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Introduction

This dissertation consists of three essays in the area of Microeconomic Theory. The
three chapters deal with information acquisition or disclosure and asymmetries in pri-
vate information in various strategic environments. In Chapter 1, in a one-object auc-
tion, I analyze how the auction format influences what bidders decide to learn about.
In Chapter 2, I analyze the implications of an asymmetry in budget constraints on
equilibrium bidding behavior in a first price auction. In Chapter 3, which is joint work
with Saskia Fuchs, we analyze to what extent a designer can persuade an informed
committee in her favor by strategically disclosing information.

In Chapter 1, I analyze how the choice of an auction formate influences learning
about the object for sale. In particular, before the start of the auction bidders can choose
about which component or attribute of the object for sale they acquire information.
Formally, the valuation of bidders for an object consists of a common value component
(which matters to all bidders) and a private value component (which is relevant only
to individual bidders). Bidders select about which of these two components they want
to acquire noisy information. Learning about a private component yields independent
estimates, whereas learning about a common component leads to correlated information
between bidders. As all bidders share the common component, only learning about the
private component is welfare-enhancing as only the private component matters for the
efficient allocation of the object. Acquiring information about the common component
reduces efficiency, as it comes at the opportunity costs of not learning about the private
component.

I show that in a second price auction, information selection in equilibrium is unique.
Bidders only learn about their private component, so an independent private value
framework arises endogenously. If this were not the case, a bidder could guarantee
himself the same expected gain and a strictly lower payment by decreasing correlation
in private information. In an all-pay auction, bidders also prefer information about
private components. In a first price auction, increasing correlation strictly elevates the
payoff for a bidder under certain conditions.

In Chapter 2, I analyze a first price auction in which bidders have a two-dimensional
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type: a valuation for the object and a budget constraint. The budgets of the two bidders
are private and drawn from different distributions. I propose a new solution technique
to pin down a closed-form solution for equilibrium surplus and bidding distributions.
This allows me to answer what effect asymmetric budgets have on the equilibrium in
contrast to asymmetric valuations, and how bidding aggression reacts to this asymme-
try. Furthermore, I analyze whether a seller has any incentives to disclose information
about the identity and hence the budget constraints of the bidders before the start of
the auction, e.g. by publishing a participants registry. Introducing asymmetry in the
budget dimension and not on the valuation dimension and finding a closed-form for
the equilibrium is the main contribution to the existing literature (Maskin and Riley,
2000).

My model solves a first price auction for bidders with asymmetrically distributed
budget constraints in closed form. I provide a closed-form expression for the set of
equilibria in this framework, without imposing any stochastic order on the budget
distributions. Expected utility and bidding distributions are unique in equilibrium.
If bidders are sufficiently symmetric, the degree of asymmetry in the budgets has no
influence on strategies: bidding the entire budget is the unique equilibrium strategy. If
asymmetry gets sufficiently severe, mass points in the equilibrium strategies arise. Pure
strategy weakly monotonic bidding functions establish existence of such equilibria. I
show that a weaker bidder bids more aggressively than his stronger opponent. In
contrast to standard results with symmetric budget distributions, a second price auction
can yield strictly higher revenue than a first price auction under asymmetric budget
constraints.

Chapter 3 asks how to persuade decision makers or protect them against persuasion
if they are privately informed. In particular, how can a group of voters be swayed to
vote for the preferred outcome of a designer, if the designer can commit to disclosing
payoff-relevant information about the quality of the outcome. This paper connects
to the recent literature on Bayesian Persuasion (Kamenica and Gentzkow, 2011) and
introduces a biased sender into a voting framework in which informed voters vote strate-
gically (Feddersen and Pesendorfer, 1998).

Formally, a biased sender tries to persuade a committee of three members to vote
for a proposal by providing public information about its quality. Each voter has some
private information about the proposal’s quality. We characterize the sender-optimal
disclosure policy under unanimity rule when the sender can versus cannot ask voters
for a report about their private information. We find that the sender can only profit
from asking agents about their private signals when the private information is suffi-
ciently accurate. For all smaller accuracy levels, a sender who cannot elicit the private
information is equally well off.
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Chapter 1

Knowing What Matters To Others:
Information Selection in Auctions

1. Introduction

Bidding preparation for auctions usually involves evaluating multiple characteristics.
This paper delves into which characteristics bidders should gather information about
and how such decision is influenced by the auction format in cases wherein people
cannot take into account all existing information.

These issues are relevant to, for example, corporate takeovers, in which acquiring
firms have access to a variety of information about a target company. This information
encompasses the R&D activities and the book value. A reasonable assumption is that
firms cannot perfectly process or uncover all existing information, and are thus driven
to select elements to focus on before bidding takes place. Should an acquiring firm
conduct research on aspects that are specific to them, such as their R&D overlap? Or
should they focus on factors that also matter to other acquiring firms, such as the book
value of a target?

Another example are resource rights auctions for oil fields or timber. Each bidder
derives the same monetary value from an unknown volume of oil or timber on a site, and
this value stems from the market price. Bidders may incur different costs in extracting
the resources from a site because of the use of different drilling or logging technologies
and variances in experience levels. I inquire into whether a bidder prefers to perform
an exploratory drilling to learn about oil volume (i.e., the common component) or to
learn about the costs of extracting the resource through estimations of the drilling costs
specific to him (i.e., the private component).

Buying real estate is yet another case that involves evaluating a variety of attributes
prior to bidding. These attributes include the costs of maintaining a property, local
taxes, mortgage rates, the convenience of travel to work, and personal preference for a
property. Do bidders prefer to acquire information on the qualities of a property that
are pertinent to all bidders, such as maintenance costs? Or would they rather examine
characteristics that are uniquely related to them, such as the convenience of traveling
to work from a property.

The contribution of this paper is to investigate the incentives provided by a variety
of auction formats regarding information selection. I demonstrate that bidders prefer
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to learn about their private components in the second price auction (SPA) which is
commonly used in the examples1 described above. I also analyze incentives to selecting
information in a first price auction (FPA) and an all-pay auction.2

The novelty of this paper lies in its illumination of which random variables bidders
seek to learn (information selection) instead of what level of accuracy of information
they favor about a given real-valued random variable (information acquisition). I isolate
incentives for learning about the signal of an opponent: Holding the level of accuracy
constant, do bidders prefer their private information to be dependent (information
about a common component) or independent (information about a private component)?

The independent private values setting (IPV) and the interdependent values setting
(IntV) lead to different theoretical predictions and vary significantly in their implica-
tions for auction design and policy.3 The literature on auctions usually assumes either
IPV or IntV setting at the outset of the analysis. In addition, identifying the valuation
setting on the basis of data is often challenging if not impossible.4 By restricting the
ability of bidders to learn about more than one attribute, I study which value setting
arises endogenously.

For a brief outline of the model, consider two bidders who compete for one indivis-
ible object in a SPA. They share the same common component (e.g., the book value
of a firm) and have independent private value components (e.g., match-specific R&D
overlap). The valuation of each bidder is the sum of two value components about
which they are uninformed. Bidders select between learning about a common or a pri-
vate component. Information selection is simultaneous and covert. Considering both
components is infeasible.5

Learning about the common or the private component has equal accuracy. In a single
agent problem, an agent would be indifferent between learning about either component,
as the two experiments are equally informative about the total value of the object. Yet,
in the strategic context of an auction information about the object plays a dual role.
Beyond containing information about the object’s worth, it is also informative about
the signal of the opponent and his bid. Moreover, a rational bidder conditions his
estimate of the object not only on his own information, but also on what he learns from
the event of winning. Being the highest bidder when the opponent learns about the
common component implies that the opponent has a low signal realization. This is bad
news for the expected value of the object. In equilibrium, a bidder shades down his bid

1See Porter (1995) for a survey of oil and gas lease auctions and Hendricks and Porter (2014) for an
analysis of the auction mechanisms in selling resource rights in the U.S. See Gentry and Stroup (2017)
for an analysis of auctions and negotiation procedures commonly used in mergers and acquisition, and
Chow and Ooi (2014) for real estate land auctions.

2As I concentrate on the case of two bidders, my results also hold for the open English auction
(equivalent to the SPA) and the Dutch auction (equivalent to the FPA) (Milgrom and Weber, 1982).

3In the IPV setup, each bidder’s private information matters only to him; in the IntV setup, a
bidder’s estimate of the object depends on the private information of other bidders.

4See Laffont and Vuong (1996) for a general discussion of identifying the value setting in the FPA,
and Athey and Levin (2001) for timber auctions.

5Learning about a component might involve some actuarial calculations or an experiment, e.g.,
exploratory drilling. I analyze a scenario where such an experiment is non-divisible, and analyzing
both components half-way does not produce meaningful information: drilling half a hole, or calculating
only the first half of a cost-benefit analysis is not useful.
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due to this so-called winner’s curse.
In my model, the extent of the winner’s curse and the interdependence between

bidders’ information are endogenous and depend on which value component bidders
learn about. The signals of bidders become more affiliated if they learn about the
common component. The winner’s curse exacerbates. If other bidders learn only about
their private component, their information bears no relevance for other bidders and
there is no winner’s curse. Two standard valuation settings are nested in my model.
An IPV setting arises if both bidders learn only about their private components. A
pure common value setting emerges if both bidders learn only about the same common
component.

The result for the SPA with two bidders is that in any symmetric equilibrium,
information selection is unique: There is only learning about the private component,
and an IPV setting arises endogenously. The SPA induces the ex-ante efficient outcome.
No resources are wasted by learning about the common component which is irrelevant
for efficiency, and the object is allocated to the bidder with the highest estimate of his
private component. This result holds in a general class of utility functions.

In the SPA, a bidder could always find a strictly profitable deviation by decreasing
interdependence in private signals. The approach is to find a deviation strategy that
keeps the expected gain and winning probability constant, while strictly decreasing
the expected payment. For a sketch of the argument, consider a candidate equilib-
rium in which both bidders learn only about the common component and have the
highest degree of interdependence in private signals. Then, the following deviation is
strictly profitable for a bidder: Learn about the private component, but bid as if it were
a signal about the common component. This strategy eliminates interdependence in
private signals but employs the same bidding function as the candidate equilibrium for
tractability.

The expected payment conditional on winning from such a deviation strategy is
strictly lower. The higher the interdependence, the higher the distribution of the second
order statistic of the opponent’s signal and his bid. By decreasing interdependence, the
distribution of the second order statistic puts more weight on lower bids, and expected
payment strictly decreases.

The expected gain from this deviation is the same as in the candidate equilibrium.
For every realization of the total value of the object, the probability of placing the high-
est bid is the same with the candidate equilibrium and the deviation strategy. However,
given a total value for the object, winning probability for different compositions of the
two components changes with deviating. In the candidate equilibrium, as both bidders
learn about the common component, they win with equal probability for each realiza-
tion of it. In the deviation strategy, a deviating bidder is more likely to win in states
that involve a high private and a low common component, and vice versa. The exis-
tence of a deviation strategy that leads to the same expected gain for a strictly lower
payment pushes the incentives of bidders in the SPA towards independence, and yields
a unique information choice in equilibrium of the SPA.

In a FPA, incentives to select information are opposite to the SPA. As a winning
bidder pays his own bid, he does not want to "leave money on the table" by overbidding
his opponent by too much. Having a better estimate of the opponent’s bid can reduce
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the expected payment conditional on a win as it reduces the first order statistic of
winning bids. Therefore, increasing the dependence of the own signal with the signal of
the opponent induces a lower payment if both follow the same bidding function. I show
that the ex-ante efficient equilibrium in which bidders learn only about their private
component is not robust: After introducing a slight degree of correlation between the
common and the private component, bidders prefer more interdependence by learning
about the common component.

In addition, I consider information selection in all-pay auctions. For the general case
of many bidders, bidders learn only about the private component and an IPV setting
arises endogenously. This is because by deviating to the private component, bidders
can always guarantee themselves a weakly higher winning probability at every total
value of the object, for the same expected payment.

Section 2 describes the related literature. Section 4 introduces the model and the
informational framework. The analysis in Section 4 shows the consequences of infor-
mation selection on the joint signal distributions (Section 4.1) and on the value of the
object (Section 4.2). I combine those observations in Section 5 to solve for an equilib-
rium of the SPA. Then, I show that the results generalize to a broader class of utility
functions in Section 6.1, and discuss the effect of more than two bidders in Section 6.2.
Finally, I analyze the FPA in Section 7.1, and the all-pay auction in Section 7.2.

2. Related Literature

In the classic literature in Auction Theory, the distribution of private information of
bidders is exogenous and does not depend of the choice of the auction format.6 In their
seminal work, Milgrom and Weber (1982) introduce a theory of affiliation in signals, and
derive the equilibrium for the SPA, the FPA and English auction. The all-pay auction
for affiliated signals has been analyzed by Krishna and Morgan (1997) and recently by
Chi et al. (2017).

The literature on information acquisition in auctions7 endogenizes the private in-
formation of bidders, by asking how much costly information they seek to acquire.8
Bidders choose the informativeness of their signal about a single-dimensional payoff rel-
evant variable, usually for a fee that increases in the amount of information it contains.9

6For an IPV setup, see Vickrey (1961) and Riley and Samuelson (1981). For a common value model,
see Wilson (1969) and Milgrom (1981), and Milgrom and Weber (1982) for a general interdependent
setup with affiliated signals.

7Endogenous information acquisition has been analyzed in other areas of Economics. E.g., see Berge-
mann and Välimäki (2002), Crémer et al. (2009), Shi (2012) and Bikhchandani and Obara (2017) in
optimal and efficient mechanism design, Martinelli (2006) and Gerardi and Yariv (2007) in committees,
Crémer and Khalil (1992) and Szalay (2009) in principal-agent-settings, and Rösler and Szentes (2017)
in bilateral trade.

8In the context of auctions, information acquisition has been modeled in an IPV model (see e.g.
Hausch and Li, 1991; Compte and Jehiel, 2007; Gretschko and Wambach, 2014), and in an IntV
framework (see e.g. Persico, 2000; Bergemann et al., 2009).

9Informativeness criteria include Blackwell sufficiency (Blackwell, 1951), accuracy (Persico, 2000;
Lehmann, 1988), dispersion measures (Ganuza and Penalva, 2010), or deciding whether to learn per-
fectly or nothing about a payoff relevant variable (e.g. Bergemann et al., 2009). Better informativeness
usually comes at higher costs.
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Persico (2000) considers costly information acquisition in an interdependent value
model in the FPA and the SPA. Before bidding, bidders choose the accuracy of their
signal about a one-dimensional random variable. Accuracy is a statistical order on
the informativeness of an experiment by Lehmann (1988).10 In the model of Persico
(2000), learning with higher accuracy has two effects: first, the information about the
own valuation becomes more precise; second, bidders obtain a better estimate of the
signals of other bidders. Therefore, a higher accuracy inextricably links these two
effects. Persico (2000) shows that incentives for information acquisition are stronger in
the FPA than in the SPA.

In contrast to Persico (2000), my model fixes the effect of informativeness about the
object, and concentrates on choosing more or less correlation with the opponent. In my
model, there are two signals available about two payoff-relevant variables. Accuracy of
information is fixed and equal in each available signal. In contrast to Persico (2000),
bidders in my model have to select the variable about which they prefer to learn. The
results in Persico (2000) are of a relative nature: given a level of accuracy acquired in
the SPA, the level of accuracy in a FPA is higher.11 In contrast, my framework provides
an absolute prediction: about which component do bidders learn.

In Bergemann et al. (2009), the value of an object is a weighted sum of everybody’s
payoff type. Information acquisition is binary: either learn perfectly about the own
payoff-type, or learn nothing. Note that in this formulation, learning cannot introduce
any dependence between the signal of bidders, as all payoff types are distributed inde-
pendently (although they matter to other bidders). With positive interdependencies in
payoff types, Bergemann et al. (2009) show that in a generalized Vickrey-Clarke-Groves
mechanism12 bidders acquire more information than would have been socially efficient.

In the IPV setup of Hausch and Li (1991), the SPA and FPA induce equal incentives
to acquire information about the one-dimensional value. Stegeman (1996), showing that
the incentives to acquire information in an IPV setting coincides in FPA and SPA, and
with the incentives of a planner, making information acquisition efficient.

The above literature on information acquisition in auctions considers covert informa-
tion acquisition. That is, bidders do not know how much information their competitors
acquire before the auction. Another strand of the literature also analyzes overt in-
formation acquisition, where bidders observe how much information others acquired
before bidding. Hausch and Li (1991) show that the SPA and the FPA induce different
incentives to acquire information when information acquisition is overt, and revenue
equivalence fails. Compte and Jehiel (2007) show in an IPV setup that an ascending
dynamic auction induces more overt information acquisition and higher revenues than
a sealed-bid auction. Hernando-Veciana (2009) compares the incentives to overtly ac-
quire information in the English auction and the SPA, when bidders can learn about
a common component or about a private component. In his model, it is exogenous
which component information acquisition is about, while in my model, I endogenize the

10The concept of accuracy of of a statistical experiment is established by the name of ‘effectiveness’
by Lehmann (1988) in the statistical literature.

11This holds under appropriate conditions on the marginal costs for increasing accuracy.
12See Dasgupta and Maskin (2000) for a generalized Vickrey-Clarke-Groves mechanism in the context

of auctions, and Jehiel and Moldovanu (2001) for a general mechanism design setting with externalities
in information and allocations.
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decision of information selection between the two components.
My paper also relates to the literature on information choice in games with strategic

complementarities or substitutes, such as Cournot competition, beauty contests and in-
vestment games. Hellwig and Veldkamp (2009) ask whether bidders want to coordinate
on the same or on different information channels about the same one-dimensional state
of the world in a beauty contest game. They show that the choice of information relates
to the complementarity of actions in their model: if actions are strategic complements,
agents want to know what others know. If actions are strategic substitutes, agents want
different information channels.

In a beauty contest game in Myatt and Wallace (2012), agents to choose between
multiple information channels about a common state variable. Agents choose how
clearly (endogenous noise) to listen to which of many available signals, that vary in
accuracy (exogenous noise).

Gendron-Saulnier and Gordon (2017) fix the informativeness of signals, similar to
my approach. In their paper, agents have the choice between multiple information
channels, that all have the same informativeness: they are all Blackwell sufficient for
each other. Information channels vary in the level of dependence they induce between
the signals of agents. Actions exhibit strategic complementarities, as in the framework
of Hellwig and Veldkamp (2009) and Myatt and Wallace (2012).

There are two major differences between my model and the three papers Hellwig
and Veldkamp (2009), Myatt and Wallace (2012) and Gendron-Saulnier and Gordon
(2017):13 bidding functions do not exhibit strategic complementarities in the auction
formats in my model (see e.g. Athey, 2002) which leads to a fundamentally different
strategic problem. Further, in the above models, all channels contain information about
the same single-dimensional payoff-relevant random variable (the one-dimensional state
of the world). In contrast, in my model bidders choose about which component of the
multidimensional state of the world to learn. Learning about their private compo-
nent leaves them with an independent signal realization, irrespective of the information
acquired by their opponent.

3. Model

3.1 Payoffs

There are two risk-neutral bidders, indexed by i ∈ {1, 2} who compete for one indivisible
object. The reservation value of the auctioneer and the outside options of the bidders
are zero.

The valuation for the object of bidder i, denoted by Vi ∈ R+, depends on two
attributes: a common value component S distributed on [0, 1], that is equal for all
bidders, and a private value component Ti distributed on [0, 1], the idiosyncratic taste
parameter of bidder i.

The the common value component and the private value components {S, T1, T2}

13See also Yang (2015) for flexible information acquisition in investment games with strategic com-
plementarities and Denti (2017) for an unrestricted information acquisition technology in potential
games.
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are drawn mutually independent and identically, each with distribution function H(·),
which admits a density function h(·).14 That is, for all i ∈ {1, 2}, m ∈ [0, 1], it holds
that H(m) = Pr(S ≤ m) = Pr(Ti ≤ m). The prior expected value of the components
coincide: E [S] = E [Ti].

The utility function for each bidder i is

Vi = S + Ti.

Note that the private component of the other agent j 6= i has no impact on the
valuation of bidder i. In Section 6.1, I extend the class of admissible utility functions.

Fix a total value realization vi. Any si ∈ [max{vi−1, 0},min{vi, 1}] and Ti = vi− s
is a feasible15 combination of the components for this particular vi. As the joint events
(S = s, Vi = vi) and (S = s, Ti = vi − s) are the same, the density function of the
random variable Vi, the overall valuation of bidder i, is

hV (vi) :=
∫ min{vi,1}

max{vi−1,0}
h(s)h(vi − s)ds.

3.2 Information Structure

Neither the auctioneer, nor the bidders know the realization of any of the value com-
ponents. Instead, bidders engage in information gathering about their valuations. The
information choice of bidder i is one of information selection: about which component
should he learn.

Bidders choose one experimentXi which can be one of two random variables: bidders
can learn either a random variableXT

i that is informative about their private component
Ti, or a random variable XS

i that is informative about the common component S. Each
signal Xi ∈ {XT

i , X
S
i } is uninformative about the other attribute. Both signals XT

i and
XS
i consist of the same compact support [0, 1] and a marginal probability distribution,

conditional on the realization of its attribute {S, Ti}. The marginal distribution of the
random variable XT

i or XS
i of bidder i has a cumulative distribution function F T (·|r)

or F S(·|r) for r ∈ [0, 1], conditional on the state Ti = r or S = r.

Assumption
For K ∈ {S, T}, for all r ∈ [0, 1], the distribution FK(xi|r) admits a density fK(xi|r),
such that:

(A1) ∀xi ∈ [0, 1] : fS(xi|r) = fT (xi|r) =: f(xi|r).

(A2) ∀x′i > xi, fK(x′i|r)
fK(xi|r) strictly increasing in r.

Assumption A1 implies that an experiment has the same conditional distribution
function whether applied to S or Ti. As all components are distributed identically,

14The assumption of full support and existence of a density function h(·) is for clarity of the presen-
tation. Results hold if there are only two realizations in the support.

15The interval has to account for the fact that each component is distributed with support [0, 1].
For example, if vi = 1.3, the common component needs to be at least si = max{vi − 1, 0} = 0.3 for
value vi to realize.
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Assumption A1 implies the same informativeness on each available signal.16 For clarity,
I sometimes use the superscripts in the exposition to clarify about which component
the signal is drawn.

The signals XS
i and XT

i satisfy a strong monotone likelihood ratio property (MLRP)
in Assumption A2 which broadly speaking states that higher signal realizations are more
indicative of higher states. Moreover, I assume that f(·|r) is continuously differentiable
in xi for all r.

Bidders choose the probability ρi of applying the signal on the common variable S.
The information selection variable ρi ∈ [0, 1] is a mixed strategy:17 With probability
ρi, bidder i performs an experiment about S. With probability 1 − ρi, bidder i learns
about attribute Ti. Let ρ = {ρ1, ρ2} be the vector of information selection variables.

Due to the following assumptions, the private signals of bidders can only be inter-
dependent via learning about the common variable S:

Assumption (CI)
XS
i |= XS

j | S.

Assumption (IN)
XT
i |= XT

j , and XT
i |= XS

j .

Assumption CI is a conditional independence assumption of XS
i and XS

j on S.
Together with Assumption A2 (stating that XS

i and S are affiliated) this implies that
the random variables XS

1 and XS
2 are affiliated.18 According to Assumption IN, if one

bidder learns about his private component by observing XT
i , his signal is independent

from both signal XS
j and XT

j of his opponent j.
Let F S(x) := Pr(XS

i ≤ x) =
∫ 1

0 F
S(x|s)h(s)ds be the unconditional distribution

function of a bidders’ private signal when he learns about component S, and let fS(x) be
the corresponding density. Analogously, let F T (x) := Pr(XT

i ≤ x) =
∫ 1

0 F
T (x|t)h(t)dt

be the distribution when applying the experiment on Ti, and fT (x) the corresponding
density. Note that F S(x) = F T (x), due to the symmetry of signals and components.

After bidder i chooses what to learn about, he observes signal Xi with the following
unconditional distribution function:

F (x) := Pr(Xi ≤ x|ρi) = (1− ρi)F T (x) + ρiF
S(x).

The unconditional distribution F (x) is not a function of ρi, as applying the signal
to both components results in the same distribution of signals due to F S(x) = F T (x).

Observation 1. The unconditional distribution function of a signal about each compo-
nent coincides for any information selection variable ρi: ∀x ∈ [0, 1], F T (x) = F S(x) =
F (x).

16I abstract away from bidders choosing to learn about a component only because it provides more
information. Instead, the focus of this paper is to find what dependence bidders prefer between their
signal given the same informativeness.

17A bidder always observes which experiment was performed for any randomization.
18For a formal definition of affiliation, see Appendix A.1, Definition 6. The affiliation between XS

i

and XS
j follows from combining CI with MLRP.
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The next binary example is useful to provide intuition in the following analysis.

Example 1. Let s ∈ {0, 1} and ti ∈ {0, 1}, each with equal probability 1
2 . Thus,

Pr(vi = 0) = Pr(vi = 2) = 1
4 , and Pr(vi = 1) = 1

2 .
For K ∈ {S, T} and xi ∈ [0, 1], the signal XK

i has conditional density fK(xi|0) =
2 − 2xi and fK(xi|1) = 2xi. The unconditional signal distribution is F (xi) = xi and
the density is f(xi) = 1.

There are no costs associated with the information selection stage beyond the op-
portunity costs of not learning about the other value component. The timing is as
follows.

1. An auction format is announced.

2. Nature draws S, T1, T2.

3. Bidders simultaneously and privately select their information ρ := {ρ1, ρ2}.

4. Bidders privately observe their signal XS
i or XT

i .

5. The auction takes place.

Information selection is covert: bidders do not observe which channel others chose
to learn about, but make inference about it in equilibrium. Moreover, bidders select
their information after the auction format is announced. This enables an analysis of
the incentives of various auctions on information selection.

4. Information Selection

4.1 Endogenous Correlation

With probability (1 − ρ1ρ2) at least one bidder observes a signal about his private
attribute Ti and signals are independent by Assumption IN. With the remaining proba-
bility ρ1ρ2, bidders observe correlated signals about the same realization of the common
attribute S. In this case, private signals XS

i and XS
j are independent conditional on

the common value realization s by Assumption CI.
Bidder i forms a belief about the distribution of his opponent’s signal, based on the

source of his own signal, XT
i or XS

i , and its realization xi ∈ [0, 1]. Bidder i does not
know whether his opponent j observed a signal about S or Tj, but draws inference if
he expects his opponent to set ρj > 0, as the following cumulative distributions show.

Let GT (xj|xi, ρj) := Pr(Xj ≤ xj|XT
i = xi, ρj) be the conditional cumulative distri-

bution function of the ‘source-free’ signal realization Xj, from the perspective of bidder
i with a signal realization XT

i = xi. The distribution function GT does not depend
on ρi, as it already conditions on bidder i having observed a signal XT

i about Ti. If
a bidder learns XT

i , his signals contains no information about the other bidder due to
Assumption IN. Therefore, using Observation 1, for all xi ∈ [0, 1] and any information
selection ρj ∈ [0, 1] of the opponent,

GT (xj|xi, ρj) = F (xj).

11



If bidder i learns about his common component via XS
i , his signal realization might

bear information about his opponent’s signal realization. Let GS(xj|xi, ρj) := Pr(Xj ≤
xj|XS

i = xi, ρj) be the distribution function of the signal realization of bidder j 6= i,
conditional on XS

i = xi.

GS(xj|xi, ρj) =(1− ρj)F (xj) + ρj

∫ 1

0

fS(xi|s)F S(xj|s)
f(xi)

h(s)ds.

The second summand accounts for the correlation in private information if the op-
ponent j also learns about the common component (with probability ρj). Then, signals
are independent conditional on S by Assumption CI.

4.2 Endogenous Value Setting

The degree of the winner’s curse is endogenous in my model. If the opponent of bidder
i only learns about his private component Tj, his information is irrelevant for bidder i.
Winning at any bid does not provide any further information for bidder i beyond his
private signal realization and there is no winner’s curse.

If the other bidder j learns about the common component, the event of winning
contains information about S for bidder i. If every bidder follows a symmetric and
strictly increasing bidding function, winning indicates that bidder j has a lower signal
about S than bidder i. This is bad news for the value of the object, and bidders shade
their bid down to account for the effect of the winner’s curse, to not overbid in case of
a win.

Let bidder i observe a signal XK
i for K ∈ {S, T}. His expected value of the object

to bidder i, updated only based on his own signal realization is

E
[
Vi|XK

i = xi
]

=
∫
V
vih

K(vi|xi)dvi,

where hK(vi|xi) is the following probability density function of the value Vi for bidder
i conditional on his signal realization XK

i = xi about component K ∈ {S, Ti}:

hK(vi|xi) =



1
fS(xi)

∫ 1
0 f

S(xi|s)h(s)h(vi − s)︸ ︷︷ ︸
joint event

XS
i =xi,Vi=vi,S=s

ds if K = S,

1
fT (xi)

∫ 1
0 f

T (xi|t)h(t)h(vi − t)︸ ︷︷ ︸
joint event

XT
i =xi,Vi=vi,Ti=t

dt if K = T.
(1.1)

The following observation shows that any information selection leads to the same
expected value of the object, conditional on that signal realization alone. This follows
immediately from the symmetry of the distributions of the value components S and
Ti, H(m) = Pr(Ti ≤ m) = Pr(S ≤ m) and the signals having the same density
fT (xi|r) = fS(xi|r) for each realization xi ∈ [0, 1]. That is, hS(vi|xi) = hT (vi|xi).
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Observation 2. The object’s expected value conditional on signal realization xi coin-
cides for both signals XS

i and XT
i : ∀xi ∈ [0, 1], E

[
Vi|XS

i = xi
]

= E
[
Vi|XT

i = xi
]
.

Both available signals XS
i and XT

i have equal informativeness about Vi, as they lead
to the same posterior distribution over the total value. In equilibrium, bidders update
about the value of the object, conditional on their signal, and conditional on the event
of winning. Being pivotal bears information about the signal realization of the other
bidder. The following expression is the value of bidder i after observing an experiment
about component K ∈ {S, T}, when the signal realization of the opponent is Xj = xj,
and the opponent selects ρj. For K ∈ {S, Ti},

vK(xi, xj|ρj) := E
[
Vi|XK

i = xi, Xj = xj, ρj
]
.

The above definition is based on a source-free signal realization Xj = xj of the other
bidder, as bidder i cannot observe whether it contains information about the common
valuation S or the private component Tj of his opponent. However, it conditions on
the information selection strategy of the other bidder, ρj. This is to capture that
information selection is covert. While the choice of ρj is unobservable to bidder i, he
draws correct inference about it in equilibrium.

The following two value settings are nested in my model:

1. Independent private values (IPV). If ρ1 = ρ2 = 0, private signals XT
1 and XT

2
are independent. The expected value of bidder i does not depend on the signal
of bidder j:

vT (xi, xj|ρj = 0) = E
[
Vi|XT

i = xi
]

= E
[
Ti|XT

i = xi
]

+ E [S] .

2. Common values/ mineral rights model (CV). If ρ1 = ρ2 = 1, expected
utility of the bidders is symmetric in the two private signals XS

1 and XS
2 :

vS(xi, xj|ρj = 1) = vS(xj, xi|ρj = 1) = E [Ti] + E
[
S|XS

i = xi, X
S
j = xj

]
.

For example, fix the information choice of bidder j at ρj = 1 such that he always
learns his signal XS

j . If bidder i learns signal XS
i = xi about the common component,

his expected value is as described in above CV setting. If bidder i instead learns about
his private component via observing XT

i , his estimate of the object when his opponent
has signal realization XS

j = xj is

vT (xi, xj|ρj = 1) = E
[
Ti|XT

i = xi
]

+ E
[
S|XS

j = xj
]
.

Let bidder j select ρj = 1 and learn about the common component via XS
j and

consider Example 1. Figure 1.1 depicts the expected value of the object for bidder i,
when he expects his opponent to have the same signal realization as himself, XS

j = x.
The blue dashed line is the expected value vSi (xi, xi|ρj = 1) for bidder i in the CV
framework with signal XS

i = xi. The green solid line is bidder i’s expected value
vT (x, x|ρj = 1) if he learns about his private component. Expected value is increasing
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Figure 1.1: Expected valuation of bidder i in Example 1, if he chooses to learn about
component K ∈ {S, Ti}, the opponent learn about S, and both bidders have the same
signal realization xi.

in the signal realization.19 The function vS(x, x|ρj = 1) reacts slower to a change in
the signal x than vT (x, x|ρj = 1). This is because if a bidder learns about his private
component, there is no dependence with his opponent, and therefore, no redundancy in
private information. Receiving a low signal is worse news (and receiving a high signal
is better news), if it contains information about the private component.

5. Second Price Auction

In this section, two bidders are competing for one indivisible object in a SPA, with
no reserve price and an equal tie-breaking rule.20 If the random vector ρ is exogenous
and common knowledge, that is, when there is no information selection stage, the
model reduces to Milgrom and Weber (1982). Under endogenous and covert information
selection, bidders optimize their own information choice and make inference about the
information source of their opponent in equilibrium, as it has an effect on the winning
probability, the expected payment and the value of the object conditional on winning.

I consider the following class of equilibria:

Definition 1 (Symmetric Bayes Nash equilibrium). In a symmetric Bayes Nash equi-
librium, bidders

• select the same ρi = ρ∗,

• after observing XS
i = x, bid βS(x),

19The expected value vK(xi, xj |ρj = 1) of bidder i with own signal xi and given the signal realization
of the opponent xj is non-decreasing in both arguments. This follows from affiliation of XK

i with XS
j

(Milgrom and Weber, 1982).
20For N = 2 bidders, the sealed bid SPA and the open English auction are strategically equivalent

(see Milgrom and Weber, 1982). Furthermore, due to the assumption of strictly increasing bidding
functions and no atoms in signal distributions, the probability of a tie is zero.
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• after observing XT
i = x, bid βT (x),

where bidding functions βS(x) and βT (x) are pure and strictly increasing in x, and
together with ρ∗ constitute mutually best responses.

In the remainder of the paper, the term "equilibrium" refers to an object that satisfies
the above definition. Let CE := {ρ∗, βS, βT} be a candidate equilibrium. The expected
utility of bidder i from learning about component K ∈ {S, Ti} and bidding with βi, who
is facing an opponent who plays CE, is denoted by EU(K, βi|CE). It can be separated
into his the expected gain EG(K, βi|CE) minus his expected payment EP (K, βi|CE):

EU(K, βi|CE) := EG(K, βi|CE)− EP (K, βi|CE). (1.2)

First, consider the expected gain of bidder i. In the candidate equilibrium, bidder i
expects his opponent to learn XT

j and bid according to βT with probability (1− ρ∗); in
this case, the expected gain of bidder i is in line 1.3. With the remaining probability
ρ∗, his opponent learns a signal XS

j , bids according to betaS. In this case, the expected
gain of bidder i is depicted in line 1.4.

EG(K, βi|CE) :=(1− ρ∗)
∫
V
vi Pr(i wins|vi, XK

i , βi, X
T
j , β

T
j )hV(vi)dvi︸ ︷︷ ︸

Expected gain of bidder i when j learns XT
j

(1.3)

+ ρ∗
∫
V
vi Pr(i wins|vi, XK

i , βi, X
S
j , β

S
j )hV(vi)dvi︸ ︷︷ ︸

Expected gain of bidder i when j learns XS
j

. (1.4)

Second, consider the expected payment of bidder i. In the SPA, if bidder i wins he
pays the bid of his opponent j. Consider the distribution of the signal of the opponent
j, conditional on bidder i having a higher signal. This distribution depends on both
the information choices of the bidders and their bidding functions.

Let L ∈ {S, Tj} be the component about which bidder j learns signal XL
j and bids

according to βLj . Whenever it is well-defined21, define the cumulative distribution of
bidder j’s signal realization conditional on bidder i winning (when learning XK

i and
bidding βKi ):

HK(xj|βi, βLj , XL
j ) := Pr(XL

j ≤ xj|βi(XK
i ) ≥ βLj (XL

j )). (1.5)

Let hK(xj|βi, βLj , XL
j ) be the corresponding density, if it exists. With this informa-

tion choice K and L, and bidding functions βi, βLj , the overall expected payment of
bidder i is:

EP (XK
i , βi|XL

j , β
L
j ) := Pr(βi(XK

i ) ≥ βLj (XL
j ))

∫ 1

0
βLj (xj)dHK(xj|βi, βLj , XL

j )︸ ︷︷ ︸
payment conditional on winning

. (1.6)

The first factor is the overall probability of bidder i winning. The second factor is
the expected bid of j that bidder i has to pay conditional on winning.

