing (Q3.5) of SRC adoption. Hence, a 

risk-neutral farmer perceiving SRC as a very risky option (with equal respect 

to positive and negative risks) tends to implement a larger area of SRC earlier, 

yet not immediately. For a risk-averse farmer expected scale is lower, but SRC 

would be introduced even earlier (Q3). 
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Chapter 2 

Monte Carlo simulation and stochastic 

programming for real options valuation in 

perennial energy crop cultivation* 

Abstract 

There are two prominent approaches for the valuation of an American option 

if a closed-form solution is not available: stochastic simulation based on a 

binomial (or trinomial) scenario tree and Monte Carlo simulation. In practice, 

however, real options are rarely independent; and neither method excels in 

the valuation of compound American options subject to variability of resource 

endowments and returns-to-scale, as well as investment options of predefined 

sizes. We present a valuation approach based on Monte Carlo simulation, 

scenario tree reduction, and stochastic programming that is especially 

advantageous for real options where not only timing, but also scale and 

interactions among constraints and alternatives determine value. We 

illustrate the approach with a case study featuring investment options 

regarding the adoption, harvest, and conversion of perennial biomass energy 

production systems.  

Keywords:   Investment analysis; compound option; American option; 

farming investment decision; bioenergy. 
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2.1. Introduction 

In the absence of a closed-form solution, real options are valued using 

numerical methods. In the case of simple European options valuation is often 

performed with the Black-Scholes-Merton model (Merton 1973). There are 

two prominent approaches for the valuation of American options: stochastic 

simulation based on a binomial (or trinomial) scenario tree (Cox et al. 1979; 

Trigeorgis 1991) and Monte Carlo simulation (Boyle 1977), including the 

computationally more efficient Least Squares Monte Carlo (LSMC) simulation 

method (Longstaff and Schwartz 2001). A binomial (or trinomial) scenario 

tree is an intuitive and generic approach, however, it suffers from the curse of 

dimensionality and leads to branches with exploding values or values close to 

zero already under rather conservative assumptions about variance at the 

nodes (Lander and Pinches, 1998, pp. 545–546), limiting its applicability to 

compound options and long time horizons. Although LSMC deals with 

compound options efficiently, it is often criticized for sensitivity to the choice 

of functional form in the regression step (Stentoft 2004, p. 136), especially if 

the dimension increases (Bouchard and Warin 2012, p. 216).  

Characteristics of actual large-scale investment projects often fail to fit 

well with the explicitly or implicitly inherent restrictions of existing numerical 

real options valuation methods. In this paper we consider investment projects 

involving compound American real options and/or competition among 

activities for (quasi-) scarce resources. Returns-to-scale or investment options 

of predefined sizes can also be considered. Examples include investments in 

indivisible assets, investments characterized by a high share of transaction or 

other (quasi-) fixed costs, as well as investments of (quasi-) scarce resources 

with competing uses. In order to better capture the complexity of actual large-

scale investment projects, we propose an alternative numerical valuation 

method that combines and benefits of scenario tree and Monte Carlo 

simulation methods. 

We propose an approach that applies a scenario tree reduction 

technique to the outcome of a Monte Carlo simulation. This controls for 

dimensionality and obtains an advanced scenario tree that enters stochastic 

programming, which then values real options. In contrast to LSMC this 

approach does not approximate fitted payoffs and hence the optimal 

investment decision with one function. Instead we consider the fragmented 

distribution of self-contained expected payoffs. Real options theory for the 

analysis of agricultural investment projects has gained interest (Wossink and 
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Gardebroek 2006; Hinrichs et al. 2008; Hill 2010), but existing empirical 

applications are rather limited. In order to illustrate this approach and 

demonstrate its applicability to a complex real-world example, we chose an 

agricultural economics case study featuring an investment analysis of 

perennial energy crop cultivation in Germany. The case study depicts a 

situation where not only timing, but also investment scale and interactions 

among alternatives are relevant due to competition for resources.  

The remainder of this paper is organized as follows. Section 2 provides a 

methodological background of option valuation and identifies the gaps 

addressed by the proposed approach. Section 3 provides a general description 

of the approach. Section 4 illustrates the approach as applied to a case study. 

Section 5 presents core empirical findings from the case study to demonstrate 

the results provided the approach. Section 6 discusses further application 

potential for the proposed approach. Section 7 presents our conclusions. 

2.2. State of the art 

Lander and Pinches (1998) distinguish the main reasons why practitioners 

are reluctant to employ real options valuation for investment analyses. First, 

existing models and real options valuation methods can seem obscure and 

difficult to follow. Second, restrictive assumptions are often required in order 

to be able to solve a model. Below we address these two issues while 

summarizing the major existing real options valuation methods.  

Analytical solutions for real options valuation (Black and Scholes 1973; 

Geske and Johnson 1984) are elegant from a scholarly perspective, but are 

often deemed inappropriate for practical application due to restrictive 

assumptions required (e.g., regarding stochastic processes). If such is the case, 

a numerical method must be employed instead (Trigeorgis 1996; Regan et al. 

2015). Cetinkaya and Thiele (2014, p. 12) distinguish between methods that 

approximate the underlying stochastic process and methods that approximate 

partial differential equations (see, overview of latter in Trigeorgis [1996]). 

The most well-known method that approximates partial differential 

equations—the Black-Scholes-Merton model (Merton 1973)—was initially 

designed and is well suited for the valuation of simple European options 

(Regan et al. 2015, p. 146). In contrast, compound American options are 

typically valued by approximating stochastic process methods. They can 

further be divided between Monte Carlo simulation (Boyle 1977), including 
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the computationally more efficient LSMC method (Longstaff and Schwartz 

2001), and scenario tree approximation.  

Scenario tree approximation usually implies either a binomial lattice or 

a binomial scenario tree (Brandão and Dyer 2005; Smith 2005). An 

(approximate) optimal value for options depicted by the constructed scenario 

tree or lattice is then found by dynamic programming (Dixit and Pindyck 

1994, pp. 140–147; Guthrie 2009, pp. 88–92). Programming approaches are 

widely used to analyze investment decisions in a quantitative and relatively 

transparent way, including stochastic programming applications (Brandes et 

al. 1980; Haigh and Holt 2002). Examples of real options valuation with 

stochastic programming include, energy economics (Sagastizábal 2012; Feng 

and Ryan 2013; Simoglou et al. 2014; van Ackooij and Sagastizábal 2014), 

managing project portfolios (Beraldi et al. 2013), and natural resource 

extraction (Alonso-Ayuso et al. 2014). One of the main disadvantages of 

scenario tree approximation is that a tree can quickly become unsolvable in 

terms of computational capacity as the number of time periods increases 

(Lander and Pinches 1998, pp. 545–546), since a binomial lattice requires 

[
𝑛(𝑛 + 1)

2⁄ ], and a binomial tree requires 2𝑛 final leaves for 𝑛 time periods. 

Furthermore, development of stochastic parameters in a binomial tree with 

chained relative ups and downs in each node can lead to unrealistic values 

after a few points in time, since the already rather conservative assumptions 

about variance at any node can imply exploding branches. 

The alternative LSMC method evolves from the core finding that optimal 

strategy is determined by the conditional expectations of the value of 

postponing the exercise of an option; and that these conditional expectations 

can be estimated using simulation results (Longstaff and Schwartz 2001, p. 

114). Thus, the method consists of the following three steps: (i) simulation of 

the payoffs of exercising the option in every time period and keeping it in 

previous periods; (ii) regression of those payoffs using least squares; and (iii) 

specification of the optimal strategy based on estimated regression and fitted 

payoffs. LSMC is considered highly powerful for the valuation of American 

options and is widely used in the literature (Sabour and Poulin 2006; Abadie 

and Chamorro 2009; Zhu and Fan 2011). One disadvantage of the LSMC 

method is that a functional form must be assumed for estimation of the 

Lagrangian and can be crucial for determining optimal strategy (Stentoft 

2004, p. 136). Although follow-up papers have addressed this issue (Rogers 

2002; Haugh and Kogan 2004; Létourneau and Stentoft 2014), to date there is 

no general payoff independent choice algorithm that also works for higher 
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dimensional problems (Bouchard and Warin 2012, p. 216). Accordingly, there 

is room for alternative methods, especially methods that are able to relax 

otherwise necessarily restrictive assumptions, which is the motivation for our 

proposed approach. 

Another reason why real option theory is not applied identified by 

Lander and Pinches (1998) is that existing valuation methods fail to 

adequately capture the complexity of real-world investment projects. We 

focus on large investment projects that typically not only involve compound 

real options, but also compete for (quasi-) scarce resources. This implies that 

(changes in) returns to inputs and possible management adjustments 

resulting from resource reallocation also need to be considered. These 

interactions among endowment constraints and alternative activities are 

especially crucial in the context of returns-to-scale and/or a set of investment 

options of predefined sizes (i.e., binary decision variables). In such cases, both 

the timing and scale of exercising an option are at issue: such as investments in 

indivisible assets, investments characterized by a high share of transaction or 

other (quasi-) fixed costs, and investments that affect availability dynamics of 

resources for which there are competing uses. None of the methods discussed 

above are well suited for these problem conditions for different reasons. The 

Black-Scholes-Merton model is not appropriate for valuing compound 

American options. Due to the curse of dimensionality, a binomial scenario tree 

hampers valuation of compound options, particularly over a long time 

horizon. LSMC impedes the choice of Lagrangian function under high 

dimensionality and requires solving with a programming model for each 

single fitted payoff if interactions among constraints and alternative activities 

are considered, which threatens its computational efficiency. Our alternative 

approach is particularly relevant if alternative activities, returns-to-scale, 

indivisible assets, and resource endowments and other constraints are jointly 

considered.  

For illustrative purposes we employ a case study based on biomass 

energy production in Germany featuring agricultural investment 

characterized by limited resources, returns-to-scale, and predefined sizes of 

available investment options. Our example refers to farm-level decisions 

regarding the adoption, harvest and conversion of perennial energy crop 

production in the context of farm constraints and alternative activities. The 

application of real options in agricultural economics is rather limited, 

especially in terms of investment analysis of perennial energy crop 

production; the dominant approach in the literature is the classical net 

present value (NPV) method (Lothner et al., 1986; Strauss et al., 1988; 
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Gandorfer et al., 2011; Schweier and Becker, 2013). The few existing models 

based on real options have either considered perennial energy crop 

cultivation as a stand-alone investment option (Frey et al. 2013), or the 

(partly) killed managerial flexibility it allows for (Bartolini and Viaggi 2012), 

or both (Song et al., 2011; Musshoff, 2012; Wolbert-Haverkamp and Musshoff, 

2014). As discussed previously, these restrictive assumptions were made in 

order to gain tractability and computational efficiency. 

2.3. General methodology 

The approach we propose includes four main steps. First, we define the (state 

contingent) decision variables of the problem and available (compound) real 

options. Second, we define the relationships (i.e., equations and constraints) 

among the decision variables, including lagged relationships between time 

points, and combine them into a programming model. Hence the first two 

steps design a deterministic mixed-integer linear programming model. 

Integers, including binaries, enable differentiation among investment options 

with predefined sizes; non-linearity allows the model to reflect returns-to-

scale. In the second step we also define the payoff function (e.g., NPV) subject 

to constraints, including resource endowments. Third, we introduce different 

future outcomes (states) and related state contingent decision variables. In 

order to convert the deterministic version into a stochastic programming 

equivalent, four additional elements are added: (i) the decision variables are 

provided an additional index for the decision node (i.e., state); (ii) an ancestor 

matrix is introduced to reflect the order of nodes in the decision tree; (iii) 

outcomes for the stochastic parameters for each state are defined; and (iv) the 

probabilities for each node are assigned. In particular, we choose a 

distribution to account for uncertainty with respect to parameter(s), create 

Monte Carlo scenarios, and construct from them a reduced scenario tree with 

probabilities, using a scenario tree reduction technique. Finally, we employ 

stochastic programming for the valuation of real options.  

There are several important details in the third step concerning how the 

outcomes and related probabilities are constructed. First we assume 

distributions for the stochastic components and run Monte Carlo simulations 

that result in a large scenario tree that is not solvable numerically due to the 

curse of dimensionality. We reduce the size of the tree without losing too 

much information about the underlying distributions by employing the tree 

reduction and construction algorithm of Heitsch and Römisch (2008). Similar 
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to a Gaussian quadrature, which describes a probability density function with 

few characteristic values and their probability mass, this algorithm picks 

representative nodes and assigns probabilities to capture the approximate 

distribution in original trees.7 The algorithm can be depicted graphically as 

lumping together neighboring nodes and branches in the tree into bigger ones, 

where the thickness represents probability mass. In particular, we opt to use a 

pre-defined number of final leaves and hence pre-determine the number of 

equations and variables in the model, letting the algorithm decide which 

nodes to maintain. There is no well-established approach to determine the 

optimal number of leaves. The choice, however, should reflect a tradeoff 

between accuracy and solution time: more leaves lead to higher precision in 

outcomes while increasing the solution time substantially (Dupačová et al. 

2000, p. 30). The extreme case of a small number of leaves is the classical NPV 

approach, with one leaf only and no incentive to postpone. Adding a single leaf 

converts the problem into real options and might create incentives to 

postpone exercising an option. Also note that the number of leaves has 

differential influence on model outcomes. In particular, it might be very hard 

to stabilize integer variables within a certain range of accuracy. We suggest 

proceeding as follows: (1) choose the model’s “main result variable,” (2) 

determine an appropriate degree of deviation for this variable, (3) run a 

sensitivity analysis with an increasing number of leaves and observe the effect 

on this variable, and (4) stop increasing tree size once the variable stabilizes 

within the deviation level.  

Our approach allows the assumption of any risk attitude. However, 

deviating from risk neutrality and using a risk-adjusted discount rate require 

re-adjusting the discount rate for every time period, as the risk decreases 

approaching the final scenario tree leaves (Brandão and Dyer 2005). In 

addition, different risk-adjusted discount rates should be applied to farm 

activities that involve different risk ((Brandão and Dyer 2005; Finger 2016). 

                                                      

 

7 Basically, all methods of generating a scenario tree can be summarized as aggregating nodes 

and stages, and trimming or refining trees (Klaassen 1998; Consigli and Dempster 1998; 

Frauendorfer and Marohn 1998; Dempster and Thompson 1999; Dempster 2006). A practical 

advantage of the method developed by Heitsch and Römisch (2008) is a GAMS tool, SCENRED2, 

based on the method. 
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We solve the model described above with stochastic programming using 

standard Java libraries8 for Monte Carlo simulations: GAMS 24.3; a tree 

construction tool SCENRED2 (GAMS 2015); and an optimization solver, CPLEX 

(IBM 2016). The computational speed can be increased by employing a multi-

core processor. Additional techniques for improving computational efficiency 

for such large-scale mixed-integer stochastic problems are available 

(Escudero et al. 2012). 

2.4. Empirical application 

For illustrative purposes we value investment decisions in perennial energy 

crop production, specifically short-rotation coppice (SRC) poplar production 

systems that involve timing, adoption scale, harvest and conversion decisions. 

The selected case study features the complexities discussed above: it involves 

compound American options of predefined sizes in the context of limited 

resources, returns-to-scale, and alternative activities. The main case study 

characteristics are summarized in Table 2.1. 

Under SRC management fast growing trees are coppiced within 

relatively short intervals—typically between two and five years—for energy 

production. SRC plantations can be harvested multiple times over a period of 

up to 20 years. A large share of the costs are sunk in plantation establishment: 

typically about 2/3 of SRC production system costs are associated with 

planting and final conversion (Lowthe-Thomas et al. 2010). Relative to 

alternative land uses, SRC is characterized by low-input production (Faasch 

and Patenaude 2012); planting and harvesting are usually outsourced to a 

contractor, minimizing or eliminating the need for on-farm labor (Musshoff 

2012, p. 77). In Germany, land use competition between SRC and other land 

uses has been reduced under the latest Common Agricultural Policy reform, 

which requires large arable farms to manage 5% of farmland as “Ecological 

                                                      

 

8 The use of Java is mostly motivated by the fact that we store the generated simulations along 

with the ancestor matrix to describe the node structure efficiently in the proprietary data 

format GDX (of GAMS) to avoid costly computations. 
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Focus Areas” (EFA), which SRC partially qualifies as9 (in Germany one unit of 

land under SRC management is equivalent to 0.3 of an equal area of set-aside 

for EFA purposes) (BMEL 2015).  

During the lifetime of a plantation, farmers face (at minimum) biomass 

price uncertainty. While the same might hold true for alternative land uses, 

the ability to adjust the land-use composition and management intensity on an 

annual basis might substantially reduce subjective risk to individual farmers 

(Di Falco and Perrings 2003). We consider SRC management to involve 

compound American options, where planting, each intermediate harvest, and 

final conversion to alternative land uses are the option stages. Due to stage-

contingent inter-harvest periods ranging between two and five years and the 

maximum plantation lifetime, the total number of stages is flexible, not 

predetermined. As a consequence, the sooner each stage is exercised, the more 

available stages there are overall. 

The model data (Appendix 2.1) are from SRC poplar production systems 

in northern Germany (Musshoff 2012; Faasch and Patenaude 2012; Wolbert-

Haverkamp 2012). Relative to average conditions in Germany the region is 

characterized by low soil quality and precipitation, and thus generally low 

returns from annual crops. The limited productivity increases the 

attractiveness of uncommon land-use options such as SRC management. 

According to (Schuler et al. 2014, p. 69) over 90% of agricultural lands in this 

region are suitable for SRC management. 

In order to model competition for farm resources such as land and 

labor, we consider two relevant alternative crops for the case study region—

winter wheat and winter rapeseed—of which the former is more labor 

intensive and has a higher gross margin per hectare. Finally, we consider set-

asides as an alternative means of fulfilling EFA requirements to SRC systems.  

We consider pre-defined plantation sizes because farmers would 

typically convert existing plots of some other land use to SRC plantation. 

Assuming total land endowment of 100 ha, we consider three potentially 

                                                      

 

9 We consider two options to meet the EFA requirements in our model: set-aside land (i.e., 

fallow land) and SRC (for a description of other options see BMEL [2015]). 
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convertible plot sizes10 of 10 ha, 20 ha, and 40 ha, providing eight possible 

plantation size combinations from 0 to 70 ha. Each plot is characterized by 

three core decision variables over the simulation horizon: (1) land-use 

decisions: whether or not a plot is used for SRC or one of the three alternative 

activities; (2) SRC harvesting decisions: whether or not SRC plots are 

harvested in the current year; and (3) the decision of whether or not to 

convert to an alternative land use.11  

Revenues from an SRC plantation are linked to harvest decisions, which 

are based on the interactions among biomass growth and harvest cost 

functions. Biomass growth is represented by a linear function of available 

yields and—in combination with the harvest decision for the previous year—

provides current yields. The harvest cost function considers transaction costs 

for outsourcing labor, field-level transport costs, harvest costs, post-harvest 

fertilization costs, and costs of drying and storing harvested biomass. In order 

to capture economies of scale with respect to harvest activities, we distinguish 

among (a) at farm (fixed); (b) per plot (quasi-fixed); and (c) per tonne (t) of 

harvested biomass (variable) costs as follows: 

 𝐻𝐶 = 66.75 + 272.13 ∙ 𝐿 + 10.67 ∙ 𝑌 (2.1) 

where 𝐻𝐶 represents total harvest related costs in euro (€); 𝐿 is the area of 

land harvested in hectares (ha); and 𝑌 is harvested yield in tonnes of dry 

matter (t). 

Considering different harvest intervals allows the plantation to store 

biomass, such that temporal arbitrage can be applied: a farmer might allow 

trees to continue growing if biomass prices are low and expected to increase 

in the future, increasing future harvestable volumes. Moreover, since we 

specify fixed and quasi-fixed harvest costs, the total harvest cost per tonne of 

                                                      

 

10 Initially four plots and 11 combinations from 0 to 100 ha are assumed, hence covering all 

available land. Tests reveal that the optimal total area under SRC is always below 40 ha, 

therefore we restrict ourselves to three plots as described in the text in order to decrease the 

number of variables and thereby gain computational efficiency. 

11 Conversion can be exercised only in combination with harvest. Costs of conversion include 

harvest and clear-cutting costs. 
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dry matter declines over time elapsed since planting or the preceding harvest; 

between two and five year intervals are considered in the case study.  

Table 2.1. Summary of the main case study characteristics 

Characteristics of an actual large-scale 
investment project 

Expressed in the case-study via 

Compound American option 

Short-rotation coppice plantation with 
initial planting (can be postponed by 3 
years), intermediate harvests after 2–5 
years from previous stage (i.e., planting 
or harvesting), and final conversion to 
alternative land use (maximum 20 years 
post planting and exercised only in 
combination with harvest) 

Stochastic component 
Biomass price (i.e., price for short-
rotation coppice output) 

Sunk costs 
Planting costs, harvest related costs, and 
final conversion costs 

Predefined investment sizes 
Predefined land plots for potential 
conversion to short-rotation coppice 
plantation 

Opportunity costs 

Annual production systems, specifically 
two annual crop options with different 
inputs (i.e., land and labor) and outputs 
(i.e., gross margins) 

Returns-to-scale 

Harvest costs including costs (a) on farm 
(fixed), (b) per hectare (quasi-fixed), and 
(c) per tonne of harvested biomass 
(variable) 

Resource endowments 
Land and labor: both are assumed to be 
limited without possibility for expansion 

Policy constraints 

An “Ecological Focus Area” representing 
5% of farmland area must be left fallow 
or converted to short-rotation coppice 
plantation (SRC is recognized in the 
model as equivalent to fallow land with a 
coefficient of 0.3) 
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After setting up the mixed integer programming model12 that maximizes 

NPV, risk is introduced into the model. We assume a natural logarithm for the 

SRC output price to follow a mean-reverting process (MRP), specifically an 

Ornstein-Uhlenbeck process (Musshoff 2012; de Oliveira et al. 2014). After 

10,000 Monte Carlo simulation runs for output prices we apply scenario tree 

reduction. In order to determine the optimal number of leaves we choose the 

expected area under SRC as the main result and stabilize it within 10% of the 

expected area under SRC under 500 leaves (see Appendix 2.2 for sensitivity 

analysis results). We found 100 leaves to be a good tradeoff between accuracy 

and speed. For the sake of clarity in our analysis we use a risk-neutral decision 

maker and discount rate. 

Additionally we run two types of sensitivity analyses. First, we quantify 

the difference between the real options and classical NPV approach. For the 

latter, we force the farmer to make decisions on planting, harvesting and 

conversion immediately based on expected biomass output price (i.e., we 

switch from a stochastic to deterministic model). The stochastic process for 

biomass price stays the same. Second, we analyze the influence of the 

observed biomass price on farmer decision making. In particular, we shift the 

constructed scenario tree up and down in parallel keeping all the other 

parameters constant. In the supplementary material provided in association 

with this paper we include a Graphical User Interface that allows 

straightforward changes to the initial parameters, the GAMS code to run the 

model, and the mathematical representation of the model. 

2.5. Empirical results 

The results of our sensitivity analysis with respect to the difference between 

the real options and the classical NPV approach are consistent with theory: the 

planting trigger under the classical NPV approach is lower than when based 

on real options. Specifically, under a now or never decision scenario a farmer 

would convert some land to SRC plantation immediately at a biomass price of 

                                                      

 

12 The deterministic model is beyond the focus of this paper, therefore we only present major 

points that are relevant for the proposed approach (see the supplementary material provided 

for greater detail). 



 

37 

 

 

48 € t-1, which is 5% below our baseline scenario. To the contrary, our real 

options approach finds a positive option value for postponing SRC adoption at 

that price, which matches the observed reluctance of farmers in Germany to 

adopt SRC under current prices (Bemmann and Knust 2010; Allen et al. 2014). 

In contrast, Musshoff (2012) reported that immediate planting of SRC was 

profitable under a real option application assuming the same stochastic 

process for biomass price. We presume that our higher investment trigger is 

due to consideration of more aspects of a real-world investment context, such 

as full managerial flexibility in SRC cultivation and alternative land uses that 

compete for resources. Further detail is provided in the supplementary 

material for interested readers. 

The results of the sensitivity analysis with respect to the observed 

biomass price (i.e., the starting value of the scenario tree) are shown in Fig. 

2.1. Under the observed biomass price of 50 € t-1 (i.e., baseline scenario) there 

is a chance that farmers will not choose to adopt SRC production (the sum of 

probabilities is below 100%). If a SRC plantation is established, the probability 

that SRC will be implemented is 23% in the second and third years, and 41% 

in the fourth year. A breakdown by investment scale is beyond the scope of the 

information presented in Fig. 2.1: if an SRC plantation is established in the 

second year under the baseline scenario, 87% of the SRC plantations would be 

10 ha and the remaining 13% would be 20 ha. Intuitively, the (expected) area 

under SRC increases as biomass prices increase (blue line in Fig. 2.1). The 

same sensitivity analysis can be performed for every stage of the compound 

option, such as for harvest and land use conversion decisions at any time 

point.  
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Figure 2.1. Sensitivity analysis with respect to biomass output price for 

short-rotation coppice (SRC) planting decisions based on the real 

options approach.  

The EFA requirements are not fulfilled with SRC only under the 

presented scenarios. The interrupted red line in Fig. 2.1, which is always 

above the expected area under SRC, indicates the area of SRC needed to satisfy 

EFA requirements. This indicates that the policy measure is not fully 

exploited; under the scenarios considered SRC is not competitive with 

alternative land uses. Ignoring policy measures and opportunity costs would 

have obscured this result. 

The relative competiveness of SRC management in our analysis 

considers redistribution of resources among alternative land uses as an 

investment consequence. On the one hand, more land under SRC is required 

for EFA compared to set-asides, as one hectare of SRC is equivalent 0.3 ha of 

set aside for EFA purposes. On the other hand, labor requirements of SRC are 

lower than for alternative land uses. Thus, converting area under productive 

land uses to SRC allows an increasing labor share for more intensively 

managed crops with a higher gross margin per hectare (wheat) on remaining 
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farm area and thus dampens the impact of competition for space (Fig. 2.2).13 A 

similar result can be found if we assume that any freed labor is employed off-

farm. Due to this effect, the investment trigger is lowered relative to a simpler 

model where only competition for land is considered. This outcome is only 

possible by taking into account alternatives, policy measures and constraints. 

