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1. Introduction 

 

 

1.1 Assessment of tumor textural heterogeneity in PET scans 

 

Since last three decades PET (positron emission tomography) is serving as the work 

horse in the diagnosis and management of oncological disorders. Since its introduction as a 

highly effective functional imaging technique PET has continually played its role in various 

aspects for example confirmation of diagnosis, tumor staging and re-staging, tumor efficacy 

assessment both during and after treatment and radiotherapy planning (Gallamini et al., 

2014).  Overtime there has been a continuous progress in the enhancement of PET use 

with the introduction of new radionuclides for imaging and software developments. One of 

such important technological development is the application of tumor textural heterogeneity 

in PET images. 

 

Different imaging modalities for example X-rays, ultrasonography, computerized 

tomography (CT), magnetic resonance imaging (MRI) and PET are applied for the 

assessment of appearance and spread of the lesions. These modalities can be used 

depending on the tumor type and the location of lesions. The interpretation of all these 

modalities is essentially visual. However, there are features within each image that cannot 

be apprehended by the naked eye. Furthermore, when images are analyzed in a more 

quantitative manner, standard region of interest analysis may provide a mean parameter 

value, e.g., Hounsfield unit (HU) on CT, signal intensity (SI) on MRI, or standardized uptake 

value (SUV) on PET, but does not typically describe the underlying spatial distribution 

(Davnall et al., 2012). 

 

Tumors are heterogeneous both on genetic and histopathological levels. Despite the 

fact that tumors usually originate from a single cell, human cancers frequently display 

substantial intra-tumor heterogeneity in virtually all distinguishable phenotypic features, 
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such as cellular morphology, gene expression (including the expression of cell surface 

markers and growth factor and hormonal receptors), metabolism, motility, and angiogenic, 

proliferative, immunogenic, and metastatic potential (Fidler and Hart, 1982; Dick, 2008; 

Nicolson, 1984; Heppner, 1984). A large number of cell divisions is required for genetic 

instability and thus highly malignant cell lines. It can be believed that there is presence of 

very diverse tumor cell clones in a tumor. The existence of tumoral heterogeneity at clonal 

level has been observed and documented for a variety of malignancies, including 

leukemias, breast, prostate, colon, brain, esophagus, head and neck, bladder, and 

gynecological carcinomas. This genetic heterogeneity translates into phenotypic 

heterogeneity evident as spatial variation with in the tumor. Tumors with high intratumoral 

heterogeneity have been shown to have poorer prognosis, which could be secondary 

to intrinsic aggressive biology or treatment resistance (Hockel et al., 1993, 1996; Yang et 

al., 2011).   Figure 1 shows some of the precursors for high tumoral heterogeneity. 

 

 

ill 1: Genetic precursors of high genetic heterogeneity (Hanahan D, Weinberg RA, 2011) 
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The identification of tumor heterogeneity in a tumor can be helpful in effective lesion 

characterization and therapy planning.  It is not possible to assess intratumoral 

heterogeneity with biopsy as biopsy is a probe into a very small area of tumor and cannot 

inform about the full extent of phenotypic and genetic variation within the tumor (Gerlinger 

et al., 2012). Therefore, a non-invasive imaging method for assessing the tumor 

heterogeneity is of utmost importance as this can help in selecting patients with poor 

prognosis and an attempt can be made in redesigning the treatment which is vital part of 

personalized therapy. Numerous studies with good outcomes have shown that 

measurement of tumor textural heterogeneity by PET can a quantifiable parameter and can 

be easily applied.  

 

 

ill 2: Assessment of textural heterogeneity (A). Whole-body 18F-FDG PET scan (B). Tumor 
segmentation (C). Voxel intensity resampling allowing (D). The extraction of different 

features (Tixier et al., 2011) 
 

 

1.2  Texture Analysis 

 

Texture analysis refers to a variety of mathematical methods that can be used to 

evaluate the intensity level and position of the pixels within an image, or a part of image, to 

derive so-called ‘texture features’ that provide a measure of intralesional 

heterogeneity (Castellano et al., 2004). Different methods have been applied, including 

statistical-, model-, and transform-based methods (Al-Kadi and Watson, 2008; Ganeshan et 

al., 2007; brown and Frayne, 2008; Gog et al., 2009; Sanghera et al., 2012; Craciunescu et 

al., 1999; Dettori and Semler, 2007; Al-Kadi, 2010). Statistical-based techniques have been 
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most commonly applied and describe the distribution and relationships of intensity-level 

values in the image. Three orders of parameters are described in statistical-based texture 

analysis (Craciunescu et al., 1999; Dettori and Semler, 2007; Al-Kadi, 2010).  

 

First-order statistics relate to intensity level frequency distribution within the region of 

interest, which can be obtained from the histogram of pixel intensities. It is dependent on a 

single pixel value rather than its interaction with neighboring pixels (Tuceryan and Jain, 

1998). First order statistics based on histogram analysis include intensity (mean, minimum 

and maximum), uniformity, skewness and kurtosis. Second-order statistics are co-

occurrence measurements calculated using spatial gray-level dependence matrices. These 

matrices determine how often a pixel of intensity i finds itself within a certain relationship to 

another pixel of intensity j. Second-order statistics based on a co-occurrence matrix 

(GLCM) include entropy, homogeneity, dissimilarity and correlation (Tuceryan and Jain, 

1998). Higher-order statistics are calculated using neighborhood gray-tone-difference 

matrices, which examine the spatial relationship among three or more pixels (Amadasun 

and King, 1989; Srinivasan and Shobha, 2008). This is calculated using the neighborhood 

gray-tone-difference matrix (NGTDM). Examples of higher-order statistics include contrast, 

coarseness and busyness.  

 

Numerous studies show the positive outcome of textural heterogeneity analysis. Several 

hundred published articles have investigated the beneficial information that can be 

extracted from the analysis of tumor heterogeneity. More than 70 percent of articles involve 

MR and ultrasonography. Since the last decade the interest in exploring tumor 

heterogeneity using PET has gained momentum and is being explored worldwide owing to 

a great role of PET in oncology. One such study was conducted by Bundschuh et al 

(Bundschuh et al., 2014). Aim of this study was to investigate the predictive and prognostic 

value of tumor heterogeneity assessed in FDG PET-CT in patients with colorectal cancer 

treated with neoadjuvant radiochemotherapy using histopathology as gold standard and 

clinical follow up. Assessment of tumor heterogeneity was performed using coefficient of 

variation (COV), skewness and kurtosis. For comparison, the conventional PET parameters 
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such as SUV (standard uptake value), tumor volume and maximum diameter were used. 

Results showed that COV showed best predictive capability for histopathologic response. 

COV in pre-therapeutic PET also showed significant prognostic capability for progression 

free survival. Similarly, in another study conducted by Pyka et al (Pyka et al., 2015) the 

objective was to investigate the predictive and prognostic value of the textural heterogeneity 

parameters in  FDG PET-CT before start of stereotactic radiotherapy in non-small cell lung 

carcinoma with long-time follow-up for comparison. In the results two parameters entropy 

and correlation showed the best predictive capability for local recurrence and also for 

predicting long term survival. 

 

We carried out this study as an effort to improving the diagnostic accuracy of PET-

CT by the use of textural heterogeneity parameters. The presented work comprises of three 

parts. In the first part we used textural heterogeneity parameters in the differentiation of 

pseudoprogression from real progression in high grade glioma patients using FET (flouro 

ethyl tyrosine) PET. In the second part of our study we studied the role of textural 

heterogeneity parameters for patient selection in 177Lu-PSMA (prostate specific membrane 

antigen) therapy via 68Ga-PSMA PET. In the third part of our study we studied the role of 

textural heterogeneity parameters for therapy response assessment and prognosis in 

prostate cancer patients undergoing 177Lu-PSMA therapy.  

 

1.3 Role of textural heterogeneity parameters in diagnosis of  

      pseudoprogression in high grade gliomas 

 

The objective of this study was to distinguish between true tumor progression and 

pseudoprogression in the patients of high grade glioma using textural heterogeneity 

parameters in FET-PET as compared to the conventional PET parameters. 

 

The management of high grade gliomas (HGG) is very complex. The standard 

options available for treatment include surgery followed by chemotherapy and radiotherapy. 

Numerous factors put a direct influence on the selection of appropriate treatment option. 
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These include age, performance status of patient, histological type of the tumor ad its 

grade. The gold standard for follow up us is magnetic resonance imaging (MRI) However, in 

numerous cases it becomes really difficult to differentiate between the treatment response 

and the tumor effect. However, this distinction is very essential for further planning of 

therapy. Different diagnostic methods being utilized to get best possible results including 

proton spectroscopy, dynamic imaging with contrast enhanced MRI and amino acid 

radiotracer imaging (Khan et al., 2016).  

 

Gliomas can be highly malignant tumors that originate from the glial cells or their 

precursors in the central nervous system. They comprise of the major chunk of all 

malignancies of the central nervous system. The current World Health Organization 

histologic classification system uses histopathologic changes of cellular atypia, mitotic 

activity, endothelial cell proliferation, and necrosis to classify gliomas as “low grade” 

(grades I and II) and “high grade” (grades III and IV) (Louis et al., 2007). Despite state-of-

the-art surgery, radiation therapy and chemotherapy, the prognosis of patients with high-

grade glioma is grim. In patients with the most aggressive and devastating form of high 

grade gliomas, glioblastoma, median overall survival is about 17 months. 

 

Pseudoprogression can be defined as new areas of enhancement or edema that do 

not arise from actual tumor progression, but from chemoradiotherapy related inflammation, 

which is likely because of increased vascular permeability (Brandsma et al., 2008). This 

phenomenon of pseudoprogression was recognized as early as 1979 (Hoffmann et al., 

1979). To this day pseudoprogression poses a great clinical challenge because its 

appearance at imaging is indistinguishable from that of true disease progression. Before the 

use of Temozolomide (TMZ) chemoradiation, only approximately 1% of patients treated 

with focal fractional radiotherapy alone would develop treatment-related imaging changes 

(Chaskis et al., 2009). However, with the current regimen, pseudoprogression been 

reported in up to 50% of patients, typically noted at the first follow-up MRI obtained within 

2–3 months after chemoradiation therapy (Taal et al., 2008). 
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Failure to identify pseudoprogression can lead to various negative outcomes directly 

affecting the morbidity and mortality of the patient. It can result in unnecessary surgical 

interventions or excessive chemotherapy. It can also result in premature termination of 

treatment. As pseudoprogression is a transient phenomenon occurring as a side effect of 

chemoradiation, it has the capability of spontaneous resolution. This spontaneous 

resolution can also give the false impression that therapy is effective. So, it is very essential 

to differentiate it from the actual tumor progression. On the other hand, successful 

differentiation of pseudoprogression from actual tumor progression can lead to an 

improvement in prognosis, possibly because of the increased likelihood of O6-

methylguanine-DNA-methyltransferase (MGMT) gene promoter methylation in this 

population (Gahramanov et al., 2014).  

 

In response to the accumulative evidence regarding the role of pseudoprogression in 

deciding treatment modifications, the Response Assessment in Neuro-Oncology (RANO) 

criteria provided an update in 2010 to account for the phenomenon of pseudoprogression 

(Wen et al., 2010). The RANO criteria specifies that, within the first 12 weeks after 

completion of radiotherapy, tumor progression can be established only if most of the new 

enhancement occurs outside the radiation field or if histologic confirmation of progression is 

obtained. However, a diagnostic dilemma remains for enlarging enhancement and 

peritumoural edema that occurs within the radiation field during the initial 12 weeks. Biopsy 

samples can sometimes reveal either obvious tumor growth or therapy-induced changes, 

but in many instances, even histologic assessment fails to resolve the dilemma because of 

sampling errors, inconclusive specimens with mixed treatment and tumor histologic 

findings, inter-observer variability, and inconsistent definitions of residual and recurrent 

disease (Melguizo-Gavilanes et al., 2015). 

 

Currently the diagnosis of pseudoprogression is built on increasing contrast 

enhancement on MRI. When an increasing contrast-enhancing lesion on MRI indicates 

pseudoprogression, the current gold standard is to perform follow-up MRIs to evaluate 
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changes in lesion size. Consequently, a diagnosis of pseudoprogression can only be made 

retrospectively based on follow-up MRI. It would be, however, advantageous for patient 

management if pseudoprogression could be identified at the earliest possible time point 

when the increasing contrast-enhancing lesions are detected for the first time. This is 

particularly important for patients with greatly increasing contrast-enhancing lesions and 

deteriorating clinical status. These patients might not be able to wait 4-8 weeks for a follow-

up MRI to decide whether secondary surgery or any other therapeutic adjustments are 

necessary. 

 

To make an effective and timely diagnosis of pseudoprogression different treatment 

modalities are being used, among them positron emission tomography is very effective. In 

cases of true progression there is increased radiotracer accumulation the lesions as 

compared to pseudoprogression. More important of these are the imaging techniques 

involving radiotracers other than conventional 18-flourodeoxygenase (FDG) PET as its 

application is limited owing to high glucose metabolic state of the normal brain tissue 

resulting in a decreased signal to noise ratio. FDG PET also shows an increased uptake in 

inflammatory cells which can hinder the diagnosis of actual tumor.  There is increased 

protein synthesis in brain tumors making amino acid radiotracers as an effective mode of 

imaging. In a study evaluating 72 patients with 11C–methionine PET, a threshold uptake 

index of 9 could distinguish between true tumor progression and pseudoprogression with 

83.5% sensitivity and 97% specificity (Skvortsova et al., 2014). A smaller study using 

PET imaging with the amino acid tracer O-2-18F-fluoroethyl-L-tyrosine and a cut-off value of 

2.3 demonstrated 100% sensitivity and 91% specificity in discriminating true tumor 

proliferation from pseudoprogression (Galldiks et al., 2014). In the recent years use of 18F-

FET PET has been increased a lot in brain tumor imaging. The rapid accumulation of FET 

in brain tissue is independent of blood brain barrier disruption as compared to MRI where 

contrast enhancement can cause reactive changes to blood brain barrier which can then 

mimic tumor progression. 
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In a study (Galldiks et al., 2015) the aim was to assess the clinical value of 18F-FET 

PET in the differentiation of pseudoprogression (PsP) and early tumor progression (EP) 

after radiochemotherapy of glioblastoma. A group of 22 glioblastoma patients with new 

contrast-enhancing lesions or lesions showing increased enhancement (>25 %) on 

standard MRI within the first 12 weeks after completion of radiochemotherapy with 

concomitant temozolomide (median 7 weeks) were additionally examined using amino 

acid PET with 18F-FET. Pseudoprogression was confirmed in 11 of the 22 patients. In 

patients with pseudoprogression, 18F-FET uptake was significantly lower than in patients 

with early tumor progression and presence of MGMT promoter methylation was 

significantly more frequent (P = 0.05). It was concluded that 18F-FET PET may facilitate 

the diagnosis of pseudoprogression following radiochemotherapy of glioblastoma. In 

another study (Rachinger et al., 2005) the objective was to analyze the diagnostic value of 

FET-PET and MRI in the detection of tumor recurrence in patients with glioma after 

radiotherapy, radiosurgery, or multimodal treatment. Results showed that Specificity of 

FET-PET was 92.9%, and sensitivity was 100% (in patients suspected of having recurrent 

tumor as revealed by MRI). Sensitivity of MRI was 93.5%, and specificity was 50% (P < 

0.05). It was concluded that for patients with gliomas undergoing multimodal treatment or 

various forms of irradiation, conventional follow-up with MRI is insufficient to distinguish 

between benign side effects of therapy and tumor recurrence. FET-PET is a powerful tool to 

improve the differential diagnosis in these patients. 

