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Abstract

Automated vehicles need to precisely know where they are at all times to be able to
make informed driving decisions. Therefore, multiple localization systems are typically
installed on such vehicles to provide redundant position estimates based on different
sensors. Thus, an important task is the fusion of these position estimates into a single
estimate. The goal of this thesis to develop a new approach to solve this sensor fusion
problem in a generic way to achieve high modularity, interchangeability, and extensibil-
ity, while at the same time assuring high precision, robustness, and availability.

Generic approaches to sensor fusion for localization systems face the difficulty that
only general assumptions can be made about their input data. These generic assumptions
make it complicated to model the error of each input source differently.

We approach this challenge by presenting a novel layer architecture that can be mod-
ularly adapted. The core of our generic fusion approach is an optimization method that
combines all available position and odometry measurements. We formulate a sliding
window pose graph over these measurements to estimate the most probable trajectory
of the vehicle. In a preprocessing sublayer, the measurements are adjusted so that dif-
ferent common error characteristics are either reduced or can be taken into account in
the estimation process. These include systematic, autocorrelated, and cross-correlated
errors as well as outliers. We derive different preprocessing modules for each of these
error modes.

In this thesis, we extend the pose graph model to represent the effects of autocor-
related errors and marginalization. We implement our approach and evaluate it using
simulated data as well as data gathered on real prototype vehicles. In experiments, we
show that the estimation method scales from a filtering-based to a batch solution de-
pending on the available computational resources. In addition, we demonstrate that our
preprocessing modules reduce the effects of the described error characteristics. Over-
all, we develop a generic fusion of position estimates, which is a key component of
automated vehicles.



Zusammenfassung

Automatisierte Fahrzeuge müssen jederzeit genau wissen, wo sie sich befinden, um fun-
dierte Fahrentscheidungen treffen zu können. Deshalb sind auf solchen Fahrzeugen üb-
licherweise mehrere Lokalisierungssysteme installiert, um redundante Positionsschät-
zungen auf Basis unterschiedlicher Sensoren zu ermöglichen. Hieraus ergibt sich die
zentrale Aufgabe der Fusion von diesen Positionsinformationen in eine einzige Schät-
zung. Das Ziel dieser Arbeit ist es, diese Fusion auf eine generische Art und Weise zu
gestalten, um eine hohe Modularität, Austauschbarkeit und Erweiterbarkeit zu erzielen
und gleichzeitig eine hohe Genauigkeit, Robustheit und Verfügbarkeit zu gewährleisten.

Solche generischen Fusionsansätze für Lokalisierungssysteme bergen die Schwierig-
keit, dass nur allgemeine Annahmen über die zu fusionierenden Eingangsdaten getrof-
fen werden können. Diese generischen Annahmen erschweren eine auf jede Eingangs-
quelle abgestimmte Fehlermodellierung.

Um dennoch eine differenzierte Verarbeitung zu ermöglichen, stellen wir eine neue
Schichtenarchitektur vor, die modular angepasst werden kann. Der Kern unseres ge-
nerischen Fusionsansatzes bildet ein Optimierungsverfahren, in dem alle vorhandenen
Positions- und Eigenbewegungsmessungen kombiniert werden. Dazu konstruieren wir
einen Posengraphen über alle Messungen im letzten Zeitfenster, um so die wahrschein-
lichste gefahrene Trajektorie zu schätzen. In einer Vorverarbeitungsschicht werden die
Messdaten so angepasst, dass verschiedene in der Praxis häufig auftretende Fehlercha-
rakteristiken entweder reduziert oder im Schätzverfahren besser berücksichtigt werden.
Diese beinhalten systematische, autokorrelierte und kreuzkorrelierte Fehler sowie Aus-
reißer. Für diese Fehlerbilder leiten wir Verfahren zu ihrer Vorverarbeitung her.

Im Rahmen dieser Arbeit entwickeln wir das Modell des Posengraphen weiter, um
darin die Effekte der Marginalisierung und autokorrelierter Fehler darstellen zu können.
Wir implementieren unseren Ansatz und evaluieren ihn mit Hilfe simulierter und auf
realen Prototypen aufgezeichneter Daten. In Experimenten zeigen wir, dass das Schätz-
verfahren von einer filter-basierten bis zur Batch-Lösung skaliert in Abhängigkeit der
zur Verfügung stehenden Rechenkapazitäten. Außerdem weisen wir nach, dass die Vor-
verarbeitungsmodule die Auswirkungen der beschriebenen Fehlercharakteristiken ef-
fektiv reduzieren. Insgesamt entwickeln wir eine generische Fusion von Positionsschät-
zungen, die eine zentrale Komponente von automatisierten Fahrzeugen ist.
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1. Introduction

Transportation and mobility are central elements of our everday lifes and important
aspects of the modern society. Automated vehicles have the potential to reduce the
number of accidents, to relieve the driver from the chore of driving, to decrease the
pollution, and to increase driving comfort. Thus, there is an active field of research
concerned with developing automated vehicles. This thesis focuses on one part of it,
namely the estimation of the automated vehicle’s location and orientation from sensor
data.

1.1. Estimating the location and orientation of the

vehicle

Automated vehicles are a particular kind of mobile robot: they sense their environment,
interpret this information, plan navigation actions, and finally apply these actions to
drive through their environment. To this end, they act in specific environments like
outdoors on roads or indoors in parking garages. They also face specific challenges
such as other road users. As for any mobile robot, the ability of an automated vehicle
to determine its own position and heading (often called pose) is a key component for
the fulfillment of its tasks. This self-localization capability opens up the possibility
to use geospatial information stored in maps. Maps provide a priori information that,
depending on the map content, can ease certain navigation decisions but also perception,
path planning, and collision avoidance.

Due to the importance of localization, many different techniques for pose estimation
have been developed. Some of them provide information about the global pose of the
vehicle (e.g., based on Global Navigation Satellite System (GNSS)), and some provide
information about the pose of the vehicle relative to the last time step (so-called odom-
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POSE FUSION

odometry1
...odometryN

global pose1
...

global poseM

fused pose estimate

Figure 1.1.: Overview of the general concept of a pose fusion. Multiple localization
systems or positioning sensors serve as input to compute the fused pose
estimate.

etry, e.g., inertial measurement unit (IMU)). Typically, multiple of these localization

systems (or pose sources) are working in parallel on an automated vehicle to ensure re-
dundancy. In this thesis, we focus on merging this information to provide an accurate,
single estimate of the current vehicle’s pose.

Merging information from multiple sources falls into the area of multi-sensor data
fusion. This field is sometimes also referred to as sensor fusion and has become a
synonym for state estimation. The term “sensor fusion” has many definitions in the
literature. In this thesis, we stick to the definition of Elmenreich (2002) who defines
it as “[...] the combining of sensory data or data derived from sensory data such that

the resulting information is in some sense better than would be possible when these

sources were used individually”. In the context of automated driving, all information is
about the pose of the vehicle, and we therefore render the terminology more precisely
by referring to sensor fusion for pose estimation as pose fusion. Figure 1.1 illustrates
this concept by showing that multiple localization systems (odometry and global pose
sources) serve as input for a pose fusion which computes a unified pose estimate as
output. Multi-sensor data fusion techniques combine information from several sources
to provide information that is in a sense more valuable than that of a single source. In
what way does this gain in value manifest itself? For an automated vehicle, there are
several aspects how we would like to benefit from a pose fusion.

Pose fusion has the potential to increase the availability of the overall localization so-
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lution. Localization systems are usually tailored to a specific sensor set, which includes
GNSS, vision, or light detection and ranging (lidar) sensors. Each of these sensors
has individual failure modes such as satellite-denied regions for GNSS or darkness for
visual systems. In these situations, the localization system’s performance degrades sub-
stantially or fails entirely to provide a reasonable estimate of the vehicle’s pose. Another
class of global pose sources that are not always available are map-based localization
systems. They aim at aligning the sensor information to a given map and in this way
estimate the pose of the vehicle in the map. Naturally, they are limited to areas in which
maps are available.

A benefit of combining multiple localization systems is that fallback localization
modules can be integrated. They are only relevant whenever the main localization mod-
ules fail. Suppose we have a high-accuracy map-based localization based on camera
images. This visual localization system can fail in case of darkness or severe lighting
conditions. In practice, it is often possible to additionally obtain a pose estimate with a
GNSS receiver. In case of a failure of the visual high-accuracy localization system, we
would still like to be able to provide a pose estimate, albeit with a higher uncertainty.
In this setup, the pose estimates of the GNSS receiver would always be included in the
pose fusion process, but only become dominant whenever the visual system fails. Pose
fusion allows the combination of orthogonal sensing modalities and therefore increases
the reliability and versatility of the localization output. It also allows us to cope with
(temporary) failure of pose sources.

Furthermore, the seamless transition between scenarios for which different localiza-
tion systems are valid becomes possible. A localization system based on detecting fidu-
cial markers with a camera can provide a pose estimate in a specifically prepared park-
ing garage, for example. Outside of the parking garage, a conventional GNSS receiver
might serve as the primary localization system, see Figure 1.2. Neither localization
module is able to estimate a pose in both scenarios, but the multi-sensor fusion is able
to regularly provide a pose output.

Our fusion approach effectively glues partial trajectory estimates together and explic-
itly considers all pose sources, making it unnecessary to switch abruptly between them
in different scenarios. Such a switching might be particularly difficult when the exact
system boundaries are unknown, e.g., where does the GNSS receiver start producing
pose estimates, and what to do in situations where both or none of the systems provide
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Figure 1.2.: An automated vehicle enters a parking garage. It has GNSS reception out-
side of the parking garage and localizes itself within the garage with the
help of fiducial markers that are detected by a camera. A pose fusion opens
up the possibility of a seamless transition between both scenarios.

a pose estimate. The use of a pose fusion hides these difficulties from the application.

In an automated vehicle, there is potentially a multitude of components that rely on
the current pose as an input, e.g., the path planner or the navigation module. Feeding
data streams from multiple localization systems directly to these application modules
means that each one of them has to make sense of this set of streams individually. By
adding a fusion layer this task is centralized and its output is standardized independently
of the underlying localization systems. This layer hides the specific characteristics of
localization modules by providing a single interface. In this architecture, it is easier
to change the underlying combination of sensors and localization systems because this
does not require changes in the application layer. This happens rather frequently in an
environment where the sensors and localization systems themselves are also subject of
research.1

Automated vehicles and advanced driver assistance system (ADAS) rely on the pre-
cise knowledge of the vehicle’s pose. The fusion of several sources of information has

1During the development of this thesis, only a single pose source remained unchanged (the wheel odom-
etry). All other localization systems where either exchanged, substantially altered, or removed; and
some were newly added.
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the potential to increase the accuracy of the estimated pose. Depending on the accuracy
gain, previously unfeasible applications might become possible or their performance
could be improved.

Closely related to the improvement of accuracy is the reduction of uncertainty. Speak-
ing from a state estimation perspective, it is well-known that using multiple measure-
ments to estimate a single state reduces the uncertainty about this state. For a pose
fusion, the fused estimate has thus a lower uncertainty than the input poses.

In total, using a pose fusion aims to

• increase the availability of the vehicle’s pose estimate,

• increase its reliability against failure compared to using a single localization sys-
tem,

• enable the transition between different scenarios in which some sensors do not
work,

• reduce the system complexity,

• reduce the uncertainty of the pose estimate,

• and increase its accuracy.

1.2. Generic pose fusion

In Section 1.1 we highlight the potential benefits of an approach to pose fusion. Today’s
pose fusions for vehicles are tailored to specific sensor sets and localization systems
(e.g., combinations of GNSS and IMU). In this work, in contrast, we are investigating
how to combine information of pose sources, which we treat in a generic way. We
do not derive a pose fusion that is tailored to a specific set of sensors or pose sources.
Instead, we approach the problem of how to construct a pose fusion that can cope with
a set of pose sources for which we only make generic assumptions, thus leading to the
problem of generic pose fusion.

If we can approach the pose fusion problem on this generic level, while still main-
taining the advantages outlined before, then we are able to use the same pose fusion for
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different sets of pose sources. In practice, this happens often as different vehicles have
different sensor setups such that also the localization systems for these vehicles differ.

The proposed loose coupling of localization and fusion promotes a modular archi-
tecture. It eliminates the need to design new fusion schemes or extend existing ones
if a new pose source is to be added. Also, we can easily incorporate information from
pose sources for which source code or deep knowledge of their internal concepts are
unavailable.

This leads us to the key question of this work: how can we design a pose fusion that
treats all pose sources in a generic way?

1.3. Aim and scope

Our aim is strictly aligned to the key problem of this thesis: the goal is to derive a generic
pose fusion system and apply it to an automated vehicle. To define what is part of this
investigation, and what is not, we present the limitations and system boundaries of our
pose fusion. Additionally, we derive requirements for a generic pose fusion concept.

A generic fusion concept shall be independent of the specific type of input localization
systems. This immediately sets a first scope for this work: we will treat input data in
a generic manner and not build a fusion specific to a certain set of input localization
systems.

Note that we do not assume that all pose sources behave exactly the same way. In-
stead, we argue that we can group them into classes such that we can apply class-specific
preprocessing techniques to increase their conformity with our generic assumptions.
Note that, in the spirit of generic pose fusion, it is our goal to form these classes as
broad and as less specific to a single source as possible.

Our pose fusion tries to best combine pose data and not to compute a pose estimate
from scratch. This decoupling of the localization and fusion means that it can only
produce an output whenever (at least some) input data for the fusion is available. For-
mulating this as a requirement, we require an availability of 100%: the pose fusion has
to always provide the best possible pose, under all conditions, as long as any input data
is available.

Moreover, to be of use for the other ADAS modules, the output of the pose fusion
has to be recent. In this thesis, the latency of a pose estimate is the temporal difference
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between when it becomes available and for what time it is valid. In practice, the latency
of the output of the pose fusion depends among others on the available pose sources.
In the evaluations of this thesis, there is almost always odometry data available with a
low latency. Therefore, we demand a latency of our pose fusion in the same order of
magnitude.

The pose fusion has to run online on limited hardware in automated vehicles. It has to
work on several, different vehicles with acceptable configuration effort. Therefore, we
require a scalable approach (in terms of runtime performance) that gets better with more
computational resources, but it also has to work on hardware with less performance.
The pose fusion would ideally adapt its own configuration to the available hardware to
minimize the configuration effort.

As we perform generic fusion, it is a key challenge that we cannot rely on any timing
requirements for the input data, i.e., assume that the data arrives instantly, is strictly
ordered, without packet loss, or arrives with constant frequency. The only exception to
this is that we require the data to be correctly timestamped for all pose sources.

The pose fusion works with three degrees of freedom which are the location and
orientation of the vehicle. We do not estimate all six degrees of freedom for two reasons.
First, this is a common assumption for automated vehicles and they generally do not
rely on all six degrees of freedom. Second, all available input sources only provide
pose estimates with three degrees of freedom. However, we require that the concept of
the pose fusion is in principle extensible to six degrees of freedom for possible future
enhancements. This would enable its application on systems like drones or underwater
robots.

The accuracy of the pose fusion is of great importance. However, we cannot impose
a strict accuracy requirement as it strongly depends on the quality of the input data.
Instead, we require that the pose fusion accurately converges towards the statistically
optimal result. We require the pose fusion to make optimal use of the available infor-
mation to provide the most accurate output possible.

Finnaly, the pose fusion has to be able to provide estimates about the uncertainty of
its output. This is important for several applications that rely on the pose fusion data
and use probabilistic techniques.

Now that we have defined the scope of this work, we can formulate the goal that
we pursue more clearly. The aim of this work is to develop a generic pose fusion that
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satisfies the following requirements:

• the output of the pose fusion has to be always available whenever input data is
available,

• the latency of the pose fusion has to be in the order of the most recent input data,

• the pose fusion has to be an online approach,

• the pose fusion has to scale its computational requirements with the available
hardware,

• in principle, the pose fusion concept has to be extensible to estimation in full six
degrees of freedom,

• common error characteristics of the input pose estimates have to be modeled,
reduced, or eliminated,

• the estimation of the pose fusion has to converge to the statistically optimal result,

• the pose fusion needs to provide reasonable estimates of its uncertainty.

1.4. Contributions

The main contribution of this thesis is an online pose fusion algorithm that makes little
assumptions about the types of the underlying localization systems. Our approach is
structured into a layered architecture such that we can reuse modules if appropriate. We
divide it into a core estimator and a set of preprocessing modules, which transform the
input data for optimal use by the core estimator. Due to its generic nature, the pose
fusion is applicable to automated vehicles, mobile robots, and other systems having
access to multiple pose sources.

The core estimator avoids overconfidence by performing delayed marginalization. It
is formulated as a sliding window graph-based optimization that leads to a maximum
likelihood (ML) estimate over the joint probability of vehicle poses in the current win-
dow. It converges to the online ML estimate for increasing sizes of the sliding window.
Different parametrizations make it possible to scale from the Iterated Extended Kalman
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filter (IEKF) to the batch solution and thus to balance runtime versus accuracy. This
enables the use with different hardware configurations. We create an efficient estima-
tor that has linear runtime and a constant memory complexity in the size of its state.
It retains the sparseness of its optimization problem over time, making the approach
independent of the duration of operation. This is achieved by focusing on creating so-
called chain pose graphs. In addition, we present a technique which allows it to adapt its
computational load to the available resources at runtime by parametrizing its algorithm
accordingly.

We develop methods to gain an understanding of the effects of state marginalization
and autocorrelation in the graph-based formulation. This leads to new nodes and edges
which are the prior node and factors to represent autocorrelated error terms of both local
and global pose measurements. These are applicable to other methods that use a similar
formulation, i.e., many graph-based Simultaneous Localization and Mapping (SLAM)
algorithms.

The preprocessing sublayer developed in this work consists of four modules. They
serve to model, reduce, or eliminate common error characteristics. The first module
estimates time-varying biases of global poses. It compares input poses from different
sources to determine biases. The second module reduces the influence of outliers. It
determines outliers by comparing them to a map and increases their uncertainty if nec-
essary. The third module treats input poses from sources with cross-correlated noise
relying on Covariance Intersection (CI). The fourth module models autocorrelated er-
rors by inflating the covariance matrices of the corresponding pose estimates. These
four modules are valuable for approaches other than generic pose fusion and easily im-
plementable without the core estimator.

Parts of this thesis have been published in the following conference proceedings and
journal articles:

• Christian Merfels and Cyrill Stachniss. Pose fusion with chain pose graphs for
automated driving. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3116–3123, 2016,

• Christian Merfels, Tobias Riemenschneider, and Cyrill Stachniss. Pose fusion
with biased and dependent data for automated driving. In Proceedings of the Posi-

tioning and Navigation for Intelligent Transportation Systems Conference (POS-
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NAV ITS), 2016. ISSN: 2191-8287,

• Christian Merfels and Cyrill Stachniss. Sensor fusion for self-localization of au-
tomated vehicles. Journal of Photogrammetry, Remote Sensing, and Geoinforma-

tion Science (PFG), 85(2):113–126, 2017.

The work in Section 5.6 on recovering the covariance matrix of the fused output
as presented was done in tight collaboration with Mareike Ploog and was originally
addressed in her Master’s thesis (Ploog, 2017) that I co-supervised. Additionally, the
preprocessing technique for scaling a covariance matrix based on map information as
presented in Section 6.2 was done in tight collaboration with Lukas Fröhlich and is
addressed in his Master’s thesis (Fröhlich, 2017) that I co-supervised. The same holds
for the preprocessing technique for decreasing the influence of autocorrelated errors as
presented in Section 6.4.

The following patents have been filed during the development and in the context of
this thesis:

• Christian Merfels and Moritz Schack. Fusion von Positionsdaten mittels Posen-
Graph. Patent application at Deutsches Patent- und Markenamt, Germany, Octo-
ber 2015. DE 10 2015 219 577.5. This refers to the general concept of the core
estimator presented in Section 5.

• Christian Merfels and Moritz Schack. Marginalisieren eines Posen-Graphen.
Patent application at Deutsches Patent- und Markenamt, Germany, March 2016.
DE 10 2016 205 193.8. This refers to the prior node presented in Section 5.3.

• Christian Merfels. Kompensation von Fehlern in Absolut-Positionsdaten bei der
Schätzung der Eigenposition. Patent application at Deutsches Patent- und Marke-
namt, Germany, October 2016. DE 10 2016 220 593.5. This refers to the bias
estimation module presented in Section 6.1.

• Christian Merfels, Lukas Fröhlich, Bernd Rech, Thilo Schaper, Niklas Koch, and
Daniel Wilbers. Verfahren, Vorrichtung und computerlesbares Speichermedium
mit Instruktionen zur Schätzung einer Pose eines Kraftfahrzeugs. Patent applica-
tion at Deutsches Patent- und Markenamt, Germany, April 2017b. DE 10 2017
108 107.0. This refers to the map-based outlier handling presented in Section 6.2.
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• Christian Merfels, Lukas Fröhlich, and Bernd Rech. Verfahren zur Datenfusion
eines Datensatzes, entsprechende Recheneinheit und Fahrzeug welches mit einer
entsprechenden Recheneinheit ausgestattet ist sowie Computerprogramm. Patent
application at Deutsches Patent- und Markenamt, Germany, April 2017a. 10 2017
108 130.5. This refers to the modeling of autocorrelated errors presented in Sec-
tion 6.4.

1.5. Overview of the thesis

This thesis is organized as follows. First, we review the state of the art in Chapter 2 for
the different methods addressed in this thesis. Subsequently, we present fundamental
techniques and background knowledge in Chapter 3. The main architecture for our
generic pose fusion is presented in Chapter 4. Its key component is the design of a
layered fusion architecture in which we split up the fusion layer into a core estimator
and a sublayer of preprocessing techniques. In Chapter 5, we design and develop the
core estimator concept.

In Chapter 6, we address valuable techniques for preprocessing the input data for
the core estimator. We describe in Section 6.1 a generic preprocessing technique that
focuses on decreasing the influence of biases on pose estimates. In Section 6.2, we
present a method for outlier handling. In Section 6.3, we address the problem of fusing
data between pose sources whose error is correlated. Section 6.4 describes how to treat
autocorrelated noise of a pose source in such a way that the estimator can ignore this
characteristic. In Chapter 7, we provide separate evaluations for the core estimator, the
individual techniques of the preprocessing sublayer, and for the entire pose fusion that
combine all contributions.

Without getting into the details of the layer architecture of our pose fusion just yet,
we already present parts of it here for the sake of using it as a guidance on where to find
the different parts of this thesis. Figure 1.3 shows the heart of the architecture and the
mapping between the topic and the respective chapter number.

Generally, if a reader is only interested in a particularly topic of this thesis, then we
invite the reader to start with the corresponding section of related work in Chapter 2,
continue to the details of the topic in most likely Chapter 5 or Chapter 6, and then look
up its evaluations in Chapter 7. Of course, the default ordering of the content refers to
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pose fusion layer

core estimator

online preprocessing sublayer

bias
estimation

outlier
handling

cross-
correlated

noise

auto-
correlated
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4

5

6.1 6.2 6.3 6.4

Figure 1.3.: Guidance on where to find the key parts of this thesis. The layer architecture
of the pose fusion is detailed in Chapter 4. The core estimator is presented
in Chapter 5, and the preprocessing modules are part of Chapter 6.

the preferred arrangement to approach it in its entirety.



2. Related work

In this chapter we provide an overview of the related work on the key topics of this
thesis. We start with a review of fusion and state estimation techniques in Section 2.1
and Section 2.2. The next sections Section 2.3 to Section 2.6 follow this up by reviewing
approaches related to our preprocessing modules.

2.1. Generic pose fusion

In this section we review the related work on generic pose fusion. The fundamental
challenge in this field is to correctly model and integrate imperfect data. The imperfec-
tion can manifest itself as measurement uncertainty, outliers, conflicting data, correlated
errors, or other effects (Khaleghi et al., 2013). Historically, probability theory is the old-
est mathematical theory to deal with data uncertainties. Fusion concepts built on this
theory are tailored to reduce the uncertainty. Other fusion concepts are based on differ-
ent theories, and they focus on different aspects of data imperfection, such as ambiguous
or vague data in the case of Dempster–Shafer evidence theory (Murphy, 1998) or ran-
dom sets (Goodman et al., 2013). This work is based on using tools from probability
theory and point estimation because our main challenge is the inherent uncertainty of
pose estimates.

The ML solution is obtained by solving the corresponding nonlinear least squares
(NLLSQ) problem. Many estimation and data fitting problems are commonly formu-
lated as NLLSQ problems. These include SLAM (Dellaert and Kaess, 2006), bundle ad-
justment (Agarwal et al., 2009; Triggs et al., 2000), and structure from motion (Forsyth
and Ponce, 2002). In these cases the estimation problem is solved by finding the ML so-
lution of a set of robot or camera poses and features in the environment. Naturally, these
problems share some common ground with the multi-sensor fusion problem approached
in this thesis. However, in contrast to the mentioned problems we need to execute our
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approach online. Also, we are not interested in reconstructing parts of the environment.
These two facts allow us to design the estimation problem in a particularly efficient way
while still making use of the sound basis of estimation theory present in the areas of
optimization-based SLAM, bundle adjustment, and structure from motion.

Sensor fusion can be distinguished into centralized and decentralized (or distributed)
approaches. On the one hand, the former offers the advantage of a high degree of accu-
racy as all information is available during state estimation. Moreover, it can make use of
consistent model assumptions as the central sensor fusion contains all relevant model-
ing knowledge. Furthermore, it does neither double count information nor be uncertain
whether all available information has been processed. On the other hand, decentralized
sensor fusion approaches distribute the computational load over multiple hardware units
which leads to a more homogeneous processing load. Also, processed data leads usually
to less bandwidth requirements between the system components (Darms and Winner,
2005). Distributed sensor fusion with an Extended Kalman filter (EKF) for navigation
tasks has been proposed by Weiss et al. (2012). Particle filters have been used for sen-
sor fusion applied to distributed surveillance (Rosencrantz et al., 2002). In this work
we focus on centralized sensor fusion because we want to make as few assumptions as
possible about the sensor, hardware, and network architecture.

Generic sensor fusion has been applied to other fields than self-localization, too. In
the automotive context the concept has been utilized for environment modeling and
perception (Munz et al., 2010c,b), mapping (Kubertschak et al., 2014; Grewe et al.,
2012), and multi-target tracking (Munz et al., 2010a). These approaches advocate a
centralized generic fusion (Munz, 2011) for their specific use cases. Our work is in line
with this by proposing a centralized and generic approach for our use case, the pose
fusion.

Generic pose fusion is usually motivated by the need for reuse of fusion algorithms.
Moore and Stouch (2014) propose a generic pose fusion framework that is based on
an EKF. A similar framework, that takes care of handling different timing behaviors
of input sources, is proposed by Ratasich et al. (2015). Lynen et al. (2013) propose
a generalized pose fusion framework dubbed Multi-Sensor-Fusion EKF. It is based on
the IEKF formulation where new states are created by high-frequency IMU readings.
Cucci and Matteucci (2013) propose the ROAMFREE framework for multi-sensor pose
tracking and sensor calibration. The system is built up on a pose graph. They view
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input sources as logical sensors and treat them like a black box, which is similar to
how we view pose sources. Thus, they effectively perform generic sensor fusion for
pose tracking. Chiu et al. (2014) model all sensor readings as constraints in a factor
graph and propose a selection strategy to choose among the available sensors. This
results in a generic state estimation framework that can integrate new sensors through
creation of appropriate preprocessing techniques. In addition to these generic sensor
fusion approaches Hertzberg et al. (2013) focus on representing poses on a manifold to
enable generic sensor fusion algorithms.

One recurrent insight of the reviewed contributions is that some sort of modularity
has to be part of a generic fusion approach. This modularity allows the approach to
integrate information from previously unused input sources. We pick up this thought in
Chapter 4 where we propose our layered architecture. For now we turn to the related
work on the core of the pose fusion. Clearly, any kind of generic pose fusion is based
on a concept for state estimation. We therefore review common concepts for this in
Section 2.2.

2.2. State estimation for self-localization

The main task of any pose fusion is to determine the pose of the system. This is achieved
by applying techniques from the field of state estimation. For the term state we follow
the general definition of Simon (2006) who declares that “the states of a system are

those variables that provide a complete representation of the internal condition or status

of the system at a given instant of time”. In this sense, state estimation is “the problem

of reconstructing the underlying state of a system given a sequence of measurements

[...]” (Barfoot, 2017). Applied to our context of self-localization of automated vehicles
the narrowest definition of the state is given by the pose of the vehicle in the world
reference frame and its uncertainty for a given time. We start by reviewing filtering-
based approaches and follow up with a review of smoothing approaches. Generally, the
former are only interested in the state at a single instance of time, while the later extend
their interest to a sequence of states. Figure 2.1 illustrates the relationship between the
EKF, the IEKF, the Sliding Window Filter (SWF), and online (incremental) and offline
batch estimation.
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(a) EKF: runs online, but contains only the current state variable and does not iterate.
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(b) IEKF: runs online and iterates at the current time step, but contains only the current

state variable.
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(c) Fixed-lag smoothing and SWF: run online and iterate over the set of most recent

states variables.
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(d) Online batch estimation: iterates over all states up to the current one, but requires

more and more runtime with a growing number of state variables.
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(e) Offline batch estimation: iterates over all state variables including future ones, but

only runs offline.

Figure 2.1.: Comparison of iterative state estimation techniques. The figure is inspired
by Barfoot (2017, Fig. 4.17). The arrows indicate the state variables that
are being iterated over during one time step.
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2.2.1. Filtering-based approaches

Many flavors of filtering-based approaches have been proposed. The Kalman filter is the
classical way to estimate the state of a linear system. It consists of a prediction and an
update step. The EKF extends it to nonlinear systems, which are common in navigation
tasks. It essentially linearizes about the current mean and covariance estimate to apply
similar steps as its linear variant.

Many approaches are based upon an EKF formulation. Kubelka et al. (2015) use an
error state EKF to fuse positional information from four different odometry sources: an
IMU, track encoders, visual odometry, and laser rangefinder scan-matching. Global Po-
sitioning System (GPS) is not considered because of its low availability, and a magnetic
compass is left out due to its high unreliability in their use cases, leaving the robot with
no global position source. The authors describe the modeling of the fusion strategy as a
crucial issue mostly complicated by the significantly different update rates ranging from
0.3 Hz to 90 Hz.

Weiss et al. (2012) propose an EKF to fuse IMU with GPS data and a camera-based
pose estimate in the context of micro aerial vehicles. The propagation model is bound
to the IMU, making it indispensable while other sensor measurement updates can be
integrated in a modular way. The authors detail that integrating measurement delays
makes it necessary to recompute all affected states. This is computationally feasible for
the state vector but infeasible for the covariance matrix, which they therefore neglect in
the case of measurement delays.

Steinhardt and Leinen (2015) propose an error state space EKF that integrates GPS
and IMU data with odometry sensors. Emphasis is put on a correction algorithm for
measurement latencies for multiple sensors and on modeling the data consistency.

Other filtering-based approaches have been developed to enhance the estimation qual-
ity. The IEKF iterates the update and prediction step of the EKF until convergence to
minimize the influence of linearization errors. As stated above, Lynen et al. (2013) pro-
pose a generic sensor fusion framework built upon the IEKF formulation. The Extended
Information Filter (EIF) is the dual of the EKF, where the state belief is parametrized
in terms of the information vector and information matrix. It has been extended to the
Sparse Extended Information Filter (SEIF) by Thrun et al. (2005). One property of all
these approaches is that they represent the state as a unimodal distribution, thus being
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unable to maintain distinct hypotheses.

The particle filter overcomes this limitation by using a non-parametric representation
that permits the approximation of multimodal distributions. Montemerlo et al. (2002)
present the FastSLAM algorithm that represents the joint density of the path and the
map as a set of particles. Each particle consists of its estimated trajectory and a set of
independent Kalman filters for landmarks in the map. Giremus et al. (2004) employ a
particle filter to integrate inertial navigation system (INS) and GPS data. The approach
described by Mattern et al. (2010) is also based on integrating GPS and odometry data,
but additionally augments it by comparing visual and mapped landmarks.

The filtering-based approaches have in common that they rely on the Markov as-
sumption at an early stage and marginalize all older information, thus prematurely in-
corporating the linearization error. The quality of the linearization is therefore in fo-
cus for state estimation. EKFs linearize by computing the first-order Taylor expansion
about the current mean estimate and covariance. The Unscented Kalman Filter (UKF)
has been developed to provide a better approximation of the nonlinear transformation
of the estimated Gaussian random variable, called the unscented transformation with

sigma points (Julier and Uhlmann, 2004). In contrast, smoothing approaches choose to
weaken the influence of linearization errors by frequent relinearization.

2.2.2. Smoothing approaches

Similar to filtering-based approaches there also exist a variety of smoothing approaches.
They have in common that they consider the state as a sequence of state variables at spe-
cific time instances. If the sequence of these state variables is consecutive and without
interruption, then we refer to it as a (discrete) trajectory. State estimation for these
approaches is based on smoothing the trajectory by applying NLLSQ estimation.

In contrast to filtering techniques, smoothing approaches find a ML estimate by
NLLSQ optimization to a Dynamic Bayesian Network (DBN), Markov random field
(MRF), or factor graph. Offline batch optimization provides a statistically optimal esti-
mate given additive white Gaussian noise (AWGN). It considers all measurements and
optimizes the entire trajectory in a non-causal way. In contrast, online batch estimation
considers all information up to the current time step. A drawback of these approaches is
that the state vector grows unboundedly over time, thus limiting its online applicability.
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This computationally more and more expensive operation becomes feasible through
the usage of incremental smoothing techniques. These techniques, such as iSAM2 (Kaess
et al., 2012), recompute only the part of the graph that is affected by new measurements.
A combination of a long-term smoother using iSAM2 and a short-term smoother using
so-called Sliding-Window Factor Graphs is proposed by Chiu et al. (2013) to estimate in
parallel the full navigation state and to provide a low-latency state estimate. Their pro-
posal is tightly connected to optimizing a map of landmarks, which pass through three
different stages. Indelman et al. (2012) use the incremental smoothing technique pro-
posed by Kaess et al. (2012) to fuse multiple odometry and pose sources. This implies
that they choose a similar graph representation as proposed in this contribution with the
difference that they keep the full graph in memory over the entire trajectory, making
the approach more memory-consuming. Long times of operation, as it is common for
vehicles, or memory constraints might lead to issues.

In addition to incremental techniques, smoothing approaches have been adapted to
work in an online fashion by restricting the state vector. These are commonly referred
to as fixed-lag smoothing algorithms (Maybeck, 1982). As detailed above, filtering-
based approaches restrict the state vector to the most recent state, hence collapsing the
trajectory estimation into a single pose estimation problem. This, however, prevents
relinearization of previous states as they are already marginalized out. Also, the current
state is usually not relinearized and the Jacobians are evaluated only once. Strasdat et al.
(2012) show that mainly for these two reasons filtering performs suboptimal even for
short time frames when compared to NLLSQ estimation.

Fixed-lag smoothing approaches estimate the state over a sliding window of time (Dong-
Si and Mourikis, 2011). The lag specifies the size of the sliding window. Often, these
approaches are either interested in the state variable at the beginning or the end of the
lag. They can be realized with EKFs (as forward-backward smoothing) or optimization-
based methods (Ranganathan et al., 2007). They can be seen as an IEKF with an aug-
mented state vector because the filter update of the IEKF is for many problems mathe-
matically identical to the Gauss-Newton method (Bell and Cathey, 1993) when both the
prediction and update steps are iterated (Barfoot, 2017).

Keyframe-based approaches are similar to fixed-lag smoothing in that they also main-
tain a state over a set of state variables. However, the state is not a consecutive sequence
of the most recent state variables as in fixed-lag smoothing but instead can contain ar-
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bitrarily chosen state variables. These approaches came to the fore in the context of
camera-based state estimation (Leutenegger et al., 2015). They commonly use factor
graphs to represent the estimation problem.

Sibley (2006, 2007); Sibley et al. (2010) introduce the concept of a SWF in the con-
text of robotics. They apply it to planetary entry, descent, and landing scenarios, in
which they estimate surface-structure with a stereo camera setup. Another application
is a modified Segway platform that is capable to travel in urban spaces (Newman et al.,
2009). Hinzmann et al. (2016) propose a SWF to approach the visual-inertial SLAM
problem for fixed-wing unmanned aerial vehicles. The SWF can be considered as a
fixed-lag smoothing algorithm for SLAM or structure from motion problems. It extends
the state vector to the set of the most recent states variables and estimates the trajectory
of the robot and the map of its environment. For this it employs NLLSQ estimation and
marginalizes out old state variables.

2.2.3. Marginalization

Smoothing approaches, that estimate the state over a sliding window, have two options
to keep the sliding window to a limited size. First, they can simply remove old states
and integrate new ones. This is equivalent to conditioning and results in overconfidence.
Secondly, they can apply a marginalization strategy that seeks to keep the information of
the old states within the optimization problem while removing them from the estimation
itself. In the following we review approaches of the second kind that have been applied
to pose graphs. In this context node and edge marginalization is applied either exactly
or approximately.

Exact marginalization as a fundamental technique to remove parameters from a mul-
tivariate Gaussian distribution has been studied extensively in the past. Triggs et al.
(2000) gives an introduction with examples from the computer vision and photogram-
metry community. They detail the application of the Schur complement as the standard
technique for exact marginalization. It presents the challenge of possible creation of
fill-in in the system matrix, which is the modification of zero entries to nonzero entries
after marginalization. Variable reordering strategies, such as exact (Tinney and Walker,
1967) or approximate minimum degree ordering (Amestoy et al., 1996), try to minimize
the fill-in in the system matrix or its Cholesky decomposition. The SWF performs exact
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node marginalization and Sibley (2006) highlight the effects on different parts of the
system matrix.

Marginalization with the help of the Schur complement produces the exact reduced
system matrix. The computation though might pose computational challenges, induces
fill-in in the system matrix and its Cholesky factorization, and does not provide a se-
mantic representation of the marginalized information.

Approximate marginalization techniques trade exactness for efficiency. The most rad-
ical form of approximation is to simply discard nodes and edges. Cucci and Matteucci
(2013) delete the oldest nodes from a sliding window without accounting for the re-
moved information. This naturally leads to inconsistent pose and uncertainty estimates
but is the fastest possible way of approximate marginalization.

Kretzschmar et al. (2011) thin out pose graphs by removing the nodes which cor-
respond to the least informative laser scans for mapping. They explicitly sparsify the
elimination cliques by reducing their number of constraints. To this end, they employ
Chow-Liu trees (Chow and Liu, 1968) to locally approximate the Markov blanket of the
marginalized nodes. This heuristic seeks to minimize the information loss and to keep
the graph sparse.

Vial et al. (2011) propose Conservative Sparsification to sparsify the information ma-
trix. This optimization-based method aims to minimize the Kullback-Leibler divergence
while enforcing certain edges to be removed, thus resulting in a more sparse matrix.
They focus on the effects of edge marginalization instead of node marginalization.

Carlevaris-Bianco et al. (Carlevaris-Bianco and Eustice, 2013; Carlevaris-Bianco et al.,
2014) propose to marginalize nodes by replacing them with generic linear constraints.
These edges are either dense and exact or a sparse Chow-Liu tree approximation. They
extend their work (Carlevaris-Bianco and Eustice, 2014) to enforce conservative ap-
proximations of the true marginalized potentials.

Huang et al. (2013) derive similar relative constraints from the discarded edges for the
remaining nodes. The constraints are conservative, sparse, and account for correlated
measurements, thus promoting the consistency of the estimates. The authors propose a
`1-regularized optimization scheme for sparsification instead of using a Chow-Liu tree
approximation.

Mazuran et al. (2014) also formulate the sparsification as a convex minimization prob-
lem. The optimization only takes into account the Markov blanket of the marginalized
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node. Additionally, the authors allow for arbitrary nonlinear measurement functions.
They extend their work (Mazuran et al., 2016) and embed it in a more general framework
called nonlinear factor recovery. They show a direct relation between their method and
generic linear constraints.