To this end, our empirical results are consistent with the observed reluctance 

of farmers in Germany to convert existing land uses to SRC systems under 

current market and policy conditions and reveal additional information on 

SRC adoption incentives. 

 

Figure 2.2. Expected land distribution (annual mean) between 

alternative farm activities under different starting (observed) values of 

the scenario tree (based on the real options approach). 

2.6. Discussion 

The proposed approach provides a method for detailed investment analysis, 

including the timing and depth of exercising every stage of the compound 

                                                      

 

13 Fig. 2.2 illustrates the expected mean land distribution over the simulation period. Although 

SRC is expected to be implemented (e.g., under baseline conditions when observed biomass 

price is equal to 50 € t-1), it is not planted immediately. 
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option. Timing is represented by the optimal investment behavior at each 

given node of the scenario tree, as well as at the subsequent nodes with 

assigned probabilities and conditional to antecedents. Depth is expressed in 

fractional units or—if investment options of predefined sizes are 

considered—as the exercised subset of all available options. At each node of 

the scenario tree the value to postpone can be evaluated by comparing 

expected payoffs with and without temporal flexibility (i.e., payoffs based on 

real options and the classical NPV approach). The approach also reveals 

additional incentives (or disincentives) to invest that were previously 

obscured by restricted assumptions, such as interactions among alternatives 

and their influence on investment behavior. In particular, it allows adjustment 

of alternatives or other management changes related to exercising an option.  

For clarity we presented a simplified farm model that can be improved 

by adding more alternatives and constraints. Multiple risks, including mutual 

correlation, can be assumed with the scenario tree characterized by a vector of 

simulated values in each node. Alternatively, several stochastic parameters 

can be combined into a single composite risk, as in some existing models 

(Flaten and Lien 2007; Bartolini and Viaggi 2012; Beraldi et al. 2013). Risk 

preferences can also be considered; the simplest way would be to introduce a 

risk utility function.  

Further empirical analysis can be done in different directions. 

Investment triggers can be determined by conducting sensitivity analyses 

with respect to any model parameter as a potential trigger. Modifying the 

respective parameter stepwise would determine intervals within which the 

investment decision changes to exercising the option immediately, defining 

the true investment trigger within this interval. The smaller the sensitivity 

analysis steps, the narrower the range that encompasses the true investment 

trigger. Our approach allows for stepwise relaxation of assumptions and hence 

quantifying their influence on investment behavior. A comprehensive policy 

analysis can be performed, either for measures that directly affect investment 

options or else the alternatives, resource endowments, and/or other 

constraints. Such analyses would reveal both direct and indirect effects of 

policy measures due to resource redistribution among alternatives and other 

management changes. If risk preferences are considered, a risk analysis can be 

conducted.  

Our approach offers multiple methodological advances. It overcomes the 

curse of dimensionality of a binomial (trinomial) scenario tree. The 

constructed asymmetric scenario tree reflects the underlying distribution, 
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while values are not exploding and the number of leaves is restricted. In 

contrast to LSMC, our approach can be applied efficiently to problems of 

greater complexity. Once resource endowments and other constraints are 

considered the LSMC requires a numerical method to solve each Monte Carlo 

path backwards for each stage, starting from the last one. If the size of the 

investment project is a decision variable as well, the LSMC requires an 

additional sensitivity analysis with respect to project size. Generating payoffs 

for all potential combinations of exercising time points and Monte Carlo runs 

can be numerically demanding if a programming approach is needed, a 

process that must be programmed as well. Once it becomes necessary to use a 

programming approach to determine the NPV of a single Monte Carlo run, 

potentially conditional of exercising an option at a pre-determined stage. We 

find it more straightforward to use stochastic programming directly. Instead 

of approximating the payoff matrix with a regression function as in LSMC, we 

approximate the Monte Carlo fan based on tree reduction, which is more 

transparent. Furthermore, as our case study demonstrates, the approach is 

rather general. It is able to value complex compound options, such as choosing 

the best combination from a portfolio of different investments that interact or 

problems where the number of stages is not pre-determined. There are no 

restrictive methodological requirements associated with our approach. 

Indeed, any underlying stochastic process can be assumed as long as it is 

possible to run Monte Carlo simulations and construct a reduced scenario 

tree. The number of stages is not limited either, unless the relationships 

between stages cannot be captured with equations. The time horizon is a 

model parameter and its choice is not restricted. European options can be 

valued using our approach in a similar way as an American option. Our 

approach is suitable for comprehensive sensitivity, policy and risk analyses, 

while representing outcomes in a transparent and intuitive manner.    

There are three issues that deserve additional attention. First, an 

exploding stochastic process cannot be assumed, since a Monte Carlo 

simulation might quickly lead to unrealistic values. For instance, Geometric 

Brownian Motion and Arithmetic Brownian Motion—common assumptions 

used in the literature for estimating stochastic biomass price (Kallio et al. 

2012; Di Corato et al. 2013)—explode by simulating over multiple time 

periods. Since such simulation values are not plausible, this limitation refers 

to the assumption itself, rather than the approach. Another issue that requires 

further research is the choice of leaf number. As mentioned above, there is no 

well-established procedure to determine optimal leaf number. Finally, the 

appropriate risk-adjusted discount rate applied to a scenario tree should 

differ from the risk-adjusted discount rate applied to the underlying asset, 
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because a tree does not correctly represent the underlying volatility (Lander 

and Pinches 1998, p. 553). In addition and as mentioned above, trees are 

characterized by decreasing risk approaching the leaves. Therefore research 

could explore methods for determining the appropriate risk-adjusted discount 

rate for a scenario tree. 

2.7. Conclusion 

The existing methods of real options valuation fail to capture the complexity of 

large, real-world investment projects consistently. This limitation leads to 

reluctance to employ real options theory for investment analysis. In this paper 

we present a numerical method for the valuation of real (compound 

American) options that combines and benefits from an intuitive scenario tree 

approach and LSMC—two well-known approaches for the valuation of 

American options. Our approach overcomes the curse of dimensionality, does 

not require additional assumptions about the functional form of the 

Lagrangian, and ensures computational efficiency by restricting the solution 

domain. In addition, our approach and the results obtained are very 

straightforward and comprehensible. 

The proposed approach can be summarized in four main steps. First, 

define the decision variables of the problem. Second, establish the relations 

among these decision variables, including lagged relations between time 

points, and combine them into a deterministic programming model. Third, 

choose an appropriate distribution for stochastic parameter(s), run Monte 

Carlo simulation scenarios and construct a reduced scenario tree with 

probabilities from them by employing a scenario tree reduction technique. 

Finally, employ stochastic programming for the real options valuation step. 

The results obtained consider both timing and the depth of exercising options. 

Timing is represented by the optimal investment decision at each given node 

of the scenario tree and at subsequent nodes with assigned probabilities. 

Depth is reflected by the optimal scale of exercising an option, taking into 

account opportunity costs, returns-to-scale, resource endowments, and other 

constraints. Our approach is also suitable for comprehensive sensitivity, policy 

and risk analyses, while representing outcomes in a transparent and intuitive 

way. 

We illustrate the approach in a case study context of biomass energy 

production using SRC management in Germany, demonstrating valuation of 
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the options to adopt, harvest, and conversion of perennial energy crop 

systems at the farm-level. The empirical model differs from existing 

investment analyses of perennial energy crop cultivation by a number of 

simultaneously relaxed assumptions. In particular, we allow full flexibility in 

planting and harvesting, consider alternative land uses, as well as consider 

resource endowments and other constraints. The empirical results from the 

model are consistent with both real options theory and the observed 

reluctance among farmers in Germany to adopt the cultivation of perennial 

energy crops. Due to relaxed assumptions, we obtain more plausible results 

and reveal additional incentives for perennial energy crop cultivation, in 

particular the redistribution of resources among alternatives. The proposed 

model can be further improved by considering a greater number of alternative 

activities and farm constraints, as well as by the introduction of multiple risks 

and risk preferences. Our approach can be employed in various applications, 

being especially advantageous for real options valuation, where not only 

timing, but also the scale and interactions among constraints and alternatives 

matter. 
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2.9. Appendices 

Appendix 2.1. 

Table 2.2. Data and model parameters 

Parameter Units Assumed value 

Short-Rotation Coppice 

Labor requirements 
Hours per hectare (h 

ha-1) 
0.00 

Planting costs 
Euro per hectare (€ 

ha-1) 
2,875.00 

Biomass growth function   

Multiplier for last year’s biomass - 1.54 

Constant increase per year 
Tonnes per hectare (t 

ha-1) 
6.68 

Harvesting costs   

Fixed costs at farm level € 66.75 

Quasi-fixed costs per hectare € ha-1 272.13 

Variable costs, depending on € t-1 10.67 
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harvest quantity 

MRP for logarithmic output price 
(ln 𝑃𝑡) 

  

Starting value - 3.92 

Mean value - 3.92 

Speed of reversion - 0.22 

Variance of Wiener process - 0.22 

Reconversion costs € ha-1 1,400.00 

Tree density ha-1 9,000.00 

Other farm activities 

Net annual cash flow from 
traditional land use 

  

Winter wheat € ha-1 537.15 

Winter rapeseed € ha-1 460.64 

Set-aside € ha-1 –50.00 

Labor requirements14   

Winter wheat h ha-1 5.32 

Winter rapeseed h ha-1 4.16 

Set-aside h ha-1 1.00 

Farm characteristics 

Land area ha 100.00 

Labor availability15 h 455.00 

Real risk-free discount rate % 3.87 

Sources: Faasch and Patenaude (2012); Musshoff (2012); Pecenka and Hoffmann (2012); 

Schweier and Becker (2012); Wolbert-Haverkamp (2012); KTBL (2012); StatA-MV (2016) 

Two elements of parameterization deserve further attention. First, take the 

yield function from Ali (2009), introduce some required parameters and 

                                                      

 

14 Only includes field work, excluding work associated with management, which is assumed to 

be limited per farm and hence has no effect on resource distribution. 

15 Based on the assumption that initially 47.5% of land area is devoted to winter wheat, 47.5% 

to winter rapeseed, and 5% is set-aside. This composition excludes management and off-farm 

work; both of which are assumed to be limited at the farm level and hence have no effect on 

resource distribution. 
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regress a linear function for biomass stock that depends on previous year’s 

stock. Second, based on Schweier and Becker (2012) and Pecenka and 

Hoffmann (2012) we derive harvest costs separated by (a) farm level (fixed) 

costs and (b) per hectare (quasi-fixed) costs, plus (c) costs per metric tonne of 

harvested biomass (variable), in order to consider economy of scale. 

 
Appendix 2.2.  

 

Figure 2.3. Comparison of solving time (for seven price scenarios) and 

mean expected area under SRC between a model with 500 leaves and 

models with fewer scenario tree leaves. Solving time for each price 

scenario is restricted to 20 hours.  
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* This chapter was published as Spiegel, A., Britz, W., Djanibekov, U., and Finger, R. (2018): 

Policy analysis of perennial energy crop cultivation at the farm level: short rotation coppice 

(SRC) in Germany. Biomass and Bioenergy 110, 41–56. 

 

 

 

Chapter 3 

Policy analysis of perennial energy crop 

cultivation at the farm level: short rotation 

coppice (SRC) in Germany* 

Abstract 

Perennial energy crop production methods such as short rotation coppice 

(SRC) have gained interest among farmers and policy makers. SRC is 

characterized by rapid biomass production, low inputs, and high managerial 

flexibility. SRC plantations also provide environmental advantages relative to 

annual crop production and contribute to the transition towards renewable 

energy. Yet, the combination of high sunk costs and high uncertainty hampers 

SRC adoption among farmers. Policy instruments currently implemented to 

foster SRC adoption exhibit limited success. In this paper we assess the 

performance of different policy measures intended to stimulate SRC adoption 

in terms of efficiency and farm-level effects, taking into account related 

uncertainty. We use a combination of stochastic programming and the real 

options approach in our model featuring SRC poplar cultivation in Germany. 

We analyze four policy measures intended to foster SRC adoption: an 

establishment subsidy, a price floor, a guaranteed price, and increasing the 

“Ecological Focus Area” (EFA) value for SRC systems within the European 

Union Common Agricultural Policy. Our results indicate that a guaranteed 

price can stimulate immediate SRC adoption; however, it is inferior to the 
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other instruments in other dimensions. An establishment subsidy as recently 

implemented in the study area might incentivize farmers to adopt SRC by 

contributing substantially to farm income, but should be modified because it 

may encourage postponement of SRC adoption. Increasing the EFA coefficient 

and a price floor are more efficient measures in terms of governmental 

expenditures, while having limited positive effects on bioenergy produced. 

Keywords:   Biomass; policy regulation; real options; stochastic 

programming; uncertainty. 

3.1. Introduction 

In light of increasing global energy demand and concerns about greenhouse 

gas contributions to climate change, renewable energy sources are becoming 

increasingly important, including bioenergy sources (Rose et al. 2014). In the 

European Union (EU) the demand for biomass energy is expected to increase 

by 19.8% by 2020 (IRENA 2017, p. 64–67) in order to meet renewable energy 

targets. The largest share of this increase is expected to be satisfied with solid 

biomass, including woody biomass (Scarlat et al. 2015, Fig. 4). A major 

advantage of biomass energy over solar and wind is its dispatchability (i.e., the 

ability to produce energy resources when and where they are necessary) 

(Thiffault et al. 2016, p. 174). Biomass is therefore considered to be a major 

contributor to balancing renewable energy supply and demand in emerging 

energy systems that rely heavily on solar and wind power (Tafarte et al. 

2015). In the EU the transition process towards increased production and use 

of renewable energy sources is strongly supported by policy. Existing biomass 

energy programs focused on traditional annual crops such as maize or 

rapeseed, however, have considerable environmental and financial costs 

(Britz and Hertel 2011; Britz and Delzeit 2013). In contrast, short rotation 

coppice (SRC) offers a more environmentally friendly and economic means to 

source woody biomass. Ebers et al. (2016, p. 68) distinguish between socio-

economic, ecological, and environmental advantages of woody biomass 

production. Perennial crop production via SRC is characterized by reduced 

soil erosion and increased biodiversity and overall landscape diversity 

relative to annual energy crops (Rokwood 2014, pp. 5–6; Adams and 

Lindegaard 2016, Fig. 1). Due to its positive effects on soil fertility, Tolbert et 

al. (2002, p. 105) suggest that SRC could be applied to increase yields of 

subsequently cultivated crops. In addition, SRC is considered carbon neutral 
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because the amount of atmospheric carbon assimilated during growth is 

converted to energy (Heller et al. 2003, p. 154; Kern et al. 2010, p. 1458); with 

poplar (Populus spp.) and willow (Salix spp.) being the most efficient carbon 

sinks among SRC tree species (Adler et al. 2007, p. 682). Moreover, SRC is 

suitable for a spectrum of soils in terms of productivity, including marginal 

soils (Bringezu 2010, p. 76), which can reduce competition with the 

production of annual crops and related food and feed production trade-offs 

(Don et al. 2012, p. 387). Once established with fast growing trees, SRC 

systems can be coppiced several times at intervals between two and five years 

(for wood chip production) before clear cutting at approximately 20 years 

when they can be replaced with annual crops (Federal Forests Act 1975). 

Farmers can adjust the timing of SRC harvests to market and farm conditions, 

such as harvesting during winter when on-farm labor resources are more 

available and thus avoid competition for farm labor resources with other 

activities (Faasch and Patenaude 2012). 

Studies in Scotland (Warren et al. 2016), Germany (Musshoff 2012; 

Schweier and Becker 2013; Kostrova et al. 2016), Sweden (Dimitriou et al. 

2011), and Latvia (Abolina and Luzadis 2015) have shown that farmers are 

often reluctant to adopt SRC despite its many advantages. In Germany SRC is 

practiced on only about 50–70 km2 (Bemmann and Knust 2010; von Wühlisch 

2016; FVH 2017) out of over 20,000 km2 of potential production area (Aust et 

al. 2014). In the UK approximately 100 km2 are currently dedicated to energy 

crop production out of an estimated range of 9,300–36,300 km2 of suitable 

land (DECC 2013, p. 28). Considerable profit uncertainties due to volatile 

energy (i.e., woody biomass output) prices combined with high establishment 

and subsequent reconversion (i.e., sunk) costs have been identified as the 

major obstacles to SRC adoption (Hauk et al. 2014; Wolbert-Haverkamp and 

Musshoff 2014). 

In order to increase the adoption of perennial bioenergy crop 

production using practices such as SRC, a large set of policy instruments have 

been proposed and discussed (Mola-Yudego and Aronsson 2008; Faasch and 

Patenaude 2012; Hauk et al. 2014; Witzel and Finger 2016). Existing policy 

instruments supporting SRC and the production of other perennial bioenergy 

crops (e.g., switchgrass [Panicum virgatum] and Miscanthus spp.), as well as 

more general policy measures intended to reduce uncertainty that inhibits 

farmer investment in perennial biomass energy production can be classified 

into: (i) cross-sector instruments such as taxation or quotas for fossil energy 

use (Mitchell 2000), (ii) investment in research and development (Witzel and 

Finger 2016), and (iii) farm-level policy measures. It is argued that policies 



 

55 

 

 

intended to increase the competitiveness of SRC over alternative land uses, 

and reducing risk burden could facilitate SRC adoption (Rokwood 2014; 

Abolina and Luzadis 2015; Adams and Lindegaard 2016). To the best of our 

knowledge, however, a structured comparison of different policy instruments 

with regard to their performance (e.g., related governmental expenditures), 

outcome (e.g., energy output), and farm-level effects (e.g., income) considering 

uncertainty does not exist. We attempt to fill this research gap by using a 

farm-level analysis that assesses different policy approaches intended to 

increase SRC adoption. Our normative analysis focuses on farm-level policy 

instruments and provides policy makers with the necessary basis for 

subsequent analysis at greater scales and across sectors. We simulate and 

assess policy interventions on a typical farm in northern Germany, a highly 

suitable region for SRC cultivation and an area where there is considerable 

interest in fostering SRC adoption among policy makers. We analyze four 

relevant policy measures: (i) environmental requirements within the Common 

Agricultural Policy (CAP) of the EU (Lindegaard et al. 2016) (which favors SRC 

over conventional annual crops), (ii) SRC establishment subsidies (which 

were recently introduced in our study area) (MLU-MV 2015), and (iii) 

guaranteed prices (Mitchell et al. 2006; Feil et al. 2013) and (iv) price floors 

(Feil et al. 2012) for SRC biomass. We incorporate the importance of risks for 

farmer investment decisions relevant to SRC adoption using a combination of 

the real option approach and stochastic programming. Our framework allows 

analysis and comparison of policies effects across various dimensions, 

including additional bioenergy production, governmental expenditures, and 

farmer income (Crabbé and Leroy 2012, p. 5). 

3.2. Methodology and Data 

3.2.1. Characteristics of SRC and the resulting simulation 
model 

SRC is a long-term management option for the production and harvest of 

woody biomass from fast growing tree species. Due to its long-term nature 

SRC binds land resources for a much longer time period than most alternative 

land uses; although SRC plantations can be clear-cut at any time, triggering 

sunk costs and thus partial irreversibility of investments made. Unlike annual 

crops, the establishment and harvest schedule for SRC systems is not 

predefined and can be adjusted to suit market and farm conditions. Similar to 

other crop production systems, there is spatial flexibility: a farmer can decide 
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how much land to convert to SRC and later either expand or revert to previous 

land uses. Therefore, SRC production is characterized by: (i) sunk costs related 

to establishment and harvest; (ii) temporal and spatial flexibility related to 

establishment, harvest and reconversion; and (iii) risk throughout SRC 

production cycles. These three aspects imply the existence of an option value 

(i.e., potential incentives for a farmer to wait and make investment decisions 

in response to future states-of-nature (Pindyck 2004, p. 199), which is 

captured by real options theory. The conceptual advantages of the real options 

theory over the classical net present value (NPV) approach for analysis of SRC 

adoption is also supported in the literature (Hauk et al. 2014; Fleten et al. 

2016). To date, the real options approach has been employed to analyze policy 

interventions supporting renewable energy on the national level (Boomsma et 

al. 2012; Haar and Haar 2017). In contrast, we simulate SRC management 

decisions under different policy instruments at the farm level. 

Our analysis features a farm composed of plots with predefined sizes 

and a total area of 100 ha. The farmer makes decisions about the management 

of each plot; essentially whether or not to convert it to SRC. We assume that 

the area under SRC is not fractional, but rather based on five-hectare 

increments (i.e., 0, 5, 10, …, 100 ha). Establishment of SRC systems on each 

plot is considered an option that can either be postponed for a maximum of 

three years or else never exercised. Harvests can be conducted every two to 

five years after establishment or the previous harvest. The maximum age of a 

SRC plantation is 20 years, although reconversion back to annual crops is an 

option at any time interval after establishment. The total time horizon 

considered is 24 years (Fig. 3.1). Our model takes into account the full 

flexibility of SRC management: (i) the ability to postpone a decision to 

establish SRC plantation on each plot, (ii) the potential to invest in variable 

sized plantations, (iii) the ability to convert plantations to other land uses 

before the end of a plantation’s production cycle, and (iv) flexibility with 

respect to harvest intervals.  

Resources not used for SRC management can be devoted to other farm 

activities (as fractional shares). Constraints capture competition for land and 

labor endowments between SRC and alternative land uses: two annual crops, 

one of which is more labor intensive and profitable than the other, as well as 

the options to set-aside land or cultivate short cycle catch crops. The latter 

two options are introduced to fulfill “Ecological Focus Area” (EFA) 

requirements according to the latest CAP reform (Zinngrebe et al. 2017). 

According to this requirement, arable farms must devote 5% of farmland to 

land uses that qualify towards EFA (BMEL 2015). In order to meet this 
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requirement set-aside land is fully valued (e.g., 1.0) based on area, whereas 

the area of SRC land or combined catch and annual crop cultivation is valued 

at a factor of 0.3 (Péer et al. 2016). Catch crops are planted in the winter 

(Hauk et al. 2014), therefore it is assumed that they do not compete with 

annual crop production for land and labor resources. Likewise, it is assumed 

that SRC harvests do not to compete with annual crop production for labor 

because they take place in winter and are usually outsourced (Musshoff 2012). 

Fig. 3.1 provides a visual representation of competition among different farm 

activities in our model over the considered time horizon. A farmer maximizes 

expected NPV over 24 years subject to three types of constraints: (i) resource 

endowments, (ii) EFA requirements, and (iii) managerial constraints related 

to SRC management. 

 
Figure 3.1. Overview of the dynamic farm-level model. 

We assume that SRC output prices and annual crop gross margins are 

stochastic and follow a mean-reverting process (MRP) in logarithmic form. 

Note that risks related to annual crop production are not specified in detail, 

but are summarized using a general proxy for stochastic gross margins, which 

represents the opportunity costs of SRC management. Since a farmer has no 

flexibility with respect to the harvest of annual crops, further specification of 

annual crop gross margins or set-aside land would have no influence on 

farmer behavior. For simplicity and clarity, we only model one stochastic 

process for the annual crop gross margin based on a single MRP. The 

simulated level for each node in the scenario tree is then modified with a 

multiplicative fixed factor for each of the two annual crop options. A 

correlation coefficient between SRC biomass price and alternative crop gross 

margins enters the stochastic processes as presented in equation (3.1) 
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(Schwartz and Smith 2000, p. 896). We consider a correlation between SRC 

biomass prices and annual crop gross margins due to the fact that global 

competition for land and other land-use inputs results in correlation of output 

prices for energy and annual crops (Fritsche et al. 2010; Song et al. 2011, p. 

770). In addition, prices for bioenergy crops and the costs of annual crop 

cultivation are positively correlated because energy prices impact the prices 

of intermediate inputs such as diesel and agro-chemicals. The correlation 

coefficient is included as follows: 

 𝑑𝑝𝑡 = 𝜇𝑆𝑅𝐶(𝜃𝑆𝑅𝐶 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑆𝑅𝐶𝑑𝑊𝑡
𝑆𝑅𝐶  

𝑑𝑔𝑚𝑡 = 𝜇𝐶(𝜃𝐶 − 𝑔𝑚𝑡)𝑑𝑡 + 𝜌𝜎𝐶𝑑𝑊𝑡
𝑆𝑅𝐶 + √(1 − 𝜌2)𝜎𝐶𝑑𝑊𝑡

𝐶 

(3.1) 

where 𝑡 represents years; 𝑆𝑅𝐶 stands for short rotation coppice; 𝐶 is for 

annual crops; 𝑝𝑡 is the natural logarithm of SRC biomass price; 𝑔𝑚𝑡 is the 

natural logarithm of  annual crop gross margins; 𝜇𝑆𝑅𝐶  and 𝜇𝐶  represent the 

speed of reversion of the stochastic process; 𝜃𝑆𝑅𝐶  and  𝜃𝐶  represent the long-

term logarithmic mean SRC biomass price and annual crop gross margin 

respectively; 𝜎𝑆𝑅𝐶  and 𝜎𝐶  are volatilities of logarithmic SRC biomass price and 

annual crop gross margins respectively; 𝑑𝑊𝑡
𝑆𝑅𝐶  and 𝑑𝑊𝑡

𝐶  are standard 

independent Brownian motions; and 𝜌 is the correlation coefficient between 

Brownian motions.  

The solution consists of three steps. First, we simulate Monte Carlo 

draws for the stochastic parameters (i.e., SRC biomass price and annual crop 

gross margins). The two stochastic processes for each draw yield both a SRC 

biomass price and an annual crop gross margin that are assigned to the nodes 

of the scenario tree (Fig. 3.2). Next, we reduce the obtained scenario tree with 

up to 200 leaves using SCENRED2 (GAMS 2015; Kostrova et al. 2016, pp. 8–9). 

The scenario tree reduction assigns a probability of occurrence and specific 

related values for the stochastic SRC biomass price and gross margins of the 

competing annual crops to each node of the reduced scenario tree. Finally, we 

solve the resulting stochastic dynamic problem in order to obtain the optimal 

solution with and without policy intervention (Fig. 3.2). We use a mixed 

integer programming farm-level model due to various if-then type binary 

decisions inherent to our problem. In order to avoid introducing non-

linearities in addition to binary variables, we do not treat land area under SRC 

as fractional. The dynamic stochastic programming approach is solved 

simultaneously over 24 years, considering different potential developments 

with respect to SRC biomass prices and gross margins of competing crops. The 

model code and documentation are available online (Spiegel et al. 2017). 
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Figure 3.2. Step-by-step solution approach and employed software. 