21That is, if the probability of bidder i winning is non-zero with βi(XK
i = 1) > βL(XL

j = 0).
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Bidder i does not observe which signal his opponent learns, but expects him to select
ρ∗ in the candidate equilibrium. Based on this inference, bidder i’s expected payment
with information choice K and bidding function βi is

EP (XK
i , βi|CE) = (1− ρj)EP (XK

i , βi|XT
j , β

T
j ) + ρjEP (XK

i , βi|XS
j , β

S
j ). (1.7)

The first summand accounts for the possibility of the opponent having observed sig-
nal XT

j times the expected payment in this case. The second summand is the expected
payment when facing an opponent with signal XS

j , weighted with the probability ρj of
the occurrence of this event.

5.1 Information Selection in Equilibrium

The next theorem establishes the main result for the SPA. It shows that there is no
learning about the common component in any equilibrium.

Theorem 1
Information selection is unique in equilibrium, ρ∗ = 0.

There exists an equilibrium in which βT (x) = E
[
Vi|XT

i = x
]
.

All proofs are in the appendix, unless stated otherwise. In the remainder of the
section, I derive auxiliary results necessary to prove the above theorem.

First, consider any candidate equilibrium in which ρ∗ > 0. Our goal is to estab-
lish that there exists a profitable deviation, as soon as there is positive dependence
via learning about the common component. In general, a brute-force maximization
approach to find the best response to a candidate equilibrium is a fruitless undertaking.
This is because simultaneosly varying the information source and bidding function has
adverse implications on the winning probability, expected payment and the posterior
value of the object conditional on a win, and the overall effect on the payoff becomes
intractable. Unless bidders follow the same bidding functions that allow some form of
comparability, there is little that can be said about which strategy leads to a higher
overall utility.

The trick is to isolate the effect on expected gain from the effect on expected payment
conditional on a win. I establish existence of a deviation strategy that switches off any
change in the expected gain and the winning probability. That is, by playing such a
deviation strategy a bidder can guarantee himself the same expected gain and the same
total winning probability as in in the candidate equilibrium. By picking the deviation
strategy accordingly, we can concentrate on the effect on expected payment conditional
on a win, as the the other components in Equation 1.2 are held constant. Critically
hereby is to employ deviations that involve the same bidding functions between bidders
even after the a deviation to a different information channel. This ensures that a
bidder wins if and only if he has a higher signal than his opponent in certain cases. The
following deviation strategy is strictly profitable whenever the candidate equilibrium
contains ρ∗ > 0.

Definition 2. The deviation strategy (DS) for bidder i is the following strategy:

• deviate to ρi = 0,
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• bid according to βS(xi) for XT
i = xi.

This deviation strategy takes the signal XT
i about the private component and maps

it into a bid with bidding function βS as if it were the signal about the common
component in the candidate equilibrium. While this is not necessarily the optimal
bidding behavior learning XT

i , it is strong enough to establish a profitable deviation
over the combination (XS

i , β
S), which is part of any candidate equilibrium with ρ∗ > 0.

5.2 Expected Gain

In this section, I compare the expected gain for bidder i from DS to his expected gain
from the CE with combination (XS

i , β
S), if he expects his opponent to play according to

CE. I show that the expected probability of winning conditional on a value realization
vi for bidder i, is identical in DS and in CE.

Fix a value vi for bidder i. There are two possibilities that can arise, depending on
which information channel bidder j chooses. Bidder i does not know in which possibility
he is in, as information selection is covert.
Opponent with signal XT

j . With probability (1−ρ∗), the opponent of bidder i learns
signal XT

j about his private component, and follows the bidding function βT . In this
situation, a higher signal realization of bidder i does not necessarily imply winning, as
this depends on the interplay of the the bidding functions βS and βT .

DS : Pr(i wins|vi, XT
i , β

S︸ ︷︷ ︸
DS

, XT
j , β

T ) = Pr(βS(XT
i ) ≥ βT (XT

j )|vi). (1.8)

CE : Pr(i wins|vi, XS
i , β

S︸ ︷︷ ︸
CE

, XT
j , β

T ) = Pr(βS(XS
i ) ≥ βT (XT

j )|vi). (1.9)

Neither playing (XS
i , β

S) in CE nor DS of bidder i lead to correlation in private
information, as by Assumption IN XT

j is independent from any signal of bidder i.
Hence, the probability of a win conditional on any value vi is the same in Equation 1.8
and Equation 1.9, as the following lemma shows.

Lemma 1
For all vi, Pr(i wins|vi, XS

i , β
S︸ ︷︷ ︸

CE

, XT
j , β

T ) = Pr(i wins|vi, XT
i , β

S︸ ︷︷ ︸
DS

, XT
j , β

T ).

Note that Lemma 1 does not require bidder i and j to follow the same bidding
function. The marginal distribution of both signals XS

i and XT
i of bidder i coincide

conditional on every value vi. This follows as both signals have equal marginal distri-
butions. As bidder i follows the same bidding function in CE and DS, also the marginal
distribution of bids coincides for each value vi. As the signal of the opponent XT

j is
independent from bidder i for any information choice, the probability of winning is the
same in CE and in DS.
Opponent with signal XS

j . With probability ρ∗, bidder i faces an opponent who
learns XS

j about his common component. In this case, both bidders follow the same
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bidding function βS, and bidder i wins if and only if his opponent has a lower signal than
him.22 The winning probabilities for bidder i conditional on vi in DS and in (XS

i , β
S)

in CE are

DS : Pr(i wins|vi, XT
i , β

S︸ ︷︷ ︸
DS

, XS
j , β

S) = Pr(XT
i ≥ XS

j |vi). (1.10)

CE : Pr(i wins|vi, XS
i , β

S︸ ︷︷ ︸
CE

, XS
j , β

S) = Pr(XS
i ≥ XS

j |vi). (1.11)

For each total value realization vi for bidder i, the following theorem pins down the
probability of having the highest signal in (XS

i , β
S) in CE and in DS.

Proposition 1
For all total values vi for bidder i,

Pr(XT
i ≥ XS

j |vi) = Pr(XS
i ≥ XS

j |vi) = 1
2 .

Hence, winning probability is equal for every value realization vi in both DS and
CE:

Pr(i wins|vi, XS
i , β

S︸ ︷︷ ︸
CE

, XS
j , β

S) = Pr(i wins|vi, XT
i , β

S︸ ︷︷ ︸, XS
j , β

S).

This proposition is more complicated to establish and does not follow from indepen-
dence as does Lemma 1. This is because if the opponent learns XS

j about the common
component, bidder i has a choice between interdependence in signals (by choosing XS

i

in CE) and independence (by choosing DS and XT
i ). Furthermore, the proposition

crucially relies on the fact that there are only two bidders.23

It is instructive to consider how winning probability changes in different combina-
tions of S and Ti for bidder i, when deviating to DS from CE. Proposition 1 establishes
that winning probability conditional on any value realization vi is constant. Yet, the
particular composition of states S and Ti of components, in which a bidder i wins,
changes.

Fix any total value realization vi, and fix some feasible realization of the common
component s ∈ [max{0, vi−1},min{1, vi}]. Then, ti = vi−s. If bidder i plays according
to CE with (XS

j , β
S) and faces an XS

j -type opponent, his probability of winning at this
combinations of S and Ti is

Pr(XS
i ≥ XS

j |S = s, Ti = vi − s) =
∫ 1

0
fS(x|s)F S(x|s)dx = 1

2 .

If bidder i plays DS instead, his winning probability for this combination vi and s
is

Pr(XT
i ≥ XS

j |S = s, Ti = vi − s) =
∫ 1

0
fT (x|vi − s)F S(x|s)dx.

22Ties are ignored as they have zero probability.
23I extend the proposition in Section 6.2 to more than two bidders.
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Figure 1.2: Iso-value curve for total val-
ues vi = 0.8 of bidder i, showing differ-
ent combination of feasible value com-
ponents S and Ti.

Figure 1.3: Winning probability in DS
and (XS

i , β
S) in CE, for different S-Ti-

combinations, given vi = 0.8 and XS
j .

The two green dots in DS sum up 0.5.

The following lemma shows how DS shifts bidder i’s winning probability into states
with a higher private component realization.

Lemma 2
Fix vi ∈ (0, 2) and let bidder j learn XS

j and bid according to βS. With DS, bidder i is
strictly more (less) likely to win at S < vi/2 (S > vi/2) than with (XS

i , β
S) in CE. At

S = vi/2, winning probability is equal in both strategies.

By deviating to DS, for a given vi, a bidder is strictly more likely to win in combina-
tions that involve a high Ti, and strictly less likely to win in combination that involve a
high S. For example, fix the value vi = 0.8 for bidder i, that stems from any combina-
tion of the common component S ∈ [0, 0.8] and private component ti = 0.8−S. This is
depicted in Figure 1.2, where the diagonal line shows the iso-value curve, that consists
of all feasible S − Ti combinations that lead to the same overall value vi for bidder i.

In CE with (XS
i , β

S), bidder i wins with equal probability of 1
2 for every realization

of S ∈ [0.8] when facing an opponent j who also learns about the common component.
This is because both bidders have access to the same winning technology, and both
learn about the same variable S.

With DS, bidder i and bidder j look at different value components. Due to the
MLRP, higher signals are more likely for higher realizations of the value components.
With DS, bidder i is more likely to win in states with a high private component real-
ization, and less likely to win with a high common component realization.

This is depicted in Figure 1.3. The x-axis shows the common component S that is
feasible with vi = 0.8. For each feasible s on the x-axis, there exists a unique realization
of ti such that vi = 0.8. The y-axis is the respective winning probability for such a
realized pair (S, Ti). The blue solid line at y = 1

2 shows the winning probability with CE
which is constant at one half. The green dashed line sketches the winning probability
with DS. The two lines cross exactly at vi/2 = 0.4.

In sum, the overall effect on the winning probability sums up to zero. Winning
probability is the same in CE with (XS

i , β
S) and DS for every vi. To provide intuition
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why the effect on overall winning probability given vi evaporates, fix the following two
combinations: (s = 0.1, ti = 0.7) and (s = 0.7, ti = 0.1). Those two points are depicted
by blue dots on the iso-value curve in Figure 1.2. As S and Ti are distributed identically
and independently, both combinations have equal probability of h(0.1)h(0.7).

In CE, winning probability of bidder i is 1
2 in both those possibilities. This is

depicted by the two blue dots on the blue solid line at y = 1/2 in Figure 1.3. With
DS, if (s = 0.1, ti = 0.7), the winning probability of bidder i is no longer 1

2 , but higher
due to the higher private component in comparison to the low common component.
This is depicted by the green dot in the upper left corner of Figure 1.3. However,
bidder i loses the exact same winning probability in state (s = 0.7, ti = 0.1), as there
it is his opponent who observes a signal about the higher state s, while bidder i learns
about the lower component realization ti. This is depicted by the green dot in the
lower right corner. The overall effect of the change in winning probability in the two
combinations balances out to zero. In sum, overall probability of a win conditional on
being in one of those two combinations, remains 1/2. This argument works for any two
feasible symmetric combinations (s = a, ti = vi − a) and (s = vi − a, ti = a) for any
vi. Therefore, information selection shuffles the states in which bidder i wins, while
keeping the overall probability fixed.

To sum up, given any realization of the total value vi, DS and (XS
i , β

S) in CE yield
the same probability of winning if his opponent learns about the common component,
snd if the opponent learns about his private component. The following corollary shows
the impact of DS on the expected gain in Equation 1.3 and Equation 1.4 and on total
winning probability in comparison to CE with (XS

i , β
S). It is an immediate implication

of of Lemma 1 and Proposition 1, and the proof is therefore omitted.

Corollary 1. Expected gain in CE with (S, βS) and DS coincide. The total winning
probability is identical in DS and CE with (S, βS).

As winning probability is the same for every vi, it is also the same overall in CE
and DS.

5.3 Expected Payment

The expected payment conditional on winning changes under the deviation strategy.
In the following I show, that DS leads to a strictly lower payment by establishing
a stochastic dominance order between the payment distributions with and without
interdependence in private signals.

Consider the signal distribution of the opponent j, conditional on bidder i winning
in Equation 1.5. First, consider bidder i facing a XT

j -type opponent. If βS(xi = 1) ≤
βT (xi = 0), bidder i has a zero-probability of winning in DS and in CE with (XS

i , β
S)

against bidder j bidding with βT . Therefore, deviating to DS does not change the
expected payment when facing a XT

j -type opponent.
If βS(xi = 1) > βT (xi = 0), bidder i who employs bidding strategy βS has a non-

zero winning probability when facing a XT
j -type opponent. The distribution of signals

of the loosing bidder j is well-defined. It is HT (xj|βS, βT , XT
j ) if bidder i plays DS, and

HS(xj|βS, βT , XT
j ) if bidder i plays CE with (XS

i , β
S).
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If bidder i faces a XS
j -type opponent, the distribution of his opponent’s signal is

HT (xj|βS, βS, XS
j ) if bidder i plays DS, and HS(xj|βS, βS, XS

j ) if bidder i plays CE
with (S, βS).

Lemma 3 1. Opponent with signal XT
j : for all xj ∈ [0, 1], if βS(1) > βT (0), then

HS(xj|βS, βT , XT
j ) = HT (xj|βS, βT , XT

j );

2. Opponent with signal XS
j : HS(xj|βS, βS, XS

j ) (strictly) first order stochastically
dominates (FOSD) HT (xj|βS, βS, XS

j );

3. Overall expected payment is strictly lower under DS than in CE with (XS
i , β

S).

The first property says that as long the opponent looks at his private componentXT
j ,

the expected distribution of payments of bidder i in case of a win does not depend on
bidder i’s information choice. Note that it does not rely on bidder i and j employing with
the same bidding functions, but only bidder i using the same βS for both his information
channels XS

i and XS
j . The property holds because if bidder j learns XT

j , his signal and
thus his bid distribution is independent from both signals XS

i and XT
i of bidder i. Both

these signals of bidder i have the same marginal distribution via Observation 1. The
argument is similar to the proof of Lemma 1 and relies on independence in private
signals.

The second property establishes that if bidder j learns XS
j about the common com-

ponent, and both bidders follow the same bidding function βS, the event of bidder j
having a signal below some xj conditional on bidder i winning is more likely for every xj.
That is, the cumulative distribution of the second order statistic under interdependent
signals with XS

i FOSD the distribution of the second order statistic under independence
with XT

i . By the FOSD, conditional on bidder i winning, the signals and therefore the
bids of the opponent are distributed lower in DS than in CE with (XS

i , β
S).

For a quick sketch24 of the argument, the following expression is the signal distri-
bution of XS

j of bidder j, conditional on bidder i playing DS and winning (in this case
signals of the two bidders are independent):

HT (xj|βS, βS, XS
j ) = 2

∫ xj

0
f(x̃j) (1− F (x̃j)) dx̃j = 2F (xj)− F (xj)2. (1.12)

This is the second order statistic of the two equally distributed independent signals
XT
i and XS

j , as bidder i pays the second order statistic conditional on winning. Both
bidders follow the same bidding function βS, and bidder i wins if and only if he has a
higher signal than his opponent.

If bidder i plays CE with (XS
i , β

S), conditional on bidder i winning with XS
i and

βS, the distribution of his opponent’s signal XS
j is the following expression:

HS(xj|βS, βS, XS
j ) = 2

∫ xj

0

∫ 1

0
f(x̃j|s) (1− F (x̃j|s))h(s)dsdx̃j = 2F (xj)−

∫ 1

0
F (xj|s)2h(s)ds.

(1.13)
24See the proof of Lemma 3 for a derivation of these cumulative distribution functions.
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This is the cumulative distribution function of the second order statistic under correla-
tion between XS

i and XS
j via the common component S.

Comparing Equation 1.12 with Equation 1.13 shows that conditionally on a win, less
correlation induces a lower distribution of the second order statistic and thus, a lower
payment distribution. That is, for all xj ∈ (0, 1), the Cauchy-Bunyakovsky-Schwarz
(strong)25 inequality establishes

F (xj)2 =
(∫ 1

0
F (xj|s)h(s)ds

)2
<
∫ 1

0
h(s)ds︸ ︷︷ ︸
=1

∫ 1

0
F (xj|s)2h(s)ds.

Hence, the probability of paying any bid βS(xj) or below conditional on winning is
lower when playing DS than when playing the candidate equilibrium with XS

j . Condi-
tional on winning, the lower the distribution of the opponent’s signal (i.e. the lower the
second order statistic), the lower the expected payment given a fixed bidding strategy
βS of the opponent. Consider the limiting case of almost perfect correlation. Condi-
tional on the event of winning, the bid of the other bidder is close to the own bid.
Without correlation, the bid of the opponent conditional on a win is distributed in-
dependently. Conditional on winning, a bidder prefers his opponent to bid as low as
possible. Positive interdependence raises the expected payment conditional on a win
by increasing the distribution of the second order statistic in the sense of FOSD.

To sum up, when facing a XT
j -type opponent, expected payment is the same in DS

and CE with (XS
i , β

S). Conditional on a win against a XS
j -type opponent, the payment

distribution of bidder i with DS is strictly dominated by the payment distribution with
CE and (XS

i , β
S). Hence, the conditional payment is strictly lower in DS than in CE

with (XS
i , β

S). As the bidding function βS is strictly increasing in the signal, this follows
immediately via strong FOSD in Equation 1.6. By Corollary 1, the winning probability
with DS is equal to the winning probability in CE. Hence, the unconditional expected
payment is also strictly less with DS with XS

j of the opponent.
The probability to encounter a XS

j -type opponent is non-zero in any candidate
equilibrium with ρ∗ > 0. Therefore, the third statement of Lemma 3 follows. Uncon-
ditional expected payment from DS is strictly less than in the candidate equilibrium
with (XS

i , β
S).

5.4 Equilibrium and Social Surplus

The advantage of the deviation strategy DS is that it does not modify neither the overall
probability of winning for each valuation vi nor the expected gain, but instead lowers
the expected payment in case of a win due to less dependence between the signals of
the two bidders. Combined, Corollary 1 and Lemma 3 establish that no ρ∗ > 0 can be
an equilibrium, as DS constitutes a strictly profitable deviation.

For Theorem 1 to hold we need to establish existence of an equilibrium with ρ∗ = 0.
In this case, both bidders learn about their private components, information is only
relevant for the bidder who observes it, and bidders are in an IPV setup. Hence, due to
Observation 2, a bidder is indifferent between the two signals. The value of information

25For the strong Cauchy-Bunyakovsky-Schwarz inequality, see Footnote 33 in the proof of Lemma 3.
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from both signals is the same, as both lead to no interdependence with the opponent,
and both induce the same best response and posterior about the total value of the
object.

Social surplus is maximized if a bidder with the highest expected private compo-
nent Ti receives the object. All bidders share the same common component S, which
therefore plays no role for the social surplus. Ex-ante efficiency requires all bidders
to learn only about their private component, to maximize the ex-ante expected so-
cial surplus. Information about the common component is not socially valuable, and
available only by incurring the opportunity costs of not learning about the private
component. Theorem 1 establishes that no equilibrium exists unless ρ∗ = 0. The
SPA is ex-ante efficient as it induces ρ∗ = 0 and allocates efficiently.

6. Generalization

In this section, I analyze the incentives to select information in the SPA for a broader
class of utility functions (Section 6.1) and discuss the applicability of my approach for
the case of more than two bidders in Section 6.2. In the following, I restrict attention
to pure information selection: bidders select information either about their private
component via ρi = 0 or about their common component via ρi = 1. I show that my
approach generalizes to a general class of utility functions, as long as they satisfy a
marginal rate of substitution property.

6.1 General Utility Function

In the preceding parts of this paper, a bidder’s overall utility function was symmetric,
Vi = S + Ti. Next, consider a generalized class of utility functions Vi = u(S, Ti) that
satisfy the following properties:

1. u(0, 0) ≥ 0, and u(1, 1) <∞;

2. u(·, ·) is strictly increasing in both arguments;

3. for all I ∈ [0, 2], u(S, I − S) is non-increasing in S ∈ [0, 1].

The first property binds the utility of a bidder above and below such that it is never
strictly negative. The second property guarantees that any increase in either of his two
components is strictly better for the bidder. The third property is a condition on the
marginal rate of substitution between the two components S ∈ [0, 1] and Ti ∈ [0, 1],
when their sum is constant at some I ∈ [0, 2]. The property states that by substituting
Ti with the same amount of S, the bidder is weakly worse off. If the utility function is
differentiable in both arguments, the third property simply reduces to a marginal rate
of substitution inequality: ∂u(·)

∂S
≤ ∂u(·)

∂Ti

∣∣∣∣
I=S+Ti

.
A utility function, that satisfies above assumptions, is for example

Vi = αS + (1− α)Ti
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with α ∈ (0, 1
2 ]. For this particular example, it is straightforward to see that for any

sum of the components I = S+Ti, we have du(S,I−S)
dS

≤ 0 whenever α ≤ 1
2 . The following

proposition extends the result for the SPA for this extended class of utility functions.

Proposition 2
For all utility functions satisfying properties 1.-3., there exists no equilibrium of the
SPA in which bidders learn about the common component via ρ∗ = 1.

The proof is by contradiction, along the lines of the technique developed in Section
5. For a sketch of the argument, consider ρ∗ = 1 being a candidate equilibrium (CE).
That is, in equilibrium both bidders learn only about their common component and
expect their opponent to do the same. Then, bidder i can play the following deviation
strategy (DS) as in the preceding section and strictly increase his expected utility: Set
ρi = 0 and observe XT

i , but bid according to bidding function βS that bidder i uses in
the candidate equilibrium with XS

i .
In contrast to the preceding section, the expected gain from DS will be different

than in CE. By Proposition 1, with a symmetric utility function Vi = S + Ti, it holds
for two bidders and any vi ∈ [0, 2] realization: Pr(XT

i ≥ XS
j |vi) = Pr(XS

i ≥ XS
j |vi).

The theorem conditions on all combinations of S and Ti, that sum up to I = vi, which
corresponds to the same utility of vi for the symmetric utility function Vi = S + Ti.
Hence, there is no need to differentiate between the sum of the two components and
the overall utility for bidder i from this component combination.

Note that for the general utility functions satisfying properties 1.-3., the statement
of Proposition 1 holds exactly in the same manner when conditioning on I = S + Ti,
but no longer on the value realization vi, which might be different for the same sum I
of the two components.26 That is, we have for all I ∈ [0, 2]

Pr(XT
i ≥ XS

j |I) = Pr(XS
i ≥ XS

j |I).

In DS and in CE, bidder i follows βS, the same bidding function as his opponent in
the CE with ρ∗ = 1. Hence, bidder i wins whenever he has a higher signal realization
than his opponent. Thus, the above is the probability of winning conditional on the
sum I of the two value components for bidder i.

This establishes that the bidder is equally likely to win, given the sum of the two
components. In Section 5.2 I establish that while keeping the overall probability of a
win for vi fixed, DS has an adverse effect on winning in different combinations of S and
Ti, as Lemma 2 depicts. Lemma 2 applies exactly in the same way for the case of fixing
the sum of the two components I, instead of vi. Replacing every vi in the proof by I
yields the result.

By deviating to DS, for a given I, a bidder is strictly more likely to win in combina-
tions that involve a high Ti, and strictly less likely to win in combination that involve a
high S. By property 3., a bidder prefers those combinations with a higher Ti in which he
wins more often over those with a low Ti in which he loses winning probability. Hence,
his expected gain from DS is weakly higher than from CE.

26The steps of the proof for fixing I instead of vi are exactly the same as for vi, and the result follows
by simply replacing every vi in the proof of Proposition 1 by I.
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Figure 1.4: Winning probability in DS (blue solid line), the candidate equilibrium
(black dashed line) and value of the object (purple dotted) with ρ∗ = 1, I = 0.8,
f(x|r) = (2− 2r) + (4r − 2)x and Vi = 0.4S + 0.6Ti.

Example 2. Let Vi = 0.4S+0.6Ti and consider the following density of signals for each
component realization r ∈ [0, 1]: f(x|r) = (2− 2r) + (4r− 2)x. For this linear example,
the winning probability when deviating to DS is Pr(XT

i ≥ XS
i |I, S = s) = I

3 −
2s
3 + 1

2 for
all I ∈ [0, 2] and all feasible s ∈ [max{0, I − 1},min{1, I}].

The winning probability at different realizations of S for Example 2 is depicted
in Figure 1.4. It shows how the winning probability varies in s for a given sum of
the components of bidder i, I = 0.8, if the bidder follows DS or plays the candidate
equilibrium strategy ρ∗ = 1 and βS. For I = 0.8, the black dotted line is the winning
probability of bidder i with s in the candidate equilibrium, and the blue solid line is
his winning probability in s from DS. Note that the s-axis ends at s = I: no higher S
is compatible with I = 0.8. It shows how winning probability under DS is reallocated
from states with a high S to states with a lower S (into states that are more desirable
for the bidder under property 3. of the utility function), while keeping the overall
probability fixed.

The purple dotted line is the object’s valuation of bidder i for the specific I −
S combination, when his utility function is Vi = 0.4S + 0.6Ti as in Example 2. It
sketches that bidder i’s expected gain increases from playing DS due to a shift of
winning probability from states with low Ti to states with high Ti which the bidder
values more.27

Note that Lemma 3 for the payment applies without changes: the expected payment
is strictly lower under the DS, due to less interdependence between the bids in case of a
win. This is because Lemma 3 does not rely on a specific functional form of the bidding
function, but holds for any increasing symmetric function via FOSD.

Thus, a bidder is more likely to win when he values the object more. By property
3. of the utility function, he values an increase in Ti more than in S. Instead of
winning with probability 1

2 at every realization of S, via DS a bidder shifts his winning
probability to states with higher Ti realization and lower S, and away from states with

27In the symmetric setup in Section 5 with the sum of the two components being the utility Vi =
S + Ti = I, the purple dotted line is constant for every realization of S for fixed I.
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a high S realization and lower Ti. As a result, the expected gain from DS is weakly
better than in the CE with ρ∗ =. A proof of this argument that accounts for the prior
probability distribution over combinations of S and Ti, is provided in the Appendix in
the proof of Proposition 2.

This establishes, that the result that interdependence cannot be sustained in any
equilibrium of the SPA is robust to a perturbation of the utility function into a direction,
where the private component Ti matters more for the bidder (property 3.).

A natural question is whether a perturbation into the other direction – making
S slightly more important for the bidder than Ti – breaks the result. Consider the
following utility function: Vi =

(
1
2 + ε

)
S +

(
1
2 − ε

)
Ti, with ε > 0, such that u(S, I −

S) is strictly increasing in S. Can any equilibrium with learning about the common
component via ρ∗ = 1 be sustained under this utility function? For ε sufficiently small,
the answer is No. Note that irrespective of the utility function, bidder i can always
guarantee himself a strictly lower payment by playing DS. His gain in payment from
this deviation is bounded away from zero. Fix some I = s + ti for bidder i. Under
DS, the bidder is more likely to win at states with high Ti and low S, and less likely
to win when S is high (which he values more). In Figure 1.4, the purple dotted utility
function would be increasing in s, showing that DS shifts his winning probability into
unfavorable states combinations. Nevertheless, this loss in expected gain can be made
arbitrarily close to zero by choosing ε sufficiently small. Therefore, the decrease in
payment offsets the loss in gain for a sufficiently small ε in the utility function.

Hence, the argument that there cannot be learning about the common component in
equilibrium is also robust to making the common component slightly more valuable to
the bidder than the private component. Yet, increasing the marginal utility of S further
by increasing ε eventually breaks the predominance of the gain from lower payment over
the lower expected gain from the object. Whether an equilibrium with learning about
the common component can be sustained in equilibrium in such a case will depend on
the primitives of the model: the utility function Vi = u(S, Ti), the distributions of S
and Ti, and the signal distributions f(x|r). The deviation strategy (DS) is no longer
suitable for establishing non-existence in such a framework.

6.2 N Bidders

Consider a CE of the SPA with ρ∗ = 1 and βS. In the following I show the extension
of Proposition 1 to the case of N > 2 bidders. Let the utility function be symmetric
(Vi = S + Ti) as in Section 5.

Consider the same deviation strategy (DS) as for the case N = 2, in which bidder
i selects ρi = 0, observes XT

i and bids according to βS as if his signal were about the
common component in CE.

In both strategies DS and CE, bidder i wins if and only if he has a higher signal
realization than all of his opponents, where ties can be ignored. Let

Y S
i = max

j 6=i
{XS

1 , ..., X
S
i−1, X

S
i+1, ..., X

S
N}

be the highest signal realization of all other bidders but bidder i about the common
component.
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Due to independence conditional on S, the highest signal Y S
i of all other bidders

has cumulative distribution function

G(y) =
∫ 1

0
F (y|s)N−1h(s)ds.

For each total value realization vi for bidder i the following theorem pins down the
probability of winning under DS or CE, depending on whether he observes XT

i or XS
i .

Proposition 3
Let all N − 1 ≥ 2 other bidders learn XS

j 6=i about the common component. Then, for all
total values vi ∈ [0, 2] for bidder i:

Pr(XT
i ≥ Y S

i |vi) ≥ Pr(XS
i ≥ Y S

i |vi) = 1
N
.

The inequality is strict for all vi 6= {0, 1}.

Let all other bidders learn about the common component S. Fix a total valuation
for bidder i, by keeping the sum of the two components equal at vi = S + Ti. The
theorem says that, by selecting information about the private component Ti instead of
S, bidder i can increase his probability of having the highest signal for all values vi.

The difference of Proposition 3 to Proposition 1 with N = 2, in which winning
probability is identical for all vi, stems from difference in the first order statistic of a
bidder’s opponents. With N = 2, the distribution of the first order statistic of the
other bidders is simply the signal distribution of a bidder’s single opponent. Moreover,
this distribution is the same as a bidder’s own signal distribution. With more than one
opponent, the first order statistic of the other bidders no longer coincides with the own
signal distribution.

This becomes apparent in Figure 1.3 where different winning probabilities are de-
scribed for the case of two bidders. Consider the same numerical example as before:
vi = 0.8 and either (s = 0.1, ti = 0.7), or (s = 0.7, ti = 0.1). With two bidders, bidder i
gains winning probability in (s = 0.1, ti = 0.7), but loses the same amount of winning
probability in (s = 0.7, ti = 0.1), as his opponent is symmetric to him and the first
order statistic is the same as his own signal distribution.

With more than two bidders, the gain of bidder i from DS in state (s = 0.1, ti = 0.7)
is larger than the winning probability that he loses in state (s = 0.7, ti = 0.1), when he
bids against a higher first order statistic. The next example depicts this intuition for
fully revealing signals.

Example 3. Fix vi = 0.8 and consider two S-Ti-combinations that are compatible with
this total value realization for bidder i, (s = 0.1, ti = 0.7) and (s = 0.7, ti = 0.1). Both
combinations occur with equal probability of h(0.1)h(0.7) as S and Ti are drawn i.i.d.

Consider fully revealing signals about both value components K ∈ {S, Ti}, such that

Pr(XK
i = x|K = r) =

1 if x = r,

0 otherwise.
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(s = 0.7, ti = 0.1) (s = 0.1, ti = 0.7) total winning prob.
CE 1/N 1/N 1/N
DS 0 1 1/2

Table 1.1: Probability of bidder i winning in DS and CE with ρ∗ = 1, conditional on
vi = 1. Both state combinations have equal probability of h(0.1)h(0.7). Overall winning
probability is higher with DS.

If multiple bidders have the same highest signal realization, ties are broken evenly
about who wins.28

If (s = 0.7, ti = 0.1), all N − 1 other bidders learn a signal XS
j with realization

xj = 0.7. If bidder i learns XS
i as well, he has signal realization 0.7, and wins with

probability 1
N
. If bidder i observes signal XT

i instead about his private component, his
signal realization is 0.1 and he has zero probability of winning. These probabilities are
summarized in the first column of Table 1.1.

If (s = 0.1, ti = 0.7), all other bidders observe a signal realization xj = 0.1. If
bidder i learns about S, he also observes realization 0.1 and wins with probability 1

N
.

If bidder i learns about his private component, his signal realization is 0.7 and he wins
with probability 1. This is summarized in the second column of the Table 1.1.

Winning probability overall in DS is higher than in CE. In (s = 0.1, ti = 0.7),
bidder i has a lot of probability mass of winning to gain by learning about Ti. In state
(s = 0.7, ti = 0.1), even if bidder i learns about S, his probability of a win is not very
high, since the first order statistic of the other bidders is elevated by the high realization
of S. The gain in probability mass of winning in (s = 0.1, ti = 0.7) is larger than the
loss in (s = 0.7, ti = 0.1).

This argument becomes apparent with N →∞. As the number of bidders increases
and all other bidders learn about the common component, bidder i’s probability of win-
ning with CE approaches zero in both (s = 0.1, ti = 0.7) and (s = 0.7, ti = 0.1). On the
other hand, playing DS always guarantees bidder i a win in state (s = 0.1, ti = 0.7). It
is easy to see that when there are only two bidders, gain and loss in the two states are
exactly equal: learning about either component yields the same overall probability 1

2 of
having the highest signal for bidder i in above two state realizations. This is evident in
the third column of Table 1.1 for N = 2.

An immediate corollary of Proposition 3 is the following.

Corollary 2. Let all the opponents of bidder i learn about the common component by
observing XS

j 6=i. For N > 2, the overall probability of winning is strictly higher in DS
than in CE.

As Proposition 3 holds for each realization of vi, it also holds overall and the proof
is therefore omitted.

An overall higher probability of a win at every value realization vi might seem good
news for the overall payoff in DS. Expected gain from DS is clearly strictly higher
than the expected gain in CE. Complications arise in expected payment: total winning

28In the continuous version of my model, ties have zero probability. In this discrete example, ties
occur with strictly positive probability, which requires a tie-breaking rule.
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probability in DS is strictly higher than in CE. Hence, the expected payment conditional
on a win is multiplied with a higher overall probability of winning in Equation 1.7. The
separation approach in the expected utility – keep expected gain and total winning
probability constant and focus on the expected payment – is no longer applicable as
overall expected payment can strictly increase by switching from CE to DS and needs
to be weighted against the gain in expected utility.

7. Alternative Auctions

In this section, I apply the developed technique to two further auction formats, the
FPA (Subsection 7.1) and the all-pay auction (Subsection 7.2). As in the preceding
section, I restrict attention to pure information selection, ρi ∈ {0, 1}. For the FPA, I
show that ρ∗ = 1 cannot be ruled out as an equilibrium with the developed approach.
Furthermore, ρ∗ = 0 is not robust in the FPA when introducing a small degree of
correlation between the private component and the common component. In the all
pay auction with more than two participants, bidders do not want to learn about the
common component, and ρ∗ = 0 is an equilibrium.

7.1 First Price Auction

Two bidders compete in a FPA with no reserve price.29 Bidders can either learn about
the common variable S via observing the random variable XS

i or learn about the private
variable Ti via observing the random variable XT

i , that is, ρi ∈ {0, 1}.
In section 5, I derived the necessary toolbox to show why ρ∗ = 1 cannot arise in any

equilibrium of the SPA: a bidder could play a certain deviation strategy that decreases
correlation between his signal and the signal of the opponent. Then, bidding as if
having observed XS

i but having truly observed XT
i yields bidder i the same expected

gain (Corollary 1) for a strictly lower payment (Proposition 3).
In the following I show why this argument cannot be used for the FPA to rule out

ρ∗ = 1. Let the candidate equilibrium be ρ∗ = 1, and both bidders bid according to βSf .
Consider the same deviation strategy as in the SPA for bidder i:

Definition 3 (DSf ). A deviation strategy (DSf) for bidder i in the FPA is the following
strategy:

• deviate to ρi = 0 and observe XT
i ;

• bid according to βSf (·).

The expected payoff from this deviation strategy is best evaluated by once again
separating the expected gain from the expected payment. In the candidate equilibrium,
bidder i is sure that he faces aXS

j -type opponent. Then, by Proposition 1 and Corollary
1, total winning probability is the same in DS and the candidate equilibrium. That is,
Pr(XS

i ≥ XS
j ) = Pr(XT

i ≥ XS
j ) = 1

2 . Therefore, expected gain from DSf is the same
as from the equilibrium bidding strategy. This immediately follows from Corollary 1,

29As before in the SPA, ties have zero probability and can be ignored.
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as the effect of DS on the expected gain coincides in the FPA and the SPA coincide.
The difference between SPA and the FPA lies in their payment rule and not in the
allocation decision.