 

Similarly, role of tumor textural heterogeneity has been evaluated in various brain 

tumors including gliomas, but most of the times it has been based on MRI. In a recent study 

by (Liu et al., 2017) the aim was to assess the glioblastoma heterogeneity with MR imaging 

textures and to evaluate its impact on survival time. The results suggest that local and 

regional heterogeneity may play an important role in the survival stratification of patients 

with glioblastoma. The top 10 features included 7 run-length matrix and 3 co-occurrence 

matrix features, in which all 6 regional run-length matrix features emphasizing high gray-

levels ranked in the top 7. In another study by (Molina et al., 2016) the objective was to 

analyze three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR 
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images acquired with T1 weighted sequences of patients with glioblastoma as predictors of 

clinical outcome. Results showed that 4 of the 11 run length matrix features and 4 of the 5 

co-occurrence matrix features considered were robust predictors of survival. The median 

survival differences in the most significant cases were of over 6 months. It was concluded 

that heterogeneity measures computed on the post-contrast pre-operative T1 weighted MR 

images of patients with glioblastoma are predictors of survival. 

 

In the study we carried out, the aim was to distinguish between pseudoprogression 

and real tumor progression in high grade glioma patients using textural heterogeneity 

parameters. The heterogeneity parameters were assessed in FET-PET images. The 

purpose of the study was to enable an earlier diagnosis of pseudoprogression which can 

help in therapy planning and thus directly affecting the survival outcome of patients, as the 

delay in this diagnosis can cause over or under treatment of patients. Fourteen patients 

with high grade glioma and suspected of pseudoprogression underwent FET-PET imaging. 

A set of 19 conventional and textural FET-PET features were evaluated and subjected to 

unsupervised consensus clustering. The final diagnosis of true progression versus 

pseudoprogression was based on follow-up MRI using RANO criteria.  

 

1.4 Role of textural heterogeneity parameters in patient selection for 177Lu-      

      PSMA therapy 

   

The objective of this study was to assess predictive ability of tumor textural 

heterogeneity parameters from baseline 68Ga-PSMA PET prior to 177Lu-PSMA therapy in 

hormone refractory metastatic prostate cancer patients. 

 

In the European Union, prostate cancer is ranked first among the most frequently 

diagnosed cancer among men, with around 345,000 new cases estimated in 2012. Prostate 

cancer accounted for 24 per cent of all new cancers in the same year. For 2015 the 

estimated number of new prostate cancer cases was about 365,000 (Crocetti Emanuele, 
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2015). Prostate cancer tends to be highly aggressive and can lead to significant mortality by 

causing death of more than 250.000 men each year (Lozano et al., 2012). For many years 

there were few options for treatment of metastatic prostate cancer. The ones available 

usually involved the use of androgen deprivation agents. However, there is continuous 

development of new and more effective agents for tackling prostate cancer. It is under 

persistent surveillance worldwide by physicians and researchers and it is of utmost 

importance to devise new methods aiming for earlier diagnosis and optimum individualized 

therapy of prostate cancer.  

 

Among the ongoing advancements for the treatment of prostate cancer the 

possibilities involving Prostate Specific Membrane Antigen (PSMA) as an optimal diagnostic 

and therapeutic marker have gained momentum. PSMA is a type II membrane protein 

originally characterized by the murine monoclonal antibody (mAb) 7E11-C5.3 and is 

expressed in all forms of prostate tissue, including carcinoma (Ross et al., 2003; 

Horoszewicz et al., 1987). Significant overexpression is seen in metastatic, hormone 

refractory and poorly differentiated carcinomas. Studies have consistently demonstrated 

PSMA expression in all types of prostate tissue and increased PSMA expression in cancer 

tissue (Silver et al., 1997; Troyer et al., 1995; Chang et al., 2011 ). Bostwick and colleagues 

(Bostwick et al., 1998) described PSMA immunohistochemical expression in 184 prostate 

specimens examined, all of which had PSMA expression and demonstrated a correlation 

between this expression and severity of cancer. There was an increase in the percentage of 

PSMA staining from benign epithelial tissue (69.5% of cells positive) to high-grade prostatic 

intraepithelial neoplasia (77.9% of cells positive) to malignant cells (80.2% of cells positive). 

 

The five year survival rate of locally advanced prostate cancer is nearly 100%; 

however, the rate is significantly lower in the case of metastatic disease (31%) (Jemal et al., 

2010). Therefore, developing new strategies for diagnosis, imaging, and treatment of 

metastatic prostate cancer is of major importance. As discussed earlier prostate specific 

membrane antigen serves as an ideal target for therapy especially for metastatic disease. 

Radiolabeled ligands targeting PSMA have recently been the subject of numerous studies 
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showing high sensitivity and contrast in detecting recurrent prostate cancer and its 

metastases with remarkable detection rates (Afshar-Oromieh et al., 2013; Eiber et al., 

2015). Recent studies have also shown a high sensitivity of PSMA-targeted imaging in 

determining the local extent of disease before radical prostatectomy (Rahber et al., 2016; 

Eiber et al., 2016). Benesová et al (Benesová et al., 2015) introduced a high-affinity PSMA 

ligand (PSMA-617) that can be labeled with 68Ga or 177Lu and demonstrates superior tumor-

to-background uptake. 

 

In order for therapy to become effective it is very essential to be able to select 

patients who can benefit most from therapy. It can serve as a basis of personalized 

medicine. This optimal patient selection can help transform the treatment options for 

patients depending on their response. As earlier in the course of therapy the efficacy of the 

treatment is predicted the more beneficial is the outcome. One approach is trying to deduce 

information from the pre-therapy scan. This is of great importance because some valuable 

data can be obtained even before the start of therapy. Patient selection can be made and 

patients can be assigned in various groups based on predicted responsiveness to available 

treatment options. A lot of data is available on evaluation of pre-therapy scans. Different 

parameters have been used to extract useful information from pre-therapy scans. As our 

research is based on the role of tumor textural heterogeneity parameters, we paid 

emphasis to studies which involved the use of textural heterogeneity parameters for 

evaluation of pre-therapy scans for patient selection and response prediction.  

 

In a study by Eary JF et al. (Eary et al., 2008) the aim was to support the hypothesis 

that a new heterogeneity-analysis algorithm applied to 18F-FDG PET images of tumors in 

sarcoma patients is predictive of patient outcome. 18F-FDG PET images from 238 patients 

with sarcoma were analyzed using a new algorithm for heterogeneity analysis in tumor 18F-

FDG spatial distribution. Statistical analyses show that heterogeneity analysis is a strong 

independent predictor of patient outcome. Cheng NM et al. (Cheng et al., 2013) sought to 

investigate whether the textural features of pretreatment 18F-FDG PET-CT images can 

provide any additional prognostic information over TLG and clinical staging in patients with 
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advanced T-stage oropharyngeal squamous cell carcinoma (OPSCC). Study involved the 

retrospective analysis of pretreatment 18F-FDG PET-CT images of 70 patients. The textural 

features of pretreatment 18F-FDG PET-CT images were extracted from histogram analysis, 

normalized gray-level co-occurrence matrix and neighborhood gray-tone difference matrix. 

It was concluded that uniformity extracted from the normalized gray-level co-occurrence 

matrix represents an independent prognostic predictor in patients with advanced T-stage 

OPSCC. Similarly, in another study by Pyka T et al. (Pyka et al., 2015) evaluated the 

predictive value of textural heterogeneity parameters in pre-treatment FDG –PET scans for 

recurrence and prognosis in NSCLC patients receiving primary stereotactic radiation 

therapy (SBRT). Entropy (AUC 0.872) predicted local recurrence. In another very 

interesting study by Tixier F et al. (Tixier et al., 2011) aim  was to propose and evaluate 

new parameters obtained by textural analysis of baseline PET scans for the prediction of 

therapy response in esophageal cancer. Different image-derived indices obtained from the 

pretreatment PET tumor images included usual indices such as maximum SUV, peak SUV, 

and mean SUV and a total of 38 features  extracted from the 5 different textures. It was 

concluded that textural features of tumor metabolic distribution extracted from baseline 18F-

FDG PET images allowed for the best stratification of esophageal carcinoma patients in the 

context of therapy-response prediction. 

 

These studies show that textural heterogeneity parameters can play a role in 

outcome prediction and as it can be seen from the abovementioned studies, very useful 

information can be gained from pre-therapy scans only, hence resulting in earliest possible 

options for treatment modifications in order to get better response. However, there is no 

data available explaining the role of textural heterogeneity from baseline 68Ga-PSMA scans. 

PSMA is now being widely used as a therapeutic agent in the form of 177Lu-PSMA (it will be 

discussed in detail in the next part) and this therapy has a very good response rate. Still 

some recent studies found a non-responder rate of about 30% (no PSA decline) after 

radiopeptide therapy with 177Lu-PSMA ( Ferdinandus et al., 2017; Ahmadzadehfar et al., 

2017; Rahbar et al., 2016; Rahbar et al., 2017).  
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The objective of this current study was hence to assess the predictive ability of tumor 

textural heterogeneity parameters from baseline 68Ga-PSMA PET scan. Selected textural 

heterogeneity parameters had been previously widely used in different studies and showed 

a significant potential for depicting the outcome ( Pyka et al., 2015; Tixier et al., 2011; Dong 

et al., 2016; Dong et al., 2015). The predictive value of these parameters was compared to 

established clinical parameters (Prostate specific antigen (PSA), serum and bone alkaline 

phosphate, eastern cooperative oncology group (ECOG) criterion). The aim of the study 

was to help in patient selection prior to 177Lu-PSMA therapy in an order to enhance the 

efficacy of therapy for responders which were determined from the baseline scans.  

 

1.5 Role of Tumor Textural Heterogeneity in 68Ga-PSMA PET-CT for Therapy  

      Response Assessment and Prognosis in Prostate Cancer Patients 

 

The last part of our study comprised of the assessment of role played by tumor 

textural heterogeneity parameters in prostate cancer patients undergoing 177Lu-PSMA 

therapy for assessing the response to therapy and prognosis of the patients.  

 

Since last three to four years, special emphasis is being paid to treatment of 

hormone refractory prostate cancer with 177Lu-PSMA therapy. Several studies reported 

promising results for response rates and a favorable safety profile after radioligand therapy 

(RLT) with 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer 

(mCRPC) (Ahmadzadehfar et al., 2015; Kratochwil et al., 2016: Rahbar et al., 2016a, 

2016b; Ahmadzadehfar et al., 2016). In order to further strengthen these results, a 

retrospective multicenter study was initiated by the German Society of Nuclear Medicine in 

July 2015 (Rahbar et al., 2017). Twelve therapy centers retrospectively collected and 

pooled data on safety and efficacy of 177Lu-PSMA-617 RLT. This retrospective multicenter 

study aimed at analyzing the optimal dose and number of therapy cycles and predictors of 

response in more detail. This study demonstrated the favorable safety and efficacy of 177Lu-

PSMA-617 RLT in a large number of mCRPC patients and stated that 177Lu-PSMA-617 
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RLT might exceed the performance of other third-line systemic therapies reported in the 

literature. In the light of published data it could be deduced that radioligand therapy (RLT) 

with Lu-177 PSMA is effective and had a low toxicity profile ( Kratochwil et al., 2016). It was 

also observed that up to 30% of patients did not show prostate specific antigen (PSA) 

decline in response to RLT ( Kratochwil et al., 2016; Zechmann et al., 2014). 

  

  

ill. 3 Results of German multicenter study investigating 177Lu-PSMA-617 radioligand 
therapy in advanced prostate cancer patients (Rahbar et al., 2017) 

 

The therapy showed good response rate but in order to improve the efficacy of 

treatment for non-responsive patients, it is essential to devise some techniques which can 

help in better assessment of individual patient behavior. In our study, we aimed to analyze 

the role of textural heterogeneity parameters for therapy response assessment. Textural 

heterogeneity parameters have been used several times to assess the response of a tumor 

to therapy. In the study performed by Bundschuh et al. (Bundschuh et al., 2014) the 

objective was to analyze the capability of textural inhomogeneity markers on PET to predict 

histopathologic therapy response and outcome in patients with locally advanced rectum 

carcinoma treated with neoadjuvant radiation chemotherapy. Twenty-seven patients 

underwent 18F-FDG PET-CT before, 2 week after the start, and 4 week after the completion 

of neoadjuvant chemoradiotherapy. Convention PET parameters and tumor textural 

heterogeneity parameters were assessed in each scan. The results showed that a textural 

heterogeneity parameter COV (coefficient of variation) had statistically significant capability 

64 %: PSA-decrease 

31 %: PSA-decrease >50% 
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to assess histopathologic response early in therapy (sensitivity, 68%; specificity, 88%) and 

after therapy (79% and 88%, respectively). It was concluded that tumor heterogeneity 

assessed by the COV, being superior to the investigated conventional parameters, is an 

important predictive factor in patients with rectal cancer. Furthermore, it can provide 

prognostic information. Therefore, its application is an important step for personalized 

treatment of rectal cancer. Similarly,  Lapa C et al. analyzed in a study (Lapa et al., 2015) 

the potential of somatostatin receptor subtype II (SSTR)  PET to assess intraindividual 

tumor heterogeneity and thereby treatment response prior to peptide receptor radionuclide 

therapy  (PRRT). 12 patients with progressive radioiodine-refractory differentiated thyroid 

cancer were enrolled in the study. Conventional PET parameters and heterogeneity 

parameters were analyzed regarding their potential to predict progression-free (PFS, mean, 

221 days) and overall survival (OS, mean, 450 days). In patient-based analysis, all 

conventional parameters failed to predict PFS. Several textural parameters showed a 

significant capability to assess PFS. Thereby, "Grey level non uniformity" had the highest 

area under the curve (AUC, 0.93) in Receiver operating characteristics analysis followed by 

"Contrast" (AUC, 0.89). In lesion-based analysis, only "Entropy" revealed potential to 

evaluate disease progression. It was concluded that tumor textural heterogeneity seems to 

be a predictor of response to PRRT in patients with iodine-refractory 

differentiated/advanced medullary thyroid cancer and outperforms conventional PET 

parameters like standardized uptake value. 

 

The purpose of our study was to investigate the role of tumor heterogeneity in the 

assessment of therapy response on pre therapeutic (baseline) 68Ga-PSMA PET, as well as 

to monitor changes during the course of 177Lu-PSMA therapy by analyzing the mid-therapy 

and post-therapy scans as well. Every patient went under three 177Lu-PSMA therapies. 