3.2.2. Case study and data 

Our case study is based on a typical arable farm in northern Germany. The 

existing policy framework to support SRC establishment in this region 

comprises three measures. First, SRC plantations are recognized as agriculture 

and benefit from direct CAP payments along with annual crop production 

areas. Direct payments are made to farmers regardless of the agricultural land 

use and therefore do not influence land-use decisions, so these are not 

included in the model analysis. Second, although SRC plantations qualify 

towards EFA requirements, currently the value of land under SRC 

management in Germany is equal to 0.3 relative to the value of conservation 

set asides (Péer et al. 2016). Third, since 2015 SRC plantation establishment 

costs are subsidized with payments of 1,200 € ha–1 (Appendix 3.2). While 

many fast-growing tree species may be used in SRC systems, we focus our 

analysis on poplars since they are among the most popular SRC species in the 

EU, particularly in Germany (Hauk et al. 2014, p. 406). The model can easily be 

adjusted for other trees such as willow species (see Djomo et al. [2011] and 

Hauk et al. [2014] for economic comparisons of SRC poplar and willow 

plantations). In Germany the typical end product of SRC biomass is wood chips 



 

60 

 

 

(Keutmann et al. 2016, p. 315). We convert harvested SRC biomass values into 

thermal energy values, assuming a gross calorific value of 16.40 GJ t–1 (ECN 

2017) and subtract the amount of energy that annual crops would have 

absorbed if they were cultivated on the same SRC area: 40.00 GJ ha–1 y–1 

(Twidell and Weir 2015) (Appendix 3.1). The calorific value of SRC biomass 

depends on multiple factors, including; tree genotype (Klasnja et al. 2002; 

Sabatti et al. 2014), soil quality (Rodrigues et al. 2017), and tree age (Klasnja 

et al. 2002). In our model settings a different value would lead to 

multiplicative down- or up-scaling of the outcome without influencing farmer 

behavior. We also assume that farmers are paid for bioenergy according to dry 

matter yields (i.e., per tonne as opposed to derived gigajoule) and account for 

yields in tonnes, therefore, we convert dry matter yields to gigajoules based 

on model results. 

The MRP for SRC biomass prices is adopted from Musshoff (2012). The 

MRP parameters for annual crop gross margins were estimated using CAPRI 

model data (CAPRI 2017) on mean gross margins per hectare of arable land in 

Germany over 1993–2012, following the procedure described in Musshoff and 

Hirschauer (Musshoff and Hirschauer 2004, pp. 271–273). The two stochastic 

processes are summarized in Table 3.1 and Appendix 3.1. There are 

ambiguous findings on the sign and magnitude of correlation between SRC 

biomass price and annual crop gross margins. Du et al. (2011) quantified the 

correlation between the volatility of global crude petroleum and wheat and 

maize prices as 0.07–0.34. Musshoff and Hirschauer (2004) estimated the 

correlation between the gross margins of non-food rapeseed and other annual 

crops to range from –0.01 to 0.65. Diekmann et al. (2014) assume a 

correlation coefficient between the gross margins of Miscanthus and wheat of 

0.29. We therefore consider both a positive and a negative correlation 𝜌 of 

±0.2 (Eq. 3.1) between the two Brownian motions and compare the results 

(hereafter referred to as positive and negative correlations). The gross 

margins obtained from the respective stochastic process enter the model with 

multiplicative factors of 1.05 for the more profitable crop and 0.95 for the 

lesser one.  
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Table 3.1. Parameters of the two stochastic processes.  

 Parameters of the mean-reverting process for 

 Natural logarithm of SRC 
biomass price 

Natural logarithm of gross 
margins of annual crops 

Starting value 3.92a 6.02b 

Long-term mean 3.92a 6.02b 

Speed of reversion 0.22 0.32 

Standard deviation 0.22 0.28 

MRP coefficient for a more 
labor intensive and 
profitable crop 

 1.05 

MRP coefficient for a less 
labor intensive and 
profitable crop 

 0.95 

Correlation coefficient between MRPs for SRC prices and gross margins of annual annual crops 
is +/– 0.20 

a Equivalent to dry matter price of 50 € t–1 

b Equivalent to gross margin of 413 € ha–1 

Note: Starting values are equal to the long-term mean in order to exclude any possible effect of a 

trend. Data sources: Musshoff (2012); CAPRI (2017). 

The assumed parameters of the model are summarized in Table 3.2 and 

Appendix 3.1. The gross margins are assumed to be –100 € ha–1 for catch 

crops (de Witte and Latacz-Lohmann 2014, p. 37) and –50 € ha–1 for set-aside 

land (CAPRI 2017). The yield function for SRC biomass follows Ali (2009) as a 

linear function for biomass stock dependent on the previous year’s stock. The 

harvest cost function includes all costs related to SRC harvests (e.g., additional 

transaction costs for finding a contractor, fertilization and storage), and is 

expressed as a sum of farm (fixed), per hectare (quasi-fixed), and per tonne of 

harvested biomass (variable) costs in order to consider economy of scale (Ali 

2009; Schweier and Becker 2012). We apply an annual social discount rate of 

zero due to the fact that almost zero interest rates are currently available in 

Germany (ECB 2017) such that governmental expenditures are not 

discounted. For simplicity and clarity of our analysis, we assume risk 

neutrality among farmers and use an annual market discount rate of 3.87% y–1 

(Musshoff 2012). Previous studies suggest that an option value to wait also 

exists under risk neutrality as investment decisions are time dependent on 

evolving conditions in order to maximize overall returns (Dixit and Pindyck 

1994, p. 153) and risk neutrality is a common assumption in existing real 

options applications (Dixit and Pindyck 1994; Wossink and Gardebroek 2006; 
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Song et al. 2011). A frequently used approach for considering risk preferences 

in dynamic stochastic models is to move from a market-based to a risk-

adjusted discount rate (Musshoff 2012; Wolbert-Haverkamp and Musshoff 

2014). However, risk varies at each node of the tree in our analysis (e.g., risk 

decreases approaching the final leaves), such that different risk-adjusted 

discount rates for each time period and state-of-nature would be needed 

(Brandão and Dyer 2005; Finger 2016). Also, as the alternatives to SRC are not 

risk-free, the risk-adjusted discount rates would need to vary according to the 

endogenously chosen land uses (i.e., for SRC and annual crops) (ibid.). 

Alternatively, risk preferences can be captured by introducing a risk utility 

function (Ewald and Yang 2008), controlling for conditional value-at-risk 

(Beraldi et al. 2013), or applying the concept of stochastic dominance 

(Kuosmanen 2007). Any option requires making additional assumptions, 

including choice of a risk measure (Kuosmanen 2007; Shapiro 2012; Homem-

de-Mello and Pagnoncelli 2016), and might significantly affect computational 

efficiency. 

Table 3.2. Parameters of the model simulation. 

Parameters Units 
Assumed 

values 
References 

Short rotation coppice 

Establishment costs 
euro per 
hectare (€ 
ha–1) 

2,875.00 
Musshoff 
(2012) 

Dry matter growth function    

Multiplier for previous year’s biomass - 1.54 Ali (2009) 

Constant increase 

tonnes per 
hectare per 
year (t ha–1 y–

1) 

6.68 Ali (2009) 

Costs related to SRC harvests    

Fixed costs a farm level euro (€) 66.75 

Schweier and 
Becker (2012); 
Pecenka and 
Hoffmann 
(2012) 

Quasi-fixed costs for each plot  (€ ha–1) 272.13 

Schweier and 
Becker (2012); 
Pecenka and 
Hoffmann 
(2012) 
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Variable costs, depending on dry matter 
yields 

euro per 
tonne per 
hectare (€ t–1 
ha–1) 

10.67 

Schweier and 
Becker (2012); 
Pecenka and 
Hoffmann 
(2012) 

Reconversion costs  (€ ha–1) 1,400.00 
Musshoff 
(2012) 

Labor requirements 

hours per 
hectare per 
year (h ha–1 
y–1) 

0.00 
Musshoff 
(2012) 

Annual crops 

Deterministic net annual cash flow 
(gross margins) from crops recognized 
as EFA 

   

Set-aside land (EFA greening coefficient 
1.00) 

euro per 
hectare (€ 
ha–1) 

–50.00 CAPRI (2017) 

Catch crops (EFA greening coefficient 
0.30) 

euro per 
hectare (€ 
ha–1) 

–100.00 

de Witte and 
Latacz-
Lohmann 
(2014, p.37) 

Labor requirements    

A more labor intensive and profitable 
crop 

hours per 
hectare per 
year (h ha–1 
y–1) 

5.32 KTBL (2012) 

A less labor intensive and profitable 
crop 

(h ha–1 y–1) 4.16 KTBL (2012) 

Set-aside land (h ha–1 y–1) 1.00 KTBL (2012) 

Catch crops (h ha–1 y–1) 0.00 KTBL (2012) 

Farm characteristics 

Land endowment  (ha) 100.00*  

Step for adjusting SRC plantation (i.e., 
size of smallest plot) 

(ha) 5.00*  

Labor endowment 
hours per 
year (h y–1) 

500.00*  

Real risk-free discount rate 
percent per 
year (% y–1) 

3.87 
Musshoff 
(2012) 

Social discount rate (% y–1) 0.00 ECB (2017) 

Note: *data are based on own assumptions (Appendix 3.1). 
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3.2.3. Policy scenarios 

In our analysis we compare four policy instruments for promoting SRC 

adoption at different intensities (Table 3.3, Appendix 3.2) to a business-as-

usual (BAU) scenario where only the currently implemented EFA weighting 

coefficient of 0.3 (Péer et al. 2016) is applied. Two of the policies—introducing 

an establishment subsidy and increasing the EFA weighting coefficient—are 

chosen because they already exist and are proposed in literature (MLU-MV 

2015; Lindegaard et al. 2016). The remaining two policies—a price floor and a 

guaranteed price for SRC biomass—address SRC market risk, considered a 

major barrier to SRC adoption (Mitchell et al. 2006; Feil et al. 2012; 2013), and 

have been used to promote renewable energy production in the EU (Bakhtyar 

et al. 2017). Based on theoretical considerations and the existing literature, 

the policy instruments are expected to impact SRC adoption as follows. 

Increasing the EFA weighting coefficient should mitigate competition for land 

between SRC and annual crops, therefore lowering the opportunity costs of 

SRC systems (Dixit and Pindyck 1994, p. 346). An SRC establishment subsidy 

decreases the sunk costs of the investment (Dixit and Pindyck 1994, pp. 33–

35). A price floor increases the expected price of SRC biomass by removing 

downside risk (Feil and Musshoff 2013). Additionally, a guaranteed price 

removes upside risks related to the price of SRC biomass and leaves the 

annual crop gross margins as stochastic variables in the model. This decreases 

incentives to delay implementation and renders the model more similar to a 

classical NPV approach. The stochastic annual crop gross margins impact the 

opportunity costs of land and labor, and thus create a potentially positive 

option value related to SRC cultivation (Dixit and Pindyck 1994, pp. 38–39). 
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Table 3.3. Policy instruments, intensities and related governmental 

expenditures chosen for the analysis. 

 
Intensities 

Governmental 
expenditures 

Schedule of 
policy support 

B
A

U
 

EFA weighting 
coefficient, (0;1) 

0.3 - - 

P
o

li
cy

 i
n

te
rv

e
n

ti
o

n
s 

Increasing the 
EFA weighting 
coefficient, (0;1)  

0.5; 0.7; 1.0 - - 

Planting subsidy, 
euro per hectare 
(€ ha-1) 

500; 1,000; 
1,200; 1,500 

Establishment subsidy 
multiplied by land area 
devoted to SRC 

Paid once SRC 
established 

Guaranteed SRC 
dry matter price, 
euro per ton (€ 
t-1) 

50; 55; 60 

Difference between 
guaranteed price and 
market price multiplied 
by harvested SRC 
biomass 

Paid for each 
harvest 

Price floor for 
SRC biomass (€ 
t-1) 

40; 45; 50 

If the difference 
between price floor and 
market price is positive, 
this difference is 
multiplied by harvested 
SRC biomass dry matter 

Paid for each 
harvest if 
market price 
falls below price 
floor 

Note: BAU = business-as-usual (baseline scenario); EFA = Ecological Focus Area 

 

The EFA weighting coefficient considers a range starting from the 

currently granted factor of 0.3 under the BAU to a maximum of 1.0 (i.e., to a 

point where one hectare of SRC production would be treated equally to one 

hectare of set-aside land). For the different subsidy levels, we focus our 

assumptions on recently implemented support measures in the case study 

region. Specifically, if the total SRC establishment investment exceeds 7,500 €, 

up to 40% and a maximum of 10 ha are subsidized at a rate of 1,200 € ha–1 per 

farm (MLU-MV 2015) (Appendix 3.2). For simplicity we ignore any existing 

requirements and constraints for the establishment subsidy, but consider 

different subsidy levels. A guaranteed price as a supportive policy instrument 

only makes sense at or above the long-term mean SRC dry matter price used 

in the Monte Carlo analysis (50 € t–1), therefore, we have chosen 50 €, 55 €, 

and 60 € t–1 as subsidy levels. Similarly, in order for a price floor to reduce 
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downside risk it should be below the expected mean, therefore, we have 

considered 40 €, 45 €, and 50 € t–1 in our analysis. 

We assess the policy instruments based on the metrics proposed by 

Crabbé and Leroy (Crabbé and Leroy 2012, p. 5): (i) policy performance 

(expressed by associated governmental expenditures); and (ii) policy outcome 

(expressed by additional biomass produced at the farm level). In addition, we 

assess: (iii) the effect on farm income, and (iv) how efficiently the 

governmental expenditures are transformed into additional farm income. The 

production of SRC biomass and farm income are simulated directly by the 

model, governmental expenditures are calculated as follows: the 

establishment subsidy granted per hectare is multiplied by the area converted 

to SRC; the amount of harvested SRC biomass is multiplied in each state-of-

nature and year by the difference between the price floor and the market 

price, if the latter undercuts the price floor. The latter condition is dropped for 

a guaranteed price such that expenditures at each node and in sum might be 

positive or negative. Finally, we assume no governmental expenditures for 

changing the EFA weighting coefficient. Appendix 3.2 provides further details, 

including mathematical representation of governmental costs. 

The effect on farm income is calculated as a difference in the NPV of (i) 

the overall farm with a policy instrument in place and (ii) under the BAU 

scenario. The ratio between the absolute change in farm income and 

governmental expenditures provides the policy instrument’s transfer 

efficiency (i.e., how much farm income is generated from each euro of 

governmental expenditures).   

3.3. Results 

In the BAU scenario, assuming a positive correlation of 0.2 between the price 

of SRC biomass and annual crop gross margins, a farmer is expected to 

implement SRC on 5.6 ha (Appendix 3.3). The implementation of SRC is not 

exercised immediately, but rather once market conditions are attractive 

enough to justify the investment (i.e., in later time periods when the highest 

expected net returns can be generated). The probability of implementing SRC 

is 60.8% in the first three years after the initial time period. Postponing the 

decision to implement SRC in order to benefit from new information on prices 

and gross margins reflects a positive option value.  
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Results under both the BAU and policy scenarios are not overly sensitive 

with respect to the correlation coefficient between SRC biomass price and 

annual crop gross margins (Fig. 3.3). However, under a negative correlation 

coefficient SRC is a better risk hedging strategy and thus creates slightly 

greater incentives for SRC and higher farm income (BAU scenario results in 

Appendix 3.3). Consequently, a guaranteed price, which reduces the hedging 

effect, performs much worse under a negative correlation relative to the BAU 

scenario (Fig. 3.3). 

 
Figure 3.3. Efficiency of different policy instruments in terms of expected 

mean changes in energy production and governmental expenditures. 

Note: TJ represents Terajoules; k€ represents one thousand euro; € ha–1 represents euro per 

hectare; and € t–1 represents euro per tonne. Values indicate change relative to the business-as-

usual scenario, assuming positive or negative correlation between biomass prices and 

agricultural crop gross margins. The intensity of the policy instruments (Table 3.3) is indicated 

next to the corresponding points. 

Our results reveal that the performance of a policy instrument is 

dependent on its intensity and varies by metric. An establishment subsidy 

leads to the highest expected mean absolute increase in thermal energy 

produced from biomass, while a guaranteed SRC dry matter price floor of 50 € 

or 55 € t–1 reduces expected energy production (Fig. 3.3). The latter can be 

explained by the elimination of stochasticity with respect to biomass price, 

substantially reducing managerial flexibility to adjust SRC plantation and 

harvests according to states-of-nature. While a guaranteed price might seem 

to be the least efficient incentive, it is the only policy instrument that 

stimulates immediate SRC implementation because it reduces incentives to 

postpone. The effects on thermal energy production of both higher EFA 

coefficients and a price floor are rather limited (Fig. 3.3). The limited impact of 
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increasing the coefficient may be due to the fact that the total EFA 

requirement for individual farms is only 5%. Accordingly, even the maximal 

implicit support level for SRC reached with a factor of unity is equivalent to 

only 5% of SRC land use relative to total farm area. Also, an EFA coefficient 

value of 1.0 is less efficient than 0.7 in terms of its effect on bioenergy 

production and land area under SRC (Table 3.4). This is caused by our 

assumptions on total land endowment and available plots for SRC 

implementation. Since the smallest plot is assumed to be five hectares, 

devoting this amount of area alone to SRC fulfills the EFA requirement with a 

coefficient of 1.0. However, ten hectares of SRC are needed to fulfill the EFA 

requirement if the coefficient is 0.7, whereas five hectares is insufficient. 

Therefore, SRC replaces set-aside land to fulfill environmental requirements 

with the greater EFA coefficient, yet it cannot compete for land resources with 

annual crops.  

With regard to governmental outlays, increasing the EFA coefficient 

represents a no-cost option. A high SRC establishment subsidy is the most 

expensive policy instrument; however, a high guaranteed price represents 

comparable governmental costs, while being much less efficient for increasing 

bioenergy production. The effect of different policy instruments on bioenergy 

production is not necessarily positive when risk is considered. As discussed in 

the example above, guaranteed prices eliminate upside risk, which otherwise 

can be exploited by farmers based on the possibility of postponing SRC 

implementation and adjustment of harvest timing. We therefore further 

compare policy instruments in terms of governmental expenditures per 

additional GJ of energy produced, distinguishing between positive and 

negative effects of policy instruments on bioenergy production (Fig. 3.4). The 

EFA coefficient is not considered because it does not affect costs and a 

guaranteed SRC dry matter price of 50 € t–1 in a situation where SRC is not 

implemented. Compared to all other instruments and intensity levels, price 

floors of 40 € and 45 € t–1 for SRC dry matter perform best (Fig. 3.4), however, 

there is a low probability (0.12 and 0.21 respectively) of an increase in energy 

production. An establishment subsidy of 500 € ha–1 requires similar 

governmental costs per unit increase in energy production, while the 

probability of success is at least double (0.45). In all of the simulated policy 

scenarios, less than 2 € GJ–1 are spent (Fig. 3.4), which is substantially less 

than required governmental expenditures according to the German 

Renewable Energy Act, which stipulates 9.17 € to 77.50 € GJ–1 for renewable 

energy from different sources (BMWi 2017, p. 12). 
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Figure 3.4. Probability of impacts resulting from governmental 

expenditures on change in energy production assuming positive 

correlation between biomass price and annual crop gross margins. 

Note: € GJ–1 represents euro per gigajoule; € ha–1 represents euro per hectare; and € t–1 

represents euro per tonne. For each policy instrument and scenario tree leaf, the total 

governmental expenditures are divided over the absolute difference in bioenergy production 

relative to the business-as-usual scenario and are combined with the probability of the leaf 

occurring. Outliers, defined as points lying outside 1.5∙IQR (interquartile range) from the first 

and third quartiles, are omitted. 

A price floor seems advantageous in terms of governmental 

expenditures, however, it is characterized by comparatively inefficient 

transformation of those expenditures into additional farm income (Fig. 3.5). 

Guaranteed biomass price exhibits a similar dynamic. In contrast, an 

establishment subsidy achieves a transformation efficiency of up to 90% 

(farmers earn 90 cent for each euro of governmental expenditure). This higher 

transformation efficiency of the establishment subsidy also reflects the 

difference between individual and social discount rates. The latter is assumed 

to be zero such that any future discount factor is unity. An establishment 

subsidy is paid in the year when SRC is introduced (i.e., between the first and 

fourth years of the simulation), such that the private discount factor is still 

close to unity and differs slightly from the social one. Compared to 

establishment subsidies, price floors and guaranteed prices shift 

governmental costs and related income increases for farmers in the future 

with higher private discount factors, such that the difference between social 

and private discounting alone reduces the transformation efficiency of these 

policy instruments. This demonstrates that if the private discount rate exceeds 
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the public one, a direct income transfer in the future cannot achieve a transfer 

efficiency of 100%. 

 
Figure 3.5. Transformation of governmental expenditures into farm 

income assuming positive or negative correlation between biomass 

prices and annual crop gross margins. 

Note: € ha–1 represents euro per hectare and € t–1 represents euro per tonne. The model results 

shown are for intervention effects relative to the business-as-usual scenario. Outliers, defined 

as the points lying outside 1.5∙IQR (interquartile range) from the first and third quartiles, are 

omitted. 

Policy instrument performance based on the different metrics is 

summarized in Table 3.4. A guaranteed price is the least effective instrument 

across all metrics, being beneficial only as a stimulus for immediate SRC 

establishment at high intensities/prices (Appendix 3.3). The other three policy 

instruments exhibit better performance. Increasing EFA coefficients is 

attractive from the standpoint that it does not represent additional 

governmental expenditure, however, its effect on bioenergy production is 

limited. The price floor option exhibits a similar dynamic. In contrast, 

establishment subsidy has the greatest effect on SRC implementation and farm 

income. 

Table 3.4. Overview of predicted policy instrument performance 

assuming a positive correlation between biomass price and annual crop 

gross margins. 
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Policy instrument performance 

(expected values compared with BAU scenario) 

Policy 
interventio

n 

Intensi
ty 

Effect on 
bioenergy 
productio

n (GJ) 

Governme
ntal 

expenditu
res per GJ 
increase 

in 
bioenergy 
productio

n  
(€ GJ–1) 

Effect on 
farm 

income 
(€) 

Farm 
income 

increase 
per euro 

of 
governme

ntal 
expenditu

res (€) 

Change in 
land area 
devoted 
to SRC 

(ha) 

Establishm
ent subsidy 
(€ ha–1) 

500 17,689.22 0.20 3,758.82 0.71 3.94 
1,000 35,697.37 0.39 9,116.07 0.66 8.00 
1,200 40,008.32 0.41 11,698.12 0.64 8.93 
1,500 59,152.11 0.44 16,199.09 0.60 13.34 

Guaranteed 
SRC 
biomass 
dry matter 
price, (€ t–

1) 

50 
–

30,197.50 
0.00 –8,441.67 −∞* –6.73 

55 –5,414.20 0.70 –2,830.71 0.29 –1.21 

60 10,971.94 0.97 2,826.29 0.51 2.45 

Price floor 
for SRC 
biomass 
dry matter 
(€ t–1) 

40 2,509.05 0.11 110.74 0.78 0.58 
45 2,711.58 0.25 248.55 0.50 0.60 

50 12,073.17 0.48 2,562.49 0.86 2.69 

Increasing 
EFA 
coefficient 

0.5 4,467.72 0.00 3,534.75 +∞** 1.00 
0.7 5,167.49 0.00 6,865.08 +∞** 1.15 
1.0 435.11 0.00 11,584.65 +∞** 0.10 

Notes: The results come from a negative (*) or positive (**) change in bioenergy production 

compared to the business-as-usual scenario results and no governmental expenditures. The 

best and worst results are highlighted in green and red respectively. 

3.4. Policy recommendations 

We find that policy instrument efficiency and performance depend on their 

intensity and vary according to the metric used to assess their impacts. In 

order to incentivize immediate SRC implementation, a guaranteed biomass 

price seems to be most effective according to our results, although overall it is 

the least efficient of the policy instruments evaluated due to a very limited or 

possibly even negative effect on bioenergy production, while being costly. 

Similarly, Boomsma et al. (2012) found that a fixed feed-in tariff (i.e., 

guaranteed price) initiates earlier investment, yet at a lower capacity. A 

guaranteed price removes upside risk beneficial for SRC cultivation that can 

be exploited by temporal managerial flexibility. This negative impact of a risk 
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reducing policy instrument might seem counterintuitive as high risk related to 

SRC cultivation is often discussed in the literature as one of the main obstacles 

to SRC adoption. Chatalova and Balmann (2017) also conclude that investors 

might benefit from increasing uncertainty due to the available option to adjust 

their investment behavior according to states-of-nature. In addition, due to 

low correlation of SRC and annual crop yield gross margins, Hauk et al. (2017) 

consider SRC adoption as an efficient risk-reducing strategy; an advantage 

that is lost under a guaranteed SRC biomass price policy. Uncertainty is only 

beneficial when there is temporal or spatial flexibility. For example, annual 

energy crops offer no temporal managerial flexibility and therefore a risk 

reducing policy instrument would be expected to have a positive impact on 

their immediate adoption. Indeed, a fixed feed-in tariff (i.e., guaranteed price) 

for electricity produced from renewable energy sources appears to be a highly 

relevant instrument to stimulate adoption in Germany (Mitchell et al. 2006; 

Feil et al. 2013) and the EU (Proskurina et al. 2016). However, the effect of this 

policy has been found to be cost-inefficient, in particular because feed-in 

tariffs do not target the cheapest renewable energy sources (Kreuz and 

Müsgens 2017). In addition, the high costs of the existing policy are charged to 

final electricity consumers; an intended effect that can foster energy saving 

measures and help to reduce energy use. In the case of SRC biomass, driving 

up demand side prices is rather counterproductive because the market needs 

to be developed in alignment with primary production (Rokwood 2014). Price 

floors and guaranteed prices also suffer from other disadvantages. Both 

policies require government agencies to act directly or indirectly as SRC 

biomass buyers. Furthermore, governmental expenditures for these 

instruments cannot be planned in advance because the government assumes 

price risk. The effect of price regulation is sensitive to the way in which it is 

implemented and adjusted over time, and may trigger undesirable strategic 

decisions by market actors (Alizamir et al. 2016; Chatalova and Balmann 

2017). Finally, such programs must be maintained over the full lifetime of the 

subsidized plantations, whereas alternative instruments such as an 

establishment subsidy can be implemented for limited periods.  