Approximate marginalization techniques seek to avoid the disadvantages of the Schur
complement, namely the induced fill-in and the computational burden, by providing a
reasonable—if possible conservative—estimate of the influence of the removed param-
eters. However, this comes at the expense of accuracy. Also, not all approximate ap-
proaches are able to relate the removed information to semantically meaningful objects
in the model (e.g., nodes and edges).

2.2.4. Timing behavior

In many practical systems the data from different sensors rarely comes perfectly or-
dered, with a negligible latency, and with comparable and constant frequencies. A
specific challenge for state estimation approaches is the integration of out-of-sequence
measurements. A conventional filtering-based approach has to propagate its state back
to the time of the measurement (retrodiction step), apply it, and apply all stored mea-
surements again. Bar-Shalom (2002) derives an optimal algorithm for a scenario in
which a single out-of-sequence measurement has to be applied between the last two
updates. The author also notes that an extension to longer time delays involves some
kind of non-standard filtering. Steinhardt and Leinen (2015) apply a similar method
for an error state space EKF. Challa et al. (2002) propose an augmented state EKF to
incorporate out-of-sequence measurements. This can be considered as a filtering-based
fixed-lag smoothing solution.

Another approach is to store recent measurements and states, insert the out-of-sequence
measurement at the correct place, and recompute all future states (Tessier et al., 2006).
This operation is computationally expensive. Therefore, Larsen et al. (1998) propose
a fast fusion approach that is suboptimal and only performs well under certain circum-
stances. Westenberger (2015) shows how to compute retrodiction steps for correlated
and non-AWGN noise. The author applies it to an automotive prototype by combin-
ing measurements from radio detection and ranging (radar), camera, IMU, and impact
sensors.
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For graph-based estimation the integration of out-of-sequence or delayed measure-
ments is straightforward. Ranganathan et al. (2007) point out that it is a question of
where to add new nodes and edges but that most of the graph structure stays intact. This
fundamental difference stems from the fact that optimization-based fixed-lag smoothing
algorithms keep a sliding window of state variables and their relations. Out-of-sequence
measurements lead to potentially new state variables or new relations that can simply
be added to the graph.

2.3. Bias estimation

Measurement and estimation errors can be grouped into systematic components, quasi-

stationary components, and stochastic components (Niebuhr and Lindner, 2002). Sys-
tematic components are those that are constant for all measurements. Quasi-stationary
components are constant for a limited series of measurements. Stochastic components
are those that are fully described by a stochastic process. In this thesis we are interested
in bias estimation for quasi-stationary errors.

Bias estimation in the context of localization serves to estimate quasi-stationary off-
sets in pose estimates and to minimize their influence. In the literature it has been
primarily treated for GPS-based systems. A common approach consists in augmenting
the state vector of a filter to allow for more sophisticated error models and correcting
the bias by a second pose source.

Jo et al. (2013) correct quasi-stationary errors of GPS receivers that change slowly
over time by comparing visual observations of the road structure to a given road map
database. Laneurit et al. (2005) empirically model errors of GPS receivers as an additive
Gaussian distribution plus a time-dependent bias and white noise. They estimate the
bias by computing the difference of the sensor fusion result to the GPS-based position
estimate. Significant bias changes are determined by testing whether the prediction
based on the last estimate of the GPS receiver lies within the one sigma error ellipse of
the current measurement. Tao et al. (2013) construct a first order autoregressive model
for the estimation of the error of a GPS-based system. While this model captures the
autocorrelation of the bias, strong bias variations in the form of position jumps are only
treated by rejecting the corresponding fixes of the GPS receiver. The authors further
compare visual observations of lane markings to a map to correct position errors.
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These approaches specifically define a second, unbiased pose estimation to subse-
quently eliminate the pose bias. Our bias estimation scheme is inspired by the same
idea but we generalize it to work with any unbiased pose source.

2.4. Outlier handling

Pose graph optimization is prone to outliers. Constraints that are not well modeled by
their Gaussian distribution can lead to huge errors. These errors have quadratic influence
in classical NLLSQ and can therefore lead to detrimental effects. As a consequence,
robust optimization has been well-studied in the past.

In SLAM problems there are typically three kind of constraints which can potentially
lead to outliers. The first one are odometry constraints. Their mean estimate might be
inaccurate or the assumption of Gaussian noise might be violated. The second kind
are correspondence errors. Many visual SLAM algorithms rely on associating features.
This data association is not obvious and can lead to errors. The third kind are loop
closure constraints. They are especially important for pure pose graph SLAM problems.
However, even few wrong loop closure edges can have disastrous impact. Most research
in the SLAM community has focused on handling outliers from wrong loop closure
detections as they potentially damage the graph topology severely. This loop closure
verification is not directly of interest for a pose fusion. Still, most methods developed
for that use case can also be employed for robustification of a pose fusion problem.

Robust optimization is usually based on using robust cost functions. In robust statis-
tics they are commonly called M-estimators. An introduction is given in Section 3.4.3.
Choosing the right robust cost function is a difficult task and data set specific. Mac-
Tavish and Barfoot (2015) provide a comparison of different robust cost functions for
a typical data association problem. Most robust cost functions depend on one or more
free parameters. After having found a suitable function these parameters need to be
tuned. Agamennoni et al. (2015) present a technique for automatically choosing a cost
function and tuning its parameters during optimization.

Switchable Constraints (SC) have been proposed by Sünderhauf and Protzel (2012).
The method poses the optimization as a regularization problem. It introduces so-called
switch variables si for this. They act upon the error variables. Their effect can be seen
as scaling of the corresponding information matrices by the value of s2

i . It is important
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to note that their values are confined to the range of 0 to 1.

Dynamic Covariance Scaling (DCS) (Agarwal et al., 2013) is an extension to SC. It
builds upon the same switch variables. However, the authors propose a closed-form
solution to finding the values of the si. It mainly depends on the constraint’s value.
Compared to SC this prevents having to add additional parameters to the optimization
problem, thus potentially saving execution time and increasing convergence speed.

Max-mixture constraints (Olson and Agarwal, 2013) are based on the idea that the
uncertainty of a constraint can be modeled as Gaussian max-mixture distribution. This
adds a second hypothesis to all loop closure constraints. It expresses the probability that
this constraint is incorrect. Due to its max-mixture formulation it is easier to embed into
the optimization framework than similar sum-of-Gaussian mixtures. This is because the
max operator can be pushed through in the negative log likelihood computation. The
key effect is that the backend can select during optimization the hypothesis that locally
maximizes the likelihood of the corresponding constraint’s error function.

Realizing, Reversing, Recovering (RRR) (Latif et al., 2013) is a consensus-based
algorithm. It checks for subsets of possible loop closures that are consistent with the
topology as defined by the odometry. The subsets are created based on loop closures
that occurred in short succession. The method requires an already converged graph
before it additionally checks whether possible loop closure edges are consistent with
the graph. The consistency check is based on statistical tests. In the end, for each
constraint a binary decision is taken whether to keep or to reject it.

Several publications study how these methods compare to each other. Latif et al.
(2014) compare DCS, SC, max-mixture constraints, and RRR. The comparison takes
into account how parameter tuning intensive these algorithms are. Sünderhauf and
Protzel (2013) compare SC, max-mixture constraints, and RRR. They find that max-
mixture constraints are simpler to implement and potentially faster while SC seems to
need less fine-tuning and performs generally well. Depending on the data set, RRR
seems to either outperform the other two methods or struggles to provide a solution
at all. Pfeifer et al. (2016) focus more on sensor fusion applications. They simulate
non-line-of-sight (NLOS) GPS errors. All of these comparisons have in common that it
seems to be difficult to define a clear winner. Depending on the application, the param-
eter set, and the data set, the results differ.
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2.5. Correlated errors between pose sources

Generic pose fusion systems do not know about the specific source of correlation and
have to perform fusion under unknown correlation. One approach to this is ellipsoidal
intersection (Sijs and Lazar, 2012), which maximizes the common information given
that the sources share a common prior. Another method is CI (Julier and Uhlmann,
1997), which combines estimates with unknown error correlations. It provides a conser-
vative estimate of the actual mean square error matrix. CI has been employed for a range
of applications, including graph-based (Noack et al., 2015) and filtering-based (Julier
and Uhlmann, 2007) SLAM. Reinhardt et al. (2012) propose closed-form solutions for
two- and three-dimensional matrices on top of which we design our treatment of depen-
dent information. Weighted Geometric Mean (WGM) extends this approach to multiple
measurements, see Section 3.5.5.

2.6. Autocorrelated errors

In Section 2.5 we reviewed the related work for fusing measurements with cross-correlated
errors. These approaches do not make any assumption about the origin of those correla-
tions and therefore cover all types of correlated errors, including both cross-correlated
and autocorrelated errors. Similarly, it is common in SLAM problems to inflate co-
variance matrices to reflect dependent information (Julier, 2003). However, these ap-
proaches are conservative as they implicitly have to assume the worst case of maximum
correlation. If we have more information about the nature of the correlation, then we
can achieve a more precise fusion result. In this section we dwell on autocorrelated er-
rors. These are of interest to us because we can make use of our knowledge about their
autocorrelation.

Intuitively speaking, measurements have autocorrelated errors if the current error de-
pends upon the last errors. Formally, autocorrelated errors can be represented by an
autoregressive model as described in Section 3.6. This kind of correlation is also some-
times called serial correlation or temporal correlation. It is common for time series or
filtered data, such as GPS data. Miller et al. (2011) model the GPS position error as
an autocorrelated term plus AWGN. They include it in the update step of their particle
filter. Other approaches consist in augmenting the model of Kalman filters (Kuhlmann,
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2003). In the context of NLLSQ, Cochrane and Orcutt (1949) integrate explicit knowl-
edge about the autocorrelated errors into the estimation problem. This increases the
complexity of the problem as it reduces its sparsity. However, it also provides an op-
timal way of solving least squares regression with variables that contain autocorrelated
errors. Building up on this method we derive in Section 6.4 our method that aims to
combine both estimation performance with estimation speed.





3. Fundamentals

In this chapter we present fundamental background for the later chapters. We start
with giving information about coordinate frames in Section 3.1, different kinds of input
sources in Section 3.2, and maps in the automotive context in Section 3.3. After that,
we detail in Section 3.4 the algorithmic foundation for the core estimator. This includes
an introduction to the corresponding notation and to our view on the optimization tech-
nique. It makes up a substantial portion of this chapter as many concepts in this thesis
build up on this theory. We complete the chapter with Section 3.5, Section 3.6, and
Section 3.7 by presenting important concepts for our preprocessing modules.

3.1. Reference frames

Throughout this thesis we mainly use two reference frames: the vehicle reference frame
and a world reference frame. The former is used whenever we want to express a location
or an orientation from the point of view of a certain pose of the vehicle. This could be
the distance traveled between two time steps, for example. If only the vehicle’s relative
movement is of interest, then this is independent of its pose with respect to the world.
The latter is used to express where a vehicle is located in the world. This is useful if we
want to look up information in a map, for example.

The following two subsections detail these two reference frames.

3.1.1. Vehicle reference frame

In this thesis the vehicle reference frame is a reference frame defined according to
ISO 8855 (International Organization for Standardization, 2011). It is also commonly
referred to as body frame or body coordinate system (Haken, 2013). The mobile robotics
community uses for the most part the same conventions (see Grisetti et al. (2010a) and
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xv

yv

θv

Figure 3.1.: Vehicle reference frame. θv is zero on the x-axis and increases to the left.
The z-axis (not shown) is pointing upwards. This reference frame is use-
ful for describing headings towards and positions of objects relative to the
current position of the vehicle.

Kelly (2013) for two examples). Figure 3.1 shows the definition of this reference frame.
Its origin lies at the projection of the rear axis’ center on the ground. The x-axis is al-
ways parallel to the support surface. It points from the origin to the front of the vehicle.
We use the superscript v to indicate variables defined in the vehicle reference frame. As
an example, zv

i could denote the i-th measurement vector in this frame.

3.1.2. World reference frame

The Universal Transverse Mercator (UTM) coordinate system is based on a conformal
cylindrical map projection. A map projection is conformal if the projection of lines,
which intersect on the ellipsoid, intersect at the same angle. The UTM system divides
the earth into sixty zones, each 6◦ of longitude in width (up to 800 km), and defines
a two-dimensional Cartesian coordinate systems within each zone. For each zone a
different secant transverse Mercator projection (see Figure 3.2) is used to obtain the
Cartesian grid. This is necessary as directions, distances, and areas are only reasonably
accurate within a few degrees of the central meridian.

The x-axis faces east while the y-axis faces north. Positions on the axes are measured
in meters. Additionally, we define the global heading to be zero radian at east with
increasing values towards north. It is bound between [0, 2π).

We use the UTM system throughout this thesis as the world reference frame because
we want to adapt a standardized two-dimensional Cartesian reference frame with low
distortions of distances. It could be interchanged with another reference frame without
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rectilinear grid

Figure 3.2.: A secant transverse Mercator projection. N and S mark the north and south
pole. λ0 and λ1 are the longitudes at the border of the grid. In the UTM
system the difference between λ1 and λ0 is always equal to 6◦. The central
meridian is shown in blue. The projection of the red grid onto the cylinder
results in the black rectilinear grid with the end points P0, P1, P2, and P3.
It is a conformal map of the sphere’s surface covering the area between the
equator and the latitude ϕ in the longitude band between λ0 and λ1. The
figure is adapted from Miani (2009).

affecting the contributions of this thesis as the methods developed in this thesis do not
depend on it. A local tangent plane as used by an East North Up (ENU) coordinate
system could be used alternatively, for example. We use the superscript w to indicate
variables defined in the world reference frame. As an example, zw

i could denote the i-th
measurement vector in the world reference frame.
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3.2. Self-localization of automated vehicles

In Section 3.1 we detailed the global and local coordinate frames that accompany us
throughout the rest of the thesis. In this section we survey different self-localization
techniques that estimate poses in these coordinate frames. This highlights the multitude
of today’s available self-localization methods and emphasizes the need of a pose fusion.

There are many ways to gain information about the pose of the vehicle. We cluster
these methods into those that provide globally referenced information and those that
provide relative movement information. We refer to pose sources which estimate poses
in the world reference frame as global pose sources and to poses in this system as global

poses. Pose sources which measure spatial transformations relative to the previous pose
are dubbed local pose sources or simply odometry.

Odometry and global pose sources have orthogonal strengths and weaknesses. On the
one hand, odometry measurements are usually available at high frequencies and do not
require a priori knowledge about the environment. On the other hand, they accumulate
drift with growing distance and they are not globally referenced. The properties of
global pose measurements are typically converse to this. On the upside, they are globally
referenced and their error is independent of the covered distance. On the downside,
they are usually only available at low frequency and require a priori knowledge about
or preparation of the environment, such as maps or satellite placement. Combining both
types of measurements in our pose fusion allows us to estimate a trajectory which is
both globally referenced and locally smooth.

In Section 3.2.1 and Section 3.2.2 we highlight some of the most common global
pose and odometry sources for robots and automated vehicles. This demonstrates that
there are many potential localization systems that can serve as input for our pose fusion
approach. In Section 7.2 we provide information about pose sources that we use in the
experiments.

3.2.1. Global pose sources

Many systems are able to estimate poses in a global reference frame. In the automotive
context the presumably most known and most employed systems are GNSS-based, such
as GPS, Global Navigation Satellite System (GLONASS), Galileo, or BeiDou Navi-
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gation Satellite System (BDS). The corresponding receivers all have in common that
they determine their location based on the radio signals emitted by satellites orbiting
the earth. Systems that are based on measuring the Received Signal Strength Indication
(RSSI) values of cellular signals such as Global System for Mobile Communications
(GSM) (Xue et al., 2016) provide roughly the same accuracy of a couple of meters.
However, they are significantly less spread. For decades, satellite-based systems have
been the cornerstone of automotive navigation systems.

GNSS-based systems for automotive applications are usually complemented with an
IMU such that the system can still provide position estimates even in the absence of
satellite signals (e.g., in tunnels). This integration of GNSS/IMU also allows the system
to provide information about the orientation, whereas conventional GNSS systems can
directly only measure information about the position. Moreover, the coupling enables
higher output frequencies of the estimation process (Dudek and Jenkin, 2016). On the
upside, GNSS-based systems are widespread and can provide global pose estimates on
huge parts of the globe without requiring any kind of map. However, their downsides
include that they can be particularly noisy in urban settings or even unavailable due to
so-called urban canyons (tall buildings on both sides of the street). There are three main
reasons for noisy GPS measurements in these scenarios. The first reason is the constella-
tion of satellites with respect to the receiver, where the radio signals of several satellites
may be unobservable due to buildings or other obstructions. This satellite shadowing
lowers the number of visible satellites which generally means a lower accuracy in the
positioning solution. Also, if the field of view towards the satellites is limited in such a
way that only transmissions from satellites in a narrow field of view are available, then
the geometry of the relative positions between satellite and receiver is potentially de-
graded. The second reason are multipath effects where the same satellite transmission
arrives at the receiver’s antenna over multiple paths (e.g., due to reflections on buildings
or walls). This causes the receiver to observe multiple times the same transmission with
different delays. The third reason are NLOS propagation and diffraction of satellite sig-
nals where the direct signal is blocked and only a single reflected or diffracted signal is
received. This differs from multipath effects, in which the direct signal is usually one
of the received signals. Among these three different error sources, Zimmermann et al.
(2016) suggest that a degraded satellite geometry is less influential than multipath and
NLOS effects. Several techniques for mitigating the effects of multipath and NLOS
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reception exist. These can generally be classified into hardware-based (e.g., antenna
design, choke rings), receiver-based, and post-receiver-based techniques. Groves et al.
(2013) provides an overview and proposes a portfolio approach to multipath and NLOS
mitigation.

With the advent of advanced driver assistance systems and automated driving func-
tions arose the demand of a higher level of positioning accuracy than what conventional
satellite-based automotive navigation systems can provide. This lead to the use of more
sophisticated GNSS-based concepts in research vehicles. These include differential po-
sitioning techniques such as Differential Global Positioning System (DGPS), Real Time
Kinematics (RTK), Precise Point Positioning (PPP), and combinations thereof (Urmson
et al., 2008; Kammel et al., 2008; Klingbeil et al., 2014; Eling et al., 2015; Schnei-
der et al., 2016a; Eling, 2016). While these techniques promise up to centimeter-level
precision under good conditions, it remains unclear whether these systems can provide
sufficient accuracy under all relevant driving conditions, including tunnels, underground
parkings, urban canyons etc. Also, their high costs make their entrance into the mass
market difficult in the near future.

For these reasons, pose sources based on different, potentially cheaper sensors came
to the fore. In this context, the wording cheaper also includes sensors that have been
originally installed for other ADAS functions and can be additionally exploited for lo-
calization purposes without additional cost. As GNSS-based systems rely on measur-
ing signals from satellites, they do not require a map. Conversely, global localization
systems for robotic and automotive driving applications based on most other sensors
typically compare their current sensor data to previously mapped information. In this
sense, a map is defined by providing geographically referenced information. If this map
is expressed in a global coordinate frame, then the corresponding localization system
can be treated as a global pose source.

There are different ways to obtain maps that are useful for localization. For some
applications, it can be beneficial to reuse existing map material. Map-based local-
ization approaches of this kind include using publicly available maps such as Open-
StreetMap (Floros et al., 2013) or Google Street View (Agarwal et al., 2015). An al-
ternative is to create maps by “mapping with known poses” (Thrun, 2002; Stachniss,
2006; Merfels, 2014), which involves some form of reference positioning technique.
The strong assumption that all poses are perfectly known, if justified, substantially eases
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the map building process. In the domain of mobile robotics, many state-of-the-art local-
ization systems are based on SLAM approaches (Stachniss et al., 2016). Durrant-Whyte
and Bailey (2006) as well as Bailey and Durrant-Whyte (2006) provide a survey of the
rather early developments of SLAM, while Huang and Dissanayake (2016) provide a
more recent critique. The SLAM problem is essentially the problem of mapping an
unknown environment and at the same time using this map to determine the robot’s
position. Maps and localization results by SLAM approaches can exist in a global co-
ordinate frame, such as UTM, if they incorporate for example GPS constraints.

Many different sensors are utilized for map-based localization or to solve the SLAM
problem. Among these, image- and video-based approaches are prevalent due to the
price and ubiquity of cameras. Different types of cameras have been used for the lo-
calization task, including monocular cameras (Lategahn et al., 2013; Heidenreich et al.,
2015), stereo cameras (Ziegler et al., 2014), and multi-camera fisheye setups (Houben
et al., 2015). Laser sensors are another prominent example of sensors that are typically
utilized for localization. They are the backbone of many localization techniques in the
form of lidar sensors (Levinson et al., 2007; Vysotska and Stachniss, 2016; Schlichting
and Brenner, 2014). They measure the distances to objects by illuminating them with
laser light (active sensing) and measuring the reflections. Another sensor type with a
similar mode of operation is radar, which emits radio waves to measure the angles, ve-
locities, and distances of objects. By comparing the radar measurements to previously
mapped information of stationary objects, one can determine its own location (Werber
et al., 2015; Ward and Folkesson, 2016). More exotic sensors, such as radio-frequency
identification (RFID) readers, have also been utilized for vehicle self-localization (Qin
et al., 2017).

Often, cameras, laser scanners, or radar serve as the main sensor for a localization
approach, but they are rarely the sole one. Instead, they are commonly being combined
with other information, e.g., GPS and IMU data. Some approaches employ other sensor
combinations, such as camera and lidar (Wolcott and Eustice, 2014; Caselitz et al.,
2016), to determine the pose of the robot across sensor modalities. The bottom line
is, there are many different localization approaches that share the common ground that
they act as global pose sources.
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3.2.2. Odometry sources

Odometry is the estimation of the relative trajectory of the own vehicle (Dudek and
Jenkin, 2016). Different sensors can be used to compute odometry information. Among
these, IMUs are prevalent in the automotive industry. They typically consist of a com-
bination of accelerometers and gyroscopes. The former measures external forces on the
vehicle while the latter measures local changes in rotation. Both are commonly part
of the electronic stability program (ESP). These sensors are sometimes combined with
wheel speed and steering wheel angle sensors to increase the accuracy and reliability.
An IMU is typically the main sensor for an INS. The main task of an INS is to perform
dead reckoning by continuously integrating the measured accelerations and velocities to
compute a position fix. This is locally smooth but not globally referenced. Furthermore,
it accumulates drift over time because small measurement errors are accumulated over
time and are never corrected. In this thesis we will use such an INS which is dubbed
EgoMaster and is the successor to the system described by Baer et al. (2009). We give
additional technical details in Section 7.2.1.

Cameras are another source for odometry information. Monocular cameras as well as
stereo cameras have been successfully used to estimate the vehicle’s egomotion (Scara-
muzza and Fraundorfer, 2011; Fraundorfer and Scaramuzza, 2012). The corresponding
process is called visual odometry (Nistér et al., 2005). It is based on computing the
egomotion on image features (Cvišić and Petrović, 2015; Schneider et al., 2016b) us-
ing sparse feature-based, semi-dense (Engel et al., 2013; Forster et al., 2014), or dense
matching methods (Lovegrove et al., 2011).

Lidar and radar can also prove useful for odometry estimation. Approaches of this
kind typically compute odometry estimates by scan matching of laser (Olson, 2009) or
radar (Rapp et al., 2015) measurements. Moreover, some approaches have successfully
exploited combinations of the aforementioned sensors, e.g., vision and lidar (Zhang and
Singh, 2015), vision and inertial (Wang et al., 2013)).

3.3. Maps for automated driving

Automated driving relies on suitable maps. These are available with different content
and different formats. Section 3.3.1 briefly describes the current industry standard,
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while Section 3.3.2 highlights the map format that is being used at Volkswagen Group
for research and predevelopment purposes. In Section 6.2 we make use of the fact that
we can extract the center line from these maps. Therefore, we explain this concept and
its context here.

3.3.1. Navigation Data Standard

The Navigation Data Standard (NDS) association1 is a group of car manufacturers, map
suppliers, and infotainment system suppliers. Their main goal is to standardize the
physical storage format for map data to achieve exchangeability, compatibility, and in-
teroperability of navigation databases between different suppliers and systems.

The standard describes a binary format and how to compile it. It is designed for
efficient retrieval of content while minimizing storage space. It also describes update
mechanisms for parts or the entirety of the data and provides a digital rights manage-
ment. The data is organized per use case into so-called building blocks like routing,
search, or points of interest.

Roads are represented by links which form the topological road network. Roads with
multiple lanes can be combined into lane groups which are logically connected to links.
For each lane, its geometrical shape and the center line are defined with georeferenced
coordinates. Additional attributes such as speed limits can be connected to links and
lanes as well.

3.3.2. Detailed Lane Model

The Detailed Lane Model (DLM) is an extension to the NDS. Whereas NDS is main-
tained and developed by an industry-wide association of members and designed for se-
ries products, the DLM is developed by Volkswagen Group for internal use and provides
features that are not (yet) standardized in NDS. It is meant as a format for research with
the flexibility to add or change elements as needed. The DLM is based on and extends
the NDS maps. If certain developments of the DLM are found to be useful as possi-
ble future NDS elements, they are brought into the standardization groups for further
discussion.

1http://www.nds-association.org/

http://www.nds-association.org/
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Figure 3.3.: Section of a DLM that has three roads with two lanes each. Each road
has a different road boundary (black lines). Additionally, each lane has a
different center line (blue dashed). The lane boundary between adjacent
lanes is depicted with white dashed lines.

Within the context of this thesis, DLM maps are the only maps that are of interest to
us. We are particularly interested in the lane geometry information. Figure 3.3 shows
three roads with their respective road boundaries and center lines. They describe the
precise geometry with georeferenced line strings. A line string is a piecewise linear
curve that is also sometimes called a polyline. It is simply a connected series of line
segments where the line segments are defined by start and end points.

The concept of lane groups in NDS maps is represented by DLM segments. Fig-
ure 3.4 shows how a section of a DLM is partitioned into multiple segments. Adjacent
lanes with the same direction of travel are grouped to segments such that attributes of a
segment apply to all of its elements. Figure 3.5 shows a section of a real DLM.

In this thesis, maps are of interest in two places. First, we make use of the lane geom-
etry information in Section 6.2. Secondly, we occasionally use visualizations overlaid
on a DLM to give a better understanding of the underlying road structure.

3.4. Nonlinear least squares on manifolds

In this thesis we adopt an optimization-based view on the problem of pose fusion. To
this end, we provide in this chapter a brief self-contained overview of the NLLSQ
method that is the foundation of our pose fusion.

We begin in Section 3.4.1 with a brief statement of the problem that NLLSQ methods



3.4. Nonlinear least squares on manifolds 39

Figure 3.4.: DLM segments, differentiated by color. A new segment starts whenever the
topology of the road changes.

Figure 3.5.: Section of a real DLM around Wolfsburg. The blue lines represent the cen-
ter lines while the yellow lines visualize the lane boundaries. The segment
boundaries are shown in red.
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seek to solve. With this formal problem definition at hand, we present two optimization
methods in Section 3.4.2 to approximately solve it, namely the Gauss-Newton and the
Levenberg-Marquardt algorithms. In Section 3.4.4 we extend the optimization approach
from Euclidean vector spaces to manifolds. Section 3.4.5 discusses the probabilistic
interpretation of this optimization approach. In Section 3.4.6 we detail a graph-based
representation of the optimization problem, which we use frequently throughout this
thesis. As the wording and notation between the geodetic and the robotics community
are sometimes different we bridge this gap by explicitly detailing the relation of the
notations and wordings in Section 3.4.7.

3.4.1. Problem statement

Least squares methods are a family of approaches designed to approximately solve
overdetermined equation systems. They all aim to minimize the sum of squared errors
of the computed solution. Many estimation and data fitting problems can be formulated
as linear or nonlinear least squares problems. NLLSQ methods are used to approximate
solutions in case that the residuals are not linear in all unknowns.

Let x =
[
x>1 , . . . ,x

>
m

]>
be the state vector, zi be a measurement of the i-th state

variable xi, and hi be a (nonlinear) function that maps x to a predicted measurement
hi(x). Given a set of n noisy measurements z = {zi}ni=1, the problem consists in
estimating the state x∗ which best explains the measurements z.

This explanation is defined to be the state vector x∗ that yields the smallest global
error. The global error function is the sum of the squared individual error terms. The
individual error terms ei(x, zi) are defined as the difference between the actual and the
predicted measurements with

ei(x, zi) = hi(x)− zi. (3.1)

The individual squared error terms (also often called residuals) are the scalars

ei(x, zi) = ei(x, zi)
>ei(x, zi). (3.2)

If additional information about the reliability of the observations is available, it can be
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incorporated by weighting the error terms accordingly such that

ei(x, zi) = ei(x, zi)
>Λiei(x, zi), (3.3)

whereΛi is typically chosen as the inverse of the measurement’s covariance matrix (see
Section 3.4.5). Depending on the context, Λi is commonly called information matrix,
precision matrix, or weighting matrix.

The global error function F (x) is defined as

F (x) =
n∑

i=1

ei(x, zi). (3.4)

The goal of the NLLSQ approach is then formalized as finding the state x∗ which min-
imizes the global error function such that

x∗ = arg min
x

F (x). (3.5)

3.4.2. Optimization of nonlinear least squares problems

An analytical solution for the optimization problem in (3.5) can be found by deriv-
ing the global error function and finding its roots. This is in general complex—if not
impossible—as there is often no simple closed-form solution. We therefore resort to
numerical approaches.

Gauss-Newton algorithm

The Gauss-Newton algorithm is a numerical approach and approximates the solution
of (3.5). It consists of choosing an initial state x̆, linearizing the individual error terms
around x̆, and solving a system of linear equations. These steps are iterated until con-
vergence.

The individual error terms are linearized by approximation to a first-order Taylor
series expansion about x̆. Therefore, we analyze the value of the global error function
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at the initial state x̆ plus an update vector ∆x:

F (x̆+∆x) =
n∑

i=1

ei(x̆+∆x, zi) (3.6)

=
n∑

i=1

ei(x̆+∆x, zi)
>Λiei(x̆+∆x, zi). (3.7)

It is useful to compute the linearization of ei(x̆+∆x, zi) as

ei(x̆+∆x, zi) ≈ ei(x̆, zi) + J̆i∆x, (3.8)

J̆i =
∂ei(x, zi)

∂x

∣∣∣∣
x=x̆

, (3.9)

where we neglect the higher order terms in (3.8) by assuming that the increment ∆x is
sufficiently small.

Plugging (3.8) into (3.7) and writing ĕi = ei(x̆), we obtain the linearized global error
function

Flin(∆x) =
n∑

i=1

(ĕi + J̆i∆x)>Λi(ĕi + J̆i∆x) (3.10)

=
n∑

i=1

ĕ>i Λiĕi︸ ︷︷ ︸
ci

+2 ĕ>i ΛiJ̆i︸ ︷︷ ︸
b>i

∆x+∆x> J̆>i ΛiJ̆i︸ ︷︷ ︸
Hi

∆x (3.11)

=
n∑

i=1

ci + 2b>i ∆x+∆x>Hi∆x (3.12)

=
n∑

i=1

ci

︸ ︷︷ ︸
c

+2
n∑

i=1

(b>i )

︸ ︷︷ ︸
b>

∆x+∆x>
n∑

i=1

(Hi)

︸ ︷︷ ︸
H

∆x (3.13)

= c+ 2b>∆x+∆x>H∆x. (3.14)

All in all, the global error function is approximated via a quadratic form in the variable
∆x to

F (x̆+∆x) ≈ Flin(∆x) = c+ 2b>∆x+∆x>H∆x (3.15)
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with

c =
n∑

i=1

ĕ>i Λiĕi (3.16)

b> =
n∑

i=1

ĕ>i ΛiJ̆i (3.17)

H =
n∑

i=1

J̆>i ΛiJ̆i. (3.18)

With this linearized global error function our goal is to find the optimal update vector

∆x∗ = arg min
∆x

Flin(∆x). (3.19)

As Flin(∆x) is of quadratic form it is straightforward to find its minimum value by
deriving it with respect to ∆x, setting the first derivative to zero, and inspecting the
second derivative. The first derivative is

∂Flin(∆x)

∂∆x
= 2b+ (H +H>)∆x (3.20)

= 2b+ 2H∆x. (3.21)

The minimum value of Flin(∆x) is obtained by setting this derivative to zero, which
leads to

0 = 2b+ 2H∆x∗ (3.22)

⇔H∆x∗ = −b. (3.23)

Inspecting the second derivative shows that it does not depend on ∆x as

∂2Flin(∆x)

∂(∆x)2
= 2H . (3.24)

AsH is symmetric and positive semi-definite we see that∆x∗ is a minimum ofFlin(∆x).

The optimal update vector is therefore computed by solving the system of linear equa-
tions given in (3.23). In theory, the solution is readily obtained by left multiplying with
H−1. In practice, this computationally expensive operation (matrix inversion) can be
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averted by solving (3.23) with Cholesky decomposition (as H is a symmetric positive
semi-definitive matrix), QR factorization, or using an iterative method such as conjugate
gradient (in case thatH is sparse).

Solving (3.19) allows us to compute (3.5) by adding the optimal update vector to the
initial guess:

x∗ = x̆+∆x∗. (3.25)

This solution is optimal given the linearization point x̆. Due to the linearization, how-
ever, we need to iterate this procedure until some convergence criterion is met. This is
because we introduced approximation errors by neglecting the higher order terms of the
first-order Taylor series expansion of hi(x) in (3.8). In each iteration we first update the
linearization point x̆ to the solution x∗ of the last iteration as given in (3.25), recompute
the linearization as given in (3.15), and then solve for ∆x∗ as given in (3.23).

This iterative procedure assumes that the error functions behave smoothly in the
neighborhood of the minimum. It is however not guaranteed that the minimum is a
global minimum. Different techniques exist to deal with local minima, for example
choosing multiple different initial values such that the global minimum is among the set
of computed minima.

Levenberg-Marquardt algorithm

In its direct implementation the Gauss-Newton algorithm will not always yield a de-
crease in every iteration for F (x). This occurs when the update vector ∆x∗ overshoots
the optimal estimate. One strategy to handle this kind of divergence is to add only a
fraction α of the update vector to the linearization point so that (3.25) changes to

x∗ = x̆+ α∆x∗ (3.26)

with 0 < α < 1.
A more sophisticated approach of treating this kind of divergence is the Levenberg-

Marquardt algorithm. It consists in replacing (3.23) with

(H + λI)∆x∗ = −b. (3.27)

This introduces the damping parameter λ, which is typically adapted throughout the
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optimization iterations. Its purpose is to robustify the Gauss-Newton algorithm by being
less susceptible to bad initial guesses at the expense of a slightly slower convergence
rate.

3.4.3. Robustified least squares

The presented NLLSQ methodology can be applied to many estimation problems. In
this basic formulation, however, it is known to be sensitive to outliers. Therefore, in
many real-world applications it is necessary to robustify the estimation scheme against
the influence of outliers. A common approach for this are so-called robust cost func-

tions (Förstner and Wrobel, 2016).

The main influence of outliers comes from the quadratic characteristics of the cost
function. An outlier causes a large error value that the optimization seeks to minimize
at the cost of falsely accepting increased residuals for the non-outlier measurements.
Therefore, the general idea of robust cost functions is to adapt this function such that
large error values are weighted less than quadratically. Specifically, instead of seeking
the minimum of the global error function (see (3.4)), we instead seek the minimum of
the robustified global error function

Frob(x) =
n∑

i=1

ρi(ei(x, zi)), (3.28)

where ρi(e) is a robust cost function. While different choices for this function are possi-
ble a common choice is the Pseudo-Huber cost function (Hartley and Zisserman, 2004).
It is defined by

ρH(e) = 2δ2

(√
e

δ2
+ 1− 1

)
, (3.29)

where δ is a free parameter. The intuition behind this function is to scale error terms
quadratically in the local vicinity of e = 0 and linearly for large values. Note that we
can apply a different cost function for each constraint. For a derivation of how the robust
cost function changes the corresponding matrixH and the vector b, we refer the reader
to the work of Triggs et al. (2000). We review additional techniques for robustified least
squares in Section 2.4.
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3.4.4. Optimization on smooth manifolds

The Gauss-Newton algorithm as presented in its standard form in Section 3.4.2 is de-
signed for Euclidean vector spaces. In case that estimation problems occur outside such
spaces it is often possible to generalize the solution on smooth manifolds. An example
are estimations in the special orthogonal group SO(2) which arise when estimating an
orientation in the plane. The orientation is described by a single angle α ∈ [−π, π).
Small, local perturbations around α can be treated with the canonical tool set of the +

and − operators in the Euclidean plane. However, angular differences greater than π
pose a problem. While the difference between α0 = −π and α1 = π − ε is ε, naively
computing the difference yields α0 − α1 = −2π + ε, which is clearly wrong.

This example illustrates an issue that is more severe for rotations in three-dimensional
space. The estimation can neither be carried out on parameters of a minimal represen-
tations (e.g., Euler angles) as they suffer from singularities nor of overparametrizations
(e.g., rotation matrices or quaternions) as the additional degrees of freedom are not mod-
eled (Hertzberg, 2008).

Embedding the error function on a manifold

The error minimization is applied on a manifold instead of an Euclidean space. A
manifold is a topological space that considers the local neighborhood of each point as a
Euclidean space, while the space on a global scale is not necessarily Euclidean (Blanco,
2010). An intuitive example is given by a unit sphere (a manifold of dimension two)
which looks flat in a sufficiently small surface area while globally being curved. It
does therefore not come as a surprise that this parametrization was first developed for
geodesic applications (Gabay, 1982).

The key idea is to use an overparametrization for the state variable x and to use a
minimal parametrization for a local increment ∆x. Considering the underlying space
as a manifold we define two nonlinear operators � and � that map a local variation
in the Euclidean space to an increment on the manifold (Hertzberg, 2008; Frese and
Schröder, 2007; Grisetti et al., 2010b). Figure 3.6 illustrates the effect of the �-operator.
Kümmerle (2013) gives possible definitions for the implementation of these operators
for 2D and 3D pose graphs. We encapsulate the operations on the manifold by changing
the state variable only via these two operators (Hertzberg et al., 2013). Therefore, we
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�

Figure 3.6.: Example of the application of the �-operator between a Euclidean space
and a manifold. The �-operator maps the blue vector from the rectilinear
grid to the sphere.

have to redefine some of the terms in the NLLSQ estimation. We rewrite the error
function (cf. (3.1)) as

ei(x̆) = hi(x̆) � zi (3.30)

and its Taylor expansion as

ei(x̆�∆x) ≈ ei(x̆) + J̆i∆x, (3.31)

J̆i =
∂ei(x̆�∆x)

∂∆x

∣∣∣∣
∆x=0

. (3.32)

Note that the initial guess x̆ spans over the overparametrized space but that the in-
crements ∆x (and accordingly, ∆x∗) are expressed in a minimal representation and
computed in the local Euclidean neighborhood of x̆. Therefore, we remap them into the
original space via

x∗ = x̆�∆x∗. (3.33)

In total, we observe that performing the optimization on a manifold consists in defin-
ing two operators �,�, and the Jacobian J̆ and plugging them into the equations for the
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Euclidean space. Specifically, we highlight that the structure ofH stays identical as the
structure of J̆ is untouched. In this thesis we deal with problems in SO(2) where the en-
capsulation effectively results in appropriately normalizing the rotations. The operator
� is simply defined as

x̆�∆x∗ = normalize[−π,π)(x̆+∆x∗), (3.34)

where the function normalize[−π,π)(x) normalizes the rotational component of x to
[−π, π). We do not explicitly perform our derivations on manifolds in the following
to leave the notation uncluttered. However, our approach is easily generalized to other
manifolds such as SO(3) by replacing the Euclidean operators +,− with �,� where
appropriate.