Next, I show the effect of DSf on the expected payment. Similar to the SPA, define
the cumulative signal distribution of bidder i, conditional on winning. The definition
of this distribution captures his own information choice K ∈ {S, Ti}, the information
choice of his opponent L ∈ {S, Tj} and both bidding functions βKi and βLj .

HK
f (xi|βKi , βLj , XK

j ) := Pr(XK
i ≤ xi|βKi (XK

i ) ≥ βLj (XL
j )).

For DSf , this distribution is the following. The joint event of the common compo-
nent being S = s, bidder i seeing XT

i = xi and bidder i winning with βSf has density
h(s)fT (xi)F S(xi|s). As the distributions of both components are the same by Assump-
tion A1, I drop the superscripts in the following. Integrating over all common states
results yields the distribution:

HT (xi|βSf , βSf , XS
j ) =

∫ xi
0
∫ 1

0 F (x̃|s)h(s)dsf(x̃)dx̃
Pr(XS

i ≥ XS
j )

=
∫ xi

0 F (x̃)f(x̃)dx̃
1
2

= F (xi)2.

As DSf involves bidding with the same bidding function βS as the opponent, the
above distribution of signals of bidder i conditional on winning simplifies to the distri-
bution of the first order statistics of two independent signals, XT

i and XS
j , each drawn

with identical distribution F (·).
Next, consider the cumulative distribution of signals of bidder i who follows the

candidate equilibrium strategy. The joint event S = s, XS
i = xi and bidder i winning

with βSf has density h(s)fS(xi|s)F S(xi|s). This results in the following distribution,
where I once again drop the superscripts.

HS(xi|βSf , βSf , XS
j ) =

∫ xi
0
∫ 1

0 f(x̃|s)F (x̃|s)h(s)dsdx̃
Pr(XS

i ≥ XS
j )

=
∫ 1

0
∫ xi

0 f(x̃|s)F (x̃|s)dx̃h(s)ds
1
2

=
∫ 1

0
F (xi|s)2h(s)ds.

Using the strict30 Cauchy-Bunyakovski-Schwarz inequality we have for all x ∈ (0, 1),

F (xi)2 =
(∫ 1

0
F (xi|s)h(s)ds

)2
<
∫ 1

0
h(s)ds︸ ︷︷ ︸
=1.

∫ 1

0
F (xi|s)2h(s)ds. (1.14)

The distribution of the first order statistic is strictly higher under interdependent sig-
30See footnote 33 for the strict inequality.
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nals, than under independent signals. This establishes FOSD, as HT (xi|βSf , βSf , XS
j ) <

HS(xi|βSf , βSf , XS
j ) for all x ∈ (0, 1). That is, HT (·) is FOSD over HS(·). This immedi-

ately translates into a strictly higher payment under DS in case of a win as the bidding
function βSf is strictly increasing:∫ 1

0
βSf (xi)dHS(xi) <

∫ 1

0
βSf (xi)dHT (xi).

The expected payment conditional on a win is strictly lower under the original equi-
librium strategy than under the constructed deviation DSf . Not only does decreasing
the correlation not help like in the SPA, but it hurts the agent. A bidder still wins
with the same probability conditional on any value realization vi (this is an implication
of Proposition 1 and the construction of DSf using the same bidding strategy as the
equilibrium). However, by decreasing correlation with his opponent, a bidder is more
likely to win at higher signal realizations which drives up his expected payment. This
shows why ρ∗ = 1 cannot be ruled out as an equilibrium by a deviation strategy of the
same kind as in the SPA that decreases interdependence in private information.

Correlation between the components. As in the case with the SPA, an IPV
equilibrium with ρ∗ = 0 always exists. This is because if the opponent of bidder i
observes a signal about his private component, bidder i is in an IPV setup. Then,
bidder i is indifferent between both information channels, as they both contain the
same accuracy about the total value vi and each signal realization leads to the same
best response due to Observation 2. Such an equilibrium is a ‘trivial’ equilibrium, as
each bidder’s information has neither an effect on interdependence between the signals,
nor on total valuations.

Next, I analyze whether the trivial equilibrium with ρ∗ = 0 is robust to a small
degree of interdependence between the bidders. For this purpose, I introduce a slight
perturbation into the informational structure. First, the common component S realizes
with distribution H(·), as in the Model Section 4. Then, the private components T1
and T2 are drawn. In contrast to the analysis before, with probability ε the common
and private component of bidder i are identical (which is unobserved): Ti = S. With
probability 1− ε, Ti is drawn independently and identically with the same cumulative
distribution H(·). Therefore, ε captures the correlation between each bidder’s private
component and the common component. In the analysis so far, ε = 0. Furthermore,
with ε > 0 the IPV framework is ruled out as the signal of the opponent always contains
relevant information about the common component irrespective of its source. That is,
learning XT

i and XS
i contain information about both components.31

The next proposition shows that in the FPA, there cannot exist an equilibrium in
which bidders learn signals XT

i about their private components.

Proposition 4
For ε > 0, there exists no symmetric equilibrium of the FPA with ρ∗ = 0.

31An alternative perturbation is the following: both bidders make a small ‘tremble’ when choosing
their information source. With probability 1 − ε they observe a signal about their preferred value
component; with probability ε they perform an experiment on the wrong component. This perturbation
yields the same results on equilibrium existence as the one introduced in this section.
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The proof follows by combining the following two lemmas. Like in the SPA, the
proof of the theorem is by contradiction. It relies on providing a deviation strategy and
decomposing expected utility into an expected gain (which is the same in DSf and the
candidate equilibrium) and an expected payment (which is strictly less under DSf ). I
show that the following deviation strategy DSf is a strictly profitable deviation.

Definition 4. The deviation strategy (DSf) for bidder i in the FPA is the following
strategy:

• deviate to ρi = 1,

• bid according to βTf (xi) for XS
i = xi.

The deviation strategy DS
f involves changing the information selection strategy

from learning XT
i to learning XS

i , but not the bidding function. It requires a bidder
to learn about the common component, but follow the same bidding function as if the
bidder learned XT

i . It is complementary to the deviation strategies considered before,
as its purpose is to increase (not decrease) correlation while following the same bidding
function.

The following lemma pins down the effect of DSf on the winning probability for
each object value and the expected gain from this deviation.

Lemma 4
For each value vi, the winning probability of bidder i in DS

f equals the winning prob-
ability in equilibrium under ρ∗ = 0. The expected gain from DS

f equals the expected
gain from the equilibrium with ρ∗.

The proof uses parts of Proposition 1 for the special case of two bidders. As bidders
follow the same bidding strategy βTf in both the equilibrium and DSf , a winning bidder
is a bidder with the highest signal realization. Therefore, the proof relies not necessarily
on the optimal deviation strategy, but one that uses the same bidding function βTf for
tractability of the change in winning probability for each vi. Overall expected gain from
the candidate equilibrium and the deviation strategy DSf is the same.

The next lemma pins down the difference in expected payment between the equi-
librium with ρ∗ = 0 and under the deviation strategy DSf .

Lemma 5
Let ε > 0. The expected payment with DS

f in the FPA is strictly less than in the
equilibrium with ρ∗ = 0.

The argument is similar to the one developed above to show that ρ∗ = 1 cannot profit
from DSf . Intuitively, achieving a stronger dependence with the opponent reduces the
’money left on the table’ in the FPA. A bidder pays his own bid. Conditional on the
event of winning, he prefers to outbid his opponent by as little as possible. Whenever the
perturbation is inactive as the opponent bidders observed his private component signal
XT
i as selected by ρ∗ = 0, there is no difference between behaving as in equilibrium

and following DSf . The deviation strategy comes into play whenever the opponent

32



trembled and observed XS
i . In this case, a bidder is more likely to observe a signal

about the common component and be more correlated with the opponent under the
deviation strategy DSf than under the equilibrium strategy. As in both cases, bidders
follow the same bidding function, the FOSD argument holds. The expected payment
that a bidder has to pay in case of a win is strictly higher with less interdependence,
as a bidder is more likely to win when he places a low bid (with higher dependence his
opponent is less likely to outbid him in this range). Similarly, with more dependence,
a bidder is less likely to win when placing a high bid, as his opponent is more likely
to outbid him in the range of higher bids. Expected payment is strictly higher under
less correlation, while expected gain is constant. And under the deviation strategy the
event of higher correlation (when both bidders observed a signal about S) is more likely
to occur.

To sum up Lemma 4 and Lemma 5, the deviation strategy does not change the win-
ning probability or the expected gain from participating, but strictly decreases expected
payment. As increasing the dependence in private information with the opponent comes
without a loss for expected value, due to the particular construction of DSf , it consti-
tutes a strictly profitable deviation. Therefore, DSf is a strictly profitable deviation.
The equilibrium ρ∗ = 0 is not robust to the perturbation of the information structure.

7.2 All-Pay Auction

Consider an all-pay first price auction with N bidders. Bidders submit bids bi as a
function of their signal realization XT

i or XS
i . Payment and allocation rule result in the

following payoff Wi for bidder i who places bid bi:

Wi =


Vi − bi if bi > maxj 6=i bj

Vi
#{k:bk=bi} − bi if bi = maxj 6=i bj
−bi if bi < maxj 6=i bj

Bidders always pay their bid, irrespective of the event of winning. They win if they
submitted a higher bid than their opponents. Krishna and Morgan (1997) analyze the
all-pay auction in a symmetric interdependent value framework. They show when a
symmetric equilibrium in increasing strategies exists.

Denote the bidding function in a candidate equilibrium of the all-pay auction after
learningXS

i by βSa , and after learningXT
i by βTa . The next theorem and lemma establish

the main result for the all-pay auction about information selection and existence in
equilibrium.
Proposition 5
For N > 2, there exists no equilibrium of the all-pay auction with ρ∗ = 1.

Learning about the common component cannot arise in equilibrium. Similar to the
proof technique of the SPA, I establish the result by constructing a deviation strategy
and decompose it in expected gain and expected payment. It allows an application of
Proposition 3 and enables a tractable payoff comparison. By contradiction, consider a
candidate equilibrium of the all-pay auction with ρ∗ = 1 in which all participants bid
according to some increasing function βSa (x).
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Definition 5 (DSa). A deviation strategy (DSa) for bidder i in the all-pay auction is:

• deviate to ρi = 0 and observe XT
i ,

• bid according to βSa (XT
i ).

The deviation strategy DSa requires a bidder to change the source of his signal
(from XS

i to XT
i ), but follow the same bidding function βSa (·) as before. Let the utility

from the candidate equilibrium (CE) with ρ∗ = 1 and βSa be EU(S, βSa |CE). Let the
expected utility from DSa be EU(Ti, βSa |CE). The proof of Proposition 5 shows that
EU(S, βSa |CE) < EU(Ti, βSa |CE) for N > 2.

In the all-pay auction, a bidder pays his own bid. In CE, the expected payment of
bidder i is ∫ 1

0
βSa (xi)f(xi)dxi.

In DSSa , expected payment is exactly the same, as both of bidder i’s available signals
XT
i and XS

i induce the same marginal distribution f(xi). Hence, expected payment in
CE and DSa is the same.

The expected gain is strictly higher in DSa, as due to Proposition 3, the probability
of a win is strictly larger at almost all total values vi if there are more than two bidders.

For the case of two bidders, the expected payment in DSa and CE with ρ∗ = 1 is
the same as a bidder’s bid (and thus, payment) distribution is the same. In contrast
to the N > 2 bidder case, expected gain is also the same in CE and DSa. That is,
the expected overall utility of bidder i from CE and from DSa is identical. Whether
there exists a strictly profitable deviation over a CE with ρ∗ = 1 will depend on the
characteristics of the signals. One might expect that generically, as βS is constructed as
a best response in CE after seeing XS

i , there is no reason why it should also constitute
a best response after seeing XT

i , and the bidder could strictly increase his payoff by
playing a best response to XT

i .

Lemma 6
For N ≥ 2, there exists an equilibrium with ρ∗ = 0.

The proof is by construction: learning only about the private component Ti and
bidding according to the usual IPV bidding function for the all-pay auction βTa (x) =∫ x

0 E
[
Vi|XT

i = x̃
]
fT (x̃)dx̃ constitutes a best response to this particular information

choice when the opponents also select ρ∗ = 0 and follow the same bidding function.
Moreover, if ρ∗ = 0, no other bidder knows anything of relevance to other bidders.

Signal realizations of other bidders are independent from one’s own signal for any infor-
mation selection. The value of information conditional on one’s signal alone is equal no
matter which component the signal was applied to. Due to Observation 2, any signal
realization results in the same best response. Bith available signals have the same value
of information for a bidder, if the opponents play CE. This establishes existence of an
equilibrium with ρ∗ = 0.
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8. Conclusion

If bidders cannot consider all possible information, a question of which variables to
learn about arises. I analyze this question in the context of auctions. In takeover
auctions, out of all the multidimensional information available about the target, which
characteristics do bidders choose to focus on? Do they want to know what matters
to others – a common variable like the book value – which induces interdependence in
private information? Or do bidders prefer to focus on a private component like their
specific R&D synergies and receive independent private signals? Bidders are equally
well-informed about the object’s total value whether they select a signal about the
common or the private component.

The focus of this paper is on information selection, specifically which payoff-relevant
variable to learn about. This contrasts with the literature on information acquisition,
which usually asks how much information about a single payoff relevant variable a
bidder acquires.

In the SPA, information selection in equilibrium is unique. Bidders learn only about
their private component. Any candidate equilibrium in which bidders learn with non-
zero probability about the common component can be ruled out by an appropriate
deviation strategy. The deviation strategy uses the same bidding functions as the can-
didate equilibrium but induces independent private signals by learning only about the
private component. By employing such a deviation strategy, a bidder strictly decreases
his expected payment but retains his overall gain and winning probability. By decreas-
ing correlation via learning about the private component, a bidder is more likely to win
in states with a high private component, and less likely to win in states with a high
common component, while there is no effect on the overall winning probability.

This paper explores the impact of a selling mechanism on the type of information
bidders select. Information about the common component simplifies coordination and
is informative about other bidder’s bids. However, learning about a common compo-
nent that matters equally for all bidders is socially wasteful, as this information comes
at the opportunity cost of not learning socially valuable information about the private
components. A designer who wishes to maximize efficiency should take into considera-
tion, that his auction choice might affect about which value components bidders learn.
My analysis suggests that, in such a simplified setting, the SPA is a good choice, as
it is ex-ante efficient. It induces learning only about the socially relevant variable and
allocates the good efficiently. An IPV setup arises endogenously.
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A. Appendices

A.1 Affiliation and Accuracy

The following definition introduces the concept of affiliation between random variables.
Affiliation is a strong form of positive correlation, and is a widely used model of sta-
tistical dependence in Economics at the latest since the contribution of Milgrom and
Weber (1982).32

Definition 6 (Milgrom and Weber (1982)). Consider real-valued random variables
Z1, ..., Zk, and denote a vector of realizations by z := {z1, ..., zk}. Let f(z) be the
density of the realization vector z. Denote by z∨z′ the component-wise maximum, and
denote by z ∧ z′ the component-wise minimum of the two vectors z and z′. Then, the
random variables Z1, ..., Zk are said to be affiliated if

for all z, z′ : f(z ∨ z′)f(z ∧ z′) ≥ f(z)f(z′).

Observation 3. XS
1 and XS

2 are affiliated.

This follows from Milgrom and Weber (1982). By Theorem 1, part (ii) in their
model, the random variables XS

1 , X
S
2 and S are affiliated if their density can be ex-

pressed as the product of affiliated non-negative functions. We have f(x1, x2, s) =
fS(x1|s)fS(x2|s)h(s) with fS(·) being non-negative and affiliated due to the strong
MLRP. By Theorem 4 in Milgrom andWeber (1982), as the triple of variablesXS

1 , X
S
2 , S

are affiliated, so are the two variables XS
1 and XS

2 .
Note that independence is a special case of affiliation, where above inequality in

Definition 6 holds with equality for all realizations z and z′. This implies that XT
i

and XS
j are affiliated, and XT

i and XT
j are affiliated, as they are independent due to

Assumption IN.

A.2 Proofs

(The proof of Theorem 1 follows after the proof of Lemma 3, by combining the auxiliary
results in Lemma 1, Proposition 1 and Lemma 3.)

Proof of Lemma 1. The distribution of XS
i conditional on vi and XT

i conditional on
vi coincide. This is because the density of realization xi conditional on vi is hS(vi|xi)fS(xi)

hV (vi) ,
where hS(vi|xi) as defined in Equation 1.1. As hS(vi|xi) = hT (vi|xi), and fS(xi) =
fT (xi) via Observation 1, this establishes that the signals XS

i and XT
i of bidder i are

equally distributed conditional on vi. Therefore, also the marginal distributions βS(XS
i )

and βS(XT
i ) coincide, conditional on vi.

Due to Assumption IN, any signal of bidder i, XS
i and XT

i , is independent from
XT
j . As functions of independent random variables are independent themselves, for any
32The concept of affiliation is known in the statistical literature as a multivariate total positivity

order MTP2 (Karlin and Rinott, 1980). For a comparison of affiliation with other forms of positive
correlation, see de Castro (2009) in a context of auctions, and Shaked and Shanthikumar (2007) for a
general account of positive dependence orders.
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information choice K ∈ {S, Ti} of bidder i, the random variable βS(XK
i ) is independent

from βT (XT
j ). Therefore,

Pr(βS(XT
i ) ≥ βT (XT

j )|vi) = Pr(βS(XS
i ) ≥ βT (XT

j )|vi),

which establishes the proposition for the winning probabilities in Equation 1.8 for DS
and Equation 1.9 for CE.

Proof of Proposition 1. For vi = 0, we have s = 0 and ti = 0. Any information
selection leads to a density f(x|0), as both signals XS

i and XT
i have same density.

The density of an opponent with signal XS
j is F (x|0). The probability of having the

highest signal is
∫ 1

0 f(x|0)F (x|0)dxi = 1
2 . Similarly, for the total value to be vi = 2, the

components need to be s = 1 and ti = 1. Then, the probability of having the highest
signal with any signal is

∫ 1
0 f(x|1)F (x|1)dx = 1

2 .
Fix a total value for bidder i at vi ∈ (0, 2). Define the set the common component S,

that is feasible under this vi realization as S(vi) := {s ∈ S : ∃ti ∈ [0, 1] : vi = s+ ti} =
[max{0, vi − 1},min{1, vi}]. E.g., if vi ≥ 1, we have S(vi) = [vi−1, 1]. If vi < 1, we have
S(vi) = [0, vi]. Define ŝ(vi) that bisects this interval: ŝ(vi) := max{0,vi−1}+min{1,vi}

2 = vi
2 .

Conditional on the value for bidder i being vi, the density of the common component
being equal to s is h(s|vi) := h(s)h(vi−s)

hV (vi) . This is due to the fact that S and Ti are
drawn from an identical distribution with density h(·). Note that

∫
S(vi) h(s|vi) = 1, and

h(s|vi) = h(vi − s|vi), as h(s|vi) is symmetric around ŝ(vi).
If bidder i learns XS

i and his opponent learns XS
j , the probability of winning is

Pr(XS
i ≥ XS

j |vi) =
∫
S(vi)

∫ 1

0
f(x|s)F (x|s)h(s|vi)dxds

=
∫
S(vi)

[1
2F (x|s)

]1

0︸ ︷︷ ︸
=1/2

h(s|vi)ds

= 1
2

∫
S(vi)

h(s|vi)ds = 1
2 .

If the common component is s, then, conditional on vi, bidder i observes a signal
about his private component ti = vi−s. If bidder i learns about his private components
via observing XT

i , his probability of a win is the following.

Pr(XT
i ≥ XS

j |vi) =
∫
S(vi)

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds (1.15)

=
∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds (1.16)

+
∫ min{vi,1}

ŝ(vi)

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds (1.17)

The last step followed by splitting up the integral in two intervals. Consider the
second integral. Using relabeling and integration by parts, we have
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∫ min{vi,1}

ŝ(vi)

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds

=
∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|s)F (x|vi − s)h(vi − s|vi)dxds

=
∫ ŝ(vi)

max{vi−1,0}

[F (x|s)F (x|vi − s)]10︸ ︷︷ ︸
=1

−
∫ 1

0
f(x|vi − s)F (x|s)dx

h(vi − s|vi)ds

=
∫ ŝ(vi)

max{vi−1,0}
h(vi − s|vi)ds−

∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|vi − s)F (x|s)dxh(vi − s|vi)ds

=1
2 −

∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds

where the last step followed by h(s|vi) = h(vi− s) and
∫
S(vi)

h(s|vi)ds = 1. Plugging this

back into Equation 1.17 yields the result, Pr(XT
i ≥ XS

j |vi) = 1
2 = Pr(XS

i ≥ XS
j |vi).

Proof of Lemma 2. As fS(x|r) = fT (x|r) and F S(x|r) = F T (x|r), I drop the su-
perscript. Fix the value for bidder i, vi ∈ (0, 2).

For every feasible s that can arise with vi, if both bidders learn about s and bid
with βS, the winning probability is 1

2 :

Pr(XS
i ≥ XS

j |S = s, Ti = vi − s) =
∫ 1

0
f(x|s)F (x|s)dx = 1

2 .

Now consider the winning probability of bidder i with DS when facing opponent
with signal XS

j . For s = vi
2 = I − s, it is immediate that

∫ 1
0 f(x|vi − s)F (x|s)dx =∫ 1

0 f(x|s)F (x|s)dx = 1
2 .

Take any s < vi
2 . A consequence of the strong MLRP is FOSD. Thus, for every

x ∈ (0, 1): F (x|s) > F (x|vi − s) for s < vi − s. Hence, winning probability in DS is∫ 1

0
f(x|vi − s)F (x|s)dx >

∫ 1

0
f(x|vi − s)F (x|vi − s)dx = 1

2 .

Therefore, the winning probability is larger when learning XT
i about the private

value component, if the private component realization ti = vi − s is larger than the
common component realization s.

Finally, take any s > vi
2 . Similarly, due to the strong MLRP we have F (x|s) <

F (x|vi − s) for all xi ∈ (0, 1). Thus,∫ 1

0
f(x|vi − s)F (x|s)dx <

∫ 1

0
f(x|vi − s)F (x|vi − s)dx = 1

2 .

Proof of Lemma 3. Consider statement 1. of the Lemma. For all realizations xj ∈
[0, 1], we have:
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HK(xj|βS, βT , XT
j ) =

Pr(XT
j ≤ xj, β

S(XK
i ) ≥ βT (XT

j ))
Pr(βS(XK

i ) ≥ βT (XT
j )) . (1.18)

The event that the opponent has signal realizationXT
j = xj and bidder i has a higher

signal when learning about K ∈ {S, Ti} has density Pr(βSi (XK
i ) ≥ βTj (xj))fT (xj). Note

that Pr(βS(XT
i ) ≥ βT (xj)) = Pr(βS(XS

i ) ≥ βT (xj)) due to Assumption IN and the
same marginal distribution of XS

i and XT
i in Observation 1. Therefore, the numerator

can be rewritten in the following way and does not depend on the information channel
of bidder i:

∫ xj

0
Pr(βS(XS

i ) ≥ βT (x̃j))fT (x̃j)dx̃j =
∫ xj

0
Pr(βS(XT

i ) ≥ βT (x̃j))fT (x̃j)dx̃j.

Next, I establish that the the denominator in Equation 1.18 is equal in CE and in DS.
By Lemma 1, we have for all vi, Pr(βS(XS

i ) ≥ βT (XT
j )|vi) = Pr(βS(XT

i ) ≥ βT (XT
j )|vi).

Hence,

Pr(βS(XS
i ) ≥ βT (XT

j )) =
∫
V

Pr(βS(XS
i ) ≥ βT (XT

j )|vi)hV(vi)dvi

=
∫
V

Pr(βS(XT
i ) ≥ βT (XT

j )|vi)hV(vi)dvi

= Pr(βS(XT
i ) ≥ βT (XT

j )).

This establishes statement 1., as learning about both value components leads to the
same numerator and denominator in Equation 1.18.

Next, consider statement 2. I show that when bidder i faces a XS
j -type opponent,

for all xj ∈ (0, 1) we have HS(xj|βS, βS, XS
j ) < HT (xj|βS, βS, XS

j ). As both bidders
follow the same bidding function βS, the event of a win of bidder i translates into the
event of having a higher signal than his opponent. I depict the cumulative distributions
of the looser’s signal as an integral over s by exploiting conditional independence in
Assumption CI.

The joint event of bidder i winning when learning XS
i and bidder j having a sig-

nal realization XS
j = xj has density

∫ 1
0 f

S(xj|s)
[
1− F S(xj|s)

]
h(s)ds. If bidder i

instead learns about XT
i , his signal does not depend on S. Then, the joint event

of him winning and his opponent having a signal realization XS
j = xj has density∫ 1

0 f
S(xj|s)

[
1− F T (xj)

]
h(s)ds =

[
1− F T (xj)

] ∫ 1
0 f

S(xj|s)h(s)ds =
[
1− F T (xj)

]
f s(xj).

Due to Assumption A1, I drop the superscripts of the signal distributions in the follow-
ing. For all xj ∈ (0, 1), we have

HS(xj|βS, βS, XS
j ) = 1

Pr(XS
i ≥ XS

j )

∫ xj

0

∫ 1

0
f(x̃j|s)(1− F (x̃j|s))h(s)dsdx̃j.

HT (xj|βS, βS, XS
j ) = 1

Pr(XT
i ≥ XS

j )

∫ xj

0

∫ 1

0
f(x̃j|s)(1− F (x̃j))h(s)dsdx̃j.
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Note that by Corollary 1, Pr(XS
i ≥ XS

j ) = Pr(XT
i ≥ XS

j ) = 1
2 . Hence,

HS(xj|βS, βS, XS
j )−HT (xj|βS, βS, XS

j ) = (1.19)

= 2
∫ xj

0

∫ 1

0
f(x̃j|s)(F (x̃j)− F (x̃j|s))h(s)dsdx̃j (1.20)

= 2
[∫ xj

0
F (x̃j)

∫ 1

0
f(x̃j|s)h(s)dsdx̃j −

∫ xj

0

∫ 1

0
f(x̃j|s)F (x̃j|s))h(s)dsdx̃j

]
(1.21)

= 2
[∫ xj

0
F (x̃j)f(x̃j)dx̃j −

∫ xj

0

∫ 1

0
f(x̃j|s)F (x̃j|s))h(s)dsdx̃j

]
(1.22)

= 2
(
F (xj)2

2 −
∫ 1

0

∫ xj

0
f(x̃j|s)F (x̃j|s)dx̃jh(s)ds

)
(1.23)

=
(
F (xj)2 −

∫ 1

0
F (x̃j|s)2h(s)ds

)
. (1.24)

By definition, it holds that F (xj) =
∫ 1

0 F (xj|s)h(s)ds. This and the strict Cauchy-
Bunyakovsky-Schwartz inequality yield for all xj ∈ (0, 1),

F (xj)2 =
[∫
s
F (xj|s)h(s)ds

]2
<
∫
s
h(s)ds︸ ︷︷ ︸

=1

∫
s
F (xj|s)2h(s)ds.

For all xj ∈ (0, 1), the last inequality is strict, as F (xj|s) is not constant in the
variable s due to the strong MLRP.33 This establishes that Equation 1.24 is negative
for all xj ∈ (0, 1).

Finally, consider statement 3. If βS(1) ≤ βT (0), expected payment against a XT
j -

type is trivially zero in DS and in CE with (XS
i , β

S). If βS(1) ≤ βT (0), Lemma 1.
establishes that the expected payment in DS and the candidate equilibrium is also
the same when facing a XT

j -type opponent, conditional on a win. As in both cases,
the winning probability is also the same due to independence, this also holds for the
unconditional expected payment:

EP (XS
i , β

S|XT
j , β

T ) = EP (XT
i , β

S︸ ︷︷ ︸
DS

|XT
j , β

T ).

Statement 2. establishes that when facing a XS
j -type opponent, the expected pay-

ment distribution conditional on a win with DS is dominated by the payment distri-
bution of the candidate equilibrium after XS

i . As by assumption, bidding function βS
is increasing, FOSD implies a higher expected payment in the candidate equilibrium.
Finally, as winning probability overall is the same in DS and the candidate equilibrium,
this implies that the unconditional expected payment in DS is also lower than in the

33This is because the Cauchy-Bunyakovsky-Schwartz inequality
[∫ b
a
c(s)d(s)ds

]2
≤
∫ b
a
c(s)2ds ·∫ b

a
d(s)2ds is strict unless c(s) = α · d(s) for some constant α (see Hardy et al., 1934, Chapter VI). In

above argument, c(s) =
√
h(s), and d(s) =

√
h(s)F (x|s). Note that F (x|s) is not constant in s due

to the strong MLRP unless x ∈ {0, 1}.
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candidate equilibrium. Hence, we have

EP (XS
i , β

S|XS
j , β

S) > EP (XT
i , β

S︸ ︷︷ ︸
DS

|XS
j , β

S).

Therefore, overall expected payment in Equation 1.7 is strictly less under DS than
after learning XS

i in the candidate equilibrium with (XS
i , β

S).

Proof of Theorem 1. Corollary 1 establishes the same expected gain and total win-
ning probability in DS and CE. Lemma 3 establishes a strictly lower payment under
DS than in CE. This rules out any ρ∗ > 0 in equilibrium, and establishes the unique
information selection ρ∗ = 0 if an equilibrium exists.

The next steps establish existence. With ρ∗ = 0, bidders are in an IPV setup.
For fixed ρ∗ = 0, it is a well known result that bidding βT (x) = E

[
Vi|XT

i = x
]
is

an equilibrium in weakly dominant strategies. Whichever profitable deviation exists
without information choice, will also exist in this setup with endogenous information
selection. Thus, after learning XT

i and expecting the opponent to learn about Tj, above
bidding function is a weakly dominant strategy.

Therefore, the only deviation we need to consider for bidder i is to deviate and
learn about common component. After seeing XS

i = x, bidder i is still in an IPV
setup. If his opponent also learns about his private component, bidder i has a weakly
dominant strategy to bid his posterior valuation E

[
Vi|XS

i = x
]
. By Observation 2, for

all x, E
[
Vi|XS

i = x
]

= E
[
Vi|XT

i = x
]

= βT (x). Hence, after deviating to the common
component, bidder i has the same best response after each signal realization, for any
signal source. As XS

i and XT
i are distributed with equal marginal distribution F (x)

and are both independent from XT
j (which the opponent always learns in a candiadte

equilibrium with ρ∗ = 0), the deviating to component S is not strictly profitable as
it induces the same expected utility as the caniddate equilibrium with ρ∗ = 0 when
bidding optimally.

Proof of Proposition 2. Let ρ∗ = 1 with bidding function βS be a candidate equi-
librium (CE). Fix the sum I = S + Ti of the two components for bidder i.

Consider first the expected payment. Note that the proof of Proposition 1 holds
step by step when instead of fixing vi, the variable I is fixed. That is, for all I,

Pr(XT
i ≥ XS

j |I) = Pr(XS
i ≥ XS

j |I) = 1
2 .

Holding the sum of the two components fixed, the winning probability in CE or in DS is
unchanged for the case of two bidders. Therefore, Lemma 3 holds. Expected payment
is strictly lower in DS than in the candidate equilibrium. This is because the proof of
Lemma 3 does only rely on the bidding function βS being strictly increasing, not on
any specific functional form. Therefore, varying the utility function does not change
the observation that expected payment is strictly less under DS than in CE.

Next, consider the expected gain from DS. Given the sum I, a feasible common
component realization lies in the interval s ∈ [s(I), s(I)] := [max{I − 1, 0},min{I, 1}].
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Denote by h(s|I) := h(s)h(I−s)
hI(I) the density of the common component conditional on I,

where the density of the sum of the two components I is hI(I) =
∫ 1

0 h(s)h(I − s)ds.
The cumulative distribution function of the common component S, conditional on

I and on bidder i winning in the CE is for s ∈ [s(I), s(I)]:

JS(s|I) := Pr(S ≤ s|XS
i ≥ XS

j , I)

= 1
Pr(XS

i ≥ XS
j |I)

∫ s

s(I)
h(s̃|I)

∫ 1

0
f(x|s̃)F (x|s̃)dx︸ ︷︷ ︸

= 1
2

ds̃

= 2
∫ s

s(I)
h(s̃|I)1

2ds̃.

JS(s|I) = 0 for all s ≤ s(I), where there exists no Ti large enough to sum up to I.
Furthermore, JS(s|I) = 1 for all s ≥ I.

Similarly, let the following be the cumulative distribution function of the common
component S, conditional on I and on bidder i winning when following DS.

JT (s|I) = Pr(S ≤ s|XT
i ≥ XS

j , I)

= 1
Pr(XT

i ≥ XS
j |I)

∫ s

s(I)
h(s̃|I)

∫ 1

0
f(x|I − s̃)F (x|s̃)dxds̃

= 2
∫ s

s(I)
h(s̃|I)

∫ 1

0
f(x|I − s̃)F (x|s̃)dx︸ ︷︷ ︸

4(s|I)

ds̃.

As before, JT (s|I) = 0 for all s < s(I) and JT (s|I) = 1 for all s ≥ s(I).
Next, I show that JS(s|I) is FOSD over JT (s|I). Take any s ≤ I

2 . Note that the
proof of Lemma 2 holds step-by-step, if conditioning on I instead of vi. By Lemma
2, 4(s|I) ≥ 1

2 . Therefore, for all s ≤ I
2 , we have JT (s|I) ≥ JS(s|I). Note that at

s = s(I), JS(s(I)|I) = JT (s(I)|I) = 1, as no higher S can feasibly occur if the sum of
the two components is I. Assume by contradiction that there exists a s′ ∈ ( I2 , s(I)) such
that JT (s′|I) < JS(s′|I). Then, again due to Lemma 2, 4(s|I) < 1

2 for all s ∈ ( I2 , I].
Therefore, if JT (s′|I) < JS(s′|I), we must have JT (s′′|I) < JS(s′′|I) for all s′′ > s′.
However, this contradicts JS(I|I) = JT (I|I) = 1. This establishes FOSD of JS over
JT : for all s ∈ [s(I), s(I)], we have JT (s|I) ≥ JS(s|I).

Conditional on the sum of the two components being I and bidder i winning, his
expected gain in the CE is: ∫ s(I)

s(I)
u(s, I − s)dJS(s|I).

Note that with Vi = S + Ti, the above integral reduces to u(s, I − s) = I.
Conditional on the sum of the two components being I and bidder i winning, the
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expected gain from DS is: ∫ s(I)

s(I)
u(s, I − s)dJT (s|I).

By assumption (property 3. of the generalized utility function), u(s, I − s) is a
non-increasing function. Thus, FOSD implies that

∫ 1
0 u(s, I − s)jS(s|I)ds ≤

∫ 1
0 u(s, I −

s)jT (s|I)ds. This establishes the result: DS leads to a weakly higher expected gain
conditional on a win, the same probability of a win, and a strictly lower payment.

Proof of Proposition 3. The cumulative distribution of the highest signal among
N − 1 bidders who all learn about the common component S = s is

G(y) := Pr(Y S
i ≤ y) =

∫ 1

0
F (y|s)N−1h(s)ds.

For vi = 0, we have s = 0 and ti = 0, bidder i’s signal follows density f(x|0) for any
information selection. The probability of winning for bidder i is

∫ 1
0 f(xi|0)F (x|0)N−1dxi =

1
N
. For vi = 2 (i.e., s = 1 and ti = 1), winning probability of bidder i with any signal is∫ 1

0 f(x|1)F (x|1)N−1dx = 1
N
. This is because in those two extreme examples, the signal

is equally distributed in signals XT
i and XS

i .
Next, consider a total value for bidder i at vi = vi ∈ (0, 2). Define the feasible set

of the common component by S(vi), and let ŝ(vi) be the common component disecting
this interval, as defined in the proof of Proposition 1. Similarly, let h(s|vi) := h(s)h(vi−s)

hV (vi) .
As before, we have

∫
S(vi)

h(s)h(vi−s)
hV (vi) ds = 1 and h(s|vi) = h(vi − s|vi).

First, consider the probability of bidder i having the highest signal realization, if
bidder i observes the outcome of the experiment XS

i about the common component.