Based on governmental costs, an increase of the EFA coefficient is 

superior to the other policy instruments examined, since it does not require 

funding. Adjustment to the EFA is the only one of the evaluated instruments 

that avoids increasing competition for land between energy and food 

production. Opportunity costs of land are crucial for SRC adoption because it 

requires little farm labor and SRC management activities that require labor 

can be scheduled during periods when farm labor is more available or else can 

be outsourced. Increasing the EFA coefficient could provide incentives to 
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convert set-aside land to SRC production, which might have positive effects on 

several ecosystem services such as biodiversity (Rowe et al. 2011) depending 

on the scale of SRC operations (Louette et al. 2010) and the initial biodiversity 

status on the set-asides.  

If increased bioenergy production is a priority, then an establishment 

subsidy is the most promising of the policy instruments. By reducing sunk 

costs associated with SRC cultivation, which have been identified as a major 

barrier to adoption, an establishment subsidy also has the greatest positive 

effect on farm income. This policy instrument is also efficient at transforming 

governmental expenditures into farm income, while governmental costs are 

not directly influenced by market price fluctuations and therefore can be 

forecasted accurately. Although governmental costs required for 

establishment subsidies are high, the costs of additional bioenergy (as 

measured in gigajoules) using this instrument are quite moderate, while the 

probability of a positive effect is considerable (82% in our model) at high 

subsidy intensities. Superior effectiveness of investment subsidies relative to 

price floors is consistent with the findings of Feil and Musshoff (2013) and Feil 

et al. (2012) based on evaluation of policy intervention effectiveness on 

investment and disinvestment decisions of homogenous firms in a competitive 

environment. Three issues require special attention for practical 

implementation of a subsidy. First, recently introduced establishment 

subsidies in our study region imply a set of restrictions (Appendix 3.2) that 

would limit the positive effects of this instrument exhibited by the model 

results. Second, the results suggest that an establishment subsidy does not 

eliminate incentives to postpone SRC adoption. A temporally limited 

establishment subsidy and/or a first-come-first-serve eligibility basis would 

increase the costs of postponement and likely stimulate more immediate SRC 

adoption. Furthermore, a first-come-first-serve eligibility basis allows policy 

makers to impose limits on related governmental expenditures. Third, an 

establishment subsidy may be more effective if implemented in combination 

with other policy instruments. For instance, establishment costs of perennial 

energy crops were subsidized during 2000–2013 in the UK, yet the budget 

was underspent and the intended target was not achieved (Adams and 

Lindegaard 2016, pp. 195–196). The lack of policy support in addition to the 

subsidy scheme was revealed to be the main reason for this failure; in 

particular, no infrastructural support was provided and opportunity costs 

were very high (ibid.). Combining an establishment subsidy with a higher EFA 

coefficient to lower opportunity costs could mitigate the latter problem. As for 

infrastructure development, successful SRC policies often require coordinated 

action at regional scales (Rokwood 2014), particularly for ensuring 
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investment in harvesting equipment and biomass processing facilities. The 

different potential supply chain actors may become trapped in a ‘prisoner’s 

dilemma’ as postponement can be the optimal strategy for all actors. For 

example, farmers might prefer not to invest in SRC systems because they lack 

both partners to market their products and contractors to harvest their 

plantations. On the other hand, a regionalized establishment subsidy might 

catalyze the development of local supply chains.  

In the case of our study area, we recommend increasing the EFA 

coefficient and modifying the recently implemented establishment subsidy by 

either restricting availability to a limited period or area, or restricting 

eligibility on a first-come-first-serve basis. Our model results demonstrate that 

promoting SRC cultivation can require much less governmental expenditure 

than other renewable energy sources subsidized under the German 

Renewable Energy Act (e.g., biogas, solar, wind energy) (BMWi 2017, p. 12). 

Our findings improve understanding of farm-level decisions regarding SRC 

adoption and inform related policy analysis at larger scales. Additional issues 

related to the practical implementation of policy support of SRC systems 

deserve further research. A farm-level policy instrument might indirectly 

affect other economic agents and industries (e.g., food or pulp and paper 

industries) (Scarlat et al. 2015, p. 983). Policy makers should be aware of 

potential negative effects of policy instruments, including technical 

inefficiency and moral hazard (Rizov et al. 2013, pp. 539–540). Furthermore, 

any policy instrument intended to stimulate bioenergy production should be 

implemented consistently in order to achieve long-term effects (White et al. 

2013) because frequent changes or excessive policy instruments can 

undermine public confidence and might hamper efficiency due to increased 

complexity (Ebers et al. 2016). In particular, our model can be scaled up and 

effects on other markets and agents can be integrated, which would permit 

investigation of direct and indirect policy impacts. Risk preferences can also 

be introduced in the model.  

3.5. Conclusion 

Increasing the use of woody biomass energy resources and related production 

systems, including SRC, is crucial for reaching EU renewable energy targets 

(Scarlat et al. 2015; Hauk et al. 2017). Due to its advantages over the 

production of annual energy crops such as maize, SRC offers a promising 

means of sourcing bioenergy, especially on marginal lands. Some of these 
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advantages are environmental, including carbon neutrality and positive 

biodiversity impacts. However, to date SRC adoption among farmers is quite 

limited due to high sunk costs related to plantation establishment, harvest, 

and the final reconversion of SRC systems back to annual crop production, as 

well as due to risk over the course of SRC plantation cycles (Hauk et al. 2014; 

Wolbert-Haverkamp and Musshoff 2014). Taking these perspectives into 

account, we analyze the performance of a range of policy instruments 

intended to incentivize SRC adoption at the farm level based on the following 

metrics: increase in bioenergy production, effect on farm income, and 

governmental expenditures. In particular, we modeled a typical northern 

Germany farm based on real options considering the redistribution of limited 

resources in order to implement SRC under different policy instrument 

support: (i) an establishment subsidy, (ii) a guaranteed biomass price, (iii) a 

biomass price floor, and (iv) an increase of the EFA value of SRC systems. The 

model settings allow individual farmers to postpone SRC introduction, to 

adjust the land area converted to SRC, and to vary harvest intervals in 

response to stochastic variables—SRC biomass price and annual crop gross 

margins. We solve the model with a combination of Monte Carlo simulation, a 

scenario tree reduction technique, and stochastic programming.  

Our methodological contribution to policy development is twofold. We 

demonstrated that considering all competing farm activities and limited 

resources is crucial for capturing direct and indirect effects of a policy 

instrument on farm resource redistribution. In particular, analysis of 

increasing the EFA value of SRC systems is only possible in this context, since 

this policy instrument reduces SRC opportunity costs. We also demonstrate 

that a policy analysis for long-term investment decisions with temporal and 

spatial flexibility under consideration of all possible states-of-nature reveals 

additional effects of policy instruments on investment behavior. In our 

example, a guaranteed SRC biomass price exhibits poor overall performance 

because it eliminates both positive and negative risks, and thus any possible 

advantages of postponement or adjusting decisions based on states-of-nature. 

The empirical model results suggest that price floors and guaranteed prices 

for biomass are not promising policy measures, whereas establishment 

subsidies and increasing the EFA value of SRC systems could be more effective 

at increasing woody biomass energy production and transforming 

governmental expenditures to farm income. However, in our study area SRC 

establishment subsidies should be offered on a first-come-first-serve basis or 

for a limited period to avoid incentivizing postponement of SRC 

implementation at the farm level. 
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3.7. Appendices 

Appendix 3.1. Model parameters  

Establishment and reconversion costs related to SRC biomass production 

Establishment (2,875 € ha–1) and reconversion (1,400 € ha–1) costs were 

adopted from Musshoff (2012). Additional SRC establishment and 

reconversion costs were found in the literature cited in Table 3.5. 

Table 3.5. SRC plantation establishment and reconversion costs. 

Establishment costs  

(€ ha–1) 
Reference 

Reconversion costs  

(€ ha–1) 
Reference 

2,316.38 Kroeber et al. 
(2008) 

2,072.50 Faasch and 
Patenaude 

(2012) 

2,255.00–3,223.00 Strohm et al. 
(2012) 

960.00–3,200.00 Strohm et al. 
(2012) 

3,199.92 Wolbert-
Haverkamp 

(2012) 

1,800.00 Schweier and 
Becker (2013) 

2,380.00–3,223.00 ETI (2013) 1,121.00 Wolbert-
Haverkamp and 
Musshoff (2014) 

2,736.00 Wolbert-
Haverkamp and 
Musshoff (2014) 
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SRC biomass growth function and biomass harvest costs 

The following yield function was adapted from Ali (2009): 

 𝑌 = 2.27 ∙ (−0.1133 ∙ 10−8 ∙ 𝐷2 + 0.254 ∙ 10−4 ∙ 𝐷

+ 0.028) ∙ (1.569 ∙ 𝐻𝐼 + 0.4 ∙ 10−3 ∙ 𝑃𝑇 ∙ 𝑆𝑄𝐼

−
23.198 ∙ 𝑇𝑒𝑚𝑝

𝑊
)(0.34∙10−8∙𝐷2−0.501∙10−4∙𝐷+2.614) 

(3.2) 

where 𝑌 represents dry matter yields, 𝐷 is the density of trees per hectare; 𝐻𝐼 

is the intermediate harvesting interval (2, 3, 4, or 5 years); 𝑃𝑇 is the mean sum 

of precipitation in May and June (mm); 𝑆𝑄𝐼 is a soil quality index value; 𝑇𝑒𝑚𝑝 

is the mean temperature from April through July (°C); and 𝑊 represents 

available ground water capacity (mm). All variables except for intermediate 

harvesting interval (𝐻𝐼) were fixed at the levels presented in Table 3.6. 

All the variables except for intermediate harvesting interval (𝐻𝐼 [2, 3, 4, or 5 

years]) were fixed on the following levels: 

Table 3.6. Parameters of the yield function and assumed values 

Variables Description Values References 

𝐷 
density of trees per 
hectare 

9,000 Musshoff (2012) 

𝑃𝑇 
mean sum of 
precipitation in May and 
June (mm) 

106.27 

Based on precipitation 
recorded for May and June 
(1995–2015) in 
Mecklenburg, Germany 
(WetterOnline 2016) 

𝑆𝑄𝐼 soil quality index 35 Musshoff (2012) 

𝑇𝑒𝑚𝑝 
mean temperature from 
April through July (°C) 

14.51 

Mean of daily mean 
temperatures (minimum and 
maximum) for April through 
July (1995–2015) in 
Mecklenburg, Germany 
(WetterOnline 2016) 

𝑊 
available ground water 
capacity (mm) 

220.00 Musshoff (2012) 
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Then we fitted the obtained values to a linear function of available biomass in 

the previous year: 

 𝑌 = 1.651 ∙ 𝑌−1 + 3.962 (3.3) 

where 𝑌−1 represents dry matter yields in the previous year in t ha–1. 

We assume that harvest related costs include: (i) transportation and labor 

costs based on the distance from the farm to the field, expressed as fixed costs 

per farm; (ii) transportation and labor costs based on harvested area; and (iii) 

transportation and labor costs are based on harvested biomass (Schweier and 

Becker 2012). Summarizing the costs provided by Schweier and Becker 

(2012) and Pecenka and Hoffmann (2012), we derived the following harvest 

cost function: 

 𝐻𝐶 = 66.75 + 272.13 ∙ 𝐿 + 10.67 ∙ 𝐿 ∙ 𝑌 (3.4) 

where 𝐻𝐶 are the total harvest costs in euro; 𝐿 is the land area harvested in 

hectares; and 𝑌 represents dry matter yields in tonnes per hectare. The 

formula requires an additional assumption about a transportation distance. 

Pecenka and Hoffmann (2012) report a distance between 5 km and 200 km. 

We assumed a transportation distance of 25 km. The assumptions described 

above result in the biomass and harvest cost based on the harvest intervals 

and land areas under SRC present in Table 3.7.  

Mean SRC harvest costs per tonne of dry matter (€ t–1) range from 24 to nearly 

41 euro: 24 (Musshoff 2012); 28.85 (Kroeber et al. 2008); 32 (Wolbert-

Haverkamp and Musshoff 2014); 30.28–39.00 (Strohm et al. 2012); 40.8 

(Faasch and Patenaude 2012). 

Table 3.7. SRC biomass yields and harvest costs based on harvest 

interval and land area. 

 Land 
area 

under 
SRC (ha) 

Harvest interval (years) 

2 3 4 5 

Dry matter 
yields 

(t ha–1) 
any 10.503 21.302 39.133 68.571 

Harvest costs  

(€ ha–1) 
1 

450.95 

(42.94) 

566.17 

(26.58) 

756.43 

(19.33) 

1,070.53 

(15.61) 
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Value per 
tonne of dry 

matter in 
parentheses  

(€ t–1) 

10 
390.87 

(37.22) 

506.10 

(23.76) 

696.35 

(17.79) 

1,010.46 

(14.74) 

30 
386.42 

(36.79) 

501.65 

(23.55) 

691.90 

(17.68) 

1,006.01 

(14.67) 

50 
385.53 

(36.71) 

500.76 

(23.51) 

691.01 

(17.66) 

1,005.12 

(14.66) 

 

Stochastic processes for SRC biomass price and annual crop gross margins 

We assume that the natural logarithm of SRC biomass price and annual crop 

gross margins follows an Ornstein-Uhlenbeck MRP (Nicolato and Venardos 

[2003] and Pérez-Abreu [2010] provide an Ornstein-Uhlenbeck process 

overview). This choice is motivated by the assumption that individual farmers 

act as a ‘price-taker’ in a market where the price fluctuates around a constant 

long-term mean value due to market forces, for example, under assumptions 

of no monopolistic power (Metcalf and Hassett 1995, p. 1472) and/or 

constant technology (Song et al. 2011, p. 775). The formula of an MRP is as 

follows (Dixit and Pindyck 1994, p. 74): 

 𝑑𝑥 = 𝜂(�̇� − 𝑥)𝑑𝑡 + 𝜎𝑑𝑧 (3.5) 

where 𝑥 is a stochastic variable; �̇� is the “normal” or mean value of 𝑥 (to which 

𝑥 tends to revert); 𝑑𝑥 is the change in 𝑥; 𝑑𝑡 represents the time interval; 𝜂 > 0 

is the speed of reversion; 𝜎 > 0 represents variance; and 𝑑𝑧 is the increment 

of a Wiener process. 

The MRP for SRC biomass prices is adopted from Musshoff (2012). The 

parameters of the MRP for alternative crops gross margins were estimated 

using data from the CAPRI (2017) model on gross margins of an average 

hectare of arable land in Germany over 1993–2012, following the procedure 

described in Musshoff and Hirschauer (2004, pp. 271–273). For both 

stochastic processes the starting values are set equal to the long-term mean in 

order to exclude any possible effect of a trend over time. Opportunity costs of 

SRC plantations (€ ha–1) vary according to soil quality, values found for 

Germany include 549 € ha–1 (Wolbert-Haverkamp 2012) and a range of 230–

710 € ha–1 (Faasch and Patenaude 2012). 

Deterministic net annual cash flow (gross margins) from crops that qualify 

towards EFA requirements 
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The costs of cultivating catch crops depend on farm activities prior to planting 

and vary from 40 € to 140 € ha–1 (de Witte and Latacz-Lohmann 2014, p. 37). 

In our model we assume the costs of cultivating catch crops to be 100 € ha–1. 

The gross margin of set-aside land (–50 € ha–1) is the mean of net revenues for 

set aside and fallow land over 1991–2012 (CAPRI 2017). 

Labor requirements and endowments 

Labor requirements only include fieldwork, management is assumed to be 

limited and therefore have no effect on resource distribution at the farm level. 

Land endowment 

The total land endowment of 100 ha used in the model facilitates 

straightforward interpretation of the outcomes (land area devoted to different 

land uses can be directly transformed into proportions of the total area). The 

farm size is representative for northern Germany. For example, the average 

size of an agricultural holding in the North German states of Mecklenburg-

Western Pomerania, Lower Saxony and Schleswig-Holstein was 89.85 ha in 

2017 (DESTATIS 2017). 

Energy absorbed by crops 

We used the gross calorific value of SRC yields for wood chips derived from 

poplar (Populus spp.) (ECN 2017). Twidell and Weir (2015, chap. 9.6.3) 

provide mean values of energy absorbed by food crops, including: maize (77 

GJ ha–1 y–1), wheat (50 GJ ha–1 y–1), soy (20 GJ ha–1 y–1), and rapeseed (60 GJ ha–

1 y–1). The authors point out that the values vary according to soil and climate 

conditions. Since our study region is characterized by comparatively 

unfavorable conditions for annual crops, we assume a moderate value of 40 GJ 

ha–1 y–1. 

 

Appendix 3.2. Policy instruments chosen for the analysis 

Increasing the EFA value of land under SRC management 

“Greening” was introduced in 2015 as a part of the EU CAP. Zinngrebe et al. 

(2017) provide a comprehensive overview and analysis of the EFA system in 

Germany. They conclude that the EFA weighting coefficients are chosen based 

on administrative, technical, and economic considerations rather than 

ecological or social ones. 
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Establishment subsidy 

Subsidies for establishing SRC plantations were introduced in Germany in 

2015 in some states (Baden-Württemberg, Brandenburg, Berlin, Mecklenburg-

Western Pomerania, North Rhine-Westphalia, and Thuringia) (FNR 2017). The 

subsidy is 1,200 € ha–1 with a minimum of 7,500 € total per farm and a 

maximum of 40% of total establishment costs. The physical requirements for 

the subsidy include a maximum of 10 ha per farm, a minimum density of 3,000 

trees per hectare, and a minimum period of 12 years before reconversion of 

plantation areas to other land uses (FNR 2017). For the sake of simplicity we 

ignore additional establishment subsidy requirements and constraints in 

Germany and analyze four establishment subsidy levels instead (500 €, 1,000 

€, 1,200 €, and 1,500 € per hectare). Countries that provide subsidies for SRC 

plantation establishment and maintenance include Ireland, Poland, and 

Sweden (Lindegaard et al. 2016). 

Price floor and guaranteed price 

The difference between a price floor and a guaranteed price is that the former 

eliminates downside price risk only, while the latter eliminates price risk in 

both directions. A price floor is applied once the observed market price falls 

below it. In contrast, guaranteed price is applied continuously and the 

government assumes both positive and negative risk of market price 

fluctuations.   

Currently, no farm-level price regulations exist for SRC biomass in Germany. 

However, in many countries, including Germany, Spain, Switzerland, and the 

USA, a feed-in tariff system is applied to electricity produced from renewable 

sources (Ebers et al. 2016; FNR 2013). For example, the current feed-in tariff 

level for electricity from biomass in Germany ranges 5.71–13.32 cent kWh–1 

depending on rated capacity (EEG 2017, sec. 42). The policy has an indirect 

effect on farmer decisions related to biomass production through the price 

that an electricity producer is willing to pay for biomass. 
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Governmental expenditures 

At each node of the scenario tree, governmental expenditures are determined 

using equation (3.6). Total governmental costs are the sum of governmental 

costs at each node weighted by the respective probabilities of the nodes. 

 𝐺𝐶𝐸𝐹𝐴 = 0 

(3.6) 

 𝐺𝐶𝑆 = 𝑆 ∙ 𝐿𝑝𝑙𝑎𝑛𝑡 

 𝐺𝐶𝑝_𝑚𝑖𝑛 = max[𝑝𝑚𝑖𝑛 − 𝑝𝑚𝑎𝑟𝑘𝑒𝑡; 0] ∙ 𝐿 ∙ 𝑌 

 𝐺𝐶𝑝_𝑓𝑖𝑥 = (𝑝𝑓𝑖𝑥 − 𝑝𝑚𝑎𝑟𝑘𝑒𝑡) ∙ 𝐿 ∙ 𝑌 

where 𝐺𝐶𝐸𝐹𝐴 represents governmental expenditures for increasing the EFA 

coefficient in euro; 𝐺𝐶𝑆 represents governmental expenditures for an 

establishment subsidy in euro; 𝐺𝐶𝑝_𝑚𝑖𝑛 represents governmental 

expenditures for a price floor in euro; 𝐺𝐶𝑝_𝑓𝑖𝑥 represents governmental 

expenditures for guaranteed price in euro; 𝑆 is the establishment subsidy 

value in euro per hectare; 𝐿𝑝𝑙𝑎𝑛𝑡 represents the land area on which SRC is 

established in hectares; 𝐿 is the land area under SRC to be harvested in 

hectares; 𝑌 is the dry matter yield harvested in tonnes per hectare; 𝑝𝑚𝑎𝑟𝑘𝑒𝑡 is 

the observed market price of SRC dry matter yields in euro per tonne; 𝑝𝑚𝑖𝑛 is 

the price floor for SRC biomass in euro per tonne; and 𝑝𝑓𝑖𝑥  is the guaranteed 

price for SRC biomass in euro per tonne. Time and node indices are omitted 

for simplicity. Only a fully guaranteed price can generate additional 

government income if the market price exceeds the fixed price. Also, timing of 

governmental outlays varies: an establishment subsidy triggers cost at the 

time of establishment, a price floor and guaranteed price are set in the year a 

plot is harvested. 
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Appendix 3.3. Model results overview 

Table 3.8. Overview of the model results assuming that the correlation coefficient between SRC biomass prices and annual crop gross 

margins is equal to +0.2. 

 

 

  Policy intervention   

BAU 
Establishment subsidy (€ ha–1) Guaranteed price (€ t–1) Price floor (€ t–1) Increasing EFA coefficient 

500 1,000 1,200 1,500 50 55 60 40 45 50 0.5 0.7 1.0 

Farm income (net present value over 24 years) (1,000s €) 

Maximum 932.431 967.189 1,001.946 1,015.849 1,036.704 856.853 856.771 860.971 932.431 932.431 932.431 932.431 932.431 932.431 

Expected 643.002 646.761 652.118 654.700 659.201 634.561 640.172 645.829 643.113 643.251 645.565 646.537 649.867 654.587 

Minimum 500.708 500.708 502.589 502.589 502.589 500.708 509.937 511.988 500.708 500.708 503.513 502.589 503.602 508.843 

Probability of SRC adoption 

Immediately 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

In one year 0.19 0.27 0.34 0.37 0.47 0.00 0.00 0.00 0.25 0.30 0.38 0.29 0.43 0.48 

In two years 0.21 0.32 0.30 0.32 0.29 0.00 0.00 0.00 0.18 0.16 0.28 0.26 0.30 0.29 

In three years 0.21 0.22 0.25 0.25 0.21 0.00 0.00 0.00 0.26 0.26 0.34 0.26 0.25 0.21 

Never 0.39 0.19 0.11 0.06 0.03 1.00 0.00 0.00 0.31 0.28 0.00 0.19 0.01 0.02 

Land under SRC (ha) 

Maximum 75.00 75.00 75.00 75.00 75.00 0.00 15.00 15.00 75.00 75.00 75.00 75.00 75.00 75.00 

Expected 5.61 8.90 12.24 13.04 16.60 0.00 4.60 7.65 6.08 6.11 7.85 6.44 6.57 5.69 

Minimum 0.00 0.00 0.00 0.00 5.00 0.00 5.00 5.00 0.00 0.00 5.00 0.00 0.00 0.00 
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SRC bioenergy production (GJ) 

Maximum 339,424.91 339,424.91 339,424.91 339,424.91 339,424.91 0.00 67,884.98 67,884.98 339,424.91 339,424.91 339,424.91 339,424.91 339,424.91 339,424.91 

Expected 30,466.78 48,313.74 66,484.29 70,832.32 90,152.39 0.00 25,004.30 41,536.56 32,998.89 33,202.54 42,647.61 34,974.34 35,680.35 30,905.77 

Minimum 0.00 0.00 0.00 0.00 16,971.25 0.00 22,628.33 22,628.33 0.00 0.00 22,628.33 0.00 0.00 0.00 

Change in bioenergy production compared with BAU (including energy absorbed by annual crops) (GJ) 

Expected - 17,689.22 35,697.37 40,008.32 59,152.11 –30,197.50 –5,414.20 10,971.94 2,509.05 2,711.58 12,073.17 4,467.72 5,167.49 435.11 

Age of SRC plantation (years) 

Expected 20.00 20.00 19.98 19.98 19.91 0.00 20.00 20.00 19.92 20.00 20.00 20.00 20.00 20.00 

Expected area under alternative crops (ha) 

More 
profitable 
annual crop 

83.93 83.79 81.71 81.77 78.68 80.01 89.86 88.12 84.59 84.96 87.42 86.17 88.34 87.22 

Less profitable 
annual crop 

8.79 6.03 5.00 4.21 3.83 17.21 4.53 3.60 7.81 7.48 3.79 6.19 4.12 6.53 

Set-aside 1.67 1.27 1.05 0.98 0.89 2.79 1.00 0.63 1.53 1.45 0.94 1.19 0.97 0.55 

Catch crops 6.83 6.42 6.05 5.66 5.44 7.38 8.74 6.90 6.84 7.06 7.06 4.32 2.78 1.16 

Total governmental expenditures (€) 

Maximum 0.00 37,500.00 75,000.00 90,000.00 112,500.00 0.00 74,993.40 99,825.67 9,935.02 17,620.94 43,334.95 0.00 0.00 0.00 

Expected 0.00 5,337.75 14,735.50 18,795.00 30,104.25 0.00 7323.19 23,672.29 592.38 2,118.48 7,549.51 0.00 0.00 0.00 

Minimum 0.00 0.00 0.00 0.00 7,500.00 0.00 –42,384.29 –91,348.48 0.00 0.00 0.00 0.00 0.00 0.00 

Governmental expenditures per GJ of increase in bioenergy production compared to BAU (only states-of-nature with increase in bioenergy included) (€ GJ–1) 

Maximum - 0.45 0.89 1.07 1.00 0.00 1.33 1.89 0.39 0.70 1.18 - - - 

Expected - 0.20 0.39 0.41 0.44 0.00 0.70 0.97 0.11 0.25 0.48 - - - 

Minimum - 0.11 0.22 0.27 0.33 0.00 –0.05 –1.13 0.00 0.00 0.00 - - - 
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Table 3.9. Overview of the model results assuming that the correlation coefficient between SRC biomass prices and annual crop gross 

margins is equal to –0.2. 