3.4.5. Probabilistic interpretation

In this section we show that the NLLSQ estimator is a ML estimator and that the system
matrix is the information matrix of the state given all measurements. Both statements
require certain assumptions. To show the first statement, we assume the measurement
errors distributed according to the AWGN assumption, i.e.,

zi = hi(x) + εi, (3.35)

where εi ∼ N (0,Σi). With these assumptions the probability of a single measurement
given x is

p(zi|x) = ηi exp

(
−1

2
(zi − hi(x))>Σ−1

i (zi − hi(x))

)
. (3.36)

If we additionally assume the measurement errors to be uncorrelated, we obtain the
probability for all measurements given x as

p(z|x) =
n∏

i=1

p(zi|x). (3.37)
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We seek the state x∗ that maximizes p(z|x). This is equivalent to seeking the state x∗

that minimizes the negative log likelihood, i.e.,

x∗ = arg max
x

p(z|x) = arg min
x

(− log p(z|x)) . (3.38)

Let us denote the inverse of the measurement covariance matrix as Σ−1
i = Λi. We see

that solving (3.38) is the same as minimizing the global error function as defined in the
nonlinear least squares problem in (3.5) because

− log p(z|x) = − log
n∏

i=1

p(zi|x) (3.39)

= − log
n∏

i=1

ηi exp

(
−1

2
(zi − hi(x))>Λi(zi − hi(x))

)
(3.40)

= −
n∑

i=1

log

[
ηi exp

(
−1

2
(zi − hi(x))>Λi(zi − hi(x))

)]
(3.41)

= η′ +
n∑

i=1

1

2
(zi − hi(x))>Λi(zi − hi(x)). (3.42)

Therefore, we maximize the likelihood of the data when minimizing the global error
function, i.e.,

arg max
x

p(z|x) = arg min
x

F (x). (3.43)

In other words the NLLSQ optimization maximizes the joint likelihood of the measure-
ments given certain error assumptions.

Furthermore, Kümmerle (2013) shows that under certain assumptions the conditional
distribution p(x|z) corresponds to the Gaussian distribution N (x∗,H−1). In formal
notation, p(x|z) ∼ N (x∗,H−1). This means that the system matrix H is the infor-
mation matrix for the state given all measurements. This useful property allows us
to compute the covariance of each state variable by computing the respective block in
H−1. To this end, we give in Section 5.6 an algorithm that exploits the sparse Cholesky
decomposition ofH .
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3.4.6. Graph-based representations

Throughout this thesis we make extensive use of pose graphs. Therefore, we explain
in this section the main concepts behind them and the relation to some other graphical
models.

Probabilistic graphical models

Probabilistic graphical models are probabilistic models that can be represented by graphs.
In these graphs, the conditional dependencies between random variables are modeled
with nodes and edges. Therefore, the graph structure represents a factorization of the
joint probability distribution over all random variables. A common task within these
graphs is inference, i.e., fitting the observed data to find the most likely values for its
underlying quantities of interest. DBNs, factor graphs, and MRFs are particular types of
probabilistic graphical models. Figure 3.7 shows a graphical model in its DBN, factor
graph, and MRF representation. We refer the reader for more information on this topic
to Koller and Friedman (2009).

DBNs (Dean and Kanazawa, 1988) are directed acyclic graphs where nodes repre-
sent time-dependent random variables and edges represent conditional dependencies
between them. In a DBN one distinguishes between observable and unobservable (also
called hidden or latent) variables. Observed nodes in Figure 3.7a are displayed as gray
nodes while unobservable nodes are shown as white nodes.

Factor graphs are bipartite undirected graphs and have been proposed by Kschischang
et al. (2001). They serve as a general tool to break down functions with many variables
into smaller subsets of variables. Take the product

f(x0, x1, x2, l0, l1) = f0(x0, l0)f1(x0, x1)f2(x1, l1)f3(x1, x2)f4(x2, l1), (3.44)

for example, which is represented by Figure 3.7b. This is called factorization and is
especially useful for probabilistic problems. In these problems a factor graph decom-
poses a joint probability distribution into factors that depend only on a subset of the
random variables. These factors represent functions over the connected variables. They
are usually represented as undirected graphs with circular nodes for the variables and
square nodes for the factors. The factors are connected with edges to each variable that
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x0 x1 x2

l0 l1

z0 z1 z2

u0 u1

(a) DBN.

x0 x1 x2

l0 l1

f1 f3

f0 f2 f4

(b) Factor graph.

x0 x1 x2

l0 l1

(c) MRF.

Figure 3.7.: Equivalent representations of a DBN, a factor graph, and a MRF. The toy
example depicts a SLAM problem in which a robot estimates its own tra-
jectory (nodes x0, x1, and x2) and the position of two landmarks (nodes l0
and l1).
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their underlying function relies on. Note that so-called prior factors only influence a
single variable and appear therefore as open-ended factors. Overall, edges make the
conditional dependencies between random variables apparent.

A MRF is described by an undirected graph. It models a set of random variables that
have the Markov property; that is, a node is conditionally independent of all other nodes
given its direct neighbors. The graphical structure of a MRF is typically similar to that
of the corresponding factor graph except that the factors are omitted. This means that
edges always connect variable nodes directly. As a consequence, prior factors cannot
be modeled. Conditional random fields are a particular kind of MRFs in which each
random variable may be additionally conditioned upon a set of global observations.

Pose graphs are a particular kind of factor graph in which nodes represent poses and
edges represent spatial constraints between them. They have initially been proposed in
the context of SLAM problems. In their seminal work Lu and Milios (1997) define an
offline optimization method where they model poses and the constraints between them
as a network of pose relations. Later works built upon this intuition and paved the way to
the current understanding of the graph-based SLAM formulation (Gutmann and Kono-
lige, 2000; Frese and Hirzinger, 2001; Konolige, 2004). Folkesson and Christensen
(2004) first refer to it as Graphical SLAM, and Thrun and Montemerlo (2006) propose
their GraphSLAM algorithm. As landmarks or features are part of many SLAM prob-
lems, these graphs are strictly speaking not pose graphs but rather pose/feature graphs

as Olson (2008) calls them. They can be represented as factor graphs. The term pose

graph (Olson et al., 2006; Eustice et al., 2006b; Folkesson and Christensen, 2007) was
coined to refer to SLAM graphs in which all nodes represent poses.

Nowadays, pose/feature graphs and pose graphs are the prevailing paradigm for SLAM
problems (Stachniss et al., 2016; Grisetti et al., 2010a). When building up the graph,
one can directly obtain a pose graph instead of a pose/feature graph representation by
matching the sensor observations to spatial constraints between nodes. Alternatively,
one can marginalize all features from an existing pose/feature graph to obtain the cor-
responding pose graph. Figure 3.8 shows the pose graph that corresponds to the factor
graph in Figure 3.7 after marginalizing all landmark observations. There exist multiple
software frameworks that can aid the development of graph-based optimization algo-
rithms, including General Graph Optimization (g2o) by Kümmerle et al. (2011), Sparse
Sparse Bundle Adjustment (sSBA) by Konolige (2010), Georgia Tech Smoothing and
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x0 x1 x2

Figure 3.8.: An example pose graph. It represents the same problem as in Figure 3.7 but
the landmark observations have been converted to edges between nodes by
marginalization.

Mapping library (GTSAM) by Dellaert (2012), and Incremental Smoothing and Map-
ping (iSAM) by Kaess et al. (2008, 2012).

In this thesis we base our methods on pose graphs as they are a well-suited tool for
modeling estimation problems that only contain poses and relations between them. We
do not need the expressiveness of factor graphs or the probabilistic descriptiveness of
MRFs. Pose graphs offer insight over the relation of state variables and their constraints,
and are a well-understood representation of state estimation problems.

Pose graphs

Formally, a pose graph is defined as a directed graph
−→G = (X ,−→Z ) where X = {xi}mi=1

is the set of nodes and
−→Z = {zi}ni=1 is the set of directed edges. For the purpose of

this thesis we consider all pose graph edges to be binary2. The node xi represents the
i-th pose. An edge zi represents a spatial constraint between the connected nodes. It
embodies a probability distribution over the relative transformations between the con-
nected nodes. This probability distribution is assumed to be of Gaussian nature. It is
therefore completely defined by the mean estimate and covariance matrix. In graphical
representations we will usually omit the explicit indication of the mean and covariance.

Looking at the term “constraint” from a perspective of the field of constrained opti-
mization, we note that it refers to a soft constraint (Olson, 2008): the objective function
is penalized to the extent that these soft constraints are violated, but the optimization so-
lution is still valid. This is in contrast to hard constraints that are required to be satisfied
for the solution to be valid. The edge zi represents the i-th soft constraint. With a slight
abuse of notation we note both the i-th edge and constraint as zi. The intuition behind
modeling a soft constraint zi as directed edge is that it describes the movement that one

2The sole exception to this is a discussion in Section 6.4.2 about how constraints with autocorrelated
noise can be modeled.
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has to perform to go from xi to xi+1. Therefore, it is a natural representation of spatial
constraints. Other edges, such as loop closure edges, build up on the same concept:
they describe the relative transformation that a starting node would have to undergo to
transform into the target node.3

Typically, these edges arise from measurements. An individual measurement ideally
leads to the creation of a single edge in the graph. We will see in Section 5.2 that this as-
sumption is commonly violated in real systems as measurements generally are not made
at exactly the same time steps. Edges can also arise from other kind of information. A
canonical example are loop closure edges that arise whenever a robot recognizes that
he revisits the same location. The robot has made a virtual measurement to relate the
two locations to each other. Moreover, edges can also represent prior information on
the structure of nodes. A robot could recognize and move alongside walls and add the
constraint that these man-made structures are usually perpendicular to each other, for
example. Therefore, it is important to make the distinction between measurements and
edges/soft constraints.

There are two types of nodes: one represent observed poses at certain timestamps and
the others are state variables whose values we wish to determine. We call the former
observed nodes and denote them with xw

i . In the spirit of DBNs we refer to the latter as
hidden nodes. The state variables xi that correspond to these hidden nodes are the ones
whose value we are interested in. They are displayed as circles with a black border. In
contrast, observed nodes are displayed with a colored border and denoted as xw

i . They
represent the same kind of soft constraint that prior factors represent in factor graphs,
i.e., constraints that act only upon a single hidden node. An alternative but less thorough
way of displaying them would be as open-ended edges (similar to unary factors in factor
graphs). They are fixed in the optimization problem so that their value is not changed
during the optimization, but they still constrain the connected hidden nodes in the global
coordinate frame. We detail this behavior after relating pose graphs to the underlying
optimization problem. Figure 3.9 shows a pose graph with the hidden nodes x0 to x5

and the observed node xw
0 .

Let us examine the relation of pose graphs and NLLSQ problems. Usually, we are
interested in inference over the pose graph to find the values of the state variables that

3The direction of the edge is important as the covariance matrix of the corresponding soft constraint is
accordingly rotated, see the definition of the error functions.
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x0

x1
x2

x3

x4

x5

xw0

z0
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z3 z4

z5

z6

z7

Figure 3.9.: An example pose graph with a single observed node xw
0 . Each edge z0 to z7

represents a soft constraint. We are interested in the poses of x0 to x5.

best fit all constraints, where the constraints arise from a set of measurements. Each
constraint zi imposes a relation between the state of the model (that is, the poses of the
hidden nodes) and some observed quantities:

hi(x) = zi. (3.45)

Here, we pick up the notation from Section 3.4.1. As stated above, in a pose graph we
treat constraints that either relate two hidden nodes or that effect only a single hidden
node. We call the former odometry constraints and the latter global pose constraints.
Accordingly, the function hi depends either on two hidden nodes or on a single hidden
node. For notational simplicity we use the entire state vector x as argument. Deviations
from these constraints result in error terms, see (3.1). The initial configuration of the
nodes corresponds to the initial guess x̆ in the Gauss-Newton optimization. This allows
us to construct the global error function F (x) (cf. (3.4)) for a given pose graph. By
making certain assumptions about the measurements and their errors we have shown
in Section 3.4.5 that the ML estimate is given by solving the corresponding NLLSQ
problem. Therefore, we can infer the most likely configuration of the nodes in a pose
graph by solving the corresponding NLLSQ problem. Phrased differently, if we have a
NLLSQ problem at hand in which the state variables xi represent poses, then we can
represent it as a pose graph. The graph-based representation allows us to visualize and
better understand the dependencies of the state variables.

Constraints between hidden nodes can for instance be constructed from odometry
information. For a constraint zk from hidden node xi to xj , the function hv

k(x) expresses
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the predicted pose. It is defined by

hv
k(xi,xj) =



R>θi

([
xj

yj

]
−
[
xi

yi

])

θj − θi


 (3.46)

whereRφ is the standard two-dimensional rotation matrix

Rφ =

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

]
. (3.47)

The corresponding error function ek(x, zv
k) = ev

k(xi,xj, z
v
k) is the common error func-

tion (Grisetti et al., 2010a; Kümmerle et al., 2011) between two poses with

ev
k(xi,xj, z

v
k) =



R>∆θvk

(
R>θi

([
xj

yj

]
−
[
xi

yi

])
−
[
∆xv

k

∆yv
k

])

θj − θi −∆θv
k


 . (3.48)

This is conform with our definition in (3.1) except that the additional application of
R>∆θvk serves to rotate the error vector into the frame of the predicted pose. This is
necessary because the information matrix Λv

k is given in that frame. Both have to be
expressed in the same frame such that the weighted squared error terms (cf. (3.3)) are
correctly scaled4. For the construction of the NLLSQ problem we also need the corre-
sponding partial derivatives of this error function

∂ev
k(xi,xj, z

v
k)

∂xi
=



−R>∆θvkR

>
θi
R>∆θvk

∂R>
θi

∂θi

([
xj

yj

]
−
[
xi

yi

])

0> −1


 , (3.49)

∂ev
k(xi,xj, z

v
k)

∂xj
=

[
R>∆θvkR

>
θi

0

0> 1

]
, (3.50)

4Alternatively, it is equivalent to define Λv
k in the frame of xi, or to apply the rotations to Λv

k directly,
such that Λ̃v

k = R∆θvk
Λv
kR

>
∆θvk

. Then the relation hi(x) = zi is met more strictly. However, we
prefer to stay consistent with the prevalent notation in graph-based SLAM at the expense of this slight
abuse in the definition of evk(xi,xj , z

v
k).
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where 0> =
[
0, 0
]
.

Constraints from observed to hidden nodes behave differently in that the observed
nodes are not part of the optimization problem. Instead, their pose is known and they
are thus fixed. The function hw

k (xi), that predicts the pose of node xi, is simply equal
to this pose:

hw
k (xi) =



xi

yi

θi


 . (3.51)

Given the global pose estimate zw
k of the constraint zk, the error function for constraints

originating from observed nodes ek(x, zw
k ) = ew

k (xi, z
w
k ) is given by

ew
k (xi, z

w
k ) =

[
R>θwk 0

0> 1

]
(xi − zw

k ). (3.52)

Again, the application of R>θwk serves to rotate the error vector into the same frame as
the corresponding information matrix. In contrast to ev

k(xi,xj, z
v
k), for ew

i (xi, z
w
k ) we

are only interested in its partial derivative with respect to the connected hidden node
because the observed node is not being estimated in the optimization problem. This
derivative is

∂ew
k (xi, z

w
k )

∂xi
=

[
R>θwk 0

0> 1

]
. (3.53)

With these definitions at hand, we are able to construct the NLLSQ problem for a given
pose graph5.

Intuitively, the graph-based representation of the NLLSQ problem can be understood
as a mass-spring model (Golfarelli et al., 1998; Barfoot, 2017), where the nodes rep-
resent masses and the edges represent springs. The optimal posterior solution of the
graph corresponds to the minimum energy state of the system with respect to the en-

5It is equivalent to derive ewk (xi, z
w
k ) as a special case of evk(xk,xi,

[
0, 0, 0

]>
). For this we temporarily

consider both xi and xk as hidden nodes, initialize the pose of xk with zwk , and create an edge zj with
a spatial transformation of

[
0, 0, 0

]>
from xk to xi. Then, we compute H and b, and subsequently

condition them on xk. This conditioning effectively fixes xk and suppresses the k-th block row and
column fromH and b as they are given in information form. While this derivation is less intuitive, it
is useful for the implementation as we can use the same error functions for constraints from observed
nodes and between hidden nodes.
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ergy stored in the springs. The observed nodes “pull” the hidden nodes towards them
because their constraints equal zero if and only if the pose of the hidden nodes are iden-
tical to the pose of the connected observed nodes. Similarly, the edges between hidden
nodes “push” or “pull” the hidden nodes (depending on their current configuration) to
relative poses which are equal to the relative transformation encoded in the edge. The
optimization of the graph therefore seeks its state of maximum relaxation.

The matrix H is a symmetric block matrix. All blocks have the same size, which
is in our case 3 × 3. This is due to parametrizing a single state as (x, y, θ)>. The
block structure of H in NLLSQ optimization is equal to the adjacency matrix of its
corresponding pose graph (Kümmerle, 2013). This is an important property because
it means that we influence the block structure of H by designing the corresponding
graph structure. This is interesting because the block structure of H dominates the
computational complexity of the optimization problem. We will show in Section 5.2
how to exploit this knowledge to construct a structure that is beneficial for our problem.

To understand how an edge leads to an entry in H , let us first consider the general
case of an edge zk that connects xi to xj . In (3.18) we derived that H depends entirely
on the Jacobian and information matrix of the constraints. In turn, the Jacobian of the
constraint contains only nonzero elements in block columns i and j:

J̆v
k =

[ i j

0 · · · 0
∂evk(xi,xj ,z

v
k)

∂xi

∣∣∣
x=x̆

0 · · · 0
∂evk(xi,xj ,z

v
k)

∂xj

∣∣∣
x=x̆

0 · · · 0
]
.

(3.54)
Thus, the edge between xi and xj leads to additional block entries inHii,Hij,Hji, and
Hjj . With a similar argument, we see that it leads to entries in the i-th and j-th block
row of b. LetHk = (J̆v

k )>Λv
kJ̆

v
k and bk = (J̆v

k )>Λv
kĕ

v
k. They are given by

Hk =




. . .

Hii · · · Hij

... . . . ...
Hji · · · Hjj

. . .



, (3.55)
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with the matrix entries

Hii =

(
∂ev

k(xi,xj, z
v
k)

∂xi

∣∣∣∣
x=x̆

)>
Λv
k

∂ev
k(xi,xj, z

v
k)

∂xi

∣∣∣∣
x=x̆

, (3.56)

Hij =

(
∂ev

k(xi,xj, z
v
k)

∂xi

∣∣∣∣
x=x̆

)>
Λv
k

∂ev
k(xi,xj, z

v
k)

∂xj

∣∣∣∣
x=x̆

, (3.57)

Hji =

(
∂ev

k(xi,xj, z
v
k)

∂xj

∣∣∣∣
x=x̆

)>
Λv
k

∂ev
k(xi,xj, z

v
k)

∂xi

∣∣∣∣
x=x̆

, (3.58)

Hjj =

(
∂ev

k(xi,xj, z
v
k)

∂xj

∣∣∣∣
x=x̆

)>
Λv
k

∂ev
k(xi,xj, z

v
k)

∂xj

∣∣∣∣
x=x̆

. (3.59)

The right-hand side vector is defined by

bk =




...(
∂evk(xi,xj ,z

v
k)

∂xi

∣∣∣
x=x̆

)>
Λv
kĕ

v
k

...(
∂evk(xi,xj ,z

v
k)

∂xj

∣∣∣
x=x̆

)>
Λv
kĕ

v
k

...




. (3.60)

For constraints between successive nodes (that is, j = i + 1) this results in 2× 2 block
entries in H . In contrast, for a constraint zk from the observed node xw

k to the hidden
node xi the Jacobian contains only a single partial derivative as xw

k is not part of the state
vector x:

J̆w
k =

[ i

0 · · · 0
∂ewk (xi,z

w
k )

∂xi

∣∣∣
x=x̆

0 · · · 0
]
. (3.61)

As a result, this only leads to block entries in Hii and bi. Figure 3.10 illustrates the
construction of a pose graph and the resulting structure ofH .

We now know how nodes and edges lead to entries inH and b. Looking at this from
a different perspective we can now infer how certain operations on H and b can be
represented by nodes and edges. For this we analyze the structure and the content ofH
and b after applying these operations and relate the changes to those caused by nodes
and edges. That is, we will see in Section 5.3 how marginalization can be understood as
adding and removing certain nodes and edges. Moreover, we will derive in Section 6.4



60 3. Fundamentals

x0xw0

(a) We are interested in the pose x0 that corresponds to
the hidden node x0. Optimizing the graph leads to x0
being identical to the pose of xw0 , as there are no other
constraints.







(b) Sparsity pattern of the system matrix
H for the graph in (a). The observed
node xw0 influences the upper left block
matrix of H that solely conveys infor-
mation about x0.

x0xw0 xw1

(c) Adding the observed node xw1 results in conflicting
information for x0.







(d) The value of the upper left block ma-
trixH changes, but the structure ofH
rests unaffected.

x0

x1

xw0 xw1

(e) We add the information that x1 is a certain distance
away from x0.







(f) The new constraint leads to diagonal
and off-diagonal block entries inH .

x0

x1

xw0 xw1

xw2

(g) The additional observed node xw2 constraints x1 glob-
ally. By that, it influences the pose of x0 after the
optimization, too.







(h) Adding xw2 changes a block entry in
H .

x0

x1

x2

x3

x4

xw0 xw1

xw2

xw3

(i) Finally, additional hidden and observed nodes were
added and the graph is completely constructed.







(j) Sparsity pattern of the system matrixH
for the graph in (i).

Figure 3.10.: Illustration of a pose graph construction for a single time step and the
influence on the system matrixH .
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how autocorrelated errors can be modeled with graph elements. This makes it necessary
to treat the pose graph as a hypergraph, in which an (hyper)edge can join any number of
nodes. However, for the overwhelming majority of this thesis, we refer to pose graphs
with directed binary edges.

3.4.7. Relation to geodetic mapping

Historically, least squares estimation was developed for geodetic and astronomic pur-
poses by Legendre and Gauss between 1795 and 1823 (Legendre, 1805; Gauss, 1823).
Gauss applied it successfully to both fieldsAgarwal et al. (2014b) by predicting the lo-
cation of the asteroid Ceres from observations and estimating the geometric relations
in triangulation networks during the famous triangulation of the Kingdom of Hanover
between 1821 and 1825 (Hald, 2008; Stigler, 2007). In the middle of the 20th century
the photogrammetry community adopted essentially the same estimation methodology
in the form of bundle adjustment (Triggs et al., 2000).

Despite tackling similar problems it seems that the mobile robotics community devel-
oped early solutions to the SLAM problem largely independently of classical adjustment
theory, starting from a probabilistic view (Thrun et al., 2005). With the advent of graph-
based approaches optimization-based methods are currently established as the de facto
standard for SLAM problems. They show close resemblance to adjustment models in
their mathematical formulations. Indeed, Förstner (2013) shows that graphical models
(i.e., Bayes nets, MRFs, and factor graphs) are a generalization of geodetic networks
and bundle adjustments. The solution of adjustment models can be interpreted as infer-
ence over the corresponding probabilistic models. This leads to the classical (nonlinear)
least squares problem of adjustment theory. The same holds true for the solution of
pose graphs, where the NLLSQ problem arises as solution to the inference problem
over factor graphs. Therefore, we deem it important to highlight the relation between
the mathematical formulations of the two NLLSQ problems.

The most obvious barrier of translating between graph-based optimization and ad-
justment theory is presumably the different point of view and the resulting different no-
tation. Thus, we briefly present the equivalent description and notation of the NLLSQ
estimation from the point of view of geodetic mapping.

The graph-based representation in Section 3.4.6 can be linked to the well-known



62 3. Fundamentals

normal equation matrices of adjustment models (Niemeier, 2008; Förstner and Wrobel,
2016). Here,X is the parameter vector, and X̂ represents the adjusted parameter vector
that we want to infer from the vector of observations L. It has the associated covariance
matrix Σll which constitutes the stochastic model together with the cofactor σ2

0 and the
cofactor matrixQll, such that

Σll = σ2
0Qll. (3.62)

The inverse of the cofactor matrix is the information matrix

Q−1
ll = Λ. (3.63)

In adjustment models this matrix is typically called weighting matrix P . The shortened
measurement vector

l = L−L0 (3.64)

is the difference between the observations L and the approximated observation vector
L0. The adjusted observation vector L̂ is equal to the sum of the vector of observations
and the vector of improvements v, i.e.,

L̂ = L+ v. (3.65)

The functional model relates the parameters to the observations:

L+ v = f(X̂). (3.66)

Linearizing f(X̂) by a first-order Taylor approximation aroundX0 leads to

f(X0 + x) ≈ f(X0) +
∂f

∂X

∣∣∣∣
X=X0

x. (3.67)

The partial derivatives ∂f
∂X

∣∣
X=X0

are equivalent to the Jacobians J̆i (see (3.9)), and we
stacked them into the design matrix A. Plugging (3.67) into (3.66) leads to the matrix
representation of the linearized form of the functional model:

l + v = Ax̂. (3.68)
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The least squares adjustment requires iteratively choosing an initial parameter vector
X0, linearizing the functional model, and estimating the parameter corrections x̂ by
solving

A>PAx̂ = A>Pl. (3.69)

Note that we can identifyH withA>PA and bwith−A>Pl by comparing (3.23) with
(3.69). Indeed, both approaches solve the same problem, but notation, wording, and
formulations are different. For further information on the relationship of graph-based
optimization in the robotics community to geodetic mapping approaches, we refer the
reader to Agarwal et al. (2014a,b). In the remainder of this thesis, we stick with the
graph-based notion on the NLLSQ method as it provides a way of visually reasoning
about the relations of observations to parameters.

3.5. Covariance Intersection

CI is an algorithm to fuse two state estimates with cross-correlated but unknown noise.
This is helpful for generic pose fusion where the cross-correlation is typically unknown.
In the following we present in Section 3.5.1 the optimal and naive fusion, followed
in Section 3.5.2 by the description of the general CI approach. In Section 3.5.3 and
Section 3.5.4 we detail how to derive the closed-form solutions for it. This derivation is
extended in Section 6.3 where we use CI to deal with cross-correlated errors.

3.5.1. Optimal and naive fusion of states with
cross-correlated noise

In state estimation and fusion problems it is a common task to fuse two state estimates
into a single state. This is conventionally achieved by a linear combination of the two
input state estimates. If the correlation between the two input state estimates is known,
we can derive the optimal fusion result. For this we follow the derivation of Li et al.
(2015); Chen et al. (2002).

Two normally distributed states x1 and x2 with covariance matrices Σ1 and Σ2 can
generally be combined by

x = A1x1 +A2x2 (3.70)
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where A1 and A2 denote quadratic matrices. To ensure that the mean error is equal to
zero, A1 + A2 = I must hold. The variance law of error propagation implies for the
resulting covariance matrix

Σ =
[
A1 A2

] [Σ1 Σ12

Σ>12 Σ2

][
A>1

A>2

]
(3.71)

= A1Σ1A
>
1 +A1Σ12A

>
2 +A2Σ

>
12A

>
1 +A2Σ2A

>
2 . (3.72)

To obtain a fusion with a small covariance matrix, A1 and A2 are set such that Σ is
optimal in some sense, e.g., that Σ has a minimal trace or determinant. The optimal
solution with respect to trace minimization yields

Σ =



[
I I

] [Σ1 Σ12

Σ>12 Σ2

]−1 [
I

I

]

−1

. (3.73)

This is the covariance of the optimal fusion. However, it requires knowledge about
the cross-correlation matrix Σ12. If it is unknown, the naive approach is to assume
Σ12 = 0. In that case (3.73) can be simplified to

Σ =
(
Σ−1

1 +Σ−1
2 ,
)−1 (3.74)

which corresponds to the Kalman Gain as defined in a classical Kalman filter. This,
however, leads to overconfident estimates ifΣ12 is positive definite. We use this knowl-
edge about the optimal and naive fusion to evaluate our CI framework.

The error of the naive fusion can be estimated from (3.72) with
∥∥A1Σ12A

>
2 +A2Σ

>
12A

>
1

∥∥.
If the noise of the estimates correlate with a correlation coefficient ρ, i.e.,Σ12 = ρI , the
error is linear in ρ. If we can find an upper bound for the cross-correlation, we can de-
cide whether the error is small and tolerable or if we need to take the cross-correlation
into account. In general, however, we need a method to produce conservative uncer-
tainty estimates without knowledge of their cross-correlation. For this we detail the CI
framework in Section 3.5.2.
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3.5.2. Fusion with unknown cross-correlation

CI is the statistically optimal algorithm to fuse two estimates x1,x2 with associated
covariance matrices Σ1,Σ2 if the cross-correlations Σ12 between their errors are un-
known (Uhlmann, 1995). The resulting covariance matrix Σω and the fused state xω

are computed according to

Σω =
(
ωΣ−1

1 + (1− ω)Σ−1
2

)−1
, (3.75)

xω = Σω
(
ωΣ−1

1 x1 + (1− ω)Σ−1
2 x2

)
(3.76)

with ω ∈ [0, 1]. The parameter ω is chosen in such a way that the covariance matrixΣω

is minimized regarding a given objective function J such that

ω∗ = arg min
ω∈[0,1]

J(Σω) (3.77)

in order to minimize the upper bound of the corresponding mean square error matrix.
Common choices for J are the trace and determinant of Σω. We evaluate these two
choices on simulated data in Section 7.4.3 and show that both choices for J are suitable
for the problem of pose fusion. For low-dimensional fusion problems, Reinhardt et al.
(2012) have derived closed-form solutions for both choices of J . We briefly highlight
the joint diagonalization approach in Section 3.5.3 and the derivation of the closed-form
solutions in Section 3.5.4.

3.5.3. Joint diagonalization

Joint diagonalization for matrices is a useful tool to derive closed-form solutions for the
CI optimization. The covariance matrices are transformed in such a way that one of
them becomes the identity while the other one becomes a diagonal matrix.

Let E1,E2 be the diagonal matrix containing the eigenvalues of Σ1,Σ2. The corre-
sponding eigenvector matrices are V1,V2. Therefore, for i = 1, 2 we have

Σi = ViEiV
>
i = Vi

√
Ei

√
EiV

>
i . (3.78)
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ThenΣ1 can be transformed to the identity matrix I using T1 = (V1

√
E1)−1:

Σ′1 = T1Σ1T
>
1 = I, Σ′2 = T1Σ2T

>
1 . (3.79)

The eigenvalue decomposition Σ′2 = V ′2E
′
2(V ′2 )> can now be used to diagonalize the

second covariance matrix. With T = (V ′2 )>T1 we obtain

Σ′′1 = TΣ1T
> = (V ′2 )>Σ′1V

′
2 = (V ′2 )>V ′2 = I (3.80)

Σ′′2 = TΣ2T
> = (V ′2 )>T1Σ2(T1)>V ′2 = (V ′2 )>Σ′2V

′
2 = E′2. (3.81)

We will use this result in Section 3.5.4 to derive the closed-form solutions for low-
dimensional CI problems.

3.5.4. Closed-form solutions

We follow the work of Reinhardt et al. (2012) to derive the closed-form solutions. Ap-
plying the joint diagonalization onΣω yields

TΣωT> = (ωI + (1− ω)(E′2)−1)−1. (3.82)

For J(·) = det(·) the minimization problem (3.77) is equivalent to

ω∗ = arg min
ω∈[0,1]

det(TΣωT>), (3.83)

which follows directly from the determinant rules and that T is regular and does not
depend on ω.

Let di be the diagonal elements of E′2, i.e., the eigenvalues of Σ′2 and d̄i = 1
di

. Then
the minimization problem (3.83) can be expressed as

ω∗ = arg max
ω∈[0,1]

∏

i∈I

(ω + (1− ω)d̄i) (3.84)

where I = {1, ..., n}. Using d̃i = d̄i
1−d̄i

the explicit solution for n = 2 is given as

ω = −1

2
(d̃1 + d̃2). (3.85)
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The two candidates for n = 3 are

ω1/2 = −1

3
(d̃1 + d̃2 + d̃3)±

√
d̃2

1 + d̃2
2 + d̃2

3 − d̃1d̃2 − d̃1d̃3 − d̃2d̃3. (3.86)

Note that the minimization problem (3.77) is convex on the interval [0, 1] and therefore
there will only be one valid solution in this interval.

Respectively, we get

ω∗ = arg min
ω

∑

i∈I

ai
ω + (1− ω)d̄i

(3.87)

in case of trace minimization where ai > 0 denotes the i-th diagonal element of (T>)−1T−1.
The roots of the derivative of the polynomial are given as

ω1 = −p+
√
p2 − q, and ω2 = −p−

√
p2 − q (3.88)

with

p =
a1d̃2(1 + d̃1) + a2d̃1(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
, (3.89)

q =
a1(d̃2)2(1 + d̃1) + a2(d̃1)2(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
. (3.90)

With these two derivations we are capable of fusing two state estimates with closed-
form solutions of two variants of CI.

3.5.5. Weighted Geometric Mean

So far we have considered the application of CI to two measurements. Most of the time
this is sufficient for our use case. However, in Section 3.7.2 we will need to apply this
concept to multiple measurements. To this end, we present a generalization of CI to
multiple non-Gaussian probability density functions (PDFs) that is called WGM6. From
this generalization we will recover the CI fusion rule for multiple Gaussian measure-

6Sometimes, it is also referred to as Normalized Weighted Geometric Mean (Bailey et al., 2012),
Weighted Geometric Density (Julier, 2012), or Generalized Uhlmann-Julier-Covariance Intersec-
tion (Mahler, 2000).
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ments as a special case.

The WGM fusion rule for N PDFs pi(X) is

p(X) =
1

η

N∏

i=1

pi(X)ωi (3.91)

with η begin a normalization constant, ωi ≥ 0, and
∑

i ωi = 1. Note that we did not
need to specify a type of distribution. For the particular case of Gaussian distributions
the effect of raising the PDF to a power and normalizing it is the same as multiplying
its covariance matrix with the inverse power. To see this, suppose thatXi ∼ N (µi,Σi)

with PDF pi(X). Then, 1
ηi
pi(X)ωi is equivalent to Xi ∼ N (µi,

Σi
ωi

). We use this result
in combination with (3.91) to recover the CI fusion rule for N Gaussian measurements:

Σω =

(
N∑

i=1

ωΣ−1
i

)−1

, (3.92)

xω = Σω

(
N∑

i=1

ωΣ−1
i xi

)−1

. (3.93)

Again, ωi ≥ 0 and
∑

i ωi = 1. Therefore, the detour of generalizing CI to WGM allows
us to derive the CI fusion rule for multiple measurements.

3.6. Autoregressive models

Certain time-varying stochastic processes can be modeled as autoregressive models.
Intuitively speaking, their output is influenced by their previous outputs plus additional
stochastic noise. We denote an autoregressive model of order p as AR(p). It is defined
as

yt = c+

p∑

i=1

φiyt−i + εt, (3.94)

where the φi are the autocorrelation coefficients, c is a constant, and εt ∼ N (0, σ2
ε ) is a

white noise process. The autocorrelation coefficients are also called the parameters of

the model. With such a model we call the errors autocorrelated or serially correlated.

In later chapters we are interested in a particular kind of autoregressive model, the
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zero mean autoregressive model of order 1 (AR(1)). With p = 1 and c = 0 it is defined
as

yt = φyt−1 + εt, (3.95)

where we dropped the subscript on the autocorrelation coefficient φ1.

Testing whether given data contains autocorrelated errors of order p = 1 can be ac-
complished by different test statistics, e.g., the Durbin-Watson test (Durbin and Watson,
1950). Let et be the residual for the t-th data point. The Durbin-Watson test statistic d
is then

d =

∑T
t=2(et − et−1)2

∑T
t=1 e

2
t

, (3.96)

where T is the number of data points. The value of d is d ≈ 2(1 − φ) and lies within
the interval [0, 4]. It is compared to reference values to decide whether the errors are
autocorrelated of order 1. It is close to d ≈ 2 for φ = 0.

The autocorrelation coefficients φi can be computed in multiple ways. These include
the Yule-Walker equations (Yule, 1927), maximum likelihood estimation, or the Burg
method (Brockwell et al., 2005). For our needs we content ourselves with inspect-
ing the partial autocorrelation function of yt and determining the model order and the
autocorrelation coefficient.

Within a NLLSQ framework autocorrelated measurements can be treated with gen-

eralized least squares or estimation in first differences. The fields of statistics, econo-
metrics, and financial mathematics have developed sophisticated tool sets for this, see
for example the introduction by Maddala and Lahiri (1992). For our use case we are
interested in time series of measurements whose noise is defined by an AR(1) model.
We describe in Section 6.4 a method to incorporate pose estimates with autocorrelated
errors.

3.7. Cramér-Rao Lower Bound and Fisher

Information

In this section we present the concepts of the Cramér-Rao Lower Bound (CRLB) and
the Fisher Information (FI). They will prove useful when computing the covariance of
our estimated solution in the case of AR(1) models in Section 6.4.3. This derivation
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follows the Sections 2.1.8 and 2.2.11 in (Barfoot, 2017).

Assume that we want to estimate an unknown parameter θ by observing a random
variable X . The FI quantifies the information that a random variable X carries about a
parameter θ of a PDF that modelsX . We can express this relationship as the conditional
PDF p(X|θ). The FI allows us to make statements about the best possible parameter
estimation within this model. The FI matrix for an N -dimensional parameter space is
defined as

I(X|θ) = E

[(
∂ ln p(X|θ)

∂θ

)>(
∂ ln p(X|θ)

∂θ

)]
∈ RN×N . (3.97)

Suppose that we have obtained a set of realizations x of the random variable X . We
can think of these realizations as a set of measurements. The CRLB states that the
uncertainty of any unbiased estimate θ̂ that is based on x has a lower bound. That is,
given our measured information we cannot get more certain about our estimate than this
lower bound. Now, the CRLB even allows us to compute this lower bound by stating
that

cov(θ̂|x)− I−1(X|θ) ≥ 0. (3.98)

Here the expression A ≥ 0 means that the matrix A is positive semi-definite7. There-
fore, the CRLB fundamentally limits our certainty about the estimate of a parameter
given a set of measurements. In other words, the measurements carry a limited amount
of information for estimating a parameter. The FI quantifies this information.

3.7.1. Cramér-Rao Lower Bound applied to measurements
from independent Gaussians

So far we have presented the relationship between the CRLB and the FI for general
PDFs. We will now apply these concepts to measurements from statistically indepen-
dent Gaussian PDFs.

Suppose we are interested in estimating the mean µ of an N -dimensional Gaussian
PDF. To this end, we obtain n measurements xi ∈ RN of this distribution. The loga-

7If A expresses the difference between the estimated and the true covariance matrix, then this property
is also called covariance consistency.
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rithm of the joint probability of all measurements is

ln p(X|µ,Σ) = −1

2
(x−Aµ)>B−1(x−Aµ) + const, (3.99)

where x = [x>1 , . . . ,x
>
n ]>, A = [1, . . . ,1]>︸ ︷︷ ︸

n blocks

, and B = diag (Σ, . . . ,Σ)︸ ︷︷ ︸
n blocks

. For comput-

ing the CRLB we are interested in the derivative of (3.99) with respect to the estimated
parameter µ:

∂ ln p(X|µ,Σ)

∂µ
= (x−Aµ)>B−1A. (3.100)

The FI matrix is therefore

I(X|µ) = E

[(
∂ ln p(X|µ)

∂µ

)>(
∂ ln p(X|µ)

∂µ

)]
(3.101)

= E
[
A>B−1(x−Aµ)(x−Aµ)>B−1A

]
(3.102)

= A>B−1 E
[
(x−Aµ)(x−Aµ)>

]
︸ ︷︷ ︸

=B

B−1A (3.103)

= A>B−1A (3.104)

= nΣ−1. (3.105)

Inserting this result into (3.98) allows us to compute the lower bound of the covariance
of the estimated mean µ̂ to

cov(µ̂|x) ≥ 1

n
Σ. (3.106)

Thus, we see that the uncertainty in the estimated mean shrinks with the number of
measurements we have.