Conventional and textural parameters were thoroughly analyzed in all PET scans. The gold 

standard was the serum PSA level. The changes in serum PSA level correlate with overall 

survival in castration resistant metastatic prostate cancer at showed by a recent study 

(Ahmadzadehfar et al., 2017). In addition to evaluating the predictive value of tumor 
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heterogeneity, we also analyzed the prognostic value for disease progression and overall 

survival. 

 

In the nutshell, our study aimed at the improvement in specificity of PET signals by 

the analysis of tumor textural heterogeneity parameters. This was performed in an effort to 

enhance the diagnostic accuracy of PET scans. In many instances the conventional PET 

parameters e.g. SUV, tumor volume are not able to give optimal information. Textural 

heterogeneity parameters are proving to be a better alternative for assessment. As seen 

from a large number of studies textural heterogeneity parameters are fast establishing their 

role in many aspects of diagnostic and therapeutic nuclear medicine. They are being widely 

used to predict response from baseline scans. This is of great importance, because useful 

analysis in baseline scans can give earliest possible insights into tumor behavior and 

therapy response prediction. It can help in selection of patients who can benefit from 

treatment and can also help to modify the therapy for otherwise nonresponsive patients 

thus not only improving the efficacy of therapy but also decreasing the disease burden of 

patient. Similarly, role of heterogeneity parameters is also seen in scans over the course of 

therapy to predict the prognosis and survival outcome of patients. They can also help 

distinguish pathology from reactive changes much more effectively than conventional 

parameters. All this has been discussed in abovementioned and many other studies. 

 

Role of textural heterogeneity parameters in FET-PET to distinguish 

pseudoprogression in high grade gliomas and their importance in PSMA therapy is the 

subject of our study. These scenarios have not been explored before and our study showed 

some very good outcomes which will be discussed in detail in the following sections.  
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2. Materials and Methods 

 

As our study has been divided into three parts the material and methods will be discussed 

in accordance. 

 

2.1 Role of textural heterogeneity parameters in diagnosis of     

       pseudoprogression in high grade gliomas 

 

2.1.1 Patient selection 

 

 

For this retrospective analysis, the patient files of the Division of Clinical Neuro-

oncology were searched for histologically confirmed high-grade glioma (HGG) patients 

meeting the following characteristics:  

 

(1) Patients experiencing increasing contrast-enhancing lesions on MRI (+25% in two 

perpendicular diameters) and/or any new lesion according to RANO (Wen et al., 

2010) (minimum lesion size >10 mm) more than 4 weeks after the end of 

radiotherapy,  

(2) Patients having a routine FET-PET following detection of increasing contrast-

enhancing lesions,  

(3) After initial MRI and FET-PET, a further contrast-enhanced MRI ensued at least 4 

weeks later without change of therapy. O-6-methylguanine-DNA methyltransferase 

(MGMT) promoter methylation status was tested using pyrosequencing (Mikeska et 

al., 2007). 

 

2.1.2 PET Imaging with 18F-FET  

Data were acquired with a Biograph Sensation 2 PET-computer tomography (PET-

CT) scanner (Siemens Medical Solutions). The axial and transverse fields of view were 
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16.2 and 58.5cm respectively. The transverse resolution of the scanner was about 6.5mm, 

whereas the axial resolution was 6.0mm, both at a radius of 10mm. The computer 

tomography (CT) component was a 2-slice spiral CT scanner. About 60 minutes after the 

intravenous injection of approximately 200 MBq of FET, the patient was placed in the 

scanner. Low dose CT of the head (caudocranial) was performed followed by the PET scan 

of the same area in a single bed position. The CT data were reconstructed in 512 x 512 

pixel matrices. PET data was reconstructed into 256 x 256 matrices using the iterative 

attenuation-weighted ordered subset algorithm implemented by the manufacturer using 4 

iterations and 16 subsets. Attenuation and scatter correction was performed using the CT 

data. Final voxel size was 5.3mm x 5.3mm x 5mm. All patients gave written and informed 

consent to the imaging procedure. 

 

2.1.3 PET Data Analysis 

 

Image data were transferred to an Interview Fusion Workstation (Mediso Medical 

Imaging System, Budapest, Hungary). Firstly, co-registration between PET and CT images 

was performed. Tumor volume was manually delineated on PET images. For background 

assessment 5 ROIs with a fixed diameter of 15mm were placed on normally appearing 

cortex area, 2 on the frontal lobe, 2 on the occipital lobe and 1 on the contralateral region to 

the tumor. A mean value was then calculated for these ROIs. In addition, a semiautomatic 

segmentation in PET was performed based on background activity for which tumor 

delineation cutoff was taken as 1.6 times the mean value of background ROIs. 

 

 For assessment of tumor uptake heterogeneity additional 13 textural heterogeneity 

PET parameters were estimated, namely, Coefficient of Variation (COV), Entropy, 

Correlation, Contrast, Size-zone Variability (Size variation), Intensity Variability (Intensity 

variation), Morphologic Volume of the Lesion (Volume), Coarseness, Complexity, Short 

Zone Emphasis (Short Zone Emphasis), Long Zone Emphasis (Long zone Emphasis), 

Zone Percentage, Short Run Emphasis (Short Run Emphasis), and Long Run Emphasis 

(Long Run Emphasis).  
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PET Feature Explanation 

Correlation 
A measure of continuous areas of same or similar voxel values in an 
image.  An image with high correlation values is usually associated 
with large areas of similar uptake intensities. 

Coarseness A measure of the intensity differences throughout the image. 

COV 
A normalized measure of dispersion of a frequency distribution 
(standard deviation divided by the mean value of the activity 
concentration in the tumor volume). 

Contrast 
A measure of local variations present in the image. A high contrast 
value indicates a high degree of local variation. 

Complexity Measures the uniformity of patterns versus rate of change in an image. 

Entropy 
Measures randomness of distribution, e.g. a homogenous matrix 
demonstrates low entropy. 

Size Variation 
Measures the difference of the grey value when going to the next 
voxel. It is high when the intensity changes very often between single 
voxels. 

Intensity 
Variation 

The intensity variation describes the variation of the intensity of 
different substructures. 

Short Run 
Emphasis 

Measure of consecutive pixels which have the same gray level intensity 
along a specific linear orientation. Fine textures tend to contain more 
short runs with similar gray level intensities. 

Long Run 
Emphasis 

Measure of consecutive pixels which have the same gray level intensity 
along a specific linear orientation. Coarse textures have more long runs 
with significantly different gray level intensities 

Short Zone 
Emphasis 

Measures the distribution of short zones as the difference of the grey 
value when going to the next voxel. It is high when the intensity 
changes very often between single voxels. 

Long Zone 
Emphasis 

Measures the distribution of long zones as the difference of the grey 
value when going to the next voxel. 

Zone 
Percentage Measures the percentage of zones of a given size. 

SUV Mean A measure of mean radiotracer accumulation in tumor lesions. 

SUV Max A measure of maximum radiotracer accumulation in tumor lesions. 

TNR Mean 
Mean tracer uptake in the tumor divided by that in normally appearing 
brain tissue. 

TNR Max 
Maximal tracer uptake in the tumor divided by that in normally 
appearing brain tissue. 

TLG The total lesion volume and its metabolic activity 

Volume The total lesion volume 

 

Table 1: Overview of textural heterogeneity parameters 
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All parameters were assessed in 3-dimensional volumes. In addition, the following 6 

conventional PET parameters were evaluated: mean SUV (Mean), maximum SUV (Max), 

Total Lesion Glycolysis (TLG), mean tumor to background ratios (TNRmean) and maximum 

tumor to background ratios (TNRmax). Their overview is shown in table 1. 

 

2.1.4 Diagnosis of True Progression 

 

The diagnosis of tumor progression was made when progressive contrast-enhancing 

lesions according to RANO criteria (Wen et al., 2010) were noted on initial MRI and when 

further progression of contrast-enhancement ensued on a follow-up MRI at least 4 weeks 

later. By contrast, the diagnosis of pseudoprogression was applied when the follow-up MRI 

showed stabilization or regression of the contrast-enhancing lesions, provided that neither 

clinical worsening nor change in treatment ensued in the interim. In all patients, MRI scan 

analysis was carried out by an experienced neuroradiologist and another independent 

investigator. 

 

In the event of true progression, progression-free survival (PFS) was defined as the 

time elapsed between the date of the true tumor progression (retrospectively defined as the 

date of the initial MRI conducted immediately before PET) and the date of the subsequent 

progression defined by MRI. In the event of pseudoprogression, PFS was defined as the 

time between the date of initial MRI conducted immediately before PET and the date of 

subsequent MRI defining progression. 

 

2.1.5 Subtype discovery 

 

Unsupervised consensus clustering was used for class discovery to uncover groups 

of items sharing FET-PET characteristics. Consensus clustering is a class discovery 

technique for the detection of unknown possible clusters consisting of items with similar 

intrinsic features (Wilkerson and Hayes, 2010). Being distinct from conventional clustering 

methods, it provides quantitative evidence to determine the number and membership of 
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clusters. To apply this method on our dataset, we first standardized FET-PET features to 

obtain z-scores. This was followed by subsampling 80% of items and PET features 10 000 

times and partitioning each subsample up into k=7 groups by the agglomerative hierarchical 

clustering algorithm using Pearson correlation distance. For each k, a consensus matrix 

was filled with consensus values, defined as the proportion of clustering repetitions in which 

two items are classified together. To determine the optimal number of k, we drew upon 

empirical cumulative distribution function (CDF) plots to find the k at which the distribution 

reached an approximate maximum, indicating a maximum stability. To validate the so 

obtained optimal number of clusters, we applied the proportion of ambiguous clustering 

(PAC) method (Wilkerson and Hayes, 2010). 

 

To identify a minimal subset of PET features that succinctly characterizes each 

cluster we used the nearest shrunken centroids method called predictive analysis of 

microarrays (PAM) (Wilkerson and Hayes, 2010). To this end, we used 10-fold cross-

validation to determine the amount of shrinkage at which the error rate was minimized. 

 

2.1.6 Statistical analysis 

 

To assess cluster stability in our unsupervised analysis, along with performing 

consensus clustering over 10 000 iterations we used the CDF and CDF progression graphs 

to detect the optimal number of clusters. Furthermore, we relied on PAC to confirm our 

choice. To compare clinical and molecular data across clusters, we used the Kruskal-Wallis 

test for continuous variables and the Fisher’s exact test for categorical variables. Moreover, 

logistic regression and Fisher’s exact test for 2 x 2 contingency tables were performed to 

assess the association of pseudoprogression with cluster assignments. A p-value below 5% 

was considered significant. Statistical analysis was carried out using Stata (release 14.0; 

StataCorp LP) and R Statistical Software (version 3.2.4). 
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2.2 Role of textural heterogeneity parameters in patient selection for 177Lu- 

       PSMA therapy 

 

2.2.1 Patient selection 

 

70 patients with histologically proven prostate cancer were retrospectively included 

in this study. Clinical data was collected from November 2014 to April 2016. All patients 

were planned to undergo 177Lu-PSMA-617 (abbreviated as 177Lu-PSMA in this study) 

radioligand therapy. Average age of patients was 71.46 years. Inclusion criteria for this 

retrospective analysis were progressive metastatic castration-resistant prostate cancer 

(mCRPC) patients.  Patients experienced progression under next-generation androgen-

deprivation therapy (e.g., abiraterone, enzalutamide) or first- or second-line chemotherapy 

(e.g., docetaxel, cabazitaxel) or were not eligible for chemotherapy. All patients eligible 

for 223Ra received this treatment before undergoing 177Lu-PSMA-617 radioligand therapy. 

39 patients had prior chemotherapy. 16 patients had been treated previously with 223Ra, 

while 27 patients had previous external beam radiation therapy (EBRT). 

 

2.2.2 68Ga-PSMA Scan 

 

A 68Ga-PSMA-617 (abbreviated in this study as 68Ga-PSMA) PET scan was 

performed for every patient. Each patient underwent 68Ga-PSMA scan before therapy with 

177Lu-PSMA termed as the baseline scan. The objectives of the baseline scan included 

staging and therapy planning. After the baseline scan patients underwent 177Lu-PSMA 

radioligand therapy. Renal function of every patient was analyzed prior to therapy with 

99mTc-MAG3 renal scintigraphy. Patient characteristics are shown in table 2. 
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Characteristic Data 

Age 71.46 years (48-88years) 

Site of metastasis: 

Bone 70 (100%) 

Lymph node 33 (47.1%) 

Other (liver, prostate) 15 (21.4 %) 

Previous therapy of mCRPC: 

Androgen deprivation therapy 70 (100%) 

Chemotherapy 39 (55.7%) 

223Ra 16 (22.8%) 

EBRT to bone 27 (38.5%) 

 

Table 2: Patient characteristics 

 

Data were acquired with a Biograph Sensation 2 PET/computer tomography 

(PET/CT) scanner (Siemens Medical Solutions). The axial and transverse fields of view 

were 16.2 and 58.5cm respectively. The transverse resolution of the scanner was about 

6.5mm, whereas the axial resolution was 6.0mm, both at a radius of 10mm. The computer 

tomography (CT) component was a 2-slice spiral CT scanner. About 73 minutes (range 50-

90 minutes) after the intravenous injection of approximately 131.3 MBq (range 98.8 to 174.8 

MBq) of 68Ga-PSMA, the patient was placed in the scanner. Low dose CT from the head to 

mid-thighs was performed followed by the PET scan of the same area in 6-7 bed positions, 

each for 3-4 minutes depending on the body weight of the patient. The CT data were 

reconstructed in 512 x 512 pixel matrices. PET data was reconstructed into 128 x 128 

matrices in axial, coronal and sagittal planes using the iterative attenuation-weighted 

ordered subset algorithm implemented by the manufacturer using 4 iterations and 16 

subsets. Attenuation and scatter correction was performed using the CT data. Final voxel 

size was 5.3mm x 5.3mm x 5mm. All patients gave written and informed consent to the 

imaging procedure. All patient record and information was anonymized before analysis. 
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ill. 4: ROIs for analysis of bone and lymph node lesions 

 

2.2.3 PET Data Analysis 

 

Image data were transferred to an Interview Fusion Workstation (Mediso Medical 

Imaging System, Budapest, Hungary). Firstly, co-registration between PET and CT images 

was performed. Tumor volume was manually delineated on PET images (Figure 1) with a 

standard uptake value (SUV) threshold (Fendler, 2017; Mathieu, 2015). All the 70 patients 

had bone metastasis. Thirty three patients had lymph node metastasis along with bone 

metastasis. Fifteen patients had additional liver and/or prostate lesions. Three VOIs each 

for bone and lymph node lesions were delineated manually. Other lesions were also 

delineated if present in liver and prostate. Parameters to be evaluated were measured in 

these VOIs. A total of 328 VOIs were delineated. Mean volume of the lesions was 32.9 cm3 

(range 7.8 cm3 to 82.3 cm3). For each patient three bone lesions were marked. Similarly, 

three lymph node and other (liver and prostate) lesions were delineated where applicable. 