Pr(XS
i ≥ Y S

i |vi) =
∫
S(vi)

∫ 1

0
f(x|s)F (x|s)N−1h(s|vi)dxds

=
∫
S(vi)

[ 1
n
F (x|s)N

]1

0︸ ︷︷ ︸
=1/N

h(s|vi)ds

= 1
N

∫
S(vi)

h(s|vi)ds = 1
N
.

Learning about the common component as all the other bidders yields a probability
of 1

N
of having the highest signal realization, for every realization of vi in this symmetric

setup.
Next, consider the probability of bidder i having the highest signal realization, if he

learns XT
i and is the only bidder learning about his private component.

Pr(XT
i ≥ Y S

i |vi) =
∫
S(vi)

∫ 1

0
f(x|vi − s)F (x|s)N−1h(s|vi)dxds. (1.25)
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I use the following abbreviation for clarity of presentation: λ(s, x|vi) := h(s|vi)F (x|s)N−2.
Then, the probability of having the highest signal with XT

i can be expressed as

Pr(XT
i ≥ Y S

i |vi) =
∫
S(vi)

∫ 1

0
f(x|vi − s)F (x|s)λ(s, x|vi)dxds

=
∫
S(vi)

∫ 1

0

N − 1
N

f(x|vi − s)F (x|s)λ(s, x|vi)dxds

+
∫
S(vi)

∫ 1

0

1
N
f(x|vi − s)F (x|s)λ(s, x|vi)dxds.

Integrating the inner integral of the second summand by parts yields

∫
S(vi)

∫ 1

0

1
N
f(x|vi − s)F (x|s)λ(s, x|vi)dxds

=
∫
S(vi)

1
N

∫ 1

0
f(x|vi − s)F (x|s)N−1dxh(s|vi)ds

=
∫
S(vi)

1
N

[F (x|vi − s)F (x|s)N−1
]1

0︸ ︷︷ ︸
=1.

−
∫ 1

0
(N − 1)f(x|s)F (x|s)N−2F (x|vi − s)dx

h(s|vi)ds

= 1
N

∫
S(vi)

h(s|vi)ds︸ ︷︷ ︸
=1.

−
∫
S(vi)

∫ 1

0

N − 1
N

f(x|s)F (x|s)N−2F (x|vi − s)h(s|vi)dxds

= 1
N
−
∫
S(vi)

∫ 1

0

N − 1
N

f(x|s)F (x|vi − s)λ(s, x|vi)dxds.

Plugging this back into equation 1.26 gives the following expression:

Pr(XT
i ≥ Y S

i |vi) = (1.26)
1
N

+
∫
S(vi)

∫ 1

0

N − 1
N

[f(x|vi − s)F (x|s)− f(x|s)F (x|vi − s)]λ(s, x|vi)dxds. (1.27)

I show that the second summand in equation 1.27 is non-negative. For clarity of
presentation, define µ(s, x|vi) := f(x|vi−s)F (x|s)−f(x|s)F (x|vi−s). Plugging in this
notation and changing the order of integration in equation 1.27 yields∫

S(vi)

∫ 1

0

N − 1
N

[f(x|vi − s)F (x|s)− f(x|s)F (x|vi − s)]λ(s, x|vi)dxds (1.28)

=
∫ 1

0

∫
S(vi)

N − 1
N

µ(s, x|vi)λ(s, x|vi)dsdx (1.29)

=N − 1
N

∫ 1

0

[∫ ŝ(vi)

max{vi−1,0}
µ(s, x|vi)λ(s, x|vi)ds+

∫ min{vi,1}

ŝ(vi)
µ(s, x|vi)λ(s, x|vi)ds

]
dx.

(1.30)
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Note that the second summand can be rewritten as∫ min{vi,1}

ŝ(vi)
µ(s, x|vi)λ(s, x|vi)ds =

∫ ŝ(vi)

max{vi−1,0}
µ(vi − s, x|vi)λ(vi − s, x|vi)ds

= −
∫ ŝ(vi)

max{vi−1,0}
µ(s, x|vi)λ(vi − s, x|vi),

where the first step was by changing the label of the integration variable, and the
second line followed from µ(s, x|vi) = −µ(vi−s, x|vi). Plugging this back into equation
1.30 yields:

N − 1
N

∫ 1

0

∫ ŝ(vi)

max{vi−1,0}
µ(s, x|vi) [λ(s, x|vi)− λ(vi − s, x|vi)] dsdx.

Consider the expression in the square brackets in the inner integral first,

λ(s, x|vi)− λ(vi − s, x|vi) = h(s|vi)
(
F (x|s)N−2 − F (x|vi − s)N−2

)
.

For N = 2, the expression above is zero, as the term in the brackets is zero for
any s, x or vi, which establishes the theorem for two bidders: winning probability in
equation 1.27 is 1

2 .
For N > 2, the strong MLRP and thus, FOSD34 imply: for all a < b and for all

x ∈ (0, 1), we have F (x|a) > F (x|b). As the integral is below ŝ(vi), we have s < vi − t.
Therefore, for x ∈ (0, 1):

λ(s, x|vi)− λ(vi − s, x|vi) > 0.

Furthermore, note that µ(s, x|vi) ≥ 0 is a reverse hazard rate condition f(x|vi −
s)F (x|s) − f(x|s)F (x|vi − s) ≥ 0. A well-known implication of the MLRP is that for
all a < b, we have reverse hazard rate dominance

f(x|a)
F (x|a) ≤

f(x|b)
F (x|b) .

Due to s < vi − s, it immediately follows that µ(s, x|vi) ≥ 0 in the entire domain
of integration. This establishes the non-negativity in the second summand of equation
1.27. Thus, for N > 2 and x ∈ (0, 1) we have Pr(XT

i ≥ Y S
i |vi) > 1

N
.

Proof of Lemma 4. As bidders follow the same bidding function βTf in the candidate
equilibrium and in DS

f , after any information choice a bidder wins if and only if he
has the highest signal realization.

In the candidate equilibrium, there are four possibilities for bidder i:

1. S = Ti = Tj with probability ε2 (denote the observed signals XT=S
i and XT=S

j ),
34For implications of the MLRP, like FOSD and reverse hazard rate dominance, see Milgrom and

Weber (1982).
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2. Ti 6= S 6= Ti with probability (1 − ε)2 (denote the observed signals XT 6=S
i and

XT 6=S
j ),35

3. Ti = S 6= Tj with probability ε(1− ε),

4. Ti 6= S = Tj with probability ε(1− ε).

Consider the winning probability of bidder i conditional on vi in each of those four
possibilities. In possibility 1., if Vi = vi, this implies that S = Ti = vi/2.

Pr(XT=S
i ≥ XT=S

j |vi) =
∫ 1

0
f(xi|S = vi/2)F (xi|S = vi/2)dxi = 1

2 .

In possibility 4., the winning probability is:

Pr(XT 6=S
i ≥ XT=S

j |vi) =
∫ 1

0

∫ 1

0
f(xi|vi − s)F (xi|s)dxi

h(s)h(vi − s)
hV(vi)

ds = 1
2 .

The last equality follows from the proof of Proposition 1 (it is the same equation as
Equation 1.25) for the case of two bidders.

Furthermore, note that winning probabilities conditional on a win in possibility 2.
and 3. are the same, as the following shows:

Pr(XT=S
i ≥ XT 6=S

j |vi) =
∫ 1

0

∫ 1

0
f(xi|s)F (xi)dxi

h(s)h(vi − s)
hV(vi)

ds

Pr(XT 6=S
i ≥ XT 6=S

j |vi) =
∫ 1

0

∫ 1

0
f(xi|t)F (xi)dxi

h(t)h(vi − t)
hV(vi)

dt.

Therefore, in the candidate equilibrium, total winning probability conditional on vi
is: (

ε2 + ε(1− ε)
)

︸ ︷︷ ︸
1. and 4.

1
2 +

(
(1− ε)2 + ε(1− ε)

)
︸ ︷︷ ︸

2. and 3.

Pr(XT=S
i ≥ XT 6=S

j |vi)

= ε

2 + (1− ε) Pr(XT=S
i ≥ XT 6=S

j |vi).

If the bidder deviates to DS
f instead, he always observes a signal XS

i based on
the realization of S. For his opponent, there are two possibilities: either his opponent’
private component is Tj 6= S with probability (1 − ε), or it is Tj = S with probability
ε. Winning probabilities in both cases conditional on vi are:

Pr(XS
i ≥ XT=S

j |vi) =
∫ 1

0
f(xi|S = vi/2)F (xi|S = vi/2)dxi = 1

2 .

Pr(XS
i ≥ XT 6=S

j |vi) =
∫ 1

0

∫ 1

0
f(xi|s)F (xi)dxi

h(s)h(vi − s)
hV(vi)

ds = Pr(XT=S
i ≥ XT 6=S

j |vi).

35Note that the probability of both components S and Ti being drawn independently but having the
same realization has zero probability as the distribution of each component has no mass points.
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Therefore, total winning probability of bidder i conditional on DSf is also
ε

2 + (1− ε) Pr(XT=S
i ≥ XT 6=S

j |vi).

This establishes that winning probability is equal at every vi in the candidate equi-
librium and DSf . Total expected gain is:∫

V
vihV Pr(i wins|vi)dvi

Therefore, overall expected gain in the candidate equilibrium and in the DSf is the
same.

Proof of Lemma 5. Consider the distribution of signals of bidder i conditional on
winning in the candidate equilibrium, i.e. the distribution of the first order statistic.
For the same four possibilities as in Lemma 4, we have the following distributions:

1. M(xi|Ti = S, Tj = S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti = S = Tj) = HS(xi|βSf , βSf , XS
j ),

2. M(xi|Ti 6= S, Tj 6= S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti 6= S 6= Tj) = HT (xi|βSf , βSf , XT
j ),

3. M(xi|Ti = S, Tj 6= S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti = S 6= Tj) = HS(xi|βSf , βSf , XT
j ),

4. M(xi|Ti 6= S, Tj = S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti 6= S = Tj) = HT (xi|βSf , βSf , XS
j ).

The last inequalities followed by definition of HK as defined in the main part of
section 7.1. Due to independence between the signals of the bidders, and the same
marginal distribution of both signals of i, we have

HT (xi|βSf , βSf , XT
j ) = HS(xi|βSf , βSf , XT

j ).

Furthermore, as established in the main text of section 7.1 in Inequality 1.14, in-
creasing correlation decreases the first order statistic. That is, for all xi ∈ (0, 1), we
have

HT (xi|βSf , βSf , XS
j ) < HS(xi|βSf , βSf , XS

j ).

Hence, the overall distribution of the first oder statistic in the candidate equilibrium
is

MC(xi) = ε2︸︷︷︸
1.

HS(xi|βSf , βSf , XS
j ) + ε(1− ε)︸ ︷︷ ︸

4.

HT (xi|βSf , βSf , XS
j )

+
(
(1− ε)2 + ε(1− ε)

)
︸ ︷︷ ︸

2. and 3.

HT (xi|βSf , βSf , XT
j ).

If bidder i instead plays DSf , he observes always a signal about XS
i . With probabil-

ity ε, his distribution in case of a win is HS(xi|βSf , βSf , XS
j ) (if his opponent’s private and

common component are the same), and with probability (1− ε), his distribution in case
of a win is HS(xi|βSf , βSf , XT

j ). Thus, his overall distribution of his signal conditional
on winning is
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MDS(xi) = εHS(xi|βSf , βSf , XS
j ) + (1− ε)HS(xi|βSf , βSf , XT

j ).

In Inequality 1.14 I establish that for all xi ∈ (0, 1), we have HT (xi|βSf , βSf , XS
j ) <

HS(xi|βSf , βSf , XS
j ). This in turn implies that for all xi ∈ (0, 1), the distribution of

winning bids under the candidate equilibrium is FOSD over DSf .

MDS(xi) ≥MC(xi).

Therefore, expected payment is strictly higher under the candidate equilibrium than
in DSf .

Proof of Proposition 4. The proof follows by combining the following two results
as described in the main text. Lemma 4 shows that winning probability and expected
gain from the deviation strategy DSf is in the deviation strategy and in the candidate
equilibrium. Lemma 5 establishes that DSf leads to a strictly lower expected payment.
Hence, DS is a strictly profitable deviation.

Proof of Proposition 5. The proof is by contradiction. I show that expected payoff
fromDSa is higher than in a CE with ρ∗ = 1. Assume that in the candidate equilibrium,
ρ∗ = 1 and bidders follow a strictly increasing pure bidding function βSa (x). Denote by
Yi the highest signal realization of all bidders but bidder i.

The expected payment of bidder i in the CE is:∫ 1

0
βSa (xi)fS(xi)dxi.

The expected payment of bidder i from the DSa is:∫ 1

0
βSa (xi)fT (xi)dxi.

Due to symmetry, for all x ∈ [0, 1], we have fT (xi) = fS(xi) according to Obser-
vation 1. Hence, the expected payment in the candidate equilibrium is the same as in
DSa.

Next, consider the expected gain from participating in the auction. Fix a value vi
for bidder i, as in the preceding sections. In CE and in DSa, bidder i wins if he has the
highest signal realization, as in both, bidders follow the same bidding function βSa (·).
Formally, the winning probability of bidder i for a fixed value vi under both regimes is:

CE: Pr(βSa (XS
i ) ≥ βSa (Y S

i )|vi) = Pr(XS
i ≥ Y S

i |vi)︸ ︷︷ ︸
?A

,

DSa : Pr(βSa (XT
i ) ≥ βSa (Y S

i )|vi) = Pr(XT
i ≥ Y S

i |vi)︸ ︷︷ ︸
?AA

.

For N > 2, by Proposition 3, the probability of a win is strictly higher with DSa
than with CE for all vi ∈ (0, 1). Hence, ?AA > ?A for all vi ∈ (0, 2). Winning probability
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in DSa is strictly higher than in CE for almost all vi, for the same expected payment.
DSa is a strictly profitable deviation.

Proof of Lemma 6. Fix ρ∗ = 0. This is the standard symmetric IPV setting, with
the bidding function in the main text being a best response if all other bidders follow
it. That is, given fixed ρ∗ = 0, this bidding function consitutes a best response for both
bidders.

The only part of the proposition left to be shown, is that no bidder has a profitable
deviation that involves a different information choice variable ρi. Consider bidder i
deviating to ρi 6= 0. Note that the expected utility is a linear combination of the payoff
after observing XS

i with probability ρi, and XT
i with probability (1 − ρi). Therefore,

it suffices to consider the case ρi = 1 and showing that it does not lead to a strictly
higher payoff than ρi = 0.

Due to the Independence Assumption IN, neither XT
i nor XS

i contain information
about the opponent’s signal due to Assumption IN. Furthermore, the value of the
object conditional on a win does not depend on bidder i’s information choice due to
Observation 2 and the irrelevance of the opponent’s information. Therefore, as the
choice of ρi impacts neither the joint distribution, nor expected valuation conditional on
a win, each bidder is indifferent between each ρi ∈ [0, 1] and plays the same best response
after any signal realization (no matter its source). Therefore, the classic equilibrium
of the all-pay auction is also an equilibrium of this game that involves information
selection.

49



50



Chapter 2

Asymmetric Budget Constraints
in a First Price Auction

1. Introduction

Auctions are a widely used method of allocating objects like art or wine, property right
or in a procurement setting. For participants in an auction, their willingness to pay
might not correspond to their ability to pay. Budget constraints arise e.g. due to credit
limits and imperfect capital markets. Budget constraints influence bidding strategies,
break the revenue equivalence of standard auctions and lower expected revenue.

Research on standard auctions with budget constrained bidders concentrates on
budgets drawn from identical distributions. Yet, in many realistic scenarios, bidders
have asymmetric expectations about each others’ budgets. The consequences of this
asymmetry on bidding behavior and on revenue in the first price auction (FPA) has not
been previously studied. Asymmetry in budget constraints can arise in a narrow market,
e.g. a telecommunication sector with less than a dozen major players: as there are only
a few incumbents, bidders have noisy information about the other bidders and their
budgets. Information might stem from previous interaction or from publicly available
information, like annual budget reports. Moreover, asymmetric budget distributions
might be intended by the auction designer: the auctioneer can reveal the identities of
the participants before the start of an auction via a participation register.

The following example illustrates the occurrence of asymmetric budget distributions.
Consider the spectrum auction of the U.S. Federal Communications Commission (FCC):
30 bidders registered (Salant, 1997) for the auction in which the rights to provide
personal communication services were sold. Assessing the budget constraint of rival
bidders was a major part of the preparation before the auction (Salant, 1997). GTE
was one of the largest telecommunication firms in the U.S.. It seems reasonable to
assume that the expectations of GTE about the budget of a smaller bidder like Poka
Lambro, differed from the expectation of the smaller bidder about the resources of
GTE.

The contribution of this paper is to identify how asymmetric budget distributions
impact bidding and revenue in the FPA. I develop a new solution technique that builds
on an indirect utility approach by Che and Gale (1996). This technique allows to
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characterize the entire set of equilibria1 via a closed-form solution for expected utility,
bidding distributions and revenue. I provide a uniqueness and existence result, and
show that asymmetric budget constraints can break the revenue dominance of the first
price auction over the second price auction.

Two bidders are competing for one object in a first price auction. Their valuations
are common knowledge. Uncertainty stems from the budget dimension. Each bidder
has a budget constraint, that is private and drawn independently from different distri-
butions. Budget constraints are hard. That is, there is no credit market, and no bidder
can bid more than his budget. The impact of budgets is twofold: budget constraints
directly limit the ability to bid. Moreover, budgets have an indirect strategic effect: if
the opponent is constraint, the necessary bid to outbid him might be lower than without
the constraints. The constrained bidder anticipates this inference of his opponent and
shades his bid down even further, and so forth. The extent of these strategic effects
varies with the asymmetry in budget distributions.

I solve the FPA, developing a new approach build on Che and Gale (1996). They
restrict attention to symmetric equilibria and strictly monotonic bidding functions, for
bidders with symmetric budget constraints and the same public valuation for the object.
Che and Gale (1996) use a guess and verify approach for the equilibrium utility. The
expected utility in their model always equals some exogenous lower bound on utility.
This lower bound is the best utility a bidder can achieve if his opponent follows a naive
strategy: always bidding his entire budget. Once equilibrium utility is pinned down,
symmetric and strictly monotonic bidding strategies in equilibrium can be constructed.

In my model, I allow for asymmetric budget distributions and different valuations.
I pin down the relationship between a lower bound utility and the actual equilibrium
utility. This relationship is not an equality anymore as in Che and Gale (1996).

If the probability of the opponent having a budget sufficiently close to to one’s
own budget is high enough (when the reverse hazard rate (RHR) of both bidders is
above a certain threshold), the unique equilibrium bidding strategy is to bid the entire
budget and the equilibrium utility coincides with the lower bound. The intuition is the
following: it is profitable to bid the entire budget, if the gain in winning probability
outweighs the higher payment in case of a win. This consideration applies when a
bidder is sufficiently weak: when his budget is low relative to the value of the object
and the budget distribution of the opponent. As long as this holds, asymmetry in
budget distributions does not influence bidding behavior.

If at least one RHR drops below the threshold, mass points in strategies generically
occur and at least one bidder achieves a utility strictly above his auxiliary product.
When the value of the object and the threat of being poorer than the opponent does
not justify bidding the entire budget anymore for at least one bidder, mass points in
bidding behavior arise and bidders make each other indifferent by bidding within some
interval. Mass points are stable under budget constraints. Those bidders who would
like to deviate and bid at the mass point or slightly above, are restrained from deviating
by their binding budget constraints.

The uniqueness result pins down a unique equilibrium utility and unique bidding cu-
mulative distribution functions for both bidder. Bidding strategies are uniquely pinned

1I do not restrict attention to symmetric equilibria nor to monotonic bidding strategies.
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down in the budget domain, where both bidders are bidding their entire budget. Oth-
erwise, mass points are part of the equilibrium and a multiplicity of non-monotonic
equilibrium bidding strategies in indifference regions might arise, that all satisfy the
unique cumulative bidding distributions and yield the same unique expected utility.

I show existence by providing feasible and optimal weakly monotonic bidding func-
tions. A strictly monotonic equilibrium will usually not exist. Moreover, I show that
the symmetric equilibrium utility that Che and Gale (1996) find is the only equilibrium
utility their model admits if assuming budget distributions are log-concave; there are no
other asymmetric equilibrium utilities. For the special case of RHR dominance in the
budget distributions, the weak bidder bids more aggressively than the strong bidder in
monotonic strategies. This is in line with the literature on asymmetrically distributed
valuations in Maskin and Riley (2000), where the weaker bidder (with regards to the
valuation distribution) bids more aggressively.

A revenue-maximizing auctioneer should never disclose the identities of the par-
ticipants in an auction (e.g. publish a participation register), if bidders are ex-ante
symmetric and have identical valuation for the object. The best case scenario for the
auctioneer is when utility of the bidders is equal to the lower bound on utility. This is
the case in any equilibrium under symmetric budget distributions with equal valuations.
Whenever asymmetry becomes sufficiently large, the lower bound may no longer bind
for the equilibrium utility.

2. Related Literature

Che and Gale (1996, 1998, 2000) are amongst the first to analyze auctions with budget
constrained bidders. In their seminal contributions, they derive the equilibrium for
auctions with budget constraints and show that revenue equivalence no longer holds
when bidders are symmetrically budget constrained. Research on budget constraints in
standard 1-object auctions (see e.g. Che and Gale, 1996, 1998; Kotowski, 2016; Kotowski
and Li, 2014) considers symmetric budget distributions. Literature on asymmetrically
budget constrained bidders is scarce. Malakhov and Vohra (2008) derive the optimal
auction with two bidders, where only one bidder is constrained and his identity is
common knowledge. Some literature on multiple object auctions (see e.g. Benoît and
Krishna, 2001; Dobzinski et al., 2012) considers asymmetric budgets, however, relies
upon common knowledge of budget realizations. I merge the assumption of asymmetric
budgets into a framework, that allows for budget realization being private.

The closest paper to my framework is Che and Gale (1996). They consider many
bidders with identical commonly known valuation for the object. Budget realizations of
the bidders in Che and Gale (1996) are private, identical and independent draws from
the same distribution. My model generalizes their model in two directions: first, in my
model budgets are drawn from asymmetric distributions. Second, valuations for the
object may differ between bidders. This allows me to capture the effect of valuation
heterogeneity on bidding strategies. In contrast to Che and Gale (1996), I do not restrict
attention to symmetric equilibria, but I impose log-concavity on budget distribution.

The analysis of this paper relates to asymmetric auctions, in which the valuations
of bidders are drawn from non-identical distributions, and bidders do not have bud-
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get constraints (see the seminal contribution of Maskin and Riley, 2000). Analytical
solutions exist for only few particular distributions (see Maskin and Riley (2000) and
Kaplan and Zamir (2012) for uniform distributions, Plum (1992) and Cheng (2006)
for power distributions). Asymmetric auctions have been approached by perturbation
analysis (see e.g. Fibich and Gavious, 2003; Fibich et al., 2004; Lebrun, 2009). Nev-
ertheless, even for two bidders with asymmetrically drawn valuations from the same
support, no general closed-form solution is known. Standard auctions no longer yield
the same revenue under asymmetric value distributions. Whether the FPA or the SPA
yields higher revenue depends on the asymmetry of the value distributions (see e.g.
Maskin and Riley (2000), Cantillon (2008), Gavious and Minchuk (2014)).

If bidders are asymmetric not in the valuation, but in the budget dimension, my
results apply: in contrast to the literature on asymmetry in valuations, a closed-form
solution exists. Revenue can be easily computed. A unique equilibrium utility and bid-
ding distribution exist under mild regularity conditions. This holds for all log-concave
budget distributions with same support, without having to impose any stochastic dom-
inance order assumption. Hereby, I do not restrict attention to symmetric or monotonic
bidding functions, and I allow for atoms in strategies.

The paper is organized as follows. First, I introduce a simplified version of the model
with a strong and a weak bidder in the next section 3. I show how asymmetry influences
the equilibrium bidding behavior and revenue of the auctioneer. In the next section,
I introduce the general model 4 for different valuations and arbitrary distributions of
budgets. In section 5 I introduce the solution technique via lower bound on equilibrium
utility. I show how to deduce the unique equilibrium utility via this lower bound. In
section 6 I prove existence via pure strategy weakly monotonic bidding strategies and
analyze bidding aggression as a function of asymmetry. Section 7 looks at a revenue
comparison between standard auctions, restricts the assumption that both bidders have
to be budget constrained with positive probability and analyzes information disclosure
about budget distributions.

3. Example

Consider a simplified version of the model: two firms compete in a FPA for an object
worth v to both. Firm S is the strong bidder in the sense of first order stochastic
dominance (FOSD), with a budget distribution governed by the cumulative distribution
function (cdf) FS(w) = w2 on [0, 1]. Firm W is the weaker bidder; his budget is
distributed with cdf FW (w) = w on [0, 1]. Bids can never strictly exceed the budget,
and no ex-post renegotiations are possible.

Let the value of the object be sufficiently high, v > 2. Both bidders are always
budget constrained under any budget realization. That is, no bidder can ever bid his
true value for the object.

Let bi(w) be the bid of bidder i ∈ {S,W} with budget realization w. In equilibrium,
both bidders always bid their entire budget for any realization of the budget2: bS(w) =
bW (w) = w, ∀w ∈ [0, 1]. If the opponent sticks to this strategy, it is the best response
to also bid the entire budget: the expected payoff from a bid b of a strong bidder,

2Always bidding the entire budget is the unique equilibrium, as I show in section 5.
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(v − b)b, and of a weak bidder, (v − b)b2, are strictly increasing in the bid b over the
entire budget domain. The object is so valuable (consider v → ∞), that the increase
in winning probability from increasing the bid always offsets the increase in payment
in case of a win.

If v = 1, bidding the full budget on the entire domain is not an equilibrium anymore.3
Even if the weak bidder is bidding his entire budget on the full domain, the strong
bidder would still never want to bid above 1/2, which is the arg max of (1 − b)b: the
probability mass of the weak bidder being richer than 1

2 is so low, that the small increase
in winning probability does not offset a higher payment in relation to the object value.
The following bidding strategies are an equilibrium in the class of weakly monotonic
bidding strategies.

bS(w) =


w if w < 1

2 ,
1
2 if w ∈ [1

2 ,
1√
2 ],

1− 1
4w2 otherwise,

and bW (w) =

w if w < 1
2 ,

1− 1
4w otherwise.

Figure 2.1 illustrates the two bidding functions for v = 1 as a function of the budget.
The blue solid line is the bidding function of the strong bidder, the green dashed line is
the bidding function of the weak bidder. In equilibrium, both bidders bid their entire
budget for budget realizations in [0, 1

2 ]. By the same argument as for v > 2, expected
payoff from a bid b is strictly increasing in the bid for b ∈ [0, 1/2]. Bidder S places
a mass point on 1

2 , and bids below the bidder W for all higher budgets. The highest
possible bid 3

4 is the same for both bidders, and strongly below the value of the object.

Figure 2.1: Bidding functions for v = 1. Figure 2.2: Equilibrium utilities for v =
1.

Figure 2.2 shows the equilibrium utility associated with these bidding strategies.
Both bidders have strictly increasing utility for any budget below 1

2 . Bidder S admits
a mass point at 1

2 . He has the same equilibrium utility for any budget above 1
2 ; thus,

3A similar argument holds for all v ∈ (0, 2).
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he is indifferent between all corresponding bids in [1
2 ,

3
4 ], including bidding at the mass

point. This mass point raises the utility of the weak bidder to the same level as his
utility for budgets above 1

2 . A weak bidder with a budget at the mass point (the green
dot resulting from an equal tie breaking rule) or slightly below cannot deviate and
slightly increase his bid, because his budget binds. A weak bidder with a high budget
is indifferent for any bid between (1

2 ,
3
4 ] and has therefore also no incentive to deviate.

Thus, binding budget constraints enable a mass point as part of an equilibrium.
This section contained an example for how bidding strategies and equilibrium util-

ities look under asymmetrically distributed budgets. Mass points arise, as some prof-
itable deviations are unfeasible due to binding budget constraints. This allows mass
points to be part of the equilibrium. In the next section, I show how the unique equi-
librium utility can be derived if bidders value the object differently and for arbitrary
budget distributions without a FOSD assumption.

4. Model

An auctioneer (she) sells one object without value for her in a first price auction (FPA).
She employs an equal tie-breaking rule and no reserve price. There are 2 risk-neutral
bidders, indexed by i ∈ {1, 2}. Bidder i has valuation vi for the object. The valuation
tuple {v1, v2} is common knowledge for the bidders.

Each bidder (he) has a private budget wi, which is drawn independently from
an atom-free distribution with a continuous and differentiable cumulative distribution
function Fi(w) and probability density function fi(w). Both distribution functions
{Fi(w)}i=1,2 have common support [w,w] and are common knowledge. The probability
density functions are positive in the interior of the support: fi(w) > 0 ∀w ∈ (w,w),
and Fi(w) = 0 ∀i ∈ {1, 2}. Note that I do not impose any stochastic order between
distribution functions F1(w) and F2(w), e.g. about stochastic dominance.

Let min(v1, v2) > w. Both bidders are budget constrained with non-zero probabil-
ity4. Both budget distribution functions satisfy the following assumption:

Assumption 1
F1(w) and F2(w) satisfy log-concavity on (w,w).5

Equivalently, the reverse hazard rates (RHRs) fi(w)
Fi(w) are decreasing in w. If a bidder

i wins the object by placing a bid b, his quasilinear utility is vi − b.
A bidding strategy of bidder i maps his budget realization w into a probability

distribution over feasible bids, βi : [w,w] → ∆[0, w]. Let bi(w) be bid realization of
bidder i with budget w, to which strategy βi(w) assigns strictly positive probability.
Bidders have hard6 budget constraints: they cannot bid more than they have. A feasible
bidding strategy satisfies bi(w) ≤ w, for all bids of any budgets w.

4If at least one bidder is always unconstrained under any budget realization, this reduces to Bertrand
competition, which I analyze in section 7.3.

5The assumption of log-concavity is standard in theory to impose some structure, and satisfied by
many commonly used distributions. See (Bagnoli and Bergstrom, 2005) for an overview.

6An equivalent formulation for my analysis is to impose fines on overbidding and to forbid renego-
tiation.
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Let Gi(x) = Pr(bi ≤ x) be the cumulative distribution function (cdf) of bidding of
bidder i, that is, the probability of bidder i bidding below or equal to x. A feasibility
constraint holds as a necessity of the hard budget constraints:

Gi(x) ≥ Fi(x) ∀x ∈ [0, w]. (2.1)

Every bidder with a budget below some x has to bid weakly below x. Moreover,
a bidder with a budget strictly above x might shade his bid down below x, yielding
the weak inequality in the feasibility constraint in equation 2.1. If bidders always bid
their entire budget for any budget realization, the above feasibility constraint holds
with equality.

Note the non-equivalence of a bidding strategy βi, and a bidding cdf Gi: multiple
bidding strategies might yield the same bidding distribution Gi. A bidding function
βi pins down a unique bidding distribution Gi. Yet, a bidding distribution Gi does
not uniquely pin down a bidding strategy of bidder i. 7 In the following, I derive the
bidding distributions that arise in equilibrium, and show that they are unique under
log-concavity.

5. The First Price Auction

The interim expected utility of bidder i with budget realization w, given bidder j’s
bidding distribution, is

Ui(w) = max
0≤bi≤w

{(vi − bi)[Pr(bj < bi)] + 1
2(vi − bi) Pr(bj = bi)}. (2.2)

The second summand accounts for the equal sharing rule in case of a tie. In contrast
to standard results in Auction Theory with invertible bidding functions, in my model
equilibrium strategies may contain mass points. Therefore, the probability of a tie is
non-negligible.

Note that Ui(w) is monotonic, and hence contains at most countable discontinuities.
Moreover, if the opponent has no mass points in his bidding strategy, the probability
of a tie is zero, the second tie-breaking summand drops out, and Ui(w) is continuous
on [w,w]. However, due to the individual (potentially slack) budget constraints and
the discontinuities in the objective function in equation 2.2, a classic approach with
straightforward differentiation and invertible bidding functions is not possible. I solve
the problem via an indirect utility approach, using a lower bound on utility.

In the following of section 5, I derive a uniqueness result on equilibrium utilities Ui.
This in turn pins down the unique bidding distribution Gi in equilibrium. The existence
result follows in section 6, where I show that there always exist weakly monotonic pure

7For a sketch of this argument, assume that the bidding function of bidder i consists only of two
bids, 0 and 1, which are feasible for any budget realization (i.e. w ≥ 1). Compare the following
strategies: In the first bidding strategy, bidder i randomizes with probability 1/2 between those bids,
irrespective of any budget realization. In the second bidding strategy, bidder i bids 0 for all budget
realizations below the median budget wm such that F (wm) = 1/2, and bids 1 for all higher budget
realizations. Both strategies result in the same bidding distribution Gi(.).
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strategy bidding functions, that are feasible and optimal for the bidders, and satisfy
the equilibrium bidding cdf Gi.

5.1 The lower bound of equilibrium utilities

I derive the equilibrium utility via an auxiliary expression (referred to as a lower bound)
for each bidder i for every budget realization w:

U i(w) = max
b≤w

(vi − b)Fj(b) (2.3)

This is the maximum expected utility bidder i can achieve given his budget w,
conditional on his opponent following a naive strategy: always bidding his entire budget
(irrespective of whether it is a best response). This expression is exogenously defined
for both bidders, continuous and non-decreasing in the realized budget w.

U i(w) is a lower bound on the expected utility Ui(w): if the opponent always bids
naively by always bidding his entire budget, winning probability is minimized at every
budget in the domain. Any bid wins with a weakly lower probability under the naive
strategy than under any other feasible strategy. The expected payoff from any bid under
any other strategy of the opponent is weakly greater than under the naive strategy.

Next, I characterize the properties of the lower bound U i(w). Subsequently, I relate
those properties to the equilibrium utility.

Let bidder j follow the naive strategy of always bidding his entire budget. Then, a
bid b yields a payoff of (vi − b)Fj(b) for his opponent i. The derivative is Fj(b)[(vi −
b) fj(b)
Fj(b) − 1]. By log-concavity, the reverse hazard rate (RHR) fj(b)

Fj(b) is monotonically
decreasing. Thus, the expression in the squared brackets of the derivative is strictly
decreasing in b. This implies that (vi − b)Fj(b) is quasi-concave and never constant on
any open interval. The derivative is positive if the following condition is satisfied:

Definition 7. The RHR-condition of bidder i holds at b if the following holds:

fj(b)
Fj(b)

>
1

vi − b

The expression relates expected benefit and costs of increasing a bid at b. The RHR
on the left side corresponds to the probability of the opponent having a budget close
to the own bid, conditional on him not having a budget above b. If the opponent has
a high RHR, he has a high probability of having a budget close to the own bid, and
increasing the bid is profitable if the net utility of a win vi − b is sufficiently high.

The expression (vi − b)Fj(b) has a unique global maximum mi = argmaxb(vi −
b)Fj(b). Note that mi lies within ∈ (w,w] (interior or at the highest possible budget):
any bid below or equal to w yields payoff 08, while any bid b ∈ (w, vi) yields strictly
positive payoff under naive bidding of the opponent. The maximum mi is increasing in
(and always below) vi: if the value of the object is sufficiently high, bidding the entire
budget can be the best response.

8A bid b ≤ w looses with certainty as Fj(w) = 0 if the other always bids his entire budget.
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Observation 4. Let mi = argmaxb(vi − b)Fj(b). All w ∈ (w,mi) satisfy the RHR-
condition.

The best response of bidder i, if his opponent follows the naive strategy, is to bid
exactly at mi if his budget allows it. Otherwise, the best response is to bid his entire
budget, if he cannot affordmi; this is because the derivative is strictly positive (negative)
for any bid below (above) mi; no bidder ever bids beyond mi if his opponent is naive.
The resulting lower bound utility is:

U i(w) =

(vi − w)Fj(w) if w < mi

(vi −mi)Fj(mi) if w ≥ mi

(2.4)

Figure 2.3 shows the auxiliary lower bound utilities for the example in section 3,
with bidder F1(w) = w2 being the strong bidder, and F2(w) = w being the weak bidder.
U1(w) is strictly increasing up tom1 = 1/2, and constant for higher budget realizations.
U2(w) is strictly increasing up to m2 = 2

3 , and constant thereafter. Intuitively, for small
budget realizations in comparison to the object value, the winning probability of any
feasible bid is low. The gain in winning probability is worth more than the higher
payment due to a higher bid: it is worth bidding the entire budget. For high enough
budget realizations, winning probability is high. The focus of the bidder becomes not
to bid too much by shading the bid below the budget to mi.