3.7.2. Cramér-Rao Lower Bound applied to Covariance
Intersection

Until now we have investigated the general concept of the CRLB and also its application
to measurements from independent Gaussians. Now we apply it in the context of CI. In
this case, we are not assuming statistical independence between measurements anymore.
However, the exact correlation between the measurements is unknown. Applying CI
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results in a covariance consistent estimate. If we examine the joint probability of the
measurements, we obtain similar to (3.99)

ln p(X|µ,Σ) = −1

2
(x−Aµ)>(BCI)−1(x−Aµ) + const, (3.107)

but here BCI = diag( 1
ω1
Σ, . . . , 1

ωn
Σ). Independently of how the weights ωi are chosen

we know that by construction
∑n

i=1 ωi = 1. Using this knowledge and (3.104) we
conclude that the FI matrix for the scaled measurements is

ICI(X|µ) =
n∑

i=1

Σ−1

ωi
(3.108)

= Σ−1. (3.109)

This allows us to compute the lower bound of the uncertainty for measurements that are
fused with CI to

cov(µ̂|x) ≥ Σ. (3.110)

It is thus equal to the uncertainty of a single measurement. Therefore, the application of
CI does not allow us to increase our certainty by obtaining more measurements. Instead,
it aims to provide a covariance consistent estimate and has to implicitly assume that
the information content of all measurements equals the information content of a single
measurement. This is a conservative assumption that is based on not knowing anything
about the correlation between the measurements. In case that we have more knowledge
about it we will show in Section 6.4.3 how to exploit this knowledge to attain a lower
bound of uncertainty.



4. Architecture of the pose fusion

We present in this chapter the overall architecture of our approach to the pose fusion.
As we are treating pose sources about which we want to make as few assumptions
as possible, we divide the main fusion task into two parts. The first part is the core
estimator, which makes certain general error assumptions and performs the estimation.
The second part consists of preprocessing techniques that increase the pose estimates’
conformity with the error assumptions of the core estimator. They are applied to selected
pose sources. In the following Section 4.1, we detail how these two parts are related to
each other.

4.1. Layered fusion architecture

The architecture describes the fundamental partitioning of the pose fusion. This includes
the main design decisions, the main components, and the interfaces between these.

Sensor fusion architectures can be categorized into the two major classes: tightly

and loosely coupled approaches (Grewal et al., 2007; Steinhardt and Leinen, 2015; Hol,
2011). On the one hand, tightly coupled approaches directly use all sensor readings to
compute the fused result. These approaches usually integrate the data at the position
and velocity level. On the other hand, loosely coupled approaches rely on some form
of preprocessing of the sensor readings before fusing them. These approaches usually
integrate the data at the pseudorange, Doppler, or carrier phase level in the case of
GNSS-based fusion (Eling, 2016). Both approaches span a range of fusion schemes
in between that differ in the degree that they rely on certain forms of preprocessing.
Figure 4.1 illustrates the key difference between these two architecture patterns for the
example of GPS/IMU integration. This specific use case of GNSS/IMU integration is
extensively reviewed in the literature. While some comparisons between tightly and
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GPS receiver IMU

pose fusion

(a) Tight coupling.

GPS receiver IMU

pose solver INS

pose fusion

(b) Loose coupling.

Figure 4.1.: Comparison of tightly and loosely coupled architectures for sensor fusion
of data from a GPS receiver and an IMU.

loosely coupled approaches hint at a similar performance (Schwarz et al., 1994), there
are others that show advantages for tightly coupled approaches (Scherzinger, 2000).

The architectural choice for one of these two patterns is straightforward for generic
pose fusion. This is because its main challenge is that it cannot make specific assump-
tions about the sensors, concepts, or implementations of underlying pose sources. How-
ever, tightly coupled architectures are tailored to specific sensors and their measure-
ments. Therefore, we build our generic pose fusion as a loosely coupled approach. This
choice promotes the kind of modularity, flexibility, and extensibility that we want to
gain from a generic pose fusion.

We approach the design of a loosely coupled system by proposing a layered fusion
architecture, as shown in Figure 4.2. Layering is the organization of a system into
separate functional components that interact in a hierarchical way. These functional
components can be grouped to form a sublayer. Usually, each (sub)layer only has an
interface to the layer below and above. Thus, layering is our main tool for complexity
reduction and management.

4.2. Input, pose fusion, and application layer

Our layered fusion architecture consists of an input layer, a pose fusion layer, and an
application layer.

Input layer The input layer contains the sensors and pose solvers. A combination
of sensors and an appropriate sensor processing algorithm make up a pose source1. A

1Alternatively, we sometimes refer to it as input source.
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Figure 4.2.: Layer architecture of the pose fusion.
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pose source builds upon a single or multiple sensors. Conversely, a sensor can feed into
a single or into multiple pose sources. From the point of view of the pose fusion layer,
the input layer serves to abstract from the specific sensor setup.

The interface between the input layer and the pose fusion layer is defined for infor-
mation in the global or the vehicle reference frame. The i-th global pose estimate is

given by the triple (zw
i ,Σ

w
i , ti) where zw

i =
[
xw
i , y

w
i , θ

w
i

]>
. Σw

i is the pose estimate’s
covariance matrix. The time ti specifies the time for which the pose estimate is valid.
The i-th local pose estimate is similarly defined. It is given by the triple (zv

i ,Σ
v
i , ti)

where zv
i =

[
∆xv

i , ∆y
v
i , ∆θ

v
i

]>
. The difference to global pose estimates is that local

pose estimates encode a change of the current pose compared to the last pose rather than
the pose itself. Again,Σv

i is the covariance matrix of the pose estimate and ti is its time.
Generally, we refer to pose estimates transferred from the input to the pose fusion layer
as input pose estimates.

Pose fusion layer The pose fusion layer receives pose estimates from the input
layer. We subdivide this pose fusion layer into two modules: a sublayer of preprocess-
ing techniques and the core estimator. The latter is the workhorse for the online state
estimation. Its main purpose is to take a set of pose estimates, fuse them, and output
an estimate of the current vehicle’s pose. To this end, it has to make certain assump-
tions about the nature of the pose estimates’ errors. In essence, it assumes that the error
characteristics of the pose estimates can be modeled as AWGN. Even though this is a
common assumption we can already provide for that these assumptions are not always
met. Therefore, we need a set of preprocessing techniques.

We design the preprocessing sublayer such that we achieve modularity, flexibility,
and extensibility. For this we create the preprocessing techniques souch that we can
compose them in multiple ways. The best ordering of these techniques is dependent on
the specific set of pose sources, as not every pose sources requires every preprocessing
technique. Also, this sublayer is extensible in case that we want to preprocess pose
sources in a different way. The set of modules in this thesis provides for a rich set of
preprocessing that covers all relevant aspects of the pose sources that were available
during the development of this thesis.

The preprocessing techniques manipulate the pose estimates such that they better fit
the assumptions of the core estimator. In the spirit of generic pose fusion, we design
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these preprocessing techniques to be as universally applicable as possible. For this we
classify the pose sources into sets that exhibit certain error characteristics. A preprocess-
ing technique for one of these classes is then supposed to reduce this error characteristic
as much as possible without making assumptions about the internal working of the pose
sources. To clarify this structure, let us consider an example of an error characteristic.
This could be a bias in the pose estimate of a global pose source. We group all pose
sources that exhibit this characteristic into one class. It is hard to imagine a generic core
estimator that produces a bias-free estimate if it relies on biased data. Therefore, one of
our preprocessing techniques is to eliminate biases in global pose estimates as much as
possible. We describe this approach in Section 6.1.

Another preprocessing technique allows us to better deal with outliers. We propose in
Section 6.2 a method to adapt the covariance matrices of pose estimates based on prior
knowledge. This prior knowledge is a precise map of the road. The effect is that the
influence of certain pose estimates is downscaled.

The treatment of correlated errors between pose sources requires another preprocess-
ing technique. We stated that a sensor can feed into a single or multiple pose sources.
The latter case might lead to difficulties for the core estimator because it assumes that
the errors of different pose sources are uncorrelated. This assumption might not hold
if, for example, two pose sources rely on the same sensor. Generally, both pose sources
will be affected by the identical sensor noise. Formally speaking, this leads to errors that
are correlated between multiple pose sources. In Section 6.3 we will derive a method to
treat this kind of difficulty.

Another challenge for the core estimator are pose estimates with autocorrelated er-
rors. Suppose we have a pose source based on processing satellite signals. Errors due
to multipath effects typically do not only affect a single pose estimate but rather a series
of pose estimates. In this case, the core estimator’s assumption of independently dis-
tributed pose estimates does not hold. Instead, it has to deal with autocorrelated errors.
Therefore, we propose a preprocessing technique in Section 6.4 to reduce this effect.

The core estimator is at the heart of the pose fusion. Its main purpose is to take a
set of pose estimates, fuse them, and output an estimate of the current vehicle’s pose.
Additionally, it provides the estimated uncertainty of this pose estimate. Formally, the
i-th output of the core estimator—and with that, the output of the pose fusion layer—is
the Gaussian distribution at time ti with mean xi and associated covariance matrix Σi.
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It is thus defined as the triple (xi,Σi, ti). We call this the output or fused pose estimate.

Application layer The output of the pose fusion layer is passed to the application
layer. Depending on the vehicle setup, there might be multiple applications that require
a global pose estimate, e.g., path planning, routing, or collision avoidance. From the
point of view of the application layer, the pose fusion layer acts like a centralized, vir-
tual pose source. The pose sources are encapsulated behind the pose fusion layer. The
applications do not directly interact with them and do not need to adjust for their differ-
ent interfaces or behaviors. Instead, they receive a single unified pose estimate with its
estimated uncertainty.

Software architecture We implement the pose fusion layer in the Automotive Data
and Time-Triggered Framework (ADTF), see Appendix A for a brief introduction on
this framework. Each module of the preprocessing sublayer corresponds to an ADTF
filter. These filters are implemented in C++. The connections between the filters are
easily adapted for a specific set of pose sources. The core estimator is implemented in a
filter called PoseGraphFusion (PGF).



5. Core estimator

The core estimator is at the heart of the generic pose fusion1. It performs the state esti-
mation given a set of preprocessed pose estimates. Figure 5.1 illustrates this problem for
an example configuration in which two global and one local pose sources are available.
We present in this chapter the concept of the core estimator in detail, which we call PGF.
Our key contributions consist of an efficient sensor fusion algorithm that makes use of
a graph-based formulation. We design the graph construction such that it produces a
sparse block-tridiagonal structure in the system matrix. This can be solved quickly by
graph optimization strategies. Furthermore, we embed the graph in a sliding window
concept, where we show that marginalization can exactly and efficiently be carried out
without an additional fill-in. The marginalization information can be represented by the
novel concept of a prior node.

Within this chapter we derive in Section 5.1 the fundamental concepts behind the
core estimator and relate it to other possible choices. Subsequently, we describe our
approach to construct the main optimization problem in Section 5.2. This is extended
in Section 5.3 where we detail our specific solution for performing and understand-
ing marginalization. The timing characteristics of the core estimator are presented in
Section 5.4. We exploit the knowledge about the runtime and timing requirements by
proposing in Section 5.5 a resource-adaptive state estimation. In Section 5.6 we detail
the last piece to the core estimator which is the assessment of the uncertainty of the
fused pose estimate.

1We call it core estimator to highlight that the ensemble of preprocessing modules and estimator make
up the entire pose estimation. Technically speaking, though, could we also refer to the core estimator
simply as estimator.
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GPS
visual localization
wheel odometry
PoseGraphFusion
reference trajectory

Figure 5.1.: Illustration of the state estimation problem based on a concrete example.
Pose estimates from two global pose sources are available (a GPS receiver
and a visual localization system) and from one local pose source (wheel
odometry, shown as dead reckoning trajectory from the initial pose). The
goal of the PGF is to estimate the reference trajectory (shown as red line)
as closely as possible (its output is shown as black triangles).

5.1. Design of the core estimator

The core estimator is designed such that it satisfies the requirements we presented in
Section 1.3. These demand an online estimator that works with three degrees of free-
dom. Moreover, it has to be configurable for different hardware setups and has to scale
with the available computational power. In addition, we require a core estimator that
accurately converges towards the statistically optimal result.

As detailed in Section 2.2, state estimation in the context of pose fusion is conven-
tionally approached by using filtering-based approaches, such as the Kalman filter and
its variants or, alternatively, smoothing algorithms. From a theoretical point of view,
smoothing approaches benefit from the possibility to relinearize the Jacobians of all ac-
tive state variables. They can be seen as a generalization of filtering-based approaches
to multiple state variables. From a practical point of view, their problem formulation
makes it easier to incorporate delayed or out-of-sequence pose estimates. This is im-
portant for a generic state estimator because multiple pose sources with different delays
act in essence in the same way as out-of-sequence estimates. When all estimates from a
pose source with a low delay have been processed, all later estimates from a pose source
with a higher delay can be considered as out-of-sequence estimates for the current state.
Smoothing algorithms are able to elegantly resolve time behavior issues and treat all
sources in a homogeneous manner. For these reasons we design our core estimator as
an optimization-based smoothing approach.

Smoothing approaches can be realized as either incremental or sliding window smooth-
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ing. For our approach we are not interested in an estimate over the full state at all times,
which incremental smoothing aims to provide. Instead, it suffices to estimate the most
recent pose. Furthermore, for incremental smoothing we have to keep the entire state in
memory. This could potentially limit long-term operations without providing benefits.
Therefore, we choose the general concept of a fixed-lag smoothing approach.

Motivated by the need for a powerful estimator and constrained by the requirement
of an online solution, we design our core estimator with the same key concepts as a
fixed-lag smoothing algorithm or a SWF. A general SWF as introduced by Sibley et al.
(2010) usually also includes landmarks in its estimation process. In contrast to this, we
do not include landmarks in the estimation process. This allows us to make adjustments
in the graph construction phase specific to pose fusion that significantly influence the
optimization. When compared to fixed-lag smoothing, we note that we are interested in
the head of the lag (the most recent fused pose). Other than that, our approach is from a
methodical point of view closest to fixed-lag smoothing and SWF approaches.

With this design choice, we inherit some of the main properties of a SWF. These
include the accurate convergence towards the online batch estimation result, thereby
providing the ML estimate. Furthermore, it is an efficient estimator that quickly reduces
uncertainty and is consistent in the sense that it avoids overconfidence. Furthermore, it
is a powerful property of SWFs that they scale from an IEKF to the online batch esti-
mation by increasing the sliding window size. Putting things differently, we conclude
that the IEKF and the online batch estimation are two special cases of a SWF. The SWF
therefore generalizes these two concepts and is a suitable choice for our use case.

We choose to represent the SWF estimation with a pose graph. The motivation behind
this is that we can represent all poses and their relations in a graphical way and perform
inference over this graph to obtain the most likely set of hidden nodes. The graph-based
representation provides intuition of how the state variables interact and how they are
influenced by different pose estimates. It gives us a direct visual understanding of the
sparsity pattern of the underlying NLLSQ problem. Furthermore, an arbitrary number of
pose sources can be integrated into the graph in a modular way, where the information of
one pose source does not influence the integration of another source’s information into
the graph. Also, the graph representation is robust against permanent and temporary
failures of pose sources (or their sensors): if a pose source fails, this does not influence
the graph construction phase for the other pose sources. This is different in data-driven
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Figure 5.2.: Distinction between graph construction and optimization. This figure is
inspired by Kümmerle (2013, Fig. 2.6).

approaches.

We split up the core estimator into two blocks, the graph construction and the graph
optimization2. The first takes a set of local and global pose estimates and constructs
the pose graph. It also takes care of marginalizing old nodes and sending the output to
the application layer. The second block is the graph optimization. Its role is to opti-
mize the pose graph and return the poses of the optimized nodes. The reason to split
up the graph construction from its optimization is that we want to have the possibil-
ity to exchange the graph optimization if needed. Figure 5.2 illustrates the relation of
the two concepts. Our implementation exploits the state-of-the-art graph optimization
framework g2o (Kümmerle et al., 2011).

In the following we detail how we transform this general concept of the core estimator
into a concrete approach. For this we are interested in formulating the NLLSQ approach
for our use case. We derive this from the point of view of the graph construction and
optimization.

5.2. Sliding window chain pose graphs

We design the core estimator as a sliding window NLLSQ estimator that is represented
as a pose graph. In fact, by smoothing over a sliding window we effectively view pose
fusion as trajectory estimation where we are specifically interested in the most recent
pose of the trajectory. In this section we describe our graph construction approach that
leads to the concept of sliding window chain pose graphs.

The input data to the core estimator are noisy odometry and global pose estimates.

2In graph-based SLAM, these two blocks are sometimes referred to as frontend and backend (Sünder-
hauf, 2012; Kümmerle, 2013).



5.2. Sliding window chain pose graphs 83

Odometry sources provide the movement relative to the last pose, i.e., zv
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i . In contrast to odometry, global pose sources provide

pose estimates in the global coordinate frame, i.e., zw
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i . Formally, we combine the set of all odometry estimates zv = {zv
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with the set of all global pose estimates zw = {zw
i }n

w

i=1 to the set of all pose estimates
z = zv ∪ zw.

In contrast to offline NLLSQ estimation, which is commonly taking into account
all available information within the full pose graph, it is necessary for an online state
estimation system to limit the considered information to keep the problem computa-
tionally tractable. Our approach achieves this by marginalizing out old state variables
and thus only considering a fixed amount of state variables. More formally, in a sliding
window pose graph the state vector x encompasses the M most recent state variables

x =
[
x>t−M+1, . . . ,x

>
t

]>
, where the state variable xi =

[
xi, yi, θi

]
is represented as a

hidden pose. xi is the i-th estimate of the vehicle’s pose and is defined in the world
reference frame. With this definition the size of the system matrix H is bounded by
R3M×3M . The optimization result from the last time step provides the initial guess for
the optimization in the current time step. This leads to an effective and efficient solu-
tion in practice. As most of the graph stays identical, a single optimization is usually
sufficient to integrate the additional information of the current time step.

The key idea of the core estimator is that given the state vector x and the set of
pose estimates z and their uncertainties, we seek the state x∗ that best explains all
pose estimates. To this end, we formulate a NLLSQ problem with these quantities as
described in Section 3.4. More formally, we seek the state x∗ such that

x∗ = arg min
x

n∑

i=1

ei(x, zi)
>Λiei(x, zi) (5.1)
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. (5.2)

In this formulation we split up the global error function F (x) into the first term, which
sums up all odometry constraints, and the second term, which sums up all global pose
constraints. This allows us to treat these constraints, their error functions, and their
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Jacobians separately. Note that we use the entire state vector x as argument for both
odometry and global pose error functions for notational convenience even though that
ev
i (x, z

v
i ) depends only on two and ew

i (x, zw
i ) only on a single state variable.

We can computeH and b as described in Section 3.4.2 by choosing the correct error
functions and Jacobians for each constraint. One important question that we have not yet
addressed is how to derive the constraints from the input pose estimates. We implied
until now that we can derive one constraint from one input pose estimate. However,
these cannot be mapped one-to-one into the same pose graph if input pose estimates
arrive with unknown, fluctuating, and nonsynchronized rates. The rationale behind this
is best illustrated with an example. Consider a global and a local pose source that pro-
vide nonsynchronized pose estimates, i.e., the pose estimates of one source are defined
for different time steps than those of the other source. If we assume for a moment a
one-to-one correspondence of pose estimates to constraints, then we start by adding ob-
served and hidden nodes for all pose estimates of the global pose source. However, the
local pose estimates will not lead to constraints between these hidden nodes as they are
valid at different time steps. Even if we introduce new hidden nodes for the local pose
estimates, then we can still not connect them to the hidden nodes that were induced by
the global pose estimates.

Therefore, any graph-based system of this kind needs to develop a strategy to handle
this challenge. Our approach is to interpolate the pose estimates to the same time steps.
What seems like a minor implementation problem actually influences the estimation
quality: first, it generally introduces an interpolation error. Secondly, the interpolation
of pose estimates leads to correlated constraints. The magnitude of correlation depends
on the exact kind of interpolation. The core estimator however assumes statistically
independent constraints. Therefore, we keep the interpolations to a minimum by adding
hidden nodes so that the interpolations are small in a temporal sense. This leads us to
the question of when to create hidden and observed nodes.

In the following we describe our graph construction concept that leads to the defi-
nition of chain pose graphs. We design it such that it enforces a matrix structure for
H that is particularly easy to solve, includes all pose sources in a generic way inde-
pendently of their specific output frequencies, and a priori relates the number of state
variables to the length of the interval of the sliding window. The necessary steps for
this are the description of a time-triggered hidden node construction, the integration of
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observed nodes, and finally the integration of odometry constraints.

In contrast to related graph-based approaches (Cucci and Matteucci, 2013; Sibley
et al., 2010), we neither generate a hidden node every time a pose estimate arrives nor
tie its generation to a specific pose source (so-called data-triggered approaches). In-
stead, we construct a hidden node every time step (time-triggered approach), i.e., with
the temporal resolution ∆t. This is advantageous because the graph construction does
not fail as in data-triggered approaches if this specific pose source fails to provide pose
estimates. Moreover, we can define the interval of the sliding window without consid-
ering the output frequency of this specific pose source. Also, we can control ∆t such
that the interpolation of pose estimates does not severely impact the estimation quality.

Having decided when hidden nodes are constructed, it is straightforward to define
how observed nodes are integrated. Ideally, we create one observed node per global
pose estimate, but generally, the timestamps will not match exactly. In this case, we
construct one observed node per global pose estimate by interpolating two successive
global pose estimates of the same source. The interpolation has to take into account the
law of propagation of uncertainty as detailed by Schlegel et al. (2012).

The integration of odometry information into the pose graph can be distinguished into
two different approaches. A straightforward way consists in adding edges such that the
timestamps of corresponding nodes conform as closely as possible to the timestamps
of the pose estimates. This is a temporal nearest neighbor approach which ignores
the synchronization difficulty. We do not follow this approach as it means that edges
can potentially connect hidden nodes that are not adjacent. This in turn results in an
unrestricted graph structure because with a growing number of odometry sources, any
two hidden nodes can potentially be connected. We will detail the downsides of this
approach after describing ours.

Instead of following the strategy just described, we propose to query each odometry
source to interpolate the edges between each two successive hidden nodes. We refer to
the resulting form of the graph as chain pose graph. Constructing edges from odometry
estimates only between successive hidden nodes via interpolation is not merely an im-
plementation detail but is in fact crucial as there are significant gains in terms of runtime
and memory efficiency by using chain pose graphs. We derive these by analyzing how
the matrix structure ofH is defined by our chain pose graph construction.

The block structure of H reflects the connections of poses and edges in the graph
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(a) A chain pose graph.







(b) Corresponding block-tridiag-
onal structure of the system
matrix.

Figure 5.3.: A chain pose graph and the corresponding structure of the system matrix. a)
The black circles are hidden nodes, the dashed blue circles are global pose
estimates from two different sources, the non-dashed blue circles are ob-
served nodes, and the green edges are odometry constraints. Note how the
global pose estimates are interpolated (dashed blue lines) at the timestamps
of the hidden nodes to obtain the observed nodes. b) The structure ofH for
the graph in (a). The blue block entries are caused by the observed nodes
and the odometry constraints. The dark green block entries are caused by
the four odometry constraints between x0, x1, and x2. The light green block
entries are caused by the odometry constraint between x2 and x3.

as it is its adjacency matrix. Its structure changes slightly with the availability of con-
straints. In general, the block structure of a chain pose graph is a block-tridiagonal
matrix. The example graph in Figure 5.3 illustrates how to integrate multiple hidden
and observed nodes as well as odometry constraints. It additionally shows the resulting
block-tridiagonal matrix structure of the corresponding system matrix. The diagonal en-
tries in the system matrix are influenced by odometry and global pose constraints while
the off-diagonal entries are only affected by odometry constraints. Loop closures are
not considered as they arise rarely when driving straight from destination to target.

The block-tridiagonal structure is a consequence of the linear temporal ordering of
the state variables combined with the fact that odometry constraints are constructed
only between successive hidden nodes. We specifically design our solution to produce
a block-tridiagonal matrix because this structure has multiple advantages. First, it does
not produce fill-in in H after marginalization of the oldest state variables. This effect
occurs in non-chain pose graph structures because marginalization summarizes the in-
formation of the eliminated node in edges between all pairs of variables that are directly
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related to the eliminated node (Eustice et al., 2006a; Kretzschmar et al., 2011). These
newly introduced constraints capture the marginalized information in the so-called elim-
ination clique, leading to a denser system matrix.

Secondly, even the Cholesky factorization H = R>R which we perform to solve
the linear system does not suffer from fill-in in its triangular matrix R. In fact, R
becomes a band matrix as illustrated in Figure 5.6. As a consequence, costly variable
reordering techniques (Agarwal and Olson, 2012) are unnecessary asR already contains
the minimum number of nonzero elements necessary to reconstruct H . Figure 5.4 and
Figure 5.5 visualize the different effects for factorization and marginalization of a non-
chain pose graph compared to a chain pose graph. By comparing them it becomes
apparent that H and R have less nonzero elements when constructing a chain pose
graph. Moreover,H does not suffer from fill-in after marginalization.

Thirdly, the computational complexity of the Cholesky factorization of a block-tridiagonal
matrix is O(n) (with n being the number of nonzero entries in H). This is a substan-
tial improvement compared to arbitrary (dense) matrix structures whose decomposition
or inversion becomes as costly as approximately O(n2.4). For experiments concerning
the runtime for general graph-based optimization with g2o, we refer the reader to the
runtime evaluations by Kümmerle et al. (2011, Fig. 8). There, the time complexity for
optimizing the Manhattan3500 dataset (Olson et al., 2006) is clearly higher than linear
in the number of nodes although the same sparse matrix techniques as in our implemen-
tation were used. For our approach, we demonstrate the linear time complexity for a
practical experiment in the evaluations section.

In summary, our chain pose graph approach prevents fill-in after marginalization in
H and during the factorization in R, makes common variable reordering strategies
unnecessary (thus speeding up computation), and is efficiently solvable in O(n). The
memory consumption for bothH andR remains constant over time as both matrices are
bounded in size. Also, the optimization problem remains efficiently solvable in O(n).
In total, the time and memory complexities of our approach are linear in the number of
hidden nodes and independent of the duration of operation because of the chain pose
graph structure.

So far we have detailed the graph structure but merely touched the topic of keeping
them in a sliding window. In the following we explain this by detailing the marginaliza-
tion process.
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(a) An example graph that is not a chain pose graph.
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H for the graph in
(a).
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the Choleksy fac-
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the matrix in (b).
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(d) Graph structure after marginalizing x0. A new edge
due to the marginalization is displayed in red.
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• • •
• • • • •
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(e) Sparsity pattern of

the system matrix
H for the graph
in (d). Fill-in due
to the marginaliza-
tion is marked in
red.


• • •
• •
• • •
• •
•


(f) Sparsity pattern of

the Cholesky fac-
torizationR for the
matrix in (e).

Figure 5.4.: Factorization and marginalization of a non-chain pose graph. Marginalizing
x0 leads to a new edge in the graph (namely from x1 to x3) and thus to a
denser system matrix. This reduces its sparsity and consequently decreases
runtime performance. Also, it is potentially necessary to apply a variable
reordering strategy to reduce the number of nonzero elements inR.
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(a) A chain pose graph. Odometry estimates are broken
down such that they create edges between adjacent
hidden nodes.
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(b) Sparsity pattern of

the system matrix
H for the graph in
(a).
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torization R for
the matrix in (b).
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(d) Graph structure after marginalizing x0. The margi-
nalization does not result in new edges.
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(e) Sparsity pattern of
H for the graph in
(d). The marginal-
ization does not re-
sult in fill-in.
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(f) Sparsity pattern of

the Cholesky fac-
torizationR for the
matrix in (e).

Figure 5.5.: Factorization and marginalization of a chain pose graph. Marginalizing x0

does not lead to new edges in the graph or fill-in in the system matrix.
Variable reordering strategies are unnecessary as R contains the minimum
number of nonzero elements necessary to reconstructH .







(a) Block-tridiagonal
structure of the
system matrixH .

=







(b) Block structure of
the corresponding
Cholesky matrix
R>.

×







(c) Block structure ofR.

Figure 5.6.: Block structure ofH and its Cholesky decompositionR>R.
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5.3. Marginalization as a prior node

We have detailed the chain pose graph construction in Section 5.2 where we stated
that we marginalize the oldest state variables to achieve a sliding window effect. We
complete this by analyzing our specific marginalization method in this section. The key
insight here is that we can understand marginalization in terms of a special observed
node which we will name prior node.

We have already seen that it is mandatory to limit the number of hidden nodes to
keep the problem computationally tractable. Simply removing edges and nodes leads
to information loss and is equivalent to conditioning, which potentially leads to over-
confidence. Therefore, we marginalize the oldest nodes. Marginalization produces the
marginal probability distribution over the subset of involved nodes and retains the infor-
mation about how they interact. It truncates the graph by discarding the state variables
that are being marginalized out but retains the same information for the remaining state
variables (given the linearization point).

However, excluding nodes from the sliding window always has the drawback that
their linearization point for the NLLSQ optimization is fixed. It is the powerful ability
of relinearization that leads to a high estimation quality for fixed-lag smoothing ap-
proaches, as we discussed in Section 2.2. Marginalizing hidden nodes naturally results
in the situation that the estimates of excluded nodes cannot be adjusted anymore. Con-
sequently, it is crucial to only marginalize “mature” nodes with a converged estimate.
The proposed marginalization method accounts for this by leaving all hidden nodes as
long as possible in the graph and eliminating only the oldest ones.

Marginalization can be carried out approximately or exactly. As we have considered
the impact of exact marginalization in the definition of chain pose graphs, we can apply
the exact solution. The common approach for exact marginalization is computing the
Schur complement on the system matrix H . In general, the disadvantage of this op-
eration is the introduction of conditional dependencies between state variables that are
connected. As we design our problem structure to be a chain pose graph, we are able
to retain the same sparsity pattern and do not suffer from a denser system matrix after
marginalization as we show in Section 5.2.

We closely examine the effect of the Schur complement on chain pose graphs and
observe that only the top left block entry of H changes, see Figure 5.7. Interestingly,
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H11 H12

H>12 H22 H23

. . . . . . . . .
H>n−2n−1 Hn−1n−1 Hn−1n

H>n−1n Hnn




(a) System matrixH before marginalization.




H̃22 H23

H>23 H33 H34

. . . . . . . . .
H>n−2n−1 Hn−1n−1 Hn−1n

H>n−1n Hnn




(b)H after marginalization of the oldest state variable. Note
that the entry H22 has changed as it contains information
of the marginalized state variable.

Figure 5.7.: The effect of marginalization on the system matrixH . Only the block entry
H22 changes. This motivates us to derive the concept of a prior node.

adding an observed node to the graph has a similar effect: only the block entry of the
corresponding hidden node on the diagonal ofH gets an additional addend. Combining
these two facts motivates us to study whether the effect of marginalization on a chain
pose graph can be represented by an additional observed node.

Therefore, we show that we can exploit the knowledge of the particular block-tridiagonal
matrix structure to derive the concept of a prior node which carries the same informa-
tion as introduced by the Schur complement. In general, using a representation in the
form of a graph is beneficial compared to directly solving the NLLSQ equations be-
cause of the possibility to visually understand the relations of the state variables, more
possibilities for data inspection, and a more intuitive way to manipulate the problem
structure. These are the same reasons why it is advantageous to construct a prior node
for marginalization instead of performing the Schur complement. The user has the pos-
sibility to understand how the prior information affects the rest of the graph, thus allow-
ing him to manipulate this information if desired. If one was to repeatedly perform the
Schur complement, it would become untraceable to understand the optimization result
of the graph as not all necessary information is conceptually represented herein. The
concept of a prior node is also supported by a more pragmatic reason: it allows us to
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store and load the optimization problem with solely the help of its graph representation.
Furthermore, it opens up the possibility to explicitly apply a robust cost function on
the prior node constraint and to adjust the uncertainty of the prior information based on
context. In total, marginalization by using a prior node is making the graph construction
logic aware of the marginalization process, allows the understanding and manipulation
of the prior information, and is thus preferable over marginalization by performing the
Schur complement on the system matrix.

In the following we will first analyze the impact of the Schur complement on our
chain pose graphs and subsequently show how to compute the uncertainty and mean
estimate of the prior node to obtain the same result. The derivation is detailed for the
marginalization of a single hidden node but can easily be applied iteratively if multiple
nodes shall be marginalized. As a result, we obtain the prior node that has the same
effect as the Schur complement and therefore represents the effect of marginalization
with the help of graph elements.

5.3.1. Exact marginalization with the Schur complement

For general pose graphs performing the Schur complement leads to the exact and con-
sistent marginalization of nodes. This results in challenges as it generally leads to the
introduction of new conditional dependencies between hidden nodes. First, these are
not always trivial to compute. Secondly, these make the graph and its system matrix
more dense, therefore causing a higher solution time. Chain pose graphs circumvent
these challenges by design. In the following we restrict ourselves to the study of the
marginalization of the oldest hidden node in a chain pose graph. We will show that this
computation is straightforward and that it does not influence the sparsity pattern ofH .

It is useful for the derivation to start with a graph with only two hidden nodes (see
Figure 5.8a) and ignore the node x0 for now to see how the different terms are affected by
the marginalization. Consider a graph

−→G small where x1 is linked to x2 and additionally to
one or more observed nodes (Figure 5.8a shows an example for two connected observed
nodes, depicted by blue circles). The corresponding system matrix Hsmall is given as a



5.3. Marginalization as a prior node 93

x1

x2

1

(a) Graph
−→G small.

x0
x1

x2

1

(b) Graph
−→G full.

xwp
x1

x2

1

(c) Graph
−→G prior.

Figure 5.8.: Graph marginalization can be understood as prepending a prior node xw
p to

the graph. Blue non-dashed circles represent observed nodes. For under-
standing how the hidden node x0 influences the optimization it is useful to
start with a graph in (a) without x0. Considering x0 in (b) leads to addi-
tional terms in the system matrix. Marginalization in (c) with a prior node
xw

p leads to the same system matrix as performing the conventional Schur

complement on
−→G full.

block matrix and the optimization solves the equation

[
Hsmall

11 Hsmall
12

Hsmall
21 Hsmall

22

]
∆xsmall = −

[
bsmall

1

bsmall
2

]
. (5.3)

If we additionally include the hidden node x0, the graph structure and the system ma-
trix change. Let x0 also be connected to one or more observed nodes and consider
one or more odometry constraints between x0 and x1. The resulting graph

−→G full (see
Figure 5.8b) is defined by the system matrix

H full =



Hw

00 +Hv
00 Hv

01

Hv
10 Hsmall

11 +Hv
11 Hsmall

12

Hsmall
21 Hsmall

22


 (5.4)

and the coefficient vector

bfull =



bfull

0

bfull
1

bfull
2


 =



bw

0 + bv
0

bsmall
1 + bv

1

bsmall
2


 , (5.5)
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whereHw
ij andHv

ij capture the sum of all entries ofHij stemming from observed nodes
and odometry constraints, respectively. The terms bw

i and bv
i have the same function for

the vector entry bi. All of these terms are readily available as they have been computed
in the last iteration, including any robust cost function applied on them.

The common way to marginalize x0 consists in computing the Schur complement of
H full and bfull. This leads to the marginalized system matrix Hmarg, which is identical
toHsmall except for the upper left block which changes to

Hmarg
11 = Hsmall

11 +Hschur, (5.6)

Hschur = Hv
11 −Hv

10(Hw
00 +Hv

00)−1Hv
01. (5.7)

The corresponding marginalized coefficient vector is

bmarg =

[
bsmall

1 + bschur

bsmall
2

]
, (5.8)

bschur = bv
1 −Hv

10(Hw
00 +Hv

00)−1(bw
0 + bv

0). (5.9)

We remark that the structure of the system matrix is still block-tridiagonal after the
marginalization due to the particular design of our chain pose graph. This means that
the sparsity pattern of H is retained after marginalization without fill-in. Additionally,
Hschur and bschur are easily computable as the inversion for (Hw

00 + Hv
00)−1 is only

needed over a 3 × 3 matrix. Moreover, the information is conserved in a consistent
way. Any other marginalization method that claims to be exact needs to produce the
same result. In the remainder of this section we show that an alternative marginalization
technique consists in replacing x0 and its connected observed nodes and edges with a
prior node xw

p which behaves like an observed node. To this end, two questions have
to be answered: how to compute its correct mean estimate and how to compute the
uncertainty of this prior node?

5.3.2. Closed-form solution of the prior node

We detailed in Section 5.3.1 that exact marginalization does not result in fill-in in the
system matrix for chain pose graphs and derived how the Schur complement affects the
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upper left part of H and b. Our goal is now to devlop the equations for computing
the prior node xw

p , which is depicted in Figure 5.8c. First of all we observe that in the
special cases that x0 is not directly connected to any observed node or that there exist
no edges between x0 and x1, x0 does not influence the estimate of x1 and we can omit
constructing a prior node. The derivations in the following treat the general case in
which x0 is connected to at least one observed node (which can for example be the prior
node from the last cycle) and is additionally linked via at least one edge to x1.

The first step is to remove x0 as well as all observed nodes and edges connected to it.
Connecting the prior node xw

p with the information matrix Λw
p to x1 leads to the graph

−→G prior (see Figure 5.8c). The prepended node yields an additional addend Hw
p in the

matrixHprior of
−→G prior such that

Hprior =

[
Hsmall

11 +Hw
p Hsmall

12

Hsmall
21 Hsmall

22

]
, (5.10)

and an additional addend bw
p in bprior such that

bprior =

[
bsmall

1 + bw
p

bsmall
2

]
. (5.11)

We want to create the prior node so that it behaves like any other observed node in the
graph. This already determines the error function and its Jacobian for the constraint
induced by the prior node. Let ep = ew(x1,x

w
p ) be the error function and J̆p(x) its Ja-

cobian evaluated at the current linearization point. We recall that (cf. (3.52) and (3.53))

ep =

[
R>θp 0

0> 1

]
(x1 − xw

p ), (5.12)

J̆p(x) =

[
R>θp 0

0> 1

]
. (5.13)

We need these two terms to computeHw
p and bw

p :

Hw
p = J̆p(x)>Λw

p J̆p(x), (5.14)

bw
p = J̆p(x)>Λw

p J̆p(x)(x1 − xw
p ). (5.15)
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With this insight we derived how xw
p influencesHprior, bprior throughHw

p , bw
p . We have

also shown that the Schur complement influences Hmarg, bmarg through Hschur, bschur.
The last step consists in proving Hw

p = Hschur and bw
p = bschur to guarantee that the

effect of the prior node is equivalent to the exact marginalization. We solve the resulting
system of equations by insertingHw

p into bw
p , which leads to

bw
p = Hw

p (x1 − xw
p ) (5.16)

⇔ bschur = Hschur(x1 − xw
p ) (5.17)

⇔ xw
p = x1 −H−1

schurbschur. (5.18)

As this allows us to calculate xw
p by using (5.7) and (5.9), we can now compute Λw

p :

Λw
p = (J̆p(x)>)−1HschurJ̆p(x)−1. (5.19)

These analytic closed-form expressions for xw
p and Λw

p allow us to position the prior
node xw

p in such a way that the resulting pose estimates for the rest of the graph are
identical to the Schur complement marginalization. The mean in combination with the
uncertainty estimate provide us with the insight how the marginalization affects the
graph. Figure 5.9 illustrates the effect of marginalization and the influence of the prior
node for a sliding window estimation of a short trajectory.

As motivated above, marginalization by using a prior node is making the graph con-
struction aware of the marginalization effect, allows us to understand and manipulate the
prior information, is efficiently computable, and is thus preferable over marginalization
by performing the Schur complement on the system matrix.

5.4. Timing behavior

After detailing in Section 5.2 how and for which timestamps we construct hidden and
observed nodes, we turn our attention to the questions how our system handles the time
behavior of input sources and how we design the time behavior of the pose fusion. In this
thesis we define time behavior as the latency, frequency, and availability of estimates.

Integrating input sources with unknown time behavior is difficult as we deal with
multi-rate sources, nonconstant input frequencies, out-of-sequence estimates, and time-
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(a) Unoptimized pose information in the current sliding window from a global pose source (blue), an
odometry source (green), and a prior node from marginalization (red). The global pose source drifts
and deviates from the odometry source. This is accompanied with a serious reduction of its certainty
(not visualized).

(b) Optimized trajectory (black) without a prior node. The weak global pose information is not capable to
deform the trajectory. However, the odometry trajectory is fitted to the global poses, leading to a rotated
trajectory. This deviation is best seen at the start of the trajectory (red circle).

(c) Optimized trajectory with a prior node. The strong prior node helps to keep the trajectory on track.