 Policy intervention  

 
BAU 

Establishment subsidy (€ ha–1) Guaranteed price (€ t–1) Price floor (€ t–1) Increasing EFA coefficient 

 500 1,000 1,200 1,500 50 55 60 40 45 50 0.5 0.7 1.0 

Farm income (net present value over 24 years) (1000s €) 

Maximum 830.556 862.941 895.327 908.281 927.712 832.519 833.697 837.897 830.556 830.556 831.752 835.066 835.066 851.629 

Expected 643.462 647.205 652.233 654.884 658.771 636.230 641.841 647.701 643.290 644.439 646.115 647.490 650.052 655.820 

Minimum 497.914 497.914 493.233 494.092 495.381 495.122 502.246 516.402 497.914 496.994 500.742 492.957 496.976 503.370 

Probability of SRC adoption 

Immediately 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

In one year 0.23 0.20 0.30 0.35 0.35 0.00 0.00 0.00 0.20 0.23 0.43 0.25 0.36 0.42 

In two years 0.20 0.29 0.28 0.30 0.32 0.00 0.00 0.00 0.22 0.25 0.26 0.30 0.32 0.34 

In three years 0.27 0.25 0.27 0.30 0.28 0.00 0.00 0.00 0.29 0.34 0.30 0.33 0.32 0.22 

Never 0.31 0.25 0.14 0.04 0.06 1.00 0.00 0.00 0.29 0.17 0.01 0.13 0.00 0.02 

Land under SRC (ha) 

Maximum 75.00 75.00 75.00 75.00 75.00 0.00 15.00 15.00 75.00 75.00 75.00 75.00 75.00 75.00 

Expected 5.98 8.73 10.50 11.53 12.56 0.00 4.80 7.90 6.24 6.50 7.97 7.09 7.20 6.25 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 5.00 5.00 0.00 0.00 0.00 0.00 5.00 0.00 

SRC bioenergy production (GJ) 

Maximum 339,424.91 339,424.91 339,424.91 339,424.91 339,424.91 0.00 67,884.98 67,884.98 339,424.91 339,424.91 339,424.91 339,424.91 339,424.91 339,424.91 

Expected 32,498.80 47,415.40 57,032.44 62,642.00 68,232.33 0.00 26,045.20 42,916.89 33,867.82 35,303.58 43,273.85 38,486.26 39,101.75 33,915.34 
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Minimum 0.00 0.00 0.00 0.00 0.00 0.00 22,628.33 22,628.33 0.00 0.00 0.00 0.00 22,628.33 0.00 

Change in bioenergy production compared with BAU (including energy absorbed by annual crops) (GJ) 

Expected - 14,750.91 24,179.95 29,747.53 35,147.42 –32,180.86 –6,354.62 10,380.74 1,346.89 2,783.74 10,676.90 5,957.26 6,570.35 1,435.39 

Age of SRC plantation (years) 

Expected 20.00 20.00 20.00 19.97 19.99 0.00 20.00 20.00 19.93 19.96 19.91 20.00 19.97 20.00 

Expected area under alternative crops (ha) 

More 
profitable 
annual crop 

84.63 82.92 82.98 83.49 82.41 80.20 89.79 87.97 84.77 86.09 86.99 86.54 87.97 86.99 

Less profitable 
annual crop 

7.78 6.88 5.24 3.99 4.04 16.94 4.44 3.52 7.44 6.08 4.04 5.21 3.82 6.15 

Set-aside 1.60 1.47 1.28 0.98 0.99 2.86 0.98 0.61 1.56 1.34 1.00 1.17 1.01 0.62 

Catch crops 7.21 6.68 6.24 6.13 5.56 7.14 8.61 6.73 7.15 7.40 7.33 4.22 2.62 0.90 

Total governmental expenditures (€) 

Maximum 0.00 37,500.00 75,000.00 90,000.00 112,500.00 0.00 83,059.97 105,891.24 8,076.75 16,771.97 32,327.14 0.00 0.00 0.00 

Expected 0.00 5,238.50 12,602.00 16,624.20 22,622.25 0.00 8,210.59 25,989.43 442.85 2,079.53 7,392.52 0.00 0.00 0.00 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 –38,837.36 –50,795.99 0.00 0.00 0.00 0.00 0.00 0.00 

Governmental expenditures per 1 GJ of increase in bioenergy production compared with BAU (only states-of-nature with increase in bioenergy included) (€ GJ–1) 

Maximum - 0.33 0.67 0.81 1.01 0.00 106.68 115.14 4.44 4.88 1.16 - - - 

Expected - 0.21 0.36 0.40 0.49 0.00 2.81 3.26 0.31 0.27 0.43 - - - 

Minimum - 0.11 0.22 0.27 0.33 0.00 –127.78 –0.51 0.00 0.00 0.00 - - - 

 

  



 

* This chapter has been submitted to the European Review of Agricultural Economics as Spiegel, 

A., Britz, W., and Finger, R.: Risk, risk aversion and agricultural technology adoption—a 

combination of real options and stochastic dominance (currently in the first round of review) 

 

 

 

 

Chapter 4 

Risk, risk aversion and agricultural 

technology adoption—a combination of real 

options and stochastic dominance* 

Abstract 

We propose a novel approach to capture risk and risk aversion for agricultural 

technology adoption by integrating second order stochastic dominance in a 

farm-level model based on real options. We employ an illustrative case study 

of perennial energy crop adoption. In our example, we find that risk aversion 

leads to smaller and earlier adoption of a new technology; in contrast, higher 

subjective risk levels increase the expected scale and at first slow down but 

later accelerate adoption. These effects would be obscured if technology 

adoption is considered as standing alone or as a now-or-never decision. 

Keywords:   Risk preferences; farm-level investment decision; stochastic 

programming; short rotation coppice. 
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4.1. Introduction 

Decisions about the adoption of new technologies are of crucial relevance for 

farm success (Blandford and Hill 2006, p. 43; Kumar and Joshi 2014). The 

literature proposes expected revenues (Trujillo-Barrera et al. 2016), 

opportunity costs (White et al. 2005), resource endowments (Affholder et al. 

2010; Grabowski and Kerr 2014), risk preferences (Liu 2013), and risk 

perception (Marra et al. 2003; Liu 2013) as key determinants of technology 

adoption. Research of the joint effects of these factors on optimal timing and 

the scale of technology adoption is still limited (Meijer et al. 2015). To account 

for the essential role of risk, real option theory provides a powerful 

framework to analyze investment based technology adoption decisions at the 

farm level (Wossink and Gardebroek 2006; Hinrichs et al. 2008; Hill 2010; 

Maart-Noelck and Musshoff 2013). Moreover, farm-level programming 

approaches are widely used tools for detailed farm management analysis as 

they allow reflecting resource endowments or economies of scale as inherent 

issues in farm-level analyses. 

In this study we propose a novel farm-level modeling approach that 

allows simultaneous analysis and quantification of the effects of these 

determinants. In particular, we embed the concept of stochastic dominance 

into the real options framework and demonstrate with an empirical example 

how (subjective) risk levels and risk preferences can be reflected. Our 

approach solves for both optimal timing and scale of technology adoption. 

Changing the timing and scale of a farm level investment typically 

impacts both expected returns and their distribution by affecting production 

or associated risks. The latter have been found to have a significant influence 

on technology adoption (Marra et al. 2003; Liu 2013). Different approaches 

have been proposed to incorporate risk in farm-level programming 

approaches (Krokhmal et al. 2011; Homem-de-Mello and Pagnoncelli 2016), 

but most are not well suited to stochastic dynamic programming. 

Furthermore, the popular mean-variance based approaches or their variants, 

such as MOTAD16 or Target MOTAD, require a risk aversion coefficient, which 

                                                      

 

16 Minimization Of Total Absolute Deviations (MOTAD) is a linear version proposed by Hazell 

(1971) of mean-variance analysis (Markowitz 1952). Mean-variance analysis in general 

minimizes the risk (i.e., variance) for a given expected outcome or maximizes the expected 
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is empirically difficult to determine and scale dependent. We therefore employ 

the concept of stochastic dominance, which we consider inviting as it requires 

limited assumptions on risk preferences and can be efficiently incorporated 

into stochastic programming (Nie et al. 2012). Specifically, a set of additional 

constraints ensures that a new technology is only adapted at a scale (or not at 

all) at which it stochastically dominates a given risk benchmark with respect 

to farm production activities. Subjective perception risks are crucial 

determinants of technology adoption, which is emphasized in the case of a 

lack of knowledge and experience concerning new technologies (Marra et al. 

2003; Ghadim 2003; Karni 2006). We consider this aspect by conducting a 

sensitivity analysis with respect to risk level associated with a new 

technology. 

To illustrate our modeling approach, we employ a case study of 

introducing short-rotation coppice (SRC) biomass energy production systems 

as a new technology on a typical arable farm in northern Germany. 

Establishing an SRC plantation with a typical production cycle of 

approximately 20 years represents significant sunk costs for planting, 

coppicing, and final reconversion to an alternative land use. It binds land for a 

longer period than other land uses and competes with annual crops for limited 

farm resources (e.g., land). Both SRC and annual crop agriculture imply 

stochastic returns; with the latter constituting an observed benchmark. The 

case study thus encompasses the elements mentioned above as inherent for 

investment-based technology adoption in agriculture and shows how to 

quantify the effects of (subjective) risk level and risk preferences of timing 

and scale of adoption. 

4.2. Literature and theoretical background  

In the presence of production, market, institutional, and technological risks 

(Sunding and Zilberman 2001), irreversible investments and sunk costs, the 

real options approach is increasingly favored over the classical NPV approach 

for modelling farm-level investment decisions, including technology adoption 

                                                                                                                                       

 

outcome for a given variance; and is consistent with second-order stochastic dominance applied 

here if the risk measure (e.g., returns) is normally distributed (Krokhmal et al. 2011, p. 52). 
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(Wossink and Gardebroek 2006; Hinrichs et al. 2008; Hill 2010; Kuminoff and 

Wossink 2010; Maart-Noelck and Musshoff 2013). It captures the option value 

(i.e., the possibility to postpone a decision or timing flexibility) or later adjusts 

it (scale flexibility) depending on how future conditions evolve. The real 

options approach can be incorporated into a farm-level programming 

approach based on stochastic programming where risk is captured by a 

scenario tree (Beraldi et al. 2013; Alonso-Ayuso et al. 2014; Simoglou et al. 

2014). Most applications still use binomial scenario trees or lattices 

(Schulmerich 2010; Beraldi et al. 2013; Alonso-Ayuso et al. 2014) where 

model size increases exponentially with the number of time points, which 

limits model complexity and timescale. These restrictions can be partly 

overcome with more advanced approaches such as Monte Carlo simulation 

followed by scenario tree reduction (Dempster 2006; Heitsch and Römisch 

2008; Kostrova et al. 2016).  

The real options approach can be applied under different assumptions 

with regard to risk preferences, as a positive option value might exist 

regardless of risk attitude: any decision maker aims to maximize overall 

returns and takes into account possible development of stochastic variables 

(Dixit and Pindyck 1994, p. 153). Yet, risk preferences might influence the 

timing and scale of optimal decision making and therefore are relevant for 

analyzing technology adoption (Marra et al. 2003; Liu 2013). Empirical results 

highlight that with respect to European agriculture, farmers tend to be risk-

averse (Menapace et al. 2013; Meraner and Finger 2017), such that we 

consider it in our stochastic dynamic programming approach. Homem-de-

Mello and Pagnoncelli (2016) provide a comprehensive overview of 

approaches for introducing risk aversion into stochastic programming. Based 

on their evaluation, we consider stochastic dominance as especially suitable 

because it is consistent with the expected utility hypothesis (Chavas 2004, 

chap. 5), but does not require a fully specified utility function. In particular, 

second-order stochastic dominance (SSD) only requires the underlying von 

Neumann-Morgenstern utility function to be monotone and concave (i.e., in 

the case of a risk-averse decision maker). So, a random variable 𝐵 is SSD over 

a random variable 𝐴, (i.e. 𝐵 ≽(2) 𝐴) if the expected utility 𝔼[𝑢(∙)] of 𝐵 is at 

least as high as the one of 𝐴, (i.e., 𝔼[𝑢(𝐵)] ≥ 𝔼[𝑢(𝐴)]) (Dentcheva and 

Ruszczyński 2006, p. 298). In general terms, the condition of SSD for a discrete 

case can be formulated as follows, as long as the underlying utility function is 

monotone and concave (Chavas 2004, p. 57): 



 

100 

 

 

 𝐵 ≽(2) 𝐴   ⇔    ∑[(𝐹𝐴(𝑥) − 𝐹𝐵(𝑥)) ∙ (𝑥+1 − 𝑥)  |  𝑥 ≤ 𝑧]

𝑥

 

≥ 0   ∀𝑧 
(4.1) 

where 𝐴 and 𝐵 are stochastic variables with possible realizations 𝑥; 𝐹𝐴 and 𝐹𝐵 

are their cumulative distribution functions; 𝑥+1 is the minimum possible 

realization of 𝑥 higher than 𝑥.  

Introducing SSD as a constraint into an optimization model, however, 

substantially increases computational complexity, since it requires 

introducing additional binary variables (Gollmer et al. 2007; 2008). To 

advance in this regard, alternative (approximate) formulations of stochastic 

dominance are proposed. In particular, Dentcheva and Ruszczynski (2003) 

suggest a relaxation of the SSD constraint, namely defining a finite number of 

compact intervals of possible realizations and ensuring SSD within all 

intervals simultaneously. This so-called interval second order stochastic 

dominance approach requires ordering realizations by a risk measure, which 

in turns depends on decision variables; hence the number of variables, as well 

as required solution time increase substantially. This limitation can be 

overcome if intervals over the cumulative probability are defined rather than 

over realizations of a risk measure, an approach termed inverse second order 

stochastic dominance (ISSD) (Ogryczak and Ruszczynski 2002; Dentcheva and 

Ruszczyński 2006; Rudolf and Ruszczyński 2008). Examples of introducing 

(I)SSD constraints into optimization models are still limited and can be found 

in financial applications (El Karoui and Meziou 2006; Roman et al. 2006; 

Luedtke 2008; Nie et al. 2012), however, to the best of our knowledge no 

applications to agricultural investment problems exist. 

For a probability space (Ω, Λ, ℙ) we first introduce the following 

definitions (Ogryczak and Ruszczynski 2002, p. 66): 

 
{
𝐹(−2)(𝑥; 𝑝) = 𝑝 ∙ 𝔼{𝑥|𝑥 ≤ 𝜂}

𝑝 = ℙ{𝑥 ≤ 𝜂}
 (4.2) 

where 𝐹(−2): ℝ → ℝ̅ is the second quantile function17; 𝔼{∙} is an expectation 

operator; 𝑥 ∈ ℝ are realizations of a random variable; and 𝜂𝜖ℝ is the so-called 

                                                      

 

17 Hereinafter ℝ remains for the set of real numbers and ℕ for the set of natural numbers. 
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target value. It is shown that SSD of 𝐵 over 𝐴 is equivalent to the expected 

realization of 𝐵 being greater than or equal to the expected realization of 𝐵 at 

all intervals 𝑝 (Ogryczak and Ruszczynski 2002, p. 66): 

 
𝐵 ≽(2) 𝐴   ⇔    

𝐹𝐵
(−2)(𝑥; 𝑝)

𝑝
≥

𝐹𝐴
(−2)(𝑥; 𝑝)

𝑝
    ⇔ 

⇔    𝔼𝐵{𝑥|𝑥 ≤ 𝜂} ≥ 𝔼𝐴{𝑥|𝑥 ≤ 𝜂}      ∀𝑝 = ℙ{𝑥 ≤ 𝜂}
∈ (0; 1] 

(4.3) 

The approach does not require ordering realizations 𝑥; for each 𝑝 the 

target value 𝜂 is defined and all 𝑥 ≤ 𝜂 are multiplied with the respective 

probabilities to define 𝔼{𝑥|𝑥 ≤ 𝜂} without being ordered. We define stochastic 

returns of a farm under the benchmark farm program as 𝐴, then characterize 

the tolerable risk to a particular farmer; and define 𝐵 as returns under a new 

technology that should stochastically dominate that benchmark 𝐴 in order to 

be adopted. Hence, we define a finite number 𝑁𝜖ℕ of compact intervals [0; 𝑝𝑖] 

with 𝑖 = {1,2, … , 𝑁}; 𝑝1 = 1
𝑁⁄ ; and 𝑝𝑖+1 = 𝑝𝑖 + 1

𝑁⁄ , and ensure the condition 

(3) for each of them. The narrower the intervals [0; 𝑝𝑖], (i.e., the higher the 

number 𝑁), the closer the approximation of ISSD is. The optimization problem 

then appears as follows: 

max  𝑓(𝑥)  

(4.4) 

subject to 

{

𝔼𝐵{𝑥|𝑥 ≤ 𝜂} ≥ 𝔼𝐴{𝑥|𝑥 ≤ 𝜂}  |  𝜂: 𝑝𝑖 = ℙ{𝑥 ≤ 𝜂}

𝑝1 = 1
𝑁⁄

𝑝𝑖+1 = 𝑝𝑖 + 1
𝑁⁄

   

∀𝑖 = {1,2, … , 𝑁}  

 𝑥𝜖𝐶   

where 𝑓(𝑥): ℝ → ℝ̅ is the objective function and set 𝐶 represents further 

constraints for decision variable 𝑥 (i.e., resource endowment constraints). 

The literature indicates that more risk-averse decision makers tend to 

adopt a new technology at smaller scales (Liu 2013; Trujillo-Barrera et al. 

2016; van Winsen et al. 2016). Indeed, while a risk-neutral farmer would 

maximize the expected returns without controlling for implied risk, a risk-

averse farmer can either replicate the optimum chosen by a risk-neutral 

farmer or opt for lower risk associated with a smaller scale of adoption and 

lower expected returns. The effect of risk aversion on timing depends on risk 

associated with opportunity costs (i.e., returns if not investing). If the returns 

from alternative resource allocations are risk-free, then risk aversion leads to 
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postponed investment (Hugonnier and Morellec 2007). If opportunity costs 

are also stochastic and correlated with the investment option to be exercised 

(as in our settings), then there is a potential opportunity for hedging that a 

more risk-averse decision maker is more willing to exploit by investing earlier 

(Henderson and Hobson 2002; Truong and Trück 2016; Chronopoulos and 

Lumbreras 2017). Therefore we hypothesize that risk aversion leads to 

smaller scale (H1) and earlier adoption on average (H2).  

Measuring risk levels of stochastic returns at different time points is far 

from trivial. In a farm household context without off-farm income, yearly 

profit withdrawals as the main objective variables of a particular farmer are 

clearly driven mainly by stochastic returns on farming operations; but their 

risk level can be managed by additional instruments such as the timing of 

larger household expenditures or short-term loans (see de Mey et al. [2016] 

for holistic analysis of risk behavior). The latter instruments are very difficult 

to observe. Additionally, the computational speed would be significantly 

hampered if we control for ISSD at each time period, while introducing factors 

such as short-term loans as additional decision variables. In this regard, it is 

relatively common to use the distribution of the NPV to assess risk level of an 

investment project (Abadi et al. 1999) instead of considering the distribution 

of cash inflows and outflows in each year. Conceptually, this implies that an 

agent would only consider the distribution of her (discounted) terminal 

wealth after the lifetime of a project. The literature suggests use of a 

normative portfolio characterized by a tolerable distribution of a risk measure 

(Bailey 1992; Kuosmanen 2007) if alternatives are evaluated. In the farm 

context, a farmer’s observed production activities and related risk measures 

can be considered as such a benchmark (Musshoff and Hirschauer 2007). 

Hence, NPV generated under consideration of a new technology should 

stochastically dominate that benchmark in order to be realized. 

Subjective risk perception often differs from objective risk levels of the 

investment project derived ex-post (Liu 2013; Menapace et al. 2013; 

Bocquého et al. 2014), while a decision maker behaves according to her 

subjective beliefs (Savage 1972; Marra et al. 2003; Karni 2006). The expected 

utility hypothesis overlaps here with competing prospect theory; the latter 

capturing subjective probabilities by weighting probability (Bocquého et al. 

2014, p. 137). Empirical research identifies a number of factors that affect 

subjective risk perception, including age (Menapace et al. 2013), past 

experience (Menapace et al. 2013), education (Liu 2013), social networks 

(Kassie et al. 2015), as well as risk aversion (Menapace et al. 2013; Trujillo-

Barrera et al. 2016). Subjective risk level is especially relevant for a new 
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technology, whose risk might be hard to determine due to a lack of experience 

and related knowledge (Bougherara et al. 2017, p. 803). This uncertainty 

might even be tagged as risk ambiguity (i.e., inability to formulate subjective 

probabilities) (Barham et al. 2014; Bougherara et al. 2017). The significance of 

subjective risk level of technology adoption has barely been studied (Meijer et 

al. 2015) and the few existing findings are ambiguous: some argue that it is 

one of the major determinants (Jain et al. 2015; Trujillo-Barrera et al. 2016), 

while others have failed to find any significant effect (van Winsen et al. 2016). 

According to the theory of real options, higher volatility increases both the 

option value and the trigger price that should be reached in order to initiate 

investment (Dixit and Pindyck 1994, p. 192; Hugonnier and Morellec 2007). In 

contrast, zero volatility would convert the problem into a classical NPV 

approach without incentive to postpone. We thus hypothesize that subjective 

overestimation of risk imposed by a new technology increases the negative 

effect of risk aversion on scale (H3) and decreases its positive effect on the 

timing (H4) of technology adoption (Trujillo-Barrera et al. 2016). 

4.3. Case study and the resulting farm-level model 

As an illustrative example of technology adoption in farming, we consider 

introducing a perennial energy crop production system (SRC) on a typical 

arable farm in northern Germany. Establishing a SRC plantation requires high 

sunk costs (Lowthe-Thomas et al. 2010); yet, once established, an SRC 

plantation has a lifetime of approximately 20 years, during which it can be 

coppiced several times without being replanted. During the long lifetime of an 

SRC plantation, there is (at least) uncertainty in SRC biomass prices. SRC 

competes with annual crop production for land resources at the farm level, yet 

SRC establishment and harvesting are usually outsourced, such that little or no 

farm labor is required (Musshoff 2012, p. 77). The combination of uncertainty, 

high sunk costs, and the possibility to postpone the adoption decision and to 

adjust the scale of SRC implementation motivates an option value (i.e., a value 

of postponing and acquiring more information prior to making a decision) 

(Pindyck 2004).  

SRC adoption has been analyzed using real options (Song et al. 2011; 

Bartolini and Viaggi 2012; Frey et al. 2013; Kostrova et al. 2016) under risk 

aversion by introducing a risk-adjusted discount rate (Musshoff 2012; 

Wolbert-Haverkamp and Musshoff 2014). We expand these models in the 

following dimensions. First, we consider SRC and evaluate the option value in 
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a farm-level context, capturing interactions with annual crops based on 

competition for fixed resources. We therefore simulate both optimal timing 

and scale of technology adoption. Second, we assume that currently observed 

shares of annual crops constitute a portfolio with stochastic returns (i.e., a 

farmer reallocates resources within this portfolio and SRC), with both 

entailing risk. Next, based on empirical results for German farmers (Meraner 

and Finger 2017) we assume risk-aversion and introduce risk preferences 

based on ISSD (i.e., without specifying a risk utility function or risk premium 

or making further restrictive assumptions). Finally, we analyze the effect of 

subjective risk perception on SRC adoption by changing the risk level 

associated with SRC. 

The currently observed production activities consist of four types of 

land uses: production of two types of annual crops, one of which is more 

profitable, but also more labor-intensive than the other, as well as set-aside 

land and catch crops. A farmer is assumed to be a price-taker. Annual crops 

are characterized by stochastic gross margins, while set-aside land and catch 

crops are modeled with deterministic costs and introduced to consider the 

Ecological Focus Area (EFA) requirement18. Two scarce on-farm resources 

(land [100 ha] and labor [500 hours per year—h y-1]) are allocated among 

farm activities in fractional shares. A particular farmer considers introducing 

SRC immediately or within the next three years. A SRC plantation can be 

coppiced every five years over a period of up to 20 years and afterwards must 

be clear-cut, although earlier reconversion to other land uses is possible. The 

time horizon of our model is hence 24 years: a maximum of four years for 

possible SRC introduction added to the maximal plantation lifetime of 20 

years. Various relationships in the model need integer variables. Thus, in 

order to avoid a mixed non-linear integer programming problem, we keep the 

model linear by pre-defining plots of certain sizes to be potentially converted 

into SRC plantation in 5-hectare increments (i.e., providing 0, 5, 10, …, 100 ha 

of SRC plantation). Economic considerations of introducing SRC are the 

following. On one hand, SRC requires significant and irreversible investments 

for establishment and final reconversion (Table 4.1) and binds land resources 

                                                      

 

18 According to the Common Agricultural Policy (CAP) introduced with the latest reform, large 

farms must devote 5% of their land area to land uses serve environmental purposes; with each 

hectare under catch crops being equivalent to 0.3 ha of set-aside land (EFA) in Germany (BMEL 

2015; Péer et al. 2016). 
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for a long time period, while SRC biomass price is assumed to be stochastic. On 

the other hand, land under SRC also qualifies for EFA with a coefficient of 0.3 

(BMEL 2015; Péer et al. 2016), while no labor input is required as SRC 

cultivation and harvest are based on contracted services (Musshoff 2012). 