For final analysis a mean value of every included parameter was determined.   
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2.2.4 Analysis of tumor textural heterogeneity 

 

Tumor textural heterogeneity was assessed by extraction of local and global textural 

features from uptake histogram analysis and normalized gray-level co-occurrence matrix 

(NGLCM) respectively (Dong et al., 2016). The selected heterogeneity parameters were 

COV, entropy, homogeneity, contrast and size variation (Table 3). The selected parameters 

have been used widely in numerous PET studies and showed a statistically significant 

ability to depict the role of textural heterogeneity for analysis of tumor behavior (Dong et al., 

2016; Eary et al., 2008; Cheng et al., 2013; Tixier et al., 2011; Pyka et al., 2015; Bundschuh 

et al., 2014; Divrik et al., 2012; Dong et al., 2015). SUV histogram analysis was used to 

calculate coefficient of variation (COV) (Chicklore et al., 2013; Tixier et al., 2012). Rest of 

the parameters, entropy, homogeneity, contrast and size variation were calculated from 

NGLCM contained three dimensional gray-level information (Chicklore et al., 2013; Tixier et 

al., 2012). For comparison purpose SUV as a conventional PET parameter was also 

analyzed. 

 

2.2.5 Treatment response 

 

After the baseline scan all patients underwent 177Lu-PSMA therapy. The decision 

for 177Lu-PSMA radioligand therapy was made by the local interdisciplinary tumor board at 

each therapy center. The protocol followed for therapy has already been explained in detail 

by rhaber et all (Rahbar et al., 2017). The parameters used to assess the response to 

177Lu-PSMA therapy were pre and post therapy changes in levels of PSA (prostate specific 

antigen), serum and bone alkaline phosphate and Eastern Cooperative Oncology Group 

(ECOG) criterion. Time difference between pre and post therapy levels was 7.1 weeks 

(average 6-8 weeks). 
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Parameter Order Description 

COV 1st 

A normalized measure of dispersion of a frequency distribution 

(standard deviation divided by the mean value of the activity 

concentration in the tumor volume). 

Entropy 2nd 
Measures randomness of distribution, e.g. a homogenous matrix 

demonstrates low entropy. 

Homogeneity 2nd 
A measure for continuous areas of same or similar voxel values in 

an image or voxel of interest (VOI). 

Contrast 2nd 
A measure of local variations present in the image. A high contrast 

value indicates a high degree of local variation. 

Size Variation 3rd 

Measures the difference of the grey value when going to the next 

voxel. It is high when the intensity changes very often between 

single voxels. 

 

Table 3: Overview of textural heterogeneity parameters 

 

2.2.6 Statistical Analysis 

 

The statistical analysis was performed using SPSS (version 22, IBM). To evaluate 

the correlation between conventional and textural heterogeneity parameters and changes in 

pre and post therapy clinical parameters Spearman correlation was used. Statistical tests 

were conducted at a two-sided level of significance as p < 0.05 

 

Receiver-operating-characteristics (ROC) analysis was also performed using 

MedCalc software (version 12.3.0.0; MedCalc). ROC analysis was performed to estimate 

the optimal cutoff value of the correlating parameters for response assessment. For this 

purpose, the Youden index was used to maximize the sum of sensitivity and specificity 

(Youden, 1950). The area under the curve (AUC) was calculated for each parameter using 

the nonparametric method developed by Hanley and McNeil (Hanley and McNeil, 1982) 
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representing the overall predictive or prognostic performance. For AUCs, exact binominal 

confidence intervals were calculated (95% confidence level), indicating the statistical 

significance of predictive capability if the critical value of 0.5 is not included. 

 

2.3 Role of tumor textural heterogeneity in 68Ga-PSMA PET-CT for therapy  

      response assessment and prognosis in prostate cancer patients 

 

2.3.1 Patient selection 

 

50 patients with histologically proven prostate cancer were retrospectively included 

in this study. All patients were planned to undergo 177Lu-PSMA-617 (abbreviated as 177Lu-

PSMA in this study) radioligand therapy. Clinical data was collected from November 2015 to 

April 2017. Average age of patients was 70.3 years.  

 

Characteristic Data 

Age 70.3 years (51-88years) 

Site of metastasis: 

Bone 50 (100%) 

Lymph node 22 (44 %) 

Other (liver, prostate) 7 (14 %) 

Previous therapy of mCRPC: 

Androgen deprivation therapy 50 (100%) 

Chemotherapy 26 (52.0%) 

223Ra 09 (18 %) 

EBRT to bone 18 (36 %) 

 

Table 4: Patient characteristics 
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Inclusion criteria for this retrospective analysis were progressive metastatic 

castration-resistant prostate cancer (mCRPC) patients.  Patients experienced progression 

under next-generation androgen-deprivation therapy (e.g., abiraterone, enzalutamide) or 

first- or second-line chemotherapy (e.g., docetaxel, cabazitaxel) or were not eligible for 

chemotherapy. All patients eligible for 223Ra received this treatment before 

undergoing 177Lu-PSMA-617 radioligand therapy. 26 patients had prior chemotherapy. 09 

patients had been treated previously with 223Ra, while 18 patients had previous EBRT. All 

patients were refractory to hormone therapy. 

 

2.3.2 68Ga-PSMA Scan:  

 

Three 68Ga-PSMA-617 (abbreviated in this study as 68Ga-PSMA) PET scans were 

performed for every patient. Each patient underwent a baseline 68Ga-PSMA scan before 

therapy with 177Lu-PSMA termed as the pre-therapy scan. After the baseline scan patients 

underwent first 177Lu-PSMA therapy. Renal function of every patient was analyzed prior to 

therapy with 99mTC- MAG3 renal scintigraphy. A post therapy 68Ga-PSMA scan was 

performed 6-8 weeks after the first therapy (average 7.6 weeks). This scan was termed as 

mid-therapy scan. After the mid-therapy scan two more PSMA therapies were given to 

every patient with an interval of 6-10 weeks (average 7.4 weeks). After completion of three 

therapies another 68Ga-PSMA scan was performed labeled as post-therapy scan. 

 

Data were acquired with a Biograph Sensation 2 PET-computer tomography (PET-

CT) scanner (Siemens Medical Solutions). The axial and transverse fields of view were 

16.2 and 58.5cm respectively. The transverse resolution of the scanner was about 6.5mm, 

whereas the axial resolution was 6.0mm, both at a radius of 10mm. The computer 

tomography (CT) component was a 2-slice spiral CT scanner. About 73 minutes (range 50-

90 minutes) after the intravenous injection of approximately 131.3 MBq (range 98.8 to 174.8 

MBq) of 68Ga-PSMA, the patient was placed in the scanner. Low dose CT from the head to 

mid-thighs was performed followed by the PET scan of the same area in 6-7 bed positions, 

each for 3-4 minutes depending on the body weight of the patient. The CT data were 
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reconstructed in 512 x 512 pixel matrices. PET data was reconstructed into 128 x 128 

matrices in axial, coronal and sagittal planes using the iterative attenuation-weighted 

ordered subset algorithm implemented by the manufacturer using 4 iterations and 16 

subsets. Attenuation and scatter correction was performed using the CT data. Final voxel 

size was 5.3mm x 5.3mm x 5mm. All patients gave written and informed consent to the 

imaging procedure. All patient record and information was anonymized before analysis. 

Same protocol was followed for all three scan performed per patient. 

  

2.3.3 PET Data Analysis 

 

Image data were transferred to an Interview Fusion Workstation (Mediso Medical 

Imaging System, Budapest, Hungary). Firstly, co-registration between PET and CT images 

was performed. Tumor volume was manually delineated on PET images. Tumor volume 

was manually delineated on PET images (Figure 1) with a standard uptake value (SUV) 

threshold (Fendler, 2017; Mathieu, 2015).). All the 50 patients had bone metastasis. Twenty 

two patients had lymph node metastasis along with bone metastasis. Seven patients had 

additional liver and/or prostate lesions. Three VOIs each for bone and lymph node lesions 

were delineated. Other lesions were also delineated if present in liver and prostate. 

Parameters to be evaluated were measured in these VOIs. A total of 260 VOIs were 

delineated. Mean volume of the lesions was 36.4 cm3 (range 8.2 cm3 to 82.3 cm3). For each 

patient three bone lesions were marked. Similarly, three lymph node and other (liver and 

prostate) lesions were delineated where applicable. For final analysis a mean value of 

every included parameter was determined.   

 

2.3.4 Analysis of tumor textural heterogeneity 

 

Tumor textural heterogeneity was assessed by extraction of local and global textural 

features from uptake histogram analysis and normalized gray-level co-occurrence matrix 

(NGLCM) respectively (Dong et al., 2016). The selected heterogeneity parameters were 

COV, entropy, homogeneity, contrast and intensity variation (Table 5).  
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Parameter Order Description 

COV 1st 

A normalized measure of dispersion of a frequency distribution 

(standard deviation divided by the mean value of the activity 

concentration in the tumor volume). 

Entropy 2nd 
Measures randomness of distribution, e.g. a homogenous matrix 

demonstrates low entropy. 

Homogeneity 2nd 
A measure for continuous areas of same or similar voxel values in 

an image or voxel of interest (VOI). 

Contrast 2nd 
A measure of local variations present in the image. A high contrast 

value indicates a high degree of local variation. 

Intensity 

Variation 
2nd 

The intensity variation describes the variation of the intensity of 

different substructures. 

 

Table 5: Overview of textural parameters 

 

The selected parameters have been used widely in numerous PET studies and 

showed a statistically significant ability to depict the role of textural heterogeneity for 

analysis of tumor behavior (Dong et al., 2016; Eary et al., 2008; Cheng et al., 2013; Tixier et 

al., 2011; Pyka et al., 2015; Bundschuh et al., 2014; Divrik et al., 2012; Dong et al., 2015). 

SUV histogram analysis was used to calculate coefficient of variation (COV) (Chicklore et 

al., 2013; Tixier et al., 2012). Rest of the parameters, entropy, homogeneity, contrast and 

intensity variation were calculated from NGLCM contained three dimensional gray-level 

information (Chicklore et al., 2013; Tixier et al., 2012). Intensity variation was also included 

due to its close approximation with entropy (measure of randomness of intensity values in 

an image (Alobaidli et al., 2014)) which is usually the determining feature in numerous 

studies. For comparison purpose SUV as a conventional PET parameter was also 

analyzed. 
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2.3.5 Treatment response 

 

Each patient underwent three 177Lu-PSMA therapies and three 68Ga-PSMA scans. 

The decision for 177Lu-PSMA radioligand therapy was made by the local interdisciplinary 

tumor board at each therapy center. The protocol followed for therapy has already been 

explained in detail by rhaber et all (Rahbar et al., 2017). The parameters used to assess the 

response to 177Lu-PSMA therapy for each therapy were pre and post therapy changes in 

levels of PSA (prostate specific antigen), serum and bone alkaline phosphate and Eastern 

Cooperative Oncology Group (ECOG) criterion. Data were collected for consecutive three 

177Lu-PSMA therapies. For calculation of overall survival, the time between the first PET/CT 

examination and the date of death was used. 

2.3.6 Statistical Analysis 

 

Receiver-operating-characteristics (ROC) analysis was performed using MedCalc software 

(version 12.3.0.0; MedCalc). ROC analysis was performed to estimate the optimal cutoff 

value of the correlating parameters for response assessment. For this purpose, the Youden 

index was used to maximize the sum of sensitivity and specificity (Youden, 1950). The area 

under the curve (AUC) was calculated for each parameter using the nonparametric method 

developed by Hanley and McNeil (Hanley and McNeil, 1982) representing the overall 

predictive or prognostic performance. For AUCs, exact binominal confidence intervals were 

calculated (95% confidence level), indicating the statistical significance of predictive 

capability if the critical value of 0.5 is not included.  

 

The relationship of the investigated parameters with overall survival, was analyzed 

using Kaplan–Meier plots. Kaplan–Meier analysis was performed using thresholds 

previously established by ROC analysis. Differences between Kaplan–Meier curves were 

evaluated using nonparametric log-rank tests, considering differences with a P value 

smaller than 0.05 to be significant. 
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3. Results 

The study showed some very good results. As in previous sections the results will 

also be divided into three parts. 

3.1 Role of textural heterogeneity parameters in diagnosis of          

pseudoprogression in high grade gliomas 

 

3.1.1 Patient characteristics 

 

The study population comprised 14 patients (Table 5) with histologically proven high-

grade glioma. A methylated MGMT promoter was found in 12 and a non-methylated MGMT 

promoter in 2 patients. All patients underwent radiotherapy before PET investigation, either 

concomitant with chemotherapy or separated. Nine patients included in the study 

underwent FET-PET investigation while during first-line treatment whereas five patients 

after relapse had occurred.  

 

3.1.2 Diagnosis of true tumor progression versus pseudoprogression 

 

Four of fourteen patients had confirmed PSP. Ten patients were regarded as having 

unequivocal progression (Table 6). All patients diagnosed with PSP had a methylated 

MGMT promoter whereas the MGMT promotor was methylated in 80% (8 of 10) in patients 

with true tumor progression. 

 

3.1.3 Identification of FET-PET-based subtypes 

 

As shown in Figure 5a, the consensus matrix displays a well-defined 3-block 

structure for k=3, corresponding to three distinct cluster groups. The cumulative distribution 

function (CDF) curve, which plots consensus distributions for each k, approaches at k=3 the 

ideal step function and its shape hardly changes as k is increased past 3 (Figure 5b). The 

difference between two CDF curves (at k and k+1) is summarized by measuring the area  
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1 1 m 29 AA yes 1 P: B,RT+TMZ no 7 Stable 27.2 >26.7 >27.2 

3 1 m 45 GBM* yes 2 P: B,TMZ; 1R: R,RT,PC yes 16 prog. 16.4 8.4 16.4 

4 1 f 40 AOA yes 4 P: pR; 1R: TMZ; 2R: 
TMZ; 3R: pR,RT, CCNU 

no 34 prog. 126.4 >26.1 >126.4 

10 1 m 43 GBM* no 1 P: pR,RT,PC no 37 prog. 24.1 8.0 24.1 

12 1 m 70 GBM yes 2 P: pR,RT+TMZ,TMZ;  
1R: R,TMZ 

no 139 prog. 45.1 4.1 45.1 

14 1 f 68 GBM yes 1 P: cR,RT+TMZ,TMZ yes 10 prog. 23.4 >22.1 >23.4 

5 2 f 49 GBM no 1 P: pR,RT+TMZ,TMZ no 52 prog. 34.1 4.6 34.1 

6 2 m 61 GBM yes 2 P: cR,RT+TMZ,TMZ;  
1R: R,RT,CCNU/TMZ 

no 25 prog. 23.5 >13.3 >23.5 

8 2 m 60 GBM yes 1 P: cR,RT+TMZ,TMZ no 33 prog. 11.3 2.2 11.3 

13 2 m 54 GBM yes 1 P: pR,RT+TMZ no 4 prog. 10.0 6.0 10.0 

2 3 m 59 GBM yes 1 P: R,RT+TMZ/CCNU, 

TMZ/CCNU 
no 95 stable 44.3 >21.7 >44.3 

7 3 f 47 AA yes 1 P: B,RT+TMZ,TMZ no 25 stable 27.5 16.7 27.5 

9 3 f 66 GBM yes 1 P: cR,RT+TMZ,TMZ no 48 prog. 21.7 5.1 21.7 

11 3 m 50 GBM yes 2 P: cR,RT+TMZ,TMZ; 
1R:R,RT+CCNU/TMZ, 

CCNU/TMZ 

no 41 stable 49.3 13.9 49.3 

 

Table 6: Patient Characteristics 

 

Abbreviations: AA, anaplastic astrocytoma; Clin., clinical follow-up.; cR, complete resection; Dx, 

diagnosis; Follow-up Time, time from diagnosis to last follow-up; GBM*, secondary glioblastoma; 

GBM, glioblastoma; CCNU, lomustine; MGMT, O-6-methylguanine-DNA methyltransferase; stable, 

no progression; nyr, not yet reached; PET, positron emission tomography; pR, partial resection; 

prog., progression; R, resection of unknown extent; RT, radiotherapy; RT+CCNU/TMZ, combined 

radiotherapy and chemotherapy with temozolomide and lomustine; RT+TMZ, combined 

radiotherapy and chemotherapy with temozolomide; TMZ, temozolomide; wk, weeks; y, years; B, 

biopsy; OS, overall survival; PC, procarbazine and lomustine; PFS, progression-free survival; m, 

months, # Line of therapy while under PET investigation; >, indicates censored values 
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under the CDF curves for k=2 through 7 and shown in Figure 5c. As k is increased, the area 

under the CDF curve stays approximately the same until k=3 and drops off significantly 

beyond that value. Any further increase in k does not come along with a corresponding 

marked increase in the CDF area, thus further supporting the choice of an optimal k=3. 