Figure 5.9.: The effect of marginalization on a real-world example trajectory. A global
pose source (blue) and an odometry source (green) with a potential prior
node (red) form the current sliding window optimization problem, as de-
picted in (a). The result of the optimization of the trajectory without using
a prior node is shown in (b), while (c) shows the effect of adding a prior
node. The solution with the prior node is less dependent on the erroneous
global pose information.

varying latencies. Our approach consists in buffering and preprocessing all incoming
data. This does not introduce any delay as we do not need the measurements before
the next graph construction phase. The preprocessing detects missing pose estimates
by estimating the recent input frequency of each source and comparing the number of
estimates we should have received to the number of estimates we actually received.
Sorting the data by time enables the integration of out-of-sequence data.

Instead of being data-triggered, the output of the PGF is time-triggered. Its output
frequency f is decoupled from the temporal resolution ∆t. Every 1

f
the cycle of graph

construction and optimization is triggered. The time spent for constructing and opti-
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t

source 0

source 1

source 2

PoseGraphFusion

Figure 5.10.: Time behavior of the input sources 0 to 2 and the PGF. The input sources
show occasional activity (source 0), data dropouts (source 1), and different
data rates. The PGF is able to handle these characteristics and incorporates
all input data by first buffering it. At the start of each cycle (directly after
the red vertical line) the graph is constructed and optimized. The time
necessary for that is the computation time ct (teal hatched). After the
optimization, the estimated pose is propagated to the current point in time.

mizing the graph is summed up as the computation time ct. The most recent state is
estimated with a sliding window pose graph over the current set of measurements. It
is subsequently propagated into the current time step with the help of odometry infor-
mation, as depicted in Figure 5.10. The propagation ensures a low latency of the pose
estimate. We define the latency to be the difference between the time when the pose has
been computed and the time for which it is valid.

5.5. Resource-adaptive state estimation

In Section 5.2 we have shown that the PGF has a linear runtime complexity in the num-
ber of hidden nodes, and we have detailed its time behavior in Section 5.4. We combine
this knowledge to enable the algorithm to adapt its parameters at runtime such that it
does not use more computational resources than available. This is called a resource-

adaptive behavior (Thrun et al., 2005). Such an approach becomes especially crucial
and valuable when deploying the software in multiple vehicles with different hard-
ware environments such that one parameter set does not fit all of them. We can of
course parametrize the computational requirements of the core estimator by changing
the length of its sliding window but this is a manual and cumbersome approach. The
second motivation for the automated approach is that our sensor fusion software typi-
cally shares its hardware resources with other software. This generally means that the
available Central Processing Unit (CPU) time varies depending on the workload of the
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t

below CPU capacity

exceeding CPU capacity

at CPU capacity

Figure 5.11.: The parametrization of the core estimator can lead to too little, to exces-
sive, and to adequate CPU usage depending on the current CPU load. The
red lines mark the beginning of a computation cycle. The computational
time c is visualized in dashed blue.

other software. In this case, the parameter set that we might have configured at the start
is not reasonable over the entire course of operation.

These resource constraints translate to the challenge that it takes different amounts of
time to solve the same problem on different hardware or when the available CPU time
fluctuates over time. On the one hand, this potentially results in ct > 1

f
, i.e., the com-

putation time is greater than the available time in one cycle, which causes a decreased
and fluctuating output frequency. On the other hand, the estimation quality is subop-
timal if ct � 1

f
as more hidden nodes could have been considered in the optimization

process in the remaining cycle time. Ideally, ct = 1
f

for all time steps t. In practice,
∆ct = 1

f
− ct 6= 0 where ∆ct is the remaining cycle time (note that ∆ct can be nega-

tive). Figure 5.11 illustrates these different cases of the computational time being too
small, too high, and adequate.

The goal is to obtain on average ∆ct ≈ 0 by letting the core estimator adapt the num-
ber of hidden nodesMt in its optimization problem. This results in automatic adaptation
to new hardware environments. Moreover, it also adjusts to temporary available or de-
nied CPU resources at runtime.

Our solution consists in using concepts from linear control theory as our system has
linear runtime complexity in the number of hidden nodes. We create a feedback loop
by measuring the computation time ct for the current time step with a known number of
hidden nodes Mt and subsequently deriving a new number Mt+1 such that ∆ct+1 ≈ 0.
For this task we employ a proportional-integral-derivative (PID) controller which con-
trols Mt+1 according to

Mt+1 = Mt +Kp∆ct +Ki

t∑

i=1

∆ci
f

+Kd(∆ct −∆ct−1)f, (5.20)
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where Kp, Ki, and Kd are proportional, integral, and derivative gain constants. These
are empirically determined and left constant during the runtime. Note that the sum∑t

i=1
∆ci
f

does not have to be recomputed from scratch in every time step. Instead, at
time step t it is sufficient to add the term ∆ct

f
to the sum

∑t−1
i=1

∆ci
f

, which is known from
the previous time step.

Our resource-adaptive state estimation is similar to anytime algorithms3 in that the
quality of results improves gradually as available computation time increases and that
we can control computation time. However, other than anytime algorithms we have to
control computation beforehand and cannot interrupt an optimization step. The control
of the number of hidden nodes leads to a better usage of computational resources and
thus to a well-defined time behavior.

5.6. Assessing the uncertainty of the fused

estimate

Modeling uncertainty is a key element of probabilistic robotics and obtaining an esti-
mate of the uncertainty of the fused pose estimate is vital for many applications. These
include sophisticated motion planners, data association in SLAM, computing the next
best view, and other active decisions. We described in the previous sections the con-
struction of a sliding window chain pose graph. The optimization assigns to the hidden
nodes the global poses which best satisfy all constraints. In this section we show that
we can efficiently recover the uncertainty of the optimized hidden nodes. For this we
have already shown in Section 3.4.5 that H is the information matrix of the state given
all constraints. Here we will present an algorithm to compute the covariance of all state
variables given the sparse Cholesky decomposition ofH .

Solving the NLLSQ problem of the core estimator with a sparse solver typically in-
volves computing the Cholesky factorizationH = R>RwhereR is an upper triangular
matrix with entries rij . Following the derivation of Kaess and Dellaert (2009), the un-

3In Computer Science, anytime algorithms are algorithms “[...] that return some answer for any allo-
cation of computation time, and are expected to return better answers when given more time.” (Boddy
and Dean, 1989).
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certainty matrix of the hidden nodesH−1 with entriesH−1
ij is obtained by the formula

H−1
ii =

1

rii


 1

rii
−

n∑

k=i+1
rik 6=0

rikH
−1
ik


 , (5.21)

H−1
ij =

1

rii


−

j∑

k=i+1
rik 6=0

rikH
−1
kj −

n∑

k=j+1

rik 6=0

rikH
−1
jk


 , (5.22)

where the other half of the matrix can be obtained by exploiting the symmetry ofH−1.
Assuming that we compute both the upper and lower triangular part of H−1 and ex-
ploiting the symmetryH−1

jk = H−1
kj , we can develop this to

H−1
ii =

1

rii


 1

rii
−

n∑

k=i+1
rik 6=0

rikH
−1
ik


 , (5.23)

H−1
ij =

1

rii


−

n∑

k=i+1
rik 6=0

rikH
−1
kj


 . (5.24)

This formula yields an O(n) time complexity (with n being the number of state vari-
ables) because it operates on the nonzero entries of the sparse band matrixR. It becomes
constant time for sliding window pose graphs as the number of state variables is upper
bounded by a constant value. Furthermore, we abort the computation of H−1 once we
obtain the covariance matrix for the elements of interest. As we are only interested in
the estimated uncertainty of the last hidden node, only a single and comparably trivial
calculation has to be performed:

H−1
nn =

1

rnn

1

rnn
. (5.25)

We can therefore compute the uncertainty of our fused pose estimates and even more,
do so efficiently.





6. Preprocessing sublayer

This chapter presents the preprocessing sublayer and its modules. These modules are
designed such that they are as broadly applicable as possible. They are of course tailored
towards the core estimator but can also be extracted and applied to similar contexts.
These include other graph- or filtering-based approaches.

The preprocessing sublayer consists of the four modules bias estimation, outlier han-
dling, cross-correlated and autocorrelated noise treatment, as shown in Figure 6.1. These
are presented in the following sections.

6.1. Bias estimation

The core estimator assumes that all input pose estimates are unbiased. However, a bias
in the estimates of a global pose source is common (Jo et al., 2013; Laneurit et al.,
2005; Tao et al., 2013). It results in a mean error unequal to zero when compared to the
true trajectory. In this section we deal with quasi-stationary and with systematic biases.
Quasi-stationary biases are constant for a limited series of estimates while systematic
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outlier
handling
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correlated

noise
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correlated

noise
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Figure 6.1.: Modules in the preprocessing sublayer.
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biases are constant for all estimates. Sometimes, quasi-stationary biases are also called
time-varying biases. Figure 6.2 illustrates the effects of unbiased and time-varying bi-
ased pose estimates. Biases of this kind result in decreased performance of the core
estimator: the mean error of the fused estimate will generally be unequal to zero and
the estimator potentially diverges. It is therefore important to reduce biases as much as
possible.

Within our fusion architecture, it seems at first sight appealing to delegate the task of
bias estimation and removal to the pose sources. After all, they know best about their
sensors, internal working principles, and possible sources of biases. However, they
sometimes simply lack the necessary information to estimate a bias. We assume that
they clean their estimates from biases that they are able to observe, compute, or estimate.
Subsequently, our preprocessing module takes care of eliminating the remaining part of
biases as much as possible. It has the advantage over the pose sources that it has access
to pose estimates from other sources. This additional knowledge helps to reduce biases
by means of comparison.

We propose an effective technique to estimate quasi-stationary biases at runtime. It
is also applicable to stationary biases as they can be regarded as a subset of quasi-
stationary biases. This technique enables pose sources to better satisfy the noise as-
sumptions by reducing the mean error of their estimates, thus increasing their consis-
tency and accuracy.

Quasi-stationary biases vary over time. The duration in which such a bias stays
roughly constant depends on the specific pose source and its sensor, its field of ap-
plication, and environmental conditions. A prominent example of a class of global pose
sources which commonly suffers from time-varying biases are pose estimates based on
GPS data. Clock errors and multipath effects are common sources for this bias (Jo
et al., 2013). The bias might for example stay roughly constant as long as the GPS
receiver sees the same constellation of satellites or suffers from the same multipath ef-
fects. Other, rather sensor-independent, sources of systematic error include calibration
and time synchronization issues. Also, offsets in the map lead to systematic biases for
map-based global pose sources. The key contribution of this chapter is an online bias
estimation technique for quasi-stationary and systematic biases of global pose sources
that is fast, effective, and straightforward to implement.
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Figure 6.2.: Illustration of the effects of a time-varying bias. The true trajectory (black
line) is measured by an unbiased (blue diamonds) and a biased (red dots)
pose source.

6.1.1. Comparison of unbiased and biased pose estimates in
a sliding window

Our goal is to derive a method that allows us to estimate the bias of a global pose source
and subsequently to remove it from the pose estimates. Our generic pose fusion ap-
proach does not assume any knowledge about the implementation details of the input
sources, which makes it challenging to eliminate the unknown source of biases. We
therefore propose a generic bias estimation method. To this end, we analyze the global
pose estimates zb with information matricesΛb from a biased source and compare them
to a source which is noisy but produces unbiased estimates1 zu with information matri-
ces Λu. More formally, we model the noise as

zui = pi + υui (6.1)

zbi = pi + υbi + cbi , (6.2)

1The superscript b stands for biased, and u for unbiased.
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where pi is the true pose for the i-th pose estimate, υu and υb are white noise such that
υu ∼ N (0, (Λu)−1) and υb ∼ N (0, (Λb)−1), and cbi denotes the bias. Equation (6.2) is
a common noise model and we will show how to gain knowledge about cbi by observing
the corresponding unbiased pose source governed by (6.1).

The key idea of the bias estimation is that the difference of the mean estimates of a
biased source compared to an unbiased source is roughly equal to the respective bias.
Estimating the bias in a sliding window of length s, such that the estimated bias ĉbi(s)
for the i-th pose estimate is a function of s, allows it to adapt to time-varying biases. The
estimate of the bias ĉbi(s) also depends on the unbiased pose source u, but we omit the
additional index for the sake of notational clarity. We refine this method by computing
the mean errors as weighted averages such that pose estimates with higher variances
account for less impact. In total, we define the estimated bias ĉbi(s) accordingly as

ĉbi(s) =
1

s

1∑i
j=i−sΛ

u
j

i∑

j=i−s

Λu
jz

b
j −

1

s

1∑i
j=i−sΛ

u
j

i∑

j=i−s

Λu
jz

u
j (6.3)

=
1

s

1∑i
j=i−sΛ

u
j

i∑

j=i−s

Λu
j (z

b
j − zuj ). (6.4)

Figure 6.3 illustrates the application of this method. Having computed ĉbi(s), we can
subsequently subtract it from the biased pose estimates zbi to eliminate their impact.
This technique is straightforward and effective as we show in the evaluation section.

A key issue is the determination of the size s of the sliding window. On the one hand,
the estimated bias adapts too slowly to the true time-varying bias if the window size is
too large. On the other hand, we violate the assumption that the unbiased pose source
has a zero-mean error over the sliding window if the sliding window size is too small.
A sliding window size that is too small additionally leads to a significant correlation2 of
the error terms of the biased and unbiased source.

We formulate the search for the optimal sliding window size s∗ as an offline optimiza-
tion over a dataset with L data points per pose source. This dataset contains unbiased
estimates zu, biased estimates zb, and ground truth poses p. The optimal sliding win-

2In Section 3.5.1 we provide an insight on the order of the error of the uncertainty estimate given a
certain cross-correlation. This allows us to gauge what cross-correlation is tolerable.
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Figure 6.3.: Measurement error over time of the unbiased (blue diamonds) and biased
(red dots) pose sources. The difference of their mean errors in a sliding
window of 10 s leads to the computation of ĉbi(s) ≈ 5 m.

dow size s∗ is given by

s∗ = arg min
s

1

L

L∑

i=1

∥∥(zbi − ĉbi(s))− pi
∥∥ , (6.5)

s.t. ρ(zb − p, zu − p) ≤ ρtol, (6.6)

τ(zu,p, s) ≤ τtol. (6.7)

The first condition given by (6.6) is true if the errors of the bias-corrected source and
the unbiased source are correlated less than a threshold ρtol. For this ρ(·, ·) is an aux-
iliary function which computes the correlation between two input vectors. The second
condition given by (6.7) is true if the sliding window is large enough to justify the as-
sumption of a zero-mean error of the unbiased source. τ(·, ·, ·) is an auxiliary function
such that 95% of all terms 1

s

∑i
j=i−s

∥∥Λu
jz

u
j − pj

∥∥ for i = 1, . . . , L are less or equal
than its function value. The usage of the 95% percentile robustifies the function against
outliers. As this is an offline optimization without timing requirements, we content our-
selves to solve (6.5) with an exhaustive search over all sliding window sizes of interest.
Nevertheless, this is typically done in the order of seconds.
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This approach can easily be extended to incorporate multiple unbiased pose sources
by estimating ĉb(s) for each of these sources. In general, we assume that the majority of
sources are unbiased. We can easily determine whether a source is biased by observing
all pose sources over a certain period of time and performing a simple version of random
sample consensus.

6.2. Map-based outlier handling

Outliers can have serious impact on classical estimation methods. They tend to skew
the result towards their values. For generic pose fusion, the risk is to distort or displace
the estimated trajectory. Therefore, it is important to handle outliers appropriately.

Generally speaking, an outlier is an observation that is far away from all other obser-
vations. In our case, this means one of two things: either a single pose estimate is far
away from all other pose estimates or a single pose source continuously produces esti-
mates far away from all other pose sources. In the latter case, one could either classify
the entire pose source as outlier or all of its data. We design our outlier handling to be
able to deal with both cases.

When performing generic pose fusion it is difficult to tell when a specific pose source
produces unreliable pose estimates because we lack knowledge of the underlying sen-
sors and algorithms. Therefore, we present a method for examining global pose esti-
mates that is sensor- and algorithm-independent. It solely analyzes the pose estimates
of any given pose source.

The core estimator is based on solving a weighted optimization problem. These
weights are chosen as the information matrices of the pose estimates. They are of cru-
cial importance as they adjust the amount of information that a single pose estimate
contributes to the fused estimate. We present a method for scaling the covariance ma-
trix of an input pose estimate given prior knowledge in the form of a map. We adapt the
covariance matrix if the pose estimate’s location on a map seems unreasonable. That
is, we leverage the knowledge that a car is usually driving on the road or close to it to
judge the quality of a pose estimate. The effect of this method is that we can detect and
smoothly handle outliers simply by scaling their covariance matrices.

The key idea is that if we know where the vehicle should be driving right now then
we can infer which pose estimates seem unlikely and treat them more carefully. The
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question is how do we know where the vehicle should be driving. It turns out that we
can gain information about this in multiple ways. First, in an automated vehicle we
might be able to leverage the planned trajectory of the vehicle. Secondly, in automated
platooning or similar applications the vehicle is often given a trajectory that it should
follow. Thirdly, it is usually safe to assume that the vehicle is driving on a road. In the
following we focus on the latter possibility. In the evaluations in Section 7.4.2 we show
that this assumption is broadly satisfied. We employ maps with a precise road geometry
as presented in Section 3.3.2. Specifically, we exploit the concept of center lines. They
give us the geometric middle of each lane, which is close to where most vehicles are
driving.

With this information in hand, our approach compares each global pose estimate to
the center lines of a DLM and scales its information matrix accordingly. Our intuition
is that a pose estimate is more likely corrupted as that the vehicle is driving far off the
road. In this sense, we exploit the map information to judge the global pose estimates.

If we have detected a pose estimate as an outlier, we prefer to scale its information
matrix to decrease its influence in the fusion over completely rejecting the outlier. This
has two reasons. First, the decision to reject a pose estimate requires a hard criterion of
what we consider an outlier. It is tough to design such a criterion with a low probability
of false alarm. In contrast, our method of scaling provides a smooth separation between
inliers and outliers. How much this information comes into play in the core estimator
depends on the uncertainties of all other pose estimates. We see this approach therefore
in the same line of thought as robust cost functions (cf. Section 3.4.3) which downscale
the error terms instead of rejecting too high values. A similar effect is achieved when
upscaling the information matrices.

Secondly, we note that our approach is a heuristic that judges independently of knowl-
edge of the sensors’ and algorithms’ working principles and can falsely detect outliers.
Imagine the case of an emergency maneuver where the vehicle is forced to leave the
road and come to a stop on the side of it. In this case, all of the pose sources will hint
at this fact. If we were to reject all pose estimates because they are sufficiently far away
from the road, then we have trouble estimating the vehicle’s pose. In contrast, we pro-
pose to scale the uncertainties of this information such that we can compute the fused
pose as being off the road and as being uncertain, which is a favorable behavior.

Our key idea consists of choosing an appropriate scaling function, computing the
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Figure 6.4.: Key idea of the map-based outlier handling: inappropriately small covari-
ance matrices of pose estimates far away from the center line are scaled
up.

distance of a pose estimate to the center line that it likely belongs to, and scaling the es-
timate’s information matrix accordingly. Figure 6.4 illustrates this idea. In the following
we detail the steps behind it.

6.2.1. Scaling the information matrix of a pose estimate

First of all, it is important to compute the distance of the pose estimate to the correspond-
ing center line of the road. As detailed in Section 3.3.2, each segment of a DLM has one
or more lanes. Each lane has a center line which is modeled as a polyline. Thus, for a
given pose estimate we examine all center lines in its close vicinity to find the one that
the pose estimate most likely belongs to. Once we identify this center line we compute
the minimal lateral, longitudinal, and heading distance to it by orthogonal projection.
Figure 6.5 illustrates a pose estimate (blue), the corresponding center line (green), and
the orthogonal projection on it. Note that we take heading difference as the difference
between the pose estimate’s heading and the direction of the center line (by also taking
into account the known driving direction). Usually, this comparison with a map allows
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Figure 6.5.: Computing the distance δ (dashed) of a pose estimate (blue) to the center
line. The center line is depicted for both driving directions, indicated by
arrow heads. The green part of the center line is the lane piece that has the
shortest distance to the pose estimate. While lane pieces of the gray center
line are closer to the pose estimate, the driving direction does not match and
therefore the black center line is chosen.

us to get good information about the lateral deviation of the pose estimate to the center
line, but the longitudinal and heading distances are less precise (see the discussion of
Wijesoma et al. (2006) for the observability of path constrained vehicle localization).
We consider this when designing our scaling functions by choosing more conservative
parameters for the longitudinal and heading distances. Overall, the lateral localization
error is the most interesting error component and therefore a precise determination of
the lateral distance is of foremost interest.

Consider the i-th pose estimate with its information matrix Λi. Let the minimal
longitudinal, lateral, and heading distances of the pose estimate to the center line be δx,
δy, and δθ. For now we assume that a scaling matrix S exists such that its Cholesky
decomposition is

S =



sx(δx) 0 0

0 sy(δy) 0

0 0 sθ(δθ)


 = LSL

>
S , (6.8)

where sx, sy, and sθ are scaling functions that depend upon the respective distances. We
propose to scale Λi such that

Λscal
i = LSΛiL

>
S . (6.9)

This slightly complicated notation allows us to express that all entries of Λi are scaled.

The remaining question is how to define sx, sy, and sθ.
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Figure 6.6.: Scaling function as defined by (6.10) for different distances to the center
line. The parameters are λ1 = 1.0, λ2 = 1.0, smin = 0.1, and smax = 1.0.

6.2.2. Scaling functions

Different choices are possible for the scaling functions. Similar to robust cost functions,
the optimal choice depends upon the concrete situation. The idea of robust cost func-
tions is to limit the influence of outliers by reducing their weight in the optimization
process. To this end, they scale large error terms less than the default quadratical scal-
ing. See Section 3.4.3 for more information. Our scaling functions are similar in that
they reduce the influence of potential outliers by increasing their covariance.

We present one parametrized scaling function that works well in our context. Drop-
ping the indices on the scaling functions s and on the distances δ for notational clarity
we define

s(δ) =





smin exp
(
λ1−|δ|
λ2

)
≤ smin

smax exp
(
λ1−|δ|
λ2

)
≥ smax

exp
(
λ1−|δ|
λ2

)
else,

(6.10)

with parameters λ1, λ2, smin, and smax. This seemingly complex definition of s is
quickly untangled when plotting the corresponding function. Figure 6.6 shows this
function for a certain parameter set. We see that smin defines a minimum value below
which the scaling does not drop. If we wanted to reject extremely improbable pose esti-
mates, then we could set this value to zero. However, we will generally prefer to set this
to a minimum value above zero to respect the probability of false alarm. Similarly, smax

defines the maximum value of the scaling. It will often make sense to limit this to 1 as
the scaling would otherwise imply that the pose estimate contains more information than
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it claims itself. The parameters λ1 and λ2 define the slope of the scaling. It allows us to
use steeper slopes for pose estimates with little uncertainty. Also, their definition leads
to a plateau around |δ| ≈ 0. The reasoning behind this is that we do not want to penalize
pose estimates near the center line as it is highly likely that the vehicle is driving close

to and not exactly on the center line. The scaling comes into effect for pose estimates
that are sufficiently far away from the center line where “sufficiently” is defined by the
width of the plateau. This width is determined empirically by examining recorded data
to analyze usual distances of the vehicle to the center line. We show a corresponding
experiment in Section 7.4.2. The set of all four parameters (smin, smax, λ1, λ2) is found
empirically. For our use case, the exact form of the scaling function and its parameters
did not turn out to be of significant importance. Therefore, we restrict ourselves to a
single scaling function instead of comparing several ones.

6.3. Cross-correlated errors between pose sources

Multi-sensor fusion based on NLLSQ optimization commonly assumes uncorrelated
noise between measurements. However, the noise of different pose sources can in gen-
eral be correlated. Ignoring correlated noise leads to overconfident pose estimates, cor-
rupt uncertainty estimates, and potentially estimator divergence. Noise is correlated
between pose sources when, for example, the same sensor or map data is being used in
different algorithms or when the same algorithm runs on two physically different sen-
sors (e.g., two GPS receivers). Two of the major sources are common process noise and
common prior information (Reinhardt et al., 2012). Both lead to common noise that
potentially influences all affected sources. Ideally, we would be able to eliminate the
source of the common noise, but as we perform generic pose fusion we lack the insight
what this common source is. Therefore, we try to minimize its impact in the fusion
process by using CI to produce conservative estimates.

Figure 6.7 motivates why naive fusion is suboptimal as its result is overconfident.
The true correlation betweenΣ1 andΣ2 is unknown and randomly drawn positive cor-
relations (displayed in gray) show that the two CI methods (trace minimization with
ω = 0.69 and determinant minimization with ω = 0.29) provide conservative bounds.

In this section we detail our approach of treating correlated noise between pose
sources with the help of a CI framework. We refer to the presentation of CI in Sec-
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Figure 6.7.:Σ1 and Σ2 are two example covariance matrices with unknown correla-
tion that we want to fuse. CI covariance ellipses for trace (ω = 0.69) and
determinant (ω = 0.29) minimization are shown in blue and green. True co-
variance values for randomly chosen correlations are displayed as gray dots.
The naive fusion (dashed, red) is potentially overconfident. Note that gray
dots within the ellipse of the naive fusion correspond to negative correlation
coefficients, which have been included for the sake of completeness.
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tion 3.5 for this. Generally, if we have two pose sources with cross-correlated noise, we
apply the closed-form solutions given in Section 3.5.4 to produce a single conservative
estimate. We extend these formulas so that we can apply them to more general matrices.
This includes two diagonal covariance matrices that share at least one common entry,
for example.

6.3.1. Extension of the closed-form solutions of Covariance
Intersection

The closed-form expressions for trace and determinant minimization in Section 3.5.4
are derived independent of the properties of the covariance matrices to which they are
applied. We give a simple example in which they cannot be applied, highlight the un-
derlying problem, and show how we can reduce the dimensionality of the optimization
problem for both trace and determinant minimization so that we can again apply the ana-
lytic solutions. Here we pickup the notation from Section 3.5.4. We recall that di are the
eigenvalues of the matrixΣ′2, which we obtained as a result of the joint diagonalization
of the two covariance matrices of interest.

The issue is that we can only set d̃i = d̄i
1−d̄i

if d̄i 6= 1. This, however, is not always the
case as the following example shows. Without loss of generality let

Σ1 =

[
Σ∗1 0

0 σ2

]
, Σ2 =

[
Σ∗2 0

0 σ2

]
(6.11)

with σ2 > 0. We then verify that d̄N = 1 (with N being the problem dimensionality).
This is the case whenever at least one element ofΣ1 andΣ2 is identical. For notational
simplicity we assume in the following that this is the last element in Σ1 and Σ2. This
important class of matrices is of interest to us. We will now investigate how to treat the
case d̄i = 1 for both trace and determinant minimization so that we can extend the CI
solution to this class of matrices.
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First, we are interested in determinant minimization and directly develop (3.84) to

ω∗ = arg max
ω

N∏

i=1

ω + (1− ω)d̄i (6.12)

= arg max
ω

N−1∏

i=1

ω + (1− ω)d̄i. (6.13)

Hence, the dimension of the CI problem can be reduced by one by solving the CI prob-
lem for (Σ∗1 ,Σ

∗
2) instead of (Σ1,Σ2).

Secondly, we turn to trace minimization and develop (3.87) to

ω∗ = arg max
ω

N∑

i=1

ai
ω + (1− ω)d̄i

(6.14)

= arg max
ω

N−1∑

i=1

ai
ω + (1− ω)d̄i

+
an
1

(6.15)

= arg max
ω

N−1∑

i=1

ai
ω + (1− ω)d̄i

. (6.16)

Again we observe that this case leads to the reduction of the dimensionality of the
problem. The key insight is that this problem is now well-defined and that we can
apply our common set of CI equations to solve it.

This derivation is easily extended to the case that d̄i = 1 for multiple i. This reduces
the set of viable candidates for ω∗ by the amount of i for which d̄i = 1. In the extreme
case that d̄i = 1 for all i = 1, . . . , N all eigenvalues of E′2 are equal to 1 and therefore
the identity

TΣ2T
> = E′2 = I = TΣ1T

> (6.17)

holds which implies Σ1 = Σ2 since T is invertible. Therefore, ω ∈ [0, 1] can be set
arbitrarily sinceΣω = Σ1 = Σ2 holds.

With these derivations we are able to apply CI to any two covariance matrices regard-
less of their entries. Our contribution consists in showing how to extend the closed-form
solutions for CI with both trace and determinant minimization to matrices which share
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at least one common entry.

6.4. Measurements with autocorrelated errors

The core estimator assumes that the noise of all input pose estimates is AWGN. The
assumption of white noise implies that all pose estimates are independently drawn from
Gaussian distributions. In this section we are interested in those sources for which this
assumption does not hold because their error is autocorrelated. If this autocorrelation
is of order 1, then we can model the noise of the pose source as AR(1). This has
important implications on the estimation procedure. Also, autocorrelated errors are
common for prefiltered pose sources or those where the observations themselves are
correlated over time. The latter is true for observations of GNSS receivers. These
can either be modeled as AR(1) (Zangeneh-Nejad et al., 2015) or, more sophisticated,
as autoregressive moving average processes (Luo, 2013). In the context of this work,
we are interested in how to preprocess estimates of pose sources whose noise can be
modeled as an AR(1) process.

We refer to NLLSQ estimation which does not consider autocorrelated errors as or-

dinary NLLSQ3. In contrast, we refer to NLLSQ estimation with autocorrelated errors
as AR(1) NLLSQ. We derive this concept in the following. It is applicable to graph-
based estimation problems, such as our pose fusion, SLAM, bundle adjustment, or other
NLLSQ problems. If we apply ordinary NLLSQ to data with autocorrelated errors, then
the estimator is still unbiased but inefficient. Even more, the estimated covariances are
substantially biased (Maddala and Lahiri, 1992). Moreover, statistical tests that rely
on the estimated covariances are invalid. It is therefore important to correctly model
autocorrelated errors.

We derive in Section 6.4.1 the AR(1) NLLSQ scheme. This results in a correct es-
timation of the uncertainty of the output at the cost of a higher computational demand
and the loss of a graph-based representation. With this result in mind, we subsequently
show two ways to incorporate this knowledge of the AR(1) NLLSQ into the ordinary
NLLSQ estimation process. The first one in Section 6.4.2 derives an understanding of
the influence of autocorrelated noise on the graph itself. We show how to use nodes and

3Sometimes, it is referred to as ordinary least squares (OLS) for both linear and nonlinear problems.
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edges to construct the same effect as autocorrelated errors in the resulting optimization
problem. Thus, we gain an understanding of how pose estimates with autocorrelated er-
rors can be modeled in a graph purely with the help of graph elements. However, at this
point we still suffer from an increased computational demand. To tackle this challenge,
we seek to keep the optimization problem as close to an ordinary NLLSQ procedure as
possible. To this end, the second method is described in Section 6.4.3 and demonstrates
that scaling the information matrices of the pose estimates is exactly equivalent to solv-
ing the AR(1) NLLSQ problem in terms of the estimated covariance matrix. It allows
us to efficiently solve the problem as the sparsity is exactly preserved.

In total, we therefore first show how autocorrelated errors can be modeled within
the optimization problem. Secondly, we derive a graph-based representation of this.
Thirdly, we show how to efficiently implement this.

6.4.1. Nonlinear least squares with autocorrelated errors

Our goal is now to derive the normal equations of AR(1) NLLSQ estimation. In Sec-
tion 3.4.2 we derived the constraint-based formulation of the NLLSQ estimation by
summing up over all single constraints. This implicitly assumes that the noise of all
constraints is uncorrelated. As we drop this assumption in the following, it is instru-
mental to prefer a vectorized notation. Making use of our description of the geodetic
formulation in Section 3.4.7, we recall that

A>PAx̂ = A>Pl (6.18)

is already in vectorized form. A similar derivation can be made for the constraint-based
notation with the goal of writing it in a vectorized form as

J̆>Σ−1J̆∆x∗ = −J̆>Σ−1ĕ. (6.19)

These are two ways of denoting the same equation. Here we stack all terms J̆i in one
big matrix J̆ = [. . . , J̆>i , . . . ]

> ∈ R3n×3m, where n is the number of constraints, m
the number of states, and the factor 3 arises due to the dimension of a state variable.
Similarly, we stack the error vector into ĕ = [. . . , ĕ>i , . . . ]

> ∈ R3n×1. We form the
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matrixΣ ∈ R3n×3n equivalently by creating a block-diagonal matrix

Σ =




. . .

Σi

. . .


 . (6.20)

This forms the total stochastic model of our estimation problem. The block-diagonal
form is often chosen because its inverse is easily computable and it preserves the sparsity
of the problem (given that J̆ is sparse). However, when dealing with autocorrelated
errors we have to modifyΣ to reflect the temporal dependency of the noise.

We model the measurements and their errors of a pose source with autocorrelated
noise as

zAR
i = pi + εAR

i , (6.21)

εAR
i = φεAR

i−1 + υi, (6.22)

where zAR
i is the i-th measurement of the true pose pi with the additive error vector

εAR
i . This error vector is described as an AR(1) process with autocorrelation coefficient
φ and AWGN υi ∼ N (0,Συ).

In Section 3.6 we highlighted ways to judge whether a given time series can be con-
sidered to stem from an AR(1) process. Additionally, we proposed ways to estimate
φ. Here we assume that we successfully applied this knowledge to verify that we can
model the error of the measurements of a given pose source as an AR(1) process with
the autocorrelation coefficient φ. Let us assume covariance stationarity for this process
such that its covariance is identical for all time steps. For the simplicity of the follow-
ing derivation, we assume equal variances Συ for all measured quantities. The joint
covariance matrixΣAR for all measurements with autocorrelated noise is then

ΣAR =
1

1− φ2




Συ

. . .

Συ







1 φ1 φ21 · · · φn−11

φ1 1 φ1 φn−21

φ21 φ1 1
...

... . . . φ1

φn−11 φn−21 · · · φ1 1



, (6.23)
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where the latter matrix is the so-called correlation matrix. Interestingly, the inverse
of the dense matrix ΣAR is sparse. These two results have previously been used and
derived by Cochrane and Orcutt (1949); Fröhlich (2017). The inverse matrix is given
by

ΛAR = (ΣAR)−1 =




Σ−1
υ

. . .

Σ−1
υ







1 −φ1 0 · · · 0

−φ1 (1 + φ2)1 −φ1 · · · ...
0 −φ1 (1 + φ2)1 −φ1
... . . . . . . 0

(1 + φ2)1 −φ1
0 · · · 0 −φ1 1




.

(6.24)
This leads us to the normal equations of AR(1) NLLSQ estimation which are given by

J̆>ΛARJ̆∆x∗ = −J̆>ΛARĕ (6.25)

⇔HAR∆x∗ = −bAR. (6.26)

This general description is valid for any kind of measurements with autocorrelated
noise. In the following we analyze how constraints in the form of observed nodes
and odometry edges influence the normal equations if they stem from those kind of
measurements.

Observed nodes Let us examine the influence of observed nodes with autocorre-
lated noise on the estimation problem. Given the excerpt from a pose graph in Fig-
ure 6.8, we analyze the influence of two observed nodes. Let us assume that they both
stem from the same pose source, that the underlying measurements share autocorrelated
noise, and that they stem from two successive measurements. What kind of error do
we make if we instead falsely assume that the constraints stem from a pose source with
AWGN? To this end, we compute the changes inH and bwhen assuming either AWGN
or AR(1) noise.

Assuming that the two observed nodes share autocorrelated noise, we find with (6.24)
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Figure 6.8.: Excerpt of a pose graph with two observed nodes. The dashed lines with
the gap in the middle indicate that the hidden nodes xi and xj are part of the
same graph but not necessarily directly connected.

that the information matrix for the two constraints is

Λw,AR =




. . .

Λw,AR
k · · · Λw,AR

kl
... . . . ...

Λw,AR
lk · · · Λw,AR

l

. . .



, (6.27)

with

Λw,AR
k = (1 + φ2)Λw

k , (6.28)

Λw,AR
kl = −φ(Λw

k )
1
2 ((Λw

l )
1
2 )>, (6.29)

Λw,AR
lk = (Λw,AR

kl )> = Λw,AR
kl , (6.30)

Λw,AR
l = (1 + φ2)Λw

l , (6.31)

where (Λw
k )

1
2 is the Cholesky decomposition. The structure of Λw,AR reflects that both

constraints are somehow connected.

Let us denote J̆w
k,i =

(
∂ewk (xi,z

w
k )

∂xi

∣∣∣
x=x̆

)>
and as usual stack all J̆w

k,i in J̆w. With this
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notation we have

Hw,AR = (J̆w)>Λw,ARJ̆w (6.32)

=




. . .

Hw,AR
ii · · · Hw,AR

ij
... . . . ...

Hw,AR
ji · · · Hw,AR

jj

. . .



, (6.33)

=




. . .

(J̆w
k,i)
>Λw,AR

k J̆w
k,i · · · (J̆w

k,i)
>Λw,AR

kl J̆w
l,j

... . . . ...
(J̆w

l,j)
>Λw,AR

kl J̆w
k,i · · · (J̆w

l,j)
>Λw,AR

l J̆w
l,j

. . .




(6.34)

and

bw,AR =




...
(J̆w

k,i)
>Λw,AR

k ĕw
k + (J̆w

k,i)
>Λw,AR

kl ĕw
l

...
(J̆w

l,j)
>Λw,AR

l ĕw
l + (J̆w

l,j)
>Λw,AR

kl ĕw
k

...




. (6.35)

Here all terms underlined in blue are additional terms when comparing ordinary NLLSQ
to AR(1) NLLSQ in the context of observed nodes. We see that these terms change
the structure of Hw,AR and decrease its sparsity. Additionally, we note that Hw,AR

ii

and Hw,AR
jj differ in their values as we have to use a different information matrix as

compared to when assuming AWGN. These differences are exactly the error that we
make when we assume AWGN instead of autocorrelated noise.

In the next step, we are interested in a similar result for odometry edges.

Odometry edges Similarly to observed nodes, we are interested in knowing the
error that we make when assuming AWGN instead of autocorrelated noise for odometry
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Figure 6.9.: Excerpt of a pose graph with two odometry edges.

constraints. In Figure 6.9 we depict a pose graph with two odometry constraints.

Again, we compute the resultingH and b by assuming that the two successive odom-
etry constraints are autocorrelated. The stochastic model Λv,AR is similar to the model
for observed nodes:

Λv,AR =




. . .

Λv,AR
l · · · Λv,AR

lm
... . . . ...

Λv,AR
ml · · · Λv,AR

m

. . .



, (6.36)

with

Λv,AR
l = (1 + φ2)Λv

l , (6.37)

Λv,AR
lm = −φ(Λv

l )
1
2 ((Λv

m)
1
2 )>, (6.38)

Λv,AR
ml = (Λv,AR

lm )> = Λv,AR
lm , (6.39)

Λv,AR
m = (1 + φ2)Λv

m. (6.40)

The Jacobians, however, contain more terms. Therefore, we detail them to

J̆v
l =

[ i j

· · · 0
∂evl (xi,xj ,z

v
l )

∂xi

∣∣∣
x=x̆

0 · · · 0
∂evm(xi,xj ,z

v
l )

∂xj

∣∣∣
x=x̆

0 · · ·
]

(6.41)

=
[
· · · 0 J̆v

l,i 0 · · · 0 J̆v
l,j 0 · · ·

]
. (6.42)

Similarly, we derive J̆v
m by exchanging the subscript l to m. Stacking these two Jaco-
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bians leads to the matrix J̆v with

J̆v =




...
J̆v
l
...
J̆v
m
...




=




i j k

...
· · · J̆v

l,i · · · J̆v
l,j · · ·
...

· · · J̆v
m,j · · · J̆v

m,k · · ·
...



. (6.43)

Now we have the tools at hand to deriveHv,AR to

Hv,AR = (J̆v)>Λv,ARJ̆v (6.44)

=




. . .

Hv,AR
ii · · · Hv,AR

ij · · · Hv,AR
ik

...
...

...
Hv,AR

ji · · · Hv,AR
jj · · · Hv,AR

jk
...

...
...

Hv,AR
ki · · · Hv,AR

kj · · · Hv,AR
kk

. . .