Accordingly, labor previously used on a plot now devoted to SRC can be 

reallocated to more profitable and labor-intensive annual crop production. We 

also assume economies of scale related to SRC, for instance related to 

transaction costs of finding a contractor or transport costs of harvest 

equipment. These variables are captured in the SRC harvest cost function: 

 𝐻𝐶 = 66.75 + 272.13 ∙ 𝐿 + 10.67 ∙ 𝐿 ∙ 𝑌 (4.5) 

where 𝐻𝐶 represents the total costs related to harvest (€); 𝐿 is the land area 

to be harvested; and 𝑌 is biomass to be harvested in tonnes of dry matter yield 

per hectare (t). In particular, we differentiate between fixed costs at the farm 

level, quasi-fixed costs per each plot harvested, and variable costs per tonne of 

dry matter harvested (Pecenka and Hoffmann 2012; Schweier and Becker 

2012). We use an individual annual discount rate of 3.87% y-1 (Musshoff 

2012). Appendix 4.1 provides more information on the model parameters. In 

summary, our model maximizes NPV at each leaf of the scenario tree 

conditional to risk expectations—𝑓(∙) in Eq.4.4—and subject to resource 

endowments and EFA regulation (𝐶 in Eq.4.4), as well as to ISSD constraints. 

Table 4.1. Input requirements and returns of alternative farm activities 

Parameter Value Source 

Short rotation coppice 

Planting costs 2,875.00 € ha–1 Musshoff (2012) 

Biomass yields every five years 68.57 t ha–1 Ali (2009) 

Price of biomass yields 
Stochastic, see Table 

4.2 
 

Costs related to harvest 
Defined according to 

Eq. 4.5 
 

Final clear-cut costs 1,400.00 € ha–1 Musshoff (2012) 

Annual crops 

Labor requirements for a more 
profitable crop 

5.32 h ha–1 y–1 KTBL (2012) 

Labor requirements for a less 
profitable crop 

4.16 h ha–1 y–1 KTBL (2012) 
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Gross margins of annual crops Stochastic, see Table 
4.2 

Land uses recognized as Ecological Focus Area 

Labor requirements for set-aside 
land 

1.00 h ha–1 y–1 KTBL (2012) 

Labor requirements for catch 
crops 

0.00 h ha–1 y–1 KTBL (2012) 

Gross margin of set-aside land –50.00 h ha–1 y–1 CAPRI (2017) 

Gross margin of catch crops –100.00 h ha–1 y–1 
de Witte and Latacz-
Lohmann (2014, p. 37) 

 

We assume that the natural logarithm of each stochastic variable follows 

a mean-reverting process (MRP). An MRP is characterized by a long-term 

mean, speed of reversion, and variance (Dixit and Pindyck 1994, p. 74): 

 𝑑𝑦 = 𝜃(�̇� − 𝑦)𝑑𝑡 + 𝜎𝑑𝑧 (4.6) 

where 𝑦 is a stochastic variable; �̇� is a long-term mean of 𝑦 to which 𝑦 tends to 

revert; 𝑑𝑦 represents a change in 𝑦; 𝑑𝑡 is a time interval; 𝜃 > 0 is the speed of 

reversion; 𝜎 > 0 is variance; and 𝑑𝑧 is an increment of a Wiener process. We 

estimate the parameters of the MRP for annual crops using data on gross 

margins of an average hectare of arable land in Germany over 1993–2012 

from the CAPRI (2017) model following the procedure described in Musshoff 

and Hirschauer (2004, pp. 271–273). Appendix 4.1 provides more details on 

the estimation of the MRP. The MRP for SRC biomass prices is adopted from 

Musshoff (2012). The literature provides ambiguous evidence regarding the 

correlation coefficient between SRC biomass price and annual crop gross 

margins (Musshoff and Hirschauer 2004; Du et al. 2011; Diekmann et al. 

2014). Thus, we assume a zero correlation coefficient between the two 

stochastic variables. This reflects the fact that gross margins of SRC and 

annual crops are not driven by similar market and climatic conditions. In 

contrast, we assume that the gross margins of the two annual crops are 

perfectly correlated. We hence use one MRP for gross margins and then adjust 

the draw at each node of the scenario tree with multiplicative coefficients 

(Table 4.2) to derive gross margin levels. 
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Table 4.2. (Objective) Parameters of stochastic processes. 

Parameter Value Source 

Mean-reverting process for natural logarithm of SRC biomass price 

Starting value 3.92ac  

Long-term mean 3.92a Musshoff (2012) 

Speed of reversion 0.22 Musshoff (2012) 

Standard deviation 0.28 Musshoff (2012) 

Correlation coefficient with the other 
stochastic process 

0.00d  

Mean-reverting process for natural logarithm of gross margins of annual crops 

Starting value 6.02bc  

Long-term mean 6.02b 
CAPRI (2017), own 
estimation 

Speed of reversion 0.32 
CAPRI (2017), own 
estimation 

Standard deviation 0.28 
CAPRI (2017), own 
estimation 

Multiplicative coefficient for a more labor-
intensive and more profitable crop 

1.05e  

Multiplicative coefficient for a less labor-
intensive and less profitable crop 

0.95e  

a Is equal to ca.50 euro per tonne of dry matter yield (€ t–1). 

b Is equal to 413 euro per hectare (€ ha–1). 

c The starting values are set up equal to the long-term mean in order to exclude any possible 
effect of a trend. 

d The assumptions is based on ambiguous evidences in the literature about sign and magnitude 
of the correlation (Musshoff and Hirschauer 2004; Du et al. 2011; Diekmann, et al. 2014). 

e The multiplicative coefficients are assumed for draws converted back from natural logarithm 
into euro per hectare. 

 

We solve the mixed-integer model with stochastic programming. We 

represent uncertainty using a scenario tree, which we construct by running a 

Monte Carlo simulation with 10,000 draws and then employ a scenario tree 

reduction technique following Heitsch and Römisch (2008) to obtain a 
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scenario tree with 200 leaves19. The algorithm allows control over the number 

of leaves, keeping the values assigned to each node within a certain plausible 

range and hence gaining a computational advantage. Since there are several 

stochastic variables in the model—gross margins of annual crops and SRC 

biomass price—a vector of values is assigned to each node of the scenario 

tree. Under the assumption of risk neutrality the model output is the optimal 

decision with respect to SRC for each node of the tree conditional to decisions 

made prior to the node and conditional to the possible follow-up scenarios 

(Fig. 4.1). In order to quantify the effect of risk aversion we introduce risk 

aversion by means of ISSD and then compare the results with and without risk 

preferences. In particular, we consider the final distribution of NPVs as a 

measure of portfolio risk levels and use the currently observed behavior as the 

benchmark for tolerable risk. The additional ISSD constraints ensure 

(approximately) that the final distribution of NPVs under consideration of SRC 

second-order stochastically dominates the distribution of NPVs under the 

observed crop production activities. We set 𝑁 equal to 100 and thus consider 

100 intervals20 with a 1%-step (Eq. 4.4), which should render the impact of 

the approximation negligible. The model, as well as all the related 

documentation, is publicly available in Spiegel et al. (2017). 

                                                      

 

19 The number of leaves in reduced scenario tree is a model parameter and can be adjusted. Its 

choice is a tradeoff between accuracy and execution time. We performed multiple runs of the 

model, gradually increasing the number of leaves, and noticed that the expected area under SRC 

stabilizes beginning at 200 leaves.  

20 Similar to the number of leaves in a reduced scenario tree, the number of intervals is also a 

model parameter. Tests with an increasing number of intervals reveal that 100 intervals is an 

acceptable tradeoff between accuracy and execution time.  
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Figure 4.1. Schematic representation of the solution approach 

In order to capture the subjective risk levels associated with SRC, we 

conduct a sensitivity analysis, making stepwise changes to the standard 

deviation and speed of reversion of the stochastic process for SRC biomass 

price, while the draws of the other stochastic process (i.e., the gross margins 

of annual crops) are obtained once and fixed. The higher the standard 

deviation and the lower the speed of reversion, the more volatile the 

stochastic process is, reaching a broader range of possible values and 

reverting at a slower pace back to the long-term mean. Note that neither the 

long-term mean nor the expected mean SRC biomass price in each year are 

affected in the sensitivity analysis. Consequently, results under a now-or-

never risk-neutral decision (i.e., the classical risk-neutral NPV approach) 

would not change.  

4.4. Results 

The key results without considering risk aversion and under objective risk 

perception are presented in Table 4.3. Note that introducing SRC immediately 

(i.e., in 𝑡 = 1) is not optimal (i.e., an option value exists). Accordingly, the 

investment decision is postponed and exercised later or not at all depending 
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on how future conditions evolve. We find that in approximately 40% of the 

simulated cases that SRC would be never introduced. The expected area under 

SRC is 7.97 ha, which is not enough to fulfill the EFA requirement, and hence 

set-aside land and catch crops are remain in the farm portfolio. As argued 

above, since SRC requires no labor input, a farmer reallocates labor resources 

to a more profitable and more labor-intensive crop. This interaction of a new 

technology with other farm activities and reallocation of resources would 

have obscured analysis of technology adoption as a stand-alone investment.  

Table 4.3. Comparison of business-as-usual scenario and introduction of 

short rotation coppice (SRC) with no ISSD constraint and under objective 

risk perception. 

 
Business-as-usual (no 

SRC) 

SRC introduction 
without an ISSD 

constraint 

Probability of introducing 
SRC (%) 

  

In 𝑡 = 1 - 0.00 

In 𝑡 = 2 - 15.66 

In 𝑡 = 3 - 24.01 

In 𝑡 = 4 - 20.90 

Never - 39.43 

Mean area  (ha y–1) -  

SRC - 7.97 

More profitable 
annual crop 

80.16 81.36 

Less profitable 
annual crop 

17.00 8.97 

Set-aside land 2.84 1.70 

Catch crop 7.19 6.69 

Expected net present value, 
(1000s €) 

641.31 655.28 

 

As our stochastic dynamic optimization setting under risk neutrality 

introduces SRC on some of the future scenarios, the expected NPV must 

increase compared to the benchmark, however, we also find substantially 

higher risk. Indeed, a visual analysis immediately reveals that NPV with SRC 

simulated under risk neutrality (i.e., without the ISSD constraints) cannot 



 

111 

 

 

stochastically dominate the BAU scenario: its lowest NPV realization 

undercuts the lowest one under the BAU scenario (compare black and red 

solid curves in Fig. 4.2). Introduction of the ISSD constraints and thus 

requiring SSD for new farm activities turns the NPV distribution function with 

SRC in a counterclockwise direction, cutting the left-hand-side tail (black 

dashed curve in Fig. 4.2).  

 

Figure 4.2. Effect of risk preferences on the distribution of NPVs 

compared with the business-as-usual scenario (BAU).  

Note: standard deviation and speed of reversion of logarithmic SRC biomass price are 1.00 and 

0.22 respectively. 

We now demonstrate the effect of risk aversion and subjective risk 

levels on the scale of technology adoption (i.e., expected area under SRC). Fig. 

4.3 combines the effects of adjusting the standard deviation and mean of 

reversion of the stochastic process for the SRC biomass price with and without 

the ISSD constraints. Our analysis shows that risk aversion indeed leads to a 

smaller expected area under SRC, which is consistent with H1. Since the ISSD 

constraints cut off the lower tail of NPV distribution, no SRC adoption is 

possible in those leaves where it would be realized under risk neutrality, and 

hence the overall expected scale of SRC adoption is reduced. In contrast, H3 is 

rejected in our example. Our results show that a higher (subjective) risk level 

leads to a larger expected area under SRC, even for a risk-averse decision 

maker. This is explained by managerial flexibility regarding the scale of 
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investment: a farmer exploits the opportunity of investing in a larger SRC 

plantation when prices are high and vice versa. Due to that managerial 

flexibility, a part of the scenario tree with low SRC prices is cut off, since SRC is 

only adopted if the price exceeds a certain threshold. Higher (subjective) risk 

levels increase the spread of the scenario tree without changing the expected 

mean. It thus creates a larger area where SRC is not realized and the gross 

margins of alternative crops generate farm income, but also shifts up the 

expected SRC price for the nodes where the threshold price is exceeded, which 

triggers a larger scale of the investment project for these nodes. In our 

application the expected mean area under SRC, which measures the scale of 

adaption, increases at higher (subjective) risk levels for both risk-neutral and 

risk-averse decision makers, even though the respective trigger price 

increases. However, this effect of increasing risk levels is dampened by risk 

aversion, especially when adjusting the speed of reversion: the expected scale 

of SRC adaption decreases under risk aversion (Fig. 4.3). 

 
Figure 4.3. Effect of increasing subjective risk levels of short rotation 

coppice (SRC) biomass output prices on the expected area under SRC.  

Next we address the hypotheses H2 and H4. Our results reveal a U-

parabolic relationship between (subjective) risk levels of SRC and incentives 

for earlier SRC introduction (Fig. 4.4). Lower standard deviation values 

provide limited incentives to postpone SRC introduction by eliminating risk 

and the related option value (i.e., the decision problem moves towards a 

classical NPV analysis). As discussed above, higher standard deviation values 

increase the chance of reaching the trigger price on the nodes and thus again 

limit incentives to postpone. A similar U-parabolic relationship can be 

observed between (subjective) SRC risk levels and the probability of never 

adopting SRC: there is a level of risk that implies the highest probability of 
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never adopting SRC (Fig. 4.4). Hence, H4 is confirmed in our settings for lower 

levels of risk and rejected for greater ones. Comparing the timing of SRC 

introduction in the case of risk-neutral (wider bars in Fig. 4.4) and risk-averse 

(narrower bars in Fig. 4.4) decision makers, we observe that risk aversion 

might lead to earlier SRC introduction. This is caused by the hedging effect 

between the uncorrelated stochastic returns of annual crops and SRC 

exploited by a risk-averse decision maker. A risk-averse farmer is predicted to 

introduce SRC earlier in order to reduce overall farm risk, although on average 

they adopt a smaller area of SRC compared to a risk-neutral farmer. This effect 

would have been obscured if the alternative land-use portfolio is assumed to 

be deterministic or if technology adoption is considered stand-alone. The 

effect of risk preferences on timing is highest at mid standard deviation 

values, while it is not apparent at higher and lower values (Fig. 4.4). As risk 

levels decrease there is no incentive to postpone adoption regardless of risk 

preferences. When risk levels increase a trigger price is reached sooner that 

stimulates SRC adoption. Thus we cannot reject H2.  

  

Figure 4.4. Effects of increasing standard deviation values of logarithmic 

SRC biomass price on timing of SRC introduction with and without risk 

preferences.  

Note: speed of reversion of logarithmic SRC biomass price is 0.22.  

To this end, a decision maker perceiving SRC as a high risk option 

(equally with respect to positive and negative risks) tends to introduce a 
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larger area of SRC earlier, yet not immediately. Hence, a respective trigger 

price has to be reached (i.e., observed) in order to initiate SRC introduction; 

otherwise an investment decision will be postponed forever. Furthermore, the 

negative effect of risk aversion on scale of adoption increases as subjective 

risk levels increase. The major findings are presented in Table 4.4. 

Table 4.4. Summary of the major findings and check of hypotheses 

 Effect on 

Scale of technology 
adoption 

Timing of technology 
adoption 

F
a

ct
o

r Risk aversion 
Negative  

(H1 not rejected) 

Neutral/positive  

(H2 not rejected) 

Higher risk 
level 

Positive  

(H3 rejected) 

First negative, then positive  

(H4 not rejected) 

4.5. Discussion and conclusion 

Understanding farmer motives with respect to technology adoption is crucial 

for forecasting and the development of efficient policies. We develop a 

dynamic farm-level model where returns both to the current farm activities 

and a new investment-based activity are stochastic. Our approach simulates 

the effects of (subjective) risk levels and risk preferences on both timing and 

scale of technology adoption and considers interactions among different farm 

activities based on competition for limited resources, but also based on 

hedging. We illustrate our approach by analyzing the introduction of SRC on a 

typical arable farm in northern Germany.  

Our results demonstrate that risk aversion negatively affects the scale of 

technology adoption, which is consistent with previous research findings (Liu 

2013; Trujillo-Barrera et al. 2016; van Winsen et al. 2016). We also find that 

risk aversion accelerates technology adoption and reduces probability of no 

adoption as expected, although the effect is not apparent at very low or very 

high risk levels in our case study. A similar result was obtained by Truong and 

Trück (2016), who found that risk aversion stimulates earlier investment in 

climate change adaptation projects that are intended to reduce risk. This 

result can be explained by higher incentives of a risk-averse farmer to exploit 

the natural hedging effect of diversifying with novel and established activities. 

The lower the correlation coefficient between both activities, the higher the 
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potential effect of natural hedging. Consequently, the effect of risk aversion on 

timing of technology adoption might be different or obscured in other settings 

(i.e., if a new technology implies perfectly correlated returns with established 

alternatives or if technology adoption is analyzed under different assumptions 

such as stand-alone).  

Although the findings of previous studies suggest that risk and 

subjective risk perception of farmers are relevant, especially with respect to 

new technologies, such findings are ambiguous regarding the effect of both on 

technology adoption. Our results show that due to managerial flexibility, 

higher (subjective) risk levels lead to greater mean scales of technology 

adoption, which is, however, dampened by risk aversion. The treatment of 

risks and risk levels in our analysis implies consideration of both positive and 

negative risks. Only considering downside risk might provide additional 

insight, but requires a different type of sensitivity analysis where a negative 

drift would need to be introduced in the stochastic process, while the ISSD 

constraints would only capture a predetermined part of the distribution. Risk 

perception defined this way would lead to a lower scale of technology 

adoption. We therefore emphasize that the definition of risk perception 

requires special attention when applying the methods we propose. 

As for the timing of technology adoption, we observe a U-parabolic 

effect: with increased risk levels, a farmer first tends to postpone or even 

reject technology adoption, and then to adopt earlier. However, the U-

parabolic relationship is smoothed by risk aversion. Hence, if a farmer 

perceives a technology as a low risk option, they would tend to adopt sooner, 

but at a smaller scale on average. In contrast, perceiving a technology as high 

risk, a farmer would also tend to adopt earlier, but at a larger scale. This result 

is consistent with Chatalova and Balmann (2017), who also found that 

uncertainty might be beneficial due to possibility to adjust behavior 

depending on states-of-nature. 

This study might serve as a basis for future research in multiple 

dimensions. First, the model can be further specified (e.g., controlling for 

annual volatility in returns), and expanded to other farm-level decisions. 

Second, different policy instruments to promote SRC could be analyzed under 

variable risk preferences. Furthermore, learning algorithms might be 

incorporated (Guthrie 2009). The model and all of the related documentation 

to facilitate further research are provided in Spiegel et al. (2017). 
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4.7. Appendices 

Appendix 4.1. Assumed values of the parameters of the model 

SRC biomass growth function 

We adapted the following yield function from Ali (2009): 

 𝑌 = 2.27 ∙ (−0.1133 ∙ 10−8 ∙ 𝐷2 + 0.254 ∙ 10−4 ∙ 𝐷

+ 0.028) ∙ (1.569 ∙ 𝐻𝐼 + 0.4 ∙ 10−3 ∙ 𝑃𝑇 ∙ 𝑆𝑄𝐼

−
23.198 ∙ 𝑇𝑒𝑚𝑝

𝑊
)(0.34∙10−8∙𝐷2−0.501∙10−4∙𝐷+2.614) 

(4.7) 

Where 𝑌 represents dry matter yields (t ha–1); 𝐷 stays for density of trees (ha–

1); 𝐻𝐼 is possible intermediate harvesting interval: 2, 3, 4, or 5 (y); 𝑃𝑇 is 

average sum of precipitation in May-June (mm); 𝑆𝑄𝐼 is soil quality index; 

http://www.wetteronline.de/
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𝑇𝑒𝑚𝑝 is average temperature in April-July (°C); and 𝑊 is available ground 

water capacity (mm). We fixed all the variables except for interval between 

harvests (Table 4.5.) and fitted the obtained values to a linear function of 

available biomass in the previous year:  

 𝑌 = 1.651 ∙ 𝑌−1 + 3.962 (4.8) 

where 𝑌−1 represents dry matter yields in the previous year (t ha–1). 

Table 4.5. Parameters of the yield function and assumed values 

Variables Description Values References 

𝐷 density of trees, ha–1 9,000 Musshoff (2012) 

𝑃𝑇 
average sum of 
precipitation in May and 
June, mm 

106.27 

The sum of mean averages 
precipitation in May and June 
in the region Meckl. Seen 
(1995–2015) (WetterOnline) 

𝑆𝑄𝐼 soil quality index 35 Musshoff (2012) 

𝑇𝑒𝑚𝑝 
average temperature in 
April-July, °C 

14.51 

Mean of average 
temperatures (the highest 
and the lowest during the 
day) in April-July in the 
region Meckl. Seen (1995–
2015) (WetterOnline) 

𝑊 
available groundwater 
capacity, mm 

220 Musshoff (2012) 

 

The model hence allows adjusting the interval between harvests or even 

transforming it into a decision variable. In the latter case, tests revealed that a 

5-year interval is usually the optimal one. In this regard, we used a fixed 5-

year interval between harvests, in order to increase computational speed. 
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Comparison of model parameters with the evidences from the literature 

Table 4.6. Comparison of model parameters with the evidences from the 

literature 

Parameter Assumed value 
Values found in 

the literature 
Reference 

SRC planting costs,  

€ ha–1 

2,875.00 2,316.38 Kroeber et al. 
(2008) 

2,255.00–3,223.00 Strohm et al. (2012) 

3,199.92 Wolbert-
Haverkamp (2012) 

2,380.00–3,223.00 ETI (2013) 

2,736.00 Wolbert-
Haverkamp and 
Musshoff (2014) 

Reconversion 
costs,  

€ ha–1 

1,400.00 2,072.50 Faasch and 
Patenaude (2012) 

960.00–3,200.00 Strohm et al. (2012) 

1,800.00 Schweier and 
Becker (2013) 

1,121.00 Wolbert-
Haverkamp and 
Musshoff (2014) 

Gross margins of 
catch crops,  

€ ha–1 y–1 

–100.00 –140.00–(–40.00) de Witte and 
Latacz-Lohmann 
(2014, p.37) 

 

Resources endowments 

Labor endowment and labor requirements include only fieldwork and exclude 

management work, which is assumed to be fixed per farm and hence has no 

effect on resource distribution. The total land endowment of 100 ha is 

representative for northern Germany: for instance, in the federal state 

Mecklenburg-Western Pomerania 20% of agricultural farms operated on an 

area of 50 to 200 ha (StatA-MV 2016). 
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Estimation of a mean reverting process for gross margins of annual crops 

The following data for gross margins of arable land were used CAPRI (2017): 

Table 4.7. Gross margins and their natural logarithms used for 

estimation of stochastic process for gross margins of annual crops 

Year 1993 1994 1995 1996 1997 1998 1999 

Gross margins 
(GM), € ha–1 

277.90 287.88 268.23 360.32 348.16 339.33 312.84 

Natural logarithm 
of GM 

5.63 5.66 5.59 5.89 5.85 5.83 5.75 

Year 2000 2001 2002 2003 2004 2005 2006 

Gross margins 
(GM), € ha–1 

281.46 356.42 268.33 237.25 355.15 268.85 312.25 

Natural logarithm 
of GM 

5.64 5.88 5.59 5.47 5.87 5.59 5.74 

Year 2007 2008 2009 2010 2011 2012  

Gross margins 
(GM), € ha–1 

588.97 516.79 379.15 518.40 680.44 662.92  

Natural logarithm 
of GM 

6.38 6.25 5.94 6.25 6.52 6.50  

 

The Dickey-Fuller test implies non stationary. However, we follow economic 

considerations and assume a stationary mean-reverting process (MRP), 

motivating by the assumption of a farmer being price-taker in a market where 

the price fluctuates around a constant long-term level due to market forces 

(Metcalf and Hassett 1995, p.1472) and/or constant technology (Song et al. 

2011, p.775). We derive parameters of the MRP following the procedure and 

formulas described in Musshoff and Hirschauer (2004).  



 

 

 

 

Chapter 5 

Conclusion 

5.1. Summary of the major results 

Investment and land-use decisions pre-determine the distribution of other 

farm resources and thus constitute core farm activities. Real-world large-scale 

investment projects at the farm level are often highly complex due to sunk 

costs, risks, returns-to-scale, investment options of predefined sizes, and 

multiple stages of investment. Considering those factors is crucial for 

improving understanding of the economic incentives and disincentives to 

invest at the farm level and appropriate design of related policy. However, 

existing numerical methods of investment analysis fail to capture complexity 

due to explicit or implicit restrictions. The thesis narrows the gap and 

develops a numerical method to analyze complex investment options at the 

farm level. An illustrative example of such a complex investment decision is 

the introduction of a perennial energy crop and related production systems at 

the farm level. Perennial energy crops, in particular SRC, have gained interest 

among both farmers and policy makers due to their multiple environmental 

benefits, more efficient energy generation, and low input requirements. Yet 

despite political support, European farmers are reluctant to adopt SRC on a 

large scale. This thesis quantifies economic incentives and disincentives of 

SRC adoption at the farm level under consideration of risks and risk 

preferences. 
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Returning to the research questions posed at the beginning of this 

thesis, results indicate that SRC cannot compete with other crops under 

current market conditions (Q1). Competition between SRC and other crops for 

limited on-farm resources, including environmental requirements and 

economy of scale, is captured in a mixed-integer non-linear farm-level model 

(Q1.1; Q1.2). Decisions regarding SRC adoption are formulated as a compound 

American real option, where the total number of stages (i.e., the number of 

intermediate harvests) is a decision variable, bounded from above as well. The 

model is solved with a combination of Monte Carlo simulation, a scenario tree 

reduction technique, and stochastic programming (Q1.3). The approach 

requires limited restricting assumptions and allows valuation of compound 

American option under consideration of economy of scale, predefined 

investment scales, resource endowments, and other farm-level constraints. As 

hypothesized, a sensitivity analysis with respect to observed SRC biomass 

price reveals that an increase in the price leads to earlier adoption at larger 

scales (Q1.4). Such an analysis allows finding the trigger price (i.e., a price that 

stimulates immediate SRC adoption). 

A follow-up policy analysis clearly supports the recently implemented 

planting subsidy and suggests combining it with increased EFA value (Q2). 