Figure 2.3: Auxiliary utilities with v1 = v2 = 1,
F1(w) = w2 and F2(w) = w.

Without loss, relabel m1 and m2 such that m1 ≤ m2.

Observation 5. Both lower bounds U i(w) for i ∈ {1, 2} are strictly increasing and
continuous on w ∈ (w,m1).

The budget domain can be partitioned into two intervals, on which

1. both U i(w) are strictly increasing (by observation 5 this occurs below m1);

2. at least one U i(w) is constant (this occurs above m1).
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In the following, I derive the equilibrium utility of the bidders for each of these two
scenarios: 1. in section 5.2, and 2. in section 5.3.

Naive bidding cannot be an equilibrium, unless m1 = m2 = w, as strategies in
equation 2.4 show. Under the naive assumption on bidder j, bidder i never bids above
mi. If bidder i never bids above mi, bidder j would never want to bid above mi either,
and the naive assumption on bidder j is unsustainable in equilibrium.

The lower bound utility U i(w) is a generalization of the lower bound expression
in Che and Gale (1996), that allows for asymmetric budgets and different valuations.
They show that in a symmetric and strictly monotonic equilibrium the lower bound
always binds, i.e. U i(w) = Ui(w) for all w ∈ [w,w] and for all i. For asymmetric
bidders or different valuation, I find that the lower bound does not generically bind and
mass points arise.

In the following, I fix candidate equilibrium utilities U1(.) and U2(.) and show which
shape of them leads to a contradiction, and therefore cannot arise in any equilibrium.
In some cases, bidding strategies can be inferred from the shape of the equilibrium
utilities, as the next lemma shows.

Lemma 1
Let Ui(w) be strictly increasing on some open interval (w′, w′′). Then, bidder i with any
budget realization within (w′, w′′) always bids his entire budget.

All proofs are in the appendix. The intuition is that the same feasible bid always
yields the same utility to bidder i, no matter what his budget realization is. This is
because bidder i always values the object with the same vi, irrespective of his budget
realization9. When the utility Ui is strictly increasing in budget realization, bidders
i with a budget in this interval have to bid differently, as they get different utility.
Moreover, bidders have to bid their entire budget, because that is the only bid, that a
bidder i with a lower budget cannot mimic.

The following lemma shows that if a bidder achieves an equilibrium utility strictly
above the lower bound, this only occurs because of a mass point in the opponent’s
strategy. This finding drastically reduces the set of candidate equilibria to consider.

Lemma 2
Let w′ ∈ (w,w). If Ui(w′) > U i(w′), then

1. Ui(.) is constant on (w′ − ε, w′ + ε) for some ε > 0, or

2. Ui(.) has a discontinuity at w′ due to a mass point of opponent at w′.

The following corollary follows immediately from the contraposition of lemma 2.
If equilibrium utility is strictly increasing and continuous, it has to coincide with the
lower bound utility.

9This is a crucial difference to models where bidder i types have different uncertain valuations
for the object, where this kind of inference from equilibrium utility about bidding strategies is not
possible: two bidders having different valuations have different expected utilities from bidding the
same bid, although winning probability is the same.

60



Corollary 3. Let w′ ∈ (w,w). Let Ui(w) be continuous at w′ and strictly increasing
on w ∈ [w′, w′ + ε) or w ∈ (w′ − ε, w′] for some ε > 0. Then, the lower bound binds at
w′: Ui(w′) = U i(w′).

The proofs of lemma 2 and corollary 3 correspond to the following argument: if the
expected utility in equilibrium is strictly increasing in i’s budget in some neighborhood,
every budget type i bids his full budget in this neighborhood by lemma 1. Let bidder i
achieve a utility strictly above his lower bound for some budget. To achieve an expected
utility strictly above the lower bound, bids have to have a higher winning probability
than under the naive strategy assumption. As bidder i bids his entire budget, this
implies for bidder j the same situation for this interval as if bidder i were to follow the
naive strategy of always bidding his entire budget: either it is optimal for j to bid his
entire budget (if his budget is below the optimal bid mj), or bidding at mj yields a
higher payoff than bidding in the respective interval above mj, as shown in equation
2.4. Either way, bidder j does not bid with high enough probability in the respective
interval to elevate the utility of bidder i above the lower bound; the lower bound utility
binds.

Consider figure 2.2 for an illustration of lemma 2 and corollary 3. Equilibrium
utilities of the weak and the strong bidder are strictly increasing in the budget up to
w = 1

2 . By corollary 3, equilibrium utilities and lower bounds coincide in this interval:
Ui(w) = U i(w) for all w ∈ (0, 1

2) for both the strong and the weak bidder. Furthermore,
the lower bound utility is a continuous function of the budget. As the equilibrium
utility of the weak bidder has a jump discontinuity at w = 1

2 , we have UW (1
2) > UW (1

2).
By part 2. of lemma 2, the strong bidder has to admit a mass point in his bidding
distribution at the bid 1

2 in order to raise the equilibrium utility of the weak bidder
strictly beyond the lower bound utility.

5.2 Strictly increasing lower bounds

The next theorem shows that as long as both RHR-conditions are satisfied and both
lower bound utilities are strictly increasing, bidding the entire budget is the unique
equilibrium strategy. This occurs if the probability of the opponent having a budget
close to one’s own, conditional on not being richer, is sufficiently high, and the object
is valuable enough.

Theorem 1
The following holds in any equilibrium for any i ∈ {1, 2}.

• For all w ∈ [w,m1), the lower bound binds: Ui(w) = U i(w).

• Bidders with budget w ∈ (w,m1) always bid their entire budget.10

Assume the opponent bids his entire budget on (w,m1). Due to the sufficiently
high RHRs, any decrease in bidding below the budget looses so much winning prob-
ability, that it is not worth the gain from the lower payment in case of a win. This

10bi(w) = w is the only bid to which any equilibrium bidding function assigns strictly positive
probability.
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guarantees that both bidders bidding their entire budget on this interval is indeed a
Nash equilibrium. The proof shows, that this is indeed the unique optimal strategy in
any Nash equilibrium. Note that the theorem does not specify the bid of the lowest
budget realization w, while it pins down his equilibrium utility to zero. Yet, as this
is a zero-probability event, it does not influence the bidding distributions G1(w) and
G2(w) and I assume without loss that the lowest bidder always bids his entire budget
bi(w) = w.

Figure 2.4: Equilibrium utilities below
m1 for
v = 1, FS(w) = w2, FW (w) = w.

Figure 2.5: Equilibrium utilities below
m1
for vS = 2, vW = 3, FS(w) = w2,
FW (w) = w.

Both players bid their entire budget and achieve their lower bound utility U i(w) =
Ui(w) below m1. Figure 2.4 and 2.5 illustrates this finding for two examples: figure 2.4
shows the equilibrium utility for the example in section 3 with v1 = v2 = 1. In this
case, m1 = 1

2 < m2 = 2
3 < w = 1. The upper blue (lower green) line is the equilibrium

utility of the strong (weak) bidder. Both coincide with the lower bound utility below
m1.

If the object is valuable enough, and both bidders are likely to be sufficiently rich,
the RHR-condition holds on the entire domain: m1 = m2 = w. Figure 2.5 illustrates
the equilibrium utility with vS = 2 and vW = 3. For this case, theorem 1 provides
a complete characterization equilibrium utilities and bidding strategies. The theorem
does not specify the bid and utility at the highest budget w. Note that any bid below
w yields strictly weaker payoff than bidding w. No mass point can arise at w, as having
the highest budget is a zero probability event. Thus, a bidder with budget w bids his
entire budget and achieves Ui(w) = U i(w).

Observation 6. The degree of asymmetry is irrelevant for bidding strategies, as long
as both RHR-conditions are satisfied.

Equilibrium strategies are invariant to the degree of asymmetry, as long as both lower
bound utilities are strictly increasing. Theorem 2 requires no restrictions on the budget
distributions beyond the RHR-conditions. F1(w) and F2(w) can be highly asymmetric
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(e.g. first order stochastic dominance, or RHR dominance), or fully symmetric. The
lower bound utilities (the dashed lines in figure 2.4 and 2.5) can be arbitrary distant,
or cross multiple times; bidding the entire budget is always the unique equilibrium
strategy for interior budgets below m1.

Note the difference to classical auction theory without budget constraints, where it
is optimal to bid the expected value of the second highest bidder, conditional on being
the highest. Bidding the expected budget of the second-richest bidder, conditional on
having the highest budget, is not a best response in my model: shading the bid below
the budget yields such a decrease in winning probability that it does not offset the lower
payment.

5.3 Constant lower bounds

If at least one RHR-condition does not hold and at least one U i is constant for w
high enough, strategies change abruptly. This occurs with m1 < w. Define bmaxi =

sup
w∈[w,w]

bi(w) as the highest bid of bidder i in equilibrium under any possible budget

realization.

Lemma 3
Let m1 < w. Then, the following holds in any equilibrium:

1. the highest bid of the bidders coincides: bmax = bmax1 = bmax2 ,

2. there exists no mass point at bmax,

3. m1 < bmax < min(v1, v2).

The bidm1 cannot be the highest bid bmax, ifm1 < w interior. A positive probability
mass of bidders i and j with budget above m1 never bids below m1: by theorem 1, any
bid below yields a strictly lower payoff than m1. If m1 was the highest equilibrium bid,
both bidders had a mass point there. Then, both have a profitable deviation to slightly
outbid the mass point.11 Therefore, bmax > m1.

Under the naive strategy of the opponent, bidder 1 never bids above m1: if bidder
2 always bids his entire budget, the winning probability F2(b) of any bid b > m1 is
too low to make such a bid profitable for bidder 1. To induce bidder 1 to bid up to
bmax > m1, any of his bids b ∈ (m1, bmax] has to win with a strictly higher probability
than under the naive strategy: G2(b) > F2(b) for b ∈ (m1, bmax].

This condition pins down the equilibrium utility of bidder 2: a continuum of bidder
2 types with budget realizations in this interval bids strictly below the budget with
some positive probability. This rules out any increase in equilibrium utility U2(w) for
budget realizations within (m1, w], as any increase in equilibrium utility in this interval
contradicts the requirement F2(b) < G2(b). A similar argument holds for bidder 1:

11Two mass points at the same bid cannot occur in the interior of the budget support: both bidders
can deviate by bidding slightly above the mass point. This is not the case in the bid cap literature,
where two mass points can occur at the highest admissible bid (the bid cap) and therefore the bidding
support can have holes: decreasing the bid slightly below the mass point at the cap yields a strictly
lower payoff; bidding above is infeasible due to the bid cap. (See e.g. Gavious et al., 2002).
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his equilibrium bidding distribution G1(w) has to induce bidder 2 to bid above m2
(if bmax > m2), which he would never do under the naive strategy of bidder 1. The
following lemma formalizes this argument.

Lemma 4
Equilibrium utility is constant at Ui(w) = vi − bmax for budget realizations w ∈ (mj, w]
for i ∈ {1, 2}, i 6= j. The bidding distributions are Gi(b) = vj−bmax

vj−b on b ∈ (mi, w].

Broadly, Lemma 4 states that whenever a bidder’s lower bound is constant, his
opponent has to have a constant utility for budget realizations within this interval.
This pins down the bidding distribution Gi as a function of bmax and the opponent’s
valuation vj. It is left to elicit the endogenous upper bid limit bmax, find the equilibrium
bidding distribution G2 bidder of 2 on (m1,m2), and solve what happens at points m1
and m2. The following theorem sums up these results; the details are in the appendix.

Theorem 2
The highest bid is

bmax =

v1 − (v1 −m1)F2(m1) if U1(m1)− U2(m2) ≥ v1 − v2

v2 − (v2 −m2)F1(m2) if U1(m1)− U2(m2) < v1 − v2
(2.5)

.
The unique equilibrium bidding distributions are:

G1(b) =

F1(b) ∀b ∈ [w,m1)
v2−bmax
v2−b ∀b ∈ [m1, bmax]

G2(b) =


F2(b) ∀b ∈ [w,m1)
(v1−m1)F2(m1)

v1−b ∀b ∈ [m1,m2)
v1−bmax
v1−b ∀b ∈ [m2, bmax]

(2.6)

In lemma 2 I established that any increase in utility beyond the lower bound can
only occur due to a mass point. Theorem 2 allows atoms in bidding distributions to
exists only at two bids, one per bidder.

Observation 7. There are at most 2 mass points:

• bidder 1 admits a mass point at m1 if v2 − bmax > U2(m1)

• bidder 2 admits a mass point at m2 if U1(m1)− U2(m2) < v1 − v2

Mass points can occur only at m1 (in bidder 1’s strategy) and m2 (in bidder 2’s
strategy). It is always the bidder, whose opponent’s RHR drops below the threshold,
who places a mass point at that bid. He needs to win with a higher winning probability
than under the naive strategy for any higher bid, i.e. he needs to be made at least
indifferent between mi at some higher bids. As this requires his opponent to shade
his bid below his budget, his opponent needs to be made indifferent. His indifferent
opponent in turn will then employ a bidding strategy that induces the first player to
bid above mi in equilibrium. Moreover, a mass point at b in bidder i’s strategy pins
down the bidding distribution of the opponent at this point, Gj(b) = Fj(b): poorer
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bidders j cannot afford to bid at the mass point, richer ones would like to outbid the
mass point at least slightly. Only bidder j with budget realization b bids exactly at
the mass point. Here, mass points are part of the equilibrium strategy: bidders with
a lower budget would like to bid at the mass point of the opponent, but do not have
sufficient resources.

The utility for high enough budget realizations is pinned down by theorem 2, as
there cannot be a mass point at the highest bid. The highest bid wins with probability
one, and yields expected utility vi− bmax. Thus, the difference between the equilibrium
utilities equals U1(w) − U2(w) = v1 − v2. The difference between the lower bound at
the highest budget is U1(w) − U2(w), which is generically not equal to v1 − v2. The
only way to influence the distance between equilibrium utilities is to place one or two
mass points at m1 or m2. A mass point of bidder 1 at m1 increases the utility of bidder
2, decreases the difference U1(w) − U2(w); a mass point of bidder 2 at m2 increases
the utility of bidder 2 and also increases the difference U1(w) − U2(w). As it turns
out, there is one unique way to allocate mass points such that the required difference
between equilibrium utilities U1(w)− U2(w) = v1 − v2 is obtained.

Figure 2.6: Example for U1(m1) > U2(m2)
and U1(m1)− U2(m2) ≥ v1 − v2.

Figure 2.7: Example for U1(m1) <
U2(m2)
and U1(m1)− U2(m2) ≥ v1 − v2.

By the preceding analysis, equilibrium utility of bidder 1 is constant and equals
v1 − bmax for budget realizations in (m2, bmax]. Equilibrium utility of bidder 2 equals
v2 − bmax for budget realizations in (m1, bmax]. The difference between equilibrium
utilities in these intervals is U1(bmax) − U2(bmax) = v1 − v2. The crucial equation is
U1(m1) − U2(m2) ≥ v1 − v2. If this weak inequality holds, the difference between the
utilities U1(bmax) − U2(bmax) = v1 − v2 has to be smaller than the difference between
the two auxiliary utilities U1(m1)− U2(m2). Figures 2.6 and 2.7 illustrate these cases.
Bidder 1 places a mass point at m1 to decrease the difference in comparison to the lower
bound difference. In these cases it is impossible that bidder 2 places a mass point atm2:
the person who places a mass point always achieves at most her lower bound utility at
her mass point. This is because his opponent prefers to slightly outbid the mass point
and thus, F1(m2) = G1(m2). Mass point m2 is the last possibility to change the final
equilibrium utilities. If bidder 2 places a mass point at m2, he achieves a final utility
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Figure 2.8: Example for U1(m1) > U2(m2)
and U1(m1)− U2(m2) < v1 − v2.

Figure 2.9: Example for U1(m1) <
U2(m2)
and U1(m1)− U2(m2) < v1 − v2.

that equals his lower bound; meanwhile, bidder 1 achieves a utility above his lower
bound. These equilibrium utilities would be too far apart, as the distance v1−v2 has to
be smaller than the difference in lower bounds. Therefore, if U1(m1)−U2(m2) ≥ v1−v2,
only bidder 1 has a mass point at m1.

If the weak inequality does not hold (U1(m1) − U2(m2) < v1 − v2), the difference
between the equilibrium utilities has to be larger then U1(m1)−U2(m2). Beyond a mass
point from bidder 1 at m1 to make his opponent indifferent on (m1, bmax], bidder 2 has
to place a mass point at bid m2 to increase the difference in the equilibrium utilities to
the required level. These cases are demonstrated in figures 2.8 for U1(m1) > U2(m2)
and in figure 2.9 for U1(m1) < U2(m2).

Figure 2.10 shows the equilibrium utilities for the introductory example with v1 =
v2 = 1 for budget constraints, that satisfy FOSD and with bidder 1 being the strong
bidder. In this case, the inequality U1(m1)−U2(m2) > v1−v2 = 0 is strict. As v1 = v2,
the difference between the final utilities has to be zero: U1(bmax)−U2(bmax) = v1−v2 =
0. By the above argument, bidder 1 places a mass point at m1 such that the equilibrium
utilities coincide for high enough budget realizations. From m1 onwards, both bidders
follow the same bidding distributions and therefore, achieve the same utility: the lower
bound utility of the relatively stronger bidder. Therefore, the weaker bidder achieves
the same utility as his stronger opponent; the lower bound does not necessarily bind
for high enough budget realizations in equilibrium.

Figure 2.11 shows the equilibrium utilities for the case of Che and Gale (1996)
with symmetric budget distributions and equal valuations for the case where m1 <
w. As v1 − v2 = 0, equilibrium utilities of bidding the highest bid have to overlap.
Moreover, m1 = m2 due to symmetry in budget distributions, as the lower bound
utilities overlap. Having two mass points at m1 = m2 is impossible: both bidders
would have a deviation. If there exists only one mass point at m1, there necessarily
arises a difference in equilibrium utilities for the highest bid, which cannot occur. Thus,
no mass point can occur, and the lower bound utility is binding for the equilibrium
utility on the entire budget domain. Che and Gale (1996) arrive at this conclusion
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Figure 2.10: Equilibrium utilities for the
introductory example with FOSD in
budget distributions.

Figure 2.11: Equilibrium utilities for
v1 = v2 and symmetric budgets.

by considering the class of symmetric and strictly monotonic equilibria. Under the
additional restriction of log-concavity12, my findings show that there exists no other
asymmetric equilibrium utility; the strictly monotonic bidding strategies in Che and
Gale (1996) satisfy the bidding distributions derived in theorem 2. My findings show,
that there exist a multiplicity of other equilibria on indifference regions if m1 < w, that
all satisfy these bidding distributions. I demonstrated that under asymmetric budgets
and different valuations mass points arise: a strictly monotonic bidding equilibrium
does not exist generically.

In the next section 6 I derive weakly monotonic pure strategy bidding functions,
that satisfy above theorem and establish existence of the unique equilibrium shape of
this section. The bidding distributions in theorem 2 do not allow to compare the bids
of two bidders, which are endowed with the same budget; bidding strategies can be
in mixed strategies. Moreover, a direct comparison of bidding aggression here is not
possible, as the bidding distributions in theorem 2 combine the bids for each budget
with the probability of these budgets being drawn. This cloaks the quantitative shading
of the bids below the budgets.

6. Monotonic Equilibrium

Theorem 2 shows uniqueness of bidding distributions {Gi}i∈1,2 that any equilibrium
necessarily satisfies. The following section establishes existence of such an equilibrium:
I derive pure strategy weakly monotonic bidding functions, that are feasible and optimal
for the bidders, and satisfy the unique bidding distributions of theorem 2. This allows
me to compare bidding aggression for the special case of RHR-dominance in the next
section.

12Che and Gale (1996) do not require the restriction of log-concavity. I impose log-concavity to
restrict the number of cases to consider for the lower bound utilities. Some of my results are applicable
without assuming log-concavity, like theorem 1.
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6.1 Existence of a monotonic equilibrium

If m1 = w, every bidder bids his entire budget for every budget realization. Bidding
strategies are unique13. If m1 < w, bidding strategies are not unique anymore. Both
bidders are indifferent between bids in some non-empty interval. In the example in
section 3, both bidders are indifferent between any bid in the interval (1

2 ,
3
4 ]. Note

that all bidders with a budget in (3
4 , 1] are bidding strictly below their budget and

are indifferent for any bid in their bidding support. For them, an infinite amount of
different equilibrium bidding strategies can be constructed, which all satisfy the same
bidding distribution.

The following lemma establishes pure strategy weakly monotonic bidding functions,
that satisfy bidding distributions {Gi}i∈1,2 from theorem 2.

Proposition 1
Let the budget distributions {Fi(w)}i=1,2 be log-concave on (w,w). Let v1, v2 be common
knowledge and w < min{v1, v2}. Then, a pure strategy weakly monotonic equilibrium
exists.

Proof. The proof is by construction. I show that the following is a pure strategy equi-
librium in weakly monotonic bidding functions.

Case I: let U1(m1)−U2(m2) ≥ v1− v2. Then, bmax = v1− (v1−m1)F2(m1) and the
pure strategy monotonic bidding functions are:

b1(w) =


w if w ∈ [w,m1),
m1 if w ∈ [m1, F

−1
1 (v2−bmax

v2−m1
)],

v2 − v2−bmax
F1(w) otherwise.

(2.7)

b2(w) =

w if w ∈ [w,m1),
v1 − (v1−m1)F2(m1)

F2(w) otherwise.
(2.8)

Case II: let U1(m1) − U2(m2) < v1 − v2. Then, bmax = v2 − (v2 −m2)F1(m2) and
pure strategy monotonic bidding functions are:

b1(w) =


w if w ∈ [w,m1),
m1 if w ∈ [m1, F

−1
1 ( (v2−m2)F1(m2)

v2−m1
)],

v2 − (v2−m2)F1(m2)
F1(w) otherwise.

(2.9)

b2(w) =



w if w ∈ [w,m1),
v1 − (v1−m1)F2(m1)

F2(w) if w ∈ [m1, F
−1
2 ( (v1−m1)F2(m1)

v1−m2
)),

m2 if w ∈ [F−1
2 ( (v1−m1)F2(m1)

v1−m2
), F−1

2 (v1−bmax
v1−m2

)],
v1 − v1−bmax

F2(w) otherwise.

(2.10)

13Only the bid of bidders with budget w are not uniquely pinned down, but assumed to be equal to
the full budget b(w) = w.
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First, I show that above bidding functions satisfy the unique bidding distributions
{Gi}i=1,2 in theorem 2. For w < m1, bi(w) = w, and Gi(b) = Fi(b) is trivially satisfied.
Whenever a bidder with budget realization w is not bidding at a mass point (i.e. when-
ever bidder i is not bidding mi), bids are strictly increasing an the bidding function is
invertible in this interval. Denote the inverse function as wi(b), whose output is the
budget realization of a bidder i who bids b. Note that Fi(wi(b)) = Gi(b). Consider
for example bidder 2 in equation 2.8 with a budget above m1. His bidding function
b2(w) can be rewritten using the inverse bidding function w2(b): b = v1− (v1−m1)F2(m1)

G2(b) .
Solving this expression for G2(b) immediately yields the unique bidding distribution of
theorem 2. The same argument applied for the other bidder yields the required unique
bidding distributions Gi in all cases.

Next, I show feasibility of the bidding functions. This requires to show that bi(w) ≤
w for all w and all i. For any bid equal or below m1, feasibility is trivially satisfies. It is
left to show that 1. vi − (vi−mi)Fj(mi)

Fj(w) ≤ w; 2. vi − vi−bmax
Fj(w) ≤ w; 3. F−1

2 ( (v1−m1)F2(m1)
v1−m2

) ≥
m2, so bidder 2 can afford a bid m2 in equation 2.10. Rewrite inequality 1. as (vi −
w)Fj(w) ≤ (vi − mi)Fj(mi). Note that (vi − w)Fj(w) ≤ U i(w) ≤ U i(mi) = (vi −
mi)Fj(mi) establishes feasibility. Rewrite inequality 2. as (vi − w)Fj(w) ≤ vi − bmax.
Note that (vi − w)Fj(w) ≤ U i(w) ≤ U i(w) = vi − bmax establishes feasibility. Apply
F2(.) to both sides of equation 3. This yields inequality (v1 − m1)F2(m1) ≥ (v1 −
m2)F2(m2). Note that (v1 − m1)F2(m1) = U1(m1) = U1(m2) > (v1 − m2)F2(m2)
establishes feasibility.

Finally, I show optimality of the above bidding functions for the bidders. Any
bidder with a budget below m1 bids his entire budget, as any strictly lower bid yields
lower payoff ( U i(w) < U i(w′) for w < w′ < m1); any higher bid above the budget is
unfeasible. Consider case I. This corresponds to figures 2.6 and 2.7. Any bid of bidder
1 in the interval [m1, bmax] yields constant utility to bidder 1. It is straightforward to
show that any bid above bmax or below m1 yields strictly lower utility - there is no
profitable deviation. A similar argument holds for bidder 2: a bidder 2 with budget m1
has a higher utility from bidding exactly at m1 due to a mass point of bidder 1 than
from any lower bid, and all other higher deviations are unfeasible for him. A bidder
with a budget strictly abovem1 is indifferent between any bid on (m1, bmax], and strictly
looses from any deviation up or down. Similar straightforward computations yield the
optimality of case II.

It is straightforward to show, that these bidding functions combined with the budget
distributions Fi(.) yield the bidding distribution functions Gi(.) in theorem 2. Opti-
mality is satisfied: bidder i with a budget in [w,m1) would like to bid more, but cannot
afford it. Deviating below his budget yields a strictly lower payoff. His downward in-
centive compatibility (IC) constraints are slack, upward IC constraints do not exist due
to feasibility.

6.2 Bidding aggression

The pure strategy monotonic bidding functions in section 6.1 allow a direct comparison
in bidding behavior. Which bidder bids more aggressively if both have the same budget?
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When comparing bidding aggression in my model, there are two channels of interest.
First, how does bidding aggression depend on the budget distribution? Second, how
does bidding aggression depend on the valuation for the object?

As theorem 2 shows, bidders with budget realization in [w,m1) always bid their
entire budget and are equally aggressive, irrespectively of any order statistic assumption
on their budget distributions. If m1 = w, under any order statistic, both bidders bid
equally aggressive on the entire budget support in my framework.
Definition 8. Fi dominates Fj in terms of the reverse hazard rate (RHR) if

fi(x)
Fi(x) ≥

fj(x)
Fj(x) , ∀x ∈ (w,w).

In the next result, I assume that both bidder have the same valuation v for the
object, and one bidder dominates his opponent in terms of reverse hazard rates in the
budget distribution. This allows me to elicit the differences in bidding aggression that
are only due to differences in the budget distributions, not due to heterogeneity in
valuations.
Proposition 2
Let v1 = v2 = v and Fi be RHR-dominant over Fj. Then, the dominant bidder bids less
aggressively: bi(w) ≤ bj(w).
Proof. Note that if bidder i RHR-dominates bidder j, it holds that i = 1 because
m1 ≤ m2. This is because the RHR-condition of the dominant bidder i is stricter than
the RHR-condition of the dominated bidder. Therefore, it holds that U1(m1) ≥ U2(m2),
which is case I in proposition 1. Then, the highest bid is bmax = v − (v −m1)F2(m1)
and using the fact that RHR-dominance implies FOSD, the bidding strategies in the
proof of proposition 1 imply that b1(w) ≤ b2(w) for all w ∈ [2, w].

Maskin and Riley (2000) target a related question for asymmetrically distributed val-
uations and without budget constraints. They consider a variant of the RHR-dominance
on valuation distributions. Maskin and Riley (2000) show that if both bidders have the
same valuation, the RHR-dominated bidder bids more aggressively (i.e. higher). This
is in line with the findings of this paper on asymmetrically distributed budgets: the
weaker bidder in the sense of RHR on budgets bids more aggressively.

The previous findings compared bidding behavior for bidders with equal valuations
and distinct bidding distributions. Next, I compare bidding behavior of the diametrical
case, bidders with identical budget distributions F (w) := F1(w) = F2(w) but different
valuations.

Let vi > vj. Then, the RHR-condition is satisfied for bidder i whenever the RHR-
condition is satisfied for bidder j, because 1

vi−w < 1
vj−w for all w ∈ (w,min{vj, w}).

Therefore, the lower bound of bidder j is the first one to have a kink at mj ≤ mi.
Therefore, we have j = 1 and v2 > v1. An example for this case is depicted in figure
2.7. Due to the higher valuation, the lower bound of bidder i is always strictly above
the lower bound of bidder j.
Proposition 3
Let vi > vj and Fi(w) = Fj(w). Then, bi(w) ≥ bj(w) for all w ∈ [w,w].
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Proof. Let v2 > v1 and F (w) := F1(w) = F2(w). Using the fact that U1(m1) =
U1(m2) ≥ (v1 −m2)F (m2), we have:

U2(m2)− U1(m1) = U2(m2)− U1(m2)
≤ (v2 −m2)F (m2)− (v1 −m2)F (m2)
= (v2 − v1)F (m2) ≤ v2 − v1.

Note that this corresponds to case I of the weakly monotonic bidding strategies in
the proof of lemma 1. Using the pure monotonic bidding strategies of case I, it imme-
diately follows that b2(w) ≥ b1(w) for w ∈ [w,F−1

(
v2−bmax
v2−m1

)
). For w > F−1

(
v2−bmax
v2−m1

)
,

we have b2(w) ≥ b1(w) because the following inequality holds:

b1(w) ≤ b2(w)

⇔ v2 −
v2 − bmax
F (w) ≤ v1

(v1 −m1)F (m1)
F (w)

⇔ v1(1− F (w)) ≤ v2(1− F (w))

The last line of the inequality holds by assumption of v1 < v2.

As before, bidders are investing their entire budget up to a certain budget m1. For
any higher budget, the bidder who values the object more, bids more aggressively.

7. Extensions

7.1 Revenue comparison

Revenue equivalence between standard auctions does not hold when bidders are budget
constrained, as noted by Che and Gale (1996)14 and Che and Gale (1998)15. Consider
a framework where values are identical and public (v := v1 = v2). If budgets are drawn
from a symmetric distribution (F (w) := F1(w) = F2(w)), Che and Gale (1996) proved,
that the FPA dominates the second price auction (SPA) with regards to revenue.

I show that this revenue ranking is not robust under asymmetric budget distributions
(F1 6= F2): the SPA can perform strictly better than the FPA for sufficiently asymmetric
bidders. First, consider bidding strategies in a SPA without reservation values.

Proposition 4
Let v := v1 = v2 be public information, and budgets distributions governed by cdf F1(w)
and F2(w). In a SPA without a reservation price, it is a weakly dominant strategy to
bid bi(w) = min{v, w}, ∀i ∈ {1, 2},∀w ∈ [w,w].

14Che and Gale (1996) show that the all pay auction dominates the FPA in terms of revenue, with
n bidders who all share the same valuation v and have identical budget distributions.

15Che and Gale (1998) analyze standard auctions, where budgets and valuations are both private
information and symmetrically distributed. They show that the all pay auction dominates the FPA,
which itself dominates the second price auction (SPA) in terms of expected revenue for the auctioneer.
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Proof. Consider bidder i, who is facing a bid bj of his opponent and has budget w. Let
v ≤ w. Then, the classical argument of the SPA applies: bidding less (bi < v) potentially
looses the auction and forgoes a positive payoff, and changes nothing in case of a win.
Bidding higher (bi > v) only changes the outcome if it results in purchasing the object
for more than v, and thus, a negative payoff. Let w < v. Then, bidding higher than
w is infeasible. The only possible deviation is downward, bi < w. However, this is not
profitable, because it only changes the outcome if w > bj ≥ bi. In this case the object
is lost, while bidding bi = w would have resulted in strictly positive payoff v − bj.

Whenever both bidders have a budget above v, the auctioneer gets a payment of
the full object value v. Whenever at least one bidder has a budget below the object
value, the payoff of the seller is the lowest of the two budgets.

Let x := min{v, w} be the highest possible bid under any budget realization. Above
bidding strategies in proposition 4 result in the following expected revenue for the
designer, where the last line follows by applying integration by parts:

ΠSPA =
∫ x

w
w (f2(s)(1− F1(s) + f1(s)(1− F2(s))) dw + x(1− F1(x))(1− F2(x))

(2.11)

= w +
∫ x

w
(1− F1(s))(1− F2(s))ds (2.12)

Now consider revenue in a FPA. Because v := v1 = v2, the auction is always efficient
and the total generated surplus is v. The object is always sold, and utilities are linear
in the payment. Therefore, the revenue of the seller is the object value v minus the
expected utilities of the bidders. That is,

ΠFPA = v −
∫ w

w
U1(w)dF1(w)−

∫ w

w
U2(w)dF2(w). (2.13)

The next proposition shows that the revenue ranking of Che and Gale (1996) does
not extend to asymmetric budget distributions.

Proposition 5
Let v1 = v2 = v and budgets be drawn with possibly different distributions F1(w) and
F2(w). Then, the SPA can yield strictly higher revenue than the FPA.

Proof. The proof is by counterexample. Let w ∈ [0, 1], F1(w) = w9, F2(w) = w
1
9 , and

both bidders have valuation v = 0.2. Note that then, m1 = 2
110 , and m2 = 9

50 .
Plugging this into the expected revenue equation 2.12 of the SPA yields approxi-

mately ΠSPA ≈ 0.0494748.
For the FPA, note that the ex-ante utilities of both bidders are (we are in case I):

U1 =
∫ m1

w
(v − w)F2(w)f1(w)dw + (v −m1)F2(m1)(1− F1(m1)) (2.14)

U2 =
∫ m1

w
(v − w)F2(w)f1(w)dw + (v −m1)F2(m1)(1− F1(m1)) (2.15)
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After repeated integration by parts and algebraic manipulations, the expected rev-
enue from the FPA with asymmetric bidders for this numerical example is:

ΠFPA = v − (v −m1)
[
2F2(m1)− F2(m1)2

]
−
∫ m1

w
F1(w)F2(w)dw (2.16)

≈ 0.0416594. (2.17)

Thus, ∆ = ΠFPA − ΠSPA ≈ 0.0416594− 0.0494748 < 0.

In the literature on standard auctions without budget constraints, asymmetrically
distributed valuations break revenue equivalence between standard auctions (Maskin
and Riley, 2000). A revenue ranking between standard auctions remains an object of
investigation, as no general revenue ranking can be established. For some particular
distributions, revenue from a FPA is higher than from a SPA (see e.g. Maskin and Riley,
2000). This ranking does not always hold, as Gavious and Minchuk (2014) show that
revenue from a SPA can be higher than from a FPA under asymmetry.

With asymmetric budget constraints, but common valuations, I showed that the
revenue ranking ΠFPA ≥ ΠSPA does not hold anymore. It remains an open question
under which conditions the FPA perform better than the SPA in a framework with
asymmetric budget constraints. Yet, finding a revenue ranking in this framework for
particular asymmetric budget constraints might turn out more practical than for asym-
metric valuations, because this paper provides a closed form expression for revenue and
bidding behavior.

7.2 Information disclosure about ex-ante symmetric bidders

In the following, I allow the auctioneer to endogenize part of the information structure.
The auctioneer has the choice whether to disclose the identities of the bidders, e.g. by
publishing a participation register. In the following, I again assume that the object is
worth the same, v, to every bidder.

Giving up anonymity of the bidders is a relevant strategic decision for the designer.
If the auctioneer discloses nothing, bidders are ex-ante symmetric in the sense that
their distribution is drawn from the same prior distribution. If the auctioneer publishes
a public participation register, bidders can look up annual budget reports and make
inference about the budget distributions of the opponents. I show that with ex-ante
symmetric bidders, the auctioneer can never gain by disclosing noisy information about
the budgets. Note that total surplus in the auction is v. Maximizing the expected
revenue of the auctioneer corresponds to minimizing the utilities of both bidders.

Let S be the finite set of budget type distributions, with each s ∈ S corresponding
to a log-concave budget distribution function Fs(w) on equal support [w,w]. The term
’type’ in this section refers to the distribution function of budgets, not the budget
realization as in the last section. The budget distribution types of bidder 1 and 2
are drawn independently and identically from S, with probability ps of being type s.
Probabilities are non-negative and ∑

s∈S
ps = 1.