, (6.45)
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with

Hv,AR
ii = (J̆v

l,i)
>Λv,AR

l J̆v
l,i, (6.46)

Hv,AR
ij = (J̆v

l,i)
>Λv,AR

l J̆v
l,j + (J̆v

l,i)
>Λv,AR

lm J̆v
m,j, (6.47)

Hv,AR
ik = (J̆v

l,i)
>Λv,AR

lm J̆v
m,k, (6.48)

Hv,AR
ji = (Hv,AR

ij )>, (6.49)

Hv,AR
jj = (J̆v

l,j)
>(Λv,AR

l J̆v
l,j +Λv,AR

lm J̆v
m,j) + (J̆v

m,j)
>(Λv,AR

m J̆v
m,j +Λv,AR

lm J̆v
l,j),

(6.50)

Hv,AR
jk = (J̆v

m,j)
>Λv,AR

m J̆v
m,k + (J̆v

l,j)
>Λv,AR

lm J̆v
m,k, (6.51)

Hv,AR
ki = (Hv,AR

ik )>, (6.52)

Hv,AR
kj = (Hv,AR

jk )>, (6.53)

Hv,AR
kk = (J̆v

m,k)
>Λv,AR

m J̆v
m,k. (6.54)

Similarly, we obtain bv,AR with

bv,AR =




...
(J̆v

l,i)
>Λv,AR

l ĕv
l + (J̆v

l,i)
>Λv,AR

lm ĕv
m

...
(J̆v

l,j)
>Λv,AR

l ĕv
l + (J̆v

l,j)
>Λv,AR

lm ĕv
m + (J̆v

m,j)
>Λv,AR

m ĕv
m + (J̆v

m,j)
>Λv,AR

lm ĕv
l

...
(J̆v

m,k)
>Λv,AR

m ĕv
m + (J̆v

m,k)
>Λv,AR

lm ĕv
l

...




.

(6.55)

Again, all terms underlined in blue are additional terms compared to ordinary NLLSQ,
this time in the context of odometry edges. Also, all information matrices are different.
Therefore, we can specify the error that we make when assuming AWGN for odometry
constraints that in fact have autocorrelated noise.

In conclusion, these derivations for observed nodes and odometry edges provide us
with a better stochastic model for constraints with autocorrelated noise. Therefore, the
resulting uncertainty estimation of the result is of higher quality. However, we have
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also seen that the augmented optimization problem is harder to solve as it becomes less
sparse and more memory consuming. As a consequence, if we would implement these
models within the core estimator, we would lose its block-tridiagonal structure and the
associated advantages. Moreover, we have derived the AR(1) NLLSQ estimation proce-
dure, but we do not have a graph-based representation for it. We are generally interested
in such a representation to help us reason more intuitively about the underlying prob-
lem structure. For this reason we have already derived in Section 5.3 a prior node to
represent the effect of marginalization on our sliding window pose graph. In the same
spirit we derive graph elements to represent constraints with autocorrelated noise in the
following.

6.4.2. Constraints with autocorrelated noise can be
understood with graph elements

In Section 6.4.1 we show how the AR(1) NLLSQ estimation looks like. Now we derive
an understanding of this in terms of the graph-based representation. For this our current
tool set of error functions for a pose graph, ev and ew, is not sufficient anymore. We
will see that we need to add edges with additional error functions. As a first step, we
derive edges that model observed nodes with autocorrelated noise. As a second step, we
derive similar edges that model odometry edges with autocorrelated noise. Together,
they allow us to create a graph-based representation of a AR(1) NLLSQ problem.

Observed nodes Our goal is to derive edges that model the influence of observed
nodes with autocorrelated noise. This influence should be the same as derived in Sec-
tion 6.4.1. We approach this by analyzing two observed nodes with autocorrelated noise,
detailing the corresponding edges, and proving that they lead to the desired result.

At first, we analyze two observed nodes xw
k and xw

l with the pose estimates zw
k and zw

l .
Let them be connected to two hidden nodes xi and xj , as depicted in Figure 6.8. Under
the AWGN assumption they lead to addends in Hii,Hjj, bi, and bj (cf. Section 3.4.6).
However, if we assume their noise to be modeled as AR(1), then they should lead to
different addends in these places and additionally to addends in Hij and Hji. What
graph elements do we need to achieve this?

We combine three edges zw
k , z

w
l , and zw,AR

m to achieve this result. The Figure 6.10
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Figure 6.10.: The same part of a pose graph as in Figure 6.8, but this time we assume
the noise of the observed nodes to be modeled as AR(1). We need an
additional constraint to model the influence of the autocorrelated noise.

shows the same part of the graph as Figure 6.8, but this time we assume the noise of the
observed nodes to be described as AR(1). The most striking difference when comparing
this to the graph in Figure 6.8 is the introduction of the hyperedge zw,AR

m that connects
both observed nodes and both hidden nodes simultaneously. Looking more closely, we
also see that the edges from the observed to the hidden nodes have undergone a cor-
rection of their associated information matrices. We derive in the following that these
three edges have the same influence on the underlying NLLSQ formulation as directly
augmenting the stochastic model in the optimization problem as we have done in Sec-
tion 6.4.1. We conclude that these edges are therefore the graph-based representation of
constraints from measurements with autocorrelated noise.

The new hyperedge zw,AR
m connects xw

k , x
w
l , xi, and xj . It depends on a new error

function ew,AR
m with

ew,AR
m (xi,xj, z

w
k , z

w
l ) = ew

k (xi, z
w
k ) + ew

l (xj, z
w
l ). (6.56)

Its partial derivatives are

∂ew,AR
m (xi,xj, z

w
k , z

w
l )

∂xi
=
∂ew

k (xi, z
w
k )

∂xi
= J̆w,AR

m,i = J̆w
k,i, (6.57)

∂ew,AR
m (xi,xj, z

w
k , z

w
l )

∂xj
=
∂ew

l (xj, z
w
l )

∂xj
= J̆w,AR

m,j = J̆w
l,j. (6.58)
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Its Jacobian is therefore

J̆w,AR
m =

[ i j

· · · 0
∂ew,AR
m (xi,xj ,z

w
k ,z

w
l )

∂xi

∣∣∣
x=x̆

0 · · · 0
∂ew,AR
m (xi,xj ,z

w
k ,z

w
l )

∂xj

∣∣∣
x=x̆

0 · · ·
]

(6.59)

=
[ i j

· · · 0 J̆w
k,i 0 · · · 0 J̆w

l,j 0 · · ·
]
. (6.60)

The corresponding constraint zw,AR
m takes into account this error function and the infor-

mation matrix Λw,AR
m = Λw,AR

kl such that the squared error becomes

ew,AR
m = ew,AR

m (xi,xj, z
w
k , z

w
l )>Λw,AR

m ew,AR
m (xi,xj, z

w
k , z

w
l ). (6.61)

This constraint leads toHw,AR
m with

Hw,AR
m =




. . .

(J̆w
k,i)
>Λw,AR

m J̆w
k,i · · · (J̆w

k,i)
>Λw,AR

m J̆w
l,j

... . . . ...
(J̆w

l,j)
>Λw,AR

m J̆w
k,i · · · (J̆w

l,j)
>Λw,AR

m J̆w
l,j

. . .



, (6.62)

and bw,AR
m with

bw,AR
m =




...
(J̆w

k,i)
>Λw,AR

m ĕw,AR
m

...
(J̆w

l,j)
>Λw,AR

m ĕw,AR
m

...



. (6.63)

This is a nice intermediate result as it leads to the correct addends inHw,AR
ij andHw,AR

ji ,
but because of the information matrix Λw,AR

m it leads to slightly wrong addends in
Hw,AR

ii , Hw,AR
jj , bw,AR

i , and bw,AR
j . We correct for this by considering the other two

mentioned edges zw
k and zw

l . In terms of the error functions, we use them as ordinary
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edges between observed and hidden nodes, just as we would model them when assum-
ing AWGN noise. However, we adapt the associated information matrices to be

Λw
k = Λw,AR

k −Λw,AR
m , (6.64)

Λw
l = Λw,AR

l −Λw,AR
m . (6.65)

The two constraints zw
k and zw

l lead with these corrected information matrices to Hw
k

andHw
l with

Hw
k =




. . .

(J̆w
k,i)
>Λw

k J̆
w
k,i

. . .


 , (6.66)

Hw
l =




. . .

(J̆w
l,j)
>Λw

l J̆
w
l,j

. . .


 . (6.67)

Equivalently we find that

bw
k =




...
(J̆w

k,i)
>Λw

k ĕ
w
k

...


 , (6.68)

bw
l =




...
(J̆w

k,i)
>Λw

l ĕ
w
l

...


 . (6.69)

These three constraints together allow us to compute Hw,AR and bw,AR for the graph
depicted in Figure 6.10:

Hw,AR = Hw
k +Hw

l +Hw,AR
m , (6.70)

bw,AR = bw
k + bw

l + bw,AR
m . (6.71)

(6.72)
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Figure 6.11.: The same part of a pose graph as in Figure 6.9, but this time we assume the
noise of the odometry edges to be modeled as AR(1). We need an addi-
tional constraint to model the influence of the noise of the AR(1) process.

It is straightforward to verify that these results are equal to (6.34) and (6.35). Therefore,
we have defined a graph-based representation for modeling observed nodes with auto-
correlated noise that is equal to the direct modeling as a AR(1) NLLSQ problem. A key
piece that we are still missing is, how a graph-based representation of odometry edges
with autocorrelated noise looks like. We approach this question in the following.

Odometry edges Within a similar train of thought as the derivation of a graph-
based representation for observed nodes with autocorrelated noise, it is now our goal to
derive the same for odometry edges. To this end, we begin by stating that the graph-
based representation in Figure 6.11 solves this problem. With a similar approach as for
observed nodes, we first define the new hyperedge zv,AR

n and then show that we need to
adapt the information matrices of the usual constraints zv

l and zv
m to achieve the desired

result.

The constraint zv,AR
n of the corresponding hyperedge is associated to the error func-

tion
ev,AR
n (xi,xj,xk, z

v
l , z

v
m) = ev

l (xi,xj, z
v
l ) + ev

m(xj,xk, z
v
m). (6.73)

Its partial derivatives with respect to the state variables are

∂ev,AR
n (xi,xj,xk, z

v
l , z

v
m)

∂xi
=
∂ev

l (xi,xj, z
w
l )

∂xi
, (6.74)

∂ev,AR
n (xi,xj,xk, z

v
l , z

v
m)

∂xj
=
∂ev

l (xi,xj, z
w
l )

∂xj
+
∂ev

m(xj,xk, z
w
m)

∂xj
, (6.75)

∂ev,AR
n (xi,xj,xk, z

v
l , z

v
m)

∂xk
=
∂ev

m(xj,xk, z
w
m)

∂xk
. (6.76)

With the usual abbreviations the partial derivatives evaluated at the linearization point
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are

J̆v,AR
n,i = J̆v

l,i, (6.77)

J̆v,AR
n,j = J̆v

l,j + J̆v
m,j, (6.78)

J̆v,AR
n,k = J̆v

m,k. (6.79)

The Jacobian of the constraint zv,AR
n is therefore

J̆v,AR
n =

[ i j k

· · · 0 J̆v,AR
n,i 0 · · · 0 J̆v,AR

n,j 0 · · · 0 J̆v,AR
n,k 0 · · ·

]
.

(6.80)
The constraint zv,AR

n leads toHv,AR
n with

Hv,AR
n = (J̆v,AR

n )>Λv,ARJ̆v,AR
n = (6.81)




. . .

(J̆v,AR
n,i )>Λv,AR

n J̆v,AR
n,i · · · (J̆v,AR

n,i )>Λv,AR
n J̆v,AR

n,j · · · (J̆v,AR
n,i )>Λv,AR

n J̆v,AR
n,k

...
...

...
(J̆v,AR

n,j )>Λv,AR
n J̆v,AR

n,i · · · (J̆v,AR
n,j )>Λv,AR

n J̆v,AR
n,j · · · (J̆v,AR

n,j )>Λv,AR
n J̆v,AR

n,k
...

...
...

(J̆v,AR
n,k )>Λv,AR

n J̆v,AR
n,i · · · (J̆v,AR

n,k )>Λv,AR
n J̆v,AR

n,j · · · (J̆v,AR
n,k )>Λv,AR

n J̆v,AR
n,k

. . .




(6.82)

and bv,AR
n with

bv,AR
n =




...
(J̆v,AR

n,i )>Λv,AR
n ĕv,AR

n
...

(J̆v,AR
n,j )>Λv,AR

n ĕv,AR
n

...
(J̆v,AR

n,k )>Λv,AR
n ĕv,AR

n
...




. (6.83)
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Using the definition of the Jacobians we develop (6.82) toHv,AR
n with the entries

Hv,AR
n,ii = (J̆v

l,i)
>Λv,AR

n J̆v
l,i, (6.84)

Hv,AR
n,ij = (J̆v

l,i)
>Λv,AR

n J̆v
l,j + (J̆v

l,i)
>Λv,AR

n J̆v
m,j, (6.85)

Hv,AR
n,ik = (J̆v

l,i)
>Λv,AR

n J̆v
m,k, (6.86)

Hv,AR
n,ji = (Hv,AR

n,ij )>, (6.87)

Hv,AR
n,jj = (J̆v

l,j)
>(Λv,AR

n J̆v
l,j +Λv,AR

n J̆v
m,j) + (J̆v

m,j)
>(Λv,AR

n J̆v
m,j +Λv,AR

n J̆v
l,j),

(6.88)

Hv,AR
n,jk = (J̆v

m,j)
>Λv,AR

n J̆v
m,k + (J̆v

l,j)
>Λv,AR

n J̆v
m,k, (6.89)

Hv,AR
n,ki = (Hv,AR

n,ik )>, (6.90)

Hv,AR
n,kj = (Hv,AR

n,jk )>, (6.91)

Hv,AR
n,kk = (J̆v

m,k)
>Λv,AR

n J̆v
m,k (6.92)

and similarly, (6.83) to

bv,AR
n =




...
(J̆v

l,i)
>Λv,AR

n ĕv
l + (J̆v

l,i)
>Λv,AR

n ĕv
m

...
(J̆v

l,j)
>Λv,AR

n ĕv
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(6.93)

As in the derivation for the graph-based representation of observed nodes with auto-
correlated noise, we notice that some of these matrix entries are already correct, while
others need some modification. To be more precise, the entries underlined in blue are
not yet identical when comparing them to (6.45) and (6.55), which is our goal. This is
caused by the deviation of the information matrices. We correct for this by adapting the
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information matrices of the constraints zv
l and zv

m to

Λv
l = Λv,AR

l −Λv,AR
n , (6.94)

Λv
m = Λv,AR

m −Λv,AR
n . (6.95)

These two constraints then lead toHv
l andHv

m with
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and
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The corresponding right-hand side vectors are bv
l and bv

m with
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In total, the three constraints zv
l , z

v
m, and zv,AR

n allow us to computeHv,AR and bv,AR for
the graph depicted in Figure 6.11 to

Hv,AR = Hv
l +Hv

m +Hv,AR
n , (6.100)

bv,AR = bv
l + bv

m + bv,AR
n . (6.101)

We compare the result with (6.45) and (6.55) and verify that they are indeed identi-
cal. We conclude that the given three constraints are a graph-based representation for
odometry edges with autocorrelated noise. Together with the graph-based representa-
tion for observed nodes with autocorrelated noise, we are now able to understand the
influence of this kind of noise on the graph-based representation. This by itself is a big
step forward. However, as these new constraints lead to the exact same entries as AR(1)
NLLSQ, we still suffer from the increased computational demand. In the next section
we therefore tackle this challenge.
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6.4.3. AR(1) scaling: efficient implementation by scaling
information matrices

In the previous section we described how graph elements can represent constraints with
autocorrelated errors. The upside of this is that we gain understanding in terms of
how the graphical structure is influenced by these constraints. However, the AR(1)
NLLSQ scheme results in a decreased sparsity of the system matrix compared to ordi-
nary NLLSQ. The graph elements for constraints with autocorrelated errors share this
property of course, as they provide an exact model of the underlying equations. A re-
duced sparsity generally means that solving the linear system takes more time. In this
section we present a remedy for this which allows us to retain the same sparsity pattern
as in ordinary NLLSQ. In fact, we will see that we only need to inflate the covariances
matrices of the measurements in a specific way to obtain a covariance consistent esti-
mate. We refer to this as AR(1) scaling.

As discussed earlier, performing ordinary NLLSQ estimation on constraints with au-
tocorrelated errors leads to unbiased mean estimates but to overconfident uncertainty
estimates. Therefore, we explicitly focus on how to obtain better uncertainty estimates.
To this end, we consider the information-theoretic optimal fusion of measurements with
autocorrelated errors by computing the FI matrix of AR(1) NLLSQ. Similar to CI, we
postulate that the information content of our scaled covariance matrices has to be equal
to that of the FI matrix of the measurements.

Let Zi be the random variable that describes the measurements zAR
i . For the com-

putation of the FI matrix I(Z|µ), we need the joint probability distribution of the n
random variables Z = (Z1, . . . , Zn) with

p(Z) ∝ exp

(
−1

2
[Z1, . . . , Zn](ΣAR)−1[Z1, . . . , Zn]>

)
. (6.102)

At this point we make use of our derivation in Section 3.7.1 where we derived the
CRLB applied to measurements from independent Gaussians. The key difference is that
we do not assume independence between the measurements anymore. This changes
how the matrix B looks like. For measurements with autocorrelated errors, we have
B = ΣAR. Keeping this difference in mind, we follow the derivation from (3.99) to



136 6. Preprocessing sublayer

(3.104) and conclude that

I(Z|µ) = A>(ΣAR)−1A, A = [1, . . . ,1]>︸ ︷︷ ︸
n blocks

. (6.103)

The FI matrix is therefore the sum of all entries of (ΣAR)−1 such that

I(Z|µ) =
∑

i,j

(ΣAR
ij )−1 =

∑

i,j

ΛAR
ij . (6.104)

Luckily, we already know ΣAR and its inverse, ΛAR, from (6.23) and (6.24). We can
now plug in these terms and obtain

I(Z|µ) =
∑

i,j

ΛAR
ij (6.105)

= Σ−1
υ ((n− 2)(1 + φ2)︸ ︷︷ ︸

diagonal entries

− 2(n− 1)φ︸ ︷︷ ︸
off-diagonal entries

+ 2︸︷︷︸
first and last entry

) (6.106)

= Σ−1
υ ((n− 2)φ2 − 2(n− 1)φ+ n). (6.107)

We employ a similar weighting technique as CI for fusing measurements with au-
tocorrelated noise. To this end, we weight the covariance matrix ΣAR

i of each mea-
surement with a weight ωi such that we obtain ωiΣAR

i for each measurement. The key
question is then how to choose the weights ωi. CI proposes to chose the weights in a
very conservative way such that

∑n
i=1 ωi = 1. As we have shown in Section 3.7.2, this

means that we consider the information content of a single measurement because we do
not want to make any assumption about the nature of the correlation. This is different
for measurements with autocorrelated noise, where we have more knowledge about the
correlation. We postulate that the information content of all measurements should be
equal to the FI matrix of the measurements. This guarantees that we make optimal use
of the information at hand while at the same time not being overly confident.

To formalize this, we postulate that

n∑

i=1

ωi(Σ
AR
i )−1 = I(Z|µ). (6.108)
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With (6.107), we extend this to

n∑

i=1

ωi(Σ
AR
i )−1 = I(Z|µ) (6.109)

⇔
n∑

i=1

ωiΛ
AR
i = Σ−1

υ ((n− 2)φ2 − 2(n− 1)φ+ n) (6.110)

⇔ Σ−1
υ (1− φ2)

n∑

i=1

ωi = Σ−1
υ ((n− 2)φ2 − 2(n− 1)φ+ n) (6.111)

⇔
n∑

i=1

ωi =
(n− 2)φ2 − 2(n− 1)φ+ n

1− φ2
(6.112)

⇔
n∑

i=1

ωi =
n− (n− 2)φ

1 + φ
. (6.113)

If we assume that all weights are equal, then they can be computed by

ωi =
n− (n− 2)φ

n(1 + φ)
, i = 1, . . . , n. (6.114)

This closed-form solution is easily computable. This final result gives us a nice way of
representing the information content of constraints with autocorrelated noise. It is also
easily applicable and does not influence the sparsity of the optimization problem.

Lastly, we show that fusion without correlated constraints and CI are a special case of
this scaling. We have the ordinary NLLSQ problem with φ = 0 for which do not expect
any scaled information matrices. Indeed, we find that

ωi =
n

n
= 1. (6.115)

Applying CI is, as previously shown, equivalent to assuming the information content of
a single measurement. This is equal to assuming φ = 1. In this case,

ωi =
2

2n
=

1

n
. (6.116)

This is in line with our prior derivation in (3.108).

In summary, it was our goal to model measurements with autocorrelated errors within
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the optimization problem. After deriving the equations for AR(1) NLLSQ, we noted that
this leads to two drawbacks. First, our usual representation of the optimization problem
as a pose graph does not work anymore. This is due to additional interdependencies
between the state variables induced by the autocorrelation, which cannot be modeled
with conventional pose graph elements. Second, these additional interdependencies
decrease the sparsity of the problem. This leads to an increased solution time and is
thus unfavorable.

As a next step, we have therefore derived new graph elements to represent constraints
with autocorrelated noise. We did this for both odometry edges and observed nodes. To
sum it up, for each such constraint we need to adapt the involved covariance matrices
and additionally add either a hyperedge zw,AR

m or zv,AR
n . This depends on whether we

are handling an odometry edge or an observed node. This is a nice result as it gives us
a way of reasoning about constraints with autocorrelated noise within our usual graph
representation. Still, however, we suffered from the decreased sparsity.

To tackle this challenge, we have shown that we can map AR(1) NLLSQ onto ordi-
nary NLLSQ by scaling the information matrices of all constraints with autocorrelated
noise. We derived a closed-form solution for the scaling factor. Applying it is as easy as
simply multiplying the corresponding information matrices with it. This makes it easy
and fast to implement. Also, we did not have to alter the problem structure of ordinary
NLLSQ at all. This means that this method leads to solving AR(1) NLLSQ problems at
the same speed as an ordinary NLLSQ problem.
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The experimental section is designed to support our claims made throughout this thesis.
These include those made about the core estimator, the preprocessing sublayer, and the
entire pose fusion layer. We conduct experiments on data gathered on real prototype
vehicles between 2015 and 2017 and on simulated data to prove them. The prototype
vehicles and their sensors are presented in Section 7.1. The pose sources for our exper-
iments are introduced in Section 7.2.

We start the experimental evaluation in Section 7.3 by analyzing the core estimator.
In this stage we neglect the preprocessing sublayer by not using any of its modules.
In Section 7.4 we investigate exclusively the preprocessing sublayer. Finally, we plug
them both together and take a closer look at the pose fusion layer in Section 7.5.

7.1. Vehicles and sensors

This section introduces the two prototype vehicles which were used for the development
and evaluations of this thesis. Furthermore, we present the available sensors and local-
ization systems. The sensor setups were designed by Volkswagen Group Research with
two key questions in mind. First, what level of automation can we achieve with a sensor
setup that is close to the current one? Secondly, what kind of sensor setup do we need
for full automation?

The first vehicle is an Audi A6 Avant, whose basic architecture and sensor setup are
shown in Figure 7.1. Some sensors are omitted, as these are not relevant in the context
of this thesis. These include radars and a front-facing camera. Also, other components
such as additional Personal Computers (PCs) or network hardware are omitted. The
sensor setup is close to those of modern upper-class vehicles. The main use case for this
vehicle is to drive automated on highways and rural roads.
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characteristic value

sensor type GNSS receiver
channel count 14
GNSS capabilities GPS, GLONASS
signal tracking GPS L1
horizontal position accuracy single point L1 1.5 m root mean square (RMS)
data rate 5 Hz (up to 10 Hz)

Table 7.1.: Technical specification of the OEMStar receiver.

The second vehicle is a Volkswagen e-Golf 7. The basic architecture and sensor setup
are shown in Figure 7.2, and a photo is shown in Figure 7.3. Again, several components
are omitted for the sake of clarity. The e-Golf is all in all a more recent prototype
compared to the Audi A6. This results in more recent PCs and a refined sensor setup.
As this car drives fully automated in urban environments, additional lidar scanners with
a higher resolution are necessary to observe the surrounding traffic participants and
objects.

7.1.1. GPS receivers

Both prototype vehicles are equipped with GPS receivers. These are off-the-shelf sen-
sors suited for automotive applications.

NovAtel FlexPak-G2 OEMStar

The NovAtel FlexPak-G2 OEMStar (OEMStar) receiver is the GPS receiver of the Audi
A6. Its technical specifications are given by NovAtel Inc. (2015). Important aspects are
detailed in Table 7.1.

u-blox M8 ADR

The u-blox M8 ADR (u-blox) is a GNSS receiver with an integrated IMU. Its specifica-
tions are given by u-blox (2017). Important aspects are detailed in Table 7.2.
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Figure 7.1.: Basic architecture and sensor setup of the Audi A6 prototype vehicle. The
lower-cost GPS receiver whose antenna is represented in green is detailed
in Section 7.1.1. The reference system is the Applanix system presented
in Section 7.1.2. Its antennas are shown in orange together with the corre-
sponding processing unit. The lidar scanners are the low-resolution scan-
ners described in Section 7.1.3. The cameras are detailed in Section 7.1.4.
The odometry module is presented in Section 7.2.1.
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Figure 7.2.: Basic architecture and sensor setup of the Volkswagen e-Golf prototype
vehicle. The slightly different color scheme indicates that the same type
of sensors as in the Audi A6 are used, but different models. The lower-
cost GPS receiver whose antenna is represented in green is detailed in Sec-
tion 7.1.1. The reference system is the Applanix system presented in Sec-
tion 7.1.2. Its antennas are shown in orange together with the correspond-
ing processing unit. The lidar scanners are described in Section 7.1.3. The
cameras are detailed in Section 7.1.4. The odometry module is presented in
Section 7.2.1.
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Figure 7.3.: An e-Golf prototype vehicle. Source: Volkswagen AG (2017).

characteristic value

sensor type GNSS receiver with integrated IMU
channel count 72
GNSS capabilities GPS, Quasi-Zenith Satellite System (QZSS),

GLONASS, Galileo, BeiDou
signal tracking GPS L1 C/A
horizontal position accuracy 2.0 m circular error probable (CEP)
data rate 1 Hz (up to 20 Hz)

Table 7.2.: Technical specification of the u-blox receiver.
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characteristic value

sensor type RTK-GPS receiver with integrated IMU and postprocessing
GNSS capabilities GPS, QZSS,

GLONASS, Galileo, BeiDou
accuracy X, Y position 0.02 m RMS

Z position 0.05 m RMS
roll and pitch 0.005◦

true heading 0.015◦

data rate 200 Hz

Table 7.3.: Technical specification of the Applanix POS LV 510.

7.1.2. Reference localization systems

The prototype vehicles are equipped with reference localization systems. Their main
purpose is to evaluate the performance of the developed localization systems.

Applanix POS LV 510

The Applanix POS LV 510 is a GNSS receiver with an integrated IMU. The technical
specifications are given by Applanix (2017). Important aspects are detailed in Table 7.3.

Oxford OXTS RT3003

The Oxford OXTS RT3003 is a GNSS receiver with an integrated IMU. The technical
specifications are given by Oxford Technical Solutions Ltd. (2016). Important aspects
are detailed in Table 7.4.

7.1.3. Lidar scanners

A lidar scanner serves to generate three-dimensional point clouds of the environment. It
measures the distance and reflectivity of the closest objects for a discrete set of horizon-
tal and vertical angles. To this end, it emits laser pulses and measures the time-of-flight
until the laser pulse is reflected and returned to the sensor in the scanner. Convention-
ally, they use rotating mirrors to control the horizontal angle of the emitted laser pulses.
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characteristic value

sensor type RTK-GPS receiver with IMU
GNSS capabilities GPS, QZSS,

GLONASS, Galileo, BeiDou
accuracy X, Y, Z position 0.01 m CEP

velocity 0.05 km
h

roll and pitch 0.03◦

heading 0.1◦

data rate 100 Hz

Table 7.4.: Technical specification of the Oxford OXTS RT3003.

Newer generations try to avoid such moving mechanical components to gain a higher
durability.

Two different types of lidar scanners are deployed on the prototype vehicles. The
Audi A6 uses a front- and a rear-facing Valeo ScaLa scanner, which is described in
Section 7.1.3. The e-Golf features five Velodyne VLP-16 Puck, which is described in
Section 7.1.3.

Valeo ScaLa

The Valeo ScaLa is an automotive-grade lidar scanner. It uses three physical scan layers
with a horizontal angular range of 145◦. After each full sweep, it tilts its internal mirror
to cover an additional scan layer during the next sweep. After that, it tilts back into its
initial position. Table 7.5 lists the main characteristics of the scanner.

Velodyne VLP-16 Puck

The Velodyne VLP-16 Puck is a lidar scanner with a horizontal angular range of 360◦,
thus providing a full horizontal scan. Its main characteristics are listed in Table 7.6.
Further details can be found in the official documentation (Velodyne LiDAR Inc., 2017).
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characteristic value

measurement principle laser scanner based on time-of-flight measurements
scan rate 25 scans per second, 750 rpm,

581 laser pulses per scan
scan range 150 m nominal, 100 m effective
wavelength of sender 905 ± 10 nm
number of scan layers three physical layers that tilt vertically,

resulting in four effective layers
number of scan points per second 43 575
horizontal scan rate 145◦

horizontal angle resolution 0.25◦

vertical scan range 2.6◦ to 3.6◦

vertical angle resolution 0.8◦

distance resolution 100 mm

Table 7.5.: Technical specification of the Valeo ScaLa scanner.

characteristic value

measurement principle laser scanner based on time-of-flight measurements
rotational speed 5 to 20 rotations per second (adjustable)
scan range 100 m maximum
wavelength of sender 903 ± 7 nm
number of scan layers 16 channels
number of scan points per second up to 288 000
horizontal field of view 360◦

horizontal angle resolution 0.1◦ to 0.4◦, depends on the rotational speed
vertical field of view 30◦ (+15◦ to −15◦)
vertical angle resolution 2◦

distance resolution ± 3 cm

Table 7.6.: Technical specification of the Velodyne VLP-16 Puck.
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characteristic value

sensor type monocular fisheye cameras
placement front, left, right, and rear side of the vehicle
frames per second 30
image resolution 1280× 960 pixel
color depth 16 bit
opening angle horizontal 190◦

opening angle vertical 123.8◦

Table 7.7.: Technical specification of the top view cameras.

7.1.4. Top view cameras

Both prototype vehicles feature four top view cameras. They are installed in the right
and left side mirrors as well as above the front and rear license plate. These fisheye
cameras use a rolling shutter to acquire images. The images are used for detecting lane
markings. Table 7.7 lists the main characteristics of the cameras.

7.2. Self-localization systems

This section presents the self-localization systems that are available in at least one of the
prototype vehicles presented in Chapter 7.1. They serve as input sources for the pose
fusion. Overall, there are two local and five global pose sources available. We describe
these in the following sections.

7.2.1. EgoMaster

The EgoMaster is a software module that computes the current egomotion of the ve-
hicle. The egomotion is defined as the motion of the vehicle within its environment,
whereas the scene itself is considered to be static. This estimation is performed in the
vehicle reference frame as described in Section 3.1.1. It relies on sensor information
from IMUs, angular rate, steering angle, wheel speed, and chassis lift sensors. All of
these sensor readings are readily available as state-of-the-art controller area network bus
(CAN bus) messages from the ESP and anti-lock braking system (ABS) sensors. The
CAN bus is a vehicle bus over which electronic control units (ECUs) exchange data. To



148 7. Evaluations

provide a consistent estimate of the egomotion, the EgoMaster fuses the sensor readings
with the help of an EKF. An early version of this filter is described by Baer et al. (2009).
In summary, the EgoMaster can be regarded as a classical odometer. It is available for
both the Audi A6 and the e-Golf and provides local poses with 100 Hz.

7.2.2. Landmark-based localization

The landmark-based localization (LBL) is a software module that computes the map-
relative position of the vehicle based on comparing its local landmark detections to a
global landmark map. Landmarks are static and persistent objects that have a semantic
meaning. These include traffic signs, traffic lights, lane markings, building faces, curbs,
or vertical pole-like objects. They are therefore different to visual features like the pop-
ular scale-invariant feature transform (SIFT) features, which are often used for visual
SLAM algorithms. In addition, they are not bound to a certain sensor type as they can
potentially be detected by multiple sensors, such as cameras, lidars, or radars.

For the sake of a simple explanation we pick an example of landmark detections to il-
lustrate the general approach. Figure 7.4 shows the detection of lane markings in camera
images. For this purpose, the camera images from the top view cameras as described
in Section 7.1.4 have been undistorted and transformed to a virtual top view image.
Subsequently, the background of the image is subtracted and contours are found after
binarizing the image. These contours represent the landmark candidates. A classifier
learns in a supervised learning step the classification of these candidates into dashed or
solid lane markings, arrows, stop lines, and unknown objects. The visualization shows
the landmark classifications in the virtual top view image.

With the help of other detectors we are able to find a range of different landmarks
within close proximity of the vehicle. These are tracked in a subsequent landmark
tracking step. To estimate the vehicle’s pose, we compare this set of detections to a
previously constructed landmark map. Figure 7.5 depicts an example of a landmark
map, that contains dashed and solid lane markings as well as poles. As the landmark
maps are globally referenced, we obtain both a map-relative and a global pose. Finally,
the pose is filtered over time with a particle filter. A more detailed description of the
LBL is given by Stess (2017). In total, this system provides global poses at a nominal
frequency of 5 Hz.
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Figure 7.4.: Detection and classification of lane markings in top view camera images.
Green are dashed line markings, while blue boxes visualize solid road mark-
ings.

7.2.3. Lidar localization

The lidar localization (LiLoc) is a software module that matches lidar scans against a
globally referenced point cloud. It makes use of and is tailored to the lidar scanners
described in Section 7.1.3. As these are only available on the Audi A6, this global pose
source is not available for the e-Golf. This module provides global poses with a nominal
frequency of 2 Hz.

7.2.4. Localization sensor data fusion

The localization sensor data fusion (LSDF) is a software module that computes both a
global and a local pose. It is based on an error state EKF that provides a tight coupling
between GNSS and IMU data. We refer to its global pose output as LSDF, and to its
local pose output as LSDF relative. The system is only available on the Audi A6 due
to the close integration with its IMU. Scheide et al. (2011) describes the overall system
and its architecture in more detail. The nominal frequency of both outputs is 50 Hz.
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Figure 7.5.: A landmark map. It contains dashed lane markings (green), solid lane mark-
ings (red), and poles (black circles).
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7.2.5. GPS receivers

We present in Section 7.1.1 the available GPS receivers on the prototype vehicles. For
the sake of completeness, we briefly list them here again: on the Audi A6, there is
an OEMStar receiver available (see Section 7.1.1). On the e-Golf, there is an u-blox
receiver installed (see Section 7.1.1). These two receivers provide global poses to the
pose fusion with 5 Hz and 1 Hz respectively.

7.3. Core estimator

The experiments in this section serve to investigate the core estimator presented in Sec-
tion 5 while blending out the preprocessing modules. They are based on simulated data
to emphasize some key properties of the core estimator. We presents experiments with
real data and the core estimator in Section 7.5.

The ground truth was obtained by postprocessing the recordings of the Applanix sys-
tem presented in Section 7.1.2. We recorded the data during a drive of about 16 km in
rural and urban areas in Germany. By adding artificial noise to this ground truth tra-
jectory we generate the input data for our core estimator. The advantage of creating
simulated data in this way over purely generating ground truth and noisy data is that
this approach inherently leads to a natural and realistic trajectory.

All input sources are sampled around the true values from a Gaussian distribution
with a standard deviation of 3.0 m in both lateral and longitudinal direction and 4◦

heading orientation of the vehicle. Figure 7.6 illustrates a small-scale application of
the core estimator. It is a screenshot of the visualization of the PGF, which is our imple-
mentation of the core estimator. This example illustrates how a small chain pose graph
with ten hidden nodes and two simulated input sources looks like. Also, we can see the
prior node at the end of the graph in purple. These graphs, albeit in larger size and with
different parameters, form the basis for our experiments in this section.

We divide the core estimator experiments in four categories. The first category is out-
lined in Section 7.3.1 and its experiments investigate the optimization of the underlying
NLLSQ problem. The experiments in the second category analyze the effect of multiple
input sources. In the third category we treat the question of how the number of hidden
nodes influences the estimation quality. Lastly, we examine the runtime requirements
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Figure 7.6.: Illustration of the core estimator’s pose graph in the experiments. The gray
nodes visualize its hidden nodes, the green and blue nodes are observed
nodes stemming from global pose measurements. The purple node is the
prior node. The gray rectangle represents the vehicle pose as computed by
the core estimator, whereas the yellow rectangle represents the ground truth
vehicle pose.

of the PGF.

7.3.1. Optimization

Fundamentally, the core estimator is solving the optimization problem of finding those
hidden nodes which best explain all pose constraints. We outline in Section 3.4.2
two common algorithms to solve this optimization problem, the Gauss-Newton and the
Levenberg-Marquardt algorithm. Both are suitable for our application. Therefore, we
start off the experimental section by examining the differences of these two algorithms
for our use case and with our data. Ideally, we are able to identify one of the two as the
most adequate for our core estimator. We assess them by asking how many iterations
do both algorithms need until they converge? Following up on that question we ask
whether they converge to the same solution.

We answer both questions by conducting an experiment based on ground truth data
from an Applanix trajectory and generate observations from eight global and four local
pose sources. We set the maximum number of hidden nodes to M = 300 and the
temporal resolution to ∆t = 25 ms. With the output frequency set to f = 1

150 ms
,

the PGF produces a total of roughly 4600 output pose estimates per single run of an
experiment. For both Gauss-Newton and Levenberg-Marquardt, we do the following:
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Figure 7.7.: Empirical distribution function of the position difference of the output
pose estimates of the core estimator when using Gauss-Newton (GN) and
Levenberg-Marquardt (LM) with different numbers of optimization itera-
tions.

• Initially, we set the number of optimization iterations to i = 1.

• We keep this number fixed and process all simulated data within the PGF, virtually
driving the trajectory of 16 km. This produces each time the 4600 output pose
estimates mentioned above.

• Subsequently, we increase i by one and repeat the experiment until the estimation
result does not change anymore. Our criterion for convergence is that none of the
output pose estimates changes by more than 1 cm compared to the previous run.

For the evaluation of this experiment, we plot the empirical distribution function
(EDF) of the Euclidean position difference of all 4600 output pose estimates for a given
number of optimization iterations i. Figure 7.7 displays this plot, showing for both
optimization algorithms and for different values of i the cumulative frequency of the
position differences of the output pose estimates. The position differences are obtained
by computing the Euclidean distance between all output pose estimates at the same
timestamp during the different runs of the experiment. We observe that the output of the
core estimator does not change significantly anymore after setting the number of opti-
mization iterations i = 3 for Levenberg-Marquardt. The maximum position difference
in this setting falls to 0.92 cm. Using Gauss-Newton we observe that a single optimiza-
tion iteration suffices. The maximum position difference after the second optimization
iteration is already at roughly 0.01 cm.
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Figure 7.8.: Position difference of the output pose estimates for Gauss-Newton and
Levenberg-Marquardt over time. The difference is negligible. Therefore,
both algorithms converge to the same solution.

We attribute this high convergence speed to several factors. First, our fusion problem
is usually well constrained with a global pose measurement every few hidden nodes. In
contrast, the optimization of pose graphs that almost purely consist of odometry con-
straints with a few loop closures generally takes more iterations to converge1. Secondly,
our chain pose graphs by design prevent any edges between non-consecutive nodes,
making the structure less complex. Thirdly, our sliding window approach provides the
optimization result of the last time step as the initial guess for the current time step. As
most of the observed and hidden nodes within the sliding window stay identical, this
leads to a very good initial guess for the optimization. Lastly, the graph construction
method of the PGF builds up the graph by setting intelligent guesses for the initial poses
of hidden nodes by considering the local and global constraints. This results in good
initial guesses for hidden nodes that are added to the sliding window.