 

 

 

 

ill 5: Consensus matrix heat map 
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This result was confirmed by using the recently published PAC method, which was shown 

to be more accurate in determining the right number of k, where PAC was lowest at k=3, 

reflecting an optimal clustering with three groups. Of the 14 patients in our cluster cohort, 

six patients were assigned to cluster 1 (43%), and four patients (29%) each were assigned 

to cluster 2 and 3. 

 

3.1.4 Assigning FET-PET features to each cluster 

 

To identify FET-PET features associated with each cluster we used the nearest 

shrunken centroid method called predictive analysis of microarrays (PAM). Predictor 

discovery by PAM identified ten PET features out of 19 with at least one nonzero 

component. This implies that those selected features simultaneously distinguish all clusters 

from each other. Figure 6a shows a heatmap of all hierarchically clustered features 

corresponding to each cluster and Figure 6b shows the shrunken differences for the ten 

PET characteristics differentially regulated across the three clusters. Of those, 8 

characteristics are textural features (Contrast, Entropy, Correlation, Size Var, Coarseness, 

Volume, COV, and Complexity) and two are recognized as conventional (TLG, Max). 

Notably, the upper 7 (figure 6b) of those 10 features provide the most distinct separation 

among clusters: Contrast, Volume, Entropy, TLG, Correlation, Size Variation, and 

Coarseness. 

From the distribution of FET-PET features across clusters using PAM, it becomes evident 

that cluster 2 was particularly associated with high values of the textural characteristics 

Contrast and Entropy (Figure 6b). As increased values of both features have been tied to 

intratumoral tracer uptake heterogeneity, the cluster 2 phenotype was designated "high 

heterogeneity cluster". Except for the feature Coarseness, cluster 3 was largely associated 

with inverse loadings of FET-PET textural features as compared with cluster 2, most 

strikingly Entropy, Correlation and Size zone variability. With high intratumoral tracer uptake 

heterogeneity, Entropy and Correlation are known to be increased and Size-zone variability 

decreased. It was thus named "low heterogeneity cluster". Interestingly, TLG was also 
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comparably downregulated in this cluster. As opposed to cluster 2 and 3, cluster 1 had the 

least variability in features. Only the feature Correlation was considerably upregulated. As 

such, cluster 1 was defined as "intermediate cluster".  

 

3.1.5 Pseudoprogression and cluster assignment 

 

All of the patients assigned to cluster 2 (4 out of 4) and five out of six of cluster 1 

were diagnosed with progression, whereas three of four patients with pseudoprogression 

fell into cluster 3 (Figure 6a). 

 

 

 

ill 6: Cluster analysis 
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Usually, patients with suspected pseudoprogression and an increased TNRmax value 

(optimal cutoff of 2.1 in this study) were diagnosed with tumor progression. Figure 5c 

illustrates the explorative comparison of the diagnostic value in detecting true tumor 

progression of TNRmax with an assignment to cluster 3. Cluster 3 seems to be stronger 

associated with the detection of true progression (p=0.041) compared to increased 

TNRmax group (p=0.07). Cluster 3 provided a high sensitivity and specificity (90% and 

75%, respectively) for detecting true progression with a negative predictive value (NPV) of 

75%. TNRmax similarly provided high values for specificity and sensitivity (70% and 100%, 

resp ectively), yet, at the cost of a low NPV (57%). 

 

3.1.6 Putative prognostic value of clusters 

 

To investigate further each cluster phenotype, we calculated the progression-free 

survival (PFS) measured from the time of PET investigation to the date of following tumor 

progression based on RANO evaluation. As shown in Figure 7a, patients grouped to cluster 

2 seem to have a lower median PFS (5.3 months vs. 14.6 months in cluster 1 and 15.3 

months in cluster 3). When calculating median PFS using Kaplan-Meier method – 

accounting for censored values - cluster 2 remains the one with the lowest median PFS (4.6 

months vs. 8.4 months in cluster 1 and 13.9 months in cluster 3). Figure 7b illustrates that 

this effect might not be explained by differentially distributed prognostic factors among 

clusters, given a balanced distribution of prognostic factors. 
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ill 7: Progression free survival analysis 
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3.2 Role of textural heterogeneity parameters in patient selection for 177Lu-

PSMA therapy 

 

Seventy patients were evaluated in this study. Decrease in PSA level was observed 

in 42 patients (60%) and they were labeled as responders to therapy. Increase in PSA level 

was seen in 28 patients (40%) considered as non-responders (Figure 8(a)).  

 

 

ill 8(a): Percentage change in PSA 

 

41 patients (58%) showed response via decrease in serum alkaline phosphate level 

(Figure 8(b)) and 39 patients (55%) showed response by decrease in bone specific alkaline 

phosphate (Figure 8(c)). Among the responders 24 patients (34.2%) showed decrease in 

both PSA and alkaline phosphate levels at the same time while 22 patients (31.42%) 

showed decrease in PSA, alkaline phosphate and bone specific alkaline phosphate levels 

together. No change was observed in ECOG of any patient.  
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ill 8(b): Percentage change in Alkaline Phosphate 

 

ill 8(c): Percentage change in Alkaline Phosphate Bone 

Analysis of PET based heterogeneity parameters revealed that only two textural 

heterogeneity parameters entropy and homogeneity showed correlation with change in pre 

and post therapy PSA levels. PSA levels which showed correlation were derived from bone 

lesions. Lymph node and other lesions derived values did not show any correlation. Change 

in pre and post therapy values of serum alkaline phosphate, bone specific alkaline 

phosphate and individual patient ECOG status derived from all types of lesions remained 

uncorrelated. Similarly textural heterogeneity parameters other than entropy and 

homogeneity also remained uncorrelated. Actual values of correlating parameters as 

obtained through Spearman correlation are as under. 
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Entropy showed a negative correlation (rs = -0.327 and p = 0.006) and homogeneity 

showed a positive correlation (rs = 0.315 and p = 0.008) with change in pre and post 

therapy PSA levels (Figures 9 (a) and (b)).  

ill 9(a): Representation of negative 

correlation between absolute ∆PSA(ng/ml) 

and entropy of bone lesions (R2 = 0.283) 

ill 9(b): Representation of positive 

correlation between absolute ∆PSA 

(ng/ml) and homogeneity of bone lesions 

(R2 = 0.326) 

It is essential to be taken into account that change in PSA levels was obtained as 

post therapy levels minus the pre therapy level (post therapy PSA – pre therapy PSA). A 

negative value of this equation meant that post therapy PSA was less than that of pre 

therapy and the case was considered as of a responder. So the resultant value of a 

responder was negative and vice versa. Hence, a negative correlation of entropy with this 

change (also represented with a negative value) meant that entropy and change in PSA 

levels was directly proportional to each other. Or in other words the responders showed a 

higher entropy value. Similarly, homogeneity showed a positive correlation and hence a 

negative proportionality with the change in PSA levels signifying that the responders had a 

lower homogeneity.  

Below is a table (Table 7) summarizing the positive results i.e. obtained by 

correlating positive textural heterogeneity parameters obtained from bone lesions with 
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change in pre and post therapy PSA levels. Rest of the parameters are also given for 

comparison. It can be also seen that SUV values also did not positively correlate. 

PET Parameter 

(Bone Lesions) 

Correlating 

Clinical Parameter 

Spearman 

Coefficient 

p-value 

Entropy ∆PSA 0.327 0.006 

Homogeneity ∆PSA -0.315 0.008 

COV ∆PSA 0.113 0.516 

Contrast ∆PSA 0.257 0.136 

Size Variation ∆PSA -0.309 0.071 

SUV( mean) ∆PSA 0.168 0.333 

 

Table 7: Correlation of bone lesion derived PET parameters with change in PSA level 

The ROC analysis also showed that entropy and homogeneity are statistically 

significant (p < 0.05) for predictive ability.  Further results of ROC analysis are summarized 

in the table below (Table 8).  

Parameter AUC 

(Area under 

curve) 

95% Confidence 

Interval 

Cut-off Value 

(based on Youden 

Index) 

Entropy 0.695 0.573 to 0.799 >5.15 

Homogeneity 0.683 0.561 to 0.789 ≤0.43 

Table 8: Results of ROC Analysis for Predictive Value of Pre therapeutic PET- CT 

Sensitivity and specificity was also assessed for both parameters through ROC 

(Figure 10(a)and (b)) and these values were used to find out positive and negative 

predictive values (Table 9).  
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Ill 10 (a) and (b): Showing results of ROC analysis 

 

Parameter Sensitivity Specificity Positive Predictive 

Value 

Negative Predictive 

Value 

Entropy 71.4 % 71.4 % 62.50 % 78.95 % 

Homogeneity 81 % 57.1 % 66.67 % 73.91 % 

 

Table 9: Outcomes of positive parameters 

 

For the above mentioned parameters, the combined sensitivity of entropy and homogeneity 

for predicting outcome was 57.83% and the combined specificity was 87.74%. 
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3.3 Role of Tumor Textural Heterogeneity in 68Ga-PSMA PET-CT for Therapy           

Response Assessment and Prognosis in Prostate Cancer Patients 

 

Fifty patients were evaluated in this study. Decrease in PSA level was observed in 

31 patients (62%) and they were labeled as responders to therapy. Increase in PSA level 

was seen in 19 patients (38%) considered as non-responders.  

 

29 patients (58%) showed response via decrease in serum alkaline phosphate level 

and 27 patients (54%) showed response by decrease in bone specific alkaline phosphate. 

No change was observed in ECOG of any patient till the completion of third therapy. 

 

Analysis of heterogeneity parameters in the bone lesions showed that three 

parameters had statistically significant predictive capability. These three parameters were 

entropy, homogeneity and intensity variation. The significance of parameters was 

ascertained through independent T-test and ROC analysis. Conventional parameters SUV 

mean and max did not show any statistical significance. Similarly, lesions in lymph nodes 

and other organs (liver, prostate) did not show any statistical significance. 

 

The ROC analysis was performed for changes in measured for pretherapeutic PET-

CT, mid-therapy PET-CT and post-therapy PET-CT examinations. The results of these 

measurements are presented in Table 10. 
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Parameter AUC 95% Confidence Interval p-value (0.05) 

Pre-Therapy  

Entropy 0.725 0.546-0.864 0.018 

Homogeneity 0.603 0.421-0.766 0.030 

Intensity Variation 0.659 0.477-0.812 0.05 

Mid-Therapy  

Entropy 0.687 0.505-0.834 0.042 

Homogeneity 0.679 0.498-0.828 0.057 

Intensity Variation 0.681 0.500-0.830 0.06 

Post-Therapy  

Entropy 0.712 0.532-0.854 0.001 

Homogeneity 0.755 0.577-0.885 0.002 

Intensity Variation 0.716 0.536-0.857 0.038 

 

Table 10: Results of ROC analysis 

In the pretherapeutic scans entropy had the highest AUC and the lesions with higher 

entropy and intensity variation and low homogeneity showed better response to the first 

therapy. While in the post-therapy scans homogeneity showed the highest AUC and the 

lesions with higher homogeneity and lower entropy showed better response to therapy. 

This is in contrast with the pretherapeutic scan results. The lesions having persistently 

higher entropy and size variation or lower homogeneity showed poor prognosis after three 

therapies. We found that in pre-therapy scans a higher entropy and size variation and 

lesser homogeneity was good selection criterion for patients but after subsequent therapies 

(three in our study) lower entropy and size variation and higher homogeneity were 

indicators of good outcome. 
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      ill 11: ROC analysis 

No statistically significant correlation was found between the textural parameters and 

lesion volume. In addition, the positive outcomes were obtained only for bone lesions and 

only those in comparison to change in serum PSA levels. The lymph node lesions showed 

no statistical significance and similarly, correlation with alkaline phosphate, bone alkaline 

phosphate and ECOG criterion was also not statistically significant. 

The sensitivity and specificity of the parameters was also calculated for predicting 

outcome with change in PSA as standard. The results are showed in following table.  

Parameter Sensitivity Specificity 

Pre-Therapy 

Entropy 79.2 % 46.1 % 

Homogeneity 69.4 % 57.1 % 

Intensity Variation 42.8 % 84.6 % 

Mid-Therapy 

Entropy 57.1 % 84.6 % 

Homogeneity 61.9 % 84.6 % 

Intensity Variation 57.1 % 76.9 % 

Post-Therapy 

Entropy 85.7 % 61.5 % 

Homogeneity 42.8 % 100 % 

Intensity Variation 80.9 % 69.2 % 

 

Table 11: Sensitivity and specificity of parameters 

During a mean follow-up of 900 days, progressive disease was found in 19 patients. 

Increased PSA levels were detected in all patients with progression. Fifteen patients of the 

study group died within the follow up time, on average 510 days after the first PET-CT 

examination (range, 187 - 776 days).  
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ill 12 : Kaplan-Meier analysis 

Kaplan–Meier analysis showed all three parameters to have a statistically significant 

prognostic capability for overall survival analysis. The corresponding Kaplan–Meier plots 

are shown in figure 3.  

p-values indicating a prognostic capability are shown in the graphs. It can be seen 

that entropy shows the most statistically significant capability to predict overall survival from 

pre, mid and post therapy scans. However, homogeneity and intensity variation were able 

to predict survival only from the data acquired via post-therapy scans. We also calculated 

combined sensitivity and specificity for all three predictors from the values obtained by post 

therapy scan. 