The timing is the following: before the start of the auction, the auctioneer commits
whether she wants to publish a participation register. Then, bidders arrive and budget
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types Fi(.) ∈ {Fs(.)}s∈S are drawn for i = {1, 2}. Bidders know their own type, but not
the type of their opponent. The auctioneer observes both types and publicly announces
the types, if she committed to do so. Then, budgets are drawn and observed only by
the respective firm. Finally, a FPA takes place.

Lemma 5
Revenue is weakly decreasing, if the auctioneer discloses budget type information about
ex-ante symmetric bidders.

Proof.

Ui(w) = U i(w) = max
b≤w

(v − b)
∑
s∈S

psFs(w) (2.18)

≤
∑
s∈S

max
bs≤w

ps(v − bs)Fs(bs) =
∑
s∈S

psU i,j=s(w) (2.19)

≤
∑
s∈S

psUi,j=s(w) = Es(Ui,j=s(w)) (2.20)

The total surplus of the auctioneer and the bidders equals to v. Hence, a higher
expected utility for bidders corresponds to a lower payoff for the auctioneer. Under
disclosure, bidders condition their optimal action upon their opponent’s types. With
ex-ante symmetric bidders, the lower bound on equilibrium utility always binds (Che
and Gale, 1996). The expected lower bound under information disclosure is weakly
larger (due to the max-operator) than under no disclosure. Therefore, under informa-
tion disclosure, even the worst-case scenario for the bidders is weakly better than no
disclosure. In section 5 I show, that under sufficient asymmetry, the lower bound is
not necessarily binding. Thus, under information disclosure, bidders could be strictly
better off than under no information due to an equilibrium above the lower bound,
which further decreases the expected revenue for the auctioneer.

In many auction houses, like Sotheby’s, bidding is anonymous: bidders take part
in an auction, before knowing who their opponents will be. Moreover, during the auc-
tion, bidders remain anonymous by placing bids via phone or by raising one’s hand.
For narrow markets like the telecommunication sector, while usually participants are
announced before the start of the auction, this in fact might not constitute a strate-
gic decision of the auction designer but rather a peculiarity of the respective market:
anonymity might not be implementable in such a narrow market with few constantly
interacting participants.

In this section, I analyzed a very specific information disclosure rule: the auctioneer
has the choice whether she wants bidders to remain symmetric, or reveal noisy infor-
mation about the budget distributions. However, this noisy information is exogenously
given and the auctioneer cannot modify its precision or send private and potentially
correlated signals. Future research could endogenize the information structure even
further by allowing the auctioneer to design the signal precision as in Bergemann and
Pesendorfer (2007), in line with the expanding literature on Bayesian persuasion (Ka-
menica and Gentzkow, 2011). Lemma 5 still holds, if type space S is not given, but
designed by the auctioneer; however, any type in S has to satisfy log-concavity and have
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a strictly positive density on the same support as all other types: [w,w]. Enabling the
designer to create types with different support (e.g. by allowing monotone partition of
the budget space16 into a low-budget and a high-budget type interval) will yield further
insights about the optimal information disclosure policy.

7.3 At least one bidder with unconstrained liquidity

So far, I assumed that both bidder are constrained with non-zero probability. That is,
min(v1, v2) > w. In this section, I derive an equilibrium when this assumption does
not hold: there exists at least one bidder who is not constrained under any budget
realization.

Relabel bidder 1 and 2 without loss of generality such that v1 ≤ v2. Let v1 ≤ w
such that bidder 1 is unconstrained due to his low valuation. First, consider the case
v1 = v2 ≤ w. This is equivalent to the classic Bertrand competition with unit demand
and identical marginal costs. The unique equilibrium is for both bidders to bid at
v1 = v2, and it is in weakly dominated strategies.

Consider v1 6= v2.The following lemma describes equilibria in a FPA for two bidders
and common knowledge valuations. It follows with slight modification from Blume
(2003), who analyze the equilibria in Bertrand competition with heterogeneous marginal
costs.

Proposition 6
Let v1 < v2 and v1 ≤ w. The following is an equilibrium. Bidder 2 wins the object and
places all mass on the same bid b∗2, where b∗2 ∈ [v1, v2) for v2 ≤ w, and b∗2 ∈ [v1, w] for
v2 > w. Bidder 1 mixes uniformly on [b∗2 − η, b∗2] for η > 0 small enough.

As soon as one bidder is never budget constrained due to a lower valuation, the
financial situation of the other bidder becomes irrelevant for the identity of the winner.
Under strict inequality v1 < v2, a continuum of equilibria with the above structure
arises. In each of those equilibria, the bidder with the higher valuation always wins the
object with certainty. A FPA is an efficient mechanism in this framework.

Note that bidder 2 bidding exactly at the valuation of his opponent b∗2 = v1 is the
only equilibrium in weakly undominated17 strategies (see Blume, 2003; Kartik, 2011,
for this argument in the context of Bertrand competition).

8. Conclusion

I derive equilibrium utilities and bidding distributions for two asymmetrically budget
constrained bidders, who compete for an object in a first price auction. Hereby, I
allow for any form of asymmetry under the restriction of log-concavity and common
full support on budget distributions.

16See e.g. Bergemann and Pesendorfer (2007) for disclosing information about valuations, not bud-
gets, in auctions, where monotone partitions arise as part of the optimal disclosure policy.

17Kartik (2011) shows for Bertrand competition, that in any Nash equilibrium in weakly undomi-
nated strategies, the firm with the lower marginal costs (here: bidder 2) serves the whole market (here:
wins the object) at a price equal exactly to the cost of the competitor (here: via bidding v1).
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Che and Gale (1996) show that in a symmetric equilibrium with identically dis-
tributed budgets, the equilibrium utilities of the bidders are pinned down by a lower
bound on utility. This bound is the highest utility a bidder can achieve, conditional on
his opponent following a naive strategy of always bidding his entire budget. I extend
the framework of Che and Gale (1996) in two directions: I allow for different valuations
for the object, and introduce asymmetric budget constraints. In this framework, the
lower bound does not necessarily bind. However, the equilibrium utilities can still be
recovered via using the lower bound. I characterize the entire set of equilibria for this
class of auctions, without a restriction on symmetric equilibria. My results show that
no further asymmetric equilibria exists in the framework of Che and Gale (1996) under
the additional assumption of log-concavity.

As long as both RHR are sufficiently high in relation to the value of the object for
sale, equilibrium strategies are completely invariant to the degree of asymmetry. The
lower bound always binds; bidders bid their entire budget in every Nash equilibrium.
If at least one RHR falls below some threshold, lower bounds do not bind anymore.
Bidders can achieve a utility strictly above their lower bound. Mass points arise in
bidding distribution.

My approach unravels the equilibrium via eliminating any candidate equilibrium
shape until only one is left. Mass points in equilibrium strategies are only possible at
two points: whenever the RHR-condition holds with equality. Moreover, two bidders
cannot have mass points at the same bid. Therefore, there cannot be a mass pint at the
highest possible bid. Because the highest bid wins with probability 1, this pins down
the utility from the highest bid. In any equilibrium, utility cannot be strictly increasing
and be strictly above the lower bound in some interval. I show that there remains only
one potential shape for the equilibrium utility left, that satisfies above properties.

I show that the unique remaining equilibrium always exists, as there exist corre-
sponding feasible and optimal weakly monotonic bidding strategies that yield its shape.

A general revenue ranking between the FPA and the SPA with asymmetric budget
constraints does not exist. With symmetric budgets, Che and Gale (1996) show that
the FPA yields higher revenue than the SPA. I show that with asymmetric budget
constraints, the SPA can perform strictly better with regards to revenue than the FPA.

There exists a parallel between my framework and bidders with asymmetrically
distributed valuations without budget constraints. If one considers bidders to be asym-
metric in the budget distributions and not in the valuation distributions, the problem
is solvable under much less restrictive assumptions (log-concavity, same full support),
as my results show. I impose no stochastic order or particular distribution on budgets.
Under the assumption of RHR-dominance on valuations, Maskin and Riley (2000) show
that the weaker bidder bids more aggressively. In my model, under RHR-dominance
on budget distributions, the weaker bidder with respect to the budget also bids more
aggressively than his stronger opponent.
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A. Appendix

Proof of lemma 1. Bidder i has a fixed valuation vi for the object, irrespective of
his budget realization. Thus, for any budget realization, the same feasible bid b always
yields the same utility (vi − b) Pr(bj < b) + 1

2(vi − b) Pr(bj = b) to bidder i. Therefore,
each bidder with a budget realization in (w′, w′′) has to submit a different bid: per
assumption, Ui(w) is strictly increasing. Every budget realization corresponds to a
different utility and thus, a different bid.

The following argument establishes that these different bids are uniquely pinned
down and equal to the full budget. By contradiction, let bidder i with a budget w̃ ∈
(w′, w′′) place a bid below his budget with positive probability: bi(w̃) < w̃. The expected
utility of this bid is higher than any bid of all types with a lower budget than him,
because Ui(w) is strictly increasing. Then, any bidder i with a budget within [bi(w̃), w̃)
has a profitable deviation: mimicking the w̃-budget type i and bidding bi(w̃), which is a
feasible bid. Therefore, a strictly increasing utility Ui(w) and any bid strictly below the
budget on some interval lead to a contradiction: poorer bidders can mimic the behavior
of bidders with a strictly higher budget.

Proof of lemma 2. Assume by contradiction that there exists a w′ ∈ (w,w) such
that Ui(w′) > U i(w′) and Ui(w) is neither discontinuous at w′ nor constant in any
ε-ball around w′. Then, there exists some interval [w′, w′ + ε) or (w′ − ε, w′] for some
ε > 0 sufficiently small where Ui(.) is strictly increasing and continuous. Without loss,
assume that this interval is [w′, w′ + ε).

By lemma 1, Ui(.) strictly increasing implies that all i-types are bidding their entire
budget bi(w) = w on the open interval (w′, w′ + ε) where expected utility is strictly
increasing. The bidding distribution and budget distribution for bidder i coincide on
this interval, i.e. Gi(.) = Fi(.). This is because all bidders with a budget lower than in
the interval cannot afford to bid in (w′, w′+ ε), and every bidder i with a higher budget
has to bid something else because the utility Ui(.) is non-decreasing18.

Note that because utility is continuous in (w′, w′ + ε), this rules out atoms in the
bidding distribution of bidder j due to the equal tie-breaking rule. As bidder i achieves
a utility strictly above the lower bound, we have for all w ∈ (w′, w′ + ε)

Ui(w) = (vi − w)Gj(w) > U i(w) ≥ (vi − w)Fj(w).

Therefore, we need Gj(w) > Fj(w) for all w ∈ (w′, w′+ ε). Some j-types have to bid
strictly below their budget in order for a bid w of bidder i to win with a strictly higher
probability than under the naive strategy. I now show that this requirement leads to a
contradiction.

There exists some open interval (a, b) ⊆ (w′, w′+ ε), where the expected equilibrium
utility of the opponent Uj(w) is either constant or strictly increasing and continuous;
this holds because the monotonic function Uj(w) can have only countable discontinuities
on any open interval. First, assume there exists an interval (a, b) where Uj(w) is strictly
increasing. By the same argument as for bidder i, j-types with a budget within this

18This is because bidder i always gets the same expected utility from placing a bid, irrespective of
his budget realization.
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interval bid their entire budget, bj(w) = w. Hence, bidding and budget distributions
coincide: Fj(w) = Gj(w) for all w ∈ (a, b). This contradicts the requirement Fj(w) <
Gj(w) for all w ∈ (w′, w + ε) required by bidder i to achieve a utility strictly above his
lower bound.

Second, assume there exists an interval (a, b) where Uj(w) is constant. As Uj(w)
constant on (a, b), any bid w ∈ (a, b) in this interval yields the same constant expected
utility U = Uj(w) = (vi − w)Gi(w) = (vi − w)Fi(w), due to bidder i’s bidding distri-
bution Gi(w) = Fi(w) established above. However, this contradicts the log-concavity
assumption on Fi(w), which implies that the function (vi − w)Fi(w) is never constant
on any interval. Thus, a strictly increasing continuous utility strictly above the lower
bound is impossible.

I established that whenever equilibrium utility exceeds the lower bound, it is either
constant, or discontinuous due to a mass point. It is left show, that in case of a
discontinuity at budget w′ of bidder i in equilibrium, the mass point of bidder j occurs
exactly at the bid w′. Assume by contradiction that the mass point is at y < w19.
As the discontinuity arises at budget w and utility is non-decreasing, no bidder with
a budget below w can achieve the same utility; i.e. Ui(y) < Ui(w). However, then all
bidder i types with budget within [y, w) have a profitable deviation by mimicking the
w-type and bidding y .

Proof of theorem 1. First, I establish that for the lowest possible budget w it always
holds that the lower bound binds: U i(w) = Ui(w). Assume that were not true: for some
i ∈ {1, 2}, we have U i(w) = 0 < Ui(w). Let a bid b ≤ w be the infimum bid in the
entire bidding support of the i-bidder with any budget realization. Because bidder i
with any budget realization has a strictly positive utility 20, any bid wins with strictly
positive probability. This requires either bidder j to place a mass point at b, or bid
with a strictly positive probability below b. The latter is impossible in equilibrium, as
it requires some bidder j with a budget above w to bid below b. Each such bid of j
strictly below b results in an expected utility of zero (it never wins), which is below
the lower bound U j and thus, impossible. The former (a mass point at b) cannot be
part of an equilibrium, because bidder i would always want to slightly outbid the mass
point if feasible to get the discrete jump in winning probability. This implies that
Fi(b) = Gi(b) = 0. The positive mass of j-bidders who bid at the mass point has utility
of zero, again, strictly below the lower bound U j of some, being impossible.

Next, I prove the theorem by contradiction for w ∈ (w,m1). Assume Ui(w) > U i(w)
for some w ∈ (w,m1). Both U i(w) for i ∈ {1, 2} are strictly increasing on [w,m1) by
observation 5. Let x > w be the budget within (w,m1), for which the strictly monotonic
lower bound U i(.) catches up and reaches the same value, i.e. Ui(w) = U i(x). If such x
does not exists, take m1. That is, equilibrium utility is strictly above the lower bound,
Ui(.) > U i(.), on at least the non-empty interval [w, x). As Ui is a monotonic function,
it can have only countable jump discontinuities on (w, x): Ui(.) has to be either i)
continuous and strictly increasing, or ii) constant on some subinterval within [w, x).
The former i) is ruled out by corollary 3: Ui(w) cannot be both continuously strictly

19It cannot be above w as then bidder w could not reach it and no discontinuity could occur.
20This is because Ui(w) ≥ Ui(w) > 0 for all w.
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increasing and strictly above U i(w). I show in the following, that the latter yields a
contradiction as well, if both U i(w) are strictly increasing.

Let Ui(w) = U > U i(w) be constant on some intervals within (w, x). Define zi =
inf{w : Ui(w) = U} as the lowest budget, above which bidder i achieves a payoff
equal to U . First, let zi = w. This is ruled out by the first paragraph of this proof
that established that Ui(w) = U i(w). Second, let zi > w. Bidder j has a mass point
at zi by lemma 2, as any increase above the lower bound in the interior is due to a
mass point. This implies that zi is indeed the infimum, not the minimum. Bidder
i-types with a higher budget than zi always bid above zi to extract the additional
winning probability from avoiding the sharing rule; therefore, Fi(zi) = Gi(zi). However,
this yields a contradiction for the utility of bidder j: a mass point of j at zi implies,
that there is a continuum of bidder j with budget above zi who can at most achieve
(vj − zi)Fj(zi) = U j(zi); otherwise they would have a profitable deviation by bidding
above zi instead of sticking to the mass point. Bidding zi yields expected payoff of (vj−
zi)Gi(zi) = (vj − zi)Fi(zi), which equals the lower bound U j(zi). Yet, the lower bound
is strictly increasing around zi: if bidder j-types had a constant utility to establish the
mass point for higher budget realizations than zi, their utility would fall strictly below
the lower bound on utility, which is impossible.

The previous argument established that Ui(w) = U i(w) below m1. The second part
of the theorem follows from lemma 2: as U i(w) is strictly increasing below m1, all
bidders bid their entire budget on (w,m1).

Proof of lemma 3. For the first part of the lemma, assume by contradiction that
bmax1 < bmax2 . Any bid of bidder 2, denoted b2, in the interval (bmax1 , bmax2 ] wins with
probability 1 and yields utility of (v2 − b2). For any bid in this open interval, there
exists a profitable deviation by shading the bid down by ε > 0 small enough such that
b2− ε > bmax1 . This deviation still wins the object with certainty, however, for a strictly
lower payment.

Moreover, bmax < min(v1, v2). If a bidder can afford to bid her full valuation vi, this
would yield an expected utility of 0 with certainty. However, with vi > w this implies
a utility strictly below the lower bound as 0 < U i(w ≥ vi), which is impossible in
equilibrium: deviating and bidding something in-between (w,min(v1, v2)) yields strictly
positive expected utility of at least the lower bound.

Finally, consider the second part of the lemma: if bmax = w, a mass point there
is infeasible, as only bidders with budget realization w (which is a zero probability
event) can afford bidding so high. Assume bmax < w. Let bidder i have a mass point
at bmax < min(v1, v2). Then, any bidder j with budget in (bmax, w] has a profitable
deviation: bidding bmax yields expected utility of (vj − bmax) Pr(bi < bmax) + 1

2(vj −
bmax) Pr(bi = bmax). However, if j deviates and bids above the highest bid bmax + ε
with ε→ 0, this yields a higher expected utility (vj − bmax) Pr(bi ≤ bmax) in the limit.
Therefore, this is a profitable deviation. The winning probability discretely increases
as the sharing rule no longer applies, for a negligible small increase in payment. In
equilibrium, therefore, no bidder has a mass point at the highest equilibrium bid.

Proof of lemma 4. Assume per contradiction, that bidder i does not have constant
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utility on w ∈ (mj, w]: there exist two budgets w and w′ with mj < w < w′ for which
bidder i achieves distinct utilities, i.e. Ui(w) < Ui(w′). By lemma 2, any increase
beyond the lower bound is due to a mass point. Therefore, the distinct utilities Ui(w)
and Ui(w′) can be due to 1. a mass point in the bidding cdf of j between w and w′

or 2. a strictly increasing U i(.) somewhere between w and w′. Due to log-concavity,
the second scenario can only arise on (m1,m2) for bidder 2, where U2 is still strictly
increasing while U1(w) is constant.

For the first scenario, let bidder j have a mass point at x ∈ [w,w′]. If bidder i bids
x, the sharing rule applies with positive probability. However, slightly bidding above x
yields a discrete jump in winning probability (no sharing rule applies) for a negligible
higher payment; every bidder with budget above x will bid higher than x. Therefore,
we have Fi(x) = Gi(x). However, this implies that the utility of bidder j bidding at
the mass point x is below the lower bound, x > mj: (vj − x)Gi(x) = (vj − x)Fi(x) <
(vj −mj)Fi(mj) = U i(mj ≤ w ≤ w): deviating from the mass point x to mj yields a
strongly higher payoff. Therefore, we cannot have any mass point of j on (mj, w].

For the second scenario, assume we have U2(w) = U2(w) strictly increasing some-
where on (m1,m2). This implies that on this interval, bidder 2 bids his entire budget:
G2(w) = F2(w). Thus, if bidder 1 bids b1 anywhere in this interval, his expected utility
is below the lower bound: (v1 − b1)G2(b1) = (v1 − b1)F2(b1) < (v1 − m1)F2(m1) =
U1(m1 ≤ w ≤ w). But then bidder 1 would never bid in this interval, which contradicts
the strictly increasing utility of bidder 2.

There is no mass point at the highest bid bmax. Bidding bmax wins with certainty and
yields utility of (vi− bmax). Therefore, any bidder i with budget realization w ∈ (mj, w]
has utility Ui(mj < w ≤ w) = vi−bmax. Any bid b ∈ (mj, bmax] of bidder i has the same
expected utility vi − bmax = (vi − b)Gj(b). Rewriting this equation yields the bidding
distribution in the lemma.

Proof of theorem 2. First, I show that bidder 1 has a mass point in his bidding
strategy at m1, because the equilibrium utility of bidder 2 is discontinuous at m1. By
lemma 4, U2(w) is constant for budget realizations w ∈ (m1, w]. Note that U2(w) ≥
U2(m2) for w ∈ (m1, w], with U2(m2) being the highest value for the lower bound,
which equilibrium utility cannot undercut. Moreover, U2(m2) > U2(m1) strictly, as
the lower bound is strictly increasing below m2 due to the log-concavity assumption.
By theorem 1, the lower bound binds: U2(w) = U2(w) for w ∈ [w,m1). Approaching
utility of bidder 2 from both sides at m1, shows the discontinuity and therefore, a mass
point of bidder 1: limw↗m1 U2(w) = U2(m1) < U2(m2) ≤ limw↘m1 U2(w). By lemma 2,
bidder 1 has to have a mass point at m1 in his bidding distribution function to enable
this jump in expected utility of bidder 2 to achieve a utility of at least the lower bound.

In the next step, I derive the bidding distribution of bidder 2 on [m1,m2); this
bidding distribution is uniquely pinned down by the equilibrium utility of bidder 1 on
[m1,m2). As bidder 1 has a mass point at m1, bidder 2 cannot have a mass point at
m1 as well21, F2(m1) = G2(m1). This implies U1(m1) = U1(m1). The lower bound
of bidder 1 is constant on (m1,m2), so by lemma 2 any increase can only happen due
to a mass point of bidder 2 at the respective bid. Let bidder 2 have a mass point at

21This is due to the additional winning probability if bidder 2 slightly outbids the mass point: with
limε→0(v −m1 + ε)G1(m1 + ε) > limε→0(v −m1) Pr(b1 < m1) + 1/2(v −m1) Pr(b1 = m1).

80



x ∈ (m1,m2). This implies F1(x) = G1(x) for the bidding distribution of bidder 1: all
budget types of bidder 1 who can outbid x, will do so to extract the additional winning
probability; the only bidder 1 types who bid x are those with budget equal to x. This
yields a profitable deviation for bidder 2 types, who bid at x but have a strictly higher
budget: bidding at the mass point yields (v2 − x)F1(x) = U2(x), while any higher bid
b > x yields a strictly higher payoff of at least U2(b) ≥ U2(b) > U2(x), as the lower
bound of bidder 2 is strictly increasing on (m1,m2). Hence, bidder 2 has no mass points
on [m1,m2); equilibrium utility of bidder 1 is therefore continuous and constant on this
interval, implying (v1 − b)G2(b) = (v1 −m1)F2(m1), which yields G2 on the respective
interval in the theorem.

In the next step, I pin down bmax and discuss, when bidder 2 has a mass point. Let
h, l ∈ {1, 2} such that Uh(m2) ≥ U l(m2). For high enough budget realizations, lemma 3
and lemma 4 suggests that utility coincides: U1(w > m2) = U2(w > m1) = v−bmax. As
equilibrium utilities are always weakly above the lower bound, we have Ui(w > mj) =
v − bmax ≥ Uh(mh) = (v − mh)Fl(mh) for i = 1, 2. Otherwise due to equality of the
utilities, the lower bound would be undercut somewhere.

Let h = 1, i.e. U1(m2) ≥ U2(m2). I show that the lower bound binds for bidder
1. Assume by contradiction that U2(w) = v − bmax > U1(m1) on w ∈ (m1, w]. Two
paragraphs above I prove, that U1(w) = U1(m1) < U2(w) constant on [m1,m2). For
U1(w > m2) to be equal to U2(w) = v− bmax, bidder 2 has to have a mass point at m2:
because we rule out every other point for a mass point by lemma 4. However, a mass
point of 2 atm2 would by the same argument as before lead to F1(m2) = G1(m2). Bidder
2, who bids at the mass point, will get a utility of (v −m2)F1(m2) < U1(m1) which is
a contradiction. Therefore, we have Ui(w) = v − bmax = U1(m1) = (v −m1)F2(m1) in
equilibrium and the highest bid is bmax = v − (v −m1)F2(m1).

Let h = 2 and U1(m2) < U2(m2). As the utility is always weakly above the lower
bound, we have U2(w > m1) ≥ U2(m2) = (v−m2)F1(m2). This is by assumption larger
than U1(m2). For bidder 1 and bidder 2 to have the same expected utility for budget
realizations above m2, we therefore need bidder 2 to have a mass point at m2 (the
paragraph before established that 2 has no mass points on [m1,m2); lemma 4 shows no
mass point above m2. Therefore, if a mass point exists in the bidding support of bidder
2, it has to lie atm2). If bidder 2 has a mass point atm2, this implies G1(m2) = F1(m2),
as all bidder 1 types who can afford it will bid above the mass point. This in turn pins
down the utility of of bidder 2 at the mass point, and thus, for all budgets above it:
U2(m2) = (v −m2)F1(m2) = U2(m2) = v − bmax, and, simultaneously, the upper bid
bmax = v − (v −m2)F1(m2).
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Chapter 3

Persuading an Informed Committee

1. Introduction

In voting or collective decision making, the persuasion of decision makers through a
biased party plays a crucial role. To which extent a biased party can persuade decision
makers might depend on how much decision-relevant knowledge they already possess.
Consider for example a CEO who tries to convince a board of directors to vote for a
new proposal. While the CEO wishes to always implement the proposal to improve
short-term firm performance, directors only want to approve the proposal if it increases
long-term performance. If directors already have some private knowledge about the
long-term effects of the proposal, what is the most promising way to convince them to
vote for the proposal? This is the question of this paper.

In our model an information designer requires a unanimous approval of a group of
voters to implement a proposal. Depending on the proposal’s unknown binary quality,
voters either like or dislike the proposal. If the quality was known, all voters would
agree on the optimal decision. In contrast, the information designer is biased in that
she always wants the proposal to be implemented, irrespective of its quality. Each
voter receives a private signal about the proposal having a high or low quality and is,
according to his private signal, either optimistic or pessimistic. The information de-
signer chooses a disclosure policy: she sends a public recommendation that is correlated
with the quality of the proposal. The term public means that the information designer
cannot make different recommendations to different voters. After having received the
recommendation of the information designer, each voter decides on whether to vote for
or against the proposal based on his updated belief. Although voters are aware of the
information designer’s interest in the proposal, they might nevertheless want to follow
her recommendation. This is because the recommendation is based on the true quality
of the proposal.

The main contribution of this paper is to unveil the extent to which an information
designer can persuade informed voters by choosing the optimal disclosure policy. We
characterize when the private information of voters restricts the information designer
in her scope for persuasion.

In our benchmark case we consider an omniscient information designer who can
observe the private signal realizations of all voters. We show that the omniscient in-
formation designer recommends to vote for the proposal with probability one when the
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proposal is of high quality. In the state where the proposal is of low quality, she uses a
threshold policy: she recommends the proposal with probability one for any number of
optimists above a certain cutoff, and recommends the status quo with certainty below
the cutoff. The cutoff is such that a pessimistic voter is indifferent between the proposal
and the status quo after the recommendation to vote for the proposal.

Next, we consider an eliciting information designer who cannot observe the private
information of voters but can ask them for reports about their signal realizations. We
show that the eliciting information designer cannot implement the optimal disclosure
policy from the omniscient benchmark case and is always worse off compared to the
omniscient information designer. This is caused by the optimists having a profitable
deviation through misreporting to be pessimists. As a consequence, the eliciting in-
formation designer has to give sufficient incentives for truthful reporting by providing
voters with more information. This limits the scope of the information designer for
persuasion. If the probability of receiving the correct signal is below a lower threshold,
the eliciting information designer always recommends to vote for the proposal in the
state where voters prefer the proposal. In the state in which voters want to implement
the status quo, the probability with which she recommends the proposal is stochastic
and decreasing in the accuracy of the private information of voters. This optimal policy
of the information designer is equivalent to maximizing the probability of a pessimist
to vote for the proposal. In contrast, if the probability of receiving the correct signal
is above an upper threshold, the information designer’s optimal policy is to maximize
the probability of an optimist to vote for the proposal.

Finally, we consider a non-eliciting information designer who can neither observe the
signal realizations of voters nor ask voters for reports about their private information.
If the probability of receiving the correct signal is below the same lower threshold as
in the eliciting case, the optimal disclosure policy of an eliciting and of a non-eliciting
information designer are equivalent. Thus, an information designer cannot profit from
the ability to ask voters for their private information if the accuracy of voter’s private
information is not sufficiently high.

We find that voters are better off in the presence of a biased information designer
compared to the situation in which they have to decide under unanimity rule only based
on their private exogenous information as in Feddersen and Pesendorfer (1998).

2. Related Literature

Our paper belongs to the rapidly growing literature on information design (see Rayo
and Segal, 2010; Kamenica and Gentzkow, 2011). While in Kamenica and Gentzkow
(2011) there is only one agent that is uninformed, we consider persuasion of a committee
of agents that is informed.

Amongst the vast emerging literature on information design, the two strands bearing
most resemblance to our paper are first, private information on the receiver’s side, and
second, persuasion of multiple receivers. Multiple papers extend information design to
a setting with many receivers. In these papers (Taneva, 2016; Bardhi and Guo, 2018;
Alonso and Câmara, 2016; Wang, 2015; Chan et al., 2016; Heese and Lauermann, 2017),
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agents are aware of the payoff types of each other. There is no uncertainty about the
committee constellation, and voters possess no private information about the payoff-
relevant state of the world. A crucial difference of these papers to our approach is that
in our model, the payoff type of each committee member bears information about the
state of the world and is private information. If the committee constellation was known,
all voters in our model would agree on the same election outcome.

Taneva (2016) extends the approach of a Bayes correlated equilibrium from Berge-
mann and Morris (2016a) to a class of Bayesian Persuasion problems with multiple
receivers. She fully characterizes a binary-binary1 model with two receivers and shows
that the optimal information structure involves public signals or correlated private sig-
nals (not conditionally independent signals). Alonso and Câmara (2016) analyze how
a biased sender can influence an uninformed heterogeneous committee of voters with a
public signal, as in our model. They elicit the scope for persuasion under different vot-
ing rules, and show when agents are worse off. Chan et al. (2016) consider persuading
a heterogeneous committee under the restriction to minimal winning coalitions. Wang
(2015) compares private persuasion (under the restriction of conditionally independent
signals) to public persuasion in collective decision making. She shows, that public per-
suasion performs weakly better and reveals less information than private persuasion.
The closest related to our paper is Bardhi and Guo (2018). They analyze persuasion
of a heterogeneous committee, and study a unanimous voting rule. They consider two
persuasion regimes: general persuasion (conditional on everybody’s payoff type), and
individual persuasion (conditional only on own payoff type). Persuasion is private in
their model: each agent does not see the messages sent to voters, neither under general
nor under individual persuasion. They show that under unanimity, a restriction to a
public or private persuasion regime is without loss under some assumptions. Heese and
Lauermann (2017) consider persuasion of a heterogeneous committee of voters. They
show that the information designer can almost surely guarantee the implementation of
her preferred outcome in the limit, as the size of the committee grows sufficiently large.

Amongst the papers considering private information on the side of the receiver are
Kolotilin et al. (2017), Kolotilin (2018), Bergemann and Morris (2016b) and Bobkova
(2017). Kolotilin et al. (2017) study persuasion of one privately informed receiver, who
is privately informed about his payoff type. They show that eliciting persuasion is
equivalent to non-eliciting persuasion under some conditions2. Bergemann et al. (2018)
consider a similar environment as Kolotilin et al. (2017) but add monetary transfers,
which we do not allow in our framework. Kolotilin (2018) considers an information
designer who tries to persuade an informed receiver. Persuasion is non-eliciting: the
information designer cannot ask the receiver for his type prior to her information disclo-
sure. Bobkova (2017) considers a stream of short-lived and privately informed buyers,
that an information designer (seller) seeks to persuade into buying her product. The
seller is restricted in her ability to construct experiments, and has to rely on the private
information of previous receivers, that she has to elicit truthfully.

To the best of our knowledge, our framework is the first to introduce private infor-

1Binary states and binary actions.
2Kolotilin et al. (2017) refer to eliciting and non-eliciting persuasion as public versus private per-

suasion. See Bergemann and Morris (2018) for a unified terminology, that we follow in this paper.

85



mation into persuasion of a group. We analyze the problem of an information designer
when she first has to squeeze the private information out of multiple agents before she
can condition her disclosure policy on it.

The idea of omniscient persuasion and private persuasion of one privately informed
receiver can be found in Bergemann and Morris (2016b). We extend their discussion by
providing a comparison of the cases in which the information designer is omniscient and
in which the information designer has to first elicit the private signals from multiple
agents. A unified perspective of the existing literature on Bayesian Persuasion and
information design can be found in Bergemann and Morris (2018).

Finally, our paper relates to the literature on information aggregation in strate-
gic voting, following Austen-Smith and Banks (1996) and Feddersen and Pesendorfer
(1998). Feddersen and Pesendorfer (1998) show that when voters vote strategically, vot-
ing truthfully according to one’s own private information is not an equilibrium. Voters
condition their strategy on pivotality events, and a unanimous voting rule is a ’uniquely
bad’ voting rule: it implements the inferior inefficient outcome with a higher probability
than any other majority rule. In the model of Feddersen and Pesendorfer (1998), voters
have to make their decision based on their private exogenous information only. In our
model, we allow the designer to provide further correlated information to all agents,
conditional on the true state of the world.

The paper is organized as follows. First, we introduce our model in section 2. In
Section 3.1, we first analyze the benchmark case of an omniscient information designer
and characterize her optimal disclosure policy. In the subsequent section, we analyze
information design with elicitation and show that an eliciting information designer can-
not implement the optimal disclosure policy from the omniscient benchmark case. We
characterize the optimal disclosure of an eliciting information designer and establish
two equivalence results. In section 3.3 we deal with the analysis of a non-eliciting in-
formation and prove the equivalence of optimal disclosure policies of an eliciting and
a non-eliciting information designer if the accuracy of voters’ signals is below some
threshold. The last section 3.4 deals with restricted information design. Unlike the un-
restricted information designer, the restricted eliciting information designer can achieve
the same expected payoff as in the omniscient benchmark case.

3. Model

There are three voters which have to decide whether to vote for a proposal or for a
status quo. An information designer tries to influence voters to vote for the proposal.
In the following we use information designer and sender synonymously. When a voter
i votes for the proposal we write ai = 1, and ai = 0 for the status quo. When the
outcome of the ballot is the proposal we write a = 1, and a = 0 when the status quo is
chosen. For example, under unanimity rule the outcome is a = 1 if ai = 1 for all i.

Whether a voter likes or dislikes the proposal depends on an uncertain state of the
world θ ∈ {B,G}, where Pr(θ = G) = 1

2 . Voters have the following utility function:

ui(a, θ) =

1{θ=G} − 1
2 if a = 1

0 if a = 0
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Hence, all voters agree on the optimal decision if the state was known: when θ = G
all voters want to implement the proposal, while when θ = B, all agree on the status
quo. In contrast, the sender always prefers the proposal over the status quo independent
of the state of the world. The sender’s utility function is given by uS(a) = a.

Each voter receives a private signal zi ∈ {b, g} that is correlated with the true state
of the world in the following way: Pr[zi = g|θ = G] = Pr[zi = b|θ = B] = p ∈ (1

2 , 1).
A voter i with a signal zi = g (referred to as a good signal) is more optimistic about
the state of the world being θ = G than a voter with signal zi = b (referred to as a bad
signal). Likewise, a voter with bad signal zi = b considers θ = B more likely.3

Denote the set of signal realizations by Z = {g, b}3 with a typical element z =
(z1, z2, z3) ∈ Z. Let k(z) be the number of g-signals in a typical signal realization z.
By z−i ∈ Z−i we refer to the signals of all voters except voter i, where Z−i is the set of
all signal realizations except voter i’s signal. In the following we use the shortcut k to
refer to k(z) and k−i to refer to k(z−i).

4. Omniscient Information Design

We first analyze the benchmark case in which the sender is omniscient, i.e., observing
each voter’s private signal. The sender’s problem is then to choose a disclosure policy
d : Θ×Z →4(R) with public recommendations r ∈ R to maximize the probability of
the event that all voters vote for the proposal. We restrict the analysis to anonymous
disclosure policies, which take only the number of good and bad signals into account
and not which voter has which signal.

Assumption 1
The sender’s disclosure policy is anonymous, i.e., the probability of sending any recom-
mendation is the same for all z, z′ with k(z) = k(z′).

This assumption allows us to restrict attention to disclosure policies which only
condition on the state of the world and on the number of good signal in the population.