After finding that Gauss-Newton converges after a single optimization iteration and
that Levenberg-Marquardt needs three, we would like to know whether both algorithms
converge to the same solution. We therefore compare the obtained output pose estimates
for Gauss-Newton and Levenberg-Marquardt after convergence. Figure 7.8 shows their
position differences in each time step. As we can see, the position difference falls from
about 1 cm in the initialization phase to less than 0.02 cm during normal operation mode.
We conclude that both algorithms lead to the same results.

In summary, we have experimentally determined that Gauss-Newton takes a single

1See the experiments in Section 2.5.2 by Kümmerle (2013) for examples.



7.3. Core estimator 155

0 0.2 0.4 0.6 0.8 1

position error [m]

0

0.2

0.4

0.6

0.8

1

cu
m

u
la

ti
v
e 

fr
eq

u
en

cy

8+4 sources

4+2 sources

2+1 sources

1+1 sources

(a) Online fusion without a prior node.
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(b) Online fusion with a prior node.

Figure 7.9.: EDF of the position error of the core estimator for different number of in-
put sources for online fusion. The legend entries “a + b sources” denote
a global and b local pose sources. The position quality increases for an
increasing number of input sources. Enabling the prior node provides a
temporal filtering which further reduces the position error.

optimization iteration to converge and that Levenberg-Marquardt takes three. More-
over, both algorithms converge to the same solution. Given these properties, we choose
Gauss-Newton as our default optimization algorithm because needing less optimization
iterations means needing less computation time. This gives us the flexibility to increase
the output frequency of the PGF, to increase the number of hidden nodes, or to process
more input sources.

7.3.2. Number of input sources

The second experiment with simulated data is designed to show that the position error
decreases for an increasing number of input sources. To this end, we run the PGF
repeatedly on the test dataset and increase the number of input sources each time. As an
additional parameter we enable and disable the prior node to examine its influence.

Figure 7.9 depicts the EDF of the position error of the core estimator. It shows how
the fusion result improves for an increasing number of input sources. This is true re-
gardless of whether the prior node is enabled. However, we can see a clear increase
in position quality when using the prior node. It provides a temporal smoothing that
further reduces the error.

With the same dataset we also examine the fusion result of the offline batch opti-
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Figure 7.10.: EDF of the position error of the core estimator for different number of
input sources for offline fusion. The position error of the offline batch
optimization decreases for an increasing number of input sources.

mization. This means that we build up the entire chain pose graph over the dataset
and optimize it at the very end. We again perform this for different number of input
sources. Figure 7.10 shows the EDF for the position errors. The small vertical jumps
in the curves are caused by standstill phases during the drive, for example in front of
traffic lights. All output fusion estimates during these phases lead to the same position
error, which in turn leads to the vertical jumps in the cumulative frequency. Similarly to
the online fusion, we observe that also the offline batch optimizations profit from more
input sources.

In summary, an increasing number of input sources reduces the position error of the
core estimator. This is true for both the online and offline fusion. Also, using a prior
node further reduces the error during online operation.

7.3.3. Number of hidden nodes

The next experiment on simulated input data serves to investigate the estimation quality
as a function of the number of hidden nodes M . This engages the question of the
required number of hidden nodes and demonstrates that the sliding window estimate
converges to the online batch solution for an increasing number of hidden nodes.

Similarly to the previous experiments, we evaluate the position error of the output
pose estimates of the core estimator for a test dataset. We repeat this experiment and
increase M in each iteration. Again, we perform this experiment with temporal filtering
enabled and disabled. In this experiment, we simulate two global and one local pose
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(a) Online fusion without a prior node.
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(b) Online fusion with a prior node.

Figure 7.11.: EDF of the position error for different numbers of hidden nodes M .

source.

Figure 7.11a shows the cumulative position error distribution for the different set-
tings. The dotted black curve represents one of the two global pose sources, which
performs poorly. The other pose source performs by construction comparatively. Using
the core estimator with any of the proposed settings leads to a significant improvement.
Moreover, the pose fusion results improve for more hidden nodes and approach the
batch optimization quality. The position error decreases only slightly after M = 4000.
Therefore, increasing M further yields only a disproportionate small gain in position
quality.

Figure 7.11b shows the result of the same experiment when temporal filtering in the
form of the prior node is enabled. This time we conclude that the variable M is not
decisive for the position error. All curves lie within a small band and are virtually
indistinguishable. Only the results of the setting with M = 24 000 slightly outperform
the others. Therefore, it is safe to use a smaller sliding window if temporal filtering
is enabled. We also conclude that if we are using a sufficiently large sliding window,
then it does not make a significant difference in estimation quality whether we enable
or disable temporal filtering.

In summary, we illustrated our claim that the core estimator approaches the batch
optimization performance for increasing sizes of the sliding window. We have also
shown that the estimation quality does not depend on M if we enable the prior node.
Moreover, using a large enough sliding window is equal in terms of estimation quality
to using a prior node.
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Figure 7.12.: Computation time for different numbers of hidden nodes. The blue curve
corresponds to a setup in which the number of hidden nodes is unlim-
ited such that nodes never get marginalized out. The resulting unbounded
demand for computation time disqualifies it for online usage. The compu-
tation time is roughly constant in all other configurations.

Now that we have an idea about the preferable size of the sliding window, we inves-
tigate whether we can actually achieve this in an online system.

7.3.4. Runtime performance

We concern ourselves with the runtime performance of the PGF. Our goal is twofold:
we show that we can solve graphs of relevant sizes online and that the optimization of
chain pose graphs has a runtime complexity ofO(n). For these purposes we conduct an
experiment during which we measure how long it takes to optimize chain pose graphs
of varying size.

The software was repeatedly run on a single core of a laptop with an Intel i7-4800QM
processor. Figure 7.12 shows the computation time at each time step for different num-
bers of hidden nodes in the sliding window pose graph. The blue curve illustrates the
need for limiting the size of the graph as otherwise the computation time grows un-
boundedly.

The near-constant computation time once the graph attains its full size is expected as
the optimization of a chain pose graph of fixed size is constant. Also, the linear increase
in computation time before the number of nodes equals M is in line with our theoreti-
cal expectations as the optimization of a chain pose graph has a runtime complexity of
O(n). An empirical analysis of the data depicted as the blue curve in Figure 7.12 (unlim-
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Figure 7.13.: Maximum number of hidden nodes Mmax that can still be processed fast
enough to attain the corresponding output frequency f .

ited number of hidden nodes) reveals the reciprocal relationship between the maximum
number of hidden nodes Mmax and the attainable output frequency f . We obtain this
relationship by computing the maximum output frequency for each data point and sub-
sequently fitting a curve Mmax(f) = α1

1
f

+α0 to it. We find the coefficients α1 = 87.41

and α0 = 374.32. Figure 7.13 shows the corresponding graph.

Note that the time needed for the optimization is not directly equal to the overall
computation time per cycle. Other operations, such as marginalizing old and appending
new constraints, also take time. Their time needed depends on different parameters,
such as frequency and number of input sources. Each constraint that we add to the
graph results in at least one additional addend in H and b. However, the optimization
itself primarily depends on M and not on the number of constraints within the graph.

Different parametrizations allow us to balance the need for a high output frequency
versus the desire for more hidden nodes. Their relationship serves as a basis for choos-
ing f and Mmax. We investigate in the next experiment how to react at runtime to
situations in which less CPU time than usual is available, i.e., situations in which the
relationship depicted in Figure 7.13 temporarily does not hold.

7.3.5. Resource-adaptive state estimation

This experiment is designed to show that the PGF effectively adapts online to the avail-
able computational resources. To this end, we conduct an experiment and inspect the
dynamic adaptation of the number of hidden nodes Mt. The goal is to limit the compu-
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tation time ct such that it is on average less or equal to 1
f

= 50 ms. To clearly see the
impact of the PID controller, we deliberately maximize the CPU load multiple times dur-
ing the experiment. As a consequence, the computation time increases in these phases
because less CPU time is available for the PGF. The PID controller counteracts the ex-
ceeding computation time by regulating Mt. We repeat the experiment with the same
CPU load pattern but without the PID controller. The computation time exceeds the set-
point of 50 ms by roughly 60% in phases when less CPU time is available. The overall
mean computation time amounts to 71 ms without and to 41 ms with the PID controller.
The progression of Mt and ct over time are shown in Figure 7.14.

We conclude that the PGF is able to meet on average a predefined computation time
limit. This, in turn, is directly related to the availability of the output pose estimates.

7.4. Preprocessing sublayer

In this section we evaluate the modules of the preprocessing sublayer separately. Having
four modules within the preprocessing sublayer, we divide the experiments into four
parts.

7.4.1. Bias estimation

The following experiment is designed to show that the bias estimation effectively re-
duces the time-varying, systematic bias of GPS data gathered on a real prototype vehi-
cle and that the pose fusion produces precise estimates. We provide more evaluations
of this module in the experiments presented in Section 7.5. The vehicle is the Audi A6
Avant presented in Section 7.1. It is equipped with two GPS receivers of different qual-
ity. We make use of the pose estimates from the OEMStar receiver as input source. The
Applanix system comes into play as the reference pose source. The EgoMaster provides
an estimation of the local movements of the vehicle. The data was recorded on a route
of about 16 km in rural and urban areas in Germany.

As a first step, we need to determine the optimal length of the sliding window s∗. If it
is too long, then the estimated bias adapts too slowly to the actual bias. If it is too short,
then we introduce an artificial correlation between the unbiased and the biased pose
source. We have given in (6.5) a way to calculate s∗. It consists in an exhaustive search
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Figure 7.14.: Effect of the resource-adaptive online state estimation. A PID controller
dynamically controls the number of hidden nodes to attain a predefined
setpoint for the computation time. We maximize the CPU load in three
sequences and observe how Mt is controlled (see (a)) such that ct stays as
much as possible beneath the setpoint (see (b)).
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Figure 7.15.: We find the optimal sliding window size by minimizing the mean error
of the biased pose source (depicted as GPS error) while limiting the cor-
relation of its error with the error of the pose estimates of the unbiased
source (see (6.6)). These two objectives conflict because the mean GPS
error increases (as the adaption of the sliding window is too slow) and
the correlation decreases to random correlations with larger window sizes.
Additionally, we ensure that the sliding window is large enough by in-
specting the maximum mean error over all sliding windows (see (6.7)).

over all windows sizes of interest. For each window size, three metrics are checked:
How well is the bias estimated? Is the correlation between the unbiased and the biased
pose source negligible? Is the sliding window long enough such that we can assume
that the error over the unbiased pose source within the sliding window is almost zero?

Figure 7.15 shows the output of the optimization over a given dataset with pose esti-
mates from the OEMStar receiver. The optimal sliding window size in terms of mean
GPS error should be equal to one because the unbiased source should be much more
precise than the GPS-based pose estimates. However, this makes the biased equal to the
unbiased pose estimates and yields a maximum correlation ρ(zb − p, zu − p) of their
error terms. Also, that sliding window is too small to justify the assumption of a near-
zero mean of the error of the unbiased source as indicated by the value of τ(zu,p, s).
We therefore settle for a window size of 20 s.

We fuse the pose estimates of the OEMStar receiver with the EgoMaster data. In this
process, we estimate the bias with the help of the presented sliding window technique by
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Figure 7.16.: Position error of the OEMStar receiver over time. The estimated bias is
shown in black. It serves to reduce the systematic, time-varying bias of
the data. The biased pose estimates (red) exhibit a higher position error
than the bias-reduced pose fusion output (blue).

comparing against a third pose measurement source, which is afterwards ignored for the
remainder of the pose fusion for the sake of clarity. Figure 7.16 shows the position errors
over time of the OEMStar receiver, the estimated bias, and the error of the resulting
output of the PGF. The graph of the estimated bias resembles the graph of the position
error of the OEMStar receiver. Ideally, these two would be equal. The estimated bias
seems to be slightly shifted compared to the position error of the OEMStar receiver. This
is due to the usage of a sliding window. The position error of the PGF is significantly
lower than the error of its input source.

The pose estimates of the OEMStar receiver exhibit a mean absolute error (MAE) of
1.19 m with a standard deviation of 0.52 m. The bias estimation reduces this by a factor
of two to a MAE of 0.47 m. The MAE of the pose fusion is in the same order of magni-
tude with 0.47 m and a standard deviation of 0.33 m, thus showing the effectiveness of
the bias estimation.

7.4.2. Map-based outlier handling

In this section, we evaluate our method of down-scaling pose estimates which are far
off the road. The experiment is designed to evaluate our claims that a vehicle is usually
driving close to the center lines and that down-scaling bad pose estimates increases
the pose fusion performance. Moreover, we compare the method to using a Pseudo-
Huber cost function. With the help of a typical situation, we make the argument that in
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certain situations it is favorable to employ our method over using robust cost functions.
Moreover, we provide data to justify the choice of the method’s design parameters.

Our method is based on the assumption that a vehicle is most of the time driving close
to the center line. Therefore, it is our first step to validate this assumption. We check
it by evaluating the distance of the reference system to the next center line. For this
we record a challenging data set in an urban scenario. In this environment, the vehicle
changes lanes, needs to go around pedestrians, has to adapt its trajectory to the traffic
around it, or needs to sidestep slightly to avoid parked cars on the side. These behaviors
can lead to violations of our assumption, making the data set challenging. Even in this
environment we observe that the vehicle is driving most of the time close to the center
line. Figure 7.17a shows the trajectory of the vehicle. The distance of the reference
system to the next center line is color-coded. Large portions of the trajectory are green,
indicating a low distance. Figure 7.17b supports this evaluation with a histogram of the
distances. In about 40 % of the time, the vehicle is less than 20 cm away from the center
line. This increases to about 98 % of the time in which the vehicle is closer than 1 m.
The remainder amounts to the challenging situations named above. We conclude that
we can assume that the vehicle is driving most of the time less than 1 m away from the
center line.

Using this data we determine the scaling function parameters λ1, λ2, smin, and smax

as introduced in (6.10) in Section 6.2. The parameter smax sets the maximum value
of the scaling function. As a first step we set it to smax = 1.0. Higher values would
indicate that the scaling potentially adds information to the pose estimate, which it does
not do. Lower values indicate that the scaling will downscale any kind of pose estimate,
irregardless of its distance to the center line. Secondly, λ1 defines the width of the
plateau for which s(δ) = smax. Based on the evaluation in Figure 7.17b, it makes
sense to set this to λ1 = 1.0. This means that we generally assume the vehicle to be
in a corridor of 1 m around a center line. Any pose estimate within this corridor it not
scaled, as it could likely be close to the true pose. Thirdly, smin determines the minimum
scaling value. If we are extremely confident in our map, then we can set this value to
zero. This equals a complete rejection of corresponding pose estimates. We set it to
smin = 0.01 for a strong weighting but not a complete rejection. Finally, we choose λ2

such that the resulting function has a steep enough slope. With λ2 = 0.5 the minimum
scaling value is achieved for |δ| ≥ −3.3 m. Empirically this proves to be a reasonable
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(a) Trajectory of the vehicle.
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(b) Histogram of the distances to the center lines.

Figure 7.17.: Distance of the vehicle to the center line. This evaluation shows that the
vehicle is usually driving close to the center line.
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Figure 7.18.: Scaling function with experimentally determined parameters. We set λ1 =
1.0, λ2 = 0.5, smin = 0.01, and smax = 1.0.

value. Figure 7.18 shows a plot of the total resulting scaling function.

Having defined the scaling function, we now analyze the effects of its use. There are
two major effects. The first one is that it selectively increases the uncertainty of pose
estimates that seem a bit off. That is to say, most of the pose estimates are unscaled, but
a couple every now and then are scaled because they are rather far away from the next
center line. The second effect is that almost all pose estimates from a pose source are
scaled. This happens when this pose source malfunctions, remains in its initialization
phase, uses a map with an offset or a different coordinate system, or is simply generally
of low accuracy. It is a nice property of this method that the user does not have to
specify this manually. All corresponding pose estimates are automatically determined
by comparing them to the center lines of a DLM.

We illustrate these two effects with an analysis of an interesting situation during a test
run with the Audi A6 Avant. The short recording is about 40 s long and took place on
a couple of hundred meters in an urban environment. We show the difference between
not using map-based scaling, using it, and using a Pseudo-Huber cost function. This
supports our claims that map-based scaling improves the pose fusion performance and
that using a robust cost function can be counterproductive. In this analysis we use the
core estimator with a temporal resolution of∆t = 10 ms, a maximum number of hidden
nodes of M = 1000, and the scaling function as defined above. No other preprocessing
modules or marginalization are used.

The input data consists of three different global and one local pose sources. To get a
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better idea of the driving situation at hand, we provide with Figure 7.19 two screenshots
of the visualization of the PGF. The constraints of interest are those from the LBL.
We note that they make a lateral jump at the beginning and at the end of the pictured
section. The unscaled covariance matrices of its estimates show that the LBL considers
this high-quality information. The covariance matrices during the jump are a lot bigger
in comparison. We see in Figure 7.19a that the pose graph of the PGF is significantly
bent towards LBL’s constraints. As a result the estimated vehicle pose is off compared
to the reference pose. In comparison, Figure 7.19b displays how the map-based scaling
affects especially the covariance matrices of the LBL’s pose estimates. As their distance
to the nearest center line exceeds the threshold of λ1, their covariance matrices get
scaled considerably. This results in less weight on these constraints during the graph
optimization. As a consequence, the pose graph of the PGF stays significantly closer to
the pose estimates of the other pose sources. This also improves the final estimation of
the vehicle pose.

Having inspected this snapshot, we now look at the pose fusion’s position error over
time with and without the map-based scaling module. Figure 7.20 shows the trajectory
of the vehicle for the situation at hand. Qualitatively, the position error of the pose fusion
decreases when using the map-based scaling module. The MAE drops from 1.47 m to
1.04 m, because bad pose estimates are weighted less.

The map-based scaling shares similarities with robust cost functions. Both try to
limit the influence of outliers in the optimization problem. Therefore, we evaluate our
method against a Pseudo-Huber cost function. This is a standard and well-studied cost
function that is applicable to many NLLSQ problems. Its disadvantage is, though, that it
does not exploit all available information, such as maps. We rerun the PGF on the same
data as above. This time we disable the map-based scaling and enable a Pseudo-Huber
cost function on all constraints. We vary its parameter δ between δ = 0.5 and δ = 2.0.
Table 7.8 summarizes the resulting position error of the pose fusion. Interestingly, the
error increases for increasing values of δ. If the robust cost function affected mainly the
observed nodes from the LBL, then we would expect the error to decrease. In this case,
however, the justification mainly triggers on the observed nodes from the OEMStar
receiver and the LiLoc. This is counterproductive and thus decreases the quality of
the estimated pose. The underlying root cause here is that the Pseudo-Huber function
simply evaluates the constraints’ error values and ignores everything else. It is designed
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(a) Without map-based scaling.

(b) With map-based scaling. The covariance matrices of the LBL’s pose estimates are considerably larger.

Figure 7.19.: Situation analysis of the map-based scaling. The pose graph of the PGF
(black line) is computed with and without map-based scaling of its input.
The observed nodes of the LBL (green triangles) are subject to the most
notable effect. The other two global pose sources are the OEMStar re-
ceiver (orange triangles) and LiLoc (blue triangles). The final estimated
vehicle pose is shown as a black rectangle, while the reference pose is
displayed as a yellow rectangle. The center lines are the two thin gray
lines.
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(a) Without map-based scaling.
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(b) With map-based scaling.

Figure 7.20.: Position error of the PGF with and without map-based scaling. The error
decreases when using the map-based scaling module. Figures best seen in
color.
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ρH(·) median [m] MAE [m] RMS [m]
maximum
error [m]

standard
deviation [m]

δ = 0.5 1.82 1.53 1.75 2.62 0.86
δ = 1.0 1.77 1.45 1.65 2.36 0.79
δ = 1.5 1.73 1.42 1.60 2.32 0.76
δ = 2.0 1.69 1.39 1.56 2.28 0.72

Table 7.8.: Statistics of the position error of the PGF when using different parametriza-
tions of the Pseudo-Huber cost function ρH(·).

to mitigate the influence of individual outliers. Here the outliers in form of the LBL
constraints dominate the pose graph and thus get preferred. The key insight is that if
additional semantic knowledge is available, it makes sense to exploit it. The map-based
scaling provides a way to do that.

7.4.3. Correlated errors between pose sources

We account for correlated noise between input sources by applying a CI framework.
The contribution consists in extending the state-of-the-art closed form solutions for the
important case of covariance matrices with equal entries. We evaluate the approach with
simulated data to support our claim that the treatment of unknown noise correlations
between different input sources leads to conservative estimates. We also assess how
often our extension to the CI framework is typically needed.

The experiment is designed to show that naive fusion produces overconfident esti-
mates whereas CI produces conservative estimates. To this end, we generate a time
series of random covariance matrices for a fixed cross-correlation ρ = 0.6 by sampling
from a standard normal distribution, subsequently correlating the noise signals, and fi-
nally modifying them to have the desired mean and variance. With this data we perform
naive fusion, optimal fusion, and both (trace and determinant minimizing) CI fusions,
see Section 3.5 for more details. We check their estimated covariances over time and
summarize the one-dimensional 3σ boundaries as boxplots. Figure 7.21 shows that the
naive fusion is overly confident whereas CI produces uncertainty estimates equal to or
greater than the optimal uncertainty. In this use case, CI with trace minimization pro-
duces similar results as CI with determinant minimization. The mean covariance of
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Figure 7.21.: Fusion of correlated covariance matrices with different methods for sim-
ulated data. Boxplots of the 3σ uncertainty boundaries of the estimate
after fusion are shown. The naive fusion ignores the correlation and thus
produces overconfident covariance estimates. The optimal fusion requires
unavailable knowledge about the unknown correlation ρ. CI generates
conservative estimates.

the optimal fusion is equal to 3σoptimal = 2.70. However, optimal fusion cannot be
employed as the correlation is usually unknown. Both CI with trace and determinant
minimization estimate on average a covariance of 3σCI = 2.94, whereas the naive fu-
sion estimates a mean covariance of σnaive = 2.10. The proposed CI implementation
therefore provides conservative estimates.

Furthermore, we evaluate how often the case of d̄i = 1 arises. In that situation, our
extension to the CI framework comes into play. The frequency of this case depends
strongly on the type of data and the threshold for the difference of two floating point
numbers below which we consider both to be numerically identical. With errors as
simulated in this experiment, the case of interest occurs in approximately 2 % to 5 % of
all measurements.

In summary, we have shown that it is necessary to pay attention to correctly treat
correlated errors. Ignoring them and fusing their data naively leads to overconfident
estimates. The CI framework provides a suitable way for tackling the challenge of
fusing estimates with correlated errors.
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7.4.4. Autocorrelated errors

In this experiment we focus on our modeling of autocorrelated errors within a pose
graph. We have seen in Section 6.4 that we can either model them with special con-
straints or, equivalently, by scaling the corresponding information matrices. We refer
to the latter as AR(1) scaling. Its main effect is the improvement of the covariance ma-
trix that the PGF computes for its resulting pose estimate. This experiment supports
our claim that our modeling of autocorrelated errors leads to a better estimation of the
uncertainty of the pose fusion result.

First, we need a metric to numerically grasp the concept of a “better uncertainty esti-
mation”. This metric should assess how well an estimated covariance matrix fits to the
actual estimation error. For a single covariance matrix, this is difficult to say. By defini-
tion, the underlying Gaussian distribution corresponding to a covariance matrix extends
in all directions infinitely. That is, all function values can possibly arise, albeit they are
not equally likely. Therefore, we do not evaluate a single covariance matrix but instead
calculate statistics over all of the covariance matrices computed by the PGF during a test
run. The reasoning is that we have well-defined expectations about the behavior of the
set of all covariance matrices. For one-dimensional Gaussian distributions, we expect
for large sample sizes about 68.27 % of the data within the 1σ, 95.45 % within the 2σ,
and 99.73 % within the 3σ boundary. Therefore, we check how well these expectations
are met. For this we count how often the reference pose is contained within the 1σ,
2σ, or 3σ boundary of the estimated uncertainty. We call this metric the uncertainty

coverage.

We conduct an experiment with simulated data and investigate on the uncertainty
coverage of the PGF. Using simulated data allows us to ensure that the noise of each
pose source is created by exactly the generating distribution that we want it to. We
provide evaluations with real data in two experiments in Section 7.5. Here we use eight
global and four local pose sources. All global pose sources create pose estimates at 5 Hz

and all local pose sources at 100 Hz. We add independent and identically distributed
(i.i.d.) noise with σv

x = 0.0001 m, σv
y = 0.0001 m, and σv

θ = 0.000 01 rad to the
odometry data. To the global pose estimates, we add noise with an AR(1) with φw

x =

φw
y = φw

θ = 0.95, σw
x = 3.00 m, σw

y = 3.00 m, and σw
θ = 4.00◦. The PGF sets its

number of hidden nodes to M = 4000 and its temporal resolution to ∆t = 10 ms.
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By construction, each pose source has a perfect uncertainty coverage because we
know its generating distribution. We will see, though, that the PGF overestimates its
confidence and provides covariance matrices with too small values. Why is that? This
is caused by the mismatch between the core estimators noise assumptions and the pose
sources’ underlying noise distributions. The core estimator assumes its input data to
have AWGN noise. The pose sources provide data with noise from an AR(1) model.
Our AR(1) scaling provides a way to link those two together.

While the derivation of our modeling of autocorrelated errors within pose graphs
seems admittedly complex, its application in the form of AR(1) scaling is straightfor-
ward. Given the number of observed nodes per source nwithin a pose graph, the scaling
factor is computed using (6.114) to

ωi =
n− (n− 2)φ

n(1 + φ)
. (7.1)

For our experiment the sliding window pose graph encompasses a time span of M∆t =

10 s once it is built up. Observed nodes are added with 5 Hz, leading to n = 10 s
0.2 s

= 50

observed nodes per source. Therefore, the scaling factor equals

ωi =
50− (50− 2)0.95

50(1 + 0.95)
≈ 0.045. (7.2)

That is, the information matrices are scaled with a factor of ≈ 0.045, or in other words,
the covariance matrices with a factor of 1

ωi
≈ 22.16.

We conduct the experiment with AR(1) scaling enabled and disabled. Additionally,
we enable and disable marginalization. First, we examine the estimated uncertainty of
the PGF. Figure 7.22 shows the evolution of the standard deviation in longitudinal direc-
tion, σx, and in lateral direction of the vehicle, σy. As desired, the AR(1) scaling results
in an increased uncertainty of the output. However, does the estimated uncertainty better
reflect the error?

To answer this question, we compute the uncertainty coverage of the PGF. The re-
sults for different configurations are provided in Table 7.9. Not making use of the AR(1)
scaling leads to significantly too small uncertainty coverages. At most 49.10 % of the
reference poses are contained within the 3σ boundary of the estimated covariance ma-
trix. Enabling AR(1) scaling strongly increases the uncertainty coverage. It is about
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Figure 7.22.: Standard deviation estimated by the PGF with and without AR(1) scaling,
in (a) longitudinal and (b) lateral direction of the vehicle.

AR(1) scaling marginalization direction 1σ [%] 2σ [%] 3σ [%]

disabled disabled lateral 12.05 23.56 34.36
longitudinal 12.24 22.55 31.90

enabled lateral 16.82 33.42 49.10
longitudinal 11.84 24.57 34.91

enabled disabled lateral 54.10 88.47 96.44
longitudinal 41.50 73.27 92.26

enabled lateral 58.47 90.14 99.08
longitudinal 34.78 86.15 98.34

Table 7.9.: Uncertainty coverage of the PGF with and without AR(1) scaling. The num-
bers indicate how many percent of the reference poses lie within the corre-
sponding uncertainty boundary.
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three times larger than without. However, the coverage is not perfect, either. We at-
tribute this to additional, unmodeled effects, such as interpolation, linearization, and
timing effects.

Moreover, we note that the marginalization in form of the prior node works well to-
gether with the AR(1) scaling. Its direct influence on the estimated covariance matrix
by adding another constraint is not the sole interaction. Instead, it influences the uncer-
tainty coverage in another way by reducing the position error. If the error is smaller,
then the reference pose is naturally closer to the estimated pose. We have seen this re-
duction of the position error when using the prior node already in the experiments in
Section 7.3.2. In the experiments at hand, using the prior node decreases the MAE from
1.22 m to 0.35 m when using AR(1) scaling. In the experiments with AR(1) scaling dis-
abled, using the prior node has a comparable effect and decreases the MAE from 1.17 m

to 0.42 m.
All in all, this experiment has shown that the AR(1) scaling increases the PGF’s

estimated covariance matrix, that it works nicely together with the prior node, and that
it reduces the overconfidence of the estimation.

7.5. Pose fusion layer

In this section we provide experiments to evaluate the entire pose fusion layer, which
comprises both the preprocessing sublayer and the core estimator. We carry out exper-
iments on three datasets that we obtained on real prototype vehicles. The experiments
are conducted in different scenarios, with different vehicles, and with different pose
sources to highlight the versatility of the pose fusion.

The first experiment in Section 7.5.1 is conducted in a rural and urban environment
with vehicle speeds up to 100 km

h
. Four different global pose sources and two local pose

sources are fused. This demonstrates that we can successfully fuse many heterogeneous
sources.

The second experiment in Section 7.5.2 is performed in an urban setting with a max-
imum speed limit of 30 km

h
. Two global and one local pose source are fused. We show

the fusion performance with a low number of input sources.
Lastly, we present in Section 7.5.3 an experiment that we performed during a drive

through a parking garage. This leads to an extended period of dead reckoning.
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7.5.1. Experiment on an Audi A6

This experiment is designed to evaluate our claims that the combination of preprocess-
ing sublayer and core estimator can effectively fuse data gathered on a real prototype
vehicle. For this we show the impact of the preprocessing sublayer on the input data
and the pose fusion. We support our claim that the bias estimation leads to a reduc-
tion of the pose fusion’s error. Also, our modeling of autocorrelated errors reduces the
overconfidence of the estimator.

The vehicle that we use for this experiment is the Audi A6 presented in Section 7.1.
We demonstrate that the pose fusion can handle data from four global and two local in-
put sources. The global pose sources are LSDF (see Section 7.2.4), an OEMStar receiver
(see Section 7.1.1), LiLoc (see Section 7.2.3), and LBL (see Section 7.2.2). The two
local pose sources are EgoMaster (see Section 7.2.1) and LSDF relative (Section 7.2.4).
We use the Applanix system as reference (see Section 7.1.2).

The data for the experiment is gathered during a drive of about 21 minutes in rural
and urban areas in Germany. We begin by inspecting the data of the pose sources. This
gives us an overview over their performances. After that, we test the quality of the
pose fusion without preprocessing sublayer. This serves as a comparative value later
on. Subsequently, we evaluate the influence of the preprocessing sublayer on the data
of the input sources. Finally, we plug the preprocessing sublayer and the core estimator
together and analyze their performance.

Analysis of the input pose estimates

As a first step we analyze the data of all input sources. We compare their data to our
reference system and provide statistics that summarize the evaluation. We start with the
global pose sources and address the local pose sources afterwards.

At first, let us take a closer look at the position error of the global pose sources. To
get a better insight into the their performance, we distinguish between the lateral and
longitudinal position error rotated into the reference pose’s frame. The histogram of
the errors in displayed in Figure 7.23. Without further quantitative analysis, we already
state that LBL pose source is the most accurate one. Both the lateral and longitudinal
error are centered closely around zero. The position errors of the other pose sources are
clearly larger. If a histogram shows that most of the data exhibits a positive lateral (or
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Figure 7.23.: Histogram of the position error of the four global pose sources.

source direction mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

LSDF lateral -0.91 -0.87 0.98 1.14 0.69
longitudinal 0.25 0.16 0.57 0.76 0.72

OEMStar lateral -1.73 -1.84 1.80 1.99 1.00
longitudinal -1.02 -0.96 1.11 1.33 0.85

LiLoc lateral -0.60 -0.15 1.34 2.24 2.16
longitudinal -2.74 -1.95 3.85 4.99 4.17

LBL lateral 0.10 0.15 0.24 0.28 0.26
longitudinal -0.06 -0.08 0.24 0.31 0.30

Table 7.10.: Statistics of the position error of the input sources.

longitudinal) position error, that means that the estimated position is generally too far
to the left (or to the front) of the true position.

To judge the quality of the input sources on a more numerical basis, we compute
some statistics over their position errors. Table 7.10 summarizes them. As with the his-
tograms, we find that LBL performs the best. It generally has the lowest error statistics.

The core estimator is built for input data with AWGN characteristics. In other words
the input data should be unbiased, subject to Gaussian noise, and independently gener-
ated. These conditions are more or less strongly violated. From Table 7.10 we see that
the mean position errors of LSDF, the OEMStar receiver, and LiLoc are significantly
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different from zero. Therefore, they are subject to systematic biases. In Figure 7.23 we
see that the position error of none of the pose sources is purely dominated by a Gaus-
sian distribution. The condition that demands independently generated samples is also
violated. It implies that the time series of the input data for each source is not correlated
over time. We analyze the partial autocorrelation function (PACF) of each time series to
show that all input pose sources are autocorrelated. For a given time series xt the partial
autocorrelation between samples xt and xt−l is the conditional correlation between xt
and xt−l conditioned on the set of observations that lie between the time steps t and
t− l. In this sense, the PACF controls for the values of the time series at all shorter lags.
This is in contrast to the autocorrelation function, which does not control for other lags.
Figure 7.24 displays the PACF for all global input sources’ position errors. Clearly, all
time series exhibit at least a strong autocorrelation of order 1. That means the position
error of time step t is strongly correlated with the position error at t − 1. This is a side
effect of temporal filtering, for example. We conclude that the position errors cannot
be explained by assuming AWGN. As a remedy for the violated noise assumptions, we
will later use the appropriate modules of the preprocessing sublayer.

We turn our attention to the local pose sources EgoMaster and LSDF relative. Again,
we determine their estimation errors. As these pose sources generate estimates about
the current movement of the vehicle, we cannot directly apply the same statistical tool
set as for the global pose sources. Instead, we compute their errors as the Euclidean
difference between their estimated movement and the actual movement in the reference
system’s frame. Figure 7.25 shows the EDF of their errors. We have downsampled the
EgoMaster data from 100 Hz to 50 Hz to make it comparable on a per sample basis to
LSDF relative’s. As the output frequencies of these sources are rather high, the absolute
magnitude of their estimated movements as well as their errors for a single time step are
small. The errors naturally add up over time, though. Roughly 50 % of LSDF relative’s
output is significantly more noisy than EgoMaster’s.

Another common measure to describe the accuracy of a local pose source is to com-
pute the ratio of its movement error with respect to the driven distance. This gives an
intuition about the accuracy without going into too much details. However, the measure
is problematic whenever the vehicle moves very little. It is even undefined for standstill
phases. Therefore, we refrain from presenting a detailed analysis. Instead we simply
state that both local pose sources generally exhibit a movement error of below 0.5 % of
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Figure 7.24.: PACF of the position error of the global input sources. The blue lines
indicate the 5% significance limits for the partial autocorrelations.
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Figure 7.25.: EDF of the movement error in the reference frames of the local pose
sources.
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Figure 7.26.: PACF of the position error of the local input sources. The blue lines in-
dicate the 5% significance limits for the partial autocorrelations. They are
very close to zero due to the large number of samples.

the driven distance.

As we did for the global pose sources, we also examine the PACF for the local pose
sources. Figure 7.26 shows the resulting plots. We find strong autocorrelations which
we attribute to a temporal filtering in their algorithms. However, this is an assumption
because source code or a detailed description of them is not available.

Next, we inspect the nominal frequencies and the availability of the input sources.
The nominal frequency is the frequency at which a pose source is supposed to output
samples. We define the availability as the ratio of the number of samples that we re-
ceived over the number of samples that we should have received. For the latter we
multiply the nominal output frequencies of the pose sources with the duration of the
dataset.

Table 7.11 lists the nominal frequencies and the availability of the input sources.
We note that their nominal frequencies are spread over a broad range between 2 Hz

to 100 Hz. Additionally, the availability shows that LiLoc is only sparsely available
whereas data from the OEMStar receiver and EgoMaster is almost always available.
All other pose sources range in between. This means that they occasionally drop out.
This happens because they sometimes do not have map data available, their underlying
algorithms cannot compute a pose estimate given their input data, or their calculations
take too long. As a consequence, the PGF has to handle different input frequencies and
data dropouts.
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input source nominal frequency [Hz] availability [%]

LSDF 50 82.69
OEMStar 5 100.00
LiLoc 2 24.07
LBL 5 94.56
LSDF relative 50 83.35
EgoMaster 100 99.99

Table 7.11.: Availability and nominal frequencies of the input sources.

Pose fusion performance without the preprocessing sublayer

We start our analysis of the pose fusion by directly plugging the pose sources into the
core estimator. We deliberately skip as much of the preprocessing sublayer as possible
such that we can later clearly identify its influence. It is not possible to skip it entirely
as we need to set at least covariance matrices for pose sources which do not provide
any for their estimates. These third-party black box modules without proper uncertainty
estimation include the OEMStar receiver and LiLoc. For their data we make use of their
sample covariance matrices as determined empirically during previous test runs. This is
of course not optimal, but further information is unavailable.

Figure 7.27 illustrates a small portion of the pose graph that is being built up during
the experiments. Comparing it to Figure 7.6 we clearly see the differences between
the simulated and the real input data. In contrast to the simulated data, the effect of
autocorrelation is strongly visible for all global input sources. Moreover, this small
portion of the graph already gives us a visual hint about existing biases in the data.
Additionally, we get an impression of the different frequencies and latencies which the
pose sources exhibit. All of these effects have already been highlighted in a quantitative
way in our preceding analysis of the input data.

We set up the PGF with common values for processing this kind of data. These
include setting the temporal resolution to ∆t = 10 ms, the maximum number of hidden
nodes to Mmax = 1000, and the PID parameters to Kp = 2, Ki = 200, and Kd = 2.
The output frequency is set to f = 20 Hz and marginalization is turned off.

The distribution of the position error of the PGF is shown as two histograms in Fig-
ure 7.28. We note that the error is rather widespread and not centered around zero. Ta-
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Figure 7.27.: Illustration of the core estimator’s pose graph. The gray nodes visual-
ize its hidden nodes, and the colored nodes are observed nodes stemming
from different global pose sources (green: LBL; orange: OEMStar; pur-
ple: LSDF; light gray: LiLoc). The yellow rectangle shows the true pose
of the vehicle, while the gray rectangle shows the estimated pose.
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Figure 7.28.: Histogram of the position error of the PGF.
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error component mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

lateral -0.58 -0.50 0.66 0.82 0.58
longitudinal 0.20 0.16 0.40 0.55 0.51
Euclidean 0.86 0.78 0.86 0.99 0.49

Table 7.12.: Statistics of the position error of the PGF.

uncertainty coverage [%] 1σ 2σ 3σ

lateral 4.30 7.87 11.93
longitudinal 9.17 16.40 22.65

Table 7.13.: Uncertainty coverage of the PGF. The core estimator underestimates its
actual uncertainty without the preprocessing sublayer.

ble 7.12 presents the error statistics. The mean errors with −0.58 m and 0.20 m clearly
show that the systematic errors of the input sources strike through on the fusion result.

Next, we check the quality of the uncertainty coverage of the PGF. We expect this
measure to be negatively influenced by both the autocorrelated errors of the input sources
and the systematic bias of the fusion result. These two effects theoretically lead to an
overconfident estimator. The results presented in Table 7.13 confirm this. Only 11.93 %

or 22.65 % of the estimated poses contain the reference pose within the lateral or longi-
tudinal covariance boundary of 3σ. This means that the actual uncertainty is massively
underestimated. The estimator is therefore overly confident without the preprocessing
sublayer.

Effect of the preprocessing sublayer

In the previous section we have seen the pose fusion result without using the preprocess-
ing sublayer. Three main problems arose: the input sources provide data with systematic
biases, autocorrelated errors, and unsuitable or missing covariance matrices. Our pre-
processing sublayer offers three modules to counteract these problems. Those are the
bias estimation, the autocorrelated noise modeling, and the map-based outlier handling.
One by one we analyze their application.