Combined sensitivity of entropy and intensity variation for predicting outcome was 

69.3 and the combined specificity was 88.1 

Combined sensitivity of entropy and homogeneity for predicting outcome was 91.9 

and the combined specificity was 61.5 

The median overall survival for entropy which proved to be the best indicator in 

analysis is shown in the table below. 

Time Point Parameter Mean Overall 

Survival  

Pre-therapy  Entropy ≥ 5.06 722 days 

Entropy < 5.06 376 days 

Mid-therapy Entropy ≥ 5.87 701 days 

Entropy < 5.87 436 days 

Post-therapy  Entropy ≤ 5.38 624 days 

 Entropy > 5.38 254 days 
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 To investigate whether the tumor heterogeneity or the change in heterogeneity 

during therapy depended on the lesion size or the change in lesion size, we performed a 

Pearson correlation analysis of positive parameters for heterogeneity with the lesion 

volume. No correlation was found between lesion volume and textural heterogeneity 

parameters in all parts of the study. 
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4. Discussion 

 

In this study, we analyzed the capability of textural markers to assess heterogeneity 

in PET to predict therapy response and outcome in patients. Assessment of tumor  

heterogeneity is becoming an effective tool for analysis of tumor and therapy behaviors. 

Most important is this analysis can be performed on in depth image analysis and is much 

easier and efficient than the invasive methods. Instead of being only a qualitative analysis, 

analysis of textural heterogeneity helps in extracting quantitative information from the 

images as well (Aerts et al., 2014). Textural analysis is the measure of spatial variation at 

different levels of a tumor like imaging, gross morphology, cellular and genetic level. It is 

known that multiple subclonal populations coexist within tumors, reflecting extensive 

intratumoral somatic evolution (Yachida et al., 2010; Gerlinger et al., 2012). This 

heterogeneity is a clear barrier to the goal of personalized therapy based on molecular 

biopsy-based assays, as the identified mutations and gene-expression does not always 

represent the entire population of tumor cells (Gerlinger and Swanton, 2010; Kern, 

2012).  

 

Genetic variations in tumors can be related to a mutator phenotype that generates 

new clones, some of which expand into large populations (Nowell, 1976). However, 

although identification of genotypes is of substantial interest, it is insufficient for complete 

characterization of tumor dynamics because evolution is governed by the interactions of 

environmental selection forces with the phenotypic, not genotypic, properties of populations 

as shown, for example, by evolutionary convergence to identical phenotypes among cave 

fish even when they are from different species (Greaves and Maley, 2012; Vincent and 

Brown, 2005; Gatenby and Gilles, 2008). This connection between tissue selection forces 

and cellular properties has the potential to provide a strong bridge between medical 

imaging and the cellular and molecular properties of cancers (Gatenby et al., 2013). Thus it 

can be said that continued tumor variation/evolution can be attributed to tumoral 

heterogeneity at genetic level. Evolution within tumors is governed by Darwinian dynamics, 
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with identifiable environmental selection forces that interact with phenotypic (not genotypic) 

properties of tumor cells in a predictable and reproducible manner; clinical imaging is 

uniquely suited to measure temporal and spatial heterogeneity within tumors that is both a 

cause and a consequence of this evolution (Gatenby et al., 2013). Analysis of this spatial 

variation by computer generated algorithms working on superimposition of multiple 

sequined images can lead to individual specific evaluation of intratumoral variation and can 

thus form a basic factor for personalized therapy.  

 

PET being a multimodal modality for imaging, giving both the anatomical and 

physiological information is gaining momentum for analysis of tumor textural heterogeneity. 

When considering the PET component, it refers to radiotracer uptake spatial distribution, 

which may reflect, depending on the radiotracer used, the combination of underlying 

biological processes such as metabolism, hypoxia, cellular proliferation, vascularization and 

necrosis (Willaime et al., 2013; Weber et al., 2000). Regarding the low-dose CT component 

of PET-CT, usually without contrast enhancement, heterogeneity refers to the variability in 

tissue density, which may result from spatially varying vascularization, necrosis or 

cellularity, as well as the proportions of fat, air and water (Aerts, 2014). With other 

modalities such as contrast-enhanced CT, as well as in MRI using various sequences (for 

example, T1, T2, FLAIR, DCE-MRI), heterogeneity can also include the spatial variability of 

vessel density, perfusion, proton density and physiological tissue characteristics (Win et al., 

2013; Asselin et al., 2012; Yoon et al., 2016).  

 

In the recent years a lot of effort has been put into textural heterogeneity parameters 

as analyzed by PET-CT to assess tumor behavior and its responsiveness to therapy. One 

of the biggest reasons for this paradigm shift towards textural heterogeneity was that the 

conventional PET parameters which are usually considered as outcome predictors in 

clinical as well as research studies failed to provide sufficient information regarding various 

properties of tumor (O’Sullivan et al., 2003).  These conventional parameters include 

maximum or mean standardized uptake value (SUVmax and SUVmean) or the metabolically 

active tumor volume (MATV). Some of these properties, such as shape and uptake 
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heterogeneity, may reflect different tumor profiles associated with their aggressiveness, 

metastatic potential, or degree of response to a specific treatment, and consequently 

prognosis (Basu et al., 2011; Visvikis et al., 2012). However, quantification of these 

properties could provide information with higher clinical value than the usual metrics in 

selection of patients or identifying poor responders to treatment. 

 

The use of textural analysis in the evaluation of PET images was first shown by El 

Naqa and colleagues in a seminal study in 9 patients with head and neck cancer and 14 

patients with cervix cancer (El Naqa et al., 2009). Study comprised of investigating 

intensity-volume histogram metrics and shape and texture features extracted from PET 

images to predict patient's response to treatment. The preliminary results suggested that 

the proposed approaches could potentially provide better tools and discriminant power for 

utilizing functional imaging in clinical prognosis. Only two other studies investigating textural 

analysis in PET were published in the two following years. The first demonstrated the 

impact of parameters used in PET iterative image reconstruction algorithms on textural 

analysis metrics, of which many were shown to be sensitive to the resulting varying 

characteristics of the reconstructed images (Galavis et al., 2010). The second study 

investigated the predictive value of FDG uptake heterogeneity quantified using textural 

analysis, in 41 patients with locally advanced oesophageal cancer receiving concomitant 

chemoradiotherapy, and showed that textural analysis metrics have higher predictive value 

than SUV (Tixier et al., 2011).  

 

In CT and MRI images several studies have shown that the textural analysis can be 

linked at the level of genomics through some pathophysiological processes constantly 

altering the innate tumor behavior. These studies (Segal et al., 2007; Gevaert et al., 2014; 

Wan et al., 2016) are very relevant for assessment of clinical data. A study established a 

correlation between perfusion CT-derived parameters (e.g. blood flow) and texture analysis 

metrics from FDG PET in stage HI/TV colorectal tumor’s (Tixier et al., 2014). Regarding the 

relationship between PET textural analysis features and data from underlying scales, 

preliminary results from a prospective study in 54 patients with head and neck cancer have 
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recently been presented, and demonstrate that some PET textural analysis metrics could 

be linked to altered signaling pathways related, for example, to cell proliferation and 

apoptosis (Tixier et al., 2015). 

 

 Studies like these can help us understand the added advantage of tumor textural 

analysis over the conventional PET parameters, which enhances the clinical value of the 

studies. However, major number of studies available are performed with FDG-PET. In our 

analysis to see the sensitivity and specificity of textural analysis in other radiotracers we 

used 18F-FET PET and 68Ga-PSMA PET. This was done in order see the predictive ability 

of this analysis with a varied number of radiotracers and also to study the tumoral variation 

and treatment response in different tumors. Depending on radiotracer and patient 

population our study was divided in three parts. We will individually discuss each of those.  

 

Objective of the first part of study was to distinguish between true tumor progression 

and pseudoprogression in the patients of high grade glioma in FET-PET using textural 

heterogeneity parameters as compared to the conventional PET parameters. As described 

earlier the accurate and timely distinction between actual tumor progression and 

pseudoprogression (which is a sequel of chemoradiation) is very important, as it can effect 

significantly on further therapy planning and patient outcome. 

 

The results of this study suggested that high grade glioma patients with suspected 

pseudoprogression could be classified into 3 distinct clusters, solely based on a set of 

textural FET-PET features. Most of the patients assigned to cluster 3 had 

pseudoprogression while all patients assigned to cluster 2 had true tumor progression. 

Thus, textural FET-PET feature analysis lent itself as a novel useful non-invasive tool, 

besides the frequently used TNRmax to distinguish pseudoprogression from true tumor 

progression in patients with high grade glioma. 

 

When we compared the value of pseudoprogression prediction using a cluster-based 

classifier (cluster 3), that was based on textural PET features, against the most widely used 
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PET marker TNRmax (Galldiks et al., 2015; Kebir et al., 2016) only the cluster-based 

classifier was significantly associated with pseudoprogression detection. In the study 

(Galldiks et al., 2015) the objective was to assess the clinical value of O-(2-(18)F-

fluoroethyl)-L-tyrosine18F-FET PET in the differentiation of pseudoprogression and early 

tumour progression  after radiochemotherapy of glioblastoma. A group of 22 glioblastoma 

patients with new contrast-enhancing lesions or lesions showing increased enhancement 

(>25 %) on standard MRI within the first 12 weeks after completion of radiochemotherapy 

with concomitant temozolomide (median 7 weeks) were additionally examined using amino 

acid PET with 18F-FET. Maximum and mean tumour-to-brain ratios (TBRmax, TBRmean) 

were determined. Classification as pseudoprogression or actual tumor progression was 

based on the clinical course (no treatment change at least for 6 months), follow-up MR 

imaging and/or histopathological findings. Pseudoprogression was confirmed in 11 of the 

22 patients. In patients with pseudoprogression, 18F-FET uptake was significantly lower 

than in patients with actual progression (TBRmax 1.9 ± 0.4 vs. 2.8 ± 0.5, TBRmean 1.8 ± 0.2 

vs. 2.3 ± 0.3; both P < 0.001) and presence of MGMT promoter methylation was significantly 

more frequent (P = 0.05). Receiver operating characteristic analysis showed that the 

optimal (18)F-FET TBRmax cut-off value for identifying pseudoprogression was 2.3 

(sensitivity 100 %, specificity 91 %, accuracy 96 %, AUC 0.94 ± 0.06; P < 0.001). In 

comparison to that in our study the negative predictive value was higher with the cluster-

based classifier, cluster 3. 

 

Out of a set of 19 FET-PET features encompassing conventional (among others 

TLU, TNRmax, and TNRmean) as well as textural features, only 10 features separated all 3 

clusters from one another. Of those 10, 7 features, namely Contrast, Volume, Entropy, 

TLU, Correlation, Size-zone var., and Coarseness were most differentially regulated among 

clusters and all of the latter 7 – except for TLU and Volume - are considered textural PET 

markers (30). These textural features reflect intratumoral uptake heterogeneity and may be 

used to quantify tumor heterogeneity (Tixier et al., 2011). The degree of intratumoral 

heterogeneity is suspected to be a prognostic factor (Almendro et al., 2013). Some textural 

markers such as Entropy and COV have been shown to be prognostically relevant in 
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systemic tumors (Almendro et al., 2013). Intriguingly, cluster 2, which included only patients 

with true progression, exhibited high values of heterogeneity markers (particularly Contrast 

and Entropy). By contrast, cluster 3, which included largely patients with confirmed 

pseudoprogression, was associated with low values of heterogeneity markers. On the other 

hand, TLU, the only non-textural marker of the 7 highly differentially regulated FET-PET-

features, has been shown to be negatively correlated with prognosis and - compared to 

other conventional PET features - a stronger predictor of outcome in systemic tumors 

(Hyun et al, 2016; Choi et al., 2013). Interestingly, TLU was inversely associated with 

cluster 3, supporting that the cluster assignment based on our set of PET features might 

carry prognostic implications. 

 

Similarly, in a recently published retrospective study (Pyka et al., 2016) of patients 

with high grade glioma, who received FET-PET prior to first-line treatment, 3 of the textural 

markers assessed here, namely complexity, contrast and coarseness, were shown to be 

possibly correlated with survival. All patients received static FET-PET scans prior to first-

line therapy. TBR (max and mean), volumetric parameters and textural parameters based 

on gray-level neighborhood difference matrices were derived from static FET-PET images. 

All FET-PET textural parameters showed the ability to differentiate between World Health 

Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement 

in discriminatory power was possible through a combination of texture and metabolic tumor 

volume, classifying 85 % of tumors correctly (AUC 0.830). Determination of uptake 

heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the 

(sub-)grading of high-grade glioma as well as prediction of tumor progression and patient 

survival, and showed improved performance compared to standard parameters such as 

TBR and tumor volume. In our very patient cohort, cluster 2 patients showed the lowest 

median PFS and OS compared to patients from the other clusters. Notably, canonical 

prognostic markers were similarly distributed among clusters and are not suited to explain 

this observation. However, survival times varied considerably among patients sharing the 

same cluster and the sample size was too small to draw strong conclusions from this pilot 

data. In addition, it should be mentioned that our cohort consisted of five patients who 
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underwent PET after relapse had occurred. With the other patients included in the first-line 

therapy, our cohort was heterogenous to some degree although those patients included 

after relapse were treated with again with alkylating (radio)chemotherapy. This cohort 

heterogeneity and the issue that treatment at recurrence might further account for varying 

PET data makes interpretation difficult. Nevertheless, because our findings might indicate a 

putatively prognostic value of clusters defined by textural FET-PET markers reflecting 

intratumoral uptake heterogeneity, a prospective study with a larger patient cohort 

validating our results is warranted.  

 

In summary, this work provided a novel and interesting approach to FET-PET based 

identification of pseudoprogression from actual tumor progression. The textural 

heterogeneity can be easily incorporated into routine PET investigations. The ability of the 

study to provide us with this important discrimination can give a lot of clinical benefit. 

Patients with diagnosis of actual tumoral progression can undergo further therapy resulting 

in decreased morbidity and mortality, while patients with a true diagnosis of 

pseudoprogression can then avoid undergoing any unnecessary treatment. However, as 

mentioned above, by virtue of the small sample size interpretation of our results is limited 

and calls for validation in larger and systemic analyses. Nevertheless, this approach is 

novel, the results are promising, and encourage analyzing the diagnostic value of textural 

markers in a larger cohort of patients. 

 

 In the second and third parts of our study, we analyzed the predictive capability of 

textural heterogeneity parameters in patients undergoing 177Lu-PSMA therapy for 

determination of patient selection criteria, treatment outcome and survival analysis.  