Although both policies lead to earlier SRC adoption, they do not stimulate 

immediate SRC introduction and hence should be adjusted accordingly (e.g., 

implemented in a limited quantity) (Q2.4). In contrast, a guaranteed SRC 

biomass price encourages immediate SRC adoption (Q2.4) smaller scales. In 

general, it is concluded that policy instruments supporting SRC at the farm 

level require much less governmental expenditures per additional bioenergy 

produced than current policy instruments supporting other renewable energy 

initiatives (Q2.2). As for the scale of SRC adoption, the most effective policy 

instrument considered—a planting subsidy of 1,500 € ha-1—leads to an 

increase in produced bioenergy by approximately 200%, although some policy 

instruments (e.g., low intensities of guaranteed price) lead to a reduction in 

bioenergy production (Q2.1). The majority of the considered policy 

instruments lead to an increase in expected farm income and hence are also 

beneficial for farmers (Q2.3). 

Deviating from risk-neutrality of a farmer affects optimal behavior. 

Since many studies indicate that farmers in Europe are risk-averse, the 

concept of second-order stochastic dominance is employed (Q3.1). The 

approach is attractive as it requires limited behavioral assumptions and 

allows solving a real options approach under risk preferences in a consistent 

manner. In particular, new farm portfolios containing SRC cultivation should 
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outperform currently observed portfolios in order to be adopted. Our case 

study reveals that risk aversion leads to earlier SRC adoption at smaller scales 

(Q3.2; Q3.3). This result is valid unless returns from SRC and other annual 

crops are perfectly correlated (i.e., natural hedging is possible). Furthermore, 

the effect of (subjective) risk perception implied by SRC is tested. In our case 

study, higher (subjective) risk level stimulates earlier SRC adoption at larger 

scales (Q3.4; Q3.5). Two assumptions are crucial for this result. First, greater 

risk levels are assumed to be symmetrical (i.e., implied for both positive and 

negative risks). In this regard, only positive risks extended with increasing 

risk levels can be exploited if there is managerial flexibility (i.e., the ability to 

adjust behavior according to future conditions exists). Hence, managerial 

flexibility is the other crucial assumption. 

The effects of selected factors influencing SRC adoption analyzed in the 

study are summarized in Table 5.1. While observed SRC biomass price and 

opportunity and sunk costs act in a coherent manner, risk aversion and lower 

levels of (subjective) risk imply a conflict between timing and scale, initiating 

either later adoption at larger scales or earlier adoption at smaller scales 

(Table 5.1). This raises a question about what should be preferred by a social 

planner: earlier SRC adoption or adoption at larger scales.  

Table 5.1. Summary of the main factors and their influence on expected 

timing and scale of SRC adoption 

 Timing1 Scale2 

Observed SRC biomass price - + 

Opportunity costs + - 

Sunk costs + - 

(Subjective) risk level +  - 3 + 

Risk aversion - - 
1 For timing: “+” = later adoption; “-” = earlier adoption 

2 For scale: “+” = larger scale; “-” = smaller scale 

3 Positive for lower levels and negative for higher levels 

 

Another question refers to adjustability of the factors determining SRC 

adoption. If observed biomass price, costs, and (subjective) risk levels can be 

affected in a relatively straightforward manner by different policy instruments 

(Chapter 3), changing risk aversion is more complex, since the literature 

provides ambiguous evidence for the stability of risk preferences (Baucells 
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and Villasís 2010; Chuang and Schechter 2015) and hence the capacity of 

policy instruments to affect them.  

The methodology proposed here is a rather general instrument for the 

analysis of long-term investments under uncertainty and hence is of interest 

far beyond our case study. It allows relaxing restrictive assumptions, while 

computational capacity is not hampered, and both the approach and the 

outcomes are transparent. Empirical results shed light on farm-level 

incentives and disincentives to adopt perennial energy crop production 

systems, analyze necessary policy support for promoting adoption, and 

quantify potential biomass capacity supplied with SRC.  

5.2. Policy recommendations 

The existing policy support for SRC production systems clearly indicates the 

social aim to encourage SRC adoption. This thesis does not aim to analyze the 

validity or relevance of the social aim, but rather contributes to its 

achievement. In particular, a number of policy recommendations for the case 

study area have been defined.  

The first policy recommendation refers to much less governmental 

expenditure required for promoting SRC cultivation, compared with other 

renewable energy sources (e.g., biogas, solar, wind energy). Hence, supporting 

SRC production systems as a source of renewable energy is economically 

justified.  

Second, optimization of political support of SRC production systems 

represents a trade-off between different dimensions and requires defining the 

social preferences first. In particular, it has been revealed that if increased 

bioenergy production is a priority, then an establishment subsidy is most 

promising. Based on governmental costs, an increase of the EFA coefficient is 

superior to other policy instruments. In order to incentivize immediate SRC 

implementation, a guaranteed biomass price is most effective, yet having a 

very limited or possibly even negative effect on bioenergy production, while 

being costly. Chapter 4 additionally concludes that increasing risk at high 

levels is beneficial for both timing and scale of SRC adoption, meaning that 

SRC is established earlier and at a larger scale, while increasing risk at low 

levels imply a conflict between timing and scale. Note that uncertainty is only 

beneficial when (i) there is temporal or spatial flexibility; and (ii) the 

perceived positive risk is at least as high as the negative one. In this regard, a 
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price floor performs better, than a guaranteed price, since a price floor 

reduces the negative risk only. Yet, both risk reducing policies should be 

maintained for a longer time period and require government agencies to 

(partly) overtake the price risk leading to stochastic governmental 

expenditures. This, again, raises a question of social preferences and available 

resources to promote SRC adoption. 

Finally, development of markets and infrastructure is crucial for 

encouraging SRC adoption. The fail of the UK system to support of perennial 

energy crops in 2000–2013 due to, among others, no infrastructural support is 

an illustrative example. Successful SRC policies should ensure investment in 

harvesting equipment and biomass processing facilities, in order to avoid a 

‘prisoner’s dilemma’. For example, farmers might prefer not to invest in SRC 

systems because they lack both partners to market their products and 

contractors to harvest their plantations.  

5.3. Outlook and future research 

There are a number of factors whose effects on the timing and scale of SRC 

adoption can also be quantified using the model developed here. These 

include discount rate, biomass yields, managerial flexibility, economy of scale, 

and length of the time horizon. Further stochastic processes can be 

incorporated (e.g., for harvest costs or biomass yields). The model and all 

related documentation are available (Spiegel et al. 2017; see also Annex 1) in 

order to facilitate further application. Yet, some issues go beyond the model 

and require further research. 

In terms of empirical research, the influence of SRC adoption on other 

markets (including food, pulp and paper, and energy markets) should be 

investigated with respect to price formation and resource distribution. In 

particular, the model presented here can be scaled up, and other industries 

can be integrated. The model can also be extended and reproduced for 

different agents. This would allow investigation of interaction among farmers  

or with other market actors (e.g., capturing strategic behavior or learning 

processes). Furthermore, environmental benefits of SRC—so far not directly 

considered in the model—can be expressed in monetary terms and taken into 

account, especially for policy analysis. Furthermore, transaction costs for both 

farmers and policy makers can be introduced. For a farmer, these might 

include finding a contractor or learning new practices; for a policy maker this 
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might include costs for implementing and maintaining a particular policy 

instrument, as well as costs of control and analysis. Other instruments of risk 

management can also be introduced (e.g., insurance, futures, or off-farm 

diversification) (Huirne et al. 2000; Hardaker et al. 2015); although risk-

averse farmers have been found to prefer on-farm risk management strategies 

(Menapace et al. 2016; Meraner and Finger 2017). Finally, as mentioned 

above, social preferences regarding the timing and scale of SRC adoption and 

required governmental costs should be investigated further, as well as 

possibility of affecting risk preferences. All of these would allow not only 

evaluating consequences of SRC adoption, but also determining potential 

capacity and optimal levels of political support for SRC.  

There is also abundant room for further methodological research. As 

mentioned above, there are no well-established approaches for determining 

the optimal number of leaves in a reduced scenario tree and the optimal 

number of intervals for an ISSD constraint. Also, exploding stochastic 

processes cannot be assumed as a basis for a scenario tree; these include 

popular processes in the literature such as geometric and arithmetic 

Brownian motions (Di Corato et al. 2013; Wolbert-Haverkamp and Musshoff 

2014). Using the methods developed here, such stochastic processes used for 

long time horizons would produce implausibly large or small values. Next, 

further research is needed to develop methods for differentiating between 

different levels of risk aversion or to assume a risk-loving decision maker. 

Finally, further research might investigate how to consider rolling time 

horizons (e.g., if SRC introduction can be postponed for an infinite number of 

time periods).          
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Annex 1. Documentation of the stochastic 

dynamic optimization model* 

Abstract 

The stochastic dynamic optimization model documented in here simulates 

decisions of an arable farm with respect to long-term investment based on a 

compound American option. The implemented application is an investment in 

short-rotation coppice (SRC). SRC uses fast-growing trees that, once they are 

set-up, are coppiced several times and finally cleared-up. Time and scale of 

SRC introduction, intermediate harvest quantities, and final reconversion are 

flexible and constitute decision variables along with cropping shares for 

competing crops. A farmer distributes limited resources, i.e. land and labor, to 

SRC and competing annual crops. This decision is based on the maximization 

of the expected NPV under constraints related to policy obligation capturing 

ecological requirements. The price of SRC biomass and gross margins of 

annual crops are assumed to stochastic and captured by a stochastic process, 

but these prices can also be included as deterministic components. The costs 

of harvests are depicted by a function capturing economies of scale. Moreover, 

the farmer represented in the model can be assumed as risk-neutral or risk-

averse. The model quantifies optimal time and scale of SRC cultivation and 

allows conducting policy and risk analyses.  

Keywords:   Real option; stochastic programming; investment analysis; 

risk analysis; policy analysis; short-rotation coppice; 

scenario tree reduction; Monte-Carlo simulation 

https://doi.org/10.3929/ethz-b-000219189
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A.1.1. General settings 

We assume an arable farm with the following land-use options: (1) two types 

of annual arable crops, one of which is more profitable and more labor 

intensive, than the other one; (2) set-aside land; and (3) catch crops. The two 

latter land-uses are introduced as alternatives to fulfill ecological 

requirements. Under the latest Common Agricultural Policy reform large 

arable farms are required to manage 5% of farmland as “Ecological Focus 

Areas” (EFA). Here, set-aside land is recognized with a coefficient of 1.00, and 

area under catch crops – with coefficient of 0.30, meaning that each hectare of 

catch crops is equivalent to 0.30 hectare of EFA (Péer et al. 2016). A farmer is 

assumed to be a price taker. Annual crops are characterized by gross margins 

and required labor input per hectare. Gross margins of set-aside land and 

catch crops are assumed to be deterministic, while gross margins of the two 

arable crops are assumed to be stochastic and perfectly correlated with each 

other. We capture the resulting distribution of gross margins with a single 

mean-reverting process (MRP) in logarithmic form, and then apply a 

multiplicative factor to each draw obtained with the stochastic process. The 

MRP is defined as usual (Dixit and Pindyck 1994, p.74): 

 𝑑𝑔𝑚𝑡 = 𝜇𝑎𝑟𝑎𝑏𝑙𝑒(𝜃𝑎𝑟𝑎𝑏𝑙𝑒 − 𝑔𝑚𝑡)𝑑𝑡 + 𝜎𝑎𝑟𝑎𝑏𝑙𝑒𝑑𝑊𝑡
𝑎𝑟𝑎𝑏𝑙𝑒 (A.1.1) 

where 𝑡 ∈ {1,2, … , 𝑇} is a set of time periods; 𝑔𝑚𝑡 is natural logarithm of gross 

margin of arable crops [per year (y-1)]; 𝜃𝑎𝑟𝑎𝑏𝑙𝑒 is a “normal”, or average, level 

of gross margin of arable crops, to which 𝑔𝑚𝑡 tends to revert [y-1]; 𝑑𝑔𝑚𝑡  is a 

change in 𝑔𝑚𝑡; 𝑑𝑡 is a time interval; 𝜇𝑎𝑟𝑎𝑏𝑙𝑒 > 0 is a speed of reversion; 

𝜎𝑎𝑟𝑎𝑏𝑙𝑒 > 0 is a variance; and 𝑑𝑊𝑡
𝑎𝑟𝑎𝑏𝑙𝑒 is an increment of a Wiener process. 

A farmer allocates limited resources, i.e. land and labor, to different farm 

activities in order to maximize the expected net present value (NPV) as 

defined below:  

 

𝐸[𝑁𝑃𝑉] = ∑ ∑
𝐸[𝐺𝑀𝑡,𝑐] ∙ 𝐿𝑡,𝑐

(1 + 𝑖)𝑡

𝑐

𝑇

𝑡=1

 (A.1.2) 

where 𝐸[∙] represents expectation operator; 𝐺𝑀𝑡,𝑐 stays for gross margin of a 

land use option 𝑐 in time period 𝑡 [in euros per hectare per year (€ ha-1 y-1)]; 

𝐿𝑡,𝑐 stays for fractional land area dedicated to a land use option 𝑐 in time 

period 𝑡 [in hectares per year (ha y-1)]; 𝑖 is an annual discount rate [% y-1]; and 
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𝑐 includes arable crop 1 (𝑐 = 𝑎𝑟𝑎𝑏𝑙𝑒1), arable crop 2 (𝑐 = 𝑎𝑟𝑎𝑏𝑙𝑒2), set-aside 

land (𝑐 = 𝑠𝑒𝑡𝑎𝑠𝑖𝑑𝑒), and catch crops (𝑐 = 𝑐𝑎𝑡𝑐ℎ).  

While the expectation operator for gross margins of set-aside land and catch 

crops can be omitted in Eq.A.1.2 as they are deterministic, for arable crops it 

can be derived as follows: 

 𝐸[𝐺𝑀𝑡,𝑐=𝑎𝑟𝑎𝑏𝑙𝑒1] = 𝐸[𝐺�̌�𝑡] ∙ 𝜏𝑎𝑟𝑎𝑏𝑙𝑒1

𝐸[𝐺𝑀𝑡,𝑐=𝑎𝑟𝑎𝑏𝑙𝑒2] = 𝐸[𝐺�̌�𝑡] ∙ 𝜏𝑎𝑟𝑎𝑏𝑙𝑒2

 (A.1.3) 

where 𝐸[𝐺�̌�𝑡] is a draw obtained with a single stochastic process for gross 

margins [€ ha-1 y-1]; 𝜏𝑎𝑟𝑎𝑏𝑙𝑒1 and 𝜏𝑎𝑟𝑎𝑏𝑙𝑒2 are multiplicative factors. 

The expected NPV defined in Eq.A.1.2 is maximized subject to the following 

constraints: 

1. Resource endowments 

We use fixed input-output coefficients to depict competition for land and labor 

resources at given farm-level endowments: 

 ∑ �̅�𝑐,𝑖

𝑐

∙ 𝐿𝑡,𝑐 ≤ �̅�𝑡,𝑖   ∀𝑖   ∀𝑡 (A.1.4) 

where 𝑖 represents inputs including land (𝑖 = 𝑙𝑎𝑛𝑑) and labor (𝑖 = 𝑙𝑎𝑏𝑜𝑟); �̅�𝑐,𝑖 

denotes fixed input-output coefficients [ha-1 y-1]; �̅�𝑡,𝑖 describes farm-level 

resource endowments [y-1]; and 𝐿𝑡,𝑐 indicates the area dedicated to the 

production of each crop or land use [ha y-1].  

2. Policy constraints 

Compliance with the 5% “Ecological Focus Area” land-use requirement is 

ensured as follows: 

 𝐿𝑡,𝑐=𝑠𝑒𝑡𝑎𝑠𝑖𝑑𝑒 + 0.3 ∙ 𝐿𝑡,𝑐=𝑐𝑎𝑡𝑐ℎ ≥ 0.05 ∙ �̅�𝑡,𝑖=𝑙𝑎𝑛𝑑 (A.1.5) 

where 𝐿𝑐=𝑠𝑒𝑡𝑎𝑠𝑖𝑑𝑒 and 𝐿𝑐=𝑐𝑎𝑡𝑐ℎ represent area of set aside land and area under 

catch crops respectively [ha y-1]; and �̅�𝑖=𝑙𝑎𝑛𝑑 is the total land endowment [ha 

y-1]. 

A farmer considers introducing a perennial energy crop, in our example short 

rotation coppice (SRC), which is characterized by a stochastic price for 

harvested biomass. In particular, SRC biomass price is assumed to follow a 
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MRP in logarithmic form, and both MRPs – for gross margins of arable crops 

and for SRC biomass price – are assumed to be correlated. The correlation 

coefficient enters stochastic processes as follows: 

 𝑑𝑝𝑡 = 𝜇𝑆𝑅𝐶(𝜃𝑆𝑅𝐶 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑆𝑅𝐶𝑑𝑊𝑡
𝑆𝑅𝐶 

𝑑𝑔𝑚𝑡 = 𝜇𝑎𝑟𝑎𝑏𝑙𝑒(𝜃𝑎𝑟𝑎𝑏𝑙𝑒 − 𝑔𝑚𝑡)𝑑𝑡 + 𝜌𝜎𝑎𝑟𝑎𝑏𝑙𝑒𝑑𝑊𝑡
𝑆𝑅𝐶

+ √(1 − 𝜌2)𝜎𝑎𝑟𝑎𝑏𝑙𝑒𝑑𝑊𝑡
𝑎𝑟𝑎𝑏𝑙𝑒 

(A.1.6) 

where 𝑡 is the time period; 𝑆𝑅𝐶 indicates short rotation coppice; index 𝑎𝑟𝑎𝑏𝑙𝑒 

indicates both arable crops; 𝑝𝑡 is natural logarithm of price of SRC biomass; 

𝜇𝑆𝑅𝐶  is speed of reversion of the stochastic process for SRC biomass price; 

𝜃𝑆𝑅𝐶  is long-term logarithmic average price of SRC biomass; 𝜎𝑆𝑅𝐶  is standard 

deviation of logarithmic SRC biomass price; 𝑑𝑊𝑡
𝑆𝑅𝐶  is standard Brownian 

motion independent from 𝑑𝑊𝑡
𝑎𝑟𝑎𝑏𝑙𝑒; 𝜌 is correlation coefficient between two 

Brownian motions. 

While the land devoted to annual crops can be flexibly adjusted from year to 

year, SRC as a perennial is set up once for a longer time period, during which it 

can be coppiced several times without being replanted. Planting of SRC can be 

postponed; intermediate coppicing is also flexible and usually exercised every 

2-5 years. Finally, plantation can be clear cut and reconverted back to annual 

crops, and the total lifetime of a plantation is not predefined, though restricted 

from above (by 20 years in our settings). On top, the area to be dedicated to 

SRC can also be adjusted. We assume that a farmer manages different plots for 

which he whether to convert each to SRC or not. Once introduced, SRC triggers 

sunk costs, namely costs for planting and final reconversion. Due to risks, 

managerial flexibility, and sunk costs associated with SRC, there might exist a 

positive option value, i.e. an incentive to postpone decision and observe how 

the stochastic variables evolve. A farmer hence does not decide about SRC 

now or never based on expectations, but rather optimizes over the overall 

time horizon taking into account possible development of the stochastic 

variables and sunk costs linked to SRC. The problem is solved based on 

stochastic programming (SP) where uncertainty is captured by a scenario tree. 

We first describe the decision problem in a deterministic set-up, and then add 

stochasticity converting it into a SP problem. 

We assume the following function for available SRC biomass at the end of year 

t, depending on the decision to harvest decision in the current year t and the 

available biomass in the previous time period t-1: 
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 𝑠𝑡𝑜𝑐𝑘𝑡,𝑝 + ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡𝑡,𝑝 = 𝑠𝑡𝑜𝑐𝑘𝑡,𝑝 ∙ 𝑔𝑤𝑙̅̅ ̅̅ ̅ + 𝑆𝑝 ∙ 𝑔𝑤𝑐̅̅ ̅̅ ̅̅  (A.1.7) 

where 𝑠𝑡𝑜𝑐𝑘𝑡,𝑝 is standing biomass in time period 𝑡 on land plot 𝑝, [in tonnes 

of dry matter yields per year (t y-1)]; 𝑝 ∈ {𝑝1, 𝑝2, … , 𝑝𝑀} ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡𝑡,𝑝 is the 

amount of biomass harvested in time period 𝑡 on plot 𝑝 [t y-1]; 𝑔𝑤𝑙̅̅ ̅̅ ̅ is a growth 

multiplier based on biomass stock in the previous time period; 𝑔𝑤𝑐̅̅ ̅̅ ̅̅  is a 

growth constant depicting yearly biomass growth independent from previous 

biomass values [t ha-1 y-1];  𝑆𝑝 is size of plot 𝑝 [ha y-1]. 

Note that we assume that partial harvesting is not possible. Eq.A.1.7 hence 

yields at the end of year 𝑡 either a biomass stock, which captures the 

additional growth in that year given last year’s stock, or a zero; in the latter 

case biomass stock is harvested at the end of year 𝑡. 

The linkage between the decision to harvest in a specific year and harvested 

biomass is reflected by a binary indicator inequality and a maximal bound: 

 ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡𝑡,𝑝 ≥ ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑡,𝑝 ∙ 𝑚𝑖𝑛𝐻𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑝 (A.1.8) 

 ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡𝑡,𝑝 ≤ 𝑚𝑎𝑥𝐻𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑝 (A.1.9) 

where ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑡,𝑝 indicates whether a plot is harvested (=1) or not (=0); 

𝑚𝑖𝑛𝐻𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑝 is a constant that defines the minimal harvest quantity [t y-

1]; and 𝑚𝑎𝑥𝐻𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑝 is a constant that defines the maximal harvest 

quantity [t y-1]. 

Maximal harvest quantities after the plantation has grown for a number of 

years can be calculated using the biomass growth function. These data can be 

introduced in the two equations above to ensure minimal and maximal 

waiting times between harvests. Harvesting the standing biomass only partly 

is not considered feasible; therefore an additional equation ensures that 

standing stock from the previous year is completely removed with each 

harvest: 

 𝑠𝑡𝑜𝑐𝑘𝑡,𝑝 ≤ (1 − ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑡,𝑝) ∙ 𝑚𝑎𝑥𝐻𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑝 (A.1.10) 

A similar equation ensures that biomass is available and grows, only if the 

respective plot is devoted to SRC: 
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 𝑠𝑡𝑜𝑐𝑘𝑡,𝑝 ≤ 𝑠𝑟𝑐𝑡,𝑝 ∙ 𝑚𝑎𝑥𝐻𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑝 (A.1.11) 

where 𝑠𝑟𝑐𝑡,𝑝 is a binary variable indicating that a plot is managed under SRC 

(=1) or not (=0) in time period 𝑡. 

Maximal plantation lifetime is depicted by a year counter combined with an 

upper bound: 

 𝑎𝑔𝑒𝑡,𝑝 = 𝑎𝑔𝑒𝑡−1,𝑝 + 𝑠𝑟𝑐𝑡,𝑝 (A.1.12) 

 𝑎𝑔𝑒𝑡,𝑝 ≤ 𝑚𝑎𝑥𝑎𝑔𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (A.1.13) 

where 𝑎𝑔𝑒𝑡,𝑝 is a natural variable reflecting plantation age [y]; and 𝑚𝑎𝑥𝑎𝑔𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is 

a constant plantation age upper bound [y]. 

Finally, two equations linked to either a positive change in SRC on a plot (0 in 

t-1 to 1 in t) or reconversion costs linked to negative change (1 in t-1 to 0 int) 

are used to describe set-up costs: 

 𝑖𝑛𝑖𝐶𝑜𝑠𝑡𝑡,𝑝 ≥ (𝑠𝑟𝑐𝑡,𝑝 − 𝑠𝑟𝑐𝑡−1,𝑝) ∙ 𝑐𝑜𝑠𝑡𝐼𝑛𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑆𝑝 (A.1.14) 

 𝑟𝑒𝑐𝑜𝑛𝑣𝐶𝑜𝑠𝑡𝑡,𝑝 ≥ (𝑠𝑟𝑐𝑡−1,𝑝 − 𝑠𝑟𝑐𝑡,𝑝) ∙ 𝑐𝑜𝑠𝑡𝑅𝑒𝑐𝑜𝑛𝑣̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∙ 𝑆𝑝 (A.1.15) 

where 𝑖𝑛𝑖𝐶𝑜𝑠𝑡𝑡,𝑝 represents the actual set-up costs per plot [€ y-1]; 𝑐𝑜𝑠𝑡𝐼𝑛𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a 

coefficient for set-up costs [€ ha-1 y-1]; 𝑟𝑒𝑐𝑜𝑛𝑣𝐶𝑜𝑠𝑡𝑡,𝑝 represents actual 

reconversion costs per plot [€ y-1]; and 𝑐𝑜𝑠𝑡𝑅𝑒𝑐𝑜𝑛𝑣̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is a coefficient for 

reconversion costs [€ ha-1 y-1]. 

The equations for set-up and reconversion costs also implicitly ensure that a 

plot is permanently managed under SRC during the entire rotation period. We 

capture all costs associated with intermediate coppicing in one function and 

assume that there is possible economy of scale associated with harvest, 

accounting for the fixed costs of bringing harvesting machinery to a plot 

(accounts for own harvesting or execution by a contractor). More specifically, 

we differentiate between total harvest costs per farm (fixed costs), harvest 

costs per hectare (quasi-fixed costs), and harvest costs per metric ton of 

harvested biomass (variable costs): 



 

140 

 

 

 

𝑇𝑜𝑡𝑎𝑙𝐻𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝑡

≥ [ℎ𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝐹𝑖𝑥𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + ∑[ℎ𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝑃𝑙𝑜𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑆𝑝

𝑝

+ ℎ𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝑌𝑖𝑒𝑙𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑠𝑡𝑜𝑐𝑘𝑡,𝑝]] ∙ ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑡,𝑝 

(A.1.16) 

where 𝑇𝑜𝑡𝑎𝑙𝐻𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝑡 captures total costs on farm associated with harvest of 

SRC [€ y-1];  ℎ𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝐹𝑖𝑥𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents fixed harvest costs [€ y-1]; 

ℎ𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝑃𝑙𝑜𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents quasi-fixed harvest costs [€ ha-1 y-1]; and 

ℎ𝑎𝑟𝑣𝐶𝑜𝑠𝑡𝑌𝑖𝑒𝑙𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents variable costs [€ t-1 y-1]. 

The equations above jointly define a deterministic programming model where 

neither different future outcomes (stages) nor stage contingent decision 

variables are depicted. In order to convert this deterministic version into a SP 

equivalent, four additional elements are needed. First, decision variables need 

to carry an additional index for the node of the scenario tree (i.e., stage). 