The bias estimation module aims at minimizing time-varying biases. It is based on
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Figure 7.29.: Histogram of the position error of the four global pose sources with bias
estimation. The error distribution for all pose sources is centered more
around zero than without bias estimation.

comparing biased pose estimates to unbiased ones within a sliding window. For this we
need to identify an unbiased pose source. We have seen in Figure 7.23 and Table 7.10
that the pose source with the overall least mean error is LBL. Therefore, we employ it as
pose source against which we compare the other pose source’s data. The comparisons
are done separately from each other. We use a sliding window length of 15 s.

After applying the bias estimation, we again compute the position error of all global
pose sources. Figure 7.29 shows the histograms of the position errors. The position
errors of LSDF and the OEMStar receiver are much more closely centered around zero
compared to Figure 7.23. The distribution of the position errors of LiLoc, however, is
rather flat and benefits the least from the bias estimation.

Table 7.14 underlines these observations. We note that the error statistics of the LBL
stay of course untouched. The mean position errors of all other pose sources have signif-
icantly dropped. This means that we successfully estimated their biases. Additionally,
the MAE of LSDF and the OEMStar receiver are considerably reduced. They are now
within the same order of magnitude as the LBL’s. Interestingly, also their standard devi-
ations decreased around 50 %. Only the standard deviation of the lateral error of LiLoc
increased slightly from 2.16 m to 2.40 m. These enormous gains in accuracy highlight
the benefit of our bias estimation technique on real world data.

Next, we apply the autocorrelated noise modeling. We have seen in our previous
analysis that all input sources show signs of filtered data or at least autocorrelated errors.
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source direction mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

LSDF lateral 0.06 0.05 0.28 0.36 0.36
longitudinal -0.06 -0.03 0.30 0.40 0.40

OEMStar lateral 0.07 0.06 0.35 0.46 0.46
longitudinal -0.08 -0.09 0.32 0.45 0.44

LiLoc lateral -0.30 0.14 1.61 2.42 2.40
longitudinal 0.97 0.84 2.35 3.06 2.90

LBL lateral 0.10 0.15 0.24 0.28 0.26
longitudinal -0.06 -0.08 0.24 0.31 0.30

Table 7.14.: Statistics of the position error of the pose sources.

Modeling them as AR(1) process might not be fully adequate, but is substantially more
appropriate compared to ignoring the autocorrelations completely. If the errors could
truly be modeled by an AR(1) process, then all coefficients greater than the first one
should be close to zero.

Again, we split up the lateral and longitudinal error components of the position error
for each pose source. We model each component separately as an AR(1) process. From
the PACF plots we read off the coefficients at the first lag. For LBL, the OEMStar
receiver, and LSDF, they amount to φ = 0.99 or even slightly above, but we limit the
value at 0.99. For LiLoc the lateral coefficient amounts to 0.93 and the longitudinal
one to 0.90. Using these values we scale the covariance matrices of the input pose
estimates accordingly. Consider the pose estimates from the LBL as an example. After
the initial built up of the sliding window chain pose graph of the PGF there are usually
n = M ·∆t · fLBL = 1000 · 0.01 s · 5 Hz = 50 observed nodes from the LBL within the
graph. The according scaling factor is equal to

ωi =
n− (n− 2)φ

n(1 + φ)
=

50− (50− 2)0.99

50(1 + 0.99)
≈ 0.025. (7.3)

The covariance matrices are therefore scaled by a factor of roughly 1
0.025

= 40. We will
see the effects of that in the next evaluation of the pose fusion.

The last preprocessing module of interest is the map-based outlier handling for global
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Figure 7.30.: Scaling function for different distances to the center line used during this
experiment.

pose sources. It introduces prior knowledge in the form of a map to the covariance
estimation. This knowledge is used to compare pose estimates to a DLM map. If they
are far off any center line, the uncertainty of that pose estimate is scaled up or, more
precisely, its information matrix is scaled down. We parametrize the scaling function
s(δ) rather strictly with smin = 0.01, smax = 1.0, λ1 = 1.0, and λ2 = 0.5. Figure 7.30
shows a plot of the resulting function.

We apply this to all four global pose sources. Interestingly, it has different effects
on them. It serves to downvote single outlier pose estimates for LBL, LSDF, and the
OEMStar receiver. Most of their pose estimates are within a distance of −1 m to 1 m

to the center line. Therefore, their information matrices are not scaled because for
δ ∈ [−1, 1] we have s(δ) = 1. In contrast, most of the pose estimates of LiLoc are
far away from the center line: its lateral MAE is 1.61 m after all. To investigate on this
intuition, we check how much of the pose estimates are within a distance of−1 m to 1 m

to the center line. Table 7.15 breaks the results down per pose source. As expected, pose
estimates from LiLoc are with 45.42 % the least frequently close to the center line. More
than half of its pose estimates’ information matrices are scaled down. Additionally, we
note that the pose estimates from the reference system Applanix are in 94.70 % of the
cases close to the center line. The remaining fraction is due to lane changes, corner
cutting maneuvers, or inaccuracies within the map.

All in all, the preprocessing modules have a strong influence on the pose estimates.
Figure 7.31 provides a visual impression of the effects. Comparing it to Figure 7.27 we
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source
fraction of pose estimates within

a distance of 1 m to the center line [%]

Applanix 94.70
LSDF 86.93
OEMStar 81.87
LiLoc 45.42
LBL 91.83

Table 7.15.: Fraction of pose estimates close to the center line per pose source.

Figure 7.31.: Illustration of the core estimator’s pose graph when using the preprocess-
ing sublayer. The observed nodes are much less biased.

observe that the outlier handling module leads to the usage of a map within the system.
Information matrices of poses far off the center line, like the light gray one, are scaled
up (not shown). The pose estimates from the other sources agree much closer on the
recent trajectory of the vehicle as their biases have been largely removed. This data
forms the input for our next evaluations.

Pose fusion performance with preprocessed input data

We apply the preprocessing sublayer to the data from the pose sources and analyze the
pose fusion performance of the PGF again. Figure 7.32 shows the resulting histograms
of the position error. Qualitatively, it is centered more closely around zero than before.
The numerical evaluations provided in Table 7.16 confirm this. The previous lateral
and longitudinal mean errors decrease from −0.58 m and 0.20 m to 0.04 m and 0.01 m,
respectively. This shows the effectiveness of the bias estimation. The MAE also drops
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Figure 7.32.: Histogram of the position error of the PGF with preprocessed input data.
The error is much closer distributed around zero for both the lateral and
longitudinal error component compared to the fusion output without pre-
processed input data (see Figure 7.28).

error component mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

lateral 0.04 0.08 0.27 0.33 0.33
longitudinal 0.01 0.01 0.30 0.41 0.41
Euclidean 0.45 0.39 0.45 0.52 0.26

Table 7.16.: Statistics of the position error of the PGF with preprocessed input data. The
error improves substantially.

significantly from 0.66 m and 0.40 m to 0.27 m and 0.30 m in lateral and longitudinal
direction. Even the standard deviation decreases from 0.58 m and 0.51 m to 0.33 m and
0.41 m, showing that the error is not only shifted but indeed reduced.

Finally, we examine the uncertainty coverage of the output pose estimates of the PGF.
Table 7.17 summarizes the results. Comparing the numbers to the previous results with-
out using the preprocessing sublayer given in Table 7.13, we note a strong improvement
due to our modeling of autocorrelated errors. The true vehicle pose is much more of-
ten than before within the estimated uncertainty ellipses. However, the values are still
below what we would expect from a true Gaussian estimator. We mostly attribute this
to the assumption that we can perfectly model all pose sources as having errors from an
AR(1) process.

All in all, we have shown in this experiment that the PGF can effectively fuse data
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direction 1σ [%] 2σ [%] 3σ [%]

lateral 60.09 86.09 93.54
longitudinal 39.61 68.13 81.89

Table 7.17.: Uncertainty coverage of the PGF with preprocessed input data. The esti-
mated uncertainty reflects the actual error significantly better than without
the preprocessing sublayer.

from many different input sources on a real prototype vehicle. Additionally, we have
demonstrated that the preprocessing sublayer provides powerful means for improving
the input data in a way that makes it compatible with the core estimator. After its
application, we have shown that the resulting accuracy is comparable to the accuracy
of the best performing input source. Also, the preprocessing sublayer considerably
decreases the overconfidence of the estimator.

7.5.2. Experiment on an e-Golf

This experiment is performed on another prototype vehicle to prove our claim that the
PGF successfully runs on different vehicles. For this we use the e-Golf presented in
Section 7.1. Also, changing the vehicle means limiting the number of input sources.
Thus, we examine the pose fusion performance when the PGF has only two global and
a local pose source as input. Moreover, using a different vehicle also means changing
the input sources. Compared to the experiment in Section 7.5.1, there is no OEMStar
but instead a u-blox receiver (see Section 7.1.1). The reference system also changes
from the Applanix to the Oxford system (see Section 7.1.2).

In this experiment one focus is on the timing aspects. We prove our claims that the
PGF handles different and time-varying input frequencies, deals with different latencies
of the input poses, provides recent pose estimates at a near-constant output frequency,
and is highly available. Additionally, we show interesting, non-intuitive behavior of the
PGF that does not always lead to optimal results. We believe that presenting these kind
of results leads to valuable insights over the pose fusion’s characteristics. For this we
provide in-depth analysis of selected route sections.

The presentation of this experiment is constructed similarly to Section 7.5.1. At first,
we analyze the input data, then take a closer look at the preprocessing sublayer, and
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Figure 7.33.: Histogram of the position error of the two global pose sources.

source direction mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

u-blox lateral 0.83 0.82 0.86 1.02 0.60
longitudinal -0.05 -0.24 0.72 0.84 0.84

LBL lateral 0.12 0.05 0.18 0.29 0.26
longitudinal 0.06 0.03 0.15 0.22 0.22

Table 7.18.: Statistics of the position error of the two input sources.

finally plug them into the core estimator.

Analysis of the input pose estimates

To start off our analysis, we analyze the data of the global pose sources. As a second
step, we extend this to the local pose source. Figure 7.33 shows the histogram of the
position error of the two global input sources. Both the lateral and longitudinal position
error of LBL’s pose estimates are centered around zero. The distribution of the lateral
position error of the u-blox receiver’s data is displaced compared to the LBL’s. Ta-
ble 7.18 provides numerical results. They show that the lateral mean error of the u-blox
receiver’s data is indeed significantly different to zero with a value of 0.83 m. The dis-
tribution of the position error of the LBL is fairly well free of systematic biases. Also,
the standard deviation of its error is considerable smaller than the u-blox receiver’s data.



7.5. Pose fusion layer 191

input source nominal frequency [Hz] availability [%]

u-blox 1 100.00
LBL 5 73.33
EgoMaster 100 100.00

Table 7.19.: Availability and nominal frequencies of the input sources.

We analyze the autocorrelation of the pose source’s errors. Not surprisingly we again
find that the errors of the pose estimates of the LBL are strongly autocorrelated. Also un-
surprisingly we find the same for the u-blox receiver’s data. It comes with an integrated
IMU and the manufacturer promotes it with filtering and dead reckoning functionalities.
The filtering leads of course to autocorrelated errors. Similar to the last experiment we
conclude that the noises of both global pose sources cannot be described as AWGN.

Next, we briefly look at the timing of all pose sources. Table 7.19 summarizes the
nominal frequencies and availability of the input sources. In contrast to the last experi-
ment we find that the LBL is only available in 73.33 % of the time. We will show later
in Figure 7.42 that its actual frequency is differing in roughly 20 % of the time from
its nominal frequency. Also, its input data commonly has a latency between 100 ms to
300 ms.

We now turn to the local pose source, the EgoMaster. The EDF of its movement
error is displayed in Figure 7.34. Interestingly, the curve has a different form than in the
previous experiment, see Figure 7.25. Whereas there were already approximately 78 %

of samples with a movement error below 0.0015 m, there are now only approximately
14 % of samples at the same value. The maximum movement error also increases from
roughly 0.013 m by 14 % to 0.0148 m. Indeed, the entire curve seems translated to
the right. We attribute this to a systematic error in the movement estimation of the
EgoMaster on this prototype vehicle. It is not constant over different test drives. Also,
we do not have another local pose source with which we could use a similar technique
to our bias estimation for global pose sources. Therefore, we have unfortunately little
means to eliminate this systematic error. We will see that the pose fusion suffers from
this.
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Figure 7.34.: EDF of the movement error of the EgoMaster.
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Figure 7.35.: Histogram of the position error of the PGF without the preprocessing sub-
layer.

Pose fusion performance without the preprocessing sublayer

We plug in the data streams from the pose sources into the core estimator without mak-
ing use of the preprocessing sublayer. The core estimator is parametrized in the same
way as in the previous experiment. The histogram of the position error is displayed in
Figure 7.35. The corresponding statistics are given in Table 7.20. They both show an
offset of the lateral and longitudinal mean errors. We attribute the longitudinal bias for
the most part to the systematic EgoMaster error.

As a next step we analyze the uncertainty coverage. Table 7.21 summarizes the re-
sults. We observe that the reference pose is only in 50.36 % and 27.79 % within the
3σ-ellipse of the PGF. In other words, the core estimator is overconfident in its result.
However, we notice a strong increase in the uncertainty coverage compared to the pre-
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error component mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

lateral 0.22 0.14 0.30 0.44 0.38
longitudinal 0.24 0.20 0.29 0.37 0.28
Euclidean 0.47 0.41 0.47 0.58 0.33

Table 7.20.: Statistics of the position error of the PGF without the preprocessing sub-
layer.

σ coverage [%] 1σ 2σ 3σ

lateral 21.30 37.76 50.36
longitudinal 7.40 17.66 27.79

Table 7.21.: Uncertainty coverage of the PGF without the preprocessing sublayer.

vious experiment. This is due to using less input sources, which always results in larger
estimated uncertainties.

Effect of the preprocessing sublayer

From our preprocessing sublayer we now apply the bias estimation module, the map-
based outlier handling module, and the module to model autocorrelated errors to the
input data. We briefly report on the results of the bias estimation module. Figure 7.36
shows the resulting histogram of the position errors of the two global input sources. It
clearly leads to a closer distribution of the u-blox receiver’s position error around zero.
The statistics provided in Table 7.22 confirm this. Especially the mean lateral error
is reduced from previously 0.83 m to 0.21 m. The longitudinal error improves most
noticeably in the MAE from 0.72 m to 0.38 m. We conclude that the bias estimation on
the u-blox data is successful.

Pose fusion performance with preprocessed input data

We plug the pose sources, the preprocessing sublayer, and the core estimator together.
Using the PGF with the same parameters as in the experiment in Section 7.5.1, we study
its fusion result regarding position error, uncertainty coverage, and timing. Figure 7.37
provides the resulting histograms on the position error. The corresponding statistics are
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Figure 7.36.: Histogram of the position error of the two global pose sources with bias
estimation.

source direction mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

u-blox lateral 0.21 0.29 0.52 0.69 0.66
longitudinal 0.06 -0.02 0.38 0.63 0.63

LBL lateral 0.12 0.05 0.18 0.29 0.26
longitudinal 0.06 0.03 0.15 0.22 0.22

Table 7.22.: Statistics of the position error of the input sources after applying bias esti-
mation.
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Figure 7.37.: Histogram of the position error of the PGF with preprocessed input data.

error component mean [m] median [m] MAE [m] RMS [m]
standard

deviation [m]

lateral 0.23 0.14 0.33 0.49 0.43
longitudinal 0.24 0.18 0.28 0.37 0.29
Euclidean 0.50 0.45 0.50 0.61 0.36

Table 7.23.: Statistics of the position error of the PGF with preprocessed input data.

given in Table 7.23. Interestingly, the position error stays virtually the same compared
to when not using the preprocessing sublayer. Why is that? In the following we look
into the details of this test run and analyze some situations more specifically to work out
the answers.

The main reason why the position error does not improve here is the interplay of the
u-blox receiver and the core estimator. We have seen that the bias estimation indeed per-
forms well and improves the position error of the u-blox receiver. Evidently, it does not
alter any of LBL’s data. Within the core estimator it weights the global pose constraints
with their information matrices. In this experiment the information matrices of the pose
estimates from the LBL are on average over a factor of 6.6 larger than those from the
u-blox receiver. Additionally, the LBL’s output frequency of 5 Hz is clearly faster than
the u-blox receiver’s with 1 Hz. As a consequence, the data from the LBL largely dom-
inates the estimation algorithm. Practically, we are only fusing a single global pose
source with and without the preprocessing sublayer.

Let us look into two route sections of the test run in more detail. Figure 7.38 provides
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Figure 7.38.: Trajectory of the test run. The color encodes the position error of the PGF.

an overview of the route. The trajectory is color-coded with the position error of the
PGF. The gray thin lines are the center lines of the underlying DLM. The start of the
trajectory is in the upper left corner. The first section of interest is the red portion in the
upper left corner. The second one is during the following right turn, which leads onto a
bridge.

To get a better visual impression of the first section, we provide with Figure 7.39
a zoomed-in view. Starting in the top left, both the LBL and the PGF estimate the
vehicle pose with little error. Also, the LBL frequently delivers pose estimates. After
the vehicle has taken the bend, the LBL’s pose estimates are quickly off compared to
the reference trajectory. In the same time it also provides few pose estimates because
its underlying algorithm needs more computational resources to find a better solution.
Once it has found one, it starts outputting at regular intervals again. In comparison, the
PGF’s sliding window is comprised for quite some time of a lot of observed nodes from
before the bend. Using odometry constraints it constructs the graph further in driving
direction. In this combination this leads to the reddish colored parts of the trajectory.
The PGF corrects its estimated pose only after the new observed nodes from the LBL
outweigh the old ones. We call this a low-pass filter behavior.

This behavior is what constitutes the core of the PGF. With the odometry information
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Figure 7.39.: Zoom in on a critical route section.

being rather certain the main task of the PGF is to fit the most recent trajectory through
all observed nodes within the sliding window. In the current route section the observed
nodes are split up into two rather distinct hypothesis as to where the vehicle recently
went. The upper hypothesis leads into the reddish trajectory of what the PGF estimated.
The lower hypothesis starts around an x-position of roughly 120 m and is close to the
reference trajectory. As long as the core estimator’s sliding window is comprised of
mostly observed nodes from the upper hypothesis it will fit the trajectory through that.
As soon as the sliding window removes those observed nodes and is dominated by ob-
served nodes from the lower hypothesis the core estimator starts transitioning towards it.
We provide two screenshots of our PGF implementation to illustrate this. Figure 7.40a
shows the chain pose graph over the sliding window right before the point of transition.
Most of the observed nodes in the left part of the sliding window coincide well with the
estimated pose of the core estimator for that point, which is shown as dark gray line.
The position error is clearly visible as the dark gray rectangle does not overlap with
the yellow rectangle at all. In Figure 7.40b we see the pose graph during the transition
between the two hypotheses2. Old observed nodes at the beginning of the graph are
removed and new ones at the front are added. The fusion result starts to better represent
the true vehicle pose.

2Keep in mind that the covariance matrices of the pose estimates strongly influence the estimation. For
visual clarity, these are not shown here.
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(a) The pose graph is in good alignment with the left observed nodes. However, they are translated com-
pared to the true recent trajectory.

(b) More observed nodes at the front start to gain importance for the pose graph. This results in a correction
of the estimated pose.

Figure 7.40.: Screenshots of the visualization of the PGF within a couple of seconds.
The pose graph transitions between the upper (see (a)) and lower hypothe-
sis (see (b)). The hidden nodes are depicted as dark gray line, the observed
nodes as green (LBL) and orange (u-blox) triangles, the estimated vehicle
pose as dark gray rectangle, and the reference pose as yellow rectangle.

This situation occurs whenever the PGF’s input consists of mainly a single global
pose source which starts quickly transitioning between two hypothesis for whatever
reason. At first, the core estimator considers the new information as outliers. After all,
the majority of information at the tail of the sliding window is somewhat in accordance
with the old hypothesis. After a while, the new information at the head makes up most
of the sliding window. As a result, the optimization fits the estimated trajectory through
those observed nodes. Generally, it takes about half of the sliding window to be filled
with constraints from a new hypothesis until the core estimator transitions towards it3.
In other words, the transition time is generally speaking equal to roughly 1

2
M∆t.

So, is this low-pass filter behavior unwanted? No; new information, that could well be
outliers, should not all of the sudden drastically change the fusion result. This smooth-
ing behavior is the foundation of the pose fusion algorithm. In general, all fusion algo-
rithms will have to decide in such difficult cases when to adapt to the new information.
Sometimes, custom-made gating procedures or similar techniques are employed. For a
sliding window pose graph, this behavior comes naturally. However, the low-pass be-
havior admittedly proves to be problematic in the situation at hand. To counterbalance

3Here, we assume a constant input frequency of the pose sources, that there is either a single pose source
or that all sources behave in the same way, and that their covariance estimates are all within the same
order of magnitude.
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Figure 7.41.: Zoom in on the second route section of interest. The LBL provides ir-
regular pose estimates with a high position error (orange dots). The PGF
(greenish line) stays close to the reference trajectory (black line).

this impression, we analyze the second situation in which the opposite happens.

The second route section is located further to the right of the first one and takes place
during a right-hand bend onto a bridge. Figure 7.41 shows a zoom onto that route
section. The intervals between the pose estimates of the LBL increase and become
irregular. Also, their position error temporarily increases significantly. We can see this
in the visualization because the dots become orange. Soon after, their position error
decreases and the normal behavior is restored. During the entire time span the position
quality of the PGF stays more or less constant. The PGF is not influenced by the few
successive outliers. The core estimator improves the position quality over the input
source in this situation. The low-pass filter behavior of the PGF prevents a too quick
adaptation to the new information. Without explicit outlier detection or handling it
correctly distinguishes between correct and incorrect pose estimates.

Bringing both examples together, we have seen in the first one that the sliding window
can adapt too slowly to new information. The second one demonstrates that it might
also be good to not adapt too quickly to new and contradicting information. The desired
behavior depends on whether this new information reflects the true trajectory in a better
way or not. Often, this can only be answered in hindsight. Options to resolve such
conflicts at runtime are to include more input sources with different information.



200 7. Evaluations

direction 1σ [%] 2σ [%] 3σ [%]

lateral 53.44 71.84 81.22
longitudinal 56.64 75.00 86.59

Table 7.24.: Uncertainty coverage of the PGF with preprocessed input data. The esti-
mated uncertainty reflects the actual error significantly better.

Is using the prior node a remedy to this conflict? In some situations perhaps yes, in
others likely not. Marginalizing out all older information and using it as prior knowledge
hugely improves the output whenever that prior knowledge accurately reflects the truth.
If the pose fusion was in a good state, it will stay longer within this and adapt slower to
new mismatching information. However, if it was in a bad state, it will also stay longer
in this state. This is the effect of temporal smoothing. It leads to the same characteristics
as what we called low-pass behavior above. A true remedy to this situation is using more
pose sources. Their information can implicitly help to resolve mismatches and decide
between conflicting hypothesis.

Let us briefly look at other effects of the LBL’s behavior. It is common that the LBL
provides few estimates in difficult situations. This explains its rather low availability at
73.33 %. The PGF, however, is bound to deliver because the controller of the automated
vehicle relies on the current pose. The PGF achieves an availability of 100 %. The
statistics of the position errors should be read with this in mind: the position error of the
LBL is diluted by only providing pose estimates in good situations at the cost of a lower
availability.

We have seen that omitting the preprocessing sublayer leads to an overconfident es-
timator. Now that we have made use of the preprocessing sublayer we reanalyze its
uncertainty coverage. Table 7.24 presents the results. Compared to the previous results
given in Table 7.21 we see a strong increase in the uncertainty coverage. We attribute
most of this positive effect to our modeling of autocorrelated errors.

Next, we examine the timing of the pose sources and the pose fusion to prove our
claims that the PGF handles different and time-varying input frequencies, deals with
different latencies of input poses, and provides recent pose estimates at a near-constant
output frequency. For these claims we present the plots in Figure 7.42. In Figure 7.42a
the distribution of the latencies of the pose estimates of the PGF, the LBL, and the
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(a) Distribution of the latencies of the pose estimates
per pose source.
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two pose estimates.

Figure 7.42.: Analysis of the timing behavior of the pose sources. The PGF provides
recent estimates at a constant output frequency.

u-blox receiver is shown. We recall that the latency of a pose estimate is the difference
between the time when it becomes available and the time for which it is valid. The
pose estimates of the LBL usually have a latency between 100 ms to 300 ms, those
of the u-blox receiver usually more than 300 ms. In contrast, the pose estimates of
the PGF are very recent. The maximum latency is only 20 ms. This is due to the
recent odometry data and the core estimator’s close attention to its timing behavior.
The second plot in Figure 7.42b displays the evolution of ∆T per pose source over
time. We define ∆T as the time difference between two data samples of a pose source.
Its examination offers us valuable clues about frequency variations or data dropouts of
the corresponding data stream. We observe that the LBL provides samples at irregular
intervals. Its base computation cycle is 200 ms long and it sometimes needs multiple
cycles for a computation. The u-blox receiver exhibits a constant output frequency. The
PGF brings them both together and outputs on average every 50 ms a pose estimate.
Small fluctuations occur due to minor variations in the computation time c.

In summary, this experiment has offered us valuable insight into some characteristics
of the pose fusion. We have seen that if the preprocessing sublayer is not able to model,
transform, or reduce unmodeled systematic errors, such as the odometry error, they lead
to a degradation of the accuracy.

For systematic offsets of global pose sources we have the bias estimation module. It
proved to be successful for the pose estimates from the u-blox receiver. However, in
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contrast to the experiment in Section 7.5.1 this success did not have significant impact
on the outcome of the pose fusion. This is because a strong pose source with low
covariance matrices such as the LBL is able to predominate a weaker pose source such
as the u-blox receiver. We effectively fused a single global with a single local pose
source.

In this combination interesting effects arise. We have seen the low-pass filter behavior
of the PGF and its consequences. On the one hand, it has negative aspects like adapting
slowly to newer and potentially better information. On the other hand, it has positive
effects like not reacting too quickly to consecutive outliers.

Furthermore, we have shown that the PGF handles different and time-varying input
frequencies, deals with different latencies of the input poses, provides recent pose esti-
mates at a near-constant output frequency, and is highly available.

7.5.3. Parking garage

In this section we present an experiment in a parking garage. The vehicle enters a
parking garage, traverses it, and exits it at another location. This illustrates our claim
that the pose fusion allows the vehicle to transition between different scenarios, where
different pose sources are active in each scenario. Here, GPS and odometry data are
available outside of the parking garage. Only odometry data is available inside of it. In
this part, the pose fusion relies on dead reckoning. The experiment therefore shows that
our approach can handle substantial GPS dropouts.

We perform both offline batch estimation and online sliding window smoothing. Of-
fline batch estimation is achieved by setting the number of hidden nodesM to infinity so
that the sliding window encompasses all time steps. To obtain the dataset, we recorded
roughly 15 min of odometry and GPS data directly before entering an underground car
parking, while driving through it, and at the exit. We filter the valid GPS measure-
ments by requiring at least five satellites to be seen. This results in missing GPS data
for the entire transit through the car parking. Additionally, it took a while after exiting
it before reliable GPS measurements could be acquired. Figure 7.43 shows the avail-
ability of GPS and the accumulated drift in the odometry readings, which amounts to
approximately 30 m and 3.2◦. The figure also shows the optimized global trajectory,
once computed offline (Figure 7.43a) and once in an online fashion (Figure 7.43b). The
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(b) The overall shape of the trajectory of the online estimation is qualitatively
comparable to the offline estimation. The most noticeable difference is the
transition towards the GPS measurements once they become available again.

Figure 7.43.: We recorded GPS and odometry data while driving through an under-
ground car parking. GPS is only available before entering and shortly
after exiting. Both the online and offline estimation are able to handle
substantial GPS dropouts.
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online sliding window smoothing is able to perform dead reckoning. The associated
part of its estimated trajectory shows the typical dead reckoning effect of accumulated
error. However, it approximates the trajectory of the batch estimation after GPS data
becomes available again. It is therefore able to cope with substantial GPS dropouts.



8. Conclusion and future work

In this thesis we have studied the problem of estimating the pose of an automated vehicle
with different pose sources, also called generic pose fusion. We briefly summarize our
findings here and discuss limitations and possible future work.

8.1. Summary and discussion

The key question of this work is how to design a generic pose fusion approach. We
propose a layered architecture with a core estimator and a set of preprocessing modules
for this. The core estimator is the backbone of our approach. It fits the recent trajectory
as measured by the odometry through the set of supporting points as measured by the
global pose sources. For this we construct a pose graph over a sliding window of pose
estimates. Optimizing this graph leads to the maximum likelihood (ML) solution over
the joint probability of local and global pose estimates in the current window. We have
shown that this converges to the online batch estimate for increasing sizes of the sliding
window. Also, adapting this window size allows us to design the core estimator as a
resource-adaptive algorithm.

The core estimator makes general assumptions about the nature of the error of the
input data. The preprocessing techniques account for error modes that are specific to
certain input sources. They transform the input data in a suitable way. We propose
four preprocessing modules: bias estimation, map-based outlier handling, treatment of
cross-correlated errors between pose sources, and modeling of autocorrelated errors. In
its practical application, these modules have proven to be of different value to us. The
bias estimation directly influences the accuracy of the estimation. We found it simple to
implement and effective in its application. The map-based outlier handling is a straight-
forward way of reducing the influence of outlier constraints. Naturally, how much it
affects the pose fusion is dependent on the dataset and the input sources. Robust cost
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functions may be a viable alternative. The application of the cross-correlated error treat-
ment turned out to be the least useful of the preprocessing techniques. First, it is unclear
when to use it. On the one hand, analyzing data from two different pose sources can
show random correlations that do not warrant the existence of cross-correlated errors.
On the other hand, pose sources that we strongly expect from a theoretical perspective
to exhibit cross-correlated errors turn out to not show significant correlations, for exam-
ple because of very different implementations. This makes it unclear when to use this
method. Secondly, applying it to pose estimates with covariance matrices in different or-
ders of magnitude simply leads to throwing away the larger one. This common effect is
easy to achieve without the computational complexity of Covariance Intersection (CI).
The fourth preprocessing module is the modeling of autocorrelated errors. While its
theoretical derivation is rather complex, it is straightforward to implement as according
scaling of information matrices. Its application leads to improved uncertainty estimates.

One focus of this thesis is to extend the expressiveness of pose graphs. To this end,
we derived the prior node, which is essentially the graphical model of the effect of
marginalization of chain pose graphs. We also derived how to model factors that rep-
resent autocorrelated errors of local and global pose constraints. Even without imple-
menting them explicitly, it is useful to have a graphical model of how they affect the
graph to understand their influence.

We have experimentally verified that our system fulfills the requirements that we for-
mulated in the beginning. More precisely, we have shown it to be highly available,
recent, working online, resource-adaptive, extendable to six degrees of freedom, com-
patible with certain preprocessing techniques, accurate, and able to provide reasonable
estimates of its uncertainty. These are important prerequisites to apply it to multiple
pose sources and vehicles. We demonstrated this capability by letting it run on multiple
vehicles and with different configurations and inputs.

8.2. Limitations and future work

The strongest advantage of our approach is also its biggest weakness: its generic na-
ture. While it allows us to plug in any kind of pose source, we suffer from the lack of
knowledge of their underlying algorithms. This prevents a tight integration, thorough
modeling, and rigorous error propagation. In the future, it would be beneficial to study
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hybrid approaches between generic and specific fusion. Richer stochastic models could
be developed for certain pose sources while maintaining the generic treatment of the re-
maining sources. This could be supported by additional preprocessing modules aimed
at transforming the input data in suitable ways.

We tested the pose fusion on automated vehicles. It would be interesting to see how
much of it can be directly transferred to other use cases. Thinking of light-weight
drones, for example, there might be different or additional requirements. Usually, they
have limited computing power. This could lead to the need for a closer integration of
the graph construction with the graph optimization. We rely on a plain configuration of
a widespread graph optimization framework because it is fast enough for our use. If this
is not the case in different use cases, then it might be beneficial to encode knowledge
about sliding window chain pose graphs directly in the graph optimization. This could
prevent the rebuilding of most of the problem from scratch in every iteration and instead
keep most of the structure intact.

The concepts in this thesis build up on pose graph optimization. This methodology
is currently the state-of-the-art technique for solving Simultaneous Localization and
Mapping (SLAM) problems. Therefore, it is a straightforward future strand of research
to study how to bring together pose fusion with SLAM. Ideally, this leads to combining
the benefits of a tight integration of SLAM features with the loosely coupled fusion of
pose sources. In this way, the pose fusion would not only merge other pose source’s
data, but become a pose source on its own.

Lastly, our conclusion from this thesis is that our key concepts results in a simple, yet
general, take on the generic pose fusion problem. In research environments, its makes
sense to develop such a system as derived in this thesis. It allows the easy integration
of new pose sources. Also, robots can be equipped with different pose sources but
they could share the same pose fusion system. This increases the reuse of components,
reduces the effort to implement new specific fusion systems, and overall renders the
pose fusion future-proof. It is a different situation when an application or a product
shall be developed based on a specific set of pose sources. In this case, it makes sense
to adopt some key concepts of this thesis and to aim for a hybrid approach as outlined
above. This ensures that the system is extensible in the future as well as making full use
of the knowledge of the specific pose sources.
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A. Automotive software
environment

This chapter gives an overview of the automotive software framework in which the
concepts presented in this thesis are implemented.

ADTF (Schabenberger, 2007) is an automotive middleware developed by Elektrobit1.
It is commercially available for Linux and Microsoft Windows operating systems. In the
automotive industry it is widely-used by major automotive manufacturing companies,
such as Volkswagen, Daimler, and their suppliers.

As a middleware it focuses on coupling software components and opening up the
possibility to exchange data between them. These software components are called filters

and they are generally written in C++. Technically, they are shared libraries that are
loaded by the ADTF runtime process. Figure A.1 depicts two filters that receive and
transmit binary data packets (so-called MediaSamples) via their pins. Developers that
are familiar with Robot Operating System (ROS) will quickly find similarities between
nodes in ROS and filters in ADTF. For developers that are more familiar with MATLAB
Simulink the concept of Simulink’s blocks lends itself to comparison with filters.

ADTF offers a graphical configuration editor that allows the coupling and parametriza-

1https://www.elektrobit.com/products/eb-assist/adtf/
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Figure A.1.: ADTF streaming architecture. Filters exchange binary data over pins.
Source: EB Assist ADTF Support (2015, Fig. 1.4).

https://www.elektrobit.com/products/eb-assist/adtf/
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tion of filters. Filters can be placed and connected via drag-and-drop as this creates a
directed graph. An edge in this graph defines the coupling between two filters and
therefore the data-flow between software components. An individual coupling of filters
is called a configuration and can be stored and loaded. Figure A.2 shows a screenshot
of an example ADTF development environment with two filters in the configuration ed-
itor. The progress bar at the top indicates that ADTF is currently playing back recorded
data. This is opposed to the online mode in which the data streams represent the current
sensor readings in a vehicle. As many middlewares, ADTF supports these two modes,
playback and online mode, to enable the prototyping of new software modules with ex-
isting test data. The recorded data is saved in so-called .dat-files (similar to .bag-files
under ROS) and can be played back at the workstation. The same filters can be used in
both modes.
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Chapter 2 First steps

Figure 2.9: Running Configuration

User’s Manual 33

Figure A.2.: ADTF development environment. In this case, it consists of the configu-
ration editor with two filters (middle right), the control panel (upper left),
an output window (upper right), and several other elements. Source: EB
Assist ADTF Support (2015, Fig. 2.9).





Abbreviations

ABS anti-lock braking system 145
ADAS advanced driver assistance system 4, 6, 32
ADTF Automotive Data and Time-Triggered Framework 76,

211–213
AR(1) autoregressive model of order 1 66, 67, 115–118, 120,

124, 125, 128, 132, 133, 136, 169–172, 183, 185
AWGN additive white Gaussian noise 18, 22, 26, 46, 74, 115,

117, 118, 120, 123, 124, 127, 170, 174, 175, 188

BDS BeiDou Navigation Satellite System 30

CAN bus controller area network bus 145
CEP circular error probable 141, 142
CI Covariance Intersection 9, 25, 61–66, 69, 70, 111–114,

133–135, 168, 169, 204
CPU Central Processing Unit 96, 97, 157–159
CRLB Cramér-Rao Lower Bound 67–69, 133

DBN Dynamic Bayesian Network 18, 48, 49, 52
DCS Dynamic Covariance Scaling 24, 25
DGPS Differential Global Positioning System 32
DLM Detailed Lane Model 35–37, 107, 108, 164, 183, 194

ECU electronic control unit 145



220 Abbreviations

EDF empirical distribution function 151, 153–155, 177, 189,
190

EIF Extended Information Filter 17
EKF Extended Kalman filter 14–19, 22, 145, 147
ENU East North Up 29
ESP electronic stability program 33, 145

FI Fisher Information 67–70, 133, 134

g2o General Graph Optimization 50, 80, 87
GLONASS Global Navigation Satellite System 30, 138, 141, 142
GNSS Global Navigation Satellite System 1, 3–5, 30–32, 71,

115, 138, 141, 142, 147
GPS Global Positioning System 17, 22, 23, 25, 26, 30–33, 71,

72, 78, 102, 111, 138–142, 147, 158, 160, 200–202
GSM Global System for Mobile Communications 30
GTSAM Georgia Tech Smoothing and Mapping library 50

IEKF Iterated Extended Kalman filter 8, 14–17, 19, 79
i.i.d. independent and identically distributed 170
IMU inertial measurement unit 2, 5, 14, 17, 22, 31, 33, 71, 72,

138, 141, 142, 145, 147, 188
INS inertial navigation system 17, 33
iSAM Incremental Smoothing and Mapping 50

LBL landmark-based localization 146, 164–166, 173–176,
178, 179, 181–184, 188, 189, 192–194, 196–200

lidar light detection and ranging 3, 33, 34, 138–140, 143, 146
LiLoc lidar localization 146, 165, 166, 173–176, 178, 179,

181–184



Abbreviations 221

LSDF localization sensor data fusion 147, 173–179, 181–184

MAE mean absolute error 161, 166, 172, 175, 180–182, 184–
186, 189, 191–193

ML maximum likelihood 8, 13, 18, 46, 53, 79, 203
MRF Markov random field 18, 48, 49, 51, 59

NDS Navigation Data Standard 34, 35
NLLSQ nonlinear least squares 13, 18–20, 23, 26, 37–39, 42, 44,

46, 47, 52–55, 59, 60, 67, 79–81, 88, 98, 111, 115, 116,
118, 120, 123–125, 128, 132, 133, 135, 136, 149, 166

NLOS non-line-of-sight 25, 31

OEMStar NovAtel FlexPak-G2 OEMStar 138, 149, 158, 160, 161,
165, 166, 173–176, 178, 179, 181–184, 187

PACF partial autocorrelation function 175–178, 183
PC Personal Computer 137, 138
PDF probability density function 65, 67, 68
PGF PoseGraphFusion 76–78, 95, 96, 149, 150, 152, 153,

156–158, 161, 164–167, 169–172, 178–181, 183, 185–
187, 190, 191, 193–200

PID proportional-integral-derivative 97, 157–159, 179
PPP Precise Point Positioning 32

QZSS Quasi-Zenith Satellite System 141, 142

radar radio detection and ranging 22, 33, 34, 137, 146
RFID radio-frequency identification 33
RMS root mean square 138, 142, 166, 175, 180, 182, 186, 189,

191–193
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ROS Robot Operating System 211, 212
RRR Realizing, Reversing, Recovering 24, 25
RSSI Received Signal Strength Indication 30
RTK Real Time Kinematics 32, 142

SC Switchable Constraints 24, 25
SEIF Sparse Extended Information Filter 17
SIFT scale-invariant feature transform 146
SLAM Simultaneous Localization and Mapping 9, 13, 14, 19,

23, 25, 32, 49, 50, 54, 59, 80, 98, 115, 146, 205
sSBA Sparse Sparse Bundle Adjustment 50
SWF Sliding Window Filter 15, 16, 19, 20, 79

u-blox u-blox M8 ADR 138, 141, 149, 187–189, 191–193, 196,
199, 200

UKF Unscented Kalman Filter 18
UTM Universal Transverse Mercator 28, 29, 32

WGM Weighted Geometric Mean 25, 65, 66
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