The next assumption specifies how a voter behaves under indifference.4

Assumption 2
If a voter is indifferent between his actions, he follows the recommendation of the sender.

The following proposition says that we can restrict the sender to only two recom-
mendations r ∈ {0̂, 1̂} without loss of generality for optimality. These two recommen-
dations are direct voting recommendations, 1̂ in favor of the proposal, and 0̂ in favor of
the status quo.

3For notational convenience we will sometimes use gi and bi respectively as a short cut for voter i
having received signal zi = g and zi = b respectively.

4Note the difference to the sender-preferred equilibrium in Kamenica and Gentzkow (2011): they
assumed that if indifferent, their agent votes for the sender-preferred outcome, in our case the proposal.
We are interested in partial implementation, and such one-sided tie-breaking rule pro proposal would
be with loss of generality in our setting. We will see that in the optimum the sender sometimes wants
voters to vote for the status quo if indifferent to achieve the highest outcome. This is driven by
pivotality considerations and does not arise in Kamenica and Gentzkow (2011).
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Proposition 1
Under unanimity, it is without loss of generality to restrict the message space of the
omniscient sender to R = {0̂, 1̂}.

All omitted proofs are in the appendix. The disclosure policy of the sender is:

d : Θ× {0, 1, 2, 3} → 4{0̂, 1̂}. (3.1)

That is, we are looking for a vector with 8 components {d[1̂|θ, k]}k∈{0,1,2,3},θ∈{B,G} ∈
[0, 1]8. After the sender sends her recommendation, voters have to update their belief
about θ and only follow the sender’s recommendation if this yields a higher expected
utility than disobeying.

Since the decision has to be made under unanimity, after recommendation 1̂ a voter
is pivotal with probability one and after recommendation 0̂ he is never pivotal. This
is because in equilibrium after r = 1̂ all voters follow the recommendation 1̂ which
is why from the perspective of an individual voter his vote determines the outcome.
Similarly, a voter will never be pivotal after r = 0̂ because all other voters already voted
against the proposal which in turn makes one single vote irrelevant under unanimity.
As a consequence, a voter will always follow the recommendation 0̂ and follow the
recommendation 1̂ if his obedience constraint holds:

Pr(θ = G|1̂, zi) ≥
1
2 (OB1̂

zi
)

⇔ Pr(θ = G|zi)
2∑

k−i=0
d[1̂|θ = G, k−i + k(zi)] Pr(k−i|θ = G)

≥ Pr(θ = B|zi)
2∑

k−i=0
d[1̂|θ = B, k−i + k(zi)] Pr(k−i|θ = B)

The omniscient sender’s maximization problem is then given by:

max
d

Pr(a = 1) = max
d

Pr(1̂) =
∑

θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ)

s.t. 0 ≤ d[r|θ, k] ≤ 1, ∀r ∈ {0̂, 1̂}, θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3.2)
d[0̂|θ, k] + d[1̂|θ, k] = 1, ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3.3)

Pr(θ = G|1̂, zi)−
1
2 ≥ 0, ∀zi ∈ {b, g} (OB1̂

zi
)

The following lemma states that for the sender it is always optimal to send the
recommendation to vote for the proposal when θ = G.

Lemma 1
In any optimal disclosure policy, d[1̂|θ = G, k] = 1 for all k.

To give some intuition for Lemma 1, notice that for θ = G voters agree on the
proposal being the more appropriate choice, independent of their private signal. Hence,
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the sender does not have to convince voters so that she can simply send 1̂ for θ = G.
Assume that the conjecture is false. Then, the sender could increase the probability of
implementing the proposal and at the same time relax the voters’ obedience constraints
by simply increasing d[1̂|θ = G, k] for those k for which d[1̂|θ = G, k] 6= 1.

The probability of sending a recommendation 1̂ for the sender is:

Pr(1̂) =0.5 Pr(1̂|θ = B) + 0.5 Pr(1̂|θ = G)︸ ︷︷ ︸
=1

(3.4)

=0.5
3∑

k=0
d[1̂|k, θ = B] Pr(k|θ = B) + 0.5 (3.5)

Now, consider the obedience constraint for the g-type. It is easy to see that it is
always satisfied if Lemma 1 holds.

Lemma 2
The obedience constraint of the g-type is satisfied in any disclosure policy in which
d[1̂|θ = G, k] = 1 for all k.

Proof. The obedience constraint of the g-type is:

0.5p ≥ 0.5(1− p)
2∑

k−i=0
d[1̂|θ = B, k−i + 1] Pr(k−i|θ = B) (3.6)

Note that due to feasibility of the disclosure policy, d[1̂|θ, k] ≤ 1 for all θ and all k.
Thus,

2∑
k−i=0

d[1̂|θ = B, k−i + 1]︸ ︷︷ ︸
≤1

Pr(k−i|θ = B) (3.7)

≤
2∑

k−i=0
Pr(k−i|θ = B) = 1

Using this in the obedience constraint, we see that it is always satisfied as 0.5p ≥
0.5(1− p) ≥ RHS always holds.

The next lemma states the disclosure policy if all voters have a g-signal:

Lemma 3
In any optimal disclosure policy d, it holds that d[1̂|θ = B, k = 3] = 1.

Proof. The probability d[1̂|θ = B, k = 3] does not show up in the disclosure policy of
the b-type, as it only applies when all voters have a g-signal. Therefore, it has no effect
on the obedience of the b-type. For the g-type, by Lemma 2 the obedience constraint
of the g-type holds in any disclosure policy that sends recommendation 1̂ whenever the
state is θ = G. Therefore, setting d[1̂|θ = B, k = 3] increases the probability of the
proposal being implemented without harming any obedience constraints.
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Using the above findings, the maximization problem of the omniscient unrestricted
designer becomes:

max
d

1
2

3∑
k=0

d[1̂|θ = B, k] Pr(k|θ = B) + 1
2 Pr(k = 3|θ = B) + 1

2 (3.8)

d[0̂|θ, k] + d[1̂|θ, k] = 1, ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3.9)

s.t. (1− p) ≥ p
2∑

k−i=0
d[1̂|θ = B, k−i)] Pr(k−i|θ = B) (OB1̂

b )

By using that pPr(k−i|θ = B) = Pr(k|θ = B)3−k
3 we can rewrite OB1̂

b :

(1− p) ≥ p
2∑

k−i=0
d[1̂|θ = B, k−i] Pr(k−i|θ = B)

(
2
k−i

)
(3.10)

⇔ (1− p) ≥
3∑

k=0
d[1̂|θ = B, k] Pr(k|θ = B)3− k

3 . (3.11)

Increasing d[1̂|θ = B, k] for any k ∈ {0, 1, 2} affects differently the obedience con-
straint and objective function of the designer. While an increase in d[1̂|θ = B, k] for any
particular k ∈ {0, 1, 2} is weighted by the sender with Pr(k|θ = B), the b-type weights
this increase with Pr(k|θ = B)3−k

3 . In the terminology of the fractional knapsack5,
this means that different k have different value-weight ratios. As a consequence, it will
matter for which k the sender will increase the probability of sending recommendation
1̂ until the constraint binds. The next proposition states that the optimal disclosure
policy of the omniscient sender is a monotone threshold policy.

Proposition 2
The unique optimal disclosure policy of the omniscient sender is a monotone cutoff
policy with

d[1̂|θ = G, k] = 1 ∀k, d[1̂|θ = B, k]


= 1 if k > k̃,

∈ [0, 1] if k = k̃,

= 0 if k < k̃,

(3.12)

where k̃ is such that OB1̂
b binds.

Figure 1 shows the optimal policy of the omniscient sender for p = 0.7. If θ = G, she
sends with the certainty the recommendation 1̂ irrespective of the number of g-signals.
If θ = B, the sender uses a monotone cutoff policy, where she sends 1̂ with certainty
whenever there are at least two voters with a g-signal, mixes whenever there is one
voter with a g-signal, and never sends 1̂ when all have a b-signal.

5See appendix for the terminology.
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Figure 3.1: optimal disclosure policy for p = 0.7.

5. Eliciting Information Design

In the previous section the sender could construct any experiment on the true state
of the world and was able to see the private signal realizations of each voter. In this
section we assume that the sender cannot see the private information of the voters,
but can elicit it in an incentive compatible way. When the sender is eliciting, honesty
constraints arise, and we have to check for double deviations: if an agent misreports,
does he have a profitable deviation? After misreporting, the agent should not be strictly
better of from any possible action after the misreport.

Each voter i sends a message to the sender, a report about his private signal realiza-
tion: ẑi ∈ {ĝ, b̂}. The complete profile of reported signals is then given by ẑ ∈ Ẑ. We
employ the same notation as above, with the restriction, that now the sender conditions
not on the number of g-signals in the true signal realizations z, but on the number of
ĝ-reports in the reported signal realization ẑ. Hence, k(ẑ) denotes now the number of
ĝ-reports in the reported signal realization ẑ.

As for the omniscient sender, only two signals suffice for the sender to achieve her
highest implementable payoff.

Proposition 3
Under unanimity, it is without loss of generality to restrict the message space of the
eliciting sender to R = {0̂, 1̂}.

The sender commits to a disclosure policy d : k ∈ {0, 1, 2, 3} → ∆{0̂, 1̂}. Let
U(zi, ẑi, ai(0̂, zi), ai(1̂, zi)) be the expected utility of a voter with signal zi, who reports
being type ẑi, and votes with probability ai(0̂, zi)) for the proposal after recommendation
0̂, and with probability ai(1̂, zi)) for the proposal after recommendation 1̂.

We refer to a disclosure policy d of an eliciting sender as implementable if and only
if it satisfies the obedience and the honesty constraints.

The next observation establishes, that the omniscient sender is strictly better off
than the eliciting sender.
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Observation 8. The optimal disclosure policy of the omniscient sender is not imple-
mentable when the sender is eliciting.

It is straightforward that with the optimal disclosure policy in Proposition 2 the
g-type will have a profitable deviation from misreporting b̂ and following the recom-
mendation. Let U(zi, ẑ′i, ai(0̂, zi), ai(1̂, zi)) be the expected utility of a voter with signal
zi, who reports being type ẑ′i, and votes with probability ai(0̂, zi)) for the proposal after
recommendation 0̂, and with probability ai(1̂, zi)) for the proposal after recommenda-
tion 1̂. If the g-type is truthful and obedient, his expected utility is

U(gi, ĝi, 0, 1) = Pr(θ = G|gi)
1
2

−Pr(θ = B|gi)
1
2 Pr(k−i = 2|θ = B)

−Pr(θ = B|gi)
1
2

1∑
k−i=0

d[1̂|θ = B, k−i + 1] Pr(k−i|θ = B).

Consider the following deviation: misreport b̂ and follow the recommendation. Then,
a g-type prevent the event in which all voters have reported a g-signal, the state is θ = B
and the sender sends 1̂ with probability 1. In all other states, the misreporting does
not matter for the disclosure policy of the sender when θ = G because when θ = G the
sender sends 1̂ with probability one for all k ∈ {0, 1, 2, 3}. When θ = B, the g-type voter
profits from misreporting since, d[1̂|θ = B, k] is decreasing k. Hence, the misreporting
g-type will receive recommendation 1̂ with a (weakly) smaller probability than when
being honest in the unfavorable state θ = B. This follows because the disclosure policy
is a cutoff policy: misreporting a g-signal gets a more ’favorable’ cutoff than when
reporting truthfully. The voter’s expected payoff when being dishonest is given by

U(gi, b̂i, 0, 1) = Pr(θ = G|g)1
2

−Pr(θ = B|gi)
1
2

2∑
k−i=0

d[1̂|θ = B, k−i] Pr(k−i|θ = B).

Message 1̂ is sent less frequently if θ = B, hence U(gi, b̂i, 0, 1) > U(gi, ĝi, 0, 1).
The omniscient sender is strictly better of than the eliciting sender under information
design. This is in line with the literature. Bergemann and Morris (2016b) show that
the implementable set of equilibria is larger for an omniscient than an eliciting sender
in a bank run game with one sender and one receiver. Similarly, Bobkova (2017) shows
that an omniscient sender has a strictly higher probability of selling a good to a buyer
when the sender is omniscient than when she is eliciting.

Since an optimal disclosure policy of the omniscient sender is not implementable for
the eliciting sender, we need to solve his maximization problem by taking into account
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the honesty constraints. The obedience constraint of the g-type after being truthful is

U(gi, ĝi, 0, 1) = Pr(θ = G|gi)
2∑

k−i=0
d[1̂|θ = G, 1 + k−i] Pr(k−i|θ = G) (OB1̂

g)

− Pr(θ = B|gi)
2∑

k−i=0
d[1̂|θ = B, 1 + k−i] Pr(k−i|θ = B) ≥ 0 = U(gi, ĝi, 0, 0).

The obedience constraint of the b-type after being truthful is

U(bi, b̂i, 0, 1) = Pr(θ = G|bi)
2∑

k−i=0
d[1̂|θ = G, k−i] Pr(k−i|θ = G) (OB1̂

b )

− Pr(θ = B|bi)
2∑

k−i=0
d[1̂|θ = B, k−i] Pr(k−i|θ = B) ≥ 0 = U(bi, b̂i, 0, 0).

The honesty constraint of a g-type who is obedient is then given by

U(gi, ĝi, 0, 1) =
2∑

k−i=0
d[1̂|θ = G, 1 + k−i] Pr(k−i|θ = G)p (Hg)

− d[1̂|θ = B, 1 + k−i] Pr(k−i|θ = B)(1− p)

≥
2∑

k−i=0
d[1̂|θ = G, k−i] Pr(k−i|θ = G)p

− d[1̂|θ = B, k−i] Pr(k−i|θ = B)(1− p) = U(gi, b̂i, 0, 1).

The honesty constraint of a b-type who is obedient is then given by

U(bi, b̂i, 0, 1) =
2∑

k−i=0
d[1̂|θ = G, k−i] Pr(k−i|θ = G)(1− p) (Hb)

− d[1̂|θ = B, k−i] Pr(k−i|θ = B)p

≥
2∑

k−i=0
d[1̂|θ = G, k−i + 1] Pr(k−i|θ = G)(1− p)

− d[1̂|θ = B, k−i + 1] Pr(k−i|θ = B)p = U(bi, ĝi, 0, 1).

Note that after recommendation r = 0̂, a voter is never pivotal and hence it does not
matter whether he follows or disobeys the recommendation after misreporting. That
is, U(zi, ẑi, 1, 1) = U(zi, ẑi, 0, 1). If a voter is not obedient after recommendation 1̂,
i.e., ai(1̂, zi)) = 0, then his expected utility is simply U(zi, ẑi, 0, 0) = U(zi, ẑi, 1, 0) = 0.
This takes care of all double-deviations, since the obedience constraints guarantee a
non-negative payoff.
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The maximization problem of the unrestricted eliciting sender is

max
d

∑
θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (3.13)

s.t. 0 ≤ d[r|θ, k] ≤ 1, ∀r ∈ {0̂, 1̂}, θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3.14)
d[1̂|θ, k] + d[0̂|θ, k] = 1 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3.15)
U(gi, ĝi, 0, 1) ≥ U(gi, ĝi, 0, 0) = 0 (OB1̂

g)
U(bi, b̂i, 0, 1) ≥ U(bi, b̂i, 0, 0) = 0 (OB1̂

b )
U(gi, ĝi, 0, 1) ≥ U(gi, b̂i, 0, 1) (Hg)
U(bi, b̂i, 0, 1) ≥ U(bi, ĝi, 0, 1). (Hb)

Lemma 4
If OB1̂

b and Hg hold, then OB1̂
g is satisfied.

Next, we reforumlte the Primal of the eliciting sender.

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

∑
θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (3.16)

s.t.
2∑

k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G) ≤ 0, (OB1̂

b )

3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0,
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0,

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3}. (3.17)

Observation 9. The information designer’s maximization problem is equivalent to
maximizing 1

2

(
Pr(1̂|b) + Pr(1̂|g)

)
.

After rewriting 1
2

(
Pr(1̂|b) + Pr(1̂|g)

)
into

3∑
k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)1

2 + d[1̂|θ = G, k] Pr(k|θ = G)1
2

)(
k

3 + 3− k
3

)
︸ ︷︷ ︸

=1

(3.18)

one can directly see that maximizing the ex-ante type is equivalent to the objective
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function of the eliciting designer.

Proposition 4
The optimal disclosure policy of the eliciting information designer for p ≤ p is ∀k,

d[1̂|θ = G, k] = 1, d[1̂|θ = B, k] = (1− p)
p

,

where p = 1√
2 .

The optimal disclosure policy of the eliciting sender for this interval of accuracy
levels does not condition on the information reported by voters. The eliciting sender
send 1̂ in each state of the world with a constant probability, i.e., independent of how
many g-signals there were reported. Figure 3.2 shows the optimal disclosure policy of
the eliciting sender for p = 0.6.
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Figure 3.2: optimal policy for p = 0.6.
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Figure 3.3: optimal policy for p = 0.75.
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Figure 3.4: optimal policy p = 0.9.

Proposition 5
The optimal disclosure policy of the eliciting information designer for p ≤ p ≤ p is

d[1̂|θ = B, k] =


(1−p)
p

(2p− 1) if k = 0

2(1− p) if k 6= 0
, d[1̂|θ = G, k] =


0 if k = 0

1 if k 6= 0,
(3.19)

95



where p = 1√
2 and p = 1+

√
13

6 .

In contrast to the previous proposition, for this intermediate interval of accuracy
levels, the sender starts to use the information reported by voters. That is, when the
private information of voters’ is more accurate, the sender conditions her disclosure
policy on the number of reported g-signals. Moreover, the eliciting sender’s optimal
disclosure policy is monotone, i.e., she increases the probability with which she sends
the recommendation 1̂ when the number of reported g-signals increases. Figure 3.3
shows the disclosure policy for p = 0.75. If θ = G, with at least one ĝ-report the sender
increases the probability of sending 1̂ from 0 to 1. Similarly, she sends 1̂ in θ = B more
often when there is at least one ĝ-report.

Proposition 6
The optimal disclosure policy of the eliciting information designer for p ≤ p < 1 is

d[1̂|θ = B, k] =


0 if k = 0,
(p− 1

2 )(3−p)
2(2p−1) if k = 1,

1 if k ∈ {2, 3},

d[1̂|θ = G, k] =


0 if k = 0,
(p− 1

2 )(p+2)
2(2p−1) if k = 1,

1 if k ∈ {2, 3},

for p = 1+
√

13
6 .

As for the previous interval of accuracy levels, the sender makes use of the informa-
tion reported by voters: she changes the probability with which she sends 1̂ depending
on how many g-signals were reported. Moreover, the sender uses a monotone disclosure
policy. Figure 3.4 shows the optimal disclosure policy of the eliciting sender for p = 0.9.
Note the bang-bang structure of the optimal disclosure policy: In both states of the
world, the eliciting sender recommends 1̂ with certainty whenever there are at least two
ĝ-reports, she mixes between 0̂ and 1̂ when there is exactly one ĝ-report, and never
recommends 1̂ when there is no ĝ-report.

Proposition 7
For p ≤ p, the information designer’s optimal disclosure policy is equivalent to maxi-
mizing Pr(1̂|b).

Proposition 8
For p ≤ p < 1, the information designer’s optimal disclosure policy is equivalent to
maximizing Pr(1̂|g).

While Proposition 7 says that the information designer maximizes the probability of
a b-type to vote for the proposal if p ≤ p, Proposition 8 says that her optimal disclosure
policy is equivalent to maximizing the probability of a g-type to vote for the proposal if
p ≥ p. Note that the expected utility of the sender is strictly decreasing in the accuracy
of the voters’ private signals, that is, the more convinced the voters, the less scope for
persuasion. This is depicted in Figure 3.5.
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Figure 3.5: expected payoff of the eliciting sender.

6. Non-Eliciting Information Design

In this section the sender cannot ask voters for their private information. In this case
the sender is not able to condition her disclosure policy on the private signals or reports
of the voters. The following lemma restricts the sender’s message set.

Lemma 5
Under unanimity, it is without loss of generality for optimality to restrict the message
space of the non-eliciting sender to R = {0̂, 0̂1, 1̂}.

As before, obedient voters vote for the proposal after 1̂ and for the status quo
after 0̂. After 0̂1, only g-type voters vote for the proposal, and the b-types reject the
proposal. To give some intuition for Lemma 3, observe that there exist only only three
possible cases that can occur after any recommendation: either both types weakly favor
the proposal, only the g-type favors for the proposal, or both types strictly dislike the
proposal. A good-type never votes against the proposal while a voter with a bad signal
strictly prefers the proposal. This is because a voter with a g-signal is more optimistic
about θ = G than a b-type voter. As a consequence, the above three recommendations
are sufficient to capture all the possible cases that can occur.

The disclosure policy of a non-eliciting sender is:

d : Θ→ ∆{0̂, 0̂1, 1̂}. (3.20)

The obedience constraints for each type of voter after 1̂ are given by:

Ui(gi, ai(1̂, gi) = 1) =
∑

θ∈{B,G}
d[1̂|θ] Pr(θ|gi)(1θ=G −

1
2) ≥ 0 = Ui(gi, ai(1̂, gi) = 0)

Ui(bi, ai(1̂, bi) = 1) =
∑

θ∈{B,G}
d[1̂|θ] Pr(θ|bi)(1θ=G −

1
2) ≥ 0 = Ui(bi, ai(1̂, bi) = 0)
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The obedience constraints for each type of voter after 0̂1 are given by:

Ui(gi, ai(0̂1, gi) = 1) =
∑

θ∈{B,G}
d[0̂1|θ] Pr(k = 3|θ) Pr(θ)(1θ=G −

1
2)

≥ 0 = Ui(gi, ai(1̂, gi) = 0),

Ui(bi, ai(0̂1, bi) = 1) =
∑

θ∈{B,G}
d[0̂1|θ] Pr(k = 2|θ) Pr(θ)(1θ=G −

1
2)

≤ 0 = Ui(bi, ai(1̂, bi) = 0).

The sender’s maximization problem becomes:

max
d

∑
θ∈{B,G}

(d[1̂|θ] + d[0̂1|θ] Pr(k = 3|θ)) Pr(θ) (3.21)

s.t. 0 ≤ d[r|θ] ≤ 1, ∀r ∈ {0̂, 0̂1, 1̂}, θ ∈ {B,G} (3.22)
d[1̂|θ] + d[0̂1|θ] + d[0̂|θ] = 1 ∀θ ∈ {B,G} (3.23)
Ui(gi, ai(1̂, gi) = 1) ≥ Ui(gi, ai(1̂, gi) = 0) = 0 (OB1̂

g)
Ui(bi, ai(1̂, bi) = 1) ≥ Ui(bi, ai(1̂, bi) = 0) = 0 (OB1̂

b )
Ui(gi, ai(0̂1, gi) = 1) ≥ Ui(gi, ai(0̂1, gi) = 0) (OB0̂1

g )
Ui(bi, ai(0̂1, bi) = 1) ≤ Ui(bi, ai(0̂1, bi) = 0) (OB0̂1

b )

The next result shows the solution to the above problem of a non-eliciting informa-
tion designer.

Proposition 9
The optimal disclosure policy of the non-eliciting sender for p ≤ p̃ is

d[1̂|θ = G] = 1, d[1̂|θ = B] = 1− p
p

,

d[0̂|θ = G] = 0, d[0̂|θ = B] = 2p− 1
p

.

The optimal disclosure policy of the non-eliciting sender for p ≥ p̃ is

d[1̂|θ = G] = 1− (2p− 1)(1− p)3

(p4 − (1− p)4) , d[1̂|θ = B] = 1− (2p− 1)p3

p4 − (1− p)4

d[0̂1|θ = G] = (2p− 1)(1− p)3

p4 − (1− p)4 , d[0̂1|θ = B] = (2p− 1)p3

p4 − (1− p)4 ,

where p̃ = 4
√

1
2 .
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Note that for any p, the optimal disclosure policy of the designer never contains
more than two messages. When comparing the optimal disclosure policy of an eliciting
and non-eliciting information designer, it becomes apparent that they are equivalent
for p ≤ p = 1√

2 . The eliciting information designer has no advantage from asking voters
about their private information when the accuracy of signals is sufficiently small.

Corollary 4. Let p = 1√
2 . For p ≤ p, the eliciting sender’s optimal disclosure policy is

equivalent to the non-eliciting sender’s optimal disclosure policy.

Figure 3.6: non-eliciting sender’s expected payoff.

7. Further Remarks

7.1 Eliciting Sender: Comparison to Feddersen and Pesendorfer (1998)

Next, consider the error probabilities of a wrong decision when θ = B (i.e., Pr(a =
1|θ = B)) and implementing the status quo when θ = G (i.e., Pr(a = 0|θ = B)) under
the optimal disclosure policy d of the sender.

We compare the probabilities of making each type of error in our setting to the
corresponding probabilities of making each type of error in Feddersen and Pesendorfer
(1998), where voters have to act based on their private signals without any coordination
device or sender, and the decision rule is unanimity. Applied to our setting, the following
is a Nash equilibrium in their model: a voter with a g-signal always votes in favor of the

reform, and a b-signal voter in favor of the reform with probability
√
p

(
p+
√
p(1−p)−1

)
p

3
2−(1−p)

3
2

.
First, the probability of choosing the proposal when θ = B in our setting is bigger

for all p ∈ (1
2 , 1) (Figure 3.7). Second, the probability of choosing the status quo when

θ = G in our setting is smaller for all p ∈ (1
2 , 1) (Figure 3.8).

Taken together, while in Feddersen and Pesendorfer (1998) the proposal is more
often implemented when θ = B, in our setting the proposal is more often implemented
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Figure 3.7: error probabilities if θ = B. Figure 3.8: error probabilities if θ = G.

when θ = G. A manipulative information designer strictly decreases the probability of
rejecting the proposal when the proposal is efficient while increasing the probability of
rejecting the status quo when the status quo is efficient.

Overall, the ex-ante type (a voter whose private signal has not yet realized) receives
a strictly higher expected payoff in our model than in Feddersen and Pesendorfer (1998).

Proposition 10
Under unanimity, voters have a strictly higher expected utility with an eliciting informa-
tion designer than in a symmetric equilibrium as in Feddersen and Pesendorfer (1998).

Hence, even with a manipulative sender, voters are better off in expectations com-
pared to the situation in which they have to decide on their own under unanimity.

7.2 Omniscient Sender: One Agent with Multiple Signals

In this section we are comparing our previous results from Section 3.1 to the case where
the omniscient sender faces only one voter which receives a signal s ∈ {0, 1, 2, 3}. One
possible interpretation for this setting is the following: Imagine voters could communi-
cate with each other and exchange their private signals before the information designer
sends her public recommendation. In this case every voter has exactly the same in-
formation, i.e., knows how many g-signals there are. As a consequence, the sender’s
problem is equivalent to persuading one representative voter that can possibly have four
different signals which correspond to the number of g-signals. Formally, the sender’s
problem becomes

max
d

∑
θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (3.24)

Pr(θ = G|1̂, s)− 1
2 ≥ 0 ∀s ∈ {0, 1, 2, 3}. (OB1̂)

The obedience constraint of the representative voter can be rewritten into
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Pr(θ = G|1̂, s)− 1
2 ≥ 0 (3.25)

⇔ Pr(θ = G, 1̂, s)
Pr(1̂, s)

≥ 1
2 (3.26)

⇔ Pr(1̂|θ = G, s) Pr(θ = G, s)
Pr(1̂, s)

≥ 1
2 (3.27)

⇔ d[1̂|θ = G, k] Pr(k|θ = G) Pr(θ = G)
Pr(1̂, k)

≥ 1
2 (3.28)

⇔ d[1̂|θ = G, k] Pr(k|θ = G) ≥ d[1̂|θ = B, k] Pr(k|θ = B) (3.29)

In contrast to before, the omniscient sender who faces only one agent which has
one out of four signal realizations, has to take four obedience constraints into account,
one for each s ∈ {0, 1, 2, 3}. Due to the perfect alignment of interests of the sender
and the representative voter in θ = G, the omniscient sender will optimally send 1̂ in
θ = G with certainty for each s ∈ {0, 1, 2, 3}. Simple calculations show that the voter’s
obedience constraint is slack if the omniscient sender also sends 1̂ with probability one
for s ∈ {2, 3}. For s ∈ {0, 1} she will choose d[1̂|θ = B, k] such that the obedience
constraint just binds. That is

3p2(1− p) = d[1̂|θ = B, k = 1]3p(1− p)2 (3.30)

⇔ d[1̂|θ = B, k = 1] = (1− p)
p

(3.31)

and

p3 = d[1̂|θ = B, k = 0](1− p)3 (3.32)

⇔ d[1̂|θ = B, k = 0] = (1− p)3

p3 . (3.33)

Hence, when the omniscient sender faces only one representative voter who knows
the number of g-signals, she optimally uses the following disclosure policy

d[1̂|θ = G, k] = 1 ∀k, d[1̂|θ = B, k] =


1 if k ∈ {2, 3}
(1−p)
p

if k = 1
(1−p)3

p3 if k = 0.

(3.34)

The omniscient sender’s expected payoff in this case is given by 1
2 + 1

2(2−2p). This is
always lower than the omniscient sender’s expected payoff facing three informed voters
who cannot communicate. Since the omniscient sender’s optimal disclosure policy in
θ = G is exactly the same in both settings and the total probability with which she
sends 1̂ in θ = B is smaller when voters know the signals of each other, voters are better
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off if they know each other’s signals.

8. Conclusion

We study a biased sender who tries to persuade three voters to vote for a proposal by
sending public recommendations. Voters receive some private signals about the quality
of the proposal and only want to approve the proposal if it is of high quality. We
characterize the optimal disclosure policy under unanimity rule of a 1. omniscient,
2. eliciting, and 3. non-eliciting sender. We find that the eliciting sender can only
profit from her ability to ask voters for their private signals when the accuracy of their
private information is sufficiently high. Whenever the accuracy level is below some
lower threshold the eliciting sender is just equally well of as the non-eliciting sender
who cannot ask voters for reports about their private signals.

We show that depending on the accuracy level of the private signals of voters the
optimal disclosure policy of the eliciting sender solves two other related maximization
problems: For accuracy levels below some lower threshold, the eliciting sender max-
imizes the probability that a pessimistic voter votes for the proposal. For accuracy
levels above some upper threshold, the eliciting sender maximizes the probability of an
optimistic voter approving the proposal. Voters are better off in the presence of a biased
informed designer than in a setting where they have to vote under unanimity based on
their private exogenous information only as in Feddersen and Pesendorfer (1998).

In this work we consider a sender who knows the true quality of the proposal.
Extending the analysis to a restricted sender who is uninformed about the true quality
and can only send public recommendations on the basis of the reports made by voters
is a potential avenue for future research.

102



A. Appendix

A.1 Proof of Proposition 1

Proof. We show that given any outcome of disclosure policy d′, the sender can im-
plement an outcome equivalent policy d consisting of only two recommendations R =
{0̂, 1̂}. Message 0̂ is the recommendation to vote with probability 1 for the status quo
irrespective of the private signal, and 1̂ is the recommendation to vote with probability
1 for proposal irrespective of the private signal.

Consider any arbitrary disclosure policy of the sender d′ : Θ× {0, . . . , 3} → ∆(R′),
with R′ being any arbitrary message set. Denote r′ ∈ R′ an element of the message
space. Let a(r′, zi) be the probability of a voter i with signal zi voting for the proposal
after seeing recommendation r′ under disclosure policy d′.6

Now consider a filtering d of the original information disclosure policy d′ of the
following form.

d : R′ ×K → ∆[0̂, 1̂].

The new disclosure policy takes the realized message r′ in the original disclosure
policy and the number of g-signals k of the voters, and maps them into a binary voting
recommendation. With slight abuse of notation, denote by d(1̂|r′, k) the probability of
sending recommendation 1̂ in favor of the proposal.

Consider the following construction for the new disclosure policy d:

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k. (3.35)

It is immediate that this policy yields the same expected utility to the sender (if
implementable), as the probability with which she sends signal 1̂ corresponds to the
probability with which her preferred outcome would have been elected under the original
disclosure policy d′.

Furthermore, this disclosure policy is designed to be proportional to the original
probability of being pivotal for both voter types. In particular, for zi = b and k ∈
{0, 1, 2}, we have Pr(piv|r, k−i = k, b) = a(r′, g)ka(r′, b)2−k and hence,

d(1̂|r′, k) = a(r′, b) Pr(piv|r′, k−i = k).

Similarly, for zi = g and k ∈ {0, 1, 2}, we have Pr(piv|r, k−i = k, g) = a(r′, g)k−1a(r′, b)3−k

and thus,
d(1̂|r′, k + 1) = a(r′, g) Pr(piv|r′, k−i = k).

It is left to show that the obedience constraints are also satisfied under the new
disclosure policy d′. After public recommendation 0̂ no voter is ever pivotal. It suffices
to show, that both private information types have an incentive to follow the recommen-
dation 1̂ by voting for the proposal. The obedience constraint of a voter with private
signal zi is:

6We assume that voters with the same signal react symmetrically to the same recommendation,
ai(r′, zi) = aj(r′, zj) if zi = zj . Hence, we drop index i.
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Pr(θ = G|1̂, zi, piv) ≥ 1
2 ∀zi ∈ {gi, bi} (3.36)

This can be rewritten into

Pr(θ = G|zi) Pr(1̂|θ = G, zi) Pr(piv|1̂, θ = G, zi)︸ ︷︷ ︸
=1

≥ Pr(θ = B|zi) Pr(1̂|θ = B, zi) Pr(piv|1̂, θ = B, zi)︸ ︷︷ ︸
=1

.

Thus, the two obedience constraints can be expressed as

pPr(1̂|θ = G, gi) ≥ (1− p) Pr(1̂|θ = B, gi), (OB1̂
g)

(1− p) Pr(1̂|θ = G, bi) ≥ pPr(1̂|θ = B, bi). (OB1̂
b )

We can invoke the construction of the new disclosure policy d from d′ to rewrite:

Pr(1̂|θ, gi) =
∑
r′∈R′

Pr(1̂, r′|θ, gi) (3.37)

=
∑
r′∈R′

2∑
k−i=0

Pr(1̂, r′, k−i|θ, gi) (3.38)

=
∑
r′∈R′

2∑
k−i=0

Pr(k−i|θ, gi) Pr(r′|k−i, θ, gi) Pr(1̂|r′, k−i, θ, gi) (3.39)

=
∑
r′∈R′

2∑
k−i=0

Pr(k−i|θ, gi) Pr(r′|k−i, θ, gi)d(1̂|r′, k = k−i + 1) (3.40)

Analogously, for zi = b we have

Pr(1̂|θ, bi) =
∑
r′∈R′

2∑
k−i=0

Pr(k−i|θ, bi) Pr(r′|k−i, θ, bi)d(1̂|r′, k = k−i) (3.41)

We can use this to rewrite the obedience constraints under the new disclosure policy:

∑
r′∈R′

2∑
k−i=0

pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)d(1̂|r′, k = k−i + 1)

≥
∑
r′∈R′

2∑
k−i=0

(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)d(1̂|r′, k = k−i + 1)
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⇔
∑
r′∈R′

2∑
k−i=0

d(1̂|r′, k = k−i + 1)[pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)] ≥ 0. (OB1̂
g)

Using the construction of the new disclosure policy, we can rewrite

∑
r′∈R′

a(r′, gi)
2∑

k−i=0
Pr(piv|r, k−i, bi)[pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)] ≥ 0. (3.42)

Analoguously, for zi = b we have

∑
r′∈R′

a(r′, bi)
2∑

k−i=0
Pr(piv|r′, k−i, bi)[(1− p) Pr(k−i|θ = G, bi) Pr(r′|k−i, θ = G, bi)

−pPr(k−i|θ = B, bi) Pr(r′|k−i, θ = B, bi)] ≥ 0.
(OB1̂

b )

Note that the original disclosure policy d′ is implementable, i.e. the obedience
constraint holds for each type zi ∈ {g, b} and each message r′ ∈ R′, when ai(r′, zi) > 0.
That is,

2∑
k−i=0

Pr(piv|r′, k−i, θ = G)[pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)] ≥ 0. (OBr′
g )

2∑
k−i=0

Pr(piv|r′, k−i, θ = G)[(1− p) Pr(k−i|θ = G, bi) Pr(r′|k−i, θ = G, bi)

−pPr(k−i|θ = B, bi) Pr(r′|k−i, θ = B, bi)] ≥ 0. (OBr′
b )

The inner sums in the obedience constraints under the new disclosure policy d, OB1̂
b

and OB1̂
g , correspond to the original obedience constraints, OBr′

g and OBr′
b , under the

former disclosure policy d′. This establishes that the filtering d satisfies both obedience
constraints and yields the same payoff to the designer.
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A.2 Proof of Lemma 1

Proof. We prove this by contradiction. Assume that the disclosure policy d is optimal
and that there exists k′ such that d[1̂|θ = G, k′] 6= 1. Then, construct a new disclosure
policy d′ that is equal to the old disclosure policy d for all k 6= k′ and θ. For k = k′ and
θ = G, it sends recommendation 1̂ with probability 1. That is d′[1̂|θ = B, k] = d[1̂|θ =
B, k] ∀k′, d′[1̂|θ = G, k] = d[1̂|θ = G, k] ∀k′ 6= k and d′[1̂|k′] = 1 6= d[1̂|k′]. Next we
check whether the new disclosure policy d′ still fulfills the voters’ obedience constraints.
Note that if the recommendation 0̂ was sent, no voter is ever pivotal, which is why this
doesn’t influence the obedience constraints. Sending the recommendation 1̂ for any k
when θ = G increases the left hand side of the voters’ obedience constraints and thus
makes them easier to satisfy. The new disclosure policy relaxed the voters’ obedience
constraints and sends 1̂ with a strictly higher probability.