PSMA bound ligands have started gaining acceptance for diagnosis and treatment of 

prostate cancer (Rahbar et al., 2017; Kulkarni et al., 2016; Baum et al., 2016). The 

retrospective German multicenter analysis (Rahbar et al., 2017) showed that 177Lu-PSMA-

617 radioligand therapy demonstrated favorable safety and high efficacy exceeding those 

of other third-line systemic therapies in metastatic castration resistant prostate cancer 

patients. PSA decline occurred in 65% of patients after 1 cycle of radioligand therapy with 
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177Lu-PSMA-617 and in 72% after the second cycle. There are still almost 30% of the 

patients who did not show or showed less than 50% decline in serum PSA level. It is very 

important to identify those patients and so that therapy modifications might be performed 

which can then help in increasing the efficacy of treatment. Our study aimed at utilization of 

heterogeneity parameters in an effort to improve the selection criterion of patients and 

acted as a means to predict improved outcome. To achieve this effect at the earliest 

possible time, prior to therapy planning analysis was performed on the data collected from 

baseline scan. Our study showed a potential for response prediction through baseline 

PSMA-PET-CT scan using textural features. It also suggested that more heterogeneous the 

tumor was in PSMA expression more responsive it was to PSMA therapy, thus contributing 

efficiently towards patient selection, treatment planning and improvement in overall 

diagnostic accuracy. The ROC analysis showed that two textural heterogeneity parameters 

entropy and homogeneity were statistically significant (p < 0.05) for predictive ability as 

obtained from the baseline 68Ga-PSMA scan prior to 177Lu-PSMA therapy. Spearman 

correlation showed that entropy showed a negative correlation (rs = -0.327 and p = 0.006) 

and homogeneity showed a positive correlation (rs = 0.315 and p = 0.008) with change in 

pre and post therapy PSA levels.   

 

Predictive ability of various parameters from the baseline scan has also been 

investigated. In a study (Ferdinandus et al., 2017) the effect of different pretherapeutic 

parameters on the therapeutic response measured by prostate-specific antigen (PSA) 2 

months after radioligandtherapy. In the univariate analysis, younger age, higher levels of γ-

glutamyl transferase, lower pretherapeutic hemoglobin, a higher Gleason score, a higher 

number of platelets, higher C-reactive protein, regular need for pain medication, and higher 

lactate dehydrogenase had a negative impact on the therapeutic response; however, the 

multivariate analysis revealed that the most significant independent factors were the 

number of platelets and regular need for pain medication. The response was independent 

of the amount of PSMA uptake as well as previous therapies and other measured factors. A 

PSA decline of more than 50% was observed significantly more in patients without a 

regular need for analgesics. Numerous studies have also reported the use of textural 
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heterogeneity parameters for the assessment of patient outcome. PET due to its ability for 

physiological imaging and hence having the ability to predict changes at molecular level 

and also having the added advantage of whole body imaging is an ideal choice for 

analyzing textural heterogeneity parameters.  

 

A study (Eary et al., 2008) proposed that heterogeneity in 18F-FDG spatial 

distribution can be used to predict tumor biologic aggressiveness. This study presented 

data to support the hypothesis that a new heterogeneity-analysis algorithm applied to 18F-

FDG PET images of tumors in patients was predictive of patient outcome. 18F-FDG PET 

images from 238 patients with sarcoma were analyzed using a new algorithm for 

heterogeneity analysis in tumor 18F-FDG spatial distribution. Statistical analyses show that 

heterogeneity analysis is a strong independent predictor of patient outcome. The new 18F-

FDG PET tumor image heterogeneity analysis method was validated for the ability to 

predict patient outcome in a clinical population of patients with sarcoma. It was proposed 

that this method could be extended to other PET image datasets in which heterogeneity in 

tissue uptake of a radiotracer may predict patient outcome.  

 

In another study (Cheng et al., 2013) the researchers investigated whether the 

textural features of pretreatment 18F-FDG PET-CT images could provide any additional 

prognostic information and clinical staging in patients with advanced T-stage oropharyngeal 

squamous cell carcinoma. Retrospective analysis of the pretreatment 18F-FDG PET-CT 

images of 70 patients was performed. The textural features of pretreatment 18F-FDG PET-

CT images were extracted from histogram analysis (SUV variance and SUV entropy), 

normalized gray-level cooccurrence matrix (uniformity, entropy, dissimilarity, contrast, 

homogeneity, inverse different moment, and correlation), and neighborhood gray-tone 

difference matrix (coarseness, contrast, busyness, complexity, and strength). Receiver-

operating-characteristic curves were used to identify the optimal cutoff values for the 

textural features. Multivariate Cox regression analysis showed that age, tumor TLG, and 

uniformity were independently associated with progression-free survival (PFS) and disease-

specific survival (DSS). TLG, uniformity, and HPV positivity were significantly associated 
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with overall survival (OS). A prognostic scoring system based on TLG and uniformity was 

derived. Uniformity extracted from the normalized gray-level co-occurrence matrix 

represented an independent prognostic predictor in patients with advanced T-stage 

oropharyngeal squamous cell carcinoma. A scoring system was developed and that might 

serve as a risk-stratification strategy for guiding therapy. In our study we also analyzed 

pretreatment 68Ga-PSMA scans of 70 patients. Two textural heterogeneity parameters 

entropy and homogeneity showed ability to predict outcome. However, the conventional 

PET parameters SUV mean and max did not show such ability. Tumor volume also had no 

effect on textural heterogeneity.  

 

Similarly in another study (Tixier et al., 2011) the aim was to propose and evaluate 

new parameters obtained by textural analysis of baseline PET scans for the prediction of 

therapy response in esophageal cancer. Forty-one patients with newly diagnosed 

esophageal cancer treated with combined radiochemotherapy were included in this study. 

All patients underwent pretreatment whole-body 18F-FDG PET. Different image-derived 

indices obtained from the pretreatment PET tumor images were considered. These 

included usual indices such as maximum SUV, peak SUV, and mean SUV and a total of 38 

features (such as entropy, size, and magnitude of local and global heterogeneous and 

homogeneous tumor regions) extracted from the 5 different textures considered. The 

capacity of each parameter to classify patients with respect to response to therapy was 

assessed using the Kruskal-Wallis test (P < 0.05). Specificity and sensitivity (including 95% 

confidence intervals) for each of the studied parameters were derived using receiver-

operating-characteristic curves. Relationships between pairs of voxels, characterizing local 

tumor metabolic non uniformities, were able to significantly differentiate all 3 patient groups 

(P < 0.0006). Regional measures of tumor characteristics, such as size of non-uniform 

metabolic regions and corresponding intensity non-uniformities within these regions, were 

also significant factors for prediction of response to therapy (P = 0.0002). Receiver-

operating-characteristic curve analysis showed that tumor textural analysis can provide 

non-responder, partial-responder, and complete-responder patient identification with higher 

sensitivity (76%-92%) than any SUV measurement. Textural features of tumor metabolic 
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distribution extracted from baseline 18F-FDG PET images allow for the best stratification of 

esophageal carcinoma patients in the context of therapy-response prediction. In our study 

the combined sensitivity of entropy and homogeneity for predicting outcome was 57.8% 

and the combined specificity was 87.7%. 

  

  It is interesting to note that in our results entropy showed a directly proportional 

correlation with change in pre and post therapy PSA levels while homogeneity showed an 

inverse relationship. In other words it can be inferred that more heterogeneous the tumor 

was, the better it responded to the PSMA therapy. As higher entropy is a measure of 

greater heterogeneity of the tumor. The patients which were labeled as responders owing 

to decrease in post PSMA therapy PSA levels showed a higher entropy in baseline scan. 

Similarly, the responders showed lower homogeneity in the baseline scan. Although we did 

define the response to therapy by PSA levels and did not correlate the textural features with 

patient outcomes, we have shown in previous studies, that a reduction of PSA after therapy 

with Lu-177 PSMA is a prognostic factor for overall survival (Ahmadzadehfar et al., 2016; 

Ahmadzadehfar et al., 2017). 

 

 In the study by Pyka T et.al. (Pyka et al., 2015), they evaluated the predictive value 

of textural heterogeneity parameters in FET-PET for recurrence and prognosis in non-small 

cell lung carcinoma (NSCLC) patients receiving primary stereotactic radiation therapy 

(SBRT). 45 patients with early stage NSCLC (T1 or T2 tumor, no lymph node or distant 

metastases) were included in this retrospective study and followed over a median of 

21.4 months (range 3.1–71.1). Pre-treatment FDG-PET/CT scans were obtained from all 

patients. SUV and volume-based analysis as well as extraction of textural features based 

on neighborhood gray-tone difference matrices (NGTDM) and gray-level co-occurence 

matrices (GLCM) were performed using InterView Fusion™ (Mediso Inc., Budapest, 

Hungary). ROC revealed a significant correlation of several textural parameters with local 

recurrence with an AUC value for entropy of 0.872. While there was also a significant 

correlation of local recurrence with tumor size in the overall cohort, only texture was 

predictive when examining T1 (tumor diameter < = 3 cm) and T2 (>3 cm) subgroups. In 
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univariate survival analysis, both heterogeneity and tumor size were predictive for disease-

specific survival, but only texture determined by entropy was determined as an 

independent factor in multivariate analysis (hazard ratio 7.48, p = .016). Overall survival 

was not significantly correlated to any examined parameter, most likely due to the high 

comorbidity in our cohort. This study showed that entropy has predictive potential for local 

recurrence with an AUC of 0.872. The study also showed that higher value of entropy was 

linked to poor outcome. In our study entropy was also a predictor for outcome with an AUC 

of 0.695 however, higher entropy showed better outcome for PSMA therapy. Similarly, 

another study (Soussan et al., 2014) discussed whether tumor heterogeneity measured 

using texture analysis in FDG-PET images is correlated with pathological prognostic 

factors in invasive breast cancer. Fifty-four patients with locally advanced breast cancer 

who had an initial FDG-PET were retrospectively included. In addition to SUVmax, three 

robust textural indices extracted from 3D matrices: High-Gray-level Run Emphasis 

(HGRE), Entropy and Homogeneity were studied. Univariate and multivariate logistic 

regression was used to identify PET parameters associated with poor prognosis 

pathological factors: hormone receptor negativity, presence of HER-2 and triple negative 

phenotype. Receiver operating characteristic (ROC) curves and the (AUC) analysis, and 

reclassification measures, were performed in order to evaluate the performance of 

combining texture analysis and SUVmax for characterizing breast tumors. Results showed 

that triple negative breast cancer (TNBC) exhibited higher SUVmax, lower Homogeneity 

non-TNBC. Tumor heterogeneity measured on FDG-PET was higher in invasive breast 

cancer with poor prognosis pathological factors. Texture analysis might be used, in 

addition to SUVmax, as a new tool to assess invasive breast cancer aggressiveness. In 

this study lower homogeneity was associated with poor outcome of breast cancer patients. 

However in our study lower homogeneity (AUC 0.683) was associated with better outcome.  

 

 An interesting question which arises here is whether a more heterogeneous tumor 

can respond better to the treatment? In many previous studies involving textural 

heterogeneity it was proven otherwise. Increased textural heterogeneity has already been 

linked with poor outcome. On the contrary, our study points in the opposite direction. One of 
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the reasons for this behavior could be that this phenomenon can possibly be highly tumor 

and therapy specific. PSMA shows significant over expression in metastatic, poorly 

differentiated and therapy refractory carcinomas. Treatment refractory tumors can have the 

presence of multiple clones resulting in formation of complex systems and contributing 

towards tumor heterogeneity (Ahmadzadehfar et al., 2016). Patients included in our study 

group had already metastatic disease which was treatment refractory. Therefore, we can 

assume that there was a significant PSMA overexpression in tumors of patients included in 

our study. More heterogeneous a tumor is, more PSMA expression it shows thereby 

increasing the uptake of PSMA bound ligands and thus responding better to therapy. In a 

very interesting study by Jeffrey West and Paul Newton (West and Newton, 2017) about 

Optimizing chemo-scheduling based on tumor growth rates discussed ways to optimize 

chemotherapeutic scheduling using a Moran process evolutionary game-theory model of 

tumor growth that incorporates more general dynamical and evolutionary features of tumor 

cell kinetics.  

 

 

ill. 13: The relationship between tumor cell reduction (TCR) and entropy (H) is shown for a 
single cycle of chemotherapy (a), 8 cycles (b), and 16 cycles (c). The low slope value in (a) 

indicates negligible advantage of high entropy strategies after only a single cycle. After 
many cycles, the advantage of high entropy strategies is apparent (b,c). 
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Using this model, and employing the quantitative notion of Shannon entropy they found out 

that which assigns high values to low-dose metronomic (LDM) therapies, and low values to 

maximum tolerated dose (MTD) therapies, we show that low-dose metronomic strategies 

can outperform maximum tolerated dose strategies, particularly for faster growing tumors. It 

proves the fact that over multiple cycles, higher entropy strategies have a bigger impact on 

faster growing tumors than on slower growing tumors. 

 

Our study showed as well that more heterogeneous a tumor is in PSMA expression 

better it responses to PSMA therapy. Higher entropy and lower homogeneity proved to be 

good predictors for favorable outcome. This could be especially important for patients with 

hormone treatment refractory prostate cancers which have already undergone multiple 

therapies prior to PSMA therapy and the resulting poor differentiation results in increased 

heterogeneity in cancer cells. PSMA with its specific property of over expression in 

hormone refractory, poorly differentiated and metastatic cancers can hence show better 

therapy response in such cases. All the patients in our study which were candidates for 

PSMA therapy were labeled as refractory to hormone treatment and several had undergone 

some other treatment options before as well. As, PSMA serves as a target of targeted 

therapy with 177Lu-PSMA, its over expression might result in better uptake of 

radiopharmaceutical. So, in pre-therapy analysis the patients with lesions having higher 

entropy and intensity variation and less homogeneity proved to be better targets for therapy 

and responded more to treatment.   

 

 Hence, firstly this study showed the possibility of extracting vital data via the 

analysis of baseline scan only which can directly predict the outcome of patient. This finding 

can be of excessive importance in selecting the patients which can possibly respond better 

by altering the treatment regimen. Secondly, this study differentiates the textural 

parameters which can be used for gaining outcome data and also points out their 

correlation with the outcome. 
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In the third part of our research, we analyzed the capability of textural inhomogeneity 

markers on PET to predict therapy response and outcome in patients with hormone 

refractory prostate carcinoma. The markers analyzed were determined before, during, and 

after completion of three 177Lu-PSMA therapies. Regarding the predictive capability, three 

parameters entropy, homogeneity and intensity variation showed statistical significance in 

all stages of study. For personalized therapy it is very important if outcome can be 

predicted in the start of therapy. The earlier the outcome is predicted the more beneficial it 

is for the patient. In the pre-therapy analysis entropy had the highest AUC (0.72) and a 

sensitivity of 95%. In the mid-therapy analysis again entropy showed the highest AUC 

(0.67). However, it was less than that of pre-therapy analysis. The highest specificity was 

showed by homogeneity in both pre and mid-therapy analyses. In the post-therapy analysis 

homogeneity showed the highest AUC (0.755). The highest specificity was again showed 

by homogeneity while entropy showed maximum sensitivity.  We also showed that there 

was no correlation between lesion volume and any of the positive parameters throughout 

the course of study. Numerous studies have investigated the predictive value of textural 

heterogeneity parameters for assessment of therapy response.  