Second, an ancestor matrix reflecting the order of nodes in the scenario tree 

must be introduced. The matrix is used everywhere where a lag operator (𝑡 −

1) is found in the equations above. Next, stochastic parameter outcomes for 

each stage need to be defined and finally, the probabilities for each node 

should be assigned.  

The objective function defined in Eq.A.1.2 is defined in the SP set-up as 

follows: 

 𝐸[𝑁𝑃𝑉] = ∑ [𝜋𝑝𝑎𝑡ℎ ∙ 𝑁𝑃𝑉𝑝𝑎𝑡ℎ]

𝑝𝑎𝑡ℎ

= ∑ [𝜋𝑝𝑎𝑡ℎ

𝑝𝑎𝑡ℎ

∙ ∑ [∑
𝐺𝑀(𝑡,𝑛),𝑐 ∙ 𝐿(𝑡,𝑛),𝑐

(1 + 𝑖)𝑡

𝑐

𝑇

𝑡=1

+ ∑
−𝑖𝑛𝑖𝐶𝑜𝑠𝑡(𝑡,𝑛),𝑝 + 𝑃(𝑡,𝑛)

𝑆𝑅𝐶
∙ ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡(𝑡,𝑛),𝑝 − 𝑟𝑒𝑐𝑜𝑛𝑣𝐶𝑜𝑠𝑡(𝑡,𝑛),𝑝

(1 + 𝑖)𝑡

𝑝

+
−𝑇𝑜𝑡𝑎𝑙𝐻𝑎𝑟𝑣𝐶𝑜𝑠𝑡(𝑡,𝑛)

(1 + 𝑖)𝑡 ]] 

(A.1.17) 

where 𝜋𝑝𝑎𝑡ℎstays for probability of each path; ∑ 𝜋𝑝𝑎𝑡ℎ𝑝𝑎𝑡ℎ = 1; and (𝑡, 𝑛) is a 

combination of time period and node of the scenario tree assigned to each 

path. 
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The expected NPV defined in Eq.A.1.17 is maximized subject to the following 

constraints that are also modified compared with Eq.A.1.4-5 (time and nodes 

indices are left out for simplicity): 

1. Land resource endowments 

 �̅�𝑆𝑅𝐶,𝑖 ∙ 𝐿𝑡,𝑆𝑅𝐶 + ∑ �̅�𝑐,𝑖

𝑐

∙ 𝐿𝑡,𝑐 ≤ �̅�𝑡,𝑖   ∀𝑖 (A.1.18) 

where �̅�𝑆𝑅𝐶,𝑖 represents inputs requirements for SRC [ha-1 y-1]; and 𝐿𝑆𝑅𝐶  

indicates the area dedicated to SRC [ha y-1].  

2. Policy constraints 

 

𝐿𝑡,𝑐=𝑠𝑒𝑡𝑎𝑠𝑖𝑑𝑒 + 0.3 ∙ 𝐿𝑡,𝑐=𝑐𝑎𝑡𝑐ℎ + 𝑔𝑟𝑒𝑒𝑛𝐶𝑜𝑒𝑓𝑆𝑅𝐶 ∙ 𝐿𝑡,𝑆𝑅𝐶

≥ 0.05 ∙ �̅�𝑡,𝑖=𝑙𝑎𝑛𝑑 
(A.1.19) 

where 𝑔𝑟𝑒𝑒𝑛𝐶𝑜𝑒𝑓𝑆𝑅𝐶  is the EFA weighting coefficient for SRC. 

As mentioned above, the model is solved as a SP problem. The required 

scenario tree contains hence a vector of two draws for two stochastic 

processes and is constructed in two steps. First, Monte-Carlo draws for both 

stochastic processes are obtained, resulting in a huge scenario tree with 

independent equally probable paths. Then a scenario tree reduction technique 

SCENRED2 (GAMS 2015) merges selected paths and calculates new 

probabilities and outcomes for each node to construct a reduced scenario tree. 

The number of Monte-Carlo draws and the number of leaves in the reduced 

scenario tree are parameters of the model to be specified. For further details 

of the solution process, see Kostrova et al. (2016).  

A.1.2. Sensitivity, risk, and policy analyses 

The model allows conducting different types of analysis with sensitivity, risk, 

and policy analyses being the major ones.  

I. Sensitivity analysis 

It is possible to run a sensitivity analysis with respect to any parameter of the 

model. One type of sensitivity analysis is already programmed and can be run 

straightforward: sensitivity analysis with respect to draws for SRC biomass 
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price in the scenario tree. In particular, each draw for SRC biomass price 

would be shifted parallel up- or downwards by multiplying with a given 

coefficient. See “Using Graphical User Interface” for further details. An 

example of such a sensitivity analysis is presented by Kostrova et al. (2016). 

II. Risk analysis  

There are two ways to introduce risk aversion of a farmer into the model: (i) 

using a risk-adjusted discount rate; and (ii) introducing an additional 

constraint of second order stochastic dominance of distribution of NPVs after 

SRC adoption over initial distribution of NPVs before SRC was adopted (ISSD 

constraint). If a risk-adjusted discount rate is involved, it would be used in the 

objective function (Eq.A.1.17). SSD is captured by additional ISSD constraints 

which approximate over a set of predefined intervals of cumulated 

distribution; the smaller the intervals the more accurate the approximation is:  

max  ∑ [𝜋𝑝𝑎𝑡ℎ ∙ 𝑁𝑃𝑉𝑝𝑎𝑡ℎ(𝑥)]𝑝𝑎𝑡ℎ   

(A.1.20) 

subject 

to 
{

𝔼+𝑆𝑅𝐶{𝑥|𝑥 ≤ 𝜂} ≥ 𝔼𝑁𝑜𝑆𝑅𝐶{𝑥|𝑥 ≤ 𝜂}  |  𝜂: 𝑞𝑖 = ℙ{𝑥 ≤ 𝜂}

𝑞1 = 1
𝑁⁄

𝑞𝑖+1 = 𝑞𝑖 + 1
𝑁⁄

   

∀𝑖 = {1,2, … , 𝑁}  

 𝑥 ∈ �̃�  

where 𝑥 is a set of decision variables; +𝑆𝑅𝐶 and 𝑁𝑜𝑆𝑅𝐶 denote scenarios after 

and before SRC adoption respectively; ℙ{𝑥 ≤ 𝜂} denotes cumulative 

probability of 𝜂; set 𝑞𝑖 is a set of predefined intervals of cumulated 

distribution; and set �̃� represents further constraints for decision variable 𝑥, 

i.e. resource endowments and environmental requirements. 

The number of intervals 𝑁 can be set up directly via Graphical User Interface 

(GUI). There it is also possible to restrict the number of used intervals, such 

that only the lowest ones would be used. It allows controlling for downside 

risk only. 

III. Policy analysis 

Four policy instruments supporting SRC are programmed and can be included 

via the GUI: a planting subsidy, increasing the EFA coefficient for SRC, and a 

guaranteed price as well as a price floor for SRC biomass. The difference 
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between a guaranteed price and a price floor is that a farmer gets the former 

always, regardless of the observed market price of SRC biomass; while a price 

floor is paid only if the market price falls below the floor level. A guaranteed 

price might hence generate additional governmental income if the market 

price is above that guaranteed level. Timing of governmental outlays differs: a 

planting subsidy triggers cost at the time at set-up, a price floor and 

guaranteed price - in years where a plot is harvested. The outcome of a model 

run includes governmental costs of each policy instrument. They are 

determined at each node of the scenario tree as follows. The total 

governmental costs are the sum of governmental costs at each node weighted 

by the respective probabilities of the nodes. 

 𝐺𝐶𝐸𝐹𝐴 = 0 

(A.1.21) 

 𝐺𝐶𝑆𝑢𝑏 = 𝑆𝑢𝑏 ∙ 𝐿𝑆𝑅𝐶 

 𝐺𝐶𝑝_𝑚𝑖𝑛 = max[𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑟𝑘𝑒𝑡; 0] ∙ ∑ ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡𝑝

𝑝

 

 𝐺𝐶𝑝_𝑓𝑖𝑥 = (𝑃𝑓𝑖𝑥 − 𝑃𝑚𝑎𝑟𝑘𝑒𝑡) ∙ ∑ ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡𝑝

𝑝

 

where 𝐺𝐶𝐸𝐹𝐴 determines governmental costs for increasing the EFA weighting 

coefficient [€ y-1]; 𝐺𝐶𝑆𝑢𝑏 determines governmental costs for planting subsidy 

[€ y-1]; 𝐺𝐶𝑝_𝑚𝑖𝑛 determines for governmental costs for price floor [€ y-1]; 

𝐺𝐶𝑝_𝑓𝑖𝑥 determines governmental costs for guaranteed price [€ y-1]; 𝑆𝑢𝑏 stays 

for intensity of planting subsidy [€ ha-1 y-1]; 𝐿𝑆𝑅𝐶  indicates land area devoted 

to SRC establishment [ha y-1]; ℎ𝑎𝑟𝑣𝑄𝑢𝑎𝑛𝑡𝑝 indicates dry matter biomass 

yields to be harvested on plot 𝑝 [t y-1]; 𝑃𝑚𝑎𝑟𝑘𝑒𝑡 indicates observed market 

price of SRC dry matter yields [€ t-1]; 𝑝𝑚𝑖𝑛 stays for price floor for SRC biomass 

[€ t-1]; and 𝑝𝑓𝑖𝑥  determines guaranteed price of SRC biomass [€ t-1]. Time and 

node indices are omitted for simplicity.  

Whether a policy instrument should be considered and in what intensity can 

be adjusted directly in GUI (see details below). An example of such a policy 

analysis is presented by Spiegel et al. (2018). 

A.1.3. Data and parameters  

Default parameters are chosen for a typical arable farm in Northern Germany 

based on the literature. The major ones are presented below.  



 

144 

 

 

Table A.1.1. Parameters of the model, their default values and references 

Parameters Units 
Assumed 

values 
References 

Short rotation coppice (SRC) 

Planting costs 
euro per hectare 

(€ ha-1 y-1) 
2875.00 

Musshoff 
(2012) 

Dry matter growth function    

Multiplier for last year’s 
biomass 

- 1.54 Ali (2009) 

Constant increase 
tonnes per 

hectare per year 
(t ha-1 y-1) 

6.68 Ali (2009) 

Costs related to harvesting of SRC    

Fixed costs a farm level € y-1 66.75 

Schweier and 
Becker 
(2012); 

Pecenka and 
Hoffmann 

(2012) 

Quasi-fixed costs for each plot € ha-1 y-1 272.13 

Schweier and 
Becker 
(2012); 

Pecenka and 
Hoffmann 

(2012) 

Variable costs, depending on 
harvested quantity of dry 
matter yields 

€ t-1 y-1 10.67 

Schweier and 
Becker 
(2012); 

Pecenka and 
Hoffmann 

(2012) 

Reconversion costs € ha-1 y-1 1400.00 
Musshoff 

(2012) 

Labor requirements 
hours per 

hectare per year 
(h ha-1 y-1) 

0.00 
Musshoff 

(2012) 

Annual crops 

Deterministic net annual cash flow 
(gross margins) from crops 
recognized as Ecological Focus 
Area (EFA) 

   

Set-aside land  € ha-1 y-1 -50.00 CAPRI (2017) 
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21 Set up equal to the long-term mean, in order to exclude any possible effect of a trend. 

22 Set up equal to the long-term mean, in order to exclude any possible effect of a trend. 

Catch crops  € ha-1 y-1 -100.00 

de Witte and 
Latacz-

Lohmann 
(2014, p.37) 

Labor requirements    

A more labor intensive and 
more profitable crop 

h ha-1 y-1 5.32 KTBL (2012) 

A less labor intensive and less 
profitable crop 

h ha-1 y-1 4.16 KTBL (2012) 

Set-aside land h ha-1 y-1 1.00 KTBL (2012) 

Catch crops h ha-1 y-1 0.00 KTBL (2012) 

Stochastic processes 

Mean-reverting process for SRC 
biomass price in logarithmic form 

   

Starting value y-1 3.9221  

Long-term mean y-1 3.92 
Musshoff 

(2012) 

Speed of reversion  0.22 
Musshoff 

(2012) 

Standard deviation  0.22 
Musshoff 

(2012) 

Mean-reverting process for gross 
margins of arable crops in 
logarithmic form 

   

Starting value y-1 6.0222  

Long-term mean y-1 6.02 CAPRI (2017) 

Speed of reversion  0.32 CAPRI (2017) 

Standard deviation  0.28 CAPRI (2017) 

Gross margin multiplier for more 
profitable and more labor-
intensive crop 

 1.05  

Gross margin multiplier for less 
profitable and less labor-intensive 
crop 

 0.95  
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A.1.4. Using Graphical User Interface (GUI) 

The model can be set-up and run based on a GUI. For a proper functioning of 

the GUI, the following guidelines should be followed: (i) download the 

complete folder and save it as a single folder (hereinafter “MainFolder”); (ii) 

do not shift anything within MainFolder; (iii) do not rename anything in 

MainFolder; (iv) ensure that the directory path of MainFolder contains no 

space; (v) ensure that the folder containing GAMS files, including GAMS 

licenses, is in the same parent folder as MainFolder; and (vi) create a new 

folder in the same parent folder as MainFolder and name it “results”. The GUI 

can be opened with the Windows batch commend file “srcPA.bat” in the folder 

“GUI”. A window with six tabs each containing a number of settings will open. 

They are explained below. 

  

Farm characteristics 

Land endowment 

 

ha y-1 

 

100.00 

 

 

 

Step for adjusting SRC plantation 
(i.e. the size of the smallest plot) 

ha 5.00  

Labor endowment h y-1 500.00  

Real risk-free discount rate % y-1 3.87 
Musshoff 

(2012) 

Risk-adjusted discount rate % y-1 8.87 
Musshoff 

(2012) 

Policy support for SRC 

EFA weighting coefficient for SRC  0.30 
Péer et al. 

(2016) 

Planting subsidy for SRC € ha-1 y-1 1200.00 
MLU-MV 
(2015) 

Social discount rate % y-1 0.00 ECB (2017) 
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Table A.1.2. Model setups that can be adjusted using the graphical user 

interface. 

                                                      

 

23 Range can be adjusted in the file “srcPA.xml” containing code for GUI. 

Label Range Description 

Model setup 

Simulation control  

Scenario 
description 

Text up to 100 
symbols23 

This will be included into the name of the file 
containing the results. 

Monte carlo 
draws 

true/false If <true> new draws for stochastic variables 
will be obtained. Option <false> might be 
advantageous for different types of analysis 
to ensure a proper comparison of different 
scenarios. 

Tree generation true/false If <true> the scenario tree will be 
constructed based on the latest Mon-Carlo 
draws. Advantageous in conducting 
sensitivity analysis with respect to 
parameters of stochastic processes with or 
without drawing the stochastic component. 
If <false> the latest scenario tree will be 
used, even if new Monte-Carlo draws are 
obtained. 

Risk modelling None, ISSD If <None> no stochastic dominance 
constraint is included. If additionally a 
market-based discount rate is used, a farmer 
is assumed to be risk-neutral. If <ISSD> an 
ISSD-constraint is involved.  

Use risk adjusted 
discount rate 

true/false Another way to consider risk preferences is 
to use a risk-adjusted discount rate. 

Solve according 
to the real 
options 

true/false If <true> a decision on SRC introduction can 
be postponed and will be made based on 
states-of-nature. 

Solve according 
to the classical 
NPV 

true/false If <true> a decision on SRC introduction 
must be made now or never, based on 
expectations of stochastic variables. 
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SRC timing  

Minimum harvest 
period 

A natural number 
between 2 and 5 

Determines the minimum time period (in 
years) between planting or latest harvest 
and following harvest or final clear-up 

Maximum harvest 
period 

A natural number 
between 2 and 5 

Determines the maximum time period (in 
years) between planting or latest harvest 
and following harvest or final clear-up 

Minimum age of 
plantation 

A natural number 
between 2 and 25 

Determines the minimum time period (in 
years) between planting and final clear-up 

Maximum age of 
plantation 

A natural number 
between 10 and 
25 

Determines the maximum time period (in 
years) between planting and final clear-up 

Simulation length A natural number 
between 20 and 
30 

Indirectly determines the maximum time 
period (in years) to postpone SRC planting, 
which is determined as “Simulation length” 
minus “Maximum age of plantation”. 

Price scenarios  

Minimum price 
multiplier 

Between 0.50 
and 1.20 with a 
0.05-step 

Determines the lowest multiplier for 
sensitivity analysis with respect to SRC 
biomass price 

Maximum price 
multiplier 

Between 0.70 
and 2.50 with a 
0.05-step 

Determines the highest multiplier for 
sensitivity analysis with respect to SRC 
biomass price 

Number of 
scenarios 

A natural number 
between 1 and 20 

Indirectly determines the step of sensitivity 
analysis with respect to SRC biomass price, 
equally distributing the required number of 
scenarios between the minimum and 
maximum price multipliers. 

Risk parameters  

Number of 
intervals 

A natural number 
between 0 and 
1000 

Number of intervals for an ISSD-constraint. 
Used only if Risk modelling is <ISSD> 

Number of used 
intervals 

A natural number 
between 0 and 
1000 

If lower, than Number of intervals, then 
ISSD-constraint is applied only to the 
indicated quantity of the lowest intervals. 
Check therefore conditional value-at-risk for 
downside risk. 

MIP 

MIP accuracy  

Absolute Between 0 and 
100 with a 10-
step 

Required for mixed-integer programming 
(MIP). Refers to a difference in objective 
value, i.e. expected NPV, between the 
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Relative in % Between 0 and 
10 with a 0.01-
step 

reference non-integer solution and an 
integer solution found under the current 
iteration. The solution process is stopped, 
once the either absolute or relative accuracy 
is achieved.  

Limits  

Max solution time 
in minutes for 
each solve 

A natural number 
between 1 and 
120 

Restricts the maximal solution for each MIP 
solve 

Max # of repeated 
solves when the 
time limit 
exceeded 

A natural number 
between 1 and 5 

Restricts the maximal repeated attempts to 
solve the MIP 

Algorithm  

MIP algorithm GUROBI, CPLEX, 
CPLEXD 

MIP solver used 

Use NEOS server 
via KESTREL 

true/false Remote solving on NEOS solver 

Tuning On, Off, Use old 
tuning results 

Use automated tuning, should be normally 
be switched off 

Use manual 
priorities 

On, Off Uses branching priorities programmed in the 
code, should be normally switched off 

Use old results as 
starting point 

true/false An option to accelerate solution process. 
Iterating starts with the results obtained 
previously. 

ReloadFile <GDX-file name> Refers to a GDX-file containing the results 
that should be used as a starting point 

Stochastic processes 

Start price Between 50 and 
100 with a 0.1-
step 

Refers to a currently observed value of the 
first stochastic process (in our case: SRC 
biomass price). Natural logarithm of this 
value enters the stochastic process to 
proceed with Monte-Carlo draws. 

Mean price Between 50 and 
100 with a 0.1-
step 

Natural logarithm of this value enters the 
first stochastic process to proceed with 
Monte-Carlo draws. 

St.deviation of 
Wiener process 1 

Between 0.00 
and 1.00 with a 
0.01-step 

Enters the first stochastic process. Kills 
stochasticity if set up equal to 0. The higher 
the value the more volatile the respective 
stochastic variable is. 
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Speed of mean 
reversion 1 

Between 0.00 
and 1.00 with a 
0.01-step 

Enters the first stochastic process. The 
higher the value the less volatile the 
respective stochastic value is, since it faster 
reverts to the long-term mean. 

Start gross 
margin 

Between 100 and 
1000 with a 0.01-
step 

Refers to a currently observed value of the 
other stochastic process (in our case: gross 
margins of arable crops). Natural logarithm 
of this value enters the stochastic process to 
proceed with Monte-Carlo draws. 

Mean gross 
margin 

Between 100 and 
1000 with a 0.01-
step 

Natural logarithm of this value enters the 
other stochastic process to proceed with 
Monte-Carlo draws.  

St.deviation of 
Wiener process 2 

Between 0.00 
and 1.00 with a 
0.01-step 

Enters the other stochastic process. Kills 
stochasticity if set up equal to 0. The higher 
the value the more volatile the respective 
stochastic variable is. 

Speed of mean 
reversion 2 

Between 0.00 
and 1.00 with a 
0.01-step 

Enters the other stochastic process. The 
higher the value the less volatile the 
respective stochastic value is, since it faster 
reverts to the long-term mean. 

Correlation 
coefficient 

Between -1.00 
and 1.00 with a 
0.01-step 

Correlation coefficient between two 
Brownian motions 

GM multiplier for 
less labor 
intensive crop 

Between 0.00 
and 2.00 with a 
0.01-step 

Each draw of the second stochastic process 
(for gross margins) will be multiplied by this 
coefficient and the resulting value enters the 
optimization model as a gross margin of a 
less labor intensive crop 

GM multiplier for 
more labor 
intensive crop 

Between 0.00 
and 2.00 with a 
0.01-step 

Each draw of the second stochastic process 
(for gross margins) will be multiplied by this 
coefficient and the resulting value enters the 
optimization model as a gross margin of a 
more labor intensive crop 

Number of 
original scenarios 

Between 100 and 
50’000 with a 
100-step 

Number of required Monte-Carlo draws 

Number of final 
reduced leaves 

A natural number 
between 10 and 
2’000 

Number of required leaves for reduced 
scenario tree 

Model parameters 

SRC Growth  

Constant of 
biomass growth 
function 

Between 3.000 
and 5.000 with a 
0.001-step 

If no harvest is exercised: an increase in SRC 
biomass regardless of available biomass in 
the previous time period. 
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Multiplier of 
biomass growth 
function 

Between 1.000 
and 2.000 with a 
0.001-step 

If no harvest is exercised: an increase in SRC 
biomass depending on available biomass in 
the previous time period. 

Harvest cost  

Per tonne Between 5.00 
and 15.00 with a 
0.01-step 

Costs occur once harvest is exercised and 
depend on total harvested SRC biomass 
(variable costs). 

Per hectare Between 100.00 
and 400.00 with 
a 0.01-step 

Costs occur once harvest is exercised and 
depend on total harvested area under SRC 
and do not depend on harvested SRC 
biomass (quasi-fixed costs). 

Per farm Between 10.00 
and 100.00 with 
a 0.01-step 

Costs occur once harvest is exercised and 
depend neither on total harvested area 
under SRC nor on harvested SRC biomass 
(fixed costs). 

Set-up and reconversion  

Set-up cost A natural number 
between 1000 
and 5000 

Costs per hectare of planted SRC. Occur once 
a plot is converted into SRC. 

Reconversion 
cost 

A natural number 
between 1000 
and 5000 

Costs per hectare of cleared-up SRC. Occur 
once a plot is converted back to annual 
crops: either if earlier reconversion is 
exercised or if the maximum lifetime of SRC 
plantation is reached. 

Discount rates  

Market based Between 0.00 
and 15.00 with a 
0.01-step 

Risk-neutral discount rate base only on 
expectations and opportunities on market. 

Risk adjusted Between 0.00 
and 15.00 with a 
0.01-step 

Should be equal to a sum of a market-based 
discount rate and a risk premium. 

Social Between 0.00 
and 15.00 with a 
0.01-step 

Required for discounting governmental costs 

Policy analysis 

Subsidy for SRC planting  

Planting subsidy 
per ha 

A natural number 
between 0 and 
3000 

 

 

This amount will be subtracted from 
planting costs per hectare 
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Price floor for SRC output  

Apply minimum 
price of SRC 
output 

true/false If <true> the price floor defined below is 
applied.  

Minimum price of 
SRC output 

A natural number 
between 0 and 
100 

If a simulated SRC biomass price falls below 
this level, the government covers the 
difference and a farmer gets the defined 
minimum price. 

Guaranteed price of SRC output  

Apply guaranteed 
price of SRC 
output 

true/false If <true> the guaranteed price defined below 
is applied. 

Guaranteed price 
of SRC output 

A natural number 
between 0 and 
100 

A farmer gets this price for SRC biomass 
regardless of how the market price evolves. 
The difference (both positive and negative) 
between this guaranteed price and simulated 
market price constitutes the governmental 
expenditures. 

Greening coefficient  

Greening 
coefficient for 
SRC 

Between 0.00 
and 1.00 with a 
0.05-step 

It is assumed that a farmer has to dedicate 
5% of his total land endowment to ecological 
purpose – Ecological Focus Area (EFA). This 
requirement can be fulfilled with set-aside 
land (coefficient 1.00 means that each 
hectare of set-aside land is recognized as 
1.00 hectare of EFA); catch crops (coefficient 
0.30 means that each hectare of catch crops 
is recognized as 0.30 hectare of EFA); or SRC 
(coefficient defined here). 

GAMS 

Listing  

Print GAMS code 
to listing 

onListing, 
offListing 

Adds the GAMS code to the listing file 

Symbol list onSymList, 
offSymList 

Shows the lists of parameters, equations and 
variables used 

Symbol list with 
cross references 

onSymxRef, 
offSymxRef 

Same as above, with indication where the 
symbols are used 

Solve outputs  

Solution printing Suppress, 
Overview, 
Variables and 
equations, Full 
output 

Option for the model listings 



 

153 

 

 

 

Having set up, the button “Start GAMS” should be pressed and the window 

should not be closed until the model is solved. 

A.1.5. Working with GAMS code 

In order to modify anything beyond what captured in GUI, one should refer to 

the GAMS code directly. It can be found under the name “GAMSCode.gms”. 

Saved modifications will be automatically considered in the next run. If the file 

is renamed, GUI code should be adjusted accordingly. 

A.1.6. Reading outcomes of the model 

The outcomes are saved in the folder “results”. The name of the GDX-file 

includes the name of scenario, risk preferences, managerial flexibility, as well 

as policy instruments involved. In the file the main results are in the tabs 

“p_res” and “p_res_leaves” containing descriptive statistics of the results and 

full results for each leave of the reduced scenario tree respectively. Scenario 

“noScr” stays for business-as-usual scenario, when no SRC is cultivated. 

Results under “p_res_leaves” also include the respective probability of each 

leaf. Scenarios “scen1”, “scen2”,…  refer to introduction of SRC under different 

price scenarios (currently observed price of SRC biomass). 
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