A.3 Proof of Proposition 2

Proof. The only part of above proposition that we have not proven is d[1̂|θ = B, k 6= 3].
In the following we will use the greedy algorithm (Dantzig, 1957) to solve this problem.
We have a fractional knapsack problem of the following form:

Find 0 ≤ xk = d[1̂|θ = B, k] ≤ 1 for k ∈ {0, 1, 2} s.t.

1)
2∑

k=0
xkwk ≤ (1−p)

p
holds and

2)
2∑

k=0
xkvk is maximized,

where wk = 3−k
3 Pr(k|θ = B) and vk = Pr(k|θ = B) · 1. We refer to wk as the weight

and to vk as the value of k.

Next we calculate the value-per-weight ratio ρk = vk
wk

for k ∈ {0, 1, 2}:

ρk = Pr(k|θ = B)
3−k

3 Pr(k|θ = B)
= 3

3− k (3.43)

Variable ρk is increasing in k. Hence, if we sort the k’s by decreasing ρk, we get the
following order 2, 1, 0. How much probability mass we can place on each k until the
obedience constraint of the b-signal voter is binding, will depend on the accuracy level
of the voters’ private signals p.
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A.4 Proof of Proposition 3

Proof. Consider the same filtering of the original disclosure policy d′ into d as in the
proof of Proposition 1:

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k.

It remains to be shown that this disclosure policy d satisfies the honesty constraints
for each type. The proof of optimality for the designer, and the validity of the obedi-
ence constraints were already established in Proposition 1. We prove that the above
filtering satisfies the honesty constraints of the g-type. The argument for the b-type is
accordingly, and therefore omitted.

Expected utility in equilibrium with d and d′. First, we show that the old
disclosure policy d′ and new disclosure policy d yields exactly the same expected utility
to the g-type in equilibrium, when reporting truthfully. Let R be the message set of
the designer with d′.7

EU(gi, ĝi; d′) =
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)ai(r, g)k−i+1ai(r, b)2−k−iq(r, gi, ĝi, k−i),

(3.44)

where q(r, gi, ĝi, k−i) = E [θ|r, gi, ĝi, k−i]− 1
2 is the expected net utility from implement-

ing the proposal if a g-type voter reported truthfully, k−i others also have a g-signal
and the designer sent recommendation r. The factor ai(r, g)k−i+1ai(r, b)2−k−i accounts
for the probability of being pivotal (ai(r, g)k−iai(r, b)2−k−i) times the probability of the
g-type voter i voting for the reform ai(r, g) in equilibrium.

Next, consider the expected utility under the new disclosure policy d. Whenever the
designer sends recommendation 1̂ (which happens with probability ai(r, g)k−i+1ai(r, b)2−k−i

if recommendation r would have been sent in d′) the reform is implemented.

EU(gi, ĝi; d) =
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)d(1̂|r, k = k−i + 1)q(r, gi, ĝi, k−i)

=
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)ai(r, g)k−i+1ai(r, b)2−k−iq(r, gi, ĝi, k−i).

(3.45)

This coincides with the utility under the original disclosure policy in Equation 3.44,
EU(gi, ĝi; d) = EU(gi, ĝi; d′).

Expected utility from misreporting in d′. Next, consider the utility of a g-voter
who reports b̂ in the original disclosure policy d′. To account for double deviations, we
denote by ãi(r, gi, b̂i) his action after observing r when reporting b̂.

7For convenience of notation, we assume that R is finite.
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EU(gi, b̂i; d′) =
∑
r∈R

max
ãi(r,gi,b̂i)∈[0,1]

ãi(r, gi, b̂i)· (3.46)

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′)ai(r, g)k−iai(r, b)2−k−iq(r, gi, b̂i, k−i).

For simplicity of notation, denote by EU(r|gi, b̂i) the optimal utility after misre-
porting and observing recommendation r. Note that EU(r|gi, b̂i) ≥ 0 for all r, as a
voter can always derive zero utility by voting against the reform. Hence,

EU(gi, b̂i; d′) =
∑
r∈R

EU(r|gi, b̂i). (3.47)

Expected utility from misreporting in d. Finally, consider the expected utility
after misreporting in the new disclosure policy d. The voter optimizes over his action
ã(1̂, gi, b̂i) after recommendation 1̂ after misreporting. For simplicity, we assume that
the voter votes for the reform with probability ã(1̂, gi, b̂i) after both recommendations
1̂ and 0̂, as his utility after recommendation 0̂ yields utility 0 irrespective of his action.
The difference to d′ is that he might not know which r lead to the recommendation 1̂.

EU(gi, b̂i; d) = max
ã(1̂,gi,b̂i)∈[0,1]

ã(1̂, gi, b̂i)·

∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′) ai(r, g)k−iai(r, b)3−k−i︸ ︷︷ ︸
=Pr(1̂|r,k=k−i)

q(r, gi, b̂i, k−i).

(3.48)

If the voter knew which r of the original disclosure policy d′ led to recommendation
1̂, he would be better off: he could adapt his voting decision ã(1̂, r, gi, ĝi) to each r
(instead of choosing the same ã(1̂, gi, ĝi) for all r that led to 1̂). Thus,

EU(gi, b̂i; d) ≤
∑
r∈R

max
ã(1̂,r,gi,b̂i)∈[0,1]

ã(1̂, r, gi, b̂i)·

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′) ai(r, g)k−iai(r, b)3−k−i︸ ︷︷ ︸
=d(1̂|r,k=k−i)

q(r, gi, b̂i, k−i)

(3.49)
=
∑
r∈R

ai(r, b) max
ã(1̂,r,gi,b̂i)∈[0,1]

ã(1̂, r, gi, b̂i)·

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′)ai(r, g)k−iai(r, b)2−k−iq(r, gi, b̂i, k−i),

(3.50)

where the last inequality follows by putting the non-negative factor ai(r, b) outside the
maximum. But then note that the maximization problem point-wise after each r is

108



exactly the same as in Equation 3.46 for the original disclosure policy, EU(r|gi, b̂i),
which is non-negative. Hence, the optimal deviation utility is bounded above by

EU(gi, b̂i; d) ≤
∑
r∈R

ai(r, b)︸ ︷︷ ︸
∈[0,1]

EU(r|gi, b̂i)︸ ︷︷ ︸
≥0

(3.51)

≤
∑
r∈R

EU(r|gi, b̂i) (3.52)

= EU(gi, b̂i; d′). (3.53)

The payoff after a misreport and an optimal best response is weakly lower than in
the original disclosure policy. Note that the original disclosure policy d′ by assumption
satisfied all constraints, including the honesty constraint of the g-type. Hence, we
established that the honesty constraint of the g-type holds by proving

EU(gi, ĝi; d) = EU(gi, ĝi; d′) ≥ EU(gi, b̂i; d′) ≥ EU(gi, b̂i; d).

A.5 Proof of Lemma 4

Proof. First, we rewrite the honesty constraint of g-type to sum over k instead of k−i.

3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0

⇔
3∑

k=1

k

3(d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G)︸ ︷︷ ︸
OB1̂

g

≤
3∑

k=1

k

3(d[1̂|θ = B, k − 1] Pr(k|θ = B)− d[1̂|θ = G, k − 1] Pr(k|θ = G)︸ ︷︷ ︸
∗

.

Observe that we have rewritten Hg such that the LHS of Hg is just OB1̂
g . We

rewrite (∗), i.e., the RHS of Hg, into

2∑
k=0

k + 1
3 (d[1̂|θ = B, k] Pr(k + 1|θ = B)− d[1̂|θ = G, k] Pr(k + 1|θ = G). (3.54)

Next, we subtract
2∑

k=0

3−k
3 (d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G) ≤
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0, which is just OB(b) ≤ 0 rewritten, and get

2∑
k=0

(d[1̂|θ = B, k](3− k
3 Pr(k + 1|θ = B)− k

3 Pr(k|θ = B)) (3.55)

− d[1̂|θ = G, k](3− k
3 Pr(k + 1|θ = G)− k

3 Pr(k|θ = G)).

Rewriting yields

2∑
k=0

(d[1̂|θ = B, k]p2−k(1− p)k(1− 2p)− d[1̂|θ = G, k]pk(1− p)2−k(2p− 1) ≤ 0.

Thus, we have that for all k ≤ 2 the expression above is negative. Note that
(∗) − OB1̂

b is the sum of these negative terms and is thus also negative. Moreover,
OB1̂

g ≤ 0 implies that (∗) ≤ 0. Since OB1̂
g ≤ (∗) by equation (3.54), we have that

OB1̂
g ≤ 0, which proves the lemma.

A.6 Proof of Proposition 4

Proof. First, we take the Dual of the Primal and get

min
λ
OB1̂

b

≥0, λHg≥0, λHb≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑
k=0

µθ=B, k +
3∑

k=0
µθ=G, k (3.56)

s.t. p3−k(1− p)k 1
2

(
−
(

3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(3.57)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1
2

(
−
(

3
k

)
− (λ

OB1̂
b
− λHb)

(
2
k

)
− λHg

(
2

k − 1

))
(3.58)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and
{~λ, ~µ} feasible vector for the dual. Necessary and sufficient conditions for them to be
optimal are
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λ
OB1̂

b
·
( 2∑
k=0

(
2
k

)
(d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k] Pr(k|θ = G)1
2)
)

= 0

(3.59)

λHg · (
3∑

k=1

(
2

k − 1

)
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (3.60)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

λHb · (
2∑

k=0

(
2
k

)
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (3.61)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (3.62)

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (3.63)

d[1̂|θ = B, k] · (p3−k(1− p)k
(
−
(

3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(3.64)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k
(
−
(

3
k

)
− (λ

OB1̂
b

+ λHb)
(

2
k

)
− λHg

(
2

k − 1

))
(3.65)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}.

The dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1

p

λHg = 1
λHb = 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}

µθ=G, k = pk−1(1− p)2−k ·
(
p(1− p)

((
3
k

)
+
(

2
k−1

))
+ (1− p− p2)

(
2
k

))
∀k ∈ {0, 1, 2, 3}


(3.66)
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and the disclosure policy d[1̂|θ = G] = 1, d[1̂|θ = B] = (1−p)
p

fulfill the above com-
plementary slackness conditions for all p ≤ 1√

2 .

After inserting d[1̂|θ = G] = 1 and d[1̂|θ = B] = 1−p
p

in 3.59-3.61 and 3.62, one
can easily see that the terms in brackets are zero. Thus, we get that λ

OB1̂
b
≥ 0, λHg ≥

0, λHb ≥ 0 and µθ=G,k ≥ 0 ∀ k ∈ {0, . . . , 3}. Since d[1̂|θ, k] > 0 ∀ θ ∈ {B,G}, k ∈
{0, 1, 2, 3}, the terms in brackets must be zero. By using that(

p3
(
−1 + λ

OB1̂
b

+ λHb

)
− λHgp2(1− p) + µθ=B, k=0

)
= 0 and (3.67)(

(1− p)3
(
−1 + λHg

)
− λHbp(1− p)2 + µθ=B, k=3

)
= 0 (3.68)

we can solve for λ
OB1̂

b
= 1

2p and λHb = (1−p)(λHg−1)
p

. For λHb ≥ 0 we need that λHg ≥ 1
2 .

Choosing λHg = 1
2 implies that λHb = 0. Inserting these values for λ

OB1̂
b
, λHg and λHb

and solving for µθ=G, k=0 yields µθ=G, k=0 = (1− p)2
(

1−2p2

p

)
, which is ≥ 0 if and only if

0.5 < p ≤ 1√
2 . For k ∈ {1, 2} we get that

µθ=G, k = pk−1(1− p)2−k ·
(
p(1− p)(

(
3
k

)
+
(

2
k − 1

)
) + (1− p− p2)

(
2
k

))
≥ 0 (3.69)

for all p ≤ 1√
2 .

A.7 Proof of Proposition 5

Proof. The disclosure policy in Proposition 5 and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1

p

λHg = 1
λHb = 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}
µθ=G,k=0 = 0

µθ=G,k=1 = 2(1− p)(1 + p− 3p2)
µθ=G, k=2 = p(1− p)(5p+ 1)− p3

µθ=G, k=3 = 2p3



(3.70)

fulfill the above complementary slackness conditions for all p ≤ p.
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A.8 Proof of Proposition 6

Proof. The disclosure policy in Proposition 6 and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 3(3p2−3p+1)

2(2p−1)

λHg = 3p(1−p)
2p−1

λHb = 0
µθ=B,k = 0 ∀k ∈ {0, 1}

µθ=B,k=2 = 3p(1−p)2(3p(1+p)−1)
2(2p−1)

µθ=B,k=3 = (1− p)3
(
p(3p−1)−1

2p−1

)
µθ=G,k = 0 ∀k ∈ {0, 1}

µθ=G,k=2 = 3p2(1−p)(p(5−3p)−1)
2(2p−1)

µθ=G,k=3 = p3
(
p(5−3p)−1

2p−1

)



(3.71)

fulfill the above complementary slackness conditions for all p ≤ p < 1.

A.9 Proof of Proposition 7

Proof. We prove this proposition by the standard Primal-Dual-technique. The primal
of the related problem of maximizing Pr(1̂|b) is given by:

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

3∑
k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)1

2 + d[1̂|θ = G, k] Pr(k|θ = G)1
2

) 3− k
3

(3.72)

s.t.
2∑

k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k] Pr(k|θ = G)) ≤ 0 (OB1̂

b )

3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3.73)

Then, we take the Dual of the Primal and get:
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min
λ
OB1̂

b

≥0, λHg≥0, λHb≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑
k=0

µθ=B, k +
3∑

k=0
µθ=G, k (3.74)

s.t. p3−k(1− p)k 1
2

(
−3− k

3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(3.75)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1
2

(
−3− k

3

(
3
k

)
− (λ

OB1̂
b
− λHb)

(
2
k

)
− λHg

(
2

k − 1

))
(3.76)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}.

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and
{~λ, ~µ} feasible vector for the dual. Necessary and sufficient conditions for them to be
optimal are

λ
OB1̂

b
·
( 2∑
k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k] Pr(k|θ = G)1
2)
)

= 0

(3.77)

λHg · (
3∑

k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1
2 (3.78)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

λHb · (
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (3.79)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (3.80)

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (3.81)

d[1̂|θ = B, k] · (p3−k(1− p)k 1
2

(
−3− k

3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(3.82)
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− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k 1
2

(
−3− k

3

(
3
k

)
− (λ

OB1̂
b

+ λHb)
(

2
k

)
− λHg

(
2

k − 1

))
(3.83)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}

The disclosure policy

d[1̂|θ = G] = 1, d[1̂|θ = B] = (1− p)
p

(3.84)

and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1

λHg = 0
λHb = 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}
µθ=G,k=0 = 2(1− p)3

µθ=G, k = 4pk(1− p)3−k ∀k ∈ {1, 2}
µθ=G, k=3 = 0


(3.85)

fulfill the above complementary slackness conditions for all p ∈ (1
2 , 1].

A.10 Proof of Proposition 8

Proof. The primal of the related problem of maximizing Pr(1̂|g) is given by:

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

3∑
k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)1

2 + d[1̂|θ = G, k] Pr(k|θ = G)1
2

)
k

3
(3.86)

s.t.
2∑

k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k]) Pr(k|θ = G)1
2 ≤ 0 (OB1̂

b )
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3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k] Pr(k|θ = G)1
2) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) ≤ 0

2∑
k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2) ≤ 0

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3.87)

Then, we take the Dual of the Primal and get

min
λ
OB1̂

b

≥0, λHg≥0, λHb≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑
k=0

µθ=B, k +
3∑

k=0
µθ=G, k (3.88)

s.t. p3−k(1− p)k 1
2

(
−k3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(3.89)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1
2

(
−k3

(
3
k

)
− (λ

OB1̂
b
− λHb)

(
2
k

)
− λHg

(
2

k − 1

))
(3.90)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}.

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and
{~λ, ~µ} feasible vector for the dual. Necessary and sufficient conditions for them to be
optimal are

λ
OB1̂

b
·
( 2∑
k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k] Pr(k|θ = G)1
2)
)

= 0

λHg · (
3∑

k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1
2

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0
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λHb · (
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (3.91)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3}

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = B, k] · (p3−k(1− p)k 1
2

(
−k3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k 1
2

(
−k3

(
3
k

)
− (λ

OB1̂
b

+ λHb)
(

2
k

)
− λHg

(
2

k − 1

))

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}.

The disclosure policy

d[1̂|θ = B, k] =


0 if k = 0
(p− 1

2 )(3−p)
2(2p−1) if k = 1

1 if k ∈ {2, 3}

, d[1̂|θ = G, k] =


0 if k = 0
(p− 1

2 )(3p2+5p−2)
2(6p2−5p+1) if k = 1

1 if k ∈ {2, 3}.
(3.92)

and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1+3p(p−1)

2(2p−1)

λHg = p(1−p)
2p−1

λHb = 0
µθ=B,k = 0 ∀k ∈ {0, 1}

µθ=B,k=2 = 3p(1−p)23(p2+p−1)
2(2p−1)

µθ=B,k=3 = (1− p)3
(
p2+p−1

2p−1

)
µθ=G,k = 0 ∀k ∈ {0, 1}

µθ=G,k=2 = 3p2(1−p)(3p−p2−1)
2(2p−1)

µθ=G,k=3 = p3
(

3p−p2−1
2p−1

)



(3.93)
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fulfill the above complementary slackness conditions for all p ≤ p < 1.

A.11 Proof of Lemma 5

Proof. Let the designer follow a disclosure policy d′, that sends messages r′ ∈ R′, and
voters responding optimally to this disclosure policy. Denote by ai(r′, zi) the probability,
that voter i with private signal zi ∈ {g, b} votes 1̂ after receiving message r′.

The first step is to show, that the g-type is always weakly more optimistic than
the b-type for any signal that is sent with strictly positive probability in some state
θ. The following formulation makes use of the fact that Pr(r′|θ, zi) = Pr(r′|θ) and
Pr(piv|r′, θ, zi) = Pr(piv|r′, θ), as the designer cannot use or elicit the private informa-
tion of the agents.

Lemma 6
Under any non-eliciting disclosure policy, in any equilibrium, the g-type is more opti-
mistic than the b-type: Pr(θ = G|r′, g, piv) ≥ Pr(θ = G|r′, b, piv).

Proof.

Pr(θ = G|r′, g, piv)

= Pr(θ = G|g) Pr(r′|θ = G) Pr(piv|r′, θ = G)
Pr(θ = G|g) Pr(r′|θ = G) Pr(piv|r′, θ = G) + Pr(θ = B|g) Pr(r′|θ = B) Pr(piv|r′, θ = B)

=
1
2pPr(r′|θ = G) Pr(piv|r′, θ = G)

pPr(r′|θ = G) Pr(piv|r′, θ = G) + 1
2 (1− p) Pr(r′|θ = B) Pr(piv|r′, θ = B)

≥
1
2 (1− p) Pr(r′|θ = G) Pr(piv|r′, θ = G)

(1− p) Pr(r′|θ = G) Pr(piv|r′, θ = G) + 1
2pPr(r′|θ = B) Pr(piv|r′, θ = B)

= Pr(θ = G|r′, b, piv)

Using Lemma 6, the following is a complete partition of the designer’s messages:

1. R′(0̂) := {r′ ∈ R′ : ai(r′, g) = ai(r′, b) = 0}

2. R′(1̂) := {r′ ∈ R′ : ai(r′, g) > 0 ∧ ai(r′, b) > 0}

3. R′(0̂1) := {r′ /∈ R′(0̂) ∪R′(1̂)}.

Consider the following alternative policy d, that takes the old disclosure policy d′
and maps it into a message space R = {0̂, 0̂1, 1̂}, for all states θ ∈ {B,G}:
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d(0̂|θ, r′) =


1 if r′ ∈ R′(0̂)
1− ai(r′, g)n−1 if r′ ∈ R′(0̂1)
1− Pr(piv|r′, θ) if r′ ∈ R′(1̂)
0 otherwise.

(3.94)

d(0̂1|θ, r′) =

ai(r′, g)n−1 if r′ ∈ R′(0̂1)
0 otherwise.

(3.95)

d(1̂|θ, r′) =

Pr(piv|θ, r′) if r′ ∈ R′(1̂)
0 otherwise.

(3.96)

Consider the following equilibrium under the new disclosure policy d:

ai(r, b) =


0 if r = 0̂
0 if r = 0̂1
1 if r = 1̂

and ai(r, g) =


0 if r = 0̂
1 if r = 0̂1
1 if r = 1̂

(3.97)

First, we establish that the above policy together with the voting behavior in Equa-
tion 3.97 is an equilibrium. Then, we show that the designer weakly prefers the disclo-
sure policy d with the restricted message set to the original disclosure policy d′.

Under the new disclosure policy d, after recommendation 0̂, no agent is ever pivotal;
he therefore has no profitable deviation from voting for the status quo.

After realization 1̂, each agent is pivotal with probability 1. The next lemma is
useful in establishing the obedience constraints of voters after realization 1̂.

Lemma 7
For r′ ∈ R′(1̂), we have Pr(θ = G|r′, 1̂, b) = Prd′(θ = G|r′, piv, b).

For r′ ∈ R′(0̂1) and zi ∈ {b, g}, we have Pr(θ = G|r′, piv, 0̂1, zi) = Prd′(θ =
G|r′, piv, zi).

Proof. Simple calculation show for r′ ∈ R′(1̂):

Pr(θ = G|r′, 1̂, b) = Pr(θ = G|r′, b) Pr(1̂|r′, θ = G)
Pr(θ = G|r′, b) Pr(1̂|r′, θ = G) + Pr(θ = B|r′, b) Pr(1̂|r′, θ = B)

(3.98)

and

d′

Pr(θ = G|r′, piv, b) = Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G)
Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G) + Prd′(θ = B|r′, b) Prd′(piv|r′, θ = B)

(3.99)

The lemma follows by construction of the new disclosure policy d, where Pr( ˆ1|r′, θ = G) =
Pr(piv|r′, θ = G) and Pr( ˆ1|r′, θ = B) = Pr(piv|r′, θ = B).
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Analogously, for r′ ∈ R′(0̂1):

d′

Pr(θ = G|r′, piv, b) = Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G)
Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G) + Prd′(θ = B|r′, b) Prd′(piv|r′, θ = B)

and

Pr(θ = G|r′, 1̂, b)

= Pr(θ = G|r′, b) Pr(0̂1|r′, θ = G) Pr(piv|θ = G, 0̂1)
Pr(θ = G|r′, b) Pr(1̂|r′, θ = G) Pr(piv|θ = G, 0̂1) + Pr(θ = B|r′, b) Pr(1̂|r′, θ = B) Pr(piv|θ = B, 0̂1)

Under the old disclosure policy, we have Prd′(piv|r′, θ = G) = pn−1ai(r′, g)n−1. With
the new disclosure policy, we have Pr(0̂1|θ = G, r′)︸ ︷︷ ︸

=ai(r′,g)n−1

Pr(piv|θ = G, 0̂1)︸ ︷︷ ︸
=pn−1

, which is exactly

equal to Prd′(piv|r′, θ = G). By the same argument, we have Prd′(piv|r′, θ = B) =
Pr(0̂1|θ = B, r′), which proves the lemma.

Lemma 8
For r′ ∈ R′(1̂), we have: ∑r′∈R′(1̂) Pr(r′|1̂, b) = 1. For r′ ∈ R′(0̂1), and zi ∈ {g, b}, we
have ∑r′∈R′(1̂) Pr(r′|1̂, piv, zi) = 1.

Proof. First, consider r′ ∈ R′(1̂).

∑
r′∈R′(1̂)

Pr(r′|1̂, b) =
∑

r′∈R′(1̂)

Pr(r′, 1̂|b)
Pr(1̂|b)

=
∑
r′∈R′(1̂) Pr(r′, 1̂|b)∑

r′∈R′(0̂)∨R′(0̂1)∨R′(1̂) Pr(1̂, r′|b)

=
∑
r′∈R′(1̂) Pr(r′, 1̂|b)∑

r′∈R′(0̂) Pr(1̂, r′|b)︸ ︷︷ ︸
=0

+∑
r′∈R′(0̂1) Pr(1̂, r′|b)︸ ︷︷ ︸

=0

+∑
r′∈R′(1̂) Pr(1̂, r′|b)

= 1

The last step follows, because 1̂ is only send with strictly positive probability if
r′ ∈ R′(1̂).

Next, consider r′ ∈ R′(0̂1).

∑
r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi) =
∑

r′∈R′(0̂1)

Pr(r′, piv|0̂1, zi)
Pr(piv|0̂1, zi)

=

=
∑
r′∈R′(0̂1) Pr(r′, piv|0̂1, zi)∑

r′∈R′(0̂) Pr(piv, r′|0̂1, zi)︸ ︷︷ ︸
=0

+∑
r′∈R′(0̂1) Pr(piv, r′|0̂1, zi) +∑

r′∈R′(1̂) Pr(piv, r′|0̂1, zi)︸ ︷︷ ︸
=0

= 1.
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The last step follows because 0̂1 is only send with strictly positive probability if
r′ ∈ R′(0̂1).

The belief of each voter after 1̂ about the state being good, Pr(θ = G|1̂, zi), is a con-
vex combination of the beliefs under the old disclosure policy {Pr(θ = G|r′, piv, zi)}r′∈R(1̂),
as the following calculation shows.

Pr(θ = G|1̂, piv, b) = Pr(θ = G|1̂, b)
=

∑
r′∈R′(1̂)

Pr(r′|1̂, b) Pr(θ = G|r′, 1̂, b)

=Lemma 7 ∑
r′∈R′(1̂)

Pr(r′|1̂, b)
d′

Pr(θ = G|r′, piv, b)︸ ︷︷ ︸
≥ 1

2

≥ 1
2 .

We have Prd′(θ = G|r′, piv, b) ≥ 1
2 , because ai(r

′, b) > 0 in the original equilibrium
for d′: the b-type (weakly) prefers the proposal to the status quo.

Because the g-type is more optimistic under any disclosure policy (Lemma 6), we
also have Pr(θ = G|1̂, g) ≥ Pr(θ = G|1̂, b) ≥ 1

2 . The g-type prefers the proposal to
the status quo after observing 1̂. Both voters have hence no profitable deviation from
voting for the proposal.

Finally, consider a signal 0̂1. Using Lemma 6, as the g-type is always more optimistic
than the b-type, we have ai(r′, b) = 0 and ai(r′, g) > 0 for any recommendation r′ ∈
R′(0̂1). As both voter types are pivotal with non-zero probability (by assumption, r’ is
sent with strictly positive probability), we have

Pr(θ = G|0̂1, piv, zi) =
∑

r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi) Pr(θ = G|r′, 0̂1, piv, zi) (3.100)

=
∑

r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi)
d′

Pr(θ = G|r′, piv, zi)︸ ︷︷ ︸
≥(≤) 1

2 if zi=g(=b)

(3.101)

≥
1
2 if zi = g

≤ 1
2 if zi = b

(3.102)

Lemma 8 establishes, that the above is a convex combination; lemma 7 binds each
summand below 1

2 for zi = b, and above 1
2 for zi = g. Therefore, no voter has a profitable

deviation: after 0̂1, the g-type prefers the proposal, and the b-type the status quo.
The last remaining step is to show, that under the alternative constructed policy

d′, the designer is no worse off than under the disclosure policy d with an arbitrary
message space. We prove this by showing that under the new disclosure policy d, the
implementation probability of the proposal weakly increases for each r′.

Take r′ ∈ R′(0̂). Under both the old and the new disclosure policy, the proposal is
implemented with zero probability.
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Take r′ ∈ R′(0̂1). Under the old disclosure policy, the proposal was implemented
with probability pnai(r′, g)n if θ = G, and (1 − p)nai(r′, g)n if θ = B. Under the new
disclosure policy, the proposal is being implemented with probability pnai(r′, g)n−1 if
θ = G, and (1 − p)nai(r′, g)n−1 if θ = B. The probabilities are higher under the new
disclosure policy, because ai(r′, g)n−1 ≥ ai(r′, g)n.

Finally, take r′ ∈ R′(1̂). Under the old disclosure policy, the proposal was imple-
mented with probability Pr(piv|θ = G, r′)[pai(r′, g) + (1 − p)ai(r′, b)] if θ = G, and
with probability Pr(piv|θ = B, r′)[pai(r′, b) + (1− p)ai(r′, g)] if θ = B. Under the new
disclosure policy, the proposal is implemented with probability Pr(piv|θ, r′), which is
weakly higher.

A.12 Proof of Proposition 9

Proof. The primal of the sender’s problem is

max
{d[r|θ]≥0}

r∈{0̂1,1̂},θ∈{B,G}

∑
θ∈{B,G}

(d[1̂|θ] + d[0̂1|θ] Pr(k = 3|θ)) Pr(θ) (3.103)

s.t. d[1̂|θ] + d[0̂1|θ]− 1 ≤ 0 ∀θ ∈ {B,G} (3.104)
d[1̂|θ = B](1− p)− d[1̂|θ = G]p ≤ 0 (OB1̂

g)
d[1̂|θ = B]p− d[1̂|θ = G](1− p) ≤ 0 (OB1̂

b )
d[0̂1|θ = B](1− p)3 − d[0̂1|θ = G]p3 ≤ 0 (OB0̂1

g )
d[0̂1|θ = B]p(1− p)2 − d[0̂1|θ = G]p2(1− p) ≤ 0 (OB0̂1

g )

Next, we take the dual of the primal and get:

min
λOBg(1̂)≥0, λOBb(1̂)≥0
λ
OBg(0̂1)

≥0, λ
OBb(0̂1)

≥0
µθ=B≥0, µθ=G≥0

µθ=B + µθ=G (3.105)

s.t. − 1
2(1 + λOBg(1̂)p+ λOBb(1̂)(1− p)) + µθ=G ≥ 0 (3.106)

− 1
2(1 + λOBg(1̂)(1− p)− λOBb(1̂)p) + µθ=B ≥ 0 (3.107)

− 1
2p

2(p+ λOBg(0̂1)p− λOBb(0̂1)(1− p)) + µθ=G ≥ 0 (3.108)

− 1
2(1− p)2((1− p)− λOBg(0̂1)(1− p) + λOBb(0̂1)p) + µθ=B ≥ 0 (3.109)

Let {d[r|θ] ≥ 0}r∈{0̂1,1̂} be a feasible disclosure policy for the primal, and {~λ, ~µ}
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feasible vector for the dual. Necessary and sufficient conditions for the optimal are:

λOBg(1̂) ·
(
d[1̂|θ = B](1− p)− d[1̂|θ = G]p

)
= 0,

λOBb(1̂) ·
(
d[1̂|θ = B]p− d[1̂|θ = G](1− p)

)
= 0,

λOBg(0̂1) ·
(
d[0̂1|θ = B](1− p)3 − d[0̂1|θ = G]p3

)
= 0,

λOBb(0̂1) ·
(
d[0̂1|θ = B]p(1− p)2 − d[0̂1|θ = G]p2(1− p)

)
= 0,

µθ=B ·
(
d[1̂|θ = B] + d[0̂1|θ = B]− 1

)
= 0,

µθ=G ·
(
d[1̂|θ = G] + d[0̂1|θ = G]− 1

)
= 0,

d[1̂|θ = G] ·
(
−1

2(1 + λOBg(1̂)p+ λOBb(1̂)(1− p)) + µθ=G

)
= 0,

d[1̂|θ = B] ·
(
−1

2(1 + λOBg(1̂)(1− p)− λOBb(1̂)p) + µθ=B

)
= 0,

d[0̂1|θ = G] ·
(
−1

2p
2(p+ λOBg(0̂1)p− λOBb(0̂1)(1− p)) + µθ=G

)
= 0,

d[0̂1|θ = B] ·
(
−1

2(1− p)2((1− p)− λOBg(0̂1)(1− p) + λOBb(0̂1)p) + µθ=B

)
= 0.

It can be easily checked by substitution that the disclosure policy

{d[r|θ] ≥ 0}r∈{0̂1,1̂},θ∈{B,G} =



d[1̂|θ = G] = 1

d[1̂|θ = B] = (1−p)
p

d[0̂1|θ = G] = 0

d[0̂1|θ = B] = 0

(3.110)

and the dual variables

{~λ, ~µ} =



λOBg(1̂) = 0
λOBb(1̂) = 1

p

λOBg(0̂1) = 1 + λOBb(0̂1)
p

1−p

λOBb(0̂1) = (2p4− 1
2 )(1−p)

p3(1−2p)

µθ=B = 0
µθ=G = 1

2p


(3.111)

fulfill the above complementary slackness conditions for all p ≤ 1
4√2 = p̃.

Analogously, for p > p̃, the disclosure policy from Proposition 10 and the duals
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{~λ, ~µ} =



λOBg(1̂) = 0

λOBb(1̂) = 1
p
− (1−p)3(2p4−1)

p(p4−(1−p)4)

λOBg(0̂1) = 1− 2p4−1
p4−(1−p)4

λOBb(0̂1) = 0

µθ=B =
1
2 (1−p)3(2p4−1)
p4−(1−p)4

µθ=G = 1
2

(
1
p
− (1−p)4(2p4−1)

p(p4−(1−p)4)

)



(3.112)

fulfill the above complementary slackness conditions.

A.13 Proof of Proposition 10

Proof. The error probabilities lG (probabilities of convicting the innocent) and lB (ac-
quit the guilty) of a wrong decision are found in Feddersen and Pesendorfer (1998).
The expected utility of an uninformed voter in Feddersen and Pesendorfer (1998) is

1
2 (1− lG − lB) = 1

4
(2p− 1)3

(p3/2 + p
√

1− p−
√

1− p)2 . (3.113)

With a manipulative information designer the expected utility of a voter is

1
2 Pr(1̂|θ = G)1

2 + 1
2 Pr(1̂|θ = B)

(
−1

2

)
. (3.114)

Next, we show that the optimal disclosure policy of the designer in each of the three
intervals for p yields a strictly higher utility to the voter.

Case 1: 1
2 < p ≤ 1√

2 . Using the optimal disclosure policy in Proposition 4, the utility
of the ex ante type is 1

41 − 1
4

1−p
p

= 1
4

2p−1
p

. Comparing this with Equation 3.113 shows
that the utility in case 1 is strictly higher for all p ∈ (1

2 , 1).
Case 2: 1√

2 < p ≤ 1+
√

13
6 . With the optimal disclosure policy in Proposition 5,

Pr(1̂|θ = G) = 1 − (1 − p)3 and Pr(1̂|θ = B) = (p − 1)(p2 − 2). A voter’s expected
utility is 1

4(2p−1)(2−p), which can be again easily checked to be larger than Equation
3.113 for all p ∈ (1

2 , 1).
Case 3: 1+

√
13

6 ≤ p < 1. In this scenario, the probabilities of choosing the proposal
are Pr(1̂|θ = G) = 1

4p (3p3 − 8p2 + 3p+ 6) and Pr(1̂|θ = B) = 1
4(p−1) (3p3 − p2 − 4p− 4).

This yields an expected utility of 1
8 [(2p− 1)(p+ 1)(2− p)] . This is higher than the ex-

pected utility in Feddersen and Pesendorfer (1998) in Equation 3.113.
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