 

In a study Lapa C. et. Al.,(Lapa et al., 2015) investigated the potential of 

somatostatin receptor subtype II (SSTR)-PET to assess intraindividual tumor heterogeneity 

and thereby treatment response prior to peptide receptor radionuclide therapy (PRRT).12 

patients with progressive radioiodine-refractory differentiated or medullary thyroid cancer 

were enrolled. SSTR-PET was performed at baseline. Conventional PET parameters and 

heterogeneity parameters were analyzed regarding their potential to predict progression-

free (PFS, mean, 221 days) and overall survival (OS, mean, 450 days).In patient-based 

analysis, all conventional parameters failed to predict PFS. Several textural parameters 

showed a significant capability to assess PFS. Thereby, "Grey level non uniformity" had the 

highest area under the curve (AUC, 0.93) in Receiver operating characteristics analysis 

followed by "Contrast" (AUC, 0.89). In lesion-based analysis, only "Entropy" revealed 

potential to evaluate disease progression. OS could not be assessed by any parameter 

investigated. It was concluded that tumor heterogeneity seems to be a predictor of 
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response to PRRT in patients with iodine-refractory differentiated/advanced medullary 

thyroid cancer and outperforms conventional PET parameters like standardized uptake 

value. In another study by Bundschuh et. Al., (Bundschuh et al, 2014) investigated textural 

parameters for their predictive and prognostic capability in patients with rectal cancer using 

histopathology as the gold standard. In addition, a comparison to clinical outcome was 

performed. Twenty-seven patients with rectal cancer underwent 18F-FDG PET-CT before, 2 

weeks after the start, and 4 weeks after the completion of neoadjuvant chemoradiotherapy. 

In all PET-CT scans, conventional parameters (tumor volume, diameter, maximum and 

mean standardized uptake values, and total lesion glycolysis [TLG]) and textural 

parameters (coefficient of variation [COV], skewness, and kurtosis) were determined to 

assess tumor heterogeneity. The COV showed a statistically significant capability to assess 

histopathologic response early in therapy (sensitivity, 68%; specificity, 88%) and after 

therapy (79% and 88%, respectively). Thereby, the COV had a higher area under the curve 

in receiver-operating-characteristic analysis than did any analyzed conventional parameter 

for early and late response assessment. The COV showed a statistically significant 

capability to evaluate disease progression and to predict survival, although the latter was 

not statistically significant. In our study, the predictive value of parameters and the defining 

parameters were different from that in the studies mentioned above. The differences can be 

because of different tumor type and different therapeutic agents. However, the findings of 

our study correspond to the results of all the above mentioned studies in the aspect that in 

that tumor heterogeneity was a better parameter for prediction of therapy response than the 

conventional parameters SUVmax, SUVmean, and lesion size. 

 

In the study entropy was the parameter with highest p-value and thus potential for 

best predictive capability in pre-therapy analysis for identifying high risk patients and those 

for whom therapy will be effective. Similarly, for post-therapy analysis entropy had highest 

p-value for identifying patients with high risk for disease progression and death, followed by 

intensity variation and homogeneity. 
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The changes in textural heterogeneity showed a very interesting pattern throughout 

the course of study. For the pre-therapy analysis the lesions which showed greater entropy 

and intensity variation and lesser homogeneity showed better predictive potential. Meaning 

that the more heterogeneous a tumor was better response it was showing to therapy, as 

increased entropy and intensity variation are directly proportional to the heterogeneity of a 

tumor. This particular point has been discussed in detail in the previous section of 

discussion. However, in the analysis of post therapy scan (after three therapies) it was 

observed that the patients who had decreased tumor textural heterogeneity showed a 

survival potential than those who showed persistently high textural heterogeneity. So, after 

three therapies patients with lower entropy and intensity variation and higher homogeneity 

showed better outcome and potential for survival than those showing persistently higher 

entropy and intensity variation and lower homogeneity. It could show that during the course 

of treatment PSMA therapy effectively brought some changes to the texture of tumor which 

resulted in increased homogeneity to tumor texture. There is published data analyzing the 

effects of chemo or radiation therapy on tumors at molecular and genetic level. As also 

described in introduction the origin of textural heterogeneity in tumors can be traced to 

molecular and genetic level, hence they can be good depicters of changes brought along 

by therapy at these levels.  

 

A study (Zeng et al., 2011) showed interactions between various genes and 

radiotherapy and chemotherapy.  211 patients with pancreatic cancer were recruited in a 

population-based study. Sixty-four candidate genes associated with cancer survival or 

treatment response were selected from existing publications. The main effect of genetic 

variation and gene-specific treatment interactions on overall survival were examined by 

proportional hazards regression models. In a recent study (Bravatà et al.,2018) evidence 

was given of the substantial alterations in gene expression levels and pathways after 

ionizing radiation treatment in both immortalized and primary cell cultures. Overall, the 

ionizing radiation-induced gene expression profiles and pathways appear to be cell-line 

dependent. The data suggest that some specific gene and pathway signatures seem to be 

linked to hormone receptor status. These findings show that not only radiotherapy brought 
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changes into tumor behavior at molecular level but also that these changes were very 

specific for tumor type. Hence, tumors with increased PSMA expression can behave in an 

entirely different way than other tumoral cell lines. The lesions which were more 

heterogeneous before the start of therapy in our study responded better to treatment owing 

to specific characteristics of both tumor and tracer but during the course of treatment the 

therapy gradually changed the characteristics of tumor and hence the survival potential. 

These findings are in accordance with the results obtained through numerous studies 

mentioned before which conclude that increased textural heterogeneity is a poor predictor 

to treatment response and overall survival. 

 

These findings also suggest that every tumor has a very unique and individual 

behavior and textural parameters can not only help in predicting that behavior but also can 

determine the patient outcome and disease progression. Therefore, these parameters can 

be an important part of personalized therapy. These are very important findings to 

understand the subsequent effects of a therapy on tumoral behavior. Persistent 

heterogeneity after multiple therapies and thus poor outcome can lead to the inference that 

there might be some resistant clones not responding to therapy and thus can be labeled as 

non-responders. 

 

Our study provided some good data on the role of tumor textural heterogeneity in 

predicting treatment outcome, overall survival, selection criteria for patients and to 

differentiate between actual and pseudo progression (in the case of high grade gliomas). 

Textural parameters in these ways can provide us with useful clinical information. It can 

help in identifying non-responders to treatment and can also help in distinguishing the 

patients who can respond better to a specific therapy. Textural heterogeneity parameters 

can influence the decision making in therapy planning by providing better identification of 

responders. It can serve as a basis for personalized therapy. Personalized therapy is now 

gaining a lot of importance for increasing the efficacy of treatments and modifying therapy 

options in order to provide patients with more effective treatment options. Analysis of 
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textural heterogeneity parameters can help in achieving these goals and can directly affect 

the outcome of patient which can result in significant decrease in disease burden. 

 

This study had some limitations. First, the reproducibility of tumor heterogeneity as 

assessed by PSMA PET-CT has not been much explored yet. For the assessment of this 

robustness repeated analysis of PSMA PET-CT studies will have to be performed in a short 

interval of time. For FDG-PET-CT, such a study has been performed by Tixier et al. and 

demonstrated reproducibility of textural parameters comparable to the range of 

conventional SUV (Tixier et al., 2011). They found that several textural parameters showed 

reproducibility comparable to the range of conventional SUV. Therefore, these parameters 

can be applied for therapy response assessment at least with the same confidence as 

SUV. However, this result should be validated by further studies. The analysis of 

heterogeneity can also be limited by the size of the lesion. If the lesion becomes too small, 

the analysis of differences in radiotracer uptake within the lesion does not make sense. 

Investigating small structures, e.g. lymph node metastases, may challenge the value of 

textural parameters. In our study, the smallest lesion was 8.7 cm3, which is still about 62 

voxels. A second point that needs further investigation is the influence of reconstruction 

parameters on tissue heterogeneity. PET reconstruction algorithms require smoothing of 

the raw image data which could influence assessment of tumor textural heterogeneity. PET 

images assessed in this study were reconstructed using the standard protocols for clinical 

routine at our institution. For comparison of changes in tumor heterogeneity, all images 

were acquired and reconstructed with the same set of parameters. In a study (Yan et al., 

2015), it has been shown that the impact of reconstruction settings on texture parameters is 

unclear, especially relating to time-of-flight (TOF) and point-spread function (PSF) 

modeling. Their effects on 55 texture features (TF) and 6 features based on first-order 

statistics (FOS) were investigated. Standardized uptake value (SUV) measures were also 

evaluated as peak, maximum and mean SUV. The coefficient of variation (COV) of each 

feature across different reconstructions was calculated. Results showed that Peak SUV, 

mean SUV, 18 TFs and 1 FOS were the most robust (COV≤5%). The features which 

exhibited large variation such as skewness in FOS, cluster shade and zone percentage 
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should be used with caution. The entropy in FOS, difference entropy, inverse difference 

normalized, inverse difference moment normalized, low grey-level run emphasis, high grey-

level run emphasis and low grey-level zone emphasis are the most robust features. 

Similarly, in another study (Morita et al., 2016) the purpose was to examine the effects of 

different reconstruction algorithms on the degree of heterogeneity of FDG uptake as 

assessed by texture analysis. The heterogeneity of the 18F distribution was evaluated 

according to fourteen texture features on a SUV histogram, a co-occurrence matrix 

(NGLCM), and a neighborhood gray-tone difference matrix (NGTDM). This was obtained 

using different algorithms on a phantom. In the comparison between ordered-subsets 

expectation maximization (OSEM) and time-of-flight (TOF), thirteen features, including two 

SUV histogram features, seven NGLCM features and four NGTDM features showed similar 

patterns. On the other hand, in the comparison between OSEM and point-spread function 

PSF, six features, including one SUV histogram feature, one NGLCM feature and four 

NGTDM features showed similar patterns. In the comparison between PSF and PSF+TOF, 

thirteen features, including two SUV histogram features, seven NGLCM features and four 

NGTDM features showed similar patterns. TOF correction did not influence the evaluation 

of the heterogeneity on PET images, while PSF correction affected the evaluation of 

heterogeneity. In our studies we have used the textural parameters which are robust as 

analyzed by several algorithms. 

 

Furthermore, as another drawback of this study, metabolically active tumor volumes 

were delineated manually instead of using segmentation algorithms with fixed thresholds 

and might therefore be prone to interindividual differences. However, the appropriate 

segmentation method is still widely discussed; semiautomatic methods often fail depending 

on the tumor localization (Zaidi et al., 2012; Bundschuh et al., 2012). Therefore, we 

considered manual delineation to be optimal for our study especially as we included 

metastases varying in location as well as signal-to-background ratio. Additionally, Hatt and 

colleagues (Hatt et al., 2013) could demonstrate that the predictive value of textural 

parameters is not affected by partial volume effect and is relatively independent of the 

method used to delineate the tumor volumes to be analyzed.  
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5. Abstract 

Introduction: PET-CT is emerging to be the most efficient tool for tumor diagnosis and 

therapy monitoring. Some newer techniques like analysis of tumoral textural heterogeneity 

via PET are proving to be more effective than conventional PET parameters for diagnosis, 

patient selection and treatment planning. We carried out this study to analyze the role of 

textural heterogeneity parameters in improving the specificity of PET scans. The study was 

divided in three parts. In the first part, we explored the role of textural features in FET-PET 

for early detection of pseudoprogression in high grade gliomas as timely detection of 

pseudoprogression is crucial for the management of patients with HGG. In the second part, 

the objective was to assess the predictive ability of tumor textural heterogeneity parameters 

from baseline 68Ga-PSMA PET for patient selection prior to 177Lu-PSMA therapy. This could 

prove essential for response prediction and risk stratification of patients before the start of 

therapy resulting in better treatment outcome. Purpose of the third part of study was to 

investigate the role of tumor heterogeneity in pre and post therapy 68Ga-PSMA scans for 

early response prediction and estimation of over-all survival in patients with 177Lu-PSMA 

therapy. Materials and methods: For distinction between PsP and actual tumor progress 

fourteen patients with HGG and suspected of PsP underwent FET-PET. A set of 19 

conventional and textural FET-PET features were evaluated and subjected to unsupervised 

consensus clustering and cluster stability assessment. The nearest shrunken centroids 

method was applied to determine the most relevant features underlying each cluster. The 

final diagnosis of true progression vs. PsP was based on follow-up MRI using RANO 

criteria. In the second part of study, retrospective analysis of 70 patients with mCRPC was 

performed. Five PET based textural heterogeneity parameters (COV, entropy, 

homogeneity, contrast, size variation) were determined in baseline 68Ga-PSMA scan. 

Results obtained were then compared with clinical parameters including pre and post 

therapy PSA, alkaline phosphate, bone specific alkaline phosphate levels and ECOG 

criteria. Spearman correlation was used to determine statistical dependence among 

variables. ROC analysis was performed to estimate the optimal cutoff value and AUC. In 

the third part of study, retrospective analysis of 50 patients undergoing 177Lu-PSMA therapy 
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was performed. Pre-therapy, mid-therapy and post-therapy scans were used for analysis. In 

addition to conventional parameters, 5 PET based textural heterogeneity parameters were 

determined. ROC and Kaplan-Meier analyses were used for response assessment, time to 

progression and survival. Results: For differentiation of PsP, three robust clusters were 

identified. None of the patients with PsP fell into cluster 2, which was associated with high 

values for textural FET-PET markers. Three out of 4 patients with PsP were assigned to 

cluster 3 that was largely associated with low values of textural FET PET features. In 

comparison, tumor-to-normal ratio (TNRmax) at optimal cut-off 2.1 was less predictive of 

PsP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with 

cluster 3, p=0.04). Furthermore, patients in cluster 2 were associated with a comparably 

lower progression-free survival. In the second part of study, in bone lesions entropy showed 

a negative correlation (rs = -0.327, p = 0.006, AUC = 0.695) and homogeneity showed a 

positive correlation (rs = 0.315, p = 0.008, AUC = 0.683) with change in pre and post 

therapy PSA levels. Other parameters did not show statistically significant correlations. It 

suggested that the more heterogeneous the tumor was in PSMA expression the more 

responsive it was to PSMA therapy. For the third part of study, in bone lesions entropy, 

homogeneity and intensity variation (AUC 0.725, 0.679, 0.716 respectively) showed 

statistically significant ability to predict response prediction. Entropy showed highest 

statistically significant capability to evaluate disease progression and to predict survival. In 

pre-therapy analysis the lesions with higher textural heterogeneity showed better response 

to treatment, however after 3 therapies patients having lesions with persistently high 

textural heterogeneity showed poor prognosis and survival. Conclusions: Textural 

heterogeneity parameters helped in distinguishing PsP from actual progress thus plying an 

essential role in therapy planning and patient outcome. For 177Lu-PSMA therapy our study 

showed a potential for response prediction through one baseline Ga-68-PSMA scan only. It 

also predicted which patients could respond better to the therapy thus forming selection 

criteria for patients that can help in better treatment planning for individual patients. In 

analysis of pre and post therapy data for the third part of study, tumor heterogeneity 

analysis proved to be superior to the investigated conventional parameters, as an important 

predictive factor in determining the therapy response and overall survival of patients. 
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